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Preface

This volume contains the papers presented at the 48th International Colloquium on Automata,
Languages and Programming (ICALP 2021), held virtually, hosted by the University of
Glasgow, UK, during July 12–16, 2021. ICALP is a series of annual conferences of the
European Association for Theoretical Computer Science (EATCS), which first took place
in 1972.

This year, the ICALP program consisted of two tracks:
Track A: Algorithms, Complexity, and Games
Track B: Automata, Logic, Semantics, and Theory of Programming

In response to the call for papers, a total of 362 submissions were received: 261 for Track A
and 101 for Track B. Each submission was assigned to at least three Program Committee
members, aided by 761 external subreviewers. The committees decided to accept 137 papers
for inclusion in the scientific program: 108 papers for Track A and 29 for Track B. The
selection was made by the Program Committees based on originality, quality, and relevance
to theoretical computer science. The quality of the manuscripts was very high indeed, and
many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper in each of
the two tracks, selected by the Program Committees.
The best paper awards were given to the following papers:
Track A: Sayan Bhattacharya and Peter Kiss. Deterministic Rounding of Dynamic Frac-

tional Matchings.
Track B: Antoine Amarilli, Louis Jachiet and Charles Paperman. Dynamic Membership for

Regular Languages.

The best student paper awards, for papers that are solely authored by students, were
given to the following paper:
Track A: Or Zamir. Breaking the 2n barrier for 5-coloring and 6-coloring.
Track B: none.

Apart from the contributed talks, ICALP 2021 included invited presentations by Christel
Baier (Technical University of Dresden), Andrei Bulatov (Simon Fraser University, Canada),
Keren Censor-Hillel (Technion, Israel), Toniann Pitassi (University of Toronto, Canada), Adi
Shamir (Weizmann Institute of Science, Israel), David Woodruff (Carnegie Mellon University,
USA).

This volume contains all the contributed papers presented at the conference, papers that
accompany the invited talks of Christel Baier, Andrei Bulatov, Keren Censor-Hillel, Adi
Shamir, David Woodruff, and an abstract of the invited presentation of Toniann Pitassi.

The program of ICALP 2021 also included presentations of the EATCS Award 2021
to Toniann Pitassi, the Presburger Award 2021 to Shayan Oveis Gharan, the EATCS
Distinguished Dissertation Awards to Talya Eden, Marie Fortin, Vera Traub, and the
induction of new EATCS Fellows Luca Aceto, Rajeev Alur, Samir Khuller, David Peleg,
Davide Sangiorgi, Saket Saurabh.

The following workshops were held as satellite events of ICALP 2021 on July 12, 2021:
Algorithmic Aspects of Temporal Graphs IV (AATG)
Verification of Session Types (VEST)
Programming Research in Mainstream Languages (PRiML)

EA
T
C
S

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xvi Preface

Graph Width Parameters: from Structure to Algorithms (GWP)
Combinatorial Reconfiguration
Formal methods education on-line: Tips, Tricks and Tools
Flavours of Uncertainty in Verification, Planning and Optimization (FUNCTION)

We wish to thank all authors who submitted extended abstracts for consideration, the
Program Committees for their scholarly effort, and all the referees who assisted the Program
Committees in the evaluation process.

We are also grateful to the Conference General Chair, Simon Gay, and his colleagues from
the School of Computing Science, University of Glasgow, for organizing ICALP 2021, and to
the Scottish Informatics and Computer Science Alliance (SICSA) for sponsoring participation
by PhD students from Scotland.

We would like to thank Anca Muscholl, the Chair of the ICALP Steering Committee, for
her continuous support and Artur Czumaj, the president of EATCS, for his generous advice
on the organization of the conference.

July 2021 Nikhil Bansal
Emanuela Merelli
James Worrell
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Abstract
In view of the growing complexity of modern software architectures, formal models are increasingly
used to understand why a system works the way it does, opposed to simply verifying that it behaves
as intended. This paper surveys approaches to formally explicate the observable behavior of reactive
systems. We describe how Halpern and Pearl’s notion of actual causation inspired verification-
oriented studies of cause-effect relationships in the evolution of a system. A second focus lies on
applications of the Shapley value to responsibility ascriptions, aimed to measure the influence of an
event on an observable effect. Finally, formal approaches to probabilistic causation are collected and
connected, and their relevance to the understanding of probabilistic systems is discussed.
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1 Introduction

Modern software systems are increasingly complex and even small changes to a system or its
environment may lead to unforeseen and disastrous behaviors. As software controls more
aspects of our lives everyday, it is desirable – and for widespread acceptance in societal
decisions, eventually inevitable – to have comprehensive and powerful techniques available to
understand what a system does.

The field of formal methods has developed a portfolio of tools that provide confidence in
the working of complex software systems. In formal methods, one builds a formal model of
a system and specifies its desired behavior in an appropriate (temporal) logical formalism.
Algorithmic techniques such as model checking [12, 31] can answer the question whether the
model satisfies the specification, or in other words, whether the system behaves as intended,
often in a “push button” way. Moreover, an important aspect of these algorithms is that they
can produce independently verifiable justifications of their outcome, such as counterexamples
or certificates to justify the violation or correctness of a property, respectively. Since the
earliest successes of model checking, the availability of counterexample traces was stated as a
major advantage for the method over deductive verification [30]. As model checkers became
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1:2 From Verification to Causality-Based Explications

more complex, concerns about their correct implementation led to research on producing
certificates for correctness. Examples are inductive invariants or derivations in a deductive
system [62, 64, 44, 70] that can be checked independently from the verification process.

While certificates and counterexample traces can provide a useful explication about the
behavior of a system, they only provide rudimentary understanding of why a system works
the way it does. In epistemic terms, the outcome of model checking applied to a system and
a specification provides knowledge that a system satisfies a specification or not in terms of an
assertion (whether the system satisfies the specification) and a justification (certificate or
counterexample) to increase the belief in the result. However, model checking usually does
not provide understanding on why a system behaves in a certain way. Such an understanding
can be obtained by causal links between possible events and their observed outcome.1

The need to better understand why a system is correct or incorrect has led to a broad
research program on models and reasoning methods that aim to provide such knowledge
of causes (see, e.g., [97, 98]). The goal of this survey is to summarize research on causal
reasoning in the field of verification and highlight the challenges that lie ahead.

The first step in understanding knowledge of causes is the mathematical formulation
and study of causality. Grasping the intuitive concept of cause-effect relationships in a
formal model has proved notoriously difficult. Centuries of philosophical reasoning on the
subject have distilled the counterfactuality principle [67, 68, 88] as a central feature of what
constitutes an actual cause: if the cause had not occurred, then the effect would not have
happened. While the counterfactuality principle was generally agreed upon, a rigorous
mathematical formulation was developed only recently, through the seminal work of Halpern
and Pearl and their coworkers [95, 45, 46, 55]. In a nutshell, they model causal systems using
structural equation models, and provide a set of axioms to characterize when an event is an
actual cause of another. We provide a summary of the foundations of causality and some of
their applications in verification in Section 2.

While causality is a qualitative concept, in that an event is an actual cause of another
or is not, more recent work considers quantitative measures of responsibility. Responsibility
measures the relative importance that an event had in causing another event. In other
words, the responsibility of an acting agent gauges what fraction of an observable effect
can be attributed to that agent’s behavior. Here, an agent could be, e.g., an individual, a
coalition, a software component, or device in a computer network. Chockler and Halpern
[23] define the degree of responsibility of an actual cause in the Halpern-Pearl sense based
on the cardinality of the smallest witness change that makes an event a cause of another.
A more recent strand for formalizing responsibility is based on the Shapley value [106].
In cooperative game theory, the Shapley value measures the influence of an agent on the
outcome jointly brought about by the agents and is classically used to find a fair division of
a cost or a surplus among them. The appeal of the Shapley value stems on the one hand
from its uniqueness with respect to a relatively simple set of axioms, and on the other hand
from its seemingly universal applicability. Research on employing Shapley-like values for the
explication of machine-learning predictions [117, 35, 91, 1, 110] and the behavior of formal
models [119, 11, 93, 10] is currently very active. A summary of applications of Shapley values
in the verification context is provided in Section 3.

1 Epistemologists since Gettier [47] will recognize that justified true belief does not constitute a compre-
hensive theory of knowledge. For the same reason, a theory of understanding as knowledge of causes is
a matter of vigorous debate, with Gettier-like counterexamples [52, 100, 101]. These subtle epistemic
issues are orthogonal to our work.
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From a systematic viewpoint, causality and responsibility can be understood in either a
backward or a forward manner [113]. In the backward or ex post setting, an effect has already
transpired, and the goal is to describe its causes and determine their relative influence in
producing the effect. The actual causation framework by Halpern and Pearl follows this
paradigm, and therefore also most approaches presented in Section 2. In the forward or ex
ante setting, a reasoning model includes possible contingencies and the goal is to characterize
the global power of agents and events in affecting the outcome. The forward responsibility
in game structures (see Section 3.1) and the importance value for temporal logics (see
Section 3.2) pursue this pattern. There are also attempts to express forward-looking causality
notions by structural equations in the context of accountability [73]. Seen from an operational
angle, the distinction between backward and forward notions loosely relates to when the
causal analysis is executed. Backward notions tend to be applicable at inspection time, e.g.,
to guide the debugging process in post mortem analyses. Forward notions are prone to be
used at design time of the system, laying out general phenomena of its inner workings.

Finally, we consider causality in the setting of probabilistic models. Unlike the determin-
istic setting, mathematical notions of causality and responsibility are less understood. There
is widespread agreement in the philosophy literature that a quintessential characteristic
of causes in the probabilistic setting is the probability-raising property [111, 21, 107, 39]:
an occurrence of the cause should increase the probability of subsequently observing the
effect. Nevertheless, it has also been observed that simply taking probabilities often leads
to counterintuitive phenomena owing to mutual dependencies and latent correlations with
other events [104, 21, 107]. Section 4 discusses attempts to formulate probability-raising
approaches to causation for operational probabilistic models. These approaches tend to
produce forward notions since probabilities inherently refer to a collection of evolutions in
which an event happened. There are numerous philosophical accounts on actual probabilistic
causation [89, 84, 42]. In terms of formal models, Pearl’s early notion of actual causality in
terms of causal beams [96, 97] entailed probabilistic flavor, and the causal probabilistic logic
of [115, 14] describes a language for reasoning about probabilistic causation. Nonetheless, we
are aware of only a few works that study a probabilistic version of causality in operational
models (see, e.g., [75, 2, 37, 9]). Along these lines, we point out open directions for research
that focus on the operational point of view.

2 Counterfactual Notions of Causality

An important starting point for the study of causality in formal methods is the influential
work by Halpern and Pearl [58, 59, 60, 56, 57] on actual causality, henceforth abbreviated
HP causality. We provide a brief and informal overview of their definition.

Halpern and Pearl use structural equation systems as a modeling language for causal
models. A causal model relies on exogeneous variables U and endogeneous variables V ,
representing external or independent factors and internal factors, respectively. The value of
each endogeneous variable x ∈ V is specified by a deterministic function fx that may depend
on exogeneous variables and on endogeneous variables that are preceding x with respect to
a fixed order on V . Intuitively, a causal model can be thought of as an arithmetic circuit
whose primary inputs are the exogeneous variables and where some of whose internal nodes
are labeled by the endogeneous variables. The circuit then specifies the functions defining
the endogeneous variables as well as the dependencies between the variables.

ICALP 2021
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More formally, let M = (U, V, {fx}x∈V ) be a causal model. Given a formula φ over
the exogeneous and endogeneous variables (in some appropriate logic), and a context u⃗
that assigns values to all variables in U , the goal of actual causality is to state whether an
assignment of values X⃗ = x⃗ to a subset X ⊆ V is a cause of φ. Halpern and Pearl define
X⃗ = x⃗ to be a cause of a formula φ in (M, u⃗) if the following three axioms hold.
AC1 both the cause and the effect are true: the model (M, u⃗) satisfies X⃗ = x⃗ as well as φ,
AC2 the principle of counterfactual dependence (discussed below), and
AC3 causes are minimal: no partial assignment of X⃗ = x⃗ satisfies AC1 and AC2.

The key to AC2 is captured by the notion of interventions, describing a direct assignment
of values to some endogeneous variables while disregarding their defining functions. Formally,
[Y⃗ ← y⃗] stands for the intervention on variables Y ⊆ V by assigning them values y⃗ and
leaving all other values for variables V \ Y to follow from their defining functions. Then,
[Y⃗ ← y⃗]ψ describes the impact of an intervention on a formula ψ. An intervention thus can
represent a counterfactual: what if variables in Y took values y⃗ instead of their actual values?
Turning back to the definition of actual causes for φ, axiom AC2 now requires the existence
of an intervention [X⃗ ← x⃗′] on the variables in X such that the effect φ is not observable,
i.e., [X⃗ ← x⃗′]¬φ holds in (M, u⃗). The precise definition of AC2 is, however, more involved
and several variants exist for AC2 to account for different settings and applications.2

2.1 Instances of HP Causality in Verification
Principles of causality have been used, often implicitly, in formal verification for a long time.
An early example is program slicing (see, e.g., [61]) where by following program dependencies
one aims to identify approximations of an actual cause for reaching a program location.
Causality is also a key concept in error localization, the problem of reducing a counterexample
trace for ease of debugging [120, 13, 105, 53, 118, 72, 121]. A correspondence of causality in
counterexample traces to finding minimal UNSAT cores has been identified in [16]. Early and
influential work on causality in formal verification is exemplified by research on vacuity and
coverage. Vacuity [17, 81, 102] explicates whether a positive verification result originates from
an unintended trivial behavior. Coverage [65, 25, 27, 26] is dual to vacuity, and explicates
whether certain parts of the system were not relevant for the successful result. While for
determining vacuity one considers small changes to the specification and checks whether
these change the result, coverage is obtained by perturbations to the system rather than the
specification and is actually a particular instance of HP causality.

Temporal logics play a crucial role in the verification context to describe properties of
and requirements on the system. Common temporal logics are, e.g., computation tree logic
(CTL) [29] or linear temporal logic (LTL) [99]. In LTL, e.g., ¬E U C describes that an effect
E does not occur before a cause C and ♢E stands for the effect E to eventually occur.

From Coverage to HP Causality. Coverage itself is a concept with a manifold of incarnations
and we focus here on the formalization by [24], where the connection of coverage to HP
causality has been addressed. The operational model is provided by a Kripke structure
K, i.e., a finite directed graph over states labeled by atomic propositions. Further, we are
given an atomic proposition q and a specification ψ expressed in an appropriate (temporal)

2 Halpern and Pearl’s definition of causality underwent a considerable amount of development over the
past 20 years, primarily varying AC2. One usually distinguishes the original version [58], the updated
version [59, 60], and the modified version [56, 57] (alongside variations by other authors [54, 63]).
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logic over the set of atomic propositions such that K satisfies ψ. Then, a state s of K is
said to be q-covered if changing the truth value of q in s leads to a structure that does
not satisfy ψ. Considering the hypothetical mutant system in which q takes the opposite
value in s corresponds to a counterfactual notion from the causality literature. Yet, coverage
only allows simple counterfactuals containing individual changes to the system. As pointed
out in [24], it is for this reason that coverage at times fails to express deeper dependencies
involved in the satisfaction of ψ.

To define a cause in this setting, one can consider the following simple causal model: for
each state s, there is one endogeneous variable vs, which specifies whether the value of q in
s is swapped in contrast to the original structure K, or not. One first refers to a context
where all variables vs are set to false and then considers possible swap operations. From K

and ψ one can derive a Boolean function φ over the endogeneous variables V such that an
instantiation I : V → {true, false} satisfies φ if and only if swapping the truth value of q
exactly in states s with I(vs) = true leads to a structure satisfying ψ. Now s is a cause of ψ
with respect to q [24, Definition 3.2] if there exists a set of variables Y such that [Y ← true]φ
and [Y ∪ {vs} ← true]¬φ hold. In other words, s is a cause if there exists a set of states S′

(corresponding to variables Y ) such that swapping q in S′ leads to a structure satisfying ψ3,
but swapping the value of q in S′ and s gives a structure falsifying ψ. These two conditions
postulate precisely the axiom AC2, which takes a simpler form than usual thanks to the
lack of higher-order dependencies among the variables in this causal model. In the presented
causal model, axiom AC1 holds by the assumption that K satisfies ψ, and the minimality
axiom AC3 is trivially fulfilled as only single states are considered as potential causes.

While this causal model is very simple, in particular it does not include any dependencies
in between variables, the work in [24] shows that even such restricted models are useful.

Fault Localization. The causality interpretation of coverage presented above takes a forward-
looking perspective in that changes to the system are globally tested against the given
specification. In [16], a similar approach is applied to the backward-oriented setting of fault
localization, i.e., the problem of pointing out those parts of a (finite) counterexample trace π
that are most relevant for violation of a given linear-time specification φ. In this incarnation
of HP causality, the endogeneous variables V contain a variable v(s,q) for each pair consisting
of a state s and atomic proposition q of the Kripke structure. These variables can take
values {true, false} and the interpretation is exactly as before, namely v(s,q) = true means
that the truth value of q in state s is changed in contrast to the initial context. Moreover,
the axiom AC2 takes the same form as in the previous case. Specifically, it expresses that
there is a set of variables Y ⊆ V such that changing the truth value for the corresponding
state-proposition pairs lets π still violate φ, while additionally swapping q in s leads to π
satisfying φ (interpreted over a weak semantics of LTL on finite paths).

Counterfactual Reasoning for Configurable Systems. Nowadays, almost every practical
software system is configurable, let it be using #ifdef constraints or through features [5].
Features inherently have a designated meaning, usually expressed by their name, e.g., a
“verbose” feature indicates that the software will expose additional information during runtime.
Debugging configurable systems is challenging, as the number of possible systems suffers
from an exponential blowup in the number of features. While there are specifically tailored
methods for analyzing configurable systems [112], e.g., through model checking [32, 38],

3 The updated version of HP causality [59, 60] would require this condition also for all subsets of S′.
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research on identifying root causes in configurable systems on the abstraction level of features
is still in its infancy. Such a causal analysis can provide useful insights for debugging:
developers can focus on the parts implementing the features identified to be responsible
for the bug, and users can obtain suggestions to reconfigure the system to not expose the
bug. First ideas to explicate which feature activations and deactivations cause an effect in
configurable systems were described in [6]. There, the set of feature configurations with
observable effect is obtained by configurable systems analysis, e.g., through family-based
verification [32, 112, 38, 28]. Exploiting the Boolean case of HP causality [40, 69], those
partial feature configurations can be determined where the corresponding systems all show
the effect (see AC1), for which there is a reconfiguration that does not exhibit the effect
(AC2), and that are minimal (AC3).

2.2 Further Approaches Inspired by HP Causality
The work [34] presents a formal definition of actual causes in the setting of concurrent
interacting programs. Originating from logs written by the concurrent system, the goal is to
localize causes in those program actions that are most relevant for the violation of a desirable
property. The approach is investigated in detail for the prominent class of safety properties,
with a view towards legal accountability in security-critical systems.

In [78], a causality-based approach to explain timed diagnostic traces has been presented,
which are used as counterexamples for model-checking results in timed systems. Such traces
represent a set of violating executions and the goal of [78] is to compute the parts that can
be considered causal for violating the property.

A different definition inspired by HP causality was used in [86]. There, causes for
reachability properties are formulas of a temporal logic called event order logic, used to
describe temporal relations between events. Algorithms to compute causes in this sense were
also studied in [15, 77], and the approach was extended to handle general LTL formulas as
effects rather than just reachability in [20].

In [49, 50] the authors argue that the HP causality, which is propositional in nature, is
not the ideal starting point for a framework of causality in formal verification. They present a
formalism which is based on counterfactual reasoning, uses system traces as first-class objects
and is designed to work for compositional systems. In [51] the formalism is further generalized
by defining abstract counterfactual builders, which specify what alternative scenarios should
be considered for counterfactual reasoning. Further, [51] also considers hyperproperties
as specifications. While hyperproperties are useful to specifying system properties, it was
observed in [33] that they can also be used to formalize causality. Similar observations have
been made for probabilistic causation [2, 37].

3 Responsibility and Shapley-like Ascriptions

While the previous section defined and applied qualitative concepts of causation, this
section shifts the focus towards quantitative approaches of responsibility. Loosely speaking,
responsibility refers to a numerical value designed to measure how much weight an event
had in producing an effect, relative to concurring or competing events linked to the same
effect. There is widespread agreement that a necessary condition for assuming responsibility
is causal relevance of the event in question to the effect [41, 18]. As a consequence, the term
responsibility usually builds directly or indirectly on concepts of causality. While the specific
numerical value in a notion of responsibility may not have a semantic content, it can order
the events in terms of their causal relevance.
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Chockler and Halpern [23] introduced the notion of degree of responsibility, which is
attributed to actual causes in causal models of HP causality. This degree measures how
many changes to the evolution of events are necessary until counterfactual values for the
actual cause change the observable effect. In [24] this notion is combined with the study
of mutant coverage to build a degree of responsibility in CTL model checking assigned to
state-proposition pairs (see also Section 2.1).

The degree of responsibility measures the influence of an event by looking at how many
further counterfactual changes are (minimally) required to swap the effect, but is does not
take into account how many such minimal sets of changes exist. One can argue that a cause is
individually more influential if it admits many such sets since this means less dependencies on
other events. This rationale has generated an active strand in formalization of responsibility
based on the Shapley value [106]. The Shapley value is a central solution concept from
theoretical economics and was originally designed to find a fair distribution of a financial
surplus that was brought about cooperatively by a number of producers.

Formally, a cooperative game with n players is a mapping g : 2[n] → R such that g(∅) = 0,
where [n] = {1, . . . , n}. The value g(C) is meant to represent the surplus (or, depending on the
specific situation, the cost) that the coalition C ⊆ [n] can ensure upon acting collaboratively.
The Shapley value of player i is then defined as

Sh(i) = 1
n! ·

∑
π∈Sn

g(π≥i)− g(π≥i \ {i}) (1)

where Sn denotes the set of self-bijections [n]→ [n] and where π≥i = {j ∈ [n] | π(j) ≥ π(i)}
for a given π ∈ Sn. Intuitively, g(π≥i) − g(π≥i \ {i}) describes the marginal contribution
of player i to the coalition π≥i. The Shapley value takes the average of all such marginal
contributions. Thus, Sh(i) is a measure for the overall influence of player i in the game g.

The general setup of cooperative games as real-valued functions on the power set of
[n] makes the Shapley value amenable to measuring the influence of abstract players in
formalized situations of collaborative interaction. This rationale has recently been invoked
for the interpretation of machine learning models [117, 35, 91, 1, 110]. In this case, the
players are the input parameters to a machine learning model, and the Shapley value has
the goal to measure the influence of each parameter on the output of the model.

This section outlines three approaches that employ the Shapley value as a means to
distribute an overall effect into individual responsibilities. In Section 3.1 the general setting
of an extensive form game is chosen and responsibilities are attributed to its players with
respect to producing a certain outcome. Section 3.2 discusses a notion of importance of states
for the satisfaction of an LTL property in a Kripke structure. Section 3.3 finally presents
an extension of the Shapley value that can be used to define responsibilities in a setting of
continuously varying parameters.

3.1 Responsibility in Game Structures
As summarized in Section 2, causal models are by now a fundamental building block for
notions of actual causation in the verification domain. However, in complex scenarios that
involve cooperative interaction, non-cooperative competition, and imperfect information,
they fall short of modeling various natural features such as temporal sequentiality, knowledge,
and agency. The work [10] presents an approach to establish notions of responsibility in these
strategic settings by passing to extensive form games [116, 80]. These provide a popular
formalism for studying the dynamics that underlie strategic interaction in the presence of
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competing objectives. In a nutshell, an extensive form game is an explicit presentation of the
strategic scenario in terms of a tree structure whose edges describe the transitions between
states when actions are taken, certain states may be indistinguishable for the players given
their knowledge, and each path from the root to a leaf is associated with an outcome. Apart
from being a highly expressive model, a century of research on the subject has generated a
rich set of solution concepts on which a study of responsibility can build, primarily following
economic rationales.

In [10] three responsibility notions are defined with respect to an event E that is encoded
by a binary labelling on the leaves of the game tree, i.e., E took place on a play or not. All
three notions follow the common two-step process consisting of first defining (qualitatively)
what it means for a coalition C to be responsible and then extracting (quantitatively) an
individual responsibility value through an application of the Shapley value on coalition
responsibilities. That is, one takes the cooperative game g to take binary values {0, 1}
depending on whether or not a coalition is responsible. They also share the counterfactual
paradigm in that a necessary condition for being responsible for the occurrence of E is the
power to preclude E. While the notions can be ordered according to their logical strength,
they are perhaps best explained along two lines of distinction given by the temporal perspective
and epistemic state.

The temporal perspective can be either forward-looking or backward-looking [113]. For
forward-looking notions one attains a prospective, ex ante viewpoint that studies the preclusive
power for the game as a whole. The forward-looking notion put forth in [10] is called forward
responsibility and requires the coalition to possess a strategy that globally avoids E. In
contrast, backward-looking notions consider a specific play from a retrospective, ex post
viewpoint and study who was responsible for E as the play evolved.

Depending on how the epistemic state is taken into account, [10] distinguishes strategic
backward responsibility and causal backward responsibility. In order for a coalition to be
strategically backward responsible, it must have had the power to avoid E at some point on
the play and it must have been aware of this fact given its epistemic knowledge. In situations
of imperfect information, this latter condition is crucial for arriving at a responsibility-as-
capacity notion [113] in a strategic sense that goes beyond a mere counterfactuality check:
when one does not know all relevant information, one can even bring about E inadvertently
or unintendedly. Causal backward responsibility essentially drops the latter requirement in
that the coalition is able to avoid E from some point on, everything else held fixed. This
corresponds to the responsibility-as-cause from the classification presented in [113].

There is a translation of a causal model into an extensive form game under which causal
backward responsibility corresponds exactly to but-for causes [10]. It can therefore happen
that a player is causally backward responsible without belonging to an actual cause in
the HP causality sense [59] and, therefore, with degree of responsibility 0 in the sense of
[23]. In the prototypical example in which Suzy and Billy both throw rocks at a bottle
and Suzy’s stone hits first, Billy’s degree of responsibility is 0, while both are attributed
causal backward responsibility 1/2. Since both players acted in exactly the same way based
on the same information, there is reason to favor the latter symmetric notion, and avoid
actual causation en route to accurately model intuitive responsibility concepts. A detailed
comparison to causal models, other notions of responsibility in strategic games of imperfect
information [119], and proof-theoretic approaches to formalize responsibility [19, 94] is given
in [10].
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3.2 The Importance Value for Temporal Logics
The paradigm of passing from binary coalitional responsibilities to quantitative individual
responsibilities by virtue of the Shapley value is also applied in [93] to model check Kripke
structures against temporal logic specifications. The resulting notion is called the importance
value and measures the influence of a state in a system for the satisfaction of a given specific-
ation. Intuitively, a state is important in this framework if the way that the nondeterministic
choices of the state are resolved has a large impact on whether the given specification is met.

Formally, let K be a Kripke structure with states S and a dedicated initial state, and φ

be an LTL formula. Then one defines the cooperative game g : 2S → {0, 1} using an induced
two-player game as follows. For a set of states C ⊆ S we let GC be the two-player game over
the arena K where player SAT controls the states in C, player UNSAT controls the states in
S\C and the winning condition is φ. Then, g(C) = 1 if player SAT wins GC , and g(C) = 0
otherwise. With this definition, the importance value I(s) of a state s ∈ S with respect to
K and φ is defined to be the Shapley value of player s in g (see Equation (1)). The notion
can be straightforwardly extended to define the importance of a set of states Pi ⊆ S, where
S = P1 ∪̇ . . . ∪̇ Pn is a given partition of the state space. This generalization is intended to
take an existing compositional structure of the system appropriately into account.

The work [93] studies the associated computational problems of deciding whether I(s) > 0
(called the usefulness problem) and deciding whether I(s) > η for a rational threshold η. The
intrinsic complexity of solving two-player LTL-games (the decision problem is 2EXPTIME-
complete) carries over to these problems. This computational intractability of the importance
value motivates further studying the complexity when restricted to fragments of LTL, and
tight complexity results were shown in [93] for a wide range of specifications.

In [93], the presented framework is also applied to CTL model checking of modal transition
systems (MTS) [85]. MTSs have two levels of nondeterminism: the standard nondeterminism
of the underlying graph and additionally a choice on which of the transitions in a state
are actually included in the system. The latter kind of nondeterminism is used to design a
two-player game where one player tries to satisfy the CTL specification and the other player
tries to violate it. However, since the semantics of CTL relies on infinite trees and the order
in which the branches are evolving has a strong impact on which player wins, there does not
appear to be a natural candidate game that proceeds in a turn-by-turn fashion. Hence [93]
considers one-shot games in which the players commit to a valid set of transitions in the
states under their control once at the beginning of their play. This determines once more a
binary cooperative game g that induces importance values in the same way as for LTL.

There is a straightforward generalization of the importance value to a 2 1
2 -player game G

in which the actions taken by the players are associated with probability distributions over
the states. In this formalism, the players each make non-deterministic choices among its
available actions, but the actual successor state then depends on a random choice according
to the associated distribution. Given an LTL specification, the goal of SAT is to maximize the
probability that the resulting path satisfies the specification, while UNSAT tries to minimize it.
These 2 1

2 -player games are determined in a quantitative sense [92]: the maximal probability
that can be enforced by SAT against all strategies of UNSAT is 1 minus the minimal probability
that can be enforced by UNSAT against all strategies of SAT. This probability is called the
value val(G) of the game (see also the survey [22]). Let S = SSAT ∪̇ SUNSAT be the partition of
the states of G into those under control of SAT and UNSAT, respectively. For a subset C ⊆ SSAT

the value g(C) is then defined as val(GC), where GC is the 2 1
2 -player game obtained from G

by putting the states in S\C under the control of player UNSAT. Taking Shapley values as
above then induces the importance value of a state in SSAT.

ICALP 2021



1:10 From Verification to Causality-Based Explications

3.3 Attributing Responsibility in Continuous Models
The Shapley value [106] is an inherently discrete solution concept. On the other hand,
realistic formal models of reactive systems often entail continuous features such as timing
[4, 36, 90], physical phenomena [3, 108], or parametric dependencies [71, 48, 79]. Notions of
responsibility for these models therefore tend to require new mathematical approaches if the
continuous nature is to be taken into account appropriately.

The continuous scenario seen from an economic angle generalizes (discrete) cooperative
games: rather than just participating in a coalition, the n players of a game each pick a value
vi from a continuous domain Di ⊆ R including 0 and the (generalized) game then determines
a collective surplus or cost based on this input. This is formally described by a continuously
differentiable function g : D1 × . . .×Dn → R such that g(0, . . . , 0) = 0. Economists usually
take the domains to be of the form Di = [0,mi) for some maximal input mi ∈ R, and further
assume g to be non-decreasing with non-negative range. The Aumann-Shapley value [7] is a
generalization of the Shapley value designed to provide a solution to the question how the
value g(v1, . . . , vn) should be “fairly” distributed among the players. It is one instance of
what is called a cost-sharing scheme and admits an axiomatization in the spirit of its discrete
predecessor [43, 110].

Inspired by this model, the work [11] presents an approach to measure the relative
importance of the parameters on the behavior of parametric Markov chains for a wide range
of properties, including ω-regular specifications, specifications in probabilistic CTL, and on
expected rewards. Here, a parametric Markov chain is a directed graph where each edge is
assigned a probability that may depend on a set of parameters such that for each instantiation
of the parameters the probabilities outgoing from a state sum up to 1. A parametric Markov
chain instantiated with fixed values for the parameters then coincides with a discrete-time
Markov chain (DTMC). For this purpose the aforementioned assumptions on g must be
relaxed: the continuously differentiable function g : D → R has arbitrary domain D ⊆ Rn

and is not subject to monotonicity and non-negativity restrictions. This also means that the
canonical baseline value 0 for vi is not always available anymore. The responsibility problem
in this generalized setting then reads as follows: given g and two parameter choices v, v′ ∈ D,
how responsible is the i-th parameter for the observable change g(v′)− g(v)? In this slightly
generalized form, the Aumann-Shapley value of the i-th parameter is defined as

ASi(g, v, v′) = (v′
i − vi) ·

∫ 1

0
∂ig (v + α(v′ − v)) dα. (2)

The integrand involves the i-th partial derivative of g and intuitively measures the marginal
contribution of the i-th parameter at the points lying between v and v′. The integral then
takes the average of these contributions along the straight line from v to v′. While taking the
straight line is desirable in an economic context to meet the average cost for homogeneous
goods axiom [43], this axiom is often void of meaning when applied to formal systems. When
one replaces the straight line in Equation (2) with an arbitrary (monotonic) path from v

to v′, then one speaks of path attribution schemes [109]. Of course, taking different paths
induces different attributions, and which ones should be considered worthwhile depends on
the specific scenario. This could for instance be due to potential restrictions on the way
that changes on the parameters can be implemented in practice. The work [11] applies
these path attribution schemes to the function induced by ω-regular or probabilistic CTL
specifications on a parametric Markov chain. The set of axioms presented there is adjusted
to this particular situation and justifies why one can conceive the value ASi(g, v, v′) as the
fraction of the observable effect g(v′)− g(v) that is produced by the i-th parameter.
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It is noteworthy, however, that the approach put forth in [11] is by no means specific
to the context of parametric Markov chains. Any scenario in which continuously varying
parameters determine a value can in principle be handled similarly. Of course, which path
attribution schemes should be regarded as meaningful needs to be checked case-by-case,
and corresponding axiomatizations should be chosen with care. But it is no accident that
the main decidability result in [11] is formulated in terms of path attribution schemes on
functions in n independent variables – a generality that makes the approach potentially
applicable for a range of similar problems.

4 Probabilistic Causation

As seen in the preceding sections, notions of causality and responsibility have been widely
explored in the non-probabilistic setting. In contrast, there have been far less attempts at
defining a suitable notion of causes for probabilistic operational systems such as Markov chains.
However, probabilistic theories of causation have been considered in various philosophical
accounts [111, 21, 107, 39]. One central idea behind these theories is the probability-raising
principle, which goes back to Reichenbach [103, 104]. It states that causes should raise the
probability of their effects. After observing a cause C, the probability of an effect E is
higher than after observing that the cause has not occurred. Formulated with conditional
probabilities, this can be written as

Pr(E | C) > Pr(E | ¬C), or equivalently Pr(E | C) > Pr(E).

For the conditional probabilities to be well-defined, it is necessary that Pr(C) > 0 and
Pr(¬C) > 0. Later on, we will make sure that the events conditioned on have positive
probability. Note that if Pr(C) > 0 and Pr(E | C) > Pr(E), it already follows that
Pr(¬C) > 0. Defining p def= Pr(C), the equivalence of the two inequalities follows from the
equation Pr(E) = p · Pr(E | C) + (1− p) · Pr(E | ¬C), which implies

Pr(E | C)− Pr(E) = (1− p)(Pr(E | C)− Pr(E | ¬C)).

The probability-raising principle alone, however, cannot distinguish between cause and
effect as it holds if and only if Pr(C | E) > Pr(C | ¬E) as well. For this reason, additional
conditions have to be imposed for causal reasoning. One key condition is temporal priority,
which prescribes that a cause has to occur before the effect.

This section formalizes both the probability-raising principle as well as the requirement
of temporal priority for probabilistic operational models. We draw connections between
different ideas from the literature to provide an overview over basic probabilistic notions
of causality in the context of formal verification. For this, we assume to have given a
DTMC M with a probability distribution over initial states. This way, the sets Πφ of paths
starting in initial states and fulfilling an LTL property φ are measurable [114] and have a
well-defined probability value PrM(Πφ), which we also denote by PrM(φ). Applying the
probability-raising principle and expressing the temporal priority using LTL leads to the
following first definition of causality in DTMCs for reachability properties.

▶ Definition 1 (reachability-cause). Let M be a DTMC with state space S and let C,E ⊆ S
be two disjoint sets of states. Then C is a reachability-cause of E if PrM(¬E U C) > 0 and

PrM(♢E | ¬E U C) > PrM(♢E). (3)
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Note that Equation (3) implies that PrM
(
¬(¬E U C)

)
> 0. This ensures that also

PrM
(
♢E | ¬(¬E U C)

)
is well-defined and so Equation (3) is equivalent to PrM(♢E |

¬E U C) > PrM
(
♢E | ¬(¬E U C)

)
. If there are no paths first reaching the effect E and

afterwards the cause C, e.g., because the states in the effect E are absorbing, Equation (3)
simplifies to PrM(♢E | ♢C) > PrM(♢E).

In this treatment of reachability properties, a cause C specifies the set of finite executions
ending in C that cause the subsequent extension to an infinite execution to satisfy ♢E.
This idea can be lifted to the treatment of causes of arbitrary events in M specified by a
measurable set of infinite paths L ⊆ Sω. A cause is then a set of finite paths Γ ⊆ S+. Besides
the probability-raising property, the temporal priority condition needs to be included. For
path properties this needs extra consideration. While for a cause Γ ⊆ S+ it is clear that the
cause is observed once a finite path in Γ is generated in a DTMC, this is not the case for the
effect L ⊆ Sω as it consists of infinite executions. However, it seems natural to say that the
effect occurred on a finite path δ whenever PrM(L | δ) = 1, i.e., if a generated finite path
ensures that almost all infinite extensions belong to L. Here, we used δ to also denote the
event of all infinite paths having δ as a prefix. Analogously, for a set of finite paths Γ, we
denote by Γ also the event of all infinite paths with a prefix in Γ. Consequently, ¬Γ denotes
the event of all infinite paths that have no prefix in Γ. The discussed treatment of temporal
priority is now used in the following definition of a cause in a DTMC.

▶ Definition 2 (global PR-cause). Let M be a DTMC with state space S, let Γ ⊆ S+ be a
non-empty set of finite paths, and let L ⊆ Sω be a measurable set of paths. Then, Γ is a
global probability-raising cause (global PR-cause) for L if the following two conditions hold:
PAC1: PrM(L | Γ) > PrM(L), and
PAC2: for all γ ∈ Γ, no proper prefix γ′ of γ satisfies PrM(L | γ′) = 1.
As Γ is a set of finite paths in M, the cylinder set spanned by each γ′ ∈ Γ has positive
probability. So, the conditional probabilities PrM(L | Γ) and PrM(L | γ′) in Definition 2
are well-defined.

Axiom PAC1 expresses the probability-raising principle. It implies that PrM(¬Γ) > 0. As
this ensures that all necessary conditional probabilities are well-defined, PAC1 is equivalent
to the probability-raising condition PrM(L | Γ) > PrM(L | ¬Γ). Axiom PAC2 captures that
the effect must not occur before the cause.

The requirement on the cause in the provided definition is of global nature: the cause Γ
as a whole has to guarantee the probability-raising property with respect to the effect. Single
elements γ ∈ Γ, however, do not necessarily guarantee that the probability of the effect has
been raised. Furthermore, under mild assumptions, the definition subsumes the treatment of
reachability properties above:

▶ Proposition 3. LetM be a DTMC with state space S and let C,E ⊆ S be disjoint. Assume
that no state in s ∈ S \ E satisfies PrM,s(♢E) = 1. Then the following are equivalent:
1. C is a reachability-cause for E.
2. The set Γ of finite paths in (S \ (C ∪ E))∗C is a global PR-cause for the set L of paths

satisfying ♢E.
In the proposition above, PrM,s denotes the probability measure induced byM with assuming
s as the unique initial state. A related notion of causality based on probability-raising in
DTMCs has been introduced by Kleinberg et al. in a series of papers [75, 76, 74, 66, 122].
Here, probabilistic CTL is used to describe the cause C and the effect E via state formulas.
We can describe both events also directly as sets of states in the DTMC by considering
exactly those states that fulfil the corresponding probabilistic CTL formula. For reachability
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properties, the set C is then said to be a cause of E if PrM,c(♢E) > PrM(♢E) for all c ∈ C.
So, the requirement for this notion of causality is local: reaching any state c ∈ C has to
ensure that the probability of reaching E afterwards is raised. In case C = {c} is a singleton
disjoint from E, this notion agrees with Definition 1.

Adapting PAC1 to sets of paths and including the temporal priority requirement that the
effect does not occur before the cause (PAC2 as before), we obtain the following definition of
causality:

▶ Definition 4 (local PR-cause). Let M be a DTMC with state space S, Γ ⊆ S+ a set of
finite paths, and let L ⊆ Sω be a measurable set of paths. Then Γ is a local probability-raising
cause (local PR-cause) for L if
PAC1loc: for all γ ∈ Γ we have PrM(L | γ) > PrM(L), and
PAC2: for all γ ∈ Γ no proper prefix γ′ of γ satisfies PrM(L | γ′) = 1.

Axiom PAC1loc can be seen as the local version of PAC1. Clearly, PAC1loc implies PAC1.
Furthermore, PAC1loc implies that PrM(¬γ) > 0 for all γ ∈ Γ. Hence, we could equivalently
reformulate PAC1loc as PrM(L | γ) > PrM(L | ¬γ) for all γ ∈ Γ.

The work by Kleinberg et al. proceeds relative to an explicit probability value p > PrM(L)
such that PrM(L | γ) ⩾ p for all γ in a cause Γ. The higher this value p lies above PrM(L),
the greater is the amount by which all elements of Γ are guaranteed to raise the probability
of the effect L.

Such a reference to a specific threshold value p has also been incorporated into a notion
of p-causes in [9]. Motivated by monitoring applications (see, e.g., [87]), the underlying idea
is that notions of causality could be used to foresee undesirable behavior. If a cause for
an erroneous execution is observed, countermeasures can be taken before the error actually
occurs. Here it is particularly useful to specify a sensitivity p that expresses how likely an
error is after observing the cause. In addition, the occurrence of an erroneous execution
should not stay undetected. Therefore, an additional condition is imposed on p-causes:
almost all executions that exhibit the error should have a prefix in the cause. Together with
the temporal priority of the cause (PAC2) as before, these requirements lead to the following
definition:

▶ Definition 5 (p-cause). Let M be a DTMC with state space S and p ∈ (0, 1]. A non-empty
set Γ ⊆ S+ is a p-cause for a measurable set L ⊆ Sω if
PAC1p: for all γ ∈ Γ we have PrM,s0(L | γ) ⩾ p,
PAC2: for all γ ∈ Γ no proper prefix γ′ of γ satisfies PrM(L | γ′) = 1, and
PAC3: PrM(Γ | L) = 1.

Besides the practicality in monitoring applications, condition PAC3 also adds the coun-
terfactual idea to the definition. Since almost all executions in L have a prefix in Γ, the
effect occurs with probability 0 if the cause was not observed. Condition PAC1p is a third
variant of the probability-raising requirement that compares the probability of the effect
after observing an element of the cause to a specific threshold value p rather than the overall
probability PrM(L). In case p > PrM(L), this variant implies PAC1 and PAC1loc.

For ω-regular L there always exist p-causes for any p ∈ (0, 1]. The reason is that then
almost all paths in L have a prefix π with PrM(L | π) = 1. Choosing the shortest of such
prefixes in accordance with condition PAC2 yields a 1-cause and hence a p-cause for any p.
For p < 1, there are multiple p-causes in general. In [9], the problem to find cost-optimal
p-causes with respect to a variety of cost measures is addressed.

The relationship between the different notions of causes is summarized in the following
proposition. It is a direct consequence of the implications between the axioms used in the
definitions that have been discussed so far.
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▶ Proposition 6. Let M be a DTMC with state space S, Γ ⊆ S+, and let L ⊆ Sω be a
measurable set of paths. Then the following statements hold:
1. If Γ is a p-cause for L for some p > PrM(L), then Γ is also a local PR-cause for L.
2. If Γ is a local PR-cause for L, then Γ is also a global PR-cause for L.
3. If Γ is a singleton, then Γ is a local PR-cause for L iff Γ is a global PR-cause for L.

The probabilistic notions of causality discussed in this section naturally constitute forward-
looking notions: the probability-raising principle inherently addresses the behavior of a system
across multiple executions, and causes are prone to exhibiting a predictive character. These
notions can be useful in inferring causal dependencies in data series [75, 74, 66] and predicting
undesirable behavior of reactive systems through runtime monitoring [9]. Nevertheless, as
far as formal probabilistic models are concerned, a comprehensive study of cause-effect
relationships is still at the beginning.

5 Concluding Remarks

This article gave an overview of recent trends in causality-based reasoning in the verification
context. The focus of this article was on concepts that aim to explicate why a system exhibits
a specific observable behavior and to which degree individual agents of a system can be
held responsible for it. For non-probabilistic formal models, concepts of causation have been
introduced in multiple facets and examined for manifold applications. To increase the power
of causal inferences, a more systematic study relating forward and backward notions of
causality would be highly beneficial.

Compared to the non-probabilistic setting, research on probabilistic causation in stochastic
operational models is still in its infancy. While the techniques presented here are limited to
purely probabilistic models (Markov chains), an examination of causality in probabilistic
models with nondeterminism (Markov decision processes) is largely open. A first step in this
direction is a formalization of action causes as a hyperproperty in Markov decision processes
[37]. Another important future direction is to reason about cause-effect relationships in
hidden Markovian models where states (and events) are not fully observable.

Another research strand not covered in this article are causality-based verification tech-
niques (see, e.g., [82, 83]) that rely on the successive identification of cause-effect relationships
between events to generate a causality-based proof for the satisfaction or violation of a system
property. Along these lines, the work [8] presents a causality-based technique for solving
symbolically expressed, infinite-state two-player reachability games. Applying this paradigm
also in a probabilistic setting is a promising direction of study.
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Abstract

The Constraint Satisfaction Problem (CSP) and a number of problems related to it have seen major
advances during the past three decades. In many cases the leading driving force that made these
advances possible has been the so-called algebraic approach that uses symmetries of constraint
problems and tools from algebra to determine the complexity of problems and design solution
algorithms. In this presentation we give a high level overview of the main ideas behind the algebraic
approach illustrated by examples ranging from the regular CSP, to counting problems, to optimization
and promise problems, to graph isomorphism.
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As Jeavons et al. [39] discovered in the mid 90s, symmetries or lack thereof of combinatorial
structures in many cases determine the complexity of the corresponding computational
problems. This was the starting point of the so-called algebraic approach that has been
initially developed for certain kinds of Constraint Satisfaction Problems (CSPs), and over
the course of 20 years has been instrumental in resolving a number of long standing open
problems, most important of which is the CSP Dichotomy Conjecture by Feder and Vardi [31].
These techniques also spread out and found applications in multiple areas somewhat related
to the CSP. The types of research problems the algebraic approach has been most useful
include complexity classifications and design of algorithms. It clearly does not apply to every
single kind of CSP-related problems, but whenever the algebraic approach is possible, it has
led to a significant progress in the area.

In this presentation we take a bird’s-eye view on the main ideas behind the algebraic
approach. We do not go into deep technical details, although we give links that can be used
by an interested reader, but give a collection of simple examples showing how algebraic
techniques can be used in various types of computational problems. In the first part of the
presentation, Sections 1,2 we introduce several common types of constraint problems and lay
out the basics of the algebraic approach. Then in Sections 3,4 we show how these ideas apply
to the CSP Dichotomy Conjecture, and also briefly outline how the algebraic approach works
for Counting, Promise, and Valued CSPs. We also mention a somewhat unexpected use of
the method in Graph Isomorphism. Although there has been developed a rich and beautiful
theory of CSPs on infinite domains [6, 7], we only focus here on finite domains. Also, we
leave out many areas were the approach has been successfully used: Quantified CSPs [45],
homomorphism lower bounds [41], robust approximation [3], proof complexity [1], global
cardinality constraints [20, 21], Subalgebra [12] and Ideal Membership Problems [46, 22],
solvability of equations [42], learnability [27], property testing [26], and many others.
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2:2 Symmetries and Complexity

1 Constraint Problems

1.1 The problem
There are multiple ways to define the CSP. For our purpose here we give two equivalent
definitions [39, 43]. We use the terms predicate and relation interchangeably.

The first one, we refer to it as the logic definition, goes as follows. Fix a set A (always finite
in this paper), a domain. The input of the CSP is a collection I of constraints, R(x1, . . . , xk),
expressed as predicates over A, where the variables xi are from some finite set X of variables.
The goal is to decide whether a solution exists, that is, a mapping φ : X → A that satisfies
all the constraints. Alternatively, the input can be thought of as the conjunction of all the
constraints, and we want to know whether this formula is satisfiable.

The second definition of the CSP, which we will refer to as the homomorphic definition,
is given in terms of relational structures. Recall that a relational signature is a collection of
relational symbols, that is, names of relations we are going to use, each symbol R is assigned
a natural number kR, the arity of R. For instance, the relational signature of a graph or
digraph is {E}, only one relational symbol, whose arity is 2. For a signature σ a relational
structure A with signature σ is a set A along with a predicate RA ⊆ AkR for each R ∈ σ,
called an interpretation of R. The set A is called the base set of A. Structures with signature
σ are often referred to as σ-structures and structures with the same signature are called
similar. Let A, B be two σ-structures with base sets A, B, respectively. A homomorphism
from A to B is a mapping φ : A → B such that RB(φ(a1), . . . , φ(akR

)) = 1 for every R ∈ σ

and any a1, . . . , akR
∈ A with RA(a1, . . . , akR

) = 1. If there is a homomorphism from A to
B, we write A → B.

In the homomorphic version of the CSP the input is a pair of similar relational structures
A, B ( always finite in this paper). The question is to decide whether there exists a homo-
morphism from A to B. A translation between the two versions of the CSP is straightforward,
it will be illustrated in Example 2 below.

▶ Example 1. In the 3-SAT problem the question is to decide the satisfiability of a 3-CNF.
3-SAT is readily a CSP in the logic form, it is a conjunction of clauses, each of which
represents a ternary predicate on {0, 1}.

▶ Example 2. In the 3-Coloring problem we need to decide the existence of a proper 3-coloring
of a given graph G. It can be stated as a CSP by treating the vertices of G as variables that
need to be assigned one of the three colors, and edges of G as constraints requiring that if
uv ∈ E(G) then the values of u, v satisfy the predicate ̸=3 (u, v), which is the disequality
relation on the set of colors.

Note that 3-Coloring can also be naturally represented in the homomorphic form: Any
proper 3-coloring of G is a homomorphism from G to K3. Using this approach one can
generalize 3-Coloring to H-Coloring, where H is a fixed graph. The goal in this problem is to
decide the existence of a homomorphism from a given graph G to H.

This transition between the two forms of the CSP can be extended to more general case:
The structure A in the homomorphic form encodes the interaction between constraints, while
the structure B encodes the constraints themselves.

▶ Example 3. A system of linear (as well as any other type of equations) naturally provides
a conjunction of constraints, in which every constraint is represented by an equation.

▶ Example 4. The Clique problem, in which we are given a number k and a graph G, asks
whether or not G contains a clique of size at least k. This problem can be reformulated as
the question about the existence of a homomorphism from Kk to G, that is, a CSP in the
homomorphic form.
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▶ Example 5. The Perfect Matching problem asks whether a graph G has a perfect matching
It is representable as a CSP in the logic form, although in a slightly more sophisticated way.
The edges of G represent the variables of our CSP instance I(G) that take values 1 or 0
(in a matching or not), and the vertices correspond to constraints. For each v ∈ V (G) of
degree d we introduce a constraint of the form R1-in-d(x1, . . . , xd), where x1, . . . , xd are the
edges incident to v, which is true if and only if exactly one of x1, . . . , xd equals 1 and the
rest equal 0. As is easily seen, any solution of I(G) corresponds to a perfect matching in G

and vice versa.

In order to capture specific computational problems the general CSP is often restricted in
a certain way. It can be easily done for the homomorphic version of the CSP [43]. Let A,B

be classes of similar structures with signature σ. Then CSP(A,B) denotes the class of CSP
instances A, B, in which A ∈ A and B ∈ B. If A or B is the class of all σ-structures, we use
CSP(−,B) and CSP(A, −), respectively. If one of the classes contains only one structure,
we write CSP(−, B), CSP(A, −) instead of CSP(−, {B}), CSP({A}, −). The general CSP is
NP-complete as the examples above show, and assuming the Exponential Time Hypothesis
it cannot be solved faster than |B|O(|A|) [33]. However, restricted problems may have much
lower complexity, and this is the drive to understand the complexity of restricted problems
that has been guiding the study of the CSP.

▶ Example 6. All the problems from Examples 1–5 can be viewed as CSP(A,B) for
appropriate classes A,B.

3-SAT is the problem CSP(−, B3-SAT) where B3−SAT is the relational structure with base
set {0, 1} and 8 predicates that are defined by the 8 possible 3-clauses.
3-Coloring is the problem CSP(−, K3). More generally, the H-Coloring problem for a
graph or digraph H can be represented as CSP(−, H).
Representing Linear Equations requires a relational structure with an infinite signature:
a predicate symbol for each possible linear equation. It is therefore a common practice
to first observe that every system of linear equations is equivalent to one in which every
equation contains at most 3 variables; it may require introducing new variables. Then in
the case of a finite field F such a problem is the same as CSP(−, B3-Lin), where B3-Lin is
the relational structure with the base set F whose predicates are given by all the possible
linear equations over F containing at most 3 variables.
The Clique problem is CSP(K, −), where K is the class of all cliques.
The Perfect Matching problem is a bit more difficult to represent. Let σ be an (infinite)
signature that contains one symbol R1-in-d for every natural d. Then Perfect Matching
is equivalent to CSP(A2, B1-in), where A2 is the class of σ-structures A in which every
element of the base set appears in exactly two tuples from the predicates of A. Then
B1-in is the σ-structure with the base set {0, 1} and whose predicates are interpreted as
in Example 5. Note that the Perfect Matching problem can be expressed more naturally
as a holant problem [24].

In this paper we focus on the problems of the form CSP(−, B), which are often referred
to as nonuniform CSPs. We will shorten the notation to CSP(B). In this case it is often
convenient to replace the structure B with a constraint language, the set of relations given by
the predicates of B. For any collection Γ of relations over a set A such a problem is denoted
by CSP(Γ). The base set of B or the set on which Γ is defined on will be called the domain
of CSP(B) or CSP(Γ).
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1.2 Friends of the CSP

The CSP is not limited to just the decision problem from the previous section. It can also be
modified to include other types of problems, some of which we will consider next. Most of
the variations below were considered in [28] in the case of a 2-element domain.

Quantified CSP

The CSP in the logic form can also be thought of as checking the validity of an existentially
quantified sentence ∃x1, . . . , xn(R1 ∧ · · · ∧ Rk). The problem that allows for an arbitrary
quantifier prefix is known as the Quantified CSP or QCSP for short. Examples of QCSPs
are the Quantified Satisfiability problem (QSAT) as well as a number of standard problems
in PSPACE. For a structure B or a constraint language Γ, QCSP(B), QCSP(Γ) denote the
Quantified CSPs restricted in the same way as the regular CSP [28, 45].

Counting CSPs

In the Counting CSP, or #CSP, the goal is to find the number of solutions of a CSP instance.
In general, such problems belong to the class #P and many of them are #P-complete.
Counting CSPs restricted by specifying a relational structure or a constraint language are
denoted by #CSP(B), #CSP(Γ).

Optimization problems

There are several ways to convert a CSP into an optimization problem, see [28] for some
examples. The most natural one is, given a CSP instance that may have no solution, find an
assignment of variables that maximizes the number of satisfied constraints. This optimization
problem is called the Max-CSP. Clearly, even when CSP(Γ) can be solved efficiently, the
optimization problem may be hard. Linear Equations provides a well known example of such
problem. More examples will be mentioned in Section 4.2 and can be found in [28]. The
book [28] also presents the range of possible complexities of Max-CSPs on the domain {0, 1}.

Another way to optimize a CSP instance is to look for a solution that assigns a specific
value to a maximal number of variables. For instance, Max-Ones is the version of SAT that
seeks for an assignment in which as many propositional variables as possible are assigned 1.

Valued CSPs

The Valued CSP, or the VCSPs for short, is a generalization of optimization constraint
problems such as Max-CSP and Max-Ones. In order to introduce them we need to replace
predicates in the regular CSP with more general functions. Let A be a domain and K an
ordered semiring, e.g. the ring of natural, integer, rational, or real numbers. Instead of
predicates we now consider functions R : Ak → K for some k. An instance of the Valued
CSP consists of a set X of variables and a collection C of function applications of the form
R(x1, . . . , xk), where each R is as above. For a mapping φ : X → A define its weight to
be w(φ) =

∑
R(x1,...,xk)∈C R(φ(x1), . . . , φ(xk)). The goal now is to find a mapping φ that

yields the maximal (or minimal) weight possible. Similar to regular CSPs, VCSPs can also
be parametrized by a constraint language, which in this case is a set of functions that are
allowed in VCSP instances.



A. A. Bulatov 2:5

Figure 1 The gadget used to reduce 3-SAT to 3-Coloring.

▶ Example 7 (Max-CSP as a VCSP). Let Γ be a constraint language, that is, a set of
predicates on some set A. We view the predicates from Γ as functions from Cartesian powers
of A to N. They take values 0, 1. This way every instance of CSP(Γ) is treated as an instance
of VCSP(Γ). As is easily seen, a mapping that maximizes the number of satisfied constraints
in a CSP instance also has the maximal weight in the corresponding instance of the VCSP.

▶ Example 8 (Max-Ones as a VCSP). Transforming the Max-Ones problem into a VCSP is
less straightforward, because we need to make sure that optimization is only happening over
solutions of a Max-Ones instance. This is achieved by adding the infinity elements −∞, ∞
to N. In terms of order and arithmetic operations they relate to other elements of N in the
natural way. Let Γ be a constraint language on {0, 1}, and let Γ′ = {R′ | R ∈ Γ}∪{O}, where
O : {0, 1} → N with O(0) = 0, O(1) = 1, and R′(a1, . . . , ak) = 1 when R(a1, . . . , ak) = 1,
a1, . . . , ak ∈ {0, 1}, and R′(a1, . . . , ak) = −∞ otherwise. Take an instance I of Max-Ones(Γ),
replace every predicate R(x1, . . . , xk) with a function application R′(x1, . . . , xk), and for
each variable x ∈ X of I add the function application O(x). Denote the resulting instance
by I ′, it is an instance of VCSP(Γ′). The weight of a mapping φ : X → {0, 1} in I ′ is not
negative infinite if and only if φ is a solution of I. Moreover, if w is a solution of I we have
w(φ) = m + ℓ, where m is the number of constraints in I that does not depend on φ, and ℓ

is the number of variables that are assigned 1 by φ. Thus φ maximizes the number of ones if
and only if it maximizes the weight in I ′.

2 Reductions and symmetries

In this section we look at the formalism that includes primitive-positive definitions and
interpretations, and that captures one of the oldest tools in complexity theory, gadget
reductions. We then introduce higher level symmetries of problems, polymorphisms, that set
boundaries of what can be done using gadget reductions. Finally, we give some examples
showing that polymorphisms can also be useful when designing solution algorithms. A more
detailed and technical exposition can be found in [4].

2.1 Gadget reductions and primitive-positive definitions
A usual gadget reduction known from a basic course in complexity looks somewhat like what
is shown in Fig. 1. They may be complicated and often difficult to come up with. Can we
make the process of constructing such gadgets more orderly?
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Let Γ be a set of relations (predicates) over a set A. A predicate R over A is said to
be primitive-positive (pp-) definable in Γ if R(x) = ∃y Φ(x, y), where Φ is a conjunction
that involves predicates from Γ and equality relations. The formula above is then called a
pp-definition of R in Γ. A constraint language ∆ is pp-definable in Γ if so is every relation
from ∆. In a similar way pp-definability can be introduced for relational structures.

▶ Example 9. Let K3 = ({0, 1, 2}, E) be a 3-element complete graph. Its edge relation is
the binary disequality relation ̸=3 on {0, 1, 2}. Then the pp-formula

Q(x, y, z) = ∃t, u, v, w(E(t, x) ∧ E(t, y) ∧ E(t, z) ∧ E(u, v) ∧ E(v, w)
∧E(w, u) ∧ E(u, x) ∧ E(v, y) ∧ E(w, z))

defines the predicate Q that is true on all triples containing exactly 2 different elements
from {0, 1, 2}.

A link between pp-definitions and reducibility of nonuniform CSPs was first observed
in [39].

▶ Theorem 10 ([39]). Let Γ and ∆ be constraint languages and ∆ finite. If ∆ is pp-definable
in Γ then CSP(∆) is polynomial time reducible1 to CSP(Γ).

The gadget in Fig. 1 can be represented by a pp-formula, in which every variable
corresponds to a vertex in the graph, the large red vertices are the free variables, and the
edges are the constraints ̸=3. In general it seems plausible that pp-definitions and pp-
interpretations discussed later capture what we think of “gadgets” and “gadget reductions”.

2.2 Polymorphisms
While pp-definitions is a convenient and uniform way of representing gadgets, it is poly-
morphisms that are at the core of the algebraic approach.

Primitive positive definability can be concisely characterized using polymorphisms. An
operation f : Ak → A is said to be a polymorphism of a relation R ⊆ An if for any a1, . . . , ak ∈
R, ai = (ai1, . . . , ain), the tuple f(a1, . . . , ak) also belongs to R, where f(a1, . . . , ak) stands
for (f(a11, . . . , ak1), . . . , f(a1n, . . . , akn)). The parameter k above is called the arity of f .
Relation R is said to be invariant under f . Operation f is a polymorphism of a constraint
language Γ if it is a polymorphism of every relation from Γ. Similarly, operation f is a
polymorphism of a relational structure B if it is a polymorphism of every relation of B. The
set of all polymorphisms of language Γ or relational structure B is denoted by Pol(Γ), Pol(B),
respectively.

▶ Example 11. Let R be an affine relation, that is, R is the solution space of a system of
linear equations over a field F. Then the operation f(x, y, z) = x − y + z, where +, − are
operations of F, is a polymorphism of R. Indeed, let A · x = b be the system defining R, and
x, y, z ∈ R. Then

A · f(x, y, z) = A · (x − y + z) = A · x − A · y + A · z = b.

In fact, the converse can also be shown: if R is invariant under f , where f is defined in a
certain finite field F, then R is the solution space of some system of linear equations over F.

1 In fact, due to the result of [47] this reduction can be made log-space.
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Polymorphisms can be viewed as a generalization of homomorphisms of relational struc-
tures. We use [k] to denote the set {1, . . . , k}. For a structure B with signature σ and k ≥ 1,
let Bk denote the following relational structure. The base set of Bk is Bk, where B is the base
set of B. For every symbol R ∈ σ, say, ℓ-ary, the predicate RBk is given by (a1, . . . , aℓ) ∈ RBk

if and only if (a1i, . . . , aℓi) ∈ RB for each i ∈ [k], where aj = (aj1, . . . , ajk). Then a mapping
f : Bk → B is a polymorphism of B if and only if f is a homomorphism of Bk to B.

A link between polymorphisms and pp-definability of relations is given by Galois connec-
tion.

▶ Theorem 12 (Galois connection, [8, 34]). Let Γ be a constraint language on A, and let
R ⊆ An be a non-empty relation. Then R is preserved by all polymorphisms of Γ if and only
if R is pp-definable in Γ.

Every relation on a set A has projections as polymorphisms. A projection is an operation
f , say, k-ary, such that for some i ∈ [k], f(x1, . . . , xk) = xi. Theorem 12 means, in particular,
that if a constraint language Γ on A does not have polymorphisms other than the projections,
every relation is pp-definable in Γ.

The following statement is what makes the algebraic approach possible.

▶ Corollary 13. Let Γ and ∆ be constraint languages and ∆ finite. If Pol(Γ) ⊆ Pol(∆) then
CSP(∆) is polynomial time reducible to CSP(Γ).

For our next example we need another more technical result.

▶ Proposition 14 ([19]). Let Γ be a constraint language on a set A. Then either
1. there is a non-injective unary polymorphism f of Γ and CSP(Γ) is polynomial time

interreducible with CSP(f(Γ)), where f(Γ) = {f(R) | R ∈ Γ}, f(R) = {f(a) | a ∈ R}; or
2. all unary polymorphisms of Γ are injective and CSP(Γ) is polynomial time interreducible

with CSP(Γ∗), where Γ∗ = Γ ∪ {Ra | a ∈ A}, Ra = {(a)} is a constant relation, i.e. a
unary relation that contains only one tuple.

Constraint languages that contain all the constant relations are called idempotent.

▶ Example 15. We revisit the reducibility of 3-SAT to 3-Coloring. Let Γ = {≠3} be the
constraint language consisting of just the disequality relation ̸=3 on the 3-element set {0, 1, 2}.
As we noted in Example 2, CSP(Γ) is equivalent to 3-Coloring. Let also Γ3−SAT denote the
constraint language consisting of the 8 ternary relations represented by 3-clauses. Then
CSP(Γ3−SAT ) is equivalent to 3-SAT. We show that Γ3−SAT is pp-definable in Γ∗. By
Theorem 10 and Proposition 14 it implies that 3-SAT is reducible to 3-Coloring.

First, we prove that every polymorphism of ̸=3 has only one essential variable, that is, a
variable such that the value of the function can be changed by changing the value of this
variable only. Suppose there is f ∈ Pol( ̸=3) that has at least two essential variables. To save on
notation we assume that f(x, y) is binary. Assume first that for some a, a′, b, b′ ∈ {0, 1, 2} we
have f(a, b) ̸= f(a′, b), f(a, b) ̸= f(a, b′). Without loss of generality, let a = b = 0, a′ = b′ = 1.
Then since (0, 1), (1, 0) ∉=3 and f is a polymorphism of ̸=3, we also have f(0, 1) ̸= f(1, 0). For
a similar reason f(2, 2) is not equal to any of f(0, 0), f(0, 1), f(1, 0), which is impossible. Next,
as y is an essential variable in f(x, y) there are a, b, b′ ∈ {0, 1, 2} such that f(a, b) ̸= f(a, b′).
Again, let us assume a = b = 0, b′ = 1. If f(0, 0) ̸= f(1, 0), or f(0, 0) ̸= f(2, 0), or
f(0, 1) ̸= f(1, 1), or f(0, 1) ̸= f(2, 1), we have the previous case. Otherwise f(0, 2) ̸= f(1, 0) =
f(0, 0), f(0, 2) ̸= f(1, 1) = f(0, 1), because (0, 1), (2, 0), (2, 1) ∉=3 and f is a polymorphism
of ̸=3. By the same argument, either we have the previous case, or f(0, 2) = f(1, 2) = f(2, 2)
implying that x is not essential variable in f(x, y), a contradiction.
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Second, if f ∈ Pol( ̸=3) has only one essential variable, we have f(x1, . . . , xk) = g(xi)
for some operation g. Since f is a polymorphism of each constant relation Ra we get
g(a) = f(a, . . . , a) = a, that is, f is a projection. Thus, the only polymorphisms of Γ∗ are
projections. By Theorem 12 every relation on {0, 1, 2} is pp-definable in Γ∗. This includes
the relations from Γ3−SAT . By Theorem 10 CSP(Γ3−SAT ) is polynomial time reducible to
CSP(Γ).

Example 15 gives a reduction and a hardness proof only in one very special case. However,
we shall see soon that together with pp-interpretability introduced next this technique gives
a hardness proof for all NP-complete CSPs of the form CSP(Γ).

Let Γ, ∆ be constraint languages over sets A, B, respectively. We say that Γ pp-interprets
∆ if there exists a natural number ℓ, a set F ⊆ Aℓ, and an onto mapping π : F → B such
that Γ pp-defines the following relations
1. the relation F ,
2. the π-preimage of the equality relation on B, and
3. the π-preimage of every relation in ∆,
where by the π-preimage of a k-ary relation R on B we mean the ℓk-ary relation π−1(R) on
A defined by

π−1(R)(x11, . . . , x1k, x21, . . . , x2k, . . . , xℓ1, . . . , xℓk) is true

if and only if

R(π(x11, . . . , xℓ1), . . . , π(x1k, . . . , xℓk)) is true.

If ℓ = 1 in this definition, we say that Γ 1-pp-interprets ∆.

▶ Theorem 16 ([19, 4]). Let Γ and ∆ be constraint languages and ∆ finite. If ∆ is
pp-interpretable in Γ then CSP(∆) is polynomial time reducible to CSP(Γ).

▶ Example 17. We demonstrate how to use pp-interpretability in a small special case of the
H-Coloring problem, see Example 2. Consider graph H on the left hand side of Fig. 2, we show
that H-Coloring for this graph is NP-complete. In order to do that we will 1-pp-interpret
̸=3 in the constraint language Γ = {E = E(H)}. In the definition of pp-interpretation
above we set F = A = {0, 0′, 1, 2}, B = {0, 1, 2}, ∆ = {≠3}, ℓ = 1, and π : A → B as
shown in Fig. 2. The only thing we need to check is that π−1(B), π−1(=), and π−1( ̸=3)
are pp-definable in H2. The first and the last requirements are straightforward, because
π−1(B) = A and π−1( ̸=3) = E. For the preimage of the equality relation, the relation
π−1(=) is the equivalence relation on A with classes {0, 0′}, {1}, {2}. This relation is defined
by the pp-formula

∃u, w(E(u, w) ∧ E(x, u) ∧ E(x, w) ∧ E(y, v) ∧ E(y, w)).

2 Note that although π is a homomorphism from H to K3, this does not yet give rise to a reduction from
H-Coloring to 3-Coloring. Indeed, any graph is a homomorphic image of a collection of disconnected
edges. Homomorphism π is a very special kind of homomorphism that gets along pp-definitions well.
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Figure 2 Pp-interpretations of 3-Coloring.

2.3 Polymorphisms and algorithms
So far we have only seen applications of polymorphisms and pp-interpretations for discovering
polynomial time reductions between CSPs. In this section we mention two examples when
polymorphisms also help developing efficient solution algorithms.

▶ Example 18. As we saw in Example 11, a relation can be represented as the set of solutions
of a system of linear equations over a finite field F if and only if it is invariant under the
affine operation f(x, y, z) = x − y + z, where +, − are the operations of the same field F.
This means that if a constraint language Γ is invariant with respect to f then any instance
of CSP(Γ) can be thought of as a system of linear equations over F and so can be solved
by Gaussian elimination. In particular, it is possible not only to decide the existence of a
solution in polynomial time, but also to construct a concise representation of the set of all
solutions – a basis of the solution space.

Affine operations are a special kind of more general Maltsev operations. A ternary
operation f is said to be Maltsev if it satisfies the equations f(x, y, y) = f(y, y, x) = x. The
affine operation clearly satisfies them. It was shown in [16] that if a constraint language
Γ has a Maltsev operation as a polymorphism, there is a polynomial time algorithm that
constructs a concise representation of the set of solutions of any instance of CSP(Γ). Note
that when applied to systems of linear equations this algorithm provides an alternative to
Gaussian elimination. This result was further generalized in [38].

▶ Example 19. For this example it will be convenient to use infix notation for binary
operations, that is, to write x · y rather than f(x, y). A binary operation · on a set A is said
to be semilattice if it is idempotent (x · x = x), commutative (x · y = y · x), and associative
(x · (y · z) = (x · y) · z), where the equations hold for all x, y, z ∈ A. A semilattice operation
defines a partial order on A: a ≤ b if and only if b = a · b.

Let R ⊆ Ak be a relation invariant with respect to ·. Let also Ri ⊆ A denote its ith
projection, the set Ri = {ai | (a1, . . . , ak) ∈ R}. As is easily seen, Ri is invariant under ·,
that is, a · b ∈ Ri for any a, b ∈ Ri. Every set Ri has a greatest element in terms of the order
≤, it is the product of all the elements of Ri. Let us denote this element by mi. Now, if
a1, . . . , ar is a list of all tuples from Ri, we have a1 · a2 · · · · · ar = (m1, . . . , mk). In other
words, the tuple, whose entries are the greatest elements of the corresponding projections,
belongs to R.
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The following algorithm known as the arc-consistency algorithm [40] uses the discussed
above properties of relations invariant under · to solve CSP(Γ) where Γ is any constraint
language invariant under ·. Let I be an instance of CSP(Γ) with the set of variables X.
The algorithm works in rounds until the instance cannot be further improved. Suppose
that two constraints R1(x, y) and R2(x, z) from I share a variable. Here y, z stand for
some variables involved in R1, R2, and clearly x does not have to be in the same position
in R1, R2. Let R1 = R1

1 ∩ R2
1. If R1 ̸= R1

1, we remove from R1 all tuples (a, b) such that
a ̸∈ R1. Then we repeat the procedure for R2. After the process converges, every variable
x ∈ X has a domain Ax ⊆ A such that the projection of every constraint containing x on
the corresponding coordinate position equals Ax. Finally, that · is a polymorphism of Γ
implies that the mapping φ : X → A, φ(x) = mx, where mx is the greatest element of Ax is
a solution of I.

3 Dichotomies

3.1 The CSP dichotomy

The first attempt for a broad classification of problems of the form CSP(Γ) was made in [48].
When translated into the language of polymorphisms, the main result is

▶ Theorem 20 ([48]). Let Γ be a constraint language over {0, 1}. Then CSP(Γ) is solvable
in polynomial time if and only if Γ has one of the following polymorphisms: a constant
operation, the affine operation x − y + z (mod 2), one of the semilattice operations x ∨ y or
x ∧ y, or the majority operation (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x). Otherwise it is NP-complete.

The hardness part of the theorem follows by an argument similar to that in Example 15.
The tractability part follows from Proposition 14 and Examples 18 and 19. The case of the
majority operation can be solved as 2-SAT or by a slightly stronger consistency algorithm,
see [40].

An important feature of Theorem 20 is that it leaves no room for CSPs of intermediate
complexity: every CSP(Γ) is either solvable in polynomial time or is NP-complete. Results of
this kind are also known as complexity dichotomies, and believed to be true for the majority
of “natural” problems, even though problems of intermediate complexity provably exist
provided P ̸=NP, [44].

A dichotomy for CSPs over arbitrary finite sets was conjectured in [31, 32]. This conjecture
has been referred to as the CSP Dichotomy Conjecture. The conjecture was refined by
providing a specific criterion of polynomial time solvability in [19], and settled in [14, 15, 51].

We now state the Dichotomy Theorem from [14, 15, 51]. Let Γ, ∆ be constraint languages
on sets A, B respectively and such that Γ 1-pp-interprets ∆. Suppose F ⊆ A and π : F → B

are the parameters of the pp-interpretation, and θ the equivalence relation on F that is
the π-preimage of the equality relation on B, or the kernel of π. For a ∈ F let a/θ denote
the θ-class containing a. Take a polymorphism f(x1, . . . , xk) of Γ. By fF,π we denote the
k-ary operation on B given by fF,π(x1, . . . , xk) = π(f(π−1(x1), . . . , π−1(xk))). Since θ is
invariant under f , the operation fF,π(x1, . . . , xk) is properly defined, that is, its value does
not depend on the choices of preimages π−1(xi). It is straightforward to verify that fF,π is a
polymorphism of ∆. Note that in order to define fF,π we do not need to specify constraint
language ∆, we only need F and π.

Also, by Proposition 14 it suffices to consider idempotent constraint languages.
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▶ Theorem 21 ([14, 15, 51]). Let Γ be an idempotent constraint language on a finite set A.
Then CSP(Γ) is NP-complete if and only if there is a pp-interpretation with parameters F, π

such that fF,π is a projection for any f ∈ Pol(Γ).

The criterion in Theorem 21 can be elevated to a higher level of abstraction that involves
considering sets of polymorphisms as a new algebraic structure and using the properties of
mappings between these structures, clone homomorphisms. We touch upon such approach in
Section 4.1.

3.2 Counting CSPs and polymorphisms
In this section we give some examples that hint at how a dichotomy result can be obtained
for the counting version of the CSP of the form #CSP(Γ).

We first remark that the algebraic approach works for counting CSPs as well as for
decision CSPs. Recall that Γ∗ for a constraint language Γ denotes Γ with added constant
relations.

▶ Theorem 22 ([17]). Let Γ be a constraint language on a finite set A.
1. #CSP(Γ) and #CSP(Γ∗) are polynomial time interreducible.
2. For any constraint language ∆ on A such that Pol(Γ) ⊆ Pol(∆) the problem #CSP(∆) is

polynomial time reducible to CSP(Γ).
3. For any constraint language ∆, if Γ pp-interprets ∆ then #CSP(∆) is polynomial time

reducible to #CSP(Γ).

Next we use the algebraic approach to prove a dichotomy theorem for #H-Coloring, the
counting version of H-Coloring, first proved in [29].

▶ Example 23. It was proved in [29] that #H-Coloring is #P-complete, unless every connected
component of H is either an isolated vertex, or a complete graph with all loops present, or a
complete bipartite graph. That #H-Coloring can be solved in polynomial time for graphs of
this kind is straightforward. We show how to prove the hardness part through the algebraic
approach in 3 easy steps.

First, using some algebraic machinery ([36] or Theorem 9.13 from [37]) it can be shown
that if a constraint language Γ does not have a Maltsev polymorphism, Γ pp-interprets a
binary reflexive but not symmetric relation R. Second, using the standard interpolation
technique (see e.g. [50]) [17] proves that #CSP(R) is #P-complete. This shows that #CSP(Γ),
not only #H-Coloring, is #P-complete for any Γ without a Maltsev polymorphism.

Finally, if a connected graph H is not a single vertex, a complete graph with all loops
present, or a complete bipartite graph, it contains the N-graph shown in Fig. 3 as an induced
subgraph (some of a, b, c, d may be equal). It remains to observe that no Maltsev operation
can be a polymorphism of such graph. Indeed, if f is a Maltsev operation on H then

f

((
a

c

)
,

(
a

d

)
,

(
b

d

))
=

(
b

c

)
̸∈ E(H).

It turns out that a generalized version of avoiding N-graphs is key in the case of general
counting CSPs, #CSP(Γ). A constraint language is said to be singular if for any pp-
interpretable equivalence relations θ, η a certain condition holds on the number of elements
in θ- and η-classes. For more details, see [18, 13, 30].

▶ Theorem 24 ([13, 30]). For a constraint language Γ on a finite set, #CSP(Γ) is solvable
in polynomial time if and only if Γ has a Maltsev polymorphism and is singular. Otherwise it
is #P-complete.

Theorem 24 has been generalized to the weighted version of the CSP in [25].
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Figure 3 The N-graph.

4 Beyond CSP

In this section we consider several examples in which some sort of algebraic approach is
used, although it requires significant modifications. In the first two examples, the Promise
CSP and the optimization version, the Valued CSP, while preserving the main motifs of the
algebraic approach, that is, rich families of polymorphisms give rise to easy problems, and
poor ones give rise to hard problems, new types of “polymorphism-like” objects need to be
introduced. In the third case, Graph Isomorphism, the algebraic approach does not (probably)
provide a general technique, but is useful in some special cases.

4.1 Promise CSP
Unlike the regular CSP that is often parametrized by a single relational structure, CSP(B),
a Promise CSP or PCSP for short is parametrized by a pair of similar relational structures,
PCSP(A, B), such that A → B. An instance of PCSP(A, B) is a relational structure C similar
to A, B, and the question is whether C → A or C ̸→ B; no specific answer is required if
C ̸→ A but C → B. It is also often formulated in a slightly different way: the input is a
structure C such that C → A, and the goal is to find a homomorphism from C to B, which
explains the “promise” in the name of the problem, [10, 23].

▶ Example 25. The Approximate Graph Coloring problem is parametrized by two numbers
k, c, k ≤ c, and the goal is to find a c-coloring of a given k-colorable graph. As is easily seen,
this problem is equivalent to PCSP(Kk, Kc).

Polymorphisms of a single relational structure A were defined as homomorphisms from Ak

to A. In the case of PCSPs such mappings do not make much sense. Instead, a polymorphism
of a pair A, B is a homomorphism from Ak to B. Let Pol(A, B) denote the set of all such
homomorphisms for all natural k. Note that as there is a homomorphism φ : A → B, there
also exist some homomorphisms in Pol(A, B): Fix i ∈ [k] the mapping φi : Ak → B given by
φi(a1, . . . , ak) = φ(ai) is a homomorphism. Homomorphisms φi are analogous to projections
in the realm of polymorphisms of a single structure.

We describe the algebraic approach to the PCSP at a higher level of abstraction than
that for the CSP. An operation f : An → B is a minor of operation g : Am → B if there
is a mapping π : [m] → [n] such that f(x1, . . . , xn) = g(xπ(1), . . . , xπ(m)). In other words,
f is obtained from g by permuting and identifying variables. For example, f(x1, x2, x3) =
g(x2, x3, x2, x1, x1, x3) is a minor of g(x1, x2, x3, x4, x5, x6). Let A1, B1, and A2, B2, A1 → B1,
A2 → B2, be two pairs of relational structures such that A1, B1 are similar and so are
A2, B2. A mapping Ψ : Pol(A1, B1) → Pol(A2, B2) (i.e., polymorphisms are mapped to
polymorphisms) is called a minion homomorphism if the following two conditions hold.
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1. Ψ preserves arity, that is, for an operation f : Ak
1 → B1, it holds Ψf : Ak

2 → B2.
2. Ψ preserves minors, that is, for any m-ary g ∈ Pol(A1, B1) and any π : [m] →

[n], if f(x1, . . . , xn) = g(xπ(1), . . . , xπ(m)) is a minor of g then Ψf(x1, . . . , xn) =
Ψg(xπ(1), . . . , xπ(m)).

The core of the algebraic approach to the PCSP is the following

▶ Theorem 26 ([23]). Let PCSP(A1, B1), PCSP(A2, B2) be two Promise CSPs such that
there is a minion homomorphism from Pol(A1, B1) to Pol(A2, B2). Then PCSP(A2, B2) is
polynomial time reducible to PCSP(A1, B1).

Note that by setting A1 = B1 and A2 = B2 Theorem 26 specializes to a statement about
sets of polymorphisms of a single relational structure. Thus, Theorem 26 is a generalized and
more abstract version of the combination of Corollary 13, Proposition 14, and Theorem 16.

▶ Example 27 ([23]). In this example we use Theorem 26 to prove that PCSP(K3, K4) is
NP-complete. In other words we outline a proof that given a 3-colorable graph it is in general
NP-hard to find its 4-coloring. In order to do this we present a minion homomorphism
from Pol(K3, K4) to Pol(A, A), where A is any 2-element relational structure that only has
projections as polymorphisms. Note that Pol(A, A) = Pol(A), and by Corollary 13 what
specific structure we choose is completely irrelevant. For instance, the structure with the
base set {0, 1} and the only predicate, which is R1-in-3, see Example 6, fits this purpose.
Since CSP(A) = PCSP(A, A) is NP-complete in this case, it implies the result.

The structure of polymorphisms from Pol(K3, K4) is described in [23, 9]. For each (say,
k-ary) f ∈ Pol(K3, K4), there exist t ∈ K4, i ∈ [k], and a mapping φ : K3 → K4 such that
f(a1, . . . , ak) ∈ {t, φ(ai)} for all a1, . . . , an ∈ K3. In other words, if the value of f is not t, it
depends only on xi. A mapping Ψ : Pol(K3, K4) → Pol(A, A) is defined as follows: For every
k-ary f ∈ Pol(K3, K4), Ψf is the k-ary projection p(x1, . . . , xk) = xi, where i is the parameter
associated with f . It is straightforward to verify that Ψ is a minion homomorphism.

4.2 Valued CSP, optimization
The VCSP and optimization problems admit some sort of algebraic approach, however the
concept of a polymorphism is substantially different. In this section we briefly outline how
the approach works when we want to find the exact optimum of a VCSP [49], and also for
approximation algorithms [11]. The functions we consider here are real-valued.

To introduce the notion of polymorphisms needed for VCSPs, we need to take into account
all the operations of certain arity on a set, rather than a single operation. Let O(k)

A denote the
set of all k-ary operations on a set A. Let R : Am → R be a function on A. A k-ary fractional
polymorphism of R is a probability distribution µ on O(k)

A that for any a1, . . . , ak ∈ Am,
ai = (ai1, . . . , aim) satisfies (in the case of minimization problems) the following condition

Ef∼µ[R(f(a1, . . . , ak))] ≤ avg(R(a1), . . . , R(ak)),

where f(a1, . . . , ak) = (f(a11, . . . , ak1), . . . , f(a1m, . . . , akm)). In the case of maximization
problems the inequality should be reversed. Distribution µ is a fractional polymorphism of a
valued constraint language Γ if it is a fractional polymorphism of every function from Γ.

▶ Example 28. Let A = {0, 1}, and let µ be the distribution on O(2)
A that assigns probability

1/2 to ∨ (disjunction) and ∧ (conjunction), which are binary operations on {0, 1}, and
probability 0 to all other operations. For a binary function R the inequality above is
transformed into

1
2(R(x1 ∨ x2, y1 ∨ y2) + R(x1 ∧ x2, y1 ∧ y2) ≤ 1

2(R(x1, y1) + R(x2, y2)),

which is the well known condition of submodularity.
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A binary fractional polymorphism µ (i.e., a distribution on O(2)
A ) is said to be symmetric

if it assigns nonzero probabilities only to operations f(x, y) satisfying f(x, y) = f(y, x).
▶ Theorem 29 ([49]). For a valued constraint language Γ with real values the problem
VCSP(Γ) is solvable in polynomial time if and only if Γ has a binary symmetric fractional
polymorphism.

Observe that the condition of submodularity is an example of a symmetric fractional
polymorphism.

Many VCSPs that cannot be solved exactly can be approximated within a constant factor.
Assuming the Unique Games Conjecture (UGC) [11] determines the best approximation factor,
so-called approximation threshold, for arbitrary VCSPs. The main tool in this result is a
variation of fractional polymorphisms. For a set A we again consider probability distributions
over O(k)

A . Let α ∈ [0, 1]. Distribution µ is said to be an α-approximation polymorphism of
R : Am → R if for any a1, . . . , ak ∈ Am it satisfies the following condition

α · Ef∼µ[R(f(a1, . . . , ak))] ≥ avg(R(a1), . . . , R(ak)).

For a definition of pseudorandom approximation polymorphisms the reader is referred to [11].
▶ Theorem 30 ([11]). Let Γ be a valued constraint language, and let αΓ be the greatest
constant such that there is a pseudorandom αΓ-approximation polymorphism of Γ. Then
(assuming the UGC) αΓ is the approximation threshold for VCSP(Γ).

4.3 Graph Isomorphism: bounded color classes
A somewhat surprising application of the algebraic approach in the Graph Isomorphism
problem was observed in [5]. In the Graph Isomorphism problem [35] the question is to decide
whether two given graphs are isomorphic. The equivalent formulation we use here asks
to find a generating set for the automorphism group Aut(G) of G. Often considering the
structure of G, e.g. the degrees of its vertices, it is possible to identify some restrictions on
the orbits of Aut(G), that is, which vertices can be mapped to each other by automorphisms.
For instance, a vertex can only be mapped to a vertex of the same degree. Usually such
restrictions are a result of some sort of color refinement process, but this is not important
here. Suppose that we can identify a partition of V (G) into classes V1, . . . , Vk such that any
automorphism φ maps Vi to Vi. Assume also that the sizes of the Vis are bounded by ℓ ∈ N.
Let us further assume for simplicity that |Vi| = ℓ for all i ∈ [k]. Then any φ ∈ Aut(G) is a
union of permutations φi of Vi, i ∈ [k], and the question is which combinations of such local
permutations give rise to an automorphism of G.

We describe how this problem can be reduced to CSP(Γ) where Γ is a constraint language
with a Maltsev polymorphism, see Example 18. Let Vi = {v1

i , . . . , vℓ
i } be some enumeration

of Vi, and let the symmetric group Sℓ of permutations of [ℓ] acts on Vi as follows: for
π ∈ Sℓ, π(vj

i ) = v
π(j)
i . The domain for our CSP is Sℓ, and the variables are V1, . . . , Vk.

For every pair Vi, Vj we introduce a constraint Rij(Vi, Vj) as follows. Suppose vs
i vr

j is an
edge of G. Then if φi, φj are a part of an automorphism of G, φi(vs

i )φj(vr
j ) ∈ E(G).

Permutations φi, φj correspond to some πi, πj ∈ Sℓ. Thus, we define Rij to be {(πi, πj) |
for any vs

i vr
j ∈ E(G), v

πi(s)
i v

πj(r)
j ∈ E(G)}. Let Γ = {Rij | i, j ∈ [k]}. Observe that Rij is

invariant under composition, i.e. if (πi, πj), (τi, τj) ∈ Rij then (πi ◦ τi, πj ◦ τj) ∈ Rij . In
particular, it is invariant under the operation x ◦ y−1 ◦ z of Sℓ, which is a Maltsev operation
on Sℓ.

The algorithm from [16] finds a concise representation of the set of solutions of the CSP
above, which then can be used to construct a generating set for Aut(G). The running time
of this algorithm is polynomial in k and |Sℓ| = ℓ!.
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5 Conclusion

As we have seen, algebraic methods in CSPs have found their applications in numerous areas
of computer science. In some of those areas such as decision, counting, and valued CSPs
comprehensive and broad results have been obtained. In some other areas active research is
ongoing. In particular the algebraic structure of the Promise CSP and CSPs over infinite
domains have received much attention recently, although major questions remain open. There
have been attempts to introduce the algebraic approach to the study of the holant problem
[2] and certain proof systems suitable for approximation (such as Sum-of-Squares) [22], but
these studies are in their infancy. Finally, from our perspective one of the most interesting
areas where the algebraic approach is yet to be developed is approximate counting. Apart
from the CSP itself it also has strong connections to other fields such as statistical physics,
and it would be very interesting to see what kind of algebraic structure is possible here.
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1 Introduction

Distributed subgraph finding is motivated by considering a user in a network whose con-
nections are unknown to its users. Typical examples could be friends or followers in social
networks, or computing devices in large networks. A prime question is what is the local
structure of the network, e.g., do two connected users share common connections, or are
they part of a slightly larger cycle or clique? While some social networks provide the user
with information about common connections they have with their connections, the general
fundamental question that arises is that of finding small subgraphs in such distributed settings.
This type of questions also emerges when processing huge graphs by distributed systems.
For example, Hirvonen, Rybicki, Schmid, and Suomela [33] study distributed algorithms for
finding large cuts in triangle-free graphs, and Pettie and Su [46] study coloring in triangle-free
graphs.

This article surveys the state-of-the-art in distributed subgraph finding. We focus on
synchronous settings, in which the main complexity measure is the number of communication
rounds that is required in order to find a subgraph H . We will elaborate on the computational
models and on the possible interpretations of what it means to find a subgraph, but let us
start with a warm-up.

Warm-up: locality. The first simple observation is that in a synchronous network with no
additional restrictions, the round complexity of finding a subgraph H by the devices in the
network is Θ(k), where k is the diameter of H. The reason for this is that in a single round
of communication, all nodes of the network can learn the neighbors of their neighbors,1 and
by induction, within t rounds each node can learn the topology within its t-neighborhood.

1 This assumes that all nodes begin with knowledge of their neighbors. Removing this assumption incurs
another round of communication to this argument.
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To be more precise, what we get is that within O(k) rounds, each node is able to list all
the instances of H to which it belongs. This is the most powerful variant of subgraph finding.

The clear drawback of the above example is that it sweeps the under the carpet the
complexity of sending potentially very large messages in a single round. Therefore, while the
above classic LOCAL model [42] is suitable for studying many other tasks, it misrepresents
the complexity of subgraph finding. We will thus focus mainly on two distributed settings
that capture limited bandwidth, and in which the complexity of some subgraph finding
problems is related. Additional settings will be discussed towards the end of the survey.

Computational models. The standard model that imposes restrictions on the bandwidth
over the above setting is the CONGEST model [45]. This is a synchronous model, in which
each of n nodes can send a message to each of its neighbors in every round, where the size of
messages is bounded by O(log n) bits. This choice of this bound on the size of messages allows
sending a node identifier within a single message. Typically, the graph that is processed is
the graph that underlies the communication network.

Another important model is the CONGESTED CLIQUE model [43], which we will abbrevi-
ate as the CLIQUE model in this document, in which the n nodes are part of a fully connected
network, with the same message bound of O(log n) bits as in the CONGEST model. Here,
the input graph is an arbitrary graph G on n nodes, which is typically assigned through a
bijection to the nodes of the CLIQUE, such that each node receives as input the edges in G

that are adjacent to its assigned node.

Subgraph finding. The extreme case mentioned above, where each node in the system lists
all instances of H to which it belongs is referred to as membership listing (or sometimes
local listing or local enumeration). In settings with bounded bandwidth, this is typically a
difficult variant that is known to require many rounds of computation for many subgraphs
(see, e.g., discussion about triangle finding in Section 2). A weaker variant is that of listing
or enumeration, in which it is required that every instance of the subgraph H is output by
some node, but not necessarily a node which belongs to that instance.

Apart from these two listing variants, it is in many cases important to merely detect
whether the input contains a copy of H or not. The standard formalization of distributed
detection is that if there is no copy of H then all nodes output false, and otherwise at
least one node outputs true. The reason for not demanding a unanimous output is to avoid
incurring an overhead just for propagating the information of existence of H , for example if a
graph contains a single copy of H and has many nodes that are very far from that instance.

Similarly to the case of listing, the detection problem also has a membership variant,
which requires each node to output true or false based on whether it is a part of a copy of
H or not.

Outline. Section 2 overviews the case in which H is a triangle. It covers both the CLIQUE
and the CONGEST models. Sections 3 and 4 address larger cliques and larger cycles in both
models, respectively. Finally, Section 5 briefly mentions additional subgraphs and additional
settings.

2 Triangle Finding

A naïve simulation of the warm-up algorithm for membership listing in the CONGEST or
CLIQUE models, in which all neighbors are sent to each other neighbor one by one, gives
a trivial O(∆)-round algorithm for triangle membership listing, where ∆ is the maximum
degree in the graph. However, it is possible to do better, as we overview in this section.
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2.1 Triangle Finding in the CLIQUE Model

We begin with the CLIQUE model.

Triangle listing in the CLIQUE model. The first non-trivial algorithm for triangle finding
is due to Dolev, Lenzen, and Peled [19]. This is a deterministic triangle listing algorithm
for the CLIQUE model, which has a complexity of O(n1/3/ log n) rounds. The simplicity of
this algorithm turned out to be a huge advantage for later additional results, as we will see.
The algorithm works as follows: The vertices of the graph are partitioned into n1/3 subsets
S1, . . . , Sn1/3 , each of n2/3 nodes. Each of the n nodes receives a different tuple of three of
these subsets. A node that receives Si1 , Si2 , Si3 for indices 1 ≤ i1, i2, i3 ≤ n1/3 (that are not
necessarily different) collects all edges with one endpoint in one of the three subsets and one
endpoint in another, that is, this node collects all edges in E(Si1 , Si2)∪E(Si1 , Si3)∪E(Si2 , Si3),
and reports all triangles that it finds. It is straightforward to see that all triangles are listed
by this algorithm since the number of 3-tuples of subsets is n and so each is handled by some
node.

The round complexity of the algorithm follows by proving that each node needs to send
and receive O(n4/3) edges in total, which are to and from locations that are known to
all nodes (we will discuss this knowledge property later), since the partition to subsets is
hardcoded and so it is known to all nodes. Sending: Take a node v and assume that it is
in the subset Si. There can be at most n2/3 edges between v and nodes in Sj and these
edges need to be sent to all nodes that have Si and Sj in their 3-tuple. Since there are n1/3

such 3-tuples, these n2/3 edges need to be sent to n1/3 nodes. Repeating this for all n1/3

possibilities for j gives a total of n2/3+1/3+1/3 = n4/3 edges that v has to send. Receiving:
Each node needs to learn 3 subsets of edges, each containing at most n2/3 · n2/3 = n4/3 edges.
To conclude the complexity analysis, one can use the simple claim that [19] proves, which
states that a routing task in which each node needs to send and receive n messages in a
known pattern can be done in 2 rounds. This means that the O(n4/3) sent and received
messages per node are divided by n, yielding a complexity of O(n1/3) rounds. Noticing that
the partition and routing are fixed, one can refrain from sending actual edge identifiers and
replace them with a bit mask, which saves a logarithmic factor and results in a complexity
of O(n1/3/ log n) rounds.

This complexity turns out to be optimal. The first lower bound for this task was of
Ω(n1/3/ log3 n) rounds given by Pandurangan, Robinson and Scquizzato [44], and it was
followed by a tight lower bound of Ω(n1/3/ log n) rounds given by Izumi and Le Gall [36]. The
lower bound is proven using an information-theoretic argument, which bounds by Ω(n4/3)
the entropy of the transcript that a certain node sees on a random graph in which each edge
appears independently at random with probability 1/2. As the entropy of the transcript is a
lower bound on its length, and since each node can receive at most O(n log n) bits per round,
the lower bound on the round complexity follows. This approach also allowed [36] to obtain
a lower bound of Ω(n/ log n) rounds for local listing of triangles, in which each node needs to
output a list of all the triangles which include it.

In addition to the aforementioned algorithm, [19] also gives a triangle-listing algorithm
whose complexity improves upon the above in the case that the graph contains many
triangles. Specifically, they provide a randomized algorithm that completes in O(n1/3/(t2/3 +
1) + 1) rounds in expectation, where t is the number of triangles in the graph, and in
O(min{n1/3 log2/3 n/(t2/3 + 1), n1/3}) rounds with high probability.
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Triangle detection in the CLIQUE model. The approach of [19] inherently lists all triangles.
A natural question is whether the decision problem of triangle detection is easier than listing,
for which the answer turns out to be affirmative. Censor-Hillel, Kaski, Korhonen, Lenzen,
Paz, and Suomela [12] show how to perform matrix multiplication over a ring in the CLIQUE
model within O(n0.158) rounds. More precisely, the complexity is O(n1−2/ω) rounds, where
ω is the matrix multiplication exponent, currently known to be bounded by 2.3728596 due
to Alman and Vassilevska-Williams [2]. Ring matrix multiplication directly carries over
to triangle detection with the same complexity. The main approach of [12] is to simulate
matrix multiplication algorithms for parallel settings in the CLIQUE model. This includes
the so-called parallel 3D matrix multiplication, as well as bilinear Strassen-like algorithms.

Elaborating upon the matrix multiplication algorithms is beyond the scope of this survey.
Yet, we must mention a crucial component that underlies these CLIQUE algorithms, as well
as numerous additional CLIQUE algorithms for various tasks, which is the ingenious routing
technique of Lenzen [41]. In a nutshell, this technique provides a way to route in O(1) rounds
any set of messages in which each node needs to send and receive at most n messages.

The above complexity of O(n0.158) rounds for triangle detection in the CLIQUE model is
the current state-of-the-art. For reasons that will be explained shortly, unlike the Ω(n1/3)
lower bound for triangle listing in this model, there is no known lower bound for triangle
detection. We thus have the following major open problem in distributed triangle finding.

▶ Open Problem 2.1. What is the complexity of triangle detection in the CLIQUE model? In
particular, is there an algorithm that is faster than O(n0.158) rounds? Can any lower bound
be proven?

The second part of the above question which asks for a lower bound for triangle detection
in the CLIQUE model is considered hard: Very roughly speaking, Drucker, Kuhn, and
Oshman [20] show that the CLIQUE model is strong enough to simulate certain circuits,
which implies that for a wide range of problems, any super-constant lower bound in the
CLIQUE model would result in a major breakthrough in circuit complexity. It is noteworthy
that the problem of triangle listing does not fall into this category of problems due to its
large outputs, which explains why this does not contradict the aforementioned lower bound
of Ω(n1/3) rounds for triangle listing.

For the broadcast version of this model, a.k.a. the BROADCAST CONGESTED CLIQUE
model, in which the messages sent by a node in a certain round must all be identical, an
Ω(n/eO(

√
log n) log n)-round lower bound on deterministic triangle detection is given by [20],

through a reduction from 3-party number-on-forehead set disjointness.

Triangle listing in sparse graphs in the CLIQUE model. The first algorithms for triangle
finding in sparse graphs were given by Dolev, Lenzen, and Peled [19]. One algorithm has
a round complexity of O(∆2/n + 1) and another has a round complexity of O(A2/n +
log2+n/A2 n), where A is the arboricity of the graph.2 The latter implies a round complexity
of O(m2/n3), in terms of the number of edges, m.

Pandurangan, Robinson, and Scquizzato [44] give a randomized triangle listing algorithm
that completes within Õ(m/n5/3 + 1) rounds, w.h.p. At the heart of the algorithm lies the
partitioning approach of [19], but more is needed in order to exploit sparsity. In [44], the

2 The arboricity of a graph is the minimal number of forests that contain all of its edges. While bounded
by the maximum degree ∆, the arboricity can in some cases be much smaller, e.g., a star has a linear
maximum degree but its arboricity is 1.



K. Censor-Hillel 3:5

partition is random, and the routing of edges to the nodes to which they are assigned is done
in a randomized load balanced manner. This approach is what handles load balancing of the
information that needs to be routed in the system in a way which is sensitive to the sparsity
of the graph, rather than optimizing only for the worst case. Moreover, the aforementioned
Ω̃(n1/3) lower bound of [44] for triangle listing in general graphs follows from a Ω̃(m/n5/3)
lower bound for graphs with m edges.3

Censor-Hillel, Leitersdorf, and Turner [14] obtained an algorithm for sparse graphs, with a
complexity of O(m/n5/3 +1) which is similar to, but slightly improves upon, the complexity of
the algorithm of [44], by polylogarithmic factors. The algorithm of [14] is deterministic and is
based on an algorithm for sparse matrix multiplication, which completes in O((ρSρT n)1/3 +1)
rounds, where S and T are the input matrices and ρA is the average number of non-zero
elements per row of a matrix A (i.e., it is the number of non-zero elements of A, divided by
n).4 While the aforementioned semi-ring matrix multiplication algorithm of [12] assigns the
n3 element-wise multiplication to the nodes in an optimal manner, it applies to the worst
case. The general approach used by [14] for sparse matrix multiplication is to assign the
element-wise multiplications to nodes in a way which is optimal given the input sparsity.
The way this is done is by load balancing the number of non-zero elements that each node
needs to send and receive in order for all element-wise multiplications to be computed.

Notes on matrix multiplication in the CLIQUE model. The first algorithm for matrix
multiplication in this model is due to Drucker, Kuhn, and Oshman [20], who showed a
randomized complexity of O(nω−2) ≈ O(n0.373) rounds with high probability, for semirings.
A deterministic O(n1/3)-round algorithm for matrix multiplication over a semiring is given
in [12].

Censor-Hillel, Dory, Korhonen, and Leitersdorf [8] provide two additional sparse matrix
multiplication algorithms, used for distance computations. Compared to [14], these algorithms
also benefit from sparsity of the output matrix P = ST . More concretely, their first algorithm
completes in O((ρSρT ρP )1/3/n2/3 +1) rounds. This matches the complexity algorithm of [14]
for a general P , but improves upon it for sparse output matrices (recall that the multiplication
of two sparse matrices need not be sparse in general). The second algorithm of [8] pays an
additive log n over the first one, i.e., has a round complexity of O((ρSρT ρ)1/3/n2/3 + log n),
but here ρP is replaced by ρ, which stands for the number of elements per row that are
needed. That is, there is no need to compute any element in the output matrix P that is not
among the ρ smallest ones in its row (given an appropriate definition of the total order on
matrix elements). In other words, the complexity of this algorithm does not depend on the
sparsity of P = ST , but on some sparsity parameter that is given as input.

Additional algebraic algorithms in the CLIQUE model with important applications were
given by Le Gall [27]. These include fast algorithms for rectangular matrix multiplications,
as well as for multiple instances of matrix multiplication.

As explained earlier, we do not expect a lower bound for matrix multiplication in the
CLIQUE model. However, it is shown in [12] that a near-linear number of rounds is required
in the BROADCAST CONGESTED CLIQUE model.

Finally, we mention that matrix multiplication based algorithms also give results for
counting for some small subgraphs [12,14].

3 In fact, the results of [44] hold for the k-machine model (see Klauck, Nanongkai, Pandurangan, and
Robinson [39]), which is similar to the CLIQUE model, but has k nodes rather than n. For a general k,
the complexity of the algorithm is Õ(m/n5/3 + n/k4/3), and the lower bound is Ω̃(m/k5/3).

4 The sparse matrix multiplication algorithm of [14] can also be converted to the k-machine model, in
which it has a complexity of O(n4/3(ρSρT )1/3/k5/3 + 1) rounds.
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2.2 Triangle Finding in the CONGEST Model
We now move to triangle finding problems in the CONGEST model.

The first breakthroughs in this model are the first non-trivial (sublinears) algorithms
due to Izumi and Le Gall [36]. These are randomized algorithms for triangle listing and
detection in O(n3/4 log n) and O(n2/3 log2/3 n) rounds w.h.p., respectively. The approach
of these algorithms is to split the task of finding triangles into two parts: one which looks
for triangles that are ϵ-heavy and another which looks for other triangles, where an ϵ-heavy
triangle is one in which at least one of its edges appears in at least nϵ triangles. Very roughly
speaking, heavy triangles can be detected within O(n1−ϵ) rounds by randomly sampling
which edges to send, and can be listed in O(n1−ϵ/2) rounds by randomly hashing the edges
sent to different neighbors. A more involved argument shows that non-heavy triangles can
be listed in O(n1−ϵ + n(1+ϵ)/2 log n) rounds, w.h.p. Carefully plugging in the right values of
nϵ = Õ(n1/3) and nϵ = Õ(n1/2) then gives the round complexities for triangle detection and
listing.

The breakthrough that came after [36] is due to Chang, Pettie, and Zhang [15], who
showed triangle listing (and thus also detection) in the CONGEST model in Õ(n1/2) rounds,
w.h.p. In a nutshell, the main methodology of this algorithm has two elements: One element
is an algorithm for decomposing the graph into well-connected components which could
behave somewhat similarly to the CLIQUE model. The second element is to have the nodes
of each component search for triangles that have an edge in the component.

In more detail, [15] showed how to compute the following expander decomposition in
O(n1/2) rounds. This decomposition is a partition of the set of edges of the graph into
three sets. In the first set Em, each connected component has minimum degree n1/2 and
conductance Ω(1/ polylog n). The graph induced by the edges in the second set, Es, is such
that its arboricity is at most n1/2. The third set of remaining edges, Er is at most a constant
fraction of the total number of edges, and the triangle listing algorithm which we discuss in
what follows recurses over this remaining set of edges. The algorithm for the decomposition
itself is beyond the scope of this survey, and here we only mention that it is rather far from
being merely a distributed implementation of its centralized counterpart.5

The triangle listing algorithm over the two first sets above then works as follows. Since
the arboricity in Es is bounded by n1/2, triangles with at least one edge in this set are listed
in a straightforward manner, using an orientation that is deduced by the decomposition
algorithm. Then, triangles with an edge in any high-conductance component (i.e., in Em) are
listed by having the nodes of each component mimic a variant of the triangle listing algorithm
in the CLIQUE model of Dolev, Lenzen, and Peleg [19]. This mimicking has three aspects.
First, it replaces the deterministic partition of [19] with a randomized partition, in order to
have a good probability for a good balance of information within the component. Second, the
fact that a component has large conductance indeed implies that it has a small mixing time,
but this alone is insufficient for efficiently exchanging large amounts of information within
the component. To this end, the algorithm makes use of the random-walk based routing
techniques of Ghaffari, Kuhn, and Su [28] and Ghaffari and Li [29], whose complexities
improve as the mixing time decreases. Finally, even with these ingredients, some nodes of a
component may have too many edges that touch them that are not inside the component,
preventing them from efficiently using their inner-component edges for routing this large
amount of information. Thus, some additional edges are added to the set Er of remaining
edges that the decomposition left for recursing over.

5 The actual decomposition result is more general, with a parameter δ which is tuned here to be δ = 1/2
in order to optimize the running time of the triangle listing algorithm that uses it.



K. Censor-Hillel 3:7

The decomposition approach was refined by Chang and Saranurak [16], allowing the
complexity of triangle listing to drop to Õ(n1/3) rounds, w.h.p. Since the Ω̃(n1/3) lower
bound for triangle listing in the CLIQUE model directly applies also in CONGEST, this
complexity is near-optimal (up to polylog n factors). At a high level, the decomposition
obtained in [16] improves upon the one in [15] in that it does not have Es at all (the bounded
arboricity part) and in the complexity of obtaining it. In addition, a somewhat modified
version of the routing algorithms of [28,29] is introduced, for the triangle listing usage of the
decomposition.

Chang and Saranurak [17] then show deterministic algorithms for expander decomposition
and for expander routing. These yield round complexities of O(n0.58) and n2/3 + o(1) for
deterministic triangle detection and triangle listing, respectively.

An additional algorithm for deterministic triangle listing is given by Huang, Pettie, Zhang,
and Zhang [34]. The complexity of this algorithm, given in terms of the maximum degree ∆,
is O(∆/ log n + log log ∆) rounds, w.h.p. For ∆ = Õ(n1/3), this is faster compared with the
algorithm of [17], while the latter is faster for the larger range of ∆.

Since the complexities of both [17] and [34] do not reach yet the lower bound of Ω̃(n1/3)
rounds, we note the following open question.

▶ Open Problem 2.2. What is the complexity of deterministic triangle listing in the
CONGEST model? Does randomization help for this problem?

The above are triangle listing algorithms so they clearly also solve the detection variant.
However, as opposed to triangle listing, for triangle detection we currently do not have good
lower bounds. What we do know is the following. Abboud, Censor-Hillel, Khoury, and
Lenzen [1] showed that triangle detection cannot be solved in the CONGEST model within a
single round by a deterministic algorithm. Specifically, they showed that any single-round
algorithm requires a bandwidth of ∆ log n bits. Fischer, Gonen, Kuhn, and Oshman [24]
showed that this also holds for randomized algorithms, by showing that randomized single-
round algorithms require a bandwidth of ∆ bits. Both works also addressed the round
complexity of 1-bit bandwidth algorithms, with a lower bound of Ω(log∗ n) rounds given
in [1], which was improved to Ω(log n) rounds in [24].6

We will later (Section 4) describe some lower bounds for finding other subgraphs in the
CONGEST model which are based on reductions from 2-party communication complexity
problems, and there we will see why these techniques do not give any meaningful lower bound
for triangles. Moreover, in the spirit of the aforementioned argument of Drucker, Kuhn,
and Oshman [20], Eden, Fiat, Fischer, Kuhn, and Oshman [21] showed that a lower bound
of ω(log n) for triangle detection in CONGEST would imply major breakthroughs in circuit
complexity. This leaves us with another curious gap in our knowledge of triangle finding in
this model.

▶ Open Problem 2.3. What is the complexity of triangle detection in the CONGEST model
(randomized and deterministic)?

3 Finding Larger Cliques

The CLIQUE model. The deterministic triangle listing algorithm of [19] for the CLIQUE
model can be easily generalized to list larger cliques. To find cliques of size p for some integer
p ≥ 3, the set of nodes is partitioned into n1/p sets. Each node is assigned a p-tuple of sets

6 The function log∗ n counts the number of times the logarithm function needs to be applied starting
from n until the value drops to at most 1.
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and learns all edges between any two of its sets. A similar argument to that of triangles
shows that indeed all p-cliques are listed by this algorithm, and that its round complexity
is O(n1−2/p/ log n). In fact, it is easy to see that this algorithm lists all instances of any
subgraph H of p nodes.

This complexity is optimal, due to a lower bound of Ω̃(n1−2/p) rounds by Fischer, Gonen,
Kuhn, and Oshman [24], which generalizes the aforementioned lower bound for triangle listing
of [44] and [36], using additional machinery. In the BROADCAST CONGESTED CLIQUE
model, Drucker, Kuhn, and Oshman [20] show that Ω(n/ log n) rounds are needed for p-
cliques, even for the stronger detection variant, for almost all values of p ≥ 4 (as long as
p ≤ (1 − ϵ)n for some constant ϵ > 0).

For sparse graphs, Censor-Hillel, Le Gall, and Leitersdorf [11] show that listing can be
complete within Õ(m/n1+2/p + 1) rounds, for p ≥ 3. This follows from their CONGEST
approach which is discussed below, and is tight up to polylogarithmic factors using the lower
bound technique of [24,36,44].

As opposed to the listing variant, for p-clique detection the aforementioned hardness
of obtaining lower bounds in the CLIQUE model by [20] kicks in, and we do not know any
non-constant lower bound (or any larger than 1 lower bound, for that matter), leaving the
complexity of p-clique detection open for p > 4.

▶ Open Problem 3.1. What is the complexity of p-clique detection in the CLIQUE model
(randomized and deterministic), for p ≥ 4?

The CONGEST model. Algorithms for finding larger cliques in the CONGEST model, as in
the case of triangles, are also based on the conductance decomposition algorithms of Chang,
Pettie, and Zhang [15] and of Chang and Saranurak [16]. The first sublinear algorithms for
larger cliques in CONGEST are due to Eden, Fiat, Fischer, Kuhn, and Oshman [21]. They
show that 4-cliques can be listed in Õ(n5/6+o(1)) rounds and that 5-cliques can be listed in
Õ(n21/22+o(1)) rounds, w.h.p. These listing algorithms are more involved compared with the
triangle listing algorithm, due to the need to handle, for example, a 4-clique with one edge
within a certain component and another edge within a different component, which imposes a
complex challenge that becomes even worse as p grows.

Following [21], the work of Censor-Hillel, Le Gall, and Leitersdorf [11] provided algorithms
for listing p-cliques in Õ(np/(p+2)) rounds, w.h.p., for all p ≥ 4 except for p = 5. For p = 5,
this work gave an algorithm which completes in Õ(n3/4+o(1)) rounds, w.h.p. The main
approach of these algorithms is iterating over the decomposition in a way that balances the
minimum degree and the arboricity thresholds. Within each cluster, sparsity-aware listing
helps speeding up the computation. While these algorithms improved upon the state-of-the-
art for p = 4, 5 and were the first sublinear algorithms for p ≥ 6, they fell short of the [24]
lower bound of Ω̃(n1−2/p) rounds. The question of whether clique listing in the CONGEST
model is as easy as, or harder than, its CLIQUE counterpart, was recently answered by Censor-
Hillel, Chang, Le Gall, and Leitersdorf [7], using the newer conductance decomposition of
Chang and Saranurak [16] and additional mechanisms for optimal sparsity-aware listing and
for efficient transmission of edges in the clutsers.

For p = 4, the tight listing of [7] also implies that 4-clique detection is not easier than
its listing counterpart in the CONGEST model. This is due to a lower bound of Ω̃(n1/2) for
4-clique detection in CONGEST, by Czumaj and Konrad [18]. The lower bound of [18] is
more general, and says that detecting p-cliques in the CONGEST model requires Ω̃(n1/2/p)
rounds for p ≤ n1/2, and Ω̃(n/p) rounds for p ≥ n1/2. Thus, for values of p larger than 4,
there is still a gap between detection and listing.
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▶ Open Problem 3.2. What is the complexity of p-clique detection in the CONGEST model
(randomized and deterministic), for p > 4?

The lower bound of [18] uses a reduction from 2-party set disjointness. The same work
also shows that listing can be done sufficiently fast by the two parties, which shows that if
the detection problems are harder, a different lower bound technique must be used.

4 Finding Larger Cycles

The CLIQUE model. Since the algorithm of [19] easily lists any subgraph of p nodes, we
have that, in particular, p-cycles can be listed in the CLIQUE model within O(n1−2/p) rounds
(deterministically).

The detection variant was then addressed by Censor-Hillel, Kaski, Korhonen, Lenzen, Paz,
and Suomela [12], who show a deterministic constant-round algorithm for detecting 4-cycles.
In addition, they show an O(n0.158)-round algorithm for detecting p-cycles, for any constant
p. More accurately, the complexity is 2O(p)n0.158 rounds. This is a randomized algorithm
that relies on the color coding technique of Alon, Yuster, and Zwick [3], in order to avoid too
much congestion that would be caused by collecting all possible candidates for cycle nodes.
More recently, Censor-Hillel, Fischer, Gonen, Le Gall, Leitersdorf, and Oshman [10] showed
that 2p-cycles can be detected in O(1) rounds for any p, using a technique which also allows
fast girth approximation. This is, notably, a deterministic algorithm. For odd values of p, it
is still not known whether there is a constant-round p-cycle detection algorithm.

▶ Open Problem 4.1. What is the complexity of p-cycle detection in the CLIQUE model
(randomized and deterministic), for odd values of p?

The CONGEST model. For 4-cycle detection, Drucker, Kuhn, and Oshman [20] provide a
tight complexity of Θ̃(n1/2), by providing both an algorithm and a lower bound. They also
show that for any odd value of p, detecting p-cycles requires Ω̃(n) rounds. The upper bound
is obtained by setting a threshold of T = 2n1/2, and defining heavy nodes as nodes with at
least T neighbors. First, all non-heavy nodes send all their neighbors to all their neighbors,
in T rounds. This detects 4-cycles which have at least 2 non-neighboring non-heavy nodes.
Then, a heavy node v with more than T heavy neighbors reports that there exists a 4-cycle.
Finally, a heavy node v with at most T heavy neighbors sends its heavy neighbors to all of
its neighbors, again in T rounds. The reason for which too many heavy neighbors imply a
4-cycle is because this means that the total number of neighbors of heavy neighbors is at least
T 2, which is more than 2n, and so there must be a node other than v which is connected
to two of the neighbors of v, and hence we have a 4-cycle. Otherwise, if v sends its heavy
neighbors to all of its neighbors, then any 4-cycle with two neighboring nodes that are heavy
is detected by one of its nodes (by a simple case analysis).

The matching lower bound for 4-cycles is a good point of reference for understanding
lower bounds for the CONGEST model that rely on reductions from 2-party communication
complexity. It relies on the fact that there is a 4-cycle-free graph G on n nodes with Θ(n3/2)
edges, due to Erdös [22], whose work implies that this is the Turán Number of 4-cycles [48].
The setting is as follows. Each of two players, Alice and Bob, has an input string of k bits,
x = (x1, . . . , xk) and y = (y1, . . . , yk), respectively. By communicating with each other, the
players need to compute the set disjointness function Disj(x, y), whose value is 1 if and only
if the input strings represent disjoint subsets of the set {1, . . . , k}, that is, if and only if there
is no index 1 ≤ i ≤ k such that xi = yi = 1. The 2-party set disjointness problem is known
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to require exchanging Ω(k) bits, even by randomized protocols, due to Kalyanasundaram
and Schnitger [38], Razborov [47], and Bar-Yossef, Jayram, Kumar, and Sivakumar [4]. The
reduction to distributed detection of 4-cycles is as follows. Each of the two players takes a
subgraph of the 4-cycle free graph G according to their respective input. That is, the edges
of G are mapped to the set {1, . . . , k}, with a value of n for which k = Θ(n3/2). Each player
imagines a subgraph of G that has an edge for any index in which their input is 1. The
players then imagine that their two subgraphs are connect by a perfect matching: each node
in Alice’s subgraph is connected to the respective node in Bob’s subgraph (the nodes of both
subgraphs are the nodes of G). Now, it is easy to see that the combined graph contains a
4-cycle if and only if the input strings x, y are disjoint, as the only 4-cycles that can occur
are those that have two edges from the perfect matching, and two edges that represent
the same index in the bit strings of the players. Thus, if Alice and Bob can simulate a
distributed algorithm for 4-cycle detection, they solve set disjointness. They simulate a given
algorithm as follows. Any message that the algorithm sends between two nodes that are in
the same subgraph (either that of Alice of that of Bob) can be internally simulated by the
respective player. The only messages that need to be explicitly sent between the two players
are those that are sent along the edges of the perfect matching. There are n such edges, and
so simulating a round of the detection algorithms costs O(n log(n)) bits of communication
between the two players. Since Ω(k) = Ω(n3/2) is a lower bound on the total number of bits
that need to be exchanged for solving set disjointness, we get that the distributed 4-cycle
detection algorithm must consist of at least Ω(k/n log(n)) = Ω(n3/2/n log(n)) = Ω̃(n1/2)
rounds.

A remark on triangle detection. While this approach for reductions which imply CONGEST
lower bounds is heavily used in the literature, it is doomed to fail for triangle detection. The
reason is that any triangle in a graph has at least one player which knows at least two of its
nodes and thus all of its edges, which nullifies any attempt for a lower bound constructions,
regardless of the 2-party problem or the graph construction.

Korhonen and Rybicki [40] then showed that the Ω̃(n1/2) lower bound for 4-cycles can be
extended and applies to p-cycles for all even values of p. Notably, in the spirit of the results
of [20], it is shown in Censor-Hillel, Fischer, Gonen, Oshman, Le Gall, and Leitersdorf [10]
that going above this lower bound for p = 6 would imply new lower bounds in circuit
complexity, which are considered hard to obtain. The reason that this barrier for lower
bounds works in the CONGEST model is because it is shown that it is sufficient to consider
high-conductance clusters, and that these can simulate circuits in a similar manner to the
CLIQUE model.

On the upper bound side, Korhonen and Rybicki [40] showed that p-cycle detection for
any constant p can be done in a linear in n number of rounds. For odd values of p, this is
optimal due to the above lower bound. They also showed that this can be done faster for
degenerate graphs. Fischer, Gonen, Kuhn, and Oshman [24] showed how to detect 2p-cycles
within O(n1−1/p(p−1)) rounds, for p ≥ 2. This was subsequently improved by Eden, Fiat,
Fischer, Kuhn, and Oshman [21], who showed how to detect 2p-cycles in Õp(n1−2/(p2−p+2))
rounds for odd p ≥ 3, and in Õp(n1−2/(p2−2p+4)) rounds for even p ≥ 4. They also show that
as opposed to the case of 4-cliques, the listing variant of 4-cycles is harder than its detection
counterpart, requiring Ω̃(n) rounds. For p = 3, 4, 5, Censor-Hillel, Fischer, Gonen, Oshman,
Le Gall, and Leitersdorf [10] then showed improved algorithms (randomized) for detecting
2p-cycles, which completes within Õ(n1−1/p) rounds. Still, the upper bounds here are above
the respective Ω̃(n1/2) lower bound.

▶ Open Problem 4.2. What is the complexity of p-cycle detection in the CONGEST model
(randomized and deterministic), for even value of p ≥ 6?
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5 Additional Variants of Distributed Subgraph Finding

Finding Other Subgraphs. The literature has also been studying additional subgraphs,
apart from cliques and cycles.

Drucker, Kuhn, and Oshman [20] study the complexity of finding trees and complete
bipartite subgraphs in the BROADCAST CONGESTED CLIQUE model. Korhonen and Ry-
bicki [40] show that trees can be detected in O(1) rounds in the BROADCAST CONGEST
model.

On the lower bound front, Gonen and Oshman [31] showed lower bounds for finding
subgraphs that are created from smaller ones using certain allowed operations. Fischer,
Gonen, Kuhn, and Oshman [24] showed that for any p ≥ 4, there exists a subgraph H of
size p such that H detection requires Ω̃(n2−Θ(1/p)) rounds. Eden, Fiat, Fischer, Kuhn, and
Oshman [21] showed that this complexity is roughly the right one, by providing an upper
bound of Õ(n2−2/(3p+1) + o(1)) rounds. In particular, their result shows that there does not
exist a constant-sized subgraph for which detection requires a truly quadratic number of
rounds.

Subgraph Freeness Testing. The variant of testing for H-freeness has also been studied in
the distributed setting, initially introduced by Brakerski and Patt-Shamir [6].

The definition of distributed testing for H-freeness requires that if there is no instance of
H in the graph then all the nodes output true, but instead of requiring at least one node
to output false in case there is an instance of H as would be an analog to the detection
problem, testing only requires at least one node to output false in case the graph is far from
being H-free. Here, being ϵ-far from having a property is the same as its standard definition
by Goldreich, Goldwasser, and Ron [30], and means that no matter which ϵ-fraction of the
graph is changed (removed, in the case of H-freeness), the resulting graph must still have
a copy of H. For triangles and other small subgraphs, this typically means that there are
many instances of H in a graph that is far from being H-free.

For testing triangle-freeness, Censor-Hillel, Fischer, Schwartzman, and Vasudev [9] showed
a O(1/ϵ2)-round algorithm. This was later improved by Even, Fischer, Fraigniaud, Gonen,
Levi, Medina, Montealegre, Olivetti, Oshman, Rapaport, and Todinca [23] and Fraigniaud
and Olivetti [25] to a complexity of O(1/ϵ) rounds. These, along with the work of Fraigniaud,
Rapaport, Salo, and Todinca [26] also show fast testing for larger cliques, cycles, and
additional subgraphs.

Subgraph Finding in Dynamic Networks. Subgraph finding has also been studied from the
perspective of dynamic networks. Bonne and Censor-Hillel [5] characterize the bandwidth
that is required for various clique finding problems by algorithms that work in a dynamic
setting and must produce the correct answer immediately at the end of the round in which a
topology change occurs.

Subgraph finding in a harsh dynamic setting in which the number of topology changes
per round is unlimited, was studied by Censor-Hillel, Kolobov, and Schwartzman [13], who
showed upper and lower bounds for small subgraphs.

Subgraph Finding in Quantum Networks. Izumi, Le Gall, and Magniez [37] have shown
that in a quantum CONGEST model, triangle detection can be solved within Õ(n1/4) rounds,
using a distributed version developed by Izumi and Le Gall in [35] of a Grover Search [32].
We note that the listing variant for triangles cannot be improved using quantum tools, since
it is obtained through information theoretic arguments, which apply to this setting as well.
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Abstract
In this paper we consider a new type of space partitioning which bridges the gap between continuous
and discrete spaces in an error resilient way. It is motivated by the problem of rounding noisy
measurements from some continuous space such as Rd to a discrete subset of representative values,
in which each tile in the partition is defined as the preimage of one of the output points. Standard
rounding schemes seem to be inherently discontinuous across tile boundaries, but in this paper we
show how to make it perfectly consistent (with error resilience ϵ) by guaranteeing that any pair of
consecutive measurements X1 and X2 whose L2 distance is bounded by ϵ will be rounded to the same
nearby representative point in the discrete output space. We achieve this resilience by allowing a
few bits of information about the first measurement X1 to be unidirectionally communicated to and
used by the rounding process of the second measurement X2. Minimizing this revealed information
can be particularly important in privacy-sensitive applications such as COVID-19 contact tracing,
in which we want to find out all the cases in which two persons were at roughly the same place at
roughly the same time, by comparing cryptographically hashed versions of their itineraries in an
error resilient way.

The main problem we study in this paper is characterizing the achievable tradeoffs between
the amount of information provided and the error resilience for various dimensions. We analyze
the problem by considering the possible colored tilings of the space with k available colors, and
use the color of the tile in which X1 resides as the side information. We obtain our upper and
lower bounds with a variety of techniques including isoperimetric inequalities, the Brunn-Minkowski
theorem, sphere packing bounds, Sperner’s lemma, and Čech cohomology. In particular, we show
that when Xi ∈ Rd, communicating log2(d + 1) bits of information is both sufficient and necessary
(in the worst case) to achieve positive resilience, and when d=3 we obtain a tight upper and lower
asymptotic bound of (0.561 . . .)k1/3 on the achievable error resilience when we provide log2(k) bits
of information about X1’s color.
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4:2 Error Resilient Space Partitioning

1 Introduction

Studying various types of space partitioning of a continuous space such as Rd is a central topic
in computational geometry (see, e.g., [11, Chapters 6,12] and the references therein), and each
type of partition has different properties and applications within computer science, electrical
engineering, and applied mathematics. For example, in error-correcting codes (which are
extensively used in data communication) we try to squeeze the largest possible number of
equal sized disjoint balls into the input space, while in vector quantization [16] (which is
used extensively in data compression) we try to completely cover the input space with a
small number of tiles whose volumes are as similar as possible. In this paper we investigate a
new variant which can be viewed as “continuous error correction over the reals”. Our main
motivation is the problem of rounding noisy analog measurements in Rd, in order to digitally
process or store them (see, e.g., [2, 10]). This rounding process seems to be inherently
discontinuous across tile boundaries, and this problem is compounded by the fact that for
large d almost all input vectors are near boundaries. One natural solution to this discontinuity
problem is to try to minimize the fraction of pairs X1, X2 with distance(X1, X2) < ϵ which
are rounded differently by considering foam tilings that minimize the total surface area of
unit volume tiles (such a tiling is called “foam” since it emerges in physical collections of soap
bubbles). In a beautiful FOCS paper [22] (which was highlighted at CACM [23]), Kindler
et al. introduced a clever new construction of such tiles which they called spherical cubes.
What makes these tiles special is that they have the O(

√
d) surface area of a ball and yet

they can tile the whole Rd space without gaps, which solved an open problem posed by Lord
Kelvin in 1887.

In this paper we consider the more ambitious goal of achieving error resilience which
completely eliminates all the discontinuities in the rounding process rather than reducing
their fraction. We call such a rounding scheme consistent rounding1, and make it possible by
thinking about X1 and X2 as two consecutive noisy measurements of the same X. When
the first measurement X1 is rounded, we allow it to produce a few bits of side information
about how it was rounded, and to provide them as an auxiliary input to the process that
decides how to round X2. Note that both X1 and X2 are assumed to be real valued vectors
which require an infinite number of bits to fully specify them.

To demonstrate the basic idea, consider the one dimensional case in which X1 and X2 are
real values which have to be consistently rounded to the same nearby integer whenever they
are close enough. X1 is always rounded to the nearest integer, and it produces a single bit of
side information which is whether it was rounded to an even or an odd integer P . When
X2 is measured, it is rounded to the nearest integer which has the same parity as P . To
demonstrate this process, consider the problematic inputs X1 = 0.4999 and X2 = 0.5001:
X1 is rounded to 0, and X2 is also rounded to 0 since it is the closest even integer. In fact,
X2 could be anywhere between −1 and 1 and still be consistently rounded to 0, and thus
the rounding scheme is resilient to additive errors of up to 0.5. In fact (see Sec. 4.1), this
is the highest possible error resilience of any one dimensional consistent rounding scheme;
other natural schemes (such as providing one bit of side information about whether X1 was
rounded up or down) provide lower resilience.

The way we think about the problem is to consider a colored tiling of the real line with
two colors: All the values in [−0.5, 0.5), [1.5, 2.5), etc. are colored by 1, and all the values
in [0.5, 1.5), [2.5, 3.5), etc. are colored by 2. The side information provided about X1 is the

1 We note that in statistics, the term “consistent rounding” is used to denote a rounding that is consistent
with some external constraints; see [26, p. 237].
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Figure 1 A 3-colored hexagonal tiling of the plane, and a maximal non-intersecting inflation of
the tiles colored 1.

color of the tile in which it is located, and the way we process X2 is to round it to the
center of the closest tile which has the same color as that of X1. The essential property of
our partition is that the minimum distance between any two tiles with the same color is 1,
and thus we can “inflate” all the tiles of any particular color to their outer parallel body in
order to include any erroneously measured value X2 up to a distance of 0.5 away from the
original tile, and still get nonoverlapping tiles which make it possible to uniquely associate
such points with original tiles.

To make this perspective clearer, consider the two dimensional plane. In the obvious
checkerboard tiling by unit squares, we need at least 4 colors (and thus 2 bits of side
information) to color the tiles if we do not allow equi-colored tiles to touch. We can reduce
the number of colors to 3 (and thus, provide only log2(3) = 1.58 bits of side information) by
considering the hexagonal partition of the plane depicted in the left part of Figure 1. Given
a two dimensional point X1, we always round it to the center of the hexagon in which it
is located, and given X2 we round it to the center of the nearest hexagon which has X1’s
color. To determine the error resilience of this scheme, we inflate all the hexagonal tiles of a
particular color by the same amount until they touch each other, as depicted in the right part
of Figure 1. As it turns out, this natural scheme is not optimal since the inflated hexagons’
corners touch prematurely, leaving large gaps between them. A 3-colored tiling with a higher
error resilience will be described in Section 5.1.1, and an asymptotically optimal tiling for a
large number of colors will be described in Section 5.2.1.

For inputs X ∈ Rd, we can provide one bit of side information about each one of its d

entries separately, but for large d this is very inefficient. In our colored tiling formulation, it
suffices to reveal the color of X1 in order to consistently round X2, and thus if we can tile
the space with k colors, we need only log2(k) bits to specify this color. This naturally leads
to the question of what is the minimum number of colors needed to tile Rd by bounded sized
tiles so that no two tiles of the same color will touch (even at a corner). Surprisingly, we
could not find any reference to this natural question. As we show in Section 3, there can be
no such colored tiling with d colors, and as we show in Section 5.3, d + 1 colors are sufficient.
Consequently, log2(d + 1) bits of side information about X1 are necessary and sufficient (in
the worst case) to obtain a consistent rounding scheme with positive error resilience. To
prove the negative result, we use techniques borrowed from algebraic topology (namely, either
a generalization of Sperner’s lemma or the Čech cohomology and other cohomology theories),
and to prove the positive result we provide an explicit construction of such a colored tiling.
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4:4 Error Resilient Space Partitioning

Table 1 Summary of our lower and upper bounds on the error resilience, for different d and k.

Scenario Lower Bound Upper Bound Techniques Source
(LB) on ER (UB) on ER

3 colors 0.354 0.413 Brunn-Minkowski ineq. (UB), Sec. 4.1 (UB),
in R2 Brick wall tiling (LB) Sec. 5.1.1 (LB)

4 colors 0.5 0.564 Brunn-Minkowski ineq. (UB), Sec. 4.1 (UB),
in R2 Brick wall tiling (LB) Sec. 5.1.1 (LB)

k colors 0.537
√

k − O(1) 0.537
√

k Circle packing (UB), Sec. 4.2 (UB),
in R2 HCR tiling (LB) Sec. 5.2.1 (LB)

4 colors 0.25 0.365 Brunn-Minkowski ineq. (UB), Sec. 4.1 (UB),
in R3 3-dim Brick wall (LB) Sec. 5.1.2 (LB)

k colors (0.561 − o(1))k1/3 0.561k1/3 Sphere packing (UB), Sec. 4.2 (UB),
in R3 CPB tiling (LB) Sec. 5.2.2 (LB)

k colors (0.707 − o(1))k1/8 0.707k1/8 Sphere packing (UB), Sec. 4.2 (UB),
in R8 CPB tiling (LB) Sec. 5.2.2 (LB)

k colors (1 − o(1))k1/24 k1/24 Sphere packing (UB), Sec. 4.2 (UB),
in R24 CPB tiling (LB) Sec. 5.2.2 (LB)

d + 1 colors Ω(1/d) O(log d/
√

d) Brunn-Minkowski ineq. (UB), Sec. 4.1 (UB),
in Rd Dimension reducing tiling (LB) Sec. 5.3 (LB)

ER – error resilience, LB – lower bound, UB – upper bound,
HCR – honeycomb of rectangles, CPB – close packing of boxes

In addition to minimizing the amount of side information, we study the question of
maximizing the error resilience for a given d and k. In the negative direction, in Section 4
we obtain several upper bounds on the achievable error resilience, using different techniques
from geometry and analysis (including isoperimetry, the Brunn-Minkowski inequality and
results on the sphere packing problem). In the positive direction, we construct in Section 5
a variety of tiling schemes. In particular, while for d = 2 and k = 3 the hexagonal tiling
scheme described above is resilient to additive errors of up to 0.31, we present a tiling with
resilience of 0.354, and show that no 3-color tiling can have resilience higher than 0.413. We
also show that the maximal resilience achieved by a (d + 1)-coloring of Rd is between Ω(1/d)
and O(log d/

√
d), and use the recent breakthrough results on sphere packing [6, 18, 25] to

obtain tight asymptotic lower and upper bounds on the resilience in dimensions 2, 3, 8, and
24. Our bounds are summarized in Table 1.

Applications. The problem of “continuous error correction over the reals” has numerous
applications. For example, in biometric identification, multiple measurements of the same
fingerprint are similar but not identical. It would be very helpful if all these slight variants
could be represented by the same rounded point P , and we can achieve this by storing a
small amount of side information in the biometric database during the initial registration of
a new employee.

Another example is the problem of developing a contact tracing app for the COVID-19
pandemic, where we want to record all the cases in which two smart phones were at roughly
the same place at roughly the same time. We can do this by measuring in each phone the
GPS location, the local time, and perhaps other parameters such as the ambient noise level
(in order to rule out the case of people living in different apartments which are separated by
a common wall). When someone tests positive for COVID-19, the health authority wants



O. Dunkelman, Z. Geyzel, C. Keller, N. Keller, E. Ronen, A. Shamir, and R. J. Tessler 4:5

to reveal a list of his measurements, but in order to keep the patient’s privacy, it wants to
cryptographically hash each measurement before publishing it. Since the measurements are
likely to be slightly different for the infected and exposed persons, the health authority can
publish the small amount of side information along with the consistently rounded and then
hashed measurements.

Finally, the problem may also be relevant to the construction of quantum error correction
codes, since the state of a quantum computer is a complex-valued vector in a Hilbert space
with exponentially many dimensions which can be perturbed by external noise. Note that the
logarithmic number of side information bits we need for error correction can be stored and
processed classically. However, describing such potential applications is beyond the scope of
this paper.

Related work. A line of study that seems related to our work is fuzzy constructions that
were widely studied in the cryptographic literature, such as the fuzzy commitment scheme of
Juels and Wattenberg [20]). Dodis et al. [12] introduced the notions of fuzzy extractors and
secure sketches, which enable two parties to secretly reach a consensus value from multiple
noisy measurements of some high entropy source (a recent survey of such techniques can be
found in [14]). However, such schemes concentrate on the aspects of cryptographic security
(which we do not consider), and produce sketches whose size depends on the number of
possible inputs (which is meaningless for real valued inputs). In this sense our consistent
rounding scheme can be viewed as an exceptionally efficient reconciliation process, since it
can produce for each million entry vector of arbitrarily large real numbers a 20 bit “sketch”
(in the form of its color side information), and process this information with trivial point
location algorithms.

Open problems. While we fully solved the question of minimizing the amount of side
information required for error resilience, several questions remain open regarding the maximal
resilience rate that can be achieved for a given amount of side information. In particular,
for dimensions 2, 3, 8, 24 we determined the exact asymptotic resilience when log2 k bits of
information are allowed, using a connection to the densest sphere packing problem. When
only very few bits of information are allowed, the situation is much less clear. For example,
we do not even know whether the brick wall constructions we present in Section 5.1.1 have
the highest error resilience among rounding schemes in R2 with log2 3 and log2 4 bits of side
information. It will be interesting to obtain new upper bounds via different techniques or
new lower bound constructions.

2 Our Setting

In this section we present the basic setting that will be assumed throughout the paper.

Colored tiling. We study tilings of Rd, where each tile is connected, closed and bounded,
and the tiles intersect only in their boundaries. In some of the results we make additional
assumptions on the tiles or drop some of the assumptions; such changes are stated explicitly.
Each tile is colored in one of k colors.

Error resilience and inflation. In order to compute the error resilience of a given tiling
(with respect to the L2 distance), we consider all tiles of the same color and inflate them (i.e.,
replace the tile T by the set T ′ = {y : ∃x ∈ T, |x − y| < r} for some r > 0) until they touch
each other. Clearly, the error resilience is the maximal r for which such a non-intersecting
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4:6 Error Resilient Space Partitioning

inflation is possible. We note that in convex geometry, such an inflation T ′ is called the
outer parallel body of radius r of T (see [15, p. 943]). The minimal distance between two
same-colored points in different tiles is denoted by t, and so, the error resilience is t/2.

Breaking ties. A fine point about consistent rounding schemes is how to break ties, and
here we deal differently with X1 and X2. We want to be able to deal with any X1, and
thus we think about the tiles as being closed sets which include their boundaries. Therefore,
points X1 which are on the boundary between tiles can have more than one possible color.
We allow such ties to be broken arbitrarily in the sense that X1 can be rounded to the center
of any one of the tiles that it belong to. However, when we think about X2 we allow it to be
at a distance of strictly less than some bound, and thus the inflated tiles (that contain all the
possible X2’s we are interested in) are open sets which have no intersections. Consequently,
each X2 can belong to at most one inflated tile, and is rounded to the center of that tile with
no possible ties.

Normalization. The d-dimensional volume of a figure T ⊂ Rd is denoted by λ(T ). We
normalize the tiling by assuming that the volume of each tile is bounded by 1 (like in the
1-dimensional case presented in the introduction, where all tiles are segments of length 1).
We make the natural assumption that any inflated tile T ′ satisfies λ(T̄ ′) = λ(T ′), where T̄ ′

is the topological closure of T ′. Normalization with respect to other natural metrics, as well
as alternative distance metrics, are discussed in the full version of the paper.

3 The Minimal Number of Colors Required for Error Resilience

In this section we prove that the minimal number of colors required for achieving any positive
error resilience in a tiling of Rd is d + 1. We provide two proofs, under different additional
natural assumptions on the tiles. The first assumes that all tiles are uniformly bounded
and relies on a generalization of Sperner’s lemma. The second proof assumes that the
tiles and their non-empty intersections are contractible (while not having to be uniformly
bounded) and uses a more advanced algebraic-topologic argument. The lower bound d + 1
on the number of required colors is tight; a matching construction for any d is presented in
Section 5.3.

3.1 Lower bound for bounded tiles, using Sperner’s Lemma

The main result of this subsection is the following.

▶ Proposition 1. For any m > 0, the following holds. Let T1, T2, . . . be a colored tiling of
Rd in d + 1 colors, in which each tile is contained in a box with side length m. If the error
resilience of the tiling is δ > 0, then there exist tiles in all d + 1 colors that intersect at a
point.
Consequently, any tiling with positive error resilience uses at least d + 1 colors.

We use a generalization of the classical Sperner’s lemma [24], called Bapat’s connector-free
lemma. As Bapat’s lemma was originally proved only in R2 and in a discrete setting, we first
provide a proof of a continuous version in Rd, and then derive Proposition 1 from it.
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3.1.1 Bapat’s connector-free lemma – continuous version
Let ∆ be a d-simplex in a Euclidean space, i.e., the convex hull of d + 1 points x0, . . . , xd

which do not lie in a d-space. The i’th face of ∆ is the span of {xj}j ̸=i. A connector in a
d-simplex is a connected set which intersects all its (d − 1)-dimensional faces.

Bapat’s connector-free lemma asserts the following:

▶ Theorem 2. Let C0, . . . , Cd be a cover of a d-simplex ∆ by closed sets such that the
minimal distance between two connected components of the same set is δ > 0. Suppose that
the interiors of the sets are disjoint and that no Ci contains a connector. Then

⋂d
i=0 Ci ̸= ∅.

In order to prove the theorem we will reduce it to an analogous discrete claim. The reduction
is simple, but requires some more terminology.

A triangulation T of a simplex ∆ ⊂ Rd is a cover of it by simplices whose interiors are
disjoint, such that the intersection of any set of simplices is either empty or the convex hull
of some vertices. Note that the vertices of ∆ are, in particular, vertices of the triangulation,
and that the faces of ∆ are endowed by an induced triangulation. The diameter of T is
the supremum of distances between vertices which share an edge. The 1-skeleton of T is
the graph formed by the vertices and the edges. A discrete connector is a connected subset
of the 1-skeleton of T which contains vertices from each facet of ∆. We can now state the
discrete version of Theorem 2 (which is the actual statement proved by Bapat, for d = 2).

▶ Theorem 3 (Bapat). Suppose that the vertices of T are partitioned into disjoint sets
A0, A1, . . . , Ad such that no Ai contains a discrete connector. Then there exists a simplex in
T whose d + 1 vertices belong to different sets Ai.

Proof of Theorem 2, assuming Theorem 3. Assume towards contradiction that there exist
sets C0, . . . , Cd which cover ∆, such that no Ci contains a connector, but

⋂d
i=0 Ci = ∅. Define

the function f : C0 × C1 · · · × Cd → R+ by setting f(p0, . . . , pd) to be the diameter of the
convex hull of (p0, . . . , pd), which is the maximal distance between two pi’s. The domain of
the function f compact (here we use the assumption that the minimal distance between two
connected components of the same Ci is at least δ) and its range is R+ (since we assumed⋂d

i=0 Ci = ∅). Hence, f attains a minimum ϵ > 0.
Let η = min(δ, ϵ)/3. Let C̃i be the η-thickening of Ci in ∆, i.e., C̃i = {p ∈

∆ : dist(p, Ci) < η}. Then C̃i is an open cover of ∆. By the choice of η, neither C̃i

contains a connector,2 and
⋂

i∈{0,...,d} C̃i = ∅.
Let T be a triangulation of ∆ whose diameter is less than η and all whose vertices lie in

the interiors of the sets Ci. (Clearly, such a triangulation exists.) Define Ai as the subset of
vertices which lie in int(Ci). These sets are well defined since the interiors of the different
Ci’s are disjoint. Since the triangulation is of diameter less than η, each edge between two
vertices which belong to the same Ai lies in C̃i. Indeed, its endpoints are in Ci and any
point on the edge is of distance less than η to any endpoint, hence it is in C̃i. Thus, since C̃i

contains no connector, Ai contains no discrete connector.
We can now apply Theorem 3 to deduce that there exists a simplex t = {v0, . . . , vd} ∈ T

such that ∀i : vi ∈ Ai. But since vi ∈ Ci for all i, this implies f(v0, . . . , vd) < η < ϵ, a
contradiction to the definition of ϵ. This completes the proof. ◀

2 To be precise, this relies on the slightly stronger assumption that each connected component of Ci is
at least δ-far from one of the facets of ∆. While this extra assumption can be avoided in the proof, it
clearly holds in our setting so we make it for simplicity.
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4:8 Error Resilient Space Partitioning

To prove Theorem 3, we use the classical Sperner’s lemma [24]. To present it, a few more
definitions are due.

A (d+1)-labelling of a triangulation T is of the simplex ∆ = conv(e0, . . . , ed) is a function
ℓ : V (T ) → {0, 1, . . . , d}, that is, an assignment of one of d + 1 colors to each vertex of the
triangulation. A (d + 1)-labelling ℓ is called proper if ℓ(ei) = i, and for each v ∈ T that
belongs to a lower-dimensional face conv(ei1 , . . . , eir

), we have ℓ(v) ∈ {i1, . . . , ir}.

▶ Theorem 4 (Sperner’s lemma). For any triangulation T of ∆, any proper labelling of T

contains a simplex all whose vertices have different labels.

Proof of Theorem 3. We define, using the sets A0, . . . , Ad, a proper labelling ℓ of T. For
any j and any v ∈ Aj , ℓ(v) is defined as the minimal i ∈ {0, . . . , d} such that the connected
component of v in Aj does not intersect the i’th face of ∆. Note that ℓ is well-defined, since
each v belongs to a single Aj and no Aj contains a connector. Clearly, ℓ(v) ̸= i, whenever v

belongs to the i’th face of ∆. Furthermore, this implies that if v ∈ conv(ei1 , . . . , eir
), then

ℓ(v) ∈ {i1, . . . , ir} (as all other colors are forbidden). Hence, ℓ is proper.
By Sperner’s lemma, applied to the labelling ℓ, there exists a simplex {v0, . . . , vd} ∈ T

all whose vertices have different labels. Assume w.l.o.g. that ℓ(vi) = i. We want to show
that each vi belongs to a different Aj , which will complete the proof. Assume towards
contradiction vi, vk ∈ Aj for i ̸= k. On the one hand, ℓ(vi) = i ̸= k = ℓ(vk). On the other
hand, vi, vk belong to the same connected component in Aj , hence, by the definition of ℓ

they must map to the same value. A contradiction, and Theorem 3 follows. ◀

3.1.2 Proof of Proposition 1
We are now ready to prove Proposition 1.

Let T1, T2, . . . be a tiling of Rd that satisfies the assumptions of the proposition. Consider
the restriction of the tiling to a large simplex ∆ (say, of side length 100m).

For i = 0, . . . , d, denote by Ci ⊂ ∆ the union of all tiles colored i, restricted to ∆. Clearly,
Ci is a closed set and the distance between any two connected components of Ci is at least 2δ.
(Indeed, each tile is connected, and as the error resilience of the tiling is δ, the distance
betwen two same-colored tiles is at least 2δ).

We claim that no Ci contains a connector. Indeed, a connector cannot include points from
different tiles. A single tile is included in a box with side length m, and thus, cannot touch
all facets of a simplex with side length 100m. Hence, there is no single-colored connector.

Therefore, we can apply Theorem 2 to deduce that
⋂d

i=0 Ci ≠ ∅, which is exactly the
assertion of Proposition 1.

3.2 Lower bound for contractible tiles, using Čech cohomology
Recall that a set in Rd is called contractible if it can be continuously shrunk to a point within
the set. (The formal definition is that the identity is homotopic to a constant map.)

Informally, in this section we prove that if the tiles and their non-empty intersections are
finite unions of contractible sets (that do not have to be uniformly bounded), then at least
d + 1 colors are required for error resilience. We note that the proof uses a somewhat heavier
algebraic-topologic machinery, and so, a reader might prefer to skip it in first reading.
Due to the possibility of pathologies, the formal statement is a bit more cumbersome:

▶ Proposition 5. Let T1, T2, . . . be a colored tiling of Rd with positive error resilience, in
which the tiles and all their non-empty intersections are disjoint unions of finitely many
closed contractible sets. Assume that the tiling is locally finite (meaning that the number
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of tiles that intersect any bounded ball B(0, r) is finite) and that all Ti’s are bounded (not
necessarily uniformly). In addition, assume that each Ti has an open neighborhood Ui such
that for any I,⋂

i∈I

Ui ̸= ∅ ⇔
⋂
i∈I

Ti ̸= ∅,

and the Ui’s and their non-empty intersections are disjoint unions of finitely many contract-
ibles. Then the number of colors is at least d + 1.

A similar method proves an analogous statement for colored tilings of the sphere Sd (i.e.,
the unit sphere in Rd+1):

▶ Proposition 6. Let T1, T2, . . . , TN be a colored tiling of Sd with positive error resilience,
in which the tiles and all their non-empty intersections are disjoint unions of finitely many
closed contractible sets. Assume that each Ti has an open neighborhood Ui such that for any
set of indices I,⋂

i∈I

Ui ̸= ∅ ⇔
⋂
i∈I

Ti ̸= ∅,

and the Ui’s and their non-empty intersections are disjoint unions of finitely many contract-
ibles. Then the number of colors is at least d + 1.

▶ Remark 7. We stress that for most natural tilings the additional assumption on the
existence of the neighborhoods Ui follows from the existence of Ti’s with the corresponding
properties. However, there are topological pathologies in which this is not the case.
The proof of Propositions 5 and 6 uses the notion of Čech cohomology and classical results
regarding its properties. For the ease of reading, we begin with an intuitive explanation of
the proof ideas, and then present the formal proof.

Intuitive proof. The d’th (singular) cohomology group is a topological invariant of a manifold
which roughly counts “non trivial holes” of dimension d. A classical result asserts that the
d’th cohomology group of a d-dimensional compact oriented manifold like Sd is R. (This
corresponds to the intuitive understanding that Sd has one d-dimensional hole.) The de-Rham
cohomology and the Čech cohomology are analytic and algebro-geometric/combinatorial
invariants, that in many cases agree with their topological cousin. In particular, the d’th
de-Rham and Čech cohomologies of Sd are equal to R as well.

The d’th Čech cohomology with respect to an open cover of the manifold depends on
properties of intersections of d + 1 sets in that cover. In general, it depends on the sets which
form the cover, however, it is known that if these sets and their non-empty intersections
are finite disjoint unions of contractibles, then the cohomology groups remain the same,
independently of the cover. In particular, if the d’th Čech cohomology with respect to such a
cover is non trivial, then there must be d + 1 sets with a non-empty intersection.

Hence, for our cover U1, U2, . . ., we know that its d’th Čech cohomology is R. This readily
completes the proof of the proposition for Sd, as this implies that there must be a point that
belongs to at least d + 1 of the Ui’s. The proof in Rd works in essentially the same way, with
cohomology groups replaced by cohomology groups with compact support.

Formal proof. For the proof we recall the notion of Čech cohomology with values in the
constant sheaf R, and describe the slightly less standard concept of Čech cohomology with
compact support.
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Definitions. Let S be either Rd or a compact manifold such as Sd. Let U = {U1, U2, . . .}
be an open cover of S. If S is compact, we assume the collection to be finite. If S is Rd, we
assume it to be locally finite and assume in addition that each Ui is bounded.

A q−simplex σ = (Ui0 , . . . , Uiq ) of U is an ordered collection of q + 1 different sets chosen
from U , such that

q⋂
k=0

Uik
̸= ∅.

For a q−simplex σ = (Uik
)k∈{0,...,q}, the j’th partial boundary is the (q − 1)-simplex

∂jσ := (Uik
)k∈{0,...,q}\{j},

obtained by removing the j’th set from σ.
A q−cochain of U is a function which associates to any q−simplex a real number. The
q−cochains form a vector space denoted by Cq(U ,R), with operations

(λf +µg)(σ) = λf(σ)+µg(σ), where λ, µ ∈ R, f, g ∈ Cq(U ,R), σ is a q−simplex.

Similarly, we define Cq
c (U ,R), as the vector space of q−cochains with compact support,

meaning those cochains which assign 0 to all q−simplices, except for finitely many.
There is a differential map δq : Cq(U ,R) → Cq+1(U ,R) whose application to f ∈ Cq(U ,R)
is the (q + 1)−cochain δq(f) whose value at a (q + 1)−simplex σ is

(δqf)(σ) =
q+1∑
j=0

(−1)jf(∂jσ).

The restriction of δq to Cq
c (U ,R) maps it to Cq+1

c (U ,R).
It can be easily seen that δq+1 ◦ δq = 0.
The q’th Čech cohomology group (with compact support) of S with respect to the cover U
and values in R is

Ȟq(U ,R) := Ker(δq)/Image(δq−1),

Ȟq
c (U ,R) := Ker(δq|Cq

c (U ,R))/Image(δq−1|Cq−1
c (U ,R)).

A cover (by open sets) is good if all its sets as well as their multiple intersections are
either empty or contractible. It is almost good if all non empty intersections are unions of
finitely many disjoint contractible components.

Classical results we use. The first result we use is the following:

▶ Theorem 8. If S is a compact smooth orientable manifold (such as Sd), and U is a good
or an almost good finite cover, then

Ȟi(U ,R) ≃ Hi
dR(S),

where the right hand side is the standard de-Rham cohomology group.
Similarly, if S = Rd and U is a locally finite good or almost good cover whose sets are bounded,
then

Ȟi
c(U ,R) ≃ Hi

dR,c(S),

where the right hand side is the i’th de-Rham cohomology group with compact support.
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For further reading about de-Rham cohomology, with or without compact support, we
refer the reader to [4, Sec. 1]. For further reading about the Čech cohomology, we refer to [4,
Sec. 8]. In particular, Theorem 8, for the compact case and good covers is Theorem 8.9 there.
The passage to almost good covers is straightforward: In the paragraph which precedes the
proof, it is explained that the obstructions to the isomorphism between Čech and de-Rham
cohomologies are given by products of the i’th de-Rham cohomology groups, for i ≥ 1, of the
different intersections

⋂q
k=0 Uik

. Since those intersections are disjoint unions of contractibles,
their higher cohomology groups vanish, hence there is no obstruction to the isomorphism.

Regarding the case S = Rd, the proof in [4, Sec. 8] requires a few small changes: In
the statement of Proposition 8.5 there, one needs to replace the de-Rham complex of the
manifold with the de-Rham complex with compact support, and the direct product with
direct sum. The maps r, δ which appear there will still be well defined by our local finiteness
assumption on the cover, and the assumption that Ui’s are bounded. The proof requires
no change. Then, the double complex in the definition of Proposition 8.8 should also be
defined using direct sum rather than direct product, but again there is no change in the
proof. Given these changes in definitions, the proof of Theorem 8.9 (also for the almost good
case) is unchanged.

The second standard result, which is a consequence of Poincaré duality, is the following:

▶ Theorem 9. For a compact smooth oriented manifold S of dimension d (such as Sd),

Hd
dR(S) ≃ R.

Similarly, for S = Rd, we have Hd
dR,c(Rd) ≃ R.

See, for example, [4, Sec. 7] for the compact case, and [4, Sec. 4] for Rd.

Theorems 8 and 9 yield:

▶ Corollary 10. If S is a compact smooth orientable manifold (such as Sd), and U is a good
or an almost good finite cover, then

Ȟd(U ,R) = R.

Similarly, if S = Rd and U is a locally finite good or almost good cover whose sets are bounded,
then Ȟd

c (U ,R) = R.

Proof of Propositions 5 and 6. We show that there must exist d + 1 Ti’s whose intersection
is non-empty. This clearly implies that for achieving any positive error resilience, at least
d + 1 colors are needed.

Assume on the contrary that any (d + 1)-intersection of the Ti’s is empty. Let Ui be as
in the statement of the Propositions. Then by definition, they form an almost good cover.
All intersections of at least d + 1 Ui’s are empty by our assumptions. Therefore, there are
no d−simplices, and so Cd(U ,R) = 0. Thus, in the compact case, Ȟd(U ,R) = 0. But on the
other hand, by Corollary 10,

Ȟd(U ,R) ≃ R,

a contradiction. For Rd the same argument works, with Ȟd
c (U ,R) in place of Ȟd(U ,R).
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4 Upper Bounds on the Error Resilience

In this section we consider tilings of Rd by tiles T1, T2, . . . of volume at most 1. Each point
in Rd is colored in one of k ≥ d + 1 colors, and our goal is to maximize the minimal distance
t between two points of the same color that belong to different tiles. (The maximum is taken
over all possible tilings that satisfy the mild regularity conditions stated in Section 2 and
over all possible colorings.) Clearly, the error resilience of a rounding scheme based on such
a colored tiling is t/2.

We present two upper bounds on t, using the Brunn-Minkowski inequality and results on
sphere packing. Another bound, using the Minkowski-Steiner formula, is presented in the
full version of the paper (see [13]).

The basic idea behind our upper bound proofs is as follows. Assume we have a colored
tiling of Rd, with minimal distance t. Pick a single color – say, black – and consider all black
tiles inside a large cube S. We obtain a new collection of tiles T ′

1, T ′
2, . . . , T ′

m that covers
part of S. The assumption that the minimal distance between two same-colored points in
different tiles is t implies that if we inflate each black tile T ′

i into its open parallel outer body
of radius t/2,

T ′′
i = {x : ∃y ∈ T ′

i , |x − y| < t/2}, (1)

then the inflations T ′′
i are pairwise disjoint. Hence, the sum of their volumes essentially

cannot exceed the volume of the large cube, and this allows bounding t from above.

4.1 An upper bound using the Brunn-Minkowski inequality
The inflations T ′′

i can be represented in terms of the Minkowski sum of sets in Rd.

▶ Definition 11. For A, B ⊂ Rd, the Minkowski sum of A, B is A+B = {a+b : a ∈ A, b ∈ B}.

In terms of this definition, we have

T ′′
i = T ′

i + B(0, t/2), (2)

where B(0, t/2) is an open ball of radius t/2 around the origin. This allows us to lower bound
the volume of each T ′′

i , using the classical Brunn-Minkowski (BM) inequality (see, e.g., [5]).
Recall the inequality asserts the following.

▶ Theorem 12 (Brunn-Minkowski). Let A, B be compact sets in Rd. Then

λ(A + B)1/d ≥ λ(A)1/d + λ(B)1/d,

where λ(X) is the volume of X (formally, the d-dimensional Lebesgue measure of X).

▶ Proposition 13. Let T1, T2, . . . be a k-colored tiling of Rd, with tiles of volume ≤ 1 and
minimal distance t. Then

t ≤
(

2Γ(d/2 + 1)1/d

√
π

)
· (k1/d − 1),

where Γ(·) is the Gamma function.
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Proof. Consider a cube S such that λ(S) = nd (for some “large” n). By the pigeonhole
principle, there exists a color (say, black) that covers at least nd/k of the volume of S. Look
at the black tiles whose intersection with S is non-empty, and denote their intersections
with S by T ′

1, T ′
2, . . . , T ′

m. Hence, we have m “black” subsets of S, each of volume at most 1,
whose total volume is at least nd/k.

For each T ′
i , define T ′′

i = T ′
i + B(0, t/2). By assumption, the regions T ′′

i are disjoint.
Furthermore, they are included in S + B(0, t/2) whose volume is less than (n + t)d. Hence,∑

i

λ(T ′′
i ) ≤ (n + t)d. (3)

By the Brunn-Minkowski inequality, we have

∀i : λ(T ′′
i )1/d ≥ λ(T ′

i )1/d + (bt/2)1/d,

where bt/2 is the volume of the d-dimensional ball B(0, t/2). Thus,

∀i : λ(T ′′
i ) ≥

d∑
j=0

(
d

j

)
λ(T ′

i )j/d(bt/2)1−j/d.

Summing over i and using (3), we get

(n + t)d ≥
m∑

i=1

d∑
j=0

(
d

j

)
λ(T ′

i )j/d(bt/2)1−j/d. (4)

As 0 ≤ λ(T ′
i ) ≤ 1, for any 0 ≤ j ≤ d we have

∑
i λ(T ′

i )j/d ≥
∑

i λ(T ′
i ) ≥ nd/k, and hence we

obtain

(n + t)d ≥ nd

k
·
(

1 + b
1/d
t/2

)d

.

This implies

(1 + t

n
)k1/d − 1 ≥ b

1/d
t/2 = π1/2

Γ(d/2 + 1)1/d
· t

2 .

Letting n → ∞ and rearranging, we obtain

t ≤
(

2Γ(d/2 + 1)1/d

√
π

)
· (k1/d − 1),

as asserted. ◀

Asymptotic upper bound. For a large number k ≫ d of colors, Proposition 13 gives the
upper bound

t ≤ (
√

2
πe

+ od(1))
√

dk1/d,

as follows from (5). This bound is not far from being tight. Indeed, its dependence on k is
correct, as it can be easily matched by a periodic cubic tiling, in which each tile is a cube
with side length 1 and the basic unit is a large cube with side length k1/d that contains each
color in exactly one tile (in the same order). Moreover, even regarding the “coefficient” of
k1/d, the optimal asymptotic upper bounds for d = 3, 8, 24 which we obtain below via the
sphere packing problem, improve over this bound by only a small factor.
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Upper bound for k = d + 1 colors. To estimate the upper bound we obtain in this case,
note that

(d + 1)1/d − 1 = (1 + od(1)) ln(d)
d

, and Γ(d/2 + 1)1/d =
(

1√
2e

+ od(1)
)√

d. (5)

Therefore, the bound we obtain in this case is

t ≤

(√
2

πe
+ od(1)

)
ln d√

d
,

which implies that the error resilience decreases to zero as d tends to infinity. For comparison,
the lower bound we obtain in Section 5.3 is t ≥ Ω(1/d).

Upper bounds for small values of d, k. For d = 3, k = 4, the bound is

t ≤ 2Γ(2.5)1/3
√

π
· (41/3 − 1) ≈ 0.729.

For d = 2 and k = 3, 4, the upper bounds we obtain are t ≤ 0.826 and t ≤ 1.128, respectively.
For comparison, the best constructions we have in these settings satisfy t = 0.5, t = 1/

√
2,

and t = 1, respectively.

Discussion. The upper bound given by Proposition 13 is loose in two ways. One source of
loss is the application of the Brunn-Minkowski inequality. Here, the inequality is tight if the
tiles are balls, and the farther they are from balls, the larger is the loss. Another source of
loss is the space left between the inflations, that is not taken into account in the proof.

Interestingly, there is a dichotomy between these two sources of loss. As follows from
the sphere packing problem, when the tiles are balls (and so, there is no loss in the BM
inequality), the space between the inflations (and so, the loss of the second type) is relatively
large. The space between the inflations can be made smaller if the tiles are taken to be
polytopes with a few vertices. However, this comes at the expense of increased loss in the
BM inequality, as is demonstrated in the full version of the paper.

Optimality of our 1-dimensional rounding scheme. The argument described above gives
an easy proof of the optimality of the 1-dimensional rounding scheme presented in the
introduction. Indeed, consider a 2-colored tiling of the line and look at the segment I = [−n, n]
for some large n. By the pigeonhole principle, we may assume that black tiles cover at least
half of I. By the 1-dimensional Brunn-Minkowski inequality, for each black tile T ′

i ⊂ I

and the corresponding inflation T ′′
i = T ′

i + (−t/2, t/2), we have λ(T ′′
i ) ≥ λ(T ′

i ) + t. As
∀i : λ(T ′

i ) ≤ 1, there are at least n tiles. Since the T ′′
i ’s are pairwise disjoint and included in

[−n − 1, n + 1], we obtain

2n + 2 ≥
∑

i

λ(T ′′
i ) ≥

∑
i

λ(T ′
i ) +

∑
i

t ≥ n + nt,

and thus, t ≤ (n + 2)/n. By letting n tend to infinity, we obtain t ≤ 1, implying that the
error resilience of any two-colored tiling of the line is at most 1/2.
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4.2 An upper bound using the Sphere Packing problem
Our second upper bound uses reduction to the classical sphere packing problem, which asks
for the maximal possible density of a set of non-intersecting congruent spheres in Rd.

▶ Definition 14. The density of a sphere packing (i.e., collection of pairwise disjoint congruent
spheres) P = ∪Pi in Rd is

lim sup
r→∞

λ (B(0, r) ∩
⋃

P )
λ(B(0, r)) .

Intuitively, this measures the fraction of the volume of a large ball covered by the packing.

▶ Notation 15. Denote the maximal density of a sphere packing in Rd by δd, and the volume
of the unit ball B(0, 1) ⊂ Rd by vd = πd/2/Γ(d/2 + 1).

▶ Proposition 16. Let T1, T2, . . . be a tiling of Rd in k colors, with tiles of volume ≤ 1 and
minimal distance t. Then

t ≤
(

2(δd/vd)1/d
)

· k1/d =
(

2Γ(d/2 + 1)1/d · δ
1/d
d√

π

)
· k1/d.

Note that the asymptotic upper bound of Proposition 16 is stronger than the asymptotic
upper bound that follows from Proposition 13 by the constant factor (δd)1/d. For small
values of k, the upper bound given by Proposition 13 is stronger.

Proof. Let T be a k-colored tiling of Rd that satisfies the assumptions of the proposition,
and consider the sequence of balls {B(0, n)}n=1,2,3,.... By the pigeonhole principle, there
exists a color (say, black) such that for each nℓ in an infinite subsequence {nℓ}ℓ=1,2,..., the
intersection of the black tiles with the ball B(0, nℓ) has volume of at least

λ(B(0, nℓ))/k = nd
ℓ · vd

k
.

As the volume of each tile is at most 1, we know that for each nℓ, the number of black tiles
that intersect B(0, nℓ) is at least nd

ℓ vd/k.
Pick some value nℓ, denote the intersections of black tiles with B(0, nℓ) by T ′

1, T ′
2, . . ., and

take one point xi from each tile T ′
i . As the minimal distance between two black points in

different tiles is t, balls of radius t/2 around the points xi are pairwise disjoint. Hence, their
total volume is at least

nd
ℓ · vd

k
· (t/2)d · vd.

On the other hand, each such ball is contained in the ball B(0, (nℓ + t)) (since its radius is
t/2, and it contains a point in B(0, nℓ)). This implies that for any ϵ > 0 and for a sufficiently
large ℓ = ℓ(ϵ), the total volume of these balls must be smaller than (1 + ϵ)δd · λ(B(0, nℓ + t)),
as otherwise, the infinite collection of the balls B(xi, t/2) (where for each ball B(0, nℓ) we
select xi’s in the way described above, respecting the xi’s selected for smaller values of nℓ)
would be a sphere packing of Rd whose density is larger than δd. Therefore, for a sufficiently
large nℓ, we have

nd
ℓ · vd

k
· (t/2)d · vd ≤ (1 + ϵ)(1 + t

nℓ
)dδd · nd

ℓ vd,

and letting ϵ → 0 and nℓ → ∞, we obtain t ≤ 2(δd/vd)1/d · k1/d, as asserted. ◀
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Discussion. In the two last decades, there has been a tremendous progress in the research
of the sphere packing problem. In 2005, Hales ([18], see also [17]) solved the problem for
d = 3, proving a 17’th century conjecture of Kepler. Three years ago, in a beautiful short
paper, Viazovska [25] solved the problem for d = 8, and shortly after, Cohn, Kumar, Miller,
Radchenko, and Viazovska [6] used Viazovska’s method along with other tools to solve the
problem for d = 24. For other dimensions, the problem is still open. We can use the results
of [6, 18, 25], along with the value of δ2 that was obtained already by Lagrange, to obtain
tight upper bounds on t in dimensions 2, 3, 8, and 24.

For d = 2, Lagrange (1773) showed that δ2 = π
2

√
3 ≈ 0.907. Hence, we obtain the bound

t ≤ 21/2

31/4 · k1/2 ≈ 1.074k1/2.
For d = 3, Hales [18, 17] showed that δ3 = π

3
√

2 ≈ 0.740. Hence, we obtain the bound
t ≤ 21/6 · k1/3 ≈ 1.122k1/3.
For d = 8, Viazovska [25] showed that δ8 = π4

244! ≈ 0.254. Hence, we obtain the bound
t ≤

√
2k1/8 ≈ 1.414k1/8.

For d = 24, Cohn et al. [6] showed that δ24 = π12

12! ≈ 0.0019. Hence, we obtain the bound
t ≤ 2k1/24.

As we show in Section 5, all these bounds are asymptotically tight.
Using the same method, we can leverage any upper bound for the sphere packing problem

(namely, upper bound on δd) into an upper bound on the error resilience of a rounding
scheme in the corresponding dimension. The best currently known bound on δd for a large
d is by Cohn and Zhao [7], who obtained a constant-factor improvement over the classical
Kabatiansky-Levenshtein [21] bound δd ≤ 2−(0.5990+o(1))d. A list of conjectured bounds for
d ≤ 10 can be found in [8].

5 Lower Bounds on the Error Resilience

In this section (like in Section 4), we consider tilings of Rd by tiles T1, T2, . . . of volume at
most 1. Each point in Rd is colored in one of k ≥ d + 1 colors, and our goal is to maximize
the minimal distance t between two points of the same color that belong to different tiles.

We obtain lower bounds on t for various values of d, k, by constructing explicit tilings.
First, we present brick-wall tilings, which provide lower bounds for small values of d, k. Then
we present tilings based on close sphere packing, which show the tightness of our asymptotic
bounds for d = 2, 3, 8, 24. Finally, we inductively construct a dimension-reducing tiling which
shows that for any dimension d, positive error resilience can be obtained with d + 1 colors.

5.1 Brick-wall tilings
We begin with a tiling of the plane, and then use it to construct a tiling of R3.

5.1.1 2-dimensional brick wall
In the 2-dimensional brick wall tiling with k colors, demonstrated in Figure 2, each tile is a
rectangle with side lengths

√
(k − 2)/2 and

√
2/(k − 2) (and so, the area of each tile is 1).

The tiling is periodic, where the basic unit is two rows of adjacent rectangles, colored in a
round robin fashion. For an even k, the second row is placed exactly below the first row, and
the sequence of colors is shifted by k/2. For an odd k, the second row is indented by half a
brick (making the tiling look like a brick wall), and the sequence is shifted by (k + 1)/2.
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1 2 3 1

3 1 2 3

1 2 3 1

3 1 2 3

k = 3

1 2 3 4

3 4 1 2

1 2 3 4

3 4 1 2

k = 4

1 2 3 4 5 1

4 5 1 2 3

1 2 3 4 5 1

k = 5

Figure 2 The 2-dimensional brick wall tiling for k = 3, 4, 5 colors. The ratio between the width
and the height of each tile is 2 : k − 2.
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Figure 3 The 3-dimensional brick wall tiling.

It is easy to see that the minimal distance between two same-colored points in different
tiles is

√
(k − 2)/2. (This distance is attained both in the vertical and in the horizontal

directions. Having the same minimal distance in both directions is the optimization that
dictates the side lengths of the bricks.) In particular, we obtain the lower bounds t ≥ 1/

√
2

for 3 colors, t ≥ 1 for 4 colors, and t ≥
√

3/2 for 5 colors.

5.1.2 3-dimensional brick wall
The 3-dimensional brick wall (3BW) tiling, demonstrated in Figure 3, is a periodic tiling of
R3, colored in 4 colors. In order to present the tiling, we need an auxiliary notation.

Notation. Consider the slab D = R × R × [z1, z2] ⊂ R3. We say that a tiling T1, T2, . . .

of D is a fattened plane tiling if there exists a tiling T ′
1, T ′

2, . . . of the plane such that
∀i : Ti = T ′

i × [z1, z2].

The structure of 3BW. The 3BW tiling is periodic, where the basic unit consists of two
brick wall layers, placed one on top of the other in the way presented in Figure 3. Each brick
wall layer is a fattening of a brick wall tiling of the plane. The underlying plane tiling is a
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1 2 3 4 1 2 3 4

15 16 13 14 15 16 13 14

11 12 9 10 11 12 9 10

7 8 5 6 7 8 5 6

3 4 1 2 3 4 1 2

13 14 15 16 13 14 15 16

9 10 11 12 9 10 11 12

5 6 7 8 5 6 7 8

1 2 3 4 1 2 3 4

15 16 13 14 15 16 13 14

Figure 4 The honeycomb of rectangles tiling for d = 2 and k = 16 colors. The boundaries of
the basic “large rectangles” are depicted in bold. The placement of the tiles in each single color
corresponds to the honeycomb lattice.

periodic tiling, in which the basic unit consists of four columns of adjacent rectangles, where
the even columns are indented by half a brick, making the tiling look like a brick wall. In
the lower layer, in odd columns, the colors 1,2 are used alternately, and in even columns, the
colors 3,4 are used alternately. Furthermore, the colors in the third and fourth columns are
shifted by one, see Figure 3. In the upper layer columns are replaced by rows. Note that
once the layers are placed, the coloring of one layer fully determines the coloring of the other.

Analysis given in the full version of the paper shows that by taking a = 1 and fixing the
height of each layer to be 1/2, we obtain t = 1/2, and thus, error resilience of 0.25.

5.2 Tilings based on close sphere packing
We present the tiling in the case of R2, where it is easier to describe and analyze, and then
we generalize it to higher dimensions.

5.2.1 Honeycomb of rectangles
In the honeycomb of rectangles tiling of the plane with k = m2 colors, each tile is a rectangle
with side lengths a and 1/a, where

a =
(

m2 − 2m + 1
3
4 m2 − m

)1/4

≥
(

4
3 − 8

3m

)1/4
. (6)

The tiling is periodic, where the basic unit is composed as follows. First, we construct a
basic “large rectangle”, which is an m-by-m square block of tiles, using all the k = m2 colors
(in arbitrary order). Then, the basic unit of the tiling is two “fat rows” of adjacent large
rectangles, where the second row is indented by half a large rectangle. The coloring of each
large rectangle is the same. The tiling, for k = 16, is demonstrated in Figure 4. Note that
the tiles colored in some single color form the shape of a honeycomb lattice (including the
centers of the hexagons). This is why we call the tiling “honeycomb of rectangles”.
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It is easy to see that the minimal horizontal and diagonal distances between two same-
colored tiles are

(m − 1)a and

√(
m − 1

a

)2
+
((m

2 − 1
)

a
)2

,

respectively. By choosing a such that the two distances are equal, we obtain (6), and the
asymptotic lower bound

t ≥
(

4
3 − 8

3m

)1/4
· (m − 1) ≥ (4/3)1/4 ·

√
k − O(1) ≈ 1.074

√
k − O(1),

that matches the upper bound obtained above up to an additive O(1) term.

5.2.2 Close packing of boxes
Motivation. This construction, a k-colored tiling of R3 where k ≫ 3, is a natural gen-
eralization to R3 of the “honeycomb of rectangles” tiling presented in Section 5.2.1. The
idea behind the construction is to choose an optimal sphere packing in R3, and construct a
fattened plane tiling in which the tiles in each color are placed at the centers of the spheres
of the packing. (Recall that as the number of colors is large, the size of each tile is negligible
with respect to the size of its inflation, and hence, we can treat the tiles as single points.)

We use the classical HCP lattice (one of the most common closed packings, see [9]), which
corresponds to a periodic sphere packing in which the basic unit is two hexagonal layers of
spheres, where in the top layer, each sphere is placed on top in the hollow between three
spheres in the bottom layer. The coordinates of the centers of these spheres are:

(r, r, r), (3r, r, r), (5r, r, r), . . . , (2r, r +
√

3r, r), (4r, r +
√

3r, r), (6r, r +
√

3r, r), . . .

for the bottom layer, and

(2r, r+
√

3
3 r, r+ 2

√
6

3 r), (4r, r+
√

3
3 r, r+ 2

√
6

3 r), . . . , (r, r+ 4
√

3
3 r, r+ 2

√
6

3 r), (3r, r+ 4
√

3
3 r, r+ 2

√
6

3 r), . . .

for the top layer.

The structure of the tiling. Assume that the number of colors is k = m3. Each tile is a
box with side lengths (a, b, c) to be determined below, and the basic unit is a “large box”,
which is an m × m × m cubic block of tiles, using all the k = m3 colors (in arbitrary order).
Then, the basic unit of the tiling is a two-layer fattened plane tiling, in which each layer
is a fattened copy of the “honeycomb of rectangles” tiling. The upper layer is shifted by
m
2 a in the x-coordinate and by

√
3m
6 a in the y-coordinate, so that the corners of the large

boxes lie in the coordinates of the sphere centers described above (for r = m
2 a). A quick

calculation shows that in order to make this possible, the proportion (a : b : c) should be
approximately (2 :

√
3 : 2

√
6/3) (where we neglect the size of each tile with respect to the

size of the inflation, which can be absorbed in an 1 − o(1) multiplicative factor in the final
value of t). The volume of each tile is clearly abc. In order to make the volumes of all tiles
equal to 1, we need

a ·
√

3
2 a ·

√
6

3 a = 1,

and thus, a = (6/
√

18)1/3 = 21/6 ≈ 1.122. Hence, the side lengths of each tile are

(21/6, 31/2/25/6, 22/3/31/2) ≈ (1.122, 0.972, 0.916),
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and the minimal distance between two same-colored points in different tiles is

(m − 1)a = (21/6 − o(1))k1/d,

which matches the upper bound proved in Section 4.1.

Generalization to higher dimensions. A similar tiling can be constructed to match any
lattice sphere packing, assuming the number of colors k is sufficiently large with respect to
d. Hence, any dense lattice sphere packing can be translated into a lower bound on the
asymptotic error resilience of rounding schemes in the corresponding dimension. In particular,
as the E8 lattice and the Leech lattice which attain the maximal possible density of sphere
packings in dimension 8 and 24 (respectively) are lattice packings, they can be translated to
box tilings showing that the asymptotic upper bounds on the error resilience in R8 and R24

proved in Section 4.1 are tight.

5.3 The dimension reducing tiling

We exemplify the tiling in R3, but it will be apparent how to generalize it to higher dimensions.

Informal description of the tiling. Informally, the tiling is constructed as follows.
Step 1: We begin with dividing R3 into basic cubes with side length a (to be determined

below), depicted in Figure 5(a). Then, we make the “interior” of each basic cube into a
tile and give all these tiles the color 1. In order to keep a minimal distance of t between
two points colored 1 in different tiles, we must leave a neighborhood of width t/2 in each
side of each facet of the basic cube. Hence, we are left with “fattened” walls of total
width t. The part of such a wall included in a basic cube is shown in Figure 5(b).

Step 2: We make the “interior” of each wall (i.e., fattened facet) into a tile and give all
these tiles the color 2, as is demonstrated in Figure 5(b). (Note that each tile contains
points from two adjacent basic cubes.) In order to keep a minimal distance of t between
two points colored 2 in different tiles, we must leave a neighborhood of t/

√
2 near each

edge (i.e., intersection of facets), as is shown in Figure 5(c). Hence, we are left with a
“fattened skeleton”.

Step 3: We make the “interior” of each edge of the skeleton into a tile and give all these
tiles the color 3, as is shown in Figure 5(d). (Note that each tile contains points from
four adjacent basic cubes.) In order to keep a minimal distance of t between two points
colored 3 in different tiles, we must leave an additional neighborhood of t/

√
2 near each

vertex (i.e., intersection of edges), as is demonstrated in Figure 5(d). Hence, we are left
with neighborhoods of the corners (a.k.a. vertices).

Step 4: We make the neighborhoods of the corners into tiles and give them the color 4.
(Note that each tile contains points from 8 adjacent basic cubes.) We have to make
sure that the distance between each two such “fattened corners” is at least t, and this
requirement dictates the choice of t.

The analysis of the tiling (including its formal definition and explanation of the choice of
parameters) is presented in the full version of the paper. It is clear that the resulting 4-colored
tiling can be generalized into a (d + 1)-colored tiling of Rd.
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(a)

t/2

t/2

(b)

t/2

t√
2

t√
2

t

90◦

(c)

t/2

t√
2

t√
2

t

90◦

(d)

Figure 5 The dimension reducing tiling. Part (a) shows the basic cubes we start with. Part (b)
shows a fattened wall of width t/2, and its interior that gets the color 2. Part (c) shows where
the minimal distance between two tiles colored 2 is attained. Part (d) presents (in full lines) the
interiors of the fattened edges that get the color 3 and shows where the minimal distance between
two such tiles is attained.
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Algebraic Proof Systems
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University of Toronto, Canada

Abstract
Given a set of polynomial equations over a field F , how hard is it to prove that they are simultaneously
unsolvable? In the last twenty years, algebraic proof systems for refuting such systems of equations
have been extensively studied, revealing close connections to both upper bounds (connections
between short refutations and efficient approximation algorithms) and lower bounds (connections to
fundamental questions in circuit complexity.)

The Ideal Proof System (IPS) is a simple yet powerful algebraic proof system, with very close
connections to circuit lower bounds: [2] proved that lower bounds for IPS imply V NP ̸= V P , and
very recently connections in the other direction have been made, showing that circuit lower bounds
imply IPS lower bounds [3, 1].

In this talk I will survey the landscape of algebraic proof systems, focusing on their connections
to complexity theory, derandomization, and standard proposional proof complexity. I will discuss
the state-of-the-art lower bounds, as well as the relationship between algebraic systems and textbook
style propositional proof systems. Finally we end with open problems, and some recent progress
towards proving superpolynomial lower bounds for bounded-depth Frege systems with modular gates
(a major open problem in propositional proof complexity).
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A Very Sketchy Talk
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Abstract
We give an overview of dimensionality reduction methods, or sketching, for a number of problems
in optimization, first surveying work using these methods for classical problems, which gives near
optimal algorithms for regression, low rank approximation, and natural variants. We then survey
recent work applying sketching to column subset selection, kernel methods, sublinear algorithms for
structured matrices, tensors, trace estimation, and so on. The focus is on fast algorithms. This is a
short survey accompanying an invited talk at ICALP, 2021.
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1 Introduction

Sketching, or data dimensionality reduction, is a popular tool for speeding up algorithms in
machine learning, optimization, and randomized numerical linear algebra.

In the overconstrained least squares regression problem one is given an n × d matrix A,
n > d, together with an n × 1 vector b, and one is tasked with finding an x ∈ Rd for which
∥Ax − b∥2

2 =
∑n

i=1(⟨Ai, x⟩ − bi)2 is as small as possible, where Ai is the i-th row of A, bi is
the i-th entry of b, and ⟨Ai, x⟩ denotes the inner product between Ai and x. Geometrically,
in Rn one can view this as finding the vector Ax which is closest to b in the column span of
A (which is a d-dimensional subspace) in terms of Euclidean distance, that is, Ax is just the
projection of b onto the column span of A. Alternatively, in Rd+1 one can think of having n

points, the i-th of which is (Ai, bi), and one is trying to find a hyperplane defined by x so as
to minimize the sum of squares of distances between the points (Ai, ⟨Ai, x⟩) and the points
(Ai, bi). There is a closed-form solution to this problem of the form x = A−b, where A− is
the Moore-Penrose pseudoinverse of A, and the optimal x can be computed in O(nd2) time
by computing the singular value decomposition (SVD) 1 of A. While this is an exact solution,
the O(nd2) running time is prohibitive for large values of n and moderate values of d.

The sketch-and-solve paradigm instead solves this problem by first choosing a random
matrix S ∈ Rk×n, where k ≪ n. One then computes S · A, which is a small k × n matrix,
as well as S · b, which is a small k × 1 vector. One then solves the much smaller regression
problem minx ∥SAx − Sb∥2 by computing its minimizer x′ = (SA)−Sb, and the hope is that
∥Ax′ − b∥2

2 ≤ (1 + ϵ)∥Ax∗ − b∥2, where x∗ = A−b is the minimizer of ∥Ax − b∥2
2.

1 This can be sped up using theoretical algorithms for fast matrix multiplication, giving O(n · dω−1) time,
where ω ≈ 2.376 is the exponent of fast matrix multiplication.
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A natural question is how to choose the sketching matrix S. One could choose S to
be a k × n matrix of independent and identically distributed N(0, 1/k) random variables
(normal with mean 0 and variance 1/k), where k = O(d/ϵ2), which turns out to work (see,
e.g., discussion in [39]), but then computing S · A would take at least nd2 time naïvely, which
although it can be sped up with fast matrix multiplication, is slower than just computing the
exact solution x∗ = A−b. Sárlos [32] pioneered the sketch-and-solve paradigm and observed
that one could instead choose S to be a so-called Subsampled Randomized Hadamard
Transform, that is, S = P · H · D, where D is an n × n diagonal matrix with independent
diagonal entries each chosen uniformly in {−1, 1}, H is the n×n Hadamard matrix (assuming
n is a power of 2), and P uniformly samples d poly(log d)/ϵ2 entries of whichever vector it is
applied to (see [20] for optimizations to the logarithmic factors). Then S · A and S · b can
now be computed in O(nd log n) time; indeed, this follows since D and P can be applied
to a vector in O(n) time, and using the recursive structure defining H the matrix H can
be applied to a vector in O(n log n) time. Consequently, SA = PHDA can be computed in
O(nd log n) time. One can then solve minx ∥SAx − Sb∥2 in d3 poly(log d)/ϵ2 time, and the
solution x′ can be shown to, with large probability, satisfy ∥SAx′ − Sb∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2.
This gives a runtime of Õ(nd log n + d3/ϵ2), where the notation Õ(f) denotes f · poly(log f).
The additive d3/ϵ2 term can be further improved using fast matrix multiplication algorithms.

This was later improved by Clarkson and Woodruff [14] who showed that one could instead
choose the so-called CountSketch matrix S [12] as one’s sketching matrix; the analysis was
later simplified and improved in [24, 27, 8, 17]. Here S is k × n, where k = O(d2/ϵ2) is again
independent of the large dimension n. The key property is that S has a single randomly chosen
non-zero entry per column, which is chosen at a uniformly random position and is uniform in
{−1, 1}, and chosen independently across the columns. The key property is that now SA and
Sb can be computed in nnz(A) time, where nnz(A) denotes the number of non-zero entries of
A, and that the solution x′ to minx ∥SAx − Sb∥2 is such that ∥Ax′ − b∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2.
The proof in [14] departed from previous proofs which first argued that any fixed vector y

has its norm preserved up to a (1 ± ϵ)-multiplicative factor with probability 1 − 2−O(d); after
this, a standard net argument could then be used. In fact CountSketch does not have this
property and [14] instead observed that the 2O(d) vectors one is interested in preserving the
norms of, all live in a low-dimensional subspace, and consequently, the number of “heavy
coordinates” as one ranges over all vectors in the subspace is a small subset of all possible n

coordinates. This then enables CountSketch to work in the sketch-and-solve paradigm, and
gives an overall algorithm for solving regression in nnz(A) + poly(d/ϵ) time.

While we have the property that ∥Ax′ − b∥2
2 ≤ (1 + ϵ)∥Ax∗ − b∥2

2, this guarantee is often
not sufficient in machine learning and optimization tasks, and one would instead like to
bound ∥x∗ − x′∥2

2. Indeed, one could hope x′ is close to a “ground truth” hyperplane and
therefore give good generalization error. To do so, note that

∥x∗ − x′∥2
2 ≤ ∥Ax∗ − Ax′∥2

2
σ2

min(A)

≤ ∥Ax′ − b∥2
2 − ∥Ax∗ − b∥2

2
σ2

min(A)

≤ ((1 + ϵ)2 − 1)∥Ax∗ − b∥2
2

σ2
min(A)

≤ O(ϵ)∥Ax∗ − b∥2
2

σ2
min(A) ,
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where the first inequality follows from the definition of the minimum singular value, the
second inequality follows since Ax∗ −b and Ax∗ −Ax′ are orthogonal, and the third inequality
follows from the objective function guarantee discussed above. We note that this simple
guarantee was significantly improved in [30], where the authors bounded ∥x∗ − x∥2

∞, i.e.,
the difference on every single coordinate; this improved analysis holds for the Subsampled
Randomized Hadamard Transform as well as Gaussian sketches, but not CountSketch.

Another unsatisfactory aspect of the above is that the dependence on the approximation
factor ϵ is polynomial, rather than polylogarithmic. To achieve the latter, one can combine
sketching and optimization techniques in a somewhat different way. One can first run the
sketch-and-solve paradigm with CountSketch with a constant ϵ0 = 1/2 to find an x′ with
∥Ax′ − b∥2

2 ≤ 3/2 · ∥Ax∗ − b∥2
2. This step takes poly(d) time independent of the value of

ϵ. Let x0 = x′. In parallel, one could compute S · A for a CountSketch matrix S with
ϵ0 = 1/2. Then write SA = QR, where Q is a matrix with orthonormal columns; one could
find QR by letting SA = UΣV T be its SVD and setting Q = U . This step takes poly(d)
time independent of the value of ϵ. Let

κ(AR−1) = σ2
max(AR−1)

σ2
min(AR−1) .

It is not hard to see that κ(AR−1) ≤ 3. Indeed, by the so-called subspace embedding property
of S, we have for all x:

1
2∥Ax∥2

2 ≤ ∥SAx∥2
2 ≤ 3

2∥Ax∥2
2.

This means for all unit vectors x, ∥AR−1x∥2
2 ≤ (3/2)∥SAR−1x∥2

2 = 3/2, and similarly for all
unit vectors x, ∥AR−1x∥2

2 ≥ (1/2)∥SAR−1x∥2
2 = 1/2. Here the equalities follow from the

fact that SAR−1 = Q, which has orthonormal columns, so ∥Qx∥2
2 = 1 for all unit vectors x.

Using that σmax(B) = supunit x ∥Bx∥2 and σmin(B) = infunit x ∥Bx∥2 for a matrix B with
more rows than columns, we have:

σ2
max(AR−1) ≤ 3

2 · σ2
max(SAR−1) = 3

2 · 1 = 3
2 .

Here the equality follows from the fact that SAR−1 = Q, and Q has orthonormal columns,
and thus σmax(Q) = σmin(Q) = 1. Similarly,

σ2
min(AR−1) ≥ 1

2 · σ2
min(SAR−1) = 1

2 .

Consequently, κ(AR−1) ≤ 3. At this point, one can simply run gradient descent on the
function f(x) = 1

2 ∥AR−1x − b∥2
2 with initial solution Rx0. By standard arguments, the

number of iterations required to get ϵ error is O(κ log(1/ϵ)) = O(log(1/ϵ)). Moreover, one
never needs to explicitly compute A · R−1. Indeed, given an iterate xt in some iteration t,
one can compute R−1xt and then AR−1xt, in O(d2 + nnz(A)) time per iteration, and thus
O((nnz(A) + d2) log(1/ϵ)) time overall. This, together with the additive O(nnz(A) + poly(d))
time needed to find R−1 and x0, gives an overall running time of O((nnz(A) + d2) log(1/ϵ) +
poly(d)). We refer the reader to [14] for further details.

2 Extensions

There are many related problems to regression (and other problems!) for which sketching
can be applied, and we outline only a few here.
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2.1 Ridge Regression
There are regularized variants of regression, such as ridge regression, where one instead seeks
to minimize ∥Ax − b∥2

2 + λ∥x∥2
2, for a parameter λ > 0. Here the λ∥x∥2

2 term is known as the
ridge or regularization, and encourages low-norm solutions. This formulation is useful both
when n > d as well as when n < d; in the latter case A is underconstrained, i.e., has more
columns than rows, and without the regularization there are multiple solutions possible and
one is often interested in a low-norm solution. We remark that low-norm solutions often have
better properties for applications, e.g., may not overfit the data as much, and by setting λ to
be large one encourages low norm solutions. For ridge regression, one can sketch A with a
dimension that depends on the so-called statistical dimension sdλ(A) =

∑
i

σ2
i

λ+σ2
i
, which is

always bounded by the rank of A though can be much smaller if a few values σi are very
large and λ is set appropriately. Sketching is thus immediately useful in the overconstrained
case when n > d, since sdλ(A) may be much less than d, and so the sketching dimension is
much smaller. In the underconstrained case, one often instead sketches on the right, setting
up the problem miny∥ARy − b∥2

2 + λ∥Ry∥2
2, for a sketching matrix R. In this case sketching

ultimately allows for solving the problem in nnz(A) + poly(sdλσ1(A)/(ϵλ)) time, which
although depends on σ1(A), can still be useful. We note that one can combine sketching on
both the left and the right for ridge regression; we refer the reader to [2, 3] and the references
therein for further details and the history of sketching as applied to this problem.

2.2 Kernel Regression
Another application is kernel regression. In the kernel setting one is given n points x1, . . . , xn ∈
Rd and one would like to apply an often non-linear mapping ϕ to “lift” them to a feature
space. A notable example is the polynomial kernel of degree q, where ϕ : Rd → Rdq where
ϕ(x)i1,i2,...,iq

= xi1 · xi2 · · · xiq
. One reason the polynomial kernel is so important is that one

can often Taylor-expand other kernels, such as the Gaussian kernel, and approximate them
by a polynomial kernel of large enough degree. Define the dq × n matrix A with i-th column
equal to ϕ(xi). One would never want to compute this matrix, as the number dq of rows is
prohibitively large. Nevertheless, one would like to be able to solve optimization problems
with respect to this matrix.

In particular, in the kernel ridge regression problem one seeks to find a vector y ∈ Rd so
as to minimize ∥AT Ay − b∥2

2 + λ∥y∥2
2. Initial work [28] showed how, given vectors x1, . . . , xq,

each in Rd, to compute a sketch S(x1 ⊗ x2 ⊗ · · · ⊗ xq) without first having to compute
the tensor product x1 ⊗ x2 ⊗ · · · ⊗ xq, which would require an unreasonable dq amount of
time. The rough idea is to apply separate sketches S1, . . . , Sq to each of the q “modes”,
obtaining S1x1, S2x2, . . . , Sqxq, where each Si is a CountSketch matrix. If Si has k rows,
then the coordinates of each Sixi are associated with the coefficients of a degree-(k − 1)
polynomial in a formal variable z. One then multiplies these polynomial modulo zk − 1
using the Fast Fourier Transform to improve efficiency. Interestingly, one can show this
corresponds to applying another CountSketch S (which is a function of S1, . . . , Sq) to the
vector x1 ⊗ x2 ⊗ · · · ⊗ xq, with certain structural properties (so S is not a truly random
CountSketch matrix, but nevertheless is good enough). Applying this to each column of
A separately, which has the form (xi)⊗q, one can then solve the sketched kernel regression
problem:

min
y

∥AT ST SAy − b∥2
2 + λ∥Ay∥2

2,

where now one has SA without ever having to materialize the matrix A.
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While the initial work was well-suited for low degree polynomial kernels (small q), their
dependence on the sketching dimension is exponential in q, making them less suitable for
tasks such as approximating the Gaussian kernel, where q is chosen to be at least logarithmic
in n. In recent work [1], a binary tree scheme was used, together with additional sketching
at each internal node, to design a linear and oblivious (not dependent on the input) sketch
which reduces the dependence on the degree q to polynomial. This was then successfully
applied to sketching the Gaussian kernel.

2.3 Structured Matrix Regression
In a number of real-world instances of regression, the design matrix A is structured, e.g.,
it might be a Hankel, Toeplitz, Vandermonde, or more generally a low-displacement rank
matrix. Such matrices A come with fast matrix multiplication algorithms, meaning one
can compute A · x in O(n log n) or n · polylog(n) time, which is often significantly faster
than the nd time needed to multiply an arbitrary n × d matrix A with a vector x. Notice
that the running time is sublinear in the time to write down the matrix A and this leads to
the quest for obtaining sublinear time algorithms for a number of optimization problems.
Using dimensionality reduction-based methods [19, 33], if T (A) is the time to multiply a
given matrix A by an arbitrary vector x, it is possible to (1 + ϵ)-approximate least squares
regression in T (A) log n + poly(d log n/ϵ) time, yielding sublinear time (in nd) for a number
of structured regression problem.

3 Wrapping Up

While our focus in this short survey was on variants of regression, there is also a large body
of work on applying sketching to other optimization problems. A very small set of examples
includes the following:

low rank approximation [14], where one seeks to approximate an n × d matrix A by a
product of an n × k matrix L and a k × d matrix R, where k ≪ min(n, d), and thus one
can store A with only (n + d)k parameters as opposed to nd parameters
CUR decomposition [9], which is a special kind of low rank approximation where one
seeks to approximate A by CUR, where C is an n × c matrix and consists of an actual
subset of columns of A, R is an r × d matrix and consists of an actual subset of rows of
A, and U is a small c × r arbitrary matrix. Here the hope is that r, c are small and that
this provides a more “interpretable” low rank approximation
clustering, for which low-rank approximation can quickly provide an initial dimensionality
reduction, which can then be used to create a coreset for problems such as k-means [18],
or k-median [35, 21]
distributed, sliding window, and streaming computation (see, e.g., [13, 10, 11], and
references therein): since sketches provide a form of compression and can be easily
updated due to their linearity, they are naturally useful for providing communication-
efficient distributed algorithms as well as space-efficient algorithms in the sliding window
and streaming models
optimization, where sketching can be used for example to compress gradients in first
order optimization [23], as well as inside of each iteration in second order methods [29],
which often involve solving a least squares regression problem
finding a latent simplex is an important problem in topic models and community detection,
for which one is given n data points that are formed by randomly perturbing some points
that come from a latent simplex. Sketching was recently used to obtain truly input
sparsity time algorithms in [4]
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trace estimation, where one is given an n × n positive semidefinite matrix A and would
like to estimate

∑n
i=1 Ai,i up to a multiplicative factor of 1 + ϵ. Recently, fast sketching

algorithms for low rank approximation were used in part to do this with constant probab-
ility using O(1/ϵ) matrix-vector products [25], improving the long-standing Hutchinson’s
algorithm which uses Ω(1/ϵ2) matrix-vector products.
tensor low rank approximation [37] and weighted low rank approximation [31, 7], where
one is given a tensor and would like to find a low rank approximation in some norm;
such problems are often NP-hard and bicriteria algorithms, as well as fixed parameter
tractable algorithms, have been proposed to obtain provable guarantees.
robust variants of regression and low rank approximation, where the standard sum of
squares error measure is replaced with more robust loss functions such as sum of absolute
values [34, 15, 16, 36, 38]
sublinear time low rank approximation, where one uses the structure of the input matrix
to devise algorithms that achieve relative error low rank approximation in sublinear time,
e.g., for positive semidefinite matrices [26, 5] or distance matrices [6, 22].

Sketching and dimensionality reduction are rapidly expanding areas. Some of these topics
are covered in my older monograph [39]. See also the course notes for the “Algorithms for
Big Data” class I teach at CMU, which contains much of this material2. I would like to thank
the ICALP program committee for giving me the opportunity to write this, and my apologies
for only covering a small part of the vast body of work on sketching and for focusing on work
that I am most familiar with, and even unfortunately omitting many of those references as
well. Hopefully though, if the reader has not seen sketching before, this document can serve
as a short and simple introduction to the area.
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Abstract
Nearly all quadratic lower bounds conditioned on the Strong Exponential Time Hypothesis (SETH)
start by reducing k-SAT to the Orthogonal Vectors (OV) problem: Given two sets A,B of n binary
vectors, decide if there is an orthogonal pair a ∈ A, b ∈ B. In this paper, we give an alternative
reduction in which the set A does not depend on the input to k-SAT; thus, the quadratic lower
bound for OV holds even if one of the sets is fixed in advance.

Using the reductions in the literature from OV to other problems such as computing similarity
measures on strings, we get hardness results of a stronger kind: there is a family of sequences
{Sn}∞

n=1, |Sn| = n such that computing the Edit Distance between an input sequence X of length n

and the (fixed) sequence Sn requires n2−o(1) time under SETH.
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1 Introduction

The first step in nearly all hardness proofs for polynomial time problems, that are conditioned
on the Strong Exponential Time Hypothesis (SETH), is a seminal reduction of Williams [42]
from k-SAT to the Orthogonal Vectors problem.

▶ Definition 1 (The OV Problem). Given two sets A, B ⊆ {0, 1}d(n) of n binary vectors of
dimension d(n), decide if there is a pair a ∈ A, b ∈ B that are orthogonal, i.e. ∀i ∈ [d(n)] :
a[i] = 0 ∨ b[i] = 0.

The SETH states that k-SAT cannot be solved in (2−ε)n time, where ε > 0 is independent
of k. The aforementioned reduction takes such a k-CNF formula on n variables and produces
two sets of N = 2n/2 binary vectors in d(N) = O(log N) dimensions. Thus, a subquadratic
O(N2−ε) algorithm for OV gives a (2 − ε′)n algorithm for k-SAT and refutes SETH. The
current best algorithms for OV are mildly subquadratic O(N2/f(N)) where f(N) = No(1)

[11, 25].
It turns out that OV is at the core of so many other problems, making their complexity

quadratic. Dozens of fine-grained reductions from OV to various important problems from
diverse fields have been designed in the last decade, resulting in a long list of quadratic
SETH-based lower bounds [40]. For example, to prove their n2−o(1) lower bound for the Edit
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Distance problem, Backurs and Indyk [14] encode each set of vectors A, B with a sequence
SA, SB of length O(nd(n)), such that the edit distance between them reveals the existence
of an orthogonal pair.

1.1 Results
In this paper we revisit the simple reduction of Williams from k-SAT to OV, that has been
presented in countless lectures on fine-grained complexity, and expose a surprising room for
improvement: there is an alternative reduction (with vectors of a mildly larger dimension)
that encodes the k-CNF formula with only one of the sets. That is, the set of vectors A is
fixed in all the instances produced by the new reduction. The implications for the SETH-hard
problems may sound bizarre: it takes n2 time to compute the Edit Distance even if one
of the two sequences is always the same (for all inputs of length n). Before discussing the
implications further, let us try to clarify the result with a high level technical overview.

1.1.1 Main idea
The difference between the two reductions is simple to explain. Assume we are given a k-CNF
formula ϕ on n variables x1, . . . , xn and m clauses C1, . . . , Cm such that ϕ = (C1 ∧ · · · ∧ Cm).
In both reductions, we enumerate all partial assignments α ∈ {false, true}n/2 to the first
half of the variables x1, . . . , xn/2, and also all partial assignments β ∈ {false, true}n/2 to
the other half of the variables xn/2+1, . . . , xn, and the goal is to find a satisfying pair, i.e. a
pair α, β that when put together make a full satisfying assignment (αβ).

To do this, Williams encodes each partial assignment, α or β, with a binary vector in m

dimensions that has a 0 at the jth coordinate if the partial assignment satisfies the clause
Cj and 1 otherwise; it follows that a pair of vectors is orthogonal iff (αβ) is a satisfying
assignment. The vectors corresponding to the α’s (the partial assignment to the first half of
variables) go to the set A and the vectors corresponding to the β’s go to the set B; notice
that the vectors in both sets depend on the clauses of ϕ.

In the new reduction, the vectors corresponding to the α’s are defined as if ϕ has all
possible clauses of size k, i.e. as if ϕ is the complete k-CNF formula. The jth coordinate
depends on whether α satisfies the jth clause in a certain canonical ordering of all k-CNF
clauses over n variables. Thus, the set A does not depend on the (real) input formula ϕ.
Then, the definition of the vectors for the β’s is similar but with an extra condition: the jth

coordinate is automatically set to 0 if the jth clause in the canonical ordering does not exist
in ϕ, regardless of whether β satisfies it or not. As a result, all clauses that do not appear in
ϕ cannot affect the orthogonality of any pair in A × B, and the correctness of the reduction
is maintained.

The only downside of the new reduction is that the size of the vectors grows from
m = O(n) (because of the sparsification lemma) to O(n2k). That is, from O(log N) to
logO(1) N . However, the dimension is still No(1) and this is sufficient to deduce many n2−o(1)

SETH-based lower bounds. Indeed, as often observed, these lower bounds can be based on the
(safer than SETH) hypothesis that OV is hard when the dimension is No(1).1 Some exceptions,
where the reductions crucially rely on the dimension being logarithmic, are [7, 27, 31].

To formalize the new result as a theorem, in Section 2 we introduce the OVA problem
in which we are given as input only one set B of n vectors and are asked if there is an
orthogonal pair in An × B where An is the nth set in an (efficiently producible) family of
sets A = {An}∞

n=1.

1 Recent works [33, 5] have shown that refuting this “moderate dimension OV” hypothesis has consequences
that are potentially more remarkable than refuting SETH.
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1.1.2 Implications for other problems
Combining the new reduction with the existing reductions from OV in a black-box way
leads to some interesting consequences. For example, the reductions from OV to the
computation of certain distance measures on pairs of sequences, curves, or time-series, such
as Edit Distance [14], Longest Common Subsequence [3, 22, 19], Local Alignment [9], Fréchet
Distance [20], and Dynamic Time Warping Distance [22, 3], all proceed by encoding each of
the sets A, B independently with a sequence SA, SB . Therefore, the quadratic n2−o(1) lower
bounds implied by SETH hold even if only one sequence SB is given as input, while SA only
depends on n = |SB |. Another example is the regular expression matching problem [15, 21]
of deciding whether a string x can be generated from a regular expression y. Again, the
new reduction shows a quadratic lower bound even if the string (or the expression) are fixed.
We find it surprising that such severe-looking restrictions of the problems do not reduce the
complexity.

The corollaries go beyond sequence problems. The lower bounds for Bichromatic Closest
Pair [12, 28] now also hold when one of the two sets is fixed; note that this is incomparable
to the recent lower bound for Monochromatic Closest Pair [30]. In the Subtree Isomorphism
problem we are given two rooted, unordered, unlabelled trees and are asked if one is contained
in the other (a pattern and a host). The quadratic lower bound [2] can now be shown even
for a fixed pattern or a fixed host. The implications are less clear-cut for many other graph
problems; for example, the basic reduction from OV to diameter in sparse graphs [39] may
now produce slightly simpler graphs but it is hard to characterize in what way. It is likely
that a white-box usage of the new reduction will lead to interesting results; we leave this for
future work.

1.1.3 Generalizing to k-OV
The SETH lower bound for OV generalizes to an nk−o(1) lower bound, for all k ≥ 2, for the
k-OV problem: given k sets of binary vectors A1, . . . , Ak in d dimensions, decide if there are
k vectors ai ∈ Ai that are orthogonal in the sense that ∀j ∈ [d] : (a1[j] ∧ · · · ∧ ak[j]) = 0.
The hardness of k-OV has been used to prove the hardness of several other problems (where
a reduction from 2-OV is not known) [8, 10, 33, 38, 1, 16, 32, 29, 23]; e.g. an nk−o(1) lower
bound for k-LCS, the problem of computing the longest common subsequence of k strings.

The reduction to OV extends to k-OV in the same way: instead of partitioning the
variables into two sets of size n/2, we split them into k sets of n/k, resulting in k sets of
N = 2n/k vectors. Applying the new idea, in Section 3, we get a reduction to instances
where the first k − 1 sets are fixed, and only one set is given as input. Consequently, the
k-LCS problem has an nk−o(1) lower bound even if k − 1 of the sequences are fixed.

1.1.4 Hardness for compressible instances
A surprising feature of SETH-based hardness results for problems in P is that they are proved
for highly compressible instances. The reductions produce OV instances of size N = 2n/2

that are fully determined by a k-CNF formula of size O(nk) and can therefore be losslessly
encoded with O(log N) bits. This is surprising because a priori one might expect the worst
case instances to require Ω(N) bits to specify. The reductions can even be adapted (with
major modifications) [1] to prove the hardness for instances where the data is compressible
with standard grammar-compression schemes such as the Lempel-Ziv family. The new results
go a step further: the hardness holds even if one of the inputs is fully determined.

ICALP 2021



7:4 Fine-Grained Hardness for Edit Distance to a Fixed Sequence

The preprocessing model

A few recent papers study the complexity of the central problems of fine-grained complexity
in models with preprocessing [17, 24, 35, 36, 34]. For instance, it was shown that if we can
preprocess one of the strings of an Edit Distance instance in near-linear time, then we can
obtain a better approximation in sublinear time [34].

It is not difficult to get strong lower bounds for OV (and Edit Distance) in these models
by combining the old reduction with a partitioning trick (similar to [41]): an algorithm that
solves OV in subquadratic time n2−ε after preprocessing each set (separately) in arbitrary
polynomial time, say n100, also refutes SETH, because we can split A and B into n2−1/200

sets of size n1/200, preprocess each in a total of n1−1/200 · n100/200 < n1.5 and then solve OV
for each pair of parts in a total of n2(1−1/200) · n1/200(2−ε) = n2−ε′ .

The new reduction gives even more power since it implies the hardness with a fixed set,
that intuitively, can be preprocessed indefinitely; formally, we get conditional lower bounds
even against algorithms with preprocessing using arbitrary polynomial space, rather than time
(see Section 5).2 This also has implications for dynamic algorithms where a preprocessing
phase is often allowed [8, 37], strengthening the lower bounds from polynomial time to space.
Observe that if we relax the requirements further to allow exponential space, a linear time
algorithm becomes possible: using 2O(n) space we can construct a look-up table storing the
answers to all possible inputs.

1.1.5 Generalization to Formula-SAT

Hansen, Williams, and the authors [6] have observed that Edit Distance and other problems
in P are even harder than OV; if we solve them in subqadratic time, not only do we solve
SAT faster on CNF formulas (the simplest kind of formulas), but we also solve it on arbitrary
formulas, small depth circuits, and branching programs. Thus, the quadratic lower bounds
for Edit Distance and LCS (but not OV) can be based on the safer Formula-SETH (or
BP-SETH or NC-SETH): the hypothesis that SAT on arbitrary formulas of size 2o(n) cannot
be solved in (2 − ε)n time [6, 4, 26]. These reductions start by reducing Formula-SAT to a
problem similar in spirit to OV, called Formula-Satisfying-Pair, that can then be reduced to
Edit Distance. It turns out that the new idea of encoding the formula only in one set can be
applied in this case as well (see Section 6), and so all the Formula-SETH lower bounds still
hold if one of the sequences is fixed.

1.1.6 Roadmap and preliminaries

We start with the new reduction from k-SAT to OV in Section 2. Then, in Section 3, we
generalize it to OV on k ≥ 2 sets. In Section 4 we explain the implication for Edit Distance.
Then, we discuss conditional lower bounds for the preprocessing model in Section 5. And
finally, in Section 6 we extend the new reduction to formulas beyond CNF’s.

We use the notation [n] = {1, . . . , n} and false, true for boolean truth values.

2 These results were mentioned in [34] and credited to this work as a personal communication.
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2 The new reduction: k-SAT to OV with a fixed set

In this section we give the main result of the paper: a reduction from k-SAT to the Orthogonal
Vectors problem (Definition 1) where one of the two sets is fixed for all inputs of size n.

To formalize this, we define the OVA problem, which is the same as OV but where the
input set A is not given as input. Instead, if the input set B has size n, then we will always
choose A to be the set An ∈ A where A = {An}∞

n=1 is a family of vector sets, containing
one set of each size n. The formal definition below also incorporates the dimension of the
vectors d(n) which is taken to be a function of the number of vectors n, as is standard when
studying OV.

▶ Definition 2 (The OVA Problem). For a family A = {An}∞
n=1 of vector-sets, such that

An ⊆ {0, 1}d(n) is a set of n binary vectors of dimension d(n), we define the OVA problem as:
Given a set B of n binary vectors of dimension d(n) decide if there is a pair a ∈ An, b ∈ B

that are orthogonal, i.e. ∀i ∈ [d(n)] : a[i] = 0 ∨ b[i] = 0.

We can now give the main theorem of this paper, giving a quadratic lower bound for
OVA under SETH. The family A for which the result holds will be clarified in the proof; we
remark that it is quite natural and that is easy to produce each set An algorithmically in
linear time.

▶ Theorem 3 (Main). For any function d(n) = logω(1) n, there is a family of vector-sets
A = {An}∞

n=1 of dimension d(n) such that the OVA problem requires n2−o(1) under SETH.
Moreover, each set An can be produced in O(n · d(n)) time and log space.

Proof. Fix integers n, k ≥ 1, and let Cn,k be the set of width k clauses over n variables,

Cn,k = {(ℓ1 ∨ · · · ∨ ℓk) | ∀i ∈ [k] : ℓi ∈ {x1, . . . , xn} ∪ {x1, . . . , xn}} ,

and pick an arbitrary ordering over the clauses such that Cn,k = {C1, . . . , CM } where
M =

(2n
k

)
= O(n2k).

We now define the set AN ∈ A for N = 2n/2 as follows.3 For each truth assignment
α to the variables x1, . . . , xn/2, i.e. a partial assignment, we create a vector vα. That is,
∀α ∈ {false, true}n/2 representing the assignment x1 = α(1), . . . , xn/2 = α(n/2), we define
the vector vα as follows:

∀j ∈ [M ] : vα[j] =
{

0, if α satisfies the clause Cj

1, otherwise.

That is, to set the jth coordinate of vα we check if the partial assignment α already
satisfies the clause Cj (the jth clause in C) and choose 0 if so, and 1 otherwise.

Notice that the dimension of the vectors is O(n2k) = logO(1) N and it is asymptotically
dominated by d(N) = logω(1) N . Moreover, AN can be produced in 2n/2 · n2k = O(Nd(N))
time, and O(n + k log n) = O(log N) space.

We are now ready to reduce k-SAT to the OVA problem. Given a k-CNF formula ϕ

on n variables x1, . . . , xn as input, we define a set B of N = 2n/2 vectors as follows. For
each truth assignment β ∈ {false, true}n/2 to the variables xn/2+1, . . . , xn, i.e. a partial
assignment to the second half of the variables, we create a vector vβ such that:

∀j ∈ [M ] : vβ [j] =
{

0, if either β satisfies the clause Cj , or Cj ̸∈ ϕ

1, otherwise, i.e. Cj ∈ ϕ but β does not satisfy it.

3 While this only defines AN for values of N that are equal to 2n/2 with integer n, it is easy to extend
these AN ’s into a family A, e.g. by padding with dummy vectors that are all 1.
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Thus, while vα considered all clauses Cj ∈ C similarly, the vectors vβ ∈ B depend on the
input formula ϕ and automatically set to 0 all coordinates corresponding to clauses that do
not appear in ϕ.

Finally, we claim that B is a “yes” OVA instance iff ϕ is satisfiable, and therefore if
OVA can be solved in truly subquadratic time then for all k, k-SAT can be solved in
(2n/2)2−ε = 2(1−ε/2)n for some ε > 0, refuting SETH. The correctness follows from the
following claim proved below.

▷ Claim 4. There is an orthogonal pair a ∈ AN , b ∈ B iff ϕ is satisfiable.

There exist a pair a ∈ AN , b ∈ B that are orthogonal iff there are partial assignments
α, β to the first and second half of the variables, respectively, such that vα ∈ AN and vβ ∈ B

are orthogonal, meaning that for all j ∈ [M ] either vα[j] = 0 or vβ = 0, i.e. either α satisfies
Cj or β satisfies Cj or Cj is not a clause in ϕ at all. The latter is equivalent to saying that
the truth assignment (αβ) composed of α and β satisfies all clauses that are in ϕ, and we
conclude that there is an orthogonal pair iff ϕ has a satisfying assignment. ◀

3 Extension to k-OV

In this section we extend the result of Section 2 to the k-OV problem.

▶ Definition 5 (The k-OV Problem). Given k sets A1, . . . , Ak ⊆ {0, 1}d(n) of n binary
vectors of dimension d(n), decide if there are k vectors ai ∈ Ai that are orthogonal, i.e.
∀j ∈ [d(n)] : a1[j] = 0 ∨ · · · ∨ ak[j] = 0.

As before, we define a version of the problem in which only one of the sets is given as
input and the other k − 1 are fixed.

▶ Definition 6 (The k-OVA1,...,Ak
Problem). For any k−1 families Ai = {Ai,n}∞

n=1, i ∈ [k−1]
of vector-sets, such that ∀i ∈ [k−1] : Ai,n ⊆ {0, 1}d(n) is a set of n binary vectors of dimension
d(n), we define the k-OVA1,...,Ak

problem as: Given a set Ak of n binary vectors of dimension
d(n) decide if there are k vectors ∀i ∈ [k − 1] : ai ∈ Ai,n and ak ∈ Ak that are orthogonal,
i.e. ∀j ∈ [d(n)] : a1[j] = 0 ∨ · · · ∨ ak[j] = 0.

We are now ready to extend Theorem 3.

▶ Theorem 7. For all k ≥ 2 and any function d(n) = logω(1) n, there exist k − 1 families of
vector-sets Ai = {Ai,n}∞

n=1, i ∈ [k − 1] of dimension d(n) such that the k-OVA1,...,Ak
problem

requires nk−o(1) under SETH. Moreover, each set Ai,n can be produced in O(n · d(n)) time
and log space.

Proof. Recall from the proof of Theorem 3, the definition of Cn,w the set of all width w

clauses over n variables.4
For all i ∈ [k − 1], we define the set Ai,N ∈ Ai, where N = 2n/k as follows. For each

partial assignment α(i) to the variables x(i−1)·n/k+1, . . . , xi·(n/k), we create a vector vα(i) and
add it to Ai,N . Let Cj denote the jth clause in a canonical ordering of the clauses in Cn,w

and define vα(i) as:

4 Note that we changed the notation of the clause size from k to w to avoid conflict with k the number of
sets. That is, we are now reducing w-SAT to k-OV.
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∀j ∈ [|Cn,w|] : vα(i) [j] =
{

0, if α(i) satisfies the clause Cj

1, otherwise.

Notice that the dimension of the vectors is O(n2w) = logO(1) N and it is asymptotically
dominated by d(N) = logω(1) N . Moreover, Ai,N can be produced in 2n/k · n2k = O(Nd(N))
time, and O(n + w log n) = O(log N) space.

We are now ready to reduce w-SAT to the k-OVA1,...,Ak
problem. Given a w-CNF formula

ϕ on n variables x1, . . . , xn as input, we define a set Ak of N = 2n/k vectors as follows. For
each partial assignment α(k) to the variables x(k−1)·n/k+1, . . . , xn, we create a vector vα(k)

such that:

∀j ∈ [|Cn,w|] : vα(i) [j] =
{

0, if either α(k) satisfies the clause Cj , or Cj ̸∈ ϕ

1, otherwise, i.e. Cj ∈ ϕ but α(k) does not satisfy it.

Thus, while vα(i) ∈ Ai,N for i ∈ [k − 1] considered all clauses Cj ∈ Cn,w similarly, the
vectors vα(k) ∈ Ak depend on the input formula ϕ and automatically set to 0 all coordinates
corresponding to clauses that do not appear in ϕ.

Finally, we claim that Ak is a “yes” k-OVA1,...,Ak
instance iff ϕ is satisfiable, and therefore

if k-OVA1,...,Ak
can be solved faster than nk−o(1) time then for all w, w-SAT can be solved

in (2n/k)k−ε = 2(1−ε/k)n for some ε > 0, refuting SETH. The correctness follows from the
following claim, which can be proved similarly to Claim 4.

▷ Claim 8. There exist k-orthogonal vectors ai ∈ Ai,N for i ∈ [k − 1] and ak ∈ Ak iff ϕ is
satisfiable. ◀

4 Corollaries for Edit Distance and other problems

The hardness of OVA has immediate consequences to all the many OV-hard problems,
establishing their hardness even in restricted settings. Let us formalize the implication for
Edit Distance, and briefly remark on how it applies to the other problems.

▶ Definition 9 (The Edit Distance Problem). Given two sequences X, Y of length n, return
the minimum number operations that can transform X into Y . The allowed edit-operations
are insertions, deletions, and substitutions of single characters.

In a similar way to our definition of OVA in Section 2, we formalize a restricted problem
where only one of the two sequences is given as input.

▶ Definition 10 (The EDX Problem). For a family X = {Xn}∞
n=1 of sequences, such that

Xn is a sequence of length n, we define the EDX problem as: Given a sequence Y of length
n, return the minimum number edit-operations that can transform Xn into Y .

We can now prove the statement in the title of the paper, showing a quadratic SETH
lower bound for EDX .

▶ Theorem 11. There is a family of sequences X = {Xn}∞
n=1, |Xn| = n such that the EDX

problem requires n2−o(1) under SETH. Moreover, each sequence Xn can be produced in O(n)
time and log space.
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Proof. By Theorem 3 it is enough to reduce the OVA problem to EDX . To do that, we start
with an OVA instance B of size n and dimension d(n) = no(1), for the family A constructed
by Theorem 3, and we apply the reduction of Backurs and Indyk [14] (or the later one
which uses a smaller alphabet [22]) to B and An. We get two sequences X = SX(An) and
Y = SY (B) of length N = f(n) = O(n · d(n)), for some specific function f : N → N, such
that the Edit Distance between X and Y is less than a certain value τn iff A, B contains
an orthogonal pair. Moreover, the encodings SX and SY have the property that they take
linear time and log space to compute, and most importantly, that SX only depends on An

and n but not on B. Therefore, we can construct the family of sequences X by setting
XN = SX(An) where N = f(n). We get that solving EDX in O(N2−ε) time, for some ε > 0,
leads to an O(n2−ε′) time algorithm for solving OVA , for some ε′ > 0, refuting SETH. ◀

To get the corollaries for LCS, k-LCS, Subtree Isomorphism, and the other problems
mentioned in Section 1.1, the same arguments work: we simply have to check that the
reductions from OV operate on each set separately.

5 Lower bounds for the Preprocessing model

In this section we present the implications of the new reductions for the limitations of
preprocessing. As discussed in Section 1.1, any quadratic lower bound for OV already implies
a quadratic lower bound even if the algorithm is allowed to preprocess one of the sets in
arbitrary polynomial time. However, having a reduction from k-SAT to OV with a fixed set
leads to stronger conditional lower bounds that address algorithms with arbitrary polynomial
space preprocessing. These lower bounds are no longer based on SETH but on a plausible
strengthening of it to nonuniform algorithms.

Recall [13] that TIME[T (n)]/A(n) is the class of problems that can be solved by an
O(T (n)) time algorithm that is given an advice string Xn of length O(A(n)) for all inputs of
size n.

▶ Hypothesis 12 (Nonuniform-SETH). There is no ε > 0 such that for all k ≥ 3 the k-SAT
problem is in TIME[(2 − ε)n]/2(1+o(1))·n/2.

This is a strong hypothesis, but it is not at all clear how the nonuniformity can help
in solving SAT faster, and therefore it might be as plausible as SETH. Moreover, even the
extreme version of this hypothesis, where the size of the advice is increased from 2n/2·(1+o(1))

all the way to 2n·(1−ε) remains plausible. In fact, for our conditional lower bound below, we
can weaken the hardness hypothesis to allow significantly smaller advice length: O(2εn) for
any constant ε > 0, and the same conclusion for OV would follow. To obtain this stronger
result it suffices to give a modification to Theorem 3 so that it reduces to asymmetric OVA
where the sets A and B have different sizes; the details of this standard modification are
omitted from this paper. In any case, the main message of the following theorem is to
highlight a connection between algorithms in the preprocessing model and a breakthrough in
the nonuniform complexity of SAT.

▶ Theorem 13. Suppose there is an algorithm that, given two sets A, B of n binary vectors in
d(n) = logω(1) n dimensions, can preprocess the set A using S(n) = O(nc) bits of space, and
subsequently solve OV on A, B in O(n2−ε) time, for some ε > 0, c ≥ 1. Then, Nonuniform-
SETH is false.

Proof. Fix ε > 0, c ≥ 1 and suppose that an algorithm ALG can solve OV in subquadratic
O(n2−ε) time after preprocessing the set A using S(n) = nc space. We start by reducing
k-SAT on N variables to OVA on sets of size n = 2N/2 using Theorem 3. Then, to solve
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OVA instances of size n using ALG we can take the set An and split it into n1−1/tc instances
of size n1/tc each, for some t ≥ 2 to be specified later. We use ALG to preprocess each of
these parts in an unknown amount of time but only O((n1/tc)c) space; the total space that
it uses for all the parts is sn = n1−1/tc · O(nc/tc) = O(n1+1/t−1/tc). Let Xn be the bit-string
of length sn that encodes the state of the memory after the algorithm is done preprocessing
these sets, i.e. the concatenation of the n1−1/tc memory tapes. Observe, crucially, that the
string Xn only depends on n, even though generating it might have take an unknown amount
of time. We will choose it to be the advice string for our algorithm for all inputs of size n.
Then, using the string Xn our algorithm can solve any OVA instance B of size n in truly
subquadratic time: we split B into n1−1/tc parts of size n1/tc each, and then solve each pair
of parts using ALG and the string Xn in subquadratic (n1/tc)2−ε time, giving a total of
(n1−1/tc)2 · (n1/tc)2−ε = n2−ε′ time, for ε′ = ε/tc > 0. Going back to k-SAT, our algorithm
runs in time 2N/2·(2−ε′) time and has used O(n1+1/t) = O(2N/2·(1+1/t)) = 2N/2·(1+o(1)) bits
of advice, where the latter equality holds because we can choose t to be arbitrarily large,
refuting Nonuniform-SETH. ◀

6 Extension to Formula-SAT and Formula-Satisfying-Pair

In this section, we extend the results of Section 2 so that the starting point is Formula-SAT
rather than CNF-SAT, and the end problem is Formula-Satisfying-Pair (with a fixed formula
and set A) rather than OV (with a fixed set A). Throughout, we consider deMorgan formulas
that have AND/OR gates of fan-in two, and we assume that all the NOT gates are at the
bottom, meaning that the leaves of each formula are either variables or their negation. The
size of a formula is the total number of gates and the depth is the maximum number of levels
from root to leaf.

▶ Definition 14 (Formula-SAT). Given a formula F over n variables, decide if it is satisfiable.

Notice that CNF formulas are a special kind of depth 2 formulas. The following hypothesis
is a more believable version of SETH.

▶ Hypothesis 15 (Formula-SETH [6]). There is no ε > 0 such that Formula-SAT on formulas
of size 2o(n) can be solved in O((2 − ε)n) time.

This hypothesis is sometimes referred to as Branching-Program-SETH (BP-SETH) since
it is equivalent to a hypothesis about SAT on branching programs, or as NC-SETH which is
a similar assumption about SAT on polylog depth circuits, which are equivalent to formulas
of 2poly log n size.

Just like the SETH-based lower bounds go via the OV problem, the Formula-SETH lower
bounds often go via a problem such as the Formula-Satisfying-Pair problem.

▶ Definition 16 (Formula-Satisfying-Pair [4]). Given a formula F = F (x1, . . . , xm, y1, . . . , ym)
of size 2m where each variable is used exactly once, and two sets A, B ⊆ {0, 1}m of size n,
decide whether there is a pair a ∈ A, b ∈ B such that F (a1, . . . , am, b1, . . . , bm) = true.

A simple reduction, similar to the one by Williams [42], shows an n2−o(1) lower bound
for Formula-Satisfying-Pair with m = no(1) under the Formula-SETH. And with intricate
gadgetry, Formula-Satisfying-Pair can be reduced to Edit Distance, LCS, Fréchet, and other
problems establishing Formula-SETH lower bounds for them as well [6, 4]. The main result
of this section is to prove a Formula-SETH lower bound for Formula-Satisfying-Pair with a
fixed formula F and a fixed set A. As a result, the Formula-SETH lower bounds for Edit
Distance and the other problems also hold when one sequence is fixed.
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▶ Definition 17 (FSPF,A ). For a family A = {An}∞
n=1 of vector-sets, such that An ⊆

{0, 1}d(n) is a set of n binary vectors of dimension d(n), and a family F = {Fn}∞
n=1 of

formulas, such that Fn is over d(n) variables and has size 2d(n) we define the FSPF,A
problem as: Given a set B of n binary vectors of dimension d(n) decide if there is a pair
a ∈ An, b ∈ B such that Fn(a, b) = true.

After formalizing the problem with fixed formula and set A we are ready to state the
theorem. The rest of this section is dedicated to the proof.

▶ Theorem 18. There is a family of vector-sets A = {An}∞
n=1 of dimension d(n) = no(1)

and a family of formulas F = {Fn}∞
n=1 over d(n) variables and of size 2d(n) such that the

FSPF,A problem requires n2−o(1) under Formula-SETH. Moreover, each set An and formula
Fn can be produced in O(n · d(n)) time.

Our approach is to imitate the main idea in the proof of Theorem 2. There, we looked at
the set of all clauses, which is similar to thinking about the super-set of all k-CNF formulas.
Now, we are faced with arbitrary formulas, and it is not so clear what the corresponding
super-set would be: the set of all gates does not make much sense. To make this work, we
go through the following intermediate problem, which is similar to Formula-SAT but has a
structure that is easier to work with when constructing a fixed formula for FSPF,A .

For a depth bound depth(n) we define the Canonical-Depth-d(n) formula to be the formula
over n variables defined by a full binary tree in which all the gates are (?) indicating a gate
that could either be AND or OR. Moreover, each leaf pointing to a variable xi is also labelled
with a (?) indicating that it could either be xi or x̄i. We also fix a canonical numbering of
the s(n) = 2d(n) gates of this formula. To get a “real” formula, we must specify s(n) bits
indicating for each (?) gate whether it is AND, OR, or if it is a leaf whether it is a negation
or not. A natural way to make the specification is to make the jth gate AND if the jth bit is
1 and OR otherwise, and to make a leaf-gate a negation iff the corresponding bit is 1.

▶ Definition 19 (Canonical-Formula-SAT). Given s(n) bits for specifying the gates of a
canonical-depth-d(n) formula over n variables, decide if the resulting formula is satisfiable.

The reduction has two steps, described in Sections 6.1 and 6.2.

6.1 From Formula-SAT to Canonical-Formula-SAT

This step is not immediate only because an arbitrary s(n)-sized formula could have a structure
that is very far from a full-binary tree. Nonetheless, we can transform it into such using
standard techniques without blowing up the size by more than polynomial factors. And since
our interest is in s(n) = 2o(n), polynomial blowups do not matter.

Given a formula F of size s(n) we begin by applying the depth-reduction of Bonet-Buss
[18] to get an equivalent formula F ′ of depth depth(n) = O(log s(n)). Then, we enforce that
all paths from root to leaves have length exactly d(n): if a leaf is higher, we add an equivalent
subtree, e.g. by replacing xi with (xi ∧ true) ∧ (true ∧ true) and so on. The total size of
the final formula F ′′ is 2depth(n) = sO(1).

Then, to complete the reduction, we simply go over the gates of F ′′ and generate a
string g of s(n) bits that encodes it with the above natural representation. Thus, g is a “yes”
instance for Canonical-Formula-SAT iff F is satisfiable.
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6.2 From Canonical-Formula-SAT to FSPF ,A

The next idea is to transform the canonical formula F (?) that is full of (?) gates along with a
bit-string g specifying the gates, into a formula F with real gates that takes the bits of g as
inputs. In more details, we take the jth gate in F (?), that takes input from the two gates G1
and G2 and we replace it with the following subformula (a similar but different formula is
used for leaf-gates):

Gj = (gj ∧ (G1 ∧ G2)) ∨ (ḡj ∧ (G1 ∨ G2))

This subformula encodes our natural representation where gj = 1 iff the gate is AND.
After these transformations, the size of the formula blows up by 2depth(n) since we have to
make two copies of each subformula at every level, but this is still sO(1). Notice that the
formula F is now fixed, and the formula we started from is only encoded with the gj ’s which
can be thought of as inputs to F (note that, as opposed to the xi’s these inputs are not free,
and so they do not increase the complexity of SAT).

We are now ready to define the FSPF,A instances that encode the satisfiability of F . Let
N = 2n/2. We define the formula FN , i.e. the N th member of the family of formulas F , to
be equal to F after we duplicate each variable so that it is used once in the formula. The
vectors a ∈ AN have dimension O(s(n)) = No(1) and are defined as follows. For each partial
assignment α ∈ {true, false}n/2 to the variables x1, . . . , xn/2 we define the vector a such
that for all j ∈ [s(n)] aj is set to 1 iff the jth gate in F is a leaf gate marked with a literal
xh or x̄h and α makes this literal true. Note that the vectors in A do not depend on the gj ’s
at all.

Finally, the vectors b ∈ B do depend on the gj ’s. For each partial assignment β to the
variables xn/2+1, . . . , xn, we construct a vector b. For all j ∈ [s(n)] we set bj as follows. If
the jth gate in F is a leaf gate marked with a literal xh or x̄h and β makes this literal true,
then we set bj = 1. If the jth gate is a leaf gate marked with a variable gh (or its negation)
then we set bj = gh (or its negation). Notice that the g’s affect all vectors in B in the same
way (as is the case in the proof of Theorem 3).

To conclude the correctness of this reduction, observe that an evaluation of FN on a pair
of vectors a, b is equivalent to the evaluation of F on the corresponding partial assignments
α, β and the given g.
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Abstract
The independent set polynomial of a graph has one variable for each vertex and one monomial for
each independent set, comprising the product of the corresponding variables. Given a graph G on n

vertices and a vector ppp ∈ [0, 1)n, a central problem in statistical mechanics is determining whether
the independent set polynomial of G is non-vanishing in the polydisk of ppp, i.e., whether |ZG(xxx)| > 0
for every xxx ∈ Cn such that |xi| ≤ pi. Remarkably, when this holds, ZG(−ppp) is a lower bound for the
avoidance probability when G is a dependency graph for n events whose probabilities form vector ppp.
A local sufficient condition for |ZG| > 0 in the polydisk of ppp is the Lovász Local Lemma (LLL).

In this work we derive several new results on the efficient evaluation and bounding of ZG. Our
starting point is a monotone mapping from subgraphs of G to truncations of the tree of self-avoiding
walks of G. Using this mapping our first result is a local upper bound for Z(−ppp), similar in spirit
to the local lower bound for Z(−ppp) provided by the LLL. Next, using this mapping, we show that
when G is chordal, ZG can be computed exactly and in linear time on the entire complex plane,
implying perfect sampling for the hard-core model on chordal graphs. We also revisit the task of
bounding Z(−ppp) from below, i.e., the LLL setting, and derive four new lower bounds of increasing
sophistication. Already our simplest (and weakest) bound yields a strict improvement of the famous
asymmetric LLL, i.e., a strict relaxation of the inequalities of the asymmetric LLL without any
further assumptions. This new asymmetric local lemma is sharp enough to recover Shearer’s optimal
bound in terms of the maximum degree ∆(G). We also apply our more sophisticated bounds to
estimate the zero-free region of the hard-core model on the triangular lattice (hard hexagons model).
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1 The Independent Set Polynomial

We write [n] to denote the set {1, 2, . . . , n}, with the convention [0] = ∅. Throughout, G is a
graph on [n] and Ind(G) denotes the set of all independent sets of G.

▶ Definition 1. The independent set polynomial of a graph G with variables x1, . . . , xn is

ZG(xxx) = Z(xxx) :=
∑
I⊆S

I∈Ind(G)

∏
i∈I

xi . (1)

For arbitrary S ⊆ [n] we denote the independent set polynomial of the subgraph of G induced
by S by ZG(xxx; S) = Z(S), the latter notation relying on xxx being clear from context.
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▶ Remark 2. We will often refer to the components of the variable vector xxx as activities.

▶ Definition 3. The polydisk of ppp ∈ [0,∞)n is the set {xxx ∈ Cn : |xi| ≤ pi for all i ∈ [n]}.

The complexity of computing and approximating the independent set polynomial is
an extensively studied subject. This is because there are important instantiations of the
polynomial when the activities are positive reals, negative reals, and even complex numbers.

1.1 Positive Reals: The Hard-Core Model
In many natural computational problems in combinatorics, statistics, and statistical physics
we are given as input a graph G that defines a set Ω = Ω(G) of objects (configurations)
of interest, e.g., matchings in G. A weight function w : Ω → (0, +∞) assigns a positive
weight to each element σ ∈ Ω, giving rise to a probability distribution π(σ) = w(σ)/Z, where
the normalizing factor Z :=

∑
σ∈Ω w(σ) is called the partition function. When Ω = Ind(G)

and each I ∈ Ind(G) has weight w(I) =
∏

i∈I xi, where xxx ∈ (0, +∞)n, the distribution
is the hard-core model of statistical physics, and the independent set polynomial when
S = [n] equals its partition function. Observe that in the univariate case where all vertex
activities equal x > 0, i.e., xxx = x111, as x → ∞ the polynomial is increasingly dominated
by the contribution of the largest independent sets, readily suggesting the intractability of
evaluating the polynomial for arbitrarily large values of x. A celebrated achievement in this
area is the characterization of the computational tractability of approximating the univariate
partition function. Let ∆ = ∆(G) denote the maximum degree of G, let xxx = x111, and let

xc = xc(∆) := (∆− 1)∆−1

(∆− 2)∆ ↘ e
∆ ,

where ↘ denotes convergence from above. Weitz [22] proved the partition function can
be approximated arbitrary well (FPTAS) for x < xc, while Sly and Sun [19] proved that
approximating the partition function is NP-hard for x > xc.

1.2 Complex Numbers: Phase Transitions
The study of partition functions when the arguments of the corresponding polynomial are
complex numbers dates back to the 1952 work of Lee and Yang [23] who established a
connection between the location of zeros of the partition function on the complex plane
and the presence of phase transitions on the real axis. The high-level idea is that since we
identify phase transitions as discontinuities in the derivatives of free energy, i.e., of log Z,
such a transition can only occur at a point of the complex plane if there is at least one
nearby zero of the partition function. Specifically, in the follow-up paper [12], Lee and Yang
instantiated this connection for the ferromagnetic Ising model by proving that the zeros of
the partition function always lie on the unit circle in the complex plane, and used this fact
to conclude that the ferromagnetic Ising model can have at most one phase transition. The
Lee-Yang approach has since become a cornerstone of the study of phase transitions, and has
been used extensively in the statistical physics literature: see, e.g., [2, 9, 13, 21] for specific
examples, and Ruelle’s book [16] for background. There have also been attempts to relate
the Lee-Yang program to the Riemann hypothesis [14].

Zeros of partition functions when the variables take complex values have also been
studied in a purely combinatorial setting without reference to the physical interpretation:
see, for example, Choe et al. [6]. Another important example is the work of Chudnovsky
and Seymour [7], who show that the zeros of the univariate independent set polynomial of
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claw-free graphs lie on the real line. Finally, in a seminal work, Scott and Sokal [17] proved
that the independent set polynomial is non-zero in the polydisk of ppp ∈ [0, 1)n, if and only if
ZG(−λppp) > 0 for every λ ∈ [0, 1].

1.3 The Probabilistic Method and the Lovász Local Lemma

The Probabilistic Method [1] amounts to establishing the existence of mathematical objects
with a property of interest by demonstrating a probability distribution under which they have
positive probability. The power of the method stems from the fact that if the probability of
the objects under the distribution is indeed positive, then any multiplicative underestimation
of it is enough to imply existence. Typically, the property of interest, P, is the intersection
of the complements of several simpler properties, each property expressing some particular
“flaw,” so that P coincides with flawlessness. Thus, if we endow a universe of candidate objects
Ω, where sets {Fi}n

i=1 ⊆ Ω correspond to the different flaws, with a probability measure µ,
the goal is to prove that the avoidance probability, µ(

⋂
i∈[n] F i), is strictly positive.

Given only the marginals pi := µ(Fi), the best lower bound we can give for the avoidance
probability is 1 −

∑
i pi since, for all we know, the flaws could be disjoint. To improve

upon the union bound, we need to constrain the flaw overlaps. A natural and extremely
successful way to do this is in terms of a graph G on [n]. Concretely, let Γi(G) = Γi denote
the neighborhood of vertex i in G and let Γ+

i = Γi ∪ {i}. We say that G is a dependency
graph for {Fi}n

i=1 with respect to µ if for every i ∈ [n] and every set {j1, j2, . . .} ⊆ [n] \ Γ+
i ,

µ(Fi | Fj1 ∩ Fj2 ∩ · · · ) = µ(Fi) = pi . (2)

Note that the presence of an edge in G does not prescribe any specific kind of dependency
between its two corresponding events, only a lack of constraint thereof. Thus, a complete
dependency graph (clique) conveys no information at all about how the n events overlap,
while an empty dependency graph implies that the n events are mutually independent.

In applications, given the measure µ and the sets of flaws {Fi}n
i=1 it is typically difficult

to derive much more than a vector ppp = (p1, p2, . . . , pn) of (upper bounds for) the flaw
probabilities and a (possibly pessimistic) dependency graph G. As a result, it is desirable to
have sufficient conditions for a pair ppp, G to have the property that every probability measure
compatible with it has strictly positive avoidance probability. Remarkably, Shearer [18] gave
a sufficient and necessary condition for a pair to have this property.

▶ Definition 4. Given a graph G, let S(G) = {ppp ∈ [0, 1)n : ZG(−ppp; S) > 0, for all S ⊆ [n]}.

Shearer showed that membership in S(G) characterizes the vectors ppp for which every
probability measure compatible with ppp, G has strictly positive avoidance probability. For this
he showed that given ppp, G, in order to minimize the avoidance probability, one should try
to realize the (unique) measure µ∗ under which events adjacent in G are disjoint. He then
showed that if Z(−ppp; S) ≤ 0 for some S ⊆ [n], then µ∗ can not be realized and the avoidance
probability is 0, while, otherwise, µ∗(

⋂
i∈S F i) = Z(−ppp; S) ≥ 0 for every S ⊆ [n] and,

therefore, the avoidance probability is at least Z(−ppp; [n]), i.e., the value of the independent
set polynomial of G at −ppp. Unfortunately, performing this evaluation is generally intractable,
as it involves a summation over Ind(G).

The Lovász Local Lemma is a sufficient condition for membership in S(G), along with a
lower bound for Z(−ppp). Below is a general formulation (the so-called asymmetric).

ICALP 2021
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▶ Theorem 5 (Lovász [20]). Let µ be a probability measure on set Ω and let G be a dependency
graph for {Fi}i∈[n] ⊆ Ω. If there exist r1, r2, . . . , rn ∈ [0, 1) such that for every i ∈ [n],

pi ≤ ri

∏
j∈Γi

(1− rj) , (3)

then µ

(
n⋂

i=1
Fi

)
≥
∏

i∈[n]

(1− ri) > 0.

▶ Remark 6. Theorem 5 holds (and is known as the “Lopsided LLL” of Erdős and Spencer [8])
if condition (2) holds with “≤” instead of “=”. All our results also hold in that setting.

2 Our Results

2.1 An Improved General / Asymmetric LLL
We strictly improve the asymmetric LLL, and thus all its applications, as follows.

▶ Theorem 7. Theorem 5 holds if (3) is replaced by

pi ≤ ri

∏
j∈Γi

1− rj

1− rirj
. (4)

While our Theorem 7 retains all the flexibility of the asymmetric LLL to adjust to events
with different degrees and probabilities, it is sharp enough to recover the optimal bound in
terms of the maximum degree ∆(G) (attained as a limit by ∆-regular trees as depth goes to
infinity). Specifically, if every event has probability at most p and is mutually independent
of all but ∆ ≥ 2 other events, Theorem 7 implies the optimal condition p < (∆−1)(∆−1)

∆∆

originally proven by Shearer [18], whereas the asymmetric LLL requires p < ∆∆

(∆+1)(∆+1) .
A fairly recent improvement of Theorem 5 is the so-called cluster expansion LLL by

Bissacot et al. [5], wherein the presence of edges in the neighborhood of a vertex, i.e., the
presence of triangles, allow one to relax the condition corresponding to that vertex. While
our Theorem 7 is, in general, incomparable with the cluster expansion LLL, the overall trend
is that the former wins when neighborhoods are sparse, while the latter when they are dense.

In Sections 2.4, 2.5 we will see four significant improvements of Theorem 7. The weakest
of these is already exact on arbitrary trees (uniform trees being the worst case for given ∆).

2.2 An Upper Bound for the Partition Function on the Negative Reals
Recall that given a vector ppp, the central problem is determining whether |ZG| > 0 on the
polydisk of ppp, i.e., for every xxx ∈ Cn such that |xi| ≤ pi for all i ∈ [n]. Since ZG(000) = 1 > 0, if
ppp ̸∈ S(G), continuity implies |ZG(λpppS)| = 0 for some S ⊆ [n] and λ ∈ (0, 1], where pppS is the
vector that results by setting to 0 all coordinates of ppp outside S. On the other hand, Scott
and Sokal [17] showed that for ppp ∈ S(G) and every λ ∈ [0, 1], the magnitude of ZG over the
polydisk of λppp is minimized at −λppp. Thus, membership in S(G) is equivalent to Z(−λppp) > 0
for every λ ∈ [0, 1] and characterizes the vectors on whose polydisks ZG does not vanish.

The LLL is a local sufficient condition for ppp ∈ S(G), providing a strictly positive lower
bound for ZG(−ppp) for such ppp (and, thus, for |ZG| on the polydisk of ppp). We show that
ZG(−ppp) can also be bounded from above for ppp ∈ S(G).

▶ Definition 8. Given a permutation π of [n], let ←−Γi =←−Γi(π) = Γi ∩ {j ∈ [n] : π(j) < π(i)}
and let −→Γi = −→Γi(π) = Γi ∩ {j ∈ [n] : π(j) > π(i)}.
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▶ Theorem 9 (Upper Bound). Given ppp, G and a permutation π of [n], define rrr = rrr(π) by

pi = ri

∏
j∈
←−Γi(π)

(1− rj) , for every i ∈ [n] . (5)

(Note that rrr is well-defined as r1 = p1, while for i > 1, ri is determined by pi, r1, . . . , ri−1.)
If ppp ∈ S(G), then Z(−ppp; S) ≤

∏
j∈S(1− rj), for every S ⊆ [n].

▶ Remark 10. If r′r′r′ satisfies (3) and rrr is defined by (5), then 1− r′i ≤ 1− ri for every i ∈ [n].

2.3 Exact Partition Function Computation for Chordal Graphs
Recall that a graph is chordal if all its induced cycles have length three. We prove that the
independent set polynomial of a chordal graph can be evaluated anywhere on the complex
plane in linear time. We conjecture that chordality is closely related to the exact solvability
of the hard-core model for certain highly transitive graphs, e.g., triangular lattice (hard
hexagons model [3]), and that the hard-core model is not the only statistical mechanics
model for which chordality relates to exact solvability. We leave this as future work.

▶ Fact 11. A graph G on [n] is chordal iff it has a perfect elimination ordering, i.e., a
permutation π of [n] such that −→Γi(π) is a clique for every i ∈ [n]. If the identity permutation
is a perfect elimination ordering for G, we say that G is chordally presented.

▶ Theorem 12. If G is chordally presented, then ZG(xxx) =
∏

i∈[n]

(1 + ri), where

xi = ri

∏
j∈
←−Γi

(1 + rj) , for every i ∈ [n] . (6)

(Note that rrr is well-defined as r1 = x1, while for i > 1, ri is determined by xi, r1, . . . , ri−1.)

▶ Corollary 13. The independent set polynomial of a chordal graph can be evaluated anywhere
on the complex plane in linear time. A perfect sample from the hard-core distribution on a
chordal graph can be obtained in linear time.

Proof. A chordal presentation of chordal graph G = (V, E) can be found in time O(|V |+ |E|).
Computing each ri given r1, . . . , ri−1 requires O(|Γi|) steps. Thus, ZG(xxx, [n]) can be evaluated
in O(|V |+ |E|) steps. Regarding sampling we observe that chordal graphs are closed with
respect to vertex deletions. Thus, given ZG(xxx, S) for arbitrary S ⊆ [n] and {ri}i∈S , computing
ZG(xxx, T ) for T ⊆ S can be done by O(|S| − |T |) divisions. Since {ri}i∈[n] can be computed
in O(|V |+ |E|) steps via (6), the claim follows. ◀

The previous best result on the independent set polynomial of chordal graphs is due to
Okamoto, Uno, and Uehara [15] who showed that it can be evaluated exactly in linear time
at xxx = 111, i.e., that the number of independent sets can be counted. Since their algorithm is
also capable of counting the number of independent sets of any given size k = 1, . . . , n in
linear time, evaluating the univariate independent set polynomial can be done in polynomial
time. However, our algorithm is significantly simpler, runs in linear time, and works also on
the multivariate setting. A very recent related work by Heinrich and Müller [10] showed that
the independent set polynomial can be evaluated exactly for xxx ∈ Rn, when G is strongly
orderable. These form a subclass of weakly chordal graphs that contains chordal bipartite
graphs. Finally, in terms of (arbitrarily good, randomized) approximate evaluation of the
independent set polynomial, Bezakova and Sun [4] showed that a natural Markov chain for
the hard core model with positive fugacities, i.e., for the case xxx ∈ Rn, mixes in polynomial
time on chordal graphs with separators of bounded size.
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2.4 Local Lemmata on Unordered Vertices (Simpler)
In this section we present four local lemmata providing sufficient conditions for ppp ∈ S(G).
As we will see in Section 3.2, determining ZG(−ppp) exactly amounts to understanding the set
of all possible walks on G obeying certain ordering and self-avoidance constraints.

Dropping the ordering restriction and replacing self-avoidance by non-repetitiveness
within distance 1 gives Theorem 14. Extending the scope of non-repetitiveness to distance 2
gives Theorem 15. Enforcing the ordering restriction while replacing self-avoidance by
non-repetitiveness within distance 1 and 2, yields Theorems 17 and 18, respectively.

2.4.1 Incorporating All Paths of Length at most One
▶ Theorem 14. Given ppp ∈ [0, 1)n and G, assume that for every path (i) of length 0 and
every path (i, j) of length 1, there exist ri, ri,j ∈ [0, 1), respectively, such that

pi ≤ ri

∏
j∈Γi

(1− ri,j) (7)

pj ≤ ri,j

∏
k∈Γj\{i}

(1− rj,k) . (8)

Then, Z(−ppp) ≥
∏

i∈[n](1− ri).

Theorem 7 follows from Theorem 14, as we show in Section 4.3: given {r′i}i∈[n] satisfy-
ing (4) we can compute ri,j for every oriented edge (i, j) to satisfy (7), (8) (with ri = r′i).

2.4.2 Incorporating All Paths of Length at most Two
▶ Theorem 15. Given ppp ∈ [0, 1)n and G, assume that for every path (i) of length 0, every
path (i, j) of length 1, and every path (i, j, k) of length 2 such that i ∈ Γk, there exist
ri, ri,j , ri,j,k ∈ [0, 1), respectively, such that

pi ≤ ri

∏
j∈Γi

(1− ri,j) (9)

pj ≤ ri,j

∏
k∈Γj\{i}

i/∈Γk

(1− rj,k)
∏

k∈Γj\{i}
i∈Γk

(1− ri,j,k) (10)

pk ≤ ri,j,k

∏
ℓ∈Γk\{i,j}

j /∈Γℓ

(1− rk,ℓ)
∏

ℓ∈Γk\{i,j}
j∈Γℓ

(1− rj,k,ℓ) . (11)

Then, Z(−ppp) ≥
∏

i∈[n](1− ri).

2.5 Local Lemmata on Ordered Vertices (Sharper)
A walk starting at vertex i is a sequence of vertices (v0, v1, . . . , vℓ), such that v0 = i and for
all k ∈ [ℓ], vertex vk−1 is adjacent to vertex vk.

▶ Definition 16. Given a walk w = (v0, v1, . . . , vℓ), let F(v0) = ∅, while for k ∈ [ℓ] let

F(v0, . . . , vk) = F(v0, . . . , vk−1) ∪ {vk−1} ∪ {u ∈ Γvk−1 : u ≥ vk} . (12)

Let N (v0, . . . , vℓ) = Γvℓ
∩ F(v0, . . . , vℓ).
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2.5.1 Incorporating All Paths of Length at most One
▶ Theorem 17. Given ppp ∈ [0, 1)n and G, assume that for every vertex i ∈ [n] and every
oriented edge (i, j) there exist ri, ri,j ∈ [0, 1), respectively, such that

pi ≤ ri

∏
j∈Γi

(1− ri,j) (13)

pj ≤ ri,j

∏
k∈Γj\N (i,j)

(1− rj,k) . (14)

Then, Z(−ppp) ≥
∏

i∈[n](1− ri).

Theorem 17 implies Theorem 14, since {i} ⊆ N (i, j) implying that any collection of
numbers satisfying (8) also satisfies (14).

2.5.2 Incorporating All Paths of Length at most Two
▶ Theorem 18. Given ppp ∈ [0, 1)n and G assume that for every path (i) of length 0, every
path (i, j) of length 1, and every path (i, j, k) of length 2 for which N (i, j, k) ̸= N (j, k), there
exist ri, ri,j , ri,j,k ∈ [0, 1), respectively, such that

pi ≤ ri

∏
j∈Γi

(1− ri,j) (15)

pj ≤ ri,j

∏
k∈Γj\N (i,j)
N (i,j,k)=N (j,k)

(1− rj,k)
∏

k∈Γj\N (i,j)
N (i,j,k) ̸=N (j,k)

(1− ri,j,k) (16)

pk ≤ ri,j,k

∏
ℓ∈Γk\N (i,j,k)
N (j,k,ℓ)=N (k,ℓ)

(1− rk,ℓ)
∏

ℓ∈Γk\N (i,j,k)
N (j,k,ℓ)̸=N (k,ℓ)

(1− rj,k,ℓ) . (17)

Then, Z(−ppp) ≥
∏

i∈[n](1− ri).

Theorem 18 implies Theorem 15, since {i} ⊆ N (i, j) and Γk∩{i, j} ⊆ N (i, j, k), implying
that any collection of numbers satisfying (10), (11) also satisfy (16), (17).

Theorem 18 also yields Theorem 17, by replacing the set N (i, j, k) in inequality (17)
with its subset N (i, j) and imposing the additional equality constraints ri,j,k = rj,k. These
modifications increase the number of (shrinking) factors in both (16) and (17), and together
with the additional equality constraints make the resulting system of inequalities stricter.

Thus, to prove Theorems 14–18 it suffices to prove Theorem 18, which we do in Section 4.4.

2.6 Benchmarking: the Radii of S(G)
As mentioned earlier, determining the set of activities for which the partition function is non-
vanishing in the corresponding polydisk is a central problem in statistical mechanics. This is
primarily motivated by the Lee-Yang [23] approach to studying phase transitions. Since phase
transitions (non-analyticies of [one or more derivatives of] the log-partition function) can occur
only in infinite-size systems, to study them on a locally-finite countable graph G∞ (typically
a regular lattice), we consider an increasing sequence of subgraphs (Gn)n≥1 converging to G∞
and study the limiting free energy per vertex fG∞ = limn→∞ n−1 log ZGn

(xxx). Nonanalyticities
of fG∞ for real xxx, arise from singularities of log ZGn

(xxx) for complex xxx that approach the
real axis in the limit n→∞. But the singularities of log ZGn(xxx) are precisely the zeros of
ZGn

(xxx), hence the desire to determine the set S(G). Of particular interest is the so-called
uniform, i.e., univariate, case xxx = x111, where all the activities are the same.
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8:8 Local Approximations of the Independent Set Polynomial

To benchmark our methods, we consider one of the very few exactly solved cases of the
hard-core model, namely the case where G∞ is the triangular lattice. This is known as
the “hard hegaxons” model, since its valid configurations amount to placements of (centers
of) hexagons in a triangular lattice so that no two hexagons overlap, i.e., to selecting an
independent set of the triangular lattice to serve as the set of hexagon centers.

For this model it is known that the critical value is xc = 5
√

5−11
2 = 0.09016... Applying

the asymmetric LLL, which only exploits that ∆(Gn) = 6, gives xc ≥ ∆∆/(∆ + 1)∆+1 =
66/77 = 0.0566. Our improved asymmetric LLL (Theorem 7), improving the dependence on
∆, yields xc ≥ (∆− 1)∆−1/∆∆ = 55/66 = 0.0669.

Kolipaka, Szegedy, and Xu [11], introduced a family of sufficient conditions for the
avoidance probability to be positive that range between the asymmetric LLL and the exact
result of Shearer [18]. To apply their so-called “clique LLL” we color the triangular faces in
a chess board pattern and decompose the triangular lattice using the white triangles as the
parts of the clique-decomposition. Optimizing the resulting parameters yields xc ≥ 0.07407.

Finally, the cluster expansion LLL of Bissacot et al. [5], exploiting the presence of 6
triangles in the neighborhood of each vertex, yields xc ≥ 0.0776.

2.6.1 Simpler Bound: xc ≥ 0.08115

To apply Theorem 17 in the triangular lattice we order the neighbors of each vertex by
taking the eastern neighbor to be the greatest, and then descending counter-clockwise. The
translation symmetry of the lattice allows us to capture all possible paths of length up to
one using only seven variables. Specifically, r0 corresponds to vertices (paths of length 0), r1
corresponds to arcs (paths of length 1) heading east, r2 to arcs heading northeast, etc. Thus,
inequalities (13) and (14) require x to be simultaneously less than all of the following:

r0 · (1− r1) · (1− r2) · (1− r3) · (1− r4) · (1− r5) · (1− r6)
r1 · (1− r1) · (1− r2) · (1− r3) · (1− r5) · (1− r6)
r2 · (1− r1) · (1− r2) · (1− r3) · (1− r4)
r3 · (1− r2) · (1− r3) · (1− r4) · (1− r5)
r4 · (1− r3) · (1− r4) · (1− r5) · (1− r6)
r5 · (1− r1) · (1− r4) · (1− r5) · (1− r6)
r5 · (1− r1) · (1− r5) · (1− r6)

Taking r0 = 0.3055479560, r1 = 0.2499747372, r2 = 0.2063465756, r3 = 0.1924531372,
r4 = 0.1818805124, r5 = 0.1958294533, r6 = 0.1602118920, this is achieved for x ≤ 0.08115.
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2.6.2 Sharper Bound: xc ≥ 0.08636
To apply Theorem 18 we need to also consider paths of length 2. To do this we introduce a
set of 6 additional variables r1,3, r2,1, r2,4, r3,5, r5,1, r6,1 (while, a priori, there are 62 “types”
of paths of length 2, many of them are infeasible, while for others the type of the first
arc implies the type of the second). Specifically, r1,3 corresponds to a path first heading
east and then heading northwest, r2,1 corresponds to a path first heading northeast and
then heading east, etc. The resulting 13 inequalities are satisfied for x ≤ 0.08636 and r0 =
0.3939972440, r1 = 0.2956228200, r2 = 0.2271540263, r3 = 0.2187337137, r4 = 0.2144822763,
r5 = 0.2060776445, r6 = 0.1736041642, r1,3 = 0.1820809928, r2,1 = 0.2347015656, r2,4 =
0.1772472600, r3,5 = 0.1675677715, r5,1 = 0.1868706968, r6,1 = 0.2417955235.

3 Relating the Independent Set Polynomial to Walk Trees

3.1 Main Recurrence, Occupation Ratios, and Trees
For i ∈ [n] and S ⊆ [n] \ {i}, given input xxx, we define

Z(xxx; i | S) := Z(xxx; S ∪ {i})
Z(xxx; S) = Z(i | S) .

Trivially, Z = Z([n]) =
∏

i∈[n] Z(i | [i−1]), since Z(∅) = 1. To estimate Z(i | S) observe that
the contribution to Z(S ∪ {i}) of the sets including vertex i equals xi times the contribution
of the sets not including Γ+(i). Therefore,

Z(S ∪ {i}) = Z(S) + xiZ(S \ Γi) . (18)

With the above in mind, let j1 ≥ . . . ≥ jd be the descending ordering of Γi∩S, and for ℓ ∈ [d]
write Sℓ = S \ {j1, . . . , jℓ}. Dividing (18) by Z(S) and writing the ratio Z(S \ Γi)/Z(S) in
telescopic form yields

Z(i | S) = 1+xi
1

Z(S)
Z(S \ Γi)

= 1+xi
1

d∏
ℓ=1

Z(S \ {j1, . . . , jℓ−1})
Z(S \ {j1, . . . , jℓ})

= 1+xi

d∏
ℓ=1

1
Z(jℓ | Sℓ)

. (19)

It is convenient to introduce the quantity ratioG(xxx; (i, S)) := Z(i | S)− 1 = ratio(i, S) and
rewrite (19) as

ratio(i, S) = xi

d∏
ℓ=1

1
1 + ratio(jℓ, Sℓ)

. (20)

Thus,

Z = Z([n]) =
∏

i∈[n]

Z(i | [i− 1]) =
∏

i∈[n]

(1 + ratio(i, [i− 1])) . (21)

We can now characterize the set S(G) as follows.

▶ Lemma 19. The following are equivalent:
1. For every S ⊆ [n], Z(−ppp; S) > 0.
2. For every i ∈ [n], and S ⊆ [n] \ {i}, ratio(−ppp; (i, S)) > −1.
3. For every i ∈ [n], and S ⊆ [i− 1], ratio(−ppp; (i, S)) > −1.
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Proof.
(1 =⇒ 2) If Z(S), Z(S ∪ {i}) > 0, then 1 + ratio(i, S) = Z(S ∪ {i})/Z(S) > 0.
(2 =⇒ 3) Trivial.
(3 =⇒ 1) For any S ⊆ [n] and j ∈ S, write Sj = {k ∈ S : k < j}. By telescoping, Z(S) =∏

j∈S Z(j|Sj) =
∏

j∈S (1 + ratio(j, Sj)). Since Sj ⊆ [i− 1], the last product is positive. ◀

Say that S, T ⊆ [n] are separate if they are disjoint and no edge has one endpoint in each.
Clearly, if S, T are separate, then Z(S ∪ T ) = Z(S)Z(T ). Moreover, if T ⊆ [n] is separate
from S ∪ {i}, then

ratio(i, S ∪ T ) = xi
Z((S ∪ T ) \ Γi)

Z(S ∪ T )

= xi
Z((S \ Γi) ∪ T )

Z(S ∪ T )

= xi
Z(S \ Γi)Z(T )

Z(S)Z(T ) = ratio(i, S) . (22)

▶ Definition 20. For a vertex v of a rooted tree T , we use r̂atioT (v) to denote the quantity
ratioT (v, T (v)), where T (v) is the set of vertices other than v in the subtree rooted at v.

Using (22) we observe that for a rooted tree T , recurrence (20) can be rewritten as

r̂atioT (v) = xv

d∏
ℓ=1

1
1 + r̂atioT (vℓ)

, (23)

where {v1, . . . , vd} are the children of v in T .

3.2 Relating Arbitrary Graphs to Walk-Trees
Let w = (v0, v1, . . . , vℓ) be an arbitrary walk of length ℓ.

▶ Definition 21. w is self-avoiding if its vertices are distinct.

▶ Definition 22. w is descending if vk < vk−1 for all k ∈ [ℓ].

Recall that, per Definition 16, for a walk w = (v0, v1, . . . , vℓ), we let F(v0) = ∅, while for
k ∈ [ℓ] we let F(v0, . . . , vk) = F(v0, . . . , vk−1) ∪ {vk−1} ∪ {u ∈ Γvk−1 : u ≥ vk}.

▶ Definition 23. w = (v0, v1, . . . , vℓ) is self-bounding if vk+1 ̸∈ F(v0, . . . , vk) for all k ∈ [ℓ].

▶ Remark 24. Self-bounding walks were defined in [17] as “truncated self-avoiding walks.” The
idea is that the next vertex in a self-bounding walk is subject to the additional requirement,
relative to a self-avoiding walk, that it can also not be connected to certain neighbors of
previously visited vertices. While a descending walk is self-bounding, the converse need
not hold. For instance, in G = ([4], {{1, 2}, {2, 3}, {3, 4}, {4, 1}}), the walk (4, 1, 2) is self-
bounding but not descending.
For S ⊆ [n], we write GS for the subgraph of G induced by S.

▶ Definition 25. Let W be a set of walks on G all starting at i, such that if w ∈ W, then
the same is true for every prefix of w. The walk-tree corresponding to the set of walks W has
as its root the walk (i) of length 0, while the children of each vertex (walk) are its extensions
by one step. The activity of vertex (i, v1, . . . , vℓ) of the walk-tree is xvℓ

.
We use Li := Li(G) to denote the walk-tree of self-bounding walks on G[i] starting at i.
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The following theorem reduces the computation of ratios of an arbitrary graph G, to that
of the tree ratios of Li(G).

▶ Theorem 26. For every vertex i ∈ [n] and every walk w = (v0, v1, . . . , vℓ) in Li,

r̂atioLi
(w) = ratioG (vℓ, [i− 1] \ F(v0, . . . , vℓ)) . (24)

In particular, r̂atioLi
((i)) = ratioG (i, [i− 1]).

Proof. We proceed by induction on the size of the subtree rooted at w.
If w is a leaf in Li then, trivially, ratioLi

(w) = xvℓ
and F(v0, . . . , vℓ) ⊇ Γvℓ

, for otherwise
w could be extended. Thus, [i− 1] \ F(v0, . . . , vℓ) is separate from vℓ, which per (22) implies
that ratioG (vℓ, [i− 1] \ F(v0, . . . , vℓ)) = ratioG(vℓ, ∅) = xvℓ

.
If w is not a leaf in Li, assume the theorem holds for its descendants. Let {j1, . . . , jd} =

Γvℓ
∩ ([i− 1] \ F(v0, . . . , vℓ)), with j1 ≥ . . . ≥ jd, and for t ∈ [d] write wt = (v0, v1, . . . , vℓ, jt).

The first equality below follows from (23), the second from the inductive hypothesis, the
third from the definition of F , and the last from (20):

r̂atioLi
(w) = xvℓ

d∏
t=1

1
1 + r̂atioLi

(wt)
(25)

= xvℓ

d∏
t=1

1
1 + ratioG (jt, [i− 1] \ F (v0, . . . , vℓ, jt))

(26)

= xvℓ

d∏
t=1

1
1 + ratioG (jt, ([i− 1] \ F (v0, . . . , vℓ)) \ {j1, . . . , jt})

(27)

= ratioG (vℓ, [i− 1] \ F (v0, . . . , vℓ)) . (28)

◀

3.3 Tree Monotonicity
▶ Definition 27. Let T be a tree with root r. The set of prefixes of T comprises T itself,
and every tree with root r that can be derived by removing a leaf from a prefix of T .

▶ Lemma 28. Let T be a tree with root r and assume that ppp is such that r̂atioT (−ppp; v) > −1
for every vertex v ̸= r of T . Then the function f : xxx 7→ r̂atioT (−xxx; r) is smooth and strictly
decreasing in each coordinate inside P = {(x1, . . . , xn) : 0 ≤ xi ≤ pi}. In particular, if T ′ is
a prefix of T , then r̂atioT (−ppp; r) ≤ r̂atioT ′ (−ppp; r).

Proof. We use induction on the size of T . If T consists of just {r}, then r̂atioT (−xxx; r) = −xr,
satisfying the claim trivially. Let now T be a tree of size n, and assume that the lemma
holds for every tree of size strictly less than n. If Γi = {j1, . . . , jd}, then per (23),

r̂atioT (−xxx; r) = −xr

d∏
ℓ=1

1
1 + r̂atioT (−xxx; jℓ)

. (29)

Since each subtree rooted at jℓ has size strictly less than n, the inductive hypothesis implies
that r̂atioT (−xxx; jℓ) is strictly decreasing inside P . Therefore, the lemma hypothesis that
r̂atioT (−ppp; jℓ) > −1 implies that r̂atioT (−xxx; jℓ) > −1. Since the function 1/(1+x) is smooth
and strictly decreasing for x > −1, the claim follows by the smoothness and monotonicity of
the d factors in (29) implied by the inductive hypothesis.

To see the claim regarding prefixes of T , observe that r̂atioT ′ (−ppp; r) = r̂atioT (−p′p′p′; r),
where p′p′p′ is derived by setting to 0 all coordinates of ppp corresponding to vertices not in T ′. ◀
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▶ Theorem 29. ppp ∈ S(G) iff r̂atioLi
(−ppp; w) > −1, for all i ∈ [n] and w ∈ Li.

Proof. If ppp ∈ S(G), then, by Lemma 19, ratioG(i, S) > −1, for every i ∈ [n] and S ⊆ [n]\{i}.
Thus, per Theorem 26, r̂atioLi

(−ppp; w) = ratioG (vℓ, [i− 1] \ F (v0, . . . , vℓ)) > −1.
For the converse, we will show that if r̂atioLi

(−ppp; w) > −1 for all i ∈ [n] and w ∈ Li, then
ratio(i, S) > −1 for every i ∈ [n] and S ⊆ [i − 1], which, by Lemma 19, implies ppp ∈ S(G).
Let i ∈ [n] and S ⊆ [i− 1] be arbitrary, write S+ := S ∪ {i}, and let L̃i be the prefix of Li

obtained by deleting all walks intersecting the complement of S+. It is easy to check that L̃i

coincides with the tree of self-bounding walks starting at i on the subgraph of G[i] induced
by S+, i.e., L̃i(G) = Li(GS+). Thus, Theorem 26 gives the second equality below, while the
monotonicity of tree prefixes, per Lemma 28, gives the first inequality:

ratioG (−ppp; (i, S)) = ratioGS+ (−ppp; (i, S)) = r̂atioL̃i
(−ppp; (i)) ≥ r̂atioLi

(−ppp; (i)) > −1 . ◀

4 Proofs of Results

4.1 Upper Bound (Theorem 9)
Let Di := Di(G) denote the tree of descending walks on G starting at i. Due to its highly
recursive structure, if two vertices in Di correspond to walks that end on the same vertex,
then their ratios are equal. As a result, the different root ratios satisfy the following simple
system of equations.

▶ Theorem 30. Given xxx ∈ Cn, for i = 1, 2, . . . , n let

ri = xi

∏
j∈
←−Γ i

1
1 + rj

. (30)

Then, r̂atioDi
(xxx; (i)) = ri, for every i ∈ [n].

Proof. We use induction on i. For i = 1, trivially, r̂atioD1 (xxx; (1)) = x1 = r1. Assume now
that (30) holds for all i < k. Clearly, the root walk (k) can only be extended by taking a
step to a neighbor smaller than k. If {j1, . . . , jd} =←−Γk, then (23) yields (31). For the first
equality in (32), note that appending k as a prefix to every vertex of Djℓ

yields the subtree
of Dk rooted at (k, jℓ), while the inductive hypothesis yields the second equality in (32).

r̂atioDk
(xxx; (k)) = xk

d∏
ℓ=1

1
1 + r̂atioDk

(xxx; (k, jℓ))
(31)

= xk

d∏
ℓ=1

1
1 + r̂atioDjℓ

(xxx; (jℓ))
= xi

∏
j∈
←−Γ i

1
1 + rj

= rk . (32)

◀

Proof of Theorem 9. Without loss of generality, we assume that π is the identity. Equa-
tion (21) yields (33), while (34) follows from Theorem 26. Recalling that descending walks
are self-bounding shows that Di is a prefix of Li and, thus, per Lemma 28, r̂atioDi

(−ppp; (i)) ≥
r̂atioLi (−ppp; (i)), yielding (35). Finally, our hypothesis is equivalent to −ri satisfying (30) for
xxx = −ppp so that Theorem 30, implies r̂atioDi

(−ppp; (i)) = −ri and, thus, (36).
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Z(−ppp; S) =
∏

i∈[n]

(1 + ratioG (−ppp; (i, [i− 1])) (33)

=
∏

i∈[n]

(
1 + r̂atioLi

(−ppp; (i))
)

(34)

≤
∏

i∈[n]

(
1 + r̂atioDi

(−ppp; (i))
)

(35)

= (1− ri) . (36)

◀

4.2 Chordal Graphs (Theorem 12)
We claim that a graph on [n] is chordally presented iff its set of descending walks equals its
set of self-bounding walks. Given this claim, Theorem 12 follows from Theorem 30. Since
descending walks are self-bounding, the following suffices to prove our claim.

▶ Theorem 31. G is not chordally presented iff there is a vertex i and a self-bounding walk
on G[i] starting at i that is not descending.

Proof. Let (i =: v0, v1, . . . , vℓ) be a self-bounding walk on G[i] that is not descending and
let 2 ≤ k ≤ ℓ be the minimum index such that vk−1 < vk. The minimality of k implies
vk−1 < vk−2 and, hence, that vk, vk−2 ∈

−→Γ vk−1 . Since the walk is self-bounding, vk /∈ Γvk−2 ,
i.e., there is no edge between vk−2 and vk, implying that G is not chordally presented.

If G is not chordally presented, there must be vertices a < b < c such that a is connected
to b and c, but b is not connected to c. Clearly, the walk (c, a, b) on G[c] is self-bounding but
not descending. ◀

4.3 Proof of Theorem 7 given Theorem 14

Proof. Given {r′i}i∈[n], let ri = r′i and ri,j = r′i
1−r′

j

1−r′
i
r′

j
. We show that if (4) is satisfied,

then (7) and (8) are satisfied. Indeed,

ri

∏
j∈Γi

(1− rj,i) = r′i
∏

j∈Γi

(
1− r′j

1− r′i
1− r′jr′i

)
= r′i

∏
j∈Γi

(
1− r′j

1− r′jr′i

)
≥ pi ,

and

ri,j

∏
k∈Γi\{j}

(1− rk,i) = r′i
1− r′j

1− r′ir
′
j

∏
k∈Γi\{j}

(
1− r′k

1− r′i
1− r′kr′i

)
= r′i

∏
j∈Γi

(
1− r′j

1− r′jr′i

)
≥ pi.

◀

4.4 Proof of Theorem 18
Proof. We claim that (15)–(17) imply ratio(−ppp; (i, S)) ≥ −ri for all i ∈ [n] and S ⊆ [n] \ {i}.
This suffices since Z([n]) =

∏n
i=1 Z(i|[i− 1]) =

∏n
i=1(1 + ratio(i, [i− 1])) ≥

∏n
i=1(1− ri).

To prove the claim we prove that if (15)–(17) hold, then (a),(b),(c) below hold (our claim
is equivalent to (a); we only prove (b), (c) as aids for proving (a)):

ICALP 2021



8:14 Local Approximations of the Independent Set Polynomial

(a) ratio(−ppp; (i, S)) ≥ −ri, for every (empty) path (i) and every S ⊆ [n] \ {i}.
(b) ratio(−ppp; (j, S)) ≥ −ri,j , for every path (i, j) and every S ⊆ [n] \ N (i, j).
(c) ratio(−ppp; (k, S)) ≥ −ri,j,k, for every path (i, j, k) such that N (i, j, k) ̸= N (j, k) and

every S ⊆ [n] \ N (i, j, k).

To prove (a),(b),(c) we proceed by induction on |S|. For S = ∅, we see that (15)–(17)
imply −pi ≥ max{−rk,j,i,−rj,i,−ri}, for any i, j, k ∈ [n], while ratio(−ppp; (i, S)) = −pi.

For S ̸= ∅, assume that (a),(b),(c) hold for all sets of size strictly less than |S|.

(a) For any path (i) and any set S ⊆ [n] \ {i}, equation (20) implies the first equality
below, while the inductive hypothesis yields the first inequality (since N (i, j) is non-empty):

ratio(i, S) = −pi

∏
j∈S∩Γi

1
1 + ratio(j, S \ N (i, j))

≥ −pi

∏
j∈S∩Γi

1
1− ri,j

≥ −pi

∏
j∈Γi

1
1− ri,j

.

Assumption (15) concludes the argument.
(b) For any path (i, j) and any set S ⊆ [n]\N (i, j), equation (20) implies the first equality

below, the second equality holds since S is devoid of vertices from N (i, j), while the third
equality follows easily from the definition of N :

ratio(j, S) = −pj

∏
k∈S∩Γj

1
1 + ratio(k, S \ N (j, k))

= −pj

∏
k∈S∩Γj

1
1 + ratio(k, S \ (N (i, j) ∪N (j, k)))

= −pj

∏
k∈S∩Γj

1
1 + ratio(k, S \ N (i, j, k)) (37)

Decomposing the product in (37) into two groups of factors yields (38) and invoking the
inductive hypothesis yields (39):

∏
k∈S∩Γj

N (i,j,k)=N (j,k)

(
1

1 + ratio(k, S \ N (j, k))

) ∏
k∈S∩Γj

N (i,j,k) ̸=N (j,k)

(
1

1 + ratio(k, S \ N (i, j, k))

)

(38)

≤
∏

k∈S∩Γj

N (i,j,k)=N (j,k)

(
1

1− rj,k

) ∏
k∈S∩Γj

N (i,j,k)̸=N (j,k)

(
1

1− ri,j,k

)
(39)

≤
∏

k∈Γj\N (i,j)
N (i,j,k)=N (j,k)

(
1

1− rj,k

) ∏
k∈Γj\N (i,j)
N (i,j,k)̸=N (j,k)

(
1

1− ri,j,k

)
.

Assumption (16) concludes the argument.
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(c) For any path (i, j, k) such that N (i, j, k) ̸= N (j, k) and any set S ⊆ [n] \ N (i, j, k),
equation (20) implies the first equality below, the second equality holds since S is devoid of
vertices from N (j, k), while the third equality follows easily from the definition of N :

ratio(k, S) = −pk

∏
ℓ∈S∩Γk

1
1 + ratio(ℓ, S \ N (k, ℓ))

= −pk

∏
ℓ∈S∩Γk

1
1 + ratio(ℓ, S \ (N (j, k) ∪N (k, ℓ)))

= −pk

∏
ℓ∈S∩Γk

1
1 + ratio(ℓ, S \ N (j, k, ℓ)) . (40)

Decomposing the product in (40) into two groups of factors yields (41) and invoking the
inductive hypothesis yields (42):∏

ℓ∈S∩Γk

N (j,k,ℓ)=N (k,ℓ)

(
1

1 + ratio(ℓ, S \ N (k, ℓ))

) ∏
ℓ∈S∩Γj

N (j,k,ℓ)̸=N (k,ℓ)

(
1

1 + ratio(ℓ, S \ N (j, k, ℓ))

)

(41)

≤
∏

ℓ∈S∩Γk

N (j,k,ℓ)=N (k,ℓ)

(
1

1− rk,ℓ

) ∏
ℓ∈S∩Γk

N (j,k,ℓ)̸=N (k,ℓ)

(
1

1− rj,k,ℓ

)
(42)

≤
∏

ℓ∈Γk\N (i,j,k)
N (j,k,ℓ)=N (k,ℓ)

(
1

1− rk,ℓ

) ∏
ℓ∈Γk\N (i,j,k)
N (j,k,ℓ)̸=N (k,ℓ)

(
1

1− rj,k,ℓ

)
.

Assumption (17) concludes the argument. ◀
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Abstract
We give almost-linear-time algorithms for constructing sparsifiers with n poly(log n) edges that
approximately preserve weighted (ℓ2

2 + ℓp
p) flow or voltage objectives on graphs. For flow objectives,

this is the first sparsifier construction for such mixed objectives beyond unit ℓp weights, and is
based on expander decompositions. For voltage objectives, we give the first sparsifier construction
for these objectives, which we build using graph spanners and leverage score sampling. Together
with the iterative refinement framework of [Adil et al, SODA 2019], and a new multiplicative-
weights based constant-approximation algorithm for mixed-objective flows or voltages, we show
how to find (1 + 2−poly(log n)) approximations for weighted ℓp-norm minimizing flows or voltages in
p(m1+o(1) + n4/3+o(1)) time for p = ω(1), which is almost-linear for graphs that are slightly dense
(m ≥ n4/3+o(1)).
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1 Introduction

Network flow problems are some of the most extensively studied problems in optimization
(e.g. see [4, 37, 20]). A general network flow problem on a graph G(V, E) with n vertices
and m edges can be formulated as

min
B⊤f =d

cost(f ),

where f ∈ RE is a flow vector on edges satisfying net vertex demands d ∈ RV , B ∈ RE×V

is the signed edge-vertex incidence matrix of the graph, and cost(f ) is a cost measure
on flows. The weighted ℓ∞-minimizing flow problem, i.e., cost(f ) = ∥S−1f ∥∞, captures
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the celebrated maximum-flow problem with capacities S; the weighted ℓ1-minimizing flow
problem, cost(f ) = ∥Sf ∥1 captures the transshipment problem generalizing shortest paths
with lengths S; and cost(f ) = f ⊤Rf = ∥R

1
2 f ∥2

2 captures the electrical flow problem [42].
Dual to flow problems are voltage problems, which can be formulated as

min
d⊤v=1

cost′(Bv),

Analogous to the flow problems, picking cost′(Bv) = ∥SBv∥1 captures the capacitated
min-cut problem, cost′(Bv) = ∥S−1Bv∥∞ captures vertex-labeling [26], and cost′(Bv) =
(Bv)⊤R−1Bv = ∥R− 1

2 Bv∥2
2 captures the electrical voltages problem.

The seminal work of Spielman and Teng [42] gave the first nearly-linear-time algorithm
for computing (1 + 1/ poly(n))-approximate solutions to electrical (weighted ℓ2-minimizing)
flow/voltage problems. This work spurred the “Laplacian Paradigm” for designing faster al-
gorithms for several classic graph optimization problems including maximum flow [11, 38, 22],
multi-commodity flow [22], bipartite matching [29], transshipment [39], and graph partition-
ing [32]; culminating in almost-linear-time or nearly-linear-time low-accuracy algorithms (i.e.
1 + ε approximations with poly( 1

ε ) running time dependence) for many of these problems.
Progress on high-accuracy algorithms (i.e. algorithms that return (1 + 1/ poly(n))-

approximate solutions with only a poly(log n) factor overhead in time) for solving these
problems has been harder to come by, and for many flow problems has been based on
interior point methods [18]. E.g. the best running time for maximum flow stands at
Õ(min(m

√
n, nω + n2+1/6)) [27, 15] and Õ(m4/3) for unit-capacity graphs [29, 28, 21]. Other

results making progress in this direction include works on shortest paths with small range
negative weights [16], and matrix-scaling [13, 5]. Recently, there has been progress on the
dense case. In [44], the authors developed an algorithm for weighted bipartite matching
and transshipment running in Õ(m + n3/2) time. This is a nearly-linear-time algorithm in
moderately dense graphs.

Bubeck et al. [9] restarted the study of faster high-accuracy algorithms for the weighted
ℓp-norm objective, cost(f ) = ∥Sf ∥p, a natural intermediate objective between ℓ2 and ℓ∞.

This result improved the running time significantly over classical interior point methods
[31] for p close to 2. Adil et al. [1] gave a high-accuracy algorithm for computing ℓp-norm
minimizing flows in time min{m 4

3 +o(1), nω} for p ∈ (2,
√

log n]. Building on their work,
Kyng et al. [25] gave an almost-linear-time high-accuracy algorithm for unit-weight ℓp-norm
minimizing flows cost(f ) = ∥f ∥p

p for large p ∈ (ω(1),
√

log n]. More generally, they give
an almost-linear time-high-accuracy algorithm for mixed ℓ2

2 + ℓp
p objectives as long as the

ℓp
p-norm is unit-weight, i.e.,

cost(f ) = ∥R
1
2 f ∥2

2 + ∥f ∥p
p.

Their algorithm for (ℓ2
2 + ℓp

p)-minimizing flows was subsequently used as a key ingredient
in recent results improving the running time for high-accuracy/exact maximum flow on
unit-capacity graphs to m4/3+o(1) [28, 21].

In this paper, we obtain a nearly-linear running time for weighted ℓ2
2 + ℓp

p flow/voltage
problems on graphs. Our algorithm requires p(m1+o(1) + n4/3+o(1)) time for p = ω(1) which
is almost-linear-time for p ≤ mo(1) in slightly dense graphs, (m ≥ n4/3+o(1)).

Our running time m1+o(1) + n4/3+o(1) is even better than the Õ(m + n3/2) time obtained
for bipartite matching in [44]. Our result beats the Ω(n3/2) barrier that arises in [44]
from the use of interior point methods that maintain a vertex dual solution using dense
updates across

√
n iterations. The progress on bipartite matching relies on highly technical
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graph-based inverse maintenance techniques that are tightly interwoven with interior point
method analysis. In constrast, our sparsification methods provide a clean interface to iterative
refinement, which makes our analysis much more simple and compact.

Graph Sparsification. Various notions of graph sparsification – replacing a dense graph
with a sparse one, while approximately preserving some key properties of the dense graph –
have been key ingredients in faster low-accuracy algorithms. Benczúr and Karger [8] defined
cut-sparsifiers that approximately preserve all cuts, and used them to give faster low-accuracy
approximation algorithms for maximum-flow. Since then, several notions of sparsification
have been studied extensively and utilized for designing faster algorithms [33, 41, 35, 40, 30,
38, 22, 36, 17, 24, 19, 12].

Sparsification has had a smaller direct impact on the design of faster high-accuracy
algorithms for graph problems, limited mostly to the design of linear system solvers [42,
23, 34, 24]. Kyng et al. [25] constructed sparsifiers for weighted ℓ2

2 + unweighted ℓp
p-norm

objectives for flows. In this paper, we develop almost-linear time algorithms for building
sparsifiers for weighted ℓ2

2 + ℓp
p norm objectives for flows and voltages,

cost(f ) = ∥R
1
2 f ∥2

2 + ∥Sf ∥p
p, and cost′(Bv) = ∥W

1
2 Bv∥2

2 + ∥UBv∥p
p,

and utilize them as key ingredients in our faster high-accuracy algorithms for optimizing
such objectives on graphs. Our construction of sparsifiers for flow objectives builds on the
machinery from [25], and our construction of sparsifiers for voltage objectives builds on graph
spanners [6, 33, 7].

2 Our Results

Our main results concern flow and voltage problems for mixed (ℓ2
2 + ℓp

p)-objectives for p ≥ 2.
Since our algorithms work best for large p, we restrict our attention to p = ω(1) in this
overview. Section 3 provides detailed running times for all p ≥ 2. We emphasize that by
setting the quadratic term to zero in our mixed (ℓ2

2 + ℓp
p)-objectives, we get new state of the

art algorithms for ℓp-norm miniziming flows and voltages.

Mixed ℓ2-ℓp-norm minimizing flow. Consider a graph G = (V, E) along with non-negative
diagonal matrices R, S ∈ RE×E , and a gradient vector g ∈ RE , as well as demands d ∈ RV .
We refer to the diagonal entries of R and S as ℓ2-weights and ℓp-weights respectively. Let B
denote the signed edge-vertex incidence of G (see Appendix in full version). We wish to solve
the following minimization problem with the objective E(f ) = g⊤f + ∥R1/2f ∥2

2 + ∥Sf ∥p
p

min
B⊤f =d

E(f ) (1)

We require g ⊥ {ker(R) ∩ ker(S) ∩ ker(B)} so that the problem has bounded minimum
value, and d ⊥ 1 so a feasible solution exists. These conditions can be checked in linear
time and have a simple combinatorial interpretation. Note that the choice of graph edge
directions in B matters for the value of g⊤f ,. The flow on an edge is allowed to be both
positive or negative.

Mixed ℓ2-ℓp-norm minimizing voltages. Consider a graph G = (V, E) along with non-
negative diagonal matrices W ∈ RE×E and U ∈ RE×E , and demands d ∈ RV . We refer
to the diagonal entries of W and U as ℓ2-conductances and ℓp-conductances respectively.
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9:4 Almost-Linear-Time ℓp-Norm Solvers via Sparsification

In this case, we want to minimize the objective E(v) = d⊤v + ∥W 1/2Bv∥2
2 + ∥Uv∥p

p in
minimization problem

min
v
E(v) (2)

In the voltage setting, we only require d ⊥ 1 so the problem has bounded minimum value.

Obtaining good solutions. For both these problems, we study high accuracy approxim-
ation algorithms that provide feasible solutions x (a flow or a voltage respectively), that
approximately minimize the objective function from some starting point x(0), i.e., for some
small ε > 0, we have

E(x)− E(x⋆) ≤ ε(E(x(0))− E(x⋆))

wher x⋆ denotes an optimal feasible solution. Our algorithms apply to problems with
quasipolynomially bounded parameters, including quasipolynomial bounds on non-zero
singular values of matrices we work with. Below we state our main algorithmic results.

▶ Theorem 1 (Flow Algorithmic Result). Consider a graph G with n vertices and m edges,
equipped with non-negative ℓ2 and ℓp-weights, as well as a gradient and demands, all with
quasi-polynomially bounded entries. For p = ω(1), in p(m1+o(1) + n4/3+o(1)) log2 1/ε time we
can compute an ε-approximately optimal flow solution to Problem (1) with high probability.

This improves upon [1, 2, 3] which culminated in a pm4/3+o(1) log2 1/ε time algorithm.

▶ Theorem 2 (Voltage Algorithmic Result). Consider a graph G with n vertices and m

edges, equipped with non-negative ℓ2 and ℓp-conductances, as well as demands, all with
quasi-polynomially bounded entries. For p = ω(1), in p(m1+o(1) + n4/3+o(1)) log2 1/ε time we
can compute an ε-approximately optimal voltage solution to Problem (2) with high probability.

Background: Iterative Refinement for Mixed ℓ2-ℓp-norm Flow Objectives. Adil et al. [1]
developed a notion of iterative refinement for mixed (ℓ2

2 + ℓp
p)-objectives which in the flow

setting, i.e. Problem (1), corresponds to approximating E ′(δ) = E(f + δ) using another
(ℓ2

2 + ℓp
p)-objective which roughly speaking corresponds to the 2nd degree Taylor series

approximation of E ′(δ) combined with an ℓp-norm term ∥Sδ∥p
p, while ensuring feasibility

of f + δ through a constraint Bδ = 0. We call the resulting problem a residual problem.
Adil et al. [1] showed that obtaining a constant-factor approximate solution to the residual
problem in δ is sufficient to ensure that E(f + δ) is closer to the optimal solution by a
multiplicative factor depending only on p. In [2], this result was sharpened to show that
such an approximate solution for the residual problem can be used to make (1 − Ω(1/p))
multiplicative progress to the optimum, so that O(p log(m/ε)) iterations suffice to produce
an ε-accurate solution.

In order to solve the residual problem to a constant approximation, Adil et al. [1] developed
an accelerated multiplicative weights method for (ℓ2

2 + ℓp
p)-flow objectives, or more generally,

for mixed (ℓ2
2 + ℓp

p)-regression in an underconstrained setting.

Sparsification results. Our central technical results in this paper concern sparsification
of residual flow and voltage problems, in the sense outlined in the previous paragraph.
Concretely, in nearly-linear time, we can take a residual problem on a dense graph and
produce a residual problem on a sparse graph with Õ(n) edges, with the property that constant
factor solutions to the sparse residual problem still make (1 − Ω(m− 2

p−1 p)) multiplicative
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progress on the original problem. This leads to an iterative refinement that converges in
O(pm

2
p−1 log(m/ε)) steps. However, the accelerated multiplicative weights algorithm that we

use for each residual problem now only requires Õ(n4/3) time to compute a crude solution.

Flow residual problem sparsification. In the flow setting, we show the following:

▶ Theorem 3 (Informal Flow Sparsification Result). Consider a graph G with n vertices and
m edges, equipped with non-negative ℓ2 and ℓp-weights, as well as a gradient. In Õ(m) time,
we can compute a graph H with n vertices and Õ(n) edges, equipped with non-negative ℓ2
and ℓp-weights, as well as a gradient, such that a constant factor approximation to the flow
residual problem on H, when scaled by m

−1
p−1 results in an Õ(m

2
p−1 ) approximate solution to

the flow residual problem on G. The algorithm works for all p ≥ 2 and succeeds with high
probability.

Our sparsification techniques build on [25], require a new bucketing scheme to deal with
non-uniform ℓp-weights, as well as a prepreprocessing step to handle cycles with zero ℓ2-weight
and ℓp-weight. This preprocessing scheme in turn necessitates a more careful analysis of
additive errors introduced by gradient rounding, and we provide a more powerful framework
for this than [25].

Voltage residual problem sparsification. In the voltage setting, we show the following.

▶ Theorem 4 (Voltage Sparsification Result (Informal)). Consider a graph G with n vertices
and m edges, equipped with non-negative ℓ2 and ℓp-conductances. In Õ(m) time, we can
compute a graph H with n vertices and Õ(n) edges, equipped with non-negative ℓ2 and
ℓp-conductances, such that constant factor approximation to the voltage residual problem on
H, when scaled by m

−1
p−1 results in an Õ(m

1
p−1 ) approximate solution to the voltage residual

problem on G. The algorithm works for all p ≥ 2 and succeeds with high probability.

Note that our voltage sparsification is slightly stronger than our flow sparsification, as
the former loses only a factor Õ(m

1
p−1 ) in the approximation while the latter loses a

factor Õ(m
2

p−1 ). Our voltage sparsification uses a few key observations: In voltage space,
surprisingly, we can treat treat the ℓ2 and ℓp costs separately. This behavior is very different
than the flow case, and arises becase in voltage space, every edge provides an “obstacle”, i.e.
adding an edge increases cost, whereas in flow space, every edge provides an “opportunity”,
i.e. adding an edge decreases cost. This means that in voltage space, we can separately
account for the energy costs created by our ℓ2 and ℓp terms, whereas in flow space, the ℓ2 and
ℓp weights must be highly correlated in a sparsifier. Armed with this decoupling observation,
we preserve ℓ2 cost using standard tools for spectral graph sparsification, and we preserve ℓp

cost approximately by a reduction to graph distance preservation, which we in turn achieve
using weighted undirected graph spanners.

Voltage space accelerated multiplicative weights solver. The algorithm from [1] for
constant approximate solutions to the residual problem works in the flow setting. Using
iterative refinement, the algorithm could be used to compute high-accuracy solutions. Because
we can use high-accuracy flow solutions to extract high-accuracy solutions to the dual voltage
problem, [1] were also able to produce solutions to ℓq-norm minimizing voltage problems
(where ℓq for q = p/(p− 1) is the dual norm to ℓp). Hence, by solving ℓp-flow problems for
all p ∈ (2,∞), [1] were able to solve ℓq-norm minimizing voltage problems for all q ∈ (1, 2).
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9:6 Almost-Linear-Time ℓp-Norm Solvers via Sparsification

Our sparsification of flow and voltage problems works only for p ≥ 2. Thus, in order to
solve for q-norm minimizing voltages for q > 2, we require a solver that works directly in
voltage space for mixed (ℓ2

2 + ℓp
p)-voltage objectives.

We develop an accelerated multiplicative weights algorithm along the lines of [11, 10, 1]
that works directly in voltage space for mixed (ℓ2

2 + ℓp
p)-objectives, or more generally for

overconstrained mixed (ℓ2
2 + ℓp

p)-objective regression. Concretely, this directly gives an
algorithm for computing crude solutions to the residual problems that arise from applying [1]
iterative refinement to Problem (2). Our solver produces an improved O(1)-approximation
to the residual problem rather than a pO(p)-approximation from [1]. This gives an Õ(m4/3)
high-accuracy algorithm for mixed (ℓ2

2 + ℓp
p)-objective voltage problems for p > 2, unlike

[1], which could only solve pure p > 2 voltage problems. We then speed this up to a
p(m1+o(1) + n4/3+o(1)) time algorithm for p = ω(1) by developing a sparsification procedure
that applies directly to mixed (ℓ2

2 + ℓp
p)-voltage problems for p > 2.

Mixed ℓ2-ℓp-norm regression. Our framework can also be applied outside of a graph
setting, where our new accelerated multiplicative weights algorithm for overconstrained
mixed (ℓ2

2 + ℓp
p)-regression gives new state-of-the-art results in some regimes when combined

with new sparsification results. In this setting we develop sparsification techniques based on
the Lewis weights sampling from the work of Cohen and Peng [17]. We focus on the case
2 < p < 4, where [17] provided fast algorithms for Lewis weight sampling.

▶ Theorem 5 (General Matrices Sparsification Result). Let p ∈ [2, 4), let M ∈ Rm1×n, N ∈
Rm2×n be matrices, m1, m2 ≥ n, and let LSS(B) denote the time to solve a linear system in
B⊤B. Then, we may compute M̃ , Ñ ∈ RO(np/2 log(n))×n such that with probability at least
1− 1

nΩ(1) , for all ∆ ∈ Rn,

∥M̃∆∥2
2 + ∥Ñ∆∥p

p ≈O(1) ∥M∆∥2
2 + ∥N∆∥p

p,

in time Õ
(

nnz(M ) + nnz(N ) + LSS(M̂) + LSS(N̂)
)

, for some M̂ and N̂ each containing
O(n log(n)) rescaled rows of M and N , respectively.

▶ Theorem 6 (General Matrices Algorithmic Result). For p ∈ [2, 4), with high probability we
can find an ε-approximate solution to (3) in time

Õ
((

nnz(M ) + nnz(N ) +
(

LSS(M̃) + LSS(Ñ)
)

n
p(p−2)

6p−4

)
log2(1/ε)

)
,

for some M̃ and Ñ each containing O(np/2 log(n)) rescaled rows of M and N , respectively,
where LSS(A) is the time required to solve a linear equation in A⊤A to quasipolynomial
accuracy.

Note that for all p ∈ (2, 4), we have that the exponent p(p−2)
6p−4 ≤ 0.4.

▶ Remark 7. By [14], a linear equation in A⊤A, where A ∈ Rm×n can be solved to
quasipolynomial accuracy in time Õ(nnz(A) + nω).

Using the above result for solving the required linear systems, we get a running time of
Õ(nnz(M ) + nnz(N ) + (np/2 + nω)n

p(p−2)
6p−4 ), matching an earlier input sparsity result by

Bubeck et al. [9] that achieves Õ((nnz(M ) + nnz(N ))(1 + n
1
2 m− 1

p ) + m
1
2 − 1

p n2 + nω), where
M ∈ Rm1×n, N ∈ Rm2×n and m = max{m1, m2}.
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3 Main Algorithm

In this section, we prove Theorems 1, 2, and 6. We first design an algorithm to solve the
following general problem:

▶ Definition 8. For matrices M ∈ Rm1×n, N ∈ Rm2×n and A ∈ Rd×n, m1, m2 ≥ n,d ≤ n,
and vectors b ⊥ {ker(M ) ∩ ker(N ) ∩ ker(A)} and c ∈ im(A), we want to solve

min
x

b⊤x + ∥Mx∥2
2 + ∥Nx∥p

p (3)

s.t. Ax = c.

In order to solve the above problem, we use the iterative refinement framework from [2] to
obtain a residual problem which is defined as follows.

▶ Definition 9. For any p ≥ 2, we define the residual problem res(∆), for (3) at a feasible
x as,

max
A∆=0

res(∆) def= g⊤∆−∆⊤R∆− ∥N∆∥p
p, where,

g = 1
p

b + 2
p

M ⊤Mx + |Nx|p−2Nx and R = 2
p2 M ⊤M + 2N ⊤Diag(|Nx|p−2)N .

This residual problem can further be reduced by moving the term linear in x to the constraints
via a binary search. This leaves us with a problem of the form,

min
∆

∆⊤R∆ + ∥N∆∥p
p

s.t. g⊤∆ = a, A∆ = 0,

for some constant a.
In order to solve the above problem with ℓ2

2 + ℓp
p objective, we reduce the instance

size via a sparsification routine, and then solve the smaller problem by a multiplicative
weights algorithm. We adapt the multiplicative-weights algorithm from [1] to work in the
voltage space while improving the p dependence of the runtime from pO(p) to p, and the
approximation quality from pO(p) to O(1). The precise sparsification routines are described
in later sections.

For large p, i.e., p > log m, in order to get a linear dependence on the running time on p,

we need to reduce the residual problem in ℓp-norm to a residual problem in log m-norm by
using the framework from [3].

The entire meta-algorithm is described formally in Algorithm 1, and its guarantees are
described by the next theorem. Most proof details are deferred to the full version.

▶ Theorem 10. For an instance of Problem (3), suppose we are given a starting solution
x(0) that satisfies Ax(0) = c and is a κ approximate solution to the optimum. Consider an
iteration of the while loop, line 8 of Algorithm 1 for the ℓp-norm residual problem at x(t). We
can define µ1 and κ1 such that if ∆̄ is a β approximate solution to a corresponding p′-norm
residual problem, then µ1∆̄ is a κ1-approximate solution to the p-residual problem. Further,
suppose we have the following procedures,
1. Sparsify: Runs in time K, takes as input any matrices R, N and vector g and returns

R̃, Ñ , g̃ having sizes at most ñ× n for the matrices , such that if ∆̃ is a β approximate
solution to,

max
A∆=0

g̃⊤∆− ∥R̃∆∥2
2 − ∥Ñ∆∥p′

p′ ,

for any p′ ≥ 2, then µ2∆̃, for a computable µ2 is a κ2β-approximate solution for,

max
A∆=0

res(∆) def= g⊤∆− ∥R1/2∆∥2
2 − ∥N∆∥p′

p′ .
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9:8 Almost-Linear-Time ℓp-Norm Solvers via Sparsification

2. Solver: Approximately solves (4) to return ∆̄ such that ∥R̃∆̄∥2
2 ≤ κ3ν and ∥Ñ∆∥p

p ≤ κ4ν

in time K̃(ñ) for instances of size at most ñ.
Algorithm 1 finds an ε-approximate solution for Problem (3) in time

Õ

(
pκ

1/(p−1)
4 κ3κ2κ1(K + K̃(ñ)) log

(κp

ε

)2
)

.

Algorithm 1 Meta-Algorithm for ℓp Flows and Voltages.

1: procedure Sparsified-p-Problems(A, M , N , c, b, p)
2: x ← x(0), such that f

(
x(0)) ≤ κOpt

3: T ← Õ
(
pκ1κ2κ3 log

(
κ
ε

))
4: for t = 0 to T do
5: At x(t) define g, R, N and res(∆), the residual problem (Definition 9)
6: a← 1

2 , b← 1, µ1 ← 1, κ1 ← 1
7: ν ← f

(
x(0))

8: while ν ≥ ε
f(x(0))

κp do
9: if p > log m then ▷ Convert ℓp-norm residual to log m-norm residual

10: p′ ← log m

11: N ′ ← 1
21/p′

(
ν
m

) 1
p′ − 1

p N
12: a← 1

33 , b← O(1)mo(1)

13: µ1 ← m−o(1), κ1 ← mo(1) ▷ Lose κ1 in approx. when scaled by µ1
14: (g̃, R̃, Ñ )← Sparsify(g, R, N ′) ▷ Lose κ2 in approx. when scaled by µ2
15: else
16: (g̃, R̃, Ñ )← Sparsify(g, R, N ) ▷ Lose κ2 in approx. when scaled by µ2
17: p′ ← p

18: Use Solver to compute κ3, κ4 approximate solution to

∆̃(ν) ← arg min
∆

∥R̃
1/2

∆∥2
2 + ∥Ñ∆∥p′

p′

s.t. g̃⊤∆ = aν, A∆ = 0.

(4)

19: ∆̄(ν) ← a

2bκ3κ
1/(p′−1)
4

µ2µ1∆̃(ν)

20: ν ← ν/2
21: ∆← arg min∆̄(ν) f

(
x − ∆̄(ν)

p

)
22: x ← x − ∆

p

23: return x

3.1 Algorithms for ℓp-norm Problems
The problems discussed in Section 2 are special cases of Problem (3), which means we can
use Algorithm 1. To prove our results, we will utilize Theorem 10, with the respective
sparsification procedures and the following multiplicative-weights based algorithm for solving
problems of the form,

min
∆

∆⊤M ⊤M∆ + ∥N∆∥p
p (5)

s.t. A∆ = c.

We describe our solver formally and prove the following theorem about its guarantees in the
full version.
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▶ Theorem 11. Let p ≥ 2. Consider an instance of Problem (5) described by matrices
A ∈ Rd×n, N ∈ Rm1×n, M ∈ Rm2×n, d ≤ n ≤ m1, m2, and vector c ∈ Rd. If the optimum
of this problem is at most ν, Procedure Residual-Solver returns an x such that Ax = c,

and x⊤M ⊤Mx ≤ O(1)ν and ∥Nx∥p
p ≤ O(3p)ν. The algorithm makes O

(
pm

p−2
(3p−2)
1

)
calls

to a linear system solver.

We utilize Procedure Residual-Solver as the Procedure Solver in Algorithm
Sparsified-p-Problems. The algorithm uses the procedure only for solving problems
instances with p ≤ log m. Thus, its running time is K̃(ñ) = Õ

(
ñ

p−2
3p−2 · LSS(ñ)

)
≤

Õ
(
ñ1/3 · LSS(ñ)

)
, where LSS(ñ) denotes the time required to solve a linear system in

matrices of size ñ. We also have, κ3 = O(1), κ
1/(p−1)
4 = O(1).

We next estimate the values of κ1 and µ1. If p ≤ log m, we have µ1 = 1 and κ1 = 1.
Otherwise, µ1 = Õ(1) and κ1 = O(mo(1)) (Refer to the full version).

In order to obtain an initial solution, we usually solve an ℓ2-norm problem. This gives
an mp/2 approximate initial solution which results in a factor of p2 in the running time.
To avoid this, we can do a homotopy on p similar to [3], i.e., start with an ℓ2 solution and
solve the ℓ22 problem to a constant approximation, followed by ℓ23 , ..ℓp. We note that a
constant approximate solution to the ℓp/2-norm problem gives an O(m) approximation to
the ℓp problem and thus, we can solve log p problems where we can assume κ = O(m).

We now complete the proof of our various algorithmic results by utilizing sparsification
procedures specific to each problem.

ℓp Flows

We will prove Theorem 1 (Flow Algorithmic Result), with explicit p dependencies.

Proof. From Theorem 3, we obtain a sparse graph in K = Õ(m) time with ñ = Õ(n) edges.
A constant factor approximation to the flow residual problem on this sparse graph when scaled
by µ2 = m− 1

p−1 gives a κ2 = Õ
(

m
2

p−1

)
-approximate solution to the flow residual problem

on the original graph. We can solve linear systems on the sparse graph in Õ(ñ) = Õ(n)
time using fast Laplacian solvers. Using all these values in Theorem 10, we get the final
runtime to be pm

2
p−1 +o(1)

(
m + n1+ p−2

3p−2

)
log2(

pm
ε

)
as claimed. We prove Theorem 3 in the

full version. ◀

ℓp Voltages

We will prove Theorem 2 (Voltage Algorithmic Result), with explicit p dependencies.

Proof. From Theorem 4, we obtain a sparse graph in K = Õ(m) time with ñ = Õ(n)
edges. A constant factor approximation to the voltage residual problem on this sparse graph
when scaled by µ2 = m− 1

p−1 gives a κ2 = Õ
(

m
1

p−1

)
-approximate solution to the voltage

residual problem on the original graph. We can solve linear systems on the sparse graph in
Õ(ñ) = Õ(n) time using fast Laplacian solvers. Using these values in Theorem 10, we get
the final runtime to be pm

1
p−1 +o(1)

(
m + n1+ p−2

3p−2

)
log2(

pm
ε

)
as claimed. We prove Theorem

4 in Section 4. ◀
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General Matrices
We will now prove Theorem 6.

Proof. We assume Theorem 5, which we prove in Appendix (refer to full version). From
the theorem, we have κ2 = O(1) and µ2 = O(1). Note that K = LSS(M̂) + LSS(N̂) for
some M̂ , N̂ ∈ RO(n log(n))×n, which is the time required to solve linear systems in M̂

⊤
M̂

and N̂
⊤

N̂ , respectively. Since, by Theorem 5, the size of M̃ and Ñ is ñ = O(np/2 log(n)),
the cost from the solver in Theorem 11 is Õp

((
LSS(M̃) + LSS(Ñ)

)
n

p(p−2)
6p−4

)
. ◀

4 Construction of Sparsifiers for ℓ2
2 + ℓp

p Voltages

In this section, we prove a formal version of the voltage sparsification result (Theorem 4):

▶ Theorem 12. Consider a graph G = (V, E) with non-negative 2-weights w ∈ RE and
non-negative p-weights s ∈ RE, with m and n vertices. We can produce a graph H = (V, F )
with edges F ⊆ E, ℓ2-weights u ∈ RF , and ℓp-weights t ∈ RF , such that with probability at
least 1− δ the graph H has O(n log(n/ε)) edges and

1
1.5∥W BGx∥2 ≤ ∥UBHx∥2 ≤ 1.5∥W BGx∥2 (6)

and for any p ∈ [1,∞]

1
m1/p log(n)

∥SBGx∥p ≤ ∥TBHx∥p ≤ ∥SBGx∥p (7)

where W = Diag(w), U = Diag(u), S = Diag(s), T = Diag(t). We denote the routine
computing H and u, t by SpannerSparsify, so that (H, u, t) = SpannerSparsify(G, w, s).
This algorithm runs in Õ(m log(1/δ)) time.

We will first define some terms required for our result. Given a undirected graph
G = (V, E), with edge lengths l ∈ RE , and u, v ∈ V , we let dG(u, v) denote the shortest path
distance in G w.r.t l, so that if P is the shortest path w.r.t l then

dG,l(u, v) =
∑
e∈P

l(e)

▶ Definition 13. Given a undirected graph G = (V, E) with edge lengths l ∈ RE, a K-spanner
is a subgraph H of G with the same edge lengths s.t. dH(u, v) ≤ KdG(u, v).

Baswana and Sen showed the following result on spanners [7].

▶ Theorem 14. Given an undirected graph G = (V, E, l) with m edges and n vertices, and an
integer k > 1, we can compute a (2k − 1)-spanner H of G with O(n1+1/k) edges in expected
time O(km).

▶ Lemma 15. Given an undirected graph G = (V, E) with positive edge lengths l ∈ RE, and
a K-spanner H = (V, F ) of G, for all x ∈ RV we have

max
(u,v)∈F

1
l(u, v) |x(u)− x(v)| ≤ max

(u,v)∈E

1
l(u, v) |x(u)− x(v)| ≤ K max

(u,v)∈F

1
l(u, v) |x(u)− x(v)|
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Proof. The inequality max(u,v)∈F
1

l(u,v) |x(u)− x(v)| ≤ max(u,v)∈E
1

l(u,v) |x(u)− x(v)| is im-
mediate from F ⊆ E.

To prove the second inequality, we note that if (u, v) ∈ E has shortest path P in H then

1
l(u, v) |x(u)− x(v)| ≤ K∑

(z,y)∈P l(z, y)

∣∣∣∣∣∣
∑

(z,y)∈P

x(z)− x(y)

∣∣∣∣∣∣ ≤ max
(z,y)∈P

K

l(z, y) |x(z)− x(y)|.

◀

▶ Definition 16. Given a undirected graph G = (V, E) with m edges and n vertices with
positive edge ℓ2-weights w ∈ RE, a spectral ε-approximation of G is a graph H = (V, F ) with
F ⊆ E with positive edge ℓ2-weights u ∈ RF s.t.

1
1 + ε

∥W BGx∥2 ≤ ∥UBHx∥2 ≤ (1 + ε)∥W BGx∥2

where W = Diag(w) and U = Diag(u).

The following result on spectral sparsifiers was shown by Spielman and Srivastava [40]
(see also [43]).

▶ Theorem 17. Given a graph G = (V, E) with positive ℓ2-weights w ∈ RE with m edges and
n vertices, for any ε ∈ (0, 1/2], we can produce a graph H = (V, F ) with edges F ⊆ E and
ℓ2-weights u ∈ RF such that H has O(nε−2 log(n/δ)) edges and with probability at least 1− δ

we have that (H, u) is a spectral ε-approximation of (G, w). We denote the routine computing
H and u by SpectralSparsify, so that (H, u) = SpectralSparsify(G, s, ε, δ). This
algorithm runs in Õ(m) time. Furthermore, if the weights w are quasipolynomially bounded,
then so are the weights of u.

We can now prove our main result.

Proof of Theorem 12. We consider a graph G = (V, E) with m edges and n vertices, and
with non-negative ℓp-weights r ∈ RE , non-negative ℓ2-weights s ∈ RE . We define Ê ⊆ E to
be the edges s.t. s(e) > 0, and then let l ∈ RÊ by l(e) = 1/s(e), and Ĝ = (V, Ê). We then
apply Theorem 14 to Ĝ with l as edge lengths, and with k = log(n). We turn the algorithm
of Theorem 14 into running time Õ(m log(1/δ)), instead of expected time Õ(m), by applying
the standard Las Vegas to Monte-Carlo reduction. With probability 1− δ/2, this gives us a
log n-spanner H1 of Ĝ, and we define t by restricting s to the edges of H1. By Lemma 15,
we then have

∥TBH1x∥∞ ≤ ∥SBGx∥∞ ≤ log(n)∥TBH1x∥∞

Because TBH1x is a restriction of SBGx to a subset of the coordinates, we always have for
any p ≥ 1 that ∥TBH1x∥p ≤ ∥SBGx∥p.

At the same time, we also have

∥SBGx∥p ≤ m1/p∥SBGx∥∞ ≤ m1/p log(n)∥TBH1x∥∞ ≤ m1/p log(n)∥TBH1x∥p

We define Ẽ ⊆ E to be the edges s.t. r(e) > 0, and the let G̃ = (V, Ẽ). Now, appealing
to Theorem 17, we let (H2, u) = SpectralSparsify(G̃, r , 1/2, ε/2).

Finally, we form H by taking the union of the edge sets of H1 and H2 and extending
u and t to the new edge set by adding zero entries as needed. By a union bound, the
approximation guarantees of Equations (6) and (7) simultaneously hold with probability at
least 1− δ.

The edge set remains bounded in size by O(n log n). ◀

ICALP 2021
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To see Theorem 4, note that from Theorem 12, we get,

m− 1
p−1

(
m− 1

p−1 ∥W BGx∥2
2 + m−1∥SBGx∥p

p

)
≤ m− 1

p−1

(
∥UBHx∥2

2 + ∥TBHx∥p
p

)
The other direction is easy to see.

5 Extensions of Our Results and Open Problems

Solving dual problems: q-norm minimizing flows and voltages for q < 2
When the mixed (ℓ2

2 + ℓp
p)-objective flow problem (Problem (1)) is restricted to the case

g = 0 and R = 0, it becomes a pure ℓp-norm minimizing flow problem, and its dual problem
can be slightly rearranged to give

min
v

d⊤v +
∥∥S−1Bv

∥∥q

q
(8)

where q = p/(p − 1) = 1 + 1/(p − 1). We refer to the diagonal entries of S−1 as ℓq-
conductances. Because we can solve Problem (1) to high-accuracy in near-linear time for
p = ω(1), this allows us to solve Problem (8), the dual voltage ℓq-norm minimization, in time
p(m1+o(1) + n4/3+o(1)) log2 1/ε (see [1, Section 7] for the reduction). We summarize this in
the theorem below.

▶ Theorem 18 (Voltage Algorithmic Result, q < 2 (Informal)). Consider a graph G with n

vertices and m edges, equipped with positive ℓq-conductances, as well as a demand vector.
For 1 < q < 2, when q = 1 + o(1), in poly

(
1

q−1

)
(m1+o(1) + n4/3+o(1)) log2 1/ε time, we can

compute an ε-approximately optimal voltage solution to Problem (8) with high probability.

Similarly, we can solve ℓq-norm minimizing flows for q < 2 as dual to the ℓp-voltage
problem, a special case of the mixed (ℓ2

2+ℓp
p)-voltage problem. Picking W = 0 in Problem (2),

we obtain a pure ℓp-norm minimizing voltage problem, and its dual problem can be slightly
rearranged to give

min
B⊤f =d

∥∥U −1f
∥∥q

q
(9)

where q = p/(p − 1) = 1 + 1/(p − 1). We refer to the diagonal entries of U −1 as q-
weights. Again, because we can solve Problem (2) to high-accuracy in near-linear time for
p = ω(1), this allows us to solve Problem (9), the dual flow ℓq-norm minimization, in time
p(m1+o(1) + n4/3+o(1)) log2 1/ε.

▶ Theorem 19 (Flow Algorithmic Result, q < 2 (Informal)). Consider a graph G with n

vertices and m edges, equipped with positive q-weights, as well as a demand vector. For
1 < q < 2, when q = 1 + o(1), in poly

(
1

q−1

)
(m1+o(1) + n4/3+o(1)) log2 1/ε time, we can

compute an ε-approximately optimal flow solution to Problem (9) with high probability.

Open Questions
Mixed ℓ2, ℓq problems for small q < 2. In this work, we provided new state-of-the-art
algorithms for weighted mixed ℓ2, ℓp-norm minimizing flow and voltage problems for p >> 2,
and for pure ℓq-norm minimizing flow and voltage problems for q near 1.

A reasonable definition of mixed ℓ2, ℓq-norm problems for q < 2 is based on gamma-
functions as introduced in [9] and used in [1]. We believe that with minor adjustments to our
multiplicative weights solver, these objectives could be handled too, by solving their dual
ℓ2, ℓp-gamma function problem for p > 2.
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Directly sparsifying mixed ℓ2, ℓq problems for q < 2. A second approach to developing a
fast ℓ2, ℓq-gamma function solver for q < 2 would be to directly develop sparsification in this
setting. We believe this might be possible, and in the general matrix setting might provide
better algorithms than alternative approaches.

Removing the m
O(1)
p−1 loss in sparsification. Our current approaches to graph mixed ℓ2, ℓp-

sparsification lose a factor m
O(1)
p−1 in their quality of approximation, which leads to a m

O(1)
p−1

factor slowdown in running time, and makes our algorithms less useful for small p. We
believe a more sophisticated graph sparsification routine could remove this loss and result in
significantly faster algorithms for p close to 2.

Using mixed ℓ2, ℓp-objectives as oracles for ℓ∞ regression. The current state-of-the-art
algorithm for computing maximum flow in unit capacity graphs runs in Õ(m4/3) time [21],
and uses the almost-linear-time algorithm from [25] for solving unweighted ℓ2

2 + ℓp
p instances

as a key ingredient.
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Abstract
Let C be a set of n axis-aligned cubes of arbitrary sizes in R3. Let U be their union, and let κ be the
number of vertices on ∂U; κ can vary between O(1) and O(n2). We show that U can be computed
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1 Introduction

Let C be a set of n axis-aligned cubes of arbitrary sizes in R3. Let U := U(C) be their union,
and let κ be the number of vertices on ∂U. It is known that κ = Θ(n2) in the worst case,
though it is linear or near-linear in many special cases. For example, κ = O(n) if the cubes
in C have roughly the same size [6] or if they have bounded depth (i.e., any point in R3 lies
in O(1) cubes) [14]. If their sizes are drawn independently from an arbitrary distribution,
the expected complexity of their union is O(n log2 n) [3]. A natural problem is to develop
an algorithm for computing ∂U, by which we mean compute its vertices, edges, and faces.
Although U can be computed in O(n2 log n) time by computing ∂U on each face of every
cube of C, an output-sensitive algorithm with O(n log n + κ) running time has remained
elusive. In this paper we present an algorithm that almost matches this running time.

Related work. Motivated by VLSI design and other applications, the problem of computing
the union of a set of axis-aligned rectangles in R2 and its variants have been studied since
the 1970’s; see [17]. An optimal O(n log n + κ)-time algorithm was presented by Güting [12].

A closely related problem, which also has been studied extensively, is the so-called Klee’s
measure problem, which asks to compute the volume of the union of axis-aligned boxes in Rd.
For d = 2, Bentley presented an O(n log n)-time algorithm for this problem, which extends
to higher dimensions and computes the volume in O(nd−1 log n) time. For d ≥ 3, Overmars
and Yap [16] gave an O(nd/2 log n)-time algorithm. The running time was improved to
O(nd/2) by Chan [8]. It was an open question whether a faster algorithm exists if the input
boxes are hypercubes or fat. Agarwal et al. [2] described an O(n4/3 log n)-time algorithm
for cubes in 3D, which was subsequently improved to O(n log4 n) in [1]. Bringmann [7]
presented an O(n(d+2)/3)-time algorithm for fat boxes in Rd, which was later improved to
O(n(d+1)/3 polylog(n)) in [8]; see also [19].
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Despite extensive work on Klee’s measure problem, relatively less is known about com-
puting the union boundary. For example, no O(n log n)-time algorithm is known even for
computing the union of unit cubes in R3. For d = 3, the Overmars-Yap algorithm can be
adapted to compute the boundary of the union of boxes in O((n3/2 + κ) log n) time, where
κ is the output size. But it is not obvious whether the algorithm in [1] can be adapted to
compute the union of axis-aligned cubes in O((n + κ) polylog(n)) time. Agarwal et al. [4]
have presented a randomized algorithm that computes the union of congruent cubes in R3 in
O(n1+ε) expected time, for any constant ε > 0.

A related line of work is to partition the union (or its complement) into few axis-aligned
boxes. Chew et al. [9] describe an algorithm to compute a partition of the union of n

congruent cubes into O(n) axis-aligned boxes in O(n log n) time, assuming that the union has
already been computed1. For a special case of orthants in Rd, Kaplan et al. [15] describe an
algorithm to partition the union of n such orthants into O(κ) axis-aligned (semiunbounded)
boxes in O((n + κ) logd−1 n) time, for any d ≥ 1, where κ is the union complexity.

Our results. The main result of the paper is an output-sensitive algorithm to compute
U. That is, our algorithm computes the vertices, edges, and 2D faces of ∂U. For each 2D
face f , it computes the components of ∂f . We say that C is in general position if any plane
contains the boundary face of at most one cube in C. Our algorithm assumes C to be in
general position. Although it can be extended to degenerate configurations using symbolic
perturbation techniques (e.g., [10]), the running time depends on the union complexity of
the perturbed configuration.

▶ Theorem 1. Given a set C of n axis-aligned cubes in R3, U(C) can be computed in
O(n log3 n + κ) time if C is in general position. If C is not in general position, the running
time is O(n log3 n + k̂), where k̂ is the maximum complexity of U(C) under an infinitesmal
perturbation.

A 3D box is fat if its aspect ratio (i.e., the ratio of its longest side length and its shortest
side length) is bounded by a constant. A fat box can be decomposed into O(1) (possibly
intersecting) cubes. Replacing fat boxes in general position with O(1) such cubes then
perturbing them into general position increases the union complexity at most by a constant
factor. From Theorem 1, we have the following:

▶ Corollary 2. Given a set B of n axis-aligned fat boxes in R3, where the aspect ratio of
each box is bounded by a constant, U(B) can be computed in O(n log3 n + κ) time, assuming
B is in general position. If B is not in general position, the running time is O(n log3 n + k̂),
where k̂ is the maximum complexity of U(B) under an infinitesmal perturbation.

For some special cases, simpler algorithms compute the union slightly more efficiently:
when all cubes in C are congruent or when they have bounded depth (i.e., any point in R3 is
contained in at most c cubes of C, for a constant c > 0). In both cases, κ = O(n). Since the
output size is always linear after perturbing the cubes to be in general position, we do not
need the general-position assumption here.

▶ Theorem 3. Let C be a set of n axis-aligned cubes in R3. If all cubes in C are congruent
or they have bounded depth, then U(C) can be computed in O(n log2 n) time. If the cubes in
C are congruent and have bounded depth, then U(C) can be computed in O(n log n) time.

1 Theorem 1 in [9] suggests that the union U(C) of n unit axis-aligned cubes C in R3 can be computed
in O(n log n), but no such algorithm is presented in the paper. It shows that given U(C), it can be
decomposed into O(n) boxes in O(n log n) time [11].



P. K. Agarwal and A. Steiger 10:3

Analogous to Corollary 2, we obtain the following:

▶ Corollary 4. Given a set B of n axis-aligned fat boxes in R3. If the ratio of the largest to
the smallest size box is bounded by a constant or they have bounded depth, then U(B) can be
computed in O(n log2 n) time. If both conditions hold, then the running time is O(n log n).

At a high level, the general approach of our algorithm is similar to Agarwal’s [1] to
compute the volume of the union of 3D cubes, but ours is considerably simpler and more
efficient. We reduce the problem to maintaining the union of a set of squares in the plane
under insertions and deletions, which are the xy-projections of the faces of cubes in C. At the
core of the data structure in [1] is a hierarchical decomposition of the plane using a variant
of a kd-tree. In constrast, our data structure is a variant of a quadtree whose regions are
squares. Using this property – having square regions – we crucially circumvent much of the
intracacies in [1] and attain a simpler algorithm. We use a sweep-line algorithm to compute
the changes in the union-boundary of squares and rely on auxiliary data structures, which
are also somewhat simpler than in [1] to perform this sweep efficiently. Finally, we are also
able to simplify and improve the algorithm because we can charge time to the O(κ) vertices
reported.

Roadmap of the paper. As a warm-up, we first present in Section 2 an algorithm for a
special case where the spread of the xy-projections of the vertices of the cubes in C (regarded
as a 2D point set) is (polynomially) bounded, i.e., the ratio of the distance between the
farthest and closest pairs of such points in R2 is bounded by nc, for some constant c > 0. In
Section 3 we describe how to remove this assumption to obtain our main result (Theorem 1).
Finally, we describe the more efficient algorithms for congruent cubes and cubes with bounded
depth (Theorem 3) in Section 4.

2 Algorithm for the Bounded Spread Case

Let C := {C1, . . . , Cn} be a set of n axis-aligned cubes in R3 in general position. We assume
that the spread of the xy-projections of the vertices of C is polynomially bounded. For any
set A of objects (e.g. segments in R, squares in R2, or cubes in R3), let U(A) denote the
union of the objects in A, and let V (A) be the vertices of U(A). Set U := U(C). For any 3D
object a, let a↓ be the xy-projection of a.

In this section, we describe an algorithm to compute the boundary of U, denoted by ∂U,
namely its vertices, edges, and faces. Once the vertices of ∂U have been computed, the edges
and faces can be computed using standard techniques, so we first focus only on computing
the vertices and remark at the end of the section how to extend it to compute edges and
faces of ∂U.

2.1 Overview of the algorithm
We first introduce some notation. For a cube Ci ∈ C, let Si := C↓

i be the xy-projection of Ci,
which is an axis-aligned square in R2. Let z1 < . . . < z2n be the z-coordinates of the vertices
of cubes in C, sorted in decreasing order. For all i with 1 ≤ i ≤ 2n, let Ci ⊆ C be the set of
cubes whose z-spans cover the interval (zi, zi+1), and let Si = {Sj | Cj ∈ Ci}. Let Vi denote
the set of vertices of U(Si).

Note that every vertex of U is the intersection of three orthogonal faces of cubes in C – in
particular, every vertex lies on a xy-face of some cube, i.e., the z-coordinate of every vertex
is one of the zi’s, and is incident to a z-edge of U. Therefore, our high-level approach is to
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Hzi

Hzi+1

C2

C1

z

x
�u

long

corners
floaters

Figure 1 (left) A 2D view of C. The bottom (resp. top) face of cube C1 (resp. C2) lies on the
xy-plane Hzi : z = zi (resp. Hzi+1 : z = zi+1). (right) Various long and short squares at node u.

sweep a horizontal plane H in the (+z)-direction, from z1 to z2n, and maintain H ∩ U in the
process. We stop the sweep at each zi and report the vertices of U that are incident on the
face of the cube of C lying in the plane Hzi

.
For any value a ∈ (zi, zi+1), let Ua := U ∩ Ha. Then we have

Ua = U
(
{Ha ∩ C | C ∈ Ci}

)
= U({Si × {a} | Si ∈ Si}) = U(Si) × {a}

so the combinatorial structure of U, and U(Si) = U↓
a, does not change in [zi, zi+1). See

Figure 1. Furthermore, each vertex (x0, y0, a) of Ua is the intersection point of a z-edge e of
U with Ha and (x0, y0) ∈ Vi. Let p− (resp. p+) be the lower (resp. upper) endpoint of e.
Let zi := z(p−) and zj := z(p+), where i < j. Then (p−)↓ ∈ Vi \ Vi−1, and (p+)↓ ∈ Vj−1 \ Vj .
Conversely, for any i with 1 ≤ i ≤ 2n, every vertex of ∆Vi := Vi ⊕ Vi−1 is the projection of
an endpoint of a z-edge of U and thus a vertex of U, where ⊕ is symmetric difference. (So
that ∆V1 is well-defined, set ∆V0 := ∅.) Thus, to compute the vertices of U, we report ∆Vi

when the plane H stops at zi, for all i, 1 ≤ i ≤ 2n.
We report the vertices of ∆Vi using a data structure T that stores Si and implicitly

maintains U(Si) as we sweep H. A square Sj is inserted into Si when H reaches the bottom
face of Cj , and it is deleted from Si when H reaches the top face of Cj . Let |A| denote the
length of the longest side length of A, where A is a box or rectangle. Since Cj ’s are cubes,
the sequence of updates satisfies the following property:

(P1): Let Cu, Cv ∈ C be two cubes such that |Cu| < |Cv| and Su is inserted before
Sv. Then Su is also deleted before Sv.

When the sweep stops at zi, the insertion or deletion of a square to Si−1 (to obtain Si)
into T is performed in O(log3 n) amortized time, and ∆Vi is reported in O(log3 n + |∆Vi|)
amortized time. Thus, the sweep takes O(

∑2n
i=1 log3 n +

∑
∆Vi) = O(n log3 n + κ) time.

With O(n log n) additional preprocessing to initialize T before the sweep, and O(n log n + κ)
postprocessing to compute the edges and faces of U using the vertices reported during
the sweep, the algorithm takes O(n log3 n + κ) overall time, proving Theorem 1 for the
bounded-spread case.

2.2 Reporting ∆Vi

Next, we describe our dynamic data structure T that stores a set S of squares in R2 and
implicitly maintains U(S). After each update – an insertion or deletion of a square – it
reports ∆V := V (Snew)⊕V (Sold), where Sold (resp. Snew) is S before (resp. after) the update
operation. Let X ⊂ R2 be the set of points corresponding to the xy-projections of vertices
of cubes in C. Recall that the spread of X is polynomially bounded. Let �0 be a square
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containing X. T is a quadtree built on X with �0 being the square associated with the root
node of T. Without loss of generality, we assume that no point of X lies on the boundary of
a square �u for any node u ∈ T.

Each node u ∈ T is associated with a square �u. For the root node r, �r = �0 ⊃ X.
If |X ∩ �u| ≤ 1, u is a leaf, otherwise �u is partitioned into four congruent squares, each
associated with a child of u. Set Xu := X ∩ �u. The height of T is O(log n). A square S

that intersects the region �u, for a node u ∈ T, is long at u if no vertex of S lies in �u, and
S is short at u otherwise. A short square S at node u is called a floater square if at least
two vertices of S lie in int(�u), and a corner square otherwise. A corner square S contains
exactly one vertex of �u. See Figure 1 (right). For each node u ∈ T, let Lu ⊆ S (resp.
Su ⊆ S) be the set of long (resp. short) squares at u, and let L∗

u := Lu \ Lp(u) = Lu ∩ Sp(u),
where p(u) is the parent node of u in T; Lroot := ∅. Let Fu ⊆ Su (resp. Ru ⊆ Su) denote
the set of floater (resp. corner) squares at u. Note that any square S ∈ S is short at no more
than four nodes in any level of T. Hence S is short at O(log n) nodes of T.

At each node u ∈ T, we maintain L∗
u and Su. A long square S ∈ L∗

u contains at least one
edge of �u; it may contain all four edges of �u if �u ⊆ S. We partition L∗

u into four sets:
for each edge e ∈ �u, let L∗

u,e ⊆ L∗
u be the set of squares that contain e. If �u ⊆ S, then S

is assigned only to the set associated with the top edge of �u. Suppose e is the top edge of
�u. Then the bottom edges of squares in L∗

u,e intersect �u or lie below �u. We store L∗
u,e in

a red-black tree, sorted in increasing order of the distances of their bottom edges from e (i.e.,
in decreasing order of their y-coordinates). We similarly store L∗

u,e for the other three edges
e of �u. Let Ex

u (resp. Ey
u) be the sequences of x-edges (resp. y-edges) of Fu in increasing

order of their y-coordinates (resp. x-coordinates). We maintain Ex
u,Ey

u using red-black trees.
For each edge e of �u, we store a value ℓe that maintains the position of a sweep-line Le

associated with the edge e. The roles of ℓe and Le will become clear in the insertion and
deletion procedures. The value of ℓe (and the sweep-line) changes dynamically. Initially, for
each x-edge (resp. y-edge) e of �u, ℓe is the y-coordinate (resp. x-coordinate) of e, and it
always lies in the y-span (resp. x-span) of �u. If e is an x-edge (resp. y-edge), then let Ie be
the set of x-projections (resp. y-projections) of the floater squares in Fu whose y-spans (resp.
x-spans) contain ℓe. Ie changes dynamically with ℓe.

We also maintain two secondary structures for each edge e of �u:

Wall data structure We(Ie): It supports the following two operations:
Insert/Delete(I): Insert or delete an interval I to Ie.
Report-Holes(ζ): For a query interval ζ, return the endpoints of ζ \ int(U(Ie)). If
an endpoint x of ζ does not lie in int(U(Ie)), x is also returned.

The Insert, Delete, and Membership operations take O(log n) time and
Report-Holes takes O(log n + κ) time, where κ is the number of points reported.

Corner data structure Ce(Ru, Ie): It supports the following four operations:
Insert/Delete(R): Insert or delete a corner square R to Ru.
Insert/Delete(I): Insert or delete an interval I to Ie.
Report-Hole(σ): Given a query axis-aligned segment σ ⊂ �u, return the (at most
one) interval of σ \ int(U(Ru)).
Report-Vertices(ρ): Given a query rectangle ρ ⊆ �u, return V (Ru ∪We)∩ρ, where
We := {I × R | I ∈ Ie} if e is an x-edge and We := {R × I | I ∈ Ie} if e is a y-edge.
Namely, the vertices of U(Ru) that do not lie in U(We) or the intersection points of
the edges of U(Ru) and U(We) that lie in ρ are reported.

An Insert/Delete takes O(log2 n) time, Report-Hole takes O(log n) time, and
Report-Vertices takes O(log n + κ) time, where κ is the number of vertices reported.
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Le

e

�u

ζ

σ ρ

ee

�u �u

Figure 2 (left) An illustration of call Report-Hole(ζ) to We. The x-projections of floater squares
intersecting Le that compose Ie. The intervals of U(Ie) are dashed. The solid red intervals in ζ are
the answer to the query. (right) Illustrations of calls Report-Hole(σ) and Report-Vertices(ρ)
to Ce. The vertices of U(Ru) are shown as green circles, and the vertices of U(Ru ∪ We) that are
the intersection points of a “strip” in We (gray hatched) and an edge of U(Ru) are shown as blue
squares. The solid portion of σ is the answer to Report-Hole(σ), and the two blue vertices and
three green vertices (inside ρ) are the answer to Report-Vertices(ρ).

See Figure 2. We describe these data structures in Section 2.4. For now, we assume that, for
all four edges of �u and for all nodes u ∈ T, We, and Ce are at our disposal.

For each square S ∈ S, let Λ(S) := {u ∈ T | S ∈ L∗
u} and Σ(S) := {u ∈ T | S ∈ Su}. Any

square S ∈ S is short at no more than four nodes of any fixed level of T. The nodes in Σ(S)
lie along at most four root-to-leaf paths to the leaves whose squares contain the vertices of S,
and the nodes in Λ(S) are those children u of nodes in Σ(S) for which S ∩ �u ̸= ∅ and S is
not short at u. Since the height of T is O(log n), |Λ(S)|, |Σ(S)| = O(log n). Finally, let Ξ(S)
be Λ(S) and the four leaves of Σ(S), and set Π(S) := {S ∩ �u | �u ∈ Ξ(S)}. See Figure 3
(left). The following lemma is straightforward.

▶ Lemma 5. For any square S, Π(S) is a partition of S into O(log n) rectangles.

When we insert or delete a square S, every vertex of ∆V lies in S. Thus, to report ∆V ,
we report ∆Vu := ∆V ∩ �u for each node u ∈ Ξ(S). We now describe how to update T and
compute ∆Vu at each node u ∈ Ξ(S).

Insertion of S. There are four main steps:
(1) At each node u ∈ Λ(S) ∪ Σ(S), we compute ρu := cl(�u \ U(Lu)), as described below.
(2) At each node u ∈ Ξ(S), we report ∆Vu, which is also described below.
(3) For each node u ∈ Λ(S), we insert S to L∗

u. In particular, if S contains the edge e of
�u, S is inserted into L∗

u,e; recall that if �u ⊆ S, then S is associated with the top edge
of �u.

(4) For each u ∈ Σ(S), we update Su and its secondary structures, as follows. If S is a corner
square at u, we insert S into all four corner data structures Ce stored at u for each edge
of �u. If S is a floater, we first insert the x-edges (resp. y-edges) of S which intersect
�u into E∗

u (resp. Ey
u). Then, for each x-edge (resp. y-edge) e of �u such that ℓe lies in

the y-span (resp. x-span) of S, we insert the x-projection (resp. y-projection) of S to
We and Ce.

We now describe the first two steps in more detail. We compute ρu at each node
u ∈ Λ(S) ∪ Σ(S), as follows. Observe that ρu ⊆ �u is a (possibly empty) rectangle. Similarly,
cl(�u \ U(L∗

u)) is a rectangle ρ∗
u ⊆ �u. By definition, ρu = cl(�u \ (U(Lp(u)) ∪ U(L∗

u))) =
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S ρp(u)

ρ∗u

�p(u)

�u

ρu �u

S

S ∩ ρu

Figure 3 (left) The rectangles of Π(S). The shaded (resp. empty) rectangles lie in squares �u of
nodes u in Σ(S) (resp. Λ(S)). (middle) Computing ρu using ρ∗

u and ρp(u). The squares at the ends
of the sequences L∗

u,e for each edge e of �u are dashed and the squares of Lp(u) that contribute to
U(Lp(u)) are dotted. (right) An example of a square S being inserted at u ∈ Σ(S). The four vertices
of ∆Vu are shown, where the blue vertex is old and the rest are new.

ρp(u) ∩ ρ∗
u. See Figure 3 (middle). Furthermore, for each edge ei, 1 ≤ i ≤ 4, let Si be the last

square in the sequence L∗
u,ei

, and let hi be the halfplane bounded by the line supporting the
edge of Si that intersects �u and does not contain Si (if Si ⊇ �u, then choose the halfplane
bounded by the edge of �u opposite ei and not containing �u). Then ρ∗

u =
⋂4

i=1 hi ∩ �u.
Hence, ρ∗

u can be computed in O(1) time. Also, with ρp(u) at our disposal ρu = ρp(u) ∩ ρ∗
u

can be computed in O(1) time. Thus, using a top-down traversal of T, starting at the root
node r (with Lr = ∅) and ending at the nodes of Ξ(S), we compute ρu at each visited
node; O(log n) nodes are visited in this process, so the step takes O(log n) time overall. This
completes step (1).

Next, let u be a node of Ξ(S). We report ∆Vu as follows. If u ∈ Σ(S), then Su = ∅
(before the insertion of S) and hence ∆Vu can be reported in O(1) time; see Figure 3 (right).
We now focus on reporting ∆Vu when u ∈ Λ(S). For sake of concreteness, suppose S contains
the top edge of �u. Let Sexp

u be the rectangle S ∩ ρu = cl((S ∩�u) \U(Lu))), i.e., the portion
of S ∩ �u that is left “exposed” by the squares of Lu. All vertices of ∆Vu lie in Sexp

u . Note
that Sexp

u may be empty, e.g., if �u ⊆ U(Lu) or S ∩ρu = ∅, in which case ∆Vu = ∅ and there
is nothing to do; see Figure 4 (middle). If Sexp

u ̸= ∅, we sweep a line Le in the (−y)-direction
from the top edge of Sexp

u (defined by U(Lu) or �u) to its bottom edge (defined by S, �u, or
U(Lu)), and report all vertices of ∆Vu in the process by using the secondary data structures
as described in Section 2.3. Recall that ℓe keeps track of the position of Le.

Deletion of S. Intuitively, the deletion is “undoing” the insertion of S.
(1) At each node u ∈ Λ(S) ∪ Σ(S), we compute ρu := cl(�u \U(Lu \ {S})) as in the insertion

case.
(2) At each node u ∈ Ξ(S), we report ∆Vu, as described below.
(3) For each node u ∈ Λ(S), we delete S from L∗

u.
(4) For each node u ∈ Σ(S), we update Su and its secondary structures, as follows. If S is a

corner square at u, we delete S from all four corner data structures Ce stored at u for
each edge e of �u. If S is a floater, we first delete the x-edges (resp. y-edges) of S which
intersect �u from E∗

u (resp. Ey
u). Then, for each x-edge (resp. y-edge) e of �u, we delete

the x-projection (resp. y-projection) of S from We and Ce if ℓe lies in the y-span (resp.
x-span) of S.

Let Sexp
u be the rectangle S ∩ ρu = cl(S ∩ �u) \ U(Lu \ {S})) i.e., the portion of S ∩ �u

that is left “exposed” by the other squares of Lu. Again, all vertices of ∆Vu lie in Sexp
u . We

note that Sexp
u may be empty because ρu is empty or the bottom edge of S lies above the
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Figure 4 Various cases for Sexp
u when ρu ̸= ∅: (left) Sexp

u ⊂ ρu. (middle) Sexp
u = ∅. (right)

Sexp
u = ρu.

top edge of Sexp
u . If Sexp

u = ∅, ∆Vu = ∅ and there is nothing to do. So assume Sexp
u ̸= ∅.

We report ∆Vu by sweeping a line Le in the (+y)-direction from the bottom edge of Sexp
u

(defined by S, �u, or U(Lu)), to its top edge (which is the top edge of ρu).

Runtime analysis. We now analyze the amortized running time of inserting or deleting a
square. Let c be a sufficiently large constant. For each node u ∈ T, we assign 4c log2 n credits
to each of the four edges of every floater in Fu. These credits will be used to pay part of the
cost of reporting ∆Vu (see Lemma 8). Note that S is a floater at O(log n) nodes. Therefore
O(log3 n) credits are assigned to a square S. This cost is charged to the insertion of S.

Suppose a square S is being inserted. The total time spent in computing ρu at all
nodes u ∈ Λ(S) ∪ Σ(S) is O(log n). By Lemma 8, which is given in Section 2.3, the
amortized cost of reporting ∆Vu and updating the secondary structures at all nodes in Ξ(S)
is O(log2 n + |∆Vu|). Summing at all nodes of Ξ(S), the total amortized time spent in
reporting ∆V is O(log3 n + |∆V |). Finally, we spend O(log n) time at each node u ∈ Λ(S) to
insert S into L∗

u and O(log2 n) time to insert S into the secondary structures at each node
in Σ(S). Summing this cost over all nodes in Λ(S) ∪ Σ(S) and adding the cost of credits
assigned to S, the total amortized time spent in inserting S is O(log3 n + |∆V |) time. A
similar analysis shows that the amortized time spent in deleting a square is O(log3 n + |∆V |).
Hence, we obtain the following:

▶ Lemma 6. The amortized cost of inserting or deleting a square in T and reporting ∆V is
O(log3 n + |∆V |).

2.3 Reporting ∆Vu via Sweep-Line
We describe the sweep-line procedure for the insertion of a square S; the deletion case is
symmetric. Without loss of generality, assume that S contains the top edge of �u; the
procedures for the other cases are similar. Let ρu := cl(�u \ U(Lu)) and Sexp

u := S ∩ ρu as
defined above. If Sexp

u = ∅, there is nothing to do. So assume Sexp
u ̸= ∅. Suppose Sexp

u is of
the form γ × [a−, a+], where γ is the x-span of Sexp

u and a− < a+ are the y-coordinates of the
bottom and top edges of Sexp

u ; the bottom edge of Sexp
u is the bottom edge of S, ρu, or �u.

Let V new
u ⊆ ∆Vu be the set of vertices that are created by the insertion of S (which

appear on ∂S) and let V old
u ⊆ ∆Vu be the set of vertices that no longer appear on U after the

insertion of S (which lie in int(S)). The vertices of V new
u lie on Sexp

u ∩ ∂S, i.e., on the bottom
edge of Sexp

u if it is contained in the bottom edge of S, and V new
u = ∅ if the bottom edge of

�u is not contained in that of S. Next, a vertex v of V old
u can be classified into the following

categories depending on the types of the two (not necessarily distinct) squares S1, S2 whose
edges contain v: v is a long-long (LL) vertex if both S1 and S2 are long, in which case v
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Figure 5 (left) A zoomed-in example of Sexp
u (slightly enlarged for visibility) and the vertices of

∆V where the bottom edge of Sexp
u lies on the bottom edge of the inserted square S. U(Lu) is blue,

U(Fu) \ U(Lu) is orange, U(Ru) \ U(Lu ∪ Fu) is green, and the edges of S are red. The edges of
U ∩ Sexp

u are thick, the old vertices covered by S are hollow, and the new vertices on ∂S are solid.
(right) Dashed lines supporting floater edges (orange) with y-coordinates in (a−, a+) partition Sexp

u

(blue) into rectangles.

is a vertex of Sexp
u not contained in U(Su), a long-short (LS) vertex if S1 is long and S2 is

short, in which case v is an intersection point of an edge of U(Su) with an edge of Sexp
u , and

a short-short (SS) vertex if both S1 and S2 are short, in which case v is a vertex of U(Su)
that lies in int(Sexp

u ). SS vertices are further classified into three categories, CC, CF, or FF,
depending on whether S1 and S2 are corners (C) or floaters (F). See Figure 5 (left).

With this characterization of ∆Vu at hand, we report ∆Vu by sweeping downward ((−y)-
direction) with a horizontal line Le from y = a+ to y = a−. Let Y = ⟨y0 = a+, y1, y2, . . . , yt =
a−⟩ where y1, . . . , yt−1 are the y-coordinates of edges of floaters F ∈ Fu in the interval
(a−, a+), sorted in decreasing order. Y can be constructed from Ey

u. The lines y = yi,
0 < i < t, partition Sexp

u into rectangles. See Figure 5 (right).
The sweep line starts at y = y0 and stops at every yi, for 0 ≤ i ≤ t. At each yi, we

perform two steps:
(i) Report all vertices of ∆Vu that lie on the line Li : y = yi.
(ii) For i ≥ 1, we report the vertices of ∆Vu that lie in the semi-open rectangle σi :=

γ × (yi, yi−1), i.e., all vertices that lie in σi but not on its x-edges, using the secondary
structures.

We now describe the details of the sweep-line algorithm. As we sweep Le from a+ to a−,
we vary ℓe, the value associated with the top edge e, to the current position of the sweep-line,
so we update the set Ie (and the secondary structures We and Ce that store it) as ℓe changes.
We note that Ie does not change in the interval (yi, yi−1). However, when we initialize Le to
y0, we need to reset ℓe to y0 and update Ie, We, and Ce. We will describe this initialization
step later and for now assume that Ie,We, and Ce are consistent with ℓe = y0. At each yi,
we perform steps (i) and (ii) follows.

Performing step (i). For i = 0, t, we set δ := γ × {yi} to be the top (or bottom) edge of
Sexp

u . By definition δ ∩ int(U(Lu)) = ∅. Next, by calling Report-Hole(δ), we compute
δ0 := δ \ int(U(Ru)) = δ \ int(U(Lu ∪ Ru)). Finally, set δ↓

0 to be the x-projection of δ0.
By querying the wall data structure We for edge e with Report-Holes(δ↓

0), we compute
the intervals of δ↓

0 \ U(Ie). Let x0, . . . , xs be the endpoints of these intervals. Then, for
0 < j < s, (xj , yi) is a LS vertex. If (x0, yi),(xs, yi) are endpoints of δ then they are LL
vertices, otherwise they are LS vertices.

For 0 < i < t, Li contains an x-edge η of a floater F ∈ Fu. Let δ := η ∩ Sexp
u . As

above, by calling Report-Hole(δ) on the corner data structure Ce for edge e, we compute
δ0 := δ \ int(U(Lu ∪ Ru)). If η is the bottom edge of F then we first delete the interval η↓,
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η

δ↓0

δ

F

Le

Li−1

Le = Li

β1
β′1 η

β2F

Figure 6 Zoomed-in illustrations of steps (i) and (ii) where the sweep-line Le reaches the bottom
edge η of floater F . Floaters are shown in orange, U(Lu) is shown in blue, and U(Ru) \ U(Lu) is
shown in green. (left) Step i: The endpoints of the solid intervals in δ↓

0 are the x-projections of the
vertices of ∆Vu ∩ Le. (right) Step ii: The SS vertices in σi are hollow, and the lone LS vertex is solid.
β2, the right edge of σi, is contained in U(Ru) so β′

2 = ∅ and it contains no LS vertices.

the x-projection of η, from We. Next, we query We with Report-Holes(δ↓
0) to report the

endpoints of the intervals of δ↓
0 \ int(U(Ie)). If x0, . . . , xs are these endpoints then (xj , yi),

for 0 ≤ j ≤ s, are vertices of ∆Vu lying on Li: If x0 or xs lies on ∂Sexp
u then it is an LS

vertex, and if it lies on an edge of a square in Ru, (i.e., an endpoint of δ0 lying inside Sexp
u ),

it is a CF vertex. All other vertices are FF vertices. See Figure 6 (left).

Performing step (ii). Our goal is to report all vertices of Vu ∩
∫

(σi). A vertex of ∆Vu not
lying on Li−1 or Li lies on an x-edge of a corner square. Since no x-edge of any floater square
lies in the interval (yi, yi−1), the set Ie, and thus We, remains the same for all y-values in
this interval. Furthermore, V (Ru ∪ Fu) ∩ σi = V (Ru ∩ We) ∩ σi. We can thus report all
CF and CC vertices lying in σi by querying Re with Report-Vertices(σi). The O(1) LS
vertices in σi are defined by a long square, namely a long square that defines a y-edge of
σi, and a corner square. For each y-edge βj of σi, we call We with Report-Hole(β↓

j ). If
β↓

j is returned, then βj is not contained in U(We) ∩ σi = U(Fu) ∩ σi and we call Ce with
Report-Hole(βj); let β′

j ⊆ βj be the returned (possibly empty) interval. The endpoints
of β∗

j that lie in int(βj), if any, are the LS vertices on βj . See Figure 6 (right). Finally, for
i < t, if η is the top edge of F , we insert η↓ into We and Ce, otherwise η is the bottom edge
of F and we delete η↓ from Ce. (In the latter case, η↓ was already deleted from We in the
previous step.) Note that if η is an edge of a floater F , then η↓ is accordingly inserted or
deleted to We and Ce by the end of these two steps, and hence they are made consistent
with ℓe.

When the sweep procedure ends, we set ℓe := a−. Note that now Ie consists of the
x-projections of floaters that intersect the line y = a−, as desired. Therefore the secondary
structures We and Ce are consistent with the new value of ℓe.

Initializing the sweep line. At the beginning of the procedure, the value of ℓe is the value
at which the sweep procedure stopped after inserting or deleting a long square at u that
contained the top edge of �u. To initialize the sweep line at y = a+, the top edge of Sexp

u , and
to initialize We and Ce correctly for y = a+, we again perform a line sweep from the current
value of ℓe to a+ by a horizontal line Le as above, except that no reporting of vertices occurs.
That is, as we sweep, we stop at each encountered x-edge η of a floater square, and insert or
delete the interval η↓ in We and Ce without (querying for and) reporting any vertices.
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Runtime analysis. Let κu be the number of vertices in ∆Vu, and let apr be the value of ℓe

before the sweep line is initialized. For the insertion of a square S, let φu be the number of
y-coordinates of floater edges in the intervals [a−, a+] and [ℓe, a+] (resp. [a+, apr]) if apr ≤ a+

(resp. apr > a+). For the deletion of a square S, let φu be the number of y-coordinates
of floater edges in the intervals [a−, a+] and [ℓe, a−] (resp. [a−, apr]) if apr ≤ a− (resp.
apr > a−). (Some y-coordinates may be counted twice by φu.) Thus, the total time spent
for the insertion or deletion of S at each node u ∈ Ξ(S) is (1 + φu) · O(log2 n) + O(κu).

We charge O(log2 n) units of time to each of the φu floater edges that are parallel to the
sweep line and that were crossed by the two sweep-line procedures – one in the initialization
step and one for reporting the vertices. This charging pays for the φu log2 n term in the
running time. The amortized cost of reporting ∆Vu at u is O(log2 n + κu), provided that
each floater at u had enough credits to pay for the costs charged to it. The following lemma
proves that the floater is not charged too many times.

▶ Lemma 7. Let f be an edge of a floater F at a node u ∈ T. Then f is charged by the
sweeps at �u at most six times during the entire algorithm.

Proof. Without loss of generality assume that f is an x-edge. Then f is charged by the top
and bottom sweeps, i.e., sweeps performed when a square S ∈ L∗

u containing the top or the
bottom edge of �u is inserted or deleted. We claim that f is charged at most three times by
the top sweep – a similar argument holds for the bottom sweep. Let e denote the top edge
of �u. Recall that f is charged whenever the horizontal sweep-line Le crosses f – either in
the initialization step or in the reporting step. Furthermore Le will cross f from opposite
directions, i.e., when Le is sweeping downward ((−y)-direction) or upward ((+y)-direction),
in any two consecutive crossings. We claim that Le crosses f in at most three top sweeps.

Recall that during the insertion or deletion of a square S, either Sexp
u = ∅ and no sweeps

occur, otherwise Sexp
u ̸= ∅ and two sweeps occur (one in the initialization step and one in the

reporting step). We classify downward (resp. upward) sweeps that occur during an insertion
of a square as DI (resp. UI) sweeps, and classify downward (resp. upward) sweeps that occur
during a deletion of a square as DD (resp. UD) sweeps. Consider the sequence of sweeps
that cross f while F ∈ Fu, i.e., after the insertion of F and before the deletion of F at node
u. We claim the sequence satisfies the following two constraints:

(i) No sweeps can occur after a DI sweep.
(ii) No sweeps can occur before a DD sweep.

Clearly the longest valid sequences of sweeps are of the form “DD, UD, DI” or “DD, UI, DI,”
and hence f is crossed by Le in at most three top sweeps. (It can be shown that the latter
sequence is not possible, but this fact is not needed in order to prove the lemma.) It remains
to prove the constraints above.

Proof of claim (i). Suppose Le crosses f in a DI sweep, and let S ∈ L∗
u,e be the square

being inserted. We argue that if the bottom edge of g of S lies above f then f could not
have been crossed in this sweep, either during the initialization step or during the reporting
step, as follows. Sexp

u ̸= ∅, so the bottom edge of Sexp
u = S ∩ ρu is either contained in g or

lies above it. A downward sweep in the initialization step sweeps to the top edge of Sexp
u ,

and a downward sweep in the reporting step sweeps from the top edge of Sexp
u to the bottom

edge of Sexp
u ; in either case, the sweeps stop above g and hence above f , so f is not crossed.

So we assume that g lies below f ; see Figure 7. Note that an upward sweep, either in the
initialization step of the insertion of a square or in the reporting step of the deletion of a
square, always stops at the top edge of ρu. After S has been inserted into L∗

u,e and until
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g

F

Le

f

Figure 7 An illustration of the proof of Lemma 7: Sweep-line Le is swept downward toward edge
f of floater F during the insertion or deletion of S at node u.

it is deleted from L∗
u,e, the top edge of ρu is contained in g or lies below it, which implies

that no upward sweep will cross g until after S is deleted. Let |B| denote the length of the
longest side of any rectangle B. Since F is a floater at u and S contains an edge of �u (as S

is long at u), |F | < |�u| < |S|. Then, since S is inserted after F , S will be deleted after F

has been deleted by property (P1), which implies that after Le crosses f during the insertion
of S, f will not be crossed by Le in any subsequent sweeps. This proves claim (i).

Proof of claim (ii). Suppose Le crosses f in a DD sweep, where S ∈ L∗
u,e is the square

being deleted. This sweep occurs in the initialization step of the deletion of S as Le moves
from some position above f to the bottom edge of Sexp

u , which must be below f . The latter
edge lies above the bottom edge g of S. See Figure 7 again. As noted above, in an upward
sweep, either in the initialization step of the insertion of a square or in the reporting step
of the deletion of a square, always stops at the top edge of ρu. While S is present, the top
edge of ρu is contained in g or lies below it, which implies that no upward sweep can cross
g until after S is deleted. Again, we have that |F | < |�u| < |S|, and hence property (P1)
implies S is inserted before F since f is present during the deletion of S. Since g is below f ,
no upward sweeps preceding the deletion of S can cross f , proving claim (ii). ◀

Lemma 7 implies that each floater edge in Fu has sufficient credits to pay for the cost
charged to it. Hence, we obtain the following:

▶ Lemma 8. The amortized cost of inserting/deleting a square S at a node u ∈ Ξ(S) is
O(log2 n + |∆Vu|) and at a node u ∈ Σ(S) \ Ξ(S) is O(log2 n).

▶ Remark 9. The sweep-line algorithm and secondary data structures can be extended so
that not only they compute ∆Vu, but also compute (the xy-projection of) ∂U within S ∩ �u

in the same time bound. Hence, we can compute ∂U within each rectangle of Π(S). By
merging these pieces together over all rectangles of Π(S), we can compute (the xy-projection
of) ∂U within S. We thus compute ∂U on each horizontal face of the cubes in C in time
O(n log3 n + κ). By performing the plane-sweep in the x-direction and y-direction, we can
compute ∂U on the other faces of cubes in C as well. These sweeps will be simpler because
we already have computed the vertices of U. We omit the details from this version.

2.4 Secondary structures
In this section, we describe the details of the wall and corner data structures at every node
u ∈ T and edge e of �u.

Wall data structure. For We, we use the data structure described by Wood [18], which is a
standard segment tree augmented with additional information stored at each of its nodes.
It supports our desired operations, Insert, Delete, Membership, and Report-Holes
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Figure 8 (left) Two examples of internal nodes in T with identical regions �u. On the left, the
outer square of �u is partitioned into four congruent squares, and on the right, �u is partitioned by
a quadrant of its outer box. (right) Examples of long (blue), floater (orange), and corner (green)
squares at rectangles of ∇u. S1 (resp. S2) is a long (resp. corner) square for each rectangle of ∇u

that it intersects (even though S1 is not a long square for �O
u ).

in the time mentioned earlier. Its size is O(|Xu|) and is constructed in O(|Xu|) time at the
preprocessing stage of the algorithm. Every point p ∈ X is contained in region �u of exactly
one node u in each level of T. T has O(log n) levels, so constructing all wall data structures
takes O(

∑
u|Xu|) = O(n log n) time.

Corner data structure. For each edge e of �u, we construct the data structure of Agarwal
[1, Lemma 5]. Although it was originally described to support area queries (report the area
of ρ ∩ U(Ru) \ U(We) for a given query rectangle ρ), it is straightforward to extend the data
structure to support our required operations, Report-Hole and Report-Vertices. In
particular, to answer the area queries, it maintains the x-edges (resp. y-edges) of U(Ru ∪We)
that lie on x-edges (resp. y-edges) of corner squares sorted by their y-coordinates (resp.
x-coordinates), which is sufficient to answer our desired operations by searching over these
lists of edges. Like We, it is constructed in O(|Xu|) time at the preprocessing stage of the
algorithm, so constructing all corner data structures takes O(

∑
u|Xu|) = O(n log n) time.

3 Algorithm for the Unbounded-Spread Case

In this section, we extend the algorithm of Section 2 to the case when the spread of X, the
xy-projections of the vertices of C, is arbitrary. The algorithm is largely the same. The main
challenge is that we cannot use a standard quadtree for our dynamic data structure T, as
it may have Ω(n) depth even if we use a compressed quadtree. Instead, T is a compressed
quadtree with fingers2 [13]. Its height is O(log n) regardless of the spread of X, its size is
O(n), and it can be constructed in O(n log n) time.

The properties of T are as follows. Every node u ∈ T is associated with a region �u that
is a square or the difference of two nested squares �O

u \ �I
u, where �O

u ⊃ �I
u. For nodes u

at which �u is a square, we say �O
u = �u and �I

u = ∅ so that �O
u ,�I

u are well-defined for
all nodes of T. For the root node r, �r ⊃ X. If |X ∩ �u| ≤ 1, u is a leaf; otherwise u is an
internal node and �u is partitioned either into four regions with congruent outer squares, or
it is partitioned into �u \ �S

u and �S
u by a square �S

u such that �O
u ⊃ �S

u ⊃ �I
u. In either

2 The regions associated with the nodes of a compressed quadtree with fingers as described in [13]
may have multiple holes, whereas the BBD trees proposed in [5] have at most one hole per node but
rectangular regions (which may not be squares). By combining some of the ideas from the construction
of BBD trees in [5] to ensure each region has at most one hole, our tree T can be constructed with all
stated properties.
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Figure 9 An illustration of the proof of Lemma 10: An edge e of a long square (green) intersecting
rectangle B ∈ ∇u.

case, the regions in the partition of �u are associated with a child of u, and hence u has
either two or four children. See Figure 8 (left). Recall that |ρ| denotes the length of the
longest side length of any rectangle ρ. Any nodes where �I

u ̸= ∅, T has the property that
�I

u is sticky; that is, the distance between the top (resp. right, bottom, left) edge of �O
u and

the top (resp. right, bottom, left) edge of �I
u is either 0, in which case the former contains

the latter, or at least |�I
u|. For example, if [o1, o2] (resp. [i1, i2]) is the x-projection of �O

u

(resp. �I
i ), then for j = 1, 2 we have that |oj − ij | is 0 or at least |i1 − i2|.

For a node u, we define long and short squares and the sets Su, Lu, and L∗
u as earlier.

Note that a vertex of a square S ∈ Lu may lie in the inner square �I
u of �u (in fact, at most

one vertex of S); see Figure 8 (right). For a square S, let Λ(S), Σ(S), Ξ(S), and Π(S) be the
same as before. We report ∆Vu := ∆V ∩ �u for each node u ∈ Ξ(S). However, because �u

may have a hole, reporting ∆Vu at u is more involved than a single sweep through �u. We
describe what we store at each node u, then how we update T and ultimately report ∆Vu at
each node u ∈ Ξ(S) due to the insertion or deletion of a square S at u.

The information at node u. We avoid all issues involving the inner square �I
u by further

partitioning �u into rectangles, then using essentially the same algorithm. In particular,
the lines supporting the inner square �I

u (if it exists) induce a partition of �u into a set
∇u of m ≤ 8 non-empty rectangles {B1

u, . . . , Bm
u }; if �I

u = ∅, set ∇u := {�u}. See Figure 8
(right). For a rectangle B ∈ ∇u, let LB (resp. SB) be the set of long (resp. short) squares at
u that intersect B, and let L∗

B := LB ∩ L∗
u. Let FB be the subset of short squares with at

least two vertices in int(B), and let RB := SB \ FB be the set of short squares with at most
one vertex in int(B). The following lemma will be crucial for our runtime analysis.

▶ Lemma 10. For any node u of T, rectangle B ∈ ∇, and square S ∈ LB, |S| > |B| and
hence S contains an edge of B.

Proof. Let S be a square in LB. S intersects int(�u) but no vertex of S lies in int(�u),
so its vertices either lie in int(�I

u) or outside �O
u . There are two cases. First, suppose all

vertices of S lie outside �O
u . Then |S| > |�O

u | > |B|, as desired.
Next, suppose a vertex v1 of S lies in int(�I

u). If S ⊃ B, we are done, so suppose
otherwise. No vertices of S lie in int(B), so an edge e := v1v2 of S spans B where v2 is
a vertex of S that lies outside �O

u . (If all vertices of S lie inside int(�I
u) then S does not

intersect B.) See Figure 9. By construction of ∇u, the edges of B perpendicular to e have
length |�I

u| (in particular, one is an edge of �I
u and the other is a portion of an edge of

�O
u ). By the sticky property of �I

u, the edges of B parallel to e has length at least |�I
u|, and

thus at least as long as the former ones. Since e is longer than the edges of B parallel to it,
|S| > |B|. ◀
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To be consistent with the previous algorithm, we refer to the squares in FB as floater
squares and the squares in RB as corner squares, even though a square S ∈ RB may not
have any vertices in int(B) and may even contain B. For such a corner square S ∈ RB , we
associate S with the top-left vertex v1 of B if v1 ∈ S, otherwise we associate S with the
bottom-right vertex v2 of B (in which case v2 ∈ S).

We maintain L∗
B and SB for each B ∈ ∇u in the same fashion as L∗

u, Su were stored at
nodes u of the quadtree in the previous algorithm. Note that by Lemma 10, we have the
property that any square S ∈ LB contains an edge of B as before. For each edge e of B,
we store the long squares that contain e, L∗

B,e, in red-black trees as before. We similarly
store the x-edges (resp. y-edges) of floater squares in FB sorted by their y-coordinates (resp.
x-coordinates), which we call Ex

B (resp. E
y
B).

For each edge e of a rectangle B ∈ ∇u, we maintain a value ℓe that is the position of the
sweep-line Le associated with edge e, a wall data structure We(Ie) and corner data structure
Ce(RB , Ie), where Ie are the x-projections (resp. y-projections) of squares in FB intersected
by Le if e is an x-edge (resp. y-edge). Recall their descriptions from Section 2.2.

Reporting ∆Vu. To report ∆Vu when we insert (or delete) a square S, we report ∆VB :=
B ∩ ∆Vu for each rectangle B ∈ ∇u intersected by S (there are no vertices of ∆VB if
S ∩ B = ∅). The insertion and deletion procedures are largely the same as before. In
particular, we employ the sweep-line approach from the previous algorithm and essentially
treat B as if it was �u to report ∆VB , as follows.

3.1 Reporting ∆V

We describe the procedure to report ∆V and update the data structures for the insertion of a
square S; the procedure for the deletion of S is a similar extension of the deletion procedure
described in Section 2.2 for bounded spread. There are four main steps:
(1) At each node u ∈ Λ(S) ∪ Σ(S), we compute ρB := cl(B \ U(LB)) for all rectangles

B ∈ ∇u using a top-down traversal of T and the sequences of L∗
B , as described below.

(2) At each node u ∈ Ξ(S), we report ∆VB for all rectangles B ∈ ∇u by sweeping a line
from an edge of rectangle Sexp

B := S ∩ ρB , i.e., the portion of S ∩ B that is left “exposed”
by the squares of LB .

(3) For each node u ∈ Λ(S), we insert S to L∗
B for each rectangle B ∈ ∇u that S intersects.

In particular, if S contains the edge e of B, S is inserted into L∗
B,e; recall that if B ⊆ S,

then S is associated with the top edge of B.
(4) For each rectangle B ∈ ∇u at node u ∈ Σ(S), we update SB and its secondary structures,

as follows. If S ∩ B = ∅, there is nothing to do, so suppose otherwise. If S is a corner
square for B, we insert S into all four corner data structures Ce stored at B for each of
its edges. Otherwise, S is a floater square, and we first insert the x-edges (resp. y-edges)
of S which intersect B into Ex

B (resp. E
y
B). Then, for each x-edge (resp. y-edge) e of

B such that ℓe lies in the y-span (resp. x-span) of S, we insert the x-projection (resp.
y-projection) of S to We and Ce.

We now describe the first two steps in more detail. Consider a node u ∈ Λ(S) ∪ Σ(S), and
assume that the rectangle ρD has been computed for all D ∈ ∇p(u). Let ρ∗

B := B \ U(L∗
B),

which can be computed in O(1) time using the sequences of L∗
B . Then ρB can be computed

in O(1) time using ρ∗
B and the rectangles ρD for each D ∈ ∇p(u), using the fact that
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ρB = B \ U(LB) = B \ U(L∗
B ∪ Lp(u)) = (B \ U(L∗

B)) ∩ (B \ U(Lp(u))

= ρ∗
B ∩ (�p(u) \ U(Lp(u))) = ρ∗

B ∩
( ⋃

D∈∇p(u)

BD \ U(LD)
)

= ρ∗
B ∩

( ⋃
D∈∇p(u)

ρD

)
=

⋃
D∈∇p(u)

(
ρ∗

B ∩ ρD

)
.

That is, ρB is the union of at most eight interior-disjoint rectangles, each of which is of the
intersection of rectangles ρ∗

B and ρD for a rectangle D ∈ ∇p(u), which we assume have been
precomputed. Hence, ρB can be computed in O(1) time. This completes step (1).

Let B be a rectangle of ∇u for a node u ∈ Ξ(S). Note that Sexp
B and ρB are indeed

rectangles, since any square in Lu contains an edge of B by Lemma 10 and B is a rectangle.
The main idea is that even though the sweep-line procedure to report ∆Vu in Section 2.3 was
described for a square, the correctness is invariant of whether it is a square or a rectangle
as in this scenario. We report ∆VB in the same way as before: If u ∈ Σ(S), then ∆VB is
the set of O(1) vertices of S ∩ ρB that lie in int(S ∩ B) and hence can be computed in O(1)
time. Otherwise, u ∈ Λ(S). Suppose S contains the top edge e of B. If Sexp

B = ∅, ∆VB = ∅,
and there is nothing to. So assume Sexp

B ̸= ∅. We first initialize the sweep line Le to be at
the top edge of rectangle Sexp

B , then we sweep it to its bottom edge and report all vertices of
∆VB using We and Ce in the process. The details of the sweep-line procedure are the same
as in the bounded spread case; see Section 2.3.

Runtime analysis. Most of the runtime analysis of the previous algorithm easily extends
to this algorithm. Let S be a square being inserted or deleted. Since |∇u| ≤ 8 for each
node u ∈ T, inserting S to the secondary structures at each rectangle B ∈ ∇u of a node u

in Λ(S) (resp. Σ(S)) still takes O(log n) (resp. O(log2 n)) time. To extend the amortized
time to report ∆VB for a rectangle B ∈ ∇u of a node u ∈ Ξ(S), we again charge O(log2 n)
time to the edges of floaters encountered during the sweep-line procedure at B. Then, as in
Lemma 7, it can be shown that each such edge is charged at most six times by the sweeps at
B during the entire algorithm. However, there is a subtle issue when extending the proof
of the lemma to this setting: the proof used the inequalities |S| > |B| > |F | for any floater
F ∈ FB in order to conclude |S| > |F | and apply property (P1), but our justification for
those inequalities relied on B being a square in that setting. We instead use Lemma 10 to
conclude |S| > |F |, which crucially relies on the sticky property of T.

The remainder of the analysis follows as before: it follows that the amortized runtime
to perform the at most eight sweeps (at most one per rectangle of ∇u) at node u ∈ Ξ(S)
is O(log2 n + |∆Vu|), and hence inserting or deleting S to T and reporting ∆V takes
O(log3 n + |∆V |) time. Thus, the entire algorithm takes O(n log3 n + κ) time, where κ is the
number of vertices of U, proving Theorem 1.

4 Algorithms for Special Cases

In this section, we simplify the algorithm for two special cases in which C := {C1, . . . , Cn} is
a set of n axis-aligned cubes in R3 in general position that:
1. have bounded depth, i.e., the maximum number of cubes in C that contain any point

p ∈ R3 is bounded by a constant c > 0, or
2. are all congruent.
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4.1 Cubes with Bounded Depth
We assume that the depth of the cubes in C is bounded by a constant. For simplicity, we
also assume that the cubes in C have bounded spread; it is straightforward but slightly more
tedious to extend the following techniques to the unbounded spread case. In this case, we
employ the same algorithm as described in Section 2, except that we no longer need the
corner data structures and can perform their operations in O(1) time, as explained below.
As a result, the amortized runtime to report ∆V due to the insertion or deletion of a square
in S improves to O(log2 n + |∆V |), as follows.

Fix a rectangle B ∈ ∇u for a node u ∈ T, and let v := (xi, yi) be one of the four vertices of
B. For any a ∈ R, O(1) cubes of C contain (xi, yi, a), and hence O(1) squares in S contain v at
any point during the plane-sweep. In particular, O(1) squares contain any of the four vertices
of B. Any square in RB contains a vertex of B, and hence |RB | = O(1). Then U(RB), and
thus U(RB) ∩�u, has constant complexity, so the latter can be maintained explicitly in O(1)
time per insertion or deletion to Ru (at worst, it takes O(1) time to recompute it from scratch
any time that it is needed). Furthermore, given any query segment σ ⊃ B, σ \ int(U(Ru))
can be computed in O(1) time, which replaces the need for the Report-Hole(σ) operation
of the corner data structures.

Lastly, we need to implement the Report-Vertices(ρ) operation of the corner data
structures for each edge e of B using U(Ru) ∩�u and We, where ρ ⊂ �u is a query rectangle.
Suppose e is an x-edge of B. We first compute Uρ := U(Ru) ∩ ρ in O(1) time, and then, for
each edge σ of Uρ, we compute the endpoints of the intervals of σ↓ \ int(U(Ie)) in O(log n+κσ)
time, where σ↓ is the x-projection of σ and κσ is the number of endpoints reported. These
1D vertices correspond to the 2D vertices of U(S) on σ, and any vertex is reported at most
twice. Thus, the overall runtime for this operation is O(log n + κ), where κ is the total
number of vertices reported.

Plugging these improved bounds for the corresponding operations of the corner data
structures in the analysis of the sweep-line procedure, we have that the amortized time to
report ∆V for the insertion or deletion of a square S to S is O(log2 n + |∆V |). Given that κ,
the total number of vertices of U, is O(n) in this case, the overall runtime is O(n log2 n), as
claimed in Theorem 3.

4.2 Congruent Cubes
Without loss of generality, assume that all cubes in C are unit cubes. In this case, S is now a
set of unit squares in R2. Whenever the sweeping plane reaches the top or bottom face of a
cube in C, we neither need a tree data structure nor do we need a 2D sweep-line procedure
to report ∆V . Instead we only need a 2D grid and a simpler version of the corner data
structure, as described below.

The data structure. Let G be the 2-dimensional integer grid. Without loss of generality,
no point of X lies in on the grid lines of R2. For i, j ∈ Z, let �i,j denote the grid cell
[i, i + 1] × [j, j + 1]. For all i, j ∈ Z, let Xi,j := X ∩ �i,j , and let G∗ be the non-empty grid
cells of G, i.e., G∗ = {�i,j ∈ G | |Xi,j | > 0}.

For any square S ∈ S, any grid cell � ∈ G∗ intersected by S contains exactly one vertex of
S; that is, S is a corner square for �. For any grid cell � ∈ G∗, let S� be the set of squares
in S that intersect �. Since there are no long or floater squares at any grid cell � ∈ G∗, there
are no (projections of) floaters to maintain, nor any vertices of ∆V defined by such squares
to report, which accounts for much of the intricacies of the previous algorithms.
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e1

e2
S

�

Figure 10 An illustration of a square S (red) being inserted at a grid cell � ∈ Σ(S) (black). The
solid portions of edges e1,e2 of S are the portions of the edges returned by the calls to Report-Hole.
The vertices of V new ∩� are marked as hollow and lie on e1 and e2, and the vertices of V old ∩� are
marked as crosses and lie in int(S) ∩ �.

For each � ∈ G∗, we build one corner data structure C�, that maintains S� and supports
the following operations:

Insert/Delete(S): Insert or delete a corner square S to R�.
Report-Hole(σ): Given a query axis-aligned segment σ ⊂ �, return the (at most one)
interval of σ \ int(U(S�)).
Report-Vertices(ρ): Let ρ ⊆ � be a corner rectangle, i.e., one of its vertices is a vertex
of �. Return V (S�) ∩ ρ.

As in Section 2.1, we implement C� using the data structure of Agarwal [1, Lemma 5],
which supports the operations above without modification. An Insert/Delete takes
O(log2 n) time, Report-Hole takes O(log n) time, and Report-Vertices takes O(log n +
κ) time, where κ is the number of vertices reported. Note that, in contrast with the corner
data structures used in the previous two algorithms, we build only one for each cell � instead
of one per edge of �, and this data structure does not maintain a set of intervals in addition
to the set of corner squares S�. Using the fact that there are no intervals and the query
rectangle is a corner rectangle, the corner data structure in [1] can be simplified, but we skip
the details here.

Reporting ∆V . We describe the procedure to report ∆V and update the data structures
for the insertion of a square S; the procedure for the deletion of S is a similar extension of
the deletion procedure described in Section 2.2 for bounded spread. Let Σ(S) be the four
grid cells that S intersects. The grid cells in Σ(S) partition S. We report ∆V� := ∆V ∩ �
for each grid cell � ∈ Σ(S).

Let V new ⊆ ∆V be the set of vertices that are created by the insertion of S (which appear
on ∂S), and let V old be the set of vertices that no longer appear on U after the insertion of
S (which lie in int(S)).

Fix a grid cell � ∈ Σ(S). Let e1, e2 be the edges incident to the vertex of S in int(�).
The vertices of V new ∩ � that lie on e1 (resp. e2) are the endpoints of e1 \ int(U(S�)) (resp.
e2 \ int(U(S�)) that lie in int(�). See Figure 10. There are at most two such vertices lying on
each edge ei, and they are computed by calling C� with Report-Hole(ei ∩ �)). Then we
report V old ∩�, i.e., the vertices of U(S�)∩�, by calling C� with Report-Vertices(S ∩�).
The vertices reported account for all vertices of ∆V . Finally, we insert S to S� by calling
C� with Insert(S). Repeating this step for all four cells in Σ(S), we report ∆V .
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The eight Report-Hole calls take O(log n) time overall, the four Report-Vertices
calls take O(log n + |∆V |) time, and the four Insert calls take O(log2 n) time. Hence, the
total time spent for the insertion of S is O(log2 n + |∆V |). Similarly, the deletion of a square
takes O(log2 n + |∆V |) time.

Runtime analysis. G∗ and Σ(S) for all squares S can be computed in O(n log n) time. At
the beginning of the algorithm, no cubes intersect the sweeping plane and hence S� = ∅, so
building C� for � ∈ G∗ takes O(n) time overall. Given that κ, the total number of vertices
of U, is O(n) in this case, the overall runtime is O(n log2 n), as claimed in Theorem 3.

Unit cubes with bounded depth. Suppose the cubes of C are unit cubes with bounded depth.
Let G be the 3D integer grid, which partitions R3 into unit cubes, and let G∗ ⊂ G be the grid
cells intersected by at least one cube in C; |G∗| ≤ 8n. Let CG ⊆ C := {C ∩ G ≠ ∅ | C ∈ C} for
each grid cell G ∈ G∗;

∑
G∈G∗ |CG| ≤ 8n. For any grid cell G ∈ G∗, any cube in CG contains

a vertex of G, which implies that |CG| is bounded by a constant since the cubes of C have
bounded depth. Therefore U(CG) ∩ G = U ∩ G can be computed in O(1) time. Then U can
be computed by merging the portions within each grid cell of G∗ in O(n + κ) = O(n) time,
where κ is the number of vertices on U, which is bounded by O(n) in this case. Computing
CG for all grid cells G ∈ G∗ takes O(n log n) time, so the running time of the entire algorithm
is O(n log n). Note that if the maximum distance between any two centers of cubes in C is
polynomially bounded (i.e., is at most nc for a constant c > 0) and ⌊x⌋ can be computed in
constant time for any x ∈ R, computing the CG’s can be done in O(n) time, which improves
the overall running time to O(n).

5 Conclusion

We have described algorithms to compute (the boundary of) the union of axis-aligned 3D
cubes (or fat boxes) in general position in an output-sensitive manner. In particular, if the
cubes have different sizes the union can be computed in O(n log3 n + κ) time, where κ is the
number of union vertices. If all cubes have the same size or they have bounded depth, then
the union can be computed in O(n log2 n) time, and if both conditions hold then the running
time improves to O(n log n). We conclude by mentioning two open problems:

(i) Can the running time be improved to O(n log n + κ)?
(ii) Can the union of a set of n cubes in Rd be computed in O(n⌊d/2⌋ + κ) time? In

particular, can the union of n hypercubes in R4 be computed in O(n polylog(n) + κ)
time? Kaplan et al. [15] have shown that for a special case of orthants in Rd, the union
of n such orthants can be computed in O(n + κ) logd−1 n) time, but their algorithm
does not extend to hypercubes.
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Abstract
This paper considers enumerating answers to similarity-join queries under dynamic updates: Given
two sets of n points A, B in Rd, a metric ϕ(·), and a distance threshold r > 0, report all pairs of
points (a, b) ∈ A × B with ϕ(a, b) ≤ r. Our goal is to store A, B into a dynamic data structure
that, whenever asked, can enumerate all result pairs with worst-case delay guarantee, i.e., the time
between enumerating two consecutive pairs is bounded. Furthermore, the data structure can be
efficiently updated when a point is inserted into or deleted from A or B.

We propose several efficient data structures for answering similarity-join queries in low dimension.
For exact enumeration of similarity join, we present near-linear-size data structures for ℓ1, ℓ∞ metrics
with logO(1) n update time and delay. We show that such a data structure is not feasible for the
ℓ2 metric for d ≥ 4. For approximate enumeration of similarity join, where the distance threshold
is a soft constraint, we obtain a unified linear-size data structure for ℓp metric, with logO(1) n

delay and update time. In high dimensions, we present an efficient data structure with worst-case
delay-guarantee using locality sensitive hashing (LSH).
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1 Introduction

There has been extensive work in many areas including theoretical computer science, compu-
tational geometry, and database systems on designing efficient dynamic data structures to
store a set O of objects so that certain queries on O can be answered quickly and objects can
be inserted into or deleted from O dynamically. A query Q is specified by a set of constraints
and the goal is to report the subset Q(O) ⊆ O of objects that satisfy the constraints, the
so-called reporting or enumeration queries. More generally, Q may be specified on k-tuples
of objects in O, and we return the subset of Ok that satisfy Q. One may also ask to return
certain statistics on Q(O) instead of Q(O) itself, but here we focus on enumeration queries.
As an example, O is set of points in Rd and a query Q specifies a simple geometric region ∆
(e.g., box, ball, simplex) and asks to return O ∩∆, the so-called range-reporting problem. As
another example, O is again a set of points in Rd, and Q now specifies a value r ≥ 0 and
asks to return all pairs (p, q) ∈ O × O with ∥p− q∥ ≤ r. Traditionally, the performance of a
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data structure has been measured by its size, the time needed to update the data structure
when an object is inserted or deleted, and the total time spent in reporting Q(O). In some
applications, especially in exploratory or interactive data analysis of large datasets, it is
desirable to report Q(O) incrementally one result at a time so that users can start exploiting
the first answers while waiting for the remaining ones. To offer guarantees on the regularity
during the enumeration process, we consider an important complexity measure of such data
structures as the maximum delay between the enumeration of two consecutive objects [11].
Formally speaking, δ-delay enumeration requires that the time between the start of the
enumeration process to the first result, the time between any consecutive pair of results, and
the time between the last result and the termination of the enumeration process should all
be at most δ.

In this paper, we are interested in dynamic data structures for (binary) similarity join
queries, which have numerous applications in data cleaning, data integration, collaborative
filtering, etc. Given two sets of points A and B in Rd, a metric ϕ(·), and a distance threshold
r > 0, the similarity join asks to report all pairs of (a, b) ∈ A×B with ϕ(a, b) ≤ r. Similarity
joins have been studied extensively in the database and data mining literature [19, 33, 40,
43, 45], but it is still unclear how to enumerate similarity join results efficiently when the
underlying data is updated. Our goal is to design a dynamic data structure that can be
efficiently updated when an input point is inserted or deleted; and whenever an enumeration
query is issued, all join results can be enumerated from it with worst-case delay guarantee.

1.1 Previous results
We briefly review the previous work on similarity join and related problems. See surveys [8,
10, 44] for more results.

Enumeration for Conjunctive Queries. Conjunctive queries are built upon natural join
(⋊⋉), which is a special case of similarity join with r = 0, i.e., two tuples can be joined if
and only if they have the same value on the join attributes. Enumeration for conjunctive
queries has been extensively studied in the static settings [11, 42, 16] for a long time. In
2017, two papers [14, 31] started to study dynamic enumeration for conjunctive query. Both
obtained a dichotomy. First, a linear-size data structure that can be updated in O(1) time
while supporting O(1)-delay enumeration exists for a conjunctive query if and only if it is
q-hierarchical (e.g., the degenerated natural join over two tables is q-hierarchical). However,
for non-q-hierarchical queries with input size n, they showed a lower bound Ω(n 1

2 −ε) on the
update time for any small constant ε > 0, if aiming at O(1) delay. This result is very negative
since q-hierarchical queries are a very restricted class; for example, the matrix multiplication
query πX,ZR1(X, Y ) ⋊⋉ R2(Y, Z), where πX,Y denotes the projection on attributes X, Y , and
the triangle join R1(X, Y ) ⋊⋉ R2(Y, Z) ⋊⋉ R3(Z, X) are already non-q-hierarchical. Later,
Kara et al. [34] designed optimal data structures supporting O(

√
n)-time maintenance for

some selected non-q-hierarchical queries such as the triangle queries. However, it is still
unclear if a data structure of O(

√
n)-time maintenance exists for a large class of queries.

Some additional trade-off results have been obtained in [35, 46].

Range search. A widely studied problem related to similarity join is range searching [2, 3,
13, 47]: Preprocess a set A of points in Rd with a data structure so that for a query range
γ (e.g., rectangle, ball, simplex), all points of A ∩ γ can be reported quickly. A particular
instance of range searching, the so-called fixed-radius-neighbor searching, in which the range
is a ball of fixed radius centered at query point is particularly relevant for similarity joins.
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Table 1 Summary of Results: n is the input size; r is the distance threshold; d is the dimension
of input points; ρ ≤ 1

(1+ε)2 + o(1) is the quality of LSH family for the ℓ2 metric. For ℓ1, Hamming
ρ ≤ 1

1+ε
. Õ notation hides a logO(1) n-factor; for the results where d is constant the O(1) exponent

is at most linear on d, while for the high dimensional case the exponent is at most 3.

Enumeration Metric Properties Data Structures
Space Update Delay

Exact ℓ1/ℓ∞ r is fixed Õ(n) Õ(1) Õ(1)
ℓ2 r is fixed Õ(n) Õ(n1− 1

d+1 ) Õ(n1− 1
d+1 )

ϵ- ℓp

r is fixed O(n) Õ(ϵ−d) Õ(ϵ−d)

Approximate
r is variable

O(ε−dn) Õ(ε−d) O(1)spread is poly(n)
ℓ1, ℓ2, r is fixed

Õ(dn + n1+ρ) Õ(dn2ρ) Õ(dn2ρ)hamming high dimension

For a given metric ϕ, let Bϕ(x, r) be the ball of radius r centered at x. A similarity join
between two sets A, B can be answered by querying A with ranges Bϕ(b, r) for all b ∈ B.
Notwithstanding this close relationship between range searching and similarity join, the data
structures for the former cannot be used for the latter: It is too expensive to query A with
Bϕ(b, r) for every b ∈ B whenever an enumeration query is issued, especially since many
such range queries may return empty set, and it is not clear how to maintain the query
results as the input set A changes dynamically.

Reporting neighbors. The problem of reporting neighbors is identical to our problem in
the offline setting. In particular, given a set P of n points in Rd and a parameter r, the goal
is to report all pairs of P within distance r. The algorithm proposed in [36] can be modified
to solve the problem of reporting neighbors under the ℓ∞ metric in O(n + k) time, where k

is the output size. Aiger et al. [7] proposed randomized algorithms for reporting neighbors
using the ℓ2 metric in O((n + k) log n) time, for constant d.

Scalable continuous query processing. There has been some work on scalable continuous
query processing, especially in the context of data streams [21, 18, 49] and publish/sub-
scribe [25], where the queries are standing queries and whenever a new data item arrives,
the goal is to report all queries that are affected by the new item [6, 5]. In the context of
similarity join, one can view A as the data stream and Bϕ(b, r) as standing queries, and
we update the results of queries as new points in A arrive. There are, however, significant
differences with similarity joins – arbitrary deletions are not handled; continuous queries do
not need to return previously produced results; basing enumeration queries on a solution
for continuous queries would require accessing previous results, which can be prohibitive if
stored explicitly.

1.2 Our results
We present several dynamic data structures for enumerating similarity joins under different
metrics. Table 1 summarizes our main results. It turns out that dynamic similarity join
is hard for some metrics, e.g., ℓ2. Therefore we also consider approximate similarity join
where the distance threshold r is a soft constraint. Formally, given parameter r, ε > 0, the
ε-approximate similarity join relaxes the distance threshold: (1) all pairs of (a, b) ∈ A×B

with ϕ(a, b) ≤ r should be returned; (2) no pair of (a, b) ∈ A×B with ϕ(a, b) > (1 + ε)r is
returned; (3) some pairs of (a, b) ∈ A×B with r < ϕ(a, b) ≤ (1 + ε)r may be returned. We
classify our results in four broad categories:
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Exact similarity join. Here we assume that d is constant and the distance threshold is
fixed. Our first result (Section 2.1) is an Õ(1)-size data structure for similarity join under
the ℓ1/ℓ∞ metrics that can be updated in Õ(1) time whenever A or B is updated, and
ensures Õ(1) delay during enumeration. Based on range trees [12, 23], the data structure
stores the similarity join pairs implicitly so that they can be enumerated without probing
every input point. We extend these ideas to construct a data structure for similarity join
under the ℓ2 metric (in Section 2.3) with Õ(n1−1/d) amortized update time while supporting
Õ(n1−1/d)-delay enumeration. Lower bounds on ball range searching [1, 20] rule out the
possibility of a linear-size data structure with Õ(1) delay.

Approximate similarity join in low dimensions. Due to the negative result for ℓ2 metric,
we shift our attention to ε-approximate similarity join. We now allow the distance threshold
to be part of the query, but the value of ε, the error parameter, is fixed. We present a
simple linear-size data structure based on quad trees and the notion of well-separated pair
decomposition, with O(ϵ−d) update time and O(1) delay. If we fix the distance threshold,
then the data structure can be further simplified and somewhat improved by replacing the
quad tree with a simple uniform grid.

Approximate similarity join in high dimensions. So far we assumed d to be constant and
the big O notation in some of the previous bounds hides a constant that is exponential in d.
Our final result is an LSH-based [27] data structure for similarity joins in high dimensions.
Two technical issues arise when enumerating join results from LSH: one is to ensure bounded
delay because we do not want to enumerate false positive results identified by the hash
functions, and the other is to remove duplicated results as one join result could be identified
by multiple hash functions. For the ℓ2 metric (the results can also be extended to ℓ1 and
Hamming metrics) we propose a data structure of Õ(nd + n1+ρ) size and Õ(dn2ρ) amortized
update time that supports (1 + 2ε)-approximate enumeration with Õ(dn2ρ) delay with high
probability, where ρ ≤ 1

(1+ε)2 + o(1) is the quality of the LSH family. Alternatively, we
present a data structure with Õ(dnρ) amortized update time and Õ(dn3ρ) delay. Our data
structure can be extended to the case when the distance threshold r is variable. If we allow
worse approximation error we can improve the results for the Hamming distance. Finally, we
show a lower bound by relating similarity join to the approximate nearest neighbor query.

We also consider similarity join beyond binary joins.

Triangle similarity join in low dimensions. Given three sets of points A, B, S in Rd, a metric
ϕ(·), and a distance threshold r > 0, the triangle similarity join asks to report the set of all
triples of (a, b, s) ∈ A× B × S with ϕ(a, b) ≤ r, ϕ(a, s) ≤ r, ϕ(b, s) ≤ r. The ε-approximate
triangle similarity join can be defined similarly by taking the distance threshold r as a soft
constraint. In the full version [4], we extend our data structures to approximate triangle
similarity join by paying an extra factor of logO(1) n in the performance.

High-level framework. All our data structures rely on the following common framework.
We model the (binary) similarity join as a bipartite graph G′ = (A ∪ B, E), where an
edge (a, b) ∈ E if and only if ϕ(a, b) ≤ r. A naive solution by maintaining all edges of
G′ explicitly leads to a data structure of Θ(n2) size that can be updated in Θ(n) time
while supporting O(1)-delay enumeration. To obtain a data structure with poly-logarithmic
update time and delay enumeration, we find a compact representation of G′ with a set
F = {(A1, B1), (A2, B2), . . . , (Au, Bu)} of edge-disjoint bi-cliques such that (i) Ai ⊆ A,
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Bi ⊆ B for any i, (ii) E =
⋃u

i=1 Ai ×Bi, and (iii) (Ai ×Bi) ∩ (Aj ×Bj) = ∅ for any i ̸= j.
We represent F using a tripartite graph G = (A ∪B ∪ C, E1 ∪ E2) where C = {c1, . . . , cu}
has a node for each bi-clique in F and for every i ≤ u, we have the edges (aj , ci) ∈ E1
for all aj ∈ Ai and (bk, ci) ∈ E1 for all bk ∈ Bi. We cannot afford to maintain E1 and E2
explicitly. Instead, we store some auxiliary information for each ci and use geometric data
structures to recover the edges incident to a vertex ci ∈ C. We also use data structures
to maintain the set C and the auxiliary information dynamically as A and B are being
updated. We will not refer to this framework explicitly but it provides the intuition behind
all our data structures. Section 2 describes the data structures to support this framework for
exact similarity join, and Section 3 presents simpler, faster data structures for approximate
similarity join. Both Sections 2 and 3 assume d to be constant. Section 4 describes the data
structure for approximate similarity join when d is not constant.

2 Exact Similarity Join

In this section, we describe the data structure for exact similarity joins under the ℓ∞, ℓ1, ℓ2
metrics, assuming d is constant. We first describe the data structure for the ℓ∞ metric. We
show that similarity join under the ℓ1 metric in Rd can be reduced to that under the ℓ∞
metric in Rd+1. Finally, we describe the data structure for the ℓ2 metric. Throughout this
section, the threshold r is fixed, which is assumed to be 1 without loss of generality.

2.1 Similarity join under ℓ∞ metric
Let A and B be two point sets in Rd with |A| + |B| = n. For a point p ∈ Rd, let
B(p) = {x ∈ Rd | ∥p− x∥∞ ≤ 1} be the hypercube of side length 2. We wish to enumerate
pairs (a, b) ∈ A×B such that a ∈ B(b).

Data structure. We build a d-dimensional dynamic range tree T on the points in A. For
d = 1, the range tree on A is a balanced binary search tree T of O(log n) height. The points
of A are stored at the leaves of T in increasing order, while each internal node v stores the
smallest and the largest values, α−

v and α+
v , respectively, contained in its subtree. The node

v is associated with an interval Iv = [α−
v , α+

v ] and the subset Av = Iv ∩A. For d > 1, T is
constructed recursively: We build a 1D range tree Td on the xd-coordinates of points in A.
Next, for each node v ∈ Td, we recursively construct a (d− 1)-dimensional range tree Tv on
A∗

v, which is defined as the projection of Av onto the hyperplane xd = 0, and attach Tv to
v as its secondary tree. The size of T in Rd is O(n logd−1 n) and it can be constructed in
O(n logd n) time. See [23] for details.

For a node v at a level-i tree, let p(v) denote its parents in that tree. If v is the root of
that tree, p(v) is undefined. For each node u of the d-th level of T , we associate a d-tuple
π(u) = ⟨u1, u2, . . . , ud = u⟩, where ui is the node at the i-th level tree of T to which the
level-(i + 1) tree containing ui+1 is connected. We associate the rectangle □u =

∏d
j=1 Iuj

with the node u. For a rectangle ρ =
∏d

i=1 δi , a d-level node u is called a canonical node
if for every i ∈ [1, d], Iui ⊆ δi and Ip(ui) ̸⊆ δi. For any rectangle ρ, there are O(logd n)
canonical nodes in T , denoted by N (ρ), and they can be computed in O(logd n) time [23].
T can be maintained dynamically, as points are inserted into A or deleted from A using
the standard partial-reconstruction method, which periodically reconstructs various bottom
subtrees. The amortized time is O(logd n); see [39] for details.

We query T with B(b) for all b ∈ B and compute N (b) := N (B(b)) the sets of its
canonical nodes. For each level-d tree node u of T , let Bu = {b ∈ B | u ∈ N (b)}. We have∑

u |Bu| = O(n logd n). By construction, for all pairs (a, b) ∈ Au × Bu, ∥a− b∥∞ ≤ 1, so
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Figure 1 Left: Two levels of the range tree. Right: Definition of R(u).

(Au, Bu) is a bi-clique of join results. We call u active if both Au, Bu ≠ ∅. A naive approach
for reporting join results is to maintain Au, Bu for every d-level node u of T as well as
the set C of all active nodes. Whenever an enumerate query is issued, we traverse C and
return Au × Bu for all u ∈ C (referring to the tripartite-graph framework mentioned in
Introduction, C is the set of all level-d nodes of T ). The difficulty with this approach is that
when A changes and T is updated, some d-level nodes change and we have to construct Bu

for each new level-d node u ∈ T . It is too expensive to scan the entire B at each update.
Furthermore, although the average size of Bu is small, it can be very large for a particular
u and this node may appear and disappear several times. So we need a different approach.
The following lemma is the key observation.

▶ Lemma 1. Let u be a level-d node, and let π(u) = ⟨u1, . . . , ud = u⟩. Then there is a
d-dimensional rectangle R(u) =

∏d
i=1 δi, where the endpoints of δi, for i ∈ [1, d], are defined

by the endpoints of Iui
and Ip(ui), such that for any x ∈ Rd, u ∈ N (x) if and only if

x ∈ R(u). Given ui’s and p(ui)’s, R(u) can be constructed in O(1) time.

Proof. Notice that B(x) is the hypercube of side length 2 and center x. Let Iui
= [α−

ui
, α+

ui
]

for any ui and i ∈ [1, d]. Recall that u ∈ N (x) if and only if for each i ∈ [1, d],

Iui ⊆ [xi − 1, xi + 1] and Ip(ui) ̸⊆ [xi − 1, xi + 1], (∗)

Fix a value of i. From the construction of a range tree either α−
ui

= α−
p(ui) or α+

ui
= α+

p(ui).
Without loss of generality, assume α−

ui
= α−

p(ui); the other case is symmetric. Then (∗) can
be written as: xi ≤ α−

ui
+ 1 and α+

ui
− 1 ≤ xi < α+

p(ui) − 1. Therefore xi has to satisfy three
1D linear constraints. The feasible region of these constraints is an interval δi and xi ∈ δi

(see also Figure 1). Hence, u is a canonical node of B(x) if and only if for all i ∈ [1, d],
xi ∈ δi. In other words, x = (x1, . . . , xd) ∈

∏d
i=1 δi := R(u). The endpoints of δi are the

endpoints of Iui
or Ip(ui). In order to construct R(u), we only need the intervals Iui

and
Ip(ui) for each i ∈ [1, d], so it can be constructed in O(d) = O(1) time. ◀

In view of Lemma 1, we proceed as follows. We build a dynamic range tree Z on B.
Furthermore, we augment the range tree T on A as follows. For each level-d node u ∈ T , we
compute and store R(u) and βu = |Bu|. By construction, |Au| ≥ 1 for all u. We also store a
pointer at u to the leftmost leaf of the subtree of T rooted at u, and we thread all the leaves
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of a d-level tree so that for a node u, Au can be reported in O(|Au|) time. Updating these
pointers as T is updated is straightforward. Whenever a new node u of T is constructed,
we query Z with R(u) to compute βu. Finally, we store C , the set of all active nodes of T ,
in a red-black tree so that a node can be inserted or deleted in O(log n) time. The total size
of the data structure is O(n logd−1 n), and it can be constructed in O(n logd n) time.

Update and Enumerate. Updating A is straightforward. We update T , query Z with
R(u), for all newly created d-level nodes u in T to compute βu, and update C to delete all
active nodes that are no longer in T and to insert new active nodes. Since the amortized
time to update T as a point is inserted or deleted is O(logd n), the amortized update time of
a point in A is O(log2d n) – we spend O(logd n) time to compute βu for each of the O(logd n)
newly created nodes. If a point b is inserted (resp. deleted) in B, we update Z and query
T with B(b). For all canonical nodes u in N (b), we increment (resp. decrement) bu. If
u becomes active (resp. inactive), we insert (resp. delete) u in C in O(log n) time. The
amortized update time for b is O(logd+1 n).

Finally, to enumerate the pairs in join results, we traverse the active nodes C and for
each u ∈ C , we first query Z with R(u) to recover Bu. Recall that Bu is reported as a set
of O(logd n) canonical nodes of Z whose leaves contain the points of Bu. We simultaneously
traverse the leaves of the subtree of T rooted at u to compute Au and report Au ×Bu. The
traversals can be performed in O(logd n) maximum delay. Putting everything together, we
obtain:

▶ Theorem 2. Let A, B be two sets of points in Rd, where d ≥ 1 is a constant, with
|A|+ |B| = n. A data structure of Õ(n) size can be built in Õ(n) time and updated in Õ(1)
amortized time, while supporting Õ(1)-delay enumeration of similarity join under ℓ∞ metric.

2.2 Similarity join under ℓ1 metric
For d ≤ 2 it is straightforward to reduce similarity join under ℓ1 metric to ℓ∞ metric. For
d = 1, ℓ1 metric is obviously equivalent to the ℓ∞ metric. For d = 2, notice that the ℓ1 ball
is a diamond, while the ℓ∞ ball is a square. Hence, given an instance of the similarity join
under the ℓ1 metric we can rotate A ∪B by 45 degrees to create an equivalent instance of
the similarity join problem under the ℓ∞ metric.

Next, we focus on d ≥ 3. The data structure we proposed in Section 2.1 for the ℓ∞
norm can be straightforwardly extended to the rectangle-containment problem in which for
each b ∈ B, B(b) is an arbitrary axis-aligned hyper-rectangle with center b, and the goal
is to report all (a, b) ∈ A×B such that a ∈ B(b). Lemma 1 can be extended so that R(u)
is a 2d-dimensional rectangle. Overall, Theorem 2 remains the same assuming B(b) are
hyper-rectangles (and not hypercubes).

Given an instance of similarity join under ℓ1 metric in Rd, we next show how to reduce it to
2d (d + 1)-dimensional rectangle-containment problems. As above, assume r = 1, so our goal
is to report all pairs a = (a1, . . . , ad) ∈ A, b = (b1, . . . , bd) ∈ B such that

∑d
i=1 |ai − bi| ≤ 1.

Let E = {−1, +1}d be the set of all 2d vectors in Rd with coordinates either 1 or −1.
For each vector e ∈ E, we construct an instance of the rectangle-containment problem.
For each e = (e1, . . . , ed) ∈ E, we map each point a = (a1, . . . , ad) ∈ A to a point āe =
(a1, . . . , ad,

∑d
i=1 eiai) ∈ Rd+1. Let Āe = {āe | a ∈ A}. For each point b = (b1, . . . , bd) ∈ B,

we construct the axis-align rectangle b̄e =
∏d+1

i=1 b
(i)
e in Rd+1, where b

(i)
e is the interval [bi,∞)

if ei = 1 and (−∞, bi] if ei = −1 for each i = 1, . . . , d, and b
(d+1)
e = (−∞, 1 +

∑d
i=1 eibi]. Let

B̄e = {b̄e | b ∈ B}. See Figure 2.
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e = (+1,+1) e = (−1,+1) e = (+1,−1) e = (−1,−1)

b

a
(b1, b2, 1 − b1 − b2)

(b1, b2, 1 + b1 − b2)

(b1, b2, 1 − b1 + b2)(b1, b2, 1 + b1 + b2)

āe

Figure 2 An illustration of mapping each b to rectangles.

For each e ∈ E, we construct the dynamic data structure for Āe, B̄e. Whenever A or
B is updated, we update all 2d rectangle-containment data structures. A similarity join
enumeration query on A, B is answered by enumerating containment pairs (Āe, B̄e) for e ∈ E.
If a pair (āe, b̄e) is reported, we report (a, b). The update time and delay are Õ(1). The
correctness of the algorithm follows from the following lemma. Let sgn(x) = +1 if x ≥ 0 and
−1 otherwise.

▶ Lemma 3. Let a = (a1, . . . , ad) ∈ A, b = (b1, . . . , bd) ∈ B be an arbitrary pair of points.
Let e∗ = (e∗

1, . . . , e∗
d) where e∗

i = sgn(ai− bi) for 1 ≤ i ≤ d. Then āe /∈ b̄e for all e ∈ E \ {e∗}.
Furthermore, āe∗ ∈ b̄e∗ if and only if ∥a− b∥1 ≤ 1.

Proof. First, we note that for any e ∈ E \ {e∗}, there must exist some i such that ei ̸= e∗
i .

Without loss of generality, assume ej = 1 when aj < bj . By the definition of āe, b̄e,
aj /∈ [bj ,∞), thus āe /∈ b̄e. Next, we show that āe∗ ∈ b̄e∗ if and only if ∥a − b∥1 ≤ 1. On
one hand, we assume āe∗ ∈ b̄e∗ . By definition,

∑d
i=1 e∗

i ai lies in the interval associated with
bd+1

e∗ , i.e.,
∑d

i=1 e∗
i ai ≤ 1 +

∑d
i=1 e∗

i bi, or
∑d

i=1 e∗
i (ai − bi) ≤ 1. Implied by the fact that

∥a− b∥1 =
∑d

i=1 e∗
i (ai − bi), we have ∥a− b∥1 ≤ 1. On the other hand, assume ∥a− b∥1 ≤ 1.

Similarly, we have ∥a − b∥1 =
∑d

i=1 e∗
i (ai − bi) ≤ 1 ⇔

∑d
i=1 e∗

i ai ≤ 1 +
∑d

i=1 e∗
i bi, or∑d

i=1 e∗
i ai ∈ (−∞, 1 +

∑d
i=1 e∗

i bi]. Moreover, for any i ∈ {1, . . . , d}, we have: (1) if e∗
i = 1,

ai ≥ bi, i.e., ai ∈ [bi,∞); (2) if e∗
i = −1, ai ≤ bi, i.e., ai ∈ (−∞, bi]. Hence, āe∗ ∈ b̄e∗ . ◀

b

Figure 3 An illustration of ℓ1 ball in R3. It is decomposed to 2d = 8 types of simplices.

▶ Remark. Roughly speaking, we partition the ℓ1-ball centered at 0 into 2d simplices
∆1, . . . , ∆2d (see Figure 3) and build a separate data structure for each simplex ∆i. Namely,
let Bi = {b + ∆i | b ∈ B} and we report all pairs (a, b) ∈ A × B such that a ∈ b + ∆i. If
∥a− b∥1 ≤ 1 then a lies in exactly one simplex b ∈ ∆i. We map each simplex to a rectangle
in Rd+1 and use the previous data structure.

Using Theorem 2, we obtain:

▶ Theorem 4. Let A, B be two sets of points in Rd, where d ≥ 1 is a constant, with
|A|+ |B| = n. A data structure of Õ(n) size can be built in Õ(n) time and updated in Õ(1)
amortized time, while supporting Õ(1)-delay enumeration of similarity join under ℓ1 metric.
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2.3 Similarity join under ℓ2 metric
In this section, we consider the similarity join between two point sets A and B in Rd under
the ℓ2 metric.

Reduction to halfspace containment. We use the lifting transformation [23] to convert an
instance of the similarity join problem under ℓ2 metric to the halfspace-containment problem
in Rd+1. For any two points a = (a1, . . . , ad) ∈ A and b = (b1, . . . , bd) ∈ B, ∥a− b∥2 ≤ 1 if
and only if (a1 − b1)2 + . . . + (ad − bd)2 ≤ 1, or a lies in the unit sphere centered at b. The
above condition can be rewritten as

a2
1 + b2

1 + · · ·+ a2
d + b2

d − 2a1b1 − · · · − 2adbd − 1 ≥ 0.

We map the point a to a point a′ = (a1, . . . , ad, a2
1 + · · ·+ a2

d) in Rd+1 and the point b to a
halfspace b′ in Rd+1 defined as

b′ : −2b1z1 − · · · − 2bdzd + zd+1 + b2
1 + · · ·+ b2

d − 1 ≥ 0.

Note that ∥a − b∥2 ≤ 1 if and only if a′ ∈ b′. Set A′ = {a′ | a ∈ A} and B′ = {b′ | b ∈ B}.
Thus, in the following, we study the halfspace-containment problem, where given a set of
points A′ and a set of halfspaces B′ we construct a dynamic data structure that reports all
pairs (a ∈ A′, b ∈ B′), such that a belongs in the halfspace b, with delay guarantee.

Partition tree. A partition tree on a set P of points in Rd [17, 37, 48] is a tree data structure
formed by recursively partitioning a set into subsets. Each point is stored in exactly one
leaf and each leaf usually contains a constant number of points. Each node u of the tree
is associated with a simplex ∆u and the subset Pu = P ∩∆u; the subtree rooted at u is a
partition tree of Pu. We assume that the simplices associated with the children of a node u

are pairwise disjoint and lie inside ∆u, as in [17]. In general, the degree of a node is allowed
to be non-constant. Given a query simplex ∆, a partition tree finds a set of O(n1−1/d)
canonical nodes whose cells contain the points of P ∩∆. Roughly speaking, a node u is a
canonical node for ∆ if ∆u ⊂ ∆ and ∆p(u) ̸⊆ ∆. A simplex counting (resp. reporting) query
can be answered in O(n1−1/d) (resp. O(n1−1/d + k)) time using a partition tree. Chan [17]
proposed a randomized algorithm for constructing a linear size partition tree with constant
degree, that runs in O(n log n) time and it has O(n1−1/d) query time with high probability.

Data structure. For simplicity, with slight abuse of notation, let A be a set of points
in Rd and B a set of halfspaces in Rd each lying below the hyperplane bounding it, and
our goal is to build a dynamic data structure for halfspace-containment join on A, B. The
overall structure of the data structure is the same as for rectangle containment described in
Section 2.1, so we simply highlight the difference.

Instead of constructing a range tree, we construct a dynamic partition tree TA for A

so that the points of A lying in a halfspace can be represented as the union of O(n1−1/d)
canonical subsets. For a halfplane bounding a halfspace b ∈ B, let b̄ denote its dual point
in Rd (see [23] for the definition of duality transform). Note that a point a lies in b if and
only if the dual point b̄ lies in the halfspace lying below the hyperplane dual to a. Set
B̄ = {b̄ | b ∈ B}. We construct a multi-level dynamic partition tree on B̄, so that for a pair
of simplices ∆1 and ∆2, it returns the number of halfspaces of B that satisfy the following
two conditions: (i) ∆1 ⊆ b and (ii) ∆2 ∩∂b ̸= ∅, where ∂b is the hyperplane boundary defined
by the halfspace b. This data structure uses O(n) space, can be constructed in Õ(n) time,
and answers a query in Õ(n1−1/d) time.
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For each node u ∈ TA, we issue a counting query to TB and get the number of halfspaces
in B that have u as a canonical node. Hence, TA can be built in Õ(n2−1/d) time. For a
node u, µA(u) can be computed in O(1) time by storing Au at each node u ∈ TA. Recall
that µB(u) is the number of halfspaces b of B for which u is a canonical node, i.e., ∆u ⊆ b

and ∆p(u) ∩ ∂b ≠ ∅, where p(u) is the parent of u. Using TB, µB(u) can be computed in
Õ(n1−1/d) time.

Update and enumeration. The update procedure is the same that in Section 2.1, however
the query time now on TA or TB is Õ(n1− 1

d ) so the amortized update time is Õ(n1− 1
d ). The

enumeration query is also the same as in Section 2.1 but a reporting query in TB takes
Õ(n1− 1

d + k) time (and it has delay at most Õ(n1− 1
d )), so the overall delay is Õ(n1− 1

d ).

▶ Theorem 5. Let A be a set of points and B be a set of half-spaces in Rd with |A|+ |B| = n.
A data structure of Õ(n) size can be built in Õ(n2− 1

d ) time and updated in Õ(n1− 1
d ) amortized

time while supporting Õ(n1− 1
d )-delay enumeration of halfspace-containment query.

Using Theorem 5 and the lifting transformation described at the beginning of this section
we conclude with Corollary 6.

▶ Corollary 6. Let A, B be two sets of points in Rd, where d ≥ 1 is a constant, with
|A| + |B| = n. A data structure of Õ(n) size can be constructed in Õ(n2− 1

d+1 ) time and
updated in Õ(n1− 1

d+1 ) amortized time, while supporting Õ(n1− 1
d+1 )-delay enumeration of

similarity join under the ℓ2 metric.

Lower bound. We show a lower bound for the similarity join in the pointer-machine model
under the ℓ2 metric based on the hardness of unit sphere reporting problem. Let P be a set
of n points in Rd for d > 3. The unit-sphere reporting problem asks for a data structure on
the points in P , such that given any unit-sphere b report all points of P ∩ b. If the space is
Õ(n), it is not possible to get a data structure for answering unit-sphere reporting queries in
Õ(k + 1) time in the pointer-machine model, where k is the output size for d ≥ 4 [1].

For any instance of sphere reporting problem, we construct an instance of similarity join
over two sets, with A = ∅, B = P , and r = 1. Given a query unit-sphere of center q, we insert
point q in A, issue an enumeration query, and then remove q from A. All results enumerated
(if any) are the results of the sphere reporting problem. If there exists a data structure for
enumerating similarity join under ℓ2 metric using Õ(n) space, with Õ(1) update time and
Õ(1) delay, we would break the barrier.

▶ Theorem 7. Let A, B be two sets of points in Rd for d > 3, with |A|+ |B| = n. If using
Õ(n) space, there is no data structure under the pointer-machine model that can be updated
in Õ(1) time, while supporting Õ(1)-delay enumeration of similarity join under the ℓ2 metric.

3 Approximate Enumeration

In this section we propose a dynamic data structure for answering approximate similarity-join
queries under any ℓp metric. For simplicity, we use the ℓ2 norm to illustrate the main idea
and assume ϕ(a, b) = ||a− b||2. Recall that all pairs of (a, b) ∈ A×B with ϕ(a, b) ≤ r must
be reported, along with (potentially) some pairs of (a′, b′) with ϕ(a′, b′) ≤ (1 + ε)r, but no
pair (a, b) with ϕ(a, b) > (1 + ε)r is reported.

We will start with the setting where the distance threshold r is not fixed and specified as
part of a query, and then move to a simpler scenario where r is fixed.
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Ai

Bi

≤ εL

≤ εL

L

Figure 4 An example pair of ε-WSPD.

c
points in B
points in A

Figure 5 An example of active cell c in the grid.

3.1 Variable Similarity Threshold
We describe the data structure when r is part of the query. In this subsection we assume that
the spread of A ∪ B is polynomially bounded, i.e., sp(A ∪ B) = maxp,q∈A∪B ϕ(p,q)

minp ̸=q∈A∪B ϕ(p,q) = nO(1).
We use a quad tree and well-separated pair decomposition (WSPD) for our data structure.
We describe them briefly here and refer the reader to [28, 41] for details.

Quad tree and WSPD. A d-dimensional quad tree over a point set P is a tree data structure
T in which each node u is associated with a hypercube □u in Rd, called a cell, and each
internal node has 2d children. The root is associated with a hypercube containing P . For
a node u, let Pu = P ∩□u. A node u is a leaf if |Pu| ≤ 1. The tree recursively subdivides
the space into 2d congruent hypercubes until a box contains at most one point from P . If
sp(P ) = nO(1), the height of T is O(log n).

Given two point sets A, B ⊂ Rd, with |A| + |B| = n, and a parameter 0 < ε < 1
2 ,

a family of pairs W = {(A1, B1), (A2, B2), · · · , (As, Bs)} is an ε-WSPD if the following
conditions hold: (1) for any i ≤ s, Ai ⊆ A, Bi ⊆ B (2) for each pair of points (a, b) ∈
A × B, there exists a unique pair (Aj , Bj) ∈ W such that a ∈ Aj and b ∈ Bj (3) for any
i ≤ s, max{diam(Ai), diam(Bi)} ≤ ε · ϕ(Ai, Bi), where diam(X) = maxx,y∈X ϕ(x, y) and
ϕ(X, Y ) = minx∈X,y∈Y ϕ(x, y) (see Figure 4). As shown in [28, 30] if sp(A ∪B) = nO(1), a
quad tree T on A∪B can be used to construct, in time O(n log n+ε−dn), a WSPD W of size
O(ε−dn) such that each pair (Ai, Bi) ∈ W is associated with pair of cells (□i,⊞i) in T where
Ai = A∩□i and Bi = B∩⊞i. It is also known that for each pair (Ai, Bi) ∈ W (i) □i∩⊞i = ∅,
(ii) max{diam(□i), diam(⊞i)} ≤ εϕ(□i,⊞i), and each cell appears in O(ε−d log n) cells (see
Figure 4). We will use W = {(□1,⊞i), . . . , (□s,⊞s)} to denote the WSPD, with Ai, Bi being
implicitly defined from the cells. Using the techniques in [15, 26], the quad tree T and the
WSPD W can be maintained under insertions and deletions of points in Õ(ε−d) time.

Data structure. We construct a quad tree T on A ∪B. For each node u ∈ T , we store a
pointer Au (and Bu) to the leftmost leaf of subtree Tu that contains a point from A (and
B). Furthermore, we store sorted lists LA and LB of the leaves that contain points from A

and B, respectively. We use these pointers and lists to report points in □u with O(1) delay.
Using T , we can construct a WSPD W = {(□1,⊞1), . . . , (□s,⊞s)}, s = O(ε−d). For each i,
let ∆i = minp∈□i,q∈⊞i

ϕ(p, q). We store all pairs (□i,⊞i) in a red-black tree Z using ∆i as
the key. The data structure has O(ε−dn) size and O(ε−dn log n) construction time.

Update. After inserting or deleting an input point, the quad tree T and W can be updated
in Õ(ε−d) time, following the standard techniques in [15, 26]. As there are at most Õ(ε−d)
pairs changed, we can update the tree Z in Õ(ε−d) time. Furthermore, we note that there
are only O(1) changes in the structure of quad tree T and the height of T is O(log n), so
we can update all necessary pointers Au, Bu and sorted lists LA, LB in O(log n) time.
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11:12 Dynamic Enumeration of Similarity Joins

Enumeration. Let r be the threshold parameter specified as part of a query. We traverse
the tree Z in order and report pairs of cells until we reach a pair (□j ,⊞j) with ∆j > r. For
each pair (□i,⊞i) reported, we traverse we enumerate (a, b) ∈ (A ∩□i)× (B ∩⊞i) using the
stored pointers and the sorted lists LA, LB . The delay guarantee is O(1).

Let (a, b) ∈ A×B be a pair with ϕ(a, b) ≤ r. Implied by the definition, there exists a unique
pair (Ai, Bi) ∈ W such that a ∈ Ai and b ∈ Bi. Notice that ϕ(□i,⊞i) ≤ ϕ(a, b) ≤ r. Thus, all
results of Ai×Bi will be reported, including (a, b). Next, let (□i,⊞i) be a pair that is reported
by the enumeration procedure in Z , with ϕ(□i,⊞i) ≤ r. For any pair of points x ∈ □i, y ∈ ⊞i,
we have ϕ(x, y) ≤ ϕ(□i,⊞i) + diam(□i) + diam(⊞i) ≤ (1 + 2 · ε

2 ) · ϕ(□i,⊞i) ≤ (1 + ε)r, thus
ϕ(a, b) ≤ (1 + ε)r for any pair (a, b) ∈ Ai ×Bi.

▶ Theorem 8. Let A, B be two sets of points in Rd for constant d, with O(nO(1)) spread and
|A|+ |B| = n. A data structure of O(ε−dn) space can be built in Õ(ε−dn) time and updated
in Õ(ε−d) time, while supporting ε-approximate enumeration for similarity join under any
ℓp metric with O(1) delay, for any query similarity threshold r.

3.2 Fixed distance threshold
Without loss of generality we assume that r = 1. We use a grid-based data structure for
enumerating similarity join with fixed distance threshold r.

Data structure. Let G be an infinite uniform grid1 in Rd, where the size of each grid cell is
ε

2
√

d
and the diameter is ε

2 . For a pair of cells c, c′ ∈, define ϕ(c, c′) = minp∈c,q∈c′ ϕ(p, q). Each
grid cell c ∈ G is associated with (1) Ac = A∩ c; (2) Bc = B ∩ c; (3) mc =

∑
c′:ϕ(c,c′)≤1 |Bc′ |

as the number of points in B that lie in a cell c′ within distance 1 from cell c. Let CNE ⊆ G

be the set of all non-empty cells, CNE = {c ∈ G | Ac ∪Bc ̸= ∅}. A grid cell c ∈ CNE is active
if and only if Ac ̸= ∅ and mc > 0 (see Figure 5 for an example). Let C ⊆ CNE be the set of
active grid cells (Figure 5). Notice that a grid cell is stored when there is at least one point
from A or B lying inside it, so |CNE | ≤ n. Finally, we build a balanced search tree on C so
that whether a cell c is stored in C can be answered in O(log n) time. Similarly, we build
another balanced search tree to store the set of non-empty cells CNE .

Update. Assume point a ∈ A is inserted into cell c ∈ G . If c is already in CNE , simply add
a to Ac. Otherwise, we add c to CNE with Ac = {a} and update mc as follows. We visit
each cell c′ ∈ CNE with ϕ(c, c′) ≤ 1, and add |Bc′ | to mc. A point of A is deleted in a similar
manner. Assume point b ∈ B is inserted into cell c ∈ G . If c /∈ CNE , we add it to CNE . In
any case, we first insert b into Bc and for every cell c′ ∈ CNE with ϕ(c, c′) ≤ 1, we increase
mc′ by 1 and add c′ to C if c′ turns from inactive to active. A point from B is deleted in
a similar manner. As there are O(ε−d) cells within distance 1 from c, this procedure takes
Õ(ε−d) time.

Enumeration. For each active cell c ∈ C , we visit each cell c′ ∈ CNE within distance 1. If
Bc′ ≠ ∅, we report all pairs of points in Ac × Bc′ . It is obvious that each pair of points is
enumerated at most once. For an active cell c, there must exists a pair (a ∈ Ac, b ∈ Bc′) for
some cell c′ ∈ CNE such that ϕ(a, b) ≤ ϕ(c, c′) + diam(c) + diam(c′) ≤ 1 + ε. So it takes at
most O(ε−d log n) time before finding at least one result for c; thus, the delay is O(ε−d log n).

1 When extending it to any ℓp norm, the size of each grid cell is ε/(2d1/p) and the diameter is ϵ
2 .
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Furthermore, consider every pair of points a, b with ϕ(a, b) ≤ 1. Assume a ∈ c and b ∈ c′.
By definition, c must be an active grid cell. Thus, (a, b) will definitely be enumerated in this
procedure, thus guaranteeing the correctness of ε-enumeration.

▶ Theorem 9. Let A, B be two sets of points in Rd for some constant d, with |A|+ |B| = n.
A data structure of O(n) size can be constructed in O(nε−d log n) time and updated in
O(ε−d log n) time, while supporting ε-approximate enumeration of similarity join under any
ℓp metric with O(ε−d log n) delay.

Note that if for each active cell c ∈ C , we store the cells within distance 1 that contain
at least a point from B, i.e., {c′ ∈ C | ϕ(c, c′) ≤ 1, Bc ̸= ∅}, then the delay can be further
reduced to O(1) but the space becomes O(ε−dn).

4 Similarity Join in High Dimensions

So far, we have treated the dimension d as a constant. In this section we describe a data
structure for approximate similarity join using the locality sensitive hashing (LSH) technique,
so that the dependency on d is a small polynomial. For simplicity, we assume that r is fixed,
however our results can be extended to the case in which r is part of the enumeration query.

For ε > 0, 0 < p2 < p1 ≤ 1, a family H of hash functions is (r, (1 + ε)r, p1, p2)-sensitive,
if for any uniformly chosen hash function h ∈ H and any two points x, y:

Pr[h(x) = h(y)] ≥ p1 if ϕ(x, y) ≤ r;
Pr[h(x) = h(y)] ≤ p2 if ϕ(x, y) ≥ (1 + ε)r.

The quality of H is measured by ρ = ln p1
ln p2

< 1, which is upper bounded by a number that
depends only on ε; and ρ = 1

1+ε for many common distance functions [27, 22, 29]. For ℓ2 the
best result is ρ ≤ 1

(1+ε)2 + o(1) [9].
The essence of LSH is to hash “similar” points into the same buckets with high probability.

A simple approach based on LSH is to (i) hash points into buckets; (ii) probe each bucket
and check for each pair of points (a, b) ∈ A×B inside the same bucket whether ϕ(a, b) ≤ r;
and (iii) report (a, b) if the inequalities holds. However, two challenges arise for enumeration.
First, without any knowledge of false positive results inside each bucket, checking every pair
of points could lead to a huge delay. Our key insight is that after checking a small number
(to be determined later) of pairs of points in one bucket, we can safely skip the bucket since
any pair of result missed in this bucket will be found in another one with high probability.
Second, one pair of points may collide under multiple hash functions, so an additional step
is necessary in the enumeration to remove duplicates. If we wish to keep the size of data
structure to be near-linear and if we are not allowed to store the reported pairs (so that the
size remains near linear), detecting duplicates requires care.

Since we do not define new hash functions, our results hold for any metric for which LSH
works, in particular for Hamming, ℓ2, ℓ1 metrics.

Data structure. We fix an LSH family H . Let ρ be its quality parameter. To ensure
high-probability guarantee, we maintain O(log n) copies of the whole data structure below.

We randomly choose τ = O(nρ) hash functions. Each possible value in the range of hash
functions defines a bucket. We maintain some extra statistics for all buckets. We choose a
parameter M = O(nρ). For a bucket □, let A□ = A ∩□ and B□ = B ∩□. We choose two
arbitrary subsets Ā□, B̄□ of A□, B□, respectively, of M points each. For each point a ∈ Ā□,
we maintain a counter βa = |{b ∈ B̄□ | ϕ(a, b) ≤ 2(1 + ε)r}|, i.e., the number of points in
B̄□ with distance at most 2(1 + ε)r from a. We store Ā□ in an increasing order of their
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β values. If there exists some positive counter βa > 0, we denote bucket □ as active and
store an arbitrary pair (a, b) ∈ Ā□ × B̄□ with ϕ(a, b) ≤ 2(1 + ε)r as its representative pair,
denoted as (a□, b□). Let C denote the set of active buckets.

Before diving into the details of update and enumeration, we give some intuition about
active buckets. Given a set P of points and a distance threshold r, let B(q, P, r) = {p ∈ P |
ϕ(p, q) > r}. For any pair of points (a, b) ∈ A× B and a hashing bucket □, we refer to □
as the proxy bucket for (a, b) if (i) a ∈ A□, b ∈ B□; (ii) |B̄(a, A□ ∪ B□, (1 + ε)r)| ≤ M . A
crucial property of proxy bucket is captured by Lemma 10. Moreover, it can be shown that
with high probability each close pair of points has a proxy bucket in Lemma 11 (more details
are given in the full version [4]). In this way, it is safe to skip a bucket after we have seen up
to M2 faraway pairs of points inside, since the close pairs of points in this bucket will be
captured by other buckets. In this way, we only need to report pairs from active buckets.

▶ Lemma 10. For any bucket □, if there exist M points from A□ and B□ each, such that
none of the M2 pairs has its distance within 2(1 + ε)r, □ is not a proxy bucket for any pair
(a, b) ∈ A□ ×B□ with ϕ(a, b) ≤ r.

Proof of Lemma 10. Let A′, B′ be two sets of M points from A□, B□ respectively. We
assume that all pairs of points in A′ ×B′ have their distances larger than 2(1 + ε)r. Observe
that □ is not a proxy bucket for any pair (a ∈ A′, b ∈ B′). It remains to show that □ is not
a proxy bucket for any pair (a ∈ A□ \A′, b ∈ B□). Assume b ∈ B□ \B′ (the case is similar
if b ∈ B′). If A′ ⊆ B̄(a, A, (1 + ε)r) or B′ ⊆ B̄(a, B, (1 + ε)r), □ is not a proxy bucket for
(a, b). Otherwise, there must exist at least one point a′ ∈ A′ as well as b′ ∈ B′ such that
ϕ(a, a′) ≤ (1 + ε)r and ϕ(a, b′) ≤ (1 + ε)r, so ϕ(a′, b′) ≤ ϕ(a, a′) + ϕ(a, b′) ≤ 2(1 + ε)r. Thus,
(a′, b′) ∈ A′ ×B′ is a pair within distance 2(1 + ε)r, coming to a contradiction. ◀

▶ Lemma 11 ([27, 28, 32]). For M = O(nρ), with probability 1− 1/n, every pair of points
(a, b) with ϕ(a, b) ≤ r has a proxy bucket.

Update. Assume a point a ∈ A is being inserted. We visit every bucket □ into which a is
hashed and insert a to A□. If |Ā□| ≥M , we do nothing. Otherwise, we insert a to Ā□ and
compute its counter βa. If βa > 0 and □ /∈ C , we add □ to C and store an arbitrary pair
(a, b) for some b ∈ B̄□ with ϕ(a, b) ≤ 2(1 + ε)r, as the representative pair of □. Notice that
there always exists such a point b since βa > 0.

Assume a point a ∈ A is being deleted. We visit every bucket □ into which a is hashed
and delete a from A□. If a ∈ Ā□, we delete it from Ā□ and insert an arbitrary point (if any)
from A□ \ Ā□ into Ā□. If a = a□, i.e., a participates in the representative pair of □, we find
a new representative pair by considering an arbitrary point a′ ∈ Ā□ with βa′ > 0. If no such
point exists, we remove □ from C .

The case when point b ∈ B is inserted or deleted is similar but with slight differences.
Assume a point b ∈ B is being inserted. We visit every bucket □ into which b is hashed
and inserted b to B□. If |B̄□| ≥ M , we do nothing. Otherwise, we insert b to B̄□ and
increment counter βa for every point a ∈ Ā□ with ϕ(a, b) ≤ 2(1 + ϵ)r. Moreover, if □ /∈ C

and there exists some point a ∈ Ā□ with βa > 0 after update, say a′, we store (a′, b) as the
representative pair of □ and add □ to C .

Assume a point b ∈ B is being deleted. We visit every bucket □ into which b is hashed
and delete b from B□. If b ∈ B̄□, we delete it from B̄□ and insert an arbitrary point (if any)
from B□ \ B̄□ into B̄□. Moreover, we need to update counter βa for every point a ∈ Ā□. If
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b = b□, i.e., b participates in the representative pair of □, we find a new representative pair
by considering an arbitrary point a ∈ Ā□ with βa > 0. If no such pair exists, we remove □
from C .

After performing n/2 updates, we reconstruct the entire data structure from scratch.

Enumeration. Let R be the set of representative pairs. As mentioned, the high-level idea
is to enumerate representative pairs from active buckets. More specifically, we start with an
arbitrary representative pair (a, b) ∈ R, and enumerate all pairs involving point a from C (a),
where C (a) ⊆ C is the set of active buckets containing a. Then, we remove a from each
bucket □ ∈ C (a). If a ∈ Ā□, we remove a from Ā□; moreover, we add a point a′ ∈ Ā− Ā□

to Ā□ to ensure |Ā□| = M if |A□| ≥ M and compute βa′ . If a = a□, we compute a new
representative pair (a□, b□) of □. If no such new representative pair exists, we just remove
□ from the set of active buckets; otherwise, we add the new pair (a□, b□) to R. We repeat
this process until R becomes empty. The whole procedure is described in Algorithm 1.

Algorithm 1 Enumerate.

1 R ← {(a□, b□) : □ ∈ C };
2 while R ̸= ∅ do
3 (a, b)← R;
4 C (a)← {□ ∈ C : a ∈ A□};
5 Report(a, C (a));
6 foreach □ ∈ C (a) do
7 A□ ← A□ − {a};
8 if a ∈ Ā□ then
9 Ā□ ← Ā□ − {a};

10 if |A□| ≥M then
11 Pick arbitrary point a′ ∈ A□ − Ā□;
12 Ā□ ← Ā□ ∪ {a′};
13 if a = a□ then
14 R ← R − {(a□, b□)};
15 Recompute (a□, b□) for □;
16 if (a□, b□) = ∅ then
17 C ← C − {□};
18 else
19 R ← R ∪ {(a□, b□)};

In line 5 of Algorithm 1, we report all pairs including point a is described in Algorithm 2.
For a bucket □ ∈ C (a), whenever we report a pair (a, b), we mark b with a. If b was already
marked by some other point a′ because (a′, b) was reported, we overwrite a′ with a. Let
X(□, a) ⊆ B□ be the set of points in B□ marked with a. We visit every bucket □ ∈ C (a)
and check the distances between a and points in B□ \X(□, a). Each time a pair (a, b) with
ϕ(a, b) ≤ 2(1 + ε)r is found, we report it and mark b with a to ensure that we will not report
(a, b) again. More specifically, we go over each active bucket □ ∈ C (a) into which b is also
hashed, and put a marker on b with respect to a. Implied by line 3 of Algorithm 2, we only
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11:16 Dynamic Enumeration of Similarity Joins

consider points not marked by X(□, a), thus avoiding repeated enumeration.2 Whenever
more than M points from B□ have been checked without finding a pair with distance less
than 2(1 + ε)r (or if all points in B□ have been considered), we just skip this bucket.

Algorithm 2 Report(a, C (a)).

1 foreach □ ∈ C (a) do
2 i← 0;
3 foreach b ∈ B□ −X(□, a) do
4 if ϕ(a, b) ≤ 2(1 + ε)r then
5 Report (a, b);
6 foreach □′ ∈ C (a) with b ∈ B□′ do
7 X(□′, a)← X(□′, a) ∪ {b};
8 else
9 i← i + 1;

10 if i > M then break;

Correctness analysis. The report procedure guarantees that each pair of points is enumer-
ated at most once. It remains to show that (1 + 2ε)-approximate enumeration is supported.

We show that (1 + 2ε)-approximate enumeration is supported with probability 1− 1/n.
It can be easily checked that any pair of points farther than 2(1 + ε)r will not be enumerated.
Hence, it suffices to show that all pairs within distance r are enumerated with high probability.
From Lemma 11, with high probability every pair within distance 1 has a proxy bucket. Let
□ be a proxy bucket for pair (a, b). Implied by Lemma 10, there exist no M points from
A□ (for example Ā□) and M points from B□ (for example B̄□) such that all M2 pairs have
their distance larger than 2(1 + ε)r, so □ is active. Moreover, from the definition of M and
the proof of Lemma 10 (check [4] the complete proof) there exist no M points from B□ such
that all of them have distance more than 2(1 + ε)r from a, so Algorithm 2 will report (a, b).

Complexity analysis. Recall that τ, M = O(nρ). The data structure uses O(dn + nτ log n)
space since we only use linear space with respect to the points in each bucket. The update
time is Õ(dM · τ) as there are Õ(τ) buckets to be investigated and it takes Õ(dM) time
to update the representative pair. After n/2 updates we re-build the data structure so the
update time is amortized. The delay is Õ(dM · τ). In order to replace a with an arbitrary
point a′ ∈ A□− Ā□ in line 8 of Algorithm 1 we need O(dM) time and there are Õ(τ) buckets
that we need to visit. In total, this step takes Õ(dMτ) time. In Algorithm 2, we spend
Õ(dMτ) time to report a pair of results and Õ(τ) time to mark point b over all buckets.

We conclude with the following result:

▶ Theorem 12. Let A and B be two sets of points in Rd, where |A|+ |B| = n and let ε, r

be positive parameters. For ρ = 1
(1+ε)2 + o(1), a data structure of Õ(dn + n1+ρ) size can be

constructed in Õ(dn1+2ρ) time, and updated in Õ(dn2ρ) amortized time, while supporting
(1 + 2ε)-approximate enumeration for similarity join under the ℓ2 metric with Õ(dn2ρ) delay.

2 To avoid conflicts with the markers made by different enumeration queries, we can generate them
randomly and delete old values by lazy updates [24, 38, 39] after finding new pairs to report.
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▶ Remark. Alternatively, we can insert or delete points from A ∪B without maintaining the
sets Ā□, B̄□ for every bucket □. In the enumeration phase, given a bucket □, we can visit
M arbitrary points from A□ and M arbitrary points from B□ and compute their pairwise
distances. If there is no pair (a ∈ A□, b ∈ B□) with ϕ(a, b) ≤ 2(1 + ε)r, we just skip this
bucket. Otherwise, we report the pair (a, b) and invoke Algorithm 2 for point a. In this case,
the update time decreases to Õ(dnρ) but the delay will increases to Õ(dn3ρ).

The same result holds for Hamming and ℓ1 metrics with ρ = 1
1+ε . Using [32], for the

Hamming metric and ε > 1 we can get M = O(1). Skipping the details, we have:

▶ Theorem 13. Let A and B be two sets of points in Hd, where |A|+ B| = n and let ε, r

be positive parameters. For ρ = 1
1+ε , a data structure of Õ(dn + n1+ρ) size can be built in

Õ(dn1+ρ) time, and updated in Õ(dnρ) amortized time, while supporting (3+2ε)-approximate
enumeration for similarity join under the Hamming metric with Õ(dnρ) delay.

In the full version [4], we show that our results can be extended to the case where r is
part of the enumeration procedure, and we also prove a lower bound relating similarity join
to the approximate nearest neighbor query.

5 Conclusion

In this paper, we presented dynamic data structures for enumerating similarity join queries
with delay guarantees. We present several efficient data structures for dynamic enumeration
of similarity joins in constant or higher dimensions over various metrics.

Note that our data structures provide worst-case delay guarantee for arbitrary input data
and arbitrary updates. In practice, most real-world update sequences are “nice”, nowhere
near these worst-case scenarios; and input points from two sets might be dependent, or follow
certain parameterized distributions. A more fine-grained analysis on the intrinsic difficulty
of update sequences in dynamic enumeration of similarity joins is quite interesting but still
open. Similar instance-dependent analysis has been considered in [46].

Another interesting direction is to investigate other variants of similarity join queries
under more general metrics, such as doubling metric space, and more complicated distance
functions, such as the cosine distance.
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Abstract
Tree edit distance is a well-studied measure of dissimilarity between rooted trees with node labels.
It can be computed in O(n3) time [Demaine, Mozes, Rossman, and Weimann, ICALP 2007], and
fine-grained hardness results suggest that the weighted version of this problem cannot be solved in
truly subcubic time unless the APSP conjecture is false [Bringmann, Gawrychowski, Mozes, and
Weimann, SODA 2018].

We consider the unweighted version of tree edit distance, where every insertion, deletion, or
relabeling operation has unit cost. Given a parameter k as an upper bound on the distance,
the previous fastest algorithm for this problem runs in O(nk3) time [Touzet, CPM 2005], which
improves upon the cubic-time algorithm for k ≪ n2/3. In this paper, we give a faster algorithm
taking O(nk2 log n) time, improving both of the previous results for almost the full range of
log n ≪ k ≪ n/

√
log n.
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1 Introduction

Many tasks involve measuring the similarity between two sets of data. When the data is
naturally represented as a string of characters, one of the most popular and well-studied ways
of measuring similarity is via the (string) edit distance, defined to be the minimum number
of characters that must be deleted, inserted, and substituted to turn one string into the
other. Although edit distance is a fundamental problem in computer science and has been
employed to great effect in many other areas, it can be less useful for applications where we
are interested in comparing data that is not just linearly ordered, but has some hierarchical
organization. When the data admits a tree structure, a natural measure of similarity is the
tree edit distance, first introduced by Tai [34] as a generalization of the string edit distance
problem [38]. Computing this metric has a wide variety of applications in a diverse array of
fields including computational biology [22, 32, 23, 39], structured data analysis [14, 16, 21],
and image processing [7, 26, 25, 31].

Given two rooted ordered trees with node labels, the tree edit distance is the minimum
number of node deletions, insertions, and relabelings needed to turn one tree into the other.
When we delete a node, its children become children of the parent of the deleted node.
Beyond this widely studied definition, there are many other variants of the tree edit distance
problem, including those defined for unrooted trees or unordered trees, or parameterized
by the depth or the number of leaves, which we do not consider in this paper. We refer
interested readers to the survey by Bille [8] for a comprehensive review.
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We now recount the development of exact algorithms for tree edit distance. In 1979,
Tai [34] gave the first algorithm that computes the tree edit distance between two node-labeled
rooted trees on n nodes in O(n6) time. The time complexity was improved to O(n4) by
Zhang and Shasha [40] using a dynamic programming approach. Later, Klein [24] applied
the heavy-light decomposition technique to obtain an O(n3 log n) time algorithm. Finally,
Demaine, Mozes, Rossman, and Weimann [17] improved the running time by a log-factor
to O(n3), and further showed that this running time is optimal among a certain class of
dynamic programming algorithms termed decomposition strategy algorithms by Dulucq and
Touzet [19, 20]. When the two input trees have different sizes m ≤ n, their algorithm runs
in O

(
nm2(1 + log n

m )
)

time.

All algorithms mentioned above actually compute tree edit distance in the general weighted
setting where the cost of deleting, inserting, or relabeling is a function of the labels (so
that deleting nodes with certain labels might be cheaper than deleting other nodes with
different labels). In this setting, Bringmann, Gawrychowski, Mozes, and Weimann [13]
showed conditional hardness results for the tree edit distance problem: a truly subcubic time
algorithm for this problem would imply a truly subcubic time algorithm for the All-Pairs
Shortest Paths (APSP) problem (assuming alphabet of size Θ(n)), and an O(nk(1−ε)) time
algorithm for the Max-weight k-clique problem (assuming a sufficiently large constant-size
alphabet). However, the instances produced by their fine-grained reduction have non-unit
edit costs, and it is not clear yet how to prove a conditional hardness result for the unweighted
tree edit distance problem with unit edit costs. In contrast, the quadratic-time fine-grained
lower bound for the string edit distance problem (based on the Strong Exponential Time
Hypothesis) holds for unit-cost operations [6, 1].

Therefore, it is natural to consider the unweighted unit-cost setting, where every ele-
mentary operation has cost 1, independent of the labels. In this case, the distance between
two trees of sizes n and m cannot be larger than n + m, and is arguably even smaller in
practical scenarios. In 2005, Touzet [35, 36] gave an algorithm in this context that computes
the unweighted tree edit distance in O(nk3) time, assuming the distance is at most k. When
k = Θ(n), Touzet’s algorithm has the same performance as the O(n4) time algorithm by
Zhang and Shasha [40]. However, the running time significantly improves if the upper
bound k is much smaller than n. We remark that similar progress was shown earlier for
the string edit distance problem: although the best known running time for the general
case is O(n2/ log2 n) [29, 9], when the distance is at most k, Ukkonen [37] gave an O(nk)
time algorithm, which was later improved to Õ(n + k2) time1 by Myers [30], Landau and
Vishkin [28] using suffix trees.

Although we focus on exact algorithms in this work, approximation algorithms for the
tree edit distance problem have also been studied [2, 11]. Boroujeni, Ghodsi, Hajiaghayi,
and Seddighin [11] showed an algorithm that computes a (1 + ε)-approximation of the tree
edit distance in Õ(ε−3n2) time. If an upper bound k on the distance is known, the running
time can be improved to Õ(ε−3nk). For the easier problem of approximating string edit
distance, there is a longer line of research [5, 3, 10, 15, 12, 27] culminating in a near-linear
time constant-factor approximation algorithm [4].

1 In this paper, Õ(f) stands for f · (log f)O(1).
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1.1 Our contribution
We present a faster algorithm for exactly computing the unweighted tree edit distance (where
every elementary operation has unit cost), with a parameter k ≤ O(n) given as an upper
bound on the distance.

▶ Theorem 1. Given two node-labeled rooted trees T1, T2 each of size at most n, we can
compute the unweighted tree edit distance between T1 and T2 exactly in O(nk2 log n) time,
assuming the distance is at most k.

When the distance parameter k is constant our algorithm runs in quasilinear time, and
as k reaches its upper bound O(n) we recover the O(n3 log n) time algorithm by Klein
[24]. Our algorithm outperforms the O(n3) time algorithms of Demaine et al. [17] when
k = o(n/

√
log n). As mentioned earlier, the previous best algorithm for bounded tree edit

distance by Touzet [36] takes O(nk3) time. The time complexity of our algorithm improves
upon this prior work whenever k = ω(log n).

1.2 High-level Overview
Touzet’s O(nk3)-time algorithm is based on Zhang and Shasha’s O(n4)-time dynamic pro-
gramming algorithm [40]. The improvement was achieved by pruning unuseful DP states, and
only considering O(nk3) many states instead of O(n4). This pruning technique was inspired
by an idea used in the previous O(nk)-time algorithm for string edit distance [37]: for input
strings whose edit distance is at most k, when building the dynamic programming table for
computing the edit distance, it suffices to only compute entries of the table corresponding
to prefixes whose lengths differ by at most k. Touzet’s improvement for tree edit distance
employs a similar technique and relies on measuring the “distance” between two DP states
with respect to the preorder tree traversal, which is compatible with the DP transitions of
Zhang and Shasha.

We modify Klein’s O(n3 log n) time algorithm by further reducing the number of useful
states, similar in spirit to the algorithm by Touzet [36]. The main difficulty in adapting
this idea is that unlike the algorithm of Zhang and Sasha, Klein’s DP algorithm does not
follow the same preorder traversal of the nodes. Hence we need completely new arguments
to bound the number of useful DP states. Beyond considering the sizes of the subproblems
generated, our proofs examine how various subforests are generated by different transition
rules and employ some combinatorial arguments about how the subgraphs of deleted nodes
can be structured when the edit distance is known to be bounded.

1.3 Paper Organization
In Section 2 we formally define the tree edit distance problem and introduce the notation
used throughout the rest of the paper. Next, in Section 3, we review Klein’s algorithm [24]
which our algorithm builds off of. Then, in Section 4, we present our improved algorithm.
Finally, we conclude by mentioning several open questions relevant to our work in Section 5.

2 Preliminaries

In this paper, we consider rooted trees that are ordered, meaning that the order between
siblings is significant. We also consider forests consisting of disjoint rooted trees, where the
order between these trees is also significant. It is convenient to treat the tree roots of a forest
as the children of a virtual root node. Let par(v) denote the parent node of v, or the virtual
root node if v is a tree root in the forest.
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Figure 1 To turn T1 and T2 into the same tree with a minimum number of operations, we can
delete a node from each and relabel a node in T1. So in this example ed(T1, T2) = 3.

L′
F

RF

R◦
F
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Figure 2 The example forest F above is partitioned into L′
F , rF , and R◦

F .

We define the node removal operation in the following natural way: after removing a
node v from the forest F , the children of v become children of par(v), preserving the same
relative order. We use F − v to denote the forest obtained by removing v from F .

We now formally define the tree edit distance as a metric on ordered rooted trees with
node labels.

▶ Definition 2 ((Unweighted) Tree Edit Distance). Let T1 and T2 be two ordered rooted trees
whose nodes are labeled with symbols from some alphabet Σ. There are two types of allowed
operations:

Relabeling: change the label of a node from one symbol in Σ to another.
Deletion: remove a node.

Then the tree edit distance between T1 and T2, denoted by ed(T1, T2), is the minimum number
of operations that must be performed on T1 and T2 to obtain two identical forests.

Figure 1 provides an example of these operations in action.
▶ Remark 3. An alternative definition of tree edit distance is the minimum number of
insertions, deletions, and relabeling needed to turn one tree into the other. It is easy to see
that these two definitions are equivalent.

Since the operations of relabeling and deletion also apply to labeled forests, the above
definition naturally extends to measure the edit distance between two forests F1 and F2, and
for the rest of the paper we write ed(F1, F2) to denote this edit distance as well.

Given a forest F , we write LF (or RF ) to denote the leftmost (or rightmost) tree in F ,
and write ℓF (or rF ) to denote the root of LF (or RF ). For convenience, let L′

F denote
F −RF , and let R◦

F denote RF − rF (similarly, R′
F = F − LF and L◦

F = LF − ℓF ). Hence,
the nodes of a nonempty forest F can be partitioned into three parts: L′

F , rF , and R◦
F (an

example is given in Figure 2). Finally, size(F ) or |F | denote the number of nodes in F (where
F can also be any subset of nodes).
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1

2 4 5

3 6

Figure 3 The subforests of this rooted tree are: {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {3, 4, 5, 6}, {4, 5, 6},
{5, 6}, {6}, ∅,{2, 3, 4, 6}, {3, 4, 6}, {4, 6}, {2, 3, 4}, {3, 4}, {4}, {2, 3}, {3}. For example, the subforest
{3, 4, 6} can be obtained by first removing the leftmost root 1, then removing the rightmost root 5,
and finally removing the leftmost root 2.

▶ Definition 4 (Subforest). Given a rooted tree T , we say F is a subforest of T if we can
obtain F from T by repeatedly deleting the leftmost or rightmost root.

An example illustrating the definition of subforests is given in Figure 3.

▶ Proposition 5. A rooted tree T of n nodes has at most O(n2) subforests.

Proof. Although a subforest may result from interleaving operations of removing the leftmost
root and removing the rightmost root, it is not hard to see that every such subforest F can
also be obtained from T by first removing the leftmost root a times, and then removing the
rightmost root b times, for some nonnegative integer a, b with a + b ≤ n. Specifically, let u be
the node in F with the smallest index pre(u) in the preorder traversal of T (1 ≤ pre(u) ≤ n),
and we can set a = pre(u) − 1 and b = n − a − size(F ). The claim then follows from the
number of choices of (a, b). ◀

For a subforest F of T , define LCAT (F ) as the lowest common ancestor in T of all nodes
in F . When the identity T is clear from context, we may write LCA(F ) and leave the
underlying tree implicit. Observe that LCA(F ) is in F precisely when F is a subtree of T .

Throughout, we use T1, T2 to denote the input trees (or T if we do not specify which one
of the two) we want to compute the edit distance between.

3 Review of Klein’s Algorithm

We briefly review Klein’s algorithm [24] in the context of computing the unweighted tree
edit distance ed(T1, T2) (see [17, 8, 18] for other overviews of this algorithm).

The algorithm uses dynamic programming (DP) over pairs (F1, F2), where F1, F2 are
subforests of T1, T2, respectively. Let the node relabeling cost δ(x, y) = 1 if nodes x, y have
different labels, and δ(x, y) = 0 otherwise. Then ed(F1, F2) can be computed recursively as
follows [40]:

The base case is where either of F1, F2 is empty (denoted as ∅), and we have

ed(F1, ∅) = size(F1), ed(∅, F2) = size(F2). (1)

When both F1, F2 are nonempty, if size(LF1) > size(RF1), then we recurse with

ed(F1, F2) = min


ed(F1 − rF1 , F2) + 1
ed(F1, F2 − rF2) + 1
ed(R◦

F1
, R◦

F2
) + ed(L′

F1
, L′

F2
) + δ(rF1 , rF2).

(2)
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Otherwise, size(LF1) ≤ size(RF1), and we recurse with

ed(F1, F2) = min


ed(F1 − ℓF1 , F2) + 1
ed(F1, F2 − ℓF2) + 1
ed(L◦

F1
, L◦

F2
) + ed(R′

F1
, R′

F2
) + δ(ℓF1 , ℓF2).

(3)

Taking Equation (2) as an example, the recursion considers three options concerning the
rightmost roots of F1, F2: (1) rF1 is removed. (2) rF2 is removed. (3) The two roots are
matched to each other, generating two subproblems of matching their subtrees R◦

F1
, R◦

F2
,

and matching the remaining parts L′
F1

, L′
F2

. The other recursion rule in Equation (3) is
symmetric and considers the leftmost roots.

We can easily verify that, if we compute ed(T1, T2) using this recursion, the DP states
visited by the recursion are indeed pairs of subforests of T1 and T2. We call a subforest F1 or
F2 which appears in the above dynamic programming procedure a relevant subforest. Klein
showed the following bound on the number of relevant subforests F1 of T1 generated by the
DP procedure.

▶ Lemma 6 (Lemma 3 of [24]). If we use top-down dynamic programming to compute
ed(T1, T2) with respect to the recursion defined in Equations (1)–(3), we only ever need to
compute ed(F1, F2) for O(|T1| log |T1|) distinct subforests F1 of T1.

The proof of this lemma uses a heavy-light decomposition argument, which crucially relies
on choosing the “direction” of recursion (Equations (2) and (3)) based on the sizes of the
leftmost and rightmost trees in F1. This improves upon the previous DP algorithm by Zhang
and Shasha [40], which always recurses on the rightmost roots and could only give an O(|T1|2)
bound instead of O(|T1| log |T1|).

Since there are only O(|T2|2) possible subforests F2 of T2 (Proposition 5), Lemma 6 shows
that we can compute ed(T1, T2) in O(|T1||T2|2 log |T1|) time. In the next section, we show
how to use the assumption that ed(T1, T2) ≤ k to bound the number of relevant F2 as well,
and through this get a faster algorithm.

4 Improved Algorithm

4.1 DP state transition graph
Our algorithm builds on Klein’s DP algorithm described in Section 3. For the sake of analysis,
it is helpful to consider the DP state transition graph, which is a directed acyclic graph with
vertices representing the DP states (F1, F2) and edges representing DP transitions. Each
edge is associated with a proxy cost that lower bounds the true incurred cost when using
this transition in the actual DP. These will be based off the trivial lower bound

ed(F1, F2) ≥ |size(F1)− size(F2)| , (4)

which holds because each operation changes the size of a tree by at most 1, and at the end
of applying ed(F1, F2) operations the trees must have the same size.

To define the DP state transition graph, we distinguish three types of DP transition
that can occur from following the recursion of Klein’s algorithm described in Equations (2)
and (3). The first type corresponds to the first two cases of Equations (2) and (3) where we
delete the rightmost or leftmost root of the forest. The second and third types of transition
capture the two subproblems generated from the third case of Equations (2) and (3) where
we match nodes in the trees. Hence, the edges in the DP state transition graph and their
proxy costs are defined as follows:
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Type 1 (Node Removal) We delete the rightmost (or leftmost) root of F1 (or F2).
For example, we can transition (F1, F2)→ (F1 − rF1 , F2). This transition has cost 1.

Type 2 (Subtree Removal) We remove the rightmost (or leftmost) subtrees of F1 and F2.
For example, we can transition (F1, F2) → (L′

F1
, L′

F2
). This transition costs at least

|size(RF1)− size(RF2)| by Equation (4) and the last case of Equation (2).
Type 3 (Subtree Selection) We focus on the subtrees below the rightmost (or leftmost)

roots of F1 and F2.
For example, we can transition (F1, F2) → (R◦

F1
, R◦

F2
). This transition costs at least

|size(L′
F1

)− size(L′
F2

)| by Equation (4) and the last case of Equation (2).

4.2 Pruning DP states
Each pair of subforests (F1, F2) is a potential state in the DP table. We say a state (F1, F2)
is “not useful” or useless if we do not need to evaluate ed(F1, F2) to compute the overall tree
edit distance ed(T1, T2). Having defined the DP state transition graph, we use the following
simple observation to label some states as useless.

▶ Proposition 7 (DP State Pruning Rule 1). Suppose input trees T1, T2 satisfy ed(T1, T2) ≤ k.
Then if a state cannot be reached from (T1, T2) by traversing a sequence of edges with total
cost at most k in the DP state transition graph, that state is useless.

We will also make use of the following pruning rule, which is a direct application of Equa-
tion (4).

▶ Proposition 8 (DP State Pruning Rule 2). Suppose input trees T1, T2 satisfy ed(T1, T2) ≤ k.
If |size(F1)− size(F2)| > k, then the DP state (F1, F2) is useless.

The two pruning rules will enable us to prove the following core result, which shows that
when the tree edit distance is bounded, each relevant subforest cannot occur in too many
useful states.

▶ Lemma 9 (Number of useful DP states). Suppose input trees T1, T2 satisfy ed(T1, T2) ≤ k.
For each relevant subforest F1 of T1, there are at most O(k2) subforests F2 of T2 such that
(F1, F2) is a useful DP state.

Lemma 9 together with Lemma 6 immediately shows an O(nk2 log n) bound on the
number of useful DP states, which will suffice to prove Theorem 1, so in the remainder of
this section, we setup the proof of this lemma.

▶ Definition 10 (Upper parts). Given a subforest F of T , we partition the nodes of T \ F

into three disjoint upper parts MUF , LUF , and RUF as follows.
The middle upper part MUF contains the nodes on the path from the root of T to LCA(F )
(excluding LCA(F ) if LCA(F ) ∈ F ).
The left upper part is defined as LUF := {u ∈ T \MUF | pre(u) < pre(v) for all v ∈ F},
where pre(u) denote the index of u in the preorder traversal of T (1 ≤ pre(u) ≤ |T |).
The right upper part RUF is defined symmetrically using the postorder traversal of T .
Intuitively, LUF consists of the nodes to the left of the path MUF , and RUF consists of
the nodes to the right of this path.

See Figure 4 for some examples.
If a DP state (G1, G2) can be reached from (T1, T2) in the DP state transition graph, it

means that we obtain G1 and G2 by removing some nodes in T1 and T2 respectively, following
the DP transition rules. We classify the removed nodes in T1 \ G1 according to which of
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F

LUF RUF

MUF

F

LUF RUF
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LUF RUF
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F

Figure 4 Three examples of subforests F in different underlying trees, with upper parts labeled.

the three upper parts they belong to. For node v ∈ T1 \ G1, if v ∈ LUG1 (or v ∈ RUG1 ,
v ∈MUG1), then we say v is left-removed (or right-removed, middle-removed) with respect
to subforest G1. If during a DP transition (F1, F2) → (G1, G2), a node v ∈ F1 \ G1 is
left-removed (or right-removed, middle-removed) with respect to not only G1, but also all
subforests G′

1 ⊆ G1 (which may be reached by later DP transitions), then we simply say
v is left-removed (or right-removed, middle-removed) during this DP transition, without
specifying the subforest G1. The above discussion also similarly applies to the second input
tree T2 and its subforests.

By inspecting the DP transition rules described in Section 4.1, we immediately have the
following simple but useful observation.

▶ Lemma 11. Let (F1, F2) be a DP state. The following hold:
A type 2 transition from this state either right-removes size(RF1) nodes, or left-removes
size(LF1) nodes from F1, depending on whether the right or left subtree were removed.
A type 3 transition from this state either left-removes size(F1 −RF1) nodes and middle-
removes one node, or right-removes size(F1 − LF1) nodes and middle-removes one node
from F1, depending on whether the transition zoomed in on the right or left subtree.

Similar statements hold for removals in F2.

Note that in the case of type 1 transitions, we cannot tell whether the node being removed
was a left, middle, or right-removal. However, we observe that a type 1 transition always has
cost 1. Combining this observation with Lemma 11 and the pruning rule in Proposition 7,
we obtain the following property of useful DP states (G1, G2):

▶ Lemma 12. If DP state (G1, G2) survives the pruning rule in Proposition 7, then

|size(LUG1)− size(LUG2)| ≤ k,

and

|size(RUG1)− size(RUG2)| ≤ k.

Proof. Consider the sets LUG1 and LUG2 of left-removed nodes in G1 and G2. Suppose k1
nodes of LUG1 and k2 nodes of LUG2 were removed by type 1 transitions, incurring a total
cost of k1 + k2. The remaining size(LUG1)− k1 nodes in LUG1 and size(LUG2)− k2 nodes in
LUG2 must be the result of type 2 and 3 transitions.
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From Lemma 11 and the discussion in Section 4.1, we know that when a type 2 or 3
transition t left-removes c

(t)
1 nodes from T1 and c

(t)
2 nodes from T2, the incurred cost is at

least |c(t)
1 − c

(t)
2 |. Then by triangle inequality, the total cost from all type 2 and 3 transitions

is at least∑
t

∣∣∣c(t)
1 − c

(t)
2

∣∣∣ ≥ ∣∣∣∣∣∑
t

c
(t)
1 −

∑
t

c
(t)
2

∣∣∣∣∣ = |(size(LUG1)− k1)− (size(LUG2)− k2)| ,

where the sum is over all type 2 and 3 transitions t leading from state (T1, T2) to state
(G1, G2). Then, by applying triangle inequality once more, the total cost from all transitions
is at least

k1 + k2 + |(size(LUG1)− k1)− (size(LUG2)− k2)| ≥ |size(LUG1)− size(LUG2)| .

This proves the first inequality. The second inequality follows from identical reasoning,
applied to the right-removed instead of the left-removed nodes of G1 and G2. ◀

We have just derived the useful Lemma 12 from the first pruning rule in Proposition 7.
To prove Lemma 9, we still need to apply the second pruning rule in Proposition 8 as well.
We will use the following lemma.

▶ Lemma 13. Given three integers a, b, c, the number of subforests F of a tree T which
simultaneously satisfy |size(LUF )− a| ≤ k, |size(RUF )− b| ≤ k, and |size(F )− c| ≤ k is at
most O(k2).

Before proving Lemma 13, we show that it implies the desired upper bound on the number
of useful DP states that survive both pruning rules in Proposition 7 and Proposition 8.

Proof of Lemma 9 given Lemma 13. We are given a relevant subforest F1 of T1, and want
to bound the number of subforests F2 of T2 such that (F1, F2) is a useful state. By Lemma 12,
the state (F1, F2) is useful only if

|size(LUF2)− a| , |size(RUF2)− b| ≤ k

for a = size(LUF1) and b = size(RUF1). Moreover, by Proposition 8 if the state is useful then

|size(F2)− c| ≤ k

for c = size(F1). Hence, applying Lemma 13 with T = T2 immediately implies that there are
O(k2) possibilities for F2, which proves the desired result. ◀

4.3 Proof of Lemma 13
Suppose size(LUF ) = ℓ and size(RUF ) = r for some integers ℓ and r within k of a and
b respectively. Then we claim the following algorithm outputs all possible subforests F

satisfying the hypotheses of the lemma:
1. Initialize F = T as the given tree.
2. While ℓ ̸= 0 or r ̸= 0:

a. If F has only root remaining, delete this root (middle-removal) from F

b. Otherwise, F has more than one root remaining:
i. If size(LF ) ≤ ℓ: remove the leftmost tree and update ℓ← ℓ− size(LF )
ii. Else if size(RF ) ≤ r: remove the rightmost tree and update r ← r − size(RF )
iii. Otherwise remove the leftmost root ℓ times, remove the rightmost root r times, and

return F (unique solution case)

ICALP 2021
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3. If F has one root remaining: repeatedly remove the only root (middle-removal) until we
no longer have a single root. Return all the forests encountered during this procedure as
possible solutions of F (multiple solutions case)

4. Otherwise, F has more than one root remaining: return F (unique solution case)

r = 2

F

ℓ = 2

Figure 5 An example of the unique solution case, where ℓ = 2 and r = 2.

At each step of the algorithm, we are either at a state with multiple roots or at a state
with one root. In the former case, we have to left-remove or right-remove which we do (unless
we have already left-removed ℓ times and right-removed r times, in which case we halt). In
the latter case, if we still have not left-removed or right-removed the full number of times,
we must keep middle-removing until we can make left or right removals. Terminating in one
of these states corresponds to the unique solution cases of the algorithm (at step 2(b)iii or
step 4). An example is given in Figure 5.

In these situations, the algorithm halts on the unique subforest F of T with size(LUF ) = ℓ

and size(RUF ) = r. Since there are O(k) possible values for ℓ and r individually, we get that
there are at most O(k2) distinct subforests F which can be outputted as a “unique solution”
in the above procedure.

The only other possibility is that we find ourselves in step 3 of the algorithm at a point
where we have already left-removed ℓ times and right-removed r times, and there is only
one root u remaining. In this case F might not be uniquely determined: we can continue
to middle-remove the remaining root for some number of times and then return a possible
solution of F . Formally, let w be the deepest descendant of the remaining root u, such that
for every node v on the path from w to u, v has no siblings. Then, for every such node v, the
subtree rooted at v (denoted Tv) and Tv − v can be a valid solution for F . This describes
the multiple solutions case annotated in step 3 of the above procedure. An example of the
multiple solutions case is given in Figure 6.

By the above discussion, a subforest F from the multiple solutions case can be determined
uniquely by the identity of the lowest common ancestor v = LCA(F ), and the choice of
whether v is in F or not. We now prove that, over all choices of valid ℓ and r, there are only
O(k) many possibilities for the node v. Combined with the unique solution case, this will
immediately finish the proof of the lemma.
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ℓ = 3 r = 3

u

w

x y

F

Figure 6 An example of the multiple solutions case, where l = 3, r = 3. Before executing step 3
of the algorithm, the remaining F consists of {u, w, x, y}. Then the algorithm returns three possible
solutions: {u, w, x, y}, {w, x, y}, and {x, y}.

We first consider the case where, among all possible node choices for v, there are two such
that neither is an ancestor of the other. Then pick the leftmost (with respect to post-order
traversal) and the rightmost (with respect to preorder traversal) of such possibilities for v,
denoted v1 and v2 respectively. Let G1 and G2 be the subtrees in T rooted at v1 and v2,
respectively. Then by the assumptions on F we necessarily have

|size(RUG1)− b|, |size(RUG2)− b| ≤ k.

Note that RUG2 ⊆ RUG1 . Write D = RUG1 \RUG2 for the difference of the right upper part
of G1 and the right upper part G2. Thus, by triangle inequality, we get that

size(D) = size(RUG1)− size(RUG2) ≤ 2k.

By our choice of v1 and v2, we know that any possible choice for v is either a node in
D or an ancestor of v1. For the former case, we have already shown that there are at most
O(k) nodes in D. In the latter case, each distinct v which is an ancestor of v1 determines a
subforest F of a different size. Then because we are assuming that |size(F )− c| ≤ k, there
are only O(k) possibilities for the choices of v which are ancestors of v1.

The previous argument applies whenever there are two choices for v, neither of which is an
ancestor of the other. If there do not exist such options for v, then all possible choices of v lie
on the a single root-to-leaf path of T . By the same reasoning as before, the number of possible
cases for v here is again at most O(k), because each v would determine a different-sized
subforest and size(F ) is allowed to take on O(k) distinct values.

This completes the proof of Lemma 13. As noted earlier, this implies Lemma 9. We
conclude by tying these results back to our main theorem.

Proof of Theorem 1. Set up a table which can be indexed by pairs of subforests (F1, F2)
of T1 and T2. Begin using Klein’s dynamic programming approach outlined in Section 3
and Lemma 6 but avoid generating subproblems according to the pruning rules described
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in Proposition 7 and Proposition 8, and store solutions ed(F1, F2) produced. In particular,
when Klein’s algorithm would normally generate a subproblem, we first check if the produced
subproblem would be a useful state according to our previous definitions. Proposition 8 and
the proof of Lemma 13 make it clear that we can quickly check if a state is useful provided
we know the sizes of F1, F2, LUF1 , RUF1 , LUF2 , and RUF2 , and this information can be kept
track of easily simply by updating the sizes according to the type of transition we follow in
the table.

So, we can compute ed(T1, T2) while only computing ed(F1, F2) for useful states. By
Lemma 6 there are O(n log n) possibilities for F1 and by Lemma 9 there are O(k2) choices for
F2 for each F1. So overall we only fill in at most O(nk2 log n) entries of the DP table. Since
we do a constant amount of work to get the value at each entry of the table, our algorithm
has the desired running time. ◀

5 Open problems

For trees of bounded edit distance k = O(1) our algorithm runs in linear time. However, for
larger tree edit distances k = Θ(n) our algorithm requires O(n3 log n) time, which is slower
than the fastest known algorithm [17] for general tree edit distance by a logarithmic factor.
This motivates the question: can we solve the bounded tree edit distance problem in O(nk2)
time instead of O(nk2 log n)?

The easier problem of string edit distance can be solved in Õ(n + k2) time [30, 28], which
is quasilinear even for super constant distance parameter k = O(

√
n). This motivates the

question of whether it is possible to get similar speedups for tree edit distance. It would
be especially interesting to see if the bounded tree edit distance problem can be solved
in Õ(n + k3) time. Perhaps the suffix tree techniques used in [33] (and discussed in [11,
Appendix]) could prove useful in showing such a result.

Regarding variants of tree edit distance, it remains an open question to get faster
algorithms for the harder problem of unrooted tree edit distance [24, 18] (where the elementary
operations are edge contraction, insertion, and relabeling) when the distance is bounded by
k. The best known algorithm for unrooted tree edit distance was recently given by Dudek
and Gawrychowski [18] and runs in O(n3) time. The previous O(n3 log n) time algorithm
by Klein [24] also applies to the unrooted setting. Although we extended Klein’s algorithm
to tackle the rooted tree edit distance problem in O(nk2 log n) time, it is not obvious how
to extend their approach to the unrooted bounded distance setting. This is because Klein
solves the unrooted version of the problem by dynamic programming over the subproblems
generated by all possible rootings of T2. This is fine for computing general edit distance
because the number of subforests over all possible rootings is O(n2) just like the number
of subforests for a fixed rooted tree on n nodes. However, when the tree edit distance is
bounded, the number of possible relevant subproblems over all possible rootings can be Ω(n)
even when k is small. Although our algorithm can be used to recover a near quadratic time
algorithm for unrooted tree edit distance when k = O(1) is constant, it remains open whether
we can obtain a quasilinear time algorithm in this setting.

Finally, although general tree edit distance with arbitrary weights cannot be solved in
truly subcubic time unless certain popular conjectures are false [13], analogous fine-grained
hardness results rule out truly subquadratic time algorithms for string edit distance even
when deletions and insertions have unit cost [6]. Can we show conditional hardness for tree
edit distance with unit costs, or can we find a subcubic time algorithm for this problem?
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Abstract
This paper investigates the approximability of the Longest Common Subsequence (LCS) problem.
The fastest algorithm for solving the LCS problem exactly runs in essentially quadratic time in
the length of the input, and it is known that under the Strong Exponential Time Hypothesis
the quadratic running time cannot be beaten. There are no such limitations for the approximate
computation of the LCS however, except in some limited scenarios. There is also a scarcity of
approximation algorithms. When the two given strings are over an alphabet of size k, returning
the subsequence formed by the most frequent symbol occurring in both strings achieves a 1/k

approximation for the LCS. It is an open problem whether a better than 1/k approximation can be
achieved in truly subquadratic time (O(n2−δ) time for constant δ > 0).

A recent result [Rubinstein and Song SODA’2020] showed that a 1/2 + ϵ approximation for the
LCS over a binary alphabet is possible in truly subquadratic time, provided the input strings have
the same length. In this paper we show that if a 1/2 + ϵ approximation (for ϵ > 0) is achievable
for binary LCS in truly subquadratic time when the input strings can be unequal, then for every
constant k, there is a truly subquadratic time algorithm that achieves a 1/k + δ approximation for
k-ary alphabet LCS for some δ > 0. Thus the binary case is the hardest. We also show that for
every constant k, if one is given two strings of equal length over a k-ary alphabet, one can obtain
a 1/k + ϵ approximation for some constant ϵ > 0 in truly subquadratic time, thus extending the
Rubinstein and Song result to all alphabets of constant size.
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1 Introduction

In a large variety of applications, from spell-checkers to DNA sequence alignment, one seeks
to compute how similar two given sequences of letters are. Arguably the most popular
measures of sequence similarity are the longest common subsequence (LCS) and the edit
distance. The LCS of two given sequences A and B (as the name suggests) measures the
maximum length of a sequence whose symbols appear in both A and B in the same order.
The edit distance, on the other hand, measures how far apart two strings are by counting
the minimum number of insertions, deletions and substitutions of characters that must be
performed on one string to transform it into the other. These two measures are related:
the complement of the LCS is the version of edit distance in which one minimizes only the
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13:2 Improved Approximation for Longest Common Subsequence over Small Alphabets

number of insertions and deletions (in fact, both versions of edit distance are the same up to a
factor of 2, so with respect to constant factor approximation algorithms they are equivalent).
Both the LCS and the edit distance of two length n strings can be computed in O(n2) time
using a classic dynamic programming approach. The fastest algorithm for both problems is
the O(n2/(log n)2) time algorithm of Masek and Paterson [20].

Hardness results from fine-grained complexity have shown that truly subquadratic time
algorithms (those running in time O(n2−δ) for some constant δ > 0) for LCS and edit distance
cannot exist under the Strong Exponential Time Hypothesis [2, 9, 14] and other even more
believable hypotheses [3, 16]. Consequently, much of the recent interest around LCS and
edit distance has concerned approximation algorithms for the problems. A long chain of
progress on edit distance approximation (e.g. [19, 11, 19, 10, 8, 6, 12]) has culminated in the
breakthrough constant-factor approximation algorithm of [15] running in truly subquadratic
time. Several improvements followed this breakthrough including [5, 18, 13], with the most
recent result being a constant factor approximation algorithm running in near linear time [7].

In contrast, much less is known about how well LCS can be approximated in truly
subquadratic time. For inputs over non-constant size alphabets, some fine-grained hardness
results [1, 4, 16] and nontrivial super-constant approximations [17] are known. When the input
strings come from a fixed alphabet of constant size k, there is a trivial 1/k-approximation
algorithm that returns in linear time the longest common unary subsequence of two inputs.
Despite the simplicity of this algorithm, until recently no better constant-factor approximation
algorithm was known for any constant size alphabet. There are also no existing hardness
results that rule out better approximation algorithms.

Recently, for the case of binary strings of equal length, Rubinstein and Song [21] were
able to improve upon the simple 1/2-approximation algorithm described above, obtaining for
some constants ϵ, δ > 0 an O(n2−δ) time algorithm that returns a (1/2 + ϵ)-approximation.
It is still open, however, whether one can obtain such an algorithm for binary strings of
unequal length, and whether one can extend the result to achieve a truly subquadratic time
algorithm achieving a better than k-approximation for strings over an alphabet of size k, for
every constant k.

Our results

In this paper we present two results. The first result shows that if one can obtain a truly
subquadratic time, better than 2-approximation algorithm for the LCS of binary strings of
possibly unequal lengths, then one can use this algorithm to obtain a truly subquadratic
time, better than k-approximation algorithm for the LCS of strings over a k-ary alphabet,
for any constant k.

▶ Theorem 1. For any fixed integer k ≥ 2 there is an O(n) time algorithm that given an
instance of LCS for strings of length at most n over an alphabet of size k, reduces it to O(k2)
instances of LCS over binary strings of length at most n, so that (1/2 + ϵ)-approximate
solutions (for ϵ > 0) for these LCS instances can be translated in O(n) time into a (1/k + ϵk)
approximation of the k-ary alphabet LCS instance, where ϵk > 0 is a constant only depending
on ϵ and k.

In other words, in order to beat the longstanding 1/k-approximation algorithm for LCS,
one merely needs to obtain a better than 1/2 approximation for the binary case, i.e. to
extend the Rubinstein and Song result to strings of possibly unequal length.

Our second result generalizes the Rubinstein-Song result by proving that one can beat
the simple 1/k-approximation algorithm for every constant k, as long as the input strings
have equal length.



S. Akmal and V. Vassilevska Williams 13:3

▶ Theorem 2. Given two strings A and B of length n over an arbitrary alphabet of size k,
there exist positive constants ϵ and δ such that we can compute a 1/k + ϵ approximation for
the longest common subsequence of A and B in O(n2−δ) time.

In fact, our algorithm can actually (1/k + ϵ)-approximate the LCS in near-linear time.
Note that our result applies only to strings with equal input lengths. The relevance of this
restriction is discussed in Section 2, which also contains the proof of Theorem 1. We present
the proof of Theorem 2 in Section 3.

Preliminaries

We write approximation ratios as constants less than 1, so that for example a 1/2 + ϵ

approximation algorithm for the LCS of A and B is an algorithm that returns a common
subsequence of A and B with length at least (1/2 + ϵ) · LCS(A, B).

When we discuss edit distance in the rest of the paper we mean the version of edit
distance that does not allow symbol substitutions but only measures the number of insertions
and deletions. For constant factor approximation algorithms, this version of the problem is
equivalent to the original.

2 Reduction to Binary Alphabets & Input Length Conditions

We begin by showing how to reduce nontrivial constant factor approximations of LCS over
large alphabets to better than 1/2 approximations of LCS over binary alphabets. Although
we do not directly apply this reduction in our proof of Theorem 2, the reduction is elegant
and motivates the approach we end up using. Moreover, the reduction works even for strings
of non-equal lengths, thus showing that one merely needs to extend the Rubinstein-Song
result to non-equal length strings in order to truly improve upon the trivial alphabet-size
approximation algorithm. We will need the following definition.

▶ Definition 3 (Restrictions). Given an alphabet Σ, we call a subset Σ′ ⊆ Σ a subalphabet.
Given a string A from alphabet Σ the restriction of A to a subalphabet Σ′ is the maximum
subsequence of A whose characters are all in Σ′.

▶ Theorem 4. Fix integers s and ℓ with s > ℓ ≥ 2. Suppose that there is a T (n, ℓ) time
algorithm that achieves an 1/(ℓ − ϵ)-approximation of the LCS of two strings of length at
most n from an alphabet of size ℓ. Then, there is also a O((n + T (n, ℓ))

(
s
ℓ

)
) time algorithm

that achieves an 1/(s(1 − ϵ/ℓ))-approximation of the LCS of two strings of length at most n

from an alphabet of size s.

Proof. We will show how to reduce the LCS for two strings of length at most n over a s-ary
alphabet, to the LCS for two strings of length at most n over an ℓ-ary alphabet for any ℓ < s.
The reduction runs in O(n

(
s
ℓ

)
) time and produces

(
s
ℓ

)
instances of ℓ-ary alphabet LCS.

Let A and B two strings of length at most n over an alphabet Σ of size s. Let C be the
longest common subsequence of A and B (we do not know C). For the sake of argument,
sort the alphabet symbols according to their number of occurrences in C.

Let x be the collection of the ℓ most frequent alphabet symbols in C. Let Cx be the
subsequence of C obtained by restricting C to the subalphabet of Σ that contains the symbols
of x. Since x has the ℓ most frequent symbols in C, Cx contains at least an ℓ/s fraction of C.

Now, let us describe our algorithm. Given A and B, we consider all subsets of the
alphabet consisting of precisely ℓ symbols (one of these subsets will be x.) For each such
collection y, consider the sub-instance of the LCS instance restricted to the symbols of y.
Let OPT(y) be the optimal LCS for this instance.
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13:4 Improved Approximation for Longest Common Subsequence over Small Alphabets

We know that | OPT(x)| ≥ |Cx| ≥ (ℓ/s)|C|. So when we consider y = x, if we can
efficiently obtain an 1/(ℓ − ϵ) approximation for OPT(x), we will get a common subsequence
of A and B of length at least

| OPT(x)|
ℓ − ϵ

≥ |C|
s(1 − ϵ/ℓ) ,

and thus yields the desired approximation for the LCS of A and B. The running time is
multiplied by

(
s
ℓ

)
which is a constant, as long as s is. ◀

By setting ϵ = ℓδs/(1+δs) in the above Theorem statement, we obtain a linear time reduc-
tion from obtaining a 1/s + δ-approximation for s-ary strings to a 1/ℓ + (δs)/ℓ-approximation
for ℓ-ary strings. We obtain Theorem 1 as a corollary:

▶ Corollary 5. Fix an integer s ≥ 3 and a constant δ > 0. The problem of obtaining a
1/s + δ approximation for the LCS of two strings from an alphabet of size s can be reduced
in linear time to the problem of obtaining a 1/2 + (δs)/2 approximation for the LCS of two
strings binary strings (i.e. strings from an alphabet of size two).

Proof. This follows from Theorem 4 by taking ℓ = 2. The reduction has O(s2) overhead. ◀

The reason we cannot prove Theorem 2 by combining Corollary 5 with the result of [21]
is that the latter gives a better than 1/2 approximation for strings from an alphabet of size
2 only when the input strings have equal length. Note that in the reduction from the proof of
Theorem 4, the subsequences obtained from restrictions to subalphabets may be of different
lengths even if the original strings have equal lengths.

Although at first it may seem that extending the Rubinstein-Song result to strings of
differing length should not be too hard, generalizing the result does not appear straightforward.
In the following we will discuss why this not simple. The main hurdles come from the lemma
and algorithm used in [21] stated below.

▶ Lemma 6 (LCS and Edit Distance Connection). For any strings X and Y of length n and
m respectively, we have

2 · LCS(X, Y ) + ED(X, Y ) = n + m.

For the sake of completeness, we include a proof of the above lemma.

Proof. Consider an optimal alignment between X and Y , which matches the maximum
possible number of characters of X with identical characters of Y while respecting the order
in which the characters appear in each string. The characters that are matched in X and Y

correspond to a longest common subsequence. This is because if there were a longer common
subsequence, we could get a larger alignment by matching the characters of the subsequence
in X and Y , but this would contradict the optimality of X and Y .

Similarly, the unmatched characters correspond to a minimum set of symbols that need
to be deleted from X and inserted from Y to turn X into Y . If there were a smaller edit
distance computation, then all the characters which were not deleted or inserted could be
paired up to form a larger alignment, again contradicting optimality.

Thus there are exactly 2 · LCS(X, Y ) characters paired up in the alignment and ED(X, Y )
unmatched characters. These encompass all the characters in X and Y , and thus account
for n + m symbols. ◀
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▶ Definition 7 (Approximating LCS through Edit Distance). Given strings A and B of length
n, the algorithm ApproxED(A, B) approximates the edit-distance between A and B and then
returns the lower bound on the LCS implied by this. More precisely, the algorithm computes
an approximate edit distance ẼD(A, B) and then returns

n − 1
2 · ẼD(A, B). (1)

As stated ApproxED can use any edit distance approximation ẼD as a black box. For
concreteness, we will take ẼD to be the edit distance algorithm from [5] which can achieve
an approximation ratio of c for any constant c > 3 and runs in truly subquadratic time.

In [21], the authors use the ApproxED algorithm to handle the case of binary strings
with large LCS. In this case, they notice that if the LCS is large then the edit distance must
be small. Then constant factor approximations to edit distance will give good lower bounds
on the LCS because in the calculation from Equation (1) we are subtracting off a small
quantity from the maximum possible LCS value of n.

However, if we tried extending this algorithm to the case where the inputs X and Y have
lengths n and m with n = 100m (for example) by using the identity from Lemma 6, then even
when the LCS is large (say of length (1 − ϵ)m for some small positive ϵ) the edit distance will
still be very large compared to the length of the smaller string (at least (99 + ϵ)m). So even
a 3-approximation to edit-distance would incur massive error when trying to approximate
LCS by computing

1
2 ·

(
n + m − ẼD(X, Y )

)
and the result would not give any nontrivial lower bound for the LCS. In other words, when
the input strings have very different lengths it is not clear how to use approximate edit
distance in general to obtain good approximations for LCS. This is essentially why the
algorithm from [21] and Theorem 2 both require equal length inputs.

3 Extending Alphabet Size

This section proves Theorem 8 which restates Theorem 2 from the introduction slightly.

▶ Theorem 8. Given two strings A and B of length n over an arbitrary alphabet Σ of size s,
there exist a positive constant ϵ such that we can compute a 1/s + ϵ approximation for the
longest common subsequence LCS(A, B) of A and B in truly subquadratic time.

Throughout the rest of this section, we assume A and B refer to strings satisfying the
conditions of Theorem 8 and that s ≥ 3. We begin by establishing lemmas corresponding to
easy instances of the problem. The following definition is useful for identifying these easy
cases.

▶ Definition 9 (Balanced Strings). Given a string A of length n from an alphabet of size
s and a parameter ρ > 0, we say a string is ρ-balanced if all its character frequencies are
within ρn of n/s.

▶ Lemma 10 (Balanced Inputs, adapted from Lemma 3.2 of [21]). For all sufficiently small
ρ > 0, if either A or B is ρ-balanced, we can (1/s + γ)-approximate LCS(A, B) in truly
subquadratic time, where γ is some positive constant depending on ρ.
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13:6 Improved Approximation for Longest Common Subsequence over Small Alphabets

Proof. We reduce the problem to approximating the edit distance between A and B.
Without loss of generality assume A is ρ-balanced. This means that all of its character

frequencies are at least (1/s − ρ)n. So there exists a unary common subsequence of A and B

of at least this length. If this is a (1/s + γ) approximation we are done. Otherwise the LCS
must be quite large:

LCS(A, B) > s(1/s − ρ)n − sγn = (1 − s(ρ + γ))n.

Recall from Lemma 6 that

ED(A, B) + 2 · LCS(A, B) = 2n,

where ED(A, B) denotes the (no substitutions) edit distance of A and B. Using the ED
approximation of [5] with some approximation ratio c > 3 we recover an LCS approximation
of length at least

n − c (n − LCS(A, B)) > n (1 − cs(ρ + γ))

so as long as we have 1 − cs(ρ + γ) ≥ 1/s + γ, this approximation is strong enough. This
inequality holds when

γ ≤ s − 1 − cs2ρ

s(1 + cs) .

We can ensure it does by picking ρ small enough that the numerator of the right hand
side above is positive and then taking γ smaller than the right hand side. Note that smaller
values of ρ correspond to larger values of γ. ◀

▶ Lemma 11 (Balanced LCS). If the LCS of A and B is not ρ-balanced, then in linear time
we can (1/s + ρ/(s − 1))-approximate LCS(A, B).

Proof. Returning the longest common unary subsequence gives the desired approximation.
To see this, let σmax and σmin be the most frequent and least frequent characters in the LCS
respectively. Since the LCS is not balanced, either σmax makes up more than a (1/s + ρ)
fraction of all symbols in the LCS, or σmin makes up fewer than a (1/s − ρ) fraction of the
symbols in the LCS.

In the latter case, the s − 1 members of the alphabet besides σmin must account for at
least an ((s − 1)/s + ρ) fraction of characters in the LCS. Among these, σmax appears the
most often, which means by averaging that σmax accounts for at least a

1
s

+ ρ

s − 1

fraction of all symbols in the LCS.
In either case, σmax makes up at least a (1/s + ρ/(s − 1)) fraction of the symbols in the

LCS. Then the string consisting of σmax repeated min(σmax(A), σmax(B)) times is a common
subsequence of A and B which has at least as many instances of σmax as the LCS does, and
thus yields the desired approximation. ◀

After handling these easy cases, our approach is to restrict A and B to binary strings
and invoke the frequency arguments from previous work. As we noted before, we cannot
directly use the reduction in Corollary 5 because the better than 1/2 approximation of [21]
only applies when the inputs have the same length. It turns out however, that the arguments
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of [21] do hold for strings of differing length as long as the inputs satisfy a nice frequency
condition. The following lemma demonstrates how by careful choice of subalphabets we can
find restrictions meeting this condition. To describe this condition, we introduce some new
notation: given a string A from an alphabet Σ, for any symbol σ ∈ Σ we let σ(A) denote the
number of times σ appears in A.

▶ Lemma 12 (Binary Restriction). Suppose neither A nor B are ρ-balanced. Then there
exists Σ′ ⊆ Σ with |Σ′| = 2 such that the restrictions of A and B to Σ′ are not ρ/s-balanced.

Proof. Let α1 ≤ · · · ≤ αs be the number of times the distinct symbols σ1, . . . , σs of Σ appear
respectively in A, so that σs is the most frequent symbol of A and σ1 is the least common
character in A. By averaging we know that αs ≥ n/s ≥ α1. Since A is not ρ-balanced we
deduce that

αs − α1 > ρn.

We can decompose the left hand side of the above equation to

αs − α1 =
s∑

i=2
(αi − αi−1) .

Since all the summands on the right hand side are positive, there exists some index j with

αj − αj−1 > (ρ/s)n. (2)

Note that we can find such a j in linear time by scanning through A and B and keeping
counts of all the characters that appear. Now, consider the (s − 1) two-element sets

{σs, σj−1} , {σs−1, σj−1} , . . . , {σj , σj−1} , {σj , σj−2} , . . . , {σj , σ1} . (3)

We claim that one of these sets satisfies the properties of Σ′ from the lemma statement.
First, note that Equation (2) ensures that the restriction of A to any of the above sets is not
ρ/s-balanced, so it suffices to verify that the restriction of B will not be balanced for one
of these sets. Suppose to the contrary that none of the sets from Equation (3) satisfies the
desired conditions. We will use a triangle-inequality argument on the character frequencies
of B to derive a contradiction. Let M and m be indices such that σM is the most frequent
character of B and σm is the least frequent. Since B is not ρ-balanced, we know that M ≠ m.
If M ≥ j > m we may write

|σM (B) − σm(B)| ≤ |σM (B) − σj−1(B)| + |σj−1(B) − σj(B)| + |σj(B) − σm(B)| .

By assumption, the restrictions of B to the sets {σM , σj−1}, {σj , σj−1}, and {σj , σm}
are (ρ/s)-balanced. Thus, each addend on the right hand side of the above inequality is
bounded above by (ρ/s)n. It follows that

|σM (B) − σm(B)| ≤ (3ρ/s)n.

By similar reasoning, if m = j and M ≥ j then we have

|σM (B) − σm(B)| = |σM (B) − σj(B)| ≤ |σM (B) − σj−1(B)| + |σj−1(B) − σj(B)| ≤ (2ρ/s)n.

If instead M, m > j we know that

|σM (B) − σm(B)| ≤ |σM (B) − σj−1(B)| + |σj−1(B) − σm(B)| ≤ (2ρ/s)n

ICALP 2021



13:8 Improved Approximation for Longest Common Subsequence over Small Alphabets

since now the subalphabets {σM , σj−1} and {σm, σj−1} both occur in Equation (3). Similar
reasoning on the remaining cases of the values of M and m relative to j to establishes the
inequality

σM (B) − σm(B) ≤ (3ρ/s)n.

We have dropped absolute value signs because the left hand side of the above equation is
positive by definition of M and m. Since s ≥ 3 this contradicts the assumption that B is not
ρ-balanced, and the desired result follows. Note that we can find which of subalphabets from
Equation (3) satisfies the conditions of the lemma in O(n + s) time by scanning through B

to get the counts of each of its characters and trying out all the restrictions. ◀

In our proof of Theorem 2, we will require a stronger form of the result from Section 4
of [21]. This variant of their theorem is useful because it applies to strings of different length.

▶ Lemma 13. Let X and Y be binary strings of length n and m respectively, where m ≤ n.
Suppose the frequencies 0(Y ) and 1(X) are both at most (1/2−ρ)m for some positive constant
ρ. Then there exist positive constants δ and ϵ such that if 0(Y ) and 1(X) are within δm of
each other, we can compute a (1/2 + ϵ) approximation of LCS(X, Y ) in subquadratic time.

Although the realization that this type of result holds for strings of differing length is
novel, the proof of Lemma 13 itself is conceptually identical to the frequency analysis used
in [21], requiring only minor changes to make the argument go through. For completeness
we include the detailed casework proof of this result in Section 4.

Finally we apply a lemma that provides some frequency information about the strings.

▶ Lemma 14 (Lemma 3.1 from [21]). For any δ > 0 if

min (0(X), 0(Y )) > (1 + δ) min (1(X), 1(Y ))

or

min (1(X), 1(Y )) > (1 + δ) min (0(X), 0(Y ))

then there is a unary (1 + δ)/(2 + δ) approximation for LCS(X, Y ).

Proof. Observe that for any binary strings X and Y we have

LCS(X, Y ) ≤ min (0(X), 0(Y )) + min (1(X), 1(Y )) . (4)

This equation holds because the LCS is a subsequence of X and Y , and thus cannot contain
more zeros or ones than either of the strings X or Y individually have.

Suppose by symmetry that min (0(X), 0(Y )) is the larger of the two addends on the right.
Then the we can return the all zeros string of this length. By the first inequality we get

min (0(X), 0(Y )) > (1 + δ) (LCS(X, Y ) − min (0(X), 0(Y )))

and then rearranging proves the claim. ◀

We now combine these results to improve LCS approximation on all alphabets.

Proof of Theorem 8. Let ρ and ρ′ be positive parameters whose values will be specified
later. If either of the strings A or B are ρs-balanced, we are done by Lemma 10 (by taking ρ

to be small enough so that the lemma applies). If the LCS of A and B is not ρ′-balanced we
are done by Lemma 11. So, we may assume that neither A nor B are ρs-balanced and that
their LCS is ρ′-balanced.
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By Lemma 12 we can find binary alphabet restrictions X and Y of A and B respectively
with the property that neither X nor Y are ρ-balanced. Informally, since the LCS of A and
B is balanced, a better than 1/2 approximation for the LCS of X and Y acts as a better
than 1/s approximation for LCS(A, B). More precisely, since LCS(A, B) is ρ′-balanced, each
of its characters occurs at least (1/s − ρ′) LCS(A, B) times in the LCS. By construction, we
also know that LCS(X, Y ) is at least as large as a binary alphabet restriction of LCS(A, B).
Thus, it follows that given a positive constant ϵ′, a 1/2 + ϵ′ approximation of LCS(X, Y ) has
length at least

(1/2 + ϵ′) · 2 (1/s − ρ′) LCS(A, B) = (1/s + 2ϵ′/s − ρ′ − 2ϵ′ρ′) LCS(A, B).

By setting ϵ = ϵ′/s (for example) and ρ′ sufficiently small in terms of ϵ′, the above
calculation shows that a 1/2 + ϵ′ approximation for the LCS of X and Y acts as a 1/s + ϵ

approximation for LCS(A, B). Hence to complete the proof, it suffices to get a better than
1/2 approximation for LCS(X, Y ). We may assume that

min (0(X), 0(Y )) ≤ (1 + δ) min (1(X), 1(Y )) (5)

and

min (1(X), 1(Y )) ≤ (1 + δ) min (0(X), 0(Y )) (6)

for some constant δ since otherwise Lemma 14 yields a better than 1/2 approximation.
As mentioned previously, [21] gives a better than 1/2 approximation for the LCS when

X and Y have equal length. If X and Y have different lengths, without loss of generality we
assume that |X| > |Y | and 0(Y ) ≤ 1(Y ). We do casework on frequencies in X, relative to
the frequencies in Y .

Since X is longer than Y , we cannot have both 1(X) ≤ 1(Y ) and 0(X) ≤ 0(Y ).
If 1(X) > 1(Y ) and 0(X) > 0(Y ) simultaneously, then Equation (6) implies that

1(Y ) ≤ (1 + δ) · 0(Y )

which contradicts the fact that Y is not ρ-balanced as long as we take δ ≤ 2ρ.
If instead 1(X) ≤ 1(Y ) and 0(X) ≤ 0(Y ), by Equation (6) we similarly have

0(X) ≤ 0(Y ) ≤ 1(Y ) ≤ (1 + δ) · 0(X)

which again contradicts the fact that Y is not ρ-balanced for the same choice of δ.
Thus, the only possibility is that 1(X) ≤ 1(Y ) and 0(X) > 0(Y ). Let m = |Y | be the

length of string Y . Then Equation (5) implies that

0(Y ) ≤ (1 + δ) · 1(X) ≤ 1(X) + δm

while Equation (6) implies that

1(X) ≤ (1 + δ) · 0(Y ) ≤ 0(Y ) + δm.

Consequently, 0(Y ) and 1(X) are within δm of each other. Then by Lemma 13, as long
as we take δ small enough in terms of ρ we get a subquadratic 1/2 + ϵ′ approximation
for LCS(X, Y ). As noted earlier, this then yields the desired 1/s + ϵ approximation for
LCS(A, B) in truly subquadratic time. In fact, because we only ever use subroutines that
run in linear time or constant factor approximations to edit distance which take near-linear
time, the overall algorithm takes near-linear time. ◀
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4 Proof of Lemma 13

This section is devoted to proving Lemma 13. We do this working through the individual
arguments in the case analysis of [21] and verifying that the arguments still hold in the case
where the strings have different lengths, as long as they satisfy the frequency requirements
included in the hypotheses of the lemma. Throughout this section we fix the binary alphabet
Σ = {0, 1} and assume that all strings come from this alphabet.

We carry over the following subroutines from [21].

▶ Definition 15. Given strings A and B and a symbol σ, the algorithm Match(A, B, σ)
returns the largest subsequence of A and B consisting entirely of copies of σ.

▶ Definition 16. Given strings A and B, the algorithm BestMatch(A, B) returns the longer
of the strings

Match(A, B, 0) and Match(A, B, 1).

In other words, the algorithm returns the largest common unary subsequence.

Note that BestMatch is a 1/2 approximation algorithm for LCS.

▶ Definition 17. Given strings A1, A2, and B, the algorithm Greedy(A1, A2, B) returns

max
B=B1⊔B2

BestMatch(A1, B1) + BestMatch(A2, B2)

taken over all possible splits of B into two contiguous left and right substrings B1 and B2.

These algorithms can all be implemented to run in linear time by scanning through the
counting how many 0s and 1s appear in each string. The final procedure we will invoke
utilizes an approximation algorithm for computing the edit distance of two strings as a
black-box. Although any fast enough constant factor approximation for edit distance will
work, for concreteness we assume that it leverages the algorithm ẼD from [5], which runs
in subquadratic time and can approximate the edit distance to a c = 3 + ϵ′ factor for any
fixed positive constant ϵ′. Note that this algorithm can also return a common subsequence
achieving the given length.

Proof of Lemma 13. Let 1(X) = αm for some α ∈ [0, 1]. By assumption, we know that
α < 1/2 is bounded away from 1/2 by some constant amount. We can also assume that
0(Y ) is within δm of 1(X) for some positive parameter δ < 0 to be picked later on. We will
end up setting δ to be some sufficiently small constant depending on α. We will use the
notation ≈ to denote quantities that are within δm of each other. For example 1(X) ≈ 0(Y ).
This lets us avoid having to stick in ±δm symbols in all the inequalities and helps make
the arguments cleaner without affecting the correctness (since we just care about getting a
1/2 + ϵ approximation for some constant ϵ > 0).

Note that by Equation (4) the LCS of the input strings

LCS(X, Y ) ≤ (2α + δ)m (7)

cannot be too large, because the LCS contain at most αm 1s from X and ≈ αm 0s from Y .
Let RX and RY denote the substrings of X and Y consisting of their rightmost αm

characters respectively. Similarly define LX and LY as the substrings of X and Y consisting
of the leftmost αm characters. Set MX = X \ (LX ∪ RX) and MY = Y \ (LY ∪ RY ) to be the
middle substrings of X and Y that remain when these left and right ends are chopped off.
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We now follow the casework of [21], explaining at each step why the arguments still hold
in our more general setting. These cases are based off the frequencies of 0s and 1s in the left
and right ends of the inputs, and consider separately the situation where these substrings
are pseudorandom (balanced) or structured (imbalanced). In the former case we can appeal
to edit distance as in the proof of Lemma 10, and in the latter situation we can exploit the
imbalance in the strings to use the simpler unary algorithms described in definitions 15,
16, and 17. Intuitively, we succeed in using edit distance approximation arguments (and
overcome the barrier described the end of Section 2) in this particular case because even
though X and Y may have different size, we identify right and left substrings which all have
equal length and only employ edit distance approximation around these areas.

Recall that we assumed that α < 1/2−ρ for some constant ρ. Take a parameter β < ρ/20
to represent deviation from the balanced case. By choosing δ sufficiently small in terms of β

we may additionally assume that

1(X), 0(Y ) < (1/2 − 10β) m (8)

since in the hypothesis of the lemma we supposed that 1(X) < (1/2 − ρ)m and that
0(Y ) ≈ 1(X). Finally, as one last piece of notation, we write |A| to denote length of an
arbitrary string A. We now begin the casework, maintaining consistency with [21].

Case 1(a): 1(RY ), 0(RX) ∈ [(α/2 − 4β) m, (α/2 + 4β) m]
In this case both right ends of the strings are balanced. We will give a good approximation for
the LCS by splitting these strings at the right ends and using the aforementioned algorithms.

Consider an optimal alignment between X and Y (i.e. a maximum partial matching of
identical characters in X and Y , corresponding to the LCS of X and Y ). Let R̂Y be the
minimal suffix (from the right end) of the string Y with the property that every character
from RX which is matched in the alignment is paired up with some character in R̂Y .

Without loss of generality, we may assume that R̂Y is a substring of RY . This is because
if R̂Y was not contained in RY , we could define an analogous substring of R̂X of X satisfying
R̂X ⊆ RX and then use a symmetric argument to get the desired approximation. Let
L̂Y = Y \ R̂Y be the left substring of Y that remains after chopping of R̂Y .

Optimality of the alignment implies that

LCS(X, Y ) = LCS(X \ RX , L̂Y ) + LCS(RX , R̂Y ). (9)

Define the quantities

fL = min(1(X \ RX), 1(L̂Y )) + min(0(X \ RX), 0(L̂Y ))

and

fR = min(1(RX), 1(R̂Y )) + min(0(RX), 0(R̂Y ))

which represent frequency-based upper bounds for the LCS terms from the right hand side of
Equation (9). They are useful because Equation (4) together with Equation (9) implies that

LCS(X, Y ) ≤ fL + fR. (10)

We also introduce the quantity

Z = max
(

min(1(X \ RX), 1(L̂Y )), min(0(X \ RX), 0(L̂Y ))
)

which is the larger of the two addends defining fL, and equal to the length of the string
returned by

BestMatch(X \ RX , L̂Y ).

We further subdivide into cases based off the size of Z.
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Case 1(a)(i): Z > (α/2 + 10β) m

When Z is large we can combine two unary subsequences to get a good enough LCS
approximation. We first show that Z is bigger than fL/2 by a constant fraction of m.

By definition we have

fL − Z = min
(

min(1(X \ RX), 1(L̂Y )), min(0(X \ RX), 0(L̂Y ))
)

≤ 1(X \ RX).

Since X has αm ones and RX has length αm we get that

1(X \ RX) = αm − 1(RX) = αm − (αm − 0(RX)) = 0(RX).

Then using the case assumptions we have

0(RX) ≤ (α/2 + 4β) m < Z − 6βm.

Chaining these inequalities together and rearranging we deduce that

Z > fL/2 + 3βm.

Now if we make a single call to the Greedy routine we obtain a string of length

Greedy(X \ RX , RX , Y ) ≥ BestMatch(X \ RX , L̂Y ) + BestMatch(RX , R̂Y ). (11)

From our earlier discussion we have

BestMatch(X \ RX , L̂Y ) ≥ Z > fL/2 + 3βm.

Moreover

BestMatch(RX , R̂Y ) = max(min(1(RX), 1(R̂Y )), min(0(RX), 0(R̂Y ))) ≥ fR/2

since we are taking the maximum over two addends that sum to fR.
Finally, if we substitute the above inequalities into Equation (11) and apply Equation (10)

we get that

Greedy(X \ RX , RX , Y ) ≥ (fL + fR) /2 + 3βm ≥ LCS(X, Y )/2 + 3βm

≥ (1/2 + 3β) LCS(X, Y ).

Thus running Greedy gives us a better than 1/2 approximation in this case.

Case 1(a)(ii): Z ≤ (α/2 + 10β) m

Intuitively, in this case Z is too small for us to ensure a good approximation using frequency
guarantees alone. However, because Z is so small, the LCS also cannot be too large. Because
of this, we will be able to get a good approximation by combining a common subsequence of
the (balanced) right ends of the strings with a common subsequence of the strings with the
right ends removed.

More concretely, we leverage the ApproxED algorithm from Definition 7. From our
previous observation we have fL ≤ 2Z ≤ (α + 20β) m. So via Equation (9) we can bound
the LCS by

LCS(X, Y ) ≤ fL + LCS(RX , R̂Y ) ≤ (α + 20β) m + LCS(RX , RY ) (12)

where in the last step we also used the fact that R̂Y ⊆ RY .
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We will get an approximation by returning a unary subsequence from the left parts of
the strings, and using edit distance approximation on the right ends. First, we can make a
call to BestMatch and get a common subsequence of length at least

BestMatch(X \ RX , Y \ RY ) ≥ Match(X \ RX , Y \ RY , 0) ≥ (α/2 − 4β) m.

This last inequality above follows from combining the case 1 assumptions about the frequencies
of characters in 0(RX) and 1(RY ), together with the facts that 0(Y ) ≈ 1(X) = αm and
|RX | = |RY | = αm.

Now, since RX and RY are (4β/α)-balanced we can apply Lemma 10 with n = αm as
long as we take β sufficiently small in terms of α. Note that for fixed alphabet size and ρ,
the parameter β remains Ω(1). This ensures that in subquadratic time we can compute a
common subsequence of RX and RY with length at least

(1/2 + γ) LCS(RX , RY )

where γ < 1 is the constant from Lemma 10, which is larger for smaller values of β. By the
frequency assumptions on RX and RY , we know that

LCS(RX , RY ) ≥ (α/2 − 4β) m

so in fact the subsequence of RX and RY returned by Lemma 10 has length at least

(1/2 + γ) LCS(RX , RY ) ≥ LCS(RX , RY )/2 + γ(α/2 − 4β)m.

Now if we combine these two subsequences together, we get a common subsequence of X

and Y of length at least

LCS(RX , RY )/2 + (α/2 − 4β) m + γ(α/2 − 4β)m

which can be written in the form

((α + 20β)m + LCS(RX , RY )) /2 + (γα/2 − 14β − 4γβ) m.

By applying Equation (12) and the fact that γ < 1 we see that this is at least

LCS(X, Y )/2 + (γα/2 − 18β) m.

Finally, by picking β small enough this expression is at least

LCS(X, Y )/2 + (γα/3) m ≥ (1/2 + γ/6) LCS(X, Y )

where in the last step we have used Equation (4) together with 1(X) = αm and 0(Y ) ≈ αm.
This proves that we can attain a better than 1/2 approximation for the LCS as claimed.

Case 1(b): 1(RY ) < (α/2 − 4β) m and 0(RX) ≤ (α/2 + 2β) m

In this case the right ends of X and Y each do not contain too much their respective strings’
most common characters. We show that this implies the LCS of both strings must be so
small that simply returning a unary string yields a better than 1/2 approximation.

As in case 1(a), consider an optimal alignment between X and Y . Now define the
substring R̂Y to be the minimal suffix of Y which contains all characters of Y that RX is
aligned to. Let L̂Y = Y \ R̂Y be what remains of Y after RY is removed. Since the alignment
is optimal, Equation (9) holds.

We now subdivide into further case based off how the right ends of strings are aligned.
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Case 1(b)(i): every character of RX is matched to some character of RY in the alignment

In this case R̂Y is a substring of RY . From Equation (4) and the case assumptions we get
that

LCS(X \ RX , L̂Y ) ≤ 1(X \ RX) + 0(L̂Y ) ≤ (α/2 + 2β) m + 0(L̂Y )

and

LCS(RX , R̂Y ) ≤ 1(R̂Y ) + 0(R̂Y ) ≤ (α/2 − 4β) m + 0(R̂Y ).

Note that in this second inequality we are using the inequality 1(R̂Y ) ≤ 1(RY ) which
follows from the earlier observation that R̂Y ⊆ RY . By adding these inequalities together
and substituting the result into Equation (9) we deduce that

LCS(X, Y ) ≤ (α − 2β) m +
(

0(L̂Y ) + 0(R̂Y )
)

≤ (α − 2β) m + αm = (2α − 2β) m

where we have used the fact that 0 occurs in Y ≈ αm times.

Case 1(b)(ii): some character of RX is matched outside RY in the alignment
In this case RY is a substring of R̂Y .

Using Equation (4) again we find that

LCS(X \ RX , L̂Y ) ≤ 1(X \ RX) + 0(L̂Y ) (13)

From 0(RX) ≤ (α/2 + 2β) m we know that 1(RX) ≥ (α/2 − 2β) m since RX has length
αm. It follows that

1(X \ RX) = 1(X) − 1(RX) ≤ (α/2 + 2β) m

since 1(X) = αm.
Similarly, since 1(RY ) < (α/2 − 4β) m and RY has length αm we know that 0(RY ) >

(α/2 + 4β) m. Since RY ⊆ R̂Y it must be the case that 0(R̂Y ) > (α/2 + 4β) m which means
that

0(L̂Y ) = 0(Y ) − 0(R̂Y ) ≈ αm − 0(R̂Y ) < (α/2 − 4β) m.

Adding these two inequalities and substituting into Equation (13) proves that

LCS(X \ RX , L̂Y ) ≤ (α − 2β) m.

Then applying Equation (9) and using the fact that RX has length αm proves that

LCS(X, Y ) = LCS(X \ RX , L̂Y ) + LCS(RX , R̂Y ) ≤ (α − 2β)m + αm = (2α − 2β) m.

Thus in both this subcase and the previous one, the LCS is at most (2α − 2β) m. Hence,
returning the string of ≈ αm zeros obtained by calling Match(X, Y, 0) gives a better than
1/2 approximation as desired.

Case 1(c): 1(RY ) ≤ (α/2 + 2β) m and 0(RX) < (α/2 − 4β) m

This case is symmetric to case 1(b) and similar reasoning handles it.
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Case 2: 1(LY ), 0(LX) ≤ (α/2 + 2β) m

Combining cases 1(a), 1(b), and 1(c) resolves the situation where

1(RY ), 0(RX) ≤ α/2 + 2β.

Consequently, case 2 is symmetric to case 1. In particular, we can flip the strings (by
replacing X with the string X ′ which consists of the symbols of X read in reverse from right
to left, and replacing Y with its analogous reverse string Y ′) and apply the arguments from
case 1 to handle this case.

Case 3: 1(LY ), 1(RY ) ≤ (α/2 + β) m and 0(LX), 0(RX) > (α/2 + 2β) m

In this case both ends of the inputs have many 0s, so repeated calls to Match will be enough
to guarantee a better than 1/2 approximation.

Since LY has length αm and at most (α/2 + β) m instances of 1, it must have at least

0(LY ) ≥ αm − (α/2 + β)m = (α/2 − β)m

occurrences of 0. Since 1(RY ) ≤ (α/2 + β) m the same reasoning shows that

0(RY ) ≥ (α/2 − β) m.

Consequently we can get common subsequences of the left and right ends of the strings
consisting entirely of 0s with lengths

Match(LX , LY , 0) = min(0(LX), 0(LY )) ≥ (α/2 − β) m

and

Match(RX , RY , 0) = min(0(RX), 0(RY )) ≥ (α/2 − β) m.

Since the ends have many 0s, we expect the middle substrings to have many 1s. Indeed,
since the left end of X

1(LX) = |LX | − 0(LX) < αm − (α/2 + 2β)m = (α/2 − 2β) m

does not have many 1s and similar reasoning shows that

1(RX) < (α/2 − 2β) m

this holds for the right end as well, the middle of X has only

1(MX) = 1(X) − 1(LX) − 1(RX) > αm − 2(α/2 − 2β)m = 4βm

appearances of 1.
To argue that MY has enough 1s we will need to appeal to the fact that Y is not balanced.

From Equation (8) we know that

1(Y ) = m − 0(Y ) > m − (1/2 − 10β)m = (1/2 + 10β) m.

We can use the case assumptions together α < 1/2 to then deduce

1(MY ) = 1(Y ) − 1(LY ) − 1(RY ) > (α + 10β)m − 2(α/2 + β)m = 8βm.
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Consequently the largest all 1s subsequence between the middle substrings has length at
least

Match(MX , MY , 1) = min(1(MX), 1(MY )) ≥ 4βm.

Thus, by combining these three subsequences from three calls to match we can recover in
linear time a common subsequence of size

Match(LX , LY , 0) + Match(MX , MY , 1) + Match(RX , RY , 0) > 2(α/2 − β)m + 4βm = (α + 2β)m.

By Equation (7) the true LCS has length at most ≈ 2αm, so a string of length (α + 2β) m is
a 1/2 + ϵ approximation for some constant ϵ < 2β/α as desired.

Case 4: 0(LX), 0(RX) ≤ (α/2 + β) m and 1(LY ), 1(RY ) > (α/2 + 2β) m

This case is symmetric to case 3 and similar reasoning handles it.

Case 5: 0(LX), 1(RY ) > (α/2 + β) m

In this case, the ends of the strings have unusually large instances of either 0 or 1. This will
enable us to combine two calls to Match to get the desired approximation.

We can check that the right end of Y does not have many 0s

0(RY ) = |RY | − 1(RY ) < αm − (α/2 + β)m = (α/2 − β) m.

It follows that the remainder of the string Y \ RY = LY ∪ MY has many zeros

0(Y \ RY ) = 0(Y ) − 0(RY ) ≈ αm − 0(RY ) > (α/2 + β) m.

Similar reasoning shows that

1(LX) = αm − 0(LX) < (α/2 − β) m

so that the remaining portion of X has many ones

1(X \ LX) = 1(X) − 1(LX) = αm − 1(LX) > (α/2 + β) m.

It follows that

Match(LX , Y \ RY , 0) + Match(X \ LX , RY , 1) > (α + 2β) m

yields a better than 1/2 approximation since by Equation (7) the LCS is at most ≈ 2αm.

Case 6: 1(LY ), 0(RX) > (α/2 + β) m

This is symmetric to case 5 and a similar argument proves the result holds in this situation.
By inspection or by referring to Table 1 of [21], we can verify that these cases handle all

possible input strings satisfying the conditions of the lemma. Since in every case we obtain
a better than 1/2 approximation for the LCS in subquadratic time, we have proven the
claim. ◀
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5 Open Problems

Theorem 2 of our work shows how to obtain better than 1/|Σ| approximations for the longest
common subsequence of equal-length strings over an alphabet Σ. It remains an open problem
to get such approximations in the setting where the input strings have different length (and
by Corollary 5, to solve this problem it suffices to obtain an improvement in the setting of
binary alphabets, where |Σ| = 2).

Additionally, although our algorithm beats the longstanding trivial approximation ratio for
LCS, it does so only by a modest amount. It would be interesting to get better approximation
ratios, both in terms of their concrete value for small |Σ| and in terms of their growth as a
function of the alphabet size.
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m is the maximum number of beads of any type. Lastly, we establish a lower bound showing that
for the online setup this is tight up to logarithmic factors. Similar results are obtained for k > 2.
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1 Introduction

1.1 The problems
The Necklace Splitting problem deals with a fair partition of a necklace with beads of n
colors among k agents. The objective is to cut the necklace into intervals and distribute
them to the agents in an equitable way. Before adding more on the background, we give the
formal definition of the problem.

▶ Definition 1 (Necklace Splitting). An instance of Necklace Splitting for n colors and k

agents consists of a set of beads ordered along a line, where each bead is colored by a color
i ∈ [n] = {1, 2, . . . , n}. The goal is to split the necklace, via at most n(k − 1) cuts made
between consecutive beads, into intervals and distribute them to the k agents so that for each
color i, every agent gets either ⌈mi

k ⌉ or ⌊mi

k ⌋ beads of color i, where mi is the number of
beads of color i.
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14:2 Efficient Splitting of Necklaces

Note that this definition is slightly broader than the one given in [1], where it is assumed
that mi is divisible by k for all i ∈ [n]. However, as shown in [4], these two forms of the
Necklace Splitting problem are equivalent. We call the special case k = 2 of two agents the
Necklace Halving problem. A related problem is the ε-Consensus Splitting problem. Its
formal definition is the following:

▶ Definition 2 (ε-Consensus Splitting). An instance In,k of ε-Consensus Splitting with n

measures and k agents consists of n non-atomic probability measures on the interval [0, 1],
which we denote by µi, for i ∈ [n] = {1, 2, , . . . , n}. The goal is to split the interval, via at
most n(k − 1) cuts, into subintervals and distribute them to the k agents so that for every
two agents a, b ∈ [k] and every measure i ∈ [n], we have |µi(Ua) −µi(Ub)| ≤ 2ε

k , where Ua, Ub
are the unions of all intervals a, b receive, respectively.

The ε-Consensus Splitting problem can be viewed as a continuous variant of the Necklace
Splitting problem. Furthermore, as will be shown in the proofs of our results, every instance
of Necklace Splitting can be converted into an instance of ε-Consensus Splitting. We also
consider the ε-approximate version of Necklace Splitting, where the goal is to split the
necklace so that the difference between the shares of any two agents, according to each type
i, is at most 2εmi/k.

The existence of a solution for the Necklace Splitting problem using at most n(k − 1)
cuts, a bound which is tight in general, was proved, using topological arguments, first for
k = 2 agents in [19] (see also [5] for a short proof and [20] for an earlier continuous version),
and then for the general case of k agents in [1]. A more recent proof of this existence result
appears in [21]. However, the proofs are non-constructive. The Necklace Halving problem
is first discussed in [10]. The problem of finding an efficient algorithmic proof of Necklace
Splitting is mentioned in [2].

Recently, there have been several results regarding the hardness of the Necklace Halving
problem. These are discussed in the next subsection. These suggest pursuing the challenge
of finding efficient approximation algorithms, as well as that of proving non-conditional
hardness in restricted models.

1.2 Hardness and Approximation
PPA and PPAD are two complexity classes introduced in the seminal paper of Papadi-
mitriou, [22]. Both of these are contained in the class TFNP, which is the complexity class
of total search problems, consisting of all problems in NP where a solution exists for every
instance. A problem is PPA-complete if and only if it is polynomially equivalent to the
canonical problem LEAF, described in [22]. Similarly, a problem is PPAD-complete if and
only if it is polynomially equivalent to the problem END-OF-THE-LINE. A problem is PPA-
hard or PPAD-hard if the respective canonical problem is polynomially reducible to it. A
number of important problems, such as several versions of Nash Equilibrium [14] and Market
Equilibrium [13], have been proved to be PPAD-complete. It is known that PPAD ⊆ PPA.
Hence, PPA-hardness implies PPAD-hardness. Filos-Ratsikas and Goldberg showed that the
Necklace Halving problem, as well as the ε-Consensus Halving problem, is PPA-hard [16],
see also [17], [15]. Additionally, in [18] it is shown that for a fixed constant δ > 0, and ε

inversely polynomial in n, obtaining a solution to the ε-Consensus Halving with fewer than
n+ n1−δ is PPA-hard. Our main objective here is to find efficient approximation algorithms
for the problems. Although not directly related to our results, it is worth mentioning that
in [11] it is proved that for k = 2 agents it is NP-hard to minimize the number of cuts for
instances where the optimal number is less than n, even with 2 beads of each type.
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1.3 Our contribution
We consider approximation algorithms for two versions of the problem, namely the online
and the offline versions. We allow the algorithms to make more than n cuts, and expect
either a proper solution or an ε-approximate one. A proper solution is a finite set of cuts and
a distribution of the resulting intervals to the k agents so that the absolute discrepancy is
at most 1. The absolute discrepancy here and in what follows is the maximum discrepancy,
over all types, between the shares of beads of this type allocated to any two agents. An
ε-approximate solution is a relaxation in which the discrepancy in any type is at most a
fraction 2ε/k of the number of beads of this type. The objective is to minimize the number
of cuts the algorithm makes. This problem for the ε-approximate version has been considered
earlier in [9] and [12].

In addition to approximation, we also consider hardness in the online model, discussed in
the next subsection. In the online model, the hardness is measured by the minimum number
of cuts needed to produce a proper solution. Lower bounds on the number of cuts needed in
this model provide a barrier for what online algorithms can achieve.

Some of our ideas for finding deterministic approximation algorithms are inspired by
papers in Discrepancy Minimization, such as [3], [7], [6] and [8]. In [3], the terminology
refers to the Balancer as the entity with the designated task of minimizing the absolute
discrepancy between agents. We adopt the same terminology here. Thus, the Balancer has
the role of an algorithm that makes cuts and assigns the resulting intervals to agents in order
to achieve a proper solution for Necklace Splitting.

Our main algorithmic results are summarized in the theorems below. The upper and
lower bounds for the number of cuts obtained for the online model appear in the table at the
end of this subsection. Throughout the paper, for Necklace Halving, we use the notation
m = maxi∈[n] mi where mi is the number of beads of color i, and n is the number of types
(=colors).

▶ Theorem 1. There exists an efficient, deterministic, offline algorithm that provides a
proper solution to the Necklace Halving problem, making at most n(logm+O(1)) cuts.

Here and in what follows an efficient algorithm means an algorithm whose running time
is polynomial in the length of the input necklace.

In [9] and [12] the authors describe offline algorithms for the ε-approximate version of
Necklace Halving, making O(( 1

ε )Θ(n)) cuts. Our techniques here provide an algorithm that
requires only n(log(1/ε) +O(1)) cuts for the problem, yielding an exponential improvement
for the number of cuts.

▶ Theorem 2. There exists an efficient, deterministic, online algorithm that provides a
proper solution to the Necklace Halving problem, making at most O(m2/3 · n(log n)1/3) cuts.

The algorithmic results in the online model, and the nearly matching lower bounds we
establish appear in the table below. Note that the algorithms are optimal up to constant
factors for any fixed constant n ≥ 3. In the lower bounds for Online Necklace Halving, we
always assume that mi = m for all i ∈ [n].

Problem n = 2 colors n ≥ 3, n = O(1)
colors n colors (general case)

Upper bound O(m2/3) O(m2/3) O(m2/3 · n(log n)1/3)
Lower bound Ω(

√
m) Ω(m2/3) Ω(n · m2/3)

ICALP 2021



14:4 Efficient Splitting of Necklaces

1.4 Computational model and online version

The offline computational model considered here is natural. The input for Necklace Splitting,
for an instance with k agents and n colors, consists of a series of indices, each one taking a
value in [n], which represents the color of the respective bead. The runtime is, as usual, the
number of basic operations the algorithm makes to provide a solution.

Next, we describe the online model. The parameters k, n and mi for i ∈ [n] are given in
advance. We refer to time t, 0 ≤ t ≤

∑
i∈[n] mi − 1 as the state after the first t beads were

revealed and decisions about cutting before any of these have already been made. The beads
are revealed one by one in the following way: for integral t, 0 ≤ t ≤

∑
i∈[n] mi − 1, at time t

the Balancer receives the color of bead number t+ 1 and is given the opportunity to make a
cut between beads t and t+ 1, where this decision is irreversible. If a cut is made, and J is
the newly created interval, the Balancer also has to choose immediately the agent that gets
J , before advancing to time t+ 1.

1.5 Techniques

The proofs in the paper combine combinatorial and probabilistic ideas with linear algebra and
geometric tools. Theorem 1 is proved by converting the instance of Necklace Halving into a
continuous instance, which can be considered an instance of ε-Consensus Halving, where the
[0, 1] interval is colored by n colors. We reason about finding a solution to this ε-Consensus
Halving instance, for a suitable ε, and then adapt the algorithm to obtain a valid solution
for the discrete Necklace Halving instance. The algorithm for the continuous instance is
based on Carathéodory’s Theorem for cones, and involves linear algebra manipulations. To
obtain a solution for the discrete instance from the solution to the continuous instance, we
describe how to shift cuts at the end to ensure they are not made in the interior of (intervals
corresponding to) beads.

The online algorithm discussed in Theorem 2 is inspired by known techniques used in
online algorithms for discrepancy minimization. The idea here is to cut the necklace into
pieces, each having a sufficiently small number of beads of each color. The problem then
becomes an online discrepancy problem, where one can use a derandomization of a natural
randomized algorithm that proceeds by using an appropriate potential function motivated by
the method of conditional expectations. Obtaining discrepancy ≤ 1 at the end of the necklace
traversal requires a modification to the potential function technique, that handles beads of
certain colors in a more careful manner once the remaining beads of these colors become
scarce. The lower bound showing that the online algorithm is optimal up to logarithmic
factors is proved in two steps. The first one is an argument showing that if anytime during
the process the discrepancy between the shares allocated so far to the two agents according
to one of the colors is relatively large, while according to another color both shares are 0,
then a large number of cuts is required to ensure an appropriate solution at the end. In
the second step, it is proved that in order to keep the discrepancy according to each color
sufficiently small during the process, a large number of cuts is needed. This is shown by
introducing and analyzing appropriate potential functions, where the challenge here is to
define functions that enable the adversary to ensure they will keep growing for any choice of
a place to cut, and any allocation of the resulting interval, provided that the interval created
is not too short. One of the lemmas in the proof here is based on the fact that a certain
matrix is totally unimodular. The full details appear in the following sections.
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1.6 Structure
The structure of the rest of the paper is as follows: in Section 2 we present the approximation
algorithm for the offline version of the problem. Section 3 contains the algorithm for the
online version. Section 4 contains the lower bounds for the online model. The final Section 5
contains several extensions and open problems. To simplify the presentation we omit all floor
and ceiling signs throughout the paper whenever these are not crucial. All logarithms are in
base 2, unless otherwise specified.

2 An offline algorithm

Proof of Theorem 1

Proof. Given a necklace with mi beads of color i for 1 ≤ i ≤ n, where m = maxmi, construct
an instance of ε-Consensus Halving as follows. Replace each bead of color i by an interval of
i-measure 1/mi and j-measure 0 for all j ̸= i. These intervals are placed next to each other
according to the order in the necklace, and their lengths are chosen so that altogether they
cover [0, 1]. We first give a marking procedure that splits the continuous necklace so that the
absolute discrepancy is at most ε, with ε = 1

2m . Then, we show how to modify the solution
from the continuous instance to the discrete necklace so that the cuts are made between
consecutive beads and we obtain a proper solution.

Given n non-atomic measures µi on the interval [0, 1] we describe an efficient algorithm
that cuts the interval in at most n(2 + ⌈log2

1
ε⌉) places and splits the resulting intervals

into two collections C0, C1 so that µi(Cj) ∈ [ 1
2 − ε

2 ,
1
2 + ε

2 ] for all i ∈ [n], 0 ≤ j ≤ 1. Note,
first, that if the collection C1 has the right amount according to each of the measures µi, so
does the collection C0. For each interval I ⊂ [0, 1] denote µ(I) = µ1(I) + . . .+ µn(I). Thus
µ([0, 1]) = n. Using 2n− 1 cuts split [0, 1] into 2n intervals I1, I2, . . . , I2n so that µ(Ir) = 1/2
for all r. Note that it is easy to find these cuts efficiently, since each measure µi is uniform
on its support.

For each interval Ir let vr denote the n-dimensional vector (µ1(Ir), µ2(Ir), . . . , µn(Ir)).
By a simple linear algebra argument, which is a standard fact about the properties of

basic solutions for Linear Programming problems, one can write the vector (1/2, 1/2, . . . , 1/2)
as a linear combination of the vectors vr with coefficients in [0, 1], where at most n of them
are not in {0, 1}. This follows from Carathédory’s Theorem for cones. For completeness, we
include the proof, which also shows that one can find coefficients as above efficiently. Start
with all coefficients being 1/2. Call a coefficient which is not in {0, 1} floating and one in
{0, 1} fixed. Thus at the beginning all 2n coefficients are floating. As long as there are more
than n floating coefficients, find a nontrivial linear dependence among the corresponding
vectors and subtract a scalar multiple of it which keeps all floating coefficients in the closed
interval [0, 1] shifting at least one of them to the boundary {0, 1}, thus fixing it.

This process clearly ends with at most n floating coefficients. The intervals with fixed
coefficients with value 1 are now assigned to the collection C1 and those with coefficient
0 to C0. The rest of the intervals remain. Split each of the remaining intervals into two
intervals, each with µ-value 1/4. We get a collection J1, J2, . . . , Jm of m ≤ 2n intervals, each
of them has the coefficient it inherits from its original interval. Each such interval defines
an n-vector as before, and the sum of these vectors with the corresponding coefficients (in
(0, 1)) is exactly what the collection C1 should still get to have its total vector of measures
being (1/2, . . . , 1/2).

ICALP 2021



14:6 Efficient Splitting of Necklaces

As before, we can shift the coefficients until at most n of them are floating, assign the
intervals with {0, 1} coefficients to the collections C0, C1 and keep at most n intervals with
floating coefficients. Split each of those into two intervals of µ-value 1/8 each and proceed as
before, until we get at most n intervals with floating coefficients, where the µ-value of each
of them is at most ε/2. This happens after at most ⌈log2(1/ε)⌉ rounds. In the first one, we
have made 2n− 1 cuts and in each additional round at most n cuts. Thus the total number
of cuts is at most n(2 + ⌈log2(1/ε)⌉) − 1.

From now on we add no additional cuts, and show how to allocate the remaining intervals
to C0, C1. Let I denote the collection of intervals with floating coefficients. Then |I| ≤ n

and µ(I) ≤ ε/2 for each I ∈ I. This means that

n∑
i=1

∑
I∈I

µi(I) ≤ nε/2

It follows that there is at least one measure µi so that∑
I∈I

µi(I) ≤ ε/2.

We can think of the remaining floating coefficients as the fraction of each corresponding
interval that agent 1 owns. Observe that for any assignment of the intervals I ∈ I to the two
collections C0, C1, the total µi measure of C1 (and hence also of C0) lies in [1/2−ε/2, 1/2+ε/2],
as this measure with the floating coefficients is exactly 1/2 and any allocation of the intervals
with the floating coefficients changes this value by at most ε/2. We can thus ignore this
measure, for ease of notation assume it is measure number n, and replace each measure
vector of the members in I by a vector of length n − 1 corresponding to the other n − 1
measures. If |I| > n − 1 (that is, if |I| = n), then it is now possible to shift the floating
coefficients as before until at least one of them reaches the boundary, fix it assigning its
interval to C1 or C0 as needed, and omit the corresponding interval from I ensuring its size
is at most n− 1. This means that for the modified I the sum

n−1∑
i=1

∑
I∈I

µi(I) ≤ (n− 1)ε/2.

Hence there is again a measure i, 1 ≤ i ≤ n− 1 so that∑
I∈I

µi(I) ≤ ε/2.

Again, we may assume that i = n− 1, observe that measure n− 1 will stay in its desired
range for any future allocation of the remaining intervals, and replace the measure vectors
by ones of length n− 2. This process ends with an allocation of all intervals to C1 and C0,
ensuring that at the end µi(Cj) ∈ [1/2 − ε/2, 1/2 + ε/2] for all 1 ≤ i ≤ n, 0 ≤ j ≤ 1. These
are the desired collections. It is clear that the procedure for generating them is efficient,
requiring only basic linear algebra operations.

The intervals separated by the marks are partitioned by the algorithm into two collections
forming a solution of the continuous problem. Note that the continuous solution would give
discrepancy at most maxi∈[n] mi · ε ≤ 1/2 in terms of beads if we were allowed to cut at the
marked points. The only subtle point is that some of the marks may be in the interior of
small intervals corresponding to beads, and we wish to cut only between beads.
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Call a mark between two consecutive beads fixed and call the other marks floating. We
first show how to shift each of the floating marks so that the absolute discrepancy does not
increase beyond 1/2 and all but at most one mark for each color are made between two
consecutive beads. To do so, if there exists a floating mark between two intervals assigned to
the same agent eliminate it and merge the two intervals. If there is no such mark and there
are at least two floating marks in the interior of intervals corresponding to color i, we shift
both of them by the same amount in the appropriate way until at least one of them becomes
fixed. If during this simultaneous shift one of the two marks arrives in a spot occupied by
a different mark, we stop the shift and discard one of the duplicate marks. Note that the
quantities the two agents receive do not change.

This procedure reduces the number of floating marks until there is at most one floating
mark for each color. If there is such a floating mark, round it to the closest boundary between
beads noting that this can increase the absolute discrepancy by at most 1. Therefore, once all
marks are fixed, the absolute discrepancy is ≤ 3/2. Since all the cuts are between consecutive
beads, this discrepancy has to be an integer, and thus it is at most 1, as desired. The number
of cuts made is ≤ n(2 + ⌈log2

1
ε⌉) = n(3 + ⌈log2 m⌉) = n(logm+O(1)). ◀

▶ Remarks.

The argument can be extended to splitting into k nearly fair collections of intervals. See
section 5 for more details.
The ε-approximate Necklace Halving problem can be solved with n(log( 1

ε ) +O(1)) cuts
by using the above algorithm for the continuous instance with the required value of ε.
The proof can be adapted to obtain a solution with n(log( 1

ε ) + O(1)) cuts to the ε-
Consensus Halving problem, with the appropriate natural assumptions about the way
the measures are presented.
In [18] the authors give an efficient algorithm for solving a special case of the ε-Consensus
Halving problem that works for probability measures each of which is uniform on a single
interval. The algorithm provides a solution making at most n cuts for this special case.

3 An online algorithm

Proof of Theorem 2

Proof. We describe an efficient online algorithm that achieves absolute discrepancy at most 1.
The algorithm makes O(m2/3n(log n)1/3) cuts. It is worth mentioning that the main part of
the algorithm is a derandomization of a simple randomized algorithm which cuts the necklace
into pieces each of which has a sufficiently small number of beads of each color and then
assigns them randomly and uniformly to the two agents.

Note first that if, say, log n > m/1000, the result is trivial, as less than nm cuts suffice
to split the necklace into single beads, hence we may and will assume that m ≥ 1000 log n.
Throughout the algorithm we call the beads that have not yet been revealed the remaining
beads. This definition makes sense as in the online model the beads of the necklace are
revealed one by one. We provide a cutting rule and a distribution rule. During the algorithm,
we call a color i critical if the number of remaining beads of this color is smaller than
20 mi

m1/3 (log n)1/3, otherwise it is normal. When encountering a bead of a critical color i while
traversing the necklace, the algorithm makes a cut before and after it, allocating that bead
to the agent with a smaller number of beads of this type, where ties are broken arbitrarily.
We call such cuts that are made right before or after beads of a critical color forced.
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14:8 Efficient Splitting of Necklaces

In addition to the rule about forced cuts, we provide a rule determining when to stop
traversing the necklace and make a cut when no beads of a critical color are seen. Define
g = 100

8m2/3(logn)1/3 , and for every i ∈ [n], gi = mig = 100mi

8m2/3(logn)1/3 . Whenever after the
last cut made after bead number x we reach a bead number y so that [x, y] (the interval
containing beads x + 1, x + 2, ..., y) contains at most gi beads of color i for every i that
is normal at that time and exactly gj beads of some normal color j, we make a cut. As
explained above, the exception to this rule is when we encounter a bead of a color i that is
critical before the portion following the last cut has enough beads of some normal color. If
gi ≤ 1 for some color i, then we cut before and after each bead of color i, essentially treating
color i as critical from the beginning.

To decide about the allocation of the intervals created we define, for each color i ∈ [n], a
potential function ϕi(t), and a function ψi(t) that is an upper bound of ϕi and is computable
efficiently. The variable t here will denote, throughout the algorithm, the index of the last
cut made.

The functions ϕi, ψi are defined by considering an appropriate probabilistic process. For
each i ∈ [n], let Xi be the random variable whose value is the difference between the number
of beads of color i belonging to agent 1 and that belonging to agent 2 if after each cut the
interval created is assigned to a uniform random agent. Let εk be 1 if the k’th interval is
assigned to agent 1 and −1 otherwise. Therefore Xi =

∑p
j=1 εjaj , where p− 1 is the total

number of cuts made and aj the number of beads of color i on interval Ij , the j’th created
interval. The distribution defining Xi is the one where each εj is 1 or −1 randomly, uniformly
and independently. The function ϕi(t) is defined as follows

ϕi(t) = E

[
eλXi/mi + e−λXi/mi

2 |ε1, ε2, ..., εt

]

This is a conditional expectation, where the conditioning is on the allocation of the first
t intervals represented by ε1, . . . , εt, and where λ = 4m1/3(logn)2/3

10 . (This choice of λ will
become clear later). The purpose of the division by mi is to normalize the exponent of
the potential functions to ensure maintaining a relatively small discrepancy for all colors i
simultaneously. Since Xi =

∑
j εjaj , where aj is the number of beads on the j’th interval of

color i, we have that

ϕi(t) = E

eλ∑
j
εjaj/mi + e

−λ
∑

j
εjaj/mi

2 |ε1, ε2, ..., εt


The function ψi(t) is defined in a way ensuring it upper bounds the function ϕi(t). It is

convenient to split each ϕi(t) into

1
2E

[
e
λ

∑
j
εjaj/mi |ε1, .., εt

]
+ 1

2E

[
e

−λ
∑

j
εjaj/mi |ε1, .., εt

]
.

For simplicity, denote the first term ϕ′
i and the second term ϕ′′

i . Therefore

ϕ′
i(t) = 1

2E

[
e
λ

∑
j
εjaj/mi |ε1, .., εt

]
= 1

2e
λ

∑t

j=1
εjaj/mi ·

∏
j≥t+1

(e
λaj/mi + e−λaj/mi

2 )

= 1
2e

λ
∑t

j=1
εjaj/mi ·

∏
j≥t+1

cosh(λaj/mi)
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A similar expression exists for ϕ′′
i . Define st =

∑t
j=1 aj/mi and ut =

∑t
j=1 εjaj/mi. By

the discussion above

ϕi(t) = eλut + e−λut

2
∏
j≥t+1

cosh(λaj/mi).

Using the well-known inequality that cosh(x) ≤ ex
2/2, it follows that

ϕi(t) ≤ eλut + e−λut

2 e
λ2

∑
j≥t+1

(aj/mi)2/2
.

By the way the cuts are produced aj ≤ gi for all j, and hence∑
j=t+1

(aj/mi)2 ≤ max
j≥t+1

(|aj/mi|) · (
∑
j≥t+1

aj/mi) ≤ g · (
∑
j≥t+1

aj/mi) = g(1 − st).

Therefore

ϕi(t) ≤ eλut + e−λut

2 eλ
2g(1−st)/2.

Define ψi(t) to be the above upper bound for ϕi(t), that is

ψi(t) = eλut + e−λut

2 eλ
2g(1−st)/2.

Note that ψi(t) can be easily computed efficiently at time t, since st and ut (as well as g
and λ) are known at this point.

Having defined the potential functions ϕi and their upper bounds ψi, we are now ready to
describe the allocation rule following cuts that create intervals with no beads of any critical
color. (The rule for allocating intervals consisting of a single bead of a critical color has already
been described). Initialize ϕ(0) =

∑
i∈[n] ϕi(0), ψ(0) =

∑
i∈[n] ψi(0), where by convention

ψi(0) = egλ
2/2. After each cut t during the process, we define ϕ(t) =

∑
i normal ϕi(t) and

ψ(t) =
∑
i normal ψi(t). In other words, once a color i becomes critical, the terms ϕi and ψi

are dropped from the respective expressions.
Having allocated the first t intervals, at cut t+ 1, we choose εt+1, which corresponds to

a choice of the agent who gets the interval, in order to minimize ψ(t + 1). To show that
this algorithm produces a proper solution, where the absolute discrepancy at the end is at
most 1, we prove the following two claims:

▷ Claim 1. The upper bound ψ(t) is (weakly) decreasing in the variable t.

▷ Claim 2. For each i, after each cut made before the color becomes critical, the discrepancy
in color i is at most 10 mi

m1/3 (log n)1/3 (in absolute value).

Claim 2 implies that after the first cut that causes color i to become critical, the
discrepancy on i is at most 10 mi

m1/3 (log n)1/3 + gi < 20 mi

m1/3 (log n)1/3 − gi. Hence, it follows
from the way the algorithm deals with subsequent beads of color i, that the process will end
with a balanced partition of the beads of each color i between the agents, allocating to each
of them either ⌊mi/2⌋ or ⌈mi/2⌉ of these beads. As this argument works for every color, the
algorithm produces a proper solution. Next, we prove the claims.

Proof of Claim 1. Note that whenever some color i becomes critical, the term ψi that we drop
from ψ is positive. Hence, it is enough to prove that ψ(t) ≥ ψ(t+1|εt+1=1)+ψ(t+1|εt+1=−1)

2 ,
where ψ(t+ 1|εt+1 = χ) denotes the value of ψ(t+ 1) if we choose εt+1 = χ ∈ {−1, 1}. It
suffices to show that for every i, ψi(t) ≥ 1

2 [ψi(t+ 1|εt+1 = 1] + 1
2 [ψi(t+ 1|εt+1 = −1].
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We proceed with the proof of this inequality. To do so, note that

ψi(t+ 1|εt+1 = 1) = eλ(ut+at+1/mi) + e−λ(ut+at+1/mi)

2 eλ
2g(1−st−at+1/mi)/2,

and

ψi(t+ 1|εt+1 = −1) = eλ(ut−at+1/mi) + e−λ(ut−at+1/mi)

2 eλ
2g(1−st−at+1/mi)/2.

Therefore

ψi(t+ 1|εt+1 = 1) + ψi(t+ 1|εt+1 = −1)
2 =

eλut + e−λut

2 · e
λat+1/mi + e−λat+1/mi

2 eλ
2g(1−st−at+1/mi)/2

≤ eλut + e−λut

2 · eλ
2g(at+1/mi)/2eλ

2g(1−st−at+1/mi)/2 = eλut + e−λut

2 · eλ
2g(1−st)/2 = ψi(t),

as needed. ◁

Proof of Claim 2. Let t be a cut made while color i is normal. To prove that the dis-
crepancy on color i in absolute value is at most 10 mi

m1/3 (log n)1/3, it suffices to prove
ψi(t) ≤ 1

2e
λ·10( log n

m )1/3
eλ

2g(1−st) = 1
2e

2 logneλ
2g(1−st). By Claim 1, ψ(t) ≤ ψ(0) = negλ

2/2.
Hence, it is enough to prove that negλ

2/2 ≤ 1
2e

2 logneλ
2g(1−st). This is equivalent to

λ2gst/2 + log 2 ≤ 4 log n. Since st ≤ 1, we get λ2gst/2 + log 2 ≤ log n + log 2 ≤ 2 log n, as
needed. ◁

Lastly, we prove that the total number of cuts is O(n(log n)1/3 ·m2/3). The number of
forced cuts cannot exceed 2n · 20 mi

m1/3 (log n)1/3 = O(m2/3n(log n)1/3). To bound the number
of non-forced cuts, note that whenever we make such a cut, there is a color j such that the
number of beads of this color on the interval created is exactly gj . We call the cut j-tight for
that respective color. It is easy to see that for every color i there are most O(m2/3(log n)1/3)
i-tight cuts. Hence, the total number of non-forced cuts is at most O(m2/3n(log n)1/3). This
completes the proof. ◀

4 Lower bounds

In this section we present the lower bounds for Necklace Halving in the online model.

4.1 A preliminary bound
We provide a Ω(

√
m) lower bound for the number of cuts required in any online algorithm

when the number of colors is n = 2 and there are m beads of each color. We need the following
simple lemma, which is a special case of a more general elegant result of Tijdeman [23]. Since
this special case is much simpler, we include its proof, for completeness.

▶ Lemma 1. For every real γ ∈ [0, 1] there is an infinite binary sequence a1, a2, a3, . . . so
that in every prefix of it a1, a2, . . . , aj the number of elements ai which are 1 deviates from
γj by less than 1.
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Proof. By compactness it suffices to prove the existence of such a sequence of any finite
length r. Consider the following system of linear inequalities in the variables x1, x2, . . . , xr:
0 ≤ xi ≤ 1 for all 1 ≤ i ≤ r, and for every j ≤ r, ⌊γj⌋ ≤

∑j
i=1 xi ≤ ⌈γj⌉. This system has

a real solution xi = γ for every i and the matrix of coefficients of the constraints is totally
unimodular. Hence there is an integral solution xi = ai ∈ {0, 1} providing the required
sequence. ◀

We use the following notation. During the algorithm let t denote the number of beads
revealed so far. If a cut is made at this point, let xt be the difference between the number of
beads of color 1 allocated to agent 1 and the number of beads of color 1 allocated to agent 2.
Define yt similarly for beads of color 2. Let αt, βt denote the number of remaining beads of
colors 1 and 2, respectively.

▶ Lemma 2. Let ∆ be a positive integer. Suppose that a cut is made at point t and |xt| = ∆
and assume that no bead of color 2 appeared so far. Then there exists an adversarial input
that forces the Balancer to make at least ∆/4 = Ω(∆) cuts.

Proof. Without loss of generality assume that xt = ∆ > 0. Note that by assumption βt = m

and αt < m. Put γ = m
αt+m and note that γ > 1/2. By Lemma 1 it is possible to choose an

ordering of the remaining αt +m beads of the necklace so that in every prefix of it of any
length j, the number of beads of color 2 deviates from γj by less than 1. Since our online
model allows the Balancer to see the next bead before the decision to make a cut preceding
it we may have to change the first bead in this ordering, this still ensures that in any interval
of length ℓ in the remainder of the necklace, the number of beads of color 2 deviates from γℓ

by at most 2.
Suppose the Balancer cuts the remainder of the necklace and allocates the resulting

intervals R1, ..., Ru to agent 1 and T1, ..., Tv to agent 2 to obtain a balanced allocation. For
each one of these intervals I let ℓ(I) denote its length. By assumption at time t agent 1 has
exactly ∆ more beads than agent 2. Since at the end each agent has half of the beads (for
simplicity we assume that m is even),

∑v
i=1 ℓ(Ti) −

∑u
j=1 ℓ(Rj) = ∆.

By construction, the total number of beads of color 2 in all intervals Ti deviates from
γ

∑v
i=1 ℓ(Ti) by at most 2v. Similarly, the total number of beads of color 2 in all intervals Rj

deviates from γ
∑u
j=1 ℓ(Rj) by at most 2u. As these two numbers should be equal it follows

that

γ∆ = γ(
v∑
i=1

ℓ(Ti) −
u∑
j=1

ℓ(Rj)) ≤ 2u+ 2v

This implies that 2(u+ v) ≥ γ∆ > ∆/2 and as the number of cuts is at least u+ v the
desired result follows. ◀

The last lemma easily implies the following.

▶ Theorem 3. There exists an adversarial input that forces any deterministic algorithm for
Online Necklace Halving with n = 2 colors to make Ω(

√
m) cuts in order to obtain a proper

solution.

Proof. Put ∆ =
√
m and proceed by revealing only beads of color 1. By Lemma 2, if after

a cut at some t, |xt| >
√
m, the desired result follows. Otherwise it is clear the number of

beads between any two consecutive cuts is less than 2
√
m, implying that the total number of

cuts made by the Balancer is Ω(
√
m). ◀
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4.2 A nearly tight bound
▶ Theorem 4. An adversary can force any deterministic algorithm for Online Necklace
Halving with n = 3 colors and m beads of each color to make Ω(m2/3) cuts.

Proof. As in the previous subsection, let xt denote the discrepancy between the number of
beads of color 1 allocated to agent 1 and that allocated to agent 2 after cut t, and let yt
denote the corresponding discrepancy for color 2, where color 3 will be kept as a potential
threat. We proceed by revealing only beads of the first two colors. By Lemma 2 with
∆ = m2/3 the Balancer needs to maintain |xt|, |yt| ≤ m2/3, since otherwise the adversary can
force Ω(m2/3) cuts, using beads of the third color. Hence, we assume that during the process
of revealing the initial m+ 4m2/3 beads of the necklace xt, yt stay in the above range after
each cut.

Define a potential function

M(x, y) = x2 + y2 + 5m2/3(x− y)

After a cut with vt = (xt, yt) = (x, y) define γ = 10m2/3−4y
20m2/3+4(x−y) . Note that 0 < γ < 1, as

|x|, |y| ≤ m2/3. By Lemma 1 it is possible to order the remaining part of the first m+ 4m2/3

beads of the necklace so that in each prefix of any length j of this remaining part the number
of beads of color 1 deviates from γj by less than 1 and the number of beads of color 2 deviates
by less than 1 from (1 − γ)j. As the first bead of this remaining part has been observed
already by the Balancer we may need to change one bead in this ordering, getting a deviation
of less than 2 in each prefix. This means that if the next cut will be made after some j
additional beads, the vector p = (p1, p2) of additional beads of colors 1 and 2, respectively,
can be written as a sum of the vector p′ = (γj, (1 − γ)j) and an error vector δ = (δ1, δ2) of
ℓ∞-norm smaller than 2. We get that

M(vt + p′) −M(v) = p′2
1 + p′2

2 + 2xp′
1 + 2yp′

2 + 5m2/3p′
1 − 5m2/3p′

2 =

= p′2
1 + p′2

2 + 1
2[p′

1 · (10m2/3 + 4x) − p′
2 · (10m2/3 − 4y)] = p′2

1 + p′2
2 ≥ 1

2j
2

and similarly,

M(v−p′)−M(v) = p′2
1 +p′2

2 + 1
2[−p′

1 · (10m2/3 +4x)+p′
2 · (10m2/3 −4y)] = p′2

1 +p′2
2 ≥ 1

2j
2

A simple computation using the fact that |x|, |y| ≤ m2/3 and that a similar bound holds
after adding or subtracting the vector p′ shows that adding or subtracting the vector δ can
decrease the value of M by less than 15m2/3. Therefore, we get

M(vt ± p) −M(vt) ≥ j2/2 − 15m2/3

which implies M(vt+1) −M(vt) ≥ j2/2 − 15m2/3, with a cut of j beads.
Suppose that we have r cuts among the first m+ 4m2/3 beads of the necklace, and the

lengths of the resulting intervals are j1, j2, . . . , jr. Since throughout the process |xt|, |yt| ≤
m2/3, it follows that M(xt, yt) ≤ 12m2/3. On the other hand by the above discussion the
value of M at the end is at least

∑r
i=1

j2
i

2 − 15m2/3r. Since
∑r
i=1 ji ≥ m (as we cannot have

4m2/3 consecutive beads with no cut among them), it follows, by Cauchy-Schwartz, that∑
j2
i ≥ m2

r . This implies that

1
2
m2

r
− 15rm2/3 ≤ 12m4/3

showing that r = Ω(m2/3), as needed. ◀
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▶ Remark. For n > 3 colors with m beads of each color one can consider a necklace consisting
of ⌊n/3⌋ segments with at least 3 colors in each of them. The above argument shows that it
is possible to force Ω(m2/3) cuts in each segment, implying an Ω(nm2/3) lower bound. Thus,
for n colors, the gap between our lower and upper bounds for the number of cuts required is
only a factor of Θ((log n)1/3).

5 Extensions and open problems

We conclude with some generalizations of the algorithms presented and the lower bounds
obtained, and with comments on some of the questions that remain open.

5.1 Generalizations
In this section, we present our online and offline results for the general case of k agents.

▶ Theorem 5. There exists an efficient, deterministic, offline algorithm that provides a
proper solution to the Necklace Splitting problem, making at most n(k − 1)⌈4 + log2(3km)⌉
cuts.

Proof. As in the proof of Theorem 1, we first convert the Necklace Splitting instance into a
continuous instance J , and obtain a solution with absolute discrepancy at most ε

2k = 1
2km ,

possibly making some floating cuts. Then, to obtain a proper solution for the discrete
instance, we shift the floating cuts by solving a network flow problem.

To obtain the solution to the continuous instance J , we recursively apply a modified
version of the algorithm that makes cuts on the continuous necklace from Theorem 1. Define
ε′ = ε/3k = 1

3km , and divide the k players into two disjoint groups A,B, with ⌊k/2⌋
agents and ⌈k/2⌉ agents respectively. Think of A,B as two agents and split the continuous
necklace among them. By following the algorithm in the proof of Theorem 1, one can make
≤ n(2+⌈log2

1
ε′ ⌉) cuts and split the interval so that A gets ⌊k/2⌋

k ±ε′/2 of each measure i. We
can do so by starting with all floating coefficients equal to ⌊k/2⌋

k instead of 1
2 and by following

the proof of Theorem 1. Repeat the same procedure for the groups A and B recursively,
splitting the share of A among its |A| members and doing the same for B. In the end, the
error can be bounded by ε′ + 2

3ε
′ + 2

3 · 4
7ε

′ + ... < 3ε′. If we denote by T (k) the number of
cuts made to obtain absolute discrepancy ≤ ε′ for a continuous instance with n types and k

agents, then T (2) = n[log2
1
ε′ + 2], and T (k) = T (⌊k/2⌋) + T (⌈k/2⌉) + n[log2

1
ε′ + 2] , which

gives that the number of cuts made for this split is T (k) = n(k − 1)⌈2 + log2(3km)⌉).
Hence, we have obtained a proper solution for the continuous instance J , making n(k −

1)⌈2 + log2(3km)⌉) cuts, yet we have to handle floating cuts. We categorize each floating
cut by the color of the interval in whose interior it lies. For each color i, we handle the
corresponding floating cuts. First, note that if k > mi, we can shift each floating cut on
color i to one of the ends of the i-interval in such a way that no agent gets more than one
bead of color i and this will provide discrepancy at most 1 on color i without creating any
additional cuts. Hence, we may assume mi ≥ k.

We use a network flow algorithm to decide, for each bead of color i that does not fully
belong to one agent, to whom it should be allocated. Define a directed graph Gi, with
vertices s, the source, t, the sink, Vi, representing the set of beads of color i, and H, the set
of vertices representing the agents. Let E be the set of edges with

E = {(s, v), v ∈ Vi} ∪ {(h, t), h ∈ H} ∪ {(v, h), agent h owns a share of bead v}
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All edges {(s, v), v ∈ Vi} have capacity 1 and lower bound 1. Each edge (v, h) has capacity
1 and lower bound 0. Finally, for each edge (h, t), set the capacity to be ⌈xh⌉ and the lower
bound to be ⌊xh⌋, where xh is the quantity of type i allocated to agent h in the solution to
the continuous instance. Now, if we assign each edge (v, h) a value equal to the share of bead
v allocated to agent h in the continuous solution and each edge (h, t) the value xh, this is a
legal flow. Hence, there exists an integral legal flow in the network, and it is well known that
one can find such a flow efficiently. Note that an integral flow corresponds to a distribution
of the beads of color i where no additional cut is made and the absolute discrepancy is at
most 1 if k ∤ ai and at most 2 if k|ai. Thus, the integral flow determines which agent gets
each of the contested beads of color i, corresponding to a shift of each floating cut to one of
the ends of the bead it crosses.

If k|ai, the continuous solution could give some agent a a share of xa = ai/k − ε1 and
some agent b a share xb = ai/k+ ε2, for small positive values ε1, ε2. In this case, the integral
network flow solution could give agent a ai/k − 1 beads and agent b ai/k + 1 beads of color
i. As ai/k is an integer, the number of agents receiving ai/k + 1 beads is the same as the
number of agents receiving ai/k − 1. Hence, we can make at most 2k cuts after the shift is
done to obtain discrepancy 0. We perform the shifting procedure for every color i, and obtain
a proper solution with at most nk + n(k − 1)⌈2 + log2(3km)⌉ < n(k − 1)⌈4 + log2(3km)⌉,
as needed. This completes the proof. The network flow argument follows the approach
in [4]. ◀

▶ Theorem 6. There exists an efficient, deterministic, online algorithm that provides a
proper solution for the Necklace Splitting problem, making at most Õ(nk1/3 ·m2/3) cuts.

Proof. Note that the result is trivial for k > m. For k ≤ m, we again use the idea of defining
a potential function ϕ and a function ψ that is an upper bound for ϕ and is computable
efficiently. Instead of having one pair of functions ϕi, ψi for each color i, we now have(
k
2
)

such functions, one for each pair of agents. For each color i and agents p ̸= q, define
ϕp,qi = E

[
eλXp,q,i/mi +e−λXp,q,i/mi

2

]
, where Xp,q,i is the random variable of the difference

between the number of beads of color i given to agent p and that of agent q. The relevant
random distribution here assigns every newly created interval to one of the k agents with equal
probability which is 1/k. The quantity g = g(n, k,m) is defined here as g = 1

m2/3k(log(nk))1/3 ,
and each gi, the maximum number of beads of color i allowed between two consecutive cuts
as gi = mig. We say color i is critical when the number of remaining beads of this color is
at most 20k1/3m2/3.

The function ψp,qi is defined by

ψp,qi (t) = eλx
p,q
t,i + e−λxp,q

t,i

2 · e2λ2g(1−st)/k

where st is, as before, the proportion of beads of color i allocated already, and xp,qt,i is the
discrepancy between p and q on color i after cut t divided by mi.

The main difference required here is the replacement of the inequality cosh(λa) ≤ eλ
2a2/2

by the following inequality which holds whenever, say, λa ≤ 1:

k − 2
k

eλ·0 + 1
k
eλa + 1

k
e−λa = 1 + 2

k
(cosh(λa) − 1)

≤ 1 + 2
k

(eλ
2a2/2 − 1) ≤ 1 + 2

k

2λ2a2

2 = 1 + 2λ2a2

k
≤ e2λ2a2/k.
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Each ϕp,qi is bounded using the fact that each of the intervals created has at most gi = mig

beads of color i for every i. By the inequality applied with a ≤ g and λ = (k/m)1/3

4g (ensuring

that indeed λa ≤ (k/m)1/3

4 < 1/2), it follows that if every interval generated is allocated to an
agent in order to minimize ψ =

∑
p,q∈[k], p ̸=q, i∈[n] ψ

p,q
i , then the function ψ never increases

during the algorithm. As

ψ(0) < nk2e2λ2g/k = nk2eε
2/8gk <

eλε/k

2

the computation shows that at the end the absolute discrepancy is ≤ ε/k. We omit the
details. ◀

Next, we present two simple special cases where we obtain proper solutions efficiently
with the optimal number of cuts, n(k − 1). In the first case, the number of beads of each
color is equal to k, the number of agents. In the second case, we set the number of colors to
be n = 2.

▶ Proposition 1. There exists an efficient algorithm that solves any instance of Necklace
Splitting for n colors and k agents where there are exactly k beads of each color, making at
most n(k − 1) cuts.

Proof. Traverse the necklace once bead by bead and cut between any pair of consecutive
beads unless the second one is the first appearance of a bead of color i for some i ∈ [n]. After
each cut made, if S is the set of colors present in the newly created interval J , we allocate J
to an agent that has not received up to that point any beads of any color in S. To show
that after each cut such an agent exists, first note that by the description above, no agent
receives two beads of the same color. If J contains only one bead and its color is i, there
must exist an agent who has not received any bead of color i up to that point, as there are
as many agents as beads of color i. If J has p ≥ 2 beads, of colors c1, ..., cp ∈ [n] appearing
in this order, we can still give it to an agent that has not received any bead of color c1, since
each of the other beads in J has a color that has not appeared before.

It thus follows that with this allocation rule each agent gets exactly 1 bead of each color.
To prove the upper bound on the number of cuts, note that for each i ∈ [n], we never cut
right before the first bead of color i that appears on the necklace. Hence, there are exactly
n− 1 beads (besides the very first one) with no cut right before them. Since there are kn− 1
points between consecutive beads the algorithm makes exactly kn− 1 − (n− 1) = n(k − 1)
cuts. ◀

▶ Proposition 2. There exists an efficient algorithm that solves any instance of Necklace
Splitting for n = 2 colors and k agents, making at most 2(k − 1) cuts.

Proof. We first consider the case when k divides both m1,m2, where mi is the number of
beads of color i. Given a necklace with m1 beads of color 1 and m2 beads of color 2 consider
it as a circular necklace. By the discrete intermediate value theorem there is a circular arc
of (m1 + m2)/k beads containing exactly m1/k beads of color 1 (and hence also exactly
m2/k beads of color 2). Cut in the ends of this circular arc, assign it to the first agent, and
continue inductively. Clearly, every agent gets the same number of beads of each color.

To extend the proof for general m1,m2, write m1 = kp+ r and m2 = kq+ s. We look for
a circular arc of ⌈m1

k ⌉ + ⌈m2
k ⌉ beads containing exactly ⌈m1

k ⌉ beads of color 1 (and hence
also exactly ⌈m2

k ⌉ beads of color 2). If r ̸= 0, the agent to whom we distribute the arc gets
p+ 1 beads of color 1. Similarly, if s ̸= 0, the agent gets q + 1 beads of color 2. Hence, by
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inductively finding a suitable arc and cutting it from the necklace, at the end of the process,
the first r agents will get p+ 1 beads of color 1 and the rest p. Similarly, the first s agents
will get q + 1 beads of color 2 and the rest q. ◀

5.2 Connections to ε-Consensus Splitting
Our results easily extend to the ε-Consensus Splitting problem with non-atomic probability
measures whose density functions are piecewise linear. This is stated in the next two theorems
whose detailed proofs are provided in the full version.

▶ Theorem 7. There exists an efficient, deterministic, offline algorithm that provides a
solution to the ε-Consensus Splitting problem, making at most n(k − 1)⌈4 + log2(3km)⌉ cuts,
provided that the density functions of the probability measures are piecewise linear.

▶ Theorem 8. There exists an efficient, deterministic, online algorithm that provides a
solution for the ε-Consensus Splitting problem, making at most O(kn log(nk)

ε2 ) cuts, provided
that the density functions of the probability measures are piecewise linear.

Note that for k = 2 agents, the number of cuts resulting from the algorithm corresponding
to Theorem 8 is O(n logn

ε2 ). The proof of Theorem 2 relies on using this algorithm for k = 2
agents with ε = Θ(( logn

m )1/3).

5.3 Open questions
Theorem 1 provides a proper solution to the offline version for k = 2 agents by making a
number of cuts that depends logarithmically on m, the maximum number of beads of a color.
It would be interesting to see if this dependency can be improved asymptotically.

Another open question arises in the context of the Online Necklace Halving problem for
n = 2 colors, where the lower bound for the number of cuts is only Ω(

√
m), whereas the

upper bound for the number of cuts produced by our algorithm is O(m2/3). Lastly, for the
general case of n colors for the online version of Necklace Halving there is a Θ((log n)1/3)
gap between the lower bound and the algorithm we provided. It will be interesting to close
these gaps.
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Abstract
Color refinement is a crucial subroutine in symmetry detection in theory as well as practice. It has
further applications in machine learning and in computational problems from linear algebra.

While tight lower bounds for the worst case complexity are known [Berkholz, Bonsma, Grohe,
ESA2013] no comparative analysis of design choices for color refinement algorithms is available.

We devise two models within which we can compare color refinement algorithms using formal
methods, an online model and an approximation model. We use these to show that no online
algorithm is competitive beyond a logarithmic factor and no algorithm can approximate the optimal
color refinement splitting scheme beyond a logarithmic factor.

We also directly compare strategies used in practice showing that, on some graphs, queue based
strategies outperform stack based ones by a logarithmic factor and vice versa. Similar results hold
for strategies based on priority queues.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Online algorithms

Keywords and phrases Color refinement, Online algorithms, Graph isomorphism, Lower bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.15

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2103.10244

Funding Received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (EngageS: grant agreement No. 820148).

1 Introduction

Color refinement, also known as 1-dimensional Weisfeiler-Leman algorithm, is a crucial
cornerstone of symmetry detection in theory as well as practice. It emerged as a subroutine
for algorithms solving the graph isomorphism problem and its efficiency remains to date one of
the determining factors for the running time of practical isomorphism solvers. Modern, highly
efficient implementations are based on Hopcroft’s algorithm for automata minimization [8],
which was first adapted to color refinement by McKay in his widely used tool nauty [11].
A more recent but also in the meantime large application area of color refinement can be
found in machine learning. Specifically, color refinement is used in the Weisfeiler-Leman
Kernel for graph classifications as a measure for similarity [15] and as the foundation of
graph neural networks [13]. The algorithm can also be applied to effectively reduce the size
of linear equation systems [7].
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15:2 Comparative Design-Choice Analysis of Color Refinement Algorithms

Given a graph, color refinement iteratively recolors the vertices producing increasingly
fine partitions of vertices into color classes. Starting with an initial, usually monochromatic
coloring, in each iteration the colors of the vertices are chosen to depend on the colors of the
neighbors and their multiplicities. If vertices differ in the number of neighbors they have in
some color class, the algorithm splits up the vertices accordingly by assigning them distinct
colors. This is done exhaustively until no further splits are possible.

The applications mentioned above depend on highly engineered implementations of the
algorithm. This is the reason why modern implementations meticulously optimize the color
refinement subroutine treating many special cases with tailored code [1, 9, 12]. Especially
in machine learning applications it is crucial to achieve scalability for big data inputs [15].
Overall, demand for fast implementations of color refinement is high. Since color refinement
has a quasilinear worst case running time, even small logarithmic or constant factors can
have a crucial impact.

Indeed, the best known implementation of color refinement runs in time O(m log(n))
(see [4, 10]). Remarkably, within a model with modest assumptions, a tight lower bound
construction matching this upper bound was given in 2015 [4]. This result tells us that
there are graphs for which color refinement, no matter how it is implemented, runs in
Ω(m log(n)). However, the result does not make any comparative statements between various
ways to implement color refinement. In fact, there are dramatic differences in the various
implementations of color refinement. While all color refinement algorithms depend on
performing the aforementioned splits, there is a lot of freedom as to which order we perform
the splits in. A worklist is usually employed to determine in what order these splits are
performed. Common choices include a stack, queue, priority queue or combinations of these.

So far however, there has been no rigorous analysis as to whether one worklist choice
is superior over another – or how significant the order of splits actually is. Going one step
further, a natural question is whether there are efficient optimal solutions. If not the case,
maybe there are at least solutions that are competitive with all other methods.

Contribution. This paper performs an in-depth comparative analysis of design choices for
color refinement algorithms. The first challenge is to actually find a model within which we
can compare color refinement algorithms with formal methods. We employ a two-pronged
approach. We distinguish (1) algorithms that may only use information realistically collected
during the color refinement process itself, and (2) algorithms that are allowed to compute
additional information about the underlying graph. Remarkably, our results in the two
orthogonal models concur in their conclusion. Namely, that there is no design choice that is
competitive beyond a logarithmic factor.

More specifically, in (1) we model algorithms that may only access information explored
during the color refinement process itself. For this we define a formal online model within
which, in fact, all practical algorithms operate. In this model, the algorithmic decisions of
when to refine with respect to what may solely depend on this information. We prove that
this information does not suffice to make optimal or even competitive choices, no matter the
amount of computational power used. Specifically, we show no online algorithm is within a
logarithmic factor of the offline optimum. We also investigate the direct relationship between
practical (online) color refinement strategies. Each of the strategies stack, queue, and priority
queue, is outperformed by another of the strategies by a logarithmic factor on some graphs.

For (2), we define an “offline” version of the problem, which is essentially to compute an
optimal split order for a given graph. Through a reduction from the set cover problem we
prove an approximation hardness result. Specifically, unless P = NP, no approximation factor
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Algorithm 1 A typical rendition of color refinement.

1 function ColorRefinement(G, π)
Input : graph G, coloring π

Output : refined coloring π

2 initialize empty worklist W ;
3 put all cells of π into W ;
4 while W is non-empty do
5 take a cell C from W ;
6 for each cell X containing a neighbor of a vertex in C do
7 for each vertex in X count its neighbors in C ;
8 split X into X1, . . . , Xk in π, according to neighbor counts;
9 let Xi be one of the largest cells of X1, . . . , Xk;

10 put all sets X1, . . . , Xk except Xi into W ;
11 if X ∈ W then replace X in W with Xi;
12 return π

in o(log(n)) can be achieved by polynomial-time algorithms. This proves that unless P = NP,
even when collecting more information about the underlying graph than current algorithms
actually do, computing a competitive let alone optimal order of splits is intractable.

Overall, our results demonstrate that while the choice of worklist can indeed make a
crucial difference, there is no clear optimal color refinement strategy. We conclude that users
need to adapt color refinement algorithms to the specific type of graphs encountered in the
algorithmic application area in mind.

2 Color Refinement

All graphs in this paper are finite, simple, undirected graphs, unless stated otherwise. The
neighborhood of a vertex v is denoted N(v). For a set of vertices V ′ ⊆ V (G) the neighborhood
is the set N [V ′] := (∪v∈V ′N(v)) \ V ′. A coloring of a graph G is a map π : V (G) → C from
the vertices to some set of colors. A (color) class is a set π−1(c) of vertices of the same color.

We begin with a discussion of the color refinement algorithm itself. Algorithm 1 describes
a typical rendition of color refinement. The basic idea is as follows. If two vertices in
some class X have a different number of neighbors in some class C then X can be split by
partitioning it according to neighbor counts in C. Whenever we split up a class X according
to its connections to another class C in such a fashion (see Line 7 and Line 8) we say that
we refine X with respect to C. Specifically this means that after the split, two vertices have
the same color precisely if they had the same color before the split and they have the same
number of neighbors in C. We repeatedly split classes with respect to other classes until no
further splits are possible. A partition not admitting further splits is called equitable.

Algorithm 1 maintains the classes with respect to which refinements still have to be
performed in a worklist W . Note that the algorithm does not fully specify the internals
of the worklist. Specifically, it does not state in Line 5 which cell is extracted from the
worklist next. We should emphasize that the final partition into color classes is independent
of the choices of cells that are extracted, however the overall running time may depend on it.
Typical implementations use a stack, queue, priority queue or a similar data structure. All
of these choices result in the same worst case running time of Θ((n + m)(log n)) (see [4]). To
achieve this running time it is crucial to prevent one largest cell (Line 9) from being added
to the worklist. Splits with respect to this class are already covered by the other classes.
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Overall, the main design choice of the algorithm is the choice of when to split which
class with respect to which other class. To describe a general framework for the possible
strategies of what to split when, we first need to understand what information is available to
the algorithm for making its decision.

2.1 Partial Quotient Graphs
For an equitable partition, quotient graphs capture the information of how many neighbors
vertices from one class have in another class. They are used in individualization refinement
algorithms as pruning invariants (see [12]). Typically, the quotient graph is computed on the
fly during the execution of a color refinement algorithm.

We now introduce the concept of partial quotient graphs. These graphs are a tool to
formalize the information gathered up to a certain point during the execution of color
refinement algorithms. As we cannot precisely say which information an algorithm collects,
the quotient graphs give an overapproximation of the available information and model all
information that could have possibly been gathered. For the purpose of our lower bounds,
overapproximating can only strengthen the conclusions.

The partial quotient graph of a colored graph (G, π) is denoted by P (G, π). Quotient
graphs are directed and contain self-loops. They include vertex labels lV as well as edge
labels lE . The vertex set of P (G, π) is the set of all sets of colors of (G, π), i.e., V (P (G, π)) :=
2π(V (G)). A set of colors also represents the union of the respective color classes.

Vertices of the partial quotient graph are labeled with the size of their corresponding set
of vertices in G, i.e., for all sets of colors c ∈ 2π(V (G)) we define lV (P (G, π))(c) := |π−1(c)|,
where by π−1(c) we denote the vertices whose color is in c. The edge set contains all
connections between (unions of) color classes that would not cause a split. Thus there is an
edge from c1 to c2 if π−1(c2) does not split π−1(c1). Formally, this means

E(P (G, π)) := {(c1, c2) | c1, c2 ∈ 2π(V (G)), ∀v, w ∈ π−1(c1) : dπ−1(c2)(v) = dπ−1(c2)(w)}.

Edges only exist whenever the connection between unions of color classes are regular on one
side, so we can label each edge with the corresponding degree, i.e., lE(P (G, π))((c1, c2)) :=
dπ−1(c2)(v), where v ∈ π−1(c1) is arbitrary.

Let us justify the definition with an example. Suppose we split in a monochromatic graph
the class of all vertices with itself. Then the new coloring partitions the vertices precisely
by degree. That is, classes contain vertices of the same degree. An algorithm would know
this degree, since it has counted the edges incident with each vertex, but it would not know
how many neighbors a vertex has within a current color class. In the partial quotient graph,
there is an edge from each new color classes to the union of all color classes.

The definition of partial quotient graphs contains many more vertices and edges and
information on these than would truly be available while executing color refinement. In fact,
partial quotient graphs grow exponentially in size, since all possible unions of color classes
are considered. Common color refinement algorithms clearly gather much less information.
Firstly, only connections of classes that are involved in a refinement are actually considered.
Secondly, only information about unions of colors that occurred as a color class in a previous
step of the refinement is known. Thus, usually color refinement algorithms only uncover a
small, polynomial-sized portion of the partial quotient graphs defined above.

However, for our lower bounds, we assume that algorithms have access to the entire partial
quotient graphs. We show that even if we generously allow such access, the information is
not sufficient to derive a strategy with constant competitive ratio. For upper bounds, we only
use information of the aforementioned polynomial-sized portion of partial quotient graphs.
In fact, the upper bounds are based on a stack-based approach akin to Algorithm 1.
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Algorithm 2 Corresponding color refinement for a strategy W .

1 function ColorRefinement(G, π)
Input : graph G, coloring π

Output : refined coloring π

2 create list S containing P (G, π);
3 while π is not equitable do
4 (C, X) := W (S);
5 for each vertex in X count its neighbors in C;
6 split X into X1, . . . , Xk in π, according to neighbor counts;
7 append P (G, π) to S;
8 return π

2.2 Online Model
We now define a model that bases the choice of which color classes to use for the next
refinement solely on the information available through partial quotient graphs. Practical
implementations such as a queue or a stack are naturally captured by this, but the model
even allows for much more powerful choices. The goal is then to prove that no strategy based
solely on information of partial quotient graphs is sufficient to make optimal choices.

Let us start by defining the concept of a strategy W : P∗ → (2N)2. A strategy is a
function mapping a sequence of quotient graphs P = P1 · · · Pk ∈ P∗ to two vertices of the
last quotient graph (C, X) ∈ V (Pk)2, that is, two unions of color classes. The sequence of
graphs P denotes all partial quotient graphs observed during execution of the algorithm up
to step k. The pair (C, X) denotes the choice of colors with which the algorithm continues
in the next step: in step k + 1, the algorithm refines X with respect to C.

For a strategy W we now define a corresponding color refinement implementation. Assume
we are working on G and have already refined up to a coloring πk within k steps. Furthermore,
let P1, . . . , Pk denote the partial quotient graphs corresponding to the execution. Next, we
compute (C, X) = W (P1 · · · Pk) and refine X with respect to C. The algorithm terminates
whenever πk is equitable. A formal definition is given in Algorithm 2. We call W a valid
strategy if the corresponding color refinement implementation is correct, i.e., if it terminates
with an equitable partition in finite time on all finite graphs.

Throughout this paper, we measure the cost of the strategy W , denoted cost(W, G),
in terms of the number of edges that need to be considered to execute the refinements.
Specifically, when refining X with respect to C, we charge the algorithm the number of edges
connecting X with C. This is the same model as used in [4] reflecting the actual running time
of practical implementations (see [11, 12]). We use the terms cost and time interchangeably.

3 Graph Gadgets

Throughout the paper we construct graphs that cause color refinement to behave in particular
manners. These graphs are mostly built using three types of graph gadgets, described next.

And gadgets. Let us first discuss the ANDi gadgets as used by Berkholz et al. [4]. There
is set B of 2i in-vertices that come in pairs and 2 out-vertices. The goal of the gadget is
that whenever all pairs of in-vertices have been split, a split of two out-vertices a0 and a1 is
induced, but not before.
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(a) An AND2 gadget.
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(b) An AND3 gadget.

a0

a1

b0

b1

(c) The unidirectional gadget.

Figure 1 Basic gadget constructions as used throughout the paper. Vertices labeled with bi

always denote in-vertices, while ai denotes out-vertices.

The AND2 gadget (see Figure 1) is the well known CFI-gadget [5], where two gates form
the in-vertices B and the third one the out-vertices a0, a1.

The ANDi gadget is constructed recursively using AND2 gadgets. For i > 2, the ANDi

gadget is constructed by taking the union of two ANDi−1 and one AND2 gadget. The four
out-vertices of the ANDi−1 gadgets are then connected to the four in-vertices of the AND2
gadget. Figure 1 shows how the AND3 gadget can be constructed using three AND2 gadgets.

The important property is that in an ANDi gadget, all pairs b2j , b2j+1 with j ∈ {0, ..., 2i−1}
need to be distinguished to induce a split of a0 and a1. We should also record a property for
the opposite direction: if a0 and a1 are distinguished, no split on B should be induced.

Unidirectional gadgets. We now describe the undirectional gadget. As the name suggests,
it blocks the continuation of a split of pairs in one direction but allows it in the opposite
direction. Figure 1 illustrates the gadget.

The gadget behaves as follows. Consider in-vertices b0, b1 and out-vertices a0 and a1.
Distinguishing b0 and b1 should induce a split of a0 and a1. However, distinguishing a0 and
a1 should not cause a split of b0 and b1. The gadget is obtained through a modification of
the AND2 gadget. We use the fact that a split of out-vertices in AND2 does not cause a
split of the pairs of in-vertices. Therefore, by connecting the in-vertices to new vertices a0
and a1, such that the AND2 gadget is activated by any of the two singletons, we get the
desired property.

Interestingly, the unidirectional gadget has also been used as a crucial building block
in [3] and [6] to study the complexity of various problems closely related to color refinement.

Concealer gadgets. We conclude our discussion of gadgets with the concealer gadgets.
Similar to the ANDi gadget, a concealer gadget Ci of level i has 2i in-vertices B and 2
out-vertices a0, a1. Whereas in the AND gadget, all input pairs need to be distinguished,
the concealer gadget only includes one specific pair that causes a split of the out-vertices.
We call the pair causing the split of out-vertices the correct pair, while all other pairs not
causing the split are called dead end pairs.

The idea is that the correct pair can not be located easily by color refinement algorithms.
Hence, the gadget conceals where refinement can be continued.

To achieve this behavior, the gadget consists of 2i−1 unidirectional gadgets and the
out-vertices a0, a1. We modify all but one of the unidirectional gadgets so that the connection
of the in-gate agrees with the one of the out-gate. This causes these gadgets to become dead
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ends – activating any of these gadgets has no effect on the out-vertices. The last, unmodified
unidirectional gadget is the only one that can actually split the out-vertices and is therefore
the only correct gadget.

The out-vertices of the entire concealer gadget are then connected to the out-vertices
of all the unidirectional gadgets so that activating the correct pair causes a split of the
out-vertices. Figure 2 shows a concealer gadget C3.

Since we did not specify which of the pairs is the correct pair, there are several concealer
gadgets for each i ∈ N. Abusing notation we denote all of them by Ci. The concealer gadgets
have two crucial properties. First, as long as the correct pair has not been split (and the
neighbors of a correct pair have not been split) the partial quotient graphs of two concealer
gadgets on the same size are isomorphic. Second, the correct pair can only be split from
outside the gadget. We formalize these properties in the following.

Consider two colored concealer gadgets (Ci, π), (C ′
i, π′) of the same order. Suppose

{bs, bs+1} is the correct pair in (Ci, π) and {bt, bt+1} is the correct pair in (C ′
i, π′). We say

the two graphs still concur if the colors for the vertices agree (note that the two graphs have
the same vertex set) and in both graphs neither the correct pairs nor their neighbors have
been split. Specifically, we require that

the vertex colorings agree, (i.e., π(v) = π′(v) for every v ∈ V (Ci) = V (C ′
i)),

the correct pairs have not been distinguished (i.e., π(bs) = π(bs+1) and π′(bt) = π′(bt+1)),
the neighbors of the correct pairs have not been distinguished (i.e., π(v) = π(v′) for
all v, v′ ∈ NCi

(bs) ∪ NCi
(bs+1) and π(v) = π(v′) for all v, v′ ∈ NC′

i
(bt) ∪ NC′

i
(bt+1)).

▶ Lemma 1. Suppose (Ci, π) and (C ′
i, π′) are colored concealer gadgets that concur. Then

the graphs have the same partial quotient graphs, i.e., P (Ci, π) = P (C ′
i, π′).

Proof. Suppose for a vertex v we want to count the number of neighbors that v has in a
union of color classes X. We claim that this number is the same in Ci and C ′

i. Indeed, we
only need to consider edges incident with v that have one endpoint in M = {bs, bs+1, bt, bt+1}
and one endpoint in N [M ] (the neighborhood of M). Let E′ be the set of these edges and
let E′

v be the set of these edges incident with v.
Note that for each of the four sets {bs, bs+1}, {bt, bt+1}, N [{bs, bs+1}], and N [{bt, bt+1}]

either X contains the set entirely or not at all.
If v is in M then either all edges of E′

v have an endpoint in X or no such edge does.
Likewise if v is in N [M ] then either all edges of E′

v have an endpoint in X or no such
edge does.

Moreover, in either case, whether all such edges are or no such edge is contained does not
depend on whether we consider Ci or C ′

i.
This implies that the number of edges counted in the refinement (i.e., those incident

with v and having an endpoint in X) is the same in Ci and C ′
i. ◀

▶ Lemma 2. For concealer gadgets (Ci, π) and (C ′
i, π′) suppose π = π′ so that

vertices in an input pair that is correct in one of the graphs have the same color and
all vertices that are not in an input pair have the same color.

Then (Ci, π) and (C ′
i, π′) concur. After an arbitrary sequence of splits to both graphs the

resulting graphs still concur and neither correct input pairs nor the out pair are split.

Proof. This follows by induction on the number of steps observing that the functionality of
the unidirectional gadget ensures that the output pair is never split, and thus vertices inside
correct gadgets are never split. ◀
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b0b1b2b3b4b5b6b7

a0a1

Figure 2 A concealer gadget C3. Vertices b6, b7 form the correct pair; other pairs are dead ends.

The two lemmas show that unless a correct pair is split, the gadgets always concur and
an algorithm in the online model will have to perform splits consistently on both graphs.
Moreover, the output pair is never split.

Intuitively this means that in the online model, an algorithm can only guess which pair
is the correct pair. Therefore, when faced with a concealer gadget, the algorithm potentially
has to try all input pairs.

4 Competitive Ratio

We prove the non-existence of a c-competitive strategy in the online model. In particular, in
this section, we prove the following theorem:

▶ Theorem 3. For every strategy W of the online model, there is an infinite family of graphs
Gk (k ∈ N) such that cost(W, Gk) ∈ Ω(opt(Gk) · log(opt(Gk))), where opt(Gk) ∈ Θ(|Gk|) is
the minimal cost of a strategy on Gk.

The theorem implies that the information provided by partial quotient graphs is not sufficient
to make competitive let alone optimal choices in color refinement algorithms.

Towards this goal, we first define the class of concealer graphs, which we denote with Gk

(k ∈ N). Concealer graphs resemble the graphs of the lower bound construction in [4] closely.
Essentially, we swap out ANDi gadgets in the original construction for concealer gadgets Ci.
A concealer graph of G4 is illustrated in Figure 3.

The main idea is that we can then speed-up or slow-down particular strategies by changing
the position of the correct pairs within the concealer gadgets. This forces one strategy to
extensively search for the correct pairs, while another strategy finds them immediately.

In the rest of this section we provide formal arguments for the above claims. We start
with a precise description of concealer graphs. Then, we show that for every concealer graph
there exists a fast strategy. Contrarily, we then provide a slow concealer graph for every
strategy. Together these two statements prove Theorem 3.

4.1 Concealer Graphs
The first ingredient for the concealer graphs is a “splitting scheme” that results in the worst
case running time of Ω(m log(n)). Consider a vertex set of size n = 2k, on which the following
refinements are performed. First, we split the set in halves, then quarters, then eighths
and so on, until all vertices have their own distinct color. This gives us log(n) rounds of
refinements, each with a cost of Ω(n). This results in total costs of Ω(n log(n)). By ensuring
that sufficiently many edges are involved, the running time can be increased to Ω(m log(n)).
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v3 v2
v1

X
X

Y
Y

C1C2C3

Figure 3 A concealer graph from the class G4.

Concealer graphs can be used to cause the splitting scheme just described. The graphs
contain middle layers (X, X , Y, Y ) (see Figure 3) in which the splitting scheme can be forced.
The graph is constructed in a way such that splitting Y into halves, quarters, eighths and
so on, causes the next halving refinement on X. The edge colors in Figure 3 indicate the
splitting scheme. While the halves (yellow and purple) of Y lead to a split of X into quarters
(red and green), the quarters of Y lead to eighths (blue and orange) of X and so on. By
initially splitting X in halves, any color refinement algorithm needs to cycle through these
layers until X is fully discrete.

The core idea of the general lower bound construction in [4] is that the ANDi gadget
enforces refinements with respect to every block of level i, which in turn ensures costs of
2k · k2 ∈ Ω(m) for every level.

We modify the construction to suit our purposes as follows. In the concealer graphs, we
swap for each i the ANDi gadget for a concealer gadget Ci. On a particular graph, the worst
case behavior is therefore not enforced for all refinement strategies anymore. However, a
deterministic online algorithm cannot choose for all possible concealer gadgets the correct
pair in level i to allow it to continue with level i + 1. Hence, an adversary can construct
a graph that makes a specific color refinement slow, while keeping a “shortcut” for other
algorithms that choose the correct pair directly.

We now formally define the class Gk of concealer graphs. Note that for every k ∈ N,
we define a set of graphs Gk. Essentially, we describe a graph Gk ∈ Gk based on concealer
gadgets, and the set Gk then simply consists of all possible instantiations (i.e., positions of
the correct pairs) for the included concealer gadgets.

At its core, a graph Gk ∈ Gk consists of the four middle layers of vertices (X, X , Y, Y ),
that are interconnected using additional gadgets. Formally, the vertex set of Gk includes
X = {x0, ..., x2k−1}, X = {xj

i | 0 ≤ i < 2k, 0 ≤ j < k}, Y = {yj
i | 0 ≤ i < 2k, 0 ≤ j < k},
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Y = {y0, ..., y2k−1}, a simple starting gadget induced by only three vertices v1, v2, v3 and
k − 1 concealer gadgets. For 0 ≤ l ≤ k and 0 ≤ q ≤ 2l − 1 let Bl

q = {q2k−l, ..., (q + 1)2k−l − 1}
be the q-th binary block of level l. We use this notation on all sets of size 2k for some k ∈ N.

Every xi is connected to a corresponding yi via a complete bipartite graph of size k

consisting of vertices in X and Y (see Figure 3). Formally, each xi is connected to all xj
i , yi

to all yj
i and xj

i to all yj′

i . For each level l ∈ {1, ..., k − 1}, the i-th binary block of level l is
connected to the i-th in-vertex of the l-th concealer gadget. Furthermore, for each gadget Cl,
we connect a0 to all X l

i with i even and a1 to all X l
i with i odd. The starting construction

splits X into the blocks X0
0 and X0

1 . We refer to the i-th in-vertex of the l-th concealer
gadget as bl

i and to the i-th out-vertex as al
i.

Let us generally consider how a refinement strategy has to operate on Gk. The algorithm
starts with the monochromatic coloring of Gk. The first refinement always distinguishes
vertices by their degree, meaning we get the individualized starting gadget {v1}, {v2}, {v3},
the distinct layers in the middle X, X ∪Y , Y , the in- and out-vertices of the concealer gadgets⋃

l∈{1,...,k−1}{bl
i, al

j | i ∈ {0, ..., 2l}, j ∈ {0, 1}}, and the union of the inner vertices of the
concealer gadgets. Next the middle layers are split in half. From this point onwards the
splits that are possible depend on finding the correct pair in the gadgets. This can lead to
fast or slow refinements, as discussed next.

4.2 A Fast Strategy for Every Concealer Graph
We now show that for every fixed concealer graph Gk ∈ Gk we can define a linear time
strategy. We show this by providing an appropriate sequence of refinements.

For each concealer gadget Cl in Gk, let bl
il

, bl
il+1 be the correct pair. Now consider an

online refinement strategy on such a graph. After the first (and fixed) refinement, we refine
X with respect to {v2} or {v3}. We choose one half of X1

i1
for the next refinement and

then X 1
i1

, Y1
i1

and Y 1
i1

while propagating the split through the middle layers. The important
property is that Y 1

i1
always splits the correct pair of the next concealer gadget. The concealer

gadget then in turn splits X into quarters. Now, we continue with the quarters X2
i2

, X 2
i2

, Y2
i2

and Y 2
i2

, such that the second concealer gadget is activated. This splits X in eighths.
We now repeat this scheme, such that for each level we only propagate the blocks

corresponding to correct pairs through the layers and immediately continue with the next
level after activating the concealer gadget. When X is discrete, we get the equitable coloring
by refining with respect to each level k block of X, X , Y and Y .

Now consider the cost of this strategy. While cycling through the layers, the most
expensive refinements are those with respect to the blocks of X and Y . On level l, they have
cost 2k−l · k2, which means the total cost for all levels is 2k · k2 = Θ(m). Once X is discrete
the cost of the final refinements of X , Y and Y is also in Θ(m).

Overall, the cost for an optimal solution for Gk is linear, i.e., opt(Gk) ∈ Θ(m). Note
that since refinement is always continued with color classes that have just been created, the
scheme actually follows a depth-first approach and can be implemented using a stack.

4.3 A Slow Concealer Graph for Every Strategy
For a fixed strategy W , we now provide an infinite family of concealer graphs Gk on which
this strategy is slow, i.e., incurs super-linear cost. The family is constructed by choosing for
every k ∈ N one specific concealer graph Gk ∈ Gk.

We start with an arbitrary graph Gk ∈ Gk. We run W on Gk and observe which color
classes are split within the concealer gadgets. Say we are looking at concealer gadget Ci.
If W distinguishes the correct pair in Gk, but there are still dead ends that have not been
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distinguished, then we replace Gk by the graph G′
k ∈ Gk obtained from Gk by replacing the

gadget Ci with another one so that a dead end not yet investigated becomes the correct
pair. Due to Lemma 1 and Lemma 2 we know that up until the point where W finds the
correct pair in Ci for graph Gk, the strategy W performs the same sequence of splits when
executed on G′

k as on Gk. Thus, by doing these transformations exhaustively, we ensure W

distinguishes all correct pairs in all the concealer gadgets last. This causes 2k · k2 cost per
level and hence 2k · k3 = Θ(m log(n)) total cost.

Since the optimal solution for fixed Gk only has linear cost (see Section 4.2), we in turn
get that cost(W, Gk) ∈ Ω(opt(Gk) · log(opt(Gk))). This in turn proves Theorem 3. Further
details and a more formal reasoning can be found in the full version [2].

5 Comparison of Practical Worklists

We now compare specific, practical worklist data structures. First, we compare stacks with
queues. We show that either of the two can asymptotically outperform the other. We can
also show the same result for priority queues (see the full version [2]).

5.1 Stack Advantage over Queue
To see how a stack worklist might outperform a queue, recall the fast strategies for concealer
graphs of Section 4. The specific, fast split scheme discussed there is realized by a worklist
maintained as a stack. Indeed, whenever possible we continue with a “newest” class.

We conclude from Theorem 3 that there is a class of graphs on which a stack based
worklist asymptotically outperforms a queue based worklist by a logarithmic factor.

We should remark that it is possible to prove the same result with a simpler construction
that does not rely on concealer gadgets. We should also remark that the construction does
not apply to all stack based worklists. However, it is possible to modify the construction
such that a particular stack based worklist is optimal. For example this can be done for the
worklist that choses smallest color classes first (see the full version [2]).

5.2 Queue Advantage over Stack
Now, we construct a graph class, called the queue graphs, for which a queue based worklist
outperforms a stack based one by a logarithmic factor. This complements the result of the
previous section. The construction is also based on the graph class of Berkholz et al. [4]. It
is an extension of these graphs, which allows queue worklists to finish quickly but maintains
the slow behavior for stacks. We provide an intuitive description. A formal definition and a
detailed analysis is given in the full version [2].

The starting gadget. We use a starting gadget (see Figure 4) that forces a stack worklist
to perform certain splits before others, while a queue worklist behaves differently.

Consider the gadget together with the coloring indicated in the figure. Any color
refinement eventually splits the pairs {p1,3

1 , p2,3
1 }, {p1,3

2 , p2,3
2 } and {a0, a1}. However, a stack

based worklist splits {p1,3
1 , p2,3

1 } or {p1,3
2 , p2,3

2 } before {a0, a1}, while a queue based one splits
{a0, a1} before the other two pairs.

Graph class construction. We start with the graphs from [4] as a main building block.
Recall that these graphs are the graphs from Section 4 where the concealer gadgets are
replaced by AND gadgets. As argued in [4] a worst case behavior is enforced for every
refinement strategy: any refinement on these graphs has a cost of Ω(2k · k3) = Ω(m log(n)).
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b0 b1 b2 b3

a0 a1

s1 s2 s3 s4

p1,1
1 p2,1

1 p1,1
2 p2,1

2

p1,2
1 p2,2

1 p1,2
2 p2,2

2

p1,3
1 p2,3

1 p1,3
2 p2,3

2

Figure 4 An extension of AND2 gadget, which will be used as the starting gadget of the new
construction. The starting vertices s1, ..., s4 have been individualized.

p1

p2

s1

s2

s3

s4

pQ

p1
X p2

X p3
X

Figure 5 The graph GQ
3 for the queue advantage.

We now add “shortcuts” that allow queue based algorithms to bypass the construction.
The core idea is to ensure the queue algorithm refines the set X into a discrete set within
a single level of its breadth first behavior. This causes X , Y and Y to completely split in
subsequent rounds, thereby preventing the cycling behavior that causes superlinear cost.
Indeed, if X and Y are handled only once, then the total cost is in O(2k · k2) = O(m).

Simultaneously we force the stack into the typical cycling behavior. We do so by forcing
it to make the same splits of X as the simple starting gadget from Section 4 would.

We apply the following changes to define queue graphs GQ
k (see Figure 5): we connect

each vertex in X to a path of length k. We add the new starting gadget described above.
We extend the paths p1 and p2 to a length of k + 2 and connect the ends to the old starting
vertices through unidirectional gadgets. We also attach a third path pQ of length k to a0
and a1 and connect the i-th pair to the level-i blocks of the i-th vertices of the X-paths,
again through unidirectional gadgets. Note that the graph has still a size of O(2k · k2).
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a b c d

U1U2U3

(a) Set cover instance.

U1 U2 U3

X

(b) Result of the reduction.

Figure 6 Reduction of the set cover instance S = {a, b, c, d} and U = {{d}, {b, c, d}, {a, b}}.
Orange lines indicate connections to elements of S, all other edges are connections to dummy
elements.

Queue Behavior. Consider a queue based color refinement. It splits the pairs within the
paths p1, p2, pQ layer by layer. The splits of the i-th pair of pQ induce a split of the i-th
vertices of the X-paths into the binary blocks of level i. After k + 7 many rounds, this leads
to a split of X into the blocks of level k. Note that at the same time {p0

end} or {p1
end} will

be able to split X. Therefore, we know that X will be fully discrete before any subset of X
can be considered by the worklist.

Stack Behavior. Any stack based color refinement running on GQ
k splits one of the paths

p1, p2 in the starting gadget before splitting the path pQ. This induces the worst case cycling
behavior of the construction from [4]. The unidirectional gadgets and depth first strategy
hinder the algorithm from distinguishing anything else in the starting gadget before the rest
of the graph has been distinguished. Therefore, no “shortcut” can be applied and a stack
based color refinement on GQ

k has costs of at least Ω(m log(n)).

6 Approximation Hardness

Complementing our previous results, we now provide an approximation hardness result for
computing optimal color refinement strategies. We begin by defining the optimal refinement
worklist problem:

▶ Problem (Refinement Worklist Problem). Given a colored graph (G, π), compute a minimal
cost sequence of pairs of color classes W = (C1, X1), . . . , (Ct, Xt) such that:
1. Refining with respect to W results in the stable coloring π∞.
2. For all prefixes (C1, X1), . . . , (Cs, Xs), the partial quotient graph obtained after refining Ci

w.r.t. Xi for i = 1, . . . , s − 1 contains Cs and Xs (as unions of color classes).
The cost of a sequence W is the sum of the costs for refining with respect to all (Ci, Xi) ∈ W .

The approximation hardness result is based on a reduction from the set cover problem. The
set cover problem takes a finite universe S and a set of subsets of S, i.e., U ⊆ 2S . The decision
variant then asks whether there exists a selection of k subsets in U whose union equals S.
For simplicity, we assume

⋃
U∈U U = S. Set cover is well-known to be NP-complete.

The optimization variant requires a minimal selection of subsets that cover S, i.e., a
solution that minimizes k. This problem is known to be NP-hard. More specifically, it is
known that unless P = NP, polynomial-time algorithm can only reach an approximation
factor of Ω(log(n)) [14].
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▶ Theorem 4. Unless P = NP, polynomial-time algorithms may only reach an approximation
factor of Ω(log(n)) for the refinement worklist problem.

Proof. We reduce the optimization variant of the set cover problem to the refinement worklist
problem. More specifically, we reduce it in a manner which allows control of the parameters,
so that the approximation hardness result of set cover immediately transfers to refinement
worklists. The reduction is illustrated in Figure 6.

Given a set cover instance (S, U) we define a related colored graph (G, π). We create one
large color class X containing all elements of the universe S, as well as n2 dummy elements
(where n is the size of the set cover instance). Hence, the size of X is n2 + |S|.

We add a singleton color class for each subset U ∈ U , i.e., we add vertex U with color U .
We connect the vertex U with all vertices of X except for the elements that are contained
in U . Formally, we define the edges E(G) := {{U, x} |x ∈ X ∧ x /∈ U }. Note that U has
n2 + |S| − |U | connections to X.

In the constructed graph, all elements of the universe are eventually distinguished from
the dummy elements in X. Refining X with respect to X is not productive, since there are
no edges present and no splits occur. The only way to distinguish elements of X is to refine
X with respect to an element of U . Doing so always distinguishes all the elements contained
in U ∈ U from the dummy elements and other remaining elements of X. Overall, we need to
refine X with a subset of U that forms a set cover of S.

After that, assuming all elements of S have been distinguished from the dummy elements,
it might be possible to split the resulting classes further through their connections to U .
However, the total cost for these further refinements is bounded by c · n2 for some fixed
constant c.

The cost for refining X with respect to U is n2 + m, where m is the number of remaining
elements of S in X after the elements of U have been removed. Since we need to choose at
most |S| subsets in a reasonable solution (otherwise we could remove redundant elements
from the solution), and each time X gets smaller by at least one element, the cost incurred
by m over all subsets is at most |S|2 ≤ n2. Ignoring the cost of m, we get that each subset
incurs additional cost of n2 through the dummy elements.

Hence, the final cost is upper bounded by c · n2 + (NU + 1) · n2 = (NU + c + 1)n2 and
lower bounded by NU n2, where NU is the number of chosen subsets.

We finish our arguments with a proof by contradiction. Assume there is a polynomial-time
algorithm with an approximation factor in o(log(n)). Given a set cover instance (S, U), we
apply the polynomial-time reduction stated above. Assume now we get an approximate
solution with cost x · n2. We know that this implies a set cover solution with cost at most x.

The optimal set cover solution with cost x′ would imply a worklist solution with cost at
most (x′ + c)n2 (for a fixed c). Hence, we know that the worklist solution also approximates
the optimal solution of the original set cover instance with a factor in o(log(n)).

The set cover instance has a size in the 3rd root of the size of the refinement worklist
problem. But since o(log(n)) = o(log( 3

√
n)), we get a contradiction to the approximation

hardness result of set cover. ◀

References
1 Markus Anders and Pascal Schweitzer. Engineering a fast probabilistic isomorphism test. In

2021 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX),
pages 73–84. SIAM, 2021. doi:10.1137/1.9781611976472.6.

2 Markus Anders, Pascal Schweitzer, and Florian Wetzels. Comparative design-choice analysis of
color refinement algorithms beyond the worst case. CoRR, abs/2103.10244, 2021. full version
of the paper. arXiv:2103.10244.

https://doi.org/10.1137/1.9781611976472.6
http://arxiv.org/abs/2103.10244


M. Anders, P. Schweitzer, and F. Wetzels 15:15

3 Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, Sebastian Kuhnert, and Gaurav Rattan.
The parameterized complexity of fixing number and vertex individualization in graphs. In
41st International Symposium on Mathematical Foundations of Computer Science, MFCS
2016, August 22-26, 2016 - Kraków, Poland, volume 58 of LIPIcs, pages 13:1–13:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.MFCS.2016.13.

4 Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper bounds for
the complexity of canonical colour refinement. Theory Comput. Syst., 60(4):581–614, 2017.
doi:10.1007/s00224-016-9686-0.

5 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identifications. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

6 Martin Grohe. Equivalence in finite-variable logics is complete for polynomial time. In 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont,
USA, 14-16 October, 1996, pages 264–273. IEEE Computer Society, 1996. doi:10.1109/SFCS.
1996.548485.

7 Martin Grohe, Kristian Kersting, Martin Mladenov, and Erkal Selman. Dimension reduction
via colour refinement. In Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw,
Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science,
pages 505–516. Springer, 2014. doi:10.1007/978-3-662-44777-2_42.

8 J.E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Theory of
Machines and Computations, pages 189–196. Academic Press, 1971.

9 Tommi A. Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool for
large and sparse graphs. In Proceedings of the Nine Workshop on Algorithm Engineering and
Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM, 2007.
doi:10.1137/1.9781611972870.13.

10 Sandra Kiefer and Brendan D. McKay. The iteration number of colour refinement. In 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 73:1–73:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.
73.

11 Brendan D. McKay. Practical graph isomorphism. In 10th. Manitoba Conference on Numerical
Mathematics and Computing (Winnipeg, 1980), pages 45–87, 1981.

12 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

13 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph
neural networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4602–4609. AAAI Press,
2019. doi:10.1609/aaai.v33i01.33014602.

14 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997,
pages 475–484. ACM, 1997. doi:10.1145/258533.258641.

15 Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–2561, 2011. URL:
http://dl.acm.org/citation.cfm?id=2078187.

ICALP 2021

https://doi.org/10.4230/LIPIcs.MFCS.2016.13
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/BF01305232
https://doi.org/10.1109/SFCS.1996.548485
https://doi.org/10.1109/SFCS.1996.548485
https://doi.org/10.1007/978-3-662-44777-2_42
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.4230/LIPIcs.ICALP.2020.73
https://doi.org/10.4230/LIPIcs.ICALP.2020.73
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1145/258533.258641
http://dl.acm.org/citation.cfm?id=2078187




Search Problems in Trees with Symmetries:
Near Optimal Traversal Strategies for
Individualization-Refinement Algorithms
Markus Anders
TU Kaiserslautern, Germany
TU Darmstadt, Germany

Pascal Schweitzer
TU Kaiserslautern, Germany
TU Darmstadt, Germany

Abstract
We define a search problem on trees that closely captures the backtracking behavior of all current
practical graph isomorphism algorithms. Given two trees with colored leaves, the goal is to find
two leaves of matching color, one in each of the trees. The trees are subject to an invariance
property which promises that for every pair of leaves of equal color there must be a symmetry (or
an isomorphism) that maps one leaf to the other.

We describe a randomized algorithm with errors for which the number of visited nodes is
quasilinear in the square root of the size of the smaller of the two trees. For inputs of bounded
degree, we develop a Las Vegas algorithm with a similar running time.

We prove that these results are optimal up to logarithmic factors. For this, we show a lower
bound for randomized algorithms on inputs of bounded degree that is the square root of the tree
sizes. For inputs of unbounded degree, we show a linear lower bound for Las Vegas algorithms. For
deterministic algorithms we can prove a linear bound even for inputs of bounded degree. This shows
why randomized algorithms outperform deterministic ones.

Our results explain why the randomized “breadth-first with intermixed experimental path” search
strategy of the isomorphism tool Traces (Piperno 2008) is often superior to the depth-first search
strategy of other tools such as nauty (McKay 1977) or bliss (Junttila, Kaski 2007). However, our
algorithm also provides a new traversal strategy, which is theoretically near optimal and which has
better worst case behavior than traversal strategies that have previously been used.
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1 Introduction

We define a new search problem involving trees with symmetries. In this problem, two
unknown trees are given as input and they can be gradually explored. The leaves of the
trees are colored and the task is to find a pair of leaves, one in each tree, with matching
colors or determine that such a pair does not exist. The crucial element that distinguishes
our model from standard exploration tasks is that the color of the leaves allows us to draw
conclusions about the local surroundings of the leaf. More precisely, there is an invariance

EA
T

C
S

© Markus Anders and Pascal Schweitzer;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 16; pp. 16:1–16:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2021.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Search Problems in Trees with Symmetries

axiom guaranteed to always hold. It says that if two leaves are of the same color then there
is a symmetry (an automorphism or an isomorphism depending on the leaves being in the
same tree or not) that maps one leaf to the other.

The invariance property guarantees that the local neighborhood around the leaf is
structurally the same as the neighborhood around other leaves of the same color. This allows
us to discard unexplored parts of the search tree thereby opening the possibility of having
algorithms that explore only a sublinear number of the nodes of the trees.

Our motivation behind the model lies in the desire for a theoretical analysis of practical
solvers for the graph isomorphism problem, automorphism group computations, and graph
canonization. While the best theoretical algorithms, such as Babai’s quasipolynomial time
algorithm [2], are based on algorithmic group theory, practical solvers [4, 6, 7, 11, 15]
exclusively follow the individualization-refinement (IR) paradigm. First introduced into the
realm of practical isomorphism testing and canonization by McKay in 1977 [10], the basic
principle has remained unchanged to date. Indeed, all algorithms in this paradigm perform
some form of backtracking, implicitly creating a recursion tree for each input graph. The
tools solve the graph isomorphism problem by finding two leaves in this recursion tree that
correspond to each other. The number of nodes in the recursion tree that are actually called
during the execution is closely linked to the running time of the overall algorithm. Despite
being simple, our search problem and the exploration model capture precisely the task needed
to be solved and assess correctly the running times of solutions.

Traditionally, IR tools have followed a depth-first search approach to traverse the search
tree. However, in 2008, Piperno [15] introduced his tool Traces, which broke away from this
principle, performing a form of breadth-first search that is intermixed with random traversal
of the tree (so-called experimental paths). The traversal strategy is at the very heart of
the underlying algorithm. Significantly outperforming all the other tools on most practical
inputs [12], Traces revealed that the traversal strategy is arguably the most important
design choice in IR algorithms. This immediately raises the question whether there are
theoretical, structural reasons why this traversal strategy is favorable. Going one step further,
we can ask for optimal traversal strategies.

However, so far there has been no rigorous justification as to why one traversal strategy
should be superior and in particular there is no research into optimal traversal strategies.

Contribution. The introduction of our particular search problem in trees with symmetry
allows us to strip away all the other design choices that have to be made in the creation
of an IR algorithm and isolates the core issue of the traversal strategy in the search tree.
The ultimate goal is twofold. Firstly, to provide a more rigorous, theoretical foundation for
the design of practical graph isomorphism tools. Secondly, to design novel, near optimal
strategies to be adopted in future generations of practical solvers.

An input consists of two trees without vertices that only have one child. Let n denote
the size of the smaller one of the two trees and N the size of the larger one. The cost of our
algorithms is measured in the number of nodes that are explored. For our algorithms, the
terms “running time” or “complexity” refer to this cost measure.

Regarding upper bounds, we provide a simple randomized Monte Carlo algorithm with an
upper bound of O(

√
n log n) explored nodes. For trees of bounded degree we design a more

complicated algorithm achieving an upper bound of O(
√

n log N) for Las Vegas algorithms
(i.e., randomized algorithms without errors).
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Table 1 This table summarizes lower and upper bounds for the isomorphism problem implied by
the results of this paper. Here n = min{n1, n2} and N = max{n1, n2}, where the sizes of the trees
are n1, n2 and d gives the maximum degree of the two input trees. We state separate lower bounds
for trees with bounded (d-adic) and unbounded degree.

Setting Lower Bound Lower Bound (d-adic) Upper Bound
Monte Carlo Ω(

√
n) Ω(

√
n) O(log(n)

√
n)

Las Vegas Ω(n) Ω(
√

n) O(d log(N)
√

n)
Deterministic Ω(n) Ω(n) O(n)

These algorithms are accompanied by nearly matching lower bounds, showing that Ω(
√

n)
nodes need to be explored for randomized Monte Carlo algorithms even on bounded degree
trees and that for unbounded degree inputs, Las Vegas algorithms need to visit Ω(n) nodes
in expectation. For deterministic algorithms we get a lower bound of Ω(n) even for inputs of
bounded degree. Table 1 gives an overview of the lower and upper bounds we prove.

Overall this shows that the new traversal strategies are optimal up to logarithmic factors.
However, it also shows that randomized traversal strategies, even those without error,
asymptotically outperform deterministic ones.

The algorithms for proving the upper bounds immediately imply IR algorithms with
the same runtimes (up to almost linear factors in the graph order for non-recursive work).
We should emphasize that our new upper bounds asymptotically outperform the traversal
strategies that are currently being used in practice in the worst case. In fact, we implemented
the Monte Carlo algorithm in a new graph isomorphism solver dejavu which runs significantly
faster than existing tools on most graphs [1].

2 A Model for Tree Exploration with Symmetries

This section presents the exploration model that is used throughout this paper. The model
enables us to perform a focused analysis of the traversal strategies used in the search trees of
IR algorithms. We state the model independent of any discussion regarding IR.

2.1 Black Box Search Trees
In our search problems the input consists of one or two hidden trees of which certain
information is to be discovered. We first explain how the trees can be explored.

Exploration Model. We consider rooted trees in which there is a priori no bound on the
degree of the vertices. However, we require that no vertex has exactly one child. Furthermore,
the leaves of the tree are colored.

Our exploration model for the trees restricts access of algorithms to the trees themselves
and how they can be explored. We think of new information as being provided by an oracle
to the exploration algorithm. During execution, a node of the tree is either explored or
unexplored. Whenever a new node is explored, the algorithm learns the number of children of
the node. In particular the algorithm knows whether the node is a leaf or not. Furthermore,
in case the node is a leaf, it learns its color. At the beginning of an execution, everything
except the root is deemed unexplored. The algorithm can only ever access previously explored
nodes. The degree (i.e., the number of children) of an explored node v, which we denote
by deg(v), is always known. To explore further nodes, the algorithm can explore a child
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Figure 1 Example exploration in the black box search tree model. Starting from the root, the
algorithm only ever knows explored nodes and their degrees. Through the use of an oracle, random
children of explored nodes may then be queried.

of a previously explored node. Specifically, the algorithm can request the i-th child of v

with i ∈ {1, . . . , d(v)}, which thereby becomes explored. For this, the input has an arbitrary
but fixed ordering for the children of each vertex.

The cost of the exploration is measured in the number of oracle accesses, i.e., the number
of nodes that are ever visited by the algorithm. (In particular there is no cost for traversing
previously explored parts of the tree.)

Figure 1 illustrates such an exploration of a tree. Note that while the algorithm always
knows the degree of explored nodes, it is essentially unable to chose a new specific child to
explore since in another input the ordering of the children may be different.

More formally, a black box search tree T = (V, E, col) consists of a rooted tree with
colored leaves and for each node an ordering of the children. We omit the orderings from
the notation. Of course all choices of orderings lead to proper search trees. The function
col : L(T )→ N maps the leaves of the tree L(T ) to natural numbers, referred to as colors.

In our algorithms, we use the procedure NewChild : V → V ∪ {⊥} to explore the tree,
which agrees with the previous description as follows. For an explored vertex v the algorithm
chooses the smallest index of a previously unexplored child of v and queries the oracle for
that child. If no unexplored child exists, the function returns ⊥.

In the description of randomized algorithms, we also use the function RandomChild : V →
V ∪ {⊥}, which returns a child chosen uniformly at random among all children of v, which
means that it can in particular return previously explored children.

Isomorphism Invariance. So far we are lacking the crucial part of the model, namely
symmetries. The core property of our trees is that the presence of leaves with equal colors
implies the existence of symmetries of the trees. More specifically, they imply color-preserving
isomorphisms, defined as follows. An isomorphism φ between two trees T1 and T2 is a bijection
on vertices φ : V (T1) → V (T2), such that v is a child of v′ if and only if φ(v) is a child of
φ(v′). A color-preserving isomorphism furthermore requires that col(l) = col(φ(l)) holds for
all leaves l ∈ L(V1). This implies that leaves of a color can only be mapped to leaves of that
same color. If T1 = T2 we also call φ an automorphism or a symmetry.

The crucial property that we require for all black box search trees is that whenever two
leaves have the same color, we can derive an isomorphism:

▶ Axiom (Complete Isomorphism Invariance). If l1 ∈ T1, l2 ∈ T2 and col(l1) = col(l2), then
there exists a color-preserving isomorphism φ : V (T1)→ V (T2) such that φ(l1) = l2.

We should highlight that the axiom in particular has to hold for the case T1 = T2, yielding
automorphisms (possibly the identity if l1 = l2).

The crucial consequence of the axiom is that it allows us to draw conclusions about
the structure of unexplored parts of the search tree. For example, applying this knowledge
enables us to conclude that the last remaining node of Figure 1 is blue.

Throughout the paper, we assume that all inputs, may they consist of one or two trees,
adhere to this axiom. Also, all exploration algorithms operate in our exploration model.
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Algorithm 1 Random Walk of the Search Tree.

1 function RandomWalk(v)
Input : vertex v of a black box search tree
Output : a random leaf of the search tree rooted at v

2 while deg(v) ̸= 0 do v := RandomChild(v) ;
3 return v;

Isomorphism Exploration Problem. We are now ready to state our problem of interest for
black box search trees: the isomorphism exploration problem.

▶ Problem (Isomorphism Exploration). Given two search trees T1 and T2, compute leaves
l1 ∈ T1 and l2 ∈ T2 with col(l1) = col(l2), if they exist and return ⊥ otherwise.

For simplicity we will always assume that the trees are disjoint, that is V (T1) ∩ V (T2) = ∅.
This way we do not need to specify for oracle queries what tree they relate to.

There are other interesting problems, such as finding two leaves of the same color within
one tree, that can be defined within the model. These and their relationship are discussed in
Section 5.

While the tree model and the exploration problem can be defined it their own right, we
have a concrete motivation behind the definitions. Indeed, the motivation behind the specifics
of our model lies in so-called individualization-refinement algorithms, the prevailing method
to solve the graph isomorphism problem in practice. In fact, the isomorphism exploration
problem captures very closely the runtime of these algorithms. A more detailed explanation
of this is deferred to the end of the paper in Section 5.

However, let us briefly remark that in our context the requirement that inner nodes may
not have exactly one child is not only natural for our intended application but also crucial. If
we drop this requirement the nature of the problem changes dramatically and ray searching
as well as doubling techniques become relevant (see [3] for further pointers).

3 Upper Bounds

We provide upper bounds for the isomorphism exploration problem by developing appropriate
algorithms. Of course by querying the oracle for the input trees alternatingly, there is a
simple deterministic algorithm with a complexity of O(min{|T1|, |T2|}). For randomized
algorithms, we start with a Monte Carlo algorithm. Subsequently we argue that there is also
a Las Vegas algorithm, (i.e., an algorithm that always answers correctly) which still has a
good expected runtime if there is a modest bound on the maximum degree of the tree.

3.1 Probabilistic Bidirectional Search
The central idea of the probabilistic isomorphism test discussed in this section is to perform
random root to leaf walks in the black box search trees. The recursive procedure for such
walks is described in Algorithm 1 and simply works as follows: a random walk is performed
by starting in the root node and repeatedly choosing uniformly at random a child of the
current node, until a leaf is reached.

Repeatedly executing random walks, the probabilistic isomorphism test exploits the
following observation: assume we have two isomorphic trees T1, T2. Further assume we fix
some leaf l ∈ T1. We call all leaves l′ with col(l) = col(l′) occurrences of l. The algorithm
tries to find occurrences of l through random walks of the trees. Towards finding l, we
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T1 T2

auto iso

Figure 2 The probabilistic bidirectional search algorithm simultaneously samples leaves in both
trees using random walks. It then tests for automorphisms within a tree and isomorphisms across
trees to perform the probabilistic test.

always perform two random walks, one in T1 and one in T2. Since we assumed the trees are
isomorphic, we are equally likely to find an occurrence of l in T1 or in T2. But if the trees are
not isomorphic, we can find occurrences of l only in T1 (otherwise, due to the isomorphism
invariance axiom, T1 and T2 would be isomorphic).

Algorithm 2 describes a procedure based on this observation. Instead of using just a
single leaf l however, it uses two sets of leaves L1 and L2 for comparison. Whenever an
entirely new leaf is found (that is not an occurrence of a previously found leaf), it is added
to the respective set of leaves and used for subsequent testing.

If a leaf is an occurrence of a previously discovered leaf, it either reveals an isomorphism
between the trees or an automorphism (possibly the identity) of one of the trees. This is again
a consequence of the isomorphism invariance axiom. If an isomorphism1 is discovered, the
algorithm has found two equally colored leaves in both trees and terminates. Otherwise, after
a certain number of automorphisms have been found (the number depends on the desired
error bound), the algorithm concludes that the trees are probably non-isomorphic within the
given error bound. If the trees are isomorphic, we find automorphisms and isomorphisms
with equal probability. Hence, we are highly unlikely to discover many automorphisms
without also discovering an isomorphism. Figure 2 illustrates this key concept underlying
the algorithm. The following lemma provides a correctness and running time analysis.

▶ Lemma 1. Given black box search trees T1, T2 of heights h1, h2 and a desired error probabil-
ity ϵ, Algorithm 2 solves the isomorphism exploration problem with probability at least 1−ϵ with
an expected worst-case runtime bounded by O

(
⌈log2( 1

ϵ )⌉ ·max(h1, h2) ·min{
√
|T1|,

√
|T2|}

)
.

Proof. (Correctness.) First, observe that whenever a pair of leaves is returned their color is
checked for equality. This ensures that if the algorithm returns a pair of leaves, the answer is
always correct. The algorithm can therefore only fail to produce the correct output by not
finding a suitable pair of equally colored leaves despite the fact that they exist. In particular,
this implies that if the trees are non-isomorphic, the algorithm cannot err.

To bound the error probability, we view the computation as a sequence of tests. A test
repeatedly performs random walks of the search trees until one automorphism (possibly the
identity) or one isomorphism is found. Hence, each test can be described as a sequence
of j iterations. In each iteration j′ < j, neither l1 nor l2 produced an isomorphism or
automorphism. During a test, the algorithm neither terminates, nor is c incremented. In

1 Slightly abusing terminology we often use the term isomorphism to mean an isomorphism between the
two trees rather than an isomorphism that is an automorphism of one tree.
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Algorithm 2 Probabilistic Bidirectional Search.

1 function Isomorphism(T1, T2, ϵ)
Input : black box search trees T1, T2 and probability ϵ

Output : two leaves l1 ∈ T1, l2 ∈ T2 such that col(l1) = col(l2) with probability
at least 1− ϵ if such leaves exist, ⊥ otherwise

2 c := 0;
3 L1 := L2 := ∅;
4 while c ≤ ⌈− log2(ϵ)⌉ do
5 f(aut,1) := f(aut,2) := false; // f(aut,i) signals automorphism found in

Ti

6 l1 := RandomWalk(root of T1) ;
7 l2 := RandomWalk(root of T2) ;
8 if col(l1) = col(l2) then return (l1, l2);
9 for i ∈ {1, 2} do

10 for l′ ∈ L(3−i) do
11 if col(li) = col(l′) then return (li, l′) ;
12 if col(l3−i) = col(l′) then f(aut,(3−i)) := true ;
13 if ¬f(aut,1) then L1 := L1 ∪ {l1};
14 if ¬f(aut,2) then L2 := L2 ∪ {l2};
15 if f(aut,1) ∨ f(aut,2) then c := c + 1;
16 return ⊥;

iteration j of the test, an automorphism or isomorphism is found. Now, note that when
T1 and T2 are isomorphic, leaves contained in Li can equally likely be found in T1 or T2.
Hence, finding an automorphism or isomorphism in a test is equally likely. In particular, the
probability is 1

2 for finding an isomorphism for each i ∈ {1, 2} rather than an automorphism.
Anytime we find an automorphism but no isomorphism, we increment c by 1. We terminate
when c reaches e := ⌈− log2(ϵ)⌉. Assuming the trees are isomorphic, the probability of this
outcome is therefore bounded by ( 1

2 )e.
(Runtime.) We will calculate the expected number of leaves explored before termination.

We may consider the number of leaves instead of nodes by adding the multiplicative factor
max(h1, h2) for the maximum length of a root to leaf walk in the search trees to our runtime.
(We explain subsequently how to improve this factor.)

We may assume that the input trees are non-isomorphic and thus that the algorithm
terminates because the condition c > e = ⌈− log2(ϵ)⌉ was met. This suffices to give an upper
bound since earlier termination due to the discovery of isomorphisms clearly only leads to a
smaller expected running time.

Consider running 2
√
|Ti| iterations of the algorithm. We may assume that in the j-

th iteration L1 and L2 each contain at least j leaves: otherwise, some previous iteration
already discovered an automorphism or an isomorphism. Furthermore, we may assume that
the probability to find a leaf is uniform across all leaves: if probabilities are non-uniform,
the chance for finding some leaves repeatedly only increases (see [13]). The probability of
finding an automorphism in Li (with i ∈ {1, 2}) within j iterations is therefore at least j

|Ti| .
After

√
|Ti| iterations, the probability for finding an automorphism in Ti is then at least√

|Ti|
|Ti| = 1√

|Ti|
. Hence, the probability of finding no automorphism after 2

√
|Ti| many steps

is at most
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(√
|Ti| − 1√
|Ti|

)√|Ti|

≤ 1
e <

1
2 , where e is the Euler constant.

We view the computation as a series of batches consisting of 2
√
|Ti| iterations each. For each

of them, the probability for finding an automorphism is at least 1/2. For termination, we
need to find e many automorphisms. The expected number of batches is thus in O(e), which
shows that the overall number of iterations is in O(e · 2

√
|Ti|). ◀

We can improve the bound on the running time replacing the factor max{h1, h2} with the
factor log2(min{

√
|T1|,

√
|T2|}). To do so we alter the algorithm to take into account that

the trees may be of very different sizes and also the trees may be quite unbalanced. To
compensate for this we employ a doubling technique. However, we first need a bound for the
expected length of the random root to leaf walks used in our algorithm.

▶ Lemma 2. In an n-node black box search tree the expected length of a random root to leaf
walk (i.e., the running time of Algorithm 1) is in O(log n).

Proof. Let g(T ) be the expected length of a random root to leaf walk in tree T . Note that
the number of leaves t of a black box search tree is in Θ(n) for an n-node tree. We will argue
that among the trees T with t leaves the value g(T ) is maximal if T is a binary tree in which
all leaves are located on two consecutive levels. Since in such a tree even the maximum root
to leaf distance is O(log n), this proves the theorem.

First let T be a tree which has a vertex v with more than two children u1, . . . , uj . Let Ti

be the subtree of T rooted at ui and assume without loss of generality that g(Ti) < g(Tj)
for i < j. Alter the tree T into a new tree T ′ by inserting a new node w as a child of v and
then relocating the trees T1 and T2 so that their roots are now children of w instead of v.
Then, conditional on the event that the random walk reaches v, the expected length of the
walk has increased. Thus g(T ′) > g(T ). Since there are only finitely many trees with t leaves,
by induction it suffices now to consider binary trees.

Let T be a binary tree and suppose there are leaves ℓ1 and ℓ2 whose height differs by
more than 1. Say ℓ1 is on the level furthest from the root. There must be another leaf ℓ3
whose parent p is also the parent of ℓ1. Alter the tree to obtain a new tree T ′ by assigning ℓ2
as the new parent of ℓ3 and ℓ2. Note that p is further away from the root than ℓ2. Thus,
the tree being binary, the probability of a random walk reaching ℓ2 is larger than that of
reaching p. Therefore g(T ′) > g(T ). By induction this proves the theorem. ◀

▶ Theorem 3. There is an algorithm that solves the isomorphism exploration problem with
probability at least 1− ϵ and expected worst-case runtime bounded by
O
(
⌈log2( 1

ϵ )⌉ · log2(min{
√
|T1|,

√
|T2|}) ·min{

√
|T1|,

√
|T2|}

)
.

Proof. Set n = min{|T1|, |T2|}. For an integer s, we run the algorithm with a budget 2s

that limits the number of walks that can be performed in each tree to s. Furthermore, we
limit the length of the random walks by h = c log2(s) for some suitable constant determined
later. Whenever a random walk exceeds the length h, we abort the walk and ignore it. If
the algorithm does not terminate within the alloted budget then we double s and restart.
This guarantees that the number of queries does not exceed O(s log s) when we run it with
integer s.

At least in the smaller of the two trees, automorphisms are found with high probability
whenever s exceeds

√
n. Indeed, by Lemma 2 the average length of a random walk in the

smaller tree is in O(log n) = O(log
√

n). Thus, by Markov’s bound with probability 1/2, the
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random walks end in a leaf of height at most O(log n). Thus, by the Chernoff bound, for
sufficiently large s, with probability 1/2 at least 1/4 of the random walks end in a leaf of
height at most O(log n). We choose c so that this height is at most c log2(n).

In case the graphs are isomorphic, automorphisms and isomorphisms are still found with
equal probability. Thus our arguments for the probabilities remain in place since we essentially
perform the same algorithm in pruned subtrees. Regarding the running time, note that the
probability that the algorithm does not terminate with budget s decreases exponentially
with s. That is, the probability is in O(as/ min{

√
|T1|,
√

|T2|}) for some constant a < 1
once s > 2 min{

√
|T1|,

√
|T2|}. ◀

We should remark that the collision problem was previously exploited in the context of
the group isomorphism problem [16], but in that context structural information on the
corresponding trees is known. Also the idea of sampling with random walks was used for the
isomorphism algorithm in [17], but that algorithm only uses a single leaf in the search tree
and thus cannot achieve sublinear running time guarantees.

3.2 Las Vegas Bidirectional Search
The major drawback of the probabilistic bidirectional search algorithm is that it makes errors.
Considering trees of height 1 it is not difficult to see that a non-erring algorithm, even a
randomized one, needs to query a linear fraction of the leaves to distinguish non-isomorphic
trees. However, if the degree of the input graphs is restricted, we can beat this bound.

To do this, we basically strive to choose a specific set of nodes in both trees that ensures
a “collision” of leaves. This guarantees that we find equally colored leaves, if they exist.

We refer to the maximum degree among the considered trees as d. Our main new idea is
to split search trees in a balanced manner, followed by techniques to exploit isomorphism
invariance. We want to note that the techniques for exploiting isomorphism invariance are
inspired by techniques described in [12, 18], which essentially also perform splits. However,
rather than heuristically applying them, here we perform them in a balanced and systematic
way. Towards this goal we need the notion of a split (v, h), which is a node v ∈ Ti at level h

in one of the input trees. We define the cost of a split as a pair of numbers (s1, s2) as follows:
s1 is the size of the tree T3−i truncated at level h (i.e., the ball of radius h around the root).
If the tree Ti truncated at level h is non-isomorphic to the tree T3−i truncated at level h

then s2 := s1, otherwise s2 is the size of the subtree rooted in v ∈ Ti at level h.
The intuition for our exploration strategy is that s1 bounds the size of the subtree to

be explored in T3−i, while s2 bounds the size of the subtree to be explored in Ti (up to
logarithmic factors). While the special treatment of the case when the trees disagree on the
first h levels may seem cumbersome at first, the idea is that if trees already differ in the first
h levels, we can decide non-isomorphism by exploring all nodes in the subtree of Ti consisting
of the first h levels and then at most as many vertices within the first h levels of T3−i.

We call a split (v, h) a balanced split whenever its cost (s1, s2) satisfies max{s1, s2} ≤
4d ·min{

√
|T1|,

√
|T2|}. Note that slightly abusing terminology in a balanced split the subtree

with root v can be unproportionally large, as long as the two trees truncated at level h are
non-isomorphic and s1 is sufficiently small.

At this point it might neither be clear how to find a balanced split nor that a balanced
split always exists. However, assume for now that we are given a balanced split. In that
case we can efficiently solve isomorphism (even deterministically) as follows. We perform
breadth-first search up to level h in both trees T1 and T2, visiting all nodes N1 ⊆ V (T1) and
N2 ⊆ V (T2) up to and including level h. We can conclude non-isomorphism immediately
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T1 T2

iso

iso

Figure 3 State of the search trees after termination of Algorithm 4. If trees are isomorphic, a
node v1 in T1 at some level h must be mapped to some node v2 in T2 at level h by an isomorphism.
But if that is the case, then a leaf below v2 is isomorphic to some leaf below v1.

whenever the breadth-first search has finished level h and the two trees truncated at level h

are non-isomorphic. We can thus assume now that these trees are isomorphic. By exploring
all nodes up to level h (which is the level containing v), we surely explore the node v in one
of the trees. Without loss of generality assume in the following that v ∈ V (T1).

In T1, we explore all leaves Lv of the subtree rooted at one fixed node, namely v from
the balanced split. Let N ′

2 ⊆ N2 denote the set of nodes at level h in T2. Then, we explore
for each node v′ in N ′

2 one arbitrary leaf lv′ in the subtree rooted at v′. If the trees are
isomorphic, there must exist some v′ ∈ N ′

2 that can be mapped to v with an isomorphism.
Since we explored all leaves of v, the leaf lv′ with ancestor v′ must be isomorphic (equally
colored) to one of the leaves in Lv. Figure 3 illustrates how the collision of leaves is enforced
through the exploration strategy.

The procedure for exploring, within our model, the first h levels of the subtree rooted at
a particular node v is described in Algorithm 3. Starting from a given node v, it performs
breadth-first traversal until only leaves are left, or h levels have been explored. The algorithm
is also given a cost limit s and the algorithm aborts if this limit is reached.

Using Algorithm 3 as a subroutine, Algorithm 4 gives an implementation in the exploration
model of the entire algorithm just described.

Let us argue an upper bound for the runtime of Algorithm 4 (still assuming that we are
given a balanced split). From the definition of a balanced split, we can conclude that |Lv|
and |N2| are bounded by O(d ·min{

√
|T1|,

√
|T2|}). Since exploration up to level h in T1

(Line 3) may only explore as many nodes as the exploration in T2, we ensure that |N1| ≤ |N2|
holds. Now, the last phase probes at most O(d ·min{

√
|T1|,

√
|T2|}) many paths, giving an

overall upper bound of O
(

d · h(T2) ·min{
√
|T1|,

√
|T2|}

)
.

However, note that the factor h(T2) can be excessively large because the paths from
level h to the leaves can be of length Θ(|T2|). To prevent this, we alter the algorithm as
follows. In T2 we allocate a total budget of c′

√
|T2| log(|T2|) for some constant c′ for all the

level-h-to-leaves paths. By Lemma 2 the expected length of one such path is in O(log |T2|).
Thus, by linearity of expectation, the expected total cost for the paths is O(

√
|T2| log |T2|).

By Markov’s inequality for a suitable choice of c′, with probability 1/2 the total cost is
in O(

√
|T2| log |T2|). If the total cost exceeds this bound we simply restart the process.

Overall we can replace the factor h(T2) by O(log(|T2|)), giving O(d · log2(max{|T1|, |T2|}) ·
min{

√
|T1|,

√
|T2|}). More generally, it is easy to see that given a split of cost (s1, s2), the

modification of Algorithm 4 runs in O(log2(max{|T1|, |T2|}) · max{s1, s2}). There is an
interesting analogy to the runtime of the probabilistic bidirectional search algorithm. A main
difference is that the runtime directly depends on the maximum degree of the trees.
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Algorithm 3 Breadth-first Search: Computing a Subtree of the Search Tree.

1 function Subtree(v, h, s)
Input : start node v, height limit h, cost limit s

Output : (L, s′) where L is the set of leaves of the subtree under v up to level h

and s′ is the number of explored nodes, or (⊥,⊥) if cost limit did not
suffice

2 if h = 0 then return {v};
3 N := {(v, 0)};
4 L := {};
5 s′ := 0;
6 while N ̸= ∅ do
7 (v, h′) := Some(N) ; // pick arbitrary element of N

8 N := N ∖ {(v, h′)};
9 h′ := h′ + 1;

10 c := NewChild(v);
11 while c ̸= ⊥ do
12 s′ := s′ + 1;
13 if s′ > s then return (⊥,⊥) ;
14 if h′ = h ∨ deg(c) = 0 then L := L ∪ {c} ;
15 else N := N ∪ {(c, h′)} ;
16 c := NewChild(v);
17 return (L, s′);

The crucial question remains whether balanced splits always exist and whether they can
be found efficiently. We first address the question of existence of balanced splits.

▶ Lemma 4. Let T1, T2 be black box search trees with maximum degree d. Then there exists
a balanced split for search trees T1 and T2.

Moreover, if h′ is the maximal level for which the tree T1 truncated at level h′ is smaller
than 4d ·min{

√
|T1|,

√
|T2|}, the two subtrees up to level h′ are isomorphic, and there are

no leaves up to level h′, then at least 3
4 of the nodes at level h′ in the smaller tree constitute

balanced splits with cost s2 ≤ 2 min{
√
|T1|,

√
|T2|}.

Proof. We can assume w.l.o.g. that |T1| ≤ |T2|. Let h′ be the maximal level of T2 where the
size of the subtree up to level h′ is smaller than or equal to 4d ·min{

√
|T1|,

√
|T2|}.

If the subtrees up to level h′ in T1 and T2 differ, we have found a balanced split.
Furthermore, if there are leaves in the trees up to level h′, we have found a balanced split as
well. Hence, we assume that subtrees are isomorphic and no leaves are present.

We now argue that at least 3
4 of the nodes at level h′ in T1 constitute balanced splits.

Consider level h′ of T1 and T2. Let sh′ ≤ 4d ·min{
√
|T1|,

√
|T2|} be the size of the subtree

up to and including level h′ in T1. By assumption, the respective subtree of T2 is of equal
size. Furthermore, by assumption there are no leaves up to level h′, implying that the tree
contains at least nh′ ≥ 1

2 · sh′ nodes at level h′.
Towards a contradiction, we assume that sh′ ≤ 4 · min{

√
|T1|,

√
|T2|}. But then

we can increment h′: since sh′ ≤ 4 · min{
√
|T1|,

√
|T2|}, it holds that sh′+1 ≤ 4d ·

min{
√
|T1|,

√
|T2|}. This is a contradiction to the assumption that h′ is maximal. Hence,

we know 4 ·min{
√
|T1|,

√
|T2|} < sh′ ≤ 4d ·min{

√
|T1|,

√
|T2|}.
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Algorithm 4 Bidirectional Search.

1 function Isomorphism(T1, T2, v, h)
Input : black box search trees T1, T2 and a split v, h with v ∈ V (T1)
Output : two leaves l1 ∈ T1, l2 ∈ T2 such that col(l1) = col(l2) if they exist, ⊥

otherwise
2 (N2, s) := Subtree(root of T2, h,∞) ;
3 (N1, _) := Subtree(root of T1, h, s) ; // explores v

4 if N1 = ⊥ or T1 and T2 up to level h non-isomorphic then
5 return ⊥;
6 (Lv, _) := Subtree(v,∞,∞);
7 for n ∈ N2 do
8 l := RandomWalk(n); // can be an arbitrary, even determinsitic
9 for l′ ∈ Lv do

10 if col(l) = col(l′) then return (l, l′) ;
11 return ⊥;

We can immediately conclude nh′ ≥ 2 · min{
√
|T1|,

√
|T2|}. Naturally, there can be

at most 1
2 · min{

√
|T1|,

√
|T2|} corresponding subtrees which have a size greater than 2 ·

min{
√
|T1|,

√
|T2|} with roots at level h′ in T1 (since |T1| ≤ |T2|). Consequently, there must

be at least nh′ − 1
2 ·min{

√
|T1|,

√
|T2|} ≥ 3

4 nh′ subtrees rooted at level h′ with a size smaller
than 2 ·min{

√
|T1|,

√
|T2|}. This concludes the proof for both claims of the lemma. ◀

Thus, for all search trees there exist balanced splits. We now explain how to find balanced
splits efficiently. As shown by the lower bound in the next section, it is impossible to do this
deterministically in an adequate running time. We thus need a randomized procedure for
finding balanced splits. We will show that the following method is suitable. Rather than
pseudocode we give a high level description in Algorithm 5.

It turns out that when the cost limit is sufficiently high the algorithm finds balanced splits
with good probability. The intuition behind this is based on Lemma 4: once the algorithm
reaches a sufficiently high level of the tree with breadth-first search, the majority of nodes
constitute balanced splits.

From the description of the algorithm, the following corollary follows readily:

▶ Corollary 5. If Algorithm 5 chooses in some iteration an element v at some level h in Step 3
so that (v, h) constitutes a split with cost (s1, s2) and at this point s ≥ s2, then the algorithm
terminates after this iteration and returns a split with cost (s′

1, s′
2) where s′

1 = s1, s′
2 ≤ s2.

Proof. By assumption, (v, h) constitutes a split with cost (s1, s2). This implies that the entire
subtree below v is smaller than s2. Consequently, since s is large enough, Algorithm 5 explores
the entire subtree below v in Step 4, unless probing the other way in parallel terminates first:
this only contradicts our claim if it results in a more expensive split. However, since a more
costly split necessitates more steps to explore its respective subtree, running the search in
parallel ensures that the cheaper split is found first. Note that s1 = s′

1 holds for all nodes at
level h, concluding the proof. ◀

Using this, we can prove that Algorithm 5 terminates with a balanced split with good
probability, giving what we need for our isomorphism test:

▶ Lemma 6. Lemma If Algorithm 5 terminates with a split, it constitutes a balanced split
with a probability of at least 3

4 .
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Algorithm 5 Las Vegas Balanced Splits.

0 function SplitOrNotIsomorphic(T1, T2)
Input : Black box search trees T1 and T2.
Output : Split (v, h) or conclude T1 and T2 are non-isomorphic

1 Step 1. Set cost limit s← 1.
2 Step 2. Perform breadth-first search in T1 and T2, limiting the size of the

traversed subtree to s nodes (each). If after any level the breadth-first search
trees for T1 and T2 are non-isomorphic, terminate concluding non-isomorphism.
Let h denote the level reached so far. If breadth-first search discovers a leaf v at
or below level h, the algorithm terminates with the split (v, h).

3 Step 3. For each i ∈ {1, 2}, uniformly and independently at random choose a
node vi at level h in both trees. Compute breadth-first search starting from the
node vi in Ti, until one of the following conditions is met: (1) Breadth-first
search finishes exploring the entire subtree of vi, constituting the split (vi, h). (2)
Breadth-first search explored s nodes. This step is performed in parallel for both
i ∈ {1, 2} (i.e., each step alternates between the two), until one method succeeds
in finding a split or both finish unsuccessfully. If at any point a split is found,
the algorithm terminates immediately returning the split.

4 Step 4. Set s← 2s and jump to Step 2.

Proof. We can assume w.l.o.g. that |T1| ≤ |T2|. Let h′ be the maximal level of T2 where the
size of the subtree up to level h′ is smaller than or equal to 4d ·min{

√
|T1|,

√
|T2|}.

First, we observe that we may always assume that the breadth-first trees explored in T1
and T2 up to level h′ are isomorphic, since otherwise Algorithm 5 terminates immediately
with no split (Step 2). Furthermore, since Algorithm 5 terminates when discovering leaves
within the first h′ levels in the breadth-first exploration (Step 2) and this result in balanced
splits, we may assume that Algorithm 5 explores no leaves in the breadth-first search. We
note that if Algorithm 5 finds no leaves, each doubling of s can only increase the level h

reached by breadth-first search by at most 1.
Consider now Step 3 in the algorithm once level h′ is reached. The algorithm picks a node

of level h′ uniformly at random. We now argue that with probability at least 3
4 a node that is

the root of a small subtree is chosen, i.e., a subtree that is smaller than 2 ·min{
√
|T1|,

√
|T2|}.

This however follows readily from Lemma 4: since all subtrees at level h′ are chosen for
exploration with uniform probability, we can conclude that choosing a node that is the root
of such a small subtree in T1 has a probability of at least 3

4 . From the maximality of h′ we
can conclude that s ≥ 4 ·min{

√
|T1|,

√
|T2|} (see proof of Lemma 4). Hence, Corollary 5

ensures that the algorithm terminates with a balanced split when choosing a node that is
the root of a small subtree.

Furthermore, note that before level h′ is reached, it is not possible for Algorithm 5 to
return a split that is not a balanced split since the cost of probing is smaller than the bound
for balanced splits. ◀

At level h′ Algorithm 5 terminates with probability 3
4 . Careful inspection of the proof of

Lemma 4 and Lemma 6 reveals that Algorithm 5 also terminates with probability at least 3
4

after every consecutive doubling of s. While the cost (and therefore runtime) doubles, the
probability of not terminating quarters, which defines a geometric series: this results in an
expected runtime of Algorithm 5 bounded by O(d ·min{

√
|T1|,

√
|T2|}).
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Figure 4 A search tree from the class M3.

We now run Algorithm 5 and Algorithm 4 in series, which results in the desired algorithm:
if Algorithm 5 terminates with non-isomorphism we are done and otherwise Algorithm 4 tests
isomorphism with the provided split. We observe that whenever Algorithm 5 terminates with
a split, the costs of the split are also bounded by s: the execution time cannot be larger than
the cost of the returned split. Running the previously described modification of Algorithm 4
with a split of cost s incurs expected cost bounded by O(log2(max{

√
|T1|,

√
|T2|}) ·s). Using

this, the following theorem follows.

▶ Theorem 7. Let T1, T2 be black box search trees with maximum degree d. There exists
an algorithm for the isomorphism exploration problem with no error that has an expected
worst-case runtime bounded by O(d · log2(max{

√
|T1|,

√
|T2|}) ·min{

√
|T1|,

√
|T2|}).

4 Lower Bounds

We prove lower bounds within the confines of the model. Easy lower bounds can be obtained
by considering input trees of height 1, however, we are interested in bounds that also apply to
trees of bounded degree. We utilize the search tree family Mh for this purpose (see Figure 4).
A tree is in Mh, if it is a complete binary tree of height h such that leaves have pair-wise
distinct colors, i.e., for all (l1, l2) ∈ L(V (Mh))2 with l1 ̸= l2 it holds that col(l1) ̸= col(l2).

We remark that shrunken multipedes (see [14]) are graphs that produce search trees very
similar to those in Mh when used as input for IR algorithms.

Generally, due to their uniformity, trees from Mh can only be distinguished or proven
isomorphic by considering leaves. A traversal strategy must either conclude – with good
probability ( 1

2 )– that the set of leaves of the trees are entirely disjoint or equal. In the case
when trees are isomorphic, the traversal strategy must provide two leaves with equal colors.

4.1 Randomized Lower Bound
We prove lower bounds for the isomorphism problem for randomized algorithms that err.

We will use a particular type of exploration algorithm for our purposes. We call an
algorithm unadaptive on a class of inputs, if on each input from the class, the number of
queries is always the same (in particular independent of randomness involved in the algorithm)
and the queries performed by the algorithms on inputs from the class are independent of the
answers given by the oracle. (The queries may still depend on the randomness involved in
the algorithm.) This means in particular that even when matching leaves have been found,
the algorithm will simply continue to run, possibly making further queries, and at some later
point make a decision about the output.

▶ Lemma 8. If some (possibly randomized) algorithm A solves the isomorphism exploration
problem with expected run-time f(n) and error-probability ϵ then for each h ∈ Z there is
a randomized algorithm B that is unadaptive on the class of inputs Mh with a run-time
in O(f(n)) and error-probability ϵ.
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Proof. If an algorithm A solving the problem with expected run-time f(n) and error
probability ϵ is given, then by repeating the algorithm and using Markov’s inequality
we can design an algorithm A′ with a run-time bounded by O(f(n)) (not just in expectation)
that still has an error probability of ϵ. For this note that even if the trees have been partially
explored, it is possible to simulate the algorithm from scratch by pretending that explored
nodes of the tree are unexplored.

To obtain the algorithm B we alter algorithm A′ by simply pretending all discovered
leaves have a randomly chosen previously unused color. More precisely, when a leaf is
discovered, we pretend it has a color in {1, . . . , 2h} drawn independently and uniformly at
random from the colors that have not been used yet. We continue the simulation until A′

halts. We then claim the input to be a yes instance if we found matching leaves and a no
instance otherwise. This can only decrease the error probability in comparison to A′. ◀

For our lower bound we define a combinatorial problem of trees. Let Mh be the complete
binary tree of height h, so that trees in Mh are colored versions of Mh. For two rooted
trees U, S let Inj(U, S) be the set of root respecting injective homomorphisms from U to S.
That is, the set contains the injective maps from V (U) to V (S) that map the root of U to
the root of S and that map an edge of U to an edge of S.

From now on fix a height h and consider the tree Mh. Let Uh be the set of trees U

for which Inj(U, Mh) is non-empty. This set contains exactly the trees isomorphic to a
subtree of Mh. For two trees U1, U2 ∈ Uh we let P (h, U1, U2) be the probability that for
uniformly chosen α1 ∈ Inj(U1, Mh) and independently, uniformly chosen α2 ∈ Inj(U2, Mh)
the set L(Mh) ∩ α1(V (U1)) ∩ α2(V (U2)) is non-empty. For integers a, b define

P (h, a, b) = max {P (U1, U2) | |L(U1)| = a ∧ |L(U2)| = b} .

Let P (h, m) = max{P (h, a, b) | a + b ≤ m}. We will argue that P (h, m) constitutes an upper
bound on the probability of success for a randomized algorithm for isomorphism exploration
that queries at most m nodes.

▶ Lemma 9. Let B be an algorithm that is unadaptive on the class of inputs from Mh.
Suppose on inputs from Mh algorithm B makes m queries and has error probability ϵ.
Then 1− ϵ ≤ P (h, m).

Proof. Consider the behavior of algorithm B on inputs from Mh with the colors {1, . . . , 2h}
being randomly assigned bijectively to the leaves. The algorithm B explores subtrees T ′

1
and T ′

2, one in each of the input trees. Since the algorithm makes m queries, together these
trees can have at most m leaves. Our argument groups the possibilities in which B can query
the oracle according to the topology of the two subtrees.

For two trees U1 and U2 consider the event EU1,U2 that T ′
1 is isomorphic to U1 and T ′

2
is isomorphic to U2. The event can of course only occur if |U1| + |U2| ≤ m. Recall that
algorithm B, being unadaptive, does not use the information on colors of the leaves provided
by the oracle until the very end. Thus, the probability that B finds matching leaves on
isomorphic inputs conditional to event EU1,U2 is P (h, U1, U2).

We conclude that the probability that B finds matching leaves2 is at most P (h, m). ◀

We show that the trees need to have sufficiently many leaves for P (h, T1, T2) to be large.

2 In our problem definition the algorithm has to find two leaves of the same color. If the task only asked
to decide whether the graphs are isomorphic, the algorithm could still guess, which would incur another
factor of 1/2.
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▶ Lemma 10. P (h, a, b) ≤ ab
2h .

Proof. For two trees T1 and T2 let E(T1, T2) be the expected number of elements contained
in the set L(Mh) ∩ α1(V (T1)) ∩ α2(V (T2)), where α1 and α2 are taken independently and
uniformly from Inj(T1,Mh) and Inj(T2,Mh), respectively. We define E(h, a, b) in analogy
to P (h, a, b) as the maximum E(T1, T2) over all choices of T1 and T2 with |L(T1)| = a

and |L(T2)| = b. By the Markov inequality it suffices to show that E(h, a, b) ≤ ab
2h .

Only vertices that are of distance h from the root in Ti can be mapped to a vertex
in L(Mh). The automorphism group of Mh can map each leaf to every other leaf (i.e.,
acts transitively on the leaves). The graph Mh has 2h leaves. Thus, for vertices v1 ∈ T1
and v2 ∈ T2 both of distance h from the root, the probability that α(v1) = α(v2) is at
most 1

2h .
By linearity of expectation the expected number of pairs (v1, v2) for which α(v1) =

α(v2) ∈ L(Mh) is at most 1
2h · a · b. ◀

▶ Theorem 11 (randomized lower bound). In the black box search tree model, a (possibly
randomized making errors) traversal strategy runs in Ω(min{

√
|T1|,

√
|T2|}) worst-case cost

for the isomorphism exploration problem, even on binary trees.

Proof. By Lemma 8, it suffices to show the statement for an unadaptive algorithm B on
Mh. By Lemma 10, if B queries less than 1

2
√
|Mh| nodes then both trees T1 and T2

uncovered by B have at most 1
2
√
|Mh| leaves. But by the previous lemma we know that

P (h, 1
2
√
|Mh|, 1

2
√
|Mh|) ≤ 1

4 , which shows that the probability that B finds matching
leaves in the two trees is at most 1

4 . This shows that B cannot find matching leaves with
probability 1

2 . ◀

4.2 Deterministic Lower Bound

We exploit the randomized lower bound to obtain a strengthened deterministic one.

▶ Theorem 12 (deterministic lower bound). In the black box search tree model, a deterministic
traversal strategy runs in Ω(min{|T1|, |T2|}) worst-case cost for the isomorphism exploration
problem, even on binary trees.

Proof. Consider a deterministic algorithm on inputs from M2h, where h = log(n) and n is
a power of 2. By Theorem 11 there are instances consisting of pairs of trees T1, T2 on which
the algorithm makes Θ(

√
22 log(n)) = Θ(n) queries in total. We know from the proof that the

trees Ti can be chosen from M2h. For each i ∈ {1, 2}, remove from Ti all non-root vertices
whose parents have not been explored (and thus who have not been explored either). Let T ′

i

be the resulting tree, respectively for each i. On the input pair (T ′
1, T ′

2) the algorithm behaves
exactly the same as on (T1, T2) and thus also makes Θ(n) queries in total, however T ′

i has
at most O(n) vertices. This shows that on (T ′

1, T ′
2) the algorithm makes Ω(min{|T ′

1|, |T ′
2|})

queries. ◀

Note that balanced splits for the trees of Mh can be found almost trivially: after finding out
the height h through a single walk, an arbitrary node at level h

2 will induce a balanced split.
This shows that while Mh constitutes worst-case examples for probabilistic algorithms, this
is not true for deterministic algorithms. And indeed, our deterministic lower bound applies
to subtrees of trees in Mh which have leaves on different levels.
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5 Motivation Behind the Model

The motivation behind the specifics of our model lies in so-called individualization-refinement
(IR) algorithms, the prevailing method to solve the graph isomorphism problem in practice.
We explain that and why the isomorphism exploration problem captures the runtime of these
algorithms, but refer to [11, 12] for a formal definition of IR algorithms.

Currently all practical state-of-the-art tools are based on the IR paradigm. Invariably,
these algorithms perform a type of backtracking procedure to explore the structure of input
graphs. Naturally, this leads to a search tree. While work is performed by the algorithms in
each node of the search tree, the dominating factor for the running time is the size of the
tree itself. Specifically, the running time per node is almost linear. However, the size of the
search tree is exponential in the worst case [14].

When solving for isomorphisms of two graphs we get two search trees, one for each of the
graphs. The leaves of the search trees correspond to complete invariants (described in more
detail below), i.e., colors in our terminology. The task of finding isomorphisms in the graphs
translates to finding pairs of leaves of equal color in the trees.

As mentioned earlier, nowadays there are various software packages implementing the
paradigm in different flavors. These packages differ in many details (see below), of which the
most crucial aspect is the traversal strategy through the tree.

The Search Tree. While the problem definition, algorithms, and lower bounds in this
paper do not require further knowledge on how IR algorithms operate, we want to give
some intuition about the composition of the search tree and in particular where the axiom
regarding complete isomorphism invariance comes from.

The IR search tree is the recursion tree of a backtracking procedure whose goal it is
to analyze the structure of an input graph (two input graphs in case of the isomorphism
problem). Initially, forming the root of the tree, the algorithm distinguishes the vertices
of the input graph using readily computed invariants. For example the vertices are easily
distinguished by their degree, but other information is also used. The algorithm typically used
for this is the color refinement algorithm (also known as vertex classification or 1-dimensional
Weisfeiler-Leman algorithm). In case all vertices are distinguished from another, isomorphism
can easily be checked, and no recursion is needed. Otherwise the algorithm starts to pick a
class of indistinguishable vertices and for each vertex in this class, one at a time, artificially
alters the vertex to make it distinguishable. This process is called individualization (hence
the name individualization-refinement algorithm). Each individualization causes a recursive
call, which corresponds to a child of the current node in the search tree. In the recursion, the
refinement algorithm is called again to check if new information propagates through the graph
and can be used to distinguish vertices further. As the entire procedure proceeds recursively
it allows us to distinguish more and more vertices from each other. Recursion continues until
all vertices have been distinguished from one another, i.e., the partition of the vertices into
different types is discrete. The leaves of the IR search tree therefore correspond to discrete
partitions. To the leaves, because all vertices have been distinguished, we can associate an
invariant that completely describes the structure. We call this a complete invariant. This
invariant corresponds to the color of the leaf in our exploration model.

The defining property of these algorithms is that all computations are made in an
isomorphism-invariant fashion. This is precisely what leads to our invariance axiom. Indeed,
checking isomorphism between two leaves l1, l2 in the backtracking tree then becomes trivial
since in each leaf all vertices have been distinguished from one another. In particular there
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can be only one possible isomorphism, which would have to map vertices of the same type to
each other. If an isomorphism exists this implies that the individualization choices made to
get to l1 can be mapped to the choices made to get to l2. The isomorphism-invariance of the
entire procedure guarantees that for matching leaves there is an automorphism (isomorphism
when considering trees from different graphs) mapping one leaf to the other.

While, depending on the input, the backtracking trees can come in many shapes and sizes,
we want to record several properties. For starters internal vertices cannot have only one child
since there is no reason to individualize vertices in singleton classes. Furthermore the number
of children a node in the search tree can have is certainly bounded by the number of vertices
of the input graph. However, in practice most nodes have significantly fewer children.

The size of the search tree is the dominating factor of the running time. In fact, for
most implementations the non-recursive work can be polynomially bounded. Thus, up to a
polynomial factor, the running time agrees with the number of vertices of the search tree
that are traversed (see for example [17, Theorem 9] and [15]).

Practical Heuristics. A closer look at the practical tools reveals that for most graphs they
do not traverse the entire tree. Two main heuristics are commonly applied to prune the
search tree, called invariant pruning and automorphism pruning. The reader familiar with IR
tools may worry that our model omits these two crucial aspects. However, in the following,
we explain why both of these pruning techniques are captured by the model.

First of all, by using invariant pruning, IR algorithms are sometimes able to cut off parts
of the search tree at inner nodes. This is done using invariants which yield different values
at different parts of the tree. In principle this process could be emulated in the model by
adding colors to the inner nodes. When doing so, it is crucial that the invariance axiom does
not apply to the inner nodes, since only for leaves the associated invariants are complete.
We could extend all results from this paper to the adapted model. In any case, it turns out
that to some extent this kind of mechanism is already captured in our model since it allows
inner vertices to have different degrees. Degrees of vertices can serve to distinguish inner
nodes exactly in the same fashion as invariants do.

Second of all, by using discovered automorphisms of the graph, automorphism pruning is
a method to skip branches that we already know are symmetric. Another way of seeing this
is that automorphisms allow us to form quotients of the search tree. In our setting, we can
simply define the trees to be the quotients of the original search trees. This simulates perfect
automorphism pruning. It does not explain how to find one or all automorphisms in one of
the trees, but these kinds of problems are closely linked to finding isomorphisms and can
also be expressed in our search tree model (see below).

In summary, both types of heuristics are captured by our model.

Traversal Strategies in Practical Tools. There are only two main traversal strategies used
by competitive practical tools. In fact, with the exception discussed below, all competitive
tools essentially traverse the search tree using depth-first search [5, 6, 8, 12].

However, the practical solver Traces introduced a radically different strategy, which turns
out to be much more effective in most practical cases: breadth-first traversal is combined with
random walks of the search trees [12, 15]. The idea is that breadth-first traversal maximizes
applicability of pruning rules, while random walks are used to discover automorphisms for
pruning. While crucially exploiting randomization, the tool does not make errors.
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Related Problems. Practical algorithms mostly do not decide the graph isomorphism
problem, but rather solve one of two strongly related types of problems. In the following, we
discuss these related problems and how they can be modeled using black box search trees.

The automorphism group problem requires computation of the entire automorphism group
of a graph. This problem is closely related to the graph isomorphism problem and there are
polynomial-time Turing reductions from each problem to the other [9]. Regarding IR search
trees, in our model the problem corresponds to finding all leaves of an arbitrary color.

Alternatively, we can solve the asymmetry problem or equivalently the problem of searching
for a non-trivial graph automorphism. In our model this translates to finding two distinct
leaves of the same color if they exist. In IR algorithms, it suffices to solve the asymmetry
problem. When non-trivial automorphisms are discovered, a wrapper algorithm may then
remove the symmetry from the search tree and repeat the task on a quotient of the search
tree. Such a wrapper algorithm has to repeat the problem at most a number of times that
is quasi-linear in the order of the graph (repetitions are directly tied to the length of the
longest subgroup series). Overall, our results on traversal strategies immediately carry over
to the various tasks regarding automorphism group computations.

Another important problem in practice is canonization. The goal here is essentially
to find a normal form for graphs by finding a canonical ordering of the vertices. This
way isomorphism testing reduces to equality testing of the normal forms. Hence, graph
isomorphism reduces to canonization in polynomial-time, but we currently do not know
whether graph isomorphism and canonization are polynomial-time equivalent.

In IR algorithms, this problem can be modeled as follows. The solvers are now executed
on a single graph, yielding a single search tree. The goal is to return a particular leaf in the
given input trees. The requirement is that the output has to be consistent across different
but isomorphic inputs. It is not clear to us whether any of the techniques for sublinear
exploration developed in this paper can be transferred to the canonization problem.

6 Conclusion and Future Work

We designed an abstract model that captures the backtracking behavior of IR algorithms
and proved bounds for various scenarios. We want to stress the fact that the class of trees
Mh used throughout the paper for lower bound constructions models actual recursion trees
of the IR algorithms. In fact the trees closely resemble those arising form so-called shrunken
multipede graphs of [14], which form worst case inputs for all IR algorithms. These recursion
trees are in particular of degree at most 4 and have exponential size. In other words, our
worst case lower bounds apply to instances stemming from true inputs to IR algorithms.

Using our new insights we can explain why some of the strategies used by the currently
fastest practical solver Traces turn out to be highly efficient. As discussed previously,
Traces uses breadth-first search intertwined with random walks of the search tree. In
particular, this is often done in a cost balancing manner, such that the number of random
walks is proportional to the cost of breadth-first search. This in turn often leads to the
automorphism group being found in time proportional to the square root of the search
tree size. For sophisticated pieces of software such as Traces, the traversal strategy is
of course not the only deciding factor when it comes to running time. However, generally,
the experimental paths often enable Traces to discover automorphisms much earlier than
solvers solely utilizing depth-first traversal. Hence automorphisms are available more quickly
for pruning. Overall, in some sense, Traces emulates some of the techniques described in
our Monte Carlo algorithm.
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Interestingly, Traces also sometimes uses some techniques of the Las Vegas algorithm we
describe. Specifically it performs splits in its “special traversal” strategy for automorphism
groups (see [12]). When Traces detects a leaf on level h with parent v, in our terminology
it executes the split (v, h− 1). Since many graphs in the benchmark suite of [12] have search
trees of height 2 or 3, Traces in practice turns out to frequently perform splits that are
fairly balanced. This results in significant speedups over other solvers (e.g., see runtime on
combinatorial graphs with switched edges in [12]).

In subsequent work, we were able to show that an implementation of the Monte Carlo
approach indeed outperforms state-of-the-art solutions for isomorphism testing in practice.
Interestingly, besides superior worst-case guarantees, the approach has further practical
advantages that simplify its implementation over state-of-the-art tools [1].

Regarding future work, a theoretical question that remains is whether sublinear traversal
strategies for the graph canonization problem are possible. Furthermore, the challenge
remains to close the gap of logarithmic factors between our upper and lower bounds. Also
one might want to address the fact that the size of the larger tree rather than the size of the
smaller tree appears in the upper bound of the Las Vegas algorithm.

References
1 Markus Anders and Pascal Schweitzer. Engineering a fast probabilistic isomorphism test. In

ALENEX’21: Proceedings of the Symposium on Algorithm Engineering and Experiments, 2021.
to appear.

2 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016. doi:10.1145/2897518.
2897542.

3 Marek Chrobak and Claire Kenyon-Mathieu. SIGACT news online algorithms column 10:
competitiveness via doubling. SIGACT News, 37(4):115–126, 2006. doi:10.1145/1189056.
1189078.

4 Paul T. Darga, Hadi Katebi, Mark Liffiton, Igor L. Markov, and Karem Sakallah. Saucy3.
http://vlsicad.eecs.umich.edu/BK/SAUCY/.

5 Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting structure
in symmetry detection for CNF. In Proceedings of the 41st Annual Design Automation
Conference, DAC ’04, pages 530–534, New York, NY, USA, 2004. ACM. doi:10.1145/996566.
996712.

6 Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool for large and
sparse graphs. In ALENEX’07: Proceedings of the Ninth Workshop on Algorithm Engineering
and Experiments, pages 135–149, New Orleans, USA, 2007. SIAM.

7 José Luis López-Presa, Antonio Fernández Anta, and Luis N. Chiroque. Conauto2.
https://sites.google.com/site/giconauto/.

8 José Luis López-Presa, Luis F. Chiroque, and Antonio Fernández Anta. Novel techniques to
speed up the computation of the automorphism group of a graph. J. Applied Mathematics,
2014:934637:1–934637:15, 2014. doi:10.1155/2014/934637.

9 Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process. Lett.,
8(3):131–132, 1979. doi:10.1016/0020-0190(79)90004-8.

10 Brendan D. McKay. Practical graph isomorphism. In 10th. Manitoba Conference on Numerical
Mathematics and Computing (Winnipeg, 1980), pages 45–87, 1981.

11 Brendan D. McKay and Adolfo Piperno. Nauty and traces user guide.
https://cs.anu.edu.au/people/Brendan.McKay/nauty/nug25.pdf.

12 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic
Computation, 60(0):94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/1189056.1189078
https://doi.org/10.1145/1189056.1189078
http://vlsicad.eecs.umich.edu/BK/SAUCY/
https://doi.org/10.1145/996566.996712
https://doi.org/10.1145/996566.996712
https://sites.google.com/site/giconauto/
https://doi.org/10.1155/2014/934637
https://doi.org/10.1016/0020-0190(79)90004-8
https://cs.anu.edu.au/people/Brendan.McKay/nauty/nug25.pdf
https://doi.org/10.1016/j.jsc.2013.09.003


M. Anders and P. Schweitzer 16:21

13 A. G. Munford. A note on the uniformity assumption in the birthday problem. Amer. Statist.,
31(3):119, 1977. doi:10.2307/2682958.

14 Daniel Neuen and Pascal Schweitzer. Benchmark graphs for practical graph isomorphism. In
25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna,
Austria, volume 87 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.60.

15 Adolfo Piperno. Search space contraction in canonical labeling of graphs (preliminary version).
CoRR, abs/0804.4881, 2008. arXiv. arXiv:0804.4881.

16 David J. Rosenbaum. Breaking the nlog n barrier for solvable-group isomorphism. In Proceed-
ings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1054–1073. SIAM, 2013.
doi:10.1137/1.9781611973105.76.

17 Pascal Schweitzer. Problems of unknown complexity: graph isomorphism and Ramsey theoretic
numbers. Phd. thesis, Universität des Saarlandes, Saarbrücken, Germany, 2009.

18 Stoicho D. Stoichev. New exact and heuristic algorithms for graph automorphism group and
graph isomorphism. ACM Journal of Experimental Algorithmics, 24(1):1.15:1–1.15:27, 2019.
doi:10.1145/3333250.

ICALP 2021

https://doi.org/10.2307/2682958
https://doi.org/10.4230/LIPIcs.ESA.2017.60
http://arxiv.org/abs/0804.4881
https://doi.org/10.1137/1.9781611973105.76
https://doi.org/10.1145/3333250




Breaking the Barrier Of 2 for the Competitiveness
of Longest Queue Drop
Antonios Antoniadis #

University of Twente, The Netherlands

Matthias Englert #

University of Warwick, Coventry, UK

Nicolaos Matsakis #

Athens, Greece

Pavel Veselý #

Computer Science Institute of Charles University, Prague, Czech Republic

Abstract
We consider the problem of managing the buffer of a shared-memory switch that transmits packets
of unit value. A shared-memory switch consists of an input port, a number of output ports, and
a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the
input port, each packet designated for one output port. Each packet is added to the queue of the
respective output port. If the total number of packets exceeds the capacity of the buffer, some
packets have to be irrevocably rejected. At the end of each time step, each output port transmits a
packet in its queue and the goal is to maximize the number of transmitted packets.

The Longest Queue Drop (LQD) online algorithm accepts any arriving packet to the buffer.
However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet
from the back of whichever queue is currently the longest, breaking ties arbitrarily. The LQD
algorithm was first introduced in 1991, and is known to be 2-competitive since 2001. Although LQD
remains the best known online algorithm for the problem and is of practical interest, determining
its true competitiveness is a long-standing open problem. We show that LQD is 1.707-competitive,
establishing the first (2 − ε) upper bound for the competitive ratio of LQD, for a constant ε > 0.
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1 Introduction

The fact that communication networks are omnipresent highlights the significance of improving
their performance. A natural way to achieve such performance improvements is to develop
better algorithms for buffer management of shared-memory switches which form the lower
levels of network communication. We study a fundamental model of such switches.
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Consider a shared-memory network switch consisting of a buffer of size M ∈ N, an input
port, and N ∈ N output ports. Furthermore, consider a slotted time model. In each time
step, an arbitrary number of unit-valued packets arrive to the input port. Each packet comes
with a label specifying the output port that it has to be forwarded to. A buffer management
algorithm has to make a decision for each packet: either irrevocably reject it, or accept it
while ensuring that the buffer capacity M is respected, which may mean that a previously
accepted packet has to be evicted. At the end of the time step, each output port with at least
one packet in the buffer destined to it transmits a packet. The goal of the buffer management
algorithm is to accept/reject incoming packets or evict already accepted packets, so as to
maximize the throughput, i.e., the total number of transmitted packets, while ensuring that
at most M packets in total are stored for all output ports at any time.

Given the inherently online nature of buffer management problems, a standard approach
is to design online algorithms for them and evaluate the algorithm’s performance using its
competitive ratio. More specifically, an online algorithm ALG is c-competitive (where c ≥ 1),
if the number of packets transmitted by an optimal offline algorithm OPT (that has full
knowledge of the incoming packet sequence a priori) is at most c times the number of packets
transmitted by ALG. There exists an extensive body of research dedicated to designing
competitive online algorithms with the aim of improving the performance of networking
devices that incorporate buffers (see e.g. [20, 32]).

Since packets have unit value, we can assume without loss of generality that the packets
destined to a specific output port are transmitted in an earliest-arrival (FIFO) fashion and
thus, it is helpful to associate each output port with a queue.

Intuitively speaking, to maximize throughput, one would like to maintain a flow of packet
transmissions for as many queues in parallel as possible. It is therefore desirable to prioritize
accepting packets for queues that do not have many incoming packets in the near future.
Unfortunately, an online algorithm does not know which queues these are, and in order to be
insured against an adversarial input it seems reasonable to try to keep the queue lengths
as balanced as possible in every step. This is exactly the idea behind the online algorithm
Longest Queue Drop (LQD), introduced in 1991 by Wei, Coyle, and Hsiao [35]: The incoming
packet is always accepted and if this causes the buffer to exceed its capacity then one packet
from the longest queue, breaking ties arbitrarily, is evicted (this could be the incoming
packet).1

The LQD algorithm, apart from being a natural online algorithm to derive, remains the
only known competitive algorithm for this problem. Since the algorithm is simple and can
be used, for instance, to achieve a fair distribution of the bandwidth, it is of some practical
interest; see e.g. [10, 11, 12, 13, 31, 33].

Previous Results

Hahne, Kesselman, and Mansour [21] provided the first formal analysis of LQD, showing that
it is 2-competitive (see also Aiello, Kesselman, and Mansour [1]). The proof follows from a
simple procedure that charges the extra profit of OPT to the profit of LQD. Furthermore,
they demonstrate that LQD is at least

√
2-competitive, and also showed a general lower

bound of 4/3 for the competitive ratio of any deterministic online algorithm.

1 Wei, Coyle, and Hsiao proposed the LQD algorithm for the problem of shared-memory switches, consisting
of N input ports and N output ports. Rather than assuming N input ports, each of which may receive
at most one packet per time step, we more generally assume that there is a single input port of infinite
capacity. Furthermore, we do not put any restrictions on the number of output ports, i.e., we allow N
to be arbitrarily large. Again, this only makes the problem more general.
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The analysis of LQD in [1, 21] was then refined by Kobayashi, Miyazaki, and Okabe [28]
who showed that the LQD competitive ratio is at most 2 − mink=1,...,N (⌊M/k⌋ + k − 1)/M .
However, for N >

√
M , this bound becomes 2 − O(1/

√
M) and therefore does not establish

a 2 − ε upper bound for a constant ε > 0 in general. Additionally, for the case of N = 2
output ports, LQD is exactly 4M−4

3M−2 -competitive [28] (we note that although this result holds
for an even buffer size, the argument unfortunately breaks down when the buffer size is odd).
For the case of N = 3 output ports, Matsakis shows that LQD is 1.5-competitive [30].

More recently, Bochkov, Davydow, Gaevoy, and Nikolenko [9] improved the lower bound
on the competitiveness of LQD from

√
2 to approximately 1.44 (using a direct simulation

of LQD and also independently, by solving a linear program). Moreover, they show that
any deterministic online algorithm is at least

√
2-competitive, using a construction inspired

by the LQD specific lower bound from [1, 21]. To the best of our knowledge, so far, no
randomized algorithms for this problem have been studied.

Our Contribution

Although LQD is the best known online algorithm for buffer management in shared-memory
switches, determining its true competitiveness remains an elusive problem and has been
described as a significant open problem in buffer management [20, 32]. After the initial
analysis which showed that LQD is 2-competitive and not better than

√
2-competitive [1, 21]

progress on the upper bound has been limited to special cases (e.g., with restrictions on the
number of output ports or memory size) [28, 30]. In this paper, we make the first major
progress in almost twenty years on upper bounding the competitive ratio of LQD. Namely, we
prove the first (2 − ε) upper bound for a constant ε > 0 without restrictions on the number
of ports or the size of the buffer:

▶ Theorem 1. LQD is 1.707-competitive.

We remark that Theorem 1 applies to LQD with any tie-breaking rule, even if tie-breaking
is under control of the adversary, and that our upper bound is strictly smaller than 1 + 1/

√
2.

Our Techniques

The proof of 2-competitiveness of LQD in [1, 21] uses the following general approach. If an
optimal offline algorithm OPT currently stores more packets for a queue than LQD does,
these excess packets present potential extra profit for OPT. Each such potential extra packet
p in OPT is then matched to a packet that is transmitted by LQD at some point before
packet p can be transmitted by OPT.

Our approach is different in that we (for the most part) do not match specific packets to
one another. Instead, the idea is to take the total profit of LQD in each step and distribute it
evenly among all potential extra packets that exist at the time. As such, the scheme is less
discrete than the previous one. We then carefully calculate that, for each queue, on average
each potential extra packet in that queue receives a profit strictly larger than one.

As described here, this approach does not quite work yet. Two additional types of charging
concepts have to be combined with this first idea: One involves not splitting the LQD profit
completely evenly and instead slightly favoring queues with relatively few potential extra
packets, and the other involves matching some of the potential extra packets of OPT to
extra packets that LQD transmits. Another difficulty is that the lengths of two queues, from
which packets are rejected or evicted in the same time step, may differ by one packet. This
makes our proof more intricate. To deal with this, we introduce a potential function that
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will amortize the LQD profit in a suitable way. Then, the main challenge is to obtain useful
lower bounds on the profit assigned to each queue, for which we introduce a novel scheme
that relates the buffers of LQD and of OPT.

Further Related Work

We refer the reader to the survey by Goldwasser [20] for an overview of online algorithms
for buffer management problems. Additionally, the survey of Nikolenko and Kogan [32]
incorporates some more recent work. In the following, we discuss some of the results related
to online buffer management for switches. In general, buffer management algorithms can be
partitioned into preemptive ones, i.e., algorithms that allow for the eviction of already accepted
packets from the buffer (eviction is also referred to as preemption), and non-preemptive ones
that never evict a packet after it has been accepted.

Kesselman and Mansour [25] study buffer management in shared-memory switches in the
non-preemptive setting in which a packet has to be transmitted once it is stored in the buffer
and can no longer be evicted. They introduce the Harmonic online algorithm, which tries to
maintain the length of the ith longest queue as roughly proportional to a 1/i fraction of the
memory. They show that this algorithm is (ln(N) + 2)-competitive and give a general lower
bound of Ω(log N/ log log N) for the performance of any deterministic non-preemptive online
algorithm. Considering the non-constant lower bound that they establish, it follows that
preemption provides a significant advantage.

Eugster, Kogan, Nikolenko, and Sirotkin [19] generalize the same problem in the following
two ways: First, they study unit-valued packets labeled with an output port and a processing
requirement (in our case, we have a unit processing cycle per packet). Packets accepted to the
same queue have the same processing requirement. They introduce the preemptive Longest-
Work-Drop algorithm: If the buffer is not full, the incoming packet is accepted; otherwise,
a packet is preempted from a queue that has the largest total processing requirement.
They show that this algorithm is 2-competitive and at least

√
2-competitive and that the

competitive ratio of LQD for this more general problem is at least (
√

k − o(
√

k)), where k is
the maximum processing time of any packet. Second, they address the problem of different
packet values when all packets have unit processing requirements. They show that LQD is at
least ( 3

√
k − o( 3

√
k))-competitive in this case, where k is the maximum packet value. They

also introduce a new algorithm which they conjecture to have a constant competitive ratio.
Azar and Richter [6] study switches with multiple input queues. More specifically, they

consider one output port and N input ports and assume that each input port has an
independent buffer of size M . At each time step, one packet can be sent from a single
input port to the output port. For M = 1, they prove a lower bound of 1.46 − Θ(1/N) for
the competitive ratio of any randomized online algorithm and a lower bound of 2 − 1/N

for deterministic online algorithms. They also give a randomized e
e−1 ≈ 1.582-competitive

algorithm for M > log N . For M > 1, Albers and Schmidt [3] design a deterministic 1.889-
competitive algorithm for this problem and show a deterministic lower bound of e

e−1 ≈ 1.582
when N ≫ M . Azar and Litichevskey [5] give a deterministic online algorithm matching this
bound for large M .

A lot of research has been dedicated to the natural single input and single output port
model. The model is trivial for unit packet values, but challenging if packets can have
different values and the goal is to maximize the total value of transmitted packets. There
exists a single queue for the accepted packets and one of the most studied versions of this
problem requires packet transmission in the FIFO order. Kesselman, Lotker, Mansour,
Patt-Shamir, Schieber, and Sviridenko [24] show that a simple greedy algorithm is exactly
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(2−1/(M +1))-competitive when preemption is allowed. A series of works gradually improved
the analysis of a better online algorithm from 1.983 [26], over 7/4 [7], to

√
3 [17]. Kesselman,

Mansour, and van Stee [26] also show a general lower bound of 1.419 for the competitive
ratio of any preemptive deterministic online algorithm.

The authors of [24] introduce the bounded-delay model of single output port switches.
In this model, the buffer has unlimited size and allows for packets to be transmitted in any
order, however, each packet has a deadline after which it needs to be dropped from the
buffer. Once again, the problem is only interesting if packets can have different values. Any
deterministic online algorithm is at least ϕ ≈ 1.618-competitive [4, 15, 22, 36], and after a
sequence of gradual improvements [16, 18, 29], Veselý, Chrobak, Jeż, and Sgall [34] recently
gave a ϕ-competitive algorithm. The competitive ratio of randomized algorithms is still
open, with the best upper bound of e

e−1 ≈ 1.582 [8, 14, 23] (that holds even against the
adaptive adversary), while the lower bounds are 1.25 against the oblivious adversary [8] and
4/3 against the adaptive adversary [15].

Lastly, we mention the model of Combined Input and Output Queued (CIOQ) Switches,
in which the switch has N input ports and N output ports. Each input and output port has
its own buffer and each input port can transfer a packet to any output port; however, at
most one packet can be sent from any input port and at most one packet can be accepted
by any output port, during one transfer cycle of the switch. A parameter S called speedup
equals the number of transfer cycles of the switch taking place per one time step. For the
unit-value case, Kesselman and Rosén [27] provide a 2-competitive non-preemptive online
algorithm for S = 1, which becomes 3-competitive for any S. A faster algorithm with the
same competitive ratio is given by Al-Bawani, Englert, and Westermann [2].

2 Setup of the Analysis

We fix an arbitrary instance I. Let OPT and LQD be the optimal offline algorithm and the
Longest Queue Drop algorithm, respectively. In a slight abuse of notation, we also denote
the profit that the optimal offline algorithm gains on input instance I as OPT and the profit
that the Longest Queue Drop algorithm gains as LQD. Our goal is to give an upper bound
on OPT/LQD.

For a time step t and a queue q, we say that OPT transmits an OPT-extra packet from
q if OPT transmits a packet from q in step t but LQD does not. Equivalently, queue q is
non-empty in OPT’s buffer but empty in LQD’s buffer at t. Similarly, we say that LQD
transmits an LQD-extra packet from a queue q in step t if LQD transmits a packet from q at
t but OPT does not.

Let OPTEXTRA and LQDEXTRA be the total number of transmitted OPT-extra and LQD-
extra packets, respectively, over all time steps and queues. Then OPT − OPTEXTRA =
LQD − LQDEXTRA and hence OPT

LQD = 1 + OPTEXTRA−LQDEXTRA
LQD . Therefore, if we show that

ϱ · (OPTEXTRA − LQDEXTRA) ≤ LQD for some ϱ > 1, it will imply a competitive ratio of
1 + 1/ϱ < 2 for the Longest Queue Drop algorithm.

Let eq denote the total number of transmitted OPT-extra packets from queue q over all
time steps. Then we have OPTEXTRA =

∑
q eq and we will show

ϱ ·

(∑
q

eq − LQDEXTRA

)
≤ LQD . (1)

We now give a high-level overview of the proof of Equation (1), which consists of two parts:
(i) splitting the LQD profit among queues q with eq > 0, and (ii) mapping transmitted
LQD-extra packets to queues q with eq > 0.
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For (ii), we use the term LQDEXTRA in (1) to “cancel out” some transmitted OPT-extra
packets. To this end, we will define how each transmitted LQD-extra packet p is mapped to
a queue q (which is different from the one p is transmitted from). Let mq be the number
of transmitted LQD-extra packets which are mapped to q. The mapping will be such that∑

q mq ≤ LQDEXTRA and that mq ≤ eq. Define êq = eq −mq ≥ 0 as the number of OPT-extra
packets transmitted from queue q which are not canceled out.

We have
(∑

q eq − LQDEXTRA

)
≤
∑

q(eq − mq) =
∑

q êq. Hence, it is sufficient for each q

to receive a profit of at least ϱ · êq, from which it follows that ϱ ·
∑

q êq ≤ LQD, implying (1).
We describe splitting the LQD profit, enhanced with a suitable potential, in Section 3

and introduce useful quantities for bounding the profit assigned to a particular queue in
Section 4. Then, in Section 5, we introduce the mapping of transmitted LQD-extra packets
to queues and derive a relation between the buffers of LQD and of OPT. Finally, we put the
bounds together and optimize the value of ϱ in Section 6, which will yield our upper bound
on the LQD competitive ratio.

3 Splitting the LQD Profit

In this section, we explain how the LQD profit is split. Before we proceed, we introduce
some notation and terminology and define a key time step for a queue. When we refer to
the state of a queue at time step t under some algorithm, we refer to the state after all new
packets of step t have arrived and after all possible rejections/preemptions of packets by
the algorithm, but before any packet is transmitted by the algorithm at the end of step t.
(Note that by preemption we mean an eviction of an already accepted packet.) We use the
following notation:

st
OPT(q): the number of packets in queue q in the OPT buffer in step t,

st
LQD(q): the number of packets in queue q in the LQD buffer in step t,

st
max = maxq st

LQD(q): the maximal size of a queue in the LQD buffer in step t.

We say that a queue q is active in a time step t if st
OPT(q) ≥ 1 or st

LQD(q) ≥ 1. Otherwise,
if q is empty in both buffers at t, we say that q is inactive at t. See Figure 1 for an illustration.

Assumptions on the Instance

First, we assume without loss of generality (w.l.o.g.) that the longest queue in LQD’s buffer
has at least two packets in every step before the last step when packets are transmitted by
LQD.
(A1) We assume that once st

max ≤ 1, no packet arrives to any queue in any step t′ > t.
Consequently, st

max ≥ 2 for any step t starting from the step in which the first packets
are stored in the buffer and before the last step when the LQD buffer is not empty.

To see that this assumption is w.l.o.g., note that if st
max ≤ 1 then after packets are transmitted

in step t, the LQD buffer is empty. Hence, LQD’s processing of possible packets arriving after
t is essentially independent of its behavior up to step t, and the adversary may postpone the
arrival of future packets by an arbitrary number of steps, which may only help to increase
the throughput of OPT but does not change the throughput of LQD.

We also make the following assumption w.l.o.g., which will greatly reduce the additional
notation required.
(A2) For any queue q and step t, we assume that if st

LQD(q) ≤ 1 but at least one packet
arrived to q at or before time step t, then no packet arrives to queue q after step t. (If
st

LQD(q) = 1 then the last packet is transmitted from q in step t.)
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↓ 1 ↓ 2 ↓ 3 ↓ 4 ↓ 5 ↓ 6 ↓ 7 ↓ 8 ↓ 9 ↓ 10 queues

packets

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Figure 1 An example of the buffer configuration for LQD and OPT at some time step t. The
blue, north-west shaded areas (aligned to the left) correspond to the packets in queues of LQD and
the red, north-east shaded areas (aligned to the right) to the queues of OPT. For instance, we have
st

OPT(6) = 14, and st
LQD(6) = 7. Furthermore, st

max = 12 is the maximal size of a queue for LQD.
Note that an OPT-extra packet is going to be transmitted from queue 9 in step t, and as queue 9 is
empty for LQD, no further packet arrives to this queue by assumption (A2). All the queues with an
index ≥ 10 are inactive (i.e., empty in both buffers). According to Definition 2, queues 1, 2, and 3
overflow. As an example, assume that further 3 packets arrive into queue 8. Then LQD would first
preempt a packet from queue 1 and then select two of the queues 1, 2 or 3, dropping one packet
from each selected queue.

To see that this assumption is w.l.o.g., we iteratively modify the instance under consider-
ation as follows: Let q be any queue q that does not satisfy this assumption and let t be the
first time step such that st

LQD(q) ≤ 1 and there is a packet arriving to q at t or before. As
q does not satisfy the assumption, there is a packet arriving to q after step t; let p be the
first such packet. In the modified instance, p and all later packets for queue q are instead
sent to a new queue which is not used in the instance otherwise. Observe that the profit
of LQD does not change after redirecting these packets to a new queue, while the profit of
OPT cannot decrease when we make this change. We remark that the new queue is always
available as the number of output ports N is not restricted and can be arbitrarily large.
Note that we only make this assumption to simplify our notation and it does not affect the
generality of our analysis. Indeed, if the number of output ports used in the original instance
is bounded by N0, then after applying this transformation, there are always at most N0
queues non-empty for LQD at any one time.

For instance, under assumption (A2), if an OPT-extra packet is transmitted from a queue
q in some step t (as q is empty for LQD), then no packet arrives to q in any step t′ > t.

Overflowing Queues

Intuitively, if a packet destined to q is rejected or preempted by LQD at t, then we say that q

overflows. Furthermore, in such a case, the LQD buffer is full in step t and q has st
max − 1 or

st
max packets at t (see the example in Figure 1). This possible difference of 1 in the lengths
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of two different overflowing queues makes our analysis substantially more involved.2 For
technical reasons, we also call a queue q′ containing at least st

max − 1 packets at t overflowing,
provided that the LQD buffer is full and st

LQD(q′) ≥ 1, even though there may be no packet
for q′ that is rejected or preempted at time t (it may even happen that no packet destined to
any queue gets rejected or preempted at t but there are still some overflowing queues).

▶ Definition 2. We say that a queue q overflows in step t if the LQD buffer is full in step t,
st

LQD(q) ≥ st
max − 1, and st

LQD(q) ≥ 1.

Assumption (A2) also implies that once st
LQD(q) ≤ 1, then queue q does not overflow

after t (as after step t, it is empty in the LQD buffer).

Key Time Step

Based on assumption (A2), we give a definition of a key time step tq for queue q. For each
queue q, we define:
tq: the last time step in which queue q overflows; if q does not overflow in any step, we

define tq = −1 (we index time steps starting from 0).
Some important properties follow directly from the definition of tq: No packet is ever
preempted by LQD from q after tq and no packet arriving to q after tq is rejected by LQD,
since a preemption or rejection in some step t implies that the queue overflows at t. We
remark that we define tq = −1 for queues q that do not overflow in any step in order to have
the property that for such queues, tq < t for all time steps t.

We would like to keep track of how many OPT-extra packets are yet to be transmitted
from a queue, for which the following notation is useful.
et

q: the number of OPT-extra packets transmitted from q in step t or later.
êt

q = max{et
q − mq, 0}: that is, et

q adjusted for the packets that are canceled out by
transmitted LQD-extra packets. Note that mq will be specified in Section 5.

Note that eq = e0
q = e

tq
q as no OPT-extra packet is transmitted before time tq by

assumption (A2). Thus, et
q is constant up to time tq. After that, it further remains constant

until q becomes empty for LQD, and then it decreases by one in each step until it becomes
equal to zero. The same property holds for êt

q. The definition of tq gives us a useful
observation:

▶ Observation 3. For any step t and queue q with t ≥ tq (i.e., that does not overflow after t),
it holds that max

{
st

OPT(q) − st
LQD(q), 0

}
≥ et

q.

Phases

It will be convenient in certain parts of the analysis to consider time phases instead of time
steps. More specifically, let τ1 < τ2 < ... < τℓ be the time steps in which at least one queue
overflows for the last time, i.e., for each 1 ≤ i ≤ ℓ there is a queue q such that τi = tq ≥ 0.
Note that it has to be ℓ > 0 so that OPT gains extra profit (equivalently, ℓ = 0 only if
OPTEXTRA = 0). We call the time interval [τi, τi+1) the i-th phase; for i = ℓ, we define
τℓ+1 = ∞. We remark that time steps before τ1 do not belong to any phase, because there

2 A less sophisticated version of our proof, which deals with this scenario in a less careful way, only gives
an upper bound of about 1.906 on the competitive ratio. Nevertheless, this analysis still requires the
majority of concepts, lemmas, and calculations developed in the paper.
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are no OPT-extra packets transmitted before step τ1. Finally, observe that for any queue q

that overflows at least once (i.e., tq ≥ 0), there has to exist an i such that tq = τi as this
queue overflows at tq for the last time.

In the remainder of the paper, our focus will be mainly on steps τ1, . . . , τℓ. For simplicity
and to avoid double indexing, we shall write si

LQD(q) instead of sτi

LQD(q), and similarly, we
use index i instead of τi in other notations. Throughout the paper, i will be used solely to
index phases and time steps τ1, . . . , τℓ.

Intuition for Splitting the LQD Profit

The key ingredient of our analysis is the splitting of the LQD profit such that we assign a
profit of at least ϱ · êq to each q. To keep track of how much profit we assigned to a queue
q, we use counter Φq. In particular, ∆iΦq will be the LQD profit assigned to q in phase i

and Φq =
∑ℓ

i=1 ∆iΦq will be the LQD profit assigned to q over all phases. We will ensure
that LQD ≥

∑
q Φq. The crucial part will be to show that Φq ≥ ϱ · êq, which, together with∑

q(eq − êq) =
∑

q mq ≤ LQDEXTRA, implies (1) using

LQD ≥
∑

q

Φq ≥
∑

q

ϱ · êq ≥ ϱ ·

(∑
q

eq − LQDEXTRA

)
.

Let LQDi be the profit of LQD in phase i, i.e., the total number of packets transmitted
by LQD in all time steps in [τi, τi+1). A first idea is to split LQDi among queues q satisfying
tq ≤ τi proportionally to êi

q, meaning that we assign a profit of LQDi · êi
q/êi to a queue q

with τi ≥ tq, where êi =
∑

q:τi≥tq
êi

q. Such a scheme is useful because we can relate êi to a
certain fraction of the LQD profit; this is elaborated in Section 5.

Unfortunately, this simple idea fails for “short” queues, by which we mean queues for
which êq is relatively small compared to the number of packets that LQD transmits from q

starting from time tq. In particular, the total profit assigned to such a short queue q may be
very close to êq, which would only be sufficient for ϱ = 1, thus proving 2-competitiveness.

To give a higher profit to a short queue q, we choose a parameter α ∈ (0, 1) and directly
assign to q a (1 − α)-fraction of the profit LQD gains by transmitting packets from q

itself starting at time step tq, whereas the remaining α-fraction of these packets is split
proportionally to êi

q. The parameter α ≈ 0.58 is chosen at the very end of the analysis, so as
to minimize the competitive ratio upper bound.

Potential

Before describing how exactly we split the LQD profit, we introduce a potential that will help
us to deal with the fact that some queues overflowing in step t may only have st

max −1 packets
and not st

max packets. On an intuitive level, this potential amortizes the profit assignment
by moving some profit from phases with a slack to phases in which our lower bounds on the
profit assigned are tight; we develop these bounds in the subsequent sections.

Namely, at any phase i, let Ai be the set of queues q that are active in step τi and satisfy
tq > τi (i.e., will overflow after the beginning of phase i). Thus, for any such queue q we
have tq = τj for some j > i and consequently, q is non-empty for LQD in every step during
phase i by assumption (A2) (as otherwise, q would not overflow at τj).

Then, using the aforementioned parameter α, we define potential Ψi := α · |Ai|. Note that
the potential at the beginning is Ψ1 ≤ α · M and after the last packet of the input instance
is transmitted, the potential equals Ψℓ+1 = 0. We define two quantities which express the
change of this potential in phase i:
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ui = the number of queues active in step τi+1 that were inactive in step τi and will overflow
after τi+1, i.e., the number of “new” active queues that will overflow after τi+1; and

vi = the number of queues that are active in step τi and overflow at τi+1 for the last time,
i.e., τi+1 = tq for any such queue q.

Let ∆iΨ := Ψi+1−Ψi be the change of the potential in phase i; observe that ∆iΨ = α·(ui−vi).

Splitting the LQD Profit

We now formally define our scheme of splitting the LQD profit. Consider phase i. Let oi be
the number of packets that LQD transmits in the i-th phase from queues q with τi ≥ tq and
eq > 0, and let ni be the number of packets transmitted by LQD in phase i from all other
queues. Note that LQDi = oi + ni.

Apart from parameter α ∈ (0, 1), we use another parameter β ∈ (0, 1) such that α+β < 1;
namely we will set β = α2/(8 · (1 − α)) (we will require that α is not too close to 1 so that
α + β < 1). Given the two parameters, in each phase i, we assign an LQD profit of

∆iΦq :=
êi

q

êi
· (ni + α · oi − ∆iΨ) + β · oi

q︸ ︷︷ ︸
L-increase

+ (1 − α − β) · oi
q︸ ︷︷ ︸

S-increase

(2)

to each queue q with τi ≥ tq and êi
q > 0, where oi

q is the number of packets that LQD
transmits from q during the i-th phase.

We call the first two terms in Equation (2) (i.e., (êi
q/êi) · (ni + α · oi − ∆iΨ) + β · oi

q)
the L-increase for q as they will be mainly useful for “long” queues (with relatively high
êq). We call the last term, (1 − α − β) · oi

q, the S-increase for q as it works well for “short”
queues. Note that we only assign profit to queues that already have overflown for the last
time. Furthermore, once a queue q with τi ≥ tq is empty in both the LQD and OPT buffers
at the start of a phase, it does not get any profit as êi

q ≤ ei
q = 0 and oi

q = 0.
To ensure feasibility of our scheme, we show that in total over all queues q with τi ≥ tq

and êi
q > 0 we assign a profit of at most LQDi − ∆iΨ. Indeed, using êi =

∑
q:τi≥tq

êi
q and∑

q:τi≥tq and êi
q>0 oi

q ≤ oi, we have

∑
q:τi≥tq and êi

q>0

∆iΦq =
∑

q:τi≥tq and êi
q>0

(
êi

q

êi
· (ni + α · oi − ∆iΨ) + β · oi

q + (1 − α − β) · oi
q

)

≤ ni + α · oi − ∆iΨ + β · oi + (1 − α − β) · oi

= ni + oi − ∆iΨ = LQDi − ∆iΨ .

While the scheme to split the LQD profit is relatively simple to define, showing Φq ≥ ϱ · êq

brings technical challenges, namely, in obtaining suitable lower bounds on the profits assigned
proportionally to êi

q and in summing up these lower bounds over all phases. We get our
lower bound based on a novel scheme that relates the buffers of LQD and of OPT, which is
introduced in the next two sections.

4 Live and Let Die

Analyzing the S-increases is relatively easy. Most of the remainder of the proof is focused on
analyzing the L-increases. We start by deriving a helpful lower bound on ni + α · oi − ∆iΨ.
For this, we first introduce the notion of live and dying queues, which are defined with respect
to a fixed queue q with tq ≤ τi and êq > 0. For this fixed queue, we need to define live and
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dying queues up until the first phase that comes after OPT transmits the last packet from
q not canceled out by an LQD-extra packet. Let jq := min{j : êj

q = 0} be the index j of
the earliest step τj in which all remaining OPT-extra packets to be transmitted from q are
canceled out.

▶ Definition 4. Fix a queue q with êq > 0, and consider a phase i with tq ≤ τi and i ≤ jq.
Let q′ be a queue for which LQD stores at least one packet at time step τi. Queue q′ is called
live with respect to (w.r.t.) queue q at time step τi if

(i) τi < tq′ , i.e., q′ overflows at some time step after the i-th phase, or
(ii) eq′ = 0 and s

jq

LQD(q′) ≥ 1,
or both. Otherwise, q′ is called dying with respect to queue q at time τi.

Note that step τjq
referred to in s

jq

LQD(q′) is after tq, since êt
q = êq > 0 in any step t before the

first OPT-extra packet is transmitted from q. Furthermore, eq′ > 0 implies that q′ becomes
empty in the LQD buffer before it becomes empty in the OPT buffer, by Observation 3.
Intuitively, and assuming that êq = eq, at time step τi, a queue q′ is dying with respect to q

if (i) it no longer overflows and (ii) either LQD runs out of packets to send from q′ before the
time OPT does or LQD runs out of packets to send from q′ before the beginning of phase jq.

The definition of live and dying queues implies the following property about transitions
between these two types. This follows since the only property in Definition 4 (for a fixed q)
that may change with increasing i is whether or not τi < tq′ .

▶ Observation 5. If a queue q′ is dying (w.r.t. queue q) in time step τi, it will never be live
(w.r.t. queue q) in step τj for any j > i. If q′ is live (w.r.t. queue q) at τi, it can become
dying (w.r.t. queue q) in time step τi+1 only if it overflows in time step τi+1 for the last time.

For any phase i, we denote the set of queues that are live in step τi w.r.t. q as Li
q and

the set of queues dying in step τi w.r.t. q as Di
q. For a fixed phase i and queue q, the sets Li

q

and Di
q partition all queues in which LQD stores packets at time τi. Let di

q be the number of
packets transmitted from queues in Di

q during phase i. We now relate ni + α · oi to |Li
q| and

di
q.

▶ Observation 6. It holds that ni ≥ |Li
q|·(τi+1−τi) and also ni+α·oi ≥ |Li

q|·(τi+1−τi)+α·di
q.

Proof. Recall that oi is the number of packets that LQD transmits in phase i from queues q′

satisfying τi ≥ tq′ and eq′ > 0, and that ni = LQDi − oi (i.e., ni is the number of packets
that LQD sends in the i-th phase from queues q′ that will overflow after τi or that satisfy
eq′ = 0). As packets sent from queues that are live in step τi are accounted for in ni, it holds
that ni ≥ |Li

q| · (τi+1 − τi), which proves the first claim.
Since every queue q′ with τi ≥ tq′ and eq′ > 0 is dying w.r.t. queue q at time step τi, we

have that oi ≤ di
q. It holds that |Li

q| · (τi+1 − τi) + di
q ≤ LQDi = ni + oi, and this inequality

implies the second claim by using oi ≤ di
q and α ≤ 1. ◀

Fix a queue q. We would like to lower bound the number di
q of packets transmitted from

dying queues during the i-th phase in some way. Note that the LQD buffer is full at times τi

and τi+1. Suppose for a moment that the set of live queues (w.r.t. queue q) does not change
between step τi and step τi+1, i.e., Li+1

q = Li
q. Now, if the number of packets that LQD

stores in live queues Li
q increases by m between step τi and step τi+1, then we know that

di
q ≥ m. This is because the buffer is full, so if the live queues gain m packets, then dying

queues must have lost at least m packets (possibly more if there are new dying queues in
step τi+1). Since dying queues do not overflow, the only possible way to reduce the number
of packets stored by LQD in dying queues is to transmit them.
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We now formalize this intuition and handle cases where the set of live queues changes
from one phase to the next. For the fixed queue q and each phase i such that τi ≥ tq and
i ≤ jq, we define

σi
q =


(∑

q′∈Li
q

si
LQD(q′)

)
/|Li

q| if |Li
q| ≥ 1,

1 otherwise .
(3)

In words, σi
q equals the average number of LQD packets in live queues (w.r.t. queue q) in step

τi, provided that there is at least one such queue. Later, in Lemma 13, we show that êi
q > 0

implies |Li
q| ≥ 1 for any phase i (i.e., that there is at least one live queue w.r.t. queue q) and

in most cases, we will only need σi
q in phases i with êi

q > 0. Since live queues are non-empty
for LQD, it holds that σi

q ≥ 1. Furthermore, as the average is at most the maximum and as
the maximum is an integer, this gives us the following observation.

▶ Observation 7. In any phase i such that τi ≥ tq and i ≤ jq, it holds that ⌈σi
q⌉ ≤ si

max.

The following lower bound on σi
q is useful for making β as small as possible.

▶ Observation 8. Assuming |Li
q| ≥ 1, it holds that σi

q ≥ 2 for any i with τi ≥ tq and i < jq.

Proof. We show that any live queue q′ (w.r.t. queue q) has at least two packets in the LQD
buffer in any step τi ≥ tq with i < jq, which is sufficient as σi

q is the average size of live queues,
provided that |Li

q| ≥ 1. For a live queue q′, consider two cases (as in Definition 4): First, if
τi < tq′ then indeed si

LQD(q′) ≥ 2 by assumption (A2) (if we had si
LQD(q′) ≤ 1, then q′ would

be empty at tq′ and would not overflow in that step). Second, if eq′ = 0 and s
jq

LQD(q′) ≥ 1,
where jq = min{j : êj

q = 0}, then we have that si
LQD(q′) ≥ 2, using assumption (A2) again

together with i < jq. ◀

Packets Transmitted from Dying Queues

We can now formally state our lower bound on the number of packets transmitted from
dying queues, taking into account the change of the potential as well. As a byproduct (by
rearranging the bound on di

q below), we obtain an upper bound on ui, the number of “new”
active queues that will overflow after τi+1, which captures the increase of the potential.
Recall that vi equals the number of queues that are active in step τi and overflow at τi+1 for
the last time.

▶ Lemma 9. Consider any queue q with êq > 0. For each phase i with τi ≥ tq and êi
q > 0,

di
q ≥ (σi+1

q − σi
q) · |Li

q| + σi+1
q · ui − vi.

Proof. As q is fixed, we consider live and dying queues w.r.t. queue q only. For simplicity, let
τ = τi and τ ′ = τi+1, thus the i-th phase is [τ, τ ′). By the definition of σi

q, live queues contain
σi

q · |Li
q| packets in the LQD buffer in step τ and thus, dying queues Di

q have M − σi
q · |Li

q|
packets in total in step τ , since the LQD buffer is full in step τ . As dying queues do not
overflow in any step after τ , it is sufficient to show that queues Di

q altogether contain at most
M − σi

q · |Li
q| − (σi+1

q − σi
q) · |Li

q| − σi+1
q · ui + vi = M − σi+1

q · |Li
q| − σi+1

q · ui + vi packets in
LQD’s buffer in step τ ′. Let x be the number of LQD packets in queues Di

q in step τ ′, so our
goal is to show

x ≤ M − σi+1
q · |Li

q| − σi+1
q · ui + vi . (4)

To this end, we analyze the LQD buffer in step τ ′. By Observation 5, any live queue
in Li

q is also live in step τ ′ or overflows in step τ ′ (possibly both). Let L′ = Li
q ∪ Li+1

q be
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↓ 1 ↓ 2 ↓ 3 ↓ 4 ↓ 5 ↓ 6 ↓ 7 ↓ 8 ↓ 9 ↓ 10 ↓ 11 ↓ 12 queues

packets

1
2
3
4
5
6
7
8
9
10

Di+1
q Li+1

q

Di
q Li

q

Figure 2 An example of the LQD buffer in step τ ′ = τi+1 for illustrating the proof of Lemma 9.
Note that si+1

max = 10 and that queues 5 − 9 overflow. However, only queue 5 becomes dying as it
overflows for the last time at τ ′, i.e., t5 = τ ′. Moreover, queue 12 was empty in step τi and queue 1
will become empty for LQD just after packets are transmitted in step τ ′ (note that no further packets
will arrive to queue 1 after step τ ′ by assumption (A2)). We have that L′ = {5, 6, . . . , 12}. Finally,
σi+1

q = 56/7 = 8, since there are 56 packets in 7 live queues Li+1
q .

the set of queues that are live in step τ or in step τ ′. Observe that L′ ∩ Di
q = ∅, since by

Observation 5 dying queues may only become empty in LQD’s buffer but not live. It follows
that queues in L′ \ Li

q must be inactive in step τ . Next, no queue that is live in step τ is
empty for LQD in step τ ′ = τi+1 by Definition 4, using i < jq, which follows from êi

q > 0.
Finally, note that L′ may contain some dying queues in Di+1

q , but all of them must overflow
at τ ′, and that L′ \ Li+1

q ⊆ Di+1
q \ Di

q (however, equality is not necessarily true). Concluding,
set L′ consists of three disjoint types of queues:

(i) live queues in step τ that remain live in step τ ′,

(ii) live queues in step τ that become dying in step τ ′ – these are queues in L′ \ Li+1
q and

we have that |L′ \ Li+1
q | = vi, which follows from Observation 5 and from the definition

of vi, and

(iii) queues inactive in step τ that are live in step τ ′ – these are queues in L′ \ Li
q and there

are at least ui many of them (some live queues may not overflow in any step, so they
are not accounted for in ui).

See Figure 2 for an illustration.
Any queue in L′ \ Li+1

q must overflow at τ ′, so it has at least si+1
max − 1 ≥ σi+1

q − 1
LQD packets at τ ′, where we use σi+1

q ≤ si+1
max by Observation 7. It follows that queues in

Di+1
q have at least x + |L′ \ Li+1

q | · (σi+1
q − 1) packets in total in step τ ′. By the definition

of σi+1
q and since LQD’s buffer is full at τ ′, queues in Di+1

q contain M − |Li+1
q | · σi+1

q

packets and thus x + |L′ \ Li+1
q | · (σi+1

q − 1) ≤ M − |Li+1
q | · σi+1

q . Rearranging and using
|L′ \ Li+1

q | = vi, we get x ≤ M − |L′| · σi+1
q + vi. Using |L′| = |Li

q| + |L′ \ Li
q| ≥ |Li

q| + ui, we
obtain x ≤ M − (|Li

q| + ui) · σi+1
q + vi, implying (4). This concludes the proof as explained

above. ◀

ICALP 2021



17:14 Breaking the Barrier of 2 for the Competitiveness of LQD

We now give two more upper bounds on ui, the number of “new” active queues that will
overflow after τi+1. The advantage of the following bound over the one from Lemma 9 is
that it does not use σi+1

q .

▶ Lemma 10. Consider any queue q with êq > 0. For each phase i with τi ≥ tq and êi
q > 0,

ui ≤ 1
2 ·
(
|Li

q| · (σi
q − 1) + di

q

)
.

Proof. As q is fixed, we consider live and dying queues w.r.t. queue q only. Let x be the
number of LQD packets in queues Di

q in step τi+1. Similarly as in the proof of Lemma 9, we
show that

x ≤ M − |Li
q| − 2 · ui . (5)

This equation implies the lemma, since dying queues Di
q have M − σi

q · |Li
q| packets in total in

step τi and thus, di
q = M −σi

q ·|Li
q|−x ≥ M −σi

q ·|Li
q|−(M −|Li

q|−2·ui) = 2·ui−(σi
q −1)·|Li

q|
by (5), from which the lemma follows by rearranging. To justify (5), queues accounted for in
ui are empty for LQD at τi and overflow after τi+1, so LQD must store at least two packets
in each of them in step τi+1 by assumption (A2). Moreover, no queue that is live in step
τi is empty for LQD in step τi+1 by Definition 4, using i < jq, which follows from êi

q > 0.
Hence, there can be at most M − |Li

q| − 2 · ui LQD packets in queues Di
q in step τi+1. ◀

Finally, we give a third upper bound on ui that is incomparable to those in Lemmas 9
and 10 and is useful for phases with a relatively small number of steps.

▶ Lemma 11. For any phase i with τi+1 − τi ≤ ⌈σi
q⌉ − 2, it holds that ui ≤ 1

2 · (ni + oi).

Proof. Recall that the new active queues accounted for in ui are empty in both buffers in
step τi and will overflow after τi+1; let U be the set of these ui queues. We show that the
number of packets in queues U in step τi+1 is at most ni + oi, i.e., the number of packets
LQD transmits during the i-th phase. This is sufficient, since any queue in U has at least two
LQD packets at τi+1 (otherwise, if there was a queue in U with at most one LQD packet in
step τi+1, no packets would arrive after τi+1 to this queue by assumption (A2), so it would
not overflow after τi+1).

Since the LQD buffer is full in step τi, it is sufficient to observe that any queue q′ has
at least si

LQD(q′) − (τi+1 − τi) packets in step τi+1 in the LQD buffer; in other words, that
packets present in q′ at τi are not preempted till step τi+1. Suppose for a contradiction that
si+1

LQD(q′) ≤ si
LQD(q′) − (τi+1 − τi) − 1. Thus, there must be a step t ∈ (τi, τi+1] such that a

packet is preempted from q′ and st
LQD(q′) ≤ si

LQD(q′) − (t − τi) − 1. As si
LQD(q′) ≤ si

max, it
holds that

st
LQD(q′) ≤ si

max − (t − τi) − 1 . (6)

Recall that there is a queue q̄ with τi = tq̄, i.e., which overflows for the last time at τi. At τi,
queue q̄ has at least si

max − 1 packets and thus,

st
LQD(q̄) ≥ si

max − 1 − (t − τi) . (7)

Combining this with (6), we obtain st
LQD(q̄) ≥ st

LQD(q′). It holds that t − τi ≤ τi+1 − τi ≤
⌈σi

q⌉ − 2 ≤ si
max − 2, where the second inequality is by the assumption of the lemma and the

third inequality by Observation 7. Plugging this into (7), we obtain st
LQD(q̄) ≥ 1. As a packet

is preempted from q′ at t, queue q′ overflows at t, i.e., it has at least st
max − 1 LQD packets.

Thus, st
LQD(q̄) ≥ st

max − 1 and by Definition 2, q̄ overflows at t (here, we also use that the
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LQD buffer is full at t as q′ overflows and that st
LQD(q̄) ≥ 1). However, this contradicts

tq̄ = τi < t. Hence, any queue q′ has at least si
LQD(q′) − (τi+1 − τi) LQD packets in step τi+1

and the number of LQD packets in queues U in step τi+1 is at most ni + oi, which concludes
the proof. ◀

5 Mapping Transmitted LQD-extra Packets

So far we derived a lower bound on ni + α · oi for a phase i which depends, among other
things, on the number of queues |Li

q| which are live w.r.t. a queue q at time τi. To make this
bound useful, we now would like to relate |Li

q| to êi.
The underlying idea behind establishing a relationship between |Li

q| and ei =
∑

q′:τi≥tq′ ei
q′

is simple. By Observation 3, quantity ei is bounded by the number of packets that are stored
in OPT’s buffer, but not in LQD’s buffer at time τi. Recall that the LQD buffer is full in
step τi. Intuitively, for each packet that OPT has in its buffer but LQD has not, there must
be a packet that LQD has in its buffer but OPT has not. Suppose for a moment that the
latter packets are all located in queues in Li

q. Then there can be no more than σi
q · |Li

q|
of them and so, we would have ei ≤ σi

q · |Li
q|. Unfortunately, things are more complicated

because not all packets of the latter type may be located in live queues. We address this
problem by introducing the earlier mentioned careful mapping of transmitted LQD-extra
packets to cancel out some of the packets counted in ei. The following notation will be useful
for brevity:

Qi: the set of queues q with τi ≥ tq and ei
q > 0. In words, Qi is the set of queues that

have overflowed for the last time by step τi and there are still some OPT-extra packets to
be transmitted from them in phase i or later.

To describe our specific mapping, we apply the procedure specified in Algorithm 1 on
the solutions of LQD and OPT on the fixed instance I. Our values mq are given as the final
values of m′

q after the procedure has been run.

Algorithm 1 Mapping Procedure.

foreach queue q do
Initialize m′

q := 0 // counter for packets assigned to q

foreach phase i do
foreach LQD-extra packet p transmitted in phase i do

if there is a queue q ∈ Qi with m′
q < ei

q then
q′ := arg min

q:q∈Qi and m′
q<ei

q

{tq} // breaking ties arbitrarily

m′
q′ := m′

q′ + 1 // assign packet p to queue q′

// Otherwise, packet p is not assigned

foreach queue q do
mq := m′

q // the final value of m′
q

We now show a lower bound on the mq′ values for a phase i. The bound is specific to
a particular queue q ∈ Qi with mq < eq; in the following, live and dying queues are w.r.t.
queue q. For technical reasons, we prove a lower bound on the following quantity: Let mi

q′ be
the number of LQD-extra packets transmitted in a phase j ≥ i that are mapped to q′. The
point is that the constraint m′

q′ < ei
q′ for assigning an LQD-extra packet to q′ in Algorithm 1

implies that ei
q′ ≥ mi

q′ , even though it may happen that ei
q′ < mq′ .

ICALP 2021
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For simplicity, let zi
q :=

∑
q′∈Li

q
[si

OPT(q′) > 0] be the number of live queues Li
q that

are non-empty in OPT. In words, the first term of the bound in Lemma 12 below, i.e.,∑
q′∈Di

q
max

{
si

LQD(q′) − si
OPT(q′), 0

}
, equals the number of packets that LQD stores in excess

of OPT in dying queues q′ ∈ Di
q with si

LQD(q′) > si
OPT(q′) in step τi, while the second term,

i.e., |Li
q| − zi

q, equals the number of live queues Li
q that are empty in the OPT buffer in

step τi.

▶ Lemma 12. For any phase i and queue q ∈ Qi with mq < ei
q (i.e., with êi

q > 0) we have∑
q′∈Qi

mi
q′ ≥

∑
q′∈Di

q

max
{

si
LQD(q′) − si

OPT(q′), 0
}

+
(
|Li

q| − zi
q

)
.

Proof. Recall from Definition 4 that jq = min{j : êj
q = 0} is the index j of the earliest step

τj in which all remaining OPT-extra packets to be transmitted from q are canceled out. Note
that i < jq by the assumption of the lemma and that mq < ej

q and q ∈ Qj for any j ∈ [i, jq).
Consider a dying queue q′ ∈ Di

q with si
LQD(q′) − si

OPT(q′) > 0. It holds that eq′ = 0 by
Observation 3. By Definition 4, q′ will be empty for LQD in step τjq

. Since q′ does not
overflow after time τi (and hence LQD will accept all packets which may arrive to q′ after
time τi), at least si

LQD(q′) − si
OPT(q′) LQD-extra packets are transmitted from q′ from time

τi until time τjq
− 1, i.e., in phases j ∈ [i, jq). Using mq < ej

q and q ∈ Qj for any j ∈ [i, jq),
all these LQD-extra packets are allocated to queues q that satisfy tq ≤ tq ≤ τi and ei

q > 0;
the second property holds as tq ≤ tq ≤ τi and as q ∈ Qj for a phase i ≤ j < jq in which the
LQD-extra packet assigned to it is transmitted, by Algorithm 1. Thus, such queues q are
part of the set Qi.

In addition, there are |Li
q| − zi

q live queues in step τi that are empty in the OPT buffer.
Hence, LQD transmits |Li

q| − zi
q LQD-extra packets in step τi from such queues, and these

packets are assigned to queues q ∈ Qi by Algorithm 1, using again that mq < ei
q. ◀

Finally, we bound the number of OPT-extra packets which are not canceled out by
LQD-extra packets. Equivalently, for a queue q, we show a lower bound on |Li

q| in terms of
êi. The lemma below in particular implies that if êi

q > 0 then also |Li
q| ≥ 1, i.e., there is at

least one live queue w.r.t. queue q.

▶ Lemma 13. For any phase i and queue q ∈ Qi with êi
q > 0, we have that êi ≤ (σi

q −1)·|Li
q| .

Proof. First note that

êi =
∑

q′∈Qi

êi
q′ =

∑
q′∈Qi

max{ei
q′ − mq′ , 0} ≤

∑
q′∈Qi

max{ei
q′ − mi

q′ , 0} =
∑

q′∈Qi

(ei
q′ − mi

q′) ,

where the inequality holds by mi
q′ ≤ mq′ and the last step follows from ei

q′ ≥ mi
q′ , by the

definition of mi
q′ and Algorithm 1. Using Lemma 12, we obtain

êi ≤
∑

q′∈Qi

(ei
q′) −

∑
q′∈Di

q

max
{

si
LQD(q′) − si

OPT(q′), 0
}

−
(
|Li

q| − zi
q

)
(8)

By the definition of σi
q in (3) and since the LQD buffer is full in step τi, we have

M = σi
q · |Li

q| +
∑

q′∈Di
q

si
LQD(q′) . (9)
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Regarding the OPT buffer, we have

M ≥
∑
q′

si
OPT(q′) ≥

∑
q′∈Qi

max
{

si
OPT(q′) − si

LQD(q′), 0
}

+
∑
q′

min{si
LQD(q′), si

OPT(q′)}

≥
∑

q′∈Qi

(
ei

q′

)
+
∑
q′

min{si
LQD(q′), si

OPT(q′)}

≥
∑

q′∈Qi

(
ei

q′

)
+
∑

q′∈Di
q

min{si
LQD(q′), si

OPT(q′)} + zi
q , (10)

where the third inequality uses Observation 3. Combining (9) and (10), we obtain∑
q′∈Qi

(
ei

q′

)
+
∑

q′∈Di
q

min{si
LQD(q′), si

OPT(q′)} + zi
q ≤ σi

q · |Li
q| +

∑
q′∈Di

q

si
LQD(q′)

After rearranging, we get∑
q′∈Qi

(
ei

q′

)
−
∑

q′∈Di
q

max
{

si
LQD(q′) − si

OPT(q′), 0
}

+ zi
q ≤ σi

q · |Li
q| . (11)

Finally, plugging (11) into Equation (8), we get êi ≤ σi
q · |Li

q| − |Li
q|, as desired. ◀

6 Putting It All Together

In this section, we complete the proof of 1.707-competitiveness for LQD. First, we use the
lemmas developed in previous sections to show a lower bound on the L-increase in phase i for
a queue q. This will be divided into two cases, according to whether the value of σi

q decreases
or not (w.r.t. variable i). Next, we sum these lower bounds over all phases and derive a lower
bound for this sum. Finally, we optimize the parameters α and β to maximize ϱ (and thus,
minimize the competitive ratio upper bound) subject to Φq ≥ ϱ · êq for any queue q.

6.1 Lower Bounds on the L-Increase
In this section, for a queue q, we show lower bounds on the L-increase for a phase i with
τi ≥ tq and êi

q > 0. In such a phase, Lemma 13 implies that êi ≤ (σi
q − 1) · |Li

q|. We consider
two main cases, depending on whether or not σq decreases. We first deal with the case
σi+1

q ≥ σi
q.

▶ Lemma 14. Consider any phase i and queue q with τi ≥ tq, êi
q > 0, and σi+1

q ≥ σi
q. Then

the L-increase in phase i for queue q satisfies

êi
q

êi
· (ni + α · oi − ∆iΨ) + β · oi

q ≥ êi
q ·

α ·
(
σi+1

q − σi
q

)
+ (τi+1 − τi)

σi
q − 1 . (12)

Proof. Recall that di
q is the number of packets transmitted from queues in Di

q during phase
i. Using Lemma 9 and σi+1

q ≥ 1, we get

di
q ≥ (σi+1

q − σi
q) · |Li

q| + σi+1
q · ui − vi ≥ (σi+1

q − σi
q) · |Li

q| + ui − vi . (13)

Multiplying (13) by α ∈ (0, 1), adding (τi+1 − τi) · |Li
q| to both sides, and rearranging, we

obtain

(τi+1 − τi) · |Li
q| + α · di

q − α · (ui − vi) ≥
(
α ·
(
σi+1

q − σi
q

)
+ (τi+1 − τi)

)
· |Li

q|.
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Using ni + α · oi ≥ (τi+1 − τi) · |Li
q| + α · di

q by Observation 6 and |Li
q| ≥ êi/(σi

q − 1) by

Lemma 13, we get ni + α · oi − ∆iΨ ≥
α ·
(
σi+1

q − σi
q

)
+ (τi+1 − τi)

σi
q − 1 · êi, and multiplying this

by êi
q/êi proves (12). ◀

Next, we deal with the (most involved) case when σi+1
q < σi

q. The following technical
lemma also captures the case of the last phase i = jq − 1 in which we assign some LQD profit
to queue q (in this phase, we have êi+1

q = 0). We omit its proof due to space constraints.

▶ Lemma 15. Consider any phase i and queue q with τi ≥ tq, êi
q > 0, and σi+1

q < σi
q. Then,

for β = α2/(8 · (1 − α)) and any 0 < α ≤ 8/9, it holds that

êi
q

êi
·(ni +α ·oi −∆iΨ)+β ·oi

q ≥
τi+1−1∑

t=τi

(
êt

q

σi
q − 1

)
−

gi
q

2(σi
q − 1) − êi+1

q ·
(

1
σi+1

q − 1
− 1

σi
q − 1

)
,

(14)

where gi
q is the number of steps t ∈ [τi, τi+1) with êt

q > 0 and st
LQD(q) = 0.

6.2 Total LQD Profit Assigned to a Queue
Fix a queue q with êq > 0, i.e., with transmitted OPT-extra packets that are not canceled
out by transmitted LQD-extra packets. We now show a lower bound on

∑
i ∆iΦq. Recall

that ∆iΦq > 0 only for phases i with τi ≥ tq and êi
q > 0.

First, we bound the sum of S-increases. Note that as q overflows at tq, LQD stores for
this queue at least s

tq
max − 1 packets in step tq, and since it does not overflow after tq, LQD

transmits at least s
tq
max − 1 ≥

⌈
σ

tq
q

⌉
− 1 packets from q at or after tq, where the inequality is

from Observation 7 (recall that tq = τi for some phase i). Thus, the sum of S-increases is
at least (1 − α − β) ·

(⌈
σ

tq
q

⌉
− 1
)

. The next lemma shows a bound on the total L-increase
assigned to queue q (its proof is omitted due to space constraints).

▶ Lemma 16. Assuming α ≤ 0.6 and using b0 =
⌈
σ

tq
q

⌉
− 1 for simplicity, the sum of

L-increases assigned to a queue q with êq > 0 over all phases is at least

α · êq ·
(

1 + b0

êq

)
· ln
(

1 + êq

b0

)
+ α · êq · ln

(
1
α

)
.

Summing up the lower bound on the total S-increase with the lower bound on the total
L-increase from Lemma 16, we obtain the following lower bound (where b0 =

⌈
σ

tq
q

⌉
− 1):

∑
i

∆iΦq ≥ (1 − α − β) · b0 + α · êq ·
(

1 + b0

êq

)
· ln
(

1 + êq

b0

)
+ α · êq · ln

(
1
α

)
. (15)

6.3 Calculation of the Competitive Ratio Upper Bound
According to the following lemma, we can have ϱ = 1.41478 in (1), which implies that the
competitive ratio of LQD is at most 1 + 1/ϱ < 1.707, according to the discussion in Section 2.
Thus, the following lemma concludes the proof of Theorem 1.

▶ Lemma 17. Consider a queue q with êq > 0. For any values of σ
tq
q and êq, it holds that∑

i ∆iΦq ≥ ϱ · êq for ϱ = 1.41478.
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Proof sketch. As before, let b0 =
⌈
σ

tq
q

⌉
− 1. Using inequality (15) as a lower bound on∑

i ∆iΦq, it is sufficient to show

(1 − α − β) · b0 + α · êq ·
(

1 + b0

êq

)
· ln
(

1 + êq

b0

)
+ α · êq · ln

(
1
α

)
≥ ϱ · êq .

Dividing by êq and defining x = êq

b0
gives us that the optimal choice of ϱ satisfies,

ϱ := sup
0<α<0.6

inf
x>0

(
(1 − α − β) · 1

x
+ α ·

(
1 + 1

x

)
· ln (1 + x) + α · ln

(
1
α

))
. (16)

(Here, we also take into account that we require α < 0.6 in the analysis.) Using routine
calculations and optimizing through mathematical software, we get that the optimal choice
for α is approximately 0.57635 for which ϱ ≥ 1.41478 and therefore, the competitive ratio of
LQD is at most 1 + 1/ϱ ≤ 1.70683. ◀
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Abstract
Locally decodable codes (LDCs) are error-correcting codes C : Σk → Σn that admit a local decoding
algorithm that recovers each individual bit of the message by querying only a few bits from a noisy
codeword. An important question in this line of research is to understand the optimal trade-off
between the query complexity of LDCs and their block length. Despite importance of these objects,
the best known constructions of constant query LDCs have super-polynomial length, and there is a
significant gap between the best constructions and the known lower bounds in terms of the block
length.

For many applications it suffices to consider the weaker notion of relaxed LDCs (RLDCs), which
allows the local decoding algorithm to abort if by querying a few bits it detects that the input is not
a codeword. This relaxation turned out to allow decoding algorithms with constant query complexity
for codes with almost linear length. Specifically, [2] constructed a q-query RLDC that encodes a
message of length k using a codeword of block length n = Oq(k1+O(1/

√
q)) for any sufficiently large

q, where Oq(·) hides some constant that depends only on q.
In this work we improve the parameters of [2] by constructing a q-query RLDC that encodes

a message of length k using a codeword of block length Oq(k1+O(1/q)) for any sufficiently large q.
This construction matches (up to a multiplicative constant factor) the lower bounds of [14, 23]
for constant query LDCs, thus making progress toward understanding the gap between LDCs and
RLDCs in the constant query regime.

In fact, our construction extends to the stronger notion of relaxed locally correctable codes
(RLCCs), introduced in [13], where given a noisy codeword the correcting algorithm either recovers
each individual bit of the codeword by only reading a small part of the input, or aborts if the input
is detected to be corrupt.
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1 Introduction

Locally decodable codes (LDCs) are error-correcting codes that admit a decoding algorithm
that recovers each specific symbol of the message by reading a small number of locations
in a possibly corrupted codeword. More precisely, a locally decodable code C : Fk → Fn

with local decoding radius τ ∈ [0, 1] is an error-correcting code that admits a local decoding
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algorithm DC , such that given an index i ∈ [k] and a corrupted word w ∈ Fn which is τ -close
to an encoding of some message C(M), reads a small number of symbols from w, and outputs
Mi with high probability. Similarly, we have the notion of locally correctable codes (LCCs),
which are error-correcting codes that not only admit a local algorithm that decodes each
symbol of the message, but are also required to correct an arbitrary symbol from the entire
codeword. Indeed, note that for systematic codes the notion of LCC is strengthening of LDC.
Locally decodable and locally correctable codes have many applications in different areas
of theoretical computer science, such as complexity theory, coding theory, property testing,
cryptography, and construction of probabilistically checkable proof systems. For details, see
the surveys [26, 18] and the references within.

Despite the importance of LDCs and LCCs, and the extensive amount of research studying
these objects, the best known construction of constant query LDCs has super-polynomial
length n = exp(exp(logΩ(1)(k))), which is achieved by the highly non-trivial constructions
of [25] and [9]. For constant query LCCs, the best known constructions are of exponential
length, which can be achieved by some parameterization of Reed-Muller codes. It is important
to note that there is a huge gap between the best known lower bounds for the length of
constant query LDCs and the length of best known constructions. Currently, the best known
lower bound on the length of LDCs says that for q ≥ 3 it must be at least k1+Ω(1/q), where q

stands for the query complexity of the local decoder. See [14, 17, 23] for the best general
lower bounds for constant query LDCs.

Motivated by applications to probabilistically checkable proofs (PCPs), Ben-Sasson,
Goldreich, Harsha, Sudan, and Vadhan introduced in [2] the notion of relaxed locally decodable
codes (RLDCs). Informally speaking, a relaxed locally decodable code is an error-correcting
code which allows the local decoding algorithm to abort if the input codeword is corrupt,
but does not allow it to err with high probability. In particular, the decoding algorithm
should always output the correct symbol, if the given word is not corrupted. Formally, a
code C : Fk → Fn is an RLDC with decoding radius τ ∈ [0, 1] if it admits a relaxed local
decoding algorithm DC which given an index i ∈ [k] and a possibly corrupted codeword
w ∈ Fn, makes a small number of queries to w, and satisfies the following properties.
Completeness: If w = C(M) for some M ∈ Fk, then Dw

C(i) should output Mi.
Relaxed decoding: If w is τ -close to some codeword C(M), then Dw

C(i) should output either
Mi or a special abort symbol with probability at least 2/3.

This relaxation turns out to be very helpful in terms of constructing RLDCs with better
block length. Indeed, [2] constructed of a q-query RLDC with block length n = k1+O(1/

√
q).

The notion of relaxed LCCs (RLCCs), recently introduced in [13], naturally extends the
notion of RLDCs. These are error-correcting codes that admit a correcting algorithm that is
required to correct every symbol of the codeword, but is allowed to abort if noticing that the
given word is corrupt. More formally, the local correcting algorithm gets an index i ∈ [n],
and a (possibly corrupted) word w ∈ Fn, makes a small number of queries to w, and satisfies
the following properties.
Completeness: If w ∈ C, then Dw

C(i) should output wi.
Relaxed correcting: If w is τ -close to some codeword c∗ ∈ C, then Dw

C(i) should output
either c∗

i or a special abort symbol with probability at least 2/3.
Note that if the code C is systematic, i.e., the encoding of any message M ∈ Fk contains M

in its first k symbols, then the notion of RLCC is stronger than RLDC.
Recently, building on the ideas from [13], [3] constructed RLCCs whose block length

matches the RLDC construction of [2]. For the lower bounds, the only result we are aware of
is the work of Gur and Lachish [12], who proved that for any RLDC the block length must
be at least n = k1+Ω(1/q2).
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Given the gap between the best constructions and the known lower bounds, it is natural
to ask the following question:

What is the best possible trade-off between the query complexity and the block length
of an RLDC and RLCC?

In particular, [2] asked whether it is possible to obtain a q-query RLDC whose block
length is strictly smaller than the best known lower bound on the length of LDCs. A positive
answer to their question would show a separation between the two notions, thus proving that
the relaxation is strict. See paragraph Open Problem in the end of Section 4.2 of [2].

In this work we make progress on this problem by constructing a relaxed locally decodable
code C : FK → FN with query complexity O(q) and block length K1+O(1/q). In fact, our
construction gives the stronger notion of a relaxed locally correctable code.

▶ Theorem 1 (Main Theorem). For every sufficiently large q ∈ N there exists an q-query
relaxed locally correctable code C : {0, 1}K → {0, 1}N with constant relative distance and
constant decoding radius, such that the block length of C is

N = qO(q2) · K1+O(1/q) .

Furthermore, the code C is linear and systematic.

Therefore, our construction improves the parameters of the q-query RLDC construction
of [2] with block length N = K1+O(

√
1/q), and matches (up to a multiplicative factor in q)

the lower bound of Ω(K1+ 1
⌈q/2⌉−1 ) for the block length of q-query LDCs [14, 23].

▶ Remark 2. In this paper we prove Theorem 1 for a code C : FK → FN over a large alphabet.
Specifically, we show a code C : FK → FN satisfying Theorem 1, for a finite field F satisfying
|F| ≥ cq · K1/q, for some cq ∈ N that depends only on q.

Using the techniques from [3] it is not difficult to obtain an RLCC over the binary
alphabet with almost the same block length. Indeed, this can be done by concatenating
our code over large alphabet with an arbitrary binary code with constant rate and constant
relative distance. The concatenation we use slightly differs from how it is usually applied, as
we apply it on the CTRW level, and not on each symbol of the large alphabet separately.
See Section 3 for details.

1.1 Related works
RLDC and RLCC constructions. Relaxed locally decodable codes, were first introduced
by [2], motivated by applications to constructing short PCPs. Their construction has a block
length equal to N = K1+O(1/

√
q). Since that work, there were no constructions with better

block length, in the constant query complexity regime . Recently, [13] introduced the related
notion of relaxed locally correctable codes (RLCCs), and has found applications in efficient
interactive protocols, in particular, in interactive oracle proofs [21].

The work of [13] showed a construction of a q-query RLCCs with block length N =
poly(K). Then, [3] constructed relaxed locally correctable codes with block length matching
that of [2] (up to a multiplicative constant factor that only depends on q). The construction
of [3] had two main components, that we also use in the current work.
Consistency test using random walk (CTRW): Informally, given a word w, and a coordi-

nate i we wish to correct, CTRW samples a sequence of constraints C1, C2, . . . , Ct on w,
such that the domains of Ci and Ci+1 intersect, with the guarantee that if w is close

ICALP 2021
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to some codeword c∗ ∈ C, but wi ̸= c∗
i , then with high probability w will be far from

satisfying at least one of the constraints. In other words, CTRW performs a random walk
on the constraints graph and checks if w is consistent with c∗ in the i’th coordinate. We
introduce this notion in detail in Section 2.1.

Correctable canonical PCPPs (ccPCPP): These are PCPP systems for some specified lan-
guage L satisfying the following properties:

(i) for each w ∈ L there is a unique proof π(w) that satisfies the verifier with probability
1,

(ii) the verifier accepts with high probability only pairs (x, π) that are close to some
(w, π(w)) for some w ∈ L, i.e., only the pairs where x is close to some w ∈ L, and π is
close to π(w), and

(iii) the set {w ◦ πw : w ∈ L} is an RLCC.
Canonical proofs of proximity have been introduced in [11] and have been studied
in [7, 13, 20].

Lower bounds. For lower bounds, the only bound we are aware of is that of [12], who proved
that any q-query relaxed locally decodable code must have a block length N ≥ K

1+Ω( 1
q2 ).

For the strict notion of locally decodable codes, it is known by [14, 23] that for q ≥ 3
any q-query LDC must have block length N ≥ Ω(K1+ 1

⌈q/2−1⌉ / log(K)). For q = 3 a slightly
stronger bound of N ≥ Ω(K2/ log log(K)) is known for linear LDCs [23]. For q = 2 [17]
proved an exponential lower bound of N ≥ exp(Ω(K)). See also [4, 10, 19, 22, 24] for more
related work on lower bounds for LDCs.

2 Proof overview

In this section we informally describe our code construction. Roughly speaking, our construc-
tion consists of two parts:
The Reed-Muller encoding: Given a message M ∈ FK , its Reed-Muller encoding is the

evaluation of an m-variate polynomial of degree at most d over F, whose coefficients are
determined by the message we wish to encode.

Proofs of proximity: The second part of the encoding consists of the concatenation of PCPPs,
each claiming that a certain restriction of the first part agrees with some Reed-Muller
codeword.

Specifically, given a message M ∈ FK , we first encode it using the Reed-Muller encoding
RMF(m, d), where m roughly corresponds to the query complexity of our RLDC, and the
field is large enough so that the distance of the Reed-Muller code, which is equal to 1 − d

|F| , is
some constant, say 3/4. That is, the first part of the encoding corresponds to an evaluation of
some polynomial f : Fm → F of degree at most d. The second part of the encoding consists of
a sequence of PCPPs claiming that the restrictions of the Reed-Muller part to some carefully
chosen planes in Fm are evaluations of some low-degree polynomial.

The planes we choose are of the form Pa⃗,⃗h,⃗h′ = {a⃗ + t · h⃗ + s · h⃗′ : t, s ∈ F}, where a⃗ ∈ Fm,
and h⃗, h⃗′ ∈ Hm for some H subfield of F. We will call such planes H-planes. In order to obtain
the RLDC with the desired parameters, we choose the field H so that F is the extension
of H of degree [F : H] = m. It will be convenient to think of H as a field and think of F
as a vector space of H of dimension m (augmented with the multiplicative structure on F).
Indeed, the saving in the block length of the RLDC we obtain crucially relies on the fact
that we ask for PCPPs for only a small collection of planes, and not all planes in Fm. The
actual constraints required to be certified by the PCPPs are slightly more complicated, and
we describe them next.
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The constraints of the first type correspond to H-planes P and points x⃗ ∈ P. For each
such pair (P, x⃗) the code will contain a PCPP certifying that

(i) the restriction of the Reed-Muller part to P is close to an evaluation of some polynomial
of total degree at most d,

(ii) and furthermore, this polynomial agrees with the value of the Reed-Muller part on x⃗.
In order to define it formally, we introduce the following notation.

▶ Notation 3. Let F be a finite field of size n. Fix f : Fm → F, a plane P in Fm, and a point
x⃗ ∈ P. Denote f

(x⃗)
|P = f|P ◦ (f(x⃗))n2 . That is, the length of f

(x⃗)
|P is 2 · n2, and it consists of

f|P concatenated with n2 repetitions of f(x⃗).

Given the notation above, if f is the first part of the codeword, corresponding to the Reed-
Muller encoding of the message, then the PCPP for the pair (P, x⃗) is expected to be the
proof of proximity claiming that f

(x⃗)
|P is close to the language

RM(x⃗)
|P = {Q◦(Q(x⃗))(n2) : Q is the evaluation of a degree-d polynomial on P} ⊆ F2n2

. (1)

Note that by repeating the symbol Q(x⃗) for n2 times, the definition indeed puts weight
1/2 on the constraint that the input f|P is close to some low-degree polynomial Q, and
puts weight 1/2 on the constraint f(x⃗) = Q(x⃗). In particular, if f|P is δ-close to some
bivariate low degree polynomial Q for some small δ > 0, but f(x⃗) ̸= Q(x⃗), then f

(x⃗)
|P is at

least (1 − d
|F| − δ)/2-far from any bivariate low degree polynomial on P.

The constraints of second type correspond to H-planes P and lines ℓ ⊆ P . For each such
pair (P, ℓ) the code will contain a PCPP certifying that

(i) the restriction of the Reed-Muller part to P is close to an evaluation of some polynomial
of total degree at most d,

(ii) and furthermore, the restriction of this polynomial to ℓ is close to f|ℓ.
(In particular, this implies that f|ℓ is close to some low-degree polynomial.)

Next, we introduce the notation analogous to Notation 3 replacing the points with lines.

▶ Notation 4. Let F be a finite field of size n. Fix f : Fm → F, a plane P in Fm, and a line
ℓ ⊆ P. Denote by f

(ℓ)
|P = f|P ◦ (f|ℓ)n. That is, the length of f

(ℓ)
|P is 2 · n2, and it consists of

f|P concatenated with n repetitions of f|ℓ.

If f is the Reed-Muller part of the codeword, corresponding to the Reed-Muller encoding
of the message, then the PCPP for the pair (P, ℓ) is expected to be the proof of proximity
claiming that f

(ℓ)
|P is close to the language

RM(ℓ)
|P = {Q◦(Q|ℓ)n : Q is the evaluation of some degree-d polynomial on P} ⊆ F2n2

. (2)

Again, similarly to the first part, repeating the evaluation of Q|ℓ for n times puts weight 1/2
on the constraint that the input f|P is a close to some low-degree polynomial Q, and puts
weight 1/2 of the constraint f|ℓ is close to Q|ℓ.

With the proofs specified above, we now sketch the local correcting algorithm for the
code. Below we only focus on correcting symbols from the Reed-Muller part. Correcting the
symbols from the PCPP part follows a rather straightforward adaptation of the techniques
from [3], and we omit them from the overview.

Given a word w ∈ FN and an index i ∈ [N ] of w corresponding to the Reed-Muller part
of the codeword, let f : Fm → F be the Reed-Muller part of w, and let x⃗ ∈ Fm be the input
to f corresponding to the index i. The local decoder works in two steps.
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Consistency test using random walk: In the first step the correcting algorithm invokes a
procedure we call consistency test using a random walk (CTRW) for the Reed-Muller
code. This step creates a sequence of H-planes of length (m + 1), where each plane defines
a constraint checking that the restriction of w to the plane is low-degree. Hence, we get
m + 1 constraints, each depending on n2 symbols.

Composition using proofs of proximity: Then, instead of reading the entire plane for each
constraint, we use the PCPPs from the second part of the codeword to reduce the arity
of each constraint to O(1), thus reducing the total query complexity of the correcting
algorithm to q = O(m). That is, for each constraint we invoke the corresponding PCPP
verifier to check that the restrictions of f to each of these planes is (close to) a low-degree
polynomial. If at least one of the verifiers rejects, then the word f must be corrupt, and
hence the correcting algorithm returns ⊥. Otherwise, if all the PCPP verifiers accept,
the correcting algorithm returns f(x⃗).

In particular, if f is a correct Reed-Muller encoding, then the algorithm will always return
f(x⃗), and the main part of the analysis is to show that if f is close to some Q∗ ∈ RMF(m, d),
but f(x⃗) ̸= Q∗(x⃗), then the correcting algorithm catches an inconsistency, and returns ⊥
with some constant probability.

The key step in the analysis says that if f is close to some codeword Q∗ ∈ RM but
f(x⃗) ̸= Q∗(x⃗), then with high probability f will be far from a low degree polynomial on
at least one of these planes, where “far” corresponds to the notion of distances defined by
the languages RM(x⃗)

|P and RM(ℓ)
|P . In particular, if on one of the planes f is far from the

corresponding language, then the PCPP verifier will catch this with constant probability,
thus causing the correcting algorithm to return ⊥. We discuss this part in detail below.

It is important to emphasize that the main focus of this work is constructing a correcting
algorithm for the Reed-Muller part. Using the techniques developed in [3], it is rather
straightforward to design the algorithm for correcting symbols from the PCPPs part of the
code. See the full version for details.

2.1 CTRW on Reed-Muller codes

Below we define the notion of consistency test using random walk (CTRW) for the Reed-Muller
code. This notion is a slight modification of the notion originally defined in [3] for general
codes. In this paper we define it only for the Reed-Muller code. Given a word f : Fm → F and
some x⃗ ∈ Fm, the goal of the test is to make sure that f(x⃗) is consistent with the codeword
of Reed-Muller code closest to f . [3] describe a CTRW for the tensor power C⊗m of an
arbitrary codes C with good distance (e.g., Reed-Solomon). The CTRW they describe works
by starting from the point we wish to correct, and choosing an axis-parallel line ℓ1 containing
the starting point. The test continues by choosing a sequence of random axis-parallel lines
ℓ2, ℓ3, . . . ℓt, such that each ℓi intersects the previous one, ℓi−1, until reaching a uniformly
random coordinate of the tensor code. That is, the length of the sequence t denotes the
mixing time of the corresponding random walk. The predicates are defined in the natural
way; namely, the test expects to see a codeword of C on each line it reads.

In this work, we present a CTRW for the Reed-Muller code, which is a variant of the
CTRW described above. The main differences compared to the description above are that

(i) the test chooses a sequence of planes P1, P3, . . . Pt (and not lines),
(ii) and every two planes intersect on a line (and not on a point).

Roughly speaking, the algorithm works as follows.
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1. Given a point x⃗ ∈ Fm the test picks a uniformly random H-plane P0 containing x⃗.
2. Given P0, the test chooses a random line ℓ1 ⊆ P0, and then chooses another random

H-plane P1 ⊆ Fm containing ℓ1.
3. Given P1, the test chooses a random line ℓ2 ⊆ P1, and then chooses another random

H-plane P2 ⊆ Fm containing ℓ2.
4. The algorithm continues for some predefined number of iterations, choosing

P0, P1, P2, . . . Pt. Roughly speaking, the number of iterations is equal to the mixing
time of the corresponding Markov chain. More specifically, the process continues until a
uniformly random point in Pt is close to a uniform point in Fm.

5. The constraints defined for each Pi are the natural constraints; namely checking that the
restriction of f to the entire plane Pi is a polynomial of degree at most d.

One of the important parameters, directly affecting the query complexity of our con-
struction is the mixing time of the random walk. Indeed, as explained above, the query
complexity of our RLDC is proportional to the mixing time of the random walk. We prove
that if [F : H] = m, then the mixing time is upper bounded by m. In order to prove this
we use the following claim, saying that if F is the field extension of H of degree m, and
h⃗1, . . . , h⃗m ∈ Hm and t1, . . . , tm ∈ F are sampled uniformly, independently from each other,
then

∑m
i=1 ti · h⃗i is close to a uniformly random point in Fm. See the full version for the

exact statement.

As explained above, the key step of the analysis is to prove that if f is close to some
codeword Q∗ ∈ RM but f(x⃗) ̸= Q∗(x⃗), then with high probability at least one of the
predicates defined will be violated. Specifically, we prove that with high probability the
violation will be in the following strong sense.

▶ Theorem 5 (informal, see the full version [1]). If f is close to some codeword Q∗ ∈ RM but
f(x⃗) ̸= Q∗(x⃗), then with high probability
1. either f

(x⃗)
|P0

is Ω(1)-far from RM(x⃗)
|P0

,
2. or f

(ℓi)
|Pi

is Ω(1)-far from RM(ℓi)
|Pi

for some i ∈ [m].

Indeed, this strong notion of violation allows us to use the proofs of proximity in order to
reduce the query complexity to O(1) queries for each i ∈ [m]. We discuss proofs of proximity
next.

2.2 PCPs of proximity and composition
The second building block we use in this work is the notion of probabilistic checkable proofs
of proximity (PCPPs). PCPPs were first introduced in [2] and [8]. Informally speaking, a
PCPP verifier for a language L, gets an oracle access to an input x and a proof π claiming
that x is close to some element of L. The verifier queries x and π in some small number of
(random) locations, and decides whether to accept or reject. The completeness and soundness
properties of a PCPP are as follows.
Completeness: If x ∈ L, then there exists a proof causing the verifier accept with proba-

bility 1.
Soundness: If x is far from L, then no proof can make the verifier accept with probability

more than 1/2.
In fact, we will use the slightly stronger notion of canonical PCPP (cPCPP) systems. These
are PCPP systems satisfying the following completeness and soundness properties. For
completeness, we demand that for each w in the language there is a unique canonical proof

ICALP 2021



18:8 Relaxed Locally Correctable Codes with Improved Parameters

π(w) that causes the verifier to accept with probability 1. For soundness, the demand is
that the only pairs (x, π) that are accepted by the verifier with high probability are those
where x is close to some w ∈ L and π is close to π(w). Such proof system have been studied
in [7, 20], who proved that such proof systems exist for every language in P.

Furthermore, for our purposes we will demand a stronger notion of correctable canonical
PCPP systems (ccPCPP). These are canonical PCPP systems where the set {w ◦ π∗(w) :
w ∈ L} is a q-query RLCC for some parameter q, with π∗(w) denoting the canonical proof
for w ∈ L. It was shown in [3] how to construct ccPCPP by combining a cPCPP system
with any systematic RLCC. Informally speaking, for every w ∈ L, and its canonical proof
π(w), we define π∗(w) by encoding w ◦ π(w) using a systematic RLCC. The verifier for the
new proof system is defined in a straightforward manner. See [3] for details.

The PCPPs we use throughout this work, are the proofs of two types, certifying that
1. f

(x⃗)
|P is close to RM(x⃗)

|P for some plane P and some x⃗ ∈ P, and
2. f

(ℓ)
|P is close to RM(ℓ)

|P for some plane P and some line ℓ ⊆ P .

Indeed, it is easy to see that the first type of proofs checks that
(i) the restriction of f to P is close to an evaluation of some polynomial Q∗ of total degree

at most d,
(ii) and f(x⃗) = Q∗(x⃗).

Similarly, the second type proof certifies that
(i) the restriction of f to P is close to an evaluation of some polynomial Q∗ of total degree

at most d,
(ii) and f|ℓ is close to Q∗

|ℓ.

These notions of distance go together well with the guarantees we have for CTRW in
Theorem 5. This allows us to compose CTRW with the PCPPs to obtain a correcting
algorithm with query complexity q = O(m). Informally speaking, the composition theorem
works as follows. We first run the CTRW to obtain a collection of m + 1 constraints on the
planes P0, P1, . . . , Pm. By Theorem 5, we have the guarantee that with high probability
either f

(x⃗)
|P0

is Ω(1)-far from RM(x⃗)
|P0

, or f
(ℓi)
|Pi

is Ω(1)-far from RM(ℓi)
|Pi

for some i ∈ [m]. Then,
instead of actually reading the values of f on all these planes, we run the PCPP verifier on
f

(x⃗)
|P0

to check that it is close to RM(x⃗)
|P0

, and running the PCPP verifier on each of the f
(ℓi)
|Pi

to
check that they are close to RM(ℓi)

|Pi
. Each execution of the PCPP verifier makes O(1) queries

to f and to the proof, and thus the total query complexity will be indeed O(m). As for
soundness, if f

(x⃗)
|P0

is Ω(1)-far from RM(x⃗)
|P0

, or f
(ℓi)
|Pi

is Ω(1)-far from RM(ℓi)
|Pi

for some i ∈ [m],
then the corresponding verifier will notice an inconsistency with constant probability, causing
the decoder to output ⊥.

A detailed discussion of proofs of proximity and the composition is available in the full
version of this work [1].

2.3 Putting it all together
Below we discuss the block length and query complexity of our code.
Query complexity: For the query complexity, the mixing time of the CTRW is upper bounded

by m, and for each step of the random walk, we read O(1) queries from the PCPP part.
Therefore, the total query complexity is bounded by O(m).

Block length: As for the block length of the code, the encoding takes a message of length
K and encodes it first using the Reed-Muller code of degree d over the field F of size
|F| = n = O(d), where O(·) depends on m, so that K =

(
m+d

m

)
>

(
d
m

)m. In particular,
the length of the Reed-Muller part is nm ≤ O(K), where, again, O(·) hides a constant
that depends on m.
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The total number of predicates (of both types) defined for the CTRW is upper bounded
by B ≤ 2nm · |H|2m · n2 = 2nm+4, as [F : H] = m, and hence |H| = n1/m. For each such
predicate, we have a PCPP part of length poly(|F|) = poly(n).
Therefore, the total length of our code N is upper bounded by

N = nm + B · poly(n) = nm+O(1) .

A straightforward computation reveals that this is upper bounded by Cm · K1+O(1/m),
where Cm is a constant that depends on m (but is independent of all other parameters).
See the full version for the exact computation.

2.4 Comparison to the previous work
Despite the high level similarity of our work with [3], we contribute several new and crucial
ideas required in order to improve the parameters of RLCCs. To demonstrate the contribution
of this work, we recall the previous best-known construction of RLCCs, due to [3]. The
construction in [3] consists of two parts. First, they take a message M and encode it using
tensor power of Reed–Solomon code which we denote by C⊗m. Then, for each axis-parallel
line in C⊗m, they append a PCPP proof asserting that restriction of the codeword to the
corresponding line is (close to) a Reed-Solomon code C. The relaxed local decoding procedure
for a word f and a point x⃗ ∈ C⊗m works by running a CTRW as follows. First, the algorithm
starts by choosing an axis-parallel line ℓ1 that passes through x⃗, and invokes a PCPP verifier
on the proof for ℓ1 to check that f|ℓ1 is (close to) a Reed–Solomon codeword. The algorithm
continues by choosing another line ℓ2 that intersects the ℓ1, and checks that f|ℓ2 is (close to)
a Reed–Solomon codeword. The procedure is repeated m times by sampling ℓ3, ℓ4, . . . , ℓm,
where a ℓi+1 intersect ℓi on a uniformly random point on the line. The length of the walk m

is chosen so that a uniformly random point in ℓm is a uniform point in the tensor code. In
particular, with high probability the line ℓm is close to the closest global codeword.

Informally, the main idea of the analysis boils down to the following. Suppose that the
line ℓ1 is far from the closest global codeword Q∗ ∈ C⊗m. That is, either (1) f|ℓ1 is far from
the Reed-Solomon code or (2) it is close to some Reed-Solomon codeword but is inconsistent
with the closest global codeword Q∗

|ℓ1
. In particular, using the fact that Reed-Solomon code

has good distance, it follows that dist(f|ℓ1 , Q∗
|ℓ1

) = Ω(1). Since after m random steps we
reach a line ℓm that is close to the closest global codeword, i.e., dist(f|ℓ1 , Q∗

|ℓ1
) = o(1), then

it must be the case that one of the lines ℓ1, ℓ2, . . . , ℓm−1 is far from a Reed-Solomon, and
thus the PCPP verifier rejects with high probability.

The main barrier in improving the parameters of [3] comes from the fact that ℓi+1 and
ℓi only intersect in a single point, and since we only check that the restrictions to ℓi’s are
Θ(1)-close to the Reed-Solomon code, each random step chooses a non-corrupted point with
some constant probability, which causes the algorithm to fail.

A natural idea to overcome this difficulty is to replace the lines ℓ1, ℓ2, . . . , ℓm in [3] with
the planes P1, P2, . . . , Pm, such that two consecutive planes intersect on a line. Indeed,
using the fact that a random line is a good sampler it will follow that corruption in P1 will
propagate with high probability to Pm.

The key difficulty in implementing this idea is deciding on the collection of the planes for
which we require the PCPPs. For example, if we ask for a PCPP for all planes in Fm, then
the block length becomes at least F4m, which is a lot more than we can afford. On the other
hand, if we ask for a PCPP for all axis-parallel planes, then we will not be able to sample a
uniformly random line in each step of the random walk, as a uniformly random line will not
be axis-parallel with high probability.
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We overcome this difficulty by requiring PCPPs for all H-planes, where H is a carefully
chosen subfield of F, and an H-plane is a plane of the form Pa⃗,⃗h,⃗h′ = {a⃗+t · h⃗+s · h⃗′ : t, s ∈ F},
where a⃗ ∈ Fm, and h⃗, h⃗′ ∈ Hm for some H subfield of F.

Specifically, we choose the subfield H to satisfy the following properties:
1. H is sufficiently small, so that the total number of planes is small, which in turn reduces

the block length of the code.
2. Mixing time for CTRW on the planes converges rapidly.
Note that the two requirements are conflicting, as fast mixing implies that the collection
of the planes must be somewhat large. We show a subfield H of F satisfying both of these
properties, thus finding a pseudo-random collection of planes which allows us to improve the
parameters of the entire construction, thus obtaining the main goal of this paper. See the
full version for details.

3 Concluding remarks and open problems

In this section, we first briefly discuss how to obtain a binary RLDC using the code
concatenation technique. Then, we conclude the section by reviewing some open problem
which we leave for future research.

3.1 Code concatenation for binary alphabet

In this paper we constructed an O(q)-query RLDC C : FK → FN with block length N =
qO(q2) · K1+O(1/q), assuming that the field is large enough, namely, assuming that |F| ≥
cq · K1/q. Using standard techniques it is possible to obtain a binary RLDC with similar
parameters. This can be done by concatenating our code with an arbitrary binary code
with constant rate and constant relative distance. Indeed, this transformation appears in [3,
Appendix A], who showed how concatenating CTRW-based RLDC over large alphabet with
a good binary code gives a binary RLDC that essentially inherits the block length and the
query complexity of the RLDC over large alphabet. Below we provide the proof sketch,
explaining how the concatenation works.

Proof sketch. Suppose that we want to construct a short binary RLCC. Let CRLCC : FK →
FN be the RLCC over some field F with the desired block length, and let Cbin : {0, 1}K′ →
{0, 1}N ′ be an error-correcting code with constant rate and constant distance. We also
assume that field F is chosen so that |F| = 2K′ . (To satisfy this condition, one can simply
set H to be a field of characteristic 2.) This assumption will allow us to have a bijection
between each symbol of F and binary string of length K ′.

We construct the binary concatenated code Cconcat : {0, 1}K·K′ → {0, 1}N ·N ′ as follows.
Given a message M ∈ {0, 1}K·K′ , we first convert it to an string in M ′ ∈ FK in the natural
way. Then, we encode M ′ using CRLCC to obtain a codeword c∗ ∈ CRLCC . Finally, we
encode each symbol of c∗ using Cbin to get the final codeword c ∈ {0, 1}N ·N ′ .

To prove that the concatenated code is an RLCC, Chiesa, Gur, and Shinkar proved in
[3, Theorem A.4] that if CRLCC admits an r-steps CTRW with some soundness guarantees,
then Cconcat admits an r-steps CTRW with related soundness guarantees. The CTRW on
the concatenated code Cconcat emulates the CTRW on CRLCC by sampling planes for the
CTRW on the Reed-Muller code, and instead of reading the symbols from F, it reads the
binary encodings of all symbols belonging to these planes.
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Indeed, it is not difficult to see that if CRLCC admits an r-steps CTRW with some
soundness guarantees, then so does the concatenated code. We omit the details, and refer
the interested reader to Appendix A in [3]. ◀

3.2 Open problems
We conclude the paper with several open problems we leave for future research.

1. The most fundamental open problem regarding RLDCs/RLCCs is to understand the
optimal trade-off between the query complexity of LDCs and their block length in the
constant query regime. It is plausible that the lower bound of [12] can be improved to
K1+Ω(1/q), although we do not have any evidence for this.

2. As discussed in the intoduction, [2] asked whether it is possible to prove a separation
between LDCs and RLDCs. Understanding the trade-off between the query complexity
and the block length is one possible way to show such separation.

3. Another interesting open problem is to construct an RLDC/RLCC with constant rate and
small query complexity. In particular, it is plausible that there exist polylog(N)-query
RLDCs with N = O(K). It should be noted that [13] constructed constant-rate RLCCs
(in fact with a rate approaching 1) and query complexity log(N)O(log log(N)).

4. Also, it would be interesting to construct RLDCs/RLCCs using high-dimensional ex-
panders [15, 6, 5, 16]. Since there are several definitions of high-dimensional expanders,
it would be interesting to state the sufficient properties of high-dimensional expanders
required for RLDCs. We believe this approach can be useful in constructing constant
rate RLDCs with small query complexity.
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Abstract
We study the maximum matching problem in the random-order semi-streaming setting. In this
problem, the edges of an arbitrary n-vertex graph G = (V, E) arrive in a stream one by one and in a
random order. The goal is to have a single pass over the stream, use O(n · polylog(n)) space, and
output a large matching of G.

We prove that for an absolute constant ε0 > 0, one can find a (2/3 + ε0)-approximate maximum
matching of G using O(n log n) space with high probability. This breaks the natural boundary of 2/3
for this problem prevalent in the prior work and resolves an open problem of Bernstein [ICALP’20]
on whether a (2/3 + Ω(1))-approximation is achievable.
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1 Introduction

A matching in a graph G = (V, E) is any collection of vertex-disjoint edges and in the
maximum matching problem, we are interested in finding a matching of largest size in G.
This problem has been a cornerstone of algorithmic research and its study has led to numerous
breakthrough results in theoretical computer science. In this paper, we study the maximum
matching problem in the semi-streaming model of computation [9] defined as follows.

▶ Definition 1. Given a graph G = (V, E) with n vertices V = {1, . . . , n} and m edges in E

presented in a stream S = ⟨e1, . . . , em⟩, a semi-streaming algorithm makes a single pass over
the stream of edges S and uses O(n · polylog(n)) space, measured in words of size Θ(log n)
bits, and at the end outputs an approximate maximum matching of G.

The greedy algorithm for maximal matching gives a simple 1/2-approximation algorithm
to this problem in O(n) space. When the stream of edges is adversarially ordered, this is
simply the best result known for this problem, while it is also known that a better than
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1
1+ln 2 ∼ 0.59-approximation is not possible [14] (see also [11,13]). Closing the gap between
these upper and lower bounds is among the most longstanding open problems in the graph
streaming literature.

Going beyond this “doubly worst case” scenario, namely, an adversarially-chosen graph
and an adversarially-ordered stream, there has been an extensive interest in recent years in
studying this problem on random order streams. This line of work was pioneered in [16]
who showed that the 1/2-approximation of greedy can be broken in this case and obtained an
algorithm with approximation ratio (1/2 + 0.003) for this problem. Since [16], there has been
two main lines of attack on this problem. Firstly, [8,10,15] followed up on the approach of [16]
and improved the approximation ratio all the way to 6/11 [8]. In parallel, [1] built on the
sparsification approach of [6, 7] in dynamic graphs to achieve an (almost) 2/3-approximation
but at the cost of Õ(n1.5) space, which is no longer semi-streaming. A beautiful work of [5]
then obtained a semi-streaming (almost) 2/3-approximation by showing how a generalization
of the sparsification approach in [1] can be found in Õ(n) space.

The 2/3-approximation ratio of the algorithm of [5] is the best possible among all prior
techniques for this problem: the first line of attack in [8, 10, 15, 16] is based on finding
length-3 augmenting paths and even finding all these paths does not lead to a better-than-
2/3-approximation1. The second line in [1, 5] is based on finding an edge-degree constrained
subgraph (EDCS) which hits the same exact barrier as there are graphs whose EDCS does not
provide a better than 2/3-approximation (see [6]). Finally, even for an algorithmically easier
variant of this problem, the one-way communication problem, which roughly corresponds
to only measuring the space of the algorithm when crossing the midpoint of the stream,
the best known approximation ratio is still 2/3 which is known to be tight for adversarial
orders/partitions [11].

Given this state-of-affairs, the 2/3-approximation ratio for random-order streaming match-
ing has emerged as natural barrier [5, 15]. In particular, [5] posed obtaining a (2/3 + Ω(1))-
approximation to this problem as an important open question. We resolve this question in
the affirmative in our work.

1.1 Our Contributions
Our main result is a semi-streaming algorithm for maximum matching in random-order
streams with approximation ratio strictly-better-than-2/3.

▶ Theorem 2 (Main Result). Let G be an n-vertex graph whose edges arrive in a random-order
stream. For an absolute constant ε0 > 0, there is a single-pass streaming algorithm that
obtains a ( 2

3 + ε0)-approximate maximum matching of G using O(n log n) space w.h.p.

Theorem 2 breaks the 2/3-barrier of all prior work in [1,5,8,10,15,16]. Moreover, even
though the improvement over 2/3 is minuscule in this theorem (while we did not optimize
for constants, the bound on ε0 is only ∼ 10−14 at this point), it still proves that (2⁄3)-
approximation is not the “right” answer to this problem. This is in contrast to some other
problems of similar flavor such as one-way communication complexity of matching (on
adversarial partitions) [3,11] or the fault-tolerant matching problem [3] which are both solved
using similar techniques (see the unifying framework of [3] based on EDCS) and for both
2/3-approximation is provably best possible.

1 The work of [8] also considers length-5 augmenting paths. However, these paths are used instead
of length-3 paths “missed” by the algorithm not in addition to length-3 paths and thus the same
shortcoming persists.



S. Assadi and S. Behnezhad 19:3

Beyond (2/3)-approximation. Breaking this 2/3-barrier naturally raises the question on
what is the right bound on the approximation ratio of random-order streaming matching.
In particular, is (1 − ε)-approximation possible? We make progress toward settling this
question as well by showing that no “completely” space-efficient algorithm exists for this
latter problem: there is provably no semi-streaming algorithm for the matching problem even
on bipartite graphs that can achieve a (1 − ε)-approximation in O(2(1/ε)0.99 · n · polylogn)
space; in other words, if one hopes for achieving a (1 − ε)-approximation, an exponential
dependence on (1/ε) in the space is unavoidable. As the main focus of our work is on the
algorithm in Theorem 2, we provide the details of the lower bound only in the full version [2].

1.2 Overview of Techniques
Prior work. As stated earlier, there has been two main lines of attacks on the streaming
matching problem in random-order streams. The first approach aims to find a large matching
of the graph G early on in the stream, and then spends the rest of the stream augmenting
this matching. For instance, [16] showed that in order for the greedy algorithm to fail to
find a better-than-1/2-approximation, the algorithm should necessarily pick many “wrong”
edges early on in the stream. As such, in instances where greedy is not beating the 1/2-
approximation itself, we already have an almost 1/2-approximation by the middle of the
stream, and we can thus focus on augmenting this matching in the remainder half to beat
1/2-approximation. The work of [15] then improved this result further by showing that a
modified greedy algorithm, when unsuccessful in obtaining a large matching itself, finds an
almost 1/2-approximation when only o(1)-fraction of the stream has passed (as opposed to
middle), which gives us more room for augmentation. Finally, [8] built on this approach and
further improved the augmentation phase.

The second approach to this problem was based on obtaining an EDCS, a subgraph
defined by [6,7] and studied further in [3], that acts as a “matching sparsifier”. On a high
level, an EDCS is a sparse subgraph satisfying the following two constraints: (i) edge-degree
of edges in the EDCS cannot be “high”, while (ii) edge-degree of missing edges cannot be
“low”. These constraints ensure that an EDCS always contains an almost 2/3-approximate
matching of the graph and has additional robustness properties. For instance, [1] proved that
union of several EDCS computed on different parts of a random stream, is itself an EDCS
for the entire stream. This allowed them to compute an EDCS of the input in Õ(n1.5) space
and directly obtain their almost 2/3-approximation. Finally, [5] gave an elegant proof that
weakening the requirement of EDCS allows one to still preserve the almost 2/3-approximation
but now recover this subgraph in only O(n log n) space. More specifically, the algorithm
of [5] first finds a subgraph only satisfying property (i) of the EDCS in the first o(m) edges
of the stream, and then picks all (potentially) necessary edges for satisfying property (ii) in
the remainder; the proof then shows that this set of potentially necessary edges is of size
only O(n log n).

Our work. Our approach can be seen as a natural combination of these two mostly disjoint
lines of work. The first part comes from a better understanding of EDCS. We present a
rough characterization of when an EDCS cannot beat the 2/3-approximation, which shows
that in these instances, we can effectively ignore the second constraint of EDCS. As a result,
we obtain that the only way for the algorithm of [5] to fail to achieve a better-than-2/3-
approximation, is if it already picks an almost 2/3-approximation in the first o(m) edges.
Note that this is conceptually similar to the first line of work on random-order streaming
matching, but the techniques are entirely disjoint. In particular, our proof is a deterministic
property of EDCS not a randomized property of a greedy algorithm on a particular ordering.
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We are now in the familiar territory of having a large matching very early on in the
stream, and we can spend the remainder of the stream augmenting it. The main difference
however is that starting from an almost 2/3-approximation matching, there is essentially
no length-3 paths for us to augment and we instead need to handle length-5 augmenting
paths. The key challenge is to find the middle edge of these length-5 augmenting paths.
Indeed, we note that the 2/3-approximation lower bound of [11] for adversarial order streams
gives away a 2/3-approximate matching early on for free, yet it is provably impossible to
augment it in the remainder of the stream using Õ(n) space. To get around this, we crucially
use the random arrival assumption again. Particularly, we regard any length-5 augmenting
path whose middle edge arrives after its two endpoint edges as a “discoverable” path and
then find a constant fraction of such paths. Since the edges arrive in a random order, a
constant fraction of length-5 augmenting will be discoverable and thus we are able to beat
2/3-approximation in our setting.

2 Notation and Preliminaries

General notation. For a graph G = (V, E) and v ∈ V , we use degG(v) to denote the degree
of v in G and NG(v) to denote the neighborset of v (when clear from the context, we may
drop the subscript G). For any edge e = (u, v) ∈ E, we define the edge-degree of e in G as
deg(u) + deg(v). We use µ(G) to denote the size (i.e., the number of edges) of the maximum
matching in G.

For integer k ≥ 1 and p ∈ [0, 1], we use B(k, p) to denote the binomial distribution with
parameters k and p. That is, B(k, p) is the discrete probability distribution of the number of
successful experiments out of k independent experiments each with probability p of success.

Random-order streams. We consider the random-order streaming setting where the edges
of G arrive one by one in an order chosen uniformly at random from all possible orderings.
Let ei be the i-th edge that arrives in the stream. For any two parameters a, b satisfying
1 ≤ a < b ≤ m we use G[a, b] to denote the subgraph of G on vertex-set V and edge-set
{ea, . . . , eb}. We may also use G<a and G≥a respectively for G[1, a− 1] and G[a, m].

For the input graph G defined by the stream, we can assume w.l.o.g. that µ(G) ≥ c log n

for any desirably large constant c. The reason is that any graph can be easily shown to
have at most 2n · µ(G) edges and if µ(G) = O(log n) then we can store the whole input
in the memory and report an optimal solution using O(n log n) space. We further assume
throughout the paper that the number of edges m is known by the algorithm in advance.
This is a common assumption in the literature and can be removed via standard techniques
by guessing m in geometrically increasing values at the expense of multiplying the space by
an O(log n) factor.

2.1 Preliminaries

Hall’s theorem. We use the following standard extension of the Hall’s marriage theorem
for characterizing maximum matching size in bipartite graphs.

▶ Fact 3 (Extended Hall’s Theorem [12]). Let G = (L, R, E) be a bipartite graph with
|L| = |R| = n. Then, max

(
|A| − |N(A)|

)
= n − µ(G), where A ranges over L or R,

separately. We refer to such set A as a witness set.
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Fact 3 follows from Tutte-Berge formula for matching size in general graphs [4, 17] or a
simple extension of the proof of Hall’s marriage theorem itself.2

Alternating and augmenting paths. Given a matching M , an alternating path P for M is
a path whose edges alternatively belong to M and do not belong to M . An augmenting path
for M is an alternative path that starts and ends with edges that do not belong to M . Given
an augmenting path P for M , we use notation M ⊕ P := (M \ P ) ∪ (P \M) to denote the
matching obtained by flipping the containment of edges of P in M . Given two matchings M

and M ′, their symmetric difference M∆M ′ is a graph including only the edges that belong
to exactly one of M and M ′.

2.2 Bernstein’s Algorithm
We briefly review the parameters and guarantees of the algorithm of Bernstein [5] that we
need. In the following, we slightly increase the constants in the parameters which is needed
for our results.

▶ Definition 4 (Parameters). For some small ε ∈ (0, 1
2 ) to be determined later, let

λ := ε

128 , β+ := 64 · λ−2 log(1/λ), β− = (1− λ) · β+.

A high level overview of the algorithm of [5] is as follows:

Algorithm 1 Bernstein’s Algorithm [5].

The algorithm of [5] proceeds in two phases as follows:
Phase I terminates within the first εm edges of the stream. At the end of Phase I, the
algorithm constructs a subgraph H ⊆ G<εm (using the algorithm of Lemma 5) that in
particular guarantees that for all (u, v) ∈ H, degH(u) + degH(v) ≤ β+. Also let U be the
set of all edges in G≥εm such that degH(u) + degH(v) < β−.

In Phase II, the algorithm simply stores U in the memory and at the end of the stream
returns a maximum matching of H ∪ U .

The following lemma is all we need from [5] in our paper.

▶ Lemma 5 (See Lemma 4.1 of [5]). There is a way of constructing the subgraph H of G<εm

such that with probability at least 1− n−3, |H ∪ U | = O(n log (n) · poly(1/ε)).

3 Finding an Almost (2/3)-Approximation Early On

We start by characterizing the tight instances of the algorithm of [5] (Algorithm 1). Roughly
speaking, we show that the only way for Algorithm 1 to end up with a (2/3)-approximation
is if in its Phase I it computes a subgraph H that already has an almost (2/3)-approximate
matching. This will then be used by our algorithm in the next section to obtain a strictly
better-than-(2/3)-approximation by augmenting this already-large matching. We start by
presenting and proving this result for bipartite graphs which is the main part of the proof;
we then extend the result to general graphs (with no considerable loss of parameters for our
purpose) using the probabilistic method approach of [3] for the original EDCS.

2 Simply add n − µ(G) vertices to each side of the graph and connect them to all the original vertices;
then apply original’s Hall’s theorem for perfect matching to this graph as this graph now has one.
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19:6 Beating Two-Thirds for Random-Order Streaming Matching

3.1 Bipartite Graphs
In this section we prove the following structural result:

▶ Theorem 6. Let λ ∈ (0, 1/2) and β− ≤ β+ be such that β+ ≥ 10
λ and β− ≥ (1 − λ)β+.

Suppose G = (L, R, E) is any bipartite graph and:
(i) H is a subgraph of G where for all (u, v) ∈ H: degH(u) + degH(v) ≤ β+; and
(ii) U is the set of all edges (u, v) in G \H such that degH(u) + degH(v) < β−.

Then, for any parameter δ ∈ (0, 1), either:

µ(H) ≥ (1− 4λ) ·
(

2
3 − δ

)
· µ(G) or µ(H ∪ U) ≥ (1− 2λ) ·

(
2
3 + δ2

18

)
· µ(G).

Let us define the following (see Figure 1 for an illustration):
Let M∗ be a maximum matching of G and define M∗

U := M∗ ∩ U and M∗
Ū

:= M∗ \ U .
A is a Hall’s theorem witness set in H∪M∗

U (as in Fact 3) and B := NH∪M∗
U

(A). Without
loss of generality we assume A ⊆ L and define Ā := L \A and B̄ := R \B.

We start with the following simple claim that follows easily from Fact 3. See the full version
of the paper for details [2].

▷ Claim 7. For the witness set A:
(i) |Ā|+ |B| ≤ µ(H ∪ U).
(ii) There is a matching M̄ ⊆M∗

Ū
between A and B̄ in G with size |M̄ | = µ(G)−µ(H∪M∗

U ).

A Ā

B B̄

S

S

M̄

T

T

F F

Figure 1 An illustration of the Hall’s witness set and our notation in the proof of Theorem 6.
Note that there are no edges between A and B̄ in H ∪ M∗

U , and matching M̄ belongs entirely to M∗
Ū

.

Consider any edge (u, v) ∈ M̄ defined in Claim 7. As M̄ ⊆ M∗
Ū

, by property (ii) of
the statement of Theorem 6, we have, degH(u) + degH(v) ≥ β−. We arbitrarily remove the
edges on u and v until the above inequality becomes tight for every edge. We let F be the
remaining edges. Note that any edge in F is incident on exactly one vertex of M̄ as there
are no edges in H ∪M∗

U between the endpoints of M̄ . We record these properties as follows:

∀(u, v) ∈ M̄ : degF (u) + degF (v) = β− and |F | = |M̄ | · β−. (1)

We refer the reader to the full version of the paper [2] for illustrative examples that
highlight the ideas for proving Theorem 6. Here for space constraints, we only provide the
formal proof.

In Lemma 8, we prove a lower bound on µ(H). This lemma can then be used as follows:
if the degrees of most edges in M̄ are “balanced”, i.e., both endpoints have degree ≈ β−/2,
then µ(H) will already be of size 2 · |M̄ | which is sufficient for the first condition of Theorem 6.
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▶ Lemma 8 (matching of H is large). We have µ(H) ≥ β−
1+4λ ·

∑
(u,v)∈M̄

1
max{degF (u) , degF (v)} .

Proof. For every edge (u, v) ∈ M̄ , define F (u, v) as set of edges in F that are incident on u

or v. We define the following fractional matching x ∈ RF on edges of F :
for any edge e ∈ F (u, v): set xe := 1

1+4λ ·
1

max{degF (u) , degF (v)} .
Let us now prove this is indeed a valid fractional matching. For any vertex w matched by M̄ ,

xw :=
∑
e∋w

xe ≤ degF (w) · 1
1 + 4λ

· 1
degF (w) < 1,

thus satisfying the fractional matching constraint.
Now fix a vertex w not matched by M̄ . Let u1, . . . , udegF (w) denote the neighbors of w in

F . By definition, all these vertices are matched by M̄ . Let v1, . . . , vdegF (w) be the matched
pairs of these vertices. We need the following simple claim proved in the full version.

▷ Claim 9. For every i ∈ [degF (w)], degF (w) ≤ (1 + 4λ) ·max{degF (ui) , degF (vi)}.

To finalize Lemma 8, for any vertex w not matched by M̄ , we have,

xw :=
∑

e=(w,ui)

xe =
∑
ui

1
1 + 4λ

· 1
max{degF (ui) , degF (vi)}

≤
Claim 9

∑
ui

1
degF (w) = 1,

thus satisfying the fractional matching constraint. This implies that x is a valid fractional
matching. Finally, the value of this fractional matching is:∑

e∈F

xe =
∑

(u,v)∈N

∑
e∈F (u,v)

xe =
∑

(u,v)∈N

degF (u) + degF (v)
(1 + 4λ) ·max{degF (u) , degF (v)}

= β−

1 + 4λ
·

∑
(u,v)∈N

1
max{degF (u) , degF (v)} ,

where the last equation is by Eq (1). As the integrality gap of the matching polytope on
bipartite graphs is one, we obtain the desired lower bound on µ(H). ◀

We now prove that if on the other hand most edges of M̄ are “unbalanced”, then µ(H∪U)
should be sufficiently large. To continue, we need a quick definition. Let S denote the
endpoints of the matching M̄ and T be the neighborset of these vertices in F . Recall that
by Eq (1), S and T are disjoint (see Figure 1).

▶ Lemma 10 (matching of µ(H∪U) is large). We have µ(H∪U) ≥ |M̄ |2·β−
2

|M̄ |·β−·β+−
∑

s∈S
(degF (s))2 .

Proof. Since F ⊆ H, by property (i) of Theorem 6, we have that

|F | · β+ ≥
∑

(u,v)∈F

degF (u) + degF (v) =
∑
s∈S

(degF (s))2 +
∑
t∈T

(degF (t))2. (2)

We can lower bound the second term of the RHS as follows. Recall that sum of quadratics
is minimized over all-equal terms. As

∑
t∈T degF (t) = |F |, this implies that,

∑
t∈T

(degF (t))2 ≥
∑
t∈T

(
|F |
|T |

)2
= |T | ·

(
|F |
|T |

)2
= |F |

2

|T |
.
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19:8 Beating Two-Thirds for Random-Order Streaming Matching

By plugging in this bound in Eq (2) and moving the terms around, we have that

|T | ≥ |F |2

|F | · β+ −
∑

s(degF (s))2 = |M̄ |2 · β−
2

|M̄ | · β− · β+ −
∑

s(degF (s))2
.

(as |F | = |M̄ | · β− by Eq (1))

Finally, T ⊆ Ā ∪ B (as there are no edges between A and B̄) and thus by Claim 7,
|T | ≤ µ(H ∪ U) which finalizes the proof. ◀

Lemma 10 can be used as follows: when degree of most edges in M̄ are “balanced”,
the quantity

∑
s(degF (s))2 will be close to |M̄ | · (β−)2/2 which implies that µ(H ∪ U) will

be almost 2 · |M̄ |; however, when degrees of edges in M̄ are “unbalanced”, the quantity∑
s(degF (s))2 cannot decrease all the way to |M̄ | · (β−)2/2 and thus we can get a higher

lower bound on the value of µ(H ∪ U) which breaks the (2/3)-approximation.
To finalize the proof of Theorem 6, we need the following claim for lower bounding∑

s∈S(degF (s))2 in the RHS of Lemma 10, in the cases where RHS of Lemma 8 is small.

▷ Claim 11. Suppose
∑

(u,v)∈M̄
β−

max{degF (u) , degF (v)} = (2−γ) · |M̄ | for some γ ∈ [0, 1); then∑
s(degF (s))2 ≥ |M̄ | ·

(
(2+γ2−2γ)·β−

2

4+γ2−4γ

)
.

The proof of Claim 11 is given in the full version [2]. We are now ready to prove Theorem 6.

Proof of Theorem 6. Let us pick γ ∈ [0, 1) such that
∑

(u,v)∈M̄
β−

max{degF (u) , degF (v)} =
(2− γ) · |M̄ | (as the max-term is at least β−/2, such a γ always exist). By plugging in the
bound of Claim 11 in Lemma 10, we have that,

µ(H ∪ U) ≥ |M̄ |2 · β−
2

|M̄ | · β− · β+ − |M̄ | ·
(

(2+γ2−2γ)·β−2

4+γ2−4γ

)
≥ (1− 2λ) · |M̄ | · 1

1−
(

(2+γ2−2γ)
4+γ2−4γ

) (as β− ≥ (1− λ)β+)

= (1− 2λ) · |M̄ | · 4 + γ2 − 4γ

2− 2γ
= (1− 2λ) · |M̄ | · (2 + γ2

2− 2γ
).

Considering |M̄ | ≥ µ(G)− µ(H ∪ U) by Claim 7, we obtain that

µ(H ∪ U) ≥ (1− 2λ) · µ(G) ·
(

2
3 + γ2

18− 18γ + 3γ2

)
≥ (1− 2λ) · µ(G) ·

(
2
3 + γ2

18

)
.

Now if for the parameter δ in Theorem 6, we already have γ ≥ δ, we will obtain the second
condition. Further, without loss of generality, we can assume that |M̄ | ≥ ( 1

3 −
δ
3 ) · µ(G) as

otherwise µ(H ∪M∗
U ) ≥ ( 2

3 +δ) ·µ(G) by Claim 7 which is stronger than the second condition
of Theorem 6.

Suppose γ < δ and |M̄ | ≥ ( 1
3 −

δ
3 ) · µ(G) then. In this case, by the definition of γ

and Lemma 8,

µ(H) ≥ 1
1 + 4λ

· (2− γ) · |M̄ | ≥ 1
1 + 4λ

· (2− δ) ·
(

1
3 −

δ

3

)
· µ(G)

≥ (1− 4λ) ·
(

2
3 − δ

)
· µ(G),

thus satisfying the first condition. This concludes the proof. ◀
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We can also extend the guarantee of Theorem 6 to general (non-bipartite) graphs following
the probabilistic method technique of [3] (see the full version [2] for the exact guarantee)
without incurring any loss to the guarantees up to constants.

4 An Improved Algorithm via Augmentation

In this section, we show that the maximum matching of the subgraph H constructed in
the early part of the stream of Algorithm 1 can be augmented well via the remaining
edges. Combined with our guarantee of Section 3, we complete in this section the proof of
Theorem 2. Namely, we show that for some parameter ε0 > 0, there is a single-pass random-
order streaming algorithm (formalized as Algorithm 2) that obtains a ( 2

3 + ε0)-approximate
maximum matching of G using O(n log n) space with high probability of 1− 1/poly(n).

4.1 The Algorithm

Our starting point is Algorithm 1. Recall that this algorithm stores two subgraphs H and U

of G of size O(n log n). Subgraph H is constructed early on, after merely observing εm edges
of the stream. In addition to H and U , here we store an additional subset of edges that
we use to augment a matching of H with. Particularly, let MH be an arbitrary maximum
matching of H. Having matching MH early on, in our algorithm we augment MH using
the edges that arrive in the rest of the stream (i.e., Phase II) in parallel to storing U . The
augmenting paths that we find may be of size up to five. This is crucial since we may not
have enough augmenting paths of length smaller than five to go beyond (2/3)-approximation.
Now by plugging our bound of Section 3, it can be shown that either H ∪ U includes our
desired approximation of strictly better that 2/3, or MH is almost a (2/3)-approximate
matching which coupled with the augmenting paths that we find for it in Phase II leads to
our better-than-(2/3)-approximation.

To find these augmenting paths, we divide the (1− ε)m edges of Phase II into Phase II.A
and Phase II.B. To do this, we first draw a random variable τ ∼ B((1− ε)m, γ). Phase II.A
will then proceed on the edges that arrive up to the τ -th edge of Phase II and Phase II.B
proceeds on the rest of the edges. Drawing random variable τ (instead of having a fixed
threshold) is particularly useful in the analysis: Conditioned on the edges that are to arrive
in Phase II (but not their ordering), each edge now belongs to Phase II.A independently with
probability γ and to Phase II.B otherwise. Note that with a fixed threshold, we do not get
this independence.

For Phase II.A, let us define GH to be the subgraph of G whose edges arrive in Phase
II.A and have exactly one endpoint matched by MH . Note that GH is bipartite (even
though G may not be) with one partition corresponding to vertices V (MH) and another
to V \ V (MH). In Phase II.A, we only consider the edges of GH and greedily construct a
maximal (2, b)-matching T of GH (for some constant b ≥ 2). It is the vertices in part V (MH)
of GH that have maximum degree 2 in T and those in the other partition can have degree
up to b. In our analysis, we show that the edges of T can be used as the two endpoint edges
of many augmenting paths of length three or five for MH (see Figure 2).

In Phase II.B, we first let M ← MH and upon arrival of each edge e, we iteratively
augment M via length-up-to-five augmenting paths using the edges in T ∪ {e} until no such
path is left. In our analysis, we use the edges of Phase II.B either as the middle edge of
length-five augmenting paths or as the single edge of the length-one augmenting paths the
algorithm may find (see Figure 2).
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19:10 Beating Two-Thirds for Random-Order Streaming Matching

At the end of the stream, we return a maximum matching of M ∪H ∪ U . The algorithm
outlined above is formalized as Algorithm 2.

Figure 2 An example of an execution of Algorithm 2. Here the black zig-zagged edges denote
MH which is fixed by the end of Phase I and we would like to augment it. The black nodes are those
matched by MH and the white ones are those left unmatched by MH . The edges between white and
black nodes (colored green) are the edges in T . Each black node has at most two edges in T and the
green nodes can have up to b. The red edges are those that arrive in Phase II.B. Three augmenting
paths of length one, three, and five that are discoverable by the algorithm are highlighted by blue.

Algorithm 2 Our final random-order streaming matching algorithm with approximation ratio
strictly-better-than-2/3.

Parameters: γ = 2/3, b = 500, and a sufficiently small constant ε < 0.01 to be fixed later.

(1) In Phase I of the algorithm, which consists of the first εm edges of the stream, we
construct a subgraph H of G as in Phase I of Algorithm 1. At the end of Phase I, we fix
an arbitrary maximum matching MH of H.

(2) In Phase II, which includes all the edges that arrive after Phase II, we store subgraph U

using Phase II of Algorithm 1. In addition, we store another subset of edges that we use
to augment MH . These edges are constructed in two sub-phases Phase II.A and Phase
II.B.

(3) Draw random variable τ from the Binomial distribution B((1− ε)m, γ). Note that this
can be done in O(m) time and O(1) space as we only need to count the successes.

(4) Phase II.A starts after Phase I and ends upon arrival of the τ ’th edge of Phase II.
a. Let GH(VH , UH , EH) be a bipartite subgraph of G where VH := V (MH) is the set of

vertices matched in MH , UH := V \ V (MH) is the set of vertices left unmatched in
MH , and EH is the edges of G between VH and UH that arrive in Phase II.A.

b. We initialize T ← ∅ and upon arrival of an edge e = (u, v) of GH with u ∈ UH and
v ∈ VH , if degT (v) < 2 and degT (u) < b we add e to T . That is, T is a maximal
(2, b)-matching of GH which requires O(nb) space to store.

(5) Phase II.B starts after Phase II.A and continues to the end of the stream:
a. M ←MH . Upon arrival of each edge e in Phase II.B, we iteratively take an arbitrary

augmenting path P for M of length up to five using the edges in M ∪ T ∪ {e} and let
M ←M ⊕ P . We repeat this process until no more augmenting paths of length up to
five exist in M ∪ T ∪ {e}; we then continue to the next edge of the stream in Phase
II.B.

(6) Finally, we return a maximum matching of M ∪H ∪ U .
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Analysis of Algorithm 2
It is straightforward to verify that Algorithm 2 uses O(|H| + |U | + nb) space which by
Lemma 5 is O(n log n) w.h.p. Here we analyze the approximation ratio of the algorithm.

Let M⋆ be an arbitrary maximum matching of G≥εm. Fixing an arbitrary maximum
matching of G, each of its edges appears in G≥εm with probability (1− ε), thus E|M⋆| ≥
(1− ε)µ(G). Now so long as µ(G) ≥ 20 log(n)ε−2 and ε < 1/2 (which we can assume to hold
as discussed in Section 2.1), we can prove a high probability lower bound on the size of M⋆

via a Chernoff bound on negatively associated random variables. See, e.g., [5, Lemma 2.2]
for the proof of the following:

▶ Observation 12. If µ(G) ≥ 20 log(n)ε−2 and ε < 1/2, Pr[|M⋆| ≥ (1−2ε)µ(G)] ≥ 1−n−5.

From now on, we condition on G<εm which fixes subgraph H and matching M⋆. We only
assume that G<εm is chosen such that the high probability event of Observation 12 holds.

▶ Assumption 13. |M⋆| ≥ (1− 2ε)µ(G).

Other than Assumption 13, we do not need any other assumption on how G<εm is chosen
for the rest of the analysis of the approximation ratio.3 By conditioning on the outcome of
Phase I, the only randomization that will be left, is the order with which the edges of G≥εm

arrive in the stream. For brevity, we do not explicitly write the conditioning on G<εm for the
rest of the section, but it should be noted that all random statements are conditioned
on the outcome of Phase I.

Let P be the set of all augmenting paths of MH in S := M⋆∆MH with length at most five.
Note that since we regard H (and thus MH) as given, the set P is deterministic (as it only
depends on MH and M⋆ and not on the order of edges in G≥εm).

▶ Observation 14. We have |P| ≥ |M⋆| − 4
3 · µ(H).

We use GII.A to denote the subgraph of G that arrives in Phase II.A and use GII.B to
denote the subgraph of G that arrives in Phase II.B.

▶ Definition 15. We say an augmenting path P ∈ P is “lucky” if the following holds:
1. If P = ⟨e1⟩ then e1 ∈ GII.B.
2. If P = ⟨e1, e2, e3⟩ then e1, e3 ∈ GII.A.
3. If P = ⟨e1, e2, e3, e4, e5⟩ then e1, e5 ∈ GII.A and e3 ∈ GII.B.

We denote the set of lucky augmenting paths in P by PL.

Note that the subset PL of P is now random since it depends on the order of edges in
G≥εm. Lemma 16 below proves that a relatively large fraction of augmenting paths in P will
turn out to be lucky with high probability. The proof is straightforward; see [2].

▶ Lemma 16. It holds that Pr
(
|PL| ≤ γ2(1− γ)|P| −

√
15µ(G) ln n

)
≤ 2n−5.

Next, observe that in Phase II.B of Algorithm 2 where we iteratively discover augmenting
paths, we do not have the whole subgraph GII.A and have stored only a subgraph T of GII.A
in the memory. In addition, when finding augmenting paths we use only the current edge e of
GII.B in Algorithm 2. Therefore, not all lucky paths are actually discoverable by Algorithm 2.
This motivates our next definition for “discoverable paths”.

3 We note, however, that the randomization in G<εm is crucial for arguing that the algorithm uses
O(n log n) space. Here, however, we are only analyzing the approximation ratio.
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▶ Definition 17. We say an augmenting path P (not necessarily in P) for MH is “discoverable”
if |P | ≤ 5, all edges of P are in MH ∪ T ∪GII.B, and P has ≤ 1 edge in GII.B.

The next lemma proves there are many vertex-disjoint discoverable augmenting paths, by
relating them to the number of lucky augmenting paths |PL|.

▶ Lemma 18. There is a set Q of vertex-disjoint discoverable augmenting paths of MH with

|Q| ≥ 1
2b + 3

(
|PL| −

4
b
· µ(H)

)
.

Observe that Q is only a set of vertex-disjoint discoverable augmenting paths. However,
since Algorithm 2 applies augmenting paths greedily and in an arbitrary order, the set of
applied augmenting paths may be very different from Q. The next claim shows that we can
nonetheless relate the number of augmenting paths that Algorithm 2 applies to the size of Q.

▷ Claim 19. Let Q be as in Lemma 18. Algorithm 2 applies at least |Q|/6 augmenting paths
in Phase II.B. In other words, |M | ≥ µ(H) + 1

6 |Q|.

Next, we show that the output of Algorithm 2 is strictly larger than µ(H).

▶ Lemma 20. There is an absolute constant ε′
0 > 0 such that for any ε < 0.01, if µ(H) ≤

0.68µ(G) then with probability 1− 1/poly(n), we have |M | ≥ µ(H) + ε′
0 · µ(G).

Proof. We have

|M |
Claim 19
≥ µ(H) + 1

6 |Q|
Lemma 18
≥ µ(H) +

|PL| − 4
b µ(H)

6(2b + 3) . (3)

On the other hand, by Lemma 16 we know that with 1− 1/poly(n) probability,

|PL| > γ2(1− γ)|P| −
√

15µ(G) ln n (By Lemma 16)

= 4
27 |P| −

√
15µ(G) ln n (Since γ = 2/3)

≥ 4
27

(
|M⋆| − 4

3µ(H)
)
−

√
15µ(G) ln n (By Observation 14)

≥ 4
27

(
(1− 2ε)µ(G)− 4

3µ(H)
)
−

√
15µ(G) ln n (By Assumption 13)

> 0.0108µ(G)−
√

15µ(G) ln n (ε < 0.01 and µ(H) ≤ 0.68µ(G))
> 0.01µ(G). (Since µ(G) > c log n for any desirably large constant c.)

Replacing this high probability lower bound for |PL| into (3) we get that w.h.p.,

|M | ≥ µ(H) +
0.01µ(G)− 4

b µ(H)
6(2b + 3)

> µ(H) + 10−7µ(G). (Replacing b = 500 and noting µ(H) ≤ 0.68µ(G).)

This completes the proof. ◀

Lemma 20 states that the output of Algorithm 2 is strictly larger than µ(H). Moreover,
the guarantee of Section 3 implies that µ(H) must be at least (almost) 2

3 µ(G) (or otherwise
µ(H ∪ U) is strictly larger than 2/3µ(G)). The combination of these implies the output of
Algorithm 2 is at least (2/3 + Ω(1))µ(G) proving Theorem 2.
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Abstract

The problem of solving linear systems is one of the most fundamental problems in computer science,
where given a satisfiable linear system (A, b), for A ∈ Rn×n and b ∈ Rn, we wish to find a vector
x ∈ Rn such that Ax = b. The current best algorithms for solving dense linear systems reduce
the problem to matrix multiplication, and run in time O(nω). We consider the problem of finding
ε-approximate solutions to linear systems with respect to the L2-norm, that is, given a satisfiable
linear system (A ∈ Rn×n, b ∈ Rn), find an x ∈ Rn such that ||Ax − b||2 ≤ ε||b||2. Our main result is
a fine-grained reduction from computing the rank of a matrix to finding ε-approximate solutions to
linear systems. In particular, if the best known Õ(nω) time algorithm for computing the rank of
n×O(n) matrices is optimal (which we conjecture is true), then finding an ε-approximate solution to
a dense linear system also requires Ω̃(nω) time, even for ε as large as (1 − 1/poly(n)). We also prove
(under some modified conjectures for the rank-finding problem) optimal hardness of approximation
for sparse linear systems, linear systems over positive semidefinite matrices and well-conditioned
linear systems. At the heart of our results is a novel reduction from the rank problem to a decision
version of the approximate linear systems problem. This reduction preserves properties such as
matrix sparsity and bit complexity.
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1 Introduction

Algorithms for solving linear equations are one of the most fundamental primitives in
computer science. Formally this is the problem where, given a linear system (A, b), where
A ∈ Rm×n is a real matrix and b ∈ Rm is a vector in the column space of A, we need to
find a vector x ∈ Rn such that Ax = b. Gaussian elimination running in time1 O(n3) was
one of the first algorithms for this problem. Hopcraft and Bunch [9] reduced solving linear
equations to fast matrix multiplication of two n × n matrices [35, 14, 34, 37, 17, 3] which
can be done in m(n) = nω, where ω is the matrix multiplication constant. The current best
known upper bound on ω is approximately 2.372.. [3]. The best known algorithms for solving
linear systems reduce the problem to matrix multiplication, but there is no known reduction
in the other direction. We study the complexity of finding approximate solutions to linear
systems (defined more precisely later) under the following conjecture:

1 Here we are discussing algorithms and hardness over the Real RAM, unless stated otherwise. We discuss
the Word RAM in more detail in Section 1.3.
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20:2 Optimal Fine-Grained Hardness of Approximation of Linear Equations

▶ Conjecture 1.1 (Rank-Finding Conjecture over RealRAM). Finding the rank of a matrix
A ∈ Rm×n with m = O(n) in RealRAM is Ω(nω)-hard.

The problem of finding the rank of a matrix is a central problem in linear algebra. It is
known that this problem can be reduced to fast matrix multiplication [9, 20], hence there
exist algorithms for the rank-finding algorithm that run in time O(nω). There are known
faster algorithms for restricted classes of matrices. For sparse matrices we know of O(n2)
algorithms [36] and for low-rank matrices the O(n2 +rank(A)ω)-time algorithms of [21, 15, 11]
run in time nω−Ω(1) when rank(A) = n1−Ω(1). No improvement over the O(nω)-runtime is
known for general matrices though. We conjecture that this run time is in fact optimal for
general matrices. The rank-finding problem is equivalent to checking whether the determinant
of a matrix is 0. We get some evidence towards the truth of our conjecture by considering
the computational model of arithmetic circuits2: In a seminal work Baur and Strassen [7]
linearly reduced the the problem of matrix multiplication to the problem of computing the
determinant, thus showing that the latter problem requires arithmetic circuits of size as
large as those required for matrix multiplication. Furthermore, this is a central conjecture
because falsifying it (getting faster algorithms for the rank-finding problem) would yield
better algorithms for important problems like finding the size of a maximum matching in a
graph [26, 27]. 3 For some direct evidence: there has been a line of work by Musco et al [28]
that gives algorithms to approximate the Schatten p-norms in time better that O(nω) when
p > 0. But at p = 0, the problem of finding the Schatten p-norm is the same as finding the
rank of the matrix, and their algorithms run in time Ω(nω). Hence they are not able to beat
the runtime of O(nω) to approximate the rank of a matrix, let alone determine it exactly.

Conjecture 1.1 allows us to study the hardness of linear system solving and related linear
algebraic problems in the style of fine-grained complexity [38]. We show that the conjecture
directly implies Ω̃(nω)-hardness of finding exact solutions to linear systems. One could hope
to get faster algorithms though when allowed to find an approximate solution to the linear
system. In this paper, we consider the problem of finding approximate solutions to linear
systems. Specifically, we consider the following notion of approximation:

▶ Definition 1.2 (ε(n)-Approximate Linear Search). For a function ε : N → [0, 1], the ε-
Approximate Linear Search problem is defined as, given a satisfiable4 linear system (A ∈
RO(n)×n, b), find an x ∈ Rn such that ||Ax − b||2 ≤ ε(n)||b||2.

Note that the all 0’s vector x = 0n is a 1-approximate solution to any linear system
as ||A0n − b|| = ||b||2. Our main result shows that doing barely better than the trivial
approximation is hard: (1 − 1/n100)-Approximate Linear Search i.e. finding an x such that
||Ax − b||2 ≤ (1 − 1/n100)||b||2. is Ω̃(nω) hard under Conjecture 1.1.

Spielman and Teng [32] gave nearly linear-time algorithms (O(n2 log(1/ε(n)))-time) for
finding ε(n)-approximate solutions to Laplacian linear-systems and this result was built upon
by many works [23, 12] to give such algorithms for other restricted classes of linear systems.
Our result shows that under the hardness of the rank-finding problem, these algorithms
cannot be extended to general linear systems. As mentioned above, we conditionally rule out
Õ(n2)-time algorithms for finding ε(n)-approximate solutions to general linear systems even
for ε(n) = 1 − 1/n100.

2 Such a reduction is unknown in the RealRAM model.
3 This is because maximum matching algorithms has a randomized reduction to the rank-finding problem.
4 Keeping with the convention of promise problems, we will assume that when given an unsatisfiable

instance the algorithm is allowed to output an arbitrary vector.
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We also extend our results to give optimal conditional hardness of approximation (under
analogous conjectures for the rank-finding problem) for restricted classes of linear systems:
sparse linear systems, linear systems over positive-semidefinite matrices, and well-conditioned
linear systems.

Recently there has been a lot of progress in relating the exact time-complexities of various
problems that have polynomial running times. Although there has been success in a variety
of graph-theoretic, geometric and string problems [31, 2, 6], there are very few fine grained
reductions from the assumptions therein to linear algebraic problems, an example being, the
work of Musco et al [28] that showed conditional lower bounds for spectrum approximation.

The theory of probabilistically checkable proofs [5, 18] was instrumental in proving a
host of NP-hardness of approximation results. Though this theory was very successful in
settling the time-complexity for approximation problems in NP, there are inherent limitations
to extend these techniques to problems in P. Towards this, there has been recent progress
for establishing hardness of approximation results for problems in P [1, 10, 22]. Our paper
makes further progress in this direction.

1.1 Our results
The table below gives a summary of our hardness results over the RealRAM.

Table 1 ε-ALS refers to ε-Approximate Linear Search Problem. Our hardness results are under
different conjectures, see statements for more details. All hardness results are for ε = 1 − 1/n100,
while all algorithms are for the much (apriori) harder exact search problem. For small values of
condition number better algorithms are known [19] but for our regime of either unbounded or poly(n)
condition number the above algorithms are the best known.

Problem Hardness Algorithm

ε-ALS Ω̃(nω) (Corollary 4.2) O(nω) ([9])

Sparse ε-ALS Ω̃(n2) (Corollary 4.4) O(n2)([19])

Well-conditioned ε-ALS (Definition 4.13) Ω̃(nω) (Corollary 4.17)
O(nω) ([9])

ε-ALS with PSD matrix Ω̃(nω) (Corollary 4.10)

We consider the question: Can one get fast approximate linear system solvers for general
linear systems that run in time õ(nω)? We answer this question in the negative, under
Conjecture 1.1. In this section we discuss the hardness result for solving general linear
systems approximately (first row of Table 1). We discuss the other results of the table in
Section 1.2.

We refer to the decision version of the ε-approximate linear search problem as Approximate
Linear Decision problem (formally defined in Definition 1.4). We prove all our hardness
results by showing a reduction from the rank-finding problem to the Approximate Linear
Decision problem. We now state the lemma that proves our main reduction:

▶ Theorem 1.3 (Main reduction: Informal). There exists a randomized Turing reduction
from the rank-finding problem on A ∈ Rm×n to the (1 − 1/n100)-Approximate linear decision
problem5 on square matrices with sparsity Õ(nnz(A)) and dimension O(max(m, n)). The
reduction runs in time Õ(nnz(A)) and works with high probability.

5 The constant 100 here is arbitrary and in fact our reduction works for all constants.
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20:4 Optimal Fine-Grained Hardness of Approximation of Linear Equations

Our reduction

At the heart of our results lies an “exact to approximate” reduction for deciding the satis-
fiability of linear systems. For showing hardness of finding approximate solutions, we are
able to use this philosophy of “increasing the gap” between the YES and NO instances. We
consider the following natural decision analogue of the ε-approximate search problem:

▶ Definition 1.4 (ε(n)-Approximate Linear Decision problem [25]). For a function ε : N → [0, 1],
given a linear system (A ∈ Rm×n, b ∈ Rm), with m = O(n) and the promise that it falls into
one of the following two sets of instances:
1. YES instance: There exists an x ∈ Rn such that Ax = b.
2. NO instances: For all x ∈ Rn, ||Ax − b||2 > ε(n)||b||2,
decide whether (A, b) is a YES instance or a NO instance. We will refer to ε(n) as the “gap”
of the instance.

We show that the rank-finding problem reduces to the (1 − 1/n100)-approximate linear
decision problem described above. We also show that the rank-finding problem is equivalent
to the exact linear decision problem i.e. the problem of deciding satisfiability of linear systems.
Hence our reduction can be interpreted as increasing the gap between the YES/NO cases
from almost 0 (can be arbitrarily small as we are working over the RealRAM) to 1 − 1/n100.
We increase this gap in two stages, first to ε(n) = 1/nO(1) and then to 1 − 1/n100. This gives
conditional Ω̃(nω)-hardness of the (1 − 1/n100)-approximate linear decision problem.

Even though the main reduction discussed here is from the rank-finding problem, we are
also able to give a search to search reduction from the 1/nO(1)-approximate linear search
problem to the (1 − 1/n100)-approximate linear search (see Corollary 1.6).

We will now discuss the corollaries of the main reduction outlined above. Given The-
orem 1.3, we perform a standard decision to search reduction (Lemma 4.1) to get optimal hard-
ness of approximation for the (1−1/n100)-approximate search problem, under Conjecture 1.1.
Thus under the rank finding conjecture, this reduction rules out all (1−1/n100)-approximation
algorithms that run in time õ(nω).

▶ Corollary 1.5 (Informal). Under Conjecture 1.1, for all constants c > 0, the (1 − 1/n100)-
approximate linear search problem is Ω̃(nω)-hard in the RealRAM model of computation.

The second step of our reduction can also be used to increase the gap of the 1/nO(1)-
Approximate Linear Search problem from 1/nO(1) to 1 − 1/n100. This gives us the following
corollary:

▶ Corollary 1.6 (Search to Search reduction: Informal). If for any constant a there exists an
Õ(na)-time algorithm for (1 − 1/n100)-approximate linear search problem then there exists
an Õ(na)-time algorithm for the 1/n100-approximate linear search problem.

Our hardness result is tight because there exist algorithms which solve the (1 − 1/nc)-
Approximate Linear Search problem in O(nω) over the RealRAM. In fact, one can solve the
more general problem of linear regression, i.e. given a (possibly unsatisfiable) linear system
(A, b), find an x that minimizes ||Ax − b||2, in time O(nω).

1.2 Extensions
We prove several extensions of our main theorem using the reduction discussed above. We
can modify our main reduction so that it preserves the sparsity and condition number of the
original instance to get the results for sparse and well-conditioned linear systems. To get
hardness for PSD linear systems we need additional ideas beyond this reduction. We get the
following results:
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Sparse Linear Systems

Linear equation solving has also been studied in the case of sparse linear systems. We know
of O(nnz(A)n) time algorithms for solving a linear system (A ∈ RO(n)×n, b) where nnz(A)
denotes the number of non-zero entries of A, that use Conjugate Gradient Descent [19], so
that when the sparsity of A is Õ(n), these algorithms run in time Õ(n2). Our reduction
(discussed above), preserves the sparsity of the original matrix A and thus reduces the exact
problem over sparse linear systems to the approximate problem over sparse ones. We start
with an analogous conjecture to Conjecture 1.1 for finding the rank of a sparse matrix:

▶ Conjecture 1.7 (Rank-finding Conjecture for Sparse matrices over RealRAM). Finding the
rank of a matrix A ∈ Rm×n with m = O(n) and nnz(A) = Õ(n) in RealRAM is Ω(n2)-hard.

Under the above conjecture we show (see Corollary 4.4) that solving (1 − 1/n100)-
Approximate Linear Search problems on sparse linear systems is Ω̃(n2)-hard, which is optimal
up to poly-logarithmic factors.

Positive Semi-Definite Linear systems

We give optimal hardness for the (1 − 1/n100)-approximate linear search problem when the
matrix A is restricted to be positive semidefinite (see Corollary 4.10). Recently there has
been a lot of work for getting nearly linear-time approximation algorithms for restricted
classes of matrices. For a slightly more restricted class of linear systems than PSD ones,
called Strongly Diagonally Dominant (SDD) systems, Spielman and Teng gave near-linear
time approximate solvers [32], leaving near-linear time approximation algorithms for PSD
linear systems as the next open problem. In fact, resolving the time-complexity for PSD
linear systems was in mentioned as an open problem in [4], where they gave unconditional
hardness for PSD linear systems for sublinear-time algorithms. Interestingly, we show that
under Conjecture 4.6, such solvers are not possible for PSD linear systems, thus giving a
conditional separation of the time complexity required for approximately solving SDD linear
systems versus PSD ones.

Well-conditioned linear systems

We now turn our attention to the problem of solving well-conditioned (polynomially bounded
condition number) linear systems approximately. In Section 4.4, we give optimal conditional
hardness of approximation for linear systems over matrices with polynomially bounded
condition number under the Ω̃(nω)-hardness of the well-conditioned rank-finding problem.

We also prove the following analogue of Corollary 1.6 which amplifies the gap for the
search problem on well-conditioned matrices:

▶ Corollary 1.8. If there exists as Õ(na) time algorithm for Well-conditioned (1 − 1/n)-
Approximate Linear Search then there exists a Õ(na)-time algorithm for Well-conditioned
(1/n)-Approximate Linear Search problem.

1.3 Reductions over the WordRAM
Our main reduction can be modified to preserve the bit-complexity of the original matrix.
In Section 5, we show analogous results for all the problems considered above over the
WordRAM. We show that under analogous conjectures for the rank-finding problem over
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20:6 Optimal Fine-Grained Hardness of Approximation of Linear Equations

the WordRAM, the problem of finding (1 − 1/n100)-approximate solutions to linear systems
with bit-complexity O(log n) is Ω̃(nω)-hard over the WordRAM. Our hardness result is tight
up to polylogarithmic factors because there exist Õ(nω)-time algorithms for exactly solving
linear systems on the WordRAM [33, 29, 8].

1.4 Further applications and related work
Recently, there has been a lot of progress on the algorithmic front for finding approximate
solutions to restricted classes of linear systems (A, b). In a breakthrough work, Spielman
and Teng [32] obtained Õ(nnz(A) log(1/ε(n)))-time algorithms for finding ε(n)-approximate
solution to Laplacian systems and Strongly Diagonally Dominant (SDD) systems. This
result was followed up by algorithms for more general classes of linear systems such as
Connection Laplacians [23] and Directed Laplacian systems [13]. This raised the hope that
such approximation algorithms could be obtained for more general classes of matrices such as
truss stiffness matrices and total variation matrices. Kyng and Zhang [25] showed that such
algorithms for these slightly more general classes would imply approximation algorithms for
general linear systems. Therefore, by composing our reduction with theirs, one immediate
corollary we get is that solving approximately for these classes of restricted linear systems is
as hard as the rank-finding problem.

In [24] the authors prove conditional hardness for the problems of Packing/Covering
Linear Programs based on the hardness of approximately solving general linear equations.
Prior to our work there was no evidence of hardness for approximately solving linear equations.
Our results therefore imply hardness for these problems under the rank-finding problem,
which is a more well-studied problem in our opinion.

Organization

In section 2 we introduce notation and basic definitions that will be used throughout the
paper. In Section 3 we give a proof of our main reduction (Theorem 3.1). In Section 4, we
show conditional hardness for finding approximate solutions to linear systems over the Real
RAM. We then extend these conditional hardness results to restricted classes of linear systems:
Section 4.2 considers sparse linear systems, Section 4.3 considers positive semidefinite linear
systems, and finally Sec 4.4 considers well-conditioned linear systems. In Section 5 we show
the analogues of these results over the WordRAM model of computation.

All the proofs are deferred to the full version of the paper.

2 Preliminaries

Below is some notation that will be used throughout:

Notation

We will use nnz(A) for to denote the sparsity of a matrix A and we will assume that nnz(A) ≥
max(n, m) for A ∈ Rm×n. We will call a matrix A ∈ Rm×n sparse if nnz(A) = Õ(max(m, n)).
We will use κ(A) to denote the condition number of a matrix A. By bit complexity of A

or B(A) we will refer to maximum bit complexity of any entry in the matrix/vector A. We
will use ≤T to denote Turing reductions. Most of our Turing reductions run in quasi-time
linear in the input size. We say ⟨a, b⟩ to denote the inner product of a and b i.e.

∑
i aibi.

We denote W ⊥ to denote the subspace orthogonal to the subspace W . By PW (b) we denote
the projection of b on the vector space W . For a matrix M we denote its column space by
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colspace(M). By A† we mean the pseudoinverse of a matrix A. For a matrix A ∈ Rm×n

by ΠA = A(AAT )†AT we mean the linear operator such that for all x ∈ Rm, ΠA(x) is the
projection of x on colspace(A). By g = Õ(f) we mean g = O(f · polylog(f)). By g = Ω̃(f)
we mean g = Ω(f/polylog(f)). Whenever not specified by algorithms we mean randomized
algorithms. We use w.h.p. to denote a probability of 1 − 1/nlog n, where n is the input size
under consideration.

We refer to the exact version of the ε(n)-Approximate Linear Search problem as the
Linear Search Problem. Similarly we refer to the exact version of the ε(n)-Approximate
Linear Decision problem as the Linear Decision problem.

3 Proof of Main Reduction (Theorem 1.3)

In this section we will prove the reduction from the rank-finding problem to the approximate
version of the linear decision problem. For simplicity, throughout this section we work on
the RealRAM model of computation and wherever we do not state it we assume that this is
the case, so we do not discuss the bit complexity of the reductions. Our reduction can be
modified to work on the WordRAM which we do in Section 5.

▶ Theorem 3.1 (Restatement of Theorem 1.3). For all constants c > 0, there exists a
randomized Turing reduction in the RealRAM model of computation, from the rank-finding
problem on A ∈ Rm×n to the (1 − 1/nc)-Approximate linear decision problem on (A′ ∈
Rn′×n′

, 1n′), with dimension n′ = O(max(m, n)) and sparsity Õ(nnz(A)), where in the YES
case we have the additional property that the matrices produced have full rank. The reduction
runs in time Õ(nnz(A)), produces polylog(mn) instances of the approximate linear decision
problem and works with high probability.

We will prove this reduction in three steps:
1. Lemma 3.3: Rank-Finding Problem ≤T Full Rank problem (see Definition 3.2)
2. Lemma 3.4: Full Rank problem ≤T (1/nO(1))-Approximate linear decision problem
3. Lemma 3.5: 1/nO(1)-Approximate linear decision problem ≤ (1 − 1/nc)-Approximate

linear decision problem

Given the lemmas, it will be straightforward to combine these reductions to get that the
linear decision problem reduces to the (1 − 1/nc)-Approximate linear decision problem. Let
us now show each of the steps stated above. We will prove the first reduction from the rank-
finding problem to the full-rank problem. This is similar to a reduction by Wiedemann [36]
for finite fields. Let us formally introduce the Full rank problem.

▶ Definition 3.2 (Full Rank Problem.). Given a matrix A ∈ Rn×n, is rank(A) = n?

The intuition behind the following reduction from the rank-finding problem to the full-
rank problem is the following: For a matrix A ∈ Rm×n with m > n and rank(A) = k < n,
adding t “random” columns will give a full column rank matrix if and only if t ≥ n − k.
Hence we can binary search for the first value of t which gives us a full column rank matrix,
yielding k.

▶ Lemma 3.3. There exists a randomized Turing reduction which works w.h.p. from the
Rank-Finding problem on A ∈ Rm×n to the Full rank problem, that runs in time Õ(nnz(A))
and produces O(log m) instances of the Full rank problem, such that all instances of the
matrices produced have dimension O(max(m, n)) × O(max(m, n)) and sparsity Õ(nnz(A)).
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We will now prove that the full rank problem reduces to the (1/nO(1))-Approximate linear
decision problem. The idea behind the proof is that for a full-rank square matrix A ∈ Rn×n

every vector b ∈ Rn belongs in the column space of A and hence the linear system (A, b) is
satisfiable. On the other hand if rank(A) < n we expect a random vector b to be outside
the column space of A and hence we expect the linear system (A, b) to be unsatisfiable. We
show a strengthened version of the previous statement by proving that w.h.p. for a random
Gaussian vector b, it holds that for all x, ||Ax − b|| ≥ ε(n)||b|| for some ε(n) = 1/nO(1). We
also show that we can rescale the rows of the linear system (A, b) to get the system (A′, 1n)
while maintaining the property that ||A′x − 1n|| ≥ ε(n)||1n||. We perform the rescaling to
obtain b = 1n as that will simplify our later reductions.

▶ Lemma 3.4. Consider a matrix M ∈ Rn×n. There exists a randomized Turing reduction
from the problem of checking whether M has full rank to the Linear Decision (1/nO(1))-
Approximation problem. The reduction runs in time Õ(nnz(M)), produces polylog(n) instances
of the form (M ′ ∈ Rn×n, 1n) where in the YES case M ′ is a full rank matrix, and works
w.h.p.

We will now show that one can amplify the error in the NO case from 1/nO(1) to 1 − 1/nc

for all constants c.
The following lemma works for all ε(n), δ(n), but we only state it for ε(n) =

1/nO(1), δ(n) = 1/nc to maintain consistency with the later sections in which we will
work over WordRAM.

▶ Lemma 3.5. For all constants c and ε(n) = 1/nO(1), δ(n) = 1/nc, there exists a determ-
inistic many-one reduction from the ε(n)-Approximate linear search problem on the linear
system (A ∈ Rn×n, 1n) to the (1 − δ(n))-Approximate linear search problem on the linear
system (A′ ∈ Rn×n, 1n), with nnz(A′) = O(nnz(A)). The reduction runs in time Õ(nnz(A)).
Additionally if A is full rank then the matrix A′ produced is also full rank.

As this is a deterministic many-one reduction we also get a gap-amplifying reduction for
the ε(n)-Approximate linear decision problem with the same parameters.

We can now combine all the lemmas above to get the proof of Theorem 3.1.

Proof of Theorem 3.1. We have proved the following sequence of reductions which preserve
sparsity:
1. Lemma 3.3: Linear decision problem ≤T Full rank problem
2. Lemma 3.4: Full rank problem ≤T 1/nO(1)-Approximate linear decision problem
3. Lemma 3.5: 1/nO(1)-Approximate decision problem ≤T (1 − 1/nc)-Approximate linear

decision problem.

Note that in the YES case of Full-Rank problem we have a square full rank matrix, and
this is propagated through Lemma 3.4 and Lemma 3.5 hence the final instance we produce
has a full rank matrix in the YES case. Since each of these reductions work whp, one can
compose them to get the theorem statement. ◀

4 Hardness of finding L2-Approximate solutions on Real RAM

In this section, we elaborate on the implications of our main reduction from the previous
section (Theorem 3.1). Below is the map of reductions we showed in the previous sections.
We will introduce conjectures for the Rank-finding problem in this section and given the
reductions, the conjectures will imply conditional hardness of the approximate linear search
problem.
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All the results in this section are for the RealRAM but can be obtained over the WordRAM
too. In Section 5, we prove the conditional hardness of the approximate linear search problem
over general matrices in the WordRAM model.

Rank-Finding
1/nO(1)-Approximate

Linear Decision

(1 − 1/nΩ(1))-Approximate

Linear Decision

Linear Decision
1/nO(1)-Approximate

Linear Search

(1 − 1/nΩ(1))-Approximate

Linear Search

Lemma 3.3+3.4

Decision to Search (Lemma 4.1)

Lemma 3.5

Decision to Search

Lemma 3.5

Figure 1 Reductions on RealRAM preserving sparsity (up to polylog(n) factors) and dimension
(up to constant factors).

Note that all the lemmas pointed out here (except for the decision to search reduction)
were shown in the previous section. The decision to search reduction is straightforward to
carry out in the RealRAM and we formally prove it in Lemma 4.1.

In the sections below we discuss the hardness of the approximate linear search problem
over general matrices, and then the case of restricted classes of linear systems - sparse linear
systems and linear systems given by positive-semidefinite matrices. Our results give tight
conditional hardness for all the problems considered.

4.1 General linear systems
We base the hardness result for the approximate linear search problem under the following
conjecture for the rank-finding problem:

We now prove the search to decision reduction.

▶ Reminder of Conjecture 1.1 Finding the rank of a matrix A ∈ Rm×n with m = O(n) in
the RealRAM model of computation is Ω̃(nω)-hard.

▶ Lemma 4.1. If there exists a O(t(n)) time algorithm to solve ε-Approximate linear search
problem for a linear system with sparsity s then there exists a O(t(n) + sn) time algorithm
to solve ε-Approximate linear decision problem for linear system with sparsity s.

Proof. We will follow the standard decision to search reductions which proceed by solving
and then confirming. Suppose we are given a linear system (A, b) with nnz(A) = s for which
we want to solve ε-Approximate linear decision problem.

Suppose it is a YES instance i.e. there exists an exact solution, then by the assumed
algorithm for ε-Approximate linear search problem we can find an x′ such that ||Ax′ − b||2 ≤
ε||b||2. This can be done in O(t(n)) time.

Suppose instead we were in the NO case i.e. for all x′, ||Ax′ − b||2 > ε||b||2 i.e. there
exists no x′ such that ||Ax′ − b||2 ≤ ε||b||2.

Hence checking whether ||Ax′ − b||2 ≤ ε||b||2 is true of not for the x′ returned by
the assumed algorithm for ε-Approximate linear search problem will let us solve the ε-
Approximate linear decision problem. We can check if ||Ax′ − b||2 ≤ ε||b||2 in time O(sn).
Hence the total running time is O(t(n) + sn). ◀
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Combining the main reduction (Theorem 3.1) with a decision to search reduction
(Lemma 4.1) we get optimal conditional hardness for the (1−1/nc)-approximate linear search
problem under Conjecture 1.1:

▶ Corollary 4.2 (Corollary 1.5 restated). Under Conjecture 1.1, for all constants c > 0,
the (1 − 1/nc)-approximate linear search problem is Ω̃(nω) hard in the RealRAM model of
computation. Moreover, this remains true even when the matrix A in the given linear system
(A, b) is square and has full rank.

This conditional hardness result is tight as the best algorithms for (exactly) solving
general linear systems run in time Õ(nω) [9].

The next corollary is a search to search reduction between the approximate linear search
problem with small gap to one with a larger gap. This is a direct consequence of Lemma 3.5.
Recall that in the proof of Lemma 3.1 we used Lemma 3.5 to amplify the gap of the
approximate linear decision problem. Lemma 3.5 is in fact more general and can amplify the
gap of the approximate linear search problem too (as noted in the lemma statement):

▶ Corollary 4.3 (Corollary 1.6 restated). If for any constant c > 0 and a there exists an
Õ(na)-time algorithm for (1−1/nc)-Approximate Linear Search problem then for all constants
d there exists a Õ(na)-time algorithms for 1/nd-Approximate Linear Search problem.

Even though this is stated as a reduction, one could potentially use the above corollary
to get better algorithms for the 1/nO(1)-approximate linear search problem.

4.2 Sparse linear systems
In this section, we give analogous results for sparse linear systems. Here we use the fact that
our main reduction (Theorem 3.1) preserves the sparsity of the original matrix. Hence if we
assume the hardness of the rank-finding problem over sparse matrices, we get conditional
hardness for approximately solving sparse linear systems.

▶ Reminder of Conjecture 1.7 Finding the rank of a matrix A ∈ Rm×n, where m = O(n)
and nnz(A) = Õ(n), in the RealRAM model of computation, is Ω̃(n2)-hard.

Combining the main reduction (Theorem 3.1) with a decision to search reduction we get
optimal conditional hardness for the (1 − 1/nc)-approximate linear search problem on sparse
matrices, under Conjecture 1.7:

▶ Corollary 4.4. Under Conjecture 1.7, for all constants c > 0, the (1 − 1/nc)-approximate
linear search problem (A, b) with nnz(A) = Õ(n) is Ω̃(n2) hard, in the RealRAM model of
computation. Moreover, this remains true even when the matrix A is square and has full
rank.

Note that here we crucially used the fact that the main reduction preserves the sparsity
of the original matrix. This conditional hardness result is tight as the best algorithms for
(exactly) solving linear equations run in time Õ(nnz(A) · n) [19] which is equal to Õ(n2) for
sparse matrices.

Now we state the search to search reduction for the approximate linear search problem
over sparse matrices which follows from Lemma 3.5. This reduction amplifies a small gap to
a large gap.

▶ Corollary 4.5. If for any constant c > 0 and a there exists an Õ(na)-time algorithm for
the (1 − 1/nc)-Approximate Linear Search problem over (A, b) then for all constants d there
exists an Õ(na)-time algorithm for the 1/nd-Approximate Linear Search problem over (A′, b)
where nnz(A′) = nnz(A).
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4.3 Positive semidefinite linear systems
In this section, we show hardness for dense linear systems over PSD matrices. To do so,
we need some additional ideas beyond our main reduction and also a conjecture for solving
linear systems on matrices with intermediate sparsities. This conjecture also allows us to
show optimal conditional hardness of approximately solving linear systems (A, b) for any
sparsity.

▶ Conjecture 4.6 (Rank-finding conjecture for all sparsities). Finding the rank of a matrix
A ∈ Rm×n, where m = O(n), is min(Ω̃(nnz(A) · n), Ω̃(nω)) hard in the RealRAM model of
computation.

The current best known algorithms for the Rank-Finding problem (A ∈ RO(n)×O(n)) runs
in time min(nnz(A)n, nω). The above conjecture assumes that this is optimal. We can prove
the following theorem directly by combining Conjecture 4.6 and Lemma 5.5.

▶ Corollary 4.7. Under Conjecture 4.6, for all constants c > 0, (1 − 1/nc)-approximate
linear search problem (A, b), is min(Ω̃(nnz(A) · n), Ω̃(nω)) hard in the RealRAM model of
computation. Moreover, this remains true even when the matrix A in the given linear system
(A, b) has full rank.

The next lemma reduces the approximate linear search problem for intermediate sparsities
to approximate linear search problem on dense PSD matrices. It’s proof exploits the fact
that the algorithm of Yuster and Zwick [39] does matrix multiplication of two matrices A, A′

in O(min(nω, z.7n1.2 + n2)) time where z ≥ nnz(A) and z > nnz(A′). This is faster than
the best algorithm for solving linear systems (A, b) which runs in O(min(nω, zn)) where
z = nnz(A) for certain sparsities. Specifically we will use the following result from Yuster
and Zwick [39]:

▶ Theorem 4.8 (Yuster and Zwick [39], See Theorem 3.1 and discussion). Assuming ω > 2
there exists constants .1 ≥ γ, γ′ > 0 such that for two matrices A, B ∈ RO(n)×O(n) which
satisfy nnz(A), nnz(B) ≤ n

ω+1
2 −γ can be multiplied in time O(nω−γ′).

This allows to do the following reduction:

▶ Lemma 4.9. Assuming ω > 2, there exists constants .1 ≥ γ, γ′ > 0 and a reduction
running in time O(max(nω−γ′

, nω−γ)) from (1 − δ(n))-approximate linear search problem
(V ∈ Rn×n, b) with nnz(V ) ≤ n

ω+1
2 −γ to (1 − δ(n))-approximate linear search problem (V ′, b)

such that the matrix V ′ is PSD.

We now compose the above reduction with Conjecture 4.6 to get the following tight
conditional hardness.

▶ Corollary 4.10. Under Conjecture 4.6, for all constants c > 0 (1 − 1/nc)-approximate
linear search problem (A, b) where A is restricted to be a PSD matrix, is Ω̃(nω) hard in the
RealRAM model of computation. Moreover, this remains true even when the matrix A in the
given linear system (A, b) has full rank.

4.4 Well-Conditioned Linear Systems
In this section, we show conditional hardness of approximately solving well-conditioned linear
systems. The condition number of a full-rank square matrix is the ratio of its maximum and
minimum singular values. If the entries of a matrix are all O(log n)-bits then the condition
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number of this matrix is at most exponential in n (this is true even for rectangular full
column-rank matrices). Therefore linear systems over matrices with polynomially-bounded
condition number could be significantly easier to solve than general linear systems.

For the case of certain restricted classes of matrices such as directed Laplacians, the
algorithm of Cohen et al [12] for the ε(n)-approximate linear search problem runs in time
Õ(nnz(A) log(κ(A)/ε(n))) which is a near-linear time algorithm for κ(A) = poly(n). This is
a significant improvement over algorithms for directed Laplacian systems with no bound on
the condition number (which run in time Õ(nω)).

But for general systems no such improvement is known! Conjugate gradient [19] runs in
time Õ(nnz(A)), when κ(A) = poly log n, whereas when κ(A) = poly(n) this algorithm gives
no improvement over the algorithm for general matrices.

We show that if we assume that the rank-finding problem is hard over well-conditioned
matrices (κ(A) = poly(n)), then the approximate linear search problem is hard to solve over
well-conditioned linear systems. The proof goes along the same lines as that for general
matrices: we show in Lemmas 4.15 and 4.16 that our main reduction (Theorem 3.1) in fact
preserves the condition number of our original matrix. Then as a corollary we obtain the
conditional hardness for approximately solving well-conditioned linear systems. Note that
we show all the results here over the RealRAM but they can be easily modified to work on
the WordRAM too.

Well-conditioned

Rank-Finding

Well-conditioned

1/nO(1)-Approximate

Linear Decision

Well-conditioned

(1 − 1/nΩ(1))-Approximate

Linear Decision

Well-conditioned

1/nO(1)-Approximate

Linear Search

Well-conditioned

(1 − 1/nΩ(1))-Approximate

Linear Search

Lemma 4.15

Decision to Search

Lemma 4.16

Decision to Search

Lemma 4.16

Figure 2 Reductions on the RealRAM preserving sparsity (up to polylog(n) factors), dimension
(up to constant factors) and condition-number (upto poly(n) factors). One difference from the
results from the previous sections is that we no longer have the equivalence for the Rank-Finding
Problem and the Linear Decision problem for Well-conditioned matrices.

Before diving into the reduction, we will formally define all the problems used in the
reduction-map above. As discussed in the definition of the condition-number, the condition-
number is bounded only when the matrix has full column-rank, therefore in all the definitions
below the matrices considered have dimension m × n with n ≤ m.

▶ Definition 4.11 (Well-conditioned Rank-Finding Problem). Given a matrix A ∈ Rm×n where
n ≤ m ≤ O(n), with the promise that it falls into one of the following two sets of instances:
1. YES instances: rank(A) = n and κ(A) ≤ poly(n).
2. NO instances: rank(A) < n

decide whether A is a YES instance or a NO instance.
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▶ Definition 4.12 (Well-conditioned Full Column-Rank Problem). Given a square matrix
A ∈ Rm×n, where n ≤ m, with the promise that it falls into one of the following two sets of
instances:
1. YES instances: col-rank(A) = n and κ(A) ≤ poly(n).
2. NO instances: col-rank(A) < n

decide whether A is a YES instance or a NO instance.

Note that the Well-conditioned Rank-finding problem easily reduces to the Well-
conditioned Full Column-rank problem. This is because the YES instances of the former
always have full column-rank by definition. In fact, we can also reduce the well-conditioned
rank-finding problem to the well-conditioned full-rank problem on square matrices, by adding
random columns, since this operation preserves the condition-number [16]. For simplicity of
presentation we do not perform this operation and continue to work with full column-rank
and (possibly) rectangular matrices throughout.

Next we formally introduce the search and decision problems on well-conditioned linear
systems:

▶ Definition 4.13 (Well-conditioned ε(n)-Approximate Linear Search Problem). For a function
ε : N → [0, 1], given a satisfiable linear system (A, b) with A ∈ Zm×n for n ≤ m and
κ(A) = poly(n) find an assignment x such that ||Ax − b|| ≤ ε(n)||b||

▶ Definition 4.14 (Well-Conditioned ε(n)-Approximate Linear Decision problem). For a function
ε : N → [0, 1], given a linear system (A ∈ Zm×n, b ∈ Zn) for n ≤ m, with the promise that it
falls into one of the following two sets of instances:
1. YES instance: There exists an x ∈ Qn such that Ax = b and A is well-conditioned.
2. NO instances: For all x ∈ Rn, ||Ax − b||2 > ε(n)||b||2,
decide whether (A, b) is a YES instance or a NO instance.

We will now show our main reduction from the Well-conditioned Rank-finding problem
to the Well-conditioned (1 − 1/nc)-approximate linear decision problem. As noted above the
Well-conditioned Rank-finding problem reduces to the Well-conditioned Full Column-Rank
problem, so we will show a reduction from the latter to the approximate linear decision
problem. To do so, we will show that the proofs in Section 3 preserve the condition-number
of the original matrix.

Let us start with showing that “well-conditioned” property is preserved in the reduction
in Lemma 3.4.

▶ Lemma 4.15. There exists a randomized Turing reduction from the Well-conditioned Full
Column-Rank Problem on M ∈ Zm×n to the Well-conditioned (1/nO(1))-Approximate Linear
Decision problem. The reduction produces polylog(n) instances of the form (M ′, 1n) where
M ′ ∈ Zm×n and κ(M ′) = poly(n), runs in time Õ(nnz(M)), and works w.h.p.

Next let us show that the “well-conditioned” property is preserved in the reduction in
Lemma 3.5.

▶ Lemma 4.16. For all constants c, d > 0, there exists a deterministic many-one reduction
from the Well-conditioned 1/nd-Approximate linear search problem on the linear system
(A ∈ Zm×n, 1n) to the Well-conditioned (1 − 1/nc)-Approximate linear search problem on the
linear system (A′ ∈ Zn×n, 1n), with nnz(A′) = O(nnz(A)) and κ(A′) = poly(n).

As this is a deterministic many-one reduction we also get a gap-amplifying reduction for
the ε(n)-Approximate linear decision problem with the same parameters.
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Combining the two lemmas above we get the well-conditioned analogue of the main
reduction from the Rank-finding problem to the (1 − 1/nc)-approximate linear decision
problem. We can now apply a decision to search reduction to get conditional hardness for
approximately solving linear systems over well-conditioned matrices:

▶ Corollary 4.17. For all constants c, assuming Ω̃(nω) hardness of the well-conditioned
rank-finding problem we get that the well-conditioned (1 − 1/nc)-approximate linear search
problem is Ω̃(nω)-hard.

We also state the following search to search reduction which follows directly from
Lemma 4.16:

▶ Corollary 4.18. For all constants a, c, d > 0, if there exists an Õ(na) time algorithm
for well-conditioned (1 − 1/nc)-approximate linear search then there exists an Õ(na)-time
algorithm for the well-conditioned (1/nd)-approximate linear search problem.

5 Hardness of finding L2-Approximate solutions on Word RAM

Rank-Finding
1/nO(1)-Approximate

Linear Decision

(1 − 1/nΩ(1))-Approximate

Linear Decision

Linear Decision
1/nO(1)-Approximate

Linear Search

(1 − 1/nΩ(1))-Approximate

Linear Search

Lemma 5.6+5.7

Decision to Search
Lemma 5.9

Lemma 5.8

Decision to Search
Lemma 5.9

Lemma 5.8

Figure 3 Reductions on WordRAM preserving sparsity (up to polylog(n) factors), dimension (up
to constant factors) and bit complexity of entries (up to constant factors).

In Section 4 we gave conditional hardness for solving linear equations in RealRAM. In this
section we will give hardness for WordRAM through some modifications of the reduction for
RealRAM. We will assume that for a matrix/vector of dimension m × n in this section that
all input entries are from Z and have O(log mn) bits in.

The reduction in RealRAM does not directly work for WordRAM as:
1. As we are in WordRAM we need to argue that the final problem instance has bounded

bit complexity if the starting problem has bounded bit complexity. To verify this we
show that this is true for all the steps of the reduction.

2. We sampled a random gaussian vector in the reduction (Lemma 3.4), this is not possible
in the WordRAM. We will get around this issue (in Lemma 5.7) by sampling a random
vector whose each entry is a random integer from a predefined range.

3. The decision to search reduction for RealRAM (Lemma 4.1) was nearly trivial. This
is not the case for WordRAM as the solution can have large bit complexity and hence
given a solution directly substituting to check if it is a good solution or not may require
too much time. We give an alternative decision to search reduction in WordRAM in
Lemma 5.9.

We start by defining the Linear Decision Problem over Word-RAM:
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▶ Definition 5.1 (Linear Decision Problem over Word-RAM). Given a linear system (A, b) with
A ∈ Qm×n with B(A) = O(log mn), distinguish between the following two sets of instances:

YES instances: There exists an x such that Ax = b.
NO instances: For all x, Ax ̸= b.

We will consider the following conjecture (analogous to Conjecture 1.1) for the Word
RAM:

▶ Conjecture 5.2 (Rank-Finding Conjecture on WordRAM). There exists no õ(nω)-time
randomized algorithm for finding the rank of a matrix A ∈ Zm×n with m = O(n) and
B(A) = O(log n), in the WordRAM model of computation.

The conjecture is tight as using an easy randomized reduction [33] Rank over integers
with O(log n) bit complexity can be reduced to rank over finite fields GF(poly(n)) which
gives a Õ(nω) time randomized algorithm on WordRAM.

We will prove the following main theorem:

▶ Corollary 5.3 (Hardness of solving linear equation on WordRAM). For all constant c > 0,
under Conjecture 1.1, there does not exist a õ(nω) time randomized algorithm for the
(1 − 1/nc)-approximate linear search problem (A, b) with B(A) = O((c + 1) log n) in the
WordRAM model of computation. Moreover, this remains true even when the matrix A in
the given linear system (A, b) has full rank.

The conditional hardness in the above theorem is tight as there exists O(nω) time
algorithms for exactly solving linear equations over Z in WordRAM [33, 29, 8].

We are also able to establish the following corollary of one of the intermediate steps in
our reduction (Lemma 5.8) which reduces approximately solving linear systems with low
error to approximately solving linear systems with barely non-trivial error.

▶ Corollary 5.4. For all constant c, d > 0, if over WordRAM there exists as Õ(na) time
algorithm for (1−1/nc)-Approximate Linear Search then there exists a Õ(na)-time algorithms
for (1/nd)-Approximate Linear Search problem.

Analogous to Theorem 3.1 we will prove a reduction from the rank finding problem to
approximate linear decision problem from which Corollary 5.3 will follow by a decision to
search reduction (Lemma 5.9). Formally,

▶ Lemma 5.5 (Reduction from exact to approximate). For all constant c, there exists a
randomized Turing reduction from the rank-finding problem on A ∈ Zm×n to the (1 − 1/nc)-
Approximate linear decision problem on n′ × n′-square matrices with bit complexity B(A) =
O((c + 1) log(n)), with n′ = O(max(m, n)), where in the YES case we have the additional
property that the matrices produced have full rank. The reduction runs in time Õ(c · nnz(A)),
produces polylog(mn) instances of the approximate linear decision problem and works w.h.p..

To prove the above Lemma, we will go through each of the steps in the proof of Theorem 1.3
and see that all of them work for WordRAM with small modifications. We start with the
reduction the Rank-Finding Problem to the Full rank problem for WordRAM (analogous to
Lemma 3.3 for RealRAM).

▶ Lemma 5.6. There exists a randomized Turing reduction which works w.h.p. from the Rank-
Finding problem on A ∈ Zm×n with m = O(n) and B(A) = O(log n), to the Full rank problem,
that runs in time Õ(nnz(A)) and produces O(log m) instances of the Full rank problem, such
that all instances of the matrices produced have dimension O(max(m, n)) × O(max(m, n)),
sparsity Õ(nnz(A)) and bit complexity O(log n).
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Analogous to Lemma 3.4, we now reduce the Full-Rank Problem to the (1/nO(1))-Linear
Decision Approximation problem on WordRAM.

▶ Lemma 5.7. Consider a matrix M ∈ Zn×n. There exists a randomized Turing reduction
from the problem of checking whether M has full rank to the (1/n12)-Linear Decision
Approximation problem. The reduction runs in time Õ(nnz(M)), produces polylog(n) instances
of the form (M ′, 1n) where M ′ ∈ Zn×n, B(M ′) = O(B(M) + (log n)), in the YES case M ′ is
a full rank matrix, and works w.h.p..

Finally we reduce the (1/nO(1))-Linear Decision Approximation problem to the (1−1/nc)-
Linear Decision Approximation problem over WordRAM. This is straightforward to work
out from the analogous Lemma 3.5 in Section 4.

▶ Lemma 5.8. For all constants c and ε(n) = 1/nO(1), δ(n) = 1/nc, there exists a determ-
inistic many-one reduction from the ε(n)-Approximate linear search problem on the linear
system (A ∈ Rn×n, 1n) to the (1 − δ(n))-Approximate linear search problem on the linear
system (A′ ∈ Rn×n, 1n), with nnz(A′) = O(nnz(A)). The reduction runs in time Õ(nnz(A)).
Additionally if A is full rank then the matrix A′ produced is also full rank.

As this is a deterministic many-one reduction we also get a gap-amplifying reduction for
the ε(n)-Approximate linear decision problem with the same parameters.

Now we are ready to prove Lemma 5.5.

Proof of Lemma 5.5. Similar to the proof of Theorem 1.3, The proof follows by composing
Lemma 5.6, Lemma 5.7 and Lemma 5.8 (for ε(n) = 1/nO(1) and δ(n) = 1/nc). The bit
complexity of the final matrix is O(log n) + O(log(n/(ε(n)δ(n)))) = O((c + 1)(log n)) and
the running time is Õ(c · nnz(A)) ◀

To prove Corollary 5.3 we need the following decision to search reduction:

▶ Lemma 5.9. Let ε(n) = 1/nO(1), given an A ∈ Zm×n, x, b where m = O(n), B(A), B(b) =
polylog(n), B(x) = Õ(n) we can distinguish between:
1. ||Ax − b|| ≤ ε(n)||b||/2.
2. ||Ax − b|| ≥ ε(n)||b||.
w.h.p. in time Õ(nnz(A)n).

Combining Lemma 5.5 and Lemma 5.9 give us Corollary 5.3:

Proof of Corollary 5.3. For all constants c, Composing Conjecture 5.2 and Lemma 5.5 gives
us Ω̃(nω) hardness of (1 − 1/nc)-Approximate linear decision problem (A ∈ Zn×n, b) with bit
complexity O((c + 1) log(n)) where in the YES case we have the additional property that A

has full rank. The hardness of (1 − 1/nc)-Approximate linear search problem with the same
properties follows from the decision to search reduction from Lemma 5.9. ◀

We now prove Corollary 5.4:

Proof of Corollary 5.4. Note that the input size is Õ(n2) and hence a ≥ 2. The corollary
directly follows from noting that Lemma 5.8 applied for ε(n) = 1/nd and δ(n) = 1/nc

reduces (1/nd)-Approximate Linear Search problem to (1−1/nd)-Approximate Linear Search
problem in time Õ(n2) = Õ(na). ◀
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5.1 Sparse Matrices
Starting from the WordRAM version of Conjecture 1.7 and using Lemma 5.5 we can establish
that there does not exist a õ(n2) algorithm for (1 − 1/poly(n))-Approximate linear decision
problem on sparse matrices in the WordRAM model. By the decision to search reduction
in Lemma 5.9 we get that there does not exist a õ(n2) algorithm for (1 − 1/poly(n))-
Approximate linear decision search on sparse matrices in the WordRAM model. Note though
that this hardness is trivial to obtain since there exist sparse linear systems such that every
(1 − 1/poly(n))-approximate solution to the system requires Ω(n2) bits to represent.

On the algorithmic side no improvement over the dense case algorithmic runtime of O(nω)
was known until the recent result of Peng and Vempala [30] who gave an asymptotically
faster algorithm for the 1/poly(n)-approximate linear search problem.
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Abstract
In the Priority k-Center problem, the input consists of a metric space (X, d), an integer k and
for each point v ∈ X a priority radius r(v). The goal is to choose k-centers S ⊆ X to minimize
maxv∈X

1
r(v) d(v, S). If all r(v)’s were uniform, one obtains the classical k-center problem. Plesník

[32] introduced this problem and gave a 2-approximation algorithm matching the best possible
algorithm for vanilla k-center. We show how the Priority k-Center problem is related to two different
notions of fair clustering [23, 28]. Motivated by these developments we revisit the problem and, in
our main technical contribution, develop a framework that yields constant factor approximation
algorithms for Priority k-Center with outliers. Our framework extends to generalizations of Priority
k-Center to matroid and knapsack constraints, and as a corollary, also yields algorithms with fairness
guarantees in the lottery model of Harris et al.
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1 Introduction

Clustering is a basic task in a variety of areas, and clustering problems are ubiquitous in
practice, and are well-studied in algorithms and discrete optimization. Recently fairness has
become an important concern as automated data analysis and decision making have become
increasingly prevalent in society. This has motivated several problems in fair clustering and
associated algorithmic challenges. In this paper, we show that two different fairness views
are inherently connected with a previously studied clustering problem called the Priority
k-Center problem.

The input to Priority k-Center is a metric space (X, d) and a priority radius r(v) for each
v ∈ X. The objective is to choose k-centers S ⊆ X such that maxv∈X

d(v,S)
r(v) is minimized.

If one imagines clients located at each point in X, and r(v) is the “speed” of a client at
point v, then the objective is to open k-centers so that every client can reach an open
center as quickly as possible. When all the r(v)’s are the same, then one obtains the classic
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k-center problem [26]. Plesník [32] introduced this problem and showed how to generalize
Hochbaum and Shmoys’ [26] 2-approximation algorithm for the k-center problem, to obtain a
2-approximation for Priority k-Center. This approximation ratio is tight since (2− ε)-factor
approximation is ruled out even for the classic k-center problem under the assumption that
P ̸= NP [19, 25].

Connections to Fair Clustering. Our motivation to revisit Priority k-Center came from
two recent papers that considered fair variants in clustering, without explicitly realizing the
connection to Priority k-Center. One of them is the paper of Jung, Kannan and Lutz [28]
who defined a version of fair clustering as follows. Given (X, d) representing clients/people
in a geographic area, and an integer k, for each v ∈ X let rℓ(v) denote the smallest radius r

such that there are at least ℓ points of X inside a ball of radius r around v. They suggested
a notion of fair k-clustering as one in which each point v ∈ X should be served by a center
not farther than r(v) = rn/k(v) since the average size of a cluster in a k-clustering is n/k.
[28] describe an algorithm that finds k centers such that each point v is served by a center
at most distance ≤ 2rn/k(v) away from v. Once the radii are fixed for the points, then
one obtains an instance of Priority k-Center, and the result essentially1 follows from the
algorithm in [32]; indeed, the algorithm in [28] is the same.

Another notion of fairness related to the Priority k-Center is the lottery model introduced
by Harris et al. [22]. In this model, every client v ∈ X has a “probability demand” p(v) and a
“distance demand” r(v). The objective is to find a distribution S over k-center locations such
that for every client v ∈ X, PrS∼S [d(v, S) ≤ r(v)] ≥ p(v). One needs to either prove such a
solution is not possible, or provide a distribution where the distance to S can be relaxed to
αr(v). Using a by now almost standard reduction via the ellipsoid method [6, 1], this boils
down to the outlier version of Priority k-Center, where some points in X are allowed to be
discarded. The outlier version of Priority k-Center had not been explicitly studied before.

Our Contributions. Motivated by these connections to fairness, we study the natural
generalizations of Priority k-Center that have been studied for the classical k-center problem.
The main generalization is the outlier version of Priority k-Center: the algorithm is allowed
to discard a certain number of points when evaluating the quality of the centers chosen.
First, the outlier version arises in the lottery model of fairness. Second, in many situations
it is useful and important to discard outliers to obtain a better solution. Finally, it is also
interesting from a technical point of view. We also consider the situation when the constraint
on where centers can be opened is more general than the cardinality constraint. In particular,
we study the matroid priority center problem where the set of centers must be an independent
set of a given matroid, and the knapsack priority center problem where the total weight
of centers opened is at most a certain amount. Our main contribution is an algorithmic
framework to study the outlier problems in all these variations. Our results also imply
interesting generalizations for fair clustering.

1.1 Statement of Results
We briefly describe some variants of Priority k-Center. In the supplier version, the metric
space is partitioned into facilities F and clients C, and goal is to select k facilities S ⊆ F

to minimize maxv∈C d(v, S)/r(v). In the Priority Matroid Supplier problem, the subset of

1 One needs to observe that Plesník’s analysis [32] can be made with respect to a natural LP which has a
feasible solution with r(v) := rn/k(v).
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facilities need to be an independent set of matroid on F . In the Priority Knapsack Supplier
problem, the subset of facilities must have weight at most a certain amount. All these
generalizations have a 3-approximation [26, 14] in the vanilla version where all r(v)’s are the
same. Our first observation is that these extend to Priority k-Center in a simple fashion.
This result also implicitly relates the approximation ratio to the integrality gap of the natural
LP relaxation. This allows us to rederive and extend the algorithmic results in [28] we give
details in Section 6.

▶ Result 1. There is a 3-approximation for Priority k-Supplier and Priority Matroid Supplier
and Priority Knapsack Supplier.

Our second, and the main technical contribution, is a general framework to handle outliers.
Given an instance of Priority k-Center and an integer m ≤ n, the outlier version that we
refer to as PkCO, is to find k centers S and a set C ′ of at least an m points from C such
that maxv∈C′

1
r(v) d(v, S) is minimized. While the k-Center with outliers admits a clever, yet

relatively simple, greedy 3-approximation due to Charikar et al. [10], a similar approach
seems difficult to adapt for Priority k-Center. Instead, we take a more general and powerful
LP-based approach from [7, 8] to develop a framework to handle PkCO, and also the outlier
version of Matroid Center (PMCO), where the opened centers must be an independent set,
and Knapsack Center (PKnapCO), where the total weight of the open centers must fit in a
budget. We obtain the following results.

▶ Result 2. There is a 9-approximation for PkCO and PMCO and a 14-approximation for
PKnapCO. Moreover the approximation ratio for PkCO and PMCO are based on a natural
LP relaxation.

At this point we remark that a result in Harris et al. [22] (Theorem 2.8 in the arXiv
version) also indirectly gives a 9-approximation for PkCO. We believe that our framework is
more general and can handle PMCO and PKnapCO easily. The [22] paper do not consider
these versions, and indeed for the PKnapCO problem their framework cannot give a constant
factor approximation for they (in essence) use a weak LP relaxation.

Furthermore, our framework yields better approximation factors when either the number
of distinct priorities are small, or they are in different scales. In practice, one indeed expects
this to be the case. In particular, when there are only two distinct types of radii, then we
get a 3-approximation which is tight; it is not too hard to show that it is NP-hard to obtain
a better than 3-approximation for PkCO with two types2 of priorities. We get improved
factors (5 and 7) when the number of radii are three and four as well. On the other hand,
if all the different priorities are powers of b (for some parameter b > 1), then we get a
3b−1
b−1 -approximation. Thus, if all the priorities are in vastly different scales (b→∞), then

our approximation factor approaches 3.

▶ Result 3. Suppose there are only two distinct priority radii among the clients. Then there
is a 3-approximation for PkCO, PMCO and PKnapCO. With t distinct types of priorities, the
approximation factor for PkCO and PMCO is 2t− 1. If all distinct types are powers of b, the
approximation factor for PkCO and PMCO becomes (3b− 1)/(b− 1).

It is possible that the PkCO problem has a 3-approximation in general, and even the natural
LP-relaxation may suffice; we have not been able to obtain a worse than 3 integrality gap
example. As we explain in Section 1.2 below, many approaches to the k-center type problems

2 Interestingly, when there is a single priority, the vanilla k-center with outliers has a 2-approximation [7]
showing a gap between the two problems.
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begin with a Hochbaum-Shmoys [26] style partition of the points X to representatives. We
could show examples where such an approach has a gap worse than 3, though not showing an
integrality gap instance. Resolving the integrality gap of the natural LP-relaxation and/or
obtaiting improved approximation ratios are interesting open questions highlighted by our
work.

1.2 Technical Discussion
Almost all clustering algorithms for the k-center objective proceeds via a partitioning
subroutine due to Hochbaum and Shmoys [26] (HS, henceforth). This procedure returns a
partition Π of X along with a representative for each part such that all vertices of a part
“piggy-back” on the representative. More precisely, if the representative is assigned to a
center f ∈ X, then so are all other vertices in that part. To ensure a good algorithm in
vanilla k-center, it suffices to ensure the radius of each part is small.

For the Priority k-Center objective, one needs to be more careful : to use the above idea,
one needs to make sure that if vertex v is piggybacking on vertex u, then r(v) better be more
than r(u). Indeed, this can be ensured by running the HS procedure in a particular order,
namely by allowing vertices with smaller r(v) to form the parts first. This precisely gives
Plesník’s algorithm [32]. In fact, this idea easily gives a 3-approximation for the matroid and
supplier versions as well.

Outliers are challenging in the setting of Priority k-Center. We start with the approach
of Chakrabarty et al. [7] for k-center. First, they construct an LP where cov(v) denotes the
fractional coverage (amount to which one is not an outlier) of any point, and then write
a natural LP for it. They show that if the HS algorithm is run according to the cov(v)
order (higher coverage vertices first), then the resulting partition can be used to obtain a
2-approximation for the k-center with outliers problem.

When one moves to the priority k-center with outliers, one sees the obvious trouble: what
if the r(v) order and the cov(v) order are at loggerheads? Our approach out of this is a simple
bucketing idea. We first write a natural LP with fractional coverages cov(v) for every point.
Then, we partition vertices into classes: all vertices v with r(v) between 2i and 2i+1 are in
the same class. We then use the HS partitioning algorithm in the decreasing cov(v) order
separately on each class. The issue now is to handle the interaction across classes. To handle
this, we define a directed acyclic graph across these various partitions where representative u

has an edge to representative v iff d(u, v) is small (≤ r(u) + r(v)). It is a DAG because we
point edges from higher r(u) to the lower r(v). Our main observation is that if we can peel
out k paths with “large value” (each representative’s value is how many points piggyback on
it), then we can get a 9-approximation for the priority k-center with outlier problem. We
can show that a fractional solution of large value does exist using the fact that the DAG
was constructed in a greedy fashion. Also, since the graph is a DAG, this LP is an integral
min-cost max-flow LP. The factor 9 arises out of a geometric series and bucketing. Indeed,
when the radii are exact powers of 2, we get a 5-approximation, and when there are only two
type of radii, we get a 3 approximation which is tight.

The above framework can handle the outlier versions for the matroid and knapsack
version. For the matroid version, the flow problem is no longer a min-cost max-flow problem,
but rather it reduces to a submodular flow problem which is solvable in polynomial time.
Modulo this, the above framework gives a 9-approximation. For the knapsack version, there
are two issues. One is that the flow problem involves non-uniform numbers and is no longer
integral and solving the underlying optimization problem is likely to be NP-hard (we did
not attempt a formal proof). Nevertheless, our framework has sufficient flexibility that by
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increasing the approximation factor from 9 to 14, the DAG can in fact be made into a rooted
forest. In this rooted forest, we can employ dynamic programming to solve the problem of
finding the desired paths. The second issue is that a fractional LP solution of the natural LP
does not suffice when using the DP based algorithm on the forest; indeed the natural LP has
an unbounded gap. Here we need to use the round-or-cut framework from [8]; either the DP
on the rooted forest succeeds or we find a violated inequality for the large implicit LP that
we use.

1.3 Other Related Works
There is a huge literature on clustering, and instead of summarizing the landscape, we
mention a few works relevant to our paper. Gørtz and Wirth [20] study the priorty k-center
problem in the asymmetric metric case, and prove that it is NP-hard to obtain any non-
trivial approximation. A related problem to priority k-clustering is the non-uniform k-center
problem by Chakrabarty et al. [7] where instead of clients having radii bounds, the objective
is to figure out centers of balls for different types of radii. Another related problem [21] is
the local k-median problem where clients need to connect to facilities within a certain radius,
but the objective is the sum instead of the max.

Fairness in clustering has also seen a lot of works recently. Apart from the two notions
of fairness described above, which can be thought of as “individual fairness” guarantees,
Chierichetti et al. [16] introduce the “group fairness” notion where points have color classes,
and each cluster needs to contain similar proportion of colors as in the universe. Their results
were generalized by a series of follow ups [33, 5, 4]. A similar concept for outliers led to
the study of fair colorful k-center. In this problem, the objective is to find k centers which
covers at least a prescribed number of points from each color class. This was introduced
by Bandapadhyay et al. [3], and recently true approximation algorithms were concurrently
obtained by Jia et al. [27] and Anegg et al. [1].

Another notion of fairness is introduced by Chen et al. [15] in which a solution is called
fair if there is no facility and a group of at least n/k clients, such that opening that facility
lowers the cost of all members of the group. They give a (1 +

√
2)-approximation for L1,

L2, and L∞ norm distances for the setting where facilities can be places anywhere in the
real space. Recently Micha and Shah [31] showed that a modification of the same approach
can give a close to 2-approximation for L2 case and proved (1 +

√
2) factor is tight for L1

and L∞.
Coming back to the model of Jung et al. [28], the local notion of neighborhood radius is

also present in the metric embedding works of [9, 11] and were recently used by Mahabadi
and Vakilian [30] to extend the results in [28] to other objectives such as k-median and
k-means. We leave the outlier versions of these problems as an open direction of study.

2 Preliminaries

We provide some formal definitions and describe a clustering routine from [26].

▶ Definition 1 (Priority k−Center). The input is a metric space (X, d) and radius function
r : X → R+, and integer k. The goal is to find S ⊆ X of size at most k to minimize α such
that for all v ∈ X, d(v, S) ≤ α · r(v)

▶ Definition 2 (Priority F -supplier). (Generalization from [8]). The input is a metric space
(X, d) where X = F ∪C, C is the set of points, and F the set of facilities. We are also given
a radius function r : C → R+. The goal is to find S ⊆ F to minimize α such that for all
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v ∈ C, d(v, S) ≤ α · r(v). The constraint on F is that it must be selected from a down-ward
closed family F . Different families lead to different problems. We get the priority k-supplier
problem if F = {F : |F | ≤ k}. We get the priority matroid supplier problem when (F, F ) is
a matroid. We get the priority knapsack supplier problem when there is a weight function
w : F → R≥0 and F = {F : w(F ) ≤ B} for some budget B.

For the remainder of this manuscript, we focus on the feasibility version of the problem.
More precisely, given an instance of the problem, we either want to show there is no solution
with α = 1, or find a solution with α ≤ ρ. If we succeed, then via binary search we get a
ρ-approximation.

Plesník [32] obtained a 2-approximation for Priority k-Center. Algorithm 1 is a slight
generalization of his algorithm; in addition to the radius function and the metric, we take as
input a function ϕ : X → R≥0 which encodes an ordering over the points (we can think of
the points as being ordered from largest to smallest ϕ values). The algorithm is a similar
procedure to that of Hochbaum and Shmoys from [26], but while [26] picks points arbitrarily,
points get picked in the order mandated by ϕ.

▶ Fact 1. The following is true for the output of HS: (a) ∀u, v ∈ S, d(u, v) > ru + rv,
(b) The set {D(u) : u ∈ S} partitions X, (c) ∀u ∈ S, ∀v ∈ D(u), ϕ(u) ≥ ϕ(v), and (d)
∀u ∈ S, ∀v ∈ D(u), d(u, v) ≤ ru + rv.

Algorithm 1 HS.

Input: Metric (X, d), radius function r : X → R>0, and ordering ϕ : X → R≥0
1: U ← X ▷ The set of uncovered points
2: S ← ∅ ▷ The set of “representatives”
3: while U ̸= ∅ do
4: u← arg maxv∈U ϕ(v) ▷ The first point in U in non-increasing ϕ order
5: S ← S ∪ u

6: D(u)← {v ∈ U : d(u, v) ≤ ru + rv} ▷ Note: D(u) includes u itself
7: U ← U\D(u)
8: end while

Output: S, {D(u) : u ∈ S}

▶ Theorem 3 ([32]). There is a 2-approximation for Priority k-Center.

Proof. (For completeness and later use.) We claim that S, the output of Algorithm 1 for
ϕ := 1/r, is a 2-approximate solution; this follows from the observations in Fact 1. For
any v ∈ X there is some u ∈ S for which v ∈ D(u). By our choice of ϕ, ru ≤ rv. Since
d(u, v) ≤ ru + rv, we have d(u, v) ≤ 2rv. To see why |S| ≤ k, recall that for any u, v ∈ S,
by Fact 1, d(u, v) > ru + rv so no two points in S can be covered by the same center. Thus
any feasible solution needs at least |S| many points to cover all of S. ◀

In fact, the algorithm almost immediately gives a 3-approximation for Priority F -Supplier
for many families via the framework in [8].

One needs to check if given any partition Π of F , whether the following partition feasibility
problem is solvable: does there exist A ∈ F such that |A ∩ P | = 1 for all P ∈ Π? We ask
this for the partition returned by Algorithm 1, that is, Π = {{f ∈ F : d(f, u) ≤ ru} : u ∈ S}.
If no such A exists, then the instance is infeasible since the centers S of the parts cannot
be covered. If such an A exists, then by construction every v ∈ X in part D(u) satisfies



T. Bajpai, D. Chakrabarty, C. Chekuri, and M. Negahbani 21:7

d(v, A) ≤ d(u, v) + d(u, A) ≤ 2ru + rv ≤ 3rv since ru ≤ rv. It is easy to see for the
supplier, knapsack, and matroid center versions, the partition feasibility problem is solvable
in polynomial time. This leads to the following theorem.

▶ Theorem 4. There is a 3-approximation for Priority k-Supplier, Priority Knapsack Center,
and the Priority Matroid Center problem.

3 Priority k-Center with Outliers

In this section we describe our framework for handling priorities and outliers and give a
9-approximation algorithm for the following problem.

▶ Definition 5 (Priority k−Center with Outliers (PkCO)). The input is a metric space (X, d),
a radius function r : X → R>0, and parameters k, m ∈ N. The goal is to find S ⊆ X of size
at most k to minimize α such that for at least m points v ∈ X, d(v, S) ≤ α · r(v).

▶ Theorem 6. There is a 9-approximation for PkCO.

The following is the natural LP relaxation for the feasibility version of PkCO. For each point
v ∈ X, there is a variable 0 ≤ xv ≤ 1 that denotes the (fractional) amount by which v is
opened as a center. We use cov(v) to indicate the amount by which v is covered by itself or
other open facilities. To be precise, cov(v) is the sum of xu over all u ∈ X at distance at
most rv from v. Note that cov(v) is an auxiliary variable. We want to ensure that at least m

units of coverage are assigned using at most k centers (hence the first two constraints).∑
v∈X

cov(v) ≥ m (PkCO LP)∑
v∈X

xv ≤ k

cov(v) :=
∑

u∈X:
d(u,v)≤rv

xu ≤ 1 ∀v ∈ X

0 ≤ xv ≤ 1 ∀v ∈ X.

Next, we define another problem called Weighted k-Path Packing (WkPP) on a DAG.
Our approach is to do an LP-aware reduction from PkCO to WkPP. To be precise, we use a
fractional solution of the PkCO LP to reduce to a WkPP instance J . We show that a good
integral solution for J translates to a 9-approximate solution for the PkCO instance. We
prove that J has a good integral solution by constructing a feasible fractional solution for
an LP relaxation of WkPP; this LP relaxation is integral. Henceforth, P(G) denotes the set
of all the paths in G where each path is an ordered subset of the edges in G.

▶ Definition 7 (Weighted k-Path Packing (WkPP)). The input is J = (G = (V, E), λ, k)
where G is a DAG, λ : V → {0, 1, . . . , n} for some integer n. The goal is to find a set of k

vertex disjoint paths P ⊆ P(G) that maximizes:

val(P ) :=
∑
p∈P

∑
v∈p

λ(v).

Even though this problem is NP-hard on general graphs3, it can be easily solved if G is a
DAG by reducing to Min-Cost Max-Flow (MCMF). To build the corresponding flow network,

3 k = 1 and unit λ is the longest path problem which is known to be NP-hard [18].
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we augment G to a new DAG G′ = (V ′, E′) with source and sink nodes s, t. V ′ = V ∪ {s, t}.
Each node v ∈ V has unit capacity and cost equal to −λ(v). s and t have zero cost with
capacities ∞ and k respectively. As for the arcs, E′ includes the entirety of E, plus arcs (s, v)
and (v, t) for all v ∈ V . All the arcs have unit capacity and zero cost. One can now write
the MCMF LP for WkPP which is known to be integral. We use δ+(v) and δ−(v) to denote
the set of outgoing and incoming edges of a vertex v respectively. The LP has a variable ye

for each arc e ∈ E′ to denote the amount of (fractional) flow passing through it. Similarly,
the amount of flow entering a vertex is denoted by flow(v) :=

∑
e∈δ−(v) ye. The objective is

to minimize the cost of the flow which is equivalent to maximizing the negation of the costs.

max
∑
v∈V

flow(v)λ(v) (WkPP LP)

flow(v) :=
∑

e∈δ−(v)

ye =
∑

e∈δ+(v)

ye ∀v ∈ V

flow(t) ≤ k

flow(v) ≤ 1 ∀v ∈ V, 0 ≤ ye ≤ 1 ∀e ∈ E′.

▷ Claim 8. WkPP is equivalent to solving MCMF on G′.

Proof. Observe that any solution P for the WkPP instance translates to a valid flow of cost
−val(P ) for the flow problem. For any path p ∈ P with start vertex u and sink vertex v,
send one unit of flow from s to u, through p to v and then to t. Since the paths in P are
vertex disjoint and there are at most k of them, the edge and vertex capacity constraints in
the network are satisfied.

Now we argue that any solution to the MCMF instance with cost −m translates to a
solution P for the original WkPP instance with val(P ) = m. To see this, note that the MCMF
solution consists of at most k many s, t paths that are vertex disjoint with respect to V . This
is because of our choice of vertex capacities. Let P be those paths modulo vertices s and t.
For a v ∈ V , −λ(v) is counted towards the MCMF cost iff v has a flow passing through it
which means v is included in some path in P . Thus val(P ) = m. ◁

3.1 Reduction to WkPP
Using a fractional solution of the PkCO LP we construct a WkPP instance. In particular, we
use the cov assignment generated by the LP solution. Without loss of generality, by scaling
the distances, we assume that the smallest neighborhood radius is 1. Let t := ⌈log2 rmax⌉,
where rmax is the largest value of r (after scaling). We use [t] to denote {1, 2, . . . , t}. Partition
X according to each point’s radius into C1, . . . , Ct, where Ci := {v ∈ X : 2i−1 ≤ rv < 2i} for
i ∈ [t]. Note that some sets may be empty if no radius falls within its range.

Algorithm 2 shows the PkCO to WkPP reduction. The algorithm constructs a DAG
called contact DAG (see Definition 9) as a part of the WkPP instance definition. We first run
Algorithm 1 on each Ci to produce a set of representatives Ri and their respective clusters
{D(u) : u ∈ Ri}. The λ function is constructed using the D(v)’s. Each Ri defines a row of
the contact DAG starting with Rt at the top. Arcs in the contact DAG exist only between
points in different rows, and only when they share a point in X that can cover them both
within their desired radii. We always have arcs pointing downwards, that is, from points in
Ri to points in Rj where i > j. See Figure 1 for an example on how a contact DAG looks like.
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Algorithm 2 Reduction to WkPP.

Input: PkCO instance I =((X, d), r, k, m) and assignment {cov(v) ∈ R≥0 : v ∈ X}
1: Ri, {D(u) : u ∈ Ri} ← HS((Ci, d), r, cov) for all i ∈ [t]
2: Construct contact DAG G = (V, E) per Definition 9
3: λ(v)← |D(v)| for all v ∈ V

Output: WkPP instance J = (G = (V, E), λ, k)

Rt

Rt-1

R1

Figure 1 A contact DAG.

▶ Definition 9 (contact DAG). Let Ri ⊆ Ci, i ∈ [t] be the set of representatives acquired
after running HS on Ci according to Line 1 of Algorithm 2. contact DAG G = (V, E) is a
DAG on vertex set V =

⋃
i Ri where the arcs are constructed by the following rule:

For u ∈ Ri and v ∈ Rj where i > j , (u, v) ∈ E

⇐⇒ ∃f ∈ X : d(u, f) ≤ ru and d(v, f) ≤ rv.

Our first observation is that the WkPP instance has a good fractional solution and since
the LP is integral, it also has a good integral solution.

▶ Lemma 10. There is a valid solution to WkPP LP of value ≥ m for the WkPP instance
J . Since WkPP LP is integral, this implies J has an integral solution of value ≥ m.

The proof of this lemma can be found in [2]. Theorem 6 now follows from the following
lemma.

▶ Lemma 11. Any solution with value at least m for the WkPP instance J given by
Algorithm 2 translates to a 9-approximation for the PkCO instance I.

Proof. We begin with a few observations. Per definition of contact DAG we have the following
property. Note that the converse is not necessarily true.

▶ Fact 2. If u ∈ Ri, v ∈ Rj, and (u, v) is an arc in contact DAG, d(u, v) ≤ ru + rv.

▶ Fact 3. {D(v), v ∈ V } as constructed in Algorithm 2 partitions X.

Proof. {Ci}i∈[t] partitions X and HS further partitions each Ci according to Fact 1. ◀

▷ Claim 12. For any u ∈ Ri, v ∈ Rj reachable from u in a contact DAG, d(u, v) < 3 · 2i.
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Proof. Observe that by definition of contact DAG, i > j. A path from u to v may contain a
vertex from any level of the DAG between i and j. In the worst case, the path has a vertex
wk from every level Rk for j < k < i:

d(u, v) ≤ d(u, wi−1) + d(wi−1, wi−2) + . . . + d(wj+1, v)
≤ (ru + rwi−1) + (rwi−1 + rwi−2) + . . . + (rwj+1 + rv) (by Fact 2)

= ru + 2
i−1∑

k=j+1
rwk

+ rv < ru + 2
i−1∑
k=1

2k

= ru + 2 · (2i − 2) < 3 · 2i. (ru < 2i) ◁

Now we are armed with all the facts we need to prove Lemma 11. We are assuming the
constructed WkPP instance has a solution of value at least m, which means there exists a
set of k disjoint paths P ⊆ P(G) in the contact DAG such that val(P ) ≥ m. For any path
p ∈ P , let sink(p) denote the last node in this path (i.e. sink(p) = arg minu∈p ru). Our final
solution would be S := {sink(p) : p ∈ P}. We argue that this S is a 9-approximate solution
for the initial PkCO instance. Since P has at most k many paths, |S| ≤ k.

Now we show any w ∈ D(u) where u ∈ p ∈ P , can be covered by v = sink(p) with dilation
at most 9. Assume u ∈ Ri for some i ∈ [t].

d(w, v) ≤ d(w, u) + d(u, v) < rw + ru + 3 · 2i (by Fact 1 and above claim)
< rw + 4 · 2i ≤ 9rw. (ru < 2i and 2i−1 ≤ rw)

The last piece is to argue at least m points will be covered by S. The set of points that
are covered by S within 9 times their radius is precisely the set Dtotal :=

⋃
p∈P

⋃
u∈p D(v).

So we need to show |Dtotal| ≥ m. By Fact 3 we have:

|Dtotal| = |
⋃

p∈P

⋃
v∈p

D(v)| =
∑
p∈P

∑
v∈p

|D(v)| = val(P ),

where the last equality is by the definition of λ(v), v ∈ V (in Line 3 of Algorithm 2) and
definition of val(P ). By assumption val(P ) ≥ m thus Dtotal contains at least m points. ◀

In the special case where there are 2 types of radii we can slightly modify our approach to
get a 3-approximation algorithm. This result is tight. To see this consider PkCO instances
where clients having priority radii in {0, 1} with n0 of the former type and n1 of the latter,
and the number of outliers allowed is n0− k. Clients with priority radii 0 either need to have
a facility opened at that same point, or need to be an outlier. Since only n0 − k outliers and
k centers are allowed, all the outliers and centers are on these n0 points. Thus, the n0 points
act as facilities in the k-supplier problem which is hard to approximate with a factor better
than 3. This shows a gap with the vanilla k-center with outliers has a 2-approximation [7].

In general, our framework yields improved approximation factors when the number of
distinct priorities are less than 5 (see Theorem 13). In the special case when all radii are
powers of 2, our algorithm is actually a 5-approximation. This factor improves if the radii
are powers of some b > 2 and approaches 3 as b goes to infinity (see Theorem 14).

▶ Theorem 13. There is a (2t− 1)-approximation for PkCO instances where there are only
t types of radii.

Proof. Given PkCO instance I obtain fractional solution x by solving the PkCO LP. Partition
X according to each point’s radius into C1, . . . , Ct, where Ci is points of radius type i for
i ∈ [t]. Run Algorithm 2 with input cov corresponding to x and take resulting WkPP instance
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J . Assuming the WkPP instance has a solution with value at least m, we can show how
to obtain a (2t − 1)-approximate solution as follows. Let P be the WkPP solution. Take
any p ∈ P . If p is a single vertex, simply add it to solution S. Otherwise, instead of adding
v′ = sink(p) to S, if v is the vertex before v′ in p, add a point f ∈ X that covers both the
endpoints v and v′ (f exists by Definition 9).

Take any w ∈ D(u) where u ∈ p and assume u ∈ Ri for some i ∈ [t]. Similar to the
proof of Claim 12 one can show d(u, v) < 2(i− 2)ru by bounding the radius of any vertex in
between them by ru and noting that v is in level 2 or higher (remember p ends at v′ and
(v, v′) is an edge). Since d(w, f) ≤ d(w, u) + d(u, v) + d(v, f) and d(w, u) ≤ rw + ru (Fact 1),
plus d(v, f) < rv ≤ ru we have d(w, f) < rw + 2(i− 1)ru. But rw = ru by definition of Ci so
w is covered by f with dilation at most 2i− 1 ≤ 2t− 1. The part to argue at least m points
will be covered by S, is done similar to the proof of Lemma 11.

The remainder of this proof, i.e. showing that J does indeed have a solution of value at
least m that can be determined in polynomial time using an MCMF algorithm, is identical to
the proof of Theorem 6. ◀

▶ Theorem 14. There is a ((3b− 1)/(b− 1))-approximation for PkCO instances where the
radii are powers of b ≥ 2.

Proof. Given PkCO instance I obtain fractional solution x by solving the PkCO LP. Partition
X according to each point’s radius into C1, . . . , Ct, where t := ⌈logb rmax⌉ and Ci := {v ∈
X : rv = bi−1} for i ∈ [t]. Run Algorithm 2 with input cov corresponding to x and take
resulting WkPP instance J . Assume the WkPP instance has a solution P with value at
least m. For any p ∈ P add v = sink(p) to solution S. Consider arbitrary w ∈ D(u) where
u ∈ p ∈ P and assume u ∈ Ri for some i ∈ [t]. Similar to the proof of Claim 12 one can show
d(u, v) < ((b+1)/(b−1))×bi−1. By Fact 1 d(w, u) ≤ rw +ru = 2bi−1. Thus any w is covered
by dilation (3b− 1)/(b− 1) as d(w, v) ≤ d(w, u) + d(u, v) < 2bi−1 + ((b + 1)/(b− 1))× bi−1 =
(3b−1)/(b−1)rw. To argue at least m points will be covered by S, see the proof of Lemma 11.
Showing that J does indeed have a solution of value at least m that can be determined
in polynomial time using an MCMF algorithm, is identical to the proof of Theorem 6 as
well. ◀

4 Priority Matroid-Center with Outliers

In this section, we show how to generalize the results from the previous section for the case
of Priority Matroid-Center with Outliers (PMCO).

▶ Definition 15 (Priority Matroid-Center with Outliers (PMCO)). The input is a metric space
(X, d), parameter m ∈ N, radius function r : X → R>0, and F ⊆ 2X a family of independent
sets of a matroid. The goal is to find S ∈ F to minimize α such that for at least m points
v ∈ X, d(v, S) ≤ α · r(v).

▶ Theorem 16. There is a 9-approximation for PMCO.

As in the previous section, we assume α = 1 and consider the feasibility version of the
problem. For any S ⊆ V , let rankF (S) be the rank of S in the given matroid. The natural
LP relaxation for this problem is very similar to that of PkCO LP except that we replace the
cardinality constraints with rank constraints x(S) ≤ rankF (S) for all S ⊆ V . This is because
for any S ∈ F , |S| = rankF (S).
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∑
v∈X

cov(v) ≥ m (PMCO LP)∑
v∈S

xv ≤ rankF (S) ∀S ⊆ V

cov(v) :=
∑

u∈X:
d(u,v)≤rv

xu ≤ 1 ∀v ∈ X

0 ≤ xv ≤ 1 ∀v ∈ X.

Similar to WkPP, we have the path packing version of PMCO defined below. Recall from
the last section, that after reducing from PkCO to WkPP we returned a set of k vertices in
DAG G as our final solution. Now that we have matroid constraints, we must instead return
a set S of vertices such that S ∈ F . Doing so is not as straightforward, since our reduction
does not guarantee that such a subset of vertices actually exists and covers enough points
in their corresponding vertex disjoint paths. Instead, we show there is an S ∈ F such that
each member of this S is close to some vertex of G. These close points in G will correspond
to a set of vertex disjoint paths that will cover enough points.

▶ Definition 17 (Weighted F -Path Packing (WMatPP)). The input is G = (V, E) and λ

same as in WkPP, plus a finite set X, Y = {Yv ⊆ X : v ∈ V }, and F ⊆ 2X a family of
independent sets of a matroid. The goal is to find a set of disjoint paths P ∈ P(G) with
maximum val(P ) for which there exists S ∈ F such that ∀p ⊆ P , S ∩ Ysink(p) ̸= ∅.

Observe that the reduction procedure in Algorithm 2 and all of our subsequent observations
in Section 3.1 do not rely on how we define a feasible set of centers. Hence, the main obstacle
in proving Theorem 16 lies in our reduction to MCMF. Luckily, the result of [13] helps us
address this by giving LP integrality results similar to MCMF using the following formulation
on directed polymatroidal flows [17, 24, 29]: For a network G′ = (V ′, E′), for all v ∈ V ′, we
are given polymatroids4 ρ−

v and ρ+
v on δ−(v) and δ+(v) respectively. For every arc e ∈ E′

there is a variable 0 ≤ ye ≤ 1. The capacity constraints for each v ∈ V ′ are defined as:∑
e∈U

ye ≤ ρ−
v (U) ∀U ⊆ δ−(v)∑

e∈U

ye ≤ ρ+
v (U) ∀U ⊆ δ+(v).

We augment the DAG G given in WMatPP to construct a polymatroidal flow network
G′. In this new network, V ′ = V ∪X ∪ {s, t} where each node v ∈ V has cost −λ(v). Note:
Even though a vertex v ∈ V might correspond to a point in X, in V ′ we make a distinction
between the two copies. E′ includes all of E, plus arcs (s, v) for all v ∈ V . Finally, instead
of adding arcs (v, t), we add arcs (v, f) and (f, t) for all f ∈ Yv.

The polymatroids for this instance are constructed as follows: for any v ∈ V ∪ X,
ρ−

v (U) = 1 for all non-empty U ⊆ δ−(v) and ρ+
v is defined similarly on δ+(v). For s, we only

have outgoing edges where ρ+
s (U) = |U | for all U ⊆ δ+(s). Finally, we enforce the matroid

constraints of F on t. For any U ⊆ δ−(t), let T ⊆ X be the set of starting nodes in U . That
is, U = {(f, t) : f ∈ T}. Set ρ−

t (U) = rankF (T ). Since δ−(t) ⊆ X, these capacity constraints
on t are equivalent to the following set of constraints:∑

f∈T

y(f,t) ≤ rankF (T ) ∀T ⊆ X : {(f, t) : f ∈ T} ⊆ δ−(t).

4 Monotone integer-valued submodular functions.
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Now, we prove a claim analogous to that of Claim 8.

▷ Claim 18. WMatPP is equivalent to solving the polymatroidal flow on network G′.

Proof. Any solution P for the WMatPP instance translates to a valid flow of cost −val(P )
for the flow problem. Let S ∈ F be the independent set that intersects Ysink(p) for all p ∈ P .
For any path p ∈ P with start vertex u and sink vertex v, take arbitrary f ∈ S ∩ Yv. Send
one unit of flow from s to u, through p to v and then to f and t. All the polymatroidal
constraints in WMatPP LP are satisfied.

Now we argue that any solution to the flow instance with cost −m translates to a solution
P for WMatPP with val(P ) = m. To see this, note that the flow solution consists of s, t

paths that are vertex disjoint with respect to V ∪X. This is due to our choice of V ∪X

polymatroids. Each path passes through one v ∈ V , then immediately to f ∈ Yv and then
ends in t. By polymatroidal constraints on t, the subset of X that has a flow going through
it will be an independent set of F .

Let P be the described paths induced on V . For a v ∈ V , −λ(v) is counted towards the
MCMF cost iff v has a flow passing through it. This means v is included in some path in P .
Thus val(P ) = m. ◁

The polymatroidal LP for this particular construction is as follows (recall flow(v) :=∑
e∈δ−(v) ye):

max
∑
v∈V

flow(v)λ(v) (WMatPP LP)

flow(v) :=
∑

e∈δ−(v)

ye =
∑

e∈δ+(v)

ye ∀v ∈ V ∪X

∑
f∈T

y(f,t) ≤ rankF (T ) ∀T ⊆ X : {(f, t) : f ∈ T} ⊆ δ−(t)

flow(v) ≤ 1 ∀v ∈ V ∪X

0 ≤ ye ≤ 1 ∀e ∈ E′

By [13], WMatPP LP is integral and there are polynomial time algorithms to solve it.
As for reducing PMCO to WMatPP, most of the notation and results can be recycled

from Section 3.1. Specially, the reduction itself (Algorithm 3) is just Algorithm 2 with Line
4 added. Note: By definition of an arc in contact DAG, for two nodes u, v ∈ V , (u, v) is an
arc iff Yv intersects Yu.

Algorithm 3 Reduction to WMatPP.

Input: PMCO instance I =((X, d), r, F , m) and assignment {cov(v) ∈ R≥0 : v ∈ X}
1: Ri, {D(u) : u ∈ Ri} ← HS((Ci, d), r, cov) for all i ∈ [t]
2: Construct contact DAG G = (V, E) per Definition 9
3: λ(v)← |D(v)| for all v ∈ V

4: Yv ← {u ∈ X : d(u, v) ≤ rv} for all v ∈ V

Output: WMatPP instance (G = (V, E), λ, X,Y, F )

Before we start to prove our 9-approximation result for PMCO, we need to slightly modify
Claim 12 to account for the fact that a vertex covered by v (the sink of some path) has to
travel slightly farther than v to reach an f ∈ Yv. Fortunately, the proof of Claim 12 has a
slight slack that allows us to derive the same distance guarantees even with this extra step.
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▷ Claim 19. For any u ∈ Ri and v ∈ Rj reachable from u in contact DAG G, and any f ∈ Yv,
d(u, f) < 3 · 2i.

Proof. By definition of G it must be the case that i > j. Also for all f ∈ Yv, d(f, v) ≤ rv. If
v is reachable from u, a path between u and v may contain a vertex wk from every level Rk

for j < k < i:

d(u, f) ≤ d(u, v) + d(v, f) ≤ d(u, v) + rv

≤ (ru + rwi−1) + (rwi−1 + rwi−2) + . . . + (rwj+1 + rv) + rv (by Fact 2)

≤ ru + 2
i−1∑
k=1

2k (by definition of Ck)

= ru + 2 · (2i − 2) < 3 · 2i. (u ∈ Ci, ru < 2i)

◁

Since the previous claim has the same guarantee as Claim 12, Lemma 11 easily translates to
the following:

▶ Lemma 20. Any solution with value at least m for the output of Algorithm 3 translates to
a 9-approximation for the input I.

Proof. Let P ∈ P(G) be the promised WMatPP solution. Let S ∈ F be the independent
set that intersects Ysink(p) for all p ∈ P . By Claim 19, S covers all the vertices v ∈ V that
are included in P by dilation 3. Proof of Lemma 11 shows that for any such v ∈ V covered
by P and any w ∈ D(v), d(w, S) ≤ 9rw. This holds for at least m points. ◀

We can now prove our 9-approximation result for PMCO.

Proof of Theorem 16. The algorithm is very similar to that of Theorem 6: Given PMCO
instance I =((X, d), r, F , m), solve the PMCO LP and use the solution in the procedure of
Algorithm 3 to reduce to WMatPP instance J = (G = (V, E), λ, X,Y, F ). Let P ∈ P(G) be
the solution to this instance and S ∈ F be the independent set that intersects Ysink(p) for all
p ∈ P . If val(P ) ≥ m, S is a 9-approximate solution for I via Lemma 20. So we prove such
solution P exists by constructing a feasible (possibly fractional) WMatPP LP solution.

Take the contact DAG of Algorithm 3 G = (V, E) and recall that each v ∈ V is also a
point in X. For any f ∈ X let Af := {v ∈ V : d(f, v) ≤ rv} be the set of points v ∈ V for
which xf contributes to cov(v). By definition of an edge in contact DAG, for any u, v ∈ Af ,
we have (u, v) ∈ E. Define pf to be the s, t path that passes through Af in the order of
decreasing neighborhood radii. Formally, let (u1, . . . , ul) be Af sorted in decreasing order of
neighborhood radii. Then, pf = ((s, u1), (u1, u2), . . . (ul, f), (f, t)). Similar to the proof of
Theorem 6 we define He := {f ∈ X : e ∈ pf} and set y as follows:

ye :=
∑

f∈He

xf .

Now, we argue that y is a feasible solution for WMatPP LP with objective value at least
m. The flow is conserved for each vertex v ∈ V ∪X since for any f ∈ X, we add the same
amount xf to ye of all e ∈ pf . Observe that flow(v) = cov(v) thus the constraint cov(v) ≤ 1
in PkCO LP implies flow(v) ≤ 1. To see why the rank constraints are satisfied, the key
observation is that any e ∈ δ−(t) must be of the form (f, t) for some f ∈ X, and by our
construction ye = xf . So according to constraint

∑
f∈T xf ≤ rankF (T ) in PMCO LP we

have
∑

f∈T y(f,t) ≤ rankF (T ). Lastly, the WMatPP LP objective for this solution is at least
m. The proof is identical to what we had for Theorem 6. ◀



T. Bajpai, D. Chakrabarty, C. Chekuri, and M. Negahbani 21:15

5 Priority Knapsack-Center with Outliers

In this section, we show how to generalize the results from the previous section for the case
of Priority Knapsack-Center with Outliers (PKnapCO).

▶ Definition 21 (Priority Knapsack-Center with Outliers (PKnapCO)). The input is a metric
space (X, d), a radius function r : X → R>0, a weight function w : X → R≥0, parameters
B > 0 and m ∈ N. The goal is to find S ⊆ X with w(S) ≤ B to minimize α such that for at
least m points v ∈ X, d(v, S) ≤ α · r(v).

▶ Theorem 22. There is a 14-approximation for PKnapCO.

As in PkCO and PMCO, we reduce to the following path packing problem.

▶ Definition 23 (Weighted Knapsack-Path Packing (WNapPP)). The input is G = (V, E)
and λ same as in WkPP, plus X a finite set, w : X → R≥0, Y = {Yv ⊆ X : v ∈ V }, and
parameter B > 0. The goal is to find a set of disjoint paths P ∈ P(G) with maximum val(M)
for which there exists S ⊆ X with w(S) ≤ B such that ∀p ∈ P , S ∩ Ysink(p) ̸= ∅.

There are two main issues in generalizing our techniques from Section 3 and Section 4. First,
the WNapPP problem seems hard on a general DAG. To circumvent this, we make two
changes to the LP-aware PKnapCO to WNapPP reduction (given in Algorithm 4). First, we
modify Algorithm 1 so that a representative captures points at larger distances. To be precise,
for a representative u, Algorithm 1 is modified to: D(u) ← {v ∈ U : d(u, v) ≤ ru + 2rv}.
Second, the partition induced by Ci’s in Algorithm 2 is done via powers of 4 instead of 2.
This is what bumps our approximation factor from 9 to 14. However it helps, as the resulting
contact DAG is in fact a directed out-forest. It is not too hard to solve WNapPP when G is a
directed-out forest using dynamic programming.

Algorithm 4 Reduction to WNapPP.

Input: PKnapCO instance I =((X, d), r, w, B, m) and assignment {cov(v) ∈ R≥0 : v ∈ X}
1: Ri, {D(u) : u ∈ Ri} ← ModHS((Ci, d), r, cov) for all i ∈ [t]
2: Construct contact forest G = (V, E) per Definition 24
3: λ(v)← |D(v)| for all v ∈ V

4: Yv ← {u ∈ X : d(u, v) ≤ rv} for all v ∈ V

Output: WNapPP instance (G = (V, E), λ, X,Y, w, B)

▶ Definition 24 (contact forest). Let Ri ⊆ Ci, i ∈ [t] be the set of representatives acquired
after running ModHS procedure on Ci according to Line 2 of Algorithm 4. contact forest
G = (V, E) is a directed forest on vertex set V =

⋃
i Ri where the arcs are constructed by the

as follows: For u ∈ Ri and v ∈ Rj where i > j, add the arc (u, v) ∈ E if there exists f ∈ X

such that d(u, f) ≤ ru and d(v, f) ≤ 2rv. Next, remove all the forward edges5.

The second issue is more difficult to handle. In PkCO and PMCO, we used the fact that
WkPP and WMatPP LPs are integral to show that the instances constructed by the reduction
have large value. This is not true any more as the WNapPP LP is not integral even when G

is a forest. Indeed, the natural LP relaxation for PKnapCO has unbounded integrality gap
even without priorities [14].

5 In a DAG, edge (u, v) is a forward edge if there is a path of length two or more in the graph that
connects u to v.
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We circumvent this by using the round and cut framework of [8]. Instead of using the
PKnapCO LP, we would use cov in the convex hull of the integral solutions (call it Pcov). Of
course, we do not know the integral solutions and there may indeed be exponentially such
solutions. So, we have to employ the ellipsoid algorithm. In each iteration of ellipsoid, we
get some cov that may or may not be in Pcov. In any case, if we manage to get a good path
packing solution using this cov, we get an approximate PKnapCO solution and we are done.
Otherwise, we are able to give ellipsoid a linear constraint that should be satisfied by any
point in Pcov but is violated by the current cov. Ultimately, either we find an approximate
solution for PKnapCO along the way, or ellipsoid prompts that Pcov is empty, indicating that
the problem is infeasible.

From here on, let F be the set of all possible centers that fit in the budget. That is,
F := {S ⊆ X : w(S) ≤ B}. The following is the convex hull of the integral solutions for
PKnapCO.

Pcov = {(cov(v) : v ∈ X) :
∑
v∈X

cov(v) ≥ m (Pcov.1)

∀v ∈ X, cov(v) :=
∑

S∈F :
d(v,S)≤rv

zS (Pcov.2)

∑
S∈F

zS = 1 (Pcov.3)

∀S ∈ F , zS ≥ 0} (Pcov.4)

We show if cov(v) ∈Pcov, then indeed the WNapPP instance obtained is “valuable”, that is,
has value ≥ m. More importantly, we show that if the instance is not valuable, then we can
find a hyperplane separating cov from Pcov. One can now use the ellipsoid method to get
the 14-approximation: given cov, we either get a valuable WNapPP instance leading to a 14
approximation, or we find a separating hyperplane which can be fed to the ellipsoid method
to obtain a new cov vector. The details are omitted in this version due to space restrictions
and can be found in [2].

6 Connections to Fair Clustering

In this section, we show how our results imply results in the two fairness notions as defined
by [28] and [22].

6.1 “A Center in your Neighborhood” notion of [28]
Jung et al. [28] argue that fairness in clustering should take into account population densities
and geography. For every v ∈ X, they define a neighborhood radius NR(v) to be the distance
to its (⌈n/k⌉ − 1)th nearest neighbor. A solution is fair, they argue, if every v is served
within their NR(v). They also observe that this may not always be possible, and therefore
they wish to find a placement S ⊆ X minimizing maxv

d(v,S)
NR(v) . As an optimization problem,

the problem is precisely an instantiation of Priority k-Center. Thus, one can easily obtain a
2-approximation once r(v) = NR(v) is fixed.

[28] in fact show that it is always possible to find S such that d(v, S) ≤ 2NR(v). They
do so by looking at the centers obtained from running their algorithm which is the same as
that of Plesník. Note that a 2-approximation to the instance of Priority k-Center defined by
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r(v) = NR(v) does not necessarily imply this additional property. Here we show why it is
not a coincidence by considering the natural LP relaxation for Priority k-Center. Given an
instance of Priority k-Center one can obtain a lower bound on the optimum value by finding
the smallest α such that the following LP is feasible.

PkCFeasLP(α) := {(yu ≥ 0 : u ∈ X) :
∑
u∈X

yu ≤ k; ∀v ∈ X :
∑

u:d(u,v)≤αr(v)

yu ≥ 1} (1)

▷ Claim 25. Suppose PkCFeasLP(α) has a feasible solution, then Algorithm 1 run with
ϕ(v) = 1

r(v) finds at most k centers that cover each point v within distance 2αr(v).

Proof. The proof is similar to that of Theorem 3. Without loss of generality we can assume
α = 1, otherwise we can scale all the radii by 1/α. We need to argue |S| ≤ k. For any
u ∈ S, we have

∑
v∈D(u) yv ≥ 1 since B(u, r(u)) ⊆ D(u). Since D(u)’s are disjoint and∑

u∈X yu ≤ k, the claim follows. ◁

The preceding discussion and the claim show the utility of viewing the clustering problem
of [28] as a special case of Priority k-Center. One can then bring to bear all the positive
algorithmic results on Priority k-Center (such as Theorem 4) to fine-tune the fair clustering
model. Below we list a few high-level speculative ideas on how the Priority k-Center view
can help.

The LP relaxation could be useful in obtaining better empirical solutions. For example,
it has been shown that for k-center, the LP relaxation is integral under notions of
stability [12].
The model of [28] allows NR(v) to be very large for points v which may not be near
many points. However, one may want to put an upper bound M on the radius that is
independent of NR(v). The same algorithm works to give a 2-approximation but one
may no longer have the property that all points are covered within twice NR(v).
In many scenarios it makes sense to work with the supplier version since centers cannot
necessarily be placed at all locations in X. Second, there could be several additional
constraints on the set of centers that can be chosen. Theorem 4 shows that more general
constraints than cardinality can be handled.
Related to the first point above, far away points in less dense regions (outliers) can be
harmed by setting NR(v) to be a large number. Alternatively, one can skew the choice of
centers if one tries to set a small radius for these points. In this situation it is useful to
have algorithms that can handle outliers such that one can find a good solution for vast
majority of points and help the outliers via other techniques.

6.2 The Lottery Model of Harris et al. [22]

Harris et al. [22] define a lottery model of fairness where every client v ∈ X has a “distance
demand” r(v) and a “probability demand” p(v). They deem a lottery or a distribution over
feasible solutions fair if every client is connected to a facility within their distance demand
with probability at least the probability demand. The computational question is to figure
out if this is (approximately) feasible. We show a connection to the outlier version of the
priority k-center problem, and then generalize their results. We start with a definition.
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▶ Definition 26 (Lottery Priority F -Center (LPFC)). The input is a metric space (X, d)
where each point v has a distance demand r(v) > 0 and probability demand prob(v). The
input also (implicitly) specifies a family F ⊆ 2X of allowed locations where centers can be
opened. A distribution over F is α-approximate if

∀v ∈ X : Pr
S∼F

[d(v, S) ≤ α · r(v)] ≥ prob(v).

An α-approximation algorithm in the lottery model either asserts the instance infeasible in
that an 1-approximate distribution doesn’t exist, or returns an α-approximate distribution.

Harris et al. [22] show that for the case when F is simply {S : |S| ≤ k}, there is a 9-
approximate distribution. Using our results described before, and the by now standard
framework using the ellipsoid method (as in [6, 1]), we can get the following results.

▶ Theorem 27. There is a 9-approximation for LPFC where F is the independent set of a
matroid.

▶ Theorem 28. There is a 14-approximation for LPFC on points X where F = {S ⊆ X :
w(S) ≤ B} for a poly-bounded weight function w : X → R≥0 and parameter B > 0.

We first describe the reduction. For this, we need to define the Fractional Priority
F -Center where each point comes with a (possibly fractional) weight µv and given m ≥ 0,
the goal is to find a set S ∈ F that covers a total weight of more than m with minimum
dilation of neighborhood radii.

▶ Definition 29 (Fractional Priority F -Center (FPFC)). The input is a metric space (X, d)
where each point v has a radius rv > 0 and a weight µv ≥ 0. Given parameter m ≥ 0 and
a family of subsets of points F ⊆ 2X , the goal is to find S ∈ F to minimize α such that
µ({v ∈ X: d(v, S) ≤ α · rv}) > m.

An instance of FPFC is specified by the tuple ((X, d), r, µ, F , m). The following theorem
states the reduction from LPFC to FPFC using the ellipsoid method. The proof of this
theorem can be found in [2].

▶ Theorem 30. Given LPFC instance I and a black-box α-approximate algorithm A
for FPFC that runs in time T (A), one can get an α-approximate solution for I in time
poly(|I|)T (A).

Now we discuss how our results generalize to solve FPFC for matroid and knapsack
constraints.

Proof of Theorem 27. According to Theorem 30 we only need to prove that we can find a
9-approximate solution for any given FPFC instance I = ((X, d), r, µ, F , m). First, observe
that the LP for I is the same as PMCO LP with a minor modification: The constraint∑

v∈X cov(v) ≥ m is changed to
∑

v∈X µvcov(v) > m. Solve the LP for I and use the
obtained cov to run the reduction in Algorithm 3; but with a change in Line 3): instead of
setting λ(v)← |D(v)| for all v ∈ V , we will have λ(v)← µ(D(v)). This results in a WMatPP
instance J with fractional λ. The procedure in [13] can handle fractional λ’s so we can still
compute the solution for J in polynomial time. If this solution has value less than or equal
to m, we know that I is infeasible. Otherwise, Lemma 20 tells us that this solution for J
translates to a 9-approximation for I and we are done. ◀
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Proof of Theorem 28. We follow a procedure similar to the proof of Theorem 27. Per
Theorem 30 we only need to prove there is a 14-approximation for the FPFC instance where
F is a set of feasible knapsack solutions with poly-bounded weights w : X → R≥0 and
budget B > 0. Change the constraint Pcov.1 in Pcov to

∑
v∈X µvcov(v) > m and modify

Line 3 of Algorithm 4 to λ(v) ← µ(D(v)) then follow the round-or-cut procedure in the
proof of Theorem 22. The only challenge here is to prove the WNapPP problem can be
solved in polynomial time. The dynamic program (which can be found in [2]) depends on
the assumption that λ’s are poly-bounded. But here, our λ’s are real numbers so instead, we
assume that our weights w : X → R≥0 are poly-bounded so we can still solve the problem
via dynamic programming. ◀
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Abstract
The submodular Santa Claus problem was introduced in a seminal work by Goemans, Harvey, Iwata,
and Mirrokni (SODA’09) as an application of their structural result. In the mentioned problem n

unsplittable resources have to be assigned to m players, each with a monotone submodular utility
function fi. The goal is to maximize mini fi(Si) where S1, . . . , Sm is a partition of the resources.
The result by Goemans et al. implies a polynomial time O(n1/2+ε)-approximation algorithm.

Since then progress on this problem was limited to the linear case, that is, all fi are linear
functions. In particular, a line of research has shown that there is a polynomial time constant
approximation algorithm for linear valuation functions in the restricted assignment case. This is the
special case where each player is given a set of desired resources Γi and the individual valuation
functions are defined as fi(S) = f(S ∩ Γi) for a global linear function f . This can also be interpreted
as maximizing mini f(Si) with additional assignment restrictions, i.e., resources can only be assigned
to certain players.

In this paper we make comparable progress for the submodular variant: If f is a monotone
submodular function, we can in polynomial time compute an O(log log(n))-approximate solution.
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1 Introduction

In the Santa Claus problem (sometimes referred to as Max-Min Fair Allocation) we are given
a set of n players P and a set of m indivisible resources R. In its full generality, each player
i ∈ P has a utility function fi : 2R 7→ R≥0, where fi(S) measures the happiness of player
i if he is assigned the resource set S. The goal is to find a partition of the resources that
maximizes the happiness of the least happy player. Formally, we want to find a partition
{Si}i∈P of the resources that maximizes mini∈P fi(Si).

With such an objective function one seeks to find the fairest solution as opposed to
for example the best average happiness. Most of the recent literature on this problem
focuses on cases where fi is a linear function for all players i. If we assume all valuation
functions are linear, the best approximation algorithm known for this problem, designed by
Chakrabarty, Chuzhoy, and Khanna [4], has an approximation rate of nϵ and runs in time
nO(1/ϵ) for ϵ ∈ Ω(log log(n)/ log(n)). On the negative side, it is only known that computing
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a (2 − δ)-approximation is NP-hard [13]. Apart from this there has been significant attention
on the so-called restricted assignment case. Here the utility functions are defined by one
linear function f and a set of resources Γi for each player i. Intuitively, player i is interested
in the resources Γi, whereas the other resources are worthless for him. The individual utility
functions are then implicitly defined by fi(S) = f(S ∩ Γi). In a seminal work, Bansal and
Srividenko [3] provide a O(log log(m)/ log log log(m))-approximation algorithm for this case.
This was improved by Feige [8] to an O(1)-approximation. Further progress on the constant
or the running time was made since then, see e.g. [1, 7, 6, 5, 10, 2, 15].

Let us now move to the non-linear case. Indeed, the problem becomes hopelessly difficult
without any restrictions on the utility functions. Consider the following reduction from set
packing. There are sets of resources {S1, . . . , Sk} and all utility functions are equal and
defined by fi(S) = 1 if Sj ⊆ S for some j and fi(S) = 0 otherwise. Deciding whether there
are m disjoint sets in S1, . . . , Sk (a classical NP-hard problem) is equivalent to deciding
whether the optimum of the Santa Claus problem is non-zero. In particular, obtaining any
bounded approximation ratio for Santa Claus in this case is NP-hard.

Two naturally arising properties of utility functions are monotonicity and submodularity,
see for example the related submodular welfare problem [12, 16] where the goal is to maximize∑

i fi(Si). A function f is monotone, if f(S) ≤ f(T ) for all S ⊆ T . It is submodular, if
f(S ∪ {a}) − f(S) ≥ f(T ∪ {a}) − f(T ) for all S ⊆ T and a /∈ T . The latter is also known
as the diminishing returns property in economics. A standard assumption on monotone
submodular functions (used throughout this work) is that the value on the empty set is zero,
i.e., f(∅) = 0. Goemans, Harvey, Iwata, and Mirrokni [9] first considered the Santa Claus
problem with monotone submodular utility functions as an application of their fundamental
result on submodular functions. Together with the algorithm of [4] it implies an O(n1/2+ϵ)-
approximation in time nO(1/ϵ). In the case that the valuation functions are all equal, that
is, fi(S) = f(S) for a monotone submodular function f , Krause, Rajagopal, Gupta, and
Guestrin gave a constant approximation [11]. We also refer to their work for an application
of this problem in sensor placement.

In this paper we investigate the restricted assignment case with a monotone submodular
utility function. That is, all utility functions are defined by fi(S) = f(S ∩ Γi), where f is
a monotone submodular function and Γi is a subset of resources for each players i. Before
our work, the state-of-the-art for this problem was the O(n1/2+ϵ)-approximation algorithm
mentioned above, since none of the previous results for the restricted assignment case with a
linear utility function apply when the utility function becomes monotone submodular.

1.1 Overview of results and techniques
Our main result is an approximation algorithm for the submodular Santa Claus problem in
the restricted assignment case.

▶ Theorem 1. There is a randomized polynomial time O(log log(n))-approximation algorithm
for the restricted assignment case with a monotone submodular utility function.

Our way to this result is organised as follows. In Section 2, we first reduce our problem to a
hypergraph matching problem (see next paragraph for a formal definition). We then solve
this problem using Lovasz Local Lemma (LLL) in Section 3. In [3] the authors also reduce
to a hypergraph matching problem which they then solve using LLL, although both parts
are substantially simpler. The higher generality of our utility functions is reflected in the
more general hypergraph matching problem. Namely, our problem is precisely the weighted
variant of the (unweighted) problem in [3]. We will elaborate later in this section why the
previous techniques do not easily extend to the weighted variant.
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The hypergraph matching problem. After the reduction in Section 2 we arrive at the
following problem. There is a hypergraph H = (P ∪ R, C) with hyperedges C over the vertices
P and R. We write m = |P | and n = |R|. We will refer to hyperedges as configurations, the
vertices in P as players and R as resources1. Moreover, a hypergraph is said to be regular if
all vertices in P and R have the same degree, that is, they are contained in the same number
of configurations. The hypergraph may contain multiple copies of the same configuration.
Each configuration C ∈ C contains exactly one vertex in P , that is, |C ∩ P | = 1. Additionally,
for each configuration C ∈ C the resources j ∈ C have weights wj,C ≥ 0. We emphasize that
the same resource j can be given different weights in two different configurations, that is, we
may have wj,C ̸= wj,C′ for two different configurations C, C ′.

We require to select for each player i ∈ P one configuration C that contains i. For each
configuration C that was selected we require to assign a subset of the resources in C which
has a total weight of at least (1/α) ·

∑
j∈C wj,C to the player in C. A resource can only be

assigned to one player. We call such a solution an α-relaxed perfect matching. One seeks to
minimize α.

We show that every regular hypergraph has an α-relaxed perfect matching for some
α = O(log log(n)) assuming that wj,C ≤ (1/α) ·

∑
j′∈C wj′,C for all j, C, that is, all weights

are small compared to the total weight of the configuration. Moreover, we can find such a
matching in randomized polynomial time. In the reduction we use this result to round a
certain LP relaxation and α essentially translates to the approximation rate. This result
generalizes that of Bansal and Srividenko on hypergraph matching in the following way.
They proved the same result for unit weights and uniform hyperedges, that is, wj,C = 1 for
all j, C and all hyperedges have the same number of resources2. In the next paragraph we
briefly go over the techniques to prove our result for the hypergraph matching problem.

Our techniques. Already the extension from uniform to non-uniform hypergraphs (assuming
unit weights) is highly non-trivial and captures the core difficulty of our result. Indeed, we
show with a (perhaps surprising) reduction, that we can reduce our weighted hypergraph
matching problem to the unweighted (but non-uniform) version by introducing some bounded
dependencies between the choices of the different players. For sake of brevity we therefore
focus in this section on the unweighted non-uniform variant, that is, we need to assign to
each player a configuration C and at least |C|/α resources in C. We show that for any
regular hypergraph there exists such a matching for α = O(log log(n)) assuming that all
configurations contain at least α resources and we can find it in randomized polynomial time.
Without the assumption of uniformity the problem becomes significantly more challenging.
To see this, we lay out the techniques of Bansal and Srividenko that allowed them to solve
the problem in the uniform case. We note that for α = O(log(n)) the statement is easy to
prove: We select for each player i one of the configurations containing i uniformly at random.
Then by standard concentration bounds each resource is contained in at most O(log(n))
of the selected configurations with high probability. This implies that there is a fractional
assignment of resources to configurations such that each of the selected configurations C

receives ⌊|C|/O(log(n))⌋ of the resources in C. By integrality of the bipartite matching
polytope, there is also an integral assignment with this property.

To improve to α = O(log log(n)) in the uniform case, Bansal and Srividenko proceed as
follows. Let k be the size of each configuration. First they reduce the degree of each player
and resource to O(log(n)) using the argument above, but taking O(log(n)) configurations for

1 We note that these do not have to be the same players and resources as in the Santa Claus problem we
reduced from, but n and m do not increase.

2 In fact they get a slightly better ratio of α = O(log log(m)/ log log log(m)).
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each player. Then they sample uniformly at random O(n log(n)/k) resources and drop all
others. This is sensible, because they manage to prove the (perhaps surprising) fact that an
α-relaxed perfect matching with respect to the smaller set of resources is still an O(α)-relaxed
perfect matching with respect to all resources with high probability (when assigning the
dropped resources to the selected configurations appropriately). Indeed, the smaller instance
is easier to solve: With high probability all configurations have size O(log(n)) and this greatly
reduces the dependencies between the bad events of the random experiment above (the event
that a resource is contained in too many selected configurations). This allows them to apply
Lovász Local Lemma (LLL) in order to show that with positive probability the experiment
succeeds for α = O(log log(n)).

It is not obvious how to extend this approach to non-uniform hypergraphs: Sampling a
fixed fraction of the resources will either make the small configurations empty – which makes
it impossible to retain guarantees for the original instance – or it leaves the big configurations
big – which fails to reduce the dependencies enough to apply LLL. Hence it requires new
sophisticated ideas for non-uniform hypergraphs, which we describe next.

Suppose we are able to find a set K ⊆ C of configurations (one for each player) such that
for each K ∈ K the sum of intersections |K ∩ K ′| with smaller configurations K ′ ∈ K is
very small, say at most |K|/2. Then it is easy to derive a 2-relaxed perfect matching: We
iterate over all K ∈ K from large to small and reassign all resources to K (possibly stealing
them from the configuration that previously had them). In this process every configuration
gets stolen at most |K|/2 of its resources, in particular, it keeps the other half. However,
it is non-trivial to obtain a property like the one mentioned above. If we take a random
configuration for each player, the dependencies of the intersections are too complex. To
avoid this we invoke an advanced variant of the sampling approach where we construct not
only one set of resources, but a hierarchy of resource sets R0 ⊇ · · · ⊇ Rd by repeatedly
dropping a fraction of resources from the previous set. We then formulate bad events based
on the intersections of a configuration C with smaller configurations C ′, but we write it only
considering a resource set Rk of convenient granularity (chosen based on the size of C ′).
In this way we formulate a number of bad events using various sets Rk. This succeeds in
reducing the dependencies enough to apply LLL. Unfortunately, even with this new way of
defining bad events, the guarantee that for each K ∈ K the sum of intersections |K ∩ K ′|
with smaller configurations K ′ ∈ K is at most |K|/2 is still too much to ask. We can only
prove some weaker property which makes it more difficult to reconstruct a good solution from
it. The reconstruction still starts from the biggest configurations and iterates to finish by
including the smallest configurations but it requires a delicate induction where at each step,
both the resource set expands and some new small configurations that were not considered
before come into play.

Additional implications of non-uniform hypergraph matchings to the Santa Claus problem.
We believe this hypergraph matching problem is interesting in its own right. Our last
contribution is to show that finding good matchings in unweighted hypergraphs with fewer
assumptions than ours would have important applications for the Santa Claus problem with
linear utility functions. We recall that here, each player i has its own utility function fi

that can be any linear function. In this case, the best approximation algorithm is due to
Chakrabarty, Chuzhoy, and Khanna [4] who gave a O(nϵ)-approximation running in time
O(n1/ϵ). In particular, no sub-polynomial approximation running in polynomial time is
known. Consider as before H = (P ∪ R, C) a non-uniform hypergraph with unit weights
(wj,C = 1 for all j, C such that j ∈ C). Finding the smallest α (or an approximation of
it) such that there exists an α-relaxed perfect matching in H is already a very non-trivial
question to solve in polynomial time.
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We show, via a reduction, that a c-approximation for this problem would yield a
O((c log∗(n))2)-approximation for the Santa Claus problem with arbitrary linear utility
functions. In particular, any sub-polynomial approximation for this problem would signific-
antly improve the state-of-the-art3. Details of this last result can be found in the full version
of the paper.

A remark on local search techniques. We focus here on an extension of the LLL technique
of Bansal and Srividenko. However, another technique proved itself very successful for the
Santa Claus problem in the restricted assignment case with a linear utility function. This
is a local search technique discovered by Asadpour, Feige, and Saberi [2] who used it to
give a non-constructive proof that the integrality gap of the configuration LP of Bansal and
Srividenko is at most 4. One may wonder if this technique could also be extended to the
submodular case as we did with LLL. Unfortunately, this seems problematic as the local
search arguments heavily rely on amortizing different volumes of configurations (i.e., the sum
of their resources’ weights or the number of resources in the unweighted case). Amortizing
the volumes of configurations works well, if each configuration has the same volume, which is
the case for the problem derived from linear valuation functions, but not the one derived
from submodular functions. If the volumes differ then the amortization arguments break
and the authors of this paper believe this is a fundamental problem for this approach.

2 Reduction to hypergraph matching problem

In this section we give a reduction of the restricted submodular Santa Claus problem to the
hypergraph matching problem. As a starting point we solve the configuration LP, a linear
programming relaxation of our problem. The LP is constructed using a parameter T which
denotes the value of its solution. The goal is to find the maximal T such that the LP is
feasible. In the LP we have a variable xi,C for every player i ∈ P and every configuration
C ∈ C(i, T ). The configurations C(i, T ) are defined as the sets of resources C ⊆ Γi such
that f(C) ≥ T . We require every player i ∈ P to have at least one configuration and every
resource j ∈ R to be contained in at most one configuration.∑

C∈C(i,T )

xi,C ≥ 1 for all i ∈ P

∑
i∈P

∑
C∈C(i,T ):j∈C

xi,C ≤ 1 for all j ∈ R

xi,C ≥ 0 for all i ∈ P, C ∈ C(i, T )

Since this linear program has exponentially many variables, we cannot directly solve it in
polynomial time. We will give a polynomial time constant approximation for it via its dual.
This is similar to the linear variant in [3], but requires some more work. In their case they
can reduce the problem to one where the separation problem of the dual can be solved
in polynomial time. In our case even the separation problem can only be approximated.
Nevertheless, this is sufficient to approximate the linear program in polynomial time.

▶ Theorem 2. The configuration LP of the restricted submodular Santa Claus problem can
be approximated within a factor of (1 − 1/e)/2 in polynomial time.

3 We mention that our result on relaxed matchings in Section 3 does not imply an O(log log(n))-
approximation for this problem since we make additional assumptions on the regularity of the hypergraph
or the size of hyperedges.
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We defer the proof of this theorem to the full version of the paper. Given a solution x∗

of the configuration LP we want to arrive at the hypergraph matching problem from the
introduction such that an α-relaxed perfect matching of that problem corresponds to an
O(α)-approximate solution of the restricted submodular Santa Claus problem. Let T ∗ denote
the value of the solution x∗. We will define a resource j ∈ R as fat if f({j}) ≥ T ∗/(100α).

Resources that are not fat are called thin. We call a configuration C ∈ C(i, T ) thin, if it
contains only thin resources and denote by Ct(i, T ) ⊆ C(i, T ) the set of thin configurations.
Intuitively in order to obtain an O(α)-approximate solution, it suffices to give each player i

either one fat resource j ∈ Γi or a thin configuration C ∈ Ct(i, T ∗/O(α)). For our next step
towards the hypergraph problem we use a technique borrowed from Bansal and Srividenko [3].
This technique allows us to simplify the structure of the problem significantly using the
solution of the configuration LP. Namely, one can find a partition of the players into clusters
such that we only need to cover one player from each cluster with thin resources. All other
players can then be covered by fat resources. Informally speaking, the following lemma
is proved by sampling configurations randomly according to a distribution derived in a
non-trivial way from the configuration LP.

▶ Lemma 3. Let ℓ ≥ 12 log(n). Given a solution of value T ∗ for the configuration LP in
randomized polynomial time we can find a partition of the players into clusters K1 ∪ · · · ∪
Kk ∪ Q = P and multisets of configurations Ch ⊆

⋃
i∈Kh

Ct(i, T ∗/5), h = 1, . . . , k, such that
1. |Ch| = ℓ for all h = 1, . . . , k and
2. Each small resource appears in at most ℓ configurations of

⋃
h Ch.

3. given any i1 ∈ K1, i2 ∈ K2, . . . , ik ∈ Kk there is a matching of fat resources to players
P \ {i1, . . . , ik} such that each of these players i gets a unique fat resource j ∈ Γi.

The role of the players Q in the lemma above is that each one of them gets a fat resource
for certain. The proof follows closely that in [3]. For completeness we include it in the full
version of the paper. We are now ready to define the hypergraph matching instance. The
vertices of our hypergraph are the clusters K1, . . . , Kk and the thin resources. Let C1, . . . , Ck

be the multisets of configurations as in Lemma 3. For each Kh and C ∈ Ch there is a
hyperedge containing Kh and all resources in C. Let {j1, . . . , jm} = C ordered arbitrarily,
but consistently. Then we define the weights as normalized marginal gains of resources if
they are taken in this order, that is,

wji,C = 5
T ∗ f({ji} | {j1, . . . , ji−1}) = 5

T ∗ (f({j1, . . . , ji−1, ji}) − f({j1, . . . , ji−1})).

This implies that
∑

j∈C wj,C ≥ 5f(C)/T ∗ ≥ 1 for each C ∈ Ch, h = 1, . . . , k.

▶ Lemma 4. Given an α-relaxed perfect matching to the instance as described by the
reduction, one can find in polynomial time an O(α)-approximation to the instance of restricted
submodular Santa Claus.

Proof. The α-relaxed perfect matching implies that each cluster Kh gets some small resources
C ′ where C ′ ⊆ C for some C ∈ Ch and

∑
j∈C′ wj,C ≥ 1/α. By submodularity we have that

f(C ′) ≥ T ∗/(5α). Therefore we can satisfy one player in each cluster using thin resources
and by Lemma 3 all others using fat resources. ◀

The proof above is the most critical place in the paper where we make use of the submodularity
of the valuation function f . We note that since all resources considered are thin resources
we have, by submodularity of f , the assumption that

wj,C ≤ 5
T ∗ f({j}) ≤ 5

T ∗
T ∗

100α
≤ 5

100α

∑
j∈C

wj,C
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for all j, C such that j ∈ C. This means that the weights are all small enough, as promised in
introduction. From now on, we will assume that

∑
j∈C wj,C = 1 for all configurations C. This

is without loss of generality, since we can just rescale the weights inside each configuration.
This does not hurt the property that all weights are small enough.

2.1 Reduction to unweighted hypergraph matching

Before proceeding to the solution of this hypergraph matching problem, we first give a
reduction to an unweighted variant of the problem. We will then solve this unweighted
variant in the next section. First, we note that we can assume that all the weights wj,C

are powers of 2 by standard rounding arguments. This only loses a constant factor in the
approximation rate. Second, we can assume that inside each configuration C, each resource
has a weight that is at least a 1/(2n). Formally, we can assume that minj∈C wj,C ≥ 1/(2n)
for all C ∈ C. If this is not the case for some C ∈ C, simply delete from C all the resources
that have a weight less than 1/(2n). By doing this, the total weight of C is only decreased
by a factor 1/2 since it looses in total at most a weight of n · (1/2n) = 1/2. (Recall that we
rescaled the weights so that

∑
j∈C wj,C = 1).

Hence after these two operations, an α-relaxed perfect matching in the new hypergraph
is still an O(α)-relaxed perfect matching in the original hypergraph. From there we reduce
to an unweighted variant of the matching problem. Note that each configuration contains
resources of at most log(n) different possible weights (powers of 2 from 1/(2n) to 1/α). We
create the following new unweighted hypergraph H′ = (P ′ ∪ R, C′). The resource set R

remains unchanged. For each player i ∈ P , we create log(n) players, which later correspond
each to a distinct weight. We will say that the players obtained from duplicating the original
player form a group. For every configuration C containing player i in the hypergraph H, we
add a set SC = {C1, . . . , Cs, . . . , Clog(n)} of configurations in H′. Cs contains player is and
all resources that are given a weight 2−(s+1) in C. In this new hypergraph, the resources are
not weighted. Note that if the hypergraph H is regular then H′ is regular as well.

Additionally, for a group of player and a set of log(n) configurations (one for each player
in the group), we say that this set of configurations is consistent if all the configurations
selected are obtained from the same configuration in the original hypergraph H (i.e. the
selected configurations all belong to SC for some C in H).

Formally, we focus of the following problem. Given the regular hypergraph H′, we want to
select, for each group of log(n) players, a consistent set of configurations C1, . . . , Cs, . . . , Clog(n)
and assign to each player is a subset of the resources in the corresponding configuration Cs

so that is is assigned at least ⌊|Cs|/α⌋ resources. No resource can be assigned to more than
one player. We refer to this assignment as a consistent α-relaxed perfect matching. Note
that in the case where |Cs| is small (e.g. of constant size) we are not required to assign any
resource to player is.

▶ Lemma 5. A consistent α-relaxed matching in H′ induces a O(α)-relaxed matching in H.

Due to space constraint, the proof of this lemma is moved to the full version of the paper.

3 Matchings in regular hypergraphs

In this section we solve the hypergraph matching problem we arrived to in the previous
section. For convenience, we give a self contained definition of the problem before formulating
and proving our result.
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Input. We are given H = (P ∪ R, C) a hypergraph with hyperedges C over the vertices P

(players) and R (resources) with m = |P | and n = |R|. As in previous sections, we will refer
to hyperedges as configurations. Each configuration C ∈ C contains exactly one vertex in P ,
that is, |C ∩ P | = 1. The set of players is partitioned into groups of size at most log(n), we
will use A to denote a group. These groups are disjoint and contain all players. Finally there
exists an integer ℓ such that for each group A there are ℓ consistent sets of configurations.
A consistent set of configurations for a group A is a set of |A| configurations such that all
players in the group appear in exactly one of these configurations. We will denote by SA

such a set and for a player i ∈ A, we will denote by S(i)
A the unique configuration in SA

containing i. Finally, no resource appears in more than ℓ configurations. We say that the
hypergraph is regular (although some resources may appear in less than ℓ configurations).

Output. We wish to select a matching that covers all players in P . More precisely, for each
group A we want to select a consistent set of configurations (denoted by {S(i)

A }i∈A). Then
for each player i ∈ A, we wish to assign a subset of the resources in S(i)

A to the player i such
that:
1. No resource is assigned to more than one player in total.
2. For any group A and any player i ∈ A, player i is assigned at least ⌊|S(i)

A |/α⌋ resources
from S(i)

A .
We call this a consistent α-relaxed perfect matching. Our goal in this section will be to prove
the following theorem.

▶ Theorem 6. Let H = (P ∪ R, C) be a regular (non-uniform) hypergraph where the set
of players is partitioned into groups of size at most log(n). Then we can, in randomized
polynomial time, compute a consistent α-relaxed perfect matching for α = O(log log(n)).

We note that Theorem 6 together with the reduction from the previous section will prove
our main result (Theorem 1) stated in introduction.

3.1 Overview and notations
To prove Theorem 6, we introduce the following notations. Let ℓ ∈ N be the regularity
parameter as described in the problem input (i.e. each group has ℓ consistent sets and each
resource appears in no more than ℓ configurations). As we proved in Lemma 3 we can assume
with standard sampling arguments that ℓ = 300.000 log3(n) at a constant loss. If this is not
the case because we might want to solve the hypergraph matching problem by itself (i.e. not
obtained by the reduction in Section 2), the proof of Lemma 3 can be repeated in a very
similar way here.

For a configuration C, its size will be defined as |C ∩ R| (i.e. its cardinality over the
resource set). For each player i, we denote by Ci the set of configurations that contain i. We
now group the configurations in Ci by size: We denote by C(0)

i the configurations of size in
[0, ℓ4) and for k ≥ 1 we write C(k)

i for the configurations of size in [ℓk+3, ℓk+4). Moreover,
define C(k) =

⋃
i C(k)

i and C(≥k) =
⋃

h≥k C(h). Let d be the smallest number such that C(≥d)

is empty. Note that d ≤ log(n)/ log(ℓ). Now consider the following random process.

▶ Random Experiment 7. We construct a nested sequence of resource sets R = R0 ⊇ R1 ⊇
. . . ⊇ Rd as follows. Each Rk is obtained from Rk−1 by deleting every resource in Rk−1
independently with probability (ℓ − 1)/ℓ.

In expectation only a 1/ℓ fraction of resources in Rk−1 survives in Rk. Also notice that for
C ∈ C(k) we have that E[|Rk ∩ C|] = poly(ℓ).
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The proof of Theorem 6 is organized as follows. In Section 3.2, we give some properties of
the resource sets constructed by Random Experiment 7 that hold with high probability. Then
in Section 3.3, we show that we can find a single consistent set of configurations for each group
of players such that for each configuration selected, its intersection with smaller selected
configurations is bounded if we restrict the resource set to an appropriate Rk. Restricting
the resource set is important to bound the dependencies of bad events in order to apply
Lovasz Local Lemma. Finally in Section 3.4, we demonstrate how these configurations allow
us to reconstruct a consistent α-relaxed perfect matching for an appropriate assignment of
resources to configurations.

3.2 Properties of resource sets
In this subsection, we give a precise statement of the key properties that we need from
Random Experiment 7. The first two lemmas have a straight-forward proof. The last one is
a generalization of an argument used by Bansal and Srividenko [3]. Since the proof is more
technical and tedious, we also defer it to the full version of the paper along with the proof of
the first two statements.

We start with the first property which bounds the size of the configurations when restricted
to some Rk. This property is useful to reduce the dependencies while applying LLL later.

▶ Lemma 8. Consider Random Experiment 7 with ℓ ≥ 300.000 log3(n). For any k ≥ 0 and
any C ∈ C(≥k) we have

1
2ℓ−k|C| ≤ |Rk ∩ C| ≤ 3

2ℓ−k|C|

with probability at least 1 − 1/n10.

The next property expresses that for any configuration the sum of intersections with config-
urations of a particular size does not deviate much from its expectation. In particular, for
any configuration C, the sum of it’s intersections with other configurations is at most |C|ℓ as
each resource is in at most ℓ configurations. By the lemma stated below, we recover this
up to a multiplicative constant factor when we consider the appropriately weighted sum of
the intersection of C with other configurations C ′ of smaller sizes where each configuration
C ′ ∈ C(k) is restricted to the resource set Rk.

▶ Lemma 9. Consider Random Experiment 7 with ℓ ≥ 300.000 log3(n). For any k ≥ 0 and
any C ∈ C(≥k) we have

∑
C′∈C(k)

|C ′ ∩ C ∩ Rk| ≤ 10
ℓk

|C| +
∑

C′∈C(k)

|C ′ ∩ C|


with probability at least 1 − 1/n10.

We now define the notion of good solutions which is helpful in stating our last property. Let
F be a set of configurations, α : F → N, γ ∈ N, and R′ ⊆ R. We say that an assignment
of R′ to F is (α, γ)-good if every configuration C ∈ F receives at least α(C) resources of
C ∩ R′ and if no resource in R′ is assigned more than γ times in total.

Below we obtain that given a (α, γ)-good solution with respect to resource set Rk+1,
one can construct an almost (ℓ · α, γ)-good solution with respect to the bigger resource set
Rk. Informally, starting from a good solution with respect to the final resource set and
iteratively applying this lemma would give us a good solution with respect to our complete
set of resources.
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▶ Lemma 10. Consider Random Experiment 7 with ℓ ≥ 300.000 log3(n). Fix k ≥ 0.
Conditioned on the event that the bounds in Lemma 8 hold for k, then with probability at
least 1 − 1/n10 the following holds for all F ⊆ C(≥k+1), α : F → N, and γ ∈ N such that
ℓ3/1000 ≤ α(C) ≤ n for all C ∈ F and γ ∈ {1, . . . , ℓ}: If there is a (α, γ)-good assignment
of Rk+1 to F , then there is a (α′, γ)-good assignment of Rk to F where

α′(C) ≥ ℓ

(
1 − 1

log(n)

)
α(C)

for all C ∈ F . Moreover, this assignment can be found in polynomial time.

Given the lemmata above, by a simple union bound one gets that all the properties of
resource sets hold.

3.3 Selection of configurations
In this subsection, we give a random process that selects one consistent set of configurations
for each group of players such that the intersection of the selected configurations with smaller
configurations is bounded when considered on appropriate sets Rk. We will denote SA the
selected consistent set for group A and for ease of notation we will denote Ki = S(i)

A the
selected configuration for player i ∈ A. For any integer k, we write K(k)

i = {Ki} if Ki ∈ C(k)
i

and K(k)
i = ∅ otherwise. As for the configuration set, we will also denote K(k) =

⋃
i K(k)

i

and K =
⋃

k K(k). The following lemma describes what are the properties we want to have
while selecting the configurations. For better clarity we also recall what the properties of the
sets R0, . . . , Rd that we need are. These hold with high probability by the lemmata of the
previous section.

▶ Lemma 11. Let R = R0 ⊇ . . . ⊇ Rd be sets of fewer and fewer resources. Assume that for
each k and C ∈ C(k)

i we have

1/2 · ℓk−h ≤ |C ∩ Rh| ≤ 3/2 · ℓ−h|C| < 3/2 · ℓk−h+4

for all h = 0, . . . , k. Then there exists a selection of one consistent set SA for each group A

such for all k = 0, . . . , d, C ∈ C(k) and j = 0, . . . , k then we have∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤ 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩ Rh| + 1000d + ℓ

ℓ
log(ℓ)|C|.

Moreover, this selection of consistent sets can be found in polynomial time.

Before we prove this lemma, we give an intuition of the statement. Consider the sets
R1, . . . , Rd constructed as in Random Experiment 7. Then for C ′ ∈ C(h) we have E[ℓh|C ′ ∩
C ∩ Rh|] = |C ′ ∩ C|. Hence∑

h≤k

∑
K∈K(h)

|K ∩ C| = E[
∑
h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh|].

Similarly for the right-hand side we have

E[ 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩ Rh| + O(d + ℓ

ℓ
log(ℓ)|C|)]

= 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

|C ′ ∩ C|︸ ︷︷ ︸
≤ℓ|C|

+O

(
d + ℓ

ℓ
log(ℓ)|C|

)
= O

(
d + ℓ

ℓ
log(ℓ)|C|

)
.
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Hence, the lemma says that each resource in C is roughly covered O((d + ℓ)/ℓ · log(ℓ)) times
by smaller configurations.

We now proceed to the proof of Lemma 11.

Proof. We perform the following random experiment and show with LLL that there is a
positive probability of success.

▶ Random Experiment 12. For each group A, select one consistent set SA uniformly at
random. Then for each player i ∈ A set Ki = S(i)

A .

Given this experiment we can define the following random variables. For all h = 0, . . . , d and
i ∈ P we define

X
(h)
i,C =

∑
K∈K(h)

i

|K ∩ C ∩ Rh| ≤ min{3/2 · ℓ4, |C ∩ Rh|}.

Let X
(h)
C =

∑m
i=1 X

(h)
i,C . Then

E[X(h)
C ] ≤ 1

ℓ

∑
C′∈C(h)

|C ′ ∩ C ∩ Rh| ≤ |C ∩ Rh|.

We are now ready to define the bad events on which we will apply the Lovasz Local Lemma.
As we will show later, if none of them occur, Lemma 11 will hold. For each k, C ∈ C(k), and
h ≤ k let B

(h)
C be the event that

X
(h)
C ≥

{
E[X(h)

C ] + 63|C ∩ Rh| log(ℓ) if k − 5 ≤ h ≤ k,

E[X(h)
C ] + 135|C ∩ Rh| log(ℓ) · ℓ−1 if h ≤ k − 6.

The intuitive reason as to why we define these two different bad events can be summarized
as follows. In the case h ≤ k − 6, we are counting how many times C is intersected by
configurations that are much smaller than C. Hence the size of this intersection can be
written as a sum of independent random variables of value at most O(ℓ4) which is much
smaller than the total size of the configuration |C ∩ Rh|. Since the random variables are in
a much smaller range, Chernoff bounds give much better concentration guarantees and we
can afford a very small deviation from the expectation. In the other case, we do not have
this property hence we need a bigger deviation to maintain a sufficiently low probability of
failure. However, this does not hurt the statement of Lemma 11 since we sum this bigger
deviation only a constant number of times. One key idea to be able to apply Lovasz Local
Lemma here is also to consider intersection of C with smaller configurations but restricted to
a set Rh of convenient granularity. One can notice that |C ′ ∩ Rh| = poly(ℓ) if C ′ ∈ C(h) (by
the assumption made in Lemma 11). This allows to reduce significantly the dependencies
between bad events which is crucial to make any use of LLL here.

With this in mind, we claim that the probability of each bad event happening is small.

▷ Claim 13. For each k, C ∈ C(k), and h ≤ k we have

P[B(h)
C ] ≤ exp

(
−2 |C ∩ Rh|

ℓ9 − 18 log(ℓ)
)

.

Proof. Consider first the case that h ≥ k − 5. By a Chernoff bound (see full version for the
precise formulation) with

δ = 63 |C ∩ Rh| log(ℓ)
E[X(h)

C ]
≥ 1
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22:12 The Submodular Santa Claus Problem in the Restricted Assignment Case

we get

P[B(h)
C ] ≤ exp

(
−

δE[X(h)
C ]

3|C ∩ Rh|

)
≤ exp(−21 log(ℓ))) ≤ exp

(
− 2 |C ∩ Rh|

ℓ9︸ ︷︷ ︸
≤3/2

−18 log(ℓ)
)

.

Now consider h ≤ k − 6. We apply again a Chernoff bound with

δ = 135 |C ∩ Rh| log(ℓ)
ℓE[X(h)

C ]
≥ 1

ℓ
.

This implies

P[B(h)
C ] ≤ exp

(
−

min{δ, δ2}E[X(h)
C ]

3 · 3/2 · ℓ4

)
≤ exp

(
−30 |C ∩ Rh| log(ℓ)

ℓ6

)
≤ exp

(
−2 |C ∩ Rh|

ℓ9 − 18 log(ℓ)
)

. ◁

We can now state Lovasz Local Lemma and use it in our setting.

▶ Proposition 14 (Lovasz Local Lemma (LLL)). Let B1, . . . , Bt be bad events, and let
G = ({B1, . . . , Bt}, E) be a dependency graph for them, in which for every i, event Bi is
mutually independent of all events Bj for which (Bi, Bj) /∈ E. Let xi for 1 ≤ i ≤ t be such
that 0 < x(Bi) < 1 and P[Bi] ≤ x(Bi)

∏
(Bi,Bj)∈E(1 − x(Bj)). Then with positive probability

no event Bi holds.

Let k ∈ {0, . . . , d}, C ∈ C(k) and h ≤ k. For event B
(h)
C we set

x(B(h)
C ) = exp(−|C ∩ Rh|/ℓ9 − 18 log(ℓ)).

We now analyze the dependencies of B
(h)
C . The event depends only on random variables

SA for groups A that contain at least one player i that has a configuration in C(h)
i which

overlaps with C ∩ Rh. The number of such configurations (in particular, of such groups) is
at most ℓ|C ∩ Rh| since the hypergraph is regular.

In each of these groups, we count at most log(n) players, each having ℓ configurations
hence in total at most ℓ · log(n) configurations.

Each configuration C ′ ∈ C(h′) can only influence those events B
(h′)
C′′ where C ′∩C ′′∩Rh′ ̸= ∅.

Since |C ′ ∩ Rh′ | ≤ 3/2 · ℓ4 and since each resource appears in at most ℓ configurations, we
see that each configuration can influence at most 3/2 · ℓ5 events.

Putting everything together, we see that the bad event B
(h)
C is independent of all but at

most

(ℓ|C ∩ Rh|) · (ℓ · log(n)) · (3/2 · ℓ5) = 3/2 · ℓ7 · log(n)|C ∩ Rh| ≤ |C ∩ Rh|ℓ8

other bad events.
We can now verify the condition for Proposition 14 by calculating

x(B(h)
C )

∏
(B

(h)
C

,B
(h′)
C′ )∈E

(1 − x(B(h′)
C′ ))

≥ exp(−|C ∩ Rh|/ℓ9 − 18 log(ℓ)) · (1 − ℓ−18)|C∩Rh|ℓ8

≥ exp(−|C ∩ Rh|/ℓ9 − 18 log(ℓ)) · exp(−|C ∩ Rh|/ℓ9)

≥ exp(−2|C ∩ Rh|/ℓ9 − 18 log(ℓ)) ≥ P[B(h)
C ].
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By LLL we have that with positive probability none of the bad events happen. Let k ∈
{0, . . . , d} and C ∈ C(k). Then for k − 5 ≤ h ≤ k we have

ℓhX
(h)
C ≤ ℓhE[X(h)

C ] + 63ℓh|C ∩ Rh| log(ℓ) ≤ ℓhE[X(h)
C ] + 95|C| log(ℓ).

Moreover, for h ≤ k − 6 it holds that

ℓhX
(h)
C ≤ ℓhE[X(h)

C ] + 135ℓh−1|C ∩ Rh| log(ℓ) ≤ ℓhE[X(h)
C ] + 203|C| log(ℓ) · ℓ−1.

We conclude that, for any 0 ≤ j ≤ k,∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤
∑

j≤h≤k

ℓhE[X(h)
C ] + 1000(k − j + 1) + ℓ

ℓ
|C| log(ℓ)

≤ 1
ℓ

∑
j≤h≤k

ℓh
∑

C′∈C(h)

|C ′ ∩ C ∩ Rh| + 1000d + ℓ

ℓ
|C| log(ℓ).

This proves Lemma 11. ◀

▶ Remark 15. Since there are at most poly(n, m, ℓ) bad events and each bad event B

has x(B)
1−x(B) ≤ 1/2 (because x(B) ≤ ℓ−18), the constructive variant of LLL by Moser and

Tardos [14] can be applied to find a selection of configurations such that no bad events occur
in randomized polynomial time.

3.4 Assignment of resources to configurations
In this subsection, we show how all the previously established properties allow us to find, in
polynomial time, a good assignment of resources to the configurations K chosen as in the
previous subsection. We will denote as in the previous subsection K(k)

i = {Ki} if Ki ∈ C(k)
i

and K(k)
i = ∅ otherwise. We also define K(k) =

⋃
i K(k)

i and K(≥k) =
⋃

h≥k K(k). Finally we
define the parameter

γ = 100.000d + ℓ

ℓ
log(ℓ),

which will define how many times each resource can be assigned to configurations in an
intermediate solution. Note that d ≤ log(n)/ log(ℓ). By our choice of ℓ = 300.000 log3(n), we
have that γ ≤ 310.000 log log(n). Lemma 11 implies the following bound.

▷ Claim 16. For any k ≥ 0, any 0 ≤ j ≤ k, and any C ∈ K(k)

∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤ 2000d + ℓ

ℓ
log(ℓ)|C|

Proof. By Lemma 11 we have that∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤ 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩ Rh| + 1000d + ℓ

ℓ
log(ℓ)|C|.

Furthermore, by Lemma 9, we get

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩ Rh| ≤ ℓh 10
ℓh

|C| +
∑

C′∈C(h)

|C ′ ∩ C|

 .
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Finally note that each resource appears in at most ℓ configurations, hence∑
j≤h≤k

∑
C′∈C(h)

|C ′ ∩ C| ≤ ℓ|C|.

Putting everything together we conclude∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤ 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

ℓh|C′ ∩ C ∩ Rh| + 1000d + ℓ

ℓ
log(ℓ)|C|

≤ 1
ℓ

∑
j≤h≤k

10

|C| +
∑

C′∈C(h)

|C′ ∩ C|

+ 1000d + ℓ

ℓ
log(ℓ)|C|

≤ k − j

ℓ
10|C| + 10|C| + 1000d + ℓ

ℓ
log(ℓ)|C|

≤ 20|C| + 1000d + ℓ

ℓ
log(ℓ)|C|

≤ 2000d + ℓ

ℓ
log(ℓ)|C|. ◁

We can now proceed to the main technical part of this section which is the following
lemma proved by induction.

▶ Lemma 17. For any j ≥ 0, there exists an assignment of resources of Rj to configurations
in K(≥j) such that no resource is taken more than γ times and each configuration C ∈ K(k)

(k ≥ j) receives at least(
1 − 1

log(n)

)2(k−j)
ℓk−j |C ∩ Rk| − 3

γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

resources from Rk.

Before going through the proof, we give here the intuition of why this is what we want to
prove. Note that the term ℓk−j |C ∩ Rk| is roughly equal to ℓ−j |C| by the properties of the
resource sets (precisely Lemma 8). The second term∑

j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

can be shown to be

O

(
ℓ−j d + ℓ

ℓ
log(ℓ)|C|

)
= O(ℓ−j log log(n)|C|)

by Claim 16. Hence by choosing γ to be Θ(log log(n)) we get that the bound in Lemma 17
will be Θ(ℓ−j |C|). At the end of the induction, we have j = 0 which indeed implies that we
have an assignment in which configurations receive

Θ(ℓ−0|C|) = Θ(|C|)

resources and such that each resource is assigned to at most O(log log(n)) configurations.
With this in mind, we give the formal proof of Lemma 17.

Proof. We start from the biggest configurations and then iteratively reconstruct a good
solution for smaller and smaller configurations. Recall d is the smallest integer such that
K(≥d) is empty. Our base case for these configurations in K(≥d) is vacuously satisfied.
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Now assume that we have a solution at level j, i.e. an assignment of resources to
configurations in K(≥j) such that no resource is taken more than γ times and each configuration
C ∈ K(k) such that k ≥ j receives at least(

1 − 1
log(n)

)2(k−j)
ℓk−j |C ∩ Rk| − 3

γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

resources from Rj . We show that this implies a solution at level j − 1 in the following way.
First by Lemma 10, this implies an assignment of resources of Rj−1 to configurations in
K(≥j) such that each C ∈ K(k) receives at least(

1 − 1
log(n)

)
ℓ

(
ℓk−j

(
1 − 1

log(n)

)2(k−j)

|C ∩ Rk| − 3
γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

)

=
(

1 − 1
log(n)

)2(k−(j−1))−1

ℓk−(j−1)|C ∩ Rk| − 3
γ

(
1 − 1

log(n)

)∑
j≤h≤k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩ Rh|

≥
(

1 − 1
log(n)

)2(k−(j−1))−1

ℓk−(j−1)|C ∩ Rk| − 3
γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩ Rh|

resources and no resource of Rj−1 is taken more than γ times. Note that we can apply
Lemma 10 since we have by Claim 16 and Lemma 8(

1 − 1
log(n)

)2(k−j)
ℓk−j |C ∩ Rk| − 3

γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

≥ ℓk−j

e2 |C ∩ Rk| − 3
γ

2000ℓ−j d + ℓ

ℓ
log(ℓ)|C|

≥ ℓ−j |C|
(

1
2e2 − 6000

γ

d + ℓ

ℓ
log(ℓ)

)
≥ ℓ−j |C|

3e2 >
ℓ3

1000
Now consider configurations in K(j−1) and proceed for them as follows. Give to each
C ∈ K(j−1) all the resources in C ∩ Rj−1 except all the resources that appear in more than γ

configurations in K(j−1). Since each deleted resource is counted at least γ times in the sum∑
K∈K(j−1) |K ∩ C ∩ Rj−1|, we have that each configuration C in K(j−1) receives at least

|C ∩ Rj−1| − 1
γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1|

resources and no resource is taken more than γ times by configurations in K(j−1). Notice
that now every resource is taken no more than γ times by configurations in K(≥j) and no
more than γ times by configurations in K(j−1) which in total can sum up to 2γ times.

Therefore to finish the proof consider an resource i ∈ Rj−1. This resource is taken bi

times by configurations in K(≥j) and ai times by configurations in K(j−1). If ai + bi ≤ γ,
nothing needs to be done. Otherwise, denote by O the set of problematic resources (i.e.
resources i such that ai + bi > γ). For every i ∈ O, select uniformly at random ai + bi − γ

configurations in K(≥j) that currently contain resource i and delete the resource from these
configurations. When this happens, each configuration in C ∈ K(≥j) that contains i has
a probability of (ai + bi − γ)/bi to be selected to loose this resource. Hence the expected
number of resources that C looses with such a process is

µ =
∑

i∈O∩C

ai + bi − γ

bi

ICALP 2021



22:16 The Submodular Santa Claus Problem in the Restricted Assignment Case

It is not difficult to prove the following claim.

▷ Claim 18. For any C ∈ K(≥j),

1
γ2

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O| ≤ µ ≤ 2
γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|

Proof. Note that we can write

µ =
∑

i∈O∩C

ai + bi − γ

bi
≤ max

i∈O∩C

{
ai + bi − γ

aibi

} ∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|.

The reason for this is that each resource i accounts for an expected loss of (ai + bi − γ)/bi

while it is counted ai times in the sum∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|.

Similarly,

µ =
∑

i∈O∩C

ai + bi − γ

bi
≥ min

i∈O∩C

{
ai + bi − γ

aibi

} ∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|.

Note that by assumption we have that ai + bi > γ. This implies that either ai or bi is greater
than γ/2. Assume w.l.o.g. that ai ≥ γ/2. Since by assumption ai ≤ γ we have that

ai + bi − γ

aibi
≤ bi

aibi
= 1

ai
≤ 2

γ
.

In the same manner, since ai + bi > γ and that ai, bi ≤ γ, we can write

ai + bi − γ

aibi
≥ 1

aibi
≥ 1

γ2 .

We therefore get the following bounds

1
γ2

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O| ≤ µ ≤ 2
γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|,

which is what we wanted to prove. ◁

Assume then that µ ≤ |C∩Rk|
1012 log3(n) . Note that C cannot loose more than

∑
K∈K(j−1) |K ∩ C ∩

Rj−1 ∩ O| resources in any case. Therefore, by assumption on µ, and since

µ ≥ 1
γ2

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O| ,

we have that∑
K∈K(j−1)

|K ∩C ∩Rj−1 ∩O| ≤ γ2

1012 log3(n)
|C ∩Rk| ≤ 1011 log2 log(n)

1012 log3(n)
|C ∩Rk| ≤ 1

log(n) |C ∩Rk| .

Therefore C looses at most |C ∩ Rk|/ log(n) resources. Otherwise we have that

µ >
|C ∩ Rk|

1012 log2(n)
≥ ℓ3

1012 log3(n)
≥ 200 log(n)
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by Lemma 8. Hence noting X the number of deleted resources in C we have that

P
(

X ≥ 3
2µ

)
≤ exp

(
− µ

12

)
≤ 1

n10 .

With high probability no configuration looses more than

3
2µ ≤ 3

γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O| ≤ 3
γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1|

resources. Hence each configuration C ∈ K(≥j) ends with at least(
1 − 1

log(n)

)2(k−(j−1))−1
ℓk−(j−1)|C ∩ Rk| − 3

γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩ Rh|

− 1
log(n)

(
1 − 1

log(n)

)2(k−(j−1))−1
ℓk−(j−1)|C ∩ Rk| − 3

γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1|

≥
(

1 − 1
log(n)

)2(k−(j−1))
ℓk−(j−1)|C ∩ Rk| − 3

γ

∑
j−1≤h≤k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩ Rh|

resources which concludes the proof of Lemma 17. ◀

Given Lemma 17 and the intuition below it, it is straightforward to prove the following
corollary which will complete the proof of Theorem 6.

▶ Corollary 19. There exists an assignment of resources R to K such that each configuration
C ∈ K receives at least ⌊|C|/(100γ)⌋ resources. Moreover, this assignment can be found in
polynomial time.

Proof. Lemma 17 with k = 0 and Claim 16 together imply that we can assign at least

|C|
2e2 − 6000

100.000 |C| ≥ |C|
100

resources to every C ∈ K such that no resource in R is assigned more than γ times. In
particular, we can fractionally assign at least |C|/(100γ) resources to each C ∈ K such that
no resource is assigned more than once. By integrality of the bipartite matching polytope,
the corollary follows. ◀

References
1 Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. Combinatorial algorithm

for restricted max-min fair allocation. ACM Trans. Algorithms, 13(3):37:1–37:28, 2017.
doi:10.1145/3070694.

2 Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph matchings.
ACM Trans. Algorithms, 8(3), 2012. doi:10.1145/2229163.2229168.

3 Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Proceedings of the Thirty-
Eighth Annual ACM Symposium on Theory of Computing, STOC ’06, page 31–40, New York,
NY, USA, 2006. Association for Computing Machinery. doi:10.1145/1132516.1132522.

4 Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to maximize
fairness. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
October 25-27, 2009, Atlanta, Georgia, USA, pages 107–116. IEEE Computer Society, 2009.
doi:10.1109/FOCS.2009.51.

ICALP 2021

https://doi.org/10.1145/3070694
https://doi.org/10.1145/2229163.2229168
https://doi.org/10.1145/1132516.1132522
https://doi.org/10.1109/FOCS.2009.51


22:18 The Submodular Santa Claus Problem in the Restricted Assignment Case

5 Siu-Wing Cheng and Yuchen Mao. Restricted max-min fair allocation. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of LIPIcs, pages 37:1–37:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.37.

6 Siu-Wing Cheng and Yuchen Mao. Restricted max-min allocation: Approximation and
integrality gap. In 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, pages 38:1–38:13, 2019. doi:10.4230/LIPIcs.
ICALP.2019.38.

7 Sami Davies, Thomas Rothvoss, and Yihao Zhang. A tale of santa claus, hypergraphs
and matroids. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2748–2757, 2020. doi:
10.1137/1.9781611975994.167.

8 Uriel Feige. On allocations that maximize fairness. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, page 287–293, USA, 2008. Society
for Industrial and Applied Mathematics.

9 Michel X Goemans, Nicholas JA Harvey, Satoru Iwata, and Vahab Mirrokni. Approximat-
ing submodular functions everywhere. In Proceedings of the twentieth annual ACM-SIAM
symposium on Discrete algorithms, pages 535–544. SIAM, 2009.

10 Klaus Jansen and Lars Rohwedder. A note on the integrality gap of the configuration lp for
restricted santa claus. Information Processing Letters, 164:106025, 2020. doi:10.1016/j.ipl.
2020.106025.

11 Andreas Krause, Ram Rajagopal, Anupam Gupta, and Carlos Guestrin. Simultaneous
placement and scheduling of sensors. In Proceedings of the 8th International Conference on
Information Processing in Sensor Networks, IPSN 2009, April 13-16, 2009, San Francisco,
California, USA, pages 181–192. IEEE Computer Society, 2009. URL: http://ieeexplore.
ieee.org/document/5211932/.

12 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav., 55(2):270–296, 2006. doi:10.1016/j.geb.2005.02.
006.

13 J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. In 28th Annual Symposium on Foundations of Computer Science
(sfcs 1987), pages 217–224, 1987. doi:10.1109/SFCS.1987.8.

14 Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma.
Journal of the ACM (JACM), 57(2):1–15, 2010.

15 Lukas Polacek and Ola Svensson. Quasi-polynomial local search for restricted max-min fair
allocation. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors,
Automata, Languages, and Programming, pages 726–737, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

16 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 67–74. ACM,
2008. doi:10.1145/1374376.1374389.

https://doi.org/10.4230/LIPIcs.ICALP.2018.37
https://doi.org/10.4230/LIPIcs.ICALP.2019.38
https://doi.org/10.4230/LIPIcs.ICALP.2019.38
https://doi.org/10.1137/1.9781611975994.167
https://doi.org/10.1137/1.9781611975994.167
https://doi.org/10.1016/j.ipl.2020.106025
https://doi.org/10.1016/j.ipl.2020.106025
http://ieeexplore.ieee.org/document/5211932/
http://ieeexplore.ieee.org/document/5211932/
https://doi.org/10.1016/j.geb.2005.02.006
https://doi.org/10.1016/j.geb.2005.02.006
https://doi.org/10.1109/SFCS.1987.8
https://doi.org/10.1145/1374376.1374389


On Coresets for Fair Clustering in Metric and
Euclidean Spaces and Their Applications
Sayan Bandyapadhyay #

Department of Informatics, University of Bergen, Norway

Fedor V. Fomin #

Department of Informatics, University of Bergen, Norway

Kirill Simonov #

Department of Informatics, University of Bergen, Norway

Abstract
Fair clustering is a variant of constrained clustering where the goal is to partition a set of colored
points. The fraction of points of each color in every cluster should be more or less equal to the
fraction of points of this color in the dataset. This variant was recently introduced by Chierichetti et
al. [NeurIPS 2017] and became widely popular. This paper proposes a new construction of coresets
for fair k-means and k-median clustering for Euclidean and general metrics based on random
sampling. For the Euclidean space Rd, we provide the first coresets whose size does not depend
exponentially on the dimension d. The question of whether such constructions exist was asked by
Schmidt, Schwiegelshohn, and Sohler [WAOA 2019] and Huang, Jiang, and Vishnoi [NeurIPS 2019].
For general metric, our construction provides the first coreset for fair k-means and k-median.

New coresets appear to be a handy tool for designing better approximation and streaming
algorithms for fair and other constrained clustering variants. In particular, we obtain

the first fixed-parameter tractable (FPT) PTAS for fair k-means and k-median clustering in
Rd. The near-linear time of our PTAS improves over the previous scheme of Böhm, Fazzone,
Leonardi, and Schwiegelshohn [ArXiv 2020] with running time npoly(k/ϵ);

FPT “true” constant-approximation for metric fair clustering. All previous algorithms for fair
k-means and k-median in general metric are bicriteria and violate the fairness constraints;

FPT 3-approximation for lower-bounded k-median improving the best-known 3.736 factor of
Bera, Chakrabarty, and Negahbani [ArXiv 2019];

the first FPT constant-approximations for metric chromatic clustering and ℓ-Diversity clustering;

near linear-time (in n) PTAS for capacitated and lower-bounded clustering improving over PTAS
of Bhattacharya, Jaiswal, and Kumar [TOCS 2018] with super-quadratic running time;

a streaming (1 + ϵ)-approximation for fair k-means and k-median of space complexity polynomial
in k, d, ϵ and log n (the previous algorithms have exponential space complexity on either d or k).
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23:2 On Coresets for Fair Clustering and Their Applications

1 Introduction

Given a set of n data points in a metric space and an integer k, clustering is the task
of partitioning the points into k groups or clusters so that the points in each cluster are
similar. In this paper, we consider clustering problems with fairness constraints. While
there are many competing notions of fairness in the literature, here we consider clustering
with fairness constraints or fair clustering as introduced by Chierichetti et al. [16] in their
seminal work. The notion became widely popular within a short period triggering a large
body of new work [38, 7, 9, 28, 4, 11, 15, 1, 32]. The idea of fair clustering is to enforce
additional (fairness) constraints to remove the inherent bias or discrimination from vanilla
(unconstrained) clustering. For example, suppose we have a sensitive feature (e.g, race or
gender). We want to find a clustering where the fraction of points from a traditionally
underrepresented group in every cluster is more or less equal to the fraction of points from
this group in the dataset. Indeed, the work of Chierichetti et al. [16] shows that clustering
computed by classical vanilla algorithms can lead to widely varied ratios for a particular
group, especially when the number of clusters is large enough.

In this work, we consider the fair clustering model independently formulated by Bercea et
al. [9] and Bera et al. [7]. In this model, we are given ℓ groups P1, . . . , Pℓ of points in a metric
space and balance parameters αi, βi ∈ [0, 1] for each group 1 ≤ i ≤ ℓ. A clustering is fair if
the fraction of points from group i in every cluster is at least βi and at most αi. Additionally,
in [7], the groups are allowed to overlap, i.e, a point can belong to multiple protected classes.
We refer to the fair clustering problem with overlapping groups as (α, β)-fair clustering. We
note that this is the most general version of fair clustering considered in the literature, and
this is the notion of fairness we adapt in this paper. Both [9] and [7] obtain polynomial time
O(1)-approximation for this problem that violates the fairness constraints by at most small
additive factors.

We denote by Γ the maximum number of distinct collections of groups to which a point
belongs. If all the groups are disjoint, then Γ = ℓ. Note that if every point belongs to at
most Λ groups, then Γ is at most ℓΛ. As noted in [7, 28], while Λ can very well be more than
1, it is usually a constant in most of the applications. Thus, in this case, Γ = ℓO(1), which is
expected to be much smaller compared to n, the total number of points in the union of the
groups.

Several works related to fair clustering were devoted to scalability [28, 38, 11, 4]. Along
this line, in a beautiful work, Schmidt et al. [38] defined coresets for fair clustering. Note
that a coreset for a center-based vanilla clustering problem is roughly a summary of the
data that for every set C of k centers approximately (within (1 ± ϵ) factor) preserves the
optimal clustering cost. Over the years, researchers have paid increasing attention to the
design of coreset construction algorithms to optimize the coreset size. Indeed, finding smaller
coresets continues to be an active research area in the context of vanilla k-median and
k-means clustering. For general metric spaces, the best-known upper bound on coreset size
is O((k log n)/ϵ2) [21] and the lower bound is known to be Ω((k log n)/ϵ) [5]. For Euclidean
spaces of dimension d, it is possible to construct coresets, based on random sampling, of size
(k/ϵ)O(1) [22, 39, 29, 13], which in particular does not depend on n and d.

In the vanilla version of a clustering problem, given the cluster centers, clusters are
formed by assigning each point to its nearest center. In contrast, in a constrained version,
such an assignment might not lead to a clustering that satisfies the constraints. Hence, for
fair clustering, we need a stronger definition of coreset. Accordingly, Schmidt et al. [38]
initiated the study of fair coresets. Schmidt et al. [38] and subsequently Huang et al. [28]
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designed deterministic algorithms in Rd that construct fair coresets whose sizes exponentially
depend on d. To remove this exponential dependency on d, Schmidt et al. [38] proposed an
interesting open question whether it is possible to use random sampling for construction of
fair coresets. Huang et al. [28] also suggested the same open question. Besides, Huang et al.
asked whether it is possible to achieve a similar size bound as in the vanilla setting.

1.1 Our Results and Contributions
We study fair clustering under the k-median and k-means objectives. Our first main result is
the following theorem.

▶ Theorem 1. There is an O(n(k+ ℓ)) time randomized algorithm that w.p. at least 1 − 1/n,
computes a coreset of size O(Γ(k log n)2/ϵ3) for (α, β)-fair k-median and O(Γ(k log n)7/ϵ5)
for (α, β)-fair k-means, where Γ is the number of distinct collections of groups to which a
point may belong. If the groups are disjoint, the algorithm runs in O(nk) time. Moreover,
in Rd, the coreset sizes are O

( Γ
ϵ3 · k2 log n(log n+ d log(1/ϵ))

)
for (α, β)-fair k-median1 and

O
( Γ

ϵ5 · k7(log n)6(log n+ d log(1/ϵ))
)

for (α, β)-fair k-means.

Theorem 1 provides the first coreset construction for fair clustering problem in general
metric spaces. Note that if the number of groups is just 1, we obtain coresets of size
Oϵ(poly(k log n)), which is somewhat comparable to the best-known bound of Oϵ(k log n)
[21] in the vanilla case. We also note that this is the first sampling based coreset construction
scheme for fair clustering, and in Rd, the first coreset construction scheme where the size of
the coreset does not depend exponentially on the dimension d (see Table 1). In fact, the
dependency on d is only linear. Specifically, our result improves the bound (for k-median) in
[28] by a factor of Θ

(
ϵ−d+3

log n(log n+d)

)
(see Table 1). Thus, if d is sufficiently large, our coreset

size is much smaller compared to theirs. In fact, the dependency of the previous coreset size
on n can be super-polylogarithmic (or super-polynomial) when d is large, whereas ours is
only polylogarithmic in the worst case. In the light of the above discussion, our result solves
the open question proposed in [38] and partly solves the open question proposed in [28].

Table 1 Previous and current coreset results in Rd.

k-median k-means

size construction
time

size construction time

[38] O(Γkϵ−d−2 log n) O(kϵ−d−2n log n)

[28] O(Γk2ϵ−d) O(kϵ−d+1n) O(Γk3ϵ−d−1) O(kϵ−d+1n)

This O( Γ
ϵ3 · k2 log n(log n+

d log(1/ϵ)))
O(nd(k + ℓ)) O( Γ

ϵ5 · k7(log n)6(log n+
d log(1/ϵ)))

O(nd(k + ℓ))

Actually, our coreset construction scheme, similar to [38, 28], is much more general in the
following sense. The coreset can preserve not only the cost of optimal fair clustering, but
also the cost of any optimal clustering with group-cardinality constraints. In particular, for

1 The Euclidean version is not a special case of the general metrics case, as here the set of potential
centers is infinite.
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any clustering problem with constraints that can be expressed in terms of the number of
elements that go from each group to each cluster (formally defined in Section 2), we obtain a
small size coreset. This gives rise to new coresets for a wide range of clustering problems
including lower-bounded clustering [40, 2, 8].

We further exploit the new coreset construction to design clustering algorithms in various
settings. In general metrics, we obtain the first fixed-parameter tractable (FPT) constant-
factor approximation for (α, β)-fair clustering with parameters k and Γ. That is, the running
time of our algorithm is exponential only in the values k and Γ while polynomial in the size
of the input. All previous constant-approximation algorithms were bicriteria and violated
the fairness constraints by some additive factors. Hence, the study of FPT approximation is
well-motivated. Our approximation factors are reasonably small and improve the best-known
approximation factors of the existing bicriteria algorithms (see Table 2). Moreover, our
coreset leads to improved constant FPT approximations for many other clustering problems.
For example, we obtain an improved ≈ 3-approximation algorithm for lower-bounded k-
median [40, 2, 8] that is FPT parameterized by k. Previously, the best-known factor for FPT
approximation for this problem was 3.736 [8].

Based on our coreset, we also obtain the first FPT (1 + ϵ)-approximation for (α, β)-
fair clustering in Rd with parameters k and Γ. For constant Γ, the running time of our
algorithm is near-linear and up to log n, matches the time of the algorithm of Kumar,
Sabharwal, and Sen for vanilla clustering [34]. A comparison with the running time of the
previous (1 + ϵ)-approximation algorithms can be found in Table 3. We also obtain FPT
(1 + ϵ)-approximations with parameter k for the Euclidean version of several other problems
including capacitated clustering [19, 17] and lower-bounded clustering. We note that these
are the first (1 + ϵ)-approximations for these problems with near-linear dependency on n.
For Euclidean capacitated clustering, quadratic time FPT algorithms follow due to [20, 10]
(see Table 4). Also, the (1 + ϵ)-approximation for Euclidean capacitated clustering in [19]
and [17] have running time (kϵ−1)kϵ−O(1)

nO(1) and at least nϵ−O(1) (see Table 4).

Table 2 Approximation results for (α, β)-fair clustering in general metrics. “multi” denotes if
the algorithm can handle overlapping groups. In “approx.” columns, the first (resp. second) value in
a tuple is the approximation factor (resp. violation). [7] does not explicitly compute the O(1) factor,
but it is > 3 + ϵ (resp. > 9 + ϵ) for k-median (resp. k-means), where ϵ is a sufficiently large constant.

multi
k-median k-means

approx. time approx. time

[9] (4.675, 1) poly(n) (62.856, 1) poly(n)

[7] ✓ (O(1), 4Λ + 3) poly(n) (O(1), 4Λ + 3) poly(n)

This ≈ 3 (kℓ)O(kℓ)n log n ≈ 9 (kℓ)O(kℓ)n log n

This ✓ ≈ 3 (kΓ)O(kΓ)n log n ≈ 9 (kΓ)O(kΓ)n log n

Our coreset also leads to small space (1 + ϵ)-approximation in streaming setting for
(α, β)-fair clustering in Rd when the groups are disjoint. We show how to maintain an
O(d2ℓ · poly(k log n)/ϵ4) size coreset in each step. One can apply our (1 + ϵ)-approximation
algorithm on the coreset to compute a near-optimal clustering. In the previous streaming
algorithms [38], the space complexity depended exponentially on either d or k.
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Our coreset construction scheme is based on the algorithm for the vanilla case due to
Chen [14]. Chen showed that a small number of points can be chosen randomly from a
metric space (in a clever way) that form a coreset for vanilla clustering. Our construction
first divides the input points into a number of subsets, and for each subset, applies Chen’s
algorithm to compute a coreset for that subset. Our final coreset is the union of all these
computed coresets. Surprisingly, our algorithm for fair clustering is as simple as that. Our
main technical contribution is the analysis of this algorithm, which shows that the returned
weighted subset of the points is a coreset for fair clustering with high probability.

Table 3 Running time of the (1 + ϵ)-approximations for fair clustering in Rd.

running time version

[38] nO(k/ϵ) 2-color, (1, k)-fair clustering

[11] npoly(k/ϵ) ℓ-color, (1, k)-fair clustering

This 2Õ(k/ϵO(1))(kΓ)O(kΓ)nd log n (α, β)-fair clustering

Although our algorithm follows the framework of Chen’s, the proof that the algorithm
correctly computes a fair coreset is much more complicated. Our analysis is strongly inspired
by the analysis of Cohen-Addad and Li [19] of Chen’s algorithm in the context of capacitated
clustering. However, there are two major difficulties of applying the analysis technique of [19]
directly to our problem. Firstly, in our case input points belong to groups which can overlap,
and secondly, fairness constraints are much more general compared to capacity constraints.
The novelty of our work lies in overcoming the two above-mentioned hurdles. To overcome
the first hurdle, we divide the input points into equivalence classes based on their group
membership and using a probabilistic argument prove that it is possible to consider these
classes separately. To overcome the second hurdle, we prove that fairness constraints can
be treated as a collection of independent constraints each of which is similar to a capacity
constraint. All these ideas together help us generalize the approach of [19] to fair clustering.

Table 4 Running time of the (1 + ϵ)-approximations for capacitated clustering in Rd.

running time

[20] 2poly(k/ϵ)n2(log n)k+2d

[10] 2Õ(k/ϵO(1)) · n2(log n)2d

[19] (kϵ−1)kϵ−O(1)
nO(1)

[17]
nϵ−O(1)

(d = 2)

n(log n/ϵ)O(d)
(d ≥ 3)

This 2Õ(k/ϵO(1))ndO(1) + nk2ϵ−O(1) log n

Apart from the coreset construction, the novelty of our work lies in the design of an
algorithm for computing the minimum cost fair assignment to given centers, based on
mixed-integer linear programming. This is the heart of all our approximation algorithms.

ICALP 2021
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1.2 Related Work
Schmidt et al. [38] defined the concept of fair coresets and gave coreset of size O(ℓkϵ−d−2 log n)
for the disjoint group case of Euclidean (α, β)-fair k-means. They also gave an nO(k/ϵ) time
(1 + ϵ)-approximation for the two-color version of the problem. Using the framework in [25],
Huang et al. [28] improved the coreset size bound of [38] by a factor of Θ

(
log n
ϵk2

)
and gave

the first coreset for Euclidean (α, β)-fair k-median of size O(Γk2ϵ−d). Böhm et al. [11]
obtained near-linear time constant-approximation in a restricted setting. They also obtained
an npoly(k/ϵ) time (1 + ϵ)-approximation for the Euclidean version in the same setting.

Chierichetti et al. [16] gave a polynomial time Θ(t)-approximation for a special version
of (α, β)-fair k-median with two groups, where t is a balance parameter. Bera et al. [7]
obtained polynomial time O(1)-approximation for (α, β)-fair clustering that violates the
fairness constraints by at most an additive factor of 4Λ + 3. For the disjoint group case,
their violation factor is only 3. Independently, Bercea et al. [9] obtained algorithms with the
same approximation guarantees as in [7] for the disjoint version, but with at most 1 additive
factor violation. For other related works on fair clustering, see [4, 16, 37, 9, 7, 1, 15, 32, 33].
For related works on coresets, see [27, 26, 23, 35, 21, 22, 39, 6, 12, 29].

2 Preliminaries

In all the clustering problems we study in this paper, we are given a set P of points in a
metric space (X , d(·, ·)), that we have to cluster. We are also given a set F of cluster centers
in the same metric space. We note that P and F are not-necessarily disjoint, and in fact, P
may be equal to F . We assume that the distance function d(·, ·) is provided by an oracle
that for any given x, y ∈ X in constant time returns d(x, y). In the Euclidean version of
a clustering problem, P ⊆ Rd, F = Rd and d(·, ·) is the Euclidean metric.2 In the metric
version, we assume that F is finite. Thus, strictly speaking, the Euclidean version is not a
special case of the metric version. In the metric version, we denote |P ∪ F | by n and in the
Euclidean version, |P | by n. For any set S and a point p, d(p, S) := minq∈S d(p, q). Also, for
any integer t ≥ 1, we denote the set {1, 2, . . . , t} by [t].

In the k-median problem, given an additional parameter k, the goal is to select a set
of at most k centers C ⊂ F such that the quantity

∑
p∈P d(p, C) is minimized. k-means is

identical to k-median, except here we would like to minimize
∑

p∈P (d(p, C))2.
Next, we define our notion of fair clustering following the definition in [7].

▶ Definition 2 (Definition 1, [7]). In the fair version of a clustering problem (k-median or
k-means), one is additionally given ℓ many (not necessarily disjoint) groups of P , namely
P1, P2, . . . , Pℓ. One is also given two fairness vectors α, β ∈ [0, 1]ℓ, α = (α1, . . . , αℓ),
β = (β1, . . . , βℓ). The objective is to select a set of at most k centers C ⊂ F and an
assignment φ : P → C such that φ satisfies the following fairness constraints:

|{x ∈ Pi : φ(x) = c}| ≤ αi · |{x ∈ P : φ(x) = c}| , ∀c ∈ C, ∀i ∈ [ℓ],
|{x ∈ Pi : φ(x) = c}| ≥ βi · |{x ∈ P : φ(x) = c}| , ∀c ∈ C, ∀i ∈ [ℓ],

and cost(φ) is minimized among all such assignments.

In the (α, β)-Fair k-median problem, cost(φ) :=
∑

x∈P d(x, φ(x)), and in the (α, β)-Fair
k-means problem, cost(φ) :=

∑
x∈P d(x, φ(x))2. To refer to these two problems together, we

will use the term (α, β)-Fair Clustering. We call φ that satisfies the fairness constraints a

2 Due to the lack of better notations, we denote the dimension by d and distance function by d(·, ·).
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fair assignment. We denote the minimum cost of a fair assignment of a set of points P to a
set of k centers C by faircost(P,C), and faircost(P ) denotes the minimum of faircost(P,C ′)
over all possible sets of k centers C ′.

Next, we state our notion of coresets. We follow the definitions in [38, 28]. For a clustering
problem with k centers and ℓ groups P1, . . . , Pℓ, a coloring constraint is a k × ℓ matrix M
having non-negative integer entries. The entry of M corresponding to row i and column j is
denoted by Mij . Next, we have the following observation, which was also noted in [38, 28].

▶ Proposition 3. Given a set C of k centers, the assignment restriction required for (α, β)-
Fair Clustering can be expressed as a collection of coloring constraints.

In our definition, a coreset is required to preserve the optimal clustering cost w.r.t. all
coloring constraints, and hence it also preserves the optimal fair clustering cost. Next, we
formally define the cost of a clustering w.r.t. a set of centers and a coloring constraint.

First, consider the k-median objective. Suppose we are given a weight function w : P →
R≥0 (non-negative reals). Let W ⊆ P×R be the set of pairs {(p, w(p)) | p ∈ P and w(p) > 0}.
For a set of centers C = {c1, . . . , ck} and a coloring constraint M , wcost(W,M,C) is the
minimum value

∑
p∈P,ci∈C ψ(p, ci) · d(p, ci) over all assignments ψ : P × C → R≥0 such that

1. For each p ∈ P ,
∑

ci∈C ψ(p, ci) = w(p).
2. For each ci ∈ C and group 1 ≤ j ≤ ℓ,

∑
p∈Pj

ψ(p, ci) = Mij .

For k-means, wcost(W,M,C) is defined in the same way except it is the minimum value∑
p∈P,ci∈C ψ(p, ci) · d(p, ci)2. If there is no such assignment ψ, wcost(W,M,C) = ∞. When

w(p) = 1 for all p ∈ P , we simply denote W by P and wcost(W,M,C) by cost(P,M,C).
Now we define a coreset. We call it universal coreset, as it is required to preserve optimal
clustering cost w.r.t. all coloring constraints.

▶ Definition 4 (Universal coreset). For a given unweighted point set P and a clustering
objective, a universal coreset is a set of weighted points W ⊆ P × R such that for every set
of centers C of size k and any coloring constraint M ,

(1 − ϵ) · cost(P,M,C) ≤ wcost(W,M,C) ≤ (1 + ϵ) · cost(P,M,C).

3 Our Techniques

Here, we describe the techniques and key ideas used to obtain the new results of the paper.
The detailed version of our results and formal proofs appear in the attached full version. For
simplicity, we limit our discussion to k-median clustering. We start with the coreset results.

3.1 Universal Coreset Construction
Our coreset construction algorithms are based on random sampling and we will prove that
our algorithms produce universal coresets with high probability (w.h.p.). At a first glance, it
is not easy to see how to sample points in the overlapping group case, as the decision has an
effect on multiple groups. For simplicity, first we discuss the disjoint group case.

The Disjoint Group Case
Our coreset construction algorithm is built upon the coreset construction algorithm for vanilla
clustering due to Chen [14]. In our case, we have points from ℓ disjoint color classes. So,
we apply Chen’s algorithm for each color class independently. Note that Chen’s algorithm
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was used to show that for any given set of centers C, the constructed coreset approximately
preserves the optimal clustering cost. However, we would like to show that for any given
set of centers C, the constructed coreset approximately preserves the optimal clustering
cost corresponding to any given constraint M . At this stage, it is not clear why Chen’s
algorithm should work in such a generic setting. Our main technical contribution is to show
that sampling based approaches like Chen’s algorithm can be used even for such a stronger
notion of universal coreset. We will try to give some intuition after describing our algorithm.
Our algorithm is as follows.

Given the set of points P , first we apply the algorithm of Indyk [30] for computing a
vanilla k-median clustering of P . This is a bicriteria approximation algorithm that uses O(k)
centers and runs in O(nk) time. Let C∗ be the set of computed centers, ν be the constant
approximation factor and Π be the cost of the clustering. Also, let µ = Π/(νn) be a lower
bound on the average cost of the points in any optimal k-median clustering. Note that for
any point p, d(p, C∗) ≤ Π = νn · µ.

For each center c∗
i ∈ C∗, let P ∗

i ⊆ P be the corresponding cluster of points assigned to
c∗

i . We consider the ball Bi,j centered at c∗
i and having radius 2jµ for 0 ≤ j ≤ N , where

N = ⌈log(νn)⌉. We note that any point at a distance 2Nµ ≥ νn · µ from c∗
i is in Bi,N ,

and thus all the points in P ∗
i are also in Bi,N . Let B′

i,0 = Bi,0 and B′
i,j = Bi,j \Bi,j−1 for

1 ≤ j ≤ N . We refer to each such B′
i,j as a ring for 1 ≤ i ≤ k, 0 ≤ j ≤ N . For each 0 ≤ j ≤ N

and color 1 ≤ t ≤ ℓ, let P ′
i,j,t be the set of points in B′

i,j of color t, and Pi,j = ∪ℓ
t=1P

′
i,j,t. Let

s = Θ(k log n/ϵ3) for a sufficiently large constant hidden in Θ(.).
For each center c∗

i ∈ C∗, we perform the following steps.

Random Sampling. For each color 1 ≤ t ≤ ℓ and ring index 0 ≤ j ≤ N , do the following.
If |P ′

i,j,t| ≤ s, add all the points of P ′
i,j,t to Wi,j and set the weight of each such point to 1.

Otherwise, select s points from P ′
i,j,t independently and randomly (without replacement)

and add them to Wi,j . Set the weight of each such point to |P ′
i,j,t|/s.

The set W = ∪i,jWi,j is the desired universal coreset. As the number of rings is O(k log n),
the size of W is O(ℓ(k log n)2/ϵ3). From [14], it follows that for each color, the coreset points
can be computed in time linear in the number of points of that color times O(k). Thus,
our coreset construction algorithm runs in O(nk) time. Next, we show that W is indeed a
universal coreset w.h.p.

Note that we need to show that for any set of centers C, the optimal clustering cost is
approximately preserved w.r.t. all possible combinations of cluster sizes as defined by the
constraint matrices. In Chen’s analysis, it was sufficient to argue that for any set of centers
C, the optimal clustering cost needs to be preserved. This seems much easier compared to
our case. (Obviously, the details are much more complicated even in the vanilla case.) For
example, in the vanilla case, let p ∈ P be a point that is assigned to a center c ∈ C in an
optimal clustering. Note that c must be a closest center to p. For simplicity, suppose p has
a unique closest center. Now, if p is chosen in the coreset, then the total weight of p must
also be assigned to c in any optimal assignment w.r.t. C. Thus, the assignment function for
original and coreset points remains same in the vanilla case. This fact is in the heart of their
analysis. Note that this is not necessarily true in our case. We cannot just use the nearest
neighbor assignment scheme, as in our case cluster sizes are predefined through M . Indeed,
in our case we might very well need to assign the weight of a coreset point to multiple centers
to satisfy M . In general, this is the main hurdle one faces while analyzing a sampling based
approach for fair coreset construction.



S. Bandyapadhyay, F. V. Fomin, and K. Simonov 23:9

For analyzing our algorithm, we follow an approach similar to the one by Cohen-Addad
and Li in [19]. They considered the capacitated clustering problem, where for each center c a
capacity value Uc is given, and if the center c is chosen, at most Uc points can be assigned to c.
They analyzed Chen’s algorithm and showed that for any center C, the coreset approximately
preserves the optimal capacitated clustering cost. One crucial idea they use in their proof
is representation of assignments through network flow. Suppose we are given a fixed set of
centers and weighted input points, and we would like to compute a minimum cost assignment
of the points to the centers such that the capacities are not violated. This problem can be
modeled as a minimum cost network flow problem.

The first hurdle to adapt the approach in [19] is that it is not possible to represent the
assignment problem for fair clustering as a simple flow computation problem. Thus it is not
clear how to directly use their approach for fair clustering. Nonetheless, we show that for a
fixed constraint M , the assignment problem can be modeled in the desired way. Thus, we
can get high probability bound w.r.t. a fixed constraint M . However, to obtain a coreset for
fair clustering we need to show this w.r.t. all such constraints (and this leads us towards
a universal coreset). The number of such constraints can be as large as nΩ(kℓ). Hence, to
obtain the h.p. bound over all M , we need to show that for a fixed M the error probability is
at most 1/nΩ(kℓ). However, it is not clear how to show such a strong bound (1/nΩ(k) bound
can be shown). Nevertheless, we show that it is not necessary to consider all those choices
of the constraints together – one can focus on a single color and the constraints w.r.t. that
color only. Indeed, this is the reason that we apply Chen’s algorithm to different color classes
independently. Unfortunately, we pay a heavy toll for this: the coreset size is proportional to
ℓ, unlike the vanilla coreset size, and it is not clear how to avoid this dependency. Anyway,
this solves our problem, as now we have only nΩ(k) constraints. It follows that, for a fixed
color and a fixed constraint matrix, one can apply an approach similar to the one in [19]
(the details are slightly different). This allows us to adapt the ideas from [19] and [14] to
construct coresets for much more general clustering problems. Next, we describe the details.
We will prove the following lemma.

▶ Lemma 5. For any fixed set C of k centers and for all k × ℓ matrices M , w.p. at least
1 − 1/nk+2, |cost(P,M,C) − wcost(W,M,C)| ≤

∑
(i,j) ϵ|Pi,j | · 2jµ.

Now, consider all the rings B′
i,j with j = 0. Then,∑

(i,j):j=0

ϵ|Pi,j | · 2jµ ≤ ϵn · µ ≤ ϵ · OPTv ≤ ϵ · cost(P,M,C).

Here, OPTv is the optimal cost of vanilla k-median clustering. The last inequality follows,
as the optimal cost of vanilla clustering is at most the cost of any constrained clustering. On
the other hand, for any ring B′

i,j with j ≥ 1 and any point p in the ring, d(p, c∗
i ) ≥ 2j−1µ.

Thus,∑
(i,j):j≥1

ϵ|Pi,j | · 2jµ ≤ ϵ
∑
p∈P

2 · d(p, c∗
ip

) ≤ 2ϵ · OPTv ≤ 2ϵ · cost(P,M,C),

where for a point p ∈ P by ip we denote the index of a center such that p belongs to B′
ip,j

for some j.
Taking union bound over all C and scaling down ϵ by 3 factor, we get the desired result.

▶ Lemma 6. For every set C of k centers and every k× ℓ matrices M , w.p. at least 1 − 1/n,
|cost(P,M,C) − wcost(W,M,C)| ≤ ϵ · cost(P,M,C).
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3.2 Proof of Lemma 5
Let Pτ be the points in P of color τ . Also, let Wτ be the chosen samples of color τ . For
1 ≤ t ≤ ℓ − 1, let W t = (∪t

τ=1Wτ ) ∪ (∪ℓ
τ=t+1Pτ ). Also, let W ℓ = ∪ℓ

τ=1Wτ be the coreset
points of all colors. Recall that for any ring B′

i,j , P ′
i,j,τ is the points of color τ in the ring.

Also, Pi,j = ∪ℓ
τ=1P

′
i,j,τ .

Note that in the above, W t contains the sampled points for color 1 to t and original
points of color t+ 1 to ℓ. We will prove the following lemma that gives a bound when the
coreset contains sampled points of a fixed color t and original points of the other colors.

▶ Lemma 7. Consider any color 1 ≤ t ≤ ℓ. For any fixed set C of k centers and for all
k × ℓ matrices M , w.p. at least 1 − 1/nk+4, |cost(P,M,C) − wcost(Wt ∪ (P \ Pt),M,C)| ≤∑

(i,j) ϵ|P ′
i,j,t| · 2jµ.

Note that for a particular color class, if we select all original points in the coreset, there is
no error corresponding to those coreset points. This is true, as one can use the corresponding
optimal assignment for these points. Assuming that the above lemma holds, now we prove
Lemma 5. Consider the coreset W 1. From the above lemma, we readily obtain the following.

▶ Corollary 8. For any fixed set C of k centers and for all k × ℓ matrices M , w.p. at least
1 − 1/nk+4, |cost(P,M,C) − wcost(W 1,M,C)| ≤

∑
(i,j) ϵ|P ′

i,j,1| · 2jµ.

Now, in W 1 consider replacing the points of P2 by the samples in W2. We obtain the
coreset W 2. Note that the samples in W1 and W2 are chosen independent of each other.
Thus, by taking union bound over colors 1 and 2, from Lemma 7 we obtain, for all M , w.p.
≥ 1 − 2/nk+4, |cost(P,M,C) − wcost(W 2,M,C)| ≤

∑
(i,j) ϵ(|P ′

i,j,1| + |P ′
i,j,2|) · 2jµ. Similarly,

by taking union bound over all ℓ ≤ n colors and noting that W ℓ = W , Lemma 5 follows.

3.3 Proof of Lemma 7
Recall that Pt is the set of points of color t, and Wt is the coreset points of color t. C is
the given set of centers. For any matrix M , let M t be the tth column of M . We have the
following observation that implies that it is sufficient to consider the points only in Pt to
give the error bound.

▶ Observation 9. Suppose w.p. at least 1 − 1/nk+4, for all column matrices M ′,
|cost(Pt,M

′, C) − wcost(Wt,M
′, C)| ≤

∑
(i,j) ϵ|P ′

i,j,t| · 2jµ. Then, with the same probability,
for all k× ℓ matrices M , |cost(P,M,C) − wcost(Wt ∪ (P \Pt),M,C)| ≤

∑
(i,j) ϵ|P ′

i,j,t| · 2jµ.

Proof. Consider any k × ℓ matrix M . Then,

cost(P,M,C) =
ℓ∑

τ=1
cost(Pτ ,M

τ , C), and

wcost(Wt ∪ (P \ Pt),M,C) = wcost(Wt,M
t, C) +

∑
τ∈[ℓ]\{t}

cost(Pτ ,M
τ , C)

It follows that,

|cost(P,M,C) − wcost(Wt ∪ (P \ Pt),M,C)| = |cost(Pt,M
t, C) − wcost(Wt,M

t, C)|

Now, by our assumption, it follows that the probability of the event: for all M ,
|cost(Pt,M

t, C) − wcost(Wt,M
t, C)| exceeds

∑
(i,j) ϵ|P ′

i,j,t| · 2jµ is at most 1/nk+4. Hence,
the observation follows. ◀
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By the above observation, it is sufficient to prove that w.p. at least 1 − 1/nk+4, for all
column matrices M , |cost(Pt,M,C) − wcost(Wt,M,C)| ≤

∑
(i,j) ϵ|P ′

i,j,t| · 2jµ. The proof of
this claim is similar to the analysis in [19] and appears in Section 4 of the full version.

The Overlapping Group Case

We are given ℓ groups of points P1, . . . , Pℓ such that a point can potentially belong to multiple
groups. Note that the algorithm in the disjoint case does not work here. This is because
we sample points from each group separately and independently, and thus it is not clear
how to assign the weight of a point that belongs to multiple groups. One might think of the
following trivial modification of this algorithm. Assign each point to a single group to which
it belongs. Based on this assignment, now we have disjoint groups, and we can apply our
previous algorithm. But, the new algorithm can have a very large error bound. For example,
suppose a point p belongs to two groups i and j, and it is assigned to group i. Also, suppose
p was not chosen in the sampling process. Note that the weight of p is represented by some
other chosen point p′, which was also assigned to group i. However, now we have lost the
information that this weight of p was also contributing towards fairness of group j. Thus,
the constructed coreset might not preserve any optimal fair clustering with a small error. In
the overlapping case, it is not clear how to obtain a coreset whose size depends linearly in ℓ –
we design a new coreset construction algorithm where the size depends linearly on Γ. Recall
that Γ is the maximum number of distinct collections of groups to which a point belongs.

The main idea of our algorithm is to divide the points into equivalence classes based on
their group membership and sample points from each equivalence class. Let P = ∪ℓ

i=1Pi. For
each point p ∈ P , let Jp ⊆ [ℓ] be the set of indexes of the groups to which p belongs. Let I be
the distinct collection of these sets {Jp | p ∈ P} and |I| = Γ. In particular, let I1, . . . , IΓ be
the distinct sets in I. Now, we partition the points in P based on these sets. For 1 ≤ i ≤ Γ,
let P i = {p ∈ P | Ii = Jp}. Thus, {P i | 1 ≤ i ≤ Γ} defines equivalence classes for P such
that two points p, p′ ∈ P belong to the same equivalence class if they are in exactly the same
set of groups. Now we apply our algorithm in the disjoint case on the disjoint sets of points
P 1, . . . , PΓ. Let W be the constructed coreset.

Note that here we have Γ disjoint classes, and thus the coreset size is O(Γ(k log n)2/ϵ3).
As our coreset size is at least Γ, we assume that Γ < n. Note that the equivalence classes can
be computed in O(nℓ) time, and thus the algorithm runs in time O(nℓ)+O(nk) = O(n(k+ℓ)).
The proof that W is indeed a universal coreset w.h.p. follows the same line as of the disjoint-
group case. Again, the idea here is to reduce the analysis to the one class case. However, this
is not as straightforward as in the disjoint case. Note that although the classes P 1, . . . , PΓ

are disjoint, two classes can contain points from the same group. Moreover, the constraints
are defined w.r.t. the groups, not w.r.t. the classes. Thus, two classes need to interact to
satisfy the constraints. Nevertheless, we use the independence of the samples from different
classes and exploit the structure of a special class of matrices to complete the proof, which
appears in Section 5 of the full version.

The algorithm in the Euclidean case is the same as for general metrics, except we set
s to Θ(k log(nb)/ϵ3), where b = Θ(k log(n/ϵ)/ϵd). Here the main challenge is that it is not
possible to take union bound over all possible sets of k centers. Nevertheless, we show that for
every set C ⊆ Rd of k centers and constraint M , the optimal cost is preserved approximately
w.h.p. Our main contribution in this part is to devise a discretization technique for obtaining
a finite set of centers, so that if instead we draw centers from this set, the cost of any
clustering is preserved approximately. The details appear in Section 6 of the full version.
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3.4 Approximation Algorithms Based on Universal Coresets
All the algorithms that we design follow one general strategy: first, compute a universal
coreset, then, enumerate a small family of sets of possible k centers, such that at least one of
them is guaranteed to provide a good approximation, and finally pick the best set of centers
by finding the optimal assignment from the coreset to each of the center sets. Throughout
this section, we limit our discussion to fair clustering. One major difficulty in the case of fair
clustering is solving the assignment problem, for which we devise a novel FPT algorithm.

Solving the Assignment Problem
The fair assignment problem is the following: given an instance of (α, β)-Fair Clustering
and a set of k centers C, compute a minimum-cost fair assignment to the centers of C. For
fair clustering, the assignment problem is one of the features that makes it harder than other
constrained clustering problems. While often the optimal assignment can be found with
the help of network flow, e.g. for capacitated clustering, there was no previously known
algorithms to compute an optimal or approximate fair assignment without violating the
constraints. Moreover, it was observed by Bera et al. [7] that the fair assignment problem is
NP-hard, so there is no hope to have a polynomial time assignment algorithm.

We design a fair assignment algorithm with running time (kΓ)O(kΓ)nO(1). The general
idea is to reduce to a linear programming instance. The unknown optimal assignment can be
naturally expressed in terms of linear inequalities by introducing a variable fij for the i-th
point and the j-th center, denoting which fraction of the point is assigned to each center,
and constraints fij ≥ 0 for all i, j, and

∑k
j=1 fij = 1. Clearly this generalizes a discrete

assignment, which corresponds to exactly one of {fij}k
j=1 being equal to 1, for each i ∈ [n].

Moreover, the fairness of the assignment can also be expressed as linear constraints on {fij}.
The main obstacle is that in general the optimal solution to this linear program is not

integral, and the integrality gap could be arbitrarily large. Thus, an optimal fractional
solution does not yield the desired assignment, and this is not surprising since the fair
assignment problem is NP-hard. One possible solution could be restricting the variables to
be integral, solving an integer linear program (ILP) instead. But the number of variables is
too large for an FPT algorithm. Instead, we introduce the integral variables {gtj} denoting
how many points from the t-th point equivalence class gets to the j-th center, while leaving
the {fij} variables to be fractional. Thus, we obtain an instance of mixed-integer linear
programming (MILP) with kΓ integer variables and nk fractional variables. By using the
celebrated result of Lenstra [36] with subsequent improvements by Kannan [31], and Frank
and Tardos [24], we obtain an optimal solution to the MILP instance in time (kΓ)O(kΓ)nO(1).

Now we explain that after constraining the {gtj} variables to be integral, we can assume
that all the other variables {fij} are integral too, thus we actually obtain an optimal discrete
assignment of the same cost. Consider a particular point equivalence class P t, and the
integral values {gtj}k

j=1 from the optimal solution to the MILP. When these values are fixed,
the problem boils down to finding an assignment from P t to C such that exactly gtj points
are assigned to the j-th center. This problem can be solved by a minimum-cost maximum
flow in the network where each point has supply one, the j-th center has demand of gtj , and
the costs are the distances between the respective points. Moreover, the values {fij} from
the MILP correspond exactly to the flow values on the respective edges. Since there is an
optimal integral flow in this network, this flow is also an optimal integral solution for {fij}.

The downside of the above algorithm is that the time complexity is roughly n5, and we
cannot use it directly to obtain a near-linear time algorithm. So, we also show how to obtain
a (1 + ϵ)-approximate fair assignment in near-linear time with the help of the coreset. For
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this, we compute a universal coreset, and then compute the optimal fair assignment from the
coreset to the centers C. However, this does not yet give us a fair assignment of the original
points to the centers. To construct this assignment, we take the values {gtj} computed by
the assignment algorithm on the coreset, and then, for each point equivalence class P t, we
solve the simple assignment problem from P t to C that assigns exactly gtj points to the j-th
center. As mentioned above, this can be done by a network flow algorithm. Since the network
is bipartite and one of the parts is small (k), this problem can be solved in near-linear time by
the specialized flow algorithm in [3]. By the property of the universal coreset, the resulting
assignment achieves a (1 + ϵ)-approximation (see Section 8 of the full version).

(1 + ϵ)-Approximation in Rd. Besides our coreset construction and assignment algorithm,
the key ingredient to obtain a (1 + ϵ)-approximation is the generic clustering algorithm of
Bhattacharya et al. [10]. Their algorithm outputs a list of 2Õ(k/ϵO(1)) candidate sets of k
centers, such that for any clustering of the points there exists a set of centers C in this list
that is slightly worse than the optimal set of centers for this clustering. Together with our
assignment algorithm this provides a (1 + ϵ)-approximation algorithm with the running time
of 2Õ(k/ϵO(1))(kΓ)O(kΓ)nd log n. We describe this algorithm in Section 9 of the full version.

(3 + ϵ)-Approximation in General Metric. With the help of our universal coreset, the
strategy to obtain (3 + ϵ)-approximation for (α, β)-Fair k-median is essentially same as
that used in [18, 19]: from each of the clusters in an optimal solution on the coreset we
guess the closest point to the center, called a leader of that cluster. We also guess a suitably
discretized distance from each leader to the center of the corresponding cluster. Finally,
selecting any center that has roughly the guessed distance to the leader provides us with a
(3 + ϵ)-approximation. In this way we obtain a list of |W |k(log n/ϵ)O(k) candidate sets of k
centers. Afterwards, our algorithm proceeds similarly to the Euclidean case above, resulting
in the running time of (kΓ)O(kΓ)/ϵO(k) · n log n (see Section 10 of the full version).
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Abstract
In the consensus halving problem we are given n agents with valuations over the interval [0, 1]. The
goal is to divide the interval into at most n + 1 pieces (by placing at most n cuts), which may be
combined to give a partition of [0, 1] into two sets valued equally by all agents. The existence of a
solution may be established by the Borsuk-Ulam theorem. We consider the task of computing an
approximation of an exact solution of the consensus halving problem, where the valuations are given
by distribution functions computed by algebraic circuits. Here approximation refers to computing a
point that is ε-close to an exact solution, also called strong approximation. We show that this task is
polynomial time equivalent to computing an approximation to an exact solution of the Borsuk-Ulam
search problem defined by a continuous function that is computed by an algebraic circuit.

The Borsuk-Ulam search problem is the defining problem of the complexity class BU. We
introduce a new complexity class BBU to also capture an alternative formulation of the Borsuk-Ulam
theorem from a computational point of view. We investigate their relationship and prove several
structural results for these classes as well as for the complexity class FIXP.
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1 Introduction

Many computational problems, e.g. linear and semidefinite programming, are most naturally
expressed using real numbers. When the model of computation is discrete, these problems
must be recast as discrete problems. In the case of linear programming this causes no
problems. Namely, when the input is given as rational numbers and an optimal solution
exists, a rational valued optimal solution exists and may be computed in polynomial time.
For semidefinite programming however, it may be the case that all optimal solutions are
irrational. For dealing with such cases we may instead consider the weak optimization problem
as defined by Grötschel, Lovász and Schrijver [18]: Given ε > 0, the task is to compute a
rational-valued vector x that is ε-close to the set of feasible solutions and has objective value
ε-close to optimal. Assuming we are also given, as an additional input, a strictly feasible
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solution and a bound on the magnitude of the coordinates of an optimal solution, the weak
optimization problem may be solved in polynomial time using the ellipsoid algorithm [18].
Let us note however that without additional assumptions, even the complexity of the basic
existence problem of semidefinite feasibility is unknown. In fact, the problem is likely to be
computationally very hard [23]. More precisely, it is hard for the problem PosSLP, which is
the fundamental problem of deciding whether an integer given by a division free arithmetic
circuit is positive [2].

In this paper we consider real valued search problems, where existence of a solution
is guaranteed by topological existence theorems such as the Brouwer fixed point theorem
and the Borsuk-Ulam theorem. This means that the search problems are total, thereby
fundamentally differentiating them from general search problems where, as described above,
even the existence problem may be computationally hard. We are mainly interested in the
approximation problem: given ε > 0, the task is to compute a rational-valued vector x that
is ε-close to the set of solutions.

Recall that the Brouwer fixed point theorem states that every continuous function
f : Bn → Bn, where Bn is the unit n-ball, has a fixed point, i.e. there is x ∈ Bn such that
f(x) = x [6]. The Borsuk-Ulam theorem states that every continuous function f : Sn → Rn,
where Sn is the unit n-sphere in Rn+1, maps a pair of antipodal points of Sn to the same
point in Rn, i.e. there is x ∈ Sn such that f(x) = f(−x) [5]. The Brouwer fixed point
theorem is of course not restricted to apply to the domain Bn, but applies to any domain
that is homeomorphic to Bn. Similarly the Borsuk-Ulam theorem applies to any domain
homeomorphic to Sn by an antipode-preserving homeomorphism. It is well-known that the
Borsuk-Ulam theorem generalizes the Brouwer fixed point theorem, in the sense that the
Brouwer fixed point theorem is easy to prove using the Borsuk-Ulam theorem [22, 24].

The Brouwer fixed point theorem and the Borsuk-Ulam theorem naturally define corres-
ponding real valued search problems, and thereby also corresponding approximation problems.
In addition, the statements of the theorems naturally lead to another notion of approximation.
For the case of the Brouwer fixed point theorem we may look for an almost fixed point, i.e.
x ∈ Bn such that f(x) is ε-close to x, and for the case of the Borsuk-Ulam theorem we look
for a pair of antipodal points that almost map to the same point, i.e. x ∈ Sn such that f(x)
and f(−x) are ε-close. Following [12], we shall refer to this notion of approximation as weak
approximation and to make the distinction clear we refer to the former (and general) notion
of approximation as strong approximation. In the setting of weak approximation in relation
to the Borsuk-Ulam theorem we assume that f has domain Bn.

In their seminal work, Etessami and Yannakakis [12] introduced the complexity class
FIXP to capture the computational complexity of the real-valued search problems associated
with the Brouwer fixed point theorem, and proved that the problem of finding a Nash
equilibrium in a given 3-player game in strategic form is FIXP-complete. In order to have a
notion of completeness, the class FIXP is defined to be closed under reductions. The type of
reductions chosen by Etessami and Yannakakis, SL-reductions, consists of mapping between
sets of solutions by a composition of a projection reduction followed by individual affine
transformations applied to each coordinate.

Etessami and Yannakakis considered different ways to cast real valued search problems
as discrete search problems. In addition to the approximation problem, these are the partial
computation problem where the task is to compute a solution to a given number of bits of
precision and decision problems, where the task is to evaluate a sign condition of the set of
solutions given the promise that either all solutions satisfy the condition or none of them
do. Of these we shall only consider the approximation problem. The class FIXPa denotes
the class of discrete search problems corresponding to strong approximation of Brouwer
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fixed points and is defined to be closed under polynomial time reductions. Etessami and
Yannakakis also prove that the problem PosSLP reduces to the problem of approximating
a Nash equilibrium, thereby showing that FIXPa likely contains search problems that are
computationally very hard.

While the notion of SL-reductions is very restricted, it is sufficient for proving completeness
of the problem of finding a Nash equilibrium. Likewise, SL-reductions are sufficient for
showing that FIXP is robust with respect to the choice of domain for the Brouwer function.

Another important reason for using SL-reductions is that they immediately imply polyno-
mial time reductions between the corresponding decision and approximation problems (the
partial computation problem is more fragile and requires additional assumptions, cf. [12]). As
we are mainly interested in the approximation problem more expressive notions of reducibility
can be considered, while maintaining the property that reducibility implies polynomial
time reducibility between the corresponding approximation problems. A sufficient condition
for this is that the mapping of solutions is polynomially continuous and polynomial time
computable.

1.1 The Borsuk-Ulam Theorem
Deligkas, Fearnley, Melissourgos, and Spirakis [11] recently introduced the complexity class
BU to capture, in an analogy to FIXP, the computational complexity of the real-valued
search problems associated with the Borsuk-Ulam theorem.

The Borsuk-Ulam theorem has a number of equivalent statements that are also easy to
derive from each other. A function f defined on the unit sphere Sn is odd if f(x) = −f(−x)
for all x ∈ Sn. Note that the boundary ∂Bn of the unit n-ball Bn is identical to Sn−1. We
thus say that a function f defined on Bn is odd on ∂Bn if f is odd when restricted to Sn−1.
We present the simple proof of the known fact that the different formulations can be derived
from each other, for the purpose of discussing equivalence from a computational point of view.

▶ Theorem 1 (Borsuk-Ulam). The following statements hold:
(1) If f : Sn → Rn is continuous there exists x ∈ Sn such that f(x) = f(−x).
(2) If g : Sn → Rn is continuous and odd there exists x ∈ Sn such that g(x) = 0.
(3) If h : Bn → Rn is continuous and odd on ∂Bn there exists x ∈ Bn such that h(x) = 0.

Proof of equivalence. Given f we may define g(x) = f(x) − f(−x). Clearly g is odd
and we have g(x) = 0 if and only if f(x) = f(−x), which shows that (2) implies (1).
Conversely, given g we simply let f = g. If f(x) = f(−x), then since g is odd we have
f(x) = g(x) = −g(−x) = −f(−x) = −f(x) and hence g(x) = f(x) = 0, which therefore
shows that (1) implies (2).

We may view Sn as two hemispheres, each homeomorphic to Bn, which are glued
together along their equators. Let π : Sn → Bn be the orthogonal projection defined by
π(x1, . . . , xn+1) = (x1, . . . , xn). Then given h we may define g(x) = h(π(x)) for xn+1 ≥ 0
and g(x) = −h(−π(x)) for xn+1 ≤ 0. The assumption that h is odd on ∂Bn makes g a
well-defined continuous odd function. We have g(x) = 0 if and only if h(x) = 0, which shows

that (2) implies (3). Conversely, given g we define h by h(x) = g

(
x, (1 −∥x∥2

2)
1
2

)
. Then h

is continuous and odd on ∂Bn, since x ∈ ∂Bn if and only if ∥x∥2
2 = 1. Clearly if h(x) = 0

we may let y = (x, (1 −∥x∥2
2)

1
2 ) and have g(y) = 0. On the other hand, when g(y) = 0 we

may define x = (y1, . . . , yn) if yn+1 ≥ 0 and x = (−y1, . . . , −yn) if yn+1 < 0, and we have
h(x) = 0. Together this shows that (3) implies (2). ◀
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The class BU defined in [11] corresponds to the first formulation of the above theorem. We
may clearly consider the second formulation equivalent to the first also from a computational
point of view. In particular, when translating between formulations, the set of solutions is
unchanged. Note that this set of solutions has the property that all solutions come in pairs:
when x is a solution then −x is a solution as well. For the third formulation of the theorem
this property only holds for solutions on the boundary ∂Bn.

In contrast, while the mapping of solutions of the third formulation to the second (and
first) formulation given above is continuous this is not the case in the other direction. More
precisely, consider y ∈ Sn such that g(y) = 0. For a solution strictly contained in the upper
hemisphere, the orthogonal projection to the first n coordinates produces x ∈ Bn such that
h(x) = 0. For a solution y strictly contained in the lower hemisphere, the projection is
instead applied to the antipodal solution −y.

To clarify this issue from a computational point of view we introduce a new class BBU of
real valued search problems corresponding to the third formulation of Theorem 1, and it will
follow from definitions that BU ⊆ BBU. In the context of strong approximation however, the
corresponding classes of discrete search problems BUa and BBUa will be shown to coincide.
The idea is that given an approximation to y ∈ Sn, where g(y) = 0, that is sufficiently close
to the equator of Sn, there is no harm in incorrectly deciding to which hemisphere y belongs,
since solutions x ∈ ∂Bn for which h(x) = 0 also come in pairs.

For the class BU, the notion of SL-reductions is clearly too restrictive to allow a reasonable
comparison to FIXP. Closing the class BU by SL-reductions, the solutions would still come
in pairs, thereby imposing strong conditions on the set of solutions. On the other hand the
reductions should also not be too strong. In particular it would be desirable that FIXP would
still be closed under the chosen notion of reductions. This issue is not discussed in [11]. We
shall therefore propose a suitable notion of reductions for both BU and BBU.

1.2 Consensus Halving
The Consensus halving problem is a classical problem of fair division [21]. We are given
a set of n bounded and continuous measures µ1, . . . , µn defined on the interval A = [0, 1].
The goal is to partition the interval A into at most n + 1 intervals, i.e. by placing at most n

cuts, such that unions of these intervals form another partition A = A+ ∪ A− of A satisfying
µi(A+) = µi(A−) for every i. We may think of the intervals being assigned a label from the
set {+, −}, and A+ is precisely the union of the intervals labeled by +. Such a partition is also
known as a consensus halving. Using the Borsuk-Ulam theorem, Simmons and Su [21] proved
that a consensus halving using at most n cuts always exists. Simmons and Su represent a
division of A as a point x on the unit n-sphere Sn

1 with respect to the ℓ1-norm. The point x

is viewed as representing a division into precisely n + 1 intervals, where some intervals are
possibly empty. More precisely, the i-th interval has length |xi|, and intervals of length 0 may
simply be discarded. The intervals of positive length are then labeled according to sgn(xi).
Note that for any x, the antipode −x represents the division where the sets A+ and A−

are exchanged. This naturally leads to a formulation using the Borsuk-Ulam theorem [21].
Namely we may consider the function F : Sn

1 → Rn given by F (x)i = µi(A+), and note that
any x ∈ Sn

1 for which F (x) = F (−x) represent a consensus halving.
We are interesting in the simple setting of additive measures, where we have corresponding

density functions f1, . . . , fn such that µi(B) =
∫

B
fi(x) dx. To cast the consensus halving

problem as a real valued search problem we follow [11] and assume that the measures
µ1, . . . , µn are given by the distribution functions F1, . . . , Fn defined by Fi(x) =

∫ x

0 fi(t) dt.
An instance of the consensus halving problem is then given as a list of algebraic circuits
computing these distribution functions.
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1.3 Strong versus Weak Approximation
The difference between weak and strong approximation was studied in detail in the general
context of the Brouwer fixed point theorem by Etessami and Yannakakis. A central example
is the problem of finding a Nash equilibrium (NE). An important notion of approximation
of a NE is the notion of an ε-NE. Computing an ε-NE of a given strategic form game
Γ is polynomial time equivalent to computing a weak ε′-approximation to a fixed point
the Nash’s Brouwer function FΓ associated to Γ [12, Proposition 2.3]. In turn, computing
a weak ε′-approximation to a fixed point of FΓ polynomial time reduces to computing a
strong ε′′-approximation to a fixed point of FΓ [12, Proposition 2.2], since the function FΓ
is polynomially continuous and polynomial time computable. In general however an ε-NE
might be far from any actual NE, unless ε is inverse doubly exponentially small as a function
of the size of the game [12, Corollary 3.8].

For the problem of consensus halving we can illustrate the difference between weak and
strong approximation by a simple example. We shall refer to a weak ε-approximation of a
consensus halving as simply an ε-consensus halving. Consider a single agent whose measure
µ on the interval [0, 1] is given by the following density

f(x) =


(1 + ε)/ε if 0 ≤ x < ε/2
0 if ε/2 ≤ x < 1 − ε/2
(1 − ε)/ε if 1 − ε/2 ≤ x ≤ 1

We have µ([0, 1]) = 1 and since µ is a step function, the corresponding distribution function
F is piecewise linear. The unique consensus halving is obtained by placing a cut at the
point ε/2 − ε2/(2 + 2ε). Placing a cut at any point t ∈ [ε/2 − ε2/(1 + ε), 1 − ε/2] results
in an ε-consensus halving, i.e. such that

∣∣µ([0, t]) − µ([t, 1])
∣∣ ≤ ε. Thus an ε-consensus

halving might be very far from an actual consensus halving. Note also that placing a cut
at any point t ∈ [0, 3ε/2 − ε2/(2 + 2ε)] is a strong ε-approximation, which illustrates that a
strong approximation is not necessarily a weak approximation. On the other hand, a strong
(ε2/2)-approximation is also an ε-consensus halving.

The Brouwer fixed point theorem and the Borsuk-Ulam theorem can both be proved
starting from combinatorial analogues of the two theorems, namely from Sperner’s lemma
and Tucker’s lemma, respectively. The proofs of these two lemmas are constructive, but
using them to derive the Brouwer fixed point theorem and the Borsuk-Ulam theorem involve
a nonconstructive limit argument. Let us note in passing that while Sperner’s lemma, like
the Borsuk-Ulam theorem, has several different formulations, it is usually formulated as the
combinatorial analogue of the third formulation of Theorem 1.

Sperner’s and Tucker’s lemma give rise to total NP search problems. These turn out
to be complete for the complexity classes PPAD and PPA introduced in the seminal work
by Papadimitriou [19]. Papadimitriou proved PPAD-completeness of the problem given by
Sperner’s lemma as well as membership in PPA of the problem given by Tucker’s lemma,
while PPA-completeness of the latter problem was proved recently by Aisenberg, Bonet, and
Buss [1]. These results also imply that the classes PPAD and PPA correspond to the problems
of computing weak approximations to Brouwer fixed points and to Borsuk-Ulam points.

The computational complexity of the problems of computing an ε-NE and of computing
an ε-consensus halving was settled in breakthroughs of two lines of research. Computing an
ε-NE was shown to be PPAD-complete by Daskalakis, Goldberg and Papadimitriou [9] and
Cheng and Deng [8]. Computing an ε-consensus halving was shown to be PPA-complete by
Filos-Ratsikas and Goldberg [14, 15].
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1.4 Our Results

Our main result is that the problem of strong approximation of consensus halving is equivalent
to strong approximation of the Borsuk-Ulam theorem.

▶ Theorem 2. The strong approximation problem for CH is BUa-complete.

As described, we view the consensus halving problem as the real valued search problem with
its domain being either the unit sphere or the unit ball with respect to the ℓ1-norm. The
theorem is proved by reduction from the real valued search problem associated with the
Borsuk-Ulam theorem on the domain being the unit ball with respect to the ℓ∞-norm, i.e.
from a defining problem of the class BBU.

It is of general interest to study the relationship between search problems given by
the Borsuk-Ulam theorem on different domains from a computational point of view. The
reduction establishing the proof of Theorem 2 gives additional motivation for this. The
domains we consider are unit spheres Sn

p and unit balls Bn
p with respect to the ℓp-norm

for p ≥ 1 or p = ∞. It is of course straightforward to construct homeomorphisms between
unit spheres or unit balls with respect to different norms, and these could be used to define
reductions between the different problems. We would however like that the mapping of
solutions is simple, and in particular we would like to avoid divisions and root operations.
We prove that one may in fact reduce between domains using SL-reductions.

Deligkas et al. gave a reduction from the FIXP-complete problem of finding a Nash
equilibrium to CH. Combined with membership of CH in BU, this gives the inclusion
FIXP ⊆ BU. We observe that a proof due to Volovikov [24] of the Brouwer fixed point
theorem from the Borsuk-Ulam theorem may be adapted to give a simple proof of the
inclusion FIXP ⊆ BU.

For the class FIXP we prove two interesting structural properties that do not appear
to have been observed earlier. While FIXP is defined using SL-reductions, we show that
FIXP is closed under polynomial time reductions where the mapping of solutions is expressed
by general algebraic circuits. This in particular supports that one may reasonably define
the classes BU and BBU using less restrictive notions of reductions than SL-reductions.
We propose to have the mapping of solutions be computed by algebraic circuits involving
the operations of addition, multiplication by scalars, as well as maximization. This means
that the mapping of solutions is a piecewise linear function, and we refer to these as PL-
reductions. The second structural result for FIXP is a characterization of the class by very
simple Brouwer functions. These are defined on the unit-hypercube domain [0, 1]n and each
coordinate function is simply one of the operations {+, −, ∗, max, min}, modified to have the
output truncated to the interval [0, 1].

For the classes BU and BBU we prove that they are also closed under reductions where
the mapping of solutions is computed by general algebraic circuits, but with the additional
requirement that this function must be odd.

For the class FIXP, an interesting consequence of the proof that finding a Nash equilibrium
is complete, is that the class may be characterized by Brouwer functions computed by
algebraic circuits without the division operation. The proof also shows that the class FIXP
is unchanged even when allowing root operations as basic operations. We prove by a simple
transformation that the classes BU and BBU may be characterized using algebraic circuits
without the division operation. Furthermore, as a consequence of Theorem 2 the class
of strong approximation problems BUa = BBUa is unchanged even when allowing root
operations as basic operations.
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1.5 Comparison to previous work
As a precursor to the proof of PPA-completeness of computing an ε-consensus halving,
Filos-Ratsikas, Frederiksen, Goldberg and Zhang [13] proved the problem to be PPAD-hard.
Deligkas et al. [11] uses ideas from this proof together with additional new ideas to obtain
their proof of FIXP-hardness for computing an exact consensus halving.

While PPAD ⊆ PPA, the PPAD-hardness result of [13] is not implied by the recent
proofs of PPA-completeness. In particular, the work [13] proves PPAD-hardness even for
constant ε, while the work of [15] only proves PPA-hardness for ε being inverse polynomially
small. In the same way, while FIXP ⊆ BU, FIXP-hardness of computing an exact consensus
halving is not implied by our reduction, since Theorem 2 establishes BUa-hardness rather
than BU-hardness. Recently a considerably simpler proof of PPA-hardness for computing an
ε-consensus halving was given by Filos-Ratsikas, Hollender, Sotiraki and Zampetakis [16],
and our reduction is inspired by this work.

All reductions described above are similar in the sense that one or more evaluations of a
circuit are expressed in the consensus halving instance. The full interval A is partitioned
into subintervals, cuts within these subintervals encode values in various ways, and agents
implement the gates of the circuit by placing cuts. A main difference between the reductions
establishing PPAD-hardness and FIXP-hardness to those establishing PPA-hardness is that
in the former reductions, all cuts are constrained to be placed in distinct subintervals. The
reason this is possible is that the objective is to find a fixed point of the circuit, which means
that inputs and outputs may be identified.

In the setting of PPA and BBU the objective is to find a “zero” of the circuit. More
precisely, for the setting of PPA the objective is to find two adjacent points of a given Tucker
labeling that receive complementary labels, i.e. labels of different sign but same absolute
value. For the setting of BBU the objective is to find an actual zero point of the circuit. All
of the reductions establishing PPA-hardness of computing an ε-consensus halving have the
property that cuts encoding the input of the circuit are free cuts, meaning that they can
in principle be placed anywhere, and as a result also interfere with the evaluations of the
circuit. This is also the case for our reduction, and this invariably limits its applicability to
the approximation problem.

In the reduction of [16], the interval A is structured into different regions, a coordinate-
encoding region, a constant-creation region, several circuit-simulation regions, and finally
a feedback region. Our reduction also has a coordinate-encoding region and several circuit
simulation regions, but the functions performed by the constant-creation region and feedback
regions in [16] are in our reduction integrated into the individual circuit simulation regions
and done differently.

A novelty of the reduction of [16] compared to previous reductions is in how values are
encoded by cuts in subintervals. In previous reductions, values are encoded by what we
will call position encoding. In that encoding it is required that there is exactly one cut
in the subinterval, and the value encoded is determined by the distance between the cut
position and the left endpoint of the interval. In [16] values are encoded by what we will
call label encoding. Here there is no requirement on the number of cuts in the subinterval,
and the value encoded is simply the difference between the Lebesgue measures of the subsets
of the interval receiving label + and label −. We shall employ a hybrid approach where
the coordinate-encoding region uses label encoding while the circuit-simulation regions uses
position encoding. The first step performed in a circuit-simulation region is thus to copy
the input from the coordinate-encoding region. Switching to position encoding allows us in
particular to implement a multiplication gate, similarly to [11]. Here the multiplication xy is
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computed via the identity xy = ((x + y)2 − x2 − y2)/2. In [11] where values range over [0, 1],
the squaring operation may be implemented directly by agents. In our case values range
over the interval [−1, 1], and the squaring operation is decomposed further, having agents
compute it separately over the intervals [−1, 0] and [0, 1].

In analogy to [16] we have feedback agents that ensures that the circuit evaluates to 0
on the encoded input. The criteria that the agents check is however different, and for our
purposes it is crucial that we have the same sign pattern in the position encoding of the
output of the circuit as the copy of the input made by the circuit-simulation region. The
actual detection of an output of 0 is performed by using approximations of the Dirac delta
function. For computing the distribution functions of the feedback agents, we make use of
the fact that these are computed by algebraic circuits, which enable us to make a strong
approximation of the Dirac delta function via repeated squaring.

1.6 Organization of Paper
We introduce required terminology in Section 2. We refer to the full version of this paper for
our structural results for the classes FIXP, BU, and BBU as well as the simple proof of the
inclusion FIXP ⊆ BU. The proof of our main result, Theorem 2, is given in Section 3.

2 Preliminaries

2.1 Algebraic Circuits
Central to our work are algebraic circuits computing real valued functions. Let B be a finite
set of real valued functions, for example B = {+, −, ∗, ÷, max, min}. An algebraic circuit
C with n inputs and m outputs over the basis B is given by an acyclic graph G = (V, A)
as follows. The size of C is equal to the number of nodes of G, which are also referred to
as gates. The depth of C is equal to the length of the longest path of G. Every node of
indegree 0 is either an input gate labeled by a variable from the set {x1, . . . , xn} or a constant
gate labeled by a real valued constant. Every other node is labeled by an element of B called
the gate function. If a node v is labeled by a gate function g : A → R with A ⊂ Rk we require
that g has exactly k ingoing arcs with a linear order specifying the order of arguments to g.
The output of C is specified by an ordered list of m (not necessarily distinct) nodes of G.
The computation of C on a given input x ∈ Rn is defined in the natural way. Computation
may fail in case a gate of C labeled by a function g : A → R receives an input outside A, and
in this case the output of C is undefined. Otherwise we say that the output is well defined
and denote its value by C(x). If D ⊆ Rn we say that C computes a function f : D → Rm if
C(x) is well defined for all x ∈ D.

We shall in this paper just consider algebraic circuits where the basis consists only
of continuous functions. This means in particular that any algebraic circuits computes a
continous function as well. We shall also only consider consider constant gates labeled with
rational numbers. In this case we are also interested in the bitsize of the encoding of the
constants, which is the maximum bitsize of the numerator or denominator.

By using multiplication with the constant −1, the functions − and min may be simulated
using + and max, respectively. In this way we may convert a circuit over the full basis
{+, −, ∗, ÷, max, min} into an equivalent {+, ∗, ÷, max}-circuit. We shall also consider
circuits where use of the multiplication operator ∗ is restricted to having one of the arguments
being a constant gate. We denote this by the symbol ∗ζ and use it in particular for defining
{+, ∗ζ, max}-circuits.
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2.2 Search problems
A general search problem Π is defined by specifying to each input instance I a search space
(or domain) DI and a set Sol(I) ⊆ DI of solutions. We distinguish between discrete and
real-valued search problems. For discrete search problems we assume that DI ⊆ {0, 1}dI for
an integer dI depending on I. Analogously, for real-valued search problems we assume that
DI ⊆ RdI for an integer dI depending on I. One could likewise distinguish between search
problems with discrete input and real-valued input. We are however mostly interested in
problems where the input is discrete. That is, we assume that instances I are encoded as
strings over a given finite alphabet Σ (e.g. Σ = {0, 1}).

Many natural search problems are however defined with a continous search space. Not
all of these may adequately be recast as discrete search problems, but are more naturally
viewed as real-valued search problems. One approach for studying such problems would be
to switch to the Blum-Shub-Smale model of computation [4]. A BSS machine resembles a
Turing machine, but operates with real numbers instead of symbols from a finite alphabet. In
particular is the input real-valued, and input instances are therefore encoded as real-valued
vectors. All basic arithmetic operations and comparisons are unit-cost operations. One may
then define real-valued analogues of Turing machine based classes. In particular, Blum, Shub
and Smale defined and studied the real-valued analogues PR and NPR of P and NP. A BSS
machine may in general make use of real-valued machine constants. If a BSS machine only
uses rational valued machine constants we shall call it constant-free.

For the classes PR and NPR, if we simply restrict the input to be discrete and consider
only constant-free BSS machines this results in complexity classes, denoted by BP(P0

R) and
BP(NP0

R), that may directly be compared to Turing machine based complexity classes. Indeed,
it was proved by Allender, Bürgisser, Kjeldgaard-Pedersen and Miltersen [2, Proposition 1.1]
that BP(P0

R) = PPosSLP, where PosSLP is the problem of deciding whether an integer given
by a division free arithmetic circuit (i.e. a {+, −, ∗}-circuit using just the constant 1) is
positive. While the precise complexity of PosSLP is not known, Allender et al. proved that
it is contained in the counting hierarchy CH (not to be confused with the consensus halving
problem whose abbreviation coincides). The class BP(NP0

R) is equal to the class ∃R that
was defined by Schaefer and Štefankovič [20] to capture the complexity of the existential
theory of the reals ETR. It is known that NP ⊆ ∃R ⊆ PSPACE, where the latter inclusion
follows from the decision procedure for ETR due to Canny [7].

We define the class of ∃R search problems as the following subclass of all real valued
search problems. Instaces I are encoded as string over a given finite alphabet Σ and we
assume there is a polynomial time algorithm that given I computes dI , where DI ⊆ RdI . We
next assume that there are polynomial time constant free BSS machines that given I and
x ∈ RdI checks whether x ∈ DI , and given I and x ∈ DI checks whether x ∈ Sol(I). The
corresponding language in ∃R is then L = {I | Sol(I) ̸= ∅}.

2.3 Solving real-valued search problems
Let Π be a ∃R search problem. In analogy with the case of NP search problems, one could
consider the task of solving Π to be that of giving as output some member y of Sol(I) in
case Sol(I) ̸= ∅. In general each member of Sol(I) may be irrational valued which precludes
a Turing machine to compute a solution explicitly. This is in general also the case for a BSS
machine, even when allowing machine constants. Regardless, we shall restrict our attention
to Turing machines below.

ICALP 2021



24:10 Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem

On the other hand, when Sol(I) ̸= ∅ a solution is guaranteed to exist with coordinates
being algebraic numbers, since a member of Sol(I) may be defined by an existential first-order
formula over the reals with only rational-valued coefficients. This means that one could
instead compute an indirect description of the coordinates of a solution, for instance by
describing isolated roots of univariate polynomials. If such a description could be computed
in polynomial time in |I| we could consider that to be a polynomial time solution of Π.

Etessami and Yannakakis [12] suggest several other computational problems one may
alternatively consider in place of solving a search problems Π explicitly or exactly. Our
main interest is in the problem of approximation. We shall assume for simplicity that DI ⊆
[−1, 1]dI . Together with an instance I of Π we are now given as an auxiliary input a rational
number ε > 0, and the task is to compute x ∈ QdI such that there exist x∗ ∈ Sol(I) with
∥x∗ − x∥∞ ≤ ε. We shall turn this into a discrete search problem by encoding the coordinates
of x as binary strings. More precisely, to Π we shall associate a discrete search problem
Πa where instances are of the form (I, k), where I is an instance of Π and k is a positive
integer. We define ε = 2−k and let the domain of (I, k) be DI,k = {0, 1}dI (k+3), thereby
allowing the specification of a point x ∈ DI with coordinates of the form xi = ai2−k+1, where
ai ∈ {−2k+1, . . . , 2k+1}. The solution set Sol(I, k) is defined from Sol(I) by approximating
each coordinate. That is, we define Sol(I, k) = {x ∈ DI,k | ∃x∗ ∈ Sol(I) : ∥x∗ − x∥∞ ≤ ε}.
Note that if we had defined Sol(I, k) by instead truncating the coordinates of solutions
x∗ ∈ Sol(I) to k bits of precision, we would have obtained the possibly harder problem of
partial computation which was also considered by Etessami and Yannakakis [12].

We say that Π can be approximated in polynomial time if the approximation problem Πa

can be solved in time polynomial in |I| and k.

2.4 Reductions between search problems
Let Π and Γ be search problems. A many-one reduction from Π to Γ consists of a pair
of functions (f, g). The function f is called the instance mapping and the function g the
solution mapping. The instance mapping f maps any instance I of Π to an instance f(I)
of Γ and for any solution y ∈ Sol(f(I)) of Γ the solution mapping g maps the pair (I, y) to
a solution x = g(I, y) ∈ Sol(I) of Π. It is required that Sol(f(I)) ̸= ∅ whenever Sol(I) ̸= ∅.
We will only consider many-one reductions, and will refer to these simply as reductions.

If Π1 and Π2 are discrete search problems a reduction (f, g) between Π1 and Π2 is a
polynomial time reduction if both functions f and g are computable in polynomial time. If
Π1 and Π2 are real-valued search problems it is less obvious which notion of reduction is
most appropriate and we shall consider several different types of reductions. For all these we
assume that f is computable in polynomial time. The reduction (f, g) is a real polynomial
time reduction if g is computable in polynomial time by a constant free BSS machine. We
shall generally consider this notion of reduction too powerful. In particular the definition
does not guarantee that the function g is a continuous function in its second argument y.
For this reason we instead consider reductions defined by algebraic circuits over a given basis
B of real-valued basis functions.

We say that the reduction (f, g) is a polynomial time B-circuit reduction if there is a
function computable in polynomial time thats maps an instance I to a B-circuit CI in such a
way that CI computes a function CI : Df(I) → DI where g(I, y) = CI(y) for all y ∈ Sol(f(I)).
Note in particular that the size of CI and the bitsize of all constant gates are bounded by a
polynomial in |I|. If in addition there exists a constant h such that the depth of CI is bounded
by h for all I we say that the reduction (f, g) is a polynomial time constant depth B-circuit
reduction. Etessami and Yannakakis [12] defined the even weaker notion where the function
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f is a separable linear transformation. The reduction (f, g) is an SL-reduction if there is
a function π : {1, . . . , dI} → {1, . . . , df(I)} and rational constants ai, bi, for i = 1, . . . , dI ,
all computable in polynomial time from I, such that for all y ∈ Sol(f(I)) it holds that
xi = aiyπ(i) + bi, where x = g(I, y). Thus an SL-reduction is simply a projection reduction
together with an individual affine transformation of each coordinate of the solution.

Functions computed by algebraic circuits over the basis {+, ∗ζ, max} are piecewise linear.
We shall thus call polynomial time {+, ∗ζ, max}-circuit reductions for polynomial time
piecewise linear reductions, or simply PL-reductions.

It is easy to see that all notions of reductions defined above are transitive, i.e. if Π reduces
to Γ and Γ reduces to Λ, then Π reduces to Λ as well.

A desirable property of PL-reductions is that the solution mapping g is polynomially
continuous. By this we mean that for all rational ε > 0 there is a rational δ > 0 such that for
all points x and y of the domain, ∥x − y∥∞ ≤ δ implies

∥∥g(x) − g(y)
∥∥

∞ ≤ ε, and the bitsize
of δ is bounded by a polynomial in the bitsize of ε and of |I|.

2.5 Total real-valued search problems
Like in the case of TFNP where interesting classes of total NP search problems may be
defined in terms of existence theorems for finite structures [19, 17], we may define classes
of total real valued ∃R search problems based on existence theorems concerning domains
DI ⊆ Rn. Typical examples of such domains DI are spheres and balls. Suppose p is either a
real number p ≥ 1 or p = ∞. By Sn

p and Bn
p we denote the unit n-sphere and unit n-ball with

respect to the ℓp-norm defined as Sn
p = {x ∈ Rn+1 |∥x∥p = 1} and Bn

p = {x ∈ Rn |∥x∥p ≤ 1},
respectively. If p is not specified, we simply assume p = 2.

2.5.1 The Brouwer fixed point theorem and FIXP
We recall here the definition of the class FIXP by Etessami and Yannakis [12]. The class
FIXP is defined by starting with ∃R search problems given by the Brouwer fixed point
theorem, and afterwards closing the class with respect to SL-reductions. We shall refer to
these defining problems as basic FIXP problems.

▶ Definition 3. An ∃R search problem Π is a basic FIXP problem if every instance I

describes a nonempty compact convex domain DI and a continuous function FI : DI → DI ,
computed by an algebraic circuit CI , and these descriptions must be computable in polynomial
time. The solution set is Sol(I) = {x ∈ DI | FI(x) = x}.

The Brouwer fixed point theorem guarantees that every basic FIXP problem is a total ∃R
search problem. To define the class FIXP, Etessami and Yannakis restrict attention to a
concrete class of basic FIXP problems.

▶ Definition 4. The class FIXP consists of all total ∃R search problems that are SL-
reducible to a basic FIXP problem for which each domain DI is a convex polytope described
by a set of linear inequalities with rational coefficients and the function FI is defined by a
{+, −, ∗, ÷, max, min}-circuit CI .

The class FIXPa is the class of strong approximation problems corresponding to FIXP. More
precisely, FIXPa consist of all discrete search problems polynomial time reducible to the
problem Πa for Π ∈ FIXP.

The definition of FIXP is quite robust with respect to the choice of domain and set of
basis functions allowed by circuits in the basic FIXP problems. Etessami and Yannakis
proved that basic FIXP problems defined by {+, −, ∗, ÷, max, min, k

√ }-circuits are still in
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the class FIXP. Likewise, basic FIXP-problems where DI is a ball with rational-valued
center and diameter, or more generally an ellipsoid given by a rational center-point and a
positive-definite matrix with rational entries, are still in the class FIXP [12, Lemma 4.1].
The same argument allows for using as domain the ball Bd

p with respect to the ℓp norm for
any rational p ≥ 1 or p = ∞, with the coordinates possibly transformed by individual affine
functions.

2.5.2 The Borsuk-Ulam theorem, BU, and BBU
A new class BU of total ∃R search problems based on the Borsuk Ulam theorem was recently
introduced by Deligkas et al. [11]. The definition of BU is meant to capture the Borsuk-
Ulam theorem as stated in formulation (1) of Theorem 1. Following the definition of FIXP
by Etessami and Yannakakis, Deligkas et al. first consider a set of basic search problems
and then close the class under reductions. For defining BU, Deligkas et al. restrict their
attention to spheres with respect to the ℓ1-norm as domains and functions computed by
{+, −, ∗, max, min}-circuits. Compared to the definition of FIXP, division gates are thus
excluded. Having thus fixed the set of basic BU search problems what remains in order to
define BU is to settle on a notion of reductions. In their journal paper, Deligkas et al. [11]
suggest using reductions computable by general algebraic circuits including non-continuous
comparison gates, whereas in the preceeding conference paper [10] they did not precisely
define a choice of reductions.

We propose definining BU using a different notion of reduction below. We additionally
define a class BBU based on the Borsuk-Ulam theorem corresponding to formulation (3)
of Theorem 1. We start by defining basic BU and basic BBU problems. We shall restrict
our attention to domains being the unit n-sphere and unit n-ball, but with regards to any
ℓp-norm for p ≥ 1 or p = ∞.

▶ Definition 5.
1. An ∃R search problem Π is a basic ℓp-BU problem if for every instance I we have

DI = SdI
p and I describes a continuous function FI : DI → RdI −1, computed by an

algebraic circuit CI whose description is computable in polynomial time. The solution set
is Sol(I) = {x ∈ DI | FI(x) = FI(−x)}.

2. An ∃R search problem Π is a basic ℓp-BBU problem if for every instance I we have DI =
BdI

p and I describes a continuous function FI : DI → RdI , which is odd on the boundary
∂BdI

p . The function FI must be computed by an algebraic circuit CI whose description is
computable in polynomial time. The solution set is Sol(I) = {x ∈ DI | FI(x) = 0}.

The condition that the function FI is odd on ∂BdI
p for basic ℓp-BBU problems is a

semantic condition. However, typically the function FI would be defined from a basic ℓp-BU
problem by a transformation done in a similar way as in the proof of Theorem 1, and thereby
FI would satisfy the condition automatically.

To define the classes BU and BBU, we restrict our attention to domains with respect to
the ℓ∞-norm.

▶ Definition 6. The class BU (respectively, BBU) consists of all total ∃R search problems
that are PL-reducible to a basic ℓ∞-BU problem (respectively, basic ℓ∞-BBU problem) for
which the function FI is defined by a {+, −, ∗, ÷, max, min}-circuit CI .

While the definition of BU in [11] was using as domain the unit sphere with respect to
the ℓ1-norm and not allowing for division gates, we show in the full version of this paper that
these changes do not change the class. We propose choosing PL-reductions for closing the
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class under reductions. PL-reductions are sufficient for obtaining all of our results and they
are polynomially continuous. Another reason for this choice is that if we restrict the circuits
defining the classes FIXP and BU to also be piecewise linear, i.e. be {+, ∗ζ, max}-circuits,
we obtain the classes LinearFIXP and LinearBU, that when closed under polynomial-time
reductions are equal to PPAD and PPA, respectively [12, 11].

2.6 Consensus Halving
We give here a formal definition of consensus halving with additive measures as real valued
search problems.

▶ Definition 7. The problem CH is defined as follows. An instance I consists of a list
of {+, −, ∗, ÷, max, min}-circuits C1, . . . , Cn computing distribution functions F1, . . . , Fn

defined on the interval A = [0, 1]. The domain is DI = Sn
1 and Sol(I) constists of all x for

which∑
j:xj>0

Fi(tj) − Fi(tj−1) =
∑

j:xj<0
Fi(tj) − F (tj−1) , (1)

where t0 = 0 and tj =
∑

k≤j |xk|, for j = 1, . . . , n + 1.

Given {+, −, ∗, ÷, max, min}-circuits computing the distribution functions Fi, the func-
tion F computing the left-hand-side of equation (1) may now clearly be computed by
{+, −, ∗, ÷, max, min}-circuits as well. The result of Deligkas et al. that CH is contained in
BU follows.

The existence proof of a consensus halving by Simmons and Su as well the formulation
as an ∃R search problem by Deligkas et al. match the Borsuk-Ulam theorem as stated in
formulation (1) of Theorem 1.

3 Consensus Halving

In this section we present the proof of our main result Theorem 2. This result enables an
additional structural result about the class of strong approximation problems BUa = BBUa,
showing that the class is unchanged even when allowing root operations as basic operations.
We refer to the full version of this paper for details of this.

Suppose we are given a basic ℓ∞ − BBUa problem Πa with circuits over the basis
{+, −, ∗, max, min}. Let (I, k) denote an instance of Πa and put ε = 2−k. We may in
polynomial time compute a circuit C defining a function F : Bn

∞ → Rn that is odd on the
boundary Sn−1

∞ such that Sol(I) = {x ∈ Bn
∞ | F (x) = 0}. We now provide a reduction

from Πa to a CHa-problem. In the reduction we will make use of the “almost implies near”
paradigm as expressed in the following lemma. The simple proof is given in the full version
of this paper.

▶ Lemma 8. Let F : Bn
∞ → Rn be a continuous map. For any ε > 0 there is a δ > 0 such

that if
∥∥F (x)

∥∥
∞ ≤ δ then there is an x∗ ∈ Bn

∞ such that ∥x − x∗∥∞ ≤ ε and F (x∗) = 0.

The lemma says that for any ε > 0, if
∥∥F (x)

∥∥
∞ is sufficiently close to being zero, then x

is ε-close to a real zero of F . When F is computed by an algebraic circuit of polynomial
size, it follows by using tools from real algebraic complexity [3] that there exists some
fixed polynomial q with integer coefficients such that the above lemma holds true for some
δ ≥ ε2q(|I|) . We refer to the full version of this paper for details. The lemma then holds
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true for δ = ε2q(|I|) , and we may construct this number using a circuit of polynomial size
by repeatedly squaring the number ε exactly q(|I|) times. This number will be used by the
feedback agents in our CHa instance in order to ensure that any solution gives a solution to
the ℓ∞ − BBUa instance.

3.1 Overview of the Reduction

Overview. As in previous works, we describe a consensus halving instance on an interval
A = [0, M ], where M is bounded by a polynomial in |I|, rather than the interval [0, 1].
This instance may then be translated to an instance on the interval [0, 1] by simple scaling.
Like [16], in the leftmost end of the instance we place the Coordinate-Encoding region
consisting of n intervals. In a solution these intervals will encode a value x ∈ [−1, 1]n. A
circuit simulator C will simulate the circuit of F on this value x. The circuit simulators
will consist of a number of agents each implementing one gate of the circuit. However, such
a circuit simulator may fail in simulating F properly, so we will use a polynomial number
of circuit simulators C1, . . . , Cp(n). Each of these circuit simulators will output n values
[Cj(x)]1, . . . , [Cj(x)]n into intervals I1j , . . . , Inj immediately after the simulation. Finally,
we introduce the so-called feedback agents f1, . . . , fn. The agent fi will have some very thin
Dirac blocks centered in each of the intervals Iij where j ∈ [p(n)]. These agents will ensure
that if z is an exact solution to the CH instance, then the encoded value x satisfies that∥∥F (x)

∥∥
∞ is sufficiently small that we may conclude that x is ε-close to a zero x∗ of F .

Label Encoding. For a unit interval I we let I± denote the subsets of I assigned the
corresponding label. We define the label encoding of I to be a value in [−1, 1] given by the
formula vl(I) := µ(I+) − µ(I−). This makes sense as I± is measurable, because it is the
union of a finite number of intervals.

Coordinate-Encoding Region. The interval [0, n] is called the Coordinate-Encoding region.
For every i ∈ [n], the subinterval [i − 1, i] of the Coordinate-Encoding region encodes a value
xi := vl([i − 1, i]) via the label encoding.

Position Encoding. For an an interval I which contains only a single cut, thus dividing I

into two subintervals I = Ia ∪ Ib, where Ia is the subinterval at the left of the cut and Ib

the subinterval at the right of the cut, we define the position encoding of I to be the value
vp(I) := µ(Ia) − µ(Ib). We note that vp(I) = vl(I) if the labeling sequence is +/−, and
vp(I) = −vl(I) in the case the labeling sequence is −/+.

From Label to Position. Before a circuit simulator there is a sign detection interval Is

which detects the labeling sequence. Unless it contains a stray cut, this interval will encode
a sign s = ±1 (to be precise 1 if the label is + and −1 is the label is −). By placing agents
that flip the label as indicated in the figure below, we may now obtain position encodings
of the values sx1, . . . , sxn. These values will be read-in as inputs to the subsequent circuit
simulator.

· · ·x1 x2 xn

· · ·
s

· · ·
sx1 sx2
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Circuit Simulators. As mentioned above, each circuit simulator Cj will read-in the values
sjx1, . . . , sjxn and simulate the circuit computing F on this input. They then output their
values into n intervals immediately after the simulation.

Feedback Agents. By the discussion after the statement of Lemma 8 we may by repeated
squaring construct a circuit of polynomial size in |I| computing a tiny number δ > 0 such
that if

∥∥F (x)
∥∥

∞ ≤ δ then x is (ε/2)-close to a zero of F . Now fix i ∈ [n] and let cij denote
the centre of the feedback interval Iij that outputs the value [Cj(sj · x)]i. We then define
the ith feedback agent to have constant density 1/δ in the intervals [cij − δ/2, cij + δ/2].

The reason for having the feedback agents have these very narrow Dirac blocks is that if
Fi(x) > δ for some i, then in any of the “uncorrupted” circuits (i.e. circuits outputting the
correct values) all the density of the ith agent will contribute to the same label. Moreover,
we will show using the boundary condition of F that the contribution is to the same label in
all the uncorrupted circuit simulators. This will contradict that the feedback agents should
value I+ and I− equally. That is, the feedback agents ensure that

∥∥F (x)
∥∥

∞ ≤ δ if x is the
value encoded by an exact solution to the consensus halving instance we construct.

Stray Cuts. Any of the agents implementing one of the gates in a circuit simulator will
force a cut to be placed in an interval in that same circuit simulator. The only agents whose
cuts we have no control over are the n feedback agents. The expectation is that these agents
should make cuts in the Coordinate-Encoding region that flip the label. If they do not do
this we will call it a stray cut. If a circuit simulator contains a stray cut, we will say nothing
about its value.

▶ Observation 9. If it is not the case that every unit interval encoding a coordinate xi in
the Coordinate-Encoding region contains a cut that flips the label, then the encoded point
x ∈ Bn

∞ will lie on the boundary Sn
∞. With this in mind we may ensure that x ∈ Sn

∞ or
s1 = s2 = · · · = sp(n) = ±1 where the sign is the same as the label of the first interval. This
can be done by, if necessary, placing one single-block agent after the Coordinate-Encoding
region and each of the circuit simulators (if placing such an agent is necessary depends on,
respectively, the number of variables n and the size of the circuits).

3.2 Construction of Gates
In this section we describe how to construct Consensus-Halving agents implementing the
required gates {+, −, ∗, max, min} for building the circuit simulators. By placing single-block
agents between intervals, we may assume that the labeling sequence is the same in all the
intervals of a circuit simulator. First, we show that we may transform the given circuit such
that all gates only take values in the interval [−1, 1] on input from Bn

∞.

Transforming the Circuit. By propagating every gate to the top of the circuit we may
assume that the circuit is layered. Let C ′ denote the resulting circuit. By repeated squaring
we may maintain a gate with value 1/22d in the dth layer. Suppose g = α(g1, g2) is a gate
with inputs g1, g2 in layer d. We modify the gates as follows: if α ∈ {+, −, max, min} then
we multiply gi by 1/22d before applying α; if α = ∗, then we multiply the input by 1 before
applying α. Finally, we transform C ′ into the circuit C ′′ as follows: on input x, the circuit
C ′′ multiplies the input by 1/2 and then evaluates C ′ on input x/2. Inductively, one may
show that if g is a gate in layer d in the circuit C ′, then the corresponding gate in in the
circuit C ′′ has value g/22d . As all the gates are among {+, −, ∗, max, min}, this ensures that
all the gates in C ′′ take values in [−1, 1].
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Addition Gate [G+]. We may construct an addition gate using two agents. The first agent
has two unit input intervals that we assume contain one cut each. This then forces a cut in
the long output interval that has length 3. The second agent then truncates this value (a cut
is forced by the adjacent narrow rectangles).

Constant Gate [Gζ]. Let ζ ∈ [−1, 1] ∩ Q be a rational constant. The agent will have a
block of unit height in the sign interval and a block of width ζ/2 and height 2/ζ centered in
another interval.

Before proceeding with the remaining gates, we construct a general function gate, an
agent that implements any decreasing function.

Function Gate [Gh]. Let −1 ≤ a < b ≤ 1 and −1 ≤ c < d ≤ 1 be rational numbers and
consider a continuously differentiable map h : [a, b] → [c, d] satisfying h(a) = d and h(c) = c.
Let h denote the extension of h that is constant on [−1, a] and [b, 1]. We now construct an
agent with input interval I and output interval O computing this map, that is the agent
should force a cut in the output interval such that h(vp(I)) = vp(O).

The agent that we construct has a block of height 2/(d − c) in the sub-interval [(c +
1)/2, (d + 1)/2] of the output interval and density f(z) := −2h′(2z − 1)/(d − c) in the
sub-interval ((a + 1)/2, (b + 1)/2) of the input interval. We note that f is positive in this
interval as h is assumed to be a decreasing map, so it makes sense for the agent to have
density f. One may verify that the agent values the input interval and output interval equally.
We further add two narrow rectangles adjacent to the output interval. These will ensure that
if the cut in the input interval is placed at z ≤ (a + 1)/2 such that vp(I) ≤ a, then the cut in
the output interval must be placed at z∗ = (d + 1)/2, meaning that vp(O) = d. Similarly, if
vp(I) ≥ b then vp(O) = c.

0 1a+1
2

b+1
2

0 1c+1
2

d+1
2

z z∗

+ − + −

· · ·

Suppose cuts are placed in z in the input interval and in z∗ in the output interval. As the
agent must value the parts with positive and negative label equally, we get the equality

1 =
∫ z

(a+1)/2

−2h′(2t−1)
d−c dt +

(
z∗ − c+1

2
) 2

d−c
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From this we obtain that

d − c = −
∫ 2z−1

a

h′(u) du + 2z∗ − c − 1 = −h(2z − 1) + d + 2z∗ − c − 1

where we use that h(a) = d by assumption. We conclude that h(2z − 1) = 2z∗ − 1, that is
we obtain the equality h(vp(I)) = vp(O).

Using this general function gate, we may now build up the remaining gates required by
the circuit.

Multiplication By -1 Gate [G−(·)]. In order to realise this gate, we consider the function
h : [−1, 1] → [−1, 1] given by x 7→ −x. The agent’s density function in the input interval is
then given by f(z) = 1.

0 1 0 1
z z∗

+ −
· · ·

+ −

Subtraction Gate [G−]. We may build this using the gates G−(·) and G+.

Multiplication by ζ ∈ [−1, 1] [G·ζ]. If ζ < 0 we mahy construct G·ζ as a function gate
using the function h : [−1, 1] → [ζ, −ζ]. If ζ > 0 we construct using −ζ and a minus gate, i.e.
G·ζ = −G·(−ζ).

Maximum Gate [Gmax]. First we show how to construct a gate computing the absolute
value of the input. We may construct gates G1, G2 such that G1(x) = − max(x, 0) and
G2(x) = max(−x, 0) as function gates by using the functions h1 : [0, 1] → [−1, 0] given
by x 7→ −x and h2 : [−1, 0] → [0, 1] given by x 7→ −x. Now, we may constrcuct the
absolute value gate as G|·| = −G1 + G2. We may now construct Gmax by using the formula
max(x, y) = (x + y + |x − y|)/2.

Minimum Gate [Gmin]. We may build this using min(x, y) = x + y − max(x, y).

Multiplication Gate [G∗]. We start off by constructing a gate squaring the input. First we
construct G1 and G2 as function gates with respect to h1 : [−1, 0] → [0, 1] given by x 7→ x2

and h2 : [0, 1] → [−1, 0] given by x 7→ −x2. Then we may construct the squaring gate as
G(·)2 = G1 − G2. Now we may use the previously constructed gates to make a multiplication
gate via the identity xy = ((x + y)2 − x2 − y2)/2.

3.3 Describing valuation functions as circuits
In the description above, we described the valuations of the agents by providing formulas for
their densities. However, an instance of CH actually consists of a list of algebraic circuits
computing the distribution functions of the agents. In order to construct gates, it is sufficient
for agents to have densities that are piece-wise polynomial. Therefore, consider an agent
with polynomial densities fi in the intervals [ai, bi) for i = 1, . . . , s, and let Fi denote the
indefinite integral of fi. We note that Fi is a polynomial so it may be computed by an
algebraic circuit. Now we claim that the distribution function of this agent may be computed
by an algebraic circuit via the formula F (x) =

∑s
i=1[Fi(max(ai, min(x, bi))) − Fi(ai)].

ICALP 2021



24:18 Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem

This is the case, because the summands will be equal to Fi(ai) − Fi(ai) = 0 if x < ai, to
Fi(x) − Fi(a) if ai ≤ x ≤ bi and to Fi(b) − Fi(a) if x > bi, meaning that this formula does
indeed calculate the valuation of the agent in the interval [0, x].

3.4 Reduction and Correctness

Recall that we are given an instance (F, ε) of the BBUa problem and that we have to construct
an instance of the CHa problem. The reduction now outputs an instance of the CHa problem
where the consensus halving instance is constructed as above with p(n) = 2n + 1 circuit
simulators and the approximation parameter is given by ε′ = ε/(4n). Let z denote a solution
to this CHa instance. By definition, there exists an exact solution z∗ to the consensus-halving
problem such that ∥z − z∗∥∞ ≤ ε′.

Let x and x∗ denote the values encoded by respectively z and z∗ in the Coordinate-
Encoding region. Suppose, generally, we are given an interval I with a number of cut points
t1, . . . , ts. Moving a cut point by a distance ≤ ε′ we create a new interval I ′. This changes
the label encoding by at most 2ε′, that is |vl(I) − vl(I ′)| ≤ 2ε′. Succesively, if we move all
the cuts by a distance ≤ ε′, then we get an interval I∗ such that |vl(I) − vl(I∗)| ≤ 2sε′. As
∥z − z∗∥∞ ≤ ε′ and any of the subintervals in the Coordinate-encoding region can contain
at most n cuts, we conclude that ∥x − x∗∥∞ ≤ 2nε′ = 2n(ε/(4n)) = ε/2. In order to show
that x is ε-close to a zero of F , it now suffices by the triangle inequality to show that x∗ is
(ε/2)-close to a zero of F . This will follow from the two following lemmas.

▶ Lemma 10. If there are no stray cuts in the exact solution z∗, then the associated value
x∗ encoded in the Coordinate-encoding region satisfies F (x∗) = 0.

Proof. We recall that if the solution z∗ contain no stray cuts, then the signs of all the
circuit simulators are equal s1 = · · · = s2n+1 = s where s = ±1. Furthermore, all the circuit
simulators will output the same values F1(sx∗), . . . , Fn(sx∗) into the feedback intervals. Thus,
there can be no cancellation, so in order for the feedback agents to value the positive and
negative part equally it must be the case that F (sx∗) = 0. ◀

▶ Lemma 11. If there is a stray cut in the exact solution z∗, then the associated value x∗

encoded in the Encoding-region satisfies the inequality
∥∥F (x∗)

∥∥
∞ ≤ δ.

Proof. Suppose toward contradiction that |F (x∗)i| > δ for some i. Without loss of generality
we assume that F (x∗)i > δ. As there is a stray cut, the Coordinate-Encoding region can
contain at most n − 1 cuts. Thus, at least one of the coordinates x∗

i must be ±1 showing
that x∗ ∈ Sn−1. From this and the boundary condition we conclude that F (x∗) = −F (−x∗).
Furthermore, there is at most n stray cuts, so at most n circuit simulators can become
corrupted. This means that n + 1 circuit simulators work correctly. Now suppose that the
circuit simulator Cj is uncorrupted. If the label is sj = +1, then Cj will output F (x∗) into
the feedback region and the labeling sequence will be +/−; if the label is sj = −1 then Cj

will output F (−x∗) = −F (x∗) into the feedback region and the labeling sequence will be
−/+. This is indicated below:

+ −
− +

F (x)i > δ

+ −

F (−x)i = −F (x)i < −δ
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From this we conclude that the n + 1 uncorrupted circuit simulators altogether contribute
(n + 1)δ to the part with negative label. However, the n corrupted circuit simulators can
contribute at most nδ to the part with positive label. This implies that fi cannot value
the negative and positive part equally. This contradicts the assumption that z∗ is an exact
consensus-halving. We conclude that

∥∥F (x∗)
∥∥

∞ ≤ δ. ◀

By the two lemmas above, it follows that the value x∗ encoded by the exact consensus-
halving z∗ satisfies the inequality

∥∥F (x∗)
∥∥

∞ ≤ δ. By choice of δ, this implies that there
exists some x∗∗ such that ∥x∗ − x∗∗∥∞ ≤ ε/2 and F (x∗∗) = 0. From the discussion before
the two lemmas, it follows that x is ε-close to a zero of F and is thus a solution to the BBUa

instance (F, ε).

Mapping back a Solution. What remains is to show that we may recover a solution x

to the BBUa instance from the solution z to the CHa instance. Recall that in a solution
z = (z1, . . . , zN ) to the consensus-halving problem |zi| and sgn(zi) represents the length and
label of the ith interval. For i ≤ n and j ≤ n + 1 we let tj =

∑j−1
k=1 |zk| and define

x+
ij = max(0, min(tj−1 + zj , i) − max(tj−1, i − 1)) and

x−
ij = max(0, min(tj−1 − zj , i) − max(tj−1, i − 1))

These numbers may be computed efficiently by a circuit over the basis {+, −, max, min}. We
notice that if zj > 0 then x−

ij = 0 (and if zj < 0 then x+
ij = 0). Furthermore, by checking a

couple of cases, one finds that if zj > 0 (respectively zj < 0) then x+
ij (respectively x−

ij) is the
length of the jth interval that is contained in [i − 1, i]. As the coordinate-encoding region
can contain at most n cuts (corresponding to at most n + 1 intervals), we deduce from the
above that the values encoded can be computed as xi =

∑n+1
j=1 x+

ij − x−
ij , for every i ≤ n. If

there is a stray cut then both x and −x are valid solutions by the boundary condition of F .
If there is no stray cut, then s1 = s2 = · · · = sp(n) = s = sgn(z1) by Observation 9 and in
this case we may recover a solution as sx.
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Abstract
We consider the fundamental problem of communicating an estimate of a real number x ∈ [0, 1]
using a single bit. A sender that knows x chooses a value X ∈ {0, 1} to transmit. In turn, a receiver
estimates x based on the value of X. The goal is to minimize the cost, defined as the worst-case
(over the choice of x) expected squared error.

We first overview common biased and unbiased estimation approaches and prove their optimality
when no shared randomness is allowed. We then show how a small amount of shared randomness,
which can be as low as a single bit, reduces the cost in both cases. Specifically, we derive lower
bounds on the cost attainable by any algorithm with unrestricted use of shared randomness and
propose optimal and near-optimal solutions that use a small number of shared random bits. Finally,
we discuss open problems and future directions.
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1 Introduction

We consider the fundamental problem of communicating an estimate of a real number x ∈ [0, 1]
using a single bit. A sender, that we call Buffy, knows x, and chooses a value X ∈ {0, 1} to
transmit. In turn, a receiver, that we call Angel, estimates x based on the value of X.

This problem naturally appears in distributed computations where multiple machines
perform parallel tasks and transmit their results/state to an aggregator. If the bandwidth to
the aggregator is limited, the machines must compress the data before sending it. Bandwidth
optimization is fundamental in many domains, including network measurements [3, 11] and
telemetry [5], load balancing [16, 22], and satellite communication [25]. We are especially
motivated by recent work addressing the communication bottleneck in distributed and
federated machine learning [13]. There, clients compute a local gradient and send it to a
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parameter server that computes the global gradient and updates the model [15]. For the
typical large-scale federated learning problems over edge devices (e.g., mobile phones), the
devices may only be able to communicate a small number of bits per gradient coordinate.
In fact, solutions such as 1-Bit SGD [20] and signSGD [6], have recently been studied as
appealing low-communication solutions that use a single bit per coordinate. Another common
communication-efficient solution is TernGrad [23] that quantizes each coordinate to {−1, 0, 1}
instead of {−1, 1} as commonly done by the 1-bit algorithms.

It is often desirable that each estimate be an unbiased random variable with a mean equal
to corresponding x. For example, this provides that the estimates’ average is an unbiased
estimate of the average value. Alternatively, there are cases where it is beneficial to allow
biased estimates if it reduces the error for that setting (e.g., see EF-signSGD [14]).

In this work, we consider several variations of the above problem. For algorithms that
provide unbiased estimates for every value x, we use the worst-case (over all values of x) vari-
ance as the cost function to be minimized. For biased estimates, we consider the worst-case
expected squared error as the cost, as it coincides with variance for unbiased algorithms. That
is, the worst-case is over the value of x, and the expectation of the cost is over the random
choices used by the algorithm. Note that any lower bound for biased algorithms with these
costs also applies to unbiased algorithms, and an upper bound for unbiased algorithms also ap-
plies to biased algorithms. We are interested in both lower and upper bounds in our work.

Beyond unbiased and biased variations, we also consider settings where Buffy and Angel
have access to shared randomness. Shared randomness (often also referred to as public or
common randomness) has been intensively studied in the field of communication complexity
(e.g., see [17]). In our context, such shared randomness can arise naturally by having Buffy
and Angel share a common seed for a pseudo-random number generator, for example. Here,
we model the shared randomness as “perfectly random,” leaving issues related to pseudo-
randomness aside. Nevertheless, we consider solutions using limited amounts of shared
randomness, including the case of just one bit of shared randomness. Such solutions may be
easier and cheaper to implement, including with pseudo-random generators.

We remark that there are known approaches to this problem. These include (determin-
istic) rounding, randomized rounding (also called stochastic quantization), and subtractive
dithering [18]. For a detailed survey of such techniques, we refer the reader to [9]. We discuss
these methods and compare our results with them in context throughout the paper.

Our contribution. In this paper, we study how to minimize the cost (i.e., the worst-case
variance or worst-case expected squared error) for various settings. First, we consider the set-
ting where there is no shared randomness. In this setting, we show that randomized rounding
is the optimal unbiased algorithm and that deterministic rounding is optimal when biased
estimations are allowed. While these algorithms are widely used in practice, the optimality
proofs under these cost models have not appeared elsewhere to the best of our knowledge.

Next, we explore how to reduce the cost if Buffy and Angel have access to shared
randomness. We prove upper and lower bounds on the attainable variance for unbiased
algorithms and expected squared error for biased ones. For our upper bounds, we assume
that Buffy and Angel have access to ℓ shared random bits, for some ℓ ∈ N. We also
consider the limiting algorithms where ℓ is not restricted. Our work addresses several
extensions for cases where unbounded private randomness is allowed and when it is not.
Finally, we consider the special case where x is known to be in {0, 1/2, 1}, a setting that
is of high interest, for example, for the sign-based federated learning algorithms (e.g., [6,
14]) and particularly for TernGrad [23] that uses 3-level quantization. We provide an
improved algorithm and a matching lower bound for this setting, thus proving its optimality.
A summary of our results appears in Table 1.
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Table 1 A summary of our results.

Scenario Unbiased (Variance) Biased (Exp. Squared Error)

No shared randomness
1/4 = 0.25
(randomized rounding)
Optimal (Section 3.1)

1/16 = 0.0625
(deterministic rounding)
Optimal (Section 3.2)

ℓ-bit shared randomness
Unbounded private randomness

ℓ = 1 : 1
8 = 0.125

ℓ = 8 : 1
12 + 1

393216 ≈ 0.08334
In general: 1/6 · (1/2 + 4−ℓ)
(Section 5)

Open

ℓ-bit shared randomness
No private randomness

Impossible
(Section 6)

ℓ = 1 : 1
20 = 0.05

ℓ = 8 :≈ 0.04599
(Section 6.2.4)

Lower Bounds for x ∈ [0, 1]
Unbounded shared randomness

1/16 = 0.0625
(Section 4.2)

≈ 0.0459
(Section 4.1.2)

x ∈ {0, 1/2, 1}
1-bit shared randomness
No private randomness

1/16 = 0.0625
(Section 5)

3/4 − 1/
√

2 ≈ 0.04289
(Section 6.1)

Lower Bounds for x ∈ {0, 1/2, 1}
Unbounded shared randomness

1/16 = 0.0625
(Section 4.2)

3/4 − 1/
√

2 ≈ 0.04289
(Section 4)

2 Preliminaries

We start with some notation. We use [n] to denote {0, 1, . . . , n − 1}, and ∆(S) to denote all
possible probability distributions over the set S. (An element of ∆(S) will be expressed as a
density function when S is uncountable, e.g., if S = [0, 1].) We also use, for a binary predicate
B, 1B as an indicator such that 1B = 1 if B is true and 0 otherwise. Lastly, ϕ = (1 +

√
5)/2

denotes the Golden Ratio, which naturally comes up in some of our results.

Problem statement. Given a real number x ∈ [0, 1], Buffy compresses it to a single bit value
X ∈ {0, 1} that is sent to Angel, who derives an estimate x̂. We also consider the special case
where x is known to be in {0, 1/2, 1}. Our objective is to minimize the cost that is defined as
the worst-case expected squared error, i.e., maxx∈[0,1] E[(x̂ − x)2]. Note that the worst-case is
taken over the value of x and the expectation is over the randomness of the algorithm. In the
unbiased setting, we additionally require E[x̂] = x, in which case the cost becomes Var[x̂], i.e.,
the estimation variance. In some cases, we allow the parties to use ℓ bits of shared randomness.
That is, we assume that they have access to a random value h ∈ [2ℓ], known to both Buffy
and Angel. When applicable, we use r ∈ [0, 1] to denote the private randomness of Buffy.

3 Algorithms without Shared Randomness

We recap the performance of two standard algorithms – randomized and deterministic
rounding. Interestingly, we show that when no shared randomness is allowed, randomized
rounding is an optimal unbiased algorithm, and deterministic rounding is an optimal biased
algorithm.

3.1 Randomized Rounding
In randomized rounding, Buffy uses private randomness to generate X ∼ Bernoulli(x)
which is sent using a single bit. In turn, Angel estimates x̂ = X. Clearly, we have that
E[x̂] = E[X] = x, and thus the algorithm is unbiased. The variance of the algorithm
is Var[x̂] = Var[X] = x(1 − x), and thus the worst-case is reached at x = 1/2, which
gives a cost of 1/4. The following theorem, whose proof is deferred to full version [4],
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shows that randomized rounding is optimal, in the sense that no unbiased algorithm
without shared randomness can have a worst-case variance lower than 1/4. Intuitively,
requiring the estimate to be unbiased forces the algorithm to send 1 with a probab-
ility that is linear in x, maximizing its cost for x = 1/2. The proof also establishes
the intuitive idea that it is not possible to benefit from randomness used solely by Angel.

▶ Theorem 1. Any unbiased algorithm without shared randomness must have a worst-case
variance of at least 1/4.

3.2 Deterministic Rounding
With deterministic rounding, Buffy sends X = 1 when x ≥ 1/2. Angel then estimates
x̂ = X/2 + 1/4. Deterministic rounding has an (absolute) error of at most 1/4, which is
achieved for x ∈ {0, 1/2, 1}. Therefore, its cost is 1/16. The next theorem, whose proof
appears in Supplement 9.1, shows that deterministic rounding is optimal, as no algorithm
that does not use shared randomness can have a lower cost (even with unrestricted private
randomness). We show that any such algorithm must have an expected squared error of at
least 1/16 on at least one of {0, 1/2, 1}.

▶ Theorem 2. Any algorithm without shared randomness must have a worst-case expected
squared error of at least 1/16.

4 Lower Bounds

We next explore lower bounds for algorithms with shared randomness. We use Yao’s minimax
principle [24] to prove a lower bound on the cost of any biased shared randomness protocol.
Then, we show a stronger lower bound for unbiased algorithms using a different approach.

4.1 Lower Bound for Biased Algorithms
We place Yao’s general formulation in the context of our specific problem.

▶ Theorem 3 ([24]). Consider our estimation problem over the inputs x ∈ [0, 1], and let A
be the set of all possible deterministic algorithms. For a (deterministic) algorithm a ∈ A and
input x ∈ [0, 1], let the function c(a, x) = (a(x) − x)2 be its squared error.
Then for any randomized algorithm A and input distribution q ∈ ∆([0, 1]) such that X ∼ q:

max
x∈[0,1]

E [c(A, x)] ≥ min
a∈A

E [c(a, X)] .

That is, the expected squared error (over the choice of x from distribution q) of the best
deterministic algorithm (for q) lower bounds the expected squared error of any randomized
(potentially biased) algorithm A for the worst-case x (i.e., its cost). Further, the inequality
holds as an equality for the optimal distribution q and algorithm A, i.e.,

min
A

max
x∈[0,1]

E [c(A, x)] = max
q

min
a∈A

E [c(a, X)] .

We proceed by selecting distributions q to lower bound mina∈A E [c(a, X)]. Notice
that a deterministic algorithm can be defined using two values v0, v1 ∈ [0, 1], such that if
|x−v0| ≤ |x−v1| then Buffy sends 0 and Angel estimates x as v0. Similarly, if |x−v0| > |x−v1|
then Buffy sends 1 and Angel estimates x as v1.1 In general, the above framework asserts
that the cost, for the worst-case input, of any randomized algorithm is

1 Other deterministic algorithms, e.g., that send 0 despite having |x − v0| > |x − v1|, can trivially be
improved by an algorithm with the above form.
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max
q∈∆([0,1])

min
v0,v1∈[0,1]

∫ 1

0
min

{
(x − v0)2, (x − v1)2}

q(x)dx . (1)

Our framework lower bounds the cost for any (biased or unbiased) algorithm that may use
any amount of (shared or private) randomness. We now consider distributions q to lower
bound the cost and later discuss the limitations of this approach.

4.1.1 The {0, 1/2, 1} case
First, consider a discrete probability distribution q over {0, 1/2, 1}, and assume without loss
of generality that q(0) ≤ q(1). Any deterministic algorithm cannot estimate all values exactly,
and it must map at least two of the points to a single value, thus allowing us to lower bound
its cost. In Supplement 9.2, we prove the following.

▶ Lemma 4. Any deterministic algorithm must incur a cost of at least q(0)·q(1/2)
4(q(0)+q(1/2)) .

For q(0) = q(1) = (2 −
√

2)/2 and q(1/2) =
√

2 − 1, this lemma yields a lower bound of
3/4 − 1/

√
2 ≈ 0.04289. In Section 6.1, we show that this is an optimal lower bound when x

is known to be in {0, 1/2, 1}, by giving an algorithm with a matching cost.

4.1.2 The [0, 1] case
In the general case, where x can take on any value in [0, 1], we can get a tighter bound by
looking at mixed distributions. Specifically, for parameters a, w ∈ [0, 1/2], we consider the
distribution where:

q(x) =


0 with probability w

1 with probability w

uniform on [a, 1 − a] otherwise
.

Directly analyzing the optimal deterministic algorithm for this distribution proves complex.
Instead, we first hypothesize that there exists an optimal deterministic algorithm for which
either (1) v1 = 1 − v0 or (2) v1 = 1. We emphasize that the lower bound holds even if
the hypothesis is false. We then analyze what values of a, w maximize the cost of the best
deterministic algorithm with the above form. Finally, we verify that the lower bound for the
resulting distribution (with the specific a, w values) holds for all deterministic algorithms.

For case (1), we can express the cost as 2 ·
(

wv2
0 + 1/2−w

1/2−a

∫ 1/2
a

(x − v0)2dx
)

. Similarly, for

case (2), we get a cost of wv2
0 + 1−2w

1−2a ·
(∫ min{1−a,(v0+1)/2}

a
(x − v0)2dx +

∫ 1−a

(v0+1)/2(x − 1)2dx
)

.
Therefore, the cost of the optimal algorithm from the above family is given as:

min

{
2 ·

(
wv2

0 + 1/2 − w

1/2 − a

∫ 1/2

a

(x − v0)2dx

)
,

wv2
0 + 1 − 2w

1 − 2a
·
(∫ min{1−a,(v0+1)/2}

a

(x − v0)2dx +
∫ 1−a

(v0+1)/2
(x − 1)2dx

) }
.

This cost is maximized for a = −2w2+w−2
√

w(1−w)+1
4w2−6w+2 , where the value of w satisfies

32w3 − 56w2 +
√

w(1 − w) · (8w4 − 24w3 + 38w2 − 8w − 7) + 24w = 0.
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The resulting bound is slightly larger than 0.0459. Next, we verify that for these a, w values,
no deterministic algorithm can achieve a lower cost. Specifically, instead of using q(x) as
described above, we generate a finite discrete distribution. For a parameter n ∈ N, we define:

qn(x) =


⌊n·w⌋

n if x ∈ {0, 1}
1
n if x ∈

{
a + 1−2a

2(n−2⌊n·w⌋)) + i · 1−2a
n−2⌊n·w⌋ | i ∈ [n − 2 ⌊n · w⌋]

}
0 otherwise

.

Note that limn→∞ qn(x) = q(x). We then find the optimal deterministic solution for this distri-
bution by using a deterministic k-means clustering algorithm (for k = 2), that is guaranteed to
converge, e.g., using [10]. The code that we used to obtain this result is available at [2]. The op-
timal deterministic algorithm for qn(x) tends to have either v1 = 1−v0 or v1 = 1 as hypothes-
ized. Finally, for n = 106 we get a cost higher than 0.0459 which we use as a lower bound.

We do not believe that this bound is tight. Nonetheless, as we show in Section 6.2.4, our
bound is within 0.2% of the optimum.

4.2 Lower Bound for Unbiased Algorithms - Beyond MiniMax
We now consider lower bounds for unbiased algorithms. Utilizing Yao’s lemma does not
appear to provide means to obtain sharper bounds when requiring the algorithm to be
unbiased. We consider the case where x ∈ {0, 1/2, 1} and directly prove that any unbiased
algorithm must have a worst-case variance of at least 1/16. This lower bound then also holds
for x ∈ [0, 1], although an improved bound of π2/64 − 1/12 ≈ 0.07 for this case, based on an
average-case analysis, is presented in [7].

Assume that we have h ∈ [0, 1]. Buffy sends X(x, h) to Angel, which determines
an estimate x̂(X(x, h), h). For x′, x′′ ∈ {0, 1/2, 1}, let px′,x′′ = Pr[X(x′, h) = X(x′′, h)]
denote the probability (with respect to h) that the same bit is sent for x′, x′′. Since we
send a single bit, we have that p0,1/2 + p1/2,1 + p0,1 ≥ 1. For all x′, x′′ ∈ {0, 1/2, 1},
we define Hx′,x′′ = {h ∈ [0, 1] : X(x′, h) = X(x′′, h)} to be the set of shared-randomness
values that would lead Buffy to send the same bit for both x′ and x′′. Next, denote by
Gx′,x′′ = E[x̂|h ∈ Hx′,x′′ , x ∈ {x′, x′′}] the expected estimate value, conditioned on the shared
randomness being in Hx′,x′′ . We have that:

Var[x̂|x = 0] ≥ p0,1/2 · (G0,1/2 − 0)2 + p0,1 · (G0,1 − 0)2 + p1/2,1 · (E[x̂|h ∈ H1/2,1, x = 0] − 0)2

Var[x̂|x = 1/2] ≥ p0,1/2 · (G0,1/2 − 1/2)2 + p0,1 · (E[x̂|h ∈ H0,1, x = 1/2] − 1/2)2

+ p1/2,1 · (G1/2,1 − 1/2)2

Var[x̂|x = 1] ≥ p0,1/2 · (E[x̂|h ∈ H0,1/2, x = 1] − 1)2 + p0,1 · (G0,1 − 1)2 + p1/2,1 · (G1/2,1 − 1)2.

To proceed, we require the algorithm to be unbiased:

G0,1/2p0,1/2 + G0,1p0,1 + E[x̂|h ∈ H1/2,1, x = 0]p1/2,1 = 0
G0,1/2p0,1/2 + E[x̂|h ∈ H0,1, x = 1/2]p0,1 + G1/2,1p1/2,1 = 1/2
E[x̂|h ∈ H0,1/2, x = 1]p0,1/2 + G0,1p0,1 + G1/2,1p1/2,1 = 1.

This allows us to express the expectations {E[x̂|h ∈ Hx′,x′′ , x = x′′′]|x′, x′′, x′′′ ∈ {0, 1/2, 1}}
using px′,x′′ , Gx′,x′′ and obtain a set of three inequalities with six variables. Our full analysis,
given in the full version [4], proceeds with a case analysis based on the value of p0,1, the
probability that the sender would send the same bit for 0, 1. We show that there exists an
optimal algorithm in which p0,1/2 + p1/2,1 + p0,1 = 1, p0,1/2 = p1/2,1, and G1/2,1 = 1 − G0,1/2.
This reduces the number of variables to three, allowing us to optimize the expression and
show a lower bound of 1/16 on any unbiased algorithm.
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5 Algorithms with Unbounded Private Randomness

Here, we consider the case where the shared randomness is limited to ℓ bits, i.e., h ∈ [2ℓ],
but Buffy may use unbounded private randomness r ∼ U [0, 1] (that is independent of h).

We present the following algorithm: Buffy sends X to Angel, where

X ≜

{
1 if x ≥ (r + h)2−ℓ

0 otherwise
.

Angel then estimates x̂ = X + (h − 0.5(2ℓ − 1)) · 2−ℓ.

We first show that our protocol is unbiased. It holds that E[h] = 0.5(2ℓ − 1) and
(r + h) ∼ U [0, 2ℓ] (i.e., (r + h)2−ℓ ∼ U [0, 1]), and thus E[x̂] = E[X] = x.
We state theorem, whose proof appears in the full version [4], that bounds the variance:

▶ Theorem 5. Var[x̂] ≤ 1/12 · (1 − 4−ℓ) + 1/4 · 4−ℓ = 1/6 · (1/2 + 4−ℓ).

In Supplement 9.3, we describe a simple generalization of this algorithm, together with a
lower bound, for sending k > 1 bits. We now explain the connection to subtractive dithering
and explore the applicability of the algorithm for the x ∈ {0, 1/2, 1} special case.

Connection to subtractive dithering. First invented for improving the visibility of quantized
pictures [18], subtractive dithering aims to alleviate potential distortions that originate from
quantization. Subtractive dithering was later extended for other domains such as speech [8],
distributed deep learning [1], and federated learning [21].

In our setting, subtractive dithering corresponds to using shared randomness to add noise
ς to x before applying a deterministic quantization and subtracting ς from the estimation.
Specifically, let Q : [0, 1] → {0, 1} be a two-level deterministic quantizer such that Q(g) = 1
if g ≥ 1/2 and 0 otherwise. Then, in subtractive dithering Buffy sends X = Q(x + ς)
and Angel estimates x̂ = X − ς.

There are several noise classes that ς can be drawn from, as classified in [19], that yield
x̂ ∼ U [x − 1/2, x + 1/2]. For example, ς can be distributed uniformly on [−1/2, 1/2].

Consider our algorithm of this section without restricting the number of random bits (i.e.,
ℓ → ∞, and rescale so h ∈ U [0, 1]). This would yield the following algorithm:

X ≜

{
1 if x ≥ h

0 otherwise

and x̂ = X + h − 0.5. Similarly to subtractive dithering, we get that x̂ ∼ U [x − 1/2, x + 1/2],
as we prove in the full version [4] for completeness. To see that the two algorithms are
equivalent (for ς ∼ U [−1/2, 1/2]), denote h′ = 1/2 − h (i.e., h′ ∼ U [−1/2, 1/2]). Then X = 1
if x + h′ ≥ 1/2 and x̂ = X − h′.

Therefore, we conclude that our algorithm provides a spectrum between randomized
rounding (ℓ = 0) and a form of subtractive dithering (ℓ → ∞). In practice, this means that
a small number of shared random bits yields a variance that is close to that of subtractive
dithering (Var[x̂] = 1/12). For example, with a single shared random byte (i.e., ℓ = 8), our
algorithm has a worst-case variance that is within 0.02% of 1/12.

The x ∈ {0, 1/2, 1} case. Notice that if x is known to be in {0, 1/2, 1}, then our (ℓ = 1)
algorithm gives Var[x̂] = 1/16, as evident from Theorem 5. Further, in this case, we do not
require the private randomness as we can rewrite Buffy’s algorithm as:
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X ≜


0 if x = 0
1 − h if x = 1/2
1 if x = 1

while Angel estimates x̂ = X + (h − 0.5)/2. This algorithm considerably improves over
randomized rounding (which is optimal when no shared randomness is allowed, as shown in
the full version [4]), that has a variance of 1/4 for x = 1/2; i.e., a single shared random bit
reduces the worst-case variance by a factor of 4. Further, it also improves over subtractive
dithering, reducing the variance by a 4/3 factor. Finally, this result is optimal according to
the Section 4.2 lower bound, even if unbounded shared randomness is allowed.

6 Algorithms without Private Randomness

In some cases, generating random bits may be expensive, e.g., when running on power-
constrained devices. This is particularly acute when the device operates in an energy
harvesting mode [26]. Past works have even considered how to “recycle” random bits
(e.g., [12]). Therefore, it is important to study how to design algorithms that use just a few
random bits. To address this need, we consider scenarios where Buffy and Angel have access
to a shared ℓ-bit random value h, but no private randomness.

One thing to notice is that Angel can produce at most 2ℓ+1 different values since Angel
is deterministic after obtaining the ℓ + 1 bits of h and X. In particular, this means there is
no unbiased protocol for general x ∈ [0, 1]. Therefore, we focus on biased algorithms and
study how shared randomness allows improving over deterministic rounding (which is optimal
without shared randomness, as we show in Section 3.2).

We start by proposing an optimal algorithm for the case where x is known to be in
{0, 1/2, 1}. Then, we present adaptations of the subtractive dithering estimation method for
the biased x ∈ [0, 1] setting. These improve over both (unbiased) subtractive dithering and
deterministic rounding. To the best of our knowledge, these adaptations are novel. Next, we
show how Buffy can further reduce the cost while, among other changes, using a small number
of shared random bits. We conclude by giving design principles for numerically approximating
the optimal algorithm and give realizations for small number of shared random bits.

6.1 The x ∈ {0, 1/2, 1} Case
We now consider the scenario where x is guaranteed to be in {0, 1/2, 1} using a single shared
randomness bit h ∈ {0, 1}. For some α ∈ [0, 1], Buffy sends

X =
{

1 if x = 1 ∨ (x = 1/2 ∧ h = 0)
0 otherwise

while Angel estimates x̂ = α · h + (1 − α) · X.
For example, this means that if x = 0, the squared error is 0 if h = 0 and α2 otherwise.

That is, the expected squared error is α2/2. We optimize over the α value to minimize the
cost

min
α∈[0,1]

max
{

α2/2, (1 − (1 − α))2/2,E
[
(1/2 − (α · h + (1 − α) · (1 − h)))2

]}
.

This is optimized for α = 1−1/
√

2, yielding a cost of 3/4−1/
√

2 ≈ 0.04289, which is optimal
according to our Section 4 lower bound, even if unbounded shared randomness is allowed.
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6.2 The x ∈ [0, 1] Case
An important observation regarding optimal biased algorithms is that they, without loss of
generality, can be expressed as a pair of monotone increasing functions T, Z0 : [0, 1] → [0, 1]
as follows. Here T is a threshold function that determines whether 0 or 1 is sent, Z0 is the
estimator when 0 is received, and Z1 : [0, 1] → [0, 1], given by Z1(h) = 1 − Z0(1 − h), is the
estimator when 1 is received. That is, Buffy sends

X =
{

1 if x ≥ T (h)
0 otherwise

.

In turn, Angel estimates x̂ = ZX(h). We further explain this representation in Supplement 9.4.
Based on this observation, we next lay out a sequence of algorithmic improvements over
deterministic rounding that leverage the shared randomness to reduce the cost. We visualize
the algorithms resulting from each improvement in Figure 1.

6.2.1 Subtractive dithering adaptations
As subtractive dithering provides the lowest cost (albeit using unbounded shared randomness)
of the previously mentioned unbiased algorithms, one may wonder if it is possible to adapt it
to the biased scenario. Accordingly, we first briefly overview two natural adjustments that
use unbounded shared randomness and improve over the 1/16 cost of deterministic rounding.
We then propose improved protocols that reduce the cost further despite using only a small
number (e.g., ℓ = 3) of random bits.

Intuitively, subtractive dithering may produce estimates that are outside the [0, 1]
range. Therefore, by truncating the estimates to [0, 1] one may only reduce the expec-
ted squared error for any x ̸= 1/2. However, it does not reduce the expected squared error
for x = 1/2, and thus the cost would remain 1/12.

To reduce the cost, one may further truncate the estimates to [z, 1−z] for some z ∈ [0, 1/2].
Indeed, we show in the full version [4] that this truncation reduces the cost to ≈ 0.0602, for
z satisfying 1/24 + z2/2 + (2z3)/3 = 0 (z ≈ 0.17349).

A better adaptation strategy is obtained by changing the estimation to a linear combination
of X and h. Specifically, consider the protocol where Buffy sends (for a shared h ∼ U [0, 1])

X =
{

1 if x ≥ h

0 otherwise

and Angel estimates, for some α ∈ [0, 1], α · h + (1 − α) · X. Optimizing the parameters, we
show in the full version [4] that this algorithm achieves a cost of 5/3 − ϕ ≈ 0.04863, which is
obtained for α = 2 − ϕ ≈ 0.382. Interestingly, this cost is achieved for all x ∈ [0, 1].

In Figure 1, we illustrate this algorithm. As shown, the subtractive dithering adaption
has T (h) = h and Z0(h) = α · h. This means that Buffy sends X = 1 if x ≥ h and Angel
estimates x̂ = α · h if X = 0 and x̂ = (1 − α · (1 − h)) = (1 − α) + α · h otherwise.

6.2.2 Deterministically rounding extreme values
We now show how to leverage a finite number of shared random bits ℓ to design improved
algorithms. As we show, it is possible to benefit from deterministically rounding values that
are “close” to 0 or 1 and use the shared randomness otherwise.
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Figure 1 Illustration of the different biased algorithms. While deterministic rounding does not
use the shared randomness and is thus constant, the other algorithms have both the threshold and
estimation be monotone functions of h.

Similarly to the subtractive dithering adaptation above, Angel estimates x using a linear
combination of h (with weight α) and X (with a weight of 1 − α), where α ∈ [0, 1] is chosen
later. For all i ∈ [2ℓ − 1], define the interval

Ii =
[

(1 − α)/2 + i · α

2ℓ − 1 , (1 − α)/2 + (i + 1) · α

2ℓ − 1

)
. (2)

In our algorithm, Buffy sends

X =


0 if x < (1 − α)/2
1h≤i if x ∈ Ii, i ∈ [2ℓ − 1]
1 if x ≥ (1 + α)/2

,

and Angel estimates: x̂ = α · h/(2ℓ − 1) + (1 − α) · X.

Note that we deterministically partition the range [(1−α)/2, (1+α)/2] into 2ℓ −1 equally
spaced intervals. Intuitively, the chosen intervals are designed to make the expected squared
error a continuous function of x, as our analysis, given in the full version [4], indicates.

As we show, minimizing cost = minα maxx E[(x̂ − x)2] yields cumbersome expressions.
For example, we get that with one shared random bit (ℓ = 1), our algorithm has a cost of
1/18 ≈ 0.05556 (obtained for α = 1/3, different than the α value used for the x ∈ {0, 1/2, 1}
case), lower than that of deterministic rounding (i.e., 1/16). For ℓ = 2, we obtain a cost of
259−140

√
3

338 ≈ 0.04885 (reached for α = 15−6
√

3
13 ), and ℓ = 3 bits further reduces the cost to

35/722 ≈ 0.04848 (when α = 7/19). Additionally, with ℓ = 3 bits, this improves over the
subtractive dithering adaptions (that use unbounded shared randomness) for all x ∈ [0, 1].
Notice that these costs are ≈21%, ≈6.4%, and ≈5.6% from the ≈ 0.0459 lower bound (see
Section 4.1.2), and thus from the optimal algorithm. For completeness, we give the limiting
algorithm (as ℓ → ∞) in the full version [4]. For intuition, we illustrate the limiting algorithm
(h ∈ [0, 1]) in Figure 1. As shown, we have T (h) = 1−α

2 + α · h (where α = 2 − ϕ ≈ 0.38)
and Z0(h) = α · h. Observe that Angel uses the same estimation function as in Section 6.2.1,
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but Buffy’s threshold function is different. Intuitively, the new threshold function ensures
that each x is mapped to the closest estimate value. For example, if x = 0.1 and h = 0,
the subtractive adaptation would have X = 1 and thus x̂ = 1 − α ≈ 0.62 while here we get
X = 0 and x̂ = 0.

Interestingly, the cost slightly and monotonically increases when increasing the number of
bits ℓ beyond 3. This phenomenon suggests that we need more complex algorithms to leverage
additional available random bits. We explore several approaches; in the full version [4], we
show that by probabilistically selecting between the above algorithm (for ℓ → ∞) and the
{0, 1/2, 1} algorithm from Section 6.1, we can reduce the error to 6

√
10+11

√
5−18

√
2−17

24 ≈
0.04644. Intuitively, Buffy and Angel can implicitly agree on the chosen algorithm using the
shared randomness. Here, we proceed by analyzing the potential benefits of non-uniform
partitioning of the h values, which reduces the error further.

6.2.3 Non-uniform partitioning

Intuitively, the above algorithms have a threshold function that is linear in h; i.e., it takes
the form T (h) = a · h + b. We now show that this can be improved by looking at sigmoid-
like functions. For ease of exposition, in this section, we consider h ∈ [0, 1] to represent
unbounded shared randomness, although the algorithm can be discretized given sufficient
random bits. Recall from Section 6.2 that an algorithm can be expressed as a pair of functions
T, Z0 : [0, 1] → [0, 1] such that Buffy sends 1 if x ≥ T (h) while Angel estimates Z0(h) when
receiving X = 0 and Z1(h) = 1 − Z0(1 − h) otherwise. Here, we consider a linear sigmoid
function (also illustrated in Figure 1), which, for some h0 ∈ [0, 1/2], is defined as

T (h) =


α if h < h0

α + (1−2α)(h−h0)
1−2h0

if h ∈ [h0, 1−h0]
1 − α otherwise

, Z0(h) =


0 if h < h0
(1−2α)(h−h0)

1−2h0
if h ∈ [h0, 1−h0]

1 − 2α otherwise
.

Notice that in this algorithm we have Z0(h) = T (h) − α.
Our analysis, given in Supplement 9.5, shows that the cost is minimized for h0 = 1/4, α =

1/3, where the error is:

E[(x̂ − x)2] = E[(x̂)2] − 2xE[x̂] + x2 =


5/108 − x/3 + x2 if x < 1/3
5/108 if x ∈ [1/3, 2/3]
77/108 − 5x/3 + x2 otherwise

.

Therefore, the cost is 5/108 ≈ 0.0463, which is less than 0.9% higher than the 0.0459 lower
bound (Section 4.1.2). The algorithm has two interesting properties. First, its expected
squared error is constant for all x ∈ {0, 1} ∪ [1/3, 2/3] and, second, its expectation is not
continuous as a function of x, as shown in Figure 2.

6.2.4 Towards the optimal algorithm

We now consider more general algorithms that have arbitrary estimate function Z0. To that
end, we use a numerical solver that approximates the optimal solution. Clearly, to define the
input problem, we need to limit the number of variables and constraints. We achieve this
using several observations:
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Optimal Sigmoid 8-bit Approximation (Section 6.2.4)

Figure 2 Illustration of the expectation of the different biased algorithms. Deterministic rounding
does not use randomization and is therefore a step function, while others increase gradually in x.
Notice that the expectations of the linear sigmoid and optimal approximation are not continuous.

We consider bounded shared randomness h ∈ [2ℓ] for ℓ ∈ N bits. In fact, bounded
shared randomness is precisely what allows us to develop this numerical approach.
We use the observation that an optimal algorithm’s T and Z0 functions are not independent
and satisfy ∀h ∈ [0, 1] : T (h) = Z0(h)+Z1(h)

2 = Z0(h)+(1−Z0(1−h))
2 ; this is because, that

way, every x ∈ [0, 1] is estimated using the value closer to it between Z0(h) and Z1(h) =
1 − Z0(1 − h). In fact, the algorithms in sections 6.2.2-6.2.3 follow this rule, while the
subtractive adaptation (Section 6.2.1) does not. As a result, we can define the variables{

zh|h ∈ [2ℓ]
}

and derive the thresholds from the solver’s output by Z0(h) = zh.
For computing the maximal error for any x ∈ [0, 1], it is enough to look at a discrete set
of points. This is because the number of possible estimates is 2ℓ+1. Therefore, given two
estimates zh, 1 − z2ℓ−1−h that correspond to the values Angel uses given h and X = 0 or
X = 1, the worst expected squared error (for this h) is obtained for yh ≜

zh+1−z2ℓ−1−h

2 .
Therefore, by checking all x ∈

{
yh | h ∈ [2ℓ]

}
, we can compute the cost.

Using these observations, we formulate the input as:

minimize
{zh|h∈[2ℓ]}

C

subject to C ≥
h∑

j=0
(yh − (1 − z2ℓ−1−h))2 +

2ℓ−1∑
j=h+1

(yh − zh)2
, h = 0, . . . , 2ℓ − 1

yh = zh+1−z2ℓ−1−h

2 , zh ∈ [0, 1] h = 0, . . . , 2ℓ − 1

In the above, we express the expected squared error at yh by considering the h values for
which x ≥ T (h) (j ∈ [h]) and those that x < T (h). The output for the above problem
does not seem to follow a compact representation. However, it is still possible to implement
using a simple lookup table. For example, if ℓ = 8, we can store all zh when implementing
Buffy and Angel. This algorithm’s cost is lower than that of the linear sigmoid (that uses
unbounded randomness) when using ℓ ≥ 4 bits. Specifically, using 4 shared random bits, the
cost is ≈ 0.04611, while using 8 bits, it further reduces to ≈ 0.04599. Notice that these are
less than 0.5% and 0.2% higher than the lower bound of Section 4.1.2. We note that this
approach yields improvement even for a small number of shared random bits; for example,
using ℓ = 1 bit (h ∈ {0, 1}), we get a cost of 1/20 for z0 = 0.1, z1 = 0.3 which is equivalent
to the following algorithm:
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Figure 3 An illustration of the variance and expected squared error of the different algorithms. As
shown, our unbiased algorithm is competitive with subtractive dithering despite using a single shared
random byte, while our single-bit algorithm improves over subtractive on {0, 1/2, 1}. For the biased
case, in addition to improving the {0, 1/2, 1} case, our optimal sigmoid approximation algorithm
achieves the lowest cost (less than 0.2% of the optimum!) while using a single shared random byte.

X =
{

1 if x ≥ 0.4 + 0.2h

0 otherwise
, x̂ = 0.1 + 0.2h + 0.6X .

We visualize the resulting algorithm, for ℓ = 8, in Figures 1 and 2. Notice that while
the algorithm looks almost similar to our linear sigmoid, looking that the derivative ∂T (h)

∂h

(Figure 1) shows that this optimal solution is not piece-wise linear.

7 Visual Comparison of the Algorithm Costs

We illustrate the various algorithms in Figure 3. In the unbiased case, notice how a single
(ℓ = 1) shared random bit significantly improves over randomized rounding (which is optimal
when Buffy and Angel are restricted to private randomness). This further improves for larger
ℓ values, where for ℓ = 8 we have a cost that is only 0.02% higher than that of subtractive
dithering, which uses unbounded shared randomness (the difference shown in zoom). When
x is known to be in {0, 1/2, 1} (right-hand side of the figure), it is evident how our unbiased
ℓ = 1 algorithm improves over both randomized rounding and subtractive dithering.

In the biased case, our adaptation to the subtractive dithering estimation (termed Sub-
tractive Adaptation) improves over the cost of deterministic rounding. This is further
improved by the algorithm of Section 6.2.2, termed Deterministic Edge Rounding, which is
depicted using ℓ = 3 bits as it minimizes its cost. Next, the Linear sigmoid (Section 6.2.3)
shows how to lower the cost (using unbounded shared randomness) by non-uniform partition-
ing of the h values. Additionally, we show the optimal 8-bit algorithm (Section 6.2.4) that
gets within 0.2% from the lower bound while using a single shared random byte. Finally, if
x is known to be in {0, 1/2, 1}, our (optimal) biased {0, 1/2, 1} algorithm improves over all
other solutions while using only a single shared random bit.
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8 Discussion

In this paper, we studied upper and lower bounds for the problem of sending a real number us-
ing a single bit. The goal is to minimize the cost, which is the worst-case variance for unbiased
algorithms, or the worst-case expected squared error for biased ones. For all cases, we demon-
strated how shared randomness helps to reduce the cost. Motivated by real-world applications,
we derived algorithms with a bounded number of random bits that can be as low as a single
shared bit. For example, in the unbiased case, using just one shared random bit reduces
the variance two-fold compared to randomized rounding (which is optimal when no shared
randomness is available). Further, using a single byte of shared randomness, our algorithm’s
variance is within 0.02% from the state of the art, which uses unbounded shared randomness.
Our results are also near-optimal in the biased case, with a gap lower than 0.2% between the
upper and lower bounds with a single shared random byte. Our upper bound is presented
as a sequence of algorithms, each generalizing the previous while reducing the cost further.

For the special case where x is known to be in {0, 1/2, 1}, we give optimal unbiased
and biased algorithms, together with matching lower bounds. Our algorithms use a single
shared random bit, and the lower bounds show that the cost cannot be improved even when
unbounded shared randomness is allowed.

We conclude by identifying directions for future research, beyond settling the correct
bounds. First, our lower bounds apply for algorithms that use unbounded shared randomness,
and new techniques for developing sharper bounds for other cases are of interest. Another
direction is looking into optimizing the cost when sending k bits, for some k > 1. We make a
first small step in Supplement 9.3, where we provide simple generalizations of our unbiased
algorithm and lower bound to sending k bits. Finally, we are unclear on whether private
randomness can help improve biased algorithms (see Table 1).

9 Supplementary Material

9.1 Optimality of Deterministic Rounding
We show that without shared randomness, deterministic rounding is an optimal biased
solution. Notice that, in such a case, any protocol is defined by the probability of sending 1,
denoted Y (x), and the reconstruction distributions V0, V1 ∈ ∆([0, 1]).

Let us examine E[V0] and E[V1]. We assume, without lost of generality, that E[V0] ≤ E[V1].
We have that:

E[x̂] = Y (x)E[V1] + (1 − Y (x))E[V0].

That is, we have that for any x ∈ [0, 1]: E[V0] ≤ E[x̂] ≤ E[V1]. Next, we have that the cost,
E[(x̂ − x)2], is bounded as

E[(x̂ − x)2] ≥ (E[(x̂ − x)])2
.

In particular, for x = 0, we get that

E[(x̂ − x)2|x = 0] ≥ (E[x̂|x = 0])2 ≥ (E[V0])2
.

Similarly, for x = 1, we have

E[(x̂ − x)2|x = 1] ≥ (E[(x̂)|x = 1] − 1)2 ≥ (1 − E[V1])2
.
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Notice that if E[V0] ≥ 0.25 then E[(x̂ − x)2|x = 0] ≥ 1/16, and similarly, if E[V1] ≤ 0.75 then
E[(x̂ − x)2|x = 1] ≥ 1/16. Assume to the contrary that there exists an algorithm with a
with a worst-case expected squared error lower than 1/16, then we have E[V0] ≤ 0.25 and
E[V1] ≥ 0.75. However, we have that x = 0.5 gives:

E[(x̂ − x)2|x = 0.5] = E[x̂2|x = 0.5] − 2xE[x̂|x = 0.5] + 0.25

= Y (0.5)E[V 2
1 ] + (1 − Y (0.5))E[V 2

0 ] − (Y (0.5)E[V1] + (1 − Y (0.5))E[V0]) + 0.25

≥ Y (0.5)(E[V1])2 + (1 − Y (0.5))(E[V0])2 − (Y (0.5)E[V1] + (1 − Y (0.5))E[V0]) + 0.25
= Y (0.5) · E[V1] · (E[V1] − 1) + (1 − Y (0.5)) · E[V0] · (E[V0] − 1) + 0.25
≥ Y (0.5) · 0.75 · (−0.25) + (1 − Y (0.5)) · 0.25 · (−0.75) + 0.25 = 0.25 − 3/16 = 1/16.

In the first inequality, we used that fact that for any random variable V : E[V 2] ≥ (E[V ])2,
and in the second we used E[V0] ≤ 0.25 and E[V1] ≥ 0.75. This concludes the proof and
establishes the optimality of deterministic rounding when no shared randomness is used.

9.2 Proof of the Biased {0, 1/2, 1} Lower Bound

We recall Lemma 4:

▶ Lemma 4. Any deterministic algorithm must incur a cost of at least q(0)·q(1/2)
4(q(0)+q(1/2)) .

Proof. We denote by X0 the set of values in {0, 1/2, 1} that are closer to v0 than to v1. We
assume without loss of generality that v0 ≤ v1 and q(0) ≤ q(1) and prove that an optimal
algorithm would set v0 = q(1/2)

2(q(0)+q(1/2)) , v1 = 1, which incurs a cost of q(0)·q(1/2)
4(q(0)+q(1/2)) . Indeed,

for this choice of v0, v1 we have that X0 = {0, 1/2}, and we get a cost of

q(0)
(

q(1/2)
2(q(0) + q(1/2))

)2

+ q(1/2)
(

1
2 − q(1/2)

2(q(0) + q(1/2))

)2

= q(0)
(

q(1/2)
2(q(0) + q(1/2))

)2

+ q(1/2)
(

q(0)
2(q(0) + q(1/2))

)2

= q(0)q(1/2)2 + q(1/2)q(0)2

4 (q(0) + q(1/2))2 = q(0) · q(1/2)
4 (q(0) + q(1/2)) .

We now bound the performance of the optimal algorithm. We first notice that an optimal
algorithm should have 0 ∈ X0 and 1 ̸∈ X0. Next, notice that v0 should be at most 1/2
and v1 should be at least 1/2. Otherwise, one can improve the error for x = 0 or x = 1,
respectively, without increasing the error at 1/2. Further, observe that an optimal algorithm
must have v0 = 0 or v1 = 1. That is because if 1/2 ∈ X0, we can reduce the error for
x = 1 by setting v1 = 1. Similarly, when 1/2 ̸∈ X0, choosing v0 = 0 decreases the error for
x = 0. Now, we claim that there exists an optimal algorithm for which v1 = 1. Consider
some solution, and set v′

0 = 1 − v1 and v′
1 = 1. This does not affect the error of x = 1/2,

and does not increase the cost as q(0) ≤ q(1). We are left with choosing v0; let us denote
by c(v0) = q(0)v2

0 + q(1/2)(1/2 − v0)2 the resulting cost. This function has a minimum at
v0 = q(1/2)

2(q(0)+q(1/2)) , which gives a cost of q(0)·q(1/2)
4(q(0)+q(1/2)) . ◀

This cost is maximized for q(1/2) =
√

2 − 1 and q(0) = q(1) = 2−
√

2
2 , giving a lower

bound of 3/4 − 1/
√

2 ≈ 0.04289. In fact, one can verify that this is the best attainable lower
bound for any discrete distribution on three points. Further, in Section 6.1, we show that
this is an optimal lower bound when x is known to be in {0, 1/2, 1}, by giving an algorithm
with a matching cost.
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9.3 Generalization to k Bits

9.3.1 General Quantized Algorithm
We use a hash function h such that h ∈ {0, 1}ℓ is uniformly distributed. Let A ∼ U [0, 1] be
independent of h.

C =
⌊(

2k − 1
)

· x
⌋

p =
(
2k − 1

)
· x −

⌊(
2k − 1

)
· x

⌋
R = 2k − 1

We then set

X ≜

{
C + 1 if p ≥ (A + h)2−ℓ

C otherwise

We send X to Angel which estimates

x̂ = X + (h − 0.5(2ℓ − 1)) · 2−ℓ

R
.

To show that our protocol is unbiased, notice that: E[X] = R·x and that E[h] = 0.5(2ℓ−1).

9.3.2 Lower Bounds
Similarly to the 1-bit case, we consider the discrete distribution over{

i ·
(

1
3 · 2k−1 − 1

)
| i ∈

{
0, 1, . . . , 3 · 2k−1 − 1

}}
.

We set a1/2 =
√

2−1
2k−1 and a0 = a1 = 1−a1/2

2k and

∀i : q

(
i ·

(
1

3 · 2k−1 − 1

))
= a(i mod 3)/2.

When each consecutive set of three points has the same probability, one can derive an optimal
algorithm with precisely two values between each such triplet. The optimal choice of locations
of the values in each triplet is similar to our single-bit analysis of the previous subsection,
i.e., one should have a values at{√

2 − 1 + i

2k−1

∣∣∣ i ∈
{

0, 1, . . . , 2k−1 − 1
}} ⋃ {

i

2k−1

∣∣∣ i ∈
{

1, . . . , 2k−1}}
.

We turn into calculating the cost. Notice that every triplet has a width of 2
3·2k−1−1 . Therefore,

the cost now reduces, compared to the 1-bit analysis, by a factor of
(

2
3·2k−1−1

)2
. That is,

we get a lower bound of 3−2
√

2
(3·2k−1−1)2 = 3−2

√
2

2.25(2k−2/3)2 . We note that, for large k and ℓ values,
our variance is within 10% of the lower bound, as

lim
k,ℓ→∞

1
12(2k−1)2

3−2
√

2
2.25(2k−2/3)2

= 9 + 6
√

2
16 ≈ 1.093.
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9.4 Reducing Algorithms to Monotone T, Z0 Functions

We now show how an algorithm can be represented as described in Section 6.2. Fixing the
shared randomness value h, Angel estimates x̂ solely based on the sent bit X; denote these
values by AX(h). Without loss of generality, assume that ∀h : A1(h) ≥ A0(h).2 This means
that, in an optimal algorithm, Buffy should send X = 1 if x ≥ A0(h)+A1(h)

2 , as otherwise the
error would be suboptimal for any x not satisfying the condition. In particular, this means
that we can express Buffy’s algorithm using a threshold function T .

Next, we claim that the threshold function can be considered monotone, without increasing
the cost. To that end, we first consider a finite shared randomness h ∈ [2ℓ]. In such a case, if
there exists some h1 > h2 ∈ [2ℓ] such that T (h1) < T (h2), we can modify the algorithm as
follows: For all h /∈ {h1, h2}, no modification is made. If h = h1, then the modified algorithm
works as if h = h2, and vice versa. Following this process, we can sort T until it becomes
monotone. A similar argument can be made for the continuous (h ∈ [0, 1]) case (possibly
with an additional ϵ discretization cost).

We proceed with showing that there exists an optimal algorithm in which Z1(h) =
1 − Z0(1 − h). This is achieved using a symmetry observation. Specifically, if an algorithm
does not satisfy the above, consider its “dual algorithm”: instead of sending x using T (h),
we send x′ = 1 − x using T ′(h) = 1 − T (1 − h); similarly, Angel estimates x̂′ = 1 − x̂. Then,
if both Buffy and Angel use the shared randomness to implicitly agree on whether to run the
original or dual algorithms, each with probability half, the cost can only decrease. Additional
details are given in the full version [4].

9.5 Analysis of the Linear Sigmoid (Section 6.2.3)

First, we have (see Section 6.2) that the estimate function for X = 1 is:

Z1(h) = 1 − Z0(1 − h) =


2α if h < h0

2α + (1 − 2α) · h−h0
1−2h0

if h ∈ [h0, 1 − h0]
1 otherwise

.

For x ∈ [α, 1 − α], denote by T −1(x) = (1−2h0)(x−α)
1−2α + h0 the value such that T (T −1(x)) = x.

We proceed with computing the expectation:

E[x̂|x < α]( =⇒ X = 0) = h0 · (1 − 2α) +
∫ 1−h0

h0

(
(1 − 2α) · h − h0

1 − 2h0

)
dh = 1/2 − α

E[x̂|x > 1 − α]( =⇒ X = 1) = h0 · (1 + 2α) +
∫ 1−h0

h0

(
2α + (1 − 2α) · h − h0

1 − 2h0

)
dh

= 1/2 + α

2 If for some h, A0(h) > A1(h), there exists an equivalent algorithm that replaces the role of X = 0 and
X = 1 for this specific h.
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E[x̂|x ∈ [α, 1 − α]] = h0 · (2α) + h0(1 − 2α)

+
∫ T −1(x)

h0

(
2α + (1 − 2α) · h − h0

1 − 2h0

)
dh

+
∫ 1−h0

T −1(x)

(
(1 − 2α) · h − h0

1 − 2h0

)
dh

= h0 + 2α(T −1(x) − h0) +
∫ 1−h0

h0

(
(1 − 2α) · h − h0

1 − 2h0

)
dh

= 1/2 + (−1 + 2h0)α + 2α(T −1(x) − h0) = 1/2 − α + 2αT −1(x)

Therefore, we have:

E[x̂] =


1/2 − α if x < α

1/2 − α + 2α
(

(1−2h0)(x−α)
1−2α + h0

)
if x ∈ [α, 1 − α]

1/2 + α otherwise

.

Next, we calculate the second moment of the estimate:

E[(x̂)2|x < α]( =⇒ X = 0) = h0 · (1 − 2α)2 +
∫ 1−h0

h0

(
(1 − 2α) · h − h0

1 − 2h0

)2
dh

= 1/3 + h0/3 − 4α/3 − 4h0α/3 + 4α2/3 + 4h0α2/3

E[(x̂)2|x > 1 − α]( =⇒ X = 1) = h0 · (1 + (2α)2)

+
∫ 1−h0

h0

(
2α + (1 − 2α) · h − h0

1 − 2h0

)2
dh

= 1/3 + h0/3 + 2α/3 − 4h0α/3 + 4α2/3 + 4h0α2/3

E[(x̂)2|x ∈ [α, 1 − α]] = h0 · ((1 − 2α)2 + (2α)2)

+
∫ T −1(x)

h0

(
2α + (1 − 2α) · h − h0

1 − 2h0

)2
dh +

∫ 1−h0

T −1(x)

(
(1 − 2α) · h − h0

1 − 2h0

)2
dh

= h0 · ((1 − 2α)2 + (2α)2) + (1 − 2h0)(x − α)(x2 + 4xα + 7α2)
3 − 6α

+ (2h0 − 1)(−1 + x + α)(1 + x + x2 − 4xα + α(−5 + 7α))
3 − 6α

= 1 − 6α − 6αx2(−1 + 2h0) + 12α2 − 14α3 + h0(1 − 6α + 24α2 − 20α3)
3 − 6α

Putting it together, we get:

E[x̂2] =


1/3 + h0/3 − 4α/3 − 4h0α/3 + 4α2/3 + 4h0α2/3 if x < α
1−6α−6αx2(−1+2h0)+12α2−14α3+h0(1−6α+24α2−20α3)

3−6α if x ∈ [α, 1 − α]
1/3 + h0/3 + 2α/3 − 4h0α/3 + 4α2/3 + 4h0α2/3 otherwise

.

By solving

min
h0∈[0,1/2],α∈[0,1/2]

max
x∈[0,1]

E[(x̂ − x)2] = min
h0∈[0,1/2],α∈[0,1/2]

max
x∈[0,1]

E[x̂2] − 2xE[x̂] + x2,

we get that the algorithm is optimized for α = 1/3 and h0 = 1/4, where the resulting cost is:
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E[(x̂ − x)2] = E[(x̂)2] − 2xE[x̂] + x2

=


5/108 − x/3 + x2 if x < 1/3
5/108 if x ∈ [1/3, 2/3]
77/108 − 5x/3 + x2 otherwise

.

Therefore, the cost is 5/108 ≈ 0.0463, which is less than 0.9% higher than the 0.0459 lower
bound (Section 4.1.2).
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Abstract
Given an undirected n-vertex graph and k pairs of terminal vertices (s1, t1), . . . , (sk, tk), the k-
Disjoint Shortest Paths (k-DSP) problem asks whether there are k pairwise vertex-disjoint
paths P1, . . . , Pk such that Pi is a shortest si-ti-path for each i ∈ [k]. Recently, Lochet [SODA ’21]

provided an algorithm that solves k-DSP in n
O

(
k5k

)
time, answering a 20-year old question about

the computational complexity of k-DSP for constant k. On the one hand, we present an improved
O(kn16k·k!+k+1)-time algorithm based on a novel geometric view on this problem. For the special
case k = 2, we show that the running time can be further reduced to O(nm) by small modifications
of the algorithm and a further refined analysis. On the other hand, we show that k-DSP is W[1]-hard
with respect to k, showing that the dependency of the degree of the polynomial running time on the
parameter k is presumably unavoidable.
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1 Introduction

The k-Disjoint Paths problem is a fundamental and well-studied combinatorial problem.
Given an undirected graph G and k terminal pairs (si, ti)i∈[k], the question is whether
there are pairwise disjoint 1 si-ti-paths Pi for each i ∈ [k]. The problem was shown to
be NP-hard by Karp [9] when k is part of the input. On the positive side, Robertson
and Seymour [13] provided an algorithm running in O(n3) time for any constant k. Later,
Kawarabayashi et al. [10] improved the running time to O(n2), again for fixed k. On directed
graphs, in contrast, the problem is NP-hard even for k = 2 [7]. However, on directed acyclic
graphs, the problem becomes again polynomial-time solvable for constant k [7] and linear-time
solvable for k = 2 [14].

1 We only consider the vertex-disjoint setting to which the edge-disjoint version can be reduced.
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Focusing on the undirected case, we study the problem variant where all paths in the
solution have to be shortest paths. This variant was introduced by Eilam-Tzoreff [5].

k Disjoint Shortest Paths (k-DSP)
Input: A graph G = (V, E) and k ∈ N pairs (si, ti)i∈[k] of vertices.
Task: Find k disjoint paths Pi such that Pi is a shortest si-ti-path for each i ∈ [k].

Throughout the whole paper, we assume that the input graph is connected. Eilam-
Tzoreff [5] showed the NP-hardness of k-DSP when k is part of the input. Moreover,
Eilam-Tzoreff provided a dynamic-programming based O(n8)-time algorithm for 2-DSP. This
algorithm for 2-DSP works also for positive edge lengths. Recently, Gottschau et al. [8] and
Kobayashi and Sako [11] independently extended this result by providing polynomial-time
algorithms for the case that the edge lengths are non-negative. As for directed graphs, Berczi
and Kobayashi [2] provided a polynomial-time algorithm for strictly positive edge length. Very
recently, Akhmedov [1] presented an algorithm solving 2-DSP in O(n6) time for unweighted
graphs and in O(n7) for strictly positive edge lengths. Note that allowing zero-length edges
generalizes 2-Disjoint Path on directed graphs, which is NP-hard [7]. Extending the
problem to finding two disjoint si-ti-paths of minimal total length (in undirected graphs),
Björklund and Husfeldt [4] provided a randomized algorithm with running time O(n11).

The existing algorithms for 2-DSP are based on dynamic programming with tedious case
distinctions. We provide a new algorithm using a simple and elegant geometric perspective:

▶ Theorem 1. 2-DSP can be solved in O(nm) time.

Whether or not k-DSP for constant k ≥ 3 is polynomial-time solvable was posed as a
research challenge [6, open problem 4.6]. Recently, Lochet [12] settled this long standing
open question by showing that k-DSP can be solved in nO(k5k

) time. Using our geometric
approach, we provide an improved O(k · n16k·k!+k+1)-time algorithm.

▶ Theorem 2. k-DSP can be solved in O(k · n16k·k!+k+1) time.

We describe the basic idea of our algorithms and the new geometric tools in Section 2.
In Section 3, we formalize these geometric tools for two paths and prove Theorem 1. In
Section 4, we lift these arguments to k > 2 paths. In Section 5, we present our algorithm for
Theorem 2 and prove its correctness.

Finally, we show that k-DSP is W[1]-hard with respect to k. Hence, under standard as-
sumptions from parameterized complexity, there is no algorithm with running time f(k)nO(1)

for any function f . Thus, polynomial-time algorithms where k does not appear in the
exponent (as the O(n2)-time algorithm for k-Disjoint Path for any constant k [13, 10]) are
unlikely to exist for k-DSP. Furthermore, under the Exponential-Time Hypothesis (ETH), we
show that there is no algorithm with running time f(k) ·no(k) for any computable function f .

▶ Proposition 3 (⋆2). k-DSP is W[1]-hard with respect to k. Moreover, assuming ETH,
there is no f(k) · no(k)-time algorithm for k-DSP.

Preliminaries. We set N := {0, 1, 2, . . . , } and [n] := {1, 2, . . . , n}. We always denote
by G = (V, E) a graph (undirected and connected unless said otherwise) and by n and m

the number of vertices and edges in G, respectively. A path of length ℓ ≥ 0 in a graph G is a

2 Some proofs (marked with a ⋆) are deferred to a full version.
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Figure 1 Left side: A graph with distinguished vertices s1, s2, t1, t2; vertex coordinates written
next to the vertices. Two shortest paths are highlighted. Right side: The 2D-arrangement of the
vertices. The two gray rectangles spanned by s1 and t1 and by s2 and t2 contain the two shortest
paths s1-t1 (solid red path) and s2-t2 (dashed blue path).

sequence of distinct vertices v0v1 . . . vℓ such that each pair vi−1, vi is connected by an edge
in G. The first and last vertex v0 and vℓ are called the end vertices or ends of P and are
denoted by sP and tP . We also say that P is a path from v0 to vℓ, a path between v0 and vℓ,
or a v0-vℓ-path. When no ambiguity arises, we do not distinguish between a path and its
set of vertices. For v, w ∈ P , we denote by P [v, w] the subpath of P with end vertices v

and w. For two vertices v, w, we denote the length of a shortest v-w-path in G by distG(v, w)
or dist(v, w) if the graph G is clear from the context. If for all i ∈ [k] there is a path Pi

that is a shortest si-ti-path and disjoint with Pj for all j ∈ [k] \ {i}, then we say that the
paths (Pi)i∈[k] are a solution for an instance (G, (si, ti)i∈[k]) of k-DSP.

2 The Key Concepts behind our Polynomial-Time Algorithm

In this section, we describe our approach to solve k-DSP in polynomial-time for any fixed k.
As a warm-up, we start with sketching an algorithm for 2-DSP based on the same approach.

Solving 2-DSP in the plane. Before describing the algorithm, we show the central geometric
idea behind it. Recall that we want to find two shortest paths P1 and P2 from s1 to t1 and
from s2 to t2, respectively. We now arrange the vertices on a 2-dimensional grid where the
first coordinate of each vertex is the distance to s1 and the second coordinate the distance
to s2; see left side of Figure 1 for an example graph with the corresponding coordinates
and the right side for an arrangement of the vertices in a grid with a continuous drawing of
the paths (drawing straight lines between points occurring in the paths). Clearly, with two
breadth-first searches from s1 and s2 we can compute the coordinates of all vertices in linear
time. Note that there might be multiple vertices with the same coordinates. However, at
most one vertex per coordinate can be part of a shortest s1-t1- or s2-t2-path.

This arrangement of the vertices allows the following simple geometric observation: The
drawing of each shortest s1-t1-path has to be within a rectangle with angles of 45◦ to the
coordinate axes and with corner points s1 and t1 (see gray rectangles in right side of Figure 1).
As a consequence, shortest paths that have to stay within two disjoint such rectangles cannot
intersect. We use this argument extensively in the subsequently sketched algorithm.

We assume that the drawings of P1 and P2 cross as displayed in the right side of Figure 1
(the non-crossing case is easier to deal with). Our algorithm solving 2-DSP in this case is
as follows: We distinguish whether the intersection of the drawings of P1 and P2 contain a
point with integer coordinates (that is, our algorithm tries both possibilities).

ICALP 2021
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Figure 2 An illustration of the directed acyclic graph used for Theorem 1. The first point p

in the intersection of the drawing of P1 and P2 is marked by a red square. Left side: Straigh-line
drawings of P1 and P2 intersect, but not in points with integer coordinates. Right side: Both P1

and P2 use vertices with same coordinates.

If the intersection does not have a point with integer coordinates, then it is easy to see
that the intersection of the drawing of P1 and P2 has to be a single point p (with non-integer
coordinates). We guess3 the four coordinate pairs (x, y), (x, y +1), (x+1, y), and (x+1, y +1),
x, y ∈ N, surrounding the intersection point of the drawings of P1 and P2. Note that this
can be done in O(n) time by guessing the vertex on the coordinate pair (x, y). The goal
is now to turn the input graph G into a directed acyclic graph D such that each shortest
si-ti-path in G corresponds to an si-ti-path in D. To this end, we partition the grid into
four areas A1, B1, A2, B2 (each area is defined by one of the guessed points and the closer
endpoint of the path going through the point) and orient each edge according to the area
it lies in (see left side of Figure 2 for an illustration). An edge {v, w} in the area Ai or Bi,
i ∈ [2], is oriented towards the vertex w with the larger i coordinate. Edges between Ai and
Bi are oriented towards the vertex in Bi. All remaining (unoriented) edges are removed.
Note that this results in a directed acyclic graph. Furthermore, a shortest si-ti-path in G

induces an si-ti-path in D and each si-ti-path in D is a shortest path in G because it is
strictly monotone increasing in the i-coordinate and all strictly monotone increasing paths
have the same length as each path contains one vertex for each integer i-coordinate between
the i-coordinates of si and ti. Observe that in this case the two paths cannot intersect as P1
can only reach vertices with coordinates in A1 and B1 and P2 can only use vertices with
coordinates in A2 and B2. Hence, one can find P1 and P2 in linear time. Altogether, this
gives a running time of O(nm) in this case.

Assume now that there is a point with integer coordinates in this intersection; this case
requires more work. We assume that if there are two points (x1, y1) and (x2, y2) in the
intersection of the drawings of P1 and P2, then we have x1 < x2 ⇔ y1 < y2. If this is not the
case, then repeat the algorithm below with swapped s2 and t2. We guess the first point p in
the intersection (note that it has integer coordinates). This can be done in O(n) time by
guessing a vertex on p. Now we arrange the areas slightly different. The areas are defined
by p and one coordinate of s1, t1, s2, t2; see the right side of Figure 2 for an illustration. Edges
in the area Ai \Bj or Bi \Aj are oriented towards the vertex with the larger i-coordinate.
Note that edges on the line in Ai ∩ Bj , i ̸= j, could either be used by P1 or P2 (but not
both), meaning that we have to direct the edges towards the vertex with either the larger
1- or 2-coordinate. Since there are only two possibilities for orienting the edges in A1 ∩B2,
there are only four different possibilities to orient the edges on A1 ∩B2 and A2 ∩B1. We try

3 Whenever we pretend to guess something, the algorithm actually exhaustively tests all possible choices.
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Figure 3 The four cases for the projection of two paths P1 and P2 in the two-dimensional grid.
From left to right: (1) The projection of the paths cross in one point with non-integer coordinates.
(2) The projection of the paths cross in at least one point with integer coordinates. (3) The rectangles
defined by the endpoints of P1 and P2 intersect, but the projections of P1 and P2 do not intersect.
(4) The rectangles defined by the endpoints of P1 and P2 do not intersect. For each of the two paths
our algorithm guesses the vertices on the positions marked by squares.

all four possible orientations and if at least one of them yields a solution, then we know that
there is a solution. All other (unorientated) edge are removed – a shortest si-ti-path cannot
use it. Note that this results for each of the four described cases in a directed acyclic graph.
Furthermore, again a shortest si-ti-path in G induces a si-ti-path in D and each si-ti-path
in D is an shortest path in G.

Finally, we use a O(n + m)-time algorithm of Tholey [14] for 2-Disjoint Paths on a
DAG to find P1 and P2. Since there are O(n) possibilities for the point p and 4 possibilities
for directing the edges between Ai and Bj , i ̸= j, we call O(n) instances of the algorithm of
Tholey [14]. Thus, we obtain Theorem 1 which is formally proven in Section 3.

Generalizing to k-DSP. We now discuss how to generalize the ideas from above to k-DSP,
where k > 2. One central idea for k = 2 is that the subpaths within the areas A1, A2, B1, B2
(see Figure 2) can hardly overlap. The only overlap is possible along the borders. In our
approach for k > 2, we simplify this even further by guessing the vertices on each path
before and after the intersection (thus incurring a higher running time). This results in
four cases; see Figure 3 for an overview of the cases and the guessed vertices (marked by
black squares). It is easy to see in Figure 3 that in each case no subpath within one gray
area can possibly intersect with a subpath within another gray area. As can be seen in
Figure 3, there is only one case where subpaths of P1 and P2 have to be computed carefully
due to possible intersections: Both paths use the dashed line in the second case from the
left. However, this is the part where both paths are strictly monotone in both coordinates.
This is what allowed us for k = 2 to transform the graph into a DAG while preserving the
solutions (both paths being strictly monotone in at least one coordinate is actually sufficient
for this transformation).

Considering k paths, we associate with each vertex v ∈ V a position in the k-dimensional
Euclidean vector space. For brevity, we say that a path has color i if it is strictly monotone
in its i-coordinate. Thus, each path Pj has color j. The problem k-Disjoint Paths on a
DAG is solvable in polynomial time for constant k [7]. Thus, if we want to find k subpaths
from ui to vi, i ∈ [k], that all have the same color (i. e. for each i ∈ [k] we have that the
difference of the i-th coordinate of ui and vi is dist(ui, vi)), then we can use the algorithm of
Fortune et al. [7]. For completeness, we provide a dynamic program with a precise running
time analysis as Fortune et al. [7] only state “polynomial time”. The general approach
to solve the given k-DSP instance is thus as follows: Split the paths P1, . . . , Pk into f(k)
subpaths (i. e. guess the endpoints of the subpaths) and find a partition of the subpaths such
that

ICALP 2021



26:6 Using a Geometric Lens to Find k Disjoint Shortest Paths

(i) subpaths in the same part of the partition share a common color and hence can be
computed by the algorithm of Fortune et al. [7] or our dynamic program, and

(ii) subpaths in different parts of the partition cannot intersect.

We remark that this is essentially the same general approach used by Lochet [12]. However,
he does not use the geometric view of the paths (as we do). As a result, even for k = 2 he
only bounds the number of created subpaths by 991 (cf. Lochet [12, Lemma 4.2]). While this
constant is certainly not optimized, one can easily see in Figure 3 that our approach splits
the two paths in at most five parts (in the second case). Moreover, our geometric view allows
us to use a more efficient way of splitting the paths for general k, which we describe below.

Recall that for k = 2 the two paths P1 and P2 have at most one intersection (point or
straight line); see Figure 3. However, in three dimensions k > 2 this is no longer true as
neither P1 nor P2 needs to be monotone in a third dimension. Thus, to exploit the properties
shown in Figure 3 for two paths Pi and Pj , we need to project into two dimensions using
the i and j coordinate. Hence, we need to be careful with using proper projections to 2D; see
Section 3 for details on the geometric arguments. However, whenever two paths Pi and Pj

intersect, then we know that the two subpaths in the intersection have both colors i and j.
Thus, we can use for these subpaths the two-dimensional observations behind Figure 3 with
new projections. We store for each subpath P ′ of Pi the set Φ of all indices of paths P ′

intersects, that is, Φ is a subset of all colors that P ′ has. Now, if P ′ and Pj intersect, then
there is a subpath of Pj that has colors Φ ∪ {i}. Hence this set Φ of colors can be seen as
a “tower of colors” that is transferred to other paths. Our algorithm transfers these towers
from one path to another as long as possible. These towers will be defined over permutations
of subsets of [k] that encode how these color-towers are produced; see Section 4. As there
are at most k · k! such permutations, this explains the exponent of our algorithm. In the end,
we arrive at Theorem 2, see Section 5 for details.

3 The Geometry of Two Shortest Paths

In this section, we formalize and generalize the idea behind the geometric view (visualized
in Figures 1–3). We start by introducing our notation for projections. For any ∅ ⊂ I ⊆ [k]
and any vector x ∈ Rk we denote with xI ∈ R|I| the orthogonal projection of x to the
coordinates in I. That is, xI is the |I|-dimensional vector obtained by deleting all dimensions
in x that are not in I. We usually drop the brackets in the exponent, thus writing e.g.,
(5, 6, 7, 8, 9)1,3,4 = (5, 7, 8) or (5, 6, 7)2 = 6. Similarly, for R ⊆ Rk we define RI := {xI | x ∈
R} ⊆ R|I|.

We associate with each vertex v ∈ V a position in the k-dimensional Euclidean vector space.
Formally, #»v := ( #»v i)i∈[k] := (dist(si, v))i∈[k] ∈ Nk and for U ⊆ V we use #»

U := { #»u | u ∈ U}.
For the k-DSP-instance at hand, one can compute the positions of each vertex in O(km)
using simple breadth-first-search from each vertex si.

In the following, we will use the following notations for any index set ∅ ⊂ I ⊆ [k]:
v ◦I w ⇔ ∀a ∈ I : #»v a ◦ #»wa, for any ◦ ∈ {<,≤, =,≥, >} and vertices v, w.
V ◦I W ⇔ { #»v I | v ∈ V } ◦ { #»wI | w ∈W}, for any ◦ ∈ {⊂,⊆, =,⊇,⊃} and vertex sets V, W .
We further write x ∈I X if there is a vertex x′ ∈ X with x′ =I x and x /∈I

X otherwise.

▶ Lemma 4. For any pair of vertices v, w ∈ V , we have ∥ #»v − #»w∥∞ ≤ dist(v, w).

Proof. Let P be a shortest v-w-path with edge set EP . Each edge {p, q} of P has ∥ #»p− #»q ∥∞ =
1 and thus by the triangle inequality ∥ #»v − #»w∥∞ ≤

∑
e∈EP

1 = dist(v, w). ◀
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sP tP

tQ

sQ

∂P

ϖP

∂Q

ϖQ

sP tP

tQ

sQ

sP

tP

tQ

sQ

δQ

Figure 4 Picture of the a, b-projection of an a-colored path P and a b-colored path Q. The
labels are abbreviated as ∂Q = ∂a,b

Q (P ), ∆ = ∆a,b(P, Q), etc. Left side: The case that the two paths
a, b-cross but do not share vertices with common a, b-coordinates (thus αP (Q) = ωP (Q) = ⊥, see
Definition 8). Middle: Illustration of Lemma 10. The dashed black edge is the a, b-crossing of P and
Q. The rectangle areas # »sP ⋄ #  »

∂P , #   »ϖP ⋄ # »
tP , # »sQ ⋄ #  »

∂Q, and #    »ϖQ ⋄ # »
tQ are highlighted in gray. These areas

are pairwise disjoint. Right side: Illustration of Lemma 14. If P and Q are a, b-noncrossing and
δQ ̸= ⊥, then the two shaded areas are disjoint from # »sP ⋄ # »

tP .

For two vertices u, w ∈ V , define u ⋄ w := {v ∈ V | dist(u, v) + dist(v, w) = dist(u, w)}
to be the set of all vertices that lie on a shortest u-w-path. Similarly, for any x, y ∈ Nk

define x ⋄ y := {z ∈ Rk | ∥x− z∥∞ + ∥z− y∥∞ = ∥x− y∥∞} which is a rectangle whose sides
form an angle of 45◦ with the coordinate axes (see right side of Figure 1).

▶ Definition 5. Let s, t ∈ V with dist(s, t) = ∥ #»s − #»
t ∥∞ and P be any shortest s-t-path. We

then call the pair (s, t) and the path P colored. Furthermore, we define C(P ) := C(s, t) :=
{a ∈ [k] | | #»s a − #»

t
a| = ∥ #»s − #»

t ∥∞} and call (s, t) and P a-colored if a ∈ C(s, t).

Note that, if P is an a-colored path, then P is strictly monotone in its a-coordinate. Note
that for arbitrary u, w ∈ V we do not always have #        »u ⋄ w ⊆ #»u ⋄ #»w, that is the coordinates
of all vertices on shortest u-w-paths are not necessarily contained in the set of coordinates
“spanned” by #»u and #»w. However, this inclusion holds for colored vertex pairs as shown next:

▶ Lemma 6 (⋆). Let v, w ∈ V be an a-colored pair for any color a. Then, #        »v ⋄ w ⊆ #»v ⋄ #»w.

We will usually be concerned with the projection of #»v ⋄ #»w to some set of coordinates I ⊆ [k].
Note in this context that ( #»v ⋄ #»w)I = #»v I ⋄ #»wI .

For some a ̸= b, consider the projections of an a-colored path Pa and a b-colored path Pb

to the {a, b}-plane, that is, the coordinates of the vertices of the paths are projected to their
a- and b-coordinate and edges are drawn as straight lines between the projected vertices.
To this end, for any path P we define ζ(P ) ⊂ Rk as the piecewise linear curve connecting
the points of #»

P in the order given by P . It is not hard to see (e.g. in Figure 1 (right) and
Figure 3 case (2)), that the intersection of Pa and Pb in the a, b-projection is also a straight
line segment with an angle of 45◦ to the coordinate axes.

▶ Lemma 7 (⋆). Let P be an a-colored path and Q be a b-colored path. Then ζ(P )a,b ∩ ζ(Q)a,b

is a (possibly empty) straight line segment.

Note that even if ζ(P )a,b ∩ ζ(Q)a,b is non-empty, it needs not contain points from N2 as
can be seen in the left side of Figure 4. In the following, we define the first and last vertices
of P and Q on their crossing as well as the coordinates of the vertices before and after their
crossing.
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▶ Definition 8. Let P be an a-colored path and Q be a b-colored path. We say P and Q

are a, b-crossing if the intersection X := ζ(P )a,b ∩ ζ(Q)a,b is non-empty. If X = ∅, they are
called a, b-noncrossing.

If #»

P
a,b
∩X ̸= ∅, then we define αa,b

P (Q) (resp. ωa,b
P (Q)) as the first (resp. last) vertex v

of P with va,b ∈ X. In all other cases set αa,b
P (Q) := ωa,b

P (Q) := ⊥.
If P and Q are a, b-crossing, we further define ∂a,b

P (Q) (resp. ϖa,b
P (Q)) as the last

(resp. first) vertex of P before (resp. after) that intersection. If no such vertex exists, we
set ∂a,b

P (Q) := ⊥ (resp. ϖa,b
P (Q) := ⊥). In all these notations we will omit a, b, and Q if it

is clear from context.

▶ Observation 9. If P, Q are two paths with αa,b
P (Q) ̸= ⊥, then P [αa,b

P (Q), ωa,b
P (Q)] =a,b

Q[αa,b
Q (P ), ωa,b

Q (P )]. In particular, both of these subpaths are a, b-colored.

If P and Q are a, b-crossing, then Observation 9 characterizes the behavior of the “crossing
subpaths”. Let us now consider the remaining path segments before and after the crossing.
By Lemma 6 these segments have to lie in the rectangle areas # »sP ⋄

#              »

∂a,b
P (Q),

#               »

ϖa,b
P (Q) ⋄ # »

tP ,
# »sQ ⋄

#              »

∂a,b
Q (P ), and

#               »

ϖa,b
Q (P ) ⋄ # »

tQ which are displayed in Figure 4 (left and middle). We can
show that these areas are indeed pairwise disjoint.

▶ Lemma 10 (⋆). Let P and Q be two a, b-crossing paths. Then the sets
(

# »sP ⋄
#              »

∂a,b
P (Q)

)a,b

,( #               »

ϖa,b
P (Q) ⋄ # »

tP

)a,b

,
(

# »sQ ⋄
#              »

∂a,b
Q (P )

)a,b

, and
( #               »

ϖa,b
Q (P ) ⋄ # »

tQ

)a,b

are pairwise disjoint (or unde-
fined).

Unfortunately, when P and Q are a, b-noncrossing, then sP ⋄ tP and sQ ⋄ tQ are not
disjoint in general, see for example Figure 4 (right). To deal with this case, we show that
when splitting one path into two subpaths at the vertex δQ (see Figure 4 (right)), then we
get the desired properties that the respective rectangles do not intersect.

▶ Definition 11. Let P, Q be two colored paths and a, b ∈ [k]. The common a, b-area of P

and Q is ∆a,b(P, Q) := ( # »sP ⋄
# »
tP )a,b ∩ ( # »sQ ⋄

# »
tQ)a,b.

▶ Definition 12. Let P be an a-colored path and Q a b-colored path where (without loss of
generality) sP <a tP . Define B := {v ∈ V | v =b sP ∧v <a sP }∪{v ∈ V | v =b tP ∧v >a tP }.
Define δb,a

Q (P ) as the unique vertex in Q ∩B or as ⊥ if that intersection is empty.

▶ Lemma 13 (⋆). If P, Q are a, b-noncrossing paths with ∆a,b(P, Q) ̸= ∅, then δa,b
P (Q) ̸= ⊥

or δa,b
Q (P ) ̸= ⊥.

The next lemma shows that if P and Q are not crossing but have a common area ∆a,b,
then the path whose end vertex lies not in the common area ∆a,b does not enter ∆a,b at all.

▶ Lemma 14 (⋆). If P is an a-colored path and Q a b-colored path with δa,b
P (Q) ̸= ⊥, then(

# »sQ ⋄
# »
tQ

)a,b is disjoint from
(

# »sP ⋄
#             »

δa,b
P (Q)

)a,b

∪
( #             »

δa,b
P (Q) ⋄ # »

tP

)a,b

.

▶ Definition 15. Let P be an a-colored sP -tP -path and Q a b-colored sQ-tQ-path. We then
define Ca,b

P (Q) := {sP , tP , µa,b
P (Q) | µ ∈ {α, ω, ∂, ϖ, δ}} \ {⊥} .

The next proposition shows the sets Ca,b
P (Q) and Ca,b

Q (P ) “characterize” the crossing of P

and Q in the sense that any two shortest paths using these vertices have exactly the same
vertex coordinates in the crossing.
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▶ Proposition 16 (⋆). Let P and P ′ be a-colored sP -tP -paths, and let Q and Q′ be b-colored
sQ-tQ-paths. If Ca,b

P (Q) ⊆ P ′ and Ca,b
Q (P ) ⊆ Q′, then {v ∈ P ′ | v ∈a,b Q′} =a,b {v ∈ P |

v ∈a,b Q}.

We now have all ingredients for the proof of Theorem 1.

Proof of Theorem 1. Let I := (G = (V, E), k, ((s1, t1), (s2, t2)) be an instance of 2-DSP.
Compute #»v for all v ∈ V via two breadth-first searches in O(n + m) time. We assume
without loss of generality that G is connected. To ensure that we report I being a yes-instance
only if I is indeed a yes-instance, we perform a sanity-check in the very end to verify that
our guesses were correct. Hence, we only need to show that we find in O(nm) time a solution
to I if there is one. To this end, assume there are disjoint shortest si-ti-paths Pi for i ∈ [2].
By Lemma 7 we have three cases.

(Case 1): ζ(P1) ∩ ζ(P2) is empty. If ∆1,2(P1, P2) = ∅, then, by Lemma 6, a solution
can easily be found by two independent breadth-first-searches. Otherwise, we guess in O(n)
time the vertex δ1,2

P1
(P2) on P1 or δ2,1

P2
(P1) on P2 from Definition 12. By Lemma 13, at least

one of them exists (assume without loss of generality that δ1,2
P1

(P2) exists). By Lemma 14,
δ1,2

P1
(P2) ̸= ⊥ and any shortest s1-δ1,2

P1
(P2)-path (δ1,2

P1
(P2)-t1-path) is vertex disjoint from any

shortest s2-t2-path. Hence, we now can check in O(m) time whether I is a yes-instance.
(Case 2): ζ(P1) ∩ ζ(P2) has no point with integer coordinates. Then, we guess the four

points surrounding ζ(P1)∩ζ(P2) in O(n) time. This can be done in O(n) time by guessing the
vertex ∂1,2

P1
(P2) and branch into two cases. Let psi

and pti
be the guessed points used by Pi

such that pi
si

+ 1 = pi
ti

, for i ∈ [2]. Now we construct a directed graph D on the vertices V

such that there is an arc (v, w) if {v, w} ∈ E, #»v i + 1 = #»wi, and
#           »

{v, w} ⊆ #»si ⋄ psi
∪ pti

⋄ #»
ti for

some i ∈ [2]. Note that D is acyclic and that each si-ti-path in D corresponds (same set of
vertices) to a shortest si-ti-path in G, and has an arc (v, w) such that #»v = psi

and #»w = pti
.

Hence, by Lemma 10 we can simply use two breadth-first-searches from s1 and s2 to find a
solution.

(Case 3): ζ(P1) ∩ ζ(P2) has at least one point with integer coordinates. Without loss
of generality, we assume that

#                »

α1,2
P1

(P2) =
#                »

α1,2
P2

(P1), otherwise we swap the terminal pairs in
the input instance. We guess in O(n) time the discrete point p ∈ ζ(P1)1,2 ∩ ζ(P2)1,2 such
that #»p 1 is minimized. Let Ai := #»si ⋄ #»p and Bi := #»p ⋄ #»

ti , for all i ∈ [2]. Now we construct a
directed acyclic graph D on the vertices V such that there is an arc (v, w) if for some i ∈ [2]
we have (1) {v, w} ∈ E, (2) #»v i + 1 = #»wi, and (3) (a) #»v ∈ Ai \Bi and #»w ∈ Ai or (b) #»v ∈ Bi

and #»w ∈ Bi \Ai.
To add the edges with coordinates in A1 ∩ B2, A2 ∩ B1 to D, we observe that our

assumption implies that ζ(P1) ∩ ζ(P2) ⊆ B1 ∩B2. Hence, all edges where the vertices have
coordinates in Ai ∩ Bj can only be used by either P1 or P2, for each {i, j} = [2]. Thus,
we branch in four cases and add the edges accordingly. Note that D is acyclic and that
each si-ti-path in D corresponds to a shortest si-ti-path in G going through point p. Hence,
by Lemma 10 I is yes-instance if and only if there are disjoint si-ti-path in D, for all i ∈ [2].
Thus, we apply an O(n + m)-time algorithm of Tholey [14] for 2-Disjoint Paths on a DAG.
This yields a total running time of O(nm). ◀

4 The Geometry of Many Shortest Paths

In the previous section, we looked at two shortest paths P and Q from sP to tP and sQ and tQ

respectively. We showed that selecting at most six vertices from P and Q (three per path;
see Definition 15) is sufficient to ensure that each pair of shortest sP -tP - and sQ-tQ-paths
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that also contain the vertices Ca,b
P (Q) and Ca,b

Q (P ), respectively, “behave” like P and Q in
the sense of using the same coordinates or not (see Proposition 16). In this section, we define
a set C, |C| ∈ O(k · k!), that basically ensures the same properties for k paths. To formalize
our goal in this section, we introduce the concept of avoiding paths.

▶ Definition 17 (I-avoiding). Let ∅ ⊂ I ⊆ [k]. We say that two paths P and Q are I-avoiding
if p /∈I

Q holds for every internal vertex p of P and q /∈I
P for every internal vertex q of Q.

We further call two vertex pairs (sp, tp) and (sq, tq) I-avoiding, if ( #»sp
I ⋄ #»

tp
I)∩ ( #»sq

I ⋄ #»
tq

I) ⊆
{ #»sp

I ,
#»
tp

I} ∩ { #»sq
I ,

#»
tq

I}.

Note that being I-avoiding implies being I ′-avoiding for all I ′ ⊇ I. We use avoiding as a
shorthand for [k]-avoiding. The reason for defining avoiding in such a way that the endpoints
of the paths play a special role is as follows: When partitioning a colored path P = v1 . . . vℓ

into two subpaths P ′ = v1 . . . vj and P ′′ = vjvj+1 . . . vn, then these two subpaths obviously
share exactly one vertex, namely vj . However, we still want to call the pairs ( #»v1, #»vj) and ( #»vj , #»vℓ)
avoiding since these two subpaths cannot have any other intersection besides #»vj .

Two paths P1 and P2 are internally disjoint if neither of them contains an internal vertex
of the other path. Avoiding paths are clearly internally disjoint.

▶ Observation 18. Let P, Q be two avoiding paths. Then P is internally disjoint from Q.

Moreover, avoiding vertex pairs (s, t) and (u, w) ensure that the corresponding shortest
s-t- and u-v-paths are internally disjoint.

▶ Lemma 19 (⋆). Let (s, t) and (u, w) be two colored pairs of vertices. If (s, t) and (u, w)
are avoiding, then each shortest s-t-path is internally disjoint from each shortest u-w-path.

With the notation of avoiding pairs, we can formulate our goal for this section. To
this end, fix a solution P = (Pi)i∈[k] for the k-DSP instance (G, (si, ti)i∈[k]), that is, Pi is
the si-ti-path in this solution. Essentially, we want to partition the paths in P into subpaths
and assign labels (subsets of [k]) to each subpath such that the following holds:
(1.) Let P be a subpath with labels Φ ⊆ [k]. For each a ∈ Φ, P is a-colored.
(2.) Let P and Q be subpaths from sP to tP and sQ and tQ with labels ΦP , ΦQ ⊆ [k]

respectively. If ΦP ̸= ΦQ, then (sP , tP ) and (sQ, tQ) are avoiding.
Note that (2.) will be the central argument in our algorithm for k-DSP. The algorithm
guesses the endpoints of these subpaths and based on (2.), the algorithm can compute the
interior points of subpaths with different label sets independently of each other.

Note that for k = 2 the partition of P1 and P2 along the sets C1,2
P1

(P2) and C1,2
P2

(P1),
respectively, satisfies the above two points: Each subpath of Pi, i ∈ [2], has label i. Moreover,
the subpaths between the α and ω-vertices have both labels 1 and 2. Hence, (1.) above is
satisfied. Furthermore, (2.) essentially follows from Proposition 16.

We now give some intuition on how to lift this to arbitrary fixed k leading to Definition 20,
a generalization of Definition 15. Initially, each path Pi has label i. Whenever two paths Pi

and Pj in the solution intersect in the (i, j)-projection (that is, we have α and ω vertices),
then the subpaths in the intersection gets both labels i and j. If a third path P ′ also
intersects with the subpath of Pj that intersects with Pi, then we try to use the intersections
to move the label i via path Pj to some subpath of P ′. Generalizing this, we consider for
each sequence σ = (ℓ1, . . . , ℓh) whether label ℓ1 could be “transported” from Pℓ1 to Pℓ2 ,
from Pℓ2 to Pℓ3 , . . ., and from Pℓh−1 to Pℓh

. The reason for doing it this way is that we will
have for each such sequence σ = (ℓ1, . . . , ℓh) at most one consecutive subpath on Pℓh

that
has label ℓ1 transported via σ. While the idea of transporting labels would also work with
triplets (transport label a via path Pb to path Pc), we do not have any bound on the number
of resulting subpaths (as for each triplets there might be many such subpaths).
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In order to formalize this idea and define the crossing set C of these paths (Definition 20),
we need some notation. Let σ = (ℓ1, . . . , ℓh) be a sequence. We define set(σ) := {ℓ1, . . . , ℓh}
to be the set with all entries of σ. For a path P = v0 . . . vh and 1 ≤ i < j ≤ h let P [vi, vj ] :=
vi . . . vj be the subpath of P with endpoints vi and vj . The set C for each permutation σ of
each Φ ⊆ [k] is recursively defined as follows. Therein, T describes the first and last vertex
on the respective subpath having exactly the set of labels in Φ.

▶ Definition 20. For each Φ ⊆ [k] and each permutation σ = (ℓ1, . . . , ℓh) of Φ set:
If h = 1 with σ = (i), then set Cσ := T (σ) := {si, ti}.
If h = 2 with σ = (i, j), then set T (σ) := {αi,j

Pj
(Pi), ωi,j

Pj
(Pi)}, and Cσ := Ci,j

Pj
(Pi) .

If h ≥ 3, then let σstart := (ℓ1, . . . , ℓh−1), σend := (ℓ2, . . . , ℓh). If T (σstart) = {⊥}
or T (σend) = {⊥} or Q := Pℓh−1 [T (σstart)] ∩ Pℓh−1 [T ((ℓh, ℓh−1))] = ∅, then set T (σ) :=
Cσ := {⊥}. Otherwise, let P := Pℓh

[T (σend)]. Then set T (σ) := {αℓ1,ℓh

P (Q), ωℓ1,ℓh

P (Q)}.
Moreover, set Cσ := Cℓ1,ℓh

P (Q) ∪ Cℓ1,ℓh

Q (P ).
The set C :=

⋃
σ Cσ is the crossing set of P.

As subsequently shown, when transporting the labels via a sequence σ = (ℓ1, . . . , ℓh),
the intersecting subpath in the target path Pℓh

agrees in all coordinates in set(σ) with the
subpath of Pℓh−1 where the label is transported from.

▶ Lemma 21 (⋆). Let σ := (ℓ1, . . . , ℓh) be any permutation of any Φ ⊆ [k] with |Φ| = h ≥ 2.
If T (σ) ̸= {⊥}, then Pℓh

[T (σ)] =Φ Q′ for some subpath Q′ of Q := Pℓh−1 [T (σstart)] ∩
Pℓh−1 [T ((ℓh, ℓh−1))] where σstart := (ℓ1, . . . , ℓh−1).

We next formalize the notions used in the context of the intersection of C with the
paths P.

▶ Definition 22. An i-marble path T is a set of vertices such that {si, ti} ⊆ T and for
each u, v ∈ T the pair (u, v) is i-colored. A segment S of a i-marble path T is a subset
of T containing two vertices denoted start(S) and end(S) and all vertices v ∈ T with
start(S) <i v <i end(S). A segment is minimal if it contains exactly two vertices.

We say a segment is i-colored, if (start(S), end(S)) is i-colored. We say two segments S

and S′ are avoiding if the minimal subsegments of S and S′ are pairwise avoiding.
We say a path P follows S if it is i-colored, has end vertices start(S) and end(S),

and S ⊆ V (P ).

To prove the central statement of this section, we need to formalize the labels of a segment.
To this end, let Si be a segment of Pi. Then set

labels[Si] := {a | ∃σ = (a = ℓ1, . . . , ℓh = i), h ≥ 1: Si ⊆ Pi[T (σ)]}.

▶ Proposition 23 (⋆). For i, j ∈ [k] let Si ⊆ V (Pi) ∩ C and Sj ⊆ V (Pj) ∩ C be two minimal
segments. If labels[Si] ̸= labels[Sj ], then Si and Sj are avoiding.

5 The Algorithm: Utilizing the Geometry

In this section, we finally present the algorithm behind Theorem 2. Pseudo-code for this
algorithm is listed in Algorithm 1. In a nutshell, we first guess all marble paths Ti and
the map T corresponding to the crossing set C of some solution (if one exists). Then, we
find all minimal segments of each marble path Ti and partition them such that (1) all
minimal segments in the same part of the partition are strictly monotone in the same set of
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Algorithm 1 Our algorithm for k-DSP.

1 function solve(G, (si, ti)i∈[k])
2 foreach guess (Ti)i∈[k], Ends of the crossing set do

/* We assume now that the guess is correct, that is, for a
solution P = (Pi)i∈[k] we have Ti = C ∩ Pi, i ∈ [k], & Ends = T */

3 Pi = ∅, for all i ∈ [k]
4 foreach minimal segment S of some Ti, i ∈ [k] do
5 marks[S]← ∅
6 foreach sequence σ = (ℓ1, ℓ2, . . . , i) with S ⊆ Ends(σ) do
7 marks[S]← marks[S] ∪ set(σ)
8 j ← min marks[S]
9 x← arg min{ #»v j | v ∈ {start(S), end(S)}}

10 y ← arg max{ #»v j | v ∈ {start(S), end(S)}}
11 Pj = Pj ∪ {(x, y)}
12 foreach j ∈ [k] do Order Pj = ((x1, y1), (x2, y2), . . .) so that # »x1

j ≤ # »x2
j ≤ . . .

13 if all instances (D(G, i),Pi), i ∈ [k] of |Pi|-Disjoint Paths on i-layered
DAGs are yes-instances and the combined solutions form a solution of
k-DSP then return yes

14 return no

coordinates, and (2) two minimal segments in distinct parts of the partition are avoiding.
The crucial improvement over the algorithm of Lochet [12] is that our partition is much
smaller. Afterwards, we find shortest disjoint paths for each part of our partition separately
via dynamic programming.

To this end, we introduce c-layered DAGs and the p-Disjoint Paths on DAGs prob-
lem. For a graph G with coordinates #»v (as defined in Section 3) for all v ∈ V , the
c-layered DAG D(G, c) of G is the directed graph (V (G), A), where (x, y) ∈ A if and only
if {x, y} ∈ E(G) and #»y c − #»x c = 1. Crucial here is the following simple observation.

▶ Observation 24. A path P in G is c-colored if and only if (V (P ), {(u, v) | {u, v} ∈
E(P ), #»v c − #»u c = 1}) is a path in the c-layered DAG of G.

In p-Disjoint Paths on DAGs we are given a directed acyclic graph D and a list (si, ti)i∈[p]
of (possibly intersecting) terminal pairs, and ask whether there are pairwise internally
disjoint si-ti-path in D, for each i ∈ [p]. Fortune et al. [7] showed a nO(p)-time algorithm for
p-Disjoint Path on DAGs. A straight-forward dynamic program yields a more specific
running time of O(np+1).

▶ Lemma 25 (⋆). An instance of p-Disjoint Paths on DAGs on a graph with n vertices
can be solved in O(np+1) time.

▶ Lemma 26 (⋆). Algorithm 1 runs in O(k · n16k·k!+k+1) time.

For the correctness of Algorithm 1, we need to show that each part of the partition of
minimal segments can be solved independently. This follows from Proposition 23 together
with the fact that Algorithm 1 exhaustively tries all possibilities for the crossing set C.
Together with Lemma 26, this implies Theorem 2.
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6 Conclusion

We provided an improved polynomial-time for k-DSP. However, while the running time of
our algorithm can certainly be slightly improved by some case distinctions and a more careful
analysis, the algorithm is still far from being practical. Reducing the factor in the exponent to
a polynomial in k is a clear challenge for future work. Considering the fine-grained complexity
of 2-DSP, it would be interesting to know whether there are running time barriers based on
e. g. the Strong Exponential Time Hypothesis.

Concerning generalizations of k-DSP, we believe that we can modify our algorithm in a
straight-forward way to work with positive edge-lengths. However, the case of non-negative
edge-lengths seems much more difficult. Our basic geometric observations made in Section 3
crucially depend on the fact that we are looking for shortest paths. Thus, if there are
no k disjoint shortest paths, then computing k disjoint paths minimizing their total length
in polynomial time is still an open problem for k ≥ 3 (for k = 2 Björklund and Husfeldt [4]
provided a randomized O(n11) time algorithm and moreover proved that this problem is
contained in NC if the graph is planar and cubic [3]).
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Abstract
We present a framework for deterministically rounding a dynamic fractional matching. Applying our
framework in a black-box manner on top of existing fractional matching algorithms, we derive the
following new results: (1) The first deterministic algorithm for maintaining a (2 − δ)-approximate
maximum matching in a fully dynamic bipartite graph, in arbitrarily small polynomial update time.
(2) The first deterministic algorithm for maintaining a (1 + δ)-approximate maximum matching
in a decremental bipartite graph, in polylogarithmic update time. (3) The first deterministic
algorithm for maintaining a (2 + δ)-approximate maximum matching in a fully dynamic general
graph, in small polylogarithmic (specifically, O(log4 n)) update time. These results are respectively
obtained by applying our framework on top of the fractional matching algorithms of Bhattacharya
et al. [STOC’16], Bernstein et al. [FOCS’20], and Bhattacharya and Kulkarni [SODA’19].

Previously, there were two known general-purpose rounding schemes for dynamic fractional
matchings. Both these schemes, by Arar et al. [ICALP’18] and Wajc [STOC’20], were randomized.

Our rounding scheme works by maintaining a good matching-sparsifier with bounded arboricity,
and then applying the algorithm of Peleg and Solomon [SODA’16] to maintain a near-optimal
matching in this low arboricity graph. To the best of our knowledge, this is the first dynamic
matching algorithm that works on general graphs by using an algorithm for low-arboricity graphs as
a black-box subroutine. This feature of our rounding scheme might be of independent interest.
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1 Introduction

The central question in the area of dynamic algorithms is to understand how can we efficiently
maintain a good solution to a computational problem, when the underlying input changes
over time [26, 28]. In the past decade, an extensive body of work in this area has been
devoted to the study of dynamic matching [1, 5, 6, 7, 8, 10, 11, 17, 22, 24, 34, 35, 38, 39].

A matching M ⊆ E in G is a set of edges that do not share any common endpoint. In the
dynamic matching problem, the input is a graph G = (V, E) that keeps getting updated via
edge insertions/deletions, and the goal is to maintain an approximately maximum matching
in G with small (preferably polylogarithmic) update time, where the phrase “update time”
refers to the time it takes to handle an “update” (edge insertion/deletion) in G.1 From the
current landscape of dynamic matching, we can identify a common template that underpins
a number of existing algorithms for this problem. This template consists of three steps.

1 An algorithm has an “amortized” update time of O(τ) iff starting from an empty graph, it can handle
any sequence of κ edges insertions/deletions in O(τ · κ) total time.
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Step (I). Design an efficient dynamic algorithm that maintains an approximately maximum
fractional matching2 w : E → [0, 1] in the input graph G = (V, E). All the known algorithms
for this first step are deterministic [9, 12, 13, 15, 14, 16, 23].

Step (II). Maintain a sparse (bounded-degree) subgraph S = (V, ES) of the input graph,
with ES ⊆ E, that approximately preserves the size of maximum matching [3, 40]. In a bit
more details, the subgraph S should have the property that µ(S) is very close to size(w),
where µ(S) denotes the size of maximum (integral) matching in S, and size(w) =

∑
e∈E w(e)

denotes the size of the fractional matching w from the previous step. Such a subgraph S

is often referred to as a matching-sparsifier of G [4]. There are two known algorithms for
this second step and both of them are randomized, in sharp contrast to Step (I). Specifically,
Arar et al. [3] designed a randomized rounding scheme for sparsifying a dynamic fractional
matching. Their algorithm works only in the oblivious adversary setting, where the future
updates cannot depend on the past actions taken by the algorithm. This result was very
recently improved upon by Wajc [40], who presented an elegant dynamic rounding scheme
for Step (II) that, although randomized, works in a much more general adaptive adversary
setting, where the future updates to the algorithm can depend on all its past random bits.

Step (III). Maintain a near-optimal matching in the (bounded-degree) sparsifier S from the
previous step, using a known algorithm by Gupta et al. [25], which has O(∆) update time
on dynamic graphs with maximum degree ≤ ∆. Since S has bounded degree, the third step
incurs only a small overhead in the update time. The algorithm in [25] is also deterministic.

A natural question arises from the preceding discussion. Can we design an efficient
deterministic dynamic algorithm for Step (II)? Since Step (I) and Step (III) are already
deterministic, an efficient deterministic algorithm for Step (II) will allow us to derandomize
multiple existing results in the literature on dynamic matching. We resolve this question in
the affirmative. Specifically, our main result is summarized in the theorem below.

▶ Theorem 1. Fix any small constant δ > 0. Consider a dynamic graph G = (V, E) on
n nodes and a (dynamic) fractional matching w in G. In this setting, an update either
inserts/deletes an edge in G = (V, E) or changes the weight w(e) of an existing edge e ∈ E.
We can deterministically maintain a subgraph S = (V, ES) of G, with ES ⊆ E, such that:
1. There exists a fractional matching h′ : ES → [0, 1] in S with size(w) ≤ (1 + δ) · size(h′).
2. If w is a (δ, δ)-approximate maximal matching in G, then µ(G) ≤ (2 + δ) · µ(S).
3. The arboricity of S is O(log2 n).
4. Every update in G or w, on average, leads to O(log2 n) updates in S.
5. Our dynamic algorithm for maintaining S has O(log2 n) amortized update time.

Bounded arboricity matching-sparsifiers. We will shortly explain part-(2) of Theorem 1,
which uses the notion of a (δ, δ)-approximate maximal matching that has not been defined
yet. For now, we focus on an intriguing feature of Theorem 1, namely, that it only maintains
a subgraph S with bounded arboricity.3 This is in sharp contrast to all previous work on
dynamic matching-sparsifiers: they satisfy the strictly stronger requirement of bounded

2 A fractional matching w in G assigns a weight w(e) ∈ [0, 1] to every edge e ∈ E, ensuring that the total
weight assigned to all the edges incident on any given node is ≤ 1.

3 Informally, an undirected graph G′ = (V ′, E′) has arboricity κ if we can assign a direction to each of its
edges e ∈ E′ in such a way that every node v ∈ V ′ gets an out-degree of at most O(κ). If a graph has
maximum degree at most κ, then its arboricity is also O(κ), but not vice versa.
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maximum degree [3, 40]. Our algorithm exploits this feature in a crucial manner, allowing
certain nodes to have large degrees in S while ensuring that the arboricity of S remains at
most O(log2 n). This does not cause any problem in the overall scheme of things, however,
because Peleg and Solomon [37] have shown how to deterministically maintain a (1 + δ)-
approximate maximum matching in O(∆) update time in a dynamic graph with arboricity
≤ ∆. Their algorithm allows us to efficiently maintain a near-optimal matching in S.

To summarize, there is an existing line of work on dynamic matching which deal with the
special class of low-arboricity graphs [29, 34, 37]. Theorem 1 shows that if we have a good
dynamic matching algorithm for low-arboricity graphs, then we can use it in a black-box
manner to design better dynamic matching algorithms for general graphs as well.

Implications of Theorem 1. We start by focussing on bipartite graphs. If a graph G is
bipartite, then the size of a maximum fractional matching in G is equal to µ(G). Accordingly,
part-(1) of Theorem 1 implies that if the input graph G is bipartite, then our dynamic
algorithm maintains a sparsifier S = (V, ES) such that size(w) ≤ (1 + δ) · µ(S). We can now
run the dynamic algorithm from [37] on S, which has small arboricity, to efficiently maintain
a near-optimal (integral) matching M ⊆ ES with size(w) ≤ (1 + δ) · |M |.

Bhattacharya et al. [14] gave a deterministic algorithm for maintaining (2−ϵ)-approximate
maximum fractional matchings in bipartite graphs with arbitrarily small polynomial update
time. Applying our dynamic rounding framework on top of this result from [14], we get the
first deterministic algorithm for dynamic (integral) matchings in bipartite graphs with the
same approximation ratio and similar update time, as summarized in the theorem below.

▶ Theorem 2. For every constant k ≥ 10, there exists a βk ∈ (1, 2), and a deterministic
dynamic algorithm that maintains a βk-approximate maximum matching in an n-node bipartite
graph with O(n1/k · log4 n) amortized update time.

Next, very recently Bernstein et al. [9] showed how to maintain a (1 + δ)-approximate
maximum fractional matching in a bipartite graph with O(log3 n) amortized update time
in the decremental setting, where the input graph only undergoes edge-deletions. Applying
our dynamic rounding framework on top of their result, we get the first deterministic
algorithm for maximum (integral) matching in an analogous decremental setting, with the
same approximation ratio and similar update time. This is stated in the theorem below.

▶ Theorem 3. We can deterministically maintain a (1 + δ)-approximate maximum matching
in a decremental bipartite graph on n nodes with O(log7 n) amortized update time.

Moving on to general graphs, we note that if a graph G = (V, E) is non-bipartite, then
the size of a maximum fractional matching can be as large as (3/2) · µ(G). Thus, if we are
to naively apply our dynamic rounding framework based on the guarantee given to us by
part-(1) of Theorem 1, then we will lose out on a factor of 3/2 in the approximation ratio.
This is where part-(2) of Theorem 1 comes in handy. Specifically, as in [3, 40], we invoke the
notion of an (α, β)-approximate maximal matching (see Definition 6).

To see why this notion is useful for us, consider the result of Bhattacharya and
Kulkarni [16], who designed a deterministic dynamic algorithm for (2 + δ)-approximate max-
imum fractional matching, for small constant δ > 0, in general graphs with O(1) amortized
update time. Furthermore, the fractional matching maintained by [16] is (δ, δ)-approximately
maximal. Thus, applying Theorem 1 on top of this result from [16], we can deterministically
maintain a sparsifier S = (V, ES) of the input graph G with µ(G) ≤ (2 + δ) · µ(S). We can
now maintain a near-optimal maximum matching M ⊆ ES in S, using the algorithm of [37].
Since µ(G) ≤ (2 + δ) · µ(S), M will be a (2 + δ)-approximate maximum (integral) matching
in G. Putting everything together, we get the result summarized in the theorem below.
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▶ Theorem 4. We can deterministically maintain a (2 + δ)-approximate maximum matching
in an n-node dynamic graph with O(log4 n) amortized update time, for small constant δ > 0.

Prior to our work, the only deterministic dynamic algorithm for (2 + δ)-approximate
maximum matching in general graphs with polylogarithmic update time was due to Bhat-
tacharya et al. [14]. The exact polylogarithmic factor in the update time of [14] was huge
(more than log20 n), and the algorithm of [14] was significantly more complicated than ours.

Perspective. Existing techniques for proving update-time lower bounds for dynamic prob-
lems cannot distinguish between deterministic and randomized algorithms [2, 27, 30, 31, 36].
Thus, understanding the power of randomization in the dynamic setting is an important
research agenda, which comprises of two separate strands of work. (1) Studying the power
of the oblivious adversary assumption while designing a randomized algorithm for a given
dynamic problem. (2) Studying the separation between randomized algorithms that work
against adaptive adversaries on the one hand, and deterministic algorithms on the other.
Our work falls under the second category. A recent breakthrough result under this category
has been a deterministic algorithm for dynamic minimum spanning forest with worst-case
subpolynomial update time [18, 21]. This improves upon earlier work which achieved the
same update time guarantee for dynamic minimum spanning forest, but using a randomized
algorithm that works against adaptive adversary [32]. There are other well-studied dynamic
problems where currently we have polynomial gaps between the update times of the best-
known deterministic algorithm and the best-known randomized algorithm against adaptive
adversary [19, 20]. Bridging these gaps remain challenging open questions.

Our Techniques. The key ingredient in our rounding scheme is a simple degree-split
procedure. Given any graph G′ = (V ′, E′) as input, this procedure runs in linear time and
outputs a subgraph G′′ = (V ′, E′′) where the degree of every node v ∈ V ′ drops by a factor
of (1/2) · (1± ϵ), provided the initial degree of v in G′ was larger than (1/ϵ). See Algorithm 3.

Using this degree-split procedure, we first design a simple static algorithm for sparsifying
a uniform fractional matching w (which assigns the same weight to every edge) in an input
graph G = (V, E). This works in rounds. In each round, we start by repeatedly removing
the nodes with degree at most (1/ϵ), until we are left with a graph G′ = (V ′, E′) where every
remaining node has degree larger than (1/ϵ). We now apply the degree-split procedure on
G′ = (V ′, E′) to obtain a subset of edges E′′ ⊆ E′, double the weight of every edge e ∈ E′′,
and discard the edges e ∈ E′′ \ E′ from the support of the fractional matching. Since the
degree-split procedure reduces the degree of every node in V ′ by (approximately) a factor
of 1/2, it follows that we (approximately) preserve the total weight received by every node
while implementing a given round. We can show that if we continue with this process for
(roughly) logarithmic many rounds, then we end up with a bounded-arboricity subgraph of
the input graph G that approximately preserves the size of the fractional matching w. In
the dynamic setting, we try to mimic this static algorithm in a natural lazy manner.

When the input is a dynamic graph G and a (not necessarily uniform) fractional matching
w, then, roughly speaking, we first discretize w and then decompose it into O(log n) many
uniform fractional matchings, defined on mutually edge-disjoint subgraphs of G. We run a
dynamic algorithm for sparsifying a uniform fractional matching on each of these subgraphs,
and we maintain the union of the outputs of all these O(log n) many dynamic sparsifiers.
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2 Notations and Preliminaries

Throughout this paper, we let G = (V, E) denote the input graph, and n = |V | will be
the number of nodes in G. For any v ∈ V , E′ ⊆ E and V ′ ⊆ V , we let E′(v, V ′) =
{(u, v) ∈ E′ : u ∈ V ′} denote the set of edges in E′ that are incident on v and have their
other endpoints in V ′. To ease notations, we define E′(v) := E′(v, V ). We also define
degE′(v, V ′) := |E′(v, V ′)| and degE′(v) := |E′(v)|. Furthermore, given any subset of edges
E′ ⊆ E, we let V (E′) =

⋃
(u,v)∈E′{u, v} denote the set of endpoints of the edges in E′.

Throughout the rest of this paper, we will consider δ to be some small constant, and we will
fix two more parameters β and ϵ as stated below.

10−3 ≥ δ = 20 · β = 5000 · ϵ · log n > 0. (1)
Given any subset of edges E′ ⊆ E, a weight-function w′ : E′ → [0, 1] assigns a (possibly
fractional) weight 0 ≤ w′(e) ≤ 1 to every edge e ∈ E′. We say that E′ is the support
of w′ and write Support(w′) := E′. The size of the weight-function w′ is defined as
size(w′) :=

∑
e∈E′ w′(e). For any node v ∈ V , let w′(v) :=

∑
(u,v)∈E′ w′(u, v) denote the

total weight received by v from all its incident edges under the weight-function w′. We say
that w′ is a fractional matching in the graph G′ := (V, E′) iff w′(v) ≤ 1 for all v ∈ V . Since
E′ ⊆ E, we often abuse notation to say that such a weight-function w′ is a fractional matching
in G = (V, E) as well. For any 0 ≤ λ ≤ 1, we say that w′ is a λ-uniform weight-function (or,
fractional matching, if w′(v) ≤ 1 for all v ∈ V ) iff w′(e) = λ for all edges e ∈ E′.

Let µ(G′) and µf (G′) respectively denote the size of maximum matching and the size of
maximum fractional matching in a graph G′. We will use the following well-known theorem.
▶ Theorem 5. Consider any graph G′. If G′ is bipartite, then µ(G′) = µf (G′). Otherwise,
we have µ(G) ≤ µf (G′) ≤ (3/2) · µ(G).

We will use the notion of an approximately maximal matching as in Arar et al. [3].
▶ Definition 6. Consider any graph G′ = (V ′, E′) and a fractional matching w′ in G′. We
say that w′ is a (α, β)-approximately maximal matching in G′ iff the following holds. For
every edge (u, v) ∈ E′, either (1) {w′(u, v) ≥ β}, or (2) {there is at least one endpoint
x ∈ {u, v} such that w′(x) ≥ 1− α and w′(x, y) < β for all edges (x, y) ∈ E′ incident on x}.

An orientation of a graph G′ = (V ′, E′) assigns a direction to every edge (u, v) ∈ E′. For
the rest of this paper, whenever we say that a graph G′ has arboricity O(κ), we mean that
G′ admits an orientation of its edges where the maximum out-degree of a node is O(κ) [33].

3 A Static Algorithm for Sparsifying a Uniform Fractional Matching

In this section, we present a simple static algorithm for sparsifying a uniform fractional
matching. This will form the basis of our dynamic algorithm in Section 4 and Section 5.

As input, we receive a graph G = (V, E) and a λ-uniform fractional matching w : E → [0, 1]
in G, for some λ ∈ [δ/n2, β). Define L = L(λ) to be the largest integer k such that
β/2 ≤ 2kλ < β. Since δ is a constant and δ/n2 ≤ λ < β, from (1) we infer that L = O(log n).

The algorithm proceeds in rounds i ∈ {0, . . . , L− 1}. Before the start of round i = 0, we
initialize E(≥0) := E, V (≥0) := V , G(≥0) :=

(
V (≥0), E(≥0)) and γ(0) := w. Thus, γ(0) is a λ-

uniform fractional matching in G. In each round i, we identify a subset of edges F (i) ⊆ E(≥i)

that get frozen, in the sense that they are not considered in subsequent rounds. Define
F (i) := E(≥i) ⋃i−1

j=0 F (j) and H(i) := (V,F (i)) for all i ∈ [0, L]. The following invariant will
be satisfied in the beginning of each round i ∈ [0, L]. The weight-function γ(i) : F (i) → [0, 1]
ensures that γ(i)(v) ≃ w(v) for all v ∈ V . Clearly, this invariant holds for i = 0.
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Implementing a given round i ∈ [0, L − 1]. Initialize G′ = (V ′, E′) := G(≥i). There are
two distinct steps in this round. During the first step, we keep iteratively removing the nodes
with degree ≤ (1/ϵ) from G′. Let V (i) ⊆ V (≥i) be the collection of nodes that get removed
from G′ in this manner, and let F (i) ⊆ E(≥i) denote the set of edges incident on V (i). Define
V (≥i+1) := V (≥i) \ V (i). At the end of this first step, the status of G′ = (V ′, E′) is as follows:
V ′ = V (≥i+1) and E′ = E(≥i) \ F (i). Intuitively, we can afford to remove the nodes V (≥i)

from G′ because the edges in F (i) admit an orientation with maximum out-degree (1/ϵ). At
the end of this first step every node in G′ has degree ≥ (1/ϵ).

In the second step, we call a subroutine Degree-Split(E′), which returns a subset of
edges E′′ ⊆ E′ with the following property: degE′′(v) ≃ (1/2) · degE′(v) for all nodes v ∈ V ′.
We will shortly see how to implement this Degree-Split subroutine. For now, we move ahead
with the description of round i. We set E(≥i+1) := E′′ and G(≥i+1) :=

(
V (≥i+1), E(≥i+1)).

Next, we discard the edges in E′\E(≥i+1) from the support of γ and double the weights on the
remaining edges in E(≥i+1). This leads us to a new weight-function γ(i+1) : F (i+1) → [0, 1]
in H(i+1) = (V,F (i+1)) which is defined as follows. For every edge e ∈ F (≥i+1), we have:

γ(i+1)(e) =
{

2 · γ(i)(e) if e ∈ E(≥i+1);
γ(i)(e) else if e ∈

⋃i
j=0 F (j).

(2)

At this point, if i < L−1, then we are ready to proceed to the next round i + 1. Otherwise, if
i = L− 1, then we terminate the algorithm after setting F (L) := E(≥L) and V (L) := V (≥L).

Define F :=
⋃L

i=0 F (i), H := (V, F ), and h := γ(L). We will show that H = (V, F ) is a
good matching-sparsifier for the λ-uniform matching w in the input graph G = (V, E). The
relevant pseudocodes are summarized in Algorithm 1, Algorithm 2 and Algorithm 3. For
clarity of exposition, in some of these pseudocodes we use one additional notation h(i), which
is basically a weight-function h(i) : F (i) → [0, 1] such that h(i)(e) = 2iλ for all e ∈ F (i).

Implementing the Degree-Split(E′)subroutine. Consider any graph G∗ = (V ∗, E∗). A
walk W in G∗ is a set of distinct edges {(u0, v0), . . . , (uk, vk)} ⊆ E∗ such that vi = ui+1
for all i ∈ [0, k − 1]. Let W (even) = {(u2i, v2i) : i ∈ [0, ⌊k/2⌋]} denote the collection of
even numbered edges from this walk W . The walk W is said to be maximal in G∗ iff
degE∗\W (u0) = degE∗\W (uk) = 0. When we call Degree-Split(E′), it first partitions the
edge-set E′ into a collection of walks W as specified in Algorithm 3. It then returns the set
E′′ ⊆ E′, which consists of all the even numbered edges from all the walks W ∈ W .

▷ Claim 7. The subroutine Degree-Split(E′) runs in O(|E′|) time.

Proof. We can compute a maximal walk W in a given graph G∗ = (V ∗, E∗) in O(|W |) time.
Hence, the total running time of Algorithm 3 is given by

∑
W ∈W O(|W |) = O(|E′|). ◁

▷ Claim 8. In Algorithm 3, degE′′(v) ∈
[

degE′ (v)
2 − 1, degE′ (v)

2 + 1
]

for all nodes v ∈ V (E′).

Proof. Consider any graph G∗ = (V ∗, E∗) and a walk W = {(u0, v0), . . . , (uk, vk)} in G∗. Let
End(W ) = {u0, vk} denote the endpoints of this walk W , and let V (W ) =

⋃k
i=0{ui}

⋃k
i=0{vi}

denote the set of all nodes touched by W . Note that degW (even)(v) = (1/2) · degW (v) for all
nodes v ∈ V (W ) \ End(W ), and degW (even)(v) ∈ [(1/2) · degW (v)− 1, (1/2) · degW (v) + 1]
for all nodes v ∈ End(W ). Now, fix any node v ∈ V (E′), and observe that:
1. degE′′(v) =

∑
W ∈W degW (even)(v) and degE′(v) =

∑
W ∈W degW (v).

2. The definition of a maximal walk implies that v ∈ End(W ) for at most one W ∈ W .
These observations, taken together, imply the claim. ◁
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Algorithm 1 Static-Uniform-Sparsify(G = (V, E), λ), where δ/n2 ≤ λ < β.

Let w : E → [0, 1] be a λ-uniform fractional matching in G.
Initialize V (≥0) := V and E(≥0) := E.
Initialize a weight-function h(0) : E(≥0) → [0, 1] so that h(0)(e) := λ for all e ∈ E(≥0).
Let L := L(λ) be the unique nonnegative integer k such that β/2 ≤ 2kλ < β.
Call the subroutine Rebuild(0, λ). (see Algorithm 2)
Define F :=

⋃L
i=0 F (i), and H := (V, F ).

Define h : F → [0, 1] such that for all i ∈ [0, L] and e ∈ F (i) we have h(e) := h(i)(e).

Algorithm 2 Rebuild(i′, λ).

for i = i′ to (L− 1) do:
V (i) ← ∅.
while there is some node v ∈ V (≥i) \ V (i) with degE(≥i)

(
v, V (≥i) \ V (i)) ≤ (1/ϵ) do:

V (i) ← V (i) ∪ {v}.
V (≥i+1) ← V (≥i) \ V (i).
F (i) ← {(u, v) ∈ E(≥i) : either u ∈ V (i) or v ∈ V (i)}.
E(≥i+1) ← Degree-Split(E(≥i) \ F (i)).
for all edges e ∈ E(≥i+1) do:

h(i+1)(e)← 2 · h(i)(e).
F (L) ← E(≥L).
V (L) ← V (≥L).

Algorithm 3 Degree-Split(E′).

Initialize E∗ ← E′ and W ← ∅.
while E∗ ̸= ∅ do

Let G∗ := (V (E∗), E∗), where V (E∗) is the set of endpoints of the edges in E∗.
Compute a maximal walk W in G∗.
Set W ←W ∪ {W}, and E∗ ← E∗ \W .

Return the set of edges E′′ :=
⋃

W ∈W W (even).

Note that h(i) and F (i) represent global variables in the pseudocodes above.

▶ Lemma 9. Algorithm 1 runs in O(|E|) time.

Proof. The runtime of Algorithm 1 is dominated by the call to Rebuild(0, λ). Accordingly,
focus on any given iteration i ∈ [0, L − 1] of the outer For loop in Algorithm 2. During
this iteration, using appropriate data structures the inner While loop takes O(|F (i)|) time,
the call to Degree-Split(E(≥i) \ F (i)) takes O(|E(≥i) \ F (i)|) time as per Claim 7, and the
inner For loop takes O(|E(≥i+1)|) time. Hence, the total time taken to implement iteration i

of the outer For loop is at most O(|E(≥i)|) + O(|E(≥i) \ F (i)|) + O(|E(≥i+1)|) = O(|E(≥i)|).
Summing over all i ∈ [0, L− 1], we derive that:

The total runtime of Algorithm 1 is at most
L−1∑
i=0

O
(
|E(≥i)|

)
. (3)
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Next, fix an iteration i of the outer For loop in Algorithm 2, and focus on the call to
Degree-Split(E(≥i) \F (i)). The inner While loop ensures that degE(≥i)\F (i)(v) > (1/ϵ) for
all v ∈ V (≥i+1). By Claim 8, the degree of every concerned node is (roughly) halved by a call
to Degree-Split(.). Hence, |E(≥i+1)| = O

(
(1/2) · |E(≥i)|

)
for all i ∈ [0, L− 1]. Plugging

this back into (3), the lemma follows since
∑L−1

i=0 O
(
|E(≥i)|

)
= O

(
|E(≥0)|

)
= O(|E|). ◀

We will next show that the subgraph H = (V, F ) returned by our algorithm is a good
matching-sparsifier.Towards this end, we first derive the following important claim.

▷ Claim 10 (Informal). For all v ∈ V and i ∈ [0, L− 1], we have γ(i+1)(v) ≃ (1 + ϵ) · γ(i)(v).

Proof. Let us track how starting from γ(i), the weight-function γ(i+1) is constructed during
round i. Recall that Support

(
γ(i)) := E(≥i) ⋃i−1

j=0 F (j). During round i, we first identify
the subset F (i) ⊆ E(≥i), and then identify another subset E(≥i+1) ⊆ E(≥i) \ F (i). As we
switch from γ(i) to γ(i+1), the following three events occur: (1) The weights of the edges
e ∈ F (i) ⋃i−1

j=0 F (j) do not change. (2) The edges e ∈
(
E(≥i) \ F (i)) \ E(≥i+1) get discarded

from the support of γ(i+1). (3) The weights of the remaining edges e ∈ E(≥i+1) get doubled.
Now, fix any node v ∈ V . The claim follows from our analysis of the two cases below.

Case 1: v ∈ V (≥i+1). In this case, the inner While loop in Algorithm 2 ensures that
degE(≥i)\F (i)(v) > (1/ϵ). Hence, applying Claim 8, we get: degE(≥i+1)(v) ≃ (1± ϵ) · (1/2) ·
degE(≥i)\F (i)(v). To summarize, (about) half the edges in E(≥i) \ F (i) that are incident
on v get discarded from the support of γ(i+1), while the remaining edges in E(≥i) \ F (i)

double their weights. In contrast, the edges in F (i) ⋃i−1
j=0 F (j) that are incident on v do

not change their weights at all. This implies that γ(i+1)(v) ≃ (1± ϵ) · γ(i)(v).
Case 2: v /∈ V (≥i+1). In this case, every edge (u, v) ∈ Support

(
γ(i)) continues to remain

in the support of γ(i+1) with the same weight. Hence, we get: γ(i+1)(v) = γ(i)(v). ◁

▶ Lemma 11 (Informal). The weight-function h : F → [0, 1] satisfies three properties:
1. h(e) < β for all edges e ∈ F .
2. w(v) ≃ (1± ϵL) · h(v) for all nodes v ∈ V .
3. size(w) ≃ (1± ϵL) · size(h).

Proof. Before the start of round 0, we have γ(0)(e) = λ for all edges e ∈ E(≥0). Subsequently,
in each round i ∈ [0, L− 1], the weight of each edge e ∈ E(≥i+1) gets doubled. Hence, we
have h(e) = γ(L)(e) ≤ 2Lλ < β for all e ∈ F . This proves part-(1) of the lemma.

Next, fix any node v ∈ V . Before the start of round 0, we have γ(0) = w and hence
γ(0)(v) = w(v). Subsequently, after each round i ∈ [0, L − 1], Claim 10 guarantees that
γ(i+1)(v) ≃ (1 ± ϵ) · γ(i)(v). This gives us: h(v) = γ(L)(v) ≃ (1 ± ϵ)L · γ(0)(v) ≃ (1 ± ϵL) ·
γ(0)(v) ≃ (1± ϵL) ·w(v). Finally, summing this (approximate) equality over all nodes v ∈ V ,
we get: size(w) ≃ (1± ϵL) · size(h). This proves part-(2) and part-(3) of the lemma. ◀

Levels of nodes and edges. The level of a node v ∈ V is defined as ℓ(v) := max{i ∈ [0, L] :
v ∈ V (≥i)}. Similarly, the level of an edge e ∈ E is defined as ℓ(e) := max{i ∈ [0, L] : e ∈
E(≥i)}. Since V (i) = V (≥i) \ V (≥i+1) for all i ∈ [0, L], it follows that ℓ(v) = i iff v ∈ V (i).

▶ Observation 12. For all (u, v) ∈ F , we have ℓ(u, v) = min(ℓ(u), ℓ(v)) and (u, v) ∈ F (ℓ(u,v)).
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Proof. Consider any edge (u, v) ∈ F =
⋃L

i=0 F (i). W.l.o.g., suppose that (u, v) ∈ F (j) for
some j ∈ [0, L]. Before the start of round 0, we have (u, v) ∈ E(≥0). During each round
i ∈ [0, j − 1], the edge (u, v) gets included in the set E(≥i+1), and both its endpoints u, v get
included in the set V (≥i+1). At round j, one of its endpoints (say, u) gets included in V (j),
and the edge (u, v) also gets included in F (j). Since F (j) ⊆ E(≥j+1) \ E(≥j), we infer that
ℓ(u) = j, ℓ(v) ≥ j, and ℓ(u, v) = max

{
i ∈ [0, L] : (u, v) ∈ E(≥i)} = j = min(ℓ(u), ℓ(v)). ◀

▶ Observation 13. For every edge (u, v) ∈ F , we have h(u, v) = 2ℓ(u,v) · λ.

Proof. Suppose that ℓ(u, v) = i ∈ [0, L], and hence (u, v) ∈ F (i). Before the start of round 0,
we have (u, v) ∈ E(≥0) and γ(0)(u, v) = λ. During each round j ∈ [0, i− 1], the edge (u, v)
gets included in E(≥j+1) and we double its weight, i.e., we set γ(j+1)(u, v) := 2 · γ(j)(u, v).
Thus, at the start of round i, we have (u, v) ∈ E(≥i) and γ(i)(u, v) = 2i · λ. During round
i, the edge (u, v) gets included in the set F (i) and its weight is frozen for the subsequent
rounds, so that we get: 2i · λ = γ(i)(u, v) = γ(i+1)(u, v) = · · · = γ(L)(u, v) = h(u, v). ◀

▶ Lemma 14. The graph H = (V, F ) has arboricity at most O
(
ϵ−1 + β−1)

= O(log n).

Proof. For any nodes u, v ∈ V with ℓ(u) = ℓ(v) = i < L, we say that u was assigned its level
before v iff we had u ∈ V (i) just before the iteration of the inner While loop in Algorithm 2
which adds v to V (i). We now define the following orientation of the graph H = (V, F ):

Consider any edge (u, v) ∈ F . W.l.o.g. suppose that ℓ(u) ≤ ℓ(v). If ℓ(u) < ℓ(v), then
the edge is orientated from u towards v. Otherwise, if ℓ(u) = ℓ(v) = L, then the edge is
oriented in any arbitrary direction. Finally, if ℓ(u) = ℓ(v) < L and (say) the node u was
assigned its level before the node v, then the edge is oriented from u towards v.

Fix any node x ∈ V . Define OutF (x) := {(x, y) ∈ F :
the edge (x, y) is oriented away from x}. We will show that |OutF (x)| ≤ O

(
ϵ−1 + β−1)

.
The lemma will then follow from (1).

Case 1: ℓ(x) = i < L. Let X− ⊆ V (≥i) be the set of nodes in V (≥i) that are assigned the level
i before the node x. In words, the symbol X− denotes the status of the set V (i) just before x

gets added to V (i) in Algorithm 2. For every edge (x, y) ∈ OutF (x), we have y ∈ V ≥i\X−

and (x, y) ∈ E(≥i). Hence, it follows that |OutF (x)| ≤ degE(≥i)(x, V (≥i) \X−) ≤ ϵ−1.
Case 2: ℓ(x) = L. Consider any edge (x, y) ∈ OutF (x). Clearly, this implies that

ℓ(y) = L, and hence ℓ(x, y) = L by Observation 12. Thus, by Observation 13 we
have h(x, y) = 2L · λ ≥ β/2. In other words, h(x, y) ≥ β/2 for all (x, y) ∈ OutF (x). Now,
part-(2) of Lemma 11 implies that: w(x) = Ω(h(x)) = Ω

(∑
(x,y)∈OutF (x) h(x, y)

)
=

Ω (|OutF (x)| · (β/2)). Accordingly, we get: w(x) = Ω (|OutF (x)| · β), and hence:
|OutF (x)| = O

(
β−1 · w(x)

)
= O(β−1). The last inequality holds since w(x) ≤ 1. ◀

To summarize, our static algorithm runs in linear time (Lemma 9), returns a subgraph
H = (V, F ) with bounded arboricity (Lemma 14), and this subgraph H admits a fractional
matching that closely approximates the input λ-uniform matching w in G (Lemma 11).

4 Dynamically Sparsifying a Uniform Fractional Matching

In this section, we will present a dynamic algorithm for sparsifying a uniform fractional
matching, which will be referred to as Dynamic-Uniform-Sparsify(G = (V, E), λ). The
input to this algorithm is a dynamic graph G = (V, E) that keeps changing via a sequence of
updates (edge insertions/deletions), and a fixed parameter δ/n2 ≤ λ < β. Throughout this
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sequence of updates, it is guaranteed that the graph G admits a valid λ-uniform fractional
matching w. We will show how to maintain a subgraph H(a) = (V, F(a)) of this dynamic
graph G = (V, E), with F(a) ⊆ E, that is a good matching-sparsifier of G with respect to w.

Our dynamic algorithm will be heavily based on the static algorithm from Section 3.
We now introduce a couple of (informal) terms that relate to various aspects of this static
algorithm. These terms will be very useful in the ensuing discussion. First, for each i ∈ [0, L],
the term level-i-structure will refer to the following sets: E(≥i), V (≥i), V (i) and F (i). Second,
the term hierarchy will refer to the union of the level-i-structures over all i ∈ [0, L].

We will maintain a partition of the edge-set E into two subsets: E(a) and E(p). The
edges in E(a) (resp., E(p)) will be called active (resp., passive). We will let G(a) := (V, E(a))
and G(p) := (V, E(p)) respectively denote the active and passive subgraphs of the input
graph G = (V, E). Our dynamic algorithm will make a lazy attempt at mimicking the static
algorithm from Section 3, when the latter receives the active subgraph G(a) as input.

Preprocessing. At preprocessing, we set E(p) := ∅ and E(a) := E, and then call Static-
Uniform-Sparsify(G(a) = (V, E(a)), λ), as described in Algorithm 1. It returns the hier-
archy, where for each i ∈ [0, L] the level-i-structure consists of E(≥i), V (≥i), F (i), V (i). Finally,
for each i ∈ [0, L], we initialize a set D(≥i) := ∅. This concludes the preprocessing step.

Handling an edge-insertion. When an edge e gets inserted into the input graph G = (V, E),
we call the subroutine Handle-Insertion(e, λ), as described in Algorithm 4. This classifies
the edge e as passive, and sets E(p) ← E(p) ∪ {e}. If the previous step does not violate
Invariant 1, then we are done. Otherwise, if Invariant 1 gets violated, then we throw away
the existing hierarchy and all its associated structures (such as the sets D(≥i)), and perform
the preprocessing step again on the current input graph G.

▶ Invariant 1. |E(p)| ≤ ϵ · |E(a)|.

Handling an edge-deletion. When an edge e gets deleted from G, we call the subroutine
Handle-Deletion(e, λ), as described in Algorithm 6. If e was already passive, then it
simply gets removed from the set E(p), and we are done. Henceforth, we assume that e was
active, and at level ℓ(e) = k, just before getting deleted.4

First, we remove e from the set E(a), because the edge is no longer present in G. Next,
for every i ∈ [0, k], we insert e into the set D(≥i). From now on, we will refer to e as a
dead edge. Intuitively, the edge e, even after getting deleted, continues to be present in the
level-i-structure for each i ∈ [0, k]. Thus, up until this point, the hierarchy does not change.

Next, we check if the previous steps lead to a violation of Invariant 2. If Invariant 2
continues to remain satisfied, then we are done. Otherwise, we find the minimum index
j ∈ [0, L] such that

∣∣D(≥j)
∣∣ > ϵ · |E(≥j)|, and then perform the following operations: (1) For

every i ∈ [j, L], we delete the dead edges D(≥i) from the level-i-structure and reset D(≥i) ← ∅.
(2) Finally, we call the subroutine Rebuild(j, λ) as described in Algorithm 2.

▶ Invariant 2.
∣∣D(≥i)

∣∣ ≤ ϵ ·
∣∣E(≥i)

∣∣ for all i ∈ [0, L].

4 See the paragraph just before Observation 12 for the definition of the level of an edge.
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Algorithm 4 Handle-Insertion(e, λ).

E(p) ← E(p) ∪ {e}.
if

∣∣E(p)
∣∣ > ϵ ·

∣∣E(a)
∣∣ then

Call the subroutine Clean-Up(0, λ).
E(a) ← E(a) ∪ E(p).
E(p) ← ∅.
Call the subroutine Static-Uniform-Sparsify

(
G(a) := (V, E(a)), λ

)
.

Algorithm 5 Clean-Up(j, λ).

for all i = j to L do
E(≥i) ← E(≥i) \D(≥i).
F (i) ← F (i) \D(≥i).
D(≥i) ← ∅.

Algorithm 6 Handle-Deletion(e, λ).

if e ∈ E(p) then
E(p) ← E(p) \ {e}.

else
k ← ℓ(e) := max

{
i ∈ [0, L] : e ∈ E(≥i)}.

E(a) ← E(a) \ {e}.
for i = 0 to k do

D(≥i) ← D(≥i) ∪ {e}.
if

∣∣D(≥i)
∣∣ > ϵ ·

∣∣E(≥i)
∣∣ for some index i ∈ [0, L] then

Let j be the minimum index i ∈ [0, L] for which
∣∣D(≥i)

∣∣ > ϵ ·
∣∣E(≥i)

∣∣.
Call the subroutine Clean-Up(j, λ).
Call the subroutine Rebuild(j, λ).

Note that E(p), E(a), E(≥i), D(≥i), F (i) represent global variables in these pseudocodes.

To summarize, we satisfy Invariant 1 and Invariant 2, and handle the updates to G in a
lazy manner. Newly inserted edges are classified as passive, and they are completely ignored
in the hierarchy unless their number becomes sufficiently large compared to the total number
of active edges, at which point we rebuild everything from scratch. In contrast, when an
active edge gets deleted from some level i ∈ [0, L], it is classified as dead and it continues
to be present in the level-j-structure for all j ∈ [0, i]. Finally, if we notice that for some
k ∈ [0, L] the level-k-structure has too many dead edges D(≥k), then we remove all the dead
edges from every level-j-structure with j ∈ [k, L], and rebuild these structures from scratch.

From Section 3, recall that F :=
⋃L

i=0 F (i). For any set of edges E′, we will use the
notation E′

(a) := E′ ∩ E(a) to denote the subset of edges in E′ that are active in the current
input graph G = (V, E). Accordingly, we define F(a) := F ∩ E(a) and H(a) := (V, F(a)).

Lemma 15 and Lemma 16 below should respectively be seen as analogues of Lemma 14
and Lemma 11 from Section 3. They show that the subgraph H(a) = (V, F(a)) is a good
matching sparsifier of the input dynamic graph G = (V, E). Intuitively, Lemma 15 and
Lemma 16 hold because Invariant 1 and Invariant 2 ensure that throughout the sequence of
updates, the hierarchy maintained by our dynamic algorithm is very close to the hierarchy
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constructed by the algorithm from Section 3 when it receives the current graph G = (V, E)
as input. Due to space constraints, the proofs of these two lemmas are deferred to the full
version.

▶ Lemma 15. The graph H(a) = (V, F(a)) has arboricity at most O(ϵ−1 + β−1) = O(log n).

▶ Lemma 16. The graph H(a) admits a fractional matching h′ : F(a) → [0, 1] such that:
1. For every edge e ∈ F(a), we have h′(e) < β.
2. For every node v ∈ V , we have h′(v) ≤ w(v).
3. We have size(w) ≤ (1 + 60ϵ · log(β/λ)) · size(h′).

▶ Lemma 17. The dynamic algorithm Dynamic-Uniform-Sparsify(G, λ) has an amortized
update time of O

(
ϵ−1 · log(β/λ)

)
= O(log2 n).

Proof. Define a potential function Φ := |E(p)|+
∑L

i=0
∣∣D(≥i)

∣∣. Insertion of an edge increases
the potential Φ by at most one unit, as the newly inserted edge gets classified as passive. On
the other hand, deletion of an edge e increases the potential Φ by at most L + 1 units, since e

gets added to each of the sets D(≥0), . . . , D(≥ℓ(e)), and ℓ(e) ≤ L. To summarize, each update
in G creates at most O(L) units of new potential. We will show that whenever our dynamic
algorithm spends T units of time, the potential Φ drops by at least Ω(ϵ ·T ). Since Φ is always
≥ 0, this implies the desired amortized update time of O(ϵ−1 · L) = O

(
ϵ−1 · log(β/λ)

)
.

Consider the insertion of an edge e into G = (V, E), and suppose that we call Static-
Uniform-Sparsify(G(a), λ) while handling this insertion. Let m(a) := |E(a)|, m(p) := |E(p)|,
m(d) := |D(≥0)| and m := |E|, just before e gets inserted. Invariant 1 and Invariant 2
respectively ensure that m(p) = ϵ ·m and m(d) ≤ ϵ ·m. By Lemma 9, the call to Static-
Uniform-Sparsify(G(a), λ) takes O(m) time. Thus, the total time to handle this edge
insertion is given by T := O(m + md) = O(m). On the other hand, when our algorithm
finishes handling this edge insertion, we have E(p) = ∅, and hence the potential Φ decreases
by at least m(p) = ϵ ·m units. In other words, the drop in the potential Φ is at least Ω(ϵ · T ).

Next, consider the deletion of an edge e from G = (V, E), and suppose that while handling
this deletion we call the subroutine Rebuild(k, λ) for some k ∈ [0, L]. Just before e gets
deleted, let m

(≥k)
(d) :=

∣∣D(≥k)
∣∣ and m(≥k) := E(≥k). Invariant 2 ensures that m

(≥k)
(d) = ϵ ·m(≥k).

By Lemma 9, the call to Rebuild(k, λ) takes O
(
m(≥k)) time. Hence, excluding the time it

takes to identify the level k, which is O(L) = O(log(β/λ)) = O(log n) in the worst-case, our
dynamic algorithm spends T = O

(
m(≥k)) time to handle this edge deletion. On the other

hand, this decreases the potential Φ by at least m
(≥k)
(d) = ϵ ·m(≥k), since once we are done

processing this edge deletion, we have D(≥k) = ∅. So the potential Φ drops by Ω(ϵ · T ). ◀

5 Dynamically Sparsifying an Arbitrary Fractional Matching

In this section, we briefly sketch our dynamic algorithm for maintaining a matching-sparsifier
as specified by Theorem 1.

The input is a dynamic graph G = (V, E) with n nodes, and a (not necessarily uniform)
fractional matching w : E → [0, 1] in G. An “update” either inserts/deletes an edge in G or
changes the weight w(e) of an existing edge e in G. Our algorithm works in three steps.

Step I (Discretizing w). For every integer j ≥ 0, define λj := (β/n2) · (1 + β)j . Let K be
the largest integer j such that λj < β. We now discretize w to get a new fractional matching
ŵ : E → [0, 1], which is defined as follows. Consider any edge e ∈ E. If w(e) < λ0, then
ŵ(e) := 0. Else if λ0 ≤ w(e) < β, then ŵ(e) := λi where i is the unique integer such that
λi ≤ w(e) < λi+1. Otherwise, if w(e) ≥ β, then ŵ(e) := w(e).
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For each i ∈ [0, K], let Ei denote the subset of edges e ∈ E with ŵ(e) = λi, let
Gi := (V, Ei), and let wi : Ei → [0, 1] be the restriction of the fractional matching ŵ onto
the set Ei (i.e., wi is a λi-uniform fractional matching in Gi). Finally, define the subset of
edges E≥β := {e ∈ E : ŵ(e) = w(e) ≥ β}, and let G≥β := (V, E≥β). In the dynamic setting,
we can easily maintain the subgraphs G0, . . . , GK , G≥β of the input graph G on the fly.

Step II (Sparsifying each Gi). For each i ∈ [0, K], we maintain a sparsifier of Gi with
respect to wi, with the help of the dynamic algorithm from Section 4. Specifically, let
Hi = (V, Fi) denote the sparsifier H(a) = (V, F(a)) maintained by the algorithm Dynamic-
Uniform-Sparsify(Gi, λi) from Section 4 (thus, we have Fi ⊆ Ei).

Step III (Putting everything together). Let ES :=
⋃K

i=0 Fi

⋃
E≥β . In the full version

of the paper, we show that the subgraph S := (V, ES) of G satisfies all the five conditions
stated in Theorem 1.
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Abstract
We present a unified framework for minimizing average completion time for many seemingly disparate
online scheduling problems, such as the traveling repairperson problems (TRP), dial-a-ride problems
(DARP), and scheduling on unrelated machines.

We construct a simple algorithm that handles all these scheduling problems, by computing and
later executing auxiliary schedules, each optimizing a certain function on already seen prefix of
the input. The optimized function resembles a prize-collecting variant of the original scheduling
problem. By a careful analysis of the interplay between these auxiliary schedules, and later employing
the resulting inequalities in a factor-revealing linear program, we obtain improved bounds on the
competitive ratio for all these scheduling problems.

In particular, our techniques yield a 4-competitive deterministic algorithm for all previously
studied variants of online TRP and DARP, and a 3-competitive one for the scheduling on unrelated
machines (also with precedence constraints). This improves over currently best ratios for these
problems that are 5.14 and 4, respectively. We also show how to use randomization to further
reduce the competitive ratios to 1 + 2/ ln 3 < 2.821 and 1 + 1/ ln 2 < 2.443, respectively. The
randomized bounds also substantially improve the current state of the art. Our upper bound for
DARP contradicts the lower bound of 3 given by Fink et al. (Inf. Process. Lett. 2009); we pinpoint
a flaw in their proof.
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1 Introduction

In the traveling repairperson problem (TRP) [37], requests arrive in time at points of a metric
space and they need to be eventually serviced. In the same metric, there is a mobile server,
that can move at a constant speed. The server starts at a distinguished point called the
origin. A request is considered serviced once the server reaches its location; we call such
time its completion time. The goal is to minimize the sum (or equivalently the average) of
all completion times. We focus on a weighted variant, where all requests have non-negative
weights and the goal is to minimize the weighted sum of completion times.

A natural and well-studied extension of the TRP problem is a so-called dial-a-ride problem
(DARP) [20], where each request has a source and a destination and the goal is to transport
an object between these two points. There, the server may have a fixed capacity limiting
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28:2 TRP, Unrelated Machines, and Other Stories About Average Completion Times

the number of objects it may carry simultaneously; this capacity may be also infinite. For
the finite-capacity case, one can also distinguish between preemptive variant, where objects
can be unloaded at some points of the metric space (different than their destination) and
non-preemptive variant, where such unloading is not allowed.

A seemingly disparate problem is scheduling on m unrelated machines [23]. There,
weighted jobs arrive in time, each with a vector of size m describing execution times of the
job when assigned to a given machine. A single machine can execute at most one job at
a time. The goal is to assign each job (at or after its arrival) to one of the machines to
minimize the weighted sum of completion times. This problem comes in two flavors: in
the preemptive one, job execution may be interrupted and picked up later, while in the
non-preemptive one, such interruption is not possible. As an extension, each job may have
precedence constraints, i.e., can be executed only once some other jobs are completed.

Online Algorithms. Our focus is on natural online scenarios of TRP, DARP [21], and
machine scheduling [24]. There, an online algorithm Alg, at time t, knows only requests/jobs
that arrived before or at time t. The number of requests/jobs is also not known by an algorithm
a priori. We say that an online algorithm Alg is c-competitive if for any request/job
sequence I it holds that costAlg(I) ≤ c · costOpt(I), where Opt is a cost-optimal offline
solution for I. For a randomized algorithm Alg, we replace its cost by its expectation. The
competitive ratio of Alg is the infimum over all values c such that Alg is c-competitive [15].

In this paper, we present a unified framework for handling such online scheduling problems
where the cost is the weighted sum of completion times. We present an algorithm Mimic
that yields substantially improved competitive ratios for all the problems described above.

1.1 Previous Work
The currently best algorithms for the TRP, the DARP, and machine scheduling on unrelated
machines share a common framework. Namely, each of these algorithms works in phases
of geometrically increasing lengths. In each phase, it computes and executes an auxiliary
schedule for the requests presented so far. (In the case of the TRP and DARP, the server
additionally returns to the origin afterward.) The auxiliary schedule optimizes a certain
function, such as maximizing the weight of served requests [8,16,24,28,32,33] or minimizing the
sum of completion times with an additional penalty for non-served requests [27].1 Moreover,
known randomized algorithms are also based on a common idea: they delay the execution
of the deterministic algorithm by a random offset [16,27,32,33]. We call these approaches
phase based. The currently best results are gathered in Table 1.

Traveling Repairperson and Dial-a-Ride Problems. The online variant of the TRP has been
first investigated by Feuerstein and Stougie [21]. By adapting an algorithm for the cow-path
problem problem [7], they gave a 9-competitive solution for line metrics. The result has been
improved by Krumke et al. [32], who gave a phase-based deterministic algorithm Interval
attaining competitive ratio of 3 + 2

√
2 < 5.829 for an arbitrary metric space. A slightly

different algorithm with the same competitive ratio was given by Jaillet and Wagner [28].
Bienkowski and Liu [8] applied postprocessing to auxiliary schedules, serving heavier requests

1 Computing such auxiliary schedule usually involves optimally solving an NP-hard task. This is typical
for the area of online algorithms, where the focus is on information-theoretic aspects and not on
computational complexity. Algorithms presented in this paper also aim at minimizing the achievable
competitive ratio rather than minimizing the running time.
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earlier, and improved the ratio to 5.429 on line metrics. Finally, Hwang and Jaillet proposed
a phase-based algorithm Plan-And-Commit [27]. They give a computer-based upper bound
of 5.14 for the competitive ratio and an analytical upper bound of 5.572.

Randomized counterparts of algorithms Interval and Plan-And-Commit achieve ratios
of 3.874 [32,33] and 3.641 [27], respectively. Interestingly, the latter bound is not a direct
randomization of the deterministic algorithm, but uses a different parameterization, putting
more emphasis on penalizing requests not served by auxiliary schedules.

The phase-based algorithm Interval extends in a straightforward fashion to the DARP
problem with an arbitrary assumption on the server capacity, both for the preemptive
and non-preemptive variants: all the details of the solved problem are encapsulated in the
computations of auxiliary schedules [32]. In the same manner, Interval can be enhanced to
handle k-TRP and k-DARP variants, where an algorithm has k servers at its disposal (also
for any k, any server capacities, and any preemptiveness assumptions) [14]. Although this
was not explicitly stated in [27], the algorithm Plan-And-Commit can be extended in the
same way.

From the impossibility side, Feuerstein and Stougie [21] gave a lower bound for the TRP
(that also holds already for a line) of 1 +

√
2 > 2.414, while the bound of 7/3 for randomized

algorithms was presented by Krumke et al. [32]. For the variant of the TRP with multiple
servers, the deterministic lower bound is only 2 [14] (it holds for any number of servers).
Clearly, all these lower bounds hold also for any variant of DARP. For the DARP with
a single server of capacity 1, the deterministic lower bound can be improved to 3 [21] and
the randomized one to 2.410 [32].

The authors of [22] claimed a lower bound of 3 for randomized k-DARP (for any k). This
contradicts the upper bound we present in this paper. In Section 7, we pinpoint a flaw in
their argument.

TRP and DARP: Related Results. Both online TRP and DARP problems were considered
under different objectives, such as minimizing the total makespan (when the TRP becomes
online TSP) [3–6,9–11,13,18,29,30,35] or maximum flow time [25,31,34].

The offline variants of TRP and DARP have been extensively studied both from the
computational hardness (see, e.g., [20,37]) and approximation algorithms perspectives. In
particular, the TRP, also known as the minimum latency problem problem, is NP-hard already
on weighted trees [40] (where the closely related traveling salesperson problem [12] becomes
trivial) and the best known approximation factor in general graphs is 3.59 [17]. For some
metrics (Euclidean plane, planar graphs or weighted trees) the TRP admits a PTAS [2,42].

Machine Scheduling on Unrelated Machines. The first online algorithm for the scheduling
on unrelated machines (R|rj |

∑
wjCj in the Graham et al. notation [23]) was given by

Hall et al. [24]. They gave 8-competitive polynomial-time algorithm, which would be 4-
competitive if the polynomial-time requirement was lifted. Chakrabarti et al. showed how to
randomize this algorithm, achieving the ratio of 2/ ln 2 < 2.886 [16]. They also observe that
both algorithms can handle precedence constraints. The currently best deterministic lower
of 1.309 is due to Vestjens [45], and the best randomized one of 1.157 is due to Seiden [39].

Machine Scheduling: Related Results. While for unrelated machines, the results have not
been beaten for the last 25 years, the competitive ratios for simpler models were improved
substantially. For example, for parallel identical machines, a sequence of papers lowered the
ratio to 1.791 [19, 36,38,41].
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Table 1 Previous and current bounds on the competitive ratios for the TRP and the DARP
problems. Asterisked results were not given in the referenced papers, but they are immediate
consequences of the arguments therein. All upper bounds for the TRP/DARP variants hold for any
number k of servers, any server capacities, both in the preemptive and the non-preemptive case.
Upper bounds for scheduling hold also in the presence of precedence constraints. Bounds proven in
the current paper are given in boldface.

deterministic randomized
lower upper lower upper

TRP 2.414 [21] 5.14 [27] 2.333 [32] 3.641 [27]
DARP 3 [21] 5.14∗ [27] 2.410 [32] 3.641∗ [27]
k-TRP 2 [14] 5.14∗ [27] 2 [14] 3.641∗ [27]

k-DARP 2 [14] 5.14∗ [27] 2 [14] 3.641∗ [27]
k-TRP, k-DARP (all variants) 4 2.821

scheduling on unrelated machines 1.309 [45] 4 [24] 1.157 [39] 2.886 [16]
3 2.443

The problem has also been studied intensively in the offline regime. Both weighted
preemptive and non-preemptive variants were shown to be APX-hard [26, 43]. On the
positive side, a 1.698-approximation for the preemptive case was given by Sitters [43], and
a 1.5-approximation for the non-preemptive case by Skutella [44]. A PTAS for a constant
number of machines is due to Afrati et al. [1].

1.2 Resettable Scheduling
The phase-based algorithms for DARP variants and machine scheduling on unrelated machines
both execute auxiliary schedules, but the ones for the DARP variants need to bring the
server back to the origin between schedules. We call the latter action resetting. To provide
a single algorithm for all these scheduling variants, we define a class of resettable scheduling
problems.

We assume that jobs are handled by an executor, which has a set of possible states.
And at time 0, it is in a distinguished initial state. An input to the problem consists of
a sequence of jobs I released over time. Each job r is characterized by its arrival time
a(r), its weight w(r), and possibly other parameters that determine its execution time. The
executor cannot start executing job r before its arrival time a(r). We will slightly abuse
the notation and use I to also denote the set of all jobs from the input sequence. There is
a problem-specific way of executing jobs and we use sAlg(r) to denote the completion time
of a job by an algorithm Alg. The cost of an algorithm is defined as the weighted sum of
job completion times, costAlg(I) =

∑
r∈I w(r) · sAlg(r).

For any time τ , let Iτ be the set of jobs that appear till τ . An auxiliary τ -schedule is
a problem-specific way of feasibly executing a subset of jobs from Iτ . Such schedule starts
at time 0, terminates at time τ , and leaves no job partially executed. We require that the
following properties hold for any resettable scheduling problem.
Delayed execution. At any time t, if the executor is in the initial state, it can execute

an arbitrary auxiliary τ -schedule (for τ ≤ t). Such action takes place in time interval
[t, t + τ). Any job r that would be completed at time z ∈ [0, τ) by the τ -schedule started
at time 0 is now completed exactly at time t + z (unless it has been already executed
before).
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Resetting executor. Assume that at time t, the executor was in the initial state, and then
executed a τ -schedule, ending at time t + τ . Then, it is possible to reset the executor
using extra γ · τ time, where γ is a parameter characteristic to the problem. That is, at
time t + (1 + γ) · τ , the executor is again in its initial state.

Learning minimum. We define min(I) to be the earliest time at which Opt may complete
some job. We require that the value of min(I) is learned by an online algorithm at or
before time min(I) and that min(I) > 0.

We call scheduling problems that obey these restrictions γ-resettable.

Example 1: Machine Scheduling is 0-Resettable. For the machine scheduling problem,
the executor is always in the initial state, and no resetting is necessary. As we may assume
that processing of any job takes positive time, min(I) > 0 holds for any input I.

Example 2: DARP Problems are 1-Resettable. For the DARP variants, the executor
state is the position of the algorithm server, with the origin used as the initial state.2 Jobs
are requests for transporting objects and an auxiliary τ -schedule is a fixed path of length τ

starting at the origin, augmented with actions of picking up and dropping particular objects.3
It is feasible to execute a τ -schedule starting at any time t when the server is at the origin. In
such case, jobs are completed with an extra delay of t. Furthermore, right after serving the
τ -schedule, the distance between the server and the origin is at most τ . Thus, it is possible
to reset the executor to the initial state within extra time 1 · τ .

Finally, as we may assume that there are no requests that arrive at time 0 with both
start and destination at the origin, min(I) > 0 for any input I.

1.3 Our Contribution
In this paper, we provide a deterministic routine Mimic and its randomized version that
solves any γ-resettable scheduling problem. It achieves a deterministic ratio of 3 + γ and
a randomized one of 1 + (1 + γ)/ ln(2 + γ).

That is, for 1-resettable scheduling problems (the DARP variants with arbitrary server
capacity, an arbitrary number of servers, and both in the preemptive and non-preemptive
setting, or the TRP problem with an arbitrary number of servers), this gives solutions whose
ratios are at most 4 and 1+2/ ln 3 < 2.821, respectively. For 0-resettable scheduling problems
(that include scheduling on unrelated machines with or without precedence constraints), the
ratios of our solutions are 3 and 1 + 1/ ln 2 < 2.443.

In both cases, our results constitute a substantial improvement over currently best ratios
as illustrated in Table 1. Our result for the scheduling on unrelated machines is the first
improvement in the last 25 years for this problem.

Challenges and Techniques. Mimic works in phases of geometrically increasing lengths.
At the beginning of each phase, at time τ , it computes an auxiliary τ -schedule that optimizes
the total completion time of jobs seen so far with an additional penalty for non-completed
jobs: they are penalized as if they were completed at time τ . Then, within the phase it
executes this schedule and afterward it resets the executor. We obtain a randomized variant
by delaying the start of Mimic by an offset randomly chosen from a continuous distribution.

2 In the variants with k servers, the executor state is a k-tuple describing the positions of all servers.
3 In the preemptive variants, preemption is allowed inside an auxiliary schedule, provided that after

a τ -schedule terminates, each job is either completed or untouched.
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Admittedly, this idea is not new, and in fact, when we apply Mimic to the TRP problem,
it becomes a slightly modified variant of Plan-And-Commit [27]. Hence, the main technical
contribution of our paper is a careful and exact analysis of such an approach. The crux here
is to observe several structural properties and relations among schedules produced by Mimic
in consecutive phases, carefully tracking the overlaps of the job sets completed by them. On
this basis, and for a fixed number Q of phases, we construct a maximization linear program
(LP), whose optimal value upper-bounds the competitive ratio of Mimic. Roughly speaking,
the LP encodes, in a sparse manner, an adversarially created input. To upper bound its
value, we explicitly construct a solution to its dual (minimization) program and show that
its value is at most 4 for any number of phases Q.

Bounding the competitive ratio for the randomized version of Mimic is substantially
more complicated as we need to combine the discrete world of an LP with uncountably
many random choices of the algorithm. To tackle this issue, we consider an intermediate
solution Disc which approximates the random choice of Mimic to a given precision, choosing
an offset randomly from a discrete set of M values. This way, we upper-bound the ratio of
Mimic by 1 + (1/M) ·

∑M
j=1(2 + γ)j/M . This bound holds for an arbitrary value of M , and

thus by taking the limit, we obtain the desired bound on the competitive ratio. Interestingly,
we use the same LP for analyzing both the deterministic and the randomized solution.

2 Deterministic and Randomized Algorithms: Routine MIMIC

To describe our approach for γ-resettable scheduling, we start with defining auxiliary schedules
used by our routine Mimic. The parameter γ will be used to define partitioning of time
into phases. Both our deterministic and randomized solutions will run Mimic, however, the
randomized one will execute it for a random choice of parameters.

Auxiliary Schedules. As introduced already in Subsection 1.2, an (auxiliary) τ -schedule A

describes a sequence of job executions, has the total duration τ , and may be executed
whenever the executor is in the initial state. For the preemptive variants, we assume that
once such a schedule terminates, each job is processed either completely or not at all.

For a fixed input I, and a τ -schedule A, we use R(A) to denote the set of jobs that would
be served by A if it was executed from time 0, i.e., in the interval [0, τ). For any set of jobs
R ⊆ R(A), let

w(R) =
∑

r∈R w(r) and costA(R) =
∑

r∈R w(r) · sA(r). (1)

Note that if a schedule A serves all jobs from the input (R(A) = I), then costA(R(A))
coincides with the cost of an algorithm that executes schedule A at time 0.

Recall that Iτ ⊆ I denotes the set of jobs that arrive till time τ . For any τ -schedule A,
we define its value as

valτ (A) = costA(R(A)) + τ · w (Iτ \ R(A)) . (2)

The value corresponds to the actual cost of completing jobs from Iτ by schedule A in
interval [0, τ), but we charge A for unprocessed jobs as if they were completed at time τ .

▶ Definition 1. For any τ ≥ 0, let Sτ be the τ -schedule minimizing function valτ . Ties are
broken arbitrarily, but in a deterministic fashion.
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Sτ (1)

Sτ (2)

Sτ (3)

Mimic

1 α α2 α30 time

Figure 1 An example execution of algorithm Mimic(1, 0) applied for the TRP problem (i.e.,
we use α = 3). We assume that min(I) = 1. Within time interval [τ(k) = αk, 2 · αk) of phase
k + 1, Mimic executes a τ(k)-schedule Sτ(k) that optimizes function valτ(k). Afterwards within
time interval [2 · αk, τ(k + 1) = 3 · αk), Mimic resets its state to the initial one (the server of TRP
returns to the origin).

Routine MIMIC. For solving the γ-resettable scheduling problem, we define routine
Mimic(γ, ω), where ω ∈ (−1, 0] is an additional parameter that controls the initial delay.

Our deterministic algorithm is simply Mimic(γ, 0).
Our randomized algorithm first chooses a value ω uniformly at random from the
range (−1, 0]. Then, it executes Mimic(γ, ω).

Internally, Mimic(γ, ω) uses a parameter α = 2 + γ. It splits time into phases in the
following way. For any k, let τk = τ(k) = min(I) · αk+ω. The k-th phase (for k ≥ 1) starts
at time τk−1 = min(I) · αk−1+ω and ends at time τk = min(I) · αk+ω. The time interval
[0, τ0) = [0, αω · min(I)) does not belong to any phase. As αω · min(I) ≤ min(I), no jobs
can be completed within this interval, by the definition of min(I) (see Subsection 1.2).

Mimic does nothing till the end of phase 1 (till time τ1 = α1+ω · min(I)). Since ω ≥ −1,
we have τ1 ≥ min(I). As Mimic learns the value of min(I) latest at time min(I), it can
thus correctly identify the value of τ1 before or at time τ1.

For a phase k + 1, where k ≥ 1, Mimic behaves in the following way. We ensure that at
time τk, at the beginning of phase k + 1, Mimic is in its initial state. At this time, Mimic
computes the τk-schedule Sτ(k) (see Definition 1), executes it within time interval [τk, 2 · τk)
and afterwards, it resets its state to the initial one. The execution of Sτ(k) will not be
interrupted or modified when new jobs arrive within phase k + 1. Furthermore, Mimic serves
only those requests from Sτ(k) it has not yet served earlier. The resetting part takes time
γ · τk, and is thus finished at time (2 + γ) · τk = α · τk = τk+1 when the next phase starts.
An illustration is given in Figure 1.

3 Intermediate Algorithm DISC

As mentioned in the introduction, we introduce an additional intermediate algorithm Disc,
whose analysis will allow us to bound the competitive ratios of both our deterministic and
randomized solution. For an integer ℓ, we use [ℓ] to denote the set {0, . . . , ℓ − 1}.

Disc(γ, M, β) solves the γ-resettable scheduling problem, and is additionally parameter-
ized by a positive integer M , and a real number β ∈ (0, 1/M ]. Disc(γ, M, β) first chooses
a random integer m ∈ [M ]. Then, it executes Mimic(γ, ω = −1 + m/M + β). The main
result of this paper is the following bound, whose proof is will be given in the next two
sections.

ICALP 2021
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▶ Theorem 2. For any γ, any positive integer M , and any β ∈ (0, 1/M ], the competitive
ratio of Disc(γ, M, β) for the γ-resettable scheduling is at most 1 + (1/M) ·

∑M
j=1(2 + γ)j/M .

▶ Corollary 3. For any γ, the competitive ratio of our Mimic-based deterministic solution is
at most 3 + γ and the ratio of randomized one at most 1 + (1 + γ)/ ln(2 + γ).

Proof. Let ξM = 1 + (1/M) ·
∑M

j=1 αj/M . First, we note that Disc(γ, M = 1, β = 1) chooses
deterministically m = 0 and executes Mimic(γ, ω = −1 + 0 + 1 = 0), i.e., is equivalent to
our deterministic algorithm. Hence, by Theorem 2, the corresponding competitive ratio is at
most ξ1 = 3 + γ.

For analyzing our randomized algorithm, we observe that instead of choosing a random ω ∈
(−1, 0], we may choose a random integer m ∈ [M ] and a random real β ∈ (0, 1/M ] and set
ω = −1 + m/M + β. Thus, for any fixed integer M , our randomized algorithm is equivalent
to choosing random β ∈ (0, 1/M ] and running Disc(γ, M, β).

Fix any input I. By Theorem 2, Em[costDisc(γ,M,β)(I)] ≤ ξM · costOpt(I) holds for any
β ∈ (0, 1/M ], where the expected value is taken over random choice of m. Clearly, this relation
holds also when β is chosen randomly, i.e., Eω[costMimic(γ,ω)] = EγEm[costDisc(γ,M,β)(I)] ≤
ξM ·costOpt(I). As the bound is valid for any M , and the competitive ratio of our randomized
algorithm is at most infM∈N{ξM } = limM→∞ ξM = 1 + (1 + γ)/ ln(2 + γ). ◀

4 Structural Properties of DISC

In this section, we build relations useful for analyzing the performance of Disc(γ, M, β) on
any instance I of the γ-resettable scheduling problem.

We start by presenting structural properties of schedules Sτ . We note that even if there
exists a τ -schedule A that completes all jobs from I, Sτ may leave some jobs untouched.
However, a sufficiently long schedule Sτ completes all jobs.

▶ Lemma 4. Fix any input I. There exists a value TI , such that for any τ ≥ TI , Sτ

completes all jobs of I and is an optimal (cost-minimal) solution for I.

Proof. Let Opt be a cost-optimal schedule for I and let t be its length. Let w be the weight
of the lightest job from I. We fix TI = max{t, (valt(Opt) + 1)/w}. Now, we pick any
τ ≥ TI , and investigate properties of Sτ .

As τ ≥ TI ≥ t, the schedule of Opt can be trivially extended to a τ -schedule A that
does nothing in its suffix of length τ − t. Both A and Opt complete all jobs, and thus
valτ (A) = valt(Opt). Moreover, as Sτ minimizes function valτ , valτ (Sτ ) ≤ valτ (A) =
valt(Opt) < TI · w ≤ τ · w, and thus Sτ completes all jobs (as otherwise valτ would include
a penalty of at least τ · w). As Sτ and Opt complete all jobs, costSτ (I) = valτ (Sτ ) ≤
valt(Opt) = costOpt(I), i.e., Sτ is an optimal solution for I. ◀

Sub-phases. Recall that the algorithm Disc(γ, M, β) chooses a random integer m ∈ [M ],
and executes Mimic(γ, ω = −1 + m/M + β). To compare Disc executions for different
random choices, we introduce sub-phases. Recall that α = 2 + γ; let δ = α1/M .

Recall that the k-th phase of Mimic starts at time τk−1 and ends at time τk, where
τk = min(I) · αk−1+m/M+β = min(I) · αβ−1 · δm+k·M . For any q, we define

ηq = η(q) = min(I) · αβ−1 · δq. (3)

In these terms, τk = ηm+k·M . We define the q-th sub-phase (for q ≥ 0) as the time interval
starting at time ηq−1 and ending at time ηq. Then, phase k of Disc(γ, M, β) consists of
exactly M sub-phases, numbered from (k − 1) · M + m + 1 to k · M + m. An example of
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Figure 2 Example of phases (green) and sub-phases (black) of algorithm Disc(γ, M = 3, β) for
all possible choices of m. The time interval lengths are in logarithmic scale. The starts and ends of
sub-phases are deterministic functions of γ, M , and β, but the start of a phase depends additionally
on the integer m ∈ [M ] chosen randomly by Disc. Sub-phase 0 is not contained in any phase, but
will be used in our analysis.

phases and sub-phases is given in Figure 2. We emphasize that the start and the end of
a sub-phase is a deterministic function of the parameters of Disc, while the start and end of
a phase depend additionally on the value m ∈ [M ] that Disc chooses randomly.

Recall that our deterministic algorithm is equivalent to Mimic(γ, 0) ≡ Disc(γ, 1, 1). In
this case m = 0, and thus ηq = τq for any q, i.e., each phase consists of one sub-phase, and
their indexes coincide.

Sub-phases vs Auxiliary Schedules. We now identify the times when auxiliary schedules
are computed by Disc(γ, M, β). Recall that at the beginning of any phase k + 1 (where
k ≥ 1), i.e., at time τk = ηm+k·M , Disc computes and executes schedule Sη(m+k·M). Let TI
be the threshold guaranteed by Lemma 4 and we define KI as the smallest integer satisfying
η(KI · M) ≥ TI . Note that KI is a deterministic function of input I.

For any choice of m ∈ [M ], the schedule Sη(m+KI ·M) completes all jobs. This schedule
is executed by Disc in phase KI + 1, and thus Disc terminates latest in phase KI + 1.
Summing up, Disc(γ, M, β) executes schedules Sη(m+M), Sη(m+2M), . . . , Sη(m+KI ·M). At
the beginning of the first phase, Disc does nothing, but for notational ease, we assume
that in the first phase, it also computes and executes a dummy schedule Sη(m), which does
not complete any job. For succinctness, we use Aq = Sη(q). In these terms, Disc(γ, M, β)
executes schedules Am+k·M for k ∈ [KI + 1].

Let Q = KI · M + (M − 1): possible schedule indexes used by Disc range from 0
to Q. For any schedule Aq, we define the set of indexes of preceding schedules P (q) =
{q′, q′ + M, . . . , q − M}, where q′ = q mod M .

Fresh and Stale Requests. We assume that no jobs are completed by the online algorithm
while it is resetting the executor, and we assume that the execution of schedule Aq may
complete only jobs from set R(Aq). It is however important to note that R(Aq) and R(Aq−M )
may overlap significantly, in which case the execution of schedule Aq serves only these jobs
from R(Aq) that have not been served already. To further quantify this effect, for q ∈ [Q + 1],
we define the set of fresh jobs of schedule Aq as

RF(Aq) = R(Aq) \
⋃

ℓ∈P (q) R(Aℓ). (4)
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The remaining jobs from R(Aq) are called stale and are denoted RS(Aq) = R(Aq) \ RF(Aq).
For succinctness, we define the following shorthand notations for their weights:

wF
q = w(RF(Aq)), wS

q = w(RS(Aq)), wq = w(R(Aq)) = wF
q + wS

q . (5)

▶ Lemma 5. For any q ∈ [Q + 1], it holds that wS
q ≤

∑
ℓ∈P (q) wF

ℓ . This relation becomes
equality for q ≥ KI · M .

Proof. By a simple induction, it can be shown that
⊎

ℓ∈P (q) RF(Aℓ) =
⋃

ℓ∈P (q) R(Aℓ) for
any q ∈ [Q + 1]. Then, using the definition of stale jobs, RS(Aq) ⊆

⋃
ℓ∈P (q) R(Aℓ) =⊎

ℓ∈P (q) RF(Aℓ). Applying weight to both sides yields wS
q ≤

∑
ℓ∈P (q) wF

ℓ .
Next, we show that this relation can be reversed for q ≥ KI · M (i.e., for the sched-

ule executed in the last phase of Disc). For such q, Aq completes all jobs, and thus⋃
ℓ∈P (q) R(Aℓ) ⊆ R(Aq) = RF(Aq) ⊎ RS(Aq). By the definition of fresh jobs, RF(Aq) does

not contain any job from
⋃

ℓ∈P (q) R(Aℓ), and thus
⋃

ℓ∈P (q) R(Aℓ) ⊆ RS(Aq). This implies
that

⊎
ℓ∈P (q) RF(Aℓ) =

⋃
ℓ∈P (q) R(Aℓ) ⊆ RS(Aq). After applying weights to both sides, we

obtain wS
q ≥

∑
ℓ∈P (q) wF

ℓ as desired. ◀

Jobs Completed in Sub-phases. For further analysis, we refine our notions when a job is
completed. For a ηq-schedule Aq, let Rj(Aq) be the set of jobs completed in sub-phase j ≤ q,
i.e., within interval [ηj−1, ηj). As η−1 ≤ ηm−1 ≤ min(I) (cf. (3)), no job can be completed
within the interval [0, η−1) (before sub-phase 0). Hence, R(Aq) =

⊎q
j=0 Rj(Aq).

We partition sets RF(Aq) and RS(Aq) analogously, defining sets RF
j (Aq) and RS

j (Aq) (for
0 ≤ j ≤ q), such that RF(Aq) =

⊎q
j=0 RF

j (Aq) and RS(Aq) =
⊎q

j=0 RS
j (Aq). For succinctness,

for 0 ≤ j ≤ q, we introduce the following shorthand notations:
wF

qj = w(RF
j (Aq)), wS

qj = w(RS
j (Aq)), and wqj = w(Rj(Aq)) = wF

qj + wS
qj ;

gF
qj = costAq

(RF
j (Aq)), gS

qj = costAq
(RS

j (Aq)), and gqj = costAq
(Rj(Aq)) = gF

qj + gS
qj .

▶ Lemma 6. For any 0 ≤ q < ℓ ≤ Q, it holds that
∑q

j=0(gqj −gℓj)+
∑q

j=0 ηq ·(wℓj −wqj) ≤ 0.

Proof. For any ηq-schedule B, it holds that

valη(q)(B) = costB(R(B)) + ηq · w
(
Iη(q) \ R(B)

)
=

∑q
j=0 costB(Rj(B)) + ηq · w(Iη(q)) − ηq ·

∑q
j=0 w(Rj(B)).

Fix any ℓ ≤ Q and let Aq
ℓ be the ηq-schedule consisting of the first q sub-phases of ηℓ-

schedule Aℓ. Since Aq is a minimizer of valη(q), it holds that valη(q)(Aq) ≤ valη(q)(Aq
ℓ).

Thus,
∑q

j=0 gqj − ηq ·
∑q

j=0 wqj ≤
∑q

j=0 gℓj − ηq ·
∑q

j=0 wℓj . ◀

Costs of DISC and OPT. Finally, we can express costs of Disc and Opt using the newly
introduced notions.

▶ Lemma 7. For any input I, parameters M and β ∈ (0, 1/M ], it holds that E[costDisc(I)]
= (1/M) ·

∑Q
q=0

∑q
j=0

(
ηq · wF

qj + gF
qj

)
.

Proof. Recall that Disc chooses random m ∈ [M ] and then at time ηq it executes schedule Aq,
for all q ∈ {m, m + M, . . . , m + KI · M}. When Disc executes Aq, it completes jobs from
RF(Aq). By the delayed execution property of the resettable scheduling (cf. Subsection 1.2),
each job r ∈ RF(Aq) is completed at time ηq + sAq

(r). Thus, the cost of executing Aq by
Disc is equal to
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∑
r∈RF(Aq) w(r) · (ηq + sAq (r)) = ηq · w(RF(Aq)) + costAq (RF(Aq))

= ηq · wF
q +

∑q
j=0 gF

qj =
∑q

j=0
(
ηq · wF

qj + gF
qj

)
.

For any q ∈ [Q + 1], the probability that Disc executes Aq is equal to 1/M , and thus the
lemma follows. ◀

▶ Lemma 8. For any input I and any q ∈ {Q − M + 1, Q − M + 2, . . . , Q}, it holds that
costOpt(I) =

∑q
j=0 gqj.

Proof. Recall that for such choice of q, schedules Aq serve all jobs of I achieving optimal
cost. Therefore, costOpt(I) = costAq

(R(Aq)) =
∑q

j=0 costAq
(Rj(Aq)) =

∑q
j=0 gqj . ◀

5 Factor-Revealing Linear Program

Now we show that the Disc-to-Opt cost ratio on an arbitrary input I can be upper-bounded
by a value of a linear (maximization) program.

Assume we fixed γ and any input I to the γ-resettable scheduling problem. We also
fix parameters of Disc: an integer M and β ∈ (0, 1/M ]. These choices imply the values
of Q and ηq for any q. This allows us to define the linear program Pγ,I,M,β whose goal is to
maximize∑Q

q=0
∑q

j=0 ηq · wF
qj + gF

qj (6)

subject to the following constraints:∑q
j=0 gqj ≤ 1 for all Q − M + 1 ≤ q ≤ Q (7)∑q

j=0 wS
qj −

∑
ℓ∈P (q)

∑ℓ
j=0 wF

ℓj ≤ 0 for all 0 ≤ q ≤ Q − M (8)∑
ℓ∈P (q)

∑ℓ
j=0 wF

ℓj −
∑q

j=0 wS
qj ≤ 0 for all Q − M + 1 ≤ q ≤ Q (9)∑q

j=0(gqj − gℓj) +
∑q

j=0 ηq · (wℓj − wqj) ≤ 0 for all 0 ≤ q < ℓ ≤ Q (10)

ηj−1 · wS
qj − gS

qj ≤ 0 for all 0 ≤ j ≤ q ≤ Q (11)
gF

qj − ηj · wF
qj ≤ 0 for all 0 ≤ j ≤ q ≤ Q (12)

ηj−1 · wF
qj − gF

qj ≤ 0 for all 0 ≤ j ≤ q ≤ Q (13)

and non-negativity of all variables. In (10), we treat wqj and gqj not as variables, but as
shorthand notations for wF

qj + wS
qj and gF

qj + gS
qj , respectively.

The intuition behind this LP formulation is that instead of creating the whole input I,
the adversary only chooses the values of variables wF

qj , wS
qj , gF

qj and gS
qj that satisfy some

subset of inequalities (inequalities that have to be satisfied if these variables were created on
the basis of actual input I). This intuition is formalized below.

▶ Lemma 9. Fix any γ, any input I for γ-resettable scheduling, and parameters of Disc:
integer M and β ∈ (0, 1/M ]. Then, E[costDisc(I)]/costOpt(I) ≤ P ∗

γ,I,M,β/M , where
P ∗

γ,I,M,β is the value of the optimal solution to Pγ,I,M,β.

Proof. By scaling all variables by the same value, Pγ,I,M,β is equivalent to the (non-linear)
optimization program P ′

γ,I,M,β , whose objective is to maximize (
∑Q

q=0
∑q

j=0 ηq · wF
qj +

gF
qj)/ maxQ−M+1≤q≤Q

∑q
j=0 gqj , subject to constraints (8)–(13). In particular, the optimal

values of these programs, P ∗
γ,I,M,β and P ′∗

γ,I,M,β are equal.
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Next, we set the values of variables wF
qj , wS

qj , gF
qj and gS

qj on the basis of input I, and
parameters M and β. (Note that the variables depend on these parameters, but not on the
random choices of Disc.) We now show that they satisfy the constraints of P ′∗

γ,I,M,β and we
relate E[costDisc(I)]/costOpt(I) to P ∗

γ,I,M,β .
By Lemma 5 and the relations wF

q =
∑q

j=0 wF
qj and wS

q =
∑q

j=0 wS
qj , the variables satisfy

(8) and (9). Next, Lemma 6 implies (10). Inequalities (11), (12) and (13) follow directly
by the definition of costs and weights. Finally, by Lemma 7 and Lemma 8, for any q ∈
{Q−M +1, . . . , Q}, it holds that E[costDisc(I)]/costOpt(I) = (1/M)·(

∑Q
q=0

∑q
j=0 ηq ·wF

qj +
gF

qj)/(
∑q

j=0 gqj), and thus E[costDisc(I)]/costOpt(I) ≤ P ′∗
γ,I,M,β/M = P ∗

γ,I,M,β/M . ◀

5.1 Dual Program and Competitive Ratio
By Lemma 9, the optimal value of Pγ,I,M,β is an upper bound on the competitive ratio of
Disc. By weak duality, an upper-bound is given by any feasible solution to the dual program
Dγ,I,M,β that we present below.

Dγ,I,M,β uses variables ξq, Bq, Cq, Dℓq, Fqj , Gqj , and Hqj , corresponding to inequalities
(7)–(13) from Pγ,I,M,β , respectively. In the formulas below, we use Lq = M ·K +(q mod M)
and S(q) = {q + M, q + 2 · M, . . . , Lq − M}. For succinctness of the description, we introduce
two auxiliary variables for any 0 ≤ j ≤ q ≤ Q:

Uqj =
∑Q

ℓ=q+1 Dℓq −
∑q−1

ℓ=j Dqℓ and Vqj =
∑q−1

ℓ=j ηℓ · Dqℓ −
∑Q

ℓ=q+1 ηq · Dℓq. (14)

The goal of Dγ,I,M,β is to minimize∑Q
q=Q−M+1 ξq (15)

subject to the following constraints (in all of them, we omitted the statement that they hold
for all j ∈ {0, . . . , q}):

Uqj + Gqj − Hqj ≥ 1 for all 0 ≤ q ≤ Q − M (16)
Uqj − Fqj ≥ 0 for all 0 ≤ q ≤ Q − M (17)

Uqj + Gqj − Hqj + ξq ≥ 1 for all Q − M + 1 ≤ q ≤ Q (18)
Uqj − Fqj + ξq ≥ 0 for all Q − M + 1 ≤ q ≤ Q (19)

Vqj + ηj−1 · Hqj − ηj · Gqj + CLq
−

∑
ℓ∈S(q) Bℓ ≥ ηq for all 0 ≤ q ≤ Q − M (20)

Vqj + ηj−1 · Fqj + Bq ≥ 0 for all 0 ≤ q ≤ Q − M (21)
Vqj − ηj · Gqj + ηj−1 · Hqj ≥ ηq for all Q − M + 1 ≤ q ≤ Q (22)

Vqj + ηj−1 · Fqj − Cq ≥ 0 for all Q − M + 1 ≤ q ≤ Q (23)

and non-negativity of all variables.

▶ Lemma 10. For any γ, any input I for γ-resettable scheduling, any positive integer M ,
and any β ∈ (0, 1/M ], there exists a feasible solution to Dγ,I,M,β of value at most M +∑M

j=1(2 + γ)j/M .

We defer the proof to the next subsection, first arguing how it implies the main theorem
of the paper (the competitive ratio of Disc).

Proof of Theorem 2. Fix any γ, and consider algorithm Disc(γ, M, β) for any positive
integer M , and any β ∈ (0, 1/M ]. Fix any input I to the γ-resettable scheduling problem.
Let P ∗

γ,I,M,β be the value of an optimal solution to Pγ,I,M,β . By weak duality and Lemma 10,
Pγ,I,M,β ≤ M +

∑M
j=1(2 + γ)j/M . Hence, by Lemma 9, E[costDisc(I)]/costOpt(I) ≤

P ∗
γ,I,M,β/M ≤ 1 + (1/M) ·

∑M
j=1(2 + γ)j/M , as desired. ◀
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∆q−Q+M−1 − ∆q−j

Figure 3 Visual presentation of values assigned to dual variables Fqj (left) and Gqj (right) for
M = 3 and Q = 8.

5.2 Proof of Lemma 10
Let

∆k =
∑k

i=0 δi =
(
δk+1 − 1

)
/ (δ − 1) .

In particular ∆−1 = 0. We choose the following values of the dual variables:

ξq = 1 + δq−Q+M for Q − M + 1 ≤ q ≤ Q,

Fqj =


ξq for Q − M + 1 ≤ j ≤ q ≤ Q,

δ · ∆M−1 for 0 ≤ j ≤ Q − M and q = j,

1 for 0 ≤ j ≤ Q − M and q ∈ {j + 1, . . . , j + M},

0 otherwise,

Gqj =


∆q−Q+M−1 − ∆q−j for Q − M + 1 ≤ j ≤ q ≤ Q,

∆q−j−M−1 for j ≤ q − M

0 otherwise,

Bq = ηq−M−1 ·
(
δM+1 + 1

)
·
(
δM − 1

)
for 0 ≤ q ≤ Q − M,

Cq = ηq−M−1 ·
(
δM+1 + 1

)
for Q − M + 1 ≤ q ≤ Q,

Dqj = Fq,j+1 − Fqj for 0 ≤ j < q ≤ Q,

Hqj = Fqj + Gqj − 1 for 0 ≤ j ≤ q ≤ Q.

The values of Fqj and Gqj (for 0 ≤ j ≤ q ≤ Q) are depicted in Figure 3 for an easier
reference. We will extensively use the property that ηi · δj = ηi+j for any i and j.

Objective Value. With the above assignment of dual variables the objective value of
Dγ,I,M,β is equal to

∑Q
q=Q−M+1 ξq = M +

∑M
j=1 δj = M +

∑M
j=1(2 + γ)j/M as desired.

Non-negativity of Variables. Variables ξq, Cq, Bq, Fqj and Gqj are trivially non-negative
(for those q and j for which they are defined). The non-negativity of Dqj = Fq,j+1 − Fqj

follows as Fqj is a non-decreasing function of its second argument (cf. Figure 3).
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Finally, for showing non-negativity of variable Hqj , we consider two cases. If j ≥ q − M ,
then Fqj ≥ 1. Otherwise, j ≤ q − M − 1, and then Gqj = ∆q−j−M−1 ≥ 1. Thus, in either
case Hqj = Fqj + Gqj − 1 ≥ 0.

Helper Bounds. It remains to show that the given values of dual variables satisfy all
constraints (16)–(23) of the dual program Dγ,I,M,β . We define a few helper notions and
identities that are used throughout the proof of dual feasibility. For any q ∈ [Q + 1], let

Rq =
∑Q

ℓ=q+1 Dℓq =
∑Q

ℓ=q+1 (Fℓ,q+1 − Fℓq) .

▶ Lemma 11. Rq = δ · ∆M−1 for q ≤ Q − M and Rq = 0 otherwise.

Proof. We consider three cases.
1. q ∈ {0, . . . , Q − M − 1}. Then, Rq = Fq+1,q+1 +

∑Q
ℓ=q+1 (Fℓ+2,ℓ+1 − Fℓ+1,ℓ) − FQq =

δ · ∆M−1 +
∑Q

ℓ=q+1 0 − 0 = δ · ∆M−1.

2. q = Q − M . Then, Rq =
∑Q

ℓ=Q−M+1(ξℓ − 1) =
∑M

j=1 δj = δ · ∆M−1.

3. q ∈ {Q − M + 1, . . . , Q}. Then, Rq =
∑Q

ℓ=q+1(ξℓ − ξℓ) = 0. ◀

Next, we investigate the values of Vqj for different q and j. Using its definition (cf. (14)),

Vqj =
∑q−1

ℓ=j ηℓ · Dqℓ −
∑Q

ℓ=q+1 ηq · Dℓq =
∑q−1

ℓ=j ηℓ · (Fq,ℓ+1 − Fqℓ) − ηq · Rq. (24)

Additionally, using Hqj = Fqj + Gqj − 1, we obtain

ηj · Gqj − ηj−1 · Hqj = (ηj − ηj−1) · Gqj + ηj−1 − ηj−1 · Fqj . (25)

Using the chosen values of Gqj , we observe that

(ηj − ηj−1) · Gqj =


ηq+j−Q+M−1 − ηq for Q − M + 1 ≤ j ≤ q,

ηq−M−1 − ηj−1 for j ≤ q − M − 1,

0 otherwise.

(26)

Furthermore, in all the cases, it can be verified that

(ηj − ηj−1) · Gqj + ηj−1 − ηq−M−1 ≥ 0. (27)

5.2.1 Showing inequalities (16)–(19)

We prove that relations (16)–(19) hold with equality. In fact, it suffices to show (17) and (19):
inequalities (16) and (18) follow immediately as we chose Hqj = Fqj + Gqj − 1. Using the
definition of Uqj (cf. (14)), we obtain

Uqj =
∑Q

ℓ=q+1 Dℓq −
∑q−1

ℓ=j Dqℓ = Rq −
∑q−1

ℓ=j (Fq,ℓ+1 − Fqℓ) = Rq − Fqq + Fqj .

Now, we observe that for q ≤ Q − M , it holds that Rq − Fqq = δ · ∆M−1 − δ · ∆M−1 = 0, and
thus Uqj − Fqj = 0, which implies (17). On the other hand, for q > Q − M , it holds that
Rq − Fqq = 0 − ξq, and hence Uqj − Fqj + ξq = 0, which implies (19).
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5.2.2 Showing inequalities (20)–(21)
Within this part, we assume q ≤ Q − M . We start with evaluating some terms that are
present in (20) and (21). First, we observe that

Bq = ηq−M−1 ·
(
δM+1 + 1

)
·
(
δM − 1

)
= ηq+M − ηq + ηq−1 − ηq−M−1. (28)

Second, we compute the term CLq
−

∑
ℓ∈S(q) Bℓ. Recall that S(q) = {q+M, q+2·M, . . . , Lq −

M}. Thus,

CLq
−

∑
ℓ∈S(q) Bℓ =

(
δM+1 + 1

)
·
[
η(Lq − M − 1) − (δM − 1) · η(−M − 1) ·

∑
ℓ∈S(q) δℓ

]
= (δM+1 + 1) ·

[
η(Lq − M − 1) − η(−M − 1) ·

(
δLq − δq+M

)]
= (δM+1 + 1) · ηq−1 = ηq+M + ηq−1. (29)

▶ Lemma 12. Fix any 0 ≤ j ≤ q ≤ Q − M . Then,

Vqj = ηq − ηq−1 − ηq+M − ηj−1 · Fqj + (ηj − ηj−1) · Gqj + ηj−1.

Proof. By the definition, ∆M−1 =
∑M−1

i=0 δi, and therefore (ηq−1 −ηq) ·δ ·∆M−1 = ηq −ηq+M .
Thus, it suffices to show the following relation

Vqj = ηq−1 · (δ · ∆M−1 − 1) − ηq · δ · ∆M−1 − ηj−1 · Fqj + (ηj − ηj−1) · Gqj + ηj−1.

To evaluate Vqj using (24), it is useful to trace values Fqj , Fq,j+1, . . . , Fqq (cf. Figure 3),
noting that only the increases of these values contribute to Vqj . We also note that for
q ≤ Q − M , possible increases are from 0 to 1 (between Fq,q−M−1 and Fq,q−M ) and from 1
to δ · ∆M−1 (between Fq,q−1 and Fqq). We consider three cases, using Rq = δ · ∆M−1 below.

1. j ≤ q − M − 1. Then, Fqj = 0 and

Vqj = ηq−1 · (Fqq − Fq,q−1) + ηq−M−1 · (Fq,q−M − Fq,q−M−1) − ηq · Rq

= ηq−1 · (δ · ∆M−1 − 1) − ηq · δ · ∆M−1 + ηq−M−1 − ηj−1 + ηj−1 − ηj−1 · Fqj .

The lemma follows as (ηj − ηj−1) · Gqj = ηq−M−1 − ηj−1 (see (26)).
2. j ∈ {q − M, . . . , q − 1}. Then Fqj = 1, and

Vqj = ηq−1 · (Fqq − Fq,q−1) − ηq · Rq

= ηq−1 · (δ · ∆M−1 − 1) − ηq · δ · ∆M−1

= ηq−1 · (δ · ∆M−1 − 1) − ηq · δ · ∆M−1 − ηj−1 · Fqj + ηj−1.

The lemma follows as (ηj − ηj−1) · Gqj = 0 (see (26)).
3. j = q. Then Fqj = δ · ∆M−1, and thus

Vqj = −ηq · Rq

= ηq−1 · δ · ∆M−1 − ηq · δ · ∆M−1 − ηj−1 · Fqj

= ηq−1 · (δ · ∆M−1 − 1) − ηq · δ · ∆M−1 − ηj−1 · Fqj + ηj−1.

As in the previous case, the lemma follows as (ηj − ηj−1) · Gqj = 0. ◀

Showing Inequality (20). We show that (20) holds with equality. Using Lemma 12, (29),
and (25) yields

Vqj + ηj−1 · Hqj − ηj · Gqj + CLq −
∑

ℓ∈S(q) Bℓ

= ηq − ηq−1 − ηq+M − ηj−1 · Fqj + (ηj − ηj−1) · Gqj + ηj−1

− (ηj − ηj−1) · Gqj − ηj−1 + ηj−1 · Fqj + ηq+M + ηq−1 = ηq.
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Showing Inequality (21). Using Lemma 12, (29), and (25) yields

Vqj + ηj−1 · Fqj + Bq

= ηq − ηq−1 − ηq+M − ηj−1 · Fqj + (ηj − ηj−1) · Gqj + ηj−1

+ ηj−1 · Fqj + ηq+M − ηq + ηq−1 − ηq−M−1

= (ηj − ηj−1) · Gqj + ηj−1 − ηq−M−1 ≥ 0.

where the last inequality follows by (27).

5.2.3 Showing inequalities (22)–(23)
Within this part, we assume that q ≥ Q − M + 1.

▶ Lemma 13. Fix any q ≥ Q − M + 1 and 0 ≤ j ≤ q. Then,

Vqj = ηq + (ηj − ηj−1) · Gqj − ηj−1 · Fqj + ηj−1.

Proof. As g ≥ Q − M + 1, it holds that Rq = 0, and thus (24) reduces to

Vqj =
∑q−1

ℓ=j ηℓ · (Fq,ℓ+1 − Fqℓ) .

As in the proof of Lemma 12, to further evaluate Vqj , it is useful to trace values Fqj , Fq,j+1, . . . ,

Fqq (cf. Figure 3), where the increases of these values contribute to Vqj . We also note that
for q ≥ Q − M + 1, the possible increases are from 0 to 1 (between Fq,q−M−1 and Fq,q−M )
and from 1 to ξq (between Fq,Q−M and Fq,Q−M+1). We consider three cases.
1. j ≤ q − M − 1. Then Fqj = 0, and

Vqj = ηQ−M · (Fqq − Fq,q−1) + ηq−M−1 · (Fq,q−M − Fq,q−M−1)
= ηQ−M · (ξq − 1) + ηq−M−1

= ηq + ηq−M−1 − ηj−1 + ηj−1 − ηj−1 · Fqj .

The lemma follows as (ηj − ηj−1) · Gqj = ηq−M−1 − ηj−1 (see (26)).
2. j ∈ {q − M, . . . , Q − M}. Then Fqj = 1, and

Vqj = ηQ−M · (Fqq − Fq,q−1)
= ηQ−M · (ξq − 1)
= ηq − ηj−1 · Fqj + ηj−1.

The lemma follows as (ηj − ηj−1) · Gqj = 0 (see (26)).
3. j ∈ {q − M, . . . , Q − M}. Then Fqj = ξq = 1 + δq−Q+M , and

Vqj = 0 = ηq + ηq+j−Q+M−1 − ηq − ηj−1 · (1 + δq−Q+M ) + ηj−1

= ηq + ηq+j−Q+M−1 − ηq − ηj−1 · Fqj + ηj−1.

The lemma follows as (ηj − ηj−1) · Gqj = ηq+j−Q+M−1 − ηq (see (26)). ◀

Showing Inequality (22). We show that (22) holds with equality. Using Lemma 13 and (25),
we obtain

Vqj + ηj−1 · Hqj − ηj · Gqj

= ηq + (ηj − ηj−1) · Gqj − ηj−1 · Fqj + ηj−1 − (ηj − ηj−1) · Gqj − ηj−1 + ηj−1 · Fqj

= ηq.
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Showing Inequality (23). Using Lemma 13, (25), and the definition of Cq, we obtain

Vqj + ηj−1 · Fqj − Cq

= ηq + (ηj − ηj−1) · Gqj − ηj−1 · Fqj + ηj−1 + ηj−1 · Fqj − ηq − ηq−M−1

= (ηj − ηj−1) · Gqj + ηj−1 − ηq−M−1 ≥ 0.

where the last inequality follows by (27).

6 Tightness of the Analysis

The analysis of our algorithms is tight as proven below. For the deterministic one, we
additionally show that choosing ω different from 0 does not help.

▶ Theorem 14. For any γ, there are γ-resettable scheduling problems, such that for any
ω ∈ (−1, 0], the competitive ratio of Mimic(γ, ω) is at least 3 + γ.

Proof. We fix a small ε > 0 and let α = 2 + γ. The input I contains two jobs: the first
one of weight ε that arrives at time 1, and second one of weight 1 that arrives at time
α1+ω + ε. We assume that there exists a schedule S1 that serves the first job at the time of
its arrival and a schedule S2 that serves both jobs at the times of their arrivals. Therefore,
costOpt(I) = ε · 1 + 1 · (α1+ω + ε) = α1+ω + 2 · ε.

For analyzing the cost of Mimic, note that at at time 1, Mimic observes the first job and
learns the value of min(I) = 1. This is the sole purpose of the first job: setting min(I) = 1
makes the algorithm miss the opportunity to serve the second job early. At time τ1 = α1+ω,
Mimic executes the τ1-schedule S′

1, which is schedule S1 prolonged trivially to length τ1.
Next, at time τ2 = α2+ω, Mimic executes the τ2-schedule S′

2, which is schedule S2 prolonged
trivially to length τ2. This way it completes the second job at time τ2 + (α1+ω + ε), and thus
costMimic(I) ≥ τ2 + α1+ω + ε = α1+ω · (1 + α) + ε. By taking appropriately small ε > 0, the
ratio between costMimic(I) and costOpt(I) becomes arbitrarily close to 1 + α = 3 + γ. ◀

▶ Theorem 15. For any γ, there are γ-resettable scheduling problems, such that the compet-
itive ratio of a randomized algorithm that runs Mimic(γ, ω) with a random ω ∈ (−1, 0] is at
least 1 + (1 + γ)/ ln(2 + γ).

Proof. Let α = 2 + γ. The input I contains a single job of weight 1 arriving at time 1. We
also assume that for any τ ≥ 1, there exists a τ -schedule Sτ that completes this job at time 1.
Clearly, costOpt(I) = 1 · 1 = 1.

At time 1, Mimic observes the only job of I and learns that min(I) = 1. Its sets τ1 = α1+ω

and at time τ1 it executes schedule Sτ1 , thus completing the job at time τ1 + 1. Therefore,
costMimic(I) =

∫ 0
−1 τ1 + 1 dω =

∫ 0
−1 α1+ω + 1 dω = 1 + (α − 1)/ ln α = 1 + (1 + γ)/ ln(2 + γ).

This implies the desired lower bound. ◀

7 Flaw in the Randomized Lower Bound for DARP

The authors of [22] claim a lower bound of 3 for randomized k-DARP (for any k ≥ 1), see
Theorem 4 of [22]. Below we show a flaw in their argument.

The construction given in the proof of their Theorem 4 uses Yao min-max principle
and is parameterized with a few variables, in particular with an integer m and with a real
number v ∈ [0, 1]. Towards the end of the proof, they show that the competitive ratio of any
randomized algorithm for the k-DARP problem is at least

Lm,v = 3m − 4km − 4km2 + v
m+1
2−m · (3 + (4km2 + 4km + 6m + 6) · v)

−4 − m − 2km − 2km2 + v
m+1
2−m · (3 + (2km2 + 2km + 4m + 4) · v)
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and they claim that there exists v, such that Lm,v = 3 when m tends to infinity. However, for
any fixed k and any v (also being a function of m), by dividing numerator and denominator
by m2, we obtain that

lim
m→∞

Lm,v = −4k + v
m+1
2−m · 4k · v

−2k + v
m+1
2−m · 2k · v

= 2.

That is, the proven lower bound is 2 instead of 3.
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Abstract

Given as input two n-element sets A, B ⊆ {0, 1}d with d = c log n ≤ (log n)2/(log log n)4 and a
target t ∈ {0, 1, . . . , d}, we show how to count the number of pairs (x, y) ∈ A × B with integer inner

product ⟨x, y⟩ = t deterministically, in n2/2Ω
(√

log n log log n/(c log2 c)
)

time. This demonstrates that
one can solve this problem in deterministic subquadratic time almost up to log2 n dimensions, nearly
matching the dimension bound of a subquadratic randomized detection algorithm of Alman and
Williams [FOCS 2015]. We also show how to modify their randomized algorithm to count the pairs
w.h.p., to obtain a fast randomized algorithm.

Our deterministic algorithm builds on a novel technique of reconstructing a function from
sum-aggregates by prime residues, or modular tomography, which can be seen as an additive analog
of the Chinese Remainder Theorem.

As our second contribution, we relate the fine-grained complexity of the task of counting of vector
pairs by inner product to the task of computing a zero-one matrix permanent over the integers.
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1 Introduction

The Inner Product and the Size of Preimages. The inner product map ⟨x, y⟩ =
∑d

i=1 xiyi

of two d-dimensional vectors x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) is one of the
cornerstones of linear algebra and its applications. For example, when x and y are vectors
of observations normalized to zero mean and unit standard deviation, ⟨x, y⟩ is the Pearson
correlation between x and y. As such, it is a fundamental computational and data-analytical
task to efficiently gain information about the preimages of the inner product map; for example,
to highlight pairs of similar or dissimilar observables between two families of n observables.

1 This work was carried out while A.B. was employed as a researcher at Lund University, Department of
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researcher at Ericsson Research
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The protagonist of this paper is the following counting problem (#InnerProduct):

Given as input a target t ∈ {0, 1, . . . , d} and two n-element sets A ⊆ {0, 1}d and
B ⊆ {0, 1}d, count the number of vector pairs (x, y) ∈ A × B with integer inner
product ⟨x, y⟩ = t.

From a complexity-theoretic standpoint, this problem generalizes many conjectured-hard
problems in the study of fine-grained complexity – such as the t = 0 special case, the
orthogonal vector counting (#OV) problem – as well as generalizing fundamental application
settings, such as similarity search in Hamming spaces. While it is immediate that subquadratic
scalability in n is obtainable when d = o(log n), our interest in this paper is to obtain an
improved understanding of the fine-grained complexity landscape for moderately short vectors,
specifically for d at most poly-logarithmic in n.

Subquadratic Scaling for Moderately Short Vectors. Our main positive result establishes
deterministic subquadratic scalability for #InnerProduct up to d growing essentially as
the square of the logarithm of n:

▶ Theorem 1 (Main; Subquadratic Scaling for #InnerProduct). There exists a deterministic
algorithm that, given as input a target t ∈ {0, 1, . . . , c log n} and two n-element sets A, B ⊆
{0, 1}c log n with 4 ≤ c ≤ log n

(log log n)4 , outputs the number of pairs (x, y) ∈ A × B with ⟨x, y⟩ = t

in time

n2/2
Ω

(√
log n log log n

c log2 c

)
. (1)

The algorithm in Theorem 1 is based on a novel technique of reconstructing a function
from its sum-aggregates by prime residue, which can be seen as an additive analog of the
Chinese Remainder Theorem and may be of independent interest (cf. Sect. 2).

We also show how a randomized algorithm for the decision problem of checking for a pair
of vectors whose Hamming distance is less than a target by Alman and Williams [6], can
with a small modification be turned into an algorithm for #InnerProduct.

▶ Theorem 2 (Randomized Subquadratic Scaling for #InnerProduct). There exists a
randomized algorithm that w.h.p., given as input a target t ∈ {0, 1, . . . , c log n} and two
n-element sets A, B ⊆ {0, 1}c log n with 4 ≤ c ≤ log n

(log log n)3 , outputs the number of pairs
(x, y) ∈ A × B with ⟨x, y⟩ = t in time

n2/2Ω
(

log n

c log2 c

)
. (2)

While the randomized algorithm in Theorem 2 is faster than the deterministic one in
Theorem 1, we stress that as far as we know no deterministic algorithm in subquadratic time
was previously known for #InnerProduct, even for O(log n) dimensions. In particular,
derandomizing Theorem 2 while retaining subquadratic time seems challenging, even though
some progress on the amount of randomness needed in the algorithm has been made,
cf. Theorem 1.1 in [3].

Our further objective is to understand the fine-grained complexity of #InnerProduct
in relation to that of #OV and other counting problems. For d = O(log n), it is known
that these problems are truly-subquadratically related; indeed, Chen and Williams [15]
give a parsimonious reduction for the detection variants of these two problems. That is,
if #OV can be solved in n2−ω(1) time, then so can #InnerProduct. However, while
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there is a subquadratic time algorithm for #OV whose running time scales as good as
n2−Ω(1/ log c) [14], the reduction of Chen and Williams [15] does not immediately give a
non-trivial algorithm for #InnerProduct. Indeed, the fastest known algorithm for the
decision version InnerProduct utilizes probabilistic polynomials for symmetric Boolean
functions with optimal dependence on the degree and error [6], and does not go via fast OV
algorithms and the reduction above. In Theorem 2, we show how a simple modification to the
algorithm in Alman and Williams [6] can turn their algorithm into a counting one. We note
that while Alman, Chan, and Williams [3] later presented a deterministic algorithm based on
Chebyshev polynomials over the reals for minimum/maximum Hamming weight pair, with
the same running time as the randomized one in [6], that deterministic algorithm, or the
even faster randomized one they presented, can not be turned into one for #InnerProduct
by our suggested modification alone.

Lower Bounds via the Permanent. The running times (1) and (2) would, at least at
first, appear to leave room for improvement. Indeed, the running time (2) is considerably
worse than the running time n2−Ω(1/ log c) obtained by Chan and Williams [14] for #OV. We
proceed to show that this intuition might be misleading, since such scalability would imply the
existence of considerably faster algorithms for a canonical hard problem in exponential-time
complexity. Accordingly, to gain insight into the complexity of #InnerProduct and #OV
when d = ω(log n), we introduce our second protagonist (R-Permanent):

Given as input an n × n matrix M with entries mij in a ring R for i, j ∈ [n], compute
the permanent

per M =
∑

σ∈Sn

∏
i∈[n]

mi,σ(i) ,

where Sn is the group of all permutations of [n] = {1, 2, . . . , n}.

Ryser’s algorithm from 1963 computes the permanent with O(n2n) arithmetic operations
in R [22]. It is a major open problem whether this can be improved to O(cn) for some
constant c < 2. Even improving the running time to less than 2n operations has been
noted as a challenge by Knuth in the Art of Computer Programming [19, Exercise 4.6.4.11].
Valiant in 1979 famously proved that the permanent is #P-complete even when restricted
to mij ∈ {0, 1} and evaluated over the ring of integers [24]; this version of the problem can
be interpreted as counting the perfect matchings in a balanced bipartite graph having the
matrix as its biadjacency matrix. For zero-one inputs over the integers, somewhat faster
algorithms are known (cf. related work below); to the best of our knowledge, the current
champion for zero-one matrices computes the permanent in 2n−Ω

(√
n/ log log n

)
time [12].

As our second contribution, we relate the fine-grained scalability of #InnerProduct
and #OV to the task of computing the permanent of a zero-one matrix over the integers.
In particular, our first result shows that if we could solve #InnerProduct as fast as the
fastest currently known algorithms for #OV [14], then we would immediately obtain a much
faster algorithm for the zero-one matrix permanent:

▶ Theorem 3 (Lower Bound for #InnerProduct via Integer Permanent). If there exists an
algorithm for solving #InnerProduct for N vectors from {0, 1}c log N in time N2−Ω(1/ log c),
then there exists an algorithm solving the permanent of an n × n zero-one matrix over the
integers in time 2n−Ω(n/ log n).

ICALP 2021
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Thus, despite the true-subquadratic equivalence for d = O(log n) [15], it would appear that
#InnerProduct and #OV have different complexity characteristics when d = ω(log n).

Our next result shows that a modest improvement in fine-grained scalability of #OV
would likewise imply much faster algorithms for the permanent.

▶ Theorem 4 (Lower Bound for #OV via Integer Permanent). If there exists an algorithm
for solving #OV for N vectors from {0, 1}c log N in time N2−Ω(1/ log1−ϵ c) for some ϵ > 0,
then there exists an algorithm solving the permanent of an n × n zero-one matrix over the
integers in time 2n−Ω(n/ log2/ϵ−2 n).

We note that such fast algorithms for #OV would already disprove the so-called Super
Strong ETH, that k-CNFSAT on n variables has no 2n−n/o(k)-time algorithm, by the
reduction to OV by Williams [26] after sparsification [17]. The present result merely adds to
the list of consequences of faster algorithms for #OV.

Methodology and Organization of the Paper. The key methodological contribution
underlying our main algorithmic result (Theorem 1) is a novel additive analog of the Chinese
Remainder Theorem (Lemma 5 developed in Sect. 2 independently of the application),
which enables us to recover the number of pairs (x, y) ∈ A × B with ⟨x, y⟩ = t from
counts of pairs (x, y) satisfying ⟨x, y⟩ ≡ r (mod p) for multiple small primes p and residues
r ∈ {0, 1, . . . , p − 1}. In particular, the crux of the algorithmic speedup lies in the observation
that to recover the count associated with a target 0 ≤ t ≤ d, primes up to roughly

√
d

suffice by Lemma 5. To obtain the counts of pairs in each residue class r modulo p, we
employ the polynomial method with modulus-amplifying polynomials of Beigel and Tarui [9]
to accommodate the counts under a prime-power modulus, with fast rectangular matrix
multiplication of Coppersmith [16] as the key subroutine implementing the count; this latter
part of the algorithm design developed in Sect. 3 follows well-known techniques in fine-grained
algorithm design (e.g. [3]). Similarly, the randomized algorithm design in Theorem 2 follows
by a minor adaptation of the probabilistic-polynomial techniques of Alman and Williams [6]
to a counting context; a proof is relegated to Sect. 4.

Our two lower-bound reductions, Theorem 3 and Theorem 4, rely on reducing an m × m

integer permanent first via the Chinese Remainder Theorem into permanents modulo multiple
primes p with p ≤ m ln m, and then using algebraic splitting via Ryser’s formula [22] to obtain
short-vector instances of #InnerProduct and #OV, respectively. For #InnerProduct
and Theorem 3, the split employs a novel discrete-logarithm version of Ryser’s formula
modulo p to arrive at two collections of vectors whose counts of pairs with specific inner
products enable recovery of the permanent modulo p; the proof is presented in Sect. 5. For
#OV and Theorem 4, the split analogously employs Ryser’s formula modulo p but with a
more intricate vector-coding of group residues modulo p to obtain the desired correspondence
with counts of pairs of orthogonal vectors; we relegate the proof to Sect. 6.

Related Work and Further Applications. As regards exact and approximate inner products,
Abboud, Williams, and Yu [1] used the polynomial method to construct a randomized
subquadratic time algorithm for OV. Chan and Williams [14] derandomized the algorithm
and showed that it could also solve the counting problem #OV. The first result that addressed
an inner product different from zero, was the randomized algorithm for minimum Hamming
weight pair by Alman and Williams [6]. Subsequently, Alman, Chan, and Williams [3] found
an even faster randomized as well as a deterministic subquadratic algorithm matching [6].



A. Björklund and P. Kaski 29:5

A number of studies address approximate versions of inner-product counting in subquad-
ratic time, such as the detection of outlier correlations and offline computation of approximate
nearest neighbors, including Valiant [23], Karppa, Kaski, and Kohonen [18], Alman [2], and
Alman, Chan, and Williams [4]. All the algorithms use fast rectangular matrix multiplication.

As regards permanents, Bax and Franklin presented a randomised 2n−Ω(n1/3/ log n) expec-
ted time algorithm for the 0/1-matrix permanent [8]. Björklund [10] derived a faster and
deterministic 2n−Ω(

√
n/ log n) time algorithm. The algorithm was subsequently improved to a

deterministic 2n−Ω(
√

n/ log log n) time algorithm by Björklund, Kaski, and Williams [12].
For the computation of an integer matrix permanent modulo a prime power pλn/p for

any constant λ < 1, Björklund, Husfeldt, and Lyckberg [11] derived a 2n−Ω(n/(p log p)) time
algorithm. For the computation of a matrix permanent over an arbitrary ring R on r elements,
Björklund and Williams [13] gave a deterministic 2n−Ω( n

r ) time algorithm.
The problem #InnerProduct has various applications in combinatorial algorithms.

For example, it can be used to count the satisfying assignments to a Sym◦And formula
(cf. Sect. 7), or compute the weight enumerator polynomial of a linear code (cf. Sect. 7). We
would also like to highlight a recent application of deterministic algorithms for #OV [14] in
efficient construction of rigid matrices [5].

2 Reconstruction from Sum-Aggregates by Prime Residue

This section develops the main methodological contribution of this work. Namely, we show
that a complex-valued function f : D → C can be reconstructed from its sum-aggregates by
prime residue when the domain D is a prefix of the set of nonnegative integers. In essence,
reconstruction of a function from its sum-aggregates can be viewed as an additive analog
of the Chinese Remainder Theorem; that is, we obtain reconstruction up to the sum of the
prime moduli – in the precise sense of (3) below – whereas the Chinese Remainder Theorem
enables reconstruction up to the product of the moduli.2

In our application of counting pairs of vectors by inner product, we let f be a counting
function such that f(ℓ) counts the number of pairs (x, y) ∈ A×B with ⟨x, y⟩ = ℓ. Reconstruc-
tion from sum-aggregates then enables us to recover f by counting the number of pairs (x, y)
with ⟨x, y⟩ ≡ r (mod p) for small primes p and residues r ∈ {0, 1, . . . , p − 1}; we postpone
the details of this application to Sect. 3 and first proceed to study reconstructibility.

Sum-Aggregation by Prime Residue. Let p1, p2, . . . , pm be distinct prime numbers and let

D ⊆
{

0, 1, . . . , sm − 1
}

where sm = 1 +
m∑

b=1

(
pb − 1

)
. (3)

Letting fℓ be shorthand for f(ℓ), we show that we can recover f from the sequence of its
sum-aggregates

Fbr =
∑
ℓ∈D

ℓ≡r (mod pb)

fℓ for each residue r ∈ {0, 1, . . . , pb − 1} and each b ∈ {1, 2, . . . , m}. (4)

2 Here it should be noted that the scope of the classical Chinese Remainder Theorem is also somewhat
more restricted than our present setting; indeed, the Chinese Remainder Theorem does not enable the
reconstruction of an arbitrary function f but rather is restricted to reconstruction in the case when f
is known to vanish in all but one point of D. We also note that the present additive setting can be
captured algebraically through generalized Chinese remaindering in polynomial rings; here we refer to
the alternative proof of Lemma 5 at the end of this section.

ICALP 2021
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To start with, we observe that this sequence is linearly dependent. Indeed, define

F01 =
∑
ℓ∈D

fℓ (5)

and observe that for each b ∈ {1, 2, . . . , m} we have the linear relation F01 =
∑pb−1

r=0 Fbr.
To obtain an equivalent and – as we will shortly show – linearly independent sequence,

take the sequence formed by the sum F01 followed by Fbr for each nonzero residue r ∈
{1, 2, . . . , pb − 1} and each b ∈ {1, 2, . . . , m}. Let us write F for this sequence of length sm.
By extending the domain of the function f with zero-values fℓ = 0 as needed, we can also
assume that D = {0, 1, . . . , sm − 1} in what follows.

Sum-Aggregation as a Linear System – Modular Tomography. Let us now study recon-
struction of f from F . From (4) and (5) we observe that to reconstruct f from F it suffices
to solve the linear system

F = Af , (6)

where A is the sm × sm nonzero residue aggregation matrix whose entries are defined for all
b ∈ {0, 1, 2, . . . , m}, i ∈ {1, 2, . . . , pb − 1}, and ℓ ∈ {0, 1, . . . , sm − 1} by the rule

Abi,ℓ =


1 if b = 0;
1 if b ≥ 1 and i ≡ ℓ (mod pb);
0 if b ≥ 1 and i ̸≡ ℓ (mod pb),

(7)

where we have assumed for convenience that p0 = 2. Indeed, we readily verify from (4), (5),
and (7) that

Fbi =
sm−1∑
ℓ=0

Abi,ℓfℓ

holds for each b ∈ {0, 1, . . . , m} and i ∈ {0, 1, . . . , pb − 1}. When we want to stress the m

selected primes, we write Ap1,p2,...,pm for the matrix A.
The row-banded structure given by (7) is perhaps easiest illustrated with a small example.

Below we display the matrix A for the primes p1 = 2, p2 = 3, and p3 = 5:

A2,3,5 =



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0


. (8)

Observe in particular that the first band b = 0 corresponds to the sum (5) and the subsequent
bands b ∈ {1, 2, . . . , m} each correspond to one of the primes p1, p2, . . . , pm so that the pb − 1
rows inside each band correspond to the sum-aggregates (4) of the pb − 1 nonzero residue
classes modulo pb.
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Our main technical lemma establishes that the matrix A is invertible, thus enabling
reconstruction of f from F . Or, what is the same, we can recover f by modular tomography
from the sequence F of tomographs; indeed, from a tomographic standpoint we can by (7)
and (8) view each b ∈ {1, 2, . . . , m} as corresponding to a bundle of pairwise disjoint parallel
lines aggregating the data f , with i ∈ {1, 2, . . . , pb − 1} indexing the lines in a bundle.

▶ Lemma 5 (Reconstruction from Sum-Aggregates by Prime Residue). The nonzero residue
aggregation matrix Ap1,p2,...,pm is invertible whenever p1, p2, . . . , pm are distinct primes.

The key idea in the proof is to decompose Ap1,p2,...,pm over the complex numbers into the
product of a near-block-diagonal matrix with near-Vandermonde blocks and a Vandermonde
matrix, both of which are then shown to have nonzero determinant. We will also present an
alternative proof using elementary commutative algebra.

Proof of the Reconstruction Lemma. We now prove Lemma 5. We show that for distinct
primes p1, p2, . . . , pm the matrix A = Ap1,p2,...,pm is invertible over rational numbers. Our
strategy is to show that A = UV for two complex matrices U and V that both have nonzero
determinant. Indeed, the near-cyclic banded structure of A suggests that one should pursue
a decomposition in terms of block-structured near-Vandermonde matrices. Let us first define
the matrices U and V , then present a small example, and then complete the proof.

We will use the following standard facts about complex roots of unity. For a positive
integer N , let us write ωN = exp

( 2πℑ
N

)
, where ℑ =

√
−1 is the imaginary unit. For all m ∈ Z

we have

1
N

N−1∑
j=0

ωkm
N =

{
1 if k ≡ 0 (mod N);
0 if k ̸≡ 0 (mod N).

(9)

The matrix U will use a (m + 1) × (m + 1) block structure that is similar to the (m + 1)-
band structure of A, but now the structure is used both for rows and columns. Again
for convenience we assume p0 = 2. The matrix U is defined for all b ∈ {0, 1, 2, . . . , m},
i ∈ {1, 2, . . . , pb − 1}, d ∈ {0, 1, . . . , m}, and k ∈ {1, 2, . . . , pd − 1} by the rule

Ubi,dk =


1 if d = 0 and b = 0;
1
pb

if d = 0 and b ≥ 1;
0 if d ≥ 1 and b ̸= d;
1
pb

ω−ik
pb

if d ≥ 1 and b = d.

(10)

The matrix V is a Vandermonde matrix with (m + 1)-banded structure defined for all
d ∈ {0, 1, . . . , m}, k ∈ {1, 2, . . . , pd − 1}, and ℓ ∈ {0, 1, . . . , sm − 1} by the rule

Vdk,ℓ =
{

1 if d = 0;
ωkℓ

pd
if d ≥ 1 .

(11)

Before proceeding with the proof that A = UV , let us present an example for the primes
p1 = 2, p2 = 3, and p3 = 5; recall (8). We have
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1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0


A2,3,5

=

=


1 0 0 0 0 0 0 0
1
2

1
2 ω

−1·1
2 0 0 0 0 0 0

1
3 0 1

3 ω
−1·1
3

1
3 ω

−1·2
3 0 0 0 0

1
3 0 1

3 ω
−2·1
3

1
3 ω

−2·2
3 0 0 0 0

1
5 0 0 0 1

5 ω
−1·1
5

1
5 ω

−1·2
5

1
5 ω

−1·3
5

1
5 ω

−1·4
5

1
5 0 0 0 1

5 ω
−2·1
5

1
5 ω

−2·2
5

1
5 ω

−2·3
5

1
5 ω

−2·4
5

1
5 0 0 0 1

5 ω
−3·1
5

1
5 ω

−3·2
5

1
5 ω

−3·3
5

1
5 ω

−3·4
5

1
5 0 0 0 1

5 ω
−4·1
5

1
5 ω

−4·2
5

1
5 ω

−4·3
5

1
5 ω

−4·4
5


U2,3,5

·

·


1 1 1 1 1 1 1 1

ω1·0
2 ω1·1

2 ω1·2
2 ω1·3

2 ω1·4
2 ω1·5

2 ω1·6
2 ω1·7

2
ω1·0

3 ω1·1
3 ω1·2

3 ω1·3
3 ω1·4

3 ω1·5
3 ω1·6

3 ω1·7
3

ω2·0
3 ω2·1

3 ω2·2
3 ω2·3

3 ω2·4
3 ω2·5

3 ω2·6
3 ω2·7

3
ω1·0

5 ω1·1
5 ω1·2

5 ω1·3
5 ω1·4

5 ω1·5
5 ω1·6

5 ω1·7
5

ω2·0
5 ω2·1

5 ω2·2
5 ω2·3

5 ω2·4
5 ω2·5

5 ω2·6
5 ω2·7

5
ω3·0

5 ω3·1
5 ω3·2

5 ω3·3
5 ω3·4

5 ω3·5
5 ω3·6

5 ω3·7
5

ω4·0
5 ω4·1

5 ω4·2
5 ω4·3

5 ω4·4
5 ω4·5

5 ω4·6
5 ω4·7

5


V 2,3,5

. (12)

The main technical aspect of the proof that A = UV is to partition the index ℓ ∈
{0, 1, . . . , sm − 1} to the m + 1 bands. Towards this end, define for each c ∈ {0, 1, . . . , m}
the prefix-sum

sc =
{

0 if c = 0;
1 +

∑c−1
ℓ=1

(
pc − 1

)
if c ≥ 1.

In particular, for every ℓ ∈ {0, 1, . . . , sm − 1}, we observe that there exist unique c ∈
{0, 1, . . . , m} and j ∈ {1, 2, . . . , pc − 1} such that

ℓ = j − 1 + sc . (13)

We are now ready to show that A = UV . Let b ∈ {0, 1, . . . , m}, i ∈ {0, 1, . . . , pb − 1},
and ℓ ∈ {0, 1, . . . , sk − 1} be arbitrary. Let c ∈ {0, 1, . . . , m} and j ∈ {1, 2, . . . , pc − 1} be
uniquely determined from ℓ by (13). From (10), (11), (9), and (7) we observe that

m∑
d=0

pd−1∑
k=0

Ubi,dkVdk,ℓ =

=



1 if b = 0;
1

pb

(
1 +

∑pb−1
k=1 ω

−ik+k(j−1+s
b

)
pb

)
= 1

pb

∑pb−1
k=0 ω

k(j−i−1+sb)
pb = 1 if b ≥ 1 and i ≡ j − 1 + sb = ℓ (mod pb);

1
pb

(
1 +

∑pb−1
k=1 ω

−ik+k(j−1+s
b

)
pb

)
= 1

pb

∑pb−1
k=0 ω

k(j−i−1+s
b

)
pb = 0 if b ≥ 1 and i ̸≡ j − 1 + sb = ℓ (mod pb).

= Abi,ℓ .

Thus, A = UV holds. It remains to show that both matrices U and V have nonzero
determinant over the complex numbers. Starting with the Vandermonde matrix V , let ν0 = 1
and νℓ = ωj

pc
for ℓ ∈ {1, 2, . . . , sm − 1}, where c ∈ {0, 1, . . . , m} and j ∈ {1, 2, . . . , pc − 1} are

uniquely determined from ℓ by (13). In particular, we observe that V is a Vandermonde
matrix with D = sm − 1 and V =

[
νj

i

]j=0,1,...,D

i=0,1,...,D
. The Vandermonde determinant formula
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thus gives det V =
∑

0≤k<ℓ≤D(νℓ − νk). Furthermore, this determinant is nonzero because
p1, p2, . . . , pm are distinct primes and thus ν0, ν1, . . . , νD are distinct. Next, let us consider
the matrix U defined by (10). At this point it may be useful to revisit the structure of U

via the example (12). We observe that the block-diagonal of U with b = c ≥ 1 consists of
matrices that each decompose into the product of a (pb − 1) × (pb − 1) diagonal matrix with
diagonal entries 1

pb
ω−i

pb
for i ∈ {1, 2, . . . , pb − 1} and a (pb − 1) × (pb − 1) Vandermonde matrix

with a nonzero determinant since ω−i
pb

for i ∈ {1, 2, . . . , pb − 1} are distinct. Thus, since the
determinant of U is the product of the determinants of the block-matrices on the diagonal,
each of which is nonzero, the determinant of U is nonzero. It follows that A is invertible and
thus given F we can solve for f via (6). This completes the proof of Lemma 5. ◀

An Alternative Proof. Let us sketch an alternative algebraic proof for Lemma 5. Let us
view f =

∑sm−1
ℓ=0 fℓx

ℓ ∈ C[x] as a univariate polynomial in the indeterminate x over the
complex numbers. For each b ∈ {1, 2, . . . , m}, we observe that the polynomial remainder
of f divided by xpb − 1 satisfies f rem (xpb − 1) =

∑pb−1
i=0 Fbix

i ∈ C[x]. Furthermore, for
distinct b, c ∈ {1, 2, . . . , m} we have that the sets of complex roots of xpb − 1 and xpc − 1 are
disjoint apart from the common root x = 1; that is, (xpb − 1)/(x − 1) and (xpc − 1)/(x − 1)
are coprime polynomials. Thus, by (3) and the Chinese Remainder Theorem in C[x],
we can recover f from the sequence of remainders f rem (xpb − 1) for b ∈ {1, 2, . . . , m};
cf. von zur Gathen and Gerhard [25] for the algebraic background and associated near-linear-
time algorithmic toolbox. ◀

3 Counting Pairs of Zero-One Vectors by Inner Product

This section documents our main algorithm and proves Theorem 1. Let κ be a parameter
that satisfies, with foresight,

4 ≤ κ ≤ log n

(log log n)4 . (14)

Let a(1), a(2), . . . , a(n) ∈ {0, 1}d and b(1), b(2), . . . , b(n) ∈ {0, 1}d be given as input with
d ≤ κ log n. We want to compute for each t ∈ {0, 1, . . . , d} the count

ft = |{(i, j) ∈ {1, 2, . . . , n}2 : ⟨a(i), b(j)⟩ = t}| .

Our high-level approach will be to use Lemma 5 and (6) to solve for the counts f0, f1, . . . , fd

using as input counts that have been sum-aggregated by prime residue. More precisely, we
will work with prime moduli p1, p2, . . . , pm and develop an algorithm that computes, for
given further input p ∈ {p1, p2, . . . , pm} and r ∈ {0, 1, . . . , p − 1}, the sum-aggregated count

Fpr = |{(i, j) ∈ {1, 2, . . . , n}2 : ⟨a(i), b(j)⟩ ≡ r (mod p)}| .

The detailed choices for m and the primes p1, p2, . . . , pm will be presented later.

The Residue-Indicator Polynomial. Assume p and r have been given. We will rely on the
polynomial method, and accordingly we first build a standard polynomial that indicates the
residue r modulo p in a pair of vectors.

Let x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) be two vectors of indeterminates. By
Fermat’s little theorem, the 2d-indeterminate polynomial

Gp,r

(
x, y

)
= 1 −

( d∑
k=1

xkyk − r

)p−1
(15)
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satisfies for all i, j ∈ {1, 2, . . . , n} the indicator property

Gp,r

(
a(i), b(j)) ≡

{
1 (mod p) if ⟨a(i), b(j)⟩ ≡ r (mod p);
0 (mod p) if ⟨a(i), b(j)⟩ ̸≡ r (mod p).

(16)

We observe that Gp,r has degree 2p − 2.

Modulus Amplification for Zero-One Residues. To enable taking the sum of a large number
of indicators, we make use of the modulus amplifying polynomials of Beigel and Tarui [9].

▶ Theorem 6 (Modulus amplification; Beigel and Tarui [9]). For h ∈ Z≥1, define the polynomial

Ah(z) = 1 − (1 − z)h
h−1∑
j=0

(
h + j − 1

j

)
zj . (17)

Then, for all m ∈ Z≥2 and s ∈ Z, we have
(i) s ≡ 0 (mod m) implies Ah(s) ≡ 0 (mod mh), and
(ii) s ≡ 1 (mod m) implies Ah(s) ≡ 1 (mod mh).

We observe that Ah has degree 2h − 1. Composing (17) and (15), we obtain the amplified
residue-indicator polynomial

Gh
p,r(x, y) = Ah

(
Gp,r(x, y)

)
. (18)

From (16) and Theorem 6, we observe the amplified indicator property

Gh
p,r

(
a(i), b(j)) ≡

{
1 (mod ph) if ⟨a(i), b(j)⟩ ≡ r (mod p);
0 (mod ph) if ⟨a(i), b(j)⟩ ̸≡ r (mod p).

(19)

Furthermore, we observe that Gh
p,r has degree (2h − 1)(2p − 2).

Multilinear Reduct and Bounding the Number of Monomials. For a nonnegative integer
e, define e = 0 if e = 0 and e = 1 if e ≥ 1. For a monomial xe1

1 xe2
2 · · · xed

d yf1
1 yf2

2 · · · yfd

d , define
the multilinear reduct by

xe1
1 xe2

2 · · · xed

d yf1
1 yf2

2 · · · yfd

d = x
e1
1 x

e2
2 · · · x

e
d

d y
f

1
1 y

f
2

2 · · · y
f

d

d .

For a polynomial Q(x, y), define the multilinear reduct Q(x, y) by taking the multilinear
reduct of each monomial Q(x, y) and simplifying. Since a(i) and b(j) are {0, 1}-valued vectors,
over the integers we have

Q
(
a(i), b(j)) = Q

(
a(i), b(j)) . (20)

Furthermore, if Q has degree D, then Q has at most
∑D

j=0
(2d

j

)
monomials. In particular,

we observe that Gh
p,r has at most

∑4hp
j=0

(2d
j

)
monomials.
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Split-Monomial Form of the Multilinear Reduct. Suppose that the multilinear reduct
Gh

p,r(x, y) has exactly M monomials with the representation

Gh
p,r(x, y) =

M∑
k=1

γ(k) x
e

(k)
1

1 x
e

(k)
2

2 · · · x
e

(k)
d

d y
f

(k)
1

1 y
f

(k)
2

2 · · · y
f

(k)
d

d . (21)

For I, J ⊆ {1, 2, . . . , n} and k ∈ {1, 2, . . . , M}, define

LI,k =
∑
i∈I

(
a

(i)
1

)e
(k)
1

(
a

(i)
2

)e
(k)
2 · · ·

(
a

(i)
d

)e
(k)
d γ(k) , RJ,k =

∑
j∈J

(
b

(j)
1

)f
(k)
1

(
b

(j)
2

)f
(k)
2 · · ·

(
b

(j)
d

)f
(k)
d . (22)

From (22), (21), (20), and (19), we have
M∑

k=1
LI,kRJ,k =

∑
i∈I

∑
j∈J

Gh
p,r

(
a(i), b(j))

≡
∣∣{(i, j) ∈ I × J : ⟨a(i), b(j)⟩ ≡ r (mod p)

}∣∣ (mod ph) . (23)

In particular, assuming that |I||J | ≤ ph−1, from (23) it follows that
∑M

k=1 LI,kRJ,k computed
modulo ph recovers the number of pairs (i, j) ∈ I × J with ⟨a(i), b(j)⟩ ≡ r (mod p).

We now move from deriving the polynomial and its properties to describing the algorithm.

Algorithm for the Prime-Residue Count. The algorithm will rely on (23) via fast rectan-
gular matrix multiplication to count the number of pairs (i, j) ∈ {1, 2, . . . , n}2 that satisfy
⟨a(i), b(j)⟩ ≡ r (mod p).

The algorithm first computes the explicit M -monomial representation of the polyno-
mial Gh

p,r in (21). More precisely, the algorithm evaluates (15), (17), and (18) in ex-
plicit monomial representation, taking multilinear reducts with respect to the variables
x1, x2, . . . , xd, y1, y2, . . . , yd whenever possible. This results in the set

{(k, γ(k), e
(k)
1 , e

(k)
2 , . . . , e

(k)
d , f

(k)
1 , f

(k)
2 , . . . , f

(k)
d ) : k ∈ {1, 2, . . . , M}} . (24)

Next, the algorithm constructs two rectangular matrices S and T , with the objective of
making use of the following algorithm of Coppersmith [16].

▶ Theorem 7 (Coppersmith [16]). Given an N × ⌊N0.17⌋ matrix S and an ⌊N0.17⌋ × N

matrix T as input, the matrix product ST over the integers can be computed in O(N2 log2 N)
arithmetic operations.

Towards this end, let g be a positive integer whose value we will fix later. Introduce two
set partitions of {1, 2, . . . , n} with cells

I1, I2, . . . , I⌈n/g⌉ ⊆ {1, 2, . . . , n} and J1, J2, . . . , J⌈n/g⌉ ⊆ {1, 2, . . . , n} ,

respectively, so that |Iu| = g and |Iv| = g for u, v ∈ {1, 2, . . . , ⌊n/g⌋}. Indeed, we thus have
|Iu||Jv| ≤ g2 for all u, v ∈ {1, 2, . . . , ⌈n/g⌉}, so (23) applied to Iu and Jv modulo ph recovers
the number of pairs (i, j) ∈ Iu × Jv with ⟨a(i), b(j)⟩ ≡ r (mod p), assuming that g2 ≤ ph − 1,
which will be justified by our eventual choice of g.

Now let N = ⌈n/g⌉ and define the N × M and M × N matrices S and T by setting
Suk = LIu,k and Tkv = RIv,k for u, v ∈ {1, 2, . . . , ⌈n/g⌉} and k ∈ {1, 2, . . . , M}. Concretely,
the algorithm computes S and T from the given input one entry at a time using the
computed monomial list (24) and the formulas (22) for I = Iu and J = Jv for each
u, v ∈ {1, 2, . . . , ⌈n/g⌉} and k = 1, 2, . . . , M . The algorithm then multiplies S and T to
obtain the product matrix ST modulo ph, where we assume that each entry of ST is reduced
to {0, 1, . . . , ph − 1}. Finally, the algorithm outputs the sum Fpr =

∑⌈n/g⌉
u=1

∑⌈n/g⌉
v=1 (ST )uv.
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Parameterizing the Algorithm. Let us now fix precise values for the parameters g, h, and
p that were left open. First, to apply the algorithm in Theorem 7 to the matrices S and T ,
we need M ≤ N0.17 = ⌈n/g⌉0.17. Subject to the assumption g ≤ n0.1 – to be justified later –
it will be sufficient to show that M ≤ n0.15. We recall that M ≤

∑4hp
j=0

(2d
j

)
and d ≤ κ log n.

With foresight, let us set

βκ = K

log κ
, (25)

where K > 0 is a small constant that will be fixed later. In particular, since κ ≥ 4, we have
the upper bound

βκ log κ

βκ
= K − K log K

κ
+ K log log κ

κ
≤ 5K

4 (26)

which we can make an arbitrarily small and positive by choosing a small enough K. Let us
assume – to be justified later – that p = o(βκ log n). Taking

h =
⌊

βκ
log n

p

⌋
(27)

we have, for all large enough n,

M ≤
4hp∑
j=0

(
2d

j

)
≤ 4hp

(
2d

4hp

)
≤ 4hp

(
2ed

4hp

)4hp

≤ 4
(

βκ
log n

p
+ 1

)
p

(
2eκ log n

4
(
βκ

log n
p − 1

)
p

)4
(

βκ
log n

p +1
)

p

= 4
(
βκ log n + p

)(
2eκ log n

4
(
βκ log n − p

))4(βκ log n+p)

≤
(
5βκ log n

)(
2eκ

3βκ

)5βκ log n

≤ n0.15 , (28)

where the last inequality follows by (26) and choosing K small enough. Thus, Theorem 7
applies, subject to the assumptions g ≤ n0.1, g2 ≤ ph −1, and p = o(βκ log n), which still need
to be established. Before this, we digress to further preliminaries to enable reconstruction.

Preliminaries on Asymptotics of Primes. In what follows let us write pj for the jth prime
number with j = 1, 2, . . .; that is, p1 = 2, p2 = 3, p3 = 5, and so forth. Asymptotically, from
the Prime Number Theorem we have pm ∼ m ln m (e.g. Rosser and Schoenfeld [21]), and the
sum of the first m primes satisfies

∑m
j=1 pj ∼ 1

2 m2 ln m (cf. Bach and Shallit [7]), where we
write f(m) ∼ g(m) if limm→∞

f(m)
g(m) = 1.

When evaluated for the first m primes, the reconstruction parameter (3) thus satisfies

sm = 1 +
m∑

j=1
(pj − 1) ∼ p2

m

2 ln pm
. (29)

We are now ready to continue parameterization of the algorithm.
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Further Parameterization of the Algorithm. Let m be a positive integer whose value will
be fixed shortly. The algorithm will work with p1, p2, . . . , pm, the first m prime numbers. To
reconstruct inner products of length-d zero-one vectors over the integers, we need d + 1 ≤ sm,
which for d ≤ κ log n and (29) means

p2
m

2 ln pm
∼ κ log n .

From Bertrand’s postulate it thus follows that choosing the least m so that

2
√

κ(ln n) ln ln n ≤ pm ≤ 4
√

κ(ln n) ln ln n (30)

implies that we have d + 1 ≤ sm for all large enough n and thus reconstruction is feasible.
The choice (30) also justifies our ealier assumption made in the context of (27) and (28) that
pj = o(βκ log n) for all j ∈ {1, 2, . . . , m}; indeed, from (14) and (25), we have

βκ log n = K log n

log κ

and thus from (14) and (30) we observe that

pj

βκ log n
≤ 4κ1/2(log κ)(ln n)1/2(ln ln n)1/2

K log n
= o(1) .

Let us next choose the parameter g. Using pj = o(βκ log n) again, we have

p
hj

j = p

⌊
βκ

log n
pj

⌋
j ≥ p

βκ
log n

pj
−1

j ≥ p
βκ

log n
2pj

j = 2βκ
log n
2pj

log pj = n
βκ

log pj
2pj .

Since p1 < p2 < · · · < pm, for j ∈ {1, 2, . . . , m} thus p
hj

j ≥ nβκ
log pm

2pm . It follows that choosing

g =
⌊√

nβκ
log pm

2pm − 1
⌋

(31)

justifies our assumption g2 ≤ p
hj

j − 1 for j ∈ {1, 2, . . . , m}. The final assumption g ≤ n0.1 is
justified by observing that log pm

2pm
is a decreasing function of m and observing that βκ = o(1)

by (14) and (25). The algorithm is now parameterized. Let us next analyse its running time.

Running Time Analysis. First, let us seek control on N as a function of n. From (30) and
(31), we have

g ≥
√

n
βκ

2 log 2+log κ+log ln n+log ln ln n

16
√

κ ln n ln ln n − 1 − 1 .

This together with (14) gives us the crude lower bound

g = exp
(

Ω
(

βκ

√
(ln n) ln ln n

κ

))
.

We thus have

N2 = ⌈n/g⌉2 = n2−Ω
(

βκ

√
ln ln n
κ ln n

)
.
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Recalling (28), we observe that the time to compute the M -monomial list (24) can be
bounded by n0.31 because the algorithm is careful to take multilinear reducts and thus
at no stage of evaluating (15), (17), and (18) the number of monomials increases above
(n0.15)2 = n0.30. Since log p

hj

j = hj log pj =
⌊
βκ

log n
pj

⌋
log pj = O(log n), the arithmetic over

the integers and modulo p
hj

j for each j = 1, 2, . . . , m runs in time polylogarithmic in n for
each arithmetic operation executed by the algorithm. Because the algorithm in Theorem 7
runs in O(N2 log2 N) arithmetic operations, we observe that the polylogarithmic terms are
subsumed by the asymptotic notation and the entire algorithm for computing Fpr for given
p ∈ {p1, p2, . . . , pm} and r ∈ {0, 1, . . . , p − 1} runs in time

n2−Ω
(

βκ

√
log log n
κ log n

)
= n

2−Ω
(√

log log n

κ(log κ)2 log n

)
. (32)

From (30) we observe that the required repeats for different p and r result in multiplicative
polylogarithmic terms in n and are similarly subsumed to result in total running time of the
form (32). This completes the proof of Theorem 1. ◀

4 A Faster Randomized Algorithm for #InnerProduct

This section sketches a proof for Theorem 2. We follow the algorithm outlined in Alman
and Williams [6]. We note that by their Theorem 1.2, there are probabilistic polynomials
over any field with error ϵ of degree O(

√
n log(1/ϵ)). In their Theorem 4.2, they have a

probabilistic OR-construction that takes the disjunction of a random set of s2 pairs of vector
inner products as

q(x1, y1, x2, y2, . . . , xs, ys) = 1+
2∏

k=1

(
1+

∑
(i,j)∈Rk

(
1+p(xi,1 +yi,1, xi,2 +yj,2, . . . , xi,s +yj,s)

))
,

where p is a probabilistic threshold polynomial over F2 of error ϵ = s−3, and Rk ⊆ [s]2 for
k = 1, 2 are sieve subsets drawn uniformly at random. This construction can be used to
detect w.h.p. if there is a pair in the s2-sized batch whose difference Hamming weight is less
than the threshold. By repeated computations with new p’s and Rk’s, a majority vote for
the batch can be chosen as the correct answer, again w.h.p. for all batches.

We implement the following change of q to get an #InnerProduct algorithm. We take
p to be a probabilistic polynomial of error ϵ = s−3 for the symmetric function [[

∑n
i=1 zi = t]],

over a field of characteristic > s2. We then construct q as

q(x1, y1, x2, y2, . . . , xs, ys) =
∑

(i,j)∈[s]2

p(xi,1yi,1, xi,2yj,2, . . . , xi,syj,s) . (33)

Since the characteristic of the field is large enough, (33) is equal to the number of pairs in
the s2-sized batch that has inner product equal to t with probability at least 1 − s2ϵ ≥ 1 − 1

s ,
a similar bound on the probability as in Theorem 4.2. Also, the degree of the polynomials is
only a factor 2 larger. As with the original algorithm, if we repeat this enough times and
take the majority in each batch, we get the correct number of pairs with t as inner product
in all batches. By summing these final majority numbers over the integers, we obtain the
output. We note that the parameters of the error and the degree has only changed by a
constant, and hence that all calculations of the running time and the error bound of the
original algorithm carries through also for our modification of the algorithm. This completes
the proof sketch. ◀
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5 A Lower Bound for #InnerProduct via Zero-One Permanents

This section proves Theorem 3; the proof of Theorem 4 is presented in Sect. 6.
Throughout this section we let M be an n × n matrix with entries mij ∈ {0, 1} for

i, j ∈ {1, 2, . . . , n}. For convenience, let us write [n] = {1, 2, . . . , n}. Recalling Ryser’s
formula, we have

per M = (−1)n
∑

S⊆[n]

(−1)|S|
∏

i∈[n]

∑
j∈S

mij . (34)

First Reduction: Chinese Remaindering. Since it is immediate that 0 ≤ per M ≤ n!, it
suffices to compute the permanent modulo small primes p and then assemble the result over
the integers via the Chinese Remainder Theorem. Let us first state and prove a crude upper
bound on the size of the primes needed. For a positive integer m, let us write m# for the
product of all prime numbers at most m.

▶ Lemma 8. For all sufficiently large n, we have n! ≤ (n ln n)#.

Proof. Recall that for a positive integer m we write write m# for the product of all
prime numbers at most m. For m ≥ 563, we have ln m# > m

(
1 − 1

2 ln m

)
; cf. Rosser

and Schoenfeld [21]. For the factorial function, for n ≥ 1, Robbins [20] shows that n! =√
2πn

(
n
e

)n
eαn with 1

12n+1 < αn < 1
12n , which gives us the comparatively crude upper bound

ln n! <
(
n + 1

2
)

ln n − n + 1 for n ≥ 1. We want ln n! < ln m#. Accordingly, it suffices to
have m ≥ 563 and

(
n + 1

2
)

ln n − n + 1 < m
(
1 − 1

2 ln m

)
. It is immediate that m ≥ n ln n

suffices for m ≥ 563, which completes the proof. ◀

Thus, it suffices to work with all primes p with p ≤ n ln n in what follows.

A Reduction from Zero-One Permanent to #InnerProduct. This section starts our
work towards Theorem 3 without yet parameterizing the reduction in detail. Let a prime
2 ≤ p ≤ n ln n be given. We seek to compute per M modulo p. Fix a primitive root
g ∈ {1, 2, . . . , p − 1} modulo p. For an integer a with a ̸≡ 0 (mod p), let us write dlogp,g a

for the discrete logarithm of a relative to g modulo p. That is, dlogp,g a is the unique integer
in {0, 1, . . . , p − 2} that satisfies gdlogp,g a ≡ a (mod p). Working modulo p and collecting
the outer sum in (34) by the sign σ ∈ {−1, 1} and the nonzero products by their discrete
logarithm, we have

per M ≡ (−1)n

p−2∑
e=0

ge
(
w

(e)
1 − w

(e)
−1

)
(mod p) ,

where

w(e)
σ =

∣∣∣∣{S ⊆ [n] : (−1)|S| = σ and dlogp,g

∏
i∈[n]

∑
j∈S

mij ≡ e (mod p − 1)
}∣∣∣∣

for σ ∈ {−1, 1} and e ∈ {0, 1, . . . , p − 2}. Thus, to compute per M modulo p it suffices to
compute the coefficients w

(e)
σ . Towards this end, suppose that n ≥ 4 is even and let

L = {1, 2, . . . , n/2} and R = {n/2, n/2 + 1, . . . , n} .

For σL, σR ∈ {1, −1}, let

w(e)
σL,σR

=
∣∣∣∣{S ⊆ [n] : (−1)|S∩L| = σL, (−1)|S∩R| = σR and dlogp,g

∏
i∈[n]

∑
j∈S

mij ≡ e (mod p − 1)
}∣∣∣∣
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Clearly w
(e)
σ =

∑
σL,σR∈{−1,1}

σLσR=σ
w

(e)
σL,σR , so it suffices to focus on computing w

(e)
σL,σR in what

follows. Define the set families

LσL
=

{
A ⊆ L : (−1)|A| = σL

}
and RσR

=
{

B ⊆ R : (−1)|B| = σR

}
with |LσL

| = |RσR
| = 2n/2−1. Next we will define two families of length-d zero-one vectors

whose pair counts by inner product will enable us to recover the coefficients w
(e)
σL,σR . The

structure of the vectors will be slightly elaborate, so let us first define an index set D for
indexing the |D| = d dimensions. Let

D =
{

(i, ℓ, r, k) ∈ [n] × {0, 1, . . . , p − 1} × {0, 1, . . . , p − 1} × [np] :
ℓ + r ̸≡ 0 (mod p) implies k ≤ dlogp,g

(
ℓ + r

)}
.

We have d = n2p2 + np(p − 1)(p − 2)/2 < n4(ln n)3.
For A ∈ LσL

and B ∈ RσR
, define the vectors λ(A) ∈ {0, 1}D and ρ(B) ∈ {0, 1}D for all

(i, ℓ, r, k) ∈ D by the rules

λ(A)iℓrk =
{

1 if ℓ ≡
∑

j∈A mij (mod p);
0 otherwise;

and ρ(B)iℓrk =
{

1 if r ≡
∑

j∈B mij (mod p);
0 otherwise.

To study the inner product ⟨λ(A), ρ(B)⟩ it will be convenient to work with Iverson’s
bracket notation. Namely, for a logical proposition P , let

[[P ]] =
{

1 if P is true;
0 if P is false.

Over the integers, we now have

⟨λ(A), ρ(B)⟩ =
∑

(i,ℓ,r,k)∈D

λ(A)iℓrkρ(B)iℓrk

=
∑

(i,ℓ,r,k)∈D

[[ℓ ≡
∑
j∈A

mij (mod p)]][[r ≡
∑
j∈B

mij (mod p)]]

=
∑
i∈[n]

p−1∑
ℓ,r=0

ℓ+r ̸≡0 (mod p)

[[ℓ ≡
∑
j∈A

mij (mod p)]][[r ≡
∑
j∈B

mij (mod p)]] dlogp,g

(
ℓ + r

)

+
∑
i∈[n]

p−1∑
ℓ=0

[[ℓ ≡
∑
j∈A

mij (mod p)]][[p − ℓ ≡
∑
j∈B

mij (mod p)]]np

=
{∑

i∈[n] dlogp,g

∑
j∈A∪B mij if

∏
i∈[n]

∑
j∈A∪B mij ̸≡ 0 (mod p);

≥ np if
∏

i∈[n]
∑

j∈A∪B mij ≡ 0 (mod p).
(35)

In particular, letting fσL,σR,t =
∣∣{(A, B) ∈ LσL

× RσR
: ⟨λ(A), ρ(B)⟩ = t

}∣∣, it follows
immediately from (35) that we have w

(e)
σ1,σ2 =

∑n(p−2)
t=0, t≡e (mod p−1) fσL,σR,t, which enables us

to recover per M from the counts of pairs in LσL
× RσR

by inner product.

Completing the Proof of Theorem 3. Suppose we have an algorithm for #InnerProduct
that runs in N2−Ω(1/ log c) time when given an input of N vectors from {0, 1}c log N . Take
N = 2n/2−1 and observe that log N = n/2 − 1. The reduction from previous section has
d ≤ n4(ln n)3 and thus we can take c = (n ln n)3 and thus solve n × n zero-one permanent in
time N2−Ω(1/ log c) = 2n−Ω(n/ log n). This completes the proof of Theorem 3. ◀
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6 A Lower Bound for #OV via Zero-One Permanents

A Reduction from Zero-One Permanent to #OV. This section starts our work towards
Theorem 4 without yet parameterizing the reduction in detail. As in Sect. 5, it suffices to
describe how to compute per M modulo a given prime p with 2 ≤ p ≤ n ln n.

Let g be a positive integer parameter, which we assume divides n. For h ∈ [g], let
Vh = {i ∈ [n] : (h − 1)n/g + 1 ≤ i ≤ hn/g} be a partition of the rows of M into g groups,
each of size n/g. Again from Ryser’s formula, we have

per M = (−1)n
∑

S⊆[n]

(−1)|S|
∏

h∈[g]

∏
i∈Vh

∑
j∈S

mij .

Grouping by sign σ ∈ {−1, 1} and per-group residues r ∈ {0, 1, . . . , p − 1}g, we thus have

per M ≡ (−1)n
∑

r∈{0,1,...,p−1}g

(t1,r − t−1,r)
g∏

h=1
rh (mod p) , (36)

where tσ,r =
∣∣{S ⊆ [n] : (−1)|S| = σ and

∏
i∈Vh

∑
j∈S mij ≡ rh(mod p) for each h ∈ [g]

}∣∣.
Observe that given all the counts tσ,r, it takes O(pgg) operations modulo p to compute the
permanent modulo p via (36), which is less than 2nn when g < n/ log p. We continue to
describe how to get the counts tσ,r via orthogonal-vector counting.

Assuming that n ≥ 4 is even, introduce again the split

L = {1, 2, . . . , n/2} and R = {n/2, n/2 + 1, . . . , n} .

Let the residue vector r ∈ {0, 1, . . . , p − 1}g be fixed. For σL, σR ∈ {1, −1}, let

tσL,σR,r =
∣∣{S ⊆ [n] : (−1)|S∩L| = σL , (−1)|S∩R| = σR ,

and
∏

i∈Vh

∑
j∈S

mij ≡ rh (mod p) for each h ∈ [g]
}∣∣ .

Clearly tσ,r =
∑

σL,σR∈{−1,1}
σLσR=σ

tσL,σR,r, so it suffices to focus on computing tσL,σR,r in what
follows. We again work with the set families

LσL
=

{
A ⊆ L : (−1)|A| = σL

}
and RσR

=
{

B ⊆ R : (−1)|B| = σR

}
.

Let D = [g] × {0, 1, . . . , p − 1}n/g. We have d = |D| = gpn/g.
For A ∈ LσL

and B ∈ RσR
, define the vectors λ(A) ∈ {0, 1}D and ρ(B) ∈ {0, 1}D for all

(h, u) ∈ D by the rules

λ(A)hu =
{

1 if we have
∑

j∈A mij ≡ ui−(h−1)n/g (mod p) for all i ∈ Vh;
0 otherwise

and

ρ(B)hu =
{

0 if
∏

i∈Vh

(
ui−(h−1)n/g +

∑
j∈B mij

)
≡ rh (mod p);

1 otherwise.
(37)
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Over the integers, from (37) we now have

⟨λ(A), ρ(B)⟩ =
∑

(h,u)∈D

λ(A)huρ(B)hu

=
∑

h∈[g]

∑
u∈{0,1,...,p−1}n/g

∏
i∈Vh

[[∑
j∈A

mij ≡ ui−(h−1)n/g (mod p)
]]

[[ ∏
i∈Vh

(
ui−(h−1)n/g +

∑
j∈B

mij

)
̸≡ rh (mod p)

]]

=
∑

h∈[g]

[[ ∏
i∈Vh

(∑
j∈A

mij +
∑
j∈B

mij

)
̸≡ rh (mod p)

]]

=
{

0 if we have
∏

i∈Vh

∑
j∈A∪B mij ≡ rh (mod p) for each h ∈ [g];

≥ 1 otherwise.
(38)

In particular, we have tσL,σR,r =
∣∣{(A, B) ∈ LσL

× RσR
: ⟨λ(A), ρ(B)⟩ = 0

}∣∣, which enables
us to recover per M from the counts of orthogonal pairs in LσL

× RσR
.

Completing the Proof of Theorem 4. Suppose now that we have an algorithm for #OV
that runs in N2−Ω(1/ log1−ϵ c) time for some 0 < ϵ < 1 when given an input of N vectors from
{0, 1}c log N . Take N = 2n/2−1 and observe that log N = n/2 − 1.

Let K > 1 be a constant that will depend on ϵ and the constant hidden by the Ω(·)
notation in the running time of the #OV algorithm. Take g = ⌊K−1/ϵn(log p)1−2/ϵ⌋ and
recall that the prime p is in the range 2 ≤ p ≤ n ln n. To compute the parameters tσ,r using
the reduction in the previous section, for each prime p we need 4pg invocations of the #OV
algorithm on an input of N vectors of dimension d = gpn/g. Thus, for all large enough
n, since 1

2 K−1/ϵn(log p)1−2/ϵ ≤ g, we have d = gpn/g ≤ n22K1/ϵ(log p)2/ϵ . Since clearly d =
c log N = c(n/2−1) and 2/ϵ > 2, for all large enougn n, we have log c ≤ 1+2K1/ϵ(log p)2/ϵ ≤
3K1/ϵ(log p)2/ϵ, where the last inequality depends on choosing a large enough K so that the
inequality is true for p = 2. Thus, −(log c)ϵ−1 ≤ −3ϵ−1K1−1/ϵ(log p)2−2/ϵ. One invocation
of the #OV algorithm thus runs in N2−Ω(logϵ−1 c) = 2n−Ω(n3ϵ−1K1−1/ϵ(log p)2−2/ϵ) time. For
each prime 2 ≤ p ≤ n ln n, we need 4pg ≤ 22+K−1/ϵn(log p)2−2/ϵ invocations of the #OV
algorithm. Thus, the running time of all the invocations for the prime p is bounded by
4pgN2−Ω(logϵ−1 c) ≤ 2n−Ω(n3ϵ−1K1−1/ϵ(log p)2−2/ϵ)+2+K−1/ϵn(log p)2−2/ϵ . By choosing a large
enough K to dominate the constant hidden by the Ω(·) notation in the running time of the
#OV algorithm, we thus have, for all large enough n,

4pgN2−Ω(logϵ−1 c) ≤ 2n−Ω(n3ϵ−1K−1/ϵ(log p)2−2/ϵ)

≤ 2n−Ω(n3ϵ−1K−1/ϵ(log n+log ln n)2−2/ϵ)

≤ 2n−Ω(n(log n)2−2/ϵ) .

Since there are at most n ln n primes p to consider, the total running time to compute per M

is bounded by 2n−Ω(n/ log2/ϵ−2 n). This completes the proof of Theorem 4. ◀

7 Further Applications

Counting Satisfying Assignments to a Sym◦And circuit via #InnerProduct. We describe
how to embed a Sym◦And circuit, i.e., a circuit of s And gates working on n Boolean inputs,
connected by a top gate that is an arbitrary symmetric gate, in a #InnerProduct instance
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of size N = 2n/2 and d = s. Assuming n even, we divide the n inputs in two equal halves
L and R. We let A have one vector u for each assignment to the inputs in L, with one
coordinate in u for each And gate, representing the truth value of that gate restricted to the
inputs in L. Likewise, we let B have one vector v for each assignment to the inputs in R,
with each coordinate set to the truth value of the represented gate restricted to the inputs
in R. It is readily verified that ⟨u, v⟩ counts the number of And gates that are satisfied
by the assignment represented by (u, v). Hence, knowing the number of assignments that
satisfy exactly t of the And gates, for t = 0, 1, . . . , s, which is what the solution to the
#InnerProduct gives us, we can count the total number of assignments that also satisfies
the top symmetric gate.

Variations where the circuit instead is a Sym◦Or or a Sym◦Xor, are also possible.

Computing the Weight Enumerator Polynomial via #InnerProduct. A binary linear
code of length n and rank k is a linear subspace C with dimension k of the vector space Fn

2 .
The weight enumerator polynomial is W (C; x, y) =

∑n
w=0 Awxwyn−w, where Aw = |{c ∈ C :

⟨c, c⟩ = w}| for w = 0, 1, . . . , n is the weight distribution; that is, Aw equals the number of
codewords of C having exactly w ones.

We will reduce the computation of the weight distribution, and hence the weight enumer-
ator polynomial, to (k/2+1)2 instances of #InnerProduct with N ≤ 2k/2 and d = 2(n−k)
when k is even.

Let the k × n matrix G be the generating matrix of the code; that is, the codewords of C

are exactly the row-span of G. We can assume without loss of generality that the generator
matrix has the standard form G = [Ik|P ], where Ik is the k × k identity matrix. For each
sA = 0, 1, · · · , k/2 and sB = 0, 1, . . . , k/2, we make one instance of #InnerProduct.

We let the set A have one vector u for each code c obtained as the linear combination
of exactly sA of the first k/2 rows. Each of the n − k last coordinates in the code word c

is described by a block of two coordinates in u. If ci = 0 we encode this as 01 in u, and
if ci = 1 we encode this as 10 in u. We concatenate all n − k encoded blocks to obtain u.
Likewise, we let the set B have one vector v for each code c obtained as a linear combination
of sB of the last k/2 rows. Again, each of the n − k last coordinates in the code word c

is described by a block of two coordinates in v, but the encoding is opposite the one for
A: If ci = 0 we encode this as 10 in v, and if ci = 1 we encode this as 01 in v. We again
concatenate all n − k encoded blocks to obtain v. With this design, it is readily verified that
for (u, v) ∈ A × B, the inner product ⟨u, v⟩ is equal to the number of ones in the last n − k

coordinates in the code word obtained as the sum of the code word represented by u and the
code word represented by v. Also, by design the number of ones in the first k coordinates
equals sA + sB . Hence, by summing over all pairs that have the same inner product t, and
aggregating over all sA and sB , we can compute the weight distribution.
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Abstract
We give a quasipolynomial-time algorithm for learning stochastic decision trees that is optimally
resilient to adversarial noise. Given an η-corrupted set of uniform random samples labeled by a
size-s stochastic decision tree, our algorithm runs in time nO(log(s/ε)/ε2) and returns a hypothesis
with error within an additive 2η +ε of the Bayes optimal. An additive 2η is the information-theoretic
minimum.

Previously no non-trivial algorithm with a guarantee of O(η) + ε was known, even for weaker
noise models. Our algorithm is furthermore proper, returning a hypothesis that is itself a decision
tree; previously no such algorithm was known even in the noiseless setting.
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1 Introduction

Decision trees are a touchstone class in learning theory. There is by now a rich and vast
literature on the problem of learning decision trees, spanning three decades and studying it
in a variety of models and from a variety of perspectives [10, 32, 5, 16, 7, 27, 4, 17, 23, 30,
20, 31, 15, 28, 26, 22, 19, 9, 2, 3, 1, 6].

We consider the problem of learning stochastic decision trees, a generalization of standard
deterministic decision trees that allows for stochastic nodes. This generalization broadens
the expressive power of decision trees, enabling them to represent not just deterministic
functions but also stochastic functions. Figure 1 depicts a stochastic decision tree with two
stochastic nodes, labeled “$”, one that branches on the outcome of a Bernoulli(0.8) random
variable, and the other on the outcome of a Bernoulli(0.3) random variable.

Many real-world learning scenarios are inherently stochastic in nature, and relatedly, much
of current research in learning theory focuses on the “probabilistic concept” generalization [24]
of the standard PAC model of learning deterministic concepts (e.g. see [14, 13, 11, 12] for an
ongoing line of work on learning neural networks in the probabilistic concept model). As
discussed in [24], probabilistic concepts can also be viewed as latent variable models, where
the uncertainty concerning latent variables is modeled as apparent probabilistic behavior.

Stochastic decision trees are a simple and natural way to represent stochastic functions.
Despite compelling theoretical and practical motivations, there has thus far been considerably
less attention on the problem learning stochastic decision trees as compared to deterministic
decision trees. Many basic questions remain open; for example:
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Figure 1 A stochastic decision tree with two stochastic nodes.

Is there an algorithm for properly learning stochastic decision trees, one that returns a
decision tree hypothesis?
Is there an algorithm for learning stochastic decision trees that is resilient to adversarial
noise?

These questions have been intensively studied in the case of deterministic decision trees,
and the algorithms and techniques developed to answer them (e.g. [10, 21, 15]) have become
foundational results in learning theory. A broad goal of our work is to help bring the state of
our understanding of learning stochastic decision trees into closer alignment with that of
deterministic decision trees.

1.1 Our results
We give new algorithms for learning stochastic decision trees under the uniform distribution.
En route to our main result, we give the first algorithm for properly learning stochastic
decision trees – our algorithm in fact returns a deterministic decision tree hypothesis:

▶ Theorem 1 (Properly learning stochastic decision trees). There is an algorithm A with the
following guarantee. For all ε ∈ (0, 1) and s ∈ N, given access to labeled samples (x, T (x))
where T : {0, 1}n → {0, 1} is a size-s stochastic decision tree and x is uniform random, A
runs in nO(log(s/ε)/ε2) time and with high probability outputs a deterministic decision tree h

such that Pr[h(x) ̸= T (x)] ≤ opt + ε, where opt denotes the Bayes optimal error for T .

Theorem 1 is a special case of our main result, which gives a generalization of the
algorithm A of Theorem 1 that is optimally resilient to adversarial noise.

▶ Definition 2 (η-corrupted samples; “nasty noise” [8]). Let f : {0, 1}n → {0, 1} be a stochastic
function. We say that S is an η-corrupted set of uniform random samples labeled by f if it
is formed in the following fashion: draw a set of labeled samples (x, f(x)) where x is uniform
random, and modify any η fraction to form S.
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We allow for corruptions of both the example (i.e. changing x to a different x′) and its
label (i.e. flipping f(x)), and note that the adversarial choice of which η fraction of samples
to corrupt can be adaptive, depending arbitrarily on the original uncorrupted set of samples.
This is regarded as the most challenging noise model for classification problems; weaker noise
models include random classification noise, Massart noise, and agnostic noise.

Our main result is as follows:

▶ Theorem 3 (Our main result: Properly learning stochastic decision trees in the presence of
adversarial noise). There is an algorithm A with the following guarantee. For all ε, η ∈ (0, 1)
and s ∈ N, given access to a sufficiently large η-corrupted set S of uniform random samples
labeled by a size-s stochastic decision tree T : {0, 1}n → {0, 1}, A runs in nO(log(s/ε)/ε2) time
and with high probability outputs a decision tree hypothesis h such that Pr[h(x) ̸= T (x)] ≤
opt + 2η + ε, where opt denotes the Bayes optimal error for T .

An error of opt+2η is the information-theoretic minimum (see e.g. [8]). Prior to our work
there were (improper) algorithms that achieved either opt + O(√η) + ε or 2opt + 2η + ε, the
low-degree algorithm of [29] and the L1 polynomial regression algorithm of [21] respectively,
but not the information-theoretically optimal opt + 2η + ε. This was the case even for weaker
noise models such as label-only noise (i.e. agnostic noise [18, 25]). In fact, the low-degree
and L1 polynomial regression algorithms are, in general, only known to be resilient to noise
in the labels.

As our final contribution, we show that when applied in the context of decision tree
learning, these algorithms are in fact resilient to noise in both the examples and their labels:

▶ Theorem 4 (Noise-tolerant properties of the low-degree algorithm and L1 polynomial regres-
sion). For all ε, η ∈ (0, 1) and s ∈ N, given access to a sufficiently large η-corrupted set S of
uniform random samples labeled by a size-s stochastic decision tree T : {0, 1}n → {0, 1},

the low-degree algorithm runs in time nO(log(s/ε)) and with high probability outputs a
hypothesis h satisfying Pr[h(x) ̸= T (x)] ≤ opt + O(√η) + ε.
the L1 polynomial regression algorithm runs in time nO(log(s/ε)) and with high probability
outputs a stochastic hypothesis h satisfying Pr[h(x) ̸= T (x)] ≤ 2opt + 2η + ε.

1.1.1 Summary and comparison with existing algorithms
The low-degree algorithm of Linial, Mansour, and Nisan [29] and a recent algorithm of Chen
and Moitra [9] for learning mixtures of subcubes can both be used to learn stochastic decision
trees as a special case of their main results. The algorithm of [29] runs in time nO(log(s/ε)),
whereas the algorithm of [9] runs in time Os(1) ·nO(log s) ·poly(1/ε). However, neither of these
algorithms returns a decision tree hypothesis, and hence both are improper when applied
in this context. The classic algorithm of Ehrenfeucht and Haussler [10, 5] properly learns
deterministic decision trees in time nO(log s) · poly(1/ε). However, being an Occam algorithm,
its analysis seems fundamentally unable to accommodate stochasticity of the target concept.

Table 1 summarizes our contributions and places them in the context of prior work.

1.2 Our techniques
Our approach to Theorems 1 and 3 is simple and has two main conceptual parts: a structural
lemma concerning stochastic decision trees and a noise-tolerant algorithm for learning a
special type of stochastic decision tree.

ICALP 2021
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Table 1 Performance guarantees of our algorithm and existing algorithms for learning stochastic
decision trees in the presence of adversarial noise. Among these algorithms, ours is the only one
that returns a decision tree hypothesis. Prior to our work, the error guarantees for the low-degree
algorithm and L1 polynomial regression were only known for label noise; we show in the context of
decision tree learning, these guarantees can be strengthened to allow for noise in both the examples
and labels.

Reference Technique Running time Error guarantee

[29] Low-degree algorithm nO(log(s/ε))
opt + O(√η) + ε

(This work)

[21] L1 polynomial regression nO(log(s/ε))
2opt + 2η + ε

(This work)

[9] Learning mixtures of subcubes Os(1) · nO(log s) · poly( 1
ε
)

opt + ε

Noiseless setting (η = 0)

This work
Approximation by stochastic-leaf DTs;

nO(log(s/ε)/ε2) opt + 2η + εNoise-tolerant learning of stochastic-leaf DTs

Structural lemma: We show that every size-s stochastic decision tree can be ε-
approximated by a “stochastic-leaf decision tree” of size sO(1/ε2). A stochastic-leaf
decision tree is a very specific type of stochastic decision tree, one whose stochastic nodes
only occur at its leaves.

This lemma reduces the task of learning stochastic decision trees to that of learning stochastic-
leaf decision trees, with a catch: due to the approximation error incurred, the algorithm for
learning stochastic-leaf decision trees has to be noise-tolerant.

Noise-tolerant learning stochastic-leaf decision trees: Mehta and Raghavan [30] gave an
algorithm for properly learning deterministic decision trees in the noiseless setting. We
show that their algorithm can be generalized to handle stochastic-leaf decision trees,
and furthermore, we show that our generalization is optimally resilient to adversarial
noise. This stands in contrast to the algorithm of Ehrenfeucht and Haussler [10], which
as mentioned above seems fundamentally unable to accommodate either stochasticity or
noise.

We are hopeful that each of these two parts will see further utility in problems involving
stochastic decision trees, beyond the learning-theoretic setting that is the focus of this work.

As for Theorem 4, the low-degree algorithm and L1 polynomial regression are versatile
and powerful “meta-algorithms” in learning, but they are not generally known to handle the
challenging nasty noise. Our key observation here is that the mean functions of stochastic
decision trees are well-approximated by low-degree polynomials with bounded outputs. We
then show that when run on such polynomials, the low-degree algorithm and L1 polynomial
regression are in fact resilient to nasty noise. Given the broad applicability of both algorithms,
we are similarly hopeful that this fact will be of independent interest beyond decision trees.

1.3 Preliminaries
Let f : {0, 1}n → {0, 1} be a stochastic function. We associate f with its mean function
µf : {0, 1}n → [0, 1], µf (x) := Prf [f(x) = 1]. The Bayes optimal classifier for f is the
(deterministic) function x 7→ round(µf (x)), where round(t) := 1[t ≥ 1

2 ]. Given two stochastic
functions f , h : {0, 1}n → {0, 1}, we define
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errorf (h) := E
x

[
Pr
f ,h

[f(x) ̸= h(x)]
]
,

where here and throughout this paper, x denotes a uniform random input from {0, 1}n. We
define optf := errorf (round(µf )), and when f is clear from context, we simply write opt.

▶ Fact 5 (Bayes optimal classifier minimizes classification error). For all stochastic functions
f , h : {0, 1}n → {0, 1}, we have errorf (h) ≥ optf .

▶ Fact 6 (L1-error and Bayes optimality). Let f : {0, 1}n → {0, 1} be a stochastic function.
For any h : {0, 1}n → [0, 1],

Pr[round(h(x)) ̸= f(x)] ≤ optf + 2E[|µf (x) − h(x)|].

Fact 6 states that if we have a function close to µf , we can convert it to a classifier with
error close to optf .

Proof. We need to upper bound errorf (round ◦ h) − optf at 2E[|µf (x) − h(x)|]. We rewrite
that quantity as

errorf (round ◦ h) − optf = Pr
x∼{0,1}n

[f(x) ̸= round(h(x))] − Pr
x∼{0,1}n

[f(x) ̸= round(µf (x))]

= E
x∼{0,1}n

[| µf (x) − round(h(x)) | − | µf (x) − round(µf (x)) |]

= E
x∼{0,1}n

[
1(round(h(x))) ̸= round(µf (x))) · 2 ·

∣∣ µf (x) − 1
2

∣∣]
It is only possible that round(h(x)) ̸= round(µf (x)) if | f(x) − µf (x) | ≥ | µf (x) − 1

2 |.
Therefore,

errorf (round ◦ h) − optf ≤ E
x∼{0,1}n

[
1(| f(x) − µf (x) | ≥ | µf (x) − 1

2 |) · 2 ·
∣∣ µf (x) − 1

2

∣∣]
≤ 2 E

x∼{0,1}n
[| f(x) − µf (x) |] . ◀

2 Approximating stochastic DTs with stochastic-leaf DTs

▶ Definition 7 (Stochastic-leaf DT). A stochastic-leaf DT is a stochastic DT for which all
stochastic nodes have only leaves as their children.

▶ Lemma 8 (Approximating stochastic DTs with stochastic-leaf DTs). Let T be a size-s
stochastic DT. For every ε ∈ (0, 1

2 ), there is a size-S stochastic-leaf DT T such that
S ≤ sO(1/ε2) and Ex[|µT (x) − µT (x)|] ≤ ε.

Proof. Let m denote the number of stochastic transitions in T . For a fixed r ∈ {0, 1}m, let
T (x, r) be the value of T evaluated on x with stochastic transitions determined by r. Suppose
we pick random strings r1, . . . , rc ∼ {0, 1}m independently and uniformly at random. For
each x ∈ {0, 1}n, consider the following random variable:

est(x) := E
i∈[c]

[T (x, ri)].

Note that

Er1,...,rc∈{0,1}m [est(x)] = µT (x) = E
r∼{0,1}m

[T (x, r)]

Var[est(x)] = 1
c · Varr∼{0,1}m [T (x, r)],

ICALP 2021
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where in both cases above, r ∼ {0, 1}m on the RHS denotes r chosen uniformly at random
from {0, 1}m. Since T is {0, 1}-valued, it has variance at most 1

4 . Hence, the variance of
est(x) is at most 1

4c . If we take c = 1/ε2, the following holds for any x ∈ {0, 1}n:

E
r1,...,rc∼{0,1}m

[(
est(x) − µT (x)

)2
]

≤ ε2

4 , and therefore E
r1,...,rc∼{0,1}m

[|est(x) − µT (x)|] ≤ ε

2 .

Averaging over x ∼ {0, 1}n and swapping expectations, we get:

E
r1,...,rc∼{0,1}m

[
E

x∼{0,1}n

[
|est(x) − µT (x)|

]]
≤ ε

2 .

Therefore, there must exist outcomes r⋆
1 , . . . , r⋆

c ∈ {0, 1}m of r1, . . . , rc such that

E
x∼{0,1}n

[∣∣ E
i∈[c]

[T (x, ri⋆)] − µT (x)
∣∣] ≤ ε

2 . (1)

For each i ∈ [c], we define a size-s DT by fixing the stochastic nodes of T according to
r⋆

i ∈ {0, 1}m. We define our stochastic-leaf DT T by stacking these c many size-s DTs on
top of one another: for each i < n, we replace each leaf of the ith DT with a copy of the
(i + 1)th DT. Then for each leaf ℓ of this stacked tree, let xℓ be an input that is consistent
with the root-to-ℓ path in T . We replace ℓ with a stochastic node which transitions to a
1-leaf with probability pℓ := Ei∈[c][T (xℓ, r⋆

i )], and to a 0-leaf with probability 1 − pℓ. Note
that for each i ∈ [c], the tree T (·, r⋆

i ) gives the same classification for all inputs reaching leaf
ℓ of T , so pℓ does not depend on the choice of xℓ.

T is a stochastic-leaf DT that computes x 7→ Ei∈[c][T (x, r⋆
i )], which by Equation (1),

has sufficiently small error. Since this DT has size sc = sO(1/ε2), the proof of Lemma 8 is
complete. ◀

3 A simple backtracking algorithm for finding the optimal small-depth
tree

The algorithmic core of Theorems 1 and 3 is a recursive backtracking procedure Find shown
in Algorithm 1, which takes a labeled set of samples X and finds a depth-d decision tree
that achieves minimal classification error. This algorithm is inspired by and simplifies the
Find algorithm given by Mehta and Raghavan [30] for building a minimum-error decision
tree from any “sat-countable representation” of a function.

▶ Lemma 9 (Correctness of Find). Consider any sample set X of labeled examples (x, y)
and depth budget d. The algorithm Find(X, d) (see Algorithm 1) returns a depth-d DT T ⋆

that minimizes Pr(x,y)∼X [T ⋆(x) ̸= y] among all depth-d DTs.

Proof. We proceed by induction on d. If d = 0, then Find returns at Step 1 and is clearly
correct. For the inductive step, suppose that d ≥ 1. For any i ∈ [n], we first claim that the
tree Ti defined in Step 2 is a depth d DT that minimizes classification error with respect to X

among those that query xi at the root. Let (Ti)left and (Ti)right be its left and right subtrees
respectively. By the inductive hypothesis, the left and right subtrees (Ti)left and (Ti)right are
depth d − 1 DTs that minimize error with respect to Xxi=0 and Xxi=1 respectively. Hence,
Ti is a depth d DT that achieves minimal error with respect to X among those that query
xi at the root.

Since Find returns the Ti⋆ that minimizes Pr(x,y)∼X [Ti(x) ̸= y] among all i ∈ [n] in Step
3, and each Ti is a minimal-error depth-d DT among those that query xi at the root, we
conclude that Find returns a tree of minimal error with respect to X. ◀
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Algorithm 1 A recursive backtracking algorithm for finding a depth-d DT of minimal classification
error.

Find(X, d):
Input: Set X of labeled examples (x, y) and depth budget d.

Output: A depth-d DT T ⋆ that minimizes Pr(x,y)∼X [T ⋆(x) ̸= y] among all depth-d
DTs.

1. If d = 0, return the constant c ∈ {0, 1} that minimizes Pr(x,y)∼X [c ̸= y].
2. For every i ∈ [n], let Ti be the DT defined as follows:

Ti queries xi at the root;
Has Find(Xxi=0, d − 1) as its left subtree;
Has Find(Xxi=1, d − 1) as its right subtree.

Here Xxi=b denotes the subset of X containing only examples where xi is set to b.
3. Return the tree Ti⋆ that minimizes Pr(x,y)∈X [Ti(x) ̸= y] among all i ∈ [n].

▶ Lemma 10 (Efficiency of Find). Consider any sample set X of labeled examples and depth
budget d. The algorithm Find(X, d) (see Algorithm 1) takes time nO(d) · O(|X|).

Proof. Let T (d) denote the running time of Find when run with depth budget d. If d = 0
then the algorithm only executes Step 1, which can be done in O(|X|) time by computing
round(E(x,y)∼X [y]).

Next we consider the case of d ≥ 1. In step 2, Find recurses 2n times, each with d

decremented by one. Each time it also partitions X into Xxi=0 and Xxi=1. All of these
recursive calls and partitioning takes total time 2n · T (d − 1) + n|X|. In step 3, Find must
compute Pr(x,y)∼X [Ti(x) ̸= y] for up to n different coordinates i, where each Ti has depth
at most d. This takes time n · d · |X|. We therefore have the recurrence relation:

T (d) ≤ 2n · T (d − 1) + O(nd|X|).

Solving this recurrence relation gives us the bound T (d) ≤ (2n)d · O(nd|X|), which is
≤ nO(d) · O(|X|) as desired. ◀

4 Learning stochastic DTs: proofs of Theorems 1 and 3

4.1 Proof of Theorem 1
We recall Theorem 1, this time including the confidence parameter δ.

▶ Theorem 1 (Properly learning stochastic decision trees). There is an algorithm A with the
following guarantee. For all ε ∈ (0, 1) and s ∈ N, given access to labeled samples (x, T (x))
where T : {0, 1}n → {0, 1} is a size-s stochastic decision tree and x is uniform random, A
runs in nO(log(s/ε)/ε2) · poly(log(1/δ)) time and with probability 1 − δ outputs a deterministic
decision tree h such that Pr[h(x) ̸= T (x)] ≤ opt + ε, where opt denotes the Bayes optimal
error for T .

Let T be a size-s stochastic decision tree. By Lemma 8, there is a stochastic-leaf decision
tree T of size S ≤ sO(1/ε2) such that Ex[|µT (x) − µT (x)|] ≤ ε. Consider the Bayes optimal
classifier x 7→ round(µT (x)) for T . Since T is a stochastic-leaf decision tree, we have that
this function is computed by a size-S (deterministic) decision tree T ⋆: to obtain T ⋆ from T ,

ICALP 2021
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simply replace every stochastic node in T , all of which occur at the leaves of T , with a 1-leaf
if it branches on Bernoulli(p) where p ≥ 1

2 , and a 0-leaf otherwise. Applying Fact 6, we get
that

Pr
x,T

[T ⋆(x) ̸= T (x)] ≤ optT + 2ε.

Next, consider the decision tree T ⋆
trunc obtained by truncating T ⋆ to depth log(S/ε) (and

replacing all truncated branches with a leaf with an arbitrary value, say a 1-leaf). T ⋆
trunc and

T ⋆ can only differ on inputs that reach a leaf in T ⋆ of depth at least log(S/ε), and there are
at most S such leaves. Therefore,

Pr
x

[T ⋆
trunc(x) ̸= T ⋆(x)] ≤ 2− log(S/ε) · S = ε.

Note that the depth of T ⋆
trunc is ≤ log(s/ε)/ε2. We have shown the following corollary

of Lemma 8:

▶ Corollary 11 (Approximating stochastic DTs with deterministic ones). Let T : {0, 1}n → {0, 1}
be a size-s stochastic DT. For every ε ∈ (0, 1

2 ), there is a deterministic DT T ⋆
trunc : {0, 1}n →

{0, 1} such that
1. depth(T ⋆

trunc) ≤ log(S/ε) ≤ log(s/ε)/ε2 and
2. Pr

x,T
[T ⋆

trunc(x) ̸= T (x)] ≤ optT + 3ε.

To show that Find returns a tree of small error with respect to T , we need the following
generalization bound from [30]:

▶ Lemma 12 (Generalization). Let T be a stochastic tree of size s. For S = sO(1/ε2) and a
sample size of

m := poly
(

nlog(S/ε),
1
ε

, log
(

1
δ

))
,

let X be a dataset of m i.i.d points of the form (x, T (x)). Then Find(X, log(S/ε)) outputs
T ⋆ such that

Pr
draw of X

[
Pr

x∼{0,1}n
[T ⋆(x) ̸= T (x)] ≤ optT + 3ε

]
≥ 1 − δ.

Proof. The proof is given in the proof of Theorem 2 in [30]. Lemma 9 gives us that Find
outputs a tree of minimal error with respect to X. They apply Chernoff bounds to bound
the probability that a fixed tree T ′ of depth log(S/ε) and error > optT + 3ε with respect
to T has smaller error with respect to X than T ⋆

trunc as described in Corollary 11. More
specifically, the probability over draws of X that Pr(x,y)∼X [T ⋆

trunc(x) ̸= y] > optT + 3ε or
Pr(x,y)∼X [T ′(x) ̸= y] ≤ optT + 3ε is exponentially small in |X|. This is a bound on the
probability that Find outputs a particular tree of error greater than optT + 3ε; the lemma
follows from a union bound over all trees of depth at most log(S/ε). ◀

Lemma 10 gives us that Find(X, log(S/ε)) runs in time nO(log(S/ε)) · O(|X|) =
nO(log(s/ε)/ε2) · O(|X|). For confidence parameter δ, |X| is polynomial in nlog(S/ε), log(1/ε),
and log(1/δ). Thus, the total runtime of Find is nO(log(s/ε)/ε2) · poly log(1/δ)). The desired
result holds by renaming ε′ = ε/3. ◀
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4.2 Proof of Theorem 3
We recall Theorem 3, this time including the confidence parameter δ.

▶ Theorem 3 (Our main result). There is an algorithm A with the following guarantee.
For all ε, η ∈ (0, 1) and s ∈ N, given access to a sufficiently large η-corrupted set S of
uniform random samples labeled by a size-s stochastic decision tree T : {0, 1}n → {0, 1}, A
runs in nO(log(s/ε)/ε2) · poly(log(1/δ)) time and with probability 1 − δ outputs a decision tree
hypothesis h such that Pr[h(x) ̸= T (x)] ≤ opt + 2η + ε, where opt denotes the Bayes optimal
error for T .

The proof requires the following fact.

▶ Fact 13 (Error from sample corruption). For any bounded function p : {0, 1}n → [0, 1] and
sample S◦ of points (x1, y1), . . . , (xm, ym) with 0 ≤ yi ≤ 1. Let S be a corrupted sample
formed by picking an arbitrary η-fraction of points S◦ and replacing each with an arbitrary
(also bounded) point. Then for any err : [0, 1] × [0, 1] → [0, 1]∣∣∣∣ E

(x,y)∼S◦
[err(p(x), y)] − E

(x,y)∼S
[err(p(x), y)]

∣∣∣∣ < η.

Recall T ⋆
trunc as described in Corollary 11, which has error ≤ optT + O(ε) with respect to

T . Let S◦ be the uncorrupted set of examples of T , and S be an η-corruption of S◦. Then
with probability 1 − δ over draws of S◦,

Pr
(x,y)∼S◦

[T ⋆
trunc(x) ̸= y] ≤ optT + 3ε (Lemma 12)

Pr
(x,y)∼S

[T ⋆
trunc(x) ̸= y] ≤ optT + η + 3ε. (Fact 13)

Let T ⋆ be the output of Find(S, log(S/ε)). Then,

Pr
(x,y)∼S

[T ⋆(x) ̸= y] ≤ optT + η + 3ε (Lemma 9)

Pr
(x,y)∼S◦

[T ⋆(x) ̸= y] ≤ optT + 2η + 3ε. (Fact 13)

Pr
draw of S◦

[
Pr

x∼{0,1}n
[T ⋆(x) ̸= T (x)] ≤ optT + 2η + 3ε

]
> 1 − δ (Lemma 12)

The desired result holds by renaming ε′ = ε/3. ◀

5 Noise-tolerant properties of L1 and L2 regression

In this section, we prove Theorem 4, showing that the low-degree algorithm of [29] (also
known as L2 regression) and L1 regression algorithm of [21] both learn stochastic-leaf DTs
with adversarial corruption, albeit with worse parameters than our method. Throughout
this section, we use the following function.

▶ Definition 14 (The trunc function). The function, trunc : R → [0, 1], is defined as

trunc(x) =


0 if x < 0
1 if x > 1
x otherwise.

The basis of the results in this section is Proposition 15, that if T is a size-s stochastic
DT, there is a degree log(s/ε) bounded polynomial p : {0, 1}n → [0, 1] which is ε close to µT :

ICALP 2021
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▶ Proposition 15 (µT is morally low degree). Let T be a size-s stochastic DT. There is a
polynomial p : {0, 1}n → [0, 1] such that Prx[p(x) ̸= µT (x)] ≤ ε, where deg(p) ≤ log(s/ε).

In order to handle our challenging noise model, it is important that we can guarantee the p

in Proposition 15 is bounded. Without that guarantee, L1 and L2 regression are not known
to handle noise in both the examples and the labels.

Proof. For any leaf ℓ of T , let depth(ℓ) be the number of deterministic nodes on the root-
to-leaf path to ℓ, not counting ℓ itself. The fraction of inputs in {0, 1}n that have a nonzero
chance of reaching ℓ is 2−depth(ℓ). Now, let T ′ be the stochastic decision tree that is nearly
equivalent to T except if an input reaches a leaf with deterministic depth more than log(s/ε),
T ′ returns 0. We claim that p := µT ′ satisfies Proposition 15. For that, we need to verify
three things about µT ′ :
1. µT ′ and µT are close: Prx[µT (x) ̸= µT ′(x)] ≤ ε. This is true because T and T ′ can differ

only on inputs which reach a leaf with deterministic depth at least log(s/ε). At most
2− log(s/ε) = ε/s fraction of inputs reach each such leaf, and there are at most s of them.

2. µT ′ is a degree log(s/ε) polynomial. We can write µT ′(x) as

µT ′(x) =
∑

leaves ℓ∈T ′

Pr[x reaches ℓ] · (label of ℓ)

=
∑

leaves ℓ∈T

Pr[x reaches ℓ] · 1[depth(ℓ) ≤ log(s/ε)] · (label of ℓ).

The expression Pr[x reaches ℓ] is a degree depth(ℓ) polynomial. Therefore, µT ′(x) is a
degree log(s/ε) polynomial.

3. The output of µT ′ is bounded on [0, 1]. This is true since T ′ always returns a value in
{0, 1}. ◀

5.1 L2 Regression
Given corrupted samples from some stochastic DT T , we will apply Lemma 16, given below,
to show that L2 regression can find a function f that is close to µT . Then, we will apply
Fact 6 to generate a hypothesis with error close to the Bayes optimal error.

▶ Lemma 16 (L2 error to mean error). Fix any stochastic DT T : {0, 1}n → {0, 1}, degree
d ∈ N, and ε, δ > 0. For a sample size of

m := poly
(
nd, 1/ε, log(1/δ)

)
,

let S◦ be a dataset of m i.i.d points of the form (x, T (x)). With probability at least 1 − δ,
there exists a constant C ∈ R for which the following holds for all degree d polynomials
p : {0, 1}n → R.∣∣∣∣ E

(x,y)∼S◦

[
(trunc(p(x)) − y)2]

−
(

E
x∼{0,1}n

[
(trunc(p(x)) − µT (x))2]

+ C

)∣∣∣∣ ≤ ε. (2)

Proof. We prove Lemma 16 in two steps: First, we argue that there is a C for which
Equation (2) holds for any fixed polynomial with extremely high probability. Then, we
discretize the set of all truncated degree d polynomials into a finite set P . By union bound,
we can show that Equation (2) applies to all functions in P, and since every truncated
degree d polynomial is sufficiently close to a function in P , this is enough to guarantee that
Equation (2) applies to all degree d polynomials.



G. Blanc, J. Lange, and L.-Y. Tan 30:11

We use the following identity: For any constant a ∈ R and random variable z ∈ R,

E
z

[
(a − z)2]

= (a − E[z])2 + Var[z].

Fix any p : {0, 1}n → R. For any x ∈ {0, 1}n, T (x) is a random variable with mean µT (x).
Therefore,

E
x∼{0,1}n

[
(trunc(p(x)) − T (x))2]

= E
x∼{0,1}n

[
(trunc(p(x)) − µT (x))2]

+ E
x∼{0,1}n

[Var[T (x)]]

For C = Ex∼{0,1}n [Var[T (x)]], Equation (2) holds in expectation over S with ε = 0. Since
(trunc(p(x)) − y)2 is bounded on [0, 1], we can apply Hoeffdings inequality: For any fixed p,
Equation (2) holds with probability at least 1 − 2 expe(−2m2ε2).

We next discretize the set of all truncated degree d polynomials. Let P be the following
finite set of functions,

P := {trunc ◦ p | p is degree-d polynomial with coefficients that are all a multiple of ε/nd}

Degree d polynomials have at most nd coefficients. Therefore,

log(|P|) ≤ log

(
nd

ε

)nd
 = poly

(
nO(d), log(1/ε)

)
.

This means that for the sample size in Lemma 16, Equation (2) holds for all functions in P
with probability at least 1 − δ. We show that Equation (2) holding for function in P implies
the desired result.

Every degree d truncated polynomial is pointwise close to a function in P : Fix any degree
d polynomial p. There is some f ∈ P , for which

|trunc(p(x)) − f(x)| < ε for all x ∈ {0, 1}n.

This f is easy to specify: It’s the truncation of p′, where p′ is p with all of its coefficients
rounded to the nearest ε/nd. In order to expand Equation (2) to p, we use the following
inequality for all a, ε ∈ [0, 1]:

| (a + ε)2 − a2 | = |2aε| + ε2 ≤ 3|ε|.

Therefore,∣∣∣∣ E
(x,y)∼S

[
(trunc(p(x)) − y)2]

− E
(x,y)∼S

[
f(x) − y)2]∣∣∣∣ ≤ 3 max

x∈{0,1}n
| trunc(p(x)) − f(x) |

≤ 3 ε.

Similarly, Ex∼{0,1}n

[
(trunc(p(x)) − µT (x))2]

and Ex∼{0,1}n

[
(f(x) − µT (x))2]

are within
3ε of one another. Finally, by triangle inequality,∣∣∣∣ E

(x,y)∼S

[
(trunc(p(x)) − y)2]

−
(

E
x∼{0,1}n

[
(trunc(p(x)) − µT (x))2]

+ C

)∣∣∣∣ ≤ 7ε.

The desired result holds if we rename ε′ = ε
7 . ◀

We are now ready to prove the low-degree algorithm (i.e. L2 regression) part of Theorem 4.
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▶ Lemma 17 (L2 regression part of Theorem 4). Choose any ε, η, δ ∈ (0, 1), s ∈ N, and size-s
stochastic decision tree T : {0, 1}n → {0, 1}. For a sample of size

m := poly
(

nO(d),
1
ε

, log
(

1
δ

))
,

let S be an η-corrupted set of m uniform random samples from T . If

p∗ = arg min
Degree log(s/ε) polynomials p

(
E

(x,y)∼S

[
(p(x) − y)2])

,

and h : {0, 1}n → {0, 1} is the hypothesis h(x) = round(trunc(p∗(x))). Then with probability
at least 1 − δ over the randomness of the sample,

errorT (h) ≤ opt + O(√η) + ε.

Proof. Let S◦ be the original uncorrupted (i.i.d) set of samples, from which S differs on
at most η fraction of points. By Lemma 16, Equation (2) holds, with respect to S◦, for all
degree log(s/ε) polynomials with probability at least 1 − δ. We show that if it holds, then
errorT (h) ≤ opt + O(√η) + ε.

Proposition 15 guarantees there exists p : {0, 1}n → [0, 1], a degree log(s/ε) bounded
polynomial, satisfying

E
x∼{0,1}n

[
(p(x) − µT (x))2]

≤ ε.

Fix C as in Lemma 16. Combining Equation (2) and Fact 13, we have that

E
(x,y)∼S

[
(p(x) − y)2]

≤ C + 2ε + η.

Since p∗ has the minimum L2 error of all degree log(s/ε) polynomials on S,

E
(x,y)∼S

[
(p∗(x) − y)2]

≤ C + 2ε + η.

Truncating p∗ can only decrease its L2 error. Combining that with a second application of
Fact 13,

E
(x,y)∼S◦

[
(trunc(p∗(x)) − y)2]

≤ C + 2ε + 2η.

Then, by Equation (2),

E
x∼{0,1}n

[
(trunc(p∗(x)) − µT (x))2]

≤ 3ε + 2η. (3)

Finally,

errorT (h) ≤ optT + 2 E
x∼{0,1}n

[| µT (x) − trunc(p∗(x)) |] Fact 6

≤ optT + 2
√

E
x∼{0,1}n

[(µT (x) − trunc(p∗(x)))2] Jensen’s inequality

≤ optT + 2
√

3ε + 2η Equation (3)
≤ optT + O(

√
ε) + O(√η).

The desired result then holds by renaming ε′ = Ω(ε2). ◀
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5.2 L1 regression
We will need the following generalization bound:

▶ Lemma 18 (L1 error generalization). Fix any stochastic DT T : {0, 1}n → {0, 1}, degree
d ∈ N, and ε, δ > 0. For a sample size of

m := poly
(

nO(d),
1
ε

, log
(

1
δ

))
,

let S◦ be a dataset of m i.i.d points of the form (x, T (x)). With probability at least 1 − δ,
the following holds for all degree d polynomials p : {0, 1}n → R.∣∣∣∣ E

(x,y)∼S◦

[
|trunc(p(x)) − y|2

]
− E

x∼{0,1}n,T
[|trunc(p(x)) − T (x)|]

∣∣∣∣ ≤ ε. (4)

Lemma 18 can be proven using the same discretization argument as Lemma 16. We omit the
proof for brevity.

▶ Lemma 19 (L1 regression part of Theorem 4). Choose any ε, η, δ ∈ (0, 1), s ∈ N, and size-s
stochastic decision tree T : {0, 1}n → {0, 1}. For a sample of size

m := poly
(

nO(d),
1
ε

, log
(

1
δ

))
,

let S be an η-corrupted set of m uniform random samples from T . If

p∗ = arg min
Degree log(s/ε) polynomials p

(
E

(x,y)∼S
[| p(x) − y) |]

)
,

and h : {0, 1}n → {0, 1} is the randomized hypothesis where h(x) is 1 with probability
trunc(p∗(x)) and 0 otherwise. Then with probability at least 1 − δ over the randomness of
the sample,

errorT (h) ≤ 2opt + 2η + ε.

Proof. Let S◦ be the original uncorrupted (i.i.d) set of samples from which S differs on
at most η fraction of points. By Lemma 18, Equation (4) holds, with respect to S◦ for all
degree log(s/ε) polynomials with probability at least 1 − δ. We show that if it holds, then
errorT (h) ≤ 2opt + 2η + ε.

Proposition 15 guarantees there exists p : {0, 1}n → [0, 1], a degree log(s/ε) polynomial,
satisfying

E
x

[|p(x) − µT (x)|] ≤ ε.

We first bound the expected error of µT (x) relative to T (x).

E
x

[|µT (x) − T (x)|] = E
x

[Pr[T (x) = 1](1 − µT (x)) + Pr[T (x) = 0](µT (x))]

= E
x

[2µT (x)(1 − µT (x))]

≤ 2 · E
x

[min(µT (x), 1 − µT (x))]

= 2 · optT
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By triangle inequality, we have that Ex[|p(x) − T (x)|] ≤ 2 · optT + ε. By Equation (4)

E
x,y∼S◦

[|p(x) − y|] ≤ 2 · optT + 2ε.

By Fact 13 initialized with err(x, y) = |x − y|,

E
x,y∼S

[|p(x) − y|] ≤ 2 · optT + 2ε + η.

Since p∗ has minimum L1 error among all degree log(s/ε) polynomials,

E
x,y∼S

[|p∗(x) − y|] ≤ 2 · optT + 2ε + η.

Reapplying Fact 13, combined with the fact that truncating p∗ can only decrease its error,

E
x,y∼S◦

[|trunc(p∗(x)) − y|] ≤ E
x,y∼S

[|trunc(p∗(x)) − y|] + η

≤ 2 · optT + 2ε + 2η.

Applying Equation (4) again.

E
x∼{0,1}n

[|p(x) − T (x)|] ≤ E
x,y∼S◦

[|p(x) − T (x)|] + ε

≤ 2 · optT + 3ε + 2η.

Finally, since h(x) returns 1 with probability trunc(p∗(x)), and T (x) is always in {0, 1},

Pr
x,h,T

[h(x) ̸= T (x)] = E
x∼{0,1}n

[|p(x) − T (x)|]

≤ 2 · optT + 3ε + 2η.

The desired result holds with the renaming ε′ = ε
3 . ◀
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Abstract
We present algorithms that break the Õ(nr)-independence-query bound for the Matroid Intersection
problem for the full range of r; where n is the size of the ground set and r ≤ n is the size of
the largest common independent set. The Õ(nr) bound was due to the efficient implementations
[CLSSW FOCS’19; Nguyễn 2019] of the classic algorithm of Cunningham [SICOMP’86]. It was
recently broken for large r (r = ω(

√
n)), first by the Õ(n1.5/ε1.5)-query (1 − ε)-approximation

algorithm of CLSSW [FOCS’19], and subsequently by the Õ(n6/5r3/5)-query exact algorithm of
BvdBMN [STOC’21]. No algorithm – even an approximation one – was known to break the Õ(nr)
bound for the full range of r. We present an Õ(n

√
r/ε)-query (1 − ε)-approximation algorithm and

an Õ(nr3/4)-query exact algorithm. Our algorithms improve the Õ(nr) bound and also the bounds
by CLSSW and BvdBMN for the full range of r.

2012 ACM Subject Classification Theory of computation → Discrete optimization; Theory of
computation → Approximation algorithms analysis; Mathematics of computing → Matroids and
greedoids

Keywords and phrases Matroid Intersection, Combinatorial Optimization, Approximation Al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.31

Category Track A: Algorithms, Complexity and Games

Funding This project has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme under grant agreement No
71567.

Acknowledgements I thank Danupon Nanongkai and Sagnik Mukhopadhyay for insightful discussions
and their valuable comments throughout the development of this work.

1 Introduction

Matroid Intersection is a fundamental problem in combinatorial optimization that has been
studied for more than half a century. The classic version of this problem is as follows: Given
two matroids M1 = (V, I1) and M2 = (V, I2) over a common ground set V of n elements,
find the largest common independent set S∗ ∈ I1 ∩I2 by making independence oracle queries1

of the form “Is S ∈ I1?” or “Is S ∈ I2?” for S ⊆ V . The size of the largest common
independent set is usually denoted by r.

Matroid intersection can be used to model many other combinatorial optimization
problems, such as bipartite matching, arborescences, spanning tree packing, etc. As such,
designing algorithms for matroid intersection is an interesting problem to study.

In this paper, we consider the task of finding a (1−ε)-approximate solution to the matroid
intersection problem, that is finding some common independent set S of size at least (1− ε)r.
We show an improvement of approximation algorithms for matroid intersection, and as a
consequence also obtain an improvement for the exact matroid intersection problem.

1 There are also other oracle models considered in the literature (e.g. rank-oracles), but in this paper
we focus on the independence query model. Whenever we say query in this paper, we thus mean
independence query.
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31:2 Breaking O(nr) for Matroid Intersection

Previous work. Polynomial algorithms for matroid intersection started with the work
of Edmond’s O(n2r)-query algorithms [6, 7, 8] in the 1960s. Since then, there has been
a long line of research e.g. [1, 2, 3, 4, 5, 9, 10]. Cunningham [5] designed a O(nr1.5)-query
blocking-flow algorithm in 1986, similar to that of Hopcroft-Karp’s bipartite-matching or
Dinic’s maximum-flow algorithms. Chekuri and Quanrud [4] pointed out that Cunningham’s
classic algorithm [5] from 1986 is already a O(nr/ε)-query (1− ϵ)-approximation algorithm.
Recently, Chakrabarty-Lee-Sidford-Singla-Wong [3] and Nguyễn [11] independently showed
how to implement Cunningham’s classic algorithm using only Õ(nr) independence queries.
This is akin to spending Õ(n) queries to find each of the so-called augmenting paths. A
fundamental question is whether several augmenting paths can be found simultaneously to
break the Õ(nr) bound.

This question has been answered for large r (r = ω(
√

n)), first by the Õ(n1.5/ε1.5)-
query (1− ϵ)-approximation algorithm of Chakrabarty-Lee-Sidford-Singla-Wong2 [3], and
very recently by the randomized Õ(n6/5r3/5)-query exact algorithm of Blikstad-v.d.Brand-
Mukhopadhyay-Nanongkai [2]. Whether we can break the O(nr)-query bound for the full
range of r remained open even for approximation algorithms.

Our results. We break the O(nr)-query bound for both approximation and exact algorithms.
We first state our results for approximate matroid intersection.3

▶ Theorem 1 (Approximation algorithm). There is a deterministic algorithm which given
two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a common

independent set S ∈ I1 ∩ I2 with |S| ≥ (1− ε)r, using O

(
n
√

r log r

ε

)
independence queries.

Plugging Theorem 1 in the framework of [2], we get an improved algorithm – more efficient
than the previous state-of-the-art – for exact matroid intersection which we state next.

▶ Theorem 2 (Exact algorithm). There is a randomized algorithm which given two matroids
M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a common independent set
S ∈ I1 ∩I2 of maximum cardinality r, and w.h.p.4 uses O(nr3/4 log n) independence queries.
There is also a deterministic exact algorithm using O(nr5/6 log n) queries.

▶ Remark 3. Although we only focus on the query-complexity in this paper, we note
that the time-complexity of the algorithms are dominated by query-oracle calls. That
is, our approximation algorithm runs in Õ(n

√
rTind/ε) time, and the exact algorithms in

Õ(nr3/4Tind) (randomized) respectively Õ(nr5/6Tind) time (deterministic), where Tind denotes
the time-complexity of the independence-oracle.

1.1 Technical Overview
Approximation algorithm. Our approximation algorithm (Theorem 1) is a modified version
of Chakrabarty-Lee-Sidford-Singla-Wong’s Õ(n1.5/ε1.5)-query approximation algorithm [3,
Section 6]. The algorithm is based on the ideas of Cunningham’s classic blocking-flow

2 In the same paper they also show a Õ(n2r−1ε−2 + r1.5ε−4.5)-query algorithm.
3 The Õ(n2r−1ε−2 + r1.5ε−4.5)-query algorithm of [3] is the only previous algorithm which is more

efficient than our algorithm in some range of r and ε. Actually, since the Õ(n2r−1ε−2 + r1.5ε−4.5)-query
algorithm use the Õ(n1.5/ε1.5) algorithm as a subroutine, we do get a slightly improved version by
using our Õ(n

√
r/ε) algorithm as the subroutine instead: Õ(n2r−1ε−2 + r1.5ε−4).

4 w.h.p. = with high probability meaning with probability 1 − n−c for some arbitrarily large constant c.
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algorithm [5] and runs in O(1/ε) phases, where in each phase the algorithm seeks to find
a maximal set of augmentations in the exchange graph. Given a common independent
set S ∈ I1 ∩ I2, the exchange graph G(S) is a directed bipartite graph (with bipartition
(S + {s, t}, V \ S)). Finding a shortest (s, t)-path, called an augmenting path, in G(S) means
one can increase the size of the common independent set S by 1. Since the exchange graph
changes after each augmentation,5 and we do not know how to find a single augmenting path
faster than Ω(n) queries, the need to find several augmentations in parallel arises. [3, Section 6]
introduces the notion of augmenting sets: a generalization of the classical augmenting paths
but where one can perform many augmentations in parallel.

So the revised goal of the algorithm is to, in each phase, efficiently find a maximal
augmenting set (akin to a blocking-flow in bipartite matching or flow algorithms). Towards
this goal, the algorithm maintains a relaxed version of augmenting set – called a partial
augmenting set – and keeps refining it to make it “better” (i.e. closer to a maximal augmenting
set). Here we give two independent improvements on top of the algorithm of [3]:
1. The algorithm of [3] refines the partial augmenting set by a sequence of operations on

two adjacent distance layers in the exchange graph. In our algorithm, we instead consider
three consecutive layers for our basic refinement procedures. This lets us focus our analysis
on what happens in S – the “left” side of the bipartite exchange graph – which contains at
most r elements in total (in contrast to [3] where the performance analysis is dependent
on all n elements). The number of times we need to run the refinement procedures thus
depends on r, instead of n, which makes the algorithm faster when r = o(n).

2. When the partial augmenting set is “close enough” to a maximal augmenting set, [3] falls
back to finding the remaining augmenting paths one at a time. In our algorithm, we
also change to a different procedure when the partial augmenting set is close enough to
maximal. The difference is that, instead of finding arbitrary augmenting paths, we find a
special type of valid paths with respect to the partial augmenting set, so that these paths
can be used to further improve (refine) the partial augmenting set. The number of valid
paths we need to find is less than the number of augmenting paths [3] needs to find. This
decreases the dependency on ε in the final algorithm.

The first improvement (Item 1) replaces the
√

n term with a
√

r term in the query complexity
of the algorithm. The second improvement (Item 2) shaves off a 1/

√
ε term from the query

complexity. Together they thus bring down the query complexity from Õ( n
√

n
ε
√

ε
) in [3] to

Õ( n
√

r
ε ) as in our Theorem 1. Note that these two improvements are independent of each

other, and can be applied individually.

Exact algorithm. To obtain the exact algorithm (Theorem 2), we use the framework of
Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai’s Õ(n6/5r3/5)-query exact algorithm [2]. The
main idea of this algorithm is to combine approximation algorithms – which can efficiently
find a common independent set only εr away from the optimal – with a randomized Õ(n

√
r)-

query subroutine to find each of the remaining few, very long augmenting paths. The
Õ(n6/5r3/5)-query exact algorithm [2] currently uses Chakrabarty-Lee-Sidford-Singla-Wong’s
Õ(n1.5/ε1.5) approximation algorithm [3] as a subroutine. Simply replacing it with our
improved approximation algorithm (Theorem 1) yields our Õ(nr3/4)-query exact algorithm.

5 Unlike what happens in augmenting path algorithms for flow and bipartite matching, where the
underlying graphs remain the same.
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2 Preliminaries

We use the standard definitions of matroid M = (V, I); rank rk(X) for any X ⊆ V ; exchange
graph G(S) for a common independent set S ∈ I1 ∩ I2; and augmenting paths in G(S)
throughout this paper. For completeness, we define them below. We also need the notions of
augmenting sets introduced by [3], which we also define in later this section.

Matroids

▶ Definition 4 (Matroid). A matroid is a tuple M = (V, I) of a ground set V of n elements,
and non-empty family I ⊆ 2V of independent sets satisfying
Downward closure: if S ∈ I, then S′ ∈ I for all S′ ⊆ S.
Exchange property: if S, S′ ∈ I, |S| > |S′|, then there exists x ∈ S\S′ such that S′∪{x} ∈ I.

▶ Definition 5 (Set notation). We will use A + x and A− x to denote A ∪ {x} respectively
A \ {x}, as is usual in matroid intersection literature. We will also use Ā := V \ A,
A + B := A ∪B, and A−B := A \B.

▶ Definition 6 (Matroid rank). The rank of A ⊆ V , denoted by rk(A), is the size of the
largest (or, equivalently, any maximal) independent set contained in A. It is well-known
that the rank-function is submodular, i.e. rk(A + x)− rk(A) ≥ rk(B + x)− rk(B) whenever
A ⊆ B ⊆ V and x ∈ V \B.6 Note that rk(A) = |A| if and only if A ⊆ I.

▶ Definition 7 (Matroid Intersection). Given two matroids M1 = (V, I1) and M2 = (V, I2)
over the same ground set V , a common independent set S is a set in I1 ∩ I2. The matroid
intersection problem asks us to find the largest common independent set – whose cardinality
we denote by r. We use rk1 and rk2 to be the rank functions of the corresponding matroids.

The Exchange Graph

Many matroid intersection algorithms, e.g. those in [1, 2, 5, 7, 9, 11], are based on iteratively
finding augmenting paths in the exchange graph.

▶ Definition 8 (Exchange graph). Given two matroids M1 = (V, I1) and M2 = (V, I2) over
the same ground set, and a common independent set S ∈ I1 ∩I2, the exchange graph G(S) is
a directed bipartite graph on vertex set V ∪ {s, t} with the following arcs (or directed edges):
1. (s, b) for b ∈ S̄ when S + b ∈ I1.
2. (b, t) for b ∈ S̄ when S + b ∈ I2.
3. (a, b) for b ∈ S̄, a ∈ S when S + b− a ∈ I1.
4. (b, a) for b ∈ S̄, a ∈ S when S + b− a ∈ I2.
We will denote the set of elements at distance k from s by the distance-layer Dk.

▶ Definition 9 (Shortest augmenting path). A shortest (s, t)-path p = (s, b1, a1, b2, a2, . . . ,

aℓ, bℓ+1, t) (with bi ∈ S̄ and ai ∈ S) in G(S) is called a shortest augmenting path. We can
augment S along the path p to obtain S′ = S ⊕ p = S + b1 − a1 + b2 − a2 . . . + bℓ+1, which is
well-known to also be a common independent set (with |S′| = |S|+ 1) [5]. Conversely, there
must exist a shortest augmenting path whenever |S| < r.

The following lemma is very useful for (1−ε)-approximation algorithms since it essentially
says that one needs only to consider paths up to length O( 1

ε ).

6 Usually denoted as the diminishing returns property of submodular functions.
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▶ Lemma 10 (Cunningham [5]). If the length of the shortest (s, t)-path in G(S) is at least
2ℓ + 2, then |S| ≥ (1−O(1/ℓ))r.

▶ Lemma 11 (Exchange discovery by binary search [3, 11]). Suppose M = (V, I) is a matroid,
Y ⊆ X ∈ I, and b ̸∈ X such that X + b /∈ I. Then, using O(log |Y |) independence queries
one can find some a ∈ Y such that X + b− a ∈ I or determine that none exist.7

Augmenting Sets

A generalization of the classical augmenting paths – called augmenting sets – play a key
role in the approximation algorithm of [3], and therefore also in the modified version of this
algorithm presented in this paper. In order to efficiently find “good” augmenting sets, the
algorithm works with a relaxed form of them instead: partial augmenting sets. The following
definitions and key properties of (partial) augmenting sets are copied from [3] where one can
find the corresponding proofs.

▶ Definition 12 (Augmenting Sets, from [3, Definition 24]). Let S ∈ I1 ∩ I2 and G(S) be
the corresponding exchange graph with shortest (s, t)-path of length 2(ℓ + 1) and distance
layers D1, D2, . . . , D2ℓ+1. A collection of sets Πℓ := (B1, A1, B2, A2, . . . , Aℓ, Bℓ+1) form an
augmenting set (of width w) in G(S) if the following conditions are satisfied:
(a) For 1 ≤ k ≤ ℓ + 1, we have Ak ⊆ D2k and Bk ⊆ D2k−1.
(b) |B1| = |A1| = |B2| = · · · = |Bℓ+1| = w

(c) S + B1 ∈ I1
(d) S + Bℓ+1 ∈ I2
(e) For all 1 ≤ k ≤ ℓ, we have S −Ak + Bk+1 ∈ I1
(f) For all 1 ≤ k ≤ ℓ, we have S −Ak + Bk ∈ I2

▶ Definition 13 (Partial Augmenting Sets, from [3, Definition 37]). We say that Φℓ :=
(B1, A1, B2, A2, . . . , Aℓ, Bℓ+1) forms a partial augmenting set if it satisfies the conditions (a),
(c), (d), and (e) of an augmenting set, plus the following two relaxed conditions:
(b) |B1| ≥ |A1| ≥ |B2| ≥ · · · ≥ |Bℓ+1|.
(f) For all 1 ≤ k ≤ ℓ, we have rk2(S −Ak + Bk) = rk2(S).

▶ Theorem 14 (from [3, Theorem 25]). Let Πℓ := (B1, A1, B2, A2, · · · , Bℓ, Aℓ, Bℓ+1) be the
an augmenting set in the exchange graph G(S). Then the set S′ := S ⊕Πℓ := S + B1 −A1 +
B2 − · · ·+ Bℓ −Aℓ + Bℓ+1 is a common independent set.8

We also need the notion of maximal augmenting sets, which naturally correspond to a
maximal ordered collection of shortest augmenting paths, where, after augmentation, the
(s, t)-distance must have increased. The following are due to [3].

▶ Definition 15 (Maximal Augmenting Sets, from [3, Definition 35]). Let Πℓ = (B1, A1, B2, · · · ,

Bℓ, Aℓ, Bℓ+1) and Π̃ℓ = (B̃1, Ã1, B̃2, · · · , B̃ℓ, Ãℓ, B̃ℓ+1) be two augmenting sets in G(S). We
say Π̃ℓ contains Πℓ if Bk ⊆ B̃k and Ak ⊆ Ãk, for all k. An augmenting set Πℓ is called
maximal if there exists no other augmenting set Π̃ℓ containing Πℓ.

▶ Theorem 16 (from [3, Theorem 36]). An augmenting set Πℓ is maximal if and only if there
is no augmenting path of length at most 2(ℓ + 1) in G(S ⊕Πℓ).

7 When X = S, we can use this to find edges of type 3 and 4 in the exchange graph.
8 Note that |S′| = |S| + w, where w is the width of Πℓ. In particular, an augmenting set with width

w = 1 is exactly an augmenting path.
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3 Improved Approximation Algorithm

Our algorithm closely follows the algorithm of Chakrabarty-Lee-Sidford-Singla-Wong [3,
Section 6]. The algorithm runs in phases, where in each phase the algorithm finds a maximal
set of augmentations to perform, so that the (s, t)-distance in the exchange graph increases
between phases. By Lemma 10, only O(1/ε) phases are necessary.

In the beginning of a phase, the algorithm runs a breadth-first-search to compute the
distance layers D1, D2, . . . D2ℓ+1 in the exchange graph G(S), where S is the current common
independent set. The total number of independence queries, across all phases, for these
BFS’s can be bounded by O(n log(r)/ε). We refer to [3, Algorithm 4, Lemma 19, and Proof
of Theorem 21] for how to implement such a BFS efficiently.

After the distance layers have been found, the search for a maximal augmenting set begins.
We start by summarizing on a high level how the algorithm of [3] does this in two stages:
1. The first stage keeps track of a partial augmenting set which it keeps refining by a series

of operations on adjacent distance layers in the exchange graph, to make it closer to a
maximal augmenting set.

2. When we are “close enough” to a maximum augmenting set, the second stage handles
the last few augmenting paths – for which the first stage slows down – by finding the
remaining augmenting paths individually one at a time.

Here we give two independent improvements over the algorithm of [3], one for each stage.
The first improvement is to replace the refine operations in the first stage by a new subroutine
RefineABA (Section 3.1.2) working on three consecutive layers instead of two. This allows us
to measure progress in terms of r instead of n. The second improvement is for the second
stage where we, instead of finding arbitrary augmenting paths, work directly on top of the
output of the first stage and find a specific type of valid paths with respect to the partial
augmenting set, using a new a subroutine RefinePath (Section 3.2).

3.1 Implementing a Phase: Refining
The basic refining ideas and procedures in this section are the same as in [3]. The goal is to
keep track of a partial augmenting set Φℓ = (B1, A1, B2, . . . , Aℓ, Bℓ+1) which is iteratively
made “better” through some refine procedures. Eventually, the partial augmenting set will
become a maximal augmenting set, which concludes the phase. Towards this goal, we
maintain three types of elements in each layer:

Selected. Denoted by Ak or Bk. These form the partial augmenting set Φℓ = (B1, A1, B2, . . . ,

Aℓ, Bℓ+1).
Removed. Denoted by Rk. These elements are safe to disregard from further computation

(i.e. deemed useless) when refining Φℓ towards a maximal augmenting set.
Fresh. Denoted by Fk. These are the elements that are neither selected nor removed.

Elements can change their types from fresh → selected → removed, but never in the other
direction. Initially, we start with all elements being fresh.9 For convenience, we also define
“imaginary” layers D0 and D2ℓ+2 with A0 = R0 = F0 = D0 = Aℓ+1 = R2ℓ+2 = F2ℓ+2 =
D2ℓ+2 = ∅. The algorithm maintains the following phase invariants (which are initially
satisfied) during the refinement process:

9 This differs slightly from [3], where the initially B1 is greedily picked to be maximal so that S + B1 ∈ I1,
while the rest of the elements are fresh.
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D2k

R2k

F2k
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D2k+1

R2k+1
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R2k−1

F2k−1
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⊆ S

M2 M1

· · ·· · ·

Figure 1 An illustration of a few neighboring layers. Note that (Bk, R2k−1, F2k−1) form a
partition of odd layer D2k−1 ⊆ S̄, and (Ak, R2k, F2k) form a partition of even layer D2k ⊆ S.

▶ Definition 17 (Phase Invariants, from [3, Section 6.3.2]). The phase invariants are:
(a-b) Φℓ = (B1, A1, B2, . . . , Aℓ, Bℓ+1) forms a partial augmenting set.10

(c) For 1 ≤ k ≤ ℓ, for any X ⊆ Bk+1 + F2k+1 = D2k+1−R2k+1, if S − (Ak + R2k) + X ∈ I1
then S −Ak + X ∈ I1. 11

(d) rk2(W + R2k−1) = rk2(W ) where W = S − (D2k −R2k) + Bk.

▶ Remark 18. Invariant (c) essentially says that if R2k+1 is “useless”, then so is R2k. Similarly,
Invariant (d) says that if R2k is “useless”, then so is R2k−1. Together they imply that we
can safely ignore all the removed elements.

▶ Lemma 19. Suppose that (i) the phase invariants hold; (ii) |B1| = |A1| = · · · = |Bℓ+1|;
and (iii) B1 is a maximal subset of D1 \R1 satisfying S + B1 ∈ I1. Then (B1, A1, . . . , Bℓ+1)
is a maximal augmenting set.

Proof idea. (See [3, Proof of Lemma 44] for a complete proof). If it was not maximal, there
exists an augmenting path (b1, a1, . . . , bℓ+1) in the exchange graph after augmenting along
(B1, A1, . . . , Bℓ+1). However, (iii) then says that b1 must have been removed since it cannot
be fresh. But if b1 is removed, then so was a1, then so was b2 etc., by invariants (c) and (d)
(this requires a technical, but straightforward, argument). However, bℓ+1 cannot have been
removed (by invariant (d)), which gives the desired contradiction. ◀

3.1.1 Refining Two Adjacent Layers
We now present the basic refinement procedures from [3], which are operations on neighboring
layers. There is some asymmetry in how (odd, even) and (even, odd) layer-pairs are handled,
arising from the inherent asymmetry of the independence query between S and S̄, but the
ideas are the same.
RefineAB(k) extends Bk+1 as much as possible while respecting invariant (a-b) (Lines 1-2).

Then a maximal collection of element in Ak which can be “matched” to Bk+1 is found,
and the others elements in Ak are removed (Lines 3-4).

10 The naming of this invariant as (a-b) is to be consistent with [3] where this condition is split up into
two separate items (a) and (b).

11 An equivalent condition for (c) is: rk1(W −R2k) = rk1(W )−|R2k|, where W = S−Ak+(D2k+1−R2k+1).
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RefineBA(k) finds a maximal subset Bk that can be “matched” to Ak + F2k, and removes
the other elements of Bk (Lines 1-2). Then Ak is extended with elements from F2k which
are the endpoints of the above “matching” (Lines 3-4).

Algorithm 1 RefineAB(k). (called Refine1 in [3, Algorithm 9])

1: Find maximal B ⊆ F2k+1 s.t. S −Ak + Bk+1 + B ∈ I1
2: Bk+1 ←− Bk+1 + B, F2k+1 ←− F2k+1 −B

3: Find maximal A ⊆ Ak s.t. S −Ak + Bk+1 + A ∈ I1
4: Ak ←− Ak −A, R2k ←− R2k + A

Algorithm 2 RefineBA(k). (called Refine2 in [3, Algorithm 10])

1: Find maximal B ⊆ Bk s.t. S − (D2k −R2k) + B ∈ I2
2: R2k−1 ←− R2k−1 + Bk\B, Bk ←− B

3: Find maximal A ⊆ F2k s.t. S − (D2k −R2k) + Bk + A ∈ I2
4: Ak ←− Ak + F2k\A, F2k ←− A

The following properties of the RefineAB and RefineBA methods are proven in [3].

▶ Lemma 20 (from [3, Lemmas 40-42]). Both RefineAB and RefineBA preserve the invariants.
Also: after RefineAB(k) is run, we have |Ak| = |Bk+1| (unless k = 0). After RefineBA(k) is
run, we have |Bk| = |Ak| (unless k = ℓ + 1).

▶ Lemma 21 (from [3, Lemma 45]). RefineAB can be implemented with O(|D2k|+ |D2k+1|)
queries. RefineBA can be implemented with O(|D2k−1|+ |D2k|) queries.

▶ Observation 22. Lemma 20 is particularly interesting. It says that at least |Aold
k | − |Bold

k+1|
(respectively |Bold

k | − |Aold
k |) elements change type when running RefineAB (respectively

RefineAB).

▶ Remark 23. Observation 22 is used in [3] to bound the number of times one needs to refine
the partial augmenting set. Indeed, every element can only change its type a constant number
of times. In a single refinement pass, procedures RefineAB(k) and RefineBA(k) are called
for all k, and we obtain a telescoping sum guaranteeing us that |Bold

1 | − |Bold
ℓ+1| elements have

changed their types. Hence, after O(
√

n) refinement passes we have |B1| − |Bℓ+1| ≤
√

n, and
we are “close” to having a maximal augmenting set – only around

√
n many augmenting paths

away. This is essentially what lets [3] obtain their subquadratic Õ(n1.5/poly(ε)) algorithm.

3.1.2 Refining Three Adjacent Layers
We are now ready to present the new RefineABA method (Algorithm 3), which is not present
in [3]. This method works similarly to RefineAB and RefineBA, but on three (instead of
two) consecutive layers (D2k, D2k+1, D2k+2) with the corresponding sets (Ak, Bk+1, Ak+1).

The motivation for this new procedure is that we can get a stronger version of Observa-
tion 22: after running RefineABA(k) we want that at least |Aold

k | − |Aold
k+1| element in even

layers have changed types. Note that there are at most |S| ≤ r elements in the even layers
(as opposed to n elements in total, which can be much larger), so this means we need to
refine the partial augmenting set fewer times when using RefineABA compared to when just
using RefineAB and RefineBA. In particular, we will get that after O(

√
r) refinement passes,

|B1| − |Bℓ+1| ≤
√

r.
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▶ Remark 24. A natural question to ask is if it actually could be the case that only elements
in odd layers (i.e. those in S̄ which there are up to n many of) change their type (while
elements in even layers do not) during the refinement passes in the algorithm of [3] (which
only uses the two-layer refinement procedures)? That is, is the new three-layer refinement
procedure necessary? The answer is yes. Consider for example the case with 5 layers
B1 ⊆ D1; A1 ⊆ D2; B2 ⊆ D3; A2 ⊆ D4; B3 ⊆ D5 where q := |B1| = |A1| and |A2| = |B3| = 0.
Refining the consecutive pair (B1, A1) or (A2, B3) will not do anything. When refining
(A1, B2) it could be the case that only B2 increases (say any q-size subset in D3 can be
“matched” with A1). Similarly, when refining (B2, A2) it could be the case that only B2
decreases (say there is only a single element in D3 which could be “matched” with anything
in the next layer D4, then it is unlikely that this specific element is already selected in B2).
In this case, we would need to run the two-layer refinement procedures around |D3|/q ≈ n/q

times before anything other than B2 changes. In contrast, the new RefineABA method would,
when run on (A1, B2, A2), terminate with |A1| = |B2| = |A2| (that is it would have found
the “special” element in D3 the first time it is run).

D2k

Ak

D2k−1

Bk

RefineBA

D2k+1

Bk+1

D2k

Ak

RefineAB

D2k+1

Ak+1

D2k

Ak

RefineABA

Bk+1

D2k+2

Figure 2 An illustration how the different refine methods change the partial augmenting sets.
Newly selected elements are marked in green, while newly removed elements are marked in red.

To explain how RefineABA works, let us start with a simple case, namely when S = ∅,
i.e. there is only one layer between s and t in the exchange graph. Here, finding a maximal
augmenting set is the same as finding some maximal set B which is independent in both
matroids. Running RefineAB would extend this B with elements as long as it is independent
in the first matroid (ignoring the second matroid), while RefineBA would throw away elements
from B until it is independent in the second matroid (now ignoring the first matroid). If we
just alternate running RefineAB and RefineBA we would in the worst case need to do this
up to n times (which is too expensive). Instead, there is a very simple greedy algorithm that
efficiently finds a maximal set B independent in both of the matroids12: for each element,
include it in B if this does not break independence for either matroid. This is akin to how
our RefineABA method works: it looks at the constraints from both matroids simultaneously
(both neighboring layers) and greedily selects B.

In the general case, RefineABA can be seen as running RefineAB and RefineBA simultan-
eously. The algorithm starts by asserting |Bk+1| = |Ak+1| (so that S + Bk+1 −Ak+1 ∈ I2)
by running RefineBA. So now we have both S + Bk+1 −Ak ∈ I1 and S + Bk+1 −Ak+1 ∈ I2,
and the algorithm proceeds to greedily extend Bk+1 while it is still consistent with both the
previous layer Ak and the next layer Ak+1 + F2k+2. Some care has to be taken here to also
mark elements as removed to preserve the phase invariants. Finally, the algorithm decreases
the size of Ak, respectively increases the size of Ak+1, to both match |Bk+1|.

12 This algorithm on its own is a well-known 1
2 -approximation algorithm for matroid intersection.
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Algorithm 3 RefineABA(k).

1: RefineBA(k + 1)
2: for x ∈ F2k+1 do
3: if S −Ak + Bk+1 + x ∈ I1 then
4: if S −Ak+1 − F2k+2 + Bk+1 + x ∈ I2 then
5: Bk+1 ← Bk+1 + x, F2k+1 ← F2k+1 − x ▷ Select x

6: else
7: R2k+1 ← R2k+1 + x, F2k+1 ← F2k+1 − x ▷ Remove x

8: RefineBA(k + 1)
9: RefineAB(k)

We now state some properties of RefineABA. These properties are relatively straightfor-
ward, although technical and notation-heavy, to prove.

▶ Lemma 25. RefineABA(k) preserves the phase invariants.

▶ Lemma 26. After RefineABA(k) is run, we have |Ak| = |Bk+1| = |Ak+1| (unless k = 0 or
k = ℓ, where the sets A0 = Aℓ+1 = ∅ are “imaginiary”).

▶ Lemma 27. RefineABA(k) uses O(|D2k|+ |D2k+1|+ |D2k+2|) independence queries.

Proof of Lemma 25. Intuitively, the only tricky part is showing that invariant (c) is pre-
served when some x is removed in line 7. We can pretend that we add x to Bk+1 temporarily,
and then run RefineBA(k + 1) in a way which would remove this x immediately (and thus
removing x did indeed preserve the invariants). We present a formal proof below.

We already know that RefineAB and RefineBA preserve the invariants by Lemma 20, so
it suffices to check that the for-loop starting in line 2 preserves the invariants. We verify
that this is the case after processing each x ∈ F2k+1 in the for-loop:
Invariant (a-b) holds by design: when x is added to Bk+1 we know both that S−Ak +Bk+1 +

x ∈ I1 and rk2(S−Ak+1 +Bk+1) cannot decrease. Note also that rk2(S−Ak+1 +Bk+1) ≤
rk2(S) when k + 1 ≤ ℓ too (so it cannot increase either), since otherwise there must exist
some b ∈ Bk+1 so that S + b ∈ I2 (by the matroid exchange property) which is impossible
since we are not in the last layer (the layer preceding t in G(S)).

Invariant (c) trivially holds, since the set Bk+1 + F2k+1 will only decrease, which only
restricts the choice of X ⊆ Bk+1 + F2k+1.

Invariant (d) will also be preserved. We need to argue that this is the case when x is
removed in line 7. Let W := S −Ak+1 − F2k+2 + Bk+1 = S − (D2k+2 −R2k+2) + Bk+1,
and Rold

2k+1 be the set R2k+1 before x was added to it. First note that W ∈ I2, since
this holds after the RefineBA call in line 1, (since |Ak+1| = |Bk+1| after this call) and
Bk+1 is only extended with elements which preserve this property. This means that
rk2(W + x) = rk2(W ) = |W |, since W + x = S −Ak+1 − F2k+2 + Bk+1 + x /∈ I2. Since
the invariant held before, we also know that rk2(W + Rold

2k+1) = rk2(W ) = |W |. Hence W

is a maximal independent (in M2) subset of W + Rold
2k+1 + x, as neither x nor elements

from Rold
2k+1 can be used to extend it. Hence rk2(W + Rold

2k+1 + x) = |W | = rk2(W ); that
is invariant (d) is preserved. ◀

Proof of Lemma 26. We focus our attention on the RefineBA and RefineAB calls in lines 8-
9, and argue that they do not change Bk+1. This would prove the lemma, since by Lemma 20
we would then have |Ak| = |Bk+1| and |Bk+1| = |Ak+1|.



J. Blikstad 31:11

Indeed, RefineBA(k +1) finds a maximal B ⊆ Bk+1 such that S− (D2k+2−R2k+2)+B ⊆
I2, and remove all elements not in B from Bk+1. Here, B = Bk+1 will be found, since
S − (D2k+2 −R2k+2) + Bk+1 ∈ I2 after the for-loop in line 2 of RefineABA.

Similarly, we see that RefineAB(k) finds a maximal B ⊆ F2k+1 such that S−Ak +Bk+1 +
B ∈ I1, and extend Bk+1 with this B. However, only B = ∅ works, since each x ∈ F2k+1 for
which S −Ak + Bk+1 + x ∈ I1 was either selected or removed in lines 5 or 7. ◀

Proof of Lemma 27. RefineAB(k) uses O(|D2k| + |D2k+1|) queries, and RefineBA(k + 1)
uses O(|D2k+1|+ |D2k+2|) queries. The for-loop in line 2 will use O(|D2k+1|) queries. ◀

3.1.3 Refinement Pass

We can now present the full Refine method (Algorithm 4), which simply scans over the
layers and calls RefineABA on them. Our Refine is a modified version of Refine from [3,
Algorithm 11] using our new RefineABA method instead of just RefineAB and RefineBA. Just
replacing the Refine method in the final algorithm of [3] with our modified Refine below
leads to an Õ(n

√
r/ε1.5)-query algorithm (compared to their Õ(n1.5/ε1.5)), and concludes

our first improvement (as discussed in Item 1 in Section 1.1).

Algorithm 4 Refine(k).

1: for k = ℓ, ℓ− 1, ℓ− 2, . . . , 1, 0 do
2: RefineABA(k)

The following Lemma 28 will be useful to bound the number of Refine calls needed in
our final algorithm, and closely corresponds to [3, Corollary 43]. Our Refine implementation
has the advantage that it only counts the elements in the even layers, of which there are at
most r.

▶ Lemma 28. Let (Bold
1 , Aold

1 , . . .) and (Bnew
1 , Anew

1 , . . .) be the sets before and after Refine
is run. Then at least |Bnew

1 | − |Bnew
ℓ+1 | elements in even layers have changed types.

Proof. Note that whenever Ak changes, it is because some elements changed it types in D2k.
In particular, if the size of Ak increases (respectively decreases) by z, at least z elements will
change types from fresh to selected (respectively from selected to removed) in D2k.

After the first iteration |Aℓ| = |Bnew
ℓ+1 |, so at least |Aold

ℓ |− |Bnew
ℓ+1 | elements in D2ℓ changed

types. Similarly, after the iteration when k = i (for 1 ≤ i ≤ ℓ− 1), |Ai| = |Ai+1|, and hence
at least |Aold

i | − |Ai| elements in D2i changed types plus at least |Ai+1| − |Aold
i+1| elements

in D2i+2 changed types.13 Finally, after the last iteration |A1| = |Bnew
1 |, and hence at least

|Bnew
1 | − |Aold

1 | elements in D2 changed types.
The above terms telescope, and we conclude that at least |Bnew

1 | − |Bnew
ℓ+1 | elements in

the even layers changed its types when Refine was run. ◀

▶ Lemma 29. Refine uses O(n) independence queries.

Proof. This follows directly by Lemma 27. ◀

13 |Ai+1| ≤ |Aold
i+1| just before the RefineABA(i) call, since earlier iterations can only have decreased the

size of |Ai+1|.
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3.2 Refining Along a Path
If we just run Refine until we get a maximal augment set (i.e. until |B1| = |Bℓ+1|) we
need to potentially run Refine as many as Θ(r) times, which needs too many independence
queries. Lemma 28 tells us that Refine makes the most “progress” while |B1| − |Bℓ+1| is
large: in fact, only O(r/p) calls to Refine is needed until |B1|− |Bℓ+1| ≤ p. The idea in [3] is
thus to stop refining when |B1| − |Bℓ+1| is small enough and fall back to finding augmenting
paths one at a time (they prove that one needs to find at most O((|B1| − |Bℓ+1|)ℓ) many).
We use a similar idea in that we swap to a different procedure when |B1| − |Bℓ+1| is small
enough, the difference being that we still work with the partial augmenting set. This will let
us show that only O(|B1| − |Bℓ+1|) many “paths” need to be found, saving a factor ℓ ≈ 1

ε

compared to [3].
This section thus describes the second improvement (as discussed in Item 2 in Section 1.1).

Note that this improvement is independent of the first improvement (i.e. the three-layer
refine). We aim to prove the following lemma.

▶ Lemma 30. There exists a procedure (RefinePath, Algorithm 5), which uses O(n log r)
independence queries, preserves the invariants, and either:

(i) Increases the size of Bℓ+1 by at least 1.
(ii) Terminates with (B1, A1, . . . , Bℓ+1) being a maximal augmenting set.

RefinePath attempts to find what we call a valid path. What we want is a sequence of
elements which we can add to the partial augmenting set without violating the invariants and
the properties of the partial augmenting set. It turns out (not very surprisingly) that such
sequences of elements can be characterized by a notion of paths in something which resembles
the exchange graph with respect to our partial augmenting set. This is what motivates the
definition of valid paths below.

D2k−1

F2k−1

Bk

D2k−2

F2k−2

Ak−1

· · ·

D2`+1

F2`+1

B`+1

D2`

F2`

A`

t

b`+1
a`bk

Figure 3 A valid path (bk, . . . , aℓ, bℓ+1, t) “starting” from the partial augmenting set at Ak−1, so
that we can use Lemma 33 and augment along it.

▶ Definition 31 (Valid path). A sequence (bi, ai, bi+1, . . . , bℓ+1, t) (or (ai, bi+1, . . . , bℓ+1, t))
is called a valid path (with respect to the partial augmenting set) if for all k ≥ i:
(a) ak ∈ F2k and bk ∈ F2k−1.
(b) S + Bℓ+1 + bℓ+1 ∈ I2.
(c) S −Ak + Bk − ak + bk ∈ I2.
(d) S −Ak + Bk+1 − ak + bk+1 ∈ I1.

▶ Remark 32. Compare the properties of valid paths with the edges in the exchange graph
from Definition 8. A valid path is essentially a path in the exchange graph after we have
already augmented S by our partial augmenting set (even though this exchange graph is not
exactly defined, since it is not guaranteed that S remains a common independent set when
augmented by a partial augmenting set).
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▶ Lemma 33. If p = (bi, ai, bi+1, . . . , bℓ+1, t) is a valid path starting at bi, such that S −
Ai−1 + Bi + bi ∈ I1, then (B1, A1, . . . , Bi−1, Ai−1, Bi + bi, Ai + ai, . . . , Bℓ+1 + bℓ) is a partial
augmenting set satisfying the invariants.

Proof. That it forms a partial augmenting set is true by the definition of valid paths, and
the fact that S −Ai−1 + Bi + bi ∈ I1. Indeed, it cannot be the case that |Ai−1| < |Bi + bi|
when i > 1, since then rk1(S − Ai−1 + Bi + bi) > |S| = rk1(S) implies that some element
x ∈ (Bi + bi) satisfies S + x ∈ I1 (i.e. it is in the first layer D1) by the exchange property
of matroids. Invariants (c) and (d) are trivially true since the sets Ak and Bk are only
extended. ◀

The goal of RefinePath (Algorithm 5) is thus to find a valid path satisfying the conditions
in Lemma 33. Towards this goal, RefinePath will start from the last layer D2ℓ+1 and “scan
left” in a breadth-first-search manner while keeping track of valid paths starting at each
fresh vertex x (the next element on such a path will be stored as next[x]). If at some point
one valid path can “enter” the partial augmenting set in a layer, we are done and can use
Lemma 33. We also show that it is safe (i.e. preserves the invariants) to remove all the fresh
elements x for which we cannot find a valid path starting at x.

To efficiently find the “edges” during our breadth-first-search using only independence-
queries, we use the binary-search trick from Lemma 11. However, this relies on the partial
augmenting set being locally “flat” in the layers we are currently exploring, i.e. |Bk| = |Ak|
respectively |Bk| = |Ak+1|. We can ensure this by running RefineAB respectively RefineBA
while performing the scan.

Now we are ready to present the pseudo-code of the RefinePath method (Algorithm 5).
Due to the asymmetry between even/odd layers and independence queries, we need to handle
moving from layer B to A and from A to B a bit differently, but the ideas are similar.

▶ Lemma 34. RefinePath preserves the invariants.

Proof. The proof is relatively straightforward, but technical. The only non-trivial part is
showing that invariants (c) and (d) are preserved after we remove something in line 8 or
line 20. Intuitively, if we remove b in line 8, we can instead think of temporarily adding b

to Bk and running RefineBA(k) in such a way so that b is immediately removed. A similar
intuitive argument works for line 20. We next present a formal proof.

We know that RefineAB and RefineBA preserve the invariants, by Lemma 20. We also
know by Lemma 33 that adding a valid path to the partial augmenting set also preserves the
invariants. So what remains is to show that the invariants are preserved after:
Line 8. We only need to check invariant (d), the other ones trivially hold. Let W =

S − Ak − F2k + Bk = S − (D2k − R2k) + Bk and Rold
2k−1 be R2k−1 before b was added

to it. Note that b is such that W + b /∈ I2, and we know that W ⊆ S − Ak + Bk ∈ I2
and hence rk2(W + Rold

2k−1) = rk2(W ) = |W | and rk2(W + b) = rk2(W ) = |W |. We thus
need to show that rk2(W + Rold

2k−1 + b) = |W | too, which is clear since W is a maximal
independent subset of W + Rold

2k−1 + b (it can neither be extended with elements from
Rold

2k−1 nor with b).
Line 20. We only need to check invariant (c), the other ones trivially hold. We imagine we

add the a ∈ Q to R2k−2 one-by-one, and show that the invariant (c) is preserved after
each such addition. So consider some a ∈ Q which will be removed, and let Rold

2k−2 be the
set R2k−2 just before we added a to it. First note that rk1(S−Ak−1 + Bk + F2k−1−a) =
rk1(S − Ak−1 + Bk + F2k−1)− 1 = |S − Ak−1 + Bk| − 1, as otherwise there must exist
some b ∈ F2k−1 such that S−Ak−1 +Bk + b−a ∈ I1 (by the matroid exchange property),
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Algorithm 5 RefinePath.

1: for k = ℓ + 1, ℓ, . . . , 2, 1 do
▷ Process (Bk, Ak)

2: RefineBA(k)
3: if some element a was added to Ak in the above refine-call then
4: Add the valid path starting at next[a] to the partial augmenting set
5: return
6: for each element b ∈ F2k−1 do
7: if S −Ak − F2k + Bk + b /∈ I2 then
8: Remove b, that is: F2k−1 ← F2k−1 − b, R2k−1 ← R2k−1 + b

9: else
10: Find an a ∈ F2k such that S −Ak + Bk + b− a ∈ I2. Let next[b] = a.
11: (Or, if k = ℓ + 1, just let next[b] = t)

▷ Process (Ak−1, Bk)
12: if some element b ∈ F2k−1 satisfies S −Ak−1 + Bk + b ∈ I1 then
13: Add the valid path starting at b to the partial augmenting set.
14: return
15: RefineAB(k − 1)
16: Q← F2k−2.
17: for each element b ∈ F2k−1 do
18: while can find a ∈ Q such that S −Ak−1 + Bk + b− a ∈ I1 do
19: Q← Q− a. Let next[a] = b.
20: Remove all elements in Q, that is: F2k−2 ← F2k−2 −Q, R2k−2 ← R2k−2 + Q.

21: If we reached here, (B1, A1, . . . , Bℓ+1) is a maximal augmenting set.

and a would have been discovered in line 18 and therefore been removed from Q. So
the “return” of adding a to S −Ak−1 + Bk + F2k−1 − a is increasing the rank by 1. Now
consider some arbitrary X ⊆ Bk + F2k−1 such that S − Ak−1 + X − Rold

2k−2 − a ∈ I1.
We need to show that S − Ak−1 + X ∈ I1. Note that S − Ak−1 + X − Rold

2k−2 − a ⊆
S −Ak−1 + Bk + F2k−1 − a. Hence, by the diminishing returns (of adding a) we know
rk1(S−Ak−1 +X−Rold

2k−2) ≥ rk1(S−Ak−1 +X−Rold
2k−2−a)+1 = |S−Ak−1 +X−Rold

2k−2|,
or equivalently that S − Ak−1 + X − Rold

2k−2 ∈ I1. Since the invariant held before, we
conclude that S −Ak−1 + X ∈ I1 too, which finishes the proof. ◀

Valid paths. The algorithm keeps track of a valid path starting at each fresh vertex it has
processed. That is, after processing layer Dk, all elements in Fk must be the beginning of a
valid path, else they were removed. In particular, the algorithm remembers the valid path
starting at x as (x, next[x], next[next[x]], . . .). It is easy to verify that this sequence does
indeed satisfy the conditions of valid paths by inspecting lines 10 and 18.

We also discuss what happens when the algorithm chooses to add a valid path to the
partial augmenting set (i.e. in line 4 or 13). If we are in Line 13, we can directly apply
Lemma 33. Say we instead are in Line 4, and some a which was previously fresh has been
added to Ak. The RefineBA call can only have increased Ak (that is Ak ⊇ Aold

k + a), so
S −Ak + Bk+1 + b ∈ I1 will holds for b = next[a] and we can apply Lemma 33 here too.
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When no path is found. In the case when no valid path to add to the partial augmenting
set is found, RefinePath must terminate with |B1| = |A1| = · · · = |Bℓ+1|. This is because
the RefineAB and RefineBA will never select any new elements. That is RefineBA will not
change Ak (as otherwise we enter the if-statement at line 4), and RefineAB will not change
Bk (since if b ∈ F2k−1 with S − Ak−1 + Bk + b ∈ I1 existed we would have entered the
if-statement at line 13). We also remark that RefinePath ends with B1 being a maximal
subset of D1 \R1, as otherwise some b would have been found in line 12. Hence Lemma 19
implies that (B1, A1, . . . , Bℓ+1) now forms a maximal augmenting set.

Query complexity. The RefineAB and RefineBA calls will in total use O(n) queries. The
independence checks at Lines 7 and 12 happens at most once for each element, and thus use
O(n) queries in total. Lines 10 and 18 can be implemented using the binary-search-exchange-
discovery Lemma 11. Hence Line 10 will use, in total, O(n log r) queries and Line 18 will
use, in total, O(n log r) queries (since each a ∈ Q will be discovered at most once). So we
conclude that Algorithm 5 uses O(n log r) independence queries.

3.3 Hybrid Algorithm

Now we are finally ready to present the full algorithm of a phase, which is parameterized
by a variable p. The following algorithm is similar to that of [3, Algorithm 12] but uses our
improved Refine method and finds individual paths using the RefinePath method.

Algorithm 6 Phase ℓ.

1: Calculate the distance layers by a BFS.
2: Run Refine (Algorithm 4) until |B1| − |Bℓ+1| ≤ p, but at least once.
3: Run RefinePath (Algorithm 5) until (B1, A1, . . . Bℓ+1) is maximal. Augment along it.

▶ Lemma 35. Except for line 1, Algorithm 6 uses O(nr/p + np log r) queries.14

Proof. Lemma 28 tells us that Refine changes types of at least p elements in even layers (i.e.
elements in S) every time it is run, except maybe the last time. Thus we only run Refine
O(|S|/p + 1) times. Each call takes O(n) queries (Lemma 29), for a total of O(nr/p) queries
in line 2 of the algorithm.

Now we argue that B1 can never become larger than what it was just after line 2 was
run. This is because Refine will run at least once, and ends with a RefineABA(0) call which
in turn ends with a RefineAB(0) call – which extends B1 to be a maximal set in D1 \ R1
for which S + B1 ⊆ I1 holds.15

Lemma 30 tells us that each (except the last) time RefinePath is run, Bℓ+1 increases
by 1. This can happen at most p times, so line 3 uses a total of O(np log r) queries. ◀

Now it is easy to prove Theorem 1, which we restate below.

14 Compare this to O(n2/p + npℓ log r) in [3]. The improvement from n2/p to nr/p comes from the use of
the new three-layer RefineABA method, and the (independent) improvement from npℓ log r to np log r
comes from the use of the new RefinePath method.

15 Indeed, since M1 is a matroid, all such maximal sets have the same size, so we can never obtain
something larger later.
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▶ Theorem 1 (Approximation algorithm). There is a deterministic algorithm which given
two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a common

independent set S ∈ I1 ∩ I2 with |S| ≥ (1− ε)r, using O

(
n
√

r log r

ε

)
independence queries.

Proof. Pick p =
√

r/ log r.16 Then each phase will use O(n
√

r log r) independence queries
(by Lemma 35), plus a total of O( 1

ε n log r) to run the BFS’s across all phases (see [3] for
details on the BFS implementation). Since we need only run O( 1

ε ) phases (by Lemma 10
and Theorem 16), in total the algorithm will use O( 1

ε n
√

r log r) queries. ◀

4 Exact Matroid Intersection

In this section, we prove Theorem 2 (restated below) by showing how our improved approx-
imation algorithm leads to an improved exact algorithm when combined with the algorithms
of [2].

▶ Theorem 2 (Exact algorithm). There is a randomized algorithm which given two matroids
M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a common independent
set S ∈ I1 ∩ I2 of maximum cardinality r, and w.h.p.17 uses O(nr3/4 log n) independence
queries. There is also a deterministic exact algorithm using O(nr5/6 log n) queries.

Approximation algorithms are great at finding the many, very short augmenting paths
efficiently. Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai [2, Algorithm 2] very recently
showed how to efficiently find the remaining few, very long augmenting paths, with a
randomized algorithm using Õ(n

√
r) queries per augmentation (or, with a slightly less efficient

deterministic algorithm using Õ(nr2/3) queries). In the randomized Õ(n6/5r3/5)-query exact
algorithm of [2, Algorithm 3], the current bottleneck is the approximation algorithm used.
Replacing the use of the Õ(n1.5/ε1.5)-query approximation algorithm from [3] with our
improved version we obtain the more efficient randomized18 Õ(nr3/4)-query Algorithm 7.

Algorithm 7 Exact Matroid Intersection. (Modified version of [2, Algorithm 3])

1: Run the approximation algorithm (Theorem 1) with ε = r−1/4 to obtain a common
independent set S of size at least (1− ε)r = r − r3/4.

2: Starting with S, run Cunningham’s algorithm (as implemented by [3]), until the distance
between s and t becomes larger than r3/4.

3: Keep finding augmenting paths – one at a time – to augment along, using the randomized
O(n
√

r log n)-query algorithm of [2, Algorithm 2]. When no (s, t)-path can be found in
the exchange graph, S is a largest common independent set.

Query complexity. We analyse the individual lines of Algorithm 7.
Line 1. We see that the approximation algorithm uses O(nr3/4 log n) queries in line 1.
Line 2. One need to (i) compute distances up to d = r3/4, and (ii) perform at most O(r3/4)

augmentations. [2, 3, 11] show how to do (i) in O(nd log n) = O(nr3/4 log n) queries in
total over all phases of Cunningham’s algorithm, and how to do (ii) using O(n log n)
queries per augmentation (for a total of O(nr3/4 log n) queries).

16 Compare this to p =
√

nε/ log r in [3].
17 w.h.p. = with high probability meaning with probability 1 − n−c for some arbitrarily large constant c.
18 The deterministic algorithm of Theorem 2 is obtained in the same fashion but by using the deterministic

version of the augmenting path finding algorithm [2, Algorithm 2].
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Line 3. By Lemma 10, line 3 runs O(r1/4) times – each using O(n
√

r log n) queries – for a
total of O(nr3/4 log n) queries.

▶ Remark 36. In Algorithm 7, the bottleneck between line 1-2 and line 2-3 now matches
(which was not the case in [2]). This means that if one wants to improve the algorithm
by replacing the subroutines in line 1 and 3, one need to both improve the approximation
algorithm (line 1) and the method to find a single augmenting-path (line 3).
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Graph Similarity and Homomorphism Densities
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Abstract
We introduce the tree distance, a new distance measure on graphs. The tree distance can be
computed in polynomial time with standard methods from convex optimization. It is based on the
notion of fractional isomorphism, a characterization based on a natural system of linear equations
whose integer solutions correspond to graph isomorphism. By results of Tinhofer (1986, 1991) and
Dvořák (2010), two graphs G and H are fractionally isomorphic if and only if, for every tree T , the
number of homomorphisms from T to G equals the corresponding number from T to H, which means
that the tree distance of G and H is zero. Our main result is that this correspondence between the
equivalence relations “fractional isomorphism” and “equal tree homomorphism densities” can be
extended to a correspondence between the associated distance measures. Our result is inspired by a
similar result due to Lovász and Szegedy (2006) and Borgs, Chayes, Lovász, Sós, and Vesztergombi
(2008) that connects the cut distance of graphs to their homomorphism densities (over all graphs),
which is a fundamental theorem in the theory of graph limits. We also introduce the path distance
of graphs and take the corresponding result of Dell, Grohe, and Rattan (2018) for exact path
homomorphism counts to an approximate level. Our results answer an open question of Grohe (2020)
and help to build a theoretical understanding of vector embeddings of graphs.

The distance measures we define turn out be closely related to the cut distance. We establish
our main results by generalizing our definitions to graphons, which are limit objects of sequences of
graphs, as this allows us to apply techniques from functional analysis. We prove the fairly general
statement that, for every “reasonably” defined graphon pseudometric, an exact correspondence to
homomorphism densities can be turned into an approximate one. We also provide an example of
a distance measure that violates this reasonableness condition. This incidentally answers an open
question of Grebík and Rocha (2021).
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1 Introduction

Vector representations of graphs allow to apply standard machine learning techniques to
graphs, and a variety of methods to generate such embeddings has been studied in the
machine learning literature. However, from a theoretical point of view, these embeddings
have not received much attention and are not well understood. Some machine learning
methods only implicitly operate on such vector representations as they only access the
inner products of these vectors. These methods are known as kernel methods and most
graph kernels are based on counting occurrences of certain substructures, e.g., walks or trees.
See [15] for a recent survey on vector embeddings.

EA
T

C
S

© Jan Böker;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boeker@informatik.rwth-aachen.de
https://orcid.org/0000-0003-4584-121X
https://doi.org/10.4230/LIPIcs.ICALP.2021.32
https://arxiv.org/abs/2104.14213
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


32:2 Graph Similarity and Homomorphism Densities

Many kinds of substructure counts in a graph such as graph motifs are actually just
homomorphism counts “in disguise”, and hence, homomorphisms provide a formal and flexible
framework for counting all kinds of substructures in graphs [5]; a homomorphism from a
graph F to a graph G is a mapping from the vertices of F to the vertices of G such that every
edge of F is mapped to an edge of G. A theorem of Lovász from 1967 [18], which states that
two graphs G and H are isomorphic if and only if, for every graph F , the number hom(F, G)
of homomorphisms from F to G equals the corresponding number hom(F, H) from F to H,
led to the development of the theory of graph limits [2, 20], where one considers convergent
sequences of graphs and their limit objects, graphons. In terms of the homomorphism vector
Hom(G) := (hom(F, G))F graph of a graph G, the result of Lovász states that graphs are
mapped to the same vector if and only if they are isomorphic.

Computing an entry of Hom(G) is #P -complete and recent results have mostly focused on
restrictions HomF (G) := (hom(F, G))F ∈F of these vectors to classes F for which computing
these entries is actually tractable. Under a natural assumption from parameterized complexity
theory, this is the case for precisely the classes F of bounded tree width [6]. This has led
to various surprisingly clean results, e.g., for trees and, more general, graphs of bounded
treewidth [10], cycles and paths [7], planar graphs [22], and, most recently, graphs of bounded
tree-depth [14]. These results only show what it means for graphs to be mapped to the same
homomorphism vector; they do not say anything about the similarity of two graphs if the
homomorphism vectors are not exactly the same but close. Grohe formulated the vague
hypothesis that, for suitable classes F , the embedding HomF combined with a suitable inner
product on the latent space induces a natural similarity measure on graphs [15]. This is
supported by initial experiments, which show that homomorphism vectors in combination with
support vector machines perform well on standard graph classification. Our results further
support this hypothesis from a theoretical standpoint by showing that tree homomorphism
counts provide a robust similarity measure.

For the class T of trees and two graphs G and H, we have HomT (G) = HomT (H) if and
only if G and H are not distinguished by color refinement (also known as the 1-dimensional
Weisfeiler-Leman algorithm) [10], a popular heuristic for graph isomorphism. Another
characterization of this equivalence due to Tinhofer is that of fractional isomorphism [26, 27].
Let A ∈ RV (G)×V (G) and B ∈ RV (H)×V (H) be the adjacency matrices of G and H , respectively,
and consider the following system Fiso(G, H) of linear equations:

Fiso(G, H) :


AX = XB

X1V (H) = 1V (G)

1T
V (G)X = 1T

V (H)

Here, X denotes a (V (G) × V (H))-matrix of variables, and 1U denotes the all-1 vector
over the index set U . The non-negative integer solutions to Fiso(G, H) are precisely the
permutation matrices that describe isomorphisms between G and H. The non-negative real
solutions are called fractional isomorphisms of G and H. Tinhofer proved that G and H

are not distinguished by the color refinement algorithm if and only if there is a fractional
isomorphism of G and H. Grohe proposed to define a similarity measure based on this
characterization [15]: For a matrix norm ∥·∥ that is invariant under permutations of the rows
and columns, consider

dist∥·∥(G, H) := min
X∈[0,1]V (G)×V (H),
X doubly stochastic

∥AX − XB∥.
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Most graph distance measures based on matrix norms are highly intractable as the problem of
their computation is related to notoriously hard maximum quadratic assignment problem [23].
This hardness, which stems from the minimization over the set of all permutation matrices,
motivated Grohe to propose dist∥·∥, where the set of all permutation matrices is relaxed to
the the convex set of doubly stochastic matrices, yielding a convex optimization problem.
With the results of Tinhofer and Dvořák, we know that the graphs of distance zero w.r.t.
dist∥·∥ are precisely those that cannot be distinguished by tree homomorphism counts.

So far, the only known connection between a graph distance measure based on matrix
norms and graph homomorphisms is between the cut distance and normalized homomorphism
numbers (called homomorphism densities) [2]. Grohe asks whether a similar correspondence
between dist∥·∥ and restricted homomorphism vectors can be established, and we give a
positive answer to this question. We introduce the tree distance δT of graphs, which is
a normalized variant of dist∥·∥ and show the following theorem, which is stated here only
informally. We also introduce the path distance δP of graphs and prove the analogous theorem
to Theorem 1 for δP and normalized path homomorphism counts.

▶ Theorem 1 (Informal Theorem 6 and Theorem 7). Two graphs G and H are similar w.r.t.
δT if and only if the homomorphism densities t(T, G) and t(T, H) are close for trees T .

In the theory of graph limits, graphons serve as limit objects for sequences of graphs. By
defining distance measures on the more general graphons, we are able to use techniques from
functional analysis to show that any “reasonably” defined pseudometric on graphons satisfying
an exact correspondence to homomorphism densities also has to satisfy an approximate one.
As an application, we get that both the tree and the path distance satisfy this correspondence
to tree and path homomorphism densities, respectively. For the case of trees, we rely on a
generalization of the notion of fractional isomorphism to graphons by Grebík and Rocha [13].
For the case of paths, we prove this generalization of the result of Dell, Grohe, and Rattan [7]
by ourselves.

This paper is organized as follows. In the preliminaries, Section 2, we collect the definitions
of graphs, the space L2[0, 1], graphons, and the cut distance. In Section 3, we define the
tree distance and the path distance for graphs and formally state Theorem 1 and its path
counterpart. In Section 4, we state and prove the theorems that allow us to show these
correspondences for graphon pseudometrics. Section 5 provides the first application of these
tools for the tree distance: we first state the needed result of fractional isomorphism of
graphons due to Grebík and Rocha and then use this to define the tree distance of graphons.
These definitions and results specialize to the ones presented in Section 3 for graphs. The
treatment of the path distance for graphons is similar to the one of the tree distance, except
for the fact that we prove a characterization of graphons with the same path homomorphism
densities ourselves, and can be found in Section 6. In Section 7, we define another distance
measure on graphs based on the invariant computed by the color refinement algorithm
and show that it only satisfies one direction of the approximate correspondence to tree
homomorphism densities. Our counterexample incidentally answers an open question of
Grebík and Rocha [13]. Section 8 poses some interesting open questions that come up during
the study of these distance measures. All missing proofs can be found in the full version of
the paper.

ICALP 2021



32:4 Graph Similarity and Homomorphism Densities

2 Preliminaries

2.1 Graphs

By the term graph, we refer to a simple, undirected, and finite graph. For a graph G, we denote
its vertex set by V (G) and its edge set by E(G), and we let v(G) := |V (G)| and e(G) := |E(G)|.
We usually view the adjacency matrix A of a graph G as a matrix A ∈ RV (G)×V (G), i.e., it
is indexed by the vertices of G. Sometimes, we assume without loss of generality that the
vertex set of a graph is [n] := {1, . . . , n}, where n ∈ N is a natural number. A homomorphism
from a graph F to a graph G is a mapping φ : V (F ) → V (G) such that φ(u)φ(v) ∈ E(G)
for every uv ∈ E(F ). We denote the number of homomorphisms from F to G by hom(F, G).
The homomorphism density from F to G is given by t(F, G) := hom(F, G)/v(G)v(F ).

A weighted graph G = (V, a, B) consists of a vertex set V , a positive real vector a =
(αv)v∈V ∈ RV of vertex weights and a real symmetric matrix B = (βuv) ∈ [0, 1]V ×V of edge
weights; that is, we restrict ourselves to edge weights from [0, 1]. We write v(G) = |V |,
V (G) = V , αv(G) = αv, αG =

∑
v∈V (G) αv(G) and βuv(G) = βuv. A weighted graph is

called normalized if αG = 1. For a simple graph F and a weighted graph G, we define the
homomorphism number

hom(F, G) =
∑

φ : V (F )→V (G)

∏
v∈V (F )

αφ(v)(G)
∏

uv∈E(F )

βφ(u)φ(v)(G)

and the homomorphism density t(F, G) = hom(F, G)/α
v(F )
G . When viewing a graph as a

weighted graph in the obvious way, these notions coincide with the ones for graphs.

2.2 The Space L2[0, 1] and Graphons

A detailed introduction to functional analysis can be found in [8]; here, we only repeat
some notions we use throughout the main body of the paper. Let L2[0, 1] denote the space
of R-valued 2-integrable functions on [0, 1] (modulo equality almost anywhere). We could
consider consider a standard Borel space with a Borel probability measure, cf. [13], but for
the sake of convenience, we stick to [0, 1] with the Lebesgue measure just as [20]. The space
L2[0, 1] is a Hilbert space with the inner product defined by ⟨f, g⟩ :=

∫
[0,1] f(x)g(x) dx for

functions f, g ∈ L2[0, 1]. Let T : L2[0, 1] → L2[0, 1] be a bounded linear operator, or operator
for short. We write ∥T∥2→2 for its operator norm, i.e., ∥T∥2→2 = sup∥g∥2≤1∥Tg∥2. The
Hilbert adjoint of T is the unique operator T ∗ : L2[0, 1] → L2[0, 1] such that ⟨Tf, g⟩ = ⟨f, T ∗g⟩
for all f, g ∈ L2[0, 1], and T is called self-adjoint if T ∗ = T .

Let W denote the set of all bounded symmetric measurable functions W : [0, 1]2 → R,
called kernels. Let W0 ⊆ W denote all such W that satisfy 0 ≤ W ≤ 1; such a W is called
a graphon. Every kernel W ∈ W defines a self-adjoint operator TW : L2[0, 1] → L2[0, 1] by
setting (TW f)(x) =

∫
[0,1] W (x, y)f(y) dy for every x ∈ [0, 1], which then is a Hilbert-Schmidt

operator, and in particular, compact [20].
A kernel W ∈ W is called a step function if there is a partition S1 ∪ · · · ∪ Sk of [0, 1] such

that W is constant on Si × Sj for all i, j ∈ [k]. For a weighted graph H on [n], one can define
a step function WH ∈ W by splitting [0, 1] into n intervals I1, . . . , In, where Ii has length
λ(Ii) = αi(H)/α(H) for every i ∈ [n], and letting WH(x, y) := βij(H) for all x ∈ Ii, y ∈ Ij

and i, j ∈ [n]. Of course, WH depends on the labeling of the vertices of H . Note that WH is
a graphon, and in particular, WG is a graphon for every graph G.
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2.3 The Cut Distance
See [20] for a thorough introduction to the cut distance. The usual definition of the cut
distance involves the blow-up G(k) of a graph G by k ≥ 0, where every vertex of G is
replaced by k identical copies, to get graphs on the same number of vertices. Going this
route is rather cumbersome, and we directly define the cut distance for weighted graphs
via fractional overlays; this definition also applies to graphs in the straightforward way.
A fractional overlay of weighted graphs G and H is a matrix X ∈ RV (G)×V (H) such that
Xuv ≥ 0 for all u ∈ V (G), v ∈ V (H),

∑
v∈V (H) Xuv = αu(G)/αG for every u ∈ V (G), and∑

u∈V (G) Xuv = αv(H)/αH for every v ∈ V (H). Let X (G, H) denote the set of all fractional
overlays of G and H. Note that, for graphs G and H, the second and third condition just
say that the row and column sums of X are 1/v(G) and 1/v(H), respectively. For weighted
graphs G and H and a fractional overlay X ∈ X (G, H), let

d□(G, H, X) := max
Q,R⊆V (G)×V (H)

∣∣∣ ∑
iu∈Q,
jv∈R

XiuXjv(βij(G) − βuv(H))
∣∣∣.

Then, define the cut distance δ□(G, H) := minX∈X (G,H) d□(G, H, X).
Defining the cut distance of graphons is actually much simpler. Define the cut norm

on the linear space W of kernels by ∥W∥□ := supS,T ⊆[0,1]

∣∣∣∫S×T
W (x, y) dx dy

∣∣∣ for W ∈ W;
here, as in the whole of the paper, we tacitly assume sets (and functions) we take an infimum
or supremum over to be measurable. Let S[0,1] denote the group of all invertible measure-
preserving maps φ : [0, 1] → [0, 1]. For a kernel W ∈ W and a φ ∈ S[0,1], let W φ be the kernel
defined by W φ(x, y) := W (φ(x), φ(y)). For kernels U, W ∈ W, define their cut distance by
setting δ□(U, W ) := infφ∈S[0,1]∥U − W φ∥□. This coincides with the previous definition when
viewing weighted graphs as graphons [20, Lemma 8.9]. We can also express δ□(U, W ) via the
kernel operator as δ□(U, W ) = infφ∈S[0,1] supf,g : [0,1]→[0,1]

∣∣⟨f, TU−W φg⟩
∣∣ [20, Lemma 8.10].

The definition of the cut distance is quite robust. For example, allowing f and g in the
previous definition to be complex-valued or choosing a different operator norm does not
make a difference in most cases [16, Appendix E].

For a graph F and a kernel W ∈ W , define the homomorphism density

t(F, W ) :=
∫

[0,1]V (F )

∏
ij∈E(F )

W (xi, xj)
∏

i∈V (F )

dxi,

which coincides with the previous definition when viewing weighted graphs as graphons [20,
Equation (7.2)]. Lemma 2 and Lemma 3 state the connection between the cut distance and
homomorphism densities: Informally, the Lemma 2 states that graphons that are close in
the cut distance have similar homomorphism densities, while Lemma 3 states that graphs
that have similar homomorphism densities are close in the cut distance. We refer to such
statements as a counting lemma and an inverse counting lemma, respectively.

▶ Lemma 2 (Counting Lemma [21]). Let F be a simple graph, and let U, W ∈ W0 be graphons.
Then, |t(F, U) − t(F, W )| ≤ e(F ) · δ□(U, W ).

▶ Lemma 3 (Inverse Counting Lemma [3, 20]). Let k > 0, let U, W ∈ W0 be graphons, and
assume that, for every graph F on k vertices, we have |t(F, U) − t(F, W )| ≤ 2−k2 . Then,
δ□(U, W ) ≤ 50/

√
log k.

In particular, graphons U and W have cut distance zero if and only if, for every graph F ,
we have t(F, U) = t(F, W ). Call a sequence (Wn)n∈N of graphons convergent if, for every
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graph F , the sequence (t(F, Wn))n∈N is Cauchy. The two theorems above yield that (Wn)n∈N
is convergent if and only if (Wn)n∈N is Cauchy in δ□. Let W̃0 be obtained from W0 by
identifying graphons with cut distance zero; such graphons are called weakly isomorphic.
One of the main results from graph limit theory is the compactness of the space (W̃0, δ□).

▶ Theorem 4 ([19]). The space (W̃0, δ□) is compact.

3 Similarity Measures of Graphs

In this section, we define the tree and path distances of graphs and formally state the
correspondences to tree and path homomorphism densities, respectively. All presented results
are specializations of the results for graphons proven in Section 5 and Section 6.

3.1 The Tree Distance of Graphs
Recall that two graphs G and H have the same tree homomorphism counts if and only if
the system Fiso(G, H) of linear equations has a non-negative solution. Based on this, Grohe
proposed dist∥·∥ as a similarity measure of graphs. This is nearly what we define as the tree
distance of graphs. What is missing is, first, a more general definition for graphs with different
numbers of vertices and, second, an appropriate choice of a matrix norm with an appropriate
normalization factor; analogously to the cut distance, we normalize the tree distance to
values in [0, 1]. As in the definition of the cut distance in the preliminaries, we handle graphs
on different numbers of vertices by considering fractional overlays instead of blow-ups (and
doubly stochastic matrices). Recall that a fractional overlay of graphs G and H is a matrix
X ∈ RV (G)×V (H) such that Xuv ≥ 0 for all u ∈ V (G), v ∈ V (H),

∑
v∈V (H) Xuv = 1/v(G)

for every u ∈ V (G), and
∑

u∈V (G) Xuv = 1/v(H) for every v ∈ V (H). If v(G) = v(H), then
the difference between a fractional overlay and a doubly stochastic matrix is just a factor of
v(G). Also recall that X (G, H) denotes the set of all fractional overlays of G and H.

We consider two matrix norms for the tree distance: First, just like in the definition of
the cut distance, we use the cut norm for matrices, introduced by Frieze and Kannan [12],
defined as ∥A∥□ := maxS⊆[m],T ⊆[n]|

∑
i∈S,j∈T Aij | for A ∈ Rm×n. Second, we also consider

the more standard spectral norm ∥A∥2 := supx∈Rn,∥x∥2≤1∥Ax∥2 of a matrix A ∈ Rm×n.
From a computational point of view, the Frobenius norm might also be appealing, but this
would lead to a different topology, cf. [16, Appendix E].

▶ Definition 5 (Tree Distance of Graphs). Let G and H be graphs with adjacency matrices
A ∈ RV (G)×V (G) and B ∈ RV (H)×V (H), respectively. Then, define

δT
□(G, H) := inf

X∈X (G,H)

1
v(G) · v(H)∥v(H) · AX − v(G) · XB∥□ and

δT
2 (G, H) := inf

X∈X (G,H)

1√
v(G)v(H)

∥v(H) · AX − v(G) · XB∥2.

Note that the spectral norm requires an adapted normalization factor in Definition 5. The
advantage of δT

□ is the close connection to the cut distance, which also utilizes the cut norm.
However, the crucial advantage of the spectral norm is that minimization of the spectral
norm of a matrix is a standard application of interior-point methods in convex optimization.
In particular, an ε-solution to δT

2 can be computed in polynomial time [24, Section 6.3.3].
For δT

□ , it is not clear whether this is possible.
From the results of Section 5, we get that δT

□ and δT
2 are pseudometrics (Lemma 16) and

that two graphs have distance zero if and only if their tree homomorphism densities are the
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same (Lemma 18). Moreover, we have δT
□ ≤ δ□ (Lemma 19), and these pseudometrics are

invariant under blow-ups. Finally, we get the following counting lemma (Corollary 20) and
inverse counting lemma (Corollary 21).

▶ Theorem 6 (Counting Lemma for δT , Graphs). Let δT ∈ {δT
□ , δT

2 }. For every tree T and
every ε > 0, there is an η > 0 such that, for all graphs G and H, if δT (G, H) ≤ η, then
|t(T, G) − t(T, H)| ≤ ε.

▶ Theorem 7 (Inverse Counting Lemma for δT , Graphs). Let δT ∈ {δT
□ , δT

2 }. For every ε > 0,
there are k > 0 and η > 0 such that, for all graphs G and H, if |t(T, G) − t(T, H)| ≤ η for
every tree T on at most k vertices, then δT (G, H) ≤ ε.

3.2 The Path Distance of Graphs
Dell, Grohe, and Rattan proved that two graphs G and H have the same path homomorphism
counts if and only if the system Fiso(G, H) of linear equations has a real solution [7]. This
transfers to the definition of the path distance, i.e., we define the path distance analogously
to the tree distance but relax the non-negativity condition of fractional overlays. For
graphs G and H, we call a matrix X ∈ RV (G)×V (H) a signed fractional overlay of G and
H if ∥Xy∥2 ≤ ∥y∥2/

√
v(G)v(H) for every y ∈ RV (H),

∑
v∈V (H) Xuv = 1/v(G) for every

u ∈ V (G), and
∑

u∈V (G) Xuv = 1/v(H) for every v ∈ V (H). Let S(G, H) denote the set of
all signed fractional overlays of G and H . The first condition requires that X is a contraction
(up to a scaling factor) in the spectral norm; we need this to guarantee that our definition of
the path distance actually yields a pseudometric. This restriction to the spectral norm stems
from the fact that the proof of Dell, Grohe, and Rattan [7] (and our generalization thereof
to graphons) only guarantees that the constructed solution is a contraction in the spectral
norm, cf. Section 6 for the details.

▶ Definition 8 (Path Distance of Graphs). Let G and H be graphs with adjacency matrices
A ∈ RV (G)×V (G) and B ∈ RV (H)×V (H), respectively. Then, define

δP
2 (G, H) := inf

X∈S(G,H)

1√
v(G)v(H)

∥v(H) · AX − v(G) · XB∥2.

From Section 6, we get that δP
2 is a pseudometric (Lemma 25) that is invariant under blow-ups

and that has as graphs of distance zero precisely these with the same path homomorphism
densities. Moreover, we get the following (quantitative) counting lemma (Corollary 27) and
inverse counting lemma (Corollary 30).

▶ Theorem 9 (Counting Lemma for δP
2 , Graphs). Let P be a path, and let G and H be graphs.

Then, |t(P, G) − t(P, H)| ≤ e(P ) · δP
2 (G, H).

▶ Theorem 10 (Inverse Counting Lemma for δP
2 , Graphs). For every ε > 0, there are k > 0

and η > 0 such that, for all graphs G and H, if |t(P, G) − t(P, H)| ≤ η for every path P on
at most k vertices, then δP

2 (G, H) ≤ ε.

4 Graphon Pseudometrics and Homomorphism Densities

In this section, we provide the main tools we need to prove the correspondences between the
tree and path distances and tree and path homomorphism densities, respectively. Consider
a pseudometric δ on graphons. We say that δ is compatible with δ□ if, for every sequence
of graphons (Un)n, Un ∈ W0, and every graphon Ũ ∈ W0, δ□(Un, Ũ) n→∞−−−−→ 0 implies
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δ(Un, Ũ) n→∞−−−−→ 0. For example, this is the case if δ ≤ δ□, i.e., graphons only get closer if we
consider δ instead of δ□. We anticipate that the pseudometrics we are interested in, the tree
distance and the path distance, are compatible with δ□.

Together, the next two theorems state that every pseudometric that is compatible with δ□
and whose graphons of distance zero can be characterized by homomorphism densities from
a class of graphs F already has to satisfy both a counting lemma and an inverse counting
lemma for this class F . The proof of these theorems is a simple compactness argument,
utilizing the compactness of the graphon space, Theorem 4, and the counting lemma for δ□,
Lemma 2. Therefore, it is absolutely crucial that we consider a pseudometric defined on
graphons as the limit of a sequence of graphs may not be a graph.

▶ Theorem 11 (Counting Lemma for F). Let F be a class of graphs, and let δF be a
pseudometric on graphons such that (1) δF is compatible with δ□ and (2), for all graphons
U, W ∈ W0, δF (U, W ) = 0 implies t(F, U) = t(F, W ) for every graph F ∈ F . Then, for
every graph F ∈ F and every ε > 0, there is an η > 0 such that, for all graphons U, W ∈ W0,
if δF (U, W ) ≤ η, then |t(F, U) − t(F, W )| ≤ ε.

Proof of Theorem 11. We proceed by contradiction and assume that the statement does
not hold. Then, there is a graph F ∈ F and an ε > 0 such that, for every η > 0, there are
graphons U, W ∈ W0 such that δF (U, W ) ≤ η and |t(F, U) − t(F, W )| > ε.

Let k > 0. Then, by choosing η = 1
k , we get that there are graphons Uk, Wk ∈ W0

such that δF (Uk, Wk) ≤ 1
k and |t(F, Uk) − t(F, Wk)| > ε. By the compactness theorem,

Theorem 4, we get that the sequence (Uk)k has a convergent subsequence (Uki
)i converging

to a graphon Ũ in the metric δ□. By another application of that theorem, we get that (Wki)i

has a convergent subsequence (Wℓi
)i converging to a graphon W̃ in the metric δ□. Then,

(Uℓi)i and (Wℓi)i are sequences converging to Ũ and W̃ in the metric δ□, respectively.
Now, for every i > 0, we have

δF (Ũ , W̃ ) ≤ δF (Ũ , Uℓi
) + δF (Uℓi

, Wℓi
) + δF (Wℓi

, W̃ ).

By assumption, we have δF (Uℓi
, Wℓi

) ≤ 1
ℓi

, which means that δF (Uℓi
, Wℓi

) i→∞−−−→ 0. Since
δ□(Uℓi

, Ũ) i→∞−−−→ 0 and δ□(Wℓi
, W̃ ) i→∞−−−→ 0, the first assumption about δF yields that we

also have δF (Uℓi
, Ũ) i→∞−−−→ 0 and δF (Wℓi

, W̃ ) i→∞−−−→ 0. Hence, we must have δF (Ũ , W̃ ) = 0.
Since δF (Ũ , W̃ ) = 0, we have t(F, Ũ) = t(F, W̃ ) by the second assumption about

δF . By the Counting Lemma, Lemma 2, we get that |t(F, Uℓi
) − t(F, Ũ)| i→∞−−−→ 0 and

|t(F, W̃ ) − t(F, Wℓi
)| i→∞−−−→ 0. Now, for every i > 0, we have

|t(F, Uℓi) − t(F, Wℓi)| ≤ |t(F, Uℓi) − t(F, Ũ)| + |t(F, Ũ) − t(F, W̃ )| + |t(F, W̃ ) − t(F, Wℓi)|

Hence, |t(F, Uℓi
)−t(F, Wℓi

)| i→∞−−−→ 0. This contradicts the fact that |t(F, Uℓi
)−t(F, Wℓi

)| > ε

for every i. ◀

Just as the proof of Theorem 11, the proof of Theorem 12 only relies on the compactness
of the graphon space and the counting lemma for δ□, and not on a counting lemma for a
specific class of graphs or the inverse counting lemma for δ□.

▶ Theorem 12 (Inverse Counting Lemma for F). Let F be a class of graphs, and let δF

be a pseudometric on graphons such that (1) δF is compatible with δ□ and (2), for all
graphons U, W ∈ W0, t(F, U) = t(F, W ) for every graph F ∈ F implies δF (U, W ) = 0. Then,
for every ε > 0, there are k > 0 and η > 0 such that, for all graphons U, W ∈ W0, if
|t(F, U) − t(F, W )| ≤ η for every graph F ∈ F on at most k vertices, then δF (U, W ) ≤ ε.
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Proof. We proceed by contradiction and assume that the statement does not hold. Then,
there is an ε > 0 such that, for every k > 0 and every η > 0, there are graphons U, W ∈
W0 such that |t(F, U) − t(F, W )| ≤ η for every graph F ∈ F on at most k vertices but
δF (U, W ) > ε.

Let k > 0. Then, by choosing η = 1
k , we get that there are graphons Uk, Wk ∈ W0

such that |t(F, Uk) − t(F, Wk)| ≤ 1
k for every graph F ∈ F on at most k vertices and

δF (Uk, Wk) > ε. By the compactness theorem, Theorem 4, we get that the sequence (Uk)k

has a convergent subsequence (Uki)i converging to a graphon Ũ in the metric δ□. By
another application of that theorem, we get that (Wki

)i has a convergent subsequence
(Wℓi

)i converging to a graphon W̃ in the metric δ□. Then, (Uℓi
)i and (Wℓi

)i are sequences
converging to Ũ and W̃ in the metric δ□, respectively.

Let F ∈ F be a graph. Now, for every i > 0, we have

|t(F, Ũ) − t(F, W̃ )| ≤ |t(F, Ũ) − t(F, Uℓi
)| + |t(F, Uℓi

) − t(F, Wℓi
)| + |t(F, Wℓi

) − t(F, W̃ )|

By the counting lemma for δ□, Lemma 2, we get that |t(F, Ũ) − t(F, Uℓi
)| i→∞−−−→ 0 and

|t(F, Wℓi) − t(F, W̃ )| i→∞−−−→ 0. Moreover, by assumption, we have |t(F, Uℓi) − t(F, Wℓi)| ≤ 1
ℓi

for large enough i, which means that also |t(F, Uℓi
) − t(F, Wℓi

)| i→∞−−−→ 0. Hence, we must
have t(F, Ũ) = t(F, W̃ ).

As we have t(F, Ũ) = t(F, W̃ ) for every graph F ∈ F , the second assumption about δF

yields that δF (Ũ , W̃ ) = 0. Since δ□(Uℓi , Ũ) i→∞−−−→ 0 and δ□(Wℓi , W̃ ) i→∞−−−→ 0, we also have
δF (Uℓi

, Ũ) i→∞−−−→ 0 and δF (Wℓi
, W̃ ) i→∞−−−→ 0 by the first assumption about δF . Now, for

every i > 0, we have

δF (Uℓi
, Wℓi

) ≤ δF (Uℓi
, Ũ) + δF (Ũ , W̃ ) + δF (W̃ , Wℓi

).

Hence, δF (Uℓi
, Wℓi

) i→∞−−−→ 0. This contradicts the fact that δF (Uℓi
, Wℓi

) > ε for every i. ◀

5 Homomorphisms from Trees

In this section, we define the tree distance of graphons. To use the results from Section 4, we
prove that the graphons of distance zero are precisely those with the same tree homomor-
phism densities (Lemma 18) and that the tree distance is compatible with the cut distance
(Lemma 19). As for graphs, we define two variants of the tree distance, which yield the same
topology (Lemma 17): one using the analogue of the cut norm and one using the analogue of
the spectral norm.

5.1 Fractional Isomorphism of Graphons
Recall that two graphs G and H with adjacency matrices A ∈ RV (G)×V (G) and B ∈
RV (H)×V (H), respectively, are called fractionally isomorphic if there is a doubly stochastic
matrix X ∈ RV (G)×V (H) such that AX = XB. Grebík and Rocha proved Theorem 13, which
generalizes this to graphons [13]; doubly stochastic matrices become Markov operators [11].
An operator S : L2[0, 1] → L2[0, 1] is called a Markov operator if S ≥ 0, i.e., f ≥ 0 implies
S(f) ≥ 0, S(1) = 1, and S∗(1) = 1, where 1 is the all-one function on [0, 1]. We denote the
set of all Markov operators S : L2[0, 1] → L2[0, 1] by M.

▶ Theorem 13 ([13], Part of Theorem 1.2). Let U, W ∈ W0 be graphons. There is a Markov
operator S : L2[0, 1] → L2[0, 1] such that TU ◦ S = S ◦ TW if and only if t(T, U) = t(T, W )
for every tree T .
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5.2 The Tree Distance
Recall that, for graphons U, W ∈ W0, the cut distance of U and W can be written as
δ□(U, W ) = infφ∈S[0,1] supf,g : [0,1]→[0,1]

∣∣⟨f, TU−W φg⟩
∣∣. We obtain the tree distance of U and

W by relaxing measure-preserving maps to Markov operators.

▶ Definition 14 (Tree Distance). Let U, W ∈ W0 be graphons. Then, define

δT
□(U, W ) := inf

S∈M
sup

f,g : [0,1]→[0,1]
|⟨f, (TU ◦ S − S ◦ TW )g⟩| and

δT
2→2(U, W ) := inf

S∈M
∥TU ◦ S − S ◦ TW ∥2→2.

As the notation δT
□ indicates, the definition of δT

□ is based (although not explicitly) on
the cut norm, while δT

2→2 is defined via the operator norm ∥·∥2→2, which corresponds to the
spectral norm for matrices. One can verify that these definitions specialize to the ones for
graphs from Section 3.1.

▶ Lemma 15. Let G and H be graphs. Then, δT
□(G, H) = δT

□(WG, WH) and δT
2 (G, H) =

δT
2→2(WG, WH).

We verify that the tree distance actually is a pseudometric. To prove the triangle
inequality for δT

□ and δT
2→2, we use that a Markov operator is a contraction on L∞[0, 1] and

L2[0, 1], respectively [11, Theorem 13.2 b)].

▶ Lemma 16. δT
□ and δT

2→2 are pseudometrics on W0.

The Riesz-Thorin Interpolation Theorem (see, e.g., [1, Theorem 1.1.1]) allows to prove
that both variants of the tree distance define the same topology.

▶ Lemma 17. Let U, W ∈ W0 be graphons. Then, δT
□(U, W ) ≤ δT

2→2(U, W ) ≤ 4δT
□(U, W )1/2.

To be able to apply the results from Section 4, we need that the tree distance of two
graphons is zero if and only if their tree homomorphism densities are the same. Let U, W ∈ W0
be graphons. From the respective definitions, it is not immediately clear that δT

□(U, W ) = 0
or δT

2→2(U, W ) = 0 implies t(T, U) = t(T, W ) for every tree T since the infimum over all
Markov operators might not be attained. Here, we can use a continuity argument as the set
of Markov operators is compact in the weak operator topology [11, Theorem 13.8]. However,
we have to take a detour via a third variant of the tree distance where compactness in the
weak operator topology suffices. All the details can be found in the full version of the paper.

▶ Lemma 18. Let U, W ∈ W0 be graphons. Then, δT
□(U, W ) = 0 if and only if t(T, U) =

t(T, W ) for every tree T .

The Koopman operator Tφ : f 7→ f ◦ φ of a measure-preserving map φ : [0, 1] → [0, 1]
is a Markov operator [11, Example 13.1, 3)]. Hence, the tree distance can be seen as the
relaxation of the cut distance obtained by relaxing measure-preserving maps to Markov
operators. In particular, this means that the tree distance is compatible with the cut distance.

▶ Lemma 19. Let U, W ∈ W0 be graphons. Then, δT
□(U, W ) ≤ δ□(U, W ).

With Lemma 18 and Lemma 19 we can apply the theorems of Section 4 and get both a
counting lemma and an inverse counting lemma for the tree distance.

▶ Corollary 20 (Counting Lemma for δT ). Let δT ∈ {δT
□ , δT

2→2}. For every tree T and every
ε > 0, there is an η > 0 such that, for all graphons U, W ∈ W0, if δT (U, W ) ≤ η, then
|t(T, U) − t(T, W )| ≤ ε.
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▶ Corollary 21 (Inverse Counting Lemma for δT ). Let δT ∈ {δT
□ , δT

2→2}. For every ε > 0,
there are k > 0 and η > 0 such that, for all graphons U, W ∈ W0, if |t(T, U) − t(T, W )| ≤ η

for every tree T on k vertices, then δT (U, W ) ≤ ε.

6 Homomorphisms from Paths

In this section, we define the path distance of graphons. We prove a quantitative counting
lemma for it (Corollary 27) and only rely on the results from Section 4 to obtain an inverse
counting lemma. To this end, we we prove that the graphons of distance zero are precisely
those with the same path homomorphism densities (Lemma 28) and that the path distance is
compatible with the cut distance (Lemma 29). Since there is no existing characterization of
graphons with the same path homomorphism densities that we can rely on, we first generalize
the result of Dell, Grohe, and Rattan to graphons (Theorem 22).

6.1 Path Densities and Graphons

Dell, Grohe, and Rattan have shown the surprising fact that G and H have the same
path homomorphism counts if and only if the system Fiso(G, H) has a real solution [7].
We need a generalization of their characterization to graphons in order to define the path
distance of graphons and apply the results from Section 4. If two graphons U, W ∈ W0
have the same path homomorphism densities, the proof of Theorem 22 yields an operator
S : L2[0, 1] → L2[0, 1] such that S(1) = 1 and S∗(1) = 1, which generalizes the result of [7]
in a straight-forward fashion. An important detail is that the proof also yields that S is
an L2-contraction; this guarantees that the path distance satisfies the triangle inequality,
i.e., that it is a pseudometric in the first place. For the sake of brevity, we call an operator
S : L2[0, 1] → L2[0, 1] a signed Markov operator if S is an L2-contraction, i.e., ∥Sf∥2 ≤ ∥f∥2
for every f ∈ L2[0, 1], S(1) = 1, and S∗(1) = 1. Let S denote the set of all signed Markov
operators. It is easy to see that S is closed under composition and Hilbert adjoints.

▶ Theorem 22. Let U, W ∈ W0. There is a signed Markov operator S : L2[0, 1] → L2[0, 1]
such that TU ◦ S = S ◦ TW if and only if t(P, U) = t(P, W ) for every path P .

Homomorphism densities from paths can be expressed in terms of operator powers. For
ℓ ≥ 0, let Pℓ denote the path of length ℓ. Then, for a graphon U , we have

t(Pℓ, U) =
∫

[0,1]ℓ+1

∏
i∈[ℓ]

U(xi, xi+1)
∏

i∈[ℓ+1]

dxi = ⟨1, T ℓ
U 1⟩

for every ℓ ≥ 0. The proof of Theorem 22 utilizes the Spectral Theorem for compact operators
on Hilbert spaces to express 1 as a sum of orthogonal eigenfunctions. For a kernel W ∈ W ,
TW : L2[0, 1] → L2[0, 1] is a Hilbert-Schmidt operator and, hence, compact [20]. Since L2[0, 1]
is separable and TW is compact and self-adjoint, the Spectral Theorem yields that there is a
countably infinite orthonormal basis {f ′

i} of L2[0, 1] consisting of eigenfunctions of TW with
the corresponding multiset of eigenvalues {λn} ⊆ R such that λn

n→∞−−−−→ 0 (see, e.g., [9]). If
graphons U and W have the same path homomorphism densities, an interpolation argument
yields that the lengths of the eigenvectors in the decomposition of 1 and their eigenvalues
have to be the same. Then, one can define the operator S from these eigenfunctions of U

and W . The detailed proof can be found in the full version of the paper.
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6.2 The Path Distance
We define the path distance of graphons can analogously to the tree distance. However, as
the proof Theorem 22 does not yield that the resulting operator is an L∞-contraction, we
are limited in our choice of norms.

▶ Definition 23 (Path Distance). Let U, W ∈ W0 be graphons. Then, define

δP
2→2(U, W ) := inf

S∈S
∥TU ◦ S − S ◦ TW ∥2→2.

One can verify that this defines a pseudometric that specializes to the one for graphs
from Section 3.2.

▶ Lemma 24. Let G and H be graphs. Then, δP
2 (G, H) = δP

2→2(WG, WH).

▶ Lemma 25. δP
2→2 is a pseudometric on W0.

To apply the theorems of Section 4, we need that two graphons have distance zero in the
path distance if and only if their path homomorphism densities are the same and that δP

2→2
is compatible with δ□. For the former, we deviate from the way we proceeded for the tree
distance as we actually can prove a quantitative counting lemma.

▶ Theorem 26 (Counting Lemma for Paths). Let P be a path, and let U, W ∈ W0 be graphons.
Then, for every operator S : L2[0, 1] → L2[0, 1] with S(1) = 1 and S∗(1) = 1,

|t(P, U) − t(P, W )| ≤ e(P ) · sup
f,g : [0,1]→[0,1]

|⟨f, (TU ◦ S − S ◦ TW )g⟩|.

Proof. Let ℓ ∈ N and S ∈ S. Then,

|t(Pℓ, U) − t(Pℓ, W )| = |⟨1, T ℓ
U (S1)⟩ − ⟨(S∗1), T ℓ

W 1⟩|

=
∣∣ ∑

i∈[ℓ]

(
⟨1, (T ℓ−i+1

U ◦ S ◦ T i−1
W )1⟩ − ⟨1, (T ℓ−i

U ◦ S ◦ T i
W )1⟩

) ∣∣
=

∣∣ ∑
i∈[ℓ]

⟨T ℓ−i
U 1, (TU ◦ S − S ◦ TW )(T i−1

W 1)⟩
∣∣

≤ ℓ · sup
f,g : [0,1]→[0,1]

|⟨f, (TU ◦ S − S ◦ TW )g⟩|. ◀

Theorem 26 suggests that, for graphons U, W ∈ W0, one should define

δP
□(U, W ) := inf

S∈S
sup

f,g : [0,1]→[0,1]
|⟨f, (TU ◦ S − S ◦ TW )g⟩|.

Then, we have |t(P, U)−t(P, W )| ≤ e(P ) ·δP
□(U, W ) for every path P . However, as mentioned

before, we cannot verify that δP
□ is a pseudometric as the operator S might not be an L∞-

contraction.

▶ Corollary 27 (Counting Lemma for δP
2→2). Let P be a path, and let U, W ∈ W0 be graphons.

Then, |t(P, U) − t(P, W )| ≤ e(P ) · δP
2→2(U, W ).

Proof. By the Cauchy-Schwarz inequality, we have

sup
f,g : [0,1]→[0,1]

|⟨f, (TU ◦ S − S ◦ TW )g⟩| ≤ sup
f,g : [0,1]→[0,1]

∥f∥2∥(TU ◦ S − S ◦ TW )g∥2

≤ sup
g : [0,1]→[0,1]

∥TU ◦ S − S ◦ TW ∥2→2∥g∥2

≤ ∥TU ◦ S − S ◦ TW ∥2→2

for every operator S : L2[0, 1] → L2[0, 1]. Hence, the statement follows from Theorem 26. ◀
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With this explicit counting lemma, we obtain that two graphons have distance zero in
the path distance if and only if their path homomorphism densities are the same.

▶ Lemma 28. Let U, W ∈ W0 be graphons. Then, δP
2→2(U, W ) = 0 if and only if t(P, U) =

t(P, W ) for every path P .

Proof. If δP
2→2(U, W ) = 0, then Corollary 27 yields that t(P, U) = t(P, W ) for every path

P . On the other hand, if t(P, U) = t(P, W ) for every path P , then there is a signed Markov
operator S ∈ S with TU ◦ S = S ◦ TW by Theorem 22. Then, δP

2→2(U, W ) = 0 follows
immediately from the definition. ◀

By definition, the path distance is bounded from above by the tree distance (with the
appropriate norm), which means that it also is compatible with the cut distance.

▶ Lemma 29. Let U, W ∈ W0 be graphons. Then, δP
2→2(U, W ) ≤ δT

2→2(U, W ).

With these lemmas, we can apply Theorem 12 and obtain the following inverse counting
lemma for the path distance.

▶ Corollary 30 (Inverse Counting Lemma for δP
2→2). For every ε > 0, there are k > 0 and

η > 0 such that, for all graphons U, W ∈ W0, if |t(P, U) − t(P, W )| ≤ η for every path P on
at most k vertices, then δP

2→2(U, W ) ≤ ε.

7 The Color Distance

Color Refinement, also known as the 1-dimensional Weisfeiler-Leman algorithm, is a heuristic
graph isomorphism test. It computes a coloring of the vertices of a graph in a sequence of
refinement rounds; we say that color refinement distinguishes two graphs if the computed
color patterns differ. Formally, for a graph G, we let CG

0 (u) = 1 for every u ∈ V (G) and
CG

i+1(u) = {{CG
i (v) | uv ∈ E(G)}} for every i ≥ 0. Let CG

∞ = CG
i for the smallest i such

that CG
i (u) = CG

i (v) ⇐⇒ CG
i+1(u) = CG

i+1(v) for all u, v ∈ G (“Ci is stable”). Then, color
refinement distinguishes two graphs G and H if there is an i ≥ 0 such that {{CG

i (v) | v ∈
V (G)}} ̸= {{CH

i (v) | v ∈ V (H)}}. It is well-known that the partition {C−1
∞ (i) | i ∈ C∞(V (G))}

is the coarsest equitable partition of V (G), where a partition Π of V (G) is called equitable if
for all P, Q ∈ Π and u, v ∈ P , the vertices u and v have the same number of neighbors in Q.

For a graph G, we can define a weighted graph G/CG
∞ by letting V (G/CG

∞) := {C−1
∞ (i) |

i ∈ C∞(V (G))}, αC(G/CG
∞) := |C| for C ∈ V (G/CG

∞), and βCD(G/CG
∞) := MG

CD/|D| for all
C, D ∈ V (G/CG

∞), where MG
CD is the number of neighbors a vertex from C has in D, which is

the same for all vertices in C as the partition induced by the colors of CG
∞ is equitable. Note

that we have |C|MG
CD = |D|MG

DC as both products describe the number of edges between C

and D, i.e., G/CG
∞ is well-defined. Usually, when talking about the invariant I2

C computed
by color refinement (see, e.g., [17]), one does not normalize MG

CD by |D|. However, by doing
so, we do not only get a weighted graph (with symmetric edge weights), but the graphs G

and G/CG
∞ actually have the same tree homomorphism counts. Grebík and Rocha already

introduced the graphon analogue U/C(U) of G/CG
∞ and proved the same fact for it [13,

Corollary 4.3]; hence, we omit the proof.

▶ Lemma 31. Let T be a tree, and let G be a graph. Then, hom(T, G) = hom(T, G/CG
∞).

By the result of Dvořák [10], G/CG
∞ and H/CH

∞ are isomorphic if and only if G and H

have the same tree homomorphism counts. Hence, it is tempting to define a tree distance-like
similarity measure on graphs by simply considering the cut distance of G/CG

∞ and H/CH
∞.
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□

Figure 1 An example separating the color distance from the tree distance.

For graphs G and H, we call δC
□(G, H) := δ□(G/CG

∞, H/CH
∞) the color distance of G and H.

As the cut distance δ□ is a pseudometric on graphs, so is δC
□. For δC

□, we immediately obtain
a quantitative counting lemma from Lemma 2 and Lemma 31.

▶ Corollary 32 (Counting Lemma for δC
□). Let T be a tree, and let G and H be graphs. Then,

|t(T, G) − t(T, H)| ≤ |E(T )| · δC
□(G, H).

Clearly, δT
□ and δC

□ have the same graphs of distance zero. Moreover, one can easily verify
that the tree distance is bounded from above by the color distance.

▶ Lemma 33. Let G and H be graphs. Then, δT
□(G, H) ≤ δC

□(G, H).

Proof. We have δT
□(G, H) = δT

□(G/CG
∞, H/CH

∞) ≤ δ□(G/CG
∞, H/CH

∞) = δC
□(G, H) by

Lemma 31 and Lemma 19. ◀

Now, the obvious question is whether these pseudometrics are the same or, at least,
define the same topology. But it is not hard to find a counterexample; the color distance
sees differences between graphs that the tree distance and tree homomorphisms do not
see. In particular, an inverse counting lemma cannot hold for the color distance. See
Figure 1, and for the moment, assume that we can construct a sequence (Gn)n of graphs
such that Gn/CGn

∞ is as depicted. It is easy to verify that δ□(Gn/CGn
∞ , K3) n→∞−−−−→ 0, and

thus, both δT
□(Gn, K3) n→∞−−−−→ 0 and |t(T, Gn) − t(T, K3)| n→∞−−−−→ 0 for every tree T . But,

δC
□(Gn, K3) ≥ 1

3 · 1
3 · 2

3 for every n since Gn/CGn
∞ has a vertex without a loop.

The existence of graphs Gn such that Gn/CGn
∞ is as depicted in Figure 1 follows easily

from inversion results for the color refinement invariant I2
C . Otto first proved that I2

C admits
polynomial time inversion on structures [25], and Kiefer, Schweitzer, and Selman gave a
simple construction to show that I2

C admits linear-time inversion on the class of graphs [17].
Basically, we partition 3n vertices into three sets of size n and add edges between these
partitions such that they induce n-, (n − 1)-, and (n − 2)-regular bipartite graphs.

The example in Figure 1 actually answers an open question of Grebík and Rocha [13,
Question 3.1]. They ask whether the set {W/C(W ) | W ∈ W̃0} is closed in W̃0: it is not.
With a more refined argument, we can actually show that {WG/CG

∞
| G graph} is already

dense in W̃0. By properly rounding the weights of a given weighted graph, we can turn the
inversion result of [17] into a statement about approximate inversion.

▶ Theorem 34. Let H be a weighted graph. For every n ≥ 2 · v(H), there is a graph G on
n2 vertices such that δ□(G/CG

∞, H) ≤ 3 · v(H)/n + 1
4 · (v(H)/n)2.

In Theorem 34, the size of the resulting graph depends on how close we want it to be
to the input graph. A simple consequence of the compactness of the graphon space is that,
for ε > 0, we can approximate any graphon with an error of ε in δ□ by a graph on N(ε)



J. Böker 32:15

vertices, where N(ε) is independent of the graphon [20, Corollary 9.25]. With Theorem 34,
this implies that the same is possible with the weighted graphs G/CG

∞. This also means that
the closure of the set {WG/CG

∞
| G graph} is already W̃0.

8 Conclusions

We have introduced similarity measures for graphs that can be formulated as convex opti-
mization problems and shown surprising correspondences to tree and path homomorphism
densities. This takes previous results on the “expressiveness” of homomorphism counts from
an exact to an approximate level. Moreover, it helps to give a theoretical understanding of
kernel methods in machine learning, which are often based on counting certain substructures
in graphs. Proving the correspondences to homomorphism densities was made possible
by introducing our similarity measures for the more general case of graphons, where tools
from functional analysis let us prove the general statement that every “reasonably defined”
pseudometric has to satisfy a correspondence to homomorphism densities.

Various open questions remain. The compactness argument used in Section 4 only yields
non-quantitative statements. Hence, we do not know how close the graphs have to be in the
pseudometric for their homomorphism densities to be close and vice versa. Only for paths
we were able to prove a quantitative counting lemma, which uses the same factor e(F ) as
the counting lemma for general graphs. It seems conceivable that a quantitative counting
lemma for trees that uses the same factor e(T ) also holds. As the proof of the quantitative
inverse counting lemma is quite involved [3, 20], proving such statements for trees and paths
should not be easy.

More in reach seems to be the question of how the tree distance generalizes to the class
Tk of graphs of treewidth at most k. Homomorphism counts from graphs in Tk can also be
characterized in terms of linear equations in the case of graphs [10] (see also [7]). How does
such a characterization for graphons look like? And how does one define a distance measure
from this?

Another open question concerns further characterizations of fractional isomorphism, e.g.,
the color refinement algorithm, which gives a characterization based on equitable partitions.
Can one prove a correspondence between the tree distance and, say, ε-equitable partitions?
It is not hard to come up with a definition for such partitions; the hard part is to prove that
graphs that are similar in the tree distance possess such a partition.
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Abstract
A function f(x1, . . . , xn) from a product domain D1 × · · · × Dn to an abelian group G is a direct sum
if it is of the form f1(x1) + · · · + fn(xn). We present a new 4-query direct sum test with optimal
(up to constant factors) soundness error. This generalizes a result of Dinur and Golubev (RANDOM
2019) which is tailored to the target group G = Z2. As a special case, we obtain an optimal affinity
test for G-valued functions on domain {0, 1}n under product measure. Our analysis relies on the
hypercontractivity of the binary erasure channel.

We also study the testability of function partitionability over product domains into disjoint
components. A G-valued f(x1, . . . , xn) is k-direct sum partitionable if it can be written as a sum
of functions over k nonempty disjoint sets of inputs. A function f(x1, . . . , xn) with unstructured
product range Rk is direct product partitionable if its outputs depend on disjoint sets of inputs.
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1 Introduction

In their seminal result, Blum, Luby and Rubinfeld [4] gave a four query test to determine
whether a function f : Fn

2 → F2 is affine. We consider a natural generalization of the notion
of affinity to functions f(x1, · · · , xn) from {0, 1}n to an arbitrary abelian group G: Is f of
the form x1 · g1 + · · ·+ xn · gn + g0 for some group elements g0, . . . , gn ∈ G? The analysis of
Blum, Luby and Rubinfeld does not apply unless there is a group homomorphism from the
domain to the range.
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In this work we give an optimal four query affinity test for functions from {0, 1}n to an
arbitrary abelian group G.

More generally, our test can be used to determine if a function f(x1, . . . , xn) from a finite
product domain D1 × · · · ×Dn to an abelian group G is a direct sum, i.e., whether f is of the
form

∑
fi(xi). This resolves a conjecture of Dinur and Golubev [9].

In contrast to the work of Blum, Luby, and Rubinfeld, which was primarily motivated by
applications to probabilistically checkable proofs, direct sum testing over general groups arises
in the context of testing function partionability: Can a multivariate function be decomposed
into independent or loosely related components? Bogdanov and Wang [6] discuss the relevance
of this question for real-valued functions to the problem of identifying decompositions of
control variables in high-dimensional reinforcement learning. In that setting a direct sum
decomposition of the advantage function f describes a system that can be partitioned into
independent components, which are lower-dimensional and therefore typically easier to learn.
An efficient testing algorithm can be used to probe the existence of such a decomposition
before any effort is expended into learning it.

In this work we consider the following two natural partitioning problems for discrete
functions over product domains D1 × · · · × Dn (endowed with a product distribution):

A direct sum partition (⊕-partition) of f into k components is a representation of the
form f(x1, . . . , xn) = f1(xS1) + · · · + fk(xSk

), where S1, . . . , Sk are disjoint nonempty
sets of variables. Here, the range of f is an abelian group (G,+).
A direct product partition (⊗-partition) of f is a representation of the form f(x1, . . . , xn) =
(f1(xS1), . . . , fk(xSk

)), where S1, . . . , Sk are disjoint nonempty sets of variables. Here,
the range of f is a k-product set Rk.

We are interested in the query complexity of testing partitionability: Given oracle access
to f and parameters k, ϵ, how many queries does it take to tell whether f is partitionable or
ϵ-far from partitionable?

The related tasks of direct product testing and direct sum testing ask for the existence of
such representations under a known (fixed) partition of inputs. Motivated by applications
to probabilistically checkable proofs, Dinur and Steurer [10] and Dickstein and Dinur [8]
analyze a 2-query direct product test of essentially optimal soundness.

The query complexity of direct sum testing for Z2-valued functions, that is of testing
whether a function f : D1×· · ·×Dn → Z2 is of the form f(x1, . . . , xn) = f1(x1)+ · · ·+fn(xn),
was recently resolved by Dinur and Golubev [9]. They proposed and analysed a 4-query test
of optimal (up to constant factors) soundness error. Their tester does not naturally extend
to functions valued in arbitrary abelian groups.

Bogdanov and Wang [6] proposed an agnostic learning algorithm for unknown direct
sum partitions. As a consequence of their analysis they concluded that ⊕-partitionability is
testable with O(kn3/ϵ) non-adaptive queries. They also showed that Ω(n− k + 1) queries
are necessary for constant ϵ. To the best of our knowledge ⊗-partitionability has not been
studied before.

Our Results
We analyze a new 4-query direct sum test for functions valued over arbitrary abelian groups.
The test is based on the following dual characterization: f : D1 × · · · × Dn → G is a direct
sum f1(x1) + · · · + fn(xn) if and only if Df (S, S;x, y) = 0 for all pairs of inputs x, y and
partitions (S, S) of [n], where

Df (S, S;x, y) = f(x)− f(ySx)− f(ySx) + f(y).
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Here and in the rest of the manuscript, ySx is the string in D1×· · ·×Dn that matches y in
the S-coordinates and x in the other coordinates. We assume that the domain D1× · · · ×Dn

is furnished with a product distribution: For x chosen at random from D1 × · · · ,×Dn, the
coordinates x1, . . . , xn are independent.

The tester accepts if Df (S, S;x, y) = 0 for random independent inputs x, y ∈ D1×· · ·×Dn

and a uniformly random partition (S, S) of [n]. Our main result is an optimal (up to constant
factor) bound on the soundness error ρ(f) = Pr[Df (S, S;x, y) ̸= 0] of this test in terms of
the distance δ(f) = ming{Prx[f(x) ̸= g(x)] : g is a direct sum}.

▶ Theorem 1. There is an absolute constant c > 0 such that for every collection of finite
sets D1, . . . ,Dn, every abelian group G, and every f : D1 × · · · × Dn → G, ρ(f) ≥ c · δ(f).

An important special case of the theorem concerns the Boolean domain D1 = · · · = Dn =
{0, 1} under the uniform distribution ( Proposition 5). The class of direct sums from {0, 1}n

to G is then precisely the class of affine functions f(x) = x1g1 + · · · + xngn + g0 for some
group elements g0, g1, . . . , gn ∈ G.

Using Theorem 1, we obtain the following upper bound on the query complexity of
⊕-partitionability.

▶ Theorem 2. Direct sum partitionability over any abelian group is one-sided testable with
O((n− k)(log n+ 1/ϵ) + 1/ϵ)-queries.

We also prove an upper bound on the query complexity of ⊗-partitionability:

▶ Theorem 3. Direct product partitionability is one-sided testable with O((n/ϵ) log2(n/ϵ))
non-adaptive queries.

The testers in Theorem 2 and 3 are time-efficient.
By the lower bound of Bogdanov and Wang [6], the ⊕-partitionability tester is tight up

to the log n factor for constant ϵ. In the special case when k = n, direct sum partitionability
reduces to direct sum testing and the query complexity is the same as that of Theorem 1.

Our tester for ⊕-partitionability is adaptive. We also give a one-sided non-adaptive
tester of query complexity O(kn2(log n)2/ϵ). A non-adaptive lower bound of Ω((n − k +
1) (log(n− k + 1)/ϵc) log(log(n− k + 1)/ϵc)) for any c > 1 follows from the work of Servedio
et al. [13] on junta testing. As in the case of juntas, it follows that adaptivity helps in testing
⊕-partitionability for some settings of parameters.

The ⊗-partitionability tester is also nearly tight: We show that direct product partition-
ability requires Ω(n) queries for ϵ = 1/2 for adaptive testers, and Ω( n

ϵ log(1/ϵ) ) queries for
non-adaptive testers, for every k ≥ 2.

The non-adaptive test for ⊕-partitionability, and the lower bounds for ⊕-partitionability
and ⊗-partitionability are deferred to the full version of this paper [5].

Ideas and Techniques
Direct sum testing over general groups

The main ingredient of Dinur and Golubev’s direct sum tester for Z2-valued functions is an
implicit reduction from general product domains to the Boolean domain {0, 1}n under the
uniform distribution. We abstract and generalize their reduction. In interest of space we
defer the details of this reduction to full version of this paper [5]. To complete their proof,
Dinur and Golubev instantiate the reduction with the Z2-affinity test of Blum, Luby, and
Rubinfeld [4].
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Table 1 Summary of algorithmic results. All tests have one-sided error.

Property Our Results Prior Work
Direct Sum:
f : D1 × · · · × Dn → G s.t.
f(x) = f(x1) + · · · + f(xn)

4-query test for arbitrary abelian group
G (Theorem 1)

4-query test for G =
Z2 [9]

k-⊕-partitionability:
f : D1 × · · · × Dn → G s.t.
∃S1, . . . , Sk ⊆ [n],
f(x) = f(xS1 ) + · · · + f(xSk )

O((n − k)(log n + 1/ϵ) + 1/ϵ)-query
adaptive test (Theorem 2)
O(kn2(log n)2/ϵ)-query
non-adaptive test (See full version [5])

O(kn3/ϵ)-query
non-adaptive test [6]

k-⊗-partitionability:
f : D1 × · · · × Dn → Rk s.t.
∃S1, . . . , Sk ⊆ [n],
f(x) = (f(xS1 ), . . . , f(xSk ))

O((n/ϵ) log2(n/ϵ))-query
non-adaptive test (Theorem 3)

Our main technical contribution is a tight analysis of the affinity test Df applied to
functions f : {0, 1}n → G valued in an arbitrary abelian group G. To give a sense why the
test is sound, let us argue that ρ(f) = Ω(δ(f)) under the additional assumption that f is
close to a direct sum, say if δ = δ(f) ≤ 1/27.

Let B be the set of measure at most 1/27 on which f differs from its closest direct sum.
We claim that conditioned on x ∈ B, the probability that any of the other test queries y, ySx,
ySx land in B is at most δ+ 2δ1/3. By independence, the probability that y ∈ B conditioned
on x ∈ B is exactly δ. In contrast, ySx and ySx are not independent of x, but can be sampled
by processing x through a binary symmetric channel with crossover probability 1/4. The
bound Pr[ySx ∈ B|x ∈ B] ≤ δ1/3 follows from the small-set expansion of this channel [1],
which is equivalent to the hypercontractivity of the corresponding Markov operator [7]. Since
the event “x ∈ B and ySx ̸∈ B and ySx ̸∈ B and y ̸∈ B” results in rejection, it follows that
ρ(f) ≥ δ · (1− δ − 2δ1/3), which is at least 8

27δ by the closeness assumption on f .
For larger values of δ(f), our proof strategy is to argue that f can be decoded to a direct

sum function by making at most O(ρ(f)) “changes” to the truth-table of f . The decoding
algorithm we analyze in Lemma 6 is iterative plurality (i.e., iterative maximum likelihood).
We show that the function

ϕ(x) = pluralityS,y f(ySx) + f(ySx)− f(y) (1)

is, on the one hand, 2δ(f)-close to f , and on the other hand, has substantially smaller
rejection probability of ρ(ϕ) ≤ ρ(f)/2. By iterating the decoding, i.e. applying the plurality
to ϕ again, we arrive at a function that is 4δ(f) close to f and passes the test with probability
one, thus must equal a direct product.

This argument is inspired by the linearity test analysis of Blum, Ruby, and Rubinfeld
(BLR), who also decode f to a function that is, on the one hand, close to f and, on the other
hand, passes their test with probability 1. However, unlike the BLR decoder which yields
a linear function after a single round of self-correction, ours inherently requires multiple
iterations. For example, if f is a direct sum corrupted on all inputs with relative hamming
weight around 1/4, then ϕ(0) is unlikely to be correctly decoded (as yS0 and yS0 will typically
be corrupted) and so will typically be inconsistent with a direct sum.

Nevertheless, the high-level structure of our argument closely parallels the BLR analysis.
First, in Claim 10 we show that for all but an o(ρ)-fraction of inputs x, the plurality in
(1) is a strong majority consistent with 99% of the choices of (S, S) and y. Second, we
use the algebraic structure of our test (Claim 9) to show that if Dϕ(S, S;x, y) ̸= 0 then
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Df (U, V ;w, z) ̸= 0 for a substantially larger fraction of query sequences (w, zUw, zUw, z) that
can be sampled by applying suitable “noise” to (S, S;x, y). If we represent the partition (S, S)
by a binary string σ ∈ {0, 1}n (with 1 and 0 indicating memberships in S and S, respectively),
we show that the relevant noise can be modeled by independent fixed-probability erasures
applied to the symbols of σ, x, and y. Using hypercontractivity bounds for the binary erasure
channel [11], we conclude that ϕ fails the test on a significantly smaller fraction of queries
than f does.

In the special case when the target group is Z2, the soundness error of Df can be
directly shown to be within a constant factor of the soundness error of the Dinur-Golubev
tester (even though the two tests are different). The main motivating applications for
function partitionability, however, concern real-valued functions [6]. The analysis of our
⊕-partionability testers for such functions relies on Theorem 1.

The idea of soundness analysis by iterative plurality decoding was introduced by Ben-
Sasson et al. [2] and used by Shpilka and Wigderson [14] in the context of randomness-efficient
linearity testing.

Testing partitionability

The main ingredient in our ⊕-partitionability algorithms is the direct 2-sum test Df . The
structure of this test allows us to efficiently detect a pair of variables xs, xt that must fall in
the same component of the partition in any far from ⊕-partitionable function, effectively
reducing the instance size by one variable.

Our ⊗-partitionability test looks for an input variable that is influential in at least two of
the output coordinates of f . The analysis of this test is based on Lemma 24, which states
that such a variable must exist in any far from partitionable function.

Organization

Section 2 outlines the proof of Theorem 1 in the case when the domain is the Boolean
hypercube. The analysis is based on the convergence of the iterative decoder (Lemma 6),
which is proved in Section 3. To prove Theorem 1 we use a reduction from testing functions
over arbitrary product domains to testing functions on the hypercube (See the full version [5]
for details of this reduction). Sections 4 and 5 describe and analyze the partitionability
testers for direct sum and direct product, respectively.

Definitions and Notation

Let D .= D1 × . . .×Dn be a finite set. For strings x, y ∈ D and a set of indices S ⊆ [n], let
xS to refer to the projection of x onto the coordinates in S. For strings x(1), . . . x(k) ∈ D,
and a partition S1, . . . , Sk of [n], let x(1)

S1
. . . x

(k)
Sk

be the string in D that is identical to x(i)

on indices in Si. For a bipartition (S, S), we often write xSy instead of xSyS̄ .
In sections 2 and 3 we identify a bipartition (S, S) of [n] with its indicator vector

σ ∈ {0, 1}n, and write Df (σ;x, y) instead of Df (S, S;x, y), and xσ instead of xS .
We extend the definition of Df to pairs of disjoint sets (S, T ) that do not necessarily

partition [n] as

Df (S, T ;x, y) .= f(x)− f(ySx)− f(yTx) + f(yS∪Tx).
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2 Direct Sum Test for Functions on the Boolean Hypercube

The following dual characterization of direct sums motivates our test.

▶ Fact 4. A function f : {0, 1}n → G is a direct sum if and only if Df (π;x, y) = 0 for every
choice of x, y, π ∈ {0, 1}n.

Proof of Fact 4. The “only if” direction is immediate from the definition of a direct sum. We
prove the “if” direction. Let f be such that Df (π;x, y) = 0 for every choice of x, y, π ∈ {0, 1}n.
Fix y ∈ {0, 1}n. For every x ∈ {0, 1}n we can write f(x) as

f(x) = f(x{1}y) + f(y{1}x)− f(y)
= f(x{1}y) + f(x{2}y) + f(y{1,2}x)− 2f(y)

...
= f(x{1}y) + f(x{2}y) + . . .+ f(x{n}y)− (n− 1)f(y).

Therefore, f is a direct sum. ◀

Algorithm 1 Direct sum test for functions over {0, 1}n.

Oracle : f : {0, 1}n → G
1 Sample x, y, π ∈ {0, 1}n independently and uniformly at random.
2 If f(x) + f(y)− f(xπy)− f(yπx) = 0, accept.
3 Else, reject.

By Fact 4, the test accepts every direct sum with probability 1. The following proposition
establishes soundness of the test. Let ρ(f) denote the probability that Algorithm 1 rejects
the function f . That is, ρ(f) .= Prx,y,π[Df (π;x, y) ̸= 0].

▶ Proposition 5 (Soundness). There exist a universal constant η ∈ [0, 1] such that for every
function f : {0, 1}n → G,

ρ(f) ≥ min(δ/4, η),

where δ is the distance between f and the set of direct sums.

▶ Lemma 6 (Iterative decoding). There exists a universal constant η ∈ [0, 1] such that for
every function f : {0, 1}n → G with ρ(f) < η, there exists a function ϕ : {0, 1}n → G such
that:

(i) the function ϕ is 2ρ(f)-close to f , and
(ii) ρ(ϕ) ≤ ρ(f)/2.

Proof of Proposition 5. Iteratively applying Lemma 6 results in a sequence of functions
f = f0, f1, . . ., such that for all t ≥ 1, (i) the distance between ft and ft−1 is at most
2ρ(ft−1), and (ii) ρ(ft) ≤ ρ(ft−1)/2. The probability that the test rejects a function is a
discrete quantity. So, by (ii), there must exist an integer t such that ρ(ft) = 0. That is,
Dft

(π;x, y) = 0 for every choice of x, y, π ∈ {0, 1}n. By Fact 4 this means ft is a direct sum.
The distance between f and the direct sum ft at most

t−1∑
i=0

2ρ(fi) ≤ 2
t−1∑
i=0

ρ(f)/2i ≤ 4ρ(f). ◀
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3 Analysis of Iterative Decoding

We begin with a sketch of the proof of Lemma 6. As mentioned in the introduction, the
proof follows in the footsteps of the analysis of the BLR linearity test. We define ϕ(x) to
be pluralityy,π f(xπy) + f(yπx)− f(y). Markov’s inequality allows us to bound the distance
between ϕ and f by 2ρ(f).

To show that Test 1 rejects ϕ with probability at most ρ(f)/2, we first show that for all
but a o(ρ(f))-fraction of choices of x, ϕ(x) is defined by a strict majority that makes up
at least 6/7-th of the plurality vote (See Claim 10). The fraction of x’s that contribute to
the plurality is at least the probability of a collision, i.e., Pry,z,σ,π[f(xπy) + f(yπx)− f(y) =
f(xσz) + f(zσx) − f(z)]. Using the algebraic identity in Claim 8, we can express this
probability as

Pr
y,z,π,σ

[Df (π;xπzπ, y)−Df (π; yπxπ, z) +Df (π ⊕ σ;xσzσ, zσxσ) = 0].

The analysis of the BLR test also uses an analogous algebraic identity to bound the collision
probability. The difference is that the resulting expression in the BLR analysis is made
up of evaluations of the BLR test at points independent of x. This allows one to argue
that the plurality vote is made up of a strict majority at all points x. In our setting, the
arguments of Df in the expression above are correlated with x. However, we can view these
arguments as the result of passing x through a noisy binary erasure channel. This allows for
the application of the hypercontractive inequality to bound the fraction of x for which the
collision probability is less than 6/7.

We then show that for all but o(ρ(f)) choices of x, y, π ∈ {0, 1}n there exist z, w, σ ∈
{0, 1}n such that, (A) the value of Dϕ(π;x, y) = ϕ(x) − ϕ(xπy) − ϕ(yπx) + ϕ(y) does not
change after the following substitutions, and (B) the resulting expression post substitution
evaluates to zero.

ϕ(x)← f(xσz) + f(zσx)− f(z)
ϕ(xπy)← f((xπy)σ(zπw)) + f((zπw)σ(xπy))− f(zπw)
ϕ(yπx)← f((yπx)σ(wπz)) + f((wπz)σ(yπx))− f(wπz)
ϕ(y)← f(yσw) + f(wσy)− f(y).

(2)

It follows that the probability that ϕ is rejected by the test is o(ρ(f)).
By Claim 10, for all but o(ρ(f)) choices of x, y, π the substitutions do not change the

value of Dϕ(π;x, y) with probability at least 4/7. For (B), we use the algebraic identity in
Claim 9 to rewrite the expression after substitution as

Df (π ⊕ σ;xσz, yσw)−Df (π ⊕ σ;xσz, yσw) +Df (π; z, w).

Again we show that the arguments of the Df terms can be viewed as the result of passing x, y
and π through independent binary erasure channels. Using the hypercontractive inequality,
we conclude that for all but o(ρ(f)) choices of x, y and π the expression after substitution
evaluates to zero for most choices of z, w and σ. By a union bound we can ensure that (A)
and (B) hold simultaneously for the same z, w and σ.

The following technical lemma establishes the bounds we prove using the hypercontractiv-
ity of the binary erasure channel. The proof is presented in Section 3.1.

Let queries(π;x, y) denote the vector in ({0, 1}n)4 whose entries are the four queries
that Algorithm 1 makes when π, x, y is sampled. That is, queries(π;x, y) = (x, xπy, yπx, y).
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▶ Lemma 7. Let Bad ⊂ ({0, 1}n)4 be a set such that the probability that queries(π, x, y)
lands in Bad, when π, x, y are chosen independently and uniformly at random, is ρ.

(i) µx(A1) ≤ 212ρ4/3, where

A1 = {x | Pr
π,y,z

[queries(π;xπzπ, y) ∈ Bad] ≥ 1/21}.

(ii) µx(A2) ≤ 212ρ4/3, where

A2 = {x | Pr
π,σ,z

[queries(π ⊕ σ;xσzσ, zσxσ) ∈ Bad] ≥ 1/21}.

(iii) µπ,x,y(A3) ≤ 72ρ2/(1+
√

2/3) ≤ 72ρ1.1, where

A3 = {(π, x, y) | Pr
σ,z,w

[queries(π ⊕ σ;xσz, yσw) ∈ Bad] ≥ 1/7}.

(iv) µπ(A4) ≤ 72ρ4/3, where

A4 = {π | Pr
z,w

[queries(π; z, w) ∈ Bad] ≥ 1/7}.

We will also need the following algebraic identities.

▷ Claim 8. The following identity holds:

Df (π;x, y)−Df (σ;x, z) = Df (π;xπzπ, y)−Df (π; yπxπ, z) +Df (π ⊕ σ;xσzσ, zσxσ).

Proof of Claim 8. The claim follows by adding the following two identities:

Df (π;x, y)−Df (π;x, z) = −f(xπyπ)− f(yπxπ) + f(y) + f(xπzπ) + f(zπxπ)− f(z)
= f(xπzπ) + f(y)− f(xπyπ)− f(yπzπ)
− f(yπxπ)− f(z) + f(yπzπ) + f(zπxπ)

= Df (π;xπzπ, y)−Df (π; yπxπ, z)

Df (π;x, z)−Df (σ;x, z) = −f(xπσxπσzπσzπσ)− f(zπσzπσxπσxπσ) + f(x) + f(z)
+ f(xπσzπσxπσzπσ) + f(zπσxπσzπσxπσ)− f(x)− f(z)

= Df (π ⊕ σ;xσzσ, zσxσ) ◀

To analyze the substitutions (2) we set Dϕ,f (π;x, y) = ϕ(x)− f(xπy)− f(yπx) + f(x).
In particular, Df,f = Df .

▷ Claim 9 (16-point identity). The following identity holds:

Dϕ,f (σ;x, z)−Dϕ,f (σ;xπy, wπz)−Dϕ,f (σ; yπx, zπw) +Dϕ,f (σ; y, w)
= Dϕ(π;x, y)−Df (π ⊕ σ;xσz, yσw)−Df (π ⊕ σ;xσz, yσw) +Df (π; z, w).

Proof of Claim 9. We write xyzw to denote the string xπσyπσzπσwπσ. With this notation,

+Dϕ,f (σ; x, z) = +ϕ(xxxx) −f(xzxz) −f(zxzx) +f(zzzz)
−Dϕ,f (σ; xπy, wπz) = −ϕ(xxyy) +f(xwyz) +f(wxzy) −f(wwzz)
−Dϕ,f (σ; yπx, zπw) = −ϕ(yyxx) +f(yzxw) +f(zywx) −f(zzww)
+Dϕ,f (σ; y, w) = +ϕ(yyyy) −f(ywyw) −f(wywy) +f(wwww)

= = = =

+Dϕ(π; x, y) −Df (π ⊕ σ; xσz, yσw) −Df (π ⊕ σ; xσz, yσw) +Df (π; z, w)

The identity states that the column sums and the row sums add up. ◁

Proof of Lemma 6. Let ϕ be a function defined as ϕ(x) = pluralityy,π f(xπy)+f(yπx)−f(y).
That is, ϕ(x) is the most frequent value of f(xπy) + f(yπx) − f(y), where y, π ∈ {0, 1}n.
Ties are broken arbitrarily. We show that ϕ satisfies the hypothesis of the lemma.
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(i) ϕ is 2ρ(f)-close to f : For x ∈ {0, 1}n, let ρx
.= Pry,π[f(x) ̸= f(xπy) + f(yπx)− f(y)].

Note that Ex[ρx] = ρ(f), and that if ρx < 1/2 then f(x) = ϕ(x). Thus, by Markov’s
inequality,

Pr
x

[f(x) ̸= ϕ(x)] ≤ Pr
x

[ρx ≥ 1/2] ≤ 2ρ(f).

(ii) ρ(ϕ) ≤ ρ(f)/2: We begin by showing that with probability ρ(f)/12 over the choice
of x, the plurality that defines ϕ(x) is a majority made up of 6/7-th of the votes. Then
Prπ,y[Dϕ,f (π;x, y) = 0] is the fraction of votes that constitute the plurality defining ϕ(x).
Let

Weak-Maj =
{
x

∣∣ Pry,π[Dϕ,f (π;x, y) ̸= 0] ≥ 1/7
}
.

▷ Claim 10 (Strong Majority). µx(Weak-Maj) ≤ ρ(f)/12.

Proof. The fraction of votes that contribute to the plurality Pry,π[Dϕ,f (π;x, y) = 0] is an
upper bound on the collision probability Pry,π,z,σ∈{0,1}n [Dϕ,f (π;x, y) = Dϕ,f (σ;x, z)]. This
is because

Pr
y,π,z,σ

[Dϕ,f (π;x, y) = Dϕ,f (σ;x, z)] =
∑
γ∈G

Pr
y,π

[Dϕ,f (π;x, y) = γ]2

≤ max
γ∈G

Pr
y,π

[Dϕ,f (π;x, y) = γ]

= Pr
y,π

[Dϕ,f (π;x, y) = 0].

The final equality holds because ϕ(x) = arg maxβ∈G Pry,π[β − f(xπy)− f(yπx) + f(y) = 0].
We showed that

µx(Weak-Maj) ≤ µx{x | Pry,π,z,σ[Dϕ,f (π;x, y) ̸= Dϕ,f (σ;x, z)] ≥ 1/7}.

We now use Lemma 7 to bound the right hand side. Let Badf ⊂ ({0, 1}n)4 be the set of
queries on which Df fails, namely

Badf = {queries(π;x, y) | Df (π;x, y) ̸= 0}.

This is a set of measure µπ,x,y(Bad) = ρ(f). SinceDϕ,f (π;x, y)−Dϕ,f (σ;x, z) = Df (π;x, y)−
Df (σ;x, z), by the algebraic identity in Claim 8 and a union bound, we have

µx(Weak-Maj) ≤ µx{x | Prπ,σ,y,z[Dϕ,f (π;x, y)−Dϕ,f (σ;x, z) ̸= 0] ≥ 1/7}
≤ µx{x | Prπ,y,z[Df (π;xπzπ, y) ̸= 0] ≥ 1/21}

+ µx{x | Prπ,y,z[Df (π; yπxπ, z) ̸= 0] ≥ 1/21}
+ µx{x | Prπ,σ,z[Df (π ⊕ σ;xσzσ, zσxσ) ̸= 0] ≥ 1/21}

= µx(A1) + µx(A1) + µx(A2),

where A1 and A2 are the sets

A1 = {x | Pr
π,y,z

[queries(π;xπzπ, y) ∈ Badf ] ≥ 1/21},

A2 = {x | Pr
π,σ,z

[queries(π ⊕ σ;xσzσ, zσxσ) ∈ Badf ] ≥ 1/21}.

By Lemma 7 we get that µx(Weak-Maj) ≤ ρ(f)/12, for small enough η. ◁
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We are now ready to prove that ρ(ϕ) = Prπ,x,y[Dϕ(π;x, y) ̸= 0] ≤ ρ(f)/2. In order
to do so we define a set Badϕ of triples (π, x, y) such that µπ,x,y(Badϕ) ≤ ρ(f)/2, and if
(π, x, y) ̸∈ Badϕ then Dϕ(π, x, y) = 0.

Let A3 and A4 denote the sets

A3 = {(π, x, y) | Pr
σ,z,w

[queries(π ⊕ σ;xσz, yσw) ∈ Badf ] ≥ 1/7},

A4 = {π | Pr
z,w

[queries(π; z, w) ∈ Badf ] ≥ 1/7}.

Let Badϕ be the set

{(π, x, y) | (One of x, y, xπy, yπx lies in Weak-Maj) or ((π, x, y) ∈ A3) or (π ∈ A4)} .

By Lemma 7, µπ,x,y(A3) ≤ ρ(f)/12, and µπ(A4) ≤ ρ(f)/12, for small enough η. As
x, y, xπy, yπx are all random, by a union bound we have

µπ,x,y(Badϕ) ≤ 4µx(Weak-Maj) + µπ,x,y(A3) + µπ(A4) ≤ ρ(f)/2.

All that remains to show is that if (π, x, y) ̸∈ Badϕ, Dϕ(π;x, y) = 0. On rearranging the
terms in the algebraic identity of Claim 9, we get

Dϕ(π;x, y) = Dϕ,f (σ;x, z)−Dϕ,f (σ;xπy, wπz)−Dϕ,f (σ; yπx; zπw) +Dϕ,f (σ; y, w)
+Df (π ⊕ σ;xσz, yσw) +Df (π ⊕ σ;xσz, yσw)−Df (π; z, w). (3)

Fix a triple (π, x, y) ̸∈ Badϕ. We show that Dϕ(π, x, y) = 0, by showing that there exists
a choice of σ, z and w for which the right hand side of Equation (3) evaluates to zero. By
Equation (3) and a union bound,

Pr
σ,z,w

[Dϕ(π;x, y) ̸= 0] = Pr
σ,z,w



Dϕ,f (σ;x, z) ̸= 0
or Dϕ,f (σ;xπy, wπz) ̸= 0
or Dϕ,f (σ; yπx; zπw) ̸= 0
or Dϕ,f (σ; y, w) ̸= 0
or Df (π ⊕ σ;xσz, yσw) ̸= 0
or Df (π ⊕ σ;xσz, yσw) ̸= 0
or Df (π; z, w) ̸= 0



< 4/7 + Pr
σ,z,w

 queries(π ⊕ σ;xσz, yσw) ∈ Badf

or queries(π ⊕ σ;xσz, yσw) ∈ Badf

or queries(π; z, w) ∈ Badf


< 4/7 + 3/7 = 1.

The first inequality holds because x, xπy, yπx, y ̸∈ Weak-Maj, and the second inequality
holds because (π, x, y) ̸∈ A3 and π ̸∈ A4. Since the probability Prσ,z,w[Dϕ(π;x, y) ̸= 0] is
either 0 or 1, it must be that Dϕ(π;x, y) = 0. Therefore,

ρ(ϕ) = Pr
π,x,y

[Dϕ(π;x, y) ̸= 0] ≤ µπ,x,y(Badϕ) ≤ ρ(f)/2. ◀

3.1 Proof of Lemma 7
We begin with some preliminaries on discrete channels and hypercontractivity. For a
motivating discussion on hypercontractivity and a proof of Fact 14 below see Chapter 9
of [12].
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▶ Definition 11 (Discrete channels). A discrete channel is a triple (U , P,V), where U and V are
finite sets representing the input alphabet and output alphabet, and P is a U ×V probability
transition matrix that describes the distribution of the output conditioned on the input. The
composition of two channels (U , P1,V) and (V, P2,W) is the channel (U , P1 · P2,W), where
· is matrix multiplication.

The binary erasure channel will play an important role in the proof of Lemma 7.

▶ Definition 12 (Binary Erasure Channel). The binary erasure channel BEC(e) with erasure
probability e has input alphabet {0, 1} and output alphabet {0, 1,⊥}, and probability transition
matrix P (x|x) = 1− e, P (⊥|x) = e.

x

x

⊥

1− e

e

Figure 1 The binary erasure channel BEC(e).

For a real valued random variable U and p ≥ 1, we denote the p-norm of U by ∥U∥p
.=

EU [|U |p]1/p.

▶ Definition 13 (Hypercontractivity). For 1 ≤ q ≤ p, A pair of random variables (U, V ) is
(p, q)-hypercontractive if for every pair of real valued functions f, g,

E[f(U)g(V )] ≤ ∥f(U)∥p′∥∥g(V )∥q,

where p′ = p/(p− 1) is the Hölder conjugate of p.

▶ Fact 14 (Tensorisation [7]). If (U1, V1) and (U2, V2) are independent random variables that
are (p, q)-hypercontractive, then ((U1, U2), (V1, V2)) is (p, q) hypercontractive.

▶ Theorem 15 (Hypercontractivity of BEC(e) [11]). Let U be distributed uniformly over
{0, 1} and let V ∈ {0, 1,⊥} denote the output of BEC(e) on input U . Then (U, V ) is
(p, q)-hypercontractive for all 1 ≤ q ≤ p such that

q − 1
p− 1 ≥ 1− e.

▶ Fact 16 (Composition). Let (U , P1,V) and (V, P2,W) be two channels. Let U be a random
variable over U . Let V be the random variable that represents the output of the first channel
on input U , and W the random variable that represents the output of the second channel on
input V . If (U, V ) is (p, q)-hypercontractive then so is (U,W ).

Proof of Fact 16. Let f : U → R and g :W → R be arbitrary functions. Since U → V →W

is a markov chain, we have

EU,W [f(U)g(W )] = EU,V [f(U)EW [g(W ) | V ]] ≤ ∥f(U)∥p′∥EW [g(W ) | V ]∥q,

where the inequality holds because (U, V ) is (p, q) hypercontractive.
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Now, by Jensen’s inequality,

EV [EW [g(W ) | V ]q]1/q ≤ EV [EW [g(W )q | V ]]1/q = EW [g(W )q]1/q = ∥g(W )∥q

Therefore, (U,W ) is (p, q) hypercontractive. ◀

The following claim captures the small-set expansion interpretation of hypercontractiv-
ity [1] in the form used in the proof of Lemma 7.

▷ Claim 17. Let U, V be random variables that take values in U and V respectively. Let B ⊂ V
be a set such that Pr[V ∈ B] = ρ. Let A ⊂ U denote the set {u | Pr[V ∈ B | U = u] ≥ θ}. If
(U, V ) is (p, q) hypercontractive, then Pr[U ∈ A] ≤ ρp/q/θp.

Proof. Let 1A and 1B denote the indicator functions of the sets A and B. Since (U, V ) are
(p, q) hypercontractive,

θ · Pr[U ∈ A] ≤ Pr[V ∈ B | U ∈ A] Pr[U ∈ A] = E[1A(U)1B(V )] ≤ ∥1A(U)∥p′∥1B(V )∥q,

where p′ = p/(p− 1). Note that ∥1B(V )∥ = ρ1/q, and ∥1A(U)∥p′ = Pr[U ∈ A]1/p′ . Therefore,
Pr[U ∈ A]1/p ≤ ρ1/q/θ, that is, Pr[U ∈ A] ≤ ρp/q/θp. ◁

Proof of Lemma 7. We need to bound the probabilities of four sets of the form

{u ∈ Σn|Pr[queries(ψ(u)) ∈ bad|U = u]} ≥ θ,

where ψ is some (randomized) function. All bounds of the form θ−2ρ2/q will follow from
Claim 17 by showing that the channel U → queries(ψ(u)) is (2, q)-hypercontractive for a
suitable choice of q (q = 3/2 for parts (i), (ii), (iv) and q = 1 +

√
2/3 for part (iii)).

The channel (Σn, Pn, {0, 1}n×4) that maps u ∈ Σn to queries(ψ(u)) ∈ {0, 1}n×4 acts
independently on the symbols u1, . . . , un. In all cases, the i-th bits of the four queries
(q1, q2, q3, q4) are obtained by applying the one-dimensional channel P1 to ui. Therefore,
Pn tensorizes as Pn = P⊗n

1 . By Fact 14, it is sufficient to show that the channel P1 is
hypercontractive. We may and will therefore assume, without loss of generality, that n = 1.

We now demonstrate how each of the four channels of interest can be decomposed into a
binary erasure channel with constant erasure probability (e = 1/2 in parts (i), (ii), (iv) and
e = 1 −

√
2/3 in part (iii)) and some other fixed channel. The Lemma then follows from

Fact 16 and Theorem 15 with q = 2− e.
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Figure 2 Channels (i) x → queries(π, xπzπ, y); (ii) x → queries(π ⊕ σ, xσzσ, zσxσ); (iv)

π → queries(π, z, w). y and z are random bits.
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(i) The channel x→ queries(π;xπzπ, y) = (xπzπ, xπyπ, yπzπ, y) from Σ = {0, 1} to {0, 1}4

can be decomposed in the following way: On input x the channel samples a random bit π
and outputs xxyy if π = 1, and zyzy if π = 0 for random y and z. This channel can be
alternatively described as BEC(1/2) composed with a second channel that outputs xxyy if
there is no erasure and the independent symbol zyzy otherwise. See Figure 2 (i).

(ii) The channel from Σ = {0, 1} to {0, 1}4 is of the form

x→ queries(π ⊕ σ, xσzσ, zσxσ) =


xπσzπσxπσzπσ

zπσzπσxπσxπσ

xπσxπσzπσzπσ

zπσxπσzπσxπσ

 =


xzxz, if πσ = 1,
zzxx, if πσ = 1,
xxzz, if πσ = 1,
zxzx, if πσ = 1,

where π, σ, z are random bits. We can alternatively describe it like this: If z = x, then output
xxxx. If z ̸= x and π ⊕ σ = 1, then output zzzz. If z ̸= x and π ⊕ σ = 0, then output zzzz.

This channel can be factored through BEC(1/2) as in Figure 2 (ii). If there is no erasure,
the second channel outputs xxxx. If there is an erasure, then the second channel outputs
zzzz with probability 1/2 and zzzz with probability 1/2.

(iii) The channel from Σ = {0, 1}3 to {0, 1}4 is of the form

πx
y

→ queries(π ⊕ σ;xσz, yσw) =


xπσzπσxπσzπσ

yπσzπσxπσwπσ

xπσwπσyπσzπσ

yπσwπσyπσwπσ

 =


xyxy, if πσ = 1,
zzww, if πσ = 1,
xxyy, if πσ = 1,
zwzw, if πσ = 1.

Consider the composition of the following two channels. The first channel views the symbol
πxy as three bits and independently applies BEC(1/4) to π and BEC(1−

√
2/3) to x and

y. The second channel is described in Figure 3.

If π is erased, the second channel outputs zzzz, for a uniform bit z. This corresponds to
the event z = w and σ = 0.
If π is not erased but one of x, y is erased, the second channel samples a uniform bit
z ∈ {0, 1} and outputs zzzz if π = 0 and zzzz if π = 1. This corresponds to the event
z ̸= w and σ = 0.
If there are no erasures, then the second channel outputs xyxy if π = 1, and xxyy if
π = 0. This corresponds to the event σ = 1.

The first channel is BEC( 1
4 )⊗BEC(1−

√
2/3)⊗BEC(1−

√
2/3). Since 1−

√
2/3 ≤ 1/4,

by Fact 14 it inherits the hypercontractivity parameters of BEC(1−
√

2/3).

(iv) The channel π → queries(π, z, w) from Σ = {0, 1} to {0, 1}4 outputs zzww if π = 1
and zwzw if π = 0 for random bits z and w. Alternatively, the channel can be described as
a uniform choice between zzzz and zzzz when π = 1 and a uniform choice between zzzz

and zzzz when π = 0. This can be modeled as the composition of BEC(1/2) and a second
channel that outputs zzzz if there is an erasure, and either zzzz or zzzz depending on the
value of πi otherwise. See Figure 2 (iv). ◀
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BEC( 1
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√
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Figure 3 (iii) Channel (π, x, y) → queries(π ⊕ σ, xσz, yσw). A ⋆ represents any of {0, 1, ⊥} and

z is a random bit.

4 Testing ⊕-Partitionability

Recall that a function f : D = D1 × · · · × Dn → G is k-⊕-partitionable if there exists a
k-partition S1, . . . , Sk of [n], and functions f1, . . . , fk such that f(x) = f1(xS1)+ . . .+fk(xSk

),
for all x ∈ D.

Recall that for disjoint sets S, T ⊆ [n],

Df (S, T ;x, y) .= f(x)− f(ySx)− f(yTx) + f(yS∪Tx)

The following claim is an immediate consequence of Theorem 1, and allows us to determine
whether a function f is ⊕-partitionable with respect to a fixed partition S1, . . . , Sk.

▷ Claim 18. Let (S, S) be a random coarsening of a k-partition (S1, . . . , Sk) obtained by
adding each Si to S with probability 1/2. If f is ϵ-far from ⊕-partitionable with respect to
S1, . . . , Sk, then Df (S, S;x, y) is nonzero with probability Ω(ϵ).

To determine whether a function is k-⊕-partitionable, our testers use the 4-query test
Df to group together variables that cannot occur in different partition components. If the
tester finds fewer than k groups, it rejects, otherwise it accepts.

4.1 Adaptive Test for ⊕-Partitionability
Our test for k-⊕-partitionability (Algorithm 3) seeks to identify a pair of contractable variables
s, t that must fall in the same component of a partition. Variables s and t are then contracted
and the test is repeated until either fewer than k variables are left (giving a certificate of
non-partionability) or no contractable candidates can be found.

A sufficient condition for contractability is that Df ({s}, {t};x, y) is nonzero for some
assignment x, y. We start by splitting the variables into k components S1, . . . , Sk arbitrarily
and zero-testing Df (S, S̄;x, y) for a random coarsening of the components into S, S̄. By
Claim 18, the zero-test fails with probability at least Ω(ϵ), where ϵ is the distance between f
and the set of functions that are ⊕-partitionable with respect to S1, . . . , Sk.
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Once such a bipartition S, S̄ is identified, s and t can be identified via binary search using
Algorithm 2 below. The same idea was used by Blais [3] to identify an influential variable in
his junta test. Our t is in fact the influential variable in the function g(x[n]\S) = f(x)−f(ySx),
for fixed xS , yS , returned by Blais’ test.

Algorithm 2 Violating pair adaptive search.

Oracle : f : D1 × · · · × Dn → G
Input : (S, T ;x, y) such that Df (S, T ;x, y) ̸= 0.
Output : ({s}, {t}) such that Df ({s}, {t};x′, y′) ̸= 0 for some x′, y′.

1 If |S| = |T | = 1, output S, T .
2 If |T | = 1, swap S and T .
3 do
4 Split T into two subsets T ′ and T ′′ of (almost) equal size.
5 If Df (S, T ′;x, y) ̸= 0, recursively run on input (S, T ′;x, y).
6 Otherwise, recursively run on input (S, T ′′; y, x).

The correctness of Algorithm 2 is based on the following identity.

▷ Claim 19. Df (S, T ∪ T ′;x, y) = Df (S, T ;x, y) +Df (S, T ′; y, x) for disjoint sets S, T, T ′.

Proof. Without loss of generality take S = {1}, T = {2}, T ′ = {3} and assume there are no
other inputs (they are all fixed). By the definition of Df ,

Df ({1}, {2};x, y) = f(x1x2x3) + f(y1y2x3)− f(x1y2x3)− f(y1x2x3)
Df ({1}, {3}; y, x) = f(y1y2y3) + f(x1y2x3)− f(y1y2x3)− f(x1y2y3)

−Df ({1}, {2, 3};x, y) = −f(x1x2x3)− f(y1y2y3) + f(x1y2y3) + f(y1x2x3).

The terms on the right hand side cancel out. ◁

▶ Lemma 20. Algorithm 2 is correct and has query complexity at most 4(⌈log |S|⌉+⌈log |T |⌉).

Proof. The correctness follows from Claim 19 and from the symmetry of Df in the S, T
inputs. As for the query complexity, the algorithm makes four queries (in fact at most two
additional queries) in each iteration, and each iteration shrinks one of the original inputs S,
T by half. ◀

In the following algorithm we let P(S1, . . . , Sk) be the distribution on disjoint pairs of
sets (S, S̄) from Claim 18.

Algorithm 3 Adaptive tester for k-⊕-paritionability.

Oracle : f : D1 × . . .×Dn → G
Input : Size k of partition

1 If f has fewer than k variables, output “not partitionable”.
2 Otherwise, partition variables arbitrarily into k sets S1, . . . , Sk.
3 repeat
4 Choose sets (S, S̄) at random from P(S1, . . . , Sk).
5 Choose random inputs x, y.
6 until Df (S, T ;x, y) ̸= 0;
7 Run violating pair adaptive search on input (S, S̄;x, y) to obtain outputs {s}, {t}.
8 Contract variables s and t in the oracle and repeat.
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Proof of Theorem 2. We analyze Algorithm 3. First assume f is k-⊕-partitionable. By
Lemma 20, f only contracts variables s, t that are not split by the partition (otherwise
Df ({s}, {t};x′, y′) always vanishes). Therefore f cannot be contracted down to k − 1 inputs
and the tester accepts with probability one.

Now assume f is ϵ-far from partitionable. We will argue that Algorithm 3 outputs “not
partitionable” after O((n − k + 1)(log n + 1/ϵ)) queries in expectation by induction on n.
Assume n ≥ k. By Claim 18, Loop 6 takes O(1/ϵ) iterations to complete in expectation,
and each iteration costs four queries to f . By Lemma 20, line 7 takes another O(log n)
queries. After merging s and t the resulting function on n − 1 inputs can only be farther
from partitionable, so by inductive assumption the expected query complexity Q(n) is at
most Q(n − 1) + O(log n + 1/ϵ). This gives the desired bound. By Markov’s inequality,
Algorithm 3 makes at most twice this number of queries with probability at least half.

The query complexity can be improved slightly to the stated bound O((n− k)(log n+
1/ϵ) + 1/ϵ) by observing that the violating pair search in line 7 can be bypassed when n = k

since a proof of non-partitionability has already been discovered in line 6. ◀

5 Testing ⊗-Partitionability

Recall that a function f : D = D1 × · · · × Dn → Rk is k-⊗-partitionable if there exists a
k-partition S1, . . . , Sk of [n], and functions f1, . . . , fk such that f(x) = (f1(xS1), . . . , fk(xSk

))
for all x ∈ D.

In this section we present a O((n/ϵ) log2(n/ϵ))-query non-adaptive one-sided error test
for ⊗-partitionability (see Theorem 3). We begin with an overview of the construction.

First, some notation. For a function f : D → Rk and a subset T ⊆ [k] we write fT to
refer to the function obtained by projecting the output of f onto the coordinates in T . We
often write xi instead of x{i} and fj instead of f{j}.

For simplicity, suppose that k = 2. Then f is 2-⊗-partitionable if and only if every
variable has non-zero influence on at most one of the two coordinates of f . So our task boils
down to determining whether there is a variable that is influential in both coordinates of
the output of f . The key observation that allows us to find such a coordinate with a small
number of queries is that if f is ϵ-far from ⊗-partitionable, then∑

i∈[n]

min(Inf(i; f1), Inf(i; f2)) ≥ ϵ. (4)

Therefore, if f is ϵ-far from ⊗-partitionable, there must be a coordinate that has influence at
least ϵ/n in both coordinates. This immediately suggests an O(n2/ϵ) query test: for each
variable use O(n/ϵ) queries to determine whether it is influential in both coordinates.

We obtain an improvement in the query complexity by exploiting a trade-off between the
number of samples, i ∈ [n], required to find a variable that is influential in both coordinates,
and the number of samples required to certify that a variable is indeed influential in both
coordinates.

Given subsets S1, . . . , Sk of [n], let ∆f (S1, . . . , Sk) be the distance from f = (f1, . . . , fk)
to the closest function g = (g1, . . . , gk) in which gj does not depend on the inputs in Sj , and
define the influence of (S1, . . . , Sk) on f as

Inf(S1, . . . , Sk; f) = Pr[fj(x) ̸= fj(ySj
x) for some j],

where x, y is an independent pair of inputs.
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▶ Proposition 21. Inf(S1, . . . , Sk; f) ≤
∑n

i=1 Inf(i; fJ(i)), where J(i) is the set of output
coordinates j ∈ [k] for which Sj contains i.

Proof. Let E be the event “fj(x) ̸= fj(ySj
x) for some j”. Let hi be the hybrid input in which

hi
t = yt for t ≤ i and xt for t > i. Then h0 = x and hn = y. If the event “fj(x) ̸= fj(ySjx)”

occurs, then one of the events “fj(hi−1
Sj

x) ̸= fj(hi
Sj
x)” must occur for some i between 1 and

n. By the union bound, Pr(E) ≤
∑n

i=1 Pr(Ei), where Ei is the event “fj(hi−1
Sj

x) ̸= fj(hi
Sj
x)

for some j.” The inputs hi−1
Sj

x and hi
Sj
x are identical unless i ∈ Sj , in which case they differ

only in the i-th coordinate where they are independent. Therefore

Pr(Ei) = Pr[fj(x) ̸= fj(xi) for some j ∈ J(i)],

where xi is x with its i-th input resampled independently. The right hand side is precisely
the influence of i in fJ(i). ◀

▷ Claim 22. ∆f (S1, . . . , Sk) ≤ Inf(S1, . . . , Sk; f).

Proof. By averaging, there must exist an assignment a to y such that

Inf(S1, . . . , Sk; f) ≥ Pr[fj(x) ̸= fj(aSjx) for some j].

Define gj(x) = fj(aSjx) (on all inputs). Then gj does not depend on the inputs in Sj , so

∆f (S1, . . . , Sk) ≤ Pr[fj(x) ̸= gj(x) for some j] = Pr[fj(x) ̸= fj(aSj
x) for some j] ≤ Pr(E).

◁

▷ Claim 23. Let k ≥ 2 and f(xi) = (f1(xi), . . . , fk(xi)) be a possibly randomized univariate
function. Let d an the output coordinate that maximizes Inf(i; fd). There exists a parti-
tion (P, P ) of the output coordinates such that Inf(i; fP ) and Inf(i; fP ) are both at least
Inf(i; f[n]\{d})/3.

Proof. Let Ij be the event fj(x) ̸= fj(y) for random independent x and y. Then Inf(i; fT ) =
Pr(∪j∈T Ij). Let δi = Pr(∪j ̸=dIj). If Pr(Id) ≥ δi/3 then the partition ({d}, [n] \ {d})
satisfies the conclusion. Otherwise, Pr(Ij) ≤ δi/3 for all j. Then some partition of type
(I1 ∪ · · · ∪ Ij , Ij+1 ∪ · · · ∪ Ik) works: If j is the first set for which Pr(I1 ∪ · · · ∪ Ij) exceeds
δi/3, then

Pr(I1 ∪ · · · ∪ Ij) ≤ Pr(I1 ∪ · · · ∪ Ij−1) + Pr(Ij) ≤ 2δi/3.

Since

Pr(I1 ∪ · · · ∪ Ij) + Pr(Ij+1 ∪ · · · ∪ Ik) ≥ Pr(∪jIj) ≥ δi,

the event Ij+1 ∪ · · · ∪ Ik also has probability at least δi/3. ◁

▶ Lemma 24. If f is δ-far from ⊗-partitionable then there exist partitions (P (1), P (1)), . . . ,
(P (n), P (n)) of [k] such that

n∑
i=1

min
{

Inf(i; fP (i)), Inf(i; f
P (i))

}
≥ δ

3 .
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Proof. Let j∗(i) be the maximizer of Inf(i; fj) (breaking ties arbitrarily), and Sj be the
set of all i such that j∗(i) ̸= j. Then J(i) = {j : i ∈ Sj} = [n] \ {j∗(i)}. By Proposi-
tion 21 and Claim 22, δ ≤ ∆f (S1, . . . , Sk) ≤

∑
Inf(i; f[n]\{j∗(i)}). By Claim 23 applied

to f as a function of xi only (randomized over the other inputs), Inf(i; f[n]\{j∗(i)})/3 ≤
min

{
Inf(i; fP (i)), Inf(i; f

P (i))
}

. ◀

Algorithm 4 Non-adaptive tester for ⊗-partitionability.

Oracle : f : D = D1 × · · · × Dn → Rk

Input : Proximity parameter ϵ
1 foreach r ∈ {0, . . . , ⌈log(3n/ϵ)⌉} do
2 Let S ⊆ [n] be a set of 3 · ⌈ 6n log(3n/ϵ)

2rϵ ⌉ indices sampled uniformly at random from
[n].

3 foreach i ∈ S do
4 Sample 3 · 2r+1 independent pairs of inputs from D.
5 if ∃ samples (x, y), (x′, y′), and j ̸= j′ ∈ [k] such that

fj(x) ̸= fj(y{i}x) and fj′(x′) ̸= fj′(y′
{i}x

′) then
6 Reject.

7 Accept.

Proof of Theorem 3. We show that Algorithm 4 satisfies the statement of the theorem. In
each iteration of the outer loop, O(n/ϵ log(n/ϵ)) queries are made to f . Thus, in total the
algorithm makes O((n/ϵ) log2(n/ϵ)) queries.

The test has perfect completeness because the condition on Line 5 is never triggered if f
is a direct product.

We now argue soundness. If f is ϵ-far from being a direct product, then by Lemma 24,
for every i ∈ [n] there exist partitions (P (i), P (i)) such that∑

i∈[n]

Mi ≥ ϵ/3, (5)

where Mi = min
{

Inf(i; fP (i)), Inf(i; f
P (i))

}
.

For r ∈ {0, . . . , ⌈log(3n/ϵ)⌉}, let Ar denote the set {i |Mi ∈ [1/2r, 1/2r+1)}. By (5) and
an averaging argument, we know that there exists an ℓ such that |Aℓ| ≥ ⌈ 2ℓϵ

6 log(3n/ϵ)⌉. For
such an ℓ, we show that the probability that the algorithm rejects in the ℓ-th iteration is at
least 2/3.

Consider the ℓ-th iteration of the outer loop. The probability that no index in Aℓ is
picked at Line 2 is at most (1− |Aℓ|

n )3· n
|Aℓ| ≤ 1/e3.

In an iteration of the inner loop corresponding to an index i ∈ Aℓ, the probability that
either fP (i)(x) = fP (i)(y) for all sampled pairs (x, y), or f

P (i)(x) = f
P (i)(y) for all sampled

pairs (x, y) is at most 2 · (1− 1/2ℓ+1)3·2ℓ+1 ≤ 2/e3. This tells us that the probability that
the algorithm rejects in the ℓ-th iteration of the outer loop conditioned on Aℓ ∩ S ̸= ∅ is at
least (1− 2/e3). Since Aℓ ∩ S is empty with probability at most 1/e3, the probability that
the algorithm rejects in the ℓ-th iteration is at least (1− 3/e3) ≥ 2/3. ◀
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Abstract
We show, assuming the Strong Exponential Time Hypothesis, that for every ε > 0, approximating
undirected unweighted Diameter on n-vertex m-edge graphs within ratio 7/4 − ε requires m4/3−o(1)

time, even when m = Õ(n). This is the first result that conditionally rules out a near-linear time
5/3-approximation for undirected Diameter.
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1 Introduction

The diameter of a graph is the length of a longest shortest path between two of its vertices.
We write Diameter for the algorithmic task of computing the diameter of an input graph.
Throughout the paper, n implicitly denotes the number of vertices of a graph, and m,
its number of edges. We will often prefix Diameter with undirected/directed to indicate
whether or not edges may be oriented1, and unweighted/weighted to indicate whether or not
non-negative edge weights are allowed.

A fairly recent and active line of work aims to determine the best runtime for an algorithm
approximating Diameter within a given ratio. First, there is an exact algorithm running in
time2 Õ(mn), which computes n shortest-path trees from every vertex of the graph. Secondly,
there is a 2-approximation running in time Õ(m), which computes a shortest-path tree from
an arbitrary vertex and outputs the largest distance found. There are an Õ(m3/2) time
3/2-approximation for directed weighted Diameter [1, 15, 6], and for every non-negative
integer k, an Õ(mn

1
k+1 ) time (2−2−k)-approximation3 for undirected weighted Diameter [4].

We refer the interested reader to the survey of Rubinstein and Vassilevska Williams [16].
We will now focus on sparse graphs, for which m = Õ(n). This is because the current paper

deals with conditional lower bounds on approximating Diameter, and all such results even
work with that restriction. Observe that, on sparse graphs, the first result of the previous
paragraph is a near-quadratic 1-approximation, while the second result is a near-linear
2-approximation. One can represent these ratio-runtime trade-offs in the two-dimensional
plane. The ultimate goal of fine-grained complexity, in that particular context, is to obtain a

1 In directed Diameter, we are to compute the length of a longest shortest path taken from any vertex
to any vertex.

2 where Õ(·) suppresses the polylogarithmic factors
3 with an extra additive factor depending on the weights
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complete curve of algorithms linking these two extreme points, matched by tight conditional
lower bounds. We now present one way of deriving conditional lower bounds for polytime
problems.

Lower bounds based on the Strong Exponential Time Hypothesis

The Strong Exponential Time Hypothesis (SETH, for short) asserts that for every ε > 0,
there is an integer k such that k-SAT cannot be solved in time (2 − ε)n on n-variable
instances [11]. At first glance, this assumption should only be useful to rule out some
specific running time for NP-hard problems which, like the satisfiability problem, seems to
require superpolynomial time. Such conditional lower bounds to classical [7] or parameterized
algorithms [8] are overviewed in a survey [14] on the consequences of the SETH (as well as
the weaker assumption ETH) on solving computationally hard problems.

Interestingly, using the SETH to rule out a given running time for a polynomial-time
solvable problem took more time. In a survey of fine-grained complexity [18], Vassilevska
Williams dates the first reduction (albeit used positively) from SAT to a problem in P
back to 2005 [17]. We will see that this reduction to 2-Orthogonal Vectors, where
one wants to find two orthogonal 0, 1-vectors within a given list, is very relevant to the
fine-grained complexity of Diameter. As it turns out, the first SETH-based lower bound for
a polytime graph problem occurred almost a decade later, on the very unweighted undirected
Diameter [15].

There might have been a psychological barrier in reducing a “hard” problem to an “easy”
one, in order to derive a conditional lower bound. However this makes perfect sense. Let us
give an apropos example. Suppose (as it is actually the case) that one can create in time
O(n) a list of n 0,1-vectors with n = O(2N/2), from an N -variable SAT formula, such that
there is pair of orthogonal vectors in the list if and only if the formula is satisfiable. Now
a truly subquadratic algorithm, that is in time n2−ε for some ε > 0, for 2-Orthogonal
Vectors would enable to solve SAT in time O(2(1−ε/2)N ) = O((2 − δ)N ) for some δ > 0,
contradicting the SETH. We thus say that 2-Orthogonal Vectors is SETH-hard at
time n2, and more generally a problem Π is SETH-hard at time T if it requires time T 1−o(1)

under the SETH.

SETH lower bounds for Diameter

There is a handful of SETH-hardness results on approximating Diameter [15, 2, 3, 9, 12, 13].
Unless the SETH fails, any 3/2−ε-approximation for sparse undirected unweighted Diameter,
with ε > 0, requires time n2−o(1) [15] (this is the above-mentioned seminal result to the fine-
grained complexity within P), whereas any 5/3−ε-approximation requires time n3/2−o(1) [12]
(an early version of [13]). Since a 5/3-approximation of Diameter running in near-linear time
was consistent with the then knowledge (up until mid-August 2020, even in weighted directed
graphs) Rubinstein and Vassilevska Williams [16] and Li [12] ask for such an algorithm or
some lower bounds with a ratio closer to 2.

In the last few months, there were several developments on directed graphs. The author
showed that, under the SETH, 7/4 − ε-approximating sparse directed weighted Diameter
requires time n4/3−o(1) [3]. Then Wein and Dalirrooyfard [9], and independently, Li [13] (an
updated version of [12]) both show that not only this result holds on directed unweighted
graphs but they generalize it in the following way: Unless the SETH fails, for every ε > 0
and every integer k ⩾ 4, 2k−1

k − ε-approximating directed unweighted Diameter requires
time n

k
k−1 −o(1).
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Despite these advances, a near-linear time 5/3-approximation for the undirected Dia-
meter may still have existed. In this paper, we rule out this possibility by showing the
following (see Figure 1 for a visual summary of what is now known on approximating
undirected Diameter).

▶ Theorem 1. Unless the SETH fails, for any ε > 0, 7/4 − ε-approximating Diameter on
undirected unweighted n-vertex Õ(n)-edge graphs requires n4/3−o(1) time.

In particular we resolve [16, Open Question 2.2.], on the existence of a near-linear time
5/3-approximation for undirected Diameter, by the negative.
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Figure 1 Approximability of sparse undirected unweighted Diameter. Blue areas are feasible,
as witnessed by algorithms at bottom-left corners (blue dots). The red regions are SETH-hard, as
witnessed by reductions at top-right corners (red dots). Dotted cyan areas are not SETH-hard,
unless the NSETH fails. The current landscape for the sparse undirected weighted Diameter is
the same, except the middle red region is entirely due to Backurs et al. [2] instead of [13]. The
axis-parallel black curve represents the tractability frontier as foreseen by Conjecture 2.

In light of the recent results (see in particular the paragraph on barriers to SETH-hardness),
it is reasonable to conjecture that the four variants of sparse Diameter (undirected/directed
unweighted/weighted) are equally approximable. More precisely, we venture the following
optimistic prediction.

▶ Conjecture 2. Sparse (un)directed (un)weighted Diameter is 2 − 1
k -approximable in time

Õ(n k+1
k ) for every k ∈ N+ ∪ {∞}. Furthermore unless the SETH fails, approximating sparse

(un)directed (un)weighted Diameter within ratio better than 2 − 1
k+1 requires time n

k+1
k −o(1)

for every k ∈ N+.
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Conjecture 2 is naturally equivalent to obtaining the algorithms for the directed weighted
Diameter and the SETH-hardness for the undirected unweighted Diameter. Settling the
conjecture would give a complete landscape of the approximability of Diameter, where if
one represents the results in the two-dimensional space of approximation factor vs runtime
exponent, the feasible and infeasible regions are separated by a rectilinear curve with infinitely
many corners (the black curve drawn in Figure 1). In that respect, our contribution is to give
the third lower bound on the curve (i.e., North-East corner) after Roditty and Vassilevska
Williams gave the first [15], and Li, the second [12]. Perhaps our new ideas (together with the
recent constructions in the directed case of Wein and Dalirrooyfard [9], and Li [13]) will also
help in generalizing the lower bound predicted by Conjecture 2 to every positive integer k.

Barriers to SETH lower bounds

Conjecture 2 is partly prompted by intriguing results due to Li [13]. To state them, we need
to recall the definition of a strengthening of SETH introduced by Carmosino et al. [5]. It
is called NSETH for Nondeterministic SETH. NSETH asserts that for every ε > 0, there
is an integer k such that the k-Taut problem cannot be solved in non-deterministic time
(2 −ε)n, where k-Taut asks, given a k-DNF formula whether every truth assignment satisfies
it (in other words, if it is a tautology). Li shows, for all four variants of Diameter but the
directed weighted one, that no point positioned strictly above the rectilinear black curve
of Figure 1 can be shown SETH-hard, under the NSETH (and, if randomized reductions are
permitted, under a stronger assumption, called NUNSETH for Non-Uniform NSETH).

Conjecture 2 is very optimistic since it predicts that every such point will be explained
by an algorithm. There are many alternatives to that event. For instance NSETH could
be false4, or the intractability region could extend further North via a non SETH-based
reduction, or via a deterministic SETH-based reduction in the directed weighted case. Besides
it would require significant progress in approximating the sparse directed Diameter, when
currently no algorithm running in time n

3
2 −ε achieves approximation factor better than 2.

The second half of Conjecture 2 shown for every k ⩾ 4 on directed graphs [9, 13], and for
k = 1, 2, 3 on undirected graphs, is much easier to believe in.

Techniques

Like every mentioned Diameter lower bound (for more details, see the paragraphs on k-OV
and Diameter in the surveys [18, 16]), we reduce from k-Orthogonal Vectors, where
one seeks, in a given set of N 0, 1-vectors of dimension ℓ, k vectors such that at every index,
at least one of these k vectors has a 0 entry. Under the SETH, k-Orthogonal Vectors
requires time Nk−o(1) [17], even when ℓ is polylogarithmic in N .

Here we will reduce from 4-Orthogonal Vectors. We thus wish to build a graph
on Õ(N3) vertices and edges with diameter 7 if there is an orthogonal quadruple (i.e., a
solution to the 4-Orthogonal Vectors instance), and diameter 4 otherwise. Following a
reduction to ST -Diameter5 by Backurs et al. [2] (arguably also following [15]) most of the
reductions (as in [3, 9, 13]) feature layers L0, L1, . . . , Lk−1, Lk, with only (forward) edges
between two consecutive Li. The vertices within the same layer share the same number of
“vector attributes” and “index attributes”. The interplay between vector and index attributes

4 If we are totally honest, even the weaker SETH does not gather such a wide consensus, and is false if
quantum computation is allowed.

5 where one seeks the length of a longest shortest path from a vertex of S to a vertex of T
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in defining the vertices and edges is made so that if there are no k orthogonal vectors, then
there are paths of “optimal” length k between every pair in L0 × Lk, whereas if there is
set X of k orthogonal vectors, a pair in L0 × Lk jointly encoding X is suddenly very far
apart (usually and ideally at distance 2k − 1).

Then the challenge is to make sure that, on NO-instances, the other pairs (not in L0 ×Lk)
are at distance at most k, without destroying the previous property. The core of our reduction
is similar to our previous construction for directed weighted Diameter [3]. However we
simplify and streamline it in the following way. As in the first construction of Li [12], we
collapse some layers into one. We will have L0 = L4(= T ) and L1 = L3(= C), while L2 is
called P . This makes the case analyses simpler (fewer kinds of pairs to consider).

At this point, we face the same issue as in [3]: There are pairs in T × P that are too
far apart. On directed graphs, this can be fixed by adding parallel layers and appropriate
“back” edges [3, 9] or simply “back” edges [13]. This is no longer an option. Instead we add
a set I of vertices with only index attributes. These vertices link the right pairs of T × P

with path of length 4 (we are back to the first variation on the theme [15]). To emphasize
that the situation is somewhat delicate, we observe that not all the pairs of T × P can be at
distance 4, since otherwise every pair in T × T is at distance at most 6. We set I at distance
3 of T (by initially putting edges of weight 3). This permits to cliquify I without creating
TT -paths of length at most 6. In turn, this puts every pair involving I at distance at most 4,
as well as pairs of (C ∪ P ) × P . Note that as long as d(T, X) + d(T, Y ) ⩾ 3 (or k − 1), one
can have all the pairs of X × Y at distance 4 (or k), without creating undesired TT -paths of
length at most 6 (or 2k − 2).

We then remove the weight-3 edges between T and I. This involves some vertex splits
transforming T into T, T ′, T ′′, and a simpler echo of the idea of having the clique I, with a
clique I ′ connecting appropriately the pairs in T × T ′′.

2 Preliminaries

We use standard graph-theoretic notations. If G is a graph, V (G) denotes its vertex set, and
E(G), its edge set. We denote the edge set between X ⊆ V (G) and Y ⊆ V (G) by E(X, Y ).
If S ⊆ V (G), G[S] denotes the subgraph of G induced by S. Weighted graphs have positive
edge weights. (Throughout the paper, we will only need edges of weight 1 and 3.) We
exclusively deal with undirected graphs (for which the distance function is symmetric). For
u, v ∈ V (G), dG(u, v) denotes the distance between u and v in G, that is, the number of edges
in a shortest path between u and v. For every positive integer r and every vertex u ∈ V (G),
Nr

G[u] denotes the set of vertices v such that dG(u, v) ⩽ r. In unweighted graphs, the closed
neighborhood of u, denoted NG[u], coincides with N1

G[u]. However in a weighted graph
N1

G[u] would for instance not contain the neighbors of u via an edge of weight greater than 1.
This subtlety will arise only once, and we will remind the reader in due time. For every
positive integer r and every vertex S ⊆ V (G), Nr

G[S] denotes the set of vertices v ∈ V (G)
such that dG(u, v) ⩽ r for some u ∈ S. We observe that, in unweighted graphs, Nr

G[S]
coincides with NG[NG[· · · NG[NG[S]] · · · ]] where NG[·] is applied r times and NG[S] is the
closed neighborhood of S. We drop the subscript in the above notations, if the graph G is
clear from the context.

We denote by diam(G) the diameter of G, that is, maxu,v∈V (G) d(u, v). The Diameter
problem asks, given a graph G, for the value of diam(G). We call uv-path, a path going
from vertex u to vertex v, and ST -path (with possibly S = T ), any path going from some
vertex u ∈ S to some vertex v ∈ T .

ICALP 2021
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If ℓ is a positive integer, [ℓ] denotes the set {1, 2, . . . , ℓ}. If v is a vector and i is a positive
integer, then v[i] denotes the i-th coordinate of v. We use maj(a1, . . . , ah) to denote the
value with the largest number of occurrences in the tuple (a1, . . . , ah).

For every fixed positive integer k, the k-Orthogonal Vectors (k-OV for short) problem
is as follows. It asks, given a set S of 0,1-vectors in {0, 1}ℓ, if there are k vectors v1, . . . , vk ∈ S

such that for every i ∈ [ℓ], Πh∈[k]vh[i] = 0, or equivalently, v1[i] = v2[i] = · · · = vk[i] = 1
does not hold. Williams [17] showed that, assuming the SETH, k-OV requires Nk−o(1) time
with N := |S|. Furthermore, using the Sparsification Lemma [10], this lower bound holds
even when, say, ℓ = ⌈log2 N⌉. Here we will leverage this lower bound for k = 4. This is, in
the context of the SETH-hardness of approximating Diameter, a usual opening step: For
example, Roditty and Vassilevska Williams [15] uses this lower bound for k = 2, Li [12], for
k = 3 and general k ⩾ 3, the author [3], for k = 4, Wein and Dalirrooyfard [9], for general
k ⩾ 5 and k = 4.

3 A simpler reduction with edge weights

From any set S of N vectors in {0, 1}ℓ, we build an undirected weighted graph G = ρ(S)
(with edge weights 1 and 3, only) with O(N3 + N2ℓ3 + ℓ5) vertices and O(N3ℓ5 + N2ℓ6 + ℓ10)
edges such that if S admits an orthogonal quadruple then the diameter of G is (at least) 7,
whereas if S has no orthogonal quadruple then the diameter of G is (at most) 4. We recall
that 4-OV requires N4−o(1) time, unless the SETH fails, even when ℓ = ⌈log2 N⌉ [17]. In that
case, the graph G has O(N3) vertices and Õ(N3) edges. Hence any algorithm approximating
sparse undirected weighted Diameter within ratio better than 7/4 in time n4/3−δ, with
δ > 0, would refute the SETH.

3.1 Construction
We first describe the vertex set of G, then its edge set, and finally check that the number of
vertices and edges are as announced.

Vertex set

Every vertex of G is the concatenation of a possibly empty tuple of vectors of S, called
vector tuple, followed by a possibly empty tuple of possibly equal indices of [ℓ], called index
tuple. Each coordinate of the vector tuple is called a vector field, while each coordinate of
the index tuple is called an index field. The set V (G) is partitioned into four sets: T (for
triples), C (for couples), P (for pairs), and I (for indices). The names behind T, C, P reflect
the number and the nature (ordered or unordered) of the vector fields. Each of these sets
comprise vertices with up to three vector fields and five index fields. They are defined in the
following way.

T : for every ordered triple a, b, c ∈ S with a, b, c pairwise distinct, we add vertex (a, b, c)
to T . Thus vertices of T have three vector fields and no index field.
C: for every a ̸= b ∈ S and i, j, k ∈ [ℓ] such that a[i] = a[j] = a[k] = 1 and
maj(b[i], b[j], b[k]) = 1, we add vertex (a, b, i, j, k) to C. Thus vertices of C have two
vector fields and three index fields.
P : for every a, b ∈ S and i, j, k ∈ [ℓ] such that a[i] = a[j] = a[k] = 1 and b[i] = b[j] =
b[k] = 1, we add vertex ({a, b}, i, j, k) to P . We will still see a and b as filling the two
vector fields of the vertex, without a first vector field and a second vector field. Contrary
to vertices of C, ({a, b}, i, j, k) and ({b, a}, i, j, k) are two names for the same vertex
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(whereas (a, b, i, j, k) and (b, a, i, j, k) are two distinct vertices, whose existence implies
slightly different properties). Thus vertices of P also have two vector fields and three
index fields. Note also that {a, b} is a multiset, since a may be equal to b.
I: for every p1, p2, i, j, k ∈ [ℓ], we add vertex (p1, p2, i, j, k) to I. The chosen labels for
the five index fields anticipate that, to build the edge set, it is convenient to imagine
a separation after the first two index fields of the tuple. The vertices of I have no vector
field and five index fields.

Edge set

We will put some edges between T and C, C and P , P and I, and I and T . In addition,
we put index-switching edges within I and within C. An index-switching edge is between
two vertices of the same set (I or C) with the same vector tuple (which is always the case
in I) and distinct index tuples. The only edges with a weight different than 1 are the edges
between I and T , which all have weight 3. Thus, unless specified otherwise, an edge has
weight 1.

The total list of edges is as follows.
We add all the index-switching edges within I and C. Thus G[I] is a clique and G[C]
is a disjoint union of cliques (while G[T ] and G[P ] remain independent sets). More
explicitly, we have an edge between every pair of distinct vertices (p1, p2, i, j, k) ∈ I and
(p′

1, p′
2, i′, j′, k′) ∈ I, and for every a ̸= b ∈ S between every pair of distinct vertices

(a, b, i, j, k) ∈ C and (a, b, i′, j′, k′) ∈ C.
E(T, C): We add an edge between every (a, b, c) ∈ T and (a, b, i, j, k) ∈ C provided that
there is an h ∈ {i, j, k} such that b[h] = c[h] = 1.
E(C, P ): We add an edge between every (a, b, i, j, k) ∈ C and ({c, d}, i, j, k) ∈ P whenever
a ∈ {c, d}.
E(T, I): We add an edge of weight 3 between every (a, b, c) ∈ T and (p1, p2, i, j, k) ∈ I

whenever a[p1] = b[p1] = c[p1] = a[p2] = b[p2] = c[p2] = 1.
E(I, P ): We add an edge between every (p1, p2, i, j, k) ∈ I and ({a, b}, i, j, k) ∈ P

whenever a[p1] = b[p2] = 1 or a[p2] = b[p1] = 1.

This ends the construction. See Figure 2 for an illustration.

Vertex and edge count

There are O(N3) vertices in T , O(N2ℓ3), in C ∪ P , and ℓ5, in I, hence O(N3 + N2ℓ3 + ℓ5) =
O(N3) in total. There are O(N3ℓ3) edges in E(T, C)∪E(C, P ), O(N2ℓ6), in E(C), O(N3ℓ5),
in E(T, I), O(N2ℓ5), in E(I, P ), and O(ℓ10) in E(I), hence O(N3ℓ5 + N2ℓ6 + ℓ10) = Õ(N3)
edges in total. Furthermore G can be built in time Õ(N3).

3.2 The absence of orthogonal quadruple implies diameter at most 4
Assuming that there is no orthogonal quadruple, we show that every pair of vertices of
G is at distance at most 4. For that we repeatedly use that, for every a, b, c, d ∈ S,
ind(a, b, c, d) := min{i ∈ [ℓ] | a[i] = b[i] = c[i] = d[i] = 1} is a well-defined index in [ℓ]. We
only take the minimum index to have a deterministic notation, but there is nothing particular
with it, and any index of the non-empty {i ∈ [ℓ] | a[i] = b[i] = c[i] = d[i] = 1} would work all
the same.

We first observe that every vertex is at distance at most 3 from I.

▶ Lemma 3. N1[I] ⊇ I ∪ P , N2[I] ⊇ I ∪ P ∪ C, and N3[I] = V (G).

ICALP 2021
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(a, b, c)

(a, b, i, j, k)
(a, b, i′, j′, k′)

({d, e}, i, j, k)

(p1, p2, i, j, k)

(p′
1, p′

2, i′, j′, k′)

a[i] = a[j] = a[k] = 1

maj(b[i], b[j], b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},

c[h] = b[h] = 1

a ∈ {d, e}

a[p1] = b[p1] = c[p1] =

a[p2] = b[p2] = c[p2] = 1

3

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

T

C

P

I

(3, 0)

(2, 3)

(2, 3)

(0, 5)

Figure 2 The weighted construction G. In bold, the conditions for the existence of a vertex or of
an edge. The edge in blue, and more generally every edge of E(T, I), has weight 3, while all other
edges have weight 1. The pairs in red recall, for vertices of the corresponding set, the length of their
vector tuple followed by the length of their index tuple.

Proof. The first and second inclusions are actually equalities but we will not need those
facts. N1[I] ⊇ I ∪ P since every ({a, b}, i, j, k) ∈ P is adjacent (with an edge of weight 1) to
(i, i, i, j, k) ∈ I. Then, N2[I] ⊇ N1[I ∪ P ] ⊇ I ∪ P ∪ C since every (a, b, i, j, k) ∈ C is adjacent
to ({a, a}, i, j, k) ∈ P . Finally, N3[I] ⊇ N1[I ∪ P ∪ C] = V (G) since every (a, b, c) ∈ T is
adjacent to (a, b, i, i, i) ∈ C for some i ∈ [ℓ], for otherwise a, b, c is an orthogonal triple. ◀

We now exhibit paths of length at most 4 between every pair of vertices of G. For the case
disjunction, initially imagine the K4 with loops on vertices T, C, P, I , where edges correspond
to kinds of pairs that are left to check. The following paragraphs remove all its edges in the
order: all edges incident to I, all remaining edges incident to P but TP , all remaining edges
incident to C, the loop on T , and finally the edge TP .

Between u ∈ I and v ∈ V (G)

As G[I] is a clique and, by Lemma 3, N3[I] = V (G), every vertex u ∈ I is at distance at
most 4 from every vertex v ∈ V (G).

Between u ∈ P and v ∈ P ∪ C

For every u ∈ P , N2[u] ⊃ I and so N4[u] ⊃ P ∪ C, by Lemma 3. In particular there is a
path of length at most 4 between u and any vertex v ∈ P ∪ C.

Between u ∈ C and v ∈ T ∪ C

Let (a, b) be the two vector fields of u ∈ C, (c, d) be the first two vector fields of v ∈ T ∪C, and
e be the third vector field of v if v ∈ T . Let i = ind(a, b, c, d), j = ind(a, c, d, e) if v ∈ T , and
j = i if v ∈ C. We observe that (a, b, i, i, j), ({a, c}, i, i, j), (c, d, i, i, j) are (existing) vertices
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of C, P , and C, respectively, and that u − (a, b, i, i, j) − ({a, c}, i, i, j) − (c, d, i, i, j) is a path
of length 3 in G. The existence of these vertices is implied by a[i] = b[i] = c[i] = d[i] = 1,
a[j] = c[j] = d[j] = 1. The first edge of the path is an index-switching edge within C. The
existence of the other edges is implied by a ∈ {a, c}, c ∈ {a, c}, and the fact that the index
tuple (i, i, j) does not change.

Finally if v ∈ C, then the index-switching edge (c, d, i, i, j) − v completes the uv-path of
length 4. If instead v ∈ T , then the edge (c, d, i, i, j) − (c, d, e) = v completes the uv-path of
length 4. This edge exists since d[j] = e[j] = 1.

Between u ∈ T and v ∈ T

Let u = (a, b, c), v = (d, e, f) ∈ T , i = ind(a, b, c, d), j = ind(a, b, d, e) and k = ind(a, d, e, f).
Then u = (a, b, c) − (a, b, i, j, k) − ({a, d}, i, j, k) − (d, e, i, j, k) − (d, e, f) = v is a path of
length 4 in G. These vertices exist since a and d have value 1 on indices i, j, k, b, on indices
i, j, and e, on indices j, k. The first edge exists since b[i] = c[i] = 1, the next two edges exist
for similar reasons as invoked in the previous paragraph, and the fourth edge exists since
e[k] = f [k] = 1.

Between u ∈ T and v ∈ P

Let u = (a, b, c) ∈ T and v = ({d, e}, i, j, k) ∈ P . We set p1 = ind(a, b, c, d), p2 =
ind(a, b, c, e), and exhibit a uv-path of length 4 via I. Indeed u = (a, b, c) − (p1, p2, i, j, k) −
({d, e}, i, j, k) = v is a path of length 4 in G (recall that the first edge of the path has
weight 3). Edge (a, b, c) − (p1, p2, i, j, k) ∈ E(T, I) exists since a[p1] = b[p1] = c[p1] = a[p2] =
b[p2] = c[p2] = 1. Edge (p1, p2, i, j, k) − ({d, e}, i, j, k) ∈ E(I, P ) exists since d[p1] = e[p2] = 1
and the three last indices (i, j, k) remain unchanged.

3.3 The presence of orthogonal quadruple implies diameter at least 7

Let a, b, c, d ∈ S be an orthogonal quadruple, that is, such that there is no index i ∈ [ℓ]
satisfying a[i] = b[i] = c[i] = d[i] = 1. We may further assume that a, b, c, d are all distinct
since checking for an orthogonal triple can be done in time Õ(N3). We will now show that
there is no path P of length at most 6 between u = (a, b, c) ∈ T and v = (d, c, b) ∈ T .

Since the distance between every pair of vertices in T × I is at least 3, a TT -path of
length at most 6 cannot contain an edge of the clique G[I], nor more generally intersects I

at least twice. We thus distinguish two cases: (case A) P visits I exactly once, and (case B)
P remains within T ∪ C ∪ P . Before proving that no uv-path P of length at most 6 visits I,
thereby ruling out case A, we state a couple of useful observations.

▶ Observation 4. There is at most one path of length 2 between ({d, e}, i, j, k) ∈ P and
(a, b, c) ∈ T , namely ({d, e}, i, j, k) − (a, b, i, j, k) − (a, b, c), which in particular implies that
a ∈ {d, e}.

More basically, the only neighbors of (a, b, c) ∈ T (at distance 1, so not in I) are of the
form (a, b, i, j, k) ∈ C. We can generalize this observation to paths contained in T ∪ C.

▶ Observation 5. For every path within G[T ∪ C], all the vertices of the path have the same
first two vector fields.
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Case A: P visiting I

As P cannot visit I twice, if it visits I then it has length exactly 6 and is one of the following
kinds: (case 1) T − I − T , (case 2) T − C − P − I − P − C − T , or (case 3) T − I − P − C − T

(recall that the edges in E(I, T ) have weight 3). An important feature of such paths is that
no index-switching edge can be used, thus the three last index fields (when they exist) have
to remain the same.
Case 1. A path (a, b, c) − (p1, p2, i, j, k) − (d, c, b) would in particular imply that a[p1] =

b[p1] = c[p1] = d[p1] = 1, contradicting the orthogonality of a, b, c, d.
Case 2. By Observation 4 applied to both ends of the path, P is of the form (a, b, c) −

(a, b, i, j, k) − ({a, e}, i, j, k) − (p1, p2, i, j, k) − ({d, f}, i, j, k) − (d, c, i, j, k) − (d, c, b) with
some e, f ∈ S. The existence of the vertices (a, b, i, j, k), (d, c, i, j, k) ∈ C implies that
a[i] = a[j] = a[k] = d[i] = d[j] = d[k] = 1, and that b and c have value 1 on at least two
indices (with multiplicity) of multiset {i, j, k}. In particular, there is an h ∈ {i, j, k} such
that a[h] = b[h] = c[h] = d[h] = 1, a contradiction to a, b, c, d being orthogonal.

Case 3. By Observation 4 applied to the second half of the path, P has then the form
(a, b, c) − (p1, p2, i, j, k) − ({d, e}, i, j, k) − (d, c, i, j, k) − (d, c, b). The first three vertices
yield a contradiction. Indeed, the existence of edge (p1, p2, i, j, k) − ({d, e}, i, j, k) implies
that d[pz] = 1 for some z ∈ {1, 2}, while the existence of (a, b, c) − (p1, p2, i, j, k) implies
that a[pz] = b[pz] = c[pz] = 1.

Case B: paths P within T ∪ C ∪ P

We now consider paths P in G[T ∪ C ∪ P ]. Since a ̸= d, P has to visit P , since otherwise
the first vector field cannot change, by Observation 5. We then observe that no shortest
uv-path visits T a third time (one more time than the two endpoints u and v). A TT -path
visiting T a third time would contain a segment C − T − C that can be shortcut into C − C.
Indeed, (a, b, i, j, k) − (a, b, c) − (a, b, i′, j′, k′) has a chord (a, b, i, j, k) − (a, b, i′, j′, k′) which
is an index-switching edge of C.

We further distinguish two cases: (case 1) P does not contain any index-switching edge,
or (case 2) P contains at least one index-switching edge.

Case 1. In that case, P is of the form T − C − P − C − T or T − C − P − C − P − C − T .
Either way, we consider the unique neighbors of u and v in P. These neighbors have to
be (a, b, i, j, k) ∈ C and (d, c, i, j, k) ∈ C for some i, j, k ∈ [ℓ]. Indeed no index-switching
edge nor return to T is allowed here. Thus we conclude as in case A.2.

Case 2. We now assume that P contains at least one index-switching edge (of C). In
that case, as P has length at most 6, it can visit P only once. Hence P is of the kind
T −C −C −P −C −C −T , where one of the two edges C −C is optional. We consider the
last vertex u′ ∈ C before visiting P , and the first vertex v′ ∈ C after visiting P . There is,
by design, no index-switching edge between u′ and v′ on path P . Thus by Observation 5,
there are i, j, k ∈ [ℓ] such that u′ = (a, b, i, j, k) and v′ = (d, c, i, j, k). We then conclude
as in case A.2.

4 Removing the weights

So far we showed the announced lower bound for sparse undirected weighted Diameter.
We show how to tune the previous construction to get the same lower bound for sparse
undirected unweighted Diameter. The weighted graph G had only non-trivial edge weights
in E(T, I). We now describe how to replace these weighted edges, to get an unweighted
graph G′ = ρ′(S).
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4.1 Unweighted construction
We start with a short summary of the changes. We will replace T by three copies T, T ′, T ′′

with an induced perfect matching between T and T ′, and between T ′ and T ′′. We link T ′′

to I as we linked T to I, and T and C, and T ′ and C, as we linked T and C. We finally add
a set I ′ of vertices with empty vector tuple (like I) that we link to T ′′ and I only.

Addition to the vertex set

We add three sets to V (G) to get V (G′): two identical copies of T , denoted by T ′ and T ′′,
and a set I ′ isomorphic to [ℓ]. More precisely, for every i ∈ [ℓ], we add vertex (i) to I ′.
Thus I ′ has no vector field and a unique index field. We use a subscript to distinguish the
homologous vertices in T, T ′, T ′′. Vertices (a, b, c)T ∈ T, (a, b, c)T ′ ∈ T ′, (a, b, c)T ′′ ∈ T ′′ are
the three vertices of G′ corresponding to the same vertex (a, b, c) of G.

Edition of the edge set

We first remove the edges of G with weight 3 (between T and I). For every {a, b, c} ∈
(

S
3
)
, we

add the edges (a, b, c)T − (a, b, c)T ′ and (a, b, c)T ′ − (a, b, c)T ′′ . We also add edges between T ′

and C, the same way we have defined edges between T and C. That is, (a, b, c)T ′ −(a, b, i, j, k)
is an edge if and only if (a, b, c)T − (a, b, i, j, k) is an edge. Let us recall that the existence of
this edge (and of its endpoint in C) implies that a, b, c have value 1 on indices {i, j, k}, three
times, at least twice, and at least once, respectively, and that there is an h ∈ {i, j, k} such
that a[h] = b[h] = c[h].

We add edges (of weight 1) between T ′′ and I, the same way we defined the weight-3
edges of G between T and I. Thus there is an edge (a, b, c)T ′′ − (p1, p2, i, j, k) whenever
a[p1] = b[p1] = c[p1] = a[p2] = b[p2] = c[p2] = 1. We further add an edge between (i) ∈ I ′

and (a, b, c)T ′′ whenever a[i] = b[i] = 1. Finally we add all the index-switching edges in I ′,
and we make I and I ′ fully adjacent, that is, we turn G′[I ′ ∪ I] into a clique.

This finishes the edition to the unweighted construction. See Figure 3 for an illustration.

New vertex and edge count

We added to V (G) O(N3) vertices in T ′ ∪ T ′′, and ℓ, in I ′. Thus G′ has also O(|V (G)|) =
O(N3 + N2ℓ3 + ℓ5) = O(N3) vertices. We added to E(G) O(N3 + N3ℓ3) edges incident
to T ′, and O(N3ℓ + ℓ6 + ℓ2) edges incident to I ′. (The edges between T ′′ and I were already
counted in G between T and I.) Thus G′ has O(|E(G)|) = O(N3ℓ5 + N2ℓ6 + ℓ10) = Õ(N3)
edges. Again G′ can be computed in time Õ(N3).

4.2 The absence of orthogonal quadruple implies diameter at most 4
In case S has no orthogonal quadruple, we use similar arguments as in G to find paths of
length at most 4 between every pair of vertices in G′. We first show that I ′ is at distance at
most 3 of every vertex of G′.

▶ Lemma 6. N [I ′] ⊇ I ′ ∪ I ∪ T ′′, N2[I ′] ⊇ I ′ ∪ I ∪ T ′′ ∪ P ∪ T ′, and N3[I ′] = V (G′).

Proof. The inclusions are actually equalities. N [I ′] ⊇ I ′ ∪I ∪T ′′ since I is fully adjacent to I ′

and every (a, b, c)T ′′ ∈ T ′′ is adjacent to some (i) ∈ I ′, for otherwise a, b is an orthogonal
pair. N2[I ′] ⊇ N [I ′ ∪ I ∪ T ′′] ⊇ I ′ ∪ I ∪ T ′′ ∪ P ∪ T ′ since every ({a, b}, i, j, k) ∈ P is
adjacent to (i, i, i, j, k) ∈ I and every (a, b, c)T ′ ∈ T ′ is adjacent to (a, b, c)T ′′ ∈ T ′′. Finally,
N3[I ′] ⊇ N [I ′ ∪ I ∪ T ′′ ∪ P ∪ T ′] = V (G′) since every (a, b, i, j, k) ∈ C is adjacent to
({a, a}, i, j, k) ∈ P and every (a, b, c)T ∈ T is adjacent to (a, b, c)T ′ ∈ T ′. ◀
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(a, b, c)T(a, b, c)T ′(a, b, c)T ′′

(i)(i′)

(a, b, i, j, k)
(a, b, i′, j′, k′)

({d, e}, i, j, k)

(p1, p2, i, j, k)

(p′
1, p′

2, i′, j′, k′)

a[i] = a[j] = a[k] = 1

maj(b[i], b[j], b[k]) = 1

d[i] = d[j] = d[k] = e[i] = e[j] = e[k] = 1

∃h ∈ {i, j, k},

c[h] = b[h] = 1

a ∈ {d, e}

a[p1] = b[p1] = c[p1] =

a[p2] = b[p2] = c[p2] = 1

a[i] = b[i] = 1

d[p1] = e[p2] = 1
or

d[p2] = e[p1] = 1

TT ′T ′′
I ′

C

P

I

(3, 0)(3, 0)(3, 0)
(0, 1)

(2, 3)

(2, 3)

(0, 5)

Figure 3 The unweighted construction G′. In bold, the conditions for the existence of a vertex
or of an edge. The pairs in red recall, for vertices of the corresponding set, the length of their vector
tuple followed by the length of their index tuple.

We also show the following inclusions.

▶ Lemma 7. N [I] ⊃ P ∪ T ′′, and N2[I] ⊃ P ∪ C ∪ T ′′ ∪ T ′.

Proof. N [I] ⊃ P , N2[I] ⊃ C, and N [T ′′] ⊃ T ′ have all been shown in Lemma 6. Therefore
we shall just prove that N [I] ⊃ T ′′. Indeed every vertex (a, b, c)T ′′ ∈ T ′′ is adjacent to some
(i, i, i, i, i) ∈ I, since otherwise a, b, c is an orthogonal triple. ◀

For the case disjunction, initially imagine the K7 with loops on vertices T, T ′, T ′′, C, P, I, I ′,
where edges correspond to the kinds of pairs that are left to check. The following paragraphs
remove all its edges in the order: all edges incident to I and to I ′, all remaining edges incident
to P and to T ′′ but TP and TT ′′, all remaining edges incident to C, all remaining edges
incident to T ′ as well the loop on T , the edge TP , and finally the edge TT ′′.

Between u ∈ I ∪ I′ and v ∈ V (G′)

As G′[I ∪ I ′] is a clique and, by Lemma 6, N3[I ′] = V (G′), then N4[u] = V (G′) holds for
every vertex u ∈ I ∪ I ′.

Between u ∈ P ∪ T ′′ and v ∈ P ∪ C ∪ T ′′ ∪ T ′

For every u ∈ P ∪ T ′′, by Lemma 7 and the fact that G′[I] is a clique, N2[u] ⊃ I and, again
by Lemma 7, N4[u] ⊃ P ∪ C ∪ T ′′ ∪ T ′. In particular there is a path of length at most 4
from u to any vertex v ∈ P ∪ C ∪ T ′′ ∪ T ′.

The following two cases work as in G, since (a, b, c)T and (a, b, c)T ′ are twins in G′[T ∪
T ′ ∪ C ∪ P ].
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Between u ∈ C and v ∈ T ∪ T ′ ∪ C

This holds by replacing the occurrence of (c, d, e) by (c, d, e)T or (c, d, e)T ′ , and every
occurrence of T by T ∪ T ′, in the paragraph Between u ∈ C and v ∈ T ∪ C of the weighted
construction.

Between u ∈ T ∪ T ′ and v ∈ T ∪ T ′

Again this holds by replacing occurrences of (a, b, c) (resp. (c, d, e)) by (a, b, c)T or (a, b, c)T ′

(resp. (c, d, e)T or (c, d, e)T ′).

Between u ∈ T and v ∈ P

This works as in G by following three edges of weight 1 from T to I, instead of a single
edge of weight 3. For every u = (a, b, c)T ∈ T and v = ({d, e}, i, j, k) ∈ P , there is a
path u = (a, b, c)T − (a, b, c)T ′ − (a, b, c)T ′′ − (p1, p2, i, j, k) − ({d, e}, i, j, k) = v in G′, with
p1 = ind(a, b, c, d) and p2 = ind(a, b, c, e).

Between u ∈ T and v ∈ T ′′

This case is the real novelty compared to G, and the reason for introducing I ′. For every
u = (a, b, c)T ∈ T and v = (d, e, f)T ′′ ∈ T ′′, there is a path u = (a, b, c)T − (a, b, c)T ′ −
(a, b, c)T ′′ − (i) − (d, e, f)T ′′ = v in G′, with i = ind(a, b, d, e). The last two edges exist since
a[i] = b[i] = d[i] = e[i] = 1.

4.3 The presence of orthogonal quadruple implies diameter at least 7
Again we assume that there is an orthogonal quadruple a, b, c, d ∈ S such that a, b, c, d

are pairwise distinct. We claim that there is no path of length at most 6 in G′ between
u = (a, b, c)T and v = (d, c, b)T . Since the distance between T and I ∪ I ′ is at least 3, any
TT -path of length at most 6 visits I ∪ I ′ at most once. For the sake of contradiction, let P
be such a path that we further assume shortest (hence in particular chordless) and, among
shortest uv-paths, having the fewest edges in E(T ′, C). We will show that P cannot visit I ′,
nor use any edge of E(T ′, C). Finally we observe that TT -paths of length at most 6 in G′

respecting these two interdictions are in length-preserving one-to-one correspondence with
TT -paths in G.

P cannot visit I′

The only possible kind of a TT -path of length at most 6 visiting I ′ is T − T ′ − T ′′ − I ′ − T ′′ −
T ′ − T . This forces P to be of the form (a, b, c)T − (a, b, c)T ′ − (a, b, c)T ′′ − (i) − (d, c, b)T ′′ −
(d, c, b)T ′ − (d, c, b)T for some i ∈ [ℓ]. However the third and fourth edges imply that there
is an i ∈ [ℓ] such that a[i] = b[i] = c[i] = d[i] = 1, a contradiction to the orthogonality of
a, b, c, d.

P cannot use any edge of E(T ′, C)

Assuming that P contains at least one edge in E(T ′, C), we first show that it has to contain
a subpath C − T ′ − T ′′ − I ∪ I ′ or I ∪ I ′ − T ′′ − T ′ − C. Let w = (a′, b′, c′)T ′ ∈ T ′ ∩ V (P)
be a vertex of P with one neighbor x ∈ C ∩ V (P) on P. The other neighbor y of w on P
is necessarily in T ′′. Indeed if y ∈ T , then y = (a′, b′, c′)T , and xy ∈ E(G′) is a chord. If
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instead y ∈ C, then one can replace the subpath x − (a′, b′, c′)T ′ − y by x − (a′, b′, c′)T − y,
contradicting the minimality of the number of used edges in E(T ′, C) (since this number
decreases by 2).

Thus the only possibility is that y ∈ T ′′. Then the other neighbor of y on P (other
than w) has to be in I ∪ I ′, since otherwise P is not a simple path. Hence P contains a
subpath of the kind C − T ′ − T ′′ − I ∪ I ′ (or the reverse, I ∪ I ′ − T ′′ − T ′ − C). Now we
observe that C is at distance at least 1 from T , while I ∪ I ′ is at distance at least 3 from T .
Therefore such a path P would have length at least 7.

Such a path P would also exist in G

We can now assume that P does not use any vertex of I ′ nor any edge of E(T ′, C). Every such
simple TT -path (visiting I at most once) also exists in the weighted graph G, with the same
length. To see it, we notice that if P contains an edge (a′, b′, c′)T − (a′, b′, c′)T ′ , then it has
to contain a subpath of the form (a′, b′, c′)T − (a′, b′, c′)T ′ − (a′, b′, c′)T ′′ − (p1, p2, i, j, k) ∈ I,
and is emulated in G by taking the weight-3 edge (a′, b′, c′) − (p1, p2, i, j, k). However we
showed in the previous section that no uv-path of length at most 6 exists in G.
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Abstract
We recently introduced the notion of twin-width, a novel graph invariant, and showed that first-order
model checking can be solved in time f(d, k)n for n-vertex graphs given with a witness that the
twin-width is at most d, called d-contraction sequence or d-sequence, and formulas of size k [Bonnet
et al., FOCS ’20]. The inevitable price to pay for such a general result is that f is a tower of
exponentials of height roughly k. In this paper, we show that algorithms based on twin-width need
not be impractical. We present 2O(k)n-time algorithms for k-Independent Set, r-Scattered
Set, k-Clique, and k-Dominating Set when an O(1)-sequence of the graph is given in input. We
further show how to solve the weighted version of k-Independent Set, Subgraph Isomorphism,
and Induced Subgraph Isomorphism, in the slightly worse running time 2O(k log k)n. Up to
logarithmic factors in the exponent, all these running times are optimal, unless the Exponential
Time Hypothesis fails. Like our FO model checking algorithm, these new algorithms are based on a
dynamic programming scheme following the sequence of contractions forward.

We then show a second algorithmic use of the contraction sequence, by starting at its end and
rewinding it. As an example of such a reverse scheme, we present a polynomial-time algorithm that
properly colors the vertices of a graph with relatively few colors, thereby establishing that bounded
twin-width classes are χ-bounded. This significantly extends the χ-boundedness of bounded rank-
width classes, and does so with a very concise proof. It readily yields a constant approximation for
Max Independent Set on Kt-free graphs of bounded twin-width, and a 2O(OPT)-approximation for
Min Coloring on bounded twin-width graphs. We further observe that a constant approximation
for Max Independent Set on bounded twin-width graphs (but arbitrarily large clique number)
would actually imply a PTAS.

The third algorithmic use of twin-width builds on the second one. Playing the contraction
sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear
number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed
vertex ordering. This property is trivially shared with graphs of bounded average degree. Given that
biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and
hence All-Pairs Shortest Paths in time O(n log n) and time O(n2 log n), respectively. In sharp
contrast, even Diameter does not admit a truly subquadratic algorithm on bounded twin-width
graphs, unless the Strong Exponential Time Hypothesis fails.

The fourth algorithmic use of twin-width builds on the so-called versatile tree of contractions
[Bonnet et al., SODA ’21], a branching and more robust witness of low twin-width. We present
constant-approximation algorithms for Min Dominating Set and related problems, on bounded
twin-width graphs, by showing that the integrality gap is constant. This is done by going down the
versatile tree and stopping accordingly to a problem-dependent criterion. At the reached node, a
greedy approach yields the desired approximation.
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1 Introduction

As the title suggests, this is the third paper of a series [4, 3] devoted to a new graph invariant
called twin-width. All the results presented in this paper are self-contained as the relevant
background is given in Section 2. In the same section, the reader can find the definitions of
contraction sequences and twin-width. For now, we are content with some intuition on these
notions. This will be enough to sketch the ideas and techniques leading to our results, while
sparing this introduction from too much formalism.

The twin-width of a graph is a non-negative integer measuring its distance to being a
cograph. Among the several characterizations of cographs, a possible definition goes as
follows. A graph is a cograph if one can find therein two twins,1 identify them, and iterate
this process until there is only one vertex left. This corresponds to what we define as a
0-sequence in Section 2, witnessing that cographs have twin-width 0. Conversely it is also
true that graphs with twin-width 0 are cographs. We generalize this identification process by
allowing a controlled error on the contracted pairs of vertices. An error graph or red graph
keeps the faulty adjacencies appearing between a contracted pair and the vertices that are
neighbor of only one vertex of the pair. A d-sequence is an indentification or contraction
sequence such that the maximum degree of the error graph never exceeds d. The existence
of such a sequence entails that the initial graph has twin-width at most d.

As it turns out, many graph classes have bounded twin-width: planar graphs and more
generally proper minor-closed classes, bounded rank-width or clique-width graphs, proper
hereditary subclasses of permutation graphs, unit interval graphs, and some particular class
of cubic expanders, to name only a few.2 Considering the wide variety of these classes, it
might seem that our cograph generalization has gone too far to allow for a unified algorithmic
treatment of bounded twin-width graphs. The first paper of the series [4] and the current
one show that this is not the case. Graphs of bounded twin-width admit algorithms whose
running times are provably unattainable in general graphs. We will now detail that point.

After defining any graph parameter κ, a natural question is whether some computationally
hard problems can be solved more efficiently on graphs where κ is bounded. When this
turns out to be the case for several problems, it may sometimes lead to a powerful meta-
theorem. A standard way of capturing a large set of problems within the same framework is
through the use of logic formulas over graphs, or more generally over relational structures.
In the language of parameterized algorithms, one may ask for the existence of a Fixed-
Parameter Tractable (FPT) algorithm parameterized by κ and the size of the graph formula
φ to be tested: More precisely, an algorithm deciding in time f(|φ|, κ(G))nO(1), or better

1 i.e., two vertices with the same neighborhood beside them
2 A more exhaustive list is given in Theorem 7.
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f(|φ|, κ(G))n, whether an n-vertex graph G satisfies φ, where f is some computable function.
Certainly the most famous result of that kind is the celebrated Courcelle’s theorem, where
the parameter κ is tree-width, and the formula φ ranges over Monadic Second Order logic
(MSO2) formulas [5]. On a slightly less general logic (namely MSO1, where quantification over
edge sets is disallowed), the result holds for the smaller parameter clique-width [6]. It implies,
for instance, that deciding whether a graph on n vertices contains a subset of k pairwise
non-adjacent vertices (i.e., solving k-Independent Set) can be done in linear time on
graphs of constant clique-width, while in general graphs it cannot be solved in polynomial
time unless P=NP, nor in time f(k)nO(1) unless FPT=W[1]. Such a result is unlikely for
twin-width as k-Independent Set remains NP-hard in planar graphs, which have constant
twin-width. Nevertheless, when parameterized by the solution size k, an FPT algorithm is
known in planar graphs, and more generally in any proper minor-closed graph class. Actually,
on the latter class, every problem expressible by a first-order (FO) formula φ can be solved
in FPT time parameterized by |φ| [9]. In the first paper of our series [4], we extended this
result and obtained the following meta-theorem for twin-width.

▶ Theorem 1 ([4]). Given an n-vertex graph G, a d-sequence of G, and a first-order
formula φ, one can decide G |= φ in time f(|φ|, d)n for some computable function f .

The main drawback of this kind of algorithm is the obtained running time: The function
f is a tower of exponentials whose height depends on the size of the formula. This is an
unavoidable price to pay to solve at once all graph problems expressible in first-order logic.
Indeed, it is known that testing first-order formulas on trees requires a running time whose
dependence in the size of the formula is a non-elementary function, unless P = NP [10].
Furthermore the running time of our FO model checking algorithm does not get better on
“seemingly simpler” formulas, such as for instance, with few quantifier alternations.

Our results

We show that twin-width and its associated contraction sequence can also give rise to
practical algorithms for some individual classic graph problems. In particular, we consider
the following NP-complete problems, given a graph G and an integer k, decide if:

k-Independent Set: there are k pairwise non-adjacent vertices.
k-Clique: there are k pairwise adjacent vertices.
(k, r)-Scattered Set: there are k vertices pairwise at distance at least r.
k-Dominating Set: there is a set S of k vertices such that for every vertex v of G,
either v ∈ S or v has a neighbor in S.
(k, r)-Dominating Set: there is a set S of k vertices such that every vertex of G is at
distance at most r of some vertex in S.

These problems, parameterized by k, are W[1]-hard (the last two are even W[2]-complete),
thus unlikely to admit an FPT algorithm, i.e., one with running time f(k)nO(1), on general
graphs. We obtain single-exponential parameterized algorithms for all these problems when
a contraction sequence witnessing “twin-width at most d” is given. When considering the
unparameterized optimization variant, we denote these five problems by Max Independent
Set (and MIS for short), Max Clique, Distance-(r − 1) MIS, Min Dominating Set,
and Min r-Dominating Set, respectively.

▶ Theorem 2. Given an n-vertex graph G and a d-sequence G = Gn, . . . , G1 = K1, the
above-mentioned five problems can be solved in time 2Od(k)n.
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We then consider some W[1]-complete generalizations of k-Independent Set or of
k-Clique. Namely:

Weighted Max Independent Set: given a graph G with a weight function on vertices
w : V (G)→ R and an integer k, decide whether there exists a set S of size exactly k of
pairwise non-adjacent vertices such that

∑
v∈S w(v) is maximum.

Induced Subgraph Isomorphism: given a graph H on k vertices and a graph G, decide
whether there exists a set S ⊆ V (G) such that G[S], the subgraph of G induced by S, is
isomorphic to H.
Subgraph Isomorphism: given a graph H on k vertices and a graph G, decide whether
there exists a set S ⊆ V (G) such that H is isomorphic to a subgraph of G[S].

Unlike the other two problems, Subgraph Isomorphism is not a generalization of
k-Independent Set. Though it does generalize k-Clique. Once the formal definition
of a contraction sequence is given, it will be clear that a d-sequence for G readily yields a
d-sequence for its complement, G. Thus in the context of bounded twin-width graphs, an
algorithm solving Subgraph Isomorphism can be used to solve k-Independent Set. For
these three problems, we now get slightly superexponential parameterized algorithms.

▶ Theorem 3. Given an n-vertex graph G and a d-sequence G = Gn, . . . , G1 = K1, the
above-mentioned three problems can be solved in time 2Od(k log k)n.

The algorithms behind Theorems 2 and 3 follow the same general plan. Let us consider
the n successive red graphs Rn, . . . , R1 (error graphs) obtained after each vertex contraction.3
Rn is the edgeless n-vertex graph (since there are initially no errors) and R1 is the 1-vertex
graph. We maintain optimum partial solutions populating connected subgraphs of bounded
size in each Ri. Initially in Rn, the connected subgraphs are only made of single vertices
(there are no edges). So the optimum partial solutions are trivial to compute. The partial
solutions for Ri are built from the partial solutions of Ri+1 in the following way. Every
partial solution not involving the newly contracted vertex is simply kept. Every partial
solution involving the newly contracted vertex is computed by merging a bounded number of
previous partial solutions on pairwise disconnected sets. The key is that, by design, there is
no error between the latter partial solutions. Thus the presence or absence of edges can be
decided regardless of the forgotten choices of precise vertices within the solution. Eventually
a (partial) solution is computed in R1, which constitutes an actual solution in the entire
initial graph G. In a nutshell, the algorithms may be summarized as dynamic programming
over connected sets of the red graphs.

For k-Independent Set there is not much more to it than the previous sketch. For
(Induced) Subgraph Isomorphism the algorithms become more technical. Also conceptu-
ally, partial solutions are no longer necessarily feasible. For k-Dominating Set some new
challenges appear. The partial solutions and their actual specification are not straightforward
to define, as it is for k-Independent Set.

One may wonder if subexponential parameterized algorithms are possible for any of
the eight problems considered so far. We will observe that even k-Independent Set
cannot be solved in time 2o(k/ log k)nO(1) on graphs given with an O(1)-sequence, unless the
Exponential Time Hypothesis fails. With a similar argument, the same lower bound applies
to k-Dominating Set. Thus, up to logarithmic factors in the exponent, the running times
of Theorems 2 and 3 are optimal. Actually we will see that even algorithms running in time
2o(n/ log n) are unlikely.

3 A reader who would want precise definitions at this point is welcome to read first the couple of paragraphs
of Section 2.1.
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All the previous algorithms exploit the contraction sequence forward. They follow the
identification process from the initial graph G to the 1-vertex graph. What if we would
start at the end, and maintain solutions as the vertices are iteratively split until the initial
graph G is formed? We exemplify the idea of using the contraction sequence backward with
an essentially greedy coloring procedure that is not optimal but still uses relatively few colors.

Let us be more specific. A proper k-coloring of a graph G is a mapping c : V (G) →
{1, . . . , k} such that c(u) ̸= c(v) whenever uv ∈ E(G). The chromatic number, denoted
by χ(G), is the smallest integer k such that G admits a proper k-coloring. It can be seen
that χ(G) ⩾ ω(G), where ω(G) denotes the size of a largest clique in G, whereas many
constructions of triangle-free (that is, with ω(G) ⩽ 2) graphs G with arbitrarily large χ(G)
are known. A class of graphs C is χ-bounded if there is a function f such that for any graph
G ∈ C, we have χ(G) ⩽ f(ω(G)). Our coloring algorithm (d + 2)-colors any triangle-free
graph of twin-width at most d, and more generally (d + 2)ω(G)−1-colors any graph G given
with a d-sequence. In particular, it shows the following.

▶ Theorem 4. Every graph class with bounded twin-width is χ-bounded.

Algorithmically this has some direct consequences for approximating the chromatic
number, as well as, in the subcase of Kt-free graphs, the independence number.

The same idea of considering the contraction sequence backward is then used to show
that every graph given with an O(1)-sequence admits an edge partition into O(n) bicliques,
each side of which is on consecutive vertices, for a fixed vertex ordering. We use this edge
partition to tackle the unweighted version of some classic polynomial-time solvable problems:

Single-Source Shortest Paths: given a graph G and a source s, find a shortest-path
tree rooted at s, spanning the connected component of s.
All-Pairs Shortest Paths: given a graph G, find the distances in G between every
pair of vertices.
Diameter: given a graph G, report the largest distance in G between two vertices.

We show how breadth-first search (BFS) can be mimicked, when replacing “traversing an
edge” by “traversing a biclique all at once”. A subtlety of the algorithm, beside the necessary
data structures to get Single-Source Shortest Paths sublinear in the total number of
edges, lies in the fact that bicliques, contrary to single edges, can be traversed twice (once in
both directions) before being discarded.

▶ Theorem 5. If the input graph comes with an O(1)-sequence, Single-Source Shortest
Paths can be solved in O(n log n) time, thus All-Pairs Shortest Paths and Diameter
can be solved in O(n2 log n) time. In contrast, Diameter cannot be solved in O(n2−ε) for
any ε > 0, even in that scenario, unless the Strong Exponential Time Hypothesis fails.

Our algorithm inherently relies on unweighted edges. Nonetheless vertex-weights can be
supported with the same running time.

Min Dominating Set is known to be as approximable as the Set Cover problem.
Thus, by classic papers by Johnson [14] and by Lovász [15], it admits a ln n-approximation
and the integrality gap (i.e., the ratio between the optimum of the original problem and the
optimum of the LP relaxation) of its standard LP formulation is also ln n. In sharp contrast,
unless P=NP, Min Dominating Set cannot be approximated in polynomial-time within
factor (1− o(1)) ln n on n-vertex general graphs [7].

We show that, on bounded twin-width classes, the integrality gap of Min Dominating
Set is constant. This uses the versatile trees of contractions developed in the second paper of
the series [3]. These are more robust witnesses of low twin-width which, instead of providing
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a single contraction in a given trigraph, give linearly many disjoint ones. Placing ourselves
at a right node of the versatile tree, we show that a greedy strategy in the corresponding
trigraph yields a constant approximation in the original graph.

▶ Theorem 6. If the input graph comes with an O(1)-sequence, Min Dominating Set,
Distance-2 MIS, and more generally Min r-Dominating Set, Distance-2r MIS for
every positive r, admit O(1)-approximation algorithms.

These results are particular cases of the fact that when the twin-width of a matrix A is
bounded, there is a linear gap between the packing number and the minimum hitting set of
the hypergraph with incidence matrix A. Bounded twin-width matrices might more generally
provide linear programs with bounded duality gap. It is noteworthy that Max Independent
Set (which corresponds to Distance-1 MIS) is not covered by the previous theorem. We
further give some evidence that MIS may have a very different approximability status than
Min Dominating Set on bounded twin-width graphs.

2 Preliminaries

We denote by [i, j] the set of integers {i, i + 1, . . . , j− 1, j}, and by [i] the set of integers [1, i].
If X is a set of sets, we denote by ∪X their union. The notation Od(·) gives an asymptotic
behavior when d is seen as a constant. The notation O∗(·) suppresses polynomial factors.

Unless stated otherwise, all graphs are assumed undirected and simple, that is, they
do not have parallel edges or self-loops. We denote by V (G) and E(G) the set of vertices
and edges respectively of a graph G. For S ⊆ V (G), we denote the open neighborhood (or
simply neighborhood) of S by NG(S), i.e., the set of neighbors of S deprived of S, and the
closed neighborhood of S by NG[S], i.e., the set NG(S) ∪ S. We may omit the subscript if
the graph is clear from the context. We denote by G[S] the subgraph of G induced by S,
and G− S := G[V (G) \ S]. A connected subset (or connected set) S ⊆ V (G) is one such that
G[S] is connected. Two distinct vertices u, v such that N(u) = N(v) are called false twins,
and true twins if N [u] = N [v]. Two vertices are twins if they are false twins or true twins.

A graph is H-free if it does not contain H as an induced subgraph. However we make an
exception for H = Kt,t. A Kt,t-free graph is a graph with no biclique Kt,t as a subgraph. A
class4 C of graphs has property Π if every graph of C has property Π . A class is hereditary if
it is closed under taking induced subgraphs.

2.1 Trigraphs, contraction sequences, and twin-width of a graph
A trigraph G has vertex set V (G), (black) edge set E(G), and red edge set R(G) (the error
edges), with E(G) and R(G) being disjoint. The set of neighbors NG(v) of a vertex v in a
trigraph G consists of all the vertices adjacent to v by a black or red edge. A d-trigraph is a
trigraph G such that the red graph (V (G), R(G)) has degree at most d. In that case, we also
say that the trigraph has red degree at most d. A (vertex) contraction or identification in a
trigraph G consists of merging two (non-necessarily adjacent) vertices u and v into a single
vertex z, and updating the edges of G in the following way. Every vertex of the symmetric
difference NG(u)△NG(v) is linked to z by a red edge. Every vertex x of the intersection
NG(u)∩NG(v) is linked to z by a black edge if both ux ∈ E(G) and vx ∈ E(G), and by a red

4 That is, a set of graphs closed under isomorphism.
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u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

u v z

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

Figure 1 Contraction of vertices u and v, and how the edges of the trigraph are updated.

edge otherwise. The rest of the edges (not incident to u or v) remain unchanged. We insist
that the vertices u and v (together with the edges incident to these vertices) are removed
from the trigraph. See Figure 1 for an illustration.

A d-sequence (or contraction sequence) is a sequence of d-trigraphs Gn, Gn−1, . . . , G1,
where Gn = G, G1 = K1 is the graph on a single vertex, and Gi−1 is obtained from Gi by
performing a single contraction of two (non-necessarily adjacent) vertices. We observe that
Gi has precisely i vertices, for every i ∈ [n]. The twin-width of G, denoted by tww(G), is
the minimum integer d such that G admits a d-sequence.

For u ∈ V (Gi), we denote by u(G) the subset of V (G) that was contracted to the
single vertex u in Gn, Gn−1, . . . , Gi. Twin-width and d-sequences can be equivalently seen
as a partition refinement process on V (G). We start with the finest partition Pn = {{v} :
v ∈ V (G)}, and end with the coarsest partition P1 = {V (G)}. There is a partition
sequence Pn,Pn−1, . . . ,P2,P1 mimicking the contraction sequence, where the contraction
of u, v ∈ V (Gi) corresponds to the merge of parts u(Gi), v(Gi) ∈ Pi to form the part
u(Gi) ∪ v(Gi) = z(Gi−1) ∈ Pi−1, while all the other parts are unchanged from Pi to Pi−1.
The red degree (bounded by d) of a part P ∈ Pi now corresponds to the number of other
parts P ′ ∈ Pi which are not fully adjacent nor fully non-adjacent to P in G. We may denote
by GP the trigraph corresponding to partition P over V (G). Thus Gi = GPi .

2.2 Classes with bounded twin-width and how the sequences are given
The current paper is devoted to presenting efficient algorithms when the input has bounded
twin-width, and the contraction sequence is given. It is therefore important to know how
realistic this scenario is. Fortunately, in the first two papers of the series [4, 3] we showed
that many central sparse and dense (di)graph classes have bounded twin-width.

▶ Theorem 7 ([4, 3]). The following classes have bounded twin-width, and O(1)-sequences
for n-vertex members can be computed in O(n2) time.

Bounded clique-width/rank-width, and more generally, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,
Kt-minor free graphs,
map graphs (given with an embedding),
subgraphs of d-dimensional grids,
Kt-free unit d-dimensional ball graphs,
Ω(log n)-subdivisions of all the n-vertex graphs,
cubic expanders defined by iterative random 2-lifts from K4,
strong products of two bounded twin-width classes one of which has also bounded degree,
any subgraph closure of a Kt,t-free bounded twin-width class, and
any first-order transduction of a bounded twin-width class.
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2.3 Selected results for the short version
Due to space constraints, we select a representative sample of the results announced in the
introduction. This sample covers at least partially Theorems 2–4 and 6. We present the
following four items on bounded twin-width classes, where the input graph comes with an
O(1)-sequence; each item sharply contrasting with what is possible on general graphs.

In Section 3 we give a linear FPT algorithm for k-Independent Set.
In Section 4 we give a linear FPT algorithm for k-Dominating Set.
In Section 5 we show a constant approximation for Min Dominating Set.
In Section 6 we show that bounded twin-width graphs are χ-bounded.

That selection presents our new conceptual ideas in their simplest form, while echoing
the title of the paper. For more details on these results or for the proofs not covered in the
short version, we refer the reader to the long version in appendix.

3 Practical algorithm for k-Independent Set

The running time analysis of the forthcoming algorithm is based on a folklore bound on the
number of connected subsets of size at most k in a bounded-degree graph.

▶ Lemma 8. The number of connected vertex sets of size at most k, intersecting a set X, in
a graph of maximum degree d is at most (d2k−2 + 1)|X|. Furthermore they can be enumerated
in time O(d2k−2|X|).

We show how to solve k-Independent Set by dynamic programming on the connected
subsets of size at most k in the red graphs of a d-sequence given with the input graph.

▶ Theorem 9. Given an n-vertex graph G, a positive integer k, and a d-sequence G =
Gn, . . . , G1 = K1, k-Independent Set can be solved in time O(k2d2kn) = 2Od(k)n.

Proof. Our algorithm maintains a set of optimum partial solutions in the current trigraph,
starting from G, and progressively going along the d-sequence. Let us start with a definition
of the partial solutions and of their optimality.

A partial solution in the trigraph Gi is a pair (T, S) where T ⊆ V (Gi) is a vertex
set inducing a connected subgraph in the red graph (V (Gi), R(Gi)), and S ⊆ V (G) is an
independent set of G such that S ⊆

⋃
u∈T u(G) and for every u ∈ T , S ∩u(G) ̸= ∅. A partial

solution (T, S) is said optimum if there is no partial solution (T, S′) such that |S| < |S′|.
A set T ⊆ V (Gi) is said realizable (in Gi) if there is an S ⊆ V (G) such that (T, S) is a partial
solution in Gi. Notice that not every connected subset in the red graph is realizable. For
instance, it is easy to engineer a situation where there is no independent set intersecting the
three vertices of a 3-vertex red path. Initially, in G, the only connected subgraphs of the red
graph are singletons (since there is no red edge). So there are exactly n (optimum) partial
solutions in G = Gn: Each vertex v of G induces a partial solution ({v}, {v}). We denote by
Sn this set of n optimum partial solutions. It boils down to determining if there is a partial
solution (_, S) in G1 (or actually in any Gi) with |S| ⩾ k. For i going from n − 1 down
to 1, we will build a set of optimum partial solutions Si in Gi from the set Si+1, keeping the
invariant that for every realizable set T ⊆ V (Gi), there is a unique optimum partial solution
(T, S) stored in Si (and no other partial solution in Si).

We shall then describe how we update the set of optimum partial solutions after a
single contraction. Two partial solutions (T, _) and (T ′, _) in Gi are disjoint if T ∩ T ′ = ∅,
and separate, if they are disjoint and there is no red edge uu′ ∈ R(Gi) with u ∈ T and
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u′ ∈ T ′. Two separate partial solutions (T, _) and (T ′, _) are compatible if there is no edge
uu′ ∈ E(Gi) ∪R(Gi) with u ∈ T and u′ ∈ T ′. The union of two compatible partial solutions
(T1, S1) and (T2, S2) as (T1, S1) ∪ (T2, S2) := (T1 ∪ T2, S1 ∪ S2). By definition, such a union
is not a partial solution since T induces two connected components in its current red graph.
Nevertheless we will build the new (connected) partial solutions of Gi by making unions of
up to d + 2 pairwise compatible partial solutions in Gi+1. These unions will be connected in
Gi, hence will correspond to partial solutions as well.

Let us be more specific. Say u, v ∈ V (Gi+1) are contracted into z ∈ V (Gi) to form Gi.
We say that a partial solution (T, _) in Gi intersects a set X ⊆ V (Gi) if T ∩X ≠ ∅. We
initialize Si with all the partial solutions of Si+1 not intersecting {u, v}. We now add one
partial solution in Si per realizable set T ∋ z in Gi, of size at most k. For every T ⊆ V (Gi)
such that z ∈ T and T induces a connected subgraph on at most k vertices in the red
graph (V (Gi), R(Gi)), we observe three possibilities for a potential partial solution (T, S).
Either S intersects u(G) and v(G), or it intersects only u(G), or it intersects only v(G).
(It is not possible that S ∩ (u(G) ∪ v(G)) = ∅ since T contains z.) Therefore we take the
best (meaning with the largest S, breaking ties arbitrarily) of the potential partial solutions⋃

dec(T \{z}∪{u, v}),
⋃

dec(T \{z}∪{u}),
⋃

dec(T \{z}∪{v}), where dec(X) is the set with
one partial solution per connected component of X in its red graph (here (V (Gi+1), R(Gi+1)).
See Figure 2 for an illustration of this decomposition.

Gi

z

Gi+1

u

v

Figure 2 Right: In gray, a connected vertex set T in the red graph of Gi in the vicinity of the
just contracted vertex z ∈ T . Left: The decomposition dec(T \ {z} ∪ {v}) in the previous trigraph
Gi+1, where each color represents a connected component. If every color class is a realizable set in
Gi+1, then T is realizable in Gi, with (optimum) partial solution

⋃
dec(T \ {z} ∪ {v}). Note that,

due to black edges between u and some vertices of T , the partial solutions in dec(T \ {z} ∪ {u, v})
and in dec(T \ {z} ∪ {u}) cannot be pairwise compatible.

In the very possible event that at least one such connected component of X is not realizable,
dec(X) = None. The union

⋃
dec(X) of all the partial solutions of dec(X) is None if dec(X) =

None or if there is at least one black edge between two connected components. Otherwise⋃
dec(X) is a pair (T, S) as defined in the previous paragraph, since the partial solutions of

dec(X) are pairwise compatible. Since T is chosen connected in (V (Gi), R(Gi)), (T, S) is
indeed a partial solution in Gi. If

⋃
dec(T\{z}∪{u, v}),

⋃
dec(T\{z}∪{u}),

⋃
dec(T\{z}∪{v})

all three evaluate to None, then best{
⋃

dec(T \ {z} ∪ {u, v}),
⋃

dec(T \ {z} ∪ {u}),
⋃

dec(T \
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{z} ∪ {v})} also returns None. This would mean that T is not realizable. If instead T is
realizable, we get a partial solution (T, S) that we put in Si. If |S| ⩾ k, we already have a
large enough independent set; the algorithm outputs it and terminates.

If we finally build S1, and no independent set of size at least k was found, we output
S, the unique set such that (_, S) ∈ S1. S1 is indeed a singleton since there is only one
realizable set in G1. That finishes the description of the algorithm.

Details on the correctness and running time can be found in the long version. The correct-
ness uses the classic inductive arguments for an algorithm based on dynamic programming.
The claimed running time for k-IndSet essentially follows from Lemma 8.

Optimizations. We suggest some improvements or variations of k-IndSet to generally
improve over the worst-case running time of the inner for loop. A lot of sets T will trivially
be not realizable because they induce a black edge. When enumerating the walks starting
at z of length at most 2k − 3, one can abort every branch zv1 . . . vh inducing at least one
black edge. It can even be done in a way that the enumeration takes time O(t) where t is
the number of sets T ∋ z of size at most k, such that T is connected in the red graph, and
an independent set in the black graph.

Even if a set T satisfies those properties, we have no guarantee that T is realizable. In
very dense instances, it is imaginable that the realizable sets are very rare. In that case,
we will lose a lot of time generating sets T to observe immediately after that there is no
associated partial solution (T, S). An alternative to k-IndSet is to build the new partial
solutions of Si directly as unions of pairwise compatible partial solutions of Si+1, without
anticipating the nature of the possibly realizable set T ⊆ V (G).

Let us be more precise. Let Rz be the set of red neighbors of z in Gi. For every set
of at most max(2, d + 1) partial solutions (T1, S1), . . . , (Th, Sh) ∈ Si+1 intersecting Rz, at
least one of which intersects {u, v}, if the partial solutions are pairwise compatible, we
update the realizable set

⋃
i∈[h] Ti with the partial solution

⋃
i∈[h](Ti, Si) if

⋃
i∈[h] Si is larger

than the current best solution. Following the first improvement, we can only generate the
sets that are pairwise compatible. As we know, there are at most three ways to reach
a given set T ⊆ V (Gi) as a union of pairwise compatible partial solutions in Si+1. The
running time of this variation of k-IndSet is O∗(Σi∈[n]|Snew

i |), where Snew
i := Si \ Si−1

(and Snew
n := Sn) represents the new partial solutions computed at step i. In practice, this

can be significantly better than O(k2d2kn). Such a dynamic programming, only generating
“positive” subinstances, dubbed positive-instance driven by Tamaki, led to a breakthrough
and current state-of-the-art practical algorithm for computing optimally the treewidth of a
graph [17]. ◀

Without too many changes, k-IndSet may support weights, that is, find an independent
set of size exactly min(k, α(G)) with largest total weight. Instead of keeping one solution S

per realizable set T , we keep up to k solutions, one per pair (T, j) with j ∈ [|T |, k]. A partial
solution (T, j, S) is defined as before except S is required to have size exactly j. To compute
the new partial solutions, we add a third nested for loop after line 6: We iterate over all
the ways of distributing j ⩽ k units between the red connected components induced by
T ′ ∈ {T \ {z} ∪ {u, v}, T \ {z} ∪ {u}, T \ {z} ∪ {v}} so that each connected component gets
a positive integer (at least equal to its size). We then add to Si one partial solution (T, j, S)
(if at least one exists) maximizing the weight of S for fixed T and j. We also skip lines 8 and
9 of k-IndSet.

This comes with a slight increase in the running time. Namely, there is an extra 2O(k log k)

factor accounting for the ordered partition of integer j ⩽ k into positive integers. Thus the
overall running time with weights is 2O(k log k)d2kn.
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As twin-width and d-sequences are preserved when complementing the graph, we also
solve k-Clique in the same running time. One may wonder if the dependency in k of our
2Od(k)n-time algorithm can be improved. It turns out that this running time is essentially
optimal. Due to the Sparsification Lemma [13] and folklore reductions, MIS restricted to
subcubic n-vertex graphs cannot be solved in 2o(n), under the Exponential Time Hypothesis5

(ETH) [12]. Thus, by the classic self-reduction consisting of performing an even subdivision of
each edge [16], MIS cannot be solved in time 2o(n/ log n) on 2⌈log n⌉-subdivisions of n-vertex
subcubic graphs, unless the ETH fails. In [3], we show how to find O(1)-sequences in
polynomial time for 2⌈log n⌉-subdivisions of n-vertex graphs. Therefore this lower bound
holds even if we are given the d-sequence. In particular, no algorithm solves k-Independent
Set in time 2od(k/ log k)nO(1), unless the ETH fails.

4 A practical algorithm for k-Dominating Set

We solve k-Dominating Set with a more involved instantiation of the scheme of the
previous section. We face some new conceptual difficulties compared to the algorithm for
k-Independent Set. For one thing, the partial solutions that we maintain are not feasible
solutions in the whole graph. Also we now consider balls of radius f(d)k in the red graphs,
and not merely of radius k. In general, the arguments are more subtle to handle partially and
fully dominated vertex sets, as well as the solution trace. This entails a worse dependency
in d, but the same essentially optimal 2O(k)n when d is treated as a constant.

▶ Theorem 10. Given an n-vertex graph G, a positive integer k, and a d-sequence G =
Gn, . . . , G1 = K1, k-Dominating Set can be solved in time O(22(d2+1)(2+log d)kn) = 2Od(k)n.

Proof. As was the case with k-Independent Set, the algorithm sequentially considers each
trigraph in the d-sequence Gn, . . . , G1 starting from Gn, and inductively updates a set of
optimal partial solutions of the trigraph Gi to yield the next set for Gi−1. We recall that
E(Gi) and R(Gi) respectively refer to the black and red edge set of the trigraph Gi. The
ball of radius at most r in the red graph (V (Gi), R(Gi)) centered at a vertex x ∈ V (Gi) is
denoted as Br

i (x).

Profile of a partial solution. A profile (of a partial solution) of Gi is a triple (T, D, M) of
vertex sets of V (Gi) such that (i) T forms a connected set in the red graph (V (Gi), R(Gi)),
(ii) D, M ⊆ T , and (iii)

⋃
x∈D B2

i (x) ⊆ T . The first entry T of a profile P = (T, D, M) is
called the ground set of P , and the size of P is defined as the size of its ground set. A profile
(T, D, M) is said to be a k-profile if |D| ⩽ k. When the profile under consideration is clear
from the context, we denote T \D and T \M by D̄ and M̄ respectively.

We say that a profile (T, D, M) is realizable with S ⊆ V (G) if the following conditions
hold.
1. S ⊆

⋃
x∈T x(G),

2. for every x ∈ V (Gi), x ∈ D if and only if x(G) ∩ S ̸= ∅, and
3. for every x ∈ V (Gi), x ∈M if and only if x(G) is (fully) dominated by S.

A profile is said to be realizable if there exists S with which it is realizable.
Suppose that x, y ∈ V (Gi+1) are contracted to yield Gi with z being the new vertex. For

a vertex set T ⊆ V (Gi) connected in the red graph V (Gi, Ri) and containing z, let T1, . . . , Tℓ

be the red connected components of T ′ = (T \ z) ∪ {x, y} in Gi+1, i.e. the partition of T ′

5 The assumption that there is a constant δ > 0, such that 3-SAT cannot be solved in time 2δn.
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into maximal vertex sets each of which is connected in V (Gi+1, Ri+1). The number of these
red subgraphs does not exceed d + 2 because each Ti either contains x or y, or one of the
newly created red neighbors of z. Notice also that ℓ can be equal to 1, which means that x

and y belong to the same connected component of (V (Gi+1), R(Gi+1)).
For a k-profile (T, D, M) of Gi such that z ∈ T , we say that a set P = {(T1, D1, M1), . . . ,

(Tℓ, Dℓ, Mℓ)} of k-profiles of Gi+1 is consistent with (T, D, M) if the following holds. Let
T ′ := (T \ z) ∪ {x, y}, D′ :=

⋃ℓ
j=1 Dj and M ′ :=

⋃ℓ
j=1 Mj .

1. The ground sets of the profiles in P are precisely the red components of T ′ in Gi+1.
2. D \ z = D′ \ {x, y}.
3. z ∈ D if and only if x ∈ D′ or y ∈ D′.
4. For every u ∈ T \ z, u ∈M if and only if u ∈M ′ or there exists v ∈ D′ such that uv is a

black edge in Gi+1.
5. z ∈ M if and only if for each u ∈ {x, y}, it holds that: u ∈ M ′ or there exists v ∈ D′

such that uv is a black edge in Gi+1.

Algorithm, and how to compute τi from τi+1. At each iteration along the d-sequence,
we maintain one mapping τi from k-profiles P = (T, D, M) of Gi with |T | < (d2 + 1)k to a
subset of

⋃
t∈T t(G). The assignment τi(P ) = nil is interpreted as that P is not realizable

whereas τi(P ) ̸= nil is intended to be a minimum-size vertex set of V (G) realizing P . Again
let Gi be obtained by contracting the vertices x, y ∈ V (Gi+1) and z be the new vertex. Our
goal is to compute τi from τi+1, assuming τi+1 has been computed correctly. Note that a
k-profile P = (T, D, M) of Gi such that z /∈ T is also a profile of Gi, and trivially one is
realizable with S if and only if the other is realizable with S. Therefore, τi simply inherits
the assignment of τi+1 in this case as depicted in lines 6-7.

If P = (T, D, M) has z in its ground set, the algorithm k-DomSet inspects all sets P
of k-profiles of Gi+1 consistent with (T, D, M) and among the unions

⋃
P ∈P τi+1(P ) over

all such P, outputs the best one as τi(T, D, M), that is, the one of minimum cardinality is
chosen. If

⋃
P ∈P τi+1(P ) = nil for each consistent P , the algorithm concludes that (T, D, M)

is not realizable and assigns nil. The case when P contains a k-profile P with ground set
of size at least (d2 + 1)k, a special step is taken as τi+1 is not defined on such P . In this
situation, a vertex v ∈ T ′ \

⋃
t∈D′ B2

i+1(t) is chosen, and the query at (T ′ \ v, D′ \ v, M ′ \ v)
is made instead. Lines 15-18 handle this case. The uniqueness of k-profile in P in line 16
and the existence of such v in line 17 will be discussed in the correctness proof.

Correctness. To show the correctness of Algorithm 1, it suffices to prove the following.

(⋆) For every i ∈ [n] and every k-profile P of Gi, we have τi(P ) ̸= nil if and only if P

is realizable with a set of size at most k. Furthermore, if τi(P ) ̸= nil, then τi(P ) is a
set of minimum size with which P is realizable.

We prove (⋆) by induction. In the base case when i = n, the claim trivially holds. Assume
i < n and let x, y be the vertices of Gi+1 which were contracted to yield Gi, where z is the
newly obtained vertex of Gi. By induction hypothesis, for any k-profile (T, D, M) of Gi with
z /∈ T the claim holds as it is a k-profile of Gi+1 as well.

Therefore, we assume that z ∈ T and let T ′ = (T \ z) ∪ {x, y}.

▷ Claim 11. Assume that (⋆) holds for all i′ > i and let P = (T, D, M) be a k-profile of Gi.
If P is realizable with a set of size at most k, then τi(P ) ̸= nil.
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Proof. Suppose that P = (T, D, M) is realizable with S ⊆ V (G) of size at most k. Let
T1, . . . , Tℓ be the red connected components of T ′ in Gi, and let Sj = S ∩

⋃
t∈Tj

t(G) for
every j ∈ [ℓ]. The pairs Tj and Sj for j = 1, . . . , ℓ define a set of ℓ k-profiles (Tj , Dj , Mj) of
Gi+1 in a canonical way: Dj is precisely the set of vertices t ∈ Tj such that t(G) ∩ Sj and
Mj is the set of vertices t ∈ Tj such that t(G) is (fully) dominated by Sj . By construction,
each k-profile (Tj , Dj , Mj) is realizable with Sj .

We argue that the set P = {(Tj , Dj , Mj) : j ∈ [ℓ]} is consistent with P = (T, D, M).
The first and the second conditions for consistency are clearly satisfied. To verify the third
condition, consider a vertex u ∈ T distinct from z and without loss of generality we assume
u ∈ Tj∗ . If u ∈M and u /∈Mj∗ , this means that Sj∗ does not dominate u(G) because Sj∗

realizes (Tj∗ , Dj∗ , Mj∗). From u ∈M and the fact that S realizes (T, D, M), we know that
S dominates u(G) and thus there is at least one vertex S \ Sj∗ which is adjacent (in G) with
some vertex of u(G). Consider an arbitrary vertex v ∈ T to which some of S \ Sj∗ contracts
to, and observe that v /∈ Tj∗ . This means that uv is a black edge. The converse direction
of the third condition is clearly met. The fourth condition of consistency can be verified
similarly as the third condition. If P does not contain any k-profile whose ground set has
size at least (d2 + 1)k, now the claim is immediate because each (Tj , Dj , Mj) is realizable
with Sj : by induction hypothesis, we have τi+1(Tj , Dj , Mj) ̸= nil, and thus τi(T, D, M) is
set to ̸= nil at line 14.

Suppose that P contains a k-profile whose ground set has size at least (d2 + 1)k. One
can easily see that in this case, ℓ = 1 or equivalently T ′ is a red connected component in
(V (Gi+1), R(Gi+1)) consisting of exactly (d2 +1)k vertices. Since the union of at most k balls
of radius at most 2 which is connected in (V (Gi+1), R(Gi+1)) have less than (d2 +1)k vertices,
there exists v ∈ T ′ \

⋃
t∈D′ B2

i+1(t). Moreover, by the choice of v, (T ′ \ v, D′ \ v, M ′ \ v)
is now a k-profile of Gi+1. To conclude that τi(T, D, M) ̸= nil, it suffices to prove that
τi+1(T ′ \ v, D′ \ v, M ′ \ v) ̸= nil. We do this by showing that (T, D, M), (T ′, D′, M ′) and
(T ′ \ v, D′ \ v, M ′ \ v) are equivalent in regards to realizability.

The equivalence of the first two is obvious. For the equivalence of the last two, note
that if S realizes (T ′, D′, M ′), S does not intersect v(G), and thus S trivially realizes
(T ′ \ v, D′ \ v, M ′ \ v). Conversely, suppose that (T ′ \ v, D′ \ v, M ′ \ v) is realizable with S′.
The crucial observation is that v has no red neighbor in D′ since otherwise, v belongs to
the union

⋃
t∈D′ B2

i+1(t), contradicting the choice of v. Therefore, we know that v ∈M ′ if
and only if there exists u ∈ D′ \ v such that uv is a black edge. In the case when v ∈ M ′,
there exists a black neighbor u ∈ D′ \ v of v, and any S′ realizing (T ′ \ v, D′ \ v, M ′ \ v)
intersects u(G). If follows that S′ fully dominates v(G) and S′ realizes (T ′, D′, M ′). Else if
v /∈M ′, this means that not only the red neighbors of v are disjoint from D′ but also no black
neighbor of v is contained in D′. As a consequence v(G) is not dominated by S′, thus S′

realizes (T ′, D′, M ′). This proves the equivalence of (T ′, D′, M ′) and (T ′ \ v, D′ \ v, M ′ \ v),
and completes the proof of the claim. ◁

To establish the other direction, suppose that τi(T, D, M) ̸= nil and let P∗ be the set
consistent with P such that τi(T, D, M) =

⋃
P ∈P∗ τi+1(P ) or τi(T, D, M) = τi+1(T ′ \ v, D′ \

v, M ′ \ v) for some v. Such P∗ clearly exists since otherwise only nil can be output. In
the former case, it is tedious to verify that if each (Ti, Di, Mi) of P∗ is realizable with Si,
then

⋃
i∈[ℓ] Si realizes (T, D, M). In the latter case, we simply recall that (T, D, M) and

(T ′ \ v, D′ \ v, M ′ \ v) are equivalent in regards to realizability. This completes the proof of
the first statement of (⋆). The second statement immediately follows.
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Algorithm 1 k-DomSet.

Input : A graph G, a positive integer k, and a d-sequence G = Gn, . . . , G1 = K1.
Output : A dominating set of G of size at most k, or report nil (No-instance).

1 for v ∈ V (Gn) do
2 τn({v}, {v}, {v}) = {v}, τn({v}, ∅, ∅) = ∅, τn(P ) = nil for all other k-profiles P

3 for i = n− 1→ 1 do
4 x, y ← contracted pair in Gi+1 → Gi

5 z ← contraction of x and y in Gi

6 for every k-profile (T, D, M) of Gi of size less than (d2 + 1)k s.t. z /∈ T do
7 τi(T, D, M)← τi+1(T, D, M)
8 for every k-profile (T, D, M) of Gi of size less than (d2 + 1)k s.t. z ∈ T do
9 τi(T, D, M)← nil

10 T ′ ← (T \ z) ∪ {x, y}
11 for every set P of k-profiles of Gi+1 consistent with (T, D, M) do
12 if each k-profile of P has size less than (d2 + 1)k then
13 if τi+1(P ) ̸= nil for all P ∈ P then
14 τi(T, D, M)← best{τi(T, D, M),

⋃
P ∈P τi+1(P )}

15 else
16 Let (T ′, D′, M ′) be the unique k-profile contained in P.
17 Choose v ∈ T ′ \

⋃
t∈D′ B2

i+1(t)
18 τi(T, D, M)← best{τi(T, D, M), τi+1(T ′ \ v, D′ \ v, M ′ \ v)}

19 if τi(T, D, M) ̸= nil and has size larger than k then
20 τi(T, D, M)← nil

21 return τ1(V (G1), V (G1), V (G1))

Running time. In an actual implementation of Algorithm 1, we maintain a single mapping τ .
As we proceed from Gi+1 to Gi, we modify the domain of τ consisting of k-profiles so that new
k-profiles involving z are added and after calculating the assignments for the new k-profiles,
all the domains and corresponding assignments involving x or y shall be discarded. Therefore,
it suffices to check the running time for updating τ , which is performed in the inner loop of
lines 6-20. By Lemma 8, there are O(d2(d2+1)k−2 · 22(d2+1)k) new profiles of Gi to compute.
For each k-profile (T, D, M) with z ∈ T , the ground sets T1, . . . , Tℓ of a potentially consistent
set P is already determined. Hence, we exhaust all possibilities of appending each Ti by Mi

and Di to form a k-profile and the inner loop of 8-20 will consider at most 2(d2+1)k · 2(d2+1)k

sets P. The consistency of P with (T, D, M) can be routinely verified. This establishes the
claimed running time. ◀

5 Approximation algorithms

5.1 Constant approximation for Min Dominating Set

In this section, we prove that Min Dominating Set has bounded integrality gap in classes
of bounded twin-width. A constant factor approximation algorithm readily follows. We will
use the following technical lemma from the second paper of the series.
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▶ Theorem 12 (Section 3, Lemma 20 in [3]). For every integer t, there are integers s and t′

such that every graph G with a t-sequence admits a rooted tree T with the following properties.
Every node of T is labeled by a t′-trigraph.
The root of T is labeled by G.
All the leaves of T are labeled by the 1-vertex graph K1.
If a node x of T is labeled by H, and a child node of x is labeled by H ′, there is a
t′-contraction in H that yields H ′. In particular |V (H)| = |V (H ′)|+ 1.
Every internal node of T labeled by H has at least |V (H)|/s children coming from
t′-contractions on pairwise disjoint pairs of vertices of H.

Such a tree is called an s-versatile tree of t′-contractions. Informally Theorem 12 says
that, by degrading the twin-width bound, one can move away from the “linear nature” of
the contraction sequence to a profusely branching contraction witness.

Theorem 12 is effective: The s-versatile tree of t′-contractions can be computed in
polynomial time, if a t-sequence for G is provided.

▶ Theorem 13. In classes of bounded twin-width, Min Dominating Set has bounded
integrality gap.

Proof. Let G be a graph of twin-width at most t. By Theorem 12, there exist t′, s functions
of t only such that G admits an s-versatile tree of t′-contraction. Let w∗ : V (G)→ [0, 1] be
the weight function of a minimum fractional dominating set, with total weight γ∗. Thus w∗

is an optimum solution of the linear program

minimize
∑

x∈V (G)

w(x)

with ∀x ∈ V (G),
∑

y∈N [x]

w(y) ⩾ 1, and 0 ⩽ w(x) ⩽ 1,

and γ∗ =
∑

x∈V (G) w∗(x). The weight function w∗ is extended to subsets of vertices by sum.
We assume that G has at least one vertex, so γ∗ ⩾ 1.

We now greedily perform contractions in G following the versatile tree of contractions
with a restriction: contractions involving a part of total weight at least 1

2(t′+1) are forbidden.
Let us explain what this means in more detail. We start at the root, labeled G, of the
versatile tree. We move to a(ny) child node along an edge corresponding to a non-forbidden
t′-contraction. A non-forbidden contraction is one of u, v with w∗(u(G)) < 1

2(t′+1) and
w∗(v(G)) < 1

2(t′+1) . We iterate that until we get stuck (every child of the current node
entails a forbidden contraction).

We adopt the partition viewpoint of the t′-sequence. Let P be the partition of V (G)
obtained when this process finishes, and let GP be the corresponding trigraph (that is, the
label of the node where we stop). We observe that we cannot end at a leaf of the versatile
tree. Indeed that would mean that the last contraction merged a bipartition {X, Y } of V (G)
into {V (G)}. As γ∗ ⩾ 1, this would imply that w∗(X) ⩾ 1/2 or w∗(Y ) ⩾ 1/2, contradicting
max(w∗(X), w∗(Y )) < 1

2(t′+1) .

▷ Claim 14. The partition P has at most 2s(t′ + 1)γ∗ classes.

Proof. As we explained, we cannot end up with a partition P at a leaf of the versatile tree.
Thus at least |P|/s disjoint pairs of vertices are t′-contractions in GP . Therefore all these
contractions must be forbidden by our restriction imposed on the weights. It follows that at
least |P|/s parts of P have weight at least 1

2(t′+1) . Since the sum of all weights in P is γ∗, it
follows that |P| ⩽ 2s(t′ + 1)γ∗. ◁
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▷ Claim 15. Let P ∈ P be any part. Either w∗(P ) < 1
t′+1 or P is a singleton.

Proof. Let P ∈ P, and assume that P is not a singleton. Then P has been obtained by
contracting two parts P1, P2 during the contraction sequence leading to P. The restriction
on the contraction sequence ensures that w∗(P1) < 1

2(t′+1) and w∗(P2) < 1
2(t′+1) . Therefore

w∗(P ) = w∗(P1) + w∗(P2) < 1
t′+1 . ◁

Let D ⊆ V (G) be obtained by picking arbitrarily one vertex xP in each part P ∈ P . By
Claim 14, |D| ⩽ 2s(t′ + 1)γ∗, which is linear in γ∗ when t is fixed. Let us prove that D is a
dominating set. We let P ∈ P , and prove that all vertices of P are dominated by D.

Suppose first that there exists P ′ ∈ P such that P, P ′ is a black edge in GP . Then
xP ′ ∈ P ′ is adjacent to all vertices of P , which are thus dominated by D.

Hence we may instead assume that P does not have any black neighbor in GP . Consider
any vertex y ∈ P , and let P1, . . . , Pk the parts of P \ {P} such that there exists an edge
between y and some vertex of Pi. Then P1, . . . , Pk are neighbors of P in GP , and must be
red neighbors since P has no black neighbor. Since GP is a t′-trigraph, it follows that k ⩽ t′.

We now claim that one of the parts P, P1, . . . , Pk must be a singleton. Indeed, since w∗

is a fractional dominating set, and since P ∪
⋃k

i=1 Pi contains y and its neighborhood, it
must be that w∗(P ) +

∑k
i=1 w∗(Pi) ⩾ 1. Because k ⩽ t′, it follows that one part among

P, P1, . . . , Pk has weight at least 1
t′+1 . By Claim 15, that same part Ph must be a singleton.

Let z be the single vertex in Ph. Necessarily z ∈ D. If this singleton part is P , then z = y.
Otherwise z is a neighbor of y by definition of P1, . . . , Pk. In either case y is dominated in D

by z. ◀

5.2 A constant approximation for MIS would imply a PTAS
A pessimistic stance on the result of this section is that, perhaps surprisingly, the constant
approximation of Min Dominating Set is unlikely to be generalizable to the closely related
MIS. We indeed observe that the self-improving reduction of Feige et al. [8] preserves the twin-
width. As a consequence a constant approximation for MIS would provide a polynomial-time
approximation scheme (PTAS).

▶ Theorem 16. If Max Independent Set on graphs of twin-width at most d has a
constant-approximation algorithm, then it admits a PTAS.

For G1 and G2 two non-empty graphs, and u ∈ V (G1), we denote by G1(u← G2) the
substitution in G1 of u by G2. That is, u is replaced by G2, and every vertex of V (G1) \ {u}
initially adjacent to u is made adjacent to the whole V (G2).

▶ Lemma 17. tww(G1(u← G2)) = max(tww(G1), tww(G2)).

For G a graph, let Gt be the graph on the vertex set V (G)t, such that for x̄ = (x1, . . . , xt),
ȳ = (y1, . . . , yt) distinct vertices, x̄ȳ ∈ E(Gt) if and only if xiyi ∈ E(G) where i is the
smallest index such that xi ̸= yi. This definition can be restated inductively: G0 is the
1-vertex graph, and Gt is obtained from G by substituting each vertex by a copy of Gt−1.
With the notations of the initial definition, for x ∈ V (G), the set of vertices of Gt of the
form (x, x2, . . . , xt) is a copy isomorphic to Gt−1.

The following holds as a direct consequence of Lemma 17.

▶ Lemma 18. For any graph G and integer t > 0, tww(Gt) = tww(G).

We now show that the independence number of Gt is tightly related to the one of G.
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▶ Lemma 19. For any graph G, both following conditions hold.
1. Given any independent set of size k in G, one can compute an independent of size kt

in Gt, in time O(kt).
2. Given any independent set of size k′ in Gt, one can compute an independent of size

at least t
√

k′ in G, in time O(k′).

As an immediate corollary, α(Gt) = α(G)t where, we recall, α(H) denotes the size of a
maximum independent set in H.

Proof of Theorem 16. Assume there is a polynomial-time β-approximation for MIS on
graphs of twin-width at most d. Let G be a graph with twin-width at most d. By Lemma 18
the algorithm can be ran on Gt to obtain an independent set of size at least α(Gt)

β = α(G)t

β .
By Lemma 19, this independent set in Gt can be turned into an independent set in G of size
at least α(G)/ t

√
β. This gives a polynomial-time t

√
β-approximation for arbitrary t. Thus

the approximation ratio can be made arbitrarily close to 1. ◀

6 Bounded twin-width classes are χ-bounded

So far, our algorithms use the contraction sequence (or tree) “forward”. This is the original
scheme of Guillemot and Marx [11], and of our model checking algorithm [4]. We now see
how it can be useful to consider the contraction process “backward”. We start with the case
of triangle-free graphs, which will be the base case for the proof of the χ-boundedness.

▶ Theorem 20. Every triangle-free graph with twin-width at most d is (d + 2)-colorable.

Proof. Let G be an n-vertex triangle-free graph of twin-width at most d, and let G =
Gn, . . . , G1 = K1 be a d-sequence of G. We show how to color G with d + 2 colors starting
from G1, and iteratively coloring Gi+1 based on the coloring of Gi. We give the unique vertex
of G1 = K1 color 1. This defines coloring C1. For every i from 1 to n− 1, let z be the vertex
of Gi split into u, v ∈ V (Gi+1). In coloring Ci+1, every vertex of V (Gi+1) \ {u, v} keeps the
color it received by Ci. Vertex u receives color Ci(z). Finally, v receives color Ci(z) if uv

is a non-edge in Gi+1, and the smallest positive integer not appearing in its neighborhood
(black and red neighbors) in Gi+1, otherwise. We will now show that Cn is a proper coloring
of G using at most d + 2 distinct colors.

We show by induction on i that Ci is a proper (d + 2)-coloring of the graph G′
i :=

(V (Gi), E(Gi) ∪R(Gi)). Coloring C1 is indeed proper in G′
1 and uses 1 ⩽ d + 2 color. We

assume that Ci is a proper (d+2)-coloring of G′
i, and distinguish two cases. If there is a black

edge yz ∈ E(Gi) (recall that z is the vertex split into u, v), then uv has to be a non-edge
in Gi+1. Otherwise there is at least one edge between u(G) and v(G), and this edge forms
a triangle with any vertex in y(G). Thus in that case, Ci+1(u) = Ci+1(v) = Ci(z). So the
number of distinct colors given by Ci+1 is still at most d + 2 (see Figure 3).

And Ci+1 is a proper coloring of G′
i+1 since NG′

i+1
({u, v}) = NG′

i
(z). If instead z has only

red neighbors in Gi, then z has at most d neighbors in G′
i. Furthermore let us assume that

uv ∈ E(G′
i+1), otherwise we conclude as previously. In that case, v is properly colored by

Ci+1 in G′
i+1 by construction, and vertex u as well, since NG′

i+1
(u) \ {v} ⊆ NG′

i
(z). Finally

Ci+1(v) is the smallest positive integer not appearing in a set of at most d+1 positive integers.
Thus Ci+1(v) ⩽ d + 2, and Ci+1 is overall a proper (d + 2)-coloring of G′

i+1 (see Figure 4).
In particular, Cn is a proper (d + 2)-coloring of G′

n = Gn = G. ◀

As a side note, it is, to our knowledge, possible that every triangle-free Kt-minor free
graph has twin-width O(t). If this turns out to be true, it offers a seemingly different
approach to getting improved bounds in the triangle-free case of the Hadwiger’s conjecture:
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NGi
[z] NGi+1 [u, v]

Figure 3 Split, when z is incident to a black edge in Gi. As G is triangle-free, there cannot be
an edge (red or black) between u and v. Thus both u and v can take the color of z, which does not
appear in their neighborhood.

NGi [z] NGi+1 [u, v]

Figure 4 Split, when z is only incident to red edges. Even if the red neighbors of z have d distinct
colors, vertex v can find a color in [d + 2] which avoids these d colors plus the color of z and u.

Instead of trying to color these graphs, one could try to design contraction sequences for
them. We now show how to color any Kt-free graph G given with a d-sequence, with at most
(d + 2)t−2 colors.

▶ Theorem 21. For every integer t ⩾ 3, every Kt-free graph with twin-width at most d is
(d + 2)t−2-colorable.

Proof. Let Gn, . . . , G1 be a d-sequence of a Kt-free graph G with t ⩾ 3. In Theorem 20,
whenever a vertex x ∈ V (Gi+1) was incident to a black edge for the first time (going from
G1 to Gn), the color of all the vertices in x(G) was eventually set to the same value, namely
Ci+1(x). Now such a set x(G) is not necessarily an independent set, but rather induces a
Kt−1-free graph. Indeed, a Kt−1 in G[x(G)] would form a Kt in G with any vertex of y(G),
where xy ∈ E(Gi+1). By induction on t, we may color G[x(G)] with tuples of at most t− 3
integers of [d + 2], and prepends Ci+1(x) to these tuples. The base case t = 3 is Theorem 20.
We make the general idea a bit more precise.

For every i ∈ [n], we define G∗
i as the graph obtained from Gi by blowing every vertex

x ∈ V (Gi) into G[x(G)] whenever x is incident to a black edge, and then turning every
red edge into a black edge. We define the successive colorings C ′

1, . . . , C ′
n of G∗

1, . . . , G∗
n,

respectively, following the algorithm of Theorem 20. While there are no black edge in the
current trigraph Gi, we set C ′

i := Ci, where Ci is the coloring in the triangle-free case. Say, at
least one black edge appears for the first time in Gi+1 (this is well-defined since Gn has only
black edges). Again we adopt the convention that z ∈ V (Gi) was split into u, v ∈ V (Gi+1).
Let S be the set of (at most d + 2) vertices with an incident black edge in Gi+1. (One may
notice that S ⊆ {u, v} ∪NGi

(z) and S ∩ {u, v} ≠ ∅.) Every vertex w ∈ V (Gi+1) \ S receives
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color Ci+1(w). As we observed, for every x ∈ S, G[x(G)] is Kt−1-free. By induction there is
a coloring Cx of G[x(G)] with tuples of at most t− 3 integers from [d + 2]. We permanently
color every vertex y ∈ x(G) by (Ci+1(x), Cx(y)). This defines the coloring C ′

i+1 of G∗
i+1.

We continue to follow Theorem 20, with the ensuing precisions. We go through all
the splits, including the ones between two permanently colored vertices, since they may
make some other vertices incident to a black edge for the first time. If the split vertex
z ∈ V (Gj) is not such that z(G) was already permanently colored, the colors of the new
vertices u, v ∈ V (Gj+1) are chosen according to the rules of Theorem 20 where we consider
the trigraphs Gj and Gj+1 (and not the graphs G∗

j and G∗
j+1), and the coloring Cj of V (Gj)

is defined as: Cj(y) is the first coordinate of C ′
j(y) (or C ′

j(y) itself if it is not a tuple) if
y ∈ V (G∗

j ), and the first coordinate of the color of any vertex in y(G), otherwise. (One may
observe that Cj is not necessarily a proper coloring of (V (Gj), E(Gj) ∪R(Gj)), but all the
conflict edges lie within a permanently colored subgraph.) Every time a vertex x becomes
incident to a black edge, we permanently color x(G). This defines the sequence of colorings
C ′

1, . . . , C ′
n.

We show by induction on i that C ′
i properly colors G∗

i . Coloring C ′
1 is indeed a proper

coloring of G∗
1 = K1. We assume that C ′

i is a proper coloring of G∗
i , and let xy be any

edge in E(G∗
i+1). By the outermost induction on t, if xy lies within a Kt−1-free graph

permanently colored, then C ′
i+1(x) ̸= C ′

i+1(y). If instead x and y belong to two distinct
vertices of Gi+1, by the proof of Theorem 20 and the fact that C ′

i is a proper coloring of G∗
i ,

the first coordinate of C ′
i+1(x) and of C ′

i+1(y) differ. In particular C ′
n is a proper coloring of

G∗
n = Gn = G. We pad every tuple C ′

n(x) of length t′ < t with t − t′ entries 1. From the
previous proof, it can be observed that this new coloring of G is still proper, and uses at
most (d + 2)t−2 colors. ◀

Theorem 21 directly implies that, provided O(1)-sequences are given, Min Coloring
can be 2O(OPT)-approximated on bounded twin-width graphs, and Max Independent Set
can be O(1)-approximated on Kt-free graphs of bounded twin-width. It would be interesting
to determine if bounded twin-width classes are polynomially χ-bounded, that is, satisfies for
some constant c, χ(G) = O(ω(G)c) for every graph G in the class. Bounded clique-width or
rank-width classes were shown polynomially χ-bounded only recently [2]. We show however
that bounded twin-width classes satisfy the related strong Erdős-Hajnal property. We recall
that a class C of graphs satisfies the strong Erdős-Hajnal property if there exists an ε > 0 such
that every G ∈ C contains two disjoint subsets of vertices X, Y , both of size at least ε|V (G)|,
with either all edges or no edges between X and Y . The strong Erdős-Hajnal property of a
hereditary class implies the existence of a clique or a stable set of polynomial size, that is,
the Erdős-Hajnal property [1].

▶ Theorem 22. The class of graphs with twin-width at most d satisfies the strong Erdős-
Hajnal property with ε = 1/(d + 4).

Proof. Let G be an n-vertex graph with twin-width at most d. Consider in a fixed d-
sequence Gn, . . . , G1 the maximum index i such that there is a vertex z ∈ V (Gi) satisfying
|z(G)| ⩾ n/(d + 4). Since X := z(G) is the union of u(G) and v(G) for some u, v ∈ V (Gi+1),
its size is at most 2n/(d + 4). Vertex z has at most d red neighbors in Gi. These neighbors
constitute a set S ⊆ V (G) of at most d · n/(d + 4) vertices. Thus |V (G) \ (z(G) ∪ S)| ⩾
n− 2n/(d + 4)− dn/(d + 4) = 2n/(d + 4). By construction, every vertex in V (G) \ (z(G)∪S)
is fully adjacent to X or fully non-adjacent to X. Let Y ⊆ V (G) \ (z(G) ∪ S) be the subset
of all vertices in the majority regarding these two outcomes. Set Y has size at least n/(d + 4)
vertices and X, Y is therefore an appropriate pair. ◀
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Abstract
A mobile agent navigating along edges of a simple connected graph, either finite or countably infinite,
has to find an inert target (treasure) hidden in one of the nodes. This task is known as treasure hunt.
The agent has no a priori knowledge of the graph, of the location of the treasure or of the initial
distance to it. The cost of a treasure hunt algorithm is the worst-case number of edge traversals
performed by the agent until finding the treasure. Awerbuch, Betke, Rivest and Singh [3] considered
graph exploration and treasure hunt for finite graphs in a restricted model where the agent has a
fuel tank that can be replenished only at the starting node s. The size of the tank is B = 2(1 + α)r,
for some positive real constant α, where r, called the radius of the graph, is the maximum distance
from s to any other node. The tank of size B allows the agent to make at most ⌊B⌋ edge traversals
between two consecutive visits at node s.

Let e(d) be the number of edges whose at least one extremity is at distance less than d from s.
Awerbuch, Betke, Rivest and Singh [3] conjectured that it is impossible to find a treasure hidden in
a node at distance at most d at cost nearly linear in e(d). We first design a deterministic treasure
hunt algorithm working in the model without any restrictions on the moves of the agent at cost
O(e(d) log d), and then show how to modify this algorithm to work in the model from [3] with the
same complexity. Thus we refute the above twenty-year-old conjecture. We observe that no treasure
hunt algorithm can beat cost Θ(e(d)) for all graphs and thus our algorithms are also almost optimal.
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time. In this example, a graph models the corridors of the mine with nodes representing
crossings. Another application of treasure hunt in graphs is searching for a data item in a
communication network modeled by a graph.

The models and the problem. We consider a simple connected undirected locally finite
graph G = (VG , EG), i.e., a graph with nodes of finite degrees. Such a graph can be either
finite or countably infinite. A mobile agent (robot) starts at a node s of G, called the source
node, and moves along its edges. The maximum distance of any node from s is denoted by r

and called the radius of the graph (the radius of countably infinite graphs is infinite). We
make the same assumption as in [3] that the agent has unbounded memory and can recognize
already visited nodes and traversed edges. This is formalized as follows. Nodes of G have
distinct labels that are positive integers. Each edge has ports at both of its extremities.
Ports corresponding to edges incident to a node of degree δ are numbered 0, 1, . . . , δ − 1 in
an arbitrary way. At the beginning, the agent situated at node s sees its degree. The agent
executes a deterministic algorithm: at each step, it selects a port number on the basis of
currently available information, and traverses the corresponding edge. When the agent enters
the adjacent node, it learns its label, its degree, and the incoming port number. Each node
of VG will be identified with its label, and each edge of EG will be identified as the quadruple
(v, w, p, q), where v < w are labels of the edge extremities, p is its port number at node v

and q is its port number at node w.
The above simple model will be called unrestricted. However, some authors imposed

additional restrictions, in the case when the graph is finite. The authors of [3] used a
restriction of moves of the agent that we will call the fuel-restricted model. They assumed
that the agent has a fuel tank that can be replenished only at the starting node s of the
agent. The size of the tank is B = 2(1 + α)r, for some positive real constant α, where r is the
radius of the graph. The tank of size B allows the agent to make at most ⌊B⌋ edge traversals
between two consecutive visits at node s. The restriction used in [11] was of a different kind.
We will call it the rope-restricted model. It was assumed in [11] that the agent is tethered, i.e.,
attached to s by a rope that it unwinds by a length 1 with every forward edge traversal and
rewinds by a length of 1 with every backward edge traversal. The rope is infinitely extendible
but has to satisfy the following constraint: the segment of the rope unwinded by the agent
must never be longer than L = (1 + α)r, for some positive real constant α. Hence the agent
is forced to match every forward edge traversal of an edge with a backward edge traversal,
rewinding the rope, in a first-in last-out stack order.

The task of treasure hunt, in any of the above three models, is defined as follows. An
adversary hides the treasure in some node of the underlying graph G. The agent has no a
priori knowledge of the graph, of the location of the treasure or of the initial distance to it,
and has to find the treasure. The cost of a treasure hunt algorithm is the worst-case number
of edge traversals performed by the agent until finding the treasure.

In order to state our problem we need the notion of a ball. Given a non-negative integer k,
a graph G, and a node u, the ball Bk(G, u) is defined as the subgraph K = (VK , EK) of G,
where VK is the set of all nodes at distance at most k from u in G, and EK is the set of all
edges of G whose at least one extremity is at distance smaller than k from u in G. (Thus
Bk(G, u) is the subgraph of G induced by nodes at distance at most k without edges joining
nodes at distance exactly k from u in G). The number of edges in ball Bk(G, s), where s is
the source node, will be denoted by e(k, G). Whenever the graph G is clear from the context,
we will write e(k) instead of e(k, G).

The main problem considered in this paper is inspired by the following conjecture of
Awerbuch, Betke, Rivest and Singh [3], formulated for their fuel-restricted model:
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Is it possible (we conjecture not) to find a treasure in time nearly linear in the number
of those vertices and edges whose distance to the source is less than or equal to that of the
treasure? 1

Our results. Our main result refutes the above twenty-year-old conjecture. Let d be any
integer such that 1 < d ≤ r, where r is the radius of the underlying graph G. We first design
a deterministic treasure hunt algorithm working in the unrestricted model and always finding
a treasure located at distance at most d from the source node, at cost O(e(d) log d). We then
show how to modify this algorithm to work in the fuel-restricted and rope-restricted models
with the same complexity. Since d ≤ e(d), the cost of our algorithms differs from e(d) only by
a logarithmic factor, and hence it is nearly linear in e(d), contrary to the conjecture. Due to
the ignorance of the agent concerning the graph in which it operates, it can be easily shown
that no treasure hunt algorithm can beat cost Θ(e(d)) for all graphs and thus our algorithms
are also almost optimal. The main difficulty is to design the algorithm for the unrestricted
model. This algorithm is then suitably modified for each of the two restricted models.

Solving the problem of treasure hunt at a cost quasi-linear in e(d) required to respect
two fundamental principles, whose joint implementation seemed precarious in the light of
the existing literature.

The first one is a prudence principle. It consists in never getting “for too long” beyond the
unknown distance d in order to guarantee a cost that depends on e(d). This can be ideally
achieved by emulating BFS. However, since in such an emulation the agent must physically
move from one node to the next, it may be forced to traverse Ω(e(d)2) edges before finding
the treasure, in some graphs. In particular, this could be the case when G is an infinite line.

The second principle is what we could call an efficiency principle. It consists in getting
a cost that is asymptotically close to the number of edges of the subgraph that has been
explored till finding the treasure, if the treasure is far away. This can be ideally achieved
using the treasure hunt algorithm of [11], the cost of which is linear in the number of edges of
the explored subgraph. However, using this algorithm, the agent may go for too long beyond
the unknown distance d and consequently the cost of treasure hunt could not be upper
bounded by any function of e(d). The key challenge overcome by our work was combining
these two principles within the same algorithm. It is precisely the combination of prudence
with efficiency that finally made possible the design of an almost-optimal treasure hunt
algorithm.

Due to lack of space, the proofs of several results are omitted.

Related work. The task of treasure hunt, i.e., finding an inert target hidden in some
environment, has been studied for over fifty years [5, 6, 7]. The environment where the target
is hidden may be a graph or a plane, and the search may be deterministic or randomized.
The book [1] surveys both treasure hunt and the related rendezvous problem, where the
target and the searching agent are both mobile and they cooperate to meet. This book is
concerned mostly with randomized search strategies. In [23, 26] the authors studied relations
between treasure hunt and rendezvous in graphs. The authors of [4] studied the task of
treasure hunt on the line and in the grid, and initiated the study of the task of searching for
an unknown line in the plane. This research was continued, e.g., in [16, 21].

Several papers considered treasure hunt in the plane, see surveys [14, 15]. In [20], the
author designs an optimal algorithm to sweep the plane in order to locate an unknown fixed
target, where locating means getting the agent originating at point O to a point P such that
the target is in the segment OP . In [13], the authors generalized the search problem in the

1 Here time is what we call cost, i.e., the worst-case number of edge traversals until finding the treasure.
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plane to the case of several searchers. Efficient treasure hunt in the plane, under complete
ignorance of the searching agent, was studied in [24]. Treasure hunt on the line (called the
cow-path problem [17]) has been also generalized to the environment consisting of multiple
rays originating at a single point [2, 10, 22, 25].

In [12], the authors considered treasure hunt in several classes of graphs including trees.
Treasure hunt in trees was studied in [8, 9, 18]. In [8, 9], the authors considered complete
b-ary trees, and in [18], treasure hunt was studied in symmetric trees, with possibly multiple
treasures.

In [19, 23], treasure hunt in graphs was considered under the advice paradigm, where a
given number of bits of advice can be given to the agent, and the issue is to minimize this
number of bits. The impact of different types of knowledge on the efficiency of the treasure
hunt problem restricted to symmetric trees was studied in [18].

The two papers closest to the present work are [3, 11]. Both of them are mainly interested
in exploration of finite unknown graphs but they both get interesting corollaries for the
treasure hunt problem. [3] adopts the fuel-restricted model and [11] adopts the rope-restricted
model. In [3], the authors get a treasure hunt algorithm working at cost O(E + V 1+o(1)),
where E (resp. V ) is the number of edges (resp. nodes) in a ball B∆(G, s), with ∆ ≤ d + o(d),
if the treasure is at distance at most d from the starting node of the agent. Since e(∆) may
be a lot larger than e(d), this does not permit to bound the cost of the algorithm by any
function of e(d). This impossibility may be the reason for their conjecture that we refute in
this paper. In [11], the authors design, for any constant 0 < α < 1, a treasure hunt algorithm
whose cost is linear in e((1 + α)d). Again, since e((1 + α)d) may be much larger than e(d),
this does not permit to bound the cost of the algorithm by any function of e(d).

2 Preliminaries

In this section we introduce some conventions, definitions and procedures that will be used
to describe and analyze our algorithm.

Consider any graph H = (VH , EH) ⊆ G. If H is finite, its size i.e., its number of edges
is denoted by |H|. A graph is said to be empty if it contains no node. In the rest of this
section, we assume that H is not empty.

Let u and v be two (not necessarily distinct) nodes of H. We say that a sequence of i

integers (x1, x2, . . . , xi) is a path (of length i) in H from node u to v iff (1) i = 0 and u = v,
or (2) there exists an edge e in H between node u and a node w of H such that the port
number of edge e at node u is x1 and (x2, . . . , xi) is a path from node w to v in H. The
lexicocraphically smallest shortest path from node u to v in H, if any, is denoted by PH(u, v),
and the length of this path is denoted by |PH(u, v)|. The distance between u and v in H is
denoted by dH(u, v) and is equal to |PH(u, v)| if PH(u, v) exists, ∞ otherwise. If H is finite
and connected, the eccentricity ϵH(u) of node u is defined as maxw∈VH

dH(u, w). The degree
of u in H will be denoted by degH(u), or simply by deg(u) if H = G. We say that node u is
incomplete (resp. complete) in H if degH(u) < deg(u) (resp. degH(u) = deg(u)). We also
say that a port p is free at node u in H, if p ≤ deg(u) − 1 and there is no edge (u, ∗, p, ∗) or
(∗, u, ∗, p) in EH .

We will often need to handle subgraphs of G through union and intersection operations.
More precisely, given two subgraphs H ′ = (VH′ , EH′) and H ′′ = (VH′′ , EH′′) of G, the union
of (resp. the intersection of) H ′ and H ′′ is denoted by H ′ ⊔ H ′′ (resp. H ′ ⊓ H ′′) and is equal
to (VH′ ∪ VH′′ , EH′ ∪ EH′′) (resp. (VH′ ∩ VH′′ , EH′ ∩ EH′′)).
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We define the boundary of a ball Bf (G, s), where s is the source node, as the set of nodes
of Bf (G, s) that are incomplete in Bf (G, s).

To design our algorithm, we will also make use of three basic routines presented below.
The first routine is MoveTo(H, v). Assuming that the agent currently occupies a node w of
H and PH(w, v) exists, this routine moves the agent from node w to node v by following
path PH(w, v). The second routine is IncompleteNodes(v, H, l) where l is a positive integer.
This routine returns the set of all nodes w of H such that dH(v, w) ≤ l and w is incomplete
in H. The third routine is Nodes(S), where S is a finite set of finite subgraphs of G. This
routine returns the union of all nodes in all subgraphs from S.

Given an execution E of a series of instructions, the cost of E is the number of edge
traversals performed by the agent during E .

We will use the following convention. The agent will sometimes need to use Depth First
Search traversal of graphs (not performed physically, but performed as a computation in the
memory of the agent). Such a traversal depends on the order in which edges incident to a
given node are traversed for the first time. We fix this order as the increasing order of port
numbers at the given node. In this way the traversal is unambiguous, and we call it DFS.

3 Intuition

The purpose of this section is to sketch an intuitive overview of our algorithm that allows
to find the treasure at an almost-optimal cost in the unrestricted model. To this end and
to simplify the discussion, we will assume that the underlying graph G is countably infinite
with nodes of finite degrees. We will rely on the notion of largest explored ball. By “largest
explored ball”, at a given phase of treasure hunt, we mean the ball Bf (G, s) where f is the
largest integer such that each edge of Bf (G, s) has been traversed at least once. This largest
integer f is the radius of the largest explored ball.

At a high level, our algorithm works in phases i = 1, 2, 3, . . . and immediately stops as
soon as the treasure is found. At the beginning of phase i, the agent is located at node s and
the radius of the largest explored ball is equal to fi. The goal for the agent is to terminate
the phase at node s while satisfying at least one of the following three conditions unless, of
course, the treasure has been found before.

Condition 1. The agent has entirely explored ball Bfi+1(G, s), e(fi + 1) ≥ 2e(fi) and the
cost of the phase is O(e(fi + 1)).
Condition 2. The agent has entirely explored ball B2fi(G, s), fi ≥ 1 and the cost of the
phase is O(e(fi)).
Condition 3. The agent has entirely explored ball Bfi+k(G, s) for some positive integer k,
e(fi + k + 1) ≥ 2e(fi), fi ≥ 2, and the cost of the phase is O(e(fi) log fi).

Actually, the conditions we really seek to meet in our algorithm are a little more intricate
than those presented above, because we needed stronger technical requirements to refute the
conjecture of Awerbuch, Betke, Rivest and Singh [3]. However, this would add an unnecessary
level of complexity to understand the intuition, hence we omit these technical details here.

Before seeing how we implement our strategy, let us briefly examine why it permits us
to get a cost quasi-linear in e(d). Since f1 = 0 and the radius of the largest explored ball
increases by at least one during each phase in which the treasure is not found, the agent
necessarily finds the treasure by the end of some phase λ ≤ d, and fi < fλ < d for every
1 ≤ i < λ. During each phase satisfying Condition 1, the size of the largest explored ball at
least doubles, which means that the total cost of these phases is upper bounded by twice the
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worst-case cost of the last phase satisfying Condition 1 i.e., O(e(fλ + 1)). Concerning the
phases fulfilling Condition 2, their number is at most O(log(fλ + 1)) and the cost of each of
them cannot be more than O(e(fλ)), which implies that their total cost is O(e(fλ) log(fλ +1)).
It remains to consider the case of the phases satisfying Condition 3. Given such a phase i,
we have the guarantee that the size of the largest explored ball at least doubles between
the beginning of phase i and the end of phase i + 1, provided phase i + 1 exists and is
not prematurely interrupted by the discovery of the treasure. Indeed, at the end of phase
i, the agent has at least entirely explored ball Bfi+k(G, s) for some positive integer k and
e(fi + k + 1) ≥ 2e(fi), while at the end of the (not prematurely interrupted) phase i + 1
the agent has at least entirely explored ball Bfi+1+1(G, s) with fi+1 ≥ fi + k. Using this,
it can be shown that the total cost of the phases satisfying Condition 3 is at most four
times the worst-case cost of the last phase satisfying this condition i.e., O(e(fλ) log(fλ + 1)).
Given that the last phase λ can be viewed as a truncated phase that should have normally
satisfied one of the three conditions, our sketch of analysis leads to the conclusion that the
cost incurred by the agent till the discovery of the treasure is in O(e(fλ + 1) log(fλ + 1)),
which is O(e(d) log d) and is in line with our expectations.

Having justified the pertinence of such a strategy, we can turn our attention to its
implementation. To do so, we need to introduce a technical building block, which we call
GlobalExpansion(l, m) and to which we will go back at the end of this section to give
additional details. Always executed from the source node s, it is a function that returns a
boolean and whose two input parameters are positive integers except m that may be sometimes
equal to the special symbol ⊥. Assuming that Bf (G, s) is the largest explored ball, the
execution of GlobalExpansion(l, ⊥) permits the agent to traverse all the edges of Bf+l(G, s)
that are outside of Bf (G, s) before coming back to node s. Under the same assumption, the
execution of GlobalExpansion(l, m), when m is a positive integer, consists for the agent in
acting as if m was ⊥ but with the following extra requirement: as soon as more than m

distinct edges outside of Bf (G, s) have been traversed during the execution of the function,
the agent backtracks to node s and aborts this execution. If m is ⊥ or at least large enough to
avoid an aborted execution, the agent ends up exploring Bf+l(G, s) and the function returns
true. Otherwise, the function returns false. It should be stressed that all of this is made
while guaranteeing two properties. The first one is that the agent is always in Bf+2l−1(G, s)
during the execution of GlobalExpansion(l, m). The second is that the cost of the execution
of GlobalExpansion(l, m) is O(e(f + 2l − 1)) (resp. O(min{e(f) + m, e(f + 2l − 1)})) when
m =⊥ (resp. m ̸=⊥). Both these properties will turn out to be crucial to ensure a proper
design of the phases. Finally, even if by chance the agent could explore a larger ball, we
will assume for the ease of our intuitive explanations that Bf+l(G, s) (resp. Bf (G, s)) is the
largest ball explored by the agent at the end of GlobalExpansion(l, m) in the case where
the returned value is true (resp. false).

Let us consider a phase i of our algorithm and, in order not to burden the text with a
lot of “unless the treasure is found”, let us assume that the treasure will not be found by
the end of it. Phase i is made of at most three successive attempts, each of them aiming at
fulfilling at least one of the three conditions described earlier, with the help of our building
block. In the first attempt, the agent executes GlobalExpansion(1, ⊥) from node s, the cost
of which is O(e(fi + 1)). At the end of this execution, the agent is at node s and Bfi+1(G, s)
has been entirely explored by the agent. If e(fi + 1) ≥ 2e(fi) or fi ≤ 1, the first attempt
is a success as Condition 1 or Condition 2 is verified, and the agent directly switches to
phase i + 1. Otherwise, the attempt is a failure, but we can nonetheless observe that the
cost incurred because of the attempt is just O(e(fi)) because e(fi + 1) < 2e(fi).
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If the first attempt has failed, the agent starts the second attempt of phase i that consists
of an execution of function GlobalExpansion(fi − 1, e(fi)). The hope here is to expand by
a distance of fi − 1 the radius of the largest explored ball, which is Bfi+1(G, s). According
to the properties of GlobalExpansion and the fact that e(fi + 1) < 2e(fi), the cost of this
execution, and thus of the second attempt, is O(e(fi)). If GlobalExpansion(fi − 1, e(fi))
returns true, then at the end of the second attempt, the radius of the largest explored ball is
2fi. Hence, the cost of the first two attempts being equal to O(e(fi)) and fi being at least 2,
Condition 2 is satisfied and the agent starts phase i + 1 without making the third attempt.

On the other hand, if GlobalExpansion(fi − 1, e(fi)) returns false, it is a different story.
Indeed, the largest explored ball is still only Bfi+1(G, s) and we cannot ensure the fulfillment
of Condition 1 or Condition 2. This is exactly where Condition 3 comes into the picture. In
order to remedy the failures of the two previous attempts, the agent will start a third and
last attempt which consists of a dichotomic process that is described in Algorithm 1. At the
end of this process, Condition 3 is guaranteed to be satisfied.

Algorithm 1 Third attempt.

1 floor := fi + 1; ceil := 3fi − 2; l := ⌊ ceil−floor
2 ⌋;

2 while l ≥ 1 and |Bfloor(G, s)| < 2e(fi) do
3 success := GlobalExpansion(l, e(fi));
4 if success = true then
5 floor := floor + l; l := ⌊ ceil−floor

2 ⌋;
6 else
7 ceil := floor + 2l − 1; l := ⌊ l

2 ⌋;

In order to better understand why we can get such a guarantee, let us take a look at the
properties that are satisfied during the third attempt and at its end.

Since the execution of GlobalExpansion(fi − 1, e(fi)) returned false, the agent has
explored at least e(fi) distinct edges outside of ball Bfi+1(G, s) during the second attempt.
Moreover, during this execution, the agent was always in B3fi−2(G, s) according to the
properties of GlobalExpansion. As a result, in view of line 1 of Algorithm 1, we necessarily
have the following feature before the execution of the while loop of Algorithm 1: Bfloor(G, s)
is the largest explored ball and e(ceil) ≥ 2e(fi). Actually, by carefully examining the
pseudocode of the while loop and using again the properties of GlobalExpansion, it can
be inductively proven that this feature is a loop invariant. Alone, this loop invariant is not
enough to bring the sought guarantee, but as highlighted below, it is of precious help to do
the job.

The number of iterations of the while loop can be shown to be O(log fi). Further-
more, at the beginning of each iteration, Bfloor(G, s) has size smaller than 2e(fi) in view
of the condition of the while loop, and is the largest explored ball in view of the loop
invariant. Hence, according to the cost property of GlobalExpansion, each execution of
GlobalExpansion(l, e(fi)) costs at most O(e(fi)) like the previous two attempts, which gives
a total cost of O(e(fi) log fi) of the whole phase. This corresponds exactly to the target
value of Condition 3. Along with this, at the end of the while loop, the size of Bfloor(G, s) is
at least 2e(fi), or l < 1. In the first case, we immediately have e(floor + 1) ≥ 2e(fi), while
in the second case it can be shown that ceil ≤ floor + 1. This, combined with the fact that
e(ceil) is always at least 2e(fi) (by the loop invariant) and the fact that floor is always at
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least fi + 1, allows us to show the last missing piece of the puzzle, which is precisely this:
when Algorithm 1 terminates, ball Bfi+k(G, s) is entirely explored and e(fi + k + 1) ≥ 2e(fi)
for some integer k ≥ 1.

To conclude with the intuitive explanations, let us give, as promised, some more insight
concerning the building block GlobalExpansion(l, m). At first glance, one might think that
GlobalExpansion could be directly derived from the exploration algorithm CFX(v, r, α) of [11],
which permits to explore a ball Br(G, v) at a cost of O

(
|B(1+α)r(G,v)|

α

)
for any given real

α > 0 (this corresponds to a cost of O
(

e((1+α)r)
α

)
when v = s) provided αr ≥ 1. Indeed, the

task of GlobalExpansion(l, m) that consists in expanding the radius f of the largest explored
ball by a distance l in the case where m is appropriately set, can be done with CFX(s, f + l, α).
However, in this case we want the cost of this expansion to be O(e(f + 2l − 1)), which is
an important property of our strategy. This cannot be guaranteed using CFX(s, f + l, α)
because, in order to get a cost depending on e(f + 2l − 1), we would have to set α to a value
lower than l−1

f+l , which cannot lead to a cost that is linear in e(f + 2l − 1), as l−1
f+l can be

arbitrarily small. True, during the design we could have been “less demanding” about some
of the properties of GlobalExpansion(l, m), but not significantly enough to permit the use of
CFX(s, f + l, α) without spoiling the validity or the cost complexity of our strategy. Another
solution that may come to mind would be to apply CFX(v, l, α) from each node v located
on the boundary of the largest explored ball Bf (G, s). Visiting each node of the boundary
can be done in O(e(f)). Hence, this solution looks attractive because by setting α to 1

2 or
less (which overcomes the above problem of the arbitrarily small value) and provided the
zones explored by the different executions of CFX do not overlap, we would get a cost that is
linear in e(f + 2l − 1). The bad news is that there may be overlaps. Of course, some overlaps
can be easily avoided, especially those appearing within Bf (G, v), but some others cannot
without running the risk of missing some nodes of Bf+l(G, s) that are outside of Bf (G, s).
These “necessary overlaps” may be pernicious and may occur in a way that prevents us from
guaranteeing a cost of O(e(f + 2l − 1)).

So, what did we do? Although it was not possible to use CFX as a black box, we managed
to tailor GlobalExpansion by adapting to our needs an elegant algorithmic technique used
in CFX. Through a set of judiciously pruned trees spanning some already explored area,
it allowed us to satisfy the desired cost property of GlobalExpansion by controlling and
amortizing efficiently the number of times the same edges are traversed. The technique in
question is detailed in the next section that presents the pseudocode of our treasure hunt
algorithm.

4 Algorithm

Solving the treasure hunt problem in the unrestricted model can be done by executing
Algorithm TreasureHunt(x) described below in Algorithm 2 and by interrupting it as soon
as the treasure is found.

Algorithm 2 TreasureHunt(x).

1 v := the current node;
2 M := ({v}, ∅); /* M is a global variable */
3 repeat
4 Search(x);
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The input parameter x is a positive real constant. It is a technical ingredient that will
have an impact on the maximal distance at which the agent can be from node s. In our
present context, parameter x does not really matter and it can be fixed as any positive real
constant. In fact, it will show its full significance in Section 6 that is dedicated to the same
problem in restricted models: there, we will reuse TreasureHunt(x) in a context where x will
have to be carefully chosen. The variable M in line 2 of Algorithm 2 is a global variable that
will always correspond to some explored subgraph of G. For this reason, it will recurrently
appear in most of the pseudocodes of the functions described thereafter.

As the reader can see, the execution of Algorithm TreasureHunt(x) essentially consists of
a series of executions of procedure Search(x), whose pseudocode is described in Algorithm 3:
these executions correspond to what we called “phases” in our intuitive explanations of
Section 3. Procedure Search(x) should be seen as the organizer of our solution. At the
beginning of each call to Search(x), M is some explored ball Bf (G, s) and the goal of the
call is to make this ball grow while satisfying some conditions. These conditions, whose
simplified version we gave at the beginning of Section 3, are formally described in Lemma 4.

Algorithm 3 Search(x).

1 v := the current node; m := |M|;
2 floor := ϵM(v); ceil := ⌊(1 + x) · floor⌋;
3 success := GlobalExpansion(1, ⊥);
4 floor := floor + 1; i := 0; l := ⌊ ceil−floor

2 ⌋;
5 while l ≥ 1 and |M| < 2m and (i ̸= 1 or success = false) do
6 success := GlobalExpansion(l, m);
7 if success = true then
8 floor := floor + l; l := ⌊ ceil−floor

2 ⌋;
9 else

10 ceil := floor + 2l − 1; l := ⌊ l
2 ⌋;

11 M := Bfloor(M, v);
12 i := i + 1;

Although there are some technical differences, we can discern, throughout the lines of
Algorithm 3, the three attempts outlined in Section 3 that rely on function GlobalExpansion.
Roughly speaking, line 3 of Algorithm 3 relates to the first attempt, the first iteration of the
while loop of Algorithm 3 relates to the second attempt, and the other iterations relate to
the third attempt.

The pseudocode of function GlobalExpansion(l, m) is given by Algorithm 4. It has
primarily the same specifications as those given in Section 3 except that we did not implement
the case where m =⊥ and l ≥ 2 as it was not necessary for our purpose. Hence, the function
precisely handles the case where l = 1 and m =⊥, and the case where l ≥ 1 and m ̸=⊥.
The general scheme of the function is as follows. At the beginning, the agent knows a ball
Bf (G, s) that is stored in variable M and the objective is to expand the radius of this ball
by a distance l, without exploring more than m edges outside of Bf (G, s), if m ̸=⊥. To
do this, the agent visits the nodes L[1], L[2], . . . (stored in the array L) of the boundary of
Bf (G, s) and executes from these nodes function CDFS (described in Algorithm 5 and whose
name stands for Constrained DFS) or function LocalExpansion (described in Algorithm 6)
depending on the initial values of l and m. Each of these executions, which starts and ends
at the same node, locally contributes to the global expansion of the ball. In the case where
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m ̸=⊥, variable b of Algorithm 4 is updated with the return value of the two aforementioned
functions, and corresponds at each stage to the remaining number of new edges the agent is
authorized to traverse outside of Bf (G, s). If b becomes negative before the end of the while
loop of Algorithm 4, the objective of expansion is simply not reached. Note that, in order to
avoid that the moves from one node of the boundary of Bf (G, s) to the next get too costly,
they are made according to a precise order that results from the definition of L given in
line 2 of Algorithm 4.

Algorithm 4 GlobalExpansion(l, m).

1 v := the current node;
2 L := the array containing all the nodes of the boundary of M sorted in the order of

the first visit through the DFS traversal of M from node v;
3 T := the tree produced by the DFS traversal of M from node v;
4 i := 1; b := m; T := ∅; /* T is a global variable */
5 while i ≤ |L| and (b ≥ 0 or b =⊥) do
6 MoveTo(T, L[i]);
7 if l = 1 then
8 if b =⊥ then

/* We run CDFS(1, deg(L[i])) without using its return value. */
9 (∗, ∗) :=CDFS(1, deg(L[i]));

10 else
/* We run CDFS(1, b) without using the second term of its

return value. */
11 (b, ∗) :=CDFS(1, b);

12 else
13 b := LocalExpansion(l, b);
14 i := i + 1;
15 MoveTo(T, v);
16 return the logical value of “b ≥ 0 or b =⊥”;

As one can see in lines 9 and 11 of Algorithm 4, the implementation of the case l = 1
in Algorithm 4 directly relies on function CDFS. We will see below that this function is
also involved in the trickier case where l ≥ 2 and m ̸=⊥ through the calls to function
LocalExpansion. Function CDFS(l, b) permits the agent to perform a depth-first search in
the zone that does not belong to M when it starts executing it. During the execution of
this function M grows, augmented with the edges that are traversed by the agent. The two
input parameters l ≥ 1 and b ≥ 0 are integers that bring constraints to the execution of
the depth-first search. The first indicates the limit depth of the search, while the second
indicates an upper bound on the number of distinct edges the agent can traverse during the
search: when this bound is violated, the agent stops the search and goes back to the node it
occupied at the beginning of the search. The return value of CDFS(l, b) is a couple (n, T ).
The first term n is an integer such that b − n is the number of distinct edges that have been
traversed during the execution of CDFS(l, b). If the bound b has been respected then n ≥ 0,
otherwise n = −1. Concerning the second term T of the return value, it simply corresponds
to the resulting DFS tree of the execution of CDFS(l, b). If n ≥ 0 and v is the occupied node
at the start of CDFS(l, b), then for every node u such that dT (u, v) < l, u is complete in M at
the end of CDFS(l, b). Note that in the particular case where l = 1 and m =⊥ in Algorithm 4,
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the second argument of each call to CDFS is always set to the degree of the node from which
the function is executed (cf. line 9 of Algorithm 4) in order to ensure that this node becomes
complete in M at the end of the call.

Algorithm 5 CDFS(l, b).

1 v := the current node; T := ({v}, ∅); bound := b;
2 if l > 0 then
3 Mark node v;
4 while node v is incomplete in M and bound ≥ 0 do
5 pt1 := the smallest free port at node v in M;
6 Take port pt1;
7 w := the current node;
8 pt2 := the port by which the agent has just entered node w;
9 if v < w then

10 K := ({v, w}, {(v, w, pt1, pt2)});
11 else
12 K := ({v, w}, {(w, v, pt2, pt1)});
13 M := M ⊔ K; bound := bound − 1;
14 if w is not marked then
15 (bound, T ′) := CDFS(l − 1, bound);
16 T := T ⊔ T ′ ⊔ K;
17 Take port pt2;
18 Unmark node v;
19 return (bound, T );

The case where l ≥ 2 and m ̸=⊥ in Algorithm 4 relies on function LocalExpansion.
It is exactly here that we make use of the algorithmic technique of [11] mentioned at the
end of Section 3, which is based on a set of adequately pruned trees. In our solution, this
set corresponds to the variable T . It is a global variable like M and it is initialized to
∅ at the beginning of each call to GlobalExpansion (cf. line 4 of Algorithm 4). Let us
consider the ith call LEi to LocalExpansion(l, b) made from node L[i] during an execution
of GlobalExpansion(l, m). At the end of LEi, the return value of LocalExpansion(l, b) is
an integer n ≥ −1 such that b − n is the number of distinct edges that have been traversed
during LEi and that were not in M at the start of LEi. Besides, in the case where n ≥ 0,
at the end of LEi we can guarantee that for each incomplete node u of M, dM(L[i], u) > l

or u is one of the last |L| − i nodes of L (i.e., a node of L from which the agent has not yet
executed LocalExpansion(l, b)).

To see the algorithmic technique in question at work, let us focus on an iteration I of the
first while loop of Algorithm 6 occuring in LEi. This iteration starts at node L[i] and we
can show that at the beginning of I, we necessarily have the following properties.

T is a set of node disjoint trees that are all subgraphs of M.

For each tree Tr of T , |Tr| ≥ ⌊ l
8 ⌋ if Tr contains a node different from L[i].

Every incomplete node of M belongs to a tree of T or is one of the last |L| − i nodes of L.

ICALP 2021



36:12 Almost-Optimal Deterministic Treasure Hunt in Arbitrary Graphs

Algorithm 6 LocalExpansion(l, b).

1 bound := b; v := the current node;
2 if v is incomplete in M and no tree of T contains node v then
3 T := T ∪ {({v}, ∅)};
4 while IncompleteNodes(v, M, l) ∩ Nodes(T ) ̸= ∅ and bound ≥ 0 do
5 u := the node with the smallest label in IncompleteNodes(v, M, l) ∩ Nodes(T );
6 MoveTo(M, u);
7 Prune(l);
8 bound := Explore(l, bound);
9 Remove from T every tree for which all the nodes are complete in M;

10 while there are two trees T and T ′ in T having a common node do
11 T ′′ := the spanning tree produced by the BFS traversal of T ⊔ T ′ from the

node having the smallest label in T ⊔ T ′;
12 T := (T \ {T, T ′}) ∪ {T ′′};
13 Execute in the reverse order all the edge traversals that have been made since the

beginning of the current iteration of the while loop;
14 return bound;

Let us examine what happens during iteration I. At the beginning of I, the agent follows
a path of length at most l from node L[i] to a node u that is incomplete in M (cf. line 5 of
Algorithm 6). By the first and third properties and the condition at line 4 of Algorithm 6,
node u belongs to a unique tree Tu ⊆ G of T . Once the agent occupies node u, the tree Tu is
pruned via the procedure Prune(l) at line 7 of Algorithm 6. The pseudocode of procedure
Prune is detailed in Algorithm 7.

Algorithm 7 Prune(l).

1 v := the current node;
2 Tv := the tree of T containing node v;
3 T := T \ {Tv};
4 Root Tv at node v;
5 foreach node u of Tv such that dTv

(u, v) = max{1, ⌊ l
4 ⌋} do

6 Tu := the subtree of Tv rooted at u;
7 if ϵTu

(u) ≥ ⌊ l
4 ⌋ − 1 then

8 T := T ∪ {Tu};
9 Remove from Tv all nodes that belong to Tu and all edges that are incident to

a node of Tu;

10 T := T ∪ {Tv};

In the context of iteration I, the pruning operation will transform Tu into a tree T ′
u

such that ϵT ′
u
(u) ≤ ⌊ l

2 ⌋ − 1, while preserving the three properties listed above: this offers
two important advantages to which we will return at the end of this section. Once the
pruning is done, the agent applies function Explore(l, bound), whose pseudocode is given in
Algorithm 8.
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Algorithm 8 Explore(l, b).

1 bound := b; i := 1; v := the current node;
2 T := the tree of T containing node v;
3 V := array containing all the nodes of T sorted in the order of the first visit through

the DFS traversal of T from node v;
4 while i ≤ |V | and bound ≥ 0 do
5 MoveTo(T, V [i]);
6 if node V [i] is incomplete in M then
7 (bound, T ′) := CDFS(⌊ l

2 ⌋, bound);
8 T := T ∪ {T ′};

9 return bound;

In the pseudocodes of LocalExpansion and of Explore, variable bound corresponds at
any stage to the number of remaining edges the agent is authorized to traverse outside of
Bf (G, s). In the context of iteration I, function Explore(l, bound) permits the agent to
explore tree T ′

u and to execute function CDFS(⌊ l
2 ⌋, bound) from the nodes of T ′

u that are
incomplete in M, as long as variable bound remains non-negative. These executions of
CDFS occuring during the exploration of T ′

u create in turn trees that are added to T (cf.
line 8 of Algorithm 8) and that contain the new incomplete nodes of M. If the return
value of function Explore(l, bound) is non-negative, we can show that all the nodes of T ′

u

have become complete in M. Under the same condition, we will also guarantee that each
tree Tr, which has been added to T during the execution of function Explore, contains
an incomplete node only if |Tr| ≥ ⌊ l

8 ⌋. Both these guarantees combined with lines 9 to 12
of Algorithm 6 will allow us to show that our three properties will be satisfied for the
next iteration I ′, if any, even if it occurs in another call to LocalExpansion (in the same
execution of GlobalExpansion(l, m)). In particular, this is made possible by the fact that
T is never reset between the calls to LocalExpansion during the execution of the while loop
of Algorithm 4.

To fully appreciate the process accomplished during I, we need to come back to the two
aforementioned advantages that are brought by the pruning operation. The first advantage
concerns the height of T ′

u. The fact that ϵT ′
u
(u) ≤ ⌊ l

2 ⌋ − 1 is a key element to control the
maximal distance between the agent and node s. Without this, the agent could go too far
from node s and we would not be able to guarantee that the agent explores only edges of
Bf+2l−1(G, s) during the execution of GlobalExpansion(l, m) (which is a crucial property
as pointed out in Section 3). The second advantage concerns the size of T ′

u. The pruning
operation preserves the second property, and thus (1) T ′

u corresponds to a tree containing
only node L[i] or (2) |T ′

u| ≥ ⌊ l
8 ⌋. This implies that the cost resulting from the moves of

line 6 of Algorithm 6 and line 5 of Algorithm 8 is linear in the size of T ′
u. Besides, if bound is

still non-negative at the end of Explore(l, bound), all the nodes of T ′
u have become complete

(it is in particular the case for node u) and the tree is removed from T through line 9
of Algorithm 6. After this removal, no edge of T ′

u will be an edge of another tree of T
till the end of the execution of GlobalExpansion(l, m). As a result, if the return value of
Explore(l, bound) is non-negative in I, we can associate the moves of line 6 of Algorithm 6
and line 5 of Algorithm 8 to at least one node that becomes complete during I and to at
least ⌊ l

8 ⌋ edges that will no longer be edges of any tree of T till the end of the execution of
GlobalExpansion(l, m). In our analysis, this association will enable us to amortize efficiently
the number of times the agent retraverses the edges that have been already explored during
any previous iteration of the considered while loop. This will be a decisive argument to show
the cost of O(e(f) + m) for the execution of GlobalExpansion(l, m) in the case where l ≥ 2
and m ̸=⊥.
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5 Correctness and complexity analysis

In this section, we give a sketch of the proof of correctness and of complexity of Algorithm
TreasureHunt(x) in the unrestricted model. TreasureHunt(x) is an exploration algorithm
that can be executed also if there is no treasure in G. We first establish several exploration
properties of our algorithm or of its components assuming that there is no treasure in G. In
fact, this assumption concerns all the lemmas (and only them) of this section. After the
series of lemmas, we show the main result of this section, namely Theorem 6, which specifies
that our algorithm allows to find the treasure at a cost quasi-linear in e(d).

Throughout the proof of correctness, we will often have to consider the value of the
global variable M before or after some executions. To this end, we introduce the following
convention: given an execution E of Algorithm TreasureHunt(x) or some part of it, we
denote by M1(E) the value of M at the beginning of E and by M2(E) the value of M at the
end of E .

We start by giving two lemmas concerning the function CDFS(l, b). They list some
properties that are useful to prove Lemma 3. They are direct consequences of Algorithm 5
and can be easily proved by induction on l.

▶ Lemma 1. Consider an execution E of function CDFS(l, b) from a node u of G where l ≥ 1
and b ≥ 0 are integers. Assume that M1(E) ⊆ G. Execution E terminates at node u, and the
agent always knows a path of length at most l from node u to its current node during E.

▶ Lemma 2. Consider an execution E of function CDFS(l, b) from a node u of G where l ≥ 1
and b ≥ 0 are integers. Assume that M1(E) ⊆ G. Function CDFS(l, b) returns a couple (i, T r)
such that the following properties are satisfied.

Let G be the subgraph of G that has been explored during E . G ⊆ Bl(G, u), |M1(E)⊓G| = 0,
M1(E) ⊔ G = M2(E), Tr is a spanning tree of G and i = b − |G| ≥ −1.
The cost of E is 2|G| and ϵT r(u) ≤ l.
If i ≥ 0 then for every node v of Tr such that dT r(u, v) < l, v is complete in M2(E). If
i = −1, then there exists a node v of Tr such that dT r(u, v) ≤ l − 1 and v is incomplete
in M2(E).

The following lemma establishes the properties of function GlobalExpansion(l, m). It is
prerequisite to prove Lemma 4 that concerns procedure Search(x).

▶ Lemma 3. Consider an execution E of function GlobalExpansion(l, m) from the source
node s, where l is a positive integer and m is either a positive integer or ⊥. Assume that
M1(E) = Bf (G, s) for some integer f ≥ 0.

if m ̸=⊥, or m =⊥ and l = 1, then E terminates at node s and during E the agent always
knows a path in G of length at most f + 2l − 1 from node s to its current node.
If m =⊥ and l = 1 then the cost of E is O(e(f + 1)) and Bf+1(G, s) = M2(E).
If m ̸=⊥ and function GlobalExpansion(l, m) returns true (resp. false) then Bf+l(G, s) ⊆
M2(E) (resp. Bf (G, s) ⊆ M2(E) and e(f + 2l − 1) > e(f) + m) and the cost of E is
O(e(f) + m).

Below is the lemma establishing the properties of procedure Search(x).

▶ Lemma 4. Consider an execution E of procedure Search(x) from the source node s, for
any real constant x > 0. Assume that M1(E) = Bf (G, s) for some integer f ≥ 0.

The execution terminates at node s and during the execution the agent always knows a
path in G of length at most max{f + 1, ⌊(1 + x)f⌋} from node s to its current node.
There exists an integer f ′ > f such that M2(E) = Bf ′(G, s) and at least one of the
following properties holds:
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1. The cost of E is O(e(f + 1)) and xf < 3.
2. The cost of E is O(e(f)) and f ′ > (1 + x

3 )f .
3. The cost of E is O(e(f) log(f + 2)) and e(f ′ + 1) ≥ 2e(f).
4. The cost of E is O(e(f + 1)) and e(f + 1) ≥ 2e(f).

If we put aside the initial assignments of lines 1 and 2 in Algorithm 2, the execution
of procedure TreasureHunt(x) from the source node s in G can be viewed as a sequence
of consecutive executions of procedure Search(x): the ith execution of Search(x) in this
sequence will be denoted by Si.

The following lemma is a small technical observation concerning the execution of
TreasureHunt(x) from the source node s. Since, at the beginning of this execution, variable
M is equal to B0(G, s), the lemma can be easily proved by induction on i using Lemma 4.

▶ Lemma 5. Consider an execution of procedure TreasureHunt(x) from the source node s,
for any real constant x > 0. For every integer i ≥ 1, Si starts and ends at node s, and there
are two integers fi+1 > fi ≥ i − 1 such that M1(Si) = Bfi

(G, s) and M2(Si) = Bfi+1(G, s).

Using Lemmas 4 and 5, we can prove the main result of this section that is stated in the
following theorem.

▶ Theorem 6. Consider a graph G of unknown radius r in which a treasure is located at
an unknown distance at most 1 < d ≤ r from the starting node s of an agent. For any real
constant x > 0, procedure TreasureHunt(x) allows the agent to find the treasure at cost
O(e(d) log d).

6 Treasure hunt with restrictions

Theorem 6 holds for the task of treasure hunt without any restrictions on the moves of the
agent, for all locally finite graphs, both finite and infinite. In this section we show how
to modify our treasure hunt algorithm to make it work under the fuel-restricted and the
rope-restricted models for finite graphs.

Strictly speaking, the fuel-restricted model was defined in [3] assuming that both the
constant α > 0 and the radius r were known to the agent. On the other hand, the rope-
restricted model was defined in [11] for any known constant α > 0 and for unknown radius r.
We will show that, for each of these restrictive models and for any known constant α > 0, we
can design a treasure hunt algorithm with the promised efficiency even when r is unknown.
To this end, we need to modify the restriction of the fuel-restricted model from [3], avoiding
to reveal r to the agent by showing it the size of the tank. We fix a positive constant α,
known to the agent, and we proceed as follows. For the restricted tank case from [3], we
assume that at any visit of s the agent can put as much fuel in the tank as it wants, but we
show that if the (unknown) radius of the graph is r then the tank is never filled to more than
B = 2(1 + α)r. The formalization of the rope-restricted model corresponds to its definition
in [11]. Recall that the agent is attached at s by an infinitely extendible rope that it unwinds
by a length 1 with every forward edge traversal and rewinds by a length of 1 with every
backward edge traversal. Whenever the agent completely backtracks to s, the unwinded
segment of the rope is of length 0. We show that if the (unknown) radius of the graph is
r then the initial segment of the rope unwinded by the agent executing our algorithm will
never be longer than L = (1 + α)r.
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▶ Theorem 7. Consider a graph G of unknown radius r in which a treasure is located
at an unknown distance at most 1 < d ≤ r from the starting node s of the agent. For
any positive constant α, procedure TreasureHunt( α

2 ) can be transformed into a procedure
allowing the agent to find the treasure at cost O(e(d) log d) in the rope-restricted model (resp.
fuel-restricted model) without ever using a segment of the rope longer than (1 + α)r (resp.
without filling the tank to more than 2(1 + α)r at any visit of s).

Proof. The execution of procedure TreasureHunt( α
2 ) from node s corresponds to a sequence

S = (S1, S2, . . . , S|S|) of executions of Search( α
2 ), in which the |S|th execution of Search( α

2 )
is interrupted prematurely because of the discovery of the treasure.

We denote by G0 the graph consisting only of node s, and for every 1 ≤ i ≤ |S|, we
denote by Gi the subgraph of G that has been explored from the beginning of S1 to the end
of Si. For every 1 ≤ i ≤ |S|, the cost of Si will be denoted by ci.

According to Lemma 5, for every 1 ≤ i ≤ |S|, Si starts and ends at node s (except
S|S| that ends at the node containing the treasure), there is an integer fi ≥ 0 such that
M1(Si) = Bfi(G, s) and if i < |S|, M2(Si) = M1(Si+1). Moreover, the value of M is always
a subgraph of G whose nodes and edges have been all explored by the agent, and thus, for
every 1 ≤ i ≤ |S|, Bfi(G, s) is a subgraph of Gi−1, fi is unique and fi < d (or otherwise the
treasure would have been found before the start of Si which leads to a contradiction with
the existence of this execution). Hence, from the fact that d ≤ r, we get the following claim.

▷ Claim 8. For every 1 ≤ i ≤ |S|, max{fi + 1, ⌊(1 + α)fi⌋} ≤ (1 + α)r

First, we describe a new algorithm A that permits to find the treasure, in the model
without constraints, with asymptotically the same cost as that of TreasureHunt( α

2 ). This new
algorithm consists in executing TreasureHunt( α

2 ) with some changes in order to guarantee
an extra property that will be important for our purpose. More precisely, an execution
of A from node s is a sequence of executions (S′

1, S′
2, . . . , S′

|S|) in which each S′
i has cost

O(ci) and corresponds to an emulation of execution Si. In particular, for every 1 ≤ i ≤ |S|,
S′

i starts and ends at node s (except S′
|S| that ends at the node containing the treasure),

M1(S′
i) = M1(Si) = Bfi

(G, s), and at the end of S′
i, Gi has been entirely explored. Obviously,

all of this would not be interesting without the additional crucial property brought by S′
i

that will be called the frequent return property and that is the following. Let Sk be the stack
initially empty in which we push (resp. pop) the last traversed edge if it corresponds to a
forward (resp. backward) edge traversal. During S′

i, the size of Sk is 0 at least once during
any block of 2 max{fi + 1, ⌊(1 + α)fi⌋} consecutive edge traversals, and is never greater than
max{fi + 1, ⌊(1 + α)fi⌋}. Moreover, at the beginning of S′

i, the size of Sk is 0, and if i < |S|,
it is also 0 at the end of S′

i.
Note that Algorithm A is a solution with the desired cost in the rope-restricted model,

that will never use a segment of the rope longer than (1 + α)r, as for all 1 ≤ i ≤ |S|, we have
max{fi+1, ⌊(1+α)fi⌋} ≤ (1+α)r according to Claim 8. By requiring the agent, each time the
size of Sk is 0 in S′

i, to refuel its tank up to the limit of 2 · max{fi + 1, ⌊(1 + α)fi⌋} (when the
size of Sk is 0, the agent is at node s), we also get our objective with algorithm A in the fuel-
restricted model, as the agent never runs out of fuel and 2·max{fi+1, ⌊(1+α)fi⌋} ≤ 2(1+α)r.

Let us describe how we can construct our emulations while ensuring the features mentioned
above. Consider the emulation S′

i of Si. Assume that at the beginning of S′
i, Gi−1 has been

entirely explored, the size of Sk is 0 and M1(S′
i) = M1(Si) = Bfi

(G, s). These assumptions
are trivially satisfied if i = 1. We will show below that, at the end of S′

i, Gi is entirely explored
and if i < |S| the size of Sk is 0. We will also show that if i < |S| then M1(S′

i+1) = Bfi+1(G, s).
We consider two cases.



S. Bouchard, Y. Dieudonné, A. Labourel, and A. Pelc 36:17

The first case is when αfi ≥ 2. We assume for simplicity that the number of edge
traversals in Si is a positive multiple of ⌊ αfi

2 ⌋. As we will explain in detail, in this case the
agent executes Si but interrupts it after each block of ⌊ αfi

2 ⌋ edge traversals, except the last
one, to make a “return trip” to node s before resuming Si from where it was interrupted.
The goal of these return trips is to satisfy the frequent return property. Once the agent has
executed all instructions of Si, it is either at the node containing the treasure or at node s.
In the first case, we know that i = |S| and S′

i is simply over. In the second case i < |S|, but
we do not have the guarantee that the size of Sk is 0. Hence, if the agent occupies node s

once it has executed all instructions of Si, it then finishes S′
i with what we call a close period

in which it executes in the reverse order some of the last edge traversals so that the size of
Sk becomes 0 at the end of S′

i.
Denote by vk the node in which the kth interruption occurs, and by Pk the path of length

at most ⌊(1 + α
2 )fi⌋ from node s to vk that is known by the agent when the interruption

occurs. Note that Pk necessarily exists in view of Lemma 4, of the initial assumptions
concerning S′

i and of the fact that no edge traversal of Si has been skipped before the kth
interruption. Also note that if there are several paths that can play the role of Pk, we simply
choose the lexicographically smallest shortest path among them.

Each interruption is composed of two parts. In the first interruption, the first part consists
in backtracking to node s by executing in the reverse order the last ⌊ αfi

2 ⌋ edge traversals.
The second part consists in going back to node v1 using path P1 to resume Si. For the kth
interruption with k > 1, the first part consists in backtracking to node s by executing in the
reverse order the last |Pk−1| + ⌊ αfi

2 ⌋ edge traversals, and the second part consists in going
back to node vk using path Pk to resume Si. Finally, the close period simply consists in
backtracking to node s by executing in the reverse order the last ⌊ αfi

2 ⌋ edge traversals if Si

is made of only one block of ⌊ αfi

2 ⌋ edge traversals. Otherwise, it consists in backtracking
to node s by executing in the reverse order the last |Pk∗−1| + ⌊ αfi

2 ⌋ edge traversals where
k∗ = ci

⌊ αfi
2 ⌋

is the number of blocks of ⌊ αfi

2 ⌋ edge traversals in Si.
It follows by induction on the number of interruptions that the size of Sk is 0 at the end

of the first part of each interruption. Using this, the fact that Sk is empty at the beginning
of S′

i and the fact that for every 1 < k ≤ ci

⌊ αfi
2 ⌋

, |Pk−1| + ⌊ αfi

2 ⌋ ≤ ⌊(1 + α)fi⌋, it follows that
the frequent return property is satisfied during S′

i.
Moreover, it follows from the above explanation that at the end of S′

i, Gi is entirely
explored and the agent is at the node containing the treasure, if i = |S|. If i < |S|, it
also follows that the size of Sk is 0 at the beginning of the next emulation S′

i+1, and
M1(S′

i+1) = M1(Si+1) = Bfi+1(G, s) because M2(S′
i) = M2(Si) = M1(Si+1). Finally,

concerning the cost of S′
i observe that the number of interruptions is ci

⌊ αfi
2 ⌋

− 1 and during
each interruption as well as during the close period the agent makes at most 2⌊(1+α)fi⌋ edge
traversals. The cost of S′

i is then upper bounded by ci + ci

⌊ αfi
2 ⌋

2⌊(1 + α)fi⌋ ≤ (1 + 2(1+α)fi

⌊ αfi
2 ⌋

)ci.

If 2 ≤ αfi < 4, then 2
α ≤ fi < 4

α , which implies that the cost is at most (1 + 8(1+α)
α )ci.

Otherwise, αfi ≥ 4 and the cost is then upper bounded by (1 + 2(1+α)fi
αfi

2 −1
)ci ≤ (1 + 2(1+α)

α
2 − 1

fi

)ci

which is also at most (1 + 8(1+α)
α )ci, as 1

fi
≤ α

4 . Hence, the cost of S′
i is O(ci) as α is a

constant, which concludes the first case.
The second case is when αfi < 2. Here, we could not apply the same strategy as that

of the first case because we have ⌊ αfi

2 ⌋ = 0. Consequently, we adopt a slightly different
strategy in which the agent executes Si but interrupts it before each of its edge traversals.
As explained in detail below, the kth interruption either consists of a return trip to node
s before resuming Si and making the kth edge traversal of Si, or it consists in going to
the node the agent should occupy at the end of the kth edge traversal of Si but without
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taking the corresponding edge: the agent then resumes Si as if it had just performed the
kth edge traversal of Si (essentially it just makes some computations before interrupting
again Si for the next edge traversal, if any). We will show that the latter situation will occur
only when the “skipped edge” has already been traversed before by the agent. Once Si has
been entirely processed, S′

i is simply over if the agent is located at the node containing the
treasure. Otherwise, the agent is at node s and i < |S|. In this case, it executes (similarly as
in the previous case) a close period in order to guarantee that the size of Sk is 0 at the end
of S′

i.
Let us first focus on the interruptions. We denote by (u1, u2, u3, . . . , uci+1) the sequence

(with repetitions), in the chronological order, of the nodes that are visited during Si, and by
(e1, e2, e3, . . . , eci

) the sequence (with repetitions), in the chronological order, of the edges
that are traversed during Si. Consider the kth interruption occuring at node uk just before
the kth edge traversal of Si and assume that at the beginning of this interruption, the
property H(k), consisting of the following three conditions, is satisfied:

The agent has made Dk ≤ fi + 1 edge traversals since the last time when Sk was empty
(this could be the current time).
The sequence of edges (e1, e2, . . . , ek−1) has been previously explored by the agent.
The size of Sk has been 0 at least once during any previous block of 2(fi + 1) consecutive
edge traversals and has never been greater than fi + 1.

Note that at the beginning of the first interruption, property H(1) immediately holds.
We will show below that property H(k + 1) is satisfied at the beginning of the (k + 1)th
interruption, if any.

In the kth interruption, the agent first checks whether it knows a path of length at most
fi from node s to node uk. If this is the case, the agent executes in the reverse order the last
Dk edge traversals, at the end of which it is at node s and Sk is empty. Then, the agent
comes back to uk using the known path of length at most fi from node s to node uk (as
when αfi ≥ 2, if there are several such paths, the agent chooses the lexicographically smallest
shortest among them). Once this is done, the interruption is over: the agent resumes Si and
makes the kth edge traversal to reach node uk+1. We can easily show that at the end of this
edge traversal, and thus at the beginning of the next interruption if any, property H(k + 1)
is satisfied.

So, assume that at the beginning of the kth interruption, the agent does not know a
path of length at most fi from node s to node uk. In view of the fact that Dk ≤ fi + 1, the
shortest path from node s to node uk that is known by the agent has actually length exactly
fi + 1. Before explaining what the agent does, let us give some properties that necessarily
hold in this situation. We have the following claim, whose proof is omitted.

▷ Claim 9. ek belongs to Gi−1 or to the sequence (e1, e2, . . . , ek−1).

From the above claim, it follows that at the beginning of the kth interruption the agent has
already traversed edge ek before, and already knows which edge of Gi−1 or of (e1, e2, . . . , ek−1)
corresponds to it. Thus, at the beginning of the kth interruption, the agent can already
determine a path of length at most fi + 1 from node s to node uk+1 because in view of
Lemma 4 it must know such a path when reaching node uk+1 and because the traversal of
ek does not bring extra topological information on G.

Now we are are able to formulate what the agent does, when it has noticed that it does
not know a path of length at most fi from node s to node uk. It executes in the reverse
order the last Dk edge traversals, at the end of which it is at node s and Sk is empty. Then,
instead of coming back to uk, it goes directly to node uk+1 using the known path (highlighted
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in the previous paragraph) of length at most fi + 1 from node s to node uk+1. Once this is
done, the interruption is over: the agent resumes Si and acts as if it had just traversed edge
ek (as previously mentioned, it just performs some computations before interrupting again
Si for the next edge traversal, if any). It follows that at the end of the interruption, and
thus at the beginning of the following one if any, H(k + 1) is satisfied. We have shown by
induction on k that, at the beginning of the kth interruption, for any k ≥ 1, the property
H(k) is satisfied. This closes the description of the interruptions.

It remains to deal with the close period. At the beginning of it, property H(ci + 1) is
satisfied, which implies that the agent has performed Dci+1 ≤ fi + 1 edge traversals since
the last time when Sk was empty. Hence, during the close period, the agent simply executes
in the reverse order the last Dci+1 edge traversals, at the end of which Sk is empty. In view
of this, of the fact that Sk is empty at the beginning of S′

i, and of property H(ci + 1), the
frequent return property is satisfied during S′

i.
It follows from the above explanation that at the end of S′

i, Gi is entirely explored and the
agent is at the node containing the treasure if i = |S|. If i < |S|, it also follows that the size of
Sk is 0 at the beginning of the next emulation S′

i+1, and M1(S′
i+1) = M1(Si+1) = Bfi+1(G, s)

because M2(S′
i) = M2(Si) = M1(Si+1). Finally, concerning the cost of S′

i, observe that the
number of interruptions is ci and during the close period as well as during each interruption
the agent makes at most 2(fi + 1) edge traversals. The cost of S′

i is then upper bounded by
2(fi + 1)ci + 2fi + 2 which is at most 2( 2

α + 1)ci + 4
α + 2, as fi < 2

α in the currently analysed
case. Hence, the cost of S′

i is O(ci). This concludes the second case and thus concludes the
proof of the theorem. ◀
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Abstract
Promise Constraint Satisfaction Problems (PCSPs) are a generalization of Constraint Satisfaction
Problems (CSPs) where each predicate has a strong and a weak form and given a CSP instance,
the objective is to distinguish if the strong form can be satisfied vs. even the weak form cannot be
satisfied. Since their formal introduction by Austrin, Guruswami, and Håstad [1], there has been a
flurry of works on PCSPs, including recent breakthroughs in approximate graph coloring [4, 24,35].
The key tool in studying PCSPs is the algebraic framework developed in the context of CSPs where
the closure properties of the satisfying solutions known as polymorphisms are analyzed.

The polymorphisms of PCSPs are significantly richer than CSPs – even in the Boolean case, we
still do not know if there exists a dichotomy result for PCSPs analogous to Schaefer’s dichotomy
result [32] for CSPs. In this paper, we study a special case of Boolean PCSPs, namely Boolean
Ordered PCSPs where the Boolean PCSPs have the predicate x ≤ y. In the algebraic framework,
this is the special case of Boolean PCSPs when the polymorphisms are monotone functions. We
prove that Boolean Ordered PCSPs exhibit a computational dichotomy assuming the Rich 2-to-1
Conjecture [9] which is a perfect completeness surrogate of the Unique Games Conjecture.

In particular, assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP can
be solved in polynomial time if for every ϵ > 0, it has polymorphisms where each coordinate has
Shapley value at most ϵ, else it is NP-hard. The algorithmic part of our dichotomy result is based
on a structural lemma showing that Boolean monotone functions with each coordinate having low
Shapley value have arbitrarily large threshold functions as minors. The hardness part proceeds by
showing that the Shapley value is consistent under a uniformly random 2-to-1 minor. As a structural
result of independent interest, we construct an example to show that the Shapley value can be
inconsistent under an adversarial 2-to-1 minor.
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37:2 Conditional Dichotomy of Boolean Ordered PCSPs

1 Introduction

Constraint satisfaction problems (CSP) have played a very influential role in the theory of
computation, providing an excellent testbed for the development of both algorithmic and
hardness techniques, which then extend to more general settings. A CSP over domain D is
specified by a finite collection A of predicates over D, and is denoted as CSP(A). Given an
input containing n variables with constraints on the variables using these predicates, the
objective is to identify if we can assign values from D to the variables that satisfies all the
constraints. Examples of CSPs include classical problems such as 3-SAT and 3-Coloring of
graphs.

When the domain is Boolean, Schaefer [32] proved that every CSP is either in P or is
NP-Complete. Feder and Vardi [15] conjectured that the same should hold over arbitrary
domains as well. They also showed that the then known algorithmic results all follow by the
algebraic closure properties of the CSPs. This notion was formalized by Jeavons, Cohen, and
Gyssens [17,18] and other works [11] that crystallized the (universal) algebraic approach to
CSPs. In the algebraic approach, the higher-order closure properties obeyed by the predicates,
namely their polymorphisms, are studied. A polymorphism is a function that when applied
coordinate-wise to arbitrary satisfying assignments to the predicate, is guaranteed to produce
an output that satisfies the predicate. For example, consider an arbitrary instance I of the
2-SAT problem over n variables, and suppose that x, y, z ∈ {0, 1}n are three assignments
that satisfy all the constraints in I. Now, if we compute u ∈ {0, 1}n that is obtained by
setting ui = MAJ(xi, yi, zi) for all i ∈ [n], the assignment u also satisfies all the constraints of
I. Thus, the majority function on 3 bits is a polymorphism of the 2-SAT CSP. On the other
hand, for the 3-SAT problem, it is not hard to prove that the only polymorphisms are the
dictator functions. The algebraic approach has been immensely successful and culminated
in the recent resolution of Feder-Vardi conjecture by Bulatov [10] and Zhuk [36]. Further,
these proofs yield a precise understanding of the mathematical structure underlying efficient
algorithms: if the CSP has a “non-trivial” polymorphisms, the CSP is polytime solvable, and
otherwise, it is NP-complete.

In this paper, we study Promise Constraint Satisfaction Problems (PCSPs) that vastly
generalize the CSPs. In the PCSPs, each predicate has a weak and a strong form–given
an instance of PCSP containing n variables with the constraints, the goal is to distinguish
between the case that the stronger form can be satisfied vs. even the weaker one cannot be
satisfied. A classical example of PCSP is the approximate graph coloring, where given a
graph G, the goal is to distinguish between the cases that G can be colored with c colors
vs. it cannot be colored with s colors for some c ≤ s. Another example is the (1-in-3 SAT,
NAE-3-SAT), wherein given a 1-in-3-SAT instance that is promised to be satisfiable, the
objective is to assign 0, 1 values to the variables such that each constraint is satisfied as a
NAE-3-SAT instance, i.e., both 0 and 1 occur in every constraint. While the individual CSPs,
namely 1-in-3-SAT and NAE-3-SAT are both NP-hard, the above PCSP is in P. The study
of PCSPs was formally initiated by Austrin, Guruswami, and Håstad [1]. and since then,
there has been a lot of recent interest in PCSPs, including the development of a systematic
theory in [4, 6] and leading to breakthroughs in approximate graph coloring [4, 24,35].

The central question in the study of PCSPs is whether there exists a complexity dichotomy
for PCSPs i.e. if every PCSP is either in P or is NP-complete. As is the case with CSPs, the
key tool towards establishing such a dichotomy result is the algebraic approach. The Galois
correspondence from the CSP world extends to PCSPs, i.e., the polymorphisms fully capture
the computational complexity of the underlying PCSP [6,30]. This has been extended to show
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that just the identities satisfied by the polymorphisms suffice to capture the computational
complexity of the underlying PCSP [4]. However, the polymorphisms of PCSPs are much
richer, and characterizing which polymorphisms lead to algorithms and which ones lead to
hardness has been a challenging problem. Conceptually, the principal difficulty is that the
polymorphisms for CSPs are closed under composition (hence referred to as clones), whereas
for PCSPs, this is no longer the case.

As a result, even in the Boolean case, we do not have a dichotomy theorem for PCSPs.
Towards establishing a potential Boolean PCSP dichotomy, progress has been made by Ficak,
Kozik, Olsák and Stankiewicz [16], who obtained a dichotomy result when each predicate is
symmetric. In this paper, we study Boolean PCSPs that contain the simplest non-symmetric
predicate, x → y. We call such Boolean PCSPs Ordered as we can also view the implication
constraint as an ordering requirement x ≤ y.

Ordered Boolean PCSPs have come under recent study. The work of Petr [29] (inspired
by work of Barto [2, 3]) considered a special class of Ordered Boolean PCSPs which have
an additional predicate x ̸= y (this corresponds to allowing negations in the constraints)
as well as the requirement that the majority on three bits is not a polymorphism. In this
setting Petr was able to show that such Ordered Boolean PCSPs are NP-hard. However, the
approach considered does not seem immediately extendable to analyzing general Ordered
Boolean PCSPs [3].

The main motivation for studying these PCSPs comes from the fact that adding the
additional x ≤ y predicate is equivalent to restricting the polymorphisms of the PCSPs to be
monotone functions. Monotonicity is an influential theme in the study of Boolean functions
and complexity theory, and understanding the structure of polymorphisms in the monotone
case is an important (and certainly necessary) subcase towards a general characterization of
polymorphisms vs. tractability for arbitrary Boolean PCSPs. For the special case of Boolean
Ordered PCSPs which include negation constraints, it was conjectured in [3] that polynomial
time tractability is characterized by the existence of majority polymorphisms of arbitrarily
large arity.

Our main result is that Boolean Ordered PCSPs exhibit a dichotomy, under the recently
introduced Rich 2-to-1 Conjecture of Braverman, Khot, and Minzer [9].

▶ Theorem 1. Assuming the Rich 2-to-1 Conjecture, every Ordered Boolean PCSP is either
in P or is NP-Complete. Furthermore, an Ordered PCSP Γ is in P if and only if for every
ϵ > 0, there are polymorphisms of Γ with every coordinate having Shapley value at most ϵ.
Equivalently, Γ is in P if and only if it has threshold polymorphisms of arbitrarily large arity.

As a concrete example, recall the earlier mentioned example of (1-in-3-SAT, NAE-3-SAT).
As it has threshold polymorphisms of arbitrarily large arity, it remains polynomial time
solvable even after adding the predicate x → y. However, if we also add another two-variable
predicate x ̸= y, the PCSP no longer has threshold polymorphisms, and by our above result,
it becomes NP-Complete.

We obtain the conditional dichotomy result by analyzing the polymorphisms of the
Ordered PCSPs. The key idea in the algebraic approach to PCSPs is that the PCSP is
tractable if the polymorphisms are close to symmetric, and the PCSP is hard if all the
polymorphisms have a small number of “important” coordinates. More concretely, on the
algorithmic front, it has been proved that symmetric polymorphisms of arbitrarily large
arities lead to polynomial time algorithms for PCSPs [8]. On the hardness side, if all the
polymorphisms depend on a bounded number of coordinates, then the underlying PCSP is
NP-hard [1]. This has been extended to various other notions, including combinatorial ones
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such as C-fixing [5], and topological ones such as having a bounded number of coordinates
with non-zero winding number [24]. In this paper, we study the monotone polymorphisms
using analytical techniques.

In particular, we use Shapley value to analyze the monotone polymorphisms. For a
monotone function f : {0, 1}n → {0, 1}, Shapley value of a coordinate i is the probability
that on a random path from {0, 0, . . . , 0} to {1, 1, . . . , 1}, the function value turns from 0
to 1 when we switch the ith coordinate to 1. Initially studied to understand the power of
an individual in voting systems [33], Shapley value has now found applications in various
settings, especially in game theory [26, 27]. In our setting, there are two advantages of using
Shapley value to study the polymorphisms. First, it is a relative measure of the importance
of a coordinate, as opposed to other notions of Influence which are absolute. This helps in
bounding the number of coordinates with Shapley value above a certain threshold. Second,
it is a versatile measure with combinatorial and analytical interpretations [12] which helps in
proving that Shapley value stays consistent under function minors1, a key property necessary
in both the algorithm and the hardness.

Algorithm Overview. We obtain our algorithmic result by using the Basic Linear Program-
ming with Affine relaxation (BLP+Affine relaxation), combined with a structural result
regarding the monotone functions with bounded Shapley value. As mentioned earlier, PCSPs
with symmetric polymorphisms of arbitrarily large arities can be solved in polynomial time
using the BLP+Affine relaxation algorithm [8]. Our main structural result is that Boolean
functions with bounded Shapley value have arbitrarily large threshold functions as minors.
Since the set of polymorphisms of a PCSP are closed under taking minors, this proves that the
underlying PCSP Γ has arbitrarily large threshold functions as polymorphisms, which then
implies that Γ is in P. The key tool underlying our structural result is a result of Kalai [19]
that states that under certain conditions, monotone Boolean functions with arbitrarily small
Shapley value have a sharp threshold.

Hardness Overview. We obtain our hardness result assuming the Rich 2-to-1 Conjecture.
Braverman, Khot, and Minzer [9] introduced the conjecture as a perfect completeness
surrogate of the well known Unique Games Conjecture [21]. They also proved that the
conjecture is equivalent to Unique Games Conjecture when we relax the perfect completeness
requirement. The reduction from the Rich 2-to-1 Conjecture to PCSPs follows using the
standard Label Cover-Long Code paradigm. The key ingredient in this reduction is a decoding
of the Long Codes to a bounded number of coordinates that is consistent under function
minors. We decode each Long Code function to the coordinates with Ω(1) Shapley value
– as the sum of Shapley values of all the coordinates of any monotone function is equal to
1, there is a bounded number of such coordinates. We argue about the consistency of this
decoding using a structural result that states that under a uniformly random minor, Shapley
value is roughly preserved.

On the necessity of “richness” in 2-to-1 Conjecture. A natural question is whether our
hardness result can be obtained using a weaker assumption such as the 2-to-1 conjecture
(whose imperfect completeness version was recently established [13, 14, 22, 23]). We shed
some light on this question by showing that there are monotone Boolean functions f :
{0, 1}2n → {0, 1} and g : {0, 1}n → {0, 1} such that g is a minor of f with respect to the

1 A minor(formally defined in Section 2) of a function f : {0, 1}m → {0, 1} is a function g : {0, 1}n → {0, 1}
of smaller arity n ≤ m obtained from f by identifying sets of variables together.
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2-to-1 function π, both the functions f and g have exactly one coordinate i1, i2 respectively,
with Ω(1) Shapley value, and yet π(i1) ̸= i2. Such an adversarial example is interesting from
two angles: first, it shows that even using the 2-to-1 conjecture, the Shapley value based
decoding is not consistent. Second, it gives an example of agents pairing up maliciously to
completely alter the Shapley value. The underlying phenomenon is that the rich 2-to-1 games
have “subcode-covering” property, which is absent in the standard 2-to-1 games, helping in
preserving the consistency of any biased influence measure such as the Shapley value.

Organization. In Section 2, we formally define PCSPs, polymorphisms, and Shapley value.
We present the algorithmic and hardness parts of our dichotomy result in Section 3 and Sec-
tion 4 respectively. We present the adversarial example of a 2-to-1 minor that alters the
Shapley value in Section 5.

2 Preliminaries

Notations. We use [n] to denote the set {1, 2, . . . , n}. For a k-ary relation A ⊆ [q]k, we abuse
the notation and use A both as a subset of [q]k, and also as a predicate A : [q]k → {0, 1}.
For a vector x = (x1, x2, . . . , xn) ∈ {0, 1}n, we use hw(x) to denote

∑n
i=1 xi. For two

vectors x, y ∈ {0, 1}n, we say that x ≤ y if xi ≤ yi for all i ∈ [n]. A Boolean function
f : {0, 1}n → {0, 1} is called monotone if f(x) ≤ f(y) for all x ≤ y.

PCSPs and Polymorphisms. We first define Constraint Satisfaction Problems (CSP).

▶ Definition 2 (CSP). Given a k-ary relation A : Dk → {0, 1} over a domain D, the
Constraint Satisfaction Problem (CSP) associated with the predicate A takes a set of variables
V = {v1, v2, . . . , vn} as input which are to be assigned values from D. There are m constraints
(e1, e2, . . . , em) each consisting of ei = ((ei)1, (ei)2, . . . , (ei)k) ⊆ V k that indicate that the
corresponding assignment should belong to A. The objective is to identify if there is an
assignment V → D that satisfies all the constraints.

In general, we can have multiple relations A1, A2, . . . , Al, and different constraints can use
different relations. We denote such a CSP by CSP (A1, A2, . . . , Al).

We formally define Promise Constraint Satisfaction Problems (PCSP).

▶ Definition 3 (PCSP). In a Promise Constraint Satisfaction Problem PCSP (Γ) over a pair
of domains D1, D2, we have a set of pairs of relations Γ = {(A1, B1), (A2, B2), . . . , (Al, Bl)}
such that for every i ∈ [l], Ai is a subset of Dki

1 and Bi is a subset of Dki
2 . Furthermore,

there is a homomorphism h : D1 → D2 such that for all i ∈ [l] and x ∈ Dki
1 , x ∈ Ai implies

h(x) ∈ Bi. Given a CSP (A1, A2, . . . , Al) instance, the objective is to distinguish between the
two cases:
1. There is an assignment to the variables from D1 that satisfies every constraint when

viewed as CSP (A1, A2, . . . , Al).
2. There is no assignment to the variables from D2 that satisfies every constraint when

viewed as CSP (B1, B2, . . . , Bl).

We now define Boolean Ordered PCSPs.

▶ Definition 4 (Boolean Ordered PCSP). A PCSP PCSP (Γ) over a pair of domains D1, D2
with the set of pairs of relations Γ = {(A1, B1), (A2, B2), . . . , (Al, Bl)} is said to be Boolean
Ordered if the following hold.
1. The domains are both Boolean i.e., D1 = D2 = {0, 1}.
2. There exists i ∈ [l] such that Ai = Bi = {(0, 0), (0, 1), (1, 1)}.
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Associated with every PCSP, there are polymorphisms that capture the closure properties
of the satisfying solutions to the PCSP. More formally, we can define polymorphisms of a
PCSP as follows.

▶ Definition 5 (Polymorphisms). For PCSP (Γ) with Γ = {((A1, B1), (A2, B2),. . ., (Al, Bl))}
where for every i ∈ [l], Ai : [q1]ki → {0, 1}, Bi : [q2]ki → {0, 1}, a polymorphism of arity
n is a function f : [q1]n → [q2] that satisfies the below property for all i ∈ [l]. For all
(v1, v2, . . . , vki

) such that for all j ∈ [n], ((v1)j , (v2)j , . . . , (vki
)j) ∈ Ai, we have

(f(v1), f(v2), . . . , f(vki
)) ∈ Bi

We use Pol(Γ) to denote the family of all the polymorphisms of PCSP (Γ).

A crucial property satisfied by Pol(Γ) is that the family of functions is closed under taking
minors. We first define the minor of a function formally.

▶ Definition 6 (Minor of a function). For a Boolean function f : [q]n → [q′], the function
g : [q]m → [q′] is said to be a minor of f with respect to the function π : [n] → [m] if

g(x1, x2, . . . , xm) = f(xπ(1), xπ(2), . . . , xπ(n)) ∀x1, x2, . . . , xm ∈ [q]

We say that a function g is a minor of f if there exists some π such that g is a minor of f

with respect to π.

We are often interested in 2-to-1 minors. A function g is said to be a 2-to-1 minor of f if
there exists a 2-to-1 function π such that g is a minor of f with respect to π, where 2-to-1
function is defined below.

▶ Definition 7 (2-to-1 function). A function π : [2n] → [n] is said to be a 2-to-1 function if

|π−1(i)| = 2 ∀i ∈ [n]

We use F2→1(n) to denote the set of all the 2-to-1 functions from [2n] to [n].

By the definition of the polymorphisms, we can infer that if f ∈ Pol(Γ) for a PCSP Γ,
then for all functions g such that g is a minor of f , we have g ∈ Pol(Γ). Such a family of
functions that is closed under taking minors is called as a minion. We often refer to the
family of polymorphisms of a PCSP as the polymorphism minion.

We refer the reader to [4] for an extensive introduction to PCSPs and polymorphisms.

Shapley value. Let f : {0, 1}n → {0, 1} be a monotone Boolean function. We can view the
monotone Boolean function f as a voting scheme between two parties, and n agents: the
winner of the voting scheme when the ith agent votes for xi ∈ {0, 1} is f(x). The relative
power of an agent in a voting scheme is typically measured using the Shapley-Shubix Index,
also known as Shapley Value.

Informally speaking, the Shapley Value of a coordinate i is the probability that the ith
agent is the altering vote when we start with all zeroes and flip the votes in a uniformly
random order. More formally,

▶ Definition 8 (Shapley value). Let f : {0, 1}n → {0, 1} be a monotone Boolean function.
Let σ ∈ Sn be a uniformly random permutation of [n]. For an integer j ∈ [n], let Pj denote
the set of first j elements of σ i.e., Pj := {σ(1), σ(2), . . . , σ(j)}. The Shapley value Φf (i) of
the coordinate i ∈ [n] is defined as

Φf (i) := Prσ {∃j ∈ [n] : σ(j) = i, f(Pj−1) = 0, f(Pj) = 1}
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We also give an alternate definition of Shapley value using the notion of boundary of a
coordinate. For a monotone Boolean function f : {0, 1}n → {0, 1} and coordinate i ∈ [n], let
Bf (i) denote the boundary of the coordinate i i.e.

Bf (i) := {S ⊆ [n] \ {i} : f({i} ∪ S) = 1, f(S) = 0}

By the monotonicity of f , we can infer that Bf (i) satisfies the following sandwich property
that will be useful later.

▶ Proposition 9. Let f : {0, 1}n → {0, 1} be a monotone Boolean function and let i ∈ [n].
Then, for every pair of sets S1, S2 ∈ Bf (i) with S1 ⊆ S2, we have S ∈ Bf (i) for all S such
that S1 ⊆ S ⊆ S2.

Proof. By the monotonicity of f , we have f(S∪{i}) ≥ f(S1∪{i}) = 1, and thus, f(S∪{i}) =
1. Similarly, we have f(S) ≤ f(S2) = 0, and thus, f(S) = 0. ◀

For an index j ∈ {0, 1, . . . , n − 1}, let µf (j)(i) denote the fraction of subsets of [n] of size j

that are in Bf (i) i.e.

µf (j)(i) :=
∣∣∣Bf (i) ∩

([n]
j

)∣∣∣ /(
n
j

)
.

We can rewrite the definition of Shapley value of the ith coordinate as the following [34]:

Φf (i) =
∑n−1

j=0 µf (j)(i)

n
. (1)

3 Algorithm when Shapley values are small

In this section, we show that monotone Boolean functions where each coordinate has
bounded Shapley value has arbitrarily large threshold functions as minors, thereby proving
the algorithmic part of our dichotomy result.

Let L be a positive integer and 0 ≤ τ ≤ L be a non-negative integer. We let THRL,τ :
{0, 1}L → {0, 1} be the threshold function on L variables with threshold τ . More formally,

THRL,τ (x) :=
{

1 if hw(x) ≥ τ

0 otherwise.

For a monotone Boolean function f : {0, 1}n → {0, 1} and real number p ∈ [0, 1], let
Pp(f) denote the expected value of f(x) where each element xi, i ∈ [n] is independently set
to be 1 with probability p and 0 with probability 1 − p. For every monotone function f , the
function Pp(f) is a strictly monotone continuous function in p on the interval [0, 1]. The
value pc = pc(f) at which Ppc(f) = 1

2 is called the critical probability of f .
Using the Russo-Margulis Lemma [25, 31] and Poincaré Inequality, we can show the

following lemma that we need later.

▶ Lemma 10 (Exercise 8.29(e) in [28]). Let f be a non-constant monotone Boolean function
with critical probability pc ≤ 1

2 . Let p1 := 1
(2ν)2 pc for ν > 0. If p1 ≤ 1

2 , then Pp1(f) ≥ 1 − ν.

We now define the threshold interval of f .

▶ Definition 11. For a monotone function f and 0 < ϵ < 1
2 , we define Tϵ(f) := p2 − p1,

where p2 and p1 are such that Pp1(f) = ϵ, Pp2(f) = 1 − ϵ.
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Kalai [19] proved the following result regarding monotone Boolean functions.

▶ Theorem 12. For every a, ϵ, γ > 0, there exists δ := δ(a, ϵ, γ) > 0 such that for every
monotone Boolean function f : {0, 1}n → {0, 1} with Φf (i) ≤ δ for all i ∈ [n] and a ≤
pc(f) ≤ 1 − a, then Tϵ(f) ≤ γ.

We will use this result to show that for every monotone function where each coordinate has
bounded Shapley value has arbitrarily large threshold functions as minor.

▶ Lemma 13. For every L ≥ 2, there exists a δ := δ(L) > 0 such that the following holds.
For any monotone Boolean function f : {0, 1}n → {0, 1} with

Φf (i) ≤ δ ∀i ∈ [n]

there exists a positive integer L′ ∈ {L, L + 1} and a non-negative integer τ such that THRL′,τ

is a minor of f .

Proof. We obtain δ := δ(L) > 0 from Theorem 12 by setting ϵ = 1
2L+1 , γ = a = 1

L3 . Our
goal is to show that for this parameter δ, for every monotone Boolean function f with each
coordinate having Shapley value at most δ, there exists L′ ∈ {L, L + 1} and τ such that
THRL′,τ is a minor of f .

We assume that f is a non-constant function, else we have a trivial minor by setting
τ = 0 or τ = L′. Let pc be the critical probability of f .

Case 1: pc < a = 1
L3 . Let p1 = L2pc < 1

L . Using Lemma 10, we can conclude
that Pp1(f) ≥ 1 − 1

2L . As Pp(f) is monotone, we get that P 1
L

(f) > 1 − 1
2L . We let

g : {0, 1}L → {0, 1} be a uniformly random minor of f i.e. we choose the function π : [n] → [L]
by choosing each value π(i) uniformly and independently at random from [L], and we let g

to be the minor of f with respect to π.
Note that for every i ∈ [L], the distribution of g({i}) over the random minor g is the

same as sampling a random input to f where we set each bit to 1 with probability 1
L . As

P 1
L

(f) ≥ 1 − 1
2L , we get that for each i ∈ [L], g({i}) = 1 with probability at least 1 − 1

2L .
By union bound, with probability at least 1

2 , g({i}) = 1 for all i ∈ [L]. As f(0, 0, . . . , 0) = 0,
g(ϕ) = 0 as well. Thus, with probability at least 1

2 , g = THRL,1. Hence, THRL,1 is a minor
of f .

Case 2: pc > 1−a = 1− 1
L3 . Let f† be the Boolean dual of f defined as f†(x) = 1−f(x).

Note that Pp(f†) = 1 − P1−p(f) for all p ∈ [0, 1]. Thus, pc(f†) = 1 − pc < a. Using the
previous case, we can infer that THRL,1 is a minor of f† with respect to a funtion π : [n] → [L].
The same function π proves that THR†

L,1 = THRL,L is a minor of f .

Case 3: a ≤ pc ≤ 1 − a. Using Theorem 12, we obtain p1 such that Pp1(f) ≤ ϵ, and
Pp1+γ ≥ 1 − ϵ, where ϵ = 1

2L+1 , γ = 1
L3 . As γ < 1

L(L+1) , there exists L′ ∈ {L, L + 1} and
τ ∈ [L′] such that p1 +γ < τ

L′ and p1 > τ−1
L′ . Thus, we get that P τ

L′ (f) > 1− ϵ and P τ−1
L′

< ϵ.
Let g : {0, 1}L′ → {0, 1} be a uniformly random minor of f i.e. we choose π : [n] → [L′] by
setting each value uniformly and independently at random from [L′] and set g to be the minor
of f with respect to π. For a vector x ∈ {0, 1}L′ with hw(x) = τ , with probability greater
than 1 − 1

2L+1 , g(x) = 1. Similarly, for x ∈ {0, 1}L′ with hw(x) = τ − 1, with probability
greater than 1− 1

2L+1 , g(x) = 0. Thus, with non-zero probability, g(x) = 1 for all x ∈ {0, 1}L′

with hw(x) = τ and g(x) = 0 for all x ∈ {0, 1}L′ with hw(x) = τ − 1. In other words, with
non-zero probability, g is equal to THRL′,τ . Thus, THRL′,τ is a minor of f . ◀
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1 2 3 4 5 6
f

1 2 3 4 5f ′

1 2 3g

Figure 1 An illustration of the two step minor approach: Here f : {0, 1}6 → {0, 1} is a Boolean
function, f ′ : {0, 1}5 → {0, 1} is a minor of f with respect to the function π1 : [6] → [5] with
π1(i) = max(i − 1, 1), and g is a minor of f ′ with respect to the function π2 : [5] → [3] with
π2(i) = ⌈ i+1

2 ⌉.

Using the existence of arbitrarily large arity threshold minors, the algorithmic part of
our Dichotomy result follows immediately.

▶ Theorem 14. Let Γ be a Promise CSP template. Suppose that for every ϵ > 0, there
exists a function f ∈ Pol(Γ), f : {0, 1}n → {0, 1} such that Φi(f) ≤ ϵ for all i ∈ [n]. Then,
PCSP(Γ) ∈ P.

Proof. Using Lemma 13, we can conclude that there are infinitely many positive integers L

such that there exists τ ∈ {0, 1, . . . , L} with THRL,τ ∈ Pol(Γ). As the threshold functions
are symmetric2, Pol(Γ) has symmetric polymorphisms of infinitely many arities. Thus, using
the BLP+Affine algorithm of [8], PCSP(Γ) can be solved in polynomial time. ◀

We remark that the above result is inspired by a special case shown by Barto [2] that a
Boolean Ordered PCSP is polytime tractable if it has cyclic polymorphisms of arbitrarily
large arities.

4 Hardness Assuming Rich 2-to-1 Conjecture

In this section, we prove the hardness part of our dichotomy result. First, we prove that
Shapley value is preserved under uniformly random 2-to-1 minors, and then we use this to
show the hardness assuming the Rich 2-to-1 Conjecture.

4.1 Shapley value under random 2-to-1 minor
Let f : {0, 1}2n → {0, 1} be a monotone Boolean function with Φf (1) ≥ λ for some absolute
constant λ > 0. Let g : {0, 1}n → {0, 1} be a minor of f with respect to the uniformly random
2-to-1 function π : [2n] → [n]. Our goal in this subsection is to show that Eπ[Φg(π(1))] ≥ γ

for some function γ := γ(λ) > 0. We prove this in two steps. (See Figure 1)
1. First, we consider the minor of f , f ′ : {0, 1}2n−1 → {0, 1} obtained with respect to

π1 : [2n] → [2n − 1] where π1(1) = π1(2) = 1, π1(i) = i − 1 ∀i ∈ {3, 4, . . . , 2n}. We show
that Φf ′(1) ≥ λ

2 .
2. Next, we consider a minor g of f ′ obtained with respect to the function π2 : [2n− 1] → [n]

which has π2(1) = 1 while the rest 2n − 2 values are chosen using a uniformly random
partition of [2n − 2] into n − 1 pairs. We show that Eπ2 [Φg(1)] ≥ γ for some function
γ := γ(λ) > 0.

2 A function f : {0, 1}n → {0, 1} is said to be symmetric if it is unchanged by any permutation of the
input variables.
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Note that the process of first taking the f ′ minor and then obtaining g by partitioning
[2n − 2] into n − 1 uniformly random pairs is equivalent to taking a uniformly random 2-to-1
minor of f . Thus, the two steps together prove the required Shapley value property of the
uniformly random 2-to-1 minor.

The first step is captured by the following pair of lemmas, which we prove in the full
version.

▶ Lemma 15. Let f : {0, 1}2n → {0, 1} and f ′ : {0, 1}2n−1 → {0, 1} be monotone Boolean
functions such that f ′ is a minor of f with respect to the function π1 : [2n] → [2n − 1] defined
as π1(i) = max(i − 1, 1). If Φf (1) ≥ λ, then Φf ′(1) ≥ λ

2 .

▶ Lemma 16. Let f ′ : {0, 1}2n−1 → {0, 1} be a monotone Boolean function such that
Φf ′(1) = λ with λ ≥ 1

n . For an integer j ∈ {0, 1, . . . , 2n − 2}, let µ′(j) = µf ′(j)(1). Then,
there exists an absolute constant γ := γ(λ) > 0 such that∑n−1

j=0 µ′(2j)
n

≥ γ

We now prove the second step in the proof.

▶ Lemma 17. Suppose that f ′ : {0, 1}2n−1 → {0, 1} is a monotone Boolean function such that
Φf ′(1) ≥ λ with λ ≥ 1

n . Let g be a random minor of f ′ with respect to π2 : [2n−1] → [n] which
is obtained by setting π2(1) = 1, and for every i > 1, we randomly choose j1, j2 ∈ [2n−1]\{1}
(without replacements) and set π2(j1) = π2(j2) = i. In other words, we choose a uniformly
random partition of [2n − 1] \ {1} into n − 1 pairs P2, P3, . . . , Pn and set π2(j) = i ∀j ∈ Pi.
Then, there exists γ := γ(λ) > 0 such that

Eπ2 [Φg(1)] ≥ γ .

Proof. For ease of notation, we let µ′(j) = µf ′(j)(1) and µg(j) = µg(j)(1). For a set
S ⊆ [n] \ {1} and a function π2 : [2n − 1] → [n] with π2(1) = 1, and |π−1

2 (i)| = 2 for all
i ∈ {2, 3, . . . , n}, let π−1

2 (S) be the 2|S| sized subset of {2, 3, . . . , 2n − 1} defined as follows:

π−1
2 (S) := {π−1

2 (i) : i ∈ S}

For every set S ⊆ {2, 3, . . . , n}, when π2 : [2n − 1] → [n] is a uniformly random 2-to-1 minor
with π2(1) = 1, and the rest 2n − 2 elements are partitioned into n − 1 pairs uniformly at
random, the set π−1

2 (S) is distributed uniformly in
([2n−1]\{1}

2|S|
)
. Also note that S ∈ Bg(1)

if and only if π−1(S) ∈ Bf ′(1). Thus, for every set S ⊆ {2, 3, . . . , n}, the probability that
S ∈ Bg(1) (over the choice of π2) is equal to µ′(2|S|). Summing over all such sets of size j,
we get that for every j ∈ {0, 1, . . . , n − 1}, the expected value of µg(j) is equal to µ′(2j).

Eπ2 [µg(j)] = µ′(2j) ∀j ∈ {0, 1, . . . , n − 1}

By using Lemma 16, we can infer that there exists γ = γ(λ) > 0 such that
∑n−1

j=0 Eπ2 [µg(j)] =∑n−1
j=0 µ′(2j) ≥ γn. Using Equation (1), we get

Eπ2 [Φg(1)] = Eπ2

[∑n−1
j=0 µg(j)

n

]
=

∑n−1
j=0 Eπ2 [µg(j)]

n
≥ γ. ◀

Lemma 15 and Lemma 17 together prove that Shapley value behaves well under uniformly
random 2-to-1 minors for monotone Boolean functions.
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▶ Lemma 18. Suppose that f : {0, 1}2n → {0, 1} is a monotone Boolean function such that
Φf (1) ≥ λ for some absolute constant λ > 0 with λ ≥ 1

n . Then, there exists γ := γ(λ) > 0
such that

Eπ[Φg(π(1))] ≥ γ

where g is a minor of f with respect to the uniformly random 2-to-1 function π.

Proof. Combining Lemma 15 and Lemma 17, we can conclude that for every i ∈ [2n], i > 1,
when π : [2n] → [n] is a uniformly random 2-to-1 minor conditioned on the fact that
π(1) = π(i), we have Eπ[Φg(π(1))] ≥ γ. Taking average over all the i ∈ [2n], i > 1, we get a
proof that the same inequality holds when π is a uniformly random 2-to-1 minor. ◀

4.2 Reduction
We first formally define the Label Cover problem and state the Rich 2-to-1 Conjecture.

▶ Definition 19 (Label Cover). In the Label Cover problem G = (G, ΣL, ΣR, Π), the input is a
bipartite graph G = (L ∪ R, E) with projection constraint Πe : ΣL → ΣR on every edge e ∈ E.
A labeling σ which assigns values from ΣL to L and from ΣR to R satisfies the constraint Πe

on the edge e = (u, v) if Πe(σ(u)) = σ(v). The objective is to identify if there is a labeling
that satisfies all the constraints.

For every constant ϵ > 0, it is NP-hard to distinguish between the case that a given
Label Cover instance has a labeling that satisfies all the constraints vs. no labeling can
satisfy more than ϵ fraction of the constraints. This hardness result for Label Cover has been
instrumental in showing numerous strong, and sometimes optimal, inapproximability results
for various computational problems. However, standard Label Cover seems insufficient as a
starting point towards proving hardness results for approximate graph coloring and other
2-variable PCSPs. To circumvent this, the hardness of Label Cover on structured instances
such as Unique Games, smooth Label Cover, etc. has been studied.

In his celebrated work proposing the Unique Games Conjecture [20], Khot also proposed
the “2-to-1 conjecture” that the strong hardness of Label Cover holds when all the constraints
of the Label Cover are 2-to-1 functions. The imperfect completeness version of this conjecture
was recently established in a striking sequence of works [13, 14, 22, 23]. Braverman, Khot,
and Minzer [9] put forth a stronger conjecture that states that the hardness of Label Cover
holds when the distribution of 2-to-1 functions on edges incident on every vertex u ∈ L is
uniform over F2→1.

▶ Definition 20 (Rich 2-to-1 Label Cover instances). We call a Label Cover instance G =
(G, ΣL, ΣR, Π) with G = (L ∪ R, E) a rich 2-to-1 instance if the following hold.
1. There exists an integer Σ such that ΣL = [2Σ], ΣR = [Σ], and every projection constraint

Πe, e ∈ E is a 2-to-1 function.
2. For every vertex u ∈ L, the distribution of 2-to-1 functions Pu obtained by first sampling

a uniformly random neighbor v of u, and then picking Πe, e = (u, v), is uniform over
F2→1(Σ).

▶ Conjecture 21 (Rich 2-to-1 Conjecture with Perfect Completeness, [9]). For every ϵ > 0,
there exists an integer Σ = Σ(ϵ) such that given a rich 2-to-1 Label Cover instance G, it is
NP-Hard to distinguish between the following.
1. There is a labeling that satisfies all the constraints of G.
2. No labeling can satisfy more than ϵ fraction of the constraints of G.
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We are now ready to state the hardness part of our dichotomy. It is proved using the
Label Cover-Long Code framework. This reduction is standard in the PCSP literature, see
e.g., [4], and we include the proof in the full version of the paper.

▶ Theorem 22. Assume the Rich 2-to-1 Conjecture. Let PCSP(Γ) be a Boolean Ordered
PCSP such that there exists an absolute constant λ > 0 with maxi∈[n] Φf (i) ≥ λ for all
functions f : {0, 1}n → {0, 1}, f ∈ Pol(Γ). Then PCSP(Γ) is NP-Hard.

5 Adversarial 2-to-1 minor

We construct an example of a 2-to-1 minor where the Shapley value alters completely after
taking the minor.

▶ Theorem 23. Let n ≥ 2 be a positive integer. There exist two monotone Boolean functions
f : {0, 1}2n → {0, 1} and g : {0, 1}n → {0, 1} such that g is a 2-to-1 minor of f with respect
to the 2-to-1 function π : [2n] → [n] defined as π(i) = ⌈ i

2 ⌉. Furthermore,
1. Φg(1) = Ω(1), and Φg(j) = o(1) for all j > 1.
2. Φf (3) = Ω(1), and Φf (i) = o(1) for all i ∈ [2n], i ̸= 3.

Proof. Similar to the proof of Theorem 22, we construct the minor function pair in two
steps.
1. First, we construct Boolean monotone functions f : {0, 1}2n−1 → {0, 1} and g : {0, 1}n →

{0, 1} such that g is a minor of f with respect to the function π : [2n − 1] → [n] defined
as π(1) = 1, π(i) = ⌈ i+1

2 ⌉ for all i > 1. Furthermore, Φg(1) = Ω(1), and Φg(j) = o(1) for
all j > 1. We also have Φf (2) = Ω(1), and Φf (i) = o(1) for all i ∈ [2n − 1], i ̸= 2.

2. We define the function f ′ : {0, 1}2n → {0, 1} as

f ′(y1, y2, . . . , y2n) = f(y1, y3, . . . , y2n)

Note that g is a minor of f ′ with respect to the 2-to-1 function π : [2n] → [n] defined as
π(i) = ⌈ i

2 ⌉. Furthermore, by definition, we have Φf ′(3) = Ω(1), and Φf ′(i) = o(1) for all
i ∈ [2n], i ̸= 3.

Henceforth, our goal is to construct a pair of functions as in the first step above.
We define a partial Boolean function to be a function from {0, 1}n → {0, 1, ?}. A partial

Boolean function on n variables is monotone if for all p ∈ {0, 1}n and q ∈ {0, 1}n such that
p ≤ q, if f(p) = 1, then f(q) = 1, and if f(q) = 0, then f(p) = 0.

Now, consider g : {0, 1}n → {0, 1} to be

g(x) =


1 if

∑n
j=2 xj ≥ 51n

100

0 if
∑n

j=2 xj ≤ 49n
100

x1 if 49n
100 <

∑n
j=2 xj < 51n

100

By definition, g is a monotone function, and using Equation (1), we can infer that
Φg(1) = 1

50 , and Φg(j) < 1
n for all j > 1.

We now construct f in three steps. Start with f =′?′.
1. (Preserving the minor) First, set the value of entries of f that are of the form

(x1, x2, x2, · · · , xn, xn) as

f(x1, x2, x2, . . . , xn, xn) = g(x1, x2, . . . , xn) ∀x ∈ {0, 1}n

We then extend it both upwards and downwards i.e. if f(p) is set to 1 and p ≤ q, then
set f(q) = 1 as well, and similarly, if f(q) is set to 0, and p ≤ q, then we set f(p) = 0.
This ensures that g is a minor of f and that the partial function f is monotone.
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2. (Destroying the influence of 1) Next, we ensure that the Shapley value of the coordinate
1 is low by the following operation: consider all y such that f(y) has not been set in the
first step, y1 = 0 and f(1, y2, · · · , y2n−1) is already set to 1 in the first step. Then set
f(y) to be 1. Similarly, if y satisfies y1 = 1 and f(0, y2, · · · , y2n−1) is already set to 0 in
the first step, set f(y) to be 0 if it has not been set in the first step.
We claim that the updated partial function f is still a monotone partial function. Consider
p, q ∈ {0, 1}2n−1 such that p ≤ q. Suppose that f(p) is set to be 1. If it is set in the
first step, as we extended the partial function upwards in the first step, f(q) = 1 as well.
If f(p) is set to be 1 in the second step, it implies that f(p′) has been set to 1 in the first
step, where p′ is obtained from p by setting p1 to be 1. Let q′ ∈ {0, 1}2n−1 be obtained
from q by setting q1 = 1. As p′ ≤ q′, f(q′) has been set to 1 in the first step as well.
Thus, f(q) is set to be 1 in the second step. The same argument can be used to show
that if f(q) = 0, then f(p) = 0 as well.

3. (Adding influence to 2) For all y for which f(y) =′?′ set f(y) = y2. The fact that the
final function f is monotone follows from observing that any completion of a partial
monotone function using a monotone function results in a monotone function.

Finally, our goal is to argue about the Shapley value of the coordinates of the function f .
First, we show that the Shapley value of the coordinate 1 in f is o(1). Suppose there exists
p = (0, y2, y3, · · · , y2n−1) and q = (1, y2, y3, · · · , y2n−1) such that f(p) = 0 and f(q) = 1.
We claim that both the values f(p) and f(q) are set in the first step of the above procedure.
Suppose for contradiction that this is not the case. If neither of them is set in the first step,
then they will not be set in the second step either, and in the third step, both of them will
be assigned the same value, a contradiction. If exactly one of them is set in the first step,
then in the second step, the other value would be set to be equal to it, a contradiction as
well. Thus, both the values f(p) and f(q) are set in the first step.

Let B = Bg(1) ⊆ {0, 1}n−1 be the boundary of the coordinate 1 in g. As f(q) is set to be
1 in the first step, there exists x ∈ {0, 1}n such that g(x) = 1 and (x1, x2, x2, · · · , xn, xn) ≤ q.
As x is not less than or equal to p, we can conclude that x1 = 1 and g(0, x2, x3, · · · , xn) =
0. In other words, (x2, x3, · · · , xn) ∈ B. Similarly, there exists x′ such that g(x′) = 0
and (x′

1, x′
2, x′

2, · · · , x′
n, x′

n) ≥ p. By the same argument as above, we can conclude that
(x′

2, x′
3, · · · , x′

n) ∈ B. Combining the both, we can conclude that there exist x, x′ ∈ B such
that (x2, x2, x3, x3, . . . , xn, xn) ≤ (y2, y3, · · · , y2n−2) ≤ (x′

2, x′
2, x′

3, x′
3, . . . , x′

n, x′
n). Note that

if the above inequality is true for a (y2, y3, · · · , y2n−2), we directly get that (y2, y3, · · · , y2n−2)
is in the boundary of the coordinate 1 in f .

Observe that the boundary of coordinate 1 in g is the set of vectors (x2, x3, · · · , xn)
such that 49

100 n ≤
∑n

j=2 xj ≤ 51
100 n. By the previous argument, we can deduce that the

boundary B′ = Bf (1) of the coordinate 1 in f is the set of vectors y = (y2, y3, · · · , y2n−1)
that satisfy the following property: The number of i ∈ [n − 1] such that both y2i = y2i+1 = 1
is at least 49

100 n. Similarly, the number of i ∈ [n − 1] such that y2i = y2i+1 = 0 is at least
49

100 n. Observe that this implies that we require that 49
50 n ≤

∑2n−1
j=2 yj ≤ 51

50 n. However,
for every integer l such that 49

50 n ≤ l ≤ 51
50 n, when we sample a uniformly random vector

y = (y2, y3, . . . , y2n−1) with
∑2n−1

j=2 yj = l, the probability that the number of i ∈ [n − 1]
such that both y2i = y2i+1 = 1 is at least 49

100 n is o( 1
n ). Thus, using Equation (1), we can

infer that the Shapley value of the coordinate 1 in f is o(1).
We now show that the coordinate 2 has Ω(1) Shapley value in f . Consider y =

(y1, y2, . . . , y2n−1) such that 49n
50 < hw(y) ≤ 51n

50 . If the number of i such that both
y2i = y2i+1 = 1 is less than 49

100 n, we have (y1, y3, . . . , y2n−1) ∈ Bf (2). However, for
every integer l such that 49

50 n ≤ l ≤ 51
50 n, when we sample a uniformly random y with
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hw(y) = l, with probability 1 − o(1), the number of i such that both y2i = y2i+1 = 1 is less
than 49

100 n. Thus, using Equation (1), we can infer that the Shapley value of the coordinate
2 is Ω(1) in the function f . Finally, by symmetry, we can observe that Φf (i) = Φf (3) for all
i ≥ 3, and thus, Φf (i) = o(1) for all i ≥ 3. ◀
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Abstract
We study the following problem and its applications: given a homogeneous degree-d polynomial g as an
arithmetic circuit C, and a d×d matrix X whose entries are homogeneous linear polynomials, compute
g(∂/∂x1, . . . , ∂/∂xn) det X. We show that this quantity can be computed using 2ωd|C| poly(n, d)
arithmetic operations, where ω is the exponent of matrix multiplication. In the case that C is
skew, we improve this to 4d|C| poly(n, d) operations, and if furthermore X is a Hankel matrix, to
φ2d|C| poly(n, d) operations, where φ = 1+

√
5

2 is the golden ratio.
Using these observations we give faster parameterized algorithms for the matroid k-parity and

k-matroid intersection problems for linear matroids, and faster deterministic algorithms for several
problems, including the first deterministic polynomial time algorithm for testing if a linear space
of matrices of logarithmic dimension contains an invertible matrix. We also match the runtime of
the fastest deterministic algorithm for detecting subgraphs of bounded pathwidth with a new and
simple approach. Our approach generalizes several previous methods in parameterized algorithms
and can be seen as a relaxation of Waring rank based methods [Pratt, FOCS19].
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1 Introduction

Let Sn
d := Q[x1, . . . , xn]d denote the vector space of homogeneous polynomials of degree d in

n variables with rational coefficients. We define the apolar inner product ⟨·, ·⟩ : Sn
d × Sn

d → Q
via

⟨f, g⟩ := f

(
∂

∂x1
, . . . ,

∂

∂xn

)
g. (1)

Explicitly, if f =
∑

i1,...,in
ai1,...,in

xi1
1 · · · xin

n and g =
∑

i1,...,in
bi1,...,in

xi1
1 · · · xin

n , then

⟨f, g⟩ =
∑

i1,...,in

i1! · · · in!ai1,...,inbi1,...,in .

EA
T

C
S

© Cornelius Brand and Kevin Pratt;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 38; pp. 38:1–38:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cbrand@iuuk.mff.cuni.cz
mailto:kpratt@andrew.cmu.edu
https://doi.org/10.4230/LIPIcs.ICALP.2021.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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This inner product originated in 19th century invariant theory [39] and has become a source of
interest in computer science due to algorithmic applications. In a typical application, one first
identifies some easy-to-evaluate generating polynomial g whose coefficients encode solutions
to a combinatorial problem. This information can then be recovered by computing ⟨f, g⟩ for a
suitable choice of f . While this quantity can be #P hard to compute exactly, in special cases
it can be efficiently approximated. This approach has led to new algorithms for problems
as disparate as approximating permanents and mixed discriminants [25], sampling from
determinantal point processes [3], Nash social welfare maximization [5], and approximately
counting subgraphs [37].

As a motivating example, given a directed graph G with n vertices, let AG be the n × n

matrix with entry (i, j) equal to the variable xi if there is an edge from vertex vi to vertex
vj , and zero otherwise. By the trace method,

tr(Ad
G) =

∑
(vi1 ,vi2 ,...,vid

)∈G,
vid

=vi1

xi1 · · · xid
∈ Sn

d .

Now let A ∈ Qd×n be a matrix any d columns of which are linearly independent. Let
X = A · diag(x1, . . . , xn) · AT. By the Cauchy-Binet formula,

det X =
∑

S∈([n]
d )

det(AS)2
∏
i∈S

xi.

(Here AS refers to the d × d submatrix of A with columns indexed by the set S.) Since any
d columns in A are linearly independent, det(AS)2 > 0 for all S ∈

([n]
d

)
. Then note that

⟨det(AS)2 ∏
i∈S xi, tr(Ad

G)⟩ is positive if there is a simple cycle on the vertices {vi : i ∈ S},
and zero otherwise. It follows by linearity that ⟨det X, tr(Ad

G)⟩ > 0 if and only if G contains
a simple cycle of length d.

Motivated by this and other applications, we consider in our Theorems 7, 13, and 25
the algorithmic task of computing the inner product (1) when f is the determinant of a
symbolic matrix (a matrix whose entries are homogeneous linear polynomials) and g is given
as an arithmetic circuit. As one consequence, starting from the observation of the above
example we give a deterministic φ2d poly(n) < 2.62d poly(n)-time algorithm for detecting
simple cycles of length d in an n vertex graph. Here φ := 1+

√
5

2 is the golden ratio. Our
algorithm generalizes to detecting subgraphs of bounded pathwidth, unexpectedly matching
the runtime of the fastest known algorithm for this problem of [20].

Our main conceptual contribution is the observation that the following algebraic question
is central to a handful of methods in parameterized algorithms. It is motivated by the
observation that in order to obtain a (possibly randomized) algorithm for detecting cycles,
it would suffice to compute ⟨f, tr(Ad

G)⟩ for any f ∈ Sn
d that is supported exactly on the

set of all degree-d square-free monomials; det X is just one such polynomial. We call such
polynomials totally multilinear, and denote the set of all such polynomials in Sn

d by Tn,d.

▶ Question 1. Let Tn,d be the set of all f ∈ Sn
d such that f =

∑
S∈([n]

d ) cS

∏
i∈S xi, where

cS ̸= 0 for all S. What is B(d, n) := min(dim Diff(f) : f ∈ Tn,d)? Here Diff(f) denotes the
vector space spanned by the partial derivatives of all orders of f , including f itself. 1

Our algorithms, color coding [1], the group algebra approach [31], and the exterior algebra
methods of [12, 11] are all closely related to the existence of polynomials in Tn,d (or related
sets) with “unusually small” spaces of partial derivatives (see Section 5). In [37] it was shown

1 For example, Diff(x1x2) is the vector space spanned by x1x2, x1, x2, and 1.
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that a related quantity, namely the minimum Waring rank of any f ∈ Tn,d, gives upper bounds
on the complexity of certain parameterized problems. In general, the Waring rank of f ∈ Sn

d

is lower bounded by 1
d dim Diff(f), and this bound is almost never optimal [32, Section 3.2].

In this paper, we exploit that fact that, provided f can be “efficiently differentiated,” this
lower bound can be used to upper bound the complexity of these parameterized problems!
For instance, our φ2d poly(n)-time cycle detection algorithm relies on the fact that there
is a spanning set of size φ2d < 2.62d for the space of partial derivatives of the polynomial
det X above, when A is a Vandermonde matrix, that we can differentiate det X “efficiently”
with respect to. In contrast, the best best-known upper bound on the Waring rank of this
polynomial is 6.75d [37, Theorem 41].

We show in Proposition 10 that B(n, d) ≤ O(2.6d). Additionally, it is not difficult to
show that B(n, d) ≥ 2d. A proof of this fact is as follows. First, observe that dim Diff(f)
does not increase under setting variables to zero. Hence for any f ∈ Tn,d, dim Diff(f) ≥
dim Diff(c · x1x2 · · · xd) for some nonzero constant c. As Diff(c · x1x2 · · · xd) has as a basis
the collection of products of subsets of the variables x1, . . . , xd, the claim follows.

1.1 Previous approaches to computing the apolar inner product
One special case of (1) that has been the source of several recent breakthroughs is when f

and g are real stable polynomials with nonnegative coefficients; see e.g. [27, 4]. In this case
⟨f, g⟩ can be approximated (up to a factor of ed+ε) in polynomial time [2, Theorem 1.2]. For
the cases we consider, however, f and g will not both be real stable.

Another approach is based on Waring rank upper bounds [9, 26, 23, 37]. The Waring
rank of f ∈ Sn

d , denoted R(f), is defined as the minimum r such that f =
∑r

i=1 ciℓ
d
i for

linear forms ℓ1, . . . , ℓr ∈ Sn
1 and scalars c1, . . . , cr. For example, the identity

x1x2x3 = 1
24

[
(x1 + x2 + x3)3 − (x1 + x2 − x3)3 − (x1 − x2 + x3)3 − (−x1 + x2 + x3)3]

shows that R(x1x2x3) ≤ 4. Waring rank has been studied since the 1850’s [29, Introduction]
and has gained recent attention for its applications to algebraic complexity, see e.g. [13, 14].
Its relevance to the inner product (1) is due to the following fact, which can be verified by a
straightforward calculation: if f =

∑r
i=1 ci(ai,1x1 + · · · + ai,nxi)d, then for all g ∈ Sn

d ,

⟨f, g⟩ = d!
r∑

i=1
cig(ai,1, . . . , ai,n).

Hence upper bounds on R(f) yield black-box algorithms for computing ⟨f, g⟩. Furthermore,
it was shown in [37, Theorem 6] that with only evaluation access to g, R(f) queries are
required to compute this inner product. Unfortunately, R(f) is usually prohibitively large;
for instance, the Waring rank of almost all f ∈ Sn

d is at least ⌈
(

n+d−1
d

)
/n⌉ [32, Section 3.2].

It is also worth pointing out the very recent works of Arvind et al. [7, 6], in particular, [7,
Remark 4.3.], which set up a very similar framework based on non-commutative polynomials
and algebraic branching programs, on which they prove bounds that also follow from bounds
on spaces of partial derivatives.

1.2 Our approach
Given g as an arithmetic circuit C, we compute ⟨f, g⟩ symbolically. Our algorithms inductively
compute at each gate in C the result of differentiating f by the polynomial computed by
C at that gate2. At the output gate of C we will therefore have computed ⟨g, f⟩ = ⟨f, g⟩.

2 By “differentiating f by g,” we mean applying the differential operator g(∂/∂x1, . . . , ∂/∂xn) to f .
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At intermediate gates we compute and store elements of Diff(f), the vector space of partial
derivatives of f , which we represent with respect to some spanning set for this space. This
kind of symbolic manipulation of partial derivatives is reminiscent of the Baur-Strassen
Theorem and its applications (see for example [17]).

We will be particularly interested in the case when f is the determinant of a symbolic
matrix X. The advantage of this case is that for a symbolic d × d matrix X, the vector
space spanned by the partial derivatives of det X of all orders has dimension at most 4d,
and in some algorithmically relevant cases this bound can be significantly improved. So
while one might naïvely represent an element in this space as a linear combination of

(
n+d

d

)
monomials, doing so generally includes a significant amount of unnecessary information.
Instead, we represent elements in this space as linear combinations of minors (determinants
of submatrices) of X, which are specified by pairs of increasing sequences.

We will start by giving in our Theorem 7 a simple algorithm for the special but important
case when g is computed by a skew circuit, meaning one of the two operands to each
multiplication gate is a variable or a scalar:

▶ Theorem 7. Let C be a skew arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d]

be a symbolic matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with 4d|C| poly(n, d)

arithmetic operations.

Our algorithm for Theorem 7 only uses linear algebra and basic properties of differentials.
Of particular interest will be the case of Theorem 7 when X is a Hankel matrix, meaning

that Xi,j = Xi+k,j−k for all k = 0, . . . , j − i. For example, the generic 3 × 3 Hankel matrix isx1 x2 x3
x2 x3 x4
x3 x4 x5

 .

This has applications to problems such as detecting cycles in graphs and more generally
detecting square-free monomials in arithmetic circuits (Corollary 19). We show the following
improvement in this case:

▶ Theorem 13. Let C be a skew arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d]

be a symbolic Hankel matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with

φ2d|C| poly(n, d) arithmetic operations. Here φ := 1+
√

5
2 is the golden ratio.

The improvement in Theorem 13 over Theorem 7 is facilitated by the fact that the space
of partial derivatives of the determinant has dimension about 4d, whereas the dimension of
the space of partial derivatives of the determinant of a Hankel matrix is upper bounded by
φ2d (Proposition 10).

Let us point out that Hankel matrices (in their guise as squares of the Vandermonde) made
appearances already in the exterior-algebraic framework [12, 11], so that their usefulness in
our applications might perhaps not come as a complete surprise. Before this work, however,
any connections between the exterior and the partial-differential approach remained unclear,
and their exact nature remains to be determined.

Still, we do gain one such connection here: For general (not necessarily skew) circuits, we
exploit a connection between the apolar algebra of the determinant and the exterior algebra
(Lemma 24) to show the following:

▶ Theorem 25. Let C be an arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d] be

a symbolic matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with 2ωd|C| poly(n, d)

arithmetic operations, where ω < 2.373 is the exponent of matrix multiplication.
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1.3 Applications

Theorem 7 yields faster algorithms for the k-matroid intersection and matroid k-parity
problems:

▶ Problem 1 (Matroid k-Parity). Suppose we are given a matrix B ∈ Qkm×kn representing a
matroid M with groundset [kn], and a partition π of [kn] into parts of size k. Decide if the
union of any m parts in π are independent in M .

▶ Problem 2 (k-Matroid Intersection). Suppose we are given matrices B1, . . . , Bk ∈ Qm×n

representing matroids M1, . . . , Mk with the common groundset [n]. Decide if M1, . . . , Mk

share a common base.

We show in Theorems 17 and 18 that these can be solved in time 4km poly(N), where
N denotes the size of the input. When k = 2 these are the classic matroid parity and
intersection problems and can be solved in polynomial time, but for k > 2 they are NP-hard.
The first algorithms for general k faster than naïve enumeration were given by Barvinok
in [8], and had runtimes (km)2k+14km poly(N) and (km)2k4k2m poly(N), respectively. A
parameterized algorithm for Problem 1 was also given by Marx in [36] where it was used to
give fixed-parameter tractable algorithms for several other problems, including Problem 2.
The fastest algorithms prior to our work were due to Fomin et al. [20] and had runtime
2kmω poly(N), where ω < 2.373 is the exponent of matrix multiplication [33].

By combining Theorem 7 with a known construction of the determinant as a skew
circuit [35], we obtain a faster deterministic algorithm for the following problem:

▶ Problem 3 (SING). Given matrices A1, . . . , An ∈ Qd×d, decide if their span contains an
invertible matrix. Equivalently, decide if det

∑n
i=1 xiAi ̸≡ 0.

We show that SING can be solved in 4d poly(N) time in our Corollary 16. In particular, this
establishes that SING ∈ P for subspaces of matrices of logarithmic dimension. The fastest
previous deterministic algorithm, due to an observation of Gurvits in [24], had runtime
2dd! poly(N) and made use of an upper bound of 2dd! on R(detd). This problem was originally
studied by Edmonds for its application to matching problems [18]. While it is known to
admit a simple randomized polynomial time algorithm as was first observed by Lovász [34],
a deterministic polynomial time algorithm would imply circuit lower bounds that seem far
beyond current reach [30]. As a result, variants of SING have attracted attention, leading to
a recent breakthrough in the non-commutative setting [22].

Using Theorem 13, we give in Corollary 19 a deterministic φ2d poly(|C|)-time algorithm
for detecting square-free monomials of degree-d in a polynomial with non-negative coefficients
computed by a skew arithmetic circuit. Combining this with observations in [11], we obtain
the following applications:

▶ Corollary 20. The following problems admit deterministic algorithms running in time
φ2d poly(n):
1. Deciding whether a given directed n-vertex graph has a directed spanning tree with at least

d non-leaf vertices,
2. Deciding whether a given edge-colored, directed n-vertex graph has a directed spanning

tree containing at least d colors,
3. Deciding whether a given planar, edge-colored, directed n-vertex graph has a perfect

matching containing at least d colors.
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38:6 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

The previous fastest algorithms for these problems had runtimes 3.19d poly(n), 4d poly(n),
and 4d poly(n), respectively [11]. This built upon work of Gutin et al. [28] Problem (1) is the
best studied among these, with [28, Table 1] listing eleven articles on this problem in the last
fourteen years. It is worth noting that our improvements do not rely on any problem-specific
adaptations.

Theorem 13 also yields a φ2d poly(n)-time deterministic algorithm for detecting simple
cycles of length d in an n vertex directed graph (and paths, and more generally subgraphs
of bounded pathwidth). While it is known that simple cycles of length d can be detected
in randomized time 2d poly(n) [41] (1.66d poly(n) for undirected graphs [10]), it is a major
open problem to achieve the same runtime deterministically. Finding a better upper bound
on B(n, d) witnessed by a polynomial with nonnegative coefficients seems to us a promising
approach for obtaining faster deterministic algorithms for this problem.

Our cycle detection algorithm brushes up against the fastest known deterministic algorithm
for this problem which has runtime 2.55d poly(n) [40], and unexpectedly matches the runtime
of a previous algorithm [20] while using a different (shorter) approach. Our approach differs
from those of previous algorithms which have been based on paradigms such as color coding,
divide and color, and representative families [16, Chapter 5] [43]. Whereas these methods
make use of explicit constructions of pseudorandom objects such as perfect hash families,
universal sets, and representative sets, our algorithm makes use of algebraic-combinatorial
identities. This approach was foreshadowed in [12, Theorem 2]. It is important to note that
our algorithm only works for unweighted graphs (or weighted graphs with integer weights
bounded by poly(n)), while several previous algorithms work for weighted graphs. The
algorithm of [20] also extends more generally to detect subgraphs of bounded treewidth.

1.4 Algebraic considerations; the potential for improvement
In Section 4 we note that our algorithms for computing special cases of (1) yield algorithms
for performing arithmetic in a certain algebra Af associated to f , namely the apolar algebra
of f . We show in our Lemma 24 that the apolar algebra of the determinant is isomorphic
to the diagonal subalgebra of the tensor square of the exterior algebra. This algebra was
previously identified in [12] for its applications to detecting subgraphs of bounded pathwidth.
By combining this observation with known algorithms for arithmetic in the exterior algebra,
we derive our general algorithm for computing ⟨det X, g⟩.

To obtain faster deterministic algorithms for several problems such as detecting simple
cycles, we ask Question 1. Our Corollary 11 shows that B(d, n) is at most (

√
27/2)dd. This

upper bound is witnessed by the polynomial

∑
1≤i1<···<id≤n

∏
j<k

(ij − ik)2
d∏

j=1
xij

.

▶ Remark 4. The discrepancy between (
√

27/2)dd ≤ O(2.6d) and the base of the exponent
φ2d > 2.6d in our runtimes is due to the fact that we do not know how to differentiate in
nearly-linear time with respect to a basis for the above polynomial; see Further Questions
(6). Instead, we compute them with respect to a larger spanning set.

1.5 Paper outline
In the next section we prove Theorems 7 and 13. We will motivate them with the running
application of detecting simple cycles, giving in Corollary 14 our φ2d poly(n)-time algorithm.
The rest of our applications can be found in Section 3, and follow quickly from Theorems 7
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and 13, using little more than the Cauchy-Binet formula. In Section 4 we define the apolar
algebra of a polynomial. We relate the apolar algebra of the determinant to the tensor square
of the exterior algebra in Lemma 24, and use this to prove Theorem 25. We then explain the
connection to other methods in parameterized algorithms in Section 5.

2 Computing the apolar inner product for skew circuits

We start by giving an algorithm for computing (1) in the case that g is the determinant of a
symbolic matrix and f is computed by a skew arithmetic circuit C. This is a warmup for
the special case when g is the determinant of a symbolic Hankel matrix.

We fix the following notation for the rest of the paper. We denote by |C| the total number
of gates in the circuit C. Let I(d, k) ⊆ [d]k be the set of strictly increasing sequences of
length k with elements in [d]; when k = 0 we include the empty sequence in this set. Given
a d × d matrix X and tuples α, β ∈ I(d, k), we denote by X[α|β] the minor (determinant
of a submatrix) of X with rows indexed by α and columns indexed by β. We declare the
“empty minor” X[ | ] to equal one. We use the convention of writing α1, . . . , α̂i, . . . , αk to
denote the sequence α1, . . . , αi−1, αi+1, . . . , αk obtained from α by omitting αi. We call a
monomial xa1

1 · · · xan
n square-free if ai ∈ {0, 1} for all i.

For f ∈ Sn
d , Diff(f) denotes the vector space spanned by the partial derivatives of f of

all orders (this includes f itself). For example, Diff(x1x2) is the vector space spanned by
x1x2, x1, x2, and 1. The next observation is a simple bound on this quantity for determinants
of symbolic matrices, and has been essentially observed several times previously (e.g. [38,
Lemma 1.3]).

▶ Proposition 5. Let X = (ℓi,j)i,j∈[d] be a symbolic matrix with entries in Sn
1 . Then

Diff(det X) is contained in the space of minors of X. Hence

dim Diff(det X) ≤
d∑

i=0

(
d

i

)2
=

(
2d

d

)
< 4d.

Proof. Let Sd denote the symmetric group on d elements. By the Leibniz formula for the
determinant and the product rule, for any l ∈ [n],

∂ det X

∂xl
=

∑
σ∈Sd

sgn(σ)
d∑

i=1

∂ℓi,σ(i)

∂xl

∏
j ̸=i

ℓj,σ(j) =
∑

1≤i,j≤d

∂ℓi,j

∂xl

∑
σ∈Sd,σ(i)=j

sgn(σ)
∏
m ̸=i

ℓm,σ(m)

=
∑

1≤i,j≤d

(−1)i+j ∂ℓi,j

∂xl
X[1, . . . , î, . . . , d|1, . . . , ĵ, . . . , d].

Note that ∂ℓi,j

∂xl
is just a scalar. To see the last equality, consider the matrix X(ij) obtained

by setting the (i, j)th entry of X to 1, and all other entries in the ith row of X to 0. Then
det X(ij) =

∑
σ∈Sd,σ(i)=j sgn(σ)

∏
m ̸=i ℓm,σ(m), but at the same time by Laplace expansion

along the ith row of X(ij), det X(ij) = (−1)i+jX[1, . . . , î, . . . , d|1, . . . , ĵ, . . . , d].
This shows that the space of order-1 partial derivatives of det X is contained in the span

of the degree-(d − 1) minors of X. That Diff(det X) is contained in the space of minors of X

follows by repeated application of this fact. Furthermore, since square k ×k submatrices of X

can be identified by pairs of elements in I(d, k) (their row and column indices), the vector space
spanned by all minors of X has dimension at most

∑d
k=0 |I(d, k)|2 =

∑d
k=0

(
d
k

)2 =
(2d

d

)
. ◀
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▶ Lemma 6. Given as input a symbolic matrix X = (ℓi,j)i,j∈[d] with entries in Sn
1 , a linear

combination P of minors of X, and l ∈ [n], we can compute a representation for ∂P
∂xl

as a
linear combination of minors of X with 4d poly(n, d) arithmetic operations.

Proof. Let P =
∑d

k=0
∑

α,β∈I(d,k) cα,βX[α|β] and let a
(l)
i,j be the coefficient of xl in ℓi,j (so

the input consists of l and the vectors (cα,β) ∈ Q(2d
d ), (a(l)

i,j) ∈ Qd2n). Then by the same
considerations as in the proof of Proposition 5,

∂P

∂xl
=

d∑
k=1

∑
α,β∈I(d,k)

∑
1≤i,j≤k

cα,β(−1)i+ja
(l)
i,jX[α1, . . . , α̂i, . . . , αk|β1, . . . , β̂j , . . . , βk].

Note that for α, β ∈ I(d, k), the coefficient of X[α|β] in the above equals∑
1≤i,j≤k

∑
α′,β′∈I(d,k+1)

α=α′
1,...,α̂′

i,...,α′
k+1

β=β′
1,...,β̂′

j ,...,β′
k+1

(−1)i+ja
(l)
i,jcα′,β′ .

The numbers of pairs of sequences α′, β′ considered by the inner sum is naïvely bounded
by d4 (there are d positions in α where we could try to insert a number in [d] into to get
an increasing sequence, and similarly for β), and hence the coefficient of each minor can be
computed with O(d6) arithmetic operations. Since there are

(2d
d

)
minors, all coefficients can

be computed with the stated number of operations. ◀

▶ Theorem 7. Let C be a skew arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d]

be a symbolic matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with 4d|C| poly(n, d)

arithmetic operations.

Proof. Say that gate v in C computes the polynomial Cv. We will compute the inner
product (1) inductively: at gate v we will compute and store C∂

v , a representation for
Cv( ∂

∂x1
, . . . , ∂

∂xn
) det X as a linear combination of minors of X. C∂

v will be stored as a vector
of length

(2d
d

)
indexed by pairs of row and column sets. At the end of the algorithm we

will have computed f( ∂
∂x1

, . . . , ∂
∂xn

) det X (which by symmetry of the apolar inner product
equals ⟨det X, f⟩) at the output gate.

We start by computing and storing ∂
∂xl

det X at input gate xl, which by Lemma 6 can
be done in 4d poly(n, d) time. Now suppose that gate v takes input from gates v′ and v′′,
and that we have already computed C∂

v′ and C∂
v′′ . To compute C∂

v , there are two cases to
consider:
1. Cv = xi · Cv′ . Then C∂

v = ∂
∂xi

Cv′( ∂
∂x1

, . . . , ∂
∂xn

) det X = ∂
∂xi

C∂
v′ . Using Lemma 6 this

can be computed with 4d poly(n, d) operations.
2. Cv = Cv′ + Cv′′ . Since differentiation is linear, C∂

v = C∂
v′ + C∂

v′′ . Since C∂
v′ and C∂

v′′ are
vectors of length

(2d
d

)
, it takes

(2d
d

)
operations to add them.

Hence at each gate we use at most 4d poly(n, d) arithmetic operations, for a total of
4d poly(n, d)|C|. ◀

We now show how Theorem 7 can be applied to obtain a deterministic algorithm for detecting
simple cycles in graphs. This motivates the following improvement.

▶ Proposition 8. Let G be a graph on n vertices. We can decide in 4d poly(n) time if G

contains a simple cycle of length d.
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Proof. Let V ∈ Qd×n be the Vandermonde matrix with Vi,j = ji. Let X = V ·
diag(x1, . . . , xn) · V T. By the Cauchy-Binet formula,

det X =
∑

α∈I(n,d)

V [1, . . . , d|α]2
∏
i∈α

xi.

Since any d columns in V are linearly independent, V [1, . . . , d|α]2 > 0 for all α ∈ I(n, d).
Furthermore, observe that tr(Ad

G) has nonnegative coefficients and contains a square-free
monomial if and only if G contains a simple cycle of length d. It follows that ⟨det X, tr(Ad

G)⟩ ̸=
0 if and only if G contains such a cycle. In addition, tr(Ad

G) can be naïvely computed by a
skew circuit of size O(dn3). The theorem follows by applying Theorem 7, noting that we
only perform arithmetic with poly(n)-bit integers. ◀

Note that the (i, j)th entry in the matrix X in the proof of Proposition 8 equals
∑n

k=1 ki+jxk,
and therefore X is Hankel. We now show how this additional structure can be exploited.

Fix linear forms ℓ1, . . . , ℓ2d−1 ∈ Sn
1 , and let Cd be the symbolic matrix

ℓ1 ℓ2 ℓ3 · · · · · · · · · ℓ2d−2 ℓ2d−1

ℓ2 ℓ3
... ... ... ... ... 0

ℓ3
... ... ... ... ... ... 0

...
... ... ... ... ... ...

...

ℓ2d−2
... ... ... ... ... ...

...
ℓ2d−1 0 0 · · · · · · · · · · · · 0


. (2)

The minors of the form Cd[1, 2, . . . , k|b1, . . . , bk], where k ≤ d and bk ≤ 2d − k, are called
maximal. For brevity we will let [α|β] := Cd[α|β], and if [α|β] is maximal (so α = 1, . . . , k) we
further simplify this to [β]. Let Hd be the submatrix of Cd with row and column subscripts
1, . . . , d. It is readily seen that Hd is a Hankel matrix.

We will need the following fact of Conca [15, Lemma 2.1(a)]. For a subset I, we let e(I)
be its indicator vector.

▶ Lemma 9. Let α = α1, . . . , αt and β = β1, . . . , βt be sequences of positive integers. Then
for all k = 1, . . . , t,∑

I⊆[t],|I|=k

[α + e(I)|β] =
∑

J⊆[t],|J|=k

[α|β + e(J)].

Proof. We denote by αI the subsequence of α indexed by the set I, and by αÎ the subsequence
indexed by the complement of I in [t]. We let α + 1 = α1 + 1, . . . , αt + 1.

First, expanding [α + e(I)|β] with respect to the rows indexed by αI + 1:∑
I

[α + e(I)|β] =
∑

I

∑
J

(−1)|I|(−1)|J|[αI + 1|βJ ][αÎ |βĴ ].

Since Cd is Hankel, [αI + 1|βJ ] = [αI |βJ + 1]. So∑
I

[α + e(I)|β] =
∑

J

∑
I

(−1)|I|(−1)|J|[αI |βJ + 1][αÎ |βĴ ] =
∑

J

[α|β + e(J)]

where in the final equality we recognize that the middle equation equals [α|β +e(J)] expanded
with respect to the columns indexed by βJ + 1. ◀
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▶ Corollary 10. Diff(det Hd) is contained in the space of maximal minors of Cd. Furthermore,
the number of maximal minors of Cd is at most φ2d.

Proof. By Proposition 5, the space of partial derivatives of det Hd is spanned by the minors
of Cd. We now show that the maximal minors of Cd span the space of minors of Hd. We
will follow the proof of Corollary 2.2 in [15].

Let [α1, . . . , αt|β1, . . . , βt] be a minor of Cd, where t ≤ d and α1 = 1. Note that any
minor of Hd can be expressed in this form by shifting the corresponding submatrix in Cd up
and to the right. We also assume α and β are strictly increasing sequences (if this is not
the case then [α|β] vanishes). We now give an inductive procedure that expresses [α|β] as a
linear combination of maximal minors.

If αt = t, then this minor is maximal and we are done. Otherwise, let h be the smallest
index where αh > h. We now apply Lemma 9 to the minor [α1, . . . , αh−1, αh −1, . . . , αt −1|β]
with k = t − h + 1. Doing so we obtain an expression for [α|β] as a linear combination of
minors of Cd, each of which in turn have a larger “h.” We conclude by induction.

Finally, note that the number of maximal minors of degree k is |I(2d − k, k)| =
(2d−k

k

)
.

Hence the total number of maximal minors equals
∑d

k=0
(2d−k

k

)
< φ2d. In the last step

we used the facts that the dth Fibonacci number satisfies Fd =
∑⌊ d−1

2 ⌋
k=0

(
d−k−1

k

)
, and that

Fd ≤ φd−1. ◀

The next observation was noted in [37, Theorem 43].

▶ Corollary 11.

dim Diff(det Hd) ≤
d∑

i=0
min

{(
d + i

d − i

)
,

(
2d − i

i

)}
≤ (

√
27/2)d · d.

Proof. By Corollary 10, for i ≤ d/2 the degree-i piece of Diff(Hd) has dimension at most(2d−i
i

)
. We conclude by the fact that Diff(Hd)i

∼= Diff(Hd)d−i, i.e., the sequence of dimensions
of space of partial derivatives is symmetric about d/2 [29, Definition 1.9]. The inequality on
the right follows from Stirling’s formula. ◀

▶ Lemma 12. Given as input a linear combination P of maximal minors of Cd and l ∈ [n],
we can compute a representation for ∂P

∂xl
as a linear combination of maximal minors of Cd

with φ2d poly(n, d) arithmetic operations.

Proof. For brevity we will write [α] for the minor Cd[1, . . . , |α||α]. Let P =∑d
k=0

∑
β∈I(2d−k,k) cβ [β], and say that the coefficient of xl in (Cd)i,j is a

(l)
i,j . As in Lemma 6,

∂P

∂xl
=

d∑
k=1

∑
β∈I(2d−k,k)

cβ

∑
1≤i,j≤k

(−1)i+βj a
(l)
i,βj

[1, . . . , î, . . . , k|β1, . . . , β̂j , . . . , βk].

Note that the only minors with nonzero coefficient in this expression are of the form
[1, . . . , î, . . . , k|γ] for k ∈ [d], i ∈ [k] and γ ∈ I(2d − k, k − 1). Call the coefficient of this minor
in the above b(i, γ). Then

b(i, γ) =
∑

1≤j≤k

∑
β∈I(2d−k,k)

γ=(β1,...,β̂j ,...,βk)

cβ(−1)i+βj a
(l)
i,βj

.
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The number of sequences β considered by the inner sum is at most O(d2), and hence b(i, γ)
can be computed with O(d3) additions and multiplications. We can thus compute

∂P

∂xl
=

d∑
k=1

k∑
i=1

∑
γ∈I(2d−k,k−1)

b(i, γ)[1, . . . , î, . . . , k|γ] (3)

with d4 ∑d
k=1 |I(2d−k, k−1)| ≤ φ2d poly(n, d) arithmetic operations. Note that this expresses

∂P
∂xl

as a linear combination of minors that are not necessarily maximal. We now fix this.
We first claim that for all i ∈ [k] and β ∈ I(2d − k, k − 1),

[1, . . . , î, . . . , k|β] =
∑

J⊆[k−1],|J|=k−i

[e(J) + (1, . . . , k − 1)|β]

where e(J) is the indicator vector of the set J . This holds since when J = {i, . . . , k − 1},
e(J) + (1, . . . , k − 1) = (1, . . . , î, . . . , k), and for all other J , e(J) + (1, . . . , k − 1) will have a
repeated value and hence [e(J) + (1, . . . , k − 1)|β] = 0.

Given this claim, it follows from Lemma 9 that

[1, . . . , î, . . . , k|β] =
∑

J⊆[k−1],|J|=k−i

[β + e(J)],

and so letting Qk be the degree-k part of Equation 3,

Qk =
k+1∑
i=1

∑
β∈I(2d−k−1,k)

b(i, β)
∑

J⊆[k],|J|=k+1−i

[β + e(J)].

We now show how to efficiently compute the coefficients of the maximal minors in this
expression from the already computed b(i, γ)’s.

Let 0 ≤ k ≤ d − 1 be fixed. For β ∈ I(2d − k − 1, k) and integers i, j where 0 ≤ i ≤ j ≤ k,
let D(β, i, j, k) ⊆ {0, 1}k be the set of binary vectors of length k containing exactly i ones,
whose last k−j entries are zero, and whose summation with β is strictly increasing everywhere
except possibly at positions j and j + 1 (that is, we may have wj + βj = wj+1 + βj+1). Define

Ak(i, j) :=
∑

β∈I(2d−k−1,k)

b(k + 1 − i, β)
∑

w∈D(β,i,j,k)

[β + w].

Note that
∑k

i=0 Ak(i, k) = Qk, so it suffices to show how to compute Ak(i, j) for all i, j. We
do this with a dynamic program. When we store Ak(i, j) we will store all coefficients of
maximal minors arising in the above definition, even though such a minor might contain a
repeated column and hence equal zero. The minors arising in this definition are specified by
sequences of length k with maximum value 2d − k that are strictly increasing everywhere
but possibly at one position. Hence the number of such sequences is at most k

(2d−k
k

)
.

For the base cases, we have

Ak(0, j) =
∑

β∈I(2d−k−1,k)

b(k + 1, β)[β],

Ak(i, i) =
∑

β∈I(2d−k−1,k)

b(k + 1 − i, β)[β + e({1, . . . , i})].
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Now suppose we have computed Ak(i, j − 1) and Ak(i − 1, j − 1). Then

Ak(i, j) =
∑

β∈I(2d−k−1,k)

b(k + 1 − i, β)

 ∑
w∈B(β,i,j,k),

wj=0

[β + w] +
∑

w∈D(β,i,j,k),
wj=1

[β + w]


=

∑
β∈I(2d−k−1,k)

b(k + 1 − i, β)
∑

w∈D(β,i,j−1,k),
β+w is strictly increasing

[β + w]

+
∑

β∈I(2d−k−1,k)

b(k + 1 − i, β)
∑

w∈D(β,i−1,j−1,k)

[β + w + e({j})].

The first part of the sum can be computed from Ak(i, j − 1) by setting the coefficient
of any maximal minor with a repeated column equal zero, and the second sum can be
computed from Ak(i − 1, j − 1) by setting the coefficient of [β] to that of [β − e({j})]. Hence
Ak(i, j) can be computed with O(k

(2d−k
k

)
) arithmetic operations. It follows that we can

represent ∂P
∂xl

=
∑d−1

i=0 Qi in the space of maximal minors using φ2d poly(n, d) arithmetic
operations. ◀

With this we have the following analog of Theorem 7. We omit the proof as it is almost
exactly the same, we just work in the space of maximal minors rather than minors, using
Lemma 12 to differentiate instead of Lemma 6.

▶ Theorem 13. Let C be a skew arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d]

be a symbolic Hankel matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with

φ2d|C| poly(n, d) arithmetic operations. Here φ := 1+
√

5
2 is the golden ratio.

▶ Corollary 14. Let G be a graph on n vertices. We can decide in φ2d poly(n) time if G

contains a simple cycle of length d.

Proof. Let V ∈ Qd×n be the Vandermonde matrix with Vi,j = ji, and X = V ·
diag(x1, . . . , xn) · V T. By the same argument of Proposition 8, ⟨det X, tr(Ad

G)⟩ ̸= 0 if
and only if G contains a simple cycle of length d. Note that the (i, j)th entry in X equals∑n

k=1 ki+jxk, and therefore X is Hankel. We conclude by applying Theorem 13 to compute
⟨det X, tr(AG)d⟩, as tr(Ad

G) can be computed by a skew circuit of size poly(n). ◀

▶ Remark 15. This algorithm extends to detecting subgraphs of bounded pathwidth on
d vertices by using the construction of the subgraph generating polynomial given in [12,
Appendix B].

3 Applications

In this section we give our applications of Theorems 1 and 2.

▶ Corollary 16. Given matrices A1, . . . , An ∈ Qd×d, we can decide if their span contains an
invertible matrix in time 4d poly(N), where N denotes the size of the input.

Proof. Let X =
∑n

i=1 xiAi. First note that span(A1, . . . , An) contains an invertible matrix
if and only if det X ̸≡ 0. Writing det X =

∑
α∈[d]n cαxα for some coefficients cα (at least one

of which will be nonzero iff the answer is “yes”), observe that ⟨det X, det X⟩ =
∑

α c2
αα!. It

follows that span(A1, . . . , An) contains an invertible matrix if and only if this quantity is
nonzero.
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It is shown in [35] that detd can be expressed as a skew circuit of size O(d4), and the
construction of this circuit is linear in the output size. Hence we can construct a circuit for
det X by replacing the input variable xij in this circuit with the (i, j)th entry of X. The
theorem follows by applying Theorem 7 to the matrix X and this circuit, noting that all
numbers have bit-length poly(N) throughout the algorithm. ◀

▶ Corollary 17. Suppose we are given a matrix A ∈ Qkm×kn, where n ≥ m, representing a
matroid M with groundset [kn], and a partition π of [kn] into parts of size k. Then we can
decide if the union of any m parts in π are independent in M in time 4km poly(N), where
N is the size of the input. 3

Proof. Let g := (
∑

S∈π

∏
i∈S xi)m. It is easily seen that the square-free monomials appearing

in g correspond to unions of m elements in π, and that g can be computed by a skew circuit
of size poly(n). Next, let X = A · diag(x1, . . . , xn) · AT. By the Cauchy-Binet formula,

det X =
∑

S∈Bases(M)

det(BS)2
∏
i∈S

xi,

Note that the same monomial appears in the expansion of g and det X exactly when there is
such an independent set in M , and then since g and det X have non-negative coefficients,
⟨det X, g⟩ ̸= 0 if and only if an independent set in M is the union of m blocks in π. We
conclude by applying Theorem 7. ◀

Using the same trick as in [36] we can use Corollary 17 to solve the k-matroid intersection
problem.

▶ Corollary 18 (k-Matroid Intersection). Suppose we are given matrices B1, . . . , Bk ∈ Qm×n

representing matroids M1, . . . , Mk with the common groundset [n]. We can decide if
M1, . . . , Mk share a common base in time 4km poly(N), where N is the size of the input.

Proof. Let M =
⊕k

i=1 Bk be the direct sum of the input matrices. We first partition [kn]
into n parts of size k as follows: for i ∈ [n], let Si := {i, i + n, i + 2n, . . . , i + kn}. If a
union of m of the blocks S1, . . . , Sn are independent in the matroid represented by M , then
M1, . . . , Mk share a common base. Conversely, if these matroids share a common base, some
union of the Si’s are independent in the matroid represented by M . We conclude by applying
Corollary 17 to the matrix M ∈ Qkm×kn and the partition S1, . . . , Sn. ◀

Finally, we have our applications of Theorem 13. These follow immediately by a reduction
given in [11, Theorem 1] to the following “square-free monomial detection” algorithm.

▶ Corollary 19. Let g ∈ Q[x1, . . . , xn]d be a homogeneous degree-d polynomial with nonneg-
ative coefficients, computed by a skew arithmetic circuit C. Given as input C, we can decide
in deterministic φ2d|C| poly(n) time whether g contains a degree-d square-free monomial.

Proof. Let V ∈ Qd×n be the Vandermonde matrix with Vi,j = ji, and X = V ·
diag(x1, . . . , xn) · V T. By the Cauchy-Binet formula,

det X =
∑

S⊆([n]
d )

det(VS)2
∏
i∈S

xi.

3 Similar to the Theorem 1.1 of [36], this algorithm can be modified to work for finite fields of sufficiently
large size with the addition of randomness.
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Since any d columns in V are linearly independent, det(VS)2 > 0 for all S. It follows that
since g has nonnegative coefficients, ⟨det X, g⟩ ̸= 0 if and only if g contains a square-free
monomial. Note that the (i, j)th entry in X equals

∑n
k=1 ki+jxk, and therefore X is Hankel.

The theorem follows by invoking Theorem 13. ◀

By [11, Theorem 1], we then have:

▶ Corollary 20. The following problems admit deterministic algorithms running in time
φ2d poly(n):
1. Deciding whether a given directed n-vertex graph has a directed spanning tree with at least

d non-leaf vertices,
2. Deciding whether a given edge-colored, directed n-vertex graph has a directed spanning

tree containing at least d colors,
3. Deciding whether a given planar, edge-colored, directed n-vertex graph has a perfect

matching containing at least d colors.

4 A general algorithm: the apolar algebra of the determinant

4.1 Algebraic preliminaries
Let Rn := Q[∂1, . . . , ∂n] be the ring of partial differential operators. Elements of this ring
are just multivariate polynomials in the variables ∂1, . . . , ∂n. For an n-tuple α ∈ Nn, we let
∂α be the monomial ∂α1

1 · · · ∂αn
n , and let |α| =

∑n
i=1 αi. For h ∈ R and f ∈ S, we denote by

h ◦ f the result of applying the differential operator h to f . For example,

(3 · ∂1∂2 + ∂2
1) ◦ x2

1x2 = 3 · ∂1∂2 ◦ x2
1x2 + ∂2

1 ◦ x2
1x2 = 6x1 + 2x2.

When h and f are homogeneous of the same degree, h◦f is a scalar. In this case f(∂1, . . . , ∂n)◦
g = ⟨f, g⟩, so computing h ◦ f is equivalent to computing the apolar inner product.

▶ Definition 21. For f ∈ Sn
d , we define Ann(f) as the ideal of elements in Rn annihilating

f under differentiation. We define the apolar algebra Af as the quotient Rn/ Ann(f).

In other words, Af is the ring of representatives of equivalence classes of differential operators
subject to the equivalence relation ∼, where h ∼ h′ if and only if h ◦ f = h′ ◦ f . It follows
that there is a vector space isomorphism J between Af and Diff(f), sending h ∈ Af to h ◦ f .
In particular, (Af )i

∼= Diff(f)d−i, where we denote by (Af )i the vector space of degree-i
elements in Af .

▶ Remark 22. Multiplication in Af corresponds to differentiating by f : for h1, h2 ∈ Af ,
J (h1 · h2) = h1 ◦ (h2 ◦ f). It follows that Lemmas 6 and 12 are algorithms for multiplication
by ∂l in Adet X , with respect to the spanning sets of Adet X given by the inverse images of
the minors (or maximal minors) of X.

▶ Definition 23. Λ(Qn) ⊗ Λ(Qn) is the algebra with the basis of formal variables {(I|J) :
I, J ⊆ [n]}, and where multiplication is given by extending bilinearly the rule

(I|J) · (I ′|J ′) =
{

0 if I ∩ I ′ ̸= ∅ or J ∩ J ′ ̸= ∅,

sgn(I, I ′) sgn(J, J ′)(I ∪ I ′|J ∪ J ′) else

where sgn(I, I ′) = (−1)|{i∈I,i′∈I′:i>i′}|.
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▶ Lemma 24. Adetn is isomorphic to the subalgebra of Λ(Qn) ⊗ Λ(Qn) generated by {v ⊗ v :
v ∈ Λ(Qn)}.

Proof. We first claim that the set of monomials of the form (I|J) := ∂I1,J1 · · · ∂Ik,Jk
, where

I, J ∈ I(n, k) and 0 ≤ k ≤ n, are a basis for Adetn . This follows from the fact that there are(2n
n

)
such monomials, dim Diff(detn) =

(2n
n

)
, and the polynomials of the form (I|J) ◦ detn

are linearly independent. The latter claim can be seen by noting that if (I|J) ̸= (I ′|J ′),
(I|J) ◦ detn and (I ′|J ′) ◦ detn have disjoint sets of monomials appearing in their expansion.

Next we claim that the product of two basis elements (I|J) and (I ′|J ′) is given by the
rule

(I|J) · (I ′|J ′) =
{

0 if I ∩ I ′ ̸= ∅ or J ∩ J ′ ̸= ∅,

sgn(I, I ′) sgn(J, J ′)(I ∪ I ′|J ∪ J ′) else

where sgn(I, I ′) denotes the sign of the permutation that brings the sequence I1, . . . , Ik′ into
increasing order, and I ∪ I ′ denotes the resulting sorted sequence. Indeed, if I ∩ I ′ ≠ ∅,
then (I|J)(I ′|J ′) is divisible by the product of two variables that have the same first (row)
index. But then (I|J)(I ′|J ′) ◦ detn = 0, since all monomials in the determinant have different
row indices. The second case follows from the fact that for I, J ∈ I(n, k) and τ ∈ Sk,
(I|J) ◦ detn = sgn τ−1 · (τ(I)|J) ◦ detn, which follows from the Leibniz formula for the
determinant.

It follows from these observations that Adetn
is the claimed subalgebra of Λ(Qn) ⊗

Λ(Qn). ◀

▶ Theorem 25. Let C be an arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d] be

a symbolic matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with 2ωd|C| poly(n, d)

arithmetic operations, where ω < 2.373 is the exponent of matrix multiplication.

Proof. Assume that the entries of X are linearly independent. If this is not the case, add a
new variable xi,j to the (i, j)th entry of X. Note that since these variables do not appear in
g, this does not change the value of ⟨det X, g⟩.

Let A : Sn
1 → Q[y1,1, . . . , yd,d]1 be the linear transformation sending the linear form

Xi,j to the variable yi,j . By [19, Corollary 3.1], ⟨det X, g⟩ = ⟨det Y, g((A−1)T (x1, . . . , xn))⟩,
where Yi,j = yi,j . So we will first modify C by applying the linear transformation (A−1)T

to the input gates, obtaining a new circuit C ′. We then will evaluate C ′ over Adet Y ,
using the monomial basis of Lemma 24. Additions in Adet Y can be done in time linear
in the number of basis elements, which is bounded above by 4d. By identifying Adetd

with the subalgebra of diagonal elements in Λ(Qd) ⊗ Λ(Qd), and using the 2ωd poly(d)-
time algorithm of [42, Theorem 14] for multiplying elements in Λ(Qd) ⊗ Λ(Qd), we can
multiply elements in Adetd

with 2ωd poly(d) operations. Note that the highest degree
element in this basis is q := ∂1,1∂2,2 · · · ∂d,d. The output gate of of C ′ therefore equals
(A−1)T · g mod Ann(det Y ) = ⟨det X,g⟩q

⟨det Y,q⟩ = ⟨det X, g⟩q. ◀

5 Totally Multilinear Polynomials and Previous Methods

We now explain how previous algorithms relate to answers to Question 1. Recall for
comparison that Proposition 10 implies that B(n, d) ≤ O(2.6d), and is witnessed by the
polynomial

f =
∑

1≤i1<···<id≤n

∏
j<k

(ij − ik)2
d∏

j=1
xij

.
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Furthermore, we showed in Lemma 12 that given an element of Diff(f), the linear map
∂i : Diff(f) → Diff(f) could be computed in time φ2d poly(n) with respect to the spanning
set of maximal minors.

5.1 Color coding
Let F be an (n, d) perfect hash family, that is, a family of functions from [n] to [d] such that
for any subset of [n] of size d, some function in F is injective on [d]. It can be shown by a
straightforward random argument that there exists such an F with size at most ed poly(n) [1].

Now for π ∈ F and i ∈ [d], define the linear forms ℓπ,i =
∑

j∈π−1(i) xj . Let f =∑
π∈F

∏d
i=1 ℓπ,i. Then from the definition of a perfect hash family it follows that f ∈ Tn,d.

As the space of partial derivatives of a product of d linear forms has dimension at most 2d,
dim Diff(f) ≤ |F|2d ≤ (2e)d poly(n).

Explicitly, Diff(f) is spanned by
∏

i∈S ℓπ,i for all S ⊆ [d] and π ∈ F . In addition, the
operator ∂j can efficiently be computed with respect to this spanning set; this follows from
the fact that ∂j

∏
i∈S ℓπ,i =

∏
i∈S:j /∈π−1(i) ℓπ,i (i.e., the matrix representing ∂i is sparse).

Hence color coding can be interpreted in our framework as using the polynomial f .

5.2 Waring rank
In [37] an improvement to the color-coding construction was given. Let F be an (n, d, 1.55d)-
splitter, that is, a family of functions from [n] to [1.55d] such that for any subset S of [1.55d]
of size d, there exists some π ∈ F that is injective on S.

Let en,d denote the elementary symmetric polynomial of degree d in n variables. For
π ∈ F and i ∈ [1.55d], define the linear forms ℓπ,i =

∑
j∈π−1(i) xj . Let

f =
∑
π∈F

e1.55d,d(ℓπ,1, . . . , ℓπ,1.55d).

Since F is a splitter it follows that f ∈ Tn,d. By using bounds on |F| and the Waring rank
of en,d, it was shown in [37][Theorem 7] that the Waring rank of f is at most 4.075d poly(n).
Since in general dim Diff(f) ≤ R(f)/(d + 1), we conclude that B(n, d) ≤ dim Diff(f) ≤
4.075d poly(n).

5.3 Abelian 2 Groups
Let k be a field of characteristic 2 of size at least n, and let A be a d × n matrix, any d

columns of which are linearly independent. It was shown in Section 3.3 of [37] that the
polynomial f =

∑
S∈([n]

d ) det(AS)2 ∏
i∈S xi has Waring rank at most 2d − 1, and hence

dim Diff(f) ≤ (d + 1)(2d − 1).

6 Further questions

1. We showed that 2d ≤ B(n, d) < (
√

27/2)dd. Can these bounds be improved?
2. Let X be a generic Hankel matrix. Can the bound dim Diff(det X) ≤ (

√
27/2)dd be

improved? We suspect that the base of the exponent is optimal.
3. Let X be a generic Hankel matrix. Can the linear map Ai : Diff(det X) → Diff(det X)

given by differentiation with respect to the any variable xi be computed in linear time
with respect to a spanning set of size (

√
27/2)dd (rather than φ2d)?

4. Do the methods of [21, 43, 40] have an interpretation in our framework?
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Abstract
We consider the classic problem of computing the Longest Common Subsequence (LCS) of two
strings of length n. While a simple quadratic algorithm has been known for the problem for more
than 40 years, no faster algorithm has been found despite an extensive effort. The lack of progress on
the problem has recently been explained by Abboud, Backurs, and Vassilevska Williams [FOCS’15]
and Bringmann and Künnemann [FOCS’15] who proved that there is no subquadratic algorithm
unless the Strong Exponential Time Hypothesis fails. This major roadblock for getting faster
exact algorithms has led the community to look for subquadratic approximation algorithms for the
problem.

Yet, unlike the edit distance problem for which a constant-factor approximation in almost-linear
time is known, very little progress has been made on LCS, making it a notoriously difficult problem
also in the realm of approximation. For the general setting (where we make no assumption on the
length of the optimum solution or the alphabet size), only a naive O(nε/2)-approximation algorithm
with running time Õ(n2−ε) has been known, for any constant 0 < ε ≤ 1. Recently, a breakthrough
result by Hajiaghayi, Seddighin, Seddighin, and Sun [SODA’19] provided a linear-time algorithm that
yields a O(n0.497956)-approximation in expectation; improving upon the naive O(

√
n)-approximation

for the first time.
In this paper, we provide an algorithm that in time O(n2−ε) computes an Õ(n2ε/5)-approximation

with high probability, for any 0 < ε ≤ 1. Our result (1) gives an Õ(n0.4)-approximation in linear
time, improving upon the bound of Hajiaghayi, Seddighin, Seddighin, and Sun, (2) provides an
algorithm whose approximation scales with any subquadratic running time O(n2−ε), improving
upon the naive bound of O(nε/2) for any ε, and (3) instead of only in expectation, succeeds with
high probability.
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1 Introduction

The longest common subsequence (LCS) of two strings x and y is the longest string that
appears as a subsequence of both strings. The length of the LCS of x and y, which we denote
by L(x, y), is one of the most fundamental measures of similarity between two strings and
has drawn significant interest in last five decades, see, e.g. [35, 6, 26, 27, 30, 32, 10, 31, 11,
36, 22, 16, 28, 2, 19, 4, 20, 3, 33, 34, 24]. On strings of length n, the LCS problem can be
solved exactly in quadratic time O(n2) using a classical dynamic programming approach [35].
Despite an extensive line of research the quadratic running time has been improved only by
logarithmic factors [30]. This lack of progress is explained by a recent result showing that any
truly subquadratic algorithm for LCS would falsify the Strong Exponential Time Hypothesis
(SETH); this has been proven independently by Abboud et al. [2] and by Bringmann and
Künnemann [19]. Further work in this direction shows that even a high polylogarithmic
speedup for LCS would have surprising consequences [4, 3]. For the closely related edit
distance the situation is similar, as the classic quadratic running time can be improved by
logarithmic factors, but any truly subquadratic algorithm would falsify SETH [12].

These strong hardness results naturally bring up the question whether LCS or edit distance
can be efficiently approximated (namely, whether an algorithm with truly subquadratic time
O(n2−ε) for any constant ε > 0, can produce a good approximation in the worst-case). In the
last two decades, significant progress has been made towards designing efficient approximation
algorithms for edit distance [14, 13, 15, 9, 7, 21, 23, 29, 17]; the latest achievement is a
constant-factor approximation in almost-linear1 time [8].

For LCS the picture is much more frustrating. The LCS problem has a simple Õ(nε/2)-
approximation algorithm with running time O(n2−ε) for any constant 0 < ε < 1, and it has a
trivial |Σ|-approximation algorithm with running time O(n) for strings over alphabet Σ. Yet,
improving upon these naive bounds has evaded the community until very recently, making
LCS a notoriously hard problem to approximate. In 2019, Rubinstein et al. [33] presented
a subquadratic-time O(λ3)-approximation, where λ is the ratio of the string length to the
length of the optimal LCS. For binary alphabet, Rubinstein and Song [34] recently improved
the 2-approximation. In the general case (where λ and the alphabet size are arbitrary),
the naive O(

√
n)-approximation in near-linear2 time was recently beaten by Hajiaghayi et

al. [24], who designed a linear-time algorithm that computes an O(n0.497956)-approximation
in expectation.3 Nonetheless, the gap between the upper bound provided by Hajiaghayi et
al. [24] and the recent results on hardness of approximation [1, 5] remains huge.

1.1 Our Contribution
We present a randomized Õ(n0.4)-approximation for LCS running in linear time O(n), where
the approximation guarantee holds with high probability4. More generally, we obtain a
tradeoff between approximation guarantee and running time: For any 0 < ε ≤ 1 we achieve
approximation ratio Õ(n2ϵ/5) in time O(n2−ε). Formally we prove the following:

1 By almost-linear we mean time O(n1+ε) for a constant ε > 0 that can be chosen arbitrarily small.
2 By near-linear we mean time Õ(n), where Õ hides polylogarithmic factors in n.
3 While the SODA proceedings version of [24] claimed a high probability bound, the newer corrected

Arxiv version [25] only claims that the algorithm outputs an O(n0.497956)-approximation in expectation.
Personal communications with the authors confirm that the result indeed holds only in expectation, see
also Remark 14.

4 We say that an event happens with high probability (w.h.p.) if it has probability at least 1 − n−c, where
the constant c > 0 can be chosen in advance.
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▶ Theorem 1. There is a randomized algorithm that, given strings x, y of length n ≥ 1
and a time budget T ∈ [n, n2], with high probability computes a multiplicative Õ(n0.8/T 0.4)-
approximation of the length of the LCS of x and y in time O(T ).

The improvement over the state of the art can be summarized as follows:
1. An improved approximation ratio for the linear time regime: from O(n0.497956) [24] to

Õ(n0.4);
2. The first algorithm which improves upon the naive bound with high probability4;
3. A generalization to running time O(n2−ε), breaking the naive approximation ratio Õ(nε/2)

in general.

2 Technical Overview

We combine classic exact algorithms for LCS with different subsampling strategies to develop
several algorithms that work in different regimes of the problem. A combination of these
algorithms then yields the full approximation algorithm.

Our Algorithm 1 covers the regime of short LCS, i.e., when the LCS has length at most
nγ for an appropriate constant γ < 1 depending on the running time budget. In this regime,
we decrease the length of the string x by subsampling. This naturally allows to run classic
exact algorithms for LCS on the subsampled string x (which now has significantly smaller
size) and the original string y, while not deteriorating the LCS between the two strings too
much.

For the remaining parts of the algorithm, the strings x and y are split into substrings
x1, . . . , xn/m and y1, . . . , yn/m of length m = n/

√
T where T denotes the total running time

budget. For any block (i, j) we write Lij for the length of the LCS of xi and yj . We call a
set S = {(i1, j1), . . . , (ik, jk)} with i1 < . . . < ik and j1 < . . . < jk a block sequence. Since we
can assume the LCS of x and y to be long, it follows that there exists a good “block-aligned
LCS”, more precisely there exists a block sequence with large LCS sum

∑
(i,j)∈S Lij .

Now, a natural approach is to compute estimates 0 ≤ L̃ij ≤ Lij for all blocks (i, j) and
to determine the maximum sum L̃ =

∑
(i,j)∈S L̃ij over all block sequences S. Once we

have estimates L̃ij , the maximum L̃ can be computed by dynamic programming in time
O((n/m)2), which is O(T ) for our choice of m. In the following we describe three different
strategies to compute estimates L̃ij . The major difficulty is that on average per block (i, j)
we can only afford time Õ(1) to compute an estimate L̃ij .

The first strategy focuses on matching pairs. A matching pair of strings s, t is a pair of
indices (a, b) such that s[a] = t[b]. We write Mij for the number of matching pairs of the
strings xi and yj . Our Algorithm 2 works well if some block sequence S has a large total
number of matching pairs µ =

∑
(i,j)∈S Mij . Here the key observation (Lemma 7) is that for

each block (i, j) there exists a symbol that occurs at least Mij

2m times in both xi and yj . If
Mij is large, matching this symbol provides a good approximation for Lij . Unfortunately,
since we can afford only Õ(1) running time per block, finding a frequent symbol is difficult.
We develop as a new tool an algorithm that w.h.p. finds a frequent symbol in each block
with an above-average number of matching pairs, see Lemma 8.

For our remaining two strategies we can assume the optimal LCS L to be large and µ

to be small (i.e., every block sequence has a small total number of matching pairs). In our
Algorithm 3, we analyze the case where λ =

∑
i,j Lij is large. Here we pick some diagonal

and run our basic approximation algorithm on each block along the diagonal. Since there
are O(n/m) diagonals, an above-average diagonal has a total LCS of Ω(λ/(n/m)). If λ is
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large then this provides a good estimation of the LCS. The main difficulty is how to find an
above-average diagonal. A random diagonal has a good LCS sum in expectation, but not
necessarily with good probability. Our solution is a non-uniform sampling, where we first test
random blocks until we find a block with large LCS, and then choose the diagonal containing
this seed block. This sampling yields an above-average diagonal with good probability.

Recall that there always exists a block sequence G with large LCS sum (see Lemma 11).
The idea of our Algorithm 4 is to focus on a uniformly random subset of all blocks, where
each block is picked with probability p. Then on each picked block we can spend more time
(specifically time Õ(1/p)) to compute an estimate L̃ij . Moreover, we still find a p-fraction
of G. We analyze this algorithm in terms of µ and λ (the choice of p depends on these two
parameters) and show that it works well in the complementary regimes of Algorithms 1-3.

Comparison with the Previous Approach of Hajiaghayi et al. [24]. The general approach
of splitting x and y into blocks and performing dynamic programming over estimates L̃ij

was introduced by Hajiaghayi et al. [24]. Moreover, our Algorithm 1 has essentially the same
guarantees as [24, Algorithm 1], but ours is a simple combination of generic parts that we
reuse in our later algorithms, thus simplifying the overall algorithm.

Our Algorithm 2 follows the same idea as [24, Algorithm 3], in that we want to find
a frequent symbol in xi and yj and match only this symbol to obtain an estimate L̃ij .
Hajiaghayi et al. find a frequent symbol by picking a random symbol σ in each block xi, yj ;
in expectation σ appears at least Mij

2m times in xi and yj . In order to obtain with high
probability guarantees, we need to develop a new tool for finding frequent symbols not only
in expectation but even with high probability, see Lemma 8 and Remark 14.

The remainder of the approach differs significantly; our Algorithms 3 and 4 are very
different compared to [24, Algorithms 2 and 4]. In the following we discuss their ideas. In
[24, Algorithm 2], they argue about the alphabet size, splitting the alphabet into frequent
and infrequent letters. For infrequent letters the total number of matching pairs is small,
so augmenting a classic exact algorithm by subsampling works well. Therefore, they can
assume that every letter is frequent and thus the alphabet size is small. We avoid this line of
reasoning. Finally, [24, Algorithm 4] is their most involved algorithm. Assuming that their
other algorithms have failed to produce a sufficiently good approximation, they show that
each part xi and yj can be turned into a semi-permutation by a little subsampling. Then
by leveraging Dilworth’s theorem and Tuŕan’s theorem they show that most blocks have an
LCS length of at least n1/6; this can be seen as a triangle inequality for LCS and is their
most novel contribution. This results in a highly non-trivial algorithm making clever use of
combinatorial machinery.

We show that these ideas can be completely avoided, by instead relying on classic
algorithms based on matching pairs augmented by subsampling. Specifically, we replace their
combinatorial machinery by our Algorithms 3 and 4 described above (recall that Algorithm
3 considers a non-uniformly sampled random diagonal while Algorithm 4 subsamples the set
of blocks to be able to spend more time per block). We stress that our solution completely
avoids the concept of semi-permutation or any heavy combinatorial machinery as used in [24,
Algorithm 4], while providing a significantly improved approximation guarantee.

Organization of the Paper. Section 3 introduces notation and a classical algorithm by
Hunt and Szymanski. In Section 4 we present our new tools, in particular for finding frequent
symbols. Section 5 contains our main algorithm, split into four parts that are presented in
Sections 5.1, 5.3, 5.4, and 5.5, and combined in Section 5.6.
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3 Preliminaries

For n ∈ N we write [n] = {1, 2, . . . , n}. By the notation Õ and Ω̃ we hide factors of the
form polylog(n). We use “with high probability” (w.h.p.) to denote probabilities of the form
1 − n−c, where the constant c > 0 can be chosen in advance.

String Notation. A string x over alphabet Σ is a finite sequence of letters in Σ. We denote
its length by |x| and its i-th letter by x[i]. We also denote by x[i..j] the substring consisting
of letters x[i] . . . x[j]. For any indices i1 < i2 < . . . < ik the string z = x[i1] . . . x[ik] forms a
subsequence of x. For strings x, y we denote by L(x, y) the length of the longest common
subsequence of x and y. In this paper we study the problem of approximating L(x, y) for
given strings x, y of length n. We focus on the length L(x, y), however, our algorithms can be
easily adapted to also reconstruct a subsequence attaining the output length. If x, y are clear
from the context, we may replace L(x, y) by L. Throughout the paper we assume that the
alphabet is Σ ⊆ [O(n)] (this is without loss of generality after a Õ(n)-time preprocessing).

Matching Pairs. For a symbol σ ∈ Σ, we denote the number of times that σ appears in x

by #σ(x), and call this the frequency of σ in x. For strings x and y, a matching pair is a pair
(i, j) with x[i] = y[j]. We denote the number of matching pairs by M(x, y). If x, y are clear
from the context, we may replace M(x, y) by M . Observe that M =

∑
σ∈Σ #σ(x) · #σ(y).

Using this equation we can compute M in time O(n).
Hunt and Szymanski [27] solved the LCS problem in time Õ(n + M). More precisely,

their algorithm can be viewed as having a preprocessing phase that only reads y and runs in
time Õ(|y|), and a query phase that reads x and y and takes time Õ(|x| + M).

▶ Theorem 2 (Hunt and Szymanski [27]). We can preprocess a string y in time Õ(|y|). Given
a string x and a preprocessed string y, we can compute their LCS in time Õ(|x| + M).

4 New Basic Tools

4.1 Basic Approximation Algorithm
Throughout this section we abbreviate L = L(x, y) and M = M(x, y). We start with the
basic approximation algorithm that is central to our approach; most of our later algorithms
use this as a subroutine. This algorithm subsamples the string x and then runs Hunt and
Szymanski’s algorithm (Theorem 2).

▶ Lemma 3 (Basic Approximation Algorithm). Let x, y ∈ Σn. We can preprocess y in time
Õ(n). Given x, the preprocessed string y, and β ≥ 1, in expected time Õ((n + M)/β + 1) we
can compute a value L̃ ≤ L that w.h.p. satisfies L̃ > L

β − 1.

Proof. In the preprocessing phase, we run the preprocessing of Theorem 2 on y.
Fix a constant c ≥ 1. If β ≥ 1/(8c log n), then in the query phase we simply run

Theorem 2, solving LCS exactly in time Õ(|x| + M) = Õ((n + M)/β + 1).
Otherwise, denote by x′ a random subsequence of x, where each letter x[i] is removed

independently with probability 1 − p (i.e., kept with probability p) for p := 8c log(n)/β.
Note that p ≤ 1 by our assumption on β. We can sample x′ in expected time O(|x′| + 1),
since the difference from one unremoved letter to the next is geometrically distributed, and
geometric random variates can be sampled in expected time O(1), see, e.g., [18]. Note that
this subsampling yields E[|x′|] = p|x| = Õ(|x|/β) and E[M(x′, y)] = p M = Õ(M/β).
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In the query phase, we sample x′ and then run the query phase of Theorem 2 on x′ and y.
This runs in time Õ(|x′| + M(x′, y) + 1), which is Õ((|x| + M)/β + 1) in expectation.

Finally, consider a fixed LCS of x and y, namely z = x[i1] . . . x[iL] = y[j1] . . . y[jL] for
some i1 < . . . < iL and j1 < . . . < jL. Each letter x[ik] survives the subsampling to x′

with probability p. Therefore, we can bound L(x′, y) from below by a binomial random
variable Bin(L, p) (the correct terminology is that L(x′, y) statistically dominates Bin(L, p)).
Since Z = Bin(L, p) is a sum of independent {0, 1}-variables, multiplicative Chernoff applies
and yields Pr[Z < E[Z]/2] ≤ exp(−E[Z]/8). If L ≥ β then E[Z] = L p ≥ 2L/β and
E[Z] ≥ 8c log n, and thus Pr[L(x′, y) ≥ L/β] ≥ 1 − n−c. Otherwise, if L < β, then we can
only bound L(x′, y) ≥ 0. In both cases, we have L(x′, y) > L/β −1 with high probability. ◀

The above lemma behaves poorly if L ≤ β, due to the “−1” in the approximation
guarantee. We next show that this can be avoided, at the cost of increasing the running time
by an additive Õ(n).

▶ Lemma 4 (Generalised Basic Approximation Algorithm). Given x, y ∈ Σn and β ≥ 1, in
expected time Õ(n + M/β) we can compute a value L̃ ≤ L that w.h.p. satisfies L̃ ≥ L/β.

Proof. We run the basic approximation algorithm from Lemma 3, which computes a value
L̃ ≤ L. Additionally, we compute the number of matching pairs M = M(x, y) in time Õ(n).
If M > 0, then there exists a matching pair, which yields a common subsequence of length 1.
Therefore, if M > 0 we set L̃ := max{L̃, 1}.

In the proof of Lemma 3 we showed that if L ≥ β then w.h.p. we have L̃ ≥ L/β. We
now argue differently in the case L < β. If L = 0, then L̃ ≥ 0 = L/β and we are done. If
0 < L < β, then there must exist at least one matching pair, so M > 0, so the second part
of our algorithm yields L̃ ≥ 1 > L/β. Hence, in all cases w.h.p. we have L̃ ≥ L/β. ◀

We now turn towards the problem of deciding for given x, y and ℓ whether L(x, y) ≥ ℓ. To
this end, we repeatedly call the basic approximation algorithm with geometrically decreasing
approximation ratio β. Note that with decreasing approximation ratio we get a better
approximation guarantee at the cost of higher running time. The idea is that if the LCS
L = L(x, y) is much shorter than the threshold ℓ, then already approximation ratio β ≈ ℓ/L

allows us to detect that L < ℓ. This yields a running time bound depending on the gap L/ℓ.

▶ Lemma 5 (Basic Decision Algorithm). Let x, y ∈ Σn. We can preprocess y in time Õ(n).
Given x, the preprocessed y, and a number 1 ≤ ℓ ≤ n, in expected time Õ((n + M)L/ℓ + n/ℓ)
we can w.h.p. correctly decide whether L ≥ ℓ. Our algorithm has no false positives (and
w.h.p. no false negatives).

Proof. In the preprocessing phase, we run the preprocessing of Lemma 3. In the query phase,
we repeatedly call the query phase of Lemma 3, with geometrically decreasing values of β:
1. Preprocessing: Run the preprocessing of Lemma 3.
2. For β = n, n/2, n/4, . . . , 1:

3. Run the query phase of Lemma 3 with parameter β to obtain an estimate L̃.
4. If L̃ ≥ ℓ: return “L ≥ ℓ”
5. If L̃ ≤ ℓ/β − 1: return “L < ℓ”

Let us first argue correctness. Since Lemma 3 computes a common subsequence of x, y,
we have L̃ ≤ L. Thus, if L̃ ≥ ℓ, we correctly infer L ≥ ℓ. Moreover, w.h.p. L̃ satisfies
L̃ > L/β − 1. Therefore, if L̃ ≤ ℓ/β − 1, we can infer L < ℓ, and this decision is correct with
high probability. Finally, in the last iteration (where β = 1), we have ℓ/β − 1 = ℓ − 1, and
thus one of L̃ ≥ ℓ or L̃ ≤ ℓ/β − 1 must hold, so the algorithm indeed returns a decision.
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The expected time of the query phase of Lemma 3 is Õ((n+M)/β +1). Since β decreases
geometrically, the total expected time of our algorithm is dominated by the last call.

If L ≥ ℓ, the last call is at the latest for β = 1. This yields running time Õ(n + M) ≤
Õ((n + M)L/ℓ).

If L < ℓ, note that for any β ≤ ℓ
L+1 we have L̃ ≤ L ≤ ℓ/β −1, and thus we return “L < ℓ”.

Because we decrease β by a factor 2 in each iteration, the last call satisfies β ≥ ℓ
2(L+1) .

Hence, the expected running time is Õ((n + M)(L + 1)/ℓ + 1). If L ≥ 1 then this time
bound simplifies to Õ((n + M)L/ℓ + 1). If L = 0, then also M = 0, and the time bound
becomes Õ(n/ℓ + 1). In both cases we can bound the expected running time by the claimed
Õ((n + M)L/ℓ + n/ℓ), since ℓ ≤ n. ◀

4.2 Approximating the Number of Matching Pairs
Recall that for given strings x, y of length n the number of matching pairs M = M(x, y) can
be computed in time O(n), which is linear in the input size. However, later in the paper we
will split x into substrings x1, . . . , xn/m and y into substrings y1, . . . , yn/m, each of length m,
and we will need estimates of the numbers of matching pairs Mij = M(xi, yj). In this setting,
the input size is still n (the total length of all strings xi and yj) and the output size is
(n/m)2 (all numbers Mij), but we are not aware of any algorithm computing the numbers
Mij in near-linear time in the input plus output size Õ(n + (n/m)2).5 Therefore, we devise
an approximation algorithm for estimating the number of matching pairs.

▶ Lemma 6. For x1, . . . , xn/m, y1, . . . , yn/m ∈ Σm write Mij = M(xi, yj) and M =
∑

i,j Mij .
Given x1, . . . , xn/m, y1, . . . , yn/m and q > 0, we can compute values M̃ij that w.h.p. satisfy
Mij/8 − q ≤ M̃ij ≤ 4Mij, in total expected time Õ(n + M/q).

This yields a near-linear-time constant-factor approximation of all above-average Mij :
By setting q := Θ( Mm2

n2 ), in expected time Õ(n + (n/m)2) we obtain a constant-factor
approximation of all values Mij with Mij ≫ q.

Proof. The algorithm works as follows.
1. Graph Construction: Build a three-layered graph G on vertex set V (G) = L ∪ U ∪ R,

where L has a node i for every string xi, R has a node j for every string yj , and U

has a node (σ, ℓ, r) for any σ ∈ Σ and 0 ≤ ℓ, r ≤ log m. Put an edge from i ∈ L to
(σ, ℓ, r) ∈ U iff #σ(xi) ∈ [2ℓ, 2ℓ+1). Similarly, put an edge from j ∈ R to (σ, ℓ, r) ∈ U iff
#σ(yj) ∈ [2r, 2r+1). Note that all frequencies and thus all edges of this graphs can be
computed in total time Õ(n). For i ∈ L and j ∈ R, we denote by Uij ⊆ U their common
neighbors. Note that any (σ, ℓ, r) ∈ Uij represents all matching pairs of symbol σ in xi

and yj , and the number of these matching pairs is #σ(xi) · #σ(yj) ∈ [2ℓ+r, 2ℓ+r+2).
2. Subsampling: We sample a subset Ũ ⊆ U by removing each node (σ, ℓ, r) ∈ U independ-

ently with probability 1 − pℓ,r, where pℓ,r := min{1, 2ℓ+r+3/q}.
3. Determine Common Neighbors: For each (σ, ℓ, r) ∈ Ũ enumerate all pairs of neighbors

i ∈ L and j ∈ R. For each such 2-path, add (σ, ℓ, r) to an initially empty set Ũij . This
step computes the sets Ũij := Uij ∩ Ũ in time proportional to their total size.

4. Output: Return the values M̃ij :=
∑

(σ,ℓ,r)∈Ũij
2ℓ+r/pℓ,r.

5 In fact, one can show conditional lower bounds from Boolean matrix multiplication that rule out
near-linear time for computing all Mij ’s unless the exponent of matrix multiplication is ω = 2.
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Correctness. To analyze this algorithm, we consider the numbers M ij :=
∑

(σ,ℓ,r)∈Uij
2ℓ+r.

Observe that we have M ij ≤ Mij ≤ 4M ij , since each (σ, ℓ, r) ∈ Uij corresponds to at least
2ℓ+r and at most 2ℓ+r+2 matching pairs of xi and yj . It therefore suffices to show that M̃ij is
close to M ij . Using Bernoulli random variables Ber(pℓ,r) to express whether (σ, ℓ, r) survives
the subsampling, we write

M̃ij =
∑

(σ,ℓ,r)∈Uij

2ℓ+r

pℓ,r
· Ber(pℓ,r).

This yields an expected value of E[M̃ij ] = M ij , so by Markov’s inequality we obtain
M̃ij ≤ 4M ij ≤ 4Mij with probability at least 3/4. Since M̃ij is a linear combination of
independent Bernoulli random variables, we can also easily express its variance as

V[M̃ij ] =
∑

(σ,ℓ,r)∈Uij

(
2ℓ+r/pℓ,r

)2 · pℓ,r(1 − pℓ,r) =
∑

(σ,ℓ,r)∈Uij

2ℓ+r · 2ℓ+r
( 1

pℓ,r
− 1

)
.

We now use the definition of pℓ,r := min{1, 2ℓ+r+3/q} to bound

2ℓ+r
( 1

pℓ,r
− 1

)
= 2ℓ+r

(
max

{
1,

q

2ℓ+r+3

}
− 1

)
= max{0, q/8 − 2ℓ+r} ≤ q/8.

This yields V[M̃ij ] ≤ M ijq/8. We now use Chebychev’s inequality Pr[X < E[X] − λ] ≤
V[X]/λ2 on λ = 0.5E[X] and X = M̃ij to obtain

Pr[M̃ij < M ij/2] ≤ q

2M ij

.

In case Mij ≥ 8q, we have M i,j ≥ Mij/4 ≥ 2q and hence Pr[M̃ij ≥ Mij/8] ≥ Pr[M̃ij ≥
M ij/2] ≥ 3/4. Otherwise, in case Mij < 8q, we can only use the trivial M̃ij ≥ 0 > Mij/8 − q.

Hence, each inequality M̃ij ≤ 4Mij and M̃ij ≥ Mij/8 − q individually holds with
probability at leat 3/4. Finally, we boost the success probability by repeating the above
algorithm O(log n) times and returning for each i, j the median of all computed values M̃ij .

Running Time. Steps 1 and 2 can be easily seen to run in time Õ(n). Steps 3 and 4
run in time proportional to the total size of all sets Ũij , which we claim to be at most
8M/q in expectation. Over O(log n) repetitions, we obtain a total expected running time
of Õ(n + M/q). (We remark that here we consider a succinct output format, where only
the non-zero numbers M̃ij are listed; otherwise additional time of Õ((n/m)2) is required to
output the numbers M̃ij = 0.)

It remains to prove the claimed bound of E[
∑

i,j |Ũij |] ≤ 8M/q. Since 2ℓ+r/pℓ,r =
max{2ℓ+r, q/8} ≥ q/8, from the definition of M̃ij =

∑
(σ,ℓ,r)∈Ũij

2ℓ+r/pℓ,r we infer M̃ij ≥
q
8 |Ũij |. Therefore,

E
[ ∑

i,j

|Ũij |
]

≤ E
[8

q

∑
i,j

M̃ij

]
= 8

q

∑
i,j

M ij ≤ 8
q

∑
i,j

Mij = 8M

q
. ◀

4.3 Single Symbol Approximation Algorithm
For strings x, y that have a large number of matchings pairs M = M(x, y), some symbol must
appear often in x and in y. This yields a common subsequence using (several repetitions of)
a single alphabet symbol.
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▶ Lemma 7 (Cf. Lemma 6.6.(ii) in [20] or Algorithm 3 in [24]). For any x, y ∈ Σn there exists
a symbol σ ∈ Σ that appears at least M

2n times in x and in y. Therefore, in time Õ(n) we can
compute a common subsequence of x, y of length at least M

2n . In particular, we can compute a
value L̃ ≤ L that satisfies L̃ ≥ M

2n .

Proof. Let k be maximal such that some symbol σ ∈ Σ appears at least k times in x and at
least k times in y. Let Σw := {σ ∈ Σ | #σ(w) ≤ k} for w ∈ {x, y}. Since no symbol appears
more than k times in x and in y, we have Σx ∪ Σy = Σ. We can thus bound

M = M(x, y) =
∑
σ∈Σ

#σ(x) · #σ(y) ≤
∑

σ∈Σx

k · #σ(y) +
∑

σ∈Σy

#σ(x) · k ≤ 2kn,

since the frequencies #σ(x) sum up to at most n, and similarly for #σ(y). It follows that
k ≥ M

2n . Computing k, and a symbol σ ∈ Σ attaining k, in time Õ(n) is straightforward. ◀

We devise a variant of Lemma 7 in the following setting. For strings x1, . . . , xn/m,
y1, . . . , yn/m ∈ Σm we write Lij = L(xi, yj), Mij = M(xi, yj) and M =

∑
i,j Mij . We want

to find for each block (i, j) a frequent symbol in xi and yj , or equivalently we want to find a
common subsequence of xi and yj using a single alphabet symbol. Similarly to Lemma 6, we
relax Lemma 7 to obtain a fast running time.

▶ Lemma 8. Given x1, . . . , xn/m, y1, . . . , yn/m ∈ Σm and any q > 0, we can compute for
each i, j a number L̃ij ≤ Lij such that w.h.p. L̃ij ≥ Mij−q

16m . The algorithm runs in total
expected time Õ(n + M/q).

Proof. We run the same algorithm as in Lemma 6, except that in Step 4 for each i, j with
non-empty set Ũij we let L̃ij be the maximum of 2min{ℓ,r} over all (σ, ℓ, r) ∈ Ũij . For each
empty set Ũij , we implicitly set L̃ij = 0, i.e., we output a sparse representation of all non-zero
values L̃ij .

The running time analysis is the same as in Lemma 6.
For the upper bound on L̃ij , since σ appears at least 2ℓ times in xi and at least 2r times

in yj , there is a common subsequence of xi and yj of length at least L̃ij . Thus, we have
L̃ij ≤ Lij .

For the lower bound on L̃ij , fix i, j and order the tuples (σ, ℓ, r) ∈ Uij in ascending
order of 2min{ℓ,r}, obtaining an ordering (σ1, ℓ1, r1), . . . , (σk, ℓk, rk). For h ∈ [k] we let
S := {(σ1, ℓ1, r1), . . . , (σh, ℓh, rh)} and L := {(σh, ℓh, rh), . . . , (σk, ℓk, rk)}. Recall that M ij =∑

(σ,ℓ,r)∈Uij
2ℓ+r, and observe that we can pick h with∑

(σ,ℓ,r)∈S

2ℓ+r ≥ M ij/2 and
∑

(σ,ℓ,r)∈L

2ℓ+r ≥ M ij/2. (1)

Then we have

M ij

2 ≤
∑

(σ,ℓ,r)∈S

2ℓ+r =
∑

(σ,ℓ,r)∈S

2min{ℓ,r} · 2max{ℓ,r} ≤ 2min{ℓh,rh}
∑

(σ,ℓ,r)∈S

2max{ℓ,r}.

Note that for any (σ, ℓ, r) ∈ S the symbol σ appears at least 2max{ℓ,r} times in xi or in
yj , and thus the sum on the right hand side is at most 2m. Rearranging, this yields
2min{ℓh,rh} ≥ Mij

4m ≥ Mij

16m , where we used M ij ≥ Mij/4 as in the proof of Lemma 6. In
particular, due to our ordering we have for any (σ, ℓ, r) ∈ L:

2min{ℓ,r} ≥ 2min{ℓh,rh} ≥ Mij

16m
. (2)
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Consider the number of nodes in L surviving the subsampling, i.e., Z := |L ∩ Ũij |. If
Z > 0, then some node in L survived, and thus by (2) the computed value L̃ij is at least
Mij

16m . It thus remains to analyze Pr[Z > 0].
In case some (σ, ℓ, r) ∈ L has pℓ,r = 1, we have Z > 0 with probability 1. Otherwise all

(σ, ℓ, r) ∈ L have pℓ,r < 1 and thus pℓ,r = 2ℓ+r+3/q. In this case, we write Z as a sum of
independent Bernoulli random variates in the form Z =

∑
(σ,ℓ,r)∈L Ber(pℓ,r). In particular,

E[Z] =
∑

(σ,ℓ,r)∈L

2ℓ+r+3/q
(1)
≥ 4M ij

q
≥ Mij

q
.

Since Z is a sum of independent {0, 1}-variables, multiplicative Chernoff applies and yields
Pr[Z < E[Z]/2] ≤ exp(−E[Z]/8). We thus obtain

Pr[Z > 0] ≥ 1 − Pr
[
Z < E[Z]/2

]
≥ 1 − exp

(
− E[Z]/8

)
≥ 1 − exp

(
− Mij

8q

)
.

In case Mij ≥ q, we obtain Pr[Z > 0] ≥ 1 − exp(−1/8) ≥ 0.1, and thus we have L̃ij ≥ Mij

16m

with probability at least 0.1. Otherwise, in case Mij < q, we can only use the trivial bound
L̃ij ≥ 0 >

Mij−q
16m . In any case, we have L̃ij ≥ Mij−q

16m with probability at least 0.1. Similar to
the proof of Lemma 6, we run O(log n) independent repetitions of this algorithm and return
for each i, j the maximum of all computed values L̃ij , to boost the success probability and
finish the proof. ◀

5 Main Algorithm

In this section we prove Theorem 1. First we show that Theorem 9 implies Theorem 1, and
then in the remainder of this section we prove Theorem 9.

▶ Theorem 9 (Main Result, Relaxation). Given strings x, y of length n and a time budget
T ∈ [n, n2], in expected time Õ(T ) we can compute a number L̃ such that L̃ ≤ L := L(x, y)
and w.h.p. L̃ ≥ Ω̃(LT 0.4/n0.8).

Recall Theorem 1:

▶ Theorem 1. There is a randomized algorithm that, given strings x, y of length n ≥ 1
and a time budget T ∈ [n, n2], with high probability computes a multiplicative Õ(n0.8/T 0.4)-
approximation of the length of the LCS of x and y in time O(T ).

Proof of Theorem 1 assuming Theorem 9. Note that the difference between Theorems 1
and 9 is that the latter allows expected running time and has an additional slack of logarithmic
factors in the running time.

In order to remove the expected running time, we abort the algorithm from Theorem 9 after
Õ(T ) time steps. By Markov’s inequality, we can choose the hidden constants and logfactors
such that the probability of aborting is at most 1/2. We boost the success probability of this
adapted algorithm by running O(log n) independent repetitions and returning the maximum
over all computed values L̃. This yields an Õ(n0.8/T 0.4)-approximation with high probability
in time Õ(T ).

To remove the logfactors in the running time, as the first step in our algorithm we
subsample the given strings x, y, keeping each symbol independently with probability p =
1/polylog(n), resulting in subsampled strings x̃, ỹ. Since any common subsequence of x̃, ỹ

is also a common subsequence of x, y, the estimate L̃ that we compute for x̃, ỹ satisfies
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L̃ ≤ L(x̃, ỹ) ≤ L(x, y). Moreover, if L(x, y) ≥ polylog(n) then by Chernoff bound with high
probability we have L(x̃, ỹ) = Ω̃(L(x, y)), so that an Õ(n0.8/T 0.4)-approximation on x̃, ỹ also
yields an Õ(n0.8/T 0.4)-approximation on x, y. Otherwise, if L(x, y) ≤ polylog(n), then in
order to compute a Õ(1)-approximation it suffices to compute an LCS of length 1, which is
just a matching pair and can be found in time O(n) (assuming that the alphabet is [O(n)]).

This yields an algorithm that computes a value L̃ ≤ L such that w.h.p. L̃ ≥ Ω̃(LT 0.4/n0.8).
The algorithm runs in time O(T ), and this running time bound holds deterministically, i.e.,
with probability 1. Hence, we proved Theorem 1. ◀

It remains to prove Theorem 9. Our algorithm is a combination of four methods that
work well in different regimes of the problem, see Sections 5.1, 5.3, 5.4, and 5.5. We will
combine these methods in Section 5.6.

5.1 Algorithm 1: Small L

Algorithm 1 works well if the LCS is short. It yields the following result.

▶ Theorem 10 (Algorithm 1). We can compute in expected time Õ(T ) an estimate L̃ ≤ L

that w.h.p. satisfies L̃ ≥ min{L,
√

LT/n}.

Proof. Our Algorithm 1 works as follows.
1. Run Lemma 7 on x and y.
2. Run Lemma 4 on x and y with β := max{1, M

2T }.
3. Output the larger of the two common subsequence lengths computed in Steps 1 and 2.

Running Time. Step 1 runs in time Õ(n) = Õ(T ). Step 2 runs in expected time Õ(n+M/β).
Since β ≥ M

2T we have M/β ≤ 2T , so the expected running time is Õ(n + T ) = Õ(T ).

Upper Bound. Steps 1 and 2 compute common subsequences, so the computed estimate L̃

satisfies L̃ ≤ L.

Approximation Guarantee. Note that Step 1 guarantees L̃ ≥ M
2n and Step 2 guarantees

w.h.p. L̃ ≥ L/β. If M ≤ 2T then β = 1 and L̃ = L, so we solved the problem exactly.
Otherwise we have M > 2T and β = M

2T , so Step 2 guarantees w.h.p. L̃ ≥ 2LT/M . By
multiplying the two guarantees on L̃ and taking square roots, we obtain w.h.p.

L̃ ≥
√

M

2n
· 2LT

M
=

√
LT

n
.

It follows that w.h.p. L̃ ≥ min{L,
√

LT/n}. ◀

5.2 Block Sequences and Parameter Guessing
This section introduces some general notation and structure for the remaining algorithms.

Block Sequences. We split x into substrings x1, . . . , xn/m of length m = n/
√

T . Similarly,
we split y into y1, . . . , yn/m. A pair (i, j) ∈ [n/m]2, corresponding to the substrings xi, yj ,
is called a block. For any block we write Mij = M(xi, yj) and Lij = L(xi, yj). Moreover,
we write (i, j) < (i′, j′) if and only if i < i′ and j < j′. A block sequence is a set S =
{(i1, j1), . . . , (ik, jk)} with S ⊆ [n/m]2 satisfying the monotonicity property (i1, j1) < . . . <
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(ik, jk). In what follows, every algorithm will compute estimates 0 ≤ L̃ij ≤ Lij and then
choose a block sequence S to produce an overall estimate L̃ =

∑
(i,j)∈S L̃ij . Note that this

guarantees L̃ ≤ L, as the sum
∑

(i,j)∈S L̃ij corresponds to some (block-aligned) common
subsequence of x and y. In order to get bounds in the other direction, we need to show that
there always exists a block sequence of large LCS sum, i.e., a long “block-aligned common
subsequence”. This is shown by the following lemma.

▶ Lemma 11. There exists a block sequence G of size |G| = L
√

T
8n such that for any (i, j) ∈ G

we have Lij ≥ L
4

√
T

and Mij ≤ 8µn

L
√

T
. In particular, we have

∑
(i,j)∈G Lij ≥ L2

32n .

▶ Remark 12. This is analogous to [24, Lemma 8.2], but we improve the size of G.

Proof. Let L∗
ij be the contribution of block (i, j) to the LCS. More precisely, fix an LCS

z of x and y, and write z = x[a1] . . . x[aL] = y[b1] . . . y[bL] for (a1, b1) < . . . < (aL, bL).
Then for any block (i, j), the number L∗

ij counts all indices k with ak ∈ ((i − 1)m, im] and
bk ∈ ((j − 1)m, jm]. Consider the set A := {(i, j) | L∗

ij > 0} consisting of all contributing
blocks. From the monotonicity (a1, b1) < . . . < (aL, bL) it follows that also the contributing
blocks form a monotone sequence, in the sense that for any (i, j), (i′, j′) ∈ A we have
i ≤ i′ and j ≤ j′, or i′ ≤ i and j′ ≤ j. (However, these inequalities are not necessarily
strict, so A is not necessarily a block sequence.) This monotonicity implies that there are
|A| ≤ 2n/m contributing blocks. Also note that

∑
(i,j)∈A L∗

ij = L. Now consider the subset
B = {(i, j) | L∗

ij > Lm
4n } ⊆ A. Note that the remaining blocks in total contribute∑

(i,j)∈A\B

L∗
ij ≤ |A| · Lm

4n
≤ 2n

m
· Lm

4n
= L

2 ,

and thus B contributes
∑

(i,j)∈B L∗
ij ≥ L/2.

We now greedily pick a subset C ⊆ B as follows. Pick any (i, j) ∈ B, add (i, j) to C, and
then remove each (i′, j′) ∈ B with i′ = i or j′ = j from B. Repeat until B is empty.

By construction, C is a block sequence and for any (i, j) ∈ C we have Lij ≥ Lm
4n = L

4
√

T
.

We claim that |C| ≥ L
4m = L

√
T

4n . To see this, observe that all blocks (i′, j′) ∈ B with i′ = i

in total contribute at most m, since they describe a subsequence of xi, which has length m.
Similarly, all blocks (i′, j′) ∈ B with j′ = j in total contribute at most m. Therefore, one step
of the greedy procedure removes a contribution of at most 2m. Since the total contribution
is

∑
(i,j)∈B L∗

ij ≥ L/2, there are at least L
4m = L

√
T

4n greedy steps. Finally, we consider the
number of matching pairs. Since C is a block sequence, we have

∑
(i,j)∈C Mij ≤ µ. Thus, on

average each (i, j) ∈ C has a number of matching pairs of at most µ/|C| = 4µn

L
√

T
. By Markov’s

inequality, at least half of the blocks (i, j) ∈ C have Mij ≤ 8µn

L
√

T
. We denote the set of these

blocks by G ⊆ C. The set G satisfies all claimed bounds. This finishes the proof. ◀

Parameter Guessing. We analyze our algorithms in terms of n (the length of the strings),
T (the running time budget), L (the length of the LCS), as well as λ and µ, defined as

λ :=
∑
i,j

Lij and µ := max
block seq. S

∑
(i,j)∈S

Mij ,

where the maximum goes over all block sequences S. Note that λ is the total LCS length over
all blocks and µ is the maximum total number of matching pairs along any block sequence.

The numbers n and T are part of the input, and we can assume to know M , since it can
be computed in time O(n). However, in order to set some parameters in our algorithms,
it would be convenient to also know L, λ, µ up to constant factors (which seemingly is a
contradiction, as our goal is to compute a polynomial-factor approximation of L).
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We therefore run our algorithms O(log3 n) times, once for each guess L̂ = 2i, λ̂ = 2j , and
µ̂ = 2k. Then for at least one call we have L/2 ≤ L̂ ≤ L, λ/2 ≤ λ̂ ≤ λ, and µ/2 ≤ µ̂ ≤ µ,
that is, we know L, λ, µ up to constant factors. For this correct guess, we prove that our
algorithms have the promised approximation guarantee and running time bound. For the
wrong guesses, the approximation guarantee can fail, but we always ensure the upper bound
L̃ ≤ L, by ensuring that the estimate corresponds to some common subsequence of x and y.
Hence, returning the maximum computed value L̃ over all guesses L̂, λ̂, µ̂ yields the promised
approximation guarantee. For this reason, in the following we assume to know estimates
L̂ ≈ L, λ̂ ≈ λ, µ̂ ≈ µ up to constant factors; we will only use them to set certain parameters.

We remark that for the wrong guesses, not only the approximation guarantee but also the
running time bound can fail, so we need to abort each of the O(log3 n) calls after time Õ(T ).

Diagonals. A diagonal is a set of the form Dd = {(i, j) ∈ [n/m]2 | i− j = d}. Each diagonal
is a block sequence, so we have

∑
(i,j)∈Dd

Mij ≤ µ. Note that there are 2n/m − 1 < 2
√

T

(non-empty) diagonals. Moreover, we have
∑

d

∑
(i,j)∈Dd

Mij = M . This yields the inequality

M < 2µ
√

T . (3)

5.3 Algorithm 2: Large L, Large µ

In this section we present Algorithm 2, which works well if µ is large, i.e., if some block
sequence has a large total number of matching pairs. The algorithm makes use of the single
symbol approximation that we designed in Lemma 8. This yields estimates 0 ≤ L̃ij ≤ Lij ,
over which we then perform dynamic programming to determine the maximum of

∑
(i,j)∈S L̃ij

over all block sequences S. (This is similar to [24, Algorithm 3], but we obtain concentration
in a wider regime, see Remark 14 for a comparison.)

▶ Theorem 13 (Algorithm 2). We can compute in expected time Õ(T ) an estimate L̃ ≤ L

that w.h.p. satisfies

L̃ = Ω
(µ

√
T

n

)
.

Proof. Algorithm 2 works as follows.
1. Run Lemma 8 with q := M

4T to compute values L̃ij .
2. Perform dynamic programming over [n/m]2 to determine the maximum

∑
(i,j)∈S L̃ij over

all block sequences S. Output this maximum value L̃. More precisely:
Initialize D[i, 0] = D[0, i] = 0 for any 0 ≤ i ≤ n/m.
For i = 1, . . . , n/m and j = 1, . . . , n/m: D[i, j] = max

{
L̃ij + D[i − 1, j − 1], D[i −

1, j], D[i, j − 1]
}

.
Output D[n/m, n/m].

We analyze this algorithm in the following.

Upper Bound. Since Lemma 8 ensures L̃ij ≤ Lij , the dynamic programming step ensures
L̃ ≤ L.

Approximation Guarantee. Let S be a block sequence achieving
∑

(i,j)∈S Mij = µ. Step 2
computes an estimate L̃ ≥

∑
(i,j)∈S L̃ij , and Lemma 8 yields w.h.p.

L̃ ≥
∑

(i,j)∈S

L̃ij ≥
∑

(i,j)∈S

Mij − q

16m
= µ

16m
− |S| q

16m
.
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By the monotonicity property of block sequences, we have |S| ≤ n/m. Using our definitions
of q = M

4T and m = n/
√

T as well as inequality (3), we obtain

|S| q

16m
≤ qn

16m2 = M

64n
≤ µ

√
T

32n
.

Plugging this into our bound for L̃ yields

L̃ ≥ µ
√

T

16n
− µ

√
T

32n
= µ

√
T

32n
.

Running Time. For Step 1 note that Lemma 8 runs in expected time Õ(n + M/q) = Õ(T ).
Step 2 can be easily seen to run in time O((n/m)2) = O(T ) by our choice of m = n/

√
T .

This finishes the proof. ◀

▶ Remark 14. Our Algorithm 2 is similar to [24, Algorithm 3], which works as follows.
For each block (i, j), their algorithm selects a random symbol σ and uses the minimum
of the frequencies #σ(xi), #σ(yj) as the estimate L̃ij . It can be shown that this yields
E[L̃ij ] = Mij/(2m), which is a similar lower bound as provided by Lemma 8, but only in
expectation. The summation

∑
(i,j)∈S L̃ij over a block sequence S then allows to apply

concentration inequalities to obtain a w.h.p. error guarantee, assuming µ ≫ m2.
However, in the regime µ ≤ m2 the value µ could be dominated by a single block with

Mij ≈ µ. In this case, we cannot hope to get concentration by summing over many blocks.
Thus, picking a random symbol per block does not suffice to obtain a w.h.p. error guarantee.

Since our improved approximation ratio makes it necessary to use Algorithm 2 in the
regime µ ≪ m2, their algorithm is not sufficient in our context. Thus, we replace sampling a
single symbol by our new Lemma 8.

5.4 Algorithm 3: Large L, Small µ and Large λ

Our next algorithm works well if µ is small (i.e., every block sequence has a small total
number of matching pairs) and λ is large (i.e., on average every block has a large LCS).

Let us start with the intuition. The idea is to pick some diagonal Dd and run the basic
approximation algorithm (Lemma 4) with approximation ratio β = max{1, µ/T } on each block
along the diagonal. Since every diagonal is a block sequence, we have

∑
(i,j)∈Dd

Mij ≤ µ,
which bounds the running time of this algorithm by Õ(n +

∑
(i,j)∈Dd

Mij/β) = Õ(T ).
Moreover, this algorithm produces an estimate L̃ ≤ L that w.h.p. satisfies

L̃ ≥
∑

(i,j)∈Dd

Lij/β.

Since
∑

d

∑
(i,j)∈Dd

Lij =
∑

i,j Lij = λ and there are O(n/m) diagonals, on average a
diagonal Dd satisfies

∑
(i,j)∈Dd

Lij = Ω(λm/n) = Ω(λ/
√

T ). If we pick an above-average
diagonal, then we obtain an estimate

L̃ ≥
∑

(i,j)∈Dd

Lij/β = Ω
( λ√

Tβ

)
= Ω

(
min

{ λ√
T

,
λ

√
T

µ

})
.

If λ is large and µ is small, then this is a good estimate.

The main difficulty in translating this idea to an actual algorithm is how to pick the
diagonal. A natural approach is to pick a random diagonal, as then the expected LCS sum of
the diagonal is sufficiently large. However, in situations where the diagonal sums are highly
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unbalanced, so that λ is dominated by very few diagonals that have a very large LCS sum, a
random diagonal is unlikely to have an above-average LCS sum. In this situation, a random
diagonal works only with negligible probability.

Therefore, we need a sampling process that favors diagonals with large LCS sum. To this
end, we first “guess” a value g such that the sum λ is dominated by summands Lij = Θ(g).
We call blocks (i, j) with Lij = Ω(g) good. Next we sample a random good block (i0, j0); for
this we simply keep sampling random i, j until we find a good block. Finally, we pick the
diagonal Dd containing the “seed” block (i0, j0) and run the above algorithm on this diagonal.
This sampling procedure favors diagonals with large LCS sum, because such diagonals contain
more good blocks (i, j) to start from, and thus we are more likely to pick the “seed” (i0, j0)
in a diagonal with large LCS sum. This yields the following result.

▶ Theorem 15 (Algorithm 3). We can compute in expected time Õ(T ) an estimate L̃ ≤ L

that w.h.p. satisfies

L̃ = Ω̃
(

min
{ λ√

T
,

λ
√

T

µ

})
.

Proof. Note that the theorem statement is trivial if λ ≤
√

T . Indeed, in time O(n) we can
compute M = M(x, y). If M = 0 then L = λ = 0 and we return L̃ = 0. If M ≥ 1, then we
return L̃ = 1. This ensures L̃ ≤ L, since any matching pair gives a common subsequence of
length 1. Moreover, in case λ ≤

√
T the returned value L̃ = 1 satisfies the approximation

guarantee L̃ = Ω(λ/
√

T ). Therefore, we can assume

λ >
√

T . (4)

Algorithm 3 repeats the following procedure O(log n) times to boost its success probability.

1. Repeat the following for g being any power of two with max{1, λ̂/(4T )} ≤ g ≤ m:

2. Sampling a good block: Pick a random set of blocks R ⊆ [n/m]2 of size O
(
(gT/λ̂) log2 n

)
.

For each block (i, j) ∈ R, test whether Lij ≥ g using our basic decision algorithm
(Lemma 5). If no test was successful, then set L̃(g) = 0 and continue with the next
value of g. Otherwise, pick a random successfully tested block (i0, j0) and proceed to
Step 3.

3. Approximating along a diagonal: Let D be the diagonal containing the block (i0, j0). For
each (i, j) ∈ D: Run our basic approximation algorithm (Lemma 4) with approximation
ratio β = max{1, µ̂/T} on xi, yj to obtain an estimate L̃ij . Finally, L̃(g) =

∑
(i,j)∈D L̃ij

is the result of iteration g.

4. Return L̃ = maxg L̃(g).

Upper Bound. Again it is easy to see that L̃ ≤ L, since Lemma 4 yields L̃ij ≤ Lij .

Approximation Guarantee. Let Bg be the set of all blocks (i, j) with g ≤ Lij ≤ 2g.

▷ Claim 16. If λ/2 ≤ λ̂ ≤ λ then for some power of two g with max{1, λ̂/(4T )} ≤ g ≤ m

we have

g · |Bg| = Ω(λ/ log m). (5)

ICALP 2021
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Proof. Write G for the set of all powers of two g with max{1, λ̂/(4T )} ≤ g ≤ m. Note that
blocks (i, j) with Lij ≤ λ

2T in total contribute at most λ/2 to λ =
∑

i,i Lij , since the total
number of blocks is (n/m)2 = T . Hence, the blocks with Lij > λ

2T contribute at least λ/2,
that is,

λ

2 ≤
∑
i,j

Lij>λ/(2T )

Lij .

Note that the sets Bg for powers of two g ≥ max{1, λ/(4T )} ≥ max{1, λ̂/(4T )} cover all
blocks with Lij > λ

2T . Moreover, the sets Bg are empty for g > m. Therefore, the blocks
with Lij > λ

2T are covered by the sets Bg with g ∈ G, that is,

λ

2 ≤
∑
i,j

Lij>λ/(2T )

Lij ≤
∑
g∈G

∑
(i,j)∈Bg

Lij ≤
∑
g∈G

2g|Bg|.

If for all g appearing in the sum on the right hand side we would have g · |Bg| < λ/(4 log m+4)
then the right hand side would be less than λ/2, so we would obtain a contradiction. This
proves the claim. ◁

In the following we focus on an iteration of Step 1 in which we pick a value of g as
promised by Claim 16.

We call a block (i, j) good if Lij ≥ g, and bad otherwise. Note that any (i, j) ∈ Bg is
good, but not every good block is in Bg. In Step 2, we claim that the set R w.h.p. contains
at least one good block, assuming that our guess λ̂ is correct up to constant factors. Indeed,
since the set Bg is a subset of the good blocks, the probability that Θ((gT/λ) log2 n) sampled
blocks do not contain any good block is at most(

1 − |Bg|
(n/m)2

)Θ((gT/λ) log2 n) (5)
≤

(
1 − λ

gT log m

)Θ((gT/λ) log2 n)
≤ exp(−Θ(log n)),

which is negligible. For any bad block (i, j) ∈ R the test Lij ≥ g is unsuccessful, as Lemma 5
has no false positives. For any good block (i, j) ∈ R w.h.p. the test is successful, and w.h.p.
there is at least one good block in R. It follows that w.h.p. Step 2 finds a good block (i0, j0)
and proceeds to Step 3. Observe that (i0, j0) is chosen uniformly at random from all good
blocks.

We call a diagonal good if it contains at least |Bg|m
4n good blocks, and bad otherwise.

Since there are < 2n/m non-empty diagonals, the number of good blocks contained in bad
diagonals is at most |Bg|/2, which is at most half of all good blocks. Therefore, at least half
of all good blocks are contained in good diagonals. It follows that the uniformly random
good block (i0, j0) lies in a good diagonal with probability at least 1/2.

Hence, with probability at least 1/2 − o(1) the diagonal D considered in Step 3 is good,
that is, it contains at least |Bg|m

4n blocks (i, j) with Lij ≥ g. Since the approximations L̃ij

computed in Step 3 w.h.p. satisfy L̃ij ≥ Lij/β, we obtain

L̃ ≥ L̃(g) ≥ |Bg|m
4n

· g

β
.

Inequality (5) and the definitions m = n/
√

T and β = max{1, µ̂/T} now yield

L̃ = Ω̃
(

min
{ λ√

T
,

λ
√

T

µ̂

})
.
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If our guess µ̂ ≈ µ is correct up to a constant factor, then this yields the claimed approximation
guarantee. Returning the maximum over O(log n) independent repetitions of this algorithm
improves the success probability from 1/2 − o(1) to w.h.p.

Running Time. By Lemma 5, the test Lij ≥ g runs in expected time Õ((m + Mij)Lij/g +
m/g) = Õ(m2Lij/g + m/g). Note that in expectation for random i, j we have E[Lij ] =
λ/(n/m)2 = λ/T . Therefore, the expected running time of one test is bounded by Õ

(
m2λ
gT +

m/g
)
. As Step 2 performs O

(
(gT/λ̂) log2 n

)
such tests, its expected running time is Õ(m2 +

mT/λ), assuming that our guess λ̂ ≈ λ is correct up to a constant factor. We now use
m2 = n2/T ≤ T from n ≤ T and λ ≥

√
T ≥ n/

√
T = m from (4) and n ≤ T , to bound the

expected running time of Step 2 by Õ(T ).
For Step 3, the expected running time is Õ(n +

∑
(i,j)∈D Mij/β). Since D is a block

sequence, we have
∑

(i,j)∈D Mij ≤ µ. Using β ≥ µ̂/T = Ω(µ/T ) (if our guess µ̂ ≈ µ is correct
up to a constant factor) we can bound the expected time by Õ(n + T ) = Õ(T ).

Over the O(log n) iterations of Step 1 and the O(log n) repetitions for boosting the success
probability, the expected running time is still Õ(T ). ◀

5.5 Algorithm 4: Large L, Small µ, and Small λ

Our next algorithm works well if µ is small (i.e., every block sequence has a small total
number of matching pairs), λ is small (i.e., on average every block has a small LCS), and
L is large (i.e., there is a long LCS). The goal of this algorithm is to detect a sufficiently
large random subset of the block sequence G from Lemma 11. To this end, we first sample a
random set of blocks R containing each block (i, j) ∈ [n/m]2 with probability p. Then we
use our basic decision algorithm to detect the blocks (i, j) ∈ R with Lij ≥ L̂

4
√

T
, and for these

blocks we set L̃ij = L̂
4

√
T

, while for the remaining blocks we set L̃ij = 0. Finally, we perform
dynamic programming to determine the maximum

∑
(i,j)∈S L̃ij over all block sequences S.

Observe that for each block in G ∩R this algorithm sets L̃ij = L̂
4

√
T

, so it detects a random
subset of G. We thus obtain a p-fraction of the LCS guaranteed by the block sequence G.

Note that in this algorithm we may focus on blocks with Mij = O( µn

L
√

T
), since this holds

for all blocks in G. Moreover, since λ is small, most blocks outside of G have small LCS Lij .
These bounds on Lij and Mij for the considered blocks allow us to bound the running time
of the basic decision algorithm. We elaborate this algorithm in the following theorem.

▶ Theorem 17 (Algorithm 4). We can compute in expected time Õ(T ) an estimate L̃ ≤ L

that w.h.p. satisfies

L̃ = Ω
(

min
{L3

n2 ,
L3T

λn2 ,
L4T

λµn2

})
, assuming that L2T 0.5

n2 ,
L2T 1.5

λn2 ,
L3T 1.5

λµn2 = nΩ(1).

Proof. Algorithm 4 works as follows.
1. Run Lemma 6 with q := M

T to compute values M̃ij . Initialize L̃ij = 0 for all i, j.
2. Run the preprocessing of the basic decision algorithm (Lemma 5) on each string yj .
3. Sample a set R ⊆ [n/m]2 by including each block (i, j) independently with probability

p := min
{ L̂

n
,

L̂T

λ̂n
,

L̂2T

λ̂µ̂n

}
.
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4. For each (i, j) ∈ R with M̃ij ≤ 64µ̂n/(L̂
√

T ): Run the query of the basic decision
algorithm (Lemma 5) to test whether Lij ≥ L̂

4
√

T
. If this test is successful then set

L̃ij := L̂
4

√
T

.
5. Perform dynamic programming over [n/m]2 to determine the maximum

∑
(i,j)∈S L̃ij over

all block sequences S. Output this maximum value L̃.

Upper Bound. Since Lemma 5 has no false positives, we ensure L̃ij ≤ Lij and thus L̃ ≤ L.

Approximation Guarantee. The values M̃ij computed in Step 1 w.h.p. satisfy Mij/8 − q ≤
M̃ij ≤ 4Mij . For all blocks (i, j) ∈ G we have Mij ≤ 8µn

L
√

T
(by Lemma 11) and thus w.h.p.

M̃ij ≤ 32µn

L
√

T
. We may assume that our guesses L̂, µ̂ satisfy L/2 ≤ L̂ ≤ L and µ/2 ≤ µ̂ ≤ µ;

then we obtain M̃ij ≤ 64µ̂n

L̂
√

T
.

Therefore, each block in G ∩ R satisfies the property checked in Step 4, that is, for
each such block we run the basic decision algorithm. Since for each (i, j) ∈ G we have
Lij ≥ L

4
√

T
≥ L̂

4
√

T
, in Step 4 for each block in G ∩ R w.h.p. we obtain an estimate L̃ij = L̂

4
√

T
.

Since G is a block sequence, also G∩R is a block sequence, and thus the dynamic programming
in Step 5 returns an estimate of

L̃ ≥
∑

(i,j)∈G∩R

L̃ij = |G ∩ R| · L̂

4
√

T
.

Note that the size |G ∩ R| is distributed as a binomial random variable Bin(|G|, p), with
expectation p|G|. Assuming that our guesses L̂, λ̂, µ̂ are correct up to constant factors, we
have

p|G| = Ω
(

min
{L

n
,

LT

λn
,

L2T

λµn

}
· L

√
T

n

)
= Ω

(
min

(L2T 0.5

n2 ,
L2T 1.5

λn2 ,
L3T 1.5

λµn2

))
= nΩ(1),

by the assumption in the theorem statement. By Chernoff bound, we have

Pr[|G ∩ R| < p|G|/2] ≤ exp(−p|G|/8) = exp(−nΩ(1)),

and thus w.h.p. we have |G ∩ R| ≥ p|G|/2. Plugging this into our lower bound for L̃ yields
w.h.p.

L̃ ≥ p|G|L̂
8
√

T
= Ω

(
min

{L3

n2 ,
L3T

λn2 ,
L4T

λµn2

})
,

assuming that our guesses L̂, λ̂, µ̂ are correct up to constant factors. This shows the claimed
lower bound.

Running Time. The expected running time of Step 1 is Õ(n + M/q) = Õ(T ) since q = M
T .

Step 2 runs in time Õ(
∑

j |yj |) = Õ(n). Steps 3 and 5 take time O((n/m)2) = O(T ). In the
remainder we show that Step 4 also runs in expected time Õ(T ), assuming that our guesses
L̂, λ̂, µ̂ are correct up to constant factors. Recall that w.h.p. Mij/8 − q ≤ M̃ij ≤ 4Mij ; we
condition on this event in the following.6 Then M̃ij = O( µn

L
√

T
) implies Mij = O(q + µn

L
√

T
).

6 In the error event we bound the running time of Step 4 by O(n2). This has a negligible contribution to
the expected running time of Step 4.
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Using inequality (3) we have q = M
T ≤ 2µ√

T
≤ 2µn

L
√

T
, so Mij = O( µn

L
√

T
). Since only blocks (i, j)

with M̃ij = O( µn

L
√

T
) are tested, each invocation of the basic approximation algorithm in Step

4 runs in expected time Õ((|xi| + Mij)Lij

√
T/L + |xi|

√
T/L) = Õ((m + µn

L
√

T
)Lij

√
T/L +

m
√

T/L). Since each block is tested with probability at most p, Step 4 has an expected
running time of

O
( ∑

i,j

p ·
((

m + µn

L
√

T

)
Lij

√
T

L
+ m

√
T

L

))
= O

(( n√
T

+ µn

L
√

T

)pλ
√

T

L
+ pnT

L

)
= Õ

(pλn

L
+ pλµn

L2 + pnT

L

)
.

Note that our choice of p = Θ(min{ L
n , LT

λn , L2T
λµn }) ensures that this running time is Õ(T ). ◀

5.6 Combining the Algorithms
We conclude the proof of Theorem 9 by verifying that for any input at least one of Algorithms 1-
4 computes an estimate L̃ = Ω̃(LT 0.4/n0.8). The proof of this claim is a case distinction that
is deferred to the full version of this paper.
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Abstract
The Subgraph Isomorphism problem is of considerable importance in computer science. We

examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of
applications. This problem has a well-known algorithm via color-coding that runs in time O(ntw(H)+1)
[Alon, Yuster, Zwick’95], where n is the number of vertices of the host graph G. While there are
pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time
of O(ntw(H)+1−ε) or even faster (e.g. for k-cliques), it is not known whether such improvements are
possible for all patterns. The only known lower bound rules out time no(tw(H)/ log(tw(H))) for any
class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx’07].

In this paper, we demonstrate the existence of maximally hard pattern graphs H that require
time ntw(H)+1−o(1). Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard
assumption from fine-grained complexity theory, we prove the following asymptotic statement for
large treewidth t:

For any ε > 0 there exists t ≥ 3 and a pattern graph H of treewidth t such that
Subgraph Isomorphism on pattern H has no algorithm running in time O(nt+1−ε).

Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for
each specific treewidth t ≥ 3:

For any t ≥ 3 there exists a pattern graph H of treewidth t such that for any ε > 0
Subgraph Isomorphism on pattern H has no algorithm running in time O(nt+1−ε).

In addition to these main results, we explore (1) colored and uncolored problem variants (and
why they are equivalent for most cases), (2) Subgraph Isomorphism for tw < 3, (3) Subgraph
Isomorphism parameterized by pathwidth instead of treewidth, and (4) a weighted variant that we
call Exact Weight Subgraph Isomorphism, for which we examine pseudo-polynomial time algorithms.
For many of these settings we obtain similarly tight upper and lower bounds.
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1 Introduction

The Subgraph Isomorphism problem is commonly defined as follows: Given a graph H on
k vertices, and a graph G on n vertices, is there a (not necessarily induced) subgraph of G
which is isomorphic to H?
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40:2 Detecting Subgraphs of Bounded Treewidth

Subgraph Isomorphism generalizes many problems of independent interest, such as the
k-path and k-clique problems. The problem is also of considerable interest when H is less
structured, with applications to discovering patterns in graphs that, for example, arise from
biological processes such as gene transcription or food networks, from social interaction, from
electronic circuits, from neural networks [42], from chemical compounds [47] or from control
flow in programs [19]. In some fields, the problem is sometimes referred to as the search for
“network motifs”, i.e. subgraphs that appear more often than would normally be expected.

In its general form, the problem is NP-hard. We are interested in solving the problem
when the pattern graph H is “tree-like” or “path-like”, i.e. when the treewidth tw(H) or the
pathwidth pw(H) of H is bounded. Such pattern graphs of low treewidth or pathwidth often
arise in practice when considering the structure of chemical compounds, the control flow
of programs, syntactic relations in natural language, or many other graphs from practical
applications (see e.g. [14, 16]). On the theoretical side, many restricted classes of graphs have
bounded treewidth, see also [15]. Restricting NP-hard problems to graphs of bounded tree-
and pathwidth often yields polynomial-time algorithms, and Subgraph Isomorphism is no
exception. Most notably, the classic Color-Coding algorithm by Alon, Yuster and Zwick [9]
solves the problem by a Las Vegas algorithm in expected time O(ntw(H)+1g(k)), or by a
deterministic algorithm in time Õ(ntw(H)+1g(k)), where g is a computable function (and Õ(·)
is used to suppress factors that are polylogarithmic in the input size). In other words, if the
pattern graph H has treewidth bounded by some constant, the problem is fixed-parameter
tractable when parameterized by k. The Color-Coding algorithm is also relevant for practical
purposes: Recently, it has received an efficient implementation, which tested well against
state-of-the-art programs for Subgraph Isomorphism [39].

Many researchers wondered whether the Color-Coding algorithm can be improved. This
question has been studied in many different directions, including the following:

Marx [40] showed that no algorithm solves the Subgraph Isomorphism problem in time
O(no(tw(H)/ log(tw(H)))g(k)) unless the Exponential Time Hypothesis (ETH) fails, and this
even holds when restricted to any class of pattern graphs of unbounded treewidth.
A series of work has improved the computable function g, see e.g. [10, 29, 44].
For many special pattern graphs faster algorithms have been found; the most famous
example is the k-Clique problem, which can be solved in time O(nkω/3g(k)) [43]1.

In this paper, we use a different angle to approach the question whether Color-Coding
can be improved. We ask whether there exist “hard” pattern graphs:

Do there exist pattern graphs H for which Subgraph Isomorphism
cannot be solved in time O(ntw(H)+1−ε) for any constant ε > 0?

To the best of our knowledge, this question has not been previously studied. As our main
result, we (conditionally) give a positive answer to this question. More precisely, we show
that for every t ≥ 3 there exists a pattern graph H with tw(H) = t for which Subgraph
Isomorphism cannot be solved in time O(ntw(H)+1−ε) for any constant ε > 0, assuming
the 3-uniform k-Hyperclique hypothesis; see Section 1.3 for details on this hypothesis. We
also show a slightly weaker statement under the Strong Exponential Time Hypothesis. This
conditionally shows that the Color-Coding algorithm by Alon, Yuster and Zwick cannot be
significantly improved while still working for all pattern graphs.

1 This bound assumes that k is divisible by 3; there are similar results for general k [27].
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For the case of tw(H) = 2, an algorithm of Curticapean, Dell and Marx [24] can be
adapted such that it solves Subgraph Isomorphism in time Õ(nωg(k)). We unify this
with the algorithm of Alon, Yuster and Zwick by showing that both time bounds can be
achieved within a simple framework. In particular, we use so-called k-wise matrix products,
an operation which was introduced in its general form in [31] and studied further in [38].

We also study the Subgraph Isomorphism problem when the pathwidth of H is bounded,
and specialize our framework to show slight improvements in running time compared to the
case of bounded treewidth. Here, we use rectangular matrix products, for which faster-than-
naive algorithms are known [30].

In further results, our focus is on the weighted variant Exact Weight Subgraph
Isomorphism, where the subgraph must also have total weight equal to zero. In this work,
we consider both the node-weighted and the edge-weighted variant of this problem, for both
bounded treewidth and bounded pathwidth, allowing the maximum absolute weight W to
appear in the running time (i.e. the pseudopolynomial-time setting). We show that our
algorithms for the unweighted case can be adapted to the weighted case. We also speed up the
weighted algorithms by using the fact that fast convolution (or rather, sumset computation),
a folklore technique that lies at the core of many fast algorithms for problems with weights
(e.g. [20, 18, 35, 34, 17, 12] and [23, exercise 30.1.7]), can easily be adapted to work with
rectangular matrices and tensors. We furthermore show tight conditional lower bounds in
many cases. Last but not least, we show that our algorithms can be slightly improved for
the case of node-weighted instances for which either the pathwidth of H is bounded, or H is
a tree. These algorithms also rely on fast rectangular matrix products.

1.1 Related Work
Additional to the conditional lower bound of O(no(tw(H)/ log(tw(H)))g(k)) by Marx [40], there
is an unconditional lower bound of O(nκ(H)) for the size of any AC0-circuit, for some graph
parameter κ(H) = Ω(tw(H)/ log(tw(H))), which holds even when considering the average
case [37]. Interestingly, the factor of 1/ log(tw(H)) does not seem to be an artefact of the
proof: There is an AC0-circuit of size O(no(tw(H))g(k)) that solves the problem on certain
unbounded-treewidth classes in the average case [45].

In a different direction, Dalirrooyfard et al. [25] design various reductions from k-Clique
to Subgraph Isomorphism, among other results. They also present results on the detection
of induced subgraphs (we focus on non-induced subgraphs).

For the weighted variant of Subgraph Isomorphism, lower bounds under the k-Sum
hypothesis for stars, paths, cycles and some other pattern graphs are presented in [5]. Edge-
weighted triangle detection has a by-now classic O(n3−ε) lower bound under both the 3Sum
hypothesis and the APSP hypothesis [7]. On the other hand, in [6], it is proven that finding
node-weighted k-cliques can be done almost as quickly as finding unweighted k-cliques. We
are not aware of any results on the Exact Weight Subgraph Isomorphism problem
when W may appear in the running time (i.e. a pseudopolynomial-time algorithm), which is
what we focus on here.

In our work, we pose no restrictions on the host graph G. For an extensive classification
of Subgraph Isomorphism with respect to various parameters of both G and H, see [41].

1.2 Hardness Assumptions
The most standard hypothesis from fine-grained complexity theory is the Strong Exponential
Time Hypothesis (SETH) [32], which postulates that for any ε > 0 there exists k ≥ 3 such
that k-Sat on n variables cannot be solved in time O∗(2(1−ε)n).
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40:4 Detecting Subgraphs of Bounded Treewidth

More recent is the Hyperclique hypothesis. In the h-uniform k-Hyperclique problem, for
a given h-uniform hypergraph we want to decide whether there exist a set of k vertices such
that every size-h subset of these vertices forms a hyperedge. For any k > 3, the 3-uniform
k-Hyperclique hypothesis postulates that this problem cannot be solved in time O(nk−ε)
for any ε > 0. This hypothesis has also been formulated when replacing 3 with any h < k,
getting progressively more believable with larger h. For a more in-depth discussion of the
believability of this hypothesis we refer to [38, Section 7].

Note that we will also use the h-uniform Hyperclique hypothesis for various h, which is
simply the conjecture that the h-uniform k-Hyperclique hypothesis is true for all k > h.

Related to this is the k-Clique conjecture, which postulates that the k-Clique problem
(which is the 2-uniform k-Hyperclique problem) cannot be solved in time O(nωk/3−ε) for any
constant ε > 0, where ω < 2.373 [36] is the exponent of matrix multiplication.

1.3 Our Results
Unweighted Subgraph Isomorphism with Bounded Treewidth. First, consider the case of
the unweighted Subgraph Isomorphism problem for bounded-treewidth pattern graphs
H. As was said, and as we will re-prove with a unified algorithm later, this problem has
an algorithm running in time Õ(ntw(H)+1) for tw(H) ≥ 3. We show tight conditional lower
bounds by proving the following obstacles to faster algorithms, which use the k-clique
hypothesis and the h-uniform k-hyperclique hypothesis. Note that when we say, for some x,
that an algorithm has running time O(nx−ε), what we mean is that the algorithm runs in
time O(nx−ε) for some constant ε > 0.

▶ Theorem 1. The following statements are true.
1. For each t ≥ 3 and each 3 ≤ h ≤ t, there exists a connected, bipartite pattern graph Ht,h

of treewidth t such that there cannot be an algorithm solving the Subgraph Isomorphism
problem on pattern graph Ht,h in time O(nt+1−ε) unless the h-uniform h(t+1)-hyperclique
hypothesis fails.

2. For each t ≥ 2 and each h ≥ 3, there exists a connected, bipartite pattern graph Ht,h of
treewidth t such that there cannot be an algorithm solving the Subgraph Isomorphism
problem on pattern graph Ht,h in time O(nt−ε) unless the h-uniform ht-hyperclique
hypothesis fails.

3. For each t ≥ 2, there exists a connected, bipartite pattern graph Ht of treewidth t such that
there cannot be an algorithm solving the Subgraph Isomorphism problem on pattern
graph Ht in time O(n(t+1)ω/3−ε) unless the (t + 1)-Clique hypothesis fails.

Indeed, with the very same reduction, we also get an obstacle from SETH. However, the
lower bound it provides is not as tight as the above, and in the case of the second part does
not work for each target treewidth t.

▶ Theorem 2. Assuming SETH, the following two statements are true.
1. For any t ≥ 3 and any ε > 0 there exists a pattern graph Ht,ε of treewidth t such that there

cannot be an algorithm solving all instances of Subgraph Isomorphism with pattern
graph Ht,ε in time O(nt−ε).

2. For any ε > 0 there exists a t ≥ 3 and a pattern graph Hε of treewidth t such that there
cannot be an algorithm solving all instances of Subgraph Isomorphism with pattern
graph Hε in time O(nt+1−ε).

On the algorithmic side, we present an algorithm that achieves matching running times
(as listed in Theorem 3 below). As was said, the results in the following theorem are not
new. Part 1 was shown via Color-Coding in [9] and part 2 follows from techniques in [24].
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We unify these two results by providing a single, relatively simple algorithmic technique
achieving both, based on k-wise matrix products. These techniques are later expanded to
also work for the weighted version, where they then achieve new results. In the following,
ω < 2.373 [36] is the exponent of matrix multiplication.

▶ Theorem 3. There are algorithms which, given an arbitrary instance ϕ = (H, G) of
Subgraph Isomorphism where H has treewidth tw(H), solve ϕ in
1. time Õ(ntw(H)+1g(k)) when tw(H) ≥ 3,
2. time Õ(nωg(k)) when tw(H) = 2, and
3. time Õ(n2g(k)) when tw(H) = 1,
where k := |V (H)|, n := |V (G)| and g is a computable function.

Semi-Equivalence of Hyperclique and Subgraph Isomorphism. In the full version of the
paper, we also discuss how our results not only show a reduction from Hyperclique to
Subgraph Isomorphism with bounded treewidth, but also in the other direction. For this,
we show that calculating the boolean k-wise matrix products, which is the bottleneck in
our algorithm for bounded-treewidth Subgraph Isomorphism, is actually equivalent to
the k-uniform (k + 1)-Hypergraph problem. Hence we have a reduction in the second
direction. This gives an interesting intuition for why the Hyperclique hypothesis is the
“correct” conjecture to prove conditional hardness of Subgraph Isomorphism for bounded
treewidth.

We remark that this does not lead to a full equivalence of these problems because the
uniformity (i.e. the size of hyperedges) of the Hyperclique problem we reduce from in the
first reduction is much smaller than the size of the hypercliques we search for. Hence we only
have a reduction from a Hyperclique instance with small edge uniformity to Subgraph
Isomorphism, and a reduction from Subgraph Isomorphism to Hyperclique instances
with large edge uniformity.

Weighted Subgraph Isomorphism with Bounded Treewidth. Now consider the weighted
version of Subgraph Isomorphism for bounded-treewidth graphs H. Recall that the
weighted version can be either node- or edge-weighted and is defined such that the weights in
the solution subgraph must have total weight zero. A trivial dynamic programming algorithm
on the tree decomposition achieves a running time of Õ(ntw(H)+1 · W log W ) for tw(H) ≥ 3.

Note that these results show conditional lower bounds even when the maximum weight is
restricted to W = Θ(nγ), for any constant γ > 0.

▶ Theorem 4. For both the node- and edge weighted variant of the problems, the following
statements are true.
1. For each t ≥ 3, each γ ∈ R+ and each 3 ≤ h ≤ t, there exists a connected, bipartite graph

Ht,h,γ of treewidth t such that there cannot be an algorithm solving the Exact Weight
Subgraph Isomorphism problem on pattern graph Ht,h,γ for instances with maximum
weight W = Θ(nγ) in time O(nt+1−εW ), unless the h-uniform Hyperclique hypothesis
fails.

2. For each t ≥ 1, each γ ∈ R+ and each h ≥ 3, there exists a connected, bipartite graph
Ht,h,γ of treewidth t such that there cannot be an algorithm solving the Exact Weight
Subgraph Isomorphism problem on pattern graph Ht,h,γ for instances with maximum
weight W = Θ(nγ) in time O(nt−εW ), unless the h-uniform Hyperclique hypothesis fails.

3. For each t ≥ 1 and each γ ∈ R+, there exists a connected, bipartite graph Ht,γ of
treewidth t such that there cannot be an algorithm solving the Exact Weight Subgraph
Isomorphism problem on pattern graph Ht,γ for instances with maximum weight W =
Θ(nγ) in time O(n(t+1)ω/3−εW ω/3), unless the Clique hypothesis fails.
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Similar lower bounds also hold when trying to reduce the exponent of W instead of n.
Meaning there is also no algorithm of running time O(nt+1W 1−ε) in part 1, etc.

On the algorithmic side, we present an algorithm that achieves matching running times
for tw(H) ≥ 3, and almost matching running times for tw(H) = 1, 2. Note that in terms
of exponents, the first algorithm below is not better than the naive one with running time
O(ntw +1W log W ). However, it avoids a factor of log W in the largest term, and instead
appends it to a smaller term, so in a way it presents an improvement of log W in the running
time. Specifically, we show

▶ Theorem 5. There are algorithms which, given an arbitrary instance ϕ = (H, G, w) of the
Exact Weight Subgraph Isomorphism problem where H has treewidth tw(H), solve ϕ in
1. time Õ((ntw(H)+1W + ntw(H)W log W )g(k)) when tw(H) ≥ 3,
2. time Õ((nωW + n2W log W )g(k)) when tw(H) = 2, or
3. time Õ((n2W + nW log W )g(k)) when tw(H) = 1,
where n := |V (G)|, k := |V (H)|, g is a computable function, and W is the maximum absolute
weight in the image of w.

Comparing these upper bounds with the lower bounds from Theorem 5, we have a tight
lower bound for the weighted case with tw(H) ≥ 3. For weighted tw(H) = 2, we have a
lower bound which is tight except for the exponent of ω/3 to W ; it is unclear whether this
can be strengthened. The lower bound for weighted graphs with tw(H) = 1 is obviously not
tight: We have an upper bound of Õ(n2W + nW log W ), but our lower bounds only states
that it requires time O(n1−o(1)W 1−o(1)) and O(n2ω/3−o(1)W ω/3−o(1)). Tighter lower bounds
for this case remain an important open problem.

Unweighted Subgraph Isomorphism with Bounded Pathwidth. So far we have only looked
at the case of bounded treewidth. However, similar results hold for the case of bounded
pathwidth. Let us start with the unweighted Subgraph Isomorphism problem.

Note that we do not get any lower bounds for the current setting. This is because we
prove all our lower bounds by showing an equivalence of the standard Subgraph Isomorphism
problem to a colored variant (see also Section 1.4), and then proving a lower bound for the
colored version. We do not know how to prove such an equivalence for the current setting,
therefore we do not get lower bounds in this case; we leave this as an open problem.

Since a path decomposition is always also a tree decomposition, we trivially get upper
bounds as in Theorem 3 (when replacing treewidth by pathwidth). However, we can do
better by using rectangular matrix multiplication to speed up the computation. For z ∈ R+,
let ω(z) be the smallest real number such that multiplying a n × n matrix with a n × nz

matrix can be done in time O(nω(z))2. We prove the following upper bounds.

▶ Theorem 6. There are algorithms which, given an arbitrary instance ϕ = (H, G) of
Subgraph Isomorphism where H has pathwidth p, solve ϕ in
1. time Õ(nω(p−1)g(k)) when p ≥ 2, and
2. time Õ(n2g(k)) when p = 1
where k := |V (H)| and n := |V (G)|.

2 Le Gall [30] has shown that there are fast algorithms for rectangular matrix multiplication based on the
Coppersmith-Winograd method [22, 36] used for square matrix multiplication. Among other values,
he shows ω(0.31) = 2, ω(2) < 3.26, ω(3) < 4.2, ω(4) < 5.18 and ω(5) < 6.16. See [30] for an extensive
table of such values.
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We certainly have p ≤ ω(p−1) < p+1, so these results represent only a minor improvement,
which is nonetheless important because it “beats” the lower bound for treewidth. Hence the
lower bound for pathwidth cannot be the same as for treewidth.

Weighted Subgraph Isomorphism with Bounded Pathwidth. We also analyze the bounded-
pathwidth pattern graph version of Weighted Subgraph Isomorphism. Specifically, we
get the following lower bound.

▶ Theorem 7 (Theorem 4 for pathwidth). Parts 2 and 3 of Theorem 4 also hold when
replacing the treewidth t by the pathwidth p. Part 1 does not hold.

And on the algorithmic side, we can again use rectangular matrix multiplication to improve
on the algorithms from the case of bounded treewidth. Specifically, we get:

▶ Theorem 8. There are algorithms which, given an arbitrary instance ϕ = (H, G, w) of the
Exact Weight Subgraph Isomorphism problem, solve ϕ in
1. time Õ((nω(pw(H)−1)W + npw(H)W log W )g(k)) when pw(H) ≥ 2,
2. time Õ((n2W + nW log W )g(k)) when pw(H) = 1
where n := |V (G)|, k := |V (H)|, and W is the maximum absolute weight in the image of w.

For pw(H) ≥ 3, the lower bounds are therefore obviously not tight (at least for current
algorithms), unless significant advances in matrix multiplication techniques are made. For
pw(H) = 1, 2, the situation is the same as with treewidth, see the discussion of Theorem 5.

Improvements to Special Cases of Weighted Subgraph Isomorphism. It is natural to
think that the exponents ω

3 to W in the lower bounds of Theorems 4 and 7 are only artefacts
of the reduction, and that with more advanced methods, this exponent can be improved
to 1. However, the following two theorems show that this notion is false for tw(H) = 1 and
pw(H) = 1, 2, at least when considering the node-weighted case. Indeed, for tw(H) = 1 (or
pw(H) = 1) and W = n, these bounds are tight, so further general improvements on the
exponent are impossible.

Specifically, Theorems 9 and 10 show the following improvements of the algorithms from
Theorems 5 and 8 for small tree- or pathwidth. Let MM(n, n, x) be the time in which a n × n

matrix can be multiplied with with a n × x matrix.

▶ Theorem 9. There is an algorithm which, given an arbitrary instance ϕ = (H, G, w) of
the node-weighted Exact Weight Subgraph Isomorphism problem where H is a tree,
solves ϕ in time Õ((MM(n, n, W ) + nW log W )g(k)).

▶ Theorem 10. There is an algorithms which, given an arbitrary instance ϕ = (H, G, w)
of the node-weighted Exact Weight Subgraph Isomorphism problem, solves ϕ in time
Õ(MM(n, n, npw(H)−1W )g(k)).

For W = O(nγ), the running time of Theorem 9 is Õ(nω(γ) poly(k)). This implies several
interesting facts. One such fact is that due to the known convergence limγ→∞ ω(γ)−γ = 1 [21],
we have that for node-weighted trees, there cannot be a lower bound of O(n(1+ε−o(1)W ) for
any ε > 0 that holds for any constant γ > 0. A similar result holds for bounded-pathwidth
graphs. Other implications are discussed in the full version.
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1.4 Equivalence of the Colored and Uncolored Problems
All mentioned algorithms and conditional lower bounds are shown for the restricted problem
of Colored Subgraph Isomorphism, where the nodes of G and H are colored with |V (H)|
colors and the isomorphism must preserve colors, as also studied in [40]. In the full version of
the paper, we prove that the standard and the colored variant of Subgraph Isomorphism
can be solved in essentially the same running time in almost all cases. Specifically, we show
the following lemma.

▶ Lemma 11. Let ρ be any graph parameter.
1. If there is a T (n, k, ρ(H)) time algorithm for Colored Subgraph Isomorphism, then

there is a Õ(T (kn, k, ρ(H))g(k)) time algorithm for Subgraph Isomorphism, where g

is some computable function.
2. If there is a T (n, k, ρ(H), W ) time algorithm for Exact Weight Colored Subgraph

Isomorphism, then there is a Õ(T (kn, k, ρ(H), W )g(k)) time algorithm for Exact
Weight Subgraph Isomorphism, where g is some computable function.

3. Let tw(H) ≥ 2. If there is a T (n, k, tw(H)) time algorithm for Subgraph Isomorphism,
then there is a O(T (poly(k)n, poly(k), tw(H)) + poly(k)n2) time algorithm for Colored
Subgraph Isomorphism.

4. If there is a T (n, k, ρ(H), W ) time algorithm for Exact Weight Subgraph Isomorph-
ism, then there is a O(T (2n, 2k, ρ(H), 2kW ) + poly(k)n2) time algorithm for Exact
Weight Colored Subgraph Isomorphism.

This lemma enables us to prove results for (Exact Weight) Subgraph Isomorphism
while only talking about the more structured colored variants of the problem.

2 Technical Overview of Our Main Results

We now give proof sketches of our main lower bound results. We do not give proofs for the
upper bound results due to their technicality. The full version of this paper contains all
proofs with full detail.

2.1 Lower Bound for Subgraph Isomorphism
Our main result is the existence of the hard pattern graphs for bounded-treewidth Subgraph
Isomorphism. We now prove their existence for treewidth at least 3 under the Hyperclique
hypothesis, i.e. part 1 of Theorem 1.

The exact statement we prove is that for each t ≥ 3 and each 3 ≤ h ≤ t, there exists a
pattern graph of treewidth t such that Subgraph Isomorphism cannot be solved in time
O(nt+1−ε) on that pattern graph unless the h-uniform h(t + 1)-hyperclique hypothesis fails.
Note that the proof actually shows this for the colored variant of Subgraph Isomorphism,
after which we can use Lemma 11 to transfer the lower bound to the uncolored problem.

Proof sketch. See Figure 1 for a sketch of the reduction. Let t ≥ 3 and 3 ≤ h ≤ t be given
and assume that Subgraph Isomorphism can be solved in time O(nt+1−ε) on pattern
graphs of treewidth t. We show that the h-uniform h(t + 1)-hyperclique hypothesis fails.
Construction of H. We construct a pattern graph H as a bipartite graph with vertex set

A ∪ B as follows. Writing [c] := {1, . . . , c}, we set A := [t + 1] and B :=
(

A×[h]
h

)
. We

connect a vertex b = ((a1, j1), .., (ah, jh)) in B to a vertex a in A if a = aℓ for some ℓ. Set
k := |A| + |B|.
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A

B

...

. . .

Corresponds to a choice
of one vertex from each
of the h partitions

Corresponds to a hy-
peredge

Corresponds to h vertex
partitions of the hyper-
clique instance

Corresponds to the set of
hyperedges between its
h defining vertex parti-
tions

The edge exists if and
only if the endpoints
are compatible, i.e. if
for each hyperedge par-
tition that involves both
endpoints, the vertex
choice on one end agrees
with the vertex of the hy-
peredge on the other

pattern graph H host graph G

Figure 1 A sketch of the reduction we use to prove part 1 of Theorem 1 where h = 3 and t = 4.
Note that this is only a partial sketch of the pattern graph. We use multiedges to signify that for the
endpoints a ∈ A and b = ((a1, j1), . . . , (ah, jh)) ∈ B there exists more than one ℓ such that a = aℓ.

We show that this pattern has a treewidth of t, via a well-known characterization of
treewidth as a graph-theoretic game: A graph F has treewidth ≤ t if and only if t + 1
cops can catch3 a robber on F [46]. To show the bound on the treewidth of H, initially
place a cop on each vertex of A. No matter on which vertex of B the robber starts, they
are surrounded by cops. Since every vertex in B has h ≤ t < t + 1 neighbors in A, there
must exist some cop which is not adjacent to the robber, so this cop can catch the robber
in a single step. This concludes the proof that the pattern graph H has treewidth t.

Construction of G. Now given a h(t + 1)-partite hypergraph H ′, i.e. an instance of the
h-uniform k′-Hyperclique problem for k′ := h(t + 1), we write the vertex set of H ′ as
U1,1 ∪ . . . ∪ U1,h ∪ . . . ∪ Ut+1,1 ∪ . . . ∪ Ut+1,h. Let NH be the number of vertices vertices
in each partition and nH = O(NH) the number of vertices overall.
We construct a k-partite graph G as follows. For a in A we set Va := Ua,1 × . . . × Ua,h.
For b = ((a1, j1), .., (ah, jh)) in B, we set Vb := E(H ′) ∩ (Ua1,j1 × . . . × Uah,jh

). This
describes the k parts of the k-partite vertex set V (G). Note that each part has size at
most NG := Nh

H . Now we construct the edges. For any a in A and b = ((a1, j1), .., (ah, jh))
in B with (a, b) in E(H), consider an arbitrary u = (u1, .., uh) in Va and u′ = (u′

1, ..., u′
h)

in Vb. We say that u and u′ are “compatible” if for every ℓ with aℓ = a we have u′
ℓ = ujℓ

;
in this case we connect u and u′ by an edge. This finishes the construction of G.

3 The game works as follows: The k + 1 cops select their starting vertices in the graph. Then the
robber may choose their starting vertex. The cops can always see the robber and adapt their strategy
accordingly. Similarly, the robber can see the cops. The game now proceeds in steps, where in each
step, one of the cops chooses an arbitrary destination vertex and takes off via helicopter in the direction
of that vertex. While the cop is travelling, the robber sees where they will land and may now move
arbitrarily along edges of the graph, as long as they do not pass through stationary cops. When the
robber has finished moving, the cop lands. The cops win if and only if they are guaranteed to catch the
robber after a finite number of moves, and lose otherwise.
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Correctness. Note that any colored subgraph isomorphism of H in G chooses vertices va

in Va for all a in A. This corresponds to choosing vertices ui,j in Ui,j for all i in [t + 1],
Moreover, the edges of a h(t + 1)-hyperclique are in one-to-one correspondence with the
set B. Since for each b in B the colored subgraph isomorphism of H in G needs to choose
a vertex vb in Vb, which corresponds to an edge between certain vertices ui,j , we indeed
check that the chosen vertices ui,j form an h-uniform h(t + 1)-hyperclique.

Running Time. Trivially, the construction time and output size are O(N2h
H ) (actually, it is

slightly better, but this is not important in this proof sketch), and G has n = O(NG) =
O(Nh

H) vertices. Now if we can solve Subgraph Isomorphism in time O(nt+1−ε), we
solve the h-uniform h(t + 1)-Hyperclique instance in time O(N2h

H + (Nh
H)t+1−ε) =

O(Nh(t+1)−hε
H ) = O(Nh(t+1)−ε′

H ) = O(nh(t+1)−ε′

H ). ◀

This shows part 1 of Theorem 1. Part 2 can be shown by the almost the exact same
proof, except that now we choose the size of A to be t instead of t + 1, and we start with
an ht-hyperclique instead of an h(t + 1)-hyperclique. It can be seen that in this case, the
pattern graph still has treewidth t. The third part of the theorem can be seen by simply
taking an instance of (t + 1)-Clique and subdividing the edges in the obvious way to make
the graph bipartite.

Let us also quickly mention how the proof of the slightly weaker bounds under SETH,
i.e. Theorem 2, works. The split-and-list technique from [48] allows one to reduce the
Satisfiability problem to Hyperclique. Using this technique, the following result was shown
in [38, Lemma 9.1].

▶ Lemma 12 ([38]). Assuming SETH, for any ε > 0 there exists h ≥ 3 such that for all
k > h, the h-uniform k-Hyperclique problem is not in time O(nk−ε).

The SETH result now follows by using essentially the same reduction as above, but we prefix
it by the reduction from SAT to Hyperclique.

2.2 Lower Bound for Exact Weight Subgraph Isomorphism
We also give lower bounds for the exact weight variant of the Subgraph Isomorphism
problem. In particular, we prove the existence of hard pattern graphs for the bounded-
treewidth Exact Weight Subgraph Isomorphism problem for any polynomial weight
bound. We give this result for any treewidth which is at least 3, and under the Hyperclique
hypothesis. This is part 1 of Theorem 4.

The exact statement we prove is that for each t ≥ 3, γ ∈ R+ and 3 ≤ h ≤ t, there exists
a pattern graph of treewidth t such that Exact Weight Subgraph Isomorphism with
maximum weight W = Θ(nγ) cannot be solved in time O(nt+1−εW ) unless the h-uniform
Hyperclique hypothesis fails. Again, we show this statement for the colored problem and
transfer the lower bound via Lemma 11.

To do this, we will encode part of a hyperclique instance in the edges of the Exact
Weight Subgraph Isomorphism problem, and the rest of the instance in the weights. To
do the latter, we need to encode certain equality constraints only via weights. This can be
done using so-called k-average free sets4, which we define below.

4 These k-average-free sets are a tool which are very useful for weighted problems, especially when they
have additive elements. Such problems include k-sum, Subset Sum, Bin Packing, various scheduling
problems, Tree Partitioning, Max-Cut, Maximum/Minimum Bisection, a Dominating Set
variant with capacities, and similar [3, 4, 6, 11, 28, 33, 26]. Other uses of k-average-free sets in computer
science include constructions in extremal graph theory, see e.g. [1, 2, 8].
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▶ Definition 13 (k-average free sets). A set S ⊆ Z is called k-average-free if, for any
s1, . . . , sk′+1 ∈ S with k′ ≤ k, we have s1 + . . .+sk′ = k′ ·sk′+1 if and only if s1 = . . . = sk′+1.
In other words, the average of s1, . . . , sk′ ∈ S is in S if and only if all si are equal.

We use the following construction for k-average free sets, originally proven in [13], modified
into a more useful version in [6] and formulated in this form in [3].

▶ Lemma 14. There exists a universal constant c > 0 such that, for all constants ε ∈ (0, 1)
and k ≥ 2, a k-average-free set S of size n with S ⊆ [0, kc/εn1+ε] can be constructed in time
poly(n).

Let us now prove the statement about Exact Weight Subgraph Isomorphism. We
will construct an instance that is node-weighted, however this can easily be converted into
an edge-weighted version by moving the weight of each vertex to all of its incident edges.

Proof sketch. Let t ≥ 3, 3 ≤ h ≤ t and γ ∈ R be given and assume that Exact Weight
Subgraph Isomorphism can be solved in time O(nt+1−εW ) on instances where the pattern
graph has treewidth t and all weights are bounded by W = Θ(nγ). We show that the
h-uniform k-hyperclique hypothesis fails for some large enough k.
Construction of H. We construct a pattern graph H as a graph with vertex set (A1 ∪A2)∪B

as follows. We set A1 := [t+1], A2 := [r] (for some r large enough) and B :=
((A1∪A2)×[h]

h

)
.

We connect a vertex b = ((a1, j1), . . . , (ah, jh)) in B to a vertex a in A1 (not in A2) if
a = aℓ for some ℓ. Set k := |A1| + |A2| + |B|. By almost the same proof as in the
unweighted version, it can be shown that this pattern H has treewidth t.

Grouping partitions. Now let an instance of the h-uniform k′-Hyperclique problem be
given, and write the vertex set of H ′ as U1 ∪ . . . ∪ Uk. Let NH be the number of vertices
vertices in each partition and nH = O(NH) the number of vertices overall.
We construct the k-partite graph G with at most some number NG of vertices in each
partition as follows. We will encode a β-fraction of the Hyperclique instance in the
weights of the final Exact Weight Subgraph Isomorphism instance, and a (1 − β)-
fraction in the edges, for some β chosen appropriately. To do this, we will choose β such
that βk′

hr , (1−β)k′

h(t+1) ∈ N and then group the sets U1, . . . , Uβk′ into hr groups and the sets
Uβk′+1, . . . , Uk′ into h(t + 1) groups. Specifically, for each (x, y) ∈ [r] × [h], we create the
set U1

x,y = U(xr+y−1) βk′
hr +1 × . . . × U(xr+y) βk′

hr

, and for each (x, y) ∈ [t + 1] × [h], we create
the set U2

x,y = U
βk′+(x(t+1)+y−1) (1−β)k′

h(t+1) +1 × . . . × U
βk′+(x(t+1)+y) (1−β)k′

h(t+1)
.

Vertices of G. Now for each a in A1 we set Va := U1
a,1 × . . . × U1

a,h and for each a in A2 we
set Va := U2

a,1 × . . . × U2
a,h. Finally, for each b = ((a1, j1), . . . , (ah, jh)) in B, where for

each ℓ we have aℓ ∈ Aiℓ
, we set Vb := E(H ′) ∩ (U i1

a1,j1
× . . . × U ih

ah,jh
). This describes the

k parts of the k-partite vertex set V (G). We choose r large enough so that the maximum
size of each part is NG := N

(1−β)k′/(t+1)
H .

Edges of G Now we construct the edges and weights of the graph. Let us start with the
edges. The construction here is basically the same as the construction of the edges in the
unweighted proof in the last section. For each a in A2 and b = ((a1, j1), . . . , (ah, jh)) in
B with (a, b) in E(H), consider an arbitrary u = (u1, . . . , uh) in Va and u′ = (u′

1, . . . , u′
h)

in Vb. We say that u and u′ are “compatible” if for every ℓ with aℓ = a we have u′
ℓ = ujℓ

;
in this case we connect u and u′ by an edge. This finishes the construction of the edges
of G.
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Weights of G. Now we construct the weights. We want to encode the same edge constraints
as we just encoded for A2, but now for A1, and we have to use weights instead of edges.
To do this, we use |B|-average free sets via the construction of Lemma 14. We simplify
the usage in this shortened proof to avoid dealing with too many variables. We use the
lemma to obtain in polynomial time (which we will treat as negligible here) a |B|-average
free set S of size N

βk′/(hr)
H such that S ⊆ [0, C], where C ≈ O(Nβk′/(hr)

H ) (up to a factor
of (1 + ε) in the exponent, but we will ignore this here for simplicity). From this, we can
construct an arbitrary bijection ϱS : [Nβk′/(hr)

H ] → S.
To simplify our construction, we specify a target weight T (instead of the default target
zero). We can easily get rid of this again later by subtracting T from the weights of
all vertices of some set of the partition. The binary representation of T consists of hr

blocks of ⌈2|B|C⌉ bits, indexed by pairs (i, j) ∈ [r] × [h], each containing the binary
representation of |B|C. The block (i, j) represents the group U1

i,j . The size of the blocks
is large enough to prevent overflow between the blocks. Note that the maximum weight
W now satisfies log2(W ) = Θ(hr log2(2|B|C)) and hence W ≈ O(Nβk′

H ).
Let us now actually specify the weights of the vertices, beginning with the vertices
in Va for a ∈ A1. For each (i, j) ∈ [r] × [h], we relabel the elements of each U1

i,j as
{1, . . . , N

βk′/(hr)
H }. Now we define the weight of the vertex Va ∋ u = (u1, . . . , uh) to

have, for each i ∈ [h], the value |B|C − |N(a)| · ϱS(ui) in the block (a, i) of its binary
representation. Now we move on to the vertices in Vb for b = ((a1, j1), . . . , (ah, jh)). We
define the weight of the vertex Vb ∋ u′ = (u′

1, . . . , u′
h) to have, for each i ∈ [h] such that

ai ∈ A1, the value ϱS(u′
i) in the block (ai, ji) of its binary representation.

All blocks and vertices which have not been assigned a weight yet are assigned a value of
zero. This concludes the construction of G.

Correctness. Note that any colored subgraph isomorphism of H in G chooses vertices va

in Va for all a in A1 ∪ A2. This corresponds to choosing vertices ui in Ui for each
i ∈ [k′]. Moreover, the edges of a k′-hyperclique are in one-to-one correspondence with
the set B. We simply need to show that the choice of hyperclique vertices induced by
the choice of vertices in A1 ∪ A2 agrees with the choice of hyperclique edges induced by
the choice of vertices in B. For the vertices in A2, this is easily seen to be ensured by
the edges. For the vertices in A1, we need to prove that the weights encode the same
constraint. This, however, is simply the definition of a |B|-average free set: Consider
the block (i, j) (where (i, j) ∈ [r] × [h]) in the binary representation of the total weight
of the subgraph. Suppose that for i ∈ A1 the vertex Vi ∋ u = (u1, . . . , uh) was selected,
and that for each B ∋ b = ((a1, j1), . . . , (ah, jh)) with ∃ℓ : (aℓ, jℓ) = (i, j) the vertex
Vb ∋ u′ = (u′

1, . . . , u′
h) was selected. Then by construction, the total value in the block

(i, j) is the value |B|C − |N(i)|ϱS(uj) (where N(i) is the neighbourhood of i ∈ A1), plus
the value ϱS(u′

ℓ) for all b as above. Note that the latter term has exactly |N(i)| summands,
hence in order for the value in the block to be equal to |B|C as specified by the target
weight, we must have that the value of ϱS(uj) is equal to the value of each of the ϱS(u′

ℓ)
by the definition of |B|-average free sets. Since ϱS is a bijection, this ensures that the
choice of hyperclique vertices in the sets appearing in the Cartesian product defining U1

i,j

– i.e. U(ir+j−1) betak′
hr +1, . . . , U(ir+j) βk′

hr

– agree with the choice of hyperclique edges. This
is true for all i, j and hence for each Uℓ for ℓ ∈ [k′].
The other direction is easy to see via a similar, simpler argument. This concludes the
correctness proof.

Running Time. It can be seen that the running time of this reduction is O(N2h
H ), up to

the running time of the algorithm for the construction of the |B|-average free set, which
we will ignore here for sake of simplicity. Now suppose we can solve Exact Weight
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Subgraph Isomorphism in time O(nt+1−εW ). We use the reduction above to convert
a Hyperclique instance with nH = O(NH) nodes to an Exact Weight Subgraph
Isomorphism instance where W ≈ Θ(Nβk′

H ) and n = O(N (1−β)k′/(t+1)
H ). Choosing β

carefully, we get W = Θ(Nγ
H); note that we are ignoring some intricacies in the choice of

β that arise when you consider the running time of the algorithm that constructs the
|B|-average free set – the details are available in the full version of this paper. Now via the
algorithm for Exact Weight Subgraph Isomorphism, we can solve this instance and
hence the original Hyperclique problem in time O(N2h

H +N
((1−β)k′/(t+1))(t+1−ε)
H ·Nβk′

H ) =
O(Nk′−ε′

H ) = O(nk′−ε′

H ). ◀
It is easy to see that the same proof also rules out algorithms running in time O(nt+1W 1−ε).
Similar as with the proof for the unweighted problem, basically the same techniques can be
used to prove the other parts of Theorem 4.

3 Open Problems

In this paper we discussed many different variants of the Subgraph Isomorphism problem.
For some of these variants we leave gaps, which gives rise to several open problems:
1. Can the algorithms for weighted trees be improved? We have shown that some improve-

ments can be made for node-weighted trees (see Theorem 9), but are these optimal?
What about edge-weighted trees?

2. Are there fast algorithms for unweighted Subgraph Isomorphism on graphs of bounded
pathwidth that do not use rectangular matrix multiplication? Can the gap between
exponent ω(p − 1) and exponent p be closed? Similar questions apply to the weighted
case; see Theorems 6 and 8.

3. Relatedly, are there good lower bounds for unweighted Subgraph Isomorphism on graphs
of bounded pathwidth? Recall that Lemma 11 does not allow us to transfer our lower
bounds for the colored case to the uncolored case.

We conclude with some more general open problems:

1. Do our algorithms and lower bounds also work for other types of graph homomorphisms,
and for counting the number of solutions? Techniques from [24] seem applicable.

2. In this work we demonstrated the existence of maximally hard patterns for which Subgraph
Isomorphism requires time ntw(H)+1−o(1). Can we classify which (classes of) patterns are
maximally hard?

3. Changing our focus from hard patterns to easy patterns, we can ask: do classes of patterns
of unbounded treewidth exist for which Subgraph Isomorphism can be solved in time
no(tw(H))? Recall that a conditional lower bound rules out no(tw(H)/ log tw(H)) [40].
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Abstract
We consider the problem of computing the Boolean convolution (with wraparound) of n vectors
of dimension m, or, equivalently, the problem of computing the sumset A1 + A2 + . . . + An for
A1, . . . , An ⊆ Zm. Boolean convolution formalizes the frequent task of combining two subproblems,
where the whole problem has a solution of size k if for some i the first subproblem has a solution
of size i and the second subproblem has a solution of size k − i. Our problem formalizes a natural
generalization, namely combining solutions of n subproblems subject to a modular constraint. This
simultaneously generalises Modular Subset Sum and Boolean Convolution (Sumset Computation).
Although nearly optimal algorithms are known for special cases of this problem, not even tiny
improvements are known for the general case.

We almost resolve the computational complexity of this problem, shaving essentially a factor of
n from the running time of previous algorithms. Specifically, we present a deterministic algorithm
running in almost linear time with respect to the input plus output size k. We also present a Las
Vegas algorithm running in nearly linear expected time with respect to the input plus output size k.
Previously, no deterministic or randomized o(nk) algorithm was known.

At the heart of our approach lies a careful usage of Kneser’s theorem from Additive Combinatorics,
and a new deterministic almost linear output-sensitive algorithm for non-negative sparse convolution.
In total, our work builds a solid toolbox that could be of independent interest.
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1 Introduction

In this paper we study n-fold variants of the following fundamental 2-fold problems.

1.1 2-Fold Case
Boolean Convolution and Sumset Computation. In Boolean convolution we are given
vectors A, B ∈ {0, 1}m and the task is to compute the vector C = A⃝⋆ B ∈ {0, 1}m defined
by C[k] =

∨
i A[i] ∧B[k − i]. This formalizes a situation in which we split a computational

problem into two subproblems, so that in total there is a solution of size k if and only if
for some i there is a solution of the left subproblem of size i and there is a solution of the
right subproblem of size k − i. This is a natural task that frequently arises in algorithm
design. There are two variants of this problem: Without wraparound the

∨
i-quantifier goes
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over 0 ≤ i ≤ k; with wraparound the quantifier goes over all i ∈ [m] and the entry B[k − i]
means B[(k − i) mod m]. Algorithmically the two variants are equivalent, and throughout
this paper we study the latter variant.

An equivalent problem is sumset computation: Given sets A, B ⊆ Zm, compute their
sumset A + B, which denotes the set of all sums a + b modulo m with a ∈ A, b ∈ B. This
corresponds to Boolean convolution with wraparound1.

Standard Convolution and Polynomial Multiplication. In (standard) convolution we are
given vectors A, B ∈ Rm and the task is to compute the vector C = A ⋆ B ∈ Rm with
C[k] =

∑
i A[i] ·B[k− i]. For instance, if A[i] and B[i] count the number of size-i solutions of

the left and right subproblem, then C[k] counts the number of size-k solutions of the whole
problem. Again one can consider variants with or without wraparound. A typical restriction
are non-negative entries, which is well-motivated in case that A, B, C represent numbers of
solutions.

This problem is equivalent to polynomial multiplication: Given the coefficients of polyno-
mials P (X) =

∑m
i=0 A[i] ·Xi and Q(X) =

∑m
i=0 B[i] ·Xi, compute the coefficients of their

product P ·Q.

State of the Art. Using Fast Fourier Transform (FFT), all of the above problems can be
solved in time O(m log m). A long line of work has considered these problems in a sparse
setting, called sparse convolution or sparse polynomial multiplication, see, e.g., [23, 16, 25, 21,
28, 5, 15, 26, 24, 18, 11]. Here the task is to compute the convolution of two sparse vectors
much faster than performing FFT, ideally in near-linear time in terms of the input plus
output size (i.e., the number of non-zero entries of the input and output vectors). Near-linear
in the input plus output size running time was achieved for vectors with non-negative entries
by Cole and Hariharan [16] and for general vectors in [24], see also [18] for additional log m

factors improvements. Very recently, a Monte Carlo O(k log k)-time algorithm has been
achieved in [11] for non-negative convolution, where k is the input plus output size. Sparse
convolution techniques are crucially used in [3, 4, 2, 15, 8, 12], and are also relevant to the
study of sparse wildcard matching, a fundamental string problem [14, 16].

However, all known algorithms for these sparse problems are randomized, and thus an
open problem is to close the gap between deterministic and randomized algorithms. This was
explicitly posed as an open problem in [15, Remark 8.2].

Our Contribution to the 2-Fold Case. We present a deterministic algorithm for convolution
of non-negative vectors (and thus also for Boolean convolution) running in time k ·mo(1),
where k is the input plus output size. This matches up to the mo(1) term the best known
algorithms in the randomize case [16]. Our algorithm heavily builds upon an algorithm by
Chan and Lewenstein [15], which operates under the additional assumption that a small
superset of the non-negative terms is known in advance. We remove their assumption by
gradually building the sumset using calls to their algorithm.

1 By removing the modulo operation and thus working over Z we can also pose a problem variant
corresponding to Boolean convolution without wraparound. Again, algorithmically these variants are
equivalent, since for any A, B ⊆ {0, 1, . . . , m − 1}, on the one hand computing A + B over Z and taking
the result modulo m yields A + B over Zm, and on the other hand computing A + B over Z2m yields
A + B over Z.
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▶ Theorem 1 (Deterministic Non-Negative Sparse Convolution, Section 6). Denote by ∥x∥0 the
number of non-zero entries of a vector x. Given vectors A, B ∈ Rm

≥0, we can compute their
convolution A ⋆ B (with wraparound) in time ∥A ⋆ B∥0 ·mo(1) by a deterministic algorithm.
More precisely, the running time is ∥A ⋆ B∥0 · 2O(

√
log ∥A⋆B∥0 log log m).

Observe that ∥A∥0, ∥B∥0 ≤ ∥A ⋆ B∥0, and thus rather than bounding the running time in
terms of the input plus output size ∥A∥0 + ∥B∥0 + ∥A ⋆ B∥0, it suffices to bound the running
time in terms of only the output size ∥A ⋆ B∥0. Moreover, note that since ∥A ⋆ B∥0 ≤ m

the above running time is bounded by m1+o(1). As an additional bonus, our approach
gives a quite simple ∥A ⋆ B∥0 · polylog(m)-time Las Vegas algorithm for the 2-fold case of
non-negative sparse convolution, see Theorem 17.

We leave it as an open problem whether similarly efficient deterministic algorithms exist
under the presence of negative entries.

1.2 n-Fold Case
The focus of this paper is on n-fold generalizations of the above problems. Indeed, in typical
applications we do not only split a problem into two subproblems, but these subproblems
are recursively split into further subproblems. If the recursion tree has n leaves, we therefore
want to compute Boolean convolutions of the form A1 ⃝⋆ . . .⃝⋆ An for vectors A1, . . . , An.

Note that now the “gold standard” would be linear running time in terms of the total
input plus output size k = ∥A1∥0 + . . . + ∥An∥0 + ∥A1 ⃝⋆ . . .⃝⋆ An∥0. Note that in contrast
to the 2-fold case, the size of the output is incomparable to the size of the input.

A Special Case: Modular Subset Sum. As an example, consider the Modular Subset
Sum problem, where we are given x1, . . . , xn ∈ Zm and a target t, and the task is to decide
whether for some subset I ⊆ [n] we have

∑
i∈I xi ≡ t (mod m). Observe that the sumset

{0, x1}+ . . . + {0, xn} ⊆ Zm denotes the set of all attainable subset sums modulo m, and
thus Modular Subset Sum can be solved by a direct application of n-fold sumset computation,
which is equivalent to n-fold Boolean convolution (with wraparound).

The state of the art for Modular Subset Sum is as follows. A standard dynamic program-
ming approach solves the problem in time O(n ·m). After the first improvements by Koiliaris
and Xu [20], Axiotis et al. [8] designed an algorithm running in time O((n+m) polylog(n+m)),
which was further simplified, sped up and made deterministic in [7, 13]. Those running times
match a conditional lower bound based on the Strong Exponential Time Hypothesis [1, 8].
Moreover, all of the above algorithms can be analyzed to run in time O(k polylog m), where
k is the total input plus output size [8].

In other words, for the special case |A1| = . . . = |An| = 2 of n-fold sumset computation
near-optimal algorithms are known. Furthemore, the techniques crucially exploit the fact
that all sets Ai have constant cardinality. The goal of this paper is to investigate the general
case without any restrictions on |Ai|. Can one move beyond the problem-specific techniques
in [20, 8, 7, 13] which seem to apply solely to Modular Subset Sum?

Naive Approach. As it is already known how to compute A ⋆ B (and thus A⃝⋆ B) in time
near-linear in the output size [16, 24, 11], is there an easy generalization to compute the
n-fold Boolean convolution A1 ⃝⋆ . . .⃝⋆ An? Naively, if we compute the n-fold convolution in
a linear fashion as (((A1 ⃝⋆ A2)⃝⋆ A3) ⋆ . . .⃝⋆ An−1)⃝⋆ An, then each intermediate convolution
has input plus output size at most k, so using [16] we can bound the total expected running
time by O(nk polylog m). Unfortunately, this running time analysis is tight. The issue is
that up to Ω̃(n) intermediate results may have size Ω(k).

ICALP 2021
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The same is true if we compute the n-fold convolution in a bottom-up tree-like fashion
as ((A1 ⃝⋆ A2)⃝⋆ (A3 ⃝⋆ A4)) ⃝⋆ . . ., as shown by the following example. Pick b =

⌊ log m
log log m

⌋
and ℓ = ⌈logb(m)⌉ = Θ(b), and set Ai to the indicator vector of bi mod ℓ · {0, 1, 2, . . . , b− 1}.
Then the Boolean convolution of any ℓ consecutive Ai’s is the all-ones vector and thus has
size m, and this holds for Ω(n/ℓ) = Ω

(
n log log m

log m

)
intermediate convolutions. On the other

hand, the input size is O(n log m
log log m ) and the output size is O(m).

Analyzing the time only in terms of n, m, the naive approach yields time O(nm polylog m).
A simple algorithm using n− 1 FFTs also yields time O(nm log m). Before this work it was
open whether n-fold Boolean convolution can be solved in time close to linear in n + m, and
close to linear in k, or whether the additional factor Θ̃(n) of the naive approach is necessary.

n-Fold Boolean Convolution versus n-Fold Convolution. We note that n-fold Boolean
convolution is quite different from n-fold convolution, and we focus on the former in this
paper. The reason is that n-fold convolution results in exponentially large entries. Indeed,
assuming that A1, . . . , An are non-negative integer vectors, each with at least two non-zero
entries, one can check that ∥A1 ⋆ . . . ⋆ An∥1 = ∥A1∥1 · . . . · ∥An∥1 ≥ 2n (here ∥x∥1 =

∑
i |x[i]|),

and thus at least one output entry requires Ω(n) bits to represent exactly. Possible ways
to handle this situation are (1) to let k be the total number of input plus output bits, (2)
assume that entries come from a finite field, or (3) relax to approximation. We leave these as
open problems and focus on Boolean convolution in this paper.

Our Contribution to n-Fold Boolean Convolution. We show that the multiplicative factor
n in the naive running times O(nk polylog m) and O(s + nm log m) is not necessary (here s

is the size of the input). Specifically, our approach yields two new results for n-fold Boolean
convolution: a randomized Las Vegas algorithm running in expected time O(k · polylog m),
and a deterministic algorithm running in time k ·mo(1). Morally, we show that one can
convolve n Boolean vectors in a much better way than doing n − 1 FFTs. In particular,
in terms of m, n and the size of the input s, the known algorithms would run in time
Õ(s + mn), whereas our approach yields time Õ(s + m). Thus, in instances where the size of
the input does not dominate (as in Modular Subset Sum where s = 2n) our approach yields
a substantial improvement.

Our algorithm falls in a line of research that tries to apply results from Additive Com-
binatorics in algorithm design, such as [17, 15, 6, 9, 22, 12]. Quite interestingly, this is
the first time that such a connection has produced an (almost) optimal result. Previous
algorithms [17, 15, 6, 9, 22, 12] had less clean running time bounds and are thus likely to be
suboptimal, partly because of the Additive Combinatorics machinery used.

We now state our results more formally. The main result of this paper is the following.

▶ Theorem 2 (n-Fold Boolean Convolution). Given vectors A1, A2, . . . , An ∈ {0, 1}m we can
compute their Boolean convolution with wrap-around A1 ⃝⋆ A2 ⃝⋆ . . .⃝⋆ An

(1) by a randomized Las Vegas algorithm in O(k · polylog(mk)) expected time, or
(2) by a deterministic algorithm in k · 2O(

√
log k·log log m) time

Here, k := ∥A1∥0 + . . . + ∥An∥0 + ∥A1 ⃝⋆ A2 ⃝⋆ . . .⃝⋆ An∥0 is the total input plus output size.

▶ Remark 3. It might seem confusing that for very small k, specifically for k ≤ logO(1) m,
our deterministic time is faster than our randomized time. However, as we will discuss later,
it is easy to solve the problem deterministically in time kO(1). In fact our time bounds are
min

{
k3, k · polylog(mk))

}
expected time, and min

{
k3, k · 2O(

√
log k·log log m) · polylog(mk)

}
deterministically; the latter can be simplified to the expression in Theorem 2.
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In order to employ Additive Combinatorics machinery, it will be convenient to phrase
the problem in terms of sets and sumsets, making the connection more clear. To this
end, we replace every vector Ai ∈ {0, 1}m by a set A′

i ⊆ Zm such that x ∈ A′
i if and

only the x-th entry of Ai is 1. Then, it can easily be seen that the Boolean convolution
A1 ⃝⋆ A2 ⃝⋆ . . .⃝⋆ An is equivalent to computing the sumset A′

1 + A′
2 + . . . + A′

n. Written in a
more Additive-Combinatorics-friendly way, our main result can be rephrased in the following
way.

▶ Theorem 4 (Theorem 2 restated, Section 5). Given sets A1, . . . An ⊆ Zm, we can compute
their sumset A1 + A2 + . . . + An

(1) by a randomized Las Vegas algorithm in O(k · polylog(mk)) expected time, or
(2) by a deterministic algorithm in k · 2O(

√
log k·log log m) time.

Here, k := |A1|+ . . . + |An|+ |A1 + . . . + An| is the total input plus output size.

We remark that further improvements over Theorem 1 would directly improve Theorems 2
and 4. In particular, our factor mo(1) = 2O(

√
log m log log m) stems entirely from the application

of Theorem 1, and thus indirectly from a tool called the FFT Lemma [15] that we use to
prove Theorem 1.

We also remark that Theorem 4 is formulated for sumsets over Zm, but by setting m

sufficiently large (like 1 +
∑

i max(Ai)) we can also compute sumsets A1 + . . . + An ⊆ Z over
the integers in time close to the input plus output size. However, this is a much simpler
result that can also be achieved by elementary means, without any Additive Combinatorics.

2 Preliminaries and Technical Toolkit

For any positive integer m, we let Zm be the group of residues modulo m. For two sets
A, B ⊆ Zm, we define A + B := {x | ∃a ∈ A, b ∈ B : a + b = x}. Unless explicitly stated
otherwise, all sumsets throughout the paper are computed in the underlying group Zm, i.e.,
A + B ⊆ Zm. We also write A mod q := {a mod q | a ∈ A}.

Throughout the paper we use the notation of sumset computation instead of the equivalent
Boolean convolution.

2.1 Randomized Sumset Computation
Cole and Hariharan’s sparse convolution algorithm [16] implies that the sumset A + B can
be computed in Las Vegas time O(|A + B| · log2 m + poly(log m)). Very recently, this was
improved to O(|A + B| · log |A + B|+ poly(log m)) [11] with a Monte Carlo algorithm.

▶ Theorem 5 (Randomized Sumset Computation, [16], see also Section 6). Given sets A, B ⊆
Zm, their sumset A + B can be computed in expected time O(|A + B| poly(log m)).

2.2 The Symmetry Group and its Properties
▶ Definition 6 (Symmetry group of a set). Let A ⊆ Zm. We define the symmetry group of A

as Sym(A) = {h ∈ Zm | A + {h} = A}.

It is easy to check that Sym(A) satisfies the group properties with respect to addition,
and thus Sym(A) is a subgroup of Zm. In particular, we have Sym(A) = d · Zm/d, where d

is the minimum non-zero element of Sym(A) (to see this, note that the minimum non-zero
element of a cyclic subgroup is also a generator of it).

ICALP 2021
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One can check that Sym(A) ⊆ Sym(A + B) holds for any sets A, B ⊆ Zm. This property
will be of great importance to us. Moreover, for any non-empty set A and any x ∈ A we
have Sym(A) ⊆ A + {−x}. This holds since any h ∈ Sym(A) maps x to some x′ ∈ A, which
means x′ = x + h (mod m), hence h = x′ − x (mod m). In particular, the symmetry group
of a non-empty set A has size at most |A|.

We show that the symmetry group can be computed in linear time.

▶ Theorem 7 (Computing the Symmetry Group, Section 7). Given a sorted non-empty set
A ⊆ Zm, we can compute Sym(A) in time O(|A|).

2.3 Kneser’s Theorem
The following theorem lies at the core of our algorithms.

▶ Theorem 8 (Kneser’s Theorem, see, e.g., Theorem 5.5 in [27]). Let A, B ⊆ Zm be non-empty.
Then

|A + B| ≥ min{|A|+ |B| − |Sym(A + B)|, m}.

We will use the following simple corollary.

▶ Corollary 9. Let A, B ⊆ Zm be non-empty. If |A+B| < |A|+|B|−1 then |Sym(A+B)| > 1.

Proof. For m = 1 it cannot happen that |A + B| < |A|+ |B| − 1, so assume m ≥ 2.
If |A + B| = m, then A + B = Zm. This implies Sym(A + B) = Zm and thus |Sym(A +

B)| = m > 1. Otherwise, if |A + B| < m, we can simplify the bound obtained from Kneser’s
Theorem to

|A + B| ≥ |A|+ |B| − |Sym(A + B)|.

Together with |A + B| < |A|+ |B| − 1, this implies |Sym(A + B)| > 1. ◀

3 Overview and Comparison with Previous Approaches

We start by giving a rough overview of our algorithm, leaving out several details. Our
improvements are obtained by delving deeper into the additive structure of sumset com-
putation over Zm than previous work. Our algorithms compute the sumset A1 + . . . + An

in a bottom-up tree-like fashion as ((A1 + A2) + (A3 + A4)) + . . .. For any two sets X, Y

for which we compute X + Y during the execution of this algorithm, we check whether
|X +Y | < |X|+ |Y |−1. If this is the case, Kneser’s Theorem (specifically Corollary 9) implies
that X + Y has a non-trivial symmetry group, and hence A1 + . . . + An has a non-trivial
symmetry group. A non-trivial symmetry group of a set Z = X + Y ⊆ Zm implies that
the set is periodic: there exists a divisor d of m and a set Z ′ ⊆ {0, . . . , d − 1} such that
Z = Z ′ + d · Zm/d = Z ′ + {0, d, 2d, . . . , m − d}, i.e., Z is a rotation (by multiples of d) of
a subset of {0, . . . , d − 1}. This allows us to reduce to the smaller universe Zd, which is
progress (it might seem from this discussion that we require a factorization of m, but this
is not the case: if we reduce to a smaller universe Zd, then d is a divisor of m that can be
easily read off the sumset Z = X + Y , by computing the symmetry group Sym(X + Y ) and
taking its smallest non-zero element). It remains to argue about the situation in which every
computed sumset satisfies |X + Y | ≥ |X|+ |Y | − 1. Using this inequality, we can control at
any intermediate step of the algorithm the total size of all sumsets computed so far. When
the computation arrives at the root, the running time that we spent on computing these
sumsets is almost linear in the input plus output size.
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Why Previous Approaches Cannot Solve the Generalized Problem. A natural question
to ask is whether previous algorithms for Subset Sum or Modular Subset Sum were also
able to tackle the more general problem of n-fold sumset computation. The techniques
underlying the algorithms for Subset Sum in [10, 20, 19] are inherently non-modular, and
hence cannot facilitate n-fold sumset computation problem over the group Zm. More relevant
is the Modular Subset Sum problem, which is a standard variant of Subset Sum, where one
works over Zm rather than Z. This problem has seen two interesting developments in the
last few years.

The deterministic algorithm of Koiliaris and Xu [20] uses multiple interesting problem-
specific tricks for Modular Subset Sum, but it is unclear how to generalize them to n-fold
sumset computation. In fact, their algorithm can be viewed as a reduction from Modular
Subset Sum to min{

√
n, m1/4}-fold sumset computation, which they then solve by the

straightforward repeated Fast Fourier Transform. Hence, also for the general case of n-fold
sumset computation their approach does not seem to yield time o(nm).

All known algorithms for Modular Subset Sum [8, 7, 13] compute the set of attainable
subset sums S(A) = {0, a1} + . . . + {0, an} ⊆ Zm for A = {a1, . . . , an}. The main idea is
to compute S(A) from S(A \ {a}) by forming the vector 1a+S(A\{a}) − 1S(A\{a}). It can be
easily seen that this vector consists of an equal number of positive and negative entries, and
the positive entries correspond to the “new” sums S(A) \ S(A \ {a}). Using hashing-based
arguments or appropriate data structures for string manipulation, they show how to recover
the support of the aforementioned vector in near-linear output-sensitive time. A possibility
to generalize this approach to n-fold sumset computation A1 + . . . + An would be to consider
the vector

∑
a∈An

(1a+A1+...+An−1 − 1A1+...+An−1). However, measuring this vector would
incur time Ω(|An|), and thus an immediate generalization of their approach would at least
pay a factor maxi |Ai| on top of the output size.

Symmetry Manifestations in Higher Dimensions. It would be interesting to understand
whether the symmetry considerations of our algorithm manifest themselves in other abelian
groups, most notably in ZD

m. The characterization of subgroups over ZD
m with D > 1 is less

convenient for our purposes than the characterization in the one-dimensional case, so it seems
that a different treatment and notion of progress is needed in that case. We leave this to
potential future work. Even if one does worry about the n-fold case and concentrates in the
simplest case of n = 2, i.e. 2-fold d-dimensional sparse convolution, the best algorithm we are
aware of solves the problem with a multiplicative 2d multiplicative factor on top of output
size. We leave as an open question the problem of avoiding the exponential dependence of
2-fold d-dimensional sparse convolution.

4 Warmup: n-Fold Sumset Computation over Prime Universe

As a warmup, we consider universe Zm = Zp for prime p. For simplicity, we analyze our
algorithm only in terms of the input size and the universe size p, that is, we defer the
output-sensitive analysis to the general algorithm in Section 5.

Suppose we are given sets A1, . . . , An ⊆ Zp. We may assume that n is a power of 2, since
otherwise we can add an appropriate number of sets Ai = {0} without affecting the sumset.
Consider Algorithm 1. We compute A1 + . . . + An in a tree-like bottom-up fashion, by first
computing A1 + A2, A3 + A4, . . ., then computing A1 + A2 + A3 + A4, . . ., and so on. The
intermediate sets in round r are called Xr,1, . . . , Xr,n/2r . The termination criterion is that
the sets that we computed so far in the current round r have total size significantly more
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Algorithm 1 Computing the n-fold sumset A1 + . . . + An over Zp for prime p.

1: procedure nFoldSumsetInPrimeUniverse(A1, A2, . . . , An, p)
2: ▷ n is a power of 2; p is prime; non-empty sets A1, . . . , An ⊆ Zp

3: X0,i ← Ai, for all i ∈ [n]
4: for r = 1 to log n do
5: for i = 1 to n/2r do
6: Xr,i ← Xr−1,2i−1 + Xr−1,2i ▷ sumset computation via Theorem 1
7: if

∑
j≤i |Xr,j | > p + i− 1 then

8: return Zp

9: return Xlog n,1

than p, more precisely,
∑

j≤i |Xr,j | > p + i− 1. If this criterion is satisfied, then we return
the complete universe Zp. If the termination criterion is never satisfied, then in the end we
return Xlog n,1.

It remains to analyze correctness and running time of this algorithm. To analyze
correctness of the termination criterion, we need the following lemma.

▶ Lemma 10. Let p be a prime, and let A1, A2, . . . , An ⊆ Zp be non-empty. If
∑n

j=1 |Aj | ≥
p + n− 1, then A1 + A2 + . . . + An = Zp.

Proof. Suppose that the symmetry group has size |Sym(A1 + . . . + An)| > 1. Since Zp has
no non-trivial subgroups, this yields Sym(A1 + . . . + An) = Zp. Since |Sym(A)| ≤ |A| holds
for any set A, we obtain A1 + . . . + An = Zp.

It remains to consider the case |Sym(A1 + . . . + An)| = 1. Since Sym(A) ⊆ Sym(A + B)
holds for any sets A, B, it follows that |Sym(A1 + . . . + Ai)| = 1 for all 1 ≤ i ≤ n. We now
inductively prove that |A1 + . . . + Ai| ≥ min{

∑i
j=1 |Aj | − i + 1, p}, from which the corollary

follows. The induction base for i = 1 is trivial. For i > 1, we use Kneser’s theorem on
A := A1 + . . . + Ai−1 and B := Ai to obtain

|A1 + . . . + Ai| ≥ min {|A1 + . . . + Ai−1|+ |Ai| − |Sym(A1 + . . . + Ai)|, p} .

Plugging in |Sym(A1 + . . . + Ai)| = 1 and the induction hypothesis on |A1 + . . . + Ai−1|, and
simplifying min{min{a, p}+ b, p} to min{a + b, p}, yields

|A1 + . . . + Ai| ≥ min
{( i−1∑

j=1
|Aj | − (i− 1) + 1

)
+ |Ai| − 1, p

}
= min

{ i∑
j=1
|Aj | − i + 1, p

}
,

which finishes the inductive proof.2 ◀

▶ Lemma 11 (Analysis of Algorithm 1). Given non-empty sets A1, . . . , An ⊆ Zp, where p

is prime and n is a power of 2, Algorithm 1 correctly computes A1 + . . . + An and runs in
deterministic time O((p + n)1+o(1) +

∑n
i=1 |Ai|).

Proof. If the termination criterion
∑

j≤i |Xr,j | > p+ i−1 is satisfied, then Lemma 10 implies
that Xr,1+. . .+Xr,i = Zp, and hence A1+. . .+An = Zp, so we correctly return Zp. Otherwise
we reach the last line of Algorithm 1, and we correctly computed Xlog n,1 = A1 + . . . + An.
This shows correctness.

2 We remark that for this lemma it would be sufficient to use the Cauchy-Davenport theorem (see, e.g.,
[27, Theorem 5.4]) instead of Kneser’s theorem. Only for the generalization to non-prime m we need
the more general theorem by Kneser.
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To analyze the running time, let (r∗, i∗) be the values of r and i at the end of the execution
of the algorithm. In particular, if r∗ = log n we have i∗ = 1. By our use of Theorem 1, the
total running time of the algorithm is

∑
r<r∗

n/2r∑
i=1
|Xr,i| · po(1) +

∑
i≤i∗

|Xr∗,i| · po(1).

We use the fact that the termination criterion was not satisfied before step (r∗, i∗) to obtain:

n/2r∑
i=1
|Xr,i| ≤ p + n

2r
− 1 for any r < r∗,∑

i<i∗

|Xr∗,i| ≤ p + n

2r∗ − 1.

Moreover, we have |Xr∗,i∗ | ≤ p. Combining these observations allows us to further bound
the running time by(∑

r<r∗

(
p + n

2r
− 1
)

+
(

p + n

2r∗ − 1
)

+ p

)
· po(1) = (p log n + n) · po(1) = (p + n)1+o(1). ◀

5 Algorithm for n-Fold Sumset Computation

This section proves Theorem 4. The main idea is that whenever we detect a non-trivial
symmetry group we reduce to a problem over a smaller universe Zd, for a divisor d of m.

Consider Algorithm 2. Suppose we are given sets A1, . . . , An ⊆ Zp. We may assume
that n is a power of 2, since otherwise we can add an appropriate number of sets Ai = {0}
without affecting the sumset. We maintain a guess s of the outputsize |A1 + . . . + An|.
Specifically, s loops over all powers of 2 starting from 20 = 1, and the algorithm returns the
correct result once we reach the first iteration with s ≥ |A1 + . . . + An|. Thus, in iteration s

we know that the output size is more than s/2, and our primary goal is to test whether
|A1 + . . .+An| ≤ s. If this is true then we want to compute the set A1 + . . .+An. We compute
A1 + . . . + An in a tree-like bottom-up fashion, by first computing A1 + A2, A3 + A4, . . .,
then computing A1 + A2 + A3 + A4, . . ., and so on. The intermediate sets in round r are
called Xr,1, . . . , Xr,n/2r . Our two main ideas now are as follows.

First, due to the presence of non-trivial subgroups in Zm when m is not a prime, an
intermediate set Xr,i can have a non-trivial symmetry group Sym(Xr,i). As a criterion
for a non-trivial symmetry group we test whether |Xr,i| < |Xr−1,2i| + |Xr−1,2i+1| − 1 (cf.
Corollary 9 of Kneser’s Theorem). Once we have found a non-trivial symmetry group
Sym(Xr,i), then also Sym(A1 + . . . + An) ⊇ Sym(Xr,i) is non-trivial, and thus the output
set A1 + . . . + An is periodic, with period length d = m/|Sym(Xr,i)|. It therefore suffices to
compute A1 + . . . + An modulo d. Hence, we reduce to a problem over a smaller universe Zd.
This case is handled in lines 8-12. Note that d may not be the smallest period length for
A1 + A2 + . . . + An, but since we only need to reduce the problem size, any period suffices
for us.

Second, if the criterion |Xr,i| < |Xr−1,2i|+ |Xr−1,2i+1| − 1 is never satisfied, then we can
use it to bound the output size. Specifically, we obtain a lower bound for |Xlog n,1| in terms of
the total intermediate size

∑
j |Xr,j |. In particular, if the total intermediate size is much larger

than s, then also the output size is more than s. However, we cannot move to the next guess
2s yet, since we do not know whether the criterion |Xr,i| < |Xr−1,2i|+ |Xr−1,2i+1| − 1 will
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Algorithm 2 Computing the n-fold sumset A1 + . . . + An over Zm for general m.

1: procedure nFoldSumset(A1, . . . , An, m)
2: ▷ n is a power of 2; non-empty A1, . . . , An ⊆ Zm

3: for s = 1, 2, 4, . . . , 2⌈log m⌉ do
4: X0,i ← Ai, for all i ∈ [n]
5: for r = 1 to log n do
6: for i = 1 to n/2r do
7: Xr,i ← Xr−1,2i−1 + Xr−1,2i ▷ sumset computation via Theorem 1 or 5
8: if |Xr,i| < |Xr−1,2i−1|+ |Xr−1,2i| − 1 then
9: Compute Sym(Xr,i) ▷ symmetry group computation via Theorem 7

10: d← m/|Sym(Xr,i)| ▷ Sym(Xr,i) = d · Zm/d

11: A′
i ← Ai mod d, for all i ∈ [n]

12: return nFoldSumset(A′
1, . . . , A′

n, d) + d · {0, 1, 2, . . . , m/d− 1}
13: if

∑
j≤i |Xr,j | ≥ s + n/2r then

14: Xr,j ← {0}, for all i < j ≤ n/2r

15: break
16: if |Xlog n,1| ≤ s then
17: return Xlog n,1

be satisfied in future rounds r′ > r. Nevertheless, we argue that once we have intermediate
set size

∑
j≤i |Xr,j | ≫ s, then we can ignore the remaining sets Xr,j , j > i, by setting them

to {0}, cf. lines 13-15. This allows us to bound the total size of all intermediate sets to be
linear in the input plus output size.

We next prove correctness and then analyze the running time of Algorithm 2.

▶ Lemma 12 (Correctness of Algorithm 2). Given non-empty sets A1, . . . , An ⊆ Zm, where n

is a power of 2, Algorithm 2 correctly computes A1 + . . . + An.

Proof. Note that without lines 13-15, we would compute the sumset in a straightforward
bottom-up tree-like fashion as ((A1 + A2) + (A3 + A4)) + . . ., and thus the intermediate
set Xr,i would be equal to Ax + Ax+1 + . . . + Ay for x = (i− 1)2r + 1 and y = i2r. In the
additional lines 13-15, we set some intermediate sets Xr,i to {0}. Thus, we may lose some
summands, but any intermediate set Xr,i still corresponds to the sumset of a subset of its
summands Ax, Ax+1, . . . , Ay. More precisely, the set Xr,i satisfies Xr,i = Az1 +Az2 +. . .+Azℓ

for some {z1, . . . , zℓ} ⊆ {x, x + 1, . . . , y}, with the understanding that Xr,i = {0} if ℓ = 0.
(This property holds initially in line 4 and it continues to hold when we set Xr,i in lines 7
and 14.) In particular, we always have

Sym(Xr,i) = Sym(Az1 + Az2 + . . . + Azℓ
) ⊆ Sym(A1 + . . . + An). (1)

Moreover, we also infer

|Xr,i| = |Az1 + Az2 + . . . + Azℓ
| ≤ |A1 + . . . + An|. (2)

We shall perform induction on the universe size m. For the base case m = 1, the result is
obvious. For larger m, we consider the following two cases.

Case 1: At some point in the execution, the criterion |Xr,i| < |Xr−1,2i−1|+ |Xr−1,2i| − 1
in line 8 is satisfied. Then by Corollary 9, Sym(Xr,i) is non-trivial and hence Sym(A1 +
. . . + An) ⊇ Sym(Xr,i) is also non-trivial. We make use of the fact that all subgroups of
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Zm are of the form d · Zm/d, where d divides m. In particular, Sym(Xr,i) = d · Zm/d for
d := m/|Sym(Xr,i)|. This means that A1 + . . . + An is cyclic with period length d. It follows
that for A′

i := Ai mod d we have (using the induction hypothesis on d)

A1 + . . . + An = nFoldSumset(A′
1, . . . , A′

n, d) + d ·
{

0, 1, . . . , m
d − 1

}
.

This shows correctness of lines 8-12.

Case 2: Lines 8-12 are never executed. That is, for each computed set Xr,i in line 7 we
have

|Xr,i| ≥ |Xr−1,2i−1|+ |Xr−1,2i| − 1. (3)

We use inequality (3) to analyze line 13. Fix any s ∈ {1, 2, 4, . . . , 2⌈log m⌉}, and consider
iteration s.

▷ Claim 13. In iteration s, we have |Xlog n,1| > s if and only if |A1 + . . .+An| > s. Moreover,
if |Xlog n,1| ≤ s then Xlog n,1 = A1 + . . . + An.

Comparing this claim with lines 16-17, we see that if our guess s for the output size is
too small, i.e., |A1 + . . . + An| > s, then the algorithm proceeds with the next larger guess.
Otherwise, the algorithm correctly computes Xlog n,1 = A1 + . . . + An and returns this set.
It remains to prove the claim.

Proof. The “only if” part follows from the bound |Xlog n,1| ≤ |A1 + . . . + An| by (2).
For the “if” part, we consider two cases:

Case A: If the criterion
∑

j≤i |Xr,j | ≥ s + n/2r in line 13 is never satisfied, then the
algorithm computes Xlog n,1 = A1+. . .+An in a straightforward manner, and thus |Xlog n,1| =
|A1 + . . . + An|.

Case B: If the criterion
∑

j≤i |Xr,j | ≥ s + n/2r in line 13 is satisfied in some iteration r,
then the following bound shows that it will also be satisfied in iteration r + 1 for some value
of i:

n/2r+1∑
j=1

|Xr+1,j |
(3)
≥

n/2r∑
j=1
|Xr,j | −

n

2r+1 ≥
(

s + n

2r

)
− n

2r+1 = s + n

2r+1 .

This nearly proves that the criterion is satisfied in iteration r + 1, but it ignores that some of
the sets Xr+1,j could be set to {0} by lines 13-15. However, when this happens then by the
criterion in line 13 we nevertheless have

∑n/2r+1

j=1 |Xr+1,j | ≥ s + n/2r+1.
Therefore, if the criterion in line 13 is satisfied in some iteration r, then it is also satisfied

for r = log n, which yields |Xlog n,1| ≥ s + 1 > s.

In either case, we obtain |Xlog n,1| > s if |A1 + . . . + An| > s. This proves the equivalence.
For the second claim, note that |Xlog n,1| ≤ s only happens in Case A, and in this case

we showed that Xlog n,1 = A1 + . . . + An. ◁

In summary, if at any point during the course of the algorithm the criterion |Xr,i| <

|Xr−1,2i−1|+ |Xr−1,2i| − 1 in line 8 is satisfied (Case 1), then we have found a non-trivial
symmetry group, and we can move to a problem over a smaller universe Zd, where d < m
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is a divisor of m. Correctness then follows by induction on m. If this never happens
(Case 2), then the algorithm behaves as follows. We have an increasing guess s for the
output size |A1 + . . . + An|. When this guess is too small, at some point the criterion∑

j≤i |Xr,j | ≥ s+n/2r in line 13 is satisfied, from which point on we set some of the sets Xr,i

to {0}, but we ensure that we end up with |Xlog n,1| > s. This allows us to conclude that our
guess s was too small, so we increase it. When our guess s reaches the smallest power of 2
that is at least |A1 + . . .+An|, then the algorithm correctly computes Xlog n,1 = A1 + . . .+An

and returns this set. ◀

▶ Lemma 14 (Running Time of Algorithm 2). Let k := |A1|+ . . . + |An|+ |A1 + . . . + An| be
the total input plus output size. Depending on whether we use Theorem 1 or Theorem 5 for
sumset computation, Algorithm 2 is
1. deterministic and runs in time k · 2O(

√
log k log log m) · log m, or

2. randomized and runs in expected time O(k · polylog(mk)).

Proof. Let T (k, m) be the running time of our algorithm. Note that we have at most one
call to a recursive subproblem in line 12, incurring time T (k, d), where d is a divisor of m

and thus d ≤ m/2.
Let s∗ be the smallest power of 2 that is at least |A1 + . . . + An|. Similarly as in the

proof of correctness, we see that the algorithm only performs iterations s from 1 to at most
s∗, since we return the correct output in iteration s∗, unless we call a recursive subproblem
before that.

We bound the running time in iteration s as follows. For any iteration r, let Xr,i(r) be
the last set that we computed in line 7. (That is, after computing Xr,i(r) we either move
to a recursive call, or we set all remaining sets Xr,j ← {0}, for any j > i(r).) Note that∑

j<i(r) |Xr,j | < s+n/2r, since otherwise we would have set Xr,i(r) ← {0} and not computed
it in line 7. Moreover, |Xr,i(r)| ≤ |A1 + . . . + An| ≤ k by (2). By Theorem 1, computing Xr,i

takes time

|Xr,i| · 2O(
√

log |Xr,i| log log m) ≤ |Xr,i| · 2O(
√

log k log log m).

Therefore, the total time spent in iteration r is bounded by(
s + n

2r
+ k
)
· 2O(
√

log k log log m) ≤ k · 2O(
√

log k log log m),

for any 1 ≤ s ≤ s∗ = O(k). Summing over all iterations r adds a factor log n ≤ log k ≤
2O(
√

log k), which can be ignored. Summing over all iterations s adds a factor log s∗ = O(log k),
which can also be ignored. Adding the potential recursive call, the total running time is

T (k, m) ≤ k · 2O(
√

log k log log m) + T (k, m/2).

This solves to total time k · 2O(
√

log k log log m) · log(m).
The analysis of the randomized variant is analogous. ◀

Proof of Theorem 4. Algorithm 2 almost proves the theorem, except that the deterministic
running time shown in Lemma 14 is k · 2O(

√
log k log log m) · log m instead of the promised

k · 2O(
√

log k log log m). Note that the former can be bounded by the latter unless k ≤ logc m,
for some absolute constant c. In the case k ≤ logc m we switch to a different algorithm.
Specifically, we simply compute ((A1 + A2) + A3) + . . . + An in a linear fashion, in each
step using a naive sumset computation that computes A + B in time Õ(|A| · |B|). Since
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each intermediate result has size at most k, each sumset computation takes time O(k2).
Since n ≤ k, in total this simple algorithm runs in time O(k3). Finally, since k ≤ logc m we
can bound O(k3) ≤ 2O(

√
log k log log m). This shows the promised running time also in case

k ≤ logc m. We obtain the promised guarantees even if we do not know k, by running both
algorithms in parallel until the first one finishes. ◀

6 Output-sensitive Sumset Computation

Recall that in sumset computation we are given sets A, B ⊆ Zm and the task is to compute
A + B. In this section we present a deterministic algorithm for sumset computation. We
also show a generalization to convolution of non-negative vectors, proving Theorem 1.

Chan and Lewenstein [15] designed very efficient algorithms for sumset computation in a
specialized setting, in which the input additionally contains a set T promised to be a superset
of A + B. Their running time is close to linear in |T |. Specifically, they proved the following
lemma.

▶ Lemma 15 (FFT Lemma from [15]). Given sets A, B ⊆ {0, 1, . . . , m− 1} and given a set
T which is known to be a superset of A + B, we can compute A + B (over Z)
(1) by a randomized Las Vegas algorithm in O(|T | polylog m) expected time, or
(2) by a deterministic algorithm in |T | · 2O(

√
log |T | log log m) time

The running time bounds are taken from [15, Section 8].

Here we show a trick that yields the same time bounds in the standard setting (without
the additional set T ). We note that it makes no significant difference whether we compute
A + B over Zm or over Z, as discussed also in the introduction. We choose to work over Zm,
for consistency with the rest of this paper.

▶ Lemma 16. Given sets A, B ⊆ Zm, we can compute A + B (over Zm)
(1) by a randomized Las Vegas algorithm in O(|A + B| polylog m) expected time, or
(2) by a deterministic algorithm in |A + B| · 2O(

√
log |A+B| log log m) time.

Note that bullet point (1) reproves Theorem 5 by Cole and Hariharan [16], and bullet
point (2) answers an open problem by Chan and Lewenstein [15].

Proof. First note that we can assume m to be a power of 2. Indeed, if m is not a power
of 2, we let m′ be the smallest power of 2 greater than 2m. Given A, B ⊆ {0, 1, . . . , m− 1}
we compute A + B over Zm′ and take the resulting set modulo m to obtain A + B over Zm.
This assumption is not necessary, but shall make the exposition cleaner, avoiding using the
ceil and floor functions.

So assume that m is a power of 2, and set m′ := m/2. Let A′ := A mod m′ and B′ :=
B mod m′ and recursively compute S := A′+B′ over Zm′ . Then we have S = (A+B) mod m′.
Thus, since max(A) + max(B) < 2m ≤ 4m′, the set T := S + {0, m′, 2m′, 3m′} covers A + B.
In other words, T is a superset of A + B over Z. We can thus use the FFT Lemma to
compute A + B over Z. Reducing the resulting set modulo m yields A + B over Zm. This
leads to the recursive Algorithm 3.

Since we can bound |T | ≤ 4|S| ≤ 4|A + B|, the expected running time of one recursive
step is O(|A + B| · polylog m), and there are O(log m) recursive steps. This yields the
claimed randomized running time. For the deterministic variant we obtain running time
|A + B| · 2O(

√
log |A+B| log log m) · polylog m from the FFT Lemma, times an additional log m

factor due to the recursion.
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Algorithm 3 A deterministic algorithm for computing the sumset A + B over Zm.

1: procedure DeterministicSumset(A, B, m)
2: ▷ m is a power of 2; non-empty A, B ⊆ Zm; computes A + B over Zm

3: m′ := m/2
4: S ← DeterministicSumset(A mod m′, B mod m′, m′)
5: T ← S + {0, m′, 2m′, 3m′} over Z ▷ T ⊇ A + B over Z
6: Compute R := A + B over Z via the FFT Lemma using additional input T

7: return R mod m

Now, to get rid of the additional polylog(m) factor and obtain the promised guarantee,
we shall observe the following. If |A + B| ≥ log m, then this running time is bounded by the
claimed |A + B| · 2O(

√
log |A+B| log log m). If |A + B| < log m, then the naive approach which

computes A + B in time Õ(|A| · |B|) = Õ(|A + B|2) = 2O(
√

log |A+B| log log m). Running both
algorithms in parallel until the first one finishes yields the claimed bound. ◀

A similar result also holds for convolution of non-negative vectors. We denote by ∥x∥0
the number of non-zero entries of a vector x.

▶ Lemma 17. Given vectors A, B ∈ Rm
≥0, we can compute their convolution A ⋆ B (with

wraparound)
(1) by a randomized Las Vegas algorithm in O(∥A ⋆ B∥0 polylog m) expected time, or
(2) by a deterministic algorithm in ∥A ⋆ B∥0 · 2O(

√
log ∥A⋆B∥0 log log m) time.

Again bullet point (1) reproves a result by Cole and Hariharan [16], and bullet point (2)
proves Theorem 1.

Proof. Denote by I and J the indicator vectors of the non-zero entries of A and B, respectively.
Observe that |I + J | = ∥A ⋆ B∥0. We can thus compute I + J in expected time O(∥A ⋆

B∥0 polylog m) by Lemma 16. We now make use of a variant of the FFT Lemma from [15,
Remark 8.2], stating that if we know a superset T ⊇ I + J then we can compute A ⋆ B

in expected time O(|T | polylog m). Using this for T = I + J yields expected time O(∥A ⋆

B∥0 polylog m), or time ∥A ⋆ B∥0 · 2O(
√

log ∥A⋆B∥0 log log m) · poly(log m) for the deterministic
variant. Now, we can get rid of the polylog(m) factors in the deterministic variant using the
same argument as the one in Lemma 16. ◀

7 Computing the Symmetry Group

In this section, we show how to compute the symmetry group Sym(A) for any given non-
empty set A ⊆ Zm in time O(|A|), proving Theorem 7. Let n := |A| and denote by
a1 < a2 < . . . < an the elements of A. For simplicity of notation, we set

an+1 := a1, an+2 := a2, . . . , a2n := an.

Note that for our applications of this Theorem, ai correspond to residue classes modulo m.
We construct a string P (the pattern) of length n by setting for any 1 ≤ i ≤ n:

Pi := (ai+1 − ai) mod m.

Similarly, we construct a string T (the text) of length 2n− 1 by setting for any 1 ≤ i ≤
2n− 1:

Ti := (ai+1 − ai) mod m.

Note that the text is constructed by repeating the pattern twice and removing the last letter.
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We say that there is a match of pattern P in text T at position i if Pj = Ti−1+j holds
for any 1 ≤ j ≤ n. The following lemma shows that the matches of P in T are in one-to-one
correspondence with the symmetry group Sym(A). Since all matches of P in T can be
computed in time O(n) by the classic Knuth-Morris-Pratt pattern matching algorithm, this
finishes the proof of Theorem 7.

▶ Lemma 18. If there is a match of P in T at position i, then ai− a1 ∈ Sym(A). Moreover,
for any x ∈ Sym(A), we have x = ai − a1 for some 1 ≤ i ≤ n and there is a match of P in
T at position i.

Proof. Note that there is a match at position i if and only if for all 1 ≤ j ≤ n

aj+1 − aj = ai+j − ai+j−1 (mod m).

Summing this equation in a telescoping sum over all j ∈ {1, . . . , ℓ−1}, for any fixed 1 ≤ ℓ ≤ n,
yields

aℓ − a1 = ai+ℓ−1 − ai (mod m),

or, equivalently,

aℓ + (ai − a1) = ai+ℓ−1 (mod m).

This establishes ai − a1 ∈ Sym(A).
For the second part, recall that Sym(A) ⊆ A−{a1}, as discussed in Section 2.2. Therefore

for any x ∈ Sym(A) we have x = ai − a1 for some i. Now consider the values a′
j :=

(aj − x) mod m for 1 ≤ j ≤ n. Observe that the sequence a′
1, . . . , a′

n is monotonically
increasing up to some point, where the modulo operation reduces by an additional −m, and
then is again monotonically increasing. In particular, for some 1 ≤ r ≤ n we have

a′
r < a′

r+1 < . . . < a′
n−1 < a′

n < a′
1 < a′

2 < . . . < a′
r−2 < a′

r−1.

Since x ∈ Sym(A) and Sym(A) is a group, also −x ∈ Sym(A), and thus a′
j ∈ A for

all j. Hence, the n different values a′
j must correspond to the elements of A. It follows that

a′
r−1+j = aj for all 1 ≤ j ≤ n.

Observing that a′
i = ai − x = ai − (ai − a1) = a1 (mod m), we see that r = i. In other

words, we have for all 1 ≤ j ≤ n

ai−1+j − (ai − a1) = aj (mod m).

Subtracting this equation for j from this equation for j + 1 yields, for any 1 ≤ j ≤ n,

ai+j − ai+j−1 = aj+1 − aj (mod m).

As noted in the beginning of this proof, this means that there is a match of P in T at
position i. ◀
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Abstract
We formalize the concept of additive approximation schemes and apply it to load balancing problems
on identical machines. Additive approximation schemes compute a solution with an absolute error
in the objective of at most ϵh for some suitable parameter h and any given ϵ > 0. We consider the
problem of assigning jobs to identical machines with respect to common load balancing objectives like
makespan minimization, the Santa Claus problem (on identical machines), and the envy-minimizing
Santa Claus problem. For these settings we present additive approximation schemes for h = pmax,
the maximum processing time of the jobs.

Our technical contribution is two-fold. First, we introduce a new relaxation based on integrally
assigning slots to machines and fractionally assigning jobs to the slots. We refer to this relaxation as
the slot-MILP. While it has a linear number of integral variables, we identify structural properties
of (near-)optimal solutions, which allow us to compute those in polynomial time. The second
technical contribution is a local-search algorithm which rounds any given solution to the slot-MILP,
introducing an additive error on the machine loads of at most ϵ · pmax.
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1 Introduction

Typically, when constructing an approximation algorithm, one provides a multiplicative
approximation ratio ρ such that the respective algorithm finds a solution of value at most
(or at least, in case of maximization problems) ρ ·OPT, where OPT is the optimal solution
value. Then, an approximation scheme is a family with an algorithm for each ratio ρ = 1 + ϵ

with ϵ > 0 (or ρ = 1− ϵ for maximization problems).
In this paper, we study approximation algorithms and schemes for which we measure

their performance as the absolute difference between the value of their computed solution
and OPT. We measure this difference with respect to some problem depending quantity h

(which might be much smaller than OPT).
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▶ Definition 1. For a given optimization problem, consider a quantity defined by h(I) for each
instance I. An algorithm is an additive approximation algorithm w.r.t. h if for any instance I

it computes in polynomial time a solution with value A(I) satisfying |A(I)−OPT(I)| ≤ h(I).
An additive approximation scheme w.r.t. h is a family of algorithms containing an additive
approximation algorithm w.r.t ϵ · h for each ϵ > 0.

Studying additive approximation algorithms is particularly interesting in the following two
scenarios.
1. If h(I)≪ (ρ− 1)OPT(I) for some ρ > 1 then an additive approximation algorithm w.r.t.

h gives a much stronger guarantee than a (multiplicative) ρ-approximation algorithm.
In particular, if h(I)≪ OPT(I) an additive approximation schemes then gives a much
stronger guarantee than a PTAS.

2. When there cannot exist a PTAS, or even any multiplicative guarantee for a given problem,
additive approximation algorithms give an alternative notion for approximating it. A
notable example is the case when it is NP-hard to decide whether OPT = 0, as then no
multiplicative approximation guarantee can be obtained.

While a lot of research has focused on traditional multiplicative approximation guarantees,
additive approximation guarantees are relatively unexplored in the literature. Notable
exceptions include Vizing’s algorithm that finds an edge coloring with at most ∆ + 1 colors,
where ∆ is the maximum degree of a graph [36], which is hence an additive approximation for
h ≡ 1. Also, for bin packing there is an algorithm known that uses at most OPT+O(log OPT)
bins [17] (improving earlier results in [25] and [33]) which is thus an additive approximation
for h ≡ O(log OPT).

In this paper, we present additive approximation schemes for scheduling and load balan-
cing problems which are among the classical problems in the literature on approximation
algorithms, starting with the seminal work of Graham [14]. In these problems, n jobs need to
be processed by m machines such that each job is completely processed by one single machine.
Each job j has a given processing time pj and the load of a machine i is the sum of the
processing times of the jobs assigned to i. The goal is to find a schedule (represented by an
assignment of jobs to the machines) that optimizes some objective function over the machine
loads. Since it is strongly NP-hard to decide whether there is a schedule that assigns the
same load to each machine (see [13]), most non-trivial load balancing problems of this form
are also strongly NP-hard. This observation has led to extensive research on approximation
algorithms. In the following, we consider three variations of load balancing problems.

Objective functions. Our first objective function is to minimize the maximum machine load,
i.e., to minimize the makespan. This is the one of the most classical scheduling problems on
parallel machines and has led to the first approximation algorithms [14,15]. Sahni [34] showed
that the problem admits an FPTAS for constant number of machines and Hochbaum and
Shmoys [19] found a PTAS if the number of machines is part of the input. Since then, there
has been lively research in improving the running time, e.g., to an EPTAS [1,8, 18,20,21].

The second objective function that we consider yields the max-min allocation problem [7].
Here, the goal is to maximize the load of the least loaded machine. Bansal and Sviridenko [5]
called it the Santa Claus problem when they studied it in the restricted assignment setting.
This objective is considered to measure the fairness of the allocation. The case of identical
machines was also considered by Woeginger [37] who presents a PTAS.

As a third and final objective function, we consider to minimize the maximum envy,
which is defined as the maximum load minus the minimum load. This objective has been
considered by Lipton et. al [30]. While in the Santa Claus problem fairness is measured
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by the minimum load of a machine, in this setting fairness is considered by the difference
between the maximum and minimum load. Note that it is strongly NP-hard to decide
whether or not the envy is 0. Therefore, unless P = NP, there cannot exist any polynomial
time approximation algorithm with any (multiplicative) performance guarantee.

For all three variants there is a simple greedy algorithm, which assigns the jobs iteratively
to the respective least loaded machine, and which gives an additive error of pmax := maxj∈J pj .
Such an additive approximation w.r.t. pmax exists even for unrelated machines, i.e., when the
processing time of a job depends on the machine [29]. Note that this guarantee is incomparable
to the error of ϵOPT of a PTAS. In particular, in the regime where pmax = o(OPT) the
greedy algorithm is still the best algorithm we know.

Our contribution. In this paper, we present additive approximation schemes w.r.t. pmax for
the three load balancing problems defined above on identical machines. For the makespan
and Santa Claus objective this gives a significant improvement over the greedy algorithm
mentioned above while also dominating the guarantees of the known PTASes1; for minimizing
the maximum envy this demonstrates how additive approximation schemes can lead to
non-trivial guarantees when no multiplicative guarantees are possible.

Since pmax can be much smaller than OPT, the main approach of the known (multiplic-
ative) PTASes does not work when aiming for an additive approximation guarantee of ϵpmax.
In those results, a job j is typically considered as small if pj ≤ ϵOPT and otherwise as large.
Then there is only a constant number of large jobs on each machine in the optimal solution
which allows methods based on enumeration or integer programming in constant dimension
(after rounding or grouping the job sizes according to, e.g., powers of (1 + ϵ)). The small
jobs are finally assigned greedily. However, if pmax < ϵOPT then these algorithms would
simply assign all jobs greedily which yields an additive error of up to pmax > ϵ · pmax. Given
this, it seems natural to define a job j to be large if pj > ϵ · pmax; however, then it is not
guaranteed that there are only a constant number of large jobs on each machine and thus
the aforementioned techniques are not applicable anymore. Moreover, we cannot even afford
to round all job sizes to powers of 1 + ϵ since this might yield a total error of ϵ

∑
j pj , which

can be much larger than ϵ · pmax. Therefore, there is need for new (non-trivial) machinery.
To this end, we present a new fractional relaxation for this general class of load balancing

problems, which we call the slot-MILP. This slot-MILP can be interpreted as a strengthened
variant of the assignment-LP. The assignment-LP is a relaxation in which each job is assigned
separately (fractionally) to a machine. In the slot-MILP we first group jobs of similar sizes,
but we do not round the job sizes (unlike most previous PTASes). In particular, different
jobs belonging to the same group may have different job sizes. In addition to the constraints
of the assignment-LP we require an integral number of jobs of each group to be assigned to
each machine (which can be implemented using a linear number of integer variables). Our
relaxation can be thought of as assigning slots (for the groups of jobs) integrally to machines
and then assigning the jobs fractionally to the slots.

Due to the many integer variables, it is not obvious how to solve the slot-MILP efficiently.
This contrasts our approach to many other approximation algorithms which are based on
purely fractional relaxations or on MILP-relaxations with only few integral variables which
can be solved with Lenstra’s algorithm (e.g., as done in some EPTASes for minimizing the

1 While for makespan minimization pmax ≤ OPT always holds, for Santa Claus this can be assumed
essentially w.l.o.g., since the optimum does not change if job sizes are capped at OPT and the latter
can be guessed by binary search.
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makespan [20, 21]). Instead, we manage to solve it using non-trivial structural properties
combined with dynamic programming. While the additive integrality gap of the assignment-
LP can be as large as pmax, for the slot-MILP this gap is only ϵ · pmax. We show this
using a rounding procedure inspired by a local search method for the restricted assignment
problem [23, 24, 35]. The local search algorithm repeatedly moves jobs between machines,
eventually converging to a good solution. Although in the restricted assignment problem
no polynomial running time bound is known for the local search procedure, in our case we
obtain such a bound for our local search.

We remark that our slot-MILP is stronger than the known configuration-LP, e.g., since for
minimizing the makespan on identical machines, the latter has a multiplicative integrality gap
of at least 1+ 1

1023 [28] and hence an additive integrality gap of at least OPT· 1
1023 ≥ pmax · 1

1023 .

Other related work. The case of small values of pmax has also been considered from a
parameterized point of view: If all processing times are integers, then it is possible to obtain a
running time that is fixed-parameter tractable (FPT) for the parameter k = pmax [26, 27, 31].
In other words, there is an algorithm that finds an exact solution in time f(k) · |I|O(1) for
some computable function f .

Other variants of load balancing problems on identical machines have been considered
by Alon et al. [1]. They identify some conditions on the objective function, e.g. makespan
minimization and the Santa Claus problem, so that the load balancing or machine scheduling
problem admits an (E)PTAS. The Santa Claus problem has been considered in the restricted
assignment setting in which each job is only allowed to be processed on a subset of the
machines, starting with [5]. In a series of papers [3, 4, 9, 12, 16], the approximation ratio
was further and further improved, and the currently best known result is a polynomial
time (4 + ϵ)-approximation algorithm [9,10] and an upper bound of 3 + 21

26 ≈ 3.808 for the
integrality gap of the configuration-LP [9] (which can be solved in polynomial time to any
desired accuracy).

For the bin packing problem, Jansen et al. [22] present an additive approximation
algorithm w.r.t h ≡ 1 in time exponential in the optimal number of bins plus a polynomial
in the number of items to be packed. Ophelders et al. [32] showed that a simple local search
algorithm for the so-called Equitable Hamiltonian Cycle finds a solution that is at most 1
away from the optimal solution value. Alon et al. [2] present an additive approximation
algorithm w.r.t. h = ϵn2 for every ϵ > 0 for the edge deletion problem to obtain a graph with
a monotone property. This is hence an additive approximation scheme for h = n2 (which is
in fact an upper bound on the minimum number of edges to be deleted).

2 Slot-MILP

We introduce an alternative relaxation for a general class of load balancing problems on
identical machines. We first formally define this class of load balancing problems as the
target load balancing problem.

▶ Definition 2. In the target load balancing problem we are given a set of jobs J with a
processing time pj for each j ∈ J and a set of machines M with values ℓ, u. The goal is to
assign each job j ∈ J to a machine i ∈M such that every machine load satisfies the target
load interval [ℓ, u].

This generalizes the load balancing settings mentioned earlier, e.g., for makespan minimization
we choose ℓ = 0 and u = T , where T is a guess on the optimal makespan.
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Let ϵ > 0 and assume w.l.o.g. that 1/ϵ ∈ N. Our task is to either assert that there is
no solution for the given instance or to find a solution in which the load of each machine i

is in the interval [ℓ− ϵ · pmax, u + ϵ · pmax] with pmax := maxj∈J pj . First we partition the
jobs into sets J1, . . . ,J1/ϵ, where for k = 1, ..., 1/ϵ the set Jk contains all jobs j ∈ J with
pj ∈ ((k− 1)ϵ · pmax, kϵ · pmax]. We define a new relaxation for this problem in which for each
machine i and each k = 1, ..., 1/ϵ we specify integrally how many jobs from Jk are assigned
to i (one may imagine that this defines slots for jobs from Jk on i). Then the jobs from Jk

are assigned fractionally to these slots.∑
i∈M

xi,j = 1 ∀j ∈ J

ℓ ≤
∑
j∈J

pjxi,j ≤ u ∀i ∈M (1)

∑
j∈Jk

xi,j = yi,k ∀i ∈M, ∀k ∈ {1, . . . , 1/ϵ}

xi,j ≥ 0 ∀j ∈ J , i ∈M
yi,k ∈ N0 ∀i ∈M, k ∈ {1, . . . , 1/ϵ}

We refer to this relaxation as the slot-MILP. The integer variables define exactly how
many jobs of a type are assigned to a machine but do not imply a specific load based on
rounded processing times. The load of a machine is based on an assignment that satisfies
the distribution of slots among the machines.

Since the slot-MILP contains 1/ϵ · |M| integral variables, it is not clear how to solve it in
polynomial time. Nevertheless, we present two methods of efficiently solving the slot-MILP.
The first method gives an exact solution while the second method gives a solution that
slightly violates the target load intervals. Afterwards, we show how to round a fractional
solution of the slot-MILP to an integral solution, while violating the load interval [ℓ, u] for
each machine i ∈M by at most ϵ · pmax.

2.1 Exact solution method for the relaxation
We make use of a structural property to find an exact solution to the slot-MILP. Note that
in this case an exact solution is one that satisfies (1). This structure allows us to guess the
values of the integral variables in polynomial time and then the remaining problem is only a
linear program.

Given a solution (x, y), we write yi for the (1/ϵ)-tuple (yi,1, . . . , yi,1/ϵ). Using similar
arguments to [11] we show that there exist solutions in which there are not too many different
vectors yi.

▶ Lemma 3. There is a solution (x, y) to the slot-MILP such that for all i, i′ ∈ M with
yi ≡ yi′ mod 2 it follows that yi = yi′ .

Proof. Let (x, y) be a solution to the slot-MILP and assume that x is the solution which
minimizes

∑
i∈M

1/ϵ∑
k=1
∥yi,k∥2. (2)
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Now suppose toward contradiction that there are i1, i2 with yi1 ≡ yi2 mod 2, but yi1 ̸= yi2 .
We construct a new solution x′, which has a lower value of (2). We set x′

i,j = xi,j for all
i /∈ {i1, i2} and x′

i1,j = x′
i2,j = (xi1,j + xi2,j)/2. In other words, we evenly distribute all jobs

between i1 and i2. Let us first check that the solution remains feasible. Let j ∈ J . Then∑
i∈M

x′
i,j = x′

i1,j + x′
i2,j +

∑
i/∈{i1,i2}

x′
i,j

= xi1,j + xi2,j

2 + xi1,j + xi2,j

2 +
∑

i/∈{i1,i2}

xi,j

=
∑
i∈M

xi,j = 1.

For all machines i /∈ {i1, i2} the load does not change and, hence, the load of machine i

remains within [ℓ, u]. For i1 and i2, we argue∑
j∈J

pjx′
i1,j =

∑
j∈J

pjx′
i2,j =

∑
j∈J

pj
xi1,j + xi2,j

2

= 1
2

∑
j∈J

pjxi1,j + 1
2

∑
j∈J

pjxi2,j

≤ u

2 + u

2 = u

and∑
j∈J

pjx′
i1,j =

∑
j∈J

pjx′
i2,j =

∑
j∈J

pj
xi1,j + xi2,j

2

= 1
2

∑
j∈J

pjxi1,j + 1
2

∑
j∈J

pjxi2,j

≥ ℓ

2 + ℓ

2 = ℓ.

Hence, the solution remains optimal. As for the integrality constraints, again the machines
i /∈ {i1, i2} do not change. Let k ∈ {1, . . . , 1/ϵ}. Since yi1,k ≡ yi2,k, we have that yi1,k + yi2,k

is even. It follows that∑
j∈Jk

x′
i1,j =

∑
j∈Jk

x′
i2,j = yi1 + yi2

2

is integral. Now it remains to show that (2) has decreased. Notice that by triangle inequality

∥y′
i1,k∥2 + ∥y′

i2,k∥2 = 2
∥∥∥∥yi1,k + yi2,k

2

∥∥∥∥
2
≤ ∥yi1,k∥2 + ∥yi2,k∥2

and strict inequality holds when yi1,k ≠ yi2,k. Since this is the case for at least one k and all
machines i /∈ {i1, i2} do not change, we have that (2) has decreased. A contradiction. ◀

Using Lemma 3 we can solve the slot-MILP in polynomial time.

▶ Lemma 4. We can solve the slot-MILP in time mO(21/ϵ) · nO(1/ϵ·21/ϵ).

Proof. Lemma 3 implies that there are only 21/ϵ many machine types denoted by the 1/ϵ-
tuples yi. This allows us to guess all values of yi,k (up to permutations of machines) of the
optimal solution as follows. For each of the 21/ϵ types we guess (1) the number of machines
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having this type and (2) for each k ∈ {1, ..., 1/ϵ} we guess the value of yi,k for each machine
i ∈M of this type. Note that the machines are identical and hence it suffices to guess the
number of machines of each type, rather than guessing which exact machine is of which
type. The total number of guesses is bounded by mO(21/ϵ) · nO(1/ϵ·21/ϵ). Then the remaining
problem is only a linear program since all integral variables of the slot-MILP are already
fixed. If our guess was correct then the LP must have a feasible solution. ◀

2.2 Faster (approximate) solution to the relaxation
The solution based on Lemma 3 can be found in double exponential time with respect to the
number of job types 1/ϵ and is an exact solution to the slot-MILP. Using a different (slightly
more complicated) structural property one can find an additive δ-approximate solution to
the slot-MILP in single exponential time with respect to 1/ϵ and polynomial in 1/δ, i.e., even
with δ := 1/nO(1) we obtain polynomial running time. Here, δ-approximate means that we
find a solution to a weaker version of slot-MILP with lower and upper bounds ℓ′ = ℓ− δ ·pmax
and u′ = u + δ · pmax for the load of every machine i. We refer to this weaker MILP the
slot-MILP’.

The algorithm is based on a different structural property than the one proved in Lemma 3.
Given a solution (x, y) of the slot-MILP, for each machine i ∈M and each k ∈ {1, . . . , 1/ϵ},
we denote by zi,k the average size of the jobs type k on machine i defined by

zi,k · yi,k =
∑

j∈Jk

pjxi,j .

In the case that yi,k = 0 this allows us to freely choose the value of zi,k which is important
for the structural property in the following lemma. We prove that there is always a solution
to the slot-MILP and an ordering of the machines such that for each k ∈ {1, . . . , 1/ϵ} the
values zi,k are non-decreasing and on each prefix of length ℓ of the machines the total size of
the slots for the jobs in Jk is at least as large as the yσ(1),k + · · ·+ yσ(ℓ),k smallest jobs in
Jk. For each integer n′ let Jmin

k (n′) ⊆ Jk be the n′ smallest jobs in Jk.

▶ Lemma 5. There is an optimal solution (x, y) for the slot-MILP, a corresponding vector
{zi,k}i∈M,k∈{1,...,1/ϵ}, and an ordering σ : {1, ..., |M|} →M such that

ℓ∑
ℓ′=1

yσ(ℓ′),kzσ(ℓ′),k ≥
∑

j∈J min
k

(yσ(1),k+···+yσ(ℓ),k)

pj

∀k ∈ {1, . . . , 1/ϵ}
∀ℓ ∈ {1, ..., |M|}

(3)

∑
i∈M

yi,kzi,k =
∑

j∈Jk

pj ∀k ∈ {1, . . . , 1/ϵ} (4)

zσ(ℓ),k ≤ zσ(ℓ+1),k

∀k ∈ {1, . . . , 1/ϵ}
∀ℓ ∈ {1, ..., |M| − 1}.

(5)

Proof. Condition (3) and (4) follow directly from feasibility of the solution.
To show condition (5), let x, y be a solution with corresponding average load vector

{zi,k}i∈M,k∈1,...,1/ϵ}, where the values zi,k when yi,k = 0 are chosen appropriately. Let
ẑ1 ≤ · · · ≤ ẑn̄ be an ordering of the n̄ = |{(i, k) : yik > 0}| values zi,k for all i ∈ M, k ∈
{1, . . . , 1/ϵ} with yik > 0. Assume that (x, y) is the solution maximizing the following
potential function

n̄∑
i=1

n2(m/ϵ−i)ẑi. (6)
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We will now show that in this case we can iteratively find an ordering of machines such that
condition (5) holds and otherwise get a contradiction with respect to the potential function.
Let i be the machine minimizing

∑1/ϵ
k=1 zi,k. All other machines i′ must satisfy one of the

following two cases: (1) zi,k ≤ zi′,k for all k ∈ {1, ..., 1/ϵ} or (2) zi,k > zi′,k for some k. If
(1) holds for all machines i′ we relabel machine i as machine 1. Otherwise, let i′ ≠ i be a
machine such that for some k

zi,k > zi′,k. (7)

Then, as i minimizes
∑1/ϵ

k=1 zi,k we know that there must exist k ̸= k with

zi,k < zi′,k. (8)

As we can freely choose the value of zī,k′ , whenever yī,k′ = 0, we know that
yi,k, yi,k, yi′,k, yi′,k > 0. We now gradually exchange jobs of Jk and Jk between i and
i′ without changing the total load on either of the machines. Indeed, there must be some
j, j′ ∈ Jk with xi,j > 0, xi′,j′ > 0, and pj > pj′ . Conversely, there are j, j

′ ∈ Jk with
xi,j > 0, xi′,j

′ > 0, and pj < pj
′ . For some δ, δ > 0 we now augment the solution in the

following way.

xi,j′ ← xi,j′ + δ xi,j
′ ← xi,j

′ + δ

xi,j ← xi,j − δ xi,j ← xi,j − δ

xi′,j′ ← xi′,j′ − δ xi′,j
′ ← xi′,j

′ − δ

xi′,j ← xi′,j + δ xi′,j ← xi′,j + δ

It is easy to see that for δ and δ sufficiently small each variable remains non-negative.
Moreover, each job remains fully assigned and the number of jobs of Jk and Jk assigned to i

and i′ remains the same.
By setting δ = δ(pj−pj′)/(pj

′−pj) the load over each of the two machines stays the same.
Furthermore, as pj > pj′ and pj

′ > pj we have that δ, δ > 0. We choose δ maximal such
that all x variables remain non-negative and the inequalities (7) and (8) still hold or turn to
equality. This means that we decreased zi,k by δ(pj−p′

j)
yi,k

and zi′,k by δ(pj−pj′ )
y

i,k

. At the same

time we increased zi,k by δ(pj−pj′ )
y

i,k

and zi′,k by δ(pj−p′
j)

yi′,k
. Since zi′,k and zi,k̄ (the respective

smaller z-variables for i and i′ that we change) increase by at least δ(pj−p′
j)

n and zi,k and
zi′,k̄ decrease by at most δ(pj − p′

j), we have that (6) increases. This gives a contradiction.
As we can repeat this argument iteratively assuming that machines {1, . . . , i0} are

correctly sorted for some i0 ∈ {1, . . . , m}, we have that there exists a solution (x, y) with
vector {zi,k}i∈M,k∈1,...,1/ϵ} such that condition (5) holds. ◀

We introduce a dynamic program that uses the property from Lemma 5. Intuitively, our
DP guesses the machines in the ordering σ one after the other. When it guesses the next
machine i, it guesses for each k ∈ {1, . . . , 1/ϵ} the value zi,k and the number of jobs yi,k

from Jk on machine i. In order to bound the running time we need to consider rounded
values of zi,k. Therefore, the DP ensures that the conditions (3) and (5) on the vectors y, z

from Lemma 5 are satisfied and that condition (4) as well as the upper and lower target load
bounds are only violated to a small extent. The following lemma shows that this is sufficient
in order to compute an approximate solution to the slot-MILP based on the vectors y, z.
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▶ Lemma 6. Suppose that we are given an ordering σ : {1, ..., |M|} → M and vectors
{yi,k, zi,k}i∈M,k∈{1,...,1/ϵ} such that conditions (3) and (5) hold. Moreover, assume that for
each i ∈M it holds that

ℓ ≤
1/ϵ∑
k=1

yi,kzi,k ≤ u + δpmax (9)

and for each k ∈ {1, · · · , 1/ϵ} we have that condition (4) is slightly violated as follows∑
j∈Jk

pj ≤
∑
i∈M

yi,kzi,k ≤
∑

j∈Jk

pj + δϵ · pmax. (10)

Then we can compute a vector {xi,j}i∈M,j∈J such that (x, y) is a solution to slot-MILP’ in
time O(mn2).

Proof. We first show that there exists an assignment vector {xi,j}i∈M,j∈J satisfying∑
j∈Jk

pjxi,j ≤ yi,kzi,k (11)

for all i ∈M and k ∈ {1, . . . , 1/ϵ}. In order to do so we use condition (3) of Lemma 5. We
find this assignment independently for all k. We start by assigning Jmin

k (y1,k) (completely)
to machine 1, then Jmin

k (y1,k + y2,k) \ Jmin
k (y1,k) to machine 2, etc. This assignment does

not necessary have the desired property (11). Hence, we repair the property iteratively for
i = 2, . . . , m. Machine 1 clearly satisfies (11) because of (3)). Let i ∈ {2, . . . , m− 1} such
that all machines 1, . . . , i satisfy (11). In each iteration i we do not touch any of the machines
i + 1, . . . , m. Hence, when repairing machine i we may assume that machines 1, . . . , i contain
only Jmin

k (y1,k + · · ·+ yi,k). If machine i satisfies (11) we are done and continue with i + 1.
Otherwise, we know that there is a job j with pj > zi,k and xi,j > 0. Moreover, because of
condition (3) we have

i∑
i′=1

∑
j∈J min

k
(y1,k+···+yi,k)

pjxi′,j =
∑

j∈J min
k

(y1,k+···+yi,k)

pj ≤ y1,kz1,k + · · ·+ yi,kzi,k. (12)

Since i violates (11) there must be some i′ < i satisfying (11) with strict inequality. In
particular, there is a job j′ with pj′ < zi′,k ≤ zi,k < pj and xi′,j′ > 0. We now choose an
α > 0 and exchange j′ and j between i and i′ as follows

xi,j′ ← xi,j′ + α xi′,j′ ← xi′,j′ − α

xi,j ← xi,j′ − α xi′,j′ ← xi′,j′ + α

Clearly, the solution remains feasible. We choose α maximal such that either i′ satisfies (11)
with equality, i satisfies (11), xi,j = 0, or xi′,j′ = 0. The choice of α makes sure that each
pair j, j′ that can be exchanged like this will only be exchanged once. This procedure is
repeated until i satisfies (11). As the procedure is repeated for all i and possibly has to check
all pairs of every job type in each exchange we have a running time of O(mn2).

Next, we claim that for all i and k, we have that (13) holds, that is,∑
j∈Jk

pjxi,j ≥ yi,kzi,k − δϵ · pmax. (13)
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To prove this claim, assume by contradiction that for some machine i′ (13) does not hold.
Then by (11) and condition (4), we have that∑

j∈Jk

∑
i∈M

xi,jpj <
∑
i∈M

yi,kzi,k − δϵ · pmax <
∑

j∈Jk

pj . (14)

This contradicts the fact that all jobs are fully assigned and thus
∑

j∈Jk
pjxi,j =

∑
j∈Jk

pj .
Hence, we have that

1/ϵ∑
k=1

∑
k∈Jk

pjxij ≥
1/ϵ∑
k=1

yi,kzi,k − δpmax ≥ ℓ− δpmax, (15)

where the last inequality follows by condition (9). ◀

The goal of our DP is to compute vectors {yi,k, zi,k}i∈M,k∈{1,...,1/ϵ} that satisfy the conditions
due to Lemma 6. The key insight is now that when we consider the next machine i′ in the
ordering, we do not need to remember all vectors {yi,k, zi,k}i∈M,k∈{1,...,1/ϵ} for all previously
considered machines i, but it suffices to remember the number of previously assigned jobs
from each set Jk, the current left hand side of inequality (3) for each k and the vector
{zi′′,k}k∈{1,...,1/ϵ} of the previously considered machine i′′. At each iteration the DP then
guesses the vectors {yi,k, zi,k}i∈M,k∈{1,...,1/ϵ} such that the new solution consisting of the
guess for machine i and the remembered solution for the previous machines satisfies the
conditions stated in Lemma 7. If none of the guesses satisfies these conditions the DP cell
corresponding to this iteration remains empty.

To give a more detailed description, we introduce a DP-table with one cell for each
combination of

a value i ∈ {0, ..., m} indicating the number of machines that have already been considered,
a vector {zi,k}k∈{1,...,1/ϵ} where zi,k ∈

{
0, δϵ

n pmax, 2δϵ
n pmax, ..., pmax

}
for k ∈ {1, . . . , 1/ϵ}.

The vector zi,k corresponds to the average loads on the currently considered machine,
a vector {yi,k}k∈{1,...,1/ϵ} where yi,k ∈ {0, 1, 2, ..., nk} for each k ∈ {1, . . . , 1/ϵ}. The
vector yi,k corresponds to the number of jobs on the currently considered machine,
for each k ∈ {1, ..., 1/ϵ}

a value n′
k ∈ {0, ..., |Jk|} indicating the number of slots for jobs of Jk that have already

been assigned to machines,
a value Sk with Sk ∈

{
0, δϵ

n pmax, 2δϵ
n pmax, ..., npmax

}
which corresponds to the value∑i

i′=1 yi′,kzi′,k.

Each cell corresponds to the subproblem of checking whether there is a solution using
machines {1, . . . , i} such that machine i is assigned yi,k jobs of each type k with average load
zi,k and for each type k a total number of n′

k slots is assigned of a total volume of Sk. Due
to the dimension of the values corresponding to a DP-cell, the dimension of the DP table is
given by m2 · ( n

δϵ )O(1/ϵ).
When considering cell(

i, {zi,k}k∈{1,...,1/ϵ} , {yi,k}k∈{1,...,1/ϵ} , {n′
k}k∈{1,...,1/ϵ} , {Sk}k∈{1,...,1/ϵ}

)
the DP checks whether for some {z̃i−1,k}k∈{1,...,1/ϵ} and {ỹi−1,k}k∈{1,...,1/ϵ} the entry of the
DP is true in cell(

i− 1, {z̃i−1,k}k∈{1,...,1/ϵ} , {ỹi−1,k}k∈{1,...,1/ϵ} , {ñ′
k}k∈{1,...,1/ϵ} ,

{
S̃k

}
k∈{1,...,1/ϵ}

)
,
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where ñ′
k = n′

k−yi,k for each k ∈ {1, . . . , 1/ϵ}, and S̃k = Sk−yi,kzi,k for each k ∈ {1, . . . , 1/ϵ}.
Then we need to check if the following conditions are true for all k ∈ {1, ..., 1/ϵ}:

Sk ≤ δϵ · pmax +
∑

j∈Jk

pj (16)

zi,k ≥ z̃i−1,k. (17)

If these conditions are true, then there exists a solution corresponding to the considered DP
cell. Filling each cell takes ( n

δϵ )O(1/ϵ).
Finally, for each possible value of {zm,k}k∈{1,...,1/ϵ} we check whether there exists a

solution for the DP cell(
m, {zm,k}k∈{1,...,1/ϵ} , {ym,k}k∈{1,...,1/ϵ} , {n′

k}k∈{1,...,1/ϵ} , {Sk}k∈{1,...,1/ϵ}

)
,

where all jobs are assigned and for every k ∈ {1, . . . , 1/ϵ} we have that∑
j∈Jk

pj ≤ Sk ≤
∑

j∈Jk

pj + δϵ · pmax.

If this is the case we use standard backward recursion to find vectors {zi,k}k∈{1,...,1/ϵ} and
{yi,k}k∈{1,...,1/ϵ} for all i ∈ {1, ..., m} and an assignment of machine types to machine indices
and use Lemma 6 to obtain a solution (x, y) to slot-MILP’. If there is no such solution we
assert that there is no solution to the original relaxation, i.e., to slot-MILP.

▶ Lemma 7. For each δ > 0 there is an algorithm with a running time of m2( n
δϵ )O(1/ϵ)

which either finds a δ-approximate solution to the slot-MILP (and thus a feasible solution to
slot-MILP’) or asserts that the slot-MILP is infeasible.

Proof. The running time follows from the dimension of the DP table and the time it takes
to validate a specific DP cell. This amounts to a running time of m2( n

δϵ )O(1/ϵ).
For the correctness of the DP we need two observations: (1) due to conditions (16)

and (17) and the way we check whether a solution corresponding to a DP cell exists we
have that there exists a solution for machine i if and only if there is a solution for machine
i − 1. Hence, we can indeed find a solution via backward recursion and (2) if for some
{zm,k}k∈{1,...,1/ϵ} and {ym,k}k∈{1,...,1/ϵ} there is a solution for the cell(

m, {zm,k}k∈{1,...,1/ϵ} , {ym,k}k∈{1,...,1/ϵ} , {n′
k}k∈{1,...,1/ϵ} , {Sk}k∈{1,...,1/ϵ}

)
,

then we can apply Lemma 6 to find a solution to slot-MILP’. If there is no such solution, we
know that due to our rounding of the z-values there is also no solution satisfying Lemma 5.
This implies that there is no solution to the slot-MILP. ◀

3 Rounding the relaxation

We assume that we are given an exact solution to the slot-MILP via the algorithm due to
Lemma 4 or an approximate solution via the algorithm due to Lemma 7. In this section,
we describe an algorithm with a running time of nO(1) that computes an integral solution
to the slot-MILP (or slot-MILP’) which for each machine i ∈ M violates the target load
intervals by at most ϵ · pmax. For a solution to the slot-MILP this implies that

∑
j∈J pjxi,j ∈
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[ℓ−ϵ·pmax, u+ϵ·pmax]. For a solution to slot-MILP’ this implies that the target load violation
is given by the error made due to the approximate solution and due to the rounding, i.e., after
rounding the solution it holds that

∑
j∈J pjxi,j ∈ [ℓ− δ ·pmax− ϵ ·pmax, u+ δ ·pmax + ϵ ·pmax].

In the following we describe the rounding procedure based on an exact solution to the
slot-MILP as the same arguments hold for an approximate solution.

We imagine that each machine i ∈ M has yi,k slots for the jobs in Jk, for each k ∈
{1, ..., 1/ϵ}. We say that these slots are of type k. Notice that

∑
i∈M yi,k = |Jk|. We

compute an initial solution by assigning each job j ∈ Jk to an arbitrary slot of type k. In
this solution there might be a machine i whose load is not in [ℓ− ϵ · pmax, u + ϵ · pmax], i.e.,
the load is too small or too large. We present a local search algorithm that repeatedly swaps
pairs of jobs from the same set Jk such that eventually each machine i ∈M has a load in
[ℓ − ϵ · pmax, u + ϵ · pmax] while maintaining the number of jobs from each set Jk on each
machine.

3.1 Local search
We describe how to perform one iteration of the local search algorithm. Each iteration aims
at finding a pair of jobs that can be swapped. Let M1 be the set of machines i ∈M that
have a load strictly greater than u + ϵ · pmax. Consider a k ∈ {1, ..., 1/ϵ} such that a job
j ∈ Jk is assigned to a machine i ∈ M1. We would like to exchange j for a smaller job
j′ ∈ Jk that is assigned to a machine i′ /∈M1. Thus, consider all jobs j′ ∈ Jk with pj′ < pj

which are assigned to a machine i′ /∈M1. If the load of i′ is at most u then we exchange j

and j′ which completes the swap. We try to perform such a swap for each k ∈ {1, ..., 1/ϵ}
such that a job j ∈ Jk is assigned to a machine in M1. If we did not perform a swap then
let M2 denote the set of machines i′ ∈M having a job j′ which we tried to swap with a job
j on a machine i ∈M1, i.e., M2 contains all machines i′ ∈M\M1 for which there exists a
machine i ∈ M1 and a k ∈ {1, ..., 1/ϵ} such that there is a job j ∈ Jk assigned to i and a
job j′ ∈ Jk assigned to i′ with pj′ < pj . Observe that each machine i′ ∈M2 has a load of
more than u.

Now we repeat this procedure: Suppose that we constructed sets of machines M1, ...,Mℓ.
For each k ∈ {1, ..., 1/ϵ} such that there is a job j ∈ Jk assigned to a machine i ∈ Mℓ

consider all jobs j′ ∈ Jk with pj′ < pj , which are assigned to a machine i′ /∈M1 ∪ . . . ∪Mℓ.
If the load on one such machine i′ is at most u, then we exchange j and j′ which completes
the swap. In particular, we do not reuse the constructed sets M1, . . . ,Mℓ for the next swap
but we forget these sets before the next swap starts. Otherwise, if each considered machine
i′ has a load strictly more than u we construct a set Mℓ+1 consisting of all these machines i′

and continue in the current iteration.
Suppose that at the beginning of a swap there is no machine i ∈ M that has a load

strictly greater than u + ϵ · pmax. Then, a second stage of the local search algorithm takes
place. We take the current solution and perform an analogous procedure in order to ensure
that each machine i ∈ M has a load of at least ℓ − ϵ · pmax. Initially define M1 to be
the set of all machines i ∈ M with a load strictly less than ℓ − ϵ · pmax. Suppose that we
constructed sets of machines M1, ...,Mℓ. For each k ∈ {1, ..., 1/ϵ} such that there is a job
j ∈ Jk assigned to a machine i ∈ Mℓ consider all jobs j′ ∈ Jk with pj′ > pj , which are
assigned to a machine i′ /∈M1 ∪ . . . ∪Mℓ. If the load on one such machine i′ is at least ℓ,
then we exchange j and j′ which completes the swap. Otherwise, if each such machine i′ has
a load of strictly less than ℓ we construct a set Mℓ+1 consisting of all these machines i′ and
continue. As we never increase the load of a machine with load at least ℓ− ϵ · pmax we do
not introduce new violations of the upper bound on the load. The algorithm terminates if
the load of each machine i ∈M is within [ℓ− ϵ · pmax, u + ϵ · pmax].
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3.2 Correctness and running time
We show now that the algorithm terminates in nO(1) time. Then, by construction it outputs
a solution in which each machine i ∈M has a load in the interval [ℓ− ϵ · pmax, u + ϵ · pmax].
In the following we prove this for the first stage of the local search, i.e., when at least one
machine has as a load higher than u + ϵpmax. We first show that in each iteration of the
first stage we can find a pair of jobs j, j′ to swap. Using a similar argument the same can be
shown for the second stage.

▶ Lemma 8. In each iteration the algorithm finds two jobs j, j′ that it swaps and finding
such a pair can be done in time O(n2).

Proof. Suppose towards contradiction that the algorithm does not find two jobs j, j′ ∈ Jk

such that j is assigned to a machine i ∈Mℓ with load more than u + ϵ · pmax and job j′ is
assigned to a machine i′ /∈ M1 ∪ . . . ∪Mℓ and p′

j < pj . This means that the machines in
M1 ∪ . . . ∪Mℓ are assigned the smallest jobs of type k while each machine having load at
least u. Hence, even a fractional assignment of jobs cannot reduce the total load on these
machines. Hence, in a fractional assignment at least one machine must have a load greater
than u. This gives a contradiction. When finding a pair of jobs to swap each pair of type k

is considered exactly once as each job is assigned fully to a machine. As the existence of a
pair was shown for an arbitrary k this gives a worst case running time of O(n2). ◀

Next, we show that the first stage of the algorithm always terminates after at most O(n3)
swaps. As Lemma 8 states that each swap can be done in time O(n2), this shows that the
first stage finishes in time nO(1). To this end, we give an alternative formulation of the first
stage of the algorithm as a repeated breadth-first search (BFS). We construct a weighted,
directed graph. It contains one special vertex, the source s, and one vertex for each slot,
that is |J |+ 1 vertices in total. Each non-source vertex is associated with a machine and a
size class. The slots of the same machine form a clique: There is an edge from each slot to
the other with weight 0. Furthermore, there is an edge of weight 1 from slot v to w, when
(1) v and w are not on the same machine, (2) v and w belong to the same size class, and
(3) v is currently assigned a larger job than w. Additionally, there is an edge of weight 0
from the source to every slot on a machine with load more than u + ϵ · pmax. The algorithm
performs a BFS on the graph above starting in s. Once it reaches a machine with load at
most u, it selects the edge (v, w) over which the machine was reached and swaps the jobs
assigned to the slots v and w. This is continued until every machine i is assigned a load at
most u + ϵ · pmax. The following lemma shows that the distance between s and other slots
does not decrease by a swap.

▶ Lemma 9. The distance from s to any slot does not decrease by a swap in the first stage
of the algorithm.

Proof. Note that when we make a swap, we actually reverse the direction of an edge. To
get the main idea of the proof, consider an edge (v, w) that is “swapped”. As the search is a
BFS, we know that the distance in the original graph to w is equal to the shortest path to v

plus 1. When we make the swap, this shortest path is eliminated, whereas all other paths
from s to w remain. Therefore, the distance from s to w will not decrease. Furthermore, the
distance from s to v did not change due to the swap.

Formally, we observe how the graph changes when swapping two jobs. Throughout the
proof the distance d(w) of a slot w is the distance from s to w before the swap is executed.
Clearly, removing any edges from the graph cannot decrease the distances of vertices. Edges

ICALP 2021



42:14 Additive Approximation Schemes for Load Balancing Problems

between slots of the same machine do not change and no new edges can be added from the
source, since during the execution of the algorithm a machine with load at most u + ϵ · pmax
will never exceed u + ϵ · pmax. Hence, it suffices to look at the changes in edges of weight 1.
Although such an edge (v, w) might be added to the graph, we will show that this happens
only when d(w) ≤ d(v) + 1. Adding this edges cannot decrease any distances, since the first
part of a shortest path using (v, w) could always be replaced by a path to w without this
edge.

Now we have to check that these are the only changes made to the graph. Let v, w be
the slots in which we exchange the jobs. The size of the job in v decreases; the size of the
job in w increases. We only need to look at the incoming and outgoing edges of v and w,
since all other edges remain the same.

Consider the incoming edges of v. Since the size of the job in v decreases, there could be
new incoming edges. Let (w′, v) be an edge of weight 1 that is added. This means the job in
slot w′ has a larger size than the job on v. Either w′ is a slot on the same machine as w or
(w′, w) is in the graph before the swap. The former case implies that d(w′) = d(w) = d(v) +1.
In the latter case we have d(v) = d(w)− 1 ≤ d(w′). No outgoing edge from v can be added,
since the size of v’s job decreases.

Now consider w. Since the size of its job increases, no incoming edge can be added. As
for the outgoing edges, let (w, w′) be an outgoing edge added by the swap. Then either v

and w′ are slots on the same machine or (v, w′) was is in the graph before the swap. In the
former case, d(w′) = d(v) = d(w)− 1. In the latter case, d(w′) ≤ d(v) + 1 = d(w). ◀

Using Lemmas 8 and 10 we can bound the maximum number of swaps necessary in the
first stage of the algorithm.

▶ Lemma 10. The first stage of the algorithm terminates after at most O(n3) swaps.

Proof. Let j1, . . . , jn be the jobs J in increasing order of size. We claim that the potential

n∑
i=1

i · d(ji)

increases with every swap. Here d(ji) denotes the distance from s to the slot to which ji

is assigned. Since the function is integral and bounded by n3, the claim follows. Let jk,
jh be the jobs that are swapped. Assume that k < h, i.e., pjk

< pjh
. Let d, d′ be the

distance functions before and after the swap. Based on Lemma 9 we have d′(ji) ≥ d(ji) for
all i /∈ {k, h}, d′(jh) ≥ d(jk) and d′(jk) ≥ d(jh), since these jobs swapped their slots. It
follows that

k · d′(jk) + h · d′(jh) ≥ k · d(jh) + h · d(jk)
= k · d(jh) + (h− k) · d(jk)︸ ︷︷ ︸

>d(jh)

+k · d(jk) > h · d(jh) + k · d(jk). ◀

In order to complete the running time analysis we consider the second stage. Again, we
construct a graph on |J |+ 1 vertices with the difference that we add an edge from s to every
slot on a machine with load less than ℓ− ϵpmax and an edge (v, w) between two slots of the
same job type associated to different machines if v is currently assigned a smaller job than
w. Following the same ideas as the proofs for the first stage, the running time of the second
stage can be shown. For the detailed proofs for the second stage of the algorithm we refer
to [6].
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▶ Lemma 11. The distance from s to any slot does not decrease by a swap in the second
stage of the algorithm.

▶ Lemma 12. The second stage of the algorithm terminates after at most O(n3) swaps.

Together, Lemmas 10 and 12 give the running time of the local search procedure.

▶ Lemma 13. Given a solution to the slot-MILP, in time nO(1) we can compute an integral
solution to slot-MILP such that

∑
j∈J pjxi,j ∈ [ℓ − ϵ · pmax, u + ϵ · pmax] for each machine

i ∈M.

The main theorem follows from Lemmas 7 and 13.

▶ Theorem 14. There is an algorithm for the target load balancing problem with a running
time of m2nO(1/ϵ) that computes a solution in which the load of each machine i ∈M is in
[ℓ− ϵ · pmax, u + ϵ · pmax], or asserts that there is no feasible solution.

4 Applications

We can use Theorem 14 to obtain additive approximation schemes for makespan minimization,
the Santa Claus problem and the envy-minimizing Santa Claus problem on identical machines.
The idea is to guess the target load intervals up to multiples of ϵ · pmax and then applying
the algorithm due to Theorem 14.

For P ||Cmax and the Santa Claus problem the guessing procedure can be done in time
O(1/ϵ). For P ||Cmax we set ℓ = 0 and guess u as a multiple of ϵ · pmax within the interval
[ 1

m

∑n
j=1 pj , 1

m

∑n
j=1 pj + pmax].

▶ Corollary 15. There is an algorithm for P ||Cmax with a running time of m2nO(1/ϵ) that
computes a solution with makespan at most OPT + ϵ · pmax.

For the Santa Claus problem we set u =
∑n

j=1 pj and guess ℓ within the interval [ 1
m

∑n
j=1 pj−

pmax, 1
m

∑n
j=1 pj ].

▶ Corollary 16. There is an algorithm for the Santa Claus problem on identical machines
with a running time of m2nO(1/ϵ) that computes a solution in which each machine has a load
of at least OPT − ϵ · pmax.

For the envy-minimizing Santa Claus problem we need to guess both ℓ and u simultaneously
from the intervals above with a total number of O(1/ϵ2) guesses.

▶ Corollary 17. There is an algorithm for envy-minimization on identical machines with a
running time of m2nO(1/ϵ) which computes a solution with envy at most OPT + ϵ · pmax.

5 Conclusion

In this paper, we formalized the concept of additive approximation schemes and presented
such algorithms for makespan minimization, the Santa Claus problem, and minimizing the
maximum envy on identical machines with respect to the parameter pmax. For the former two
problems, additive approximation schemes are particularly interesting when pmax ≪ OPT.
For the latter, a multiplicative approximation guarantee is not possible for polynomial
time algorithms (unless P=NP); therefore, an additive approximation scheme is a suitable
alternative way to obtain non-trivial approximation guarantees.
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For P ||Cmax and the Santa Claus problem on identical machines there is an EPTAS [2,21].
We leave as an open question to find additive approximation schemes for these problems with
a running time of this form or to rule out that such schemes exists. Note that using similar
techniques as in [34], one can easily show that all three versions admit even an additive
FPTAS in case that m is a constant.
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Abstract
Genome assembly asks to reconstruct an unknown string from many shorter substrings of it. Even
though it is one of the key problems in Bioinformatics, it is generally lacking major theoretical
advances. Its hardness stems both from practical issues (size and errors of real data), and from the
fact that problem formulations inherently admit multiple solutions. Given these, at their core, most
state-of-the-art assemblers are based on finding non-branching paths (unitigs) in an assembly graph.
While such paths constitute only partial assemblies, they are likely to be correct. More precisely,
if one defines a genome assembly solution as a closed arc-covering walk of the graph, then unitigs
appear in all solutions, being thus safe partial solutions. Until recently, it was open what are all
the safe walks of an assembly graph. Tomescu and Medvedev (RECOMB 2016) characterized all
such safe walks (omnitigs), thus giving the first safe and complete genome assembly algorithm. Even
though omnitig finding was later improved to quadratic time, it remained open whether the crucial
linear-time feature of finding unitigs can be attained with omnitigs.

We answer this question affirmatively, by describing a surprising O(m)-time algorithm to identify
all maximal omnitigs of a graph with n nodes and m arcs, notwithstanding the existence of families
of graphs with Θ(mn) total maximal omnitig size. This is based on the discovery of a family of walks
(macrotigs) with the property that all the non-trivial omnitigs are univocal extensions of subwalks
of a macrotig. This has two consequences: (1) A linear-time output-sensitive algorithm enumerating
all maximal omnitigs. (2) A compact O(m) representation of all maximal omnitigs, which allows,
e.g., for O(m)-time computation of various statistics on them. Our results close a long-standing
theoretical question inspired by practical genome assemblers, originating with the use of unitigs in
1995. We envision our results to be at the core of a reverse transfer from theory to practical and
complete genome assembly programs, as has been the case for other key Bioinformatics problems.
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1 Introduction

Theoretical and practical background of genome assembly. Genome assembly is one of
the flagship problems in Bioinformatics, along with other problems originating in – or highly
motivated by – this field, such as edit distance computation, reconstructing and comparing
phylogenetic trees, text indexing and compression. In genome assembly, we are given a
collection of strings (or reads) and we need to reconstruct the unknown string (the genome)
from which they originate. This is motivated by sequencing technologies that are able to read
either “short” strings (100-250 length, Illumina technology), or “long” strings (10.000-50.000
length, Pacific Biosciences or Oxford Nanopore technologies) in huge amounts from the
genomic sequence(s) in a sample. For example, the SARS-CoV-2 genome was obtained in [58]
from short reads using the MEGAHIT assembler [39].

Other leading Bioinformatics problems have seen significant theoretical progress in major
Computer Science venues, culminating (just to name a few) with both positive results,
see e.g. [17, 57] for phylogeny problems, [22, 6, 34] for text indexing, [23, 7, 35] for text
compression, and negative results, see e.g. [4, 1, 5, 21] for string matching problems. However,
the genome assembly problem is generally lacking major theoretical advances.

One reason for this stems from practice: the huge amount of data (e.g. the 3.1 Billion
characters long human genome is read 50 times over) which impedes slower than linear-
time algorithms, errors of the sequencing technologies (up to 15% for long reads), and
various biases when reading certain genomic regions [47]. Another reason stems from theory:
historically, finding an optimal genome assembly solution is considered NP-hard under several
formulations [49, 33, 32, 43, 46, 29, 48], but, more fundamentally, even if one outputs a 3.1
Billion characters long string, this is likely incorrect, since problem formulations inherently
admit a large number of solutions of such length [36].

Given all these setbacks, most state-of-the-art assemblers, including e.g. MEGAHIT [39]
(for short reads), or wtdbg2 [52] (for long reads), generally employ a very simple and linear-
time strategy, dating back to 1995 [32]. They start by building an assembly graph encoding
the overlaps of the reads, such as a de Bruijn graph [50] or an overlap graph [45] (graphs
are directed in this paper). After some simplifications to this graph to remove practical
artifacts such as errors, at their core they find strings labeling paths whose internal nodes
have in-degree and out-degree equal to 1 (called unitigs), approach dating back to 1995 [32].
That is, they do not output entire genome assemblies, but only shorter strings that are likely
to be present in the sequenced genome, since unitigs do not branch at internal nodes.

Safe and complete algorithms: A theoretical framing of practical genome assembly.
With the aim of enhancing the widely-used practical approach of assembling just unitigs
– as those walks considered to be present in any possible assembly solution – a result in a
major Bioinformatics venue [55] asked what is the “limit” of the correctly reconstructible
information from an assembly graph. Moreover, is all such reconstructible information still
obtainable in linear time, as in the case of the popular unitigs? Variants of this question also
appeared in [27, 8, 46, 53, 37, 9], while other works already considered simple linear-time
generalizations of unitigs [51, 44, 30, 36], without knowing if the “assembly limit” is reached.
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To make this question precise, [55] introduced the following safe and complete framework.
Given a notion of solution to a problem (e.g. a type of walk in a graph), a partial solution
(e.g. some shorter walk in the graph) is called safe if it appears (e.g. is a subwalk) in all
solutions. An algorithm reporting only safe partial solutions is called a safe algorithm.
A safe algorithm reporting all safe partial solutions is called safe and complete. A safe
and complete algorithm outputs all and only what is likely part of the unknown object to
be reconstructed, synthesizing all solutions from the point of view of correctness. Safety
generalizes the existing notion of persistency: a single node or edge was called persistent if
it appears in all solutions [28, 16, 13], for example persistent edges for maximum bipartite
matchings [16]. It also has roots in other Bioinformatics works [56, 14, 24, 59] considering
the aligned symbols appearing in all optimal (and sub-optimal) alignments of two strings.

There are many theoretical formulations of genome assembly as an optimization problem,
e.g. a shortest common superstring of all the reads [49, 33, 32], or some type of shortest
walk covering all nodes or arcs of the assembly graph [51, 43, 44, 31, 29, 48, 46]. However, it
is widely acknowledged [46, 48, 42, 47, 41, 36] that, apart from some being NP-hard, these
formulations are lacking in several aspects, for example they collapse repeated regions of a
genome. At present, given the complexity of the problem, there is no definitive notion of a
“good” genome assembly solution. Therefore, [55] considered as genome assembly solution
any closed arc-covering walk of a graph, where arc-covering means that it passes through
each arc at least once. The main benefit of considering any arc-covering walk is that safe
walks for them are safe also for any possible restriction of such covering walks (e.g. by some
additional optimality criterion1). Put otherwise, safe walks for all arc-covering walks are
more likely to be correct than safe walks for some peculiar type of arc-covering walks.

Prior results on safety in closed arc-covering walks. It is immediate to see that unitigs
are safe walks for closed arc-covering walks. A first safe generalization of unitigs consisted of
those paths whose internal nodes have only out-degree equal to 1 (with no restriction on
their in-degree) [51]. Further, these safe paths have been generalized in [44, 30, 36] to those
partitionable into a prefix whose nodes have in-degree equal to 1, and a suffix whose nodes
have out-degree equal to 1. All safe walks for closed arc-covering walks were characterized
by [55, 54] as being exactly those that are omnitigs, see Definition 1, Figure 1, and Theorem 8.
This leads to the first safe and complete genome assembly algorithm (obtained thus 20 years
after unitigs were first considered), outputting all maximal omnitigs in polynomial time
(maximal omnitigs are those which are not sub-walks of other omnitigs).

▶ Definition 1 (Omnitig). Let W = e0 . . . eℓ be a walk. We say that a non-empty path P is a
j-i forbidden path for W , for some 1 ≤ i ≤ j ≤ ℓ, if the first arc of P has the same tail as
ej and is different from ej, and the last arc of P has the same head as ei−1 and is different
from ei−1. We say that W is an omnitig if for no 1 ≤ i ≤ j ≤ ℓ there exists a j-i forbidden
path for W .

Furthermore, through experiments on “perfect” human read datasets, [55] also showed
that strings labeling omnitigs are about 60% longer on average than unitigs, and contain about
60% more biological content on average. Thus, once other issues of real data (e.g. errors)

1 For example, closed arc-covering walks are a common relaxation of the fundamental notions of closed
Eulerian walk (we now pass through each arc at least once), and of closed Chinese postman walk (i.e. a
closed arc-covering walk of minimum length) [26], which were mentioned in [46] as unsatisfactory models
of genome assembly.
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Figure 1 Walk e0 . . . eℓ is not an omnitig because there is a forbidden path P .

are added to the problem formulation, omnitigs (and the safe walks for such extended
models) have the potential to significantly improve the quality of genome assembly results.
Nevertheless, for this to be possible, one first needs the best possible results for omnitigs
(given e.g. the sheer size of the read datasets), and a full comprehension of them, otherwise,
such extensions are hard to solve efficiently.

Cairo et al. [11] recently proved that the length of all maximal omnitigs of any graph
with n nodes and m arcs is O(nm), and proposed an O(nm)-time algorithm enumerating all
maximal omnitigs. This was also proven to be optimal, in the sense that they constructed
families of graphs where the total length of all maximal omnitigs is Θ(nm). However, it was
left open if it is necessary to pay O(nm) even when the total length of the output is smaller.
Moreover, that algorithm cannot break this barrier, because e.g. O(m)-time traversals have
to be done for O(n) cases.

Our results. Our main result is an O(m)-size representation of all maximal omnitigs2, based
on a careful structural decomposition of the omnitigs of a graph. This is surprising, given
that there are families of graphs with Θ(nm) total length of maximal omnitigs [11].

▶ Theorem 2. Given a strongly connected graph G with n nodes and m arcs, there exists a
O(m)-size representation of all maximal omnitigs, consisting of a set M of walks ( maximal
macrotigs) of total length O(n) and a set F of arcs, such that every maximal omnitig is the
univocal extension3 of either a subwalk of a walk in M, or of an arc in F .

Moreover, M, F , and the endpoints of macrotig subwalks univocally extending to maximal
omnitigs can be computed in time O(m).

Since the univocal extension U(W ) of a walk W can be trivially computed in time linear
in the length of U(W ), we immediately get the linear-time output sensitive algorithm:

▶ Corollary 3. Given a strongly connected graph G, it is possible to enumerate all maximal
omnitigs of G in time linear in their total length.

We obtain Theorem 2 using two interesting ingredients. The first is a novel graph structure
(macronodes), obtained after a compression operation of “easy” nodes and arcs (Section 4).
The second is a connection to a recent result by Georgiadis et al. [25] showing that it is
possible to answer in O(1)-time strong connectivity queries under a single arc removal, after
linear-time preprocessing (notice that a forbidden path is defined w.r.t. two arcs to avoid).

Theorem 2 has additional practical implications. First, omnitigs are also representable
in the same (linear) size as the commonly used unitigs. Second, maximal macrotigs enable
various O(m)-time operations on maximal omnitigs (without listing them explicitly), by
pre-computing the univocal extensions from any node, needed in Theorem 2. For example,
given that the number of maximal omnitigs is O(m) [11], this implies the following result:

2 Note that the total length of the maximal omnitigs is at least m, since every arc is an omnitig.
3 The univocal extension U(W ) of a walk W is obtained by appending to W the longest path whose

nodes (except for the last one) have out-degree 1, and prepending to W the longest path whose nodes
(except for the first one) have in-degree 1; see Section 2 for the formal definition.
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▶ Corollary 4. Given a strongly connected graph G with m arcs, it is possible to compute the
lengths of all maximal omnitig in total time O(m).

Corollary 4 leads to a linear-time computation of various statistics about maximal
omnitigs, such as minimum, maximum, and average length (useful e.g. in [15]). One can also
use this to filter out subfamilies of them (e.g. those of length smaller and/or larger than a
given value) before enumerating them explicitly.

Significance of our results. This paper shows that all the strings that can be correctly
assembled from a graph can be obtained in output-sensitive linear time, a time feasible for
being implemented in practical genome assemblers. It closes the issue of finding safe walks
for a fundamental model of genome assembly (any closed arc-covering walk), a long-standing
theoretical question and originating with the use of unitigs in 1995 [32].

This theoretical question is crucial also from the practical point of view: assembly graphs
have the number of nodes and arcs in the order of millions, and yet the total length of the
maximal omnitigs is almost linear in the size of the graph. For example, the compressed (see
Section 4) de Bruijn graph of human chromosome 10 (length 135 million) has 467 thousand
arcs [11, Table 1], and the length of all maximal omnitigs (i.e. their total number of arcs, not
their total string length) is 893 thousand. Moreover, even though this chromosome is only
about 4% of the full human genome, the running time of the quadratic algorithm of [11] on
its compressed de Bruijn graph is about 30 minutes.

We envision a reverse transfer from theory to practical and complete genome assembly
programs, as in other Bioinformatics problems. For example, trivially, safe walks for all closed
arc-covering walks are also safe for more specific types of arc-covering walks. Moreover, while
a genome solution defined as a single closed arc-covering walk does not incorporate several
practical issues of real data, in a follow-up work [10] we show that omnitigs are the basis of
more advanced models handling many practical aspects. For example, to allow more types
of genomes to be assembled, one can define an assembly solution as a set of closed walks
that together cover all arcs [2], which is the case in metagenomic sequencing of bacteria. For
linear chromosomes (as in eukaryotes such as human), or when modeling missing sequencing
coverage, one can analogously consider one, or many, such open walks [54, 55]. Safe walks
for all these models are subsets of omnitigs [2, 10]. Moreover, when modeling sequencing
errors, or mutations present e.g. only in the mother copy of a chromosome (and not in the
father’s copy), one can require some arcs not to be covered by a solution walk, or even to be
“invisible” from the point of view safety. Finding safe walks for such models is also based on
first finding omnitigs-like walks [10].

Notice that such separation between theoretical formulations and their practical embodi-
ments is common for many classical problems in Bioinformatics. For example, computing
edit distance is often replaced with computing edit distance under affine gap costs [18], or
enhanced with various heuristics as in the well-known BLAST aligner [3]. Also text indexes
such as the FM-index [22] are extended in popular read mapping tools (e.g. [40, 38]) with
many heuristics handling errors and mutations in the reads.

Finally, our results show that safe partial solutions enjoy interesting combinatorial
properties, further promoting the persistency and safety frameworks. For real-world problems
admitting multiple solutions, safe and complete algorithms are more pragmatic than the
classical approach of outputting an arbitrary optimal solution. They are also more efficient
than enumerating all, or only the first k-best, solutions [19, 20], because they already
synthesize all that can be correctly reconstructed from the input data.
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Figure 2 Figure 2a: Given a bivalent node v, the macronode Mv is the subgraph of G induced by
the nodes reaching v with a split-free path (in red), and the nodes reachable from v with a join-free
path (in blue). These two types of nodes induce the two trees of the macronode. By definition,
every arc with endpoints in different macronodes is bivalent (in green, denoted cross-bivalent arcs).
The remaining bivalent arcs have endpoints in the same macronode (in purple, denoted self-bivalent
arcs). Figure 2b: The only omnitig traversing the bivalent node v is f1g2; e.g., by the X-intersection
Property neither f2g2 is an omnitig (b3f3f1 is a forbidden path) nor f1g1 is an omnitig (g2g3b4 is a
forbidden path). Extending the micro-omnitig f1g2 to the right we notice that f1g2g3 is an omnitig
and by the Y-intersection Property f1g2g′

3 is not an omnitig (g3b4 is a forbidden path). Hence, the
only maximal right-micro omnitig is f1g2g3b4, and the only maximal left-micro omnitig is b3f3f1g2.
Merging the two on f1g2, we obtain the maximal microtig b3f3f1g2g3b4.

2 Overview of the proofs

We highlight here our key structural and algorithmic contributions, and give more formal
details in Sections 4 and 5. We start with the minimum terminology needed to understand
this section, and defer the rest of the notation to Section 3.

Terminology. Functions t(·) and h(·) denote the tail node and the head node, respectively,
of an arc or walk. We classify the nodes and arcs of a strongly connected graph as follows
(see Figure 2a): (i) A node v is a join node if its in-degree d−(v) satisfies d−(v) > 1, and a
join-free node otherwise. An arc f is called a join arc if h(f) is a join node, and a join-free
arc otherwise. (ii) A node v is a split node if its out-degree d+(v) satisfies d+(v) > 1, and a
split-free node otherwise. An arc g is called a split arc if t(g) is a split node, and a split-free
arc otherwise. (iii) A node or arc is called bivalent if it is both join and split, and it is called
biunivocal if it is both split-free and join-free. A walk W is split-free (resp., join-free) if
all its arcs are split-free (resp., join-free). Given a walk W , its univocal extension U(W ) is
defined as W −WW +, where W − is the longest join-free path to t(W ) and W + is the longest
split-free path from h(W ) (observe that they are uniquely defined).

Structure. The main structural insight of this paper is that omnitigs enjoy surprisingly
limited freedom, in the sense that any omnitig can be seen as a concatenation of walks in
a very specific set. In order to give the simplest exposition, we first simplify the graph
by contracting biunivocal nodes and arcs. The nodes of the resulting graph can now be
partitioned into macronodes (see Figure 2a and Definition 12), where each macronode Mv is
uniquely identified by a bivalent node v (its center). We can now split the problem by first
finding omnitigs inside each macronode, and then characterizing the ways in which omnitigs
from different macronodes can combine.

We discover a key combinatorial property of how omnitigs can be extended: there are at
most two ways that any omnitig can traverse a macronode center (see also Figure 2b):
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▶ Theorem 5 (X-intersection Property). Let v be a bivalent node. Let f1 ≠ f2 be join arcs
with h(f1) = h(f2) = v; let g1 ̸= g2 be split arcs with t(g1) = t(g2) = v.

(i) If f1g1 and f2g2 are omnitigs, then d+(v) = d−(v) = 2.
(ii) If f1g1 is an omnitig, then there are no omnitigs f1g′ with g′ ̸= g1, nor f ′g1 with

f ′ ̸= f1.

In order to prove the X-intersection Property, we prove an even more fundamental
property: once an omnitig traverses a macronode center, for any node it meets after the
center node, there is at most one way of continuing from that node (Y-intersection Property),
see Figure 2b. The basic intuition is that if there is more than one possibilities, then strong
connectivity creates forbidden paths.

Given an omnitig fg traversing the bivalent node v, we define the maximal right-micro
omnitig as the longest extension fgW in the macronodeMv (see Figure 2b and Definition 14).
The maximal left-micro omnitig is the symmetrical omnitig Wfg. By Theorem 5, there
are at most two maximal right-micro omnitigs and two maximal left-micro omnitigs. The
merging of a maximal left- and right-micro omnitig on fg is called a maximal microtig (see
Figure 2b and Definition 14; notice that a microtig is not necessarily an omnitig). These at
most two maximal microtigs represent “forced tracks” to be followed by omnitigs crossing v.

We now describe how omnitigs can advance from one macronode to another. We prove
that any arc having endpoints in different macronodes is a bivalent arc, and moreover, for
every maximal microtig ending with a bivalent arc b, there is at most one maximal microtig
starting with b. As such, when an omnitig track exits a macronode, there is at most one way
of connecting it with an omnitig track from another macronode. It is natural to merge all
omnitig tracks (i.e. maximal microtigs) on all bivalent arcs between different macronodes, and
thus obtain maximal macrotigs (Definition 17 and Figure 5). The total size of all maximal
macrotigs is O(n) (Theorem 20), and they are a representation of all maximal omnitigs,
except for those that are univocal extensions of the arcs of F , see below and Theorem 21.

Algorithms. Our algorithms first build the set M of maximal macrotigs, and then identify
maximal omnitigs inside them. The set F of arcs univocally extending to the remaining
maximal omnitigs will be the set of bivalent arcs not appearing in M (Theorem 21).

Crucial to the algorithms is an extension primitive deciding what new arc (if any) to
choose when extending an omnitig (recall that the X- and Y-intersection Properties limits the
number of such arcs to one). Suppose we have an omnitig fW , with f a join arc, and we need
to decide if it can be extended with an arc g out-going from h(W ). Naturally, this extension
can be found by checking that there is no forbidden path from t(g) = h(W ). However, this
forbidden path can potentially end in any node of W . Up to this point, [54, 55, 11] need to
do an entire O(m) graph traversal to check if any node of W is reachable by a forbidden
path. We prove here a new key property:

▶ Theorem 6 (Extension Property). Let fW be an omnitig in G, where f is a join arc. Then
fWg is an omnitig if and only if g is the only arc with t(g) = h(W ) such that there exists a
path from h(g) to h(f) in G ∖ f .

Thus, for each arc g with t(g) = h(W ), we can do a single reachability query under one
arc removal: “does h(g) reach h(f) in G ∖ f?” Since the target of the reachability query is
also the head of the arc excluded f , then we can apply an immediate consequence of [25]:

▶ Theorem 7 ([25]). Let G be a strongly connected graph with n nodes and m arcs. After
O(m)-time preprocessing, one can build an O(n)-space data structure that, given a node w

and an arc f , tests in O(1) worst-case time if there is a path from w to h(f) in G ∖ f .
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Figure 3 Any maximal omnitig is identified (in solid blue) either by a macrotig interval (from a
join arc f to a split arc g; left), or by a bivalent arc b not appearing in any macrotig (right). The full
maximal omnitig is obtained by univocal extension (dotted blue), extension which may go outside of
the maximal macrotig.

Using the Extension Property and Theorem 7, we can thus pay O(1) time to check each
out-outgoing arc g, before discovering the one (if any) with which to extend fW . In the full
version of this paper we describe how to transform the graph to have constant degree, so
that we pay O(1) per node. This transformation also requires slight changes to the maximal
omnitig enumeration algorithm to maintain the linear-time output sensitive complexity. We
use the Extension Property when building the left- and right-maximal micro omnitigs, and
when identifying maximal omnitigs inside macrotigs, as follows.

Once we have the set M of maximal macrotigs, we scan each macrotig with two pointers,
a left one always on a join arc f , and a right one always on a split arc g (see Figure 3
and Algorithm 2). Both pointers move from left to right in such a way that the subwalk
between them is always an omnitig. The subwalk is grown to the right by moving the right
pointer as long as it remains an omnitig (checked with the Extension Property). When
growing to the right is no longer possible, the omnitig is shrunk from the left by moving the
left pointer. This technique runs in time linear to the total length of the maximal macrotigs,
namely O(n). In Figure 4 we work out all these notions on a concrete example.

Comparison with previous techniques. The algorithm of [55] exhaustively extends an
omnitig with every edge outgoing from its head, as long as the resulting walk remained
an omnitig, and did not use any insights on the structure of omnitigs. The O(nm)-time
algorithm of [11] was obtained using two structural results: there can be only one left-maximal
omnitig ending with a split arc (which we do not use here, since we prove deeper insights
on the structure of omnitigs, e.g. the X- and Y-intersection Properties) and the existence
of an acyclic order between split arcs connected by “simple” omnitigs. In [11], these allow
computation to be memoized when recursively computing the left-maximal omnitig ending
with a given split arc. The two-pointer technique was used also in [2] for a related problem, to
test the safety of intervals of an entire solution. Our surprising discovery of macrotigs allow
for a “small search space” of total size to O(n), and eliminate the need of recursion, while
the Extension Property enables the use of [25], thus the pay of O(1) per omnitig extension,
instead of O(m) as in [54, 55, 11].

3 Basics

In this paper, a graph is a tuple G = (V, E), where V is a finite set of nodes, E is a finite
multi-set of ordered pairs of nodes called arcs. Parallel arcs and self-loops are allowed. For
an arc e ∈ E(G), we denote G∖ e = (V, E ∖ {e}). The reverse graph GR of G is obtained by
reversing the direction of every arc. In the rest of this paper, we assume a fixed strongly
connected graph G = (V, E), with |V | = n and |E| = m ≥ n.

A walk in G is a sequence W = (v0, e1, v1, e2, . . . , vℓ−1, eℓ, vℓ), ℓ ≥ 0, where v0, v1, . . . , vℓ ∈
V , and each ei is an arc from vi−1 to vi. Sometimes we drop the nodes v0, . . . , vℓ of W , and
write W more compactly as e1 . . . eℓ. If an arc e appears in W , we write e ∈ W . We say
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All nodes have in- and out-degree at most 2

(a) Nodes and arcs color-coded as in Figure 2a.

All nodes have in- and out-degree at most 2

(b) Maximal microtigs.

All nodes have in- and out-degree at most 2

(c) Maximal macrotigs.

All nodes have in- and out-degree at most 2

(d) The maximal omnitigs obtained from maximal
macrotigs (univocal extensions are dotted). All
other maximal omnitigs are univocal extensions of
the bivalent arcs not appearing in macrotigs.

Figure 4 A concrete example of the main notions of this paper. In Figures 4b–4d walks have
different colors for visual distinguishability.

that W goes from t(W ) = v0 to h(W ) = vℓ, has length ℓ, contains v1, . . . , vℓ−1 as internal
nodes, starts with e1, ends with eℓ, and contains e2, . . . , eℓ−1 as internal arcs. A walk W is
called empty if it has length zero, and non-empty otherwise. There exists exactly one empty
walk ϵv = (v) for every node v ∈ V , and t(ϵv) = h(ϵv) = v. A walk W is called closed if it
is non-empty and t(W ) = h(W ), otherwise it is open. The concatenation of walks W and
W ′ (with h(W ) = t(W ′)) is denoted WW ′. A walk W = (v0, e1, v1, . . . , eℓ, vℓ) is called a
path when the nodes v0, v1, . . . , vℓ are all distinct, with the exception that vℓ = v0 is allowed
(in which case we have either a closed or an empty path). To simplify notation, we may
denote a walk W = (v0, e1, v1, . . . , eℓ, vℓ) as a sequence of arcs, i.e. W = e1 . . . eℓ. Subwalks
of open walks are defined in the standard manner. For a closed walk W = e0 . . . eℓ−1, we say
that W ′ = e′

0 . . . e′
j is a subwalk of W if there exists i ∈ {0, . . . , ℓ − 1} such that for every

k ∈ {0, . . . , j} it holds that e′
k = e(i+k) mod ℓ.

A closed arc-covering walk (i.e. passing through every arc at least once) exists if and only
if the graph is strongly connected. We are interested in the (safe) walks that are subwalks of
all closed arc-covering walks:

▶ Theorem 8 ([55]). Let G be a strongly connected graph different from a closed path. Then
a walk W is a subwalk of all closed arc-covering walks of G if and only if W is an omnitig.

Observe that W is an omnitig in G if and only if W R is an omnitig in GR. Moreover,
any subwalk of an omnitig is an omnitig. For every arc e, its univocal extension U(e) is an
omnitig. A walk W satisfying a property P is right-maximal (resp., left-maximal) if there
is no walk We (resp., eW ) satisfying P. A walk satisfying P is maximal if it is left- and
right-maximal w.r.t. P . Notice that if G is a closed path, then every walk of G is an omnitig.
As such, it is relevant to find the maximal omnitigs of G only when G is different from a
closed path. Thus, in the rest of this paper our strongly connected graph G is considered to
be different from a closed path, even when we do not mention it explicitly.
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4 Macronodes and macrotigs

We summarize here the key results about macronodes and macrotigs, and refer the reader to
the full version of this paper for the full details and proofs. Unless otherwise stated, we assume
that the input graph is compressed, in the sense that it has no biunivocal nodes and arcs. In
some algorithms we will also require that the graph has constant in- and out-degree. In the
full version of this paper we show how these properties can be guaranteed, by transforming
any strongly connected graph G with m arcs, in time O(m), into a compressed graph of
constant degree and with O(m) nodes and arcs. Observe that in a compressed graph all arcs
are split, join or bivalent. Moreover, the following properties hold.

▶ Observation 9. Let G be a compressed graph. Let f and g be a join and a split arc,
respectively, in G. The following holds:

(i) if fWg is a walk, then W has a node which is a bivalent node;
(ii) if gWf is a walk, then gWf contains a bivalent arc.

▶ Lemma 10. Every maximal omnitig of a compressed graph contains both a join arc and a
split arc. Moreover, it has a bivalent arc or an internal bivalent node.

▶ Lemma 11. Let u be a bivalent node. No omnitig contains u twice as an internal node.

Macronodes. We introduce a natural partition of the nodes of a compressed graph; each
class of such a partition (i.e. a macronode) contains precisely one bivalent node. We identify
each class with the unique bivalent node they contain. All other nodes belonging to the same
class are those that either reach the bivalent node with a join-free path or those that are
reached by the bivalent node with a split-free path (recall Figure 2a).

▶ Definition 12 (Macronode). Let v be a bivalent node of G. Consider the following sets:
R+(v) := {u ∈ V (G) : ∃ a join-free path from v to u};
R−(v) := {u ∈ V (G) : ∃ a split-free path from u to v}.

The subgraph Mv induced by R+(v) ∪R−(v) is called the macronode centered in v.

▶ Lemma 13. In a compressed graph G, the following properties hold:
i) The set {V (Mv) : v is a bivalent node of G} is a partition of V (G).
ii) In a macronodeMv, R+(v) and R−(v) induce two trees with common root v, but oriented

in opposite directions. Except for the common root, the two trees are node-disjoint, all
nodes in R−(v) being join nodes and all nodes in R+(v) being split nodes.

iii) The only arcs with endpoints in two different macronodes are bivalent arcs.

To analyze how omnitigs can traverse a macronode and the degrees of freedom they have
in choosing their directions within the macronode, we introduce the following definitions.
Central-micro omnitigs are the smallest omnitigs that cross the center of a macronode. Left-
and right-micro omnitigs start from a central-micro omnitig and proceed to the periphery of
a macronode. Finally, we combine left- and right-micro omnitigs into microtigs (which are
not necessarily omnitigs themselves); recall Figure 2b.

▶ Definition 14 (Micro omnitigs, microtigs). Let f be a join arc and g be a split arc, such
that fg is an omnitig.

The omnitig fg is called a central-micro omnitig.
An omnitig fgW (Wfg, resp.) that does not contain a bivalent arc as an internal arc is
called a right-micro omnitig (respectively, left-micro omnitig).
A walk W = W1fgW2, where W1fg and fgW2 are, respectively, a left-micro omnitig,
and a right-micro omnitig, is called a microtig.
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Figure 5 Three macronodes Mu, Mv, Mw (as gray areas) with arcs color-coded as in Figure 2a.
Black walks mark their five maximal microtigs: b1g1 . . . b2, bi . . . figi . . . bi+1 (i ∈ {2, 3, 4}), b5 . . . f5g5

(g5 = b1). The maximal macrotig M is obtained by overlapping them on the cross-bivalent arcs
b2, b3, b4, b5, i.e. M = b1 . . . b2 . . . b3 . . . b4 . . . b5 . . . b1. Notice that no arc is contained twice in M ,
with the exception of the self-bivalent arc b1, appearing as the first and last arc of M .

▶ Theorem 15 (Maximal microtigs). The maximal microtigs of any strongly connected graph
G with n nodes, m arcs, and arbitrary degree have total length O(n), and can be computed in
time O(m).

Macrotigs. Macronodes are connected with each other by bivalent arcs (Lemma 13),
but merging microtigs on all possible bivalent arcs may create too complicated structures.
However, this can be avoided by a simple classification of bivalent arcs: those that connect
a macronode with itself (self-bivalent) and those that connect two different macronodes
(cross-bivalent), recall Figure 2a.

▶ Definition 16 (Self-bivalent and cross-bivalent arcs). A bivalent arc b is called a self-bivalent
arc if U(b) goes from a bivalent node to itself. Otherwise it is called a cross-bivalent arc.

A macrotig is now obtained by merging those microtigs from different macronodes which
overlap only on a cross-bivalent arc, see also Figure 5.

▶ Definition 17 (Macrotig). Let W be any walk. W is called a macrotig if
1. W is an microtig, or
2. By writing W = W0b1W1b2 . . . bk−1Wk−1bkWk, where b1, . . . , bk are all the internal

bivalent arcs of W , the following conditions hold:
a. the arcs b1, . . . , bk are all cross-bivalent arcs, and
b. W0b1, b1W1b2, . . . , bk−1Wk−1bk, bkWk are all microtigs.

Our structural results (including Lemmas 18 and 19 below) show that we can construct
all maximal macrotigs by repeatedly joining microtigs overlapping on cross-bivalent arcs, as
long as possible, and obtain Theorem 20.

▶ Lemma 18. For any macrotig W there exists a unique maximal macrotig containing W .

▶ Lemma 19. Let W be a macrotig and let e be an arc of W . If e is self-bivalent, then e

appears at most twice in W (as first or as last arc of W ). Otherwise, e appears only once.

▶ Theorem 20 (Maximal macrotigs). The maximal macrotigs of any strongly connected graph
G with n nodes, m arcs, and arbitrary degree have total length O(n), and can be computed in
time O(m).
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5 Maximal omnitig representation and enumeration

In the algorithms of this section we assume that the graph has constant degree. In the full
version of this paper we explain how to handle the non-constant degree case.

We begin by proving the first part of Theorem 2. Theorem 20 guarantees that the total
length of maximal macrotigs is O(n). Thus, it remains to prove the following lemma, since
since any macrotig is a subwalk of a maximal macrotig (Lemma 18).

▶ Theorem 21 (Maximal omnitig representation). Let W be a maximal omnitig.
i) If W contains an internal bivalent node, then W is of the form U(fW ′g), where f is

the first join arc of W and g ̸= f is the last split arc of W , and W ′ is a possibly empty
walk. Moreover, fW ′g is a macrotig.

ii) Otherwise, W is of the form U(b), where b is a bivalent arc, and b does not belong to
any macrotig.

Proof. To prove i), let u be an internal bivalent node of W , and let fu and gu be, respectively,
the join arc and the split arc of W with h(fu) = u = t(gu); both such fu and gu exist,
since u is an internal node of W . Therefore, since W contains at least fu and gu, let f

and g be, respectively the first join arc and the last split arc of W . Observe that f is
either fu or it appears before fu in W ; likewise, g is either gu or it appears after gu in W .
Thus, f comes before g, and we can write W = W −fW ′gW +, where W ′ is the subwalk
of W , possibly empty, from h(f) to t(g). Therefore, by the maximality of W , we have
W = W −fW ′gW + = U(fW ′g).

To prove that the subwalk fW ′g of W is a macrotig, we prove by induction that any walk
of the form fW ′g, where f is a join arc and g is a split arc, is a macrotig. The induction is
on the length of W ′.

Case 1: W ′ contains no internal bivalent arcs. Since fW ′g contains a bivalent node (Ob-
servation 9), it is of the form fW ′g = W ′

1f ′g′W ′
2, with h(f ′) = t(g′) = u bivalent node.

Notice that W ′
1f ′g′W ′

2 is an microtig and thus it is a macrotig, by definition.
Case 2: fW ′g contains an internal bivalent arc b, i.e. fW ′g = W ′

1bW ′
2, with W ′

1, W ′
2 non

empty. By induction, W ′
1b and bW ′

2 are macrotigs and both contain a bivalent node as
internal node. Suppose b is a self-bivalent arc, then both W ′

1b and bW ′
2 would contain the

same bivalent node u as internal node, contradicting Lemma 11. Thus, b is a cross-bivalent
arc and W ′

1bW ′
2 is also a macrotig, by definition.

For ii), notice that if W contains no internal bivalent node then it contains a unique
bivalent arc b, by Lemma 10 and Observation 9. Thus, by the maximality of W , it holds
that W = U(b). It remains to prove that there is no macrotig containing b.

Suppose for a contradiction that there is a maximal left-micro omnitig M containing b.
By definition, M is of the form bWM fM gM . Notice that WgM is an omnitig, because M is
an omnitig and the arcs of W before b are join-free, so WgM can have no forbidden path.
This contradicts the fact that W is maximal.

Symmetrically, we have that there is no maximal right-micro omnitig containing b. Thus,
by definition, b appears in no microtig, and thus in no macrotig. ◀

▶ Remark 22. The number of maximal omnitigs containing an internal bivalent node is
O(n). This follows by Theorem 21(i), by maximality, and by the fact that the total length
of maximal macrotigs is O(n) (Theorem 20).
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Algorithm 1 Function IsOmnitigRightExtension.

1 Function IsOmnitigRightExtension(G, f, g)
Input : The compressed graph G. A join arc f and a split arc g such that

there exists a walk fWg where fW is an omnitig.
Output : Whether fWg is also an omnitig.

2 S ← {g′ ∈ E(G) | t(g′) = t(g) and there is a path from h(g′) to h(f) in G ∖ f}

Return : True
3 if S = {g} and False otherwise

Next, we are going to prove the second, algorithmic, part of Theorem 2. By Theorem 20
we can compute the maximal macrotigs of G in time O(m). We can trivially obtain in O(m)
time the set F of arcs not appearing in the maximal macrotigs. It remains to show how to
obtain the subwalks of the maximal macrotigs univocally extending to maximal omnitigs.

We first prove an auxiliary lemma needed for the proof of the Extension Property
(Theorem 6).

▶ Lemma 23. Let fW be an omnitig, where f is a join arc. Let P be a path from t(P ) = h(W )
to a node in W , such that the last arc of P is not an arc of fW . Then no internal node of
P is a node of W .

Proof. Consider PW the longest suffix of P , such that no internal node of PW is a node
of W . If PW = P , the lemma trivially holds. Let now W = (u0, e1, u1, e2, . . . , ek, uk). Let
ui = t(PW ) and uj = h(PW ). If i ≥ j, then PW is a forbidden path for fW ,a contradiction.
Hence, assume i < j < k. Let f ′WQ be a closed path. Consider the walk Z = PW ej+1 . . . ekQ.
Notice that ei+1 /∈ Z and f /∈ Z. Thus Z can transformed in a forbidden path for fW , from
ui to h(f). ◀

▶ Theorem 6 (Extension Property). Let fW be an omnitig in G, where f is a join arc. Then
fWg is an omnitig if and only if g is the only arc with t(g) = h(W ) such that there exists a
path from h(g) to h(f) in G ∖ f .

Proof. To prove the existence of an arc g, which satisfies the condition, consider any closed
path Pf ′ in G, where f ′ is an arbitrary sibling join arc of f . Notice that W is a prefix of
Pf ′, since fW is an omnitig, since otherwise one can easily find a forbidden path for the
omnitig fW as a subpath of Pf ′, from the head of the very first arc of Pf ′ that is not in W

to h(f ′). Therefore, let g be the the first arc of Pf ′ after the prefix W , in such a way that
the suffix of Pf ′ starting from h(g) is a path to h(f) in G ∖ f . Moreover, assume g is a split
arc, otherwise the statement trivially holds.

First, assume that there is a g′ sibling split arc of g and a path P from h(g′) to h(f) in
G ∖ f . We prove that there exists a forbidden path for fWg. Let PW be the prefix of P

ending in the first occurrence of a node in W (i.e., no node of PW belongs to W , except for
h(PW )). Notice that g′PW is a forbidden path for the omnitig fWg (it is possible, but not
necessary, that h(PW ) = h(f)).

Second, take any forbidden path P for the omnitig fWg. We prove that there exists a g′

sibling split arc of g and a path from h(g) to h(f) in G∖ f . Notice that t(P ) = h(W ) = t(g),
otherwise P would be a forbidden path for fW . As such, P starts with a split arc g′ ̸= g

and, by Lemma 23, P does not contain f . Thus, the suffix of P from h(g′) is a path in G∖ f

from h(g′) to h(f). ◀
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Algorithm 2 Computing all maximal omnitigs.

Input : The compressed strongly connected graph G of constant degree.
Output : All maximal omnitigs of G.

▷Assume that AllMaximalMacrotigs(G) returns all the maximal macrotigs in G.
▷Recall that U(W ) is the univocal extension of the walk W .

1 B ← {b | b bivalent arc that does not occur in any W ∈ AllMaximalMacrotigs(G)}
2 foreach b ∈ B do output U(b)

3 foreach f∗Xg∗ ∈ AllMaximalMacrotigs(G) do
▷With the notation X[f..g], we refer to the subwalk of f∗Xg∗ starting with the
occurrence of f in f∗X (unique by Lemma 19) and ending with the occurrence
of g in Xg∗ (unique by Lemma 19).

4 f ← f∗, g ← nil, g′ ← first split arc in Xg∗

5 while g′ ̸= nil do
6 while g′ ̸= nil and IsOmnitigRightExtension(f, g′) do

▷Grow X[f..g] to the right as long as possible
7 g ← g′

8 g′ ← next split arc in Xg∗ after g

▷X[f..g] cannot be grown to the right anymore
9 output U(X[f..g])

10 while g′ ̸= nil and not IsOmnitigRightExtension(f, g′) do
▷Shrink X[f..g] from the left until it can be grown to the right again

11 f ← next join arc in f∗X after f

To describe the algorithm that identifies all maximal omnitigs (Algorithm 2), we first intro-
duce an auxiliary procedure (Algorithm 1), which uses the Extension Property (Theorem 7)
and Theorem 6 to find the unique possible extension of an omnitig.

▶ Corollary 24. Algorithm 1 is correct. Assuming that the graph has constant degree, we can
preprocess it in time O(m + n) time, so that Algorithm 1 runs in constant time.

Maximal omnitigs are identified with a two-pointer scan of maximal macrotigs (Algo-
rithm 2): a left pointer always on a join arc f and a right pointer always on a split arc g,
recall Figure 3. For completeness, Algorithm 2 also outputs the maximal omnitigs.

▶ Theorem 25 (Maximal omnitig enumeration). Algorithm 2 is correct and, if the compressed
graph has constant degree, it runs in time linear in the size of the graph and of its output.

Proof. By Theorem 21, any maximal omnitig W is either of the form U(fW ′g) (where fW ′g

is a macrotig, and thus also a subwalk of a maximal macrotig, by Lemma 18), or of the form
W = U(b), where b is a bivalent arc not appearing in any macrotig. In the latter case, such
omnitigs are outputted in Line 2. In the former case, it remains to prove that the external
while cycle outputs all the maximal omnitigs of the form U(fW ′g) where fW ′g is contained
in a maximal macrotig f∗Xg∗. At the beginning of the first iteration, W = U(X[f..g′]) is
left-maximal since f = f∗. The first internal while cycle ensures that W = U(X[f..g]) is also
right-maximal, at which point it is printed in output. Then, the second internal while cycle
ensures that W = U(X[f..g′]) is a left-maximal omnitig, and the external cycle repeats.
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For the running time analysis, note that AllMaximalMacrotigs(G) runs in O(m) time,
by Theorem 20. Each iteration of the foreach cycle takes time linear in the total size of
the maximal macrotig X and of its output (by Corollary 24), and that the total size of all
maximal macrotigs is linear, by Theorem 20. ◀

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 59–78. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.14.

2 Nidia Obscura Acosta, Veli Mäkinen, and Alexandru I. Tomescu. A safe and complete
algorithm for metagenomic assembly. Algorithms for Molecular Biology, 13(1):3:1–3:12, 2018.
doi:10.1186/s13015-018-0122-7.

3 Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic
local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 51–58. ACM, 2015. doi:10.1145/2746539.2746612.

5 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 457–466.
IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.56.

6 Djamal Belazzougui. Linear time construction of compressed text indices in compact space. In
David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 148–193. ACM, 2014. doi:10.1145/2591796.2591885.

7 Djamal Belazzougui and Simon J. Puglisi. Range predecessor and lempel-ziv parsing. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 2053–2071.
SIAM, 2016. doi:10.1137/1.9781611974331.ch143.

8 Sébastien Boisvert, François Laviolette, and Jacques Corbeil. Ray: simultaneous assembly
of reads from a mix of high-throughput sequencing technologies. Journal of computational
biology, 17(11):1519–1533, 2010.

9 G. Bresler, M. Bresler, and D. Tse. Optimal Assembly for High Throughput Shotgun Sequencing.
BMC Bioinformatics, 14(Suppl 5):S18, 2013.

10 Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian S. Schmidt, Alexandru I. Tomescu,
and Elia C. Zirondelli. Genome assembly, a universal theoretical framework: unifying and
generalizing the safe and complete algorithms. CoRR, abs/2011.12635, 2020. arXiv:2011.
12635.

11 Massimo Cairo, Paul Medvedev, Nidia Obscura Acosta, Romeo Rizzi, and Alexandru I.
Tomescu. An Optimal O(nm) Algorithm for Enumerating All Walks Common to All Closed
Edge-covering Walks of a Graph. ACM Trans. Algorithms, 15(4):48:1–48:17, 2019. doi:
10.1145/3341731.

12 Massimo Cairo, Romeo Rizzi, Alexandru I Tomescu, and Elia C Zirondelli. Genome assembly,
from practice to theory: safe, complete and linear-time. arXiv preprint, 2020. arXiv:
2002.10498.

13 Katarína Cechlárová. Persistency in the assignment and transportation problems. Mat. Meth.
OR, 47(2):243–254, 1998. doi:10.1007/BF01194399.

14 Kun-Mao Chao, Ross C. Hardison, and Webb Miller. Locating well-conserved regions within a
pairwise alignment. CABIOS, 9(4):387–396, 1993. doi:10.1093/bioinformatics/9.4.387.

ICALP 2021

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1186/s13015-018-0122-7
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1145/2591796.2591885
https://doi.org/10.1137/1.9781611974331.ch143
http://arxiv.org/abs/2011.12635
http://arxiv.org/abs/2011.12635
https://doi.org/10.1145/3341731
https://doi.org/10.1145/3341731
http://arxiv.org/abs/2002.10498
http://arxiv.org/abs/2002.10498
https://doi.org/10.1007/BF01194399
https://doi.org/10.1093/bioinformatics/9.4.387


43:16 Genome Assembly, from Practice to Theory

15 Rayan Chikhi and Paul Medvedev. Informed and automated k-mer size selection for genome
assembly. Bioinformatics, 30(1):31–37, June 2013. doi:10.1093/bioinformatics/btt310.

16 Marie Costa. Persistency in maximum cardinality bipartite matchings. Oper. Res. Lett.,
15(3):143–9, 1994. doi:10.1016/0167-6377(94)90049-3.

17 Bartłomiej Dudek and Paweł Gawrychowski. Computing quartet distance is equivalent to
counting 4-cycles. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pages 733–743, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3313276.3316390.

18 Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Biological sequence
analysis: probabilistic models of proteins and nucleic acids. Cambridge university press, 1998.

19 David Eppstein. K-best enumeration. Bulletin of the EATCS, 115, 2015. URL: http:
//eatcs.org/beatcs/index.php/beatcs/article/view/322.

20 David Eppstein. k-best enumeration. In Ming-Yang Kao, editor, Encyclopedia of Algorithms,
pages 1003–1006. Springer, New York, NY, 2016. doi:10.1007/978-1-4939-2864-4_733.

21 Massimo Equi, Roberto Grossi, Veli Mäkinen, and Alexandru I. Tomescu. On the complexity
of string matching for graphs. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ICALP.2019.55.

22 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390–398. IEEE Computer Society, 2000. doi:
10.1109/SFCS.2000.892127.

23 Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the bit-complexity of lempel-ziv
compression. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009,
pages 768–777. SIAM, 2009. doi:10.1137/1.9781611973068.

24 A Friemann and S Schmitz. A new approach for displaying identities and differences among
aligned amino acid sequences. Comput Appl Biosci, 8(3):261–265, June 1992.

25 Loukas Georgiadis, Giuseppe F Italiano, and Nikos Parotsidis. Strong connectivity in directed
graphs under failures, with applications. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1880–1899. SIAM, 2017.

26 Meigu Guan. Graphic programming using odd and even points. Chinese Math., 1:237–277,
1962.

27 A. Guénoche. Can we recover a sequence, just knowing all its subsequences of given length?
Computer Applications in the Biosciences, 8(6):569–574, 1992. URL: http://dblp.uni-trier.
de/db/journals/bioinformatics/bioinformatics8.html#Guenoche92.

28 P. L. Hammer, P. Hansen, and B. Simeone. Vertices belonging to all or to no maximum
stable sets of a graph. SIAM Journal on Algebraic Discrete Methods, 3(4):511–522, 1982.
doi:10.1137/0603052.

29 Iu, V. L. Florent’ev, A. A. Khorlin, K. R. Khrapko, and V. V. Shik. Determination of
the nucleotide sequence of DNA using hybridization with oligonucleotides. A new method.
Doklady Akademii nauk SSSR, 303(6):1508–1511, 1988. URL: http://view.ncbi.nlm.nih.
gov/pubmed/3250844.

30 Benjamin Grant Jackson. Parallel methods for short read assembly. PhD thesis, Iowa State
University, 2009.

31 Evgeny Kapun and Fedor Tsarev. De Bruijn superwalk with multiplicities problem is NP-hard.
BMC Bioinformatics, 14(Suppl 5):S7, 2013.

32 John D. Kececioglu and Eugene W. Myers. Combinatorial algorithms for DNA sequence
assembly. Algorithmica, 13(1/2):7–51, 1995.

https://doi.org/10.1093/bioinformatics/btt310
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.1145/3313276.3316390
http://eatcs.org/beatcs/index.php/beatcs/article/view/322
http://eatcs.org/beatcs/index.php/beatcs/article/view/322
https://doi.org/10.1007/978-1-4939-2864-4_733
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1137/1.9781611973068
http://dblp.uni-trier.de/db/journals/bioinformatics/ bioinformatics8.html#Guenoche92
http://dblp.uni-trier.de/db/journals/bioinformatics/ bioinformatics8.html#Guenoche92
https://doi.org/10.1137/0603052
http://view.ncbi.nlm.nih.gov/pubmed/3250844
http://view.ncbi.nlm.nih.gov/pubmed/3250844


M. Cairo, R. Rizzi, A. I. Tomescu, and E. C. Zirondelli 43:17

33 John Dimitri Kececioglu. Exact and approximation algorithms for DNA sequence reconstruction.
PhD thesis, University of Arizona, Tucson, AZ, USA, 1992.

34 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In Moses Charikar and Edith Cohen, editors,
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 756–767. ACM, 2019. doi:10.1145/
3313276.3316368.

35 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 827–840. ACM, 2018. doi:10.1145/3188745.3188814.

36 Carl Kingsford, Michael C Schatz, and Mihai Pop. Assembly complexity of prokaryotic
genomes using short reads. BMC Bioinformatics, 11(1):21, 2010.

37 Ka-Kit Lam, Asif Khalak, and David Tse. Near-optimal assembly for shotgun sequencing with
noisy reads. BMC Bioinform., 15(S-9):S4, 2014. doi:10.1186/1471-2105-15-S9-S4.

38 Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nature
Methods, 9(4):357, 2012.

39 Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. Megahit:
an ultra-fast single-node solution for large and complex metagenomics assembly via succinct
de bruijn graph. Bioinformatics, 31(10):1674–1676, 2015.

40 Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

41 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale
Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, 2015. doi:10.1017/CBO9781139940023.

42 Paul Medvedev. Modeling biological problems in computer science: a case study in genome
assembly. Briefings in bioinformatics, 20(4):1376–1383, 2019.

43 Paul Medvedev and Michael Brudno. Maximum likelihood genome assembly. Journal of
computational biology, 16(8):1101–1116, 2009.

44 Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Computability of
models for sequence assembly. In WABI, pages 289–301, 2007.

45 Eugene W. Myers. The fragment assembly string graph. In ECCB/JBI, page 85, 2005.
46 Niranjan Nagarajan and Mihai Pop. Parametric complexity of sequence assembly: theory and

applications to next generation sequencing. Journal of computational biology, 16(7):897–908,
2009.

47 Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature Reviews Genetics,
14(3):157–167, 2013.

48 Giuseppe Narzisi, Bud Mishra, and Michael C Schatz. On algorithmic complexity of biomolec-
ular sequence assembly problem. In Algorithms for Computational Biology, pages 183–195.
Springer, 2014.

49 Hannu Peltola, Hans Söderlund, Jorma Tarhio, and Esko Ukkonen. Algorithms for some string
matching problems arising in molecular genetics. In IFIP Congress, pages 59–64, 1983.

50 P. A. Pevzner. l-Tuple DNA sequencing: computer analysis. Journal of Biomolecular Structure
& Dynamics, 7(1):63–73, 1989.

51 Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753, 2001.

52 Jue Ruan and Heng Li. Fast and accurate long-read assembly with wtdbg2. Nature Methods,
17(2):155–158, 2020. doi:10.1038/s41592-019-0669-3.

53 Ilan Shomorony, Samuel H. Kim, Thomas A. Courtade, and David N. C. Tse. Information-
optimal genome assembly via sparse read-overlap graphs. Bioinform., 32(17):494–502, 2016.
doi:10.1093/bioinformatics/btw450.

ICALP 2021

https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1186/1471-2105-15-S9-S4
https://doi.org/10.1017/CBO9781139940023
https://doi.org/10.1038/s41592-019-0669-3
https://doi.org/10.1093/bioinformatics/btw450


43:18 Genome Assembly, from Practice to Theory

54 Alexandru I. Tomescu and Paul Medvedev. Safe and Complete Contig Assembly Via Om-
nitigs. In Mona Singh, editor, Research in Computational Molecular Biology - 20th An-
nual Conference, RECOMB 2016, Santa Monica, CA, USA, April 17-21, 2016, Proceed-
ings, volume 9649 of Lecture Notes in Computer Science, pages 152–163. Springer, 2016.
doi:10.1007/978-3-319-31957-5_11.

55 Alexandru I. Tomescu and Paul Medvedev. Safe and complete contig assembly through
omnitigs. Journal of Computational Biology, 24(6):590–602, 2017.

56 Martin Vingron and Patrick Argos. Determination of reliable regions in protein sequence
alignments. Prot. Engin., 3(7):565–569, 1990. doi:10.1093/protein/3.7.565.

57 Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng Yu.
Finding four-node subgraphs in triangle time. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 1671–1680. SIAM, 2015. doi:10.1137/1.9781611973730.111.

58 Fan Wu, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu, Zhao-Wu
Tao, Jun-Hua Tian, Yuan-Yuan Pei, Ming-Li Yuan, Yu-Ling Zhang, Fa-Hui Dai, Yi Liu,
Qi-Min Wang, Jiao-Jiao Zheng, Lin Xu, Edward C. Holmes, and Yong-Zhen Zhang. A new
coronavirus associated with human respiratory disease in china. Nature, 579(7798):265–269,
2020. doi:10.1038/s41586-020-2008-3.

59 M Zuker. Suboptimal sequence alignment in molecular biology. alignment with error analysis.
J Mol Biol, 221(2):403–420, September 1991.

https://doi.org/10.1007/978-3-319-31957-5_11
https://doi.org/10.1093/protein/3.7.565
https://doi.org/10.1137/1.9781611973730.111
https://doi.org/10.1038/s41586-020-2008-3


Lifting for Constant-Depth Circuits and
Applications to MCSP
Marco Carmosino #

Department of Computer Science, Boston University, MA, USA

Kenneth Hoover1 #

Department of Computer Science, University of California, San Diego, CA, USA

Russell Impagliazzo #

Department of Computer Science, University of California, San Diego, CA, USA

Valentine Kabanets #

School of Computing Science, Simon Fraser University, Burnaby, Canada

Antonina Kolokolova #

Department of Computer Science, Memorial University of Newfoundland, St. John’s, Canada

Abstract
Lifting arguments show that the complexity of a function in one model is essentially that of a related
function (often the composition of the original function with a small function called a gadget) in
a more powerful model. Lifting has been used to prove strong lower bounds in communication
complexity, proof complexity, circuit complexity and many other areas.

We present a lifting construction for constant depth unbounded fan-in circuits. Given a function
f , we construct a function g, so that the depth d+1 circuit complexity of g, with a certain restriction
on bottom fan-in, is controlled by the depth d circuit complexity of f , with the same restriction.
The function g is defined as f composed with a parity function. With some quantitative losses,
average-case and general depth-d circuit complexity can be reduced to circuit complexity with this
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circuit complexity of given (truth tables of) Boolean functions yields an algorithm for approximating
the depth 3 circuit complexity of functions, i.e., there are quasi-polynomial time mapping reductions
between various gap-versions of AC0-MCSP. Our lifting results rely on a blockwise switching lemma
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44:2 Lifting for Constant-Depth Circuits and Applications to MCSP

1 Introduction

Determining the circuit complexity of a given Boolean function (presented by its truth table)
is a fundamental algorithmic problem with a long history. One can view the whole area of
circuit synthesis as consisting of variants of this problem. Historically, this is an apparently
intractable search problem that motivated early thought on the P vs. NP problem; both
Karp [21] and Levin [30] were thinking about this problem. It is also a fundamental problem
from the point of view of computational complexity, where its complexity in different models
has been related to cryptography, learning theory, derandomization, and circuit lower bounds.

Its decision version, known as the Minimum Circuit Size Problem (MCSP), asks to decide
for a given truth table of a function f and a parameter s whether there is a circuit with at
most s gates computing the function f . The high-level overview is that while any algorithmic
improvement for MCSP would have dramatic consequences, thus making MCSP very likely
to be extremely difficult, there are also many barriers to showing that MCSP is NP-complete
[20, 24, 17, 5, 16, 4, 15, 29].

Intuitively, both algorithms for MCSP and completeness results for MCSP would require
a better understanding of circuits, and in particular, would seem to be connected to proving
lower bounds for circuit complexity. We could then hope to understand variants of MCSP
where we restrict the class of circuits considered. However, MCSP remains mysterious even
for the best understood circuit classes, such as constant depth unbounded fan-in circuits,
where strong lower bounds are known. One aspect that adds to the mystery is that there
is no known general relation between the minimum circuit size problems for various circuit
classes, even when one class is stronger than the other, or even when they are almost identical
in computational power.

Recently, Ilango [18] made break-through progress by showing NP-completeness for the
constant-depth formula size version of MCSP under randomized quasi-polynomial time
Turing reductions. He used a lifting argument to reduce the depth d formula complexity of a
function f to the depth d + 1 formula complexity of a related function f ′. Lifting arguments
show that the complexity of a function in one model is essentially that of a related function
(often the composition of the original function with a small function called a gadget) in a
more powerful model. Lifting has been used to prove strong lower bounds in communication
complexity, proof complexity, circuit complexity and many other areas [26, 12, 25, 10]. As
in the work of Ilango, lifting results can also be viewed as a reduction from the problem of
computing the complexity of functions in the first model to that in the second model.

This intriguing result also raises a number of questions. In particular, what is the strength
of lifting arguments as reductions between MCSP variants? Are the restrictions in Ilango’s
argument (formulas rather than circuits, randomization, quasi-polynomial time, and Turing
rather than mapping) essential, or can at least some of these be eliminated? How general is
the lifting technique, i.e., could there be natural reductions between these problems that do
not use lifting? Our work is a first step towards answering some of these questions.

1.1 Our Results
To answer these questions, we present a lifting construction for constant depth unbounded
fan-in circuits that given a function f , constructs a function g, so that the depth d + 1
complexity of g is controlled by the depth d complexity of f . Our construction is very simple:
g is f composed with a suitable sized parity function. Given that there are strong constant
depth lower bounds using the properties of the parity function, the form of our construction
is quite natural (and can be traced back to the classical Andreev function construction [6]).
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However, converting this intuition into a formal lifting theorem is delicate. First, tight lifting
for this construction seems to require that we look at circuits with restricted bottom gate
fan-in, rather than general circuits. Even with this restriction, we need to get both lower
bounds and upper bounds on the complexity of the constructed function g, that are very
close together. So we need to take extra care for both parts of the argument. In particular,
for the upper bound, it is not sufficient to compose the circuit for f with an optimal depth 2
circuit for the parity; instead, we show that the bottom level of the circuit for f applied to
parities has a relatively small depth 2 circuit. For the lower bound, we need a variant of the
classical Switching Lemma [13], because we cannot afford to have even a small probability
that an input to f is removed by the restriction. Our Switching Lemma variant (Lemma 10)
is actually both as easy or easier to prove than the standard one, and implies the standard
switching lemma, so could have independent pedagogical value.

Our main lifting theorem (Theorem 18) shows that if a Boolean function f : {0, 1}n →
{0, 1} is computable by a size s depth d + 1 circuit with bottom gate fan-in at most log s

(we term such circuits to be of depth d + 1/2), then the new “lifted” function g = f ◦ ⊕ℓ (f
composed with parity on ℓ < n inputs) will have its depth ((d + 1) + 1/2) circuit complexity
sandwiched between s1/2 and s6.

We apply this lifting theorem to give reductions between approximately computing the
constant-depth circuit complexity of a given function at depth d and any higher constant
depth d′. Because our lifting theorems control the circuit complexity only approximately,
we phrase these reductions as reductions between gap-versions of MCSP; these are promise
problems to distinguish between functions of circuit complexity at most syes and of circuit
complexity greater than sno, for some parameters syes < sno.

We first observe that the restriction on circuits we have in our lifting theorem does not
change their average-case complexity substantially. This gives a reduction from small depth
“tolerant” gap-MCSP to tolerant gap-MCSP for larger depths.

Also, by giving a non-trivial size/bottom fan-in trade-off for constant depth circuits,
loosely based on the size-width trade-offs in proof complexity [8], we show that hardness
for approximation of MCSP for weakly exponential sizes at one depth can be translated to
similar hardness for higher depths.

Since the input to MCSP is the entire truth table of the function, the operation we give
yields a quasi-polynomial, rather than polynomial time reduction, between MCSP for smaller
depths and larger. Under a suitable assumption about the difficulty of MCSP, we show that
any natural (in the sense of [20]) polynomial time reduction would either implicitly contain a
stronger lifting theorem or yield a subexponential-time algorithm for small-depth MCSP.

Finally, we note that our lifting results are a step towards proving the NP-completeness
of AC0

d-MCSP for any constant depth d ≥ 3: one just needs to prove that depth 3 circuit
complexity is NP-hard to approximate to within the factors needed by our lifting theorems.

1.2 Related Work
The most closely related to our work is the recent result by Ilango [18] that there is a
quasi-polytime randomized Turing reduction from the AC0

d minimum formula size problem
to the AC0

d+1 minimum formula size problem. The main theorem used for this reduction is
a kind of lifting theorem, where for any f and a sufficiently hard to compute g relative to
f , the AC0

d+1 formula complexity of f ∧ g is close to the AC0
d formula complexity of f plus

the AC0
d+1 formula complexity of g. With this, they were able to show that AC0 minimum

formula size problem is NP-hard under such reductions. Their proof crucially relied on the
model being formulas, whereas our work gives similar depth-increasing reductions for circuits,
along with some barriers to improving these reductions.

ICALP 2021
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Khot and Saket [22] proved essentially optimal hardness of approximation for DNF-
GapMCSP, under the assumption that NP ̸⊆ QuasiP, via a connection shown by Feldman [11]
between the gap problem and a hypercube covering problem. Under this same assumption,
Hirahara, Oliveira, and Santhanam [15] showed that DNF ◦MODm-GapMCSP was hard for
O(log n) gaps. Both of these gap problems are known to be easy for O(n) gaps [9, 15]. These
results rely on the existing geometric characterization of the classes in question, the former
being a union of subcubes, the latter a union of affine subspaces. For general fixed-depth
circuits, we no longer have these characterizations; the bottom levels, being CNFs or DNFs,
can represent any subset of the hypercube.

Allender and Hirahara [4] show that under modest cryptographic assumptions (the
existence of a one-way function), GapMCSP for general circuits and N1−o(1) gaps is NP-
intermediate. Their arguments depend heavily on being able to compose functions to large
depths. See a recent survey by Allender [1] for more on MCSP-related results.

Remainder of the paper. We give basic definitions and prove our blockwise switching
lemma in Section 2. We prove our lifting theorem for the worst-case AC0 circuit complexity
in Section 3, and for the average-case AC0 circuit complexity in Section 4. We discuss the
barriers to improving our lifting reductions in Section 5, and state some open questions in
Section 6.

2 Preliminaries

2.1 General
▶ Definition 1 (Boolean function composition). The composition of boolean functions f :
{0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} is the function f ◦ g : {0, 1}nm → {0, 1} obtained
by dividing the input z into n consecutive blocks z1, . . . , zn of length m, applying g to each
block, and then computing f(g(z1), g(z2), . . . , g(zn)).

▶ Definition 2 (Time t(n) many-one reductions). We say that A ≤t
m B if there is a time

t = t(n)-computable function g : {0, 1}n → {0, 1}n′ such that x ∈ A ⇐⇒ f(x) ∈ B. We
denote the polynomial t(n) = nO(1) by poly, and quasipolynomial t(n) = n(log n)O(1) by qpoly.

2.2 Complexity Measures
We denote the set of n-input Boolean functions by Fn, and the set of all Boolean functions by
F . A complexity measure is a function Λ : F → N that maps Boolean functions to the natural
numbers, quantifying some aspect of their complexity relative to a concrete computational
model. The most basic such quantity is number of gates in a circuit C, denoted by |C|. We
assume every circuit has at least one gate for each input bit.

▶ Definition 3 (Constant-Depth Alternating Circuits: AC0
d). The depth-d alternating circuit

complexity of f , denoted AC0
d(f), is the minimum number of gates in any unbounded-fanin

circuit computing f where gates are from the set {∧,∨,¬}, layers alternate, and the depth is
at most d.

▶ Definition 4 (Bounded Bottom-Fanin Alternating Circuits: AC0
d+1/2). The bounded bottom

fan-in depth-d alternating circuit complexity of f , denoted AC0
d+1/2(f), is the minimum

number s of gates in any depth-d + 1 circuit computing f with bottom fan-in at most log s.
Equivalently, it is the minimum over all depth-d+1 circuits C computing f of max{|C|, 2wC},
where wC denotes the bottom fan-in of C.
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We measure average-case complexity by expanding what counts as “computing” f .
▶ Definition 5 (Tolerance Operator: Λ̂). Let Λ be a complexity measure. Denote by dist(f, ϵ)
the Hamming ball of radius ϵ · 2n around the truth-table of f . The ϵ-relaxation of Λ is
Λ̂[ϵ] = minf ′∈dist(f,ϵ) Λ(f ′).

2.3 Meta-Complexity Problems
Every meta-complexity problem is defined relative to a complexity measure.
▶ Definition 6 (MCSP). For a complexity measure Λ, Λ-MCSP = {(f, s) | Λ(f) ≤ s}.

▶ Definition 7 (GapMCSP). For a complexity measure Λ, Λ-GapMCSPn[syes, sno] is the
following promise problem, where fn denotes an n-variate Boolean function:

Y = {fn | Λ(fn) ≤ syes} and N = {fn | Λ(fn) > sno}

▶ Definition 8 (Tolerant GapMCSP).For a complexity measure Λ, Λ̂[ϵ1, ϵ2]-GapMCSPn[syes, sno]
is the following promise problem:

Y = {fn | (Λ̂[ϵ1])(fn) ≤ syes} and N = {fn | (Λ̂[ϵ2])(fn) > sno}

2.4 Blockwise Switching Lemma
We will need a strengthening of Håstad’s Switching Lemma [13] for the case of structured
random restrictions that leave exactly one variable unset in every block of variables.
▶ Definition 9 (Blockwise Restrictions, Bℓ

n). A binary string of length n · ℓ can naturally be
divided into n consecutive “blocks” of ℓ bits each. Variables {yi,j : i ∈ [n], j ∈ [ℓ]} index
into these strings. Denote by Bℓ

n the set of all restrictions ρ that place exactly one ⋆ in
each block of an n-block, ℓ-block-size string. Formally, we have ρ : [n]× [k]→ {0, 1, ⋆} and
∀i ∈ [n] ∃!j ∈ [k] such that ρ(i, j) = ⋆.
▶ Lemma 10 (Blockwise Switching Lemma). Let φ be a k-CNF on n · ℓ variables. For any
s ≥ 0, Prρ∼Bℓ

n
[φ ↾ρ cannot be expressed as an 2s-term s-DNF ] ≤

( 8k
ℓ

)s
.

▶ Remark 11. While the proof of Lemma 10 is actually slightly simpler than that of the
standard Switching Lemma [27, 7], this Blockwise Switching Lemma implies the standard
Switching Lemma (as stated in [7]). A uniformly random subset of pn out of n variables
can be chosen as follows: Randomly uniformly permute the n variables, then partition them
into pn consecutive disjoint blocks of size 1/p each, and, finally, randomly uniformly choose
exactly one variable from each of the pn blocks. For each fixed permutation of n variables,
Lemma 10 applies with ℓ = 1/p. We get that the probability that a given k-CNF fails to
simplify to an s-DNF when hit with a random restriction that leaves exactly pn variables
unset is upper-bounded by (8pk)s.
▶ Remark 12. Our blockwise restrictions are different from Håstad’s blockwise random
restrictions used in the context of the AC0 depth hierarchy theorem [13] (later improved
to the average-case depth hierarchy theorem in [14]). Håstad’s blockwise restrictions were
designed to preserve the structure of Sipser’s function; ours will allow us to recover a circuit
for f from a higher-depth circuit for the composition f ◦ ⊕ℓ of f with parities over disjoint
blocks of ℓ variables, for any Boolean function f . Because of this, the two random restriction
distributions are very different, and the Switching Lemmas that result are quantitatively
quite different.

We prove the Switching Lemma (Lemma 10) below, via a modification of the
“compression”-based proof of the Switching Lemma due to Razborov [27, 7].

ICALP 2021
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Canonical Decision Trees & Notation

We write assignments to a set of variables {xi|i ∈ [n]} as functions α : [n]→ {0, 1}. A k-CNF
φ(x1, . . . , xn) is a conjunction of m clauses, where each clause is a disjunction over at most
k literals. A Decision Tree is a binary tree where nodes are labeled by variables x1, . . . , xn,
and leaves and edges are labeled by constants {0, 1}.

To evaluate a Decision Tree on an assignment α, begin at the root, labeled by some
xi. Move down the edge labeled by α(i). Repeat until you arrive at a leaf and report the
constant labeling that leaf as the value of the tree.

Given a k-CNF φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm we can create a Canonical Decision
Tree. Fix a lexical ordering on variables and use it to sort and de-duplicate clauses; let
i ∈ [m] index the clauses of φ in this sorted order. We define CDT(φ) recursively:

Transform C1 ∈ φ to a depth ≤ k tree T querying all variables of C1 in lexical order.
For each branch b of T , follow b to induce a partial assignment αb; set φb ← Simplify
φ/αb. If φb is empty, terminate b with leaf labeled 1; if φb is falsified, terminate b

with leaf labeled 0; otherwise, if φb is undetermined, extend b with CDT(φb).

A restriction is a partial assignment: a map ρ : [n]→ {0, 1, ⋆}. The result of applying a
restriction to a Boolean function f is written f ↾ρ where we substitute each occurrence of xi

by ρ(i) for every ρ(i) ̸= ⋆. We will need to define restrictions that extend other restrictions.
Let ED(ρ) denote the set of restrictions that are identical to ρ, except for replacing D star
locations with constants. Let E(ρ) denote the set of restrictions that replace all ⋆-locations
of ρ with constants. We will be concerned with the blockwise restrictions of Definition 9.

Coding and Decoding Large-Depth Restrictions

Suppose all we know about ρ is that it produces a large-depth canonical decision tree when
applied to φ. We can witness this with some “long” path σ through the tree. Our code
will consist of a restriction ρ̃c that extends ρ and a short bitstring “hint” that allows us to
implicitly navigate “down” a long path of the CDT and guess ρ by un-setting variables of ρc.

Algorithm 1 ENC.

Let σ be a long path (≥ depth D) through T ;
foreach clause along σ, Cσ

i do
foreach variable ηij appearing in Cσ

i do
record the following hint: begin

ηij as an index into Cσ
i (log k bits);

Assignment to ηij along σ (single bit);
Is this the last variable queried in Cσ

i ? (single bit);
Record τi as an assignment to ηi that falsifies Cσ

i ;
ρc = ρ ◦ τ1 ◦ · · · ◦ τD

return ρ̃c ← ρc completed to a full assignment uniformly at random, all hints

▷ Claim 13 (Decoding from ENC output). Suppose ρ ∈ Bℓ
n fails to simplify a particular k-CNF

φ, so that CDT(φ ↾ρ) ≥ D. Then, Prρ̃c∼ENC(ρ) [DEC(ρ̃c) = ρ] ≥
( 1

ℓ

)(n−D)
.

Proof of Claim 13. Fix ρ ∈ Bℓ
n and suppose T = CDT(φ ↾ρ) has depth ≥ D. Let σ be a

witnessing path of length at least D through T . We’ll require some notation; denote by Cσ
i

the ith clause traversed along the path σ, in the sense that the recursive CDT construction
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Algorithm 2 DEC.
Initialize: ρ1 ← ρc = ρ ◦ τ1 ◦ · · · ◦ τD and i← 1
for i = 1 to D do

Simplify φi ↾ρi
;

Find first falsified clause of φi = Cσ
i ;

Read hint to find τi and σi (stop-bit tells you when to stop).;
ρi+1 ← ρi with τi replaced by σi (so ρi+1 = ρ ◦ σ1 ◦ σi−1 ◦ σi ◦ τi+1 . . . τD)

return ρD with σ1 ◦ . . . σD unset, and ⋆’s guessed uniformly at random for all other
blocks

worked on clause C to produce that section of the decision tree. Note, this may well be
smaller than m, due to simplifications applied during construction of the CDT. Further, let
σi be the section of σ that traverses Cσ

i and let ηi be the variables queried along σi. We can
think of σi as a sequence of assignments to these variables.

Now, consider the operation of DEC on ρ̃c ∼ ENC(ρ). First observe that no clauses of φ

were falsified by ρ alone, by our assumption that CDT(φ ↾ρ) ≥ D – a falsified clause would
give a depth-1 decision tree with a single 0 leaf. Therefore, any falsified clause is due to
variables set by some τi or a randomly set variable.

Because the CDT is constructed in lexical-clause-order and ENC follows this order, the
first falsified clause of φ ↾ρ̃c must be Cσ

1 . We wish to recover which variables τ1 set; the trick
is that now we know they must reside in a uniquely identified clause of at most k variables.
So, we spend log k bits of the hint per variable to name which variables of Cσ

1 were along σ

and thus set in τ1.
Iterating this argument, we see that lexical ordering of the canonical decision tree ensures

recovery of D ⋆ locations of ρ. So, after running the main loop of DEC on ρ̃c we have a
candidate that matches ρ exactly in D blocks. For each remaining block, DEC will simply
guess at random which variable in the block was a ⋆ in ρ. Each block has ℓ bits, so we have
a (1/ℓ) chance of guessing correctly – that is, in agreement with the original location of the
⋆ in ρ. The number of blocks that must be guessed (instead of recovered using deterministic
decoding, DEC) is (n−D). Every guess must be correct to successfully decode ρ. This gives
the claimed probability of decoding. ◁

Given instead a random completion ρr of blockwise restriction ρ and a random hint hr, can
any algorithm decode ρ? We can upper bound this probability.

▷ Claim 14 (Decoding from random information). For any algorithm A, for every blockwise
restriction ρ, Prρr∼E(ρ)[A(ρr, hr) = ρ] ≤

( 1
ℓ

)n
.

Proof of Claim 14. The hint hr is clearly useless, because it is a random string. Furthermore,
the random variables ρr and ρ are conditionally independent, given that ρr is a randomly
sampled completion of ρ. This means that observing ρr provides no information regarding
the ⋆-locations of ρ. Therefore, no algorithm can do better than to randomly guess which
location, in each block, was a star, for every block of the received ρr. There are n blocks of ℓ

bits each and every guess must be correct, for the overall probability (1/ℓ)n. ◁

Completing the proof

We are now ready to prove Lemma 10, re-stated below in a more general form.
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▶ Lemma 15 (Blockwise Switching Lemma). Let φ be a k-CNF. Pick ρ from Bℓ
n uniformly

at random. Then Pr[CDT(φ ↾ρ) ≥ D] ≤
( 8k

ℓ

)D
.

Proof. We can lower-bound the probability of decoding from random completion ρr: if we
are lucky enough that the randomly sampled completion agrees with ρc in the “special”
blocks set by ENC, then we can significantly narrow down the number of blocks whose ⋆

must be guessed at random! That is, the non-trivial probability of recovery for DEC can be
exploited. Formally,(

1
ℓ

)n

≥ Pr[DEC(ρr, hr) = ρ] (by Claim 14)

≥ Pr[CDT(φ ↾ρ) ≥ D]× Pr[hr = h]× Pr[ρr extends ρc]× Pr[DEC decodes ⋆ ’s]

Taking each event in turn:
1. |h| = D(log(k) + 2) so there are (4k)D possible strings. Flipping hr uniformly at random,

Pr[hr = h] = (4k)−D.
2. To extend ρc, the randomly chosen ρr must agree in D locations. One of these settings is

correct, so Pr[ρr extends ρc] = 2−D.
3. Given a correct hint and randomly completed ρc, the probability of DEC recovering ρ is( 1

ℓ

)(n−D) by Claim 13.
Plugging in, we get(

1
ℓ

)n

≥ Pr[CDT(φ ↾ρ) ≥ D]× (4k)−D × 2−D ×
(

1
ℓ

)(n−D)
.

The proof of the lemma follows. ◀

3 Constant-Depth GapMCSP Reductions

The focus of this section is “hardness lifting” for circuits of depth (d + 1) to circuits of depth
(d + 2), and its applications to GapMCSP for the respective classes. Theorem 18 shows how
to lift hardness for bounded-fan-in AC0 circuits from depth d to depth d + 1 (also bounded
fan-in). Here, a function of a not much larger size yet higher depth is constructed by replacing
input variables of the original function by disjoint relatively small parities. This theorem is
then applied to reduce GapMCSP for AC0

d circuits to GapMCSP for AC0
d+1 circuits.

The reduction proceeds in three steps, with the middle step potentially repeated multiple
times for a larger depth increase. The first step converts unbounded bottom fan-in circuits
of depth (d + 1) to bounded (by log of the circuit size) fan-in circuits of the same depth, at
the cost of increasing the size from s to 2O(

√
n log n log s); see Corollary 17. This rebalancing

only needs to be done once.
The second step, which relies on the hardness lifting theorem, is the quasi-polynomial time

reduction from GapMCSP for bounded bottom fan-in circuits of depth (d + 1), to GapMCSP
for bounded bottom fan-in circuits of depth (d + 2). The quasi-polynomial running time
of this reduction comes from the blow-up in the size of the output truth table of the new
function. Then, we show that for this setting GapMCSP for depth d + 1 circuits reduces to
GapMCSP for depth d + 2 circuits (both bounded bottom fan-in), with a small loss in the
gap size. See Theorem 19 for the exact statement.

The last step is a polytime reduction from GapMCSP for bounded bottom fan-in circuits
of depth (d + 2), to GapMCSP for unbounded bottom fan-in circuits of the same depth; see
Theorem 21.
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3.1 Depth d + 1 to d + 1/2

▶ Lemma 16 (Fanin vs Size Tradeoff). For any d ≥ 3, let C be any depth-d size-s circuit
over n inputs. Then, for any w ≥ 1, there is an equivalent depth-d circuit C ′ with bottom
fan-in at most w, and the size at most s(4n log n)/w.

Proof. Assume WLOG that all the bottom gates of C are disjunctions. We will recursively
define a decision tree T such that each leaf ℓ is associated with a restriction ρℓ resulting in
C ↾ρℓ

having bottom fan-in at most w.
Initially, T consists of a single leaf node corresponding to the empty restriction. While

there is a leaf v in T corresponding to a restriction ρ such that C ↾ρ has some nonempty set
S of bottom gates of fan-in greater than w, do the following. Let t = |S| ≤ s. Let z be the
literal that occurs in the most gates of S. Since there are more than tw literal occurrences
among the gates in S and there are 2n literals, z must appear in more than (tw)/(2n) bottom
gates. Branch on z, with the left child v1 of v corresponding to z = 1, and the right child v0
to z = 0. Note that the restriction corresponding to v1 satisfies all bottom gates containing
z, and the restriction corresponding to v0 reduces their fan-in by 1.

Every left branching we take in the decision tree results in t shrinking by more than
a factor

(
1− w

2n

)
. So after k left branchings, there are fewer than t

(
1− w

2n

)k large fan-in
gates left. Setting k = (2n/w) ln s, we have that after k left branchings there are no large
fan-in gates left. If k ≥ n/2 (i.e., w ≤ 4 ln s), then we can use the trivial upper bound 2n on
the size of T ; note that, in this case, 2n ≤ 24n·(ln s)/w, as required.

Otherwise, for k < n/2, we can upper-bound the size of T as follows. Since each branch
of T is of length at most n, and it may contain at most k left branchings, we get that the
size of T is at most

k∑
r=0

(
n

r

)
≤ k ·

(
n

k

)
≤ k ·

(ne

k

)k

≤ k ·
( we

2 ln s

)k

≤ 2(1.5)k·log(w/ ln s) ≤ s
3n log n

w ,

where for the last inequality we used the definition of k and the bound (w/ ln s) ≤ w ≤ n.
Suppose without loss of generality that the top gate of C is a disjunction, i.e., C =∨

i

∧
j gi,j . We can rewrite C(x) as

∨
leaves ℓ∈T (ϕ(x, ρℓ) ∧ C ↾ρℓ

(x)) , where, for a fixed
restriction ρℓ, the formula ϕ(x, ρℓ) indicates whether x is consistent with ρℓ (i.e., whether x

ends up at leaf ℓ of our decision tree T ). It is easy to see that ϕ(x, ρℓ) can be written as a
conjunction of at most n literals.

As written, the circuit above is a depth-(d + 2) size at most (1 + |T | + |T | · s) circuit
with fan-in at most w. By distributivity, we can rewrite each ϕ(x, ρℓ) ∧ C ↾ρℓ

(x) as∨
i

(
ϕ(x, ρℓ) ∧

∧
j (gi,j ↾ρℓ

(x))
)

. Plugging this into (3.1), we obtain a depth-d circuit C ′

with fan-in at most w, computing the same function as C, and the size of C ′ is at most
|T | · s ≤ s(4n log n)/w, as required. ◀

▶ Corollary 17 (Depth (d + 1) → (d + 1/2)). For any d ≥ 2, n, and syes, sno such that
log syes ≤ log2(sno/4)

n log n , we have

AC0
d+1-GapMCSPn[syes, sno] ≤poly

m AC0
d+1/2-GapMCSPn[24·

√
n(log n)(log syes), sno]

with the identity functions as a reduction.

Proof. The “NO→NO” case is immediate: if f : {0, 1}n → {0, 1} doesn’t have size-sno

circuits with no restriction on the bottom fan-in, then f doesn’t have size-sno circuits with
restricted bottom fan-in.
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For the “YES→YES” case, we apply Lemma 16 to a depth-(d + 1) size-syes circuit for f ,
with w =

√
n(log n)(log syes). This results in a circuit for f of size at most 24·

√
n(log n)(log syes),

with bottom fan-in at most
√

n(log n)(log syes). ◀

3.2 Depth d + 1/2 to (d + 1) + 1/2

▶ Theorem 18 (Hardness lifting). Let f have AC0
d+1/2 circuit complexity s. Fix s0 > 0. Then

there is a function f ′ on n′ = n · 16 log s0 inputs with AC0
(d+1)+1/2 circuit complexity s′ where

s′ ≤ 2s2
√

16 log s log s0
√

16 log s log s0. Moreover, if s0 <
√

s/3, then s0 ≤ s′.

Proof. The construction is as follows: given the truth table of f : {0, 1}n → {0, 1}, output
the truth table of f ′ = f ◦ ⊕ℓ for ℓ = 16 log s0. This takes time 2nℓ = N16 log s0 ≤ NO(log N),
quasi-polynomial in N since s0 ≤ N . We argue the correctness next.

Bounding s′ from below. Note that the parameter ℓ must be sufficiently larger than log s0
so that we can apply the Blockwise Switching Lemma to a depth-(d + 2) size-s0 circuit with
bottom fan-in log s0 that presumably computes f ◦⊕ℓ to obtain a depth-(d + 1) size-s circuit
with bottom fan-in log s that computes f . We prove that if f ′ has a AC0

(d+1)+1/2 of size s0,
then f has a AC0

d+1/2 circuit of size s ≤ 3(s0)2.
Suppose f ◦⊕ℓ has a depth -(d + 2) circuit C ′ of size s0 and bottom fan-in at most log s0.

We shall hit C ′ with a blockwise random restriction ρ, where the blocks are the inputs to
each ⊕ℓ. Since exactly one bit is left unset in each block, C ′ ↾ρ computes f with some of the
input bits potentially negated. For C ′ ↾ρ to simplify to a depth -(d + 1) circuit with bottom
fan-in at most k ≤ log(3s2

0) ≤ log s, we need to argue that there exists a blockwise restriction
ρ which makes every depth-2 bottom circuit of C ′ into a decision tree of depth at most k.
By the Blockwise Switching Lemma (Lemma 10), this is implied if s0

(
8 log s0

ℓ

)k

< 1, which
is equivalent to 2log s0−k < 1, for our choice of ℓ = 16 log s0. Thus, setting k = log s0 + 1
satisfies this inequality. Moreover, each bottom CNF or DNF of C ′ is turned into a DNF or
CNF with 2k clauses. So the size of C ′ ↾ρ is at most s0 + s0 · 2k ≤ 3(s0)2 ≤ s, as required.

Bounding s′ from above. Next we need to show that if f has a small depth-(d+ 1/2) circuit,
then f ◦ ⊕ℓ has a small depth-(d + 1 + 1/2) circuit. Note that computing the ℓ-bit parities by
naive depth-2 circuits of size 2ℓ is prohibitively expensive, as this would make the size of the
new circuit for f ◦ ⊕ℓ at least (s0)16 > s′, for our choice of ℓ = 16 log s0 (which was dictated
by the “NO→NO” case analysis above). Instead we will compute each ⊕ℓ by a depth-3
circuit, as a parity of parities, adapting the standard construction of optimal size-(ℓ2

√
ℓ)

depth-3 circuits. To get a final circuit for f ◦ ⊕ℓ to be of depth d + 1 + 1/2, we will need to
carefully balance the parameters of our partition of ℓ bits into ℓ1 blocks of size ℓ2 each, for
ℓ1 and ℓ2 such that ℓ = ℓ1 · ℓ2.

Suppose f has a depth -(d + 1) circuit C of size s and bottom fan-in at most log s, with
all negations at the leaves; this at most doubles the size. Without loss of generality, assume
that the bottom layer of gates consists of disjunctions with fan-in log s. To obtain a circuit
for f ◦ ⊕ℓ, we will compose ⊕ℓ with each of the bottom CNFs of C. Consider a particular
CNF hi =

∧k
j=1 gi,j at the bottom of C, where k ≤ s and each gi,j is a disjunction of at most

log s literals.
For ℓ1 to be chosen later, let ℓ2 = ℓ/ℓ1. Using the trivial 2ℓ1 -size CNF for computing ⊕ℓ1 ,

we can compute each gi,j ◦⊕ℓ1 by an OR-AND-OR circuit, where the top OR gate has fan-in
log s and the AND gates each have fan-in 2ℓ1 . By distributivity, we can rewrite gi,j ◦ ⊕ℓ1 as
a CNF with 2ℓ1 log s clauses, each of width at most ℓ1 log s.
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Since C is a layered circuit, we can merge this CNF into hi to obtain a depth-2 circuit
computing hi ◦ ⊕ℓ1 . Finally, composing this with the DNF for ⊕ℓ2 , we get a depth-3 circuit
with bottom fan-in ℓ2 computing hi ◦⊕ℓ. Replacing each hi in C with circuits constructed in
this way, we obtain a depth -(d + 2) circuit for f ◦ ⊕ℓ with bottom fan-in ℓ2. The subcircuit
for computing each gi,j ◦⊕ℓ is of size at most σ = 1 + 2ℓ1 log s + 2ℓ2 · ℓ1 log s. So the total size
of the circuit for f ◦⊕ℓ is at most s + s ·σ = s(σ + 1). If we set ℓ2 =

√
ℓ log s and ℓ1 =

√
ℓ

log s ,
then the total size is at most

s
(

2 + 2
√

ℓ log s + 2
√

ℓ log s ·
√

ℓ log s
)
≤ (2s) · 2

√
ℓ log s ·

√
ℓ log s ≤ s′.

Since the bottom fan-in is at most
√

ℓ log s ≤ log s′, this concludes the proof. ◀

▶ Theorem 19 (Depth (d + 1/2) → ((d + 1) + 1/2) GapMCSP). For any d ≥ 1, n, syes, s′
yes,

s′
no, and sno such that syes < sno, s′

yes < s′
no, sno ≥ 3(s′

no)2 and

s′
yes ≥ 2(syes)2

√
16(log syes)(log s′

no)
√

16(log syes)(log s′
no),

we have AC0
d+1/2-GapMCSPn[syes, sno] ≤qpoly

m AC0
(d+1)+1/2-GapMCSPn′ [s′

yes, s′
no], where n′ =

16n log s′
no ≤ O(n2).

Proof. We use the construction in Theorem 18 as the reduction function, with s0 = s′
no. For

the YES → YES side, if AC0
d+1/2(f) ≤ syes, then

AC0
d+1+1/2(f ′) ≤ 2(syes)2

√
16(log syes)(log s′

no)
√

16(log syes)(log s′
no)

as desired. For the NO → NO side, if AC0
d+1/2(f) > sno, then AC0

d+1+1/2(f ′) ≥ s0 = s′
no. ◀

▶ Remark 20. If we apply this to succinct MCSP, we actually get a polytime reduction instead;
constructing the naïve f ◦ ⊕ℓ circuit given a circuit for f takes polytime, it just makes the
truth table too large.

3.3 Depth d + 1/2 to d + 1
▶ Theorem 21 (Depth (d + 1/2)→ (d + 1)). For any d ≥ 1, n, syes, sno, s′

yes, s′
no, such that

syes < sno, s′
yes < s′

no, sno ≥ (s′
no)5 and s′

yes ≥ 2(syes)3, we have

AC0
d+1/2-GapMCSPn[syes, sno] ≤poly

m AC0
d+1-GapMCSP2n[s′

yes, s′
no]

Proof. The reduction is as follows: given the truth table of f : {0, 1}n → {0, 1}, output the
truth table of g = f ◦ ⊕2. The size of the input for g is 2n. The runtime of the reduction is
poly(N). Next we argue the correctness of this reduction.

NO → NO. Suppose f ◦ ⊕2 : {0, 1}2n → {0, 1} is computable by a size-s′
no circuit C ′ of

depth d + 1. Without loss of generality, we may assume that the bottom gates of C ′ are
ANDs. We will hit C ′ with a random blockwise restriction ρ. Consider a particular bottom
AND-gate of fan-in t, for some 1 ≤ t ≤ n. Since each block in a blockwise restriction is of
size two, there must be at least t/2 variables from distinct blocks that feed into this AND
gate. Each one of these variables will be chosen as a non-star variable by ρ with probability
1/2, and then independently set to 0 with probability 1/2. This would simplify the AND
gate to the constant 0, with probability 1/4. This happens independently for each of these
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t/2 variables. Thus the probability that the AND gate of fan-in at least t survives a random
restriction is at most (3/4)t/2. By the union bound, the probability that any such AND gate
survives is at most s′

no · (3/4)t/2, which is less than 1 for t = 5(log s′
no). Thus there exists a

blockwise restriction ρ which simplifies C ′ to a depth-(d + 1) circuit computing f , with size
at most s′

no ≤ sno and bottom fan-in at most 5(log s′
no) ≤ log sno.

YES → YES. Suppose f : {0, 1}n → {0, 1} is computable by a size-syes circuit C of depth
d + 1, with bottom fan-in at most log syes. WLOG, assume the bottom gates of C are ANDs.
Note that we can express the XOR and the negated XOR of two variables as the following
2-CNFs:

y ⊕ z = (ȳ ∨ z̄) ∧ (y ∨ z) and ¬(y ⊕ z) = (ȳ ∨ z) ∧ (y ∨ z̄).

Replacing the input literals of C by these circuits for (possibly negated) ⊕2, and merging
the bottom AND gate of C with the top AND gate of these parity circuits, we get a depth-
(d + 2) circuit C ′ for f ◦ ⊕2, with 2-CNFs on t = (2 log syes) clauses as the bottom depth-2
sub-circuits. By distributivity, we can rewrite each 2-CNF on t clauses as a t-DNF on
2t terms. Then merge the OR gates of these DNFs with the OR gates at the preceding
level in C ′, obtaining an equivalent depth-(d + 1) circuit C ′′ for f ◦ ⊕2, of size at most
syes + syes · (syes)2 ≤ 2(syes)3 ≤ s′

yes (and bottom fan-in at most (2 log syes) ≤ log s′
yes). ◀

3.4 Combining the steps: Depth d + 1 to d + c for any constant c > 1

The reduction in Theorem 19 can be repeated multiple times, resulting in the overall reduction
lifting hardness to constantly many levels. The following theorem shows how the parameters
evolve over all steps of the reduction.

▶ Theorem 22 (Depth (d + 1) → (d + c)). For any d ≥ 2, c > 1, n ≥ n0(α, δ, c), and
0 < α < δ < 1 where 1 + α < 2δ, we have

AC0
d+1-GapMCSPn[2nα

, 2nδ

] ≤qpoly
m AC0

(d+c)-GapMCSPn′ [2(n′)β

, 2(n′)γ

],

where n′ = n(c−1)δ+1, γ ≈ 1
c−1 , β ≈ 1

c−1 −
1

(c−1)2c−1 · (1− 1+α
2δ ).

Proof. As outlined at the beginning of the section, we will create this reduction via composing
the reductions in Corollary 17 and Theorems 19 and 21. Let a = 1+α+ log log n+4

log n

2 .

Step 1. AC0
d+1-GapMCSPn[2nα

, 2nδ ] ≤poly
m AC0

d+1/2-GapMCSPn[2na

, 2nδ ]
This follows immediately from Corollary 17 with syes = 2nα and sno = 2nδ .

Step 2.

AC0
d+1/2-GapMCSPn[2na

, 2nδ ] ≤qpoly
m AC0

(d+c−1)+1/2-GapMCSPn(c−1)δ+1/2[exp2

(
5n

a+(2c−1−1)δ

2c−1

)
,

exp2( nδ

2c−1 − 2c−1−1
2c−1 log 3)]

We will show each of n, syes, and sno map to the corresponding values after c−1 applications
of the reduction in Theorem 19. Define n(i), s

(i)
yes, and s

(i)
no to be each value after applying i

iterations of the reduction, with n(0), s
(0)
yes, and s

(0)
no set to the initial values.

We will first show that s
(i)
no = 2

nδ

2i − 2i−1
2i log 3; this is true for i = 0, and for larger i we have

s
(i+1)
no =

√
s

(i)
no

3 = 2
nδ

2i+1 − 2i−1
2i+1 log 3− log 3

2 = 2
nδ

2i+1 − 2i+1−1
2i+1 log 3.
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Next, we show that n(i) = 16in
∏i

j=1[ nδ

2j − 2j−1
2j log 3]; via padding, we can increase the

number of variables to n(c−1)δ+1/2 at the end. Again, this is true for i = 0. For larger i,

n(i+1) = 16n(i) log s(i+1)
no = 16i+1n

i+1∏
j=1

[
nδ

2j
− 2j − 1

2j
log 3

]
.

Finally, for s
(i)
yes, we show that after i iterations of the Theorem 19 reduction, syes = 2na ,

sno = 2nδ would be mapped to at most s′
yes = exp2(5n

a+(2i−1)δ

2i ). For i > 0, assuming

s
(i)
yes ≤ exp2(5n

a+(2i−1)δ

2i ), we have s
(i+1)
yes is at most

exp2

(
1 + 5n

a+(2i−1)δ

2i +
√

80
2i

n
a+(2i−1)δ

2i (nδ −Θ(2i)) + O(log n)
)
≤ exp2

(
5n

a+(2i+1−1)δ

2i+1

)
,

fixing n0 sufficiently large. For i = 0, note that na < 5n
a+(20−1)δ

20 .

Step 3.

AC0
(d+c−1)+1/2-GapMCSPn(c−1)δ+1/2[exp2

(
5n

a+(2c−1−1)δ

2c−1

)
, exp2( nδ

2c−1 − 2c−1−1
2c−1 log 3)] ≤poly

m

AC0
d+c-GapMCSPn(c−1)δ+1 [2nβ

, 2nγ ]
This follows immediately from Theorem 21, setting

syes = exp2

(
5n

a+(2c−1−1)δ

2c−1

)
and sno = exp2

(
nδ

2c−1 −
2c−1 − 1

2c−1 log 3
)

. ◀

4 Constant-Depth Tolerant GapMCSP Reductions

We will show an analogous “hardness lifting” reduction from the GapMCSP problem for
average-case circuits of depth d to depth d + 1.

In this average case setting, instead of applying the machinery of Lemma 16, we can
instead make use of the observation that bottom gates of large fan-in are almost always equal
to their bias; see Theorem 23. Thus we get smaller gaps on the output side of the reduction,
at a small cost to the tolerance parameter.

4.1 Tolerant depth d + 1 to d + 1/2 and reverse
▶ Theorem 23 (Tolerant depth (d + 1)→ (d + 1/2)). For any 0 ≤ ϵ1, ϵ2 < 1/2, d ≥ 1, n ≥ 1,
and syes < sno, we have

ÂC
0
d+1[ϵ1, ϵ2]-GapMCSPn[syes, sno] ≤poly

m ÂC
0
d+1/2[ϵ1 + 1/n, ϵ2]-GapMCSPn[(syes)2, sno]

with the identity functions as a reduction.

Proof. The “NO”→“NO” case is obvious. For the “YES”→“YES” case, suppose C is a
depth d + 1 circuit of size syes that disagrees with f on at-most an ϵ1-fraction of inputs.
For each bottom gate of C with fan-in larger than 2 log |C|, replace the gate with a 1 if it
is an OR, or a 0 if it is an AND. Call this new circuit with the replaced gates C ′. For a
uniformly-random sampled input, any of the replaced gates would disagree with this bit with
probability at most |C|−2, and so the probability C ′ disagrees with C on a uniformly-random
input is at most 1/|C|, via a union bound. Since |C| ≥ n, this is at most 1/n, and so C ′

disagrees with f on at most an (ϵ1 + 1/n)-fraction of inputs. Note that |C ′| ≤ |C| ≤ (syes)2

and the bottom fan-in of C ′ is at most 2 log syes ≤ log(syes)2, as required. ◀
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▶ Theorem 24 (Tolerant depth (d + 1/2)→ (d + 1)). For any 0 ≤ ϵ1, ϵ2 < 1/2, d ≥ 1, n ≥ 1,
syes, sno, s′

yes, s′
no such that syes < sno, we have, via the the identity functions as a reduction,

ÂC
0
d+1/2[ϵ1, ϵ2 + 1/n]-GapMCSPn[syes, sno] ≤poly

m ÂC
0
d+1[ϵ1, ϵ2]-GapMCSPn[syes,

√
sno].

Proof. The “YES”→“YES” case is obvious. For the “NO”→“NO” case, let C ′ be depth-(d+1)
circuit of size at most s′

no = √sno that ϵ2-approximates f . As in the proof of Theorem 23
above, we replace by constants all bottom gates of C ′ that have fan-in larger than 2 log |C ′|,
getting a new circuit C that computes f on all but at most ϵ2 + (1/n) fraction of inputs.
The size of C is at most s′

no ≤ sno, and the bottom fan-in is at most 2 log s
1/2
no = log sno, as

required. ◀

4.2 Tolerant depth d + 1/2 to (d + 1) + 1/2

▶ Theorem 25 (Tolerant depth (d + 1/2) → ((d + 1) + 1/2)). For any d ≥ 1, n ≥ 1, 0 ≤
ϵ1, ϵ2 < 1/2, syes, s′

yes, s′
no, and sno such that syes < sno, s′

yes < s′
no, sno ≥ 3(s′

no)2(ϵ2n + 1)
and s′

yes ≥ 2(syes)2
√

16(log syes)(log s′
no)√16(log syes)(log s′

no), we have

ÂC
0
d+1/2[ϵ1, ϵ2 + 1/n]-GapMCSPn[syes, sno] ≤qpoly

m ÂC
0
(d+1)+1/2[ϵ1, ϵ2]-GapMCSPn′ [s′

yes, s′
no],

where n′ = 16n log s′
no ≤ O(n2).

Proof. We shall use the same reduction as in Theorem 19, outputting f ◦ ⊕ℓ on input f ,
where ℓ = 16 log s′

no.

NO → NO. Let C ′ be a depth -(d + 2) circuit of size s′
no and bottom fan-in at most log s′

no

that ϵ2-approximates f ◦ ⊕ℓ. We shall hit C ′ with a blockwise random restriction, as before.
Here, we simultaneously require that C ′ ↾ ρ simplifies to a depth -(d+1) circuit with bounded
bottom fan-in, and that its truth table is (ϵ2 + 1/n)-close to (some fixed shift of) f .

For any x ∈ {0, 1}n and a blockwise restriction ρ, we denote by ⟨x, ρ⟩ the (n · ℓ)-tuple of
bits obtained by placing x in the star positions of ρ. Clearly, picking x and ρ uniformly at
random results in ⟨x, ρ⟩ being the uniform distribution on {0, 1}n·ℓ. By our assumption on
C ′, we have Expx,ρ [C ′(⟨x, ρ⟩) ̸= (f ◦ ⊕ℓ)(⟨x, ρ⟩)] ≤ ϵ2. By Markov’s Inequality,

Pr
ρ

[
Expx [C ′(⟨x, ρ⟩) ̸= (f ◦ ⊕ℓ)(⟨x, ρ⟩)] > ϵ2 + 1

n

]
<

ϵ2

ϵ2 + (1/n) .

Hence, with probability at least (ϵ2 · n + 1)−1, for a randomly chosen blockwise restriction ρ

Expx [C ′(⟨x, ρ⟩) ̸= (f ◦ ⊕ℓ)(⟨x, ρ⟩)] = Expx [C ′ ↾ρ (x) ̸= (f ◦ ⊕ℓ) ↾ρ (x)]

= Expx [C ′ ↾ρ (x) ̸= f(x⊕ bρ)] ≤ ϵ2 + 1
n

,

for bρ = b1 . . . bn ∈ {0, 1}n such that bi is the parity of assigned values in the ith block of ρ.
So, if C ′ ↾ρ fails to simplify with probability less than (ϵ2 ·n+1)−1, then we are guaranteed

there is some ρ such that C ′ ↾ρ (x) agrees with f(x ⊕ bρ), a shift of f , on all but at most
(ϵ2 + (1/n))-fraction of inputs x ∈ {0, 1}n, and is a depth -(d + 1) circuit with bounded
bottom fan-in.

By the Blockwise Switching Lemma (Lemma 10), the probability that C ′ ↾ ρ fails to

simplify to depth (d + 1) circuit with bottom fan-in at most k is at most s′
no

(
8 log s′

no

ℓ

)k

=
2log s′

no−k, which is less than (ϵ2 · n + 1)−1 if we choose k = log(2s′
no(1 + ϵ2n)).
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Thus, there must exist a blockwise restriction ρ such that C ′ ↾ρ is simplified and agrees
with f(x⊕ bρ) on all but at most (ϵ2 + (1/n)) fraction of inputs. We have that C ′ ↾ρ is of
size at most s′

no(1 + 2k) ≤ s′
no(1 + 2s′

no(1 + ϵ2n)) ≤ 3(s′
no)2(1 + ϵ2n) ≤ sno. Also, the bottom

fan-in is at most k ≤ log sno for our choice of k. Then the circuit C(x) = C ′ ↾ρ (x ⊕ bρ)
agrees with f(x) on all but at most (ϵ2 + (1/n)) fraction of inputs, and C has depth (d + 1),
size at most sno, and bottom fan-in at most log sno, as required.

YES → YES. Suppose f is ϵ1-approximated by a depth -(d + 1) circuit C with size syes

and bottom fan-in log syes. Let g be the Boolean function computed by C. Using the same
techniques as in the “YES→YES” case analysis in the proof of Theorem 19, we construct a
depth-(d + 1) circuit C ′ computing g ◦ ⊕ℓ, with size at most s′

yes and bottom fan-in at most
log s′

yes.
We will argue that C ′ computes f ◦ ⊕ℓ on all but at most ϵ1 fraction of inputs. Indeed,

since the parity of a uniformly random string of bits is a uniformly random bit, we get that

Pr
z∈{0,1}nℓ

[(f ◦ ⊕ℓ)(z) = (g ◦ ⊕ℓ)(z)] = Pr
x∈{0,1}n

[f(x) = g(x)],

which is at most ϵ1 by our assumption. This concludes the proof. ◀

4.3 Combining the steps: Tolerant depth d + 1 to d + 2
Using the above reductions, we can obtain a reduction from tolerant depth d + 1 gap-MCSP
to tolerant depth d + 2 gap-MCSP. Extending this to depth d + c can be done via repeatedly
composing this reduction with itself.

▶ Corollary 26. For any d ≥ 1, 0 ≤ ϵ1, ϵ2 < 1/2, syes, sno, s′
yes, s′

no where sno ≥ (2ϵn+1)s′
no

4

and s′
yes ≥ 2(syes)2 · 2

√
16 log(syes

2) log(s′
no

2)
√

16 log(syes
2) log(s′

no
2), we have

ÂC
0
d+1[ϵ1, ϵ2 + 2

n
]-GapMCSPn[syes, sno] ≤qpoly

m ÂC
0
d+2[ϵ1 + 1

n
, ϵ2]-GapMCSP32n log s′

no
[s′

yes, s′
no].

Proof. We obtain the desired reduction by composing the reductions from Theorems 23, 25,
and 24. Using ⟨ϵ1, ϵ2, syes, sno⟩d,n as a shorthand for ÂC

0
d[ϵ1, ϵ2]-GapMCSPn[syes, sno], the

reductions operate as follows:

⟨ϵ1, ϵ2 + 2
n

, syes,sno⟩d+1,n ≤poly
m ⟨ϵ1 + 1

n
, ϵ2 + 2

n
, (syes)2, sno⟩d+1/2,n Theorem 23

≤qpoly
m ⟨ϵ1 + 1

n
, ϵ2 + 1

n
, s′

yes, (s′
no)2⟩d+1+1/2,32n log s′

no
Theorem 25

≤poly
m ⟨ϵ1 + 1

n
, ϵ2, s′

yes, s′
no⟩d+2,32n log s′

no
Theorem 24 ◀

5 Barriers to More Efficient Natural Reductions

Our reductions are deterministic, many-one, and “simple” in the original size parameter.
However, they require quasi-polynomial time. Here, we give evidence that improving such
“nice” reductions to run in polynomial time for the exact MCSP is difficult: such reductions
would immediately give breakthrough circuit lower bounds or non-trivial MCSP algorithms,
and either outcome seems like dramatic progress.2 To begin, observe that every reduction
we present is qpoly-Natural in the following sense.

2 Similar arguments apply to the gap-versions of the problem that we study above, but we argue about
the exact version here to facilitate exposition.
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▶ Definition 27 (Natural Reductions between Parametric Problems). Let A and B be parametric
problems, that is, inputs are of the form: {⟨x, s⟩ : x ∈ {0, 1}n, s ∈ N}. We call a parametric
reduction R = ⟨RI , RP ⟩ where RI outputs instances and RP outputs parameters, t(·)-natural
if it is:

Parametric Many-one: ⟨x, s⟩ ∈ A ⇐⇒ ⟨RI(x, s), RP (x, s)⟩ ∈ B

Parameter-Value Uniform: RP (x, s) depends only on the size of the input and value
of the parameter; we will treat RP as a function from N× N in this case.
t(·)-Efficient: The combined runtime of RI and RP is bounded by t(|x|, s).

A natural reduction R from Λ-MCSP to Γ-MCSP is many-one, so a Λ-MCSP algorithm follows
by brute-force search through Γ-circuits, and Λ-to-Γ lifting follows by mapping a Λ-hard
function h through R. This gives the next two lemmas. Kabanets and Cai used the same
reasoning to prove that NP-hardness of MCSP under poly-time natural reductions would imply
breakthrough circuit lower bounds (Theorem 15 of [20]). Removing NP-hardness from the
picture, we instead obtain the following:

▶ Lemma 28 (Black-Box MCSP Algorithms from Natural MCSP-Redux). If there is a poly-Natural
Reduction from Λ-MCSP to Γ-MCSP, then there is a fixed constant k ∈ N such that Λ-MCSPn

∈ TIME[poly(nk)× Γ -count(RP (2n, s))]

Proof. Fix a reasonable encoding of Γ-circuits that admits efficient evaluation. Then write
Γ -count(s) for the total number of circuits so encoded that witness Γ-measure at most s. On
input (f, s) to Λ-MCSPn we first run (f, s) through the natural reduction R to obtain (f ′, s′).
Just as above, because R is poly-time, there is a fixed k such that t(n) = 2kn. This means
|f ′| ≤ 2kn, so we obtain an instance of Γ-MCSP with new size parameter s′ = RP (2n, s) on at
most kn input variables.

Then, because R is parametric many-one, a (yes, no)-instance of Λ-MCSPn becomes a
(yes, no)-instance of Γ-MCSPkn (respectively). So, we can solve the resulting instance of
Γ-MCSP by brute-force search over the set of all s′-measure-witnessing Γ-circuits, and answer
accordingly. We must evaluate a s′-size Γ-circuit on ≤ kn bits at most Γ -count(s′) times.
This takes poly(nk) · Γ -count(s′) time in total. ◀

Lifting begins with pre-existing lower bounds for Λ, which we formalize below. Many
concrete circuit lower bounds are far more explicit, but this weak notion will suffice for lifting
via natural and efficient inter-MCSP reductions.

▶ Definition 29 (Explicit Complexity Lower Bounds). Let H = {hn}n∈N be a sequence of
Boolean functions in E, and let sΛ : N→ N be a function in FP. We call the pair ⟨H, sΛ⟩ an
explicit Λ-complexity lower bound if ∀n Λ(hn) > sΛ(n).

▶ Lemma 30 (Black-Box Lifting from Natural MCSP-Redux). Let ⟨H, s⟩ be a Λ-complexity
lower bound. If there is a poly-Natural Reduction R from Λ-MCSP to Γ-MCSP, then there exists
a constant k and sequence of m-input Boolean functions H ′ such that ⟨H ′, RP (2m/k, s(m/k))⟩
is an explicit Γ-complexity lower bound.

Proof. Fix an explicit Λ-complexity lower bound ⟨H, s⟩ and poly-natural reduction R =
⟨RI , RP ⟩ from Λ-MCSP to Γ-MCSP. Now run the reduction: let H ′ be the sequence h′

n =
RI(hn, s(n)) and let s′(n) = RP (hn, s(n)). We know (hn, s(n)) ̸∈ Λ-MCSP by the hardness
assumption about H. Then, because R is parametric many-one, (h′

n, s′(n)) ̸∈ Γ-MCSP and
thus Γ(h′

n) > s′(n). To make this explicit, we bound the runtime of answering queries
according to h′ on inputs x of m bits. This amounts to re-indexing the sequence H ′ to ensure
that a Γ-hard function is defined everywhere and computable in E.



M. Carmosino, K. Hoover, R. Impagliazzo, V. Kabanets, and A. Kolokolova 44:17

First, because R is poly-time, there is a fixed k such that t(n) = 2kn. This means
|h′

n| ≤ 2kn, so we send each input length n through the reduction to a new input length
of at most kn. We evaluate h at m/k input bits and pad to fill in the gaps. Propagating
this padded sequence of functions through the parameter-map RP , we obtained the claimed
Γ-complexity lower bound. ◀

5.1 Efficient Natural Reductions Between AC0
d-, AC0

d+1-MCSP:
Win/Win

Notice how both applications of poly-Natural reductions depend quantitatively on RP , the
size parameter of the reduction. For lifting, we want RP (·) large enough to improve the
best known Γ-complexity lower bound by starting with a stronger lower bound for Λ. For
solving Λ-MCSP by brute-force on Γ-MCSP, we want RP (·) small enough such that searching
all relevant Γ-circuits is faster than trivial brute-force over all relevant Λ-circuits. This
observation suggests a case analysis of the function RP , to obtain either a non-trivial MCSP
algorithm or improved circuit lower bounds. For poly-Natural reductions from AC0

d-MCSP to
AC0

d+1-MCSP, such a win/win argument succeeds. Informally, we have the following:

▶ Theorem 31 (poly-Natural MCSP Reduction Win/Win). Suppose there is a poly-Natural
reduction from AC0

d-MCSP to AC0
d′ -MCSP, for d′ > d. Then, either:

There is a surprisingly fast algorithm for AC0
d-MCSP, or

There are breakthrough explicit circuit lower bounds against AC0
d′ [2Ω(n1/d)] for d < d′ !

We spend the remainder of this section formalizing and proving variations on the above.

5.2 Quantitative Consequences of a Hardness Hypothesis for MCSP
We first formulate an appropriate hypothesis about the hardness of MCSP.

▶ Definition 32 (Weak Exponential Time Hypothesis (WETH) for Λ-MCSP). There exists an
ϵ > 0 such that for all “nice” size functions s(n), Λ-MCSPn[s(n)] ̸∈ TIME[2s(n)ϵ ].

For the general MCSP (when Λ is the class of unrestricted Boolean circuits), it can be shown
that the WETH for MCSP is implied by the cryptographic conjecture that exponentially-strong
one-way functions exist (using the ideas of [28, 20, 2]). One can also show that if WETH
for general MCSP is false, then NEXP ̸⊂ P/poly (using the ideas of [19]). For every d ≥ 2,
the WETH for AC0

d-MCSP is also reasonable to assume, although we don’t seem to have any
strong evidence to support it yet (see [3] for some cryptographic hardness of AC0

d-MCSP for
large d).

Under this hypothesis, we establish barriers to giving poly-Natural reductions from
AC0

d-MCSP to AC0
d+c-MCSP. We begin by recalling the best-known AC0

d circuit lower bounds.

▶ Theorem 33 (Håstad [13]). Any depth (d + 1) alternating circuit computing ⊕n requires
2Ω(n

1/d) gates. Furthermore, this bound is clearly explicit as in Definition 29.

▶ Theorem 34. Suppose there is a poly-Natural reduction from AC0
d-MCSP to AC0

d′ -MCSP, for
d′ > d. Then, either:

The WETH for AC0
d-MCSP is false, or

There is an explicit circuit lower bound with s(n) = 2Ω(n1/(d−1)) against AC0
d′ .

Proof. Assume such a poly-Natural reduction R = ⟨RI , RP ⟩ exists, with run-time 2kn. We
reason by cases on bounds for RP .
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44:18 Lifting for Constant-Depth Circuits and Applications to MCSP

Suppose RP is small. That is, ∀ϵ.RP (2n, s(n)) < s(n)ϵ. Substituting into the black-box
MCSP algorithm above, we have that ∀ϵ.AC0

d-MCSPn ∈ TIME[poly(nk)×AC0
d′ - count(s(n)ϵ)] ∈

TIME[2s(n)2ϵ ], where the first inclusion is by Lemma 28, and second by counting AC0
d′ circuits.

This contradicts the MCSP-WETH for AC0
d.

Suppose RP is large. That is, ∃ϵ.RP (2n, s(n)) > s(n)ϵ. Lifting ⊕ through R we have that
there is an explicit sequence of Boolean functions H on m-bit inputs such that we have the
following explicit AC0

d′ -complexity bounds: RP (2m/k, s(m/k)) > s(m/k)ϵ > 2Ω(m1/(d−1)). Here,
the lower bound is by Lemma 30, the first inequality by size assumption about RP , and the
last by application of Håstad’s bound. ◀

When d′ > d, the lower-bound case above would be a breakthrough in circuit complexity.

▶ Corollary 35 (Breakthrough Circuit Lower Bounds for Alternating Constant-Depth). Suppose
the WETH for AC0

d-MCSP holds, for every d ≥ 2. Then, if ∀d > d0 we have a poly-Natural
reduction Rd from AC0

d-MCSP to AC0
(d+1)-MCSP, then there is a fixed constant α such that, for

each depth d > d0, there is a Boolean function fd ∈ E such that any depth-d alternating
circuit computing fd

n requires 2Ωd(nα) gates.

Proof. Fix any constant d > d0. We first compose Rd with itself sufficiently many times
to obtain a many-one reduction R′

d all the way from AC0
d0

-MCSP to AC0
d-MCSP. Observe that

R′
d remains poly-Natural, because all the polynomial resource bounds are closed under a

constant number of compositions – though the leading constant exponent of runtime for R′
d

certainly increases proportional to the gap between d and d0; this is precisely what is hidden
by Ωd in the bound. To conclude, we apply black box lifting (Lemma 30) to the composed
poly-Natural reduction R′

d, with Håstad’s lower bound for ⊕ at depth d0, getting α = 1/d0
in the theorem. ◀

Combining with a simulation of shallow formulas by constant-depth circuits, we get

▶ Lemma 36 (Folklore). Any sequence fn of Boolean functions on n inputs computable by
formulas of depth c log(n) is computable by depth-d alternating circuits of size 2d × 2n(c/d) .

▶ Theorem 37 (Breakthrough Circuit Lower Bounds for Formulas). Suppose the WETH for
AC0

d-MCSP holds, for every d ≥ 2. Then, if ∀d > d0 we have a poly-Natural reduction Rd from
AC0

d-MCSP to AC0
(d+1)-MCSP, for every fixed k there exists fk a sequence of Boolean functions

in E, such that fk does not have size-nk formulas.

Proof. Fix constant k, and let c ∈ N be the leading constant that results from re-balancing
an arbitrary nk-size formula to log-depth. Any function computed by such a formula will
have – for every d – AC0

d circuits of size ≈ 2nc/d by Lemma 36. Therefore, if we choose d

such that 1/d0 > c/d, the size bound that results from lifting ⊕ through iterated composition
of Rd exceeds the constant-depth simulation-size of any nk-size formula. The rest of this
argument is identical to the proof of Corollary 35 above. ◀

6 Open Questions

One obvious question is whether one can show the NP-completeness of AC0
d-MCSP for any

constant depth d ≥ 3 by proving that depth 3 circuit complexity is NP-hard to approximate
to within the factors needed by our lifting theorems? Note that while we have hardness of
approximation result for DNFs [23, 3], the (almost tight) approximation gap there is not
strong enough for our lifting theorems to apply. For depth-3 circuits, on the other hand,
there are no known hardness of approximation results.
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Another natural question is to tighten the gap (the approximation factor) of our lifting
theorems. Finally, can one provide more evidence supporting the Weak Exponential Time
Hypothesis for AC0

d-MCSP?
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Abstract
In this paper, we consider the problem of designing cut sparsifiers and sketches for directed graphs.
To bypass known lower bounds, we allow the sparsifier/sketch to depend on the balance of the
input graph, which smoothly interpolates between undirected and directed graphs. We give nearly
matching upper and lower bounds for both for-all (cf. Benczúr and Karger, STOC 1996) and for-each
(Andoni et al., ITCS 2016) cut sparsifiers/sketches as a function of cut balance, defined the maximum
ratio of the cut value in the two directions of a directed graph (Ene et al., STOC 2016). We also
show an interesting application of digraph sparsification via cut balance by using it to give a very
short proof of a celebrated maximum flow result of Karger and Levine (STOC 2002).
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1 Introduction

Graph sparsification, originally introduced by Benczúr and Karger as a means of obtaining
faster maximum flow algorithms [8], has become a fundamental tool in graph algorithms. The
goal of graph sparsification is to replace an arbitrary graph with a sparse graph (called the
graph sparsifier) on the same set of n vertices but with only O(n·poly(log n, 1/ϵ)) edges, while
approximately preserving the value of every cut up to a factor of 1 ± ϵ for any given ϵ > 0.
Since their work, several graph sparsification techniques have been discovered (e.g., [17]), the
idea has been extended to other models of computation such as data streaming (e.g., [1])
and sketching (e.g., [6]), stronger notions such as spectral sparsification that preserves all
quadratic forms have been proposed (e.g., [43]), and far-reaching generalizations such as
the Kadison-Singer conjecture have been established [37]. On the applications front, graph
sparsification has been heavily used to obtain a tradeoff between algorithmic accuracy and
efficiency for a variety of “cut-based” problems such as maximum flows, minimum cuts,
balanced separators, etc.

In spite of its widespread use, one restriction is that most sparsification techniques only
apply to undirected graphs. There is a fundamental reason for this restriction – there are
directed graphs that cannot be sparsified (see Fig. 1 for an example). Indeed, the lower
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45:2 Sparsification of Balanced Directed Graphs
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Figure 1 The graph is a complete bipartite graph where all edges go from the left vertices L to
the right vertices R. For any u ∈ L and v ∈ R, the only edge that leaves the set S = {u} ∪ (R \ {v})
is the edge (u, v). Consequently, if we want to preserve the value of all directed cuts in this graph,
we have to (approximately) store the weight of every edge.

bound holds even for cut sketches, where one does not insist on a graph being output as the
sparsifier, but simply a succinct data structure from which the cut values of the original
graph can be (approximately) retrieved.

A qualitative distinction between directed and undirected graphs is in terms of the balance
of cuts, i.e., the ratio between incoming and outgoing edges in any given cut. An equivalent
view of an undirected graph is by bi-directing its edges, which results in a graph with perfect
balance, i.e., every cut has exactly the same number of incoming and outgoing edges.1 Cut
balance, therefore, smoothly interpolates between undirected and directed graphs, which
leads to the question: can we design cut sparsifiers/sketches for directed graphs that depend
on cut balance? We answer this question in the affirmative in this paper, and show that this
view of sparsification leads to interesting consequences.

We note that the use of cut balance to bridge between undirected and directed graphs
predates our work. Ene et al. [15] introduced the notion of parameterizing digraphs by their
cut balance (or simply balance) and defined it as the largest ratio between the value of a cut
in its two directions. Using this view, they extended two classic operations on undirected
graphs – oblivious routing and fast approximate maximum flows – to directed graphs with a
dependence on the balance. In this paper, we show that this phenomenon is exhibited by cut
sparsification as well.

1.1 Our Results
We consider the two canonical forms of cut sparsification considered in the literature. The first
is the classic version introduced by Benczúr and Karger [8], where all cuts must simultaneously
be approximately preserved whp;2 we call this for-all sparsification. The second, more relaxed,
notion is due to Andoni et al. [6], where any cut must be approximately preserved whp
instead of all cuts simultaneously; we call this for-each sparsification. For both these notions
of sparsification, previous results on undirected graphs can be extended to β-balanced graphs
by boosting sampling probabilities in undirected sparsification algorithms by a factor of β,
thereby losing an additional factor of β in the size of the sparsifier/sketch (see also Ikeda
and Tanigawa [20]). Is it possible to do better than losing a factor of β?

1 Note that all Eulerian digraphs, whether or not derived from undirected graphs, exhibit perfect cut
balance.

2 with high probability
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Our first result sharpens this naïve bound in for-each sparsification, by constructing cut
sketches that improve the dependence on β to

√
β. We also show that this dependence

is tight by constructing a matching lower bound. This pair of results resolves the precise
dependence of for-each sparsification in directed graphs on the balance of the graph.

▶ Theorem 1 (Upper Bound). For any β-balanced graph with n vertices, m edges, and polyno-
mially-bounded edge weights, there is an Õ(m +

√
βn/ϵ)-time algorithm3 that constructs a

(1 ± ϵ) for-each cut sketch of size Õ(
√

βn/ϵ) bits.
(Lower Bound) Fix any β ≥ 1, 0 < ϵ < 1, and n such that (β/ϵ)1/2 ≤ n/2. Any (1 ± ϵ)
for-each cut sketching algorithm for β-balanced graphs with n vertices must output at least
Ω(

√
βn/

√
ϵ) bits in the worst case.

In for-all sparsification, we are not as lucky; we show that the linear dependence on
β is tight in this case. (In fact, Ikeda and Tanigawa [20] had conjectured that better
for-all sparsifiers can be constructed by sampling edges according to directed connectivity
parameters; our lower bound construction refutes this conjecture and shows that such more
aggressive sampling may not produce a sparsifier at all.)

▶ Theorem 2. Fix any β ≥ 1, 0 < ϵ < 1, and n such that β/ϵ ≤ n/2. Any (1 ± ϵ) for-all
cut sketching algorithm for n-node β-balanced graphs must output at least Ω(nβ/ϵ) bits.

But, we note that the upper bound only applies to digraphs where all cuts are β-balanced.
In general, the balance parameter for different cuts in a digraph may be highly non-uniform:
some cuts could be very balanced and some others very unbalanced. For such graphs, we
show a more refined result: for any value β ≥ 1, we construct a sparsfier that approximately
preserves all β-balanced cuts losing only an additional factor β in the size of the sparsifier.
Note that this result holds for any value of β irrespective of the balance parameter of the
graph; if β is the balance parameter, then it recovers the tight bound for β-balanced graphs.

▶ Theorem 3. For any directed graph with n vertices, m edges, and non-negative edge
weights, and any β ≥ 1, there is an Õ(m)-time algorithm that returns a (weighted) subgraph
with Õ(βn/ϵ2) edges and preserves the values of all β-balanced cuts up to a factor of 1 ± ϵ.

We remark that digraph sparsification using cut balance has interesting consequences.
In particular, note that for residual graphs produced by s-t maximum flow algorithms in
undirected graphs, we can precisely bound the balance parameter on all cuts separating the
source and the sink. Using this observation, we give a very short proof of the celebrated
maximum flow result of Karger and Levine [27] via the digraph sparsification results.

1.2 Our Techniques
First, we outline the main ideas in our for-each cut sketch. In previous results on for-each cut
sketches of undirected graphs [6, 21], the main idea was to (recursively) partition the graph
into “sparse” and “dense” parts, and then maintain the sparse parts exactly along with a
sample of the dense parts. A directed subgraph, however, can simultaneously be too dense
to preserve exactly but also not amenable to sampling (e.g., a complete bipartite digraph).
Of course, the balance parameter helps bridge this gap, but the cut balance of a subgraph
that the algorithm encounters during recursion can be much worse than that of the original

3 This runtime bound assumes that the value of β is known. If not, then β can be computed using an
algorithm of Ene et al. [15] in Õ(β2m) time.
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graph. Indeed, individual subgraphs might not even be strongly connected (i.e., have balance
∞), even if the original graph were Eulerian (i.e., has balance 1). This makes the (recursive)
local sketching techniques in previous works unusable for directed graphs.

Our main technical contribution is a new global cut sketch construction. We design a cut
sketch whose variance can be large on individual dense regions of the input digraph that are
well-connected in an undirected sense, but we crucially show that the cumulative variance
of our estimator across all these well-connected regions of the digraph is small. This helps
eliminate the need for local cut sketches in each dense subgraph, and simplifies the recovery
algorithm to the natural estimator that appropriately scales the number of sampled edges in
the queried cut. Moreover, to obtain the right dependence on β, we need to carefully analyze
the variance of our estimator. Our new variance analysis works for undirected graphs as
well, which tightens the analysis of [6] and consequently leads to undirected cut sketching
algorithms that do not require downsampling or low-accuracy for-all sparsifiers.

Next, we turn to for-all sparsification. Our first result is the lower bound on for-all
sparsifiers and cut sketches. For any β and n, we construct a family G of β-balanced graphs
on n vertices that satisfies two conflicting properties: G is a large family, yet for each graph
G ∈ G, the number of graphs in G that approximate all cuts of G is small. For any graph G

and cut S, let δG(S) denote the value of S and EG(S) denote the edges crossing S. Notice
that there are many possible graphs H such that δH(S) ≈ δG(S), because EH(S) and EG(S)
could differ in numerous ways. Thus, to ensure that the number of cut approximators is
small, we carefully design G such that for any G, H ∈ G and cut S, if δH(S) ≈ δG(S), then
EH(S) ≈ EG(S). We show that this can be done by considering a large family of bipartite
graphs that all contain a fixed (directed) matching. Consequently, any sketching algorithm
must produce a large number of different cut sketches for the graphs in G, which translates
to a lower bound on the size of the cut sketches using standard information theory.

Finally, we refine for-all sparsification in digraphs by showing that we can preserve all
balanced cuts, irrespective of the balance parameter of the entire graph G. More specifically,
at a cost of an additional factor of β in the size of the sparsifer, we can preserve all β-balanced
cuts, and provide an approximation for α-balanced cuts with α > β that degrades gracefully
as α gets larger. For this purpose, we adopt a (recursive) graph decomposition due to
Benczúr and Karger [8] that expresses a graph as a weighted sum of subgraphs, each of
which corresponds to a particular edge sampling rate. Now we can boost the (undirected)
sampling rate by a factor of β. If the balance of every subgraph in the decomposition is
also β, then the undirected analysis carries over to the directed case. However, in general,
each subgraph can be very unbalanced, so we cannot bound the estimation error in each
individual subgraph. Our main technical contribution is to show that even though we do not
preserve the cut values in individual subgraphs, we do so globally across all the subgraphs.

1.3 Related Work
Graph Sparsification. Graph sparsification was introduced by Benczúr and Karger [8]
(“for-all” cut sparsification), and has led to research in a number of directions: Fung et al. [17]
and Kapralov and Panigrahy [26] gave new algorithms for preserving cuts in a sparsifier;
Spielman and Teng [43] generalized to spectral sparsfiers that preserved all quadratic forms,
which led to further research both in reducing the size of the sparsifier [42, 7] and developing
faster algorithms (e.g., [34, 5, 35, 11, 33, 30, 32, 31]); faster algorithms for fundamental
graph problems such as maximum flow utilized sparsification results (e.g., [8, 40]); Ahn and
Guha [1] introduced sparsification in the streaming model, which has led to a large body
of work for both cut (e.g., [2, 3, 18]) and spectral sparsifiers (e.g., [25, 24, 23, 4]) in graph
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streams; both cut [29, 38] and spectral [41] sparsification have been studied in hypergraphs.
For lower bounds, Andoni et al. [6] showed that any data structure that (1± ϵ)-approximately
stores the sizes of all cuts in an undirected graph must use Ω(n/ϵ2) bits. Carlson et al. [10]
improved this lower bound to Ω(n log n/ϵ2) bits, matching existing upper bounds.

Andoni et al. [6] first proposed the notion of “for-each” cut (and spectral) sketches, where
the sparsifier preserves the value of any cut rather than all cuts simultaneously. They showed
that for any undirected graph with n vertices, a (1 ± ϵ) for-each cut sketch of size Õ(n/ϵ)
exists and can be computed in polynomial time. Subsequently, Jambulapati and Sidford [21]
gave the first nearly-linear time algorithm for constructing (1 ± ϵ) for-each graph sketches of
size Õ(n/ϵ). Their sketch not only approximates cut values, but also approximately preserves
the quadratic form of any undirected Laplacian matrix (and its pseudoinverse). Chu et
al. [11] showed how to construct a graph containing Õ(n1+o(1)/ϵ) edges that satisfies the
“for-each” requirement for spectral queries.

Directed Graphs. Cohen et al. [14, 13] proposed a directed notion of spectral sparsifiers
and used it to obtain nearly-linear time algorithms for solving directed Laplacian linear
systems and computing various properties of directed random walks. However, their directed
spectral sparsifiers only work for Eulerian graphs, i.e., for β = 1. Zhang et al. [44] proposed
a notion of spectral sparsification that works for all directed graphs, but their definition does
not preserve cut values. More generally, there have been attempts at bridging the divide
between directed and undirected graphs for other problems. For instance, Lin [36] defined
the imbalance of a graph as the sum of the absolute difference of in- and out-capacities
at all vertices, and used it to generalize the max-flow algorithm of Karger and Levine [27]
from undirected graphs to digraphs. Digraphs have also been parameterized by directed
extensions of treewidth [22], and similar notions of DAG-width [9, 39] and Kelly-width [19],
which led to FPT algorithms based on these parameters, much like for undirected bounded
treewidth graphs. In spectral graph theory, directed analogs of Cheeger’s inequality have
been defined [12], particularly in the context of analyzing the spectrum of digraphs. Closest
to our work is that of Ene et al. [15] who proposed cut balance of digraphs that we use in
this paper, although in the context of oblivious routing and max-flow algorithms.

2 Preliminaries

Basic Notations. Let G = (V, E, w) be a weighted directed graph with n = |V | vertices and
m = |E| edges. Every edge e ∈ E has a given non-negative weight we ≥ 0. When working
with unweighted graphs, (i.e., we = 1 for all e ∈ E), we will omit the edge weights we.

For two sets of vertices S ⊆ V and T ⊆ V , we use E(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T}
to denote the set of edges in E that go from S to T . We use w(S, T ) =

∑
e∈E(S,T ) we to

denote the total weight of the edges from S to T . For a vertex u ∈ V and a set of vertices
S ⊆ V , we write E(u, S) for E({u}, S), and we define E(S, u), w(u, S), and w(S, u) similarly.

We often write S as a shorthand for V \ S. Given a component Vi and a subset of its
vertices Si ⊆ Vi, we can similarly define Si = Vi \ Si. For example, using this notation, we
write w(S, S) for w(S, V \ S) and similarly w(Si, Si) = w(Si, Vi \ Si).

The conductance of an undirected graph G = (V, E, w) is defined as

ϕ(G) = min
∅ ̸=S⊂V

w(S, S)
min

(
w(S, V ), w(S, V )

) . (1)

▶ Definition 4 (β-Balanced). A strongly connected digraph G = (V, E, w) is β-balanced if,
for all ∅ ⊆ S ⊆ V , it holds that w(S, S) ≤ β · w(S, S).
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Directed Cut Sparsifiers and Cut Sketches. We consider two notions of sparsification.
The first is the classic “for-all” sparsifier that approximately preserves the values of all cuts.

▶ Definition 5 (For-All Cut Sparsifier). Let G = (V, EG, wG) and H = (V, EH , wH) be two
weighted directed graphs. Fix 0 < ϵ < 1. We say H is a (1 ± ϵ) for-all cut sparsifier of G iff
the following holds for all S ⊆ V :

(1 − ϵ) · wG(S, V \ S) ≤ wH(S, V \ S) ≤ (1 + ϵ) · wG(S, V \ S).

Instead of a graph that preserves cut values, if we allow any data structure from which
the cut values can be (approximately) recovered, we call it a cut sketch.

▶ Definition 6 (For-All Cut Sketch). Let G = (V, E, w) be a weighted directed graph. Fix
0 < ϵ < 1. A (deterministic) function g outputs a (1 ± ϵ) for-all cut sketch of G if there
exists a recovering function f such that, for all S ⊆ V :

(1 − ϵ) · w(S, V \ S) ≤ f(S, sk(G)) ≤ (1 + ϵ) · w(S, V \ S).

Next we consider a weaker notion of graph sparsification, where instead of approximating
the value of all cuts, we only require the value of any individual cut to be approximately
preserved with (high) constant probability.

▶ Definition 7 (For-Each Cut Sketch). Let G = (V, E, w) be a weighted directed graph. Fix
0 < ϵ < 1. A function g outputs a for-each (1 ± ϵ)-cut sketch of G if there exists a recovering
function f such that, for each S ⊆ V , with probability at least 2/3,

(1 − ϵ) · w(S, V \ S) ≤ f(S, g(G)) ≤ (1 + ϵ) · w(S, V \ S).

3 For-All Sparsification: Õ(n · β/ϵ2) Upper Bound

In this section, we extend the seminal work of Bencúr and Karger [8] to directed graphs
using cut balance. For undirected graphs, they showed that sampling every edge inversely
proportional to a quantity known as its strength (see Definition 11) preserves all cuts with
high probability. We show that, by boosting this sampling probability by a factor of β, this
procedure can preserve the value of β-balanced cuts in any directed graph.

We then show that this sampling theorem can be applied in a black-box manner to recover
the analysis of a celebrated maximum flow algorithm for undirected graphs given by Karger
and Levine [27]. At each step of the algorithm, they sample edges from the residual network
(which is directed) of an undirected graph. Using a customized version of the sparsification
result from Benczúr and Karger [8], they show that with high probability, the sample contains
an augmenting path. In contrast, our sampling procedure can be applied directly to the
residual network, which simplifies the analysis of the algorithm.

The following theorem is our main result of this section:

▶ Theorem 8. Let G = (V, E) be a directed graph where each edge e has weight ue ≥ 0, and
let ϵ, β be parameters. There is an Õ(m)-time algorithm that returns a weighted subgraph H

that satisfies the following with high probability: for every α-balanced cut U ,(
1 − ϵ

√
α + 1
β + 1

)
· δG(U) ≤ δH(U) ≤

(
1 + ϵ

√
α + 1
β + 1

)
· δG(U).

where δG(U) and δH(U) denote the cut value of U in G and H, respectively. Furthermore,
H contains O(βn log n/ϵ2) edges in expectation.
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Note that for the special case where the graph G is β-balanced, Theorem 3 is implied by
Theorem 8: all cut values are preserved. This is the main result of Ikeda and Tanigawa [20].

▶ Corollary 9 (Ikeda and Tanigawa [20]). Consider the same setting as Theorem 8. If G is
β-balanced, then with high probability, H approximates every cut of G up to a (1 ± ϵ) factor.

Before proving Theorem 8, we give an application of digraph sparsification to the maximum
flow problem. In particular, we prove the correctness of the Õ(m + nv)-time maximum
flow algorithm given by Karger and Levine [27], where v is the value of the maximum flow.
This algorithm is an adaptation of the classic augmenting paths algorithm of Ford and
Fulkerson [16], but with the following crucial observation. Let f denote the current flow
value in any iteration, and γ = (v − f)/v denote the fraction of remaining flow in the residual
network. Karger and Levine [27] show that, by boosting the undirected sampling procedure
of Benczúr and Karger [8] by a factor of 1/γ and applying it to the residual network, the
resulting sample contains an augmenting path with high probability. This saves on running
time since the search for an augmenting path can then be performed on the sampled graph
instead of the entire residual network. (See the full paper for more details.)

In contrast, we show that we can directly apply digraph sparsification to the residual
network, with β = 2/γ to obtain a short proof of the Karger-Levine theorem:

▶ Theorem 10 (Karger and Levine [27]). Suppose we apply the algorithm in Theorem 8 to
the residual network in a maximum flow computation, with ϵ = 0.1 and β = 2/γ, where
γ = (v − f)/v is the fraction of flow remaining in the residual network. Then with high
probability, there is an augmenting path in the sample.

Proof. We claim that every s-t cut S in the residual graph is β-balanced, where β = 2/γ.
Suppose S initially contains capacity c ≥ v, and currently, x units of flow are entering S.
Since the flow value is (1 − γ)v, the amount of flow leaving S is x + (1 − γ)v. At the same
time, the x units of flow entering S create a residual capacity of x leaving S. Thus, the total
residual capacity leaving S is c − x − (1 − γ)v + x = c − (1 − γ)v. We can similarly show
that the residual capacity entering S is c + x + (1 − γ)v − x = c + (1 − γ)v. Thus, in the
residual graph, the balance of S is at most c+(1−γ)v

c−(1−γ)v ≤ 2−γ
γ ≤ 2

γ .

Now by setting ϵ = 0.1 and β = 2/γ, Theorem 8 implies that the sparsifier H preserves
all (2/γ)-balanced cuts up to a (1 ± 0.1) factor with high probability. Since every s-t cut is
(2/γ)-balanced, this implies that there exists an augmenting path in H, as desired. ◀

In the rest of this section, we prove Theorem 8. Before we give our algorithm, we state
the definitions and results that we need from previous work.

▶ Definition 11 (Strength and strong components). The strength of an edge e, denoted by
ke, is the largest k such that there exists a k-edge-connected vertex-induced subgraph of G

containing e. A k-strong component is the subgraph induced by edges with strength at least k.

▶ Lemma 12 (Benczúr and Karger [8]). The strong components of an undirected graph form
a laminar family, and a graph on n vertices has at most n − 1 nontrivial strong components.

▶ Lemma 13 (Benczúr and Karger [8]). In any graph with edge weights ue and strengths ke,
we have

∑
e ue/ke ≤ n − 1. Furthermore, there exists an O(m log3 n)-time algorithm that

returns, for every edge e, an estimate k̃e of ke satisfying k̃e ≤ ke and
∑

e ue/k̃e = O(n).
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We now describe our algorithm (Algorithm 1). The input is a directed graph where each
edge e has weight ue. We first compute approximate edge strengths k̃e as given in Lemma 13.
Then we sample each edge e proportional to (β + 1)ue/k̃e, where β ≥ 1 is a chosen parameter.
We choose the weight of the sampled edges so that we get an unbiased estimator.

Algorithm 1 For-all sparsification for directed graphs.

Input : An n-vertex directed graph G = (V, E, u) with edge weights ue, 0 < ϵ < 1,
β ≥ 1, and a constant d > 2.

Output : A subgraph H that satisfies Theorem 8.
1 Use Lemma 13 to compute an estimated edge strength k̃e ≤ ke for every edge e ∈ E.
2 Let ρ = 3d(β + 1) log n/ϵ2.
3 for each edge e ∈ E do
4 Sample e with probability pe = ρ · ue/k̃e.
5 if e is sampled then add e to H with weight we = k̃e/ρ.
6 return H.

Now we analyze the output H of Algorithm 1. Without loss of generality, we assume
that the algorithm uses the actual edge strengths ke rather than the estimates k̃e. This is
because k̃e ≤ ke and it does not hurt to oversample in importance sampling.

For each strong component Gi of G (see Definition 11), let Hi denote the corresponding
component in H. Because the way we choose sampling probabilities and edge weights in H,
we have E [Hi] = Gi. Let αi = (ki − kp(i))/ρ where p(i) is Gi’s parent in the laminar family
formed by strong components (see Lemma 12). As shown by Benczúr and Karger [8], this
results in a decomposition of G into its strong components, that is, G =

∑
i αiGi.

For a component Gi and a cut U , let δGi
(U) be the total capacity of edges leaving U in

Gi, and let δun
Gi

(U) be the corresponding value for the undirected version of Gi. The following
lemma shows that for every strong component Gi, with high probability, δGi(U) is preserved
in H up to a relative error for every cut U .

▶ Lemma 14. Let H be the output of Algorithm 1. For each strong component Gi (defined
in Definition 11), the following holds with probability at least 1 − O(n−d+2): for any cut U ,
we have

∣∣δHi
(U) − δGi

(U)
∣∣ ≤ ζ(U) · δGi

(U) where ζ(U) = ϵ
√

δun
Gi

(U)/(δGi
(U)(β + 1)).

Proof. For any cut U , let δp(U) denote the sum of ue/ke over the (undirected) edges crossing
Uj in Gi. Order the r cuts intersecting Gi such that 1 = δp(U1) ≤ · · · ≤ δp(Ur), and let

qj = Pr
(∣∣δHi

(Uj) − δGi
(Uj)

∣∣ > ζ(U) · E
[
δHi

(Uj)
])

.

By a Chernoff bound, we have

qj ≤ 2 exp
(

− (ζ(U))2 · δGi
(Uj)

3

)
= 2 exp

(
−

ϵ2 · δun
Gi

(Uj)
3(β + 1)

)
, (2)

where the equality follows substituting the definition of ζ(U). Let E(i, j) denote the set of
edges crossing Uj in Gi. Since each edge e in Gi has weight pe, we have

δun
Gi

(Uj) =
∑

e∈E(i,j)

pe =
∑

e∈E(i,j)

3d(β + 1)ue

ϵ2ke
· log n,
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Substituting this into Eq. (2) shows

qj ≤ 2 exp

−d
∑

e∈E(i,j)

ue

ke
· log n

 = 2n−d·δp(Uj).

Since δp(Uj) ≥ 1, we have qj ≤ 2n−d, so∑
j≤n2

qj ≤ n2 · 2n−d = 2n−d+2 = O(n−d+2). (3)

For j ≥ n2, we express j as j = n2λ. The number of λ-minimum cuts is at most j (see, e.g.,
Karger and Stein [28]) and δp(U1) = 1, so δp(Uj) ≥ λ, so δp(Uj) ≥ log j

2 log n . This implies, for
j ≥ n2, qj ≤ 2n−(d log j)/(2 log n) = 2j−d/2. Combining this with Eq. (3), we can conclude∑

j≥1
qj ≤ O(n−d+2) + 2

∫ ∞

n2
j−d/2dj = O(n−d+2). ◀

Now we are ready to prove Theorem 8.

Proof of Theorem 8. By Lemma 13, the expected number of edges in H is
∑

e pe =
O(βn log n/ϵ2), as claimed. Now consider an α-balanced cut U . We have∣∣δH(U) − δG(U)

∣∣ =
∣∣∣∑

i

αiδHi
(U) − αiδGi

(U)
∣∣∣ ≤

∑
i

αi

∣∣δHi
(U) − δGi

(U)
∣∣ .

Taking a union bound over all strong components, we know that with high probability,
Lemma 14 holds for every strong component. Thus, the quantity above is at most∑

i

αiζ(U) · δGi(U) =
∑

i

αiϵ
√

δun
Gi

(U)δGi(U)/(β + 1)

≤ ϵ√
β + 1

√∑
i

αiδun
Gi

(U)
∑

i

αiδGi
(U) (Cauchy-Schwarz)

= ϵ√
β + 1

√
δun

G (U)δG(U). (
∑

i αiδGi
(U) = δG(U))

We conclude the proof by noting that δun
G (U) ≤ (α + 1) · δG(U), since U is α-balanced. ◀

4 For-All Sparsification: Ω(n · β/ϵ) Lower Bound

Our goal in this section to prove a lower bound whose dependence on β matches the linear
upper bound given by Ikeda and Tanigawa [20] on the size of for-all cut sketches:

▶ Theorem 15. Fix β ≥ 1 and 0 < ϵ < 1 where β/ϵ ≤ n/2. Any (1 ± ϵ) for-all cut sketching
algorithm for n-node β-balanced graphs must output Ω(n · β/ϵ) bits in the worst case.

We prove a special case of our lower bound for β = Θ(n) and ϵ = Θ(1) (Lemma 16).
The proof for this special case contains the main ideas of our lower-bound construction for
general values of β and ϵ. We defer the proof of Theorem 15 to the full paper.

▶ Lemma 16. Let β = 8n and let ϵ be a sufficiently small universal constant. Any (1 ± ϵ)
for-all cut sketching algorithm for n-node β-balanced graphs must output Ω(βn) bits in the
worst case.
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We give an overview of how we prove Lemma 16. We can w.l.o.g focus on deterministic cut
sketching algorithms, because running time is not a concern in Lemma 16, any randomized
sketching algorithm can be derandomized by enumerating all possible coin flips.

We will choose a set of graphs G such that the following conditions hold:
Every graph in G is β-balanced.
The size of G is large (Lemma 17).
There exists a ℓ with |G|/ℓ = 2Ω(βn) such that, for every graph G ∈ G, there are at most
ℓ graphs in G that can share a (1 ± ϵ)-cut sketch with G (Lemma 18).

This way, each cut sketch works for at most ℓ graphs in G, so any algorithm must produce
at least |G|/ℓ = 2Ω(βn) different cut sketches for all graphs in G, which implies that the
algorithm must output at least log2(|G|/ℓ) = Ω(βn) bits.

Formally, consider the set of graphs G2n with 2n vertices defined as follows: every graph
G ∈ G2n is an unweighted bipartite graph with bipartitions L, R satisfying |L| = |R| = n.
Fix a perfect matching from L to R. The set G2n is defined to contain all graphs G such
that the edges from L to R is exactly this perfect matching (and the set of edges from R to
L are arbitrary). Let G2n,β ⊆ G2n be the subset of graphs in G2n that are β-balanced.

As described above, Lemma 17 gives a lower bound on the size of G2n,β .

▶ Lemma 17. Let n0 be a sufficiently large universal constant. If n ≥ n0 and β = 8n, then
|G2n,β | ≥ 2n2/2.

The next lemma upper bounds the maximum number of graphs in G that can share an
(1 ± ϵ)-cut sketch. Notice that if G and H have the same (1 ± ϵ)-cut sketch, then H must be
a (1 ± 3ϵ)-cut sparsifier of G.

▶ Lemma 18. Let ϵ > 0 be a sufficiently small universal constant. For every G ∈ G2n, the
number of graphs in G2n that are (1 ± 3ϵ)-cut sparsifiers of G is at most 2n2/4.

We now prove Lemma 16 and defer the proofs of Lemmas 17 and 18 to the full paper.

Proof of Lemma 16. We work with graphs with 2n vertices (rather than n vertices) to make
the presentation easier. This is equivalent because we aim to prove a lower bound of Ω(βn).

Fix any (1 ± ϵ) for-all cut sketching algorithm. Consider running this algorithm on all
graphs in G2n,β . Every graph in G2n,β is β-balanced, so the algorithm must map every
G ∈ G2n,β to a bit string (i.e., cut sketch), and graphs that are not (1 ± 3ϵ)-cut sparsifiers
of each other must be mapped to different strings. By Lemma 17, there are at least 2n2/2

graphs in G2n,β , and by Lemma 18, at most 2n2/4 graphs can be mapped to the same bit
string. Therefore, the algorithm must output at least 2n2/2

2n2/4 = 2n2/4 distinct bit strings. This
implies that the algorithm must output at least n2

4 = 1
32 βn bits in the worst case. ◀

5 For-Each Cut Sketch: Õ(n ·
√

β/ϵ) Upper Bound

In this section, we give an upper bound on the size of cut sketches in the for-each setting.

▶ Theorem 19. Let G be an n-vertex β-balanced graph with edge weights in [1, poly(n)].
There exists a (1 ± ϵ) for-each cut sketch of size O(nβ1/2 log3 n/ϵ) bits that approximates the
value w(S, V \ S) of every directed cut S ⊆ V with high probability.

We will prove a lower bound of Ω(n · (β/ϵ)1/2) bits in Section 6.
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Overview of Our Approach. Our approach is inspired by the cut sketching algorithm for
undirected graphs by Andoni et al. [6]. We first partition the edges into ℓ = O(log n) disjoint
sets (Ei)ℓ

i=1 based on their weights. Edges in Gi = (V, Ei, w) have roughly the same weight
and we can essentially treat Gi as an unweighted graph. For each graph Gi, we ignore edge
directions, and iteratively remove and store edges belonging to sparse cuts.

Note that Gi may not be balanced. Even when Gi is balanced, the dense components of
Gi may not be balanced. Despite this, we show that we can estimate the dense components’
contribution to the cut value via random sampling. This is because we can bound the
variance within each component, and in the end, upper bound their sum (i.e., the overall
variance) using the β-balance condition.

One of our main technical contributions is to derive a tighter upper bound on the variance
of random sampling. If we trace our analysis back to the undirected case, we remove some
redundant terms in the analysis of [6]. This tighter variance bound is critical, because we
cannot obtain the right space dependence on β without it (see the full paper). In addition, our
new analysis can be traced back to the undirected case, which will simplify the algorithm of [6].
We can obtain a for-each sketching algorithms for undirected graphs without downsampling
or low-accuracy for-all sparsifiers, and the output is a graph.

5.1 Sketching and Recovery Algorithms
Let G = (V, E, w) be an n-node β-balanced directed graph with edge weights we ∈ [1, poly(n)].
It is worth noting that, when constructing the cut sketch, we do not know the cut query
S ⊆ V . The cut query S is only given as input to the recovery algorithm.

The Sketching Algorithm. We describe our overall cut sketching algorithm (Algorithm 2).
We partition the edges into O(log n) weight classes. For each weight class, we iteratively
store and remove all edges that belong to some λ-sparse cut (defined in Equation 4). When
there are no λ-sparse cuts remain, we sample α incoming and outgoing edges at each vertex
among the remaining edges. The values of λ and α will be specified later in our analysis.

For a directed graph G = (V, E, w), we say a cut (S, S) is λ-sparse if the following holds:

|E(S, S)| + |E(S, S)| ≤ λ · min
(
|S|, |S|

)
. (4)

The Recovery Algorithm. Algorithm 3 is our recovery algorithm that queries the cut
sketch sk(G) (i.e., the output of Algorithm 2). We first establish some notation. Recall
that Algorithm 2 decomposes G into (Gi)ℓ

i=1 according to the edge weights. Let Vi = (Vij)j

denote the set of dense components in Gi after we iteratively remove the sparse cuts in Gi.
Algorithm 3 approximates w(S, S) by adding the total contribution of the sparse-cut

edges and the dense-component edges. Let JS denote the total weight of sparse-cut edges
that go from S to S in all of the graphs Gi (which we store deterministically). Let IS be the
estimator for the total weight of dense-component edges leaving S in all Gi as defined in
Algorithm 3. Algorithm 3 returns IS + JS as the final answer.

Correctness and Size Guarantees. We state the correctness of our recovery algorithm
(Algorithm 3) in Lemma 20 and the output size of our sketching algorithm (Algorithm 2) in
Lemma 21. Theorem 19 follows immediately from Lemmas 20 and 21; we prove the latter
before proving the former.

▶ Lemma 20 (Correctness of Algorithm 3). Let sk(G) be the output of Algorithm 2. Fix a
cut query S ⊆ V . With probability at least 2/3, the value (IS + JS) returned by Algorithm 3
on input (S, sk(G)) satisfies

∣∣∣(IS + JS) − w(S, S)
∣∣∣ ≤ O(ϵ) · w(S, S).
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Algorithm 2 Compute a (1 ± O(ϵ)) for-each cut sketch.

Input : An n-vertex β-balanced graph G = (V, E, w) with edge weights
we ∈ [1, poly(n)], and 0 < ϵ < 1.

Output : A (1 ± O(ϵ)) for-each cut sketch sk(G) of size Õ(nβ1/2/ϵ).
1 Set α = λ = β1/2/ϵ.
2 Partition the edges into ℓ = O(log n) weight classes E1, . . . , Eℓ where

Ei = {e : we ∈ [2i−1, 2i)}.
3 Each weight class Ei defines a (possibly unbalanced) graph Gi = (V, Ei, w).
4 for i = 1 to ℓ do
5 while there exists a λ-sparse cut (defined in Equation (4)) in Gi do
6 Remove all edges (in both directions) in this cut and store them in sk(Gi).
7 In sk(Gi), store the (dense) components {Vij}j of Gi.
8 For every Vij and every u ∈ Vij , store the number of (remaining) incoming and

outgoing edges at u in Gi, i.e., din
ij(u) = |Ei(Vij , u)| and dout

ij (u) = |Ei(u, Vij)|.
9 At each vertex u ∈ V , sample with replacement α edges from the (remaining)

outgoing edges (u, v) and store them in sk(Gi). Do the same for incoming edges.
10 return sk(G) =

⋃
i sk(Gi).

Algorithm 3 Query the cut value w(S, S) from sk(G).

Input : A cut query S ⊆ V and a cut sketch sk(G) (output of Algorithm 2).
1 for each sk(Gi) in sk(G) do
2 for each dense component Vij in Gi do
3 Let Sij denote the smaller set of (Vij ∩ S) and (Vij ∩ S).
4 if Sij = Vij ∩ S then
5 Estimate the total weight of edges leaving Sij : For every u ∈ Sij , set

ISij (u) =
dout

ij (u)
α

α∑
q=1

χij(u, q)wij(u, q) (5)

where dout
ij (u) is the out-degree of u in Vij , χij(u, q) = 1 if the q-th

sampled outgoing edge at u crosses S and χij(u, q) = 0 otherwise, and
wij(u, q) is the weight of the q-th sampled edge.

6 else
7 Estimate the total weight of edges entering Sij = Vij ∩ S instead:
8 For every u ∈ Sij , set ISij

(u) as in (5), using din
ij(u) instead of dout

ij (u), and
χij(u, q) indicates if the q-th sampled incoming edge at u crosses S.

9 The estimated contribution from Vij is IVij
=
∑

u∈Sij
ISij

(u).

10 The estimated contribution from Gi is IGi
=
∑

Vij∈Gi
IVij

.

11 Compute IS =
∑

i IGi , the estimate of the cut value from all dense-component edges.
12 Compute JS , the total weight of λ-sparse cut edges that leaves S in all Gi’s.
13 return IS + JS.
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▶ Lemma 21 (Output Size of Algorithm 2). The output sk(G) of Algorithm 2 has size
Õ(n(λ + α)) = Õ(nβ1/2/ϵ).

Proof. Without loss of generality, we assume ϵ = Ω(1/n), otherwise we can store all edges
exactly using Õ(n/ϵ) bits. Algorithm 2 produces ℓ = O(log n) weight classes; each weight
class defines a graph Gi. In every Gi:

First we iteratively store and remove edges in λ-sparse cuts. We can upper bound the
total number of edge removed using the following charging argument: When a λ-sparse
cut is removed, we charge the cut size evenly to the vertices on the smaller side of the cut.
Since the cut is λ-sparse, every vertex on the smaller side gets charged at most λ edges.
Each vertex can be charged at most O(log n) times because it can be in the smaller side
O(log n) times. Therefore, sk(G) stores at most O(λn log n) sparse edges, which takes
O(λn log2 n) bits.
On the remaining graph, the connected components are disjoint, so we can also store the
partition of vertices into these dense components in O(n log n) bits.
We can store the (remaining) in- and out-degree of every vertex in O(n log n) bits.
We sample O(α) edges at each vertex in V , which requires O(αn log n) bits.

Thus, for every Gi we store O(λn log2 n + n log n + αn log n) = O(n(λ + α) log2 n) bits. Since
α = λ = β1/2/ϵ, the size of sk(Gi) is O(nβ1/2 log2 n/ϵ). The size of sk(G) =

⋃
i sk(Gi) is

O(log n) · O(nβ1/2 log2 n/ϵ) = O(nβ1/2 log3 n/ϵ). ◀

Now we prove Lemma 20 (the correctness of Algorithm 3). Note that it follows immediately
from the following lemma and Chebyshev’s inequality.

▶ Lemma 22. The estimator returned in Algorithm 3 is unbiased, i.e., E [IS ] + JS = w(S, S).
Moreover, the variance of IS is Var [IS ] ≤ O(β/αλ)w(S, S)2.

Proof of Lemma 20. Algorithm 2 sets α = λ = β1/2ϵ−1, so Lemma 22 implies Var [IS ] ≤
O(ϵ2) · w(S, S)2. By Chebyshev’s inequality, with probability at least 2/3,∣∣∣(IS + JS) − w(S, S)

∣∣∣ ≤ O(ϵ) · w(S, S). ◀

To prove Theorem 19, all that remains is to prove Lemma 22.

Proof of Lemma 22. Recall that our estimator is

IS =
∑
Gi

∑
Vij

∑
u∈Sij

ISij
(u),

where i sums over the graphs Gi defined according to the edge weights, j sums over the dense
components in each Gi after all sparse cuts are removed, and u sums over the vertices of
Sij . Without loss of generality, we can assume |Vij ∩ S| ≤ |Vij ∩ S| and hence Sij = Vij ∩ S.
Otherwise, Algorithm 3 works with Vij ∩S and queries for the incoming edges instead. Under
this assumption, we always work with outgoing edges:

ISij
(u) =

dout
ij (u)

α

α∑
q=1

χij(u, q)wij(u, q).

Every edge e ∈ E(S, S) belongs to exactly one Gi, and in that Gi it is either a sparse-cut
edge, or a dense-component edge in exactly one Vij . Consequently, to prove IS + JS is
unbiased, it suffices to prove that ISij

(u) is unbiased. In the dense component Vij of Gi, the
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total contribution of edges leaving u to w(S, S) is
∑dout

ij (u)
r=1 χ(u, r) · w(u, r), where r indexes

the edges leaving u, w(u, r) is the weight of the r-th edge leaving u, and χ(u, r) indicates if
this edge goes from S to S. Let e(u, r) denote the r-th edge leaving u and eij(u, q) denote
the q-th sampled edge leaving u within Vij . Summing over the α sampled edges, we have

E
[
ISij

(u)
]

=
dout

ij (u)
α

·
α∑

q=1
E
[
χij(u, q) · wij(u, q)

]

=
dout

ij (u)
α

·
α∑

q=1

dout
ij (u)∑
r=1

Pr[eij(u, q) = e(u, r)] · χ(u, r) · w(u, r)

=
dout

ij (u)∑
r=1

χ(u, r) · w(u, r),

where the last equality holds because each sample has the same variance, and the q-th sample
is drawn uniformly among all outgoing edges at u, i.e., Pr[eij(u, q) = e(u, r)] = 1

dout
ij

(u) . The
expectation of ISij

(u) is exactly the contribution of edges leaving u to w(S, S), so ISij
(u) is

unbiased.

For the rest of the proof, we upper bound the variance of IS . We assume without loss of
generality that JS = 0, i.e., no sparse edges were ever stored and removed by Algorithm 2.
This is because we are trying to prove the statement

Var [IS ] ≤ O

(
β

αλ

)
w(S, S)2 = O

(
β

αλ

)
· (E [IS ] + JS)2,

so setting JS = 0 only makes the right-hand side smaller and hence, the proof more difficult.

We introduce some notation: recall that (Vij)j is the set of dense components of Gi

and Sij = Vij ∩ S. We use Xij = |Ei(Sij , Sij)| to denote the number of edges from Sij to
Vij ∩ S in Gi, and Xij = |Ei(Sij , Sij)| the number of edges in the reverse direction. Let
Xi =

∑
j Xij and Xi =

∑
j Xij , so that Xi is the total number of dense-component edges

that go from S to S in Gi.

Since there are no λ-sparse cuts (defined in (4)) at the end of Algorithm 2, we have
Xij + Xij > λ min(|Sij |, |Sij |). Since we assume |Sij | ≤ |Sij |, this condition implies the
following for every dense component Vij , λ

∣∣Sij

∣∣ ≤ Xij + Xij .

Fix any u ∈ Sij . We first upper bound Var
[
ISij (u)

]
and then work our way up the

definition of IS . Since χij(u, q) is a Bernoulli random variable with mean
∣∣∣Ei(u, Sij)

∣∣∣ /dout
ij (u),

its variance is

Var
[
χij(u, q)

]
=

∣∣∣Ei(u, Sij)
∣∣∣

dout
ij (u) ·

∣∣Ei(u, Sij)
∣∣

dout
ij (u) .

Now from the definition of ISij
(u), we have
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Var
[
ISij

(u)
]

=
dout

ij (u)2

α2

α∑
q=1

Var
[
χij(u, q)

]
wij(u, q)2

≤
dout

ij (u)2

α2 · α ·

∣∣∣Ei(u, Sij)
∣∣∣

dout
ij (u) ·

∣∣Ei(u, Sij)
∣∣

dout
ij (u) · 22i (we ≤ 2i for all e ∈ Ei)

= 22i

α

∣∣∣Ei(u, Sij)
∣∣∣ ·
∣∣Ei(u, Sij)

∣∣
≤ 22i

α

∣∣∣Ei(u, Sij)
∣∣∣ ·
∣∣Sij

∣∣ . (
∣∣Ei(u, Sij)

∣∣ ≤ |Sij |)

In Algorithm 3, we set IVij
=
∑

u∈Sij
ISij

(u), so

Var
[
IVij

]
=
∑

u∈Sij

Var
[
ISij (u)

]
≤
∑

u∈Sij

22i

α

∣∣Sij

∣∣ ·
∣∣∣Ei(u, Sij)

∣∣∣
= 22i

α
·
∣∣Sij

∣∣ · Xij (Xij =
∣∣∣Ei(Sij , Sij)

∣∣∣)
≤ 22i

αλ

(
Xij + Xij

)
Xij . ((Sij , Sij) is not λ-sparse)

Summing across every dense component Vij in Gi, we get

Var [IGi
] =

∑
j

Var
[
IVij

]
≤ 22i

αλ

∑
j

(
Xij + Xij

)
Xij

≤ 22i

αλ

(
Xi + Xi

)
Xi. (Xi =

∑
j Xij and Xi =

∑
j Xij)

Finally, we sum across the weight classes indexed by i to obtain

Var [IS ] =
∑

i

Var [IGi
]

≤ 1
αλ

∑
i

(
2i
)2 (

Xi + Xi

)
Xi

= 1
αλ

∑
i

(
2iXi

)2
+
∑

i

2iXi ·
∑

i

2iXi


≤ 4

αλ

[
w(S, S)2 + w(S, S) · w(S, S)

]
(we ≥ 2i−1 for all e ∈ Ei)

≤ 4
αλ

[
w(S, S)2 + βw(S, S)2

]
(w(S, S) ≤ βw(S, S))

= O

(
β

αλ

)
w(S, S)2. ◀

5.2 For-Each Cut Sketch: Faster Algorithms
We can speed up the algorithms in the previous section and prove the following theorem.

▶ Theorem 23. Consider the same setting as in Theorem 19. That is, a (1 ± ϵ) for-each
cut sketch of size O(β1/2n log5 n/ϵ) bits exists for any n-vertex β-balanced graph G. Now in
addition, we can compute such a cut sketch in time Õ(m + β1/2n/ϵ).
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For undirected graphs, Jambulapati and Sidford [21] showed how to construct for-each
cut sketches in nearly-linear time. Instead of trying to repeatedly find sparse cuts, they
showed how to sketch expander graphs (graphs with high conductance) and then decompose
the input graph using expander partitioning algorithms.

Intuitively, we should be able to speed up our algorithm using a similar approach, because
when we partition the graph by removing sparse cuts, we do not look at the direction of the
edges. However, the analysis in [21] does not apply to our setting because they focus on
sketching quadratic forms. The quadratic form of a directed Laplacian ignores edge directions
and hence does not preserve the directed cut values. On a more technical level, their analysis
relies heavily on the notion of conductance, which is not canonically defined for directed
graphs. In our setting, we cannot bound the variance of our estimator even if we have a
directed graph whose undirected version is an expander (see the full paper for more details).

Because our main focus in this paper is to derive cut sketches with optimal size (especially
with a tight dependence on β) rather than to obtain best runtime of computing such cut
sketches, we defer the proof of Theorem 23 to the full paper.

6 For-Each Cut Sketch: Ω(n ·
√

β/ϵ) Lower Bound

In this section, we prove that the size of for-each cut sketches must scale with
√

β.

▶ Theorem 24. Fix β ≥ 1 and 0 < ϵ < 1 with
(
β/ϵ
)1/2 ≤ n

2 . A (1± ϵ) for-each cut sketching
algorithm for n-node β-balanced graphs must output Ω(n · (β/ϵ)1/2) bits in the worst case.

To prove this, we will need the following folklore result from communication complexity:

▶ Lemma 25. Given a bit string s ∈ {0, 1}N , if there is a data structure D that allows one
to recover each bit of s with marginal probability at least 2/3, then D must use Ω(N) bits.

We first prove a special case of our lower bound for specific values of β = Θ(n2) and
ϵ = Θ(1) (Lemma 26). The proof for this special case is easier to explain and it contains the
key ingredients of our construction for the general lower bound.

▶ Lemma 26. For β = n2 and ϵ = 1
10 , any (1 ± ϵ) for-each cut sketching algorithm for

n-node β-balanced graphs must output Ω(n · β1/2) bits in the worst case.

Proof. At a high level, we will encode a bit string s of length Ω(n2) into an n-node β-
balanced graph, such that given a (1 ± ϵ) for-each cut sketch, we can recover each bit
of s with high constant probability. Then by Lemma 25, the cut sketch must have use
Ω(|s|) = Ω(n2) = Ω(nβ1/2) bits.

Given a bit string s of length n2

4 , we construct a graph as follows. We start with an
n
2 × n

2 complete bipartite digraph where edges go from left to right. We set the weight of the
i-th bipartite edge to si + 1 (so either 1 or 2). We add a unit-weight cycle that leaves each
side exactly once. See Fig. 2 for an example of our construction.

We first show that the graph is β-balanced for β = n2. The graph is strongly connected
because it contains a cycle. Note that all edge weights are in [1, 2] and there are in total
n2

4 + n ≤ n2

2 edges in the graph. Therefore, for every non-empty set S ⊂ V , the total weight
of edges leaving (or entering) S is at least 1 and at most n2, so the graph is (n2)-balanced.

It remains to show that we can recover each bit of s from a (1 ± ϵ) cut sketch. Let L

denote the left vertices and R the right vertices. Fix any coordinate of s and suppose it
corresponds to the edge (u, v) for some u ∈ L and v ∈ R. To recover this bit of s, we need
to decide whether w(u, v) is 1 or 2. Consider the cut value leaving S = {u} ∪ R \ {v}. The
cycle contributes a fixed amount to this cut (independent of the weights of the bipartite
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1

𝑢

𝑣

𝑆

Figure 2 In this example, the cut value w(S, S) is 2 or 3, depending on the value of w(u, v).
Thus, a (1 ± 0.1)-approximation to w(S, S) allows us to decode the bit in s corresponding to edge
(u, v). (For readability we omit other bipartite edges from L to R.)

edges), which is at most 3. More importantly, (u, v) is the only bipartite edge leaving S.
Since ϵ = 1

10 and the sketch returns this cut value within a factor of (1 ± ϵ) with probability
at least 2/3, we can recover w(u, v) with probability at least 2/3. ◀

Our lower bound construction for general values of β and ϵ builds on the one in the proof
of Lemma 26. At a high level, instead of using a bipartite graph with two clusters, we will
use multiple clusters where the size of each cluster depends on β and ϵ.

Proof of Theorem 24. Let k =
√

β/ϵ. We will encode a bit string s of length Ω(nk) into
an n-node graph G such that (1) G is (3β)-balanced, and (2) we can recover each bit of s

with high constant probability given a (1 ± c · ϵ) for-each cut sketch of G where c = 10−2.
By Lemma 25, the cut sketch must have at least Ω(nk) = Ω(n · (β/ϵ)1/2) bits.

Without loss of generality, we assume k is an integer and n is a multiple of k. We partition
n vertices into t = n/k clusters of size k, which we denote by V1, . . . , Vt. Since we assume
n ≥ 2k, there are at least two clusters.

Let s be a bit string of length k2(t − 1) = Ω(nk). We partition s into (t − 1) blocks where
each block has length k2. We encode the i-th block of s in a k × k complete bipartite digraph
where edges go from Vi to Vi+1. As in the proof of Lemma 26, a bipartite edge (u, v) for
u ∈ Vi and v ∈ Vi+1 has weight si,(u,v) + 1 (so either 1 or 2). For every 1 ≤ i ≤ t − 1, we add
a cycle between Vi and Vi+1 that leaves Vi and Vi+1 exactly once. Now, in contrast to the
previous construction, these cycle edges have weight 1/ϵ.

We first show that G is (3β)-balanced. Fix any non-empty set S ⊂ V . Let Gi denote
the subgraph between Vi and Vi+1 which contains k2 bipartite edges and one cycle. Let
wi(S, S) denote the total weight of edges leaving S in Gi. We will show that wi(S, S) and
wi(S, S) are within a factor of 3β of each other. Because G is strongly connected and
w(S, S) =

∑t−1
i=1 wi(S, S), we can conclude that G is (3β)-balanced.

Without loss of generality, we assume both wi(S, S) and wi(S, S) are positive. The cut
value wi(S, S) remains the same if we restrict Gi on vertices (Vi ∪ Vi+1) and consider the
cut query S ∩ (Vi ∪ Vi+1). The cycle contributes equally in both directions, so without loss
of generality, we can assume the cycle has minimum contribution, which is 1

ϵ . (If the cycle
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contributes more, the cut is more balanced.) The total weight of the bipartite edges is at
most 2k2 = 2β

ϵ . Therefore, the ratio between the cut values in both directions is at most
(2β/ϵ)+(1/ϵ)

1/ϵ = 2β + 1 ≤ 3β.
It remains to show that we can recover every bit of s from a cut sketch. Fix any bit of

s. Suppose this bit si,(u,v) corresponds to the edge (u, v) for some u ∈ Vi and v ∈ Vi+1, we
query the cut value leaving S(u,v) = {u} ∪

(
Vi+1 \ {v}

)⋃t−1
j=i+2 Vj . The only bipartite edge

leaving S(u,v) is the edge (u, v), which has weight either 1 or 2. There are at most 5 cycle
edges leaving S(u,v) (at most 1 from Gi−1, 3 from Gi, and 1 from Gi+1), whose total weight
is fixed and at most 5

ϵ . Therefore, if we can compute an (1 ± c · ϵ) approximation to the cut
value for c = 10−2, we can recover the corresponding bit of s. ◀

7 Conclusion

In this paper, we considered the question of sparsifying directed graphs. We focused on graphs
that are β-balanced, where the ratio between the cut value in two directions is at most β. We
gave upper and lower bounds on the size of the cut sketch with almost tight dependence on
β, under both the standard “for-all” notion (i.e., simultaneously preserving the value of all
cuts) and the “for-each” notion (introduced by Andoni et. al [6]) of cut sparsification. More
specifically, we showed that under the “for-all” notion, the linear dependence on β obtained
by Ikeda and Tanigawa [20] is tight. For the “for-each” notion, we gave a data structure
that preserves cut values whose size scales as

√
β, thereby beating the “for-all” lower bound.

We also showed that this dependence on
√

β is tight. Our lower bounds hold not only for
sparsifiers (i.e., graph encodings), but also for arbitrary data structures.

An interesting direction for future work is to consider the spectral sparsification of directed
graphs. Cohen et al. [14, 13] (see also Chu et al. [11]) introduced a novel definition of directed
sparsification and leveraged it to solve directed Laplacian linear systems. However, their work
is not immediately relevant to ours because their directed spectral sparsifiers do not necessarily
preserve directed cut values. This motivates the following natural question: is there a notion
of spectral sparsification that generalizes cut sparsification in directed graphs? (Note that this
is indeed the case for undirected graphs, where spectral sparsifiers also preserve cut values.)
A natural candidate would be a sparse graph that preserves

∑
(u,v)∈E

(
(xu − xv)+)2 for all

real vectors x, where y+ = max(0, y). Note that if x ∈ {0, 1}|V |, then this sum represents
directed cut values, which is analogous to the correspondence between cut and spectral
sparsification in undirected graphs. It would be interesting to explore if preserving this sum
in directed graphs has interesting applications beyond preserving cuts, and if so, whether
there exist sparse graphs that preserve this sum approximately for balanced directed graphs.
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Abstract
In this work, we initiate the study of fault tolerant Max-Cut, where given an edge-weighted undirected
graph G = (V, E), the goal is to find a cut S ⊆ V that maximizes the total weight of edges that
cross S even after an adversary removes k vertices from G. We consider two types of adversaries: an
adaptive adversary that sees the outcome of the random coin tosses used by the algorithm, and an
oblivious adversary that does not. For any constant number of failures k we present an approximation
of (0.878−ϵ) against an adaptive adversary and of αGW ≈ 0.8786 against an oblivious adversary (here
αGW is the approximation achieved by the random hyperplane algorithm of [Goemans-Williamson
J. ACM ‘95]). Additionally, we present a hardness of approximation of αGW against both types of
adversaries, rendering our results (virtually) tight.

The non-linear nature of the fault tolerant objective makes the design and analysis of algorithms
harder when compared to the classic Max-Cut. Hence, we employ approaches ranging from multi-
objective optimization to LP duality and the ellipsoid algorithm to obtain our results.
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1 Introduction

In this work, we initiate the study of fault tolerant Max-Cut. In the classic Max-Cut problem,
we are given an undirected graph G = (V, E) equipped with non-negative edge weights
w : E → R+. The goal is to find a cut S ⊆ V that maximizes the total weight of edges that
cross S. Max-Cut is one of Karp’s 21 NP-complete problems [37] and has been for close
to three decades a case study for the introduction of new approaches both in the theory of
algorithms and the complexity theory. Perhaps the two most prominent examples of the
above are: (1) the random hyperplane rounding method of Goemans and Williamson for
semi-definite programs [29], which yields an approximation of αGW ≈ 0.8786 for Max-Cut;
and (2) the Unique Games Conjecture of Khot [38]. The former has opened an entirely new
area in the field of approximation algorithms with applications to a wide range of problems,
e.g., Max-DiCut [26,42,44], Max-Bisection [5,53], Max-Agreement [20,56], Max-2SAT [26,42],
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Max-SAT [4,7], and Cut Norm [2], to name a few. The latter has been a dominant method
for proving hardness of approximation results in the last two decades, e.g., the celebrated
tight hardness for Max-Cut [39,45], and Vertex Cover [40].

Motivated by large scale real life systems, fault tolerant algorithms seek to find a solution
to a given optimization problem that is resilient to failures of some parts of the input. The
above can be intuitively formulated as a two step process: (1) the algorithm finds a solution
to the problem at hand; and (2) an adversary removes parts of the input. The goal of the
algorithm is that no matter which part of the input the adversary removes, the remaining
solution after removal still retains some desired properties despite the removal. Typically,
the focus of fault tolerance has been network design problems, e.g., BFS [33, 48, 50–52]
and spanners [15–17,25,41,47,55]. Additional related algorithmic problems for which fault
tolerant algorithms were studied include, e.g., single source reachability [9, 10], connected
dominating set [18,59], and facility location [23,32,36,57].

In this work, we initiate the study of fault tolerant Max-Cut, where the adversary can
remove vertices from the graph (all edges touching the removed vertices are also deleted).
Intuitively, fault tolerant Max-Cut can be seen as a two players game, in which one player (the
algorithm) chooses a cut and the other player (the adversary) removes up to a prespecified
number k of vertices. The algorithm desires to maximize the total weight of edges crossing
the cut, while the adversary aims to minimize the total weight of edges crossing the cut.

We study two types of adversaries. The first is an adaptive adversary that chooses which
k vertices to fail after seeing the cut the algorithm produces. Specifically, the adaptive
adversary knows the input, how the algorithm operates, and if the algorithm is randomized,
the adaptive adversary also knows the outcome of all random coin tosses used by the
algorithm. The second type of adversary is an oblivious adversary. Similarly to the adaptive
adversary, the oblivious adversary knows the input and how the algorithm operates. However,
in contrast to the adaptive adversary, the oblivious adversary does not know the outcome of
the random coin tosses used by the algorithm, in case the latter is randomized (equivalently,
the oblivious adversary only knows the distribution over cuts the algorithm produces). Thus,
the oblivious adversary is required to choose which k vertices to fail without the knowledge
of which cut was sampled. To the best of our knowledge only adaptive adversaries were
studied in the fault tolerance literature.

The Challenges. The fault tolerant Max-Cut problem differs considerably from classic Max-
Cut for several reasons. First, the structure of the solutions may be different. Specifically,
there are instances for which an optimal solution to fault tolerant Max-Cut is not an optimal
solution to classic Max-Cut, and vice versa (refer to [19] for details). Furthermore, it might be
the case that the ratio between the values of the optimal solutions is large or even unbounded.

Second, the application of known techniques (which can be successfully applied to Max-
Cut) to fault tolerant Max-Cut imposes some obstacles that arise from the non-linear nature
of the fault tolerant objective. For example, the random hyperplane rounding method of
Goemans and Williamson cannot be analyzed in a straightforward manner as one is required
to lower bound the expectation of the minimum value (over all possible actions of the
adversary) of the cut the random hyperplane defines, as opposed to just the expected value
of the cut the random hyperplane defines. Moreover, even analyzing the simplest known
algorithm for Max-Cut, i.e., choosing a uniform random cut, requires great care (refer to [19]
for further details). Hence, the design and analysis of algorithms for fault tolerant Max-Cut
requires some new insights into the problem.



K. Censor-Hillel, N. Marelly, R. Schwartz, and T. Tonoyan 46:3

1.1 Our Contributions
Adaptive Adversary. When focusing on an adaptive adversary, our main result is an (almost)
tight approximation of 0.878−ϵ, for any constant number k of failures and unweighted graphs.
This is summarized in the following theorem (it is important to note that the constant in
the theorem is slightly smaller than the Goemans-Williamson approximation factor αGW ).

▶ Theorem 1.1. For every constant k > 0 and ϵ > 0, there is a polynomial time (0.878− ϵ)-
approximation algorithm for fault tolerant Max-Cut on unweighted graphs against an adaptive
adversary and k faults.

Our algorithm is based on viewing fault tolerant Max-Cut against an adaptive adversary
as a multi-objective optimization problem, where for every possible subset of k vertices the
adversary can fail, one can define a different objective. The goal is to maximize the worst,
i.e., minimum, objective. This approach does not suffice, since all known results for the
multi-objective variant of Max-Cut (formally known as Simultaneous Max-Cut [12, 13]) can
handle only a constant number of objectives. In our case, even when a single failure is allowed,
the number of objectives equals n. Hence, to overcome this difficulty, we incorporate local
search into the above multi-objective approach to obtain the claimed result in Theorem 1.1.

Oblivious Adversary. When focusing on an oblivious adversary, our main result is a tight
approximation of αGW for any constant number k of failures. However, in contrast to the
adaptive adversary setting, this result holds for general weighted graphs and achieves the
αGW -approximation guarantee exactly. This is summarized in the following theorem.

▶ Theorem 1.2. For every constant k > 0, there is a polynomial time αGW -approximation
algorithm for fault tolerant Max-Cut on general weighted graphs against an oblivious adversary
and k faults.

The approach we adopt for approximating fault tolerant Max-Cut against an oblivi-
ous adversary significantly differs from the approach taken against an adaptive adversary.
Surprisingly, our algorithm is based on an approximation-preserving reduction from fault
tolerant Max-Cut to the classic Max-Cut problem. This reduction uses LP duality alongside
the ellipsoid algorithm and is achieved by presenting a suitable approximate dual separation
oracle for a configuration LP that encodes the distribution over cuts that the algorithm
produces.

Hardness of Approximation. We prove that fault tolerant Max-Cut in unweighted graphs,
against both adaptive and oblivious adversaries, cannot be approximated better than αGW

without breaking well-known hardness assumptions. It is important to note that this settles
the approximability of the oblivious adversary setting (see Theorem 1.2 above), and almost
settles the approximability of the adaptive adversary setting (see Theorem 1.1 above) as the
constant in Theorem 1.1 is slightly smaller than αGW .

▶ Theorem 1.3. Assuming the Unique Games Conjecture and NP ⊈ BPP , there is no
polynomial time (αGW + ϵ)-approximation algorithm for fault tolerant Max-Cut in unweighted
graphs, for any constant ϵ > 0. This holds for both adaptive and oblivious adversaries.

Simple Purely Combinatorial Algorithms. While Theorem 1.1 provides an (almost) tight
result against an adaptive adversary, and Theorem 1.2 provides a tight result against an
oblivious adversary, the techniques we employ yield algorithms which are polynomial but
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not simple. For example, the work of [12] for approximating Simultaneous Max-Cut, an
important ingredient in the design of our algorithm against an adaptive adversary, is based
on SDP hierarchies and the running time is exponential in the number of objectives. In
contrast, the classic Max-Cut problem admits some very simple and fast heuristics, e.g.,
choosing a random uniform cut. Thus, we also aim to study simple and purely combinatorial
algorithms for fault tolerant Max-Cut.

We prove that fault tolerant Max-Cut does yield a simple purely combinatorial local
search algorithm with a provable approximation guarantee against an adaptive adversary.
Unfortunately, the classic local search for Max-Cut, that in each step moves a single vertex
from one side of the cut to the other side, fails in the fault tolerant setting. Nonetheless, we
prove that a local search that allows for a slightly richer family of local improvement steps
suffices. This is summarized in the following theorem (refer to Section 3.2 for additional
details).

▶ Theorem 1.4. There is a purely combinatorial polynomial time 1/2-approximation algorithm
for fault tolerant Max-Cut on unweighted input graphs against an adaptive adversary and a
single fault.

We further study how a uniform random cut performs against both types of adversaries
(deferred to the full version [19]), and prove that this performance depends on the type of the
adversary. Specifically, for an oblivious adversary an approximation of 1/2 is achieved, by a
uniform random cut. However, this is not the case when considering an adaptive adversary,
since we prove that a uniform random cut cannot achieve an approximation better than 1/4.

1.2 Related Work
The weighted version of Max-Cut is one of Karp’s NP-complete problems [37], and the
unweighted version is also known to be NP-complete [27]. In general graphs, one cannot
obtain an approximation factor better than 16/17 for the undirected version, or better than
12/13 for the directed version, unless P = NP [34,58]. The best known approximation for
Max-Cut is the celebrated random hyperplane algorithm of Goemans and Williamson that
obtains an approximation factor of roughly 0.8786 by rounding the natural semi-definite
programming relaxation [29]. This is the best approximation that one can achieve, assuming
the Unique Games Conjecture of Khot [39] and P ̸= NP .

The problem of fault tolerant Max-Cut against an adaptive adversary that we introduce
in this paper can be viewed as a special case of Simultaneous Max-Cut, in which the input
is a collection of τ weighted graphs on the same vertex set and the goal is to partition the
vertices into two parts, such that the size of the cut is large in every given graph. In a
straightforward manner, our problem would imply τ =

(
n
k

)
, which is unacceptable since the

known approximations for Simultaneous Max-Cut are for a constant number of instances
only [3, 12,13]. Nonetheless, we do use the algorithm from [12] to obtain an algorithm that
achieves an approximation of 0.878 for fault tolerant Max-Cut against an adaptive adversary.
The state-of-the-art for Simultaneous Max-Cut is a polynomial 0.878-approximation for any
constant number of input graphs [12], which is nearly optimal since assuming the Unique
Games conjecture, Simultaneous Max-Cut cannot be approximated better than (αGW − δ)
(where δ ≥ 10−5) [11].

One more notion of resilience is that of robust submodular maximization, see, e.g., [6,46].
Given a submodular function f and, e.g., a cardinality constraint k, a set A is robust against
τ failures if A = arg maxA⊆V,|A|≤k minZ⊆A,|Z|≤τ f(A− Z), i.e., a subset of size at most k

that achieves the maximal value after at most τ elements are removed from the solution.
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Note that this notion of robustness differs from fault tolerance. The reason is that the
failed elements are removed from the solution, as opposed to removed from the instance.
Specifically, when considering the cut function of an undirected graph (which is submodular)
the removal of a vertex from S (as in robust) differs from removing the same vertex from the
graph (as in fault tolerant).

Due to the importance of coping with failures, the fault tolerance of many additional
fundamental problems has been extensively studied. Prime examples are replacement
paths [1, 21, 22, 30, 54], BFS trees [33, 48, 50–52], spanners [15–17, 25, 41, 47, 55], connected
dominating sets [18,59], and more [8–10,14,23,32,36,57]

Fault tolerance was also studied in the distributed setting, such as for BFS trees [28],
MST [28], and spanners [25,49].

Paper Organization. Section 2 contains all required formal definitions and preliminary
lemmas used throughout the paper. Section 3 deals with the adaptive adversary, whereas
Section 4 deals with the oblivious adversary. In Section 5 we show a hardness of approximation
result. Missing proofs and the analysis of a random cut appear in the full version [19].

2 Preliminaries

Graph Notations. We consider only edge-weighted graphs G = (V, E, w) with positive
integer weights we assigned to the edges e ∈ E. By unweighted graphs we mean graphs with
we = 1, for all e ∈ E. A cut S in a graph G = (V, E, w) is a subset of vertices S ⊆ V . We
let δ(S, G) = {e ∈ E : |e ∩ S| = 1} denote the set of all crossing edges of S in the graph G.
The size or weight of a cut S, denoted by CS,G, is the total weight of the crossing edges:
CS,G =

∑
e∈δ(S,G) we. When G is clear from the context, we use CS and δ(S).

For a set F ⊆ V of vertices, the degree d(F ) of F is the total weight of edges adjacent to
F : d(F ) =

∑
e∈E:e∩F ̸=∅ we. For a subset F ⊆ V and cut S ⊆ V , the crossing degree dS(F )

of F is the total weight of edges adjacent to F that cross S: dS(F ) =
∑

e∈δ(S):e∩F ̸=∅ we.
We use d(v) and dS(v), if F = {v}. We also let n = |V |, m = |E|, and ∆ = maxv∈V d(v).
Finally, we let 2V and

(
V
k

)
denote the collection of all and all size-k subsets of V , respectively.

The Adaptive Adversary. We define the k-FT value of a cut against an adaptive adversary
to be the minimal size of the cut, subsequent to a failure of any k vertices. Formally, for
a cut S in a graph G = (V, E, w) and a constant k > 0, the k-FT value of S is defined as
φ(S, k, G) = minF ∈(V

k) CS−F,G−F .

▶ Definition 2.1 (k-AFTcut). Given an edge-weighted graph G = (V, E, w) and a number
k ∈ N, a cut S is a k-adaptive fault tolerant cut, or k-AFTcut for short, if φ (S, k, G) =
max
S′⊆V

{φ (S′, k, G)}.

We usually omit G and/or k from φ(S, k, G) when G is clear from the context and k = 1.
The Max-Cut problem, i.e., that of finding a cut with the largest size, corresponds to the
special case k = 0, but will always be denoted by Max-Cut.

The Oblivious Adversary. We represent a randomized algorithm that finds a cut in a graph
G = (V, E, w) by a probability distribution D over all possible cuts 2V . For a distribution
D over cuts, we define the k-FT value of D to be the minimal expected size of the cut,
subsequent to the failure of any k vertices. Formally, for a graph G = (V, E, w), a distribution
D over cuts and a constant k > 0, we define the k-FT value of D, denoted by µ(D, k, G), as
µ(D, k, G) = minF ∈(V

k) E
S∼D

[CS−F,G−F ].
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▶ Definition 2.2 (k-OFTcut). Given an edge-weighted graph G = (V, E, w) and a number
k ∈ N, a distribution D over all cuts 2V is a k-oblivious fault tolerant cut, or k-OFTcut for
short, if µ(D, k, G) = max

D′
{µ(D′, k, G)}.

Note that here we assume the adversary chooses the set F of faults deterministically; it
easily follows from the linearity of expectation that the adversary always has a deterministic
best choice – a subset that has the largest expected crossing degree.

Greedy steps and stable cuts. We assume here that we are given an unweighted graph
G = (V, E). A key observation in our algorithms against an adaptive adversary is that any
solution can be transformed into another one where each vertex contributes many of its
edges to the cut. If a vertex contributes too little, we can just move it to the opposite side of
the cut: while this could increase the crossing degree of some vertices (negative contribution
to the FT value), it increases the cut size by more, giving a positive net contribution to the
FT value. We prove this formally in Lemma 2.4, after some formal definitions.

For every v ∈ V and S ⊆ V , let S ⊕ v denote the cut obtained from S by switching v to
its opposite side, that is, S ⊕ v = S − v, if v ∈ S, and S ⊕ v = S ∪ {v}, otherwise. Given a
subset S ⊆ V , a constant k ∈ N, and a vertex v ∈ V , we say that replacing S with S⊕ v, i.e.,
moving v to its opposite side w.r.t. S, is a k-greedy step if dS(v) ≤ (d(v)− k)/2. A cut S is
k-stable if it has no k-greedy step, that is, for every v ∈ V , it holds that dS(v) > (d(v)−k)/2.
For k = 1, we use stable instead of 1-stable.

▶ Observation 2.3. For every cut S and a vertex v, it holds that CS⊕v−CS = dS⊕v(v)−dS(v).

▶ Lemma 2.4. Let v ∈ V be a vertex, S ⊆ V be a cut, and k > 0 be an integer, such that
dS(v) ≤ (d(v)− k)/2; then CS⊕v ≥ CS + k, and φ(S ⊕ v, k) ≥ φ(S, k).

Proof. Assume, without loss of generality, that v ∈ S (otherwise, we swap S and V − S).
Observation 2.3 implies that CS⊕v ≥ CS + k, since dS(v) + k ≤ d(v)− dS(v) = dS⊕v(v).

For the second claim, we show that for every F ∈
(

V
k

)
, CS−F,G−F ≤ CS⊕v−F,G−F .

Assume that v /∈ F , as otherwise S − F = S ⊕ v − F , and the claim holds trivially. Recall
that CS⊕v ≥ CS + k. In addition, dS⊕v(F ) ≤ dS(F ) + k, since for every u ∈ F , at most one
crossing edge is added to the cut (the edge {u, v}). Putting those together, we have that:
CS−F,G−F = CS − dS(F ) ≤ CS⊕v − dS⊕v(F ) = CS⊕v−F,G−F . Since this holds for every F ,
we have that φ(S ⊕ v, k) ≥ φ(S, k). ◀

By repeatedly applying a k-greedy step to a cut, we keep increasing the cut value, while
not decreasing the k-FT value; thus, after at most m greedy steps, we have a k-stable cut
with a k-FT value at least as good as the original one. We let StabilizeCut(G,S,k) denote
this procedure, which takes as input a graph G, a cut S in G, and a number k, then starting
with S, repeatedly applies a (arbitrary) k-greedy step, while there is one, and returns the
obtained k-stable cut. The following corollary follows from the reasoning above (the second
claim follows by applying StabilizeCut to an optimal k-AFTcut).

▶ Corollary 2.5. Let S be a cut in graph G = (V, E), and let k be a positive integer. Let
S′ = StabilizeCut(G, S, k). It holds that S′ is k-stable, CS′ ≥ CS and φ(S′, k) ≥ φ(S, k).
In particular, every unweighted graph G = (V, E) has a k-stable optimal k-AFTcut.
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3 Fault Tolerance Against an Adaptive Adversary

3.1 A 0.878-Approximation for Multiple Faults

In this section, we give a (0.878− ϵ)-approximation algorithm for k-AFTcut on unweighted
graphs, for constants k, ϵ > 0. A core tool that we use in our algorithm is an algorithm for
the Simultaneous Max-Cut problem, where given several graphs defined over the same vertex
set, the goal is to find a cut that is large for all graphs simultaneously. A 0.878-approximation
algorithm for this problem with a constant number of graphs has been given in [12]. The
algorithm is based on semidefinite programming techniques.

The main idea behind our algorithm is to separate a constant number of “heavy” (high-
degree) vertices for which the following holds; given a cut which is large subsequent to any
failure of k heavy vertices, the cut is large even if light (non-heavy) vertices fail as well. For
such a heavy set, a good approximation for Simultaneous Max-Cut on the instances obtained
by removing each possibility of k heavy vertices from G, should be a good approximation for
k-AFTcut on G. We give a greedy algorithm that selects the set of heavy vertices. We then
consider two cases. We show that if the heavy vertices do not cover most of the edges in the
graph (the “non-shallow” case), then an approximate solution for Simultaneous Max-Cut
with respect to the heavy set gives an approximate solution for k-AFTcut. Otherwise
(the “shallow” case), we identify a set of “super-heavy” vertices, which is shown to fail
in any near-optimal solution. Therefore, finding a near-optimal solution for the original
graph reduces to finding a near-optimal solution on the graph remaining by removing the
“super-heavy” vertices. We show that it can be solved via brutforce, or by finding a good
solution to Max-Cut (e.g., obtained via [29]). We prove the following theorem.

▶ Theorem 1.1. For every constant k > 0 and ϵ > 0, there is a polynomial time (0.878− ϵ)-
approximation algorithm for fault tolerant Max-Cut on unweighted graphs against an adaptive
adversary and k faults.

Before proceeding to the algorithm, we introduce the Simultaneous Max-Cut framework.

▶ Definition 3.1 (Simultaneous Max-Cut). Let V be a vertex set. We are given k edge-weighted
graphs, Gi = (V, Ei), i = 1, . . . , k, on the vertex set V , where the weights are normalized,
so that

∑
e∈Ei

we = 1, for each i. In the (Pareto) Simultaneous Max-Cut problem, given
the graphs Gi together with thresholds ci ∈ [0, 1], the goal is to find a cut S∗ ⊆ V such
that CS∗,Gi

≥ ci, for every i. We say that an algorithm is an α-approximation algorithm
for the problem if for every input Gi, ci, i = 1, . . . , k, where there exists a cut S∗ such that
CS∗,Gi

≥ ci for every i, the algorithm returns a cut S̃ such that C
S̃,Gi

≥ αci, for every i.

▶ Theorem 3.2. [12] For every constant k ≥ 1 and parameter n ≥ 1, there is a polynomial-
in-n algorithm that computes an αSMC-approximate solution to any Simultaneous Max-Cut
instance with k weighted graphs on a vertex set of size n, in which all non-zero edge-weights
are lower-bounded by exp(n−c), for constants k and c, and αSMC = 0.878 .

We apply the Simultaneous Max-Cut framework for unweighted graphs Gi. We let
SimultaneousMC denote the algorithm that gets as input a constant number of unweighted
graphs Gi, i = 1, . . . , k, and returns a cut S̃ with the following property: for every cut S∗

and number c such that CS∗,Gi ≥ c, for all i, it holds that C
S̃,Gi

≥ αSMC · c, for all i. This
can be achieved by combining the algorithm given in Theorem 3.2 (by appropriately scaling
the edge-weights and the thresholds) with a binary search on c.
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Algorithm 1 (αSMC − ϵ)-approximation for k-AF T cut.

1 Input: G = (V, E), k, ϵ

2 Output: (αSMC − ϵ)-approximation for k-AFTcut

3 H ← HeavyVertices(G, k, ϵ)
4 S̃ ← SimultaneousMC({G¬F : F ∈

(
H
k

)
})

5 if (H, S̃) is shallow then
6 return ShallowFTCut(G, H, S̃, k, ϵ)
7 else
8 return S̃

In addition to the Simultaneous Max-Cut algorithm, we use the αGW -approximation
for Max-Cut due to Goemans and Williamson [29], for αGW ≈ 0.8786. We use Goemans-
Williamson (with input G) to denote this algorithm. Note that the actual value of the
approximation factor αSMC is slightly larger than 0.878 but is less than αGW .

The Main Algorithm. The inputs to the algorithm (see the pseudocode in Algorithm 1)
are an unweighted graph G, and parameters k (number of faults) and ϵ (precision). First,
it computes the set H of heavy vertices via the subroutine HeavyVertices, then applies
SimultaneousMC on a collection {G¬F : F ∈

(
H
k

)
} of subgraphs containing one subgraph

for every failure of k heavy vertices. The following notation is used: for a subset F ⊆ V of
vertices, we let G¬F = (V, E¬F ), where E¬F = {e ∈ E : e ∩ F = ∅}. Note that in G¬F , we
do not remove the vertices of F from the graph, as opposed to G− F , but only the edges
adjacent to F .

The pair (H, S̃) is shallow if all vertices in V − H have degree at most 3k, and there
are k vertices in H whose removal reduces the weight of S̃ below 3k2/ϵ. To state this
formally, let us introduce a notation that will be useful later too. For a cut S ⊆ V ,
we use CS−k×H to denote the smallest size of the cut after the failure of any k vertices
from H, i.e., CS−k×H = min{CS−F,G−F : F ∈

(
H
k

)
}. Thus, (H, S̃) is shallow if we have

maxv∈V −H d(v) ≤ 3k and C
S̃−k×H

< 3k2/ϵ. If (H, S̃) is not shallow, the algorithm simply
returns S̃. Otherwise, we recompute the cut via ShallowFTCut, using alternative methods.

The proof of Theorem 1.1 is split into two parts, addressing shallow and non-shallow
cases separately. The running time is dominated by Simultaneous Max-Cut. Before giving
further details, let us mention how the proof follows from the main lemmas addressing those
cases.

Proof of Theorem 1.1. Let G be a graph and let S∗ be an optimal k-AFTcut on G. Let
S̃ be the output of Algorithm 1 on G, k, ϵ. We show that φ(S̃, k) ≥ (αSMC − ϵ) · φ(S∗, k).
Lemma 3.4 provides this for the non-shallow case, while Lemma 3.5 provides it in the shallow
case. The algorithm is indeed polynomial, since the sub-routines are such, and the input
to SimultaneousMC consists of

(|H|
k

)
= O(k/ϵ)k = O(1) subsets, where |H| = O(k2/ϵ) is

proven in Lemma 3.3. ◀

The selection of heavy vertices (Algorithm 2) is done by a simple greedy procedure, where
we sequentially select vertices in the heavy set H in a non-increasing order by degree. The
selection stops either when the remaining vertices (V −H) have a small degree (at most 3k)
or when H has sufficiently many incident edges (used in Lemma 3.4). By Corollary 2.5, any
cut can be transformed into one with a similar k-FT value, where every vertex v has crossing
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Algorithm 2 HeavyVertices.

1 Input: G = (V, E), k, ϵ

2 Output: H ⊆ V , the set of heavy vertices
3 Let v1, . . . , vn be an ordering of vertices by non-increasing degree
4 σ ← 0, i← 1, H ← {v1, . . . , vk}
5 while d(vk+i) > (ϵ · αSMC/k) · σ and d(vk+i) > 3k do
6 σ ← σ + (d(vk+i)− 3k)/4
7 H ← H ∪ {vk+i}
8 i← i + 1
9 return H

degree at least (d(v)− k)/2, and at least (d(v)− 3k)/2, after k failures. Thus, heavy vertices
are guaranteed to contribute σ in the “stable version” of every cut. The degree constraint
ensures that we do not select vertices that are unnecessary, according to this logic, which
helps us keep the size of H bounded.

▶ Lemma 3.3. Algorithm 2 terminates within t = 4(3k2 + k)/(ϵ · αSMC) iterations. In
particular, |H| ≤ t + k.

Proof. If d(vk+t) ≤ 3k, then by the condition in Line 5, the algorithm terminates before the
t-th iteration; therefore, assume d(vk+t) > 3k. For every i ≤ t, after the i-th iteration, it
holds that σi =

∑i
j=1 (d(vk+j)− 3k)/4; thus, after t iterations,

σt =
t∑

j=1

d(vk+j)− 3k

4 ≥ t · d(vk+t)− 3k

4 = 3k2 + k

ϵ · αSMC
· (d(vk+t)− 3k)

= k

ϵ · αSMC
· d(vk+t) + 3k2

ϵ · αSMC
· d(vk+t)−

3k2(3k + 1)
ϵ · αSMC

≥ k

ϵ · αSMC
d(vk+t) ,

where in the first inequality, we use the fact that the vertices are processed in a non-increasing
order of degrees, and in the last inequality, we use the assumption that d(vk+t) ≥ 3k + 1.
It follows that d(vk+t) ≤ (ϵ · αSMC/k) · σt, and using d(vk+t+1) ≤ d(vk+t), we get that the
algorithm terminates within the first t iterations, by the condition in Line 5. ◀

Non-Shallow Case. In this case, we have either maxv∈V −H d(v) > 3k or C
S̃−k×H

≥ 3k2/ϵ.
If the former holds, we see from Algorithm 2 that for all light vertices v /∈ H, d(v) ≤
(ϵ · αSMC/k) · σ. As it was observed earlier, Corollary 2.5 implies that every cut can be
turned into another one with no smaller FT value, such that H contributes σ edges to the
cut, even after k failures. In such a cut, a failure of k light vertices would affect only an ϵ

fraction of the cut. A similar reasoning applies in the other case, when maxv∈V −H d(v) ≤ 3k:
here we have C

S̃−k×H
≥ 3k2/ϵ, which leads to similar conclusions as above. Putting these

together with the near-optimality of S̃, we obtain the main lemma of the non-shallow case
(see [19]).

▶ Lemma 3.4. If (H, S̃) is not shallow, then it holds that φ(S̃, k) ≥ (αSMC − ϵ)φ(S∗
ft, k),

for an optimal k-AFTcut S∗
ft.
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Shallow Case. Recall that in this case, we have that maxv∈V −H d(v) ≤ 3k, and C
S̃−k×H

<

3k2/ϵ. The subroutine ShallowFTCut (Algorithm 3) constructs another cut, Ŝ, which
we prove in Lemma 3.5 is a (αSMC − ϵ)-approximation for k-AFTcut. A key role in
this case is played by the following (possibly empty) set Ĥ of super-heavy vertices, where
Ĥ =

{
v ∈ V : (d(v)− 3k)/2 > C

S̃−k×H
/αSMC

}
. We show that Ĥ is contained in every

worst-case failure set of a cut where there is no k-greedy step of a vertex in Ĥ. We let
GR = G − Ĥ, and let mR be the number of edges in GR. Note that the degree of every
v /∈ Ĥ is bounded by some constant ℓ.

Algorithm 3 ShallowFTCut.

1 Input: G = (V, E), H, S̃, k, ϵ

2 Output: Cut Ŝ ⊆ V

3 if mR < 2kℓ/(αSMCϵ) then
4 for every S′ ⊆ VR (VR is of constant size) do
5 Compute φ(S′, k − |Ĥ|)
6 Ŝ ← arg maxS′⊆VR

φ(S′, k − |Ĥ|)
7 else
8 Ŝ ← Goemans-Williamson(GR)
9 while ∃v ∈ Ĥ such that dŜ(v) ≤ (d(v)− k)/2 do

10 Ŝ ← Ŝ ⊕ v

11 return Ŝ

First, we compute a near-optimal (k−|Ĥ|)-AFTcut, Ŝ, on GR, then add Ĥ and repeatedly
apply k-greedy steps to the vertices in Ĥ, while there are any. To compute a cut in GR,
we distinguish between two cases. If there are many edges, i.e., mR ≥ ckℓ/ϵ, for a constant
c, then we let Ŝ =Goemans-Williamson(GR). This suffices, since the cut is of size at
least mR/2 = Ω(kℓ/ϵ), and the degrees are bounded by ℓ , so failures do not affect the cut
size significantly, and we get an (αGW − ϵ)-approximation. If, on the other hand, there are
few edges, i.e., mR < ckℓ/ϵ, then we can compute an optimal (k − |Ĥ|)-AFTcut in GR via
brute-force. Also using that Ĥ belongs to every worst-cast failure set of a cut not having a
k-greedy step of a vertex in Ĥ (including the one we constructed, and the optimal ones that
exist by Corollary 2.5), we get the following main lemma (proved in the full version [19]).

▶ Lemma 3.5. If (H, S̃) is shallow, then it holds that φ(Ŝ, k) ≥ (αSMC − ϵ) · φ(S∗
ft, k), for

an optimal k-AFTcut S∗
ft.

3.2 A Combinatorial 1/2-Approximation for a Single Fault
In the case of a single fault, we have the following result, that is, a simple and efficient
1/2-approximation for the case of a single fault. Moreover, we show that an FT value of
(m−∆)/2 can be achieved, for ∆ ≥ 3, while m−∆ is an (easy) upper bound.

▶ Theorem 1.4. There is a purely combinatorial polynomial time 1/2-approximation algorithm
for fault tolerant Max-Cut on unweighted input graphs against an adaptive adversary and a
single fault.

In the discussion below, we call a vertex v critical for a cut S if CS−v,G−v = φ(S).
It is well-known (and easy to show) that every stable cut is a 1/2-approximate Max-Cut.
This even holds for AFTcut, with ∆ = 2 (see [19]). However, in general, while we know
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Algorithm 4 Combinatorial 1/2-approximation for AF T cut.

1 Input: G = (V, E)
2 if ∆ ≤ 2 then return StabilizeCut(G, ∅, 1)
3 S̃ ← ∅
4 while φ(S̃) < (m−∆)/2 do
5 if ∃v, φ(S̃ ⊕ v) ≥ (m−∆)/2 then
6 S̃ ← S̃ ⊕ v // type-0 step
7 else if ∃v, d

S̃
(v) < d(v)/2 then

8 S̃ ← S̃ ⊕ v // type-1 step

9 else if ∃v, w,
(

d
S̃

(v) = d(v)
2 and φ(S̃ ⊕ v) ≥ φ(S̃) and d

S̃⊕v
(w) < d(w)

2

)
then

10 S̃ ← S̃ ⊕ v // build-up for another type-1 step
11 else
12 v ← a vertex such that d

S̃
(v) = d(v)/2 and φ(S̃ ⊕ v) > φ(S̃)

13 S̃ ← S̃ ⊕ v // type-2 step

14 return S̃

that greedy steps (moving a vertex v with d(v) < dS(v)/2) never decrease the FT value
(Lemma 2.4), a stable cut can be a poor approximation for AFTcut. Consider, for example,
a graph that consists of t triangles with a single common vertex u. Note that d(u) = ∆ = 2t,
d(v) = 2, for every v ̸= u, and m = 3t. The cut S′ = {u} is a stable cut, with φ(S′) = 0. In
order to transform S′ into a 1/2-approximation, we have to decrease the crossing degree of
the critical vertex u without decreasing the size of the cut. This can be done by moving a
neighbor v of u from the opposite side of the cut, since dS′(v) = d(v)/2.

In general, moving such vertex v (which we call a neutral move below) does not change
the size of the cut, and decreases the crossing degree of u. Nevertheless, it does not always
imply that the FT value increases, as there can be an additional critical vertex u′ in S that
is not affected, or that moving v creates a new critical vertex u′′ with the same crossing
degree as u.

Our algorithm (see Algorithm 4) is based on some key structural properties of stable cuts
that we prove. Essentially, we show that any given cut S with FT value less than (m−∆)/2
either admits a greedy step, or a neutral move followed by a greedy step, or a neutral move
that increases the FT value. Our algorithm is then a repeated application of such steps
until the cut has the desired FT value; thus, it can be seen as a local search over two-move
combinations, for maximizing the sum of the cut size and FT value.

Our key technical observation is that in a balanced cut S with an FT value less than
(m−∆)/2, the critical vertex is unique. Moreover, letting xS(v) = dS(v)− d(v)/2 denote
the excess contribution of a vertex v to the cut, it holds for the critical vertex u that
xS(u) >

∑
v ̸=u xS(v) + ∆− d(u), as proved in the following lemma.

▶ Lemma 3.6. Let S be a stable cut in a graph G = (V, E) such that φ(S) < (m −∆)/2.
Then S has a unique critical vertex vertex u, and u satisfies

dS(u) >
∑
v ̸=u

xS(v) + ∆− d(u)/2 . (1)

Moreover, u has a neighbor w in its opposite side of the cut, which satisfies xS(w) = 0.
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Proof. First, we show that S has a unique critical vertex. Since for every vertex v, dS(v) =
d(v)/2 + xS(v) and

∑
v∈V d(v)/2 = m, we get that

CS = 1
2

∑
v∈V

dS(v) = 1
2

∑
v∈V

(
d(v)

2 + xS(v)
)

= m

2 +
∑
v∈V

xS(v)
2 . (2)

Let u be a critical vertex, and assume, without loss of generality, that u ∈ S (otherwise we
swap S and V −S). On one hand, we have φ(S) = CS−dS(u) = m/2+

∑
v∈V xS(v)/2−dS(u),

and on the other hand, we have φ(S) < (m−∆)/2, which together imply:

m/2 +
∑
v∈V

xS(v)/2− dS(u) < (m−∆)/2 .

After a rearrangement, the latter implies (1). Using dS(u) = d(u)/2 + xS(u) in (1) and
simplifying, we get xS(u) >

∑
v ̸=u

xS(v) + ∆− d(u) ≥
∑

v ̸=u

xS(v). Since u is an arbitrary critical

vertex, this implies that u is the only critical vertex of S.
Next, let us show that there is a neighbor w ∈ V − S of u (recall that u ∈ S) with

xS(w) = 0. Assume to the contrary that for every v /∈ S such that {u, v} ∈ E, it holds that
xS(v) ≥ 1/2 (recall that S is stable, and hence xS(v) is a non-negative integer multiple of
1/2). Using (2), this implies:

CS = m

2 +
∑
v∈V

xS(v)
2 ≥ m

2 + 1
2

xS(u) +
∑

v:{u,v}∈δ(S)

xS(v)


≥ m

2 + 1
2

(
xS(u) + dS(u)

2

)
≥ m

2 + xS(u) ,

where we use dS(u) = | {v : {u, v} ∈ δ(S)} | in the second inequality, and dS(u) = d(u)/2 +
xS(u) ≥ 2xS(u), in the third one. Since u is the critical vertex of S, this gives that

φ(S) = CS − dS(u) ≥ m

2 + xS(u)− dS(u) = m

2 −
d(u)

2 ≥ (m−∆)/2 ,

in contradiction to φ(S) < (m−∆)/2. This completes the proof. ◀

Note that in a stable cut S, xS(v) is a non-negative multiple of 1/2, for all v. In most
typical cases (e.g., when d(u) < ∆, or when there are not too few nodes v with xS(v) > 0),
the inequality from the lemma quickly gives us the properties we claimed. However, covering
all cases turns out to be quite tedious. The complete analysis can be found in the full
version [19].

4 Fault Tolerance Against an Oblivious Adversary

We give an algorithm that approximates the fault tolerant Max-Cut against the oblivious
adversary with (constant) k faults within an αGW -approximation factor. The main idea is
to frame the problem as a linear program (LP) with an exponential number of variables,
then reduce the number of variables using a solution of its dual (with an exponential number
of constraints but a polynomial number of variables). The dual is approximately solved by
the ellipsoid algorithm together with an approximate separation oracle that is given by a
Max-Cut algorithm. A similar approach has been used, e.g. in [35], for an unrelated problem.
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▶ Theorem 1.2. For every constant k > 0, there is a polynomial time αGW -approximation
algorithm for fault tolerant Max-Cut on general weighted graphs against an oblivious adversary
and k faults.

For simplicity, we present the algorithm for a single fault. In the full version [19], we
show how to extend it to any constant number k of faults. The OFTcut problem can be
formulated as the following LP, (Primal1), with an exponential number of variables.

max
∑
S⊆V

PS ·
∑

e∈δ(S)

we − Z (Primal1)

s.t.
∑
S⊆V

PS ·
∑

v:{u,v}∈δ(S)

w{u,v} ≤ Z ∀u ∈ V (3)

∑
S⊆V

PS ≤ 1 (4)

0 ≤ PS ∀S ⊆ V (5)

The variable PS represents the probability assigned to the cut S ⊆ V . The variable Z

represents the expected weight that the adversary removes from the graph. Constraints (4-5)
make PS a probability distribution. In (3), for each vertex u, we bound by Z the expected
weight that is removed from the cut when u fails. To see that the left hand side is indeed
the expected removed weight, note that it equals

∑
S⊆V PS · dS(u).

Consider the dual problem of the LP above, (Dual1):

min Y (Dual1)

s.t.
∑

{u,v}∈δ(S)

w{u,v} −
∑
u∈V

Xu

∑
v:{u,v}∈δ(S)

w{u,v} ≤ Y ∀S ⊆ V (6)

∑
u∈V

Xu ≤ 1 (7)

0 ≤ Xu ∀u ∈ V (8)

The dual LP captures the following problem: The adversary picks a distribution over the
vertices, and the algorithm picks a cut (depending on the choice of the adversary). The goal
of the adversary is to choose its distribution (without knowing the cut choice of the algorithm)
so as to minimize the expected cut size after a random failure from its distribution.

The dual LP (Dual1) has an exponential number of constraints but only |V |+ 1 variables.
Such LPs can be solved efficiently via the ellipsoid method [31], given an efficient separation
oracle. The latter is an algorithm that given an assignment of values to the variables of the
LP, reports a violated constraint if the assignment is infeasible, or otherwise reports that it
is feasible. For the particular case of (Dual1), the ellipsoid algorithm can be viewed as a
binary search over the values of Y , such that in each stage (fixed Y ), a black-box procedure
does a polynomial number of queries to a given separation oracle, and either reports the
first solution {Xu}u∈V it finds such that {Xu}u∈V , Y is feasible according to the oracle, or
reports that there is no such solution.

Let us see what a separation oracle looks like in our case. For given values {Xu}u∈V , Y , let
G′ = (V ′, E′, w′) be the graph with weights w′

{u,v} = (1−Xu−Xv)w{u,v}. With this notation,
constraint (6) becomes CS,G′ ≤ Y . In order to see if a given assignment of variables is feasible,
it thus suffices to find a maximum weight cut S∗ in G′ and test if CS∗,G′ ≤ Y . Since Max-Cut
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is hard to solve exactly, we use an approximate separation oracle. Given {Xu}u∈V , Y , it
immediately returns the constraint (7), if it is violated, and otherwise computes a cut SALG

in G′ using a derandomized variant of the Goemans-Williamson algorithm [43], which we
denote by Derandomized-Goemans-Williamson. Given an assignment {Xu}u∈V , Y to
the variables in the LP, the oracle either outputs feasible or a violated constraint. If the
size of the cut is larger than Y , it returns the violated constraint (6) corresponding to SALG,
otherwise it reports that the solution is feasible (see Algorithm 5).

Algorithm 5 Approximate separation oracle.

1 Input: {Xu}u∈V , Y, G

2 if
∑

u∈V

Xu > 1 then

3 return violated constraint
∑

u∈V

Xu ≤ 1

4 SALG ← Derandomized-Goemans-Williamson(G′)
5 if CSALG,G′ > Y then
6 return violated constraint for subset SALG

7 else
8 return feasible

We show (Lemma 4.1) that if {Xu}u∈V , Y is feasible, then the oracle reports that it is
feasible, and otherwise, it either reports a violated constraint, or incorrectly reports that it
is feasible, in which case, however, {Xu}u∈V , Y/αGW is feasible.

▶ Lemma 4.1. Given an assignment {Xu}u∈V , Y to the variables in (Dual1) as input to
the separation oracle in Algorithm 5, it holds that:
1. if the assignment is feasible, then the oracle returns feasible,
2. if the assignment is infeasible, then either the oracle outputs a violated constraint, or

reports feasible, in which case {Xu}u∈V , Y/αGW is feasible.

Proof. Let {Xu}u∈V , Y be an assignment to the variables of (Dual1). If it is feasible, then
it holds that

∑
u∈V

Xu ≤ 1, and in addition every S ⊆ V satisfies CS,G′ ≤ Y , therefore the

oracle returns feasible.
If the assignment is infeasible, there are two cases. If

∑
u∈V

Xu > 1, the oracle returns this

violated constraint. Otherwise, there is a subset S′ ⊆ V such that CS′,G′ > Y . Let S∗ be
an optimal solution for Max-Cut on G′, and note that CS∗,G′ > Y . If αGW · CS∗,G′ > Y ,
then we also have that CSALG,G′ > Y (since SALG is an αGW -approximate Max-Cut), and
the oracle returns the violated constraint for SALG. Otherwise, CS∗,G′ ≤ Y/αGW . Since
S∗ is an optimal solution for Max-Cut on G′, it follows that for every S ⊆ V , it holds that
CS,G′ ≤ Y/αGW , i.e., the solution {Xu}u∈V , Y/αGW is feasible. ◀

It is not hard to see that the application of the ellipsoid algorithm on (Dual1) takes a
polynomial time (i.e., at most as much time as it would take with an exact separation oracle),
since our approximate oracle is (possibly) incorrect only on the last call from the ellipsoid
algorithm (for a given Y ), when it incorrectly reports a solution as feasible.

The output of the ellipsoid algorithm/binary search is an assignment {Xu}u∈V , Y to the
variables of (Dual1) such that {Xu}u∈V , Y is feasible according to the oracle, while Y − ϵ is
infeasible with every assignment to the X variables, where ϵ is the precision of the binary
search. As observed above, we have that {Xu}u∈V , Y/αGW is feasible, and it follows that if
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Y ∗ is the optimal value of (Dual1), then Y −ϵ ≤ Y ∗ ≤ Y/αGW . Since the ellipsoid algorithm
queries the oracle a polynomial number of times, there is a set H ⊆ 2V of a polynomial
number of cuts S, for which constraint (6) is queried. Consider a modified variant of (Dual1),
called (Dual2), where only constraints of cuts in H are present. Let Y ∗

2 be the optimal value
of (Dual2). Note that Y ∗

2 ≤ Y ∗. Note also that the ellipsoid algorithm returns exactly the
same solution {Xu}u∈V , Y , when executed on (Dual1) and (Dual2) (since our algorithm is
deterministic, and only constraints in H are queried); hence, we have Y − ϵ ≤ Y ∗

2 . Finally,
let us consider the primal LP corresponding to (Dual2) it is obtained from (Primal1) by
removing variables PS with S /∈ H (i.e., setting PS = 0).

The new primal has polynomially many constraints and variables, so can be solved in
polynomial time. From the arguments above, we have that its optimal value Y ∗

2 satisfies
Y − ϵ ≤ Y ∗

2 ≤ Y ∗ ≤ Y/αGW . Recalling that Y ∗ is the optimal value for the original LP, we
see that Y ∗

2 is a αGW -approximation (with any polynomial precision ϵ).

5 Hardness of Approximation

In this section we show that assuming the Unique Games Conjecture, one cannot approximate
AFTcut and OFTcut within a factor greater than αGW . Formally, we prove the following:

▶ Theorem 1.3. Assuming the Unique Games Conjecture and NP ⊈ BPP , there is no
polynomial time (αGW + ϵ)-approximation algorithm for fault tolerant Max-Cut in unweighted
graphs, for any constant ϵ > 0. This holds for both adaptive and oblivious adversaries.

In both cases, given an unweighted instance G of Max-Cut, we construct an unweighted
graph G′, as follows: we take the disjoint union of G with a star with n = |V | leaves and a
center u∗, and add an edge joining u∗ to an arbitrary vertex v1 ∈ V . This completes the
construction of G′. Clearly, this is a polynomial construction.

We show for each kind of adversary how to translate a given (approximate) solution
to AFTcut or OFTcut in G′ into a solution to Max-Cut in G, which would imply the
corresponding inapproximability results, using the fact that Max-Cut is hard to approximate
within a factor better than αGW [39]. We only present the proof for OFTcut, leaving AFTcut

to the full version. We use the following simple observation.

▶ Observation 5.1. Let S ⊆ V be a cut in G, and S′ = S ∪ {u∗}. It holds that in G′,
u∗ is a critical vertex of S′, i.e., φ(S′) = CS′−u∗,G′−u∗ . For every cut S′′ ⊆ V ′, we have
CS′′−u∗,G′ = CS′′∩V,G.

The proof follows from the fact that for every vertex v ∈ V ′, dS′(v) ≤ n ≤ dS′(u∗), and that
all edges in G′ − u∗ belong to G.

We show first that the optimal values for OFTcut in G′ and Max-Cut in G are equal.

▶ Lemma 5.2. Let D∗ be the distribution of an optimal OFTcut in G′, and S∗
mc be an

optimal Max-Cut in G. It holds that µ(D∗, G′) = CS∗
mc,G.

Proof. Let S̃ = S∗
mc ∪{u∗}, and let D be the distribution that assigns probability 1 to S̃ and

probability 0 to all other cuts. By Observation 5.1, u∗ is a critical vertex, hence for every
vertex v ∈ G′, we have E

S∼D
[CS−u∗,G′−u∗ ] = C

S̃−u∗,G′−u∗ ≤ C
S̃−v,G′−v

= E
S∼D

[CS−v,G′−v].
Using Observation 5.1 again, we have µ(D∗, G′) ≥ µ(D, G′) ≥ C

S̃−u∗,G′−u∗ = CS∗
mc,G. Next,

by Observation 5.1, we have CS−u∗,G′−u∗ = CS∩V,G ≤ CS∗
mc,G, for every cut S from the

support of D∗, which implies that µ(D∗, G′) ≤ E
S∼D∗

[CS−u∗,G′−u∗ ] ≤ CS∗
mc,G. This completes

the proof. ◀
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Proof of Theorem 1.3 for an Oblivious Adversary. Assume, for a contradiction, that we
have an α-approximation algorithm for OFTcut, for α = αGW + ϵ > αGW . We design a
randomized approximation algorithm for Max-Cut. Let G be an input to Max-Cut. Construct
the graph G′ as described above. Let D be the distribution of an α-approximate OFTcut

in G′. By Lemma 5.2, we have E
S∼D

[CS−u∗,G′−u∗ ] ≥ µ(D, G′) ≥ α · CS∗
mc,G, where S∗

mc is
a Max-Cut in G. By Observation 5.1, it holds that CSft−u∗,G′−u∗ = CSft∩V,G ≤ CS∗

mc
for

every cut Sft in the support of D. Letting p = P
[
CS−u∗,G′−u∗ ≥ (α− ϵ/2)CS∗

mc

]
, we have

α · CS∗
mc,G ≤ E

S∼D
[CS−u∗,G′−u∗ ] ≤ p · CS∗

mc,G + (1− p) · (α− ϵ/2)CS∗
mc,G ,

implying that p ≥ ϵ/2. Thus, for a random cut Sft sampled from D, it holds that Sft ∩ V is
an (α− ϵ/2)-approximation to Max-Cut, with probability ϵ/2, where α− ϵ/2 > αGW . This
contradicts to our assumption about the Unique Games Conjecture and NP ⊈ BPP . ◀

6 Discussion

Our work leaves several open questions regarding fault tolerant Max-Cut. An immediate
question is to bridge the (rather small) gap between our approximation of (0.8780− ϵ) and
our hardness of αGW for k-AFTcut.

The central bottleneck is that Simultaneous Max-Cut, a main ingredient in our algorithm,
has hardness of approximation that is slightly below αGW and equals (αGW − δ) (where
δ ≥ 10−5) [11]. Thus, either one finds a different algorithm for k-AFTcut that does not
rely on Simultaneous Max-Cut and achieves an approximation of αGW , or one can extend
the hardness result of [11] to k-AFTcut and thus rule out an approximation of αGW for
k-AFTcut. Another question is what approximation factors can be obtained for AFTcut on
general weighted graphs.

Another interesting question is how to deal with a non-constant number of faults, for both
of the adversaries. Since the number of all possible cases of failure is not polynomial, a new
approach may be needed. There are techniques that are used to deal with a non-constant
number of faults, e.g., failure sampling, that is presented in [24]. It would be interesting to
see whether these techniques can be used for fault tolerant Max-Cut as well.

One more important and intriguing open question is what happens in other fault tolerant
problems when an oblivious adversary is considered. We are unaware of previous algorithms
for an oblivious adversary in the fault-tolerance literature. Since an oblivious adversary
is arguably more realistic in its nature, and since it is likely that one can get improved
algorithms for this case, pursuing this line of research could be crucial for many additional
fundamental problems involving fault tolerance.
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Abstract
All-Pairs Shortest Paths (APSP) is one of the most well studied problems in graph algorithms. This
paper studies several variants of APSP in unweighted graphs or graphs with small integer weights.

APSP with small integer weights in undirected graphs [Seidel’95, Galil and Margalit’97] has an
Õ(nω) time algorithm, where ω < 2.373 is the matrix multiplication exponent. APSP in directed
graphs with small weights however, has a much slower running time that would be Ω(n2.5) even if
ω = 2 [Zwick’02]. To understand this n2.5 bottleneck, we build a web of reductions around directed
unweighted APSP. We show that it is fine-grained equivalent to computing a rectangular Min-Plus
product for matrices with integer entries; the dimensions and entry size of the matrices depend on
the value of ω. As a consequence, we establish an equivalence between APSP in directed unweighted
graphs, APSP in directed graphs with small (Õ(1)) integer weights, All-Pairs Longest Paths in DAGs
with small weights, cRed-APSP in undirected graphs with small weights, for any c ≥ 2 (computing
all-pairs shortest path distances among paths that use at most c red edges), #≤cAPSP in directed
graphs with small weights (counting the number of shortest paths for each vertex pair, up to c), and
approximate APSP with additive error c in directed graphs with small weights, for c ≤ Õ(1).

We also provide fine-grained reductions from directed unweighted APSP to All-Pairs Shortest
Lightest Paths (APSLP) in undirected graphs with {0, 1} weights and #mod cAPSP in directed
unweighted graphs (computing counts mod c), thus showing that unless the current algorithms for
APSP in directed unweighted graphs can be improved substantially, these problems need at least
Ω(n2.528) time.

We complement our hardness results with new algorithms. We improve the known algorithms for
APSLP in directed graphs with small integer weights (previously studied by Zwick [STOC’99]) and for
approximate APSP with sublinear additive error in directed unweighted graphs (previously studied
by Roditty and Shapira [ICALP’08]). Our algorithm for approximate APSP with sublinear additive
error is optimal, when viewed as a reduction to Min-Plus product. We also give new algorithms for
variants of #APSP (such as #≤U APSP and #mod U APSP for U ≤ nÕ(1)) in unweighted graphs,
as well as a near-optimal Õ(n3)-time algorithm for the original #APSP problem in unweighted
graphs (when counts may be exponentially large). This also implies an Õ(n3)-time algorithm
for Betweenness Centrality, improving on the previous Õ(n4) running time for the problem. Our
techniques also lead to a simpler alternative to Shoshan and Zwick’s algorithm [FOCS’99] for the
original APSP problem in undirected graphs with small integer weights.
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1 Introduction

All-Pairs Shortest Paths (APSP) is one of the oldest and most studied problems in graph
algorithms. The fastest known algorithm for general n-node graphs runs in n3/2Θ(

√
log n) [31].

In unweighted graphs, or graphs with small integer weights, faster algorithms are known.
For APSP in undirected unweighted graphs (u-APSP), Seidel [21] and Galil and Mar-

galit [12, 13] gave Õ(nω) time algorithms where ω ≤ 2.373 is the exponent of matrix
multiplication [2, 27, 16]; the latter algorithm works for graphs with small integer weights1 in
[±c0] for c0 = Õ(1). The hidden dependence on c0 was improved by Shoshan and Zwick [22].

For directed unweighted graphs or graphs with weights in [±c0], the fastest APSP algorithm
is by Zwick [34], running in O(n2.529) time. This running time is achieved using the best
known bounds for rectangular matrix multiplication [17] and would be Ω(n2.5) even if ω = 2.

There is a big discrepancy between the running times for undirected and directed APSP.
One might wonder, why is this? Are directed graphs inherently more difficult for APSP, or
is there some special graph structure we can uncover and then use it to develop an Õ(nω)
time algorithm for directed APSP as well? (Note that matrix multiplication seems necessary
for APSP since APSP is known to capture Boolean matrix multiplication.)

The first contribution in this paper is a fine-grained equivalence between directed un-
weighted APSP (u-APSP) and a certain rectangular version of the Min-Plus product problem.

The Min-Plus product of an n × m matrix A by an m × p matrix B is the matrix C with
entries C[i, j] = minm

k=1(A[i, k] + B[k, j]). Let us denote by M⋆(n1, n2, n3 | M) the problem
of computing the Min-Plus product of an n1 × n2 matrix by an n2 × n3 matrix where both
matrices have integer entries in [M ]. Let M⋆(n1, n2, n3 | M) be the best running time for
M⋆(n1, n2, n3 | M).

Zwick’s algorithm [34] for u-APSP can be viewed as making a logarithmic number
of calls to the Min-Plus product M⋆(n, n/L, n | L) for all 1 ≤ L ≤ n that are powers
of 3/2. The running time of Zwick’s algorithm is thus, within polylogarithmic factors,
maxL M⋆(n, n/L, n | L).

Let M(a, b, c) denote the running time of the fastest algorithm to multiply an a × b

by a b × c matrix over the integers. Let ω(a, b, c) be the smallest real number r such that
M(na, nb, nc) ≤ O(nr+ε) for all ε > 0.

The best known upper bound for the Min-Plus product running time M⋆(n, n/L, n | L)
is the minimum of O(n3/L) (the brute force algorithm) and Õ(L · M(n, n/L, n)) [3]. For
L = n1−ℓ, M⋆(n, n/L, n | L) is thus at most Õ(min{n2+ℓ, n1−ℓ+ω(1,ℓ,1)}). Over all ℓ ∈ [0, 1],
the runtime is maximized at Õ(n2+ρ) where ρ is such that ω(1, ρ, 1) = 1 + 2ρ.

Hence in particular, the running time of Zwick’s algorithm is Õ(n2+ρ). This running time
has remained unchanged (except for improvements on the bounds on ρ) for almost 20 years.
The current best known bound on ρ is ρ < 0.529, and if ω = 2, then ρ = 1/2.

1 In this paper, [±c0] = {−c0, . . . , c0} and [c0] = {0, . . . , c0}. The Õ notation hides polylogarithmic
factors (although conditions of the form c0 = Õ(1) may be relaxed to c0 ≤ no(1) if we allow extra no(1)

factors in the Õ time bounds).
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Our first result is that u-APSP is sub-n2+ρ fine-grained equivalent to M⋆(n, nρ, n | n1−ρ):

▶ Theorem 1. If M⋆(n, nρ, n | n1−ρ) is in O(n2+ρ−ε) time for ε > 0, then u-APSP can also
be solved in O(n2+ρ−ε′) time for some ε′ > 0. If u-APSP can be solved in O(n2+ρ−ε) time
for some ε > 0, then M⋆(n, nρ, n | n1−ρ) can also be solved in O(n2+ρ−ε) time.

The Min-Plus product of two n × n matrices with arbitrary integer entries is known
to be equivalent to APSP with arbitrary integer entries [10], so that their running times
are the same, up to constant factors. All known algorithms for directed unweighted APSP
(including [34, 3] and others), make calls to Min-Plus product of rectangular matrices with
integer entries that can be as large as say n0.4. It is completely unclear, however, why a
problem in unweighted graphs such as u-APSP should require the computation of Min-Plus
products of matrices with such large entries. Theorem 1 surprisingly shows that it does.
Moreover, it shows that unless we can improve upon the known approaches for Min-Plus
product computation, there will be no way to improve upon Zwick’s algorithm for u-APSP.
The latter is an algebraic problem in disguise.

The main proof of Theorem 1 is simple – what is remarkable are the numerous consequences
on equivalences and conditional hardness that follow from this idea. We first use Theorem 1
to build a class of problems that are all equivalent to u-APSP, via (n2+ρ, n2+ρ)-fine-grained
reductions (see [29] for a survey of fine-grained complexity). In particular, if ω = 2 (or more
generally when ω(1, 1

2 , 1) = 2), these are all problems that are n2.5-fine-grained equivalent.
Recall that in the All-Pairs Longest Paths (APLP) problem, we want to output for every

pair of vertices s, t the weight of the longest path from s to t. While APLP is NP-hard in
general, it is efficiently solvable in DAGs. In the cRed-APSP problem, for a given graph in
which some edges can be colored red, we want to output for every pair of vertices s, t the
weight of the shortest path from s to t that uses at most c red edges. For convenience, we
call all non-red edges blue.

We use the following convention for problem names: the prefix “u-” is for unweighted
graphs; the prefix “[c0]-” is for graphs with weights in [c0] (similarly for “[±c0]-” and for
other ranges). Input graphs are directed unless stated otherwise.

▶ Theorem 2. The following problems either all have O(n2+ρ−ε) time algorithms for some
ε > 0, or none of them do, assuming that c0 = Õ(1):

M⋆(n, nρ, n | n1−ρ),
u-APSP,
[±c0]-APSP for directed graphs without negative cycles,
u-APLP for DAGs,
[±c0]-APLP for DAGs,
u-cRed-APSP for undirected graphs for any 2 ≤ c ≤ Õ(1).

Interestingly, while u-2Red-APSP in undirected graphs above is equivalent to u-APSP and
hence improving upon its Õ(n2+ρ) runtime would be difficult, we show that u-1Red-APSP
in undirected graphs can be solved in Õ(nω) time via a modification of Seidel’s algorithm,
and hence there is a seeming jump in complexity in u-cRed-APSP from c = 1 to c = 2.

Besides the above equivalences we provide some interesting reductions from u-APSP to
other well-studied matrix product and shortest paths problems.

Lincoln, Polak and Vassilevska W. [18] reduce u-APSP to some matrix product problems
such as All-Edges Monochromatic Triangle and the (min, max)-Product studied in [24, 26] and
[25, 9] respectively. Using the equivalence of u-APSP and M⋆(n, n/ℓ, n | ℓ1−p), we can reduce
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u-APSP to another matrix product called Min Witness Equality Product (MinWitnessEq),
where we are given n × n integer matrices A and B, and are required to compute min{k ∈
[n] : A[i, k] = B[k, j]} for every pair of (i, j). This can be viewed as a merge of the Min
Witness product [8] 2 and Equality Product problems [15, 28].

Another natural variant of APSP is the problem of approximating shortest path distances.
Zwick [34] presented an Õ(nω log M) time algorithm for computing a (1 + ε)-multiplicative
approximation for all pairwise distances in a directed graph with integer weights in [M ],
for any constant ε > 0.3 This is essentially optimal assuming no o(nω) time algorithm can
multiple n × n Boolean matrices since any such approximation algorithm can be used to
multiply Boolean matrices.

An arguably better notion of approximation is to provide an additive approximation, i.e.
outputting for every u, v an estimate D′[u, v] for the distance D[u, v] such that D[u, v] ≤
D′[u, v] ≤ D[u, v] + E, where E is an error that can depend on u and v.

At ICALP’08, Roditty and Shapira [20] studied the following variant: given an un-
weighted directed graph and a constant p ∈ [0, 1], compute for all u, v an estimate D′[u, v]
with D[u, v] ≤ D′[u, v] ≤ D[u, v] + D[u, v]p. They gave an algorithm with running time
Õ(maxℓ min{n3/ℓ, M⋆(n, n/ℓ1−p, n | ℓ1−p)}). For example, for p = 0, this matches the
time complexity of Zwick’s exact algorithm for u-APSP; for p = 1, this matches Zwick’s
Õ(nω)-time algorithm with constant multiplicative approximation factor. For p = 0.5, with
the current rectangular matrix multiplication bounds [17], the running time is O(n2.447).

We obtain an improved running time:

▶ Theorem 3. For any p ∈ [0, 1], given a directed unweighted graph, one can obtain additive
D[u, v]p approximations to all distances D[u, v] in time Õ(maxℓ M⋆(n, n/ℓ, n | ℓ1−p)).

The improvement over Roditty and Shapira’s running time is substantial. For example,
for all p ≥ 0.415, the time bound is O(n2.373) (the current matrix multiplication running
time), whereas their algorithm only achieves O(n2.373) for p = 1. Our result also answers one
of Roditty and Shapira’s open question (on whether Õ(nω) time is possible for any p < 1), if
ω > 2.

The new algorithm is also optimal (ignoring logarithmic factors) in a strong sense, as
our reduction technique shows that for all ℓ, M⋆(n, n/ℓ, n | ℓ1−p) can be tightly reduced to
the additive D[u, v]p approximation of APSP. In particular, u-APSP with constant additive
error is fine-grained equivalent to exact u-APSP.

The All-Pairs Lightest Shortest Paths (APLSP) problem studied in [6, 33] asks to compute
for every pair of vertices s, t the distance from s to t (with respect to the edge weights) and
the smallest number of edges over all shortest paths from s and t. Traditional shortest-path
algorithms can be easily modified to find the lightest shortest paths, but not the faster matrix-
multiplication-based algorithms. Our reduction for u-cRed-APSP can be easily modified to
reduce M⋆(n, nρ, n | n1−ρ) to {0, 1}-APLSP in undirected graphs, which can be viewed as a
conditional lower bound of n2+ρ−o(1) for the latter problem.

▶ Corollary 4. If {0, 1}-APLSP in undirected graphs is in O(n2+ρ−ε) time for ε > 0, then
so is M⋆(n, nρ, n | n1−ρ).

2 Recently, there has been renewed interest in studying the Min Witness product, due to a breakthrough [14]
on the All-Pairs LCA in DAGs problem, which was one of the original motivations for studying Min
Witness.

3 Bringmann et al. [5] considered the more unusual setting of very large M , where the log M factor is to
be avoided.
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The fastest known algorithm to date for {0, 1}-APLSP, or more generally, [c0]-APLSP
for c0 = Õ(1), for directed or undirected graphs is by Zwick [33] from STOC’99 and runs
in O(n2.724) time with the current best bounds for rectangular matrix multiplication (the
running time would be Õ(n8/3) if ω = 2). Chan [6] (STOC’07) improved this running time
to Õ(n(3+ω)/2) ≤ O(n2.687) but only if the weights are positive, i.e., for ([c0] − {0})-APLSP
(and so his result does not hold for {0, 1}-APLSP).

Both Zwick’s and Chan’s algorithms solve a more general problem, Lex2-APSP, in which
one is given a directed graph where each edge e is given two weights w1(e), w2(e) and one
wants to find for every pair of vertices u, v the lexicographic minimum over all u-v paths π

of (
∑

e∈π w1(e),
∑

e∈π w2(e)). Then APLSP is Lex2-APSP when all w2 weights are 1, and
the related All-Pairs Shortest Lightest Paths (APSLP) problem is when all w1 weights are 1.

To complement the conditional lower bound for APLSP, and hence Lex2-APSP, we present
new algorithms for [c0]-Lex2-APSP for c0 = Õ(1), both (slightly) improving Chan’s running
time and also allowing zero weights, something that Chan’s algorithm couldn’t support.

▶ Theorem 5. [c0]-Lex2-APSP can be solved in O(n2.66) time for any c0 = Õ(1).

If ω = 2, the above running time would be Õ(n2.5), improving Zwick’s previous Õ(n8/3)
bound [33] and matching our conditional lower bound n2+ρ−o(1). For undirected graphs with
positive weights in [c0] − {0}, we further improve the running time to O(n2.58) under the
current matrix multiplication bounds.

We next consider the natural problem, #APSP, of counting the number of shortest paths
for every pair of vertices in a graph. This problem needs to be solved, for example, when
computing the so-called Betweenness Centrality (BC) of a vertex. BC is a well-studied
measure of vertex importance in social networks. If we let C[s, t] be the number of shortest
paths between s and t, and Cv[s, t] be the number of shortest paths between s and t that go
through v, then BC(v) =

∑
s,t ̸=v Cv[s, t]/C[s, t] and the BC problem is to compute BC(v)

for a given graph and a given node v.
Prior work [4] showed that #APSP and BC in m-edge n-node unweighted graphs can be

computed in O(mn) time via a modification of Breadth-First Search (BFS).4 However, all
prior algorithms assumed a model of computation where adding two integers of arbitrary
size takes constant time. In the more realistic word-RAM model (with O(log n) bit words),
these algorithms would run in Θ̃(mn2) time, as there are explicit examples of graphs with m

edges (for any m, a function of n) for which the shortest paths counts have Θ(n) bits.5 In
particular, the best running time in terms of n so far has been Õ(n4).

We provide the first genuinely Õ(n3) time algorithm for #APSP, and thus Betweenness
Centrality, in directed unweighted graphs.

▶ Theorem 6. u-#APSP can be solved in Õ(n3) time by a combinatorial algorithm.

This runtime cannot be improved since there are graphs for which the output size is Ω(n3).
Since the main difficulty of the #APSP problem comes from the counts being very large,

it is interesting to consider variants that mitigate this. Let U ≤ nÕ(1). Let #mod U APSP be
the problem of computing all pairwise counts modulo U . Let #≤U APSP be the problem of

4 Brandes presented further practical improvements as well.
5 One example is an (n/3 + 2)-layered graph where the first n/3 layers have 2 vertices each and the last

2 layers have n/6 vertices each. The i-th layer and the (i + 1)-th layer are connected by a complete
bipartite graph for each 1 ≤ i ≤ n/3, while the last two layers are connected by O(m) edges.
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computing for every pair of nodes u, v the minimum of their count and U (think of U as a
“cap”). Finally, let #approx-U APSP be the problem of computing a (1 + 1/U)-approximation
of all pairwise counts (think of keeping the log U most significant bits of each count).

We obtain the following result for u-#≤U APSP in directed graphs:

▶ Theorem 7. u-#≤U APSP (in directed graphs) can be solved in n2+ρpolylog U ≤ n2+ρ+o(1)

time.
Furthermore, for any U ≥ 2, if u-#≤U APSP can be solved in O(n2+ρ−ε) time for some

ε > 0, then so can u-APSP (with randomization). For any 2 ≤ U ≤ Õ(1), the converse is
true as well.

Thus, we get a conditionally optimal algorithm for u-#≤U APSP. For 2 ≤ U ≤ Õ(1),
the theorem above gives a fine-grained equivalence between u-#≤U APSP and u-APSP; in
particular, for U = 2, the problem corresponds to testing uniqueness for the shortest path of
each pair. (For large U , however, it is not a fine-grained equivalence since the algorithm for
u-#≤U APSP does not go through Min-Plus product, but rather directly uses fast matrix
multiplication.)

Our algorithm from Theorem 7 is based on Zwick’s algorithm for u-APSP. We show that
one can also modify Seidel’s algorithm for u-APSP in undirected graphs to obtain Õ(nω)
time algorithms for u-#≤U APSP and u-#mod U APSP in undirected graphs.

▶ Theorem 8. u-#≤U APSP and u-#mod U APSP in undirected graphs can be solved in
Õ(nω log U) time.

Furthermore, we show that u-#approx-U APSP in undirected graphs can be solved in
O(n2.58polylog U) time, somewhat surprisingly, by a slight modification of our undirected
Lex2-APSP algorithm (despite the apparent dissimilarity between the two problems).

Paper Organization and Techniques. In Section 3, we show the web of reductions around
u-APSP, proving Theorem 1, Theorem 2, the hardness of additive D[u, v]p approximate
u-APSP and the hardness of u-#≤U APSP in Theorem 7.

In Section 4, we give our algorithms for approximating APSP with additive errors, proving
Theorem 3. In Section 5, we describe our algorithms for Lex2-APSP. Due to space limitation,
we defer our algorithms for various versions of #APSP to the full paper (including an
algorithm for u-#≤U APSP to complete the proof of Theorem 7, the proof of Theorem 8,
and the algorithm for u-#approx-U APSP). An exception is our near-cubic algorithm for exact
u-#APSP (proof of Theorem 6), which is simple and is described in Section 6.

For approximating APSP with additive error, we propose an interesting two-phase variant
of Zwick’s algorithm [34]. Zwick’s algorithm computes distance products of n × (n/ℓ) with
(n/ℓ) × n matrices for ℓ in a geometric progression. Our idea is to do less during the first
phase, computing products of (n/ℓ) × (n/ℓ) with (n/ℓ) × n matrices instead. We complete
the work during a second phase. The observation is that for the APSP approximation
problem, we can afford to perform the distance computation in the first phase exactly, but
use approximation to speed up the second phase. The resulting approximation algorithm is
even simpler than Roditty and Shapira’s previous (slower) algorithm [20].

Our Lex2-APSP algorithm for directed graphs also uses this two-phase approach, but
in a more sophisticated way to control the size of the numbers in the rectangular matrix
products. A number of interesting new ideas are needed.
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To further illustrate the power of this two-phase approach, we also show (in the full
version) how the idea can lead to an alternative Õ(c0nω) time algorithm for the standard
[c0]-APSP problem for undirected graphs, rederiving Shoshan and Zwick’s result [22] in
an arguably simpler way. This may be of independent interest (as Shoshan and Zwick’s
algorithm has complicated details).

Our Lex2-APSP algorithm for undirected graphs uses small dominating sets for high-
degree vertices, an idea of Aingworth et al. [1]. Originally, this idea was for developing
combinatorial algorithms for approximate shortest paths that avoid matrix multiplication.
Interestingly, we show that this idea can be combined with (rectangular) matrix multiplication
to compute exact Lex2 shortest paths.

2 Preliminaries

The computation model of all algorithms and reductions in this paper is the word-RAM
model with O(log n) bit words.

We let M(n1, n2, n3) denote the best known running time for multiplying an n1 × n2
by an n2 × n3 matrix over the integers. We use ω(a, b, c) to denote the rectangular matrix
multiplication exponent, i.e. the smallest real number z such that M(na, nb, nc) ≤ O(nz+ε)
for all ε > 0. In particular, let ω = ω(1, 1, 1). It is known that ω ∈ [2, 2.373) [2, 27, 16]. The
best known bounds for ω(a, b, c) are in [17].

Let M⋆(n1, n2, n3 | ℓ1, ℓ2) be the time to compute the Min-Plus product of an n1 × n2
matrix A with an n2 × n3 matrix B, where all finite entries of A are from [ℓ1] and all finite
entries of B are from [ℓ2]. Let us also denote M⋆(n1, n2, n3 | ℓ) := M⋆(n1, n2, n3 | ℓ, ℓ).
It is known [3] that M⋆(n1, n2, n3 | ℓ) ≤ Õ(ℓ · M(n1, n2, n3)). This algorithm in [3] first
replaces each entry e in both matrices A, B by (n2 + 1)e, then uses fast rectangular matrix
multiplication to compute the product of the new matrices A, B. Since each arithmetic
operation takes Õ(ℓ) time, the running time follows.

More generally, let M⋆(n1, n2, n3 | m1, m2, m3 | ℓ1, ℓ2) be the time to compute m3 given
entries of the Min-Plus product of an n1 × n2 matrix A with an n2 × n3 matrix B, where A

has at most m1 finite entries, all from [ℓ1], and B has at most m2 finite entries, all from [ℓ2].

3 Directed APSP and Rectangular Min-Plus with Bounded Weights

u-APSP [±c0]-APSPu-APLP in DAG[±c0]-APLP in DAG

Undir. u-cRed-APSPM⋆(n, nρ, n | n1−ρ)u-#≤cAPSP

Co
r.

11

Cor.
11

Thm
. 12

Thm. 12

Thm. 13Thm. 7

Undir. {0, 1}-APLSP u-#mod cAPSP MinWitnessEq

Cor. 14
Thm 16

Thm. 18

Figure 1 The web of (a subset of) the reductions in this paper. All reductions are (n2+ρ, n2+ρ)-fine
grained reductions, where ρ is such that ω(1, ρ, 1) = 1 + 2ρ. The problems in the bounding box are
sub n2+ρ-equivalent. Here, c0 = Õ(1), and 2 ≤ c ≤ Õ(1). For the current best bounds on rectangular
matrix multiplication [17], ρ is roughly 0.529.
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Here we consider the All-Pairs Shortest Paths (APSP) problem in unweighted directed
graphs, or more generally in directed graphs with integer weights in [±c0] with c0 = Õ(1)
and no negative cycles. Zwick [34] showed that this problem in n-node graphs can be solved
in time Õ(n2+ρ) time where ρ is such that ω(1, ρ, 1) = 1 + 2ρ. For the current best bounds
on rectangular matrix multiplication [17], ρ is roughly 0.529.

Zwick’s algorithm can be viewed as a reduction to rectangular Min-Plus matrix multiplic-
ation. The algorithm proceeds in stages, for each ℓ from 0 to log3/2(n1−ρ).

In stage ℓ, up to logarithmic factors, one needs to compute the Min-Plus product of
two matrices Aℓ and Bℓ where Aℓ has dimensions n × n/(3/2)ℓ and Bℓ has dimensions
n/(3/2)ℓ × n and both matrices have entries bounded by (3/2)ℓ. Intuitively, this computes
the pairwise distances that are roughly (3/2)ℓ. After stage log3/2(n1−ρ), the algorithm also
runs Dijkstra’s algorithm6 to and from Õ(nρ) nodes S sampled randomly and uses Õ(n2+ρ)
extra time to complete the computation of the distances by considering for every u, v ∈ V ,
mins∈S{D[u, s] + D[s, v]}. This can also be viewed as using the brute-force algorithm to
compute the Min-Plus products when (3/2)ℓ ≥ n1−ρ.

The total running time is within logarithmic factors of

n2+ρ +
log3/2(n1−ρ)∑

ℓ=0
M⋆(n, n/(3/2)ℓ, n | (3/2)ℓ),

where M⋆(n1, n2, n3 | M) is the Min-Plus product running time for matrices with entries
in {0, . . . , M} and dimensions n1 × n2 by n2 × n3. With the known bounds for Min-Plus
product, M⋆(n, nτ , n | M) ≤ Õ(Mnω(1,τ,1)), and the running time of Zwick’s algorithm
becomes Õ(n2+ρ + n1−ρ+ω(1,ρ,1)), which is Õ(n2+ρ) when ω(1, ρ, 1) = 1 + 2ρ.

If ω = 2, then ρ is 1/2 and the running time of Zwick’s algorithm becomes Õ(n2.5). This
running time is a seeming barrier for the APSP problem in directed graphs.

In the full version we prove the following technical theorem which rephrases Zwick’s
algorithm [34] as a reduction.

▶ Theorem 9. Let ρ be the solution to ω(1, ρ, 1) = 1 + 2ρ. If the Min-Plus product of an
n × nρ matrix by an nρ × n matrix where both matrices have integer entries bounded by n1−ρ

(denoted as M⋆(n, nρ, n | n1−ρ)) can be computed in O(n2+ρ−ϵ) time for some ϵ > 0, then
APSP in directed n node graphs with integer edge weights in [±c0] for c0 = Õ(1) can be
solved in O(n2+ρ−ϵ′) time for ϵ′ > 0.

If ω = 2, the above theorem statement becomes: If the Min-Plus problem of an n ×
√

n

matrix by a
√

n × n matrix where both matrices have integer entries bounded by
√

n can
be computed in O(n2.5−δ) time for some δ > 0, then APSP in directed n node graphs with
integer edge weights in [±c0] for c0 = Õ(1) can be solved in O(n2.5−δ′) time for δ′ > 0.

We will show a reduction in the reverse direction as well, showing that rectangular
Min-Plus product with suitably bounded entries can be reduced back to unweighted directed
APSP.

▶ Theorem 10. For any fixed k ∈ (0, 1), M⋆(n, nk, n | n1−k) can be reduced in O(n2) time
to APSP in a directed unweighted graph with O(n) vertices.

6 If there are negative weights, one also needs to run single source shortest paths (SSSP) from a node, as
in Johnson’s algorithm and then reweight the edges so that they are nonnegative. SSSP can be solved
in Õ((m + n1.5) log2(c0)) = Õ(n2) time [23].
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A consequence of Theorem 9, and the fact that u-APSP is a special case of [±c0]-APSP
for directed graphs without negative cycles, is the following equivalence.

▶ Corollary 11. Let ρ be such that ω(1, ρ, 1) = 1 + 2ρ. Then u-APSP, [±c0]-APSP for
directed graphs without negative cycles, and M⋆(n, nρ, n | n1−ρ) are sub-n2+ρ fine-grained
equivalent for c0 = Õ(1).

In particular, if ω = 2, APSP in directed unweighted graphs is sub-n2.5 fine-grained
equivalent to the Min-Plus problem of an n ×

√
n matrix by a

√
n × n matrix where both

entries have integer entries bounded by
√

n.

Proof of Theorem 10. Let A be an n × nk matrix and let B be an nk × n matrix, both with
entries in {1, . . . , n1−k}.

We will create a directed graph as follows. Let I be a set of n nodes, which represent the
rows of A. Let J be a set of n nodes, which represent the columns of B.

For every p ∈ [nk] corresponding to a column of A (or row of B), create a path of 2n1−k +1
nodes:

X(p) := xp,n1−k → xp,n1−k−1 → . . . → xp,0 → yp,1 → yp,2 → . . . → yp,n1−k .

For every i ∈ [n] and p ∈ [nk], consider t = A[i, p] ∈ [n1−k]. Add an edge from i ∈ I to
xp,t. Similarly, for every j ∈ [n] and p ∈ [nk], consider t′ = B[p, j] ∈ [n1−k]. Add an edge
from yp,t′ to j ∈ J .

I J

i
j

p
xp,0

Ai,p Bp,j

Figure 2 Sketch of the construction in proof of Theorem 10. For each vertex i and path p, we
add an edge from i to a vertex on the path p whose distance to the middle point xp,0 on the path is
Ai,p. For each path p and vertex j, we add an edge from a vertex on the path whose distance from
the middle point xp,0 on the path is Bp,j to vertex j.

Now, consider some i ∈ [n], p ∈ [nk], j ∈ [n] and A[i, p] + B[p, j]. If we consider the
path consisting of (i, xp,A[i,p]), (yp,B[p,j], j) and the subpath of X(p) between xp,A[i,p] and
yp,B[p,j], its length is exactly 2 + A[i, p] + B[p, j]. Also, any path from i to j is of this
form. Thus, the shortest path from i ∈ I to j ∈ J in the created graph is exactly of length
2 + minp{A[i, p] + B[p, j]}, and thus computing APSP in the directed unweighted graph we
have created computes the Min-Plus product of A and B.

The number of vertices in the graph is O(nk · n1−k) = O(n). ◀

One consequence of Corollary 11 is that u-APSP and computing the predecessor matrix
in unweighted directed APSP are also sub-n2+ρ fine-grained equivalent. It was known that
Zwick’s algorithm [34] can compute the predecessor matrix for unweighted directed APSP,
which can also be viewed as a sub-n2+ρ time reduction from computing the predecessor
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matrix to M⋆(n, nρ, n | n1−ρ). Also, if we can compute the predecessor matrix for the graph
constructed in the above proof, we would know which path X(p) the shortest path from i to
j uses, which in turn solves M⋆(n, nρ, n | n1−ρ). Thus, computing the predecessor matrix for
unweighted directed APSP is sub-n2+ρ fine-grained equivalent to M⋆(n, nρ, n | n1−ρ), and
thus also equivalent to u-APSP.

Zwick’s algorithm is general enough to apply to some variants of APSP. One example
is the All-Pairs Longest Paths (APLP) problem in DAGs. To compute APLP in a DAG,
we first negate the weight of every edge, then the problem becomes APSP, on which we
can directly apply Zwick’s algorithm. Therefore, Zwick’s algorithm show reductions from
u-APLP and [±c0]-APLP in DAGs to M⋆(n, nρ, n | n1−ρ).

Perhaps more surprisingly, the other direction of the reduction also holds. Therefore,
APLP in DAG and APSP in graphs with weights bounded by Õ(1) are sub-O(n2+ρ) equivalent.

▶ Theorem 12. Let ρ be such that ω(1, ρ, 1) = 1 + 2ρ. Then u-APLP in DAGs, [±c0]-APLP
in DAGs and M⋆(n, nρ, n | n1−ρ) are sub-n2+ρ fine-grained equivalent.

The proof of Theorem 12 follows from the same approach and is deferred to the full
version.

All problems shown equivalent to u-APSP above are problems on directed graphs. One
natural question is that whether some problems on undirected graphs are also in this
equivalence class, or whether we can show some undirected graph problems require n2+ρ−o(1)

time if we assume problems in this equivalence class also require n2+ρ−o(1) time. To answer
these questions, we first consider the u-cRed-APSP problem.

▶ Theorem 13. Let ρ be such that ω(1, ρ, 1) = 1 + 2ρ. u-cRed-APSP for 2 ≤ c = Õ(1) and
M⋆(n, nρ, n | n1−ρ) are sub-n2+ρ fine-grained equivalent.

The proof of Theorem 13 uses a similar graph construction and is in the full version.
By slightly modifying the proof of Theorem 13, we can show conditional hardness for

APLSP on undirected graphs where the edge weights are in {0, 1}. The proof is in the full
version.

▶ Corollary 14. Let ρ be such that ω(1, ρ, 1) = 1 + 2ρ. Suppose M⋆(n, nρ, n | n1−ρ) requires
n2+ρ−o(1) time. Then APLSP on undirected graphs where the edge weights can be {0, 1} also
requires n2+ρ−o(1) time.

Using similar ideas we also show hardness for Vertex-Weighted APSP in undirected graphs,
where the vertex weights may be large. (The current best algorithms for Vertex-Weighted
APSP for directed graphs [6, 32] had running time about O(n2.85); the bound is Õ(n11/4) if
ω = 2. No better algorithms were known in the undirected graphs – which our conditional
lower bound attempts to explain.) The proof is in the full version.

▶ Corollary 15. Let ρ be such that ω(1, ρ, 1) = 1 + 2ρ. Suppose M⋆(n, nρ, n | n1−ρ) requires
n2+ρ−o(1) time. Then vertex-weighted APSP on undirected graphs where the vertex weights
are in [O(n1−ρ)] also requires n2+ρ−o(1) time.

The conditional hardness for u-#mod U APSP and u-#≤U APSP for any U ≥ 2 can be
proved by combining our graph construction with randomized techniques for a unique variant
of Min-Plus product; see the proof in the full version.

▶ Theorem 16. Let ρ be such that ω(1, ρ, 1) = 1 + 2ρ. Suppose M⋆(n, nρ, n | n1−ρ) requires
n2+ρ−o(1) time (with randomization). Then u-#mod U APSP and u-#≤U APSP for any U ≥ 2
requires n2+ρ−o(1) time.
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In Section 4, we will give an algorithm for approximating APSP with sublinear additive
errors. Using the same technique as our reductions from Rectangular Min-Plus product to
APSP problems, we can show a conditional lower bound for this problem.

▶ Theorem 17. Given a directed unweighted graph G = (V, E) with n vertices and a
function f > 0 where ℓ

f(ℓ) is nondecreasing. Suppose we can approximate the shortest-
path distance D[u, v] with additive error f(D[u, v]), for all u, v ∈ V in T (n) time, then
max1≤ℓ≤n M⋆

(
n, n/ℓ, n | ℓ

f(ℓ)

)
≤ O(T (n)).

Proof. Fix any 1 ≤ ℓ ≤ n. First, note that M⋆
(

n, n/ℓ, n | ℓ
f(ℓ)

)
=

Θ
(

M⋆
(

n, n/ℓ, n | ℓ
Cf(ℓ)

))
for any constant C. Here, we take C = 12 to be a large enough

constant.
Suppose we are given an n × n/ℓ matrix A and an n/ℓ × n matrix B, whose entries are

positive integers bounded by ℓ
12f(ℓ) , and we want to compute their Min-Plus product A ⋆ B.

We use a similar reduction as the one in the proof of Theorem 10, but stretching the length
of the middle paths. Specifically, we create vertex set I of size n, vertex set J of size n, and
n/ℓ paths of the form X(p) := xp, ℓ

3f(ℓ)
⇝ · · · ⇝ xp,0 ⇝ yp,0 ⇝ · · · ⇝ yp, ℓ

3f(ℓ)
. From xp,i to

xp,i−1 and yp,j to yp,j+1, we embed paths of length 6f(ℓ); from xp,0 to yp,0, we embed a
path of length ℓ − 2. Similar to previous reductions, for every i ∈ [n] = I and p ∈ [n/ℓ], we
add an edge from i to xp,A[i,p]; for every j ∈ [n] = J and p ∈ [n/ℓ], we add an edge from j to
yp,B[p,j]. Then the distance from i ∈ I to j ∈ J in this graph equals ℓ + 6f(ℓ)(A ⋆ B)[i, j].

Since 0 ≤ (A ⋆ B)[i, j] ≤ ℓ
6f(ℓ) , we must have ℓ ≤ ℓ + 6f(ℓ)(A ⋆ B)[i, j] ≤ 2ℓ. Since ℓ

f(ℓ) is
nondecreasing, we must have f(tℓ) ≤ tf(ℓ) for any t ≥ 1, and thus f(ℓ + 6f(ℓ)(A ⋆ B)[i, j]) ≤
2f(ℓ). Therefore, an f(ℓ + 6f(ℓ)(A ⋆ B)[i, j])-additive approximation of APSP can determine
that the distance from i ∈ I to j ∈ J is in ℓ + 6f(ℓ)(A ⋆ B)[i, j] ± 2f(ℓ), from which we can
compute (A ⋆ B)[i, j] easily since (A ⋆ B)[i, j] must be an integer. ◀

Finally, we give a reduction from u-APSP to Min Witness Equality, where we are given
n × n integer matrices A and B, and are required to compute min{k ∈ [n] : A[i, k] = B[k, j]}
for every pair of (i, j). Reductions from u-APSP to matrix product problems are considered by
Lincoln et al. [18], where they show reductions from u-APSP to the All-Edges Monochromatic
Triangle problem and (min, max)-product problem, but their techniques do not seem to apply
to Min Witness Equality.

The proof of the following theorem is deferred to the full version.

▶ Theorem 18. Let ρ be such that ω(1, ρ, 1) = 1 + 2ρ. Suppose M⋆(n, nρ, n | n1−ρ) requires
n2+ρ−o(1) time. Then Min Witness Equality requires n2+ρ−o(1) time.

4 Additive Approximation Algorithms for APSP

In this section, we give an algorithm for approximate APSP with additive errors in dir-
ected unweighted graphs, to match the lower bound that we have just proved in The-
orem 17 (ignoring logarithmic factors). Namely, our algorithm achieves running time
Õ(maxℓ M⋆(n, n/ℓ, n | ℓ1−p)), which improves Roditty and Shapira’s previous algorithm [20]
with running time Õ(maxℓ min{n3/ℓ, M⋆(n, n/ℓ1−p, n | ℓ1−p)}).

Let D[u, v] denote the shortest-path distance from u to v.
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Overview. The new algorithm is a variation of Zwick’s exact u-APSP algorithm [34], and
is actually simpler than Roditty and Shapira’s algorithm. The idea is to compute as many
as the shortest-path distances exactly as we can in Õ(nω) time in an initial phase. In the
second phase, we apply rectangular matrix multiplication to submatrices computed from the
first phase, where entries are approximated by rounding and rescaling.

Preliminaries. For every ℓ that is a power of 3/2, let Rℓ ⊆ V be a subset of Õ(n/ℓ) vertices
that hits all shortest paths of length ℓ/2 [34]. (For example, a random sample works with
high probability.) We may assume that R(3/2)i ⊇ R(3/2)i+1 (because otherwise, we can add
R(3/2)j to R(3/2)i for all j > i and the size bound would still hold). For subsets S1, S2 ⊆ V ,
let D(S1, S2) denote the submatrix of D containing the entries for (u, v) ∈ S1 × S2.

Phase 1. We first solve the following subproblem: compute D[u, v] (exactly) for all (u, v) ∈
Rℓ × V with D[u, v] ≤ ℓ, and similarly for all (u, v) ∈ V × Rℓ with D[u, v] ≤ ℓ.

Suppose we have already computed D[u, v] for all (u, v) ∈ R2ℓ/3 × V with D[u, v] ≤ 2ℓ/3,
and similarly for all (u, v) ∈ V × R2ℓ/3 with D[u, v] ≤ 2ℓ/3.

We take the Min-Plus product D(Rℓ, R2ℓ/3)⋆D(R2ℓ/3, V ). For each (u, v) ∈ Rℓ ×V , if its
output entry is smaller than the current value of D[u, v], we reset D[u, v] to the smaller value.
Similarly, we take the Min-Plus product D(V, R2ℓ/3)⋆D(R2ℓ/3, Rℓ). For each (u, v) ∈ V ×Rℓ,
if its output entry is smaller than the current value of D[u, v], we reset D[u, v] to the smaller
value. We reset all entries greater than ℓ to ∞.

To justify correctness, observe that for any shortest path π of length between 2ℓ/3 and ℓ,
the middle (2ℓ/3)/2 = ℓ/3 vertices must contain a vertex of R2ℓ/3, which splits π into two
subpaths each of length at most ℓ/2 + ℓ/6 ≤ 2ℓ/3.

We do the above for all ℓ’s that are powers of 3/2. The total cost is

Õ
(

max
ℓ

M⋆(n/ℓ, n/ℓ, n | ℓ)
)

≤ Õ
(

max
ℓ

ℓ · M⋆(n/ℓ, n/ℓ, n)
)

≤ Õ
(

max
ℓ

ℓ2(n/ℓ)ω
)

= Õ(nω).

Phase 2. Next we approximate all shortest-path distances D[u, v] where D[u, v] is between
2ℓ/3 and ℓ, with additive error O(f(ℓ)) for a given function f , as follows:

We compute the Min-Plus product D(V, R2ℓ/3)⋆D(R2ℓ/3, V ), keeping only entries bounded
by O(ℓ). As we allow additive error O(f(ℓ)), we round entries to multiples of f(ℓ). This
takes Õ(M⋆(n, n/ℓ, n | ℓ

f(ℓ) )) time.
To justify correctness, observe as before that in any shortest path π of length between

2ℓ/3 and ℓ, some vertex in R2ℓ/3 splits the path into two subpaths of length at most 2ℓ/3.
We repeat for all ℓ’s that are powers of 3/2. The total cost is

Õ
(

maxℓ M⋆(n, n/ℓ, n | ℓ
f(ℓ) )

)
.

Standard techniques for generating witnesses for matrix products can be applied to
recover the shortest paths (e.g., see [11, 34]).

▶ Theorem 19. Given a directed unweighted graph G = (V, E) with n vertices and a function
f where ℓ

f(ℓ) is nondecreasing, we can approximate the shortest-path distance D[u, v] with

additive error O(f(D[u, v])) for all u, v ∈ V , in Õ
(

maxℓ M⋆(n, n/ℓ, n | ℓ
f(ℓ) )

)
time.

▶ Remark. For f(ℓ) = ℓp, we can upper-bound the running time by

Õ

(
max

ℓ
M⋆(n, n/ℓ, n | ℓ1−p)

)
≤ Õ

(
L1−p · M(n, n/L, n) + n3/L

)
≤ Õ

(
L1−p(n2+o(1) + nω/L(ω−2)/(1−α)) + n3/L

)
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for any choice of L, where α is the rectangular matrix multiplication exponent (satisfying
ω(1, 1, α) = 2). For example, we can set L = n3−ω, and for p > 1 − min{ ω−2

1−α , ω−2
3−ω }, get

optimal Õ(nω) running time. In fact, with the current rectangular matrix multiplication
bounds we get Õ(n2.373) time for p ≥ 0.415 ≥ (ω(1, 0.373, 1) − 2 · 0.373 − 1)/(1 − 0.373).
Roditty and Shapira [20] specifically asked whether there exists p < 1 for which Õ(nω) time
is possible; we have thus answered their question affirmatively if ω > 2.
▶ Remark. For directed graphs with weights from [c0], the running time is

Õ

(
c0nω + max

ℓ
M⋆(n, n/ℓ, n | c0

ℓ
f(ℓ) )

)
.

5 Algorithms for All-Pairs Lightest Shortest Paths

In this section, we describe algorithms for the following problem, which includes both All-
Pairs Lightest Shortest Paths (APLSP) and Shortest Lightest Paths (APSLP) as special
cases:

▶ Problem 20. (Lex2-APSP) We are given a graph G = (V, E) with n vertices, where
each edge (u, v) ∈ E has a “primary” weight w1(u, v) and a “secondary” weight w2(u, v).
For every pair of vertices u, v ∈ V , we want to find a path π from u to v that minimizes
(
∑

e∈π w1(e),
∑

e∈π w2(e)) lexicographically.

Let D[u, v] be the lexicographical minimum of (
∑

e∈π w1(e),
∑

e∈π w2(e)). Let D1[u, v]
be the minimum of

∑
e∈π w1(e) (the shortest-path distance) and let D2[u, v] be the second

coordinate of D[u, v]. APLSP corresponds to the case when all secondary edge weights are 1,
whereas APSLP corresponds to the case when all primary edge weights are 1.

The following lemma, which will be important in the analysis of our Lex2-APSP algorithm,
bounds the complexity of Min-Plus product of an n1 × n2 matrix A and an n2 × n3 matrix
B in the case when the finite entries of A come from a small range [ℓ1] (but the finite entries
of B may come from a large range [ℓ2]). The bound can be made sensitive to the number
m2 of finite entries of B and the number m3 of output entries we want. The lemma is
a variant of [6, Theorem 3.5] (the basic approach originates from Matoušek’s dominance
algorithm [19], but this variant requires some extra ideas). It also generalizes and improves
(using rectangular matrix multiplication) Theorem 1.2 in [30].

▶ Lemma 21. M⋆(n1, n2, n3 | ℓ1, ℓ2) = Õ
(

min
t

(M⋆(n1, n2, n2n3/t | ℓ1) + tn1n3)
)

. More

generally, M⋆(n1, n2, n3 | m1, m2, m3 | ℓ1, ℓ2) = Õ
(

min
t

(M⋆(n1, n2, m2/t | ℓ1) + tm3)
)

.

Proof. Divide each column of B into groups of t entries by rank: the first group contains
the t smallest elements, the second group contains the next t smallest, etc. (ties in ranks can
be broken arbitrarily). Each column may have at most t leftover entries. The total number
of groups is at most m2/t.

For each i ∈ [n1] and j′ ∈ [m2/t], let C[i, j′] be true iff there exists k ∈ [n2] such that
A[i, k] < ∞ and group j′ contains an element with row index k. Computing C reduces to
taking a Boolean matrix product and has cost O(M(n1, n2, m2/t)).

For each i ∈ [n1] and j′ ∈ [m2/t], suppose that group j′ is part of column j and the
maximum element in group j′ is x; let Ĉ[i, j′] = mink:B[k,j]∈[x,x+ℓ1](A[i, k] + B[k, j]). Since
entries in A are from the range [ℓ1] ∪ {∞}, and we only keep a size ℓ1 + 1 range of values
for matrix B, computing Ĉ reduces to taking a Min-Plus product with entries in [ℓ1] (after
shifting) and has cost O(M⋆(n1, n2, m2/t | ℓ1)).

ICALP 2021



47:14 Algorithms and Reductions for Small Weight APSP

To compute the output entry at each of the m3 positions (i, j), we find the group j′ in
column j with the smallest rank such that C[i, j′] is true. Let x be the maximum element in
group j′. The answer mink(A[i, k] + B[k, j]) is at most x + ℓ1. Thus, the answer is defined
by an index k that (i) corresponds to an element in group j′, or (ii) corresponds to a leftover
element in column j, or (iii) has B[k, j] ∈ [x, x + ℓ1]. Cases (i) and (ii) can be handled by
linear search in O(t) time; case (iii) is handled by looking up Ĉ[i, j′]. The total time to
compute m3 output entries is O(tm3). ◀

5.1 [c0]-Lex2-APSP

Let c0 = Õ(1). For directed graphs, Zwick [33] presented a variant of his u-APSP
algorithm that solves [c0]-Lex2-APSP (and thus [c0]-APLSP and [c0]-ALPSP) in time
Õ(maxℓ M⋆(n, n/ℓ, n | ℓ2)) ≤ Õ(minL(L2M(n, n/L, n) + n3/L)). This is O(n2.724) by
the current bounds on rectangular matrix multiplication [17] (and is Õ(n8/3) if ω = 2).

Chan [6] gave a faster algorithm for ([c0] − {0})-Lex2-APSP (and in fact a special case of
Vertex-Weighted APSP that includes ([c0] − {0})-Lexk-APSP for an arbitrary constant k)
in time Õ(n(3+ω)/2), which is O(n2.687) by the current matrix multiplication exponent (and
is Õ(n2.5) if ω = 2). Zwick’s algorithm works even when zero primary weights are allowed,
but Chan’s algorithm does not (part of the difficulty is that the secondary distance of a
path may be much larger than the primary distance). A more general version of Chan’s
algorithm [6] can handle zero primary weights (and [c0]-Lexk-APSP for constant k) but has
a worse time bound of Õ(n(9+ω)/4), which can be slightly reduced using rectangular matrix
mutiplication [32].

We describe an O(n2.6581)-time algorithm to solve [c0]-Lex2-APSP for directed graphs,
which can handle zero weights and is faster than Zwick’s O(n2.724)-time algorithm; it is also
slightly faster than Chan’s algorithm. The algorithm uses rectangular matrix multiplication
(without which the running time would be Õ(n(ω+3)/2)). It should be noted that Chan’s
previous algorithm can’t be easily sped up using rectangular matrix multiplication, besides
being inapplicable when there are zero primary weights.

Overview. The new algorithm can be viewed as an interesting variant of Zwick’s u-APSP
algorithm [34]. Zwick’s algorithm uses rectangular Min-Plus products of dimensions around
n × n/ℓ and n/ℓ × n, in geometrically increasing parameter ℓ. Our algorithm proceeds in two
phases. In both phases, we use the rectangular products of dimensions around n/ℓ × n/ℓ

and n/ℓ × n. In the first phase, we consider ℓ in increasing order; in the second, we consider
ℓ in decreasing order. In these Min-Plus products, entries of the first matrix in each product
come from a small range; this enables us to use Lemma 21.

Preliminaries. Let L be a parameter to be set later. Let λ[u, v] denote the length of a
lexicographical shortest path between u and v. In this section, the length of a path refers to
the number of edges in the path.

For every ℓ that is a power of 3/2, as in Section 4, let Rℓ ⊆ V be a subset of Õ(n/ℓ) vertices
that hits all shortest paths of length ℓ/2 [33, 34]. We may assume that R(3/2)i ⊇ R(3/2)i+1

(as before). Set R1 = V .
For S1, S2 ⊆ V , let D(S1, S2) denote the submatrix of D containing the entries for

(u, v) ∈ S1 × S2.
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Phase 1. We first solve the following subproblem for a given ℓ ≤ L: compute D[u, v] for all
(u, v) ∈ Rℓ × V with λ[u, v] ≤ ℓ, and similarly for all (u, v) ∈ V × Rℓ with λ[u, v] ≤ ℓ. (We
don’t know λ[u, v] in advance. More precisely, if λ[u, v] ≤ ℓ, the computed value should be
correct; otherwise, the computed value is only guaranteed to be an upper bound.)

Suppose we have already computed D[u, v] for all (u, v) ∈ R2ℓ/3 × V with λ[u, v] ≤ 2ℓ/3,
and similarly for all (u, v) ∈ V × R2ℓ/3 with λ[u, v] ≤ 2ℓ/3.

We take the Min-Plus product D(Rℓ, R2ℓ/3) ⋆ D(R2ℓ/3, V ) (where elements are compared
lexicographically). For each (u, v) ∈ Rℓ × V , if its output entry is smaller than the current
value of D[u, v], we reset D[u, v] to the smaller value. Similarly, we take the Min-Plus product
D(V, R2ℓ/3) ⋆ D(R2ℓ/3, Rℓ). For each (u, v) ∈ V × Rℓ, if its output entry is smaller than the
current value of D[u, v], we reset D[u, v] to the smaller value. We reset all entries greater
than c0ℓ to ∞.

To justify correctness, observe that for any shortest path π of length between 2ℓ/3 and ℓ,
the middle (2ℓ/3)/2 = ℓ/3 vertices must contain a vertex of R2ℓ/3, which splits π into two
subpaths each of length at most ℓ/2 + ℓ/6 ≤ 2ℓ/3.

To take the product, we map each entry D[u, v] of D(R2ℓ/3, V ) to a number D1[u, v] ·
c0ℓ + D2[u, v] ∈ [Õ(ℓ2)]. It is more efficient to break the product into ℓ separate products,
by putting entries of D(Rℓ, R2ℓ/3) with a common D1 value into one matrix. Then after
shifting, the finite entries of each such matrix are in [Õ(ℓ)]. (The entries of D(R2ℓ/3, V ) are
still in [Õ(ℓ2)].) Hence, the computation takes time Õ(ℓ · M⋆(n/ℓ, n/ℓ, n | ℓ, ℓ2)).

We do the above for all ℓ ≤ L that are powers of 3/2 (in increasing order).

Phase 2. Next we solve the following subproblem for a given ℓ ≤ L: compute D[u, v] for
all (u, v) ∈ R2ℓ/3 × V with λ[u, v] ≤ L.

Suppose we have already computed D[u, v] for all (u, v) ∈ Rℓ × V with λ[u, v] ≤ L.
We take the Min-Plus product D(R2ℓ/3, Rℓ) ⋆ D(Rℓ, V ), keeping only entries bounded

by Õ(ℓ) in the first matrix and Õ(L) in the second matrix. For each (u, v) ∈ V × Rℓ, if
its output entry is smaller than the current value of D[u, v], we reset D[u, v] to the smaller
value.

To justify correctness, recall that for (u, v) ∈ R2ℓ/3 × V , if λ[u, v] < 2ℓ/3, then D[u, v] is
already computed in Phase 1. On the other hand, in any shortest path π of length between
2ℓ/3 and L, the first ℓ/2 vertices of the path must contain a vertex of Rℓ.

To take the product, we map each entry D[u, v] of D(R2ℓ/3, V ) to a number D1[u, v] ·c0L+
D2[u, v] ∈ [Õ(ℓL)]. As before, it is better to perform ℓ separate products, by putting entries
of D(R2ℓ/3, Rℓ) with a common D1 value into one matrix. Then after shifting, the finite
entries of each such matrix are in [Õ(ℓ)]. (The entries of D(R2ℓ/3, V ) are still in [Õ(ℓL)].)
Hence, the computation takes time Õ(ℓ · M⋆(n/ℓ, n/ℓ, n | ℓ, ℓL)).

We do the above for all ℓ ≤ L that are powers of 3/2 (in decreasing order).

Last step. By the end of Phase 2 (when ℓ reaches 1), we have computed D[u, v] for all (u, v)
with λ[u, v] ≤ L. To finish, we compute D[u, v] for all (u, v) with λ[u, v] > L, as follows:

We run Dijkstra’s algorithm O(|RL|) times to compute D[u, v] for all (u, v) ∈ RL × V

and for all (u, v) ∈ V × RL. This takes O(|RL|n2) = Õ(n3/L) time. We then compute
D(V, RL) ⋆ D(RL, V ) by brute force in O(|RL|n2) = Õ(n3/L) time.

Correctness follows since every shortest path of length more than L must pass through a
vertex in RL.

As before, standard techniques for generating witnesses for matrix products can be applied
to recover the shortest paths [11, 34].
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Total time. The cost of Phase 2 dominates the cost of Phase 1. By Lemma 21, the total
cost is

Õ

(
max
ℓ≤L

ℓ · M⋆(n/ℓ, n/ℓ, n | ℓ, ℓL) + n3/L

)
≤ Õ

(
max
ℓ≤L

ℓ · min
t

(
M⋆(n/ℓ, n/ℓ, n2/(ℓt) | ℓ) + tn2/ℓ

)
+ n3/L

)
.

We set t = n/L and obtain

Õ(max
ℓ≤L

ℓ2 · M(n/ℓ, n/ℓ, Ln/ℓ) + n3/L).

Intuitively, the maximum occurs when ℓ = 1, and so we should choose L to minimize
Õ(M(n, n, Ln) + n3/L). With the current bounds on rectangular matrix multiplication [17],
we choose L = n0.342 and get running time O(n2.6581). (Formally, we can verify this time
bound using the convexity of the function 2x + ω(1 − x, 1 − x, 1.342 − x).)

▶ Theorem 22. [c0]-Lex2-APSP (and thus [c0]-APLSP and [c0]-APSLP) can be solved in
O(n2.6581) time for any c0 = Õ(1).

Remarks. Without rectangular matrix multiplication, the above still gives a time bound of
Õ(Lnω + n3/L), yielding Õ(n(3+ω)/2).

The same algorithm works even with negative weights (i.e., for [±c0]-Lex2-APSP), like
Zwick’s previous algorithm [33], assuming no negative cycles.

In the full version, we describe an alternative algorithm that has the same running time,
though it does not allow zero primary edge weights (or negative weights).

5.2 Undirected ([c0] − {0})-Lex2-APSP
A natural question is whether APLSP or APSLP is easier for undirected graphs. We now
describe a faster O(n2.58)-time algorithm for ([c0] − {0})-Lex2-APSP for undirected graphs.
Zero primary weights are not allowed, but zero secondary weights are. (In particular, the
algorithm can solve [c0]-APSLP, when all primary weights are 1.)

Overview. We follow an idea of Aingworth et al. [1], to divide into two cases: when the source
vertex has high degree or low degree. For high-degree vertices, there exists a small dominating
set, and so these vertices can be covered by a small number of “clusters”; sources in the same
cluster are close together, and so distances from one fixed source give us good approximation
to distances from other sources in the same cluster, by the triangle inequality (since the graph
is undirected). On the other hand, for low-degree vertices, the relevant subgraph is sparse,
which enables faster algorithms. Originally, Aingworth et al.’s approach was intended for the
design of approximation algorithms (with O(1) additive error for unweighted graphs). We
will adapt it to find exact shortest paths. (Chan [7] previously had also applied Aingworth
et al.’s approach to exact APSP, but the goal there was in logarithmic-factor speedup, which
was quite different.) In order to handle the high-degree case for Lex2-APSP, we need further
ideas to use approximate primary shortest-path distances to compute exact lexicographical
shortest-path distances; in particular, we will need Min-Plus products on secondary distances
(as revealed in the proof of Lemma 23 below). The combination of Aingworth et al.’s approach
with matrix multiplication appears new, and interesting in our opinion.
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Preliminaries. We first compute D1[u, v] for all (u, v) by running a known [c0]-APSP
algorithm on the primary distances in O(nω) time [3, 21].

Assume that we have already computed D[u, v] for all (u, v) with D1[u, v] ≤ 2ℓ/3 for a
given ℓ. We want to compute D[u, v] for all (u, v) with D1[u, v] ≤ ℓ.

Define D
(ℓ)
2 [u, v] = D2[u, v] if D1[u, v] = ℓ, and D

(ℓ)
2 [u, v] = ∞ otherwise. For subsets

S1, S2 ⊆ V , let D
(ℓ)
2 (S1, S2) denote the submatrix of D

(ℓ)
2 containing the entries for (u, v) ∈

S1 × S2.

▶ Lemma 23. Let G = (V, E) be an undirected graph with edge weights in [c0] − {0}. Assume
that we have already computed D[u, v] for all (u, v) with D1[u, v] ≤ 2ℓ/3. Given a set S of
vertices that are within primary distance c = Õ(1) from each other, we can compute D[u, v]
for all u ∈ S and v ∈ V with D1[u, v] ≤ ℓ in O(M⋆(|S|, n/ℓ, n | ℓ)) total time.

Proof. Fix s ∈ S. Let Vi = {v ∈ V : D1[s, v] ∈ i ± c}. Note that
∑

i |Vi| = Õ(n). Also note
that if u ∈ S and D1[u, v] = i, then we must have v ∈ Vi (by the triangle inequality, because
the graph is undirected).

Pick an index m ∈ [0.4ℓ, 0.6ℓ] with |Vm−c0 ∪ · · · ∪ Vm| = Õ(n/ℓ).
For i ≤ m, we have already computed D

(i)
2 (S, Vi).

For i = m+1, . . . , ℓ, we will compute D
(i)
2 (S, Vi) as follows: For each ∆ ∈ [c0], we take the

Min-Plus product D
(m−∆)
2 (S, Vm−∆)⋆D

(i−m+∆)
2 (Vm−∆, Vi). Note that D

(i−m+∆)
2 (Vm−∆, Vi)

is already known, since i − m + ∆ < 2ℓ/3. We take the minimum over all ∆ ∈ [c0] for those
(u, v) ∈ S × Vi with D1[u, v] = i.

Instead of doing the product individually for each i, it is more efficient to combine all
the matrices D

(i−m+∆)
2 (Vm−∆, Vi) over all i > m. This gives a single matrix (per ∆) with

|Vm−∆| = Õ(n/ℓ) rows and
∑

i>m |Vi| = Õ(n) columns. So, the entire product can be
computed in O(M⋆(|S|, n/ℓ, n | ℓ)) time. ◀

Let L be a parameter to be set later. Let Vhigh be the set of all vertices of degree more
than n/L, and Vlow be the set of all vertices of degree at most n/L.

Phase 1. We will first compute D[u, v] for all u ∈ Vhigh and v ∈ V with D1[u, v] ≤ ℓ, as
follows:

Let X ⊆ V be a dominating set for Vhigh of size Õ(L), such that every vertex in Vhigh is
in the (closed) neighborhood of some vertex in X. Such a dominating set can be constructed
(for example, by the standard greedy algorithm) in Õ(n2) time [1].

Let X = {x1, x2, . . . , xÕ(L)}. For each xi ∈ X, we divide N(xi) \
(⋃

j<i N(xj)
)

– its
neighborhood excluding previous neighborhoods – into groups of size O(n/L). The total
number of groups is Õ(L), and the groups cover all vertices in Vhigh. For each such group,
we apply Lemma 23 (with c = 2c0). The total time is Õ(L · M⋆(n/L, n/ℓ, n | ℓ)).

Phase 2. Next, for each u ∈ Vlow, we will compute D[u, v] for all v ∈ V with D1[u, v] ≤ ℓ,
as follows:

Define a graph Gu containing all edges (x, y) with x ∈ Vlow or y ∈ Vlow; for each z ∈ Vhigh,
we add an extra edge (u, z) with weight D[u, z], which has been computed in Phase 1. Then
the lexicographical shortest-path distance from u to v in Gu matches the lexicographical
shortest-path distance in G, because if ⟨u1, . . . , uk⟩ is a lexicographical shortest path in
G with u1 = u, and i is the largest index with ui ∈ Vhigh (set i = 1 if none exists), then
⟨u1, ui, . . . , uk⟩ is a path in Gu. We run Dijkstra’s algorithm on Gu from the source u. Since
Gu has O(n2/L) edges, this takes Õ(n2/L) time per u. The total over all u is Õ(n3/L).
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As before, standard techniques for generating witnesses for matrix products can be applied
to recover the shortest paths [11, 34].

Total time. We do the above for all ℓ’s that are powers of 3/2. The overall cost is

Õ

(
max

ℓ
L · M⋆(n/L, n/ℓ, n | ℓ) + n3/L

)
≤ Õ

(
max

ℓ
L · min

{
n3/(Lℓ), ℓ · M(n/L, n/ℓ, n)

}
+ n3/L

)
= Õ

(
max
ℓ≤L

Lℓ · M(n/L, n/ℓ, n) + n3/L

)
= Õ(L2 · M(n/L, n/L, n) + n3/L).

With the current bounds on rectangular matrix multiplication, we choose L = n0.4206

and get running time O(n2.5794).

▶ Theorem 24. ([c0] − {0})-Lex2-APSP (and thus -APLSP and -APSLP) for undirected
graphs can be solved in O(n2.5794) time for any c0 = Õ(1).

▶ Remarks. Without rectangular matrix multiplication, the above still gives a time bound of
Õ(L3(n/L)ω + n3/L), yielding Õ(n2+1/(4−ω)).

One could adapt the algorithm to solve Undirected ([c0] − {0})-Lexk-APSP for a larger
constant k, but the running time appears worse than the bound Õ(n(3+ω)/2) by Chan [6]
(because of the need to compute a Min-Plus product between matrices with larger entries in
Lemma 23).

6 Exact u-#APSP

We defer most of our algorithms for #APSP to the full paper. An exception is our algorithm
for exact u-#APSP, which is simple and is described below. Interestingly, some of our
#APSP algorithms are obtained by modifying our Lex2-APSP algorithms, even though the
#APSP and Lex2-APSP problems appear very different.

For exact counts that could be exponentially large, we will describe a combinatorial
Õ(n3)-time algorithm to solve u-#APSP for directed unweighted graphs, in the standard
word RAM model (with (log n)-bit words). The idea behind the algorithm is actually related
to the Lex2-APSP algorithm in Section 5.2, but simplified with L = 1 and without matrix
multiplication and dominating sets.

Recall that the goal is to compute the number C[u, v] of shortest paths from u to v, for
all u, v ∈ V for a given directed unweighted graph G = (V, E).

We first compute D[u, v] for all u, v ∈ V in O(n3) time by known APSP algorithms.
There are of course faster APSP algorithms for directed unweighted graphs, but we use the
slower O(n3) time algorithm to keep the whole algorithm combinatorial.

Assume we have already computed C[u, v] for all u, v with D[u, v] ≤ 2ℓ/3 for a given ℓ.
Fix a source vertex s ∈ V . We will compute C[s, v] for all v with D[s, v] ≤ ℓ, as follows:

Let Vi = {v ∈ V : D[s, v] = i}. Note that
∑

i |Vi| = n, so there exist an index
m ∈ [0.4ℓ, 0.6ℓ] with |Vm| = O(n/ℓ).

For i ≤ m, we have already computed C[s, v] for all v ∈ Vi.
For i = m + 1, . . . , ℓ, by setting C[s, v] =

∑
u∈Vm:D[u,v]=i−m C[s, u] · C[u, v], we compute

C[s, v] for all v ∈ Vi. Note that C[s, u] and C[u, v] have been computed from the previous
iteration, since i−m < 2ℓ/3. The total number of arithmetic operations is O(

∑
i |Vi| · |Vm|) =

O(n2/ℓ). Since the counts are bounded by O(nℓ) and are Õ(ℓ)-bit numbers, the total cost is
Õ(n2/ℓ · ℓ) = Õ(n2).
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We do this for every source s ∈ V . The overall cost is Õ(n3).
We do the above for all ℓ’s that are powers of 3/2. The final time bound is Õ(n3).

▶ Theorem 25. u-#APSP can be solved in Õ(n3) time.

▶ Remarks. This is worst-case optimal up to polylogarithmic factors, as the total number of
bits in the answers could be Ω(n3).

Recall the Betweenness Centrality of a vertex v is defined as BC(v) =∑
s,t ̸=v Cv[s, t]/C[s, t] where Cv[s, t] is the number of shortest paths between s and t that

go through v. As an immediate corollary, we can compute the Betweenness Centrality of a
given vertex exactly in a directed unweighted graph in Õ(n3) time.

▶ Corollary 26. The betweenness centrality of a vertex can be computed in Õ(n3) time in a
directed unweighted graph.
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Abstract
We consider the problem of preprocessing two strings S and T , of lengths m and n, respectively, in
order to be able to efficiently answer the following queries: Given positions i, j in S and positions a, b

in T , return the optimal alignment score of S[i . . j] and T [a . . b]. Let N = mn. We present an oracle
with preprocessing time N1+o(1) and space N1+o(1) that answers queries in log2+o(1) N time. In
other words, we show that we can efficiently query for the alignment score of every pair of substrings
after preprocessing the input for almost the same time it takes to compute just the alignment of S

and T . Our oracle uses ideas from our distance oracle for planar graphs [STOC 2019] and exploits
the special structure of the alignment graph. Conditioned on popular hardness conjectures, this
result is optimal up to subpolynomial factors. Our results apply to both edit distance and longest
common subsequence (LCS).

The best previously known oracle with construction time and size O(N) has slow Ω(
√

N) query
time [Sakai, TCS 2019], and the one with size N1+o(1) and query time log2+o(1) N (using a planar
graph distance oracle) has slow Ω(N3/2) construction time [Long & Pettie, SODA 2021]. We improve
both approaches by roughly a

√
N factor.
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1 Introduction

String alignment is arguably the most popular problem in combinatorial pattern matching.
Given two strings S and T of length m and n, the problem asks to compute the similarity
between the strings according to some similarity measure. The two most popular similarity
measures are edit distance and longest common subsequence (LCS). In both cases, the
classical solution is essentially the same: Compute the shortest path from vertex (0, 0) to
vertex (m, n) in the so called alignment graph of the two strings. As taught in almost every
elementary course on algorithms, computing this shortest path (and hence the optimal
alignment of the two strings) can easily be done in O(N) time where N = mn, via dynamic
programming. Interestingly, this time complexity cannot be significantly improved assuming
popular conjectures such as the strong exponential time hypothesis (SETH) [1, 6, 8]. In fact,
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by now we seem to have a rather good understanding of the complexity of this problem for
different similarity measures and taking other parameters than the length of the strings into
account, see [8].

Substring queries. A natural direction after having determined the complexity of a par-
ticular problem on strings is to consider the more general version in which we need to
answer queries on substrings of the input string. This has been done for alignment [34,36],
pattern matching [24,28], approximate pattern matching [17], dictionary matching [14,15],
compression [24], periodicity [27,28], counting palindromes [33], longest common substring [3],
computing minimal and maximal suffixes [5, 26], and computing the lexicographically k-th
suffix [4].

Alignment oracles. Consider the shortest path from vertex (i, a) to vertex (j, b) in the
alignment graph. It corresponds to the optimal alignment of two substrings: the substring of
S between indices i and j and the substring of T between indices a and b. An alignment
oracle is a data structure that, after preprocessing, can report the optimal alignment score
of any two substrings of S and T . That is, given positions i, j in S and positions a, b in T ,
the oracle returns the optimal alignment score of S[i . . j] and T [a . . b] (or equivalently, the
(i− 1, a− 1)-to-(j, b) distance in the alignment graph).

Tiskin [36, 37] considered a restricted variant of the problem, in which the queries are
either the entire string S vs. a substring of T or a prefix of S vs. a suffix of T . For such
queries, Tiskin gave an Õ(n + m)-size oracle, that can be constructed in Õ(N) time, and
answers queries in O(log N/ log log N) time [36]. For the general problem, Sakai [34] (building
on Tiskin’s work [36]) showed how to construct in O(N) time an alignment oracle with
O(n + m) query time. In this work we show that, perhaps surprisingly, obtaining such an
oracle can be done essentially for free! That is, at almost the same time it takes to compute
just the alignment of S and T . More formally, our main result is:

▶ Theorem 1. For two strings of lengths m and n, with N = mn, we can construct in
N1+o(1) time an alignment oracle achieving either of the following tradeoffs:

N1+o(1) space and log2+o(1) N query time,
N log2+o(1) N space and No(1) query time.

Planar distance oracles and Voronoi diagrams. The starting point of our work is the
recent developments in distance oracles for planar graphs. A distance oracle is a compact
representation of a graph that allows to efficiently query the distance between any pair of
vertices. Indeed, since the alignment graph is a planar graph, the state-of-the-art distance
oracle for planar graphs of Long and Pettie [30] (which builds upon [13,19,21]) is an alignment
oracle with space N1+o(1) and query time O(log2+o(1) N). However, the construction time
of this oracle is Ω(N3/2). Our main contribution is an improved N1+o(1) construction time
when the underlying graph is not just a planar graph but an alignment graph.

Our oracle has the same recursive structure as the planar graph oracles in [13, 21, 30] (in
fact, the alignment graph, being a grid, greatly simplifies several technical, but standard,
difficulties of the recursive structure). These oracles (inspired by Cabello’s use of Voronoi
diagrams for the diameter problem in planar graphs [10]) use the recursive structure in
order to apply (at different levels of granularity) an efficient mechanism for point location on
Voronoi diagrams. At a high level, a Voronoi diagram with respect to a subset S of vertices
(called sites) is a partition of the vertices into |S| parts (called Voronoi cells), where the cell
of site s ∈ S contains all vertices that are closer to s than to any other site in S. A point
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location query, given a vertex v, returns the site s such that v belongs to the Voronoi cell of s.
Our main technical contribution is a polynomially faster construction of the point location
mechanism when the underlying graph is an alignment graph. We show that, in this case,
the special structure of the Voronoi cells facilitates point location via a non-trivial divide and
conquer. Unlike the planar oracles, which use planar duality to represent Voronoi diagrams,
the representation and point location mechanisms we develop in this paper are novel and
achieve the same query time, while being arguably simpler than those of Long and Pettie.1

It is common that techniques are originally developed for pattern matching problems
(and in particular alignment problems) and later extended to planar graphs. A concrete
example is the use of Monge matrices and unit-Monge matrices. However, it is much less
common that techniques are first developed for planar graphs (in our case, the use of Voronoi
diagrams) and only then translated to pattern matching problems.

Conditional lower bounds. Any lower bound on the time required to compute an optimal
alignment of two strings directly implies an analogous lower bound for the sum of the
preprocessing time and the query time of an alignment oracle. In particular, the existence of
an oracle for which this sum is O(N1−ϵ), for a constant ϵ > 0, would refute SETH [6,8].

In the Set Disjointness problem, we are given a collection of m sets A1, A2, . . . , Am of
total size M for preprocessing. We then need to report, given any query pair Ai, Aj , whether
Ai ∩ Aj = ∅. The Set Disjointness conjecture [18, 22, 32] states that any data structure
with constant query time must use M2−o(1) space. Goldstein et al. [22] stated the following
stronger conjecture.

▶ Conjecture 2 (Strong Set Disjointness Conjecture [22]). Any data structure for the Set
Disjointness problem that answers queries in time t must use space M2/(t2 · logO(1) M).

The following theorem implies that, conditioned on the above conjecture, our alignment
oracle is optimal up to subpolynomial factors; its proof is identical to that of [3, Theorem 1]
as explained in [12].

▶ Theorem 3 ([3, 12]). An alignment oracle for two strings of length at most n with query
time t must use n2/(t2 · logO(1) n) space, assuming the Strong Set Disjointness Conjecture.

Even though the main point of interest is in oracles that achieve fast (i.e. constant,
polylogarithmic, or subpolynomial) query-time, the above lower bound suggests to study
other tradeoffs of space vs. query-time. In Section 5 we show oracles with space sublinear
in N . More formally, we prove the following theorem.

▶ Theorem 4. Given two strings of lengths m and n with N = mn, integer alignment
weights upper-bounded by w, and a parameter r ∈ [

√
N, N ] we can construct in Õ(N) time

an Õ(Nw/
√

r + m + n)-space alignment oracle that answers queries in time Õ(
√

N + r).

For example, if the alignment weights are constant integers, by setting r =
√

N we obtain
an O(N3/4 + m + n)-space oracle that answers queries in time Õ(

√
N).

1 We believe that our efficient construction can also be made to work, for alignment graphs, with the
dual representation of Voronoi diagrams used in [13, 21, 30], but we think the new representation makes
the presentation more approachable as it exploits the structure of the alignment graph more directly.
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Other related works. When the edit distance is known to be bounded by some threshold k,
an efficient edit distance oracle can be obtained via the Landau-Vishkin algorithm [29].
Namely, after O(n + m) time preprocessing of the input strings (oblivious to the threshold k),
given a substring of S, a substring of T , and a threshold k, in O(k2) time one can decide
whether the edit distance of these substrings is at most k, and if so, return it.

Further, after an O(n + m)-time preprocessing, given a substring X of S and a substring
Y of T , the starting positions of substrings of Y that are at edit distance at most k from X

can be returned in O(k4 · |Y |/|X|) time [17].
In a recent work [16] on dynamic string alignment, it was shown that, in the case where

the alignment weights are small integers, two strings of total length at most n can be
maintained under edit operations in Õ(n) time per operation so that an alignment of any
pair of substrings can be queried in Õ(n) time.

2 Preliminaries

The alignment oracle presented in this paper applies to both edit distance and longest
common subsequence (LCS). To simplify the presentation we focus on LCS but the extension
to edit distance is immediate.

The LCS of two strings S and T is a longest string that is a subsequence of both S and T .
We denote the length of an LCS of S and T by LCS(S, T ).

▶ Example 5. An LCS of S = acbcddaaea and T = abbbccdec is abcde; LCS(S, T ) = 5.

For strings S and T , of lengths m and n respectively (we will assume that n ≥ m), the
alignment graph G of S and T is a directed acyclic graph of size N = O(mn). For every
0 ≤ x ≤ m and 0 ≤ y ≤ n, the alignment graph G has a vertex (x, y) and the following
unit-length edges (defined only if both endpoints exist):

((x, y), (x + 1, y)) and ((x, y), (x, y + 1)),
((x, y), (x + 1, y + 1)), present if and only if S[x] = T [y].

Intuitively, G is an (m + 1)× (n + 1) grid graph augmented with diagonal edges corres-
ponding to matching letters of S and T . See Figure 1. We think of the vertex (0, 0) as the
top-left vertex of the grid and the vertex (m, n) as the bottom-right vertex of the grid. We
shall refer to the rows and columns of G in a natural way. It is easy to see that LCS(S, T )
equals n + m minus the length of the shortest path from (0, 0) to (m, n) in G.

Multiple-source shortest paths. Given a planar graph with N vertices and a distinguished
face h, the multiple-source shortest paths (MSSP) data structure represents all shortest
path trees rooted at the vertices of h. It can be constructed in O(N log N) time, requires
O(N log N) space, and can report the distance between any vertex u of h and any other
vertex v in the graph in O(log N) time. These bounds were first obtained for alignment
graphs [35] and then extended to arbitrary planar graphs [11,25].

The MSSP data structure can be augmented at no asymptotic overhead (cf. [23, Section
5]), to allow for the following. First, to report a shortest u-to-v path ρ in time O(|ρ| log log ∆),
where ∆ is the maximum degree of a vertex in G. Second, to support the following queries
in O(log N) time [21]: Given two vertices u, v ∈ G and a vertex x of h report whether u is
an ancestor of v in the shortest path tree rooted at x, and whether u occurs before v in a
preorder traversal of this tree. (We consider shortest path trees as ordered trees with the
order inherited from the planar embedding.)
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(0, 0) (0, 5)

(4, 5)(4, 0)

a b c a b

c

a

b

a

Figure 1 The alignment graph for S = abac and T = abcab. We represent the horizontal and
vertical edges by dashed black arrows, and the diagonal edges by blue arrows. A lowest scoring
(0, 0)-to-(4, 5) path is highlighted in green, it has weight 6 and corresponds to the LCS aba of length
3 = 9 − 6 = |T | + |S| − 6.

Recursive decomposition. We assume without loss of generality that the length of each
of the two strings is a power of 2, and hence the alignment graph is a (2a + 1) × (2b + 1)
grid. We consider a recursive decomposition A of G such that in each level all pieces are of
the same rectangular shape. At each level, each piece will be of size (2c + 1)× (2d + 1) for
non-negative integers c and d. Consider a piece P of size (2c + 1)× (2d + 1), with c + d ̸= 0.
Assuming without loss of generality that c ≥ d, in the next level we will partition P to two
pieces, each of size (2c−1 + 1)× (2d + 1), that share the middle row of P . See Figure 2. We
view A as a binary tree and identify a piece P with the node corresponding to it in A.

Figure 2 Illustration of pieces in a recursive decomposition of the alignment graph. Diagonal
edges are not show to avoid clutter. All rectangular pieces that contain the gray square form a single
root-to-leaf path in the tree A.

Consider a piece P ∈ A. The set ∂P of boundary vertices of a piece P consists of those
vertices who have neighbours that are not in P . We call the vertices in P \ ∂P the internal
vertices of P . We denote by ⌟(P ) the set of boundary vertices of P that are either rightmost
or bottommost in P , and by ⌜(P ) the set of boundary vertices of P that are either leftmost
or topmost in P . We consider each of ⌟(P ) and ⌜(P ) to be ordered, such that adjacent
vertices are consecutive and the earliest vertex is the bottom-left one. Therefore, whenever
convenient, we refer to subsets of ⌟(P ) and ⌜(P ) as sequences. We define the outside of P ,
denoted by P out, to be the set of vertices of G \ (P \∂P ) that are reachable from some vertex
in P , i.e. the vertices of G that are not internal in P and are to the right or below some
vertex of P . Note that any path from a vertex u ∈ P to a vertex v ∈ P out must contain
at least one vertex from ⌟(P ), and any path from a vertex u ̸∈ P to a vertex u ∈ P must
contain at least one vertex from ⌜(P ).
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For any r ∈ [1, nm], an r-division of G is a decomposition of G to pieces of size O(r), each
with O(

√
r) boundary vertices. Clearly, such a decomposition can be retrieved from A, with

all nodes being of the same depth. In particular, we will use recursive (rt, . . . , r1)-divisions,
where for every i < t, each piece of the ri-division must be contained in some piece of the
ri+1-division. By convention, we will have rt being a single piece consisting of the entire
graph G. Such a recursive division can be materialized as follows: First, we select the
appropriate depth of A for each ri-division and mark all nodes of this depth. Then, we
contract every edge of A of the form (parent(u), u) such that u is unmarked. Such a recursive
(rt, . . . , r1)-division can thus also be represented by a tree, which we will denote by T .

Q

Figure 3 A piece Q (shaded gray). ⌜(Q) is indicated by a red line, and ⌟(Q) by an orange line.
Qout is shaded pink. The Voronoi diagram for Qout with sites ⌟(Q) (boxes) is also illustrated. Each
site has a distinct color. Vertices in each Voronoi cell are indicated by a matching color.

Voronoi diagrams. Let H be a directed planar graph with real edge-lengths, and no
negative-length cycles. Let h be a face of H, and let S be the set of vertices (called sites)
of h. Each site s ∈ S has a weight ω(s) ≥ 0 associated with it. The additively weighted
distance dω(s, v) between a site s ∈ S and a vertex v ∈ H is defined as ω(s) plus the length
of the shortest s-to-v path in H.

The additively weighted Voronoi diagram VD(S, ω) of H is a partition of the vertices of
H into pairwise disjoint sets, one set Vor(s) for each site s ∈ S. The set Vor(s), called the
Voronoi cell of s, contains all vertices of H that are closer (w.r.t. dω(., .)) to s than to any
other site in S. If v ∈ Vor(s) then we call s the site of v, and say that v belongs to the site s.
Throughout the paper, we will only consider additively weighted Voronoi diagrams for the
outside P out of a piece P ∈ A with sites S ⊆ ⌟(P ). We next discuss the structure of such
Voronoi diagrams.

We resolve ties between sites in favor of the site s = (x, y) for which (ω(s), x, y) is
lexicographically largest. Since the alignment graph is planar, this guarantees that the
vertices in Vor(s) are spanned by a subtree of a shortest paths tree rooted at s: for every
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vertex v ∈ Vor(s), for any vertex u on a shortest s-to-v path, we must have u ∈ Vor(s).
Hence, each Voronoi cell is a simply connected region of the plane. The structure of the
alignment graph dictates that any shortest path is monotone in the sense that it only goes
right and/or down. This property immediately implies the following lemma.

▶ Lemma 6. For any a ≤ c and d ≤ f , if u = (a, f) and v = (c, d) both belong to Vor(s)
then every vertex w = (b, e) with a ≤ b ≤ c and d ≤ e ≤ f also belongs to Vor(s).

Proof. Suppose w = (b, e) belongs to Vor(s′) for some s′ ̸= s. Since shortest paths only go
right and down, the shortest s′-to-w path must cross either the s-to-u path or the s-to-v
path, which is a contradiction. ◀

Lemma 6 together with the fact that Vor(s) is connected implies the following character-
ization of the structure of Vor(s), which roughly says that Vor(s) has the form of a double
staircase, as illustrated in Figure 3.

▶ Corollary 7. For any row a and any site s, the vertices of row a that belong to Vor(s) form
a contiguous interval of columns [ia, ja]. Furthermore, the sequences ia and ja are monotone
non-decreasing, ia ≤ ia+1 ≤ ja + 1, and ja ≤ ja+1.

▶ Corollary 8. There is a rightmost vertex s↘ in Vor(s) that is also a bottommost one.

▶ Corollary 9. For every v ∈ Vor(s), Vor(s) contains a path from v to s↘.

Our representation of a Voronoi diagram for P out with sites ⌟(P ) consists of the following.
For each s ∈ ⌟(P ), we store:
1. the rightmost bottommost vertex s↘ of Vor(s), defined in Corollary 8,
2. a vertex last(s, s↘) on a shortest s-to-s↘ path, whose definition will be given later.

3 The Alignment Oracle

In this section, we describe our oracle and prove that its space and query time are as in
Theorem 1. In the next section we will show how to construct the oracle in N1+o(1) time.

Consider a recursive (rt, . . . , r1)-division of G for some N = rt > · · · > r1 = O(1) to be
specified later. Recall that our convention is that the rt-division consists of G itself. Further,
we set the r1-division to consist of pieces of size 2× 2. We also consider an r0-division, in
which each vertex v of G is a singleton piece. Let us denote the set of pieces of the ri-division
by Ri. Let T denote the tree representing this recursive (rt, . . . , r0)-division, where each
singleton piece {v} at level 0 is attached as a child of a piece P at level 1 such that v ∈ ⌟(P )
– this is well-defined for all singletons apart from {(0, 0)} and {(m, n)}, each of which is
attached to the single level-1 piece containing it.

The oracle consists of the following. For each 0 ≤ i ≤ t− 1, for each piece P ∈ Ri whose
parent in T is Q ∈ Ri+1:
1. If i > 0, we store an MSSP with sources ⌟(P ) for the graph obtained from P by flipping

the orientation of all edges; we call this the reverse MSSP of P .
2. If i > 0, we store an MSSP with sources ⌟(P ) for Q \ (P \ ∂P ).
3. If i < t− 1, for each vertex u ∈ ⌟(P ) we store VD(u, Q): the Voronoi diagram for Qout

with sites ⌟(Q) and additive weights the distances in G from u to these sites.

To complete the description of the oracle it remains to specify the definition of last(s, s↘).
Before doing so, let us distinguish, for a (source) vertex u and a (target) vertex v, two
levels of the recursive division that are of interest. Let R0 be the singleton piece {u}. Let
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u
R1

R2

R3

v

w

z

Figure 4 A vertex u and all the pieces of a recursive (r4, r3, r2, r1, r0)-division that contain u.
The piece R0 consists of just u, and the piece R4 is the entire alignment graph. Note that u ∈ ⌟(R1).
In this example, lev(u) = 1, anc(u, w) = 3, and anc(u, v) = 4 (because v ∈ ∂R3). A u-to-w shortest
path ρ is shown in dashed red. last(u, w) is the last vertex of ρ that belongs to ⌟(R2), which is the
vertex z. The distance from u to w is dist(u, z) + dist(z, w). dist(u, z) is stored in the reverse MSSP
of R2. dist(z, w) is stored in the MSSP of R3 \ (R2 \ ∂R2). Similarly, a u-to-v shortest path ρ is
shown in dashed blue. Because v ∈ ∂R3, last(u, v) is v itself.

R1, R2, . . . , Rt be the ancestors of R0 in T . Note that u ∈ ⌟(Ri) for a non-empty prefix of
the sequence of ancestors R0, R1, . . . , Rt. Let lev(u) = argmaxi{u ∈ ⌟(Ri)}. Further, let
anc(u, v) = argmini{v ∈ Ri \ ∂Ri}. Note that anc(u, v) is well defined since v ∈ Rt = G and
∂G = ∅. Also note that if v is reachable from u then lev(u) < anc(u, v). This is because all
vertices in Rlev(u) \ ∂Rlev(u) are unreachable from u.

Denote H = Ranc(u,v)−1. We define last(u, v) as any boundary vertex of ⌟(H) that lies
on a shortest u-to-v path ρ. The idea behind this definition is that last(u, v) partitions this
u-to-v path into a prefix and a suffix, each of which is represented in one of the MSSP data
structures stored for H; The prefix of ρ ending at last(u, v) is represented in the shortest
path tree rooted at last(u, v) in the reverse MSSP of H. The suffix of ρ starting at last(u, v)
is represented in the shortest path tree rooted at last(u, v) in the MSSP for H ′ \ (H \ ∂H)
with sources ⌟(H), where H ′ = Ranc(u,v) is the parent of H in T . This allows us to efficiently
compute dist(u, v) (the u-to-v distance) given last(u, v). See Figure 4. This concludes the
description of the oracle.

▶ Lemma 10. The oracle occupies space O
(

N log2 N + N log N ·
∑t−1

i=0 ri+1/ri

)
.

Proof. The reverse MSSPs over all pieces of A require O(N log2 N) space, since
∑

P ∈A |P | =
O(N log N) and since the reverse MSSP of a piece P requires space O(|P | log |P |).

For each i ∈ (0, t− 1], for each of the O(N/ri) pieces in Ri, we store an MSSP of size
O(ri+1 log ri+1). For each i ∈ [0, t−1), for each of the O(N/ri) pieces in Ri, we store O(√ri)
Voronoi diagrams each of size O(√ri+1). The stated bound follows. ◀
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Query. We now describe how to answer a distance query dist(u, v). First, note that if u

and v are in the same piece P in R1 we can report dist(u, v) in O(1) time using brute force.
Let R0 be the singleton piece {u}. As before, let R1, R2, . . . , Rt be the ancestors of R0

in T . Since the distance query originates from an LCS query, v must be reachable from u.
Let ℓ = lev(u) and h = anc(u, v). We then have u ∈ ⌟(Rℓ) and v ∈ Rout

ℓ . We will answer
dist(u, v) by identifying last(u, v), which lies on ⌟(Rh−1). As explained above, we can then
obtain dist(u, v) from the MSSP data structures stored for Rh−1. See Algorithm 1.

Algorithm 1 Dist(u, v).

1: if u and v belong to the same piece in R1 then
2: return the answer by brute force
3: w ← GetLast(u, v)
4: return dist(u, w) + dist(w, v)

We now show how to implement the procedure GetLast for finding last(u, v); see Al-
gorithm 2 for a pseudocode. First, note that if h = ℓ + 1 we can simply return u as last(u, v).
Hence, in what follows, we assume that h > ℓ + 1. The procedure GetLast proceeds in
iterations for i = ℓ+1, . . . , h−1. At the beginning of the iteration with value i, the procedure
has a subset Wi−1 of ⌟(Ri−1) such that some w ∈ Wi−1 belongs to a shortest u-to-v path.
We initially set Wℓ := {u}, which trivially satisfies the requirement for i = ℓ + 1. For each
w ∈ Wi−1 the iteration uses a procedure GetNextCandidates that adds at most two
vertices of ⌟(Ri) to Wi. The guarantee is that, if w is a vertex of ⌟(Ri−1) that belongs to a
shortest u-to-v path, then at least one of the two added vertices also belongs to a shortest
u-to-v path. Since |Wi| ≤ 2|Wi−1|, at the end of the last iteration (the one for h− 1), we
have a subset Wh−1 of at most 2t vertices of ⌟(Rh−1), one of which can be returned as
last(u, v). To figure out which one, for each such vertex w, we use the MSSP data structures
to compute dist(u, w) + dist(w, v), and return a vertex for which the minimum is attained.

Algorithm 2 GetLast(u, v).

1: ℓ← lev(u)
2: h← anc(u, v)
3: Wℓ ← {u}
4: for i = ℓ + 1 to h− 1 do
5: Wi ← ∅
6: for each w ∈Wi−1 do
7: Wi ←Wi ∪ GetNextCandidates(w, i, v)
8: return argminw∈Wh−1

dist(u, w) + dist(w, v)

It remains to describe the procedure GetNextCandidates. Consider any w ∈ Wi−1.
To reduce clutter, let us denote Ri by Q. Since w ∈ ⌟(Ri−1), the Voronoi diagram VD(w, Q)
for Qout is stored by the oracle. The procedure GetNextCandidates finds two sites of
VD(w, Q), one of which is the site of v. Indeed, if w is a vertex on a u-to-v shortest path
then the site of v in VD(w, Q) is a vertex of ⌟(Q) on a shortest u-to-v path.

Let (x⌟, y⌟) be the bottom-right vertex of Q. Every vertex v = (xv, yv) of Qout \ ∂Q

either has xv > x⌟ or yv > y⌟. We describe the case when xv > x⌟; the case when yv > y⌟
is analogous. Let Γ denote the set of s→ s↘ paths ρs stored in VD(w, Q) according to the
order of the sites s along ⌟(Q). For every row x > x⌟, let Γx denote the subset of paths in Γ
that intersect row x, ordered according to the order of the intersection vertices along row x.
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▶ Lemma 11. For every x, x′ with x > x′, Γx is a subsequence of Γx′ .

Proof. This is a direct consequence of the fact that each path ρs goes monotonically down
and right, and from the fact that ρs and ρs′ are disjoint for s ̸= s′. ◀

We define the set of critical rows to be all rows x such that (x, y) = s↘ for some y ∈ [0, n]
and s ∈ ⌟(Q). Lemma 11 implies that if we consider the evolution of the sequences Γx as
x increases from x⌟ to m as a dynamic process, changes occur only at critical rows. More
precisely, if the row of s↘ is x for some site s, then ρs ∈ Γx but ρs /∈ Γx+1. We can therefore
maintain the sequences Γx in a persistent binary search tree. (A binary search tree can be
made partially persistent at no extra asymptotic cost in the update and search times using a
general technique for pointer-machine data structures of bounded degree [9].) Initially, the
BST stores the sequence Γx⌟+1. Then, we go over the critical rows in increasing order, and
remove the path ρs from the BST when we reach the row of s↘.

For any x⌟ < x ≤ m, we can access the BST representation of Γx by finding the
predecessor x′ of x among the critical rows, and accessing the persistent BST at time x′.

Let v = (x, y). We say that v is right (left) of a path ρs ∈ Γx if y is greater (smaller)
than any vertex of ρs at row x. We will either find a path ρs ∈ Γx to which v belongs, or
identify the last path ρs ∈ Γx such that v is right of ρs. In the former case the site of v is s,
and in the latter case the site of v is either s or the successor of s in Γx.

Recall that (1) the MSSP data structure, given a root vertex r and two vertices w, z, can
determine in O(log N) time whether w is left/right/ancestor/descendant of z in the shortest
path tree rooted at r, (2) for each shortest path ρs represented in VD(w, Q), the representation
contains last(s, s↘), and (3) the prefix of ρs ending at last(s, s↘) is represented in the shortest
path tree rooted at last(s, s↘) in the reverse MSSP of H (recall that H = Ranc(u,v)−1), while
the suffix of ρs starting at last(s, s↘) is represented in the shortest path tree rooted at
last(s, s↘) in the MSSP for H ′ \ (H \ ∂H), where H ′ is the parent of H.

We perform binary search on Γx to identify the path ρs such that either v ∈ ρs or ρs is
the last path of Γx that is left of v. Focus on a step of the binary search that considers a
path ρs. Denote last(s, s↘) = (xb, yb). If y < yb, we query the MSSP structure that contains
the prefix of ρs, and otherwise we query the MSSP data structure that contains the suffix
of ρs. In either case, the query either returns that v is on ρs or tells us whether v is left
or right of ρs. In the former case we conclude that the site of v is s. In the latter case we
continue the binary search accordingly. Each step of the binary search takes O(log n) time.
Note that log n = O(log N). Thus, the binary search takes O(log2 N) time, and when it
terminates we have a site s that is either the site of v or the site such that ρs is the last path
of Γx that is left of v. This implies that the site of v is either s or the successor of s in Γx,
and concludes the description of GetNextCandidates.

▶ Lemma 12. The oracle answers distance queries in time O(2t log2 N).

Proof. First, lev(u) and anc(u, v) can be (naively) computed in O(log N) time by going over
the ancestors of {u} in T : for each (rectangular) ancestor piece R of {u}, in O(1) time,
we can retrieve the coordinates of R’s corners and check whether v ∈ R \ ∂R using v’s
coordinates. Overall, for a dist(u, v) query, we make O(2t) calls to GetNextCandidates,
each requiring O(log2 N) time, for a total of O(2t log2 N) time. Finally, we make O(2t)
queries to the MSSP data structures, requiring O(2t log N) time in total. ◀

▶ Remark 13. Since our query procedure computes last(u, v), and we have MSSP data
structures that capture the u-to-last(u, v) and the last(u, v)-to-v shortest paths, an optimal
alignment can be returned in time proportional to the total length of the two substrings.
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By setting the ri’s appropriately, we obtain the following tradeoffs, which are identical to
those of Pettie and Long for arbitrary planar graphs [30].

▶ Proposition 14. For two strings of lengths m and n, with N = mn, there is an alignment
oracle achieving either of the following tradeoffs:

N log2+o(1) N space and No(1) query time,
N1+o(1) space and log2+o(1) N query time.

Proof. The space of the oracle is O
(

N log2 N + N log N ·
∑t−1

i=0 ri+1/ri

)
by Lemma 10. We

will choose ri’s for i ≥ 1 to be a geometric progression with common ratio p to be specified
below. In that case, t = O(logp N) and the space becomes O(N log2 N + N log N · p logp N).
First, let us set p = N1/g(N) for some g(N) which is ω(log N/ log log N) and o(log N).
Then, p = 2log N/g(N) = 2o(log log N) = logo(1) N . We get O(N log N · 2log N/g(N) log N) =
N log2+o(1) N space and No(1) query time. Second, let us set p = N1/f(N), for some f(N)
which is ω(1) and o(log log N). We get N1+o(1) space and log2+o(1) N query time. ◀

The following observation will prove useful in the efficient construction algorithm of the
oracle that will be presented in the next section.

▶ Observation 15. The query algorithm for dist(u, v) takes O(2t−lev(u) log2 N) time and uses
only Voronoi diagrams VD(u, Q) for Q ∈ Ri with i > lev(u).

4 An Efficient Construction Algorithm

In this section, we present an algorithm for constructing the alignment oracle in N1+o(1) time
(thus completing the proof of Theorem 1). The computation of the recursive decomposition,
the recursive (rt, . . . , r0)-division and all of the MSSP structures stored for all pieces in A
can be done in O(N log2 N) time. It therefore only remains to analyze the time it takes to
construct all the representations of Voronoi diagrams stored by the oracle.

Consider some additively weighted Voronoi diagram for Qout with sites a subsequence
U of ⌟(Q) – we will only build Voronoi diagrams with U = ⌟(Q), but during the analysis,
we will also consider Voronoi diagrams with sites U ⊆ ⌟(Q). In what follows, when we talk
about a piece H ≠ Q, we will really mean its intersection with Qout, assuming that it is
non-empty. Similarly, when we talk about ∂H, ⌜(H), and ⌟(H) we will really mean the
intersection of ∂H, ⌜(H), and ⌟(H) with Qout, respectively. See Figure 5 for an illustration.

▶ Lemma 16. Let X ∈ {⌜(H), ⌟(H)}. Let u, v ∈ X belong to distinct Voronoi cells. If u

precedes v (in X) then the site su ∈ U of u precedes (in U) the site sv ∈ U of v.

Proof. For any vertex a ∈ X, that belongs to the cell of a site sa, all vertices in the shortest
sa-to-a path belong to Vor(sa). Towards a contradiction, suppose that su succeeds sv in U .
By the planarity of the graph and the fact that paths can go only down and right it follows
that the shortest su-to-u path must cross the shortest sv-to-v path in some vertex b. Then
b ∈ Vor(su) ∩ Vor(sv), which is a contradiction as Voronoi cells are disjoint. ◀

The above lemma means that the vertices of each of ⌜(H) and ⌟(H) can be partitioned
into maximal contiguous intervals of vertices belonging to the Voronoi cell of the same site
in U . When we say that we compute the partition of ⌜(H) or ⌟(H) with respect to U , we
mean that we compute these intervals, specified by their endpoints, and, for each interval,
the site from U to which the vertices of the interval belong.
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Q

Figure 5 Covering Qout (shaded pink) with siblings of ancestors of Q in A (blue boxes). When
we refer to a piece H (e.g. a blue box), we only refer to the portion of H that belongs to Qout.

The following simple observation allows us to compute partitions using binary search. It
says that a piece H contains s↘ if and only if s is the site of some vertex in ⌜(H), and s is
not the site of any vertex in ⌟(H).

▶ Lemma 17. For any s ∈ S and any level ℓ, there is a unique level-ℓ piece H ∈ A for which
Vor(s)

⋂
⌜(H) ̸= ∅ and Vor(s)

⋂
⌟(H) = ∅, and this piece contains s↘.

Proof. By Corollary 9, for all v ∈ Vor(s), there exists a v-to-s↘ path all of whose vertices
are in Vor(s). Hence, for every level-ℓ piece H for which Vor(s)

⋂
⌜(H) ̸= ∅ and s↘ ̸∈ H, we

must also have that Vor(s)
⋂
⌟(H) ̸= ∅. We can thus focus on the at most four level-ℓ pieces

that contain s↘. It is readily verified that the bottom-right of those pieces is the only one
for which Vor(s)

⋂
⌟(H) = ∅. ◀

▶ Remark 18. The condition in the statement of Lemma 17 is equivalent to: s↘ ∈ H \ ⌟(H).
Lemma 17 provides a criterion on the partitions of ⌜(H) and ⌟(H) for determining

whether a piece H contains any vertex s↘. The following lemma describes a binary search
procedure, Partition, which gets as input a sequence U of candidate sites, and returns the
partition of ⌜(H) or ⌟(H); i.e., the subsequence of sites in U whose Voronoi cells contain
the vertices of ⌜(H) or ⌟(H). The procedure Partition will be a key element in the overall
construction algorithm. The following lemma describes an implementation of Partition
using distance queries dist(u, v) with u ∈ ⌟(Q) and v ∈ ∂H . We will ensure that such queries
can be answered efficiently whenever Partition is called by the main algorithm.

▶ Lemma 19. Given a sequence U ⊆ ⌟(Q) of sites and their additive weights, we can perform
the procedure Partition (that computes a partition of ⌜(H) or ⌟(H) w.r.t. U) in the time
required by O(|U | · log n) distance queries dist(u, v) with u ∈ ⌟(Q) and v ∈ ∂H.

Proof. We will only prove the statement for ⌜(H) as the case of ⌟(H) is analogous. We start
with a single interval, which is all of ⌜(H). We will call an interval active if we have not
concluded that all of its vertices belong to the same Voronoi cell. For each active interval L,
we have a set CL of candidate sites. Thus, initially, the single interval ⌜(H) is active, and U

is the set of its candidate sites.
The algorithm proceeds by divide and conquer. As long as we have an active interval L,

we perform the following: we compute the site u ∈ CL with the minimum additively weighted
distance to the midpoint of L. This is done in the time required by CL distance queries of
the form specified in the statement of the lemma. Then, we split L at this midpoint: for the
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left part of L the set of candidate sites is now {v ∈ CL : v ≤ u}, while for the right part of
L the set of candidate sites is now {v ∈ CL : v ≥ u}. If either of these two sets is of size 1,
the corresponding interval becomes inactivate. That is, we recurse on at most two active
intervals of roughly half the length. In the end, in a left-to-right pass, we merge consecutive
intervals all of whose vertices belong to the same Voronoi cell.

Let us now analyze the time complexity of the above algorithm. First, observe that the
sequences of candidates of any two intervals at the same level of the recursion are internally
disjoint. Thus, each site is a candidate for at most two active intervals at the same recursive
level. Second, at level j of the recursion, the length of every active interval is O(|⌜(H)|/2j).
Hence, the total time required to process all intervals is proportional to the time required by
O(|U | · log n) distance queries dist(u, v), with u ∈ ⌟(Q) and v ∈ ∂H. ◀

We now present the algorithm for computing the representations of the Voronoi diagrams
stored by the oracle. The algorithm performs the computation in order of decreasing levels
of the recursive (rt, . . . , r0)-division.

Consider some level i, and assume that we have already computed all Voronoi diagrams
VD(u, R) for pieces R ∈

⋃
j>iRj . Consider any piece P ∈ Ri−1. Let Q ∈ Ri be the parent

of P in T . Our goal is to compute, for every u ∈ ⌟(P ), the representation of VD(u, Q),
the Voronoi diagram of Qout with sites ⌟(Q) and additive weights dist(u, ⌟(Q)). Recall that
this representation consists of the vertices s↘ and last(s, s↘) for every site s ∈ ⌟(Q). We
would like to compute this representation in time roughly proportional to its size |⌟(Q)|.
By Observation 15, using the already computed parts of the oracle for levels j > i, we can
already answer any distance query dist(s, v) for any s ∈ ⌟(Q) and any v ∈ Qout in O(2t log2 n)
time. These are precisely the distance queries required for computing partitions of pieces H

in Qout w.r.t. sites in ⌟(Q) (Lemma 19).
The computation is done separately for each u ∈ ⌟(P ). First, we compute the additive

weights dist(u, ⌟(Q)) in O(|⌟(Q)| · log n) time using the MSSP data structure stored for
Q \ (P \ ∂P ) with sites ⌟(P ). Next, we cover Qout using O(log N) pieces from A that are
internally disjoint from Q (i.e. they may only share boundary vertices). These pieces are the
O(log N) siblings of the (weak) ancestors of Q in A that have a non-empty intersection with
Qout (see Figure 5). Notice that these pieces are in A but not necessarily in T .

We shall find the vertices s↘ of VD(u, Q) in each such piece H separately. We invoke
Partition on ⌜(H) and on ⌟(H), and use Lemma 17 to determine whether H contains any
vertices s↘. If so, we zoom in on each of the two child pieces of H in A until, after O(log N)
steps, we get to a constant-size piece, in which we can find s↘ by brute force. Note, however,
that we are aiming for a running time that is roughly proportional to |⌟(Q)|, but that the
running time of Partition depends on the number of sites U w.r.t. which we partition. This
is problematic since, e.g., when H contains s↘ just for a single site s, we can only afford
to invest Õ(1) time in locating s↘ in H. In this case, computing the partition w.r.t. |⌟(Q)|
is too expensive. Even computing the partition just w.r.t. the sites whose Voronoi cell has
non-empty intersection with H, which is bounded by |⌜(H)|, is too expensive. To overcome
this problem we will show that it suffices to compute the partition w.r.t. a smaller sequence of
sites, whose size is proportional to the number of sites s with s↘ in H (actually in H \ ⌟(H)),
rather than to the size of H or of ⌜(H). We call such a sequence a safe sequence of sites
for H, which we now define formally. Recall that the Voronoi diagram VD(u, Q) of Qout

has sites ⌟(Q). Let U be a subsequence of ⌟(Q). Consider the Voronoi diagram VD′ of Qout

whose sites are the elements of U (with the same additive distances as in VD(u, Q)). We
say that U is safe for H if and only if the sets {(s, s↘) : s is a site and s↘ ∈ H \ ⌟(H)} are
identical for VD′ and VD(u, Q).

▶ Observation 20. A sequence that is safe for H is also safe for any child H ′ of H in A.
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We will discuss the details of safe sequences after first providing the pseudocode of the
procedure Zoom for finding the vertices s↘ in a piece H.

Algorithm 3 Zoom(U, ω, H).
Input: The additive weight ω(s) for each s ∈ ⌟(Q), a piece H in A that is internally disjoint
from Q and has a non-empty intersection with Qout, and a sequence U ⊆ ⌟(Q) that is safe
for H.
Output: All vertices s↘ for s ∈ ⌟(Q) that belong to H.

1: if |H| = 4 then
2: Find all vertices s↘ in H for all s ∈ U by computing ω(s) + dist(s, v) for all s ∈ U

and all v adjacent to some vertex of H.
3: for each child H ′ of H in A do
4: Z ← Partition(U, ω, ⌜(H ′))
5: Z ′ ← Partition(U, ω, ⌟(H ′))
6: L← Z \ Z ′

7: if L ̸= ∅ then
8: V ← Z \{z ∈ Z \L : both the predecessor and successor of z in Z are not in L}
9: Zoom(V, ω, H ′)

The procedure Zoom takes as input a piece H and a sequence U ⊆ ⌟(Q) that is safe
for H. In order to compute VD(u, Q), we call the procedure Zoom(⌟(Q), ω, H) for each of
the O(log N) pieces H that we use to cover Qout. Clearly, in each of those initial O(log N)
calls ⌟(Q) is a safe sequence of the respective piece. For each child H ′ of H in A, we check
whether the condition of Lemma 17 is satisfied in lines 4-7. Note that since U is a safe
sequence for H, U is also a safe sequence for H ′ and hence our computation of the set
L = {s ∈ ⌟(Q) : s↘ ∈ H ′ \ ⌟(H ′)} is correct. If L is non-empty, we recurse on H ′ (cf. line 7).
In line 8, we construct a safe sequence V for H ′, of size proportional to |L| and then, in line 9,
we call Zoom(V, ω, H ′). In order to prove the correctness of procedure Zoom, it remains to
show that V is indeed safe. The following two lemmas show this (see also Figure 6).

▶ Lemma 21. Let U be safe for a piece H, such that Partition(U, ω, ⌜(H)) = U . Suppose
that there are three elements u1, u2, u3 of U that appear consecutively (in this order) in both
Partition(U, ω, ⌜(H)) and Partition(U, ω, ⌟(H)). Then, U \ {u2} is also safe for H.

Proof. To avoid confusion we denote the Voronoi diagram of Qout with sites U by VD and
the one with sites U \ {u2} by VD′. We denote the Voronoi cells of VD by Vor(·), and those
of VD′ by Vor′(·). Note that for every u ∈ U \ {u2}, Vor(u) ⊆ Vor′(u). By Lemma 17, in VD,
u1↘, u2↘, u3↘ /∈ H \ ⌟(H). Hence, in VD′, u1↘, u3↘ /∈ H \ ⌟(H).

▷ Claim. Every vertex y of Vor(u2) ∩H belongs either to Vor′(u1) or to Vor′(u3).

Proof. Consider the last vertex z1 of ⌟(H) that is in Vor(u1), and the first vertex z3 of
⌟(H) that is in Vor(u3). Let ρ1 be a shortest u1-to-z1 path, and ρ3 be a shortest u3-to-z3
path. Note that all vertices of ρ1 belong to Vor(u1) and all vertices of ρ3 belong to Vor(u3).
Consider any vertex y of Vor(u2) ∩H. The vertex y lies to the right of ρ1 and to the left
of ρ3. In VD′, the vertices of ρ1 belong to Vor′(u1) and the vertices of ρ3 belong to Vor′(u3).
Hence, by Lemma 16, in VD′, y can only belong to a site s ̸= u2 that is weakly between u1
and u3. Since u1, u2, u3 appear consecutively in Partition(U, ω, ⌜(H)) = U , the only such
sites are u1 and u3, and the claim follows. ◁

By the above claim, the sets {(s, s↘) : s is a site and s↘ ∈ H \ ⌟(H)} are identical for
VD and VD′. Since U is safe for H, so is U \ {u2}. ◀
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1 2 3 4 5
6
7

Q

Figure 6 Illustration for Lemma 21. Part of Qout (pink) for some piece Q (gray) is shown. A
piece H is indicated by a black rectangle. The sites of ⌟(Q) are numbered 1 through 7. The partition
of ⌜(H) w.r.t. ⌟(Q) is U = (1, 2, 4, 5, 6, 7). Hence, U is safe for H. The partition of ⌟(H) w.r.t. ⌟(Q)
is (1, 2, 4, 6, 7). Since sites 1, 2, 4 are consecutive in both partitions, (1, 4, 5, 6, 7) is also safe for H.
Further, ⌟(Q) is also clearly safe for H. However, (1, 3, 4, 5, 6, 7) may not be safe for H, as 3↘ could
be in H \ ∂H in the Voronoi diagram with sites 1, 3, 4, 5, 6, 7 and the same additive weights.

▶ Lemma 22. Suppose that U is safe for H. Then, in each recursive call Zoom(V, ω, H ′)
made by procedure Zoom(U, ω, H) for a child H ′ of H in A, V is a safe sequence for H ′.

Proof. Since U is a safe sequence for H , U is also a safe sequence for H ′ (cf. Observation 20).
Hence, L is the set of sites s such that s↘ ∈ H ′ \ ⌟(H ′).

Z is the set of sites in U whose Voronoi cells have non-empty intersection with H ′. In
line 8, we remove from Z all vertices of Z \ L that are not preceded or succeeded by a
vertex in L. Therefore, by considering the removal of these sites one at a time, and directly
applying Lemma 21 to each such removal, the resulting sequence V is safe for H ′. ◀

This establishes the correctness of our construction algorithm. Let us now analyze its
time complexity. Initially, we make O(log N) calls to Zoom(U, ω, H), each with U = ⌟(Q).
In each recursive call, for a child H ′ of a piece H , the set U of sites is of size proportional to
the size of the set {s ∈ ⌟(Q) : s↘ ∈ H ′ \ ⌟(H ′)}. Note that in each level of the tree A each
s ∈ ⌟(Q) is an element of exactly one such set. Hence, each s ∈ ⌟(Q) contributes to O(log N)
calls to Zoom: the O(log N) initial ones and at most one more per level of A (which is of
depth O(log N)).

Thus, by Lemma 19, computing s↘ for all s ∈ ⌟(Q) reduces to O(|⌟(Q)| · log2 N) distance
queries dist(u, v), with u ∈ ⌟(Q) and v ∈ Qout. We can answer each such query with the
portion of the oracle that has already been computed in O(2t log2 N) time. Now, recall that
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a dist(s, s↘) query also computes last(s, s↘), and hence these values can also be retrieved
in O(2t log2 N) time. Thus, VD(u, Q), which is of size O(|⌟(Q)|) can be computed in time
O(|⌟(Q)| · 2t log4 N), which is |⌟(Q)| ·No(1) for both choices of t in Proposition 14. Therefore,
the time to compute VD(u, Q) for all pieces is No(1) ·

∑
Q |⌟(Q)| = No(1) ·

∑t−1
i=0

N
ri

√
ri, which

is N1+o(1) for both choices of t. This concludes the proof of Theorem 1.

5 Tradeoffs with o(N) space

In this section we prove Theorem 4. Recall that for this result we consider integer alignment
weights upper-bounded by w: A weight wmatch for aligning a pair of matching letters, wmis

for aligning a pair of mismatching letters, and wdel for letters that are not aligned. One may
assume without loss of generality that 2wmatch > 2wmis ≥ wdel [36]. Given wmatch, wmis

and wdel, we define w′
match = 0, w′

mis = wmatch − wmis and w′
del = 1

2 wmatch − wdel. These
weights are also upper-bounded by w. Then, a shortest path (of length W ) in the alignment
grid with respect to the new weights, corresponds to a highest scoring path with respect to
the original weights (of score 1

2 (m + n)wmatch −W ).

FR-Dijkstra. We define the dense distance graph (DDG) of a piece P as a directed bipartite
graph with vertices ∂P and an edge from every vertex u ∈ ⌜(P ) to every vertex v ∈ ⌟(P ) with
weight equal to the length of the shortest u-to-v path in P . We denote this graph as DDGP .2
DDGP can be computed in time O((|∂P |2 + |P |) log |P |) = O(|P | log |P |) using the MSSP
data structure. In their seminal paper, Fakcharoenphol and Rao [20] designed an efficient
implementation of Dijkstra’s algorithm on any union of DDGs – this algorithm is nicknamed
FR-Dijkstra. FR-Dijkstra exploits the fact that, due to planarity, the adjacency matrix of
each DDG can be decomposed into Monge matrices (defined formally in equation (1) below).
In our case, since each DDG is a bipartite graph, the entire adjacency matrix is itself Monge
(this will be shown below). Let us now give an interface for FR-Dijkstra that is convenient
for our purposes.

▶ Theorem 23 ([20,23,31]). Dijkstra’s algorithm can be run on the union of a set of DDGs
with O(M) vertices in total (with multiplicities) and an arbitrary set of O(M) extra edges in
the time required by O(M log2 M) accesses to edges of this union.

▶ Remark 24. In our case, the runtime of the algorithm encapsulated in the above theorem
can be improved to O(M log log(nw)). One of the two O(log M) factors stems from the
decomposition of the adjacency matrix into Monge submatrices, which is not necessary in
our case. The second O(log M) comes from the use of binary heaps. In our case, these heaps
store integers in O(nw) and can be thus implemented with O(log log(nw)) update and query
times using an efficient predecessor structure [38,39].

A warmup. Let us first show how to construct in Õ(N) time an Õ(N)-size oracle that
answers queries in Õ(

√
N) time using well-known ideas [20]. We will then improve the size

of the data structure by efficiently storing the computed DDGs.
Let us consider an r-division of G, for an r to be specified later. Further, consider the

tree A′, obtained from the recursive decomposition tree A by deleting all descendants of
pieces in the r-division. For each piece P ∈ A′, we compute and store DDGP . In each of

2 For general planar graphs, the DDG of a piece is usually defined as a complete directed graph on ∂P .
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the O(log N) levels of A, for some value y, we have O(N/y) pieces, each with O(y) vertices
and O(√y) boundary vertices. Hence, both the construction time and the space occupied by
these DDGs are Õ(N).

We next show how to compute the weight of an optimal alignment of S[i . . j] and T [a . . b],
i.e. compute the shortest path ρ from u = (i− 1, a− 1) to v = (j, b), where i < j and a < b.
If u and v belong to P \ ∂P for a piece P of the r-division, then both S[i . . j] and T [a . . b]
are of length O(

√
r), and we can hence run the textbook dynamic programming algorithm

which requires O(r) time. Henceforth, we consider the complementary case.
Let Pu and Pv be the distinct r-division pieces that contain u and v, respectively. Further,

let Q be the lowest common ancestor of Pu and Pv in A′. For z ∈ {u, v}, let Qz be the child
of Q that contains z. The set of vertices Qu ∩ Qv are denoted by sep(Q) – which stands
for separator. Observe that ρ must contain at least one vertex from sep(Q). Consider the
set that consists of Pz and the siblings of weak ancestors of Pz in A′ that are descendants
of Q, and call it the cone of Pz. The cone of Pz covers Qz and its elements are pairwise
internally disjoint. See Figure 7 for an illustration. Now, observe, that any shortest path ρ

between a vertex of ∂Pz and a vertex of sep(Q) can be partitioned into subpaths ρ1, . . . , ρk

such that each ρi lies entirely within some piece Ri in the cone of Pz and both ρi’s endpoints
are boundary vertices of Ri. Using these two observations, we can compute a shortest u-to-v
path by running FR-Dijkstra on the cones of Pu and Pv, and, possibly, the following extra
edges. In the case where the source u (resp. target v) is not a boundary vertex, we include
O(
√

r) additional edges: for each boundary vertex x of Pu (resp., Pv), an edge from u to x

(resp., from x to v) with length equal to that of the shortest path from u to x (resp. from x

to v). The weights of such edges can be computed in O(r) time using dynamic programming.
Thus, a query can be answered in time Õ(

√
N + r). By setting r =

√
N we get the promised

complexities.

u

v

Figure 7 The piece Q is shown. sep(Q) is denoted by red, while a shortest u-to-v path is shown
in blue. The pieces in the cone of Pu are shaded by brown, while the pieces in the cone of Pz are
shaded by pink.

The tradeoff. We can now describe the entire tradeoff of Theorem 4. We assume that
r > w2, since otherwise Nw/

√
r = Ω(N) and Theorem 4 is satisfied by the warmup solution.

For a piece P , we will show how to store DDGP in O(|∂P | ·w) = O(w
√
|P |) instead of O(|P |)

space. Our representation will allow retrieving the length of any edge of DDGP in Õ(1) time.
Our approach closely follows ideas from [2].

For the remainder, we deviate from our ordering convention of ⌜(P ); the first vertex is
now the top-right vertex of P , and the last is the bottom-left one. ⌟(P ) is ordered as before
where the first vertex is the bottom-left one and the last is the top-right one. We denote
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the i-th vertex of ⌜(P ) by vi and the j-th vertex of ⌟(P ) by uj . Note that we can infer
whether any vertex uj is reachable from a vertex vi in O(1) time. For ease of presentation
we would like the weights of all edges of DDGP to be finite. To achieve this, for each edge
between two vertices of ⌜(P ), we introduce (in P ) an artificial edge with weight w in the
opposite direction. It is readily verified that all vi-to-uj distances that were finite before the
introduction of such edges remain unchanged. This is because the shortest path between
two vertices of this modified graph that lie on the same column (resp. row) consists solely of
vertical (resp. horizontal) edges.

Let M be the adjacency matrix of DDGP with entry M [i, j] storing the distance from vi

to uj , and let k = |⌜(P )| = |⌟(P )|. Matrix M satisfies the Monge property, namely:

M [i + 1, j]−M [i, j] ≤M [i + 1, j + 1]−M [i, j + 1] (1)

for any i ∈ [1, k− 1] and j ∈ [1, k− 1]. This is because the shortest vi-to-uj and vi+1-to-uj+1
paths must necessarily cross.

In addition, for any fixed j ∈ [1, k], for all i ∈ [1, k − 1], we have

|M [i + 1, j]−M [i, j]| ≤ w. (2)

This is because edges vivi+1 and vi+1vi both have weight at most w. This implies that
M [i, j] ≤M [i + 1, j] + w, as a shortest vi-to-uj path cannot be longer than the concatenation
of the edge vivi+1 with a shortest vi+1-to-uj path. Similarly, we have M [i+1, j] ≤M [i, j]+w.

Our representation of M is as follows, and fairly standard [2, 16, 36]. We define a
(k − 1)× (k − 1) matrix P , satisfying

P [i, j] = M [i, j] + M [i + 1, j + 1]−M [i, j + 1]−M [i + 1, j].

Equations (1) and (2) imply that, for any i ∈ [1, k − 1], the sequence M [i + 1, j]−M [i, j] is
nondecreasing and contains only values in [−w, w]. Hence, P has O(kw) non-zero entries.
Now, observe that

∑
r≥i,c≥j

P [r, c] = M [i, j] + M [k, k]−M [i, k]−M [k, j]. (3)

We store the last row and column of M . By (3), this means that retrieving M [i, j] boils
down to computing

∑
r≥i,c≥j P [r, c]. We view the non-zero entries of P as points in the

plane and build in Õ(kw) time an Õ(kw)-size 2D-range tree over them [7], which can return∑
r≥i,c≥j P [r, c] for any i, j in Õ(1) time. The overall space required by our representation

of DDGP is thus Õ(kw) = Õ(|∂P | · w), and any entry of M can be retrieved in Õ(1) time.

In total, over all O(N/r) pieces of the r-division, the space required is Õ((N/r) ·
√

r ·w) =
Õ(Nw/

√
r). This level dominates the other levels of the decomposition, as the sizes of pieces,

as well as their boundaries, decrease geometrically in each root-to-leaf path. Note that, for
the dynamic programming part of the query algorithm, we can simply store the strings,
which take O(m + n) space. This concludes the proof of Theorem 4.
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Abstract
We consider the fundamental problems of determining the rooted and global edge and vertex
connectivities (and computing the corresponding cuts) in directed graphs. For rooted (and hence
also global) edge connectivity with small integer capacities we give a new randomized Monte Carlo
algorithm that runs in time Õ

(
n2)

. For rooted edge connectivity this is the first algorithm to improve
on the Ω(n3) time bound in the dense-graph high-connectivity regime. Our result relies on a simple
combination of sampling coupled with sparsification that appears new, and could lead to further
tradeoffs for directed graph connectivity problems.

We extend the edge connectivity ideas to rooted and global vertex connectivity in directed graphs.
We obtain a (1 + ϵ)-approximation for rooted vertex connectivity in Õ(nW/ϵ) time where W is the
total vertex weight (assuming integral vertex weights); in particular this yields an Õ

(
n2/ϵ

)
time

randomized algorithm for unweighted graphs. This translates to a Õ(κnW ) time exact algorithm
where κ is the rooted connectivity. We build on this to obtain similar bounds for global vertex
connectivity.

Our results complement the known results for these problems in the low connectivity regime due
to work of Gabow [8] for edge connectivity from 1991, and the very recent work of Nanongkai et al. [23]
and Forster et al. [6] for vertex connectivity.
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1 Introduction

Let G = (V, E) be a simple directed graph; that is, a directed graph with no parallel edges.
Recall that G is strongly connected if there is a path from any vertex a ∈ V to any vertex
b ∈ V . The edge connectivity is the minimum number of edges that need to be removed so
that G is not strongly connected. The corresponding set of edges is called the minimum edge
cut. The vertex connectivity is the minimum number of vertices that need to be removed so
that the remaining graph is not strongly connected or has only one vertex. The corresponding
set of vertices is called the minimum vertex cut. These problems generalize to weighted
settings where the edges and vertices are assigned positive weights and the goal is to find the
minimum weight edge or vertex cut. Determining the edge and vertex connectivities and
finding the corresponding minimum cuts are among the basic problems in graph algorithms.

EA
T

C
S

© Chandra Chekuri and Kent Quanrud;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 49; pp. 49:1–49:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chekuri@illinois.edu
http://chekuri.cs.illinois.edu/
mailto:krq@purdue.edu
https://www.kentquanrud.com/
https://doi.org/10.4230/LIPIcs.ICALP.2021.49
https://arxiv.org/abs/2104.07205
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


49:2 Faster Algorithms for Rooted Connectivity in Directed Graphs

This work obtains faster randomized algorithms for finding minimum edge and vertex cuts
in directed graphs, especially in the dense setting. The algorithms are based on a simple
technique which could be of independent interest.

Our interest is actually in the more general rooted connectivity problems. Let r ∈ V be a
fixed vertex, called the root. The r-rooted edge connectivity is the minimum number of edges
that have to be removed so that there is some vertex in V −r that r cannot reach. An algorithm
for rooted edge connectivity easily implies an algorithm for edge connectivity, by fixing any
root and returning the minimum of the rooted connectivity in G and the rooted connectivity
in the graph obtained by reversing all the edges in G. Another important motivation for
investigating rooted connectivity is the fundamental result by Edmonds [4] that the r-rooted
edge connectivity equals the maximum number of edge-disjoint arboresences rooted at r. We
refer the reader to [27, 7] for further connections in combinatorial optimization. Similarly,
the r-rooted vertex connectivity is the minimum number of vertices (excluding r) that have
to be removed so that r cannot reach some vertex in the residual graph. Algorithms for
rooted vertex connectivity also lead to global vertex connectivity by a similar but somewhat
more involved reduction. There is a long and rich history of developing algorithms for
determining the edge and vertex connectivity. We first note that all of these connectivity
and cut problems reduce to a polynomial number of (s, t)-cut and flow problems by standard
reductions. Beyond (s, t)-flow, an interesting algorithmic landscape emerges with different
running times depending on whether we are interested in edge or vertex cuts, directed or
undirected graphs, and weighted or unweighted graphs.

Rooted and global edge-connectivity. We first discuss edge connectivity in directed graphs.
Let λ denote either the rooted or global edge connectivity of the graph depending on the
context. One can compute both via O(n) (s, t)-minimum cut computations. For the simple
and unweighted directed graph setting, Mansour and Schieber [21] improved on this and
gave algorithms that run in O(mn) time or in O

(
λ2n2)

time for global connectivity. It was
also observed by Alon (cf. [21]) that this approach can be parameterized by the minimum
out-degree δ+ to obtain a O(n log(δ+) EC(m, n)/δ+) algorithm, where EC(m, n) denotes
the running time for (s, t)-edge connectivity1. Gabow [8] then gave a O

(
mλ log

(
n2/m

))
for rooted connectivity in graphs with integer capacities. Gabow’s algorithm is based on
Edmonds’ theorem described above. Gabow’s algorithm is nearly linear time for sparse
unweighted graphs, and remains the fastest algorithm for small λ for both rooted and global
edge connectivity. It is interesting that Gabow’s algorithm is not based on (s, t)-flow. For
directed graphs with arbitrary edge capacities, Hao and Orlin [12] gave an O

(
mn log

(
n2/m

))
algorithm for rooted connectivity by adapting the push-relabel max flow algorithm; in fact
their algorithm computes the (r, v)-connectivity for all v ∈ V − r. Thereafter there have
been no direct running time improvements to rooted or global edge connectivity in directed
graphs but we point out that there have been numerous breakthroughs in the running times
for (s, t)-flow and connectivity [11, 24, 15, 19, 20, 18, 14, 28, 10]. In particular, starting
with the work of Goldberg and Rao [11], the running time for (s, t)-flow is o(mn) which
breaks the flow-decomposition barrier. Motivated by these developments and several others,
there has been a resurgence of interest and literature on faster graph algorithms for several
fundamental problems. Despite these developments there has been no algorithm for rooted

1 Depending on the context, we let EC(m, n) denote the running time for (s, t)-cut in either a simple or a
weighted directed graph with m edges and n vertices.
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Table 1 Running times for finding the minimum cut in unweighted directed graphs (i.e., U = 1).
EC(m, n) denotes the running time of computing (s, t)-connectivity (in unweighted graphs). See
also [27, §15.3a].

O(n EC(m, n)) Trivial. Also holds for rooted connectivity.

O(n ECλ(m, n)) Matula [22]. Also holds for rooted connectivity.

O(mn), O
(
λ2n2)

Mansour and Schieber [21]

* O
(

n log δ

δ
EC(m, n)

) Alon (cf. Mansour and Schieber [21]). δ is the minimum out-degree
in the graph.

* O
(
mλ log

(
n2/m

))
Gabow [8]. Also holds for rooted connectivity.

* Õ
(
n2)

Theorem 1. Randomized. Also holds for rooted connectivity.

edge-connectivity in simple directed graphs that is faster than O(n3) in the worst case. In
this paper we obtain a nearly quadratic time algorithm which also applies to graphs with
small integer capacities.2

▶ Theorem 1. Let G = (V, E) be a simple directed graph with m edges n, vertices, and
integer edge weights w : E → [U ]. Then the minimum rooted r-cut can be computed with high
probability in Õ

(
n2U

)
randomized time.

This running time is particularly compelling when the rooted edge connectivity λ is high.

Rooted and global vertex-connectivity. We now consider (rooted) vertex connectivity in
directed graphs. It is well known that for fast algorithms, global vertex connectivity is more
involved than edge connectivity and the running times are more varied. While the rooted
vertex connectivity can be reduced to computing O(n) (s, t)-cuts, the global version, if done
naively, would require Ω(n2) calls to the (s, t)-cut problem since it is not obvious how to
find a vertex that is not part of the minimum global vertex cut. There is a large body of
literature and we highlight the leading (randomized) running times, where we state running
times for randomized algorithms with high probability of success. Let κ denote the weight
minimum vertex cut, where we assume the minimum weight of any vertex is 1. For large κ

and general capacities, there is a randomized algorithm by Henzinger et al. [13] (extending
the directed edge connectivity algorithm of [12]) that runs in O(mn log(n)) time. For small
values of κ in the unweighted setting, recent randomized algorithms by Forster et al. [6]
based on local connectivity have obtained Õ

(
mκ2)

and Õ
(
nκ3 + κ3/2√

mn
)

running times.
For more intermediate values of κ, there are also randomized Õ

(
κm2/3n

)
and Õ

(
κm4/3)

time algorithms [23] as well as an O(nω + nκω) time algorithm [3], where ω ≈ 2.3728596
is the current exponent for fast matrix multiplication [1]. There is also recent interest in
obtaining fast (1 + ϵ)-approximation algorithms for minimum vertex cut [23, 6]. In particular
[23] obtains a O

(
nω/ϵ2 + m min{κ,

√
n}

)
running time (where ω denotes the exponent for

matrix multiplication) and [6] obtains a randomized algorithm with running time Õ(mκ/ϵ).
We obtain the following theorem.

2 Here and throughout Õ(· · ·) hides polylogarithmic factors in m and n. We note that the ideas introduced
in this work are simple and the logarithmic factors they generate are easy to account for. However
Theorem 1 also uses the recent (s, t)-flow algorithm of [28] with running time EC(m, n) = Õ

(
m + n1.5

)
,

which has large logarithmic factors.

ICALP 2021



49:4 Faster Algorithms for Rooted Connectivity in Directed Graphs

Table 2 A table of running times for finding the minimum vertex cut in unweighted directed
graphs (i.e., W = n). VC(m, n) denotes the running time of computing (s, t)-vertex connectivity,
and is at most Õ

(
m + n1.5)

[29]. All randomized algorithms above are correct with high probability.
See also [27, §15.2a] and [6].

O
(
n2 VC(m, n)

)
Trivial.

O(n VC(m, n) log(n)) Trivial. Randomized. κ ≤ .999n

O(κn VC(m, n)) Podderyugin [25], Even and Tarjan [5]

O(nω + nκω) Cheriyan and Reif [3].

O(κmn), O
(
(κ3 + n)m

)
Henzinger et al. [13].

O(mn log(n)) Henzinger et al. [13]. Randomized.

O
(
min

{
κ5/2, κn3/4}

m + mn
)

Gabow [9].

Õ
(
κm2/3n

)
, Õ

(
κm4/3)

Nanongkai et al. [23]. Randomized.

Õ
(
mκ2)

, Õ
(
nκ3 + κ3/2m1/2n

)
Forster et al. [6]. Randomized.

Õ
(
n2κ

)
Corollary 3. Randomized.

▶ Theorem 2. Let G = (V, E) be a directed graph with m edges, n vertices, and integer
vertex weights w : V → N. Let r ∈ V be a fixed root vertex. Let κ be the rooted vertex
connectivity from r. Let W =

∑
v∈V w(v) be the total weight of the graph. For any ϵ > 0

a (1 + ϵ)-approximate rooted minimum vertex cut can be computed with high probability
in Õ(m + n(W − κ)/ϵ) randomized time; for unit weights this is Õ(m + n(n − κ)/ϵ). The
rooted connectivity can be computed with high probability in Õ(m + κn(W − κ)) time.

Note that W ≥ n in the above running times. We point out that the approximation
algorithm’s running time is independent of κ. This large κ regime has been challenging for
previous approaches. The rooted connectivity algorithm, when combined with sampling and
other ideas, gives the following theorem for global vertex connectivity. As we remarked,
the reduction from global to rooted is not as clean for vertex connectivity as it is for edge
connectivity.

▶ Corollary 3. Let G = (V, E) be a directed graph with m edges, n vertices, and integer
vertex weights w : V → N. Let W =

∑
v∈V w(v) be the total vertex weight of the graph. Let

κ be the global vertex connectivity of G. There is a randomized algorithm that for any ϵ > 0
outputs a (1 + ϵ)-approximate minimum vertex cut with high probability in time Õ(nW/ϵ).
There is a Õ(κnW ) time randomized algorithm that computes the (exact) minimum vertex
cut with high probability. In particular, for unit weights, the running time is Õ

(
κn2)

.

1.1 Key ideas
Our algorithms are based on a simple but key idea that we briefly outline below. We focus
on the edge-connectivity case since the idea for vertex connectivity is essentially the same
with some modifications. We would like to take advantage of recent developments on fast
algorithms for (s, t)-cut and reduce to solving a small number of such cut problems in a
black box fashion (unlike the approach of [12] based on the properties of a specific flow
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algorithm). For undirected graph global connectivity there has been very recent exciting
progress by Li and Panigrahi [17] reducing to a logarithmic number of (s, t)-cuts. However,
the technique makes strong use of the symmetry of the edge-cut function which are absent
in the directed graph setting. In a different direction the work of Nanongkai, Saranurak, and
Yingchareonthawornchai [23] and follow up improvements by Forster et al. [6], developed
fast algorithms for global connectivity based on local connectivity and randomization. At a
high-level they use sampling to identify two vertices s, t on the opposite sides of a cut and
then reduce to (s, t)-cut, or they use a local-connectivity algorithm from each vertex v ∈ V .
This approach is particularly well-suited for small connectivity.

For directed graph edge connectivity Gabow’s algorithm with running time Õ(mλ) is very
good. In order to beat O(n3) in the worst case, the bottleneck is the dense graph regime with
high connectivity. We have two main ideas that are particularly well suited to this regime.
First, we focus on the rooted case even though it may appear to be more difficult than
the global connectivity case. The global connectivity can be much smaller than the rooted
connectivity; for instance the graph may not be strongly connected, in which case the global
edge connectivity is 0, while the rooted connectivity for a particular root can still be Ω(n).
Consider rooted connectivity from a given vertex r. In order to reduce to (s, t)-cut we would
like to find a node t such that t is the sink side of a minimum r-cut. Let T ⊆ V be a sink side
of a minimum r-cut and hence λ = |δ−(T )|; here δ−(T ) denotes the set of edges entering T .
If |T | is large we can randomly sample a small number of vertices and we will succeed with
good probability in finding a vertex from T . Therefore the difficult case is when |T | is small
and this is the setting in which we make our key observation: if the graph is simple (or edge
capacities are small) and the sink side of a minimum r-cut is small (but not a singleton!),
then T cannot have a high-degree vertex. How can we take advantage of this? Since we are
working with the rooted problem, we can shrink all high-degree vertices into the root r! In
other words we can sparsify the graph if the sink side is small and compensate for the higher
sampling rate (and larger number of (s, t)-cut computations) we need to find a vertex on
the sink side. Simple in retrospect, this tradeoff between sparsification and sampling rate
coupled with guessing the size of the sink component gives us the overall algorithm with
some additional technical work. We believe that our high-level idea will find use in other
contexts when combined with other techniques.

Recent related work. Several recent papers have obtained results that are relevant to this
work. Li et al. [16] obtained an Õ

(
mn1−1/12+o(1)) time algorithm for vertex connectivity

in directed and unweighted graphs. A followup work by one of the authors of this paper
obtained (1 + ϵ)-approximation algorithms for weighted graphs, for rooted and global, edge
and vertex connectivity, with Õ

(
n2/ϵO(1)) running times [26]. Improved exact algorithms

for weighted edge connectivity have also been obtained very recently in [2].

2 Edge connectivity

In this section, we prove the main theorem for edge connectivity, Theorem 1. To this end, we
will first introduce the main key lemma, called the Rooted Sparsification Lemma, in Section
2.1. In Section 2.2, we give a lemma that applies the Rooted Sparsification Lemma to give
a faster algorithm when the number of vertices in the sink component is known to be in a
fixed interval between 1 and n. Theorem 1 is then proven in Section 2.4, applying the ideas
from Section 2.2 to each of a small family of intervals.
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r̄

Figure 1 An example of the Rooted Sparsification Lemma in action. In particular, contracting
the high in-degree vertices into r leaves the sink component of the minimum r-cut intact.

2.1 The Rooted Sparsification Lemma for Edge Connectivity
We introduce the key technical ingredient that we call the Rooted Sparsification Lemma.
This lemma says that if the sink component of the minimum r-cut is small, then unless it is a
singleton cut (which is easy to find directly), we can contract all vertices with high in-degree
into the root while preserving the minimum rooted cut exactly. The result is a smaller and
sparser graph in which we can find the minimum rooted cut faster. Later we will see that the
running time saved by operating on a smaller graph makes up for the difficulty in identifying
a vertex from a smaller sink component.

▶ Lemma 4. Let G = (V, E) be a simple directed graph with m edges, n vertices, and edge
weights w : E → [1, U ]. Let r ∈ V be a fixed root vertex. Let k ∈ N. Consider the graph Ḡ

obtained by contracting all vertices with weighted in-degree ≥ (1 + U)k into r. Let r̄ denote
the contracted vertex in Ḡ. Then we have the following.
1. Ḡ is a multigraph with less than (1 + U)nk edges.
2. If the minimum number of vertices in a sink component of a minimum r-cut has greater

than 1 and less than or equal to k vertices, then the minimum r-cut and the minimum
r̄-cut are the same.
Note that contraction cannot reduce the value of r-cut. An example illustrating the

lemma is given in Figure 1. The proof is in two steps.

Small sinks make small cuts (except for singletons). The first step towards the Rooted
Sparsification Lemma for edge connectivity is the following basic observation relating the
connectivity to the number of vertices in the sink component of a minimum rooted cut.
For simple graphs (i.e., U = 1), the following lemma says that except for the case where
the minimum rooted cut is achieved by a singleton, the rooted connectivity is less than the
number of vertices in the sink component of the cut. With capacities between 1 and U ,
we obtain a similar inequality except scaled by U . See Figure 2 for an illustration of the
following lemma.

▶ Lemma 5. Let G = (V, E) be a simple directed graph with m edges, n vertices, and edge
weights w : E → [1, U ]. Let r ∈ V be a fixed root vertex. Let λ be the rooted edge connectivity
from r. Let k be the minimum number of vertices in a sink component of a minimum r-cut.
Then either k = 1 or λ < Uk.

Proof. Let T be the set of vertices on the sink-side of a cut with λ edges. Suppose k = |T | > 1.
Every vertex in T has weighted in-degree > λ. Consider all edges with head in T . Because
G has capacities between 1 and U , of all the edges with head in T , at most k(k − 1)U
total weight have their tail in T as well. Thus λ > kλ − k(k − 1)U. Rearranging, we have
k(k − 1)U > (k − 1)λ, hence kU > λ. ◀
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T

Figure 2 The set of vertices T has 4 vertices and there are 5 edges crossing into T . Lemma 5
implies that T cannot be the sink component of the minimum r-cut. Indeed, there are singleton
cuts of degree 4 inside T .

▶ Remark 6. The above argument is simple and (unsurprisingly) we realized that a similar
line of reasoning has appeared in previous work [21] (though towards a different algorithmic
approach and not in the context of rooted connectivity).

Small sinks are sparse sinks. We now prove the Rooted Sparsification Lemma, Lemma 4.
The high level argument is very simple and we first give an informal argument to emphasize
the intuition. If the sink component of the minimum r-cut is small, then by Lemma 5, the
minimum r-cut is also small. Suppose for the sake of discussion that the graph is simple
(i.e., U = 1). If both the minimum r-cut and the sink component are small and the graph
is simple, then every vertex in the sink component has small in-degree. The contrapositive
implies that every high in-degree vertex is on the source side of the cut. Thus the high
in-degree vertices can be safely contracted into the root.

Proof of the rooted sparsification lemma. Recalling the statement of the lemma, it is easy
to see that contracting all vertices with weighted in-degree ≥ (1 + U)k into r results in a
multigraph Ḡ in which every vertex has weighted in-degree < (1 + U)k, and hence there are
at most (1 + U)nk edges total.

Let T be the sink component of a minimum r-cut. Observe that contracting into r cannot
decrease the edge connectivity. If one can show that no vertices in T are contracted into r̄,
then T is the sink component of a minimum r̄-cut as well.

By Lemma 5, the minimum r-cut has size λ < Uk. Because G is simple and T has ≤ k

vertices, every vertex in T has in-degree less than λ + k < (1 + U)k. Thus any contracted
vertex is outside of T . This completes the proof. ◀

2.2 Rooted connectivity for a fixed range of component sizes
Applying the Rooted Sparsification Lemma usefully requires a fairly tight upper bound on
the number of vertices in the sink component of the minimum r-cut. In this section, we
assume we are given a lower bound k1 and an upper bound k2 on the number of vertices in
the sink component, and develop algorithms for the minimum rooted cut in this parametrized
regime. The running times are decreasing in k1 and increasing in k2; that is, they are better
for tighter bounds on the number of vertices in the sink component.

▶ Lemma 7. Let G = (V, E) be a simple directed graph with m edges, n vertices, and edge
weights w : E → [1, U ]. Let r ∈ V be a fixed root vertex. Let λ be the rooted edge connectivity
from r. Let k1, k2 ∈ N with 1 ≤ k1 ≤ k2 ≤ n. Suppose the sink component of the minimum
r-cut has between k1 and k2 vertices. Then the minimum r-cut can be computed with constant
probability in

O

(
m + n

k1
(EC(min{m, nk2U}, n))

)
time.
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Proof. We first consider the case k1 > 1. By Lemma 4, we can reduce the number of edges
to m′ = O(k2nU) while preserving the r-cut and retaining all k1 or more vertices in the
sink-side component. Let us sample O(n/k1) sink vertices t in the remaining graph uniformly
at random, and compute the minimum (r, t)-cut for each. This takes EC(min{m, m′}, n) =
EC(min{m, k2nU}, n) time for each instance, as desired. With constant probability, at least
one sink is sampled out of the sink component of the minimum r-cut, which will return the
minimum r-cut.

If k1 = 1, then we must also address the possibility of a singleton cut. We apply the
above for k1 = 2 and compare the output to all of the singleton r-cuts, and output the
smallest of these cuts. ◀

2.3 Rooted connectivity for small sink components
▶ Lemma 8. Let G = (V, E) be a simple directed graph with m edges, n vertices, and integer
edge weights w : E → [U ]. Let r ∈ V be a fixed root vertex. Let k ∈ N be a given parameter.
There is a deterministic algorithm that runs in O

(
m + nk2U2 log(max{n/kU})

)
time and

returns an r-cut with the following guarantee. If the sink component of a minimum r-cut has
at most k vertices, then the algorithm will return a minimum r-cut.

Proof. If the sink side of the minimum cut has less than k vertices, then via Lemma 5, either
a singleton induces a minimum r-cut, or the minimum r-cut has size λ < Uk. For the latter
case, we apply the rooted sparsification lemma and reduce the graph to O(nkU) edges while
preserving the minimum r-cut. We apply Gabow’s algorithm [8] to the sparsified graph
and it runs O

(
nk2U2 log(max{1, n/kU})

)
time, and either finds a minimum rooted cut or

certifies that the r-cut value in the sparsified graph has value ≥ kU . We compare the output
with all singleton r-cuts. ◀

2.4 Algorithm for rooted edge connectivity
We now prove the main theorem for edge connectivity, Theorem 1. By Lemma 7, if the
number of vertices in the sink component is known, then we can reduce very efficiently to
(s, t)-connectivity by either sparsifying the graph (if the number is small) or easily guessing
a sink (if the number is large). More generally, we can pursue both strategies relative to any
given upper and lower bounds on the number of vertices in the sink component. Meanwhile,
for small component sizes (that are not singletons), we can still sparsify the graph, while
the cut size must be small, which combine to produce fast running times via [8] in Lemma
8. The only unknown is the number of vertices in the sink component. Here we guess the
number of vertices up to a constant factor, which only requires enumerating a logarithmic
number of guesses. We restate Theorem 1 for the sake of convenience.

▶ Theorem 1. Let G = (V, E) be a simple directed graph with m edges n, vertices, and
integer edge weights w : E → [U ]. Then the minimum rooted r-cut can be computed with high
probability in Õ

(
n2U

)
randomized time.

Proof. Let ℓ ∈ [n] be a parameter to be determined. The sink component of the minimum
r-cut either (a) is a singleton, (b) has at most ℓ vertices, or (c) has between 2i and 2i+1

vertices for some i ≥ ⌊log ℓ⌋. For each of these categories we apply a subroutine and take the
minimum of the cut values found.
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Singleton cuts are easy to evaluate in O(m) time. Let i0 = ⌊log ℓ⌋ and i1 =
max{⌈log m/nU⌉, i0 + 1}. For i = i0, . . . , i1 − 1, let ki = 2i. Let ki1 = n. For (b) we invoke
Lemma 8 with maximum sink component ki0 . To address (c), for each i = i0, . . . , i1 − 1, we
invoke Lemma 7 O(log n) times with lower bound ki and upper bound ki+1 on the number
of vertices in the sink component. We use EC(m, n) = Õ

(
m + n1.5)

[28]. The combined
running time is Õ

(
n2U + n2.5

ℓ + nℓ2U2
)

. For ℓ =
√

n/U , this gives the claimed running
time. ◀

3 Rooted and global vertex connectivity

In this section, we describe and analyze the approximation algorithms for rooted and
global vertex connectivity. The high-level approach is similar to the previously discussed
algorithm for edge connectivity. The first step, Lemma 10, is a variant of the Rooted
Sparsification Lemma that applies to (approximate) vertex connectivity. It plays a similar
role as its counterpart for edge connectivity, allowing one to sparsify the graph when the
sink component of the minimum rooted vertex cut is small. The proof of Lemma 10 is given
Section 3.1. We then give an algorithm specific to (roughly) the number of vertices in the
sink component in Section 3.2. We use this algorithm as a subroutine in the final algorithm
for approximate rooted connectivity in Section 3.4. In Section 3.5, we give the reduction
from approximate global vertex connectivity to approximate rooted vertex connectivity. The
exact global vertex connectivity algorithm for integer weights follows from an appropriate
choice of error parameter.

3.1 Rooted sparsification for approximate vertex connectivity
Recall that a key idea in the algorithm for (rooted) edge connectivity was the Rooted
Sparsification Lemma, which allows us to substantially decrease the number of edges when
the sink component of the minimum rooted cut is small. Underlying the rooted sparsification
lemma for edge connectivity was a direct relation between the size of the sink component
and the weight of the minimum edge cut – Lemma 5 in Section 2.1. But this relation does
not hold for vertex connectivity, even in unweighted and undirected graphs – even if the sink
component is small, the vertex in-cut can be very large. For example, for arbitrarily large n

and any fixed constant k, let S = Kn be a clique of size n and let T = Kk be a clique of size
k. Add edges between all s ∈ S and all t ∈ T . Let r be an additional root vertex connected
to every vertex in S. Then T is the sink component of the minimum vertex r-cut. It has a
constant number of vertices, k, while the size of the vertex cut, n, is arbitrarily large.
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fully connected
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( =  =
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) =  :

fully connected

That said, we show that a useful sparsification is possible if we relax to approximating
the rooted vertex connectivity, and qualify the lemma by the assumption that no singleton
cut already represents a good approximation. To this end, let u, v ∈ V . We say that u

is an in-neighbor of v if (u, v) ∈ E. We denote the set of in-neighbors of a vertex v by
N−(v) def= {u ∈ V : (u, v) ∈ E}. The definition of in-neighbors naturally extends to sets of
vertices; for S ⊂ V we define N−(S) = (∪v∈SN−(v)) \ S. The weighted in-degree of v is
defined as the total weight of all in-neighbors of v. Similarly we define the set of out-neighbors
of a vertex v, denoted N+(v), as N+(v) def= {u ∈ V : (u, v) ∈ E}, and the weighted out-degree
of v, denoted deg+(v), as the sum of weights over N+(v).
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Figure 3 An example of the Rooted Sparsification Lemma for vertex connectivity in action. In
the input graph on the left, minimum vertex r-cut has size 2 and the sink component (circled) has
4 vertices. The minimum in-degree (other than r) is 5. On the right hand side, all vertices with
in-degree ≥ 9 have all their incoming edges replaced with a single edge from r. The minimum vertex
r-cut is again 2 and the sink-component of the minimum r-cut remains unchanged.

Our first lemma gives an approximate relationship between the weight of the minimum
weight rooted vertex cut and the weight of the sink component of the minimum weight rooted
vertex cut.

▶ Lemma 9. Let ϵ > 0 be fixed. Let G = (V, E) be a directed graph with m edges, n vertices,
and vertex weights w : V → [1, ∞). Let r ∈ V be a fixed root vertex. Let κ be the rooted
vertex connectivity from r. Suppose the in-neighborhood of every non-root vertex has total
weight greater tha (1 + ϵ)κ. Then the minimum vertex r-cut has more than ϵκ weight in the
sink component.

Proof. Let the minimum r-cut be of the form N−(S), where S ⊆ V − r. To prove the claim
it suffices to show that w(S) > ϵκ.

For any vertex v ∈ S, by assumption, total weight of in-neighbors is more tha (1 + ϵ)κ.
At most κ weight of these in-neighbors are in the minimum vertex r-cut, N−(S). This implies
that v has more than ϵκ weight of in-neighors in S, and hence

∑
s∈S w(s) > ϵκ + 1 (where

the extra 1 is for the weight of v). ◀

▶ Lemma 10. Let ϵ > 0 be fixed. Let G = (V, E) be a directed graph with m edges, n vertices,
and vertex weights w : V → [1, ∞). Let r ∈ V be a fixed root vertex. Let κ be the rooted
vertex connectivity from r. Suppose every vertex (excluding r) has weighted in-degree greater
than (1 + ϵ)κ. Let k ∈ N. Consider the graph Ḡ obtained by replacing, for each vertex v ∈ V

with weighted in-degree ≥ (1 + 1/ϵ)k, all of the in-coming edges to v with a single edge from
r to v. Then we have the following.
1. Ḡ has maximum weighted in-degree at most (1 + 1/ϵ)nk.
2. Ḡ has at most (1 + 1/ϵ)nk edges.
3. If the sink component of a minimum vertex r-cut in G has weight ≤ k, then the minimum

vertex r-cut in G and Ḡ are the same.

Proof. Let T be the sink component of a minimum rooted r-vertex cut, of minimum weight
among such sink components. Suppose T has weight less than or equal to k. By Lemma 9,
κ < k/ϵ. Therefore any vertex v with weighted in-degree greater than (1 + 1/ϵ)k cannot be in
T of the minimum rooted r-vertex cut. We claim that replacing the incoming edges to v does
not decrease rooted vertex connectivities for r. As a thought experiment, suppose we make
the replacement over two steps, where we first add the edge from r to v, and then remove
the other incoming edges to v. The first step does not decrease vertex connectivities, and
forces the rooted vertex connectivity from r to v to be +∞. Removing the other incoming
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edges to r does not effect the connectivity from r to v, so no other vertex connectivities from
r are effected either. Over the two steps, then, we see that no rooted connectivities from r

decrease.
On the other hand, since v is not in the sink of the minimum vertex r-cut, the rooted

vertex connectivity of r does not change. ◀

3.2 Rooted vertex connectivity parametrized by sink component size
We now give an algorithm for rooted vertex connectivity parametrized by the weight of
the vertices in the sink component of the minimum rooted cut. More precisely, we take as
additional input two weights k1 ≤ k2 and assume the sink component has weight between k1
and k2.

In the following, let VC(m, n) be the running time for vertex (s, t)-cut.

▶ Lemma 11. Let ϵ > 0 be fixed. Let G = (V, E) be a directed graph with m edges, n vertices,
and vertex weights w : V → [1, ∞). Let r ∈ V be a fixed root vertex. Let κ be the rooted
vertex connectivity from r. Let W =

∑
v∈V w(v) be the total weight in the graph. Suppose

every vertex (excluding r) has weighted in-degree greater than (1 + ϵ)κ. Let k1, k2 ∈ N with
0 < k1 < k2. Suppose also that the sink component of the minimum r-cut has between k1
and k2 total weight. Then the minimum r-cut can be computed with constant probability in

O

(
m +

(
W − κ

k1

)
VC

(
min

{
m,

k2n

ϵ

}
, n

))
randomized time.

Proof. By Lemma 10, in O(m) time, we can reduce the number of edges to at most
O(k2n/ϵ) without decreasing the rooted vertex connectivity. We sample vertices from
V ′ = V \ ({r} ∪ N+(r)). Note that V ′ has weight at most W − deg+(r) ≤ W − κ.

We sample O
(
(W − deg+(r))/k1

)
≤ O((W − κ)/k1) vertices t ∈ V ′ independently in

proportion to their weight. For each sampled vertex t, we compute the minimum (r, t)-vertex
cut in the sparsified graph. With constant probability, one of these vertices t is in the sink
component of the minimum vertex r-cut, and the minimum vertex (r, t)-cut is the minimum
vertex r-cut. ◀

▶ Remark 12. The simple observation that the weight of N+(r) is at least κ is from [13].

3.3 Rooted vertex connectivity for small sink components
This section develops an approximation algorithm for rooted vertex connectivity specifically
for the case where the sink component has small weight. The algorithm takes an upper
bound k on the weight of the sink component, and guarantees an approximate minimum cut
when there is a minimum rooted vertex cut where the sink component has weight at most k.
The approach is inspired by the recent local connectivity algorithm of [6], and also integrates
the rooted sparsification lemma. This algorithm is developed in two steps. The first step is
a local cut algorithm that, given a vertex t ∈ V , searches for a small (r, t)-cut around t in
time proportional to a given upper bound on the weight of the sink component. The second
step first applies the rooted sparsification lemma, finds a vertex t in the sink component by
random sampling, and runs the local cut algorithm for this choice of t.
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The following lemma, which describes the local cut algorithm, is nearly identical to [6]
except for two small modifications. First, we work with integral capacities, which does not
change any arguments. Second is the inclusion of the root r which we want to keep on the
opposite side of the local cut. The proof is included for the sake of completeness. In the
following, the in-volume of a set of vertices T in a directed, edge-capacitated graph is the
sum of weighted in-degrees over all vertices in T . Similarly the out-volume is defined as the
sum of weighted out-degrees.

▶ Lemma 13. Let G = (V, E) be a directed graph with integral edge capacities. We assume
that G is already available in memory in adjacency list format. Let r, t ∈ V , and let λ, ℓ > 0
be given parameters. Then there is a randomized algorithm that runs in O(ℓλ/ϵ) time with
the following guarantee.

Let λ∗ be the minimum capacity of all (r, t) cuts where the sink component has in-volume
at most ℓ. If λ∗ < λ, then with constant probability, the algorithm returns an (r, t)-cut of
capacity at most (1 + ϵ)λ∗.

Proof. Let T be the sink component of a minimum (r, t)-edge cut among those where the
sink component has in-volume at most ℓ. We run a randomized variation of augmenting
paths in the reversed graph Grev where t is the source. Note that T now has out-volume at
most ℓ in Grev. We run the following subroutine for at most 1 + (1 + ϵ)λ iterations, where
each iteration routes one unit of flow from t to some chosen v.

Each iteration i runs DFS from t in the residual graph, until it either (a) visits r, (b) has
traversed edges of total capacity at least O(ℓ/ϵ), or (c) has explored all the edges reachable
from t while failing to satisfy either (a) or (b). In event (a), we route one unit of flow to r.
In event (b), we select one of the visited edges randomly in proportion to their capacity, and
route one unit of flow to the endpoint of that edge. In either case, after routing, we update
the residual graph by reverse (one unit of capacity) of each edge on the path from t to the
selected sink. In event (c), we return the entire component of vertices reachable from t which
induces an (r, t)-cut in the original graph. If, after 1 + (1 + ϵ)λ iterations, we never reach
event (c), then the algorithm terminates with failure.

We first argue that we return a (1 + ϵ)-approximate (r, t)-cut with constant probability.
We first point out that the total out-volume of T in the residual graph never increases, as
we are reversing edges along edges along a path starting from t. Next, we observe that in
each instance of event (b), where we randomly sample the endpoint of a visited edge as a
sink, there is less than ϵ/2 probability that this endpoint lies in T . This is because the graph
search has traversed a total capacity of at least O(ℓ/ϵ), and T has out-volume at most ℓ.
That is, the out-volume of T represents at most an (ϵ/2)-fraction of the searched edges.

Now, over the first (1 + ϵ)λ∗ iterations, we expect to sample less than ϵλ∗/2 sinks from
T . By Markov’s inequality, we sample less than ϵλ∗ sinks from T over the first (1 + ϵ)λ∗

iterations with probability at least 1/2. In this event, if the algorithm did not find an
(r, t)-cut within the first λ∗ iterations, then we must have routed more than λ∗ units of flow
out of T – a contradiction. Thus the algorithm finds an (r, t)-cut within (1 + ϵ)λ∗ iterations
with probability at least 1/2. Since this cut was obtained as the reachable set of t after
routing at most (1 + ϵ)λ∗ units of flow, the cut has capacity ≤ (1 + ϵ)λ∗.

It remains to prove the running time. Each iteration takes O(ℓ/ϵ) time to traverse at
most O(ℓ/ϵ) edges. The algorithm runs for at most O(λ) iterations. ◀

The next lemma presents the approximate rooted vertex cut algorithm that uses Lemma
13 as a subroutine. It also uses the rooted sparsification lemma to reduce the size of the
graph and give stronger bounds on the volume of the sink component of the desired vertex
cut.



C. Chekuri and K. Quanrud 49:13

▶ Lemma 14. Let ϵ > 0 be fixed. Let G = (V, E) be a directed graph with m edges, n vertices,
and integer vertex weights w : V → N. Let r ∈ V be a fixed root vertex. Let k ∈ N and suppose
that the sink component of the minimum r-cut has weight ≤ k. Then a (1 + ϵ)-approximate
minimum r-cut can be computed with high probability in O

(
m + (W − κ)k2 log(n) log(k)/ϵ3)

randomized time.

Proof. By Lemma 9, either a (1 + ϵ)-approximate minimum cut is induced by a singleton, or
the minimum r-vertex cut has weight at most O(k/ϵ). The former is addressed by inspecting
all singleton cuts. For the rest of the proof, let us assume the latter. By Lemma 10, we
can sparsify the graph to have maximum weighted in-degree O(k/ϵ), hence at most O(nk/ϵ)
total edges.

Let T be the sink component of the minimum r-cut, which has total vertex weight at
most O(k), and induces an r-cut with capacity κ ≤ O(k/ϵ). Recall the standard auxiliary
“split-graph” where vertex capacities are modeled as edge capacities. The high-level idea is
to find a vertex t ∈ T by random sampling and then apply Lemma 13 to the appropriate
auxiliary vertices of r and t in the split graph.

To this end, we first bound the volume of the sink-component corresponding to T in the
split-graph. We recall that the split graph splits each vertex v into an auxiliary “in-vertex”
v− and an auxiliary “out-vertex” v+. For each v there is a new edge (v−, v+) with capacity
equal to the vertex capacity of v. Each edge (u, v) is replaced with an edge (u+, v−) with
capacity3 equal to the vertex capacity of u. As a sink component, T maps to a vertex set T ′

in the split-graph consisting of (a) both copies v− and v+ of each vertex v ∈ T , and (b) the
out-vertex v+ of each vertex v in the vertex in-cut N−(T ). For each vertex v ∈ T , v− has
(edge-)weighted in-degree equal to the vertex-weighted in-degree of v in the original graph,
which is at most O(k/ϵ). This sums to O(|T |k/ϵ) over all v ∈ T . For each v ∈ T , v+ has
weighted in-degree equal to the vertex weight of T , which sums to the total vertex weight of
T . Lastly, for each v ∈ N−(T ), v+ has weighted in-degree equal to the vertex weight of v.
This sums to κ ≤ O(k/ϵ) over all v ∈ N−(T ). All summed up, the total in-volume of T ′ in
the split-graph is at most O(k/ϵ) times the total vertex weight of T .

Suppose we had a constant factor estimate ℓ for the total vertex weight of T . Then
we can sample O

(
(W − deg+(r)) log(n)/ℓ

)
≤ O((W − κ) log(n)/ℓ) vertices by weight from

V \ ({r} ∪ N+(r)). With high probability, we sample O(log n) vertices from T . For each
sampled vertex t we invoke Lemma 13 to find an (r, t)-cut, with upper bound O(ℓk/ϵ) on
the volume of the sink component and O(k/ϵ) as the upper bound on the cut. With high
probability, one of these calls returns a (1 + ϵ)-approximate cut. The total time, over all
calls, would be O

(
(W − κ) log(n)k2/ϵ3)

.
Of course, we do not know the vertex weight of T a priori. However, we know that it is

upper bounded by k, and let ℓ enumerate all powers of 2 between 1 and k. For each ℓ, run
the process described above under the hypothesis that ℓ is a constant factor estimate for the
total vertex weight of T . Each choice of ℓ takes O

(
(W − κ) log(n)k2/ϵ3)

time. There are
O(log(k)) choices of ℓ. One of these choices of ℓ is a constant factor for the total volume of
T and produces a (1 + ϵ)-approximate minimum (r, t)-cut with high probability. ◀

3.4 Rooted vertex connectivity
We now present the algorithm for approximate rooted vertex connectivity and prove Theorem
2. The algorithm combines the subroutine in Lemma 11 for logarithmically many ranges of
weights, and Lemma 14 for sufficiently small weights. We restate Theorem 2 for the sake of
convenience.

3 Usually, this edge is set to capacity ∞, but either the weight of u or the weight of v are also valid.
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▶ Theorem 2. Let G = (V, E) be a directed graph with m edges, n vertices, and integer
vertex weights w : V → N. Let r ∈ V be a fixed root vertex. Let κ be the rooted vertex
connectivity from r. Let W =

∑
v∈V w(v) be the total weight of the graph. For any ϵ > 0

a (1 + ϵ)-approximate rooted minimum vertex cut can be computed with high probability
in Õ(m + n(W − κ)/ϵ) randomized time; for unit weights this is Õ(m + n(n − κ)/ϵ). The
rooted connectivity can be computed with high probability in Õ(m + κn(W − κ)) time.

Proof. Let κ0 = ϵ
√

n. Let i0 = ⌊log κ0⌋, and let i1 = max{⌈log ϵm/n⌉, i0 + 1} For each
i = ⌊log κ0⌋, ⌊log κ0⌋ + 1, . . . , i1 − 1, let ki = 2i. Let ki1 = W − deg+(r) where we recall that
deg+(r) is the weighted out-degree of r. For each i, we apply Lemma 11 with lower bound
ki and upper bound ki+1 on the weight of the sink component of the minimum vertex r-cut.
We repeat this subroutine O(log n) times for each i to amplify the success probability from
constant to high probability. We use VC(m, n) = Õ

(
m + n1.5)

[29]. We also apply Lemma
14 with ϵκ0 has an upper bound on the sink component size. The set of all cuts obtained by
these methods includes a (1 + ϵ)-approximate minimum r-cut with high probability, and we
return the minimum of these cuts. The combined running time is

Õ

(
m + (W − κ)n

ϵ
+ (W − κ)n1.5

κ0
+ (W − κ)κ2

0/ϵ3
)

≤ Õ(m + (W − κ)n/ϵ),

as desired. The exact bound follows by first using the approximation algorithm to obtain a
constant factor estimate for κ, and then setting setting ϵ ≤ 1/κ. ◀

3.5 Global vertex connectivity

We now shift to global vertex connectivity and prove Corollary 3, which we address by
reduction to the algorithm for rooted vertex connectivity above. We note that obtaining a
root is slightly non-trivial because many vertices may be in the minimum weight vertex cut.
We restate Corollary 3 for the sake of convenience.

▶ Corollary 3. Let G = (V, E) be a directed graph with m edges, n vertices, and integer
vertex weights w : V → N. Let W =

∑
v∈V w(v) be the total vertex weight of the graph. Let

κ be the global vertex connectivity of G. There is a randomized algorithm that for any ϵ > 0
outputs a (1 + ϵ)-approximate minimum vertex cut with high probability in time Õ(nW/ϵ).
There is a Õ(κnW ) time randomized algorithm that computes the (exact) minimum vertex
cut with high probability. In particular, for unit weights, the running time is Õ

(
κn2)

.

Proof. Let κ denote the global vertex connectivity. If we sample a single vertex r in
proportion to its weight, then with probability 1 − κ/W , r is not in the minimum vertex
cut. Then either the rooted vertex connectivity from r, or to r (i.e., from r in the graph G′

with all the edges reversed), will give the rooted vertex cut. In principle we would like to
apply Theorem 2 with root r in both orientations, which conditional on r not being in the
minimum cut, succeeds with high probability. We amplify by repeating L = O( W

W −κ log n)
times to obtain the high probability bound. Observe that the running time, via Theorem
2, is

Õ(mL + nW/ϵ).

We would like to remove the mL factor.
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To this end, observe that the m term arises from applying the rooted sparsification lemma
for various estimates k of the weight of the sink component. Recall that for fixed k and
ϵ, the sparsification lemma replaces, for every vertex v with in-degree > O(k/ϵ), all the
incoming edges to v with a single edge from the root. Note that much of the sparsification
lemma can be executed without r. In particular, we can remove all incoming edges to the
high in-degree vertices without knowing r; once r is given, we add an edge from r to each of
these vertices. The key point is that the first part, which takes O(m) time, can be done once
for all L sampled roots for each value of k. Thereafter, each of the L roots takes O(n) to
complete the sparsification for that root. This replaces the Õ(mL) term with Õ(nL), which
is dominated by Õ(nW/ϵ).

For the exact algorithm, we first apply the approximation algorithm with ϵ = 1/2
obtain a factor-2 approximation to κ within the claimed running time. We then apply the
approximation algorithm again with 1/(2κ) ≤ ϵ ≤ 1/κ. ◀

References
1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021.

2 Ruoxu Cen, Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol Saranurak.
Minimum cuts in directed graphs via

√
n max-flows. CoRR, abs/2104.07898, 2021. arXiv:

2104.07898.
3 Joseph Cheriyan and John H. Reif. Directed s–t numberings, rubber bands, and testing

digraph k-vertex connectivity. Comb., 14(4):435–451, 1994.
4 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani,

N. Sauer, and J. Schönheim, editors, Combinatorial Structures and Their Applications (Pro-
ceedings Calgary International Conference on Combinatorial Structures and Their Applications,
Calgary, Alberta, 1969; , eds.), pages 69–87. Gordon and Breach, New York, 1970.

5 Shimon Even and Robert Endre Tarjan. Network flow and testing graph connectivity. SIAM
J. Comput., 4(4):507–518, 1975.

6 Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 2046–2065. SIAM, 2020.

7 András Frank. Connections in Combinatorial Optimization. Oxford University Press, 2011.
8 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.

J. Comput. Syst. Sci., 50(2):259–273, 1995.
9 Harold N. Gabow. Using expander graphs to find vertex connectivity. J. ACM, 53(5):800–844,

2006.
10 Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster

than goldberg-rao. CoRR, abs/2101.07233, 2021. arXiv:2101.07233.
11 Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM,

45(5):783–797, 1998.
12 Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a directed

graph. J. Algorithms, 17(3):424–446, 1994.
13 Monika Rauch Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex connectivity:

New bounds from old techniques. J. Algorithms, 34(2):222–250, 2000.
14 Tarun Kathuria, Yang P. Liu, and Aaron Sidford. Unit capacity maxflow in almost o(m4/3)

time. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 119–130. IEEE, 2020.

ICALP 2021

http://arxiv.org/abs/2104.07898
http://arxiv.org/abs/2104.07898
http://arxiv.org/abs/2101.07233


49:16 Faster Algorithms for Rooted Connectivity in Directed Graphs

15 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in Õ(
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Abstract
Li and Panigrahi [37], in recent work, obtained the first deterministic algorithm for the global
minimum cut of a weighted undirected graph that runs in time o(mn). They introduced an elegant
and powerful technique to find isolating cuts for a terminal set in a graph via a small number of s-t
minimum cut computations.

In this paper we generalize their isolating cut approach to the abstract setting of symmetric
bisubmodular functions (which also capture symmetric submodular functions). Our generalization
to bisubmodularity is motivated by applications to element connectivity and vertex connectivity.
Utilizing the general framework and other ideas we obtain significantly faster randomized algorithms
for computing global (and subset) connectivity in a number of settings including hypergraphs,
element connectivity and vertex connectivity in graphs, and for symmetric submodular functions.
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1 Introduction

We investigate fast algorithms for several fundamental connectivity problems in (weighted)
undirected graphs as well as their generalizations to the abstract setting of submodular and
bisubmodular functions. The motivation for this work arose from the recent paper of [37] that
described a new algorithmic approach for finding the global minimum cut in an undirected
graph. For a graph G = (V, E) with edge weights w : E → R>0, the global minimum
cut problem is to find the minimum weight subset of edges whose removal disconnects
the graph; alternatively it is to find a set S, where ∅ ⊊ S ⊊ V , that minimizes w(δ(S))1.
When G is unweighted, this is called the edge connectivity of the graph. There has been
extensive work on algorithms for this problem, and its study has led to many important
theoretical developments. Karger developed a near-linear time randomized algorithm [30]
that runs in O(m log3 n) time with some recent improvements in the log factors via better
data structures [21, 42]. Here m is the number of edges and n is number of nodes in the

1 For A ⊂ V , δ(A) denote the set of edges in G with exactly one end point in A. w(δ(A)) is notation for∑
e∈δ(A) w(e).
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graph. However, the best deterministic algorithm until recently was Õ(mn) via two very
different approaches [24, 49]. Li and Panigrahi developed a new approach that improved this
bound. Their algorithm runs in time O(m1+o(1)) plus the time to compute O(polylog(n))
(s, t)-minimum cut computations in a graph with m edges and n nodes. Their approach uses
the (s, t)-minimum cut algorithm as a black box.

Isolating cuts. A key technique in [37] is an algorithm to find isolating cuts. To describe
this notion, let R ⊆ V be subset of nodes that we call terminals. Given r ∈ R, a set
S ⊆ V is an isolating cut for r (with respect to R) if S ∩ R = {r}. Consider the problem
of finding, for each r ∈ R, a minimum weight isolating cut, that is; a cut Sr ⊆ V where
Sr = arg minS⊆V,S∩R={v} w(δ(S)). Note that if R = V this is trivial since Sr = {r} for
each r. However, the problem is non-trivial when R ⊂ V is a proper subset of V . A naive
approach would require |R| (s, t)-minimum cut computations. [37] described a simple and
elegant procedure that computes all the isolating cuts for any given R in time proportional to
O(log |R|) (s, t)-minimum cut computations. This, combined with simple random sampling,
can be used to easily derive a randomized algorithm for global minimum cut that relies
on O(polylog(n)) (s, t)-minimum cut computations. Note that even though the total time
corresponds to O(polylog(n)) (s, t)-minimum cuts, the second phase of their algorithm
requires computing |R| (s, t)-minimum cuts, but in smaller graphs whose total size is O(m)
and thus can be folded into a single (s, t)-minimum cut on roughly the same input size as
the original graph. Their algorithm gives a new randomized approach to global minimum
cut; however, it does not lead to a faster algorithm than the existing near-linear time
algorithm. Instead [37] focuses on deterministic running times and avoids random sampling
by relying on several technical tools including deterministic expander decompositions to
obtain a deterministic algorithm. We note, however, that the algorithm in [37] applies to the
more general problem of finding the Steiner minimum cut: given X ⊆ V , the goal is to find
a minimum cut separating a pair of nodes in X. See [25, 29] for applications.

Vertex and element connectivity. Our focus here is not on deterministic algorithms per se
but rather on the applicability of the isolating cut approach to derive faster (randomized)
algorithms in settings beyond edge connectivity. There has been tremendous recent and
ongoing progress in fast algorithms for (s, t)-flow and cut problems and leveraging these
algorithms for global connectivity is opened up by the new approach. In particular, an
important motivating problem is to compute the global (weighted) vertex connectivity of a
graph which has received substantial recent attention [17, 45]. In this setting we are given
a graph G = (V, E) with vertex weights w : V → R+ and the goal is to find a minimum
weight subset S ⊂ V such that G − S has at least two non-trivial connected components.
However, as is well-known, vertex cuts/separators are not as easy to work with as edge cuts.
Despite recent exciting progress via an approach based on local cuts and connectivity, the
weighted case had not been addressed and the best known algorithms are from the work of
Henzinger, Rao and Gabow [27]. Our starting point is the observation that the isolating cut
approach of [37] relies only on the submodularity and symmetry of the edge-cut function
of undirected graphs. Recall that a real-valued set function f : 2V → R is submodular iff
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A, B ⊆ V . A set function is symmetric if
f(A) = f(V \ A) for all A ⊆ V . The applicability of the isolation cut approach to symmetric
submodular set functions already yields faster algorithms for hypergraph connectivity and
several other problems that we describe subsequently. However, as we already remarked,
vertex cuts do not lend themselves to this approach as vertex cuts, unlike undirected edge
cuts, are simply not a symmetric submodular function.



C. Chekuri and K. Quanrud 50:3

When considering isolating cuts in the context of vertex connectivity one naturally
encounters the notion of element connectivity, which has been found to have several important
connections between edge and vertex connectivity. Element connectivity plays a key role in
network design, and in fact, it was introduced by [28] to overcome the difficulty of working
with vertex connectivity. We refer the reader to surveys and related papers on network
design [16, 14, 15, 23, 33] for extensive literature on this topic. It also plays an important
role in packing vertex disjoint Steiner trees and forests among others [13, 5, 1, 8]; [7] surveys
this area. We now formally define element connectivity. The input is a graph G = (V, E)
and a partition of V into terminals T and non-terminals N = V \ T . The elements of
G are the edges and non-terminals; that is, E ∪ N . For two terminals s, t we define the
element connectivity between s and t as the minimum number of elements whose removal
disconnects s from t. We emphasize that element connectivity is defined only between the
terminals. We can generalize this to the weighted setting where edges and non-terminals have
non-negative weights. The global element connectivity of G = (T ∪ N, E) is the minimum
element connectivity between any two terminals. [11] considered algorithms for computing
(global) element connectivity. For global element connectivity they obtained an algorithm
with running time O(|T |) times the time for (s, t)-minimum cut computation.

Set-pairs and Bisubmodularity. Cuts for element and vertex connectivity do not fall into
the setting of symmetric submodular set functions. A vertex separator S induces a partition
of V \ S into disjoint sets A, B that do not share an edge, and obviously B ̸= V \ A (for
nonempty S). Nevertheless, one of the reasons for the tractability of element connectivity is
that it does admit submodularity properties. The natural way to view its submodularity
properties is via the more general notion of bisubmodular set functions. Given a ground set V

a set-pair is (A, B) where A, B ⊆ V . Informally speaking a bisubmodular function f assigns
a real-value to each set-pair (A, B) in a collection of set-pairs as to satisfy the inequality

f(X1, Y1) + f(X2, Y2) ≥ f(X1 ∪ X2, Y1 ∩ Y2) + f(X1 ∩ X2, Y1 ∪ Y2)

for all set-pairs (X1, Y1) and (X2, Y2) on which it is defined. For this to make sense the
collection of set-pairs needs to be closed under the above criss-crossed intersection and union
operations for set-pairs. These binary operations can be understood more clearly as the
meet and join of an appropriately defined lattice; we defer the formal definitions to Section 2.
One can generalize the notion of cuts to set-pairs. Let (S, T ) be a set-pair corresponding
to a partition of a terminal set R. A set-pair (A, B) cuts (S, T ) if S ⊆ A and T ⊆ B. One
can then define the f -minimum cut problem for (S, T ): find the set-pair of minimum f

value among all set-pairs that cut (S, T ). With this definition in place the notions of global
minimum cut for a terminal set R ⊆ V , and isolating cuts for R, naturally generalize. In this
paper we show that the isolating cut approach of [37] generalizes to the class of symmetric
bisubmodular set functions defined over appropriate collections of set-pairs.

1.1 Contributions and Results
We make two contributions at the high-level. The first is conceptual in generalizing the
isolating cut approach to the (bi)submodular setting. The second is to apply this abstract
framework with additional ideas to derive faster randomized algorithms for several funda-
mental problems. Together they yield a plethora of new running times for a diverse collection
of connectivity problems, both abstract (optimizing over set functions in an oracle model)
and concretely in graphs. The multiplicity of results is for the following combination of
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reasons. First, by implementing the isolating cut approach at a higher level of abstraction,
and abstaining from concrete specificities, we not only expose the isolating cut approach to
new problems, but allow for the substitution of different domain specific black box subrou-
tines that, within a domain, can have interesting tradeoffs. Second, and unlike the case of
graph edge connectivity, the second phase of the isolating cut approach can often benefit
from additional problem specific ideas, especially if one wants to take advantage of certain
domain-specific algorithms that can be very powerful if applied carefully.

An important aspect of the isolating cut approach is that it inherently gives an algorithm
for the subset connectivity version. In the following we will use m, n to refer to the number
of edges and vertices in a given graph and use EC(m, n) to refer to the running time for
computing a minimum (s, t)-cut in an edge-weighted directed graph, and VC(m, n) for the
running time for computing a minimum (s, t)-cut in a vertex-weighted directed graph. We
instantiate concrete running times for special cases when needed.

Connectivity of Bisubmodular functions. The precise statement that captures the gen-
eral isolation cut property in bisubmodular set functions requires stating several technical
definitions. Our main results for this are captured by Lemma 11, Lemma 12 and Theorem
13 which are better understood after the technical definitions. Here we state an informal
theorem that captures these results.

▶ Theorem 1 (Informal). Let f : V → R be a symmetric bisubmodular function defined over a
collection of set-pairs V over V . Let R ⊆ V . Suppose one has an oracle that given a partition
(S, T ) of R finds the f-minimum set-pair (A, B) ∈ V that cuts (S, T ). In O(log |R|) calls
to this oracle one can find for each r ∈ R a set-pair (Xr, X ′

r) ∈ V such that the following
properties hold: (i) for each r ∈ R, (Xr, X ′

r) is a (r, R − r) separating set-pair, (ii) there is
an f -minimum set-pair (Yr, Y ′

r ) separating (r, R − r) such that Yr ⊆ Xr, X ′
r ⊆ Y ′

r and (iii)
Xr ∩ Xq = ∅ for r ̸= q. The total run time for finding the f -minimum isolating cut (Yr, Y ′

r )
for each r ∈ R can thus be bounded by the O(log |R|) cut computations and the total time to
find the cuts inside each (Xr, X ′

r).

Symmetric submodular functions. We derive the following theorem as a corollary.

▶ Theorem 2. Let f : 2V → R be a symmetric submodular function and R ⊆ V and let
n = |V |. Suppose there is an algorithm for submodular function minimization in the value
oracle model in time SFM(n) = g1(n)EO + g2(n) where EO is the time for the evaluation
oracle. Assuming that g1(n) = Ω(n) and g2(n) = Ω(n), a minimum f-cut that separates
some two terminals in R can be found in O

(
SFM(n) log2(n)

)
time.

▶ Corollary 3. Let f be an integer valued symmetric submodular function with |f(S)| ≤ M .
Using the submodular function minimization algorithms of [35] one can find the global
minimum cut of f with high probability in time Õ(n2 log(nM)EO + n3 logO(1)(nM)).

The preceding corollary should be compared to Queyranne’s well-known combinatorial
algorithm that uses O(n3EO) time [47]. The algorithm from [35] is not strongly polynomial
but uses a factor Ω̃(n) fewer evaluation calls. Further, our randomized algorithm can handle
minimum f -cut for a subset of terminals while Queyranne’s algorithm does not generalize.
In addition, the black box reduction can take advantage of future improvements to SFM(n)
as well as for special cases as we will see next.
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Hypergraph connectivity. A hypergraph H = (V, E) consists of vertices V and hyperedges
E where each hyperedge e ∈ E is a subset of nodes; that is, e ⊆ V . We let p =

∑
e∈E |e|

denote the total size of H and let m, n denote number of hyperedges and vertices. The rank r

of a hypergraph is the maximum edge size; graphs are rank 2 hypergraphs. The cut function
of a hypergraph is symmetric and submodular and the global minimum cut question for edge
connectivity naturally generalizes to hypergraphs. The best deterministic algorithm for this
problem runs in O(pn + n2 log n) time [32, 47, 41]. The best randomized algorithm runs in
time Õ(nr) time with high probability in rank r hypergraphs [18] and this is better than
Õ(pn) only for very dense hypergraphs. Via sparsification one can also get an algorithm in
unweighted hypergraphs that runs in time O(p + λn2) where λ is the minimum cut value [12].
We obtain the following theorem that gives significantly better bounds in most settings of
interest, and new tradeoffs, while also generalizing to subset minimum cut.

▶ Theorem 4. Let H = (V, E) be a weighted hypergraph with m edges, n nodes and total
size p =

∑
e∈E |e|. Let R ⊆ V . The global minimum cut for R in H can be found with high

probability in time Õ(EC(p, m + n)) or in time Õ(
√

pn(m + n)1.5).

Now we state our algorithmic results for element connectivity and vertex connectivity
that follow via the bisubmodularity framework and problem specific optimizations.

Element connectivity. The fastest known algorithm so far for global element connectivity is
from [11] and runs in time O(|T | EC(m, n)) for terminal set T , which can be Ω(n EC(m, n)).
We obtain the following.

▶ Theorem 5. Let G = (T ∪ N, E) be an instance of weighted element connectivity with
|T | = k terminals. The global element connectivity can be computed in

Õ

(
EC(m, n) + max

m1,...,mk

{
k∑

i=1
EC(mi, n) : m1 + · · · + mk ≤ 2m

})

time with high probability. The algorithm generalizes to subset element connectivity.

In particular, for EC(m, n) of the form EC(m, n) = Õ(m poly(m, n)), the running time above
is Õ(EC(m, n)). For instance, via [34], one obtains an Õ(m

√
n) time algorithm. However,

recent breakthrough work of [51] showed that EC(m, n) = Õ(m + n1.5). This running time
bound cannot be directly used in the preceding theorem. Using further ideas we obtain an
improved running times that are encapsualted in the following theorem.

▶ Theorem 6. Let G = (T ∪ N, E) be an instance of element connectivity with n nodes and
m edges. Let w : V ∪ E → [1..U ] assign integer (or infinite) weights to each vertex and edge.
The global element connectivity can be computed in randomized Õ

(
m1+o(1)n3/8U1/4 + n1.5)

time or in Õ
(
m1/2n5/4) time where Õ(· · ·) hides poly(log(n), log(U))-factors.

Vertex connectivity. We now consider global vertex connectivity of both weighted and
unweighted graphs. For simplicity we consider the interesting setting where there is a vertex
separator of size less than 0.99W where W is the total vertex weight. We obtain new and
faster randomized (1 + ϵ)-approximation algorithms that improves upon the randomized
Õ(mn) exact algorithm of Henzinger, Rao and Gabow [27]. The algorithms are based on
reducing, via sampling, to computing isolating element cuts. The running times we obtain
are captured by the following theorem.
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▶ Theorem 7. Let G = (V, E) be a weighted instance of vertex connectivity. There is a
randomized algorithm that gives a (1+ϵ)-approximation with high-probability in Õ(EC(m, n)/ϵ)
time; in particular there is a randomized algorithm that runs in time Õ(m

√
n/ϵ). For dense

graphs there is a randomized algorithm that runs in Õ(m1/2n5/4/ϵ) time.

There has been exciting recent work on faster algorithms for vertex connectivity via
a local connectivity approach [45, 17]. The algorithms are limited to unweighted graphs
while our theorem above gives the first constant factor approximation for weighted vertex
connectivity in o(mn) time. For unweighted graphs and graphs with small integer capacities
we can obtain exact algorithms by setting ϵ = 1/κ where κ is the vertex connectivity. We
obtain several different tradeoffs depending on m, n, κ. These can be found in Section 4.

Recent related work. There have been several recent papers on the use of isolating cuts
and other approaches for connectivity problems in undirected as well as directed graphs. We
refer the reader to some of these papers [36, 9, 46, 6]. Others have also observed that the
isolating cut approach generalizes to symmetric submodular functions; see [43] for instance.

Organization. Section 2 describes the bisubmodularity framework and the abstract results
at a high level; a more detailed description with several examples and formal proofs of the
lemmas and theorems stated in Section 2 can be found in the full version [10]. Section 3
describes the algorithms for element-connectivity and Section 4 describes our algorithms
for vertex connectivity. Section 5 describes the results for hypergraph connectivity. The
proofs for Section 5 have been omitted due to space constraints and can be found in the full
version [10].

2 Isolating Cuts, Symmetric Bisubmodular Functions, and Lattices

Our goal in this section to define the relevant machinery to explore and make explicit the
generality of the isolating cut idea. As discussed in the introduction, this framework is
motivated by the necessity of going beyond symmetric submodular set functions to capture
concrete applications of interest such as element and vertex connectivity. Given the abstract
nature of this discussion, in constrast to the concrete algorithmic applications, we have
elected to give a brief and minimal discussion of the bisubmodular framework here. A more
comprehensive description, including many more examples as well as the proofs of all lemmas
and theorems stated here, can be found in the full version [10].

Let V be a finite set of elements. An ordered pair (A, B) ∈ 2V × 2V is a set-pair over V .
For a family of set-pairs V ⊆ 2V × 2V over V , we say that V is a crossing lattice2 over V if it
is closed under the following two operators.

(X1, Y1) ∨ (X2, Y2) = (X1 ∪ X2, Y1 ∩ Y2).
(X1, Y1) ∧ (X2, Y2) = (X1 ∩ X2, Y1 ∪ Y2).

If V is closed under these operations, then V is a lattice under the partial order

(X1, Y1) ⪯ (X2, Y2) ⇐⇒ X1 ⊆ X2, Y2 ⊆ Y1.

2 This notion is analogous to the definition of a crossing family of sets.



C. Chekuri and K. Quanrud 50:7

The binary operator ∨ returns the unique least upper bound of its arguments (a.k.a. the
meet) and the binary operator ∧ returns the unique greatest lower bound of its arguments
(a.k.a. the join).

For a pair of sets (X, Y ) ∈ 2V × 2V , the transpose of (X, Y ), denoted (X, Y )T , is the
reversed pair of sets (X, Y )T def= (Y, X). A crossing lattice V ⊆ 2V × 2V is symmetric if is
closed under taking the transpose. We have the following identities relating the transpose
with the lattice operations ∨ and ∧. Observe that for X , Y ∈ V, we have

(
X T
)T = X ,

(X ∨ Y)T = X T ∧ YT , and (X ∧ Y)T = X T ∨ YT . Lastly, A crossing lattice V ⊆ 2V × 2V is
pairwise disjoint if X ∩ Y = ∅ for all (X, Y ) ∈ V .

We now define an abstract, lattice-based notion of cuts that unifies the various different
families of cuts of interest in graphs. Let V be a set. For two set-pairs S = (S, T ) ∈ 2V × 2V

and X = (X, Y ) ∈ 2V × 2V , we denote

S ⊆ X def⇐⇒ S ⊆ X, T ⊆ Y.

If S ⊆ X , then we say that X cuts S or that X is an S-cut. If V is a crossing lattice over V ,
R ⊂ V is a subset, and R is a crossing lattice over R, then we say that V separates R if for
every S ∈ R, there is an S-cut X ∈ V. The following lemma observes that cuts are closed
under the two lattice operations.

▶ Lemma 8. Let V be a set and let R ⊆ V . Let V ⊆ 2V ×2V be a crossing lattice over V and
let R ⊆ 2R × 2R be a crossing lattice over R. Suppose that V separates R. Let S1, S2 ∈ R,
let X1 ∈ V be an S1-cut, and let X2 ∈ V be an S2-cut. Then X1 ∨ X2 is an S1 ∨ S2-cut and
X1 ∧ X2 is an S1 ∧ S2-cut.

Now, let V be a lattice. A real-valued function f : V → R is submodular if for all X , Y ∈ V ,

f(X ) + f(Y) ≥ f(X ∨ Y) + f(X ∧ Y).

Bisubmodular functions can be interpreted as submodular functions over particular crossing
lattices. There are at least two definitions of bisubmodular function in the literature. These
definitions are similar and we discuss both.

In one definition (e.g., in [48]), a function f : 2V × 2V → R is called bisubmodular if for
all X1, Y1, X2, Y2 ⊆ V , we have

f(X1, Y1) + f(X2, Y2) ≥ f(X1 ∪ X2, Y1 ∩ Y2) + f(X1 ∩ X2, Y1 ∪ Y2). (1)

A bisubmodular function f : 2V × 2V → R is submodular over the crossing lattice of all
set-pairs, V = 2V × 2V .

Another definition (e.g., [4, 3, 2, 19]) of a bisubmodular function f is that f(X1, Y1) is
only defined for disjoint sets X1 and Y1, and otherwise satisfies inequality (1) for these inputs.
In this version, f is bisubmodular iff it is a submodular function over the lattice of disjoint
sets, V = {(X, Y ) : X, Y ⊆ V, X ∩ Y = ∅}.

Now, let V ⊆ 2V × 2V be a symmetric crossing lattice. A function f : V → R is symmetric
if for all X ∈ V , f(X ) = f

(
X T
)
. This is a different definition than for symmetric submodular

set functions and generalizes the (more standard) set-based definition. Both undirected
edge cuts and vertex cuts are examples of symmetric submodular functions over appropriate
symmetric crossing lattices.

There is an important relationship between the sets of terminals being separated and
minimal minimum cuts that separate them, highlighted in the following lemma.
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▶ Lemma 9. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric crossing lattice
over V and let R ⊆ 2R × 2R be a symmetric crossing lattice over R, such that V separates
R. Let f : V → R be a symmetric bisubmodular function. Consider the function h : R → V
where h(S) is defined as ⪯-minimum, f -minimum S-cut. Then h is well-defined and carries
the partial orders on R to V; that is, S1 ⪯ S2 =⇒ h(S1) ⪯ h(S2).

The following is a particularly convenient form of Lemma 9, and the one applied directly
in the sequel.

▶ Lemma 10. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric crossing lattice
over V and let R ⊆ 2R × 2R be a symmetric crossing lattice over R, such that V separates R.
Let f : V → R be a symmetric bisubmodular function. Let S1, . . . , Sk ∈ R and X1, . . . , Xk ∈ V
such that for all i ∈ [k], Xi is an f -minimum Si-cut. Then for any S ∈ R such that S ⪯ Si

for all i, there is an f -minimum X -cut with X ⪯ X1 ∧ · · · ∧ Xk.

We now come to the issue of computing isolating cuts. We formalize this as follows. Let
V be a set and R ⊂ V . Let V ⊆ 2V ×2V be a symmetric and pairwise disjoint crossing lattice
over V and let R ⊆ 2R × 2R be the symmetric and pairwise disjoint crossing lattice over R

consisting of all partitions of R; i.e., R = {(S, T ) : S ∪ T = R, S ∩ T = ∅}. Let f : V → R be
a symmetric bisubmodular function. For each r ∈ R we wish to find an f -minimum cut Yr

for the set-pair ({r}, R − {r}) (which we abbreviate as (r, R − r) for notational simplicity).
The main property that leads to efficiency is captured by the next lemma.

▶ Lemma 11. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric and pairwise dis-
joint crossing lattice over V and let R ⊆ 2R ×2R be the symmetric and pairwise disjoint cross-
ing lattice over R consisting of all partitions of R; i.e., R = {(S, T ) : S ∪ T = R, S ∩ T = ∅}.

Let f : V → R be a symmetric bisubmodular function. Suppose we had access to an oracle
that, given S ∈ R, returns a minimum S-cut W ∈ V. Let k = ⌈log|R|⌉. Then with k calls to
the oracle, one can compute k cuts W1, . . . , Wk ∈ V such that the following holds.

For each r ∈ R, let Xr =
(∧

i:(r,V −r)⪯Wi
Wi

)
∧
(∧

i:(r,V −r)⪯WT
i

WT
i

)
be the intersection

of cuts transposed to always include r in the first component. Then we have the following. (1)
For all r ∈ R, Xr is an (r, R − r)-cut. (2) For all r ∈ R, there is a minimum (r, R − r)-cut
Yr such that Yr ⪯ Xr. (3) For any two distinct elements r, q ∈ R, Xr ∧ Xq ⪯ (∅, R). (That
is, the first components of the set pairs Xr are pairwise disjoint.)

Using the preceding lemma the problem of computing the f -minimum r-isolating cuts is
reduced to finding such a cut in Xr. The advantage, in terms of running time, is captured
by the disjointness property: for distinct r, q ∈ R we have Xr ∧ Xq ⪯ (∅, R). For each r let
Xr = (Ar, Br). Thus we have

∑
r |Ar| ≤ |V |. Given r and Xr, the problem of computing

the f -minimum cut Yr ⪯ Xr can in several settings be reduced to solving a problem that
depends only on |Ar| and |V |. We capture this in the following lemma.

▶ Lemma 12. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric and pairwise dis-
joint crossing lattice over V and let R ⊆ 2R ×2R be the symmetric and pairwise disjoint cross-
ing lattice over R consisting of all partitions of R; i.e., R = {(S, T ) : S ∪ T = R, S ∩ T = ∅}.

Let f : V → R be a symmetric bisubmodular function. Suppose we had access to an oracle that,
given S ∈ R, returns a minimum S-cut W ∈ V and let SM(n) denote its running time where
n = |V |. Moreover, suppose we have an oracle that given any u ∈ R and (Au, Bu) ∈ V with
u ∈ Au outputs an f-minimum cut Yu ⪯ (Au, Bu) in time SMI(|Au|, n). Let k = ⌈log|R|⌉.
Then, one can compute for each r ∈ R an f-minimium r-isolating cut in in total time
O(k SM(n) + max0≤n1,n2,...,n|R|:

∑
i

ni=n

∑|R|
i=1 SMI(ni, n)).
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A simple random sampling approach combined with isolating cuts, as shown in [37] for
edge cuts in graphs, yields the following theorem in a much more abstract setting.

▶ Theorem 13. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric and
pairwise disjoint crossing lattice over V and let R ⊆ 2R × 2R be the symmetric and
pairwise disjoint crossing lattice over R consisting of all disjoint subsets of R; i.e., R =
{(S, T ) : S, T ⊆ R, S ∩ T = ∅}. Let f : V → R be a symmetric bisubmodular function. Sup-
pose we had access to an oracle that, given S ∈ R, returns a minimum S-cut W ∈ V and let
SM(n) denote its running time where n = |V |. Moreover, suppose we have an oracle that
given any u ∈ R and (Au, Bu) ∈ V with u ∈ Au outputs an f-minimum cut Yu ⪯ (Au, Bu)
in time SMI(|Au|, n). Then one can compute the minimum (nontrivial) R-cut with con-
stant probability in O

(
SM(n) log2 |R| + max0≤n1,n2,...,n|R|:

∑
i

ni=n log(|R|)
∑|R|

i=1 SMI(ni, n)
)

time.

We derive the following corollary for symmetric submodular set functions.

▶ Corollary 14. Let f : 2V → R be a symmetric submodular function and R ⊆ V and let
n = |V |. Suppose there is an algorithm for submodular function minimization in the value
oracle model in time SFM(n) = g1(n)EO + g2(n) where EO is the time for the evaluation
oracle. Assuming that g1(n) = Ω(n) and g2(n) = Ω(n), a minimum f-cut that separates
some two terminals in R can be found in O

(
SFM(n) log2(n)

)
time.

3 Element connectivity

Let G = (V, E) be an undirected graph with m edges and n vertices. Let T ⊆ V be a set of
terminals and let N = V \ T be the non-terminal set. For any two distinct terminals u, v ∈ T ,
the element connectivity between u and v is defined as the maximum number of paths from u

to v that are edge-disjoint and vertex-disjoint in the non-terminal vertices V \T . That is, only
terminal vertices may be reused across paths. This notion can be easily generalized to the
weighted setting where edges and non-terminals have non-negative weights/capacities. For
any two terminals s, t ∈ T , we denote by κ′(s, t) the element connectivity between them. One
can compute κ′(s, t) via a simple reduction to s-t maximum flow in a directed graph which
takes EC(m, n) time. In this section we are concerned with the problem of computing the
global element connectivity which is defined as κ′ = mins,t∈T,s ̸=t κ′(s, t). In fact we are also
interested in computing the more general problem of computing κ′(R) = mins,t∈R,s ̸=t κ′(s, t)
where R ⊆ T ; note that κ′ = κ′(T ). Here we apply our general framework that obtains a
randomized algorithm with running time O(EC(m, n) log2 |R|). In addition to the global
minimum cut for R, as we will see in the next section, finding all the isolating cuts can be
used with other ideas for vertex connectivity.

Let G = (T ⊎ N, E) be an instance of a weighted element connectivity problem. Let
w : N ∪ E → R≥0 assign weights to the elements. Let R ⊆ T be a subset of terminals with
|R| ≥ 2. We reduce the problem of computing κ′(R) to Theorem 13 as follows.

For ease of notation, let V = V ∪ E denote the elements. Consider the family of pairs of
sets V ⊆ 2V × 2V defined as the set of pairs (X, Y ) ∈ V × V with the following properties:
(i) X and Y are disjoint, (ii) no edge in X is adjacent to a vertex in Y , and no edge in Y

is adjacent to a vertex in X, and (iii) T ⊆ X ∪ Y . V describes the disjoint sets that are
element-wise disconnected and cover T . Clearly V is symmetric and pairwise disjoint. It is
also straightforward to verify that V is a crossing lattice.
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We define a function f : V → R by f(X, Y ) =
∑

x∈V −(X∪Y ) w(x). f(X ) gives the total
weight of elements that are not a member of either of the two sets in X . This function f is
submodular and in fact it is modular. One can easily verify that f(X1, Y1) + f(X2, Y2) =
f(X1 ∪ X2, Y1 ∩ Y2) + f(X1 ∩ X2, Y1 ∪ Y2). Thus V is a symmetric and pairwise disjoint
crossing lattice, and f : V → R is a symmetric submodular function over V.

Isolating (weighted) element cuts and global connectivity Let R ⊆ T and let R be the
crossing lattice consisting of all pairwise disjoint subsets of R. Given a partition of R into
two sets (A, B), an f -minimum (A, B)-cut, which corresponds to the minimum element cut
separating A from B, can be computed via directed (s, t)-maxflow, in EC(m, n)-time. By
Lemma 11, we can compute disjoint sets of elements

{
Ur ⊂ V : r ∈ R

}
where for each r ∈ R,

Ur contains the r-side component of a minimum (r, R − r)-element cut. Moreover, because
the Ur’s are obtained as intersections of sides of element cuts, for any distinct r, q ∈ R, there
is no edge from Ur incident to a vertex from Uq and (symmetrically) vice-versa.

For each r, let U
′
r ⊂ V be the set of vertices outside Ur and incident to an edge in Ur, and

the edges outside Ur incident to vertices in Ur. Informally speaking, U
′
r is the “boundary”

of Ur in an element connectivity sense. Let nr =
∣∣∣V ∩

(
Ur ∪ U

′
r

)∣∣∣ be the number of vertices

in Ur ∪ U
′
r and let mr =

∣∣∣E ∩
(

Ur ∪ U
′
r

)∣∣∣ be the number of edges in Ur ∪ U
′
r. Note that∑

r mr ≤ 2m since each edge can either appear in Ur for a unique choice of r or in U
′
r for

two choices of r.
To find an isolating cut for r we need to find the cheapest element cut contained in Ur.

We can do this via a flow computation as described below. For each r, consider the graph Gr

where we first take the graph Ur ∪ U
′
r and introduce an auxiliary vertex t̄. We connect t̄ to

all vertices in U
′
r with infinite capacity. For every edge e ∈ U

′
r with exactly one endpoint in

Ur, we replace the opposite endpoint with t̄. Observe that the minimum (r, t̄)-element cut in
Gr coincides with the minimum (r, R − r)-element cut in G. Gr has O(mr) edges and O(nr)
vertices, and the element (r, t̄)-cut problem can be solved in EC(mr, nr) time. Summing over
all r ∈ R gives the following theorem.

▶ Theorem 15. Let G = (T ∪N, E) be an instance of element connectivity with n nodes and m

edges and let R ⊆ T . Let w : V ∪E → (−∞, ∞] assign positive weight to each vertex and edge.
Let k = |T |. Then one can compute, for all r ∈ R, the minimum weight element (r, R − r)-
cut in O

(
EC(m, n) log k + maxm1,...,mk

{∑k
i=1 EC(mi, n) : m1 + · · · + mk ≤ 2m

})
, where

EC(m, n) is the running time for element (S, T )-cut with m edges and n vertices.

With Theorem 15 in place we can reduce the global mincut problem for R to the isolating
cut computation via sampling [37], and captured in the abstract setting Theorem 13, to
obtain the following theorem to compute κ′(R).

▶ Theorem 16. Let G = (T ∪ N, E) be an instance of element connectivity with n nodes
and m edges and let R ⊆ T . Let w : V ∪ E → (−∞, ∞] assign positive weight to each
vertex and edge. Let k = |R|. Then one can compute κ′(R) with constant probability in time
O((EC(m, n) log(k) + maxm1,...,mn

{
∑n

i=1 EC(mi, n) : m1 + · · · + mn ≤ 2m}) log n).

3.1 Refined running times for element connectivity
Until recently, the leading running times for EC(m, n) (e.g., EC(m, n) = Õ(m

√
n) [34]) plug

directly into Theorem 16 to give running times of the form Õ(EC(m, n)) to compute the
global element connectivity. A recent breakthrough work by [50] has obtained a running
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Figure 1 Applying the uncrossing framework to vertex connectivity reduces vertex isolating cuts
to edge disjoint cut problems. Note that the separating vertices may appear in multiple subproblems,
which is an obstruction towards a direct Õ(EC(m, n)) overall running time for isolating vertex cuts.

time of EC(m, n) = Õ
(
m + n1.5) for polynomially bounded and integral capacities. However,

Theorem 16 does not directly benefit from this running time because the vertices are not
partitioned across subproblems. See Figure 1 for an illustration in the concrete setting
of vertex cuts. Consequently, plugging EC(m, n) = Õ

(
m + n1.5) directly into Theorem 16

generates a running time of Õ
(
m + n1.5k

)
, where k = |T |. The additional factor of k (to a

certain extent) defeats the purpose of the isolating cuts framework.
In this section, we develop more advanced algorithms that take the isolating cut framework

as a starting point, and incorporates additional ideas to take advantage of EC(m, n) =
Õ
(
m + n1.5). In addition to obtaining faster algorithms, these results point to a general

algorithm design space where additional ideas can be introduced to obtain even better running
times. The first algorithm we present leverages the fact that the edges are partitioned across
subproblems, even if the vertices are not.

▶ Theorem 17. Let G = (T ∪ N, E) be an instance of element connectivity with n nodes
and m edges and let R ⊆ T . Let w : V ∪ E → [1..U ] assign integer (or infinite) weights to
each vertex and edge. For R ⊆ T , the minimum R-isolating vertex cut can be computed in

Õ
(

m1+o(1)n3/8U1/4 + n1.5
)

time.

Proof. Let k = |R|. We apply Theorem 15 and give concrete upper bounds using known
upper bounds for EC(m, n). Let m1, . . . , mk ∈ N with m1 + · · · + mk ≤ m. Recall that
EC(m, n) = Õ

(
m4/3+o(1)U1/3) by [31] and EC(m, n) = Õ

(
m + n3/2) by [50]. Let α > 0 be

a parameter to be determined. We apply the first running time when mi < mα/k and the
second running time then mi ≥ mα/k. At most k/α indices i have mi ≥ mα/k. Thus,

k∑
i=1

EC(mi, n) =
∑

i:mi≥mα/k

EC(mi, n) +
∑

i:mi<mα/k

EC(mi, n)

≤ Õ

m + k

α
n1.5 +

∑
i:mi<mα/k

m
4/3+o(1)
i U1/3


(a)
≤ Õ

(
m + k

α

(
n1.5 +

(αm

k

)4/3+o(1)
U1/3

))
.
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Here (a) is by convexity: the quantity
∑

i:mi<mα/k m
4/3+o(1)
i subject to the condition that∑

i mi ≤ m is at most (k/α)(αm/k)4/3+o(1). Balancing terms at α = kn9/8/m, this gives an
upper bound of Õ

(
m1+o(1)n3/8U1/4), hence the claimed running time. ◀

We point out that other running time tradeoffs between m and U can be obtained by
instead applying the flow alogrithms from [39, 40].

The next theorem, which is particularly good for dense graphs, leverages the fact that
while the vertices are not necessarily partitioned across subproblems, at least the “inner”
vertex sets Ur ∩ V are disjoint and all of the repeating “boundary” vertices are guaranteed
to be outside the r-component of each (r, R − r)-minimum cut. The following algorithm
balances a tradeoff between the recent algorithm with [51] with blocking flows [22]. In the
application of blocking flows, we argue that with an appropriate construction of the auxiliary
graph in the components given by the decomposition by isolating cuts, the maximum length
of any augmenting paths is proportional to the number of inner vertices (rather than the
total number of vertices) for that component.

▶ Theorem 18. Let G = (T ∪ N, E) be an instance of element connectivity with n nodes
and m edges and let R ⊆ T . Let w : V ∪ E → [0, U ] assign positive (or infinite) weights to
each vertex and edge. For R ⊆ T , the minimum R-isolating cut can be computed in

Õ
(

m1/2n5/4
)

randomized time, where Õ(· · ·) hides poly(log(n), log(U))-factors.

Proof. We recall the construction from Theorem 15, adopting the same notation. In addition,
for each r, let ñr be the number of vertices in Ur. Note that as the Ūr’s are disjoint, we have∑

r∈R ñr ≤ n.
For each r, we employ two different approaches to computing the minimum (r, t̄)-element

cut. On one hand we can apply any max flow algorithm in EC(mr, nr) time. As remarked
above we have EC(mr, nr) ≤ Õ

(
mr + n1.5

r

)
by [50]. The second approach is to apply blocking

flows with the following additional observations. Element connectivity can be modeled as
maximum flow in undirected graphs with edge and vertex capacities, which in turn can be
reduced to maximum flow in edge capacitated directed graphs. Recall the directed graph
representation of vertex capacities, sometimes called the “split graph”. We remind the reader
that in the split graph, each non-terminal vertex v ∈ Vr \

{
r, t̄
}

is split into two vertices – an
“in-vertex” v− and an “out-vertex” v+ – and there is an edge (v−, v+) with capacity equal
to w(v). Each edge (u, v) ∈ Er is replaced with an edge (u+, v−) with the same capacity.
From this split graph, we contract the edges (v+, t̄) for all v ∈ V ∩ U

′
r, which is safe because

t̄ is the sink and each edge (v+, t̄) has infinite capacity. Now, in this directed auxiliary
graph, we have O(mr) edges and O(nr) vertices. We now observe that the auxiliary vertices
corresponding to U

′
r ∩ V ,

{
v− : v ∈ U

′
r ∩ V

}
, do not have any edges between them. Then

any (s, t̄) path in this graph or in any residual graph that may arise cannot have consecutive
auxiliary vertices from U

′
r. Therefore, every augmenting path has length at most 2ñr. In

turn, O(ñr) iterations of blocking flows suffice to find the minimum (r, t̄) cut in Gr, which
takes O(mr log(mr/nr)) time per iteration [22] and O(mrñr log(mr/nr)) time overall.
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Let α > 0 be a parameter to be determined. We have ñr ≥ αn/k for at most k/α vertices
r ∈ R. We have

O

(∑
r

min{EC(mr, nr), mrñr log(m)}

)
≤ Õ

 ∑
r:ñr≤αn/k

mrñr +
∑

r:ñr≥αn/k

(
mr + n1.5

r

)
≤ Õ

(
m +

(
α

k

)
mn +

(
k

α

)
n1.5
)

(a)
≤ Õ

(
m + m1/2n5/4) = Õ

(
m1/2n5/4),

as desired. Here, in step (a), we substituted α = kn1/4/m1/2. ◀

4 Vertex connectivity

In this section we consider the problem of computing the vertex connectivity in weighted
and unweighted graphs. Let G = (V, E) be an undirected graph with m edges and n vertices.
Let w : V → [1, U ] be positive vertex weights. Given distinct nodes s, t ∈ V such that
st ̸∈ E, the minimum weight vertex separator between s and t can be computed via flow
techniques. Recently there has been significant improvement in the running time of vertex
capacitated flow to Õ(m+n1.5) [51]. We use VC(m, n) to denote the complexity of computing
such a separator. We let κ(s, t) denote the weight of the separator between s, t with the
understanding that κ(s, t) = ∞ if {s, t} ∈ E. Here we are interested in the minimum vertex
weight separator of G which can be defined as mins,t∈V,s ̸=t κ(s, t).

Let R ⊂ V such that R is an independent set in G; that is, no two vertices in R share
an edge. One can then define κ(R) to be mins,t∈R,s ̸=t κ(s, t). We observe that κ(R) is the
same as the element connectivity of R in the graph where R is the set of terminals and
V \ R are the non-terminals and edge weights are set to ∞; i.e., only vertices are allowed to
be removed. We have already seen algorithms for element connectivity, which immediately
convert to isolating cut algorithms for vertex connectivity. For instance, one can compute
the minimum isolating cut in Õ

(
m1+o(1)n3/8U1/4 + n1.5) time with integral vertex weights

between 1 and U , or in Õ
(√

mn5/4) time for polynomially bounded weights.
These running times for isolating cuts do not, however, immediately convert to running

times for vertex cuts. To obtain the minimum vertex cut as an isolating cut, we must initialize
the algorithm with a set of vertices R for which the minimum vertex cut is also an isolating
cut. Let (S, T ) be opposite sides of a minimum vertex cut N(S) = N(T ). Without loss of
generality suppose S has weight less than or equal to T . We would like a set R that samples
exactly one point from S, at least one point from T , and avoids N(S) altogether. Even in
the unweighted setting, uniform sampling is thwarted by the fact that N(S) may be much
larger than S, and it is difficult to hit S without hitting N(S) too. In the following lemma,
we observe that if we relax our problem to an (1 + ϵ)-approximately minimum vertex cut,
then we can sample a useful set R with reasonably good probability.

▶ Lemma 19. Let ϵ > 0 be fixed. Let G = (V, E) be an undirected graph with m edges and
n vertices. Let w : V → [1, U ] be positive vertex weights and let W =

∑
v∈V w(v) be the

total weight. Let κ be the weight of the minimum weight vertex cut. Suppose the minimum
weighted degree is greater than (1 + ϵ)κ. Then one can compute a randomized independent
set R ⊂ V such that the minimum vertex cut is an R-isolating set with probability at least
Ω((ϵ/ log(nU)) max{ϵ, (1 − κ/W )}).
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Proof. For ease of notation, let

ϵ0 = max
{

ϵ,
1
2

(
1 − κ

W

)}
Let (S, T ) be opposite sides of the minimum vertex cut N(S) = N(T ). Without loss of
generality suppose w(S) ≤ w(T ) where we use the notation w(A) to denote the total weight
of vertices in A, that is, w(A) =

∑
v∈A w(v). Since N(S) is the minimum weight vertex

separator we have w(N(S)) = κ. We would like a independent set R ⊂ V that has exactly
one point from S, at least one point from T , and avoids N(S) altogether. Then (S, T ) would
isolate the lone vertex in R ∩ S from R − r ⊆ T , as desired. We can achieve this via a
sampling procedure that we described below.

First we claim that w(S) ≥ ϵκ. Fix an arbitrary vertex v ∈ S. By assumption,
w(N(v)) ≥ (1 + ϵ)κ. Since N(v) ⊆ S ∪ N(S) and S ∩ N(S) = ∅, we have w(S) ≥ ϵκ.

Let µ be any value in the range [2 max{w(S), κ}, 4 max{w(S), κ}]. Since
max

{∑
v∈S w(v), κ

}
lies in the range [1, poly(n, U)], we can sample a value µ that lies

in the above range with probability Ω(1/ log(nU)) by randomly picking a power of 2 in
the range [1, poly(n, U)]. Once we fix µ, let R be a random subset of vertices obtained by
independently sampling each vertex v with probability w(v)/µ. Then, as long as R has an
adjacent pair of vertices, we remove one of them from R. We claim that the intial sample for
R has one point from S, no points from N(S), and at least one point from T with probability
≥ Ω(ϵϵ0). If so, then since S and T are independent from one another, dropping vertices in
the second phase will not remove any vertices from S, and retain at least one vertex in T , as
desired. Observe that the three events are independent.

The probability that R avoids N(S) is
∏

v∈N(S)(1 − w(v)/µ). Since w(N(S)) = κ and
µ ≥ 2κ, for any v ∈ N(S), w(v)/µ ≤ 1/2. For x ∈ (0, 1/2] the inequality (1 − x) ≥ e−2x

holds. Hence,
∏

v∈N(S)(1 − w(v)/µ) ≥
∏

v∈N(S) e−2w(v)/µ ≥ e−2κ/µ ≥ 1/e.
Recall that w(S) ≥ ϵκ and hence the probability that R samples exactly one vertex from

S is∑
v∈S

w(v)
µ

∏
u∈S−{v}

(1 − w(u)
µ

) ≥
∑
v∈S

w(v)
µ

e−2(w(S)−w(v))/µ ≥ 1
e

∑
v∈S

w(v)
µ

≥ ϵ

4e
.

In the preceding set of inequalities we used the fact that 1 − x ≥ e−2x for x ∈ [0, 1/2] since
w(S)/µ ≤ 1/2. In the final inequality we used the fact that w(S) ≥ ϵκ which implies that
w(S) ≥ ϵµ/4.

We claim that w(T ) ≥ ϵ0µ/4. Assuming the claim, the probability that R samples at
least one vertex from T is ≥ 1 − e−w(T )/µ ≥ 1 − eϵ0/4 = Ω(ϵ0). To see the claim, recall
that w(T ) ≥ w(S) ≥ ϵκ. We also have w(S) + w(T ) + w(N(S)) = W which implies that
w(T ) ≥ 1

2 (W − κ) ≥ 1
2 (1 − κ

W )W ≥ 1
2 (1 − κ

W )w(S). Since µ ≤ 4 max{w(S), κ}, we have
w(T ) ≥ ϵ0µ/4.

Thus, given µ lies in the range [2 max{w(S), κ}, 4 max{w(S), κ}] which happens with
probability Ω(1/ log(nU)) we have the desired sample R with probability Ω(ϵ · ϵ0). ◀

4.1 Approximate vertex connectivity
By combining the isolating cut algorithms with the sampling lemma above (for the case
where no singleton already induces a good enough vertex cut), we obtain the following
approximation algorithm for vertex connectivity. We point out that in the running time
below, the trailing factor (min{1/ϵ, W/(W − κ)}) is simply a constant except in the relatively
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uninteresting setting where the minimum weight vertex cut is almost all of the weight of the
graph. In the regime of interest, the following is a Õ(1/ϵ) factor greater than the running
time to compute an isolating vertex cut.

▶ Theorem 20. Let ϵ > 0 be fixed. Let G = (V, E) be an undirected graph with m edges
and n vertices. Let w : V → R>0 be positive vertex weights and let W =

∑
v∈V w(v) be the

total weight. Let κ be the weight of the minimum weight vertex cut. Then a minimum vertex
cut can be computed with high probability in Õ((1/ϵ) IsoVC(m, n) min{(1/ϵ), W/(W − κ)})
randomized time, where IsoVC(m, n) is the running time to compute the minimum isolating
vertex cut in a weighted graph of m edges and n vertices.

Proof. Let

ℓ = Õ

(
1
ϵ

min
{

1
ϵ

,
W

W − κ

})
The algorithm first repeats the following subroutine O(ℓ) times. This subroutine first
generates an set R ⊂ V by Lemma 19, and then it computes a minimum R-isolating cut. It
compares the ℓ isolating cuts generated above with the singleton cuts in the graph, returning
the minimum overall.

We argue that the algorithm returns a (1 + ϵ)-approximate minimum weight cut with
high probability by the following simple analysis. In one case, some singleton cut is an
approximate minimum cut, in which case the algorithm always succeeds. In the second case,
the minimum weighted degree is at least an (1 + ϵ)-multiplicative factor greater than the
vertex connectivity. In that case, the minimum weight vertex cut is a minimum R-isolating
cut for at least one of the random sets R with high probability, in which case we return the
minimum weight vertex cut. ◀

We briefly compare our bound above to previous work. As mentioned previously Henzinger,
Rao and Gabow [27] obtain a randomized algorithm that gives the exact vertex connectivity
in Õ(mn) time for weighted graphs. We obtain a (1 + ϵ)-approximation in Õ(m

√
n/ϵ) time

or in Õ
(
m1/2n5/4/ϵ

)
time; other bounds are outlined in previous subsection. We are thus

able to obtain substantially faster algorithm if we settle for a small approximation. There
have been past works on approximation for vertex connectivity but as far as we know
they have been limited to unweighted graphs. Henzinger [26] obtained a 2-approximation
in O(n2 min(

√
n, κ)). Forster et al. obtained a (1 + ϵ)-approximation in randomized time

Õ
(
m + nκ2/ϵ

)
which is near-linear for small connectivity, and combining various other results

they improve upon Henzinger’s result. We refer the reader to [17] for detailed bounds. Our
running times are useful for the larger connectivity regime and we can obtain improved
bounds in various other regimes of interest. We leave a more detailed comparison to a future
version of the paper.

4.2 Exact vertex connectivity

Now, for integral weights, the approximation algorithm above gives the following exact
algorithm for vertex connectivity by suitable choice of ϵ. Again we highlight that in the
running time below, the trailing factor (min

{
κ, W

W −κ

}
) is simply a constant except in the

relatively uninteresting setting where κ is almost
∑

v∈V w(v), in which case the remaining
factors of O(κ IsoVC(m, n)) are not as compelling anyway.
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Table 1 A table of running times for finding the minimum vertex cut in an unweighted and
undirected graph. VC(m, n) denotes the running time of computing (s, t)-vertex connectivity.
EC(m, n) denotes the running time computing (s, t)-edge connectivity. See also [48, Section 15.2a].

O
(
n2 VC(κn, n)

)
Combines trivial algorithm with sparsification [44].

O(n VC(κn, n)) Combines randomized trivial algorithm with sparsification [44].
κ ≤ .99n

O(nω + nκω). [38].

Õ
(
κn2) [27]. Randomized.

O
(
min
{

n3/4, κ3/2}κ2n + κn2) [20].

Õ
(
m + κ7/3n4/3) [45]. Randomized.

Õ
(
m + nκ3) [17]. Randomized.

Õ
(
m + κ7/3n4/3) Corollary 22. Randomized. κ ≤ .99n

Õ
(
m + κ2n11/8+o(1) + κn3/2) Corollary 22. Randomized. κ ≤ .99n

Õ
(
m + κ1.5n7/4) Corollary 22. Randomized. κ ≤ .99n.

▶ Theorem 21. Let G = (V, E) be an undirected graph with m edges and n vertices. Let
w : V → N be integer vertex weights and let W =

∑
v∈V w(v) be the total weight. Let

κ be the weight of the minimum weight vertex cut. Then the minimum vertex cut can be
computed with high probability in Õ(κ IsoVC(m, n) min{κ, W/(W − κ)}) randomized time,
where IsoVC(m, n) is the running time to compute the minimum isolating vertex cut in a
weighted graph of m edges and n vertices.

Proof. For integral capacities, a (1 + 1/(κ + 1))-approximation is an exact solution. Thus
the result follows from Theorem 20. ◀

For the unweighted case, combining the above with sparsification [44] gives the following.

▶ Corollary 22. Let G = (V, E) be a simple unweighted graph. Then the minimum vertex cut
can be computed with high probability in Õ(m + κ IsoVC(nκ, n) min{κ, n/(n − κ)}) random-
ized time, where IsoVC(m, n) is the running time to compute the minimum isolating vertex
cut in a graph of m edges and n vertices.

Proof. For unweighted graphs we can assume we know κ (via exponential search which
adds an additional O(log κ) overhead). We apply the well-known linear-time sparsification
algorithm of Nagamochi and Ibaraki [44] to reduce the number of edges to O(nκ) and then
run the algorithm in the preceding theorem on the sparsified graph which gives the claimed
bound. ◀

The reduction from exact vertex connectivity to isolating vertex cut above, mixed with
the algorithms for isolating vertex cuts, and optionally including the sparsification step from
Corollary 22, produces a number of new running times that are optimal for different ranges
of κ. In general, the running times obtained here have a lower dependence on κ then other
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algorithms for vertex connectivity with a poly(κ) dependence (which is common for the
unweighted setting), so the running times here are particularly good for moderate to large
κ. For a more detailed comparison between the literature and new running times for the
unweighted setting (where we restrict to unweighted for simplicity), see Table 1.

5 Hypergraph Connectivity

Let H = (V, E) be a weighted hypergraph and let R ⊆ V . The cut function of a hypergraphs
is symmetric and submodular. Given disjoint sets S, T ⊂ V the minimum S-T cut in H

can be computed in EC(p, m + n) time via standard reductions3. We can use Lemma 11
and Corollary 14 to understand the running time to compute R-connectivity in H. Up to
logarithmic factors it suffices to estimate the time to find R-isolating cuts. Recall that the
running time consists of two parts. The first part is O(log |R|) calls to S-T cut problem in
H. After this we have the following situation. For each r ∈ R we obtain a set Ur ⊂ V such
that r ∈ R and Ur ∩ (R − r) = ∅. Furthermore the sets Ur over r ∈ R are pairwise disjoint.
For each r the goal is to find a set Yr ⊆ Ur with minimum w(δ(Yr)) where δ(Yr) is set of
hyperedges crossing Yr. Let nr = |Ur|. We can compute Yr by solving a cut problem in an
auxiliary hypergraph Gr on nr + 1 vertices obtained by shrinking V \ Ur into a single vertex.
Let pr be the total size of the hyperedges in Gr. It is not hard to see that

∑
r∈R pr = O(p).

Thus each cut problem in Gr can be computed in either EC(pr, m + nr + 1). This implies
the following.

▶ Theorem 23. The minimum isolating cuts over a set of vertices R of size k = |R| in a
hypergraph with m edges, n vertices, and total size p can be computed

Õ

(
EC(p, m + n) + max

n1,...,nk,p1,...,pk

{
k∑

i=1

EC(pi, m + ni) : n1 + · · · + nk ≤ n, p1 + · · · + pk ≤ 2p

})
time with high probability.

In particular EC(p, m + n) is Õ(p
√

m + n log U) [34] and for unweighted case we have
EC(p, m + n) = Õ(p4/3) [39]. We can obtain two other run times for hypergraphs that
provide different tradeoffs. These are obtained by more carefully solving the second part of
the isolating cut framework, and transfer ideas from vertex connectivity to hypergraphs.

1.
√

pn(m + n)1.5.
2. Õ

(
p(m + n)

3α
2(1+α) β

1
1+α

)
for any α, β where EC(m, n) ≤ m1+αβ (e.g., [31] gives

EC(m, n) ≤ Õ
(
m4/3U1/3), which we interpret as α = 1/3 and β = U1/3).

We sketch the proofs of theorems that obtain the preceding bounds.

▶ Theorem 24. The minimum isolating cut in a hypergraph can be computed in

Õ
(√

pn(m + n)1.5
)

randomized time.

The proof is omitted due to space constraints, and can be found in [10]. We mention that
the approach is similar to the the algorithm for element isolating cuts that had a running
time of Õ

(√
mn5/4).

3 One can also reduce to computing s-t cut in a vertex capacitated undirected graph with p edges and
m + n nodes, although there does not seem to be any particular advantage with current running time
bounds for EC(p, m + n).
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▶ Theorem 25. Suppose EC(m, n) ≤ Õ
(
m1+αβ

)
for fixed α, β > 0. Then minimum isolating

cuts can be computed in Õ
(

p(m + n)
3α

2(1+α) β
1

1+α + p + (m + n)1.5
)

.

The proof is omitted due to space constraints, and can be found in [10]. We mention that
the approach is similar to the algorithm for element isolating cuts that obtained a running
time of Õ

(
m1+o(1)n3/8U1/4 + n1.5).
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Abstract
We develop a general framework that characterizes strong average-case lower bounds against circuit
classes C contained in NC1, such as AC0[⊕] and ACC0. We apply this framework to show:

Generic seed reduction: Pseudorandom generators (PRGs) against C of seed length ≤ n − 1 and
error ε(n) = n−ω(1) can be converted into PRGs of sub-polynomial seed length.
Hardness under natural distributions: If E (deterministic exponential time) is average-case hard
against C under some distribution, then E is average-case hard against C under the uniform
distribution.
Equivalence between worst-case and average-case hardness: Worst-case lower bounds against
MAJ ◦ C for problems in E are equivalent to strong average-case lower bounds against C. This
can be seen as a certain converse to the Discriminator Lemma [Hajnal et al., JCSS’93].

These results were not known to hold for circuit classes that do not compute majority. Additionally,
we prove that classical and recent approaches to worst-case lower bounds against ACC0 via commu-
nication lower bounds for NOF multi-party protocols [Håstad and Goldmann, CC’91; Razborov and
Wigderson, IPL’93] and Torus polynomials degree lower bounds [Bhrushundi et al., ITCS’19] also
imply strong average-case hardness against ACC0 under the uniform distribution.

Crucial to these results is the use of non-black-box hardness amplification techniques and the
interplay between Majority (MAJ) and Approximate Linear Sum (S̃UM) gates. Roughly speaking,
while a MAJ gate outputs 1 when the sum of the m input bits is at least m/2, a S̃UM gate computes
a real-valued bounded weighted sum of the input bits and outputs 1 (resp. 0) if the sum is close to 1
(resp. close to 0), with the promise that one of the two cases always holds. As part of our framework,
we explore ideas introduced in [Chen and Ren, STOC’20] to show that, for the purpose of proving
lower bounds, a top layer MAJ gate is equivalent to a (weaker) S̃UM gate. Motivated by this result,
we extend the algorithmic method and establish stronger lower bounds against bounded-depth
circuits with layers of MAJ and S̃UM gates. Among them, we prove that:

Lower bound: NQP does not admit fixed quasi-polynomial size MAJ ◦ S̃UM ◦ ACC0 ◦ THR circuits.

This is the first explicit lower bound against circuits with distinct layers of MAJ, S̃UM, and THR
gates. Consequently, if the aforementioned equivalence between MAJ and S̃UM as a top gate can
be extended to intermediate layers, long sought-after lower bounds against the class THR ◦ THR of
depth-2 polynomial-size threshold circuits would follow.
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1 Introduction

1.1 Overview
Establishing the intractability of computations and understanding the power of randomness
in algorithms are among the most basic open problems in theoretical computer science.
The theory of computational pseudorandomness provides a firm link between these two
research directions. One of the most celebrated developments in this area is a proof that if
E (deterministic exponential time 2O(n)) requires Boolean circuits of exponential size then
P = BPP [30, 43]. This result and its underlying techniques provide a robust mathematical
theory that connects worst-case lower bounds, average-case hardness, and the construction of
pseudorandom generators.

Unfortunately, a large part of this beautiful and far-reaching theory is not known to
survive in restricted computational settings. For instance, while we know since the eighties
that E cannot be (1/2 + n−1/2+Ω(1))-approximated by AC0[⊕] [40], it is an important open
problem to obtain strong average-case hardness results of the form 1/2 + n−k for all k

and pseudorandom generators against this circuit class. The fact that existing connections
between hardness and pseudorandomness do not apply in restricted settings is significant,
given that known unconditional results and existing lower bound frontiers lie within weak
sub-classes of NC1, such as ACC0.

Several works (e.g. [45, 23, 42, 36, 5, 22, 47, 29]) have investigated the difficulty of
extending the hardness vs. randomness theory and its consequences to restricted circuit
classes. Roughly speaking, these results show that standard “black-box” techniques to amplify
computational hardness and construct pseudorandom generators require the underlying circuit
class C to be closed under majority. However, obtaining lower bounds against circuit classes
that are closed under majority is a notorious open problem. This leaves us in this unsatisfying
situation where many benefits of the theory mentioned above only apply to settings where
current circuit-analysis techniques do not hold. In other words, we have the following “lose-
lose” scenario: above TC0 we have no lower bounds, while below it we have lower bounds
but no hardness amplification.

In this work, we explore non-black-box techniques to overcome this difficulty, obtaining
a general connection between worst-case lower bounds, strong average-case hardness, and
pseudorandomness for weak circuit classes. Our results build on recent ideas of Chen and
Ren [14] employed in the context of the algorithmic method. Using our techniques, we are
able to establish fundamental equivalences that were previously only known for circuit classes
containing TC0. As a consequence, the new results are widely applicable and can affect
current frontiers in circuit complexity theory.

A crucial ingredient in our proofs is the interplay between Majority (MAJ) and Approxim-
ate Linear Sum (S̃UM) gates. Roughly speaking, while a MAJ gate outputs 1 when the sum
of the m input bits is at least m/2, a S̃UM gate computes a real-valued bounded weighted
sum of the input bits and outputs 1 (resp. 0) if the sum is close to 1 (resp. close to 0), with
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the promise that one of the two cases always holds. S̃UM gates are significantly simpler than
MAJ gates (e.g. MAJ has approximate degree [38] of order Ω(m)), but still powerful enough
to implement useful computations, such as hardness amplification for specific problems (a
non-black-box element).

Complementing our results about the average-case complexity of restricted circuit classes,
we obtain the first unconditional lower bounds against bounded-depth circuits with distinct
layers of MAJ, S̃UM, and THR gates. These results suggest that further investigating the
relation between MAJ and S̃UM might be a path to lower bounds against depth-2 threshold
circuits, a long-standing open problem in complexity theory (cf. [18, 9]).

1.2 Results and techniques
To begin with, we recall some definitions for linear sums of functions. Our notation is taken
from previous work [50, 15, 14, 13] on lower bounds via the algorithmic method. Let C be a
class of functions from {0, 1}n → {0, 1}.

SUM ◦ C-circuits. A SUM ◦ C-circuit C : {0, 1}n → R is a circuit that can be written as
C(x) =

∑ℓ
i=1 αi · Ci(x), where each αi is a real, and each Ci ∈ C. Here ℓ is called the sparsity

of C, and is denoted as sparsity(C). We also use complexity(C) to denote max(ℓ,
∑ℓ

i=1 |αi|).
Furthermore, if a SUM ◦ C-circuit C always outputs values in the interval [0, 1], we say it is a
[0, 1]-SUM ◦ C-circuit.

S̃UMδ ◦ C-circuits. Let δ ∈ [0, 0.5). A S̃UMδ ◦ C-circuit C : {0, 1}n → {0, 1} is defined by a
SUM ◦ C-circuit L : {0, 1}n → R satisfying the following promise: for every x ∈ {0, 1}n, either
|L(x) − 1| ≤ δ or |L(x)| ≤ δ. (We stress that this promise is only required over inputs x to
the SUM ◦ C-circuit L, and not over all possible input values to the top SUM gate.) We say
C(x) = 1 if |L(x) − 1| ≤ δ and C(x) = 0 otherwise. The sparsity and the complexity of C is
defined as the sparsity and the complexity of L, respectively.

For a circuit class C, we use SUM ◦ C, [0, 1]-SUM ◦ C, and S̃UMδ ◦ C to denote the
collection of such circuit families with at most poly(n) complexity. When C has a clear
notion of complexity, such as circuit size, this also means that the involved C-subcircuits
are of polynomial size. In some statements we might refer to classes such as S̃UMδ ◦ C[s] to
emphasize a specific upper bound s on the complexities of C-subcircuits and of the top gate.

Notation for standard concepts. A MAJ : {0, 1}m → {0, 1} gate MAJ(y1, . . . , ym) outputs
1 if and only if

∑
i yi ≥ m/2. A THR : {0, 1}m → {0, 1} gate is described by weights

w1, . . . , wm, θ ∈ R and outputs 1 if and only if
∑

i wiyi ≥ θ.
For a probability distribution D over {0, 1}n and Boolean functions f, g : {0, 1}n → {0, 1},

we say that f is γ-approximated by g over D if Prx∼D[f(x) = g(x)] ≥ γ. For convenience,
circuit lower bounds involving approximations of the form 1/2 + 1/nω(1) might be informally
referred to as strong average-case lower bounds or simply strong correlation bounds.

Our results refer to non-uniform circuit classes, and we use C1 ◦ C2 to refer to circuit
families consisting of a top circuit from C1 composed with bottom circuits from C2.1

We use Un to denote the uniform distribution over {0, 1}n. A distribution D ε-fools a
function f : {0, 1}n → {0, 1} if | Pr[f(D) = 1] − Pr[f(Un) = 1]| ≤ ε. We say that a sequence
Gn : {0, 1}ℓ(n) → {0, 1}n is an infinitely often PRG against a circuit class C with error ε

1 As usual, in the case of C2 = ACC0, where ACC0 =
⋃

m∈N
AC0[m] with m here representing the modulo,

we require that each C2-subcircuit of a circuit D from C1 ◦ C2 uses the same fixed m.
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(i.o. ε-PRG) and seed length ℓ if Gn is computable in time 2O(ℓ(n)) and for infinitely many
values of n, the induced distribution Gn(Uℓ(n)) ε(n)-fools each function f : {0, 1}n → {0, 1}
in C.

1.2.1 Equivalences for worst-case and strong average-case hardness
Our first contribution is a general result that tightly connects worst-case lower bounds, strong
average-case hardness, and pseudorandomness in restricted computational models.

▶ Theorem 1 (Non-black-box equivalences for worst-case and strong average-case hardness).
Let C be a circuit class contained in NC1 that is closed under negations and under a bottom
layer of juntas over O(1) input bits. The following statements are equivalent:
1. There is L ∈ E such that L /∈ S̃UM1/3 ◦ C.
2. There is L ∈ E and δ ≥ 1/poly(n) such that L /∈ S̃UMδ ◦ C.
3. There is L ∈ E such that L /∈ MAJ ◦ C.
4. There is L ∈ E such that, for every k ≥ 1, L cannot be computed by probabilistic C-circuits

with error 1/2 − 1/nk.2
5. There is L ∈ E and a distribution ensemble D such that for every k ≥ 1, L cannot be

(1/2 + n−k)-approximated by C under D.
6. There is L ∈ E such that for every k ≥ 1, L cannot be (1/2 + n−k)-approximated by C

under the uniform distribution.
7. There is L ∈ E that cannot be approximated by [0, 1]-SUM ◦ C within ℓ1 distance 1/3.3
8. There is L ∈ E and δ ≥ 1/ poly(n) such that L cannot be approximated by [0, 1]-SUM ◦ C

within ℓ1 distance δ.
9. There is an i.o. ε-PRG G against C with seed length n − 1 and error ε(n) ≤ n−ω(1).4

10. For each γ > 0, there is an i.o. ε-PRG against C with seed length nγ and ε(n) ≤ n−ω(1).

This result can be applied to a variety of natural circuit classes, such as AC0[⊕], ACC0,
and constant-degree polynomial threshold functions (PTFs). We stress that while Theorem 1
requires the circuit class C to be contained in NC1, in circuit complexity this is the most
interesting case for the result. More precisely, for circuit classes that are above NC1, it is
well known that worst-case hardness for a problem in E can be converted into average-case
hardness and PRGs. (Furthermore, NC1 is closed under a top MAJ or S̃UM gate.) We
remark that Theorem 1, with appropriate modifications, can be adapted to other uniform
complexity classes, such as BPE = BPTIME[2O(n)] and PSPACE. For simplicity, we restrict
our discussion to E.

We observe that a connection between worst-case hardness and weak average-case hardness
for functions in E has been established in [20], under the assumption that the circuit class C
contains AC0 and is closed under composition. In contrast to their work, we have a much
weaker assumption on C, and our setting of parameters allows us to obtain equivalences to
PRGs and to derive consequences that do not follow from their results.

We now highlight three fundamental consequences of Theorem 1. Note that, while our
proof employs S̃UM gates in important ways, none of these results refer to such gates.

2 Following standard terminology, a probabilistic C-circuit F is simply a distribution of C-circuits. We say
that F computes a Boolean function g with error ε if for every input x we have PrF [F (x) ̸= g(x)] ≤ ε.

3 In other words, there is no family of circuits Fn ∈ [0, 1]-SUM◦C such that Ex∼{0,1}n [|L(x)−Fn(x)|] ≤ 1/3
for all large n. This notion plays a crucial role in [13] and other related works.

4 More precisely, for each choice of k, there is an infinite set Sk ⊆ N such that G fools circuits from C[nk]
on inputs of length n ∈ Sk with error ε(n) ≤ n−k.
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1. Seed reduction for PRGs. Perhaps surprisingly, the equivalence between Items 9 and 10
of Theorem 1 shows the existence of a generic seed reduction phenomenon for weak circuit
classes. Thus to construct i.o. PRGs of sub-polynomial seed length for a class C satisfying the
conditions of this result it is enough to construct a non-trivial i.o. PRG (i.e. of seed length
≤ n − 1) with small error. In particular, improving the error parameter of the PRG against
AC0[⊕] described in [16] to inverse-super-polynomial would lead to major consequences for
AC0[⊕]-circuits.

2. Hardness under some distribution implies hardness under the uniform distribution.
Theorem 1 also has important implications to our understanding of the average-case hardness
of problems in E with respect to weak circuit classes. This is an immediate consequence
of Items 5 and 6, which establish the result for strong average-case hardness of the form
1/2 + 1/nω(1). In the full version of this paper [11], we observe that our techniques can also
translate constant-error average-case hardness under an arbitrary distribution to constant-
error average-case hardness under the uniform distribution. An interesting application of
these results is that the existence of a PRG against C, which was only known to imply
hardness under some distribution (see e.g. Section 3 of [46]), also implies hardness with
respect to the uniform distribution (which in turn is sufficient to construct PRGs).

3. Equivalence between worst-case and average-case hardness. The well-known Discrim-
inator Lemma from Hajnal et al. [24] has found numerous applications in circuit complexity
lower bounds. It shows that if a Boolean function f cannot be (1/2+1/ poly(n))-approximated
by a class C then f is not in MAJ◦C. In other words, one can lift an average-case lower bound
against C to a worst-case lower bound against the stronger class MAJ ◦ C. Interestingly, the
equivalence between Items 3 and 6 in Theorem 1 shows that, for the purpose of proving lower
bounds for a problem in E, a worst-case lower bound against MAJ ◦ C is actually equivalent to
a strong average-case lower bound against C. To our knowledge, this was previously unknown
for weak computational models.5

A consequence of Theorem 1 relevant to the study of S̃UM gates is that if E ⊈ S̃UMδ ◦ C
for some δ(n) = 1/nc then E ⊈ S̃UM1/3 ◦ C.6 Another interesting implication is that the
average-case lower bounds against [0, 1]-SUM ◦ C under ℓ1 distance investigated in [13] are
necessary and sufficient for strong average-case hardness against C.

Next, we discuss some of the techniques behind Theorem 1.

Theorem 1: Techniques. As alluded to above, the proof of Theorem 1 relies on non-black-
box hardness amplification techniques explored by Chen and Ren [14] and on a careful
balance between the strength and weakness of S̃UM gates. To give some intuition, we discuss
the main ingredients behind a more direct proof of the following equivalence, which also
explains the assumptions on the circuit class C:

Worst-case hardness against S̃UM ◦ C ⇐⇒ i.o. PRGs against C with error ε = n−ω(1).

5 We also remark that it was known [19, 28, 33] before that for general circuit class C, weak average-case
hardness against MAJ ◦ C implies strong average-case hardness against C.

6 We note that a simple error amplification technique for S̃UM (see [11]) blows up the complexity of the
involved S̃UM ◦ C-circuits to quasi-polynomial when amplifying from constant-error approximation to
inverse polynomial. For this reason, it does not establish this implication.
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While it is possible to show that a S̃UM gate can be efficiently simulated by a MAJ gate,7
the opposite simulation does not hold (e.g. consider approximate degree). In this sense, S̃UM
gates are indeed weak. Still, it is possible to show essentially that, for a certain specific
NC1-hard problem L contained in P, a S̃UM gate of polynomial complexity can implement
a hardness amplification proof: roughly speaking, a weak approximator circuit for L can
be transformed into a correct circuit for L by incurring only a top S̃UM gate overhead.
This allows us to employ the following win-win analysis. Either the NC1-hard problem L is
1/2 + n−k-hard against C on infinitely many input lengths for every choice of k, in which
case an i.o. PRG against C can be constructed from L using standard techniques under
the assumption that C is closed under bottom layer O(1)-juntas, or there is a choice of k

such that L can be 1/2 + n−k approximated by C-circuits on large enough input lengths.
The latter implies via the hardness amplification reconstruction routine that L ∈ S̃UM ◦ C,
which in turns yields NC1 ⊆ S̃UM ◦ C using the NC1-hardness of L (which in fact admits
ultra efficient reductions). Now under our assumption that C ⊆ NC1, it is easy to see that
NC1 = S̃UM ◦ C. As a consequence, a worst-case lower bound against S̃UM ◦ C provides a
worst-case lower bound against NC1, and again, PRGs can be constructed from such an
assumption via standard methods (since NC1 admits black-box worst-case to average-case
amplification).

For the other direction, we start with an i.o. PRG G against C that might have a large
seed length but guarantees low error ε(n) = n−ω(1). Here the important insight is that a
low error PRG that fools C also fools linear combinations of functions in C with bounded
coefficients. This implies that G fools S̃UM ◦ C. Another standard argument shows that
from such a PRG one can define a function in E that is worst-case hard against S̃UM ◦ C.

We stress that two crucial ingredients of our equivalence theorem are the existence of the
hard problem L mentioned above and the use of S̃UM gates. The hard language L is actually
a pair of problems CMD and DCMD with very useful structural properties (see Section 2.2).
They have been explored in a few other works (e.g. [31, 4, 20, 1]), and are tightly connected
to decomposable randomized encodings, which are well-studied in cryptography (see [3]). The
fruitful interaction between these problems and S̃UM gates was first noticed by [14] in the
context of the algorithmic method and is a crucial ingredient in their proof that NQP is
strongly average-case hard against ACC0.

While the proof of Theorem 1 avoids the black-box “barrier” and applies to circuit
classes that are not assumed to be closed under majority, our techniques come with certain
limitations. As a consequence of our indirect analysis via a win-win argument, Theorem 1
does not provide almost-everywhere equivalences for some items and does not scale to large
circuit size bounds above quasi-polynomial. These are important directions for future work.

Applications to ACC0-circuits lower bound approaches. As a concrete application of
Theorem 1 to current frontiers in circuit complexity, we explore its consequences to the
average-case complexity of ACC0. We use our framework to show that existing “combinatorial”
approaches to worst-case lower bounds would also provide strong average-case hardness against
ACC0. Before stating this result, we briefly recall some concepts.

7 It is possible to approximate all coefficients of the bounded linear sum using sums of powers of 2i with
i ∈ Z, then multiply the linear sum by an appropriate power of 2 to obtain integer coefficients, and
finally simulate the resulting sum by an appropriate THR gate with polynomial weights, which can be
translated to a MAJ gate using duplicated input wires and by negating input variables if necessary.
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Let T = R/Z be the one-dimensional torus. A torus polynomial [7] (see also [34]) is
a real polynomial p(x1, . . . , xn) restricted to the domain {0, 1}n and evaluated modulo
one.8 For the purpose of representing the output of a Boolean function f : {0, 1}n → {0, 1}
as a value in T, we map the output bit f(x) to f(x)/2. For δ < 1/4, we say that f

is δ-approximated by a degree-d torus polynomial if there is a degree-d real polynomial
p(x1, . . . , xn) such that if f(x) = 1 then p(x) − ⌊p(x)⌋ ∈ [1/2 − δ, 1/2 + δ] and if f(x) = 0
then p(x) − ⌊p(x)⌋ ∈ [0, δ] ∪ [1 − δ, 1). A recent approach proposed by [7] shows that ACC0

lower bounds follow from torus polynomial degree lower bounds for approximating a Boolean
function.

The number-on-forehead (NOF) multi-party communication model was introduced by [8],
and work of [26, 41] show that explicit communication lower bounds in this model (even in
the single-round model where all players simultaneously communicate to a referee) imply
lower bounds against SYM+-circuits, which are known to simulate ACC0 [6].

▶ Theorem 2 (Lifting worst-case ACC0 lower bound approaches to strong correlation bounds).
Consider the following statements:
1. Torus Polynomials: There is a language L ∈ E and a function δ(n) ≥ 1/ poly(n) such

that L does not have δ-approximation torus polynomials of degree polylog(n).
2. NOF Protocols: There is a language in E that does not admit (single-round) NOF

multi-party protocols with polylog(n) parties of communication cost polylog(n).
In each case, if the corresponding statement holds then there is a language in E that cannot
be (1/2 + 1/ poly(n))-approximated under the uniform distribution by ACC0.

As a consequence, lower bounds against these models provide i.o. PRGs of sub-polynomial
seed length against ACC0.

Theorem 2: Techniques. It is not hard to adapt classical techniques to show that if a
Boolean function can be approximated by torus polynomials of bounded degree, then it
can also be computed by NOF protocols of low complexity. For this reason, in order to
prove Theorem 2 it is sufficient to obtain average-case hardness against ACC0 from degree
lower bounds for torus polynomials approximating Boolean functions.9 To achieve this, we
refine the argument of [7] and invoke our framework. In more detail, we show the stronger
result that even functions families in S̃UM ◦ ACC0 can be approximated by low-degree torus
polynomials. This yields the result using the equivalence between Items 6 and 2 in Theorem 1.

To establish this claim, we make use of low degree “middle-bit polynomials” [21], a
sub-class of SYM+-circuits that is strong enough to simulate ACC0. By a careful adaptation
of the argument of [7], we are able to show that a linear sum (with bounded coefficients) of
middle-bit polynomials with a special structure can be converted into a torus polynomial.
The argument is somewhat subtle, and involves the manipulation of universal circuits for
depth-d ACC0[s] in order to enforce similar parameters for all middle-bit polynomials feeding
the top S̃UM gate. The details appear in the full version of this paper [11].

8 By a value y (mod 1) we mean its fractional part given by y − ⌊y⌋, where the floor function ⌊y⌋ denotes
the largest integer less than or equal to y. For instance, 1.37 (mod 1) is 0.37 and −2.21 (mod 1) is 0.79.

9 Alternatively, earlier work on ACC0 already showed that MAJ ◦ ACC0-circuits can be simulated by NOF
protocols of low communication. Therefore, the NOF protocols part of Theorem 2 follows directly from
our Theorem 1.
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1.2.2 Lower bounds against circuits with layers of S̃UM and MAJ gates
Observe that Theorem 1 (via Items 1, 2, and 3) establishes the following equivalence: for
the purpose of proving circuit lower bounds for a function in E, a top layer MAJ gate is
equivalent to a top layer S̃UM gate. Given that S̃UM is simpler than MAJ, and lower bounds
against S̃UM ◦ C offer a path to correlation bounds and PRGs against C, obtaining a better
understanding of S̃UM gates in Boolean circuits might have significant benefits.

In this section, we explore unconditional lower bounds against circuits with layers of MAJ
and S̃UM gates. Our results are connected to the long-standing problem of showing explicit
lower bounds against THR ◦ THR, the class of polynomial-size depth-2 threshold circuits
(where size is measured by number of gates). For convenience of the reader, we review below
some results related to this frontier.

Threshold circuits. Recall that a threshold gate THR over m input bits is described by
weights w1, . . . , wm, θ ∈ R. It outputs 1 on an input y ∈ {0, 1}m if and only if

∑
i wiyi ≥ θ.

It is known that every such gate can be implemented with integer weights of magnitude
2O(m log m) (see [25]). In the context of polynomial size circuits, by duplicating input wires
a MAJ gate can be equivalently defined as the restriction of a THR gate to polynomially
bounded integer weights. It was shown that MAJ ◦ THR = MAJ ◦ MAJ and THR ◦ THR is
contained in MAJ◦MAJ◦MAJ [18]. Exponential lower bounds are known against THR◦MAJ-
circuits [17], and THR ◦ MAJ is strictly contained in THR ◦ THR [9]. Recently, [32] described
a function in P that requires THR ◦ THR-circuits of size (measured by the number of gates)
nearly n3/2. This is the strongest known lower bound against this class (see their work for
extensions to other circuit size measures) for a function in P. It is also known that ENP does
not have n2−ε-size THR ◦ THR-circuits for every constant ε > 0 [2, 44].

LTFs ◦C-circuits: An intermediary class between MAJ◦C and THR◦C. In order to make
progress toward showing super-polynomial lower bounds against THR ◦ THR-circuits, we
study a newly defined gate LTFs whose power lies between MAJ and THR.10 Let SUM∞ ◦ C
be the relaxation of SUM ◦ C to an unrestricted top SUM gate (i.e. the top gate can use
arbitrary real coefficients that might not be polynomially bounded). For a given function s

and a circuit class C, we say that a function f admits a LTFs ◦ C-circuit of size S if there is a
circuit D ∈ SUM∞ ◦ C such that the following hold: (1) f(x) = 1 if and only if D(x) ≥ 0; (2)
|D(x)| ∈ (1/s, s) for every x ∈ {0, 1}n; (3) the total size of the C-subcircuits of D is at most
S. Note that unrestricted weights are allowed in the top gate, but we are promised that on
each input x the value D(x) is neither too close to 0 nor too large in magnitude.11

We are able to extend the algorithmic method [49] to show that #SAT algorithms for a
circuit class C imply worst-case lower bounds against LTFs ◦ C and average-case lower bounds
against S̃UM ◦ C. Let NQP = NTIME[2polylog(n)] be the class of languages computable in
non-deterministic quasi-polynomial time. We say that a circuit class C is nice if C is closed
under negation, (bottom) projections, and a top AND gate of unbounded fan-in, and in
addition C-circuits of size s admit general circuits of depth O(log s). Examples of nice circuit
classes include AC0, ACC0, and AC0[⊕] ◦ THR.

10 LTF denotes linear threshold function, another standard name for THR. We employ both names in this
paper to make a clear distinction between the new gates and THR.

11 Note that we only impose this constraint for each input x of the combined SUM∞ ◦ C-circuit, and not
over all possible input strings for the top gate.
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▶ Theorem 3 (Stronger lower bounds from #SAT algorithms). Let C be a nice circuit class.
Suppose there is a constant ε > 0 such that, given a C-circuit of size 2nε over n input
variables, its number of satisfying assignments can be deterministically computed in time
2n−nε . Then the following statements hold:
1. For every constant k > 0, NQP does not have LTF2logk n

◦ C-circuits of size 2logk n.
2. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be (1/2 + 2− logk n)-

approximated by S̃UMδ ◦ C-circuits where both the sparsity of the top SUM-gate and the
size of the bottom layer C-circuits are at most 2logk n.12

To our knowledge, these two circuit lower bound consequences are incomparable. By
combining Theorem 3 with existing #SAT algorithms for C = ACC0 ◦ THR-circuits [51], we
obtain the following unconditional lower bounds.

▶ Corollary 4 (Lower bounds against circuits with S̃UM, THR, and MAJ gates). The following
results hold:
1. For every constant k > 0, NQP does not admit LTF2logk n

◦ ACC0 ◦ THR-circuits of size
2logk n.

2. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be (1/2 + 2− logk n)-
approximated by S̃UMδ ◦ ACC0 ◦ THR-circuits where the top sum has sparsity 2logk n and
all ACC0 ◦ THR-subcircuits have size 2logk n.

3. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be computed by
MAJ ◦ S̃UMδ ◦ ACC0 ◦ THR-circuits where the top MAJ gate has fan-in 2logk n and all
S̃UMδ ◦ ACC0 ◦ THR-subcircuits have size and sparsity 2logk n.

To contrast these results with previous work, we note that [15, Theorem 15] gave a worst-
case lower bound against S̃UMδ ◦ ACC0 ◦ THR-circuits with any constant error δ less than 1/2.
Also, [14, Section 5.2] showed a strong average-case lower bound against S̃UMδ ◦ ACC0 ◦ THR-
circuits, where the top sum gate has zero error (i.e., δ = 0). Consequently, Corollary 4 Item
2 simultaneously strengthens both results. On the other hand, Corollary 4 Item 3 shows the
first lower bound against circuits combining layers of S̃UM1/3, MAJ, and THR gates.

Before discussing our techniques in more detail, we mention an open problem and its
connection to THR◦THR lower bounds. Recall that this class is contained in MAJ◦MAJ◦MAJ.
In light of the super-polynomial lower bound against MAJ◦S̃UMδ◦ACC0◦THR from Corollary 4
Item 3, it would be very interesting to understand the relation between MAJ gates and S̃UM
gates appearing in internal layers of Boolean circuits. In particular, we note that if MAJ can
be simulated by S̃UM1/3 ◦ ACC0-circuits of quasi-polynomial size (or THR can be simulated
by MAJ ◦ S̃UMδ ◦ ACC0-circuits of quasi-polynomial size), then NQP ⊈ THR ◦ THR. On the
other hand, if this is not the case, strong average-case lower bounds against ACC0 follow
from Theorem 1.

Theorem 3 and Corollary 4: Techniques. The proofs of the first two items of Corollary 4
are immediate from the corresponding items of Theorem 3 via the #SAT algorithm for
C = ACC0 ◦THR given by [51]. On the other hand, Item 3 of Corollary 4 can be established in
different ways. The first proof is just a standard application of the Discriminator Lemma [24]
together with the lower bound from Item 2. A second proof follows from Item 1, via a

12 For the interested reader, we notice that the coefficients of the top S̃UM gate can be unbounded in this
lower bound.
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simulation of a MAJ◦ S̃UMδ ◦C-circuit of quasi-polynomial complexity by a LTF2logk n

◦ACC0 ◦
THR-circuit of size size 2logk n, for some constant k. This can be done by first reducing the
error δ of each S̃UMδ ◦ C-subcircuit (see [11]), then rewriting the corresponding MAJ ◦ S̃UMε

top layers as an LTFs gate via an appropriate collapse. We omit the details.
The proofs of Items 1 and 2 of Theorem 3 are essentially independent. We discuss each

of them next, starting with Item 1.
An extension of the algorithmic method [49] obtained by [37] shows that SAT algorithms

for a circuit class C of sub-exponential size circuits (satisfying minor closure conditions) that
run in time 2n−nε imply that NQP ⊈ C. In a more recent work that builds on [50], [15]
established (in particular) that #SAT algorithms of similar running time provide the stronger
lower bound NQP ⊈ S̃UM ◦ C. Our proof of Item 1 of Theorem 3 relies on the latter result
and on a win-win argument inspired by [14]. In more detail, and oversimplifying a bit, we
argue that if a special NC1-hard problem L (contained in NQP) is not in LTF2logk n

◦ C, then
we are done. Otherwise, we explore LTFs gates and the special form of the NC1-hardness of
L to show that NC1 can be simulated by S̃UM ◦ C-circuits of quasi-polynomial complexity.
Given this lemma and the corresponding simulation, we can reduce the derivation of the
desired lower bound to previous work, i.e., we invoke the aforementioned connection between
#SAT algorithms and lower bounds against S̃UM ◦ C. This provides a language in NQP that
is not in S̃UM ◦ C of complexity 2logℓ n, where ℓ = ℓ(k) is large enough. Now by simulating
LTF2logk n

◦ C-circuits using quasi-polynomial size Boolean formulas, and using the collapse
of NC1 to quasi-polynomial size S̃UM ◦ C, it is possible to argue that L is also hard against
LTF2logk n

◦ C.
The proof of Item 2 of Theorem 3 shares some similarities with the argument above, but

the technical details are different. From a high-level perspective, we also employ a win-win
argument, though this time it is based on the average-case complexity of the language
L mentioned above. Moreover, we cannot rely on previous connections between #SAT
algorithms and lower bounds in a black-box way. Given that explaining the relevant details
would be fairly technical, we refer the interested reader to the full version of this paper [11].
We mention that a conceptual contribution is that while our proof of Theorem 3 Part 2
follows the strategy of previous works, such as [10, 15, 14], on obtaining lower bounds from
meta-algorithms, it does not use PCPs of proximity (PCPP), which was a key ingredient in
the proofs of those works. For this, we rely in part on a PCP stated in [48], combined with
other ideas.

Organization. In Section 2 we introduce the necessary technical preliminaries for proving
our results. In Section 3 we prove our main equivalence result (Theorem 1). Due to space
constraints, the remaining proofs are deferred to the full version of this paper [11].

2 Preliminaries

2.1 Notation
We use N to denote the set of all non-negative integers and N≥1 to denote N \ {0}. For every
n ∈ N≥1, we let Un denote the uniform distribution over {0, 1}n. For convenience, in some
settings a Boolean function f : {0, 1}n → {0, 1} will be viewed as a function with output in
{−1, 1}, where −1 and 1 are interpreted as True and False, respectively.

For a predicate P (x), we use 1P (x) to denote its corresponding Boolean value on x.
That is, 1P (x) = 1 if P (x) is true, and 0 otherwise. For a real v, we define sign(v) :=
(−1) · 1v<0 + 1 · 1v≥0.

For two strings α, β ∈ {0, 1}∗, we write α ◦ β to denote the concatenation of α and β.
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A projection of a function f(x1, . . . , xn) is a function g(y1, . . . , ym) with a projection
mapping P : {0, 1}m → {0, 1}n such that g(y1, . . . , ym) = f(P (y1, . . . , ym)). By “projection”
we mean that each output bit of P (y1, . . . , ym) is either an input bit yi, its negation, or a
constant.

Let a be a positive integer. For an arbitrary ℓ ≥ 1 and a function h : {0, 1}ℓ → {0, 1}, we
say that h ∈ JUNTAa if the output of h depends on at most a input coordinates.

For a circuit class C and s ≥ 1, we use S̃UM ◦ C[s] to denote the class of S̃UM ◦ C-circuits
where the top SUM gate has complexity at most s and the bottom layer C-circuits have size
at most s.

For a function f : {0, 1}n → {0, 1}, we let f± : {0, 1}n → {−1, 1} be the {−1, 1}-version
of f where we map the output of f from 0 to 1 and 1 to −1. Also, for a circuit class C where
the circuits in C output values in {0, 1}, we denote by C± the {−1, 1}-version of C where the
circuits in C± output values in {−1, 1}.

2.2 A ⊕L-complete problem with good properties
The existence of ⊕L-complete problems with good reducibility properties will be important
for us. (Recall that ⊕L is the class of problems solvable by a nondeterministic logspace
Turing machine that accepts the input if the number of accepting paths is odd.) We define
the following two problems, called Connected Matrix Determinant (CMD) and Decomposed
Connected Matrix Determinant (DCMD):

▶ Definition 5. An instance of CMD is an n×n matrix over F2 where the main diagonal and
above may contain either 0 or 1, the second diagonal (i.e. the one below the main diagonal)
contains 1, and other entries are 0. In other words, the matrix is of the following form (where
∗ represents any element in F2):

∗ ∗ ∗ · · · ∗ ∗
1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · 1 ∗


.

The instance is an (n(n + 1)/2)-bit string specifying elements on and above the main diagonal.
We define x ∈ CMD if and only if the determinant (over F2) of the matrix corresponding to
x is 1.

An instance of DCMD is a string of length n3(n + 1)/2. For an input x, DCMD(x) is
computed as follows: we partition x into blocks of length n2, let yi (1 ≤ i ≤ n(n + 1)/2) be
the parity of the i-th block, and define DCMD(x) := CMD(y1 ◦ y2 ◦ · · · ◦ yn(n+1)/2).

The precise definitions of CMD and DCMD are not important here, as we only need the
following two important results about them.

▶ Theorem 6 ([4, 20]). There is a function P : {0, 1}n(n+1)/2 ×{0, 1}O(n4) → {0, 1}n3(n+1)/2

such that the following hold.
For any input x ∈ {0, 1}n(n+1)/2, the random variable P (x, UO(n4)) is uniformly distributed
in {0, 1}n3(n+1)/2.
For any x ∈ {0, 1}n(n+1)/2 and r ∈ {0, 1}O(n4), let P (x, r) = y, then CMD(x) =
DCMD(y) ⊕ r0, where r0 is the first bit of r.
For each fixed randomness r, P (x, r) is a projection over x, computable in polynomial
time given r.
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▶ Theorem 7 ([31]). CMD is ⊕L-complete under projections.

Observe that if CMD is in a circuit class C closed under projections then all problems
in (non-uniform) NC1 are also in C, given that the problem of evaluating an input Boolean
formula is solvable with logarithmic space.

We refer the reader to the full version of [14] for a self-contained exposition of these
problems and their relevant properties, including pointers to related work.

2.3 Pseudorandomness
We need the following Hardness vs. Randomness framework for constructing PRGs.

▶ Lemma 8 (Hardness vs. Randomness [39], see also [14, Appendix E.3] for the proof). There is
a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that the following holds. Let n, ℓ, a be integers
such that a ≤ ℓ, and t = O

(
ℓ2 · n1/a/a

)
. Let C be a circuit class closed under negation.

For any function Y : {0, 1}ℓ → {0, 1} represented as a length-2ℓ truth table, if Y cannot be
(1/2 + ε/n)-approximated by C ◦ JUNTAa-circuits where the top circuit has size S, then for
every circuit C ∈ C of size S,∣∣∣∣ Pr

z∼{0,1}t
[C(G(Y, z)) = 1] − Pr

x∼{0,1}n
[C(x) = 1]

∣∣∣∣ ≤ ε.

Moreover, the function G is computable in poly(n, 2t) time.

The following simple fact says PRGs imply worst-case hardness.

▶ Proposition 9 (Worst-case hardness from PRGs). Let F be a class of functions. If there is
an i.o. ε-PRG G : {0, 1}r → {0, 1}n with seed length r(n) against Fn, where ε < 1 − 2r(n)−n,
then there is a language L ∈ E such that L cannot be computed by F .

Proof. Please see the full version [11] for details. ◀

2.4 Hardness amplification
The following result allows us to amplify hardness against NC1.

▶ Lemma 10 (Hardness amplification against NC1, see e.g. [43, 20]). Suppose there is a
language L ∈ E such that L /∈ NC1. Then there is a language L′ ∈ E such that for every
constant k ≥ 1, L′ cannot be (1/2 + 1/nk)-approximated by formulas of size nk.

The following notion of ℓ1-approximation by SUM-circuits plays a crucial role in some
recent results on average-case lower bounds via the algorithmic method (e.g. [13, 12, 27]).

▶ Definition 11 (ℓ1-approximation by SUM-circuits). Let δ ∈ (0, 1) and let C be a circuit class.
We say that a function f : {0, 1}n → {0, 1} is approximated by a [0, 1]-SUM ◦ C-circuit C

within ℓ1 distance δ if

E
x∼Un

[ |f(x) − C(x)| ] ≤ δ.

For functions f, g : {0, 1}n → R, we let ⟨f, g⟩ := Ex∈{0,1}n [f(x) · g(x)].

▶ Proposition 12. Let δ ∈ (0, 1), f : {0, 1}n → {0, 1}, and C be a circuit class.
1. If f can be approximated by [0, 1]-SUM ◦ C-circuits of complexity s within ℓ1 distance

δ, then there is a SUM ◦ C±-circuit C of complexity O(s) such that ∥C∥∞ ≤ 1 and
⟨f±, C⟩ ≥ 1 − 2δ.
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2. If there is a SUM ◦ C±-circuit C of complexity s such that ∥C∥∞ ≤ 1 and ⟨f±, C⟩ ≥
1 − 2δ, then f can be approximated by [0, 1]-SUM ◦ C-circuits of complexity O(s) within ℓ1
distance δ.

Proof. Please see the full version [11] for details. ◀

Given a set X and a Boolean function f : X → {−1, 1}, for and integer t ≥ 1 and
Xt = X × . . . × X (t times) we let f⊕t : Xt → {−1, 1} be the Boolean function defined as
f⊕t(x1, . . . , xt) :=

∏
i∈[t] f(xi). We will need the following XOR lemma from [13].

▶ Theorem 13 ([35] and [13, Lemma 3.8], see also [12, Lemma 1.7]). Let F be a class of
Boolean functions that is closed under negation and restriction. For every δ, ε ∈ (0, 1) and
every function f : {0, 1}n → {−1, 1}, if

⟨f, C⟩ ≤ 1 − δ

for every SUM ◦ F-circuit C where the top SUM has complexity 10 · n/ε2 and ∥C∥∞ ≤ 1,
then

⟨f⊕t, D⟩ ≤ (1 − δ)t + ε/δ

for any Boolean function D : {0, 1}tn → {−1, 1} in F .

3 Equivalences for worst-case and strong average-case lower bounds

In this section, we prove our equivalence results for worst-case hardness, strong average-case
hardness and pseudorandomness.
▶ Reminder of Theorem 1. Let C be a circuit class that satisfies the following:

C is closed under negation and projection.
C is closed under a bottom layer of juntas over O(1) input bits. That is⋃

k≥1
C[nk] ◦ JUNTAk ⊆

⋃
k≥1

C[nk].

⋃
k≥1 C[nk] ⊆ NC1.

Then the following statements are equivalent:
1. There is L ∈ E such that for every k ≥ 1, L /∈ S̃UM1/3 ◦ C[nk].
2. There is L ∈ E and δ ≥ 1/poly(n) such that for every k ≥ 1, L /∈ S̃UMδ ◦ C[nk].
3. There is L ∈ E such that for every k ≥ 1, L /∈ MAJ ◦ C[nk].
4. There is L ∈ E such that, for every k ≥ 1, L cannot be computed by a probabilistic

C[nk]-circuit with error 1/2 − 1/nk.
5. There is L ∈ E and a distribution D such that for every k ≥ 1, L cannot be (1/2 + n−k)-

approximated by C[nk] under D.
6. There is L ∈ E such that for every k ≥ 1, L cannot be (1/2 + n−k)-approximated by C[nk]

under the uniform distribution.
7. There is L ∈ E such that for every k ≥ 1, L cannot be approximated by [0, 1]-SUM ◦ C[nk]

within ℓ1 distance 1/3.
8. There is L ∈ E and δ ≥ 1/ poly(n) such that for every k ≥ 1, L cannot be approximated

by [0, 1]-SUM ◦ C[nk] within ℓ1 distance δ.
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9. There is an i.o. ε-PRG G against C with seed length n − 1 and error ε(n) ≤ n−ω(1).
In other words, for each choice of k, there is an infinite set Sk ⊆ N such that G fools
circuits from C[nk] on inputs of length n ∈ Sk with error ε(n) ≤ n−k.

10. For every γ > 0, there is an i.o. ε-PRG against C with seed length nγ and ε(n) ≤ n−ω(1).

Proof. We will first show Item 2 ⇒ Item 6 ⇒ Item 10 ⇒ Item 1 ⇒ Item 2, establishing the
equivalence of Items 1, 2, 6, and 10. We then show Item 6 ⇒ Item 5 ⇒ Item 4 ⇒ Item 1,
which adds Items 4 and 5 to the list of equivalent items. Next, we show Item 6 ⇒ Item 3 ⇒
Item 4, which adds Item 3, and Item 10 ⇒ Item 9 ⇒ Item 2, which adds Item 9. Finally, we
show Item 6 ⇒ Item 7 ⇒ Item 8 ⇒ Item 6, adding Items 7 and 8 to the list and completing
the proof.

Item 2 ⇒ Item 6. We consider two cases. If DCMD cannot be
(
1/2 + 1/nk

)
-approximated

by C[nk] for every k ≥ 1 under the uniform distribution, then we are done.
Now consider the case that there is some k ≥ 1 such that DCMD can be

(
1/2 + 1/nk

)
-

approximated by C[nk]. By the random self-reducibility of DCMD/CMD (see Theorem 6 and
also [14, Section 3]), for any δ = 1/ poly(n), CMD can be computed by a S̃UMδ ◦ C-circuit
where the top SUM-gate has polynomial complexity and the bottom-layer C-circuits have
polynomial size. By Theorem 7, for every polynomial-size parity branching program B, there
is a projection p : {0, 1}n → {0, 1}nO(1)

such that for every x ∈ {0, 1}n, B(x) = CMD(p(x)).
Since C is closed under projection, this means that every polynomial-size parity branching
program has a S̃UMδ ◦ C-circuit of polynomial complexity and size, which then implies that
every function in NC1 also has such a S̃UMδ ◦ C-circuit. On the other hand, by Item 2, there
is a function L ∈ E that has no S̃UMδ ◦ C-circuit of polynomial complexity and size, so L is
not in NC1. Using hardness amplification against NC1 (Lemma 10), it follows that there is a
function in E that is strongly average-case hard against NC1, which by assumption contains
polynomial-size C-circuits.

Item 6 ⇒ Item 10. We construct the PRG using the hardness vs. randomness framework.
Consider Lemma 8 with the following setting of parameters: a := 2/γ and ℓ := nγ/4. Let
GLℓ

: {0, 1}t → {0, 1}n be the PRG defined as GLℓ
(z) := G(Lℓ, z), where L ∈ E is the

language from Item 6. Note that the seed length t is at most O
(
ℓ2 · n1/a/a

)
≤ nγ and GLℓ

can be computed in time poly(n, 2t) = 2O(nγ ). Let k ≥ 1 be any constant and consider any
ℓ-variate C ◦ JUNTAa-circuit C where the top circuit has size nk = ℓ4k/γ . Since C is closed
under a bottom layer of juntas, we have that C ∈ C

[
ℓk′

]
for some large enough k′ > 4k/γ.

Also, let ε = 1/nk, which implies ε/n = 1/nk+1 = 1/ℓ4(k+1)/γ ≥ 1/ℓk′ . From Item 6, we
have that Lℓ cannot be

(
1/2 + 1/ℓk′

)
-approximated by any circuit from C[ℓk′ ], for infinitely

many values of ℓ. Then by Lemma 8, we conclude that GLℓ

(
1/nk

)
-fools any circuit from

C[nk], for infinitely many values of n.

Item 10 ⇒ Item 1. Let G : {0, 1}r → {0, 1}n be an i.o. PRG as in Item 10, where
r ≤ n − 2. That is, for each choice of k′, G fools circuits from C[nk′ ] on input length n with
error ε(n) ≤ n−k′ , for infinitely many values of n.

Let k ≥ 1 and let C ∈ S̃UM1/3 ◦ C[nk]. By Proposition 9, it suffices to show that G is an
i.o.

(
< 3

4
)
-PRG against C. Let C̃ be the corresponding linear sum for C. That is,

C̃(x) :=
∑

i

αi · Ci(x),
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where Ci ∈ C[nk] ⊆ C[nk′:=k+1] and
∑

i |αi| ≤ nk. Since C̃ (1/3)-approximates C in a
pointwise manner, we have∣∣E[C(U)] − E[C̃(U)]

∣∣ ≤ 1/3 and
∣∣E[C(G)] − E[C̃(G)]

∣∣ ≤ 1/3.

Therefore, if we can show that∣∣E[C̃(U)] − E[C̃(G)]
∣∣ ≤ δ,

for some δ < 1/12 (infinitely often), then G δ′-fools C (infinitely often), where δ′ = 2/3 + δ <

3/4. We have

∣∣E[C̃(U)] − E[C̃(G)]
∣∣ =

∣∣∣∣∣E
[∑

i

αi · Ci(U)
]

− E
[∑

i

αi · Ci(G)
]∣∣∣∣∣

=

∣∣∣∣∣∑
i

αi · E[Ci(U)] − E[Ci(G)]

∣∣∣∣∣
≤ max

i
|E[Ci(U)] − E[Ci(G)]| ·

∑
i

|αi|

≤ n−k′
· nk ≤ 1/n,

as desired.

Item 1 ⇒ Item 2. This implication is straightforward.

Item 6 ⇒ Item 5 ⇒ Item 4. The first implication is obvious. The contrapositive of the
second implication follows from an averaging argument.

Item 4 ⇒ Item 1. It suffices to show that for every k ≥ 1, every function in S̃UM1/3 ◦ C[nk]
has a probabilistic C[nk]-circuit with error 1/2 − 1/nO(k).

For the simplicity of presentation, we will consider Boolean functions that take inputs
from {0, 1}n and output values in {−1, 1}. Let f± : {0, 1}n → {−1, 1} ∈ S̃UM1/3 ◦ C±[nk].
Then there is a linear sum of C±[nk]-circuits

f1(x) :=
∑

i

αi ·
(

1 − Ci(x)
2

)
,

where Ci : {0, 1}n → {−1, 1} ∈ C±[nk] and
∑

i |αi| ≤ nk, such that
if f±(x) = 1, then f1(x) ≤ 1/3, and
if f±(x) = −1, then f1(x) ≥ 2/3.

Next, let

f2(x) := 1/2 − f1(x).

It is easy to see that
if f±(x) = 1, then f2(x) ≥ 1/6, and
if f±(x) = −1, then f2(x) ≤ −1/6.

Now note that since C± is closed under negation, f2 can be written as

f2(x) :=
∑

j

βj · Dj(x),
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where for each j, Dj : {0, 1}n → {−1, 1} ∈ C±[nk], βj ≥ 0, and T :=
∑

j βj ≤ nO(k). Finally,
let

f3(x) := f2(x)
T

.

Let D be the probabilistic C±[nk]-circuit where Dj is sampled with probability βj/T . Then
for every x we have ED[D(x)] = f3(x). Moreover, if f±(x) = 1, then

1
6T

≤ E
D

[D(x)]

= Pr
D

[D(x) = 1] − Pr
D

[D(x) = −1]

= Pr
D

[D(x) = 1] − (1 − Pr
D

[D(x) = 1])

= 2 · Pr
D

[D(x) = 1] − 1,

which implies

Pr
D

[D(x) = 1] ≥ 1
2 + 1

12T
.

Similarly, we can show that if f±(x) = −1, then

Pr
D

[D(x) = −1] ≥ 1
2 + 1

12T
.

Therefore, D is a probabilistic C±[nk]-circuit for f± with error 1/2 − 1/nO(k).

Item 6 ⇒ Item 3. This follows from the standard Discriminator Lemma [24].

Item 3 ⇒ Item 4. We will show that for every k ≥ 1, every function that has a probabilistic
C[nk]-circuit with error 1/2 − 1/nk is contained in MAJnO(k) ◦ C[nO(k)].

Let f : {0, 1}n → {0, 1} and D be the probabilistic C[nk]-circuit for f with error 1/2−1/nk.
That is, for every x,

Pr
D

[D(x) = f(x)] ≥ 1/2 + 1/nk.

By the Chernoff bound, if we sample t := O(n2k · n) circuits C1, . . . , Ct from D, then

Pr
C1,...,Ct∼D

[
Pr
i∈[t]

[Ci(x) = f(x)] ≥ 1/2 + 1/(2nk)
]

≥ 1 − 2−2n.

By a union bound over x ∈ {0, 1}n, there exist t circuits C1, . . . , Ct such that for every x,

Pr
i∈[t]

[Ci(x) = f(x)] ≥ 1/2 + 1/(2nk).

Therefore, by taking the majority of these t circuits, we obtain a MAJnO(k) ◦ C[nO(k)]-circuit
that computes f .

Item 10 ⇒ Item 9 ⇒ Item 2. This first implication is obvious. The proof of the second
implication is essentially the same as that of “Item 10 ⇒ Item 1”. From Item 9, we get an
i.o. PRG with seed length n − 1 that

(
< 1

2
)
-fools S̃UMδ ◦ C-circuits for some δ = 1/ poly(n),

which by Proposition 9 implies Item 2. We omit the details here.
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Item 6 ⇒ Item 7. Let L : {0, 1}∗ → {0, 1} be the language from Item 6. For the sake of
contradiction, suppose there is a k ≥ 1 such that L can be approximated by [0, 1]-SUM◦C[nk]-
circuits within ℓ1 distance 1/3. Then by Item 1 of Proposition 12, we have that for every n,
there is a SUM ◦ C±[O

(
nk

)
]-circuit C such that ∥C∥∞ ≤ 1 and

⟨(L±)n, C⟩ ≥ 1/3.

Suppose

C(x) :=
∑

i

|αi| · Ci(x),

where Ci ∈ C±[O
(
nk

)
] and

∑
i |αi| ≤ O

(
nk

)
. Then

1/3 ≤

〈
(L±)n,

∑
i

αi · Ci

〉
=

∑
i

αi · ⟨(L±)n, Ci⟩

≤
∑

i

|αi| · ⟨(L±)n, Ci⟩

≤ max
i

⟨(L±)n, Ci⟩ ·
∑

i

|αi|

≤ max
i

⟨(L±)n, Ci⟩ · O
(
nk

)
,

which implies that there exists some i such that

⟨(L±)n, Ci⟩ ≥ 1
O(nk) .

This contradicts Item 6.

Item 7 ⇒ Item 8. This implication is obvious.

Item 8 ⇒ Item 6. By Item 2 of Proposition 12, we have that Item 8 implies that there
is a language L : {0, 1}∗ → {−1, 1} in E and δ = 1/ℓb, where b ≥ 1 is a constant, such that
for every k′ ≥ 1, on infinitely many input lengths there is no SUM ◦ C±[ℓk′ ]-circuit C with
∥C∥∞ ≤ 1 such that

⟨Lℓ, C⟩ ≤ 1 − 2δ. (1)

Now consider the following language L′ : {0, 1}∗ → {−1, 1}: on input x of length n, let ℓ

be the largest integer such that ℓ · ℓb log2(ℓ) ≤ n and view the input as x = (x1, . . . , xt, y),
where t := ℓb log2(ℓ) and xi ∈ {0, 1}ℓ for i ∈ [t]. Then let

L′(x) :=
∏
i∈[t]

L(xi).

Note that for large enough n we have

n < 2ℓ · t < ℓb+2.
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We claim that L′ is strongly average-case hard against C±-circuits. For the sake of contra-
diction, suppose there is k ≥ 1 and an n-variate circuit C ′ ∈ C±[nk] such that, for all large
enough n,

⟨L′
n, C ′⟩ >

1
nk

.

By an averaging argument, where we fix the y-part of the input to some value, there exists
some (ℓ · t)-variate C±-circuit C ′ of size nk ≤ ℓk(b+2) such that〈

L⊕t
ℓ , C ′′〉 >

1
nk

.

Note that for δ = 1/ℓb and our choice of t = ℓb log2(ℓ), we have

1
nk

> (1 − 2δ)t + 1
2δ · ℓk(b+2) · ℓb

.

By Theorem 13, there is a SUM ◦ C± C where ∥C∥∞ ≤ 1, the top SUM has complexity
10 · ℓ ·

(
ℓk(b+2) · ℓb

)2 ≤ ℓO(kb) and the bottom layer C±-circuits have size ℓk(b+2) such that

⟨Lℓ, C⟩ > 1 − 2δ,

for all large enough ℓ. This contradicts Equation (1). ◀
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Abstract

For a directed graph G with n vertices and a start vertex ustart, we wish to (approximately) sample
an L-step random walk over G starting from ustart with minimum space using an algorithm that only
makes few passes over the edges of the graph. This problem found many applications, for instance,
in approximating the PageRank of a webpage. If only a single pass is allowed, the space complexity
of this problem was shown to be Θ̃(n · L). Prior to our work, a better space complexity was only
known with Õ(

√
L) passes.

We essentially settle the space complexity of this random walk simulation problem for two-pass
streaming algorithms, showing that it is Θ̃(n ·

√
L), by giving almost matching upper and lower

bounds. Our lower bound argument extends to every constant number of passes p, and shows
that any p-pass algorithm for this problem uses Ω̃(n · L1/p) space. In addition, we show a similar
Θ̃(n ·

√
L) bound on the space complexity of any algorithm (with any number of passes) for the

related problem of sampling an L-step random walk from every vertex in the graph.
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1 Introduction

1.1 Background and Motivation
Graph streaming algorithms. Graph streaming algorithms have been the focus of extensive
study over the last two decades, mainly due to the important practical motivation in analyzing
potentially huge structured data representing the relationships between a set of entities (e.g.,
the link graph between webpages and the friendship graph in a social network). In the graph
streaming setting, an algorithm gets access to a sequence of graph edges given in an arbitrary
order and it can read them one-by-one in the order in which they appear in the sequence.
The goal here is to design algorithms solving important graph problems that only make one
or few passes through the edge sequence, while using as little memory as possible.

Much of the streaming literature was devoted to the study of one-pass algorithms and
an Ω(n2) space lower bound for such algorithms was shown for many fundamental graph
problems. A partial list includes: maximum matching and minimum vertex cover [15, 19], s-t
reachability and topological sorting [7, 15, 22], shortest path and diameter [15, 16], maximum
and (global or s-t) minimum cut [39], maximal independent set [3, 13], and dominating
set [4, 14].

Recently, the multi-pass streaming setting received quite a bit of attention. For some
graph problems, allowing a few passes instead of a single pass can reduce the memory
consumption of a streaming algorithm dramatically. In fact, even a single additional pass
over the input can already greatly enhance the capability of the algorithms. For instance,
minimum cut and s-t minimum cut in undirected graphs can be solved in two passes with
only Õ(n) and O(n5/3) space, respectively [33] (as mentioned above, any one-pass algorithm
for these problems must use Ω(n2) space). Additional multi-pass algorithms include an O(1)-
pass algorithm for approximate matching [17, 19, 28, 29], an O(log log n)-pass algorithm
for maximal independent set [3, 13, 18], and O(log n)-pass algorithms for approximate
dominating set [4, 8, 21] and weighted minimum cut [30].

Simulating random walks on graphs. Simulating random walks on graphs is a well-studied
algorithmic problem with may applications in different areas of computer science, such as
connectivity testing [32], clustering [1, 2, 10, 36], sampling [26], generating random spanning
tree [35], and approximate counting [25]. Since most applications of random-walk simulation
are concerned with huge networks that come from practice, it is of practical interest to design
low-space graph streaming algorithms with few passes for this problem.

In an influential paper by Das Sarma, Gollapudi and Panigrahy [34], an Õ(
√

L)-pass and
Õ(n) space algorithm for simulating L-step random walks on directed graphs was established.
(Streaming algorithms with almost linear space complexity, like this one, are often referred
to as semi-streaming algorithms). Using this algorithm together with some additional ideas,
[34] obtained space-efficient algorithms for estimating PageRank on graph streams. Recall
that the PageRank of a webpage corresponds to the probability that a person that randomly
clicks on web links arrives at this particular page1. However, scanning the sequence of edges
Õ(
√

L) times may be time-inefficient in many realistic settings.
In the one-pass streaming setting, a folklore algorithm with Õ(n · L) space complexity

for simulating L-step random walks is known [34] (see Subsection 2.1 for a description of
this algorithm), and it is proved to be optimal [27]. We mention that the work of [27]

1 Given a web-graph G = (V, E) representing the webpages and links between them, the PageRank of
the vertices satisfy PageRank(u) =

∑
(v,u)∈E

PageRank(v)/d(v), simultaneously for all u, where d(·)
denotes the out-degree, [6].
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also considers random walks on undirected graphs, and shows that Θ̃(n ·
√

L) space is both
necessary and sufficient for simulating L-step random walks on undirected graphs with n

vertices in one pass.
Both of these known algorithms for general directed graphs have their advantages and

disadvantage (either requiring many passes or more space). A natural question is whether
one can interpolate between these two results and obtain an algorithm with pass complexity
much smaller than

√
L, yet with a space complexity much smaller than n · L. Prior to our

work, it was not even known if an o(
√

L)-pass streaming algorithm with n · L0.99 space is
possible.

1.2 Our Results
We answer the above question in the affirmative by giving a two-pass streaming algorithm
with Õ(n ·

√
L) space for sampling a random walk of length L on a directed graph with

n vertices. We complement this result by an almost matching Ω̃(n ·
√

L) lower bound on
the space complexity of every two-pass streaming algorithm for this problem. In fact, our
two-pass lower bound generalizes to an Ω̃(n ·L1/p) lower bound on the space consumption of
any p-pass algorithm, for a constant p.

1.2.1 Two-Pass Algorithm for Random Walk Sampling
For a directed graph G = (V, E), a vertex ustart ∈ V and a non-negative integer L, we use
RWG

L (ustart) to denote the distribution of L-step random walks (v0, . . . , vL) in G starting
from v0 = ustart (see Subsection 3.2 for formal definitions). For a distribution D over a
finite domain Ω, we say that a randomized algorithm samples from D if, over its internal
randomness, it outputs an element ω ∈ Ω distributed according to D. We give a space-efficient
streaming algorithm for (approximate) sampling from RWG

L (ustart) with small error:

▶ Theorem 1 (Two-pass algorithm). There exists a streaming algorithm Atwo-pass that given
an n-vertex directed graph G = (V, E), a starting vertex ustart ∈ V , a non-negative integer L

indicating the number of steps to be taken, and an error parameter δ ∈ (0, 1/n), satisfies the
following conditions:
1. Atwo-pass uses at most Õ(n ·

√
L · log δ−1) space2 and makes two passes over the input

graph G.
2. Atwo-pass samples from some distribution D over V L+1 satisfying ∥D−RWG

L (ustart)∥TV ≤ δ.

Our algorithm can also be generalized to the turnstile model, paying a poly log n factor
in the space usage. See Subsection 4.4.

Observe that our algorithm Atwo-pass allows for a considerable saving in space compared
to the folklore single-pass algorithm (Õ(n ·

√
L) vs Õ(n · L)) and considerable saving in the

number of passes compared to [34] (2 vs Õ(
√

L)), at least if we allow some small error δ.
We mention that Atwo-pass can also be used to sample a random path from every vertex3

of G with the same storage cost of Õ(n ·
√

L · log δ−1) and two passes4. This is because
Atwo-pass satisfies the useful property of obliviousness to the starting vertex ustart, meaning

2 The Õ hides logarithmic factors in n. We may assume without loss of generality that L ≤ n2, as
otherwise n ·

√
L > n2 and that algorithm can store the entire input graph.

3 Note, however, that the random walks from different vertices in the graph may be correlated.
4 We count towards the space complexity only the space on the work tape used by the algorithm and do

not count space on the output tape (otherwise an Ω(n · L) lower bound is trivial).
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that it scans the input graph before the start vertex is revealed. More formally, we say that
an algorithm A is oblivious to the starting vertex if it first runs a preprocessing algorithm
P and then a sampling algorithm S; the algorithm P reads the input graph stream without
knowing the starting vertex ustart (if A is a p-pass streaming algorithm, P makes p passes
over the input graph stream), and outputs a string; S takes both the string outputted by P
and a starting vertex ustart as an input, and outputs a walk on the input graph G.

1.2.2 Lower Bounds
We prove the following lower bound:

▶ Theorem 2 (Multi-pass lower bound). Fix a constant β ∈ (0, 1] and an integer p ≥ 1. Let
n ≥ 1 be a sufficiently large integer and let L = ⌈nβ⌉. Any randomized p-pass streaming
algorithm that, given an n-vertex directed graph G = (V, E) and a starting vertex ustart ∈ V ,
samples from a distribution D such that ∥D−RWG

L (ustart)∥TV ≤ 1− 1
log10 n

requires Ω̃(n ·L1/p)
space.

We remark that the theorem above shows that no low-space algorithms can achieve
sampling error 1− 1/poly log(n), which is quite strong as usual applications of simulating
random walks would require at least a small constant sampling error. Plugging in p = 2
in Theorem 2, implies that our two-pass algorithm from Theorem 1 is essentially optimal.
Also, with p = 1, the theorem reproduces the one-pass lower bound by [27]. In addition,
Theorem 2 rules out the possibility of a semi-streaming algorithm with any constant number
of passes.

Recall from Subsubsection 1.2.1, that our two-pass algorithm Atwo-pass utilizes Õ(n ·
√

L)
space and is oblivious to the starting vertex. Interestingly, we are able to show that any
oblivious algorithm for random walk sampling (with any number of passes) requires Ω̃(n ·

√
L)

space. Thus, any algorithm for random walk sampling with significantly less space than ours,
has to be inherently different and have its storage depend on the starting vertex. Our lower
bound for oblivious algorithms also implies that Atwo-pass gives an almost optimal algorithm
for sampling a pass from every start vertex, even if any number of passes are allowed.

▶ Theorem 3 (Lower bound for oblivious algorithms). Let n ≥ 1 be a sufficiently large integer
and let L denote an integer satisfying that L ∈ [log40 n, n]. Any randomized algorithm that is
oblivious to the start vertex and given an n-vertex directed graph G = (V, E) and a starting
vertex ustart ∈ V , samples from a distribution D such that ∥D − RWG

L (ustart)∥TV ≤ 1− 1
log10 n

requires Ω̃(n ·
√

L) space5.

1.3 Discussions and Open Problems
Better space complexity with more passes? Our results leave open a couple of interesting
directions for future work. The most significant open question is to understand the streaming
space complexity of sampling random walks with more than two passes. In particular,
Theorem 2 implies that a three-pass streaming algorithm has space complexity at least
Ω̃(n · L1/3). Can one get Õ(n · L1/3) space with three passes, or at least O(n · L1/2−ε) space,
for some constant ε > 0? Note that, as explained in Subsubsection 1.2.2, such an algorithm
must utilize its knowledge of the starting vertex when it reads the graph stream.

5 In fact, we show that Theorem 3 holds even if the preprocessing algorithm P and the sampling algorithm
S are allowed to use an arbitrarily large amount of memory, as long as P passes a string of length at
most (roughly) n ·

√
L to S.
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Theorem 2 does not rule out semi-streaming Õ(n) space algorithms even when p is a
moderately growing function of n and L. In [34], it is shown that such an Õ(n) space algorithm
exists with p = Õ(

√
L) passes. Does a semi-streaming algorithm with, say, poly log(L) passes

exist?

Undirected graphs? It would also be interesting to see what is the best two-pass streaming
algorithm for simulating random walks on undirected graphs. Specifically, is it possible to
combine our algorithm with the algorithm from [27] to obtain an improvement over the
optimal Õ(n ·

√
L) space complexity of a one-pass streaming algorithm for this problem?

Only outputting the end vertex? Finally, our lower bounds only apply to the case where
the algorithms need to output an entire random path (v0, . . . , vL). If instead only the last
vertex vL in the random walk is required, can one design better two-pass algorithms or prove
a non-trivial lower bound?

2 Techniques

2.1 The Two-Pass Algorithm
We next overview our two-pass algorithm from Theorem 1, that simulates random walks
with only Õ(n ·

√
L) space.

The folklore one-pass algorithm. Before discussing our algorithm, it would be instructive
to review the folklore Õ(n ·L)-space one-pass algorithm for simulating L-step random walks in
a directed graph G = (V, E) (for simplicity, we will always assume L ≤ n in the discussions).
The algorithm is quite simple:

1. For every vertex v ∈ V , sample L of its outgoing neighbors with replacement and store
them in a list Lsave

v of length L (that is, for each j ∈ [L], the j-th element of Lsave
v is an

independent uniformly random outgoing vertex of v). This can be done in a single pass
over input graph stream using reservoir sampling [37].

2. Given a starting vertex ustart ∈ V , our random walk starts from ustart and repeats the
following for L steps: suppose we are currently at vertex v and it is the k-th time we visit
this vertex, then we go from v to the k-th vertex in the list Lsave

v .

It is not hard to see that the above algorithm works: whenever we visit a vertex v ∈ V ,
the next element in the list Lsave

v will always be a uniformly random outgoing neighbor of v,
conditioned on the walk we have produced so far; and we will never run out of the available
neighbors of v as |Lsave

v | = L.

A naive attempt and the obstacles. Since we are aiming at only using Õ(n ·
√

L) space,
a naive attempt to improve the above algorithm is to just sample and store τ = O(

√
L)

outgoing neighbors instead of L neighbors, and simulate the walk starting from ustart in the
same way. The issue here is that, during the simulation of an L-step walk, whenever one
visits a vertex v more than τ times, one would run out of available vertices in the list Lsave

v ,
and the algorithm can no longer produce a legit random walk. For a simple example, imagine
we have a star-like graph where n− 1 vertices are connected to a center vertex via two-way
edges. An L-step random walk starting at the center would require at least Ω(L) samples
from the center’s neighbors, and our naive algorithm completely breaks.
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Our approach: heavy and light vertices. Observe, however, that in the above example of
a star-like graph, we are only at risk of not storing enough random neighbors of the center
node, as an L-step random walk would only visit the other non-center vertices a very small
number of times. Thus, the algorithm may simply record all edges from the center with only
O(n) space. This observation inspires the following approach for a two-pass algorithm:
1. In the first pass, we identify all the vertices that are likely to be visited many times by a

random walk (starting from some vertex). We call such vertices heavy, while all other
vertices are called light.

2. In the second pass, we record all outgoing neighbors of all heavy vertices, as well as O(τ)
random outgoing neighbors with replacement of each of the light vertices.

Observe that the obtained algorithm is indeed oblivious to the starting vertex: the two
passes described above do not use the starting vertex. Still, given the set of outgoing
neighbors stored by the second pass, we are able to sample a random walk from any start
vertex.

First pass: how do we detect heavy vertices? The above approach requires that we detect,
in a single pass, all vertices v that with a decent probability (say, 1/poly(n)), are visited
more than O(τ) times by an L-step random walk. To this end, we observe that if a random
walk visits a vertex v more than τ times, this random walk must follow more than τ − 1
self-circles around v in L steps. This, in turn, implies that a random walk that starts from v

is likely to return to v in roughly L/τ = O(
√

L) steps.
The above discussion suggests the following definition of heavy vertices: a vertex v

is heavy, if a random walk starting from v is likely (say, with probability at least 1/3)
to revisit v in O(

√
L) steps. Indeed, this property is much easier to detect: we can run

O(log n) independent copies of the folklore one-pass streaming algorithms to sample O(log n)
O(
√

L)-step random walks starting from v, and count how many of them return to v at some
step.

Second pass: can we afford to store the neighbors? In Lemma 18, we show that for a
light vertex v, an L-step random walk starting at any vertex visits v O(

√
L) times with

high probability. Therefore, in the second pass, we can safely record only O(
√

L) outgoing
neighbors for all light vertices. Still, we have to record all the outgoing neighbors for heavy
vertices.

The crux of our analysis is a structural result about directed graphs, showing that the
total outgoing degree of all heavy vertices is bounded by O(n ·

√
L), and therefore we can

simply store all of their outgoing neighbors. This is proved in Lemma 10, which may also be
of independent interest.

Intuition behind the structure lemma. Finally, we discuss the insights behind the above
structure lemma for directed graphs. We will use dout(v) to denote the number of outgoing
neighbors of v. For concreteness, we now say a vertex v is heavy if a random walk starting
from v revisits v in

√
L steps with probability at least 1/3.

Let Vheavy ⊆ V be the set of heavy vertices and let v ∈ Vheavy. By a simple calculation,
one can see that for at least a 1/6 fraction of outgoing neighbors u of v, a random walk
starting from u visits v in

√
L steps with probability at least 1/6. The key insight is to

consider the number of pairs (u, v) ∈ V 2 such that a random walk starting from u visits v in√
L steps with probability at least 1/6. We will use S to denote this set.
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By the previous discussions, we can see that for each heavy vertex v, it adds at least 1/6
dout(v) pairs to the set S. Hence, we have

|S| ≥ 1
6 ·

∑
v∈Vheavy

dout(v). (1)

On the other hand, it is not hard to see that for each vertex v, there are at most O(
√

L)
many pairs of the form (v, u) ∈ S, since a

√
L-step walk can visit only

√
L vertices. So

we also have

|S| ≤ O(n
√

L). (2)

Putting the above (Equation 1 and Equation 2) together, we get the desired bound∑
v∈Vheavy

dout(v) ≤ O(n
√

L).

2.2 Lower Bound for p-Pass Algorithms
We now describe the ideas behind the proof of Theorem 2, our Ω̃(n ·L1/p) space lower bound
for p-pass randomized streaming algorithms for sampling random walks. We mention that
many of the tools developed for proving space lower bounds are not directly applicable when
one wishes to lower bound the space complexity of a sampling task and are more suitable for
proving lower bounds on the space required to compute a function or a search problem6.

From sampling to function computation. Our way around this is to first prove a reduction
from streaming algorithms that sample a random walk from ustart to streaming algorithms
that compute the (p + 1)-neighborhood of the vertex ustart. This is done by considering a
graph where a random walk returns to the vertex ustart every p + 2 steps. If p is a constant,
then a random walk of length L on such a graph can be seen as L/(p + 2) = O(L) copies of
a random walk of length p + 2. Observe that if the (p + 1)-neighborhood of the vertex ustart
has (almost) L vertices (and the probability of visiting each vertex is more or less uniform),
then a random walk of length L is likely to visit all the vertices in the neighborhood and
an algorithm that samples a random walk also outputs the entire neighborhood with high
probability.

A lower bound for computing the (p + 1)-neighborhood via pointer-chasing. Having
reduced sampling a random walk to outputting the (p+1)-neighborhood, we now need to prove
that a space efficient p-pass streaming algorithms cannot output the (p + 1)-neighborhood of
ustart, if this neighborhood has roughly L vertices. This is reminiscent of the “pointer-chasing”
lower bounds found in the literature.

Pointer-chasing results are typically concerned with a graph with p + 1 layers of vertices
(p layers of edges) and show that given a vertex in the first layer, finding a vertex that
is reachable from it in the last layer cannot be done with less than p passes, unless the
memory is huge. Classical pointer-chasing lower bounds (e.g., [31]), consider graphs where
the out-degree of each vertex is 1, thus the start vertex reaches a unique vertex in the last
layer. Unfortunately, this type of pointer-chasing instances are very sparse and a streaming
algorithm can simply remember the entire graph in one pass using Õ(n) memory.

6 One such tool that cannot be used directly for our purpose is the very useful Yao’s minimax principle [38]
that allows proving randomized communication lower bounds by proving the corresponding distributional
(deterministic) communication lower bounds.
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Figure 1 A depiction of our hard instance for p-pass streaming algorithms. Some edges omitted.

Since we wish to have roughly L vertices in a (p+1)-neighborhood of ustart, the out-degree
of each vertex should be roughly Ω(L

1
p+1 ) (assuming uniform degrees). Pointer-chasing lower

bounds for this type of dense graphs were also proved (e.g., [20] and [16]), showing that
p-pass algorithms essentially need to store an entire layer of edges, which is Ω(n · L

1
p+1 ) in

our case. However, this still does not give us the Ω(n · L
1
p ) lower bound we aspire for (and

which is tight, at least for two passes).

Towards a tight lower bound: combining dense and sparse. To get a better lower bound,
we construct a hard instance that is a combination of the two above mentioned types of
pointer-chasing instances, the dense and the sparse. Specifically, for a p-pass lower bound,
we construct a layered graph with p + 2 layers of vertices V1, . . . , Vp+2, where the first layer
has only one vertex ustart and all the other layers are of equal size (see Figure 1). To ensure
that vertex ustart is reached every p + 2 steps, we connect all vertices in the last layer to ustart.
Every vertex in layers V2, . . . , Vp+1 connects to a random set of roughly L

1
p vertices in the

next layer. Using Guruswami and Onak style arguments ([20]), it can be shown that when
the edges are presented to the algorithm from right to left, finding a vertex in layer Vp+2

that is reachable form a given vertex in V2 with a (p− 1)-pass algorithm requires Ω(n · L
1
p )

space. We “squeeze out” an extra pass in the algorithm by connecting the start vertex ustart
in V1 to a single random vertex in V2. Note that with this construction, it is indeed the
case that a (p + 1)-neighborhood of ustart consists of only roughly L vertices, but still, the
out-degrees of vertices in V2, . . . , Vd+1 are roughly L

1
p instead of only L

1
p+1 .

2.3 Lower bounds for Oblivious Algorithms
Finally, we discuss the intuitions behind the proof of Theorem 3, showing that any algorithm
that is oblivious to the starting vertex must use Ω̃(n ·

√
L) space space. Our proof is based

on a reduction from a multi-output generalization of the well-studied INDEX problem for
one-way communication protocols, denoted by INDEXm,ℓ. In INDEXm,ℓ, Alice gets ℓ strings
X1, . . . , Xℓ ∈ {0, 1}m and Bob gets an index i ∈ [ℓ]. Alice sends a message to Bob and then
Bob is required to output the string Xi. (Note that when m = 1 it becomes the original
INDEX problem).

It is not hard to show that any one-way communication protocol solving INDEXm,ℓ with
non-trivial probability (say, 1/poly log(m)) requires Alice to send at least Ω̃(mℓ) bits to Bob
(see the full version of this paper [11] for details).
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Our key observation here is that if there is a starting vertex oblivious algorithm A = (P, S)
with S space for approximate simulation of an L = Õ(m)-step random walk on a graph with
n = O(

√
m · ℓ) vertices, then it implies a one-way communication protocol for INDEXm,ℓ

with communication complexity S and a decent success probability. Recall the lower bound
for INDEXm,ℓ, we immediately have S = Ω̃(mℓ) = Ω̃(n

√
L).

In more detail, given an m-bit string X, we will build an O(
√

m)-vertex graph H(X) by
encoding all bits of X as existence/non-existence of edges in H (this is possible since there
are more than m potential edges in H). We also add some artificial edges to H to make sure
it is strongly connected. Our construction will make sure that an L = Õ(m) steps random
walk in H will reveal all edges in H with high probability, which in turn reveals all bits of X

(see the proof of Theorem 3 in the full version of this paper for more details).
Now the reduction can be implemented as follows: given ℓ strings X1, . . . , Xℓ ∈ {0, 1}m,

Alice constructs a graph G =
⊔ℓ

i=1 H(Xi), as the joint union of ℓ graphs. Note that G has
n = O(

√
m · ℓ) vertices. Alice then runs the preprocessing algorithm P on G to obtain a

string M , and sends it to Bob. Given an index i ∈ [ℓ], Bob simply runs S with M together
with a suitable starting vertex inside the H(Xi) component of G. By previous discussions,
this reveals the string Xi with high probability and proves the correctness of this reduction.
Hence, the space complexity of A must be Ω̃(mℓ) = Ω̃(n

√
L).

Organization of this paper
In Section 3 we introduce the necessary preliminaries for this paper. In Section 4 we present
our nearly optimal two-pass streaming algorithm for simulating random walks and prove
Theorem 1. See the full version of this paper [11] for the proof of Theorem 2 and Theorem 3.

3 Preliminaries

3.1 Notation
Let n ∈ N. We use [n] to denote the set {1, . . . , n}. We often use sans-serif letters (e.g., X)
to denote random variables, and calligraphic font letters (e.g., X ) to denote distributions.
For two random variables X and Y, and for Y ∈ supp(Y), we use (X|Y = Y ) to denote X
conditioned on Y = Y . For two lists a and b, we use a ◦ b to denote their concatenation.

For two distributions D1 and D2 on set X and Y respectively, we use D1 ⊗D2 to denote
their product distribution over X ×Y , and ∥D1−D2∥TV to denote the total variation distance
between them.

3.2 Graphs
In this paper we will always consider directed graphs without multi-edges. A directed G is a
pair (V, E), where V is the vertex set and E ⊆ V × V is the set of all edges.

For a vertex u in a graph G = (V, E), we let NG
out(u) := {v : (u, v) ∈ E} and NG

in (u) :=
{v : (v, u) ∈ E}. We also use dG

out(u) and dG
in(u) to denote its out and in degrees (i.e.,

|NG
out(u)| and |NG

in (u)|). For an edge (u, v) ∈ E, we say v is the out-neighbor of u and u is
the in-neighbor of v.

Random walks on directed graphs. For a vertex u in a graph G = (V, E) and an non-
negative integer L, an L-step random walk (v0, v1, . . . , vL) starting at u is generated as
follows: set v0 = u, for each i ∈ [L], we draw vi uniformly random from NG

out(u). We say
that v0 = u is the 0-th vertex on the walk, and vi is the i-th vertex for each i ∈ [L]. We use
RWG

L (u) to denote the distribution of an L-step random walk starting from u in G.
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We use visitG
[a,b](u, v) to denote the probability of a b-step random walk starting from u

visits v between the a-th vertex and b-th vertex on the walk.
We often omit the superscript G when the graph G is clear from the context.

Starting vertex oblivious algorithms. Now we formally define a starting vertex oblivious
streaming algorithm for simulating random walks.

▶ Definition 4. We say a p-pass S-space streaming algorithm A for simulating random walks
is starting vertex oblivious, if A can be decomposed into a preprocessing subroutine P and a
sampling subroutine S, such that:
1. (Starting vertex oblivious preprocessing phase) P makes p passes over the input

graph stream, using at most S words of space. After that, P outputs at most S words,
denoted as M .

2. (Sampling phase) S takes both the starting vertex ustart and M as input, and outputs a
desired walk starting from ustart, using at most S words of space.

3.3 Useful Concentration Bounds on Random Variables
The following standard concentration bounds will be useful for us.

▶ Lemma 5 (Multiplicative Chernoff bound, [12]). Suppose X1, · · · , Xn are independent
random variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the
sum’s expected value. Then,

Pr (X ≥ (1 + δ)µ) ≤ e− δ2µ
2+δ , ∀0 ≤ δ,

Pr (X ≤ (1− δ)µ) ≤ e− δ2µ
2 , ∀0 ≤ δ ≤ 1.

In particular, we have that:

Pr (X ≥ (1 + δ)µ) ≤ e− δµ
3 ·min(δ,1), ∀0 ≤ δ,

Pr (|X − µ| ≥ δµ) ≤ 2 · e− δ2µ
3 , ∀0 ≤ δ ≤ 1.

We also need the following Azuma-Hoeffding inequality.

▶ Lemma 6 (Azuma-Hoeffding inequality, [5, 23]). Let Z0, . . . , Zn be random variables satisfy-
ing (1) E[|Zi|] <∞ for every i ∈ {0, . . . , n} and E[Zi|Z0, . . . , Zi−1] ≤ Zi−1 for every i ∈ [n]
(i.e., {Zi} forms a supermartingale) and (2) for every i ∈ [n], |Zi − Zi−1| ≤ 1, then for all
λ > 0, we have

Pr[Zn − Z0 ≥ λ] ≤ exp(−λ2/2n).

In particular, the following corollary will be useful for us.

▶ Corollary 7 (Azuma-Hoeffding inequality for Boolean random variables, [5, 23]). Let
X1, . . . , Xn be random variables satisfying Xi ∈ {0, 1} for each i ∈ [n]. Suppose that
E[Xi|X1, . . . , Xi−1] ≤ pi for all i. Then for any λ > 0,

Pr
[

n∑
i=1

Xi ≥ λ +
∑
i=1

pi

]
≤ exp(−λ2/2n).

Proof. For i ∈ {0, . . . , n}, let Zi =
∑i

j=1(Xj − pj). From the assumption one can see that
all the Zi form a supermartingale and |Zi − Zi−1| ≤ 1, hence the corollary follows directly
from Lemma 6. ◀
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4 Two-Pass Streaming Algorithms for Simulating Directed Random
Walk

In this section, we present our two-pass streaming algorithms for simulating random walks
on directed graphs.

4.1 Heavy and Light Vertices
We first define the notion of heavy and light vertices.

▶ Definition 8 (Heavy and light vertices). Given a directed graph G = (V, E) with n vertices
and ℓ ∈ N.

(Heavy vertices.) We say a vertex u is ℓ-heavy in G, if visit[1,ℓ](u, u) ≥ 1/3 (i.e., if a
random walk starting from u will revisit u in at most ℓ steps with probability at least 1/3.)
(Light vertices.) We say a vertex u is ℓ-light in G, if visit[1,ℓ](u, u) ≤ 2/3 (i.e., if a
random walk starting from u will revisit u in at most ℓ steps with probability at most 2/3.)

We also let V ℓ
heavy(G) and V ℓ

light(G) be the sets of ℓ-heavy and ℓ-light vertices in G. When
G and ℓ are clear from the context, we simply refer to them as Vheavy and Vlight.

▶ Remark 9. Note that if the revisiting probability is between [1/3, 2/3], then the vertex is
considered to be both heavy and light.

The following lemma is crucial for the analysis of our algorithm.

▶ Lemma 10 (Upper bounds on the total out-degrees of heavy vertices). Given a directed
graph G with n vertices and ℓ ∈ N, it holds that∑

u∈V ℓ
heavy(G)

dout(u) ≤ O(n · ℓ).

Proof. We define a set S of pairs of vertices as follows:

S := {(u, v) ∈ V 2 : visit[0,ℓ](u, v) ≥ 1/6}.

That is, a pair of vertices u and v belongs to S if and only if an ℓ-step random walk starting
from u visits v with probability at least 1/6.

For each fixed vertex u, we further define

Su :=
{

v ∈ Nout(u) | visit[0,ℓ](v, u) ≥ 1/6
}

,

and

Hu :=
{

v ∈ V | visit[0,ℓ](u, v) ≥ 1/6
}

.

The following claim will be useful for the proof.

▷ Claim 11. The following two statements hold:
1. For every u ∈ V , it holds that |Hu| ≤ O(ℓ).
2. For every u ∈ Vheavy, it holds that |Su| ≥ 1/6 · dout(u).

Proof. Fixing u ∈ V , the first item follows from the simple fact that∑
v∈V

visit[0,ℓ](u, v) ≤ ℓ + 1.
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Now we move to the second item, and fix u ∈ Vheavy. For the sake of contradiction,
suppose that |Su| < 1/6 · dout(u). We have

visit[1,ℓ](u, u) = E
v∈Nout(u)

[visit[0,ℓ−1](v, u)]

≤ E
v∈Nout(u)

[visit[0,ℓ](v, u)]

< Pr
v∈Nout(u)

[v ∈ Su] · 1 + Pr
v∈Nout(u)

[v /∈ Su] · 1/6 < 1/6 + 1/6 < 1/3,

a contradiction to the assumption that u is heavy. ◁

Finally, note that by definition of Hu and Su we immediately have

|S| =
∑
u∈V

|Hu| ≥
∑
u∈V

|Su|.

By Claim 11, we have∑
u∈Vheavy

dout(u) ≤ 6 ·
∑
u∈V

|Su| ≤ 6 ·
∑
u∈V

|Hu| ≤ O (n · ℓ) ,

which completes the proof. ◀

4.2 A Simple One-Pass Algorithm for Simulating Random Walks

We first describe a simple one-pass algorithm for simulating random walks, which will be used
as a sub-routine in our two-pass algorithm. Moreover, this one-pass algorithm is starting
vertex oblivious, which will be crucial for us later.

Reservoir sampling in one pass. Before describing our one-pass subroutine, we need the
following basic reservoir sampling algorithm.

▶ Lemma 12 ([37]). Given input access to a stream of n items such that each item can be
described by O(1) words, we can uniformly sample m of them without replacement using
O(m) words of space.

Using m independent reservoir samplers each with capacity 1, one can also sample m

items from the stream with replacement in a space-efficient way.

▶ Corollary 13. Given input access to a stream of n items such that each item can be
described by O(1) words, we can uniformly sample m of them with replacement using O(m)
words of space.

Description of the one-pass algorithm. Now we describe our one-pass algorithm for
simulating random walks. Our algorithm Aone-pass is starting vertex oblivious, and can be
described by a preprocessing subroutine Pone-pass and a sampling subroutine Sone-pass. Recall
that as defined in Definition 4, Pone-pass takes a single pass over the input graph streaming
without knowing the starting vertex ustart, and Sone-pass takes the output of Pone-pass together
with ustart, and outputs a desired sample fo the random walk.
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Algorithm 1 Preprocessing phase of Aone-pass: Pone-pass(G, τ, Vfull).

Input: One pass streaming access to a directed graph G = (V, E). A parameter τ ∈ N. A
subset Vfull ⊆ V , and we also let Vsamp = V \ Vfull.

1: For each vertex v ∈ Vfull, we record all its out-neighbors in the list Lsave
v . (That is, Vfull

stands for the set of vertices that we keep all its edges.)
2: For each vertex v ∈ Vsamp, using Corollary 13, we sample τ of its out-neighbors uniformly

at random with replacement in the list Lsave
v . (That is, Vsamp stands for the set of vertices

that we sample some of its edges.)
3: For a big enough constant c2 > 1, whenever the number of out-neighbors stored exceeds

c2 · τ · n, the algorithm stops recording them. If this happens, we say the algorithm
operates incorrectly and otherwise we say it operates correctly.

Output: A collection of lists L⃗save = {Lsave
v }v∈V .

Algorithm 2 Sampling phase of Aone-pass: Sone-pass(V, ustart, L, Vfull, L⃗save = {Lsave
v }v∈V ).

Input: A starting vertex ustart. The path length L ∈ N. A subset Vfull ⊆ V , and we also let
Vsamp = V \ Vfull.

1: Let v0 = ustart. For each v ∈ V , we set kv = 1.
2: for i := 1→ L do
3: if vi−1 ∈ Vfull then
4: vi is set to be a uniformly random element from Lsave

vi−1

5: else if kvi−1 > |Lsave
vi−1
| then

6: return failure
7: else
8: vi ← (Lsave

vi−1
)kvi−1

.
9: kvi−1 ← kvi−1 + 1.

10: end if
11: end for
Output: The walk (v0, v1, . . . , vL).

Analysis of the one-pass algorithm. Now we analyze the correctness of our one-pass
algorithm. We first observe its space complexity can be easily bounded.

▶ Observation 14 (Space complexity of Aone-pass). Given a directed graph G = (V, E) with
n vertices. For every τ ∈ N and subset Vfull ⊆ V , Pone-pass(G, τ, Vfull) always takes at most
O(τ · n) words of space.

Next we bound the statistical distance between its output distribution and the correct
distribution of the random walk by the following lemma.

▶ Lemma 15 (Correctness of Aone-pass). Given a directed graph G = (V, E) with n vertices. For
every integers τ, L ∈ N and subset Vfull ⊆ V such that τ ·(n−|Vfull|)+

∑
v∈Vfull

dout(v) ≤ c2 ·τ ·n,
let L⃗save be random variable of the output of Pone-pass(G, τ, Vfull). For every ustart ∈ V , the
output distribution of Sone-pass(V, ustart, L, Vfull, L⃗save) has statistical distance β to RWG

L (ustart),
where β is the probability that Sone-pass(V, ustart, L, Vfull, L⃗save) outputs failure.
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Proof. Conclude from τ · (n − |Vfull|) +
∑

v∈Vfull
dout(v) ≤ c2 · τ · n that Pone-pass(G, τ, Vfull)

always operates correctly.
To bound the statistical distance between the distribution of Sone-pass(V, ustart, L, Vfull, L⃗save)

and RWG
L (ustart). We construct another random variable (L⃗save)′, in which for every vertex u,

we sample another L out-neighbors of u uniformly at random with replacement, and add
them to the end of the list Lsave

v in L⃗save.
Note that Sone-pass(V, ustart, L, Vfull, (L⃗save)′) never outputs failure, and distributes ex-

actly the same as RWG
L (ustart). On the other hand, Sone-pass(V, ustart, L, Vfull, (L⃗save)′) and

Sone-pass(V, ustart, L, Vfull, L⃗save) are the same as long as Sone-pass(V, ustart, L, Vfull, L⃗save) does not
output failure, which completes the proof. ◀

The following corollary follows immediately from the lemma above. (Note that this
special case exactly corresponds to the folklore one-pass streaming algorithm for simulating
random walks.)

▶ Corollary 16. Given a directed graph G = (V, E) with n vertices and an integer L ∈ N. Let
L⃗save be random variable of the output of Pone-pass(G, L, ∅). For every ustart ∈ V , the output
distribution of Sone-pass(V, ustart, L, ∅, L⃗save) distributes identically as RWG

L (ustart).

4.3 Two-Pass Streaming Algorithm for Simulating Random Walks
Description of the two-pass algorithm. Now we are ready to describe our two pass algorithm
Atwo-pass, which is also starting vertex oblivious, and can be described by the following two
sub-routines Ptwo-pass and Stwo-pass.

Algorithm 3 Preprocessing phase of Atwo-pass: Ptwo-pass(G, L, δ).

Input: A directed graph G = (V, E) with n vertices. An integer L ∈ N. A failure parameter
δ ∈ (0, 1/n). We also let ℓ =

√
L, and γ = c1 · log δ−1 where c1 ≥ 1 is a sufficiently large

constant to be specified later.
1: First pass: estimation of heavy and light vertices.

1. Run γ independent instances of Pone-pass(G, ℓ, ∅) and let (Lsave)(1), . . . , (Lsave)(γ) be the
corresponding collections of lists.

2. For each vertex u ∈ V , by running Sone-pass(V, u, ℓ, ∅, (Lsave)(j)) for each j ∈ [γ], we
take γ independent samples from RWG

ℓ . Let wu be the fraction of these random walks
that revisit u in ℓ steps.

3. Let Ṽheavy be the set of vertices with wu ≥ 0.5, and Ṽlight be the set of vertices with
wu < 0.5.

2: Second Pass: heavy-light edge recording
1. Let Vfull = Ṽheavy.
2. Run Pone-pass(G, γ · ℓ, Vfull) to obtain a collection of lists L⃗save.

Output: The set Vfull and the collection of lists L⃗save.

Algorithm 4 Sampling phase of Atwo-pass: Stwo-pass(V, ustart, L, Vfull, L⃗save = {Lsave
v }v∈V ).

Input: A starting vertex ustart. The path length L ∈ N. A subset Vfull ⊆ V , and a collection
of lists L⃗save.

Output: Simulate Sone-pass(V, ustart, L, Vfull, L⃗save) and return its output.
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Analysis of the algorithm. We first show that with high probability, Ṽlight and Ṽheavy are
subsets of Vlight and Vheavy respectively.

▶ Lemma 17. Given a directed graph G = (V, E) with n vertices, L ∈ N and δ ∈ (0, 1/n), let-
ting ℓ =

√
L, with probability at least 1−δ/2 over the internal randomness of Ptwo-pass(G, L, δ),

it holds that Ṽlight ⊆ Vlight and Ṽheavy ⊆ Vheavy.

Proof. Setting c1 in Algorithm 3 to be a large enough constant and applying Corollary 16 and
the Chernoff bound, with probability at least 1− n · δ3 ≥ 1− δ/2, |wu − visit[1,ℓ](u, u)| ≤ 0.1
for every u ∈ V . The lemma then follows from the definition of heavy and light vertices. ◀

Next, we show that with high probability, a random walk does not visit a light vertex too
many times.

▶ Lemma 18. Given a directed graph G = (V, E) with n vertices, L ∈ N and δ ∈ (0, 1/n),
letting ℓ =

√
L and γ = c1 · log δ−1, where c1 > 1 is the sufficiently large constant, for every

vertex ustart ∈ V and vertex v ∈ V ℓ
light(G), an L-step random walk starting from ustart visits v

more than γ · ℓ times with probability at most δ/2n.

Proof. Suppose we have an infinite random walk W starting from ustart in G. Letting τ = γℓ,
the goal here is to bound the probability that during the first L steps, W visits v more than
τ times. We denote this as the bad event Ebad.

Let Zi be the random variable representing the step at which W visits v for the i-th time
(if W visits v less than i times in total, we let Zi =∞). Ebad is equivalent to that Zτ+1 ≤ L.

Zτ+1 ≤ L further implies that for at least (τ − ℓ) i ∈ [τ ], Zi+1 − Zi ≤ ℓ and Zi <∞. In
the following we denote this event as E1 and bounds its probability instead.

For each i ∈ [τ ], let Yi be the random variable which takes value 1 if both Zi <∞ and
Zi+1 − Zi ≤ ℓ hold, and 0 otherwise. Letting Y<i = (Y1, . . . , Yi−1), the following claim is
crucial for us.

▷ Claim 19. For every i ∈ [τ ] and every possible assignments Y<i ∈ {0, 1}i−1, we have

E[Yi|Y<i = Y<i] ≤ 2/3.

Proof. By the Markov property of the random walk, and noting that Yi is always 0 when
Zi =∞, we have.

E[Yi|Y<i = Y<i] =
∞∑

j=0
Pr[Zi = j|Y<i = Y<i] · E[Yi|Y<i = Y<i, Zi = j]

=
∞∑

j=0
Pr[Zi = j|Y<i = Y<i] · E[Yi|Zi = j].

To further bound the quantity above, recall that the event Zi = j means that the random
walk W starting from ustart visits the light vertex v for the i-th time at W’s j-th step, and we
have

E[Yi|Zi = j] = Pr[Yi = 1|Zi = j] = Pr[Zi+1 ≤ j + ℓ|Zi = j].

By the Markov property of the random walk W, Pr[Zi+1 ≤ j + ℓ|Zi = j] equals the
probability that a random walk starting from v revisits v in at most ℓ steps. By the definition
of light vertices, we can bound that by 2/3, which completes the proof. ◁
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Then by the Azuma-Hoeffding inequality (Corollary 7),

Pr
W

[Ebad] ≤ Pr
W

[E1]

= Pr
W

[
τ∑

i=1
Yi ≥ (τ − ℓ)

]
≤ exp(−Ω(τ − ℓ− 2/3 · τ)) ≤ δ/2n,

the last inequality follows from the fact that Ω(τ − ℓ− 2/3 · τ) = Ω(γ), γ = c1 · log δ−1 for a
sufficiently large constant c1, and δ ≤ 1/n. ◀

The correctness of the algorithm is finally completed by the following theorem.

▶ Theorem 20 (Formal version of Theorem 1). Given a directed graph G = (V, E) with n

vertices, L ∈ N and δ ∈ (0, 1/n). Let L⃗save and Vfull be the two random variables of the output
of Ptwo-pass(G, L, δ). For every ustart ∈ V , the following hold:

The output distribution of Stwo-pass(V, ustart, L, Vfull, L⃗save) has statistical distance at most
δ from RWG

L (ustart).
Both of Ptwo-pass(G, L, δ) and Stwo-pass(V, ustart, L, Vfull, L⃗save) use at most O(n ·

√
L · log δ−1)

words of space.

Proof. Note that we can safely assume L ≤ n2, since otherwise one can always use O(n2)
words to store all the edges in the graph. In this case, we have that L ≤ n ·

√
L and the

space for restoring the L-step output walk can be ignored.
Let Ṽheavy = Vfull and Ṽlight = V \ Ṽheavy. Let Egood be the event that Ṽlight ⊆ Vlight and

Ṽheavy ⊆ Vheavy. By Lemma 17, we have that Pr[Egood] ≥ 1− δ/2.
Now we condition on the event Egood. In this case, it follows from Lemma 10 that

Pone-pass(G, γ · ℓ, Ṽheavy) operates correctly (by setting the constant c2 in Algorithm 1 to be
sufficiently large).

By Lemma 18 and a union bound, the probability of Stwo-pass(V, ustart, L, Ṽheavy, L⃗save)
outputs failure is at most δ/2. By Lemma 15, it follows that the statistical distance between
the output distribution of Stwo-pass(V, ustart, L, Ṽheavy, L⃗save) and RWG

L (ustart) is at most δ/2.
The theorem follows by combing the above with the fact that Pr[Egood] ≥ 1− δ/2. ◀

4.4 Two-pass Streaming in the Turnstile Model
Similar to the algorithm in [27], our algorithms can also be easily adapted to work for the
turnstile graph streaming model, where both insertions and deletions of edges are allowed.
Note that our two-pass algorithm Atwo-pass only accesses the input graph stream via the
one-pass preprocessing subroutine Pone-pass. Hence, it suffices to implement Pone-pass in the
turnstile model as well. There are two distinct tasks in Pone-pass: (1) for light vertices, we
need to sample their outgoing neighbors with replacement and (2) for heavy vertices, we
need to record all their outgoing neighbors.

Uniformly sampling via ℓ1 sampler. For light vertices, uniformly sampling some out-
neighbors from each vertex without replacement can be implemented via the following ℓ1
sampler in the turnstile model.
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▶ Lemma 21 (ℓ1 sampler in the turnstile model [24]). Let n ∈ N, failure probability δ ∈ (0, 1/2)
and f ∈ Rn be a vector defined by a streaming of updates to its coordinates of the form
fi ← fi + ∆, where ∆ ∈ {−1, 1}. There is a randomized algorithm which reads the stream,
and with probability at most δ it outputs FAIL, otherwise it outputs an index i ∈ [n] such
that:

Pr(i = j) = |fj |
∥f∥1

+ O(n−c), ∀j ∈ [n]

where c ≥ 1 is some arbitrarily large constant.
The space complexity of this algorithm is bounded by O(log2(n) · log(1/δ)) bits in the

random oracle model, and O(log2(n) · (log log n)2 · log(1/δ)) bits otherwise.

▶ Remark 22. To get error in the statistical distance also to be at most δ, one can simply
set n to be larger than 1/δ. And in that case the space complexity can be bounded by
O(log4(n/δ)).

Recording all outgoing neighbors via ℓ1 heavy hitter. For heavy vertices, recording all
their outgoing neighbors can be implemented using the following ℓ1 heavy hitter in the
turnstile model. (Recall that we assumed our graphs is a simple graph without multiple
edges.)

▶ Lemma 23 (ℓ1 heavy hitter in the turnstile model [9]). Let n, k ∈ N, δ ∈ (0, 0.1) and f ∈ Rn

be a vector defined by a streaming of updates to its coordinates of the form fi ← fi + ∆, where
∆ ∈ {−1, 1}. There is an algorithm which reads the stream and returns a subset L ⊂ [n]
such that i ∈ L for every i ∈ [n] such that |fi| ≥ ∥f∥1/k and i ̸∈ L for every i ∈ [n] such
that |fi| ≤ ∥f∥1/2k. The failure probability is at most δ, and the space complexity is at most
O(k · log(n) · log(n/δ)).

Algorithm in the turnstile model. Modifying Pone-pass with Lemma 21 and Lemma 23, we
can generalize our two-pass streaming algorithm to work in two-pass turnstile model.7

▶ Remark 24 (Two-pass algorithm in the turnstile model). There exists a streaming algorithm
Aturnstile that given an n-vertex directed graph G = (V, E) via a stream of both edge insertions
and edge deletions, a starting vertex ustart ∈ V , a non-negative integer L indicating the
number of steps to be taken, and an error parameter δ ∈ (0, 1/n), satisfies the following
conditions:
1. Aturnstile uses at most Õ(n ·

√
L · log δ−1) space and makes two passes over the input

graph G.
2. Aturnstile samples from some distribution D over V L+1 satisfying ∥D−RWG

L (ustart)∥TV ≤ δ.

References
1 Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to locally partition a graph.

Internet Mathematics, 4(1):35–64, 2007.
2 Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Proceedings

of the forty-first annual ACM symposium on Theory of computing, pages 235–244, 2009.

7 In more details, for each light vertex u, we run τ independent copies of the ℓ1 sampler to obtain τ
samples from its outgoing neighbors with replacement. We also let k = c2 · τ · n and use the ℓ1 heavy
hitter to record all outgoing neighbors for all heavy vertices in Õ(n ·
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Abstract
The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure
has been extensively studied and has many applications. In a seminal work, Benczúr and Karger
(1996) showed that given any n-vertex undirected weighted graph G and a parameter ε ∈ (0, 1),
there is a near-linear time algorithm that outputs a weighted subgraph G′ of G of size Õ(n/ε2)
such that the weight of every cut in G is preserved to within a (1 ± ε)-factor in G′. The graph G′

is referred to as a (1 ± ε)-approximate cut sparsifier of G. Subsequent recent work has obtained
a similar result for the more general problem of hypergraph cut sparsifiers. However, all known
sparsification algorithms require Ω(n + m) time where n denotes the number of vertices and m

denotes the number of hyperedges in the hypergraph. Since m can be exponentially large in n, a
natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in n,
independent of the number of edges. We resolve this question in the affirmative, giving the first
sublinear time algorithm for this problem, given appropriate query access to the hypergraph.

Specifically, we design an algorithm that constructs a (1 ± ε)-approximate cut sparsifier of a
hypergraph H(V, E) in polynomial time in n, independent of the number of hyperedges, when given
access to the hypergraph using the following two queries:
1. given any cut (S, S̄), return the size |δE(S)| (cut value queries); and
2. given any cut (S, S̄), return a uniformly at random edge crossing the cut (cut edge sample

queries).
Our algorithm outputs a sparsifier with Õ(n/ε2) edges, which is essentially optimal. We then
extend our results to show that cut value and cut edge sample queries can also be used to construct
hypergraph spectral sparsifiers in poly(n) time, independent of the number of hyperedges.

We complement the algorithmic results above by showing that any algorithm that has access to
only one of the above two types of queries can not give a hypergraph cut sparsifier in time that is
polynomial in n. Finally, we show that our algorithmic results also hold if we replace the cut edge
sample queries with a pair neighbor sample query that for any pair of vertices, returns a random
edge incident on them. In contrast, we show that having access only to cut value queries and queries
that return a random edge incident on a given single vertex, is not sufficient.
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1 Introduction

In many applications, the underlying graphs are too large to fit in the main memory, and
one typically builds a compressed representation that preserves relevant properties of the
graph. Cuts in graphs are a fundamental object of study, and play a central role in the study
of graph algorithms. Consequently, the problem of sparsifying a graph while approximately
preserving its cut structure has been extensively studied (see, for instance, [17, 6, 18, 25, 1, 2,
13, 5, 3, 21, 15, 4, 16], and references therein). A cut-preserving sparsifier not only reduces
the space requirement for any computation, but it can also reduce the time complexity
of solving many fundamental cut, flow, and matching problems as one can now run the
algorithms on the sparsifier which may contain far fewer edges. In a seminal work, Benczúr
and Karger [6] showed that given any n-vertex undirected weighted graph G and a parameter
ε ∈ (0, 1), there is a near-linear time algorithm that outputs a weighted subgraph G′ of G of
size Õ(n/ε2) such that the weight of every cut in G is preserved to within a multiplicative
(1 ± ε)-factor in G′. The graph G′ is referred to as the (1 ± ε)-approximate cut sparsifier
of G.

In this work, we consider the problem of cut sparsification for hypergraphs. A hypergraph
H(V, E) consists of a vertex set V and a set E of hyperedges where each edge e ∈ E is a subset
of vertices. The rank of a hypergraph is the size of the largest edge in the hypergraph, that
is, maxe∈E |e|. Hypergraphs are a natural generalization of graphs and many applications
require estimating cuts in hypergraphs (see, for instance, [8, 9, 14, 26]). Note that unlike
graphs, an n-vertex hypergraph may contain exponentially many (in n) hyperedges. It is thus
natural to ask if cut-preserving sparsifiers in the spirit of graph sparsifiers can also be created
for hypergraphs as this would allow algorithmic applications to work with hypergraphs whose
size is polynomially bounded in n.

Kogan and Krauthgamer [19] initiated a study of this basic question and showed that given
any weighted hypergraph H , there is an O(mn2) time algorithm to find a (1±ε)-approximate
cut sparsifier of H of size Õ( nr

ε2 ) where r denotes the rank of the hypergraph. Similar to
the case of graphs, the size of a hypergraph sparsifier refers to the number of edges in the
sparsifier. Since r can be as large as n, in general, this gives a hypergraph cut sparsifier
of size Õ(n2/ε2), which is a factor of n larger than the Benczúr-Karger bound for graphs.
Chekuri and Xu [10] designed a more efficient algorithm for building a hypergraph sparsifier.
They gave a near-linear time algorithm in the total representation size (sum of the sizes of
all hyperedges) to construct a hypergraph sparsifier of size Õ(nr2/ε2) in hypergraphs of rank
r, thus speeding up the run-time obtained in the work of Kogan and Krauthgamer [19] by at
least a factor of n, but at the expense of an increased sparsifier size. Until recently, it was an
open question if the Benczúr-Karger bound is also achievable on hypergraphs, that is, do
there exist hypergraph sparsifiers with Õ(n/ε2) edges. In a very recent work [11], we were
able to resolve this question in the affirmative by giving a Õ(mn + n10/ε7) time algorithm
for creating hypergraph sparsifiers of size Õ(n/ε2).

All known results for creating poly(n) size hypergraph sparsifiers have at least one thing
in common – the running time of these algorithms has at least a linear dependence on both
n and m. All known algorithms are essentially based on sampling edges in proportion to
their importance, and they primarily differ in how the importance of an edge is defined and
computed. A linear dependence on n is unavoidable since the hypergraph size itself is Ω(n).
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However, since the number of hyperedges can be exponential in n, even a linear dependence
on m means that the running time of a sparsification algorithm can be exponentially large in
n in the worst-case. This motivates the following natural question: is there an algorithm for
building a hypergraph sparsifier that runs in time that is polynomial in n? In other words,
is there a sublinear time algorithm for creating hypergraph sparsifiers?

In order to tackle this question, we need to first define our model for accessing the input
hypergraph H = (V, E). The most basic requirement is to have the ability to efficiently
evaluate the size or weight of any cut in a given hypergraph. We assume here access to a cut
value oracle, denoted as Ovalue, which takes as input a cut C = (S, S̄), returns the size of the
cut |δH(S)|. This is akin to the standard assumption in submodular function minimization,
namely, the algorithm has an oracle access to the value of the submodular function on any
set S since the cut function is a submodular function. However, as it turns out, it is easy to
show that the access to a cut value oracle is provably not sufficient to construct a sparsifier,
regardless of the time allowed as this oracle can not differentiate between hypergraphs where
all edges have size 2 from hypergraphs where all edges have size 31. So we also need a
mechanism for accessing edges of the underlying graph. We thus introduce a second oracle,
referred to as the cut edge oracle, denoted as Oedge, which takes as input a cut C = (S, S̄),
returns a random edge crossing the cut. Given access to both these oracles, we are indeed
able to solve the problem of hypergraph sparsification in polynomial time in n.

▶ Theorem 1. Suppose we are given an unweighted hypergraph H = (V, E) that can be
accessed using the oracles Ovalue and Oedge. Then for any 0 < ε < 1, a (1 ± ε)-approximate
sparsifier with Õ(n/ε2) hyperedges can be constructed in O(n10/ε7) time, independent of the
number of hyperedges.

At a high-level, graph and hypergraph sparsification algorithms work by estimating the
importance of each edge in preserving cut sizes, and then sampling edges with probability
proportional to their importance and assigning them an appropriately scaled weight. The
main technical challenge in proving the above theorem is that the cut value oracle on the
original graph cannot be used to estimate cut sizes in the vertex-induced subgraphs of the
original graph – a step that is implicit in determining importance of edges in preserving the
cut structure. This issue does not arise in normal graphs where each edge contains 2 vertices,
and the cut value oracle on the original graph indeed suffices to recover cut values in any
induced subgraph. But once we consider hypergraphs with even edges of size 3, it is easy to
show that the cut value oracle on the original graph can not distinguish between induced
subgraphs that have minimum cut value 0 and induced subgraphs where the minimum cut
value is polynomially large. We refer the reader to Section 3 for a more detailed discussion of
this. We get around this issue by introducing for any subset of vertices X, a weaker notion of
pseudo cut size for approximating cut sizes in the subgraph induced by X. The new cut size
function remains submodular, and we show that it suffices to approximate the importance
of each edge to within a factor n of its true importance. We then use the Oedge oracle to
sample edges in accordance with their approximate importance. The resulting sparsifier H ′

has poly(n) edges which we further sparsify to Õ(n/ε2) edges in poly(n) time by applying
the result of [11] to H ′.

1 For instance, the cut value oracle can not distinguish between a copy of K4 and the hypergraph that
contains all possible hyperedges of size 3 on 4 vertices. Note that this does not rule out the possibility
of efficiently constructing a data structure/sketch that can be used to answer cut queries. Our focus in
this paper, however, is on constructing sparsifiers, namely, sparse subgraphs of the original graph that
preserve all cuts.
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We complement the algorithmic result above by showing that just like the oracle Ovalue
alone is not sufficient to achieve the result above, the oracle Oedge alone is also not sufficient
to create a poly(n) size hypergraph sparsifier in poly(n) time.

▶ Theorem 2. There is no polynomial time randomized algorithm that can use Oedge queries
alone to construct a (1 ± ε)-approximate sparsifier of an underlying hypergraph H with
probability better than o(1).

One may wonder if the oracle Oedge can be replaced with another access oracle that is
used in sublinear algorithms for standard graphs, namely, ability to access the ith neighbor
of a vertex v for any integer i that is at most the degree of v. It is easy to see that this
is essentially same as the ability to access a random edge incident on a vertex v. We can
generalize this idea to the setting of hypergraphs as follows. A neighbor query oracle in a
hypergraph takes as input a set S ⊆ V , and returns a random edge that contains all vertices
in S if there is such an edge, and returns NIL if there is no edge. We say that a neighbor
query is a single vertex neighbor query if |S| = 1, and it is a vertex pair neighbor query if
|S| = 2. We denote the oracles that answer a single vertex neighbor query and a vertex pair
neighbor query as O1

nbr and O2
nbr respectively. We next show that the oracle Oedge can be

replaced with the oracle O2
nbr, to obtain an alternate poly(n) time implementation of the

result in Theorem 1.

▶ Theorem 3. Given an unweighted hypergraph H = (V, E), suppose the algorithm can
access the hypergraph using Ovalue and O2

nbr, then for any 0 < ε < 1, a (1 ± ε)-approximate
sparsifier with Õ(n/ε2) hyperedges can be constructed in O(n10/ε7) time in n, independent
of the number of hyperedges.

In contrast to the result above, we show any algorithm that has access only to oracles
Ovalue and O1

nbr, requires exponentially many queries in the worst-case to construct a poly(n)
size sparsifier.

▶ Theorem 4. There is no polynomial time randomized algorithm that can use Ovalue and
O1

nbr queries alone to construct a (1 ± ε)-approximate sparsifier of an underlying hypergraph
H with probability better than o(1).

Hypergraph Spectral Sparsification. We also consider the problem of hypergraph spectral
sparsification, a notion that strengthens cut sparsification. A (1 ± ε)-approximate spectral
sparsifier of a graph G(V, E) is a weighted graph G′(V, E′) such that for every vector x ∈ Rn,
we have

|xT LG′ x − xT LG x| ≤ ε(xT LG x),

where LG and LG′ denote the Laplacian matrices of G and G′, respectively. To see that the
notion of spectral sparsifier only strengthens the notion of a cut sparsifier, observe that the
cut sparsification requirement for any cut (S, S̄) is captured by the definition above when we
choose x to be the 0/1-indicator vector of the set S. Batson, Spielman, and Srivastava [5]
gave a polynomial-time algorithm that for every graph G, gives a weighted graph G′ with
O(n/ε2) edges such that G′ is a (1 ± ε)-approximate spectral sparsifier of G. Subsequently,
Lee and Sun [21] gave an O(m/εO(1)) time algorithm to construct a spectral graph sparsifier
with O(n/ε2) edges.
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The notion of spectral sparsification can be extended to hypergraphs [22, 27] as follows.
The Laplacian LH of a hypergraph H is a function Rn → Rn, such that for any n-dimensional
vector x, we have

xT LH(x) =
∑
e∈E

w(e) max
u,v∈e

(x(u) − x(v))2.

Given a weighted hypergraph H with n vertices, a (1 ± ε)-spectral sparsifier H ′ is a
subgraph of H such that for any n-dimensional vector x, we have

(1 − ε)xT LH′(x) ≤ xT LH(x) ≤ (1 + ε)xT LH′(x).

Soma and Yoshida [23] give a polynomial-time algorithm that outputs a weighted spectral
sparsifier with Õ(n3) hyperedges. The algorithm of [23] is also based on sampling edges
based on a suitable notion of importance, and in their work, the importance of a hyperedge
e is measured by minu,v∈e |E({u, v})| where E({u, v}) is the set of edges that contains both
u and v. If we assume access to the underlying hypergraph using O2

nbr queries, then we can
sample a random hyperedge in E({u, v}) for any pair of vertices u and v, which makes it in
turn straightforward to simulate the algorithm of [23].

▶ Theorem 5. Given an unweighted hypergraph H = (V, E), suppose the algorithm can access
the hypergraph using Ovalue and O2

nbr queries. Then for any 0 < ε < 1, a (1 ± ε)-spectral
sparsifier with Õ(n3/ε2) hyperedges can be constructed in polynomial time in n, independent
of the number of hyperedges.

The more interesting case is when we can only access the hypergraph using Ovalue and
Oedge queries. It is now provably impossible to get a handle on |E({u, v})| using only
polynomially many queries, and thus there is no direct way to simulate the algorithm
in [23]. Recently, Bansal, Svensson, and Trevisan [4] designed another hypergraph spectral
sparsification algorithm that in polynomial-time algorithm creates a weighted spectral
sparsifier with Õ(nr3) hyperedges; here r denotes the maximum arity of any hyperedge.
Unlike the algorithm of [23], their measure of importance of a hyperedge is derived from an
auxiliary standard graph created by converting every hyperedge into a clique. The importance
of a hyperedge is then given by the maximum effective resistance among all the edges in the
clique associated with that hyperedge. We show that we can simulate this process using only
poly(n) many Ovalue and Oedge queries.

▶ Theorem 6. Given an unweighted hypergraph H = (V, E), suppose the algorithm can access
the hypergraph using only Ovalue and Oedge queries. Then for any 0 < ε < 1, a (1±ε)-spectral
sparsifier with Õ(n3/ε2) hyperedges can be constructed in polynomial time in n, independent
of the number of hyperedges.

The idea is to associate the strength of a hyperedge with the resistance of the edges inside
the clique associated with this hyperedge. We first show that in any standard graph the
effective resistance of an edge f is at most n/kf where kf denote the strength of the edge
f . We then show that the strength of a hyperedge e is at most the strength of any edge in
the clique associated with the hyperedge e. With this pair of relationships, we are able to
simulate the algorithm in [4] by the algorithm in Theorem 1, except that we will sample
somewhat larger number of hyperedges to meet the sampling probability requirement for the
sparsification algorithm in [4].
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Note that unlike hypergraph cut sparsification which is now well-understood [11], the
problem of determining the optimal size of a hypergraph spectral sparsifier is still open.
However, note that any further improvements on the size of hypergraph spectral sparsifiers
can be used in a black-box manner with our sparsification algorithms – we can simply apply
the improved sparsification algorithm to the sparsifier generated by our algorithm.

Finally, we note that since any spectral sparsifier is also a cut sparsifier, the lower bounds
in Theorem 2 and Theorem 4 also hold for spectral sparsifiers.

Extension to weighted hypergraphs. All our algorithmic results stated thus far are for
sparsifying unweighted hypergraphs. We note that all algorithms can be extended in a
straightforward manner to sparsifying weighted hypergraphs assuming natural weighted
versions of the access oracles used in proving these results. Specifically, it suffices to assume
that the oracle Ovalue returns the weight of a cut, and the oracles Oedge and O2

nbr return an
edge with probability proportional to its weight.

Organization. We set up our notation and state some useful background results in Section 2.
In Section 3, we give a poly(n) time algorithm for creating a Õ(n/ε2) size sparsifier using the
cut value and cut edge sample oracles, proving Theorem 1. In Section 4, we give a poly(n)
time algorithm for creating a Õ(n/ε2) size sparsifier using the cut value and the vertex pair
neighbor oracles, proving Theorem 3. Then in Section 5, we present poly(n) time algorithms
for hypergraph spectral sparsification proving Theorems 5 and 6. We show in Section 6 that
any weakening of the oracles assumed in Theorems 1 and 3 necessarily requires worst-case
exponential time for creating a poly(n) size hypergraph cut sparsifier, proving Theorems 2
and 4. In Section 7, we briefly describe how the results of Theorems 1 and 3 can be extended
to weighted hypergraphs. Finally, we conclude in Section 8 with some directions for future
work.

2 Preliminaries

2.1 Notation
Given an integer n and a probability p, let B(n, p) be the Bernoulli distribution with n trials
where each trial succeeds with probability p. Suppose a set has n elements, and given a
probability p. Then the following process will sample each element in the set with probability
p: we first sample a number N ∼ B(n, p), then randomly sample N elements in the set.

Given any weight function w : S → R≥0, we extend it to also be a function on subsets of
S so that w(S′) =

∑
e∈S′ w(e) for S′ ⊆ S.

Given a graph H = (V, E) and a subset of vertices V ′ ⊆ V , we define G[V ′] to be
the weighted subgraph/subhypergraph of G induced by the vertices in V ′. We identify an
edge/hyperedge e with the set of vertices that are contained in e. A hyperedge e has rank k

if |e| = k. The rank of a hypergarph is the maximum rank of its hyperedges.
Given a weighted hypergraph H = (V, E, w) and a cut C = (S, S̄), we say an edge e

crosses the cut if e ∩ S ̸= ∅ and e ∩ S̄ ̸= ∅. We denote by δH(S) the set of the edges crossing
the cut C in H. By definition, |δH(S)| is the number of edges crossing C and w(δH(S)) is
the weight of C. For any ε > 0, a (1 ± ε)-approximate cut sparsifier of H is a hypergraph
H ′ = (V, E′, w′) with E′ ⊆ E such that

∀S ⊆ V, |w′(δH′(S)) − w(δH(S))| ≤ εw(δH(S)).
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Given a weighted normal graph G with n vertices, the Laplacian LG ∈ Rn×n is defined
as follows: for any u, LG(u, u) is the total weight edges incident on u, and for any u ̸= v,
LG(u, v) is minus the weight of edges between u and v. For any n-dimensional vector x ∈ Rn,
xT LGx =

∑
(u,v)∈e w(e)(x(u) − x(v))2. A (1 ± ε)-spectral sparsifier G′ is a subgraph of G

such that for any vector x,

(1 − ε)xT LG′x ≤ xT LGx ≤ (1 + ε)xT LG′x.

The notion of spectral sparsification can be extended to hypergraphs as follows. The
Laplacian LH of a hypergraph H is a function Rn → Rn, such that for any n-dimensional
vector x, we have

xT LH(x) =
∑
e∈E

w(e) max
u,v∈e

(x(u) − x(v))2.

Given a weighted hypergraph H with n vertices, a (1 ± ε)-spectral sparsifier H ′ is a
subgraph of H such that for any n-dimensional vector x, we have

(1 − ε)xT LH′(x) ≤ xT LH(x) ≤ (1 + ε)xT LH′(x).

2.2 Hypergraph Cut Sparsification
In this section, we review some important concepts and results of hypergraph cut sparsifica-
tion.

Given a weighted hypergraph H = (V, E, w), a k-strong component of H is a maximal
induced subgraph of G that has minimum cut at least k. For any edge e, the strength of e,
denoted by ke, in H is the maximum value of k such that e is fully contained in a k-strong
component of H. Alternatively, the strength of an edge e ∈ E is the largest minimum cut
size among all induced subgraphs H [X] that contain e, where X ranges over all subsets of V .
The sum of we/ke is at most n − 1.

▶ Lemma 7 ([19]). Given a weighted hypergraph H = (V, E, w), we have
∑

e∈E we/ke ≤ n−1.

Benczúr and Karger [6, 7] showed that when we are dealing with a normal graph where each
edge contains exactly two vertices, if we sample each edge e independently with probability
pe = O(log n/ε2ke), and give it weight 1/pe if sampled, then the resulting graph will be a
(1 ± ε)-approximate cut sparsifier of G with high probability.

Kogan and Krauthgamer [19] generalized this approach to hypergraphs. They showed
that given a hypergraph H = (V, E) with rank r, for each hyperedge e, if we sample e with
probability pe = O((log n + r)/ε2ke), and has weight 1/pe if get sampled, the resulting graph
will be a cut sparsifier of H with high probability.

▶ Theorem 8 ([19]). Let H be a hypergraph with rank r, and let ε > 0 be an error parameter.
Consider the hypergraph H ′ obtained by sampling each hyperedge e in H independently
with probability pe = min{1, 3((d+2) log n+r)

keε2 }, giving it weight 1/pe if included. Then with
probability at least 1 − O(n−d)
1. the hypergraph H ′ has O( n

ε2 (r + log n)) edges, and
2. H ′ is a (1 ± ε)-approximate cut sparsifier of H.

In fact, if for each edge e, the sampling proability pe is at least 3((d+2) log n+r)
keε2 , then the

resulting graph is still a (1 ± ε)-approximate cut sparsifier. This is because in the proof of
Theorem 8, the authors showed that each cut has a very small probability that the cut size
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in H ′ is not within a factor of (1 ± ε) of the cut size in H, and the probability that there is
no such cut is also very small by taking a union bound over all possible cuts. To bound the
probability that a cut has a similar size in H ′ and H, the authors use the Chernoff bound.
However, we can also use the following concentration bound to prove the same result.

▶ Lemma 9 (Theorem 2.2 in [12]). Let {x1, . . . , xk} be a set of random variables, such that
for 1 ≤ i ≤ k, each xi independently takes value 1/pi with probability pi and 0 otherwise, for
some pi ∈ [0, 1]. Then for all N ≥ k and ε ∈ (0, 1],

Pr

∣∣∣∣∣∣
∑
i∈[k]

xi − k

∣∣∣∣∣∣ ≥ εN

 ≤ 2e−0.38ε2·mini pi·N

So if we replace the probability of sampling an edge e with qe ≥ pe, the concentration
bound in Lemma 9 still holds. In other words, if we sample according to qe then the
probability that each cut in the sampled graph H ′ has size close to the cut size in H is at
least as large as the probability when edges are sampled according to pe.

▶ Lemma 10. Let H be a hypergraph with rank r, and let ε > 0 be an error parameter.
Consider the hypergraph H ′ obtained by sampling each hyperedge e in H independently
with probability pe ≥ min{1, 3((d+2) log n+r)

keε2 }, giving it weight 1/pe if included. Then with
probability at least 1 − O(n−d), H ′ is a (1 ± ε)-approximate cut sparsifier of H.

Recently, [11] showed that for every n-vertex hypergraph, there is a (1 ± ε)-approximate
cut sparsifier with Õ(n) edges. Moreover, this sparsifier can be constructed in polynomial
time in the number of vertices and the number of hyperedges.

▶ Theorem 11 ([11]). Given a weighted hypergraph H, for any 0 < ε < 1, there exists an
randomized algorithm that constructs a (1 ± ε)-approximate cut sparsifier of H with O( n log n

ε2 )
hyperedges in O(mn + n10/ε7) time with high probability.

2.3 Hypergraph Spectral Sparsification
In this section, we review some important concepts and results on spectral sparsification in
both normal graphs and hypergraphs.

Given a weighted normal graph G, the effective resistance re of an edge e = (u, v) is
defined to be the electrical effective resistance between u and v if we view G as a electrical
network on n nodes in which each edge e corresponds to a resistor with conductance w(e).

Spielman and Srivastava [24] showed that given an unweighted graph G, if we sample
each edge e independently with probability pe = O(re log n/ε2) and give it a weight of we/pe

if sampled, then the resulting graph is a (1 ± ε)-spectral sparsifier.
In the case of hypergraphs, Soma and Yoshida [23] showed that if we sample each hyperedge

e with probability proportional to n log n/(ε2 minu,v∈e |E({u, v})|) where E({u, v}) is the
set of hyperedges that contains both u and v, then the resulting graph is a (1 ± ε)-spectral
sparsifier.

▶ Theorem 12 ([23]). Given an unweighted hypergraph H, if we sample each edge e with
probability pe = min{1, Cn log n

ε2 minu,v∈e|E({u,v})| } where C is a universal constant, and give weight
1/pe if sampled, then the resulting hypergraph H ′ is a (1 ± ε)-spectral sparsifier of H with
high probability. The sparsifier has Õ(n3/ε2) hyperedges. The running time of this algorithm
is Õ(mn2 + m + n3/ε2).
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Bansal et al. [4] take a different approach to hypergraph spectral sparsification. For any
hypergraph H, define the auxiliary graph GH as a normal graph that is obtained by, for
each hyperedge e, transforming e into a clique Fe over the vertices in e. For any hyperedge
e, we now define re = maxf∈Fe rf . Bansal et al. showed that if we sample each hyperedge e

with probability proportional to r4re log n/ε2 where r is the maximum size of any hyperedge
in H, then the resulting graph is a (1 ± ε)-spectral sparsifier.

▶ Theorem 13 ([4]). Given an unweighted hypergraph H, if we sample each edge e with
probability pe = min{1, Cr4re log n

ε2 } where C is a universal constant, and assign it weight 1/pe

if sampled, then the resulting hypergraph H ′ is a (1 ± ε)-spectral sparsifier of H with high
probability. The sparsifier has Õ(nr3/ε2) hyperedges.

Similar to the case of Theorem 8, Theorem 12 and Theorem 13 both work when we
sample each edge with a probability qe ≥ pe instead of pe and give weight 1/qe if sampled.

2.4 Minimizing a Submodular Function Using Value Queries
A set function f : 2Ω → R is a submodular function if for every S, T ⊆ Ω, f(S) + f(T ) ≥
f(S ∪ T ) + f(S ∩ T ). Given a graph/hypergraph, for any vertex set S, the cut function f(S),
defined as the weight of edges crossing cut (S, S̄) is easily shown to be submodular. There is
an algorithm that for any submodular function f finds a set S that minimizes the value of
function f using Õ(n3) value queries and in Õ(n4) time.

▶ Theorem 14 ([20]). There is an algorithm for submodular function minimization with
O(n3 log2 n) value queries and O(n4 logO(1) n) time where n is the size of the ground set.

3 Sublinear Time Cut Sparsification with Cut Size and Cut Edge
Sampling Queries

We now present an algorithm that, given access to a hypergraph H through cut size queries
(oracle Ovalue) and queries to sample a random edge crossing a cut (oracle Oedge), outputs
a (1 ± ε)-approximate sparsifier with Õ(n/ε2) hyperedges in poly(n) time. At a high-level,
our algorithm will first create a poly(n) size sparsifier H1 by indirectly implementing the
algorithm underlying Theorem 8. We then use the algorithm in Theorem 11 to construct a
sparsifier H2 of H1 which has Õ(n/ε2) hyperedges. By the definition of cut sparsifier, H2 is
also a cut sparsifier of H. We can thus focus on the construction of the sparsifier H1.

The primary challenge in simulating the algorithm of Theorem 8 is to sample edges
according to their strength with a small number of queries. Consider the following recursive
algorithm. We start with the graph H, and then at each step, we find the minimum cut of
the connected graph, and sample Θ((r + log n)/ε2) edges from the cut. We then recursively
execute this algorithm on each side of the cut. Algorithm 1 gives an implementation of
this idea.

It is easy to see that this algorithm samples each edge independently, and that the
sampling probability is at least that of Kogan-Krauthgamer in Theorem 8. The challenge is
that unlike cut queries in the normal graph, it is hard to compute the cut size in an induced
subgraph of a hypergraph using only cut queries on the original graph, which is crucial as
the algorithm proceeds recursively.

We first note that this task is straightforward to do in graphs where each edge has exactly
two vertices. For any two disjoint subsets of vertices S, T , the number of edges in S × T is
1
2 (|δ(S)| + |δ(T )| − |δ(S ∪ T )|).
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Algorithm 1 Sampling edges with probability proportional to their strength.

Input : A subset of vertices V ′ ⊆ V .
1 Let (S, S̄) be a minimum cut of the induced graph G[V ′];
2 Let c be the number of edges crossing (S, S̄) in G[V ′];
3 Sample an integer N ∼ B(c, 10(log n+r)

ϵ2c );
4 Sample N edges from δG[V ′](S) uniformly at random, and assign each of them a

weight of ϵ2c
10(log n+r) ;

5 Delete all edges in δG[V ′](S) and recurse on each of the newly created connected
components;

However, this is far from true in the hypergraph setting. The problem is that there may
be some hyperedges that intersect with each of S, T , and V \ (S ∪ T ). These edges are inside
all of δ(S), δ(T ) and δ(S ∪ T ). We have

|δ(S)| + |δ(T )| − |δ(S ∪ T )|

=2
∣∣{e|e ∩ S ̸= ∅, e ∩ T ̸= ∅, e ∩ (S ∪ T ) = ∅}

∣∣ +
∣∣{e|e ∩ S ̸= ∅, e ∩ T ̸= ∅, e ∩ (S ∪ T ) ̸= ∅}

∣∣
= |{e|e ∩ S ̸= ∅, e ∩ T ̸= ∅}| +

∣∣{e|e ∩ S ̸= ∅, e ∩ T ̸= ∅, e ∩ (S ∪ T ) = ∅}
∣∣

▶ Example 15. Consider a hypergraph H that consists of three equal size sets of vertices
A, B, C, such that each hyperedge has a non-empty intersection with each of A, B, and C.
Then there are no hyperedges in H [A ∪ B]. But the quantity 1

2 (|δ(A)| + |δ(B)| − |δ(A ∪ B)|)
is half the total number of hyperedges which could be exponentially large in n.

▶ Example 16. Consider the following pair of hypergraphs on 4 vertices, say {v1, v2, v3, v4}:
the graph H1 is a (rank 2) clique on 4 vertices while the graph H2 contains every possible
edge of size 3 on these 4 vertices. It is easy to verify that the answer to every cut query is
the same on the graphs H1 and H2. Now consider the subgraph of these graphs induced
by the vertices X = {v1, v2}. In case of H1, the minimum cut in the induced subgraph is
1 while in H2, the minimum cut in the graph induced by X is 0. We can amplify this gap
to 0 versus Ω(n) by taking n/4 copies of H1 in one case, and n/4 copies of H2 in the other
case, and defining X to be union of arbitrarily chosen pairs of vertices from each copy. This
means that Ovalue queries can not be used to estimate cut size in induced subgraphs to any
multiplicative factor or to better than a polynomial additive error.

To get around the challenge highlighted by examples above, we next introduce notions of
pseudo cut size over a subset of vertices and pseudo strength of hyperedges, such that the
pseudo cut sizes are easy to compute by cut queries and pseudo strength of any hyperedge
is at most a factor n larger than the strength of the hyperedge. We develop these ideas in
detail in the next subsection.

3.1 Pseudo Cuts and Pseudo Strengths
Given a set of vertices X, we define ∆X(S), the pseudo cut size of a set S ⊂ X as
1
2 (|δ(S)| + |δ(X \ S)| − |δ(X)|), and define the pseudo min cut over X as a cut (S, X \ S)
that minimizes ∆X(S). Note that ∆X(S) is at most the number of edges that intersect both
S and X \ S. The following lemma shows that ∆X(S) is a submodular function, so we can
compute the pseudo min cut over any vertex set in poly(n) time by Theorem 14.

▶ Lemma 17. For any vertex set X ⊆ V , ∆X(S) is a submodular function.
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Proof. Let f1(S) be the number of edges that intersect both S and X \ S, and let f2(S)
be the number of edges that intersect both S and X \ S but are fully contained in X. By
definition, we have ∆X(S) = 1

2 (f1(S) + f2(S)), so to prove that ∆X(S) is a submodular
function, it is sufficient to prove that both f1 and f2 are submodular.

Since f2 is the cut function in the induced graph H[X], it is submodular. In fact, f1 is
also the cut function of the hypergraph whose vertex set is X and edge set is {e ∩ X|e ∈ E}.
So f1 is also a submodular function. ◀

For any edge e, we define the pseudo strength k′
e as the largest pseudo min-cut size among

all sets X that contain e, where X ranges over all subsets of V . It is easy to see that for any
edge e, k′

e is at least ke since for any set of vertices X, the minimum cut size of H[X] is at
most the pseudo min-cut size of set X. More interestingly, although Example 15 showed
that the pseudo min-cut size of a set X may be arbitrarily larger than the minimum cut size
of H[X], the lemma below shows that the pseudo strength of an edge is at most a factor n

larger than its strength.

▶ Lemma 18. For any edge e, k′
e ≤ nke.

Proof. Let X be any set of vertices that contains the edge e and has pseudo min-cut size k′
e

in H . To prove the lemma, it is sufficient to prove that the pseudo min-cut size of X in H is
at most nke.

Let Y = V and Ec = ∅. Consider the following iterative process: we find the minimum
cut (S, Y \ S) in H[Y ]. If either S or Y \ S fully contains the set X, we add all edges
crossing the cut into Ec, and set Y to be S or Y \ S (whichever fully contains X), and repeat.
Otherwise, we stop the process.

After the process terminates, suppose (S, Y \ S) is the minimum cut in H[Y ]. Since the
process terminated, (S, Y \ S) must partition X. Let S′ = S ∩ X, and consider the pseudo
cut (S′, X \ S′). We prove that the number of edges in H that intersect both S′ and X \ S′

(which is an upper bound on ∆X(S′)) is at most nke.
First, note that no edge e′ such that e′ ̸⊆ Y and e′ /∈ Ec can intersect with the set Y ;

hence any such edge e′ also does not intersect with S′ or X \ S′. Therefore every edge
that intersects with both S′ and X \ S′ either belongs to Ec or is completely contained in
Y . During the iterative process, the set Y always fully contains e, so by the definition of
strength, the minimum cut size of H [Y ] is at most ke. This implies during each step, at most
ke edges are added into Ec. On the other hand, the process repeats at most n − 2 times,
since each time the size of Y is reduced by at least 1. So |Ec| ≤ (n − 2)ke. Finally, any edge
that is fully contained in Y and intersects with both S′ and X \ S′ crosses the cut (S, Y \ S)
in H [Y ], and the number of such edges is at most the minimum cut size of H [Y ], which is at
most ke. So in total, there are at most |Ec| + ke ≤ (n − 1)ke edges that intersect both S′

and X \ S′. ◀

3.2 Sampling the Edges
We are now ready to present an algorithm that uses the cut size queries and cut edge
sample queries to sample each edge with probability inversely proportional to its strength.
Specifically, we will ensure that each edge e gets sampled with probability at least n2/k′

e

which is at least n/ke by Lemma 18. The algorithm is similar to Algorithm 1, but uses
pseudo cuts and pseudo strengths instead. To sample the edges, we call Algorithm 2 on
set V .
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Algorithm 2 Sampling edges with probability proportional to their pseudo strength.

Input : A subset of vertices V ′ ⊆ V

1 Find the pseudo min-cut (S, V ′ \ S) within the set V ′;
2 Let c be |δ(S)|, the cut size of (S, V \ S) ;
3 Sample an integer N ∼ B(c, min{1, 10n3

ϵ2c });
4 Keep sampling edges in cut (S, S̄) until we get N different hyperedges. ;
5 Recurse on both S and V ′ \ S ;

We now prove that each edge gets sampled with probability at least as large as the
sampling probability in Theorem 8. Fix an edge e, let S1 be the last input set that fully
contains e. For any i ≥ 1, if Si is not V , we define Si+1 to be the input set in the recursion
that generates a recursive call of the algorithm on the set Si. In other word, (Si, Si+1 \ Si)
is the pseudo min cut within set Si+1. Let (S0, S1 \ S0) be the pseudo min cut within S1,
by definition, e ∩ S0 ≠ ∅ and e ∩ S1 \ S0 ≠ ∅. When the algorithm works on set S1, e

gets sampled with probability min{1, 10n3

ε2|δ(S0)| }. If e gets sampled with probability 1, then
it is clearly as large as the probability in Theorem 8. Otherwise we need to prove that
n3/ |δ(S0)| = Ω((log n + r)/ke). Since n = Ω(log n + r), by Lemma 18, it is sufficient to prove
that |δ(S0)| ≤ nk′

e.

▶ Lemma 19. |δ(S0)| ≤ nk′
e.

Proof. We partition the edges crossing the cut (S0, S0) into sets E1, E2, . . . such that for
any i ≥ 0, Ei is the set of edges that are fully contained in Si+1 but not in Si. Note that
|δ(S0)| =

∑
i |Ei|. Since the algorithm has at most n levels of recursion, to prove the lemma,

it is sufficient to prove |Ei| ≤ k′
e for all i ≥ 0.

For any edge e′ ∈ Ei, e′ ∩ Si ̸= ∅ since e′ crosses the cut (S0, S0) and S0 ⊆ Si. We also
have e′ ∩ Si+1 \ Si ≠ ∅ and e′ ∩ Si+1 = ∅ since e′ is fully contained in Si+1 but not Si. So
|Ei| ≤ ∆Si+1(Si). On the other hand, by definition of pseudo strength, k′

e ≥ ∆Si+1(Si) since
e is fully contained in Si+1. Therefore, |Ei| ≤ k′

e. ◀

By Lemma 19, we proved that each edge e is sampled with probability at least the
required probability in Theorem 8. Next, we need to assign weights to each sampled edge.

We do this after we finish sampling. For each edge e that gets sampled, we need to know
the probability that it gets sampled. Since we sample edges from each cut independently, we
only need to know the probability that e gets sampled during each recursive call, and that
probability depends only on the size of the cut and whether e crosses the cut. So we can
compute the probability that e gets sampled during Algorithm 2.

To complete the proof of Theorem 1, we need to show that the running time of the whole
process is polynomial in n.

Proof of Theorem 1. During each call to Algorithm 2, we need Õ(n3) queries to cut size
query oracle and Õ(n4) time to figure out the pseudo min-cut within the set V ′ by Theorem 14
and Lemma 17. At line 4, we call cut edge sample query 10n3/ε2 times in expectation.
Total number of recursive calls to Algorithm 2 is O(n), since each time, the input set
gets partitioned into two sets, and there are n sets in the end. Thus the running time of
Algorithm 2 is Õ(n5 + n4/ε2).

We sample the edges in O(n) cuts, so when assigning the weights, we only need to query
the size of these O(n) cuts and calculate the probability of each sampled edge, which can
also be done in O(n) time for each edge. So the running time of assigning the weights is
Õ(n5/ε2).
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After sampling the edges and assigning weights, we get a (1±ε)-approximate cut sparsifier
H1 of H with polynomial size in n. Then we run the algorithm in Theorem 11 to find a
(1 + ε)-approximate cut sparsifier H2 of H1 with Õ(n/ε2) number of edges in polynomial
time in n. By definition of cut sparsifier, H2 is a (1 ± ε)2-approximate cut sparsifier of H.
Since H1 contains Õ(n4/ε2) edges, by Theorem 11, the running time is O(n10/ε7).

So the total running time is O(n10/ε7). ◀

4 Sublinear Time Cut Sparsification with Cut Size and Pair Neighbor
Queries

In this section, we show that cut edge queries can be simulated by a poly(n) number of cut size
queries (oracle Ovalue) and pair neighbor queries (oracle O2

nbr), establishing that cut size query
oracle and pair neighbor query oracle are also sufficient to compute a (1 ± ε)-approximate
cut sparsifier in poly(n) time.

Given a pair of vertices u and v, let E({u, v}) be the set of edges that contain both u and
v. We first show how to approximate |E({u, v})| to within a factor of (1 ± ε) with probability
1 − ξ, for some small ξ. Note that we can compute 2∆{u,v}({u}) = |E({u, v})| + |E ∩ {u, v}|,
where |E ∩ {u, v}| is the number of copies of the edge {u, v}. We now describe an algorithm
to approximate |E({u, v})|:

Algorithm 3 Approximating |E({u, v})|.

Input : A pair of vertices u, v ∈ V , ε, ξ.
Output : An approximation Ê({u, v}) of |E({u, v})|.

1 Define k = 12 log(2/ξ)/(ε2).
2 Call the oracle O2

nbr k times on (u, v), and let α̂ be the fraction of returned edges
that were {u, v}.

3 Return Ê({u, v}) := 2∆{u,v}({u}) · 1
1+α̂ .

Note that this algorithm makes k = O( log(1/ξ)
ε2 ) queries.

▶ Lemma 20. With probability at least 1 − ξ, Ê({u, v}) is an approximation of |E({u, v})|
to within a factor of (1 ± ε).

Proof. Let α := |E∩{u,v}|
|E({u,v})| be the fraction of hyperedges that are {u, v}. The algorithm runs

a Monte Carlo simulation to approximate α by the ratio α̂. In order to prove concentration
of α̂ around α, let k′ be the total number of {u, v} edges returned, and observe that k′

is the sum of k independent Bernoulli random variables each having probability equal to
α. By Chernoff bound, Pr[|k′ − αk| > εk/2] ≤ 2 exp(−αkε2/12α) ≤ 2 exp(−kε2/12) =
2 exp(log(ξ/2)) = ξ. Therefore with probability at least 1 − ξ, |α̂ − α| ≤ ε/2. This implies
that 1

1+α̂ ∈ 1
1+α±ε/2 ⊆ 1

(1±ε/2)(1+α) . Finally, we use that 1
(1∓ε/2) ⊆ (1 ± ε) to conclude that

1
1+α̂ ∈ 1±ε

1+α , so

2∆{u,v}({u})
1 + α̂

∈ (1 ± ε)
2∆{u,v}({u})

1 + α
= (1 ± ε)|E({u, v})|. ◀

We now describe an algorithm to sample a random edge from δ(S), simulating a response
to Oedge. We first approximate the size of E({u, v}) for each pair of vertices u ∈ S and v ∈ S̄.
Then we sample a pair of u, v with probability proportional to |E({u, v})|, sample an edge
in E({u, v}), and then decide whether we keep it or not with probability proportional to its
size. If we decide not to pick the edge, we repeat the whole process again.
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Algorithm 4 Sampling an edge in δ(S).

Input : A subset S ⊆ V

Output : An edge e ∈ δ(S)
1 For each pair of vertices u, v such that u ∈ S and v ∈ S̄, call Algorithm 3 with

ξ = 1/n20, and let Ê({u, v}) be the output;
2 Sample a pair of vertices (u, v) ∈ S × S̄ with probability proportional to Ê({u, v});
3 Use the oracle O2

nbr to sample an edge e in E({u, v});
4 With probability 1

|e∩S|·|e∩S̄| , return e. Otherwise go to Step 2.

▶ Lemma 21. With probability at least 1 − 1/n−10, Algorithm 4 samples each edge in δ(S)
gets with probability 1±ε

|δ(S)| . The expected running time is Õ(n2/ε2).

Proof. We first condition on the |S| · |S̄| ≤ n2 events that for each pair u, v with u ∈ S

and v ∈ S̄, the estimate Ê({u, v}) was indeed in (1 ± ε) · |E({u, v})|, which happens with
probability at least 1 − n2ξ > 1 − 1/n−10. Now fix an edge e ∈ δ(S). The probability that it
was sampled at a particular iteration of Algorithm 4 is

∑
u∈S∩e,v∈S̄∩e

Ê({u, v})∑
(u′,v′)∈S×S̄ Ê({u′, v′})

· 1
|E({u, v})| · 1

|e ∩ S| · |e ∩ S̄|

∈ 1∑
(u′,v′)∈S×S̄ Ê({u′, v′})

∑
u∈S∩e,v∈S̄∩e

(1 ± ε)
|e ∩ S| · |e ∩ S̄|

= (1 ± ε)∑
(u′,v′)∈S×S̄ Ê({u′, v′})

That is, the probability of sampling each edge at any given iteration of Algorithm 4 is
within (1 ± ε) of every other edge. Therefore the probability of sampling each edge is within
a factor of (1 ± ε) of every other edge.

Step 1 calls Algorithm 3 O(n2) times, so the running time is Õ(n2/ε2). At step 4, the
probability that we keep the edge and finish the algorithm is at least 1/n2, so the expected
number of iterations through step 2 to 4 is at most n2. So the total running time on step 2
to 4 is Õ(n2) in expectation. ◀

Proof of Theorem 3. We run Algorithm 2, but each time it calls Oedge, we instead run
Algorithm 4 twice. With high probability, each time we simulate Oedge by Algorithm 4, the
probability of any edge in the cut being sampled is within a (1 ± ε) factor of the uniform
distribution. Denote by q′

e be the probability that an edge e is sampled by this algorithm, and
let qe be the probability that the edge e is sampled in Algorithm 2. We have q′

e ∈ 2(1 ± ε)qe,
which is larger than pe the probability of sampling an edge in Theorem 8. Also we cannot
directly compute q′

e, but we can approximate it to within a factor of (1 ± ε), which only adds
another (1 ± ε) factor to the approximation achieved by the cut sparsifier.

Since the number of calls to Oedge oracle in Algorithm 2 is Õ(n4/ε2). So we need
Õ(n6/ε2) = o(n10/ε7) queries to simulate these calls. So the running time of the algorithm
is still O(n10/ε7). ◀

5 Sublinear Time Hypergraph Spectral Sparsification

In this section, we consider the problem of hypergraph spectral sparsification in the access
models considered in the previous sections. We will focus on unweighted hypergraphs here,
and show that these results can be extended to the weighted case in Section 7. We first
consider the setting when we can access the underlying hypergraph using Ovalue and O2

nbr
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queries. It is easy to simulate the approach in Theorem 12 since O2
nbr allows us to sample

from E({u, v}) for any u and v. For any pair of vertices u and v, we sample Cn log n/ε2

edges in E({u, v}). For any hyperedge e, e gets sampled with probablity qe which is at least
the required value pe. Next we need to assign weights to the sampled edges. For any pair
of vertices u and v, we use Algorithm 3 to approximate |E({u, v})|. Then for any e, we
approximate qe by the approximation of |E({u, v})| for all pair u and v in e, and then assign
the weight of e as 1/qe.

Proof of Theorem 5. For each pair of vertices u and v, we sample Õ(n) edges in E({u, v}),
and also use Algorithm 3 to approximate |E({u, v})|. The total number of edges in the
sparsifier and the total number of queries we perform is Õ(n3). For every sampled edge e, we
need to calculate qe, which costs at most O(n2) time as we need to combine the probabilities
of sampling e through any pair of vertices inside e. So the total time complexity of the
algorithm is Õ(n5). ◀

We next consider the case when we are given access to hypergraph via Ovalue and Oedge
queries only. We observe that we cannot simulate the algorithm in Theorem 12. Consider the
following hypergraph H : there is a pair of vertices u and v, such that H contains all possible
hyperedges that do not contain both u and v. H also contains an edge {u, v}. Since {u, v}
is the only edge that contains both u and v, we need to sample this edge with probability 1
in the algorithm of Theorem 12. However, any cut in the hypergraph has exponential (in n)
size. So we need an exponential number of queries to sample the edge {u, v}.

Given the obstacle above, we will instead simulate Theorem 13. Our approach is to show
that the task of implementing Theorem 13 can be accomplished by our algorithm in Section 3,
except that we will sample poly(n) times more hyperedges. By doing so, we will guarantee
that the probability that each hyperedge e gets sampled is larger than the pe in Theorem 13.
We now develop the ideas needed to establish this coupling between Theorem 13 and our
algorithm in Section 3.

We first observe a relationship between the effective resistance and strength of an edge in
a normal graph.

▶ Lemma 22. For any edge f in a normal (weighted) graph G, we have rf ≤ n
kf

.

Proof. Suppose the edge f = (u, v), and let c denote the min-cut size between u and v.
Since for any vertex-induced subgraph of G that contains both u and v, the min-cut size is
at most c, it follows that kf ≤ c. So it is sufficient to prove that rf ≤ n

c .
Since the min-cut size between u and v is c, the max-flow size between u and v is also

c, which means we have a set of c edge-disjoint paths from u to v. As each path can have
length at most n, this set of edge-disjoint paths can be interpreted as c parallel resistors each
with resistance at most n. By Rayleigh’s monotonicity law, it then follows that rf ≤ n

c . ◀

We now briefly review the approach underlying Theorem 13 (see Section 2.3). Recall that
for any hyperedge e in a hypergraph H, Fe is the clique associated with e in the auxiliary
graph GH , and re = maxf∈Fe

rf . Define κe = minf∈Fe
kf . Then by Lemma 22, we have

re ≤ n
κe

. The following lemma shows a relationship between κe and ke.

▶ Lemma 23. For any hyperedge e in a hypergraph H, κe ≥ ke.

Proof. For any subset of vertices X, consider the corresponding vertex-induced subgraphs
of H and GH , which we denote by H[X] and GH [X], respectively. For any cut defined by a
partition of X, and for any hyperedge e crossing this cut in H[X], at least one edge in Fe
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must cross this cut in GH [X]. So the min-cut size of H[X] is at most the min-cut size of
GH [X]. Let Xe be the set of vertices such that e ⊆ Xe and the min-cut size of H [Xe] equals
ke. The min-cut size of GH [Xe] is at least ke. For any edge f ∈ Fe, f is contained in Xe

and so kf ≥ ke, which means κe = minf∈Fe kf ≥ ke. ◀

By Lemma 22 and Lemma 23, we have n
ke

≥ re for any hyperedge e. So by Theorem 13, if
we sample each hyperedge with probability qe which is at least min{1, Cn5 log n

ε2ke
}, and assign

it weight 1/qe if sampled, then the resulting hypergraph is a (1 ± ε)-spectral sparsifier. So we
can use the same process as described in Section 3, except that we oversample hyperedges by
a factor of n4. The resulting hypergraph will then be a (1 ± ε)-spectral hypergraph sparsifier.

Proof of Theorem 6. We run Algorithm 2, except that in line 3, we set N ∼
B(c, min{1, Cn7

ε2c }) where C is the constant in Theorem 13. By the same argument as
in Section 3, we sample each edge with probability at least min{1, Cn5 log n

ε2ke
}, which means

the resulting graph is a (1 ± ε)-spectral sparsifier if we assign the weight of each edge also
using the same process in Section 3. The number of hyperedges sampled is Õ(n8/ε2). We
then run the algorithm in Theorem 12 on our sparsifier and get a (1 ± 2ε)-spectral sparsifier
with Õ(n3/ε2) hyperedges. The time taken by running Algorithm 2 and assigning weights is
Õ(n9/ε) since there are n4 times more hyperedges being sampled. The running time of the
algorithm in Theorem 12 is Õ(n10) since there are Õ(n8) hyperedges sampled by Algorithm 2.
So the overall running time is Õ(n10). ◀

6 Lower Bounds

In this section we show that any natural relaxation of the assumptions underlying Theorem 1
and 3 rules out poly(n) time sparsification algorithms, proving Theorem 2 and 4.

6.1 Queries Ovalue and O1
nbr Together are not Sufficient

In this section, we prove that if any randomized algorithm can only access the underlying
hypergraph via Ovalue and O1

nbr, it is not possible to find with probability better than o(1) a
(1 ± ε)-approximate cut sparsifier with only poly(n) queries, proving Theorem 4. We start
by showing a weaker result, as stated in the lemma below, which shows that the failure
probability of a poly(n) time algorithm must be at least 1/2 − o(1), and then show how to
amplify the failure probability to 1 − o(1).

▶ Lemma 24. There is no polynomial time algorithm that can use Ovalue and O1
nbr queries

alone to construct a (1 ± ε)-approximate sparsifier of an underlying hypergraph H with
probability at least 1/2 + ξ for any constant ξ > 0.

Proof. Suppose the runtime of the algorithm is bounded by some polynomial f(n). We will
construct two graphs H1 = (V ∪ V ′, E1) and H2 = (V ∪ V ′, E2) with |V | = |V ′| = n and the
algorithm is shown with probability 1/2 the graph H1 and with probability 1/2 the graph
H2. We will then show that (a) any algorithm that can only access the underlying graph
using Ovalue and O1

nbr cannot distinguish between these two graphs with probability at least
1/2 + ξ for any constant ξ > 0, and (b) there exists a non-empty cut such that H1 and H2
do not have any common edges crossing the cut. Together, these properties immediately
imply the lemma .

Let u, v ∈ V and u′, v′ ∈ V ′ be two arbitrary pairs of vertices. Let E = 2V ∪ 2V ′ be the
union of the complete hypergraphs on V and V ′. We define E1 as E along with all possible
edges of size two among {u, v, u′, v′}. We define E2 as E along with all possible edges of
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size 3 among {u, v, u′, v′}. It is easy to verify that for any cut, the number of edges in E1
crossing the cut equals the number of edges in E2 crossing the cut. So any cut size query
Ovalue has the same answer in H1 and H2, and hence can not distinguish between these two
graphs, no matter the number of queries allowed.

The algorithm can additionally make at most f(n) calls to O1
nbr. But since each vertex

w ∈ V ∪ V ′ has at least 2n edges incident on it, the probability that a uniformly random edge
incident on w is not in E is at most 3/2n. Using a union bound over all f(n) queries along
with the fact that 3f(n)/2n ≤ ξ for sufficiently large n, we get that for both hypergraphs,
with probability at least 1 − 3f(n)/2n ≥ 1 − ξ, all sampled edges are in E.

Thus conditioned on the event that all of the sampled edges are in E, the algorithm
cannot distinguish between H1 and H2. On the other hand, there are no common edges
crossing the cut (V, V ′) in H1 and H2, so to output a proper (1±ε)-approximate cut sparsifier,
the algorithm must distinguish between H1 and H2. Hence the probability that algorithm
succeeds is at most 1/2 + ξ. ◀

To amplify the failure probability to 1 − o(1), we can independently generate log n

instances from the distribution above with each instance containing n/ log n vertices. We
now let our underlying graph be a union of these log n instances. Any algorithm that
outputs a (1 ± ε)-approximate sparsifier, must successfully identify for each of the log n

instances whether it is an instance of H1 or H2. Thus the probability of success is at most
(1/2 + o(1))log n = o(1). This completes the proof of Theorem 4.

6.2 Oedge Queries Alone are not Sufficient
In this section, we prove that if the algorithm can access the hypergraph through only Oedge
queries, it is not possible to find a proper (1 ± ε)-approximate cut sparsifier with poly(n)
queries with success probability better than o(1), proving Theorem 2. As above, we start by
showing a weaker result, which shows that the failure probability of a poly(n) time algorithm
must be at least 1/2 − o(1), and then show how to amplify the failure probability to 1 − o(1).

We first define two distributions of hypergraphs H1 and H2 such that for any sequence of
the queries the algorithm asks to Oedge, the distribution of the answers are almost identical
regardless of whether the graph was chosen from H1 or H2.

A graph in each of the distributions H1 and H2 is generated as follows. There are n + 1
vertices v0, v1, . . . , vn and the generated graph will have 2n − n − 1 edges. If the graph is
generated by H1, then we randomly choose 2n/2 subsets of {v1, . . . , vn} with size at least 2.
If the graph is generated by H2, then we randomly choose 2n/4 subsets of {v1, . . . , vn} with
size at least 2. Then for any subset S of {v1, . . . , vn} of size at least 2, if S is chosen in the
previous step, then the edge S ∪ {v0} is in the graph, otherwise the edge S is in the graph.

The algorithm is presented with probability 1/2 a graph H generated by H1, and with
probability 1/2 a graph H generated by H2, that is, the algorithm sees a graph H generated by
the distribution 1/2H1 + 1/2H2. Since the cut sizes of ({v0}, {v0}) in the graph generated by
H1 and H2 are 2n/2 and 2n/4 respectively, any algorithm that outputs a (1 ± ε)-approximate
cut sparsifier with ε < 1 must be able to distinguish between the graphs generated by H1
and H2. However, the following lemma shows that unless the algorithm makes exponential
number of queries, it cannot distinguish between the graphs generated by H1 and H2. The
proof of this lemma is deferred to the full version of this paper.

▶ Lemma 25. Any algorithm that only makes k Oedge queries where k = Poly(n) cannot
determine with probability better than 1

2 + k2

2n/4 if the underlying graph H is generated from
H1 or H2.
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Thus any algorithm that makes only poly(n) Oedge queries, fails with probability at least
1/2 − o(1). To amplify the failure probability to 1 − o(1), we can as before independently
generate log n instances from the distribution above with each instance containing n/ log n

vertices. We now let our underlying graph be a union of these log n instances. Any algorithm
that outputs a (1 ± ε)-approximate sparsifier, must successfully identify for each of the
log n instances whether it was generated from the first distribution or the second. Thus
the probability of success is at most (1/2 + o(1))log n = o(1). This completes the proof of
Theorem 2.

7 Weighted Hypergraphs

In this section, we describe how to extend the results of Theorem 1, Theorem 3, Theorem 5,
and Theorem 6 to weighted hypergraphs. Given a weighted hypergraph H = (V, E, w), we
consider access to this graph by weighted generalizations of oracles Ovalue, Oedge, and O2

nbr:
the oracle Ovalue now returns the weight of a cut rather than its size, and instead of sampling
uniformly, the oracles Oedge and O2

nbr sample edges with probability proportional to their
weight.

We first note that all the Theorems we use to derive these results (Theorem 8, Theorem 12,
and Theorem 13) can be modified to work when the input hypergraph is weighted.

▶ Lemma 26 (Weighted version of Theorem 8). Let H = (V, E, w) be a weighted hy-
pergraph with rank r, and let ε > 0 be an error parameter. Consider the hypergraph
H ′ obtained by sampling each hyperedge e in H independently with probability pe ≥
min{1, w(e) · 3((d+2) log n+r)

keε2 }, giving it weight w(e)/pe if included. Then with probability
at least 1 − O(n−d), H ′ is a (1 ± ε)-approximate cut sparsifier of H, and has O( n

ε2 (r + log n))
hyperedges.

▶ Lemma 27 (Weighted version of Theorem 12). Let H = (V, E, w) be a weighted hypergraph,
and let ε > 0 be an error parameter. Consider the hypergraph H ′ obtained by sampling each
hyperedge e in H independently with probability pe ≥ min{1, w(e) · Cn log n

ε2 minu,v∈e w(E({u,v})) },
giving it weight w(e)/pe if included. Then with high probability, H ′ is a (1 ± ε)-approximate
spectral sparsifier of H, and has Õ(n3/ε2) hyperedges.

▶ Lemma 28 (Weighted version of Theorem 13). Let H = (V, E, w) be a weighted hypergraph
with rank r, and let ε > 0 be an error parameter. Consider the hypergraph H ′ obtained by
sampling each hyperedge e in H independently with probability pe ≥ min{1, w(e) · Cr4re log n

ε2 },
giving it weight w(e)/pe if included. Then with high probability, H ′ is a (1 ± ε)-approximate
spectral sparsifier of H, and has Õ(nr3/ε2) hyperedges.

Most of our arguments and definitions for the unweighted case of Theorem 1 and Theorem 6
translate directly to the weighted case once we replace every mention of the cardinality of an
edge set by the weight of that edge set. In particular, if we generalize the definition of pseudo
cut size to be ∆X(S) = 1

2 (w(δ(S)) + w(δ(X \ S)) − w(δ(X))), then the proofs for Lemma 17,
Lemma 18, and Lemma 19 are completely analogous. The only difference in the analysis of
Algorithm 2 is that the probability that a sample from the cut (S0, S̄0) returns an edge e in
the cut is now w(e)/w(δ(S)), implying that the probability that e is sampled by Algorithm 2
is at least min{1, 10w(e)n3

ϵ2w(δ(S0)) }. Since this is at least the requisite sampling probability in
Lemma 26, the hypergraph H1 is a sparsifier of H with high probability. In the case of
Theorem 6, we still have that for every hyperedge e, n

ke
≥ re, so Algorithm 2 can be applied

to sample each hyperedge e with the desired probability of at least min{1, w(e) · Cr4re log n
ε2 }.
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Similarly for Theorem 3 and Theorem 5, the proof of correctness of Algorithm 3 is
almost completely analogous (although this time, the algorithm outputs an estimate of
the total weight of hyperedges containing both u and v). The proof of correctness of
Algorithm 4 is modified to assert that the probability of sampling an edge e ∈ E({u, v})
is w(e)/w(E({u, v})), implying that the probability that the algorithm samples e in each
iteration is proportional to (1 ± ε) · w(e).

Note that the running time of our algorithms are independent of the number of edges
in the unweighted setting. Similarly, in the weighted setting, our running times have no
dependence on the weights of the edges, and the running time and the size of sparsifier are
the same as in the unweighted cases.

8 Concluding Remarks

We presented the first sublinear time algorithms for creating a hypergraph sparsifier. Given
access to a hypergraph through cut size and suitable edge sampling queries, our algorithm
outputs a (1 ± ε)-approximate sparsifier with Õ(n/ε2) hyperedges in polynomial time in n,
independent of the number of hyperedges. We also showed that for any natural weakening of
our query access assumptions, there is no poly(n) time algorithm for building a hypergraph
sparsifier of poly(n) size. An intriguing question is if an information-theoretic cut sparsifier
can be constructed using cut value queries alone. Cut value queries alone can not distinguish
between hypergraphs which only contain edges of rank 2 from hypergraphs which only contain
edges of rank 3, making it impossible for them to output a proper sparsifier. But this does
not rule out the possibility that a suitable data structure can be created using these queries
alone that can recover the value of any cut to within a (1 ± ε)-approximation.
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Abstract
The edit distance (ED) and longest common subsequence (LCS) are two fundamental problems which
quantify how similar two strings are to one another. In this paper, we first consider these problems
in the asymmetric streaming model introduced by Andoni, Krauthgamer and Onak [11] (FOCS’10)
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for ED with memory Õ(nδ) for any constant δ > 0. In addition to this, we present an upper bound of
Õϵ(

√
n) on the memory needed to approximate ED or LCS within a factor 1 ± ϵ. All our algorithms

are deterministic and run in polynomial time in a single pass.
We further study small-space approximation algorithms for ED, LCS, and longest increasing

sequence (LIS) in the non-streaming setting. Here, we design algorithms that achieve 1 ± ϵ approx-
imation for all three problems, where ϵ > 0 can be any constant and even slightly sub-constant.
Our algorithms only use poly-logarithmic space while maintaining a polynomial running time. This
significantly improves previous results in terms of space complexity, where all known results need
to use space at least Ω(

√
n). Our algorithms make novel use of triangle inequality and carefully

designed recursions to save space, which can be of independent interest.
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1 Introduction

We consider edit distance (ED) and longest common subsequence (LCS) which are classic
problems measuring the similarity between two strings. Edit distance is defined on two
strings s and s̄ and seeks the smallest number of character insertions, character deletions,
and character substitutions to transform s into s̄. While in edit distance the goal is to make
a transformation, longest common subsequence asks for the largest string that appears as a
subsequence in both s and s̄.

Edit distance and longest common subsequence have applications in various contexts,
such as computational biology, text processing, compiler optimization, data analysis, image
analysis, among others. As a result, both problems have been subject to a plethora of studies
since 1950 (e.g. see [19, 20, 2, 14, 13, 11, 47, 17, 32, 34, 46, 57, 33, 42, 54, 23, 6, 26, 63, 24,
62, 48, 40, 38, 59, 3, 25, 45, 8, 10, 9, 7, 15, 39, 29, 53, 64, 43, 4, 21, 44, 26]).

Both problems are often used to measure the similarity of long strings. For example, a
human genome consists of almost three billion base pairs that are modeled as a string for
similarity testing. Classic algorithms for the problems require quadratic runtime as well as
linear memory to find a solution. These bounds might be impractical for some real-world
applications. Therefore, recent work on ED and LCS focus on obtaining fast algorithms [61,
44, 20, 13, 11, 8, 9, 60, 22, 52, 26] as well as solutions with small memory [45, 20, 28, 41].

As can be seen from the aforementioned references, while there have been a lot of previous
works on obtaining fast algorithms, the equally important question of achieving algorithms
using small space has not been studied in depth. In this paper our focus is to design
algorithms with significantly improved space complexity for these string measures, in several
different models.

Our first model is related to the streaming setting studied in most previous works on space
complexity for ED and LCS. This is an increasingly popular framework to model memory
constraints. In this setting, the input arrives as a data stream while only sublinear memory
is available to the algorithm. The goal is to design an algorithm that solves/approximates
the solution by taking a few passes over the data. While several works have studied ED and
LCS in the streaming model (see Section 1.1 for a detailed discussion), positive results are
known only for the low-distance regime [56, 66, 18, 28, 27]. In addition to this, strong lower
bounds are given for the streaming variant of LCS [56, 66].

Inspired by the work of [11] (FOCS’10), Saks and Seshadhri [64] (SODA’13) studied the
problem of approximating n − LCS (which is half of the the edit distance between two strings
of length n when only insertions and deletions are allowed) in the asymmetric model. In this
model we have random access to one of the strings (say s̄) and streaming access to the other
string (say s). They showed that (1 + ϵ) approximation of n − LCS can be found with a
memory of Õϵ(

√
n). Another work by Saha [63] gives an algorithm for ED in this setting,

using a memory of O(
√

n
ϵ ), and achieving an ϵn additive approximation.

In this work, we study ED and LCS in the asymmetric streaming model. We present
a single-pass deterministic constant factor approximation algorithm for ED that uses only
Õ(nδ) memory for any constant δ > 0. In addition to this, we show that with the memory of
Õϵ(
√

n) one can approximate both ED and LCS within a factor of 1± ϵ. All our algorithms
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are deterministic and run in a single-pass and in polynomial time. Moreover, the memory
bound of our algorithm for LCS is tight due to a lower bound given in [37]. It is also worth
mentioning that the lower bound of Ω(log2 n/ϵ) is known for computing 1 + ϵ approximation
of n − LCS due to the result of [58].

LIS and distance to monotonicity (DTM) are special cases of LCS and ED that are also
studied in the streaming model [41, 64]. In these two problems, one of the strings is a length
n string over the alphabet [n] and the second string is the sorted permutation ⟨1, 2, . . . , n⟩.
Therefore, any asymmetric streaming algorithm for LCS and ED also implies a classical
streaming algorithm for LIS and DTM, since we can assume that we have random access to
the sorted permutation ⟨1, 2, . . . , n⟩. As a result, our algorithms for ED and LCS can be seen
as a generalization of [41, 64] on streaming LIS and distance to monotonicity.

More generally, we also study the memory requirements of ED, LCS, and LIS in the
non-streaming model, where we have random access to all input strings. Even in this setting,
classic algorithms that compute ED and LCS exactly using dynamic programming need
linear space. A recent work [50] slightly improves the space complexity to O( n log1.5 n

2
√

log n
) while

preserving a polynomial running time, however achieving strongly sublinear space (i.e., space
n1−α for some constant α > 0) with a polynomial running time for ED and LCS still seems
out of reach. Therefore, in this paper we turn to the relaxed goal of approximating ED and
LCS using significantly smaller space while preserving a polynomial running time.

The only previous positive results in this setting we are aware of, are the previously
mentioned works on streaming algorithms and the work of Saha [63]. Again, for ED the
streaming results only work in the low-distance regime, except the work of Saks and Seshadhri
[64] which gives a (1 + ϵ) approximation of n − LCS using Õϵ(

√
n) space. Additionally, [64]

also gives a randomized algorithm that achieves an ϵn additive approximation of LCS in
this model, using space O(k log2 n/ϵ) where k is the maximum number of times any symbol
appears in y. [63] gives a small space algorithm for ED, although the result only works for
constant alphabet size and only provides an additive approximation instead of multiplicative
approximation. Further the space needed is at least Ω(n2/3). For LIS the situation is slightly
better. In particular, the work of Gopalan, Jayram, Krauthgamer and Kumar [41] provides
a deterministic streaming algorithm that approximates LIS to within a 1− ϵ factor, using
time O(n log n) and space O(

√
n/ϵ log n); while a very recent work by Kiyomi, Ono, Otachi,

Schweitzer and Tarui [51] obtains a deterministic algorithm that computes LIS exactly using
O(n1.5 log n) time and O(

√
n log n) space. [63] in addition provides an algorithm for LIS

using space O( log n
ϵ ) that achieves an ϵn additive approximation. Thus here we seek to obtain

an 1− ϵ approximation of LIS using space much smaller than
√

n.
More broadly, the questions studied in this paper are closely related to the general question

of non-deterministic small space computation vs. deterministic small space computation.
Specifically, the decision versions of all three problems (ED, LCS, and LIS) can be easily
shown to be in the class NL (i.e., non-deterministic log-space), and the question of whether
NL = L (i.e., if non-deterministic log-space computation is equivalent to deterministic log-
space computation) is a major open question in complexity theory. Note that if NL = L,
this would trivially imply polynomial time algorithms for exactly computing ED, LCS, and
LIS in logspace. However, although we know that NL ⊆ P and NL ⊆ SPACE(log2 n) (by
Savitch’s theorem [65]), it is not known if every problem in NL can be solved simultaneously
in polynomial time and polylog space, i.e., if NL ⊆ SC where SC is Steve’s class. In fact,
it is not known if an NL-complete language (e.g., directed s-t connectivity) can be solved
simultaneously in polynomial time and strongly sub linear space (i.e., space n1−α for some
fixed constant α > 0). Thus, studying special problems such as ED, LCS, and LIS, and the
relaxed version of approximation is a reasonable first step towards major open problems.

ICALP 2021
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In the non-streaming setting, for all three problems ED, LCS, and LIS, we give efficient
deterministic approximation algorithms that can achieve 1± ϵ approximation, using even
polylog(n) space while maintaining a polynomial running time. By relaxing the space com-
plexity to nδ for any constant δ > 0, we obtain algorithms whose running time is comparable
to the standard dynamic programming approach. This is in sharp contrast to the time
complexity of ED, LCS, where we only know how to beat the standard dynamic programming
significantly by using randomized algorithms and with much worse approximation guarantees.

Last but not least, it turns out that we can also use our techniques developed for the non-
streaming model to significantly reduce the running time of our algorithm in the asymmetric
streaming model, resulting in a polynomial time algorithm.

1.1 Related work
Quadratic time solutions for ED and LCS have been known for many decades [55]. Recently,
it has been shown that a truly subquadratic time solution for either ED or LCS refutes
Strong Exponential Time Hypothesis (SETH), a conjecture widely believed in the community
(see [14, 2, 25]). Therefore, much attention is given to approximation algorithms for the
two problems. For edit distance, a series of works [54], [16], [17], and [13] improve the
approximation factor culminating in the seminal work of Andoni, Krauthgamer, and Onak [11]
that finally obtains a polylogarithmic approximation factor in near-linear time. More recently
constant factor approximation algorithms with truly subquadratic runtimes are obtained for
edit distance (a question which was open for a few decades): first a quantum algorithm [20],
then a classic solution [26], and finally near linear time solutions are given [22, 52, 12].
LCS has also received tremendous attention in recent years [44, 60, 61, 1, 4, 30]. Only
trivial solutions were known for LCS until very recently: a 2 approximate solution when the
alphabet is 0/1 and an O(

√
n) approximate solution for general alphabets in linear time.

Both these bounds are recently improved by [44] and Rubinstein and Song [60] (see also a
recent approximation algorithms given by [61]).

Streaming algorithms for edit distance have been limited to the case that the distance
between the two strings is bounded by a parameter k which is substantially smaller than n.
In particular, [28] gives a randomized one-pass algorithm in a variant of the streaming model
where one can scan the two strings s and s̄ simultaneously in the coordinated fashion, using
space O(k6) and time O(n + k6). This was later improved to space O(k) and time O(n + k2)
in [27, 18]. [18] further gives a randomized one-pass algorithm in the standard streaming
model using space O(k8 polylog n) and time Õ(k2n). It is improved to O(k3 polylog n) space
recently in [49]. Note that in all these algorithms the space can be as large as n.

Table 1 The results for asymmetric streaming model of this paper along with previous work.

problem approximation factor memory reference
ED O(21/δ) Õ(nδ/δ) Theorem 1
ED 1 + ϵ Õϵ(

√
n) Theorem 2

LCS 1 − ϵ Õϵ(
√

n) Theorem 2
LIS 1 − ϵ Õϵ(

√
n) [41] (SODA’07)

n − LCS 1 + ϵ Õϵ(
√

n) [64] (SODA’13)
DTM 1 + ϵ Oϵ(log2 n) [64, 58] (SODA’13, SODA’14)
DTM 1 + ϵ Õϵ(

√
n) [41] (SODA’07)

DTM 2 O(log2 n) [35] (SODA’08)
DTM 4 O(log2 n) [41] (SODA’07)
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1.2 Our Results
We summarize our main theorems in this section and in Table 1. In the next subsection we
demonstrate our main techniques and general ideas in details. Formal proofs are deferred to
the appendix. First we start with the following results for the asymmetric streaming model.

▶ Theorem 1. Given online string s and offline string s̄ both in Σn, for any constant δ > 0,
there exists a deterministic algorithm that, making one pass through s, outputs a O(21/δ)
approximation of ED(s, s̄) using Õ(nδ/δ) space and Õδ(n4) time.

▶ Theorem 2. Given online string s and offline string s̄ both in Σn, for any constant
ϵ ∈ (0, 1), there is a deterministic algorithm that, making one pass through s, outputs a
(1− ϵ)-approximation of LCS(s, s̄) using Õ(

√
n

ϵ ) space, or (1 + ϵ)-approximation of ED(s, s̄)
using Õ(

√
n
ϵ ) space, in polynomial time.

Theorem 1 is surprising in the sense that by allowing random access to one string, we
can design an efficient deterministic one pass streaming algorithm achieving a constant
approximation of ED with space nδ for any constant δ > 0. Previously no such positive
results with sublinear space are known in the full streaming model even for randomized
algorithms. The proof of this theorem makes novel uses of triangle inequality, and combines
the techniques we develop for the non-streaming model. Theorem 2 further shows that we
can in fact achieve an (1 + ϵ)-approximation of ED, albeit using a larger space (Õ(

√
n
ϵ )).

The result also extends to give the first (1− ϵ)-approximation of LCS with sublinear space in
the asymmetric streaming model, and the space matches the lower bound implied from the
lower bound for LIS in [37].

Next we bring our results for the (non-streaming) small space model.

▶ Theorem 3. Given any strings x and y each of length n, there are deterministic algorithms
that approximate ED(x, y) with the following parameters:
1. For any constants δ ∈ (0, 1

2 ) and ϵ ∈ (0, 1), an algorithm that outputs a 1+ϵ approximation
of ED(x, y) using Õϵ,δ(nδ) space and Õϵ,δ(n2) time.

2. An algorithm that outputs a 1 + O( 1
log log n ) approximation of ED(x, y) using O( log4 n

log log n )
space and n7+o(1) time.

Note that our first algorithm for ED uses roughly the same running time as the standard
dynamic programming, but much smaller space. Indeed, we can use space nδ for any constant
δ > 0. This also significantly improves the previous result of [64], which needs to use space
Ω(
√

n log n) and only provides a 2 + ϵ approximation for standard ED. With a larger (but
still polynomial) running time, we can achieve space complexity O( log4 n

log log n ).

▶ Theorem 4. Given any strings x and y each of length n, there are deterministic algorithms
that approximate LCS(x, y) with the following parameters:
1. For any constants δ ∈ (0, 1

2 ) such that 1
δ is an integer, and ϵ ∈ (0, 1),an algorithm that

outputs a 1− ϵ approximation of LCS(x, y) using Õϵ,δ(nδ) space and Õϵ,δ(n3−δ) time.
2. An algorithm that outputs a 1−O( 1

log log n ) approximation of LCS(x, y), using O( log4 n
log log n )

space and n6+o(1) time.

To the best of our knowledge, Theorem 4 (together with Theorem 2) is the first 1 − ϵ

approximation of LCS using truly sub-linear space, and in fact we can achieve space nδ for
any constant δ > 0 with only a slightly larger running time than the standard dynamic
programming approach. We can achieve space O( log4 n

log log n ) with an even larger (but still
polynomial) running time. For LIS, we have a similar theorem.
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▶ Theorem 5. Given any string x of length n, there are deterministic algorithms that
approximate LIS(x) with the following parameters:
1. For any constants δ ∈ (0, 1

2 ) such that 1
δ is an integer, and ϵ ∈ (0, 1), an algorithm that

computes a 1− ϵ approximation of LIS(x) using Õϵ,δ(nδ) space and Õϵ,δ(n2−2δ) time.
2. An algorithm that outputs a 1 − O( 1

log log n ) approximation of LIS(x) using O( log4 n
log log n )

space and n5+o(1) time.

2 Preliminaries

Let Σ be an alphabet. For a string s ∈ Σn, we use s[i] to denote the ith character in s. We
use s[i, j] to denote the substring of s from the ith character to the jth character. We also
use s[i, j) to denote the substring of s from the ith character to (j − 1)th character (s[i, i) is
an empty string). We denote the concatenation of two strings x and y by x ◦ y. We use two
special symbols ∞ and −∞ with ∞ > i and −∞ < i for any character i ∈ Σ.

Given two strings s and s̄ in Σn, the longest common subsequence (LCS) of s and s̄ is a
string t with the maximum length such that t is a subsequence of both s and s̄. In other
words, t can be obtained from both s and s̄ by removing some of the characters. We use
LCS(s, s̄) to denote the length of the LCS of two strings s and s̄. The edit distance (ED)
between two strings s and s̄, denoted by ED(s, s̄), is the minimum number of character
insertions, deletions, and substitutions needed to transform one string to the other string.
The longest increasing subsequence (LIS) problem is defined as follows. We assume there is a
given total order on the alphabet set Σ. We say the string x ∈ Σt is an increasing subsequence
of s ∈ Σn if there exists indices 1 ≤ i1 < i2 < · · · < it ≤ n such that x = si1si2 · · · sit and
si1 < si2 < · · · < sit

. We denote the length of the longest increasing subsequence of string s

by LIS(s).

Asymmetric streaming model. Throughout this paper, we assume that the input of the
algorithm consists of two strings s̄ and s. We assume for simplicity and without loss of
generality that the two strings have equal length n. We call the string s̄ the offline string
and assume that the algorithm has random access to the characters of s̄ via making a query.
The other string s arrives as a stream of characters. We call s the online string.

3 Constant Approximation for Streaming Edit distance

Our main results in the asymmetric streaming setting is an algorithm that given any constant
δ > 0 finds a constant approximation of the edit distance using Õ(nδ) memory. As we
discussed in the previous section, instead of directly solving the edit distance, we aim to find
a substring of s such that its edit distance is smallest to s̄. We can this problem Closest
Substring. It is defined as follows. It takes two inputs: an offline string s̄ and an online string
s. The goal is to find two indices l, r and ED(s̄[l, r], s) such that ED(s̄[l, r], s) ≤ ED(s̄[i, j], s)
for every 1 ≤ i ≤ j ≤ n.

We first show that how solving the closest substring problem can give us a good approx-
imation of the edit distance. Let s̄[l, r] be the substring of s̄ with the minimum edit distance
to s. We know by the definition of edit distance that it satisfies the triangle inequality1.

1 ED(s1, s3) ≤ ED(s1, s2) + ED(s2, s3) for any strings s1, s2, s3.
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Therefore, we have

ED(s̄, s) ≤ ED(s̄, s̄[l, r]) + ED(s̄[l, r], s) . (1)

We also have,

ED(s̄, s̄[l, r]) + ED(s̄[l, r], s)
≤ ED(s̄, s) + ED(s̄[l, r], s) + ED(s̄[l, r], s) By the triangle inequality.
≤ 3ED(s̄, s) Since s̄[l, r] has the minimum ED to s.

(2)

It follows from (1) and (2) that ED(s̄, s̄[l, r]) + ED(s̄[l, r], s) is a 3-approximation of the
edit distance between s̄ and s. Therefore, if we design a streaming algorithm that finds
s̄[l, r] and its edit distance from s, we can then estimate the edit distance of s and s̄ by
computing ED(s̄, s̄[l, r]) + ED(s̄[l, r], s). In the following theorem which directly implies from
Savitch’s theorem [65], we show that ED(s̄, s̄[l, r]) + ED(s̄[l, r], s) can be computed using
a poly-logarithmic memory. In specific, we show that the edit distance between any two
substrings of the offline string can be computed using a very small memory of O(log2 n).
The proof is deferred to the full version [36]

▶ Theorem 6. Suppose that we have random access to two given strings s and s̄ of length n.
Then LCS(s, s̄) and ED(s, s̄) can be computed using O(log2 n) memory.

Therefore, by finding the substring that has the minimum edit distance to s, we can
get a good approximation of the edit distance. Nonetheless, we do not know any streaming
algorithm with the memory of O(nδ) for finding closest substring, and our algorithm only
finds an approximate solution for this problem. In other words, it finds a substring of s̄ such
that its approximate edit distance to s is close to the minimum. In the rest of the section, we
show that how we can approximately solve the closest substring problem with the memory
of Õ(nδ). Given an online string, we divide the online string into n1−δ windows of size nδ.
Our algorithm (formally as Algorithm 1), then recursively finds substrings of s̄ that have
the minimum edit distance from each of these windows. Note that for each window we can
store the result of solving the closest substring problem in O(log n) (We can store only three
numbers which are the start and the end of the interval and the approximate edit distance
to the online string). Therefore, by the end of all recursive calls our algorithm needs to store
O(nδ) values.

In order to find the solution of the closest substring problem using these partial solutions,
our algorithm considers all different substrings s̄[l, r] of s̄ and all different mappings between
the windows of the s and the substrings of s̄[l, r]. Then, for any mapping it estimates the
edit distance between a window of s and its mapped substring of s̄[l, r] using the solution of
the closest substring problem that we have found in the recursive call.

In order to analyze our algorithm, we first show that finding any approximation of the
closest substring problem, can yield us an approximation for the edit distance. We first
define an approximate version of the closest substring problem as follows.

▶ Definition 7. Given an offline string s̄ and online string s, we say that the substring s̄[l, r]
along with its approximate edit distance d is an α-approximation for the closest substring
problem if for any substring s̄[l∗, r∗] we have

ED(s̄[l, r], s) ≤ d ≤ α · ED(s̄[l∗, r∗], s) . (3)
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Algorithm 1 Algorithm APPROXIMATE-CLOSEST-SUBSTR for approximating ED.

Data: An offline string s̄ of length n, a stream of characters of the online string s, and a
parameter δ > 0.

1: if |s| ≤ nδ then
2: Store all characters of s in the memory.
3: Find a substring of s̄ that has the minimum edit distance to s. Let s̄[l, r] be

this substring and d be its edit distance.
4: return l, r and d.
5: else
6: ξ ← nδ.
7: Divide s into ξ windows s∗

1, s∗
2, . . . , s∗

ξ of size |s|/ξ.
8: for i ∈ [ξ] do
9: Recursively find the closest substring of s̄ from s∗

i . Let li, ri be the start
and the end of this substring respectively, and di be the approximate edit
distance of this substring to s∗

i .
10: min_dist←∞.
11: for 1 ≤ p0 ≤ p1 ≤ . . . ≤ pξ ≤ n + 1 do
12: dist =

∑ξ
i=1 di + ED

(
s̄[pi−1, pi), s̄[li, ri]

)
.

13: if dist < min_dist then
14: min_dist← dist.
15: l← p0.
16: r ← pξ − 1.
17: return l, r and min_dist.

In the following claim we show that we can use any α-approximation of the closest substring
problem to get a O(α)-approximation for the edit distance.

▷ Claim 8. Let s̄[l, r] be an α approximation of the closest substring problem and let d be
its approximate edit distance to s. Then for any substring s̄[l∗, r∗], d + ED

(
s̄[l, r], s̄[l∗, r∗]

)
is

a (2α + 1)-approximation for the edit distance between s̄[l∗, r∗] and s.

Proof. First we show that
(
d + ED

(
s̄[l, r], s̄[l∗, r∗]

))
is not less than the edit distance between

s̄[l∗, r∗] and s.

d + ED
(
s̄[l, r], s̄[l∗, r∗]

)
≥ ED(s̄[l, r], s) + ED

(
s̄[l, r], s̄[l∗, r∗]

)
By (3).

≥ ED
(
s̄[l∗, r∗], s

)
. By the triangle inequality.

We now show that the value of
(
d + ED

(
s̄[l, r], s̄[l∗, r∗]

))
is at most (2α + 1) · ED

(
s, s̄[l∗, r∗]

)
.

Thus, it gives us a (2α + 1)-approximation of the edit distance. We have

d + ED
(
s̄[l, r], s̄[l∗, r∗]

)
≤ d + ED

(
s, s̄[l, r]

)
+ ED

(
s, s̄[l∗, r∗]

)
By the triangle inequality.

≤ d + α · ED
(
s, s̄[l∗, r∗]

)
+ ED

(
s, s̄[l∗, r∗]

)
By (3).

= d + (α + 1) · ED
(
s, s̄[l∗, r∗]

)
≤ α · ED

(
s, s̄[l∗, r∗]

)
+ (α + 1) · ED

(
s, s̄[l∗, r∗]

)
By (3).

= (2α + 1) · ED
(
s, s̄[l∗, r∗]

)
,

which completes the proof of the claim. ◁
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Based on our discussion above, we design an algorithm that finds a constant approximation
of the edit distance using Õ(nδ) memory for any δ > 0. The algorithm first divides the
online string into nδ windows with the equal length. Therefore, the length of each window
is n1−δ. It then finds an approximate solution of the closest substring problem for each
window recursively. By Claim 8, we can use the approximate solution of the closest substring
problem for each window, to find its edit distance from every other substring of the offline
string. The algorithm uses these approximate solutions to approximate the edit distance
between the entire online string and any substring of the offline string.

Note that by each recursive call the length of the online string will get smaller by a
multiplicative factor of n−δ. Therefore, when the depth of the recursive calls becomes 1/δ,
the length of the remaining online string is bounded by O(nδ) and we can store all of this
remaining online string in the memory and find the exact solution of the closest substring
problem. Thus, the depth of the recursion is bounded by O(1/δ). In the following theorem
we show that the approximation ratio of our algorithm is O(21/δ).

▶ Theorem 9. Given an offline string s̄, an online string s and any constant δ > 0, let n be
the length of the offline string and nγ be the length of the online string where γ > 0. Then,
Algorithm 1 finds a O

(
2γ/δ

)
approximation for the closest substring problem.

The full proof of Theorem 9 is deferred to the full version [36]. Now we are ready to
prove a version of Theorem 1 without the time complexity bound. We introduce how to
achieve polynomial runtime in Section 5.2.

Proof of Theorem 1 without the time complexity bound. By Theorem 9, Algorithm 1
finds a O(21/δ) approximation of the closest substring problem. Recall that by Theorem 6,
we can find the edit distance of any two substrings of s̄ using a very small memory. Therefore
by Claim 8, we can find a O(21/δ) approximation of the edit distance between s and s̄.

Now we show that the memory of Algorithm 1 is at most Õ(nδ/δ). While the length of
the online string is larger than nδ, Algorithm 1 divides the online string into nδ windows
and recursively solves the closest substring problem for each window. Therefore, by each
recursive call the length of the online string will decrease by a multiplicative factor of n−δ.
Thus, the maximum depth of the recursive calls is bounded by O(1/δ). At each call the
algorithm acquires a memory of Õ(nδ) which is the memory needed for storing the result of
the recursive calls and iterating over all possible mappings. Therefore, the memory of the
algorithm is bounded by Õ(nδ/δ). ◀

4 1 + ϵ-Approximation of Streaming ED

A previous work by Saks and Seshadri [64] studied the approximation algorithm for deletion
distance in the asymmetric streaming model. Here, the deletion distance (DD) is defined
as the minimum number of insertions and deletions required to transform s to s̄. Thus,
assuming |s| = |s̄| = n, DD(s, s̄) = 2(n− LCS(s, s̄)). [64] gives an algorithm that outputs a
(1 + ϵ) approximation of DD(s, s̄) for any constant ϵ > 0 with Õϵ(

√
n) space.

▶ Theorem 10 ([64]). Given an offline string s̄, an online string s, both with length n, and
any constant ϵ ∈ (0, 1], there is a deterministic algorithm that outputs a 1 + ϵ approximation
of DD(s̄, s) with O(

√
n log n/ϵ) space in polynomial time.

Although deletion distance is not equivalent to edit distance we study in this paper, there
is a simple transformation that reduces edit distance to deletion distance. The transformation
can be found in previous works (see example 6.9 of [67] for example). More specifically,
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for any given string s, we can obtain a new string s′ by prepending a special symbol
$ ($ is not the in the alphabet set) to each character of s. Thus, say s = s1s2 · · · sn,
we let s′ = $s1$s2 · · · $sn ∈ (Σ ∪ {$})2n. We can obtain a string s̄′ from s̄ with the same
transformation. The following lemma shows that the above transformation reduces computing
edit distance to computing deletion distance.

▶ Lemma 11. DD(s′, s̄′) = 2ED(s, s̄).

Proof. We first show that 2ED(s, s̄) ≥ DD(s′, s̄′). Assume we can transform s to s̄ with d

edit operations (insertion, deletion, and substitution), we show that it is possible to transform
s′ to s̄′ with 2d insdel operations (insertion and deletion). To see this, if we delete one symbol
from s, we delete the corresponding symbol in s′ together with the $ prepended to it. If we
insert one symbol to s, we insert the corresponding symbol to s′ together with a $ prepended
to it. If we substitute one symbol with another in s, we can first delete the corresponding
symbol in s′ and insert the new symbol at the same position.

We now show that 2ED(s, s̄) ≤ DD(s′, s̄′). We consider an LCS between s′ and s̄′, and
consider each pair of adjacent matches of $ in this LCS. Without loss of generality, we can
assume that in at least one side (say s′), this pair looks like $a$ where a is a symbol (we
can also append a $ at the end if needed), because otherwise if both sides have at least two
symbols between the $’s, then there is another pair of $’s in the middle that can be matched
and added to the LCS. Suppose now in s̄′ there are t non-$ symbols between the two $’s.
We have two cases: 1. If in the LCS, a is matched to one of the t symbols in s̄. Then the
number of insdel operations between s′ and s̄′ we need for this part is 2t− 2, while for the
corresponding part of s and s̄, we only need t− 1 deletions. 2. If in the LCS a is not matched
to any of the t symbols in s̄. Then the number of insdel operations between s′ and s̄′ we need
for this part is 2t, while for s and s̄ we need t− 1 deletions and one substitution (we can
substitute a for any of the t symbols in s̄), so that’s t operations. Thus, if we can transform
s′ to s̄′ with d insdel operations, we can transform s to s̄ with d

2 edit operations. ◀

Note that the reduction can be implemented in a streaming manner, thus the following
theorem is a direct result of the reduction and Theorem 10.

▶ Theorem 12. Given an offline string s̄, an online string s, both with length n, and any
constant ϵ > 0, there is a deterministic algorithm that outputs a 1 + ϵ approximation of
ED(s̄, s) with Õ(

√
n
ϵ ) space in polynomial time.

5 Space Efficient Algorithms for ED in the Non-Streaming Model

5.1 Space Efficient algorithms for ED
In this section, we present our algorithm for approximating ED with small space. The
pseudocode for our algorithm is given in Algorithm 2. Our algorithm is based on recursion.
In each level of recursion, we use an idea from [45] to approximate the edit distance between
certain pairs of substrings. We start by giving a brief description of the algorithm in [45].

Let x and y be two input strings such that |x| = n and |y| = m. We assume a value ∆ is
given to us. If ∆ is a (1+ϵ)-approximation of ED(x, y), then the algorithm will output a good
approximation of ED(x, y). Otherwise, the algorithm will output a value at least ED(x, y).
Thus, we can try every ∆ = ⌈(1 + ϵ)i⌉ ≤ n for some integer i and take the minimum. This
only increases the running time by a log1+ϵ n factor.

Given such a ∆, we first divide x into b blocks each of length n
b . [45] showed that, for each

block of x that is not matched to a too large or too small interval in y, there is a way to choose
O( b

ϵ log1+ϵ n) = O( b
ϵ2 log n) candidate intervals such that one of them is close enough to the
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Algorithm 2 Algorithm SpaceEfficientApproxED.

Data: Two strings x and y, parameters b ≤
√

n and ϵ ∈ (0, 1)
1: if |x| ≤ b then
2: compute ED(x, y) exactly.
3: return ED(x, y).
4: ed←∞.
5: set n = |x| and m = |y|.
6: divide x into b block each of length at most ⌈n/b⌉ such that x = x1 ◦ x2 ◦ · · · ◦ xb.
7: for all ∆ = 0 or ⌈(1 + ϵ)j⌉ for some integer j and ∆ ≤ max{|x|, |y|} do
8: for i = 1 to b do
9: for all (a, b) ∈ CandidateSet(n, m, (li, ri), ϵ, ∆) do

10: M(i, (a, b))← SpaceEfficientApproxED(xi, y[a, b], b, ϵ).
11: e← min{e, DPEditDistance(n, m, b, ϵ, ∆, M)}.
12: return e.

optimal alignment. We compute the edit distance between each block and all of its candidate
intervals, which gives O( b2

ϵ2 log n) values. After this, a simple dynamic programming gives
(1 + O(ϵ))-approximation of the edit distance if ∆ is a (1 + ϵ)-approximation of ED(x, y).
The dynamic programming algorithm takes O( b3 log n

ϵ3 ) time.
Since each block has length n

b , computing the edit distance of each block with one of
its candidate intervals in y takes at most O( n

b log n) space (we assume each symbol can be
stored with space O(log n)). We can run this algorithm sequentially and reuse the space for
each computation. Storing the edit distance of each pair takes O( b2

ϵ2 log2 n) bits of space.
Thus, if we take b = n1/3, the above algorithm uses a total of Õϵ(n2/3) space.

We now run the above algorithm recursively to further reduce the space required. Al-
gorithm 2 takes four inputs: two strings x, y ∈ Σn, two parameters b, ϵ such that b ≤

√
n and

ϵ ∈ (0, 1). The goal is to output a good approximation of ED(x, y) with small space (related
to parameters b and ϵ). Similarly, we first divide x into b blocks. We try every ∆ that is
equal to ⌈(1 + ϵ)i⌉ for some integer i, and for each ∆ there is a set of candidate intervals
for each block of x. Then, for each block of x, we use a sub algorithm called CandidateSet
to return all its O( b

ϵ2 log n) candidate intervals. Instead of computing the edit distance
between each block of x and its candidate intervals exactly, we recursively call our space
efficient approximation algorithm with this pair as input, while keeping b and ϵ unchanged.
After getting the results from the recursive calls, we combine these results with a dynamic
programming (the sub algorithm DPEditDistance). We argue that if the recursive call outputs
a (1 + γ)-approximation of the actual edit distance, the output of the dynamic programming
increases by at most a (1 + γ) factor. Thus if ∆ is a (1 + ϵ)-approximation of ED(x, y), the
output of the dynamic programming is guaranteed to be a (1 + O(ϵ))(1 + γ)-approximation.
The recursion stops whenever one of the input strings has length smaller than b, where we
compute the edit distance exactly with O(b log n) space.

Notice that at each level of the recursion, the first input string is divided into b blocks if
it has length larger than b. Thus the length of first input string at the i-th level of recursion
is at most n

bi−1 . The depth of recursion is at most d = logb n.
At the d-th level, Algorithm 2 computes the edit distance exactly. Using this as a

base case, we can show that the output of the i-th level of recursion is a (1 + O(ϵ))d−i

approximation of the edit distance by induction on i from d to 1. Thus, the output in
the first level is guaranteed to be a (1 + O(ϵ))d-approximation. Since d ≤ logb n, we get a
(1 + O(ϵ))d = 1 + O(ϵd) = 1 + O(ϵ logb n) approximation of ED(x, y).
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To analyze the time and space complexity, we study the recursion tree in our algorithm.
Notice that for each block xi and each choice of ∆, we consider O( b

ϵ2 log n) candidate
intervals. Since there are b blocks and O(log1+ϵ n) choices of ∆, we need to solve O( b2

ϵ3 log3 n)
subproblems by recursion. Thus, the degree of the recursion tree is O( b2

ϵ3 log3 n).
The dynamic programming at each level can be divided into b steps. At the j-th step,

the inputs are the edit distances between block xj and each of its candidate intervals. The
information we need to maintain is an approximation of edit distances between the first
j − 1 blocks of x and the substrings y[1, l] of y, where l is chosen from the set of starting
points of the candidate intervals of xj . There are O( b

ϵ ) choices for l and we query the
approximated edit distance between xj and each of its candidate intervals by recursively
applying our algorithm. Thus, we only need to maintain O( b

ϵ ) values at any time for the
dynamic programming.

At the i-th level of recursion, we either invoke one more level of recursion and maintain
O( b

ϵ ) values where each value takes O(log n) space, or do an exact computation of edit
distance when one of the input strings has length at most b, which takes O(b log n) space.
Hence, the space used at each level is bounded by O( b

ϵ log n). There are at most d = logb n

levels. The aggregated space used by our recursive algorithm is still O( b log2 n
ϵ log b ).

We compute the running time by counting the number of nodes in the recursion tree.
Notice that the number of nodes at level i is at most (O( b2

ϵ3 log3 n))i−1. For each leaf node,
we do exact computation with time O( b2

ϵ ), and the number of leaf nodes is bounded by
(O( b2

ϵ3 log3 n))d−1. For each inner node, we run the dynamic programming O(log1+ϵ n) times
(the number of choices of ∆) which takes O( b3 log2 n

ϵ4 ) time, and the number of inner nodes is
bounded by (d− 1)(O( b2

ϵ3 log3 n))d−2.
If we take b = log n and ϵ = 1

log n , we get a (1 + O( 1
log log n ))-approximation using

O( log4 n
log log n ) space and n7+o(1) time. If we take b = nδ for δ ∈ (0, 1

2 ) and ϵ a small constant,
we get a (1 + O(ϵ))-approximation using Õϵ,δ(nδ) space and Õϵ,δ(n2) time.

5.2 Improving the Runtime of Streaming ED

We can now use our techniques for small space approximation of ED to reduce the runtime of
our algorithm for ED in the asymmetric streaming model proposed in Section 3. Recall that
the most time consuming part of our streaming algorithm is finding the optimal window-
compatible solution given a series of windows. More specifically, this can be formulated as
follows. Suppose we divide the online string s into b = nδ windows {si}, and in the recursion
our algorithm already finds b windows {s̄[li, ri]} in the offline string s̄, that are approximately
the closest to {si}. We now need to use the windows {s̄[li, ri]} to find a substring in s̄

that is approximately the closest to s. Previously, this is done by a brute force approach:
we try all possible 1 ≤ p0 ≤ p1 ≤ . . . ≤ pb ≤ n + 1 to find the set of pi’s that minimizes∑b

i=1 ED(s̄[pi−1, pi), s̄[li, ri]). Let the optimal set be {p∗
i } and record the substring s̄[l, r] of

s̄ where l = p∗
0 and r = p∗

b − 1. The exponential running time comes from two parts: First,
the step of trying all possible 1 ≤ p0 ≤ p1 ≤ . . . ≤ pb ≤ n + 1 needs to examine

(
n

nδ+1
)

such choices. Second, when computing ED(s̄[pi−1, pi), s̄[li, ri]), the O(log2 n) algorithm from
Savitch’s theorem uses quasi-polynomial time.

Our main observation now is that, the step of trying all possible 1 ≤ p0 ≤ p1 ≤ . . . ≤
pb ≤ n + 1 to find the set of pi’s that minimizes

∑b
i=1 ED(s̄[pi−1, pi), s̄[li, ri]), is equivalent

to finding the substring of s̄ that minimizes the edit distance to the concatenation of s̄[li, ri]
from i = 1 to b. Thus, instead of trying all possible pi’s, we can try all substrings of y (there
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are only O(n2) such substrings) and compute the edit distance between each substring and
the concatenation of the s̄[li, ri]’s. Furthermore, instead of an exact computation which
either uses Ω(n) space or 2Ω(log2 n) time, we can use our (1 + ϵ)-approximation for ED with
Õ(nδ) space and Õ(n2) time. The approximation factor is now increased to O((2 + ϵ) 1

δ ),
which is still O(2 1

δ ) if we take ϵ to be small enough. But the running time decreases to Õ(n4),
and the space complexity remains Õ(nδ/δ).

6 1 − ϵ-Approximation of Streaming LCS

In this section, we design a streaming algorithm for finding a (1− ϵ) approximation of the
LCS using Õ(

√
n/ϵ) memory. We first define the LCSPosition function as below. Given the

online string s and the offline string s̄, it takes a position p in s̄ and a non-negative integer k

as inputs. The output is the smallest position q such that LCS(s̄[p, q], s[l, r]) ≥ k. If no such
q exists, the output is ∞.

For a position p in s̄, a substring s[l, r] of s, and a non-negative integer k, we use
LCSPositionl,r(p, k) to denote the result of the mentioned function.2 It is easy to verify that
the LCS of two strings s̄ and s is equal to the largest k such that LCSPosition1,n(1, k) <∞.
Therefore, instead of solving the LCS problem, we can solve the LCSPosition1,n problem and
report the largest k such that LCSPosition1,n(1, k) <∞.

Algorithm 3 Algorithm for approximating the LCS in streaming model.

Data: An offline string s̄ of length n, an online string s, and an ϵ∗ > 0.
1: Divide s into

√
n windows s∗

1, s∗
2, . . . , s∗√

n
of size

√
n.

2: D ← an array of size ⌊log1+ϵ∗ n⌋ initially containing ∞ in all cells.
3: for i ∈

[√
n

]
do

4: T ← an array of size ⌊log1+ϵ∗ n⌋ initially containing ∞ in all cells.
5: for 0 ≤ k ≤ ⌊log1+ϵ∗ n⌋ do
6: T [k]← LCSPosition(i−1)

√
n+1,i

√
n

(
1, ⌊(1 + ϵ∗)k⌋

)
.

7: for 0 ≤ k1 ≤ k do
8: if D[k1] <∞ then
9: Find LCSPosition(i−1)

√
n+1,i

√
n

(
D[k1] + 1, ⌊(1 + ϵ∗)k⌋− ⌊(1 + ϵ∗)k1⌋

)
using any

offline algorithm. Let q be this result.
10: T [k]← min

{
T [k], q

}
.

11: D ← T .
12: return The largest value ⌊(1 + ϵ∗)k⌋ such that D[k] <∞.
13: return 0 if no such k exists.

We now describe our algoirthm. The pseudocode is given in algorithm 3. It first divides
the online string into

√
n windows of equal sizes. We assume w.l.o.g., that length of the

strings is divisible by
√

n. Otherwise we can always pad offline and online strings with
different characters that are not in Σ such that their new length get divisible by

√
n. The

algorithm divides s into
√

n windows s∗
1, s∗

2, · · · , s∗√
n

each with the size of
√

n where s∗
i is the

substring s[(i− 1)
√

n + 1, i
√

n]. Given an ϵ∗ > 0, the algorithm keeps an array D of the size
⌊log1+ϵ∗ n⌋ where D[k] is an estimation of LCSPosition(1, ⌊(1 + ϵ∗)k⌋) in the subsequence of
the online string that has arrived so far in the stream. Specifically, after arrival of the window

2 We also define LCSPositionl,r(p, 0) to be p − 1.
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s∗
i in the stream, the algorithm keeps an estimation of LCSPosition1,i

√
n(1, ⌊(1 + ϵ∗)k⌋) in

D[k]. Please see the full version [36] for more details on how we update the array D upon
arrival of a new window and why we can achieve the approximation guarantee. We have the
following Theorem. The full proof is deferred to [36].

▶ Theorem 13. There exists a single-pass deterministic streaming algorithm that finds a
(1− ϵ) approximation of the LCS between s̄ and s using Õ(

√
n/ϵ) memory and polynomial

time.

7 Space Efficient Algorithms for LIS in the Non-Streaming Model

We now consider approximating the LIS of a string x ∈ Σn where the alphabet Σ has a total
order. We assume each symbol in Σ can be stored with O(log n) space. Let ∞ and −∞ be
two special symbols such that for any symbol σ ∈ Σ, −∞ < σ <∞. We denote the length
of the longest increasing subsequence of x by LIS(x).

Again our algorithm is a recursive one, and in each recursion we use an approach similar
to the deterministic streaming algorithm from [41] that gives a 1− ϵ approximation of LIS(x)
with O(

√
n/ϵ log n) space. Before describing their approach, we first give a brief introduction

to a classic algorithm for LIS, known as PatienceSorting. The algorithm initializes a list P

with n elements such that P [i] =∞ for all i ∈ [n], and then scans the input sequence x from
left to right. When reading a new symbol xi, we find the smallest index l such that P [l] ≥ xi

and set P [l] = xi. After processing the string x, for each i such that P [i] < ∞, we know
σ = P [i] is the smallest possible character such there is an increasing subsequence in x of
length i ending with σ. Finally the algorithm returns the largest index l such that P [l] <∞.
This computes LIS exactly in O(n log n) time and O(l log n) space (see [5] for more details).

In the streaming algorithm from [41], we maintain a set S and a list Q, such that, Q[i] is
stored only for i ∈ S and S ⊆ [n] is a set of size O(

√
n). We use S and Q as an approximation

to the list P in PatienceSorting in the sense that for each s ∈ S, there is an increasing
subsequence in x of length s ending with Q[s]. More specifically, we can generate a list P ′

from S and Q such that P ′[i] = Q[j] for the smallest j ≥ i that lies in S. For i larger than
the maximum element in S, we set P ′[i] =∞. Each time we read a new element, we update
Q and S accordingly, which is equivalent to doing PatienceSorting on the list P ′. When
S gets larger than 2

√
n, we do a cleanup to S by only keeping

√
n/ϵ evenly picked values

from 1 to max S and storing Q[s] for s ∈ S. This loses at most ϵ√
n

LIS(x) in the length
of the longest increasing subsequence detected. Since we only do O(

√
n) cleanups, we are

guaranteed an increasing subsequence of length at least (1− ϵ) LIS(x).
We now modify the above algorithm into another form. This time we first divide x evenly

into many small blocks. Meanwhile, we also maintain a set S and a list Q. We now process
x from left to right, and update S and Q each time we have processed one block of x. If the
number of blocks in x is small, we can get the same approximation as in [41] with S and Q

having smaller size. For example, we can divide x into n1/3 blocks each of size n2/3, and we
update S and Q once after processing each block. If we do exact computation within each
block, we only need to maintain the set S and the list Q of size O( n1/3

ϵ ). We can still get
a (1− ϵ) approximation, because we do n1/3 cleanups and for each cleanup, we lose about

ϵ
n1/3 LIS(x) in the length of the longest increasing subsequence detected.

This almost already gives us an Õϵ(n1/3) space algorithm, except the exact computation
within each block needs O(n2/3 log n) space. A natural idea to reduce the space complexity
is to replace the exact computation with an approximation. When each block xi has size
n2/3, running the approximation algorithm from [41] takes O( n1/3

ϵ log n) space and thus we
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can hope to reduce the total space required to O( n1/3

ϵ log n). However, a problem here is that
the approximation algorithm on each block xi only gives us an approximation of LIS(xi).
This alone does not give us enough information on how to update S and Q. Also, for a
longest increasing subsequence of x, say τ , the subsequence of τ that lies in the block xi

may be much shorter than LIS(xi). This subsequence of τ may be ignored if we run the
approximation algorithm instead of using exact computation.

We now give some intuition of our approach to fix these issues. Let us consider a longest
increasing subsequence τ of x such that τ can be divided into many parts, where the i-th
part τ i lies in xi. We denote the length of τ i by di. Let the first symbol of τ i be αi and
the last symbol be βi if τ i is not empty. When we process the block xi, we want to make
sure that our algorithm can detect an increasing subsequence of length very close to di in xi,
where the first symbol is at least αi and the last symbol is at most βi. We can achieve this by
running a bounded version of the approximation algorithm which only considers increasing
subsequences no longer than di. Since we do not know αi or di in advance, we can guess αi

by trying every symbol in Q[s] where one of them is close enough to αi. For di, we can try
O(log1+ϵ n) different values of l such that one of them is close enough to di. In this way, we
are guaranteed to detect a good approximation of τi.

Based on the above intuition, we now introduce our space-efficient algorithm for LIS called
ApproxLIS. The pseudocode is given in Algorithm 4. It takes three inputs, a string x ∈ Σ∗,
two parameters b and ϵ. We also introduce a slightly modified version of ApproxLIS called
ApproxLISBound. It takes an additional input l, which is an integer at most n. We want
to guarantee that if the string x has an increasing subsequence of length l ending with α ∈ Σ,
then ApproxLISBound(x, b, ϵ, l) can detect an increasing subsequence of length close to l

ending with some symbol no larger than α. The idea is to run ApproxLIS but only consider
increasing subsequence of length at most l. ApproxLISBound has the same space and
time complexity as ApproxLIS.

We now describe ApproxLIS. When the input string x has length at most b2, we
compute an (1− ϵ)-approximation of LIS using the algorithm in [41] with O( b

ϵ log n) space.
Otherwise, we divide the input string into b blocks each of length n

b . Similar to the streaming
algorithm in [41], we maintain two sets S and Q of size O( b

ϵ ) as an approximation of the list
P when running PatienceSorting. We will show that it is enough to use O( b

ϵ log n) bits for
S and Q, because we only update them b times and we lose about O( ϵ

b ) LIS(x) after each
update. Initially, S contains only one element 0 and Q[0] = −∞. We update S and Q after
processing each block of x as follows.

For simplicity, we denote S and Q after processing the t-th block by St and Qt. To see
how S and Q are updated, we take the t-th update as an example. Given St−1 and Qt−1,
we first determine the length of the LIS in x1 ◦ · · · ◦ xt that can be detected based on St−1
and Qt−1. We denote this length by kt. Notice that, for each s ∈ St−1, we know there is
an increasing subsequence in x1 ◦ · · · ◦ xt−1 of length s ending with Qt−1[s] ∈ Σ. This gives
us |St−1| increasing subsequences. The idea is to find the best extension of these increasing
subsequences in the block xt and see which one gives us the longest increasing subsequence of
x1 ◦ · · · ◦ xt. Since each block is of size n

b , we cannot always afford to do exact computation.
Thus we compute an approximation of the LIS by recursively calling ApproxLIS itself.
For each s ∈ St−1, we run ApproxLIS(zs, b, ϵ) where zs is the subsequence of xt with only
symbols larger than Qt−1[s]. Finally, we let kt = maxs∈St−1(s+ApproxLIS(zs, b, ϵ)). Given
kt, we then set St to be the b

ϵ -th evenly picked integers from 0 to kt.
The next step is to compute Qt. We first set Qt[s] =∞ for all s ∈ St except s = 0, and

we set Qt[0] = −∞. Then, for each s ∈ St−1 and l = 1, 1 + ϵ, (1 + ϵ)2, . . . , kt − s, we run
ApproxLISBound(zs, b, ϵ, l). For each s′ ∈ St such that s ≤ s′ ≤ s + l, we update Qt[s′]
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Algorithm 4 Algorithm ApproxLIS (ApproxLISBound) for approximating LIS.

Data: A string x , parameters b and ϵ. And an additional parameter l for
ApproxLISBound

1: if |x| ≤ b2 then
2: compute an (1− ϵ)-approximation of LIS(x) with the streaming algorithm from [41]

using O( b
ϵ log n) space. (For ApproxLISBound, we only consider LIS of length at

most l.)
3: return
4: divide x evenly into b blocks such that x = x1 ◦ x2 ◦ · · · ◦ xb. ▷ |xi| ≤ ⌈n/b⌉
5: initialize S = {0} and Q[0] = −∞.
6: for i = 1 to b do
7: k = 0.
8: for all s ∈ S do
9: let z be the subsequence of xi by only considering the elements larger than Q[s].

10: d = ApproxLIS(z, b, ϵ).
11: k = max{k, s + d}. (For ApproxLISBound, we let k = min{l, max{k, s + d}}) .
12: if k ≤ b/ϵ then
13: let S′ = {0, 1, 2, . . . , k}.
14: else
15: let S′ = {0, ϵ

b k, 2 ϵ
b k, . . . , k}. ▷ evenly pick b/ϵ + 1 integers from 0 to k (including 0

and k).
16: Q′[s] =∞ for all s′ ∈ S′ except Q′[0] = −∞.
17: for all s ∈ S do
18: let z be the subsequence of xi by only considering the elements larger than Q[s].
19: for all l = 1, 1 + ϵ, (1 + ϵ)2, . . . , k − s do
20: S̃, Q̃← ApproxLISBound(z, b, ϵ, l) .
21: for each s′ ∈ S′ such that s ≤ s′ ≤ s + l, let s̃ be the smallest element in S̃ that is

larger than s′ − s and set Q′[s′] = min{Q̃[s̃], Q′[s′]}.
22: S ← S′, Q← Q′.
23: return max S. (for ApproxLISBound, we return the set S and Q)

if ApproxLISBound(zs, b, ϵ, l) detects an increasing subsequence of length at least s′ − s

ending with a symbol smaller than the old Qt[s′]. The intuition is that, with the bound l,
we may be able to find a smaller symbol in Σ such that there is an increasing subsequence
of length l ending with it. This information can be easily ignored if l is a lot smaller than
the actual length of LIS in xt. To see why this is important, let τ be a longest increasing
subsequence of x, and let τ t be the part of τ that lies in the block xt. The length of τ t may
be much smaller than the length of LIS in xt. When the bound l is close to |τ t|, we will be
able to detect a good approximation of τ t by running ApproxLISBound(zs, b, ϵ, l) on zs

for each s ∈ St−1. Since we do not know the length of τ t, we will guess it by trying Oϵ(log n)
values of l and always record the optimal Qt[s] for s ∈ St.

Continue doing this, we get Sb and Qb. ApproxLIS outputs the largest element in Sb.
ApproxLIS is recursive. We denote the depth of recursion by d, and it can be seen that

d is at most logb n − 1. To see the correctness of our algorithm, given fixed b, ϵ, we show
the output at the r-th recursive level is a (1−O((d− r)ϵ))-approximation. Thus, the final
output will be a (1−O(ϵ logb n))-approximation to LIS(x).
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The proof is by induction on r from d to 1. For the base case of r = d, the statement
follows from [41]. Now consider the computation at the r-th level. For convenience, we denote
the input string by x, which has length at most n

br−1 . Let τ be an increasing subsequence
of x where τ i lies in xi. For our analysis, let P ′

t be the list generated by St and Qt in the
following way: for every i let P ′

t [i] = Qt[j] for the smallest j ≥ i that lies in St. If no such j

exists, set P ′
t [i] =∞. Correspondingly, Pt is the list P after running PatienceSorting with

input x1 ◦ x2 ◦ · · · ◦ xt.
Let ht =

∑t
j=1 |τ j | and kt = max St, our main observation is the following inequality:

P ′
t [(1− 3(d− (r + 1)ϵ− ϵ)ht − 2t

ϵ

b
kt] ≤ Pt[ht] (4)

Note that hb = |τ | = LIS(x). We have Pb[hb] < ∞ by the correctness of PatienceSorting.
If inequality 4 holds, then by kt ≤ ht, there must exist an element in Sb larger than
(1− 3(d− r)ϵ) LIS(x) which gives the correctness of the computation at the r-th level.

We prove inequality 4 by induction on t. The intuition is that, at the t-th update, if
inequality 4 holds for t− 1, we know that there must exist an s ∈ St−1 that is close to ht−1
and Qt−1[s] ≤ Pt−1[ht−1] = βt−1 < αt. By trying l = 1, 1 + ϵ, (1 + ϵ), . . . , kt − s, one l is
close enough to |τ t|. Thus we are guaranteed to detect a good approximation of τt in xt and
the inequality also holds for t.

At each recursive level, we need to maintain the sets S and Q with space O( b
ϵ log n). Thus

the total space is O(d b
ϵ log n) = O( b log2 n

ϵ log b ). The analysis of time complexity is similar to the
case of edit distance, where we analyze the recursion tree and bound the number of nodes.

If we take b = log n and ϵ = 1
log n , we get a (1 − O( 1

log log n ))-approximation algorithm
using O( log4 n

log log n ) space and O(n5+o(1)) time. Let δ ∈ (0, 1
2 ) be a constant such that 1

δ is
an integer. If we take b = nδ and ϵ a small constant, we get a (1 + O(ϵ))-approximation
algorithm using Õϵ,δ(nδ) space and Õϵ,δ(n2−2δ) time.

8 Space Efficient ALgorithms for LCS in the Non-Streaming Model

Our algorithm for LCS is based on a reduction to LIS. Given input strings x and y, for each
i ∈ [n] let bi ∈ [m]∗ be the sequence consisting of all distinct indices j in [m] such that
xi = yj , arranged in descending order. Note that bi may be empty. Let z = b1 ◦ b2 ◦ · · · ◦ bn,
which has length O(mn) since each sequence bi is of length at most m. We claim that
LIS(z) = LCS(x, y). This is because for every increasing subsequence of z, say t = t1t2 · · · td,
the corresponding subsequence yt1yt2 · · · ytd

of y also appears in x. Conversely, for every
common subsequence of x and y, we can find an increasing subsequence in z with the same
length. We call this procedure ReduceLCStoLIS. Note that in our algorithms, z need not be
stored, since we can compute each element in z as necessary in logspace by querying x and y.
Thus our reduction is a logspace reduction.

Based on the reduction, we can use similar techniques as we used for LIS. Specifically, let
z = ReduceLCStoLIS(x, y). We call our space efficient algorithm for LCS ApproxLCS. If
one input string is shorter than the parameter b, we know LCS(x, y) ≤ b and we can compute
LIS(z) using PatienceSorting with O(b log n) space. Otherwise, the goal is to compute an
approximation of LIS(z). One difference here is, instead of dividing z evenly into b blocks,
we divide z according to x. That is, we first divide x evenly into b blocks, and then divide
z into b blocks such that zi = ReduceLCStoLIS(xi, y). This gives us a slight improvement
on running time over the naive approach of running our LIS algorithm on z. Note that
LIS(zi) is at most n

b since the length of xi is n
b . We compute an approximation of LIS(zi) by

recursively calling ApproxLCS with inputs x, y, b, ϵ. The input size to the next recursive
level is decreased by a factor of b. The remaining analysis is similar to the case of LIS.
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1 Introduction

Algorithms for linear algebra problems – for example, solving linear systems and determining
basic properties of matrices such as rank, trace, determinant, eigenvalues, and eigenvectors –
constitute a fundamental research area in applied mathematics and theoretical computer
science. Such tasks have widespread applications in scientific computation, statistics, oper-
ations research, and many other related areas. Algorithmic linear algebra also provides a
fundamental toolbox that can inspire the design of algorithms in general.

There are several possible models of access to a matrix, and linear-algebraic algorithms
can depend significantly on how the input is represented (as discussed further below). One
natural model is the matrix-vector product (Mv) oracle. For a matrix M ∈ Fn×m in a given
field F, the Mv oracle takes x ∈ Fm as input and outputs Mx ∈ Fn. Matrix-vector products
arise, for example, as the elementary step of the power method (and the related Lanczos
method) for computing the largest eigenvector of a matrix. Matrix-vector products also
commonly appear in streaming algorithms, especially in the technique of sketching (see the
survey [22] for more information).

Recent work has studied the classical complexity of various basic problems in the Mv
model. Specifically, Sun, Woodruff, Yang, and Zhang [21] studied the complexities of
various linear algebra, statistics, and graph problems using matrix-vector products, and
Braverman, Hazan, Simchowitz, and Woodworth [8] proved tight bounds on maximum
eigenvalue computation and linear regression in this model. Rashtchian, Woodruff, and
Zhu [19] considered a generalization to the vector-matrix-vector product (vMv) oracle, which
returns x⊤My for given input vectors x ∈ Fn, y ∈ Fm, and studied the complexity of various
linear algebra, statistics, and graph problems in this setting. Table 1 includes a partial
summary of these results.

Quantum computers can solve certain problems much faster than classical computers, so it
is natural to study quantum query complexity with matrix-vector products. Lee, Santha, and
Zhang recently studied the quantum query complexity of graph problems with cut queries [17],
which are closely related to matrix-vector queries. For a weighted graph G = (V,w) where
|V | = n and w assigns a nonnegative integer weight to each edge, the input of a cut query
is a subset S ⊆ V and the output is |w(S, V \ S)|, the total weight of the edges between
S and V \ S. This can be viewed as a version of the vMv model over Z, with the extra
assumptions that x ∈ {0, 1}n, y ∈ {0, 1}m are both boolean and M is a symmetric matrix
with nonnegative integer entries. Reference [17] gives quantum algorithms for determining
all connected components of G with O(log6 n) quantum cut queries, and for outputting a
spanning forest of G with O(log8 n) quantum cut queries. Both problems require Ω(n/ log n)
classical cut queries, so the quantum algorithms provide exponential speedups.

In other recent work on structured queries for graph problems, Montanaro and Shao
studied the problem of learning an unknown graph with “parity queries” [18]: for an unknown
graph with adjacency matrix A, the parity oracle takes as input a string x that encodes a
subset of the vertices, and returns x⊤Ax mod 2. This query model is the vMv model over F2
with the extra restriction that the left and right vectors are identical.

Van Apeldoorn and Gribling studied Simon’s problem for linear functions over a prime
field Fp [4]. In this problem, the oracle encodes a linear function f : Fp → Fp, and the task is
to determine if the function is one-to-one, or if there is a one-dimensional subspace H ⊂ Fp

such that for every x, x′ ∈ Fn
p , f(x) = f(x′) if and only if x− x′ ∈ H. Such a function can

be represented by a square matrix over Fp, and the problem is equivalent to determining
whether that matrix is full rank or has nullity 1 using matrix-vector product queries.
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Other past work has developed linear algebraic quantum algorithms using different
input models. Quantum algorithms for high-dimensional linear algebra have been studied
extensively since Harrow, Hassidim, and Lloyd introduced a method for generating a quantum
state proportional to the solution of a large, sparse system of linear equations [14]. This
algorithm assumes a quantum oracle that determines the locations and values of the nonzero
entries of a matrix in any given row or column, and the ability to generate a quantum state
that encodes the right-hand side of the linear system. Subsequent work has led to improved
and generalized algorithms under similar assumptions. However, it is challenging to find
practical applications that achieve speedup over classical computation [2,11]. Recent work by
Apers and de Wolf [5] gives polynomial quantum speedup for producing an explicit classical
description of the solution of a Laplacian linear system, assuming adjacency-list access
to the underlying graph of the Laplacian. Note also that for various problems including
determinant estimation, rank testing, linear regression, etc., there is a large separation
between the classical query complexities under Mv and entrywise queries (Θ̃(n) [21] and
Θ(n2), respectively). These results show how the model of access to a matrix can significantly
impact the complexity of solving linear-algebraic problems. A better understanding of the
quantum matrix-vector oracle could therefore provide a useful tool for the design of future
quantum algorithms.

Contributions. We conduct a systematic study of quantum query complexity with a matrix-
vector oracle for a matrix M ∈ Fm×n

q , where Fq is a given finite field. Using this model, we
provide results on the quantum query complexities of linear algebra and statistics problems.

First, we prove that various linear algebra problems, including
computing the trace tr(M) of M ∈ Fn×n

q ;
computing the determinant det(M) of M ∈ Fn×n

q ;
solving the linear system Ax = b for A ∈ Fn×n

q ; and
testing whether rank(M) = n or rank(M) ≤ n/2 for a matrix M ∈ Fm×n

q ;
require Ω(n) quantum queries to the Mv oracle. Since O(n) queries suffice to determine the
entire matrix, even classically, these results show that no quantum speedup is possible. (As
a side effect, we improve the Ω(n/ log n) classical lower bound for trace computation [21] to
Ω(n).)

Our quantum lower bound for trace computation applies results of Copeland and Pom-
mersheim [12] by viewing the problem as a special case of coset identification. Our lower
bounds for other linear algebra problems are all proved by the polynomial method [1, 6].
We show how to symmetrize the success probability to a univariate polynomial, and then
give a lower bound on the polynomial degree using an observation of Koiran, Nesme, and
Portier [16].

On the other hand, we determine the matrix-vector quantum query complexity of several
statistics problems, including

computing the row and column parities of M ∈ Fm×n
2 ;

deciding if there exist two identical columns in M ∈ Fm×n
2 ; and

deciding if there exist two identical rows in M ∈ Fm×n
2 .

Specifically, we prove that their quantum query complexities with an Mv oracle are O(1),
O(log n), and O(logm), respectively. Compared to the classical bounds using either the Mv
oracle [21] or the vMv oracle [19], our quantum algorithms achieve exponential quantum
speedups.

Technically, these results build upon our observation that the quantum query complexities
in the Mv model under left or right multiplication are identical (Theorem 5). In particular,
one right Mv query can be simulated using one left Mv query, and vice versa. In contrast,
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classically there is a significant difference between matrix-vector (Mv) and vector-matrix
(vM) queries – for example, computing the parity of rows over F2 only takes O(1) Mv queries,
but computing the parity of columns over F2 requires Θ(n) Mv queries. In contrast, for both
problems a quantum computer can achieve the smaller query complexity by switching to the
easier side.

Table 1 Comparison of classical and quantum query complexities with matrix-vector (Mv) and
vector-matrix-vector (vMv) product oracles for an m × n matrix. For trace and linear regression,
m = n. Known query complexities over R and Fq are included for completeness; results over different
fields are incomparable in general.

Problem Classical Mv Classical vMv Quantum (this paper)

Trace

O(n), Ω(n/ log n) for
matrix with entries in
{0, 1, . . . , n3} & queries
with entries in
{0, 1, . . . , nC},
C ∈ N [21];
Θ(n) over Fq

(Theorem 16)

O(n), Ω(n/ log n) for
matrix with entries in
{0, 1, . . . , n3} & queries
with entries in
{0, 1, . . . , nC},
C ∈ N [19];
Θ(n) over Fq

(Theorem 16)

Θ(n) over Fq

(Theorem 16)

Linear regression
Θ(n) over R [8];
Θ(n) over Fq

(Theorem 24)

Θ(n2) over Fq

(Corollary 25)
Θ(n) over Fq

(Theorem 24)

Rank testing

k + 1 to distinguish
rank ≤ k from k′ > k
over R [21];
Θ(n) over Fq

(Theorem 27)

Ω(k2) to distinguish
rank k from k + 1 over
Fq [19];
Ω(n2−O(ϵ)) for
non-adaptive
(1 ± ϵ)-approximation
over R [19]

Θ(min{m, n}) to
distinguish rank
min{m, n} from
≤ 1

2 min{m, n} over Fq

(Theorem 27)

Two identical columns
O(n/m),
m = Ω(log(n/ϵ))
over F2 [21]

O(n log n), Ω(n) over
F2 [19]

O(log n) over F2

(Corollary 8)

Two identical rows O(log m) over F2 [21] O(n log n), Ω(n) over
F2 [19]

O(log m) over F2

(Corollary 8)

Majority of columns Ω(n/ log n) for binary
matrices over R [21] Θ(n2) over F2 [19]

O(1) for binary
matrices over R
(Corollary 10)

Majority of rows
O(1) for binary
matrices
over R [21]

Θ(n2) over F2 [19]
O(1) for binary
matrices over R
(Corollary 10)

Parity of columns Θ(n) over F2 [21] Θ(n) over F2
(Lemma 7)

O(1) over F2

(Corollary 6)

Parity of rows O(1) over F2 [21] Θ(m) over F2
(Lemma 7)

O(1) over F2

(Corollary 6)

Our results are summarized in Table 1, including some implications of our results for
classical query complexity and a few additional results over R. Note that there can be large
gaps between the classical query complexities with Mv and vMv queries, but they are the
same in the quantum setting due to an equivalence between quantum Mv and vMv queries
(Theorem 11), which follows along similar lines to the equivalence between Mv and vM queries.
The Mv–vMv equivalence is closely related to a similar equivalence shown in the work of Lee,
Santha, and Zhang [17], as we discuss further in Section 3.2.
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Open questions. Our paper leaves several natural open questions for future investigation:
For linear algebra problems such as those we studied, can we also prove quantum query
lower bounds for matrices over the real field R? Our proofs rely on the polynomial
method, and it is unclear how to adapt them to a setting with continuous input.
Can we prove a quantum lower bound for the task of minimizing a quadratic form
f(x) = 1

2x
⊤Ax + b⊤x, where A ∈ Rn×n and b ∈ Rn? Note that f is minimized at

x = −A−1b, and we can determine the vector b and implement Mv queries to the matrix
A using fast quantum gradient computation [15], so this is closely related to the previous
open question. Quadratic form minimization is a special case of optimizing a convex
function f : Rn → R by quantum evaluation queries, where previous works [3, 10, 13] left
a quadratic gap between the best known quantum upper and lower bounds of Õ(n) and
Ω(

√
n), respectively.

For the finite field case, can we identify other problems with quantum speedup over the
classical matrix-vector oracle, or find advantage compared to other quantum oracles such
as entrywise queries?

Organization. We review necessary background in Section 2. We prove the equivalence of
quantum matrix-vector and vector-matrix-vector product oracles in Section 3. In Section 4,
we prove tight quantum query complexity lower bounds on various linear algebra problems,
including trace, determinant, linear systems, and rank.

2 Preliminaries

2.1 The quantum query model
Given a set X and an abelian group G, let f : X → G be a function. Access to f is provided
by a black-box unitary operation Uf : |x, y⟩ 7→ |x, y+ f(x)⟩ for all x ∈ X and y ∈ G. We call
an application of Uf a (standard) query.

For a finite abelian group G, the Fourier transform over G is

FG := 1
|G|1/2

∑
x∈G

∑
y∈Ĝ

χy(x)|y⟩⟨x|, (1)

where Ĝ is a complete set of characters of G, and χy : G → C denotes the yth character
of G. Since Ĝ ∼= G, we label elements of Ĝ using elements of G. Note that χy is a
group homomorphism, i.e., χy(x+ z) = χy(x)χy(z). In addition, the characters satisfy the
orthogonality condition

1
|G|

∑
z∈G

χy(z)∗χw(z) = δyw. (2)

A phase query is defined as a standard query conjugated by the Fourier transform acting
on the output register. In other words, for x ∈ X and y ∈ G, a phase query acts as

|x, y⟩
1⊗F †

G7−−−−→ 1
|G|1/2

∑
z∈G

χy(z)∗|x, z⟩

Uf7−−→ 1
|G|1/2

∑
z∈G

χy(z)∗|x, z + f(x)⟩

1⊗FG7−−−−→ 1
|G|

∑
z∈G

χy(z)∗χw(z + f(x))|x,w⟩ = χy(f(x))|x, y⟩. (3)
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The equality in (3) follows from the orthogonality condition in (2). Since one can simulate
a phase query using a single standard query and vice versa, the query complexities of any
problem are equal with these two models.

Over a finite field Fq for prime power q = pr, the Fourier transform over Fq is the unitary
transformation |x⟩ 7→ q−1/2∑

y∈Fq
e(xy)|y⟩, where the exponential function e : Fq → C is

defined as e(z) := e2πiTrFq/Fp (z)/p and the trace function TrFq/Fp
: Fq → Fp is defined as

TrFq/Fp
(z) := z + zp + zp2 + · · · + zpr−1 .

Over the field of real numbers, the quantum Fourier transform is

FR :=
∫
R

dy
∫
R

dx e2πiyx|y⟩⟨x|. (4)

The basis states {|x⟩ : x ∈ R} are normalized to the Dirac delta function, i.e., for x, x′ ∈ R,
⟨x′|x⟩ = δ(x− x′). Here the Dirac delta function δ satisfies

∫
R dx′ δ(x− x′)f(x′) = f(x) for

any function f . Furthermore, we have
∫
R dy e2πiy(x−x′) = δ(x− x′). By direct calculation

using these facts, F †
RFR =

∫
R dx |x⟩⟨x| = 1.

While we can formally consider a model of query complexity over R with arbitrary precision,
its practical instantiation requires discrete approximation. We can achieve precision ϵ by
approximating real numbers with s = O(log(1/ϵ)) bits, and can then replace the continuous
Fourier transform with the discrete Fourier transform over Z2s . It is straightforward to
show that a discretized phase query over Z2s can be implemented by Fourier transforming a
standard query that maps discretized inputs to discretized function values.

2.2 The coset identification problem
Copeland and Pommersheim studied a kind of quantum query problem that they call the
coset identification problem [12]. They define this problem in a generalized query model
where the black box does not necessarily perform a standard or phase query, although their
definition includes those cases. In the coset identification problem, we fix a finite group G

and a subgroup H ≤ G. The algorithm is given access to a unitary transformation π(g),
where π is a representation of G on vector space V . When π is given, the vector space V
is called the representation space (or simply, the representation) of G [20, Chapter 1]. The
goal is to determine which coset of H the unknown element g ∈ G belongs to.

▶ Definition 1 (Coset identification problem [12]). A coset identification problem for a finite
group G and subgroup H ≤ G is a 3-tuple (π, V, F ) such that

π is a unitary representation of G in the complex vector space V , and
F is a function constant on left cosets of H ≤ G and distinct on distinct cosets, i.e.,
F (g) = F (g′) if and only if g′ = gh for some h ∈ H.

Given a black box that performs the unitary transformation π(g), the goal is to compute F (g).

Copeland and Pommersheim show that the optimal success probability of a t-query
algorithm for a coset identification problem can be calculated by taking, over all irreps Y
of H, the maximum of the fraction of the induced representation Y ↑ of G shared with V ⊗t.
Furthermore, the optimal algorithm can be non-adaptive. For a representation V , let I(V )
denote the set of irreducible characters of G appearing in V .

▶ Theorem 2 (Optimal success probability of coset identification [12, Corollary 5.7]). The
optimal success probability of any t-query quantum algorithm A for the coset identification
problem (π, V, F ) for finite group G and subgroup H ≤ G, under uniformly random inputs
in G, is

Pr[Aπ(g) = F (g)] = max
Y

dim Y ↑
V ⊗t

dim Y ↑ , (5)
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where the probability is maximized over all irreducible representations Y of H, Y ↑ is the
induced representation of G, and AB is the maximal subrepresentation of A such that
I(AB) ⊆ I(B) for representations A,B.

The oracle discrimination problem is the special case of the coset identification problem
where H is the trivial group, i.e., the function F is injective. In this case, Y ↑ = span{|g⟩ :
g ∈ G}.

▶ Corollary 3 (Optimal success probability of oracle discrimination [12, Theorem 4.2]). The
optimal success probability of the oracle discrimination problem is

1
|G|

∑
i∈I(V ⊗t)

d2
i , (6)

where I(V ⊗t) is the irrep content of (π⊗t, V ⊗t) and di is the dimension of irrep i ∈ I(V ⊗t).

We consider the complexity of standard queries in the matrix-vector model. In this model,
oracle access to a matrix M ∈ Fm×n for field F and positive integers m,n is the unitary
operation U(M) : |x, y⟩ 7→ |x, y +Mx⟩. The map U is a representation of the additive group
of matrices since it is a group homomorphism satisfying U(M)U(N) = U(M + N) for all
matrices M,N of the same dimensions. A phase query is also a unitary representation since
it is a standard query conjugated by a fixed unitary matrix (the quantum Fourier transform).

2.3 The polynomial method
We will use the polynomial method to obtain quantum lower bounds. Here we state a version
for non-boolean functions as used in [1].

▶ Lemma 4. Let A be a t-query quantum algorithm given access to the input x ∈ [m]n for
m,n ∈ Z through oracle Ux : |i, j⟩ 7→ |i, j + xi⟩ for i ∈ [n] and j ∈ [m]. The acceptance
probability of A on input x is a degree-(2t) polynomial in x1, . . . , xn.

3 Equivalence of matrix-vector and vector-matrix-vector products

In this section, we show that the matrix-vector and vector-matrix-vector models are equivalent,
i.e., for any problem, the quantum query complexities in these models differ by at most a
constant factor. Furthermore, we show that in the matrix-vector model, left matrix-vector
products and right matrix-vector products are equivalent. This is in stark contrast to the
classical case where these query complexities can differ significantly, as mentioned in Section 1
and discussed further below.

3.1 Left and right matrix-vector queries
We first show that left matrix-vector products and right matrix-vector products are equivalent.

▶ Theorem 5. Quantum query complexities in the left and right matrix-vector models over a
finite field are identical. In particular, one right Mv query can be simulated using one left
Mv query, and vice versa.

Proof. For input matrix M ∈ Fn×m
q , a matrix-vector (Mv) query applies the unitary trans-

formation

UMv(M) : |x, y⟩ 7→ |x, y +Mx⟩ (7)
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for every x ∈ Fm
q and y ∈ Fn

q . Conjugating by a quantum Fourier transform on the output
register yields a phase query

|x, y⟩
1⊗F †

Fn
q7−−−−→ q−1/2

∑
z

e(−y⊤z)|x, z⟩

UMv(M)7−−−−−→ q−1/2
∑

z

e(−y⊤z)|x, z +Mx⟩

1⊗FFn
q7−−−−→ q−1

∑
z,w

e(−y⊤z + w⊤(z +Mx))|x,w⟩

=
∑

w

δ[y = w]e(−y⊤z + w⊤(z +Mx))|x,w⟩

= e(y⊤Mx)|x, y⟩. (8)

We denote this unitary transformation by U M̃v(M).
Conjugating a phase query by a swap gate, we have

|x, y⟩ SWAP7−−−→ |y, x⟩

U M̃v(M)7−−−−−→ e(x⊤My)|y, x⟩
SWAP7−−−→ e(x⊤My)|x, y⟩
= e(y⊤M⊤x)|x, y⟩. (9)

This yields U M̃v(M⊤), which in turn gives UMv(M⊤) upon conjugation by an inverse quantum
Fourier transform on the output register. Thus one can simulate the oracle UMv(M⊤) using
one query to UMv(M), showing equivalence of the two models. ◀

In contrast to Theorem 5, Sun, Woodruff, Yang, and Zhang show that for the task of
computing the row parities of an m×n matrix M over F2, the left query complexity is Ω(m),
whereas the right query complexity is 1 [21]. Thus we have shown that computing column
parities over F2 in the Mv model has quantum query complexity 1, significantly less than the
classical query complexity of Ω(n).

▶ Corollary 6. The query complexity of computing the row parities and the column parities
of an m× n matrix over F2 is 1.

Note that it is easy to understand the randomized query complexities of these problems
in the vMv model.

▶ Lemma 7. The randomized query complexities of computing the row parities and the
column parities of an m× n matrix over F2 are Θ(m) and Θ(n), respectively.

Proof. Each query reveals one bit of information, while the row parities convey m bits,
giving a lower bound of Ω(m). An algorithm querying (e1, 1n), . . . , (em, 1n) learns the row
parities with probability 1, giving an upper bound of m. The query complexity of column
parities follows immediately from the symmetry of the vMv oracle. ◀

The randomized query complexities of determining if there exist identical columns or
identical rows are Θ(n/m) and Θ(logm), respectively [21]. Theorem 5 implies that for
identical columns, there is an exponential quantum speedup.
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▶ Corollary 8. The query complexities of deciding if there exist two identical columns and
rows in a m× n matrix over F2 are O(log n) and O(logm), respectively.

Proof. By Theorem 5, it suffices to give an algorithm for determining if there are two
identical rows. To make the proof self-contained, we describe the algorithm of Sun, Woodruff,
Yang, and Zhang [21, Section 4.2]. The algorithm makes q random queries v1, . . . , vq, the
entries of which are sampled uniformly. The algorithm outputs 1 if and only if there exist
two entries i, j such that (Mvk)i = (Mvk)j for k ∈ [q].

To analyze the performance, for any two identical rows m⊤
i ,m

⊤
j , Prv[m⊤

i v = m⊤
j v] = 1.

For mi ̸= mj , Prv[m⊤
i v = m⊤

j v] ≤ 1/2. Therefore for a matrix that has two identical rows,
the algorithm outputs 1 with probability 1. On the other hand, for a matrix that has no
identical rows, the algorithm outputs 1 with probability

Pr
v1,...,vq

[∃i, j ∈ [m], ∀ℓ ∈ [q],m⊤
i vℓ = m⊤

j vℓ] ≤
∑

i,j∈[m],i̸=j

Pr
v1,...,vq

[∀ℓ ∈ [q],m⊤
i vℓ = m⊤

j vℓ]

≤
(
m

2

)
2−q. (10)

Taking q = 2 logm, the probability is no more than 1
2 − 1

2m . ◀

The equivalence of left and right queries also holds over the reals.

▶ Theorem 9. Quantum query complexities in the left and the right matrix-vector models
over R are identical. In particular, one right Mv query can be simulated using one left Mv
query, and vice versa.

Proof. The same idea as in the proof of Theorem 5 applies. First, a phase query can
be simulated by conjugating a standard query by the quantum Fourier transform. This
yields U M̃v(M). Conjugating a phase query by a swap gate gives U M̃v(M⊤) with the same
calculation as in (9). This in turn yields UMv(M⊤) upon conjugating U M̃v(M⊤) by an inverse
quantum Fourier transform. ◀

Note that with finite precision, a phase query can be simulated using the quantum Fourier
transform over an integer modulus (see Section 2.1 for details).

As an example, we determine the query complexity of the majority of rows or columns:
given a binary matrix M ∈ {0, 1}m×n, compute the majority of each row or column over R,
i.e., for each row or column, determine if there are more 1s than 0s.

▶ Corollary 10. In the matrix-vector model, the query complexities of computing the majorities
of rows and columns of an m× n matrix over R are 1.

Proof. By Theorem 9, it suffices to show the query complexity of the majority of rows is 1.
With a single query (1, 1, . . . , 1)⊤, the majority of each row is determined. ◀

This result is not significantly affected by considering computation with finite precision.
The number of 1s in each row and each column is an integer in [0, k] for k = max{m,n}.
Thus a truncation with O(log k) bits suffices to perform the computation with no error.

3.2 The vector-matrix-vector model
We now relate the power of the matrix-vector and vector-matrix-vector query models. In
the vector-matrix-vector model, the algorithm is given access to M via U vMv : |x, y, a⟩ 7→
|x, y, a+ y⊤Mx⟩. We can simulate one vMv query using two Mv queries and an ancilla space
storing a matrix-vector product:
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|x, y, a⟩ UMv(M)7−−−−−→ |x, y, a⟩|Mx⟩
7−→ |x, y, a+ y⊤Mx⟩|Mx⟩
UMv(M)†

7−−−−−−→ |x, y, a+ y⊤Mx⟩|0⟩. (11)

On the other hand, an Mv phase query (defined previously in (8)) can be simulated using
a vMv phase query by setting a = 1:

|x, y, 1⟩ 7−→ e(y⊤Mx)|x, y, 1⟩. (12)

Such a vMv phase query can be constructed using one application of U vMv:

|x, y, a⟩
1⊗1⊗F †

Fq7−−−−−−→
∑

b

e(−ab)|x, y, b⟩

U vMv(M)7−−−−−→
∑

b

e(−ab)|x, y, b+ y⊤Mx⟩

1⊗1⊗FFq7−−−−−−→
∑
bc

e(−ab+ c(b+ y⊤Mx))|x, y, c⟩

= e(ay⊤Mx)|x, y, a⟩. (13)

Thus we have shown the following.

▶ Theorem 11. Quantum query complexities in the matrix-vector and vector-matrix-vector
models differ by at most a constant factor. In particular, one vMv query can be simulated
using two Mv queries, and one Mv query can be simulated using one vMv query.

This is again in stark contrast to the classical case, where the Mv model can be much
more powerful than the vMv model. For example, for distinguishing a full-rank matrix from
a rank-(n − 1) matrix, the randomized query complexity in the vMv model is Ω(n2) [19],
while the randomized query complexity in the Mv model is O(n) [21].

Note that Lee, Santha, and Zhang [17] previously studied the equivalence between quantum
Mv and vMv oracles. They focus on the special case where the matrix M is the adjacency
matrix of a graph with nonnegative integer weights and the inputs x ∈ {0, 1}n, y ∈ {0, 1}m

are boolean. In that setting, they prove equivalence between the vMv oracle and the additive
oracle a : 2[n] → Z that returns a(S) =

∑
(u,v)∈S(2) w(u, v) for S ⊆ [n], where S(2) denotes the

set of cardinality-2 subsets of S. They also study relationships with other oracles that encode
specific information about graphs (cuts, disjoint cuts, etc.; see Section 4 of [17]). In contrast,
our Theorem 5, Theorem 9, and Theorem 11 work for inputs and matrices in fields, and do
not apply to other graph oracles. While these results are, strictly speaking, incomparable,
they are closely related, both following from a generalization of the Bernstein-Vazirani
algorithm [7].

4 Linear algebra over finite fields

We now consider the quantum query complexity of particular linear algebra problems in
the matrix-vector query model. Specifically, we consider learning the trace (Section 4.1),
computing the null space and determinant (Section 4.2), solving linear systems (Section 4.3),
and estimating the rank (Section 4.4).
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4.1 Trace
In this section, we show that the quantum query complexity of computing the trace of an
n× n matrix over Fq is Θ(n). Since there is a trivial algorithm that computes the trace by
learning the entire matrix using n queries, we focus on the lower bound.

Learning the trace can be regarded as a coset identification problem (defined in Section 2.2)
in the group G = Fn×n

q with subgroup H = {M ∈ Fn×n
q : trM = 0} ∼= Fn2−1

q . The irreducible
characters χZ of H are indexed by Z ∈ Zn×n

m with Znn = 0, and satisfy χZ(M) = e(⟨Z,M⟩)
where ⟨Z,M⟩ :=

∑n
i,j=1 ZijMij .

4.1.1 Learning the trace over F2

First we consider the case q = 2. Then the irreducible characters χZ of H for Z ∈ Zn×n
m

(with Znn = 0) satisfy

χZ(M) = (−1)⟨Z,M⟩. (14)

For irredicible character Z, the induced representation can be decomposed into two irreducible
characters of G:

χZ,0(M) = (−1)⟨Z,M⟩; χZ,1(M) = (−1)⟨Z,M⟩+trM . (15)

It is easy to check that for M ∈ G, χZ,0(M + E(nn)) = χZ,0(M) and χZ,1(M + E(nn)) =
−χZ,1(M), where E(ij) is an n× n matrix whose entries are zero except that (E(ij))ij = 1.
We emphasize that in (15), M ∈ G (rather than in H since we are now looking at the
representations of the entire group), and Znn = 0.

On the other hand, recall that the phase query oracle is U(M) : |x, y⟩ 7→ (−1)y⊤Mx|x, y⟩,
which is a unitary representation of M with character ξ(M) := tr(U(M)) =∑

x,y∈Fn
2
(−1)y⊤Mx. To determine the optimal success probability, we calculate the irrep

content of U⊗t. The character of U⊗t is ξt, satisfying

tr(U⊗t(M)) = tr(U(M))t = (ξ(M))t

=

 ∑
x,y∈Fn

2

(−1)y⊤Mx

t

=
∑

x1,...,xt,y1,...,yt∈Fn
2

(−1)
∑

i
yiMxi . (16)

Thus it has non-zero Fourier coefficient at W if and only if W ∈ Rt, where Rt is the set of
matrices of rank no more than t.

We now check containment of the irreps (15) in U⊗t. We find

m
(t)
Z,0 = ⟨ξt, χZ,0⟩ > 0 ⇐⇒ Z ∈ Rt, m

(t)
Z,1 = ⟨ξt, χZ,0⟩ > 0 ⇐⇒ Z + 1n ∈ Rt. (17)

By Theorem 2, to succeed with probability better than 1/2, we must choose a Z such that
both m

(t)
Z,0 > 0 and m

(t)
Z,1 > 0. However, now we show this is impossible with t < n/2.

▶ Lemma 12. The set {Z : m(t)
Z,0 > 0 ∧m

(t)
Z,1 > 0} is empty for t < n/2.

Proof. We show that the set is non-empty only if t ≥ n/2. Suppose there exists Z such
that mZ,0 > 0 and mZ,1 > 0. By (17), Z ∈ Rt and Z + 1n ∈ Rt. Since the ranks of Z and
Z + 1n are no more than t, we conclude that the rank of 1n = Z + Z + 1n is no more than
2t. Therefore t ≥ n/2. ◀

This implies an n/2 lower bound, formally stated as follows.
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▶ Lemma 13. For t < n/2, any t-query quantum algorithm computing the trace of an n× n

matrix over F2 succeeds with probability at most 1/2.

Proof. By Theorem 2 and Lemma 12, the optimal success probability for a uniformly random
matrix in Fn×n

2 is

1
2 max

Z

1∑
b=0

δ[mZ,b > 0] ≤ 1
2 (18)

for t < n/2. ◀

On the upper bound side, we present an ⌈n/2⌉-query quantum algorithm, showing that
the above lower bound is achievable.

▶ Lemma 14. In the matrix-vector query model, there exists an ⌈n/2⌉-query quantum
algorithm that computes the trace of an n× n matrix over F2 with probability 1.

Proof. First we pad the matrix with one extra zero row and one extra zero column if n is
odd, and denote the padded matrix by M ′. Let ℓ = ⌈n/2⌉. It is clear that one query to
M ′ ∈ F2ℓ×2ℓ

2 can be simulated using one query to M . By Theorem 2, it suffices to find an
irreducible character such that both mZ,0 > 0 and mZ,1 > 0. Now consider

Z =
[
1ℓ 0
0 0

]
=

ℓ∑
i=1

eie
⊤
i , Z + 12ℓ =

[
0 0
0 1ℓ

]
=

2ℓ∑
i=ℓ+1

eie
⊤
i . (19)

The algorithm first prepares the state

|ψ0⟩ = 1√
2

|e1, . . . , eℓ⟩|e1, . . . , eℓ⟩ + 1√
2

|eℓ+1, . . . , e2ℓ⟩|eℓ+1, . . . , e2ℓ⟩. (20)

Making ℓ phase queries in parallel, we have

|ψM ⟩ = U M̃v(M ′)|ψ0⟩

= 1√
2

(−1)
∑ℓ

i=1
M ′

ii |e1, . . . , eℓ⟩|e1, . . . , eℓ⟩

+ 1√
2

(−1)
∑2ℓ

i=ℓ+1
M ′

ii |eℓ+1, . . . , e2ℓ⟩|eℓ+1, . . . , e2ℓ⟩. (21)

Measuring in the basis {|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|}, where

|ψ1⟩ = 1√
2

|e1, . . . , eℓ⟩|e1, . . . , eℓ⟩ − 1√
2

|eℓ+1, . . . , e2ℓ⟩|eℓ+1, . . . , e2ℓ⟩, (22)

the algorithm outputs the trace with probability 1. ◀

The results of this section are summarized in the following theorem.

▶ Theorem 15. In the matrix-vector query model, no quantum algorithm can compute the
trace of an n×n matrix over F2 with probability better than 1/2 using fewer than n/2 queries,
and there exists a quantum algorithm that succeeds with probability 1 using ⌈n/2⌉ queries.
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4.1.2 Learning the trace over Fq

Now we prove a linear lower bound for the task of learning the trace over Fq. The proof idea
is the same as in the case q = 2, generalized to any finite field.

▶ Theorem 16. In the matrix-vector query model over Fq, computing the trace of an n× n

matrix with probability more than 1/q requires at least n/2 queries.

Proof. The induced representation of Z (defined in the second paragraph of Section 4.1) can
be decomposed into q 1-dimensional irreps whose characters are

χZ,s(M) = e(⟨Z,M⟩ + s · trM) = e(⟨Z + s1n,M⟩) (23)

for s ∈ Fq. Again, recall that a phase query oracle U(M) : |x, y⟩ 7→ e(y⊤Mx)|x, y⟩ is a unitary
representation of M . The character of U is the trace ξ(M) := tr(U(M)) =

∑
x,y∈Fn

q
e(y⊤Mx).

The optimal success probability is determined by the irrep content of U⊗t, and the character
of U⊗t is ξt, satisfying

tr(U⊗t(M)) = ξt(M) =
∑

x1,...,xt,y1,...,yt∈Fn
q

e

(
t∑

i=1
y⊤

i Mxi

)
. (24)

Thus for every s ∈ Zm,

m
(t)
Z,s = ⟨ξt, χZ,s⟩ > 0 ⇐⇒ Z + s · 1n ∈ Rt, (25)

where Rt is the set of matrices of rank no more than t. Since 1n /∈ Rn−1, we conclude for
t < n/2 the success probability is at most 1/q, as claimed. ◀

4.2 Null space
In this section, we show a linear lower bound on the matrix-vector quantum query complexity
of computing the rank of a matrix M ∈ Fm×n

q for m ≥ n. This is without loss of generality
since for m < n, by Theorem 5, we can simulate oracle access to M⊤ using one query to M .

The rank problem is an instance of the hidden subgroup problem (HSP) over Fm
q since two

vectors map to the same value if and only if their difference is in the null space. However, the
lower bound for the abelian HSP [16] does not directly apply to this problem since the instance
is more structured – specifically, the subgroup hiding function is a linear transformation.

We recall some standard facts from linear algebra over finite fields. For ℓ ≥ m, let(
ℓ
m

)
q

:=
∏m−1

i=0
(qℓ−qi)∏m−1

i=0
(qm−qi)

denote a Gaussian binomial coefficient.

▶ Lemma 17. The number of m-dimensional subspaces of an ℓ-dimensional space over Fq is(
ℓ
m

)
q
.

▶ Lemma 18. For integers k ≤ m ≤ ℓ and any k-dimensional space V over Fq, the number
of m-dimensional subspaces of an ℓ-dimensional space containing V is

(
ℓ−k
m−k

)
q
.

For proofs of these facts, see for example [9, Lemma 9.3.2].

Computing the rank. Now we consider the problem of computing the rank of a matrix
M ∈ Fm×n

q for m ≥ n. A matrix M has rank r if and only if its null space is (n − r)-
dimensional.
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By Lemma 4, the success probability of a t-query algorithm is a degree-2t polynomial in
δxy. This polynomial P can be written as

P (δ) =
∑

S⊆Fn
q ×Fm

q

cS

∏
(x,y)∈S

δxy, (26)

with cS = 0 for |S| > deg(P ). For an input M , the assignments to these variables are
δxy = δ[Mx = y]; we will sometimes write δxy = δxy(M) to emphasize that δ is a function
of M .

Now symmetrize by averaging over all matrices with nullity d, giving

Q(d) := E
M∼Yd

[P (δ(M))]

=
∑

S⊆Fn
q ×Fm

q

cS E
M∼Yd

[ ∏
(x,y)∈S

δxy(M)
]

=
∑

S⊆Fn
q ×Fm

q

cS Pr
M∼Yd

[Mx = y ∀(x, y) ∈ S], (27)

where Yd is the set of matrices of nullity d. Here M is drawn uniformly from Yd. Since
0 ≤ P (δ(M)) ≤ 1, we have 0 ≤ Q(d) ≤ 1. The following lemma states that we can
approximate Q(d) with a low-degree polynomial. Van Apeldoorn and Gribling previously
showed the same statement in their proof of a lower bound for Simon’s problem for linear
functions [4, Lemma 3]. That problem can be viewed as a special case of our problem with
m = n. We observe that essentially the same proof establishes this lemma for m ≥ n.

▶ Lemma 19. There exists a polynomial R of degree at most 2t such that for each d ∈ [n],
R(qd) = Q(d).

We emphasize that we do not bound the degree of Q(d) because we do not know how to
represent it as a polynomial in d. Instead, the lower bound is established by showing (i) a
lower bound on the degree of the polynomial R and (ii) that the degree of R is no more than
2t.

Next, recall a lemma by Koiran, Nesme, and Portier [16, Lemma 5].

▶ Lemma 20. Let c > 0 and ξ > 1 be constants and let f be a real polynomial with the
following properties:
1. for any integer 0 ≤ i ≤ n, |f(ξi)| ≤ 1;
2. for some real number 1 ≤ x0 ≤ ξ, |f ′(x0)| ≥ c.

Then deg f = Ω(n).

Lemma 19 and Lemma 20 imply an Ω(min{m,n}) lower bound for distinguishing a matrix
is full-rank or has nullity 1. The case m = n was previously shown by van Apeldoorn and
Gribling [4, Theorem 1]. We briefly explain the main ideas for completeness. By Lemma 19,
for d ∈ {0, 1, . . . , n − 1}, R(qd) = Q(d) and deg(R) ≤ 2t. For distinguishing a full-rank
matrix (i.e., d = 0) from a rank n− 1 matrix (i.e, d = 1), we set R(1) ≥ 1 − ϵ and R(q) ≤ ϵ.
There exists x0 ∈ [1, q] such that R′(x0) ≥ |R(q)−R(1)|

q−1 ≥ 1−2ϵ
q−1 . By Lemma 20, t = Ω(n) for

m ≥ n. For m < n, an Ω(m) lower bound follows from Theorem 5. Overall, this gives the
following.

▶ Theorem 21. The bounded-error matrix-vector quantum query complexity of deciding if
an m× n matrix over Fq is full-rank is Ω(min{m,n}). In particular, Ω(min{m,n}) queries
are needed to decide whether the matrix is full-rank or has nullity 1.
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There is a trivial algorithm that learns an entire m× n matrix using min{m,n} queries.
Thus the query complexity of computing the rank is Θ(min{m,n}).

▶ Corollary 22. The bounded-error query matrix-vector quantum complexity of computing
the rank of an m× n matrix over Fq is Θ(min{m,n}).

With the same argument, the quantum query complexity of computing the determinant of
an n×n matrix over Fq is Θ(n). Moreover, the classical query complexity is Θ(n2), implied by
the Ω(n2) lower bound for rank testing by Rashtchian, Woodruff, and Zhu [19, Theorem 3.3].

▶ Corollary 23 (Determinant). The bounded-error classical and quantum query complexities
of computing the determinant of an n× n matrix over Fq through matrix-vector products are
Θ(n2) and Θ(n), respectively.

4.3 Solving linear systems
In this section, we consider the quantum query complexity of solving the linear system
Ax = b for A ∈ Fn×n

q is Θ(n). Since there is an n-query algorithm learning the entire matrix
using n matrix-vector queries, we focus on the lower bound.

Our proof is based on a randomized reduction from deciding whether a submatrix is full
rank. For a square matrix A, let Aij be the submatrix obtained by deleting the ith row and
the jth column, and let Aij denote the (i, j) element of A. The elements of A−1 can be
computed as

(A−1)ij = detAij

detA . (28)

Given an invertible A, one can use a linear system solver to decide whether (A−1)11 is
non-zero, and thus decide if the minor A11 is full-rank.

In our reduction, to decide whether M ∈ Fn×n
q is full-rank given access to matrix-vector

products, we pad M with one extra random row and one extra random column, giving a
matrix A ∈ F(n+1)×(n+1)

q . We show that with sufficiently high probability, the padded matrix
is full-rank. Thus, invoking a linear system solver with b = e1, we learn whether detM = 0.
Thus the linear regression lower bound follows from Theorem 21.

▶ Theorem 24. The bounded-error matrix-vector quantum query complexity of solving an
n× n linear system is Ω(n).

Proof. Assume toward contradiction that A is a t-query quantum algorithm for determining
whether (A−1)11 is non-zero for any invertible A ∈ F(n+1)×(n+1)

q , succeeding with probability
p ≥ 1/3 with t = o(n). We present a t-query algorithm for determining whether an n× n

matrix is full-rank with probability p(1 − 1/q)2 ≥ 1/12.
Given access to M ∈ Fn×n

q , the algorithm first samples two random vectors u, v ∈ Fn
q and

a random element a ∈ Fq to give the padded matrix

A =
[
a u⊤

v M

]
. (29)

The matrix-vector product A(x0, x
⊤)⊤ for x0 ∈ Fq, x ∈ Fn

q can be computed using one Mv
query to Mx since

A

[
x0
x

]
=
[

a0 + u⊤x

x0v +Mx

]
. (30)
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We show that with probability at least (1−1/q)2, the matrix A is invertible (i.e., detA ̸= 0)
given that rank(M) ≥ n− 1. If M is invertible, the submatrix B = (v,M) is full-rank. If
rank(M) = n− 1, then without loss of generality, we consider the case that the first n− 1
rows of M are linearly independent, and the last row is a linear combination of the first n− 1
rows, since other cases can be handled accordingly by rearranging the rows. We let

M =
[
M ′

w⊤

]
. (31)

for an (n− 1) × n matrix M ′ and an n× 1 vector w. Since w⊤ is a linear combination of the
first n− 1 rows, we write w⊤ = c⊤M ′ for an (n− 1) × 1 vector c. Since M ′ is full-rank, the
vector c satisfying w⊤ = c⊤M ′ is unique. Now write the vector

v =
[
z

b

]
(32)

for an (n − 1) × 1 matrix z and b ∈ Fq. The matrix B is not full rank if and only if the
last row is a linear combination of the first n − 1 rows, i.e., c⊤z = b, since the first n − 1
rows of B are linearly independent. Since v is a random vector with each element chosen
independently, we have

Pr[B is not full-rank] = Pr
z,b

[c⊤z = b] = 1/q. (33)

Thus with probability at least 1 − 1/q the matrix B is full-rank.
Conditioned on B being full-rank, the matrix A is not full-rank if and only if the vector

(a, u⊤) is in the vector space spanned by the rows of B. The number of vectors in the vector
space is q(n−1). Thus

Pr
a,u,v

[A is not full-rank | B is full-rank] = 1/q. (34)

Therefore with probability at least 1 − 1/q, A is invertible. Conditioned on successfully
simulating Mv queries of an invertible A, the algorithm A determines whether (A−1)11 is
nonzero with probability p. Thus the algorithm succeeds with probability at least p(1−1/q)2 ≥
1/12 using t = o(n) queries to M . By Theorem 21 we have a contradiction. ◀

The same proof idea shows that a lower bound for rank testing implies a lower bound
for linear regression in the vMv model. Rashtchian, Woodruff, and Zhu show that the
query complexity of distinguishing rank-n matrices from rank-(n − 1) matrices over Fq is
Ω(n2) [19, Theorem 3.3].

▶ Corollary 25. The bounded-error classical vMv query complexity of solving an n× n linear
system over Fq is Ω(n2).

Proof. By the same idea as in the proof of Theorem 24, it suffices to show that one vMv
query to the (n + 1) × (n + 1) matrix A in (29) can be simulated with one vMv query
to the n × n matrix M . For any query x, y, we let x = (x0, x

⊤
1 )⊤ and y = (y0, y

⊤
1 )⊤ for

n× 1 matrices x1, y1. The product y⊤Ax can be computed using one vMv query to M since
y⊤Ax = ay0x0 + y0u

⊤x1 + y⊤
1 vx0 + y⊤

1Mx1. Since no o(n2)-query classical algorithm can
distinguish rank-n matrices from rank-(n− 1) matrices [19, Theorem 3.3], the bounded-error
query complexity of solving linear systems is Ω(n2). ◀
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4.4 Rank testing
In this section, we show a linear lower bound on distinguishing whether an m× n matrix
M has rank(M) = n or rank(M) ≤ n/2, where m ≥ n. First we show the following lemma
using ideas from [16].

▶ Lemma 26. Let ξ ≥ 2 and let n be an even integer. Then any polynomial f satisfying
1. 0 ≤ f(ξi) ≤ 1 for i ∈ {0, 1, . . . , n− 1} and
2. f(1) ≤ 1/3 and f(ξi) ≥ 2/3 for i ∈ {n/2, n/2 + 1, . . . , n− 1}
has deg(f) = Ω(n).

Proof. Let d = deg(f). Toward contradiction, we assume d = o(n). For intervals Si :=
[ξi, ξi+1), since deg(f ′), deg(f ′′) = o(n), there exists an index a ∈ {9n/10, . . . , n− 3, n− 2}
such that none of the roots of f ′ and f ′′ has its real part in Sa. This implies that f ′ is
monotonically increasing or decreasing in Sa, i.e., f is concave or convex. In each case,
f( ξa+ξa+1

2 ) ∈ [0, 1]. If f is convex in Sa,∣∣∣∣f ′
(ξa + ξa+1

2

)∣∣∣∣ ≤ 1
ξa+1 − ξa+1+ξa

2
= 2
ξa+1 − ξa

≤ 2
ξa

≤ 2ξ−9n/10. (35)

If f is concave in Sa, reflecting about the x-axis gives the same bound.
By the second constraint, there exists x0 ∈ [1, ξn/2] such that

|f ′(x0)| ≥ |f(ξn/2) − f(1)|
ξn/2 − 1

≥ ξ−n/2/3. (36)

Therefore∣∣∣∣∣f ′( ξa+ξa+1

2 )
f ′(x0)

∣∣∣∣∣ ≤ 6ξ−2n/5 ≤ ξ3−2n/5. (37)

On the other hand, since deg(f ′) = d− 1, denoting the roots a1, . . . , ad−1 ∈ C, we write

f ′(x) = λ
d−1∏
i=1

(x− ai). (38)

Thus∣∣∣∣∣f ′( ξa+ξa+1

2 )
f ′(x0)

∣∣∣∣∣ =
d−1∏
i=1

∣∣∣∣∣ ξa+ξa+1

2 − ai

x0 − ai

∣∣∣∣∣ =
d−1∏
i=1

|g(ai)|, (39)

where

g(x) =
x− ξa+ξa+1

2
x− x0

. (40)

Our goal is to show that for each i, |g(ai)| ≥ 1
2ξ . Recall that for each i, ℜ(ai) /∈ Sa. Also

for real x /∈ Sa, x ≥ x0, we have |g(x)| ≥ ξ−1
2ξ ≥ 1

2ξ . For real roots, |g(ai)| ≥ 1
2ξ . Now we

consider the case where ai = α+ βi for β ̸= 0, giving

|g(α+ βi)|2 =
(α− ξa+ξa+1

2 )2 + β2

(α− x0)2 + β2 . (41)
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If (α− ξa+ξa+1

2 )2 ≥ (α− x0)2, then |g(α+ βi)| ≥ 1. Otherwise,

|g(α+ βi)| ≥

∣∣∣∣∣α− ξa+ξa+1

2
α− x0

∣∣∣∣∣ ≥ 1
2ξ . (42)

We have shown that |g(ai)| ≥ 1
2ξ for every root ai. Now we have∣∣∣∣∣f ′( ξa+ξa+1

2 )
f ′(x0)

∣∣∣∣∣ =
d−1∏
i=1

|g(ai)| ≥ (2ξ)−d+1 ≥ ξ2−2d. (43)

Thus by (37), we have ξ3−2n/5 ≥ ξ2−2d and conclude d ≥ n/5 − 1/2 = Ω(n) – a contradiction.
◀

Lemma 19 and Lemma 26 imply the following theorem.

▶ Theorem 27. The bounded-error matrix-vector quantum query complexity of determining
whether a matrix M ∈ Fm×n

q has rank(M) = n or rank(M) ≤ n/2 is Ω(n).
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Abstract
We study truthful mechanisms for allocation problems in graphs, both for the minimization (i.e.,
scheduling) and maximization (i.e., auctions) setting. The minimization problem is a special case of
the well-studied unrelated machines scheduling problem, in which every given task can be executed
only by two pre-specified machines in the case of graphs or a given subset of machines in the case of
hypergraphs. This corresponds to a multigraph whose nodes are the machines and its hyperedges
are the tasks. This class of problems belongs to multidimensional mechanism design, for which there
are no known general mechanisms other than the VCG and its generalization to affine minimizers.
We propose a new class of mechanisms that are truthful and have significantly better performance
than affine minimizers in many settings. Specifically, we provide upper and lower bounds for truthful
mechanisms for general multigraphs, as well as special classes of graphs such as stars, trees, planar
graphs, k-degenerate graphs, and graphs of a given treewidth. We also consider the objective of
minimizing or maximizing the Lp-norm of the values of the players, a generalization of the makespan
minimization that corresponds to p = ∞, and extend the results to any p > 0.
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1 Introduction

This work belongs to the area of mechanism design, one of the most researched branches
of Game Theory and Microeconomics with numerous applications in environments where a
protocol of conduct of selfish participants is required. The goal is to design an algorithm,
called mechanism, which is robust under selfish behavior and that produces a social outcome
with a certain guaranteed quality. The mechanism solicits the preferences of the participants
over the outcomes, in forms of bids, and then selects one of the outcomes. The challenge stems
from the fact that the real preferences of the participants are private, and the participants
care only about maximizing their private utilities and hence they will lie if a false report
is profitable. A truthful mechanism provides incentives such that a truthful bid is the best
action for each participant.

Despite the importance of the problem the only general positive result for multi-
dimensional domains is the celebrated Vickrey-Clarke-Groves (VCG) mechanism [43, 15, 26]
and its affine extensions, known as affine maximizers.

EA
T

C
S

© George Christodoulou, Elias Koutsoupias, and Annamária Kovács;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 56; pp. 56:1–56:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gchristo@liv.ac.uk
mailto:elias@cs.ox.ac.uk
https://orcid.org/0000-0002-2226-6737
mailto:panni@cs.uni-frankfurt.de
https://doi.org/10.4230/LIPIcs.ICALP.2021.56
https://arxiv.org/abs/2106.03724
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


56:2 Truthful Allocation in Graphs and Hypergraphs

In their seminal paper on algorithmic mechanism design, Nisan and Ronen [39] proposed
the scheduling problem on unrelated machines as a central problem to understand the
algorithmic aspects of mechanism design. The objective is to incentivize n machines to
execute m tasks, so that the maximum completion time of the machines, i.e. the makespan,
is minimized. Scheduling, a problem that has been extensively studied from the classical
algorithmic perspective, proved to be the perfect ground to study the limitations that
truthfulness imposes on algorithm design.

Nisan and Ronen applied the VCG mechanism, the most successful generic machinery
in mechanism design, which truthfully implements the outcome that maximizes the social
welfare. In the case of scheduling, the allocation of the VCG is the greedy allocation in
which each task is assigned to the machine with minimum processing time. This mechanism
is truthful, but has a poor approximation ratio of n for the makespan. They conjectured
that this is the best guarantee that can be achieved by any deterministic (polynomial-time
or not) truthful mechanism and this conjecture, known as the Nisan-Ronen conjecture, is
widely perceived as the holy grail in algorithmic mechanism design.

An interesting special case of the scheduling problem, which is well-understood, is the
single-dimensional mechanism design in which the values of each player are linear expressions
of a single parameter. The principal representative is the problem of scheduling related
machines, where the cost of each machine can be expressed via a single parameter, its
speed. This was first studied by Archer and Tardos [1], who showed that in contrast to the
unrelated machines version, an algorithm that minimizes the makespan can be truthfully
implemented – albeit in exponential time. It was subsequently shown that truthfulness
has essentially no impact on the computational complexity of the problem. Specifically, a
randomized truthful-in-expectation1 PTAS was given in [18] and a deterministic PTAS was
given in [14]; a PTAS is the best possible algorithm even for the pure algorithmic problem
(unless P = NP ).

1.1 Summary of Results
In this work, we show how to combine these two main positive results of VCG and single-
dimensional mechanisms into a single mechanism, which we call the Hybrid Mechanism. This
new mechanism applies to domains in which some players are multidimensional and some
players are single-dimensional. A typical example is to schedule m tasks, such that task i
can only be executed by player 0 and player i. In this case, player 0 is multidimensional and
the other m players are single-dimensional. We call this the star balancing problem. This is
a multidimensional mechanism design problem for which the VCG mechanism, as well as
every other known mechanism, performs very poorly. However, as we show in Section 3.1,
the Hybrid Mechanism has approximation ratio 2, optimal among all truthful mechanisms.
We generalize the star balancing problem in three directions: graphs/multigraphs, hyperstars
and also to objectives other than makespan minimization. Due to space limitations, omitted
proofs are presented in the full version.

(Multi)Graphs. A generalization of the star balancing problem to graphs and multigraphs
is the Unrelated Graph Balancing problem (Section 3). This is a special case of unrelated
machines scheduling in which there is a (multi)graph whose nodes represent the machines

1 This is one of the two main definitions of truthfulness for randomized mechanisms, where truth-telling
maximizes the expected utility of each player.
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and whose edges represent tasks that can be executed only by the incident nodes. For general
graphs, all machines are multiparameter, but we can still apply the Hybrid Mechanism, if we
first decompose the graph into stars and then apply the Hybrid Mechanism to each one of
them. The combined mechanism, which we call the Star-Cover Mechanism, has surprisingly
good approximation ratio for certain classes of graphs – ratio 4 for trees, 8 for planar graphs,
and 2k+2 for k-degenerate graphs (Corollary 15). These results use as ingredient the analysis
of star graphs, in which the Hybrid Mechanism has approximation ratio 2.

Hyperstars. In the hyperstar version, there are k multidimensional players/machines and
every task can be executed by any one of these k players or by a task-specific single-dimensional
player. Specifically, there are k different root players (players 1, 2, . . . , k with bids (rij)k×m)
and each of them are allowed to process all tasks. In addition, for each task there is one
leaf player, which can process only this single task (players k + 1, k + 2, . . . , k + m with
bids (ℓ1, ℓ2, . . . ℓm)). Note that the root players without the leaves form a classic input for
unrelated scheduling mechanisms with k players and m-tasks. We can now state the Hybrid
Mechanism for this case.

▶ Definition 1 (Hybrid Mechanism). The Hybrid Mechanism minimizes

min
T

{(
min
xT

k∑
i=1

λiri · xT
i

)
+ gT (ℓ)

}
,

where the λi can be arbitrary non-negative real numbers and (gT )T ⊆M can be any functions
that guarantee that the leaf players are truthful. The output of the mechanism is the subset of
tasks T that are allocated to the multidimensional root players together with their allocation
matrix xT . The remaining tasks, M \ T , are allocated to the leaf players.

VCG fairs poorly, yielding approximation ratio m in this domain, but the Hybrid
Mechanism has approximation ratio k + 1, as stated in the next theorem. Due to space
limitations, we provide details and proofs in the full version of the paper.

▶ Theorem 2. For the hyperstar scheduling problem, the Hybrid Mechanism with gT (ℓ) =
maxj /∈T ℓj , and with λi = 1, for every i, is (k + 1)-approximate.

In Section 4 we provide general definitions as well as necessary and sufficient conditions for
truthfulness of the Hybrid Mechanism.

Mechanisms for Lp-norm optimization. In Section 5, we consider the much more general
objective of minimizing or maximizing the Lp-norm of the values of the players, for p > 0.
The scheduling problem is the special case of minimizing the L∞-norm. We show that the
Hybrid Mechanism performs very well for this much more general problem, and in some cases
it has the optimal approximation ratio among all truthful mechanisms. This illustrates the
applicability and usefulness of the Hybrid Mechanism in applications with various domains
and objectives. We emphasize that for all these cases, even for stars, all known mechanisms
such as the VCG and affine maximizers have very poor performance.

Relation to the Nisan-Ronen conjecture. Our results on (multi)graphs show that this
domain may provide an easier way to attack the Nisan-Ronen conjecture. In a recent
work [12], we showed a Ω(

√
n) lower bound for multistars with edge multiplicity only 2, when

the root player has submodular or supermodular valuations. In contrast, our results in this
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work show that for additive valuations, the Star-Cover Mechanism has approximation ratio 4
on the very same multigraphs. However, the Hybrid and the Star-Cover Mechanisms have
high approximation for multistars with high edge-multiplicity or for simple clique graphs.
It is natural to ask whether there are other, better mechanisms for these cases. Recently
we have proved a Ω(

√
n) lower bound for the former case, which is the first super-constant

lower bound for the Nisan-Ronen problem [11], and we conjecture that the latter case admits
similarly a high, perhaps even linear, lower bound.

We remark that all previous lower bound proofs use inherently either (multi)graphs
[13, 29, 11] or, recently, hypergraphs with hyperedges of small size [24, 20]. Our work
provides new methodological tools to study these objects, that can help to identify certain
(hyper)graph structures as good candidates for high lower bounds and to avoid those where
low upper bounds exist. For example, the 2.755 lower bound construction of [24] uses a
hyperstar with k = 2, for which the Hybrid Mechanism achieves an upper bound of 3 (Thm 2).

All our lower bounds are information theoretic and hold independently of the computa-
tional time of the mechanisms. Conversely, all upper bounds are polynomial time algorithms
when the star decomposition is given. We leave it open whether computing an optimal
star decomposition of a graph is in P , although it follows from our results that it can be
approximated with an additive term of 1 in polynomial time (actually in linear time).

1.2 Related Work
The Nisan-Ronen conjecture [39] has become one of the central problems in Algorithmic
Game Theory, and despite intensive efforts it remains open. The original paper showed that
no truthful deterministic mechanism can achieve an approximation ratio better than 2 for
two machines, which was later improved to 2.41 [13] for three machines, and finally to 2.618
[29] which was the best known bound for over a decade. Recent progress improved this bound
to 2.755 [24], to 3 [20] and finally to the first non-constant lower bound of 1 +

√
n− 1 [11].

The best known upper bound is n [39].
The purely algorithmic problem of makespan minimization on unrelated machines is

one of the most important scheduling problems. The seminal paper of Lenstra, Shmoys
and Tardos [32], gave a 2-approximation algorithm, and also showed that it is NP-hard to
approximate within a factor of 3/2. Closing this gap has remained open for 30 years, and is
considered one of the most important open questions in scheduling.

In this work we consider the design of truthful mechanisms for the Unrelated Graph
Balancing problem, a special but quite rich case of the unrelated machines problem, which
was previously studied by Verschae and Wiese [42], for which each task can only be assigned
to two machines. This can be formulated as a graph problem, where given an undirected
(multi)-graph G = (V,E), each vertex corresponds to a machine, and each edge corresponds
to a task. The goal is to allocate each edge to one of its nodes, in a way that minimizes the
maximum (weighted) in-degree.

The special case of this problem where each direction of an edge corresponds to the
same processing time t(e) is known as Graph Balancing, and was introduced by Ebenlendr,
Krcál, and Sgall [21] who showed an 1.75-approximate algorithm and also demonstrated that
the problem retains the hardness of the unrelated machines problem, by showing that it is
NP-hard to approximate within a factor better than 3/2.

Graph Balancing. As was already mentioned, for the pure graph balancing problem, the
best approximation ratio for classical polynomial time algorithms is 1.75 by [21]. Wang and
Sitters [44] showed a different LP-based algorithm with a higher ratio of 11/6 ≈ 1.83, while
Huang and Ott [27] designed a purely combinatorial approximation algorithm but with also
a higher guarantee of 1.857.
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Jansen and Rohwedder [28] studied the so-called configuration LP which was introduced
by Bansal and Sviridenko [6]. They showed that it has an integrality gap of at most 1.749
breaking the 1.75 barrier of the integrality gaps of the previous LP formulations. This leaves
open the possibility of using this LP to produce an approximation algorithm with a ratio
better than 1.75.

Verschae and Wiese [42] studied the unrelated version of graph balancing (whose strategic
variant we consider in this paper) and showed that the integrality gap of the configuration
LP is equal to 2, which is much higher comparing to graph balancing. They also showed a
2-approximation algorithm for the problem of maximizing the minimum load, which is the
best possible unless P=NP.

The problem has been studied for various special graph classes. For the case of simple
graphs (also known as Graph Orientation), Asahiro et al [2] showed that the problem is in P
for the case of trees, while Asahiro, Miyano and Ono [3] showed that it becomes strongly
NP-hard for planar and bipartite graphs. Finally, Lee, Leung and Pinedo [31] concluded the
case of trees in the case of multiple edges, showing an FPTAS which is the best possible,
given that the problem in multi-graphs is immediately NP-hard even for the simple case of
two vertices (due to reduction from Subset Sum).

Truthful Scheduling. The lack of progress in the original unrelated machine problem led
to the study of special cases where progress has been made. Ashlagi et al.[4], resolved
a restricted version of the Nisan-Ronen conjecture, for the special but natural class of
anonymous mechanisms. Lavi and Swamy [30] studied a restricted input domain which
however retains the multi-dimensional flavour of the setting. They considered inputs with
only two possible values “low” and “high”, that are publicly known to the designer. For this
case they showed an elegant deterministic mechanism with an approximation factor of 2.
They also showed that even for this setting achieving the optimal makespan is not possible
under truthfulness, and provided a lower bound of 11/10. Yu [45] extended the results for a
range of values, and Auletta et al. [5] studied multi-dimensional domains where the private
information of the machines is a single bit.

Randomization has led to mildly improved guarantees. There are two extensions of
truthfulness for randomized mechanisms; universal truthfulness if the mechanism is described
as a probability distribution over deterministic truthful mechanisms, and truthfulness-in-
expectation, if in expectation no player can benefit by lying. The former notion was first
considered in [39] for two machines, it was later extended to n machines by Mu’alem and
Schapira [38] and finally Lu and Yu [35] showed a 0.837n-approximate mechanism, which is
currently the best known. Lu and Yu [36] showed a truthful-in-expectation mechanism with
an approximation guarantee of (m+ 5)/2. Mu’alem and Schapira [38], showed a lower bound
of 2 − 1/m, for both notions of randomization. Christodoulou, Koutsoupias and Kovács [10]
extended this lower bound for fractional mechanisms, where each task can be split to multiple
machines, and they also showed a fractional mechanism with a guarantee of (m+ 1)/2. The
special case of two machines [34, 36] is still unresolved; currently, the best upper bound is
1.587 due to Chen, Du, and Zuluaga [9].

The case of related machines is well understood. It falls into the so-called single-
dimensional mechanism design in which the valuations of a player are linear expressions of a
single parameter. In this case, the cost of each machine is expressed via a single parameter, its
(inverse) speed multiplied by the workload allocated to the machine, instead of an m-valued
vector, as it is the case for the unrelated machines and the Graph Balancing setting. Archer
and Tardos [1] showed that, in contrast to the unrelated machines version, the optimal
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makespan can be achieved by an (exponential-time) truthful algorithm, while [14] gave a
deterministic truthful PTAS which is the best possible even for the pure algorithmic problem
(unless P=NP).

Truthful implementation of other objectives was considered by Mu’alem and Schapira [38]
for multi-dimensional problems and by Epstein, Levin and van Stee [22] for single-dimensional
ones. Leucci, Mamageishvili and Penna [33] demonstrated high lower bounds for other min-
max objectives on some combinatorial optimization problems on graphs, showing essentially
that VCG is the best mechanism for these problems. Minooei and Swamy [37] considered
a multi-dimensional vertex cover problem, and approached in by decomposition into single
parameter problems.

The Bayesian setting, where the players costs are drawn from a probability distribution
has also been studied. Daskalakis and Weinberg [17] showed a mechanism that is at
most a factor of 2 from the optimal truthful mechanism, but not with respect to the
optimal makespan. Chawla et al. [8] provided bounds of prior-independent mechanisms
(where the input distribution is unknown to the mechanism), while Giannakopoulos and
Kyropoulou [25] showed that the VCG mechanism achieves a factor of O(log n/ log log n)
under some distributional and symmetry assumptions.

Recently Christodoulou, Koutsoupias, and Kovács [12] showed a lower bound of
√
n− 1

for all deterministic truthful mechanisms, when the cost of processing a subset of tasks is
given by a submodular (or supermodular) set function, instead of an additive function which
is assumed in the standard scheduling setting.

2 Preliminaries

Scheduling. In the classical unrelated machines scheduling there is a set N of n machines
and a set M of m tasks that need to be scheduled on the machines. The input is given by
a nonnegative matrix t = (tij)n×m : machine i needs time tij ∈ R≥0 to process task j, and
her costs are additive, i.e., the processing time for machine i for a set of tasks Xi ⊂ M is
ti(Xi) :=

∑
j∈Xi

tij . The objective is to minimize the makespan (min-max objective). An
allocation to all machines X = (X1, X2, . . . , Xn), (which is a partition of M) can also be
denoted by the characteristic matrix x = (xij) where xij = 1 if j ∈ Xi, and xij = 0 otherwise.

The current work essentially considers a special case of unrelated scheduling, in which
every task can be processed by two designated machines. The tasks can thus be modelled by
the edges of a graph, and the associated problem is also known as Unrelated Graph Balancing.
More formally, in the Unrelated Graph Balancing problem, there is a given undirected graph
G = (V,E); the vertices correspond to a set of machines N = V and the edges to a set of
tasks M = E. For each edge e ∈ E only its two incident vertices can process the job e,

and they have in general different processing times ti(e), and ti′(e). The goal is to assign
a direction to each edge e = (i, i′) (allocate the corresponding task) of the graph, to one
of the incident vertices (machines). The completion time of each vertex i is then the total
processing time of the jobs Xi assigned to it ti(Xi) =

∑
e∈Xi

ti(e). The objective is to find an
allocation that minimizes the makespan, i.e. the maximum completion time over all vertices.

Mechanism design setting. We assume that each machine i ∈ N is controlled by a selfish
agent that is reluctant to process the tasks and the cost function ti is private information
(also called the type of agent i). A mechanism asks the agents to report (bid) their types ti,
and based on the collected bids it allocates the jobs, and gives payments to the agents. A
player may report a false cost function bi ̸= ti, if this serves her interests.
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Formally, a mechanism (X,P ) consists of two parts:
An allocation algorithm: The allocation algorithm X allocates the tasks to the machines

depending on the players’ bids b = (b1, . . . , bn). We denote by Xi(b) the subset of tasks
assigned to machine i in the bid profile b.

A payment scheme: The payment scheme P = (P1, . . . , Pn) determines the payments also
depending on the bid values b. The functions P1, . . . , Pn stand for the payments that the
mechanism hands to each agent.

The utility ui of a player i is the payment that she gets minus the actual time that she
needs to process the set of tasks assigned to her, ui(b) = Pi(b) − ti(Xi(b)). We are interested
in truthful mechanisms. A mechanism is truthful, if for every player, reporting his true type
is a dominant strategy. Formally,

ui(ti, b−i) ≥ ui(t′i, b−i), ∀i ∈ N, ti, t
′
i ∈ Rm

≥0, b−i ∈ R(n−1)×m
≥0 ,

where b−i denotes the reported bidvectors of all players disregarding i.
We are looking for truthful mechanisms with low approximation ratio of the allocation

algorithm for the makespan irrespective of the running time to compute X and P. In other
words, our lower bounds are information-theoretic and do not take into account computational
issues.

A useful characterization of truthful mechanisms in terms of the following monotonicity
condition, helps us to get rid of the payments and focus on the properties of the allocation
algorithm.

▶ Definition 3 (Weak Monotonicity). An allocation algorithm X is called weakly monotone
(WMON) if it satisfies the following property: for every two inputs t = (ti, t−i) and t′ =
(t′i, t−i), the associated allocations X and X ′ satisfy ti(Xi) − ti(X ′

i) ≤ t′i(Xi) − t′i(X ′
i).

It is well known that the allocation function of every truthful mechanism is WMON [7],
and also that this is a sufficient condition for truthfulness in convex domains [41].

The following lemma was essentially shown in [39] and has been a useful tool to show
lower bounds for truthful mechanisms for several variants (see for example [13, 38]).

▶ Lemma 4. Let t be a bid vector, and let S = Xi(t) be the subset assigned to player i by
a weakly monotone allocation X. For any bid vector t′ = (t′i, t−i) such that only the bid of
machine i has changed and in such a way that for every task in S it has decreased (i.e.,
t′ij < tij , j ∈ S) and for every other task it has increased (i.e., t′ij > tij , j ∈ M \ S). Then
the mechanism does not change the allocation to machine i, i.e., Xi(t′) = Xi(t) = S.

In general, when the values of a machine change, the allocation of the other machines may
change, this issue being the pivotal difficulty of truthful unrelated scheduling. Allocation
algorithms that “promise” not to change the allocation of other machines as long as changing
(only) ti does not affect the set Xi, are less problematic. These allocation rules are called
local in [39], where it is shown that local truthful mechanisms cannot have a better than n

approximation.

▶ Definition 5 (Local mechanisms). A mechanism is local if for every i ∈ N , for every t−i, and
ti, t

′
i for which Xi(ti, t−i) = Xi(t′i, t−i) also holds that Xj(ti, t−i) = Xj(t′i, t−i) (∀j ∈ N).

There are several special classes of mechanisms that satisfy this property, perhaps the
most prominent one is the class of affine minimizers (see, e.g., [13]).

ICALP 2021



56:8 Truthful Allocation in Graphs and Hypergraphs

3 Graph Balancing

In this section we focus on the (Unrelated) Graph Balancing problem, which is a special
case of makespan minimization of scheduling unrelated machines. The Graph Balancing
is a multi-parameter mechanism design problem that retains most of the difficulty of the
Nisan-Ronen conjecture, yet has certain features that make it more amenable.

One of the difficulties in dealing with truthful mechanisms is that while truthfulness is
a local property (i.e., independent truthfulness conditions, one per player), the allocation
algorithm is a global function (that involves all players). Local algorithms attempt to
reconcile this tension by insisting that the allocation is also “local”, but they take this notion
too far. The results of this work show that locality in mechanisms is very restrictive in some
domains, where the Hybrid Mechanism outperforms every local mechanism.

The Graph Balancing problem is more amenable than the general scheduling problem
because it exhibits another kind of locality, domain locality: when a machine does not get
a task, we know which machines gets it. Yet, this locality is not very restrictive and the
problem retains most of its original difficulty.

In this section, we take advantage of domain locality to obtain an optimal mechanism
for stars. It turns out that this mechanism, the Hybrid Mechanism, is a special case of a
more general mechanism. But since the Hybrid Mechanism does not apply to general graphs,
we also propose the Star-Cover mechanism for general graphs: decompose the graph into
stars and apply the Hybrid Mechanism independently to each star. In this way, we obtain a
4-approximation algorithm for trees and similar positive results for other types of graphs.

Makespan minimization is the special case, when p = ∞, of minimizing the Lp-norm of
the values of the players. Other special cases of the Lp-norm optimization is the case p = 1,
which corresponds to welfare maximization, and the case p = 0, which is related to Nash
Social Welfare [16]. We deal with this more general problem in another section (Section 5).
Most of the results and proofs of this section generalize to any p ≥ 1. We provide almost
all the proofs in this section, because we believe that the Graph Balancing problem is an
important problem in its own right and because the treatment is simpler and more intuitive,
and we omit most of the (more general) results of Section 5 that deals with the Lp-norm
minimization, due to space limitations.

3.1 Stars and the Hybrid Mechanism
In this subsection, we focus on star graphs, where there are n = m+ 1 players and m tasks.
Player 0 is the root of the star, and has processing times given by a vector r = (r1, r2, . . . rm).
We also refer to this player as the root player or r-player. For given bids r of the root player,
and task set T ⊆ M we use the short notation r(T ) =

∑
j∈T rj .

There are also m leaf-players, one for each leaf of the star with processing times ℓ =
(ℓ1, . . . , ℓm) respectively. Each task j can only be assigned to two players; either to the root,
with processing time rj , or to the leaf with processing time ℓj .

As usual, we denote by r−i the vector of bids of the root player except for the bid for
task i, and similarly ℓ−i denotes the bids of all leaf-players, except for player i. The vector of
all input bids is given by t = (r, ℓ).

As we show later in the Lower Bound section (Section 3.3), all previously known mechan-
isms for the Unrelated Graph Balancing problem, e.g. affine minimizers and task independent
mechanisms, have approximation ratio at least

√
n− 1 for graphs, even for stars.

In contrast, we now show that the Hybrid Mechanism has constant approximation ratio
for stars.



G. Christodoulou, E. Koutsoupias, and A. Kovács 56:9

r1
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ℓ2

ℓ1ℓ1 − ℓ2 r1

r2

ℓ1

ℓ2

ℓ2 − ℓ1

Figure 1 An instance of the Hybrid Mechanism, for the star of m = 2 leaves. It shows the
partition of bid-space of the root player induced by the allocation of the Hybrid Mechanism when
ℓ1 ≥ ℓ2 (left) and when ℓ2 ≥ ℓ1 (right). In the left case, the root gets both tasks in the area near
(0, 0), it gets only task 1 when r1 ≤ ℓ1 − ℓ2 and r2 ≥ ℓ2, and it gets neither task otherwise. Note that,
in contrast to VCG, for every set of fixed values for the leaves, only three allocations are possible.

▶ Definition 6 (Hybrid Mechanism for Graph Balancing). Consider an instance of the Unrelated
Graph Balancing problem on a star of n nodes and set of tasks M . Let

S ∈ arg min
T ⊆M

{r(T ) + max
i̸∈T

ℓi}. (1)

The mechanism assigns a set of tasks S to the root and the remaining tasks to leaves. Ties
are broken in a deterministic way (e.g., lexicographically).

Figure 1 shows the partition of the space of the root player induced by the Hybrid
Mechanism for a star of two leaves.

The argmin expression that defines the Hybrid Mechanism and a corresponding expression
that defines the VCG mechanism are similar: in the definition of VCG, instead of maxi̸∈T ℓi,
we have

∑
i̸∈T ℓi. It is a happy coincidence that replacing the operator sum with max

preserves the truthfulness of the mechanism, a fact that rarely holds.

▶ Lemma 7. The Hybrid Mechanism for Graph Balancing on stars is truthful and has
approximation ratio 2.

Proof. The root player has no incentive to lie since − maxi̸∈T ℓi can be interpreted as its
payments. The reason that leaf players have no incentive to lie comes essentially from the
fact that the expression in (1) is monotone in ℓi (see Section 4, for a more rigorous and
extensive treatment of the truthfulness of the general Hybrid Mechanism).

Let S∗ = arg minT ⊆M max{r(T ), maxi̸∈T ℓi} be the subset assigned to the root in the
optimal allocation, OPT be the optimal makespan, and ALG be the makespan achieved by
the Hybrid Mechanism. Then we have

ALG ≤ min
T ⊆M

{r(T ) + max
i̸∈T

ℓi} ≤ r(S∗) + max
i̸∈S∗

ℓi ≤ 2 max{r(S∗), max
i̸∈S∗

ℓi} = 2OPT. ◀

3.2 Upper bound for general graphs and multigraphs
We now turn our attention to positive (upper bound) results for general graphs and multi-
graphs. We will need a few definitions first.
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▶ Definition 8 (Star decomposition). A star decomposition of a (multi)graph G(V,E) is
a partition T = {T1, . . . , Tk} of its edges into stars (see Figure 2 for an example). Let
V (Ti) denote the vertex set of the star spanned by Ti. The star contention number of a star
decomposition is the maximum number of stars that include a node either as a root or as
a leaf: c(T ) = maxv∈V |{i : v ∈ V (Ti), i = 1, . . . , k}|. The star contention number of a
(multi)graph is the minimum star contention number among all its star decompositions.

In an optimal star decomposition of a graph (but not multigraph), we can assume that
every node is the root of at most one star, otherwise we can merge stars with common root
without changing the star contention number.

A related notion to star decomposition that has been studied extensively is the notion of
edge orientation of a multigraph (or of load balancing when we consider multigraphs).

▶ Definition 9 (Edge orientation number). Define the orientation number of a given orientation
of the edges of a multigraph G, as its maximum in-degree. The edge orientation number o(G)
of a multigraph G is the minimum orientation number among all its possible orientations.

Indeed the two notions are closely related: every star decomposition corresponds to a
graph orientation by orienting the edges in all stars from roots to leaves, and vice versa a
graph orientation gives rise to a star decomposition in which every node with its outgoing
edges defines a star. Given that in an optimal star decomposition of a graph, each node is
the root of at most one star, we get that for every graph G:

o(G) ≤ c(G) ≤ o(G) + 1.

This relation for multigraphs is similar only that in the right hand side we add the maximum
edge multiplicity w instead of 1, i.e., o(G) ≤ c(G) ≤ o(G) + w.

The following definition utilizes the Hybrid Mechanism on stars to obtain a general
mechanism for arbitrary graphs (and multigraphs).

▶ Definition 10 (Star-Cover Mechanism). Let G = (V,E) be a multigraph and let T =
{T1, . . . , Tk} be a fixed star decomposition. The Star-Cover mechanism runs the Hybrid
Mechanism on every star of T independently. That is, if Si,h is the subset of tasks allocated
to a player i by the Hybrid Mechanism when applied to a star Th, the set of tasks allocated to
player i is Si = ∪k

h=1Si,h.

We can now state and prove the general positive theorem of this section.

▶ Theorem 11. The Star-Cover mechanism for a given multigraph G that uses the Hybrid
Mechanism on every star of a fixed star decomposition T = {T1, . . . , Tk} is truthful and has
an approximation ratio at most 2c(T ).

Proof. Fix some player i and let Si,h be the subset of tasks allocated to player i by the
Star Mechanism when applied to a star Th, h = 1, . . . , k. Truthfulness is an immediate
consequence of the following two observations. First, since the fixed star decomposition is
independent of player i’s processing times, player i cannot affect it by lying. Second, Si,h is
independent of player i’s processing times ti(e) for all edges e ̸∈ Th, therefore player i cannot
alter the assignment on Th by changing its values outside Th.

To see the approximation guarantee, let OPT , OPT (Th) be the optimal makespan on G

and Th respectively, and let ALG and ALG(Th) be the makespan achieved by the Star-Cover
mechanism on G and Th.

ALG ≤ max
h=1,...,k

c(T ) ·ALG(Th) ≤ max
h=1,...,k

c(T ) · 2OPT (Th) ≤ 2c(T ) ·OPT. ◀
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Due to the connection between star decompositions and edge orientations in graphs, we get

▶ Corollary 12. The approximation ratio for graphs with edge orientation number o(G) is at
most 2o(G) + 2.

In the sequel, we consider particular bounds for certain classes of graphs. It is known
that the edge orientation number of a given graph can be computed in polynomial time [2].
In fact, by an application of the max-flow-min-cut theorem it can be shown that o(G) ≤ γ iff
for every subgraph H of G it holds that |E(H)| ≤ γ|V (H)|. Since this equivalent condition2

holds for planar graphs with γ = 3, we immediately obtain:

▶ Theorem 13. For every planar graph, there exists a truthful mechanism with approximation
ratio 8.

A natural class of graphs fulfilling this property (with γ = k) is k-degenerate graphs. A
graph G(V,E) is called k-degenerate [23] (or k-inductive) if there is an ordering v1, . . . , vn

of its nodes such that the number of neighbors of vi in {vi+1, . . . , vn} is at most k. Many
interesting classes of graphs are k-degenerate for some small k. Besides planar graphs (with
k = 5), another example is given by k-trees [40]: by definition, a k-tree is a degenerate graph
with an ordering such that every vi (except for the last k nodes of the ordering) has exactly k
neighbors in {vi+1, . . . , vn} and these k neighbors form a clique. Since graphs of treewidth k

are subgraphs of k-trees [40], they are also k-degenerate. In particular, trees are 1-degenerate.
We give here a direct proof and illustration of a star decomposition for k-degenerate graphs:

▶ Theorem 14. For every k-degenerate graph, there is a truthful mechanism with approxim-
ation ratio 2k + 2.

Proof. Consider a k-degenerate graph G. It suffices to show that it admits a star decompos-
ition with contention number k + 1. Let v1, . . . , vn be an inductive ordering of the nodes of
G. We consider the star covering {T2, . . . , Tn} where Ti is the star with root vi and leaves
all its neighbors in {v1, . . . , vi−1}. Note that stars are created in the opposite direction of
the inductive order (see Figure 2). This star decomposition has contention number k + 1
since every node belongs to at most one star as a root and to at most k stars as a leaf. ◀

▶ Corollary 15. There exist truthful mechanisms with approximation ratio at most 4 for
trees, and generally of ratio at most 2k + 2 for graphs of treewidth k.

3.3 Lower Bounds for Graph Balancing

In this subsection, we show corresponding negative results for the positive results of the
previous subsection. We first observe that the natural candidate mechanisms for the Graph
Balancing problem have very poor performance, in stark contrast to the Hybrid Mechanism.

▶ Theorem 16. All local mechanisms for stars, including VCG, affine minimizers and
task-independent mechanisms, have approximation ratio at least

√
m =

√
n− 1.

2 This characterization of the orientation number o(G) implies that a truthful mechanism with constant
approximation ratio exists for any minor-closed class of graphs, because for every class of graphs with
forbidden minors, there exists some constant γ that satisfies the property (see Theorems 7.2.3, 7.2.4
and Lemma 12.6.1. in [19]). We are grateful to an anonymous referee for pointing this out.
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Figure 2 The star decomposition used in Theorem 14 of a 2-degenerate graph. The inductive
order is upwards, while the stars are “pointing” downwards.

Proof. Consider the following input

t =


1√
m

1√
m

· · · 1√
m

1 ∞ · · · ∞
∞ 1 · · · ∞
∞ ∞ · · · 1

 .

If, in the allocation of the mechanism, the root player takes all the tasks, then this
allocation has approximation

√
m, as the optimal allocation is to assign the tasks to the

leaves with makespan equal to 1. Otherwise, assume that (at least) one of the tasks, is given
to some other player, say w.l.o.g. task 1 is given to player 1. By a series of applications of
Lemma 4, and by exploiting the locality of the mechanism, we set the value of the owner of
task j to 0 for every j ̸= 1.

In particular, let S be the set of tasks assigned to the root player, and M \S be the tasks
assigned to their respective leaf-player. Let t1 = (r′, ℓ1, . . . , ℓm), with r′ defined as follows
for some arbitrarily small ϵ.

r′
j =

{
0 j ∈ S

1√
m

+ ϵ otherwise.

By applying Lemma 4, the root player receives again the set S, and therefore, the set
M \ S is assigned to the leaves. We proceed by changing the bids of the leaf-players for the
tasks in M \ S to 0, i.e., defining a sequence tj for j ∈ M \ S, with tj = (r′, ℓ′

j = 0, ℓj−1
−j )

Again, by Lemma 4 and by locality, we get that the allocation of the tasks remains the
same for the leaf j, and for all the other players as well.

We end up with an instance t′ where player 1 still takes the first task, while the rest
of the tasks are assigned to a player with 0 processing time. For t′, the optimal makespan
is 1/

√
m, while the mechanism achieves makespan equal to 1. We illustrate the case when

S = ∅, that is, the allocation gives all the tasks to the leaves of the star.

t =


1√
m

1√
m

· · · 1√
m

1 ∞ · · · ∞
∞ 1 · · · ∞
∞ ∞ · · · 1

 → t′ =


1√
m

1√
m

· · · 1√
m

1 ∞ · · · ∞
∞ 0 · · · ∞
∞ ∞ · · · 0

 ◀



G. Christodoulou, E. Koutsoupias, and A. Kovács 56:13

In the previous subsection, we showed that the Hybrid Mechanism outperforms all known
mechanisms and has approximation ratio at most 2. The next theorem shows that this ratio
is the best possible among all possible mechanisms for stars.

▶ Theorem 17. There is no deterministic mechanism for stars that can achieve an approx-
imation ratio better than 2.

This is a special case of a more general lower bound for the Lp-norm objective (Theorem 30),
but we give the proof here anyway, since it will be an ingredient of the proof of the following
theorem (Theorem 18).

Proof. Let’s assume that the mechanism takes an input where the processing time of the
root player is rj = aj−1, for each task j, where a > 1 is a parameter, and the processing time
of the corresponding leaf player for task j is ℓj = aj , as also shown in the following table.

t =



1 a · · · am−2 am−1

a ∞ · · · ∞ ∞
∞ a2 · · · ∞ ∞
...

...
...

...
...

∞ ∞ · · · am−1 ∞
∞ ∞ · · · ∞ am


If the mechanism assigns all tasks to the root player, then the makespan for this input is
(am−1)/(a−1), while the optimal makespan is am−1, yielding a ratio of (am−1)/((a−1)am−1).
Otherwise, let X be the nonempty set of tasks assigned to the leaf players. Let k be the task
with the maximum index in X. Since it is processed by the leaf player, its processing time is
ak. Now consider the input in which we change the processing times of the root player to

r′
j =

{
0 j ̸∈ X

rj + ϵ otherwise

for some arbitrarily small ϵ > 0. By weak monotonicity (Lemma 4), the set of tasks assigned
to the root player remains the same, and as a result the whole allocation stays the same.
Therefore task k is still assigned to the leaf player k and the makespan of the mechanism is
at least ak. Notice that the optimum allocation for this input is ak−1 + ϵ which yields an
approximation ratio of a, as ϵ tends to 0.

In conclusion, the approximation ratio is min{(am − 1)/((a− 1)am−1), a}, for every a > 1.
By choosing a = 2, we see that the ratio is 2 − 1/2m−1, which shows that for the class of stars
no mechanism can have approximation ratio better than 2. For fixed m, the lower bound
is slightly better than 2 − 1/2m−1, by selecting a to be the positive root of the equation
(am − 1)/((a− 1)am−1) = a. ◀

We now show how to extend the previous result to get a lower bound of 1+φ ≈ 2.618 for trees,
and thus for graphs. This matches the best lower bound for the Nisan-Ronen setting [29]
that was known until the recent improvements [24, 20, 11], suggesting that studying the
special case of scheduling in graphs may be useful in attacking the Nisan-Ronen conjecture.

▶ Theorem 18. No mechanism for trees can achieve approximation ratio 1 + φ ≈ 2.618.

Proof. The proof mimics the proof of Theorem 17 on the tree shown in Figure 3. The tree
consists of a star with root 0 and leaves 1, . . . , k in which we add a new node v for each node
v of the star and connect it to v. These new nodes (players), which we call dummy will not
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Figure 3 A star with root 0 and leaves 1, . . . , m and its extension to a tree with dummy nodes.

be assigned any task by any efficient mechanism since we set their processing times to an
arbitrarily high value H. The processing times of the edges of the star are exactly the same
as in the proof of Theorem 17: rj = aj−1 and ℓj = aj , for some a > 1. The processing times
for all edges are given below:

rj = aj−1 ℓj = aj j = 1, . . . , k
r = 0 ℓj = 0

where r and ℓj are the processing times of the star vertices of their respective dummy tasks.
The dummy nodes themselves have a very large processing time H ≫ 1 on these tasks.

We consider two cases. In the first case, all tasks of the star are assigned to the root
player 0. We then consider a new instance in which we slightly lower the processing time
of the root on the tasks of the star (i.e., rj = aj−1 − ϵ for some ϵ > 0) and increase the
processing time of its dummy task r = ak. By weak monotonicity (Lemma 4), the r-player
will take this task and all tasks of the star with a total processing time slightly less than
1 + a+ . . .+ ak = (ak+1 − 1)/(a− 1). It is easy to see that the optimal allocation for this
instance is ak, and the approximation ratio (ak+1 − 1)/((a− 1)ak).

In the second case, at least one task of the star is allocated to a leaf. Let p be the star
task allocated to a leaf with the maximum index (that is, task p of the star is allocated
to leaf-player p and tasks p+ 1, . . . , k are allocated to the root). We consider the instance
in which we change the processing times of the root player as follows: all processing times
of the tasks allocated to the root become 0 and all processing times of the root player for
the remaining tasks increase slightly. By weak monotonicity (Lemma 4), the r-player will
still get the same set of tasks. We now create a new instance by increasing the processing
time of the p-th dummy task: ℓp = ap−1 and slightly decreasing the processing time of
the leaf p for its task in the star: ℓp = ap − ϵ, for some ϵ > 0. Then again by weak
monotonicity (Lemma 4), player p will get these two tasks. Although the allocation of the
other tasks may change, the cost for the mechanism is at least ap + ap−1 − ϵ, while the
optimal allocation has cost ap−1. Therefore, in this case the mechanism has approximation
ratio (ap + ap−1)/ap−1 = a+ 1, as ϵ → 0. In any case, the mechanism has approximation
ratio min{((ak+1 − 1)/((a− 1)ak), a+ 1}. By selecting a = φ, we get a ratio at least 1 + φ

(as k → ∞). ◀

Closing the gap between the above lower bound 2.618 of Theorem 18 and the upper bound 4
(Corollary 15) for mechanisms for trees is a crisp intriguing question.
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4 Hybrid Mechanisms

Here we provide the general definitions related to Hybrid Mechanisms, and show necessary
and sufficient conditions for truthfulness on stars (and hyper-stars3). We emphasize that
this is a multi-dimensional mechanism design setting. Each leaf j has a single dimensional
valuation, given by the scalar ℓj but a root has multi-dimensional preferences, given by the
vector of values. For the sake of convenience, we call non-decreasing real functions increasing,
and non-increasing functions decreasing. We say strictly increasing/decreasing if we want to
emphasize strict monotonicity.

It is known, that an allocation rule can be equipped by a truthful payment scheme iff
it is weakly monotone [41]. The next two propositions give a characterization of the weak
monotonicity property in our case, for the leaf-players, and for the root player, respectively:

▶ Proposition 19. An allocation rule is weakly monotone for a leaf-player i, iff for every r
and every ℓ−i, whenever leaf-player i gets task i with bid ℓi, then he also gets the task with
every smaller bid ℓ′

i < ℓi.

▶ Proposition 20. An allocation rule is weakly monotone for the root player if and only
if for every fixed bid vector ℓ of the other players, and every T ⊆ M a constant gT (ℓ)
(i.e., independent of r) exists, such that for every r the root player is allocated a set S ∈
arg minT {r(T ) + gT (ℓ)}.

The canonical choice for truthful payments to the r-player is then P 0
S(ℓ) = g∅(ℓ) − gS(ℓ),

and all other truthful payments can be obtained by an additive shift by an arbitrary c(ℓ).

We assume w.l.o.g. that for every fixed ℓ the payments P 0
S correspond to an increasing

set-function of S,4 because a set of tasks with higher cost and less payments can not be
allocated to player 0 by a truthful mechanism.5 Motivated by Proposition 20 we restrict our
search for truthful mechanisms on star graphs as follows:

▶ Definition 21 (Hybrid Mechanism). Assume that an m-variate function gT : Rm → R is
given for every T ⊆ M, so that for every fixed vector ℓ ≥ 0 the values {gT (ℓ)}T ⊆M correspond
to a decreasing setfunction of T. For any input (r, ℓ), a Hybrid Mechanism (for the functions
{gT }T ⊆M ) allocates a set S to the root player such that

S ∈ arg min
T

{r(T ) + gT (ℓ)};

if there are more than one such sets S, the mechanism breaks ties according to the lexicographic
order over all subsets of M. The items in M \ S are assigned to the leaves.

Now for any i ∈ M fix all bids in the input except for ri, i.e., fix the vectors r−i and ℓ. The
following function ψi[r−i, ℓ] defines the so called critical value for the bid ri. We omit the
argument r−i, ℓ whenever they are obvious from the context.

▶ Definition 22.

ψi = ψi[r−i, ℓ] = min
T :i/∈T

{r(T ) + gT (ℓ)} − min
T :i∈T

{r(T \ {i}) + gT (ℓ)}

3 For simplicity of presentation we give here all definitions and lemmata for the case of stars, and discuss
the necessary changes for hyper-stars in the full version.

4 We call a setfunction P increasing, if P (S′) ≤ P (S) whenever S′ ⊂ S; we call it strictly increasing if
the inequality is strict.

5 See also the virtual payments in [12].
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The next lemma states that ψi is nonnegative, and is, indeed, a critical value function. The
proofs are straightforward, and due to space limitations are deferred to the full version.

▶ Lemma 23. Let i ∈ M, and arbitrary nonnegative bid vectors r−i and ℓ be fixed. Then
ψi[r−i, ℓ] ≥ 0, furthermore for every ri < ψi the root player receives task i, and for every
ri > ψi the leaf player with bid ℓi receives task i.

The following lemma provides various necessary or sufficient conditions for the truthfulness
of Hybrid Mechanisms in terms of monotonicity of the critical value function ψi as a function
of ℓi. For the proof of the lemma see the full version. There we also present an example
mechanism showing that conditions (b) and (c) are both not necessary for the Hybrid
Mechanism to be truthful.

▶ Lemma 24. For the truthfulness of the Hybrid Mechanism with given {gT }T ⊆M functions
(i.e., for a truthful payment scheme to exist),
(a) it is necessary that for every i ∈ M and every fixed (r−i, ℓ−i) the function ψi(ℓi) =

ψi[r−i, ℓ−i](ℓi) is an increasing function of ℓi;
(b) it is sufficient that for every i ∈ M and every fixed (r−i, ℓ−i) the function ψi(ℓi) =

ψi[r−i, ℓ−i](ℓi) is a strictly increasing function of ℓi;
(c) it is sufficient that for every i and ℓ−i the gT (ℓi, ℓ−i) is an increasing function of ℓi

whenever i /∈ T, and decreasing function of ℓi whenever i ∈ T.

▶ Corollary 25. The Hybrid Mechanism for Graph Balancing and the Hybrid Lp Mechanism
on stars are truthful.

Proof. The first statement follows from the fact that the Hybrid Mechanism for Graph Bal-
ancing fulfils (c). Clearly, gT (ℓ) = maxi/∈T {ℓi} = maxi∈M\T {ℓi} is an increasing setfunction
of the sets M \ T, and therefore a decreasing setfunction of the sets T, for fixed ℓ. For fixed
T, maxi/∈T {ℓi} is an increasing function of ℓi for every i /∈ T, and it is independent of ℓi

(constant function) if i ∈ T. Finally, it is easy to see that the Hybrid Lp Mechanism (see
Section 5) fulfils (b) as well as (c). ◀

5 Mechanisms for Lp-norm optimization

In this section we generalize some of the results of Section 3 to the objective of minimizing
the Lp-norm of the values of the agents, i.e., minimizing, over all allocations X the expression( n∑

i=1
ti(X)p

)1/p

. (2)

The makespan scheduling problem is the special case of p = ∞. We consider all positive
values of p, but we deal separately with the case p ≥ 1, in which Lp is a proper norm, and
the case p ∈ (0, 1), where the Lp function is not subadditive (i.e., the triangle inequality does
not hold). Due to space limitations we postpone most of the results and their proofs to the
full version of the paper. There we also consider the maximization case, which for p = 1
corresponds to auctions.

Consider an instance of the Unrelated Graph Balancing problem on a star of n nodes and
set of tasks M . Notice that for stars the objective of minimizing the Lp-norm corresponds to
minimizing (r(T )p +

∑
i̸∈T ℓ

p
i )

1
p over all task sets T ⊆ M given to the r-player.
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▶ Definition 26 (Hybrid Lp Mechanism for stars). For a given 0 < p ≤ ∞, and an instance
of the Unrelated Graph Balancing problem on a star of n nodes and set M of tasks, let

S ∈ arg min
T ⊆M

{
r(T ) +

(∑
i̸∈T

ℓp
i

)1/p}
. (3)

The mechanism assigns S to the root and the remaining tasks to leaves. Ties are broken in a
deterministic way (e.g., lexicographically).

The argmin expression that defines the Hybrid Lp Mechanism coincides with the VCG
mechanism for p = 1 and with the Hybrid Mechanism of Section 3 for p → ∞. As it is shown
in Corollary 25, the Hybrid Lp mechanism is truthful.

Next we show two upper bound results for the approximation ratio (for the Lp-norm
objective) separately in case p ≥ 1, and in case 0 < p ≤ 1, respectively. We summarize here
the inequalities that we will use:
▶ Lemma 27. For any p ≥ 1 it holds

k∑
i=1

xp
i ≤

( k∑
i=1

xi

)p

≤ kp−1
k∑

i=1
xp

i . (4)

Similarly for any 0 < p ≤ 1 it holds
k∑

i=1
x

1/p
i ≤

( k∑
i=1

xi

)1/p

≤ k1/p−1
k∑

i=1
x

1/p
i . (5)

▶ Theorem 28. For the problem of minimizing the Lp-norm, the Hybrid Lp Mechanism for
stars has approximation ratio of at most 2(p−1)/p, when p ≥ 1, and 2(1−p)/p, when 0 < p < 1.
Proof. Let S∗ = arg minT ⊆M (r(T )p +

∑
i̸∈T ℓ

p
i )

1
p be the subset assigned to the root in the

optimal allocation, S be the subset assigned to the root by the Lp Mechanism, OPT be the
optimal Lp-norm, and ALG be the Lp-norm achieved by the Hybrid Lp Mechanism.

We first consider the case p ≥ 1. We have

ALG =
(
r(S)p +

∑
i̸∈S

ℓp
i

)1/p

≤ r(S) +
(∑

i̸∈S

ℓp
i

)1/p

≤ r(S∗) +
( ∑

i̸∈S∗

ℓp
i

)1/p

≤ 2(p−1)/p

(
r(S∗)p +

∑
i̸∈S∗

ℓp
i

)1/p

= 2(p−1)/pOPT,

where the first inequality follows from the triangle inequality, the second from the definition
of the Hybrid Lp Mechanism, while the last one from Jensen’s inequality (Lemma 27,
Equation (4)) for k = 2, x1 = r(S∗), and x2 = (

∑
i̸∈S∗ ℓ

p
i )1/p.

The case of p < 1, is essentially the same, but the proof is slightly different.

ALG =
(
r(S)p +

∑
i̸∈S

ℓp
i

)1/p

≤ 2
1
p −1
(
r(S) +

(∑
i̸∈S

ℓp
i

)1/p
)

≤ 2
1
p −1
(
r(S∗) +

( ∑
i̸∈S∗

ℓp
i

)1/p
)

≤ 2
1
p −1
(
r(S∗)p +

∑
i̸∈S∗

ℓp
i

)1/p

= 2
1
p −1OPT.
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The first inequality follows from Jensen’s inequality for x1 = (r(S))p, and x2 =
∑

i̸∈S ℓ
p
i ;

the second from the definition of the Lp Mechanism, while the last one from the fact that
(α+ β)p ≤ αp + βp, when 0 < p ≤ 1. ◀

As in the case of makespan, we can use the mechanism to other domains by decomposing
them. We can apply the Star-Cover mechanism (Definition 10) to get good approximation
ratios for general domains:

▶ Theorem 29. For p ≥ 1, the Star-Cover mechanism for a given multigraph G that uses the
Hybrid Lp Mechanism on every star of a fixed star decomposition T = {T1, . . . , Tk} is truthful
and has an approximation ratio at most (2c(T ))(p−1)/p of the Lp-norm of the machines’ costs,
where c(T ) is the star contention number of the decomposition.

We also provide corresponding negative results for mechanisms. For the case, of p ≥ 1,
the next theorem shows that the Hybrid Lp Mechanism has optimal approximation ratio.

▶ Theorem 30. For any p ≥ 1, there is no deterministic mechanism for stars that can
achieve an approximation ratio better than 21−1/p for the Lp-objective.

We point out that all known (local) mechanisms perform much worse that the Hybrid
Mechanism. Observe that for p = 1, the VCG is optimal, but for large p the inefficiency of
all local mechanisms grows and tends to

√
m :

▶ Theorem 31. For minimizing the Lp-norm on stars, all local mechanisms, including
affine minimizers and task-independent mechanisms, have approximation ratio of at least
m

1
2 (1−1/p) = (n− 1) 1

2 (1−1/p), when p ≥ 1.

The lower bound that we give for the case of p < 1 does not match exactly the upper bound,
which leaves open the possibility that there exists a mechanism with better approximation
ratio than the Hybrid Lp Mechanism. Notice that the following approximation ratio tends
to infinity as p tends to 0.

▶ Theorem 32. For any 0 < p ≤ 1 and every a > 1, there is no deterministic mechanism
for stars that can achieve an approximation ratio better than

min
{
a,

(a+ 1)1/p

a1/p + a)

}
. (6)

By selecting an appropriate a, this is Ω(p−1/ ln(p−1)).
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Towards the k-Server Conjecture: A Unifying
Potential, Pushing the Frontier to the Circle
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Abstract
The k-server conjecture, first posed by Manasse, McGeoch and Sleator in 1988, states that a k-
competitive deterministic algorithm for the k-server problem exists. It is conjectured that the work
function algorithm (WFA) achieves this guarantee, a multi-purpose algorithm with applications to
various online problems. This has been shown for several special cases: k = 2, (k + 1)-point metrics,
(k + 2)-point metrics, the line metric, weighted star metrics, and k = 3 in the Manhattan plane.

The known proofs of these results are based on potential functions tied to each particular special
case, thus requiring six different potential functions for the six cases. We present a single potential
function proving k-competitiveness of WFA for all these cases. We also use this potential to show
k-competitiveness of WFA on multiray spaces and for k = 3 on trees. While the DoubleCoverage
algorithm was known to be k-competitive for these latter cases, it has been open for WFA. Our
potential captures a type of lazy adversary and thus shows that in all settled cases, the worst-case
adversary is lazy. Chrobak and Larmore conjectured in 1992 that a potential capturing the lazy
adversary would resolve the k-server conjecture.

To our major surprise, this is not the case, as we show (using connections to the k-taxi problem)
that our potential fails for three servers on the circle. Thus, our potential highlights laziness of the
adversary as a fundamental property that is shared by all settled cases but violated in general. On
the one hand, this weakens our confidence in the validity of the k-server conjecture. On the other
hand, if the k-server conjecture holds, then we believe it can be proved by a variant of our potential.
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1 Introduction

The k-server problem, introduced by Manasse, McGoech and Sleator [23], is one of the most
fundamental problems in online optimization and contains other problems like paging or
weighted paging as important special cases. It is defined as follows: k servers are located in
a metric space. One by one, points of the metric space are requested, and each request must
be served upon arrival by moving one of the servers to the requested point. The problem is
typically considered online, where the choice of this server has to be made without knowledge
of future requests. The goal is to minimize the total distance traveled by all servers.
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57:2 Towards the k-Server Conjecture

When Manasse, McGeoch and Sleator [23] introduced the k-server problem, they showed
that on any metric space with n ≥ k + 1 points1, every deterministic online algorithm has
competitive ratio at least k. They showed that this lower bound is tight when k = 2 or
k = n − 1 by giving a k-competitive algorithm for these cases and boldly conjectured that a
k-competitive online algorithm exists for the general case. This conjecture became known as
the famous k-server conjecture and has been a driving force in online optimization, making
the k-server problem perhaps the most studied problem in the field. It has often been referred
to as “the holy grail of competitive analysis”, and many techniques developed for the k-server
problem have later found applications to other problems.

Chrobak, Karloff, Payne, and Vishwanathan [10] designed the elegant Double Coverage
algorithm to achieve the optimal competitive ratio of k on the line metric. Shortly after,
Chrobak and Larmore [11] extended this algorithm to tree metrics, again matching the lower
bound of k. The first algorithm for general metrics with a competitive ratio depending only
on k was found by Fiat, Rabani and Ravid [16], achieving a competitive ratio exponential in
k. Significant progress was made by Koutsoupias and Papadimitriou [21], showing that a
competitive ratio of 2k − 1 is achievable on general metric spaces.

While this reduces the gap between the upper and lower bound to a factor of 2, it remains
open to determine the exact competitive ratio. The lack of a proof of the k-server conjecture
is even more puzzling given that the algorithm conjectured to achieve the competitive ratio
of k has been known for 30 years: The work function algorithm (WFA). It is this algorithm
that achieves the aforementioned upper bound of 2k − 1 [21]. Its definition is generic2, with
applications reaching far beyond the k-server problem. For instance, WFA achieves the
optimal competitive ratio for metrical task systems [7, 6], the closely related generalized WFA
has been applied successfully to the weighted k-server problem [3], the generalized 2-server
problem [26] and layered graph traversal [9], and work functions have also played a crucial
role in recent breakthroughs for convex body chasing [1, 25]. Given these connections, an
exact understanding of the WFA for the k-server problem is likely to have a wider impact on
online optimization in general.

WFA is known to achieve the tight competitive ratio of k for the following special cases,
which impose restrictions on the number of servers and/or the type of metric space:

k = 2 [12]
k = n − 1 (folklore; see e.g. [19])
k = n − 2 [20, 4]
line metric [4]
weighted star metrics [4]
k = 3 in the Manhattan plane [5]

While there has been a lack of progress on the k-server conjecture for about two decades,
tremendous progress has been achieved for the randomized k-server problem in recent years
[2, 8, 22], leading to algorithms with polylogarithmic competitive ratios.

1.1 Our contribution
Our contribution consists of three parts.
(a) The known proofs of the aforementioned six special cases where WFA is k-competitive

all use a different potential function, and thus do not seem to point towards a potential
function that can solve the k-server conjecture in the general case. We present a single
potential function that proves the k-server conjecture for all these cases.

1 On metric spaces with n ≤ k points, the k-server problem is trivial.
2 WFA always chooses the action that would be best if the future were a mirror image of the past.
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(b) Tree metrics are the only special case of the k-server problem where WFA is not known to
be k-competitive but another algorithm is (namely, the Double Coverage algorithm [11]).
In [4], the question whether WFA is k-competitive on trees was raised as an intermediate
step towards solving the k-server conjecture. In this direction, we use our potential
function to show that WFA is k-competitive on multiray spaces (a type of tree metrics
that generalizes the line and weighted star metrics) and for k = 3 on general trees. Our
proofs employ the quasi-convexity property of work functions in several new ways.

(c) Chrobak and Larmore [12] formulated three conjectures which say, essentially, that the
“adversary is lazy” in the sense that at any time, the worst-case continuation of the
request sequence begins with many requests to the k offline server locations (forcing any
sensible algorithm to converge to this configuration) before other points are requested.
They verified their conjectures on tens of thousands of small metric spaces. In [5], a
stronger statement was considered (ignoring the question what kind of work functions are
“reachable”), which fails in general but which they conjectured to be true on the circle
metric. We reject all these conjectures by showing that for k = 3, our potential captures
exactly this lazy adversary (and a more restricted adversary for general k), but that
it fails on the circle by giving an explicit request sequence as a counterexample. This
highlights an important conceptual separation between all cases where k-competitiveness
of WFA has been shown and the general case. We believe this property constitutes the
main difficulty in resolving the k-server conjecture, and it suggests the circle as the main
testing ground for further progress. Our method of constructing the counterexample is
based on a connection with the k-taxi problem [13], which we use to generate phenomena
of large metric spaces on a much smaller metric space.

1.2 Overview
We provide various definitions and lemmas in Section 2. In Section 3 we formally define our
potential in two equivalent ways and show the basic way to use it to prove k-competitiveness.
In Section 4, we relate our potential to the lazy adversary potential that was defined implicitly
by Chrobak and Larmore. We prove k-competitiveness on multiray spaces in Section 5. This
is our most involved proof, and implies the previously known k-competitiveness on the line
and weighted stars as special cases. The proof for k = 3 on trees and proofs for previously
known special cases using our potential can be found in the full version of our paper [14]. In
Section 6, we describe ideas of a counter-example to our potential for k = 3 on the circle,
implying that the adversary is not lazy in this case, unlike the cases where WFA is known to
be k-competitive. Details of this construction are given in the full version [14].

2 Preliminaries

Basic notation and abuse of notation. We use (M, d) to denote the metric space, where
d is the distance function. We denote by n = |M | its size and by ∆ = maxx,y d(x, y) its
diameter. For x, y ∈ M , we will often use the shorthand notation xy := d(x, y). A multiset
C ⊆ M of k points is called a configuration, representing the location of k servers. We denote
by Ck

M the set of all configurations. For two configurations, X and Y , we denote by d(X, Y )
the value of their minimum matching. For notational convenience, we often use the empty
space as a union operator on elements of M . For example, we often write x1x2 . . . xi instead
of {x1, x2, . . . , xi} when it is clear from the context that the set is meant. Similarly, given
also a multiset C, we may write Cx1 . . . xi instead of C ∪{x1, . . . , xi}. For x ∈ M and i ∈ N0,
we write xi for the multiset containing i copies of x.
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For a set S ⊆ M , let clique(S) be the sum of pairwise distances of the points in S.

The k-server problem. An instance of the k-server problem is defined by a metric space
(M, d), an initial configuration C0 ∈ Ck

M and a sequence r1, r2, . . . , rT ∈ M of requests.
A feasible solution is a sequence C1, C2, . . . CT of configurations such that rt ∈ Ct for all
t = 1, . . . , T . The cost of this solution is the sum

∑T
t=1 d(Ct−1, Ct).

The work function algorithm (WFA). Given an instance of the k-server problem, the work
function wt at time t is the function that maps any configuration C to the minimal cost of
serving the first t requests and subsequently ending in configuration C. Formally,

wt(C) := min
C1,...,Ct

∀τ : rτ ∈Cτ

t∑
τ=1

d(Cτ−1, Cτ ) + d(Ct, C).

The work function algorithm (WFA) selects Ct ∋ rt so as to minimize d(Ct−1, Ct) + wt(Ct),
with ties broken arbitrarily.

Quasiconvexity. A function w : Ck
M → R is called quasiconvex if for any configurations X

and Y there exists a bijection µ : X → Y such that for any A ⊆ X,

w(X) + w(Y ) ≥ w(A ∪ µ(X \ A)) + w(µ(A) ∪ (X \ A)).

It was shown in [21] that if w is quasiconvex, then µ can be chosen such that µ(x) = x for all
x ∈ X ∩ Y . More importantly, it was shown in [21] that any work function is quasiconvex.

Fundamentals about work functions. A function w : Ck
M → R is 1-Lipschitz if

w(X) − w(Y ) ≤ d(X, Y ) (1)

for all configurations X and Y . By triangle inequality, every work function is 1-Lipschitz.
Let Qk

M be the set of functions w : Ck
M → R that are quasiconvex. Let Wk

M ⊆ Qk
M be

the subset of functions that are additionally 1-Lipschitz. We may drop k and/or M from the
notation when they are clear from the context or immaterial. For w ∈ W and configurations
X and Y , we say that Y supports X if (1) holds with equality. Note that if Y supports X

in wt, then the cheapest way of serving the first t requests and ending in configuration X

is equal to the cheapest way of serving the first t requests and then first going to Y and
then to X. Thus, if Y supports X, then there is no reason for an offline algorithm to be in
configuration X because it is at least as good to be in configuration Y and delay the move
from Y to X until later.

The support of w, denoted supp(w), is the set of all configurations that are not supported
by any other configuration. Intuitively, supp(wt) are the possible configurations where an
optimal offline algorithm might be at time t. Clearly,

w(X) = min
Y ∈supp(w)

w(Y ) + d(X, Y )

for any configuration X. In particular, any work function is fully specified by its support
and the values it takes on support configurations.

For r ∈ M , let Wk
M (r) ⊆ Wk

M be the subset of 1-Lipschitz, quasiconvex functions with
the property that every support configuration contains r. Again, we may drop k and/or M

from the notation. Note that the work function wt at time t is in W(rt).
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There exists a simple update rule to compute the new work function when a new request
is issued. For w ∈ WM and r ∈ M , the updated work function w ∧ r ∈ W(r) is defined by

w ∧ r(C) = min
X∋r

w(X) + d(X, C).

It is easy to see that wt = wt−1 ∧ rt. A basic observation is that if rt ∈ C, then wt−1(C) =
wt(C). Another basic property is that wt(C) ≥ wt−1(C).

2.1 Extended cost, minimizers and duality
The following lemma was proved by Chrobak and Larmore [12] (see also [19]):

▶ Lemma 1 (Extended cost lemma). If for every k-server instance on a metric space M it
holds that

T∑
t=1

max
X

[wt(X) − wt−1(X)] ≤ (ρ + 1) · min
X

wT (X) + cM

for some constant cM independent of the request sequence, then WFA is ρ-competitive on M .

The power of this lemma is that it reduces the task of proving competitiveness of WFA
to a property of work functions. In particular, we do not need to keep track of the actual
configurations of the online and offline algorithm. The quantity maxX [wt(X) − wt−1(X)] is
also called the extended cost of the tth request, and the proof of the lemma is based on the
fact that the total extended cost over all requests is an upper bound on the sum of WFA’s
cost and the optimal offline cost.

For a work function w ∈ Wk
M and a point y ∈ M , we call a configuration X ∈

arg min w(X) − d(yk, X) a minimizer of w with respect to y. There is a direct connec-
tion between minimizers and the configurations X maximizing the extended cost. This is
captured by the duality lemma, which was first proved in [21]. We give a slightly stronger
version of the duality lemma by stating it as an equivalence rather than an implication.

▶ Lemma 2 (Duality lemma). Let w ∈ WM and r ∈ M . Define w′ = w ∧ r. Then
A ∈ arg minX w(X) − d(rk, X) if and only if the following two conditions hold:

A ∈ arg max
X

w′(X) − w(X) (2)

A ∈ arg min
X

w′(X) − d(rk, X) (3)

Proof. The “only if” direction is the duality lemma of [21], where it was shown that if
A ∈ arg minX w(X) − d(rk, X) then for every configuration B

w′(A) + w(B) ≥ w(A) + w′(B), and (4)
w′(B) − d(rk, B) ≥ w′(A) − d(rk, A). (5)

By summing these two constraints we get w(B) − d(rk, B) ≥ w(A) − d(rk, A), which shows
the other direction. ◀

It is interesting that the proof of the duality lemma does not use the fact that d is a
distance, i.e., it satisfies the triangle inequality.
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2.2 Additional properties of work functions
In this section, we provide additional properties of work functions that follow from the
quasiconvexity property. We will use these properties to prove k-competitiveness on multiray
spaces and for k = 3 on trees.

The notion of quasiconvex or quasiconcave functions appears in many different areas and
was discovered independently a few times. As a result, they appear with different terminology
in literature. For example, in the early 1980s Celso and Crawford [17] defined a related notion
as a sufficient condition to the existence of Walrasian Equilibria and called a similar notion
gross substitute functions3; in 1990, Dress and Wenzel [15] related them to a variant of the
greedy algorithm and called them valuated matroids; Koutsoupias and Papadimitriou [21]
defined them in the context of online algorithms for the k-server problem and called them
quasiconvex. They have also played a central role in discrete optimization [24].

▶ Lemma 3. Let w ∈ Q. Let X ∈ arg min w(X), and let x ∈ X. Then there exists
Y ∈ arg minY ̸∋x w(Y ) such that X − x ⊂ Y .

Proof. Let Y be chosen such that X ∩ Y is maximal under inclusion. Suppose towards a
contradiction that there exists x′ ∈ (X − x) \ Y . By quasiconvexity, there exists y′ ∈ Y \ X

such that w(X) + w(Y ) ≥ w(X − x′ + y′) + w(Y − y′ + x′). By choice of X, we have
w(X −x′ +y′) ≥ w(X). Combining these last two inequalities, we get w(Y ) ≥ w(Y −y′ +x′).
But Y − y′ + x′ ̸∋ x and X ∩ Y ⊊ X ∩ (Y − y′ + x′), so this contradicts the choice of Y . ◀

▶ Lemma 4. Let w ∈ Qk
M . Let X ∈ arg min w(X), and let A ⊂ M be a (multi)set of

cardinality |A| < k. Then there exists Y ∈ arg minY ⊃A w(Y ) such that Y − A ⊆ X − A.

Proof. Let Y be chosen such that (Y − A) \ (X − A) is minimal under inclusion and suppose
towards a contradiction that there exists y ∈ (Y − A) \ (X − A). By quasiconvexity, there
exists x ∈ X \ Y such that w(X) + w(Y ) ≥ w(X − x + y) + w(Y − y + x). By choice of X,
we have w(X − x + y) ≥ w(X). Combining these inequalities, we get w(Y ) ≥ w(Y − y + x).
But this contradicts the choice of Y since we would rather have chosen Y − y + x. ◀

▶ Lemma 5. Let w ∈ Wk
M (r), let X ⊆ M be a k-point multiset and x, y ∈ X. If X resolves4

from x in w, then also X − y + x resolves from x in w.

Proof. Suppose that instead, X − y + x resolves from some z ∈ X − y − x. Consider the
(k − 3)-point multiset C := X − y − x − z. Then

w(X) + w(X − y + x) = w(Cxyz) + w(Cx2z)
= w(Cyzr) + w(Cx2r) + rx + rz

≥ w(Cxyr) + w(Cxzr) + rx + rz

≥ w(Cxyz) + w(Cx2z),

where the first inequality is by quasiconvexity and the last by 1-Lipschitzness of w. Since
the second and the last expression are the same, we have equality in all steps. But then the
last step shows that Cx2z resolves from x. Since Cx2z = X − y + x, the lemma follows. ◀

3 Gross substitute functions are real functions defined for all subsets of a ground set V , whose restriction
to subsets of each size k are quasiconvex.

4 When w(X) = w(X − x + y) + xy, we say that X “resolves from x to y”. If y = r is the last request, we
simply say that X resolves from x.
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3 The potential

We provide two different, but equivalent definitions of our potential function. The first
formulation views the potential through the lens of the m-evader problem, which is equivalent
to the k-server problem when m = n − k. Thereafter, we will give a more compact and
equivalent formulation of the same potential in the k-server view based on extending the
metric space by adding antipodal points.

3.1 The evader potential
The m-evader problem is defined similarly to the k-server problem, but instead of k servers
there are m evaders in the metric space, which must occupy m different points at all times.
When a point r is requested, rather than moving a server towards r, an evader that might
be located at r has to move to a different point. The equivalence between the k-server
problem and the (n − k)-evader problem follows by identifying a server configuration C with
the evader configuration M \ C.5 Given a k-server work function w, we denote by ŵ the
corresponding evader work function, defined by ŵ(C) := w(M \ C).

In the evader view, the potential Φ̂ is defined as follows. Let y = (y1, . . . , yn) be a
permutation of the points of the metric space M . Let

Φ̂y(ŵ) := clique(y1 . . . yn−k−1) +
n∑

i=n−k

min
C⊆{y1,...,yi}

|C|=n−k

(
ŵ(C) + d(C, yn−k

i )
)

Φ̂(ŵ) := min
y

Φ̂y(ŵ). (6)

▶ Theorem 6. Let (M, d) be an n-point metric space. If for every r ∈ M and every work
function w ∈ Wk

M (r) it holds that Φ̂(ŵ) = Φ̂y(ŵ) for a permutation y of M with yn = r,
then WFA is k-competitive on M .

Proof. Consider a k-server instance on M with a request sequence r1, . . . , rT and associated
sequence of work functions w0, . . . , wT . We first show that at each time t, the change in
potential is an upper bound on the extended cost.

By the premise of the lemma, Φ̂(ŵt) = Φ̂y(ŵt) for some y with yn = rt. Thus,

Φ̂(ŵt) − Φ̂(ŵt−1) ≥ Φ̂y(ŵt) − Φ̂y(ŵt−1)
≥ min

C⊆M
|C|=n−k

(
ŵt(C) + d(C, rn−k

t )
)

− min
C⊆M

|C|=n−k

(
ŵt−1(C) + d(C, rn−k

t )
)

= min
X⊆M
|X|=k

(
wt(X) − d(X, rk

t )
)

− min
X⊆M
|X|=k

(
wt−1(X) − d(X, rk

t )
)

= max
X

wt(X) − wt−1(X),

where the first inequality uses Φ̂(ŵt−1) ≤ Φ̂y(ŵt−1), the second inequality uses yn = rt and
the fact that ŵt−1(C) ≤ ŵt(C) for each C, the first equation translates evader work functions
to server work functions and uses d(C, rn−k

t ) = d(M, rn
t ) − d(M \ C, rk

t ), and the second
equation is due to the duality lemma, which says that the same X can be chosen in both
minima and the maximum. So indeed, the potential change upper bounds the extended cost.

5 This identification requires the server configuration to be a set rather than a multiset. This is no
restriction on the power of k-server algorithms (online or offline).
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Now, we can bound the total extended cost by

T∑
t=1

max
X

[wt(X) − wt−1(X)] ≤ Φ̂(ŵT )

≤ (k + 1) · min
X

wT (X) + cM ,

where the last inequality is due to the fact that Φ̂(ŵT ) is a sum of distances (which are
absorbed by the constant cM ) and k + 1 work function values, each of which differs from
minX wT (X) by at most k times the diameter of M due to 1-Lipschitzness of wT (and the
diameters are also absorbed by cM ). The theorem follows from the extended cost lemma. ◀

3.2 The k-server potential
We now derive an equivalent but simpler expression for the aforementioned potential. To
formulate it, we need the notion of antipodal points.

Let ∆ be the diameter of M . A point p̄ ∈ M is called the antipode of another point
p ∈ M if for each x ∈ M , px + xp̄ = pp̄ = ∆. On some metric spaces such as the circle, each
point has an antipode. As mentioned in [18], every metric space can be extended so that
each point has an antipode: To achieve this, add to M another copy of the same points,
M̄ = {p̄ : p ∈ M}, and define distances by p̄q̄ = pq and p̄q = 2∆ − pq for p, q ∈ M . It is easy
to check that M ∪ M̄ is a metric space where p̄ and p are antipodes of each other.

Consider a metric space M where every point has an antipode. Let x1, . . . , xk ∈ M . We
define the k-server potential Φ via

Φx1,...,xk
(w) :=

k∑
i=0

w(x̄i
ixi+1 . . . xk)

Φ(w) := min
x1,...,xk

Φx1,...,xk
(w). (7)

The following lemma states that the two potential functions differ by a fixed constant
depending on M and are therefore equivalent.

▶ Lemma 7. Let M be a pseudo-metric space of diameter ∆ where every point has an
antipode and there are k copies of each point.6 For any work function w ∈ Wk

M and any
permutation y = (y1, . . . , yn) of M ,

Φyn−k+1...yn(w) = Φ̂y(ŵ) − clique(M) + k(k + 1)
2 ∆.

Proof. Subtracting clique(M) from the evader potential and using server work functions
instead of evader work functions, we have

Φ̂y(ŵ) − clique(M) =
n∑

i=n−k

min
C⊇{yi+1,...,yn}

|C|=k

w(C) −
∑

p∈C∩{y1,...,yi}

pyi

 .

6 It is only a pseudo-metric because the distance between two copies of the same point is 0. We use
the assumption of several copies of the same point because the definition of Φx1,...,xk allows points to
repeat, whereas Φy requires y to be a permutation.
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Notice that the minimum in the summand for i is achieved when C \ {yi+1, . . . , yn} consists
of k − n + i copies of the antipodal point ȳi. Thus, the expression is equal to

n∑
i=n−k

(
w(ȳi

k−n+iyi+1 . . . yn) − (k − n + i)∆
)

=
n∑

i=n−k

w(ȳi
k−n+iyi+1 . . . yn) − k(k + 1)

2 ∆

= Φyn−k+1...yn(w) − k(k + 1)
2 ∆. ◀

▶ Corollary 8. Let (M, d) be a metric space where every point has an antipode. If for every
r ∈ M and every work function w ∈ Wk

M (r) it holds that Φ(w) = Φx1...xk
(w) for some

x1, . . . xk ∈ M with xk = r, then WFA is k-competitive on M .

4 Interpretation as a lazy adversary potential

4.1 The implicitly defined potential by Chrobak and Larmore
Chrobak and Larmore [12] gave an implicit definition of a potential that they conjectured to
prove the k-server conjecture. This potential captures exactly a type of lazy adversary. To
give a precise definition, we first need some additional notation.

For r ∈ M and a work function w ∈ W, denote by ∇(w, r) := maxA(w ∧ r)(A) − w(A)
the extended cost of request r on w. For a request sequence ρ = (r1, . . . , rT ) ∈ M∗, let

∇(w, ρ) :=
T∑

t=1
∇(wt−1, rt)

be the total extended cost, where wt = w ∧ r1 ∧ r2 ∧ · · · ∧ rt is the updated work function
after the first t requests. The potential conjectured by Chrobak and Larmore is given by

Φ̃(w) := min
X

Φ̃X(w)

where the maximum is taken over configurations X and

Φ̃X(w) := − clique(X) + (k + 1)w(X) − sup
ρ∈X∗

∇(w, ρ).

Because of the term supρ∈X∗ ∇(w, ρ), this potential captures exactly the worst-case extended
cost when the future request sequence consists only of points in X, until the work function
is a cone7 with support {X}. An adversary constructing such a request sequence can be
thought of as “lazy” because it wants to force the online algorithm to the offline configuration
X before it requests different points. The additional term clique(X) is needed because of
extended cost being incurred when passing from one cone to a different cone. The definition
of Φ̃ is only implicit because of the supremum over request sequences ρ ∈ X∗. It was
conjectured in [12] that Φ̃(w ∧ r) − Φ̃(w) ≥ ∇(w, r) for any (reachable) work function w and
request r. This would imply the k-server conjecture similarly to the proof of Theorem 6.
They also conjectured that Φ̃X(w ∧ r) is minimized for a configuration X containing r, and
more specifically that it is minimized by a configuration X ∈ supp(w ∧ r). This would imply
the previous conjectures. We show that for k = 3, the potential Φ̃ matches our potential
Φ. For k ≥ 4, our potential captures a more restricted type of lazy adversary. As we will

7 A work function is a cone if its support contains only a single configuration.
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show in Section 6 that our potential fails to bound the extended cost for k = 3 on the circle,
this disproves the conjectures from [12] and yields the surprising insight that the worst-case
adversary on the circle is not lazy – unlike the adversary for all cases where WFA is known
to be k-competitive.

4.2 Relationship to our potential
Our next lemma shows that our potential Φ captures a more restricted adversarial strategy,
where the configuration X is ordered as x1, . . . , xk and the next request in ρ is always to the
point xi with i maximal that leads to a change of the work function. We will show later that
for k = 3, this imposes no additional restriction.

For fixed x1, . . . , xk ∈ M and a work function w ∈ Wk
M , define a request sequence

r1, r2, . . . , rT as follows. Let wt = w ∧ r1 ∧ r2 ∧ · · · ∧ rt be the updated work function after
the first t requests. We define rt = xi for i maximal such that wt−1 ∧ xi ≠ wt−1; if no such i

exists, the request sequence ends, T = t − 1, and wT is a cone with support {{x1, . . . , xk}}.

▶ Lemma 9.

Φx1,...,xk
(w) = k(k + 1)

2 ∆ − clique(x1, . . . , xk) + (k + 1)w(x1 . . . xk) −
T∑

t=1
∇(wt−1, rt).

Proof. It suffices to show

Φx1,...,xk
(wt) = Φx1,...,xk

(wt−1) + ∇(wt−1, rt) (8)

Φx1,...,xk
(wT ) = (k + 1)w(x1 . . . xk) + k(k + 1)

2 ∆ −
∑

1≤i<j≤k

xixj . (9)

For equation (9), we have

Φx1,...,xk
(wT ) =

k∑
j=0

wT (x̄j
jxj+1 . . . xk)

= (k + 1)wT (x1, . . . , xk) +
∑

1≤i≤j≤k

xix̄j

= (k + 1)w(x1, . . . , xk) +
∑

1≤i≤j≤k

(∆ − xixj)

= (k + 1)w(x1, . . . , xk) + k(k + 1)
2 ∆ −

∑
1≤i<j≤k

xixj .

We now show equation (8). Let i be such that rt = xi. Then,

Φx1,...,xk
(wt) =

k∑
j=0

(wt−1 ∧ xi)(x̄j
jxj+1 . . . xk)

=
i−1∑
j=0

wt−1(x̄j
jxj+1 . . . xk) +

k∑
j=i

(wt−1 ∧ xi)(x̄j
jxj+1 . . . xk). (10)

By maximality of i, xj+1 . . . xk is contained in every support configuration of wt−1. Thus,
x̄i

ixi+1 . . . xk is a minimizer of wt−1 with respect to xi and hence

(wt−1 ∧ xi)(x̄i
ixi+1 . . . xk) = wt−1(x̄i

ixi+1 . . . xk) + ∇(wt−1, rt) (11)

by the duality lemma.
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We claim that

(wt−1 ∧ xi)(x̄j
jxj+1 . . . xk) = wt−1(x̄j

jxj+1 . . . xk) ∀j = i + 1, . . . , k. (12)

Assuming this is true, we obtain (8) by substituting (11) and (12) into (10).
It remains to show (12). Since wt−1 ∧ xi ≥ wt−1, the direction “≥” is obvious. For the

other direction, since xjxj+1 . . . xk is contained in every support configuration of wt−1,

wt−1(x̄j
jxj+1 . . . xk) = wt−1(x̄j−1

j xjxj+1 . . . xk) + x̄jxj

≥ wt−1(x̄j−1
j xixj+1 . . . xk) − xixj + x̄jxj

= (wt−1 ∧ xi)(x̄j−1
j xixj+1 . . . xk) + xix̄j

≥ (wt−1 ∧ xi)(x̄j
jxj+1 . . . xk). ◀

▶ Lemma 10. Let X ⊂ M with |X| = 3 and r ∈ X be fixed and let w ∈ W3
M (r). For a

bijection π : {1, . . . , 3} → X, write Φπ := Φπ(1)π(2)π(3). Then

min
π : π(3)=r

Φπ(w) = min
π

Φπ(w).

Proof. Let π be a minimizer of the right hand side. If π(k) = r, we are done. The case
π(k − 1) = r is also easy, using the fact that r is contained in every support configuration.
The remaining case π(k − 2) = r is non-trivial. Let y := π(k − 1) and z := π(k). We will
construct a permutation π′ with π′(3) = r and Φπ(w) ≥ Φπ′(w). This will only affect the
last three terms in the sum of the definition of Φ,

w(r̄k−2yz) + w(ȳk−1z) + w(z̄k).

If w(ȳk−1z) = w(ȳk−2rz) + ȳr, then

w(r̄k−2yz) + w(ȳk−1z) + w(z̄k) = w(r̄k−2yz) + w(ȳk−2rz) + w(z̄k) + ȳr

≥ w(ȳk−2rz) + w(r̄k−1z) + w(z̄k)

where the inequality uses ȳr = yr̄. This corresponds to a permutation with r in the
next-to-last position, and it is easy to push it from there to the last position.

So we can assume w(ȳk−1z) = w(ȳk−1r) + zr. Thus

w(r̄k−2yz) + w(ȳk−1z) + w(z̄k) = w(r̄k−2yz) + w(ȳk−1r) + w(z̄k−1r) + zr + z̄r

= w(r̄k−2yz) + w(ȳk−1r) + w(z̄k−1r) + ∆. (13)

In the last expression, y and z are symmetric, so we can assume

w(r̄k−2yz) = w(r̄k−2rz) + yr. (14)

By quasi-convexity and Lipschitzness of the work function (and ȳr̄ = yr, r̄r = ∆),

w(ȳk−1r) + w(r̄k−2rz) ≥ w(ȳk−2zr) + w(r̄k−2ȳr)
≥ w(ȳk−2zr) + w(r̄k) − yr − ∆ (15)

Combining (13), (14) and (15), we get

w(r̄k−2yz) + w(ȳk−1z) + w(z̄k) ≥ w(ȳk−2zr) + w(z̄k−1r) + w(r̄k),

corresponding to the permutation (π(1), π(2), π(3)) = (y, z, r). ◀
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We remark (without proof) that the above lemma fails for k = 4.
By the following corollary, for k = 3 it holds that Φ is an explicit expression for the

implicit potential of [12].

▶ Corollary 11. For k = 3,

Φ(w) = 6∆ + min
X : |X|=3

r1,...,rT ∈X

[
4w(X) − clique(X) −

T∑
t=1

∇(w ∧ r1 . . . rt−1, rt)
]

. (16)

Proof. The direction “≥” follows from Lemma 9. For direction “≤”, select X and r1, . . . , rT

to minimize the right hand side. Let wt = w ∧ r1 . . . rt. By minimality of the right hand
side, wT is a cone at X. Let ΦX = min Φx1x2x3 , with the minimum taken over permutations
x1, x2, x3 of X. By Lemma 10, we have ΦX(wt) = Φxyrt(wt) for some x, y ∈ X. Thus,

ΦX(wt) − ΦX(wt−1) ≥ Φxyrt
(wt) − Φxyrt

(wt−1)
= wt(r̄3

t ) − wt−1(r̄3
t )

= ∇(wt−1, rt).

Hence,

Φ(w) ≤ ΦX(w) = ΦX(wT ) −
T∑

t=1
[ΦX(wt) − ΦX(wt−1)]

≤ ΦX(wT ) −
T∑

t=1
∇(wt−1, rt),

which is equal to the right hand side of (16) by Lemma 9 and since wT is a cone at X. ◀

5 Multi-ray spaces

A multi-ray space is a tree of depth 1 whose edges have infinite length and where requests
can appear at arbitrary locations along the edges. We call these edges rays.

We will show in this section that WFA is k-competitive on multiray spaces. Note that a
multiray space with only 2 rays is equal to the line metric. A subset of a multi-ray space
containing only one point from each ray is a weighted star. Our proof therefore recovers the
known proofs that WFA is k-competitive on the line and on weighted stars as special cases.

We denote by c the center/root of the multi-ray space, i.e., the origin of the rays. We
can assume that every ray has finite length by considering only a sufficiently long part that
all requests fall into. We call the endpoint of a ray that is not the center a leaf. Denote
by L the set of leaves. For w ∈ Wk, define mw(X) := w(X) − d(ck, X). Note that mw is
also quasiconvex. As we use the server definition of the potential, we augment the multi-ray
space by adding antipodes as discussed earlier. In the definition (6), we require the points
x1, . . . , xk to be chosen from the original metric space M . This corresponds to requiring the
permutation in the evader potential to end with k points from the original metric space,
which does not affect the proof of Theorem 6.

The proof that WFA is k-competitive on multi-ray spaces proceeds along the following
three main steps:
1. First we establish properties of Φx1...xk

when xi = ℓi are leaves. In particular, we express
Φℓ1...ℓk

in terms of mw, and show that ℓ1, . . . , ℓk can be permuted under certain conditions.
2. We then show by induction on k that Φx1...xk

(w) is indeed minimized when x1, . . . , xk

are leaves and minX mw(X) = mw(x1 . . . xk).
3. Finally, we show that Φx1...xk

(w) is also minimized for some x1, . . . , xk where only
x1, . . . , xk−1 are leaves whereas xk = r is the last request.
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Step 1: Properties of Φx1...xk
when xi are leaves

▶ Lemma 12. Let w ∈ Wk. There exist leaves ℓ1, . . . , ℓk such that minX mw(X) =
mw(ℓ1 . . . ℓk).

Proof. Follows from the fact that since w is 1-Lipschitz, mw(X) cannot increase when a
point in X moves away from c towards a leaf. ◀

▶ Lemma 13. For any w ∈ Wk, a leaf ℓ ∈ L and xi+1, . . . , xk ∈ M ,

w(ℓ̄ixi+1 . . . xk) = min
X⊇xi+1...xk :

X−xi+1...xk⊆L−ℓ

mw(X) + i(∆ − cℓ) +
k∑

j=i+1
cxj .

Proof.

w(ℓ̄ixi+1 . . . xk) = min
X⊇xi+1...xk

w(X) + d(X − xi+1 . . . xk, ℓ̄i)

= min
X⊇xi+1...xk

w(X) + i∆ − d(X − xi+1 . . . xk, ℓi)

We claim that the minimum is achieved by some X with X − xi+1 . . . xk ⊆ L − ℓ: Indeed, if
there is some x ∈ X − xi+1 . . . xk that is not in L − ℓ, sliding x away from ℓ along a path to
some other leaf increases d(X − xi+1 . . . xk, ℓi) by the distance moved, and it increases w(X)
by at most this distance, so the whole term cannot increase.

This also means that every distance in d(X − xi+1 . . . xk, ℓi) goes across the center, i.e.,

d(X − xi+1 . . . xk, ℓi) = i · cℓ + d(X − xi+1 . . . xk, ci).

The lemma now follows by definition of mw. ◀

As a consequence of Lemma 13, we obtain the following expression for Φℓ1...ℓk
whenever

ℓ1, . . . , ℓk are leaves:

Φℓ1...ℓk
(w) = k(k + 1)

2 ∆ +
k∑

i=0
min

Xi⊇ℓi+1...ℓk :
Xi−ℓi+1...ℓk⊆L−ℓi

mw(Xi). (17)

The following symmetry and monotonicity properties allow us to reorder ℓ1, . . . , ℓk under
certain circumstances.

▶ Lemma 14 (Symmetry and Monotonicity Lemma). Let w ∈ Wk and let ℓ1, . . . , ℓk be leaves
such that minX mw(X) = mw(ℓ1 . . . ℓk). The following properties hold:
Symmetry: Φℓ1...ℓk

(w) is constant under permutation of ℓ1, . . . , ℓk.
Monotonicity: For any leaf ℓ, Φℓ1...ℓk−1ℓ(w) ≥ Φℓℓ1...ℓk−1(w) ≥ Φℓ1...ℓk

(w).

Proof. For the symmetry property and the first inequality of the monotonicity property,
we proceed by induction on k. The base case k = 1 is trivial. For the induction step, it
suffices to show that Φℓ1...ℓk−1ℓ(w) ≥ Φℓ1...ℓk−2ℓℓk−1(w), with equality if ℓ = ℓk. The lemma
then follows by invoking the induction hypothesis on w̃ = w( · ℓk−1) ∈ Wk−1, observing that
minX mw̃(X) = mw̃(ℓ1 . . . ℓk−2ℓk), and that Φx1...xk−1ℓk−1(w) − Φx1...xk−1(w̃) = w(ℓ̄k

k−1) is a
constant function of x1, . . . , xk−1 (and thus Φx1...xk−1ℓk−1(w) and Φx1...xk−1(w̃) are affected
in the same way when x1, . . . , xk−1 are permuted).
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Note that only the two terms involving Xk−1 and Xk in (17) are affected when the last
two leaves are swapped. For two leaves y and z, let

f(y, z) := min
Y ∋z :

Y −z⊆L−y

mw(Y ) + min
Z⊆L−z

mw(Z)

We only need to show that f(ℓk−1, ℓ) ≥ f(ℓ, ℓk−1), and that this holds with equality if ℓ = ℓk.
Assume ℓk−1 ̸= ℓ as otherwise there is nothing to show. Then

f(ℓk−1, ℓ) − f(ℓ, ℓk−1)
= min

Y1∋ℓ :
Y1⊆L−ℓk−1

mw(Y1) + min
Z1⊆L−ℓ

mw(Z1) − min
Y2∋ℓk−1 :
Y2⊆L−ℓ

mw(Y2) − min
Z2⊆L−ℓk−1

mw(Z2)

≥ min
Z1⊆L−ℓ

mw(Z1) − min
Y2∋ℓk−1 :
Y2⊆L−ℓ

mw(Y2)

= 0,

where the last equation follows by applying Lemma 3 to the quasi-convex function mw. If
ℓ = ℓk, then the same argument shows that the inequality can be replaced by equality.

It remains to show the second inequality of the monotonicity property. Due to the
symmetry property, and by a renaming of leaves, it suffices to show that Φℓℓ2...ℓk

(w) ≥
Φℓ1ℓ2...ℓk

(w). Assume ℓ ≠ ℓ1, otherwise we are done. In (17), the only terms affected when
the first leaf is replaced are the ones involving X0 and X1. Let X0 and X1 be these sets in
Φℓ1ℓ2...ℓk

(w) and X ′
0 and X ′

1 those in Φℓℓ2...ℓk
(w). Then X0 = ℓ1 . . . ℓk, X ′

0 = ℓℓ2 . . . ℓk, and
since minX mw(X) = mw(ℓ1 . . . ℓk), we can choose X ′

1 = ℓ1 . . . ℓk. Moreover, X ′
0 satisfies the

requirements of X1 (apart from minimality, possibly), hence mw(X1) ≤ mw(X ′
0). Thus,

Φℓℓ2...ℓk
(w) − Φℓ1ℓ2...ℓk

(w) = mw(X ′
0) + mw(X ′

1) − mw(X0) − mw(X1) ≥ 0. ◀

Step 2: x1, . . . , xk are indeed leaves
▶ Lemma 15. Let w ∈ Wk. Let ℓ1, . . . , ℓk be leaves such that minX mw(X) = mw(ℓ1 . . . ℓk).
Then Φ(w) = Φℓ1...ℓk

(w).

Proof. By induction on k. The base case k = 0 is trivial. For the induction step, fix x such
that Φ(w) = Φx1...xk−1x(w) for some x1, . . . , xk−1. Consider the function w̃ = w( ·x) ∈ Wk−1.
By Lemma 4, min mw̃(X) = mw̃(ℓ1 . . . ℓk − ℓ′) for some ℓ′ ∈ ℓ1 . . . ℓk. By Lemma 14, we can
assume without loss of generality that ℓ′ = ℓk, i.e., min mw̃(X) = mw̃(ℓ1 . . . ℓk−1). By the
induction hypothesis, Φ(w̃) = Φℓ1...ℓk−1(w̃). Hence,

Φ(w) = min
x1...xk−1

Φx1...xk−1x(w)

= min
x1...xk−1

Φx1...xk−1(w̃) + w(x̄k)

= Φℓ1...ℓk−1(w̃) + w(x̄k)
= Φℓ1...ℓk−1x(w).

We will now transform the last expression in several steps with the goal of eventually replacing
x by ℓk.

Denote by ℓ the leaf below x. The goal of the following transformations is to replace x by
ℓ. For some a ∈ {0, 1, . . . , k} we have

w(x̄k) = w(ℓ̄aℓk−a) + a · xℓ + (k − a) · xℓ̄.
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The symmetry property of Lemma 14 allows us to assume that ℓ1, . . . , ℓs−1 are all different
from ℓ and ℓs = ℓs+1 = · · · = ℓk−1 = ℓ for some s ∈ {1, . . . , k}.

As an intermediate step, we show by (backwards) induction on j = k, k −1, . . . , max{s, a}
that

Φ(w) ≥
j−1∑
i=0

w(ℓ̄i
iℓi+1 . . . ℓk−1x) +

k−1∑
i=j

w(ℓ̄i+1
i ℓi+1 . . . ℓk−1)

+w(ℓ̄aℓj−aℓj . . . ℓk−1) + a · xℓ + (j − a) · xℓ̄ (18)

The base case k = j follows from the previous equation. Suppose now that (18) holds for
some j > max{s, a}. From ℓj−1 = ℓ we get

w(ℓ̄j−1
j−1ℓj . . . ℓk−1x) ≥ w(ℓ̄j

j−1ℓj . . . ℓk−1) − xℓ̄

and

w(ℓ̄aℓj−aℓj . . . ℓk−1) = w(ℓ̄aℓj−1−aℓj−1 . . . ℓk−1).

The induction step of (18) follows by plugging these in to (18).
If a ≥ s, then (18) for j = a yields

Φ(w) ≥
a−1∑
i=0

w(ℓ̄i
iℓi+1 . . . ℓk−1x) +

k−1∑
i=a

w(ℓ̄i+1
i ℓi+1 . . . ℓk−1) + w(ℓ̄aℓa . . . ℓk−1) + a · xℓ

≥
a−1∑
i=0

w(ℓ̄i
iℓi+1 . . . ℓk−1ℓ) +

k−1∑
i=a

w(ℓ̄i+1
i ℓi+1 . . . ℓk−1) + w(ℓ̄aℓa . . . ℓk−1)

= Φℓ1...ℓk−1ℓ(w),

where we have used that ℓi = ℓ for i ≥ a ≥ s. The lemma then follows from the monotonicity
property of Lemma 14.

Otherwise, a < s, and from (18) for j = s we get

Φ(w) ≥
s−1∑
i=0

w(ℓ̄i
iℓi+1 . . . ℓk−1x) +

k−1∑
i=s

w(ℓ̄i+1
i ℓi+1 . . . ℓk−1)

+ w(ℓ̄aℓs−aℓs . . . ℓk−1) + a · xℓ + (s − a) · xℓ̄

≥
s−a−1∑

i=0
w(ℓ̄i

iℓi+1 . . . ℓk−1x) +
s−1∑

i=s−a

w(ℓ̄i
iℓi+1 . . . ℓk−1ℓ) +

k∑
i=s+1

w(ℓ̄iℓk−i)

+ w(ℓ̄aℓs−aℓs . . . ℓk−1) + (s − a) · xℓ̄.

By Claim 16 below, replacing a by a + 1 does not increase the latter quantity. Inductively
we may therefore replace a by s to obtain

Φ(w) ≥
s−1∑
i=0

w(ℓ̄i
iℓi+1 . . . ℓk−1ℓ) +

k∑
i=s+1

w(ℓ̄iℓk−i) + w(ℓ̄sℓk−s)

= Φℓ1...ℓk−1ℓ(w).

The monotonicity property of Lemma 14 completes the proof. ◀

▷ Claim 16. Let 0 ≤ a < s ≤ k and w ∈ Wk. Let ℓs−a−1, . . . , ℓk−1 and ℓ be leaves such
that ℓi ̸= ℓ for i < s, and let x be a point on the ray of ℓ. Then

w(ℓ̄s−a−1
s−a−1ℓs−a . . . ℓk−1x) + w(ℓ̄aℓs−aℓs . . . ℓk−1) + xℓ̄

≥ w(ℓ̄s−a−1
s−a−1ℓs−a . . . ℓk−1ℓ) + w(ℓ̄a+1ℓs−a−1ℓs . . . ℓk−1).
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Proof. Consider the bijection from the definition of quasiconvexity between the two configu-
rations on the left hand side.8 By the pigeonhole principle, at least one of the s − a copies of
ℓ in the second configuration maps to some point p ∈ ℓs−a . . . ℓs−1x in the first configuration.
Quasiconvexity gives

w(ℓ̄s−a−1
s−a−1ℓs−a . . . ℓk−1x) + w(ℓ̄aℓs−aℓs . . . ℓk−1)

≥ w(ℓ̄s−a−1
s−a−1ℓs−a . . . ℓk−1ℓx − p) + w(ℓ̄aℓs−a−1ℓs . . . ℓk−1p).

By 1-Lipschitzness of w, we get

w(ℓ̄s−a−1
s−a−1ℓs−a . . . ℓk−1ℓx − p) ≥ w(ℓ̄s−a−1

s−a−1ℓs−a . . . ℓk−1ℓ) − px

and

w(ℓ̄aℓs−a−1ℓs . . . ℓk−1p) ≥ w(ℓ̄a+1ℓs−a−1ℓs . . . ℓk−1) − pℓ̄.

Since ℓi ≠ ℓ for i < s and p ∈ ℓs−a . . . ℓs−1x, the point x lies on the path from p to ℓ, i.e.,
px + xℓ = pℓ. Equivalently, xℓ̄ = px + pℓ̄. The claim follows by combining these inequalities.

◁

Step 3: Alternatively, xk = r

▶ Lemma 17. For any w ∈ Wk(r), there exist leaves ℓ1, . . . , ℓk−1 such that Φ(w) =
Φℓ1...ℓk−1r(w).

Proof. Since w ∈ Wk(r), we can choose X ∈ arg minX mw(X) of the form X = rℓ2 . . . ℓk

for ℓ2, . . . , ℓk ∈ L. If ℓ := ℓ1 is the leaf of the ray containing r, then clearly ℓ1 . . . ℓk is
also a minimizer of mw and ℓ1 . . . ℓk resolves from ℓ1. Let ℓ2, . . . , ℓk be ordered such that
ℓ = ℓ1 = · · · = ℓs for some s ≥ 1 and ℓi ̸= ℓ for i > s.

The main part of this proof is to show that there exists a ∈ {1, . . . , s} such that

w(ℓ̄i
iℓi+1 . . . ℓk) =

{
w(ℓ̄i

iℓi+2 . . . ℓkr) + rℓ if i < a

w(ℓ̄i−1
i ℓi+1 . . . ℓkr) + rℓ̄i if i ≥ a.

(19)

Before we prove this, let us see why it implies the lemma. By Lemma 15 and the fact that
ℓ = ℓ1 = · · · = ℓa, we have

Φ(w) = Φℓ1...ℓk
(w)

=
k∑

i=0
w(ℓ̄i

iℓi+1 . . . ℓk)

=
a−1∑
i=0

w(ℓ̄i
iℓi+2 . . . ℓkr) +

k∑
i=a

w(ℓ̄i−1
i ℓi+1 . . . ℓkr) + a · rℓ +

k∑
i=a

rℓ̄i

=
k−1∑
i=0

w(ℓ̄i
i+1ℓi+2 . . . ℓkr) + w(ℓ̄a−1ℓa+1 . . . ℓkr) + (a − 1) · rℓ +

k∑
i=a+1

r̄ℓi + ∆

≥
k−1∑
i=0

w(ℓ̄i
i+1ℓi+2 . . . ℓkr) + w(r̄k)

= Φℓ2...ℓkr(w).

8 We remark that earlier proofs about competitiveness of the work function algorithm only used a weaker
form of quasi-convexity and did not actually use the existence of such a bijection.
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It remains to show (19). We choose a maximal such that ℓ̄a−1
a−1ℓa . . . ℓk resolves from ℓ.

Recall from the start of this proof that ℓ1 . . . ℓk resolves from ℓ1, so a ≥ 1. Moreover, a ≤ s

since ℓi ̸= ℓ for i > s. So a ∈ {1, . . . , s} as required. The case “i < a” of (19) now follows by
backwards induction on i, where the induction step is due to Lemma 5.

Consider now some i > s. Letting w̃ = w( · ℓi+1 . . . ℓk) ∈ Wi
L+r, we have

w(ℓ̄i
iℓi+1 . . . ℓk) = w̃(ℓ̄i

i) = min
X⊆L+r−ℓi

mw̃(X) + i(∆ − cℓi),

where the last equation is proved similarly to Lemma 13, but we may allow X to contain
the non-leaf r since it is on a different ray than ℓi (thanks to i > s). Since minX mw(X) =
mw(rℓ2 . . . ℓk), we have minX mw̃(X) = mw̃(rℓ2 . . . ℓi), so by Lemma 3 the minimum under
the restriction X ⊆ L + r − ℓi is achieved for some X with r ∈ X. Thus,

w(ℓ̄i
iℓi+1 . . . ℓk) = min

Y ⊆L−ℓi

w̃(Y r) − d(Y, ci−1) − rℓi + i(∆ − cℓi)

= min
Y ⊆L−ℓi

w̃(Y r) + d(Y, ℓ̄i−1
i ) + ℓ̄ir

≥ w̃(ℓ̄i−1
i r) + ℓ̄ir

= w(ℓ̄i−1
i rℓi+1 . . . ℓk) + rℓ̄i.

Note that the inequality between the first and last expression cannot be strict due to
1-Lipschitzness of w, and their equality reveals that ℓ̄i

iℓi+1 . . . ℓk resolves from ℓ̄i, as desired.
Finally, consider i ∈ {a, a + 1, . . . , s}. Then ℓi = ℓ, and we need to show that ℓ̄iℓi+1 . . . ℓk

resolves from ℓ̄. Suppose that it instead resolves from ℓh for some h > i. Since a ≤ s was
chosen maximal, we know that ℓh ̸= ℓ. By Lemma 13,

w(ℓ̄iℓi+1 . . . ℓk) = w(ℓ̄iℓi+1 . . . ℓh−1ℓh+1 . . . ℓkr) + rℓh

= min
X⊇ℓi+1...ℓh−1ℓh+1...ℓkr

X−ℓi+1...ℓh−1ℓh+1...ℓkr⊆L−ℓ

mw(X) + i(∆ − cℓ) +
k∑

j=i+1
j ̸=h

cℓj + cr + rℓh.

= min
Y ̸∋ℓ

mw̃(Y ) + i(∆ − cℓ) + rℓh,

where w̃ = w( · ℓi+1 . . . ℓh−1ℓh+1 . . . ℓkr) ∈ Wi
L. Since minX mw(X) = mw(rℓ2 . . . ℓk), we

have that minX mw̃(X) = mw̃(ℓ2 . . . ℓiℓh), so by Lemma 3 the minimum under the restriction
Y ̸∋ ℓ is achieved for some Y with ℓh ∈ Y . Letting Y ′ = Y − ℓh, we get

w(ℓ̄iℓi+1 . . . ℓk) = mw̃(Y ) + i(∆ − cℓ) + rℓh

= w(Y ′ℓi+1 . . . ℓkr) − d(Y, ci) + i(∆ − cℓ) + (rc + cℓh)

= w(Y ′ℓi+1 . . . ℓkr) −
∑

y∈Y ′

yℓ + i∆ − cℓ + rc

≥ w(Y ′ℓi+1 . . . ℓkr) +
∑

y∈Y ′

yℓ̄ + ∆ − rℓ

≥ w(ℓ̄i−1ℓi+1 . . . ℓkr) + rℓ̄,

where the second equation uses that ℓ ̸= ℓh and therefore c lies on the path from r to ℓh, and
the third equation uses that y and ℓ are different leaves and therefore yc + cℓ = yℓ. Again,
the inequality between the first and last expression cannot be strict due to 1-Lipschitzness of
w, and their equality reveals that ℓ̄iℓi+1 . . . ℓk resolves from ℓ̄, completing the proof. ◀

▶ Theorem 18. WFA is k-competitive on multiray spaces.

Proof. Follows from Lemma 17 and Corollary 8. ◀
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6 Non-laziness of the worst-case adversary on the circle

▶ Theorem 19. For k = 3 servers on the circle, there exists a reachable work function
from where the worst-case adversarial continuation of the request sequence is not lazy.
More precisely, there exists a request sequence such that the induced work functions wt and
wt+1 after time steps t and t + 1 and the WFA configuration Ct after time step t satisfy
wt+1(Ct) − wt(Ct) > Φ(wt+1) − Φ(wt).

In other words, the extended cost is strictly greater than the change in potential. Due to
the interpretation of our potential (Section 4), this means that the worst-case continuation of
the request sequence after time t is not lazy. If Theorem 19 could be strengthened such that
the request sequence to reach wt has extended cost equal to its induced change in potential,
then this would disprove the premise of the extended cost lemma (because one could create
a cyclic request sequence where extended cost is always at least the change in potential and
exceeds it infinitely often; we remark that one can go from a cone work function to any other
cone via a request sequence whose extended cost equals its potential change).

Note that Theorem 19 holds even if in the extended cost maxX wt+1(X) − wt(X) we
replace X by the configuration Ct of WFA at time t. The significance of this is that the sum
of the terms wt+1(Ct) − wt(Ct) over all time steps is equal to the sum of WFA’s cost and the
optimal offline cost (up to a bounded additive error). Thus, proving violation of the premise
of the extended cost lemma with X replaced by Ct would imply that WFA’s competitive
ratio is strictly greater than k.

The proof of Theorem 19 is given in the full version of our paper [14]. It is based on a
tight connection between the k-server problem and the “easy” version of the k-taxi problem
observed in [13]. The k-taxi problem is the generalization of the k-server problem where
each request is not a single point, but a pair (s, t) of two points, representing the start s

and destination t of a taxi request. To serve it, the algorithm has to select a server that
first goes to s and then to t. In the “easy” version relevant for us, the cost is defined as the
total distance traveled by servers.9 As shown in [13], the easy k-taxi problem has exactly the
same competitive ratio as the k-server problem. The idea of this reduction is that a k-taxi
request (s, t) can be simulated by a sequence of many k-server requests along the shortest
path from s to t. We extend this idea to show that we can use k-taxi requests to reach work
functions that are arbitrarily close to work functions reachable via k-server requests. We
then give an explicit counter-example using k-taxi requests.

We remark that up to symmetry and shift by an additive constant, for k = 3 there exist
over 280,000 different work functions reachable by taxi requests with starts/destinations
at the points on the circle considered in our construction (8 equally spaced points for the
destinations and 16 equally spaced points for the starts – the aforementioned 8 points as well
as the 8 intermediate points). Among these over 280,000 work functions, the pair of wt and
wt+1 from our construction is the only counterexample to laziness of the adversary. Using
only k-server requests and no k-taxi requests, we were unable to find any counterexamples for
n equally spaced points on the circle for the values of n that were computationally feasible
for us to try. Of course, though, our approximability argument of k-taxi requests via k-server
requests implies that such counterexamples do exist for n sufficiently large. Given the rarity
of these counterexamples, it is not surprising that Chrobak and Larmore [12] who reported
testing their conjecture on tens of thousands of small metric spaces in the early 90s did not
find any counterexample.

9 In contrast, the “hard” k-taxi problem defines the cost as only the overhead distance traveled while not
carrying a passenger, i.e., the distance from s to t is excluded from the cost.
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7 Conclusion

Our potential gives a unified perspective on all cases where WFA is known to be k-competitive.
Unlike previous potentials, which were specific to their special case and had no clear intuition,
our potential has a natural interpretation as capturing a lazy adversary. We remark that
our potential also proves k-competitiveness on 6-point metric spaces. Since work functions,
the WFA, and the generalized WFA are central to various online problems, similar potential
functions may also prove useful to analyze different problems.

Since it was a major belief that a lazy adveresary would capture the worst case, our
insights yield a qualitative explanation of the shortcomings of previous approaches and may
point in a direction to overcome these shortcomings.

Our proof for k = 3 on trees relies on the fact that if (M, d) is a tree metric, then d is
quasiconcave (i.e., −d is quasiconvex). We are puzzled by the question whether this has
any deeper connection to the quasiconvexity property of work functions and whether it is
crucial for the existence of k-competitive algorithms. While the k-server problem is also
k-competitive on some non-quasiconcave metrics (such as the cases k = 2 and n = k − 2),
the reason for this might simply be due to the fact that the subspaces relevant in all proof
steps are small (note that any 3-point metric is quasiconcave).
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Abstract
We want to efficiently find a specific object in a large unstructured set, which we model by a random
n-permutation, and we have to do it by revealing just a single element. Clearly, without any help
this task is hopeless and the best one can do is to select the element at random, and achieve the
success probability 1

n
. Can we do better with some small amount of advice about the permutation,

even without knowing the object sought? We show that by providing advice of just one integer in
{0, 1, . . . , n−1}, one can improve the success probability considerably, by a Θ( log n

log log n
) factor.

We study this and related problems, and show asymptotically matching upper and lower bounds
for their optimal probability of success. Our analysis relies on a close relationship of such problems
to some intrinsic properties of random permutations related to the rencontres number.
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1 Introduction

Understanding basic properties of random permutations is an important concern in modern
data science. For example, a preliminary step in the analysis of a very large data set presented
in an unstructured way is often to model it assuming the data is presented in a random order.
Understanding properties of random permutations would guide the processing of this data
and its analysis. In this paper, we consider a very natural problem in this setting. You are
given a set of n objects ([n−1], say1) stored in locations x0, . . . , xn−1 according to a random
permutation σ of [n−1]. This is the haystack, and you want to find one specific object, not
surprisingly called the needle, by drawing from just one location.

Clearly, the probability of finding the right object in a single draw is always 1
n (whichever

location you choose, since the permutation σ is random, the probability that your object is
there is exactly 1

n ). But can I give you any advice or hint about σ – without knowing which
object you are seeking – to improve the chance of you finding the specific object? If I could

1 Throughout the paper we use the standard notation [n−1] := {0, . . . , n−1}, and we write log for log2.
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58:2 Haystack Hunt and Locker Room

tell you the entire σ (which can be encoded with log(n!) = Θ(n log n) bits) then this task is
trivial and you would know the location of the object sought. But what if I give you just
a small hint (on the basis of σ), one number h from [n−1] (or equivalently, one log n-bit
sequence) – even when I know nothing about the object sought?

Formally, the goal is to design a strategy to choose a hint h = h(σ) and an index i = i(h, s),
with both h, i ∈ [n−1], such that for a given s ∈ [n−1], Pr[σ(i) = s] is maximized, where
the probability is over the random choice of σ and over the randomness in the choice of the
strategy (since h = h(σ) and i = i(h, s) may be randomized functions), see also Section 2.2.

1.1 Related puzzle: communication in the locker room
The needle in a haystack problem is closely related to the following locker room problem (see
Figure 1): The locker room has n lockers, numbered 0, . . . , n−1. A set of n cards, numbered
0, . . . , n−1, is inserted in the lockers according to a uniformly random permutation σ. Alice
and Bob are a team with a task. Alice enters the locker room, opens all the lockers and
can swap the cards between just two lockers, or may choose to leave them unchanged. She
closes all the lockers and leaves the room. Bob is given a number s ∈ [n−1] and his task is
to find card s. He can open at most two lockers. Before the game begins, Alice and Bob may
communicate to decide on a strategy. What is their optimal strategy, and how efficient is it?

As in the needle in a haystack problem, without help from Alice, Bob can do no better
than open lockers at random. If he opens one locker his probability of success is 1

n and if
he opens two lockers this probability is 2

n . With the help of Alice, he can do better when
opening one locker. E.g., their strategy could be that Bob will open locker s, where s is his
given number. Alice would then try to increase the number of fixed points in the permutation
above the expected number of 1. If there is a transposition she can reverse it, increasing the
number of fixed points by two, and if not she can produce one more fixed point (unless the
permutation is the identity). This strategy succeeds with probability just under 12

5n . When
Bob can open two lockers, the challenge is to increase the success probability to ω( 1

n ).
The answer involves viewing Bob’s first locker opening in a different way: not as looking

for his card but as receiving a communication from Alice. The interest is in finding what kind
of information Alice can send about the permutation which could help Bob in his search.

Now, we invite the reader to stop for a moment: to think about this puzzle, to find any
strategy that could ensure the success probability would be ω( 1

n ).
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Figure 1: Consider the following randomly shuffled deck of cards in the locker room, one card per locker.
Alice can open all lockers and so she can see the entire permutation, but the cards are not visible to Bob.
What advice about the deck should Alice give to Bob — just by swapping location of at most one pair of
cards — to increase the probability that Bob will find a randomly chosen card in the deck by opening at
most two lockers (uncovering at most two cards)?

in [5]. An early version giving the problem where each prisoner can open half of the lockers was
published by [14] (see also [15, p. 18]). If each prisoner begins with the locker corresponding to
the number they seek then they will all succeed provided that there is no cycle in the permutation
which is longer than n/2. It is easy to show that a helpful prison warder or Alice can always find
an appropriate transposition of the contents of two lockers so that the resulting permutation has
no cycle longer than n/2. We were told of this observation recently by Kazuo Iwama and this
stimulated the current paper, in which we subvert the locker problem tradition with a problem
which has little to do with the cycle structure of permutations and is more concerned with some
basic communication complexity and rather different properties of permutations.

In this paper we consider the following locker problem (see Figure 1): The locker room has n
lockers, numbered 0, . . . , n−1. A set of n cards, numbered 0, . . . , n−1, is inserted in the lockers
according to a uniformly random permutation σ. Alice and Bob are a team with a task. Alice
enters the locker room, opens all the lockers and can swap the cards in just two lockers, or may
choose to leave them unchanged. She closes all the lockers and leaves the room. Bob is given a
random number k, 0 ≤ k < n and his task is to find card k. He can open at most two lockers.
Before the game begins, Alice and Bob can communicate to decide on a strategy. What is the
optimal strategy, and how efficient is it?

Without help from Alice it is clear that Bob can do no better than open lockers at random. If he
opens just one locker his probability of success is 1

n and if he opens two lockers this probability is 2
n .

With the help of Alice, he can do better when opening one locker. For example their strategy could
be that Bob will open locker k where k is his given number. Alice will try to increase the number
of fixed points in the permutation above the expected number of one. If there is a transposition
she can reverse it, increasing the number of fixed points by two and if not then she can produce
one more fixed point unless the original permutation is the identity. This strategy succeeds with
probability just under 12

5n . When Bob can open two lockers, the challenge is to see how the success
probability can be increased by more than O( 1n).

The answer involves viewing Bob’s first locker opening in a different way: not as looking for
his card but as receiving a communication from Alice. The interest then is in finding what kind of
information Alice can send about the permutation which could help Bob in his search.

Now, we would like to invite the reader to stop for a moment: to think about this puzzle, to
find any strategy that could ensure the success probability to be ω( 1n).

2

Figure 1 Consider the following randomly shuffled deck, one card per locker. What advice should
Alice give to Bob – just by swapping the locations of at most one pair of cards – to increase the
probability that Bob will find his randomly chosen card by opening at most two lockers?

It is easy to see that a solution to the needle in a haystack search problem immediately
yields a solution to the locker room problem: Alice just takes the card corresponding to
the advice and swaps it into the first locker. For example, the shuffled deck from Figure 1
corresponds to the following permutation σ of 52 numbers:

σ(0, 1, . . . , 51) = ⟨49, 17, 1, 38, 27, 7, 21, 25, 45, 3, 51, 9, 35, 36, 11, 33, 23,

8, 46, 18, 13, 28, 26, 14, 2, 5, 10, 39, 48, 32, 29, 40, 19, 4,

50, 43, 6, 22, 34, 44, 24, 15, 16, 20, 0, 47, 30, 42, 31, 37⟩
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with mapping: ♣: 0–12 (in order 2,3,4,5,6,7,8,9,10,J,Q,K,A), ♢: 13–25, ♡: 26–38, ♠: 39–51.
We see, for example, that ♠Q, card number 49 is in locker 0. If in the needle in a haystack
search problem the advice is a number h ∈ [n−1], then Alice swaps the contents of locker 0
and the locker containing the card corresponding to number h. This way, Bob gets the advice
h by opening locker 0.

For the strategy we propose in Theorem 5, Alice would swap ♠Q and ♡5. But can we do
better?

1.2 Results for the needle in a haystack and locker room problems
We present a tight analysis of the needle in a haystack search problem. While some basic
examples suggest that it is difficult to ensure success probability ω( 1

n ), we will show that
one can improve this probability considerably. Our main results are tight (up to lower order
terms) lower and upper bounds for the maximum probability that with a single number hint
one can find the object sought. First, we will show that for any strategy, the probability
that one can find the sought object is at most (1+o(1)) log n

n log log n (Theorem 5). Next, as the main
result of this paper, we will complement this by designing a simple strategy that with a hint
ensures that the sought object is found with probability at least (1+o(1)) log n

n log log n (Theorem 6).
Further, we demonstrate essentially the same results for the locker room problem. Theo-

rem 6 for the needle in a haystack search problem immediately implies that there is a simple
strategy for Alice and Bob which ensures that Bob finds his card with probability at least
(1+o(1)) log n

n log log n . We will complement this claim and extend in Theorem 21 the result from
Theorem 5 for the needle in a haystack search problem to prove that for any strategy for
Alice and Bob, the probability that Bob finds the required card is at most O

(
log n

n log log n

)
.

Techniques. Our analysis exploits properties of random permutations to ensure that some
short advice can reveal information about the input permutation, which can be used to
increase the success probability substantially. Our approach relies on a close relationship
between the needle in a haystack search problem and some intrinsic properties of random
permutations related to the rencontres number, the number of n-permutations with a given
number of fixed points. The two parts of our analysis for the needle in a haystack problem, the
upper bound and the lower bound for the success probability, use quite different techniques.

To show the upper bound for the success probability (Theorem 5), we first observe that
every deterministic strategy corresponds to a unique partition of Sn (set of all permutations
of [n−1]) into n parts, with part h containing exactly those permutations that cause the
choice of hint h. By a careful analysis of the properties of this partition, we devise a metric for
the best possible accuracy of the prediction counting instances in each part of the partition
in which a permutation maps a given choice i to s. By combining these estimation with
the bounds for the rencontres number, we prove the desired upper bound for the success
probability in the needle in a haystack search problem. An application of Yao’s principle
shows that our results are also valid for randomized strategies.

To show the lower bound for the success probability (Theorem 6), we first present
a simple shift strategy, and then provide a non-trivial analysis of random permutations
that demonstrates desirable properties of this strategy. The analysis here is related to
the maximum load problem for balls and bins, where one allocates n balls into n bins,
chosen independently and uniformly at random (i.u.r.). However, the dependencies between
locations of distinct elements in the random permutations make this analysis more complex
(cf. Remark 11 for more detailed discussion).
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58:4 Haystack Hunt and Locker Room

Finally, while a solution to the needle in a haystack search problem immediately yields a
solution to the locker room problem with the same success probability, we complement our
analysis by showing (Theorem 21) that no strategy of Alice and Bob can do much better.
We show that Alice can do little more than just to send a few numbers to Bob, which is
essentially the setup of the needle in a haystack search problem.

1.3 Background: Permutations, puzzles, and locker rooms
Our locker room problem follows a long line of the study of combinatorial puzzles involving
the analysis of properties of permutations. One such example is the following locker problem
involving prisoners and lockers: There are n lockers into which a random permutation of n

cards are inserted. Then n prisoners enter the locker room one at a time and are allowed to
open half of the lockers in an attempt to find their own card. The team of prisoners wins if
every one of them is successful. The surprising result is that there is a strategy which wins
with probability about 1 − ln 2. This problem was initially considered by Peter Bro Miltersen
and appeared in his paper with Anna Gál [7], which won a best paper award at ICALP 2003.
In that paper they refer to a powerful strategy approach suggested by Sven Skyum but it was
left to the readers to find it for themselves. This is the idea of using the number contained in
each locker as a pointer to another locker. Thus using a sequence of such steps corresponds
to following a cycle in the permutation. Solutions to these problems are of a combinatorial
and probabilistic flavor and involve an analysis of the cycle structure of random permutations.
The original paper [7] stimulated many subsequent papers considering different variants (see,
e.g., [4, 8]), including a matching upper bound provided in [5]. An early version giving the
problem where each prisoner can open half of the lockers was published by [14] (see also [15,
p. 18]). If each prisoner begins with the locker corresponding to the number they seek then
they will all succeed provided that there is no cycle in the permutation which is longer than
n
2 . It is easy to show that a helpful prison warder, Alice, can always find an appropriate
transposition of the contents of two lockers so that the resulting permutation has no cycle
longer than n

2 . We were told of this observation recently by Kazuo Iwama and this stimulated
the current paper, in which we subvert the locker problem tradition with a problem which
has little to do with the cycle structure of permutations and is more concerned with some
basic communication complexity and rather different properties of permutations.

Various results about permutations have found diverse applications in computer science,
especially for sorting algorithms (for example, see [10, Chapter 5]). In this paper, we are
particularly interested in two such questions. Firstly, to apply known results concerning
the asymptotic growth of the rencontres numbers, in order to approximate the optimal
success probabilities in both the needle in a haystack problem and the locker room problem.
Secondly, to use the concept of the rencontres numbers to examine the way in which the
sizes of “shift sets” (sets of elements which a permutation displaces by the same number of
positions “to the right”) are distributed in permutations of Sn for a fixed natural number n.
In particular, to determine the mean size of the largest shift set of a permutation chosen
uniformly at random from Sn, as well as to show that it is typical, i.e., that the variance
of the size of the largest shift set is small. These results are useful for providing a concrete
optimal strategy for both of the titular search problems.

2 Preliminaries

In this section, we prepare a framework for the study of strategies to prove an upper bound
for the success probability for the needle in a haystack search problem (cf. Section 3). For
the simplicity of the analysis, we will consider (in Sections 2, 3, and 6) the setting when s
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is chosen i.u.r. from [n−1]; see Section 2.2 for justification that this can be done without
loss of generality. First, let us rephrase the original problem in a form of an equivalent
communication game between Alice and Bob: Bob, the seeker, has as his input a (random)
number s ∈ [n−1]. Alice, the adviser, sees a permutation σ chosen i.u.r. from Sn, and uses σ

to send advice to Bob in the form of a number h ∈ [n−1]. Bob does not know σ, but on the
basis of s and h, he picks some i ∈ [n−1] trying to maximize the probability that σ(i) = s.

First we will consider deterministic strategies (we will later argue separately that ran-
domized strategies cannot help much here). Since we consider deterministic strategies, the
advice sent is a function Sn → [n−1], which can be defined by a partition of Sn into n sets.
This naturally leads to the following definition of a strategy.

▶ Definition 1. A strategy C for Sn is a partition of Sn into n sets C0, C1, . . . , Cn−1. Such
a strategy C is denoted by C = ⟨C0, C1, . . . , Cn−1⟩.

Given a specific strategy C, we examine the success probability. Let V be the event that
the sought number is found, Ah the event that h is the received advice, and Bs the event
that s is the sought number. Notice that for every h ∈ [n−1] we have Pr[Ah] = |Ch|

n! and for
every s ∈ [n−1] we have Pr[Bs] = 1

n . Therefore, since the events Ah and Bs are independent,

Pr[V] =
n−1∑
s=0

n−1∑
h=0

Pr[V|Ah ∩ Bs] · Pr[Ah ∩ Bs] =
n−1∑
s=0

n−1∑
h=0

Pr[V|Ah ∩ Bs] · Pr[Ah] · Pr[Bs]

= 1
n

n−1∑
h=0

|Ch|
n! ·

n−1∑
s=0

Pr[V|Ah ∩ Bs] . (1)

▶ Definition 2. Let C = ⟨C0, C1, . . . , Cn−1⟩ be a strategy. The magneticity of an element i

for an element k in the class Cj is defined as mag(Cj , i, k) = |{σ ∈ Cj : σ(i) = k}|.
The element with the greatest magneticity for k in the class Cj is called the magnet

in Cj of k and is denoted max-mag(Cj , k); ties are broken arbitrarily. The magneticity of
max-mag(Cj , k) is called the intensity of k in Cj , denoted by int(Cj , k); that is, int(Cj , k) =
maxi∈[n−1]{mag(Cj , i, k)}.

This can be extended in a natural way to any C = ⟨A0, A1, . . . , An−1⟩ of n subsets of Sn.
Let us discuss the intuitions. Firstly, the magneticity in the class Cj of an element i for

an element k, mag(Cj , i, k), denotes the number of permutations in Cj with k in position i.
Therefore, the magnet in Cj of k is an index i ∈ [n−1] such that among all permutations in
Cj , k is most likely to be in position i. The intensity in Cj of k denotes just the number of
times (among all permutations in Cj) that k appears in the position of the magnet i.

In the needle in a haystack search problem, Alice sends to Bob a message h which points
to a class Ch of their agreed strategy C, and Bob has to choose a number i in order to find
whether σ(i) is the number s ∈ [n−1] which he seeks. The maximum probability that they
succeed is int(Ch,s)

|Ch| , realized if Bob opts for the magnet of s in Ch. Thus, by (1), we obtain

Pr[V] ≤ 1
n

· 1
n!

∑
s,h∈[n−1]

int(Ch, s) .

▶ Definition 3. Let the field of Sn be F (n) = maxC=⟨C0,C1,...,Cn−1⟩
∑

s,h∈[n−1] int(Ch, s).

With this definition, a strategy which yields the field of Sn is called optimal, and

Pr[V] ≤ 1
n

· 1
n!

∑
s,h∈[n−1]

int(Ch, s) ≤ 1
n

· F (n)
n! . (2)

We will use this bound to prove Theorem 5 in Section 3, that whatever the strategy, we
always have Pr[V] ≤ (1+o(1))·log n

n log log n .
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2.1 Derangements
We use properties of random permutations related to derangements and rencontres numbers.

▶ Definition 4. A permutation σ ∈ Sn with no fixed points is called a derangement. The
number of derangements in Sn is denoted Dn. A permutation σ ∈ Sn with exactly r fixed
points is called an r-partial derangement. The number of r-partial derangements in Sn

(also known as the rencontres number) is denoted Dn,r.

Definition 4 yields Dn,0 = Dn and it is easy to see that Dn,r =
(

n
r

)
· Dn−r. It is also

known (see, e.g., [9, p. 195]) that Dn = ⌊ n!
e + 1

2 ⌋, and hence one can easily show Dn,r ≤ n!
r! .

2.2 Formal framework and justification about worst-case vs. random s

We consider the problem with two inputs: a number s ∈ [n−1] and a permutation σ ∈ Sn.
We are assuming that σ is a random permutation in Sn; no assumption is made about s.

For the needle in a haystack search problem (a similar framework can be easily set up
for the locker room problem), a strategy (or an algorithm) is defined by a pair of (possibly
randomized) functions, h = h(σ) and i = i(h, s), with both h, i ∈ [n−1].

For a fixed strategy, let p(s) be the success probability for a given s and for a randomly
chosen σ ∈ Sn. That is,

p(s) = Pr[σ(i) = s] ,

where the probability is over σ taken i.u.r. from Sn, and over the randomness in the choice
of the strategy (since both h = h(σ) and i = i(h, s) may be randomized functions).

The goal is to design an algorithm (find a strategy) that will achieve some success
probability for every s ∈ [n−1]. That is, we want to have a strategy which maximizes

Pr[V] = min
s∈[n−1]

{p(s)} .

In our analysis for the upper bounds in Sections 2 and 3 (Theorem 5) and Section 6
(Theorem 21), for simplicity, we will be making the assumption that s, the input to the
needle in a haystack search problem and to the locker room problem, is random, that is, is
chosen i.u.r. from [n−1]. (We do not make such assumption in the lower bound in Section 4
(Theorem 6), where the analysis is done explicitly for arbitrary s.) Then the main claim
(Theorem 5) is that if we choose s i.u.r. then p(s) ≤ (1+o(1)) log n

n log log n , though in fact, one can read
this claim as that

∑
s∈[n−1]

p(s)
n ≤ (1+o(1)) log n

n log log n . However, notice that this trivially yields

Pr[V] = min
s∈[n−1]

{p(s)} ≤
∑

s∈[n−1]

p(s)
n

,

and therefore Theorem 5 yields Pr[V] ≤ (1+o(1)) log n
n log log n , as required.

Observe that such arguments hold only for the upper bound. Indeed, since
mins∈[n−1]{p(s)} may be much smaller than

∑
s∈[n−1]

p(s)
n , in order to give a lower bound

for the success probability, Theorem 6 proves that there is a strategy that ensures that
p(s) ≥ (1+o(1)) log n

n log log n for every s ∈ [n−1]; this clearly yields Pr[V] ≥ (1+o(1)) log n
n log log n , as required.

3 Upper bound for the success probability for needle in a haystack

We will use the framework set up in the previous section, in particular the tools in Definition 2
and inequality (2) and that s is chosen i.u.r. from [n−1], to bound from above the best
possible success probability in the needle in a haystack search problem.
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▶ Theorem 5. For any strategy in the needle in a haystack problem, the success probability is

Pr[V] ≤ (1 + o(1)) · log n

n log log n
.

Proof. We will first consider only deterministic strategies and, only at the end, we will argue
that this extends to randomized strategies.

Consider an optimal strategy C = ⟨C0, . . . , Cn−1⟩. First, we will modify sets C0, . . . , Cn−1
to ensure that each Cj has n distinct magnets.

Fix j ∈ [n−1]. Suppose that there are two elements k1 < k2 ∈ [n−1] with the same
magnet i1 in Cj . Since there are exactly n elements and n possible magnets, there is
some i2 ∈ [n−1] which is not a magnet in Cj of any element. For every σ ∈ Cj with
σ(i1) = k2, calculate σ′ = σ(i1i2) (that is, σ′ is the same as σ, except that the images of i1
and i2 are exchanged). Now, if σ′ /∈ Cj , then remove σ from Cj and add σ′ to Cj . We notice
the following properties of the resulting set C ′

j in the case that some σ is replaced by σ′:
(i) |C ′

j | = |Cj |.
(ii) i2 can be chosen as the new magnet of k2. Indeed, for every i ̸= i1, i2, we have

mag(C ′
j , i2, k2) > mag(Cj , i1, k2) = int(Cj , k2) ≥ mag(Cj , i, k2) = mag(C ′

j , i, k2), so
mag(C ′

j , i2, k2) = int(C ′
j , k2) > int(Cj , k2) .

(iii) None of the intensities decreases. Indeed the only differences are due to changes to
permutations σ ∈ Cj with σ(i1) = k2. Such a permutation where σ(i2) = k3, say, is
replaced by σ′, where σ′(i2) = k2 and σ′(i1) = k3, if σ′ is not already in Cj . As shown
in (ii), the intensity of k2 increases. For k3, only mag(Cj , i2, k3) decreases, but since i2
was not a magnet in Cj , the magnet in C ′

j of k3, and hence int(Cj , k3), is unchanged.

We repeat this operation for every remaining pair of elements which share a magnet in
Cj until we arrive at a set of permutations which has n distinct magnets. Then, we perform
the same process for every other class in C.

To see that this algorithm indeed terminates, (ii) shows that if in any iteration the magnet
of an element i changes, then int(C ′

j , i) > int(Cj , i). As the maximum intensity of any element
within a class Cj is |Cj | and the minimum is 1, the algorithm terminates after n ·n! iterations.

Let us consider the collection C = ⟨A0, . . . , An−1⟩ obtained. From (i), we see that the
sets of C contain a total of n! permutations of Sn. Permutations belonging to the same set
Aj are necessarily distinct, but two different sets of C may have non-trivial intersection.
Hence, C may not be a strategy. Every Aj has n distinct magnets, one for each element of
[n−1]. Most importantly, by (iii), we have∑

i,j∈[n−1]

int(Aj , i) ≥
∑

i,j∈[n−1]

int(Cj , i) = F (n) .

Hence, calculating an upper bound for
∑

i,j∈[n−1] int(Aj , i) yields an upper bound for F (n).
The set Aj has exactly n magnets, one for each element of [n−1]. For a permutation

σ ∈ Aj to contribute r to
∑

i∈[n−1] int(Aj , i), σ−1 must map exactly r elements to their
magnets in Aj . Hence, (cf. Definition 4) there are at most Dn,r permutations in Aj which
contribute exactly r to

∑
i∈[n−1] int(Aj , i). Recall that Dn,r ≤ n!

r! and thus for any natural ℓ,

∑
i∈[n−1]

int(Aj , i) ≤ ℓ · |Aj | +
n∑

r=ℓ+1
r · Dn,r = ℓ · |Aj | +

n∑
r=ℓ+1

n!
(r − 1)! ≤ ℓ · |Aj | + en!

ℓ! .
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We will choose some ℓ = (1+o(1)) log n
log log n to ensure that ℓ! = ω(n), giving

F (n) ≤
∑

i,j∈[n−1]

int(Aj , i) ≤
∑

j∈[n−1]

(ℓ · |Aj | + o((n − 1)!)) = (ℓ + o(1))n! = (1 + o(1)) log n

log log n
n! (3)

We can combine (2) and (3) to obtain the following,

Pr[V] ≤ 1
n

· F (n)
n! ≤ (1 + o(1)) log n

n log log n
.

The upper bound of (1+o(1)) log n
n log log n is valid not only for deterministic strategies, but also for

randomized strategies. Let c(C, (σ, i)) be the indicator function of the event that the strategy
C fails to guess the image of i under the permutation σ. Let us consider a probability measure
P over the set D of all deterministic strategies, and the distribution U = (USn , U[n−1]) over
Sn × [n−1], where US denotes the uniform probability measure over the set S. Let S be a
random strategy chosen according to P , and let X be a random set-up chosen according
to U . Then, by Yao’s principle, max(σ,i)∈Sn×[n−1] E[c(S, (σ, i))] ≥ minC∈D E[c(C, X)]. That
is, the probability that a randomized strategy fails for the worst-case input exceeds the
probability that an optimal deterministic strategy fails. Hence, the worst-case probability
that a randomized strategy succeeds is also bounded above by (1+o(1)) log n

n log log n . ◀

4 Lower bound: solution for the needle in a haystack search problem

In Theorem 5, we showed that whatever strategy we use in the needle in a haystack problem,
the best success probability we can hope for is (1+o(1)) log n

n log log n . In this section we will show that
such success probability is achievable by a simple strategy, which we call the shift strategy.

Let h ∈ [n−1] maximize |{ℓ ∈ [n−1] : ℓ = σ(ℓ + h (mod n))}|.
In order to find number s ∈ [n−1] in σ, check σ(s + h (mod n)).

(Our choice of h is equivalent to maximizing |{ℓ ∈ [n−1] : (ℓ − h (mod n)) = σ(ℓ)}|.)
We will prove that the shift strategy ensures a success probability of at least (1+o(1)) log n

n log log n .
Notice that this is equivalent to saying that Pr[σ(s + h (mod n)) = s] ≥ (1+o(1)) log n

n log log n , and
hence, by the definition of h, that with probability 1 − o(1),

max
s∈[n−1]

{∣∣{ℓ ∈ [n−1] : ℓ − σ(ℓ) = s (mod n)}
∣∣} ≥ (1 + o(1)) log n

log log n
.

This also implies, by Theorem 5 in Section 3, that the shift strategy is asymptotically optimal.

▶ Theorem 6. For any s ∈ [n−1], the shift strategy satisfies Pr[V] ≥ (1+o(1)) log n
n log log n .

In order to prove Theorem 6, we introduce some notation. For every i ∈ [n−1], let
v(i) = i − σ(i) (mod n). Since σ is random, v(i) has uniform distribution over [n−1].

Let Sℓ = |{i ∈ [n−1] : v(i) = ℓ}|. Notice that in the shift strategy C = ⟨C0, C1, . . . , Cn−1⟩,
if σ ∈ Ch then Sh = maxℓ∈[n−1]{Sℓ}. Therefore, our goal is to study basic properties of the
distribution of Sh, and in particular, to estimate the largest value of Sj over all j ∈ [n−1].

▶ Example 7. Using the example presented in Figure 1 with

σ(0, 1, . . . , 51) = ⟨49, 17, 1, 38, 27, 7, 21, 25, 45, 3, 51, 9, 35, 36, 11, 33, 23, 8, 46, 18, 13, 28, 26,

14, 2, 5, 10, 39, 48, 32, 29, 40, 19, 4, 12, 41, 50, 43, 6, 22, 34, 44, 24, 15, 16, 20, 0, 47, 30, 42, 31, 37⟩,
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we have

v(0, 1, . . . , 51) = ⟨3, 36, 1, 17, 29, 50, 37, 34, 15, 6, 11, 2, 29, 29, 3, 34, 45, 9, 24, 1, 7, 45, 48, 9,

22, 20, 16, 40, 32, 49, 1, 43, 13, 29, 22, 46, 38, 46, 32, 17, 6, 49, 18, 28, 28, 25, 46, 0, 18, 7, 19, 14⟩.

Then

S0,1,2,...,50,51 = ⟨1, 3, 1, 2, 0, 0, 2, 2, 0, 2, 0, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1,

0, 0, 2, 4, 0, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 2, 3, 0, 1, 2, 1, 0⟩,

so h = 29 and Sh = 4. Alice delivers this hint to Bob by exchanging cards ♡5 and ♠Q. Then,
over all s ∈ [n−1], Pr[σ(s + 29 (mod 52)) = s] = 4

52 . ⊠

Let us first notice the following simple auxiliary lemma which should give the intuition
behind our approach (see the end of this section for a standard and elementary proof).

▶ Lemma 8. The expected number of values j ∈ [n−1] with Sj ≥ (1+o(1))·log n
log log n is at least one.

Lemma 8 tells us that in expectation, there is at least one value j such that Sj ≥
(1+o(1)) log n

log log n . Notice however that in principle, we could have that the expectation is high but
only because with small probability the random variable takes a very high value. Therefore
the bound in Lemma 8 is fairly weak. We will now prove, using the second moment method,
that with high probability there is some j such that Sj ≥ (1+o(1)) log n

log log n . This yields Theorem 6.

▶ Lemma 9. With probability 1 − o(1) there is some j ∈ [n−1] such that Sj ≥ (1+o(1)) log n
log log n .

Proof. Let Zt
j be the indicator random variable that Sj = t. Let Rt =

∑n−1
j=0 Zt

j . With this
notation, our goal is to show that Rt = 0 is unlikely for our choice of some t = (1+o(1)) log n

log log n

(since if Rt > 0 then maxj∈[n−1] Sj ≥ t, and hence Pr
[

maxj∈[n−1] Sj ≥ t
]

≥ Pr[Rt > 0]). We
use the second moment method relying on a standard implication of Chebyshev’s inequality,

Pr
[

max
j∈[n−1]

Sj < t
]

≤ Pr
[
Rt = 0

]
≤ Var[Rt]

E[Rt]2
. (4)

Let us recall that

Var[Rt] = Var[
n−1∑
j=0

Zt
j ] =

n−1∑
j=0

Var[Zt
j ] +

∑
i,j∈[n−1],i ̸=j

Cov[Zt
i , Zt

j ] . (5)

Next, since every Zt
j is a 0-1 random variable, we obtain the following,

Var[Zt
j ] = Pr[Zt

j = 1] · Pr[Zt
j = 0] ≤ Pr[Zt

j = 1] = E[Zt
j ] . (6)

Our main technical claim is that the covariance of random variables Zt
j , Zt

i is small. Although
the proof of Lemma 10 is the main technical contribution of this section, for the clarity of
the presentation, we defer its proof to Section 5.

▶ Lemma 10. Let t ≤ O(log n). Then, the following holds for any i ̸= j, i, j ∈ [n−1]:

Cov[Zt
i , Zt

j ] = E
[
Zt

i · Zt
j

]
− E

[
Zt

i

]
· E[Zt

j ] ≤ o(1) · E
[
Zt

i

]
· E[Zt

j ] . (7)
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Therefore, if we combine (6) and Lemma 10 in identity (5), then (assuming t ≤ O(log n))

Var[Rt] =
n−1∑
j=0

Var[Zt
j ] +

∑
i,j∈[n−1],i ̸=j

Cov[Zt
i , Zt

j ] ≤
n−1∑
j=0

E[Zt
j ] + o(1)

∑
i,j∈[n−1],i ̸=j

E
[
Zt

i

]
E[Zt

j ]

= E[Rt] + o(1) · E[Rt]2 .

If we plug this in (4), then we will get the following (assuming t ≤ O(log n)),

Pr
[
Rt = 0

]
≤ Var[Rt]

E[Rt]2
≤ 1

E[Rt]
+ o(1) . (8)

Therefore, if for some ς > 0 we have E[Rt] ≥ ς (with t ≤ O(log n)) then the bound above
yields Pr

[
maxi∈[n−1] Si < t

]
≤ 1

ς + o(1). Hence we can combine this with (9) to obtain
E[Rt] =

∑n−1
j=0 E[Zt

j ] =
∑n−1

j=0 Pr[Sj = t] > n
2et! , which is ω(1) for any t such that t! = o(n).

This in particular holds for some t = (1+o(1)) log n
log log n , and thus concludes Lemma 9. ◀

▶ Remark 11. A reader may notice a close similarity of the problem of estimating maxi∈[n−1] Si

to the maximum load problem for balls and bins, where one allocates n balls into n bins i.u.r.
Indeed, random variables S0, . . . , Sn−1 have similar distribution to the random variables
B0, . . . , Bn−1, where Bi represents the number of balls allocated to bin i. However, the
standard approaches used in the analysis of balls-and-bins processes seem to be more
complicated in our setting. The main reason is that while every single random variable
Si has approximately Poisson distribution with mean 1, as has Bi too, the analysis of
maxi∈[n−1] Si is more complicated than the analysis of maxi∈[n−1] Bi because of the intricate
correlation of random variables S0, . . . , Sn−1. For example, one standard approach to show
that maxi∈[n−1] Bi ≥ (1+o(1)) log n

log log n with high probability relies on the fact that the load of a
set of bins Bi with i ∈ I decreases if we increase the load of bins Bj with j ∈ J , I ∩ I = ∅.
However, the same property holds only approximately for S0, . . . , Sn−1 (and in fact, the o(1)
error term in Lemma 10 corresponds to this notion of “approximately”; for balls and bins
the covariance is known to be always non-positive). To see the difficulty (see also the classic
reference for permutations [13, Chapters 7–8]), notice that, for example, if σ(i) = i + ℓ then
we cannot have σ(i + 1) = i + ℓ, meaning that there is a special correlation between Sℓ (which
counts i with σ(i) = i + ℓ) and Sℓ−1 (which counts i with σ(i + 1) = i + ℓ). In particular,
from what we can see, random variables S0, . . . , Sn−1 are not negatively associated [6]. In a
similar way, we do not expect the Poisson approximation framework from [1] (see also [11,
Chapter 5.4]) to work here. Our approach is therefore closer to the standard second moment
method, see, e.g., [2, Chapter 3] and [12].

Elementary proof of Lemma 8. Let us recall Definition 4 for derangements and r-partial
derangements. The probability that a random permutation in Sn is a derangement is
Dn/n! = ⌊ n!

e + 1
2 ⌋/n! ∼ 1

e . Let u(n) = ⌊ n!
e + 1

2 ⌋/ n!
e and note that Dn = u(n) n!/e, that

u(n) = 1 + o(1), and u(n) > 0.9 for all n > 1. Since the permutation σ ∈ Sn is chosen i.u.r.,

Pr[S0 = k] = Dn,k

n! =
(

n
k

)
Dn−k

n! =
(

n
k

) (n−k)!
e u(n − k)

n! = u(n − k)
ek! .

The same bound can be obtained for Sj for every j ≥ 0. For any permutation σ ∈ Sn and
any integer ℓ ∈ [n−1], define permutation σℓ ∈ Sn such that σℓ(i) = σ(i) + ℓ (mod n). For
any permutation σ ∈ Sn and any ℓ, the operator σ 7→ σℓ is a bijection from Sn to Sn, and a
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permutation σ ∈ Sn with ℓ ∈ [n−1] has exactly k fixed points if and only if permutation σℓ

has exactly k points with σℓ(i) = i + ℓ (mod n). Hence for every j, j′ ∈ [n−1] and k ∈ [n],
we have Pr[Sj = k] = Pr[Sj′ = k]. Therefore, for any integers j ∈ [n−1] and k ∈ [n − 2],

Pr[Sj = k] = u(n − k)
ek! >

1
2ek! . (9)

Let k(n) be the largest k such that 2ek! ≤ n. Then Pr[Sj = k(n)] > 1/n. Hence, if we let
Qj be the indicator random variable that Sj = k(n), then Pr[Qj = 1] > 1/n, and hence
E[
∑n−1

j=0 Qj ] =
∑n−1

j=0 E[Qj ] =
∑n−1

j=0 Pr[Qj = 1] > 1. Therefore, in expectation, there is at
least one value j such that Sj = k(n). It is easy to show that k(n) = log n

log log n (1 + o(1)). ◀

5 Proof of Lemma 10: bounding the covariance of Zt
i and Zt

j

The main technical part of the analysis of the lower bound for the needle in a haystack search
problem in Section 4 (cf. Theorem 6) relies on the proof Lemma 9. This proof, in turn, is
quite simple except for one central claim, Lemma 10, bounding the covariance of Zt

i and Zt
j .

The proof of Lemma 10 is rather lengthly, and because of space considerations, some proofs
are deferred to the full version of the paper (cf. https://arxiv.org/abs/2008.11448).

Let Zt
j be the indicator random variable that Sj = t. Since Zt

i and Zt
j are 0-1 random

variables, we have E
[
Zt

i · Zt
j

]
= Pr[Si = t, Sj = t], E

[
Zt

i

]
= Pr[Si = t] and E[Zt

j ] = Pr[Sj =
t]. Since Pr[Si = t] = Pr[Sj = t] = u(n−t)

et! = 1+o(1)
et! by (9), to complete the proof of

Lemma 10, we only have to show that, for i ̸= j,

Pr[Si = t, Sj = t] ≤ (1 + o(1)) · 1
(et!)2 . (10)

We will prove this claim in Lemma 19 in Section 5.2.4 below.

5.1 Notation and key intuitions
For any set I ⊆ [n−1] and any integer ℓ ∈ [n−1], let FI,ℓ = {σ ∈ Sn : σ(i) = i + ℓ

(mod n) iff i ∈ I} and F∗
I,ℓ = {σ ∈ Sn : ∀i∈I σ(i) = i + ℓ (mod n)}. Notice that FI,ℓ ⊆ F∗

I,ℓ.
Further, |FI,ℓ| = Dn−t,0 where t = |I|, and

Pr[Si = t] =
|
⋃

I⊆[n−1],|I|=t FI,i|
n! =

∑
I⊆[n−1],|I|=t |FI,i|

n! =
(

n
t

)
· Dn−t,0

n! .

Next, with this notation and for i ̸= j, we also have

Pr[Si = t, Sj = t] = 1
n!

∣∣∣∣∣∣
⋃

I,J⊆[n−1],|I|=|J|=t

FI,i ∩ FJ,j

∣∣∣∣∣∣ = 1
n!

∑
I,J⊆[n−1],|I|=|J|=t

|FI,i ∩ FJ,j | .

Notice that in the sum above one can restrict attention only to I ∩J = ∅, since FI,i ∩FJ,j = ∅
otherwise. In view of this, our goal is to estimate |FI,i ∩ FJ,j | for disjoint sets I, J ⊆ [n−1].

In what follows, we will consider sets Si and Sj with i = 0 and j = s for some s ∈
[n−1] \ {0}. By symmetry, we can consider the first shift to be 0 without loss of generality; s

is an arbitrary non-zero value. As required in our analysis (cf. Lemma 10), we will consider
t ≤ O(log n).

Our approach now is to focus on a typical pair I and J , and consider some atypical
pairs separately. We will show in Lemma 13 that almost all pairs of disjoint sets I and
J are so-called compatible for shift s. As a result, the contribution of pairs I and J that
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are not compatible for s is negligible, and so we will focus solely on pairs compatible for
s. Then, for the pair of indices I and J we will estimate |FI,i ∩ FJ,j | using the Principle
of Inclusion-Exclusion. For that, we will have to consider the contributions of all possible
sets K ⊆ [n−1] \ (I ∪ J) to the set of permutations in F∗

I,i ∩ F∗
J,j . As before, contributions

of some sets are difficult to be captured and so we will show in Lemma 15 that almost all
sets K ⊆ [n−1] \ (I ∪ J) are so-called feasible for I, J , and s. As a result, the contribution
of sets K that are not feasible for I, J , and s is negligible, and so we will focus on sets
that are feasible for I, J , and s. The final simplification follows from the fact that we do
not have to consider all such sets K, but only small sets K, of size O(log n). Once we
have prepared our framework, we will be able to use the Principle of Inclusion-Exclusion to
estimate |

⋃
I,J⊆[n−1],|I|=|J|=t FI,i ∩ FJ,j | in Lemmas 18 and 19.

5.2 The analysis
For any integer ℓ and any subset L ⊆ [n−1] we write L + ℓ to denote the set of elements in L

shifted by ℓ, in the arithmetic modulo n, that is, L + ℓ = {i + ℓ (mod n) : i ∈ L}. Similarly,
L − ℓ = {i − ℓ (mod n) : i ∈ L}.

Let Φ0,s(I, J) = FI,0∩FJ,s = {σ ∈ Sn : σ(i) = i iff i ∈ I and σ(j) = j+s (mod n) iff j ∈
J}. Let Φ∗

0,s(I, J) = F∗
I,0 ∩ F∗

J,s = {σ ∈ Sn : ∀i∈I σ(i) = i and ∀j∈J σ(j) = j + s (mod n)}.
It is easy to compute the size of Φ∗

0,s(I, J). Notice first that if I ∩ J ≠ ∅ or I ∩ (J + s) ̸= ∅,
then Φ∗

0,s(I, J) = Φ0,s(I, J) = ∅. Otherwise, if I ∩ J = ∅ and I ∩ (J + s) = ∅, then
|Φ∗

0,s(I, J)| = (n − |I ∪ J |)! (see also Lemma 12).
However, our main goal, that of computing the size of Φ0,s(I, J), is significantly more

complicated, because this quantity cannot be reduced to an intersection test and a simple
formula over n, |I|, |J |, and s.

5.2.1 Disjoint sets I ⊆ [n−1] and J ⊆ [n−1] \ I compatible for shift s

Let I and J be two arbitrary subsets of [n−1] of size t each. We say I and J are compatible
for shift s if the four sets I, J , I − s, and J + s are all pairwise disjoint. With this notation,
we have the following lemma.

▶ Lemma 12. If I and J are compatible for shift s then Φ0,s(I, J) ̸= ∅ and |Φ∗
0,s(I, J)| =

(n − |I ∪ J |)!.

Proof. If I and J are compatible for shift s then any permutation σ ∈ Sn with σ(i) = i for
all i ∈ I, σ(j) = j + s (mod n) for all j ∈ J and complemented by an arbitrary permutation
[n−1] \ (I ∪ J) is in Φ∗

0,s(I, J). Hence the claim follows from the fact that since I, J , and
J + s are pairwise disjoint, such permutations always exist. ◀

The following lemma shows that almost all pairs of disjoint sets of size t ≤ O(log n) are
compatible.

▶ Lemma 13. Let s be an arbitrary non-zero integer in [n−1]. If we choose two disjoint
sets I, J ⊆ [n−1] of size t i.u.r., then the probability that I and J are compatible for shift
s is at least

(
1 − 4t

(n−2t)

)2t

. In particular, if t ≤ O(log n), then this probability is at least

1 − O
(

log2 n
n

)
.

Because of Lemma 13, our goal will be to compute the sizes of sets Φ0,s(I, J) only for
compatible sets I and J . Next, for given disjoint sets I and J compatible for shift s, we will
consider all sets K ⊆ [n−1] \ (I ∪ J) and argue about their contributions to |Φ∗

0,s(I, J)| using
the Principle of Inclusion-Exclusion.
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5.2.2 Properties of sets K ⊆ [n−1] feasible for I, J , and s

Define PI,J,0,s(K) = {σ ∈ Φ∗
0,s(I, J) : for every ℓ ∈ K it holds that: σ(ℓ) ∈ {ℓ, ℓ + s

(mod n)}}. While it is difficult to study PI,J,0,s(K) for all sets K ⊆ [n−1] \ (I ∪ J),
we will want to focus our attention only on subsets with some good properties. We call a set
K ⊆ [n−1] feasible for I, J , and s, if I and J are compatible for shift s, K ∩ (K + s) = ∅,
and K ∩ (I ∪ J ∪ (I − s) ∪ (J + s)) = ∅.

To justify the definition of feasible sets, we begin with the following simple lemma.

▶ Lemma 14. If K ⊆ [n−1] is feasible for I, J , and s, then |PI,J,0,s(K)| = 2|K| · (n − |I ∪
J ∪ K|)!.

Next, similarly to Lemma 13, we argue that almost all suitably small sets are feasible for
pairs of disjoint small sets.

▶ Lemma 15. Let s be an arbitrary non-zero integer in [n−1]. Let I and J be a pair of
compatible sets for s with |I| = |J | = t. Let k be a positive integer with 2k ≤ n − 4t. If we
choose set K ⊆ [n−1] \ (I ∪ J) of size k i.u.r., then the probability that K is feasible for I, J ,

and s is at least
(

1 − 2t+k
n−2t−k

)k

. In particular, if t, k ≤ O(log n), then this probability is at

least 1 − O
(

log2 n
n

)
.

5.2.3 Approximating |Φ0,s(I, J)| for compatible sets I, J for s

In this section we will complete our analysis to provide a tight bound for the size of Φ0,s(I, J)
for any pair I and J of compatible sets for shift s with |I| = |J | ≤ O(log n). Our analysis
relies on properties of sets feasible for I, J , and s, as proven in Lemmas 14 and 15.

We begin with the two auxiliary claims. For both, let r be the smallest integer such that
2r ≥ log n and let t = |I| = |J | ≤ O(log n).

▷ Claim 16.

2r∑
k=1

(−1)k+1
∑

K⊆[n−1]\(I∪J),|K|=k
K feasible for I, J, and s

|PI,J,0,s(K)| ≥
(

1 − O

(
log2 n

n

))
· (n − 2t)! · (1 − e−2) . (11)

▷ Claim 17.

2r∑
k=1

(−1)k+1
∑

K⊆[n−1]\(I∪J),|K|=k
K not feasible for I, J, and s

|PI,J,0,s(K)| ≥ −O

(
log2 n

n

)
· (n − 2t)! .

In order to approximate the size of Φ0,s(I, J) for compatible sets I and J for shift s, let
us first notice that

Φ0,s(I, J) = Φ∗
0,s(I, J) \

⋃
ℓ∈[n−1]\(I∪J)

PI,J,0,s({ℓ}) . (12)

Therefore, since we know that |Φ∗
0,s(I, J)| = (n − (|I| + |J |))! by Lemma 12, we only have to

approximate |
⋃

ℓ∈[n−1]\(I∪J) PI,J,0,s({ℓ})|; we need a good lower bound.
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We compute |
⋃

ℓ∈[n−1]\(I∪J) PI,J,0,s({ℓ})| using the Principle of Inclusion-Exclusion,

|
⋃

ℓ∈[n−1]\(I∪J)

PI,J,0,s({ℓ})| =
∑

K⊆[n−1]\(I∪J),K ̸=∅

(−1)|K|+1|
⋂

ℓ∈K

PI,J,0,s({ℓ})|

=
∑

K⊆[n−1]\(I∪J),K ̸=∅

(−1)|K|+1|PI,J,0,s(K)|

=
n−(|I|+|J|)∑

k=1
(−1)k+1

∑
K⊆[n−1]\(I∪J),|K|=k

|PI,J,0,s(K)| .

We will make further simplifications; since computing |PI,J,0,s(K)| for arbitrary non-
empty sets K ⊆ [n−1] \ (I ∪ J) is difficult, we restrict our attention only to small sets K

which are feasible for I, J , and s. For that, we will need to show that by restricting only to
small sets K feasible for I, J , and s, we will not make too big errors in the calculations.

Let r be the smallest integer such that 2r ≥ log n. We can use the Bonferroni inequality
[3] to obtain the following,

|
⋃

ℓ∈[n−1]\(I∪J)

PI,J,0,s({ℓ})| ≥
2r∑

k=1
(−1)k+1

∑
K⊆[n−1]\(I∪J),|K|=k

|PI,J,0,s(K)|

=
2r∑

k=1
(−1)k+1

( ∑
K⊆[n−1]\(I∪J),|K|=k

K feasible for I, J, and s

|PI,J,0,s(K)| +
∑

K⊆[n−1]\(I∪J),|K|=k
K not feasible for I, J, and s

|PI,J,0,s(K)|
)

≥ −O

(
log2 n

n

)
(n − 2t)! +

(
1 − O

(
log2 n

n

))
(n − 2t)! · (1 − e−2)

=
(

1 − O

(
log2 n

n

))
(n − 2t)! · (1 − e−2) , (13)

where the last inequality follows from the auxiliary Claims 16 and 17.
If we combine (12) and (13), then we get the following lemma.

▶ Lemma 18. If I and J are compatible for shift s and |I| = |J | = t = O(log n), then

|Φ0,s(I, J)| = |Φ∗
0,s(I, J)| − |

⋃
ℓ∈[n−1]\(I∪J)

PI,J,0,s({ℓ})| ≤ (n − 2t)!
e2

(
1 + O

(
log2 n

n

))
.

Proof. Indeed, by (12), we have

|Φ0,s(I, J)| = |Φ∗
0,s(I, J)| − |

⋃
ℓ∈[n−1]\(I∪J)

PI,J,0,s({ℓ})| ,

by Lemma 12 we get

|Φ∗
0,s(I, J)| = (n − (|I| + |J |))! ,

and by (13) we have

|
⋃

ℓ∈[n−1]\(I∪J)

PI,J,0,s({ℓ}) | ≥
(

1 − O

(
log2 n

n

))
· (n − 2t)! · (1 − e−2) .

Putting these three bounds together yields the promised bound. ◀
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5.2.4 Completing the proof of inequality (10)
Now, with Lemma 18 at hand, we are ready to complete our analysis in the following lemma.

▶ Lemma 19. For any i, j ∈ [n−1], i ̸= j, and for t ≤ O(log n), we have,

Pr[Si = t, Sj = t] ≤
(

1 + O

(
log2 n

n

))
1

(et!)2 .

Proof. Without loss of generality we assume that i = 0 and j ∈ [n−1] \ {0}.
First, let us recall the following∑
I,J⊆[n−1],|I|=|J|=t,I∩J=∅

|FI,0 ∩ FJ,j | =
∑

I,J⊆[n−1],|I|=|J|=t,I∩J=∅

|Φ0,j(I, J)|

=
∑

I,J⊆[n−1],|I|=|J|=t,I∩J=∅
I and J not compatible for j

|Φ0,j(I, J)| +
∑

I,J⊆[n−1],|I|=|J|=t
I and J compatible for j

|Φ0,j(I, J)| .

Next, let us notice that if I and J are not compatible for shift j and I ∩ J = ∅, then we
clearly have |Φ0,s(I, J)| ≤ (n − 2t)! (since once we have fixed 2t positions, we can generate
at most (n − 2t)! distinct n-permutations). Further, by Lemma 18, we know that if I and
J are compatible for shift j, then |Φ0,s(I, J)| ≤ (n−2t)!

e2 ·
(

1 + O
(

log2 n
n

))
. Next, we notice

that by Lemma 13, we have,

|{I, J ⊆ [n−1] : |I| = |J | = t, I ∩ J = ∅ and I, J not compatible for j}|

= O

(
log2 n

n

)∣∣{I, J ⊆ [n−1] : |I| = |J | = t, I ∩ J = ∅}
∣∣ = O

(
log2 n

n

)(
n

t

)(
n − t

t

)
.

This immediately gives,∑
I,J⊆[n−1],|I|=|J|=t,I∩J=∅
I and J not compatible for j

|Φ0,j(I, J)| ≤ O

(
log2 n

n

)(
n

t

)(
n − t

t

)
(n − 2t)! = O

(
log2 n

n

)
n!

(t!)2

and ∑
I,J⊆[n−1],|I|=|J|=t

I and J compatible for j

Φ0,j(I, J)| ≤
(

n

t

)(
n − t

t

)
(n − 2t)!

e2

(
1 + O

(
log2 n

n

))

=
(

1 + O

(
log2 n

n

))
n!

(et!)2 .

Therefore,∑
I,J⊆[n−1],I∩J=∅

|I|=|J|=t

|FI,0 ∩ FJ,j | =
∑

I,J⊆[n−1],|I|=|J|=t,I∩J=∅
I and J not compatible for j

|Φ0,j(I, J)| +
∑

I,J⊆[n−1],|I|=|J|=t
I and J compatible for j

|Φ0,j(I, J)|

≤
(

1 + O

(
log2 n

n

))
n!

(et!)2 .

Hence, we can conclude that for i ̸= j we have,

Pr[Si = t, Sj = t] = 1
n!

∑
I,J⊆[n−1],I∩J=∅

|I|=|J|=t

|FI,i ∩ FJ,j | ≤
(

1 + O

(
log2 n

n

))
· 1

(et!)2 . ◀
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6 Analysis of the communication in the locker room setting

A lower bound for the success probability in the locker room problem is provided by a
straightforward adaptation of the shift strategy: Alice enters her message relaying the most
common shift h to locker 0, and Bob opens locker 0 and uses Alice’s message to check location
(s + h) mod n for his card. This strategy ensures a success probability of (1+o(1)) log n)

n log log n .
As in Sections 2 and 3, we will consider the case when s is chosen i.u.r. from [n−1](cf.

Section 2.2). In order to obtain an upper bound for the success chance in the locker room
problem, we shall introduce some intermediate settings, or “protocols”. In the CLR protocol
Alice views the contents of all the lockers, interchanges the contents of two lockers, then
Bob is given a number and can open two lockers in search of it (i.e., the CLR protocol is
the set of rules which govern the locker room problem). In the NH protocol Alice views
the contents of all the lockers, communicates a message of length log n to Bob, then Bob is
given a number and can open one locker in search of it (i.e., the NH protocol is the set of
rules which govern the needle in a haystack game). Moreover, we can append the modifier
“-with-r-bits” to NH, which substitutes r for log n in the above description.

We write Pr[V(P)] for the optimal probability of success in protocol P and Pr[V(C, P)]
for the probability of success for strategy C in protocol P. For example, we have already
shown that Pr[V(NH)] = (1+o(1)) log n

n log log n .

▶ Lemma 20. Pr[V(CLR)] ≤ Pr[V(NH-with-4 log n-bits)].

Proof. We will interpolate between CLR and NH-with-4 log n-bits with two other protocols.
In the protocol CLR0, Alice views the contents of all the lockers, interchanges the contents

of two lockers, then Bob is given a number and can open two lockers in search of it, and he
can recognize upon seeing the content of the first locker whether it has been altered by Alice.

In the protocol CLR1, Alice views the contents of all the lockers, interchanges the contents
of two lockers, leaves these two lockers open with their contents visible to Bob, then Bob is
given a number and can open one locker in search of it.

Also, let Sim be the strategy in NH-with-4 log n-bits in which Alice uses her message
to communicate to Bob the cards whose positions she would exchange, and the positions
of these cards, if she encountered the permutation σ while working in the CLR1 protocol,
simulating an optimal strategy C in CLR1. Since this is an ordered quadruple in [n−1]4, it
can indeed be communicated in at most 4 log n bits.

The proof is in four parts:
(i) Pr[V(CLR)] ≤ Pr[V(CLR0)],
(ii) Pr[V(CLR0)] ≤ Pr[V(CLR1)] + O( 1

n ),
(iii) Pr[V(CLR1)] ≤ Pr[V(Sim, NH-with-4logn-bits)],
(iv) Pr[V(Sim, NH-with-4logn-bits)] ≤ Pr[V(NH-with-4logn-bits)].

(i), (iii), (iv) are straightforward and so we only have to show (ii). Let pt be the maximum
probability that Bob finds his sought number in the tth locker that he opens, t ∈ {1, 2}.

Firstly, we bound p1. Suppose that Alice and Bob have settled on a specific strategy. Let
ex,w be the probability that σ is such that Alice’s transposition sends the locker w to card x.
Evidently, 0 ≤ ex,w ≤ n−1

n for all x, w ∈ [n−1] and
∑

x,w∈[n−1] ex,w ≤ 2.
Having received his number s, Bob has to open a specific locker, let us say b = b(s). The

probability that Bob happens upon the card s in the locker b is at most es,b(s) + 1
n (either

Alice substitutes the content of b(s) for s, or the content of b(s) is initially s and Alice does
not interfere). Thus, choosing s i.u.r. from [n−1], the probability that Bob finds s at his
first try is at most 1

n (
∑

s,b∈[n−1] es,b(s) + 1
n ) < 3

n = O( 1
n ).
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Then, we bound p2. If Bob opens first one of the lockers whose contents have been altered
by Alice, then there is one remaining locker for him to open, and he has at most as much
information as in the CLR0 protocol. Hence, in this case, p2 ≤ Pr[V(CLR0)].

Alternatively, Bob first opens one of the lockers whose contents have not been altered by
Alice. This requires a more detailed analysis of the CLR0 protocol.

Alice’s choice of a transposition is informed solely by the initial permutation σ of the
cards inside the lockers. Hence, there should be a function a : Sn →

([n−1]
2
)

which directs
Alice to a pair of lockers. Then, Bob’s choice of a first locker to open is informed only by his
sought number. Thus, there should be a function b : [n−1] → [n−1] which directs Bob to his
first locker. Finally, Bob chooses his second locker by considering his sought number and the
content of the first locker, so there should be a function b′ : {0, 1} × [n−1]2 → [n−1] which
directs Bob to his second locker (the binary factor distinguishes whether Bob’s first locker
has had its content altered by Alice or not). The strategy which Alice and Bob employ in
the CLR0 protocol can therefore be identified with a triple [a, b, b′].

Let Eu,v = a−1({u, v}) be the event that Alice transposes the contents of the uth and
vth lockers, and let Fw = b−1(w) be the event that Bob opens the wth locker first. Let
s(y, w) ⊆ Sn be the permutations which map w to y, and let Gy be the event that the
initial content of Bob’s first locker is y. Notice that Pr[Eu,v|Fw ∩ Gy] = |a−1({u,v})∩s(y,w)|

(n−1)! ,

Pr[Fw] = |b−1(w)|
n , and Pr[Gy] = 1

n . Then, the probability that Bob finds his sought number
in his second attempt given that his first locker was not altered by Alice is

p2 ≤
∑

u,v,w,y∈[n−1]
u,v,w distinct

Pr[Eu,v|Fw ∩ Gy] · Pr[Fw] · Pr[Gy] · Pr[V(CLR0)|Eu,v ∩ Fw ∩ Gy] .

Observe that

Pr[V(CLR0)|Eu,v ∩ Fw ∩ Gy] ≤ (n − 2)!∣∣∣(Sn \
⋃

ℓ∈[n−1] a−1({w, ℓ})
)

∩ s(y, w)
∣∣∣ + 2

n
.

This holds because, barring the 2
n probability for Bob’s sought card to be in a locker whose

content was changed by Alice, Bob is only going to find his sought card in his second locker
if the permutation σ maps both w to y and Bob’s second locker to his sought card. There
are exactly (n − 2)! such permutations, which yields the numerator. For the denominator,
when Bob opens the locker w and views the card inside, he sees that its content is y and
that it has not been touched by Alice, so he knows that σ is a permutation which maps w

to y and which does not prompt Alice to transpose y with some other card, and there are
exactly

∣∣∣(Sn \
⋃

ℓ∈[n−1] a−1({w, ℓ})
)

∩ s(y, w)
∣∣∣ such permutations.

Also, note that⋃
u,v∈[n−1]

u,v,w distinct

(a−1({u, v}) ∩ s(y, w)) = (Sn \
⋃

ℓ∈[n−1]

a−1({w, ℓ})) ∩ s(y, w) ⇒

∑
u,v∈[n−1]

u,v,w distinct

|a−1({u, v}) ∩ s(y, w)| = |(Sn \
⋃

ℓ∈[n−1]

a−1({w, ℓ})) ∩ s(y, w)| .

Combining the above, we obtain that

p2 ≤
∑

u,v,w,y∈[n−1]
u,v,w distinct

1
n

· |a−1({u, v}) ∩ s(y, w)|
(n − 1)! · |b−1(w)|

n
·
(

Pr[V(CLR0)|Eu,v ∩ Fw ∩ Gy] + 2
n

)
≤

∑
w,y∈[n−1]

1
n

· 1
n − 1 · |b−1(w)|

n
+ 2

n
= 1

n − 1 + 2
n

.
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Thus, in this case, p2 ≤ 4
n .

Ultimately, p2 ≤ Pr[V(CLR1)] + 4
n , and hence Pr[V(CLR0)] ≤ p1 + p2 ≤ Pr[V(CLR1)] +

O( 1
n ), concluding the proof. ◀

▶ Theorem 21. Pr[V(CLR)] ≤ (4+o(1)) log n
n log log n .

Proof. We use Lemma 20 along with the fact that Pr[V(NH-with-4logn-bits)] ≤ (4+o(1)) log n
n log log n ,

which can be immediately derived from Theorem 22 in Section 7.1 by setting m = n4. ◀

7 Conclusions and generalizations

In this paper we presented a new search problem and provided a comprehensive analysis
of its optimal strategy. The core of our analysis is a novel study of properties of random
permutations with a given number of fixed points.

There are several natural generalizations of the problem studied in this paper and related
questions about properties of random permutations, which we will discuss in the full version
of the paper (cf. https://arxiv.org/abs/2008.11448). Here we discuss a couple of them.

7.1 Simple generalization: longer message
In the needle in a haystack problem, when Alice sends the message h to Bob, there is no reason
why she must choose a number in [n−1]; instead, she could transmit a number h ∈ [m − 1]
for an arbitrary integer m. One can easily generalize the analysis from Theorems 5 and 6 in
this setting for a large range of m.

Let us denote the maximum attainable sum of intensities received from partitioning Sn

to m parts the m-field of Sn, and denote it by F (n, m). Fields are simply diagonal m-fields
(fields of the form F (n, n)).

We have F (n, 1) = n! (yielding a success probability of 1
n , corresponding to not receiving

advice) and F (n, m) = n · n! for every m ≥ n! (yielding a success probability of 1, corre-
sponding to obtaining full information). For other values of m we can follow the approach
used in Theorem 5. First, notice that there is ℓ = (1+o(1)) log m

log log m , such that m
ℓ! = o(1). Then,

using the techniques from the proof of Theorem 5, we obtain

F (n, m) ≤
∑

i∈[n−1],j∈[m−1]

int(Aj , i) ≤
∑

j∈[m−1]

(
ℓ · |Aj | +

n∑
r=ℓ+1

r · Dn,r

)

≤
∑

j∈[m−1]

(
ℓ · |Aj | + (1 + o(1))n!

ℓ!

)
≤ n! ·

(
ℓ + (1 + o(1))m

ℓ!

)

≤ ℓ · n! · (1 + o(1)) = (1 + o(1)) log m

log log m
· n! .r

By (2), this yields the success probability of (1+o(1)) log m
n log log m , giving the following theorem.

▶ Theorem 22. If Alice can choose a number h ∈ [m], then the maximum attainable
success probability is at most (1+o(1)) log m

n log log m . In particular, if m = poly(n), then the maximum

attainable success probability is at most O
(

log n
n log log n

)
.

Observe that Theorem 22 implies that since for the algorithm presented in Theorem 6,
that is, one using the shift strategy with hint h ∈ [n], the success probability is already
Ω
(

log n
n log log n

)
, the shift strategy is asymptotically optimal to within a constant factor for

https://arxiv.org/abs/2008.11448
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any hint h polynomial in n. A similar conclusion holds also for the communication in the
locker room setting: even if Alice leaves Bob a message by altering the contents of a constant
number c of lockers rather than just one, this message is c log n bits long, and hence the
success probability is still at most O( log n

n log log n ).
Asymptotic results for several other interesting domains of m could be found in a similar

way. However, for super-polynomial domains, the upper bound derived in the above manner
is far away from the lower bound that we currently can provide in Theorem 6. Determining
some properties of the rate of growth of F (n, m) for fixed n would be a good step towards
determining its values. With this in mind, we have the following natural conjecture.

▶ Conjecture 23. For any fixed n, the function f(m) = F (n, m) is concave.

7.2 Optimal strategies
Although we have successfully calculated the maximum field and the maximum success
probability for the needle in a haystack problem, the problem of determining a characterization
of, or at least some major properties for, optimal strategies remains. Indeed, the only optimal
strategy that we have explicitly described so far is the shift strategy (which is in fact a set of
different strategies, since, for permutations which have several Sh’s of maximum size, there
are multiple legitimate options for their class). A natural generalization of shift strategies
are latin strategies; in these, Alice and Bob decide on a n × n latin square S, and Alice’s
message indicates the row of S which coincides with σ at the maximum number of places.

We present a couple of interesting questions concerning the optimal strategies for Sn in
needle in a haystack.

▶ Conjecture 24. For every natural number n, there is an optimal strategy for Sn whose
parts all contain exactly (n − 1)! permutations.

▶ Conjecture 25. Optimal strategies are exactly latin strategies.
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Abstract
In the adaptive influence maximization problem, we are given a social network and a budget k, and
we iteratively select k nodes, called seeds, in order to maximize the expected number of nodes that
are reached by an influence cascade that they generate according to a stochastic model for influence
diffusion. The decision on the next seed to select is based on the observed cascade of previously
selected seeds. We focus on the myopic feedback model, in which we can only observe which neighbors
of previously selected seeds have been influenced and on the independent cascade model, where each
edge is associated with an independent probability of diffusing influence. While adaptive policies
are strictly stronger than non-adaptive ones, in which all the seeds are selected beforehand, the
latter are much easier to design and implement and they provide good approximation factors if the
adaptivity gap, the ratio between the adaptive and the non-adaptive optima, is small. Previous
works showed that the adaptivity gap is at most 4, and that simple adaptive or non-adaptive greedy
algorithms guarantee an approximation of 1

4

(
1 − 1

e

)
≈ 0.158 for the adaptive optimum. This is

the best approximation factor known so far for the adaptive influence maximization problem with
myopic feedback.

In this paper, we directly analyze the approximation factor of the non-adaptive greedy algorithm,
without passing through the adaptivity gap, and show an improved bound of 1

2

(
1 − 1

e

)
≈ 0.316.

Therefore, the adaptivity gap is at most 2e
e−1 ≈ 3.164. To prove these bounds, we introduce a

new approach to relate the greedy non-adaptive algorithm to the adaptive optimum. The new
approach does not rely on multi-linear extensions or random walks on optimal decision trees, which
are commonly used techniques in the field. We believe that it is of independent interest and may be
used to analyze other adaptive optimization problems. Finally, we also analyze the adaptive greedy
algorithm, and show that guarantees an improved approximation factor of 1 − 1√

e
≈ 0.393.
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1 Introduction

In the Influence Maximization (IM) problem, we are given a social network, a stochastic
model for diffusion of influence over the network, and a budget k, and we ask to find a set of k
nodes, called seeds, that maximize their spread of influence, which is the expected number of
nodes reached by a cascade of influence diffusion generated by the seeds according to the given
diffusion model. One of the most studied models for influence diffusion is the Independent
Cascade (IC), where each edge is associated with an independent probability of transmitting
influence from the source node to the tail node. In the IC model the spread of influence
is a monotone submodular function of the seed set, therefore a greedy algorithm, which
iteratively selects a seed with maximum marginal gain, guarantees a 1− 1

e approximation
factor for the IM problem [34]. Since its definition by Domingos and Richardson [19, 40] and
formalization as an optimization problem by Kempe et al. [33, 34], the IM problem and its
variants have been extensively investigated, motivated by applications in viral marketing [13],
adoption of technological innovations [24], and outbreak or failure detection [35]. See [10, 36]
for surveys on the IM problem.

Recently, Golovin and Krause [25] initiated the study of the IM problem under the
framework of adaptive optimization, where, instead of selecting all the seeds at once at the
beginning of the process, we can select one seed at a time and observe, to some extent, the
portion of the network reached by a new selected seed. The advantage is that the decision
on the next seed to choose can be based on the observed spread of previously selected seeds,
usually called feedback. Two main feedback models have been introduced: in the full-adoption
feedback the whole spread from each seed can be observed, while, in the myopic feedback,
one can only observe the direct neighbors of each seed.

Golovin and Krause [25] considered the Independent Cascade model and showed that,
under full-adoption feedback, the objective function satisfies the property of adaptive submod-
ularity (introduced in the same paper) and therefore an adaptive greedy algorithm achieves
a 1 − 1

e approximation factor for the adaptive IM problem. In their arXiv version, they
retracted a claim (appeared in their previous conference version) in which they mistakenly
showed that the adaptive submodularity holds even under the myopic feedback model, and
this property would have guaranteed that the adaptive greedy is a constant factor approxim-
ation algorithm (under the myopic feedback model). Anyway, they conjectured that there
exists a constant factor approximation algorithm for the myopic feedback model, which
indeed has been found by Peng and Chen [39] who showed that both the adaptive and
non-adaptive greedy algorithms guarantee a 1

4
(
1− 1

e

)
-approximation. In particular, they

showed that the adaptivity gap, which is the supremum, over all possible inputs, of the
ratio between the spread of an optimal adaptive policy and that of an optimal non-adaptive
one, is upper-bounded by 4. By combining this bound with the approximation factor of
both the adaptive and non-adaptive greedy algorithms for the non-adaptive problem they
obtain a 1

4
(
1− 1

e

)
-approximation factor. To prove their upper-bound on the adaptivity gap,

Peng and Chen use an approach that is inspired by Bradac et al. [6], which in turn is based
on the approach introduced by Gupta et al. [29, 30] in the context of stochastic probing.
To relate a non-adaptive solution to an optimal adaptive one, they consider the decision
tree of an optimal adaptive solution and construct a non-adaptive policy by performing a
random root-leaf walk in the tree, according to a probability distribution induced by the
tree. Note that computing the non-adaptive policy that guarantees the upper-bound on
the adaptivity gap would require to know an optimal decision tree. However, this approach
only requires to show the existence of such a non-adaptive policy since it allows us to bound
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the adaptivity gap and non-adaptive approximation factor is obtained by combining the
non-adaptive approximation factor with the adaptivity gap. In the same paper, Peng and
Chen showed that both the adaptive greedy and the non-adaptive greedy algorithms cannot
achieve a factor better than e2+1

(e+1)2 < 0.607 < 1− 1
e of the adaptive optimum, and that the

adaptivity gap is at least e
e−1 ≈ 1.582.

In [11], the same authors showed some upper and lower bounds on the adaptivity gap in
the case of full-adoption feedback, still under independent cascade, for some particular graph
classes. In order to show these bounds, they followed an approach introduced by Asadpour
and Nazerzadeh [3] which consists in transforming an adaptive policy into a non-adaptive
one by means of multilinear extensions, and constructing a Poisson process to relate the
influence spread of the non-adaptive policy to that of the adaptive one. For general graphs, a
non-constant upper bound for the adaptivity gap under the full-adoption feedback has been
recently shown in [16].

Our Contribution
In this paper, we focus on the myopic model and analyze the approximation factor of the
non-adaptive greedy algorithm without passing through the adaptivity gap. We show that
the algorithm achieves at least a fraction of 1

2
(
1− 1

e

)
≈ 0.316 of the adaptive optimum

(Theorem 5). By definition, this implies that the adaptivity gap is at most 2e
e−1 ≈ 3.164

(Remark 12). For both approximation ratio and adaptivity gap we obtain a substantial
improvement with respect to the upper bounds obtained in [39], which are 1

4
(
1− 1

e

)
≈ 0.158

and 4, respectively.
Non-adaptive policies are strictly weaker than adaptive ones, since the latter can im-

plement the former by simply ignoring any kind of feedback. On the other hand, adaptive
policies are difficult to implement as they require to probe suitable seeds and to observe
the corresponding feedback, which can be expensive and error-prone. Moreover, they may
consist of exponentially-large decision trees that are hard to compute and store. In contrast,
non-adaptive policies are easy to design and implement and are independent from the feed-
back. In particular, the non-adaptive greedy algorithm has been extensively studied and
successfully applied in the field of influence maximization. For the non-adaptive setting,
several efficient implementation of the greedy algorithm have been devised that allows us to
use it in large real-world networks [14, 27, 35, 37, 47, 48]. Our results show that the simple
non-adaptive greedy algorithm performs well, even in the adaptive setting where we compare
it with the adaptive optimum.

To show our bounds, we introduce a new approach that relate the non-adaptive greedy
policy to an optimal adaptive solution. The new approach is not based on multilinear
extensions and poisson processes (like, e.g. [3, 7, 9, 11]) neither on random walks on the
optimal decision trees (like, e.g. [6, 29, 30, 39]), which are the main tools used so far to
relate adaptive and non-adaptive policies, and to bound adaptivity gaps. Previous techniques
derive adaptive approximation factors by combining non-adaptive approximation ratios with
a bound on the adaptivity gap which is obtained by showing the existence of a “good”
non-adaptive policy. However such a policy is hard to compute as it is usually constructed
by using an optimal adaptive policy. Our approach, instead, directly analyzes a non-adaptive
policy and therefore provides the exact policy that gives the desired adaptivity gap and
adaptive approximation factor. We believe that our approach is of independent interest
and may be used to bound approximation factors and adaptivity gaps of different adaptive
optimization problems.

ICALP 2021
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Our new approach consists in defining a simple randomized non-adaptive policy whose
performance is not higher than that guaranteed by the greedy algorithm, and to relate
such randomized non-adaptive policy with the optimal adaptive policy. In order to recover
good properties of the objective function (like, e.g. submodularity) that usually guarantee
good approximations when adopting greedy strategies, we introduce an artificial diffusion
process in which each seed has two chances to influence its neighbours. A similar process
was introduced by Peng and Chen [39], who consider a diffusion model in which the seeds
appear in multiple copies of the influence graphs, so that, roughly speaking, each node has
several chances to influence the neighbours, and the main machinery they consider to relate
optimal adaptive strategies with optimal non-adaptive ones is that in [6]. Our direct and
more refined analysis of the non-adaptive greedy algorithm improves at the same time both
the approximation ratio and the adaptivity gap.

To illustrate our approach, in Section 2 we first apply our machinery to the simpler setting
of adaptive monotone submodular maximization under cardinality constraint. As observed
by Asadpour and Nazerzadeh [3], a constant factor approximation of the non-adaptive greedy
policy applied to such setting can be obtained by combining the approximation ratio over
the non-adaptive optimum and the adaptivity gap (which is equal to

(
1− 1

e

)
[3]); this

leads to an approximation guarantee of
(
1− 1

e

)2 ≈ 0.399. We give a more refined analysis
of the non-adaptive greedy policy and we show that its approximation ratio is at least
1
2

(
1− 1

e2

)
≈ 0.432. Asadpour and Nazerzadeh [3] also showed that a so-called continuous

greedy policy [7, 9] achieves an approximation ratio of 1− 1
e − ϵ (in polynomial time w.r.t. 1

ϵ ).
Since the continuous greedy policy is a non-adaptive policy, this bound is strictly better
than ours. However, the non-adaptive greedy policy is simpler and deterministic, while the
continuous greedy policy is randomized and more complex.

Finally, in Section 5, we analyze the adaptive version of the greedy algorithm applied to the
adaptive influence maximization problem; by resorting again to an artificial diffusion process,
we show that such adaptive algorithm guarantees an approximation ratio of 1− 1√

e
≈ 0.393;

thus, we further improve the upper bound shown for the non-adaptive greedy algorithm, and
we also give a more refined analysis of the adaptive greedy algorithm than that of Peng and
Chen [39], who showed a 1

4
(
1− 1

e

)
≈ 0.158 approximation factor.

Due to the lack of space, some proofs are deferred to the full version of the paper [15].

Related Work
Adaptive Influence Maximization. The adaptive influence maximization problem under
the independent cascade model has been studied by [11, 12, 31, 39, 45, 46, 49, 51, 52, 53].
These include studies on several classes of graphs and different feedback models.

The most studied feedback model is the full-adoption feedback, in which the entire
influence spread generated by each selected node is observed. Golovin and Krause [25] show
that the full-adoption feedback model satisfies the adaptive submodularity property and,
by exploiting such property, provide a (1− 1/e) approximation adaptive algorithm for the
problem of finding the best adaptive policy. Chen and Peng [11] study the adaptivity gap
in the full-adoption feedback model under certain restrictions on the graph topology. In
particular, they show that the adaptivity gap of in-arborescence (resp. out-arborescence)
graphs belongs to [e/(e − 1), 2e/(e − 1)] (resp. [e/(e − 1), 2]). For general graphs with n

nodes (resp. in-arborescence graphs), an upper bound of O(n1/3) (resp. 2e2/(e2 − 1)) for
the adaptivity gap under the full-adoption feedback has been recently shown in [16].

Golovin and Krause [25] conjectured that the influence maximization problem under the
myopic feedback model admits a constant approximation algorithm and a constant adaptivity
gap, despite the adaptive submodularity does not hold under such feedback model. Since



G. D’Angelo, D. Poddar, and C. Vinci 59:5

then, several studies have been conducted on the myopic feedback model. Some recent works
include that of Salha et al. [42], in which they consider a modified version of the independent
cascade model which gives multiple chances to the seeds to activate their neighbours, and
consider a different utility function which needs to maximized. They demonstrate that
the myopic feedback model is adaptive submodular under such modified diffusion model,
and provide an adaptive greedy policy that achieves a 1 − 1/e approximation ratio for
the problem of finding the best adaptive policy. The work of Peng and Chen [39] is the
first one that provides a constant upper bound on the adaptivity gap under the myopic
feedback model. They introduce a policy in which each seed appears in multiple copies of the
original graph; furthermore, this hybrid policy connects the adaptive and the non-adaptive
policies via a machinery used by [29, 30, 6] in the context of stochastic probing. They show
that the adaptivity gap is in [e/(e− 1), 4], and the upper bound is turned into (1− 1/e)/4
approximation algorithm.

Other diffusion and feedback models have been also studied, e.g., the multi-round diffusion
model [45], the general feedback model [49], and the partial feedback model [53]. Han et
al. [31] conduct a study on the batch selection of seeds at each step of the diffusion process.
Tong et al. [50] introduce the dynamic independent cascade model, which captures the
dynamic nature of real-world social networks. Finally, Singer et al. [5, 41, 43, 44], in their
line of research on adaptivity gaps, studied a two-stage process called adaptive seeding,
that exhibits some similarities with the influence maximization problem under the myopic
feedback model.

Other Topics in Adaptive Optimization. Beyond influence maximization problems, the
adaptive optimization and the adaptivity gap have been generally studied for many other
stochastic settings [1, 2, 3, 4, 6, 8, 17, 18, 20, 21, 22, 23, 25, 26, 28, 29, 30, 32, 38].

A general adaptive optimization framework deals with the fact that an item will reveal
its actual state only when it has been irrevocably included in the final solution, and the
main goal is to optimize an objective function under such uncertainty. Stochastic variants of
packing integer programs, 0/1 knapsack problems, and covering problems, have been studied
under the perspective of adaptive optimization in [17, 18, 23], respectively.

Asadpour et al. [3, 4] study the adaptivity gap of the stochastic submodular maximization
problem under a matroid constraint, in which the goal is to select a subset of items satisfying
a matroid constraint, that maximizes the value of a monotone submodular value function
defined on the random states of the selected items. In [3], the authors consider an adaptive
greedy policy (often denoted as myopic policy) to approximate the optimal value of the best
adaptive policy, and they show that it achieves a 1/2 approximation ratio under general
matroid constraint, and a 1− 1

e approximation ratio under cardinality constraint. Interesting
variants or extensions of the above optimization problem have been considered in [6, 29, 30].

Chan and Farias [8] study the efficiency of adaptive greedy policies applied to a general
class of stochastic optimization problems, called stochastic depletion problems, in which the
adaptive policy, at each step, chooses an action that generates a reward and depletes some of
the items; they show that, under certain structural properties, a simple adaptive greedy policy
guarantees a constant factor approximation of the best adaptive policy. Hellerstein et al. [32]
use an optimal decision tree to build a connection between the adaptive and the non-adaptive
policies, and show that the adaptivity gap of stochastic submodular maximization under
cardinality constraint is 1 − 1

eτ , where τ is the minimum value of the probability that an
item is in some state.
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Organization of the Paper
In the next section we introduce our new approach by applying it to a simpler setting. In
Section 3 we introduce the adaptive influence maximization problem along with the necessary
notation and definitions. In Section 4 we give the main results of the paper, that is the
improved approximation factor for the non-adaptive greedy algorithm and the upper bound
on the adaptivity gap for adaptive influence maximization. In Section 5 we show an improved
approximation ratio for the adaptive greedy algorithm. In Section 6 we outline possible
research directions.

2 Overview of the Approach: Stochastic Submodular Maximization

In this section, we illustrate our machinery by applying part of it to the problem of maximizing
a stochastic submodular set function under cardinality constraints [3].

For two integers h and k, h ≤ k, let [k]h := {h, h+ 1, . . . , k} and [k] := [k]1. A function
f : Rn≥0 → R≥0 is a monotone submodular value function if, for any vectors x, y ∈ R≥0, we
get f(x∨ y) + f(x∧ y) ≤ f(x) + f(y), where x∧ y denotes the componentwise minimum and
x ∨ y denotes the componentwise maximum.

Let [n] be a finite set of n items, and let θ = (θ1, . . . , θn) be a vector of n real, non-
negative, and independent state random variables, where each θi returns the state θi ∈ R≥0
associated to each item i following a certain probability distribution. Let f : Rn≥0 → R≥0
be the objective function, that is a monotone submodular value function. For any S ⊆ [n],
let θ(S) := (θ1(S), . . . , θn(S)) be the partial state random variable, that is a random vector
defined as θi(S) = θi if i ∈ S, θi(S) = 0 otherwise. With a little abuse of notation, we
assume that vector θ(S) gives also information on the set S which θ(S) is based on.

For a given integer k ≥ 0, we aim at selecting a subset S ⊆ [n] subject to cardinality
constraint |S| = k, that maximizes the expected value Eθ[f(θ(S))]. To guarantee a (possibly)
better solution we can resort to an adaptive policy, that, at each step, observes the partial
state ξ ∼ θ(U), where U denotes the set of items previously selected, and selects another
further item π(ξ) ∈ [n] \ U ; after k iterations, the policy returns a set Uθ,k(π) ⊆ [n] with
|Uθ,k(π)| = k, which is a random set depending on the state of θ. The stochastic monotone
submodular maximization problem (SMSM) takes as input a set of items [n], a random
vector θ, a monotone submodular value function f , and an integer k ∈ [n], and asks to find
an adaptive policy π that maximizes the expected value Eθ[f(θ(Uθ,k(π)))].

In general, computing an optimal adaptive strategy is a computationally hard problem.
Furthermore, in many contexts it is difficult to implement adaptive strategies, and non-
adaptive strategies (in which the solution is chosen without observing the states of the
random variables) is a more feasible choice. Asadpour and Nazerzadeh [3] show that a non-
adaptive randomized continuous greedy algorithm guarantees a

(
1− 1

e − ϵ
)

approximation
for the SMSM problem (in polynomial time w.r.t. 1/ϵ); however, the proposed approach
resorts to a quite sophisticated randomized algorithm. They also consider a simpler and
deterministic non-adaptive greedy algorithm as approximation algorithm, that starts from an
empty set S := ∅ and, at each iteration t ∈ [k], adds in S the item i ∈ [n] \ S maximizing
Eθ[f(θ(S ∪ {i}))]. They show that the greedy algorithm guarantees an approximation factor
of 1

2
(
1− 1

e

)
≈ 0.316 if the chosen subsets are subject to a matroid constraint, that can be

reduced to
(
1− 1

e

)2 ≈ 0.399 when considering a cardinality constraint |S| ≤ k only (i.e.,
uniform matroid constraint).

In the following theorem, we give a better analysis of the greedy algorithm under cardinality
constraints, and we show that the approximation factor increases to 1

2
(
1− 1

e2

)
≈ 0.432.



G. D’Angelo, D. Poddar, and C. Vinci 59:7

▶ Theorem 1. The non-adaptive greedy algorithm is a 1
2

(
1− 1

e2

)
approximation algorithm

for the SMSM problem.

For the proof of Theorem 1 we relate the non-adaptive greedy solution with the optimal
adaptive solution. We assume w.l.o.g that k ≥ 2, otherwise the approximation ratio is equal
to 1. For any t ∈ [k]0, let St be the set of t items computed by the greedy algorithm at iteration
t (where S0 := ∅). Let π be an optimal adaptive policy, and let x = (x1, . . . , xn) ∈ [0, 1]n
be the vector such that xi is the probability that node i ∈ [n] is selected by policy π. Let
OPTA(k) denote the value of policy π (i.e., the optimal value of the problem). Given i ∈ [n],
let ei := (ei1, . . . , ein) be a random vector where eij has the same distribution of θi if i = j,
and eij = 0 otherwise; given a partial state ξ, let ∆(i|ξ) := Eei [f(ξ ∨ ei) − f(ξ)], i.e., the
expected increment of the objective function when adding an item i under partial state ξ.

For any t ∈ [k − 1]0, as intermediate step of our analysis, we consider a randomized
non-adaptive policy Randt that, starting from the greedy solution St, computes a random set
Sρ,t := St ∪ {ρ}, where ρ ∈ [n] is a random item such that P[ρ = i] = xi/k for any i ∈ [n]
and selected independently from any other event. Observe that the above random variable is
well-defined, as

∑
v∈V (xv/k) = k/k = 1; furthermore, we observe that the expected value

of f under Randt is Eθ,ρ[f(θ(Sρ,t)]. Furthermore, for any t ∈ [k − 1]0, we consider a hybrid
adaptive policy Hybt, that first runs the adaptive policy π, and then merges the items of
St with the items of Uθ̂,k(π) selected by π, where θ̂ is a random state that follows the
same distribution of θ but is independent from θ; finally, the expected value of f under
Hybt is defined as Eθ,θ̂[f(θ(St) ∨ θ̂(Uθ̂,k(π) ∪ St))]. A similar hybrid adaptive policy has
been also considered by Asadpour and Nazerzadeh [3], but in place of the randomized
non-adaptive policy considered in our work, they resort to a non-adaptive strategy defined by
a Poisson process based on the multilinear extension of the expected value function Eθ[f(∗)].
Before showing the theorem, we give some preliminary lemmas, which relate the randomized
non-adaptive policy with the hybrid adaptive policy.

▶ Lemma 2. We have that Eθ,ρ[f(θ(S ∪ {ρ}))]− Eθ[f(θ(S))] =
∑
i∈[n]\S xi · Eθ[∆(i|θ(S))]

for any S ⊆ [n].

▶ Lemma 3. For any S ⊆ [n], we have Eθ,θ̂[f(θ(S)∨θ̂(Uθ̂,k(π)∪S))] ≤ Eθ,θ̂[f(θ(S) ∨ θ̂(S)]+∑
i∈[n]\S xi · Eθ[∆(i|θ(S))].

▶ Lemma 4. We have that OPTA(k) ≤ Eθ,θ̂[f(θ(S) ∨ θ̂(Uθ̂,k(π) ∪ S))] for any S ⊆ [n].

Armed with the above lemmas, we can prove Theorem 1.

Proof of Theorem 1. For any t ∈ [k]0, let GRN (t) := Eθ[f(θ(St))] denote the expected
value of f obtained at the t-th iteration of the non-adaptive greedy algorithm. We have that

GRN (t+ 1)−GRN (t) = max
v∈V

[Eθ[f(θ({v} ∪ St))]]− Eθ[f(θ(St))] (1)

≥

Exp. value of Randt︷ ︸︸ ︷
Eθ,ρ[f(θ(St ∪ {ρ}))]−Eθ[f(θ(St))]

≥ 1
k
·

∑
i∈[n]\St

xi · Eθ[∆(i|θ(St))] (2)

≥ 1
k
·


Exp. value of Hybt︷ ︸︸ ︷

Eθ,θ̂[f(θ(St) ∨ θ̂(Uθ̂,k(π) ∪ St))]−Eθ,θ̂[f(θ(St) ∨ θ̂(St))]

 (3)

≥ 1
k
·
(
OPTA(k)− Eθ,θ̂[f(θ(St) ∨ θ̂(St))]

)
(4)
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≥ 1
k
·OPTA(k)− 1

k
·
(
Eθ,θ̂[f(θ(St)) + f(θ̂(St))]

)
(5)

≥ 1
k
·OPTA(k)− 1

k
·
(
Eθ[f(θ(St))] + Eθ̂[f(θ̂(St))]

)
= 1
k
·OPTA(k)− 2

k
· Eθ[f(θ(St)]

= 1
k
·OPTA(k)− 2

k
·GRN (t), (6)

where (1) comes from the fact that the greedy strategy, at iteration t+1, adds to St the item i

guaranteeing the best expected value of f , (2) comes from Lemma 2, (3) comes from Lemma 3,
(4) comes from Lemma 4, and (5) holds since f is a monotone submodular value function (as
f(θ(St)∨θ̂(St)) ≤ f(θ(St)∨θ̂(St))+f(θ(St)∧θ̂(St)) ≤ f(θ(St))+f(θ̂(St))). Thus, by (6) and
some manipulations, we get GRN (t+1) ≥ 1

k ·OPTA(k)+
(
1− 2

k

)
·GRN (t) for any t ∈ [k−1]0.

By applying iteratively the above inequality, we get GRN (k) ≥ 1
k ·

∑k−1
t=0

(
1− 2

k

)t ·OPTA(k) =
1
2

(
1−

(
1− 2

k

)k)
· OPTA(k), that leads to GRN (k)

OPTA(k) ≥
1
2

(
1−

(
1− 2

k

)k)
≥ 1

2
(
1− 1

e2

)
, and

this shows the claim. ◀

3 Adaptive Influence Maximization under the Myopic Feedback
Model: Preliminaries

Independent Cascade Model. In the independent cascade model (IC), we have an influence
graph G = (V = [n], E, (puv)(u,v)∈E), where edges are directed and puv ∈ [0, 1] is an activation
probability associated to each edge (u, v) ∈ E. Given a set of seeds S ⊆ V which are initially
active, the diffusion process in the IC model is defined in t ≥ 0 discrete steps as follows: (i)
let At be the set of active nodes which are activated at each step t ≥ 0; (ii) A0 := S; (iii)
given a step t ≥ 0, for any edge (u, v) such that u ∈ At, node u can activate node v with
probability puv independently from any other node, and, in case of success, v is included
in At+1; (iv) the diffusion process ends at a step r ≥ 0 such that Ar = ∅, i.e., no node can
be activated at all. The size of

⋃
t≤r At, i.e. the number of nodes activated/reached by the

diffusion process, is the influence spread.
The above diffusion process can be equivalently defined as follows. The live-edge graph

L = (V,L(E)) is a random graph made from G, such that each edge (u, v) ∈ E is in-
cluded in L(E) with probability puv, independently from the other edges, i.e., P[L = L] =∏

(u,v)∈L puv
∏

(u,v)∈E\L(1−puv). With a little abuse of notation, we may denote L(E) with L.
Given L ⊆ E, let RL(S) := {v ∈ V : there exists a path from u to v in L for some u ∈ S},
i.e., the set of nodes reached by nodes in S in the graph L. Informally, if S is the set of
seeds, and L is a realisation of the live-edge graph, RL(S) equivalently denotes the set of
nodes which are reached/activated by the above diffusion process. Let σL(S) := |RL(S)|
denote the influence spread generated by the set of seeds S if the realised live-edge graph is
L, and let σ(S) := EL[σL(S)] be the expected influence spread generated by S.

Non-adaptive Influence Maximization. The non-adaptive influence maximization problem
under the IC model is the computational problem that, given an influence graph G and an
integer k ≥ 1, asks to find a set of seeds S ⊆ V with |S| ≤ k such that σ(S) is maximized.
Without loss of generality, we assume that k ∈ [n] and, since the objective function is
monotone, |S| = k for any solution S.

Kempe et al. [33, 34] showed that function σ is monotone and submodular, therefore
the following greedy algorithm achieves a 1 − 1

e approximation factor: (i) start with an
empty set of seeds S := ∅; (ii) at each iteration t ∈ [k], add to S the node v that maximizes
the expected influence spread σ(S ∪ {v}). Note that the greedy algorithm requires at each
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iteration to compute the value of function σ, for some set of seeds and this has been shown
to be computationally intractable as it is #P -hard [13]. However, standard Chernoff bounds
allows us estimate the value of σ through a polynomial number of Monte-Carlo simulations
by introducing an arbitrarily small additive error ϵ > 0, which depends on the number of
simulations [34]. In the reminder of the paper we will omit the additional term ϵ to avoid
unnecessary complicated formulas. We will refer to this algorithm as the non-adaptive greedy
algorithm.

Adaptive Influence Maximization. Differently from the non-adaptive setting, in which all
the seeds are selected at the beginning, an adaptive policy activates the seeds sequentially in
k steps, one seed at each step, and the decision on the next seed to select is based on the
feedback resulting from the observed spread of previously selected nodes. The feedback model
considered in this work is myopic: when a node is selected, the adaptive policy observes the
state of its neighbours.

An adaptive policy under the myopic feedback model is formally defined as follows. Given
L ⊆ E, the realisation ϕL : V → 2V associated to L assigns to each node v ∈ V the value
{z ∈ V : (v, z) ∈ L} ∪ {v}, i.e., the set containing v and the neighbours activated by seed
v when L = L. Let Φ denote the random realisation, i.e., the random variable such that
P[Φ = ϕL] = P[L = L] for any L ⊆ E. Given a set S ⊆ V , a partial realisation ψ : S → 2V
is the restriction to S of the domain of some realisation, i.e., there exists L ⊆ E such that
ψ(v) = ϕL(v) for any v ∈ S. Given a partial realisation ψ : S → 2V , let dom(ψ) := S, i.e.,
dom(ψ) is the domain of partial realisation ψ, and let Im(ψ) :=

⋃
v∈dom(ψ) ψ(v). A partial

realisation ψ′ is a sub-realisation of a partial realisation ψ (or, equivalently, ψ′ ⊆ ψ), if
dom(ψ′) ⊆ dom(ψ) and ψ′(v) = ψ(v) for any v ∈ dom(ψ′). We observe that any partial
realisation ψ can be equivalently represented as {(v, ϕL(v)) : v ∈ dom(ψ)} for some L ⊆ E.

An adaptive policy π takes as input a partial realisation ψ and, either returns a node
π(ψ) ∈ V and activates it as seed, or interrupts the activation of new seeds, e.g., by returning
a string π(ψ) := STOP . In particular, an adaptive policy π can be run as follows: (i) start
from an empty realisation ψ := ∅; (ii) if π(ψ) ̸= STOP set ψ ← ψ ∪ {(v, ϕL(v))} and repeat
(ii) until π(ψ) = STOP ; (iii) at the end, return ψπ := ψ. Let Ψπ be the random partial
realisation returned by the execution of policy π. The expected influence spread of an adaptive
policy π is defined as σ(π) := EL[σL(dom(Ψπ))], i.e., it is the expected value of the number
of nodes reached by the diffusion process at the end of the execution of policy π. We say that
|π| = k if policy π always return a partial realisation ψπ with |dom(ψπ)| = k. The adaptive
influence maximization problem (under IC and myopic feedback) is the computational problem
that, given an influence graph G and k ∈ [n], asks to find an adaptive policy π subject to
|π| = k that maximizes the expected influence spread σ(π).

Adaptivity gap. Given an influence graph G and an integer k ≥ 1, let OPTN (G, k) (resp.
OPTA(G, k)) denote the optimal value of the non-adaptive (resp. adaptive) influence
maximization problem with input G and k. Given an integer k ∈ [n], the k-adaptivity
gap of G is defined as AG(G, k) := OPTA(G,k)

OPTN (G,k) , and measures how much an adaptive policy
outperforms a non-adaptive solution for the influence maximization problem applied to
influence graph G, when the maximum number of seeds is k. The adaptivity gap of G is
defined as AG(G) := supk∈[n] AG(G, k). We observe that for k = 1 the k-adaptivity gap and
the approximation factors are trivially equal to 1, thus we omit such case in the following.
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4 The Efficiency of the Non-adaptive Greedy Algorithm

In this section, we show that a simple non-adaptive algorithm guarantees an approximation
ratio of 1

2
(
1− 1

e

)
≈ 0.316 for the adaptive influence maximization problem, thus improving

the approximation ratio of 1
4

(
1− 1

e

)
≈ 0.158 given in [39]. The algorithm provided by [39] is

the usual non-adaptive greedy algorithm given in [34] and reported in the previous section. We
observe that such algorithm is non-adaptive, i.e., despite it is used for adaptive optimization,
does not resort to the use of any adaptive policy and all the seeds are selected without
observing any partial realisation.

▶ Theorem 5. Given an influence graph G with n nodes and k ∈ [n]2, the non-adaptive
greedy algorithm is a 1

2

(
1−

(
1− 1

k

)k)
≥ 1

2
(
1− 1

e

)
approximation algorithm for the adaptive

influence maximization problem (under IC and myopic feedback) applied to (G, k).

In the proof of Theorem 5 (see Subsection 4.4) we relate the expected influence spread
coming from the non-adaptive greedy algorithm with that of the optimal adaptive policy.
We first need some notation and preliminary results. Let G = (V = [n], E, (puv)(u,v)∈E)
be an influence graph, and let k ∈ [n]2. For any t ∈ [k]0, let St denote the set of the first
t seeds selected by the greedy algorithm, so that σ(Sk) is the expected influence spread
of the solution returned by the algorithm. Let π be an optimal adaptive policy, and let
x = (x1, . . . , xn) be the vector such that xi is the probability that node i is selected by π.
As in Section 2, we resort again to a randomized non-adaptive policy to relate the expected
influence spread of the greedy algorithm with that of the adaptive policy.

Randomized Non-adaptive Policy. For any t ∈ [k−1]0, as intermediate step of our analysis,
we consider again the randomized non-adaptive policy Randt defined in Section 2: starting
from the greedy solution St, we compute a random set Sρ,t := St ∪ {ρ}, where ρ ∈ [n] is a
random item such that P[ρ = i] = xi/k for any i ∈ [n] and selected independently from any
other event. We observe that the expected value of f under Randt is Eρ[σ(Sρ,t)].

As a support of our analysis, we also define a new diffusion model and a hybrid adaptive
policy. In particular, the new diffusion model will be used to recover certain properties
connected with the submodularity that, as in Section 2, will allow us to relate the expected
influence spread of the randomized non-adaptive policy with that of the hybrid adaptive
policy. Furthermore, following again the approach of Section 2, the hybrid adaptive policy is
obtained by combining the greedy (non-adaptive) solution and the optimal adaptive one,
and it will be used in our analysis to get an upper bound on the optimal adaptive spread.

2-level Diffusion Model. In the 2-level diffusion model each selected seed u ∈ V has two
chances to influence its neighbours, and all the non-seeds have one chance only, i.e., the
activation probability for all the edges (u, v) is 1− (1−pu,v)2 if u is a seed, and pu,v otherwise.
More formally, let L̂ be a live-edge graph distributed as L and independent from L. Given a set
of seeds S, the 2-level live-edge graph can be defined as L2(S) := L∪{L̂∩{(u, v) ∈ E : u ∈ S}}.
Given a set of nodes S, let σ2

L,L̂
(S) := σL2(S)(S) denote the influence spread induced by S in

live-edge graph L2(S), and let σ2(S) := EL,L̂[σ2
L,L̂

(S)] denote the expected influence spread
induced by S under the 2-level diffusion model. Let Φ and Φ̂ denote the random realisations
associated to live-edge graphs L and L̂, respectively.

2-Level Hybrid Adaptive Policy. For any t ∈ [k − 1]0, let Hyb2
t be a hybrid adaptive policy

defined as follows: (i) Hyb2
t selects all the nodes in St as seeds; (ii) then, Hyb2

t adds to St
all the nodes that the optimal adaptive policy π would have select when starting from the
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empty realisation, and observing, at each step, partial realisations coming from the live-edge
graph L̂ only; in other words, for any seed v ∈ V selected by the policy, the new set of nodes
that the policy observes (to choose the next seed) is Φ̂(v); (iii) finally, denoting with Ψ̂π

the random realisation returned by π, the expected influence spread of Hyb2
t is defined as

EL,L̂[σ2
L,L̂

(dom(Ψ̂π)∪St)], i.e., it is the expected influence spread determined dom(Ψ̂π)∪St,
according to the 2-level live-edge graph L2(dom(Ψ̂π) ∪ St).

In what follows we give some technical results which are based on the above definitions
and will be used in Subsection 4.4 to show the main theorem. In particular, we show that the
2-level diffusion model satisfies certain properties connected with submodular set functions
(see Subsection 4.1); then, we use such properties to relate the expected influence spread
in the ordinary diffusion model to that of the 2-level diffusion model (see Subsection 4.2);
finally, by using a similar approach as in Section 2, we use the above relations to relate the
efficiency of the randomized non-adaptive policy with that of the optimal adaptive policy,
via the 2-level hybrid adaptive policy (see Subsection 4.3).

4.1 Adaptive Submodularity in the 2-Level Diffusion Model
The adaptive submodularity [25] is a property that extends the well-known concept of
submodularity to the adaptive framework, and allows us to design efficient adaptive ap-
proximation algorithms. In particular, the adaptive submodularity states that, given two
subrealisations ψ ⊆ ψ′ and a node v ∈ V , adding node v under partial realisation ψ′ causes an
expected increment of the influence spread that is not higher than that caused under partial
realisation ψ. Unfortunately, as shown in the arXiv version of [25], the myopic feedback
model, in general, does not satisfy the adaptive submodularity.

Anyway, by resorting to the 2-level diffusion model, we can recover a similar property as
the adaptive submodularity. Given S ⊆ V , a partial realisation ψ̂, and v ∈ V , let

∆2
S(v|ψ̂)

:= EL,L̂

[
σL2({v}∪dom(ψ̂)\S)({v} ∪ S ∪ dom(ψ̂))− σL2(dom(ψ̂)\S)(S ∪ dom(ψ̂))|ψ̂ ⊆ Φ̂

]
denote the expected increment of the influence spread w.r.t. the 2-level diffusion model when
adding seed v to the set of nodes S ∪ dom(ψ̂), but assuming that the nodes in S have a
unique chance to influence their neighbors, and that partial realisation ψ̂ has been observed.
We say that the 2-level diffusion model is adaptive submodular if, for any S ⊆ V , any partial
realisations ψ̂, ψ̂′ with ψ̂ ⊆ ψ̂′, and any v ∈ V , we have that ∆2

S(v|ψ̂) ≥ ∆2
S(v|ψ̂′).

▶ Lemma 6. The 2-level diffusion model is adaptive submodular.

4.2 From the Ordinary to the 2-level Diffusion Model
In this subsection, we see how to relate the 2-level diffusion model to the ordinary one.

▶ Lemma 7. We have that σ2(S) ≤ 2 · σ(S) for any S ⊆ V .

Now, given a set S ⊆ V and v ∈ V , let ∆S(v) := σ(S ∪ {v}) − σ(S), that is the expected
increment under the ordinary diffusion model when adding a new node to a set S, and let
∆2
S(v) := EL,L̂[σL2({v})(S ∪ {v})− σL(S)], that is the above expected increment, with the

further assumption that v has two chances to influence its neighbors.

▶ Lemma 8. We have that ∆2
S(v) ≤ 2 ·∆S(v) for any S ⊆ V and v ∈ V .
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4.3 From the Adaptive to the Randomized Non-adaptive Policy
The following three lemmas (Lemma 9, Lemma 10, and 11) relate the randomized non-
adaptive policy with the 2-level hybrid adaptive policy, and then with the optimal adaptive
policy of the ordinary diffusion model. In particular, the proofs of Lemma 9, Lemma 10,
and 11, resort to a similar approach of the proofs of Lemma 2, Lemma 3, and Lemma 4 of
Section 2.

▶ Lemma 9. For any S ⊆ V , we have that k · (Eρ[σ({ρ}∪S)]−σ(S)) ≥
∑
v∈V \S xv ·∆S(v).

The following lemma relates the adaptive setting with the non-adaptive one, and its proof
resorts to the adaptive submodularity defined in Subsection 4.1.

▶ Lemma 10. We have EL,L̂[σ2
L,L̂

(dom(Ψ̂π) ∪ S)] ≤ σ2(S) +
∑
v∈V \S xv ·∆2

S(v) for any
S ⊆ V .

The following lemma shows that the optimal adaptive influence spread is upper bounded by
that expected influence spread of the 2-level hybrid adaptive policy.

▶ Lemma 11. We have OPTA(G, k) ≤ EL,L̂[σ2
L,L̂

(dom(Ψ̂π) ∪ S)] for any S ⊆ V .

4.4 Proof of Theorem 5
Armed with the above results, we can now prove Theorem 5. For any t ∈ [k]0, let
GRN (G, t) := σ(St) denote the expected influence spread σ(St) obtained when the first t
seeds have been selected by the greedy algorithm. We have that

GRN (G, t+ 1)−GRN (G, t)
= max

v∈V
[σ({v} ∪ St)]− σ(St)

≥

Exp. value of Randt︷ ︸︸ ︷
Eρ[σ({ρ} ∪ St)]−σ(St) (7)

≥ 1
k

∑
v∈V \St

xv ·∆St
(v) (8)

≥ 1
2k

∑
v∈V \St

xv ·∆2
St

(v) (9)

≥ 1
2k (

Exp. value of Hyb2
t︷ ︸︸ ︷

EL,L̂[σ2
L,L̂

(dom(Ψ̂π) ∪ St)]−σ2(St)) (10)

≥ 1
2k (OPTA(G, k)− σ2(St)) (11)

≥ 1
2k (OPTA(G, k)− 2 · σ(St)) (12)

= 1
2kOPTA(G, k)− 1

k
GRN (G, t), (13)

where (7) holds since the greedy strategy adds to St the node v maximizing σ(St ∪ {v}), (8)
comes from Lemma 9, (9) comes from Lemma 8, (10) comes from Lemma 10, (11) comes
from Lemma 11, and (12) comes from Lemma 7. Thus, by (13) and some manipulations we
get the following recursive relation: GRN (G, t+ 1) ≥ 1

2k ·OPTA(G, k) +
(
1− 1

k

)
·GRN (G, t)
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for any t ∈ [k − 1]0. By applying iteratively the above inequality, we get GRN (G, k) ≥
1

2k ·
∑k−1
t=0

(
1− 1

k

)t ·OPTA(G, k) = 1
2

(
1−

(
1− 1

k

)k)
·OPTA(G, k), that leads to GRN (G,k)

OPTA(G,k) ≥
1
2

(
1−

(
1− 1

k

)k)
≥ 1

2
(
1− 1

e

)
, and this shows the claim. ◀

▶ Remark 12. By Theorem 5, we can easily show that, for any influence graph G with n

nodes, the k-adaptivity gap of G is at most 2
(

1−
(
1− 1

k

)k)−1
≤ 2e

e−1 ≈ 3.164.

5 The Efficiency of the Adaptive Greedy Algorithm

We show that the adaptive version of the greedy algorithm guarantees an even better
approximation ratio of 1− 1√

e
≈ 0.393 for the adaptive influence maximization problem. The

adaptive greedy algorithm is an adaptive policy πGRk that selects k seeds in k steps, and at
each step t selects the t-th seed that maximizes the expected influence spread conditioned by
the observed realisation.

▶ Theorem 13. Given an influence graph G with n nodes and k ∈ [n]2, the adaptive greedy
algorithm is a 1−

(
1− 1

2k
)k ≥ 1− 1√

e
approximation algorithm for the adaptive influence

maximization problem (under IC and myopic feedback) applied to (G, k).

In the proof of Theorem 13 we relate the expected influence spread coming from the adaptive
greedy algorithm with that of the optimal adaptive policy, passing trough a new hybrid
adaptive policy. In the same spirit of Theorem 5, we also consider a new diffusion model and
a new notion of adaptive submodularity (slightly different from that of Subsection 4.1). To
show the main theorem (see Subsection 5.1) we need some notation and preliminary results.
Let G = (V = [n], E, (puv)(u,v)∈E) be an influence graph, and let k ∈ [n]2. Let π be an
optimal adaptive policy, and let x = (x1, . . . , xn) be the vector such that xi is the probability
that node i is selected by π.

Strong 2-level Diffusion Model. We define L, L̂, L2(S), Φ, Φ̂ as in the 2-level diffusion
model considered in Section 4. Given a partial realisation ψ and a set S ⊆ V , let σ2

L,L̂,ψ
(S) :=

σL2(S\dom(ψ))(S) denote the influence spread induced by S in live-edge graph L2(S \dom(ψ)),
and let σ2

ψ(S) := EL,L̂[σ2
L,L̂,ψ

(S)|ψ ⊆ Φ] denote the above influence spread in expectation,
conditioned by partial realisation ψ.

Strong 2-level Hybrid Adaptive Policy. Given a partial realisation ψ, let Hyb2
ψ be a hybrid

adaptive policy defined as follows: (i) Hyb2
ψ selects all the nodes in dom(ψ) as seeds; (ii) then,

Hyb2
ψ adds to dom(ψ) all the nodes that policy π would have select when starting from the

empty realisation, and observing, at each step, partial realisations coming from the live-edge
graph L̂ only; (iii) finally, denoting with Ψ̂π the random realisation returned by policy π, the
expected influence spread of Hyb2

ψ is defined as EL,L̂[σ2
L,L̂,ψ

(dom(ψ) ∪ dom(Ψ̂π))| ψ ⊆ Φ],
i.e., it is the expected influence spread determined dom(ψ) ∪ dom(Ψ̂π) in the strong 2-level
diffusion model, conditioned by partial realisation ψ. Differently from the 2-level hybrid
policy defined in Section 4, the expected influence spread of the hybrid policy defined here is
conditioned by partial realisation ψ and the unique seeds that have two chances to influence
their neighbors are those in dom(Ψ̂π) \ dom(ψ).
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Strong Adaptive Submodularity of the Strong 2-level Diffusion Model. Given two partial
realisations ψ, ψ̂ and v ∈ V , let

∆2
ψ(v|ψ̂)

:= EL,L̂

[
σ2

L,L̂,ψ
({v} ∪ dom(ψ) ∪ dom(ψ̂))− σ2

L,L̂,ψ
(dom(ψ) ∪ dom(ψ̂))|ψ ⊆ Φ, ψ̂ ⊆ Φ̂

]
,

i.e., ∆2
ψ(v|ψ̂) is the expected increment of the influence spread in the strong 2-level diffusion

model when adding seed v to the set of nodes dom(ψ̂)∪dom(ψ), conditioned by the observation
of partial realisations ψ̂ and ψ. We say that the strong 2-level diffusion model is strongly
adaptive submodular if, for any partial realisations ψ̂, ψ̂′ with ψ̂ ⊆ ψ̂′, any partial realisation
ψ, and any v ∈ V , we have that ∆2

ψ(v|ψ̂) ≥ ∆2
ψ(v|ψ̂′).

▶ Lemma 14. The strong 2-level diffusion model is strongly adaptive submodular.

From the Ordinary to the Strong 2-level Diffusion Model. Given a partial realisation ψ,
and v ∈ V , let ∆ψ(v) := EL[σL({v} ∪ dom(ψ))− σL(dom(ψ))|ψ ⊆ Φ], that is the expected
increment under the ordinary diffusion model when adding a new node to the nodes in
dom(ψ) conditioned by partial realisation ψ, and let ∆2

ψ(v) := ∆2
ψ(v|∅) = EL,L̂[σL,L̂,ψ({v} ∪

dom(ψ))− σL,L̂,ψ(dom(ψ))|ψ ⊆ Φ], that is the above conditional expectation, but w.r.t. the
strong 2-level diffusion model. The following lemma can be shown analogously to Lemma 8.

▶ Lemma 15. We have that ∆2
ψ(v) ≤ 2 ·∆ψ(v) for any partial realisation ψ and v ∈ V .

From the Optimal to the Greedy Adaptive Policy. The following lemma will be used to
relate the strong 2-level hybrid adaptive policy with the adaptive greedy policy; its proof is
similar to that of Lemma 10, but uses the concept of strong adaptive submodularity.

▶ Lemma 16. For any partial realisation ψ, we have

EL,L̂[σ2
L,L̂,ψ

(dom(ψ)∪dom(Ψ̂π))| ψ ⊆ Φ] ≤ EL[σL(dom(ψ))|ψ ⊆ Φ]+
∑

v∈V \dom(ψ)

xv ·∆2
ψ(v).

The following lemma shows that the optimal adaptive influence spread is upper bounded by
that expected influence spread of the strong 2-level hybrid adaptive policy, and its proof is
completely analogue to that of Lemma 11.

▶ Lemma 17. We have OPTA(G, k) ≤ EL,L̂[σ2
L,L̂,ψ

(dom(ψ) ∪ dom(Ψ̂π))| ψ ⊆ Φ] for any
partial realisation ψ.

5.1 Proof of Theorem 13

Armed with the above lemmas, and by using a similar approach as in the proof of Theorem 5,
we can prove Theorem 13. Given t ∈ [k]0, let St denote the (random) set of the first t seeds
selected by the adaptive greedy policy πGRk , and let Ψt be the (random) partial realisation
such that dom(Ψt) = St (i.e., the partial realisation observed by policy πGRk at the end of
step t); let GRA(G, t) := EL[σL(St)] denote the expected influence spread of the adaptive
greedy policy after selecting the first t seeds. For any t ∈ [k − 1]0, we have that
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GRA(G, t+ 1)−GRA(G, t)
= EL[σ(St+1)− σ(St)]

= EΨt

[
max

v∈V \dom(Ψt)
EL[σL({v} ∪ dom(Ψt))− σL(dom(Ψt))|Ψt]

]
(14)

≥ EΨt

 ∑
v∈V \dom(Ψt)

xv
k
· EL[σL({v} ∪ dom(Ψt))− σL(dom(Ψt))|Ψt]


= 1
k
· EΨt

 ∑
v∈V \dom(Ψt)

xv · EL[σL({v} ∪ dom(Ψt))− σL(dom(Ψt))|Ψt]


= 1
k
· EΨt

 ∑
v∈V \dom(Ψt)

xv ·∆Ψt(v)


≥ 1

2k · EΨt

 ∑
v∈V \dom(Ψt)

xv ·∆2
Ψt

(v)

 (15)

≥ 1
2k · EΨt

[
EL,L̂[σ2

L,L̂,Ψt
(dom(Ψt) ∪ dom(Ψ̂π))|Ψt]− EL[σL(dom(Ψt))|Ψt]

]
(16)

≥ 1
2k · EΨt

[OPTA(G, k)− EL[σL(dom(Ψt))|Ψt]] (17)

≥ 1
2k ·OPTA(G, k)− 1

2k · EΨt
[EL[σL(dom(Ψt))|Ψt]]

= 1
2k ·OPTA(G, k)− 1

2k · EL(σL(St))

= 1
2k ·OPTA(G, k)− 1

2k ·GRA(G, t), (18)

where (14) holds since the adaptive greedy strategy at each step adds the node maximizing
the expected influence spread (conditioned by the partial realisation coming from the previous
selected seeds), (15) comes from Lemma 15, (16) comes from Lemma 16, (17) comes from
Lemma 17. Thus, by (18) and some manipulations we get the following recursive relation:

GRA(G, t+ 1) ≥ 1
2k ·OPTA(G, k) +

(
1− 1

2k

)
·GRA(G, t), ∀t ∈ [k − 1]0. (19)

By applying iteratively (19), we get

GRA(G, k) ≥ 1
2k ·

k−1∑
t=0

(
1− 1

2k

)t

·OPTA(G, k) = 1−
(

1− 1
2k

)k

·OPTA(G, k),

that leads to

GRA(G, k)
OPTA(G, k) ≥ 1−

(
1− 1

2k

)k

≥ 1− 1√
e
,

and this shows the claim.
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6 Conclusions and Future Work

In the context of adaptive optimization, we have introduced a new approach to relate the
solution provided by a simple non-adaptive greedy policy with the adaptive optimum. The
new approach allowed us to establish better bounds for the adaptive influence maximization
problem under myopic feedback, specifically we improve both the approximation ratio of the
non-adaptive greedy policy and the adaptivity gap.

Our results open several research directions in the context of influence maximization and
in more general adaptive optimization settings. The approximation factor of the non-adaptive
(resp. adaptive) greedy algorithm is between our lower bound of 1

2
(
1− 1

e

)
≈ 0.316 (resp.

1 − 1√
e
≈ 0.393) and the upper bound of e2+1

(e+1)2 ≈ 0.606 [39], and the adaptivity gap is
between the lower bound of e

e−1 ≈ 1.582 [39] and our upper bound of 2e
e−1 ≈ 3.164. The

first problem left open by our result is to close these gaps. Furthermore, the techniques
introduced in this paper to relate non-adaptive policies with adaptive ones might be useful
to find better bounds in several variants of the adaptive influence maximization problem,
like a combination of the following settings: different feedback models (e.g., the full-adoption
feedback), different diffusion models (e.g., the general triggering model [33]), and different
graph classes. Finally, as shown in Section 2, we believe that our new approach could be
efficiently used to analyze non-adaptive greedy algorithms in other adaptive optimization
problems, like e.g. the stochastic probing problem [6, 29, 30].
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Abstract
Graph parameters such as the diameter, radius, and vertex eccentricities are not defined in a useful
way in Directed Acyclic Graphs (DAGs) using the standard measure of distance, since for any two
nodes, there is no path between them in one of the two directions. So it is natural to consider the
distance between two nodes as the length of the shortest path in the direction in which this path
exists, motivating the definition of the min-distance. The min-distance between two nodes u and v

is the minimum of the shortest path distances from u to v and from v to u.
As with the standard distance problems, the Strong Exponential Time Hypothesis [Impagliazzo-

Paturi-Zane 2001, Calabro-Impagliazzo-Paturi 2009] leaves little hope for computing min-distance
problems faster than computing All Pairs Shortest Paths, which can be solved in Õ(mn) time. So it
is natural to resort to approximation algorithms in Õ(mn1−ϵ) time for some positive ϵ. Abboud,
Vassilevska W., and Wang [SODA 2016] first studied min-distance problems achieving constant
factor approximation algorithms on DAGs, and Dalirrooyfard et al [ICALP 2019] gave the first
constant factor approximation algorithms on general graphs for min-diameter, min-radius and
min-eccentricities. Abboud et al obtained a 3-approximation algorithm for min-radius on DAGs
which works in Õ(m

√
n) time, and showed that any (2 − δ)-approximation requires n2−o(1) time

for any δ > 0, under the Hitting Set Conjecture. We close the gap, obtaining a 2-approximation
algorithm which runs in Õ(m

√
n) time. As the lower bound of Abboud et al only works for sparse

DAGs, we further show that our algorithm is conditionally tight for dense DAGs using a reduction
from Boolean matrix multiplication. Moreover, Abboud et al obtained a linear time 2-approximation
algorithm for min-diameter along with a lower bound stating that any (3/2 − δ)-approximation
algorithm for sparse DAGs requires n2−o(1) time under SETH. We close this gap for dense DAGs
by obtaining a 3/2-approximation algorithm which works in O(n2.350) time and showing that the
approximation factor is unlikely to be improved within O(nω−o(1)) time under the high dimensional
Orthogonal Vectors Conjecture, where ω is the matrix multiplication exponent.
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1 Introduction

Among the most fundamental graph parameters that have been extensively studied are the
diameter, radius and eccentricities [16, 24, 15, 21, 5, 17, 14, 20, 7, 8, 33, 34, 12, 22, 30, 28,
13, 2, 9] (and many others). The eccentricity of a vertex v is the largest distance between v

and any other vertex. The diameter is the maximum eccentricity of a vertex in the graph,
thus the distance between the two farthest nodes, and the radius is the minimum eccentricity,
measuring the maximum distance to the most central node.
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All of these parameters depend on the definition of the distance between two nodes. In
undirected graphs, the distance between two vertices is just the shortest path distance d(·, ·)
between them, which is symmetric. However, in directed graphs, this standard measure of
distance d is not necessarily symmetric, since for two nodes, d(u, v) may not equal d(v, u).

Several notions of a “symmetric” distance for directed graphs have been studied. Cowen
and Wagner [18] define the roundtrip distance, which for two vertices u and v is just
d(u, v) + d(v, u). Abboud, Vassilevska W., and Wang [3] define the max-distance, which is
max{d(u, v), d(v, u)}, and the min-distance, which is min{d(u, v), d(v, u)}.

Each of these notions of distance has a particular application [19]. In this paper, we
focus on the min-distance dmin(·, ·). The min-distance characterizes a quantity of real-world
relevance: for instance, a patient may visit a doctor or a doctor may visit a patient, and if
they are in a hurry the min-distance between them may matter. Min-distance is a particularly
natural notion of distance in directed acyclic graphs (DAGs), where the standard notion
of distance is infinite in at least one direction for any given pair of vertices in a DAG. For
example, in a topologically ordered DAG where the edges are directed from left to right, the
min-diameter is simply the largest distance d(u, v) where u is to the left of v.

More formally, for a vertex v ∈ V , the min-eccentricity ϵ(v) is maxw∈V dmin(v, w), or in
other words, the largest min-distance between v and any other vertex. The min-diameter
of a graph is maxv∈V ϵ(v). Note that the min-diameter is the only meaningful notion of
diameter for DAGs: all other notions are infinite. The min-radius of a graph is minv∈V ϵ(v).
A center is a vertex whose min-eccentricity is equal to the min-radius of the graph.

All-Pairs Shortest Paths (APSP) is the problem of computing the distance between u and
v for every pair of vertices u, v ∈ V . In a graph G with m edges, n vertices, and nonnegative
edge weights polynomial in n, APSP can easily be computed in Õ(mn) time1, by running
Dijkstra’s algorithm from every vertex2. Computing eccentricities, diameter, or radius with
any of the notions of distance is no harder than computing APSP.

For the standard notion of distance, under the Strong Exponential Time Hypothesis
(SETH) [25, 11], there is no truly subquadratic time algorithm for diameter (and thus nor for
eccentricities) in unweighted graphs: that is, no such algorithm runs in time O(m2−ϵ) for
ϵ > 0 [28]. This lower bound also holds for the other notions of diameter (and eccentricities)
[19]. For radius, the same lower bound holds but under the Hitting Set Conjecture [3].

Since quadratic time is expensive on large graphs, we resort to approximation al-
gorithms. Many constant factor approximation algorithms were known for all notions
of diameter, eccentricities and radius, except for the min-distance notion until recently. For
example, for the standard diameter and roundtrip diameter there is a folklore linear time
2-approximation algorithm, and for max-diameter and standard diameter, a conditionally
tight 3/2-approximation algorithm is known in Õ(m

√
n) time [28].

Only recently Dalirrooyfard et al [19] showed constant factor approximation algorithms
for min-distance problems in general graphs that run in O(mn1−ϵ) time for some fixed
ϵ > 0. More specifically, they obtained a 3-approximation algorithm for min-diameter in
Õ(m

√
n) time, a (3 + δ)-approximation algorithm for min-radius in Õ(m

√
n/δ) time, and a

(3 + δ)-approximation algorithm for min-eccentricities in Õ(m
√

n/δ2) time, for any δ > 0.
The reason it is hard to obtain approximation algorithms for min-diameter, min-radius,

and min-eccentricities is that min-distance does not obey the triangle inequality. Hence the
typical approaches to find algorithms that work for other notions of distance do not work for
min-distance, as they crucially rely on the triangle inequality.

1 The tilde hides polylogarithmic factors.
2 Faster algorithms are known by Pettie [26] and Pettie and Ramachandran [27] for sparse graphs.
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Table 1 Results on min-distance problems on DAGs. The (∗) marks lower bounds that are for
dense DAGs. Our (2 − δ) lower bound for min-radius is based on Triangle Detection and our ( 3

2 − δ)
lower bound for min-diameter is based on high dimensional OV. Our k and (k + δ)-approximation
algorithms are for any integer k ≥ 2. Conditionally tight bounds are in bold.

Problem Upper bound Lower bound Reference
min-diameter 2 in O(m) ( 3

2 − δ) needs m2−o(1) [3]
3
2 in O(n2.350) (dense, unweighted) ( 3

2 − δ) needs nω−o(1) (∗) this work
min-radius 3 in Õ(m

√
n) (2 − δ) needs m2−o(1) [3]

2 in Õ(min(m
√

n, m2/3n)) (2 − δ) needs nω−o(1) (∗) this work

k in Õ(min(mn1/k, m
2k−1
2k−1 n)) this work

min-eccentri. 3 + δ in Õ(m
√

n/δ2) [19]

k + δ in Õ(min(mn1/k/δ, m
2k−1
2k−1 n/δ)) this work

On the bright side, since DAGs have more structure, it is easier to find algorithms for
them. The best known subquadratic time algorithm for min-diameter in DAGs is a linear
time 2-approximation algorithm, and the best subquadratic time algorithm for min-radius is
a 3-approximation algorithm in Õ(m

√
n) time [3]. However, neither of these algorithms were

proven to be conditionally tight.
Previously, the only known conditional lower bounds for these problems were due to

Abboud, Vassilevska W., and Wang [3]. They showed that under the Orthogonal Vectors
Conjecture from fine-grained complexity (and consequently under SETH [31]), there is no
(3/2 − δ)-approximation algorithm for any δ > 0 for min-diameter which runs in truly
subquadratic time on sparse DAGs. Moreover, under the Hitting Set Conjecture, there is no
(2−δ)-approximation algorithm for any δ > 0 for min-radius which runs in truly subquadratic
time on sparse DAGs.

1.1 Our results
We obtain fast algorithms for min-diameter, min-eccentricities and min-radius with improved
approximation factors. Our results can be seen in Table 1.

Min-Eccentricities and Min-Radius
We obtain the first known subquadratic time (2 + δ)-approximation algorithm for min-
eccentricities in DAGs for any δ > 0, and the first known subquadratic time 2-approximation
algorithm for min-radius in DAGs. These algorithms run in time Õ(min(m

√
n/δ, m2/3n)/δ)

and Õ(min(m
√

n, m2/3n)) respectively. Note that our algorithms in this section are combin-
atorial: they do not exploit fast matrix multiplication and are potentially practical. Our
results are conditionally optimal in both sparse and dense graphs: For sparse graphs, if the
Hitting Set Conjecture is true, then our min-radius result is tight and our min-eccentricity
result is essentially tight, in the sense that no approximation factor smaller than 2 can
be achieved in subquadratic time for either of these problems [3]. For dense graphs, our
2-approximation algorithm works in Õ(n7/3) time, and we show that there is no (2 − δ)-
approximation algorithm for min-radius (and hence min-eccentricities) in O(nω−ϵ) for ϵ > 0,
if the best algorithm for Triangle Detection runs in time Ω(nω−o(1)). Here ω < 2.37286 [6] is
the exponent of matrix multiplication.

More generally, we obtain a series of algorithms trading off runtime and accuracy.
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▶ Theorem 1. For integer k ≥ 2 and every δ > 0, there is a (k + δ)-approximation algorithm
for min-eccentricities in DAGs which runs in Õ(min(mn1/k/δ, m2k−1/(2k−1)n/δ)) time.

For every integer k ≥ 2, there is a k-approximation algorithm for min-radius in DAGs
which runs in Õ(min(mn1/k, m2k−1/(2k−1)n)) time.

As mentioned earlier, the case k = 2 gives a 2-approximation algorithm for min-radius
running in time Õ(min(m

√
n, m2/3n)). For m = Õ(n1.5), this matches the runtime and

improves the approximation factor of the previous best known algorithm for this problem
(from [3]). For m = ω(n1.5+o(1)), it improves both the approximation factor and the runtime.

Our min-eccentricity (2 + δ)-approximation algorithm borrows a key idea from the 3-
approximation algorithm of [3] and combines it with a new binary search technique. The idea
is to partition the DAG into intervals and do local APSP searches to find local paths, then
combine these local paths with “outer” paths to guarantee a low enough min-distance to any
vertex in the graph. In [3], these outer paths were found by using a clever choice of intervals;
our algorithm instead applies binary search to find sets which can be used as jumping-off
points for the outer paths, allowing us to shorten the lengths of these paths and also allowing
us to approximate all min-eccentricities, not only min-radius. Our (k + δ)-approximation
algorithm is achieved by recursively running our approximation algorithm on the intervals
instead of running local APSP, which allows us to improve the runtime.

For sparse graphs, Abboud, Vassilevska W., and Wang [3] already showed that a (2 − δ)-
approximation for min-radius needs Ω(m2−o(1)) time under the Hitting Set Conjecture, so
our 2-approximation algorithm is conditionally tight for sparse graphs. We show that the
approximation factor of our algorithm is conditionally tight for the dense case as well by
reducing Triangle Detection to (2 − δ)-approximation of min-radius for any δ > 0. The best
running time for Triangle Detection in n-node graphs is conjectured to be Ω(nω−o(1)) by
many papers (see for example [1, 10]), where ω < 2.37286 [6] is the exponent of fast matrix
multiplication. Note that, since m = O(n2), our algorithm runs in Õ(n7/3) time, which
is faster than O(nω) for the current best bound on ω. Since the algorithm of Theorem 1
is combinatorial, if we restrict to combinatorial algorithms then there is no truly subcubic
(meaning O(n3−ϵ) for ϵ > 0) time (2 − δ)-approximation algorithm for min-radius provided
that there is no truly subcubic time combinatorial algorithm for Boolean matrix multiplication
(BMM). This is because BMM and Triangle Detection are subcubic equivalent [32]. Note
that our reduction graph in Theorem 2 is an unweighted DAG.

▶ Theorem 2. If there is a T (n, m)-time algorithm for (2−δ)-approximation of min-radius in
O(n)-node Õ(m)-edge DAGs for some δ > 0, then there is an Õ(T (n, m)+m)-time algorithm
for Triangle Detection on graphs with n nodes and m edges.

▶ Corollary 3. Assuming the best algorithm for Triangle Detection runs in time Ω(nω−o(1)),
there is no algorithm for (2 − δ)-approximation of min-radius in n-node dense DAGs that
runs in time O(nω−ϵ) for any δ, ϵ > 0.

Moreover, there is no O(n3−ϵ)-time combinatorial algorithm for (2 − δ)-approximation of
min-radius in n-node dense DAGs with ϵ, δ > 0 if there is no O(n3−ϵ′)-time combinatorial
algorithm for BMM with ϵ′ > 0.

Improving the running time using Fast Matrix Multiplication

In DAGs with small integer edge weights, we further improve the running times for all k in
Theorem 1 by applying a result of Zwick in [36] on the runtime of APSP in such graphs. We
describe our result in more detail in Section 2. In particular, in DAGs with constant integer
edge weights, including unweighted DAGs, our result in the case k = 2 is as follows:
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▶ Theorem 4. For every δ > 0, there is an Õ(min(m
√

n/δ, m0.605n/δ))-time (2 + δ)-
approximation algorithm for min-eccentricities in DAGs with constant integer edge weights.

There is an Õ(min(m
√

n, m0.605n))-time 2-approximation algorithm for min-radius in
DAGs with constant integer edge weights.

Min-Diameter
We obtain a 3/2-approximation algorithm for min-diameter in unweighted DAGs, where the
approximation factor is conditionally optimal in dense graphs. Specifically, our algorithm
improves on the standard APSP runtime for any graph with m = ω(n1+o(1)) edges. This
is the first known 3/2-approximation algorithm for min-diameter in dense DAGs that runs
faster than the best constant factor approximation algorithm for APSP, which runs in Õ(nω)
time in unweighted directed graphs [36].

▶ Theorem 5. There is an O(m0.414n1.522 + n2+o(1))-time 3/2-approximation algorithm for
min-diameter in unweighted DAGs.

This algorithm relies on the sparse matrix multiplication algorithm of Yuster and
Zwick [35]. In dense graphs with m = O(n2), its runtime is O(n2.350). In relatively sparse
graphs, with m = O(n1.154+o(1)), the second term dominates, so the runtime is O(n2+o(1)).

Our techniques, which mix known diameter techniques with sparse matrix multiplication,
are informally as follows: We first construct a covering set, which will intersect any sufficiently
large set. We run BFS from all vertices in the covering set, and check whether any min-
distances found were large. If not, then for each vertex u, we will define a set of vertices that
are relatively “close” to u on its right; if this set is large it will intersect the covering set,
allowing us to find paths from u to some vertices to its right, using a “close” vertex in the
covering set as a jumping-off point. The remaining vertices w, for which this method did
not construct a u → w path, must have the property that any u → w path must intersect a
relatively small subset of the set of vertices “close” to u (note that this set may have been
small to begin with, in which case we can skip the previous step). Symmetrically, for each
vertex w we can construct the corresponding relatively small subset of vertices “close” to w

on its left, and then to bound the min-distance between u and w we check whether these
two small subsets share a vertex in common. We use sparse matrix multiplication to detect
this set intersection.

The conditional lower bound of [3] says that if the Orthogonal Vectors Conjecture is true
then min-diameter cannot be (3/2 − δ)-approximated in truly subquadratic time in sparse
graphs. There is no known 3/2-approximation algorithm for min-diameter on DAGs that
works faster than APSP, neither for dense graphs nor for sparse graphs. So the question
is: Is 3/2 the right bound for inapproximability of min-diameter in DAGs? We answer this
question in the affirmative for dense DAGs. Theorem 5 gives the first 3/2-approximation
algorithm that works faster than APSP, and it is optimal conditioned on high dimensional
OV using the same reduction as [3]. High dimensional OV can be used for obtaining lower
bounds for dense graphs. In high dimensional OV, the dimension of the vectors can be as
big as O(n), and using a simple reduction to Boolean matrix multiplication, the best known
algorithm for it is in time O(nω).

High dimensional OV gives a conditional lower bound of Ω(nω−o(1)) time for (3/2 − δ)-
approximation of min-diameter for any δ > 0. Our algorithm gives an upper bound of
O(n2.350) for m = Θ(n2), which is faster than O(nω) for the current best bound on ω. We
note while we provide tight results for dense DAGs, the gap between the lower bound and
upper bound for computing min-diameter on sparse DAGs is still open.
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1.2 Preliminaries
All graphs in this paper are directed graphs. Given a graph G, n denotes the number of
vertices and m denotes the number of edges. We will assume m ≥ n − 1 since otherwise all
min-eccentricities are infinite, a case that is easily checked. All edge weights are assumed
to be nonnegative and polynomial in n; if wmax is the maximum edge weight and wmin

is the minimum edge weight, we let M = max{wmax, 1/wmin}. We write G[S] to denote
the subgraph of G induced by vertex set S. For a vertex v, we write N in

D (v) (respectively,
Nout

D (v)) to denote the set of vertices u such that d(u, v) ≤ D (respectively, d(v, u) ≤ D).
For v ∈ V and W ⊆ V , we define dmin(W, v) = dmin(v, W ) as minw∈W dmin(v, w), and

we define the min-eccentricity of W as ϵ(W ) = maxv∈V dmin(W, v).
Given two sets U, W ⊆ V , if every u ∈ U appears prior to (respectively, after) every

w ∈ W in a topological ordering of the vertices of G, we say that U is the left (respectively,
right) of W with respect to the topological ordering. When U or W consists of a single
vertex {x}, we omit the brackets. If W ⊆ U ⊆ V , we denote the subset of vertices in U

that lie to the left (right) of W by LU (W ) (respectively, RU (W )). If U = V , we omit the
subscript. A vertex set W is called topologically consecutive with respect to a topological
ordering if its vertices are consecutive; i.e., if W = V \ (L(W ) ∪ R(W )). In general, the
relevant topological ordering will be clear, and we will omit reference to it.

Let ω(1, r, 1) be the exponent of the runtime of multiplying n×nr by nr ×n matrices. Let
ω = ω(1, 1, 1) be the square matrix multiplication exponent. [6] showed that ω < 2.37286.

For specifying lower bounds, we use the following problems with their corresponding
running time conjectures.

Orthogonal Vectors (OV)

Given two lists A, B of n d-dimensional Boolean vectors, determine whether there are vectors
a ∈ A and b ∈ B such that a and b are orthogonal; i.e. there is no i ∈ [d] such that the ith
bits of both a and b are 1. When d = Ω(log n), the OV Conjecture [31] says that there is
no algorithm that can solve the OV problem in time O(n2−ϵ) for any fixed ϵ > 0. The OV
Conjecture is implied by the Strong Exponential Time Hypothesis (SETH) [31].

High Dimensional Orthogonal Vectors

In high dimensional OV, the dimension d can be as high as O(n). There is a simple reduction
from high dimensional OV to matrix multiplication: Given two lists A = {a1, . . . , an}, B =
{b1, . . . , bn} of d-dimensional Boolean vectors, let M and N be two n × d and d × n Boolean
matrices, where M [i, j] = 1 if ai is 1 in bit j, and N [j, k] = 1 if bk is 1 in bit j, for j = 1, . . . , d

and i, k = 1, . . . , n. If MN has a zero entry, the vector pair corresponding to that entry are
orthogonal. This gives a O(nω) algorithm for high dimensional OV, and there are no faster
algorithms known for it up to polylogarithmic factors. Moreover, OV is equivalent to the
problem of distinguishing diameter 2 vs 3 [28], and so high dimensional OV is equivalent
to distinguishing diameter 2 vs 3 in dense graphs. A well-known open problem is whether
diameter 2 vs 3 can be solved faster than matrix multiplication (see for example [5]). Hence,
it is conjectured that high dimensional OV cannot be solved in O(nω−ϵ) time for any ϵ > 0.

Hitting Set (HS)

Given two lists A, B ∈ {0, 1}d, determine whether there is a vector a ∈ A that is not
orthogonal to any vector b ∈ B. When d = Ω(log n), the Hitting Set Conjecture [3] says that
there is no algorithm that can solve the Hitting Set problem in time O(n2−δ) for any fixed
δ > 0.
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Boolean Matrix Multiplication (BMM)

We abbreviate multiplying two Boolean n × n matrices over the (AND, OR)-semiring by
BMM. It is conjectured that there is no combinatorial algorithm solving BMM in O(n3−ϵ)
time for any fixed ϵ > 0, and the best algebraic algorithm for it is in O(nω+o(1)) time for
ω < 2.37286 [6].

Triangle Detection [32]

Given a tripartite graph G(A, B, C, E) where A, B and C are the three parts of the vertex
set and E is the edge set, determine if there are a ∈ A, b ∈ B, and c ∈ C such that abc is
a triangle. Vassilevska W. and Williams [32] showed that considering only combinatorial
algorithms, Triangle Detection and BMM are subcubic equivalent, meaning that a truly
subcubic combinatorial algorithm in one results in a truly subcubic combinatorial algorithm
in the other. Moreover, the best (algebraic) algorithm for Triangle Detection is through
BMM. Thus the best running time for Triangle Detection is O(nω), and it is conjectured (see
for example [1, 10]) that there is no algorithm faster than O(nω) for detecting a triangle.

2 Min-Eccentricities and Min-Radius

We present two different versions of our min-eccentricity and min-radius approximation
algorithms, one which works in general weighted DAGs and is combinatorial and one with a
lower runtime upper bound which only works in DAGs with small integer edge weights. The
algorithms are identical except in how they compute APSP; the former computes APSP in
the standard combinatorial way, while the latter uses Zwick’s fast APSP algorithm for graphs
with small integer edge weights. Here, µ(t) is the value satisfying ω(1, µ(t), 1) = 1 + 2µ(t) − t.

▶ Theorem 6 ([36]). APSP can be computed in O(n2+µ(t)) time in directed graphs with
integer edge weights bounded by nt, where t < 3 − ω.

Both versions of our algorithms use a common technique to compute min-distances to
and from a vertex set. Given a graph G and a vertex set W ⊆ V , we construct a graph G′ by
adding a vertex y and adding weight-0 edges (w, y) for all w ∈ W . We then run Dijkstra into
y in G′. We refer to this procedure as running Dijkstra into W . The symmetric procedure, in
which the weight-0 edges point out of an added vertex y′ and we run Dijkstra out of y′, will be
referred to as running Dijkstra out of W . Then for x ∈ V , dmin(x, W ) = min(d(x, y), d(y′, x)),
a value which we can now compute. We added |W | edges and ran Dijkstra in G′, so in total
the procedure takes time O(|W | + m log n) = O(m log n).

Our min-eccentricity and min-radius approximation algorithms will be based on the
following proposition. Let ck(τ) = 2k−2(1+τ)

2k−1(1+τ)−τ
.

▶ Proposition 7. For any k ≥ 2, there is an O(min(mn1/k log2 n, m2k−1/(2k−1)n log2 n))-time
algorithm which takes as input a DAG G and a parameter r, and certifies for each vertex v

that ϵ(v) > r or that ϵ(v) ≤ kr.
In DAGs with integer edge weights bounded by nt, where t < 3 − ω, there is a version of

this algorithm which runs in O(min(mn1/k log2 n, mck(µ(t))n log2 n))-time.

In [23], Le Gall and Urrutia showed that µ = µ(0) < 0.529. Thus in DAGs with constant
integer edge weights (so that t = 0), the runtime of the algorithm of Proposition 7 is
Õ(min(mn1/k, mck(0.529)n)) time. When k = 2, ck(0.529) < 0.605, leading to the special case
stated in Theorem 4.
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The algorithms of Proposition 7 will be described and proven correct in Subsection 2.1,
and their runtimes will be analyzed in Lemma 13 in Subsection 2.2. Then by binary searching
over r ∈ [0, Mn], these algorithms can be used to obtain the min-eccentricity approximation
algorithms of Theorems 8 and 9 and the min-radius approximation algorithms of Theorems 10
and 11.

▶ Theorem 8. Let k ≥ 2 be an integer. For any δ > 0, there is an Õ(min(mn1/k/δ,

m2k−1/(2k−1)n/δ))-time algorithm which, given a DAG G, outputs for every vertex v ∈ V an
estimate ϵ′(v) such that ϵ(v) ≤ ϵ′(v) < (k + δ)ϵ(v).

▶ Theorem 9. Let k ≥ 2 be an integer. For any δ > 0, there is an Õ(min(mn1/k/δ,

mck(µ(t))n/δ)) time algorithm which, given a DAG G with integer edge weights bounded by
nt for t < 3 − ω, outputs for every vertex v ∈ V an estimate ϵ′(v) such that ϵ(v) ≤ ϵ′(v) <

(k + δ)ϵ(v).

Proof. First we have all the vertices as “unmarked.” We do binary search in [0, Mn] by
starting with r = 1 in Proposition 7 and incrementing r′ = (1 + δ/k)r at each step. At each
step, we run the algorithm given in Proposition 7, and for each unmarked v that is reported
as having ϵ(v) ≤ kr, we set ϵ′(v) = kr and mark v. At the end we set ϵ′(v) = ∞ for any
remaining unmarked vertices.

Suppose a vertex v was marked at the step corresponding to r. Then r/(1 + δ/k) <

ϵ(v) ≤ kr, so ϵ(v) ≤ ϵ′(v) = kr < (k + δ)ϵ(v). The binary search adds an O(log1+δ/k Mn) =
O((log Mn)/δ) factor to the runtime. Since log Mn is polylogarithmic in n, this gives the
time bounds stated. ◀

▶ Theorem 10. Let k ≥ 2 be an integer. There is an Õ(min(mn1/k, m2k−1/(2k−1)n))-time
algorithm which, given a DAG G, outputs an approximation R′ such that if R is the min-radius
of G, R ≤ R′ < kR.

▶ Theorem 11. Let k ≥ 2 be an integer. There is an Õ(min(mn1/k, mck(µ(t))n))-time
algorithm which, given a DAG G with integer edge weights bounded by nt for t < 3 − ω,
outputs an approximation R′ such that if R is the min-radius of G, R ≤ R′ < kR.

Proof. We do binary search in [0, Mn], running the algorithm given by Proposition 7 at each
step as follows: We keep two numbers Ai and Bi at step i which are the lower bound and
upper bound to the min-radius R. At step 1 we have A1 = 0 and B1 = Mn. At step i, we
have Ai, Bi such that Ai < R ≤ Bi. Let Ci = Bi − kAi. If Ci is smaller than the minimum
positive edge weight, then any path of length at most Bi must have length at most kAi, so
in this case we terminate the binary search and let R′ = kAi. We now have R ≤ R′ < kR as
desired.

If Ci is not smaller than the minimum positive edge weight, let r = Ai + Ci

k+1 , and run
the algorithm given by Proposition 7. If the algorithm reports that there is a vertex v with
ϵ(v) < kr, then let Ai+1 = Ai and Bi+1 = kr = kAi + k

k+1 Ci, as we have the min-radius is
between Ai+1 and Bi+1. Note that in this case Ci+1 = Bi+1 − kAi+1 = k

k+1 Ci. Otherwise,
if the algorithm reports that every vertex has ϵ(v) ≥ r, then the min-radius is at least
Ai+1 := r = Ai + Ci

k+1 and is less than Bi+1 := Bi. In this case Ci+1 = Bi − k(Ai + Ci

k+1 ) =
k

k+1 Ci. Thus, at each step, the size of Ci shrinks by a factor of k
k+1 . Hence, for constant k,

the algorithm will in O(log Mn) steps find bounds Ai, Bi such that Ci is smaller than the
minimum positive edge weight. ◀
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2.1 Algorithm Description and Correctness
We now describe and prove the correctness of the algorithm of Proposition 7 by induction
on k. For convenience, we use k = 1 as a base case; in this case we simply run an APSP
computation. Our algorithm for k > 1 is as follows.

First, topologically sort the vertices and partition them into p consecutive sets W1, . . . Wp

of size |Wi| = n/p. The runtime-minimizing value of p will be chosen later.
For each i, run Dijkstra to and from Wi. If ϵ(Wi) > r, then we can report ϵ(w) > r for

all w ∈ Wi. Otherwise, ϵ(Wi) ≤ r. In this case, we will apply Claim 12, below, twice. Recall
that for S ⊆ W ⊆ V , LW (S) is the set of vertices in W that are to the left of all vertices in
S in the topological ordering.

▷ Claim 12. Let W ⊆ V be a topologically consecutive subset of a topologically ordered
DAG G, and let r be a parameter such that ϵ(W ) ≤ r. In O(m log2 n) time, one can find a
nonempty topologically consecutive subset S ⊆ W such that:
(a) ϵ(S) ≤ r.
(b) If w ∈ LW (S), ϵ(w) > r.
(c) If |S| > 1, all vertices s ∈ S satisfy ϵ(s) > r.

Proof. We will use a binary search argument to find S. We will induct on an index j. Let
S0 = W . Assume that Sj ⊆ W is topologically consecutive, that ϵ(Sj) ≤ r, and that for
every w ∈ LW (Sj), ϵ(w) > r. These all hold for j = 0. If Sj = {s} consists of a single vertex,
let S = Sj ; then we are done.

Otherwise, let Sj
L be the subset of Sj containing its first |Sj |/2 vertices in the topological

ordering and let Sj
R = Sj \ Sj

L. So Sj
L and Sj

R are the left and right halves of Sj , respectively;
hence both Sj

L and Sj
R are topologically consecutive. See Figure 1.

Figure 1 Sj is partitioned into two halves, Sj
L and Sj

R.

Run Dijkstra from Sj
L and from Sj

R. If either of these sets has min-eccentricity at most r,
we will continue the induction: If ϵ(Sj

L) ≤ r, we let Sj+1 = Sj
L. Then LW (Sj+1) = LW (Sj),

so for every w ∈ LW (Sj+1), ϵ(w) > r. Alternatively, if ϵ(Sj
L) > r but ϵ(Sj

R) ≤ r, we let
Sj+1 = Sj

R. Then LW (Sj+1) = LW (Sj) ∪ Sj
L, so for every w ∈ LW (Sj+1), ϵ(w) > r.

Otherwise, ϵ(Sj
L) > r and ϵ(Sj

R) > r. In this case we halt the induction and let S = Sj .
Every w ∈ LW (Sj) ∪ Sj satisfies ϵ(w) > r, so S has the properties desired.

At each step, the size of the set Sj halves, so there are at most log |W | ≤ log n iterations.
In each iteration, we perform a constant number of Dijkstras, so the runtime is O(m log2 n).

◁

For each i such that ϵ(Wi) ≤ r, let Si be the subset constructed by applying Claim 12
to the set W = Wi. For each w ∈ LWi

(Si), we report that ϵ(w) > r; this holds by
Claim 12b. If Si consists of a single vertex {s}, we can determine that for any v ∈ L(Wi),
dmin(v, s) ≤ ϵ(s) ≤ r ≤ kr, by Claim 12a. Otherwise, |Si| > 1, so we report that ϵ(s) > r for
all s ∈ Si; this holds by Claim 12c.
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Figure 2 A representation of the v → w and w → v′ paths, via the sets Si and S′
i constructed

with Claim 12. The outer subpaths are of length ≤ r, and the inner subpaths are of length ≤ (k−1)r.

Using a recursive application of our algorithm to the graph Gi = G[Wi], we can certify, for
every vertex w ∈ Wi, that ϵGi

(w) > r or that ϵGi
(w) ≤ (k − 1)r. Consider any w ∈ RWi

(Si).
If we determined that ϵGi(w) > r, we report that ϵ(w) > r; this holds since ϵ(w) ≥ ϵGi(w).
Otherwise, consider any v ∈ L(Wi). Since ϵ(Si) ≤ r, there is some s ∈ Si such that
dmin(v, s) = d(v, s) ≤ r. Then since ϵGi

(w) ≤ (k − 1)r and since w is to the right of s in
the topological ordering, we have dmin(v, w) ≤ d(v, s) + d(s, w) ≤ r + (k − 1)r = kr. See
Figure 2.

Thus, our algorithm has certified for each w ∈ Wi that ϵ(w) > r or that dmin(v, w) ≤ kr

for all v ∈ L(Wi). By a symmetric argument, we can construct the set S′
i obtained by

applying Claim 12 to the graph G with the edges reversed; see Figure 2. Then as above we
can determine for each w ∈ Wi that ϵ(w) > r or that dmin(w, v′) ≤ kr for all v′ ∈ R(Wi).
Since Wi is a topologically consecutive set, V \ Wi = L(Wi) ∪ R(Wi). So for any w ∈ Wi, if
we determine that dmin(w, v) ≤ kr for all v ∈ L(Wi) and for all v ∈ R(Wi) we report that
ϵ(w) ≤ kr; otherwise we report ϵ(w) > r.

2.2 Runtime Analysis
In this section we analyze the runtime of the algorithm of Proposition 7, and we give full
descriptions of how to prove Theorems 8-11 from Proposition 7 using binary search.

Recall that ck(τ) = 2k−2(1+τ)
2k−1(1+τ)−τ

.

▶ Lemma 13. The algorithm of Proposition 7 runs in time O(min(mn1/k log2 n,

m2k−1/(2k−1)n log2 n)) assuming APSP computations are done in Õ(mn) time.
On graphs with integer edge weights bounded by nt for t < 3 − ω, the algorithm runs

in time O(min(mn1/k log2 n, mmck(µ(t))
n log2 n)), assuming APSP computations are done in

O(n2+µ(t)) time using Zwick’s fast APSP algorithm [36].

Proof. To simultaneously analyze both versions of the algorithm, our algorithm’s runtime
will be described in terms of a placeholder τ , such that APSP computations within the
algorithm are done in O(n2+τ log n) time. To obtain the runtime bound for general weighted
DAGs, we will let τ = 1, and note ck(1) = 2k−1

2k−1 . To obtain the runtime bound for DAGs
with integer edge weights bounded by nt for t < 3 − ω, we will let τ = µ(t).

Topologically sorting the graph takes O(m log n) time which is absorbed into the final
runtime.

In order to use k = 1 as a base case, our inductive hypothesis will assume a slightly
weaker claim about the runtime: in the inductive step for k, we will assume there is an
O(min(mn1/(k−1) log2 n, n2ck−1(τ)+1 log2 n))-time algorithm which certifies for each v ∈ V

that ϵ(v) > r or that ϵ(v) ≤ (k −1)r. Note that n2ck−1 ≥ mck−1 . Then in the base case where
k = 1, APSP takes time O(min(mn log n, n2+τ log n)), satisfying the inductive hypothesis.
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Consider k > 1. Running Dijkstra to and from Wi for each i takes O(mp log n). It takes
time O(mp log2 n) to apply Claim 12 twice for each i, to construct sets Si and symmetric
sets S′

i (constructed in the same way as the sets Si but with left and right swapped, pictured
in Figure 2).

We also do recursive calls of our algorithm on at most p subgraphs, induced by sets Wi.
Below, we analyze the runtime of the recursive calls in two different ways, giving us two
upper bounds on the algorithm’s runtime.

Analysis 1. Let mi = |E(G[Wi])|; then note
∑

i mi ≤ m. For each i, the recursive
call on Wi takes time O(mi(n/p)1/(k−1) log2 n), so in total the recursive calls take time
O(m(n/p)1/(k−1) log2 n). Let p = n1/k, so that mp = m(n/p)1/(k−1). Then the runtime is
O(mn1/k log2 n).

Analysis 2. Since |Wi| = n/p, a recursive call on G[Wi] takes time O((n/p)2ck−1(τ)+1 log2 n).
We do at most p such calls, so the total runtime of the recursive calls is
O((n/p)2ck−1(τ)n log2 n). Now, we choose p so that mp = (n/p)2ck−1(τ)n. Then
m = (n/p)2ck−1(τ)+1. Recall that ck(τ) = 2k−2(1+τ)

2k−1(1+τ)−τ
and note that 2ck−1(τ) + 1 =

2k−1(1+τ)−τ
2k−2(1+τ)−τ

= 2ck−1(τ)
ck(τ) . Thus, mck(τ) = (n/p)2ck−1(τ). So the runtime of the algorithm is

O((n/p)2ck−1(τ) · n log2 n) = O(mck(τ)n log2 n). Since m = O(n2), this satisfies the inductive
hypothesis. ◀

2.3 Lower Bounds
In this section, using an essentially linear time reduction, we reduce Triangle Detection to
(2 − δ)-approximation of min-radius.

▶ Reminder of Theorem 2 . If there is a T (n, m)-time algorithm for (2−δ)-approximation of
min-radius in O(n)-node Õ(m)-edge DAGs for some δ > 0, then there is an Õ(T (n, m) + m)-
time algorithm for Triangle Detection on graphs with n nodes and m edges.

Proof. We are going to use two gadgets from previous works:
DAG gadget [3]: Given a set X of n nodes v1, . . . , vn and a constant integer parameter
t ≥ 2, the gadget creates a DAG DGt(X) with at most O(n) nodes and O(n log n) edges
such that in the topological order of DGt(X), vi < vi+1, and for any two nodes of DGt(X)
x, y where x < y in the topological order, d(x, y) ≤ t + 1.
Connectivity gadget [4]: Let X = {v1, . . . , vn}, and let X ′ = {v′

1, . . . , v′
n} be a copy of X,

where both X and X ′ are independent sets. Then we can add a connectivity gadget U(X)
along with edges from X to U(X) and from U(X) to X ′, such that |U(X)| = O(log n),
for all i ̸= j we have d(vi, v′

j) = 2, and there is no path from vi to v′
i.

Now let G = (A, B, C, EG) be an instance of Triangle Detection, with n nodes and m

edges. We create a DAG G∗ such that if G has a triangle (YES case), the min-radius of G∗ is
t + 1, and if G doesn’t have a triangle (NO case), the min-radius of G∗ is 2t. We let t be an
integer such that 2 − δ/2 < 2t

t+1 , so that a fast (2 − δ)-approximation algorithm is also a fast
( 2t

t+1 − δ/2)-approximation algorithm, and hence it can distinguish min-diameter t + 1 vs 2t.
We define G∗ as follows: G∗ has A, B, and C as part of its vertex set. Let A′

1, A′
2, . . . , A′

t+1
be copies of A. Add EG(A, B) to G∗ with edges directed from A to B, and add EG(B, C)
with edges directed from B to C. For any c ∈ C and a ∈ A, add an edge from c to a′ ∈ A′

2 if
a and c are attached in G, where a′ is the copy of a in A′

2. For each i = 1, . . . , t, connect the
copy of a in A′

i to the copy of a in A′
i+1 for all a ∈ A.
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A

B

C

A′
1 A′

2 A′
3

A′
t+1

U1 U2 Ut = U(A)
x1

xt

DAG(A) y

Figure 3 Graph G∗ created from the Triangle Detection instance G. Blue edges are edges in G,
red edges are between two nodes that are copies of the same vertex. Purple edges are part of the
connectivity gadget. Dashed lines are subpaths.

Now we add the two gadgets. Add the connectivity gadget U(A) between A and A′
1. Add

two copies of DGt(A) sharing A, and denote the union of these copies by DAG(A). Also
add a node y, and add edges from all nodes in A to y; this guarantees that the center of G∗

must be in DAG(A).
To make all nodes in A at distance t + 1 to A′

1, make t − 1 copies of U(A), U1, . . . , Ut−1.
For each i = 1, . . . , t − 1, connect the copy of u in Ui to the copy of u in Ui+1, for any
u ∈ U(A), where Ut = U(A). Add edges from all nodes in A ∪ B ∪ C to all nodes in U1.

To make all nodes in A at distance t + 1 to B and C, let x1, . . . , xt be a path of length
t − 1. Connect all nodes of A to x1, and connect xt to all nodes of B ∪ C. See Figure 3
for the construction. Note that G∗ is a DAG, with the order of sets of vertices being
DAG(A), y, x1, . . . , xt, B, C, U1, . . . , Ut−1, U(A), A′

1, . . . , A′
t+1. Moreover, G∗[A∪B ∪C ∪A2]

has m edges corresponding to the original edges of G∗, and besides those we only added
O(n log n) edges to G∗. So G∗ has O(n) nodes and O(m + n log n) edges.

We will show that if the Triangle Detection instance is a YES instance, then there is a
node a ∈ A such that ϵ(a) = t + 1. If the Triangle Detection instance is a NO instance, then
we show that for all nodes in G∗, their min-eccentricity is at least 2t.

YES case. Let abc be a triangle in G. We show that ϵ(a) = t+1. Note that dmin(a, ā) ≤ t+1
for all ā ∈ DAG(A). We already know that d(a, s) ≤ t + 1 for any s ∈ B ∪ C ∪ {x1, . . . , xt, y}.
For any u ∈ Ui for i ≤ t + 1, d(a, u) ≤ t + 1 using the path going through U1, . . . Ui−1. Since
for any z′ ∈ A′

1, there is a u ∈ U(A) that has an edge to z′, we have d(a, z′) ≤ t + 1. Now for
all z′ ∈ A′

2 where z′ is a copy of z ∈ A and z ̸= a, we have d(a, z′) = 3 through U(A) and A′
1

(using the edges of the connectivity gadget). For z = a, using the triangle edges going from A

to B to C, we have that d(a, z′) = 3. So for all z′ ∈ A′
2 ∪ . . . ∪ A′

t+1, we have d(a, z′) ≤ t + 1.

NO case. Suppose that there is no triangle in G. First, note that the min-eccentricities
of the vertices outside DAG(A) are infinite, because there is no path between them and y.
Moreover, if z ∈ DAG(A) \ A, it has a copy z′ ∈ DAG(A) \ A (in the other copy of DGt(A)),
and there is no path between z and z′. This is because this path must go through A, and
since DAG(A) consists of two copies of DGt(A) sharing A, the set of nodes in A that z has
a path to (from) is exactly the same as the set of nodes in A that z′ has a path to (from).
So there is no a ∈ A such that that z has a path to a and z′ has a path from a.

Now it remains to compute the min-eccentricities of the vertices in A. Let a ∈ A, and
let a′

t+1 ∈ A′
t+1 be the copy of a. We show that d(a, a′

t+1) = 2t. Let P be a shortest path
from a to a′

t+1. First note that any path from a to a′
t+1 must go through a′

2 ∈ A′
2, where a′

2



M. Dalirrooyfard and J. Kaufmann 60:13

is a copy of a, and we have d(a′
2, a′

t+1) = t − 1. We also know that there is no path from
a to a′

2 using the edges from A to U(A), because this path would need to contain a path
between a and a′

1 ∈ A1 in G∗[A ∪ U(A) ∪ A′
1], and from the construction of the connectivity

gadget there is no such path. If P does not use any C × A′
2 edge, then the path must go

through Ui for all i, and hence it is of length 2t. So if the min-eccentricity of a is smaller
than 2t, the path P uses a C × A′

2 edge ca′
2 for some c ∈ C. If x1 is on the ac path, then

the path goes through xi for all i, and hence it is of length 2t. Then x1 is not on the path,
so the ac path must go through B. In particular, there is a b ∈ B such that ab, bc ∈ E(G∗).
Since ca′

2 ∈ E(G∗), this implies that abc is a triangle in G, which is a contradiction. So
ϵ(a) ≥ 2t. ◀

3 Min-diameter

Our min-diameter approximation algorithm relies on Yuster and Zwick’s fast sparse matrix
multiplication algorithm. Here, we define α = max{0 ≤ r ≤ 1 | ω(1, r, 1) = 2} and β = ω−2

1−α .

▶ Theorem 14 ([35]). If A and B are n by n matrices with at most l nonzero entries each,
then A and B can be multiplied in O(l

2β
β+1 n

2−αβ
β+1 + n2+o(1)) time.3

This sparse matrix multiplication algorithm will be used to prove the following proposition.

▶ Proposition 15. There is an O(m
2β

3β+1 n
4β+2−αβ

3β+1 +o(1) +n2+o(1))-time algorithm which, given
an unweighted DAG G and a parameter D′, reports that the min-diameter D of G satisfies
D ≤ 3D′

2 or that it satisfies D > D′.

The algorithm of Proposition 15 will be described and proven to work in subsection 3.1,
and its runtime will be analyzed in Lemma 18 in subsection 3.2. Then Proposition 15 allows
us to obtain the min-diameter approximation algorithm given in Theorem 16 below.

▶ Theorem 16. There is an O(m
2β

3β+1 n
4β+2−αβ

3β+1 +o(1)+n2+o(1))-time algorithm which, given an
unweighted DAG G, outputs an estimate D0 for its min-diameter D such that D ≤ D0 < 3D

2 .

Proof. To obtain our approximation D0, we binary search over D′ in [0, n] by applying the
algorithm of Proposition 15 logarithmically many times; note that polylogarithmic factors
are no(1) so they do not affect the runtime bound. Let C be the smallest value found in the
binary search such that the algorithm reports that D ≤ 3C

2 ; then D > C − 1. Let D0 = 3C
2 .

Then D ≤ D0 < 3D
2 , as desired. ◀

Note that since α > 0.31389 [23] and ω < 2.37286 [6], we can use β ≃ 0.5435. This gives
the runtime of O(m0.414n1.522 + n2+o(1)) stated in Theorem 5.

3.1 Algorithm Description and Correctness
Our algorithm takes as input an unweighted DAG G, an integer D′, and a parameter ϵ ∈ [0, 1],
and reports that D > D′ or that D ≤ 3D′

2 . (The runtime-minimizing value of ϵ will be
determined later.)

3 To be precise, given known bounds α ≥ a, ω ≤ c, one can define b = c−2
1−a , and then equivalents of

Theorem 14 hold for any such pair of values a, b, not just for the “true” values α, β. This is implicit
in [35].
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If at any point, a BFS finds a pair of vertices at min-distance more than D′, the algorithm
reports that D > D′; hence in what follows we will assume that this does not occur. We
initially have all pairs of vertices “unmarked,” and mark the pairs for which we know that
there is a path from one to the other of length at most 3D′

2 .
The algorithm first takes two preliminary steps: it topologically sorts the graph, and it

constructs for each vertex two topologically sorted lists, one of its in-neighbors and one of its
out-neighbors.

Our algorithm will then use the greedy set cover algorithm, described in the following
lemma. This lemma, and a related randomized version, are standard techniques used in
graph distance algorithms (see for example [5, 28, 13, 3]). A proof may be found in [29].

▶ Lemma 17. Let |V | = n, let p = O(n), and let X1, . . . Xp ⊆ V be sets of size |Xi| ≥ nϵ

for ϵ ∈ [0, 1]. Then there is an O(n1+ϵ)-time algorithm which constructs a set S ⊆ V of size
Õ(n1−ϵ) such that S ∩ Xi ̸= ∅ for all i.

For any u ∈ V , if |Nout
D′/2(u)| < nϵ let Xu = Nout

D′/2(u) and otherwise let Xu be the
left-most nϵ vertices in Nout

D′/2(u). So in particular, |Xu| ≤ nϵ. We can compute Xu as
follows: we maintain a list of the ≤ nϵ left-most vertices we have found so far that are at
distance < D′/2 from u. At each step, for each vertex in the list, we consider its left-most
out-neighbor that is not yet in our set; we add the left-most such out-neighbor to the set. We
halt when there are no more such out-neighbors not in our set, or after adding nϵ vertices to
our set. Likewise, for any w ∈ V , let Yw = N in

D′/2(w) if |N in
D′/2(w)| < nϵ, and otherwise let Yw

consist of the right-most nϵ vertices in N in
D′/2(w). We can compute the sets Yw in a manner

symmetric to how we computed the sets Xu. Then we can use Lemma 17 to construct a set
S of size Õ(n1−ϵ) such that for all u having |Nout

D′/2(u)| ≥ nϵ, S ∩ Xu is nonempty, and for
all w having |N in

D′/2(w)| ≥ nϵ, S ∩ Yw is nonempty.
Run BFS into and out of every s ∈ S. We may assume that dmin(s, x) ≤ D′ for all

s ∈ S, x ∈ V .
We will construct matrices A and B with rows and columns indexed by vertices in V ,

as follows: For each vertex t ∈ Xu, let A[u, t] = 1. For each vertex t ∈ Yw, let B[t, w] = 1.
Multiply A and B using the sparse matrix multiplication algorithm of Theorem 14.

Now, we will consider any pair of vertices (u, w) where u is to the left of w, u ∈
R(N in

D′/2(w) ∩ S), and w ∈ L(Nout
D′/2(u) ∩ S). We have that (A · B)[u, w] > 0 if and only

if d(u, w) ≤ D′. Indeed, if d(u, w) ≤ D′, then there is some intermediate vertex t such
that d(u, x) ≤ D′/2 and d(x, w) ≤ D′/2. Suppose that t ̸∈ Xu. Then since Xu is defined
as the left-most nϵ vertices in Nout

D′/2(u), this implies that |Nout
D′/2(u)| > nϵ and hence that

|Xu| = nϵ. Then there is some s ∈ S ∩ Xu. Since t ̸∈ Xu, t is to the right of all vertices
in Xu, and in particular t is to the right of s. This implies t ̸∈ L(Nout

D′/2(u) ∩ S). But
since w ∈ L(Nout

D′/2(u) ∩ S) and t lies between u and w, this is a contradiction. Thus, t

must be in Xu, and by symmetry, t is in Yw. So A[u, t] = 1 and B[t, w] = 1, meaning
(A · B)[u, w] > 0. Likewise, if (A · B)[u, w] > 0, then there exists t ∈ Xu ∩ Yw such that
d(u, t) ≤ D′/2 and d(t, w) ≤ D′/2, so d(u, w) ≤ D′. Therefore, we will mark all pairs (u, w)
such that (A · B)[u, w] > 0.

Now, consider any u ∈ V and any w ̸∈ L(Nout
D′/2(u)∩S) to the right of u. We mark the pair

(u, w). If such a w exists, then there is some s ∈ Nout
D′/2(u)∩S such that s is to the left of or is

equal to w. By assumption, d(s, w) ≤ D′, so d(u, w) ≤ d(u, s) + d(s, w) ≤ D′/2 + D′ = 3D′

2 .
By a symmetric argument, for any w ∈ V and any u ̸∈ R(N in

D′/2(w) ∩ S) to the left of w, we
have that d(u, w) ≤ 3D′

2 , so again we mark any such pair (u, w). Thus, since we have assumed
that ϵ(s) ≤ 3D′

2 for all s ∈ S, the algorithm will mark all pairs of vertices u, w ∈ V except
those for which we have simultaneously that u ∈ R(N in

D′/2(w) ∩ S) and w ∈ L(Nout
D′/2(u) ∩ S).
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Finally, check whether there exists an unmarked pair (u, w). If so, report that D > D′.
Otherwise, report that D ≤ 3D′

2 .

3.2 Runtime Analysis

Here we analyze the runtime of the algorithm of Proposition 15.

▶ Lemma 18. The algorithm of Proposition 15 runs in time Õ(m
2β

3β+1 n
4β+2−αβ

3β+1 +o(1)+n2+o(1)).

Proof. Topologically sorting the graph takes O(m log n) time which is absorbed into the
final runtime. Constructing for each vertex topologically ordered lists of its in-neighbors and
out-neighbors can be done in time Õ(n2).

Computing the covering set S takes time Õ(n1+ϵ) and running BFS from its vertices
takes time O(n1−ϵm log n). Checking for each pair (u, w) whether u ∈ L(Nout

D′/2(u) ∩ S) and
w ∈ L(Nout

D′/2(u) ∩ S) can be done in Õ(n2) time.
For a fixed u, to compute Xu, we maintain a list of the at most nϵ left-most vertices

we have found that are at distance < D′/2 from u. For each vertex, we store its left-most
out-neighbor that is not yet in our set. At each step, we find the left-most such out-neighbor
of any vertex in the list; this takes time O(nϵ), and updating the list to reflect that this
out-neighbor has been added to our set takes time O(nϵ). At each step we add a vertex to
our set Xu, so there are at most O(nϵ) steps. Hence, constructing Xu for a fixed u takes
O(n2ϵ) time. Then constructing all sets Xu, Yw takes O(n1+2ϵ) time altogether.

Finally, note that there are at most nϵ 1s in each row of A, since we only set A[u, t] = 1
if t ∈ Xu. Thus, A contains at most n1+ϵ 1s. By symmetry, the same holds for B. Then
multiplying A and B can be done in time O(n(1+ϵ) 2β

β+1 + 2−αβ
β+1 +o(1) + n2+o(1)), using Yuster

and Zwick’s fast sparse matrix multiplication (Theorem 14).
Then the total runtime is:

Õ(n1−ϵm + n1+2ϵ + n(1+ϵ) 2β
β+1 + 2−αβ

β+1 +o(1) + n2+o(1))

Let γ be the largest value such that nγ = O(m). Let ϵ = αβ+(β+1)(γ−1)
3β+1 ; this value is

chosen because it sets the first and third terms in the above runtime equal (up to no(1) factors),
hence asymptotically minimizing their sum. Substituting the value of ϵ and simplifying, the
runtime of the algorithm is:

Õ(n
2β

3β+1 γ+ 4β+2−αβ
3β+1 +o(1) + n

2β+2
3β+1 γ+ β−1+2αβ

3β+1 + n2+o(1))

We note that 3β − 3αβ > 3(ω − 2) ≥ 0 > −1, giving:

4β + 2 − αβ > 2 + (β − 1 + 2αβ) ≥ 2γ + (β − 1 + 2αβ)

Thus, the first term of the above runtime dominates the second. Substituting nγ = O(m),
and noting that the polylogarithmic factors in the runtime are of order no(1), the runtime is
O(m

2β
3β+1 n

4β+2−αβ
3β+1 +o(1) + n2+o(1)), as desired. ◀
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Abstract
Consider a set P of points in the unit square U = [1, 0), one of them being the origin. For each point
p ∈ P you may draw an axis-aligned rectangle in U with its lower-left corner being p. What is the
maximum area such rectangles can cover without overlapping each other?

Freedman [18] posed this problem in 1969, asking whether one can always cover at least 50% of
U . Over 40 years later, Dumitrescu and Tóth [12] achieved the first constant coverage of 9.1%; since
then, no significant progress was made. While 9.1% might seem low, the authors could not find any
instance where their algorithm covers less than 50%, nourishing the hope to eventually prove a 50%
bound. While we indeed significantly raise the algorithm’s coverage to 39%, we extinguish the hope
of reaching 50% by giving points for which its coverage stays below 43.3%.

Our analysis studies the algorithm’s average and worst-case density of so-called tiles, which
represent the staircase polygons in which a point can freely choose its maximum-area rectangle. Our
approach is comparatively general and may potentially help in analyzing related algorithms.
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1 Introduction

The Lower-Left Anchored Rectangle Packing (LLARP) problem considers a finite
set P ⊆ U := [0, 1)2 of input points with (0, 0) ∈ P . The goal is to find a set of non-empty,
axis-aligned interior-disjoint rectangles (rp)p∈P with p being the lower-left corner of rp ⊆ U
and such that their total area

∑
p∈P |rp| is maximized.

This problem was first introduced by Freedman [18, Unsolved Problem 11, page 345]
in 1969. He asked the question whether, for any point set P , the rectangles can always be
chosen such that they cover at least 50% of U . It is easy to see that this is the best one can
hope for, since putting n equally spaced points along the ascending diagonal of U yields a
maximum coverable area of 1/2 + o(1) for n → ∞.

Over the years, the LLARP problem reoccurred in the form of geometric challenges [14]
and in miscellaneous books and journals about mathematical puzzles [19, 20, 21]. Still, it
took more than 40 years until the first constant lower bound was established: Dumitrescu
and Tóth [12] considered a natural greedy algorithm, called GreedyPacking, and proved
that it achieves a coverage of 9.1%.
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This caused a surge of interest in this old problem, resulting in numerous findings for
variants or special cases of the problem (see Section 1.1). Since then, no further significant
progress was made towards the original question1, and even the question whether a maximum
area covering can be found in polynomial time remains elusive.

While [12] themselves observed that “a sizable gap to the conjectured 50% remains”, they
were unable to find instances where their algorithm does not reach 50%. This led them and
others to conjecture a much better quality of their algorithm, making it a natural candidate to
answer Freedman’s question positively, albeit [12] also mentioned that “obtaining substantial
improvements probably requires new ideas”.

Our results indeed attest the greedy algorithm a much better coverage of 39%. However,
at the same time, we show that there are instances where the coverage stays below 43.3%.

1.1 Related Work
LLARP falls into the class of geometric packing problems, where a typical question is how
much of a container can be covered using a set of geometric shapes in two or more dimensions.
We concentrate on two-dimensional packing problems with rectangular containers and shapes.

Complexity of LLARP. The GreedyPacking algorithm by Dumitrescu and Tóth [12]
considers the input points step by step from top-right to bottom-left, always choosing the
maximum-area rectangle. They showed that this achieves the same worst-case coverage as an
algorithm called TilePacking. The latter partitions the unit square into staircase-shaped
tiles, one per input point, and chooses a maximal rectangle within each tile (see Section 2 for
the formal algorithm description).

While the complexity of LLARP remains unknown, [12] also showed that there is an
order of the input points for which the greedy algorithm achieves an optimal packing (albeit
of unknown value); how to find that ordering remains unclear. [7] studied the combinatorial
structure of optimal solutions, proving that the worst-case number of maximal rectangle
packings is exponential in the number of input points.

LLARP Variants. After [12], a series of papers studied special cases and variants of LLARP.
[6] allowed rectangles to be anchored in any of the four corners and showed that here the
worst-case coverage lies in [7/12, 2/3] and in [5/32, 7/27] if the rectangles are restricted to
squares. [4] showed that the union of all (possibly overlapping) squares covers at least 1/2 and
proved that finding a maximum corner-anchored square packing is NP-hard. Interestingly,
there is only one other LLARP-variant known to be NP-hard, namely if the rectangle’s
anchors lie in their center [5]. Other results consider specific classes of input points, like
points with certain ascending/descending structures [8] or points that lie on the unit square’s
boundary (for corner-anchored rectangles) [9].

Further Related Problems and Applications. Further related problems include the maxi-
mum weight independent set of rectangles problem [2, 10, 1] (which was used, e.g., in [5] to
derive a PTAS for center-anchored rectangle packings) or geometric knapsack [3, 17] and
strip packing problems [15]. In contrast to LLARP and its variants, the size of the objects
to be packed is typically part of the input and object placement is less constrained.

1 A very recent, still unpublished result slightly raised the greedy algorithm’s coverage to 10.39% [13].
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Note that LLARP-like problems are not of pure theoretical interest, but have applications
in, e.g., map labeling. Here, rectangular text labels must be placed under certain constraints
(e.g., labels might be scalable but require a fixed ratio and must be placed at a specific
anchor) within a given container. We refer to the relatively recent survey [16] for details.

1.2 Our Contribution and Techniques
We analyze the greedy algorithm TilePacking from [12] (formally described in Section 2).
From a high-level view, TilePacking partitions the unit square into staircase-shaped tiles,
each anchored at an input point, and chooses an area-maximal rectangle in each tile. A
natural way to analyze such an algorithm is to consider the tiles’ densities (the ratio between
their area-maximal rectangles and their own area) and prove a lower bound on the average
tile density (which immediately yields the covering guarantee).

Dumitrescu and Tóth [12] follow this approach by defining suitable charging areas Ct

for each tile t (trapezoids below/beneath the tile). We also use such a charging scheme,
but rely on a much more complex charging area which we refer to as a tile’s crown. But
instead of directly analyzing a tile’s charging area, we first extract the critical properties
that determine the charging scheme’s quality. This general approach (described in Section 3)
requires a bound ξ on the tile’s charging ratio |Ct|/|t| together with some simple properties
(basically a form of local convexity characterizing the average tile density).

We derive such a charging ratio bound ξs and describe simple, symmetric tiles for which
it is tight (Figures 8 and 9). We then take an arbitrary tile and show how to gradually
transform it into one of these tiles without increasing its charging ratio. This establishes
that ξs is indeed a charging ratio bound and allows us to conclude the following theorem.

▶ Theorem 1. Given any set of input points, TilePacking covers at least 39% of U .

While the aforementioned transformations to worst-case tiles require some care, we
showcase the versatility of our approach by first proving a slightly weaker bound of only 25%
(Section 4.2). Its analysis is not only much simpler but, in fact, takes us halfway to Theorem 1,
as the used charging ratio bound ξw (Proposition 11) is tight for high-density tiles and all
that remains is to refine our charging ratio bound for low-density tiles (Proposition 15).

Our second major result constructs an input instance (depicted in Figure 14) for which
TilePacking covers significantly less than 50% of the unit square.

▶ Theorem 2. There is a set P of input points for which TilePacking covers at most
43.3% of the unit square.

By the aforementioned worst-case equivalence of TilePacking and GreedyPacking,
both Theorems 1 and 2 also hold for the latter.

2 Preliminaries and Algorithm Description

Let U := [0, 1)2 denote the unit square. For a point p ∈ R2 define x(p) and y(p) as the x-
and y-coordinates of p, respectively. For two points p, p′ ∈ R2 we use the notation p ⪯ p′ to
indicate that x(p) ≤ x(p′) and y(p) ≤ y(p′). Similarly, p ≺ p′ means that x(p) < x(p′) and
y(p) < y(p′). The relations “⪰” and “≻” are defined analogously. For a set S we denote its
closure by S. If S is measurable, we use |S| to denote its area.

To simplify some geometric arguments, we use the following line-notation: We define the
line ℓ −

q ⊆ R2 as the line through q ∈ R2 of slope +1. Similarly, we define the lines ℓ−
q , ℓ

−
q ,

and ℓ −

q through q with slope 0, −1, and ∞, respectively. For lines of type R ∈ { −, − }, we
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q1

q2

q3
q4

q5

p1

p2
p3

p4

At

t

(a) Staircase points pi, qj and rect-
angle At.

(b) A tile packing produced by
TilePacking.

t

Ct

qi

p

qi+1

T p
(q i
, q

i+
1
)

(c) A tile t, its crown Ct, and a
tower Tp(qi, qi+1).

Figure 1 Tiles, packings, crowns, and towers. In our figures, tiles are shaded light blue. Upper
and lower stair case points are shown in red and black, respectively. A dark blue rectangle represents
a (maximal) rectangle of a tile. Crowns are shown in yellow and towers are possibly labeled.

write ℓR
q < ℓR

q′ if ℓR
q′ = ℓR

q + (x, 0) (using element-wise addition) with x > 0 and say ℓR
q is

left of ℓR
q′ . Similarly, for lines of type R ∈ {− , − } we write ℓR

q < ℓR
q′ if ℓR

q′ = ℓR
q + (0, y) with

y > 0 and say ℓR
q is below ℓR

q′ . Analogous definitions apply for “>”, “≤”, and “≥”.

Input Sets in General Position. Remember the problem description from Section 1. We
say that the input set P is in general position if there are no two (different) points p, p′ ∈ P

with x(p) = x(p′), y(p) = y(p′), or x(p) + y(p) = x(p′) + y(p′). That is, no two points may
share an x- or y-coordinate and may not lie on the same diagonal of slope −1. W.l.o.g., we
restrict P to be in general position (see the full version [11] for why this is ok).

Tiles and Tile Packings. A tile t is a staircase polygon in U (see Figure 1a). More
formally, t is defined using its anchor p ∈ U and a set of k upper staircase points Γt :=
{ q1, q2, . . . , qk } ⊆ U ordered by increasing x-coordinate and such that qi ≻ p for all qi as
well as qi ̸⪯ qj for all qi ̸= qj . With this we define t = { q ∈ U | q ⪰ p ∧ ∃q′ ∈ Γt : q ≺ q′ }.
A point pi =

(
x(qi−1), y(qi)

)
is called a lower staircase point. We define At ⊆ t as an

(arbitrary) area-maximal rectangle in t and ρt := |At|/|t| as the tile’s density. For indexed
upper staircase points qi we often use the shorthands xi := x(qi) and yi := y(qi).

If p and Γt do not adhere to qi ≻ p and qi ̸⪯ qj , but only to the weaker requirements
qi ⪰ p, qi ̸⪯ qj for all qi ̸= qj), then we say that t is degenerate. We show in Lemma 13 that
we can transform such tiles into non-degenerate ones without affecting our arguments.

The hyperbola of t is ht := { (x + x(p), y + y(p)) ∈ R2
>0 | y = |At|/x }. Note that all upper

staircase points lie between p and ht. Moreover, the points from Γt ∩ht span all area-maximal
rectangles in t. If, p = (0, 0) and |At| = 1, then t is called normalized.

A tile packing of the unit square is a partition of U into tiles. In particular,
∑

t∈T |t| =
|U| = 1. We use A(T ) :=

∑
t∈T |At| to denote the area covered by choosing an area-maximal

rectangle At for each tile t (the area covered by T ).

A Greedy Tile Packing Algorithm. Let us revisit the algorithm TilePacking by Du-
mitrescu and Tóth [12]. TilePacking processes the points P from top-right to bottom-left.
More formally, it orders P = { p1, p2, . . . , pn } such that ℓ

−
pi

≥ ℓ
−
pi+1

. It then defines for each
pi ∈ P the tile ti := { q ∈ U | q ⪰ pi } \

⋃i−1
j=1 tj , yielding a tile packing T = { t1, t2, . . . , tn }.
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To build its solution to LLARP, TilePacking picks for each p ∈ P the rectangle rp as an
(arbitrary) area-maximal rectangle At ⊆ t in the tile t containing p. Thus, the total area
covered by TilePacking is A(T ). Figure 1b illustrates the resulting tile packing.

Note that, by this construction, the lower staircase points of each tile t are input points.
Moreover, as already mentioned in [12], for each tile we can define a certain exclusive area
that does not contain an input point.
▶ Observation 3. Consider the tile packing T produced by TilePacking for a set P of input
points. Fix a tile t ∈ T and let p ∈ P denote its anchor point. Then the tile’s exclusive area
Et := { q ∈ R2 | ℓ

−
q > ℓ

−
p ∧ ∃q′ ∈ Γt : q ≺ q′ } does not contain any point from P .

This observation follows by noting that any such input point p′ ∈ Et would be processed
before p by TilePacking and “shield” at least one upper staircase point q′ ∈ Γt from p,
preventing it from becoming an upper staircase point of tile t.

3 A General Approach for Lower Bounds

Here we present a general approach to derive lower bounds for the area covered by a given
tile packing T . Our approach relies on a suitable charging scheme (ct)t∈T that charges the
area of each tile t ∈ T to a charging area ct > 0.

▶ Definition 4. For a given charging scheme, we define c∗ :=
∑

t∈T ct as the total charged
area and ct/|t| as the charging ratio of tile t. We call a function ξ : (0, 1] → R≥0 a charging
ratio bound with critical density ρ∗ ∈ (0, 1] if
1. ξ is point-convex at ρ∗ with ξ′(ρ∗) < 0,
2. ξ(ρ∗) ≥ c∗ and
3. for any t ∈ T : ξ(ρt) ≤ ct/|t|.
Note that a function f : I → R,I ⊆ R is said to be point-convex at x ∈ I if f is differentiable
at x and the tangent t of f at x satisfies t(x) ≤ f(x) for all x ∈ I.

The following lemma uses a charging ratio bound to show that ρ∗ is a lower bound on A(T ).

▶ Lemma 5. Consider a tile packing T with a charging scheme (ct)t∈T together with a
charging ratio bound ξ with critical density ρ∗. Then A(T ) ≥ ρ∗.

Proof. Since ξ is point-convex in ρ∗, the tangent τ(ρ) := ξ(ρ∗) + ξ′(ρ∗) · (ρ − ρ∗) of ξ in ρ∗

satisfies τ(ρ) ≤ ξ(ρ) for all ρ ∈ (0, 1]. Using A(T ) =
∑

t∈T |At| =
∑

t∈T |t| · ρt we calculate

τ
(
A(T )

)
= τ

(∑
t∈T

|t| · ρt

)
≤
∑
t∈T

|t| · τ(ρt) ≤
∑
t∈T

|t| · ξ(ρt) ≤
∑
t∈T

|t| · ct

|t|
= c∗ ≤ ξ(ρ∗), (1)

where the second inequality follows from applying Jensen’s Inequality to the convex function
τ . Combining τ

(
A(T )

)
= ξ(ρ∗)+ ξ′(ρ∗) ·

(
A(T )−ρ∗) with Inequality 1 and rearranging gives

ξ′(ρ∗) · A(T ) ≤ ξ(ρ∗) · ρ∗, which yields the desired result after dividing by ξ(ρ∗) < 0. ◀

4 Charging Scheme and Weak Covering Guarantee

This section introduces the charging scheme we will use to derive our lower bounds for
TilePacking’s coverage (via the approach presented in Section 3). Then we derive a weak
charging ratio bound ξw, as described in Section 3. While comparatively simple, this already
yields that TilePacking covers at least a quarter of the unit square, almost tripling the
original guarantee from [12]. Section 5 will refine ξw to derive our main result (Theorem 1).
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Figure 2 |Tp(q1, q2)| is computed via
the catheti of the blue triangles.
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Figure 3 Example for Lemma 8. The shown tower
overlap has p′

∗ ∈ Et, violating t’s exclusive area.

4.1 Charging Scheme
Given a tile packing T constructed by TilePacking, our charging scheme defines an area Ct

for each tile t ∈ T and charges t’s area to ct := |Ct|. We first explain how Ct is constructed
from t. Afterward, we prove useful properties about these areas and their relation to T .

Construction of Ct. Consider three points p, q1 = (x1, y1), q2 = (x2, y2) ∈ R2 with q1, q2 ⪰
p, x1 ≤ x2, and y1 ≥ y2. The tower Tp(q1, q2) with base point p and peak p∗ = (x1, y2) is
the interior of the rectangle enclosed by the lines ℓ

−
p (the tower’s base), ℓ −

q1
(the tower’s left

side), ℓ −
q2

(the tower’s right side), and ℓ
−
p∗

(the tower’s top). If the subscript p is omitted, the
base point is assumed to be the origin (0, 0).

For a tile t with anchor p and Γt = { q1, q2, . . . , qk } being ordered by increasing
x-coordinate, we define the charging area as the disjoint union of towers, i.e., Ct :=⋃k−1

i=1 Tp(qi, qi+1). We refer to Ct as the crown of tile t. (See Figure 1c.)

The width and height of a tower Tp(q1, q2) correspond to the side lengths of isosceles
triangles (see Figure 2), which yields a formula for |Tp(q1, q2)|. By taking derivatives, we get
formulas for the change of the tower’s area when moving q1 or q2 horizontally or vertically.
▶ Observation 6. Consider Tp(q1, q2) with qj − p = (xj , yj), j ∈ { 1, 2 }. Let w2 := x2 − x1,
and h1 := y1 − y2. Then |Tp(q1, q2)| = (x1 + y2) · (w2 + h1)/2.
▶ Observation 7. Consider Tp(q1, q2) with qj − p = (xj , yj), j ∈ { 1, 2 }. Let w2 := x2 − x1,
and h1 := y1 − y2. Fix α ∈ R and consider the change of |Tp(q1, q2)| if either q1 or q2 are
moved horizontally or vertically as a linear function of ε:
(a) If either q1(ε) := q1+(0, α·ε) or q2(ε) := q2+(α·ε, 0), then ∂|Tp(q1, q2)|/∂ε = α·(x1+y2)/2

and ∂2|Tp(q1, q2)|/∂ε2 = 0.
(b) If either q1(ε) := q1 + (α · ε, 0) or q2(ε) := q2 + (0, α · ε), then ∂|Tp(q1, q2)|/∂ε =

α ·
(
w2 + h1 − (x1 + y2)

)
/2 and ∂2|Tp(q1, q2)|/∂ε2 = −α2.

Properties of the Charging Scheme. The following results capture basic properties of our
charging scheme. First, we show that the defined crowns are pairwise disjoint.

▶ Lemma 8. Consider the tile packing T produced by algorithm TilePacking for a set P

of input points. For any two different tiles t, t′ ∈ T , we have Ct ∩ Ct′ = ∅.
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Proof. Fix t, t′ ∈ T and let p, p′ ∈ P denote their respective anchors. W.l.o.g., assume
ℓ
−
p > ℓ

−
p′ , such that TilePacking processes p before p′. As crowns consist of towers, it is

sufficient to show Tp(q1, q2) ∩ Tp′(q′
1, q′

2) = ∅ for consecutive q1, q2 ∈ Γt and q′
1, q′

2 ∈ Γt′ . Let
p∗, p′

∗ ∈ P be the respective peaks of these towers. W.l.o.g., we assume ℓ −
p∗

< ℓ −
p′

∗
(p∗ lies left

of ℓ −
p′

∗
); the other case follows symmetrically.

If ℓ
−
p′

∗
< ℓ

−
p , the towers are separated (the top of Tp′(q′

1, q′
2) lies below the base of Tp(q1, q2))

and cannot intersect. So assume ℓ
−
p′

∗
> ℓ

−
p . Then we cannot have p′

∗ ≺ q2, since this would
imply that p′

∗ lies in the exclusive area of t, violating Observation 3 (see Figure 3).
Let ∆y := q′

1 − p′
∗ and note that x(∆y) = 0. Define q̃1 := p∗ − ∆y and note that p′

∗ ̸≻ q̃1,
since otherwise q′

1 = p′
∗ + ∆y ≻ q̃1 + ∆y = p∗, which (together with ℓ

−
p∗

> ℓ
−
p > ℓ

−
p′) would

mean that p∗ lies in the exclusive area of t′ (again violating Observation 3).
So ℓ −

p′
∗

> ℓ −
p∗

, p′
∗ ̸≺ q2, and p′

∗ ̸≻ q̃1. Together, these imply x(p′
∗) > x(q2) and y(p′

∗) < y(q̃1),
which in turn imply ℓ −

p′
∗

> ℓ −
q2−∆y

. But then, the towers are separated, since ℓ −
q′

1
= ℓ −

p′
∗+∆y

>

ℓ −
q2−∆y+∆y

= ℓ −
q2

(Tp(q1, q2)’s right side lies left of Tp′(q′
1, q′

2)’s left side). ◀

The next lemma’s proof shows that all crowns lie inside a pentagon formed by U and two
isosceles triangles left and below of U (see Figure 4). With Lemma 8 this implies that the
total charging area is bounded by the pentagon’s area.

▶ Lemma 9. Consider the tile packing T produced by algorithm TilePacking for a set P

of input points. The total charging area of T is c∗ ≤ 3/2. Moreover, this bound is tight, since
for arbitrarily small ε > 0 there are input points Pε with c∗ ≥ 3/2 − ε.

Proof. Define the points SW := (0, 0), NW := (0, 1), and SE := (1, 0). Let D denote the
pentagon enclosed by the lines ℓ

−
SW, ℓ −

NW, ℓ −
SE, ℓ−

NW, and ℓ −

SE (see Figure 4). Since |D| = 3/2
and using Lemma 8, it is sufficient to show that Ct ⊆ D for any t ∈ T . For this, in turn, it is
sufficient to show that any tower Tp(q1, q2) of Ct lies in D.

Fix such a tower Tp(q1, q2). Since p ⪰ SW, we have ℓ
−
p ≥ ℓ

−
SW (the base of Tp(q1, q2) lies

above ℓ
−
SW). Similarly, since q1, q2 ∈ U ⊆ D, we have ℓ −

q1
≥ ℓ −

NW (the left side of Tp(q1, q2)
lies right of the left side of D) and ℓ −

q2
≤ ℓ −

SE (the right side of Tp(q1, q2) lies left of the right
side of D). Finally, the topmost point q1 ∈ U of Tp(q1, q2) lies below ℓ−

NW and the rightmost
point q2 ∈ U of Tp(q1, q2) lies to the left of ℓ −

SE . Together, we get Tp(q1, q2) ⊆ D.
For the tightness of the bound, choose δ > 0, 1/δ ∈ N and define P δ = { SW } ∪

{ (k · δ, 1 − k · δ2), (1 − k · δ2, k · δ) | k ∈ { 1, 2, . . . , 1/δ − 1 } }. As illustrated in Figure 4, the
crown Ct of tile t with anchor SW converges towards D as δ → 0. Therefore, for each ε > 0,
we can choose δ such that, for point set Pε := P δ, we have c∗ ≥ |Ct| ≥ 3/2 − ε. ◀

4.2 Weak Covering Guarantee for Greedy Tile Packings
This section proves the following, slightly weaker version of Theorem 1:

▶ Theorem 10. For any set of input points, TilePacking covers at least 25% of U .

Proving this not only serves as a warm-up to illustrate our approach before proving our main
result, but – as we will see in Section 5 – brings us halfway towards proving Theorem 1.

So consider a tile packing T produced by algorithm TilePacking for some set P of
input points. To prove Theorem 10, we follow the approach outlined in Section 3, using the
charging scheme from Section 4.1. That is, the area of t ∈ T is charged to ct = |Ct|, where
Ct represents the crown of t. To this end, define ρ∗ := 1/4 and the weak charging ratio bound

ξw : (0, 1] → R≥0, ξw(ρ) := 2 · (1 − ρ).
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2 ,
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Figure 4 Pentagon D and
point set Pε from Lemma 9.
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Figure 5 Removing superfluous points from Γt reduces |Ct|
by the rectangle between ℓ −

qi
, ℓ −

qi+1 , ℓ
−
qi

, and ℓ
−
pi−1 .

As a linear function, ξw is trivially point-convex in ρ∗. Moreover, ξw(ρ∗) = 3/2 and
thus, by Lemma 9, ξw(ρ∗) ≥ c∗. In the remainder of this section we prove the following
Proposition 11, stating that ξw represents a lower bound on the charging ratio of any t ∈ T .
Once this is proven, Theorem 10 follows immediately by applying Lemma 5.

▶ Proposition 11. For any tile t we have ct/|t| ≥ ξw(ρt).

A Lower Bound on the Charging Ratio. To prove that ξw bounds from below the charging
ratio ct/|t| of any tile t ∈ T , we gradually transform t into a “simpler” tile t̃. Our transfor-
mations ensure ρt̃ = ρt and ct̃/|t̃| ≤ ct/|t|. Eventually, t̃ will be simple enough to directly
prove ct̃/|t̃| ≥ ξw(ρt̃). The following notation expresses progress via such a transformation:

t̃ ⪯ t :⇔ ρt̃ = ρt and ct̃/|t̃| ≤ ct/|t|.

As a simple example, note that both a tile’s density and charging-ratio are invariant
under translation and concentric scaling w.r.t. its anchor. This gives rise to the following
transformation, which allows us to restrict our analysis to normalized tiles.
▶ Observation 12. Translate a tile t such that it is anchored in the origin, then scale it by
1/|At| around the origin. We call the resulting tile t̃ normalized. Then t̃ ⪯ t.

Consider a tile t with anchor p. A transformation may move one of t’s upper staircase
points to the same x- or y-coordinate as another point from Γt ∪{ p }, resulting in a degenerate
tile with superfluous points in Γt (see Section 2). The next lemma states that removing such
superfluous points maintains an equal tile with a smaller crown.

▶ Lemma 13. Consider a degenerate tile t. The tile t̃ with same anchor p but Γt̃ :=
{ q ∈ Γt | q ≻ p and ∄q′ ∈ Γt : q ⪯ q′ } covers the same points, is non-degenerate, and t̃ ⪯ t.

Proof. Order Γt = { q1, q2, . . . , qk } by non-decreasing x-coordinate and let q0 = qk+1 = p.
W.l.o.g. assume there is some i ∈ { 1, . . . , k } with y(qi) = y(qi+1); the case of identical
x-coordinates follows analogously. Let t̃ denote the (possibly still degenerate) tile with anchor
p and Γt̃ = Γt \ { qi }. Note that { q ∈ U | q ⪰ p ∧ q ≺ qi } ⊆ { q ∈ U | q ⪰ p ∧ q ≺ qi+1 },
which implies t̃ = t and, thus, ρt = ρt̃. Removing qi affects the towers Tp(qi, qi+1) with peak
qi (only if i < k) and Tp(qi−1, qi) with peak pi−1. Figure 5 illustrates the situation.

We now show that ct̃ ≤ ct, such that t̃ ⪯ t; the lemma’s statement then follows by
iteration. If i = k, then ct̃ = ct − |T (qi−1, qi)| ≤ ct. So assume i < k. Then ct̃ = ct − |□| ≤ ct,
where □ is the rectangle enclosed by the lines ℓ −

qi
, ℓ −

qi+1
, ℓ

−
qi

, and ℓ
−
pi−1

(see Figure 5). ◀
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Figure 6 Moving inner points in Lemma 14.
Note that αj > 0 and αi < 0 in this case.
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Figure 7 Notation for Proposition 11 with
l = 3 and m = 5.

Note that ht ∩ Γt consists of the upper staircase points that form maximum rectangles in
the tile. We now prove that we can transform t such that at most one q ∈ Γt lies not on ht.

▶ Lemma 14. A normalized tile t can be transformed into a tile t̃ ⪯ t with |Γt̃ \ ht̃| ≤ 1.

Proof. Assume |Γt \ ht| > 1 and order Γt = { q1, q2, . . . , qk } by increasing x-coordinate. To
simplify border cases, define q0 = q1 and qk+1 = qk. Choose qi, qj ∈ Γt \ ht with i < j.
Consider the transformation qi(ε) := qi +(0, αi ·ε) and qj(ε) := qj +(αj ·ε, 0) with αi, αj ∈ R.
Then the tile and crown areas become functions t(ε) and ct(ε) of ε. We show that there are
non-zero αi, αj such that t(ε) and, thus, ρt(ε) remain constant and ct(ε) does not increase.
Eventually, this results in a tile t̃ ⪯ t that has an additional point on ht or that has a
degenerate staircase point which we can remove by Lemma 13. In both cases |Γt \ ht| is
decreased and the lemma follows by iteration. Figure 6 illustrates the transformation.

The transformation changes only the towers T (qi−1, qi), T (qi, qi+1), T (qj−1, qj), and
T (qj , qj+1). (i < j ensures that these changes do not interfere with each other.) For
l ∈ { 0, 1, . . . , k + 1 } let ql = (xl, yl) and define wl := xl − xl−1 for l ̸= 0 and hl := yl − yl+1
for l ̸= k + 1. Then the transformation changes the area of the tile according to ∂t(ε)/∂ε =
αi · wi + αj · hj . To keep |t| constant, we make this zero by setting αj = −αi · wi/hj .

It remains to find a non-zero αi such that ct(ε) is non-increasing in ε. For this let Ti(ε) :=
|T (qi−1, qi)| + |T (qi, qi+1)| and define Tj(ε) analogously. By Observation 7, ∂2Tl(ε)/∂ε2 =
−α2

l for l ∈ { i, j }. This yields ∂2ct(ε)/∂ε2 = −α2
i − α2

j < −α2
i , which is a negative constant.

This allows us to choose αi ∈ { −1, +1 } such that ct(ε) is non-increasing. ◀

With these results, we are ready to prove our first covering guarantee for TilePacking.

Proof of Proposition 11. Let t be a tile. By Observation 12 and Lemma 14, we can assume
that t is normalized and |Γt \ ht| ≤ 1. If |Γt \ ht| = 1, let q0 ∈ Γt \ ht, otherwise let q0 ∈ Γt

arbitrary. Relabel the points Γt = { q−l, . . . , qm } in increasing order of their x-coordinates.
To simplify border cases, let q−l−1 = q−l and qm+1 = qm. Let further wi := xi − xi−1
for i ̸= l − 1 and hi := yi − yi+1 for i ̸= m + 1 (using qi = (xi, yi)). For i = −l, . . . , m

inductively define the rectangles Ri := { q ∈ t | q ≺ qi } \
⋃

|j|<|i| Rj . Finally, for i = 1, . . . , m,
let Ti := T (qi−1, qi); for i = −l, . . . , −1 let Ti := T (qi, qi+1). See Figure 7 for an illustration.

ICALP 2021



61:10 On Greedily Packing Anchored Rectangles

Note that ct =
∑−1

i=−l|Ti| +
∑m

i=1|Ti| and |t| =
∑m

j=−l|Rj |. We will first show that
for i ∈ { −l, . . . , m } \ { −1, 0, 1 } we have |Ti| ≥ 2|Ri|. Afterward, we show |T−1| + |T1| ≥
2(|R−1| + |R0| + |R1| − 1). With these inequalities and since ρt = |At|/|t| = 1/|t| due to the
normalization, the desired statement follows via

ct =
−1∑

i=−l

|Ti| +
m∑

i=1
|Ti| ≥

m∑
i=−l

2|Ri| − 2 = 2|t| − 2 = 2|t| · (1 − ρt) = |t| · ξw(ρt).

We now show the above bounds, starting with |Ti| ≥ 2|Ri| for |i| ≥ 2. W.l.o.g. we assume
i ≥ 2; the case i ≤ −2 follows by symmetry. Note that i ≥ 2 implies qi, qi−1 ∈ ht and thus
(since t is normalized) yj = 1/xj for j ∈ { i − 1, i }. This yields xi−1/yi = xi−1 · xi as well
as wi/hi−1 = (xi − xi−1)/(yi−1 − yi) = xi−1 · xi. We use these identities together with
|Ri| = wi · yi to bound the formula for |Ti| from Observation 6:

|Ti| = 1/2 · (xi−1 + yi)(wi + hi−1) = wi · yi · 1/2 · (1 + xi−1/yi)(1 + hi−1/wi)

= |Ri| · 1
2 · (1 + xi−1 · xi) ·

(
1 + 1

xi−1 · xi

)
= |Ri| · 1

2 · (1 + xi−1 · xi)2

xi−1 · xi
≥ 2|Ri|,

using that the function x 7→ (1 + x)2
/x over [0, ∞) has a minimum value of 4 at x = 1.

It remains to show that |T−1| + |T1| ≥ 2(|R−1| + |R−1| + |R0| − 1). Note that, if m = 0,
we have qm+1 = qm by definition and |R1| = 0 and |T1| = 0 hold. Similarly, if l = 0 then
|R−1| = 0 and |T−1| = 0. We assume that l > 0 or m > 0, as otherwise ξw(ρt) = ξw(1) = 0
and the proposition becomes trivial. W.l.o.g. let m > 0; the other case follows symmetrically.

For α ∈ { −1, +1 } (which we fix later) and ε ≥ 0 define the transformation y0(ε) :=
y0 + α · ε, where ε is chosen such that y0(ε) ∈ [y1, 1/x0] 2, which moves q0 either up- or
downward, depending on α. Thus, with f(ε) := |T−1| + |T1| − 2(|R−1| + |R1| + |R0| − 1),
where the Ti and Ri depend on y0 and thus ε, our goal becomes to prove f(0) ≥ 0. To
this end, consider how f(ε) changes with ε. The rectangles |Rj | (j ∈ { −1, 0, 1 }) change
linearly or remain constant. By Observation 7, ∂2|T1|/∂ε2 = 0. Similarly, if l > 0 we have
∂2|T−1|/∂ε2 = −α2 = −1 by Observation 7, and if l = 0 we have ∂2|T−1|/∂ε2 = 0 (because
|T−1| remains zero). Thus, in all cases ∂2f(ε)/∂ε2 ≤ 0, meaning its minimum fmin lies at
one of the borders, where either y0 = y1 or y0 = 1/x0. We consider both possibilities and
show that each time fmin ≥ 0 (which finishes the proof, since f(0) ≥ fmin ≥ 0).

If at fmin we have y0 = 1/x0, let thigh denote the corresponding tile. Note that q0 lies
on the hyperbola ht. But then |R0| = 1 and, thus, fmin = |T−1| + |T1| − 2(|R−1| + |R1|).
Moreover, with q0 ∈ ht we can apply the calculations for |i| > 1 to get |T−1| ≥ 2|R−1| and
|T1| ≥ 2|R1|, such that fmin ≥ 0.

So assume that at fmin we have y0 = y1 and let tlow denote the corresponding tile.
Note that R0 and R1 form a rectangle from the origin to the point q1 on ht, such that
|R0| + |R1| = 1. Thus, fmin = |T−1| + |T1| − 2|R−1|. Define the (degenerate) tile t′ with
Γt′ = { q−1, q0, q1 } and anchor p, such that its crown area is ct′ = |T1| + |T2|. By Lemma 13,
for the (non-degenerate) tile t̃′ with Γt̃′ = Γt′ \ { q0 } we have ct̃′ ≤ ct′ . The crown ct̃′ consists
of the single tower T (q−1, q1). Since q−1, q1 ∈ ht, we can apply the calculations for |i| > 1 to
get ct̃′ = |T (q−1, q1)| ≥ 2|R−1|. Putting everything together we get

fmin = |T−1| + |T1| − 2|R−1| = ct′ − 2|R−1| ≥ ct̃′ − 2|R−1| ≥ 0. ◀

2 These boundaries ensure that the tile remains valid and normalized. Note that if l = 0, moving q0
upward also causes the dummy point q−1 to move upward, such that |R−1| and |T−1| remain zero.
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5 Strong Covering Guarantee for Greedy Tile Packings

This section proves our strong covering guarantee for TilePacking, namely Theorem 1. We
use the same approach as for our weak covering guarantee from Section 4.2 but derive a
stronger charging ratio bound. More exactly, instead of ξw we use

ξs : (0, 1] → R≥0, ξs(ρ) :=
{

1 − ρ ·
(
1 + sinh(1 − 1/ρ)

)
if ρ ≤ 1/2

ξw(ρ) = 2 · (1 − ρ) if ρ > 1/2.
(2)

Most properties required for our approach from Definition 4 are easily verified for ξs

(whose function graph can be seen in Figure 12). Indeed, for ρ∗ := ξ−1
s (3/2) ≈ 0.3901, we

have ∂ξs(ρ)/∂ρ|ρ=ρ∗ ≈ −5.1 < 0. Moreover, ξs is point-convex at ρ∗, since it is convex on
(0, 1/2] and on (1/2, 1] its tangent tξ at ρ∗ lies below ξs (tξ is steeper and tξ(1/2) ≈ 0.94 <

1 = ξw(1/2)). Also, by choice of ρ∗ and by Lemma 9, we have ξs(ρ∗) = 3/2 ≥ c∗ for the total
charged area c∗ of a tile packing T produced by algorithm TilePacking.

The following proposition states the remaining required property of Definition 4.

▶ Proposition 15. For any tile t we have ct/|t| ≥ ξs(ρt) and this bound is tight.

With this, Theorem 1 follows by applying Lemma 5. The remainder of this section outlines
the analysis of this proposition.

Transformation to Worst-case Tiles. For tiles t of density ρt larger than 1/2, Proposition 15
follows from Proposition 11, since in this regime ξs(ρt) = ξw(ρt). The tightness for such
high densities follows since for any ρt ∈ (1/2, 1] there is a (symmetric) step tile t = tl(ρt) of
density ρt (depicted in Figure 9) with ct/|t| = ξs(ρt). Thus, we restrict our further study to
tiles of density at most 1/2. We will show how to gradually transform any such tile t into
a (symmetric) hyperbola tile th(ρt) ⪯ t (depicted in Figure 8). Again, the tightness follows
from the existence of a tile t = th(ρt) with ct/|t| = ξs(ρt).

Before we outline the transformation process into such worst-case low-density tiles, we
need to cope with the fact that th(ρt) is not a staircase polygon and, thus, not captured by
our tile definition. However, one can see th(ρt) as the result of defining Γt as k equally spaced
points from the hyperbola { (x, y) ∈ [0, s) | y = 1/x } and taking the limit k → ∞. The next
paragraph formalizes this intuition by introducing generalized tiles and some related notions.

Generalized Tiles and Crown Contribution. A generalized tile t is defined equivalently to
"normal" tiles, with the only difference that Γt may be infinite. All other tile definitions (e.g.,
point set definition of t, maximum-area rectangle At, or density ρt) stay intact.

From now on the term tile always refers to a normalized and non-degenerate generalized
tile. (Note that the points which cause a generalized tile to be degenerate, cannot reside in a
slide. As such Observation 12 and Lemma 13 easily transfer to generalized tiles.) We require
that the x-coordinates of Γt can be partitioned into k inclusion-wise maximal, closed intervals
I1, I2, . . . , Ik, ordered by increasing x-coordinates. For i ∈ { 1, 2, . . . , k } let q−

i , q+
i ∈ Γt

denote the points realizing the left- and rightmost x-coordinate of Ii, respectively. Note that
Ii may be a point interval, such that q−

i = q+
i . A section of Γt is a tuple as follows:

a step (q+
i , q−

i+1), if q+
i , q−

i+1 ∈ ht;
a slide (q−

i , q+
i ), if q−

i ̸= q+
i and { q ∈ Γt | x(q) ∈ Ii } ⊆ ht;

a double step (q+
i−1, q−

i , q−
i+1), if q+

i−1, q−
i+1 ∈ ht and q−

i = q+
i /∈ ht; or

the corners (q1, q2), if q1 /∈ ht and q2 ∈ ht as well as (qk−1, qk) if qk /∈ ht and qk−1 ∈ ht.
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Figure 8 Symmetric (w = h)
low-density tile t = th(ρt) for
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high-density tile t = tl(ρt) for
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Figure 10 Crown contribu-
tion of a slide.

We further define t(xL, xR) = { (x, y) ∈ t | xL ≤ x ≤ xR }. After applying Lemma 14, all
tiles resulting from our transformations can be described as a sequence of such sections.
Figure 13 illustrates generalized tiles and the different sections.

Note that a slide can be understood as the limit case of k → ∞ equally spaced upper
staircase points. As the slide is the only part of a generalized tile which differs from normal
tiles, our charging scheme from Section 4.1 naturally extends to generalized tiles. This yields
the following tower complement for slides:

▶ Definition 16. For a tile t with a slide (q1, q2), rotate the hyperbola by π/4 around the
anchor of t, to obtain the rotated hyperbola hr(x) =

√
x2 + 2. The area under hr between

q1 and q2 will be denoted as H(q1, q2).

▶ Observation 17. For a tile t with slide (q1, q2) we get |H(q1, q2)| :=
[ 1

4 · (z2 − z−2) + ln z
]x2

x1
.

Proof. |H(q1, q2)| can be calculated via integration: The indefinite integral under hr(x) =√
x2 + 2 is Hr(x) :=

∫
hr(x) dx = x/2 ·

√
2 + x2 + arsinh (x/

√
2), and for x = (z − 1/z)/

√
2,

we get Hr((z −1/z)/
√

2) = 1/4 · (z2 −z−2)+ln z, where z = x1 or z = x2 (see Figure 10). ◀

Overview of the Transformation Process.3 Figure 11 gives an overview of how we gradually
transform an arbitrary tile t with density ρt ≤ 1/2 into a worst-case hyperbola tile th(ρt).
Starting with an arbitrary tile t (I), Lemma 18 either enforces Γt ⊆ ht or Γt \ ht = { q }.

▶ Lemma 18. Let t be a tile. Then either there exists a tile t̃ ⪯ t with Γt̃ ⊂ ht̃, or t contains
a double step (q1, q2) with x1 ≤ 1 ≤ x2 or a corner (q1, q2) with x1 < 1 (if q2 /∈ ht, x2 > 1 if
q1 /∈ ht).

This lemma yields two different cases: In the first case (II), t contains a double-step
(q1, q, q2) and we can enforce x(q1) ≤ 1 ≤ x(q2). In the second case (III), q is part of a corner
where x(q′) ≥ 1 or x(q′) ≤ 1 can be enforced for corners (q, q′) or (q′, q), respectively. (The
case where Γt̃ ⊂ ht̃ will be dealt with later, in case (VIII).)

The next step from cases (II)/(III) to cases (IV)/(V) is based on smaller transforma-
tion/property statements about adjacent sections:

3 Due to space limitations, the proofs for the following Lemmas 18–29 can only be found in the arXiv
version of this paper (see [11]).
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▶ Lemma 19. Let t be a tile, q1, q2, q3 ∈ Γt the leftmost three points (in order) such that
q1 = q2 or (q1, q2) is a step; and q2 = q3 or (q2, q3) is a slide. Then these sections can be
replaced by up to one step s = (q1, q2) and up to one slide h = (q2, q3) such that
1. If s exists, then x1x2 ≥ 1/

√
2

2. If h exists, then x1x2 ≤ 1/
√

2
giving us a tile t̃ ⪯ t.

Intuitively Lemma 19 states that the leftmost sections will only be a step and hyperbola
when they satisfy precise properties and otherwise the tile can be transformed such that one
of the sections vanished.

▶ Lemma 20. Let t be a tile with a step (q1, q2) and a slide (q2, q3). If x1 ≥ 1/x3, then the
two sections can be replaced by a slide (q1, q4) and a step (q4, q2), resulting in a tile t̃ ⪯ t.

Lemma 20 describes when “swapping” steps with an adjacent slide lowers ct.

▶ Lemma 21. Let t be a tile and (q1, q2),(q2, q3) be steps with x3 ≤ 1. Then the two steps
can be replaced with a step (q1, q4) and a slide (q4, q3), resulting in a tile t̃ ⪯ t.

(I)

(II)

(III)

(IV)

(V)

(IX)(VI) (VIII)

(X)

(VII)

Lemma 22

Lemma 22

Lemma 18

Lemma 24

Lemma 23

L
em

m
a
28

L
em

m
a
27

L
em

m
a
30

L
em

m
a
29

Lemma 25

Figure 11 Transforming low-density tiles t with ρt ≤ 1/2 to a corresponding worst-case hyperbola
tile th(s) ⪯ t. For the normalized tiles in Cases (II) and later, the blue dot marks the point (1, 1).
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Lemma 21 describes when “merging” two adjacent steps into a step and adjacent slide
lowers ct. Note that each of these lemmas hold up to reflection on the x=y axis, due to
symmetry. Using the transformations/properties in these lemmas we can show the following
Lemma 22, which allows us to only consider tiles containing a single step.

▶ Lemma 22. Consider a tile t with ρt ≤ 1/2. Then there exists a tile t̃ ⪯ t, containing at
most one step. Furthermore, if Γt ⊆ ht then Γt̃ ⊆ ht̃.

Now down to only one step, the following two lemmas (Lemmas 23 and 24) show that we
can transform the tiles from (IV) and (V), respectively, such that either Γt ⊆ ht or t contains
no slides:

▶ Lemma 23. Let t be a tile with a double step (q1, q2, q3) and a slide (q3, q4). We can
replace both sections by a double step (q1, q4) or a sequence of steps and slides between q1
and q4, obtaining a tile t′ ⪯ t.

▶ Lemma 24. Let t be a tile with a slide (q1, q2) and a corner (q2, q3). We can replace both
sections by a corner (q1, q′

2) or a sequence of steps and slides between q1 and q′
2, obtaining a

tile t′ ⪯ t.

These lemmas, together with the following Lemma 25, can then be used to reduce the
remaining cases to those illustrated in (VI) to (IX):

▶ Lemma 25. Let t be a tile with ρt ≤ 1/2, then there exists a tile t̃ ⪯ t with Γt̃ ⊆ ht̃ or t̃

consists of a step and a corner or a double step and possibly a step.

The following Lemma 26 allows us to restrict ourselves to tiles t with ρt = 1/2 or where
all points in Γt are on t’s hyperbola, and is essential to proving the subsequent lemmas.

▶ Lemma 26. Let t be a tile with ρt ≤ 1/2. Then there exists a tile t̃ with Γt̃ ⊆ ht̃ or
ρt̃ = 1/2 such that, if |Ct̃|/|t̃| ≥ ξs(ρt̃) then also |Ct|/|t| ≥ ξs(ρt).

For each of the four cases we then separately show th(ρ) ⪯ t (Lemmas 27–30).

ξs

ρ0.5ρ∗

τξ

1.5

0.0

Figure 12 The charging ratio bound ξs from
Section 5 and its tangent τξ at ρ∗ = ξ−1

s (3/2).
This illustrates that ξs is point-convex at ρ∗.

I1 I2 I3 I4 I5

Figure 13 A generalized tile with four sec-
tions formed by the five intervals I1 to I5 (of
which only I4 is a proper interval). They form a
step (between I1 and I2), a double-step (between
I2 and I4), a slide (I4), and a corner (I4, I5).
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▶ Lemma 27. Let t be a tile with ρt ≤ 1/2 consisting only of a double-step (q1, q2, q3). Then
|Ct|/|t| ≥ ξs(ρt).

▶ Lemma 28. Let t be a tile with ρt ≤ 1/2 consisting only of a double step (q1, q2, q3) and a
step (q3, q4). Then |Ct|/|t| ≥ ξs(ρt)

▶ Lemma 29. Let t be a tile with ρt ≤ 1/2 consisting only of a step (q1, q2) where x1x2 ≥ 1/
√

2
and a corner (q2, q3). Then there exists a tile t′ ⪯ t only consisting of two steps.

▶ Lemma 30. Let t be a tile with ρt ≤ 1/2 with Γt ⊆ ht. Then |Ct|/|t| ≥ ξs(ρt).

Proof. By Lemma 22 we can assume that t contains at most one step. Since Γt ⊆ ht, t can
only consist of steps and slides. Then t must contain at least one slide, as otherwise t consists
of exactly one step, contradicting ρt ≤ 1/2. Using Lemma 20, we can then ensure that t has at
most one slide: Assuming this is not the case, t has a slide (q1, q2), a step (q2, q3) and another
slide (q3, q4). Using the constraints of Lemma 20 we get x1 > 1/x3 > 1/x4 > x2 > x1, a
contradiction, so t has exactly one slide and possibly one step.

It is enough to show ∆ := |t|ξs(ρt) − |Ct| < 0, since the statement follows by rearranging.
First assume that t’s only section is a slide (q1, q2). Then |t| = |t(0, x1)| + |t(x1, x2)| =
1 + ln(x2/x1), and we get:

∆ = |t|ξs(ρt) − |H(q1, q2)| = |t| − 1 + sinh(|t| − 1) −
[
1/4 · (z2 − z−2) + ln z

]x2

x1

=
(
x−2

2 − x2
2 + x2

1 − x−2
1
)
/4 + sinh(|t| − 1) + |t| − (1 + ln(x2/x1))

=
(
x−2

2 − x2
2 + x2

1 − x−2
1
)
/4 + sinh(ln(x2/x1))

= 2 sinh((ln(x1) + ln(x2))/2)2 sinh(ln(x1/x2)) < 0

where the last inequality directly follows from x1 < x2.
Now assume that t consists of a step (q1, q2) and a slide (q2, q3) (w.l.o.g. ordered in this

way). In such a case we have |t| = |t(x0, x1)| + |t(x1, x2)| + |t(x2, x3)| = 1 + (x2 − x1)/x2 +
ln(x3/x2), or rearranged, x3 = x2ex1/x2+|t|−2. Again we calculate

∆ = |t|ξs(ρt) − (|T (q1, q2)| + |H(q2, q3)|)

= |t| − 1 + sinh(|t| − 1) − 1
2

(
1
x1

− 1
x2

+ x2 − x1

)(
x1 + 1

x2

)
−
[

z2 − z−2

4 + ln z

]x3

x2
.

Taking the derivative of ∆ w.r.t. |t| (after inserting x3 = x2ex1/x2+|t|−2), we obtain ∂∆/∂|t| =
−2 cosh(x1/x2 + |t| − 2 + ln x2)2

< 0. This indicates that ∆ is maximized for smallest |t|.
So assume |t| = 2 now, or equivalently, x3 = x2ex1/x2 . By Lemma 19 we can further assume
that x2 = 1/(

√
2x1). Using the substitution x1 = 2−3/4√

u we get

∆ = 1
2
√

2

(
−3 −

√
2

e
+

√
2e + 1 − eu

u
+ u + u

2eu

)
with the derivative

∂∆
∂u

= (1 − u)(u2 + 2e2u − 2eu(1 + u))
4
√

2u2eu
.

The derivative above has only one zero, namely u = 1: From 0 < x2
1 ≤ x1x2 = 1/

√
2, we can

deduce u ∈ (0, 2] by the substitution. For the right factor of the derivative’s numerator we
then get u2 + 2e2u − 2eu(1 + u) > 2eu(eu − (1 + u)) > 0 from the Taylor series of eu. Hence
checking ∆ at u’s boundaries and u = 1 is sufficient, where we get limu→0 ∆ ≈ −0.24 < 0
(apply L’Hospital’s rule on (1 − eu)/u), ∆|u→1 ≈ −0.07 < 0 and ∆|u→2 ≈ −0.26 < 0. ◀
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A

(0, 0)

qk−1
fk−1

fk

f1

f0

f−k+1

f−k

q−k+1

q−1
f−1

(√
2, 0

)
hA

q0

q1

...
...

...
...

...

...

...

ε

...

u x

y
x(p) x(p) + ε

p
p′

t

Yw

Yh

fi

fi+1

fi−1

w

h
Zw

Zh

X

Figure 14 Left: Our construction. Right: A tile anchored at p ∈ Pε,k\{ (0, 0) }. For demonstration
purposes, the areas are not shown to scale; in truth X, Zw, Zh are significantly smaller than Yw, Yh.

With all previous lemmas combined, we are now ready to give the proof for Proposition 15.

Proof of Proposition 15. By Proposition 11 we already get the result for ρt > 1/2. It
remains to show the result for tiles with ρt ≤ 1/2. Lemma 25 allows us to limit ourselves to
certain tiles t: Tiles with Γt ⊆ ht (Lemma 30 yields the result), tiles with only a double step
(use Lemma 27), tiles with a step and a double step (use Lemma 28) and tiles that consist of
a step and a corner (use Lemma 29). As such the bound follows.

It remains to show the tightness. First note that for ρt = 1, the tightness is trivial (choose
an arbitrary tile t with |Γt| = 1). For ρ < 1, we show that ξs exactly corresponds to the tiles
tl(ρ) and th(ρ) shown in Figures 8 and 9.

Let t = tl(ρ) with Γt = { q1, q2 } ⊂ ht, x1 = y2. We have |t| = |t(0, x1)| + |t(x1, x2)| =
1 + (1 − x2

1), or rearranged x1 =
√

2 − 1/ρ and we get

|Ct|/|t| = |T (q1, q2)|/|t| = 1/2 · (1/x1 − x1 + 1/x1 − x1)(x1 + x1)/
(
2 − x2

1
)

= 2 − 2ρ.

Now let t = th(ρ). t consists of a slide (q1, q2) = ((x1, 1/x1), (1/x1, x1)), hence |t| =
|t(0, x1)| + |t(x1, x2)| = 1 + ln((1/x1)/x1) = 1 − 2 ln x1, or rearranged, x1 = e(1−1/ρ)/2. So

|Ct|/|t| = |H(q1, q2)|ρ = ρ

[
1
4
(
z2 − z−2)+ ln z

]e(1/ρ−1)/2

e(1−1/ρ)/2
= 1 − ρ(1 + sinh(1 − 1

ρ
)).

Note that t is only valid in the sense of generalized tiles. However, t can be arbitrarily well
approximated by a non-generalized tile with area and crown size arbitrarily close to |t| and
|Ct|, respectively, by densely placing an increasing number of points on the hyperbola. ◀

6 Upper Bound

To show Theorem 2, we construct a point set where TilePacking covers at most roughly
(1 − e−2)/2. Our goal is to construct a tile t̂ at the origin where each maximal rectangle
has the same size A. We therefore place 2k + 1 points qi into U densely on a hyperbola hA

centered at the origin. The remaining tiles will have a density close to 1/2.
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Such tiles can be realized when they have two nearly equal-sized maximal rectangles with
minimum overlap. Hence, we add for each point qi on hA a set of (almost) evenly spaced
points pi,j with distance roughly ε between each other. To get two maximal rectangles
of roughly same area for each such tile, the exact coordinates of the points pi,j must be
chosen carefully, as the placement of such points influences the size of maximal rectangles for
surrounding points. That is why we place the points on arcs of functions fi described by
differential equations, where each fi depends on the two neighboring curves fi−1 and fi+1.

We may only use finitely many points qi ∈ hA and pi,j ∈ fi. Both discretizations introduce
an error term. Exploiting our choice of the functions fi and how they relate to each other,
we can show that both error terms vanish as k goes to infinity and ε goes to zero.

To aid the analysis, we rotate U by π/4 around the origin, obtaining a rotated unit square
Ur (see Figure 14). Here, TilePacking processes the points from right to left.

We start by formally defining the point set Pε,k and the functions fi. Let hA =
{ (x, y) ∈ Ur | x2 − y2 = 2A } be the right branch of a hyperbola centered at the origin
that lives in Ur. First we define the upper part of the construction with non-negative y

coordinates. For i = 0, . . . , k − 1, densely choose k points qi ∈ hA such that y(qi) ≥ 0 and√
2A = x(q0) < x(q1) < · · · < x(qk−1). Define further f0(x) = 0 and fk(x) =

√
2 − x. For

0 < i < k, define fi : [0,
√

2) → R using

fi(x(qi)) = y(qi) and (3)

f ′
i(x) =

−1 for x ≤ x(qi)

1 − 2 fi(x) − fi−1(x)
fi+1(x) − fi−1(x) for x > x(qi).

(4)

This means, each fi with 0 < i < k has slope −1 in [0, x(qi)), then it intersects hA at qi

according to Equation (3), and then it has a slope depending on the current values of fi−1, fi

and fi+1 according to Equation (4). For the symmetric part with negative y coordinates we
define q−i = (x(qi), −y(qi)) and f−i(x) = −fi(x) for 0 < i ≤ k. Observe that, for 0 ≤ i < k,
we get q−i ∈ hA and the f−i adhere to Equation (4). We are now ready to define the point
set Pε,k for ε > 0 and k ∈ N as

Pε,k = { (0, 0) } ∪
⋃

i,j∈Z

{ (
jδ, fi(jδ)

) ∣∣∣ −k < i < k, x(qi) ≤ jδ <
√

2
}

.

We require that qi ∈ Pε,k for all −k < i < k, so we choose ε such that it divides all x(qi).
In order to be able to choose Pε,k as shown above, we need that the fi are well-behaved:

They must be defined in [0,
√

2), and should only intersect hA at qi. Intuitively, this is true,
since the differential equation drives each function fi to the midpoint of the functions fi−1
and fi+1. The proof is given in the following lemma.

▶ Lemma 31. Each function fi intersects hA exactly once, namely at qi. Furthermore, fi(x)
is differentiable for all i = −k, . . . , k, and f−k(x) < · · · < fk(x) holds for all x ∈ [0,

√
2).4

We are now able to show Lemma 32: All tiles t ̸= t̂ have a density of close to 1/2, unless
they are too close to the right corner of Ur, in which case their area is negligible. Afterwards,
it only remains to optimize the parameter A, which is done in Theorem 33.

▶ Lemma 32. Let u, k > 0 and Û = (
⋃

p∈Pε,k,x(p)≤
√

2−u tp) \ t̂. Then TilePacking covers
|Û |/2 + ck(ε) area in Û for Pε,k where limε→0 ck(ε) = 0.

4 Due to space limitations, the proof can only be found in the arXiv version of this paper (see [11]).
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Proof. Consider a point p ̸= (0, 0), x(p) ≤
√

2 − u that lies on some curve fi and creates the
tile t. Assuming ε < u, there exists another point p′ = (x(p) + ε, fj(x(p) + ε)) ∈ Pε,k. By
Lemma 31, we can assume that fi+1(x) − fi(x) > ε for all i = −k, . . . , k − 1, x ≤

√
2 − u.

It follows from |f ′
i | ≤ 1 that p′ is a lower staircase point of t. (For the same reason there

cannot be points further to the right that are lower staircase points.) The tile t is therefore
only restricted by the tiles from points with x-coordinate x(p′). Therefore, t has exactly two
maximal rectangles which TilePacking can choose from (see Figure 14).

TilePacking will choose the larger one of the two maximal rectangles (call them R1
and R2). Since there are multiple points with the same x-coordinate as p, any of them can
be processed first by TilePacking. This gives rise to areas Zw,Zh that may be covered
by the tile t or by tiles directly above or below it (see Figure 14). W.l.o.g. we assume that
TilePacking covers both Zw and Zh when choosing the maximal rectangle for t (since
assuming this for all such tiles may only increase the covered area).

Since all fi are differentiable in [0,
√

2), Taylor’s Theorem provides a function g(x) with
limx→0 g(x) = 0 such that fi(x+ε) = fi(x)+f ′

i(x) ·ε+g(ε) ·ε. Denote by w, h the dimensions
of the rectangle X = R1 ∩ R2. Then w = (ε + fi(x(p) + ε) − fi(x(p)))/

√
2 = (ε + f ′

i(x(p))ε +
g(ε)ε)/

√
2 = (1 + f ′

i(x(p)) + g(ε))ε/
√

2 and similarly h = (1 − f ′
i(x(p)) − g(ε))ε/

√
2.

From |f ′
i | ≤ 1 for all fi, one can easily see that the rectangles X, Zw and Zh have widths

and heights in O(ε), giving them a total area of W := X + Zw + Zh = O
(
ε2).

The tile t also contains two additional rectangles with an area of Yw = w((fi(x(p)) −
fi−1(x(p)))/

√
2 − h) and Yh = h((fi+1(x(p)) − fi(x(p)))/

√
2 − w). Note that this also holds

if x(qi±1) > x(p), as we extended fi∓1 with lines of slope ±1. In this case the two rectangles
are restricted by qi∓1’s tile, respectively. Hence, when evaluating the functions at x(p):

|Yw − Yh| = |w(fi − fi−1)/
√

2 − h(fi+1 − fi)/
√

2|
= |(1 + f ′

i + g(ε))(ε(fi − fi−1))/2 − (1 − f ′
i − g(ε))(ε(fi+1 − fi))/2|

= |(fi+1(g(ε) + f ′
i − 1) − fi−1(g(ε) + f ′

i + 1)) + 2fi| · ε/2
= |(g(ε)(fi+1 − fi−1) + f ′

i(fi+1 − fi−1) − fi−1 − fi+1 + 2fi)| · ε/2

= |g(ε)||fi+1 − fi−1| · ε/2 ≤ |g(ε)| · ε
√

2,

where the last inequality holds by Lemma 31, which gives us fi+1(x) − fi−1(x) ≤ fk(x) −
f−k(x) ≤ 2

√
2 for x ∈ [0,

√
2).

W.l.o.g. assume Yw > Yh. Then for the tile t with area |t| = W + Yw + Yh, TilePacking
covers at most W +Yw ≤ W +Yw/2+(Yh + |g(ε)| ·ε

√
2)/2 = |t|/2+O(ε(|g(ε)| + ε)). As Û is

the union of such tiles and |Pε,k| = O(k/ε), we have a total coverage of |Û |/2+O(k(|g(ε)| + ε)).
This immediately gives us the function ck(ε) = O(k(|g(ε)| + ε)) with limε→0 ck(ε) = 0. ◀

▶ Theorem 33. TilePacking has no better lower bound than (1 − e−2)/2.

Proof. We analyze the area ρ covered by TilePacking on Pε,k for some fixed k and u as ε

approaches 0. The bound then follows from letting k go to ∞ and u go to 0.
By Lemma 32, TilePacking covers half of Û = (

⋃
p∈Pε,k,x(p)≤

√
2−u tp) \ t̂ (plus ck(ε)

that approaches 0 for ε → 0) for each u > 0. Additionally, at most u2 area is covered from all
tiles at points p with x(p) >

√
2 − u. TilePacking covers A + Q area in t̂, where an error

term Q is introduced because the qi points only provide an approximation of hA. Q can
easily be bounded by, e.g., Q ≤ maxi(x(qi) − x(qi−1)) + maxi(y(qi) − y(qi−1)) (the biggest
rectangular strip that fits between two consecutive qi points, in U). (Note that all qi lie in
Pε,k, so no additional error is introduced.) In total, using E = Q + ck(ε) + u2,
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ρ ≤ A + |Û |/2 + E ≤ A + (1 − |t̂|)/2 + E ≤ A + (1 − (A +
∫ 1

A

A

x
dx))/2 + E

≤ (1 + A + A ln A)/2 + E.

Minimizing the last term leads to ρ ≤ (1 − e−2)/2 + E at A = e−2. Q approaches 0 when
k → ∞ since the qi lie densely on hA. Hence E approaches 0 for large k and small u, ε. ◀

7 Conclusion

We have shown that TilePacking’s worst-case coverage lies between 39% and 43.3%. Our
lower bound substantially improves over the previous best lower bound of roughly 9.1% [12],
while our upper bound is the first non-trivial upper bound for TilePacking. Note that
both bounds easily transfer to the (arguably more natural) GreedyPacking algorithm [12].

Our analysis crucially relies on a novel charging scheme and on a new analysis framework.
The latter reduces the task of proving good coverage to finding good lower bounds on the
tiles’ charging ratios (see Section 3). The versatility of this approach shows in the fact that
already a comparatively simple and short analysis yields a lower bound of 25%. Moreover,
our approach provides structural insights: e.g., it allows us to characterize the exact shape
of worst-case tiles as a function of their density (see Figures 8 and 9). We believe that our
framework might help to analyze similar algorithms for (variants of) LLARP.

Concerning the remaining gap of size roughly 4 percentage points between our bounds,
we believe that both bounds can be improved. For the lower bound, one shortcoming of our
analysis is that tiles are analyzed individually, ignoring their local relationships in the unit
square. Our lower bound basically predicts that the worst-case instance of TilePacking
should consist solely of tiles whose shapes resemble Figure 8, which seems impossible.

Regarding the upper bound, there is still a noticeable gap between the maximal area that
is coverable by the crowns (see Figure 4) and the area into which the crowns fall in our upper
bound construction (see Figure 14). In particular, our construction uses only one tile (in
the origin) with a large charging ratio, while all other tiles can be shown to have a charging
ratio of roughly 1. Also note that our upper bound construction might be of interest with
respect to the approximation variant of LLARP: an optimal solution should be able to fill
most of the unit square, such that our results would imply a corresponding bound on the
approximation ratio of TilePacking.

We leave as a major open question to find new algorithms for LLARP that might tackle
the 50% conjecture. Note that our upper bound is tailored towards a specific greedy algorithm,
so there is reasonable hope that other (possibly also greedy) algorithms might still achieve a
coverage of 50%.
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Abstract
We determine the computational complexity of approximately counting and sampling independent
sets of a given size in bounded-degree graphs. That is, we identify a critical density αc(∆) and
provide (i) for α < αc(∆) randomized polynomial-time algorithms for approximately sampling and
counting independent sets of given size at most αn in n-vertex graphs of maximum degree ∆; and
(ii) a proof that unless NP=RP, no such algorithms exist for α > αc(∆). The critical density is
the occupancy fraction of hard core model on the clique K∆+1 at the uniqueness threshold on the
infinite ∆-regular tree, giving αc(∆) ∼ e

1+e
1
∆ as ∆ → ∞.
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1 Introduction

Counting and sampling independent sets in graphs are fundamental computational problems
arising in several fields including algorithms, statistical physics, and combinatorics. Given a
graph G, let I(G) denote the set of independent sets of G. The independence polynomial of
G is

ZG(λ) =
∑

I∈I(G)

λ|I| =
∑
k≥0

ik(G)λk ,

where ik(G) is the number of independent sets of size k in G. The independence polynomial
also arises as the partition function of the hard-core model from statistical physics.

With G and λ as inputs, exact computation of ZG(λ) is #P-hard [32, 18], but the
complexity of approximating ZG(λ) has been a major topic in recent theoretical computer
science research. There is a detailed understanding of the complexity of approximating
ZG(λ) for the class of graphs of maximum degree ∆, in particular showing that there is a
computational threshold which coincides with a certain probabilistic phase transition as one
varies the value of λ.

The hard-core model on G at fugacity λ is the probability distribution on I(G) defined by

µG,λ(I) = λ|I|

ZG(λ) .
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Defined on a lattice like Zd (through an appropriate limiting procedure), this is a simple
model of a gas (the hard-core lattice gas) and it exhibits an order/disorder phase transition
as λ changes. The hard-core model can also be defined on the infinite ∆-regular tree (the
Bethe lattice). Kelly [23] determined the critical threshold for uniqueness of the infinite
volume measure on the tree, namely

λc(∆) = (∆ − 1)∆−1

(∆ − 2)∆ . (1)

This value of λ also marks a computational threshold for the complexity of approximating
ZG(λ) on graphs of maximum degree ∆. One can approximate ZG(λ) up to a relative
error of ε in time polynomial in n and 1/ε with several different methods, provided G is of
maximum degree ∆ and λ < λc(∆). The first such algorithm is based on correlation decay
on trees and is due to Weitz [33], but recently alternative algorithms based on polynomial
interpolation [3, 27, 28] and Markov chains [2, 6, 7] for this problem have also been given.
Conversely, for λ > λc(∆) a result of Sly and Sun [31] and Galanis, Štefankovič, and
Vigoda [16] (following Sly [30]) states that unless NP=RP there is no polynomial-time
algorithm for approximating ZG(λ) on graphs of maximum degree ∆. Counting and sampling
are closely related, and by standard reduction techniques the same computational threshold
holds for the problem of approximately sampling independent sets from the hard-core
distribution.

The hard-core model is an example of the grand canonical ensemble from statistical
physics, where one studies physical systems that can freely exchange particles and energy
with a reservoir. Closely related is the canonical ensemble, where one removes the reservoir
and considers a system with a fixed number of particles. In the context of independent sets
in graphs, this corresponds to the uniform distribution on independent sets of some fixed size
k. Here the number ik(G) of independent sets of size k in G plays the role of the partition
function. In this paper we answer affirmatively the natural question of whether there is a
similar complexity phase transition for the problem of approximating ik(G), and the related
problem of sampling independent sets of size k approximately uniformly. Analogous to
the critical fugacity in the hard-core model, we identify a critical density αc(∆), and for
α < αc(∆) we give a fully polynomial-time randomized approximation scheme (FPRAS,
defined below) for counting independent sets of size k in n-vertex graphs of maximum degree
∆, where 0 ≤ k ≤ αn. We also show that unless NP=RP there is no such algorithm for
α > αc(∆).

In statistical physics the grand canonical ensemble and the canonical ensemble are
known to be equivalent in some respects under certain conditions, and the present authors,
Jenssen, and Roberts [12] used this idea to give a tight upper bound on ik(G) for large k

in large ∆-regular graphs G (see also [10] for the case of small k). Here, the main idea
in our proofs is also to exploit the equivalence of ensembles. For algorithms at subcritical
densities we approximately sample independent sets from the hard-core model and show that
with sufficiently high probability we get an independent set of the desired size, distributed
approximately uniformly. For hardness at supercritical densities we construct an auxiliary
graph G′ such that ik(G′) is approximately proportional to ZG(λ) for some λ > λc(∆), and
hence is hard to approximate. Our counting and sampling algorithms for independent sets of
size k permit higher densities than previous algorithms for this problem based on Markov
chains [5, 1], and an algorithm implicit in [10] based on the cluster expansion.

A pleasant feature of our methods is the incorporation of several advances from recent
research on related topics. From the geometry of polynomials we use a state-of-the-art
zero-free region for ZG(λ) due to Peters and Regts [28] and a central limit theorem of
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Michelen and Sahasrabudhe [26, 25] (though an older result of Lebowitz, Pittel, Ruelle and
Speer [24] would also suffice), and we also apply the very recent development that a natural
Markov chain (the Glauber dynamics) for sampling from the hard-core model mixes rapidly
at fugacities λ < λc(∆) on all graphs of maximum degree at most ∆ [1, 7]. Finally, our
results also show a connection between these algorithmic and complexity-theoretic problems
and extremal combinatorics problems for bounded-degree graphs [9, 12, 10], see also the
survey [34].

1.1 Preliminaries

Given an error parameter ε and real numbers z, ẑ, we say that ẑ is a relative ε-approximation
to z if e−ε ≤ ẑ/z ≤ eε. A fully polynomial-time randomized approximation scheme or FPRAS
for a counting problem is a randomized algorithm that with probability at least 3/4 outputs
a relative ε-approximation to the solution of the problem in time polynomial in the size of
the input and 1/ε. If the algorithm is deterministic (i.e. succeeds with probability 1) then
it is a fully polynomial-time approximation scheme (FPTAS). An ε-approximate sampling
algorithm for a probability distribution µ outputs a random sample from a distribution µ̂

such that the total variation distance ∥µ − µ̂∥T V ≤ ε, and an efficient sampling scheme is,
for all ε > 0 an ε-approximate sampling algorithm which runs in time polynomial in the size
of the input and log(1/ε). Note that approximate sampling schemes whose running times
are polynomial in 1/ε or in log(1/ε) are common in the literature, but we adopt the stronger
definition for this paper. The inputs to our algorithms are graphs, and input size corresponds
to the number of vertices of the graph.

An independent set in a graph G = (V, E) is a subset I ⊂ V such that no edge of E is
contained in I. The density of such an independent set I is |I|/|V |, and it will be convenient
for us to parametrize independent sets by their density instead of their size. We write I(G)
for the set of all independent sets in G, Ik(G) for the set of independent sets of size k in G,
and ik(G) = |Ik(G)| for the number of such sets. Recall the hard-core distribution µG,λ on
I(G) is given by µG,λ(I) = λ|I|/ZG(λ). We also define the occupancy fraction αG(λ) of the
hard-core model on G at fugacity λ to be the expected density of a random independent set
drawn according to µG,λ. Let G∆ be the set of graphs of maximum degree ∆.

The critical density that we show constitutes a computational threshold for the problems
of counting and sampling independent sets of a given size in graphs of maximum degree ∆ is

αc(∆) = λc(∆)
1 + (∆ + 1)λc(∆) = (∆ − 1)∆−1

(∆ − 2)∆ + (∆ + 1)(∆ − 1)∆−1 ,

with λc the critical fugacity as in (1). This may seem unexpected at first sight, but has a
natural interpretation. The threshold is in fact the quantity αK∆+1(λc(∆)), the occupancy
fraction of the clique on ∆ + 1 vertices at the critical fugacity λc(∆). This is a natural
threshold because the occupancy fraction is a monotone increasing function of λ, and the
clique on ∆ + 1 vertices has the minimum occupancy fraction over all graphs of maximum
degree ∆. Thus, for any G ∈ G∆, the value of λ which makes αG(λ) > αc(∆) must be greater
than λc(∆). Conversely, if α < αc(∆) then for every graph G ∈ G∆ there is some λ < λc(∆)
such that αG(λ) = α.

ICALP 2021
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1.2 Our results
We are now ready to state our main result.

▶ Theorem 1.
(a) For every α < αc(∆) there is an FPRAS for i⌊αn⌋(G) and an efficient sampling scheme

for the uniform distribution on I⌊αn⌋(G) for n-vertex graphs G of maximum degree ∆.
(b) Unless NP=RP, for every α ∈ (αc(∆), 1/2) there is no FPRAS for i⌊αn⌋(G) for n-vertex,

∆-regular graphs G.
The assumption NP ̸=RP, which is that polynomial-time algorithms using randomness cannot
solve all problems in NP, is standard in computational complexity theory. Indeed, this
assumption is used in [30, 31, 16] to show hardness of approximation for ZG(λ) on regular
graphs at supercritical fugacities, which we apply directly. The upper bound of 1/2 on α

in b is required since in a regular graph (of degree ≥ 1) there are no independent sets of
density greater than 1/2 and counting those of density 1/2 amounts to counting connected
components in a bipartite graph (which can be done in polynomial time). For graphs of
maximum degree ∆ there is no such barrier, and in this case our methods can also be used
to prove b for α ∈ (αc(∆), 1).

On the algorithmic side, Bubley and Dyer [5] showed via path coupling that a natural
Markov chain for sampling independent sets of size k in n-vertex graphs of maximum degree
∆ mixes rapidly when k < n/(2∆ + 2), and recently this was slightly improved to k < n/(2∆)
via the method of high-dimensional expanders by Alev and Lau [1] (who also gave an improved
bound in terms of the smallest eigenvalue of the adjacency matrix of G). The fast mixing of
this Markov chain provides a randomized algorithm for approximate sampling and an FPRAS
for approximate counting for this range of k. Implicit in the work of the present authors and
Jenssen [10] is an alternative method based on the cluster expansion that yields an FPTAS
for ik(G) when k < e−5n/(∆ + 1), and although we did not try to optimize the constant
it seems unlikely that without significant extension the cluster expansion approach could
yield a sharp result. Considering asymptotics as ∆ → ∞, these previous algorithms work for
densities up to (c + o(1))/∆ with the constant c being 1/2 or e−5 ≈ 0.007 respectively. Here,
our algorithms work for densities α satisfying

α < αc(∆) = (1 + o(1)) e

1 + e

1
∆ ,

as ∆ → ∞. The constant e/(1 + e) is approximately 0.731, and our hardness proof shows
that this is tight.

Our sampling algorithm is based on searching over possible values of λ until we find one for
which the mean size of an independent set from the hard-core model is close to the target k.
We then repeatedly sample from the hard-core model until we obtain an independent set of
size k and output this independent set. Our approximate counting algorithm is based on a
standard reduction of approximate counting to approximate sampling.

The method of sampling from the canonical ensemble by sampling from the grand
canonical ensemble and conditioning on obtaining an object the desired size is quite old and
appears in the seminal papers of Jerrum and Sinclair [20, 21]. The key technical step in
applying this method is to prove a lower bound on the probability of obtaining the desired
size; in [20, 21] this is accomplished by using log-concavity of the specific distribution on
sizes. Since the hard-core model does not have this property in general, we need a different
argument; our new argument is based on the rapid mixing of Glauber dynamics.

Harris and Kolmogorov [19] have recently investigated the general problem of estimating
the coefficients of partition functions given access to samples from the corresponding Gibbs
distribution. Applying their ideas and results to this problem could likely lead to more
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efficient run times for the problem of approximating the entire sequence {ik(G)}, 1 ≤ k ≤ αn.
Their ideas could also be applied to improve the efficiency of the reduction from counting to
sampling, as they describe a more efficient “cooling schedule” for the simulated annealing
technique that we use for this type of reduction.

1.3 Triangle-free graphs
As an additional application of our techniques we find an approximate computational
threshold for the class of triangle-free graphs.

▶ Theorem 2. For every δ > 0 there is ∆0 large enough so that the following is true.
(a) For ∆ ≥ ∆0 and α < 1−δ

∆ there is an FPRAS and efficient sampling scheme for i⌊αn⌋(G)
for the class of triangle-free graphs of maximum degree ∆.

(b) For ∆ ≥ ∆0 and α ∈
( 1+δ

∆ , 1/2
)

there is no FPRAS for i⌊αn⌋(G) for the class of
triangle-free graphs of maximum degree ∆.

The proof of this theorem uses a result on the occupancy fraction of triangle-free graphs
from [11], see Section 4.

1.4 Related work
Counting independent sets of a specified size has arisen in various places as a natural
fixed-parameter version of counting independent sets, and is equivalent to counting cliques
of a specified size in the complement graph. Exact computation of ik(G) in an n-vertex
graph H is trivially possible in time O(k2nk), though improvements can be made via fast
matrix multiplication algorithms (see e.g. [15]). Another branch of research concerns the
complexity (in both time and number of queries to the graph data structure) of counting
and approximately counting cliques. For example, in [14] the authors gave a randomized
approximation algorithm for approximating the number of cliques of size k. Results of this
kind perform poorly in our setting, which is equivalent to counting cliques in the complement
of bounded-degree graphs, because such graphs are very dense. In particular, the main result
of [14] has expected running time Ω((nk/e)k) in our setting.

With a focus on bounded-degree graphs and connections to statistical physics, our work is
closer in spirit to that of Curticapean, Dell, Fomin, Goldberg, and Lapinskas [8]. There, the
authors consider the problem of counting independent sets of size k in bipartite graphs from
the perspective of parametrized complexity. They give algorithms for exact computation and
approximation of ik(G) in bipartite graphs (of bounded degree and otherwise), including a
fixed parameter tractable randomized approximation scheme, though their running times are
exponential in k. We note that the complexity of approximately counting the total number
of independent sets in bipartite graphs (a problem known as #BIS) is unknown [13].

1.5 Questions and future directions
For the hard-core model, the algorithm of Weitz [33] gives a deterministic approximation
algorithm (FPTAS) for ZG(λ) for λ < λc(∆). The approach of Barvinok along with
results of Patel and Regts and Peters and Regts give another FPTAS for the same range of
parameters [3, 27, 28]. Our algorithm for approximating the number of independent sets of
a given size uses randomness, but we conjecture that there is a deterministic algorithm that
works for the same range of parameters. (The cluster expansion approach of [10] gives an
FPTAS but only for smaller values of α).

▶ Conjecture 3. There is an FPTAS for i⌊αn⌋(G) for G ∈ G∆ and all α < αc(∆).

ICALP 2021
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The Markov chain analyzed in [5, 1] is the “down/up” Markov chain: starting from an
independent set It ∈ Ik(G) at step t, pick a uniformly random vertex v ∈ It and a uniformly
random vertex w ∈ V . Let I ′ = (It \ v) ∪ w. If I ′ ∈ Ik(G), let It+1 = I ′; if not, let It+1 = It.

▶ Conjecture 4. The down/up Markov chain for sampling from I⌊αn⌋(G) mixes rapidly for
α < αc(∆) and all G ∈ G∆.

One of the steps of our proof leads to a natural probabilistic conjecture concerning the
hard-core model in bounded degree graphs.

▶ Conjecture 5. Suppose G is a graph on n vertices of maximum degree ∆. Then if λ < λc(∆)
and k = ⌊EG,λ|I|⌋, we have

PG,λ[|I| = k] = Ω(n−1/2) ,

where the implied constant only depends on ∆ and λ and the expectation and probability are
with respect to the hard-core model on G at fugacity λ.

Lemma 8 below gives the weaker bound Ω(n−1 log−1 n). A stronger conjecture would be
that a local central limit theorem for |I| holds whenever λ < λc(∆).

Finally, our proofs of Theorems 1 and 2 show a close connection between the computational
threshold for sampling independent sets of a given size in bounded-degree graphs and the
extremal combinatorics problem of minimizing the occupancy fraction in the hard-core model
over a class of bounded-degree graphs. We expect that a rigorous connection between the
two problems can be proved.

2 Algorithms

In this section, we fix ∆ ≥ 3 and α < αc(∆). We first give an algorithm that, for G ∈ G∆ on
n vertices and k ≤ αn, returns an ε-approximate uniform sample from Ik(G) and runs in
time polynomial in n and log(1/ε); this proves the sampling part of Theorem 1a. We then
use this algorithm to approximate ik(G) using a standard simulated annealing process to
prove the approximate counting part of Theorem 1a.

Given λ ≥ 0, let I be a random independent set from the hard-core model on G at
fugacity λ. We will write PG,λ for probabilities over the hard-core measure µG,λ, so e.g.
PG,λ(|I| = k) is the probability that I is of size exactly k. Often we will suppress the
dependence on G.

A key tool that we use for probabilistic analysis and to approximately sample from µG,λ

is the Glauber dynamics. This is a Markov chain with state space I(G) and stationary
distribution µG,λ. Though the algorithm of Weitz [33] was the first to give an efficient
approximate sampling algorithm for µG,λ for λ < λc(∆) and all G ∈ G∆, a randomized
algorithm with better running time now follows from recent results showing that the Glauber
dynamics mix rapidly for this range of parameters [2, 6, 7]. The mixing time Tmix(M, ε) of a
Markov chain M is the number of steps from the worst-case initial state I0 for the resulting
state to have a distribution within total variation distance ε of the stationary distribution.
We will use the following result of Chen, Liu, and Vigoda [7], and the sampling algorithm
that it implies.

▶ Theorem 6 ([7]). Given ∆ ≥ 3 and ξ ∈ (0, λc(∆)), there exists C > 0 such that the
following holds. For all 0 ≤ λ < λc(∆) − ξ and graphs G ∈ G∆ on n vertices, the mixing
time Tmix(M, ε) of the Glauber dynamics M for the hard-core model on G with fugacity λ is
at most Cn log(n/ε). This implies an ε-approximate sampling algorithm for µG,λ for G ∈ G∆
that runs in time O(n log n log(n/ε)).
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The sampling algorithm follows from the mixing time bound; the extra factor log n is
the cost of implementing one step of Glauber dynamics (which requires reading O(log n)
random bits to sample a vertex uniformly). Note that the implicit constant in the running
time depends on how close λ is to λc(∆), but in applications of this theorem we will have
λ ≤ λc(∆) − ξ for some fixed ξ > 0, so that the implicit constant depends only on ξ, which
in turn depends on α.

2.1 Approximate sampling
The algorithm Sample-k listed in Algorithm 1 uses Theorem 6 and a binary search on values
of λ to generate samples from Ik(G). The algorithm requires access to distributions µ̂λ

which are meant to be approximate versions of the hard-core model on G at fugacity λ.
For the algorithm to work, we require that there is some value of λ such that sampling
from the hard-core model at fugacity λ is likely to yield a set of size exactly k, and we will
establish that this holds for some λ in a set of size O(n2) and for a suitable definition of
“likely”. Quantitatively, these results inform the length C log n of the for loop and the value
of N . An intuitive choice for λ would be the unique value that makes k the expected size of
an independent set from the hard-core model on G, and in fact it suffices to find a value
sufficiently close to this.

Algorithm 1 Sample-k.

input : α < αc; ε > 0; G ∈ G∆ of size n; integer k ≤ αn

output : I ∈ Ik(G) with distribution within ε total variation distance of the uniform
distribution of Ik(G)

1 Let λ∗ = α
1−α(∆+1)

2 For t = 0, . . . , ⌊2λ∗n2⌋, let λt = t/(2n2)
3 Let Λ0 = {λt : t = 0, . . . , ⌊2λ∗n2⌋}
4 for i = 1, . . . , C log n, do
5 Let λ be a median of the set Λi−1

6 With N = C ′n2 log
( log n

ε

)
, take N independent samples I1, . . . , IN from a

distribution µ̂λ on I(G)
7 Let κ = 1

N

∑N
j=1 |Ij |

8 If |κ − k| ≤ 1/4 and there exists j ∈ {1, . . . , N} so that |Ij | = k, then output Ij

for the smallest such j and halt
9 If κ ≤ k, let Λi = {λ′ ∈ Λi−1 : λ′ > λ}. If instead κ > k, let

Λi = {λ′ ∈ Λi−1 : λ′ < λ}
10 end
11 If no independent set of size k has been obtained by the end of the for loop (or if

Λj = ∅ at any step), use a greedy algorithm and output an arbitrary I ∈ Ik(G)

▶ Theorem 7. Let C be the constant in Line 4 and N be as in Line 6 of Sample-k (Algo-
rithm 1). If the distributions µ̂λ are each within total variation distance ε/(2CN log n) of
µG,λ, the output distribution of Sample-k is within total variation distance ε of the uniform
distribution of Ik(G). The running time of Sample-k is O(N log n · T (n, ε)) where T (n, ε) is
the running time required to produce a sample from µ̂λ satisfying the above guarantee.

ICALP 2021
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The sampling part of Theorem 1 follows immediately from Theorem 7 since by Theorem 6
we can obtain ε/(2CN log n)-approximate samples from µG,λ in time O(n log n log(n log n ·
N/ε)). Thus, the total running time of Sample-k with this guarantee on µ̂λ is

O(N · n log2 n · log(nN/ε)) ≤ n3 log3 n · polylog
( log n

ε

)
.

Note that the use of Glauber dynamics in Sample-k could be replaced by any other
polynomial-time approximate sampler for µG,λ, such as the algorithm due to Weitz [33]
based on the method of correlation decay. We do however use rapid mixing of the Glauber
dynamics in Lemma 8 below to prove correctness of our algorithm, by establishing a lower
bound on the probability that a set sampled from µG,λ has size close to its mean. Note
that e.g. a resolution of our Conjecture 5 could imply the necessary probabilistic statement
without appealing to the Glauber dynamics, however.

Before we prove Theorem 7, we collect a number of preliminary results that we will use.
The first is a bound on the probability of getting an independent set of size close to the mean
from the hard-core model when λ < λc(∆). We use the notation nαG(λ) for the expected
size of an independent set from the hard-core model on G at fugacity λ to avoid ambiguities.

▶ Lemma 8. For ∆ ≥ 3 and α < αc(∆), there is a unique λ∗ < λc(∆) so that αK∆+1(λ∗) = α,
and the following holds. For any G ∈ G∆ on n vertices and any 1 ≤ k ≤ αn, there exists an
integer t ∈ {0, 1, . . . , ⌊2λ∗n2⌋} so that∣∣nαG(t/(2n2)) − k

∣∣ ≤ 1/2 . (2)

Moreover, if t satisfies (2) then

µG,t/(2n2)(Ik(G)) = Ω
(

1
n log n

)
.

To prove this lemma we need several more results. The first is an extremal bound on
αG(λ) for G ∈ G∆. The statement of the theorem follows from a stronger property proved
by Cutler and Radcliffe in [9]; see [12] for discussion.

▶ Theorem 9 ([9]). For all G ∈ G∆ and all λ ≥ 0,

αG(λ) ≥ αK∆+1(λ) = λ

1 + λ(∆ + 1) .

We next rely on a zero-free region for ZG(λ) due to Peters and Regts [28], so that we can
apply the subsequent central limit theorem.

▶ Theorem 10 ([28]). Let ∆ ≥ 3 and ξ ∈ (0, λc(∆)). Then there exists δ > 0 such that for
every G ∈ G∆ the polynomial ZG has no roots in the complex plane that lie within distance δ

of the real interval [0, λc(∆) − ξ).

The probability generating function of a discrete random variable X distributed on the
non-negative integers is the polynomial in z given by f(z) =

∑
j≥0 P(X = j)zj , and the above

result shows that at subcritical fugacity the probability generating function of |I| has no
zeros close to 1 in C. This lets us use the following result of Michelen and Sahasrabudhe [25].

▶ Theorem 11 ([25]). For n ≥ 1 let Xn be a random variable taking values in {0, . . . , n}
with mean µn, standard deviation σn, and probability generating function fn. If fn has no
roots within distance δn of 1 in C, and σnδn/ log n → ∞, then (Xn − µn)/σn tends to a
standard normal in distribution.
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The final tools we need are simple bounds on the variance of the size of an independent
set from the hard-core model.

▶ Lemma 12. Let G be a graph on n vertices and let I be a random independent set drawn
from the hard-core model on G at fugacity λ. Then, if the maximum degree of G is at most
∆ and M ≥ n/(∆ + 1) is the size of a largest independent set in G, we have

λ

(1 + λ)2+∆ M ≤ var(|I|) ≤ n2 λ

1 + λ
.

Proof. For the upper bound note that |I| is the sum of the indicator random variables Xv

that the vertex v ∈ V (G) is in I. Then because P(Xv = 1) ≤ λ/(1 + λ) for all v, from the
Cauchy–Schwarz inequality in the form cov(Xu, Xv)2 ≤ var(Xu) var(Xv) we obtain

var(|I|) =
∑

u∈V (G)

∑
v∈V (G)

cov(Xu, Xv) ≤ n2 λ

1 + λ
.

For the lower bound, let J be some fixed independent set in G of maximum size M . Now
write X = |I|, and let K = I \ J . By the law of total variance,

var(X) = E[var(X|K)] + var(E[X|K]) ≥ E[var(X|K)] .

But we have X = |K|+ |I∩J |, and conditioned on K the set |I∩J | is distributed according to
the hard-core model on J \ NG(K), the subset of J uncovered by K. Since J is independent,
this is a sum of at most |J | independent, identically distributed Bernoulli random variables
with probability λ/(1 + λ).

Now, writing U = |J \ NG(K)| for the number variables in the sum we have

var(X) ≥ E[var(X|K)] = λ

(1 + λ)2EU .

A vertex u ∈ J is uncovered by K precisely when N(u) ∩ K = ∅. Then by successive
conditioning and the maximum degree condition, the probability that u is uncovered by K is
at least (1 + λ)−∆. This means EU ≥ |J |(1 + λ)−∆ and hence

var(X) ≥ λ

(1 + λ)2+∆ M .

The assertion M ≥ n/(∆ + 1) follows from the fact that any n-vertex graph of maximum
degree ∆ contains an independent set of size at least n/(∆ + 1), which is easy to prove by
analyzing a greedy algorithm. ◀

Now we are ready to prove Lemma 8.

Proof of Lemma 8. A standard calculation gives

∂

∂λ
αG(λ) = 1

n

∂

∂λ

λZ ′
G(λ)

ZG(λ) = 1
nλ

var(|I|) ,

and so Lemma 12 gives that 0 < α′
G(λ) ≤ n for all λ > 0.

Next, let λ∗ < λc(∆) be the solution to the equation αK∆+1(λ∗) = α. This means

λ∗ = α

1 − α(∆ + 1) ,
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as defined in Sample-k. The fact that λ∗ < λc(∆) follows from the fact that α < αc(∆) =
αK∆+1(λc(∆)), and that occupancy fractions are strictly increasing. Then using Theorem 9
we have that

αG(λ∗) ≥ αK∆+1(λ∗) = α , (3)

and so there exists λ ∈ (0, λ∗] such that nαG(λ) = k. Using the upper bound on α′
G(λ),

we see that as λ increases over an interval of length 1/(2n2), the function nαG(λ) can
increase by at most 1/2. Hence, there is at least one integer t ∈ {1, . . . , ⌊2λ∗n2⌋} such that
|nαG(t/(2n2)) − k| ≤ 1/2.

The second statement of Lemma 8 follows from a central limit theorem for |I| and rapid
mixing of the Glauber dynamics. There is a close connection between zeros of the probability
generating function of |I| and the zeros of the partition function itself. The probability
generating function of |I| is

f(z) =
∑
j≥0

Pλ(|I| = j)zj =
∑
j≥0

ij(G)λjzj

ZG(λ) = ZG(λz)
ZG(λ) .

Then for λ such that ZG(λ) ̸= 0, z is a root of f if and only if zλ is a root of ZG(λ). By
our assumptions on t, when λ = t/(2n2) Theorem 10 gives the existence of δ > 0 such that
for all G ∈ G∆ there are no complex zeros of f within distance δ/λ of 1. This is because
Theorem 10 means that ZG(zλ) = 0 implies |zλ − λ| ≥ δ. The condition of Theorem 11
which states that σnδn/ log n → ∞ is met because λ < λc(∆) ≤ 4 and so

σnδn ≥

√
λ

(1 + λ)2+∆
n

∆ + 1 · δ

λ
≥ Ω

(√
n/λ

)
> ω(log n) .

Now, let λ = t/(2n2) and suppose that (2) holds, meaning that k is within 1/2 of nαG(λ).
The standard deviation of the size of a set drawn from µG,λ is at least a constant, which
follows from the lower bound in Lemma 12 of Ω(

√
λn) and the fact that λ ≥ Ω(1/n). To see

this, note that αG(λ) ≤ λ/(1 + λ) for any graph and non-negative fugacity λ. This holds
because when I is a random independent set from the hard-core model, conditioned on a
vertex v having no neighbors in I, v ∈ I with probability λ/(1 + λ). If v has a neighbor in I
then v /∈ I with probability 1, and the bound follows. Then using (2), we have

n
λ

1 + λ
≥ nαG(λ) ≥ k − 1/2 ≥ 1/2 ,

and so λ ≥ Ω(1/n). We deduce that k is within some constant number r > 0 of standard
deviations of the mean size nαG(λ). The central limit theorem and standard properties of
the normal distribution mean that there are constants ρ > 0 (small enough as a function
of r) and n0 such that for all n ≥ n0, with probability at least ρ, |I| is at least r standard
deviations below the mean, and similarly with probability at least ρ it is at least r standard
deviations above the mean. So we have PG,λ(|I| ≥ k) ≥ ρ and PG,λ(|I| ≤ k) ≥ ρ.

The transition probabilities when we are at state I in the Glauber dynamics are given by
the following random experiment. Choose a vertex v ∈ V (G) uniformly at random and let

I ′ =
{

I ∪ {v} with probability λ/(1 + λ) ,

I \ {v} with probability 1/(1 + λ) .



E. Davies and W. Perkins 62:11

Now if I ′ is independent in G move to state I ′, otherwise stay in state I. This means that the
sequence of sizes of set visited must take consecutive integer values. By Theorem 6, there is
a constant C ′′ such that from an arbitrary starting state, in C ′′n log n steps the distribution
π of the current state is within total variation distance ρ/2 of the hard-core model. Then
the following statements hold.

(i) Starting from an independent set of size at most k, with probability at least ρ/2 the
state after C ′′n log n steps is an independent set of size at least k.

(ii) Starting from an independent set of size at least k, with probability at least ρ/2 the
state after C ′′n log n steps is an independent set of size at most k.

Consider starting from an initial state distributed according to µG,λ. Then every subsequent
state is also distributed according to µG,λ, and the above facts mean that for any sequence
of C ′′n log n consecutive steps, with probability at least ρ/2 we see a state of size exactly k.
Recalling that λ = t/(2n2), this immediately implies that

µG,t/(2n2)(Ik(G)) ≥ ρ

2C ′′n log n
,

as required. ◀

Proof of Theorem 7. We first prove the theorem under the assumption that each µ̂λ is
exactly the hard-core measure µG,λ, taking note of how many times we sample from any µ̂λ.

We say a failure occurs at step i in the FOR loop if either of the following occur:
1. |nαG(λ) − κ| > 1/4.
2. |nαG(λ) − k| ≤ 1/2 but the algorithm did not output an independent set of size k in step

i.
We show that the probability that a failure occurs at any time during the algorithm is at
most ε/2. By a union bound, it is enough to show that the probability of either type of
failure at a given step i is at most ε

4C log n .
Consider an arbitrary step i with its value of λ. To bound the quantity P(|nαG(λ) − κ| >

1/4), note that κ is the mean of N independent samples from µ̂λ, which we currently assume
to be µG,λ. Then we have Eκ = nαG(λ) and Hoeffding’s inequality gives P(|nαG(λ) − κ| >

1/4) ≤ 2e−N/(8n2), so for this to be at most ε/(4C log n) we need only N ≥ Ω
(
n2 log

( log n
ε

))
.

To bound the probability that the current step involves λ such that |nαG(λ) − k| ≤ 1/2,
but we fail to get a set of size k in the N samples, observe that we have N independent
trials for getting a set of size k, and each trial succeeds with probability p ≥ c/(n log n) by
Lemma 8. Then the probability we see no successful trials is

(
1 − c

n log n

)N , which is at most
ε/(4C log n) for N ≥ Ω

(
n log n · log

( log n
ε

))
. Thus, we can take N = Θ

(
n2 log

( log n
ε

))
, as in

line 6 of Sample-k.
Next we show that in the event that no failure occurs during the running of the algorithm,

the algorithm outputs an independent set I with distribution within ε/2 total variation
distance of the uniform distribution on Ik(G).

We first observe that if no failure occurs, the algorithm at some point reaches a value
of λ so that |nαG(λ) − k| ≤ 1/2. This is a simple consequence of Lemma 8, which means
there exists some t with this property, and the binary search structure of the algorithm. In
particular, in each iteration of the FOR loop, at line (e) the size of the set Λi being searched
goes down by (at least) half. Conditioned on no failures, the search also proceeds in the
correct half of λi because we search the upper half only when κ < k − 1/4 and so conditioned
on no failure we have nαG(λ) ≤ κ + 1/4 < k and hence using a larger value of λ must bring
nαG(λ) closer to k. The case κ > k + 1/4 is similar. This means that, conditioned on no
failures, the algorithm must reach a value of λ such that |nαG(λ) − k| ≤ 1/4.
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Note that µG,λ conditioned on getting a set of size exactly k is precisely the uniform
distribution on Ik(G), hence if the algorithm outputs an independent set of size k during
the FOR loop, its distribution is exactly uniform distribution on Ik(G). Thus, under the
assumption that each µ̂λ is precisely µG,λ we have shown that with probability at least
1 − ε/2 no failures occur, and hence a perfectly uniform sample from Ik(G) is output during
the FOR loop.

We do not have access to an efficient exact sampler for µG,λ, so we make do with the
approximate sampler from Theorem 6. One interpretation of total variation distance is that
when each µ̂λ has total variation distance at most ξ from µG,λ, there is a coupling between µ̂λ

and µG,λ such that the probability they disagree is at most ξ. Then to prove Theorem 7 we
consider a third failure condition: that during any of the calls to a sampling algorithm for any
µ̂λ the output differs from what would have been given by µG,λ under this coupling. Since
we make at most CN log n calls to such sampling algorithms, provided ξ ≤ ε/(2CN log n)
the probability of any failure of this kind is at most ε/2. Together with the above proof for
samples distributed exactly according to µG,λ which successfully returns uniform samples
from Ik(G) with probability 1 − ε/2, we have now shown the existence of a sampler that
with probability 1 − ε returns uniform samples from Ik(G), and makes at most CN log n

calls to a ε/(2CN log n)-approximate sampler for µG,λ (at various values of λ). Interpreting
this in terms of total variation distance, this means we have an ε-approximate sampler for
the uniform distribution on Ik(G) with running time O(N log n · T (n, ε)). ◀

2.2 Approximate counting
Given a graph G = (V, E) on n vertices and j ≥ 0, let fj(G) = (j + 1)ij+1(G)/ij(G). This
fj(G) has an interpretation as the expected free volume over a uniform random independent
set J ∈ Ij(G), that is, fj = E|V \(J∪N(J))|. This holds because each vertex in V \(J∪N(J))
can be added to J to make an independent set of size j + 1, and each such set is counted
j + 1 times in this way. Then by a simple telescoping product we have

ik(G) =
k−1∏
j=0

fj(G)
j + 1 , (4)

and hence if for 0 ≤ j ≤ k − 1 we can obtain a relative ε/k approximation to fj in time
polynomial in n and 1/ε then we can obtain a relative ε-approximation to ik(G) in time
polynomial in n and 1/ε. By the definition of fj as an expectation over a uniform random
independent set of size j, we can use an efficient sampling scheme for this distribution
to approximate fj , which is provided by Theorem 7. That is, by repeatedly sampling
independent sets of size j approximately uniformly and recording the free volume we can
approximate the expected free volume fj(G), and hence the corresponding term of the
product in (4). Doing this for all 0 ≤ j ≤ k − 1 thus provides an approximation to ik(G).
This scheme is an example of simulated annealing, which can be used as a general technique
for obtaining approximation algorithms from approximate sampling algorithms. For more
details, see e.g. [22, 29]. Here the integer j is playing the role of inverse temperature, and we
approximate ik(G) by estimating fj(G) (by sampling from Ij(G)) with the cooling schedule
j = 0, 1, . . . , k − 1. We expect that a more sophisticated cooling schedule can be used to
decrease the running time of our reduction, see for example [19].

Since this annealing process is standard, we sketch a simple version of the method.
Suppose that for all 0 ≤ j ≤ k − 1 we have a randomized algorithm that with probability at
least 1 − δ′ returns a relative ε/k-approximation t̂j to fj(G)/(j + 1) in time T ′. Then (4)
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implies that with probability at least 1 − kδ, the product ı̂k =
∏k−1

j=0 t̂j is a relative ε-
approximation to ik(G), and this takes time kT ′ to compute. For the FPRAS in Theorem 1,
it therefore suffices to design the hypothetical algorithm with δ′ = 1/(4k) and T ′ polynomial
in n and 1/ε.

First, suppose that we have access to an exactly uniform sampler for Ij(G) for 0 ≤ j ≤ k−1,
but impose the smaller failure probability bound of δ′/2. Then, for each j, let t̂j be the
sample mean of m computations of |V \ (J ∪ N(J))|/(j + 1) where J is a uniform random
independent set of size j. We note that as a random variable |V \ (J ∪ N(J))|/(j + 1) has a
range of at most j∆/(j + 1) in a graph of maximum degree ∆ because 0 ≤ |N(J)| ≤ j∆,
and for j ≤ k − 1 and

k ≤ αn < αc(∆)n <
e

1 + e

n

∆ ,

we have

|V \ (J ∪ N(J))|
j + 1 ≥ n − j(∆ + 1)

j + 1 ≥ ∆
e

− 1 .

Let Sj be the mean of m samples of |V \ (J ∪ N(J))|/(j + 1). Then, using that for ε′ ≤ 1 it
suffices to ensure |Sj −µ| ≤ ε′µ/2 for Sj to be a relative ε′-approximation to µ, by Hoeffding’s
inequality,

m ≥ Ω(ε−2k2 log(1/δ′)) = Ω(ε−2k2 log k)

samples are sufficient to obtain the required approximation accuracy ε′ with the required
success probability 1 − δ′/2. Since we do not have an exact sampler, we use the approximate
sampler obtained in this section with total variation distance δ′/2. Using the coupling
between the exact and the approximate sampler that we used in the proof of Theorem 7,
this suffices to obtain the required sampling accuracy with failure probability at most δ′.
Recalling that k ≤ n, it is now simple to check that the running time of the entire annealing
scheme is polynomial in n and 1/ε. This completes the proof of Theorem 1a.

3 Hardness

To prove hardness we will use the notion of an “approximation-preserving reduction” from [13].
We reduce the problem of approximating the hard-core partition function ZG(λ) on a ∆-
regular graph G, which we recall is hard for λ > λc (see [16, 31]), to the problem of
approximating ik(G′) for ∆-regular graph G′ that can be constructed in time polynomial in
the size of G. In particular, we show that it suffices to find an ε/2-approximation to ik(G′)
in order to obtain an ε-approximation to ZG(λ).

Let IS(α, ∆) be the problem of computing i⌊αn⌋(G) for a ∆-regular graph G on n vertices.
Let HC(λ, ∆) be the problem of computing ZG(λ) for a ∆-regular graph G.

▶ Theorem 13. For every ∆ ≥ 3 and α ∈ (αc(∆), 1/2), there exists λ > λc(∆) so that there
is an approximation-preserving reduction from HC(λ, ∆) to IS(α, ∆).

Theorem 13 immediately implies the hardness part of Theorem 1 as the results of [16, 31]
show that there is no FPRAS for HC(λ, ∆) for any λ > λc(∆) unless NP=RP.

Proof of Theorem 13. Fix ∆ ≥ 3, and let α ∈ (αc(∆), 1/2) be given. We will construct
a ∆-regular graph H on nH vertices such that for some value λ ∈ (λc(∆), ∞) we have
αH(λ) = α. Our reduction is then as follows: given a ∆-regular graph G on n vertices and
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ε > 0, let G′ be the disjoint union of G with rH, the graph of r disjoint copies of H, with
r = ⌈C∆n2/ε⌉ for some absolute constant C. Let N = |V (G′)| = n + rnH . We will prove
that

e−ε/2 ik(G′)
ik(rH) ≤ ZG(λ) ≤ eε/2 ik(G′)

ik(rH) , (5)

where k = ⌊αN⌋.
Since G′ can be constructed and ik(rH) computed in time polynomial in n, this provides

the desired approximation-preserving reduction. What remains is to construct the graph H

satisfying αH(λ) = α and then to prove (5).

Constructing H

The graph H = Ha,b will consist of the union of a copies of the complete bipartite graph
K∆,∆ and b copies of the clique K∆+1. Clearly H is ∆-regular. Since the occupancy fraction
of any graph is a strictly increasing function of λ, and the relevant occupancy fractions
satisfy αK∆+1(λc(∆)) = αc(∆) and limλ→∞ αK∆,∆(λ) = 1/2, we see that there exist integers
a, b ≥ 0 (with at least one positive) and λ > λc(∆) so that αHa,b

(λ) = α. A given pair (a, b)
provides a suitable Ha,b when

αHa,b
(λc(∆)) < α < lim

λ→∞
αHa,b

(λ) = a∆ + b

2a∆ + b(∆ + 1) ,

and hence it can be shown that for all ∆ ≥ 3 one of the pairs (0, 1), (1, 16), (1, 6), (1, 3), (2, 3),
(2, 1), (1, 0) suffices for (a, b), and a suitable pair is easy to find efficiently. This provides us
with the desired graph H . From here on, fix these values a, b, λ and let nH = 2a∆ + b(∆ + 1).

Proving (5)
We now form G′ by taking the union of G (a ∆-regular graph on n vertices) and r copies of
H. Let N = n + rnH be the number of vertices of G′, and write k = ⌊αN⌋. Let rH be the
graph consisting of the disjoint union of r copies of H. We can write:

ik(G′) =
n∑

j=0
ij(G)ik−j(rH) = ik(rH)

n∑
j=0

ij(G) ik−j(rH)
ik(rH) .

Now to prove (5) it suffices to show that for r ≥ C∆n2/ε and 0 ≤ j ≤ n, we have

e−ε/2λj ≤ ik−j(rH)
ik(rH) ≤ eε/2λj . (6)

We have the exact formula (for any 0 ≤ j ≤ k)

ik−j(rH) = ZrH(λ)
λk−j

PrH,λ(|I| = k − j)

and so
ik−j(rH)
ik(rH) = λj PrH,λ(|I| = k − j)

PrH,λ(|I| = k) ,

where PrH,λ denotes probabilities with respect to an independent set I drawn according to
the hard-core model on rH at fugacity λ. It is then enough to show

e−ε/2 ≤ PrH,λ(|I| = k − j)
PrH,λ(|I| = k) ≤ eε/2 .
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This will follow from a local central limit theorem (e.g. [17]) since |I| is the sum of r i.i.d.
random variables and the fact that ErH,λ|I| is close to both k and k − j. The following
theorem gives us what we need.

▶ Theorem 14 (Gnedenko [17]). Let X1, . . . , Xr be i.i.d. integer valued random variables
with mean µ and variance σ2, and suppose that the support of X1 includes two consecutive
integers. Let Sr = X1 + · · · + Xr. Then

P(Sr = k) = 1√
2πrσ

exp
[
−(k − nµ)2/(2rσ2)

]
+ o(r−1/2) ,

with the error term o(r−1/2) uniform in k.

This immediately implies that with µ and σ2 the mean and standard deviation of the
hard-core model on H at fugacity λ,

PrH,λ(|I| = k − j)
PrH,λ(|I| = k) = e−[j2−2(k−rµ)j]/(2rσ2) + o(e(k−rµ)2/(2rσ2)/r)

1 + o(e(k−rµ)2/(2rσ2)/r)
.

It therefore suffices to show that for large enough r, namely r ≥ C∆n2/ε, we can make
[j2 − 2(k − rµ)j]/(2rσ2) small compared to ε and show that (k − rµ)2/(2rσ2) is bounded
above by some absolute constant. Note that µ = αnH , and by Lemma 12 we have for all
∆ ≥ 3 (and any choices of α, λ, a, b made according to our conditions),

σ2 ≥ λ

(1 + λ)2+∆ (a∆ + b) ≥ λc(∆)
(1 + λc(∆))2+∆ (a∆ + b) ≥ 0.00384

∆ .

Since k = ⌊αN⌋ = ⌊αn + rαnH⌋, we then have (k − rµ)2 ≤ α2n2 < n2, and hence
(k−rµ)2

2rσ2 ≤ C ′∆ n2

r , where C ′ is an absolute constant. Now since 0 ≤ j ≤ n we also have∣∣∣∣j2 − 2(k − rµ)j
2rσ2

∣∣∣∣ ≤ C ′∆n2

r
.

This means that provided we take C to be a large enough absolute constant and r ≥ C∆n2/ε,
we have (5) as required. ◀

4 Triangle-free graphs

In this section we briefly describe the modifications to the proofs in Sections 2 and 3 to yield
Theorem 2, an analogue of Theorem 1 for triangle-free graphs.

4.1 Algorithms
We use the following lower bound on the occupancy fraction of triangle-free graphs.

▶ Theorem 15 ([11]). For every δ > 0, there is ∆0 large enough so that for every ∆ ≥ ∆0,
and every triangle-free G ∈ G∆,

αG(λc(∆) − 1/∆2) ≥ 1 − δ

∆ .

This statement follows from [11, Theorem 3] and some asymptotic analysis of the bound
for λ = λc(∆) − 1/∆2 as ∆ → ∞. Now the algorithm for Theorem 2 is essentially the same
as for Theorem 1, but since we assume the graph G is triangle free we can use a stronger
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lower bound on the occupancy fraction than Theorem 9. Let δ > 0 and α < (1 − δ)/∆ as in
Theorem 2. Then Theorem 15 means that for ∆ ≥ ∆0 and any triangle-free graph G ∈ G∆
we have

αG(λc(∆) − 1/∆2) ≥ 1 − δ

∆ > α .

But occupancy fractions are continuous and strictly increasing, so with λ∗ = λc(∆) − 1/∆2

there exists λ ∈ (0, λ∗] such that k = nαG(λ), as in the proof of Lemma 8 but permitting
larger α. The analysis of the algorithm can then proceed exactly as in the proofs of Lemma 8
and Theorem 1, completing the proof of Theorem 2a.

4.2 Hardness
The proof of hardness for triangle-free graphs is the same as that for general graphs, but we
replace K∆+1 with a (constant-sized) random regular graph in the construction. Bhatnagar,
Sly, and Tetali [4] showed that the local distribution of the hard-core model on the random
regular graph converges to that of the unique translation-invariant hard-core measure on
the infinite regular tree for a range of λ including λ = λc(∆). This means that if K is a
random ∆-regular graph on n vertices and αT∆ denotes the occupancy fraction of the unique
translation-invariant hard-core measure on the infinite ∆-regular tree (see [4, 11]) we have
with probability 1 − on(1),

αK(λc(∆)) = αT∆(λc(∆)) + on(1) = 1 + on,∆(1)
∆ ,

where on(1) → 0 as n → ∞ and on,∆(1) → 0 as both n and ∆ tend to infinity. Thus, for
fixed δ ∈ (0, 1), there is n0 = n0(δ) and ∆0 = ∆0(δ) such that with probability at least 1 − δ

a random ∆-regular graph K on n0 vertices has αG(λc(∆)) ≤ (1 + δ)/∆. This means that in
time bounded by a function of δ an exhaustive search over ∆-regular graphs on n0 vertices
must yield a graph K with the property αK(λc(∆)) ≤ (1 + δ)/∆. Now we replace K∆+1
with the random ∆-regular graph K in the proof above, which for ∆ ≥ ∆0 allows us to
work with any α ∈ ((1 + δ)/∆, 1/2) by the above argument. To finish the proof, we require
that approximating ZG(λ) is hard for ∆-regular triangle-free graphs G when λ > λc. This
follows directly from the proof of Sly and Sun [31], as their gadget which shows hardness for
∆-regular graphs contains no triangles. Thus, we have the following analogue of Theorem 13,
where we let IS′(α, ∆) be the problem of computing i⌊αn⌋(G) for a ∆-regular triangle-free
graph G on n vertices.

▶ Theorem 16. Given δ > 0 there exists ∆0 such that the following holds for all ∆ ≥ ∆0. For
every α ∈ ((1+δ)/∆, 1/2), there exists λ > λc(∆) so that there is an approximation-preserving
reduction from HC(λ, ∆) to IS′(α, ∆).

This implies Theorem 2b.
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Abstract

A run in a string is a maximal periodic substring. For example, the string bananatree contains
the runs anana = (an)5/2 and ee = e2. There are less than n runs in any length-n string, and
computing all runs for a string over a linearly-sortable alphabet takes O(n) time (Bannai et al.,
SIAM J. Comput. 2017). Kosolobov conjectured that there also exists a linear time runs algorithm
for general ordered alphabets (Inf. Process. Lett. 2016). The conjecture was almost proven by
Crochemore et al., who presented an O(nα(n)) time algorithm (where α(n) is the extremely slowly
growing inverse Ackermann function). We show how to achieve O(n) time by exploiting combinatorial
properties of the Lyndon array, thus proving Kosolobov’s conjecture. This also positively answers
the at least 29-year-old question whether square-freeness can be tested in linear time over general
ordered alphabets (Breslauer, PhD thesis, Columbia University 1992).
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1 Introduction and Related Work

A run in a string S is a maximal periodic substring. For example, the string S = bananatree
contains exactly the runs anana = (an)5/2 and ee = e2. Identifying such repetitive structures
in strings is of great importance for applications like text compression, text indexing and
computational biology (for a general overview see [8]). To name just one example, runs in
human genes (called maximal tandem repeats) are involved with a number of neurological
disorders [5]. In 1999, Kolpakov and Kucherov showed that the maximum number ρ(n) of runs
in a length-n string is bounded by O(n), and provided a word RAM algorithm that outputs
all runs in linear time [18]. The algorithm is based on the Lempel-Ziv factorization and
only achieves O(n) time for linearly-sortable alphabets, i.e. alphabets that are totally ordered
and for which a sequence of σ alphabet symbols can be sorted in O(σ) time. Since then,
it has been an open question whether there exists a linear time runs algorithm for general
ordered alphabets, i.e. totally ordered alphabets for which the order of any two symbols can be
determined in constant time. Any such algorithm must not use the Lempel-Ziv factorization,
since for general ordered alphabets of size σ it cannot be constructed in o(n lg σ) time [19].

Kolpakov and Kucherov also conjectured that the maximum number of runs is bounded
by ρ(n) < n, which started a 15 year-long search for tighter upper bounds of ρ(n). Rytter
was the first to give an explicit constant with ρ(n) < 5n [25]. After multiple incremental
improvements of this bound (e.g. [7, 9, 24]), Bannai et al. [2] finally proved the conjecture by
showing ρ(n) < n for arbitrary alphabets, which was subsequently even surpassed for binary
texts [12]. (The current best bound for binary alphabets is ρ(n) < 183

193 n [17].)
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On the algorithmic side, Bannai et al. also provided a new linear time algorithm that
computes all the runs [2]. While (just like the algorithm by Kolpakov and Kucherov) it only
achieves the time bound for linearly-sortable alphabets, it no longer relies on the Lempel-Ziv
factorization. Instead, the main effort of the algorithm lies in the computation of Θ(n)
longest common extensions (LCEs); given two indices i, j ∈ [1, n], their LCE is the length of
the longest common prefix of the suffixes S[i..n] and S[j..n]. For linearly-sortable alphabets,
we can precompute a data structure in O(n) time that answers arbitrary LCE queries in
constant time (see e.g. [11]), thus yielding a linear time runs algorithm. Kosolobov showed
that for general ordered alphabets any batch of O(n) LCEs can be computed in O(n lg2/3 n)
time, and conjectured the existence of a linear time runs algorithm for general ordered
alphabets [20]. Gawrychowski et al. improved this result to O(n lg lg n) time [14]. Finally,
Crochemore et al. noted that the required LCEs satisfy a special non-crossing property. They
showed how to compute O(n) non-crossing LCEs in O(nα(n)) time, resulting in an O(nα(n))
time algorithm that computes all runs over general ordered alphabets [10] (where α is the
inverse Ackermann function).

This is also the asymptotically fastest known algorithm for testing whether a string is
square-free. A square is a substring αα for some non-empty word α. A string is square-
free if and only if it contains no runs (because every square is contained in a run, and
every run contains at least one square). The question whether square-freeness over general
ordered alphabets can be tested in linear time dates back at least to Breslauer’s PhD
dissertation [4, Section 4.4], which was published almost 30 years ago.1 Testing for square-
freeness over general unordered alphabets (where only constant time equality testing of
symbols is permitted) takes at least Ω(n lg n) symbol comparisons [22].

Our Contributions. We show how to compute the LCEs required by the algorithm by
Bannai et al. in O(n) time and space, resulting in the first linear time runs algorithm for
general ordered alphabets. Thus we prove Kosolobov’s conjecture, and provide the first
linear time algorithm to test for square-freeness over general ordered alphabets. Our solution
differs from all previous approaches in the sense that it cannot answer a sequence of arbitrary
non-crossing LCE queries. Instead, our algorithm is specifically designed exactly for the LCEs
required by the runs algorithm. This allows us to utilize powerful combinatorial properties of
the Lyndon array (a definition follows in Section 2) that do not generally hold for arbitrary
non-crossing LCE sequences.

Even though the main contribution of our work is the improved asymptotic time bound,
it is worth mentioning that our algorithm is also very fast in practice. On modern hardware,
computing all runs for a text of length 107(= 10MB) takes only one second.

A Note on the Model. As mentioned earlier, our algorithm runs in linear time for general
ordered alphabets, whereas previous algorithms achieve this time bound only when the
alphabet is linearly-sortable. This is comparable with the distinction between comparison-
based and integer sorting: while in the comparison-model sorting n items requires Ω(n lg n)
time, integer sorting is faster (O(n

√
lg lg n) time [16] and sometimes even linear, e.g. when

the word width w satisfies w = O(lg n) and one can use radix sort, or when w ≥ (lg2+ϵ n) [1]).
Whereas it is a major open problem whether integer sorting can always be done in linear
time, this paper settles a symmetric open problem for the computation of runs.

1 We thank the reviewer who kindly pointed out to us that this was an open problem.
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The remainder of the paper is structured as follows: First, we introduce the basic notation,
definitions, and auxiliary lemmas (Section 2). Then, we give a simplified description of the
runs algorithm by Bannai et al. and show how the required LCEs relate to the Lyndon array
(Section 3). Our linear time algorithm to compute the LCEs is described in Section 4. We
discuss additional practical aspects and experimental results in Section 5.

2 Preliminaries

Our analysis is performed in the word RAM model (see e.g. [15]), where we can perform
fundamental operations (logical shifts, basic arithmetic operations etc.) on words of size
w bits in constant time. For an input of size n we assume ⌈log2 n⌉ ≤ w. We write
[i, j] = [i, j + 1) = (i − 1, j] = (i − 1, j + 1) with i, j ∈ N to denote the set of integers
{x | x ∈ N ∧ i ≤ x ≤ j}.

Strings. Let Σ be a finite and totally ordered set. A string S of length |S| = n over the
alphabet Σ is a sequence S[1] . . . S[n] of n symbols (also called characters) from Σ. The alphabet
is called a general ordered alphabet if order testing (i.e. evaluating σ1 < σ2 for σ1, σ2 ∈ Σ) is
possible in constant time. For i, j ∈ [1, n], we use the interval notation S[i..j] = S[i..j + 1) =
S(i− 1..j] = S(i− 1..j + 1) to denote the substring S[i] . . . S[j]. If however i > j, then
S[i..j] denotes the empty string ϵ. The substring S[i..j] is called proper if S[i..j] ̸= S. A
prefix of S is a substring S[1..j] (including S[1..0] = ϵ), while the suffix Si is the substring
S[i..n] (including Sn+1 = ϵ). Given two strings S and T of length n and m respectively, their
concatenation is defined as ST = S[1] . . . S[n]T [1] . . . T [m]. For any positive integer k, the k-
times concatenation of S is denoted by Sk. Let ℓmax = min(n, m). The longest common prefix
(LCP) of S and T has length lcp(S, T ) = max{ℓ | ℓ ∈ [0, ℓmax] ∧ S[1..ℓ] = T [1..ℓ]}, while the
longest common suffix has length lc-suff(S, T ) = max{ℓ | ℓ ∈ [0, ℓmax]∧Sn−ℓ+1 = Tm−ℓ+1}.
Let ℓ′ = lcp(S, T ). For a string S of length n and indices i, j ∈ [1, n], we define the longest
common right-extension (R-LCE) and left-extension (L-LCE) as lcer(i, j) = lcp(Si, Sj)
and lceℓ(i, j) = lc-suff(S[1..i], S[1..j]) respectively. The total order on Σ induces a
lexicographical order ≺ on the strings over Σ in the usual way. Given three suffixes, we can
deduce properties of their R-LCEs from their lexicographical order:

▶ Lemma 1. Let Si ≺ Sj ≺ Sk be suffixes of a string, then it holds lcer(i, k) ≤ lcer(i, j)
and lcer(i, k) ≤ lcer(j, k).

Proof. Assume ℓ = lcer(i, j) < lcer(i, k), then Si[1..ℓ] = Sj [1..ℓ] = Sk[1..ℓ] and Sj [ℓ + 1] ̸=
Si[ℓ + 1] = Sk[ℓ + 1]. This implies Si ≺ Sj ⇔ Sk ≺ Sj , which contradicts Si ≺ Sj ≺ Sk. The
proof of lcer(i, k) ≤ lcer(j, k) works analogously. ◀

Repetitions and Runs. Let S be a string and let S[i..j] be a non-empty substring. We say
that p ∈ N+ is a period of S[i..j] if and only if ∀x ∈ [i, j − p] : S[x] = S[x + p]. If additionally
(j − i + 1) ≥ p, then S[i..i + p) is called string period of S[i..j]. Furthermore, p is called
shortest period of S[i..j] if there is no q ∈ [1, p) that is also a period of S[i..j]. Analogously,
a string period of S[i..j] is called shortest string period if there is no shorter string period of
S[i..j]. A run is a triple ⟨i, j, p⟩ such that p is the shortest period of S[i..j], (j − i + 1) ≥ 2p

(i.e. there are at least two consecutive occurrences of the shortest string period S[i..i + p)),
and neither ⟨i− 1, j, p⟩ nor ⟨i, j + 1, p⟩ satisfies these properties (assuming i > 1 and j < n,
respectively).

ICALP 2021



63:4 Linear Time Runs over General Ordered Alphabets

Lyndon Words and Nearest Smaller Suffixes. For a length-n string S and i ∈ [1, n], the
string SiS[1..i) is called cyclic shift of S, and non-trivial cyclic shift if i > 1. A Lyndon word
is a non-empty string that is lexicographically smaller than any of its non-trivial cyclic shifts,
i.e. ∀i ∈ [2, n] : S ≺ SiS[1..i). The Lyndon array of S identifies the longest Lyndon word
starting at each position of S.

▶ Definition 2 (Lyndon Array). Given a string S of length n, its Lyndon array λ[1, n] is
defined by ∀i ∈ [1, n] : λ[i] = max{j − i + 1 | j ∈ [i, n] ∧ S[i..j] is a Lyndon word}.

An alternative representation of the Lyndon array is the next-smaller-suffix array.

▶ Definition 3 (Next Smaller Suffixes). Given a string S of length n, its next-smaller-suffix
(NSS) array is defined by ∀i ∈ [1, n] : nss[i] = min{j | j = n + 1 ∨ (j ∈ (i, n] ∧ Si ≻ Sj)}. If
nss[i] ≤ n, then Snss[i] is called the next smaller suffix of Si.

▶ Lemma 4 (Lemma 15 [13]). The longest Lyndon word starting at any position i ∈ [1, n] of
a length-n string S is exactly the substring S[i..nss[i]), i.e. ∀i ∈ [1, n] : λ[i] = nss[i]− i.

An example of the Lyndon and NSS array is provided in Figure 1a. The NSS edges in
the example do not intersect. This property also holds in the general case:

▶ Lemma 5. Let i ∈ [1, n] and i′ ∈ [i, nss[i]). Then it holds nss[i′] ≤ nss[i].

Proof. Due to i′ ∈ [i, nss[i]) and Definition 3 it holds Si′ ≻ Snss[i]. Assume that the lemma
does not hold, then we have nss[i] ∈ (i′, nss[i′]) and Definition 3 implies Si′ ≺ Snss[i]. ◀

3 The Runs Algorithm Revisited

In this section, we recapitulate the main ideas of the algorithm by Bannai et al. [2], which is
the basis of our solution for general ordered alphabets. The key insight is that every run is
rooted in a longest Lyndon word, allowing us to compute all runs from the Lyndon array.

▶ Definition 6. Let ⟨i, j, p⟩ be a run in a string S. We say that ⟨i, j, p⟩ is (lexicographically)
decreasing if and only if Si ≻ Si+p. Otherwise, ⟨i, j, p⟩ is (lexicographically) increasing.

▶ Lemma 7. Let ⟨i, j, p⟩ be a decreasing run, then there is exactly one index i0 ∈ [i..i + p)
such that λ[i0] = p.

Proof. Consider any i0 ∈ [i, i+p). By the definition of runs, we have S[i..i0) = S[i+p..i0 +p).
Since the run is decreasing it follows Si ≻ Si+p ⇐⇒ S[i..i0)Si0 ≻ S[i + p..i0 + p)Si0+p ⇐⇒
Si0 ≻ Si0+p. This implies nss[i0] ≤ i0 + p, and due to Lemma 4 also λ[i0] ≤ p. Next, we show
that there is at least one index i0 ∈ [i..i + p) such that S[i0..i0 + p) is a Lyndon word. Let
α = S[i..i+p). Assume that the described index i0 does not exist, then from S[i..i+2p) = αα

follows that no cyclic shift of α is a Lyndon word. Let β be a lexicographically minimal
cyclic shift of α, then this shift is not unique (otherwise β would be a Lyndon word), and
thus there must be a cyclic shift βkβ[1..k) = β[1..k)βk with k > 1. This however implies that
β is of the form β = µk for some string µ and an integer k > 1 (see Lemma 3 in [21]), which
contradicts the fact that α is the shortest string period of the run. Finally, let αkα[1..k) with
k ∈ [1, p] be the unique lexicographically smallest cyclic shift of α (and thus a Lyndon word),
then it is easy to see that only i0 = i + k − 1 satisfies λ[i0] = p. ◀



J. Ellert and J. Fischer 63:5

1 2 3 4 5 6 7 8 9 10 11

S = a c b a c b a b a b c

λ = 3 1 1 3 1 1 5 1 3 2 1

nss = 4 3 4 7 6 7 12 9 12 12 12

(a) String S = acbacbababc, its Lyn-
don array λ, and its NSS array nss.

.

S = aaaa

run ⟨5, 31, 7⟩︷ ︸︸ ︷
α︷ ︸︸ ︷

abc
8
abab

α︷ ︸︸ ︷
abc

15
abab

α︷ ︸︸ ︷
abc abab

α[1..6]︷ ︸︸ ︷
abc aba aaaa

β = abab abc
nss[8] = 15, λ[8] = 7

. lceℓ(8, 15) = 4 lcer(8, 15) = 17

(b) Decreasing run ⟨5, 31, 7⟩ with S[5..31] = (abcabab)27/7.
The run has shortest string period α = abcabab, and is rooted
in position 8 (with longest Lyndon word β = S[8..15) =
α4α[1..3] = abababc).

Figure 1 An edge from text position a to text position b indicates nss[a] = b.

▶ Definition 8 (Root of a Run). Let ⟨i, j, p⟩ be a decreasing run, and let i0 ∈ [i..i + p) be the
unique index with λ[i0] = p (as described in Lemma 7). We say that ⟨i, j, p⟩ is rooted in i0.

An example of a decreasing run and its root is provided in Figure 1b. Note that our
notion of a root differs from the L-roots introduced by Crochemore et al. [6]. While an L-root
is any length-p Lyndon word contained in the run, our root is exactly the leftmost one.

Given a longest Lyndon word S[i0..nss[i0]) of length p = nss[i0] − i0 = λ[i0], it is easy
to determine whether i0 is the root of a decreasing run. We simply try to extend the
periodicity as far as possible to both sides by using the LCE functions. For this purpose, we
only need to compute l = lceℓ(i0, nss[i0]) and r = lcer(i0, nss[i0]). Let i = i0 − l + 1 and
j = nss[i0] + r − 1, then clearly the substring S[i..j] has smallest period p, and we cannot
extend the substring to either side without breaking the periodicity. Thus, if j − i + 1 ≥ 2p

then ⟨i, j, p⟩ is a run. Note that this run is only rooted in i0 if additionally i0 ∈ [i..i + p) (or
equivalently l ≤ p) holds. For the index i0 = 8 in Figure 1b, we have l = lceℓ(8, 15) = 4 and
r = lcer(8, 15) = 17. Therefore, the run starts at position i = 8 − 4 + 1 = 5 and ends at
position j = 15 + 17− 1 = 31. From l = 4 ≤ 7 = p follows that 8 is actually the root.

Since each decreasing run is rooted in exactly one index, we can find all decreasing runs
by checking for each index whether it is the root of a run. This procedure is outlined in
Algorithm 1. First, we compute the NSS array (line 2). Then, we investigate one index
i0 ∈ [1, n] at a time (line 3), and consider it as the root of a run with period p = nss[i0]− i0
(line 4). If the left-extension covers an entire period (i.e. lceℓ(i0, nss[i0]) > p), then we have
already investigated the root of the run in an earlier iteration of the for-loop, and no further
action is required (line 5). Otherwise, we compute the left and right border of the potential
run as described earlier (lines 6–7). If the resulting interval has length at least 2p, then we
have discovered a run that is rooted in i0 (lines 8–9).

Time and space complexity. The NSS array can be computed in O(n) time and space
for general ordered alphabets [3]. Assume for now that we can answer L-LCE and R-LCE
queries in constant time, then clearly the rest of the algorithm also requires O(n) time and
space. The correctness of the algorithm follows from Lemma 7 and the description. We have
shown:
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Algorithm 1 Compute all decreasing runs.
Input: String S of length n.
Output: Set R of all decreasing runs in S.

1: R← ∅
2: compute array nss
3: for i0 ∈ [1, n] with nss[i0] ̸= n + 1 do
4: p← nss[i0]− i0
5: if lceℓ(i0, nss[i0]) ≤ p then
6: i← i0 − lceℓ(i0, nss[i0]) + 1
7: j ← nss[i0] + lcer(i0, nss[i0])− 1
8: if j − i + 1 ≥ 2p then
9: R← R ∪ {⟨i, j, p⟩}

▶ Lemma 9. Let S be a string of length n over a general ordered alphabet, and let nss be its
NSS array. We can compute all decreasing runs of S in O(n) + t(n) time and O(n) + s(n)
space, where t(n) and s(n) are the time and space needed to compute lceℓ(i, nss[i]) and
lcer(i, nss[i]) for all i ∈ [1, n] with nss[i] ̸= n + 1.

In order to also find all increasing runs, we only need to rerun the algorithm with reversed
alphabet order. This way, previously increasing runs become decreasing.

4 Algorithm for Computing the LCEs

In this section, we show how to precompute the LCEs required by Algorithm 1 in linear time
and space. Our approach is asymmetric in the sense that we require different algorithms for
L-LCEs and R-LCEs (whereas previous approaches usually compute L-LCEs by applying the
R-LCE algorithm to the reverse text). However, for both directions we use similar properties
of the Lyndon array that are shown in Lemmas 10 and 11 and visualized in Figure 2a.

▶ Lemma 10. Let i ∈ [1, n] and j = nss[i] ̸= n + 1. If lcer(i, j) ≥ (j − i), then it holds
lcer(j, j + (j − i)) = lcer(i, j)− (j − i) and nss[j] = j + (j − i).

Proof. From lcer(i, j) ≥ (j − i) follows lcer(i, j) = (j − i) + lcer(j, j + (j − i)), which
is equivalent to lcer(j, j + (j − i)) = lcer(i, j) − (j − i). It remains to be shown that
nss[j] = j + (j− i). Due to nss[i] = j it holds Si ≻ Sj . Since Si ≻ Sj and lcer(i, j) ≥ (j− i),
we have Si+(j−i) ≻ Sj+(j−i), which implies nss[j] ≤ j + (j − i). Note that nss[i] = j and
Lemma 4 imply that S[i..j) = S[j..j + (j− i)) is a Lyndon word. Thus it holds λ[j] ≥ (j− i),
or equivalently nss[j] ≥ j + (j − i). ◀

▶ Lemma 11. Let i ∈ [1, n] and j = nss[i] ̸= n + 1. If lceℓ(i, j) > (j − i), then it holds
lceℓ(i− (j − i), i) = lceℓ(i, j)− (j − i) and nss[i− (j − i)] = i.

Proof. Analogous to Lemma 10. ◀

4.1 Computing the R-LCEs
First, we will briefly describe our general technique for computing LCEs, and our method
of showing the linear time bound. Assume for this purpose that we want to compute
ℓ = lcer(i, j) with i < j. It is easy to see that we can determine ℓ by performing ℓ + 1
individual character comparisons (by simultaneously scanning the suffixes Si and Sj from left
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S =

i−(j−i)
↓

β

i
↓

β

j
↓

β

j+(j−i)
↓

(a) Lemmas 10 and 11. The dotted edge follows
from lcer(i, j) ≥ (j − i) (Lemma 10). The dashed
edge follows from lceℓ(i, j) > (j − i) (Lemma 11).

S =

i6
↓

i5
↓

i2
↓

i1
↓

j1
↓

i4
↓

i3
↓

j2
↓

(b) Relative order of R-LCE computations from
first to last: lcer(i1, j1), lcer(i2, j1), lcer(i3, j2),
lcer(i4, j2), lcer(i5, j2), lcer(i6, j2).

Figure 2 As before, an edge from text position a to text position b indicates nss[a] = b.

to right until we find a mismatch). Whenever we use this naive way of computing an LCE,
we charge one character comparison to each of the indices from the interval [j, j + ℓ). This
way, we account for ℓ character comparisons. Since we want to compute O(n) R-LCE values
in O(n) time, we can afford a constant time overhead (i.e. a constant number of unaccounted
character comparisons) for each LCE computation. Thus, there is no need to charge the
(ℓ + 1)-th comparison to any index. At the time at which we want to compute ℓ, we may
already know some lower bound k ≤ ℓ. In such cases, we simply skip the first k character
comparisons and compute ℓ = k + lcer(i + k, j + k). This requires ℓ − k + 1 character
comparisons, of which we charge ℓ− k to the interval [j + k..j + ℓ).

Ultimately, we will show that all R-LCE values lcer(i, j) with i ∈ [1, n] and j = nss[i] ̸=
n + 1 can be computed in a way such that each text position gets charged at most once,
which results in the desired linear time bound. From now on, we refer to i as the left index
and j as the right index of the R-LCE computation. Our algorithm computes the R-LCEs
in the following order (a visualization is provided in Figure 2b): We consider the possible
right indices j ∈ [2, n] one at a time and in increasing order. For each right index j, we then
consider the corresponding left indices i with nss[i] = j in decreasing order (we will see how
to efficiently deduce this order from the Lyndon array later).

Assume that we are computing the R-LCEs in the previously described order, and let
ℓ = lcer(i, j) with j = nss[i] ̸= n + 1 be the next value that we want to compute. The
set of indices that we have already considered as left indices for LCE computations is
I = {x | (nss[x] < j) ∨ ((nss[x] = j) ∧ (i < x))}. For example, when we compute lcer(i4, j2)
in Figure 2b it holds {i1, i2, i3} ⊆ I. At this point in time, the rightmost text position that we
have already inspected is →c = maxx∈I(nss[x] + lcer(x, nss[x])) if I ̸= ∅, or →c = 1 otherwise.
Due to the nature of our charging method, we have not charged any indices from the interval
[→c , n] yet. Thus, in order to show that we can compute all LCEs without charging any index
twice, it suffices to show how to compute ℓ = lcer(i, j) without charging any index from the
interval [1,

→
c ). If j ≥ →c then we naively compute ℓ and charge the character comparisons to

the interval [j, j + ℓ), thus only charging previously uncharged indices. The new value of →c
is j + ℓ. If however j <

→
c , then the computation of ℓ depends on the previously computed

LCEs, which we describe in the following.

Let ℓ′ = lcer(i′, j′) with j′ = nss[i′] be the most recently computed R-LCE that satisfies
j′ + ℓ′ = →c . Our strategy for computing ℓ depends on the position of i relative to i′ and j′.
First, note that i /∈ [i′, j′) because otherwise Lemma 5 implies j ≤ j′, which contradicts our
order of computation. This leaves us with three possible cases (as before, a directed edge
from text position a to text position b indicates nss[a] = b):
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S =

i
↓

i′

↓
j′

↓
j
↓

→
c
↓

Case R1: i < i′

(possibly j′ = j)

S =

i′

↓
j′=i
↓

j
↓

→
c
↓

Case R2: i = j′

S =

i′

↓
j′

↓
i
↓

j
↓

→
c
↓

Case R3: i > j′

Now we explain the cases in detail. Each case is accompanied by a schematic drawing.
We strongly advise the reader to study the drawings alongside the description, since they are
essential for an easy understanding of the matter.

Case R1: i < i′ (and j′ ≤ j <
→
c ).

|α| = j − j′, |β| = →c − j S =

i
↓
β γ

i′

↓
α

(i′+j−j′)
↓
β

j′

↓
α

j
↓
β

→
c
↓
γ

ℓ′ = |αβ|, ℓ = |βγ|

Due to i < (i′ + j − j′) < j = nss[i] we have Sj ≺ Si ≺ Si′+j−j′ . From Lemma 1 follows
→
c − j = lcer(i′+ j− j′, j) ≤ lcer(i, j) = ℓ, i.e. both Si and Sj start with β. Since now we
know a lower bound →c − j ≤ ℓ of the desired LCE value, we can skip character comparisons
during its computation. Later, we will see that the same bound also holds for most of the
other cases. Generally, whenever we can show →c − j ≤ ℓ we use the following strategy. We
compute ℓ = (→c − j) + lcer(i + (→c − j),→c ) using ℓ− (→c − j) + 1 character comparisons,
of which we charge ℓ− (→c − j) to the interval [→c , j + ℓ). Thus we only charge previously
uncharged positions. We continue with i′ ← i, j′ ← j, ℓ′ ← ℓ, and →c ← j + ℓ.

Case R2: i = j′. We divide this case into two subcases.

Case R2a: ℓ′ < j′ − i′.

|α| = j − j′, |β| = →c − j S =

i′

↓
α

(i′+j−i)
↓

β

j′=i
↓

α

j
↓

β

→
c
↓

From j <
→
c =⇒ j − i <

→
c − i = ℓ′ and ℓ′ < j′ − i′ follows i′ + j − i < j′ = i. Therefore,

nss[i′] = i and Definition 3 imply Si ≺ Si′+j−1. Due to nss[i] = j we also have Sj ≺ Si,
such that it holds Sj ≺ Si ≺ Si′+j−1. It is easy to see that Si′+j−i and Sj share a prefix β

of length lcer(i′ + j − i, j) = →c − j. In fact, also Si has prefix β because Lemma 1 implies
that lcer(i′ + j − i, j) ≤ lcer(i, j) = ℓ. Thus it holds →c − j ≤ ℓ, which allows us to use
the strategy from Case R1.

Case R2b: ℓ′ ≥ j′ − i′.

|β| = j′ − i′, ℓ = ℓ′ − |β| S =

i′

↓
β

j′=i
↓

β

j
↓

→
c
↓

Due to ℓ′ ≥ j′ − i′, Lemma 10 implies j = i + (j′ − i′) and ℓ = ℓ′ − (j′ − i′). Since i′, j′,
and ℓ′ are known, we can compute ℓ in constant time without performing any character
comparisons. We continue with i′ ← i, j′ ← j, and ℓ′ ← ℓ (leaving →c unchanged).
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Case R3: i > j′. This is the most complicated case, and it is best explained by dividing
it into three subcases. Let d = j′ − i′, i′′ = i− d, j′′ = j − d, and ℓ′′ = lcer(i′′, j′′).
(In this situation it is implied that j′′ ≤ j′ because otherwise ℓ′ = lcer(i′, j′) would not be
the most recently computed R-LCE that satisfies j′ + ℓ′ = →

c . However, since our proof
does not rely on this property, we will not explain it in more detail.)

Case R3a: nss[i′′] ̸= j′′:

|α| = ℓ′, |β| = |γ| = →c − j S =

i′′

↓
j′′

↓
i′

↓
α

(i′+ℓ′)
↓

i
↓

j
↓

j′

↓
α

→
c
↓

ℓ′′ ≥ |β|, ℓ ≥ |β| β γ β γ

First, note that S[i′..i′ + ℓ′) = S[j′..→c ) implies S[i..j) = S[i′′..j′′). From nss[i] = j follows
that S[i..j) = S[i′′..j′′) is a Lyndon word. Thus, due to Lemma 4 and nss[i′′] ̸= j′′ it holds
nss[i′′] > j′′, which implies Si′′ ≺ Sj′′ . Let β = S[i′′..i′′ +→c − j) = S[i..i +→c − j) and let
γ = S[j′′..i′ + ℓ′) = S[j..→c ). From Si′′ ≺ Sj′′ follows β ⪯ γ, while Si ≻ Sj implies β ⪰ γ.
Thus it holds β = γ, and therefore lcer(i, j) ≥ |γ| = →c − j. This means that we can use
the strategy from Case R1.

Case R3b: nss[i′′] = j′′ and
(j′′ + ℓ′′) < (i′ + ℓ′):

S =

i′′

↓
j′′

↓
i′

↓
α

(i′+ℓ′)
↓

i
↓

j
↓

j′

↓
α

→
c
↓

|α| = ℓ′, |β| = ℓ′′ = ℓ β β β β

Due to ℓ′′ = lcer(i′′, j′′), there is a shared prefix β = S[i′′..i′′+ℓ′′) = S[j′′..j′′+ℓ′′) between
Si′′ and Sj′′ , and the first mismatch between the two suffixes is S[i′′ + ℓ′′] ̸= S[j′′ + ℓ′′].
Because of (j′′ + ℓ′′) < (i′ + ℓ′), both the shared prefix and the mismatch are contained
in S[i′..i′ + ℓ′) (i.e. in the first occurrence of α). If we consider the substring S[j′..j′ + ℓ′)
instead (i.e. the second occurrence of α), then Si and Sj clearly also share the prefix
β = S[i..i + ℓ′′) = S[j..j + ℓ′′), with the first mismatch occurring at S[i + ℓ′′] ̸= S[j + ℓ′′].
Thus it holds ℓ = ℓ′′. Due to nss[i′′] = j′′ and our order of R-LCE computations, we
have already computed ℓ′′. Therefore, we can simply assign ℓ← ℓ′′ and continue without
changing i′, j′, ℓ′, and →c .

Case R3c: nss[i′′] = j′′ and
(j′′ + ℓ′′) ≥ (i′ + ℓ′):

S =

i′′

↓
j′′

↓
i′

↓
α

(i′+ℓ′)
↓

i
↓

j
↓

j′

↓
α

→
c
↓

|α| = ℓ′, |β| = →c − j, |βγ| = ℓ′′ β γ β γ β β

ℓ ≥ |β|

This situation is similar to Case R3b. There is a shared prefix β = S[i′′..i′′ +→c − j) =
S[j′′..i′+ℓ′) between the suffixes Si′′ and Sj′′ . They may share an even longer prefix βγ, but
only the first |β| = →c − j symbols of their LCP are contained in S[i′..i′+ ℓ′) (i.e. in the first
occurrence of α). If we consider the substring S[j′..j′+ℓ′) instead (i.e. the second occurrence
of α), then Si and Sj clearly also share at least the prefix β = S[i..i +→c − j) = S[j..→c ).
Thus it holds →c − j ≤ ℓ, and we can use the strategy from Case R1.
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We have shown how to compute ℓ without charging any index twice. It follows that the
total number of character comparisons for all R-LCEs is O(n).

A Simple Algorithm for R-LCEs. While the detailed differentiation between the six subcases
helps to show the correctness of our approach, it can be implemented in a significantly simpler
way (see Algorithm 2). At all times, we keep track of j′, →c and the distance d = j′ − i′

(line 1). We consider the indices j ∈ [2, n] in increasing order (line 2). For each index j, we
then consider the indices i with nss[i] = j in decreasing order (line 3). Each time we want to
compute an R-LCE value ℓ = lcer(i, j), we first check whether Case R3b applies (line 4). If
it does, then we simply copy the previously computed R-LCE value lcer(i−d, j−d) (line 5).
Otherwise, we either compute the LCE naively (if j ≥ →c ), or we have to apply the strategy
from Case R1 (since all other cases except for Case R2b use this strategy; in Case R2b it
holds →c − j = ℓ, which means that it can also be solved with the strategy from Case R1). If
j ≥ →c then in lines 7–8 we have k = 0, and thus we naively compute lcer(i, j) by scanning.
If however j <

→
c , then we have k = →

c − j, and we skip k character comparisons. In any
case, we update the values j′, →c , and d accordingly (line 9).

Algorithm 2 Compute all R-LCEs.
Input: String S of length n and its NSS array nss.
Output: R-LCE value lcer(i, nss[i]) for each index i ∈ [1, n] with nss[i] ̸= n + 1.

1: j′ ← 0; →
c ← 1; d← 0

2: for j ∈ [2, n] in increasing order do
3: for i with nss[i] = j ̸= n + 1 in decreasing order do

4: if

 i, j ∈ (j′,→c )
∧ nss[i− d] = j − d
∧ j + lcer(i− d, j − d) <

→
c

 then

5: lcer(i, j)← lcer(i− d, j − d) ▷ retrieve LCE in constant time

6: else
7: k ← max(→c , j)− j

8: lcer(i, j)← k + naive-scan-lcer(i + k, j + k)
9: j′ ← j; →

c ← j + lcer(i, j); d ← j − i

The correctness of the algorithm follows from the description of Cases 1–3. Since for
each left index i we have to store at most one R-LCE, we can simply maintain the LCEs
in a length-n array, where the i-th entry is lcer(i, nss[i]). This way, we use linear space
and can access the R-LCE that is required in line 5 in constant time. Apart from the
at most n character comparisons that we charge to the indices, we only need a constant
number of additional primitive operations per computed R-LCE. The order of iteration can
be realized by first generating all (i, nss[i])-pairs, and then using a linear time radix sorter to
sort the pairs in increasing order of their second component and decreasing order of their
first component. We have shown:

▶ Lemma 12. Given a string of length n and its NSS array nss, we can compute lcer(i, nss[i])
for all indices i ∈ [1, n] with nss[i] ̸= n + 1 in O(n) time and space.
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S=

←
c
↓

i
↓

i′−(j′−i′)
↓
∗ β

i′

↓
∗ β

j′

↓
∗

(a)

S=

←
c
↓

γ

i
↓

β

i′

↓
γ

(j′−i′+i)
↓

β

j′

↓
j
↓

(b)

S=

←
c
↓

i
↓

j
↓

i′

↓
α

i′′

↓
j′′

↓
j′

↓
α

(c)

Figure 3 Illustration of the proofs of the three properties in Section 4.2.

4.2 Computing the L-LCEs
Our solution for the L-LCEs is similar to the one for R-LCEs, but differs in subtle details. We
generally compute ℓ = lceℓ(i, j) by simultaneously scanning the prefixes S[1..i] and S[1..j]
from right to left until we find the first mismatch. This takes ℓ + 1 character comparisons,
of which we charge ℓ comparisons to the interval (i− ℓ, i]. As before, if some lower bound
k ≤ ℓ is known then we skip k character comparisons. In this case, we compute the L-LCE
as ℓ = k + lceℓ(i− k, j − k), and charge ℓ− k comparisons to the interval (i− ℓ, i− k].

Again, we will show how to compute all values lceℓ(i, nss[i]) with i ∈ [1, n] and nss[i] ̸=
n + 1 such that each index gets charged at most once. In contrast to the more complex
R-LCE iteration order, we can simply compute the L-LCE values in decreasing order of i.
Thus, when we want to compute ℓ = lceℓ(i, j) with j = nss[i] ̸= n + 1, we have already
considered the indices I = {x | x ∈ (i, n] ∧ nss[x] ̸= n + 1} as left indices of L-LCE
computations. The leftmost text position that we have already inspected so far at this point
is ←c = minx∈I(x−lceℓ(x, nss[x])) if I ̸= ∅, or ←c = n otherwise. Due to our charging method,
we have not charged any index from the interval [1,

←
c ] yet. Thus, we only have to show how

to compute ℓ without charging indices from (←c , n]. Let ℓ′ = lceℓ(i′, j′) be the most recently
computed L-LCE that satisfies i′ − ℓ′ = ←c . If i ≤ ←c then we compute ℓ naively and charge
the character comparisons to the interval (i− ℓ, i] (thus only charging previously uncharged
indices). If however i >

←
c , then our strategy is more complicated. Before explaining it in

detail, we show three important properties that hold in the present situation.

First, we show that i ≥ i′ − (j′ − i′). Assume the opposite (as visualized in Figure 3a),
then from ←

c = i′ − ℓ′ < i follows ℓ′ > j′ − i′. Thus, Lemma 11 implies nss[i′ − (j′ − i′)] = i′

(dashed edge) and lceℓ(i′ − (j′ − i′), i′) = ℓ′ − (j′ − i′). Due to our order of computation
and i < i′ − (j′ − i′) we must have already computed this L-LCE. However, it holds
i′ − (j′ − i′)− lceℓ(i′ − (j′ − i′), i′) = →c , which contradicts the fact that ℓ′ = lceℓ(i′, j′) is
the most recently computed L-LCE with i′ − ℓ′ = ←c .

Next, we show that j ≤ i′. First, note that j /∈ (i′, j′), since due to i < i′ we would
otherwise contradict Lemma 5. Thus we only have to show j < j′. Assume for this purpose
that j ≥ j′ (as visualized in Figure 3b). From j′ − i′ + i ∈ (i, nss[i]) and Definition 3 follows
Si ≺ Sj′−i′+i. Because of lceℓ(i′, j′) > (i′ − i) it holds S[i..i′] = S[j′ − i′ + i..j′](= β). Thus
Si ≺ Sj′−i′+i implies Si′ ≺ Sj′ , which contradicts the fact that nss[i′] = j′.

Lastly, let d = j′ − i′, i′′ = i + d, and j′′ = j + d (as visualized in Figure 3c). Now we
show that nss[i′′] = j′′ (dashed edge in the figure). Because of α = S(←c ..i′] = S(j′ − ℓ′..j′] it
holds S[i..j) = S[i′′..j′′). From nss[i] = j and Lemma 4 follows that S[i′′..j′′) is a Lyndon
word, and thus nss[i′′] ≥ j′′. We have already shown that i ≥ i′ − (j′ − i′), which implies
i′′ ≥ i′. Due to nss[i′] = j′ and i′′ ∈ [i′, j′) it follows from Lemma 5 that nss[i′′] ≤ j′. Now
assume nss[i′′] ∈ (j′′, j′], then S[i′′..nss[i′′]) = S[i..j + (nss[i′′]− j′′)) is a Lyndon word, which
contradicts the fact that S[i..j) is the longest Lyndon word starting at position i. Thus, we
have ruled out all possible values of nss[i′′] except for j′′.

Now we show how to compute ℓ. We keep using the definition of i′′ and j′′ from the
previous paragraph. Furthermore, let ℓ′′ = lceℓ(i′′, j′′). There are two possible cases.

ICALP 2021



63:12 Linear Time Runs over General Ordered Alphabets

Case L1: (i′′ − ℓ′′) > (j′ − ℓ′).

S =

←
c
↓

α

i′

↓
i
↓

j
↓

(j′−ℓ′)
↓

α

j′

↓
i′′

↓
j′′

↓

ℓ′ = |α|, ℓ = ℓ′′ = |β| β β β β

Due to ℓ′′ = lceℓ(i′′, j′′), the prefixes S[1..i′′] and S[1..j′′] share the suffix β = S(i′′ −
ℓ′′..i′′] = S(j′′ − ℓ′′..j′′], and the first (from the right) mismatch between these prefixes
is S[i′′ − ℓ′′] ̸= S[j′′ − ℓ′′]. Both the shared suffix and the mismatch are contained in
S(j′ − ℓ′..j′] (i.e. in the right occurrence of α). If we consider the substring S(←c ..i′]
instead (i.e. the left occurrence of α), then S[1..i] and S[1..j] clearly also share the suffix
β = S(i− ℓ′′..i] = S(j − ℓ′′..j], with the first mismatch occurring at S[i− ℓ′′] ̸= S[j′′ − ℓ].
Thus it holds ℓ = ℓ′′. Due to nss[i′′] = j′′ and our order of L-LCE computations, we
have already computed ℓ′′. Therefore, we can simply assign ℓ← ℓ′′ and continue without
changing i′, j′, ℓ′, and ←c .
(Note that possibly i′′ ̸= i′ ∧ j′′ = j′. We provide a sketch in Figure 4a.)

Case L2: (i′′ − ℓ′′) ≤ (j′ − ℓ′).

S =

←
c
↓

α

i′

↓
i
↓

j
↓

(j′−ℓ′)
↓

α

j′

↓
i′′

↓
j′′

↓

ℓ′ = |α|, ℓ′′ = |βγ|, ℓ ≥ |β| β β γ β γ β

This situation is similar to Case L1. There is a shared suffix β = S(j′ − ℓ′..i′′] =
S(j′′ − (i − ←c )..j′′] between the prefixes S[1..i′′] and S[1..j′′]. They may share an even
longer suffix γβ, but only the rightmost |β| = i′ −←c symbols of this suffix are contained
in S(j′ − ℓ′..j′] (i.e. in the right occurrence of α). If we consider the substring S(←c ..i′]
instead (i.e. the left occurrence of α), then S[1..i] and S[1..j] clearly also share the suffix
β = S(←c ..i] = S(j − (i−←c )..j]. Thus it holds i−←c ≤ ℓ, and we can skip the first i−←c
character comparisons by computing the LCE as ℓ = (i −←c ) + lceℓ(←c , j +←c − i). We
charge ℓ− (i−←c ) character comparisons to the previously uncharged interval (i− ℓ,

←
c ],

and continue with i′ ← i, j′ ← j, ℓ′ ← ℓ, and ←c ← i− ℓ.
(Note that possibly i′′ ≠ i′ ∧ j′′ = j′ or even i′′ = i′ ∧ j′′ = j′. We provide schematic
drawings in Figures 4b and 4c.)

We have shown how to compute ℓ without charging any index twice. It follows that the
total number of character comparisons for all LCEs is O(n). For completeness, we outline a
simple implementation of our approach in Algorithm 3. Lines 4–5 correspond to Case L1. If
i ≤ ←c , then lines 7–9 compute the LCE naively. Otherwise, they correspond to Case L2.

▶ Lemma 13. Given a string of length n and its NSS array nss, we can compute lceℓ(i, nss[i])
for all indices i ∈ [1, n] with nss[i] ̸= n + 1 in O(n) time and space.

▶ Corollary 14. Given a string of length n over a general ordered alphabet, we can find all
runs in the string in O(n) time and space.

Proof. Computing the increasing runs takes O(n) time and space due to Lemmas 9, 12,
and 13. For decreasing runs, we only have to reverse the order of the alphabet and rerun the
algorithm. ◀
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S =

←
c
↓

i
↓

α

j=i′

↓
(j′−ℓ′)
↓

i′′

↓
α

j′′=j′

↓

β β β β

(a) Case L1 with i′′ ̸= i′ and j′′ = j′.

S =

←
c
↓

i
↓

α

j=i′

↓
(j′−ℓ′)
↓

i′′

↓
α

j′′=j′

↓

β β γ β γ β

(b) Case L2 with i′′ ̸= i′ and j′′ = j′.

S =

←
c
↓

j′−ℓ′

↓
i
↓

j=i′′=i′

↓
j′=j′′

↓

α

γ β


right occurrence

S(j′ − ℓ′..j′] of α: prefixes
S[1..i′′] and S[1..j′′] share

the suffix γβ(= α)γ β

α

β


left occurrence
S(←c ..i′] of α:

prefixes S[1..i] and S[1..j]
share the suffix β

β

(c) Case L2 with i′′ = i′ and j′′ = j′.

Figure 4 Additional drawings for Cases L1 and L2.

Algorithm 3 Compute all L-LCEs.
Input: String S of length n and its NSS array nss.
Output: L-LCE value lceℓ(i, nss[i]) for each index i ∈ [1, n] with nss[i] ̸= n + 1.

1: i′ ← 0; ←
c ← n; d← 0

2: for i ∈ [1, n] with nss[i] ̸= n + 1 in decreasing order do
3: j ← nss[i]

4: if i ∈ (←c , i′) ∧ i− lceℓ(i + d, j + d) >
←
c then

5: lceℓ(i, j)← lceℓ(i + d, j + d) ▷ retrieve LCE in constant time

6: else
7: k ← i−min(←c , i)
8: lceℓ(i, j)← k + naive-scan-lceℓ(i− k, j − k)
9: i′ ← i; ←

c ← i− lceℓ(i, j); d ← j − i
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Table 1 Throughput achieved by our runs algorithm using an AMD EPYC 7452 processor. We
repeated each experiment five times and use the median throughput as the final result (the minimum
and maximum throughputs were almost identical to the median). All numbers are truncated to one
decimal place.
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runs/100n 94.4 4.7 11.7 7.0 25.3 2.4 3.4 24.4 23.6 76.3 92.7 83.3
MiB/s 15.0 11.4 11.0 10.9 8.8 10.5 12.8 9.0 9.2 15.4 15.1 15.6

5 Practical Implementation

We implemented our algorithm for the runs computation in C++17 and evaluated it by
computing all runs on texts from the natural, real repetitive, and artificial repetitive text
collections of the Pizza-Chili corpus2. Additionally, we used the binary run-rich strings
proposed by Matsubara et al. [23] as input. Table 1 shows the throughput that we achieve,
i.e. the number of input bytes (or equivalently input symbols) that we process per second.
On the string tm29 we achieve the highest throughput of 15.6 MiB/s. The lowest throughput
of 8.8 MiB/s occurs on the text dna. Generally, we perform better for run-rich strings.

Lastly, it is noteworthy that our new method of LCE computation leads to a remarkably
simple implementation of the runs algorithm. In fact, the entire implementation including the
computation of the NSS array needs only 250 lines of code. We achieve this by interleaving
the computation of the R-LCEs with the computation of the NSS array, which also improves
the practical performance. For technical details we refer to the source code, which is publicly
available on GitHub3.

6 Conclusion and Open Questions

We have shown the first linear time algorithm for computing all runs over a general ordered
alphabet. The algorithm is also very fast in practice and remarkably easy to implement. It
is an open question whether our techniques could be used for the computation of runs on
tries, where the best known algorithms require super-linear time even for linearly-sortable
alphabets (see e.g. [26]).
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Abstract
Given an unweighted digraph G = (V, E), undergoing a sequence of edge deletions, with m =
|E|, n = |V |, we consider the problem of maintaining all-pairs shortest paths (APSP).

Whilst this problem has been studied in a long line of research [ACM’81, FOCS’99, FOCS’01,
STOC’02, STOC’03, SWAT’04, STOC’13] and the problem of (1 + ϵ)-approximate, weighted APSP
was solved to near-optimal update time Õ(mn) by Bernstein [STOC’13], the problem has mainly
been studied in the context of an oblivious adversary which fixes the update sequence before the
algorithm is started. In this paper, we make significant progress on the problem for an adaptive
adversary which can perform updates based on answers to previous queries:

We first present a deterministic data structure that maintains the exact distances with total
update time Õ(n3)1.
We also present a deterministic data structure that maintains (1 + ϵ)-approximate distance
estimates with total update time Õ(

√
mn2/ϵ) which for sparse graphs is Õ(n2+1/2/ϵ).

Finally, we present a randomized (1 + ϵ)-approximate data structure which works against an
adaptive adversary; its total update time is Õ(m2/3n5/3 +n8/3/(m1/3ϵ2)) which for sparse graphs
is Õ(n2+1/3/ϵ2).

Our exact data structure matches the total update time of the best randomized data structure by
Baswana et al. [STOC’02] and maintains the distance matrix in near-optimal time. Our approximate
data structures improve upon the best data structures against an adaptive adversary which have
Õ(mn2) total update time [JACM’81, STOC’03].
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1 Introduction

Shortest paths is a classical algorithmic problem dating back to the 1950s. The two main
variants are the all-pairs shortest paths (APSP) problem and the single-source shortest paths
(SSSP) problem, both of which have been extensively studied in various models, including
the partially and fully-dynamic setting.

A dynamic graph algorithm is an algorithm that maintains information about a graph
that is subject to updates such as insertions and deletions of edges or vertices. Such a
graph can model real-world networks that change over time, such as road networks where
traffic changes and roads are blocked from time to time. We say that a dynamic graph
problem is decremental if it only allows deletions, incremental if it only allows insertions
and fully-dynamic if it allows both. Incremental and decremental graphs are referred to as
being partially-dynamic. A dynamic graph algorithm aims to efficiently process a sequence
of online updates interspersed with queries about some property of the underlying dynamic
graph.

1.1 Problem Definition
In this paper, we consider the decremental all-pairs shortest-paths problem where the goal is
to efficiently maintain shortest path distances between all pairs of vertices in a decremental
directed graph G = (V, E). We shall restrict our attention to the case where G is unweighted.
Letting m denote the initial number of edges and n = |V |, we want a data-structure which
for any u, v ∈ V supports the following operations:

Dist(u, v): reports the distance dG(u, v) from u to v in the current version of G,
Delete(u, v): deletes an edge (u, v) from E.

We furthermore consider the problem also in its relaxed version where we only aim to maintain
approximate distance estimates which can then be queried. We denote by d̃G(u, v) a distance
estimate for the distance from u to v and we say that an APSP algorithm has an approximation
ratio (or stretch) of t > 1 if for any u, v ∈ V , we have that dG(u, v) ≤ d̃G(u, v) ≤ t · dG(u, v).
This paper will be concerned with both the exact and the (1 + ϵ)-approximate version of the
problem.

Another focus of this article is the adversarial model ; the adversarial model defines the
model under which the sequence of updates and queries are assumed to be made by an
adversary. We say that a performance guarantee of an algorithm works against an oblivious
adversary if the adversary must define the sequence of updates before the algorithm starts
for the guarantee to hold. Thus the sequence of updates is independent of any random
bits used by the algorithm. This is opposed to algorithms that work against an adaptive
adversary, where the adversary is allowed to create the update sequence “on the go”, e.g.
based on answers to previous queries made to the data structure. Depending on the data
structure, these choices may not be independent of the random choices made, which may
result in the data structure performing poorly. One key advantage of a data structure that
works against an adaptive adversary is that it can be used inside an algorithm as a black
box, regardless of whether that algorithm adapts its updates to answers to queries. We point
out that deterministic data structures always work against an adaptive adversary.
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The performance of a partially-dynamic algorithm is usually measured in terms of the total
update time. That is, the accumulated time it takes to process all updates (edge deletions).
The query time, on the other hand, is the time to answer a single distance query. A natural
goal is to minimize the total update time while keeping the stretch and query time small.
Since all the structures presented in this paper explicitly maintain a distance matrix, the
query time is constant.

1.2 Prior Work

The naive approach to dynamic APSP is to recompute the shortest path distances after each
update using the best static algorithm. The query time is then constant and the time for a
single update is Õ(mn) for APSP and Õ(m) for SSSP. At the other end of the spectrum one
could achieve optimal update time by simply updating the input graph and only running
an SSSP algorithm whenever a query is processed. Running a static algorithm each time,
however, fails to reuse any information between updates whatsoever and gives a high query
time, motivating more efficient dynamic approaches that do this.

In 1981, Even and Shiloach [6] gave a deterministic data-structure for maintaining a
shortest path tree to given depth d in an undirected, unweighted decremental graph in total
time O(md). Henzinger and King [7] and King [10] later adapted this to directed graphs
with integer weights. Running their structure for each vertex solves the decremental all-pairs
shortest paths problem in O(mn2W ) time, where edge weights are integers in [1, W ].

Henzinger and King were the first to improve upon this bound, giving an algorithm with
total update time Õ(mn2.5

√
W ) [10] which is an improvement for W = ω(n). Demetrescu

and Italiano [4] improved this data structure slightly and showed that the restriction to
integral edge weights can be removed. Finally, the same authors [3] presented a data structure
with total update time Õ(mn2) which is the state of the art for any data structure against an
adaptive adversary up to today. In fact, their algorithm can be extended to a fully-dynamic
algorithm with Õ(n2) amortized update time and which can handle vertex updates2. We
also point out that this data structure was later simplified and generalized by Thorup [11].

Around the same time Baswana, Hariharan, and Sen [1] gave an oblivious Monte-Carlo
construction with total update time Õ(n3) for unweighted graphs. Further, they showed that
their data structure could be adapted to give an (1 + ϵ)-approximate APSP algorithm for
weighted graphs with total update time of Õ(

√
mn2/ε). In the exact setting, the oblivious

adversary assumption is only required when paths are to be reported rather than just shortest
path distances which are unique. Finally, Bernstein presented a (1+ϵ)-approximate algorithm
with total running time Õ(mn log(W )/ϵ) by using a clever approach of shortcutting paths [2].
Whilst his algorithm achieves near-optimal running time, again, the algorithm has to assume
an oblivious adversary.

More recently, Karczmarz and Łącki [9] gave a deterministic (1 + ϵ)-approximate APSP
algorithm for decremental graphs that runs in total time Õ(n3 log(W )/ϵ). They also presen-
ted the first non-trivial algorithm for incremental graphs [8] achieving total update time
Õ(mn4/3 log(W )/ϵ).

We refer the reader to the full version of the paper [5] for a more comprehensive treatment
of related work which also includes algorithms for undirected graphs and algorithms with
larger stretch.

2 In this case, vertex updates refers to insertions or deletions of vertices with up to n − 1 incident edges.
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1.3 Our Contributions
In this paper, we present three new data structures for the all-pairs shortest paths problem.
Our first theorem gives a deterministic data structure for the exact variant of the problem
with near-optimal Õ(n3) total update time. It also matches the best randomized algorithm
by Baswana et al. [1] and constitutes a significant improvement over the previous best
deterministic bound of Õ(mn2) which is obtained by running an ES-tree [6] from every source
or by the data structure Italiano et al. [3] (that also works in weighted graphs) and improves
over all but the sparsest graph densities.

Our exact data structure is near-optimal as there is an Ω(n3) lower bound on the total
update time of any decremental data structure that explicitly maintains the distance matrix.
The lower bound follows by considering an initial undirected, unweighted graph consisting
of a simple path v0, v1, v2, . . . , vn−1 plus additional edges (vi, vi+2) for each even i ≤ n− 3.
Deleting these additional edges in any order creates Ω(n3) distance matrix changes in total.

▶ Theorem 1. Let G be an unweighted directed graph with n vertices and initially m

edges. Then there exists a deterministic data structure which maintains all-pairs shortest
path distances in G undergoing an online sequence of edge deletions using a total time of
O(n3 log3 n). The n × n distance matrix is explicitly maintained so that at any point, a
shortest path distance query can be answered in constant time. The data structure can report
a shortest path between any query pair in time proportional to the length of the path.

Our second result is concerned with maintaining (1 + ϵ)-approximate all-pairs shortest
path distances. This constitutes the first deterministic data structure that solves the problem
in subcubic time with small approximation error (except for graphs that are not extremely
dense).

▶ Theorem 2. Let G be an unweighted directed graph with n vertices and initially m edges.
Then given ϵ > 0, there exists a deterministic data structure that maintains all-pairs (1 + ϵ)-
approximate shortest path distances in G undergoing an online sequence of edge deletions
using a total time of O(

√
mn2 log2(n)/ϵ). At any point, a (1 + ϵ)-approximate shortest path

distance query can be answered in constant time and a (1 + ϵ)-approximate shortest path
between the query pair can be reported in time proportional to the length of the path.

Our third result gives a data structure achieving a better time bound. While we use
randomization to achieve the improved time bound, our algorithm again works against an
adaptive adversary.

▶ Theorem 3. Let G be an unweighted directed graph with n vertices and initially m edges.
Then given any ϵ > 0, there exists a Las Vegas data structure that maintains all-pairs
(1 + ϵ)-approximate shortest path distances in G under an online sequence of edge deletions
using a total expected time of Õ(m2/3n5/3/ϵ + n8/3/(m1/3ϵ2)). This bound holds w.h.p. and
the data structure works against an adaptive adversary. At any point, a (1 + ϵ)-approximate
shortest path distance query can be answered in constant time.

We summarize our results as well as previous state-of-the-art results in Table 1.

1.4 Overview
Our overall approach for the deterministic data structures is similar to that of Baswana
et al. [1] but with a key difference that allows us to avoid using a randomized hitting set
and instead rely on deterministic separators. The idea of the construction by Baswana et



J. Evald, V. Fredslund-Hansen, M. P. Gutenberg, and C. Wulff-Nilsen 64:5

Table 1 Our results and previous state-of-the-art results for decremental APSP.

Time Approximation Adversary/ Deterministic Reference

O(mn2) exact deterministic [6, 3]

Õ(n3) exact deterministic New Result

Õ(n3) exact adaptive [1]

Õ(
√

mn2/ϵ) (1 + ϵ) deterministic New Result

Õ(m2/3n5/3/ϵ +
n8/3/(m1/3ϵ2))

(1 + ϵ) adaptive New Result

Õ(
√

mn2/ϵ) (1 + ϵ) oblivious [1]

Õ(nm) (1 + ϵ) oblivious [2]

al. relies on a well-known result which says that if we sample a subset Hρ
i of the vertices of

size Õ(n/ρi) (where ρ is some constant strictly larger than 1), each with uniform probability,
then, w.h.p. we “hit” each shortest-path of length [ρi, ρi+1) between any pair of vertices in
any version of the graph G.

Phrased differently, given vertices u, v ∈ V , we have that if a shortest path from u to v is
of length ℓ ∈ [ρi, ρi+1), then there is some vertex w ∈ Hρ

i , such that the concatenation of a
shortest path from u to w and a shortest path from w to v is of length ℓ. For each such w,
we say w is a witness for the tuple (u, v) for distance ℓ.

Now for each u, v ∈ V , if the initial distance from u, v was ℓ ∈ [ρi, ρi+1), we can check Hρ
i

to find a witness w. If the length of the path from u to w to v is increased, we can continue
our scanning of Hρ

i to see whether another witness exists. If there is no witness w ∈ Hρ
i left

at some stage, we know that there is no path of length ℓ left in G w.h.p. and increase our
guess by setting ℓ 7→ ℓ + 1.

Sampling initially a hitting set Hρ
i for every i ∈ [0, logρ n], we can find the “right” hitting

set for each distance ℓ. Observe now that for each tuple (u, v) ∈ V 2, we have to scan a hitting
set of size Õ(n/ρi) for ρi+1− ρi ∼ ρi+1 levels before the hitting set index i is increased which
only occurs O(log n) times, thus we only spend time Õ(n) for each vertex tuple (u, v). Thus,
the total running time of the searches for witnesses can be bound by Õ(n3).

The Deterministic Exact Data Structure. Our construction is similar in the sense that
we maintain witnesses for each distance scale [ρi, ρi+1) for every i ∈ [0, logρ n] such that
each distance ℓ is in one such distance scale. The key difference is that instead of using a
randomized global hitting set Hρ

i for a distance scale [ρi, ρi+1), our construction relies on
deterministically maintaining a small local vertex separator Si(u) for every vertex u ∈ V of
size Õ(n/ρi) separating all shortest paths starting in u with a distance in [ρi, ρi+1).

More precisely, for each distance scale [ρi, ρi+1) and vertex u ∈ V , we maintain a separator
Si(u) that satisfies the invariant that every shortest path from u to a vertex v at distance at
least ρi is intersected by a vertex in Si(u). If this invariant is violated after an adversarial
update, then we find such a vertex v and need to add additional vertices to Si(u) during
the time step. The challenge is to take these additional separator vertices such that the
total size of Si(u) is not increased beyond Õ(n/ρi). The separator procedure makes use of
sparse layers of BFS trees and here is where we rely on the assumption that the graph is
unweighted. We defer the details of the separator procedure to a later section and continue
our discussion of the APSP data structure.

ICALP 2021



64:6 Decremental APSP in Unweighted Digraphs Versus an Adaptive Adversary

Since we need to detect whether vertices have distance less than ρi from u or not in G,
we further have to use a bottom-up approach to compute distances after an edge deletion,
i.e. we start with the smallest possible distance range and update all distances in this range
and then update larger distances using the information already computed. This issue did
not arise in Baswana et al. [1] but can be handled by a careful approach. The distances
computed for one distance scale include all distances to and from witnesses for the next
larger distance scale.

It is now easy to see that the scanning for witnesses can be implemented in the same
time as in the analysis sketched above by scanning the list of local separator vertices which
serve as witnesses instead of the hitting set. Further, we can maintain local vertex separators
using careful arguments in total time Õ(mn) giving our result in Theorem 1.

dG(u, v) ∈ [ρi; ρi+1]

u
w

w′

v

dG(u, w) ∈ [ρ−1; ρ)

dG(w,w
′) ∈ [ρ−2; ρ−1)

dG(w
′, v) ∈ [ρ−2; ρ−1)

Si(u) Si−1(w)

Figure 1 Illustration of separators and path “hierarchy”. Here u ⇝ v goes through a witness
w, and w ⇝ v goes through w′. If the length of the path w′ ⇝ v is increased by ∆, the distance
estimates of all 2-hop-paths that use w′ ⇝ v as a sub-path are increased by that amount. In this case,
the estimate for w ⇝ w′ ⇝ v is increased and is propagated to the next level where subsequently
the estimate for u⇝ w ⇝ v is possibly increased.

The Deterministic Approximate Data Structure. In order to improve the running time
for sparse graphs, we can further focus on only considering distances that are roughly at
a (1 + ϵ)-multiplicative factor from each other. More concretly, instead of increasing the
expected distance from ℓ to ℓ + 1 when we cannot find a witness for some path from u

to v for distance ℓ, we can increase the next expected distance level ℓ′ to ∼ (1 + ϵ)ℓ and
consider every vertex w a witness if there is a path u⇝ w ⇝ v of length at most ℓ′. Thus,
we handle fewer distances and can thereby reduce the time to maintain distances that are at
least d in total time Õ(n3/d + mn). Again, a careful approach is necessary to ensure that
approximations do not add up over distance scales.

This is no faster than the data structure for exact distances when d is small so in order
to get Theorem 2, we use the O(mnd) data structure of Even and Shiloach [6] to maintain
distances up to d. Picking d such that mnd = n3/d gives the result of Theorem 2 (the term
Õ(mn) vanishes since it is subsumed by the two other terms, also we assumed ϵ > 0 to be a
constant to simplify the presentation).

Maintaining Separators. We now sketch how to deterministically maintain a “small” local
separator for a vertex s ∈ V with some useful invariants.

Let S be the local separator for s. The first invariant that will be useful is that any
vertex t ∈ V that is reachable from s in G \ S, is “close” to s or roughly within distance d.
As edges are deleted from G, the distances from s to such vertices t may increase. If a vertex
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t moves too far away from s, the invariant is re-established by growing BFS trees in parallel,
one layer at a time, from s in G \S and from t in the graph obtained from G \S by reversing
the orientations of all edges. The search halts when a layer (corresponding to the leaves of
the BFS tree at the current iteration) that is “thin” is found, and its vertices are added to S;
vertices that are on the opposite side of the separator than s are cut off as they must all be
too far away from s. Here, “thin” refers to a BFS layer such that the number of vertices
added to the separator is only a factor Õ(1/d) times the number of vertices cut off. It is
well known that such a layer exists (cfr. Lemma 5 for the details). Summing up, it follows
that |S| = Õ(n/d) at all times. By marking vertices as they are searched (according to the
side of the BFS layer on which they are found), the vertices that are “cut off” from s by the
augmented separator will never be searched again, and the cost of searching the edges of
either side of the search can be charged to sum of the degree of these vertices, for a total
update time of O(m).

For our randomized data structure, we need an additional property that essentially allows
us to take a snapshot of the current separator and use it in later updates rather than having
to repeatedly update the separator. This will be key to getting an improved randomized
time bound. Details can be found in Lemma 6 which states our separator result.

The Randomized Approximate Data Structure. The randomized approximate data struc-
ture of Theorem 3 follows the same overall approach but is technically more involved. Instead
of keeping track of all 2-hop paths u ⇝ s ⇝ v3 for every s ∈ Si(u), the randomized data
structure samples a subset of these by picking each vertex of Si(u) independently with some
probability p. It only keeps track of approximate shortest path distances going through this
subset rather than the full set Si(u). This will speed up the above since the subset of the
separator we need to scan is smaller by a factor p. However, this approach fails once no short
2-hop path intersects the sampled subset. At this point, w.h.p. there should only be short
2-hop paths through O(log n/p) vertices of Si(u) so also in this case, the subset can be kept
small. However, scanning linearly through Si(u) to find this small subset will take Õ(n/d)
time and happen over all pairs (u, v).

Our solution is roughly the following. Suppose no sampled vertex certifies an approximate
short path from u to v. Then v scans linearly through Si(u) to find the small size O(log n/p)
subset S′

i(u). Consider the set W of vertices w such that dG(w, v) is small compared to
d, i.e., dG(w, v) ≤ ϵd for some small constant ϵ > 0. Then we show that the small subset
S′

i(u) found for v can also be used for each vertex w ∈ W . The intuition is that for any
vertex s ∈ Si(u) \ S′

i(u), the approximate shortest path distance from u to w through s

must be large since otherwise we get a short path u⇝ s⇝ w ⇝ v from u to v through s,
contradicting that s /∈ S′

i(u).
It follows that if |W | is large, the Õ(n/d) cost of scanning Si(u) can be distributed among

a large number of vertices of W . Dealing with the case where |W | is small is more technical
so we omit it here.

The way we deal with an adaptive adversary is roughly as follows. Consider a deterministic
data structure that behaves like the randomized data structure above, except that it maintains
2-hop paths u⇝ s⇝ v for all Si(u) rather than only through a sampled subset. The slack
from the approximation allows us to round up all “short” approximate distances to the
same value. Hence, as long as the randomized data structure has short 2-hop paths, it
maintains exactly the same approximate distances as the deterministic structure and hence
the approximate distances output to the adversary is independent of the random bits used.

3 Note that such a path may have more than one intermediate vertex, but it is useful to think of it as a
path of two weighted edges/hops (u, s) and (s, v) since this is what is maintained by the data structure.
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2 Definitions and Notation

In the following, let G = (V, E) be a directed unweighted graph. The graph Grev is obtained
from G by reversing the orientation of each edge. For any two vertices u, v ∈ V , we denote
by u⇝ v a shortest path from u to v in G and let dG(u, v) denote the length of such a path.
We extend this notation to sets so that, e.g., dG(u, V ′) = min{dG(u, v)|v ∈ V ′} for V ′ ⊆ V .

We define a BFS-layer to mean the set of nodes at some fixed distance from some v in G.
An in-tree in G is a BFS tree in Grev.

We will need notation to refer to dynamically changing data at specific points in time.
Consider a sequence of updates to some object X where each update takes place at a time
step t ∈ N. We denote by X(t) the object just after update t. Here, X could be a graph, a
shortest path distance, etc.

For handling small distances, we rely on the data-structure of Even and Shiloach [6], the
properties of which we will state in the following lemma:

▶ Lemma 4 ([6]). Given a directed unweighted graph G undergoing a sequence of edge
deletions, a source vertex s ∈ V , and d > 0, a shortest path tree in G rooted at s can be
maintained up to distance d in total time O(md). The structure requires O(m) space and
can be constructed in time O(m + n).

3 Maintaining Separators

Lemma 6 below provides a key tool used in all of our data structures. It gives an efficient
data structure that maintains a growing separator set S of small size in a decremental graph
G. To prove it, we need the following well-known result.

▶ Lemma 5. Given a directed unweighted n-vertex graph G = (V, E), given d1, d2 ∈ N0 with
d2− d1 + 1 ≥ lg n , and given vertices u, v ∈ V with dG(u, v) ≥ d2, a BFS tree in G with root
u contains a layer L ⊆ V with d1 ≤ dG(u, L) ≤ d2 and |L| ≤ |L−| lg n/(d2 − d1 + 1) where
L− = {w ∈ V |dG(u, w) < dG(u, L)} is the union of layers closer to u than L.

Proof. Denote by Li the ith layer of the BFS tree from u. For each i, let L<i = ∪j<iLj .
Let q = (d2 − d1 + 1)/ lg n. Assume for contradiction that L does not exist. Then for
i = d1, . . . , d2, |Li| > |L<i|/q so |L<i+1| = |Li| + |L<i| > (1 + 1/q)|L<i|. Since q ≥ 1, we
have (1 + 1/q)q ≥ 2 so

|L<d2+1| > (1 + 1/q)d2−d1+1|L<d1 | ≥ 2(d2−d1+1)/q = n,

contradicting that there are only n vertices in G. ◀

We now state and prove Lemma 6. It gives an efficient data structure that maintains a
growing separator set S of small size in a decremental graph G with the following guarantees.
Let s be a fixed vertex and let d be some given threshold distance. Then at every time step,
vertices reachable from s in G \S are of distance slightly less than d from s in G. Conversely,
for vertices v not reachable from s in G \S, we have dG(s, v) = Ω(d); furthermore, if dG(s, v)
is larger than d by some small constant factor then any shortest path s ⇝ v in G can be
decomposed into s⇝ w ⇝ v such that w ∈ S, dG(s, w) ≤ d, and dG(w, v) ≤ d. In fact, the
lemma states that w can be chosen in St0 where t0 is the first time step in which dG(s, v)
became (slightly) larger than d; note that this is a stronger statement since S is growing
over time.
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▶ Lemma 6. Let G = (V, E) be an n-vertex unweighted digraph undergoing a sequence of
edge deletions, let s ∈ V be a source, and let d ∈ N with d > 33 lg n. Let O be a data structure
that maintains for each v ∈ V a distance estimate d̃(s, v) ≥ dG(s, v) such that if dG(s, v) ≤ d

then d̃(s, v) ≤ 4
3 dG(s, v). Whenever an estimate d̃(s, v) grows to a value of at least 32

33 d, O
outputs v. Then there is a data structure S with access to O which maintains a growing set
S ⊆ V such that for each v ∈ V ,
1. if v is reachable from s in G \ S then dG(s, v) < 32

33 d and otherwise dG(s, v) > 2
3 d,

2. if t0 is a time step in which d < d
(t0)
G (s, v) ≤ 34

33 d then for every time step t1 ≥ t0 in
which d

(t1)
G (s, v) ≤ 34

33 d, any shortest s-to-v path P in G(t1) intersects S(t0) and for the
first such intersection vertex w along P , d

(t1)
G (s, w) ≤ d, and d

(t1)
G (w, v) ≤ d.

At any time, |S| = O(n log n/d) and S has total update time O(m), excluding the time spent
by O.

Proof. Let ϵ = 1
33 . For each v ∈ V , let d̂(v) be obtained from the degree of v in the initial

graph G by rounding up to the nearest multiple of ∆ = ⌈m/n⌉. In the description of S
below, processing one edge takes at most one unit of time.

Data structure S initializes S = ∅ and unmarks all vertices of V . Whenever O outputs
an unmarked vertex v (marked output vertices are ignored), S runs a modified BFS from s

in GS = G \ S which for each vertex w spends d̂(w) time to process its outgoing edges; this
can always be achieved by busy-waiting at w if needed. In parallel, S runs a similar modified
BFS from v in G′

S = (G \ S)rev
4. The search from s halts if a layer Ls is found such that

2
3 d < dGS

(s, Ls) ≤ ( 2
3 + ϵ)d and |Ls| = O((x log n)/d) (for a suitable hidden constant to be

specified) where x is the number of vertices visited by the search, excluding Ls. Similarly, the
search from v halts if a layer Lv is found such that dG′

S
(v, Lv) < ϵd and |Lv| = O((y log n)/d)

(again, for a suitable hidden constant) where y is the number of vertices visited by the search
excluding Lv. Let L be the first of the two layers found. S halts both searches when L is
found. Then L is added to S and all vertices visited by the search from v in G′

S are marked.
The hidden constants are chosen such that the existence of L follows from Lemma 5; this
lemma applies since by assumption, ϵd > lg n.

Observe that when O outputs v, we have dG(s, v) ≥ (1 − ϵ)d/(4/3) = ( 2
3 + 2ϵ)d as

otherwise we have dG(s, v) ≤ d and hence d̃(s, v) ≤ 4
3 dG(s, v) < (1− ϵ)d = 32

33 d. This shows
the existence of Ls and Lv and that no vertex or edge is visited by both searches. We have
dGS

(s, v) ≥ dG(s, v) ≥ ( 2
3 + 2ϵ)d and dGS

(s, Ls) > 2
3 d and for every w ∈ Lv,

dGS (s, w) ≥ dGS (s, v) − dGS (w, v) ≥
(2

3 + 2ϵ
)

d − dG′
S

(v, w) =
(2

3 + 2ϵ
)

d − dG′
S

(v, Lv)

>
(2

3 + ϵ
)

d,

implying that dGS
(s, Lv) > ( 2

3 + ϵ)d. Hence dGS
(s, L) ≥ min{dGS

(s, Ls), dGS
(s, Lv)} > 2

3 d.

Showing part 1. Let v ∈ V and consider any point during the sequence of updates. Assume
first that v is reachable from s in GS . Then O has not yet output v. For suppose otherwise.
If v was unmarked when it was output by O, the above procedure would separate v from s

with S, making v unreachable from s in GS . Conversely, if v was marked, v would already
be unreachable from s in GS since a vertex is only marked when it is separated from s

in GS . In both cases, we have a contradiction. It follows that O did not output v so
dG(s, v) ≤ d̃(s, v) < 32

33 d, as desired.

4 By “parallel”, we mean that S alternates between spending one unit of time in one search, then one
unit of time in the other search, and so on.
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Now, assume that v is not reachable from s in GS . We may assume that there is a
shortest path P from s to v in G since otherwise dG(s, v) = ∞ > 2

3 d. Let w be the first
vertex of S along P . It suffices to show that for the prefix P ′ of P from s to w, |P ′| > 2

3 d. At
some earlier point in time, the procedure added w to S; just prior to this, P ′ was contained
in GS so from the above, |P ′| > 2

3 d, as desired.

Showing part 2. Let t0 ≤ t1 satisfy the second part of the lemma. Since d
(t0)
G (s, v) > d by

assumption, the first part of the lemma implies that v is not reachable from s in G
(t0)
S and

hence v is also not reachable from s in G
(t1)
S .

Let P be a shortest path from s to v in G(t1). From what we have just shown, P

must intersect S(t0). Let w be the first vertex of S(t0) along P . Then clearly, d
(t1)
G (s, v) =

d
(t1)
G (s, w)+d

(t1)
G (w, v). Since the vertex w′ preceding w on P is reachable from s in G

(t0)
S , the

first part of the lemma implies that d
(t0)
G (s, w) ≤ d

(t0)
G (s, w′)+1 < 32

33 d+1 and d
(t0)
G (s, w) > 2

3 d.
The latter implies that d

(t1)
G (w, v) = d

(t1)
G (s, v)−d

(t1)
G (s, w) ≤ 34

33 d−d
(t0)
G (s, w) < 34

33 d− 2
3 d < d,

showing one of the two inequalities in the second part of the lemma.
We show the other inequality by contradiction so assume that d

(t1)
G (s, w) > d. Then

d
(t1)
G (s, w) ≥ d + 1 so by the above dG(s, w) would have increased by more than d + 1− ( 32

33 d +
1) = 1

33 d from time step t0 to t1. Combining this with d
(t1)
G (s, v) = d

(t1)
G (s, w) + d

(t1)
G (w, v),

d
(t0)
G (w, v) ≤ d

(t1)
G (w, v), and the triangle inequality, we get

d
(t1)
G (s, v)− d

(t0)
G (s, v) ≥ d

(t1)
G (s, w) + d

(t1)
G (w, v)− (d(t0)

G (s, w) + d
(t0)
G (w, v)) >

1
33d

This contradicts the assumption d < d
(t0)
G (s, v) ≤ d

(t1)
G (s, v) ≤ 34

33 d. We conclude that
d

(t1)
G (s, w) ≤ d and d

(t1)
G (w, v) ≤ d which shows the second part of the lemma.

Bounding |S| and running time. To bound, |S|, consider the two parallel searches from
s and from v, respectively, in some update. As argued earlier, there cannot be an edge or
vertex visited by both searches. Let X resp. Y be the set of vertices visited by the BFS from
s resp. v, excluding Ls resp. Lv and let x = |X| and y = |Y |.

Assume first that L = Ls. Then all vertices in Y ∪ Lv become unreachable in GS once L

has been added to S. For each w ∈ V , d̂(w)/∆ ≥ 1. Since each BFS spends d̂(w) time to
process edges incident to w and since the two searches run in parallel, we have

|L| = O((x log n)/d) = O

(
log n

d

∑
w∈X

d̂(w)
∆

)
= O

(
log n

d

∑
w∈Y ∪Lv

d̂(w)
∆

)

Now, assume that L = Lv. Then all vertices of Y ∪Lv become unreachable in GS once L

has been added to S so again,

|L| = O((y log n/d) = O

(
log n

d

∑
w∈Y ∪Lv

d̂(w)
∆

)

In both cases, the cost |L| of adding L to S can be paid for by charging each vertex w no
longer reachable from s in GS a cost of O( log n

d d̂(w)/∆). Since a vertex is only charged once
during the course of the algorithm, we get that for the final separator S (and hence for each
intermediate separator),
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|S| = O

(
log n

d

∑
w∈V

d̂(w)
∆

)
= O

(
log n

d

∑
w∈V

d(w) + ∆
∆

)
= O

(
log n(m + n⌈m/n⌉)

d⌈m/n⌉

)
= O

(
n log n

d

)
where the last bound follows since we may assume that all vertices are initially reachable
from s in G, implying m ≥ n− 1 and hence ⌈m/n⌉ = Θ(m/n). This shows the desired bound
on |S|.

The running time cost of any two parallel searches can be charged to the total degree of
the vertices that get marked since they all become unreachable in GS (this is the vertex set
Y above). Since a marked vertex is never visited again by a BFS search, the total running
time of parallel searches over all updates is O(m), as desired. ◀

The lemma is somewhat technical and its full strength is only needed for the randomized
data structure. For the deterministic data structures, the second part of the lemma will only
be applied to the current time step t1 = t0 so it can be simplified to:
2. if d < dG(s, v) ≤ 34

33 d then any shortest s-to-v path P in G intersects S and for the first
such intersection vertex w along P , dG(s, w) ≤ d, and dG(w, v) ≤ d.

4 Deterministic Decremental APSP

In this section, we present our deterministic data structures for the exact resp. (1 + ϵ)-
approximate decremental APSP problem and show Theorems 1 and 2. In the following, let
G = (V, E) denote the decremental graph.

4.1 Exact distances
Let ρ = 34

33 and Di = ρi for i = 0, . . . , ⌊logρ n⌋. For each i and each u ∈ V , we give a data
structure Di(u) which for any query vertex v maintains a value d̃i(u, v) ≥ dG(u, v) with
equality if dG(u, v) ∈ (Di, Di+1]. In each update, these data structures will be updated in
order of increasing i.

Handling all-pairs shortest path distances up to at most 33 lg n can be done in O(mn log n)
time using the data structure of Even and Shiloach so we only consider i such that Di > 33 lg n.
This allows us to apply Lemma 6. Consider such an i and assume that we already have data
structures for all values smaller than i.

Data structure Di(u) maintains a separator set Si(u) using an instance Si(u) of the data
structure of Lemma 6 with s = u and d = Di; inductively, we have an exact data structure
for distances smaller than d and this data structure plays the role of O with d̃ = dG. At the
beginning of each update, Si(u) updates Si(u). Then for each v, if O reports that d̃(u, v)
has increased from a value of at most Di to a value strictly greater than Di, Di(u) initializes
Si(u, v) to be the current separator set Si(u); Di(u) then initializes a priority queue Qi(u, v)
where elements are all s ∈ Si(u, v) with corresponding keys d̃i−1(u, s) + d̃i−1(s, v). During
updates, whenever Di−1(u) resp. Di−1(s) reports that d̃i−1(u, s) resp. d̃i−1(s, v) increases,
the key value of s in Qi(u, v) increases by the same amount. Note that after initialization,
Si(u, v) remains fixed and so does Qi(u, v) (except for key value changes).

For each vertex v, Di(u) maintains d̃i(u, v) as the min key value in Qi(u, v) after Qi(u, v)
has been initialized; prior to this, d̃i(u, v) =∞. This completes the description of each Di(u).
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The overall data structure D maintains a priority queue Q(u, v) for each vertex pair (u, v)
with an element for each i of key value d̃i(u, v). For i in increasing order, D updates Di(u)
for each u. Whenever a data structure Di(u) increases a value d̃i(u, v), the corresponding
key in Q(u, v) is increased accordingly. On a query (u, v), D reports the min key value in
Q(u, v).

Correctness. We prove that for each i, each time step t1, and each vertex pair (u, v),
d̃i(u, v) ≥ dG(u, v) with equality if dG(u, v) ∈ (Di, Di+1]. The inequality is clear since every
estimate corresponds to the length of some path in the current graph. The equality part is
shown by induction on i.

The base cases where Di < 33 lg n are clear so pick i with Di ≥ 33 lg n and d
(t1)
G (u, v) ∈

(Di, Di+1] and assume that correctness holds for all vertex pairs and time steps for i− 1. Let
t0 ≤ t1 be the first time step such that d

(t0)
G (u, v) ∈ (Di, Di+1]. Note that Si(u, v) = Si(u)(t0).

The induction hypothesis and the second part of Lemma 6 combined with the observation
that no key value in Qi(u, v) is below dG(u, v), it follows that the min key value in Qi(u, v)
equals d

(t1)
G (u, v). This shows correctness.

Running time. Consider an i ∈ {0, . . . , ⌊logρ n⌋} with Di ≥ 33 lg n and a vertex u ∈ V .
We will show that maintaining Di(u) takes O(n2 log2 n) time using a standard binary heap.
Total time over all i and u will thus be O(n3 log3 n). This dominates the O(n3 log2 n) time
to maintain priority queues Q(u, v) and the O(mn log n) time for the data structure of Even
and Shiloach for small values of i.

Maintaining Si(u) takes a total of O(m) time by Lemma 6. The total number of elements
in priority queues Qi(u, v) over all v ∈ Si(u, v) is O(n2 log n/Di), again by Lemma 6. The
number of increase-key operations for a single priority queue element s of Qi(u, v) is O(Di)
which takes a total of O(Di log n) time. Over all elements of priority queues Qi(u, v), this is
O(n2 log2 n).

Reporting paths. It is easy to extend our data structure to efficiently answer queries for
shortest paths (rather than only shortest path distances) between any vertex pair (u, v).
Associated with the min element of Q(u, v) is a vertex s such that for the associated index
i, d̃i(u, v) = dG(u, v) = dG(u, s) + dG(s, v), d̃i−1(u, s) = dG(u, s), and d̃i−1(s, v) = dG(s, v).
Hence, by recursively querying for pairs (u, s) and (s, v), a shortest u-to-v path in G is
reported in time proportional to its length.

4.2 Approximate distances
Let ϵ > 0 be given. We now present our deterministic data structure for the (1+ϵ)-approximate
variant of the problem.

The data structure is quite similar to the one for the exact variant so we only describe the
changes needed. For i > 0 and u ∈ V , we describe data structure Di(u) and assume that we
have data structures for values less than i. As before, we only consider i with Di ≥ 33 lg n.

Let ϵ′ > 0 be a value depending on ϵ such that (1 + ϵ′)c = ρ for some c ∈ N; we will
specify ϵ′ later. For j = 0, . . . , c = log1+ϵ′ ρ, let di,j = Di(1 + ϵ′)j . This partitions each
interval (Di, Di+1] into c sub-intervals (Di(1 + ϵ′)j , Di(1 + ϵ′)j+1] for j = 0, . . . , c− 1.
Di(u) maintains Si(u) as in the exact version. For each v ∈ V , Di(u) maintains an

initially empty set Si(u, v). Once Di−1(u) reports that d̃i−1(u, v) increased from a value of
at most Di(1 + ϵ′)i to a value strictly greater than Di(1 + ϵ′)i, Di(u) sets Si(u, v) equal to
the current set Si(u).
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For each j = 0, . . . , c− 1, a data structure Di,j(u) maintains the following set for each
vertex v:

Qi,j(u, v) =
{

s ∈ Si(u, v) | d̃i−1(u, s) + d̃i−1(s, v) ≤ (1 + ϵ′)idi,j

}
.

Qi,j(u, v) is maintained by Di,j(u) as a queue in which every s ∈ Qi,j(u, v) has key
d̃i−1(u, s) + d̃i−1(s, v) and where s is removed from Qi,j(u, v) (or increased to ∞) when this
value exceeds (1 + ϵ′)idi,j .

For each vertex v, define d̃i,j(u, v) = (1 + ϵ′)idi,j if Qi,j(u, v) contains at least one element
and otherwise d̃i,j(u, v) =∞.

Data structure Di(u) maintains a min-priority queue Qi(u, v) for each vertex v with an
element of key value d̃i,j(u, v) for each j. On query v, it outputs d̃i(u, v) = min{k, d̃i−1(u, v)}
where k is the min-key value of this queue, i.e., d̃i(u, v) = min{d̃i−1(u, v), minj d̃i,j(u, v)}.

The overall data structure D works in the same manner as for the exact data structure.

Correctness. Consider any point during the sequence of edge deletions. We will show that
for suitable choice of ϵ′, the estimate d̃(u, v) that D outputs satisfies dG(u, v) ≤ d̃(u, v) ≤
(1 + ϵ)dG(u, v) for every vertex pair (u, v).

We first show that dG(u, v) ≤ d̃(u, v). It suffices to prove by induction on i ≥ 0 that
dG(u, v) ≤ d̃i(u, v). The proof holds for small i such that Di < 33 lg n since then we use
the data structure of Even and Shiloach, implying d̃i(u, v) = dG(u, v). Now, consider an i

such that Di ≥ 33 lg n and assume that the claim holds for smaller values than i. We have
d̃i(u, v) = min{d̃i−1(u, v), minj d̃i,j(u, v)} and d̃i,j(u, v) ≥ (1+ϵ′)idi,j ≥ d̃i−1(u, s)+d̃i−1(s, v)
for each s ∈ Qi,j(u, v). Additionally, if Qi,j(v) = ∅ then d̃i,j(u, v) = ∞. The induction
hypothesis now implies d̃i(u, v) ≥ dG(u, v), showing the induction step. Thus, dG(u, v) ≤
d̃(u, v).

To show that d̃(u, v) ≤ (1 + ϵ)dG(u, v), we prove by induction on i ≥ 0 that during
all updates and for all vertex pairs (u, v), if dG(u, v) ∈ (0, Di+1] then d̃i(u, v) ≤ (1 +
ϵ′)idG(u, v). If we can show this then picking ϵ′ ≤ ln(1 + ϵ)/(⌊logρ n⌋) gives d̃(u, v) ≤
(1 + ϵ′)⌊logρ n⌋dG(u, v) ≤ eϵ′⌊logρ n⌋dG(u, v) ≤ (1 + ϵ)dG(u, v) for every vertex pair (u, v).

We only need to consider i with Di ≥ 33 lg n since otherwise, we use the data structure
of Even and Shiloach. Assume inductively that the claim holds for values less than i.

Let t1 be the current time step and consider a vertex pair (u, v) with d
(t1)
G (u, v) ∈ (0, Di+1].

By the induction hypothesis, we may assume that d
(t1)
G (u, v) ∈ (Di, Di+1]. We may further

assume that d̃
(t1)
i−1(u, v) > Di(1 + ϵ′)i since otherwise,

d̃
(t1)
i (u, v) ≤ d̃

(t1)
i−1(u, v) ≤ Di(1 + ϵ′)i < (1 + ϵ′)id

(t1)
G (u, v).

Let t0 ≤ t1 be the first time step where d̃
(t0)
i−1(u, v) > Di(1+ϵ′)i. We must have d

(t0)
G (u, v) >

Di since otherwise, the induction hypothesis would imply d̃
(t0)
i−1(u, v) ≤ d

(t0)
G (u, v)(1 + ϵ′)i−1 ≤

Di(1 + ϵ′)i−1, contradicting the choice of t0. Since also d
(t0)
G (u, v) ≤ d

(t1)
G (u, v) ≤ Di+1,

Lemma 6 implies that there is a vertex s ∈ S
(t0)
i (u) = S

(t0)
i (u, v) = S

(t1)
i (u, v) such that

d
(t1)
G (u, v) = d

(t1)
G (u, s) + d

(t1)
G (s, v), d

(t1)
G (u, s) ≤ Di, and d

(t1)
G (s, v) ≤ Di.

Pick j such that d
(t1)
G (u, v) ∈ (di,j , di,j+1]. By the induction hypothesis,

d̃
(t1)
i−1(u, s) + d̃

(t1)
i−1(s, v) ≤ (1 + ϵ′)i−1d

(t1)
G (u, v) ≤ (1 + ϵ′)i−1di,j+1 = (1 + ϵ′)idi,j .

Hence, Qi,j(u, v) is non-empty at time step t1 so d̃
(t1)
i (u, v) ≤ d̃

(t1)
i,j (u, v) = (1 + ϵ′)idi,j ≤

(1 + ϵ′)id
(t1)
G (u, v). This shows the induction step.

ICALP 2021



64:14 Decremental APSP in Unweighted Digraphs Versus an Adaptive Adversary

Running time. The analysis is similar to the one for exact distances. Pick an i ∈
{0, . . . , ⌊logρ n⌋} with Di ≥ 33 lg n. The total time to maintain Si(u) over all u is O(mn).

Observe that each approximate distance d̃i−1(u1, u2) is of the form (1 + ϵ′)i′
di′,j for

i′ ≤ i− 1. Since each element s in a queue Qi,j(u, v) has key value d̃i−1(u, s) + d̃i−1(s, v), it
follows that the number of increase-key operations applied to s in Qi,j(u, v) is O(log1+ϵ′ Di) =
O(log Di/ϵ′) = O(log n/ϵ′). For our purpose, a simplified queue Qi,j(u, v) suffices which
keeps a counter of the number of elements of key value at most (1 + ϵ′)idi,j ; this follows
since the min key value is at most (1 + ϵ′)idi,j if and only if the counter is strictly greater
than 0. Every queue operation for Qi,j(u, v) can then be supported in O(1) time. The
number of elements in Qi,j(u, v) over all u, v, and j is O(cn3 log n/Di) = O(n3 log n/(Diϵ

′))
by Lemma 6. This gives a total time bound of O(mn + n3 log2 n/(Di(ϵ′)2)). This dominates
the time spent on maintaining priority queues Qi(u, v).

Recall from above that ϵ′ ≤ ln(1 + ϵ)/(⌊logρ n⌋). The only additional constraint on ϵ′ is
that (1 + ϵ′)c = ρ for some c ∈ N. This can be achieved with ϵ′ = Θ(ln(1 + ϵ)/(⌊logρ n⌋)).
Hence, we get a time bound of O(mn + n3 log4 n/(Diϵ

2)).
Note that this bound is no better than the exact data structure for small Di. We thus

consider a hybrid data structure that only applies our data structure when Di is above some
distance threshold d and otherwise applies the data structure of Even and Shiloach which
takes a total of O(mnd) time. Summing over all Di > d and applying a geometric sums
argument, the total time for our hybrid data structure is

O(mnd +
∑

i:Di>d

n3 log4 n/(Diϵ
2))) = O(mnd + n3 log4 n/(dϵ2)))

Setting d = n log2 n/(ϵ
√

m) gives Theorem 2. Showing the bound for reporting approximate
shortest paths in the theorem is done in the same way as in Section 4.1.

5 Randomized Decremental APSP

In this section, we provide a high-level overview of the randomized (1 + ϵ)-approximate
data structure and analysis to achieve the result presented in Theorem 3. Building on this
overview we will then prove the theorem.

Let us start by focusing on maintaining approximate distances close to the value Di from
a single vertex u and for now we assume an oblivious adversary.

Maintaining a sampled separator subset. Instead of maintaining each separator Si,j(u, v)
(with associated with priority queue Qi,j(u, v)) as the full vertex separator Si(u), we obtain
a speed-up by only maintaining a sampled subset of Si(u). As long as this sampled subset
certifies that there is a short two-hop path from u to v, the data structure proceeds as in
the previous section. When this is no longer the case, there might still be a short two-hop
path from u to v through a non-sampled vertex s in the full separator set Si(u). However,
since there are no more sampled candidates, the expected number of vertices of Si(u) that
provide a short two-hop path is small and we can update Si,j(u, v) to be this small subset.
It follows that in expectation, Si,j(u, v) can be kept small at all times, which is needed to
give a speed-up.

A speed-up using shallow in-trees. The problem with the data structure sketched above is
that the entire set Si(u) had to be scanned in order to update Si,j(u, v) which means that the
data structure will not be faster than our deterministic structure from the previous section.
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To deal with this, consider the following modification. The set Si,j(u, v) is updated as before
by scanning over the entire set Si(u). Now, an in-tree T (v) is grown from v of radius at most
ϵ′Di. Each vertex v′ in T (v) then inherits the set of v, i.e., Si,j(u, v′) is updated to the set
Si,j(u, v) and this update is fast since Si,j(u, v) is small in expectation. This works since v

is a proxy for v′ in the sense that a short two-hop path from u to v′ via Si,j(u, v) can be
extended with a short suffix from T (v), giving a short two-hop path from u to v via Si,j(u, v)
(as T (v) is an in-tree of small radius). Now, the time spent on the single scan of Si(u) can
be distributed among all vertices of T (v) and the number of such vertices must be at least
ϵ′Di + 1 (if not, v would be within distance ϵ′Di from u).

Unfortunately, the time analysis for the above procedure breaks down if the in-trees
grown during the sequence of updates overlap too much. We now sketch how to deal with
this. Mark vertices of each in-tree grown so far. When the BFS procedure grows a new
in-tree T (v), this procedure is modified by having it backtrack at previously marked vertices
which thus become leaves of T (v); this set of marked leaves will be referred to as L in the
detailed description below.

Case 1, dealing with a large in-tree. If the number of unmarked vertices visited in T (v) is
greater than ϵ′Di, the above procedure and analysis can be applied; this is referred to as
Case 1 in the detailed description below.

Case 2, dealing with a small in-tree. Otherwise, we are in Case 2; here we recall that T (v)
has small radius and observe that the only way to enter T (v) from G \ T (v) is through L.
Hence, for every vertex s in the union ∪v′∈LSi,j(u, v′), there is a good two-hop path from u

to v through s. But since we know that there is only a small number of such vertices left
(in expectation), this union must be small. Furthermore, the union must contain a good
separator for every vertex in T (v) (again because T (v) has small radius and because T (v)
must be entered through L) and we thus have an efficient way to update Si,j(u, w) for all
w ∈ T (v).

Handling an adaptive adversary. Above we assumed an oblivious adversary. When the
adversary is adaptive, we need to be more careful since the approximate distances reported
might reveal information about which vertices have been sampled. To deal with this, we
round up every two-hop distance on a given distance scale to the same upper bound value
(this will only increase the weight of each two-hop path by a small factor so that the output
to a query will still be (1 + ϵ)-approximate). Hence, the rounded up approximate weight of a
two-hop path u⇝ s⇝ v is the same for every choice of “good” separator vertex s regardless
of whether it was sampled or not. It follows that our randomized structure outputs the same
distance estimates as a slower deterministic algorithm that maintains the full separator sets.
Hence, our randomized algorithm works against an adaptive adversary, as desired.

5.1 The data structure
We now make the the overview formal. First, redefine ρ = 34− 1

2
33 = 67

66 and pick ϵ′ such
that (1 + ϵ′)c = ρ for some c ∈ N and such that ρ(1 + ϵ′) ≤ 34

33 . For each u and i such that
Di ≥ 33 lg n, a separator Si(u) is maintained with a data structure Si(u) as in Section 4.

We extend the range of index j by 1 so that j ∈ {0, . . . , c + 1}. Each structure Di,j(u)
maintains a growing set Mi,j(u) of marked vertices; this set is initially empty. In the following,
let Ui,j(u) = V \Mi,j(u) denote the set of unmarked vertices and let GUi,j(u) denote the graph
with vertex set V and containing the edges of G having at least one unmarked endpoint.
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Figure 2 The two cases in the description of the randomized algorithm. Case 1: black vertices of
Si(u) form the subset of vertices s with d̃i−1(u, s)+ d̃i−1(s, v) ≤ di,j(1+ ϵ′)2i. For each v′ ∈ V (T (v)),
Qi,j(u, v′) is set to be this subset (with key values adjusted). 2-hop paths from u to v through
the subset are shown. Case 2: Vertices of L are shown in white inside T (v). Dotted regions are
trees touching T (v). For a w ∈ L, black vertices of Si(u) form the set Qi,j(u, w) and 2-hop paths
from u to w through this set are shown. Q is the union of these sets over all w ∈ L. For each
v′ ∈ V (T (v)) \ L, Qi,j(u, v′) is a subset of Q.

In each update, Di,j(u) maintains Si,j(u, v) and Qi,j(u, v) for v ∈ V in the following way.
For each v ∈ V and every vertex s added to Si(u) in the current update, s is added to

Si,j(u, v) with some probability p to be fixed later. Note that only vertices v for which s

is actually added to Si,j(u, v) need to be processed. In the full version of the paper [5], we
employ a different sampling scheme that avoids having to flip a coin for every vertex v ∈ V

in every update.
For vertices v such that v ∈ Mi,j(u) or such that both v ∈ Ui,j(u) and d̃i−1(u, v) ≤

Di(1 + ϵ′)2i, no further processing is done.
Now, assume that v ∈ Ui,j(u) and that d̃i−1(u, v) > Di(1 + ϵ′)2i. If this inequality did not

hold in the previous update, each (sampled) vertex of Si,j(u, v) is added to a new min-queue
Qi,j(u, v) with key values as in the previous section. Conversely, if the inequality did hold in
the previous update, each new (sampled) vertex added to Si,j(u, v) in the current update is
added to Qi,j(u, v).

If the min key value of Qi,j(u, v) is greater than di,j(1 + ϵ′)2i, Di,j(u) grows an in-tree
T (v) from v in GUi,j(u) up to radius ϵ′Di.

There are now two cases (see Figure 2): |V (T (v)) \Mi,j(u)| > ϵ′Di and |V (T (v)) \
Mi,j(u)| ≤ ϵ′Di.

Case 1: If |V (T (v)) \Mi,j(u)| > ϵ′Di then Di,j(u) scans once over Si(u) to find the subset
of vertices s ∈ Si(u) for which d̃i−1(u, s) + d̃i−1(s, v) ≤ di,j(1 + ϵ′)2i. For each v′ ∈
V (T (v)), Qi,j(u, v′) is set to contain exactly this subset of vertices s but with key value
d̃i−1(u, s) + d̃i−1(s, v′).

Case 2: If |V (T (v)) \ Mi,j(u)| ≤ ϵ′Di then let L = V (T (v)) ∩ Mi,j(u) and let Q =
∪v′∈LQi,j(u, v′). For each v′ ∈ V (T (v)) \ L, Di,j(u, v) sets Qi,j(u, v′) to contain the
elements s ∈ Q with d̃i−1(u, s) + d̃i−1(s, v) ≤ di,j(1 + ϵ′)2i; their key values are
d̃i−1(u, s) + d̃i−1(s, v′).
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In both cases, Di,j(u) then marks all vertices of T (v), i.e., Mi,j(u)←Mi,j(u) ∪ V (T (v)).
Approximate distances d̃i,j(u, v) are maintained by Di,j(u) in a way similar to that in

Section 4.2: d̃i,j(u, v) = (1 + ϵ′)2idi,j if the min key value of Qi,j(u, v) is at most (1 + ϵ′)2idi,j

and otherwise d̃i,j(u, v) =∞.
Data structures Di(u) as well as the overall data structure D work exactly as in Section 4.2.

5.2 Correctness

Consider any point during the sequence of edge deletions. We will show that for suitable
choice of ϵ′, we have dG(u, v) ≤ d̃(u, v) ≤ (1 + ϵ)dG(u, v).

We do this by proving that during all updates and for all vertex pairs (u, v), if dG(u, v) ∈
(0, Di+1(1 + ϵ′)] then d̃i(u, v) ≤ (1 + ϵ′)2idG(u, v). By picking ϵ′ = ln(1 + ϵ)/(2⌊logρ n⌋), this
will give dG(u, v) ≤ d̃G(u, v) ≤ (1+ϵ′)2⌊logρ n⌋dG(u, v) ≤ e2⌊logρ n⌋ϵ′

dG(u, v) ≤ (1+ϵ)dG(u, v),
as desired.

The proof is by induction on i. The claim is clear for i with Di < 33 lg n since then
we use the data structure of Even and Shiloach. Now, consider an i with Di ≥ 33 lg n and
assume that the claim holds for values less than i. By the induction hypothesis, we only need
to consider pairs (u, v) with dG(u, v) ∈ (Di(1 + ϵ′), Di+1(1 + ϵ′)], i.e., dG(u, v) ∈ (di,j , di,j+1]
with j > 0.

We first show the following invariant for marked vertices that holds prior to each update
over the entire sequence of updates:

▶ Invariant 7. At the end of each update, for every w ∈Mi,j(u) with dG(u, w) ∈ (di,j , di,j+1],
each shortest u-to-w path in G intersects a vertex s ∈ Qi,j(u, w) such that dG(u, s) ≤ Di and
dG(s, w) ≤ Di.

Proof. The invariant is shown by induction on the rank of w in the order in which vertices are
marked. Note that this is a proof by induction inside a step of the main proof by induction
on i; in addition to the induction hypothesis stated above, we may thus assume that the
invariant holds for values less than i. Additionally, for the current value of i, we may assume
by induction that the invariant holds for vertices of lower rank than w.

Let t1 be a time step with w ∈ Mi,j(u)(t1) and d
(t1)
G (u, w) ∈ (di,j , di,j+1], let t0 ≤ t1 be

the time step in which w was marked, and let r be the vertex from which an in-tree T (r) ∋ w

was grown in time step t0. Let P be a shortest u-to-w path in G(t1).
We must have d̃

(t0)
i−1(u, r) > Di(1 + ϵ′)2i since otherwise, no processing would be done

for r in time step t0, contradicting that T (r) is grown in that time step. We also have
d

(t0)
G (u, r) > Di(1 + ϵ′) since otherwise the induction hypothesis would give the contradiction

Di(1 + ϵ′) ≥ d
(t0)
G (u, r) ≥ d̃

(t0)
i−1(u, r)/(1 + ϵ′)2(i−1) > Di(1 + ϵ′)2i−2(i−1) = Di(1 + ϵ′)2.

By the triangle inequality and the fact that w ∈ T (r) and T (r) has radius at most ϵ′Di, we
get d

(t0)
G (u, w) ≥ d

(t0)
G (u, r)− d

(t0)
G (w, r) > Di(1 + ϵ′)− ϵ′Di = Di. Hence, Di < d

(t0)
G (u, w) ≤

d
(t1)
G (u, w) ≤ di,j+1 ≤ 34

33 Di so by Lemma 6, P intersects S
(t0)
i (u) and for the first such

intersection vertex s along P , d
(t0)
G (u, s) ≤ d

(t1)
G (u, s) ≤ Di and d

(t0)
G (s, w) ≤ d

(t1)
G (s, w) ≤ Di.

We consider the two cases in the description of Di,j(u) (see Figure 3):
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Figure 3 The two cases in the proof of Invariant 7. The path P is marked in bold.

Case 1. It suffices to show that s ∈ Q
(t1)
i,j (u, w). We have d

(t0)
G (s, r) ≤ d

(t0)
G (s, w) +

d
(t0)
G (w, r) ≤ (1 + ϵ′)Di. By the induction hypothesis,

d̃
(t0)
i−1(u, s) + d̃

(t0)
i−1(s, r) ≤ (1 + ϵ′)2(i−1)d

(t0)
G (u, r)

≤ (1 + ϵ′)2i−2(d(t0)
G (u, w) + ϵ′Di)

≤ (1 + ϵ′)2i−2(d(t1)
G (u, w) + ϵ′Di)

≤ (1 + ϵ′)2i−2(di,j+1 + ϵ′di,j+1)
= (1 + ϵ′)2idi,j ,

so s ∈ Q
(t0)
i,j (u, w) = Q

(t1)
i,j (u, w), showing maintenance of the invariant.

Case 2. We first show that P must intersect the set L formed when growing T (r) in time
step t0. Since we are in Case 2, every leaf of T (r) either belongs to L or has no ingoing
edges from vertices not in T (r); otherwise, T (r) would contain more than ϵ′Di vertices since
it is grown up to radius ϵ′Di. Hence, the only way that P could not intersect L would be
if P were fully contained in T (r). But this is not possible since then T (r) would contain
at least |P |+ 1 ≥ di,j + 1 > Di ≥ ϵ′Di unmarked vertices at the beginning of time step t0,
contradicting that we are in Case 2.

Thus, P intersects L and we have w /∈ L since w was an unmarked vertex of T (r)
when growing this tree. Let x be the last vertex of P belonging to L. Since x was
marked earlier than w, the induction hypothesis implies that the subpath of P from u to x

intersects Q
(t1)
i,j (u, x) = Q

(t0)
i,j (u, x) in a vertex sx such that d

(t0)
G (u, sx) ≤ d

(t1)
G (u, sx) ≤ Di

and d
(t0)
G (sx, x) ≤ d

(t1)
G (sx, x) ≤ Di. The latter implies d

(t0)
G (sx, r) ≤ (1 + ϵ′)Di. By the

induction hypothesis, d̃
(t0)
i−1(u, sx) + d̃

(t0)
i−1(sx, r) ≤ (1 + ϵ′)2(i−1)(d(t0)

G (u, sx) + d
(t0)
G (sx, r)) =

(1 + ϵ′)2(i−1)d
(t0)
G (u, r) which by the same calculations as in Case 1 is at most (1 + ϵ′)2idi,j .

Inspecting the execution of Di,j(u) in Case 2, it follows that sx ∈ Q
(t0)
i,j (u, w) = Q

(t1)
i,j (u, w).

We have sx ∈ Q
(t0)
i,j (u, x) ⊆ S

(t0)
i (u). Since s is the first vertex of S

(t0)
i (u) along P , P can

thus be decomposed into u ⇝ s ⇝ sx ⇝ x ⇝ w and we get d
(t1)
G (u, sx) ≤ Di (as shown

above) and d
(t1)
G (sx, w) ≤ d

(t1)
G (s, w) ≤ Di. This shows maintenance of the invariant with sx

in place of s. ◀

Now, we continue with our proof by induction on i. Consider any vertex pair (u, v) at the
end of an update with dG(u, v) ∈ (di,j , di,j+1] and j > 0. If v /∈ Mi,j(u) and d̃i−1(u, v) ≤
(1 + ϵ′)2iDi then dG(u, v) ≤ d̃i,j(u, v) ≤ (1 + ϵ′)2iDi < (1 + ϵ′)2idG(u, v), as desired.
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Now assume that v /∈ Mi,j(u) and d̃i−1(u, v) > (1 + ϵ′)2iDi. Since v was not marked
in the current update, the min key value of Qi,j(u, v) at the end of the update is at most
di,j(1 + ϵ′)2i so dG(u, v) ≤ d̃i,j(u, v) ≤ (1 + ϵ′)2idi,j < (1 + ϵ′)2idG(u, v), as desired.

Finally assume that v ∈ Mi,j(u). By Invariant 7, there is an s ∈ Qi,j(u, v) such
that dG(u, v) = dG(u, s) + dG(s, v), dG(u, s) ≤ Di, and dG(s, v) ≤ Di. By the induction
hypothesis, dG(u, v) ≤ d̃i(u, v) ≤ d̃i−1(u, s) + d̃i−1(s, v) ≤ (1 + ϵ′)2(i−1)dG(u, v), as desired.
This completes the inductive proof and correctness follows.

5.3 Running time
Maintaining separators Si(u) over all u and i takes O(mn logρ n) = O(mn log n) time by
Lemma 6. For the remaining time analysis, we focus on a single data structure Di,j(u). It is
useful in the following to regard this structure as handling an adversarial sequence of updates
consisting of changes to approximate distances maintained by structures Di′(v) for i′ < i and
v ∈ V . We will give an expected time bound for Di,j(u) and we shall rely on the following
key lemma; the proof can be found in the full version of the paper [5].

▶ Lemma 8. Let r ∈ V . If at some point in the sequence of updates, Di,j(u) grows an in-tree
from r then at the end of that update, the expected number of vertices s ∈ Si(u) satisfying
d̃i−1(u, s) + d̃i−1(s, r) ≤ Di(1 + ϵ′)2i is O(ln n/p). This bound holds against an adaptive
adversary.

▶ Corollary 9. When a vertex v is marked, E[|Qi,j(u, v)|] = O(ln n/p) and this bound holds
against an adaptive adversary.

Proof. Consider the update in which v is marked and let r be the root of the in-tree T (r)
containing v. If |T (r)| ≥ ϵ′Di then Qi,j(u, v) = Qi,j(u, r) ⊆ Si(u) and all s ∈ Qi,j(u, r)
satisfy the inequality of Lemma 8. In the case where |T (r)| < ϵ′Di, let Q be as defined in the
description of the data structure. Then vertices s ∈ Q ⊆ Si(u) are only added to Qi,j(u, v) if
they satisfy the inequality of Lemma 8. The corollary now follows. ◀

Now, we can bound the time spent by Di,j(u). The total time spent on growing in-trees
is O(m) since every edge (w1, w2) visited must have w1 /∈ Mi,j(u) at the beginning of the
BFS search and w1 ∈Mi,j(u) immediately afterwards and a vertex can never be unmarked.
This also bounds the time spent on marking vertices.

The total expected number of sampled vertices added to Qi,j(u, v) prior to v being
marked is at most xp where x is the size of the set Si(u) after the final update. By Lemma 6,
x = O(n log n/Di). By Corollary 9, the expected size of Qi,j(u, v) after v is marked is
O(ln n/p). Using the same argument as in the running time analysis of Section 4.2, the number
of increase-key operations applied to a single element of Qi,j(u, v) is O(log n/ϵ′). Hence, the
total expected time spent on operations on Qi,j(u, v) is O((n log n · p/Di + log n/p) log3 n/ϵ).

Whenever Di,j(u) grows an in-tree T (r) with |V (T (r)) \Mi,j(u, v)| > ϵ′Di, scanning
Si(u) takes O(n log n/Di) time by Lemma 6. Since all vertices of V (T (r)) \Mi,j(u, v) are
marked just after T (r) is grown and since vertices are never unmarked, the number of such
trees over the course of the updates is at most n/(ϵ′Di) so the total time for all these scans
is O(n2 log2 n/(ϵD2

i )).
Whenever Di,j(u) grows an in-tree T (r) with |V (T (r)) \ Mi,j(u, v)| ≤ ϵ′Di, the set

∪x∈LQi,j(u, x) needs to be computed. Note that for each x ∈ L, E[|Qi,j(u, x)|] = O(log n/p)
by Corollary 9. At least one edge (y, x) ingoing to x belongs to T (r) and this edge is not part
of any later grown in-tree since x is marked immediately after T (r) is grown. We charge a
cost of O(log n/p) to (y, x) for computing Qi,j(u, x). Over all x ∈ L, this pays for computing
∪x∈LQi,j(u, x) and we get a total expected time bound for this part of O(m log n/p).
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Summing the above over all u, v, i, and j, we get a total expected time bound for our
data structure of

Õ(mn/ϵ +
∑

i

∑
j

(n3 · p/(Diϵ) + n2/(pϵ) + n3/(ϵD2
i ) + mn/p).

Since this bound is only fast for sufficiently large i, we pick a distance threshold d and
apply the algorithm of Even and Shiloach for distances of at most d and our data structure
for distances above d. By a geometric sums argument, our hybrid algorithm has a expected
total time bound of

Õ(mnd + mn/ϵ + n3 · p/(dϵ2) + n2/(pϵ2) + n3/(ϵ2d2) + mn/(pϵ))
= Õ(mnd + n3 · p/(dϵ2) + n2/(pϵ2) + n3/(d2ϵ2) + mn/(pϵ))

Setting the second and fifth terms equal to each other, we get p = Θ̃(
√

mϵd/n) and the time
bound simplifies to

Õ(mnd +
√

mn2/(
√

dϵ3/2) + n3/(
√

mdϵ5/2) + n3/(d2ϵ2)).

We balance the first two terms by setting d = Θ̃(n2/3/(m1/3ϵ)) and we get a time bound of

Õ(m2/3n5/3n/ϵ + n8/3/(m1/3ϵ2)),

which shows the time bound of Theorem 3.
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65:2 On the Approximability of Multistage Min-Sum Set Cover

1 Introduction

In Multistage Min-Sum Set Cover (Mult-MSSC), we are given a universe U on n elements, a
sequence of requests R = (R1, . . . , RT ), with Rt ⊆ U , and an initial permutation π0 of the
elements of U . We aim to maintain a sequence of permutations (π0, π1, . . . , πT ) of U , so as
to minimize the total cost of updating (or moving from) πt−1 to πt in each time step plus the
total cost of covering each request Rt with the current permutation πt. The cost of moving
from πt−1 to πt is the number of inverted element pairs between πt−1 and πt, i.e., the Kendall
Tau distance dKT(πt−1, πt). The cost πt(Rt) of covering a request Rt with a permutation πt

is the position of the first element of Rt in πt, i.e., πt(Rt) = min{i |πt(i) ∈ Rt}. Thus, given
R = (R1, . . . , RT ), we aim to minimize

∑T
t=1

(
dKT(πt−1, πt) + πt(Rt)

)
.

The Mult-MSSC problem is a natural generalization of the (offline version of the) classical
List Update problem [26], where |Rt| = 1 for all requests Rt ∈ R. The offline version of List
Update is NP-hard [2], while it is known that any 5/4-approximation has to resort to paid
exchanges, where an element different from the requested one is moved forward to the list
[24, 28]. Mult-MSSC was introduced in [17] as the multistage extension of Min-Sum Set Cover
(MSSC) [15], where we aim to compute a single static permutation π that minimizes the total
covering cost

∑T
t=1 π(Rt). [17] presented a (simple polynomial-time) online algorithm for

Mult-MSSC with competitive ratio between Ω(r
√

n) and O(r3/2√n) for r-bounded instances,
where all requests have cardinality at most r, and posed the polynomial-time approximability
of Mult-MSSC as an interesting open question. Mult-MSSC is also related to recently studied
time-evolving (a.k.a. multistage or dynamic) optimization problems (e.g., multistage matroid,
spanning set and perfect matching maintenance [19], time-evolving Facility Location [14, 3]),
where we aim to maintain a sequence of near-optimal feasible solutions to a combinatorial
optimization problem, in response to time-evolving underlying costs, without changing too
much the solution from one step to the next.

Motivation. Mult-MSSC is motivated by applications, such as web search, news, online
shopping, paper bidding, etc., where items are presented to the users sequentially. Then, the
item ranking is of paramount importance, because user attention is usually restricted to the
first few items in the sequence (see e.g., [27, 13, 16, 10]). If a user does not spot an item
fitting her interests there, she either leaves the service (in case of news or online shopping,
see e.g., the empirical evidence in [12]) or settles on a suboptimal action (in case of paper
bidding, see e.g., [11]). To mitigate such situations and increase user retention, modern online
services highly optimize item rankings based on user scrolling and click patterns. Each user
t is represented by her set of preferred items (or item categories) Rt . The goal of the service
provider is to continually maintain an item ranking πt, so that the current user t finds one of
her favorite items at a relatively high position in πt. Continual ranking update is dictated
by the fact that users with different characteristics and preferences tend to use the online
service during the course of the day (e.g., elderly people in the morning, middle-aged people
in the evening, young people at the night – similar patterns apply for people from different
countries and timezones). Moreover, different user categories react in nonuniform ways to
different trends (in e.g., news, fashion, sports, scientific topics). For consistency and stability,
however, the ranking should change neither too much nor too frequently. Mult-MSSC makes
the (somewhat simplifying) assumptions that the service provider has a relatively accurate
knowledge of user preferences and their arrival order, and that its total cost is proportional
to how deep in πt the current user t should reach, before she finds one of her favorite items,
and to how much the ranking changes from one user to the next.
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From a theoretical viewpoint, Mult-MSSC was used in [17] as a natural benchmark for
studying the dynamic competitive ratio of Online Min-Sum Set Cover, where the algorithm
updates its permutation online, without any knowledge of future requests. As in Mult-MSSC,
the objective is to minimize the total moving plus the total covering cost.

Contribution and Techniques. In this work, we initiate a study of the polynomial-time
approximability of Mult-MSSC. Using a reduction from Set Cover, we show (Theorem 7)
that Mult-MSSC does not admit a c log n-approximation, for some absolute constant c, unless
P = NP. Moreover our reduction establishes that an o(r)-approximation for r-bounded
instances of Mult-MSSC implies an o(r)-approximation for Set Cover, in case each element
appears in at most r requests.

Our main technical contribution is to show that Mult-MSSC can be approximated in
polynomial-time within a factor of O(log2 n) in general instances, by randomized rounding
(Theorem 10), and within a factor of O(r2) in r-bounded instances, by deterministic rounding
(Theorem 11).

For both results, we consider a restricted version of Mult-MSSC, inspired by the Move-to-
Front (MTF) algorithm for List Update, where in each time step t, we can only move a single
element of Rt from its position in πt−1 to the first position of πt. Since such a permutation
πt coves Rt with unit cost, we now aim to select the element of each Rt moved to front of
πt, so as to minimize the total moving cost

∑T
t=1 dKT(πt−1, πt). It is not hard to see that

the optimal cost of serving R under the restricted Move-to-Front version of Mult-MSSC is
within a factor of 4 from the optimal cost under the original, more general, definition of
Mult-MSSC.

Hence, approximating Mult-MSSC boils down to determining which element of Rt should
become the top element of πt. To this end, we relax permutations to doubly stochastic
matrices and consider a Linear Programming relaxation of the restricted Move-to-Front
version of Mult-MSSC, which we call Fractional-MTF (see Definition 8). Given the optimal
solution of the aforementioned linear program, which is a sequence of doubly stochastic
matrices (A0, A1, . . . , AT ), with A0 corresponding to the initial permutation π0, our main
technical challenge is to round each doubly stochastic matrix At to a permutation πt such
that (i) there is an element of Rt at one of the few top positions of πt; and (ii) the total
moving cost

∑T
t=1 dKT(πt−1, πt) of the rounded solution is comparable to the total moving

cost
∑T

t=1 dFR(At−1, At) of the optimal solution of Fractional-MTF, where dFR is a notion
of distance equivalent to Spearman’s footrule distance on permutations (see Definition 4).

Working towards a randomized rounding approach, we first observe that rounding each
doubly stochastic matrix independently may result in a permutation sequence with total
moving cost significantly larger than that of Fractional-MTF (see also the discussion after
Lemma 9). In Theorem 10, we show that a dependent randomized rounding with logarithmic
scaling of entries (Algorithm 1), similar in spirit with the randomized rounding approach
[8, 25] for Generalized Min-Sum Set Cover, results in an approximation ratio of O(log2 n).
Interestingly, Algorithm 1 without the logarithmic scaling results in a permutation sequence
with the expected moving cost within a factor of 4 from the optimal moving cost of Fractional-
MTF. However, we lose a logarithmic factor in the approximation ratio, because we need to
scale up the entries of each doubly stochastic matrix At, so as to ensure that some element
of Rt appears in the few top positions of πt with sufficiently large probability. The other
logarithmic factor is lost because there could be a logarithmic number of elements allocated
to the same position of the resulting permutation by the randomized rounding.
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Our deterministic rounding of Algorithm 2 for r-bounded request sequences is motivated
by the deterministic rounding for Set Cover and Vertex Cover. We observe that in the
optimal solution of Fractional-MTF, in each time step t, there is some element e ∈ Rt with
At

e1 ≥ 1/r (i.e., e occupies a fraction of at least 1/r of the first position in the “fractional
permutation” At). Algorithm 2 simply moves any such element to the front of πt. The most
challenging part of the analysis is to establish that for any optimal solution (A0, A1, . . . , AT )
of Fractional-MTF with respect to an r-bounded request sequence, there exists a sequence of
doubly stochastic matrices (A0, Â1, . . . , ÂT ) with the entries of each Ât being multiples of
1/r, such that (i) the moving cost of (A0, Â1, . . . , ÂT ) is bounded from above by the optimal
cost of Fractional-MTF; and (ii) each matrix Ât contains in the first position the element
that Algorithm 2 keeps in the first position at round t, with mass at least 1/r. Then we show
(Lemma 20) that for any sequence of doubly stochastic matrices (A0, Â1, . . . , ÂT ) satisfying
the above properties, the moving cost of Algorithm 2 is at most the moving cost of the
doubly stochastic matrices,

∑T
t=1 dFR(Ât, Ât−1). The latter is done through the use of an

appropriate potential function based on an extension of the Kendall-Tau distance to doubly
stochastic matrix with entries being multiples of 1/r.

A potentially interesting insight is that the technical reason for the quadratic dependence
of our approximation ratios on log n and r is conceptually similar to the reason for the (best
possible) approximation ratio of 4 = 2 ·2 in [15] (see the discussion after Theorem 10). Hence,
we conjecture that any o(log2 n) (resp. o(r2)) approximation to Mult-MSSC must imply a
sublogarithmic (resp. o(r)) approximation to Set Cover.

Other Related Work. The MSSC problem generalizes various NP-hard problems, such as
Min-Sum Vertex Cover and Min-Sum Coloring and it is well-studied. Feige, Lovasz and
Tetali [15] proved that the greedy algorithm, which picks in each position the element that
covers the most uncovered requests, is a 4-approximation (that was also implicit in [9]) and
that no (4 − ε)-approximation is possible, unless P = NP. In Generalized MSSC (a.k.a.
Multiple Intents Re-ranking), there is a covering requirement K(Rt) for each request Rt

and the cost of covering a request Rt is the position of the K(Rt)-th element of Rt in the
(static) permutation π. The MSSC problem is the special case where K(Rt) = 1 for all
requests Rt. Another notable special case of Generalized MSSC is the Min-Latency Set
Cover problem [20], which corresponds to the other extreme case where K(Rt) = |Rt| for
all requests Rt. Generalized MSSC was first studied by Azar et al. [5], who presented a
O(log r)-approximation; later O(1)-approximation algorithms were obtained [8, 25, 23, 6].

Further generalizations of Generalized MSSC have been considered, such as the Submod-
ular Ranking problem, studied in [4], which generalizes both Set Cover and MSSC, and the
Min-Latency Submodular Cover, studied by Im et al. [22]. We refer to [22, 21] for a detailed
discussion on the connections between these problems and their applications.

The online version of MSSC, which generalizes the famous List Update problem, was
studied in [17]. They proved that its static deterministic competitive ratio is Θ(r) and
presented a natural memoryless algorithm, called Move-all-Equally, with static competitive
ratio in Ω(r2) and 2O(

√
log n·log r) and dynamic competitive ratio in Ω(r

√
n) and O(r3/2√n)-

competitive. Subsequently, [18] considered MSSC from the viewpoint of online learning.
Through dimensionality reduction from permutations to doubly stochastic matrices, they
obtained randomized (resp. deterministic) polynomial-time online learning algorithms with
O(1)-regret for Generalized MSSC (resp. O(r)-regret for MSSC).
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2 Preliminaries and Basic Definitions

The set of elements e is denoted by U with |U | = n. A permutation of the elements is
denoted by π where πi denotes the element lying at position i (for 1 ≤ i ≤ n) and Pos(e, π)
denotes the position of the element e ∈ U in permutation π.

▶ Definition 1 (Kendall-Tau Distance). Given the permutations πA, πB, a pair of elements
(e, e′) is inverted if and only if Pos(e, πA) > Pos(e′, πA) and Pos(e, πB) < Pos(e′, πB) or vice
versa. The Kendall-Tau distance between the permutations πA, πB, denoted by dKT(πA, πB),
is the number of inverted pairs.

▶ Definition 2 (Spearman’ Footrule Distance). The FootRule distance between the permutations
πA, πB is defined as dFR(πA, πB) =

∑
e∈U |Pos(e, πA)− Pos(e, πB)|.

The Kendall-Tau distance and FootRule distance are approximately equivalent,
dKT(πA, πB) ≤ dFR(πA, πB) ≤ 2 · dKT(πA, πB). Moreover both of them satisfy the tri-
angle inequality.

▶ Definition 3. An n × n matrix with positive entries (rows stand for the elements and
columns for the positions) is called stochastic if

∑n
i=1 Aei = 1 for all e ∈ U and doubly

stochastic if (additionally)
∑

e∈U Aei = 1 for all 1 ≤ i ≤ n.

A permutation of the elements π can be equivalent represented by a 0-1 doubly stochastic
matrix A, where Aei = 1 if element e lies at position i and 0 otherwise. When clear from
context, we use the notion of permutation and (0-1) doubly stochastic matrix interchangeably.

The notion of FootRule distance can be naturally extended to stochastic matrices.
Given two doubly stochastic matrices A, B consider the min-cost transportation problem,
transforming row Ae to the row Be where the cost of transporting a unit of mass between
column i and column j equals |i− j|. Formally for each row e, define a complete bipartite
graph where on the left part lie the entries (e, i) for 1 ≤ i ≤ n and on the right part the
entries (e, j) for 1 ≤ j ≤ n. The mass transported from entry (e, i) to entry (e, j) (denoted as
fe

ij) costs fe
ij · |i− j| and the total mass leaving (e, i) equals Aei and the total mass arriving

at (e, j) equals Bej .

▶ Definition 4. The FootRule distance between two stochastic matrices A, B, denoted by
dFR(A, B), is the optimal value of the following linear program,

min
∑
e∈U

n∑
i=1

n∑
j=1
|i− j| · fe

ij

s.t
n∑

i=1
fe

ij = Bej for all e ∈ U and j = 1, . . . , n

n∑
j=1

fe
ij = Aei for all e ∈ U and i = 1, . . . , n

fe
ij ≥ 0 for all e ∈ U and i, j = 1, . . . , n

▶ Example 5. Let the stochastic matrices A =

1 0 0
0 1 0
0 0 1

, B =

1/3 1/3 1/3
1/2 1/2 0
1/4 0 3/4

.

The FootRule distance dFR(A, B) = (0 · 1/3 + 1 · 1/3 + 2 · 1/3)︸ ︷︷ ︸
first row

+ (1 · 1/2 + 0 · 1/2 + 1 · 0)︸ ︷︷ ︸
second row

+

(2 · 1/4 + 1 · 0 + 0 · 3/4)︸ ︷︷ ︸
third row

= 2.

Up next we present the formal definition of Multistage Min-Sum Set Cover.
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▶ Definition 6 (Multistage Min-Sum Set Cover). Given a universe of elements U , a sequence
of requests R1, . . . , RT ⊆ U and an initial permutation of the elements π0. The goal is to
select a sequence of permutation π1, . . . , πT that minimizes

T∑
t=1

πt(Rt) +
T∑

t=1
dKT(πt, πt−1)

where πt(Rt) is the position of the first element of Rt that we encounter in πt, πt(Rt) =
min{1 ≤ i ≤ n : πt

i ∈ Rt}.

We refer to
∑T

t=1 πt(Rt) as covering cost and to
∑T

t=1 dKT(πt, πt−1) as moving cost. We
denote with πt

Opt the permutation of the optimal solution of Mult-MSSC at round t, with
ot the element that the optimal solution uses to cover the request Rt (the element of Rt

appearing first in πt
Opt), and with OPTMult-MSSC the cost of the optimal solution. Finally we

call an instance of Mult-MSSC r-bounded in case the cardinality of the requests is bounded
by r, |Rt| ≤ r.

3 Approximation Algorithms for Dynamic Min-Sum Set Cover

There exists an approximation-preserving reduction from Set− Cover to Mult-MSSC that
provides us with the following inapproximability results.

▶ Theorem 7.
There is no c · log n-approximation algorithm for Mult-MSSC (for a sufficienly small
constant c) unless P = NP.
For r-bounded sequences, there is no o(r)-approximation algorithm for Mult-MSSC, unless
there is a o(r)-approximation algorithm for Set− Cover with each element being covered
by at most r sets.

The proof of Theorem 7 is fairly simple, given an instance of Set− Cover we construct an
instance of Mult-MSSC in which the initial permutation π0 contains in the first positions
some dummy elements (they do not appear in any of the requests) and in the last positions the
sets of the Set− Cover (we consider an element of Mult-MSSC for each set of Set− Cover).
Finally each request for Mult-MSSC is associated with an element of the Set− Cover and
contains the elements in Mult-MSSC/ sets in Set− Cover containing it.

Proof. Let the equivalent definition of Set− Cover in which we are given a universe of
element E = {1, . . . , n} and sets S1, S2, . . . , Sm ⊆ E and we are asked to select the minimum
number of elements covering all the sets (an element e covers set Si if e ∈ Si).

Consider the instance of Mult-MSSC with the elements U = {1, . . . , n} ∪ {d1, . . . , dn2m}.
The elements {d1, . . . , dn2m} are dummy in the sense that they appear in none of the
requests Rt. Let the initial permutation π0 contain in the first n2m positions the dummy
elements and in the last n positions the elements {1, . . . , n}, π0 = [d1, . . . , dn2m, 1, . . . , n]
and the request sequence of Mult-MSSC be S1, S2, . . . , Sm.

Let a c-approximation algorithm for Mult-MSSC producing the permutation π1, . . . , πm

the cost of which is denoted by Alg. Let also CoverAlg denote the set composed by
the element that the c-approximation algorithm uses to cover the requests, CoverAlg =
{the element of St appearing first in πt}. Then,

Alg ≥ n2m · |CoverAlg|.
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Now consider the following solution for Mult-MSSC constructed by the optimal solution
for Set− Cover. This solution initially moves the elements of the optimal covering set
OPTSetCover to the first positions and then never changes the permutation. Clearly the cost
of this solution is upper bounded by

Set− CoverMult-MSSC ≤ |OPTSetCover| · (n2m + n)︸ ︷︷ ︸
moving cost

+ m · |OPTSetCover|︸ ︷︷ ︸
covering cost

.

In case Alg ≤ c · Set− CoverMult-MSSC, we directly get that |CoverAlg| ≤ 3c · |OPTSetCover|.
There is no polynomial-time approximation algorithm for Set−Cover with approximation ratio
better than log m. The latter holds even for instance of Set−Cover for which m = poly(n) [1]
where poly(·) is a polynomial with degree bounded by a universal constant. Since the
number of elements |U |, in the constructed instance of Mult-MSSC is n2m, any c · log |U |-
approximation for Mult-MSSC (for c sufficiently small) implies an approximation algorithm
for Set − Cover with approximation ratio less than log n. In case there exists an c = o(r)-
approximation algorithm for Mult-MSSC for requests sequences R1, . . . , RT where |Rt| ≤ r,
we obtain an o(r)-approximation for algorithm for Set− Cover for sets with cardinality
bounded by r. In the standard form of Set− Cover this is translated into the fact that each
element belongs in at most r sets. ◀

Both the O(log2 n)-approximation algorithm (for requests of general cardinality) and the
O(r2)-approximation algorithm for r-bounded requests, that we subsequently present, are
based on rounding a linear program called Fractional Move To Front. The latter is the linear
program relaxation of Move To Front, a problem closely related to Multistage Min-Sum
Set Cover. MTF asks for a sequence of permutations π1, . . . , πT such as at each round t, an
element of Rt lies on the first position of πt and

∑T
t=1 dFR(πt, πt−1) is minimized.

▶ Definition 8. Given a sequence of requests R1, . . . , RT ⊆ U and an initial permutation of
the elements π0, consider the following linear program, called Fractional−MTF,

min
T∑

t=1
dFR(At, At−1)

s.t
n∑

i=1
At

ei = 1 for all e ∈ U and t = 1, . . . , T∑
e∈U

At
ei = 1 for all i = 1, . . . , n and t = 1, . . . , T∑

e∈Rt

At
e1 = 1 for all t = 1, . . . , T

A0 = π0

At
ei ≥ 0 for all e ∈ U, i = 1, . . . , n and t = 1, . . . , T

where dFR(·, ·) is the FootRule distance of Definition 4.

There is an elegant argument (appeared in previous works, e.g., [17]) showing that the
optimal solution of MTF is at most 4 ·OPTMult-MSSC. In Lemma 9 we provide the argument
and establish that Fractional−MoveToFront is a 4-approximate relaxation of Mult-MSSC.

▶ Lemma 9.
∑T

t=1 dFR(At, At−1) ≤ 4 · OPTMult-MSSC where A1, . . . , At is the optimal
solution of Fractional−MTF.
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Proof of Lemma 9. Let ot the element of Rt appearing first in the permutation πt
Opt.

Consider the sequence of permutation π0, π1, . . . , πT constructed by moving at each round
t, the element ot to the first position of the permutation. Notice that π0, π1, . . . , πT is a
feasible solution for both MoveToFront and Fractional−MTF. The first key step towards
the proof of Lemma 9 is that

dKT(πt, πt−1) + dKT(πt, πt
Opt)− dKT(πt−1, πt

Opt) ≤ 2 · πt
Opt(Rt)

To understand the above inequality, let kt be the position of ot in permutation πt−1. Out of the
kt−1 elements on the right of ot in permutation πt−1, let Leftt (Rightt) denote the elements
that are on the left (right) of ot in permutation πt−1

Opt. It is not hard to see that πt
Opt(Rt) ≥

|Leftt|, dKT(πt, πt−1) = |Leftt|+ |Rightt| and dKT(πt, πt
Opt)−dKT(πt−1, πt

Opt) = |Leftt| −
|Rightt|. Using the fact that dKT(πt, πt

Opt) − dKT(πt−1, πt
Opt) ≤ dKT(πt

Opt, πt−1
Opt) and the

previous inequality we get,

dKT(πt, πt−1) + dKT(πt, πt
Opt)− dKT(πt−1, πt−1

Opt) ≤ 2 · πt
Opt(Rt) + dKT(πt

Opt, πt−1
Opt)

and by a telescopic sum we get
∑T

t=1 dKT(πt, πt−1) ≤ 2 ·OPTMult-MSSC. The proof follows
by the fact that dFR(πt, πt−1) ≤ 2 · dKT(πt, πt−1). ◀

As already mentioned, our main technical contribution is the design of rounding schemes
converting the optimal solution, A1, . . . , AT , of Fractional−MTF into a sequence of per-
mutations π1, . . . , πT . This is done so as to bound the moving cost of our algorithms by the
moving cost

∑T
t=1 dFR(At, At−1). We then separately bound the covering cost,

∑T
t=1 πt(Rt)

by showing that always an element of Rt lies on the first positions of πt.
The main technical challenge in the design of our rounding schemes is ensure to that the

moving cost of our solutions
∑T

t=1 dKT(πt, πt−1) is approximately bounded by the moving
cost

∑T
t=1 dFR(At, At−1). Despite the fact that the connection between doubly stochastic

matrices and permutations is quite well-studied and there are various rounding schemes
converting doubly stochastic matrices to probability distributions on permutations (such as
the Birkhoff–von Neumann decomposition or the schemes of [8, 25, 6, 17]), using such schemes
in a black-box manner does not provide any kind of positive results for Mult-MSSC. For
example consider the case where A1 = · · · = AT and thus

∑T
t=1 dFR(At, At−1) = dFR(A1, A0).

In case a randomized rounding scheme is applied independently to each At, there always exists
a positive probability that πt ̸= πt−1 and thus the moving cost will far exceed dFR(A1, A0)
as T grows. The latter reveals the need for coupled rounding schemes that convert the overall
sequence of matrices A1, . . . , AT to a sequence of permutations π1, . . . , πT . Such a rounding
scheme is presented in Algorithm 1 and constitutes the back-bone of our approximation
algorithm for requests of general cardinality.

The rounding scheme described in Algorithm 1, imposes correlation between the different
time-steps by simply requiring that each element e selects αe once and for all and by breaking
ties lexicographically (any consistent tie-breaking rule would also work). In Lemma 12 of
Section 4, we show that no matter the sequence of doubly stochastic matrices, the rounding
scheme of Algorithm 1 produces a sequence of permutations with overall moving cost at
most 4 log2 n the moving cost of the matrix-sequence1 and thus establishes that the overall
moving cost of Algorithm 1 is bounded by 4 log2 n ·OPTMult-MSSC. The log n multiplication

1 By omitting the log n-multiplication step of Step 7, one could establish that the moving cost of the
produced permutations is at most 4 times the moving cost of the matrix-sequence, however omitting
the log n multiplication could lead in prohibitively high covering cost.
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Algorithm 1 A Randomized Algorithm for Mult-MSSC.

Input: A sequence of requests R1, . . . , RT and an initial permutation of the elmenents π0.
Output: A sequence of permutations π1, . . . , πT .

1: Find the optimal solution A0 = π0, A1, . . . , AT for Fractional−MTF.
2: for each element e ∈ U do
3: Select αe uniformly at random in [0, 1].
4: end for
5: for t = 1 . . . T do
6: for all elements e ∈ U do
7: It

e := argmin1≤i≤n{log n ·
∑i

s=1 At
es ≥ αe}.

8: end for
9: πt := sort elements according to It

e with ties being broken lexicographically.
10: end for

in Step 7 serves as a probability amplifier ensuring that at least one element of Rt lies in
the relatively first positions of πt and permits us to approximately bound the covering cost∑T

t=1 E [πt(Rt)] by the covering cost of the optimal solution for Mult-MSSC,
∑T

t=1 πt
Opt(Rt).

▶ Theorem 10. Algorithm 1 is a O(log2 n)-approximation algorithm for Mult-MSSC.

Despite the fact that in Step 7 of Algorithm 1, we multiply the entries of At with log n the
overall guarantee is O(log2 n). At a first glance the latter seems quite strange but admits
a rather natural explanation. For most of the positions i, the probability that an element
e admits index It

e = i is roughly log n · At
ei, but due to the fact each index j ≤ i is on

expectation selected by log n other elements, the expected position of e in the produced
permutation is roughly log2 n times the expected value of argmin1≤i≤n{

∑i
s=1 At

es ≥ αe}.
This phenomenon relates with the elegant fitting argument given in [15] to prove that the
greedy algorithm is 4-approximation for the original Min-Sum Set Cover (which is tight
unless P = NP). The latter makes us conjecture that the tight inapproximability bound for
Mult-MSSC is Ω(log2 n) for requests of general cardinality.

Motivated by the r-approximation LP-based algorithm for instances of Set− Cover in
which elements belong in at most r sets, we examine whether the O(log2 n) for Mult-MSSC
can be ameliorated in case of r-bounded request sequences. Interestingly, the simple greedy
rounding scheme (described2 in Algorithm 2) provides such a O(r2)-approximation algorithm.

Algorithm 2 A Greedy-Rounding Algorithm for Mult-MSSC for r-Bounded Sequences.

Input: A request sequence R1, . . . , RT with |Rt| ≤ r and an initial permutation π0.
Output: A sequence of permutations π1, . . . , πT .

1: Find the optimal solution A0 = π0, A1, . . . , AT for Fractional−MTF.
2: for t = 1 . . . T do
3: πt := in πt−1, move to the first position an element e ∈ Rt such that At

e1 ≥ 1/r

4: end for

2 Step 3 of Algorithm 2 is well-defined since |Rt| ≤ r and
∑

e∈Rt
At

e1 = 1.
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The O(r2)-approximation guarantee of Algorithm 3 is formally stated and proven in The-
orem 11. The main technical challenge is that we cannot directly compare the moving cost
of Algorithm 2 with

∑T
t=1 dFR(At, At−1) and thus we deploy a two-step detour.

In the first step (Lemma 19), we prove the existence of a sequence of doubly stochastic
matrices Â0 = π0, Â1, . . . , ÂT for which each Ât satisfies that (i) its entries of are multiples
of 1/r, (ii) Ât

et1 ≥ 1/r where et is the element that Algorithm 2 moves to the first
position at round t, and (iii) the sequence Â0 = π0, Â1, . . . , ÂT admits moving cost at most∑T

t=1 dFR(At, At−1). In order to establish the existence of such a sequence, we construct an
appropriate linear program (see Definition 18) based on the elements that Algorithm 2 moves
to the first position at each round and prove that it admits an optimal solution with values
being multiples of 1/r. To do the latter, we relate the linear program of Definition 18 with a
fractional version of the k-Paging [7] problem and based on the optimal eviction policy (evict
the page appearing the furthest in the future), we design an algorithm producing optimal
solutions for the LP with values being multiple of 1/r.

In the second step (Lemma 20), we show that for any sequence Â0 = π0, Â1, . . . , ÂT

satisfying properties (i) and (ii), the moving cost of Algorithm 2 is at most O(r2) ·∑T
t=1 dFR(Ât, Ât−1). The latter is achieved through the use of an appropriate potential

function based on a generalization of Kendall-Tau distance to doubly stochastic matrices
with entries being multiples of 1/r (see Definition 23).

▶ Theorem 11. Algorithm 2 is a O(r2)-approximation algorithm for Mult-MSSC.

In Section 4 and 5 we provide the basic steps and ideas in the proof of Theorem 10 and 11
respectively.

4 Proof of Theorem 10

The basic step towards the proof of Theorem 10 is Lemma 12, establishing the fact that once
two doubly stochastic matrices are given as input to the randomized rounding of Algorithm 1,
the expected distance of the produced permutations is approximately bounded by the distance
of the respective doubly stochastic matrices.

▶ Lemma 12. Let the doubly stochastic matrices A, B given as input to the rounding
scheme of Algorithm 1. Then for the produced permutations πA, πB, E

[
dKT(πA, πB)

]
≤

4 log2 n · dFR(A, B).

Before exhibiting the proof of Lemma 12 we introduce the notion of neighboring matrices.

▶ Definition 13. (Neighboring stochastic matrices) The stochastic matrices A, B are neigh-
boring if and only if they differ in exactly two entries lying on the same row and on consecutive
columns.

▶ Example 14. Let A =

1 0 0
0 1 0
0 0 1

, B =

1/2 1/2 0
0 1 0
0 0 1

 and C =

1 0 0
1 0 0
0 0 1

. The

pair of matrices (A, B) and (A, C) are neighboring while (B, C) are not.

Any doubly stochastic matrix A can be converted to another doubly stochastic matrix B

through an intermediate sequence of neighboring stochastic matrices all of which are almost
doubly stochastic and their overall moving cost equals dFR(A, B).
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▷ Claim 15. Given the doubly stochastic matrices A, B, there exists a finite sequence of
stochastic matrices, A0, . . . , AT such that
1. A0 = A and AT = B.
2. At and At−1 are neighboring.
3. the column-sum is bounded by 2,

∑
e∈U At

ei ≤ 2 for all 1 ≤ i ≤ n.
4.

∑T
t=1 dFR(At, At−1) = dFR(A, B).

Proof Sketch of Claim 15. Let fe
ij denotes the optimal solution of the linear program of

Definition 4 defining the FootRule distance dFR(A, B). In case A ̸= B, there exist elements
e1, e2 and indices i < j such that fe1

iℓ(i) > 0 and fe2
jℓ(j) > 0 with ℓ(i) >= j and ℓ(j) <= i.

Let ϵ = min(fe1
iℓ(i), fe2

jℓ(j)) and consider the sequence of the |i − j| matrices produced by
moving ϵ amount of mass in row e1 from column i to column j. Then consider the sequence
of the |i− j| matrices produced by moving ϵ amount of mass in the row e2 from column j to
column i.
In the overall sequence of 2|i−j| stochastic matrices, two consecutive matrices are neighboring.
Furthermore the column-sum of the matrices does not exceed 1 + ϵ ≤ 2 and the final
matrix A′ of the sequence is doubly stochastic. Moreover by the fact that t(i) ≥ j and
t(j) ≤ i we get that the overall moving cost of the sequence equals dFR(A, A′) and that
dFR(A, B) = dFR(A, A′) + dFR(A′, B). Applying the same argument inductively, until we
reach matrix B, proves Claim 15. ◁

▶ Example 16. Let the doubly stochastic matrices A =

1 0 0
0 1 0
0 0 1

, B =

 0 0 1
1/2 1/2 0
1/2 1/2 0

.

A can be converted to B with the following sequence neighboring stochastic matrices,0 1 0
0 1 0
0 0 1

,

0 0 1
0 1 0
0 0 1

,

0 0 1
0 1 0
0 1 0

,

 0 0 1
1/2 1/2 0
0 1 0

,

 0 0 1
1/2 1/2 0
1/2 1/2 0

. Notice that the

above sequence satisfies all the 4 requirements of Claim 15.

The notion of neighboring matrices is rather helpful since Lemma 12 admits a fairly simple
proof in case A, B are neighboring stochastic matrices (notice that the rounding scheme of
Algorithm 1 is well-defined even for stochastic matrices). The latter is formally stated and
proven in Lemma 17 and is the main technical claim of the section.

▶ Lemma 17. Let πA, πB the permutations produced by the rounding scheme of Algorithm 1
(given as input) the stochastic matrices A, B that i) are neighboring ii) their column-sum is
bounded by 2, then E[dKT(πA, πB)] ≤ 4 log2 n · dFR(A, B)

Proof of Lemma 17. Since A, B are neighboring there exists exactly two consecutive entries
for which A, B differ, denoted as (e∗, i∗) and (e∗, i∗ + 1). Let ϵ := Ae∗i∗ − Be∗i∗ , by the
Definition 4 of FootRule distance, we get that dFR(A, B) = |ϵ|. Without loss of generality
we consider ϵ > 0 (the case ϵ < 0 symmetrically follows). We also denote with Oi the
set of elements Oi := {e ̸= e⋆ such that IA

e = i} and with IA
e , IB

e the indices in Step 6 of
Algorithm 1.
Since A, B are neighboring, the e-th row of A and the e-th row of B are identical for all
e ̸= e⋆. As a result, IA

e = IB
e for all e ̸= e⋆. Furthermore the neighboring property implies

that even for e∗,
∑i

s=1 Ae⋆s =
∑i

s=1 Be⋆s for all i ̸= i⋆ and thus Pr
[
IA

e⋆ = i ∧ IB
e⋆ = j

]
= 0

for (i, j) ̸= (i⋆, i⋆ + 1). Now notice that
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Pr
[
IA

e⋆ = i⋆, IB
e⋆ = i⋆ + 1

]
≤ Pr

[
log n ·

i⋆∑
s=1

Be⋆s ≤ αe ≤ log n ·
i⋆∑

s=1
Ae⋆s

]
≤ log n · (Ae⋆i⋆ −Be⋆i⋆) = log n · ϵ

Notice also that in case IA
e⋆ = IB

e⋆ , dKT(πA, πB) = 0. This is due to the fact that in such a
case IA

e = IB
e for all e ∈ U and the fact that ties are broken lexicographically. As a result,

E [dKT(πA, πB)] = Pr
[
IA

e⋆ ̸= IB
e⋆

]
· E

[
dKT(πA, πB)| IA

e⋆ ̸= IB
e⋆

]
= Pr[IA

e⋆ = i⋆, IB
e⋆ = i⋆ + 1] · E

[
dKT(πA, πB)| IA

e⋆ = i⋆, IB
e⋆ = i⋆ + 1

]
≤ ϵ log n · (E [|Oi⋆ |] + E [|Oi⋆+1|])

where the last inequality follows by the fact that once IA
e∗ = i∗ and IB

e∗ = i∗ + 1, the element
e∗ can move at most by |Oi∗ |+ |Oi∗+1| positions and the fact that IA

e∗ , IB
e∗ and |Oi∗ |, |Oi∗+1|

are independent random variables.
We complete the proof we providing a bound on E [|Oi|]. Notice that for e ∈ U/{e∗},

Pr[e ∈ Oi] ≤ Pr
[

log n
i−1∑
s=1

Aes ≤ αe ≤ log n
i∑

s=1
Aes

]
≤ log n ·Aei

which implies that E [|Oi|] ≤ log n
∑

e̸=e⋆ Aei ≤ 2 log n. Finally we overall get,

E [dKT(πA, πB)] ≤ 4 log2 n · dFR(A, B) ◀

The proof of Lemma 12 easily follows by Claim 15 and Lemma 17.

Proof of Lemma 12. Given the doubly stochastic matrices A, B, let the sequence A =
A0, A1, . . . , AT = B of neighboring stochastic matrices ensured by Claim 15. Now let
π0, π1, . . . , πT the sequence of permutations that the randomized rounding of Algorithm 1
produces given as input the sequence A = A0, A1, . . . , AT = B. Notice that,

E
[
dKT(πA, πB)

]
≤

t∑
t=1

E
[
dKT(πt, πt−1)

]
≤ 4 log2 n·

T∑
t=1

dFR(At, At−1) = 4 log2 n·dFR(A, B)

where the first inequality follows by the triangle inequality, the second by Lemma 17 and the
last equality by Case 4 of Claim 15. ◀

We conclude the section with the proof of Theorem 10.

Proof of Theorem 10. By Lemma 12 and Lemma 9,
T∑

t=1
E

[
dKT(πt, πt−1)

]
≤ 4 log2 n ·

T∑
t=1

dFR(At, At−1) ≤ 4 log2 n ·OPTMult-MSSC

Up next we bound the expected covering cost
∑T

t=1 E [πt(Rt)]. Notice that since
∑

e∈Rt
At

e1 =
1, the only elements that can have index It

e = 1 are the elements e ∈ Rt. As a result, in case
there exists some e at round t with It

e = 1 then πt(Rt) = 1.

E
[
πt(Rt)

]
≤ 1 + n · Pr

[
It

e > 1 for all e ∈ Rt

]
≤ 1 + n ·Πe∈Rt

(
1− log n ·At

e1
)

≤ 1 + n · e− log n·
∑

e∈Rt
At

e1 = 2 · πt
Opt(Rt)

where the last inequality follows due to the fact that
∑

e∈Rt
At

e1 = 1 and πt
Opt(Rt) ≥ 1. ◀
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5 Proof of Theorem 11

In this section we present the basic steps towards the proof of Theorem 11. We remind that
|Rt| ≤ r and we denote with et the element that Algorithm 2 moves in the fist position at
round t. As already mentioned, the proof is structured in two different steps.
1. We prove the existence of a sequence of doubly stochastic matrices Â0 = π0, Â1, . . . , ÂT

such that (i) the entries of each Ât are multiples of 1/r, (ii) each Ât admits 1/r

mass for element et in first position (Ât
et1 ≥ 1/r) and (iii)

∑T
t=1 dFR(Ât, Ât−1) ≤∑T

t=1 dFR(At, At−1).
2. We use properties (i) and (ii) to prove that the moving cost of Algorithm 2 is roughly

upper bounded by Θ(r2) ·
∑T

t=1 dFR(Ât, Ât−1).
We start with the construction of the sequence Â0 = π0, Â1, . . . , ÂT .

▶ Definition 18. For the sequence of elements e1, . . . , eT ∈ U (the elements that Algorithm 2
moves to the fist position at each round), consider the following linear program,

min
T∑

t=1
dFR(Ât, Ât−1)

s.t
n∑

i=1
Ât

ei = 1 for all e ∈ U and t = 1, . . . , T∑
e∈U

Ât
ei = 1 for all i = 1, . . . , n and t = 1, . . . , T

Ât
et1 ≥ 1/r for all t = 1, . . . , T

Â0 = π0

Ât
ei ≥ 0 for all e ∈ U, i = 1, . . . , n and t = 1, . . . , T

The sequence Â0 = π0, . . . , ÂT is defined as the optimal solution of the LP in Definition 18
with the entries of each Ât being multiples of 1/r. The existence of such an optimal
solution is established in Lemma 19.

▶ Lemma 19. There exists an optimal solution Â = π0, Â1, . . . , ÂT for the linear program
of Definition 19 such that entries of each Ât are multiples of 1/r.

The proof of Lemma 19 is one of the main technical contributions of this work. Due to lack of
space its proof is deferred to the full version of the paper. We remark that the semi-integrality
property, that Lemma 19 states, is not due to the properties of the LP’s polytope and in fact
there are simple instances in which the optimal extreme points do not satisfy it. We establish
Lemma 19 via the design of an optimal algorithm for the LP of Definition 18 (Algorithm 3)
that always produces solutions with entries being multiples of 1/r. Up next we describe in
brief the idea behind Algorithm 3.

Given the matrix Ât−1, Algorithm 3 construct Ât as follows. At first it moves 1/r mass
from the left-most entry (et, j) with Ât−1

etj ≥ 1/r to the entry (et, 1). At this point the third
constraint of the LP in Definition 18 is satisfied but the column-stochasticity constraints are
violated (the first column admits mass 1 + 1/r and the j-th column admits mass 1− 1/r).
Algorithm 3 inductively restores column-stochasticity from left to right. At step i, all the
columns on the left of i are restored and the violations concern the column i and j (i’s mass
is 1 + 1/r and j’s mass is 1− 1/r). Now Algorithm 3 must move a total of 1/r mass from
column i to column i + 1. In case there exists an element e with total amount of mass greater
than 2/r, Algorithm 2 moves the 1/r mass from the entry (e, i) to the entry (e, i + 1). The
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reason is that even if e = et′ at some future round t′, the third constraint only requires 1/r

mass. In case there is no such element, Algorithm 3 moves the 1/r mass from the element
appearing the furthest in the sequence {et, . . . , eT }. The latter is in accordance with the
optimal eviction policy for k−Paging which at each round evicts the page appearing furthest
in the future [7]. The optimality of Algorithm 3 is established in Lemma 21 and the fact
that produced solution admits values being 1/r is inductively established.

To this end, we can show that all of the desired properties of the sequence Â =
π0, Â1, . . . , ÂT are satisfied. Property (i) is established by Lemma 19. Property (ii) is
enforced by the constraint Ât

et1 ≥ 1/r. Now for Property (iii), notice that by the definition
of Algorithm 2, At

et1 ≥ 1/r. As a result, the sequence A0 = π0, A1, . . . , AT is feasible for the
linear program of Definition 18 and thus

∑T
t=1 dFR(Ât, Ât−1) ≤

∑T
t=1 dFR(At, At−1).

▶ Lemma 20. Let π0, π1, . . . , πT the permutations produced by Algorithm 2 and e1, . . . , eT

the elements that Algorithm 2 moves to the first position at each round t. For any sequence
of doubly stochastic matrices Â0 = π0, Â1, . . . , ÂT for which Property (i) and Property (ii)
are satisfied,

∑T
t=1 dKT(πt, πt−1) ≤ 2r2 ·

∑T
t=1 dFR(Ât, Ât−1) + r · T .

The proof of Theorem 11 directly follows by Lemma 19 and 20. In Section 5.2 we present
the basic steps for of Lemma 19.

5.1 Proof of Lemma 19
We prove the existence of an optimal solution Â0 = π0, Â1, . . . , ÂT for the linear program of
Definition 18 for which the entries of each matrix Ât are multiples of 1/r though the design
of an optimal greedy algorithm illustrated in Algorithm 3.

The fact that Algorithm 3 produces a solution with entries that multiples of 1/r easily
follows. Algorithm 3 starts with an integral doubly stochastic matrices (Â0 = π0) and always
moves 1/r mass from entry to entry. The optimality of Algorithm 3 is established in Lemma 21
the proof of which is presented in the next section since it is quite technically complicated.
However the basic idea of the algorithms is very intuitive, once Ât−1

et
= 0 Algorithm 3 moves

1/r mass of et from its leftmost position (with mass greaer than 1/r), denoted as Pos of
Step 5. At this point of time, Algorithm 3 has violated the column-stochasticity constraints,
1 + 1/r for the first column and 1− 1/r for the Pos-th column and Algorithm 3 must move
at total of 1/r mass from the first position to next positions until 1/r mass reaches the
Pos position and column-stochasticity is restored (Step 8). Once Algorithm 3 detects an
element with aggregated mass (until position j) ≥ 2/r, it can safely move 1/r of each mass
to position j + 1 since even if this element appears at some point in the future only 1/r is
necessary to satisfy the constraint At

et1 ≥ 1/r and thus the rest is redundant (Step 11). In
case such an element does not exist, Algorithm 3 moves the (useful) 1/r mass of the element
appearing the furthest in the remaining sequence {et, . . . , eT }, which is exactly the same
optimal eviction policy that the well-studied k − Paging suggests.

▶ Lemma 21. Algorithm 3 produces an optimal solution Â0 = π0, Â1, . . . , ÂT for the linear
program of Definition 18 while the entries of each Ât are multiples of 1/r.

5.2 Proof of Lemma 20
In order to prove Lemma 20, we make use of an appropriate potential function that can be
viewed as an extension of the Kendall-Tau distance (see Definition 1) to doubly stochastic
matrices with entries being multiples of 1/r.
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Algorithm 3 An Optimal Greedy Algorithm for the LP of Definition 18.

Input: The initial permutation π0 and the sequence of elements e1, . . . , eT ∈ U

Output: An optimal solution of a linear program of Definition 18 where the entries of Ât

are multiples of 1/r.
1: Initially Â0 ← π0
2: for all rounds t = 1 to T do
3: Ât ← Ât−1

4: if Ât
et1 < 1/r then

5: //Move 1/r mass of et to the first position
6: Pos← argmin1≤i≤n{At

ei ≥ 1/r}
7: Ât

e1 ← Ât
e1 + 1/r, Ât

ePos ← Ât
ePos − 1/r

8: //Restore the column-stochasticity constraints from left to right
9: for j = 1 to Pos− 1 do

10: if there exists e ∈ U with
∑j

s=1 Ât
es ≥ 2/r and Ât

es ≥ 1/r then
11: //Move 1/r of its (redundant) mass to the next position
12: Ât

ej ← Ât
ej − 1/r, Ât

ej ← Ât
ej + 1/r

13: else
14: //Move the 1/r mass, of the element appearing furthest in the future, to the

next position
15: e⋆ ∈ U ← the element with Ât

e⋆j = 1/r furthest in {et+1, . . . , eT }
16: Ât

e⋆j ← Ât
e⋆j − 1/r, Ât

e⋆j ← Ât
e⋆j + 1/r

17: end if
18: end for
19: end if
20: end for
21: return Â1, . . . , ÂT

▶ Definition 22 (r-Index). The r-index of an element e ∈ U in the doubly stochastic matrix
A, IA

e := argmin{1 ≤ i ≤ n :
∑i

s=1 Aes ≥ 1/r}

▶ Definition 23 (Fractional Kendall-Tau Distance). Given the doubly stochastic matrices A, B,
a pair of elements (e, e′) ∈ U × U is inverted if and only if one of the following condition
holds,
1. IA

e > IA
e′ and IB

e < IB
e′ .

2. IA
e < IA

e′ and IB
e > IB

e′ .
3. IA

e = IA
e′ and IB

e ̸= IB
e′ .

4. IA
e ̸= IA

e′ and IB
e = IB

e′ .
The fractional Kendall-Tau distance between two doubly stochastic matrices A, B, denoted as
dKT(A, B), is the number of inverted pairs of elements.

Notice that in case of 0− 1 doubly stochastic matrices the Fractional Kendall-Tau distance
of Definition 23 coincides with the Kendall-Tau distance of Definition 1.

▷ Claim 24. Fractional Kendall-Tau Distance satisfies the triangle inequality, dKT(A, B) ≤
dKT(A, C) + dKT(C, B).

Proof of Claim 24. Let XAB
ee′ = 1 if (e, e′) is inverted pair for the matrices A, B and 0 otherwise

(respectively for XAC
ee′ , XBC

ee′ ). By a short case study one can show that once XAB
ee′ = 1 then

XAC
ee′ + XBC

ee′ ≥ 1 which directly implies Claim 24. ◁
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In the case of doubly stochastic matrices with their entries being multiples of 1/r, Fractional
Kendall-Tau distance relates to FootRule distance of Definition 4.

▶ Lemma 25. Let the doubly stochastic matrices A, B with entries that are multiples of 1/r.
Then dKT(A, B) ≤ 2r2 · dFR(A, B).

Proof of Lemma 25. We construct a doubly stochastic matrix A′ for which the following
properties hold,
1. The entries of A′ are multiples of 1

r .
2. dFR(A, B) = dFR(A, A′) + dFR(A′, B).
3. dKT(A, A′) ≤ 2r2 · dFR(A, A′).
Once the above properties are established, Lemma 25 follows by repeating the same con-
struction until matrix B is reached and by using the fact that the fractional Kendall-Tau
distance of Definition 23 satisfies the triangle inequality.
Before proceeding with the construction of A′, we present the following corollary that follows
by an easy exchange argument.

▶ Corollary 26. Let the stochastic matrices A, B with entries multiples of 1/r, the values
fe

ij of the optimal solution in the linear program of Definition 4 (the min-cost transportation
problem defining the FootRule distance dFR(A, B)) are multiples of 1/r.

In order to construct the matrix A′ satisfying the Properties 1-3, we consider three different
classes of the entries (e, i). In particular, we call an entry (e, i).
1. right if and only if fe

ij > 0 for some j > i.
2. left if and only if fe

ij > 0 for some j < i.
3. neutral if and only if fe

ij = 0 for all j ̸= i.
Note that the above classes do not form a partition of the entries since an entry (e, i) can be
both left and right at the same time.

▶ Corollary 27. Given two doubly stochastic matrices A ≠ B, there exist entries (e, i) and
(e′, j) such that
1. j > i

2. the entry (e, i) is right
3. the entry (e′, j) is left
4. the entry (α, ℓ) is neutral for all α ∈ U and ℓ ∈ {i + 1, j − 1}

We construct the matrix A′ from matrix A as follows. Consider two entries (e, i) and
(e′, j) with the properties that Corollary 27 illustrates. The doubly stochastic matrix A′ is
constructed by moving 1/r mass from entry (e, i) to entry (e, j) and by moving 1/r mass
from entry (e′, j) to entry (e′, i). More formally,

A′
αℓ =



Aαℓ − 1
r if (α, ℓ) = (e, i)

Aαℓ − 1
r if (α, ℓ) = (e′, j)

Aαk + 1
r if (α, ℓ) = (e′, i)

Aαℓ + 1
r if (α, ℓ) = (e, j)

Aαℓ otherwise

Up next we establish the fact that dFR(A, B) = dFR(A, A′) + dFR(A′, B).
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▷ Claim 28. dFR(A′, A) = 2|j − i|/r and dFR(A′, B) = dFR(A, B)− 2|j − i|/r.

Proof. The fact that dFR(A′, A) = 2|j − i|/r is trivial. We thus focus on showing that
dFR(A′, B) = dFR(A, B)− 2|j − i|/r.
Since (e, i) is right, there exists an index ℓ(i) > i such that fe

iℓ(i) > 0. Moreover fe
iℓ(i) ≥ 1/r

since fe
iℓ(i) is multiple of 1/r. Notice that ℓ(i) ̸= ℓ for ℓ ∈ {i + 1, j − 1} since all the entries

(α, ℓ) are neutral (otherwise
∑

α∈U Bαℓ > 1). As a result, transfering 1/r mass from entry
(e, i) to entry (e, j) decreases the FootRule distance between A and B by 1/r · |i− j| since
the final destination of the 1/r mass is the entry (e, ℓ(i)) that is on the right of entry (e, j),
ℓ(i) ≥ j. The claim follows by applying the exact same argument for (e′, j). ◁

We now establish the last property that is dKT(A, A′) ≤ 2r2 · dFR(A, A′).

▷ Claim 29. dKT(A′, B) ≤ 4r · |i− j|

Proof. Notice that apart from e, e′, the r-index of each element is the same in both A and A′

(IA
α = IA′

α for all α ∈ U \ {e, e′}). As a result, by Definition 23, we get that the only inverted
pairs can be of the form (e, α) or (e′, α).
In case IA

e ≤ i− 1 then IA
e = IA′

e and there is no inverted pair of the form (e, α). In case
IA

e = i then i ≤ IA′

e ≤ j and any element α with IA
α = IA′

α ∈ {1, i−1}∪{j +1, n} cannot form
an inverted pair with e. As a result, a pair (e, α) can be inverted only if i ≤ IA

α = IA′

α ≤ j.
Since the entries of A are multiples of 1/r and A is doubly stochastic, there are at most r

positive entries at each column of A. As a result, there are at most r · (j − i + 1) inverted
pairs of the form (e, α). With the symmetric argument one can show that there are at most
r · |j − i + 1| of the form (e′, α). Overall there are at most 2r · |j − i + 1| inverted pairs
between A and A′ that are less than 4r · |j − i| since j > i. ◁

◀

We conclude the section with Lemma 30. Then Lemma 20 follows by Lemma 30 and 25.

▶ Lemma 30. Let π0, π1, . . . , πT the permutations produced by Algorithm 2 and e1, . . . , eT

the elements that Algorithm 2 moves to the first position at each round t. For any sequence
of doubly stochastic matrices B0 = π0, B1, . . . , BT with Bt

et1 ≥ 1/r,

T∑
t=1

dKT(πt, πt−1) ≤
T∑

t=1
dKT(Bt, Bt−1) + r · T

The proof of Lemma 30 is based on the following two inequalities, dKT(πt, πt−1) +
dKT(πt, Bt) − dKT(πt−1, Bt) ≤ r and dKT(πt−1, Bt) − dKT(πt−1, Bt−1) ≤ dKT(Bt, Bt−1).
The second inequality follows by the triangle inequality established in Claim 24. The first
follows by the fact that IBt

et
= 1 and the definition of Fractional Kendall-Tau distance.

Proof of Lemma 30. Since Bt
et
≥ 1/r, the r-index of element et in matrix Bt is 1, IBt

et
= 1.

We first show that,

dKT
(
πt, πt−1)

+ dKT
(
πt, Bt

)
− dKT

(
πt−1, Bt

)
≤ r

To simplify notation let kt the position of et in πt−1. Notice that dKT
(
πt, πt−1)

= kt − 1.
Out of the kt − 1 elements lying on the left of et in πt−1 there are most r − 1 elements
α with IBt

α = 1 (these elements must admit Bt
α1 ≥ 1/r). The rest of the kt − 1 elements

admit r-index IBt

α ≥ 2 and thus form inverted pairs with et when considering πt−1 and Bt.
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When et moves to the first positions (permutation πt) these inverted pairs are deactivated
(IBt

et
= 1) and new inverted pairs are created between et and α with IBt

α = 1, but these
new inverted pairs are at most r (for any element α with IBt

α , Bt
α ≥ 1/r). Also notice no

additional inverted pairs (e, α) (with e ̸= et) are created since the order between all the other
elements is the same in πt and πt−1. Overall,

dKT
(
πt, πt−1)︸ ︷︷ ︸
kt−1

+ dKT
(
πt, Bt

)
− dKT

(
πt−1, Bt

)︸ ︷︷ ︸
≤−kt+1+r

≤ r

Combining the above inequality with dKT
(
πt−1, Bt

)
− dKT

(
πt−1, Bt−1)

≤ dKT
(
Bt, Bt−1)

which follows from the triangle inequality we get,

dKT
(
πt, πt−1)

+ dKT
(
πt, Bt

)
− dKT

(
πt−1, Bt−1)

≤ dKT
(
At, Bt−1)

+ r.

Finally a telescopic sum gives
∑T

t=1 dKT
(
πt, πt−1)

≤
∑T

t=1 dKT
(
Bt, Bt−1)

+ r · T +
dKT(π0, B0)− dKT(πT , BT ) where dKT(π0, B0) = 0. ◀

6 Concluding Remarks

In this work we examine the polynomial-time approximability of Multistage Min-Sum
Set Cover. We present Ω(log n) and Ω(r) inapproximability results for general and r-
bounded request sequences, while we respectively provide O(log2 n) and O(r2) polynomial-
time approximation algorithms. Closing this gap is an interesting question that our work
leaves open. Another interesting research direction concerns the competitive ratio in the online
version of Dynamic Min-Sum Set Cover. [18] provides an Ω(r) lower bound and a Θ

(
r3/2√n

)
-

competitive online algorithm for r-bounded sequences. Designing online algorithms for a
relaxation of the problem (such as the Fractional−MTF) and using the rounding schemes
that this work suggests may be a fruitful approach towards closing this gap.
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Abstract
The hard-sphere model is one of the most extensively studied models in statistical physics. It
describes the continuous distribution of spherical particles, governed by hard-core interactions. An
important quantity of this model is the normalizing factor of this distribution, called the partition
function. We propose a Markov chain Monte Carlo algorithm for approximating the grand-canonical
partition function of the hard-sphere model in d dimensions. Up to a fugacity of λ < e/2d, the
runtime of our algorithm is polynomial in the volume of the system. This covers the entire known
real-valued regime for the uniqueness of the Gibbs measure.

Key to our approach is to define a discretization that closely approximates the partition function
of the continuous model. This results in a discrete hard-core instance that is exponential in the size of
the initial hard-sphere model. Our approximation bound follows directly from the correlation decay
threshold of an infinite regular tree with degree equal to the maximum degree of our discretization.
To cope with the exponential blow-up of the discrete instance we use clique dynamics, a Markov
chain that was recently introduced in the setting of abstract polymer models. We prove rapid mixing
of clique dynamics up to the tree threshold of the univariate hard-core model. This is achieved by
relating clique dynamics to block dynamics and adapting the spectral expansion method, which was
recently used to bound the mixing time of Glauber dynamics within the same parameter regime.
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1 Introduction

Statistical physics models particle systems as probability distributions. One of the most
fundamental and mathematically challenging models in this area is the hard-sphere model,
which plays a central role in understanding the thermodynamic properties of monoatomic
gases and liquids [7, 29]. It is a continuous model that studies the distribution and macroscopic
behavior of indistinguishable spherical particles, assuming only hard-core interactions, i.e.,
no two particles can occupy the same space.
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We focus on computational properties of the grand-canonical ensemble of the hard-sphere
model in a finite d-dimensional cubic region V = [0, ℓ)d in the Euclidean space. In the
grand-canonical ensemble, the system can exchange particles with its surrounding based on
a fugacity parameter λ, which is inverse to the temperature of the system. For the rest of
the paper, we make the common assumption that the system is normalized such that the
particles have unit volume. That means we fix their radii to r = (1/vd)1/d, where vd is the
volume of a unit sphere in d dimensions.

A simple probabilistic interpretation of the distribution of particles in the grand-canonical
ensemble is that centers of points that are drawn from a Poisson point process on V with
intensity λ, conditioned on the event that no two particles overlap (i.e., every pair of centers
has distance at least 2r). The resulting distribution over particle configurations in V is
called the Gibbs distribution of the model. An important quantity in such models is the
so called partition function Z(V, λ), which can be seen as the normalizing constant of the
Gibbs distribution. Formally, it is defined as

Z(V, λ) = 1 +
∑

k∈N>0

λk

k!

∫
Vk

D
(

x(1), . . . , x(k)
)

dνd×k,

where

D
(

x(1), . . . , x(k)
)

=
{

1 if d
(
x(i), x(j)) ≥ 2r for all i, j ∈ [k] with i ̸= j

0 otherwise

and νd×k is the Lebesgue measure on Rd×k. Commonly, two computational task are
associated with the grand-canonical hard-sphere model: (1) approximating its partition
function Z(V, λ), and (2) approximately sampling from the Gibbs distribution.

Studying computational aspects of the hard-sphere model carries a historical weight, as in
the seminal work of Metropolis [41], the Monte Carlo method was introduced to investigate
a two-dimensional hard-sphere model. Approximate-sampling Markov chain approaches have
been mainly focused on the canonical ensemble of the model, that is, the system does not
exchange particles with its surrounding and thus, the distribution is defined over a fixed
number of spheres [31, 36, 34]. Considering the grand canonical ensemble, exact sampling
algorithms have appeared in the literature for the two-dimensional model without asymptotic
runtime guarantees [37, 38, 43]. A result that is more aligned with theoretical computer
science was given in [28], where the authors introduced an exact sampling algorithm for the
grand-canonical hard-sphere model in d-dimensions. Their algorithm is based on partial
rejection sampling with a runtime linear in the volume of the system |V| when assuming a
continuous computational model and access to a sampler from a continuous Poisson point
process. Their approach is guaranteed to apply for λ < 2−(d+1/2).

Besides such sampling results, there is an ongoing effort to improve the known fugacity
regime where the Gibbs measure is unique and correlations decay exponentially fast [22, 14,
32, 42]. Note that for many discrete spin systems, such as the hard-core model, correlation
decay is closely related to the applicability of different methods for efficient approximation of
the partition function [50, 24, 54]. Recently, the correlation decay bounds for the hard-sphere
model were improved in [32] to λ < 2/2d, using probabilistic arguments, and in [42] to
λ < e/2d, based on an analytic approach. A common feature of [32] and [42] is that they
translated tools originally developed in theoretical computer science for investigating the
discrete hard-core model to the continuous domain.
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Our work is in line with the computational view on the hard-sphere model but more
algorithmic in nature. We investigate the range of the fugacity λ for which an approximation
of Z(V, λ) can be obtained efficiently in terms of the volume of the system |V|, assuming a
discrete computational model. Our main result is that for all λ < e/2d there is a randomized
algorithm for ε-approximating the partition function in time polynomial in |V| and 1/ε.

▶ Theorem 1. Let (V, λ) be an instance of the continuous hard-sphere model with V = [0, ℓ)d.
If there is a δ ∈ (0, 1] such that

λ ≤ (1 − δ) e
2d

,

then for each ε ∈ (0, 1] there is a randomized ε-approximation of Z(V, λ) computable in time
polynomial in |V|1/δ2

and 1
ε .

Note that this bound on λ precisely coincides with the best known bound for the uniqueness
of the Gibbs measure in the thermodynamic limit, recently established in [42]. For many
discrete spin systems, such as the hard-core model or general anti-ferromagnetic 2-state spin
systems, the region of efficient approximation of the partition function is closely related to
uniqueness of the Gibbs measure. More precisely, it can be shown that the partition function
of every graph of maximum degree ∆ can be approximated efficiently if the corresponding
Gibbs distribution on an infinite ∆ regular tree is unique [39, 53]. A detailed discussion for
the discrete hard-core model can be found in the next subsection. In a sense, Theorem 1
can be seen as the algorithmic counterpart of the recent uniqueness result for the continuous
hard-sphere model. This answers an open question, asked in [42].

The way we prove our result is quite contrary to [32] and [42]. Instead of translating
discrete tools from computer science into the continuous domain, we rather discretize the
hard-sphere model. By this, existing algorithmic and probabilistic techniques for discrete
models become available, and we avoid continuous analysis.

Our applied discretization scheme is fairly intuitive and results in an instance of the
discrete hard-core model. This model has been extensively studied in the computer science
community. However, as this hard-core instance is exponential in the size of the continuous
system |V|, existing approaches for approximating its partition function, such a Markov
chain Monte Carlo methods based on Glauber dynamics, are not feasible. We overcome
this problem by applying a Markov chain Monte Carlo approach based on clique dynamics,
which were introduced in [23] in the setting of abstract polymer models. Previously known
conditions for the rapid mixing of clique dynamics were developed for the multivariate version
of the hard-core model. Due to this generality, those conditions do not result in the desired
bound in our univariate setting. Instead we relate those clique dynamics to another Markov
chain, called block dynamics. We then prove the desired mixing time for the block dynamics
by adapting a recently introduced technique for bounding the mixing time of Markov chains,
based on local spectral expansion [2]. Together with a known self-reducibility scheme for
clique dynamics, this results in the desired approximation algorithm.

Note that we aim for a rigorous algorithmic result for approximating the partition
function of the continuous hard-sphere model. To be in line with commonly used discrete
computational models, our Markov chain Monte Carlo algorithm does not assume access to
a continuous sampler but instead samples approximately from a discretized version of the
Gibbs distribution. Note that sampling from the continuous hard-sphere partition function
cannot be done using a discrete computation model as this would involve infinite float pointer
precision. For practical matters, our discretization of the Gibbs distribution can be seen as
an approximation of the original continuous Gibbs measure. However, a rigorous comparison
between both distributions based on total variation distance is not applicable, due to the
fact that one is discrete whereas the other is continuous in nature.
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Assuming access to a continuous sampler, we believe that our approach can be used to
obtain an approximation of the Gibbs distribution of the continuous model within the same
fugacity regime, by adding small perturbations to the drawn sphere centers. This would be
in line with the relation between the mixing time of continuous heat-bath dynamics and
strong spatial mixing, pointed out in [32], combined with the uniqueness bound from [42].

In Sections 1.1–1.3 we discuss our contributions in more detail and explain how they
relate to the existing literature. Finally in Section 1.4 we discuss possible extensions and
future work. All technical details, statements and proofs are presented the full version of the
paper.

1.1 Discretization and hard-core model
Our discretization scheme expresses the hard-sphere partition function as the partition
function of an instance of the (univariate) hard-core model. An instance of the hard-core
model is a tuple (G, λ) where G = (V, E) is an undirected graph and λ ∈ R>0. Its partition
function is defined as

Z(G, λ) :=
∑

I∈I(G)

λ|I|,

where I(G) denotes the independent sets of G. A common way to obtain an approximation
for the partition function is by applying a Markov chain Monte Carlo algorithm. This involves
sampling from the Gibbs distribution µ(G,λ) of (G, λ), which is a probability distribution on
I(G) that assigns each independent set I ∈ I(G) the probability

µ(G,λ)(I) = λ|I|

Z(G, λ) .

Conditions for efficient approximation of the hard-core partition function have been
studied extensively in the theoretical computer science community. Due to hardness results
in [50] and [24], it is known that for general graphs of maximum degree ∆ ∈ {3} ∪ N>5
there is a critical parameter value λc(∆) = (∆ − 1)∆−1/(∆ − 2)∆, such that there is no
FPRAS for the partition function of (G, λ) for λ > λc(∆), unless RP = NP. On the other
hand, in [54] it was proven that there is a deterministic algorithm for approximating the
partition function of (G, λ) for λ < λc(∆) that runs in time |V |O(∆). The critical value
λc(∆) is especially interesting, as it precisely coincides with the upper bound on λ for
which the hard-core model on an infinite ∆-regular tree exhibits strong spatial mixing and a
unique Gibbs distribution [54]. For this reason, it is also referred to as the tree threshold.
This relation between computational hardness and phase transition in statistical physics is
one of the most celebrated results in the area. Both, the hardness results [25, 3] and the
approximation algorithms [46, 30] were later generalized for complex λ.

Note that the computational hardness above the tree threshold λc(∆) for general graphs
of maximum degree ∆ applies to both, randomized and deterministic algorithms. However,
in the randomized setting, Markov chain Monte Carlo methods are known to improve
the runtime of the algorithm introduced in [54]. Those approaches use the vertex-wise
self-reducibility of the hard-core model to construct a randomized approximation of the
partition function based on an approximate sampler for the Gibbs distribution. Commonly,
a Markov chain on the state space I(G), called Glauber dynamics, is used to construct
the sampling scheme. At each step, a vertex v ∈ V is chosen uniformly at random. With
probability λ/(1 + λ) the chain tries to add v to the current independent set and otherwise
it tries to remove it. The resulting Markov chain is ergodic and reversible with respect
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to the Gibbs distribution, meaning that it eventually converges to µ(G,λ). A sequence of
results has shown that for all ∆ ≥ 3 there is a family of graphs with maximum degree ∆,
such that the Glauber dynamics are torpidly mixing for λ > λc(∆), even without additional
complexity-theoretical assumptions [17, 27, 45]. Whether the Glauber dynamics are rapidly
mixing for the entire regime λ < λc(∆) remained a long-standing open problem, until recently
the picture was completed [2]. By relating spectral expansion properties of certain random
walks on simplicial complexes to the Glauber dynamics, it was shown that the mixing time is
polynomial in |V | below the tree threshold. The mixing time was recently further improved
in [12] for a broader class of spin systems by combining simplicial complexes with entropy
factorization and using the modified log-Sobolev inequality.

By mapping the hard-sphere model to an instance of the hard-core model we can make use
of the existing results about approximation and sampling below the tree threshold. Roughly,
our discretization scheme restricts the positions of sphere centers to an integer grid, while
scaling the radii of spheres and the fugacity appropriately. For a hard-sphere instance (V, λ)
with V = [0, ℓ)d the hard-core representation for resolution ρ ∈ R≥1 is a hard-core instance
(Gρ, λρ) with Gρ = (Vρ, Eρ). Each vertex v ∈ Vρ represents a grid point in the finite integer
lattice of side length ρℓ. Two distinct vertices in Vρ are connected by an edge in Eρ if the
Euclidean distance of the corresponding grid points is less than 2ρr. Furthermore, we set
λρ = λ/ρd. We provide the following result on the rate of convergence of Z(Gρ, λρ) to the
hard-sphere partition function Z(V, λ) in terms of ρ.

▶ Lemma 2. Let (V, λ) be an instance of the continuous hard-sphere model in d dimensions.
For each resolution ρ ≥ 2

√
d it holds that

1 − ρ−1eΘ(|V| ln|V|) ≤ Z(V, λ)
Z(Gρ, λρ) ≤ 1 + ρ−1eΘ(|V| ln|V|).

Although proving this rate of convergence involves some detailed geometric arguments,
there is an intuitive reason why the partition functions converge eventually as ρ → ∞.
Increasing the resolution ρ also linearly increases the side length of the grid and the minimum
distance that sphere centers can have. This is equivalent to putting a grid into V with
increasing granularity but fixing the radii of spheres instead. However, only scaling the
granularity of this grid increases the number of possible configurations by roughly ρd, which
would cause the partition function of the hard-core model to diverge as ρ → ∞. To
compensate for this, we scale the weight of each vertex in the hard-core model by the inverse
of this factor.

Using this discretization approach, the fugacity bound from Theorem 1 results from
simply considering ∆ρ, the maximum degree of Gρ and comparing λρ with the corresponding
tree threshold λc(∆ρ). Recall that we assume r = (1/vd)1/d. A simple geometric argument
shows that ∆ρ is roughly upper bounded by 2dρd for sufficiently large ρ. Now, observe that

λρ = λ

ρd
< λc

(
2dρd

)
,

for λ < ρdλc
(
2dρd

)
. This follows from the fact that ρdλc

(
2dρd

)
converges to e/2d from above

for ρ → ∞. Thus, the approximation bound from Theorem 1 and the uniqueness bound in
[42] coincide with the regime of λ, for which λρ is below the tree threshold λc(∆ρ) in the
limit ρ → ∞.

The arguments above show that for a sufficiently high resolution ρ the partition function
of the hard-sphere model Z(V, λ) is well approximated by the partition function of our
discretization (Gρ, λρ) and that (Gρ, λρ) is below the tree threshold for λ < e/2d. However,
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this does not immediately imply an approximation algorithm within the desired runtime
bounds. Based on Lemma 2, we still need to choose ρ exponentially large in the volume |V|.
Note that the number of vertices in Gρ is roughly |Vρ| ∈ Θ

(
ρd|V|

)
. Even without explicitly

constructing the graph, this causes problems, as the best bound for the mixing time of the
Glauber dynamics is polynomial in |Vρ| and thus exponential in |V|. Intuitively, the reason
for this mixing time is that the Glauber dynamics only change one vertex at each step.
Assuming that each vertex should be updated at least once to remove correlations with the
initial state, any mixing time that is sublinear in the number of vertices is unlikely. We
circumvent this problem by applying dynamics that update multiple vertices at each step
but still allow each step to be computed efficiently without constructing the graph explicitly.

1.2 Block and clique dynamics
Most of the results that we discuss from now on apply to the multivariate version of the
hard-core model, that is, each vertex v ∈ V has its own weight λv. For a given graph
G = (V, E) we denote the set of such vertex weights by λ = {λv}v∈V and write (G, λ) for
the resulting multivariate hard-core instance. In the multivariate setting, the contribution of
an independent set I ∈ I(G) to the partition function is defined as the product of its vertex
weights (i.e.,

∏
v∈I λv), where the contribution of the empty set is fixed to 1. Similar to the

univariate hard-core model, the Gibbs distribution assigns a probability to each independent
set proportionally to its contribution to the partition function.

As we discussed before, the main problem with approximating the partition function of
our discretization (Gρ, λρ) is that the required graph Gρ is exponential in the volume of
the original continuous system |V|. As the Glauber dynamics Markov chain only updates
a single vertex at each step, the resulting mixing time is usually polynomial in the size of
the graph, which is not feasible in our case. Various extensions to Glauber dynamics for
updating multiple vertices in each step have been proposed in the literature, two of which
we discuss in the following.

Clique dynamics
Recently, in [23] a Markov chain, called clique dynamics, was introduced in order to efficiently
sample from the Gibbs distribution of abstract polymer models. Note that this is similar
to our algorithmic problem, as abstract polymer models resemble multivariate hard-core
instances. For a given graph G = (V, E), we call a set Λ = {Λi}i∈[m] ⊆ 2V a clique cover of
size m if and only if its union covers all vertices V and each Λi ∈ Λ induces a clique in G.
For an instance of the multivariate hard-core model (G, λ) and a given clique cover Λ of
G with size m the clique dynamics Markov chain C(G, λ, Λ) is defined as follows. First, a
clique Λi ∈ Λ for i ∈ [m] is chosen uniformly at random. Let us write G[Λi] for the subgraph,
induced by Λi, and λ[Λi] = {λv}v∈Λi

for the corresponding set of vertex weights. Next, an
independent set from I(G[Λi]) is chosen according to the Gibbs distribution µ(G[Λi],λ[Λi]).
Note that, as the vertices Λi form a clique, such an independent set is either the empty set
or contains a single vertex from v ∈ Λi. If the empty set is drawn, all vertices from Λi are
removed from the current independent set. Otherwise, if a single vertex v ∈ Λi is drawn, the
chain tries to add v to the current independent set.

Using a coupling argument, it was proven in [23] that the so-called clique dynamics
condition implies that for any clique cover of size m the clique dynamics are mixing in time
polynomial in m and Zmax, where Zmax = maxi∈[m]{Z(G[Λi], λ[Λi])} denotes the maximum
partition function of a clique in Λ. This is important for the application to polymer models, as
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they are usually used to model partition functions of other spin systems, which often results
in a multivariate hard-core model of exponential size [33, 9, 35, 10, 6, 8, 26]. As discussed
in [23], those instances tend to have polynomial size clique covers that arise naturally from
the original spin system. In such cases, the mixing time of clique dynamics is still polynomial
in the size of original spin system, as long as the clique dynamics condition is satisfied.

This is very similar to our discretization (Gρ, λρ). To see this, set a = 2ρ√
d
r and divide the

d-dimensional integer lattice of side length ρℓ into cubic regions of side length a. Every pair of
integer points within such a cubic region has Euclidean distance less than 2ρr, meaning that
the corresponding vertices in Gρ are adjacent. Thus, each such cubic region forms a clique,
resulting in a clique cover of size (ρℓ/a)d ∈ O(|V|). This means, there is always a clique
cover with size linear in |V| and independent of the resolution ρ. By showing that, for the
univariate hard-core model, the mixing time of clique dynamics is polynomial in the size of
the clique cover for all λρ < λc(∆ρ), we obtain a Markov chain with mixing time polynomial
in |V| independent of the resolution ρ. Unfortunately, the clique dynamics condition does
not hold for the entire regime up to the tree threshold in the univariate hard-core model.
We overcome this problem by proving a new condition for rapid mixing of clique dynamics
based on a comparison with block dynamics.

Block dynamics
Block dynamics are a very natural generalization of Glauber dynamics to arbitrary sets of
vertices. For a given graph G = (V, E), we call a set Λ = {Λi}i∈[m] ⊆ 2V a block cover of size
m if and only if its union covers all vertices V . We refer to the elements of Λ as blocks. Note
that the clique cover discussed before is a special case of a block cover, where all blocks are
restricted to be cliques. At each step, the block dynamics Markov chain B(G, λ, Λ) chooses
a block Λi ∈ Λ uniformly at random. Then, the current independent set is updated on Λi

based on the projection of the Gibbs distribution onto Λi and conditioned on the current
independent set outside Λi.

In fact, block dynamics are defined for a much more general class of spin systems than
the hard-core model. However, due to the fact that each step of the Markov chain involves
sampling from a conditional Gibbs distribution, block dynamics are rarely used as an
algorithmic tool on its own. Instead, they are usually used to deduce rapid mixing of other
dynamics.

For spin systems on lattice graphs, close connections between the mixing time of block
dynamics and Glauber dynamics are known [40]. Such connections were for example applied
to improve the mixing time of Glauber dynamics of the Monomer Dimer model on torus
graphs [51]. Moreover, block dynamics were used to improve conditions for rapid mixing
of Glauber dynamics on specific graph classes, such as proper colorings [16, 18, 19, 44] or
the hard-core model [18, 44] in sparse random graphs. A very general result for the mixing
time of block dynamics was achieved in [4], who proved that for all spin systems on a finite
subgraph of the d-dimensional integer lattice the mixing time of block dynamics is polynomial
in the number of blocks if the spin system exhibits strong spatial mixing. This result was
later generalized in [5] for the Ising model on arbitrary graphs. Very recently, block dynamics
based random equally-sized blocks where used in [12] to prove entropy factorization and
improve the mixing time of Glauber dynamics for a variety of discrete spin systems up to
the tree threshold.

Although our discretization works by restricting sphere positions to the integer lattice,
the resulting graph is rather different from the lattice. Thus, results like those in [4] do not
apply to our setting. However, on the other hand, we do not need to prove rapid mixing for
arbitrary block covers. Instead, in order to obtain rapid mixing for clique dynamics, it is
sufficient to establish this result for cases where all blocks are cliques.
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Applying block dynamics directly would involve sampling from a conditional Gibbs
distribution within each clique. Due to the exponential size of the cliques in our discretization,
this would impose additional algorithmic challenges. Instead, similar to the previous literature,
we rather use block dynamics as a tool for proving rapid mixing of another Markov chain,
namely clique dynamics.

Improved mixing condition for clique dynamics via block dynamics
We analyze the mixing time of clique dynamics for a given clique cover by relating it to the
mixing time of block dynamics, using the cliques as blocks. This is done by investigating
a notion of pairwise influence between vertices that has also been used to establish rapid
mixing of Glauber dynamics up to the tree threshold [2]. Let PG[w] denote the probability
of the event that a vertex w ∈ V is in an independent set drawn from µ(G,λ). Further, let
PG[w] denote the probability that w is not in an independent set. We extend this abuse
of notation to conditional probabilities, so PG[· | w ] for example denotes the probability of
some event conditioned on w not being in an independent set. For a pair of vertices v, w ∈ V

the influence ΨG(v, w) of v on w is defined as

ΨG(v, w) =
{

0 if v = w,

PG[w | v ] − PG[w | v ] otherwise.

The following condition in terms of pairwise influence is central to our analysis.

▶ Condition 3. Let (G, λ) be an instance of the multivariate hard-core model. There is a
constant C ∈ R>0 and a function q : V → R>0 such that for all S ⊆ V and r ∈ S it holds
that∑

v∈S

|ΨG(r, v)|q(v) ≤ Cq(r).

Note that this condition appeared before in [13], where it was used for bounding the mixing
time of Glauber dynamics for anti-ferromagnetic spin systems. Given Condition 3, we obtain
the following result for the mixing time of block dynamics based on a clique cover.

▶ Theorem 4. Let (G, λ) be an instance of the multivariate hard-core model that satisfies Con-
dition 3. Let Λ be a clique cover for G of size m, and let Zmax = maxi∈[m]{Z(G[Λi], λ[Λi])}.
The mixing time of the block dynamics B(G, λ, Λ), starting from ∅ ∈ I(G), is bounded by

τ
(∅)
B (ε) ≤ mO((2+C)C)ZO((2+C)C)

max ln
(

1
ε

)
.

Using a bound for the sum of absolute pairwise influences that was recently established
in [13], it follows that the univariate hard-core model satisfies Condition 3 up to the tree
threshold. As a result, we know that the mixing time of block dynamics is polynomial in m

and Zmax for any clique cover of size m. To the best of our knowledge, this is the first result
for the mixing time of block dynamics for the univariate hard-core model on general graphs
that holds in this parameter range.

As we aim to apply clique dynamics to avoid sampling from the conditional Gibbs
distribution in each step, we still need to prove that Theorem 4 also holds in terms of clique
dynamics. To this end, we apply a Markov chain comparison argument from [15] to prove
that using clique dynamics instead of block dynamics for the same clique cover Λ increases
the mixing time by at most a factor 2Zmax. The following corollary, which is central for
proving Theorem 1, follows immediately.
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▶ Corollary 5. Let (G, λ) be an instance of the univariate hard-core model such that
the degree of G is bounded by ∆. Let Λ be a given clique cover of size m with Zmax =
maxi∈[m]{Z(G[Λi], λ)}. Denote by C = C(G, λ, Λ) the corresponding clique dynamics. If
there is some δ ∈ R>0 such that λ ≤ (1−δ)λc(∆) then the mixing time of the clique dynamics
C, starting from ∅ ∈ I(G), is bounded by

τ
(∅)
C (ε) ≤ mO(1/δ2)Z

O(1/δ2)
max ln

(
1
ε

)
.

A side journey: comparison to multivariate conditions
In fact, Corollary 5 is sufficient for our application to the hard-sphere model. However, we
also aim to set Condition 3 in the context of other conditions for rapid mixing of clique
dynamics for the multivariate hard-core model. Note that such a rapid mixing result for
clique dynamics caries over to Glauber dynamics by taking each vertex as a separate clique
of size 1.

To this end, we compare Condition 3 to a strict version of the clique dynamics condition,
originally introduced in [23] in the setting of clique dynamics for abstract polymer models. It
turns out that this strict version of the clique dynamics condition directly implies Condition 3.
This is especially interesting, as the clique dynamics condition was initially introduced as a
local condition (only considering the neighborhood of each vertex) and is based on a coupling
argument. However, we show that it can as well be understood as a sufficient condition for
the global decay of pairwise influence with increasing distance between vertices.

Formally, we say that the strict clique dynamics condition is satisfied for an instance of
the multivariate hard-core model (G, λ) if there is a function f : V → R>0 and a constant
α ∈ (0, 1) such that for all v ∈ V it holds that∑

w∈N(v)

λw

1 + λw
f(w) ≤ (1 − α)f(v),

where N(v) is the neighborhood of v in G. This is a strict version of the clique dynamics
condition in that the original clique dynamics condition would correspond to the case α = 0
(i.e., the strict clique dynamics condition requires some strictly positive slack α).

The result of our comparison is summarized in the following statement.

▶ Lemma 6. Let (G, λ) be an instance of the multivariate hard-core model. If (G, λ) satisfies
the strict clique dynamics condition for a function f and a constant α, then it also satisfies
Condition 3 for q = f and C = 1

α .

Lemma 6 is proven by translating the calculation of pairwise influences to the self-avoiding
walk tree of the graph, based on a result in [13], and applying a recursive argument on this
tree.

Despite being an interesting relationship between local coupling arguments and global
pairwise influence, Lemma 6 also implies that, from an algorithmic perspective, Theorem 4
can be used to produce similar results as those obtained in [23] for abstract polymer models.
Further, note that for the univariate model, using pairwise influence yields strictly better
results than any coupling approach in the literature. This raises the question if a refined
argument based on pairwise influences can be used in the multivariate setting to improve on
the clique dynamics condition, leading to better approximation results on abstract polymer
models.
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1.3 Analyzing spectral expansion
As core technique for obtaining Theorem 4, we adapt an approach for bounding the mixing
time that was recently used to prove rapid mixing of Glauber dynamics for the entire regime
below the tree threshold for several applications, such as the hard-core model [2], general
two-state spin systems [13], and proper colorings [11, 21]. The idea is to map the desired
distribution to a weighted simplicial complex.

A simplicial complex X over a groundset U is a set family X ⊆ 2U such that for each
τ ∈ X every subset of τ is also in X. We call the elements τ ∈ X the faces of X and refer to
its cardinality |τ | as dimensionality.

For a univariate hard-core instance (G, λ), the authors of [2] construct a simplicial complex
over a ground set U that contains two elements xv, xv ∈ U for each vertex v ∈ V . For every
independent set I ∈ I(G), a face τI ∈ X is introduced such that xv ∈ τI if v ∈ I and xv ∈ τI

otherwise. The simplicial complex is completed by taking the downward closure of these faces.
Note that by construction all maximum faces of the resulting complex are |V |-dimensional
and there is a one-to-one correspondence between the maximum faces and the independent
sets in I(G). By assigning each maximum face τI ∈ X an appropriate weight, the Glauber
dynamics can be represented as a random walk on those maximum faces, which is sometimes
referred to as the two-step walk or down-up walk. Using a local-to-global theorem [1], the
mixing time of this two-step walk can then be bounded based on certain local expansion
properties of the simplicial complex X. It is then proved that such local expansion properties
are well captured by the largest eigenvalue of the pairwise influence matrix ΨG, which is
a |V | × |V | matrix that contains the pairwise influence ΨG(v, w) for all v, w ∈ V . Finally,
by bounding those influences a bound on this largest eigenvalue of ΨG is obtained. This
analysis was later refined and generalized in [13] to general two-state spin systems.

This method was independently extended in [11] and [21] to the non-Boolean domain
by applying it to the Glauber dynamics for proper colorings. The main differences to the
Boolean domain are that elements of the simplicial complex now represent combinations of a
vertex and a color. Furthermore, the bound on the local spectral expansion was obtained by
using a different influence matrix, which captures the effect of selecting a certain color for
one vertex on the distribution of colors for another vertex.

Although we are dealing with the hard-core model, which is Boolean in nature, the way
that we model block dynamics is mainly inspired by the existing work on proper colorings [11].
Assume we have an instance of the multivariate hard-core model (G, λ) and let Λ be a clique
cover for G of size m such that every pair of distinct cliques is vertex-disjoint (i.e., Λ is a
partition of G into cliques). We construct a simplicial complex X based on a ground set
U that contains one element xv ∈ U for each vertex v ∈ V and one additional element ∅i

for each clique Λi ∈ Λ. We introduce a face τI ∈ X for each independent set I ∈ I(G)
such that for every Λi ∈ Λ we have ∅i ∈ τI if Λi ∩ I = ∅ and xv ∈ τI if Λi ∩ I = {v} for
some v ∈ Λi. The simplicial complex is completed by taking the downward closure of these
faces. All maximum faces of the resulting complex are m-dimensional and there is a bijection
between the maximum faces and the independent sets of G. Furthermore, there is a natural
partitioning {Ui}i∈[m] of the ground set U , each partition Ui corresponding to a clique Λi,
such that every maximum face in X contains exactly one element from each partition Ui.

By weighting each maximum face of X by the contribution of the corresponding inde-
pendent set to the partition function, the block dynamics based on Λ are equivalent to the
two-step walk on X. Thus, in order to bound the mixing time of the block dynamics, it is
sufficient to study the local expansion properties of X. To this end, we adapt the influence
matrix used for proper colorings in [11]. For x ∈ U , let PG[x] denote the probability that
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x ∈ τI for an independent set I ∈ I(G) drawn from µ(G,λ) and corresponding maximum face
τI ∈ X. Similarly as for defining pairwise influences, we extend this notation to conditional
probabilities. The clique influence matrix ΦG,Λ contains an entry ΦG,Λ(x, y) for each x, y ∈ U

with

ΦG,Λ(x, y) =
{

0 if x, y ∈ Ui for some i ∈ [m],
PG[y | x ] − PG[y] otherwise.

By using similar linear-algebraic arguments as in [11] we prove that the maximum eigenvalue
of ΦG,Λ can be used to upper bound the local spectral expansion of X. To obtain Theorem 4
it is then sufficient to relate Condition 3 to the maximum eigenvalue of ΦG,Λ. The following
lemma establishes this connection.

▶ Lemma 7. Let (G, λ) be an instance of the multivariate hard-core model that satisfies
Condition 3 for a function q and a constant C. For every S ⊆ V and every disjoint clique
cover Λ of G[S] it holds that the largest eigenvalue of ΦG[S],Λ is at most (2 + C)C.

Note that our simplicial-complex representation is only given under the assumption that
the cliques in the clique cover Λ are pairwise disjoint. Indeed, this is a necessary requirement
to map the block dynamics to the two-step walk such that the local-global-theorem from [1]
can be applied. Thus, Lemma 7 only helps to prove Theorem 4 for disjoint clique covers.
However, we relax this requirement by proving that for every clique cover Λ a disjoint clique
cover K can be constructed such that the block dynamics B(G, λ, Λ) and B(G, λ, K) have
asymptotically the same mixing time. By this comparison argument, we extend Theorem 4
to arbitrary clique covers.

We are aware that, in the case of Glauber dynamics, more recent techniques for combining
simplical complex representations with entropy factorization as proposed in [12] yield superior
mixing time results. However, in case of the hard-core model, this approach comes with
an additional multiplicative factor of ∆O(∆2) in the mixing time (see section 8 of [12]).
Although negligible for bounded degree graphs, this would be too much for our application,
as the degree of our discretization gets exponentially large in the continuous volume |V| of
the system. Thus, directly relating local spectral expansion with the spectral gap of block
dynamics is more suitable in our case. We leave as an open question, whether a modification
of the approach in [12] can be applied to further improve our mixing time result.

1.4 Outlook
We obtain the fugacity bound from Theorem 1 based on the tree threshold λc(∆) of the
hard-core model. An obvious question is whether there are any structural properties of our
discretization that can be used to improve this bound. Similar results are known for specific
graph classes, such as the 2-dimensional square lattice [48, 52, 54]. In [42] the authors discuss
that a generalization of the connective constant to the continuous Euclidean space might
be applicable to improve their uniqueness result for the hard-sphere model. A comparable
algorithmic result was already established for the discrete hard-core model in [49]. However,
any such improvement for our discretization would require the connective constant of Gρ to
be at least by a constant factor small than its maximum degree ∆ρ. Unfortunately, due to a
result in [47], this is not the case. Although this does not necessarily imply that a similar
concept does not work in continuous space, it gives a strong evidence that a more specialized
tool instead of the connective constant might be required.

A different direction for future work is to see which other quantities and properties of the
model are preserved under discretization. This would especially include the thermodynamic
pressure and its analyticity. As a matter of fact, non-analytic points of the pressure along the
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positive real axis of fugacity in the thermodynamic limit are known to mark phase transitions
in infinite volume systems (see for example [42]). One way to approach this could be to prove
a relation between zero-freeness of the continuous and the discretized partition function in a
complex neighborhood of the real axis by extending our convergence result to the complex
domain. Along this line, insights could be gained in how far properties like correlation decay
and phase transitions (or their absence) are preserved under sufficiently fine discretization.

From a purely technical point of view, it is interesting to see if our result on the mixing
time of block dynamics in Theorem 4 also holds without the requirement of using cliques as
blocks. Especially: is the mixing time for block dynamics for the univariate hard-core model
polynomial in the number of blocks for any block cover? Most of our techniques that we use
for clique covers, such as modeling the distribution as a simplicial complex and relating its
local spectral expansion to the clique influence matrix, can be generalized in a straightforward
way for different choices of blocks. However, the main difficulty is to relate generalized
versions of the clique influence matrix to pairwise influences, as we do in Lemma 7. One way
to circumvent this might be to not rely on pairwise influences at all but to rather investigate
the influence matrix directly, for example, via different computational-tree methods.

Finally, it would be interesting to see if approaches like ours can be extended to other
continuous models from statistical physics (see for example coarse-graining [20]). We believe
that the variety of tools that are already established for discrete spin systems are useful in
this setting to establish rigorous computational results for different continuous models. We
emphasize that clique and block dynamics are a useful computational tool to handle the
exponential blow-ups caused by discretization.
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Abstract

We investigate a genre of vehicle-routing problems (VRPs), that we call max-reward VRPs, wherein
nodes located in a metric space have associated rewards that depend on their visiting times, and
we seek a path that earns maximum reward. A prominent problem in this genre is deadline TSP,
where nodes have deadlines and we seek a path that visits all nodes by their deadlines and earns
maximum reward. Our main result is a constant-factor approximation for deadline TSP running in
time O

(
nO(log(n∆))) in metric spaces with integer distances at most ∆. This is the first improvement

over the approximation factor of O(log n) due to Bansal et al. [2] in over 15 years (but is achieved in
super-polynomial time). Our result provides the first concrete indication that log n is unlikely to be
a real inapproximability barrier for deadline TSP, and raises the exciting possibility that deadline
TSP might admit a polytime constant-factor approximation.

At a high level, we obtain our result by carefully guessing an appropriate sequence of O(log(n∆))
nodes appearing on the optimal path, and finding suitable paths between any two consecutive guessed
nodes. We argue that the problem of finding a path between two consecutive guessed nodes can be
relaxed to an instance of a special case of deadline TSP called point-to-point (P2P) orienteering.
Any approximation algorithm for P2P orienteering can then be utilized in conjunction with either a
greedy approach, or an LP-rounding approach, to find a good set of paths overall between every pair
of guessed nodes. While concatenating these paths does not immediately yield a feasible solution, we
argue that it can be covered by a constant number of feasible solutions. Overall our result therefore
provides a novel reduction showing that any α-approximation for P2P orienteering can be leveraged
to obtain an O(α)-approximation for deadline TSP in O

(
nO(log n∆)) time.

Our results extend to yield the same guarantees (in approximation ratio and running time) for a
substantial generalization of deadline TSP, where the reward obtained by a client is given by an
arbitrary non-increasing function (specified by a value oracle) of its visiting time. Finally, we discuss
applications of our results to variants of deadline TSP, including settings where both end-nodes are
specified, nodes have release dates, and orienteering with time windows.
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67:2 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

1 Introduction

Vehicle-routing problems (VRPs) constitute a rich class of optimization problems that find
a variety of applications and have been extensively studied in the Operations Research
and Computer Science literature (see, e.g., [27]) Broadly speaking, vehicle-routing problems
can be divided into two categories: one, where we have a fixed set of nodes or clients that
need to be visited, and we seek the most effective route(s) for visiting these clients (e.g.,
TSP-style problems [9, 25, 29, 26], minimum-latency problems [5, 23], VRPs with distance
bounds [19, 22] and regret bounds [13]); and the other, where, due to resource constraints,
we need to select which set of clients to visit and plan suitable routes for these clients. We
investigate a prominent class of VRPs that fall into the second category, wherein nodes
have associated rewards that depend on their visiting times, and we seek a path that earns
maximum reward. We call this genre of problems max-reward VRPs, and they constitute a
well-studied class of VRPs (see, e.g., [15, 3, 2, 8, 6, 14]).

We consider a fundamental problem in this genre, called the deadline TSP problem. In
deadline TSP, we are given a (symmetric) metric space ({r}∪V, c) with r being a distinguished
starting root node, and each node v ∈ V has a certain deadline Dv ≥ 0 and reward πv ≥ 0.
We seek a path starting at r that maximizes the total reward of the nodes on the path
that are visited by their deadlines. Since we are in a metric space, by shortcutting, we may
assume that all nodes on the path are visited by their deadlines. So equivalently, we seek a
maximum-reward r-rooted path that visits all nodes by their deadlines. A simpler problem in
the max-reward VRP genre is the point-to-point (P2P) orienteering problem, wherein we are
also given an end-node t, and we seek an r-t path of at most a given length B that collects
maximum reward. This is a special case of deadline TSP, which can be seen by setting the
deadline of each node v to B − cvt.

Max-reward VRPs tend to be more complicated problems than the first category of “fixed-
node-set” VRPs mentioned above because of the added combinatorial aspect of selecting
which nodes to visit, which is interlinked with the routing decisions, and we have much less
of an understanding of max-reward VRPs compared to fixed-node-set VRPs. A constant-
factor approximation is known only for P2P orienteering in undirected graphs, which is one
of the most rudimentary max-reward VRPs. For other, more-sophisticated, max-reward
VRPs – deadline TSP, submodular orienteering, directed orienteering – only logarithmic
or polylogarithmic (or worse) approximation factors are known. Furthermore, even for
undirected orienteering, the current-best approximation ratio has remained stagnant at
(2 + ϵ) [6] (and fresh LP-based insights were obtained only recently [14]), whereas for s-t
path TSP (the corresponding fixed-node-set problem), a steady stream of work [1, 24, 28, 29]
has exploited LP-based insights (and other ideas) to improve the approximation ratio to
1.5 [29]. The contrast is even more evident in asymmetric metrics: while O(1)-approximation
algorithms are now known for asymmetric TSP (ATSP) [26] and s-t path ATSP [17], the
best-known guarantee for directed orienteering is an O(α log |V |)-approximation using an
LP-relative α-approximation for ATSP [21], which explicitly shows the degradation when
moving to the max-reward-VRP version.

Our results. Our main contribution is to provide the first constant-factor approximation
guarantee for deadline TSP (Theorem 3.1); notably, we obtain a relatively small approximation
ratio of (7.63 + ϵ). We may assume by scaling that all distances in our metric space are
integers. Our algorithm runs in time O

(
nO(log n∆)), where n is the number of points, and ∆

is the diameter of the (scaled) metric space. In particular, for graphical metrics, we obtain a
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quasi-polytime (i.e., O
(
nO(log n))-time) constant-factor approximation. Our guarantee yields

the first improvement over the (polytime) O(log n) approximation factor obtained by Bansal
et al. [2] in over 15 years, even for graphical metrics, but is achieved in super-polynomial time.
Prior to our work, it was unclear whether log n is a real inapproximability barrier for deadline
TSP. Our result provides the first concrete indication that this is not the case,1 and raises
the enticing possibility that deadline TSP might admit a polynomial-time constant-factor
approximation.

As noted above, constant-factor approximation algorithms are known for P2P orienteer-
ing [2, 6, 14], which is a special case of deadline TSP. Our chief technical contribution lies in
providing a novel reduction showing that an α-approximation algorithm for P2P orienteering
can be utilized to obtain an O(α)-approximation algorithm for deadline TSP in O

(
nO(log n∆))

time (see Theorem 3.1).
We obtain the same approximation guarantees for a substantial generalization of deadline

TSP, wherein each node v has a non-increasing reward function πv : R+ 7→ R+, with πv(x)
giving the reward of node v if v is visited at time x, and, as before, the goal is to find a path
that collects maximum reward. We call this problem monotone-reward TSP (Section 4.1).
Notice that this problem also captures discounted-reward TSP, considered by Blum et al. [3],
which is the special case where πv(x) = πv · γ−x, where γ > 1 is a discount factor. Our
results here only require value-oracle access to πv – an oracle that on input x returns πv(x) –
and follow from two distinct approaches (see Theorem 4.1): (a) we show that we can reduce
monotone-reward TSP in polytime to deadline TSP with a (1− ϵ)-factor loss; and (b) our
algorithm and analysis for deadline TSP readily extend to yield the same guarantees for
monotone-reward TSP.

Interestingly, our reduction from orienteering to {deadline, monotone-reward} TSP
also applies to asymmetric metrics (see Remark 3.8). The recent result of Svensson et
al. [26] establishing an O(1)-integrality gap for the ATSP LP-relaxation implies (due to the
work of [21]) an O(log n)-approximation for directed orienteering; thus our reduction yields
an O(log n)-approximation for {deadline, monotone-reward} TSP in asymmetric metrics
in O

(
nO(log n∆)) time. While this does not improve upon the quasi-polytime O(log n)-

approximation for asymmetric deadline TSP that follows from the work of Chekuri and
Pál [8], our reduction does show that improved (e.g., constant-factor) approximations to
directed orienteering will directly translate to analogous improvements for directed deadline
TSP in O

(
nO(log n∆)) time.

In Section 4.2, we show that our results yield O(1)-approximation for some other variants
of {deadline, monotone-reward} TSP, namely, settings where: (a) the path must start and end
at some given nodes; and (b) nodes have release dates but no deadlines, or more generally have
a non-decreasing reward function, and we seek a length-bounded path gathering maximum
reward (and we are allowed to wait at nodes while traversing a path). We also consider
orienteering with time windows, wherein we have a time window for each node and we collect
its reward if it is visited within its time window. By combining our result for deadline TSP with
certain results of Chekuri et al. [6], we obtain an O

(
log Lmax

Lmin

)
-approximation for orienteering

with time windows in O
(
nlog n∆)

time, where Lmax and Lmin are the lengths of the longest
and shortest time windows with non-zero length. This improves upon the approximation
guarantee of [6] when the optimum value is large; in particular, if Lmax = O(Lmin), we obtain
an O(1)-approximation, whereas [6] obtain an O(log (optimal value))-approximation, but in
polynomial time.

1 More precisely, if NP ̸⊆DTIME [O
(
nO(log n)

)
], then obtaining an O(1)-approximation in graphical

metrics cannot be NP-hard. Also, any reduction showing NP-hardness of an O(1)-approximation in
general metrics must involve exponentially large distances.
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Our techniques. We briefly discuss the techniques that we utilize to obtain our result for
deadline TSP (see also “Overview and intuition” in Section 3). We begin by guessing a
suitable set of O(log n∆) nodes, which are a subsequence of the nodes encountered along
an optimal path P ∗. This guessing step requires some care, in light of the fact that we
are dealing with hard deadlines – i.e., we need to satisfy deadlines exactly (and not just
approximately) – which rules out certain standard approaches. For instance, a natural
attempt would be to view nodes of P ∗ as being grouped into geometric buckets based on their
visiting times and/or deadlines and guess the boundary nodes of the buckets; since nodes
in a bucket involve roughly the same visiting time and/or deadline, it is tempting to solve
a P2P orienteering instance with the boundary nodes as end-points. But this is too coarse
an idea that is incompatible with hard deadlines. Indeed, since one cannot merge similar
deadlines/visiting times, any such approach faces the issue that there could be Ω(n) distinct
visiting times and deadlines to consider. Not surprisingly, [7], who take such an approach
make the strong assumption that there are only O(1) distinct deadlines. Alternatively, other
works on deadline TSP [2, 6] are based on extracting a subset of P ∗ with a simpler deadline
and visiting-time structure, but at the expense of an O(log n)-factor loss in objective.

We seek to avoid both the above bottlenecks, but, as alluded to above, honing in on the
correct choice of guessed nodes requires some insight and a more refined approach. At a
high level, the sequence of nodes we guess v0 := r, v1, . . . , vlog n∆ has the property that the
length of the vi-vi+1 portion of P ∗, which we denote by P ∗

vivi+1
, is about cvivi+1 + γi, where

γ is some constant (we use γ = 1.5); equivalently, we say that the vi-relative regret-length
of P ∗

vivi+1
is about γi. We still obtain P2P-orienteering solutions (with the above distance

bound) between consecutive vi, such that they cumulatively collect enough reward (but they
may not have disjoint node-sets). Concatenating these yields a path P that may violate
some deadlines. A key insight is that if we were to shortcut past the vi−2-vi portion of P ,
then each client visited between vi and vi+1 after shortcutting, now has its deadline satisfied:
we “save” roughly γi−2 + γi−1 ≥ γi distance in this shortcutting process, which is enough
to guarantee that clients visited between vi and vi+1 in our algorithm have their deadlines
satisfied exactly. Thus, we can cover P using a constant number of deadline-TSP solutions.
Our eventual algorithm is slightly more involved as we have to account for large leaps in
distances as well (thereby requiring us to guess an additional log n∆ nodes).

Finally, we consider two approaches for obtaining the P2P-orienteering solutions. The first
approach is based on viewing the problem as an instance of the maximum coverage problem
with group budgets [7], for which a simple greedy algorithm yields a good approximation.
The second is a more-sophisticated LP-based approach that yields a somewhat better
approximation guarantee. We write an LP to find paths between guessed nodes, and extract
from the LP solution a distribution over P2P-orienteering solutions between consecutive
guesses. Randomly picking one such path for each vi will ensure each client is covered
with probability proportional to the extent that the LP covers it. While recent LP-based
insights [14] for orienteering allow us to obtain a compact LP to obtain such distributions, one
can also work with a configuration-style LP that directly encodes the distribution requirement.
Any P2P-orienteering approximation algorithm can then be used to approximately separate
the dual of this LP, and hence yield the desired distributions.

Our O
(
nlog n∆)

running time stems from the need for enumerating O(log n∆) nodes.
There is however some hope that this enumeration step and its resulting run-time blowup can
be circumvented. At a high level, the search space of our algorithm can be represented by a
directed layered graph, whose vertices in layer i encode the various choices for the vi-vi+1
portion of P ∗, and arcs encode compatible choices. While we use brute-force enumeration
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to find a suitable path in this digraph, one can envisage other means for finding this path,
e.g., dynamic programming or linear programming. An important and useful fact to note is
that we only have O(log n∆) layers, so that, for poly(n, ∆) running time (hence, polytime
for graphical metrics), one can afford to take time exponential in the number of layers. (We
note that such savings were achieved in the context of another VRP, namely the directed
latency problem: Nagarajan and Ravi [20] gave an O

(
nlog n

)
-time, O(log n)-approximation

based on guessing O(log n) nodes, and subsequently Friggstad et al. [12] obtained the same
approximation in polytime by showing, in essence (roughly speaking), that this guesswork
can be eliminated by formulating a suitable LP to provide the guessed nodes.)

Related work. We limit ourselves to a discussion of the work that is most relevant to the
max-reward VRP problems we consider; we refer the reader to [27] for more information on
vehicle routing problems in general. As mentioned earlier, the current-best approximation
factor for deadline TSP is O(log n) due to Bansal et al. [2]. They also give a bicriteria
O(log 1/ϵ)-approximation that violates deadlines by at most a (1 + ϵ)-factor; with integer
deadlines this yields an O(log Dmax)-approximation (where Dmax := maxv Dv). Since
we obtain O

(
nO(log n∆)) running time, it is also relevant to compare our result with the

recursive greedy approach of Chekuri and Pál [8]. This is a versatile approach that yields
logarithmic approximation guarantees for various problems (including deadline TSP) in
quasi-polytime. However, this approach seems hard-pressed to yield anything better than
logarithmic guarantees (even for deadline TSP); in particular, the Ω(log n)-inapproximability
result for submodular orienteering2 suggests that one cannot improve their approach to
obtain o(log n) approximation guarantees.

The special case of deadline TSP with uniform node-deadlines is called rooted orienteering.
Blum et al. [3] obtained the first O(1)-approximation algorithm for this problem. Their ideas
were refined by [2, 6] to obtain the current-best (2 + ϵ)-approximation, which also applies to
P2P orienteering [6]. Recently, Friggstad and Swamy [14] developed a different LP-based
approach for orienteering, which also yields (slightly inferior) O(1)-approximations for these
problems. We utilize some of their insights in our work.

Various (other) generalizations of orienteering and deadline TSP have also been studied.
Bansal et al. [2] give an O(log2 n)-approximation for orienteering with time windows, and
an O(log Dmax) approximation with integer release dates and deadlines. They make the
informal remark that a deadline-TSP approximation that relies on an α-approximation for
P2P orienteering will translate to an α2-approximation for orienteering with time windows.
However, this comment seems to be in the specific context of their approach, and it is unclear
if it can be applied with our framework to obtain an O(1)-approximation for the time-
windows problem in O

(
nO(log n∆)); such a result would be quite interesting. Chekuri et al. [6]

show that an α-approximation for P2P orienteering yields an O
(
α max{log opt, log Lmax

Lmin
}
)
-

approximation for orienteering with time windows, where opt is the optimal value, and Lmax
and Lmin are the lengths of the longest and shortest time windows with non-zero length.

Blum et al. [3] considered the special case of monotone-reward TSP called discounted-
reward TSP (wherein the reward of node v at time t is πvγ−t), and devised a 6.753-
approximation algorithm. This factor was slightly improved to 5.195 by [10]. Chekuri

2 Submodular orienteering captures “group orienteering”, wherein we are given (disjoint) groups of vertices,
and the reward of a path is the number of groups it hits. Using set-cover ideas, one can show that
an α-approximation for group orienteering yields an O(α log n)-approximation for the group Steiner
tree problem. The Ω(log2 n)-inapproximability result for group Steiner tree [16] thus translates to an
Ω(log n)-inapproximability result for submodular orienteering.
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and Pál [8] show that their recursive-greedy approach yields a quasi-polytime O(log n)-
approximation for a generalization of monotone-reward TSP where the node reward is an
arbitrary function of time. They obtain the same guarantee for a further generalization of
orienteering (even in asymmetric metrics) that they introduce, called submodular orienteering
with time windows, where the reward of a path is given by a monotone submodular function
of the set of nodes visited within their time windows.

In asymmetric metrics, Chekuri et al. [6] give an O(log2 opt)-approximation for P2P
orienteering; this also yields guarantees for the time-windows problem via their aforementioned
reduction (which also applies to asymmetric metrics). The current-best approximation for
directed orienteering is O(log n), which follows by combining the O(1)-integrality gap for the
ATSP LP [26] with a result of [21] showing that an LP-relative α-approximation for ATSP
yields an O(α log n)-approximation for directed orienteering.

Finally, there is a wealth of literature on fixed-node-set VRPs; we refer the reader to some
of the most recent work on these problems [25, 29, 26] for further pointers.

2 Preliminaries and notation

All the problems we consider involve an underlying complete graph G = ({r} ∪ V, E), where
r is a distinguished root node, and metric edge costs {cuv}. By scaling, we may assume that
cuv is an integer for all u, v ∈ V ∪ {r}. Let ∆ := maxu,v∈V ∪{r} cuv be the diameter of the
scaled metric space. For a set S of edges, we often use c(S) to denote

∑
e∈S ce. We often

use V ′ to denote {r} ∪ V . Let n = |V ′| = |V |+ 1. We call a path P in G rooted if it begins
at r. We always think of the nodes on a rooted path P as being ordered in increasing order
of their distance along P from r. For any path P and nodes u, v ∈ P , let Puv denote the u-v
subpath of P . For a rooted path P and node v ∈ P , the visiting time of v is the distance
from r to v along P , which we denote by cP (v) := c(Prv). To avoid excessive notation, we
will view a path P sometimes as its edge-set, and sometimes as its node-set; the meaning
will be clear from the context.

In deadline TSP, each node v ∈ V has a deadline Dv ≥ 0 and reward πv ≥ 0. For
notational convenience, set Dr = πr = 0. The goal is to find a simple rooted path P such
that cP (v) ≤ Dv for all v ∈ P that maximizes

∑
v∈P πv. We may assume that Dv ≥ crv for

all v ∈ V , as otherwise v can never be visited by a feasible solution and we can simply delete
v from our metric space.

Monotone-reward TSP is a substantial generalization of deadline TSP, wherein each node
v has a non-increasing reward function πv : R+ 7→ R+. For notational convenience, set
πr(x) = 0 for all x. The goal is to find a simple rooted path P that maximizes

∑
v∈P πv(cP (v)).

We assume that each πv(.) is specified via a value oracle, that on input x returns πv(x).

Regret distances. For any u ∈ V ∪ {r}, and any ordered pair v, w ∈ V ∪ {r}, define the
regret distance of (v, w) with respect to u to be creg

u (v, w) := cuv + cvw − cuw. The regret
distances {creg

u (v, w)}v,w∈V ∪{r} form an asymmetric metric. The regret-length of a path P

with respect to its start node is called the excess of P in [3, 2, 6]. A simple but key insight
that we will repeatedly use is that if P is a rooted path, and u, v are nodes on P where u

comes before v (recall that nodes on P are ordered by increasing cP (·)), then replacing Puv

by the edge uv reduces the length of the path by exactly creg
u (Puv) = c(Puv)− cuv.

Point-to-point (P2P) orienteering. In P2P orienteering, we have a start node s, end node
t, and a length bound B, and we seek an s-t path P with c(P ) ≤ B that maximizes

∑
v∈P πv.

We will often need to restrict the path to only visit nodes from a certain subset N ⊆ V ′
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(where {s, t} ⊆ N); we refer to this as P2P orienteering with node set N . It will often be
convenient to cast the length-bound B, as a regret-bound of B − cst on the regret of P with
respect to s, i.e., creg

s (P ).
Observe that P2P orienteering can be cast as a special case of deadline TSP (with root

node s) by setting Dv = max{0, B − cvt} for all v ∈ V : if w is the end-node of a feasible
solution to this deadline-TSP instance, then we can always append the edge wt to this path
and stay within the length bound of B = Dt.

Recently, Friggstad and Swamy [14] devised an LP-based 6-approximation algorithm for
P2P orienteering by formulating a polynomial-size LP for the problem and devising an LP-
rounding algorithm (see Section 5). Their algorithm yields a distribution of P2P-orienteering
solutions that visits each node with probability proportional to the extent it is visited in the
LP solution. Our LP-rounding based algorithm (see subroutine LP-Round) for deadline TSP
makes use of the latter type of distributional guarantee. In fact, any approximation algorithm
for P2P orienteering can be used to obtain such a distribution – this follows from [4, 18] –
and this leads to our (7.63 + ϵ)-approximation algorithm for deadline TSP.

3 Constant-factor approximation for deadline TSP

We now describe our constant-factor approximation algorithm for deadline TSP that runs in
time O

(
nO(log n∆)). Let P ∗ be an optimal path, and opt = π(P ∗) be the optimal value. We

prove the following result.

▶ Theorem 3.1. Algorithm 1 runs in O
(
nO(log n∆)) time. Let A be an α-approximation

algorithm for P2P orienteering (where α ≥ 1).

(a) Using subroutine Greedy in step D1.2 (with algorithm A), Algorithm 1 returns a deadline-
TSP solution whose reward is at least 1

3(α+1) · opt.
(b) Using subroutine LP-Round in step D1.2 (with algorithm A), Algorithm 1 returns a

deadline-TSP solution with a slightly better expected reward of at least 1
3/(1−e−1/α) · opt ≥

1
3(α+1) · opt. This guarantee can be derandomized.

Taking α = (2 + ϵ) above [6], we obtain a (9 + ϵ)-approximation using Greedy, and an
improved (7.63 + ϵ)-approximation using the LP-approach in LP-Round.

Overview and intuition. We first give an overview of the algorithm and convey the under-
lying intuition; the detailed description appears below as Algorithm 1. Let γ = 1.5. Note
that γ2 ≤ γ + 1.

Let R∗ = creg
r (P ∗) be the regret of P ∗ with respect to the root r. Set u0 := r. Suppose we

“guess” (i.e., enumerate all possible choices for) a sequence of nodes w0, u1, w1, . . . occurring
on P ∗ (in this order), which are defined as follows. Given ui for i ≥ 0, we define wi, ui+1 as
follows. Let ui+1 be the first node on P ∗ after ui such that the regret of P ∗

uiui+1
with respect

to ui is at least γi. So we have creg
ui

(Puiui+1) ≥ γi and creg
ui

(P ∗
uiv) < γi for all nodes v prior

to ui+1 on P ∗
uiui+1

; since all distances are integers, this implies that creg
ui

(P ∗
uiv) ≤

⌈
γi

⌉
− 1

for all nodes v prior to ui+1 on P ∗
uiui+1

. Define wi to be the predecessor of ui+1. If there
is no such node ui+1, then ui+1 is undefined, and define wi to be the end-node of P ∗. Let
k be the largest index such that uk is well defined. Observe that k = O(log R∗) since for
every i = 0, . . . , k − 1, we have that γi ≤ creg

ui
(P ∗

uiui+1
) ≤ creg

r (P ∗
uiui+1

), and creg
r (P ∗) = R∗.

This leads to the O
(
nO(log n∆)) running time, since we need to consider nO(log R∗) guesses

for w0, . . . , uk, wk, and R∗ ≤ c(P ∗) ≤ n∆.
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We first observe that we can obtain the following lower bound on the deadlines of nodes
in P ∗

uiwi
. The proof of the following lemma is deferred to the analysis.

▶ Lemma 3.2. Consider any index i = 0, . . . , k. The visiting time of a node v ∈ P ∗
uiwi

, and
hence its deadline Dv, is at least lbi,v :=

∑i−1
j=0 max{cujwj

+ cwjuj+1 , cujuj+1 + γj}+ cuiv.

Lemma 3.2 implies that the P2P-orienteering instance with node-set N i := {v ∈ V ′ :
Dv ≥ lbi,v}, start node ui, end node wi, and regret-bound

⌈
γi

⌉
− 1 (with respect to ui), has

optimal value at least π(P ∗
uiwi

). (Note that N0 = V ′.) Suppose that we are able to find
paths Q0, Q1, . . . , Qk, such that:

(i) for every i = 0, . . . , k, we have that Qi is a ui-wi path, visits only nodes of N i, and
creg

ui
(Qi) ≤

⌈
γi

⌉
− 1; and

(ii) π
(
Q0 ∪ . . . ∪Qk

)
≥ ρ · π(P ∗), where 0 < ρ ≤ 1 is some constant.

We show that we can use these paths to obtain a deadline-TSP solution of value ρ · π(P ∗)/3;
this yields an O(1)-approximation for deadline TSP.

Let Z be the path obtained by concatenating all (the nodes of) Q0, . . . , Qk. How “far”
is Z from being a feasible solution? Assume that the Qis are node-disjoint (which we can
always ensure by shortcutting past all occurrences of a node other than its first occurrence).
Consider a node v ∈ Qi. We can upper bound the visiting time of v by{∑i−1

j=0(cujwj +
⌈
γj

⌉
− 1 + cwjuj+1) if v = ui;∑i−1

j=0(cujwj
+

⌈
γj

⌉
− 1 + cwjuj+1) + cuiv +

⌈
γi

⌉
− 1 otherwise,

where in the latter case, cuiv +
⌈
γi

⌉
− 1 upper bounds the time taken to go from ui to v

along Z (as
⌈
γi

⌉
− 1 ≥ creg

ui
(Qi) ≥ creg

ui
(Qi

uiv)). For v ∈ Q0, this shows that its visiting time
is at most cu0v = lb0,v, which is at most Dv. Nodes in Q1 ∪ . . . ∪Qk may however be visited
after their deadlines.

The chief insight is that if we replace the uj-uj+1 portion of Z, which currently consists
of the node-sequence Qj , by the direct edge ujuj+1, then we incur a γj-savings in the (above
upper bound for) visiting times of nodes on Qi for i > j: the term cujwj

+
⌈
γj

⌉
− 1 + cwjuj+1

in the above upper bound gets replaced by cujuj+1 , and creg
uj

(P ∗
ujwj

) ≤
⌈
γj

⌉
− 1 implies that

cuj wj +
⌈
γj

⌉
−1+cwj uj+1 ≥ c(P ∗

uj wj
)+cwj uj+1 = c(P ∗

uj uj+1 ) = creg
uj

(P ∗
uj uj+1 )+cuj uj+1 ≥ γj+cuj uj+1 .

Moreover, since γ2 ≤ γ + 1, this implies that if we “sync up” with P ∗ at wj−1 by visiting
wj−1 by time lbj−1,wj−1 , then deleting the uj-uj+2 portion – i.e., going directly to uj+2 from
wj−1 – ensures that: (a) every v ∈ Qj+2 is visited by its deadline (and, in fact, by lbj+2,v),
and (b) we remain in sync with P ∗ at wj+2. Note also that Z is in sync with P ∗ at nodes
u0, w0. Finally, for nodes in Q1, it suffices to replace the u0-u1 portion of Z by the direct
edge u0u1 in order to visit these nodes by their deadlines, and have w1 sync up with P ∗.

The upshot of these insights is that: (1) for any ℓ ∈ {0, 1, 2}, the path Z(ℓ) given by
the node-sequence r, {Qj}0≤j≤k:j=ℓ mod 3 (where r is possibly a duplicated node) is feasible
(Lemma 3.3); and (2) together these paths cover all the nodes of Z. Hence, the best of these
3 paths collects reward at least π

(
Q0 ∪ . . . ∪Qk

)
/3 ≥ ρ

3 · π(P ∗).

Finally, we discuss two approaches for finding the Q0, . . . , Qk paths. The first approach
is based on observing that the problem of finding these paths to maximize π

(
Q0 ∪ . . . ∪Qk

)
is an instance of the maximum coverage problem with group budgets considered by [7]. Thus,
a simple greedy approach (subroutine Greedy) works, where we repeatedly find Q0, Q1, . . .

in that order, and to find Qi, we use a P2P-orienteering α-approximation algorithm with
the subset of N i that has not been covered by Qj for j < i (or equivalently, we zero out
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the rewards of nodes in Q0 ∪ . . . ∪ Qi−1). Chekuri and Kumar [7] show that this yields a
collection of paths that together obtain reward at least opt/(α + 1); we include the analysis
for completeness (Lemma 3.4).

The second approach is a more sophisticated LP-based approach (subroutine LP-Round)
that yields a better guarantee. We write a configuration LP (Ap-P) to find the Qi paths.
We use variables xi

v to denote the extent to which v lies in P ∗
uiwi

, for i ≥ 0. Let Pi :=
Pi(ui, wi, N i,

⌈
γi

⌉
−1) be the collection of simple ui-wi paths of length at most cuiwi +

⌈
γi

⌉
−1

that visit only nodes of N i. (Note that if ui or wi is not in N i, then Pi = ∅. Also, if ui = wi

and lies in N i, then Pi consists of only the trivial singleton path {ui}.) We also have
variables {zi

P }P ∈Pi , where zi
P denotes that we choose path P ∈ Pi. While we cannot solve

this LP optimally, we show (see Lemma 3.6) that an α-approximation algorithm for P2P
orienteering can be used to obtain a solution (x, z) of objective value at least OPT Ap-P,
where each node v is covered by the paths from Pi to an extent of at least xi

v/α. We choose
Qi ∈ Pi by sampling from the {zi

P }∈Pi distribution. It is not hard to argue then that
E

[
π

(⋃k
i=2 Qi

)]
≥

(
1− e−1/α

)
OPT Ap-P (Lemma 3.7), which yields the guarantee stated in

Theorem 3.1 (b). We now describe the algorithm in detail and proceed to analyze it.

Algorithm 1 Deadline TSP

Let γ = 1.5.
Input: metric ({r} ∪ V, c), deadlines {Dv}v∈V , rewards {πv}v∈V ; an α-approximation
algorithm A for P2P orienteering.
Output: An r-rooted path P such that every v ∈ P is visited by time Dv.
D1 Initialize Q ← ∅. Let u0 := r. For k = 0, 1, . . . , log n∆

log γ , and every choice of nodes
w0, u1, w1, . . . , uk, wk, perform the following steps.
D1.1 For i = 0, . . . , k, and v ∈ V ′, define lbi,v :=

∑i−1
j=0 max{cujwj

+cwjuj+1 , cujuj+1 +
γj}+ cuiv. Define N i := {v ∈ V ′ : Dv ≥ lbi,v}. If ui /∈ N i or wi /∈ N i for some
i ∈ {0, . . . , k}, then reject this guess – i.e., omit steps 12–14 – and move on to
the next choice of ui, wi nodes.

D1.2 Use subroutine Greedy, or subroutine LP-Round below to obtain paths
Q0, Q1, . . . , Qk, where each Qi is a ui-wi path with creg

ui
(Qi) ≤

⌈
γi

⌉
− 1 visiting

only nodes of N i.
D1.3 For ℓ ∈ {0, 1, 2}, let Z(ℓ) be the path given by the node-sequence

r, {Qj}0≤j≤k:j=ℓ mod 3.
D1.4 Add the path Zmax ∈ {Z(0), Z(1), Z(2)} that gathers maximum reward to Q.

D2 Return the best solution found in Q, shortcutting the path to retain only the first
occurrence of each node.

Subroutine Greedy.

G1 For i = 0, . . . , k, use algorithm A to (approximately) solve the P2P-orienteering
instance with start node ui, end node wi, node-set N i \

(⋃i−1
j=0 P j

)
, and length bound

cuiwi
+

⌈
γi

⌉
− 1 (and node rewards {πv}v∈V ′), to obtain a simple path P i (so if

ui = wi, then P i = {ui} or P i = ∅).
Return paths P 0, . . . , P k.
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Subroutine LP-Round.
L1 Let Pi := Pi(ui, wi, N i,

⌈
γi

⌉
− 1) denote the collection of simple ui-wi paths with

creg
ui

-length at most
⌈
γi

⌉
− 1 (so the c-length is at most cuiwi +

⌈
γi

⌉
− 1) and visiting

only nodes from N i. Note that if ui = wi and ui ∈ N i, then Pi consists of only the
trivial singleton path {ui}. Consider the following LP.

max
k∑

i=0

∑
v∈V

πvxi
v (Ap-P)

s.t.
∑

P ∈Pi

zi
P ≤ 1 ∀i = 0, . . . , k (1)

xi
v ≤

∑
P ∈Pi:v∈P

zi
P ∀v ∈ V, ∀i = 0, . . . , k (2)

k∑
i=0

xi
v ≤ 1 ∀v ∈ V (3)

xi
ui

= xi
wi

= 1 ∀i = 0, . . . , k (4)
x, z ≥ 0.

L2 Use Lemma 3.6 to obtain in polytime a solu-
tion (x, z) (with polynomial-size support) such that:
(i)

∑k
i=0

∑
v∈V πvxi

v ≥ OPT Ap-P, (ii)
∑

P ∈Pi:v∈P zi
P ≥ xi

v/α for all v ∈ V

and i = 0, . . . , k, and (iii) (x, z) satisfies the remaining constraints of (Ap-P).
L3 For each i = 0, . . . , k, sample a random path P i ∈ Pi from the {zi

P }P ∈Pi distribution.
Return paths P 0, . . . , P k.

Analysis. The running time stated in Theorem 3.1 follows since k = O(log n∆), and for
each k, we enumerate over all sequences of 2k nodes.

Recall that P ∗ is an optimal solution. Let opt = π(P ∗) be the optimal value. We will
assume in the sequel that we have the right choice of k and the ui, wi nodes. Recall that
u0 = r. That is, w0 is the last node on P ∗ such that creg

u0
(Pu0w0) = 0. Given ui, for i ≥ 0,

we have that ui+1 is the first node v on P ∗ after ui such that creg
ui

(Puiv) ≥ γi, and wi is the
predecessor of ui+1. If there is no such node ui+1, then ui+1 is undefined and wi is the the
end-node of P ∗. Also, k is the largest index such that uk is well defined. Note that k ≥ 0.

We begin by proving Lemma 3.2.

Proof of Lemma 3.2. For any j ∈ {0, . . . , i − 1}, we have that c(P ∗
ujuj+1

) ≥ c(P ∗
ujwj

) +
cwjuj+1 ≥ cujwj + cwjuj+1 and also c(P ∗

ujuj+1
) = creg

uj
(P ∗

ujuj+1
) + cujuj+1 ≥ γj + cujuj+1 ,

where the inequality follows from the definition of uj+1. The visiting time of v ∈ P ∗
uiwi

is
cru0 +

∑i−1
j=0 c(P ∗

ujuj+1
) + cuiv, which, using the above bounds, is at least lbi,v. ◀

Next, Lemma 3.3 shows that the paths Z(ℓ) obtained in step D1.3 are feasible. Since
these paths together cover

⋃k
i=0 Qi, the path Zmax returned in step D1.4 gathers reward at

least π
(⋃k

i=0 Qi
)
/3.

▶ Lemma 3.3. Consider ℓ ∈ {0, 1, 2}, and the path Z(ℓ) computed in step D1.3. For every
Qj that is part of Z(ℓ), and every v ∈ Qj , the visiting time of this occurrence of v in Z(ℓ) is
at most lbj,v ≤ Dv.
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Proof. Consider any Qj that is part of Z(ℓ). So 0 ≤ j ≤ k and j = ℓ mod 3. We argue by
induction on j that the visiting time (in Z(ℓ)) of every node v ∈ Qj is at most lbj,v.

For the base case, when j = ℓ, the visiting time of any v ∈ Qℓ is at most cu0uℓ
+ cuℓv +⌈

γℓ
⌉
− 1 since creg

uℓ
(Qℓ

uℓv) ≤ creg
uℓ

(Qℓ) ≤
⌈
γℓ

⌉
− 1. We can check by inspection that this bound

is always at most lbℓ,v:
for ℓ = 0, the bound is cu0v = lb0,v;
for ℓ = 1, the bound is cu0u1 + cu1v + 1 ≤ lb1,v;
for ℓ = 2, the bound is at most cu0u2 +cu2v +γ2 ≤ (cu0u1 +1)+(cu1u2 +γ)+cu2v ≤ lb2,v.

Now suppose j > ℓ. The visiting time of any v ∈ Qj is at most (visiting time of wj−3) +
cwj−3uj + cujv + γj since the creg

uj
-length of Qj

ujv is at most
⌈
γj

⌉
− 1 ≤ γj . By our induction

hypothesis, the visiting time of wj−3 is at most lbj−3,wj−3 . Since γj ≤ γj−2 + γj−1, we can
upper bound the visiting time of v by(

lbj−3,wj−3 +cwj−3uj−2

)
+

(
cuj−2uj−1 +γj−2)

+
(
cuj−1uj +γj−1)

+cujv ≤ lbj,uj +cujv ≤ lbj,v.

The first inequality is because for any index i ≥ 1, we have lbi,ui
≥ lbi−1,wi−1 + cwi−1ui

and lbi,ui ≥ lbi−1,ui−1 + cui−1ui + γi−1. This completes the induction step and proves the
lemma. ◀

Finally, we prove guarantees for the paths returned by subroutine Greedy and subroutine
LP-Round.

▶ Lemma 3.4 (Follows from [7]). The paths Q0, . . . , Qk returned if we use subroutine Greedy
in step D1.2 satisfy π

(
Q0 ∪ . . . ∪Qk

)
≥ opt/(α + 1).

Proof. Clearly, for each i = 0, . . . , k, we have that P ∗
uiwi
\

(⋃i−1
j=0 Qj

)
is a feasible solution

to the P2P-orienteering instance that is fed as input to algorithm A in iteration i. So for
each i = 0, . . . , k, we have

π
(

Qi \
(i−1⋃

j=0
Qj

))
≥ 1

α
· π

(
P ∗

uiwi
\

(i−1⋃
j=0

Qj
))

. (5)

Adding the above for i = 0, . . . , k yields an inequality whose LHS is π
(
Q0 ∪ . . . ∪Qk

)
, and

whose RHS is at least 1
α ·π

(
P ∗ \ (Q0 ∪ . . .∪Qk)

)
≥ 1

α ·
[
π(P ∗)−π

(
Q0 ∪ . . .∪Qk

)]
. It follows

that π
(
Q0 ∪ . . . ∪Qk

)
≥ π(P ∗)/(α + 1). ◀

Combining Lemma 3.4 with Lemma 3.3 leads to the proof of Theorem 3.1 (a).

Part (b) of Theorem 3.1
We now analyze the paths returned by subroutine LP-Round and prove Theorem 3.1 (b).

We first observe in Claim 3.5 that OPT Ap-P ≥ π(P ∗) = opt. Lemma 3.6 shows that
using our P2P-orienteering approximation algorithm, we can obtain in polytime a solution
(x, z) satisfying the properties stated in step L2. Given this, Lemma 3.7 proves that
the random paths Q0, . . . , Qk returned by subroutine LP-Round satisfy E

[
π

(⋃k
i=0 Qi

)]
≥(

1− e−1/α
)
OPT Ap-P. This yields the randomized guarantee stated in Theorem 3.1 (b). We

then show how to derandomize the algorithm without affecting its guarantee or running time.
The following claim simply observes that, for each i = 0, . . . , k, setting zi

P ∗
uiwi

= 1 and xi

to be the indicator vector of the node-set of P ∗
uiwi

yields a feasible solution to (Ap-P).

▷ Claim 3.5. We have OPT Ap-P ≥ π(P ∗).
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Lemma 3.6 proves the main result regarding the polytime solvability of (Ap-P). Its proof
is a bit technical, and is deferred to the end of this section.

▶ Lemma 3.6. Using algorithm A, we can obtain in polynomial time a solution (x, z)
such that: (i)

∑k
i=0

∑
v∈V πvxi

v ≥ OPT Ap-P, (ii)
∑

P ∈Pi:v∈P zi
P ≥ xi

v/α for all v ∈ V and
i = 0, . . . , k, and (iii) (x, z) satisfies the remaining constraints of (Ap-P).

▶ Lemma 3.7. The paths Q0, . . . , Qk returned if we use subroutine LP-Round in step D1.2
satisfy E

[
π

(⋃k
i=0 Qi

)]
≥

(
1− e−1/α

)
OPT Ap-P.

Proof. Defining ρv := Pr[v ∈ (Q0 ∪ . . . ∪ Qk)] for v ∈ V , we have E
[
π

(⋃k
i=0 Qi

)]
=∑

v∈V πvρv. The paths Q0, . . . , Qk are chosen independently, and Pr[v ∈ Qi] ≥ xi
v/α for

each v ∈ V (by Lemma 3.6 (ii)). So for every v ∈ V , we have

ρv ≥ 1−
k∏

i=0

(
1− xi

v

α

)
≥ 1−

(
1−

∑k

i=0
xi

v/α

k

)k

≥
[
1−

(
1− 1

αk

)k
]
·

k∑
i=0

xi
v ≥

(
1−e−1/α

) k∑
i=0

xi
v

which proves the lemma. The second inequality above follows from the AM-GM inequality,
and the third uses the fact that the function f(x) = 1 −

(
1 − x

k

)k is concave, and so
f(x) ≥ x · f(1/α)−f(0)

1/α for all x ≤ 1/α. ◀

Finishing up the proof of Theorem 3.1 (b). We first prove the randomized guarantee.
The expected value of the solution returned is E

[
maxP ∈Q π(P )

]
, which is at least

maxP ∈Q E
[
π(P )

]
. We lower bound the latter quantity by focusing on the path in Q

returned for the right choice of k and the ui-wi nodes.
Fixing this choice, Claim 3.5 and Lemma 3.7 show that E

[
π

(⋃k
i=0 Qi

)]
≥

(
1 −

e−1/α
)
π(P ∗). Since the Z(ℓ) paths for ℓ = 0, 1, 2 are feasible (Lemma 3.3) and together cover⋃k

i=0 Qi, the path Zmax returned in step D1.4 satisfies E
[
π(Zmax)

]
≥ 1−e−1/α

3 · π(P ∗).

Derandomization. The above guarantee can be easily derandomized. We use randomization
only in sampling, for each i = 0, . . . , k independently, a random path Qi from a polynomial-
size distribution of ui-wi paths. Let Ci denote the support of this distribution, and for P ∈ Ci,
let λi

P denote the probability of choosing path P . The quantity of interest that determines
the performance guarantee is Φ0 = Φ(λ0, . . . , λk) := E

[
π

(⋃k
i=0 Qi

)]
. For P ∈ Ci, let 1P be

the distribution that chooses P deterministically with probability 1. We show how to deter-
ministically choose the Qis so that Φ(1Q0 , . . . ,1Qk ) ≥ Φ0. We have Φ =

∑
v∈V πvρv, where

ρv = ρ0,v + (1− ρ0,v)ρ1,v + . . . + (1− ρ0,v)(1− ρ1,v) · · · (1− ρk−1, v)ρk,v,

and ρi,v = ρi,v(λ0, . . . , λk) =
∑

P ∈Ci

λi
P ∀i = 0, . . . , k.

It is evident that each ρv is linear in λi, and therefore Φ is linear in λi. Therefore, to
derandomize: (1) we choose Q0 ∈ C0 so that Φ(1Q0 , λ1, . . . , λk) ≥ Φ0; (2) given that
we have chosen Q0, . . . , Qi−1, we choose Qi ∈ Ci so that Φ(1Q0 , . . . ,1Qi , λi+1, . . . , λk) ≥
Φ(1Q0 , . . . ,1Qi−1 , λi, . . . , λk). ◀

Proof of Lemma 3.6. Since (Ap-P) has an exponential number of variables, we consider the
dual (Ap-D). The dual has polynomially many constraints corresponding to the polynomially
many xi

v primal variables, and an exponential number of constraints corresponding to the zi
P

primal variables. Using standard ideas (see, e.g., [13]), we show that we can use algorithm A
to approximately separate over these exponentially many constraints, and hence leverage
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the ellipsoid method to obtain the desired primal solution. Let θi ≥ 0 and µi
v ≥ 0 denote

respectively the dual variables corresponding to constraints (1), (2). The dual constraints
corresponding to the zi

P variables are:∑
v∈P

µi
v ≤ θi ∀i = 0, . . . , k, ∀P ∈ Pi (P2P)

For b ≥ 0, we let (P2Pb) denote (P2P) with the RHS changed to θi/b. The effect of this
on the primal is that it changes the RHS of (1) to b; let (Ap-Pb) denote (Ap-P) with this
modified version of (1).

We focus on constraints (P2P) and do not explicitly write down the remaining (polyno-
mially many) dual constraints (including nonnegativity constraints); we collectively denote
these constraints by (Ap-D-*). Letting β denote the remaining dual variables, the objective
function of (Ap-D) is of the form

∑k
i=0 θi + hT β, where h is a fixed vector.

Define K(ν; b) :=
{

(β, µ, θ) : µ, θ ≥ 0, (Ap-D-*), (P2Pb),
∑k

i=0 θi + hT β ≤ ν
}

. Note
that the optimal value of the dual, and hence (Ap-P), is the smallest ν such that K(ν; 1) ̸= ∅.
Given ν, (β, µ, θ), we can use A to either show that (β, µ, θ) ∈ K(ν; 1), or find a hyperplane
separating (β, µ, θ) from K(ν; α). We first check if µ, θ ≥ 0, (Ap-D-*) and

∑k
i=0 θi +hT β ≤ ν

hold, and if not use the violated inequality as the separating hyperplane. Next, for each
i = 0, . . . , k, we run A on the P2P-orienteering instance with start and end nodes ui, wi

respectively, length bound cuiwi
+

⌈
γi

⌉
− 1, and node-rewards {µi

v}v∈V ′ . If for some i, we
obtain a path P ∈ Pi with reward greater than θi/α, then we return

∑
v∈P µi

v ≤ θi/α as
the separating hyperplane. Otherwise, for all i = 0, . . . , k and all P ∈ Pi, we know that∑

v∈P µi
v ≤ θi, and so (β, µ, θ) ∈ K(ν; 1). Thus, for a fixed ν, in polynomial time, the

ellipsoid method either certifies that K(ν; α) = ∅, or returns a point (β, µ, θ) ∈ K(ν; 1).
It is easy to find an upper bound UB such that K(UB; 1) ̸= ∅. For a given ϵ > 0, we

use binary search in the range [0, UB] to find ν∗ such that the ellipsoid method when run
for ν∗ (with the above separation oracle) returns (β∗, µ∗, θ∗) ∈ K(ν∗; 1), and when run for
ν∗ − ϵ certifies that K(ν∗ − ϵ; α) = ∅. Since K(ν∗; 1) ̸= ∅, we have that OPT Ap-P ≤ ν∗, and
K(ν∗ − ϵ; α) = ∅ implies that the optimal value of (Ap-Pα) is at least ν∗ − ϵ. For ν∗ − ϵ, the
inequalities returned by the separation oracle during the execution of the ellipsoid method
together with the inequality

∑k
i=0 θi + hT β ≤ ν∗ − ϵ yield a polynomial-size certificate for

the emptiness of K(ν∗ − ϵ; α). By duality (or Farkas’ lemma), this implies that if we restrict
(Ap-Pα) to only use the (polynomially many) zi

P variables corresponding to the violated
inequalities of type (P2Pα) returned during the execution of the ellipsoid method, we obtain
a polynomial-size feasible solution (x, ẑ) to (Ap-Pα) of value at least ν∗− ϵ. If we take ϵ to be
inverse exponential in the input size, this also implies (x, ẑ) has value at least ν∗ ≥ OPT Ap-P.
Finally, setting z = ẑ/α, we obtain that (x, z) has the desired properties. ◀

▶ Remark 3.8. It is worthwhile to note that none of our arguments above rely on the symmetry
of the underlying metric, and so the reduction in Theorem 3.1 also holds in asymmetric
metrics. Given an asymmetric metric {cu,v}u,v∈V ∪{r}, we define regret distances in the same
way – creg

u (v, w) := cu,v + cv,w − cu,w – and they continue to form an asymmetric metric.

▶ Remark 3.9. In step D1, we only need to let k go up to logγ Dmax (where Dmax :=
maxv Dv ≤ n∆), and so the running time is O

(
nlog Dmax

)
. Also, for any integer c ≥ 1, we

can obtain an O(c)-approximation in O
(
c · n

log Dmax
c

)
time, as follows. We divide the indices

0, 1, . . . , k (where k ≤ logγ Dmax) groups of (roughly) k
c consecutive indices, essentially run

our algorithm for each group separately, and return the best solution found. To elaborate, for
a group {a, a + 1, . . . , b}, we guess the corresponding nodes ua, wa, . . . , ub, wb, and obtain a
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ui-wi path Qi for each i ∈ {a, . . . , b} such that creg
ui

(Qi) ≤
⌈
γi

⌉
−1, and (Qa∪ . . .∪Qb) obtains

reward Ω
(
π(P ∗

uawb
)
)
. Since we are considering each group in isolation and do not know

the uj , wj nodes for j < a, we need to define lbi,v differently now (which then specifies the
node-set N i that Qi is allowed to visit); we now define lbi,v :=

∑a−1
j=0 γj +

∑i−1
j=a max{cujwj +

cwjuj+1 , cujuj+1 +γj}+cuiv. Similar to before, for ℓ ∈ {0, 1, 2}, we define Z(ℓ) as the path with
node-sequence r, {Qj}a≤j≤b:j−a=ℓ mod 3, and it is not hard to mimic the earlier arguments
to infer that each Z(ℓ) is a feasible deadline-TSP solution.

Note that taking c = logγ Dmax, this shows that the best of the r, Qi-paths, for i =
0, . . . , logγ Dmax yields a (very simple) O(log Dmax)-approximation in polynomial time.

▶ Remark 3.10. There are a couple of ways of improving the efficiency of algorithm LP-Round,
while incurring some associated loss of approximation factor. First, as noted earlier, Friggstad
and Swamy [14] gave a polynomial-size LP-relaxation for P2P orienteering, and an LP-
rounding 6-approximation algorithm for P2P orienteering. Their algorithm explicitly yields
the distributional guarantee proved in Lemma 3.6, namely, it returns a (polynomial-support)
distribution of P2P-orienteering solutions that visits each node with probability at least
xi

v/6, where xi
v has the same meaning as above (see Section 5). One could replace the

exponential-size LP (Ap-P) in algorithm LP-Round with their compact LP, and sample
paths from the distribution output by their algorithm. This yields a much more efficient
guarantee relative to an LP upper bound, but the approximation guarantee degrades to

3
1−e−1/6 ≈ 19.542. (While this is worse than the guarantee obtained using Greedy and the
(2 + ϵ)-approximation for orienteering [6], the benefit is that this guarantee is with respect to
an LP upper bound; also, the orienteering algorithm in [14] is simpler than the one in [6].)

Second, one can replace the use of the ellipsoid method to approximately solve (Ap-P)
by the multiplicative-weights method, incurring a small loss in approximation.

4 Extensions

Our techniques can be applied to handle various extensions, including monotone-reward TSP,
which we discuss here, and some other extensions that we discuss in Section 4.2.

4.1 Monotone-reward TSP
Recall that in monotone-reward TSP, each node v has a non-increasing reward function
πv : R+ 7→ R+, where we set πr(x) = 0 for all x for notational ease. We overload notation,
and for a rooted path P , we now define π(P ) :=

∑
v∈P πv(cP (v)), and call this the reward

of P . The goal is to find a simple rooted path that obtains maximum reward. Each πv(.)
function is specified via a value oracle, and we treat each call to this oracle as an elementary
operation. Recall that we assume that cuv is an integer for all u, v ∈ V ∪ {r}.

We show that monotone-reward TSP can be reduced to deadline TSP. This reduction
incurs a slight loss and increases the size of the instance. We also show that the algorithms
and analysis from Section 3 carry over easily to monotone-reward TSP.

▶ Theorem 4.1.
(1) For any ϵ > 0, given a monotone-reward TSP instance I with n clients, we can ob-

tain in polytime a deadline-TSP instance I ′ with O
(

n
ϵ · log n

ϵ

)
clients such that an

α-approximation for I ′ yields an α/(1− 2ϵ)-approximation to I.
(2) The algorithms for deadline TSP described in Section 3 can be easily adapted to monotone-

reward TSP and yield the same guarantees as those stated in Theorem 3.1.
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Proof of part (1) of Theorem 4.1. Recall that ∆ is the diameter of the metric. In any
simple rooted path, each client is visited by time n ·∆; so we define πv(t) = 0 for all t > n∆
for notational ease. In the deadline-TSP instance, we use the same metric, but for each node
v ∈ V and every time t ∈ {0, 1, . . . , n∆}, we create a co-located client (v, t) with deadline
t and reward πv(t)− πv(t + 1) (which is nonnegative since πv(.) is non-increasing). Thus,
if v is visited at time t in the original graph, then we collect reward πv(t) in total from its
co-located clients (v, t), (v, t + 1), . . .. This is a lossless, but pseudo-polytime, reduction.

To make this efficient, we apply a geometric bucketing idea on the rewards. Consider a
fixed ϵ > 0. Observe that LB := maxv∈V πv(crv) is the maximum reward that any solution
can collect from node v. Also, we can obtain a path with reward at least LB by considering
the path r, v for the node v that attains the maximum. We we have LB ≤ optI ≤ n · LB,
where optI is the optimal value for the monotone-reward TSP instance I. Now for each
v ∈ V , instead of creating n · ∆ co-located clients, we consider each integer i ≥ 0 such
that (1 − ϵ)i ≥ ϵ

n ; note that there are at most O
( 1

ϵ · log n
ϵ

)
such values. For each such

i, we use binary search (using the value oracle) to find the largest integer tv,i such that
πv(tv,i) ≥ (1− ϵ)i · LB. In the deadline TSP instance I ′, we create a client located at v with
deadline tv,i and reward (1− ϵ)i · LB− (1− ϵ)i+1 · LB. So, if a path reaches location v by
time tv,i it will collect reward at least (1− ϵ)i · LB− ϵ

n · LB.
Let P ∗ be an optimum monotone-reward TSP solution. Consider the value of P ∗ as a

solution to the new deadline-TSP instance. Consider each v on P ∗, and say v was visited
at time t along P ∗. We know that πv(t) ≤ LB. Let i be the smallest integer such that
(1 − ϵ)i · LB ≤ πv(t); so we also have (1 − ϵ)i · LB ≥ (1 − ϵ)πv(t). By the construction of
I ′, we know that tv,i ≥ t, and so we collect total reward at least (1 − ϵ)i · LB − ϵ

n · LB ≥
(1− ϵ)πv(t)− ϵ

n · LB from the clients co-located at v. So the total reward of P ∗ when viewing
it as a deadline-TSP solution is at least (1− ϵ) · optI − ϵ · LB ≥ (1− 2ϵ) · optI .

Conversely, any deadline-TSP solution P ′ when viewed as a monotone-reward TSP
solution produces at least as much reward, since for any time t and any client v, πv(t) is at
least the total reward that will be collected in instance I ′ by visiting the clients located at v at
time t. Therefore, a solution to instance I ′ of value at least optI′/α yields a monotone-reward
TSP solution with value at least 1−2ϵ

α · optI . ◀

Proof of part (2) of Theorem 4.1
We briefly sketch the changes to the algorithms and analyses from Section 3. The only
changes to Algorithm 1 involve changes to the constituent subroutines Greedy and LP-Round,
and entail figuring out what fixed node rewards to use when we consider a P2P-orienteering
instance in step G1, or in LP (Ap-P). (As before, P ∗ denotes an optimal solution, and the
right choice of ui, wi nodes continues to be as defined in Section 3; consequently Lemma 3.2
continues to hold. Also, steps D1.4 and D2 hold as is, given our modified definition of the
reward of a path.)

Two observations guide the choice of rewards we use in step G1 and in (Ap-P). First, we
know that the visiting time of a node v ∈ P ∗

uiwi
is at least lbi,v. Second, suppose for each i,

we obtain a ui-wi path Qi with creg
ui

(Qi) ≤
⌈
γi

⌉
− 1 and construct the paths {Z(0), Z(1), Z(2)}

as in step D1.3; then, by Lemma 3.3, for every Z(ℓ), every Qj ⊆ Z(ℓ), and every v ∈ Qj ,
we know that the visiting time of this occurrence of v is at most lbi,v. Consequently, in
subroutine Greedy and subroutine LP-Round, we use the node rewards {πv(lbi,v)}v∈V ′ for
the i-th orienteering instance; also, the node-set N i is now simply V . Let (MRAp-P) denote
the resulting analogue of (Ap-P), where the coefficient multiplying xi

v in the objective is now
πv(lbi,v).
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Essentially, all the statements proved for deadline TSP hold here as well, with minor
notational tweaks, and for mostly the same reasons. (Recall that for a rooted path P , we
now define π(P ) :=

∑
v∈P πv(cP (v)), and call this the reward of P .)

Algorithm Greedy is unchanged, and the guarantee of Lemma 3.4 still holds, but it needs
to be stated more precisely, and its proof needs to be tweaked. The modified statement is
that we have

∑k
i=0

∑
v∈Qi\(Q0∪...∪Qi−1) πv(lbi,v) ≥ opt/(α + 1). In the proof, in place of (5),

for all i = 0, . . . , k, we now have

∑
v∈Qi\(

⋃i−1
j=0

Qj)

πv(lbi,v) ≥ 1
α
·

∑
v∈P ∗

uiwi

v /∈
⋃i−1

j=0
Qj

πv(lbi,v) ≥ 1
α
·
[ ∑

v∈P ∗
uiwi

πv

(
cP ∗(v)

)
−

∑
v∈P ∗

uiwi

v∈
⋃i−1

j=0
Qj

πv(lbi,v)
]

(6)

Consider adding, for all i = 0, . . . , k, the inequality in (6) involving the LHS of (6) and the final
RHS of (6). The LHS of the resulting inequality is

∑k
i=0

∑
v∈Qi\(Q0∪...∪Qi−1) πv(lbi,v). For a

node v, consider its total contribution (across all i) to the negative terms on the final RHS of
(6). Node v gets counted at most once among all these negative terms, and if i is the smallest
index such that v ∈ Qi, then the negative term where v is counted is due to some index j > i,
and so is at least −πv(lbi,v). Therefore, the total contribution of the negative terms on the
RHS is at least − 1

α ·
∑k

i=0
∑

v∈Qi\(Q0∪...∪Qi−1) πv(lbi,v). Thus, adding (6) for all i = 0, . . . , k

and simplifying yields the inequality
∑k

i=0
∑

v∈Qi\(Q0∪...∪Qi−1) πv(lbi,v) ≥ opt/(α + 1).
Subroutine LP-Round is also unchanged, except for the change in (Ap-P) due to the above-

mentioned node rewards and since N i = V . The new LP (MRAp-P) can be approximately
solved as in Lemma 3.6. Let x denote the values of the xv

i variables in the solution so
obtained. Then we have z such that the objective value of (x, z) is at least OPT (MRAp-P),∑

P ∈Pi:v∈P zi
P ≥ xi

v/α for all v ∈ V and i = 2, . . . , k, and (x, z) satisfies the remaining
constraints of (MRAp-P).

Claim 3.5 gets replaced by

k∑
i=0

∑
v∈V

πv(lbi,v)xi
v ≥

k∑
i=0

∑
v∈P ∗

uiwi

πv(lbi,v) ≥
∑

v∈P ∗

πv(cP ∗(v)) = opt (7)

The guarantee of Lemma 3.7 still holds, but it needs to be stated more precisely and requires
a different proof, which we defer to the end of this section.

▶ Lemma 4.2. For each i = 0, . . . , k, let Qi be a random path obtained such that Pr[v ∈
Qi] ≥ xi

v/α for all v ∈ V , for some α ≥ 1. Then

E
[ k∑

i=0

∑
v∈Qi\(Q2∪...∪Qi−1)

πv(lbi,v)
]
≥

(
1− e−1/α

)
·
( k∑

i=0

∑
v∈V

πv(lbi,v)xi
v

)
.

To finish up the analysis, as before we lower bound maxℓ=0,1,2 E
[
π(Z(ℓ))

]
. Since

Lemma 3.3 continues to hold, for every node v, we know that if i is the smallest in-
dex such that v ∈ Qi, then v is visited by some path Z(ℓ) by time lbi,v. Therefore,
maxℓ=0,1,2 E

[
π(Z(ℓ))

]
≥ 1

3 · E
[∑k

i=0
∑

v∈Qi\(Q2∪...∪Qi−1) πv(lbi,v)
]
. Combining this with

Lemma 4.2 and (7), we obtain the same approximation guarantee as in part (b) of Theo-
rem 3.1.

Finally, the derandomization also proceeds as before. Let Ci denote the polynomial-size
support of the distribution from which the ui-wi path Qi is sampled, and let λi

P denote
the probability of choosing a path P ∈ Ci. We are now interested in the quantity Φ0 =



Z. Friggstad and C. Swamy 67:17

Φ(λ0, . . . , λk) := E
[∑k

i=0
∑

v∈Qi\(Q2∪...∪Qi−1) πv(lbi,v)
]
. We now have Φ =

∑
v∈V rewdv,

where

rewdv = ρ0,vπv(lb0,v) + (1− ρ0,v)ρ1,vπv(lb1,v) + . . . +
( k∏

i=0
(1− ρi,v)

)
ρk,vπv(lbk,v), and

ρi,v = ρi,v(λ0, . . . , λk) =
∑

P ∈Ci

λi
P ∀i = 0, . . . , k.

Since each rewdv is linear in λi for all i, as before, we can deterministically choose Qis for all
i so that Φ(1Q0 , . . . ,1Qk ) ≥ Φ0.

Proof of Lemma 4.2. The following claim will be useful.

▷ Claim 4.3. Let a1 ≥ a2 ≥ . . . ≥ aq ≥ aq+1 := 0. Let y ∈ [0, 1]q, and t ≥
∑q

i=1 yi. Define
F (y1, . . . , yq) := y1a1 + (1 − y1)y2a2 + . . . + (1 − y1)(1 − y2) · · · (1 − yq−1)yqaq. We have:

(i) F (y) ≥ (1− e−t) ·
∑q

i=1
aiyi

t ; and (ii) F (z) ≤ F (y) for any z such that 0 ≤ z ≤ y.

Proof. The proof of part (i) follows from elementary arguments (see, e.g., [11]). For any
i = 1, . . . , q, we have

y1 + (1 − y1)y2 + . . . + (1 − y1)(1 − y2) · · · (1 − yi−1)yi =
(

1 − (1 − y1)(1 − y2) · · · (1 − yi)
)

≥ 1 −
(

1 −
∑i

j=1
yj

i

)i

≥
[

1 −
(

1 − t
i

)i
]

·
∑i

j=1 yj

t
≥

(
1 − e−t

)
·

∑i

j=1 yj

t

The first inequality is the AM-GM inequality, the second uses the fact that the function
f(x) = 1−

(
1− x

i

)i is concave, and so f(x) ≥ x · f(t)−f(0)
t for x ≤ t. That is, we have

y1 + (1− y1)y2 + . . . + (1− y1)(1− y2) · · · (1− yi−1)yi ≥
(
1− e−t

)
·

∑i
j=1 yj

t
(8)

Multiplying (8) by ai − ai+1 and adding the resulting inequalities for i = 1, . . . , q yields the
stated bound.

Part (ii) follows from the fact that

∂F

∂yi
= (1−y1) · · · (1−yi−1)

[
ai−

(
ai+1yi+1+(1−yi+1)yi+2ai+2+. . .+(1−yi+1) · · · (1−yq−1)yqaq

)]
which is nonnegative since ai ≥ ai+1, . . . , aq. ◁

We now have everything to prove Lemma 4.2. Let ρi
v := Pr[v ∈ Qi] for v ∈ V , and

i = 0, . . . , k. Let Φ denote the quantity on the LHS of the inequality in the lemma. Since
Q0, . . . , Qk are chosen independently, we have Φ =

∑
v∈V rewdv, where

rewdv = ρ0,vπv(lb0,v) + (1− ρ0,v)ρ1,vπv(lb1,v) + . . . +
( k∏

i=0
(1− ρi,v)

)
ρk,vπv(lbk,v)

≥ x0
v

α · πv(lb0,v) +
(

1− x0
v

α

)
x1

v

α · πv(lb1,v) + . . . +
( k∏

i=0

(
1− xi

v

α

))
xk

v

α · πv(lbk,v).

The inequality follows from part (ii) of Claim 4.3 since ρi
v ≥ xi

v/α for all i = 0, . . . , k.
Applying Claim 4.3 with ai = πv(lbi,v) and yi = xi

v

α for all i = 0, . . . , k, and t = 1
α , we

therefore obtain that rewdv ≥
(
1− e−1/α

) ∑k
i=0 πv(lbi,v)xi

v. It follows that Φ ≥
(
1− e−1/α

)
·(∑k

i=0
∑

v∈V πv(lbi,v)xi
v

)
. ◀
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4.2 Further extensions of Deadline TSP

Point-to-point {deadline, monotone-reward} TSP. In the point-to-point (P2P) version
of {deadline, monotone-reward} TSP, in addition to the root node r, we are also given an
end-node t and a length-bound B. The goal is to find an r-t path of length at most B that
collects maximum reward.

The P2P-version easily reduces to the standard version of the problem. For deadline TSP,
we can incorporate the above requirements by modifying the deadline of each node v ∈ V ′ to
Dnew

v := min{Dv, B − cvt}. If P is a rooted path ending at a node s such that all v ∈ P are
visited by time Dnew

v , then P ′ = P, st is an r-t path such that all v ∈ P ′ are visited by time
Dv, and c(P ′) ≤ Dnew

s + cst ≤ B.
Similarly, for monotone-reward TSP, we modify the reward function of each v ∈ V ′ to

πnew
v (x) = πv(x) if x ≤ B − cvt, and 0 if x > B − cvt. As before if P is an r-s path earning a

certain modified reward, then P ′ = P, st is an r-t path of length at most B earning the same
reward.

TSP with release dates, and TSP with increasing rewards. In TSP with release dates,
each node v has a release date relv instead of a deadline, and we have a length bound B. A
feasible solution is a rooted path P , and a traversal of P starting from the root node where
we are allowed to also wait at nodes, so that the visiting time of each node v ∈ P is at least
relv and at most B; we seek a feasible solution that gathers maximum reward. Set relr = 0
for notational convenience.

As noted in [2], this can be reduced to deadline TSP as follows. If P is a feasible solution
ending at node t, then we must have relt ≤ B and c(Pvt) ≤ B− relv for all v ∈ P . Conversely
any r-t path P with c(Pvt) ≤ B − relv for all v ∈ P yields a feasible solution, where we
wait at r for B − c(P ) time and then traverse P without any subsequent waiting. We thus
infer that we seek a feasible solution to P2P-deadline TSP (and hence deadline TSP) with
start node t, end-node r, length bound B, and deadlines {B − relv}v∈V ′ . Trying all possible
choices of t completes the reduction.

Analogous to how monotone-reward TSP generalizes deadline TSP, we can consider a
generalization of TSP with release dates wherein each node v has a non-decreasing reward
function πv : R+ 7→ R+, and we seek a rooted path P with c(P ) ≤ B, and a traversal of P

that yields maximum reward. As above, if we know the end-node t of an optimal solution,
then this reduces to solving an instance of P2P monotone-reward TSP, where we seek a path
starting at t and ending at r path of length at most B, and the reward of node v is given by
the non-increasing function π′

v(x) = πv(B − x).

Orienteering with time windows. Chekuri et al. [6] obtain (among other results) an
O

(
max{log opt, log Lmax

Lmin
}
)
-approximation for orienteering with time windows, where opt is

the optimal value, and Lmax and Lmin are the lengths of the longest and shortest time
windows with non-zero length. The log opt term in their guarantee is because they use
the logarithmic approximation of [2] for deadline TSP.3 Replacing this algorithm with our
deadline-TSP algorithm therefore yields an O

(
log Lmax

Lmin

)
-approximation for orienteering with

time windows in O
(
nlog n∆)

time.

3 Chekuri et al. [6] work with {0, 1}-rewards, and in this setting, the approximation factor obtained in [2]
for deadline TSP can be seen to be O(log opt).
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5 LP-rounding algorithm for P2P-orienteering in [14]

We briefly discuss the LP-rounding algorithm for P2P-orienteering by Friggstad and
Swamy [14] that directly yields the distributional guarantee utilized in subroutine LP-Round.
Recall that (V ′ = {r} ∪ V, c) is the underlying metric, and our P2P-orienteering instance I
is specified by node-set N ⊆ V ′, start and end-nodes s, t ∈ N respectively, length-bound B,
and node-rewards {πv}v∈N .

Let D = (N, A) denote the complete (bidirected) graph on N , where the cost of an arc
(u, v) ∈ A is set to cuv; thus c induces a metric on D. Let P ∗ be an optimal solution to I.
The idea underlying the LP relaxation is to “guess” the node v ∈ P ∗ that maximizes csv + cvt.
The LP then searches for an s ⇝ v path and a v ⇝ t path – encoded by requiring an s-v
flow and v-t flow of value 1 – that visit only nodes u ∈ N such that csu + cut ≤ csv + cvt,
have total length at most B, and together earn the maximum reward. Also, we replace
the “guessing” step by having indicator variables zv

v to denote if v is the node on P ∗ with
maximum csv + cvt value.

This leads to the following LP. For every v ∈ N , we have the following set of variables
(in addition to zv

v ). We use xv ∈ [0, 1] to denote the extent to which v is visited. We let
ysv denote an s-v flow of value zv

v , and yvt denotes a v-t flow of value xv
v. We impose

that ysv
(
δin(u)

)
= yvt

(
δin(u)

)
= 0 whenever csu + cut > csv + cvt. We use zsv

u and zvt
u to

denote respectively the s⇝ u connectivity under xsv and the v ⇝ u connectivity under xvt.
So in an integral solution, zsv

u and zvt
u indicate respectively if u lies on the s-v portion or

the v-t portion of the optimum path. We connect the x and z variables by imposing that
xu =

∑
v∈N (zsv

u + zvt
u ) for every u ∈ N . For nodes v, p, q ∈ N , and κ ≥ 0, define

Fv(p, q, κ) :=
{

y ∈ RA
+ : y

(
δout(p)

)
= κ = y

(
δin(q)

)
, y

(
δin(p)

)
= 0 = y

(
δout(q)

)
y
(
δin(w)

)
− y

(
δout(w)

)
= 0 ∀w ∈ V ′ \ {p, q}

y
(
δin(w)

)
= 0 ∀w ∈ V ′ : csw + cwt > csv + cvt

}
Note that if κ > 0, then F(u, u, κ) = ∅ for every u.

max
∑

u,v∈N

πuxu (P2P-O)

s.t. ysv∈Fv(s, v, zv
v ), yvt∈Fv(v, t, zv

v ) ∀v ∈ N

ysv
(
δin(S)

)
≥ zsv

u ∀v ∈ N, S ⊆ N \ {s}, u ∈ S (9)
yvt

(
δin(S)

)
≥ zvt

u ∀v ∈ N, S ⊆ N \ {v}, u ∈ S (10)∑
a∈A

ca(ysv
a + yvt

a ) ≤ Bzv
v ∀v ∈ N (11)∑

v∈N

(zsv
u + zvt

u ) = xu ∀u ∈ N (12)∑
v∈N

zv
v = 1, y, z ≥ 0, x ∈ [0, 1]N .

As noted in [14], we can rephrase the cut constraints (9), (10) using additional flow variables
and constraints to obtain a polynomial-size formulation.

Friggstad and Swamy [14] devise the following algorithm for rounding an LP solution
(x, y, z). They show that for each v ∈ N , we can utilize ysv to obtain a polynomial collection
of s-rooted paths, and weights for these paths such that:
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(i) if a path P in the collection ends at a node u, then P ′ = P, ut is an s-t path with
c(P ′) ≤ B;

(ii) the total weight of paths in the collection is at most 3zv
v ; and

(iii) the total weight of paths containing a node u is at least zsv
u , for all u ∈ N .

Similarly, we can utilize yvt to obtain a suitable weighted collection of paths, each of which
yields an s-t path of length at most B. Taking these collections for all v ∈ N , we obtain
that the total weight of paths is at most 6, and for each u ∈ N , the total weight of paths
containing u is at least

∑
v(zsv

u + zvt
u ) = xu. The distribution obtained by scaling the weights

by 6 yields the desired distribution.
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Abstract
With a wide range of applications, stochastic matching problems have been studied in different
models, including prophet inequality, Query-Commit, and Price-of-Information. While there have
been recent breakthroughs in all these settings for bipartite graphs, few non-trivial results are known
for general graphs.

In this paper, we study the random order vertex arrival contention resolution scheme for matching
in general graphs, which is inspired by the recent work of Ezra et al. (EC 2020). We design an
8

15 -selectable batched RCRS for matching and apply it to achieve 8
15 -competitive/approximate

algorithms for all the three models. Our results are the first non-trivial results for random order
prophet matching and Price-of-Information matching in general graphs. For the Query-Commit
model, our result substantially improves upon the 0.501 approximation ratio by Tang et al. (STOC
2020). We also show that no batched RCRS for matching can be better than 1

2 + 1
2e2 ≈ 0.567-

selectable.
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1 Introduction

Matching is a fundamental object of algorithmic studies, with wide applications. Its recent
use in e-commerce often presents two general features: (i) one does not see the entire
input graph in the beginning, but there is often prior stochastic information on each
edge’s value or presence, thanks to accumulated data from the past; depending on the
application, the actual value/presence is revealed either according to some order or at
the control of the matching algorithm; (ii) in either case, the matching algorithm must
be online – that is, once an edge’s information is revealed, the algorithm must make
an irrevocable decision whether to include the edge in the matching. Examples of such
applications include online advertisement [26, 10, 25], kidney exchange [9], and ride-sharing
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platforms [4, 19, 20]. Mathematically, this type of scenarios has been modeled as prophet
inequality (e.g. [24]), Query-Commit [9], and Price of Information [27] problems, according
to the way the information is revealed.

The Online Contention Resolution Scheme (OCRS), first proposed by Feldman et al. [14],
is a powerful framework that has found applications in various online decision problems such
as prophet inequalities [14, 13], oblivious posted pricing [7], and stochastic probing [17]. Ezra
et al. [13] recently proposed a generalization of OCRS, that with batched arrivals, and used
it to give prophet inequalities for matching in bipartite graphs when vertices on both sides
arrive online.

Our main results are two-fold. We follow Ezra et al. and define a batched OCRS for
matching in general graphs with vertex arrival, and give the first non-trivial such OCRS for
random arrival order. We then give an alternative perspective on Gamlath et al. [15]’s recent
progress for the Query-Commit and Price of Information problems on bipartite matching;
viewing their algorithms as reductions to batched OCRS with random batched arrivals, we
immediately obtain similar reductions and consequently the first non-trivial results for the
Query-Commit and Price of Information problems for matching in general graphs. Before
elaborating on these results, we give more background on the connection between contention
resolution schemes and online decision problems, and motivate the batched OCRSs we study.

Contention Resolution Schemes (CRSs) are first proposed as rounding algorithms in
submodular maximization [8]. Such an algorithm treats a fractional solution x as a product
distribution, samples elements according to it so that each element i is active independently
with probability xi, and selects a feasible subset of active elements, guaranteeing that each
element, when active, is selected with probability at least α > 0, which in turn guarantees
that the selected subset retains performance comparable in expectation to (typically at least
α fraction of) that of x. Such a CRS is said to be α-selectable.

The Online Contention Resolution Schemes (OCRSs) were introduced by Feldman et
al. [14]. Its difference from a CRS is that the algorithm does not see the set of active
elements upfront, but observes each element’s status (of being active or not) one by one
online as each element arrives. Intuitively, in an online stochastic decision problem, the
expected performance of the offline optimal can be calculated as a fractional solution: a
realization of the stochastic procedure gives rise to an optimal (integral) solution, and taking
expectation over the stochastic procedure is equivalent to taking a convex combination
of these solutions, yielding a fractional solution. An online algorithm, to be competitive,
emulates the performance of the fractional solution but only sees partial realizations of the
stochastic procedure in an online fashion. For example, in the prophet inequality problem,
one has prior knowledge in the form of a distribution over the elements’ values, but the
online algorithm only sees an element’s value when it arrives and has to decide immediately
whether to keep the element in the solution.

From this perspective, while Feldman et al. [14]’s setup of OCRS neatly fits the needs of
many online decision problems, for other problems it is natural to go beyond and, as Ezra et
al. [13] did, to consider settings in which (i) the elements arrive not necessarily one by one
but in batches, and (ii) the elements’ being active may not be independent events (which
treats the fractional solution as a product distribution) but correlated ones. Ezra et al. [13]
termed such schemes batched OCRSs. The concrete choices in the batched OCRS should
adapt to the underlying online decision problem being solved.

For example, in online matching, it is often interesting to consider vertex arrival rather
than edge arrival – with vertex arrival, the vertices arrive one by one, and at the arrival
of each vertex, all the edges connecting it to the vertices that have arrived are revealed
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in a batch (i.e., simultaneously), whereas with edge arrival, individual edges arrive one by
one. Correlation in elements’ status (of being active or not) arises naturally when such
batch arrivals are allowed. For example, consider prophet inequalities in bipartite matching
with vertex arrival: in a given graph G = (U, V, E), each edge e ∈ E has a value ve ≥ 0
drawn independently from a given distribution Fe, and the goal is to obtain a matching
with maximum value. The offline (fractional) solution x ∈ [0, 1]E has xe representing the
probability that edge e is in the maximum value matching. In the standard reduction from
edge arrival prophet inequality to OCRS, when an element e arrives and reveals its value ve,
one (re)samples the values of all the other edges according to their distributions, and labels
e active if ve is high enough to make e in the maximum value matching among the sampled
edges. Now with vertex arrival, when vertex v arrives, the information of all edges connecting
v to the vertices that arrived before v is revealed. Let Bv denote this set of edges. It is
natural for the reduction to sample values for all the other edges, and labels at most one
edge in Bv as active if that edge is in the maximum value matching among the (re)sampled
edges. Here, the status of the edges in Bv in the (batched) OCRS are naturally correlated,
even though their values in the original prophet inequality problem are independent.1

The batched OCRS we study in this work precisely results from this reduction, when
the vertices arrive in an order that is uniformly at random. To be precise, we are given a
vector x ∈ [0, 1]E , such that for each vertex v,

∑
e∈δ(v) xe ≤ 1, where δ(v) denotes the set of

edges incident to v. Vertices arrive in an order uniformly at random; when vertex v arrives,
the status of all edge in Bv are revealed: each edge e ∈ Bv is active with probability xe, but
at most one of them is active. If an edge is active, we must decide immediately whether to
select it into the solution. We must keep the set of selected edges a valid matching and, for
as large a constant α > 0 as possible, guarantee that any edge is selected with probability at
least αxe. We refer to such an algorithm an α-selectable batched Random order Contention
Resolution Scheme (RCRS).2 The existence of a 1

2 -selectable batched RCRS is known, after
all, Ezra et al. [13] constructed a simple 1

2 -selectable batched OCRS for arbitrary vertex
arrival order. Their method is very similar to the 1

2 -selectable OCRS for rank 1 matroid due
to Alaei [2]. On the contrary, we were unable to generalize existing RCRS (e.g., [23]) to a
batched RCRS with a selectability better than 1

2 . Instead, we construct an 8
15 -selectable

batched RCRS via a prune-greedy algorithm, which is our main technical result. As with
other settings of RCRS, getting beyond the simplest algorithm is technically involved; in
contrast with most other RCRS with non-trivial selectability guarantees [23, 1], our batched
RCRS is non-adaptive, in the sense that the algorithm’s decision to select an edge does not
depend on the time when it arrives, besides checking the feasibility of selecting it.

We also show that such batched RCRSs find applications beyond prophet inequalities
as in [13]. Recently there is a breakthrough by Gamlath et al. [15] on the Query-Commit
and Price of Information problems, where they gave (1 − 1

e )-approximation algorithms for
both problems by reducing them to the prophet secretary problem in [12, 11]. We notice
that the prophet secretary algorithm can be easily replaced by the (1 − 1

e )-selectable RCRS
for rank 1 matroid in [23] and still resulting a (1 − 1

e )-approximation algorithm. We find
this perspective is not only conceptually simpler, but also powerful in the sense that if we
replace RCRS for rank 1 matroid by our batched RCRS, their algorithms (with a slight
modification) also apply for general graphs. As a result, we show that our batched RCRSs
imply best-known results for Query-Commit and Price of Information for matching in general
graphs.

1 See [13] for details of this reduction.
2 As explained above, batched OCRS as defined by Ezra et al. is more general. Our shorthand term

should cause no confusion, as we consider only one OCRS setting in this work.
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In the Query-Commit matching problem [9], we are given a graph G = (V, E), a
probability pe for each edge e with which e is present, independently of the other edges, and a
value ve of e if e is present. At each step, we may choose to query an edge, but we must take
it if it is present. At all times, we must keep the set of edges taken a valid matching, and our
goal is to maximize the expected sum of values of the edges taken. Gamlath et al. [15] gave
a clever algorithm that is (1 − 1

e )-competitive for bipartite graphs. Their algorithm solves
an offline linear program relaxation and rounds the solution through a prophet secretary
algorithm. We show that this rounding algorithm can be seen as a reduction to a batched
RCRS with random one-sided vertex arrival. This perspective allows us to directly derive an
8

15 -competitive algorithm on general graphs, using our new batched RCRS.
In the same work, Gamlath et al. [15] gave a (1 − 1

e )-approximation algorithm for the
closely related Price of Information (PoI) problem for matching in bipartite graphs. The
PoI problems were introduced by Singla [27] as a generalization of the Pandora’s Box problem
from the consumer search literature [29, 22], which in turn is closely related to Bayesian
bandits. In the PoI problem for matching [15], we are given a graph G = (V, E), a search cost
ce and a value distribution Fe for each edge e. An invisible value ve is drawn independently
from Fe, and is revealed only when the algorithm chooses to search the edge e, at the cost
of ce. Our goal is to maximize, in expectation, the maximum value of matching among
searched edges, minus the search costs paid along the way. From a new proof for the optimal
algorithm for the Pandora’s Box problem, given by Kleinberg et al. [22], surfaced a reduction
from PoI with Bernoulli distributions to Query-Commit. This reduction was generalized
by Singla [27]. Gamlath et al. [15] showed that their algorithm for Query-Commit admits
some modifications that allow it to give a (1 − 1

e )-approximation for the general PoI problem
for bipartite matching. Our perspective of their algorithm as a reduction to RCRS with
random vertex arrival admits the same modifications, and therefore we immediately obtain
an 8

15 -approximation for the PoI problem for matching in general graphs.

Other Related Works. Naturally, the most related work is the recent paper by Gamlath
et al. [15]. They studied the query-commit matching problem and the price-of-information
problem in bipartite graphs and achieved (1 − 1

e ) approximation ratios for both settings.
Their paper has a comprehensive review of the related literature, and we only discuss briefly
some most related works that are not covered there.

A closely related setting is the oblivious matching problem. It is also a query-commit
model, while the input instance is adversarial rather than stochastic. In other words, there
is no information about the existence probabilities of edges. Obviously, results in this harder
model directly apply to our setting. The celebrated Ranking algorithm by Karp et al. [21]
gives a (1 − 1

e )-approximation for the unweighted oblivious matching problem in bipartite
graphs. Later, the Ranking algorithm is extended to general graphs and shown to achieve
an approximation ratio of 0.526 [6]. Another well-studied algorithm in this literature is
called modified randomized greedy. It was introduced by Aronson et al. [3] and shown to be
(0.5 + Ω(1))-approximate in general graphs. The approximation ratio was recently improved
to 0.531 by Tang et al. [28]. For the edge-weighted case, Tang et al. [28] achieved the first
non-trivial 0.501-approximation. As we remarked, this result applies to the Query-Commit
setting studied in our current work, but our approximation ratio is significantly larger.
Moreover, our techniques are entirely different from the previous papers and we believe they
provide novel insights on the problem.
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Offline contention resolution schemes for matchings also achieved some progress recently.
Bruggmann and Zenklusen [5] gave an optimal monotone contention resolution scheme for
bipartite matching with its application to submodular maximization, and Guruganesh and
Lee [18] studied the connection between correlation gap and contention resolution scheme.

Gupta et al. [16] introduced a Markovian price of information model and use online
contention resolution schemes to round the optimum of linear programming. However, as
our RCRS is vertex-arrival model and batched, it can not be directly applied to their result.

2 Preliminaries

Price of Information. In a Price of Information problem, we are given a universe U and a
feasibility system F ⊆ 2U . For each element i ∈ U , we are also given a search cost ci ∈ R+
and a distribution Fi from which an invisible value vi ≥ 0 is independently drawn. In a valid
algorithm for the problem, at each step we may choose to terminate the search or to inquire
a new element i; when we choose to do the latter, we incur a cost ci, and the value vi ∼ Fi

is revealed. At the termination of the algorithm, if S is the set of elements inquired by
the algorithm, our utility is maxA⊆S:A∈F

∑
i∈A vi −

∑
i∈S ci. Our goal is to maximize the

expected utility, where expectation is taken over both the realization of the values and the
internal randomness of our algorithm. In this paper, we focus on the problem where the
universe is the set of edges E in a given graph G = (V, E), and F is the set of all matchings
in E. An algorithm is said to be α-approximation if it achieves at least α fraction of the
optimal utility. That is, we compare to the optimal algorithm.

The Query-Commit Problem for Matching. In a Query-Commit problem, we are given a
universe U , a feasibility system F ⊆ 2U , and, for each element i ∈ U , a probability pi ∈ [0, 1]
and a value vi ≥ 0. Each element i ∈ U is active independently with probability pi, but this
status can be known only via a query. For the Query-Commit problem, at each step our
algorithm can choose to query the status of an element; if the queried element is active, it
must be accepted to the solution. At all time, we need to make sure that the set of accepted
elements is feasible (i.e., in F). Let S be the set of elements accepted by an algorithm by
the time it terminates, the performance of the algorithm is

∑
i∈S vi, the total value of the

accepted elements. An algorithm is α-competitive if its performance is at least α fraction
of the offline optimal, i.e., the expected performance of an algorithm that knows the set of
active elements beforehand. In this work, we focus on the case where the universe U is the
edge set E of a given graph G = (V, E), and F is the set of all matchings in G.

Batched RCRS for Matching in General Graphs. We are given a graph G = (V, E, x),
where x ∈ [0, 1]E satisfies xu

def=
∑

e∈δ(u) xe ≤ 1 for each u ∈ V . All vertices of G arrive
online in a uniformly random order. Upon the arrival of a vertex v, the status of the edges
connecting v and the vertices that have arrived are sampled and revealed to the algorithm.
The sampling is such that, each edge e of these is active with probability xe, and at most one
of these edges can be active; that is, these edges’ being active are mutually exclusive events.
We refer to this sampling scheme as S. A batched random order contention resolution scheme
for matching (henceforth batched RCRS) decides, upon the arrival of each vertex, irrevocably
whether to select the active edge (if any exists). At any point in time, the selected edges
must form a matching. A batched RCRS is c-selectable if Pr[e is selected | e is active] ≥ c

for every e ∈ E.
Throughout the paper, we use δ(u) ⊆ E to denote the set of edges incident to a vertex u.
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3 Batched RCRS for Matching In General Graphs

In this section we give an 8
15 -selectable batched RCRS for matching in general graphs.

3.1 Batched RCRS and Its Proof Sketch
▶ Theorem 1. There is a polynomial-time computable, 8

15 -selectable batched RCRS for
matching in general graphs with random vertex arrival.

Our proof consists of two steps. Given a graph G = (V, E, x). Let S be the corresponding
sampling scheme defined in Section 2. An instance is called 1-regular if xu = 1 for all u. We
refer to xu as the degree of u. Our first lemma states that without loss of generality, we can
focus on designing batched RCRS for 1-regular instances.

▶ Lemma 2. If c-selectable batched RCRS exists for all 1-regular instances, then c-selectable
batched RCRS exists for all instances.

Proof. Assume c-selectable batched RCRS exists for all 1-regular instances. Consider an
arbitrary instance G = (V, E, x), we first convert it into a 1-regular instance G′ by introducing
dummy vertices and edges. Let S be the associated sampling scheme of the instance G. We
correspondingly construct a sampling scheme S′ on G′ from S by simulating the arrival of
dummy vertices. Finally, we apply the c-selectable batched RCRS in the converted 1-regular
instance to achieve c-selectability in the original instance G.

For the first step, there can be multiple ways of converting a graph into a 1-regular graph.
We give a concrete construction below and remark that the reduction does not rely on the
details of the construction. Let n = |V | be the number of vertices of G. We introduce n

dummy vertices into the graph. For each vertex u ∈ V , we add n dummy edges between
u and all dummy vertices, where each edge has active probability x′

e = 1−xu

n . Note that
now every vertex in V has degree 1 and all dummy vertices have the same degree. Finally,
we add a clique to all dummy vertices and set the weight/active probability of those edges
appropriately so that all vertices have degree 1.

Recall G′ is the converted instance and let x′ be the corresponding vector of active
probability. Next, we show how to construct the corresponding sampling scheme S′ from
S. There are 2n time slots in total for vertex arrivals. We select uniformly at random n of
them to pair with n dummy vertices uniformly at random. Upon the arrival of a dummy
vertex, we sample at most one of the edges connecting it to previously arrived vertices with
probability consistent with x′. Upon the arrival of an empty slot, we pair it with the next
vertex arrival in the original instance and call S. If there exists an active edge realized by
S, let it also be active in the new instance. Otherwise, we further sample at most one of
the dummy edges connecting the current vertex to previously arrived dummy vertices with
appropriate probability, so that the overall active probability is consistent with x′. This is
implementable since the degree of each vertex is exactly 1.

Now, we have defined a sampling scheme S′. Together with G′ and x′, it is a 1-regular
instance and we can apply the c-selectable batched RCRS for 1-regular instances. Whenever
an edge of G (i.e., edges between real vertices) is selected by the batched RCRS, we also select
it in the real run of the instance. It is straightforward to verify that this is a c-selectable
batched RCRS for the original instance. ◀

Next, we design an 8
15 -selectable batched RCRS for 1-regular instances.

▶ Lemma 3. For every 1-regular instance, there exists an 8
15 -selectable batched RCRS.
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Before going into the details of our analysis, we present our algorithm and provide a
proof sketch to highlight the essential ideas. The actual proof of Lemma 3 is deferred to
Section 3.3.

Proof Sketch. Consider a 1-regular instance G = (V, E, x). We apply the following prune-
greedy algorithm: 1) Prune the active probability of each edge from xe to f(xe) def= 3xe

3+2xe
; 2)

Run greedy on the pruned instance.
The first step is a preprocessing step and we refer to it as the pruning step. Before the

instance starts, we independently flip a coin for each edge e and decide whether to consider it
later. In particular, an edge e survives with probability f(xe)

xe
and otherwise we would ignore

it regardless being active or not in the future. The second step is just a greedy algorithm,
that always select an active edge if adding it does not violate the matching constraint. This
procedure is equivalent to assuming that each edge is active with probability f(xe) and we
run greedy. For the ease of presentation, in the rest of the proof, we assume that each edge
e is active with probability f(xe). Our specific choice of the function f is to benefit the
analysis, and it be explained in the full proof.

For analysis purpose, we use the following interpretation of the random arrival order
assumption. Let tu be the arrival time of each vertex u ∈ V , that is drawn independently
from U [0, 1]. All vertices arrive in the ascending order of their arrival times.

Fixing an arbitrary edge (u, v) ∈ E, we use v → u to denote the event that edge (u, v) is
selected by our algorithm upon the arrival of vertex v. To prove the selectability, we need a
lower bound on Pr[v → u]. Fixing the arrival time tv = t, since we use a greedy algorithm,
this event happens if 1) u arrives before t; 2) u remains unmatched at t; 3) (u, v) is active.
Thus,

Pr[v → u | tv = t] = Pr[tu ≤ t, u unmatched @t, (u, v) active | tv = t]
= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]
= f(xuv) · (t − Pr[u matched @t | tv = t]) . (∗)

Consider the following warm-up analysis,

Pr[u matched @t | tv = t] =
∑

z ̸=u,v

Pr[(u, z) matched before t | tv = t] ≤
∑

z ̸=u,v

t2f(xuz) ≤ t2,

where the inequality follows since the probability that both u, z arrives before t is t2 and
the edge is matched only if it is active, that happens with probability f(xuz). Applying
this relaxation to equation (∗) and integrating over t gives a simple but weak bound of the
selectablity of our algorithm, where the ratio is smaller than 1

2 . Observe that the warm-up
analysis does not make use of the pruning step, as well as the 1-regularity of the instance.

Instead, we do recursive type of analysis for Pr[(u, z) matched before t | tv = t]:

Pr[(u, z) matched before t | tv = t]

=
∫ t

0

(
Pr[u → z | tu = s, tv = t] + Pr[z → u | tz = s, tv = t]

)
ds. (∗∗)

We can thus expand the term Pr[u → z | tv = t, tu = s] as in (∗), and we would have
a term Pr[z matched before s | tu = s, tv = t] therein. However, since our final goal is to
derive a lower bound of (∗), we need a lower bound of this term rather than an upper bound
as we derived in the warm-up analysis. This is where we use the 1-regularity of the instance.
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Intuitively, the larger the degree of a vertex, the larger the probability it is matched. It is not
difficult to construct a counterexample showing that our prune-greedy algorithm is indeed
worse than 1

2 -selectable for non 1-regular instances. For technical reasons, we also want to
avoid edges with large active probabilities and our pruning step is designed to take care of
such edges.

Roughly speaking, (∗) together with (∗∗) expands Pr[v → u | tv = t] to terms of form
Pr[u → z | tu = s, tv = t]. The formal analysis recursively applies such expansion for
two steps and uses the simple bound in the warm-up analysis in the last step to bound
Pr[j matched @r | tv = t, tu = s, ti = r]. We defer the proof to Section 3.3.

3.2 Hardness

We complement our positive result with a hardness result, showing that no algorithm can be
better than 1

2 + 1
2e2 ≈ 0.567-selectable.

▶ Theorem 4. No batched RCRS for matching is better than ( 1
2 + 1

2e2 )-selectable.

Proof. Consider a complete graph G with n vertices. Each edge e has xe = 1
n−1 . Fix an

algorithm and let yi · n be the number of matched vertices after the arrival of the i-th
vertex, where yi ∈ [0, 1] is increasing and y1 = 0. Notice that all edges are symmetric and
every vertex has degree 1, the selectability of the algorithm is thus upper bounded by E[yn].
Moreover, we have that

E [yi+1 | yi] ≤ yi + 2 ·
(

i

n − 1 − yi

)
,

since we can select an edge only if 1) there exists an active edge, which happens with
probability i

n−1 and 2) the corresponding vertex is unmatched. Taking expectation over yi,
we have that

E [yi+1] − E [yi] ≤ 2 ·
(

i

n − 1 − E [yi]
)

.

When n goes to infinity, the above family of inequalities converges to dzt

dt ≤ 2 · (t − zt), where
zt corresponds to E[y⌊t·n⌋]. Solving the differential equation gives us

zt ≤ t − 1
2 + 1

2e−2t, ∀t ∈ [0, 1] .

Hence, the total portion of matched vertices is upper bounded by z1 ≤ 1
2 + 1

2e2 when n goes
to infinity, that implies no RCRS can be better than

( 1
2 + 1

2e2

)
≈ 0.567-selectable. ◀

3.3 Proof of Lemma 3

Proof of Lemma 3. Fix an edge (u, v), our goal is to lower bound the probability of

Pr[v → u] =
∫ 1

0
Pr[v → u | tv = rv]drv. (1)

As we discussed in the proof sketch, the probability term on the right side can be expanded
as following
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Pr[v → u | tv = rv]
= f(xuv) · (Pr[u arrives before tv] − Pr[u is matched at tv])

= f(xuv) ·

tv −
∑

(u,i)∈E
i ̸=u,v

Pr[(u, i) is selected before tv | tv = rv]


= f(xuv) ·

tv −
∑

(u,i)∈E
i ̸=u,v

(Pr[u → i and tu ≤ tv | tv = rv] + Pr[i → u and ti ≤ tv | tv = rv])

 .

(2)

Since both terms in the right side of (2) are symmetric, we will only show how to upper
bound the first term Pr[u → i and tu ≤ tv | tv = rv]. As explained in the sketch, we further
recursively expand it in essentially the same way as Pr[v → u | tv = rv].

Pr[u → i and tu ≤ tv | tv = rv]

=
∫ tv

0
Pr[u → i | tv = rv, tu = ru]dru

=
∫ tv

0
f(xui)(tu − Pr[i is matched at tu | tv = rv, tu = ru])dru

= f(xui) ·
∫ tv

0

tu −
∑

(i,j)∈E
j ̸=i,u,v

Pr[(i, j) is selected before tu | tu = ru, tv = rv]

 dru

= f(xui) ·
∫ tv

0

(
tu −

∑
(i,j)∈E
j ̸=i,u,v

(Pr[i → j, ti ≤ tu | tu = ru, tv = rv]

+ Pr[j → i, tj ≤ tu | tu = ru, tv = rv])
)

dru. (3)

Now we further expand the last equation and apply similar argument as the warm up
analysis in the proof sketch.

Pr[i → j, ti ≤ tu | tu = ru, tv = rv]

=
∫ tu

0
Pr[i → j | ti = ri, tu = ru, tv = rv]dri

=
∫ tu

0
f(xij) (ti − Pr[j is matched at ti | ti = ri, tu = ru, tv = rv]) dri. (4)

As in the proof sketch, we enumerate the vertex k which j is matched to.

Pr[j is matched at ti | ti = ri, tu = ru, tv = rv]

=
∑

(j,k)∈E
k ̸=i,j,u,v

Pr[(j, k) is selected before ti | ti = ri, tu = ru, tv = rv]. (5)

Notice that if an edge (j, k) is selected by the algorithm R before time ti, it has to satisfy
at least three conditions:
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1. j arrives before ti;
2. k arrives before ti;
3. the edge is sampled by the sampling scheme S and selected by the algorithm.
One can observe that these three events are independent. In order to bound (4), we can
apply the trivial upper bound to (5)

Pr[(j, k) is selected before ti | ti = ri, tu = ru, tv = rv] ≤ t2
i f(xjk)

and we obtain

Pr[i → j, ti ≤ tu | tu = ru, tv = rv]

≥ f(xij) ·
∫ tu

0
ti

1 − ti

∑
(j,k)∈E

k ̸=i,j,u,v

f(xjk)

 dti

≥ f(xij) ·
∫ tu

0
ti · (1 − ti · (1 − xij)) dti = f(xij) ·

(
1
2 t2

u − 1
3 t3

u(1 − xij)
)

.

Similarly, it also holds that

Pr[j → i, tj ≤ tu | tu = ru, tv = rv]) ≥ f(xij) ·
(

1
2 t2

u − 1
3 t3

u(1 − xij)
)

.

Now we start to plug them back to the two-level recursive analysis. First, plugging these two
inequalities into (3), we can bound the first term in the right side of (2).

Pr[u → i and tu ≤ tv | tv = rv]

≤ f(xui) ·
∫ tv

0

tu −
∑

(i,j)∈E
j ̸=i,u,v

f(xij) ·
(

t2
u − 2

3 t3
u(1 − xij)

) dtu

= f(xui) ·

1
2 t2

v −
∑

(i,j)∈E
j ̸=i,u,v

f(xij) ·
(

1
3 t3

v − 1
6 t4

v(1 − xij)
) .

By symmetry,

Pr[i → u and ti ≤ tv | tv = rv] ≤ f(xui) ·

1
2 t2

v −
∑

(u,j)∈E
j ̸=i,u,v

f(xuj) ·
(

1
3 t3

v − 1
6 t4

v(1 − xuj)
) .

Then, by plugging in both terms back to (2), we have

(2) ≥ f(xuv) ·

(
tv −

∑
(u,i)∈E

i̸=u,v

f(xui) ·

1
2 t2

v −
∑

(i,j)∈E
j ̸=i,u,v

f(xij) ·
(

1
3 t3

v − 1
6 t4

v(1 − xij)
)

−
∑

(u,i)∈E
i ̸=u,v

f(xui) ·

1
2 t2

v −
∑

(u,j)∈E
j ̸=i,u,v

f(xuj) ·
(

1
3 t3

v − 1
6 t4

v(1 − xuj)
)).

Therefore, (1) can be further bounded as follows:
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(1) ≥ f(xuv) ·
(

1
2 −

∑
(u,i)∈E

i ̸=u,v

f(xui) ·

1
6 −

∑
(i,j)∈E

j ̸=i,u,v

f(xij) ·
( 1

20 + 1
30 xij

)
−
∑

(u,i)∈E

i ̸=u,v

f(xui) ·

1
6 −

∑
(u,j)∈E

j ̸=i,u,v

f(xuj) ·
( 1

20 + 1
30 xuj

))

= f(xuv) ·

1
2 −

∑
(u,i)∈E

i ̸=u,v

f(xui) ·

1
6 −

∑
(i,j)∈E

j ̸=i,u,v

1
20 xij

−
∑

(u,i)∈E

i ̸=u,v

f(xui) ·

1
6 −

∑
(u,j)∈E

j ̸=i,u,v

1
20 xuj




= f(xuv) ·

1
2 −

∑
(u,i)∈E

i ̸=u,v

f(xui) ·
(1

3 − 1
20 (1 − xui − xvi) − 1

20 (1 − xui − xuv)
)

= f(xuv) ·

1
2 −

∑
(u,i)∈E

i ̸=u,v

f(xui) ·
( 7

30 + 1
20 (2xui + xvi + xuv)

) .

▶ Remark. Note here for the first equality, we use the fact that f(x)
( 1

20 + 1
30 x
)

= cx

for c = 1
20 . (Actually, we only need one side that it is larger than cx.) The choice of

f(x) = 3x
3+2x is to maximize c while keeping f(x) ≤ x for all x ∈ [0, 1] so that it is a valid

pruning. For the second equality (where again we only need one side), we use the fact that∑
(i,j)∈E
j ̸=i,u,v

xi,j ≥ 1 − xu,i − xv,i which follows from the 1-regularity of our graph.

Finally we are ready to bound Pr[(u, v) is selected]. Without loss of generality, we can
assume that xuv = 0 for those (u, v) /∈ E. Recall that Pr[(u, v) is selected] = Pr[u →
v] + Pr[v → u] by definition and we have

Pr[(u, v) is selected]

≥ f(xuv) ·
(

1 −
∑

i ̸=u,v

(
f(xui) ·

( 7
30 + 1

20(2xui + xvi + xuv)
)

+

f(xvi) ·
( 7

30 + 1
20(2xvi + xui + xuv)

)))

≥ f(xuv) ·

(
1 − 1

10xuv −
∑

i ̸=u,v

(
f(xui) ·

( 7
30 + 1

20(2xui + xvi)
)

+f(xvi) ·
( 7

30 + 1
20(2xvi + xui)

)))
≥ f(xuv) ·

(
1 − 1

10xuv −
∑

i ̸=u,v

7
30 · (xui + xvi)

)
= f(xuv) ·

(
1 − 1

10xuv − 7
30 · (2 − 2xuv)

)
= 3xuv

3 + 2xuv
·
( 8

15 + 11
30xuv

)
≥ 8

15xuv.

Here the second inequality uses the fact that
∑

i̸=u,v f(xui) ≤
∑

i̸=u,v xui ≤ 1 and
∑

i̸=u,v f(xvi) ≤∑
i̸=u,v xvi ≤ 1. We are left to prove the third inequality, which we state as the following

lemma.
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▶ Lemma 5. The inequality

f(x) ·
(

7
30 + 1

20(2x + y)
)

+ f(y) ·
(

7
30 + 1

20(2y + x)
)

≤ 7
30 · (x + y)

holds for every x, y ≥ 0.

Proof. It is equivalent to prove that
1
20f(x)(2x + y) + 1

20f(y)(2y + x) ≤ 7
30(x − f(x) + y − f(y)).

Expand f(x) and we get
1
10

(
3x2

3 + 2x
+ 3y2

3 + 2y

)
+ 1

20

(
3xy

3 + 2x
+ 3xy

3 + 2y

)
≤ 7

15

(
3x2

3 + 2x
+ 3y2

3 + 2y

)
.

Rewriting the formula, we find that it’s equivalent to prove

30x2 + 30y2 − 54xy + 2x2y + 2xy2 ≥ 0.

Notice that x, y ≥ 0, thus 2x2y +2xy2 ≥ 0. Also, 30x2 +30y2 −54xy ≥ 30x2 +30y2 −60xy ≥
30(x − y)2 ≥ 0, which completes our proof. ◀

This finishes the proof of Lemma 3. ◀

4 Applications

Our definition of the batched RCRS for matching with random vertex arrival is inspired
by the standard reduction from prophet matching to online contention resolution schemes.
Therefore, Theorem 1 immediately implies the first nontrivial result for prophet matching in
general graphs with random vertex arrival.

▶ Theorem 6. There is an 8
15 -competitive algorithm for prophet matching in general graphs

with random vertex arrival.

In this section, we mainly discuss the application of our batched RCRS in Query-
Commit and Price-of-Information problems for matching. The algorithms below can be
seen as reinterpretations of Gamlath et al. [15]’s algorithms for the problems on bipartite
matching. For Query-Commit, their algorithm first solves a linear program relaxation of the
corresponding problem, then, using characterization of polymatroids, interprets the fractional
solution as follows: each vertex u on the left samples a permutation over the edges in δu, and
proposes to query these edges in that order; literally following these proposals for every vertex
obviously leads to collisions, and so vertices on the right need to resolve potential collisions
by turning down some of the proposals. The algorithm lets the vertices on the left arrive in
a uniformly random order to propose their permutations. Each vertex on the right then runs
a prophet secretary algorithm, which guarantees that, in expectation, the proposed queries
turned down by the nodes on the right do not carry too much value. We suggest that, one
may bypass the more complex prophet secretary setup, by seeing the last step as an online
contention resolution step with random vertex arrival: when vertex u arrives and proposes
its permutation, if we let edge e ∈ δu be active if it is the first edge present when we query
the edges following the proposed order, then a c-selectable batched RCRS with vertex arrival
keeps each active edge with probability at least c, which leads to a c-approximation algorithm.
The description at this level omits many details and twists, and the Price-of-Information
algorithm has even more of those. Nonetheless, our perspective easily generalizes to the
non-bipartite cases, and allows us to use the batched RCRS in Section 3 to these problems.
We give the details below.
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4.1 The (Weighted) Query-Commit Problem for Matching
We now present an 8

15 -competitive algorithm for the Query-Commit problem by a reduction
to batched RCRS.

▶ Theorem 7. There is a polynomial-time computable, 8
15 -competitive algorithm for the

Query-Commit problem for weighted matching in graphs not necessarily bipartite.

4.1.1 Bounding the optimal utility
First we construct a linear program, where for every edge e ∈ E, xe represents the probability
that e is present and included in the solution. We show that the value of the linear program
is an upper bound on even the offline optimal. Therefore, if we implement an algorithm so
that each edge e is selected with probability at least α · x∗

e, then the competitive ratio of the
algorithm will be at least α.

Think of xe as the probability with which edge e is present and included in the offline
solution. For a subset of edges F ⊆ E, let f(F ) be the probability that at least one edge
in F exists, i.e., f(F ) = 1 −

∏
e∈F (1 − pe). For any F ⊆ δu, since in a matching no more

than one edge in F can be in the solution,
∑

e∈F xe is the probability any edge in F is in
the offline solution, and this should be upper bounded by the probability any edge in F is
present. The following linear program LPQC therefore upper bounds the offline optimal:

max:
∑
e∈E

xe · ve

s.t.
∑
e∈F

xe ≤ f(F ), ∀u ∈ V, F ⊆ δu;

xe ≥ 0, ∀e ∈ E.

▶ Lemma 8 ([15]). In the edge-weighted Query-Commit problem for matching, the offline
optimal is upper bounded by the value of LPQC. Furthermore, LPQC is polynomial-time
solvable.

Lemma 8 is a straightforward generalization of Lemma 2.1 and Lemma 2.2 in [15]. In the
following, we need to assume 0 < pe < 1 for every e ∈ E since some proofs requires strict
monotonicity and strict submodularity of f . It turns out that we can ignore those edges with
zero probabilities and scale down probabilities by 1 − γ for other edges due to the following
lemma.

▶ Lemma 9 (Lemma 2.3 of [15]). For 0 < γ < 1, let p̃e = (1 − γ)pe for every e ∈ E. Define
f̃ using p̃ instead of p. Similarly, define L̃PQC use p̃, f̃ instead of of p, f . Then the value of
L̃PQC is at least (1 − γ) times the value of LPQC.

For any solution x to LPQC, the following lemma defines a “decomposition into permuta-
tions” over (subsets of) δu for each u ∈ V . It is essentially Lemma 2.6 in [15] restated on
general graphs.

▶ Lemma 10 ([15]). Suppose 0 < pe < 1 for every e ∈ E. Let x∗ be an optimal solution
to LPQC. For every u ∈ V , fix any subset δ′

u ⊆ δu. Then there exists a polynomial-time
samplable distribution DQC

u over the permutations on subsets of δ′
u, so that, if one queries

according to the permutation sampled from DQC
u , each edge e is the first present one with

probability x∗
e.

The meaning that the permutations are over subsets of δ′
u is that some edges may not be

present in the permutation (which indicates that they should not be queried).
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4.1.2 Rounding with batched RCRS
The game plan becomes clearer with the decomposition from Lemma 10. Ideally, if one may
naïvely follow the permutation sampled from DQC

u for each u, and take the first present edge,
then one may recover the offline optimal. This is of course infeasible, because matching
constraints may be violated by collisions caused by doing this for different vertices. Gamlath
et al. [15] handled this via a clever application of prophet secretary algorithms. Instead, we
replace this with a reduction to the batched RCRS we developed in Section 3.

We may view the naïve algorithm which always commits to the first present edge in
σu ∼ DQC

u as a sampling scheme SQC that indicates the first present edge as active, and
apply our batched RCRS. The matching constraint is then respected by the feasibility of
RCRS solutions. However, there is one more subtlety: in the Query-Commit problem, we
must commit to the edge we just queried, whereas a batched RCRS assumes that it can see
an active edge and discards it. Therefore SQC should not query the presence of an edge if the
batched RCRS algorithm R would not accept it even if it is present. To handle this issue,
we need to change the order of the events by modifying the sampling scheme SQC: upon
the arrival of each vertex u, SQC first obtains an indicator vector I from the batched RCRS
algorithm R, where Ie = 1 if and only if R is willing to accept edge e if SQC indicates that e

is active. If Ie = 0, instead of actual querying the presence of edge e, SQC simply tosses a
coin to simulate a query. We remark that Gamlath et al.’s algorithm has a similar argument.
Following is the formal description for our reduction from a Query-Commit problem to
batched RCRS.

Our algorithm. Our algorithm first solves LPQC to get an optimal solution x∗. Let R be a
batched RCRS instance corresponding to graph ⟨V, E, x∗⟩. Let SQC be the sampling scheme
to be defined later. Additionally, for each vertex u ∈ V we sample tu ∼ U [0, 1] as its arrival
time. We define δ′

u = {(u, w) ∈ δu | tw < tu} to be the edges batch that arrives with u.
Our algorithm iterates over all vertices u ∈ V in the increasing order of tu. For each

vertex u, it first obtains the indicator vector I where Ie indicates whether R is willing to
accept e if it is active. Passing I to the sampling scheme SQC, it obtains the active edge
e ∈ δ′

u for RCRS algorithm R. We commit to e if R accepts it.

The sampling scheme SQC. Let u be the vertex just arrived in batched RCRS. First
sample a permutation σu from DQC

u by Lemma 10, which is a permutation containing a
subset of δ′

u. Consider each edge e = (u, w) in the order of σu. There are two cases:
If Ie = 1: query if e is active in the query-commit instance. If it is active, report e as the
active edge to R and exit; otherwise continue to the next edge.
If Ie = 0: with probability pe, report e as the active edge to R and exit; otherwise
continue to the next edge.

For the analysis, we should first verify that SQC is a valid sampling scheme. First, it will
sample at most one active edge for a vertex, and the sampling result is independent from the
indicator vector I since when considering an edge e, in both cases it essentially do a coin
flip which heads up with probability pe and use the result to determine whether e is active.
Having observed the independency, we can show that x∗

e is the probability of edge e being
active in SQC for any arrival times by using Lemma 10.

▶ Lemma 11. Fix arrival times {tu}u∈V . For every vertex u ∈ V and every edge e ∈ δ′
u,

the probability of e being active in SQC upon the arrival of u equals x∗
e.
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Proof. Fixing a vertex u ∈ V , we have that the probability of every edge e ∈ δ′
u being the

first active edge in the random permutation σu equals x∗
e, according to Lemma 10. The

problem is that in the second case, the algorithm does not even check whether an edge is
active in the query-commit instance.

Nevertheless, in both cases each edge e will be active independently with probability pe,
which is exactly the probability of e being active in the query-commit instance. Therefore,
the random process for determining the active edge is identical to finding the first active
element in σu. And we have the probability of e being active is exactly x∗

e. ◀

At last,
∑

e∈δu
x∗

e ≤ 1 hold for every u ∈ V trivially by constraints in LPQC. We conclude
the validity of SQC with Lemma 12.

▶ Lemma 12. SQC is a valid sampling scheme for batched RCRS. In particular, the following
three conditions hold:
1. each time SQC will sample at most one edge and the result is independent from I;
2. each edge e ∈ E will be active with probability x∗

e for any arrival times {tu}u∈V ;
3.
∑

e∈δu
x∗

e ≤ 1 holds for every u ∈ V .

We now are ready to prove the competitive ratio for the algorithm by the selectability of
the batched RCRS.

Proof of Theorem 7. The validity of batched RCRS is already proven in Lemma 12. We
start the rest of the proof by showing the correctness of the reduction. First, those committed
edges must form a matching by the correctness of R. And once a query of e has succeed,
R will always decide to take e because we only query e when the indicator vector Ie = 1.
Finally, no edge will be committed without a query since every edge e that has not been
queried will be active to R only when Ie = 0.

Then we can easily show the ratio of the reduction equals the selectability of the batched
RCRS. By Lemma 11 and the fact that ∪u∈V δ′

u = E, the probability of every edge e ∈ E

being active in R is x∗
e. By Theorem 1, the expected utility for our algorithm is at least

8
15 ·

∑
e∈E x∗

e · ve. Further by Lemma 8, we conclude it is an 8
15 -competitive algorithm for

the query-commit problem on general graphs. ◀

4.2 The Price of Information Problem for Matching
The Price of Information (PoI) problem has search costs but imposes no obligation on an
algorithm to immediately accept a queried element regardless of what is revealed. Kleinberg
et al. [22] upper bounded the optimal utility using a variant of query-commit, by giving
a new proof for the optimal algorithm in the special case where F is the set of singleton
sets (known as the Pandora’s Box problem [29]); Singla [27] generalized the bound and
proposed approximation algorithms using the bound. Gamlath et al. [15] studied the Price
of Information problem for bipartite matching and made use of the upper bound.

Their method converts the original “price-of-information” world to “free-information”
world by setting a threshold value τi for each element. In “free-information” world, there is
no search cost ci, but the algorithm gets a lower utility κi = min{vi, τi} (instead of vi) for
accepting an element i. Intuitively, the (vi − τi)+ part3 of the utility pays for the search cost.
However, this is only the case if the algorithm accepts element i in the end. If the algorithm
queried element i without accepting it, the utility of the algorithm in “free-information” world

3 (z)+ denotes max{z, 0}
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will only be an upper bound of that in the “price-of-information” world. In Section 4.2.1,
we upper bound the optimal utility in “free-information” world. Therefore, to match this
upper bound, the algorithm has to always accept element i whenever element i is queried
and vi > τi.

The intuition above is summarized by the following lemma from [27].

▶ Lemma 13 ([27]). In any instance of Price of Information problem, for each element
i ∈ U , let τi be the unique solution to the equation Evi∼Fi [(vi −τi)+] = ci, where (z)+ denotes
max{z, 0}. Let κi be min{vi, τi}. Then no algorithm’s utility exceeds E[maxS∈F

∑
i∈S κi].

In particular, in order for algorithm A to match this upper bound, A must accept each element
i such that i is queried by A and vi > τi.

Similar as query-commit setting, our algorithm is essentially the same as that of [15],
but we provide the perspective that the use of prophet secretary in [15] can be replaced by
batched RCRS and extend their results to general graphs.

▶ Theorem 14. There is a polynomial time, 8
15 -approximate algorithm for the price of

information problem for weighted matching in graphs not necessarily bipartite.

4.2.1 Bounding the optimal utility
We start by presenting the LP which upper bounds the optimal utility in the “free-information”
world. Therefore by Lemma 13, it is also an upper bound for the optimal utility in the
“price-of-information” world. The LP and the proofs are essentially the same as that in [15]
with the only difference that this is for general graph.

Recall in the PoI problem for matching, there is an undirected graph G = (V, E). For
each edge e ∈ E, its value is a random variable ve ∼ Fe. Then we set τe and κe as in
Lemma 13.

Without loss of generality, we assume that the distributions of κe are discrete.4 Let Ke

be the set of possible values of κe. For all u ∈ V , let Eu = {(e, κ) : e ∈ δu, κ ∈ Ke} be
the edge-value pairs incidents to u and Eall = ∪u∈U Eu be the set of all edge-value pairs in
the graph. For each F ⊆ Eu, we define f(F ) be the probability that κe = κ for at least
one of the edge-value pair (e, κ) ∈ F . Namely f(F ) =

∏
v∈V (1 −

∑
e:(e,κ)∈F pe,κ) where

pe,κ = Pr[κe = κ].
For any algorithm A for the PoI problem for matching, let xe,κ be the probability that

A accepts edge e and κe = κ. For any F ⊆ Eu, similar with Section 4.1, we know that∑
(e,κ)∈F xe,κ ≤ f(F ). Therefore it is natural to consider the following LP, which is called

LPPoI.

max:
∑

(e,κ)∈Eall

xe,κ · κ

s.t.
∑

(e,κ)∈F

xe,κ ≤ f(F ), ∀u ∈ V, F ⊆ Eu;

xe ≥ 0, ∀e ∈ Eall.

We restate Lemma 3.2 and Lemma 3.3 of [15] below for general graphs.

4 In the case where the distributions are continuous. We can discretize them by geometric grouping edge
weights into classes.
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▶ Lemma 15 ([15]). In the price of information problem for matching, the optimal expected
utility OPTPoI is upper bounded by the value of LPPoI. Furthermore, LPPoI is polynomial-time
solvable.

4.2.2 Rounding with batched RCRS
Let x∗ be an optimal solution of LPPoI. We proceed to “round” it to an algorithm for the
PoI problem. Let ⟨V, E, xPoI⟩ be the batched RCRS instance. Note the graph of the RCRS
instance is the same as the original graph. Before the formal description of SPoI, we first
sketch it here:

From the LP solution x∗, we first obtain a polynomial-time samplable distribution DPoI
u

over permutations of edge-value pairs (e, κ). SPoI first draw a permutation σ from DPoI
u .

An edge-value pair (e, κ) is said to be active if κe = κ. Roughly speaking, SPoI returns the
first active edge-value pair in σ as the active edge. However, as Lemma 15 suggests, our
algorithm must accept edge e if e is queried and ve = τe. Therefore, there is an additional
requirement that in each σ drawn from DPoI

u , the edge-value pairs of the same edge should
be in decreasing order of their values. Hence (e, τe) is always the first pair associated with
edge e in σ.

The following lemma formally defines the distribution DPoI
u . It is a restatement of

Lemma 3.6 in [15].

▶ Lemma 16 ([15]). Suppose 0 < pe,κ < 1 for every (e, κ) ∈ Eall. Let x∗ be an optimal
solution to LPPoI. For every u ∈ V , fix any subset δ′

u ⊆ δu, and let E′
u = {(e, κ) ∈ Eu, e ∈ δ′

u}
be the corresponding edge-value pairs.

We call an edge-value pair (e, κ) active if κe = κ. Let

ye,κ = Pr
σ∼DPoI

u ,{κe}
[(e, κ) is the first active pair in σ].

Then there exists a polynomial-time samplable distribution DPoI
u over the permutations on

(subsets of) E′
u such that the following holds:

1. For all permutation σ drawn from DPoI
u , if edge-value pair (e, κ) appears in σ, then the

edge-value pair (e, w) appears before (e, κ) in σ for all w ∈ Ke such that w ≥ κ.
2.
∑

κ∈Ke
ye,κ =

∑
κ∈Ke

x∗
e,κ for all e ∈ δ′

u.
3.
∑

κ∈Ke
ye,κ · κ ≥

∑
κ∈Ke

x∗
e,κ · κ for all e ∈ δ′

u.

Now we formally define the sampling scheme SPoI. Initially, each vertex u ∈ V has its
arrival time tu ∼ U [0, 1]. We define δ′

u = {(u, w) ∈ δu | tw < tu} to be the edges batch that
arrives with u, and let E′

u = {(e, κ) | e ∈ δ′
u, κ ∈ Ke} be the corresponding edge-value pairs.

When u arrives, using Lemma 16, SPoI draw a permutation σ from DPoI
u over (subsets of)

E′
u.

The subtlety in SQC still exists in SPoI, i.e., SPoI should not query the value of an edge
if batched RCRS algorithm R do not accept it. Therefore, SPoI first obtains an indicator
vector I from RCRS algorithm R. Ie = 1 if and only if R would accept edge e if SPoI choose
it to be active. SPoI draws variables κ′

e from the same distribution of κe for all e ∈ δ′
u. If

Ie = 0, namely R will not take the edge, instead of query the true κe, SPoI simply use κ′
e to

replace it. In this way, the exact behavior of SPoI depends on I. Nevertheless, the returned
edge of SPoI is still independent of I.

SPoI handles each pair σi = (ei, κi) in order as follows:
If Iei

= 1: SPoI queries the value of κei
if it is not queried before. If κei

= κi, SPoI returns
ei as active edges. Otherwise, it continues to the next edge.
If Iei

= 0: SPoI looks at κ′
ei

instead since R will not accept the edge anyway. If κ′
ei

= κi,
SPoI returns ei as the active edges. Otherwise, it continues to the next edge.
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The proof of validity for SPoI is similar to the proof for SQC.

▶ Lemma 17. SPoI is a valid sampling scheme for batched RCRS. In particular, the following
three conditions hold:
1. each time SPoI will sample at most one edge and the result is independent from I.
2. Each edge e ∈ E is active with probability xe =

∑
κ∈Ke

x∗
e,κ for any arrival times {tu}u∈V .

Specifically, the probability that SPoI returns at edge-value pair (e, κ) is exactly ye,κ as
defined in Lemma 16.

3.
∑

e∈δu
xe ≤ 1 for all u ∈ V .

Proof. Firstly, by the procedure of SPoI, it returns only one edge. Since κ′ and κ has the
same distribution, the edge returned by SPoI is independent of I. Secondly, because of
this independence, if we define ye,κ as in Lemma 16, the probability of SPoI to return at
edge-value pair (e, κ) is exactly ye,κ. By the definition of xe and part 2 of Lemma 16, we
know that xe =

∑
κ∈Ke

ye,κ =
∑

κ∈Ke
x∗

e,κ. Thirdly, from the definition of LPPoI, when
F = Eu, we have

∑
(e,κ)∈Eu

x∗
e,κ ≤ 1. Namely,

∑
e∈δu

xe ≤ 1. ◀

In order to let the (ve − τe)+ part of the utility pays for the search cost, the algorithm
must accept an edge e if its ve is larger than τe (which only happens when κe = τe). The
definition of SPoI guarantees such property, and it will be useful in the proof of Theorem 14.

▶ Lemma 18. Suppose an edge e is queried by the reduction and κe = τe. Then the edge e

is always accepted in the end.

Proof. Since e is queried by the reduction, we know that Ie = 1, namely the RCRS algorithm
R is willing to take this edge. By part 1 of Lemma 16, if (e, τe) is the first edge-value pair
associated with e in σ. Therefore, as e is queried by SPoI, it returns e as the active edge
when handling (e, τe). Since Ie = 1, R accepts edge e as well. ◀

Now we are ready to prove Theorem 14, i.e. the approximation ratio of the algorithm.

Proof of Theorem 14. By Lemma 15, we know the optimum of LPPoI is an upper bound
of the optimal utility for the price of information problem for weighted matching. Namely,∑

(e,κ)∈Eall
x∗

e,κ · κ ≥ OPTPoI. Recall Ke is the set of possible values of κe, and let Ve be the
set of possible values of ve.

On the other hand, by Lemma 18 we know when ve ≥ τe, the edge is always accepted
when queried. Together with the definition of τe, we know that the cost of query is∑

e∈E

Pr[e is queried] · ce =
∑
e∈E

Pr[e is queried] · Evi∼Fi
[(ve − τe)+]

=
∑
e∈E

Pr[e is accepted] · Evi∼Fi [(ve − τe)+] .

The utility of our algorithm is therefore∑
e∈E

∑
v∈Ve

Pr[e is accepted and ve = v] · v −
∑
e∈E

Pr[e is accepted] · Evi∼Fi
[(ve − τe)+]

=
∑
e∈E

∑
κ∈Ke

Pr[e is accepted and κe = κ] · κ.

The equality follows from κe = ve − (ve − τe)+. Let ye,κ be defined as Lemma 16. By
Lemma 17, SPoI is a valid sampling scheme. So we can apply the batched RCRS in Theorem 1.
Since the only use of κe is to determine the active edge in SPoI, conditioning on e is active,
whether e is accepted is independent of κe.
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Hence

Pr[e is accepted and κe = κ]
= Pr[e is accepted | e is active and κe = κ] · Pr[e is active and κe = κ]
= Pr[e is accepted | e is active] · Pr[e is active and κe = κ]

≥ 8
15ye,κ.

Then by part 2 of Lemma 16, the utility of our algorithm is∑
e∈E

∑
κ∈Ke

8
15ye,κe

· κ ≥ 8
15
∑
e∈E

∑
κ∈Ke

x∗
e,κ · v = 8

15 OPTPoI,

where the inequality follows from part 3 of Lemma 16. ◀
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Abstract
The ARRIVAL problem is to decide the fate of a train moving along the edges of a directed graph,
according to a simple (deterministic) pseudorandom walk. The problem is in NP ∩ coNP but not
known to be in P. The currently best algorithms have runtime 2Θ(n) where n is the number of
vertices. This is not much better than just performing the pseudorandom walk. We develop a
subexponential algorithm with runtime 2O(

√
n log n). We also give a polynomial-time algorithm if the

graph is almost acyclic. Both results are derived from a new general approach to solve ARRIVAL
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1 Introduction

Informally, the ARRIVAL problem is the following (we quote from Dohrau et al. [6]):

Suppose that a train is running along a railway network, starting from a designated
origin, with the goal of reaching a designated destination. The network, however, is
of a special nature: every time the train traverses a switch, the switch will change
its position immediately afterwards. Hence, the next time the train traverses the
same switch, the other direction will be taken, so that directions alternate with each
traversal of the switch.

Given a network with origin and destination, what is the complexity of deciding
whether the train, starting at the origin, will eventually reach the destination?

ARRIVAL is arguably the simplest problem in NP ∩ coNP that is not known to be in
P. Due to its innocence and at the same time unresolved complexity status, ARRIVAL has
attracted quite some attention recently. The train run can be interpreted as a deterministic
simulation of a random walk that replaces random decisions at a switch by perfectly fair
decisions. Such pseudorandom walks have been studied before under the names of Eulerian
walkers [17], rotor-router walks [12], and Propp machines [4]. The reachability question as
well as NP and coNP membership are due to Dohrau et al. [6].

Viewed somewhat differently, ARRIVAL is a zero player game (a process that runs
without a controller); in contrast, three other well-known graph games in NP∩ coNP that are
not known to be in P are two-player (involving two controllers). These are simple stochastic
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games, mean-payoff games and parity games [3, 21, 13]. Moreover, it is stated in (or easily
seen from) these papers that the one-player variants (the strategy of one controller is fixed)
have polynomial-time algorithms. In light of this, one might expect a zero-player game such
as ARRIVAL to be really simple. But so far, no polynomial-time algorithm could be found.

On the positive side, the NP ∩ coNP complexity upper bound could be strengthened in
various ways. ARRIVAL is in UP ∩ coUP, meaning that there are efficient verifiers that
accept unique proofs [10]. A search version of ARRIVAL has been introduced by Karthik
C. S. and shown to be in PLS [15], then in CLS [10], and finally in UniqueEOPL [10, 8]. The
latter complexity class, established by Fearnley et al. [8], has an intriguing complete problem,
but there is no evidence that ARRIVAL is complete for UniqueEOPL.

Concerning complexity lower bounds, there is one result: ARRIVAL is NL-hard [7]. This
is not a very strong statement and means that every problem that can be solved by a
nondeterministic log-space Turing machine reduces (in log-space) to ARRIVAL.

Much more interesting are the natural one- and two-player variants of ARRIVAL that
have been introduced in the same paper by Fearnley et al. [7] and later expanded by Ani
et al. [1]. These variants allow a better comparison with the previously mentioned graph
games. It turns out that the one-player variants of ARRIVAL are NP-complete, and that
the two-player variants are PSPACE-hard [7, 1]. This shows that the p-player variant of
ARRIVAL is probably strictly harder than the p-player variants of the other graph games
mentioned before, for p = 1, 2. This makes it a bit less surprising that ARRIVAL itself
(p = 0) could so far not be shown to lie in P.

On the algorithmic side, the benchmark is the obvious algorithm for solving ARRIVAL
on a graph with n vertices: simulate the train run. This is known to take at most O(n2n)
steps (after this, we can conclude that the train runs forever) [6]. There is also an Ω(2n)
lower bound for the simulation [6]. The upper bound was improved to O(p(n)2n/2) (in
expectation) for some polynomial p, using a way to efficiently sample from the run [10]. The
same bound was later achieved deterministically [11, 18], and the approach can be refined to
yield a runtime of O(p(n)2n/3), the currently best one for general ARRIVAL instances [18].

In this paper, we prove that ARRIVAL can be decided in subexponential time 2O(
√

n log n).
While this is still far away from the desired polynomial-time algorithm, the new upper
bound is making the first significant progress on the runtime. We also prove that polynomial
runtime can be achieved if the graph is close to acyclic, meaning that it can be made acyclic
by removing a constant number of vertices.

As the main technical tool from which we derive both results, we introduce a generalization
of ARRIVAL. In this multi-run variant, there is a subset S of vertices where additional trains
may start and also terminate. It turns out that if we start the right numbers of trains from
the vertices in S, we also decide the original instance, so the problem is reduced to searching
for these right numbers. We show that this search problem is well-behaved and can be solved
by systematic guessing, where the number of guesses is exponential in |S|, not in n.

We are thus interested in cases where S is small but at the same time allows a sufficiently
fast evaluation of a given guess. For the subexponential algorithm, we choose S as a set
of size O(

√
n), with the property that a train can only take a subexponential number of

steps until it terminates (in S or a destination). For almost acyclic graphs, we choose S as a
minimum feedback vertex set, a set whose removal makes the graph acyclic. In this case, a
train can visit any vertex only once before it terminates.

The multi-run variant itself is an interesting new approach to the ARRIVAL problem,
and other applications of it might be found in the future.
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2 ARRIVAL

The ARRIVAL problem was introduced by Dohrau et al. [6] as the problem of deciding
whether the train arrives at a given destination or runs forever. Here, we work in a different
but equivalent setting (implicitly established by Dohrau et al. already) in which the train
always arrives at one of two destinations, and we have to decide at which one. The definitions
and results from Dohrau et al. [6] easily adapt to our setting. We still provide independent
proofs, derived from the more general setting that we introduce in Section 3.

Given a finite set of vertices V , an origin o ∈ V , two destinations d, d /∈ V and two
functions seven, sodd : V → V ∪ {d, d}, the 6-tuple A = (V, o, d, d, seven, sodd) is an
ARRIVAL instance. The vertices seven(v) and sodd(v) are called the even and the odd
successor of v.

An ARRIVAL instance A defines a directed graph, connecting each vertex v ∈ V to its
even and its odd successor. We call this the switch graph of A and denote it by G(A). To avoid
special treatment of the origin later, we introduce an artificial vertex Y /∈ V ∪{d, d} (think of it
as the “train yard”) that only connects to the origin o. Formally, G(A) = (V (A), E(A)) where
V (A) = V ∪ {Y, d, d} and E(A) = {(Y, o)} ∪ {(v, seven(v)) : v ∈ V } ∪ {(v, sodd(v)) : v ∈ V }.
We also refer to E(A) simply as the edges of A. An edge e ̸= (Y, o) is called proper.

The run procedure is the following. For every vertex we maintain a current and a next
successor, initially the even and the odd one. We put a token (usually referred to as the
train) at o and move it along switch graph edges until it reaches either d or d. Whenever the
train is at a vertex v, we move it to v’s current successor and then swap the current and the
next successor; see Algorithm 1 for a formal description and Figure 1 for an example.

Algorithm 1 Run Procedure.

Input: ARRIVAL instance A = (V, o, d, d, seven, sodd)
Output: destination of the train: either d or d

Let scurr and snext be arrays indexed by the vertices of V

for v ∈ V do
scurr[v]← seven(v)
snext[v]← sodd(v)

v ← o /* traversal of edge (Y, o) */
while v ̸= d and v ̸= d do

w ← scurr[v]
swap(scurr[v], snext[v])
v ← w /* traversal of edge (v, w) */

return v

Algorithm 1 (Run procedure) may cycle, but we can avoid this by assuming that from
every vertex v ∈ V , one of d and d is reachable along a directed path in G(A). We call
such an ARRIVAL instance terminating, since it guarantees that either d or d is eventually
reached.

▶ Lemma 1. Let A = (V, o, d, d, seven, sodd) be a terminating ARRIVAL instance, |V | = n.
Let v ∈ V and suppose that the shortest path from v to a destination in G(A) has length m.
Then v is visited (the train is at v) at most 2m times by Algorithm 1 (Run Procedure).

Proof. Let v = vm, vm−1, . . . , v0 ∈ {d, d} be the sequence of vertices on a shortest path from
v to {d, d}. Consider the first 2m visits to v (if there are less, we are done). Once every two
consecutive visits, the train moves on to vm−1, so we can consider the first 2m−1 visits to
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Figure 1 A terminating ARRIVAL instance and the train run. Bold edges go to the even
successors, dashed edges to the odd successors. The two successors may coincide (lower left vertex).
The numbers indicate how often each edge is traversed by the train.

vm−1 and repeat the argument from there to show that vi is visited at least 2i times for all i,
before v exceeds 2m visits. In particular, v0 ∈ {d, d} is visited, so the run indeed terminates
within at most 2m visits to v. ◀

▶ Lemma 2. Let A = (V, o, d, d, seven, sodd) be a terminating ARRIVAL instance, |V | = n.
Let ℓ be the maximum length of the shortest path from a vertex in V to a destination.
Algorithm 1 (Run Procedure) traverses at most (n− ℓ + 2)2ℓ − 2 proper edges.

Proof. By Lemma 1, the total number of visits to vertices v ∈ V is bounded by
∑n

i=1 ni2i,
where ni is the number of vertices with a shortest path of length i to a destination. We
have ni > 0 if and only if i ≤ ℓ, and hence the sum is maximized if ni = 1 for all i < ℓ, and
nℓ = n− ℓ + 1. In this case, the sum is (n− ℓ + 2)2ℓ − 2. The number of proper edges being
traversed (one after every visit of v ∈ V ) is the same. ◀

Given a terminating instance, ARRIVAL is the problem of deciding whether Algorithm 1
(Run Procedure) returns d (YES instance) or d (NO instance). It is unknown whether
ARRIVAL ∈ P, but it is in NP ∩ coNP, due to the existence of switching flows that are
certificates for the output of Algorithm 1 (Run Procedure).

2.1 Switching flows
For a vertex v and a set of edges E, we will denote the set of outgoing edges of v by E+(v).
Analogously, we will denote the set of incoming edges of v by E−(v). Furthermore, for a
function x : E → N0, we will also use the notation xe instead of x(e) to denote the value of
x at some edge e ∈ E. Lastly, given some vertex v, edges E and a function x : E → N0, we
will use x+(v) :=

∑
e∈E+(v) xe to denote the outflow of x at v and x−(v) :=

∑
e∈E−(v) xe to

denote the inflow of x at v. For two functions x, x′ : E → N0, we write x ≤ x′ if this holds
componentwise, i.e. xe ≤ x′

e for all e ∈ E.

▶ Definition 3 (Switching Flow [6]). Let A = (V, o, d, d, seven, sodd) be a terminating
ARRIVAL instance with edges E. A function x : E → N0 is a switching flow for A if

x+(Y ) = 1,

x+(v)− x−(v) = 0, v ∈ V (flow conservation)
x(v,seven(v)) − x(v,sodd(v)) ∈ {0, 1}, v ∈ V (switching behavior).

Moreover, x is called a switching flow to t ∈ {d, d} if x−(t) = 1.

Note that due to flow conservation, a switching flow is a switching flow either to d or to
d: exactly one of the destinations must absorb the unit of flow emitted by Y . If we set xe

to the number of times the edge e is traversed in Algorithm 1 (Run Procedure), we obtain
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a switching flow to the output; see Figure 1 for an example. Indeed, every time the train
enters v ∈ V , it also leaves it; this yields flow conservation. The strict alternation between
the successors (beginning with the even one) yields switching behavior.

Hence, the existence of a switching flow to the output is necessary for obtaining the
output. Interestingly, it is also sufficient. For that, it remains to prove that we cannot have
switching flows to both d and d for the same instance.

▶ Theorem 4 (Switching flows are certificates [6]). Let A = (V, o, d, d, seven, sodd) be a
terminating ARRIVAL instance, t ∈ {d, d}. Algorithm 1 (Run Procedure) outputs t if and
only if there exists a switching flow to t.

The switching flow corresponding to the actual train run can be characterized as follows.

▶ Theorem 5 (The run profile is the minimal switching flow [6]). Let A =
(V, o, d, d, seven, sodd) be a terminating ARRIVAL instance with edges E. Let x̂ be the
run profile of A, meaning that x̂e counts the number of times edge e is traversed during
Algorithm 1 (Run Procedure). Then x̂ ≤ x for all switching flows x. In particular, x̂ is the
unique minimizer of the total flow

∑
e∈E xe over all switching flows.

We note that this provides the missing direction of Theorem 4. Indeed, x̂ is a switching
flow and hence either has x̂−(d) = 1 or x̂−(d) = 1. By x̂ ≤ x, every switching flow x is to
the same destination. In general, there can be switching flows x ̸= x̂ [6].

We will derive Theorem 5 as a special case of Theorem 8 in the next section.

3 A general framework

In order to solve the ARRIVAL problem, we can simulate Algorithm 1 (Run Procedure)
which takes exponential time in the worst case [6]; alternatively, we can try to get hold of a
switching flow; via Theorem 4, this also allows us to decide ARRIVAL.

According to Definition 3, a switching flow can be obtained by finding a feasible solution
to an integer linear program (ILP); this is a hard task in general, and it is unknown whether
switching flow ILPs can be solved more efficiently than general ILPs.

In this section, we develop a framework that allows us to reduce the problem to that of
solving a number of more constrained ILPs. At the same time, we provide direct methods
for solving them that do not rely on using general purpose ILP solvers.

3.1 The idea
Given a terminating ARRIVAL instance, we consider the switching flow conditions in
Definition 3. Given an arbitrary fixed subset S = {v1, . . . , vk} ⊆ V of k vertices, we drop
the flow conservation constraints at the vertices in S, but at the same time prescribe outflow
values x+(v1), . . . , x+(vk) that we can think of as guesses for their values in a switching flow.

If we minimize the total flow subject to these guesses, we obtain a unique solution
(Theorem 8 (i) below) and hence unique inflow values x−(v1), . . . , x−(vk) for the vertices
in S. If we happen to stumble upon a fixed point of the mapping x+(v1), . . . , x+(vk) →
x−(v1), . . . , x−(vk), we recover flow conservation also at S, which means that our guesses
were correct and we have obtained a switching flow.

The crucial property is that the previously described mapping is monotone (Theorem 8 (ii)
below), meaning that the theory of Tarski fixed points applies that guarantees the existence
of a fixed point as well as efficient algorithms for finding it (Lemma 11 below).
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Hence, we reduce the computation of a switching flow to a benign search problem (for a
Tarski fixed point), where every search step requires us to solve a “guessing” ILP. We next
present a “rail” way of solving the guessing ILP that turns out to be more efficient in the
worst case (and also simpler) than general purpose ILP solvers. For suitable switch graphs
and appropriate choices of the set S, it will be fast enough to yield the desired runtime
results.

3.2 The Multi-Run Procedure
Given S = {v1, . . . , vk} ⊆ V and w ∈ Nk

0 (guesses for the outflows from the vertices in S), we
start one train from Y and wi trains from vi until they arrive back in S, or at a destination.
In this way, we produce inflow values for the vertices in S.

By starting, we mean that we move each of the trains by one step: the one on Y moves
to o, while ⌈wi/2⌉ of the ones at vi move to the even successor of vi, and ⌊wi/2⌋ to the odd
successor. Trains that are now on vertices in V \ S are called waiting (to move on).

For all v ∈ V \ S, we initialize current and next successors as before in Algorithm 1 (Run
Procedure). Then we (nondeterministically) repeat the following until there are no more
trains waiting.

We pick a vertex v ∈ V \ S where some trains are waiting and call the number of waiting
trains t(v). We choose a number τ ∈ {1, . . . , t(v)} of trains to move on; we move ⌈τ/2⌉ of
them to the current successor and ⌊τ/2⌋ to the next successor. If τ is odd, we afterwards
swap the current and the next successor at v.

Algorithm 2 (Multi-Run Procedure) provides the details. For S = ∅, the procedure
becomes deterministic and is equivalent to Algorithm 1 (Run Procedure).

Algorithm 2 Multi-Run Procedure.

Input: Terminating ARRIVAL instance A = (V, o, d, d, seven, sodd) with edges E;
S = {v1, v2, . . . , vk} ⊆ V , w = (w1, w2, . . . , wk) ∈ Nk

0 (one train starts from Y , and
wi trains start from vi).
Output: number of trains arriving at d, d, and in S, respectively
Let t be a zero-initialized array indexed by the vertices of V ∪ {d, d}
t[o]← 1 /* traversal of (Y, o) */
for i = 1, 2, . . . , k do

t[seven(vi)]← t[seven(vi)] + ⌈wi/2⌉ /* ⌈wi/2⌉ traversals of (vi, seven(vi)) */
t[sodd(vi)]← t[sodd(vi)] + ⌊wi/2⌋ /* ⌊wi/2⌋ traversals of (vi, sodd(vi)) */

Let scurr and snext be arrays indexed by the vertices of V \ S

for v ∈ V \ S do
scurr[v]← seven(v)
snext[v]← sodd(v)

while ∃v ∈ V \ S : t[v] > 0 do
pick v ∈ V \ S such that t[v] > 0 and choose τ ∈ {1, . . . , t[v]}
t[v]← t[v]− τ

t[scurr(v)]← t[scurr(v)] + ⌈τ/2⌉ /* ⌈τ/2⌉ traversals of (v, scurr(v)) */
t[snext(v)]← t[snext(v)] + ⌊τ/2⌋ /* ⌊τ/2⌋ traversals of (v, snext(v)) */
if τ is odd then

swap(scurr[v], snext[v])

return (t[d], t[d], t[v1], t[v2], . . . , t[vk])
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▶ Lemma 6. Algorithm 2 (Multi-Run Procedure) terminates.

Proof. This is a qualitative version of the argument in Lemma 1. Let x : E → N0 record how
many times each edge e ∈ E has been traversed in total, at any given time of Algorithm 2
(Multi-Run Procedure). For v ∈ V \ S, we always have x+(v) = x−(v)− t(v), where t(v) is
the number of trains currently waiting at v. Suppose for a contradiction that the Multi-Run
procedure cycles. Then x−(v) is unbounded for at least one v ∈ V \ S, which means that
x+(v) is also unbounded, since t(v) is bounded. This in turn means that x−(seven(v))
and x−(sodd(v)) are unbounded as well, since we distribute x+(v) evenly between the two
successors. Repeating this argument, we see that x−(w) is unbounded for all vertices w

reachable from v. But as x−(d) and x−(d) are bounded (by the number of trains that
we started), neither d nor d are reachable from v. This is a contradiction to A being
terminating. ◀

3.3 Candidate switching flows
After Algorithm 2 (Multi-Run Procedure) has terminated, let x̂e be the number of times
the edge e was traversed. We then have flow conservation at v ∈ V \ S, switching behavior
at v ∈ V and outflow wi from vi. Indeed, every train that enters v ∈ V \ S eventually also
leaves it; moreover, the procedure is designed such that it simulates moving trains out of
v ∈ V individually, strictly alternating between successors. Finally, as we start wi trains
from vi ∈ S and stop all trains once they arrive in S, we also have outflow wi from vi.

We remark that we do not have any control over how many trains end up at d or d. Also,
x̂ could in principle depend on the order in which we pick vertices, and on the chosen τ ’s.
We will show in Theorem 8 below that it does not. So far, we have only argued that x̂ is a
candidate switching flow according to the following definition.

▶ Definition 7 (Candidate Switching Flow). Let A = (V, o, d, d, seven, sodd) be a terminating
ARRIVAL instance with edges E, S = {v1, v2, . . . , vk} ⊆ V , w = (w1, w2, . . . , wk) ∈ Nk

0 .
A function x : E → N0 is a candidate switching flow for A (w.r.t. S and w) if

x+(Y ) = 1,

x+(v)− x−(v) = 0, v ∈ V \ S (flow conservation at V \ S)
x+(vi) = wi, i = 1, 2, . . . , k, (outflow w at S)

x(v,seven(v)) − x(v,sodd(v)) ∈ {0, 1}, v ∈ V (switching behavior).
(1)

▶ Theorem 8 (Each Multi-Run profile is the minimal candidate switching flow). Let A, E, S, w

be as in Definition 7 and let x̂ be a Multi-Run profile of A, meaning that x̂e is the number
of times edge e ∈ E was traversed during some run of Algorithm 2 (Multi-Run Procedure).
Then the following statements hold.

(i) x̂ ≤ x for all candidate switching flows x (w.r.t. S and w). In particular, x̂ is the
unique minimizer of the total flow

∑
e∈E xe over all candidate switching flows.

(ii) For fixed A, E, S, define F (w) = (x̂−(v1), . . . , x̂−(vk)) ∈ Nk
0. Then the function F :

Nk
0 → Nk

0 is monotone, meaning that w ≤ w′ implies that F (w) ≤ F (w′).

Proof. We prove part (i) by the pebble argument [6]: Let x be any candidate switching flow
w.r.t. S and w. For every edge e, we initially put xe pebbles on e, and whenever a train
traverses e in Algorithm 2 (Multi-Run Procedure), we let it collect a pebble. If we can show
that we never run out of pebbles, x̂ ≤ x follows. By “running out of pebbles”, we concretely
mean that we are for the first time trying to collect a pebble from an edge with no pebbles
left.
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Since x is a candidate switching flow, we cannot run out of pebbles while starting the
trains. In fact, we exactly collect all the pebbles on the outgoing edges of {Y }∪S. It remains
to show that we cannot run out of pebbles while processing a picked vertex v ∈ V \ S. For
this, we prove that we maintain the following additional invariants (which hold immediately
after starting the trains). Let p : E → N0 record for each edge e the remaining number of
pebbles on e. Then for all v ∈ V \ S,
(a) p+(v) = p−(v) + t(v), where t(v) is the number of trains waiting at v;
(b) p((v, scurr(v)))− p((v, snext(v))) ∈ {0, 1}.
Suppose that these invariants hold when picking a vertex v ∈ V \ S. As we have not run
out of pebbles before, p−(v) ≥ 0 and (a) guarantees that we have q ≥ t(v) pebbles on the
outgoing edges; by (b), ⌈q/2⌉ of them are on (v, scurr(v)) and ⌊q/2⌋ on (v, snext(v)). From
the former, we collect ⌈τ/2⌉, and from the latter ⌊τ/2⌋ where τ ≤ t(v) ≤ q, so we do not run
out of pebbles. We maintain (a) at v where both p+ and t are reduced by τ . We also maintain
(a) at the successors; there, the gain in t exactly compensates the loss in p−. Finally, we
maintain (b) at v: If τ is even, both p((v, scurr(v))) and p((v, snext(v))) shrink by τ/2. If τ

is odd, we have p((v, scurr(v)))− p((v, snext(v))) ∈ {−1, 0} after collecting one more pebble
from (v, scurr(v)) than from (v, snext(v)), but then we reverse the sign by swapping scurr

and snext.
For S = ∅, this proves Theorem 5, and for general S, we have now proved (i). In particular,

the order in which we move trains in Algorithm 2 (Multi-Run Procedure) does not matter.
The proof of (ii) is now an easy consequence; recall that the inflow F (w)i is the number

of trains that arrive at vi. If w ≤ w′, we run Algorithm 2 (Multi Run Procedure) with
input w′ such that it first simulates a run with input w; for this, we keep the extra trains
corresponding to w′ − w waiting where they are after the start, until all other trains have
terminated. At this point, we have inflow f ≥ F (w) at S, where f − F (w) corresponds to
the extra trains that have already reached S right after the start. We finally run the extra
trains that are still waiting, and as this can only further increase the inflows at S, we get
F (w′) ≥ f ≥ F (w). ◀

We remark that since the total inflow to the vertices in {d, d} ∪ S equals the total
outflow from Y and vertices in S, Theorem 8 (i) implies that the inflows to the vertices
in {d, d} ∪ S are the same in every candidate switching flow (w.r.t. S and w). This means
that in Theorem 8 (ii), the Multi-Run profile x̂ can be replaced by an arbitrary candidate
switching flow. This could in principle be easier to compute than the Multi-Run profile, but
we currently do not know how.

3.4 Runtime

As we have proved in Theorem 8 (i), the Multi-Run procedure always generates the unique
flow-minimal candidate switching flow. But the number of steps depends on the order in
which vertices v ∈ V \ S are picked, and on the chosen τ ’s. We start with an upper bound
on the number of edge traversals that generalizes Lemma 2.

▶ Lemma 9. Let A = (V, o, d, d, seven, sodd) be a terminating ARRIVAL instance, |V | = n,
S = {v1, v2, . . . , vk} ⊆ V , w = (w1, w2, . . . , wk) ∈ Nk

0 . Let ℓ be the maximum length of the
shortest path from a vertex in V \ S to a vertex in {d, d} ∪ S. Further suppose that at the
beginning of some iteration in Algorithm 2 (Multi-Run Procedure), R trains are still waiting.
Then all subsequent iterations traverse at most R((n− ℓ + 2)2ℓ − 2) edges in total.
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Proof. We continue to run each of the R waiting trains individually and proceed with the
next one only when the previous one has terminated. In Algorithm 2 (Multi-Run Procedure),
this corresponds to always using τ = 1 and the next vertex v as the head of the previously
traversed edge, for each of the R trains. So we effectively perform Algorithm 1 (Run
Procedure) for R trains.

As each train terminates once it reaches a vertex in S ∪ {d, d}, Lemmata 1 and 2 are
easily seen to hold also here, after redefining “destination” as any vertex in S ∪ {d, d}. As a
consequence, each train traverses at most (n− ℓ + 2)2ℓ − 2 edges until it reaches a vertex in
{d, d}∪S. This leads to at most R((n−ℓ+2)2ℓ−2) edge traversals overall. By Theorem 8 (i),
this upper bound holds for all ways of continuing Algorithm 2 (Multi-Run Procedure). ◀

With R = W := 1 +
∑k

i=1 wi, we obtain an upper bound for the total number of loop
iterations since each iteration traverses at least one edge. But it turns out that we can be
significantly faster (and polynomial in the encoding size of W ) when we proceed in a greedy
fashion, i.e. we always pick the next vertex as the one with the largest number of waiting
trains, and move all these trains at once.

▶ Lemma 10. Let A, n, S, w, ℓ as in Lemma 9, and suppose that in each iteration of
Algorithm 2 (Multi-Run Procedure), we pick v ∈ V \ S maximizing t[v] and further choose
τ = t[v]. Then the number of iterations is at most (ln W + n)(n − k)((n − ℓ + 2)2ℓ − 2),
where W = 1 +

∑k
i=1 wi.

Proof. As in the proof of Theorem 8, we let each train collect a pebble as it traverses an
edge, where we initially put x̂e pebbles on edge e, with x̂ being the unique Multi-Run profile.
This means that we eventually collect all pebbles. Now consider an iteration and suppose
that R ≤W trains are still waiting. In the greedy algorithm, we move at least R/(n− k) of
them in this iteration and collect at least that many pebbles. On the other hand, with R

trains still waiting, and with T = (n− ℓ + 2)2ℓ − 2, there can be no more than RT pebbles
left, as all of them will be collected in the remaining at most that many edge traversals, due
to Lemma 9.

In summary, the number of pebbles is guaranteed to be reduced by a factor of(
1− 1

(n− k)T

)
in each iteration, starting from at most WT pebbles before the first iteration. After
s = (ln W + n)(n− k)T iterations, we therefore have at most(

1− 1
(n− k)T

)s

WT ≤ e− ln W −nWT < 1

pebbles left (using T < en). Hence, after at most s iterations, the greedy version of
Algorithm 2 (Multi-Run Procedure) has indeed terminated. ◀

We remark that essentially the same runtime can be achieved by a round robin version
that repeatedly cycles through V \ S in some fixed order.

3.5 Tarski fixed points
Tarski fixed points arise in the study of order-preserving functions on complete lattices [19].
For our application, it suffices to consider finite sets of the form L = {0, 1, . . . , N}k for
some N, k ∈ N+. For such a set, Tarski’s fixed point theorem [19] states that any monotone
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function D : L → L has a fixed point, some ŵ ∈ L such that D(ŵ) = ŵ. Moreover, the
problem of finding such a fixed point has been studied: Dang, Qi and Ye [5] have shown that
a fixed point can be found using O(logk N) evaluations of D. Recently, Fearnley, Pálvölgyi
and Savani [9] improved this to O(log2⌈k/3⌉ N).

Via Theorem 8, we have reduced the problem of deciding a terminating ARRIVAL
instance to the problem of finding a fixed point of a monotone function F : Nk

0 → Nk
0 ,

assuming that we can efficiently evaluate F . Indeed, if we have such a fixed point, the
corresponding (flow-minimal) candidate switching flow is an actual switching flow and hence
decides the problem via Theorem 4.

The function F depends on a set S ⊆ V of size k that we can choose freely (we will do so
in the subsequent sections).

Here, we still need to argue that we can restrict F to a finite set L = {0, 1, . . . , N}k so
that the Tarski fixed point theorem applies. We already know that outflow (and hence inflow)
values never exceed N = 2n in some switching flow, namely the run profile (Lemma 1), so
we simply restrict F to this range and at the same time cap the function values accordingly.

▶ Lemma 11. Let A = (V, o, d, d, seven, sodd) be a terminating ARRIVAL instance, S =
{v1, . . . , vk} ⊆ V , |V | = n. Let F be the function defined in Theorem 8 (ii), let N = 2n and
consider the function D : {0, 1, . . . , N}k → {0, 1, . . . , N}k defined by

D(w) =


min(N, F (w)1)
min(N, F (w)2)
...
min(N, F (w)k)

 , w ∈ {0, 1, . . . , N}k.

Then D is monotone and has a fixed point ŵ that can be found with O(log2⌈k/3⌉ N) evaluations
of D. Moreover, ŵ is also a fixed point of F , and when we apply Theorem 8 (i) with w = ŵ,
the flow-minimal candidate switching flow resulting from the multi-run procedure is a switching
flow for A.

We remark that the switching flow obtained in this way is not necessarily flow-minimal,
so we cannot argue that we obtain the run profile of A as defined in Theorem 5. The function
D may have several fixed points, each of them leading to a different switching flow; to obtain
the run profile, we would have to find a particular fixed point, the one that leads to the
unique switching flow of smallest total flow. The known Tarski fixed point algorithms cannot
do this, and we do not know of any efficient method for computing the run profile from a
given switching flow.

Proof. Monotonicity is clear: if w ≤ w′, then F (w) ≤ F (w′) by monotonicity of F ; see
Theorem 8 (ii). But then also D(w) ≤ D(w′) for the capped values. Hence, the Tarski fixed
point theorem [19] yields a fixed point ŵ of D, and the algorithm of Fearnley, Pálvölgyi and
Savani [9] finds it using O(log2⌈k/3⌉ N) = O(n2⌈k/3⌉) evaluations.

It remains to prove that ŵ is a fixed point of F . Suppose for a contradiction that it
is not a fixed point. Then F (ŵ) ̸= D(ŵ), i.e. some values were actually capped, and so
ŵj = D(ŵ)j = N < F (ŵ)j for at least one j. As we also have ŵ = D(ŵ) ≤ F (ŵ), we get

k∑
i=1

ŵi <

k∑
i=1

F (ŵ)i. (2)
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On the other hand, consider the candidate switching flow (1) with w = ŵ. At most the total
flow emitted (at Y and the vi’s) is absorbed at S, so we have

k∑
i=1

F (ŵ)i ≤ 1 +
k∑

i=1
ŵi. (3)

Putting this together with (2), we get an equality in (3). In particular, vj is the only vertex
whose inflow value was capped (by one), all emitted flow is absorbed at S, and no flow arrives
at d or d.

But this is a contradiction to ŵj = N = 2n: By the same arguments as in the proof of
Lemma 1, based on flow conservation (at all v ≠ vj) and switching behavior, one of these 2n

outflow units is guaranteed to arrive at {d, d}. ◀

4 Subexponential algorithm for ARRIVAL

In this section, we present our main application of the general framework developed in the
previous section.

Given a terminating ARRIVAL instance A with |V | = n, the plan is to construct a set
S ⊆ V of size O(

√
n) such that from any vertex, the length of the shortest path in G(A)

to a vertex in S ∪ {d, d} is also bounded by roughly O(
√

n). Since S is that small, we can
find a Tarski fixed point with a subexponential number of F -evaluations; and since shortest
paths are that short, each F -evaluation can also be done in subexponential time using the
Multi-Run procedure. An overall subexponential algorithm ensues.

▶ Lemma 12. Let A = (V, o, d, d, seven, sodd) be a terminating ARRIVAL instance with
|V | = n. Let ϕ ∈ (0, 1) be a real number. In O(n) time, we can construct a ϕ-set S, meaning
a set S ⊆ V such that

(i) |S| ≤ ϕ · (n + 2);
(ii) for all v ∈ V , the shortest path from v to S ∪ {d, d} in G(A) has length at most

log2(n + 2)/ϕ.

Proof. We adapt the ball-growing technique of Leighton and Rao [16], as explained by
Trevisan [20].

We first decompose the switch graph G(A) into layers based on the distance of the
vertices to a destination [11]. More formally, for v ∈ V ∪ {d, d}, we denote by dist(v)
the length of the shortest path from v to {d, d} in G(A). Then the layers are defined as
Li := {v ∈ V ∪ {d, d} : dist(v) = i} for i ≥ 0. Define ℓ := max{dist(v) : v ∈ V }. We can
compute the layer decomposition (L0, . . . , Lℓ) using breadth-first search in O(n) time.

Consider Algorithm 3 which computes a ϕ-set as a union of layers. It is clear that the
procedure is done in O(n) time. To prove (i), we observe that whenever we add a layer Li

to S, we have |Li| < ϕ|U |; moreover, the U ’s considered in these inequalities are mutually
disjoint subsets of V ∪ {d, d}. Hence, |S| < ϕ · (n + 2).

For (ii), let v ∈ V . Then v ∈ Lb for some b ≥ 1. Let 0 ≤ a ≤ b be the largest index such
that La ⊆ S ∪ {d, d}. Then the shortest path from v to a vertex in S ∪ {d, d} has length at
most b− a. It remains to bound j := b− a. The interesting case is j > 0.

Consider Algorithm 3. After the a-th iteration, we have |U | = |La| ≥ 1. Moreover,
|Li| ≥ ϕ|U | for i = a + 1, . . . , b, meaning that for each iteration i in this range, the size of U

has grown by a factor of at least 1 + ϕ. Hence, after the b-th iteration, (1 + ϕ)j ≤ |U | ≤ n + 2.
This implies j ≤ log2(n + 2)/ log2(1 + ϕ) < log2(n + 2)/ϕ, where we use the inequality
log2(1 + ϕ) > ϕ for ϕ ∈ (0, 1). ◀
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Algorithm 3 Procedure to compute a ϕ-set.

Input: ARRIVAL instance with layer decomposition (L0, . . . , Lℓ), ϕ ∈ (0, 1)
Output: a ϕ-set S

S ← ∅
U ← L0
for i = 1, . . . , ℓ do

if |Li| < ϕ|U | then
S ← S ∪ Li

U ← ∅
U ← U ∪ Li

return S

▶ Theorem 13. Let A = (V, o, d, d, seven, sodd) be a terminating ARRIVAL instance with
|V | = n. A can be decided in time O(p(n)n1.633

√
n), for some polynomial p.

Proof. By Lemma 12, we can find a ϕ-set S in O(n) time, for any ϕ ∈ (0, 1). As |S| ≤ ϕ·(n+2),
by Lemma 11, we can then decide A with O(n2⌈ϕ·(n+2)/3⌉) evaluations of the function D.
Each evaluation in turn requires us to evaluate the function F in Theorem 8 (ii) for a given
w ∈ {0, 1, . . . , 2n}|S|. We can do this by applying Algorithm 2 (Multi-Run Procedure). By
Lemma 10 and the definition of a ϕ-set in Lemma 12, running this algorithm in a greedy
fashion requires at most (ln W +n)(n−|S|)((n−ℓ+2)2ℓ−2) iterations, where W = 1+

∑|S|
i=1 wi

and ℓ = log2(n+2)/ϕ. Further, from the choice of w, we have W ≤ 2nϕ(n+2)+1. Therefore,
the number of iterations is O(q(n)n1/ϕ) for some polynomial q. At each iteration, we need
to find the vertex with the highest number of waiting trains, as stated in Lemma 10, and
move the trains from the chosen vertex. All these operations take polynomial time.

In total, the runtime of the whole process is O(n2⌈ϕ·(n+2)/3⌉ · p(n)n1/ϕ) for some polyno-
mial p. Choosing ϕ =

√
3/
√

2n, the runtime becomes O(p(n)n1.633
√

n). ◀

5 Feedback vertex sets

In the previous section, we used our framework to obtain an improved algorithm for ARRIVAL
in general. In this section, we will instantiate the framework differently to obtain a polynomial-
time algorithm for a certain subclass of ARRIVAL.

A subset S ⊆ V of vertices in a directed graph G = (V, E) is called a feedback vertex set
if and only if the subgraph induced by V \ S is acyclic (i.e. it contains no directed cycle).
Karp [14] showed that the problem of finding a smallest feedback vertex set is NP-hard.
However, there exists a parameterized algorithm by Chen et al. [2] which can find a feedback
vertex set of size k in time O(n44kk3k!) in a directed graph on n vertices, or report that no
such set exists.

If we apply Theorem 8 with a feedback vertex set S, it turns out that we can compute
the Multi-Run profile in polynomial time, meaning that we get a polynomial-time algorithm
for ARRIVAL if there is a feedback vertex set of constant size k.

▶ Theorem 14. Let A = (V, o, d, d, seven, sodd) be a terminating ARRIVAL instance with
graph G(A). If G(A) has a feedback vertex set S ⊆ V of size k (assumed to be fixed as
n = |V | → ∞), then A can be decided in time O(n2(⌈k/3⌉+1)).
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Proof. Using the algorithm by Chen et al. [2], we can find a feedback vertex set S in
O(n4) time if it exists. According to Lemma 11, we can then decide A with O(n2⌈k/3⌉)
evaluations of the function D. Each evaluation in turn requires us to evaluate the function
F in Theorem 8 (ii) for a given w ∈ {0, 1, . . . , 2n}k. To do this, we apply Algorithm 2
(Multi-Run Procedure) where we pick vertices v ∈ V \ S in topological order and choose
τ = t[v] always. As we never send any trains back to vertices that have previously been
picked, we terminate within n− k iterations, each of which can be performed in time O(n)
as it involves O(n)-bit numbers. Hence, F (w) can be computed in O(n2) time.

Overall, this gives a runtime of O(n4 +n2(⌈k/3⌉+1)). For k ≥ 1, the second term dominates
the first one. For k = 0, we can check if a graph is acyclic, for example, via topological
sorting in O(n) time and do not need to employ the algorithm by Chen et al. [2]. The claimed
runtime follows. ◀

We remark that even if k is not constant, we can still beat the subexponential algorithm
in Section 4, as long as k = O(nα) for some α < 1/2.
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Abstract
This paper presents universal algorithms for clustering problems, including the widely studied
k-median, k-means, and k-center objectives. The input is a metric space containing all potential
client locations. The algorithm must select k cluster centers such that they are a good solution
for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the
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an optimal solution. A universal algorithm’s solution sol for a clustering problem is said to be an
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give hardness results showing that (α, β)-approximation is NP-hard if α or β is at most a certain
constant, even for the widely studied special case of Euclidean metric spaces. This shows that in
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cost of the solution is based on this realization. The goal of a universal algorithm is to obtain
a solution that is near-optimal for every possible input realization. For example, suppose
that a network-based-service provider can afford to deploy servers at k locations around the
world and hopes to minimize latency between clients and servers. The service provider does
not know in advance which clients will request service, but knows where clients are located.
A universal solution provides guarantees on the quality of the solution regardless of which
clients ultimately request service. As another example, suppose that a program committee
chair wishes to invite k people to serve on the committee. The chair knows the areas of
expertise of each person who is qualified to serve. Based on past iterations of the conference,
the chair also knows about many possible topics that might be addressed by submissions.
The chair could use a universal algorithm to select a committee that will cover the topics
well, regardless of the topics of the papers that are submitted. The situation also arises in
targeting advertising campaigns to client demographics. Suppose a campaign can spend for
k advertisements, each targeted to a specific client type. While the entire set of client types
that are potentially interested in a new product is known, the exact subset of clients that
will watch the ads, or eventually purchase the product, is unknown to the advertiser. How
does the advertiser target her k advertisements to address the interests of any realized subset
of clients?

Motivated by these sorts of applications, this paper presents the first universal algorithms
for clustering problems, including the classic k-median, k-means, and k-center problems. The
input to these algorithms is a metric space containing all locations of clients and cluster
centers. The algorithm must select k cluster centers such that this is a good solution for any
subset of clients that actually realize.

It is tempting to imagine that, in general, for some large enough value of α, one can find a
solution sol such that for all realizations (i.e., subsets of clients) C ′, sol(C ′) ≤ α · opt(C ′),
where sol(C ′) denotes sol’s cost in realization C ′ and opt(C ′) denotes the optimal cost
in realization C ′. But this turns out to be impossible for many problems, including the
clustering problems we study, and indeed this difficulty may have limited the study of
universal algorithms. For example, suppose that the input for the k-median problem is a
uniform metric on k + 1 points, each with a cluster center and client. In this case, for any
solution sol with k cluster centers, there is some realization C ′ consisting of a single client
that is not co-located with any of the k cluster centers in sol. Then, sol(C ′) > 0 but
opt(C ′) = 0. Since it is not possible to provide a strict approximation guarantee for every
realization, we instead seek to minimize the regret, defined as the maximum difference between
the cost of the algorithm’s solution and the optimal cost across all realizations. The solution
that minimizes regret is called the minimum regret solution, or mrs for short, and its regret is
termed minimum regret or mr. More formally, mr = minsol maxC′ [sol(C ′) − opt(C ′)]. We
now seek a solution sol that achieves, for all input realizations C ′, sol(C ′) − opt(C ′) ≤ mr,
i.e., sol(C ′) ≤ opt(C ′) + mr. But, obtaining such a solution turns out to be NP-hard for
many problems, and one has to settle for an approximation: sol(C ′) ≤ α · opt(C ′) + β · mr.
The algorithm is then called an (α, β)-approximate universal algorithm for the problem.
Note that in the aforementioned example with k + 1 points, any solution must pay mr (the
distance between any two points) in some realization where opt(C ′) = 0 and only one client
appears (in which case paying mr might sound avoidable or undesirable). This example
demonstrates that stricter notions of regret and approximation than (α, β)-approximation
are infeasible in general, suggesting that (α, β)-approximation is the least relaxed guarantee
possible for universal clustering.
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1.1 Problem Definitions and Results
We are now ready to formally define our problems and state our results. In all the clustering
problems that we consider in this paper, the input is a metric space on all the potential
client locations C and cluster centers F . The special case where F = C has also been studied
in the clustering literature, e.g., in [23, 14], although the more common setting, as in our
work, is to not make this assumption. Of course, all results, including ours, without this
assumption also apply to the special case. If F = C, the constants in our bounds improve,
but the results are qualitatively the same. We note that some sources refer to the k-center
problem when F ̸= C as the k-supplier problem instead, and use k-center to refer exclusively
to the case where F = C.

Let cij denote the metric distance between points i and j. The solution produced
by the algorithm comprises k cluster centers in F ; let us denote this set by sol. Now,
suppose a subset of clients C ′ ⊆ C realizes in the actual input. Then, the cost of each
client j ∈ C ′ is given as the distance from the client to its closest cluster center, i.e.,
cost(j, sol) = mini∈sol cij . The clustering problems differ in how these costs are combined
into the overall minimization objective. The respective objectives are given below:

k-median (e.g., [14, 25, 5, 34, 11]): sol(C ′) =
∑

j∈C′ cost(j, sol).
k-center (e.g., [23, 15, 24, 30, 37]): sol(C ′) = maxj∈C′ cost(j, sol).
k-means (e.g., [35, 28, 33, 21, 1]): sol(C ′) =

√∑
j∈C′ cost(j, sol)2.

We also consider ℓp-clustering (e.g., [21]) which generalizes all these individual clustering
objectives. In ℓp-clustering, the objective is the ℓp-norm of the client costs for a given value

p ≥ 1, i.e., sol(C ′) =
(∑

j∈C′ cost(j, sol)p
)1/p

. Note that k-median and k-means are
special cases of ℓp-clustering for p = 1 and p = 2 respectively. k-center can also be defined
in the ℓp-clustering framework as the limit of the objective for p → ∞; moreover, it is
well-known that ℓp-norms only differ by constants for p > log n, thereby allowing the k-center
objective to be approximated within a constant by ℓp-clustering for p = log n.

Our main result is to obtain (O(1), O(1))-approximate universal algorithms for k-median,
k-center, and k-means. We also generalize these results to the ℓp-clustering problem.

▶ Theorem 1. There are (O(1), O(1))-approximate universal algorithms for the k-median, k-
means, and k-center problems. More generally, there are (O(p), O(p2))-approximate universal
algorithms for ℓp-clustering problems, for any p ≥ 1.

▶ Remark. The bound for k-means is by setting p = 2 in ℓp-clustering. For k-median and
k-center, we use separate algorithms to obtain improved bounds than those provided by the
ℓp-clustering result. This is particularly noteworthy for k-center where ℓp-clustering only
gives poly-logarithmic approximation.

Universal Clustering with Fixed Clients. We also consider a more general setting where
some of the clients are fixed, i.e., are there in any realization, but the remaining clients may
or may not realize as in the previous case. (Of course, if no client is fixed, we get back
the previous setting as a special case.) This more general model is inspired by settings
where a set of clients is already present but the remaining clients are mere predictions. This
surprisingly creates new technical challenges, that we overcome to get:

▶ Theorem 2. There are (O(1), O(1))-approximate universal algorithms for the k-median,
k-means, and k-center problems with fixed clients. More generally, there are (O(p2), O(p2))-
approximate universal algorithms for ℓp-clustering problems, for any p ≥ 1.
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Hardness Results. Next, we study the limits of approximation for universal clustering. In
particular, we show that the universal clustering problems for all the objectives considered in
this paper are NP-hard in a rather strong sense. Specifically, we show that both α and β are
separately bounded away from 1, irrespective of the value of the other parameter, showing
the necessity of both α and β in our approximation bounds. Similar lower bounds continue
to hold for universal clustering in Euclidean metrics, even when PTASes are known in the
offline (non-universal) setting [4, 31, 33, 37, 1].

▶ Theorem 3. In universal ℓp-clustering for any p ≥ 1, obtaining α < 3 or β < 2 is NP-hard.
Even for Euclidean metrics, obtaining α < 1.8 or β ≤ 1 is NP-hard. The lower bounds on α

(resp., β) are independent of the value of β (resp., α).

Interestingly, our lower bounds rely on realizations where sometimes as few as one client
appears. This suggests that e.g. redefining regret to be some function of the number of
clients that appear (rather than just their cost) cannot subvert these lower bounds.

1.2 Techniques
Before discussing our techniques, we discuss why standard approximations for clustering
problems are insufficient. It is known that the optimal solution for the realization that
includes all clients gives a (1, 2)-approximation for universal k-median (this is a corollary
of a more general result in [29]; we do not know if their analysis can be extended to e.g.
k-means), giving universal algorithms for “easy” cases of k-median such as tree metrics. But,
the clustering problems we consider in this paper are NP-hard in general; so, the best we
can hope for in polynomial time is to obtain optimal fractional solutions, or approximate
integer solutions. Unfortunately, the proof of [29] does not generalize to any regret guarantee
for the optimal fractional solution. Furthermore, for all problems considered in this paper,
even (1 + ϵ)-approximate (integer) solutions for the “all clients” instance are not guaranteed
to be (α, β)-approximations for any finite α, β. These observations fundamentally distinguish
universal approximations for NP-hard problems like the clustering problems in this paper
from those in P, and require us to develop new techniques for universal approximations.

In this paper, we develop a general framework for universal approximation based on linear
programming (lp) relaxations that forms the basis of our results on k-median, k-means,
and k-center (Theorem 1) as well as the extension to universal clustering with fixed clients
(Theorem 2).

The first step in our framework is to write an lp relaxation of the regret minimization
problem. In this formulation, we introduce a new regret variable that we seek to minimize
and is constrained to be at least the difference between the (fractional) solution obtained by
the lp and the optimal integer solution for every realizable instance. Abstractly, if the lp
relaxation of the optimization problem is given by min{c · x : x ∈ P}, then the new regret
minimization lp is given by

min{r : x ∈ P ; c(I)·x ≤ opt(I) + r, ∀I}.

(For problems like k-means with non-linear objectives, the constraint c(I)·x ≤ opt(I) + r
cannot be replaced with a constraint that is simultaneously linear in x, r. However, for a
fixed value of r, the corresponding non-linear constraints still give a convex feasible region,
and so the techniques we discuss in this section can still be used.)

Here, I ranges over all realizable instances of the problem. Hence, the lp is exponential in
size, and we need to invoke the ellipsoid method via a separation oracle to obtain an optimal
fractional solution. It suffices to design a separation oracle for the new set of constraints
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c(I)·x ≤ opt(I) + r, ∀I. This amounts to determining the regret of a fixed solution given by
x, which unfortunately, is NP-hard for our clustering problems. So, we settle for designing
an approximate separation oracle, i.e., approximating the regret of a given solution. For
k-median, we reduce this to a submodular maximization problem subject to a cardinality
constraint, which can then be (approximately) solved via standard greedy algorithms. For
k-means, and more generally ℓp-clustering, as well as the setting with fixed clients, the
situation is more complex, but can still be reduced to submodular maximization.

The next step in our framework is to round these fractional solutions to integer solutions
for the regret minimization lp. Typically, in clustering problems such as k-median, lp
rounding algorithms give average guarantees, i.e., although the overall objective in the integer
solution is bounded against that of the fractional solution, individual connection costs of
clients are not (deterministically) preserved in the rounding. But, average guarantees are
too weak for our purpose: in a realized instance, an adversary may only select the clients
whose connection costs increase by a large factor in the rounding thereby causing a large
regret. Ideally, we would like to ensure that the connection cost of every individual client
is preserved up to a constant in the rounding. However, this may be impossible in general.
Consider a uniform metric over k + 1 points. One fractional solution is to make k

k+1 fraction
of each point a cluster center. In any integer solution, since there are only k cluster centers
but k + 1 points overall, there is one client that has connection cost of 1, which is k + 1 times
its fractional connection cost.

To overcome this difficulty, we allow for a uniform additive increase in the connection
cost of every client. We show that such a rounding also preserves the regret guarantee
of our fractional solution within constant factors. The clustering problem we now solve
has a modified objective: for every client, the distance to the closest cluster center is now
discounted by the additive allowance, with the caveat that the connection cost is 0 if this
difference is negative. This variant is a generalization of a problem appearing in [19], and
we call it clustering with discounts (e.g., for k-median, we call this problem k-median with
discounts.) Our main tool in the rounding then becomes an approximation algorithm for
ℓp

p-clustering with discounts. For k-median, we use a Lagrangian relaxation of this problem
to the classic facility location problem to design such an approximation. For k-means and
ℓp-clustering, extra work is needed to relate the ℓp and ℓp

p objectives. For k-center, we give a
purely combinatorial (greedy) algorithm.

1.3 Related Work
For all previous universal algorithms, the approximation factor corresponds to our parameter
α, i.e., these algorithms are (α, 0)-approximate. The notion of regret was not considered. As
we have explained, however, it is not possible to obtain such results for universal clustering.
Furthermore, it may be possible to trade-off some of the large values of α in these results,
e.g., Ω(

√
n) for set cover, by allowing β > 0.

Universal algorithms have been of large interest in part because of their applications as
online algorithms where all the computation is performed ahead of time. Much of the work
on universal algorithms has focused on TSP, starting with the seminal work of Jia et al. [26]
(later improved by [20]), with following work giving better approximations for Euclidean
metrics [39], minor-free metrics [22], and tree metrics [40]. The universal metric Steiner tree
problem was also considered by Jia et al. [26], with nearly matching lower bounds [2, 26, 9].
The problem has also been considered for general graphs and minor-free graphs [10]. Finally,
for universal (weighted) set cover, Jia et al. [26] (see also [17]) provide an algorithm and an
almost matching lower bound.
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The problem of minimizing regret has been studied in the context of robust optimization,
with a focus on tree metrics. The robust 1-median problem was introduced for tree metrics by
Kouvelis and Yu in [32] and several faster algorithms and for general metrics were developed
in the following years (e.g. see [7]). For robust k-center, Averbakh and Berman[7] gave a
reduction to ordinary k-center problems, which are tractable on tree metrics.

Roadmap. We present the constant approximation algorithms (Theorem 1) for universal
k-median, a sketch for k-means, and k-center in Sections 2, 4, and 5 respectively. The
k-means result is given in full detail as a more general ℓp-clustering result in the full paper.
In describing these algorithms, we defer the clustering with discounts algorithms used in
the rounding to the appendix. We also give the extension to universal clustering with fixed
clients for k-median in Section 3, with the extensions for k-means and k-center in the full
paper. Finally, the hardness results (Theorem 3) appear in Section 6.

2 Universal k-Median

In this section, we prove the following theorem:

▶ Theorem 4. There exists a (27, 49)-approximate universal algorithm for the k-median
problem.

The algorithm has two components. The first component is a separation oracle for the regret
minimization lp based on submodular maximization, which we define below.

Submodular Maximization with Cardinality Constraints. A (non-negative) function f :
2E → R+

0 is said to be submodular if for all S ⊆ T ⊆ E and x ∈ E, we have f(T ∪{x})−f(T ) ≤
f(S ∪ {x}) − f(S). It is said to be monotone if for all S ⊆ T ⊆ E, we have f(T ) ≥ f(S). The
following theorem for maximizing monotone submodular functions subject to a cardinality
constraint is well-known.

▶ Theorem 5 (Fisher et al. [38]). For the problem of finding S ⊆ E that maximizes a monotone
submodular function f : 2E → R+

0 , the natural greedy algorithm that starts with S = ∅ and
repeatedly adds x ∈ E that maximizes f(S∪{x}) until |S| = k, is a e

e−1 ≈ 1.58-approximation.

We give the reduction from the separation oracle to submodular maximization in Section 2.1,
and then employ the above theorem.

k-median with Discounts. The second component of our framework is a rounding algorithm
that employs the k-median with discounts problem, which we define next. In the k-median
with discounts problem, we are given a k-median instance, but where each client j has an
additional (non-negative) parameter rj called its discount. Just as in the k-median problem,
our goal is to place k cluster centers that minimize the total connection costs of all clients.
But, the connection cost for client j can now be discounted by up to rj , i.e., client j with
connection cost cj contributes (cj − rj)+ := max{0, cj − rj} to the objective of the solution.

Let opt be the cost of an optimal solution to the k-median with discounts problem.
We say an algorithm alg that outputs a solution with connection cost cj for client j is a
(γ, σ)-approximation if:∑

j∈C

(cj − γ · rj)+ ≤ σ · opt.
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That is, a (γ, σ)-approximate algorithm outputs a solution whose objective function when
computed using discounts γ · rj for all j is at most σ times the optimal objective using
discounts rj . In the case where all rj are equal, [19] gave a (9, 6)-approximation algorithm
for this problem based on the classic primal-dual algorithm for k-median. The following
lemma generalizes their result to the setting where the rj may differ:

▶ Lemma 6. There exists a (deterministic) polynomial-time (9, 6)-approximation algorithm
for the k-median with discounts problem.

We give details of the algorithm and the proof of this lemma in the full paper. We note that
when all rj are equal, the constants in [19] can be improved (see e.g. [13]); we do not know
of any similar improvement when the rj may differ. In Section 2.2, we give the reduction
from rounding the fractional solution for universal k-median to the k-median with discounts
problem, and then employ the above lemma.

2.1 Universal k-median: Fractional Algorithm
The standard k-median polytope (see e.g., [25]) is given by:

P = {(x, y) :
∑

i

xi ≤ k; ∀i, j : yij ≤ xi; ∀j :
∑

i

yij ≥ 1; ∀i, j : xi, yij ∈ [0, 1]}.

Here, xi represents whether point i is chosen as a cluster center, and yij represents whether
client j connects to i as its cluster center. Now, consider the following lp formulation for
minimizing regret r:

min{r : (x, y) ∈ P ; ∀C ′ ⊆ C :
∑
j∈C′

∑
i

cijyij − opt(C ′) ≤ r}, (1)

where opt(C ′) is the cost of the (integral) optimal solution in realization C ′. Note that the
new constraints: ∀C ′ ⊆ C :

∑
j∈C′

∑
i cijyij − opt(C ′) ≤ r (we call it the regret constraint

set) require that the regret is at most r in all realizations.
In order to solve lp (1), we need a separation oracle for the regret constraint set. Note

that there are exponentially many constraints corresponding to realizations C ′; moreover,
even for a single realization C ′, computing opt(C ′) is NP-hard. So, we resort to designing an
approximate separation oracle. Fix some fractional solution (x, y, r). Overloading notation,
let S(C ′) denote the cost of the solution with cluster centers S in realization C ′. By definition,
opt(C ′) = minS⊆F,|S|=k S(C ′). Then designing a separation oracle for the regret constraint
set is equivalent to determining if the following inequality holds:

max
C′⊆C

max
S⊆F,|S|=k

 ∑
j∈C′

∑
i

cijyij − S(C ′)

 ≤ r.

We flip the order of the two maximizations, and define fy(S) as follows:

fy(S) = max
C′⊆C

 ∑
j∈C′

∑
i

cijyij − S(C ′)

 .

Then designing a separation oracle is equivalent to maximizing fy(S) for S ⊆ F subject
to |S| = k. The rest of the proof consists of showing that this function is monotone and
submodular, and efficiently computable.
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▶ Lemma 7. Fix y. Then, fy(S) is a monotone submodular function in S. Moreover, fy(S)
is efficiently computable for a fixed S.

Proof. Let d(j, S) := mini′∈S ci′j denote the distance from client j to the nearest cluster
center in S. If S = ∅, we say d(j, S) := ∞. The value of C ′ that defines fy(S) is the set of
all clients closer to S than to the fractional solution y, i.e.,

∑
i cijyij > mini′∈S ci′j . This

immediately establishes efficient computability of fy(S). Moreover, we can equivalently write
fy(S) as follows:

fy(S) =
∑
j∈C

(
∑

i

cijyij − d(j, S))+.

A sum of monotone submodular functions is a monotone submodular function, so it suffices
to show that for all clients j, the new function gy,j(S) := (

∑
i cijyij − d(j, S))+ is monotone

submodular.
gy,j is monotone: for S ⊆ T , d(j, T ) ≤ d(j, S), and thus (

∑
i cijyij − d(j, S))+ ≤

(
∑

i cijyij − d(j, T ))+.
gy,j is submodular if:

∀S ⊆ T ⊆ F, ∀x ∈ F : gy,j(S ∪ {x}) − gy,j(S) ≥ gy,j(T ∪ {x}) − gy,j(T )

Fix S, T , and x. Assume gy,j(T ∪ {x}) − gy,j(T ) is positive (if it is zero, by monotonicity
the above inequality trivially holds). This implies that x is closer to client j than
any cluster center in T (and hence S too), i.e., d(j, x) ≤ d(j, T ) ≤ d(j, S). Thus,
d(j, x) = d(j, S ∪ {x}) = d(j, T ∪ {x}) which implies that gy,j(S ∪ {x}) = gy,j(T ∪ {x}).
Then we just need to show that gy,j(S) ≤ gy,j(T ), but this holds by monotonicity. ◀

By standard results (see e.g., GLS [18]), we get an (α, β)-approximate fractional solution
for universal k-median via the ellipsoid method if we have an approximate separation oracle
for lp (1) that given a fractional solution (x, y, r) does either of the following:

Declares (x, y, r) feasible, in which case (x, y) has cost at most α · opt(I) + β · r in all
realizations, or
Outputs an inequality violated by (x, y, r) in lp (1).

The approximate separation oracle does the following for the regret constraint set (all
other constraints can be checked exactly): Given a solution (x, y, r), find an e−1

e -approximate
maximizer S of fy via Lemma 7 and Theorem 5. Let C ′ be the set of clients closer to S

than the fractional solution y (i.e., the realization that maximizes fy(S)). If fy(S) > r,
the separation oracle returns the violated inequality

∑
j∈C′

∑
i cijyij − S(C ′) ≤ r; else, it

declares the solution feasible. Whenever the actual regret of (x, y) is at least e
e−1 · r, this

oracle will find S such that fy(S) > r and output a violated inequality. Hence, we get the
following lemma:

▶ Lemma 8. There exists a deterministic algorithm that in polynomial time computes a
fractional e

e−1 ≈ 1.58-approximate solution for lp (1) representing the universal k-median
problem.

2.2 Universal k-Median: Rounding Algorithm
Let frac denote the e

e−1 -approximate fractional solution to the universal k-median problem
provided by Lemma 8. We will use the following property of k-median, shown by Archer et
al. [3].
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▶ Lemma 9 ([3]). The integrality gap of the natural lp relaxation of the k-median problem
is at most 3.

Lemmas 8 and 9 imply that that for any set of clients C ′,

1
3 · opt(C ′) ≤ frac(C ′) ≤ opt(C ′) + e

e − 1 · mr. (2)

Our overall goal is to obtain a solution sol that minimizes maxC′⊆C [sol(C ′) − opt(C ′)].
But, instead of optimizing over the exponentially many different opt(C ′) solutions, we use
the surrogate 3 · frac(C ′) which has the advantage of being defined by a fixed solution
frac, but still approximates opt(C ′) by Eq. 2. This suggests minimizing the following
objective instead: maxC′ [sol(C ′) − 3 · frac(C ′)]. Minimizing this objective is equivalent to
the k-median with discounts problem, where the discount for client j is 3fj . This allows us
to invoke Lemma 6 for the k-median with discounts problem.

Thus, our overall algorithm is as follows. First, use Lemma 8 to find a fractional solution
frac = (x, y, r). Let fj :=

∑
i cijyij be the connection cost of client j in frac. Then,

construct a k-median with discounts instance where client j has discount 3fj , and use
Lemma 6 on this instance to obtain the final solution to the universal k-median problem.
Theorem 4 follows using the above lemmas; we defer the proof to the full paper.

3 Universal k-Median with Fixed Clients

In this section, we extend the techniques from Section 2 to prove the following theorem:

▶ Theorem 10. If there exists a deterministic polynomial time γ-approximation algorithm
for the k-median problem, then for every ϵ > 0 there exists a (54γ + ϵ, 60)-approximate
universal algorithm for the universal k-median problem with fixed clients.

By using the derandomized version of the (2.732 + ϵ)-approximation algorithm of Li and
Svensson [34] for the k-median problem, and appropriate choice of both ϵ parameters, we
obtain the following corollary from Theorem 10.

▶ Corollary 11. For every ϵ > 0, there exists a (148 + ϵ, 60)-approximate universal algorithm
for the k-median problem with fixed clients.

Our high level strategy follows similarly to the previous section. In Section 3.2, we
show how to find a good fractional solution by approximately solving a linear program. In
Section 3.3, we describe how to round the fractional solution in a manner that preserves
its regret guarantee within constant factors. Similar techniques in conjunction with the
techniques in Sections 4 and 5 are used for the universal k-means and k-center problems
with fixed clients; due to space constraints, we only focus on universal k-median with fixed
clients here.

3.1 Preliminaries
In addition to the preliminaries of Section 2, we will use the following tools:

Submodular Maximization over Independence Systems. An independence system com-
prises a ground set E and a set of subsets (called independent sets) I ⊆ 2E with the property
that if A ⊆ B and B ∈ I then A ∈ I (the subset closed property). An independent set S in
I is maximal if there does not exist S′ ⊃ S such that S′ ∈ I. Note that one can define an
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independence system by specifying the set of maximal independent sets I ′ only, since the
subset closed property implies I is simply all subsets of sets in I ′. An independence system
is a 1-independence system (or 1-system in short) if all maximal independent sets are of the
same size. The following result on maximizing submodular functions over 1-independence
systems follows from a more general result given implicitly in [38] and more formally in [12].

▶ Theorem 12. There exists a polynomial time algorithm that given a 1-independence system
(E, I) and a non-negative monotone submodular function f : 2E → R+ defined over it, finds
a 1

2 -maximizer of f , i.e. finds S′ ∈ I such that f(S′) ≥ 1
2 maxS∈I f(S).

The algorithm in the above theorem is the natural greedy algorithm, which starts with S′ = ∅
and repeatedly adds to S′ the element u that maximizes f(S′ ∪ {u}) while maintaining that
S′ ∪ {u} is in I, until no such addition is possible.

Incremental ℓp-Clustering. We will also use the incremental ℓp-clustering problem which
is defined as follows: Given an ℓp-clustering instance and a subset of the cluster centers S

(the “existing” cluster centers), find the minimum cost solution to the ℓp-clustering instance
with the additional constraint that the solution must contain all cluster centers in S. When
S = ∅, this is just the standard ℓp-clustering problem, and this problem is equivalent to the
standard ℓp-clustering problem by the following lemma:

▶ Lemma 13. If there exists a γ-approximation algorithm for the ℓp-clustering problem,
there exists a γ-approximation for the incremental ℓp-clustering problem.

The lemma follows by an approximation-preserving reduction between the two problems,
which simply adds many clients to the locations of cluster centers in S, forcing any low-cost
solution to place cluster centers at these locations even in the standard ℓp-clustering problem.

3.2 Obtaining a Fractional Solution for Universal k-Median with Fixed
Clients

Let Cf ⊆ C denote the set of fixed clients and for any realization of clients C ′ satisfying
Cf ⊆ C ′ ⊆ C, let opt(C ′) denote the cost of the optimal solution for C ′. The same
LP we used for universal k-median applies here, except we remove constraints on regret
corresponding to realizations C ′ ̸⊆ Cf . Recall that to design an approximate separation
oracle, it suffices to find a realization approximately maximizing the regret of the fractional
solution.

Let S(C ′) denote the cost of the solution S ⊆ F in realization C ′ (that is, S(C ′) =∑
j∈C′ mini∈S cij). Since opt(C ′) = minS:S⊆F,|S|=k S(C ′), exactly deciding the feasibility

of the constraints on regret in the LP is equivalent to deciding if the following holds:

∀S : S ⊆ F, |S| = k : max
C′:Cf ⊆C′⊆C

 ∑
j∈C′

∑
i∈F

cijyij − S(C ′)

 ≤ r. (3)

By splitting the terms
∑

j∈C′
∑

i∈F cijyij and S(C ′) into terms for Cf and C ′ \ Cf , we can
rewrite Eq. (3) as follows:

∀S ⊆ F, |S| = k : max
C∗⊆C\Cf

 ∑
j∈C∗

∑
i∈F

cijyij − S(C∗)

 ≤ S(Cf ) −
∑

j∈Cf

∑
i∈F

cijyij + r
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For fractional solution y, let

fy(S) = max
C∗:C∗⊆C\Cf

 ∑
j∈C∗

∑
i∈F

cijyij − S(C∗)

 . (4)

Note that we can compute fy(S) for any S easily since the maximizing value of C∗ is the set
of clients j for which S has connection cost less than

∑
i∈F cijyij . We already know fy(S) is

submodular. But, the term S(Cf ) is not fixed with respect to S, so maximizing fy(S) does
not suffice for separating the LP. To overcome this difficulty, for every possible cost M on
the fixed clients, we replace S(Cf ) with M and only maximize over solutions S for which
S(Cf ) ≤ M (for convenience, we will call any solution S for which S(Cf ) ≤ M an M -cheap
solution):

∀M ∈
{

0, 1, . . . , |Cf | max
i,j

cij

}
: max

S:S⊆F,|S|=k,S(Cf )≤M
fy(S) ≤ M −

∑
j∈Cf

∑
i∈F

cijyij + r. (5)

Note that this set of inequalities is equivalent to Eq. (3), but it has the advantage that the
left-hand side is approximately maximizable and the right-hand side is fixed. Hence, these
inequalities can be approximately separated. However, there are exponentially many inequal-
ities; so, for any fixed ϵ > 0, letting Zϵ :=

{
0, 1, 1 + ϵ, . . . , (1 + ϵ)⌈log1+ϵ(|Cf | maxi,j cij)⌉+1}

we
relax to the following polynomially large set of inequalities:

∀M ∈ Zϵ : max
S:S⊆F,|S|=k,S(Cf )≤M

fy(S) ≤ M −
∑

j∈Cf

∑
i∈F

cijyij + r. (6)

Separating inequality Eq. (6) for a fixed M corresponds to submodular maximization of
fy(S), but now subject to the constraints |S| = k and S(Cf ) ≤ M as opposed to just |S| = k.
Let SM be the set of all S ⊆ F such that |S| = k and S(Cf ) ≤ M . Since fy(S) is monotone,
maximizing fy(S) over SM is equivalent to maximizing fy(S) over the independence system
(F, IM ) with maximal independent sets SM .

Then all that is needed to approximately separate Eq. (6) corresponding to a fixed M is
an oracle for deciding membership in (F, IM ). Recall that S ⊆ F is in (F, IM ) if there exists
a set S′ ⊇ S such that |S′| = k and S′(Cf ) ≤ M . But, even deciding membership of the
empty set in (F, IM ) requires one to solve a k-median instance on the fixed clients, which is
in general NP-hard. More generally, we are required to solve an instance of the incremental
k-median problem (see Section 3.1) with existing cluster centers in S.

While exactly solving incremental k-median is NP-hard, we have a constant approximation
algorithm for it (call it A), by Lemma 13. So, we could define a new system (F, I ′

M ) that
contains a set S ⊆ F if the output of A for the incremental k-median instance with existing
cluster centers S has cost at most M . But, due to the unpredictable behavior of A, (F, I ′

M )
may no longer be a 1-system, or even an independence system. To restore the subset closed
property, the membership oracle needs to ensure that: (a) if a subset S′ ⊆ S is determined
to not be in (F, I ′

M ), then S is not either, and (b) if a superset S′ ⊇ S is determined to be
in (F, I ′

M ), then so is S.
We now describe the modified greedy maximization algorithm GreedyMax that we

use to try to separate one of the inequalities in Eq. (6), which uses a built-in membership
oracle that ensures the above properties hold. Pseudocode is given in the full paper, and
we informally describe it here. GreedyMax initializes S0 = ∅, F0 = F , and starts with a
M -cheap k-median solution T0 (generated by running a γ-approximation on the k-median
instance involving only fixed clients Cf ). In iteration l, GreedyMax starts with a partial
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solution Sl−1 with l − 1 cluster centers, and it is considering adding cluster centers in Fl−1 to
Sl−1. For each cluster center i in Fl−1, GreedyMax generates some k-median solution Tl,i

containing Sl−1 ∪ {i} to determine if Sl−1 ∪ {i} is in the independence system. If a previously
generated solution, T0 or Tl′,i′ for any l′, i′, contains Sl−1 ∪ {i} and is M -cheap, then Tl,i is
set to this solution. Otherwise, GreedyMax runs the incremental k-median approximation
algorithm on the instance with existing cluster centers in Sl−1 ∪ {i}, the only cluster centers
in the instance are Fl−1, and the client set is Cf . It sets Tl,i to the solution generated by the
approximation algorithm.

After generating the set of solutions {Tl,i}i∈Fl−1 , if one of these solutions contains Sl−1∪{i}
and is M -cheap, then GreedyMax concludes that Sl−1 ∪ {i} is in the independence system.
This, combined with the fact that these solutions may be copied from previous iterations
ensures property (b) holds (as the M -cheap solutions generated by GreedyMax are implicitly
considered to be in the independence system). Otherwise, since GreedyMax was unable to
find an M -cheap superset of Sl−1 ∪ {i}, it considers Sl−1 ∪ {i} to not be in the independence
system. In accordance with these beliefs, GreedyMax initializes Fl as a copy of Fl−1, and
then removes any i such that it did not find an M -cheap superset of Sl−1 ∪ {i} from Fl and
thus from future consideration, ensuring property (a) holds. It then greedily adds to Sl−1
the i in Fl that maximizes fy(Sl−1 ∪ {i}) as defined before to create a new partial solution
Sl. After the kth iteration, GreedyMax outputs the solution Sk.

Our approximate separation oracle, SepOracle, can then use GreedyMax as a sub-
routine. Pseudocode is given in the full paper, and we give an informal description of the
algorithm here. SepOracle checks all constraints not involving the regret, and then outputs
any violated constraints it finds. If none are found, it then runs a k-median approxim-
ation algorithm on the instance containing only the fixed clients to generate a solution
T0. For each M in Zϵ, if T0 is M -cheap, it then invokes GreedyMax for this value of
M (otherwise, GreedyMax will consider the corresponding independence system to be
empty, so there is no point in running it), passing T0 to GreedyMax. If then checks the
inequality

∑
j∈C′

∑
i cijyij − S(C ′) ≤ M −

∑
j∈Cf

∑
i cijyij + r for the solution S outputted

by GreedyMax, and outputs this inequality if it is violated.
Using the ellipsoid method where SepOracle is used as the separation oracle now gives

the following lemma. The proof is deferred to the full paper.

▶ Lemma 14. If there exists a deterministic polynomial-time γ-approximation algorithm
for the k-median problem, then for every ϵ > 0 there exists a deterministic algorithm that
outputs a (2γ(1 + ϵ), 2)-approximate fractional solution to the universal k-median problem in
polynomial time.

3.3 Rounding the Fractional Solution for Universal k-Median with Fixed
Clients

The rounding algorithm for universal k-median with fixed clients is almost identical to the
rounding algorithm for universal k-median without fixed clients. The only difference is that
in constructing a k-median with discounts problem, we give the fixed clients a discount of
0 rather than a discount of 3fj , as these clients will always appear and thus we want their
connection cost to always factor into the cost of the k-median with discounts instance. The
cost of a solution alg to the k-median with discounts instance and the regret of alg against
an adversary with costs 3fj now differs by

∑
j∈Cf

3fj (before, they were equal). However,
as before

∑
j∈Cf

3fj is at most some constant times opt(Cf ) + mr, which lower bounds
opt(C ′) + mr for all realizations C ′ ⊇ Cf . So an analysis of the rounding similar to that in
Section 2 still allows us to prove Theorem 10, as the the offset

∑
j∈Cf

3fj (and multiples of
it appearing in the analysis) can be absorbed into the (α, β)-approximation guarantee.
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4 Universal k-means

In this section, we sketch our universal algorithm for k-means with the following guarantee:

▶ Corollary 15. There exists a (108, 412)-approximate universal algorithm for the k-means
problem.

This follows as a special case of a more general ℓp-clustering result, given in the full paper;
due to space constraints, we focus on k-means here.

Before describing further details of the universal k-means algorithm, we note a rather
unusual feature of the universal clustering framework. Typically algorithms effectively
optimize the ℓ2

2 objective (i.e., sum of squared distances) instead of the k-means objective
because these are equivalent in the following sense: an α-approximation for the k-means
objective is equivalent to an α2-approximation for the ℓ2

2 objective. But, this equivalence
fails in the setting of universal algorithms for reasons that we discuss below. Indeed, we
first give a universal ℓp

p-clustering algorithm, which is a simple extension of the k-median
algorithm, and then outline our ℓp-clustering algorithm in the setting p = 2, which turns out
to be much more challenging.

Similar to k-median, we use the primitive of an algorithm for the ℓp
p-clustering with

discounts problem: In this problem, are given a ℓp
p-clustering instance, but where each client

j has an additional (non-negative) parameter rj called its discount. Our goal is to place k

cluster centers that minimize the total connection costs of all clients. But, the connection
cost for client j can now be discounted by up to rp

j , i.e., client j with connection cost cj

contributes (cp
j − rp

j )+ := max{0, cp
j − rp

j } to the objective of the solution. (Note that the
k-median with discounts problem that we described in the previous section is a special case
of this problem for p = 1.)

Let opt be the cost of an optimal solution to the ℓp
p-clustering with discounts problem.

We say an algorithm alg that outputs a solution with connection cost cj for client j is
a (γp, σ)-approximation2 if

∑
j∈C(cp

j − γp · rp
j )+ ≤ σ · opt. That is, a (γp, σ)-approximate

algorithm outputs a solution whose objective function computed using discounts γ · rj for all
j is at most σ times the optimal objective using discounts rj . We give the following result
about the ℓp

p-clustering with discounts problem (see full paper for details):

▶ Lemma 16. There exists a (deterministic) polynomial-time (9p, 2
3 · 9p)-approximation

algorithm for the ℓp
p-clustering with discounts problem.

The rest of this section is dedicated to sketching our algorithm for the universal k-means
problem. As for k-median, we have two stages, the fractional algorithm and the rounding
algorithm, that we sketch in the next two subsections.

2 We refer to this as a (γp, σ)-approximation instead of a (γ, σ)-approximation to emphasize the difference
between the scaling factor for discounts γ and the loss in approximation factor γp.
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4.1 Universal k-means: Fractional Algorithm

Let us start by describing the fractional relaxation of the universal k-means problem3 (again,
P is the k-median polytope defined as in Section 2.1):

min{r : (x, y) ∈ P ; ∀C ′ ⊆ C :

 ∑
j∈C′

∑
i

c2
ijyij

1/2

− opt(C ′) ≤ r}, (7)

As described earlier, when minimizing regret, the k-means and ℓ2
2 objectives are no longer

equivalent. For instance, recall that one of the key steps in Lemma 8 was to establish the
submodularity of the function fy(S) denoting the maximum regret caused by any realization
when comparing two given solutions: a fractional solution y and an integer solution S. Indeed,
the worst case realization had a simple structure: choose all clients that have a smaller
connection cost for S than for y. This observation continues to hold for the ℓ2

2 objective
because of the linearity of fy(S) as a function of the realized clients once y and S are fixed.
But, the k-means objective is not linear even after fixing the solutions, and as a consequence,
we lose both the simple structure of the maximizing realization as well as the submodularity
of the overall function fy(S). For instance, consider two clients: one at distances 1 and 0,
and another at distances 1 + ϵ and 1, from y and S respectively. Using the ℓp objective, the
regret with both clients is (2 + ϵ)1/2 − 1 < 1, whereas with just the first client the regret is 1.

The above observation results in two related difficulties: first, that fy(S) is not submodular
and hence standard submodular maximization techniques do not apply, but also that given y

and S, we cannot even compute the function fy(S) efficiently. To overcome this difficulty,
we further refine the function fy(S) to a collection of functions fy,Y (S) by also fixing the
cost of the fractional solution y to at most a given value Y . Let frac2, frac2

2 denote the
k-means and ℓ2

2-objectives of a given fractional solution, and S2, S2
2 the same for the solution

using the set of cluster centers S. We can show that:

max
C′⊆C

[frac2(C ′) − S2(C ′)] ≃2 max
Y

max
C′⊆C:frac2

2(C′)≤Y

[
frac2

2(C ′) − S2
2(C ′)

Y 1/2

]
,

where ≃2 denotes equality to within a factor of 2. In turn, by guessing the maximizing
value of Y we can (approximately) reduce maximizing the difference in k-means objectives
to maximizing the difference in ℓ2

2 objectives, subject to the constraint frac2
2(C ′) ≤ Y .

A separation oracle then just needs to (approximately) compute max{frac2
2(C ′)−S2

2(C ′) :
C ′ ⊆ C, frac2

2(C ′) ≤ Y } for each fixed (discretized) value of Y . To do so, we show that
allowing an adversary to choose fractional realizations of clients does not give them an
advantage.

▶ Lemma 17. For any two solutions y, S, there exists a global maximum of frac2(I) − S2(I)
over fractional realizations I ∈ [0, 1]C where all the clients are integral, i.e., I ∈ {0, 1}C .
Therefore,

max
I∈[0,1]C

[frac2(I) − S2(I)] = max
C′⊆C

[frac2(C ′) − S2(C ′)] .

3 The constraints are not simultaneously linear in y and r, although fixing r, we can write these constraints
as

∑
j∈C′

∑
i
cp

ijyij ≤ (opt(C′) + r)p, which is linear in y. In turn, to solve this program we bisection
search over r, using the ellipsoid method to determine if there is a feasible point for each fixed r.
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We then show that fy,Y (S) := max{frac2
2(I) − S2

2(I) : I ∈ [0, 1]C , frac2
2(I) ≤ Y } is a

submodular function. Since we are allowed to use fractional clients, computing fy,Y (S)
for a given S is a fractional knapsack problem which can be solved in polynomial time
(whereas computing max{frac2

2(C ′) − S2
2(C ′) : C ′ ⊆ C, frac2

2(C ′) ≤ Y } requires solving an
integer knapsack problem), giving an efficient separation oracle using the greedy algorithm
for submodular maximization.

4.2 Universal k-Means: Rounding Algorithm
At a high level, we use the same strategy for rounding the fractional k-means solution as we
did with k-median. Namely, we use Lemma 16 to solve a discounted version of the problem
where the discount for each client is equal to the (scaled) cost of the client in the fractional
solution. However, if we apply this directly to the k-means objective, we run into several
problems. In particular, the linear discounts are incompatible with the non-linear objective
defined over the clients. A more promising idea is to use these discounts on the ℓ2

2 objective,
which in fact is defined as a linear combination over the individual client’s objectives. But,
for this to work, we will first need to relate the regret bound in the ℓ2

2 objective to that in
the k-means objective. We show that, roughly speaking, the realization that maximizes the
regret of an algorithm alg against a fixed solution sol in both objectives is the same under
a “farness” condition:
▶ Lemma 18. Suppose alg and sol are two solutions to a k-means instance, such that there
is a subset of clients C∗ with the following property: for every client in C∗, the connection
cost in alg is greater than 2 times the connection cost in sol, while for every client not
in C∗, the connection cost in sol is at least the connection cost in alg. Then, C∗ is a
1/2-maximizer of alg2(C ′) − sol2(C ′).

Given any solution sol, it is easy to define a virtual solution s̃ol whose individual
connection costs are bounded by 2 times that in sol, and s̃ol satisfies the farness condition.
This allows us to relate the regret of alg against s̃ol (and thus against 2 times sol) in the
ℓ2

2 objective to its regret in the k-means objective.

5 Universal k-Center

In this section, we prove the following guarantee for universal k-center:
▶ Theorem 19. There exists a (3, 3)-approximate algorithm for the universal k-center
problem.

First, note that for every client j, its distance to the closest cluster center in the minimum
regret solution mrs is at most mrj := mini∈F cij +mr; otherwise, in the realization with only
client j, mrs would have regret > mr. We first design an algorithm alg that 3-approximates
these distances mrj , i.e., for every client j, its distance to the closest cluster center in alg is
at most 3mrj . Since mini∈F cij lower bounds opt(C ′) for any C ′ containing j, this gives a
(3, 3)-approximation. This algorithm actually satisfies a more general property: given any
value r, it produces a set of cluster centers such that every client j is at a distance ≤ 3rj

from its closest cluster center, where rj := mini∈F cij + r. Moreover, if r ≥ mr, then the
number of cluster centers selected by alg is at most k (for smaller values of r, alg might
select more than k cluster centers).

Our algorithm alg is a natural greedy algorithm. We order clients j in increasing order
of rj , and if a client j does not have a cluster center within distance 3rj in the current
solution, then we add its closest cluster center in F to the solution.
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▶ Lemma 20. Given a value r, the greedy algorithm alg selects cluster centers that satisfy
the following properties:

every client j is within a distance of 3rj = 3(mini∈F cij + r) from their closest cluster
center.
If r ≥ mr, then alg does not select more than k cluster centers, i.e., the solution produced
by alg is feasible for the k-center problem.

Proof. The first property follows from the definition of alg. To show that alg does not
pick more than k cluster centers, we map the cluster center i added in alg by some client j

to its closest cluster center i′ in mrs. Now, we claim that no two cluster centers i1, i2 in alg
can be mapped to the same cluster center i′ in mrs. Clearly, this proves the lemma since
mrs has only k cluster centers.

Suppose i1, i2 are two cluster centers in alg mapped to the same cluster center i′ in
mrs. Assume without loss of generality that i1 was added to alg before i2. Let j1, j2 be
the clients that caused i1, i2 to be added; since i2 was added later, we have rj1 ≤ rj2 . The
distance from j2 to i1 is at most the length of the path (j2, i′, j1, i1) , which is at most
2rj2 + rj1 ≤ 3rj2 . But, in this case j2 would not have added a new cluster center i2, thus
arriving at a contradiction. ◀

Theorem 19 follows since there are only polynomially many possibilities for the k-center
objective across all realizations (namely, the set of all cluster center to client distances) and
thus polynomially many possible values for mr (the set of all differences between all possible
solution costs). So we can simply run the algorithm of Lemma 20 with r equal to each of
these values, and then choose the solution corresponding to the smallest r that results in the
algorithm using at most k cluster centers, which will be at most mr by Lemma 20.

We note that the greedy algorithm described above can be viewed as an extension of
the k-center algorithm in [24] to a (3, 3)-approximation for the “k-center with discounts”
problem, where the discounts are the minimum distances mini∈F cij .

6 Hardness of Universal Clustering for General Metrics

In this section we give some hardness results to help contextualize the algorithmic results.
Much like the hardness results for k-median, all our reductions are based on the NP-hardness
of approximating set cover (or equivalently, dominating set) due to the natural relation
between the two types of problems. We state our hardness results in terms of ℓp-clustering.
Setting p = 1 gives hardness results for k-median, and setting p = ∞ (and using the
convention 1/∞ = 0 in the proofs as needed) gives hardness results for k-center.

The results in this section can be extended to Euclidean metrics by building off the
reductions in [36], albeit with worse constants. Due to space constraints, we defer our results
for Euclidean metrics to the full paper.

6.1 Hardness of Approximating α

▶ Theorem 21. For all p ≥ 1, finding an (α, β)-approximate solution for universal ℓp-
clustering where α < 3 is NP-hard.

Proof. To prove the theorem, given an instance of set cover, we construct the following
instance of universal ℓp-clustering:

For each element, there is a corresponding client in the universal ℓp-clustering instance.
For each set S, there is a cluster center which is distance 1 from the clients corresponding
to elements in S and 3 from other all clients.
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If there is a set cover of size k, the corresponding cluster centers are an optimal solution
for any realization of clients, i.e. mr = 0. Furthermore, in any single-client realization,
opt = 1. So an (α, β)-approximate universal ℓp-clustering algorithm must find a solution
within distance of α of every client to satisfy the regret guarantee in single-client realizations.
If α < 3, this implies it is distance 1 from every client, in which case its cluster centers also
correspond to a set cover. So this algorithm can be used to find set covers of size at most k

if they exist, which is an NP-hard task. ◀

Note that for e.g. k-median, we can classically get an approximation ratio of less than 3.
So this theorem shows that the universal version of the problem is harder, even if we are
willing to use arbitrary large β.

6.2 Hardness of Approximating β

We give the following result on the hardness of universal ℓp-clustering.

▶ Theorem 22. For all p ≥ 1, finding an (α, β)-approximate solution for universal ℓp-
clustering where β < 2 is NP-hard.

Proof. Given an instance of dominating set G = (V, E), we construct the following instance
of universal ℓp-clustering:

For each vertex v ∈ V , replace it with a k-clique.
For each (u, v) ∈ E, add an edge from every vertex in u’s clique to every vertex in v’s
clique.
To turn this modified graph into a clustering instance, place a client and cluster center
at each vertex, and impose the shortest path metric on the clients, where all edges are
length 1.

Suppose a dominating set of size k exists in the modified graph (and thus in the original
graph). Then the corresponding cluster centers are distance at most 1 from every client.
Since any solution is distance 0 from at most k clients and distance at least 1 from all other
clients, these cluster centers have regret at most k1/p. It now suffices to prove the claim that
any k cluster centers that aren’t a dominating set have regret at least 2k1/p in a realization
where opt has cost 0. The theorem follows since an (α, β)-approximate algorithm would
produce a solution with cost at most βk1/p in any such realization, i.e. can be used to
find dominating sets of size at most k if they exist when β < 2. The claim follows since if
the cluster centers aren’t a dominating set, there is a k-clique they are distance 2 or more
from. The realization containing exactly the clients in this k-clique satisfies the desired
properties. ◀

7 Future Directions

In this paper, we gave the first universal algorithms for clustering problems. While we
achieve constant approximation guarantees for these problems, the actual constants are
orders of magnitude larger than the best (non-universal) approximations known for these
problems. In part to ensure clarity of presentation, we did not attempt to optimize these
constants. But it is unlikely that our techniques will lead to small constants for the k-median
and k-means problems. On the other hand, we show that in general it is NP-hard to find
an (α, β)-approximation algorithm for a universal clustering problem where α matches the
approximation factor for the standard clustering problem. Therefore, it is not entirely clear
what one should expect: are there universal algorithms for clustering with approximation
factors of the same order as the classical (non-universal) bounds?
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Another open research direction pertains to Euclidean clustering. Here, we showed that in
Rd for d ≥ 2, α needs to be bounded away from 1, which is in stark contrast to non-universal
clustering problems that admit PTASes in constant-dimension Euclidean space. But for
universal clustering on a line, the picture is not as clear. On a line, the lower bounds on
α are no longer valid, which brings forth the possibility of (non-bicriteria) approximations
of regret. Indeed, there is 2-approximation for universal k-median on a line [29], and even
better, an optimal algorithm for universal k-center on a line [6]. This raises the natural
question: can we design a PTAS for the universal k-median problem on a line?
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Abstract
Two strings are order isomorphic iff the relative ordering of their characters is the same at all positions.
For a given text T [1, n] over an ordered alphabet of size σ, we can maintain an order-isomorphic suffix
tree/array in O(n log n) bits and support (order-isomorphic) pattern/substring matching queries
efficiently. It is interesting to know if we can encode these structures in space close to the text’s size
of n log σ bits. We answer this question positively by presenting an O(n log σ)-bit index that allows
access to any entry in order-isomorphic suffix array (and its inverse array) in tSA = O(log2 n/ log σ)
time. For any pattern P given as a query, this index can count the number of substrings of T

that are order-isomorphic to P (denoted by occ) in O((|P | log σ + tSA) log n) time using standard
techniques. Also, it can report the locations of those substrings in additional O(occ · tSA) time.
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1 Introduction

An index of a text T [1, n] is a data structure that is capable of counting/reporting all those
substrings of T that “match” (as per the problem specific definition of match) with any
pattern P given as a query. We use Σ to denote the alphabet set (of size σ) from which the
characters in T are drawn from. WLOG, we assume T [n] = $, a special character that does
not appear anywhere else in T . Two fundamental indexes for exact pattern matching are the
suffix tree (ST) [23] and the suffix array (SA) [17]. Both takes Θ(n log n) bits of space, which
could be much larger than the n⌈log σ⌉ bits needed to store T optimally. The first succinct
indexes that use close to n log σ bits are the Compressed Suffix Array (CSA) [13] and the
FM-index [7]. The crucial component of FM Index is Burrows-Wheeler Transform (BWT) [2]
and its associated operation called the Last-to-Front (LF) mapping. The subsequent work
lead to fully functional suffix trees in succinct space [22]. See [20] for further reading.

The parameterized ST [1, 18] and the order-isomorphic ST [5] are two popular ST variants
under the class known as suffix trees with missing suffix links [4]. As they do not hold some
critical structural properties of the original ST, their compression is challenging. Recently,
Ganguly et al. showed that it is indeed possible to compress the parameterized suffix arrays.
They implemented LF mapping using a BWT-like transformation called the parameterized
BWT [10]. However, such a transformation is hard to define for order-isomorphic ST because
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LF mapping could lead to multiple changes in the (encoding of) associated suffixes. To that
end, we present a novel technique for implementing the LF mapping (named LF Successor),
leading to the first compact space index for order-isomorphic pattern matching.

1.1 Generalizing the Philosophy of BWT and LF Mapping
We present an overview of our approach using three text indexing problems for (i) tradition-
al/exact matching, (ii) parameterized matching, and (iii) order-isomorphic matching, in that
order, to show gradation and successive generalization of the LF mapping approach.

Indexing for Traditional Matching. The classic solution is the suffix tree (ST), which is
lexicographic arrangement of all strings in S = {T [t, n] | 1 ≤ t ≤ n} as a compacted trie. We
use path(u) to denote the concatenation of edge labels on the path from the root to node u.
Let ℓi denotes the ith leftmost leaf. Then, path(ℓi) is exactly the ith smallest string in S

in the lexicographic order. The suffix array SA[1, n] is such that SA[i] = n + 1 − |path(ℓi)|.
Also, its inverse array SA−1[1, n] is such that SA−1[SA[i]] = i. For convenience, we use the
term “suffix i” for T [SA[i], n]. For all i, where SA[i] ̸= 1, we define the Last-to-Front (LF)
mapping as LF(i) = SA−1[SA[i] − 1]. Therefore, suffix LF(i) is obtained by prepending to
suffix i the character in T which occurs just before the starting location of suffix i. The
Burrows-Wheeler Transform is an array BWT[1, n], such that BWT[i] = T [SA[i] − 1] (define
T [0] = $). Computing LF mapping is central to BWT based pattern matching, and in some
sense, the BWT enables efficient computation of LF mapping in succinct space. Therefore,
once we store the BWT and its associated counting structures, we can replace the costly
(space-wise) suffix array with a (cheaper) sampled suffix array [7].

Indexing for Parameterized Matching. Here, P matches with T at position i iff there is
one-to-one correspondence between the characters of P and T [i, i + |P | − 1]. For example,
xwyx can match with abca as x can be mapped to a, b to w, and c to y. However, abca does
not match with xyxw because both a and c cannot be mapped to x. Baker [1] presented an
encoding called prev(S) which encodes every character in the string by replacing it by its
distance to the previous occurrence of the same character and using 0 if the character has
not occurred before. For example, prev(xwxyywx) = 0020144. It is not hard to see that two
strings X and Y are a parameterized match iff prev(X) = prev(Y ). The parameterized ST is
a lexicographic arrangement of all strings in S ′ = {prev(T [i, n − 1]) ◦ $ | 1 ≤ i < n} ∪ {$} as
a compacted trie, where ◦ denotes concatenation. The matching of P in T can be performed
via exact matching of prev(P ) in this suffix tree. The same notion of LF-mapping can be
defined and implemented in succinct space using a BWT-like transform [10].

Indexing for Order-isomorphic Matching. This problem has received significant attention
[3, 5, 14, 16, 19] due to its simple formulation and the ability to model complex matching
problems in other domains where the relative ordering of characters has to be matched
rather than the string itself. Here, there is a total ordering between the symbols in Σ. The
pattern P matches with text T [1, n] at position i if for any j, k in [1, |P |], P [j] < P [k] iff
T [i + j − 1] < T [i + k − 1]. Similar constraints apply for P [j] > P [k] and P [j] = P [k]. For
example, 1423 can match with 2957 but not with 2657 because 6 < 7 and 4 > 3. A new
encoding “pred” works in this case. This is a slight modification of the scheme in [5].

▶ Definition 1 (pred encoding). Given a character S[i] in string S, its predecessor is a
character q which occurs in S[1, i − 1] such that q ≤ S[i] and there is no other character r

in S[1, i − 1] such that q < r ≤ S[i]. Given a string S, pred(S)[i] is defined as follows: let
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alphabet symbol q be the predecessor of S[i] in S[1, i − 1] and let position j be the rightmost
occurrence of q in S[1, i−1]. Then, pred(S)[i] = (i−j) if q ̸= S[i], (i−j)′ if q = S[i], and 0 if q

does not exist. Thus pred(S) is a string over the alphabet {0, 1, 1′, 2, 2′, . . . , |S| − 1, (|S| − 1)′}.

Thus, in pred encoding, every position (character) in T points to its closest predecessor
on the left. For e.g., pred(0869514371) = 0 1 2 2 4 5 1 2 6 4′. We refer to primed characters
as an equality version of their non-primed counterparts. For example, 2′ is equality variant
of 2. It is easy to see that two strings X and Y are order-isomorphic iff pred(X) = pred(Y ).

The order-isomorphic ST [5] of T is a lexicographic arrangement of all strings in S ′′ =
{pred(T [i, n − 1]) ◦ $ | 1 ≤ i < n} ∪ {$} as a compacted trie. We order the encoded characters
as: 0 < 1 < 1′ < 2 < 2′ < · · · < n − 1 < (n − 1)′ < $. Then, the order-isomorphic matching
of P in T can be performed via exact matching of pred(P ) in this suffix tree. As earlier, we
can define the (order-isomorphic) suffix array SA, its inverse array and the LF mapping.

1.2 Challenges in Implementing (Generalised) LF Mapping Compactly

The challenge here is in deciding what needs to be precomputed and stored, so that LF(i) for
any i can be computed efficiently. At its root, we need to solve the following: given two leaves
ℓi and ℓj with i < j, how quickly can we decide whether LF(i) < LF(j) or LF(i) > LF(j).

In the case of traditional matching, the order between LF(i) and LF(j) will stay the
same if the corresponding suffixes have the same previous character (which are BWT[i] and
BWT[j]). It will flip iff the previous character of the suffix corresponding to j is smaller than
that of i in the lexicographic order. Therefore pair-wise comparison between such i and j

can be computed in “bulk” for i against all j’s, enabling “quick” computation of LF(i) [7].
In the case of parameterized matching, this order determination is more sophistic-

ated [10]. Here, it becomes essential to see how prepending the previous character changes the
canonical encoding of a suffix and how can this information be stored compactly. For example,
consider T [1, n] = abcabbadcb and the suffix T [4, n] = abbadcb. Its previous character T [3] is
c. When we prepend this character, the suffix (in traditional ST) becomes cabbadcb. The
string corresponding to T [4, n] in the parameterized suffix tree is prev(T [4, n]) = 0013004.
When T [4, n] is prepended with c and prev is applied, apart from the insertion (of 0) at
the beginning, there is one change within prev of T [4, n], which is at the first occurrence
of c in T [4, n]. Thus, the second last character in the encoding switches from 0 to 6, i.e.,
prev(T [3, n]) = 00013064. Ganguly et al. [10] show how to record this change-location for
each suffix succinctly using the paramaterized-BWT, which supports LF mapping. Again, as
in the case of traditional pattern matching, we can compare two suffixes in terms of their
LF mapping by comparing which suffix changes first – in case at least one of them changes
before their longest common prefix (LCP). See [11, 15, 9] for some related results.

We now illustrate order-isomorphic matching using an example text T [1, n] =
20869514371$. Then, T [2, n] = 0869514371$ and pred(T [2, n − 1]) ◦ $ = 0 1 2 2 4 5 1 2 6 4′ $.
However, pred after prepending T [1], i.e., pred(T [1, n − 1]) ◦ $ is 0 0 2 3 2 5 5 7 8 6 4′ $.
Observe how the encoding changes when we go from T [2, n] to T [1, n]. Apart from the
obvious 0 in front, there are “five” other entries whose predecessor changed due to the newly
inserted 2. Both earlier problems, traditional and parameterized, incurred only a constant
(1 or 2) number of changes per suffix, and hence it was possible to record this information
compactly. However, the number of changes here can be as large as σ, which makes it
challenging and the existing techniques do not seem adequate.
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Figure 1 Geometric interpretation of the change in pred encoding of 0869514371 when prepended
with 2. The cutting line corresponds to the prepended character.

Our approach. Even though many positions change, and they cannot be explicitly stored,
the structural properties of this problem show that the last point of change (the rightmost
value which changes) during LF is what matters. In the example above, the rightmost
character which changes its encoding is 3 and its encoding changes from 2 to 8. The good
part is that once we know this, we can deterministically pinpoint which other previous (to
the left) locations changed their encoding (we present this formally as Lemma 5). Thus, we
can register/store one particular value and all previous changes can be captured based on
that. Yet this only gives us existential dependency and not an algorithmic tool.

1.3 Our Contribution
The existing results on compressed text indexing for order-isomorphic pattern matching are
partial and conditional. For example, the O(n log log n)-bit by Gagie et al. [8] can answer
only counting queries, that too for short patterns of size O(logO(1) n). Another result by
Decaroli et al. [6] is based on heuristics. We show:

▶ Theorem 2. Let T [1, n] be a given text over an ordered alphabet Σ of size σ. We can
encode its order-isomorphic suffix array SA[1, n] in O(n log σ) bits and answer both SA[·] and
SA−1[·] queries in tSA = O(log2 n/ log σ) time.

Using the standard binary search algorithm, we can easily answer counting queries in time
O((|P | log σ + tSA) log n) and then reporting in time tSA per match. At the heart of proving
Theorem 2 lies a novel way of implementing LF mapping. We call this as LF Successor. It
goes one step beyond the current approach of simulating Suffix Array using LF mapping.

2 Structural Properties of the Order Isomorphic Suffixes

In this section we introduce two key lemmas explaining the structural properties of the pred
encoding. In other words, we see where the changes occur when a new character is prepended
to the suffix. Firstly, we formally define a change point as follows,

▶ Definition 3 (Change Point). Given a string T [r, z] along with its pred encoding pred(T [r, z]),
point i ∈ [r, z] is a change point if pred(T [r − 1, z])[i − r + 2] ̸= pred(T [r, z])[i − r + 1].
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In other words, when a character is prepended to T [r, z] (making it T [r − 1, z]) the
encoding of the character T [i] changes. Here point i means position in the text.

▶ Definition 4 (Skyline). A point j in text substring T [r, z] covers a point i iff j < i and
T [j] ≤ T [i]. γ-skyline of T [r, z] is set of all points i ∈ [r, z] such that T [i] ≥ γ and i is not
covered by any point j ∈ [r, i − 1] such that T [j] ≥ γ. When γ = T [r − 1], we simply refer
to this as skyline of T [r, z]. Given a point d ∈ T [r, z], the skyline induced by d is same as
T [d]-skyline of T [r, z] (i.e., the one obtained by setting γ = T [d]).

Lemma 5 proves that all the change points of T [r, z] are exactly the ones that are on the
skyline (See Figure 1 for geometric interpretation). Secondly, as mentioned earlier, although
there are many change points in the order isomorphic setting, given the rightmost or last
change point we can uniquely determine all the previous change points. More formally, it
can be stated as follows.

▶ Lemma 5 (Skyline Lemma). Given a text substring T [r, z] and it rightmost change point
d of the substring, all the change points in T [r, z] can be determined based on d. These are
precisely the points in T [d]-skyline of T [r, z].

Proof. Firstly, let’s consider any change point i ∈ T [r, z]. Since its pred-encoding changes
due to prepending of T [r − 1] the new predecessor of point i in T [r − 1, z] must be r − 1 (i.e.,
pred(i) = i − r + 1). This means T [i] ≥ T [r − 1]. Also if point i was covered by point j such
that j < i and T [j] ≥ T [r − 1], then predecessor of i in T [r − 1, z] would still be j.

For the other way around, consider a point i on the skyline of T [r, z]. The predecessor of
i in T [r, z] cannot be a point j such that T [j] ≥ T [r − 1] (by definition of cover), Thus, when
T [r − 1] is prepended, it will become the new predecessor of i. Hence, i is a change point.

Now, if d is the rightmost change point of T then no character value in T [r − 1, z] is in
between T [r − 1] and T [z]. That is, there is no i ∈ [r, d − 1] such that T [r − 1] ≤ T [i] ≤ T [d].
Thus, this indeed is the same as T [d]-skyline. Also, since there are no change points after d

they will not be on the skyline. ◀

Next, given two suffixes and their last common change points, all their previous change
points will be the same. We state this as a lemma below. Here we define rank(x, T [r, z]) as
the number of values in T [r, z] that are less than or equal to x. It follows from the definition
of rank that if there are two order isomophic substrings T [r, r + l − 1] and T [s, s + l − 1], then
for any point 1 ≤ d ≤ l, rank(T [r + d − 1], T [r, r + l − 1] = rank(T [s + d − 1], T [s, s + l − 1].

▶ Lemma 6 (Last Common Point of Change (LCPC) Lemma). Given two text substrings
T [r, r + l − 1] and T [s, s + l − 1] such that pred(T [r, r + l − 1]) = pred(T [s, s + l − 1]), let d be
the greatest value such that r + d − 1 and s + d − 1 are the change points in T [r, r + l − 1] and
T [s, s + l − 1] respectively. Thus, the dth point is the last common change point of substrings
T [r, r + l − 1] and T [s, s + l − 1]. Then for every e ∈ [1, d − 1], r + e − 1 is a change point in
T [r, r + l − 1] if and only if s + e − 1 is a change point in T [s, s + l − 1].

Proof. Firstly, w.l.o.g, let rank(T [r − 1], T [r, r + l − 1]) < rank(T [s − 1], T [s, s + l − 1]). Now,
there is no point p such that 1 < p < d and rank(T [r − 1], T [r, r + l − 1]) < rank(T [r + p −
1], T [r, r + l − 1]) < rank(T [s − 1], T [s, s + l − 1]). This is because if there was such a point
p, then d cannot be a change point of T [r, r + l − 1], because d will be covered by point p.
Secondly, if e ∈ [1, d − 1] is a change point of T [r, r + l − 1] and suppose q was the predecessor
of e before prepending of the new point T [r − 1], then rank(T [r + q + 1], T [r, r + l − 1]) <

rank(T [r − 1], T [r, r + l − 1]) < rank(T [r + e + 1], T [r, r + l − 1]). Therefore, we can say that
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rank(T [r+q+1], T [r, r+l−1]) < rank(T [r−1], T [r, r+l−1]) < rank(T [s−1], T [s, s+l−1]) <

rank(T [r+e+1], T [r, r+l−1]). Here if we just consider the ranking orders of T [s, s+l−1], then
rank(T [s+q+1], T [s, s+l−1]) < rank(T [s−1], T [s, s+l−1]) < rank(T [s+e+1], T [s, s+l−1])
because pred(T [r, r + l − 1]) = pred(T [s, s + l − 1]) . This implies that T [s − 1] is the new
predecessor of T [s + e + 1], which means e is also a change point of T [s, s + l − 1].

The encoding of characters which are not change points will stay the same in pred(T [r −
1, r + d − 1]) and pred(T [s − 1, s + d − 1]). On the characters which are change points,
their pred(·) values point to T [r − 1] (resp. T [s − 1]). Since pred encodes distance to the
predecessor character, these pred values will be the same for corresponding change points in
T [r − 1, r + d − 1] and T [s − 1, s + d − 1]. Thus, pred(·) encoding for both agree up to the
first d + 1 characters. ◀

As an example of LCPC, consider two substrings T [r − 1, r + 6] = dkgcihfe and T [s −
1, s + 6] = ckfaihdb. Now, T [r, r + 6] and T [s, s + 6] are both order-isomorphic with prev
encoding of 0002334 (here we follow the usual ordering of English characters). Considering,
the previous values T [r − 1] and T [s − 1], the change points for T [r, r + 6] are k, g, f, e at
locations r plus {0, 1, 5, 6} within string T [r, r + 6] and the change points for T [s, s + 6] are
k, f, d at locations s plus {0, 1, 5} within string [s, s + 6]. Thus, last common point of change
(LCPC) is at location 6 i.e., T [r + 5] and T [s + 5]. Note that T [r + 6] is also a change point
however it is not a common change point. Also, note that since all the earlier change points
in both the strings are at same locations {1, 2}. All the common change points at locations
{0, 1, 5} are indeed skylines of T [r, r + 5] as well as that of T [s, s + 5]. Alternatively, these
skylines are indeed T [r + 5]-skyline of T [r, r + 6] and T [s + 5]-skyline of T [s, s + 6].

3 LF Successor and Order-Isomorphic Text Indexing

Recall our encoding scheme pred (Definition 1) and the lexicographic order of encoded
symbols: 0 < 1 < 1′ < 2 < 2′ < · · · < n − 1 < (n − 1)′ < $. We will now introduce a few
more terminologies related to the order-isomorphic suffix tree (ST). We shall refer to any
character on any substring representing an edge label as a “point” in ST. An edge is labeled
by a substring represented by that edge in ST. For any point c in ST, let path(c) denote the
concatenation of labels from the root until c. We shall denote char(c) as an (pred encoded)
character represented by point c. We will also refer to nodes in ST as points. In this case, the
node will be represented by the character just above it (i.e., the last character of the label
of its parent edge). For any point c, depth(c) is length of path(c) and αDepth(c) = number
of distinct symbols in T [r, r + depth(c) − 1], where T [r, n] is any suffix passing through c.
Note that this αDepth indeed refers back to the original text instead of encoded text (in
terms of encoded text this would be the number of non-primed characters). We call this
the alphabet depth of point c. We shall generalize this notion as alphabet length for any
string S as α(S) = number of unique alphabet symbols in S. For any two suffixes i and j

(i.e., suffixes corresponding to leaves ℓi and ℓj), let point v = lca(i, j) be the lowest common
ancestor (LCA) of ℓi and ℓj . Then, the length of their longest common prefix, denoted by
LCP(i, j) is depth(v). Also αLCP(i, j) = αDepth(v).

The locus of a pattern P is the highest node u such that pred(P ) is a prefix of path(u).
Every leaf ℓi in the sub-tree of u corresponds to an occurrence of P at a position in T given
by SA[i]. Let [sp, ep] be the suffix range of P , where ℓsp (resp. ℓep) is the leftmost (resp.
rightmost) suffix in the subtree of u. We note that in order to support pattern matching, we
need to (a) compute the suffix range [sp, ep] of P and (b) decode suffix array values SA[i],
i ∈ [sp, ep]. Using a standard binary search on the suffix array along with the text, we can
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find the suffix range. Storing SA[i] for every leaf ℓi is too costly as it will take Θ(n log n)
bits. The goal is to encode suffix array values in compact space so that they can be decoded
efficiently. We show how to achieve this using a sampled suffix array and LF mapping.

Recall that LF mapping is defined as: j = LF(i) iff SA[j] = SA[i] − 1. We explicitly store
SA[·] values belonging to the set {1, 1 + ∆, 1 + 2∆, . . . , n}, where ∆ is a tunable parameter
to be set later. For any suffix i, where SA[i] has not been stored, we repeatedly apply LF
mapping operation (starting from i) until we reach j such that SA[j] has been sampled.
Then, SA[i] = SA[j] + k, where k is the number of LF operations applied; note that k ≤ ∆.
Thus, we have reduced the problem to that of computing LF(·). For SA−1 queries, we store
SA−1[i] if i equals n or if i is a multiple of ∆. To compute SA−1[j], we first find the smallest
number j′ ≥ j, such that j′ is a multiple of ∆ (or j′ = n). Compute j′′ = SA−1[j′] from
sampled-SA−1 in O(1) time. Let k = j′ − j. Starting from j′′ carry out k successive LF
operations and report the final index as SA−1[j].

To compute LF, we introduce LF successor, defined as:

i′ is called the LF-successor of i iff LF(i′) = LF(i) + 1

We denote it as i′ = LFS(i). Throughout this paper, we use i′ to denote LFS(i) for any suffix i.
Thus, the leaves ℓi and ℓi′ are mapped by using LF operation to leaves ℓj and ℓj+1 respectively.
To compute LF mapping, we again use a sampling technique. Specifically, we explicitly store
LF(·) values in the set {1, 1 + ∆, 1 + 2∆, . . . , n}, thereby reducing the problem of computing
LF mapping to that of computing at most ∆ number of LF successors. In Section 4, we
show how to compute LF successor in time tLFS = O(log σ) by using an O(n log σ)-bit index.
Therefore, LF can be computed in time tLF = ∆ · tLFS and tSA = O(∆ · tLF). Theorem 2
follows immediately by fixing ∆ = logσ n.

4 Computing LF Successor in Time O(log σ) Using Compact Space

In this section, we shall describe what additional information should be augmented to each
leaf of the suffix tree, so that given ith leaf ℓi, we can quickly identify which leaf is its LF
successor LFS(i). We shall first describe the data structure and then the query algorithm for
computing LFS(i). We saw earlier that we will be writing SA values and LF values only for
n/∆ positions. Thus, this takes O(n log σ)-bit space by choosing ∆ = logσ n. What remains
to be seen is how to compute LF successor for a given suffix associated with the leaf ℓi. If
we explicitly write it at all the leaves, it will take Θ(log n) bits per leaf. Since there is no
sampling here, this will lead to Θ(n log n) bits which will defeat our purpose. Our approach
is to store only O(log σ) bits per leaf and yet be able to compute the LF successor quickly.

4.1 Four Cases for Suffix and its LF Successor
For the discourse in this section, we use the following terminology. Let the starting position
in the text for suffix denoted by leaf ℓi be r (i.e, r = SA[i]), and that of ℓi′ be r′, where
i′ = LFS(i). Let d = |LCP(i, i′)|, the length of the longest common prefix of pred(T [r, n]) and
pred(T [r′, n]). Thus, T [r, r + d − 1] and T [r′, r′ + d − 1] are order isomorphic. Inevitably, we
will also focus on suffixes LF(i) and LF(i′) which are encodings of text suffixes T [r − 1, n]
and T [r′ − 1, n] respectively.

Now, we distinguish two cases with respect to leaf ℓi (and its LF successor ℓi′) – case
(1) if T [r − 1, r + d − 1] is not order isomorphic with T [r′ − 1, r′ + d − 1], and case (2)
T [r − 1, r + d − 1] is order isomorphic with T [r′ − 1, r′ + d − 1] i.e., prepending of character
T [r − 1] (resp., T [r′ − 1]) to the left still maintains order-isomorphism until the LCP i.e.,
pred(T [r − 1, r + d − 1]) = pred(T [r′ − 1, r′ + d − 1]).
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First, we shall talk about case (1). Let us consider all the change points of T [r, r + d − 1]
and T [r′, r′ + d − 1]. Let e be their last common change point. If T [r′ − 1] ̸= T [r′ + e − 1]
then we call it case (1a) - the breakaway case. Else, we call it case (1b) - the equality case.
In case (1a), let g be the first change point after e for T [r′, r′ + d − 1]. To proceed to case
(2), we now define LF-image, which generalizes the concept of Wiener links.

▶ Definition 7 (LF-image). Let c be any point in the suffix tree and point p above c be such
that for at least one of the suffixes T [r, n] passing through c, p is the last change point before
c. The LF-image of c with respect to a change point p, denoted by LF(c, p, EQBT) is a point
representing the position of (pred encoding of ) T [r − 1, r + depth(c) − 1]. EQBT is called
the equality bit and is set to 1 if p is an equality change point and 0 otherwise.

For any such suffix i passing through c with change point p being the last one above c,
LF(i) passes through LF(c, p, EQBT). So if q = LF(c, p, EQBT), path(q) = pred(T [r − 1, r +
depth(c) − 1]). Note that the same point c can have multiple LF-images based on which
change point above c is taken as the last one and also if that is equality change point or not.

If leaf ℓi falls under case 2, we shall again break this case into cases (2a) and (2b). In case
(2a) we consider i < i′ (we call this ordered case) and in case (2b) we consider i′ < i (we call
this inverting case). We say that a suffix l inverts over suffix k iff l < k and LF(l) > LF(k).

▶ Lemma 8. If suffixes i and i′ = LFS(i) fall in case 2 then they have the same change
points (and also the same type of change points - equality or not) until lca(i, i′). Then i

cannot have a change point immediately after lca(i, i′). Moreover, if they fall in case (2b)
then i′ must have a change point immediately after lca(i, i′).

Proof. Let the point c = lca(i, i′). For case (2) we know that T [r − 1, r + d − 1] is order
isomorphic with T [r′ − 1, r′ + d − 1] i.e. pred(T [r − 1, r + d − 1]) = pred(T [r′ − 1, r′ + d − 1]).
This means that i and i′ have all the same change points until c.

Now let p be the last common change point of i and i′ i.e. p = LCPC(i). Here,
LCPC(i) denotes the last common point of change of i and its LFS i′. Additionally, suppose
b = LF(c, p, EQBT). So this means that LF(i) and LF(i′) will pass through b. As per the
definition of LF successor we know that, LF(i) < LF(i′). More specifically, LF(i′) = LF(i) + 1.

Firstly, lets say that i has a change point right after c. It is easy to observe from the
structural properties of order-isomorphic suffixes that both i and i′ cannot change immediately
after c. Hence, if we see all the branches under b, then LF(i) will fall under the rightmost
branch (or just previous branch depending on whether that change point is of equality type or
not). This leads to LF(i′) < LF(i) which is not possible as per the definition of LF successor.
Thus, i cannot have a change point immediately after c.

Now, if we take the case (2b), then i′ inverts over i because LF(i′) must be greater than
LF(i). For this to happen i′ must have a change point immediately after c. ◀

The proof of the lemma above also leads us to the following fact.

▶ Fact 1. Let c be a point immediately above a node v. Let b = LF(c, p, EQBT), where p is
the last common change point (of type equality or non-equality) on path(c) for two case (2b)
suffixes i and i′ = LFS(i) passing through c. Then, i′ has a change point immediately after v.
Moreover, there cannot be another pair of case (2b) suffixes j and j′ = LFS(j), which have
the same last common point of change p, and j′ changes immediately after v.

Proof. If any two of the suffixes i′ and j′, where i′ = LFS(i) and j′ = LFS(j), passing through
v have a change point right after the node v and their last common change point is p, then
under the point b = LF(c, p, EQBT) only one of their LF values (either LF(i′) or LF(j′)) can
be next to their respective LF(i) or LF(j). That implies only one of either LF(i′) = LF(i) + 1
or LF(j′) = LF(j) + 1 can be true. This is a contradiction, implying the fact is true. ◀
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4.2 Storing Augmenting Information for each Leaf
We shall describe this section in terms of augmenting information stored with each leaf.
However, one can easily see them as arrays that run parallel to the suffix array. We shall
show that each of these augmenting fields in all the cases can be stored in O(log σ) bits. For
each leaf ℓi, we can write in 2 bits which of the above 4 cases it belongs to. We denote this
by CASE[i]. We also store the same value with i′ and in this case we shall call it CASE[i′].

If ℓi belongs to case (1b), then we intend to store e which we will denote as LCPC[i] = e.
Recall that e is defined as the rightmost (maximum value) common change point for
T [r, r + d − 1] and T [r′, r′ + d − 1], and LCPC stands for last common point of change. Thus,
LCPC is an array whose ith entry corresponds to leaf ℓi. However, storing the value e directly
will require log n bits. Therefore, instead of e, we store number of distinct alphabet symbols
in T [r, r + e − 1]) (i.e., α(T [r, r + e − 1])). We will call this value αLCPC[i]. It is worth noting
that since change points only occur at new (first occurrence) alphabets in the string, e can
be uniquely decoded from αLCPC. We also store a complementary array of αLCPC denoted
as αLCPC such that αLCPC[i′] = αLCPC[i]. Thus, this value is not only stored with leaf i

but also replicated in leaf i′ = LFS(i) - albeit under a differently named field.
Recall that for case (1a), g is the first change point after e for T [r′, r′ + d − 1]. For the

case (1a), we store g which we call the first point of break FPB[i]. Again, we will not store
the value g directly but an encoding α(T [r, r + g − 1]) which takes log σ bits. We will call
this value αFPB[i]. Similarly, we store this value with i′ as αFPB[i′] = αFPB[i].

For the case (2a), we maintain αLCPC and αLCPC as in case (1b). We also maintain an
extra-bit EQBT indicating which type of change point LCPC is - whether equality change
point (indicated by EQBT = 1) or not. Similarly, we also store EQBT. We also store
α(T [r, r + d − 1]) that is the number of distinct alphabet symbol occurring until LCP(i, i′).
We shall call it αLCP[i]. Again, we store the same value at leaf ℓi′ so that αLCP[i′] = αLCP[i].
Additionally to this, we store FPC[i] (read as first point of change post LCA) which in
this case will be defined as the first change point of T [r, n] after T [r + d − 1]. Note that
this point of change cannot be right after LCA at T [r + d] because otherwise i will invert
over i′ (this would then be case (2b) Lemma 8) during LF mapping operation and LF(i)
will be greater than LF(i′). Once again we define FPC[i′] = FPC[i] and define αFPC[i] and
αFPC[i′] in similar vein. In summary, we maintain αLCPC, EQBT, αLCP and αFPC for each
such leaf which falls in case (2a). We also store these values at their corresponding LF
successors. One point to note here is that FPC, LCPC, FPB are all uniquely decodable from
αFPC, αLCPC, αFPB since they necessarily fall on the new alphabet which is yet unseen in
the suffix. However, the same is not true of αLCP.

As an example, let us look at T [r − 1, n] = caghhfbab... and T [r′ − 1, n] = cagjjebae....
Then, pred(T [r, n]) = 0111′456′2′... and pred(T [r′, n]) = 0111′456′3′.... Their LCPC is at
depth 5 which is encoded as 4 in the encodings of both the suffixes. Their αLCPC = 4, since
there are 4 distinct alphabets in both the strings until that point (4 non-prime characters in
their pred encoding). Length of their LCP = 7, however the character a which occurs their as
encoded character 6′ is not a new character. Hence, αLCP = 5 which points to character b in
both the original strings. If we try to decode αLCP, it will lead us to position 6 rather than
7. Finally, after the LF mapping, the encoded strings are 00211′556′2′ and 00211′556′3′.

For case (2b), our solution is more intricate so we only give a brief overview and defer
details to Case (2b) section of the proof of correctness. In this case, i′ inverts over i. Thus,
i′ has a change point right after the lca(i, i′) at T [r′ + d]. Just storing additional augmenting
values to the leaves of the suffix tree is not sufficient. Like before, we shall store αLCPC and
αLCP values. But we shall construct additional data structures called mini-trees and search
for i′ in an appropriate mini-tree identified by αLCPC and αLCP values of i. We will denote
this mini-tree as ταLCPC[i],αLCP[i].
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4.3 Query Algorithm
Now, we outline the pseudo-code for our query algorithm.

Computing LFS(i)

If ℓi falls in case (1a),
ℓi′ is the unique leaf under u s.t. CASE[i′] = CASE[i] and αFPB[i′] = αFPB[i],

where u is the highest ancestor of ℓi with αDepth(u) ≥ αFPB[i]

ElseIf ℓi falls in case (1b)
ℓi′ is unique leaf under u s.t. CASE[i′] = CASE[i] and αLCPC[i′] = αLCPC[i],

where u is the highest ancestor of ℓi with αDepth(u) ≥ αLCPC[i]

ElseIf ℓi falls in case (2a)
Let c = point above FPC[i] on suffix T [r, n] in the suffix tree. Then ℓi′ is leftmost

leaf after ℓi in the (subtree of αLCP[i]) \ (subtree of c) s.t. CASE[i′] = CASE[i],
αLCP[i] = αLCP[i′], αLCPC[i] = αLCPC[i′] and EQBT[i] = EQBT[i′]

Else
i′ = findSucc

(
i, αLCPC[i], αLCP[i]

)
, which is to be defined later

Note that all the arrays mentioned above can be represented in O(n log σ) bits, and
the implementation uses standard succinct-data-structure techniques (see Section 4.5); the
difficulty lies in proving the correctness of the algorithm, which is our focus next.

4.4 Proofs of Correctness
We shall show correctness of each case. In each case, we need to ensure that we would not
end up with a wrong answer. This could happen if there is another pair j, j′ such that
j′ = LFS(j) and this pair shares the same characteristics with the pair i, i′. In this case, pair
j, j′ may interfere in the search for i′ leading to false answer j′.

4.4.1 Case (1a)
Let c be the first point (the character within an edge of ST) on path(ℓi) such that T [r, r +
depth(c) − 1] has exactly αFPB[i] distinct characters. Thus, this is the first (encoded)
character where pred(T [r − 1, n]) and pred(T [r′ − 1, n]) differ; in other words, path(ℓLF(i))
and path(ℓLF(i′)) bifurcate at the position given by depth(c) + 1. Let ĉ be the point in
ST such that path(ĉ) = pred(T [r − 1, r + depth(c) − 1]) and ĉ′ be such that path(ĉ′) =
pred(T [r′ − 1, r′ + depth(c) − 1]). These points are on sibling edges going down from the same
node. Let v be the node just above ĉ and ĉ′. For example, consider T [r − 1, n] = jeabdh...

and T [r′ − 1, n] = gfabdh.... Then, path(c) = pred(eabdh) = pred(fabdh) = 00114. This
makes path(ĉ) = pred(jeabdh) = 000114. However, path(ĉ′) = pred(gfabdh) = 000115.
Note that 5 is the highest encoded character (with an exception of 5′) which branches out of
the node v.

▶ Lemma 9. There is only one pair of leaves i, i′ in the subtree of c, such that αFPB[i] =
αFPB[i′] = α(T [r, r + depth(c) − 1]).
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Proof. Consider LF mapping of i and i′. path(ℓLF(i)) and path(ℓLF(i′)) first bifurcate at points
ĉ and ĉ′ respectively. Since i′ = LFS(i), char(ĉ) < char(ĉ′). Moreover, char(ĉ′) is precisely
depth(c) or its equality version i.e. (depth(c))′. This is the highest (encoded) character, and
thus the branch with ĉ′ will be one of the two rightmost branches among branches (depending
on whether the change point c for suffix i′ was based on “equality” or not). However, the
point ĉ will certainly be before the two rightmost branches at v. If there was any other pair j

and j′ of case (1a) under the subtree of c such that j′ = LFS(j) and FPB(j) = FPB(i), then
both LF(i′) and LF(j′) will fall under the subtree of ĉ′ because as per the LCPC lemma all
the change points of i′ and j′ are the same until c (including c). On the contrary, LF(i) and
LF(j) cannot fall under this subtree as they are under the subtree of ĉ. Thus, depending on
whether LF(i′) < LF(j′) or not, only one pair out of (LF(i), LF(i′)) or (LF(j), LF(j′)) can be
adjacent. Since, i′ is indeed the LF successor of i, such a pair j, j′ cannot exist. ◀

4.4.2 Case (1b)
Let c be the first point in ST on path(ℓi) such that T [r, r + depth(c) − 1] has αLCPC[i]
distinct characters. In this case, c is a change point for both i and i′. For i′, it is the
equality change point while for i it is not (i.e., T [r′ − 1] = T [r′ + depth(c) − 1] and T [r − 1] ̸=
T [r+depth(c)−1]). Let point ĉ correspond to path(T [r−1, r+depth(c)−1]) and ĉ′ correspond
to path(T [r′ −1, r′ +depth(c)−1]). Let v be the node right above ĉ (and also ĉ′) which can be
identified by path(v) = T [r−1, r+depth(c)−2]. In this case, ĉ′ will fall in the rightmost branch
at node v and ĉ will fall in the branch previous to that. The character at point ĉ′ is precisely
the equality (prime) version of the character at ĉ. For example, consider T [r−1, n] = geabdh...

and T [r′ − 1, n] = hfabdh.... Then, path(c) = pred(eabdh) = pred(fabdh) = 00114. This
makes path(ĉ) = pred(geabdh) = 000115. However, path(ĉ′) = pred(hfabdh) = 000115′.
Here 5′ is the highest encoded character. Again, as in the case (1a), if there were any other
pair j, j′ falling in case (1b) under subtree of c such that LCPC(j) = LCPC(i), then LF(j′)
will also fall in the rightmost branch at v while LF(j) will fall in the previous one. Again, by
applying simple interval logic as in case (1a), we can show that only one of the pairs can
satisfy the LF-successor definition.

4.4.3 Case (2a)
In this case, post lca(i, i′), branch with ℓi is to the left of the branch with ℓi′ . Let c be the
point just above FPC[i]. Let ℓk be the rightmost leaf in the subtree of c. Note that since
FPC[i] is not immediately after the lca(i, i′), the subtree of c does not include i′. Therefore,
the order between i and i′ will not be inverted after taking LF mapping. Let f be the first
point in ST on suffix T [r, n] such that α(path(f)) = αLCP[i]. The actual LCP[i] will be
somewhere in the subtree of f because LCP[i] is not uniquely decodable from αLCP[i]. Here
LCP[i] denotes the lcp(i, i′). Let j, j′ be another pair in the subtree of f such that j′ = LFS(j)
and αLCP[j] = αLCP[i] and LCPC[j] = LCPC[i]. All four leaves LF(i), LF(i′), LF(j), LF(j′)
will be in the subtree of f̂ which is the LF-image LF(f, LCPC[i], EQBT). In other words, f̂

is the locus of pred(T [r − 1, r + depth(f) − 1]) in ST.

▶ Lemma 10. There does not exist a pair (j, j′) such that j′ = LFS(j), αLCP[j] = αLCP[i],
αLCPC[j] = αLCPC[i] and j′ lies in between k and i′.

Proof. Consider any other pair j, j′ in the subtree of f and with the same αLCPC, EQBT
and αLCP values such that k < j′ < i′. We will show by contradiction that such a j′

cannot exist. Firstly, since i < k < j′ and ℓk being the rightmost leaf in the subtree of c,
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Figure 2 Illustration of case (2a). Small black circles are change points.

i cannot invert over j′ after taking LF mapping. This is because c is the point just above
FPC[i]. Hence LF(i) < LF(j′). Also, since LF(i′) = LF(i) + 1, LF(j′) must be greater than
LF(i′). Secondly, the pair j, j′ falls under case (2a) where j < j′ and LF(j) < LF(j′). Thus,
LF(i′) ≤ LF(j) < LF(j′) which means both j and j′ invert over i′ after LF operation.

Next, j < j′ < i′ means lca(j, i′) is equal to or above lca(j′, i′). Since j and j′ invert over i′,
it must be at lca(j, i′) and lca(j′, i′) respectively. If lca(j, i′) is above lca(j′, i′), then j inverts
above j′ and it implies LF(j) > LF(j′) which is a contradiction. Now if lca(j, i′) = lca(j′, i′),
then there are two cases. The first case is where j and j′ invert from a common branch
connecting path of i′. Here, j and j′ will have a common change point at this branch which
is post lca(j′, i′). It implies that there is another common change point for j, j′ which leads
to LCPC[j] > LCPC[i] (a contradiction). In the second case, j and j′ branch out at lca(j′, i′)
but fall in different branches. However, according to Lemma 8, only one of j or j′ can have a
change point right after the lca(i, i′). Hence, this case also leads to contradiction. Thus, j′

does not lie in between k and i′. See Figures 2 and 3 for illustration. ◀

4.4.4 Case (2b)
For the case (2b), we know that suffix i′ comes before suffix i in the suffix tree, i.e. i′ < i.
Additionally, for the case (2b), i′ has a change point right after the node representing the
lca(i, i′). Moreover, under lca(i, i′) the branch containing the suffix i′ will be the only one
that will have a change point tied with the same LCPC (see Fact 1). Since i′ = LFS(i), after
the LF mapping i′ will invert over i making LF(i′) = LF(i) + 1. See Figure 3.

As mentioned in Section 4.2, for the case (2b) we store αLCPC[i] and αLCP[i] values for
each leaf ℓi as augmenting information. Additionally, we store their complements αLCPC[i′]
and αLCP[i′] for each leaf ℓi′ . Now we consider an additional data structure called mini-
trees that will help us in finding i′ given i. Specifically, a particular mini-tree τa,b has
set of all leaves ℓi and their corresponding LF successors ℓi′ from the suffix tree that has
αLCPC[i] = αLCPC[i′] = a and αLCP[i] = αLCP[i′] = b. A particular leaf ℓi will not be in
any mini-tree if that leaf does not fall under the case (2b). Thus, a leaf can be present in
a mini-tree if it falls under case (2b) or it is an LF-successor of some other leaf which falls
under the case (2b). Therefore, each leaf in the suffix tree will be in at most two mini-trees
and some mini-trees are possibly empty. In other words, a mini-tree is a compacted subtrie
of the suffix tree containing only those leaves selected for that mini-tree. Hence, overall size
of all the mini-trees combined is O(n).
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Figure 3 Illustration of case (2a) (left) and case (2b) (right). Red underline shows the character
encoding that changes after taking LF.

To draw a correspondence between the leaves of the suffix tree and the leaves of the
mini-trees, we use a bit-vector B[1, n], where B[i] = 1 iff leaf i falls in case (2b) or leaf i is an
LF-successor of the leaf which falls in case (2b). In other words, B[i] = 1 if a leaf from the
suffix tree is present in at least one of the mini-trees, and B[i] = 0 otherwise. Next, we create
two character vectors C and C as follows. If B[i] = 0, then C[i] = C[i] = 0. Otherwise,
1. C[i] stores an encoding of the pair αLCPC[i], αLCP[i] as a combined character from an

alphabet of size σ2; essentially C[i] = (σ − 1) · αLCPC[i] + αLCP[i]
2. C[i] = −C[i] if αLCPC[i] = αLCPC[i] and αLCP[i] = αLCP[i], and C[i] = (σ − 1) ·

αLCPC[i] + αLCP[i] otherwise.

Now given a particular leaf ℓi in the suffix tree, for finding the corresponding leaf in the
mini-tree, we first check if B[i] = 1. Since a = αLCPC[i] and b = αLCP[i], we can quickly
identify the mini-tree τa,b it belongs to as augmenting information αLCPC[i] and αLCP[i]
is stored for the leaf ℓi. To find out which leaf in τa,b corresponds to ℓi, all we have to do
is figure out the number of leaves j ≤ i that satisfy a = αLCPC[j] = a and b = αLCP[j]
or αLCPC[j] = a and αLCP[j] = b; this is the same as the number of entries j ≤ i in the
character vectors C such that C[j] = C[i] plus the number of entries k ≤ i in the character
vectors C such that C[k] = C[i]. This is because the mini-tree is just a compacted subtrie
of the original suffix tree consisting of only those leaves present in a particular mini-tree.
To map a leaf from the mini-tree back to the leaf of the original suffix tree, we need to
store a character vector for each mini-tree over the leaves of the mini-tree. Let Ca,b be the
character vector for the mini-tree τa,b. This character array indicates whether the leaf has
a = αLCPC[i] and b = αLCP[i] or a = αLCPC[i] and b = αLCP[i] or both. In other words, it
simply specifies how the leaf was selected for that mini-tree using techniques similar to that
described above. It is to be noted that all character vectors combined need O(n log σ) bits.

4.4.4.1 Identifying i′

We know that αLCPC[i] = a and αLCP[i] = b. Let pa be the first point in suffix tree where
α(T [r + depth(pa) − 1])) = a and pb be the first point such that α(T [r + depth(pb) − 1]) = b.
Thus, pa and pb are the points in suffix tree where αLCPC[i] and αLCP[i] are located. Note
that pa is above or the same as pb. Now consider the mini-tree τa,b. Let another pair j, j′

where j′ = LFS(j) fall under the same mini-tree (i.e., ℓj and ℓ′
j are also descendants of pb

and αLCPC[j] = αLCPC[i] and αLCP[j] = αLCP[i]). Here j′ will be on the left of j because
they fall under the case (2b). We will focus here on searching i′ as the first qualifying leaf to
the left of i. Another pair j, j′ could interfere with our process of searching if j′ falls between
i′ and i. Formally, we say
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▶ Definition 11. A pair j, j′ interferes with i, i′ if i′ < j′ < i and αLCPC[j] = αLCPC[i] and
αLCP[j] = αLCP[i]. Here, i′ = LFS(i) and j′ = LFS(j)

There are two cases of “interference” that can occur with respect to these two pairs –
case (2b′) is where both j′ and j are in between i′ and i i.e. i′ < j′ < j < i and case (2b*)
where j is on the right of i i.e. i′ < j′ < i < j. As we know that αLCPC[i] = αLCPC[j] = a

and pa is the first point in the suffix tree where α(T [r + depth(pa) − 1])) = a. Suppose
x = LF(lca(i, i′), pa, EQBT) and y = LF(lca(j, j′), pa, EQBT). Here EQBT is set to 1 if i′ has
an equality change point and 0 otherwise. Now in the case (2b′), after taking LF-mapping, j′

inverts over j under y and i′ inverts over all three of j, j′, i under x – we call this the nested
case. In case (2b*), j′ and i both together (maintaining same order) invert over j under y

and then i′ inverts over all of them under x – we call this the bulk-invert case. Additionally,
we will need to augment this mini-tree further so that we can distinguish the pair i, i′ from
the pair j, j′.

▶ Lemma 12. If a pair j, j′ interferes with i, i′, then lca(i′, i) occurs above lca(j′, j) in the
suffix tree. Additionally, if i < j, then lca(j′, i) is below lca(j, j′).

Proof. Note that in bulk invert case since j′ and i both invert together over j, lca(j′, i) must
be below lca(j, j′). Even though αLCP[i] = αLCP[j], it cannot happen that LCAs of both
the pairs are on the same node in the suffix tree (i.e. lca(i′, i) = lca(j′, j)). This is because
from any node only one branch can have a change point at the next character below the
node (see Fact 1). But we know that i′ has a change point just below the node representing
lca(i, i′). Therefore, the branch containing j′ cannot have a change point just below that
node. This implies j′ ̸= LFS(j) since j falls under the case (2b). This holds a contradiction.

Therefore, for the case (2b′), it must be the case that lca(j′, j) is below lca(i′, i), implying
that suffixes j′ and j belong to the subtree at lca(i′, i). In case (2b*), it cannot happen
that lca(i′, i) is below lca(j′, j) because that would mean j′ has a change point right below
lca(j′, j) which falls above lca(i′, i). This would make αLCPC[i] different than αLCPC[j]
because the suffixes i and i′ will have an extra change point above lca(i, i′) and below the
lca(j, j′). Hence, for the case (2b*) this leads to a contradiction and lca(j, j′) cannot be
above the lca(i, i′). ◀

If lca(i′, i) and lca(j′, j) are not on the same root-to-leaf path (neither above nor below
nor same as each other), then pairs i, i′ and j, j′ are non-interfering. So we need not consider
that case as in some sense for i, our algorithm looks at the closest suffix to the left of i that
has the same αLCP and αLCPC as the qualifying suffix for LFS(i).

Finally, from Fact 1 we can say that there exists a unique suffix i′ marked with case (2b)
under the point at 1 + depth(lca(i′, i)) depth such that αLCP[i] = αLCP[i′] and αLCPC[i] =
αLCPC[i′], with the constraint that i′ has a change point at 1 + depth(lca(i′, i)) depth.

4.4.4.2 Searching in Minitree

For any i, if we can identify lca(i′, i) precisely, then i′ is the leaf which has the same αLCPC
and αLCP values (as that of i) and i′ is in the subtree of a branch of lca(i′, i) whose leading
character in that branch is a change point. For this, we mark some nodes in the tree. More
precisely, for each mini-tree, we mark a node v if a point at (depth(parent(v)) + 1) depth is a
change point for a suffix i′ (in case (2b)) in the subtree of v. Note that only one child of
a node can get marked (refer to Fact 1). Also note that there is only one marked node in
a path from the root to a leaf because if there were another marked node w for a suffix j′,
then αLCPC[i′] ̸= αLCPC[j′]. But we know that all the leaves in a mini-trie have the same
αLCPC[i], αLCP (or their complement) values.
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Figure 4 Mini-trees for case (2b). Red (resp. black) circle is the marked node after the change
point of i′ (resp. j′) immediately after lca(i′, i) (resp. lca(j′, j)). Red (resp. black) cross is the
sibling of the marked node lying on the path from the LCA to the leaf ℓi (resp. ℓj).

Now lets say that a node x in the mini tree ταLCPC[i],αLCP[i] is the node corresponding
to lca(i′, i) in the suffix tree. Therefore, given i, our task simply becomes locating the leaf
ℓ in the mini-tree that corresponds to i. Then, find the lowest ancestor of ℓ that has a
marked child before ℓ in pre-order; observe that this lowest ancestor is precisely the node
x corresponding to lca(i′, i). Let y be the marked child of x. Within the subtree of y, we
can find the unique leaf ℓ′ corresponding to i′, which can be mapped back to the original
suffix tree. To find this unique leaf, we store a unary encoding at the marked node indicating
which leaf we looking for; more precisely, if the desired leaf is the zth leftmost leaf under
the marked node, then store z in unary at the marked node. Since there is only one marked
node from a leaf to root path in a mini-tree, the total length of all such unary encodings
combined is bounded by the size of the mini-tree. The mapping to and from the suffix tree to
a mini-tree can be carried out using the bit-vector and the character vectors defined earlier.

For the sake of completion, we summarize the discussion in the following findSucc method,
which was used by pseudo-code in Section 4.3. See Figure 4 for an illustration.

findSucc(i, a, b)

Use the bit-vector B and the character vectors C and C to identify the leaf ℓ in
τa,b that corresponds to ℓi

Find the lowest ancestor x of ℓ that has a marked child y before x in pre-order
Use the unary encoding stored at y to locate the leaf ℓ′ in τa,b corresponding to ℓi′

Finally, use the character vector Ca,b to map ℓ′ back to i′

4.5 Implementation and Complexity Analysis
We will rely on the following well-known data structures of Fact 2 and Fact 3.

▶ Fact 2 (Wavelet Tree [12]). Given an array A[1, t] over Σ, by using a t log |Σ| + o(t log |Σ|)-
bit structure, we can compute the following in O(log |Σ|) time:

A[i]
rankA(i, x) = number of occurrences of x in A[1, i]
selectA(i, x) = i-th occurrence of x in A

prevValueA(i, y) = rightmost position j < i such that A[j] ≤ y

We drop the subscript A when the context is clear.

ICALP 2021



71:16 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

▶ Fact 3 (Fully-Functional Succinct Tree [21]). The topology of order-isomorphic suffix tree
can be encoded in O(n) bits to support the following operations in O(1) time.

pre-order(u)/post-order(u): pre-order/post-order rank of node u

parent(u): parent of node u

nodeDepth(u): number of edges on the path from the root to u

child(u, q): qth leftmost child of node u

sibRank(u): number of children of parent(u) to the left of u

lca(u, v): lowest common ancestor (LCA) of two nodes u and v

sp(u)/ep(u): leftmost/rightmost leaf in the subtree of u

levelAncestor(u, d): ancestor of u such that nodeDepth(u) = d

Moving forward, we assume that any array has been pre-processed using Fact 2. We
maintain the topology of the order-isomorphic suffix tree and the mini-trees (Case 2b) using
Fact 3. Finally, we explicitly store αDepth(u) for every node u in the order-isomorphic suffix
tree. For the purpose of locating the node immediately below FPB or LCPC, we will rely on
the following lemma.

▶ Lemma 13. By maintaining an O(n log σ) bit data structure, given a leaf ℓi and an integer
W , we can find the highest ancestor w of ℓi satisfying αDepth(w) ≥ W in O(log σ) time.

Proof. Create an array A such that A[k] = αDepth(w), where w is the node with pre-order
rank k. Maintain A as a wavelet tree. Given ℓi, find the rightmost entry r < pre-order(ℓi) in A

such that A[r] < W using prevValueA(pre-order(ℓi), W − 1). Let v′ = lca(ℓi, v), where v is the
node with pre-order rank r. Then, w = levelAncestor(ℓi, nodeDepth(v′)+1). To see why this is
correct, observe that αDepth(v′) ≤ αDepth(v) < W . If αDepth(w) < W , the prevValue-query
should have returned w instead of v (since pre-order(v) < pre-order(w) ≤ pre-order(ℓi)). ◀

4.5.1 Case (1a) and Case (1b)
In case (1a), i′ is the only leaf marked with case (1a) in the sub-tree of FPB(i) that satisfies
αFPB[i′] = αFPB[i]. The first task is to find the subtree of FPB(i), i.e., the node just below
FPB(i). This node, say v, can be found in O(log σ) time using Lemma 13 and by using
αFPB[i]. Within the subtree of v, we simply find the only leaf i′ marked with 1a such that
FPB[i′] = FPB[i] using Fact 2. Since αFPB and αFPB entries for case (1a) suffixes are at
least one, in order to identify a valid case (1a) suffix, we simply set the αFPB and αFPB
entries for non case (1a) suffixes to zero.

In case (1b), the idea is the same, with the difference that we use αLCPC and αLCPC
arrays (instead of FPB and αFPB arrays) for finding the node v and then i′. As in the
previous case, we set the αLCPC and αLCPC entries for non case (1b) suffixes to zero.

Note that the wavelet trees for the four arrays need O(n log σ) bits, and a wavelet tree
query needs O(log σ) time.

4.5.2 Case (2a)
Let c be the point just above FPC[i]. Let ℓk be the rightmost leaf in the subtree of c. By
Lemma 10, it is evident that i′ is the leftmost leaf such that i′ > k, αLCP[i′] = αLCP[i],
αLCPC[i′] = αLCPC[i], and EQBT[i′] = EQBT[i]. To properly identify a case (2a) suffix,
we maintain a summary vector X defined as follows. For any suffix i lying in case (2a),
X[i] = (σ −1) ·αLCP[i]+αLCPC[i] if EQBT[i] = 1, and X[i] = −(σ −1) ·αLCP[i]−αLCPC[i]
if EQBT[i] = 0. For any suffix j not in case (2a), we let X[i] = 0. Likewise, we define X

based on αLCP, αLCPC, and EQBT.
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Note that any entry in X and X is from the set [0, 2σ2]; hence, a wavelet over them
needs O(n log σ) bits and supports queries in O(log σ) time. Thus, if we can find out the leaf
ℓk, we can locate i′ by using the wavelet-tree over the two summary vectors X and X in
additional O(log σ) time.

To find ℓk, we use Lemma 13 and αFPB to first find the highest node v such that
αDepth(v) ≥ αFPB[i]. Note that ℓk is the rightmost leaf in the subtree of parent(v) if FPB[i]
is the first character of the edge on which it lies, and is the rightmost leaf in the subtree of v

otherwise. We explicitly store a bit-vector to distinguish between the cases. Using these, ℓk

is located in O(log σ) time.

4.5.3 Case (2b)
In our previous discussion, we have already addressed how to map a case (2b) leaf i in the
suffix tree to its corresponding leaf in the mini-tree (refer to Section 4.4.4). We have also
addressed that given the desired marked node (corresponding to i) in the mini-tree, how we
can find the leaf in the mini-tree corresponding to the LF-successor i′. Finally, we also know
how to map-back to i′ from the mini-tree. Note that all of these can be achieved by storing
the character vectors and the bit vector as a wavelet tree, and by using a succinct encoding
of the mini trees. What is left to discuss is how to find the marked node. To this end, we
present Lemma 14. Using this we can find the desired marked node in O(1) time given the
leaf corresponding to i in the mini-tree.

▶ Lemma 14. Consider a tree having t nodes, where each non-leaf node has at least two
children. Also, each node is marked or unmarked. By using an O(t)-bit data structure, given
a leaf x, in O(1) time, we can find the rightmost leaf y < x such that the child of lca(y, x) on
the path to y is marked.

Proof. Let u be a node. We associate 1 with u iff parent(u) has a child v before u in pre-order,
where v is marked. Pre-process the tree with Lemmas 15 and 16.

Given the query x, use Lemma 15 to locate the lowest ancestor u of x associated with a 1.
We find the marked sibling v of u to its left using Lemma 16. The time needed is O(1). ◀

▶ Lemma 15. Consider a tree having t nodes, where each non-leaf node has at least two
children. Also, each node is associated with a 0 or 1. By using an O(t)-bit data structure, in
O(1) time, we can find the lowest ancestor of a leaf that is associated with a 1.

Proof. Starting from the leftmost leaf, every g = c⌈log t⌉ leaves form a group, where c is a
constant to be decided later. (The last group may have fewer than g leaves.) Mark the lca of
the first and last leaf of each group. At each marked node, write the node-depth of its lowest
ancestor which is associated with a 1. The space needed is O( t

g log t) = O(t) bits. Let τu be
the subtree rooted at a marked node u. Since each node in τu is associated with a 0 or 1, the
number of possible trees is at most 2g (because τu has fewer than g non-leaf nodes). We store
a pointer from u to τu. The total space needed for storing all pointers is O( t

g log 2g) = O(t)
bits. For each possible τu, store the following satellite data in an additional array. Consider
the kth leftmost leaf ℓk in τu. Let v be the lowest node on the path from u to ℓk associated
with a 1. If v exists, store the node-depth of v relative to u, else store −1. The space needed
for each τu is O(g log g) = O(g log log t) bits. Therefore, the total space for all such trees is
O(2gg log log t). By choosing c = 1/2, this space is bounded by o(t) bits. Thus, the total
space is bounded by O(t) bits.
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Given a query leaf ℓk, we first locate the lowest marked node u∗ = lca(1 +
g⌊k/g⌋, max{t, g(1 + ⌊k/g⌋)}) of ℓk. Let d∗ be the depth stored at u∗. Let k′ = k − g⌊k/g⌋.
Check the k′th entry of the satellite array of u∗, and let it be d. If d = −1, then assign
D = d∗, else assign D = nodeDepth(u∗) + d. The lowest ancestor of ℓk associated with a 1 is
given by levelAncestor(ℓk, D). ◀

▶ Lemma 16. Consider a tree of t nodes, where some nodes are marked. By using an
O(t)-bit data structure, in O(1) time, given a node v, we can find a node u (if any) such
that u is the rightmost marked child of parent(v) and pre-order(u) < pre-order(v).

Proof. For each node w, we store a bit-vector Bw[tw], where tw is the number of children
of w. Assign Bw[i] = 1 iff the ith leftmost child of w, given by child(w, i), is marked. The
total space needed is O(t) bits. Given the query node v, we go to the bit vector Bv′ , where
v′ = parent(v). Let r = rankBv′ (sibRank(v), 1). If r = 0, then u does not exist; otherwise,
u = child(v′, selectBv′ (r, 1)). ◀
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1 Introduction

The study of the crossing number of graphs, that is, the minimum number of edge crossings
necessary to draw a given graph, is a major research direction in the field of computational
geometry [10, 33, 36]. More recently, there have been a number of works focusing on
minimizing or restricting edge crossings when the task is not to draw a graph from scratch,
but rather to extend a partial drawing that is provided on the input. Prominently, Chimani
et al. [14] showed that extending a plane drawing with a star in a way that minimizes the
number of crossings of the resulting drawing is polynomial-time tractable. Later, Angelini
et al. [1] obtained a polynomial-time algorithm for extending plane drawings so that the
crossing number remains 0 (i.e., the resulting drawing is plane).

While the two results mentioned above give rise to polynomial-time variants of crossing-
minimization extension problems, a number of important cases are known to be NP-hard; a
prototypical example is the Rigid Multiple Edge Insertion (RMEI) problem, which asks
for a crossing-minimal insertion of k edges into a plane drawing of an n-vertex graph [15, 37].
To deal with this, in recent years the focus has broadened to also consider a weaker notion of
tractability, namely, fixed-parameter tractability (FPT) [17, 19]. Chimani and Hliněný [15]
have shown that RMEI is FPT, i.e., there is an algorithm which solves that problem in time
f(k) · nO(1). Other works have considered various relaxations of crossing minimization; for
instance, recently Eiben et al. [20] established the fixed-parameter tractability of extending
drawings by k edges in a way which does not minimize the total number of crossings, but
rather bounds the number of crossings per edge to at most 1.

For many problems in the intersection of crossing minimization and graph extension, an
important goal is that the desired extension should maintain certain properties of the given
partial representation. In the problems studied in [1] and [20], the input is a plane or 1-plane1

drawing, respectively, and the desired extension must maintain the property of being (1-)plane.
There have been a plethora of results exploring such extension problems, especially on plane
drawings, for a range of other, often more restrictive properties [3, 9, 12, 13, 31, 32, 34].

Beyond planarity, the perhaps most prominent class of drawings with respect to crossing
minimization are simple drawings (also called good drawings [8, 21], simple topological
graphs [29], or simply drawings [26]). A drawing is simple if every pair of edges intersects in
at most one point that is either a common endpoint or a proper crossing. Simplicity is an
extremely natural restriction that is taken as a basic assumption in a range of settings, e.g., [2,
5, 11, 30], and that constitutes a necessary requirement for crossing-minimal drawings [36].

Contribution. In this work we study the extension problem for simple drawings in the
context of crossing minimization. In other words, our aim is to extend a given simple drawing
with k new edges while maintaining simplicity and restricting newly created crossings.
Naturally, the most obvious way of restricting such crossings is by bounding their number,
leading us to our first problem of interest:2

1 A drawing of a graph is ℓ-plane if every edge is involved in at most ℓ crossings.
2 Decision versions of problems are provided purely for complexity-theoretic reasons; every algorithm

provided in this article is constructive and can also output a solution as a witness.



R. Ganian, T. Hamm, F. Klute, I. Parada, and B. Vogtenhuber 72:3

Simple Crossing-Minimal Edge Insertion (SCEI)
Input: A graph G = (V, E) along with a connected simple drawing G, an integer ℓ,

and a set F of k edges of the complement of G.
Question: Can G be extended to a simple drawing G′ of the graph G′ = (V, E ∪ F ) such

that the number of crossings in G′ that involve an edge of F is at most ℓ?

Note that we require the initial drawing G to be connected. While this is a natural assumption
that is well-justified in many situations, it would certainly also make sense to consider the
more general setting in which this is not the case. A short discussion of how the connectivity
of G is used in our proof is provided in Section 4.

SCEI was recently shown to be NP-complete already when |F | = 1 and ℓ ≥ |E| (meaning
that the aim is merely to obtain a simple drawing) [7]. On the other hand, dropping the
simplicity requirement of the resulting drawing, the problem reduces to RMEI which is FPT.

The main contribution of this article is an FPT algorithm for SCEI parameterized by
k + ℓ. The result is obtained via a combination of techniques recently introduced in [20] and
completely new machinery. A high-level overview of challenges posed by the problem and
our strategies for overcoming them is provided in the next part of this introduction. Before
that, let us mention other natural crossing-sensitive restrictions of simple drawing extension.

Instead of restricting the total number of newly created crossings, one may aim to extend G
in a way which bounds the number of crossings involving each of the newly added edges
– akin to the restrictions imposed by ℓ-planarity. We call this problem Simple Locally
Crossing-Minimal Edge Insertion (SLCEI), where the role of ℓ is that it bounds the
maximum number of crossings involving any one particular edge of F . Alternatively, one
may simply require that every edge in the resulting drawing is involved in at most ℓ crossings,
i.e., that the whole G′ is ℓ-plane. This results in the Simple ℓ-Plane Edge Insertion
(Sℓ-PEI) problem. Both of these problems are known to be NP-hard when either ℓ = 1 or
k = 1, meaning that we can drop neither of our parameters if we wish to achieve tractability.

One key strength of the framework we develop for solving SCEI is its universality. Notably,
we obtain the fixed-parameter tractability of SLCEI as an immediate corollary of the proof
of our main theorem, while the fixed-parameter tractability of Sℓ-PEI follows by a minor
adjustment of the final part of our proof. Moreover, it is trivial to use the framework to solve
the considered problems when one drops the requirement that the final drawing is simple
– allowing us to, e.g., generalize the previously established fixed-parameter tractability of
1-Planar Edge Insertion [20] to ℓ-Planar Edge Insertion (ℓ-PEI).

Finally, we note that a core ingredient in our approach is the use of Courcelle’s the-
orem [16], and hence the algorithms underlying our tractability results will have an impractical
dependency on k. However, for the special case of |F | = 1 (i.e., when inserting a single edge),
we use so-called representative sets to provide a single-exponential fixed-parameter algorithm
which is tight under the Exponential Time Hypothesis [27].

Proof Overview. On a high level, our approach follows the general strategy co-developed
by a subset of the authors in [20] for solving the problem of inserting k edges into a drawing
while maintaining 1-planarity. This general strategy can be summarized as follows:
1. We preprocess G and the planarization of G to remove parts of G which are too far away

to interact with our solution. This drawing is then translated into a graph representation
of bounded treewidth [35].

2. We identify a combinatorial characterization that captures how the solution curves will
be embedded into G. Crucially, the characterization has size bounded by our parameters.

3. We perform brute-force branching over all characterizations to pre-determine the behavior
of a solution in G, and for each such characterization we employ Courcelle’s theorem [16]
to determine whether there exists a solution with such a characterization.

ICALP 2021



72:4 Crossing-Optimal Extension of Simple Drawings

The specific implementation of this strategy differs substantially from the previous work [20]
– for instance, the combinatorial characterization of solutions in Step 2 and the use of
Courcelle’s theorem in Step 3 are both different. But the by far greatest challenge in
implementing this strategy occurs in Step 1. Notably, removing the parts of G required to
obtain a bounded-treewidth graph representation creates holes in the drawing, and these
could disconnect edges intersecting these holes. The graph representation can then lose track
of “which edge parts belong to each other”, which means we can no longer use it to determine
whether the extended drawing is simple. We remark that specifically for Sℓ-PEI and ℓ-PEI,
it would be possible to directly adapt Step 1 to ensure that no edge is disconnected in this
manner, thus circumventing this difficulty. To handle this problem, we employ an in-depth
geometric analysis combined with a careful use of the sunflower lemma and subroutines
which invoke Courcelle’s theorem to construct a representation which (a) still has bounded
treewidth, and (b) contains partial information about which edge parts belong to the same
edge in G. A detailed overview of how this is achieved is presented at the beginning of
Section 3.

Related Work. There have been two distinct lines of work that recently considered simple
drawings in the context of drawing extension problems. The first studied a closely related
notion of saturated simple drawings [25, 28], while the second studied the computational
complexity of the extension problem for simple drawings [6, 7].
Statements where proofs or more details are provided in the full version are marked with (⋆).

2 Preliminaries

We use standard terminology for undirected and simple graphs [18]. The length of a walk
or a path is the number of edges it visits. For r ∈ N, we write [r] as shorthand for the set
{1, . . . , r}.

A simple drawing of a graph G is a drawing G of G in the plane such that every pair of
edges shares at most one point that is either a unique crossing point or a common endpoint.
In particular, no tangencies between edges are allowed, edges must not contain any vertices
in their relative interior, and no three edges intersect in the same point. Given a simple
drawing G of a graph G and a set of edges F of the complement of G we say that the edges
in F can be inserted into G if there exists a simple drawing G+ of G+ = (V (G), E(G) ∪ F )
that contains G as a subdrawing. The planarization of a simple drawing G of G is the plane
graph G× obtained from G by subdividing the edges of G at the crossing points of G. We
call each part of the subdivision of e ∈ E(G) in G× an edge segment (of e). Furthermore, we
consider the faces of G× as the cells of G and call G connected if G× is a connected graph.

Sunflower Lemma. One tool we use to obtain our results is the classical sunflower lemma
of Erdős and Rado. A sunflower in a set family F is a subset F ′ ⊆ F such that all pairs of
elements in F ′ have the same intersection.

▶ Lemma 1 ([22, 23]). Let F be a family of subsets of a universe U , each of cardinality at
most b, and let a ∈ N. If |F| ≥ b!(a − 1)b, then F contains a sunflower F ′ of cardinality at
least a. Moreover, F ′ can be computed in time polynomial in |F|.

Parameterized Complexity. In parameterized complexity [17, 19, 23], the complexity of
a problem is studied not only with respect to the input size, but also with respect to
some problem parameter(s). The core idea behind parameterized complexity is that the
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combinatorial explosion resulting from the NP-hardness of a problem can sometimes be
confined to certain structural parameters that are small in practical settings. We now proceed
to the formal definitions.

A parameterized problem Q is a subset of Ω∗ × N, where Ω is a fixed alphabet. Each
instance of Q is a pair (I, κ), where κ ∈ N is called the parameter. A parameterized problem
Q is fixed-parameter tractable (FPT) [23, 19, 17], if there is an algorithm, called an FPT-
algorithm, that decides whether an input (I, κ) is a member of Q in time f(κ) · |I|O(1), where
f is a computable function and |I| is the input instance size. The class FPT denotes the
class of all fixed-parameter tractable parameterized problems. A parameterized problem Q is
FPT-reducible to a parameterized problem Q′ if there is an algorithm, called an FPT-reduction,
that transforms each instance (I, κ) of Q into an instance (I ′, κ′) of Q′ in time f(κ) · |I|O(1),
such that κ′ ≤ g(κ) and (I, κ) ∈ Q if and only if (I ′, κ′) ∈ Q′, where f and g are computable
functions.

Monadic Second Order Logic. We consider Monadic Second Order (MSO) logic on (edge-
)labeled directed graphs in terms of their incidence structure, whose universe contains
vertices and edges; the incidence between vertices and edges is represented by a binary
relation. We assume an infinite supply of individual variables x, x1, x2, . . . and of set
variables X, X1, X2, . . . . The atomic formulas are V x (“x is a vertex”), Ey (“y is an edge”),
Ixy (“vertex x is incident with edge y”), x = y (equality), Pax (“vertex or edge x has label
a”), and Xx (“vertex or edge x is an element of set X”). MSO formulas are built up from
atomic formulas using the usual Boolean connectives (¬, ∧, ∨, →, ↔), quantification over
individual variables (∀x, ∃x), and quantification over set variables (∀X, ∃X).

Free and bound variables of a formula are defined in the usual way. To indicate that the
set of free individual variables of formula Φ is {x1, . . . , xℓ} and the set of free set variables of
formula Φ is {X1, . . . , Xq} we write Φ(x1, . . . , xℓ, X1, . . . , Xq). If G is a graph, v1, . . . , vℓ ∈
V (G)∪E(G) and S1, . . . , Sq ⊆ V (G)∪E(G) we write G |= Φ(v1, . . . , vℓ, S1, . . . , Sq) to denote
that Φ holds in G if the variables xi are interpreted by the vertices or edges vi, for i ∈ [ℓ],
and the variables Xi are interpreted by the sets Si, for i ∈ [q].

The following result (the well-known Courcelle’s theorem [16]) shows that if G has
bounded treewidth [35] then we can find an assignment φ to the set of free variables F with
G |= Φ(φ(F)) (if one exists) in linear time.

▶ Theorem 2 (Courcelle’s theorem [4, 16]). Let Φ(x1, . . . , xℓ, X1, . . . , Xq) be a fixed MSO
formula with free individual variables x1, . . . , xℓ and free set variables X1, . . . , Xℓ, and let w

a constant. Then there is a linear-time algorithm that, given a labeled directed graph G of
treewidth at most w, either outputs v1, . . . , vℓ ∈ V (G) ∪ E(G) and S1, . . . , Sq ⊆ V (G) ∪ E(G)
such that G |= Φ(v1, . . . , vℓ, S1, . . . , Sq) or correctly identifies that no such vertices v1, . . . , vℓ

and sets S1, . . . , Sq exist.

We remark that since an understanding of the definition of treewidth is not required for
our presentation, we merely refer to the literature for a discussion of the notion [17, 19, 35].
We denote the treewidth of a graph G as tw(G).

Problem Definition and Terminology. We formulate the following generalization of SLCEI
in which we allow the numbers of crossings allowed for each newly added edge to differ. Note
that this formulation also fixes a parameterization.
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Simple Crossing-Restricted Edge Insertion (SCREI) Parameter: k + maxi∈[k] ℓi

Input: A graph G = (V, E) along with a connected simple drawing G, a set F =
{e1, . . . , ek} of k edges of the complement of G, and ℓ1, . . . , ℓk ∈ N.

Question: Can G be extended to a simple drawing G′ of the graph G′ = (V, E ∪ F ) such
that the drawing of each edge ei ∈ F has at most ℓi crossings in G′?

For an instance of SCREI we refer to elements in F as added edges and denote the endpoints
of ei as si and ti (where s1, t1 . . . , sk, tk are not necessarily distinct). For brevity we denote
ℓ = maxi∈[k] ℓi. Although SCREI is stated as a decision problem, we will want to speak
about hypothetical solutions of SCREI, which will naturally correspond to the drawings of
added edges in G′ (if one exists) as the rest of G′ is predetermined by G. This means that a
solution is a set of drawings of added edges in G′ where G′ witnesses the fact that the given
instance is a yes-instance. If no such G′ exists, then we say that the SCREI-instance has no
solution.

The reason we focus our presentation on SCREI is that the fixed-parameter tractability of
SCREI immediately implies the fixed-parameter tractability of both SLCEI parameterized
by the number of added edges and crossings per added edge, and SCEI parameterized by
the number of added edges and crossings of all added edges. The former is just a subcase
of SCREI. The latter admits a straightforward FPT-reduction to SCREI by branching
over the number ℓi of crossings each edge ei ∈ F is at most involved in. Hence obtaining
a fixed-parameter algorithm for SCREI provides a unified reason for the fixed-parameter
tractability of both SCEI and SLCEI. Furthermore, we will later show that the result for
SCREI can be straightforwardly adapted to solve the other problems mentioned in the
introduction.

3 Stitches

Let
(
G, G, F, (ℓi)i∈[|F |]

)
be an instance of SCREI. Recalling the Proof Overview provided in

Section 1, we want to identify parts of G that may be considered “unimportant” because
they can never be intersected by the drawing of any of the edges siti ∈ F with at most ℓi

crossings. Formally, consider the dual G∗ of the planarization G× of G, and for each vertex
v ∈ V (G) let Uv ⊆ G∗ be the set of vertices that correspond to cells c of G such that v lies on
the boundary of c. We say a cell c of G is siti-far if it corresponds to a vertex vc ∈ V (G∗) at
distance more than ℓi from Usi or Uti , and c is far if it is siti-far for all i ∈ [k]. Observe that
in any solution of SCREI for

(
G, G, F, (ℓi)i∈[|F |]

)
no drawing of an edge in F can intersect

far cells of G. We refer to maximal unions of far cells in G which form subsets of R2 whose
interior is connected as holes. The interiors of holes are a natural choice for information
that is not immediately relevant for the insertion of drawings for F , in the sense that no
intersections with these drawings can occur in far cells. However, as mentioned in the Proof
Overview, omitting the interior of holes destroys the information about which parts of edges
belong to the same edge whenever an edge is disconnected by the removal of a hole.

To transfer this information between different parts of one edge – parts which could
be crossed by a hypothetical solution but which are disconnected by holes – we introduce
stitches into the respective holes. More formally, for a hole H in G we call an edge e in E(G)
H-torn if e is split into at least two curves by the removal of the interior of H from G. We
call maximal subcurves of an H-torn edge after removing H (edge) parts of e and refer to
the endpoints of these subcurves as endpoints of the corresponding edge part. Stitches will
correspond to paths between the endpoints of edge parts of H-torn edges. To construct these
paths we introduce so-called threads which are edges that we insert into a hole H to connect
parts of H-torn edges and derive the stitches from them by considering their planarization.
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. . .

si ti

H

Figure 1 Assuming ℓi = 3, then the poten-
tial drawings of siti, depicted as dashed curves,
can cross an arbitrary number of H-torn edges.

si ti

tj

sj

c

Figure 2 Assuming ℓi = ℓj = 3, then the
drawing of sjtj has to go through c and the
drawing of siti has to revisit cell c.

To ensure that the obtained combinatorialization of G has bounded treewidth, the main
goal of this section will be to bound the number of stitches for each edge siti ∈ F and hole
H by some function of k + ℓi. We do this by considering which and how many edge parts
of H-torn edges any simple siti-curve in a hypothetical solution can cross. Here we face an
apparent difficulty: it is possible that there is an unbounded number of edge parts which
are crossed by drawings of an added edge siti in hypothetical solutions and each edge part
belongs to a different H-torn edge (see Figure 1). However, such situations can be safely
avoided by restricting our attention to “reasonable” solutions, as we will see in Subsection 3.1.
In particular, to specify “reasonable” solutions, we turn our attention to the behavior of
drawings of added edges in a hypothetical solution when they revisit a cell of G. Then,
bounding the number of stitches we introduce for an added edge siti and hole H is equivalent
to showing that we can identify all but a bounded number of edges in E(G) which are H-torn
and cannot be crossed by a drawing of siti in a “reasonable” hypothetical solution. This is
what we focus on in Subsection 3.2.

After adding stitches, we are finally able to define an appropriate combinatorialization of
G in Section 4 which we can use for the final application of Courcelle’s theorem in Section 5.

3.1 Detours and Reasonable Solutions
Fix an added edge siti, a hole H, and a cell c of the original drawing of G. Note that a
drawing of siti in a hypothetical solution might revisit the cell c to avoid crossing the drawing
of a different added edge sjtj . Figure 2 exemplifies such a situation. Understanding how and
why a solution might need to revisit a cell is a major component in establishing an upper
bound on the number of stitches per hole. In fact, as we will see in this section, avoiding
such crossings is the only reason why a cell might have to be revisited.

Let γi be a drawing of siti in a hypothetical solution which revisits c. A c-detour (of γi)
is a maximal subcurve of γi whose interior is disjoint from int(c) and has neither si nor ti as
an endpoint. Note that a c-detour might also consist of a singular point. This case occurs
when γi crosses an edge segment on the boundary of c which does not lie on the boundary of
another cell. See Figure 3 for an illustration.

▶ Definition 3. Let δ be a c-detour, and let the embedding E consist only of δ and the
restriction of G to the boundary of c. Then δ partitions the boundary of c into two connected
parts: the part incident to the unbounded (i.e. outer) cell in E , and the δ-avoided part which
is not incident to the outer cell in E.

Additionally, we call the subset of R2 which is enclosed by δ and the δ-avoided part of the
boundary of c together with the δ-avoided part of the boundary of c itself the δ-avoided region.
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γi

c

si

ti

Figure 3 Drawing γi of siti in a hypothet-
ical solution with two c-detours: one is a curve
(highlighted in purple) and the other is a point
(highlighted in green).

c

Figure 4 For the single point detour
(green), the avoided part of the boundary of c
and the plane coincide and are dashed green.
For the curve detour (purple), the avoided
part of the boundary of c is dashed purple
and the avoided region is shaded purple.

See Figure 4 for an illustration. A c-detour δ is unremovable if there exists an added edge
sjtj with j ̸= i such that exactly one of sj and tj lies in the δ-avoided region of G. In that
case we say that the endpoint (sj or tj) in the δ-avoided region is avoided by δ, or that δ is
around the endpoint. We call a c-detour removable if it is not unremovable.

▶ Lemma 4 (⋆). If there is a solution, then there exists a solution in which no drawing of
any added edge contains a removable c′-detour for any cell c′ of G.

Lemma 4 allows us to restrict our attention to solutions which do not contain any
removable detours (these are the solutions we intuitively referred to as “reasonable”).

3.2 Defining and Finding Stitches
Let siti ∈ F and H be a hole. Our goal is to compute a, by our parameters, bounded
number of edge parts in E(G) which could be crossed by a drawing of siti in some reasonable
hypothetical solution. As we obviously do not know any hypothetical solution we cannot
compute this set directly. Consequently, we identify and compute a slightly larger set: the
set of all edge parts that can be crossed by some so-called solution curve for si and ti that
is superficially like an siti-curve in a “reasonable” hypothetical solution (but which might
induce double-crossings).

▶ Definition 5. A solution curve for siti is a simple curve γi that (i) starts in si and ends
in ti; (ii) produces at most ℓi crossings with G; and (iii) whenever γi intersects a cell c′

in more than one maximal connected subcurve there is an added edge sjtj with j ̸= i such
that exactly one of sj and tj lies in the ζ-avoided part of G, where ζ is a maximal connected
subcurve of γi outside of c′ between two intersections of γi with c′. A part of an H-torn edge
e ∈ E(G) is crossable for siti if it is crossed by a solution curve for siti.

▶ Lemma 6 (⋆). For every hole H and every added edge siti ∈ F there are less than
ℓi(2ℓi + 1)! ·

(
4k(ℓi + 2)(ℓi + 1)ℓi+1)2ℓi+1 parts of H-torn edges that are crossable for siti.

Proof Sketch. We show that there is a set K of less than (2ℓi+1)!
(

4k(ℓi+2)(ℓi+1)ℓi+1
)2ℓi+1

solution curves for siti such that each crossable edge part for siti is crossed by at least one
of the curves in K. Then the claim follows as each solution curve crosses at most ℓi edges.
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si

H
c1 = c6

c4c5

c2 = c3

c7
ti

Figure 5 The cells c1, . . . , c7 are in the core of the sunflower. The red dashed siti curve cannot
be part of the minimal set of curves K. The extremal subcurves are highlighted in green.

Assume for contradiction that the minimum set K that witnesses crossability of parts
of H-torn crossable edges for siti consists of at least (2ℓi + 1)!

(
4k(ℓi + 2)(ℓi + 1)ℓi+1)2ℓi+1

solution curves for siti. Consider the restricted drawing GH which is given by G restricted to
the boundary of H, all H-torn edges in E(G), as well as si and ti.

We associate each siti curve in K with the set of cells of GH which it intersects and the
set of edge segments in G×

H which it crosses. In this way, each curve in K is associated to a
set of size at most 2ℓi + 1. By the minimality of K, no two curves in K are associated to the
same set of cells and edge segments. Using the sunflower lemma [22, 23] for the set system
given by the sets of cells and edge segments associated to the siti curves in K we obtain a
set of at least 4k(ℓi + 2)(ℓi + 1)ℓi+1 solution curves K☼ ⊆ K which all intersect pairwise
different cells of GH and edge segments of G×

H , apart from the cells and edge segments in the
core of a sunflower, which they all intersect. Moreover, as curves in K intersect at most ℓi

edges we find at most ℓi + 1 cells in the core.
By the pigeonhole principle there is a set of at least 4k(ℓi + 2) curves in K☼ which

all intersect the cells in the core of the sunflower in the same order (taking into account
repetitions of cells). Let K☼

σ ⊆ K☼ be such a set of curves and let σ = c1, . . . , cl with
l ≤ ℓi + 1 be the order in which these curves traverse the cells in the core of the sunflower.

As each cj with j ∈ [l] is a cell in a restriction of G containing all H-torn edges, no part
of an H-torn edge intersects the interior of cj . In particular parts of H-torn edges are not
crossed by any curve in K☼

σ within int(cj).
When considering subcurves of curves between each cj and cj+1, we can find at most

4(k − 1) “extremal” such subcurves which separate all other subcurves from H together with
cj and cj+1. These extremal subcurves together cross any crossable edge part of an H-torn
edge intersected by any other considered subcurve. See Figure 5 for an illustration.

In this way we find at least one curve after the removal of which from K the same crossable
edge parts of H-torn edges are intersected, contradicting our minimality assumption. ◀

While the fact that the number of crossable edge parts we want to introduce stitches for
is bounded by a function in our parameters is reassuring, we need to be able to actually
introduce these stitches before being able to give our final MSO encoding of hypothetical
solutions. For this we invoke Courcelle’s theorem in Lemma 7 independently of its final
application. This then allows us to insert the corresponding stitches.

▶ Lemma 7 (⋆). There is a fixed-parameter algorithm parameterized by k + ℓ which identifies,
for an added edge siti and a hole H, all parts of H-torn edges which are crossable for siti.
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▶ Definition 8. For a hole H in G and an added edge siti ∈ F , a thread is a pair of two
endpoints of two distinct edge parts of the same H-torn edge in e ∈ E(G) satisfying the
following properties: (i) both edge parts are crossable for siti, (ii) there is no other crossable
edge part between these edge parts along a traversal of e, and (iii) there is no other endpoint
of one of the two edge parts along a traversal of e. We denote the set of all threads for H

and siti as TH,siti , and define the set of all threads for H as TH =
⋃

i∈[k] TH,siti .

An embedding of TH is a set of curves, contained completely in H, which connect each
pair of two endpoints of edge parts in TH .

▶ Lemma 9 (⋆). There is a fixed-parameter algorithm parameterized by k + ℓ that computes,
for a hole H in G, a simple embedding of TH .

For the simple embedding of TH into H computed in Lemma 9, define the set of stitches
SH of H as the planarization of the threads in this embedding.

4 The Patchwork Graph

After identifying a bounded number of stitches in each hole, we are finally able to define the
patchwork graph and prove desirable properties which we will use in our final application of
Courcelle’s theorem. An illustration of the patchwork graph is provided in Figure 6. The
following definition also doubles as a description of how to construct the patchwork graph
from a given drawing. We remark that, unlike G, the patchwork graph might be disconnected.

▶ Definition 10. The patchwork graph P and its embedding P are given by the labeled graph
derived from G in the following steps:
1. Planarize G and label the vertices which are newly introduced by this as crossing vertices.

Label vertices which correspond to vertices of G as real vertices. Additionally label each
si and ti with label i ∈ [k].

2. Subdivide each edge e in the planarization G× of G by k vertices3 ve
1, . . . , ve

k which are
labeled as segment vertices – each segment vertex of e will represent a possible crossing
point of the drawing of one of the k edges in F and e.

3. Inside each face f of G×, introduce a new vertex vf and label it as cell vertex.
4. Inside each face f of G×, trace the boundary of f creating a curve at ε-distance and

create a vertex labeled as shadow vertex on this curve every time an endpoint of an edge
in F or a segment vertex is encountered. Insert two edges for each shadow vertex; one
connecting the shadow vertex to the corresponding endpoint of an edge in F or segment
vertex; and one connecting the shadow vertex to vf . Note that multiple shadow vertices
can be introduced for the same vertex in G (e.g. the orange vertex in Figure 6). Shadow
vertices allow to distinguish different ways, more formally positions in the rotation around
an endpoint, of accessing that endpoint via the inserted drawing of an edge in F (see
Figure 7); this is where the connectivity of G is used. In this way each shadow vertex of
an endpoint corresponds to an access direction.

5. Delete every vertex that is in the interior of a hole H.
6. For each hole H insert all stitches SH for H into the interior of H and label the inserted

vertices as crossing vertices.4

3 If k = 1 we subdivide by 2 vertices for reasons that will become clear when we introduce tracking labels.
4 This means they receive the same label as vertices introduced by planarizing G.
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Figure 6 Illustration of a patchwork graph P . The remainder of P is hinted in beige. Black disks
are original vertices. Colored disks are endpoints of edges in F . Crossing vertices are crosses. Green
and white disks represent the edge segment/shadow vertices. Cell vertices are white squares. Holes
are shaded in gray and stitches drawn with thick, dashed curves.

Figure 7 Illustration for different access directions. Each hypothetical drawing (indicated as
thick dashes, normal, dotted, and dash-dotted lines) of the added edge between the orange vertices
crosses the same edge segment of G× but separates the black vertices differently. In connected
initial drawings, ways of separating vertices of the same cell by the drawing of an added edge are
completely determined by potential crossing points of that drawing and its positions in the rotations
around each of its endpoints. This is not the case for disconnected initial drawings.

7. For technical reasons which will become apparent later (when we introduce tracking labels),
we replace each edge in SH by a path consisting of two vertices and three edges and label
the inserted vertices as segment vertices.5

We introduce additional crossability labels for segment vertices in the following way. For
every segment vertex v corresponding to an edge segment σ of edge e ∈ E(G), we label v as
crossable for some edge siti ∈ F if one of the following two conditions holds:

e is not H-torn for any hole H, or
for each hole H in G for which e is H-torn, σ lies on a part (when considering parts
arising from the removal of the interior of H) of e that is crossable for siti.

5 This means they receive the same label as vertices introduced by subdividing edge segments of the
planarization of G.
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▶ Lemma 11 (⋆). If there exists a solution for the considered SCREI instance, then there
is a solution such that all segment vertices which correspond to edge segments of an edge that
is crossed by the drawing of siti ∈ F in the solution are labeled as crossable for siti.

Note that Lemmas 7 and 9 and Definition 10 allow us to compute the patchwork graph in
FPT time. Two important properties of the patchwork graph are encapsuled in Lemmas 12
and 13. The proof of Lemma 12 relies on obtaining a bound on the diameter of each connected
component of the patchwork graph – a task which is intuitively clear, but requires to overcome
technical challenges due to the addition of stitches. Lemma 13 later allows us to encode
whether two edge segments in P belong to the same edge in G via an MSO formulation.

▶ Lemma 12 (⋆). The patchwork graph P has treewidth bounded by 3(2 + 4(k − 1))(4ℓ +
8(kf(k, ℓ) − 1)), where f(k, ℓ) is the bound on the number of crossable edge parts for a single
added edge and hole obtained in Lemma 6.

▶ Lemma 13 (⋆). Segment vertices which correspond to edge segments of the same edge in
e ∈ E(G) and are labeled as crossable for siti are connected via paths in P consisting only of
segment and crossing vertices which correspond to segments and crossings of e and segments
and crossings for threads that connect parts of e.

Ideally, we would like Lemma 13 to lead to an MSO subformula that can check whether
two segment vertices in P belong to the same edge – an important component of our algorithm
for SCREI. The lemma provides us with a characterization that seems suitable for this task
since it is easy to define a path in MSO, but there is an issue if we use P as it is currently
defined: a crossing vertex is adjacent to 4 segment vertices, and P (viewed as a graph without
an embedding) does not specify which of these segment vertices belong to the same edge.
We resolve this by introducing tracking labels: for each crossing vertex v in P created by a
crossing between edges e and e′ in G, we assign the label 1 to the two unique neighbors of v

corresponding to e and the label 2 to the remaining two neighbors of v.

▶ Corollary 14. Segment vertices which correspond to edge segments of the same edge in
e ∈ E(G) and are labeled as crossable for siti are connected via paths in P consisting only of
segment and crossing vertices with the following property: the two neighbors of each crossing
vertex on the path are segment vertices with the same tracking label.

5 Using the Patchwork Graph

Now that we have constructed the patchwork graph P and established that it has the
properties we need, we can proceed to the final stage of our proof. Here, our aim will be to
identify a combinatorial characterization which projects the behavior of a solution from G
to P , establish a procedure that allows us to identify (and construct) solutions based on a
characterization in P , and finally show how to find such characterizations. To streamline
our presentation, at this stage we perform a brute-force branching procedure which will
determine, for each siti ∈ F , the number ℓ′

i of crossings between the curve connecting si to
ti and edges of G in the sought-after solution.

Consider a hypothetical solution S, and let f be a curve in S connecting vertex a to b.
The trace rf of f is a walk in P starting at a such that:
1. From a, rf proceeds to the shadow vertex that corresponds to the access direction through

which f connects to a, and then to the cell vertex of the first cell c1 in G intersecting f .
2. For each intersection along f with an edge segment q between cells ci and ci+1, rf proceeds

to the shadow vertex of a segment vertex v in ci on q, then to v, then to its shadow vertex
in ci+1, and then to the cell vertex of ci+1, where v has the property that the number of
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segment vertices of q on either side of v is at least as large as the number of drawings of
added edges in F which intersect q on the respective side of its intersection with f . Such
a segment vertex v exists, since there are k = |F | segment vertices on q.

3. Finally, rf continues to the shadow vertex that corresponds to the direction through
which f enters b, and finally ends in b.

Observe that rf visits precisely 4ℓ′
i + 5 vertices. Moreover, for two curves f, f ′ in S, their

traces rf , rf ′ may only intersect in cell vertices, the real vertices that form the endpoints of
the curves, and the associated shadow vertices.

Now, let the solution trace (rS ,ηS) of S be a pair where rS = {rf |f ∈ S} and ηS describes
cyclic orders which will intuitively capture how edges cross into and out of each cell vertex
in the solution. Let RS = {v | ∃f ∈ S : v ∈ rf } be the set of all vertices occurring in the
traces of S. ηS then is a mapping from each cell vertex c ∈ RS to a cyclic order ≺c over the
shadow vertices in RS that are incident to c. Specifically, ≺c is defined as the cyclic order
given by the cycle on the neighborhood of c in P restricted to RS .

Solution traces describe the way in which a solution can be related to a set of walks and
cyclic orders in P . Of course we can abstract away from the explicit reference to a solution
and define the more general notion of preimages whose combinatorial structure is the same
as that of a solution trace but which does not arise and in particular does not even need to
correspond to a solution. (Preimages and solution traces relate in a similar way as solution
curves and solutions in Section 3.2.)

Formally, a preimage (α′, β′) is a tuple with the following properties. α′ is a set of k walks
in H which are labeled α′

1, . . . , α′
k, where each α′

i has length 4(ℓi + 1) and visits vertices with
the same orders of labels as traces. Similarly, β′ is a mapping from each cell vertex c visited
by the walks in α′ to the cyclic order over its neighbors that occur in α′, along the cycle on
NP (c) in P .

Obviously every solution trace is a preimage. Conversely, one can derive a drawing of all
edges of F into G from a preimage (α′, β′) by the assembly procedure A introduced below.
For each α′

i ∈ α′, A will draw a curve ui that starts and ends at the two vertices labeled i

(i.e., the endpoints of siti ∈ F ) as described in the following steps.
1. ui exits its starting vertex via the access direction given by the first shadow vertex in α′

i.
2. For each cell vertex c such that (e1, v1, c, v2, e2) forms a subsequence of visited vertices in

α′
i, expand ui by drawing a curve ι in c connecting the edge segment (or the real vertex)

e1 to the edge segment (or the real vertex) e2 in the following way.
Consider an arbitrary other curve drawn in c by A up to now, say ζ, that was obtained
from some subsequence (eζ

1, vζ
1 , c, vζ

2 , eζ
2). ι will intersect ζ if and only if the shadow

vertices of ι interleave with the shadow vertices of ζ in β(c) (i.e., for instance, if
v1 ≺c vζ

1 ≺c v2 ≺c vζ
2 ≺c v1).

Such a drawing can be achieved by, e.g., having the curve ι follow the inside boundary
of c in a clockwise manner while avoiding all curves it is not supposed to cross (as
these will be either completely enveloped by or completely enveloping ι).
We remark that v1 and v2 may either be shadows of segment vertices or the actual
endpoints si or ti.

3. ui ends by entering the final real vertex in α′
i from the direction specified by the last

shadow vertex in α′
i.

The intuition here is that A interprets a preimage of a template trace as a specification
of precisely which parts of G should be crossed by the drawings of each added edge (this
information is provided in α′), while controlling when and how individual curves in the newly
constructed solutions should cross each other (this information is provided in β′). Note that
the output of A for an arbitrary preimage will in general not be a solution for our edge
insertion problem, but – crucially – one can check whether it is in polynomial time.
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Observe that, although preimages imply curves in G for all added edges in F , and we can
check for each of them if they are a solution, we cannot iterate over them in FPT time as
the number of preimages in P is generally not FPT. We will however be able to distill the
structure of preimages, independently of their exact specification in P . For this we define
template traces. A template trace is a tuple τ = (T, α, β) where:

T is a graph whose vertices are equipped with a labeling that matches the vertex-labeling
used in P (i.e., some may be labeled as segment vertices, some as cell vertices, etc., and
in addition some of them may be labeled as the endpoints of added edges in F );
α = {α1, . . . , αk} is a set of walks in T , where each walk αi has length 4(ℓ′

i + 1) and the
types of vertices visited by αi match the types of vertices visited by a trace (i.e., αi starts
with a real vertex labeled i, then proceeds with a shadow vertex, a cell vertex, followed
by a sequence of ℓ′

i-many subsequences of shadow-, segment-, shadow-, cell vertices, and
ends with a shadow vertex followed by a different real vertex labeled i); and
β is a mapping from each cell vertex in T to a cyclic order over its adjacent shadow
vertices.
For simplicity, we require that each vertex and edge in T occurs in at least one walk in α.

▶ Proposition 15 (⋆). There are at most (kℓ)O(kℓ) distinct template traces. Moreover, the
set of all template traces can be enumerated in time (kℓ)O(kℓ).

We say that a template trace (T, α, β) matches a preimage (α′, β′) if there is a label-
preserving bijective mapping γ (called the preimaging) from the vertices on walks in α′ to
V (T ) such that (1) for each α′

i ∈ α′, γ(α′
i) = αi and (2) γ(β′) maps each c to β(γ(c)). For a

template trace τ that matches a preimage (α′, β′), we say that (α′, β′) is a preimage of τ .
Intuitively, a preimage of a template trace is its firmly embedded counterpart in P . As every
solution trace is a preimage, these definitions carry over to solution traces.

The following lemma shows that a template trace τ matching the solution trace of a
hypothetical solution contains a sufficient amount of information to almost reconstruct a
solution using A on a preimage of τ .

▶ Lemma 16 (⋆). Let S be a solution which matches a template trace τ = (T, α, β), and let
(α′, β′) be a preimage of τ . Let S′ be the output of A applied to (α′, β′). Then S′ is either a
solution, or there exists an edge e of G that intersects some curve in S′ more than once.

Next, we show that the problem of finding a preimage of a template trace (or determining
that there is none) can be encoded in Monadic Second Order (MSO) logic. Which is the last
ingredient needed to prove our main result.

▶ Lemma 17 (⋆). Let τ = (T, α, β) be a template trace. There exists an MSO formula
ϕτ (V (T )) of size independent of G and G which is satisfiable in P if and only if there exists
a preimage for τ in P . Moreover, if the formula is true, then the interpretation of V (T )
defines a preimaging between a preimage of τ and τ .

▶ Theorem 18 (⋆). SCREI is fixed-parameter tractable.

Theorem 18 implies the fixed-parameter tractability of SCEI and SLCEI parameterized
by k + ℓ. Moreover, the approach can also be used to obtain fixed-parameter tractability of
the other problems defined in the introduction, with only minor adaptations required.

▶ Theorem 19 (⋆). Sℓ-PEI, ℓ-PEI and Locally Crossing-Minimal Edge Insertion
are fixed-parameter tractable when parameterized by ℓ + k.
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6 Inserting a Single Edge

In this section we present a single-exponential fixed-parameter algorithm for SCEI para-
meterized by ℓ in the case where |F | = 1; we hereinafter denote this problem SC1EI. We
remark that the parameter dependency of this algorithm is tight under the Exponential Time
Hypothesis [27], since Arroyo et al. [7] gave a reduction from 3-SAT to the simple drawing
extension problem with one extra edge, and the number of edges in the obtained graphs is
linear in the size of the 3-SAT instance. We note that in the same work [7], the authors also
presented a single-exponential parameterized algorithm for SCEI when |F | = 1, however the
parameter used there is the total number of crossings in the original drawing.

As a first step we transform SC1EI to the problem of finding a colorful st-path (i.e., a
path where no color is repeated) of length at most κ in a vertex-colored graph with coloring
χ obtained from G×. Using so-called representative sets, see e.g. [17, Chapter 12], we can
show how to efficiently find a colorful path. Theorem 22 is then an immediate consequence.

▶ Proposition 20 (⋆). There is a linear-time reduction that converts an instance (G, G, {st}, ℓ)
of SC1EI to an equivalent instance (G∗, χ, s, t, 2ℓ + 3) of Colorful Short Path.

▶ Theorem 21 (⋆). Colorful Short Path can be solved in time O(2O(κ) ·
|E(G)| log |V (G)|).

▶ Theorem 22. SC1EI can be solved in time O(2O(ℓ) · |G| log |E(G)|).

7 Conclusion

In this paper we established the fixed-parameter tractability of inserting a given set of edges
into a given drawing while maintaining simplicity and adhering to various restrictions on
the number of crossings in the solution. While the presented results make the reasonable
assumption that the initial drawing is connected, the problem is of course also interesting
in the general case. We believe that our framework and methodology can also be used to
handle the extension problem for disconnected drawings, albeit only after overcoming a few
additional technical challenges; moreover, the algorithm presented in Section 6 does not
require connectivity at all. Other than connectivity, the most glaring question left open
concerns the complexity of SCEI parameterized by ℓ alone. Recall that, in contrast to this
open question, SLCEI is known to be NP-hard already for ℓ = 1. Last but not least, while
here we focused on the edge insertion problem, it would also be interesting to extend the
scope to also allow for the addition of vertices into the drawing.
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Abstract
We give a quantum logspace algorithm for powering contraction matrices, that is, matrices with
spectral norm at most 1. The algorithm gets as an input an arbitrary n × n contraction matrix A,
and a parameter T ≤ poly(n) and outputs the entries of AT , up to (arbitrary) polynomially small
additive error. The algorithm applies only unitary operators, without intermediate measurements.
We show various implications and applications of this result:

First, we use this algorithm to show that the class of quantum logspace algorithms with only
quantum memory and with intermediate measurements is equivalent to the class of quantum logspace
algorithms with only quantum memory without intermediate measurements. This shows that the
deferred-measurement principle, a fundamental principle of quantum computing, applies also for
quantum logspace algorithms (without classical memory). More generally, we give a quantum
algorithm with space O(S + log T ) that takes as an input the description of a quantum algorithm
with quantum space S and time T , with intermediate measurements (without classical memory),
and simulates it unitarily with polynomially small error, without intermediate measurements.

Since unitary transformations are reversible (while measurements are irreversible) an interesting
aspect of this result is that it shows that any quantum logspace algorithm (without classical memory)
can be simulated by a reversible quantum logspace algorithm. This proves a quantum analogue of the
result of Lange, McKenzie and Tapp that deterministic logspace is equal to reversible logspace [15].

Finally, we use our results to show non-trivial classical simulations of quantum logspace learning
algorithms.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases BQL, Matrix Powering, Quantum Circuit, Reversible Computation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.73

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/087/

Funding Research supported by the Simons Collaboration on Algorithms and Geometry, by a Simons
Investigator Award and by the National Science Foundation grant No. CCF-1714779.

Acknowledgements We would like to thank Dieter van Melkebeek and Subhayan Roy Moulik for
very helpful suggestions and comments on a previous version of this work. We also thank the
anonymous reviewers for their thorough feedback.

1 Introduction

Quantum computers hold great promise, but in the near future their memory is likely to
be limited to a small number of qubits. This motivates the study of quantum complexity
classes with bounded space. The most important of these classes is the class of problems
solvable in quantum logarithmic space and polynomial time, first studied by Watrous [28].
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In the literature, there are several variants of this class. One variant, BQL, is the class of
problems solvable in quantum logarithmic space and polynomial time when intermediate
measurements are allowed. Another variant, BQUL, is the class of problems solvable in
quantum logarithmic space and polynomial time when only unitary operators are allowed
and intermediate measurements are not allowed. We note that in most previous works, the
class BQL allows a quantum algorithm to use both quantum and classical memory (see for
example [17, 27, 6]).

Our first main result, Theorem 18, gives a quantum logspace algorithm for powering
matrices, a fundamental problem in computational complexity, which is not known to be in
classical (deterministic or probabilistic) logspace. Our algorithm uses only unitary operators,
without intermediate measurements, and hence it places the problem of powering matrices in
the class BQUL.

The algorithm gets as an input an arbitrary n× n matrix A, a parameter T ≤ poly(n)
and two indices i, j ∈ {1, . . . , n} and outputs the entry (AT )i,j , up to an additive error of

∥A∥T

poly(n) + 1
poly(n) , where ∥A∥ is the spectral norm of the matrix A. In particular, if A is a

contraction matrix, that is, a matrix with spectral norm at most 1, the additive error is just
1

poly(n) .
We note that by an easy reduction, our algorithm can also solve another fundamental

problem in computational complexity, the problem of iterative matrix multiplication. In this
problem, the input is T matrices A1, . . . , AT of size n× n each, and the algorithm outputs
the entries of the product A1 · . . . ·AT .

Besides giving a quantum logspace algorithm for a basic computational problem, our results
shed light on several fundamental issues regarding bounded-space quantum computations,
and have additional applications.

BQQL is Equal to BQUL

We consider the class of quantum logspace algorithms with only quantum memory and with
intermediate measurements and refer to it by BQQL. We use our algorithm for powering
matrices to show that the two classes BQQL and BQUL are exactly equal (Theorem 12).
Moreover, the way that this equality is proved is by a simulation. Our second main result,
Theorem 16, proves that there is a quantum logspace algorithm without intermediate
measurements, that is, a BQUL algorithm, that gets the description of a quantum logspace
algorithm with intermediate measurements, without classical memory, that is, a BQQL
algorithm, and simulates it with polynomially small error. Theorem 16 is even more general
and shows how to simulate a quantum logspace algorithm with unital channels that are given
as an input, while even the very restricted special case of simulating an arbitrary unitary
operator within BQUL seems to us interesting.

The Deferred-Measurement Principle

The deferred measurement principle is a fundamental result in quantum computing which
states that delaying measurements until the end of a computation doesn’t affect the output.
In order for the principle to hold, the qubits that were supposed to be measured cannot
further participate in the computation from that point on. However, a BQQL algorithm can
only store a logarithmic number of qubits, while the number of intermediate measurements
is potentially polynomial, and hence excluding the qubits that are supposed to be measured
from further participating in the computation is infeasible.
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Nevertheless, Theorem 12 and Theorem 16 imply that intermediate measurements are
not necessary even when the space used by the quantum algorithm is logarithmic, but the
way to eliminate the intermediate measurements is not as straightforward.

Reversible Computation

Landauer introduced the concept of time-reversible computation and argued that any irre-
versible operation must be accompanied by entropy increase [14] (see also [2]). An interesting
aspect of Theorem 12 and Theorem 16 is that they show that any quantum logspace al-
gorithm (without classical memory) can be implemented using only time-reversible operations
(except for the final measurement that gives the final output). This is a quantum analogue
of the result of Lange, McKenzie and Tapp that deterministic logspace algorithms can be
implemented using only time-reversible operations [15].

Classical Simulations of Quantum Learning with Bounded Memory

A line of recent works studied the power of (classical) algorithms for online learning, under
memory constraints, where a bounded-space learner tries to learn a concept class from a
stream of samples. These works showed that for a large class of online learning problems, any
classical learning algorithm requires either super-linear memory size or a super-polynomial
number of samples (see for example [24, 26, 22, 13, 21, 18, 1, 8] and the references therein).

Here, we study the relative power of quantum and classical algorithms for online learning,
under memory constraints. More concretely, we study the task of distinguishing between two
families of distributions over the possible samples. Corollary 23 proves that any quantum
algorithm with time T and space S for distinguishing between arbitrary two families of
distributions, can be simulated classically in time poly(2S2+log2 T ) and space O(S2 + log2 T ).
Moreover, Theorem 24 proves that if one family is a singleton, that is, the task is to distinguish
between one distribution over the samples and a family of different distributions, then any
quantum learning algorithm with time T and space S can be simulated classically in time
poly(2S · T ) and space O(S + log T ).

Thus, an intriguing open problem is whether any quantum algorithm with time T and
space S for distinguishing between two arbitrary families of distributions, can be simulated
classically in time poly(2S · T ) and space O(S + log T ). Theorem 22 proves that this holds if
and only if promiseBQUL = promiseBPL.

1.1 Techniques
We start by proving a lemma that shows how to implement an arbitrary contraction matrix
A as a subsystem of a unitary quantum circuit (Lemma 6). Since A is not necessarily unitary,
rather than implementing A, the lemma implements the unitary matrix

UH =
(

H
√

I2m −H2
√

I2m −H2 −H

)

where H is the Hermitian contraction
(

A

A†

)
. That is, the lemma shows how to apply

the transformation UH on a unit vector (quantum state) that is also given as an input. The
unitary matrix UH is called a block-encoding of A in some literature [4, 10], which admits
various constructions (see [9] for an exhibition). In particular, our construction in Lemma 6
is in unitary quantum logspace.

ICALP 2021
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The proof of Lemma 6 is inspired by, and uses techniques from, Ta-Shma’s algorithm
that inverts well-conditioned matrices in quantum logspace [27], whose general framework
traces back to [12]. In particular, as in [27], the proof goes according to the following lines:
Given a Hermitian matrix H,

First apply the phase estimation over the unitary eiH so that it maps |uλ⟩ to |uλ⟩|λ⟩,
where uλ is an eigenvector of H with eigenvalue λ.
For each eigenvector apply the unitary transformation |λ⟩ → λ|0⟩|λ⟩ +

√
1 − λ2|1⟩|λ⟩

according to the eigenvalue λ. This is where contraction matrices come into play, as the
eigenvalues of H are required to be in [−1, 1].
Uncompute the eigenvalues by reversing the phase estimation over eiH .

As a special case of Lemma 6, when we take the contraction A to be unitary, we get a
space-efficient unitary implementation of any unitary matrix (Corollary 7).

We get our algorithms for powering contraction matrices (Theorem 10 and Corollary 15) by
iteratively applying the unitary matrix UH of Lemma 6. However, since Lemma 6 implements
the matrix UH , rather than A, we need to “throw away” the unwanted dimensions introduced
by UH , by permuting them into additional dimensions.

We get our algorithm for powering arbitrary matrices (Theorem 18), by a reduction to the
algorithm for powering contraction matrices, by dividing the matrix by its norm. However,
the known algorithm for computing the spectral norm of a matrix, by Ta-Shma [27], only
works for contraction matrices. To bypass this, we apply Ta-Shma’s algorithm on the matrix
A divided by its Frobenius norm (which is always larger than the spectral norm).

Finally, we get our algorithms for simulating quantum logspace algorithms with inter-
mediate measurements, or even unital channels that are given as an input (Lemma 11 and
Theorem 16), by reducing any unital quantum algorithm to the contraction powering problem
in the m2-dimensional space of the m×m entries of the density matrix, where m = 2S and
S is the space used by the algorithm. Note that this step already doubles the space used. At
the end of this step, we only get polynomially small success probability, but that success
probability can be amplified to a constant using a Grover-type technique inspired by [6],
resulting in Lemma 11 that simulates the computation with constant error. The error is
further reduced to be polynomially small in Theorem 16. Interestingly, to reduce the error
and prove Theorem 16, we use Theorem 12, so, in a way, the results are used to improve
themselves.

1.2 Related Work
Independently of our work, Fefferman and Remscrim have proven closely related results to
ours [7]. They took a different route from ours by proving L-reductions between several
well-conditioned versions of matrix problems which turned out to be BQUL-complete. In
particular, they obtained a stronger version of our Theorem 12, showing that BQL = BQUL.

2 Preliminaries

For an integer n, let [n] = {0, 1, . . . , n− 1}. Let C denote the set of complex numbers, and
Cm×n denote the set of m by n complex matrices. For a matrix A ∈ Cm×n, let vec(A) be
the vectorization of A, which is a vector of dimension mn formed by stacking the columns of
A on top of each other, that is

vec(A)i+jm = Ai,j , ∀i ∈ [m], j ∈ [n].
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Let Um be the set of m by m unitary matrices, and Dm be the set of m by m density matrices,
i.e. positive semidefinite Hermitians of trace 1. The m by m identity matrix is denoted
by Im. Let ∥A∥ denote the spectral norm of a complex matrix A, and ∥A∥F denote the
Frobenius norm.

We use ε to denote small real numbers, and |ϵ⟩ to denote vectors with small norms.
When we talk about errors, approximations and ε-closeness of matrices, they are measured
in spectral norms.

As we work mostly with complex numbers, we often need corresponding concentration
bounds. The following is a direct corollary of the Chernoff-Hoeffding inequality:

▶ Lemma 1. Let X be a random complex number with |X| ≤ 1, and X1, . . . , Xn are n

independent copies of X. Then

Pr
[∣∣∣∣ 1n (X1 + · · · +Xn) − E[X]

∣∣∣∣ ≥ ε

]
≤ 4e−2nε2

.

2.1 Contraction Matrices
We introduce contraction matrices and provide some useful properties, which can be found
in [29, Chapter 6]:

▶ Definition 2. A matrix A ∈ Cm×m is a contraction if ∥A∥ ≤ 1. Alternatively, A is a
contraction if A is in the convex hull of Um.

Any eigenvalue λ of a contraction must have |λ| ≤ 1. If A ∈ Cm×m is a contraction, then the
following matrix is unitary:

UA =
(

A
√

Im −AA†√
Im −A†A −A†

)

In particular, when A = a is a real number in [−1, 1], Ua =
(

a
√

1 − a2
√

1 − a2 −a

)
is a

reflection. Finally, in a product of multiple contractions, individual errors will not propagate
much, as we have the following lemma:

▶ Lemma 3. If A1, . . . , Ak ∈ Cm×m are contractions, and B1, . . . , Bk ∈ Cm×m satisfy
∥Ai − Bi∥ ≤ ε for every i, then ∥A1 · · ·Ak − B1 · · ·Bk∥ ≤ (1 + ε)k − 1. Furthermore, if
B1, . . . , Bk are also contractions, then ∥A1 · · ·Ak −B1 · · ·Bk∥ ≤ kε.

2.2 Quantum Channels
A quantum channel (or operation), in its most general form, is a completely-positive trace-
preserving (CPTP) map Φ : Dm → Dn that maps a density matrix ρ to a density matrix
Φ(ρ). We denote the set of such channels as Cm,n. The Kraus representation of the quantum
channel Φ is a set of matrices {E1, . . . , Ek} such that

∑k
i=1 E

†
iEi = Im, and

Φ(ρ) =
k∑

i=1
EiρE

†
i .

The natural representation of Φ, denoted as K(Φ), is a matrix in Cn2×m2 such that
vec(Φ(ρ)) = K(Φ)vec(ρ) for any ρ ∈ Dm. Given the Kraus representation {E1, . . . , Ek} of Φ,
one can easily compute the natural representation K(Φ) =

∑k
i=1 Ei ⊗ Ei.

ICALP 2021



73:6 Quantum Logspace Algorithm for Powering Matrices with Bounded Norm

A quantum channel Φ is unital, if it maps the identity to the identity of the same dimension.
The Kraus representation of a unital channel is a set of square matrices {E1, . . . , Ek} that
additionally satisfies

∑k
i=1 EiE

†
i = Im. In the language of natural representation, it is known

that Φ is unital if and only if K(Φ) is a contraction [20]. Notice that unitary operators and
projective measurements are all unital. Our paper shows the following: one can construct
in logspace a quantum circuit to simulate any arbitrary unital channel with ancillas, but
without intermediate measurements.

2.3 Quantum Algorithms
A generic quantum algorithm with time T and space S = logm is specified by T quantum
channels Φ1, . . . ,ΦT ∈ Cm,m, which might depend on the inputs. We also require the channels
Φ1, . . . ,ΦT to be efficiently constructible, whose meaning may differ for different types of
quantum algorithms, and will be specified below.

The algorithm starts from the fixed initial state ρ0 = |0S⟩⟨0S |, and in the i-th step applies
Φi on the current state, so that the state after the i-th step can be described as

ρi = Φi(ρi−1) = Φi ◦ Φi−1 ◦ · · · ◦ Φ1(ρ0).

At the end the first qubit of the final state ρT is measured in the computational basis of the
first qubit, where the measurement can be represented as M0 = |0⟩⟨0| ⊗ Im/2. The quantum
algorithm outputs 0 with probability Tr[ρTM0], and 1 with probability 1 − Tr[ρTM0]. The
quantum algorithm is called unitary (resp. unital), if every channel Φi is unitary (resp.
unital).

Quantum circuit

Fix a universal quantum gate set G, for instance Hadamard and Toffoli gates [25], and let GS

be the set of gates in G on S qubits. Let MS be the set of single-qubit measurements on S

qubits.
When the input of the problem is from domain X, the quantum circuit is specified by a

mapping ΦD : X × [T ] → GS ∪ MS such that Φi+1 = ΦD(x, i) for every i ∈ [T ], where x ∈ X

is the input, and ΦD can be computed deterministically in time O(T ) and space O(S). The
quantum algorithm decides a function f : X → {0, 1} with error ε if:

∀x ∈ X, |Tr[ρTM0] − f(x)| ≤ ε.

Now, BQQL is the class of boolean-function families where fn : {0, 1}n → {0, 1} can be
decided by a quantum circuit with time poly(n), space O(log n) and error 1/3. The function
is further in the class BQUL if there is no intermediate measurements, i.e. the range of ΦD is
GS . We define promiseBQQL and promiseBQUL similarly, but the domain of each fn can be a
subset of {0, 1}n.

Quantum learning algorithm

For a quantum online learning algorithm with Γ being the set of samples, there exists a
mapping ΦL : Γ → Cm,m such that Φi = ΦL(zi) where zi ∈ Γ is the sample received in the
i-th step, and each entry of K(ΦL(zi)) can be computed deterministically in time O(T ) and
space O(S).
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Let P(Γ) be the collection of all probability distributions over Γ. For any distribution
D ∈ P(Γ), let DT be T i.i.d copies of D, so that z ∼ DT means that each sample zi is
independently drawn from D. Let X ,Y be two disjoint subsets of P(Γ). The quantum
learning algorithm distinguishes X and Y with error ε if:

∀D ∈ X , E
z∼DT

[Tr[ρTM0]] ≥ 1 − ε

∀D ∈ Y, E
z∼DT

[Tr[ρTM0]] ≤ ε.

And for ε = 1/3, we simply say that the quantum learning algorithm distinguishes X and Y .

Other specifications

Notice that even in the unitary algorithms where intermediate measurements are not generally
allowed, a constant number of intermediate measurements are still available because of the
principle of deferred measurements (see e.g. [19, Section 4.4]), which will only increase the
time and space by a constant. This means the error ε in both definitions above can be safely
amplified to any constant power, and the specific constant error 1/3 can be replaced by any
constant in [0, 1/2).

For constructible functions t(n) = Ω(n) and s(n) = Ω(log n), define BPTISP(t(n), s(n))
as the class of boolean functions families that can be decided by a classical random-
ized algorithm with time O(t(n)) and space O(s(n)), and promiseBPTISP(t(n), s(n))
accordingly. The classical randomized logspace class is defined as (promise)BPL =
(promise)BPTISP(poly(n), log(n)).

Phase estimation

Given the dimension m and the error parameter ε > 0, the phase estimation circuit (see
e.g. [19, Section 5.2]) acts on an input register of dimension m and an estimation register of
dimension 2ℓ = O(1/ε). The circuit is with time O(2ℓ) and space O(ℓ+logm), and accesses 2ℓ

oracle calls to the controlled-U gates, where U ∈ Um is an arbitrary unitary matrix. For each
j ∈ [2ℓ], define λ(j) = 2jπ/2ℓ−π, and for any λ ∈ [−π, π], let J(λ) = {j ∈ [2ℓ] | |λ(j)−λ| ≤ ε}.
If v is a unit eigenvector of U with eigenvalue eiλ, the circuit maps v ⊗ |0ℓ⟩ to

2ℓ−1∑
j=0

αjv ⊗ |j⟩,

so that∑
j∈J(λ)

|αj |2 ≥ 1 − ε2.

Given a Hermitian contraction H ∈ Cm×m, let PH be the above phase estimation circuit
with U = eiH , and PH,ε be the above phase estimation circuit where U is replaced with the
Hamiltonian simulation circuit presented in [27] which differs from eiH by an error of 2−ℓε.
Notice that PH,ε is a unitary quantum circuit with poly(m/ε) and space O(log(m/ε)), and
by Lemma 3 we have ∥PH,ε − PH∥ ≤ ε.

Since H only has eigenvalues in [−1, 1], we slightly modify the definition of λ(j) so that
it’s truncated at ±1, that is

λ(j) =
{

2jπ/2ℓ − π if 2jπ/2ℓ − π ∈ [−1, 1]
sgn(2jπ/2ℓ − π) otherwise

which will only make J(λ) larger for λ ∈ [−1, 1].
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Every unit eigenvector v of H with eigenvalue λ is also a unit eigenvector of eiH with
eigenvalue eiλ. Therefore for any two unit eigenvectors u, v of H, we have

(
u† ⊗ ⟨j|

)
PH

(
v ⊗ |0ℓ⟩

)
=
{
αj if u = v

0 if u ⊥ v.

In other words, since PH is unitary,

(
u† ⊗ ⟨0ℓ|

)
P−1

H

(
v ⊗ |j⟩

)
=
{
αj if u = v

0 if u ⊥ v.

That means the projection of P−1
H

(
v⊗ |j⟩

)
onto Cm ⊗ |0ℓ⟩ is along v⊗ |0ℓ⟩ and has amplitude

αj . Combing the above observations we get the following lemma:

▶ Lemma 4. Given a Hermitian contraction H ∈ Cm×m and ε > 0, there is a unitary
quantum circuit PH,ε with time poly(m/ε) and space O(log(m/ε)) that is ε-close to a unitary
operator PH , which satisfies the following: There is a parameter ℓ = O(log(1/ε)), such that
if v is a unit eigenvector of H with eigenvalue λ ∈ [−1, 1], then

PH(v ⊗ |0ℓ⟩) =
2ℓ−1∑
j=0

αjv ⊗ |j⟩, where
∑

j∈J(λ)

|αj |2 ≥ 1 − ε2.

Moreover, for every j ∈ [2ℓ],

P−1
H (v ⊗ |j⟩) = αjv ⊗ |0ℓ⟩ + |⊥⟩,

where |⊥⟩ is a vector orthogonal to Cm ⊗ |0ℓ⟩.

Pure State Preparation

Our results involve the simplest form of the quantum state preparation problem, which is to
map the initial state |0S⟩ to a given pure state. With the efficient Solovay-Kitaev Theorem
in [17], we have the following:

▶ Lemma 5. Given m = 2S, a unit vector v ∈ Cm and ε > 0, there is unitary quantum
circuit Qv on S qubits with time O(m · polylog(1/ε)) and space O(log(m/ε)) such that
∥Qv|0S⟩ − v∥2 ≤ ε.

3 Quantum Implementations of Contractions

▶ Lemma 6. Given a contraction A ∈ Cm×m and ε > 0, there is a unitary quantum circuit
QA with time poly(m/ε) and space O(log(m/ε)), and a parameter ℓ = O(log(1/ε)), such
that for unit vector v of dimension 4m, ∥QA(v ⊗ |0ℓ⟩) − (VAv) ⊗ |0ℓ⟩∥2 ≤ ε, where

VA = diag(UA, UA†) =


A

√
Im −AA†√

Im −A†A −A†

A†
√

Im −A†A√
Im −AA† −A





U. Girish, R. Raz, and W. Zhan 73:9

Proof. Let H be the Hermitian contraction
(

A

A†

)
. Notice that

UH =
(

H
√

I2m −H2
√

I2m −H2 −H

)

=


A

√
Im −AA†

A†
√

Im −A†A√
Im −AA† −A√

Im −A†A −A†


which differs from VA only by permutations:

VA =


Im

Im

Im

Im

 · UH ·


Im

Im

Im

Im


Since the permutations are only on two qubits, it suffices to implement UH on v up to error ε.

Let v =
(
v1
v2

)
where both v1 and v2 are of dimension 2m. Suppose H has the eigen

decomposition H =
2m∑
k=1

λku
†
kuk, and v1, v2 are decomposed into this eigenbasis as

v1 =
2m∑
k=1

ω
(0)
k uk, v2 =

2m∑
k=1

ω
(1)
k uk, where

2m∑
k=1

∣∣∣ω(0)
k

∣∣∣2 +
2m∑
k=1

∣∣∣ω(1)
k

∣∣∣2 = 1.

Since v can be written as |0⟩ ⊗ v1 + |1⟩ ⊗ v2, applying the phase estimation circuit PH,ε1 in
Lemma 4 on v ⊗ |0ℓ⟩ results in:

2m∑
k=1

2ℓ−1∑
j=0

ω
(0)
k αj,k|0⟩ ⊗ uk ⊗ |j⟩ +

2m∑
k=1

2ℓ−1∑
j=0

ω
(1)
k αj,k|1⟩ ⊗ uk ⊗ |j⟩ + |ϵ1⟩

=
2m∑
k=1

∑
j∈J(λk)

ω
(0)
k αj,k|0⟩ ⊗ uk ⊗ |j⟩ +

2m∑
k=1

∑
j∈J(λk)

ω
(1)
k αj,k|1⟩ ⊗ uk ⊗ |j⟩ + |ϵ2⟩.

where for each k it holds
∑

j∈J(λk) |αj,k|2 ≥ 1 − ε2
1. Here ε1 is an error parameter to be

determined later, and ℓ = O(log(1/ε1)). The error vector |ϵ1⟩ is introduced due to the
difference between PH,ε1 and PH , and thus ∥|ϵ1⟩∥2 ≤ ∥PH,ε1 − PH∥ ≤ ε1. The error vector
|ϵ2⟩ − |ϵ1⟩ is a weighted sum of 4m orthogonal error vectors, with lengths at most ε1 and
weights ω(0)

k , ω
(1)
k , and thus has length at most ε1. Therefore ∥|ϵ2⟩∥2 ≤ 2ε1.

Now apply the following unitary transformation on the first qubit and last ℓ qubits:

|0⟩|j⟩ → λ(j)|0⟩|j⟩ +
√

1 − λ(j)2|1⟩|j⟩

|1⟩|j⟩ →
√

1 − λ(j)2|0⟩|j⟩ − λ(j)|1⟩|j⟩

which gives
2m∑
k=1

∑
j∈J(λk)

ω
(0)
k αj,k

[
λ(j)|0⟩ +

√
1 − λ(j)2|1⟩

]
⊗ uk ⊗ |j⟩

+
2m∑
k=1

∑
j∈J(λk)

ω
(1)
k αj,k

[√
1 − λ(j)2|0⟩ − λ(j)|1⟩

]
⊗ uk ⊗ |j⟩ + |ϵ3⟩
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This unitary transformation can be implemented as a serial combination of 2ℓ single-qubit
unitaries Uλ(j) controlled by the last ℓ qubits representing j. Each one of them can be
constructed up to error 2−ℓε1 in time polylog(1/ε1) and space O(log(1/ε1)) by [17, Theorem 7].
Therefore by Lemma 3 we have ∥|ϵ3⟩∥2 ≤ ∥|ϵ2⟩∥2 + ε1 ≤ 3ε1.

Finally applying the reverse phase estimation P−1
H,ε1

gives the following state, where |⊥⟩
is orthogonal to C2 ⊗ C2m ⊗ |0ℓ⟩:

2m∑
k=1

∑
j∈J(λk)

|αj,k|2ω(0)
k

[
λ(j)|0⟩ +

√
1 − λ(j)2|1⟩

]
⊗ uk ⊗ |0ℓ⟩

+
2m∑
k=1

∑
j∈J(λk)

|αj,k|2ω(1)
k

[√
1 − λ(j)2|0⟩ − λ(j)|1⟩

]
⊗ uk ⊗ |0ℓ⟩ + |ϵ4⟩ + |⊥⟩

=
2m∑
k=1

∑
j∈J(λk)

|αj,k|2ω(0)
k

[
λk|0⟩ +

√
1 − λ2

k|1⟩
]

⊗ uk ⊗ |0ℓ⟩

+
2m∑
k=1

∑
j∈J(λk)

|αj,k|2ω(1)
k

[√
1 − λ2

k|0⟩ − λk|1⟩
]

⊗ uk ⊗ |0ℓ⟩ + |ϵ5⟩ + |⊥⟩

=
2m∑
k=1

ω
(0)
k

[
λk|0⟩ +

√
1 − λ2

k|1⟩
]

⊗ uk ⊗ |0ℓ⟩

+
2m∑
k=1

ω
(1)
k

[√
1 − λ2

k|0⟩ − λk|1⟩
]

⊗ uk ⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩

=
2m∑
k=1

ω
(0)
k

[
UH(|0⟩ ⊗ uk)

]
⊗ |0ℓ⟩ +

2m∑
k=1

ω
(1)
k

[
UH(|1⟩ ⊗ uk)

]
⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩

=
[
UH(|0⟩ ⊗ v1)

]
⊗ |0ℓ⟩ +

[
UH(|1⟩ ⊗ v2)

]
⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩

=(UHv) ⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩.

Here ∥|ϵ4⟩∥2 ≤ ∥|ϵ3⟩∥2 + ∥P−1
H,ε1

− P−1
H ∥ ≤ 4ε1. Also, similar to the reasoning for |ϵ2⟩ − |ϵ1⟩,

since for every k, 1 − ε2
1 ≤

∑
j∈J(λk) |αj,k|2 ≤ 1, and for every j ∈ J(λk), ∥Uλ(j) − Uλk

∥2 ≤
|λ(j) − λk| ≤ ε1, we have

∥|ϵ6⟩∥2 ≤ ∥|ϵ5⟩∥2 + ε2
1 ≤ ∥|ϵ4⟩∥2 + ε1 + ε2

1 ≤ 6ε1.

Finally, notice that both (UHv) ⊗ |0ℓ⟩ and (UHv) ⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩ are unit vectors, while
|⊥⟩ is orthogonal to (UHv) ⊗ |0ℓ⟩, so we have∣∣((UHv)† ⊗ ⟨0ℓ|

)(
(UHv) ⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩

)∣∣ =
∣∣1 +

(
(UHv)† ⊗ ⟨0ℓ|

)
|ϵ6⟩
∣∣ ≥ 1 − ∥|ϵ6⟩∥2,

which implies that ∥|ϵ6⟩ + |⊥⟩∥2 ≤
√

2∥|ϵ6⟩∥2. Therefore it suffices to take ε1 ≤ ε2/12, and
the theorem follows. ◀

As a by product, when we take the contraction A in Lemma 6 to be unitary, we get the
unitary implementation of any unitary matrix, with the number of ancillas only depending
on the error:

▶ Corollary 7. Given a unitary matrix U ∈ Um and ε > 0, there is a unitary quantum circuit
QU with time poly(m/ε) and space O(log(m/ε)), and a parameter ℓ = O(log(1/ε)), such
that for any unit vector v of dimension m, ∥QU (v ⊗ |0ℓ⟩) − (Uv) ⊗ |0ℓ⟩∥2 ≤ ε.
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Proof. Use the exact same circuit in Lemma 6 by adding two ancilla qubits to v initialized
at |00⟩. Notice that VU = diag(U,−U†, U †,−U), and thus the output state is ε close to
[VU (|00⟩ ⊗ v)] ⊗ |0ℓ⟩ = |00⟩ ⊗ (Uv) ⊗ |0ℓ⟩. Rearranging the order of qubits and the claim
follows. ◀

Finally, for permutation matrices, we present a simple unitary implementation without
any ancillas by decomposing it into transpositions.

▶ Lemma 8. Given a permutation σ ∈ Sm and ε > 0, there is a unitary quantum circuit U
with time poly(m/ε) and space O(log(m/ε)), such that ∥U −Pσ∥ ≤ ε, where Pσ ∈ {0, 1}m×m

is the matrix representation of σ.

4 Contraction Powering in Quantum Logspace

▶ Definition 9 (Contraction Powering). Given m = 2S, a contraction A ∈ Cm×m, a positive
integer T in unary, and two vectors v, w ∈ Cm with ∥v∥2 = ∥w∥2 = 1 as the input, it is
promised that |w†AT v|2 is either in [0, 1/3] or [2/3, 1], and the goal of the Contraction-
Powering problem is to distinguish between the two cases.

▶ Theorem 10. ContractionPowering ∈ promiseBQUL. Moreover, given the same input
(m,A, T, v, w) but without the promise on |w†AT v|2, while also given an error parameter ε > 0,
there is a unitary quantum circuit W with time poly(mT/ε) and space S′ = O(log(mT/ε))
such that |⟨0S′ |W |0S′⟩|2 is ε-close to |w†AT v|2.

Proof. First, let Qv and Qw be the circuits preparing states v and w with error ε/8 in
Lemma 5 respectively. Since∣∣∣|⟨0S |Q†

wA
TQv|0S⟩|2 − |w†AT v|2

∣∣∣ ≤ 4∥Qv|0S⟩ − v∥2 + 4∥Qw|0S⟩ − w∥2 ≤ ε/2,

in the rest of the proof we can safely assume that Qv|0S⟩ = v and Qw|0S⟩ = w while
halving ε.

Let ℓ = O(log(T/ε)) be the one in Lemma 6 with error parameter (2T )−1ε. The circuit
works on three parts of qubits: the counter register C of dimension 2T , the vector register of
dimension m, and ℓ ancilla qubits. The circuit starts by preparing |0⟩C ⊗ v⊗ |0ℓ⟩ by applying
Qv. Then repeat the following two steps for T times:
1. Apply VA on the last two qubits of the timer register and the entire vector register by

Lemma 6;
2. Apply the permutation |0⟩ → |0⟩, |2T − 2⟩ → |1⟩, |2T − 1⟩ → |2⟩, |i⟩ → |i + 2⟩, ∀i =

1, . . . , 2T − 3. on the counter register by Lemma 8.
Finally, apply Q†

w on the vector register and measure with the projection onto |0⟩C ⊗|0S⟩⊗|0ℓ⟩.
To prove the correctness of the algorithm, we first assume that all the implementations

in Lemma 6 and Lemma 8 are errorless, i.e. the evolution is completely within the subspace
C2T ⊗Cm ⊗|0ℓ⟩. Then it suffices to notice that VA is block-diagonal, so that step 1 acts locally
on the T subspaces spanned by |2i⟩C and |2i+ 1⟩C . Therefore after the i-th application of
VA, the projection of the current state onto |j⟩C is always 0 for j ≥ 2i, and thus before each
application of VA, the projection onto |1⟩C is always 0. So the state after the i-th repetition
is |0⟩C ⊗ (Aiv) + |⊥⟩, where |⊥⟩ is orthogonal to |0⟩C . The output probability is then∣∣∣(⟨0|C ⊗ ⟨0S |

)(
I2T ⊗ U†

w

)(
|0⟩C ⊗ (AT v) + |⊥⟩

)∣∣∣2 = |w†AT v|2.
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Now each step in the repetition introduces an error of (2T )−1ε. Therefore, by Lemma 3,
the total error of the unitary quantum circuit W , compared to the above ideal case, is at
most ε. ◀

5 Equivalence of Unital and Unitary Quantum Logspace

5.1 Simulating Unital Quantum Logspace with Constant Error
▶ Lemma 11. Given a unital quantum algorithm with time T and space S = logm specified
by the natural representations K(Φ1), . . . ,K(ΦT ) ∈ Cm2×m2 , and an error parameter ε > 0,
there is a unitary quantum circuit with time poly(mT/ε) and space O(log(mT/ε)), such that
if the original unital circuit outputs 0 with probability p, then the unitary circuit outputs 0
with probability sin2(p+ α), where |α| ≤ ε.

Proof. We can always assume that S is an odd number and m ≥ max(4ε−1, 8) by adding
dummy dimensions. As each K(Φi) is a contraction, the following matrix A of dimension
m2T is also a contraction:

A =


K(ΦT )

K(Φ1)
K(Φ2)

. . .
K(ΦT −1)


Since the final state of the unital quantum algorithm is ρT = ΦT ◦ · · · ◦ Φ1(ρ0), we can rewrite
the output probability of the unital quantum algorithm as

p = Tr[ρTM0] = vec(M0)†vec(ρT ) = vec(M0)†K(ΦT ) · · ·K(Φ1)vec(ρ0)

=
(
vec(M0)† ⊗ ⟨0|

)
AT
(
vec(ρ0) ⊗ |0⟩

)
Let v = vec(ρ0) ⊗ |0⟩ which is already a unit vector. Since ∥vec(M0)∥2 =

√
m/2,

let w =
√

2
m vec(M0) ⊗ |0⟩. Let ε1 be the error parameter to be determined later. The-

orem 10 constructs a unitary quantum algorithm W with time poly(mT/ε1) and space
S′ = O(log(mT/ε1)), such that |⟨0S′ |W |0S′⟩|2 is ε1-close to 2p2/m. Therefore |⟨0S′ |W |0S′⟩|
is √

ε1-close to
√

2
mp.

Let

R =
(

IS′ − 2W |0S′
⟩⟨0S′

|W †
)(

IS′ − 2|0S′
⟩⟨0S′

|
)

be the rotation on the subspace spanned by |0S′⟩ and W |0S′⟩, of degree 2 cos−1 |⟨0S′ |W |0S′⟩|.
By the estimation

π

2 − x− 1
4x

3 ≤ cos−1 x ≤ π

2 − x, ∀x ∈ [0, 1],

and since (x+ y)3 ≤ 4(x3 + y3) for non-negative x, y, it can be calculated that the degree of
the rotation R is in the range[

π − 2
√

2
m
p− 4

√
ε1 − 4

m

√
2
m
, π − 2

√
2
m
p+ 2

√
ε1

]
.
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Since S is an odd number, k =
√
m/8 is an integer. Applying R for k times will rotate

|0S′⟩ by a degree of kπ − p − α, where |α| ≤
√

2mε1 + 2m−1. Therefore the projective
measurement of the state Rk|0S′⟩ onto the subspace orthogonal to |0S′⟩ outputs 0 with
probability sin2(p+ α). Let ε1 = (8m)−1ε2, and notice that 2m−1 ≤ ε/2, so that we have
|α| < ε, and the circuit Rk is unitary with time poly(mT/ε) and space O(log(mT/ε)). ◀

▶ Theorem 12. BQQL = BQUL, and promiseBQQL = promiseBQUL.

Proof. Clearly BQQL ⊇ BQUL, and promiseBQQL ⊇ promiseBQUL. To prove the other
direction, notice that quantum circuits are unital, therefore by Lemma 11 with ε = 0.01 they
can be simulated by unitary quantum circuits with polynomial time and logarithmic space.
Since the original output probability p is promised to be in [0, 1/3] or [2/3, 1], the value of
sin2(p+ α) is in [0, 0.12] or [0.37, 1] respectively, and thus it suffices to perform a constant
rounds of amplification in order to bring the error down to less than 1/3. ◀

▶ Remark 13. Though we proved Theorem 12 via the contraction powering algorithm,
the unitary quantum circuit that simulates a given quantum circuit with intermediate
measurements can be more simply constructed without using Lemma 6. In details, given
a channel Φ in the quantum circuit, we can directly write out the natural representations
K(Φ), and apply the matrix on the vectorized density matrix vec(ρ):

If Φ is a unitary quantum gate U , then K(Φ) = U ⊗ U which can be implemented by
applying U and then U ;
If Φ is a single-qubit measurement, then K(Φ) is a diagonal matrix with diagonal entries
in {0, 1}. It can be implemented using a similar “permute and throw away” technique
as in Theorem 10, which after applied T times increases the dimension (instead of the
space!) by a factor of T .

And the resulting circuit can be amplified in the same way as in Lemma 11.

5.2 Simulating Unital Quantum Logspace with Small Error
Now we can improve the result in Lemma 11 to arbitrarily small error (namely the probability
of outputting 0 is (p+ α) instead of sin2(p+ α)). Interestingly, the improvement relies on a
stronger version of Theorem 10, which in turn relies on Theorem 12. In a way, we use these
results to improve themselves!

We start with the stronger version of Theorem 10, which outputs the numerical value of
|w†AT v|2 instead of outputting 0 with such probability. Here the quantum circuit outputs a
number by a final measurement over the computational basis.

▶ Lemma 14. Given m = 2S, a contraction A ∈ Cm×m, a positive integer T , two unit
vectors v, w ∈ Cm and an error parameter ε > 0, there is a unitary quantum circuit with time
poly(mT/ε) and space O(log(mT/ε)) such that with probability 1 − 2−poly(mT/ε), it outputs
|w†AT v|2 with additive error ε.

Proof. Theorem 10 provides a unitary quantum circuit W with time poly(mT/ε) and space
O(log(mT/ε)) which outputs 0 with probability p such that

∣∣p − |w†AT v|2
∣∣ ≤ ε/2. By

Marriott-Watrous amplification [16, Theorem 3.3], there is a quantum circuit W ′ with time
poly(mT/ε) and space O(log(mT/ε)) with intermediate measurements, that uses W and
W−1 as sub-circuits, and with probability 1 − δ = 1 − 2−poly(mT/ε) outputs a value p̃ such
that |p̃− p| ≤ ε/4.
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Since the resulting circuit W ′ is not unitary, we would like to use Theorem 12 to compute
unitarily each bit in the output value p̃ of W ′. Furthermore, using the result in [5] that
BQUL = QUL(1 − 2−poly(n), 2−poly(n)) (which stands for unitary quantum logspace with
exponentially small error) the total error probability can be reduced down to 2−poly(mT/ε).
Assuming that every bit in p̃ is 0 with probability either in [0, 1/3] or [2/3, 1], then for
1 ≤ i ≤ ⌈log(1/ε)⌉ + 2, we let Wi be the unitary quantum circuit that computes the i-th
bit of p̃ with exponentially small error. Ideally, the outputs of Wi combined together would
ε-approximate |w†AT v|2.

However, the value p̃ outputted by the Marriott-Watrous amplification might be different
in each Wi, so the final approximation assembled can be totally wrong (for instance, when
p = 0.5, the outputs p̃ = 0.1000 . . . and p̃ = 0.0111 . . . might be assembled to 0.1111 . . .).
Moreover, the error reduction in [5] may have unpredictable results, as the promises on the
distributions of the bits in p̃ are not guaranteed (again when p = 0.5, the most significant bit
of p̃ is equally distributed on 0 and 1).

Fortunately, we can solves both problems by computing from the most significant bit to
the least significant bit. We maintain a value q ∈ [0, 1] which is initialized to 0. For each
i = 1 to ⌈log(1/ε)⌉ + 2 do the following: Run the modified circuit Wi which outputs the i-th
bit of (p̃− q) instead of p̃. To deal with case when p̃− q is outside of [0, 2−i+1), if p̃− q < 0
it outputs 0, and if p̃ − q ≥ 2−i+1 it outputs 1. Let the output bit be bi and update q to
q + bi · 2−i.

We claim that with probability 1 − 2−poly(mT/ε), |q − p| ≤ ε/2. First notice that, if every
bit in p̃ is 0 with probability in [0, 2δ] ∪ [1 − 2δ, 1], then the error reduction will work as
intended, while with probability 1 −O(δ log(1/ε)) = 1 − 2−poly(mT/ε) the value p̃ is the same
in each circuit Wi, so that q is also the same as p̃.

Now let i be the first index such that the i-th bit of p̃ is 0 with probability in [2δ, 1 − 2δ].
As the Marriott-Watrous amplification outputs incorrectly with probability at most δ, it
means that there are two valid outputs p̃1 and p̃2, both are ε/4-close to p, and they coincide
in the first i− 1 bits but differs at the i-th bit. Let qi be the value of q at that step, which
consists of the first i− 1 bits of p̃1 and p̃2, then |qi + 2−i − p| ≤ ε/4. Therefore the remaining
bits of q could only be 011 . . . 11, 100 . . . 00 or 100 . . . 01, which means |qi + 2−i − q| ≤ ε/4
and thus |q − p| ≤ ε/2. Notice that on the i-th (and the last bit when bi = 1) the error
reduction may fail and arbitrarily output 0 or 1, but it does not matter as both 0 and 1 are
viable in these cases.

As a conclusion, the value q is an ε-approximation of |w†AT v|2 with probability 1 −
2−poly(mT/ε). The above circuit that outputs q is clearly with time poly(mT/ε) and space
O(log(mT/ε)) as we use constructions in Theorem 12 and [5]. Finally, the the circuit is
unitary since the O(log(1/ε)) measurements that output bi’s can be deferred, and each Wi

can be uncomputed by implementing the circuit in reverse. ◀

▶ Corollary 15. Given m = 2S, a contraction A ∈ Cm×m, a positive integer T , two unit
vectors v, w ∈ Cm and an error parameter ε > 0, there is a unitary quantum circuit with time
poly(mT/ε) and space O(log(mT/ε)) such that with probability 1 − 2−poly(mT/ε), it outputs
w†AT v with additive error ε.

Proof. Let A1 =
(
A

1

)
, v1 =

(
v/

√
2

1/
√

2

)
, v′

1 =
(
v/

√
2

i/
√

2

)
and w1 =

(
w/

√
2

1/
√

2

)
. Since we have

w†AT v = 1
2

(
4|w†

1A
T
1 v1|2 − |w†AT v|2 − 1

)
+ i

2

(
4|w†

1A
T
1 v

′
1|2 − |w†AT v|2 − 1

)
,

computing |w†AT v|2, |w†
1A

T
1 v1|2 and |w†

1A
T
1 v

′
1|2 each up to error ε/2 gives w†AT v with

error ε. ◀
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uj

U

preparation
circuit
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Qj
Q−1

j...
...

...

Figure 1 The quantum operator U in the preparation circuit controlled by an entry uj of u, in
binary representation with classical bits. We replace the classical control by first implementing the
circuit Qj , applying the controlled-U operator, and implementing Qj in reverse.

Notice that one can instead achieve 1/poly(mT/ε) error probability without using the
exponential error reduction in [5], by simply repeating the decision circuit in BQUL for
O(log(mT/ε)) rounds. Nevertheless, it is enough for proving the following theorem, which
states that unitary quantum circuits can simulate any unital quantum algorithm by computing
its output distribution with arbitrarily small error.

▶ Theorem 16. Given a unital quantum algorithm with time T and space S = logm
specified by the natural representations K(Φ1), . . . ,K(ΦT ) ∈ Cm2×m2 , where ρT = ΦT ◦
ΦT −1 ◦ · · · ◦ Φ1(|0S⟩⟨0S |) is its final state, a multi-outcome measurement {M0, . . . ,Mr−1}
over the computational basis, and an error parameter ε > 0, there is a unitary quantum
circuit W with time poly(mT/ε) and space S′ = O(log(mT/ε)) such that if w ∈ C2S′

is
the vector representation of W |0S′⟩ in computational basis, for every j ∈ [r] it holds that∣∣|wj |2 − Tr[ρTMj ]

∣∣ ≤ ε.

Proof. For every j ∈ [r], let mj be the dimension of the subspace that Mj projects onto. In
other words, mj = ∥vec(Mj)∥2

2. As in the proof of Lemma 11, we can construct a contraction
A ∈ Cm2T ×m2T and unit vectors v, w ∈ Cm2T such that w†AT v = Tr[ρTMj ]/√mj . By
Corollary 15, for every j ∈ [r] there is a unitary quantum circuit Qj with time poly(mT/ε)
and space O(log(mT/ε)) such that with probability 1 − 2−poly(mT/ε), it gives an (2m)−3ε2-
approximation of Tr[ρTMj ]/√mj , which implies an (2m)−1ε-approximation of

√
Tr[ρTMj ].

Consider the preparation circuit constructed in Lemma 5 which prepares the unit vector

u =
(√

Tr[ρTM0],
√

Tr[ρTM1], . . . ,
√

Tr[ρTMr−1]
)
.

with error ε/2. By construction, the preparation circuit can be viewed as a composition of
r − 1 unitary operators, each controlled by a different entry in u. Since u is not explicitly
given, we instead control these unitary operators with the output qubits of Qj , but without
measurements. Each circuit Qj is applied in reverse after the control, so that the space can
be reused.

It is clear that the entire circuit is with time poly(mT/ε) and space O(log(mT/ε)). The
error introduced by replacing each of th r − 1 unitary operators is at most (2m)−1ε +
2−poly(mT/ε), therefore the total error is at most ε/2 + (r − 1)((2m)−1ε+ 2−poly(mT/ε)) < ε.
See Figure 1 for an illustration. ◀

ICALP 2021



73:16 Quantum Logspace Algorithm for Powering Matrices with Bounded Norm

The measurement {M0, . . . ,Mr−1} in Theorem 16 could be over any subset of the qubits.
In particular, when it is a two-outcome measurement over one qubit, we have the following
direct corollary which improves Lemma 11:

▶ Corollary 17. Given a unital quantum algorithm with time T and space S = logm specified
by the natural representations K(Φ1), . . . ,K(ΦT ) ∈ Cm2×m2 , and an error parameter ε > 0,
there is a unitary quantum circuit with time poly(mT/ε) and space O(log(mT/ε)), such that
if the original unital circuit outputs 0 with probability p, then the unitary circuit outputs 0
with probability p+ α, where |α| ≤ ε.

6 Powering of Non-Contraction Matrices

In this section we extend the result of Corollary 15 to matrices that may not necessarily be
contractions. We state the result for general square matrices, while the additive error can be
exponentially large with respect to the spectral norm:

▶ Theorem 18. Given m = 2S, an arbitrary matrix A ∈ Cm×m, a positive integer T , two
unit vectors v, w ∈ Cm and an error parameter ε > 0, there is a unitary quantum circuit W
with time poly(mT/ε) and space O(log(mT/ε)) such that with probability 1 − 2−poly(mT/ε),
it outputs w†AT v with additive error ε · max(1, ∥A∥T ).

Proof. Ideally, we would like to apply the contraction powering algorithm on A/∥A∥ and
multiply the result by ∥A∥T . However, the current best quantum algorithm for computing
the spectral norm is [27, Theorem 5.2] which approximates ∥A∥ with additive error ε1 within
time poly(m/ε1) and space O(log(m/ε1)) and only works for contractions A. We use this
algorithm to approximate ∥A∥ for arbitrary A with multiplicative error as follows1: First
compute ∥A∥F in O(logm + log ∥A∥F ) = O(log(m∥A∥2)) space. Notice that A/∥A∥F is a
contraction since ∥A∥F ≥ ∥A∥. Therefore, let σ be the approximation of ∥A/∥A∥F∥ with
additive error ε1 by [27], then σ∥A∥F approximates ∥A∥ since∣∣∣σ∥A∥F − ∥A∥

∣∣∣ = ∥A∥F ·
∣∣∣σ −

∥∥A/∥A∥F

∥∥∣∣∣ ≤
√
mε1∥A∥.

Let ε1 = (3T
√
m)−1, and let α = (1 −

√
mε1)−1σ∥A∥F . Then

∥A∥ ≤ α ≤ 1 +
√
mε1

1 −
√
mε1

∥A∥ ≤ (1 + T−1)∥A∥.

Now let Ã = α−1A so that Ã is always a contraction. Applying the contraction powering
algorithm in Corollary 15 on Ã with error ε/3 results in a unitary quantum circuit with
time poly(mT/ε) and space O(log(mT/ε)) which outputs w†ÃT v with additive error ε/3.
Multiplying it by αT gives the desired result, while the error is at most αT ε/3 ≤ ε · ∥A∥T . ◀

7 Classical Simulation of Quantum Learning

7.1 Equivalence of Classical Simulation in Decision and Learning
▶ Theorem 19. If there are functions t(·, ·) and s(·, ·), such that every unitary quantum
learning algorithm with time T and space S can be simulated classically with time t(T, S)
and space s(T, S), then

promiseBQUL ⊆ promiseBPTISP(t(poly(n), O(log n)), s(poly(n), O(log n))).

1 During the analysis we assume without loss of generality that ∥A∥ ≥ 1, since otherwise it can always be
relaxed to 1 whenever necessary.
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Specifically, if every unitary quantum learning algorithm in time T and space S can be
simulated classically with time poly(2ST ) and space O(S + log T ), then promiseBQUL =
promiseBPL.

Proof. Suppose that we have a unitary quantum circuit with time T (n) = poly(n) and space
S(n) = O(log n) that decides a partial function f : X → {0, 1}, where X ⊆ {0, 1}n. Let
ΦD(x, i) be the unitary gate at the i-th step of the decision algorithm with input x, which
can be constructed in time poly(n) and space O(log n).

We can convert the quantum circuit to a learning algorithm as follows. Use X directly
as the sample space, while the samples are always constant x for some fixed x ∈ X. The
learning task is to distinguish between x ∈ f−1(0) or x ∈ f−1(1). Upon receiving the sample
x, the learning algorithm simply applies the following unitary operator on C2S(n) ⊗ CT (n):

|ψ⟩|i⟩ →
(
ΦD(x, i)|ψ⟩

)
|(i+ 1) mod T (n)⟩

so that after T (n) steps it computes in the first register the same state as in the quantum
circuit. Therefore it computes f(x) and distinguishes between the two cases. Using the
premises, we have a classical learning algorithm with time t(poly(n), O(log n)) and space
s(poly(n), O(log n)) that accomplishes the same task. The classical learning algorithm can
be viewed as a randomized decision algorithm that computes f(x) by self-constructing the
stochastic matrices in the same time and space. ◀

▶ Theorem 20. If ContractionPowering ∈ promiseBPTISP(t(n), s(n)), where t(n) ≥
Ω(n) and s(n) ≥ Ω(log n), then every unital quantum learning algorithm with time T and
space S can be simulated classically with time t(poly(2ST )) and space s(poly(2ST )).

Proof. Suppose that we have a unital quantum learning algorithm with time T and space
S = logm that distinguishes between two distribution families X and Y. Let ΦL(z) be the
unital channel applied when receiving the sample z. With the sample distribution D, let
A = E

z∼D
[K(ΦL(z))]. We note that A is a contraction matrix of dimension m2 ×m2 as every

K(ΦL(z)) is a contraction. Similar to proof of Lemma 11, the probability of the learning
algorithm outputting 0 is

E
z∼DT

[
vec(M0)†K(ΦT ) · · ·K(Φ1)vec(ρ0)

]
= vec(M0)†AT vec(ρ0).

What’s different from Lemma 11 is that here A is not explicitly given. Instead, by Lemma 1,
each time an entry of A is requested, it takes poly(mT ) samples z to approximate the
entry to at most O((m2.5T )−1) error, so that the approximated matrix Ã differs from
the actual matrix A by at most ∥Ã − A∥ ≤ O((

√
mT )−1). By Lemma 3 it means that

∥ÃT −AT ∥ ≤ O(m−1/2). Therefore applying the contraction powering algorithm on Ã gives
a classical learning algorithm that distinguishes X and Y in time t(poly(mT )) and space
s(poly(mT )).

The above scheme has two problems. First, a fixed matrix Ã cannot be directly stored,
and if every time the same entry is requested, the entry is approximated as the average of a
different batch of samples, it may result in different requested values for the same entry (even
though the difference is small with high probability), similar to the problem in Lemma 14.
However, unlike the case in Lemma 14, here the classical contraction powering algorithm is
not explicitly given, and may not be robust against changing inputs.

The solution to this problem is the shift and truncate method by Saks and Zhou[23], which
has found numerous applications in space-bounded algorithms [27] and derandomizations
[3, 11]. Concretely, let P = t(poly(mT )) be the largest number of possible requests to entries
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of A in the contraction powering algorithm, and take a uniform random number ζ ∈ [8L].
For simplicity let L = 12

√
2mT and N = 24m2.5T . When the entry Ajk is requested, the

algorithm takes t(poly(mT )) samples zi and calculate the average value a of the (j, k)-entries
of K(ΦL(zi)), so that |a−Ajk| < 1

8NP with probability at least 1 − 2−P . The value fed back
for the request is

Ãjk = 1
N

⌊
N · Re(a) + ζ

8P

⌋
+ i
N

⌊
N · Im(a) + ζ

8P

⌋
.

We claim that with high probability, this value coincides with the fixed value

1
N

⌊
N · Re(Ajk) + ζ

8P

⌋
+ i
N

⌊
N · Im(Ajk) + ζ

8P

⌋
.

For the real part, as |N · Re(a) −N · Re(Ajk)| < 1
8P , there is at most one possibility for ζ

such that
⌊
N · Re(a) + ζ

8P

⌋
̸=
⌊
N · Re(Ajk) + ζ

8P

⌋
, which is of probability 1

8P , and the same
holds for the imaginary part. By the union bound on the bad events during all L requests,
with probability

1 −
(

2−P + 1
4P

)
P ≥ 2

3

for every (j, k) the value Ãjk are always the same, and |Ãjk − Ajk| ≤
√

2
N = 1

m2L , so
∥Ã−A∥ ≤ L−1.

The second problem is that because of the approximation error, Ã might not be a
contraction matrix. This is easily fixed by using the matrix Ã′ = L

L+1 · Ã as the input. Since
∥Ã−A∥ ≤ L−1 with probability 2/3, it is implied that

∥Ã′∥ = L

L+ 1 · ∥Ã∥ ≤ L

L+ 1 ·
(
1 + L−1) = 1,

∥Ã′ −A∥ ≤ ∥Ã−A∥ + 1
L+ 1∥Ã∥ ≤ 2

L
.

Since ∥vec(M0)∥2 =
√
m/2, ∥vec(ρ0)∥2 = 1, in this case we have (by Lemma 3)∣∣∣vec(M0)†(Ã′T −AT )vec(ρ0)

∣∣∣ ≤
√

2mT
L

= 1
12 .

Since the error of the original quantum learning algorithm can be amplified to 1/4 so
that vec(M0)†AT vec(ρ0) is in [0, 1/4] or [3/4, 1], we conclude that with probability 5/6,

vec(M0)†Ã′T vec(ρ0) ∈ [0, 1/3] or [2/3, 1]

Therefore the two cases can be distinguished by the classical contraction powering algorithms
on Ã′, and it can be repeated for constant rounds so that the total error rate is brought
down to 1/3. ◀

▶ Corollary 21. If ContractionPowering ∈ promiseBPL, then every unital quantum
learning algorithm with time T and space S can be simulated classically with time poly(2ST )
and space O(S + log T ).

Since by Theorem 10 we already know ContractionPowering ∈ promiseBQUL, com-
bined with Theorem 19, we get the equivalence between efficient simulations of decision
problems and learning problems:
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▶ Theorem 22. Every (unital) quantum learning algorithm with time T and space S

can be simulated classically with time poly(2ST ) and space O(S + log T ), if and only if
promiseBQUL = promiseBPL.

Also, as we already know promiseBQUL ⊆ promiseL2 [28], we have the following unconditional
result:

▶ Corollary 23. Every unital quantum learning algorithm with time T and space S can be
simulated classically with time 2O(S2+log2 T ) and space O(S2 + log2 T ).

7.2 Classical Simulation when One Family is Singleton
▶ Theorem 24. If Y = {Y }, then any quantum learning algorithm that distinguishes between
X and Y within time T and space S can be simulated classically in time poly(2ST ) and space
O(S + log T ).
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Abstract
Online bipartite matching with edge arrivals remained a major open question for a long time until
a recent negative result by Gamlath et al., who showed that no online policy is better than the
straightforward greedy algorithm, i.e., no online algorithm has a worst-case competitive ratio better
than 0.5. In this work, we consider the bipartite matching problem with edge arrivals in a natural
stochastic framework, i.e., Bayesian setting where each edge of the graph is independently realized
according to a known probability distribution.

We focus on a natural class of prune & greedy online policies motivated by practical considerations
from a multitude of online matching platforms. Any prune & greedy algorithm consists of two stages:
first, it decreases the probabilities of some edges in the stochastic instance and then runs greedy
algorithm on the pruned graph. We propose prune & greedy algorithms that are 0.552-competitive
on the instances that can be pruned to a 2-regular stochastic bipartite graph, and 0.503-competitive
on arbitrary stochastic bipartite graphs. The algorithms and our analysis significantly deviate from
the prior work. We first obtain analytically manageable lower bound on the size of the matching,
which leads to a non-linear optimization problem. We further reduce this problem to a continuous
optimization with a constant number of parameters that can be solved using standard software tools.
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1 Introduction

Matching theory is a central area in combinatorial optimization with a big range of applica-
tions [28]. Many market models for jobs, commercial products, dating, healthcare, etc., rely
on matching as a fundamental mathematical primitive. These examples often aim to describe
environments that evolve in real time and thus are relevant to the area of online bipartite
matching initiated by a seminal paper of Karp, Vazirani and Vazirani [26]. In this work they
consider the one-sided vertex-arrival model within the competitive analysis framework, i.e.,
vertices only on one side of a bipartite graph appear online and each new vertex reveals all its
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incident edges. The algorithm immediately and irrevocably decides to which vertex (if any)
the new arrival is matched. They studied the worst-case performance of online algorithms
and solved the problem optimally with an elegant p1 ´ 1{eq-competitive algorithm, named
Ranking. Later, the proof of the result has been simplified by a series of papers [6, 19, 13].

The interest in matching models and online bipartite matching problems in particular has
been on the rise since a decade ago due to emergence of the internet advertisement industry
and online market platforms [32]. With the large amount of available data on many online
platforms from the day-to-day user activities, more recent literature has shifted more towards
stochastic models, also called Bayesian in the economically oriented work. In particular,
Feldman, Mehta, Mirrokni and Muthukrishnan [16] proposed a stochastic model in which
online vertices are drawn i.i.d. from a known distribution and improved1 the competitive
ratio of the classic result by Karp, Vazirani and Vazirani to 0.67. The competitive ratio has
been further improved by a series of papers [3, 30, 24] to 0.706. Another line of work [25, 29]
studied the model in which online vertices arrive in a random order and showed that the
Ranking algorithm is 0.696-competitive.

The aforementioned results and other works, e.g., [33, 7, 12, 36, 18, 22, 23, 2], have made
remarkable progress on different online matching settings with vertex arrivals, i.e., models
where all incident edges of a new vertex are reported to the algorithm. However, more general
arrival models are much less understood. E.g., one of the most natural and nonrestrictive
extensions of online bipartite matching to the model where edges appear online and must
be immediately matched or discarded was not known to have a competitive ratio better
than the greedy algorithm for a long time. Only a recent negative result by Gamlath et
al. [18] closed this tantalizing question showing that no online algorithm can be better than
0.5-competitive in the worst case. Algorithms with better performance are only known for
quite special family of graphs, e.g., bounded-degree graphs [8] and forests [32, 8], or under
strong assumptions on the edge arrival order, e.g., random arrival order [21].

It might seem that the edge-arrival model is too general to allow non-trivial theoretical
results without strong assumptions on the instance. Thus it is not very surprising that
practically motivated models do not usually consider online setting with edge arrivals. On the
other hand, most of the specific applications posses additional structure and extra information
that might allow to break the theoretical barrier. The edge-arrival online model besides
pure theoretical interest and clean mathematical formulation, is indeed relevant to practical
problems not unlike the examples we discuss below.

Practical Motivation: Edge Arrivals

Imagine any online matching platform for job search, property market, or even online dating.
All these instances can be viewed as online matching processes in bipartite graphs. They
also share a common trait that the realization of any particular edge is not instantaneous,
often consumes significant effort and time from one or both sides of the potential match,
and may exhibit complex concurrent behavior across different parties of the market. The
platform can be thought of as an online matching algorithm, if it has any degree of control
to intervene in the process of edge formation at any point.2 However, the platform does not
have enough power to control the order in which edges are realized. Hence, using arbitrary
edge arrival order seems to be an appropriate modeling choice in these situations.

1 Their result holds under the assumption that the expected number of vertices for each type is an integer.
2 Even if the platform cannot directly prohibit an edge formation or disallow certain matches, it usually

can affect outcome indirectly by restricting access/information exchange between certain pairs of agents,
so that they never consider each other as potential matches.
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Another notable feature of these instances is the vast amount of historical data accumu-
lated over time. The data enables the platform to estimate the probability of a potential
match between any pair of given agents. Thus the Bayesian (stochastic) approach widely
adapted in economics seems to be another reasonable modeling choice. This raises the
following natural question that to the best of our knowledge has not been considered before:
Is there an online matching algorithm for stochastic bipartite graphs with edge arrivals that
is better than greedy? This question is the main focus of our work. Let us first specify the
model in more details.

Our Model: Edge Arrivals in Stochastic Graphs

We call our model online stochastic matching with edge arrivals. It is a relaxation of the
standard edge-arrival model that performs on a random bipartite graph. In particular,
we assume the input graph G is stochastic. That is, each edge e exists (is realized) in G

independently with probability pe and the probabilities ppeqePEpGq are known to the online
algorithm.3 The algorithm observes a sequence of edges arriving online in a certain (unknown)
order. Upon the arrival of an edge e, we observe the realization of e and if e exists, then the
algorithm immediately and irrevocably decides whether to add e to the matching. We assume
that the arrival order of the edges is chosen by an oblivious adversary, i.e., an adversary who
does not observe the realization of the edges and algorithm’s decisions, which is a standard
assumption in the literature on online algorithms in stochastic settings (see, e.g., [27]). We
compare the expected performance of our algorithm with the maximum matching in hindsight,
i.e., the expected size of a maximum matching over the randomness of all edges.

1.1 Comparison with Other Stochastic Models

Our model is closely connected to two existing theoretical lines of works on stochastic
bipartite matching and prophet inequality in algorithmic game theory. Below we compare
our model with the most relevant results in each of these lines of works.

Stochastic Probing Model

It has the same ingredient as our model: the underlying stochastic graph. That is, the input
is also a bipartite graph with the stochastic information on existence probability of every
edge e. On the other hand, it is an offline model under the query-commit framework, i.e., the
algorithm can check the existence of the edges in any order. However, if an edge exists, it has
to be included into the solution. For this model, an adaptation of the Ranking algorithm
by Karp, Vazirani and Vazirani is p1 ´ 1{eq-competitive. Costello, Tetali and Tripathi [11]
provided a 0.573-approximation algorithm on general (non-bipartite) graphs and showed
that no algorithm can have an approximation ratio larger than 0.898. Recently, Gamlath,
Kale and Svensson [17] designed a p1 ´ 1{eq-approximation algorithm for the edge-weighted
version of this problem.

3 Note that some independence assumption across the edges is necessary. If we allow arbitrary probability
distribution over the sets of realized edges, the model would be as difficult as the worst case online
setting.
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Prophet Inequality for Bipartite Matching

Consider a bipartite graph, where all edges have random values independently sampled from
given probability distributions. Upon the arrival of an edge, we see the realization of its
value and decide immediately whether to include this edge if possible in the matching. This
model was originally proposed by Kleinberg and Weinberg [27] for a more general setting of
intersection of k matroids. Gravin and Wang [20] studied explicitly the setting of bipartite
matching and provided a 1

3 -approximation. Ezra et al. [15] later improved this ratio to 0.337.
Our model can be viewed as an unweighted version of this prophet setting. Indeed, we assume
that each edge has value either 0 or 1 and, hence, the probability distribution is a product of
Bernoulli random variables summarized by existence probabilities ppeqePEpGq. Note that the
weighted case is strictly harder than the unweighted one. Gravin and Wang [20] provided a
1{2.25 hardness result for the weighted setting while our goal is to design an online algorithm
with a competitive ratio strictly better than 1{2. After all, the simple greedy algorithm
achieves a competitive ratio of 1{2 for unweighted graphs.

1.2 Our Results and Techniques

We study a specific family of algorithms, named Prune & Greedy. The algorithm consists
of two steps: (i) prune the graph by removing or decreasing probabilities of certain edges
in G; (ii) greedily take every edge in the pruned instance. In particular, upon the arrival
of an edge, we always drop it with certain probability so that its realization probability is
consistent with the pruned graph.

We argue that the family of Prune & Greedy algorithms is of independent interest due
to their practical relevance. Indeed, in those market applications we discussed above, the
online platform often cannot prevent the matching between two parties (pair of vertices)
once they realized their compatibility. But the platform usually possesses all the stochastic
information about the graph and thus is fully capable of implementing pruning step by
restricting information to its users. After that participants naturally implement greedy
matching by exploring compatibilities with the other side of the graph exposed to them by
the platform in an arbitrary order.

As our first result (Theorem 5 and Theorem 14), we identify a class of graphs on which
greedy algorithm performs better than the worst-case competitive ratio of 1{2. We compare
the size of the matching to the total number of vertices, a stronger benchmark than the
expected size of maximum matching. As the pruning step naturally decreases the expected
size of the maximum matching, the change of the benchmark is indeed necessary. Specifically,
we find that on log-normalized4 c-regular graphs with small c “ 2 the greedy algorithm
matches at least 0.552 vertices. This result immediately implies that if initial stochastic
graph has a 2-regular bipartite spanning subgraph, then Prune & Greedy algorithm is
0.552-competitive.

Second, we propose a 0.503-competitive Prune & Greedy algorithm for any bipartite
stochastic graph (Theorem 8). This result confirms that the edge-arrival model is theoretically
interesting in the stochastic framework. A complementary hardness result (Theorem 15)
shows that no online algorithm can be better than 2{3-competitive.

4 For any vertex in a log-normalized c-regular graph, the probability that it has at least an adjacent
edge is 1 ´ e´c. The definition is given in Section 3. Informally, a log-normalized c-regular graph is a
c-regular graph where all edges have weights ε « 0.
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Our techniques

We first build some intuition by analyzing the greedy algorithm on log-normalized c-regular
graphs. One of the main challenges is that different events such as “edge e is matched”, or
“vertex u is matched” may have complex dependencies. This makes it very difficult to write
the performance of the greedy algorithm in an explicit analytical form. We consider simpler
to analyze events: “there exists a vertex u whose first realized edge is the edge puvq”, which
guarantee that vertex v is matched at the end of the algorithm. This relaxation allows us
to break the analysis into independent optimization problems per each vertex. We derive a
guarantee fpcq on the fraction of vertices matched by the greedy algorithm for any c-regular
stochastic graph, where the function fpcq has a single peak around c “ 2 with fp2q « 0.532.
I.e., we develop an analytically tractable relaxation on the performance of greedy that we
later generalize to non-regular case. Interestingly, the greedy algorithm may perform worse
on log-normalized c-regular graphs for larger c. In particular, greedy is not better than
0.5-competitive on c-regular graphs as c Ñ 8.

However, this relaxation alone is not sufficient for the general case of non-regular graphs,
since such analysis is not tailored in any way to the expected size of optimal matching. To
this end, we consider an LP relaxation (an upper bound) on the expected optimal matching
in stochastic graphs proposed in [17]. This LP gives a set of values pxeqePEpGq with the
objective

ř

ePEpGq xe which satisfy a set of constraints that could be conveniently added to
our optimization problem. Our analysis for regular graphs prompted us to the strategy of
pruning each edge of the graph to 2 ¨ xe so that the pruned graph is similar to a 2-regular
graph. Unfortunately, this might not be a feasible operation when pe (realization probability
of e) is smaller than 2 ¨ xe. For these edges, it is then natural to keep their original existence
probability. Our analysis can be similarly localized to an optimization problem for individual
vertices, albeit the optimization becomes more complex. The main technical challenge is
to solve an unwieldy optimization problem due to the “irregular” edges. Note that even a
simpler optimization problem for c-regular graphs has a continuous optimal solution (i.e., is
a limit of increasing discrete instances), which required computer assisted calculations to
obtain the bound.

Finally, building on top of the relaxation we discussed above, we provide a more refined
analysis for the case of 2-regular graphs. Namely, we consider second-order events that also
witness the matching status of a vertex. We prove that the greedy algorithm is at least
0.552-competitive on 2-regular graphs, improving on the easier fp2q « 0.532 bound. We note
that the same approach could in principle be extended to general Prune & Greedy algorithm
for arbitrary graphs with optimization part still localizable to individual vertices. However,
the optimization problem becomes too complicated to solve analytically. We leave it as an
interesting open question to have a better analysis of the Prune & Greedy algorithms. On
the positive side, the improved analysis for 2-regular graphs suggests that performance of
Prune & Greedy algorithms should be noticeably better than what we proved in this paper.

1.3 Other Related Works
The edge-arrival setting is also studied under the free-disposal assumption, i.e., the algorithm
is able to dispose of previously accepted edges. McGregor [31] gave a deterministic 1

3`2
?

2 «

0.171-competitive algorithm for weighted graphs. Varadaraja [35] proved the optimality
of this result among deterministic algorithms. Epstein, Levin, Segev and Weimann [14]
gave a 1

5.356 « 0.186-competitive randomized algorithm later and proved a hardness result
of 1

1`ln 2 « 0.591 for unweighted graphs. Recently, the hardness bound is improved to
2 ´

?
2 « 0.585 by Huang et al. [23]. We remark that the question of designing an algorithm

that beats 0.5-competitive remains open.
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One of the earlier work on stochastic matching is due to Chen et al. [9]. They proposed
stochastic model with edge probing motivated by real life matching applications such as
kidney exchange. This model is more complex than the stochastic probing model we discussed
before, since it has an additional constraint per each vertex v on how many times edges
incident to v can be queried. Another difference is that a weaker benchmark than the optimal
offline matching has to be used in this setting. Chen et al. developed a 1

4 -approximation
algorithm. Bansal et al. [4] considered the weighted version and provided a 1

3 -approximation
and a 1

4 -approximation for bipartite graphs and general graphs respectively. The ratio for
general graphs was further improved to 1

3.709 by Adamczyk, Grandoni and Mukherjee [1],
and then to 1

3.224 by Baveja et al. [5].
There has been prior work in the online matching literature on regular graphs [3, 25, 34,

21, 10]. However, the notion of stochastic regular graphs we defined is very different from
the notion of standard regular graphs, the previous techniques are not directly applicable.

2 Preliminaries

The bipartite graph G “ pL, R, Eq consists of left and right sides denoted respectively L

and R. The graph G is a multigraph, i.e., E is a multiset that may have multiple parallel
edges between the same pair of vertices. We use Ev to denote the multiset of edges incident
to vertex v and Euv to denote the multiset of edges connecting u and v. We consider the
Bayesian model, where each edge e P E is realized with probability pe P r0, 1s, which is
known in advance. The realizations of different edges are independent. We are interested
in online matching algorithms with the objective of maximizing the expected size of the
matching. We assume that all edges in E arrive one by one according to some fixed unknown
order (i.e., oblivious adversarial order). Upon arrival of the edge e, the algorithm observes
whether or not e is realized. If the edge exists, the algorithm immediately and irrevocably
decides whether to include e into the matching; the algorithm does nothing, if the edge is not
realized. We compare the performance of the algorithm with the performance of the optimal
offline algorithm, also known as the prophet, who knows the realization of the whole graph in
hindsight, i.e., OPT “ Ersize of maximum matchings.

A natural online matching strategy is the greedy algorithm: Take every available edge
e “ pu, vq whenever both vertices u and v have not yet been matched. Obviously, the
greedy algorithm is a 0.5-approximation, since it selects a maximal matching in all possible
realizations of the graph, which is always a 0.5-approximation to the maximum matching.

Paper Roadmap

In Section 3, we introduce the notion of stochastic regular graphs and establish an analytical
bound on the competitive ratio of the greedy algorithm on c-regular graphs. In Section 4, we
design a Prune & Greedy algorithm that is 0.503-competitive for general inputs. Section 5
provides a more refined analysis of the greedy algorithm on 2-regular graphs. In Section 6,
we give a simple impossibility result showing that no online algorithm can do better than 2

3
of the expected optimum. Omitted proofs are in the full version.

3 Warm-up: Regular Graphs

A regular graph is a graph whose vertices have the same degree. But how do we define
vertex degrees in a stochastic graph? One standard way is to use the expected vertex degree,
i.e.,

ř

ePEu
pe for the degree of a vertex u P L. However, the expectation alone does not
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contain all the important information about a degree distribution. Consider for example a
vertex a having only one incident edge pa, bq with ppa,bq “ 1 and a vertex u having 2 incident
parallel edges e “ pu, vq with probability pe “ 0.5 for each e P Eu. Both vertices a and u

have the same expected degree, but while a always has exactly one incident edge, u gets no
incident edges with 0.25 probability. On the other hand, u may have 2 incident edges in some
realizations, which is almost the same for our purposes as having only a single incident edge.

A good way to reconcile this difference is to substitute each edge pu, vq by multiple
parallel edges ei “ pu, vq with small probabilities such that ppu,vq matches the probability
that at least one of ei edges exists. Alternatively, we can define a log-normalized weight for
each edge e as we

def
““ ´ lnp1 ´ peq, i.e., given an input instance G “ pL, R, Eq we construct

a one-to-one correspondence between vectors of probabilities p “ ppeqePE and vectors of
log-normalized weights w “ pweqePE . In particular, if we split an edge with log-normalized
weight we into two edges e1 “ e2 “ pu, vq with we1 ` we2 “ we, then the new instance gets
only harder, i.e., any online algorithm for the new instance can be easily adapted to the
original instance with the same or better performance. Indeed, notice that the probability
that at least one of the edges e1, e2 exists equals 1 ´ e´we1 ¨ e´we2 “ 1 ´ e´we , the probability
that e exists, i.e., there is a probability coupling between the event that e exists with the
event that at least one of e1, e2 exists. Then, we can substitute e in any arrival order with a
pair of consecutive edges e1 and e2 and match e whenever the online algorithm matches e1
or e2 in the modified instance. Thus the log-normalized weight is the correct notion for us to
do additive operations over the existence probabilities and leads to the following definition of
the regular stochastic graph.

▶ Definition 1. A graph G is a log-normalized c-regular graph if for every v P L Y R,
ř

ePEv
we “ c.

We restrict our attention to log-normalized regular graphs in the remainder of this section.
Our goal is to analyze the performance of Greedy on log-normalized c-regular graphs for a
small constant c. Remarkably, it is not easy to give a precise answer and produce a tight
worst-case estimate even for a specific value c “ 1.

We first introduce a few short hand notations for the events that will be frequently used
throughout the paper.

▶ Definition 2. Fix an arbitrary edge arrival order σ and an edge e P Euv, define the
following events:
1. De: the event that e is realized.
2. Mupeq: the event that u is matched right before e arrives.
3. Qupeq: the event that no edge of Eu is realized before e arrives. Let qupeq

def
““ PrrQupeqs.

4. Fupeq
def
““ Qupeq X De: the event that e is the first realized edge of vertex u.

The following lemma gives a lower bound on the matching probability of any vertex.
This analytically tractable bound will allow us to reduce the global optimization for the
competitive ratio of our algorithm to the local optimization per individual vertex. The lemma
will also be useful for the general case, i.e., for not necessarily regular graphs, which we
discuss in Section 4. To be consistent with the notations of the next section, let xe “ we

c and
ye “ 1 ´ e´we . We have the property that

ř

ePEv
xe “ 1 for every v P V and ye equals the

probability that e is realized (De). We state the following lemma with the weaker condition
of

ř

ePEv
xe ď 1 for more general use in later sections.
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▶ Lemma 3. For any v P R, if
ř

ePEv
xe ď 1, then

Pr rv is matcheds ě Pr

»

–

ď

e“pu,vqPEv

Fu peq

fi

fl ě
ÿ

e“pu,vqPEv

xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

. (1)

Proof. For each edge e P Ev, consider the case when edge e “ pu, vq arrives and the event
Fupeq “ Qupeq X De happens. At this moment, either v is already matched, or e will be
included in the matching by Greedy. Therefore, whenever Du P L such that there is an edge
e P Euv making Fupeq happen, v is covered by Greedy.

Next, the events
␣
Ť

ePEuv
Fupeq

(

uPL
are mutually independent, since (i) the event

Ť

ePEuv
Fupeq only depends on the random realization of the edges in Eu and (ii) EuXEu1 “ ∅

when u ‰ u1.5
Lastly, Fupe1q X Fupe2q “ ∅ for any e1, e2 P Euv, and thus Prr

Ť

ePEuv
Fupeqs “

ř

ePEuv
qupeq ¨ ye. Putting the above observations together, we have

Pr rv is matcheds ě Pr
«

ď

ePEv

Fu peq

ff

“ 1´Pr
«

č

ePEv

Fu peq

ff

“ 1´
ź

u

Pr
«

č

ePEuv

Fu peq

ff

“ 1 ´
ź

u

˜

1 ´
ÿ

ePEuv

qupeq ¨ ye

¸

ě 1 ´
ź

u

exp
˜

´
ÿ

ePEuv

qupeq ¨ ye

¸

“ 1 ´ exp
˜

´
ÿ

ePEv

qupeq ¨ ye

¸

ě
ÿ

ePEv

xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

,

where the second inequality follows from the fact that 1 ´ z ď e´z and the last inequal-
ity follows from Jensen’s inequality and the concavity of function 1 ´ expp´zq (recalling
ř

ePEv
xe ď 1). ◀

Thus, we may think of the quantity xe ¨

´

1 ´ exp
´

´
qupeq¨ye

xe

¯¯

as the contribution of edge
e in the algorithm.6 Observe that this contribution depends on the event Qupeq for u P L.
We sum the (1) bound over all v P R and change the order of summations.

ALG “
ÿ

vPR

Pr rv is matcheds ě
ÿ

vPR

ÿ

e“pu,vqPEv

xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

“
ÿ

uPL

ÿ

e“pu,vqPEu

xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

. (2)

▶ Lemma 4. For all u P L,
ÿ

ePEu

xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

ě

ż 1

0

´

1 ´ e´ce´cz
¯

dz.

Proof. Let u be any fixed vertex in L and e1, e2, . . . , ek be the edges of Eu enumerated
according to their arrival order. For notation simplicity, we use qi, xi and yi to denote
qupeiq, xei

and yei
respectively. Then we have

Qu peiq “
č

jăi

Dej “
č

jăi

Eej ; qi “ Pr rQu peiqs “
ź

jăi

p1 ´ yjq “
ź

jăi

e´c¨xj “ e´c¨
ř

jăi xj .

5 It is the only place where we use that G is bipartite. Indeed, our result can be generalized to triangle-free
graphs.

6 Note that this quantity is not necessarily a lower bound of the probability that edge e is matched.
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Since
şxi

0 c ¨ e´czdz “ 1 ´ e´cxi “ yi and 1 ´ expp´qi ¨ zq is a concave function of z , we can
apply Jensen’s inequality to get

1 ´ e
´

qi¨yi
xi “ 1 ´ exp

ˆ

´qi ¨
1
xi

ż xi

0
c ¨ e´czdz

˙

ě
1
xi

ż xi

0

`

1 ´ exp
`

´qi ¨ c ¨ e´cz
˘˘

dz

“
1
xi

ż xi

0

´

1 ´ exp
´

´c ¨ e´c¨
ř

jăi xj ¨ e´cz
¯¯

dz “
1
xi

ż

ř

jďi xj

ř

jăi xj

´

1 ´ e´ce´cz
¯

dz.

Summing this inequality over i P rks, we have

ÿ

ePEu

xe¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

“

k
ÿ

i“1
xi ¨

ˆ

1 ´ exp
ˆ

´
qi ¨ yi

xi

˙˙

ě

k
ÿ

i“1

ż

ř

jďi xj

ř

jăi xj

´

1 ´ e´ce´cz
¯

dz “

ż 1

0

´

1 ´ e´ce´cz
¯

dz. ◀

Let us denote the lower bound in the Lemma 4 as h1pcq
def
““

ş1
0

´

1 ´ e´ce´cz
¯

dz.

▶ Theorem 5. The competitive ratio of Greedy on c-regular graphs is at least h1pcq, which
is at least 0.532 when c “ 2.

Proof. By equation (2) and Lemma 4, we have

ALG ě
ÿ

uPL

ÿ

ePEu

xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

ě
ÿ

uPL

h1pcq.

This concludes the theorem by noticing that |L| is an upper bound of OPT. ◀

▶ Remark. When c “ 2, the competitive ratio is at least h1pcq ě 0.532. Notice that h1 has a
peak at c « 2.1, but it gets smaller again for c ą 3 (see the full version for a plot) and our
analysis gives relatively weak results for large c. One reason is because of the relaxation from
Lemma 3. On the other hand, Greedy indeed does not perform well on c-regular graphs
when c is large. In particular, Greedy is no better than 0.5-competitive on c-regular graphs
when c goes to infinity.

▶ Theorem 6. Greedy is at most 0.5-competitive on log-normalized c-regular graphs when
c Ñ 8.

Proof. Consider the graph shown in Figure 1. We use L1 “ tuiu
n`1
i“1 , R1 “ tvju

n`1
j“1 , L2 “

tu1
iu

n
i“1 and R2 “ tv1

jun
j“1 to denote the vertices in the graph. The edges are defined as the

following:
1. For each i P rn ` 1s, there is a (red solid) edge pui, viq with existence probability 1 ´ ε.
2. For each pair of pu, vq P pL2 ˆ R1q Y pL1 ˆ R2q, there is a (green/blue dashed) edge pu, vq

with existence probability 1 ´ ε.
It is easy to verify the graph is log-normalized regular. When ε Ñ 0, with high probability,
the graph admits a perfect matching with size 2n ` 1. On the other hand, consider the case
when the red edges arrive first. With high probability, all these edges exist and Greedy
matches n ` 1 edges. This finishes the proof since n`1

2n`1 Ñ 1
2 when n Ñ 8. ◀
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Figure 1 Hard instance for Greedy on regular graphs.

4 Prune & Greedy: General Graphs

The fact that Greedy beats half on log-normalized c “ 2 regular graphs lends itself to
the following natural two step adaptation for general graphs: (i) prune (remove or decrease
probabilities of certain edges in G) such that the log-normalized degree of each vertex in the
remaining graph is 2; (ii) greedily take every edge in the pruned instance Gc. Specifically,
upon the arrival of an edge e, we first adjust its probability by dropping e so that its
realization probability is consistent with e’s log-normalized weight in Gc, then we match
the realized edge if none of e’s endpoints are currently matched. This approach would
already yield the desired result for the dense graphs that can be pruned to the log-normalized
2-regular graph Gc. However, such a direct strategy fails for the graphs that have a few
small degree vertices.

Before we proceed with the fix for the general graphs, let us take a closer look at the proof
of Theorem 5. Note that in the theorem we actually compare our algorithm with a stronger
benchmark, half the total number of vertices in G. The problem with such a benchmark,
is that it may be too strong for any algorithm to approximate. To address this issue, we
have to adjust our algorithm and analysis to handle low degree vertices. To this end, we
can calculate xe, the probability that e appears in the maximum matching of the random
graph for every e, as the first step of our algorithm. By definition, OPT “

ř

ePE xe is the
right benchmark to compare with. Alternatively, we can solve the following LP introduced
by Gamlath, Kale and Svensson [17].7

maximize
pxeě0qePE

ÿ

ePE

xe

subject to
ÿ

ePF

xe ď 1 ´
ś

ePF

p1 ´ peq, @v P L Y R, @F Ď Ev.
(3)

The constraints of the LP simply state that for each vertex v and subset F Ď Ev of edges
incident to v, the probability that an edge of F appears in the maximum matching is at
most the probability that at least one edge of F is realized. Note that the value of each
variable xe in the LP (3) does not necessarily match the exact probability of e to appear
in the maximum matching. However,

ř

ePE xe still serves as a valid upper bound on OPT.
As a matter of fact, our analysis works for either benchmark: the solution to LP (3), or
for each xe being the probability of e to appear in the optimal matching. We choose the
LP (3) formulation in the description of the algorithm and the following analysis, since the
LP optimal solution is a stronger benchmark and important constraints are explicitly stated
in the LP.

7 The LP is polynomial-time solvable. See [17] for the details.
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A natural approach for general graphs would be to prune the graph according to the LP
solution pxeqePE . To build some intuition let us consider what happens if we directly use xes
instead of pes:
1. prune the graph by decreasing the probabilities of each edge from pe to xe,
2. run Greedy on the pruned instance.
Consider a special case of complete bipartite graph Kn,n where each edge is realized with
probability 1. The optimal solution to LP (3) is xe “ 1

n for all e P E, as the maximum
matching has size n “

ř

ePE xe. As ´ lnp1 ´ xq « x when x is small, we effectively run
Greedy on log-normalized 1-regular graph after pruning Kn,n. Theorem 3 from previous
section gives h1p1q « 0.459 ă 0.5 in this case. Moreover, a simple computer aided simulation
suggests that Greedy matches no more than 0.5 fraction of all vertices in this case. In this
simulation we consider a regular complete graph G with |L| “ |R| “ n, where each edge has
probability 1

n ; the edges arrive in random (uniformly distributed) order. In particular, we
run 105 number of trials for n “ 3000 and the ratio between ALG and n equals 0.50002. See
the full version of this paper for more details of our experiment.

This means that pruning probabilities directly to xe is too much and we need a more
conservative pruning step. In particular, Theorem 5 suggests to prune the graph so that the
log-normalized weight of edge e becomes c ¨ xe. On the other hand, for some edges, pe can
be as small as xe, in which case we have a cap on the existence probability. For those edges,
it is reasonable to keep the existence probability as the original graph. Formally, we consider
the following algorithm.

Algorithm 1 Prune & Greedy.

1: Solve LP (3) and let txeuePE be the optimal solution.
2: Prune the graph by decreasing the probabilities of each edge from pe to ye “ minppe, 1 ´

e´c¨xe q.
3: Run Greedy on the pruned instance.

In an easy case when ye “ 1 ´ e´c¨xe for all edges e P E, we can adapt our analysis for
c-regular graphs with a similar performance guarantee. On the other hand, if ye “ xe for all
edges, then the algorithm might not be better than 0.5-competitive according to the previous
discussion. However, the constraints from LP (3) guarantee that this cannot happen for all e.

Note that Lemma 3 and equation (2) apply to our Prune & Greedy algorithm with the
txe, yeu defined in this section. We shall prove Lemma 7 an analog of Lemma 4 to conclude
Theorem 8, which is the main result of this section.).

▶ Lemma 7. For all u P L, when c “ 1.7,

ÿ

ePEu

xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

ě 0.503 ¨
ÿ

ePEu

xe

▶ Theorem 8. Prune & Greedy is 0.503-competitive when c “ 1.7.

Proof. We write the lower bound on the performance of Greedy using Lemma 3.

ALG ě
ÿ

uPL

ÿ

ePEu

xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

(by Equation (2))

ě
ÿ

uPL

0.503 ¨
ÿ

ePEu

xe “ 0.503 ¨
ÿ

ePE

xe ě 0.503 ¨ OPT. (by Lemma 7) ◀
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4.1 Proof of Lemma 7
The proof of Lemma 7 is highly technical and requires us to solve a rather non-trivial
optimization. Let te1, e2, ¨ ¨ ¨ , eku be all edges incident to u and enumerated in their arrival
order. To simplify notations, let pi, xi, yi and qi denote pei

, xei
, yei

and qupeiq respectively.
The optimization problem (4) captures the ratio that we want to study.

min
ppiď1q,pxiě0q

k
ÿ

i“1
xi ¨

´

1 ´ e
´

qi¨yi
xi

¯M

k
ÿ

i“1
xi (4)

s. t. yi “ minppi, 1 ´ e´c¨xi q, @i P rks

qi “
ź

jăi

p1 ´ yjq, @i P rks

ÿ

iPS

xi ď 1 ´
ź

iPS

p1 ´ piq, @S Ď rks

min
ppiď1q,xě0

k
ÿ

i“1
x ¨

´

1 ´ e´
qi¨yi

x

¯M

pkxq (5)

s. t. yi “ minppi, 1 ´ e´cxq, @i P rks

qi “
ź

jăi

p1 ´ yjq, @i P rks

|S| ¨ x ď 1 ´
ź

iPS

p1 ´ piq, @S Ď rks

The first family of constraints in (4) comes from the design of our algorithm. The second
family of constraints characterizes the probability that u has no realized edge before ei. The
last family of constraints follows from LP (3).

We first decrease the value of optimization (4) by increasing the size k of the instance
and get a simpler optimization problem (5). The fact that we can construct more regular
instance with all xi “ x and smaller or equal objective value follows from the “subdivision”
Lemma 9 below.

▶ Lemma 9. Let pxj , pjqjPrks be any feasible solution to (4). Let ei be any edge i P rks which
we subdivide into two consecutive parallel edges e1 and e2. Then there is a feasible solution to
the new instance of (4) with the same pxj , pjqj‰i and xe1 ` xe2 “ xi, and smaller objective
value. Moreover, xe1 ě 0 and xe2 ě 0 can be set to have any values subject to xe1 ` xe2 “ xi.

Proof. We fix feasible solution pxj , pjqjPrks to (4), edge ei, and particular xe1 ě 0 and xe2 ě 0
such that xe1 ` xe2 “ xi. Let β “

xe1

xi
. Note that 0 ď β ď 1. We need to define pe1 ,pe2 .

Consider two cases depending on the value of yi:
Case 1. If yi “ 1 ´ e´c¨xi , then we let pe1 “ pe2 “ 1.
Case 2. If yi “ pi, then we let pe1 “ 1 ´ p1 ´ piq

β and pe2 “ 1 ´ p1 ´ piq
1´β .

In the first case, ye1 “ 1 ´ e´cxe1 and ye2 “ 1 ´ e´cxe2 . In the second case, we verify that

pe1 ď 1 ´ e´cxe1 ðñ 1 ´ p1 ´ piq
β ď 1 ´ e´cxe1 ðñ pi ď 1 ´ e´cxi .

Similarly, pe2 ď 1 ´ e´cxe2 and we have that ye1 “ pe1 and ye2 “ pe2 . In both cases, we
have that p1 ´ ye1 qp1 ´ ye2 q “ 1 ´ yi. Consequently, the value of qj does not change by our
subdivision for all j ‰ i. Next, we examine the change to the numerator of the objective
function.
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xe1 ¨

ˆ

1 ´ e
´qi¨

y
e1

x
e1

˙

` xe2 ¨

ˆ

1 ´ e
´qi¨

p1´y
e1 qy

e2

x
e2

˙

´ xi ¨

´

1 ´ e
´qi¨

yi
xi

¯

“xi ¨

ˆ

xe1

xi
¨

ˆ

1 ´ e
´qi¨

y
e1

x
e1

˙

`
xe2

xi
¨

ˆ

1 ´ e
´qi¨

p1´y
e1 qy

e2

x
e2

˙˙

´ xi ¨

´

1 ´ e
´qi¨

yi
xi

¯

ďxi ¨

´

1 ´ e
´

qi
xi

¨pye1 `p1´ye1 qye2 q
¯

´ xi ¨

´

1 ´ e
´qi¨

yi
xi

¯

“ 0,

where the inequality holds by Jensen’s inequality for the concave function 1 ´ e´x, and the
last equality is due to the fact that p1´ye1 qp1´ye2 q “ 1´yi. Thus, the subdivision decreases
the objective function. We are left to verify that all inequality constraints in (4) for S Ď rks

are satisfied.
First, we consider Case 1, when yi “ 1 ´ e´c¨xi . We have pe1 “ pe2 “ 1. Then
if e1, e2 R S, the constraint trivially holds (none of xj , pj change);
if e1 P S or e2 P S, the right-hand side of the constraint becomes 1.

Next, in Case 2, yi “ pi, ye1 “ pe1 , ye2 “ pe2 , and p1 ´ ye1 qp1 ´ ye2 q “ 1 ´ yi . Then
if e1, e2 R S, the constraint still holds (none of xj , pj change);
if both e1, e2 P S, the inequality holds since xe1 ` xe2 “ xi and p1 ´ pe1 qp1 ´ pe2 q “ 1 ´ pi;
if exactly one of e1, e2 P S, we may assume w.l.o.g. that e1 P S, e2 R S (as the other case
e2 P S, e1 R S is symmetric). Let T Ď rks ´ tiu be any set of indexes. Then

1 ´ p1 ´ pe1 q
ź

jPT

p1 ´ pjq “ 1 ´ p1 ´ piq
β
ź

jPT

p1 ´ pjq ě 1 ´ p1 ´ βpiq
ź

jPT

p1 ´ pjq

“ β

˜

1 ´ p1 ´ piq
ź

jPT

p1 ´ pjq

¸

` p1 ´ βq

˜

1 ´
ź

jPT

p1 ´ pjq

¸

ě β

˜

xi `
ÿ

jPT

xj

¸

` p1 ´ βq
ÿ

jPT

xj “ βxi `
ÿ

jPT

xj “ xe1 `
ÿ

jPT

xj ,

where to get the first inequality we used the fact p1 ´ xqβ ď 1 ´ x ¨ β, for any x ą ´1,
0 ď β ď 1; the second inequality holds due to the original constraints in (4) for S “ T Ytiu

and S “ T .
This concludes our proof. ◀

To get (5), we can start with the optimal solution to (4) for any given k, then apply multiple
times Lemma 9 to every edge ei, i P rks getting an instance with k1 " k edges and a feasible
solution with the same value, where almost all xj “ x and at most k edges have xe ă x (x
may depend on k1). Finally, we can remove all edges with xe ă x, keep the rest xj and pj

untouched and redefine pqjq according to the recurrent formula. The impact of the change to
qj ’s before the removal of edges xe ă x can be made vanishingly small as k1 Ñ 8. At the
end, we get a feasible solution to (4) of the form (5) (for bigger k) with almost the same value
as the optimum of (4) for the initial k. Thus we can analyze (5) without loss of generality
instead of (4).

We prove the following lemma that describes the optimal solution to problem (5).

▶ Lemma 10. For an optimal solution to (5): (i) pyiqiPrks are decreasing; (ii) D cut-
off point ℓ P rks such that yi “ cx for i ď ℓ and yi “ pi for i ą ℓ; (iii) constraints
|S| ¨ x ď 1 ´

ś

iPSp1 ´ piq are tight for all S “ rj..ks, where j ą ℓ.
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Proof. We prove the three statements sequentially. Let ppiq be the optimal solution. If
yi ă yi`1 for an i P rks. Consider swapping pi and pi`1 in the instance and the other
ppjqj‰i,i`1 remain the same. Note that the last family of constraints are preserved since
the constraints are invariant under any permutation of pj ’s. It is easy to see that qj ’s are
not changed for all j ‰ i ` 1 and q1

i`1 “ qip1 ´ yi`1q. Moreover, y1
i “ yi`1 and y1

i`1 “ yi.
Therefore, to prove that the swap decreases the objective, it suffices to show

1 ´ e´
qi¨yi

x ` 1 ´ e´
qip1´yiq¨yi`1

x ă 1 ´ e´
qi¨yi`1

x ` 1 ´ e´
qip1´yi`1q¨yi

x .

Observe that qiyi`1 ą qiyi, qiyi`1 ą qip1 ´ yiqyi`1 and qiyi ` qip1 ´ yiqyi`1 “ qiyi`1 `

qip1 ´ yi`1qyi. The above inequality is true due to the convexity of the function expp´zq. A
contradiction that concludes the proof of (i), the monotonicity of yi’s.

The second statement follows immediately from (i) according to our definition of yi “

minppi, cxq which is a monotone function with respect to pi.8 Let ℓ be the cut-off point such
that yi “ cx for i ď ℓ and yi “ pi for i ą ℓ.

We are left to prove (iii). Given the statement (ii), we safely assume that pi “ 1 for all
i ď ℓ since this would not affect all yi, qi’s and only trivialize the last family of constraints
when S X rℓs ‰ ∅, since in this case the right-hand side of the constraint equals 1. Since
pi “ 1 for i P rℓs and 1 ě pi “ yi for i ą ℓ, we can assume that ppiqiPrks are decreasing as
well.

Given the monotonicity of pi’s, we note that “critical” inequality constraints |S| ¨ x ď

1 ´
ś

iPSp1 ´ piq are those where S “ tj, j ` 1, ¨ ¨ ¨ , ku, i.e., the remaining (non-critical)
inequality constrains for other sets S are automatically satisfied, if the constraints for
S “ tj, j ` 1, ¨ ¨ ¨ , ku hold. Indeed, when restricting to S with a fixed cardinality s, the
left-hand side of each constraint is the same |S| ¨ x, while the right-hand side is minimized
when S consists of the s smallest pi, i.e., tpj , pj`1 . . . , pku. We are going to prove (iii), that
the critical constraints for j ą ℓ are tight.

Now, suppose to the contrary that a critical constraint is not tight for an S “ ti, i `

1, . . . , ku for i ą ℓ, while all critical constraints for each S “ ti, i ` 1, . . . , ku where i ą i

are tight (if i “ k, we don’t require any constraints to be tight). We first consider a non-
degenerate case when 1 ą pi´1, which also means that i ´ 1 ą ℓ (otherwise yi´1 “ cx and
we would set pi´1 “ 1). Before that we prove the following fact.

▷ Claim 11. If 1 ą pi “ pi`1 for i P pℓ..kq, then inequality |S| ¨ x ă 1 ´
ś

jPSp1 ´ pjq for
S “ ti ` 1, . . . , ku is strict.

Proof. Suppose to the contrary that the inequality is an equality, that is

p1 ´ pi`1q “

ś

jąip1 ´ pjq
ś

jąi`1p1 ´ pjq
“

1 ´ pk ´ iqx
ś

tąi`1p1 ´ pjq
.

The inequality constraint for S “ ti, . . . , ku gives:

p1 ´ piqp1 ´ pi`1q “

ś

jěip1 ´ pjq
ś

jąi`1p1 ´ pjq
ď

1 ´ pk ´ i ` 1qx
ś

jąi`1p1 ´ pjq
.

8 Notice that cx « 1 ´ e´cx when x « 0 in (5).
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Putting the two equations together and by the assumption that pi “ pi`1, we have
˜

1 ´ pk ´ iqx
ś

jąi`1p1 ´ pjq

¸2

ď
1 ´ pk ´ i ` 1qx
ś

jąi`1p1 ´ pjq

ùñ
p1 ´ pk ´ iqxq

2

p1 ´ pk ´ i ` 1qxq
ď

ź

jąi`1
p1 ´ pjq ď 1 ´ pk ´ i ´ 1qx,

where the last inequality follows from the constraint for S “ ti ` 2, . . . , ku (if i ` 2 ą k, the
inequality still holds, as i “ k ´ 1, 1 ´ pk ´ i ´ 1qx “ 1, and

ś

jąi`1p1 ´ pjq “ 1).
Thus p1 ´ pk ´ i ` 1qxq p1 ´ pk ´ i ´ 1qxq “ p1 ´ pk ´ iqxq

2
´ x2 ě p1 ´ pk ´ iqxq

2
, a

contradiction. ◁

Case 1 (1 ą pi´1). We will get a contradiction by providing an instance with a strictly
smaller objective’s value. Let i be the smallest index so that pi “ pi`1 “ ¨ ¨ ¨ “ pi´1.
So pi´1 ą pi, if i ą 1. Recall that we consider the case 1 ą pi´1 “ pi and thus ℓ ă i

(otherwise yi “ cx and we should have set pi “ 1). By Claim 11, each inequality in (5) for
S “ ti, i`1, . . . , ku with i`1 ď i ď i´1 must be strict. On the other hand, a contra-positive
statement to Claim 11 gives us that pi cannot be equal to pi`1 (if i “ k, this also is true).
Thus pi ą pi`1 (if i ă k). If i “ k, then pi ą 0 (otherwise, we can decrease k in (5)).

We consider the following modification pp1, xq of (5)’s feasible solution: slightly increase
pi and decrease pi so that p1 ´ piqp1 ´ piq remains the same; all other pi for i ‰ i, i and x are
the same in pp1, xq and original optimum pp, xq; y1, q1 are redefined according to the formula
in (5). Note that we can always do such modification when 1 ą pi ą pi ą 0.

For any sufficiently small such perturbation of pi and pi, pp1
iqiPrks remain monotone and

all constraints in (5) are satisfied. Indeed, we only need to check the critical constraints in (5)
for monotone p1: p1 and p are the same for S “ ti, i ` 1, . . . , ku for i P pi..ks; all inequalities
for S “ ti, i ` 1, . . . , ku where i P ri ` 1, is are strict and, therefore, for sufficiently small
perturbation of pi and pi they still hold; for S “ ti, i`1, . . . , ku where i P pℓ..is, the right-hand
side of each critical constraint does not change, because p1 ´ piqp1 ´ piq “ p1 ´ p1

i
qp1 ´ p1

iq.
Now we examine the changes to qi. Observe that each q1

i “ qi and y1
i “ yi for any

i ă i, as pp1
iqiăi and ppiqiăi are the same. For i ě i, we also have q1

i “ qi and y1
i “ yi since

p1 ´ yiqp1 ´ yiq “ p1 ´ y1
iqp1 ´ y1

i
q. Moreover, we notice that

ÿ

iPri..is

qiyi “ qi

¨

˝1 ´
ź

iPri..is

p1 ´ yiq

˛

‚“
ÿ

iPri..is

q1
iy

1
i.

In the interval i P ri, is, we notice that by increasing pi and decreasing pi we increase qiyi

and decrease each qiyi for i P pi..iq, since each qi deceases. Moreover,

q1

i
y1

i
“

»

—

—

–

ź

jăi,
j‰i

p1 ´ yjq

fi

ffi

ffi

fl

¨ p1 ´ y1
iq ¨ y1

i
“

»

—

—

–

ź

jăi,
j‰i

p1 ´ yjq

fi

ffi

ffi

fl

¨ p1 ´ y1
i ´ p1 ´ y1

i
qp1 ´ y1

iqq

ă

»

—

—

–

ź

jăi,
j‰i

p1 ´ yjq

fi

ffi

ffi

fl

¨ p1 ´ yi ´ p1 ´ yiqp1 ´ yiqq “ qiyi,
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since y1
i ą yi while p1 ´ y1

iqp1 ´ y1

i
q “ p1 ´ yiqp1 ´ yiq. Hence, due to convexity of the function

expp´zq, we conclude that the objective
ř

ip1 ´ expp´
qiyi

x qq decreases when we substitute
pq, yq with pq1, y1q. Indeed, qiyi, the largest number among tqiyiu

i
i“i, increases, while all

other affected qiyi in ri, is decrease.

Case 2 (pi´1 “ 1). Now we consider a degenerate case when pi´1 “ 1. In this case, pi only
appears in the critical constraint for S “ ti, i ` 1, . . . , ku, which we assume to be not tight.
Note that pi ą pi`1 if i ă k by Claim 11 and also that pi ą 0 if i “ k (otherwise, we can
decrease k in (5)). Thus, sightly decreasing pi shall not violate any constraint. Furthermore,
since i ą ℓ, pi ă cx, we can also slightly increase pi without violating any constraints. Now,
we fix all pi for i ‰ i and consider yi “ pi as a locally free variable that we can slight increase
or decrease. We study the objective of (5) as a function of yi “ pi.

Observe that any change to yi only affects the terms p1 ´ e´
qiyi

x q for i ě i. Furthermore,
for i “ i, p1 ´ e´

q
i

y
i

x q is a strictly concave function of yi; and for i ą i

1 ´ exp
´

´
qiyi

x

¯

“ 1 ´ exp
˜

´p1 ´ yiq ¨

ś

jăi,j‰ip1 ´ yjq ¨ yi

x

¸

is also a concave function of yi.
Thus, the objective function of (5) is a strictly concave function of yi “ pi, at least in

some neighborhood of pi. Note that the minimum of a strictly concave function is always
achieved on the boundary of its domain. Therefore, some small perturbation of pi and
consequently yi “ pi (either slightly increase or decrease pi such that all constraint in (5) are
still satisfied) would strictly decrease the objective. This contradicts the optimality of p. ◀

Now we can write explicit formula for pi for i ą ℓ. By (iii) of Lemma 10, we have
śk

j“i`1p1 ´ pjq “ 1 ´ pk ´ iqx and
śk

j“ip1 ´ pjq “ 1 ´ pk ´ i ` 1qx. Thus, if i ą ℓ, then
yi “ pi “ x

1´pk´iqx and

qi “
ź

jăi

p1 ´ yjq “ p1 ´ cxqℓ ¨

i´1
ź

j“ℓ`1
p1 ´ piq “p1 ´ cxqℓ ¨

śk
j“ℓ`1p1 ´ piq
śk

j“ip1 ´ piq

“p1 ´ cxqℓ ¨
1 ´ pk ´ ℓqx

1 ´ pk ´ i ` 1qx
.

Let t “ pk ´ ℓqx and s “ ℓx for notation simplicity. We have, for small x

qiyi

x
“

#

1´e´cx

x p1 ´ cxqi´1 « c ¨ e´c¨pi´1qx, i ď ℓ

p1 ´ cxqℓ ¨
p1´tq

p1´pk´iqxq¨p1´pk´i`1qxq
« e´c¨s p1´tq

p1´t`pi´ℓqxq2 , i ą ℓ

Consequently, we have that for small x

k
ÿ

i“1
x ¨

´

1 ´ e´
qiyi

x

¯

“

ℓ
ÿ

i“1
x ¨

´

1 ´ e´
qiyi

x

¯

`

k
ÿ

i“ℓ`1
x ¨

´

1 ´ e´
qiyi

x

¯

“

ℓ
ÿ

i“1
x ¨

´

1 ´ e´c¨e´c¨pi´1qx
¯

`

k
ÿ

i“ℓ`1
x ¨

ˆ

1 ´ e
´e´c¨s p1´tq

p1´t`pi´ℓqxq2

˙

ě

ż s

0
1 ´ e´ce´cz

dz `

ż t

0
1 ´ e

´e´cs
¨

1´t

p1´t`zq2 dz

Furthermore, since x
1´t « x

1´pk´ℓ´1qx “ pℓ`1 ď 1 ´ e´cx « cx, we have t ď 1 ´ 1
c .
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To finish the proof, it suffices to lower bound the following function

h2ps, tq
def
““

ˆ
ż s

0
1 ´ e´ce´cz

dz `

ż t

0
1 ´ e

´e´cs
¨

1´t

p1´t`zq2 dz

˙

{ ps ` tq ,

subject to s P r0, 1s, t P
“

0, 1 ´ 1
c

‰

, s ` t P p0, 1s.
We use numerical methods to show h2ps, tq ě h2

` 1
c , 1 ´ 1

c

˘

ą 0.503 when c “ 1.7. The
details are in the full version.

5 Improved Analysis: Regular Graphs

In this section, we prove a stronger performance guarantee of Greedy for regular graphs.
According to the definition of log-normalized regular graph, each edge with log-normalized
weight we can be substituted by a set of consecutive “small” edges with the same total
log-normalized weight. For the ease of presentation, we assume that all edges are infinitesimal
within this section. Let xe “ we

c and ye “ 1 ´ e´we for all e P E as defined in Section 3.
Define the following two types of contributions of each edge e P Evu, where u P L and

v P R:

Ipeq
def
““ xe ¨

ˆ

1 ´ exp
ˆ

´
qupeq ¨ ye

xe

˙˙

;

and IIpeq
def
““ ye ¨

`

Pr
“

Mupeq
‰

´ Pr rQu peqs
˘

.

In Section 3, we estimated performance of Greedy with a lower bound of
ř

ePE Ipeq.
Recall that this bound corresponds to the event that edge e is the first realized edge of u. It
turns out that we can add an extra term IIpeq on top of Ipeq to have a better bound on the
probability that edge e is matched. The term IIpeq corresponds to the event that e is not the
first realized edge of u, but u is still unmatched before e. Formally, we have the following
Lemma 12, where coefficient e´c´ce´c in front of IIpeq ensures that the event from which we
get extra gain is disjoint with the events from which we obtain the contribution of the first
kind. I.e., we avoid double counting.

Within this section, we use computer assisted calculations in several places. We state all
our lemmas in the case when c “ 2 to highlight the improvement of our analysis over the
competitive ratio of 0.532. We remark that our analysis generalizes for a wide range of the
parameter c. The proofs of Lemmas 12 and 13 can be found in the full version.

▶ Lemma 12. When c “ 2,

ALG ě
ÿ

ePE

´

Ipeq ` e´c´ce´c

¨ IIpeq

¯

. (6)

By Lemma 4, the Ipeq term alone is sufficient to show that Greedy is 0.532-competitive
for 2-regular graphs. Next, we study the IIpeq term.

Let δu “ PrrMus ´ PrrQus for each vertex u P L at the end of algorithm’s execution.
Note that PrrMupeqs ě PrrQupeqs for all e P Eu, because u cannot be matched at the
moment of edge e arrival, if u had no realized edges. Thus δu ě 0. Similar to Lemma 3, we
fix a vertex u P L and study the sum of IIpeq for all edges e P Eu.

▶ Lemma 13. For any vertex u P L, when c “ 2,
ÿ

ePEu

IIpeq “
ÿ

ePEu

ye ¨
`

Pr
“

Mupeq
‰

´ Pr rQupeqs
˘

ě 1.98 ¨ δ2
u.
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Figure 2 Hard instance for any algorithm.

▶ Theorem 14. Greedy is 0.552-competitive on 2-regular graphs.

Proof. We have that

ALG “
ÿ

uPL

Pr rMus “
ÿ

uPL

`

1 ´ Pr
“

Mu

‰˘

“
ÿ

uPL

`

1 ´ e´c ´ δu

˘

.

We recall definition of h1pcq
def
““

ş1
0

´

1 ´ e´ce´cz
¯

dz from Section 3. Then,

|L| ¨ p1 ´ e´cq ´
ÿ

uPL

δu

ě
ÿ

ePE

´

Ipeq ` e´c´ce´c

¨ IIpeq

¯

(by Lemma 12)

ě
ÿ

uPL

´

h1pcq ` e´c´ce´c

¨ 1.98 ¨ δ2
u

¯

(by Lemma 4, 13)

ěh1pcq ¨ |L| ` 1.98 ¨ e´c´ce´c

¨
p
ř

uPL δuq2

|L|
. (by Cauchy-Schwarz inequality)

Let ∆ “

ř

uPL δu

|L|
. We rearrange the above inequality and get the following for c “ 2.

p1 ´ e´2 ´ h1p2qq ě ∆ ` 1.98 ¨ e´2´2e´2
¨ ∆2.

Solving the inequality numerically, we have that ∆ ď 0.312. Therefore,

ALG “ p1 ´ e´2 ´ ∆q ¨ |L| ě p1 ´ e´2 ´ 0.312q ¨ |L| ě 0.552 ¨ |L|. ◀

6 Problem Hardness

In this section, we present an upper bound of 2
3 « 0.667 for all online algorithms. Consider the

graph shown in Figure 2. We use L1 “ tuiu
n
i“1, R1 “ tvjun

j“1, L2 “ tu1
iu

n
i“1 and R2 “ tv1

jun
j“1

to denote the vertices in the graph. The edges are defined as the following:
1. For each pair of pu, vq P L1 ˆ R1, let there be an edge pu, vq with existence probability 1.

We call them type-1 edges (red solid edges).
2. For each i P rns, let there be an edge pui, v1

iq with existence probability 1
2 . We call them

type-2 edges (blue dashed edges).
3. For each i P rns, let there be an edge pu1

i, viq with existence probability 1
2 . We call them

type-3 edges (green dashed edges).
Let the type-1 edges arrive first and then type-2 and type-3 edges.
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▶ Theorem 15. No algorithm is better than 2
3 -competitive.

Proof. Note that there is no randomness for type-1 edges. If an algorithm matches k of
them, there will be n´k

2 possible type-2 edges and n´k
2 type-3 edges in expectation. Thus

any online algorithm matches no more than k ` n´k
2 ` n´k

2 “ n in expectation.
On the other hand, with high probability, there are at least p0.5 ´ op1qq ¨ n realized type-2

edges and at least p0.5 ´ op1qq ¨ n realized type-3 edges. In this case, the prophet can match
p0.5 ´op1qq ¨ n type-2 and type-3 edges respectively and then 0.5 ¨ n type-1 edges. In total, the
prophet matches p1.5 ´ op1qq ¨ n edges with high probability. That is, OPT ě p1.5 ´ op1qq ¨ n

when n Ñ 8. ◀
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Abstract
One of the most basic graph problems, All-Pairs Shortest Paths (APSP) is known to be solvable in
n3−o(1) time, and it is widely open whether it has an O(n3−ϵ) time algorithm for ϵ > 0. To better
understand APSP, one often strives to obtain subcubic time algorithms for structured instances of
APSP and problems equivalent to it, such as the Min-Plus matrix product.

A natural structured version of Min-Plus product is Monotone Min-Plus product which has been
studied in the context of the Batch Range Mode [SODA’20] and Dynamic Range Mode [ICALP’20]
problems. This paper improves the known algorithms for Monotone Min-Plus Product and for
Batch and Dynamic Range Mode, and establishes a connection between Monotone Min-Plus Product
and the Single Source Replacement Paths (SSRP) problem on an n-vertex graph with potentially
negative edge weights in {−M, . . . , M}.

SSRP with positive integer edge weights bounded by M can be solved in Õ(Mnω) time,
whereas the prior fastest algorithm for graphs with possibly negative weights [FOCS’12] runs
in O(M0.7519n2.5286) time, the current best running time for directed APSP with small integer
weights. Using Monotone Min-Plus Product, we obtain an improved O(M0.8043n2.4957) time SSRP
algorithm, showing that SSRP with constant negative integer weights is likely easier than directed
unweighted APSP, a problem that is believed to require n2.5−o(1) time.

Complementing our algorithm for SSRP, we give a reduction from the Bounded-Difference
Min-Plus Product problem studied by Bringmann et al. [FOCS’16] to negative weight SSRP. This
reduction shows that it might be difficult to obtain an Õ(Mnω) time algorithm for SSRP with
negative weight edges, thus separating the problem from SSRP with only positive weight edges.
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1 Introduction

The All-Pairs Shortest Paths problem (APSP) is one of the most well-known problems in
graph algorithms. Following the classical Floyd–Warshall algorithm that solves APSP in
O(n3) time in n-vertex edge-weighted graphs, a long list of papers have been dedicated to
improving the APSP running time. The current best algorithm by Williams [26] runs in
n3/2Θ(

√
log n) time. It is a big open problem whether a truly sub-cubic, O(n3−ϵ)-time for

ϵ > 0, algorithm for APSP exists. In fact, the popular APSP hypothesis from Fine-Grained
Complexity [23] asserts that this is not the case.

In the Min-Plus Product problem, one is given two n× n integer matrices A, B and is
required to compute an n×n matrix C = A ⋆ B such that Ci,j = mink{Ai,k + Bk,j}. Fischer
and Meyer [12] showed that Min-Plus Product is equivalent to APSP, in the sense that a T (n)
time algorithm for either of the problems immediately implies an O(T (n)) time algorithm
for the other. The APSP hypothesis thus states that computing the min-plus product of
n× n integer matrices requires n3−o(1) time1.

Structured Min-Plus Products. To better understand the complexity of APSP, much
research focuses on improving the running time for Min-Plus Product when one or both of
the matrices have some structure, with the hope that eventually all instances can be handled.
As a fundamental problem, Min-Plus Product can be used to solve many other problems. It
turns out that in many cases a structured version of Min-Plus Product suffices [25, 4]. Thus,
studying structured instances of Min-Plus Product has the potential to speed up the running
times for many applications.

Alon, Galil and Margalit [3] first studied the Min-Plus Product of structured matrices.
They showed, following ideas of Yuval [30], that if all entries of two n× n matrices A, B are
integers in {−M, . . . , M} ∪ {∞}, then one can compute the min-plus product of A and B in
Õ(Mnω) time2, where ω ∈ [2, 2.373) denotes the best possible exponent of square matrix
multiplication [22, 17, 1].

Yuster [28] considered Min-Plus Product when one of the matrices has a small number of
distinct entries in each row, generalizing [3]. Bringmann et al. [4] studied Min-Plus Product
of bounded-difference matrices, generalizing [3, 28]. An integer matrix is called to have
bounded differences if all pairs of adjacent entries (both horizontally and vertically) differ
by at most O(1). Bringmann et al. [4] gave an O(n2.8244) time algorithm for computing the
Min-Plus Product between two bounded-difference matrices. When ω = 2, their algorithm
runs in O(n2.7554) time. They also studied variants of this problem including the case when
only one matrix is guaranteed to have bounded differences, and the bounded-differences are
only in the rows or only in the columns.

1 In fine-grained complexity one needs to fix the model of computation for each hardness hypothesis, and
the APSP hypothesis is typically stated for a word RAM with O(log n) bit words, which is the model
the algorithms in our paper are in.

2 Throughout the paper the Õ notation hides subpolynomial factors.
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Chan [5] gave a truly sub-cubic time algorithm for the min-plus product between geo-
metrically weighted matrices using a geometric tool called the partition theorem. Recently,
Vassilevska Williams and Xu [25] combined the approach of Bringmann et al. [4] and a
geometric data structure to give a truly subcubic Min-Plus Product algorithm for integer
matrices where one of the matrices has constant O(1)-approximate rank, further generalizing
the results of [4] and partially [5].

Our contribution. In this work, we study the Min-Plus Product of a monotone integer
matrix with an arbitrary3 integer matrix. We defer the general definition of Monotone
Min-Plus Product to Section 2. For now let us focus on an interesting special case: We are
given an arbitrary n× n integer matrix A and an n× n matrix B whose entries are positive
integers bounded by O(n), and such that each row of B is non-decreasing.

The above special case already subsumes the Min-Plus Product of bounded-difference
matrices studied by Bringmann et al.: Suppose we are asked to compute the min-plus product
of matrices A and B where B has bounded differences. In other words, all pairs of adjacent
entries (both horizontally and vertically) differ by at most some constant M . We can create a
matrix B′ so that B′

k,j = Bk,j−B1,1 +jM . It is easy to check that the matrix B′ satisfies the
above-mentioned special case definition of monotone matrix. Thus, we can use our algorithm
to compute the min-plus product C ′ = A ⋆ B′. Then it is easy to recover C = A ⋆ B by
setting Ci,j = C ′

i,j + B1,1 − jM . Therefore, Monotone Min-Plus Product is more general
than the Min-Plus Product of an arbitrary matrix with a bounded-difference matrix.

Monotone Min-Plus Product was first studied by Vassilevska Williams and Xu [25] as
a tool to give a fast algorithm for the Batch Range Mode problem. In their work, the
authors devise a black-box reduction from Monotone Min-Plus Product to their Min-Plus
Product algorithm for matrices with a small O(1)-approximate rank. Their algorithm runs
in Õ(n(15+ω)/6) = O(n2.8955) time for the above-mentioned special case. We improve and
generalize their algorithm. Below is a special case of our main theorem, which will be
introduced in Section 3.

▶ Theorem 1. The min-plus product A ⋆ B of two n× n matrices where entries of B are
non-negative integers bounded by O(n) and each row of B is non-decreasing can be computed
deterministically in Õ(n 12+ω

5 ) time. Using the current best bound on fast rectangular matrix
multiplication the running time improves to O(n2.8653).

If ω = 2, our improvement is from Õ(n17/6) ≤ O(n2.8334) time to Õ(n14/5) = Õ(n2.8) time.
We provide several interesting applications of our improved algorithm for Monotone Min-Plus
Product.

1.1 Applications
Single Source Replacement Paths. The main contribution of this paper is establishing a
relationship between Monotone Min-Plus Product and the Single-Source Replacement Paths
(SSRP) problem. In the SSRP problem, one is given a directed edge-weighted graph G and
a source vertex s, and is asked to compute for each edge e, dG(s, v, e)’s, the shortest path
distances from s to each vertex v in G \ {e}. Note that the interesting case is when e belongs
to a shortest paths tree rooted at s, so that there are only O(n2) distances to report.

3 Throughout the paper we assume the entries of the matrices are polylog(n)-bit integers or ∞ unless
otherwise stated.
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The trivial algorithm for SSRP runs in Õ(n3) time: For each edge e on the shortest path
tree rooted at s, run Dijkstra’s algorithm on the graph with e removed. Negative edge weights
can be handled with Johnson’s trick [16], without increasing the asymptotic complexity.
Vassilevska Williams and Williams [24] showed that APSP and SSRP are sub-cubically
equivalent. Hence, assuming the APSP hypothesis, there is no O(n3−ϵ) time algorithm for
SSRP in graphs with arbitrary integer weights, for any ϵ > 0. There seems to be little hope
to improve upon the trivial algorithm for the general case.

Grandoni and Vassilevska Williams [14] studied SSRP in graphs with integer edge weights
of small absolute value. They gave an algorithm that solves SSRP in directed n-vertex
graphs with edge weights in {−M, . . . , M} in Õ(M

1
4−ω n2+ 1

4−ω ) time, which would become
Õ(M0.5n2.5) if ω = 2. For positive weights only, they reduce the runtime to Õ(Mnω).

Let us consider the special case M = 1. Here, the algorithms of [14] solve SSRP with
positive weights 1 in Õ(nω) time, while the Õ(n2+ 1

4−ω ) runtime for SSRP with weights in
{−1, 0, 1} is the same as the runtime for APSP with weights in {−1, 0, 1}.

As APSP in graphs with arbitrary integer weights is fine-grained equivalent to SSRP
with arbitrary integer weights [24], it is possible that APSP with weights in {−1, 0, 1} could
be fine-grained equivalent to SSRP with weights in {−1, 0, 1}.

It is believed that APSP in directed graphs with weights in {−1, 0, 1} (and even for
unweighted graphs) requires n2.5−o(1) time [19, 27], as the best known algorithm by Zwick [31]
would run in Ω(n2.5) time even if ω = 2. As SSRP with small positive weights is in O(n2.5−ε)
time for ε > 0 [14], it is likely not fine-grained equivalent to directed unweighted APSP.
Beating the APSP runtime for SSRP with negative weights is an open problem.

This leads to the following interesting questions.

(1) Is SSRP with negative weights inherently harder than SSRP with only positive weights?
(2) Or, is it possible to improve the running time of SSRP with negative weights, possibly

below n2.5, thus showing that it is likely not as hard as directed unweighted APSP?

Quite surprisingly, we give positive answers to both of these questions. First, we improve
over the running time of [14] for negative weights.

▶ Theorem 2. There is a randomized algorithm that solves SSRP in a directed n-vertex graph
with edge weights in {−M, . . . , M} in Õ(M

5
17−4ω n

36−7ω
17−4ω ) time, with high probability. Using

the current best bound on fast rectangular matrix multiplication the running time improves to
O(M0.8043n2.4957).

Notably, when M is small enough, the running time O(M0.8043n2.4957) is polynomially
faster than n2.5, and hence faster than the best known running time of APSP in directed
unweighted graphs which is Ω(n2.5) even if ω = 2. This answers our question (2) above. If
ω = 2, our running time for SSRP with negative weights is Õ(M5/9n22/9) ≤ O(M0.556n2.445).

APSP in directed graphs with edge weights in {−1, 0, 1} is one of long list of so-called
intermediate graph and matrix problems [19, 27], whose running time lies between Õ(nω)
and Õ(n3) and becomes Õ(n2.5) when ω = 2. Our result shows that SSRP with bounded
negative integer weights is not an intermediate problem. We remark that recently Grandoni
et al. [13] showed that another (ex-)candidate intermediate problem, All-Pairs LCA in DAGs,
can actually be solved faster than O(n2.5) time.

We prove Theorem 2 by improving the runtime of the so-called subpath problem, which
is the bottleneck in the algorithm of [14]. Grandoni and Vassilevska Williams solve it by
reducing to APSP in directed graphs with edge weights in {−M, . . . , M}, and applying
Zwick’s APSP algorithm [31]. We show that the APSP computation can be rearranged so
that certain min-plus products that appear throughout involve monotone matrices.
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Next, we identify an obstacle to obtaining a Õ(Mnω) time algorithm for SSRP with
negative weights, addressing our question (1).

▶ Theorem 3. If there exists a T (n) time algorithm for SSRP in n-vertex graphs with
edge weights in {−1, 0, 1}, then there exists an O(T (n)

√
n) time algorithm for the Bounded-

Difference Min-Plus Product of n× n matrices.

Theorem 3 gives the following argument why SSRP with negative weights might be hard.
The current best algorithm for Bounded-Difference Min-Plus Product runs in O(n2.7554) time
even if ω = 2. If SSRP with weights {−1, 0, 1} could be solved in Õ(n2) time (when ω = 2),
then Bounded-Difference Min-Plus Product could be solved in Õ(n2.5) time, which would be
a breakthrough in structured Min-Plus Product algorithms.

Recently replacement paths problems have received increased attention [8, 2, 9, 10]. None
of these works is directly related to ours, because they focus either on the s-t Replacement
Paths problem (with both source and target nodes fixed), or on combinatorial algorithms
(i.e. without fast matrix multiplication) for sparse graphs.

Range Mode. Given an array a of elements, a range mode query asks for the most frequent
element in a contiguous interval of a. In the Batch Range Mode problem the array a is fixed
and all range mode queries are given in advance. In the Dynamic Range Mode problem one
starts with an empty array and has to support insertions and deletions, and handle queries
in an online fashion.

Vassilevska Williams and Xu [25] were the first to use structured Min-Plus Product in
range mode algorithms. They reduced Batch Range Mode to a Min-Plus Product instance
where both matrices have some monotone structures. Their techniques give an O(n1.4854)
time algorithm for Batch Range Mode on an array of size n and n queries. Since we improve
over their Monotone Min-Plus Product algorithm, we naturally obtain a faster Batch Range
Mode algorithm.

▶ Theorem 4. The Batch Range Mode problem can be solved deterministically in time
Õ(n

21+2ω
15+ω ). Using the current best bound on fast rectangular matrix multiplication the

running time improves to O(n1.4805).

There are multiple algorithms that solve Dynamic Range Mode in Õ(n2/3) time per
update and query on an array of size bounded by n [6, 11]. Recently, Sandlund and Xu [21]
improved both update and query time to O(n0.6560) by using a so-called Min-Plus-Query-
Witness problem. During the preprocessing phase of the Min-Plus-Query-Witness problem,
one is given two matrices A, B. During the query phase, given two indices i, j and a set S,
one is asked to compute arg mink ̸∈S{Ai,k + Bk,j}, where the set S can be viewed as the set
of elements recently deleted in the array. In the Min-Plus-Query-Witness instances reduced
from Dynamic Range Mode, the matrices A, B have the monotone property, so our techniques
for Monotone Min-Plus Product can also apply to these Min-Plus-Query-Witness instances,
leading to a faster Dynamic Range Mode algorithm.

▶ Theorem 5. The Dynamic Range Mode problem can be solved deterministically in Õ(n
ω+9

ω+15 )
worst-case time per query with Õ(n

3ω+39
2ω+30 ) space. Using the current best bound on fast

rectangular matrix multiplication improves the running time to O(n0.6524) and the space
complexity to O(n1.3262).
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1.2 Overview of the Monotone Min-Plus Product Algorithm
Our improvement is achieved by extending Vassilevska Williams and Xu’s [25] framework so
that it can handle the more general monotone matrices. The algorithm has three phases. Say
we would like to compute the min-plus product C = A ⋆ B, where B is a monotone matrix.

In Phase 1, we compute a matrix C̃ which is close in ℓ∞ norm to the desired output C.
This can be done by, e.g., computing the min-plus product of ⌊ A

W ⌋ and ⌊ B
W ⌋, the downscaled

versions of A and B, for some small parameter W .
In Phase 2, we repeatedly sample columns of B, and create new matrices Ar and Br

(for r = 1, 2, . . .) whose entries are simple linear combinations of A, B and C̃. We replace
large-magnitude entries of A with ∞, so that all finite entries of Ar are of small absolute
values, and that the min-plus product Ar ⋆ Br can be computed efficiently. The results are
collected in a way such that by the end of Phase 2, we have found, for every pair (i, j),

min
k
{Ai,k + Bk,j : Ar

i,k ̸=∞ for some r}.

In Phase 3, we deal with (i, k) such that Ar
i,k = ∞ for all r. Such (i, k) are called

uncovered. It can be shown that the number of relevant triples (i, k, j) with (i, k) uncovered is
small, and we can afford enumerating all such triples. The enumeration is done by performing
a witness-listing version of min-plus product of the downscaled versions of A and B.

We base on the fact that, when a monotone matrix B has very small entries, the number
of changes, i.e. pairs (k, j) for which Bk,j ≠ Bk,j+1, can be upper-bounded. Then for each
fixed i we let j iterate through its range, and we maintain the set {Ai,k + Bk,j} during the
iteration. The total number of updates to the set is exactly the number of changes. This
gives us an efficient way to compute min-plus product (and its witness-listing version) of the
downscaled matrices, and leads to an efficient running time for Phases 1 and 3.

What makes our improvement possible is that we focus directly on the structure of
monotone matrices, instead of going through a lossy black-box reduction to the Min-Plus
Product of bounded-difference matrices, like the previous work [25] did.

2 Preliminaries

▶ Definition 6 (Rectangular Matrix Multiplication Exponent). Let α, β, γ be non-negative real
numbers. Define ω(α, β, γ) to be the smallest number such that the product of an nα × nβ

matrix by an nβ × nγ matrix can be computed in Õ(nω(α,β,γ)) time.

▶ Definition 7. Let α, β, γ, θ be non-negative real numbers. Define g(α, β, γ, θ) to be the
smallest number such that the min-plus product of an nα × nβ matrix whose entries are in
{−nθ, . . . , nθ} ∪ {∞} by an arbitrary nβ × nγ matrix can be computed in Õ(ng(α,β,γ,θ)) time.

▶ Definition 8 (Bounded-Difference Matrix). An n×m matrix A is called a bounded-difference
matrix if |Ai,j −Ai,j+1| ≤ 1 for every 1 ≤ i ≤ n, 1 ≤ j < m and |Ai,j −Ai+1,j | ≤ 1 for every
1 ≤ i < n, 1 ≤ j ≤ m.

▶ Problem 9 (Bounded-Difference Min-Plus Product). Given two bounded-difference integer
matrices A and B, compute A ⋆ B.

▶ Definition 10 (Monotone Matrix). An nβ × nγ matrix B is called monotone if for every
k ∈ [nβ ], Bk,j is non-decreasing in j ∈ [nγ ]. For a monotone matrix B, we define its total
range as

∑
k∈[nβ ](maxj∈[nγ ],Bk,j ̸=∞ Bk,j −Bk,1 + 1).
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▶ Problem 11 (Monotone Min-Plus Product). Given an nα × nβ matrix A and an nβ × nγ

matrix B where B is monotone and has total range O(nβ+η), where α, β, γ, η are non-negative
real numbers, compute the min-plus product A ⋆ B.

▶ Definition 12. Define m(α, β, γ, η) to be the smallest number such that Monotone Min-Plus
Product with parameters α, β, γ, η, can be computed in Õ(nm(α,β,γ,η)) time.

In our applications, we only need the case α = γ. Because m(cα, cβ, cγ, cη) =
cm(α, β, γ, η) for any c ≥ 0, it suffices to consider only the case α = γ = 1.

2.1 Upper bounds for g

We prove some useful upper bound for the function g(·, ·, ·, ·) introduced in Definition 7. We
use the following bound from [7], which is a straightforward generalization of Theorem 1.2
from [25] to the case of rectangular matrices.

▶ Lemma 13. For any non-negative real numbers α, β, γ, θ,

g(α, β, γ, θ) ≤ min
0≤δ≤β

max{ω(α, β, β + γ − δ) + θ, δ + α + γ}. (1)

We only need the following special cases of (1).

▶ Corollary 14. For any non-negative real numbers β and θ,

g(1, β, 1, θ) ≤ 1
2(2 + β + ω(1, β, 1) + θ), (2)

g(1, 1, 1, θ) ≤ min
0≤δ≤1

max{ω(1, 1, 2− δ) + θ, 2 + δ}. (3)

Proof. Consider the term ω(α, β, β + γ − θ) in (1). By splitting matrix B into nβ−δ

matrices along its second dimension and computing nβ−δ independent instances of matrix
multiplications, we get

ω(α, β, β + γ − δ) ≤ ω(α, β, γ) + β − δ. (4)

We plug (4) into (1), and take δ = min{β, 1
2 (ω(α, β, γ) + β + θ − α− γ)}, to get

g(α, β, γ, θ) ≤ max{ω(α, β, γ) + θ,
1
2(α + β + γ + ω(α, β, γ) + θ)}. (5)

However, if ω(α, β, γ) + θ ≥ 1
2 (α + β + γ + ω(α, β, γ) + θ), then both sides of (5) are at least

α + β + γ, and we can compute the min-plus product in O(nα+β+γ) time using a trivial
algorithm. Therefore we get (2).

(3) is a simple substitution α = β = γ = 1 to (1). ◀

▶ Remark 15. In the rectangular case α = γ = 1, we use (4) so that in the final expression (2)
we only need to deal with terms of the form ω(1, β, 1), whose value can be bounded by [18].
We know of no handy upper bounds for ω(α, β, γ) when all three parameters are distinct.

In the square case α = β = γ = 1, we do not need to use the simplification (4). This is
because the upper bound of ω(1, β, 1) in [18] is by a bilinear algorithm. Thus by [15], the
same upper bound works for ω(1, 1, β).
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3 Monotone Min-Plus Product

▶ Theorem 16. The min-plus product of an n×nβ matrix A and an nβ ×n matrix B where
B is monotone with total range O(nβ+η) can be deterministically computed, for any θ ∈ [0, η],
in time Õ(nmax{1+β+η−θ, 1

2 (2+β+g(1,β,1,θ))}). In other words,

m(1, β, 1, η) ≤ min
0≤θ≤η

max{1 + β + η − θ,
1
2(2 + β + g(1, β, 1, θ))}.

Proof. Proof of Theorem 16 follows the three-phase framework of [4, 25], which we have
briefly described in Section 1.2. Here we present the full algorithm.

Phase 1. Let θ ∈ [0, η] be a parameter, and let W = ⌊nθ⌋. We define two matrices Ã and
B̃ as Ãi,k = ⌊Ai,k

W ⌋ and B̃k,j = ⌊Bi,k

W ⌋. We compute the min-plus product Ã ⋆ B̃ and let
C̃i,j = (Ã ⋆ B̃)i,jW . Then ||C̃ − C||∞ ≤ 2W .

We compute Ã ⋆ B̃ using the following lemma, which is a simple algorithm that works
fast when the total range is very small.

▶ Lemma 17. m(α, β, γ, η) ≤ max{α + γ, β + γ, α + β + η}.

Proof. Say we would like to compute C = A ⋆ B. For a fixed row i ∈ [nα], we iterate through
columns j ∈ [nγ ], maintaining the multi-set {Ai,k + Bk,j : k ∈ [nβ ]}.

Each time j increases, we need to update the multi-set for those k where Bk,j ≠ Bk,j−1.
The total number of (k, j) satisfying Bk,j ≠ Bk,j−1 is O(nβ+η) by monotonicity and the
bound on total range.

For each i ∈ [nα], we need to make O(nβ+η) updates and O(nγ) queries for the minimum
number in the multi-set. We can use a balanced BST to maintain the multi-set so that each
update and query costs Õ(1) time. The total running time is Õ(nmax{α+γ,β+γ,α+β+η}). ◀

Total range of B̃ is O(nβ+η−θ), so running time of Phase 1 is Õ(nmax{2,1+β+η−θ}).

Phase 2. In Phase 2 we compute a matrix Ĉ which upper bounds C = A ⋆ B and agrees
with it on most entries. Initially, let Ĉi,j ←∞ for all i, j ∈ [n].

Phase 2 consists of (10 + β)nρ log n rounds, for a parameter ρ ≥ 0 to be chosen later. In
the r-th round, we choose jr ∈ [n] uniformly at random4. Define matrix Ar and Br as

Ar
i,k =

{
Ai,k + Bk,jr − C̃i,jr if Ai,k + Bk,jr − C̃i,jr ≤ 3W and Ar′

i,k =∞∀r′ < r,

∞ otherwise,

Br
k,j =

{
Bk,j −Bk,jr if Bk,jr ̸=∞,

0 otherwise.

We compute Cr = Ar ⋆ Br using Corollary 14 because Ar has bounded entries. Finally,
for all i, j ∈ [n], we make the update Ĉi,j ← min{Ĉi,j , Cr

i,j + C̃i,jr}.
In other words, in the end we have Ĉi,j = minr{Cr

i,j + C̃i,jr}. If Ar
i,k ̸=∞, then for all j,

we have Ĉi,j ≤ Cr
i,j + C̃i,jr ≤ Ar

i,k + Br
i,k + C̃i,jr = Ai,k + Bk,j . Thus in this case we have

effectively updated Ĉi,j ’s using Ai,k + Bk,j for all j.

4 For simplicity of presentation, we use randomness here. The derandomization is deferred to the full
version of the paper.
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Following [25], we make the following definitions: a triple (i, k, j) ∈ [n] × [nβ ] × [n] is
strongly relevant, if Ai,k + Bk,j = Ci,j ; weakly relevant, if Ai,k + Bk,j − C̃i,j ≤ 3W ; covered, if
Ar

i,k ̸=∞ for some r; uncovered, if it is not covered. We use the following lemma from [25].

▶ Lemma 18 ([25, Lemma 4.3]). With probability 1 − n−9, the number of triples that are
weakly relevant and uncovered is at most n2+β−ρ.

Proof. Fix some pair of (i, k). If the number of j such that (i, k, j) is weakly relevant is
at least n1−ρ, then with probability at least 1 − (1 − n−ρ)(10+β)nρ log n ≥ 1 − n−10−β , we
will sample a jr such that (i, k, jr) is weakly relevant. If so, Ar

i,k ̸=∞ for some r and thus
(i, k, j) will be covered for all j. Therefore, with probability at least 1− n−9, all (i, k) that
are in at least n1−ρ weakly relevant triples will be covered. The number of remaining weakly
relevant triples is at most n2+β−ρ. ◀

Each round costs Õ(ng(1,β,1,θ)) time. Phase 2 costs Õ(nρ+g(1,β,1,θ)) time in total.

Phase 3. We define a triple (i, k, j) to be moderately relevant if Ãi,k + B̃k,j ≤ (Ã ⋆ B̃)i,j + 1.
In Phase 3, we enumerate over moderately relevant and uncovered triples to complete
matrix C.

▶ Lemma 19. Every strongly relevant triple is also moderately relevant.

Proof. Suppose (i, k, j) is strongly relevant. If Ãi,k′ + B̃k′,j = (Ã ⋆ B̃)i,j for some k′, then
because Ai,k + Bk,j ≤ Ai,k′ + Bk′,j , we have

Ãi,k + B̃k,j ≤ Ãi,k′ + B̃k′,j + 1 = (Ã ⋆ B̃)i,j + 1.

Hence (i, k, j) is moderately relevant. ◀

▶ Lemma 20. Every moderately relevant triple is also weakly relevant.

Proof. Suppose (i, k, j) is moderately relevant. Then

Ai,k + Bk,j − C̃i,j ≤ (Ãi,k + 1)W + (B̃k,j + 1)W − (Ã ⋆ B̃)i,jW

≤ (Ãi,k + B̃k,j − (Ã ⋆ B̃)i,j)W + 2W ≤ 3W.

Hence (i, k, j) is weakly relevant. ◀

By Lemma 19, it suffices to enumerate over moderately relevant and uncovered triples to
recover all of C. By Lemmas 18 and 20, the number of moderately relevant and uncovered
triples is at most O(n2+β−ρ), with high probability.

▶ Lemma 21. With high probability, it takes time Õ(nmax{2,1+β+η−θ,2+β−ρ}) to enumerate
all moderately relevant and uncovered triples.

Proof. Define matrix Ǎ as Ǎi,k = Ãi,k if (i, k) is uncovered; and Ǎi,k =∞ otherwise.
We proceed on computing Ǎ ⋆ B̃ in a way similar to Lemma 17 from Phase 1. For each

row i, we maintain the set {(Ǎi,k + B̃k,j , k) : k ∈ [nβ ]} as j iterates over [n]. Each time
j increases, we need to update the multi-set for those k where B̃k,j ̸= B̃k,j−1. The total
number of (k, j) satisfying B̃k,j ̸= B̃k,j−1 is O(nβ+η−θ).

For each (i, j), we enumerate the elements in the multi-set in the increasing order, and
stop as soon as we observe a k where Ǎi,k + B̃k,j > (Ã ⋆ B̃)i,j + 1. Therefore we enumerate
exactly the moderately relevant uncovered triples. The running time is the running time
from Lemma 17, plus the number of triples emitted, which, with high probability, is at most
O(n2+β−ρ), by Lemma 18. ◀
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Phase 3 runs in time Õ(nmax{2,1+β+η−θ,2+β−ρ}).

Summary. Overall running time of our algorithm is Õ(nmax{2,1+β+η−θ,ρ+g(1,β,1,θ),2+β−ρ}).
Note that g(1, β, 1, θ) ≤ 2 + β. So we can take ρ = 1

2 (2 + β − g(1, β, 1, θ)). Also note that
ρ + g(1, β, 1, θ) ≥ 2, so the 2 in the max expression can be ignored. In the end we get
Õ(nmax{1+β+η−θ, 1

2 (2+β+g(1,β,1,θ))}) as claimed. ◀

As a benchmark, let us consider the case α = β = γ = η = 1.

▶ Theorem 1. The min-plus product A ⋆ B of two n× n matrices where entries of B are
non-negative integers bounded by O(n) and each row of B is non-decreasing can be computed
deterministically in Õ(n 12+ω

5 ) time. Using the current best bound on fast rectangular matrix
multiplication the running time improves to O(n2.8653).

Proof. In this case, Theorem 16 simplifies (via (3)) to

m(1, 1, 1, 1) ≤ min
0≤θ≤1

max{3− θ,
1
2(3 + g(1, 1, 1, θ))}

≤ min
0≤θ≤1

max{3− θ,
1
2(3 + min

0≤δ≤1
max{ω(1, 1, 2− δ) + θ, 2 + δ})}. (6)

Without using rectangular matrix multiplication, we can use ω(1, 1, 2− δ) ≤ 1− δ + ω

and take θ = 3−ω
5 and δ = 2ω−1

5 , so (6) takes value 12+ω
5 .

Using the rectangular matrix multiplication upper bounds in [18] (see also Remark 15),
we find that when θ = 0.1348, δ = 0.7305, expression (6) takes value ≤ 2.8653. ◀

4 Single Source Replacement Paths

We show our algorithm and lower bound for SSRP in this section. We use dG(u, v) to denote
the length of a shortest path from u to v in a graph G, and we use dG(u, v, e) as a shorthand
for dG\{e}(u, v). When it is clear from the context, we sometimes omit G.

4.1 Algorithm

In this section we present our improved algorithm for SSRP, proving Theorem 2.

▶ Theorem 2. There is a randomized algorithm that solves SSRP in a directed n-vertex graph
with edge weights in {−M, . . . , M} in Õ(M

5
17−4ω n

36−7ω
17−4ω ) time, with high probability. Using

the current best bound on fast rectangular matrix multiplication the running time improves to
O(M0.8043n2.4957).

To this end we improve the bottleneck in Grandoni-Vassilevska Williams algorithm [14],
hence let us begin with a high level overview of that algorithm. This is however just to
give a context and intuition, and our formal proof of Theorem 2 follows from a black-box5

application of Lemmas 23 and 27.

5 See end of the proof of Lemma 27 for a discussion why the Õ(Mnω) component from Lemma 23 can be
omitted.
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Algorithm overview and the subpath problem. The algorithm first computes a shortest
paths tree (from the source vertex s), and splits it into a subpolynomial number of subtrees.
By using balanced separators, the subtrees can be roughly of the same size. Then, for each
such subtree T , values dG(s, v, e) such that both vertex v and edge e belong to T are deferred
to a recursive call on a graph obtained from G by carefully compressing its parts outside T .
The only remaining interesting values dG(s, v, e) (i.e. such that they might be different from
dG(s, v)) are such that vertex v belongs to subtree T and edge e lies on the path from s to
the root of T in the shortest paths tree. The problem of computing those remaining values
is called subpath problem, which we now define formally.

▶ Definition 22 (Subpath problem). Given an n-vertex directed graph G with edge weights
in {−M, . . . , M}, a source vertex s, and a tree T which is a subtree of a shortest paths tree
from s, compute dG(s, v, e) for every v ∈ T and every e on the path from s to the root t of T

in the shortest paths tree.

Using the ideas outlined above, Grandoni and Vassilevska Williams formally reduce SSRP
to the subpath problem.

▶ Lemma 23 (Lemma 5.1 in [14]). Given an algorithm that solves the subpath problem in
time Õ(Mαnβ), with high probability, for constants β ≥ α + 1 ≥ 1, there is an algorithm that
solves SSRP in time Õ(Mnω + Mαnβ), with high probability.

Jumping paths and departing paths. We proceed to show how to solve the subpath problem.
Let P = (s = s1 → s2 → · · · → s|P | = t) be the s-t path in the shortest paths tree. A
replacement path witnessing dG(s, v, e) has to depart from P somewhere before e and then
can either (1) join P back somewhere after e, and thus reach v through t, or (2) never use
any other edge of P after departing. Paths of the first type are called jumping paths, and of
the second type – departing paths. Grandoni and Vassilevska Williams [14] use the fact that
jumping paths can be found by solving the s-t replacement paths problem, i.e. computing all
dG(s, t, e)’s for fixed t, which can be computed in Õ(Mnω) time (see Lemma 24). We just
follow their approach in that regard.

▶ Lemma 24 (Theorem 1.1 in [14]). There is a randomized algorithm that solves s-t replace-
ment paths problem in Õ(Mnω) time, with high probability.

Improved algorithm for departing paths. Let G̃ denote the graph obtained from G by
removing all edges on path P . Note that the length of a shortest departing replacement
path to v avoiding e = (si, si+1) equals to minj≤i dG(s, sj) + d

G̃
(sj , v). Grandoni and

Vassilevska Williams [14] simply feed G̃ to Zwick’s APSP algorithm [31], running in time
Õ(M

1
4−ω n2+ 1

4−ω ), to compute all d
G̃

(sj , v)’s. We take a different approach and employ
our truly subcubic algorithm for Monotone Min-Plus Product. We remark that any truly
subcubic algorithm would yield an improvement.

Let ζ ∈ [0, 1] be a parameter to be determined later. We say that a departing replacement
path is hop-long if it visits at least nζ nodes after departing P , otherwise it is hop-short. We
handle the two types of paths separately.

Hop-short paths. To find hop-short paths we use a modification of Zwick’s APSP al-
gorithm [31], already described in [14]. Zwick’s algorithm consists of O(log n) iterations,
and in the i-th iteration it computes the shortest paths which use at most (3/2)i nodes.
By running only first few iterations we can compute all hop-short shortest paths in time
Õ(Mnζ+ω(1,1−ζ,1)), which is faster than it would take to compute all shortest paths (given
that ζ is small enough). For a formal proof of this statement we refer to [14].
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▶ Lemma 25 (Corollary 3.1 in [14]). The distances between all pairs of nodes that have
shortest paths on at most nζ nodes can be computed in time Õ(Mnζ+ω(1,1−ζ,1)), with high
probability.

Hop-long paths. To find hop-long paths, first we sample (with replacement) c · n1−ζ ln n

nodes, for a large enough constant c. Let B ⊆ V denote the set of sampled nodes. For the
sake of analysis let us fix a set S of shortest hop-long departing replacement for all nodes
v ∈ T and all edges e ∈ P . When there is more than one such path of the smallest length for
a given pair (v, e), we choose an arbitrary one. Note that for paths in S, we only include the
portions after they depart P so that they only contain edges in G̃. Since the definition of
hop-long paths only concerns the length of the part of a path after it departs P , all paths
in S have length at least nζ . By a standard proof, with high probability, every path in S
contains a node from B which lies in that path’s middle third part.

Then we construct Yuster-Zwick distance oracle for graph G̃ (see Lemma 26 below) and
use it compute all Õ(n · n1−ζ) shortest paths to and from B using at least (1/3) · nζ nodes.
In total it takes time Õ(Mnω + n3−2ζ).

▶ Lemma 26 (implicit in [29], Lemma 2.3 in [14]). Given an n-vertex directed graph G, with
edge weights in {−M, . . . , M}, one can compute in Õ(Mnω) time an n × n matrix D, so
that the (i, j)-th entry of the min-plus product D ⋆ D is the distance from node i to j in G.
Furthermore, by the properties of D, the length of a shortest i⇝ j path containing at least
nζ nodes can be computed in Õ(n1−ζ) extra time, with high probability.

Let dY Z(·, ·) denote such computed distances. The length of a shortest hop-long departing
replacement path to v avoiding e = (si, si+1) equals minj≤i minb∈B dG(s, sj) + dY Z(sj , b) +
dY Z(b, v).

We create two matrices A and B, of dimensions at most n× |B| and |B| ×n, respectively,
such that

Ai,b = min
j≤i

dG(s, sj) + dY Z(sj , b), and Bb,v = dY Z(b, v).

We need to compute A ⋆ B. Note that Ai+1,b ≤ Ai,b, i.e. columns of A are monotone.
Moreover, finite entries of A are of absolute value at most 2 · nM , so we can compute
A ⋆ B = (BT ⋆ AT )T in time Õ(nm(1,1−ζ,1,1+logn M)).

Wrap-up and runtime analysis. Now we can sum up the running time and then balance
the terms. The proof of the following lemma is deferred to the full version of the paper.

▶ Lemma 27. There is a randomized algorithm that solves the subpath problem in a directed
n-vertex graph with edge weights in {−M, . . . , M} in Õ(M

5
17−4ω n

36−7ω
17−4ω ) time, with high

probability. Using fast rectangular matrix multiplication improves the running time to
O(M0.8043n2.4957).

4.2 Lower Bound
In this section, we prove our conditional lower bound for SSRP.

▶ Theorem 3. If there exists a T (n) time algorithm for SSRP in n-vertex graphs with
edge weights in {−1, 0, 1}, then there exists an O(T (n)

√
n) time algorithm for the Bounded-

Difference Min-Plus Product of n× n matrices.
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a1

a2

an

...

I

b1

b2

bn

...

J

p1 . . .
X′

1,1 + Y ′
1,1 − 1

p2 . . .

p√
n . . .

...

Figure 1 Reduction from Bounded-Difference Min-Plus Product to Ham-APSP (Lemma 29).
Most edges between the parts I, J and the middle paths p1, . . . , p√

n are omitted for clarity. The
green portions are the first type paths, and the blue portions are the second type paths.

We first reduce Bounded-Difference Min-Plus Product to a problem called Ham-APSP,
then we further reduce Ham-APSP to SSRP.

▶ Problem 28 (Ham-APSP). Given a directed unweighted graph G with vertex set {v1, . . . , vn}
and a Hamiltonian path v1 → · · · → vn of G, compute all pairs shortest path distances in G.

The key idea in the following reduction was used by Chan et al. [7] for a reduction from
Min-Plus Product with small integer weights to unweighted directed APSP.

▶ Lemma 29. If there exists a T (n) time algorithm for Ham-APSP in a graph with n vertices,
then there exists an O(T (n)

√
n) time algorithm for Bounded-Difference Min-Plus Product of

n× n matrices.

Proof. Given two n× n bounded-difference matrices A and B, we first split the columns of
A and rows of B to O(

√
n) pieces. For each pair of pieces, we need to compute the min-plus

product of an n×
√

n bounded-difference matrix X and a
√

n× n bounded-difference matrix
Y . We will use a single call of the assumed T (n) time algorithm for Ham-APSP to compute
the min-plus product between each pair of pieces, yielding an O(T (n)

√
n) overall running

time.
We create a new matrix X ′ such that X ′

i,k = Xi,k − Xi,1. Since |Xi,k − Xi,k+1| ≤ 1
for any i, k, all entries of X ′ are bounded by

√
n. We can create Y ′ similarly by setting

Y ′
k,j = Yk,j − Y1,j so that all entries of Y ′ are bounded by

√
n as well. We will later use the

Ham-APSP algorithm to compute X ′ ⋆ Y ′, which immediately gives X ⋆ Y via the relation
(X ⋆ Y )i,j = (X ′ ⋆ Y ′)i,j + Xi,1 + Y1,j .

In [7], Min-Plus Product of an n ×
√

n and a
√

n × n matrices with weights up to
√

n

is reduced to unweighted directed APSP on n-node graphs. Here is a description of that
reduction. We create a vertex set I of n vertices {a1, . . . , an} and a vertex set J of n vertices
{b1, . . . , bn}. We also create

√
n paths p1, . . . , p√

n each of length 2
√

n. From each ai to pk,
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we add a directed edge from ai to the (
√

n−X ′
i,k)-th node on pk; similarly, from each pk to

bj , we add a directed edge from the (
√

n + Y ′
k,j)-th node on pk to bj . Then we can see that

the distance from ai to bj equals (X ′ ⋆ Y ′)i,j + 2.
In order to have a Hamiltonian path in the graph, we need to add two types of additional

paths.
For the first type, we add paths of length 2 from ai to ai+1 and from bi to bi+1 for every

1 ≤ i < n. Clearly, we only add O(n) vertices and O(n) edges. Now consider the shortest
path from ai to bj for some i, j. The shortest path has the option to go to some ai′ for i′ ≥ i,
then choose some path pk in the middle, then go to bj′ for j′ ≤ j, and finally reach bj . The
cost of this path would be 2(i′ − i) + 1 + X ′

i′,k + Y ′
k,j′ + 1 + 2(j − j′). Because X and Y

have bound differences, we have that 2(i′ − i) + X ′
i′,k ≥ X ′

i,k and Y ′
k,j′ + 2(j − j′) ≥ Y ′

k,j .
Therefore, in one of the shortest paths from ai to bj , we have i′ = i and j′ = j. Thus, the
distance from ai to bj is exactly 2 + (X ′ ⋆ Y ′)i,j , so we can recover X ′ ⋆ Y ′ by computing all
the pairwise distances.

For the second type of paths, we add O(
√

n) paths of lengths 3
√

n to connect I, J and
each pk, as shown in Figure 1. The total number of vertices and number of edges added are
both O(n). Since all distances we care about are at most 2

√
n + O(1), adding those paths

won’t affect these distances.
This graph now has a Hamiltonian path: we can travel from a1 to an via the first type of

paths. Then we use the second type of paths to travel from an to the beginning of p1 and
then we can easily travel to the end of p1 by using edges of p1. Similarly, we can go through
all vertices in p2, . . . , p√

n. Finally, we travel from the end of p√
n to b1 via the second type

of paths, and then use the first type of paths to travel to bn. ◀

In the following lemma, we further reduce Ham-APSP to SSRP.

▶ Lemma 30. If there exists a T (n) time algorithm for SSRP in a graph with n vertices whose
edge weights are in {−1, 0, 1}, then there exists an O(T (n)) time algorithm for Ham-APSP
in a graph with n vertices.

Proof. Let G be an instance of the Ham-APSP problem. We first create a graph G′ whose
vertex set is {v′

0, v′
1, . . . , v′

n, v′
n+1} ∪ {v1, . . . , vn}. Then we add the following three types of

edges to G, as depicted in Figure 2:
1. We add an edge from v′

i to v′
i−1 of weight −1 for every 1 ≤ i ≤ n + 1 ;

2. We add an edge from v′
i to vi of weight 0 for every 1 ≤ i ≤ n ;

3. We add an edge from vi to vj of weight 1 for every (vi, vj) ∈ E(G). This part essentially
pastes a copy of G to G′.

v′
n+1 v′

n v′
n−1 v′

1 v′
0−1 −1

. . .
−1

G

vn

vn−1

v1

0 0 0

Figure 2 Reduction from Ham-APSP to SSRP with weights in {−1, 0, 1} (Lemma 30).
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If we cut the edge (v′
i, v′

i−1) in the graph G′, then the shortest path from v′
n+1 to vj for

some 1 ≤ j ≤ n must move from v′
n+1 to v′

k for some i ≤ k ≤ n, then take the weight 0 edge
to vk, and finally move to vj in the copy of graph G. Therefore, dG′(v′

n+1, vi, (v′
i, v′

i−1)) =
mini≤k≤n(k − n − 1) + dG(vk, vj). We show that mini≤k≤n(k − n − 1) + dG(vk, vj) =
(i− n− 1) + dG(vi, vj). Clearly, mini≤k≤n(k − n− 1) + dG(vk, vj) ≤ (i− n− 1) + dG(vi, vj)
since the right hand side is one of the terms we are minimizing over.

To show the other direction, we fix an arbitrary k ∈ [i, n]. By triangle inequality,
dG(vi, vk) + dG(vk, vj) ≥ dG(vi, vj). Since G has a Hamiltonian path v1 → · · · → vn, it holds
that dG(vi, vk) ≤ k − i. Hence,

(k− n− 1) + dG(vk, vj) ≥ (k− n− 1) + dG(vi, vj)− dG(vi, vk) ≥ (i− n− 1) + dG(vi, vj).

We have shown that dG′(v′
n+1, vi, (v′

i, v′
i−1)) = (i−n− 1) + dG(vi, vj). Thus, we can infer

the pairwise distances in G by querying the assumed T (n) time SSRP algorithm on graph
G′ since dG(vi, vj) = dG′(v′

n+1, vi, (v′
i, v′

i−1))− (i− n− 1). ◀

5 Range Mode

In this section, we show our improved algorithms for Batch Range Mode and Dynamic Range
Mode.

5.1 Batch Range Mode
▶ Theorem 4. The Batch Range Mode problem can be solved deterministically in time
Õ(n

21+2ω
15+ω ). Using the current best bound on fast rectangular matrix multiplication the

running time improves to O(n1.4805).

Proof. Via a binary search, Sandlund and Xu [21] showed that the Batch Range Mode
problem can be reduced to finding the frequencies of the most frequent elements for all
queries (with an Õ(1) factor overhead), which is in turn reduced to Monotone Min-Plus
Product in [21, Theorem 6.1], leading to a deterministic

Õ(nmin0≤τ≤1 max{m(1−τ,1−τ,1−τ,τ),1+τ})

time algorithm for Batch Range Mode.
Expanding the expression using Theorem 16 and (3), we have

min
0≤τ≤1

max{m(1− τ, 1− τ, 1− τ, τ), 1 + τ}

= min
0≤τ≤1

max{(1− τ)m(1, 1, 1,
τ

1− τ
), 1 + τ}

≤ min
0≤τ≤1

max{(1− τ) min
0≤θ≤ τ

1−τ

max{2 + τ

1− τ
− θ,

1
2(3 + g(1, 1, 1, θ))}, 1 + τ}

= min
0≤τ≤1

0≤θ≤ τ
1−τ

max{τ + (1− τ)(2− θ), 1− τ

2 (3 + g(1, 1, 1, θ)), 1 + τ}

≤ min
0≤τ≤1

0≤θ≤ τ
1−τ

0≤δ≤1

max{τ + (1− τ)(2− θ), 1− τ

2 (3 + max{ω(1, 1, 2− δ) + θ, 2 + δ}), 1 + τ}.

(7)

By using ω(1, 1, 2 − δ) ≤ 1 − δ + ω and taking δ = 4ω−3
9 , θ = 3−ω

9 , τ = 6+ω
15+ω , we can

upper bound (7) by 21+2ω
15+ω . Using the upper bounds in [18], we find that when τ = 0.4804,

θ = 0.0754, δ = 0.6984, expression (7) takes value ≤ 1.4805. ◀
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5.2 Dynamic Range Mode
▶ Theorem 5. The Dynamic Range Mode problem can be solved deterministically in Õ(n

ω+9
ω+15 )

worst-case time per query with Õ(n
3ω+39
2ω+30 ) space. Using the current best bound on fast

rectangular matrix multiplication improves the running time to O(n0.6524) and the space
complexity to O(n1.3262).

Our strategy is to improve [21, Lemma 11]. The following Min-Plus-Query-Witness
problem defined in [21, Problem 7] plays a key role in the algorithm for Dynamic Range
Mode.

▶ Problem 31 (Min-Plus-Query-Witness problem). We are given two matrices A and B and
are able to perform preprocessing before the first query. For each query, we are given two
indices i, j and a set S of indices, and we must output an index k∗ ̸∈ S such that

Ai,k∗ + Bk∗,j = min
k ̸∈S
{Ai,k + Bk,j}.

We recall the following lemma from [21].

▶ Lemma 32 ([21, Lemma 9]). Let β and θ be non-negative real numbers. The Min-Plus-
Query-Witness problem where A is an n×nβ matrix whose entries are in {−nθ, . . . , nθ}∪{∞}
and B is an nβ × n matrix can be solved with

Õ(nθ+ω(1,β,1)+β−σ) preprocessing time,
Õ(|S|+ nσ) worst-case time per query,
and Õ(nmax{2+β+θ,1+2β}−σ) space,

for every 0 ≤ σ ≤ β.

The following is our key lemma for the dynamic range mode algorithm.

▶ Lemma 33. The Min-Plus-Query-Witness problem where A is an n × nβ matrix, B is
an nβ × n monotone matrix with total range O(nβ+η), and the size of S for each query is
O(nλ), can be solved with

Õ(nmax{1+β+η−θ,ρ+θ+ω(1,β,1)+β−σ,2+β−ρ}) preprocessing time,
Õ(nλ + nρ+σ) worst-case time per query,
and Õ(nmax{1+β+η−θ,ρ+max{2+β+θ,1+2β}−σ,2+β−ρ}) space,

for any constants 0 ≤ θ ≤ η, ρ ≥ 0 and 0 ≤ σ ≤ β.

Proof. Preprocessing is in three steps, corresponding to the three phases of the algorithm
for Theorem 16.

Preprocessing Step 1. This step is slightly more complicated than Phase 1 of Theorem 16.
Let 0 ≤ θ ≤ η be a parameter to be chosen. Let W = ⌊nθ⌋. Define two matrices Ã and B̃ as
Ãi,k = ⌊Ai,k

W ⌋ and B̃k,j = ⌊Bk,j

W ⌋.
We iterate through j ∈ [n], and in each iteration j, maintain for each i ∈ [n] the set

Li,j := {(Ãi,k + B̃k,j , k) : k ∈ [nβ ]} using a persistent balanced BST.
Using the maintained information, we can compute a matrix C̃ ′, where each entry C̃ ′

i,j is
defined as W times the (nλ + 1)-th smallest element in {Ãi,k + B̃k,j : k ∈ [nβ ]}. Furthermore,
for each (i, j) and for any t, we can enumerate the t smallest elements in Li,j in Õ(t) time.

Time complexity and space complexity of this step are both Õ(nmax{2,1+β+η−θ}).
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Preprocessing Step 2. As in Phase 2 of Theorem 16, we sample jr ∈ [n] for r ∈ [Õ(nρ)]
for some parameter ρ to be chosen, and compute matrices Ar and Br as

Ar
i,k =

{
Ai,k + Bk,jr − C̃ ′

i,jr if |Ai,k + Bk,jr − C̃ ′
i,jr | ≤ 3W and Ar′

i,k =∞∀r′ < r,

∞ otherwise,

Br
k,j =

{
Bk,j −Bk,jr if Bk,jr ̸=∞,

0 otherwise.

Then for each r, we apply the data structure in Lemma 32 to Ar and Br. Run-
ning time for this step is Õ(nρ+θ+ω(1,β,1)+β−σ). Space complexity for this step is
Õ(nρ+max{2+β+θ,1+2β}−σ).

We note that this part can be derandomized as well.

Preprocessing Step 3. For a pair (i, k) if Ar
i,k ̸= ∞ for some r, we call (i, k) covered;

otherwise we call it uncovered. We call a triple (i, k, j) almost relevant if 0 ≤ Ãi,k + B̃k,j −
1

W C̃ ′
i,j ≤ 1. Note that for such triples, we must have |Ai,k +Bk,j− C̃ ′

i,j | ≤ 3W. So the number
of uncovered and almost relevant triples is Õ(n2+β−ρ).

We run an algorithm similar to Lemma 21 to enumerate all uncovered and almost
relevant triples (i, k, j). Then for each i, j ∈ [n], we use a balanced BST to store the set
Ti,j := {(Ai,k + Bk,j , k) : (i, k, j) is uncovered and almost relevant}.

Running time for this step is Õ(nmax{2,1+β+η−θ,2+β−ρ}). Space complexity for this step
is Õ(n2+β−ρ).

Query. Now let us describe how to handle a query. Let (S, i, j) be a query, and k∗ be an
optimal index, i.e., Ai,k∗ + Bk∗,j = mink ̸∈S{Ai,k + Bk,j}. There are three cases.

Case 1: (i, k∗) is covered. For each r, we query the data structure (Lemma 32) for Ar and
Br with (Sr, i, j) where Sr = S ∩ {k : Ar

i,k ̸=∞}. Because finite entries of Ar are disjoint
for different r, we have

∑
r |Sr| = |S|. So the total query time for this case is Õ(|S|+ nρ+σ).

Case 2: (i, k∗) is uncovered and almost relevant. In this case k∗ must be among the
(|S| + 1) smallest elements in Ti,j . We deal with this case by enumerating the (|S| + 1)
smallest elements in Ti,j . The query time for this case is Õ(|S|).

Case 3: (i, k∗) is uncovered and not almost relevant. Note that by definition of C̃ ′
i,j ,

in this case we must have Ãi,k∗ + B̃k∗,j − 1
W C̃ ′

i,j ≤ −1. Therefore k∗ must be among the
(nλ + 1) smallest elements in Li,j . We deal with this case by enumerating the (nλ + 1)
smallest elements in Li,j . The query time for this case is Õ(nλ).

Summary. Total preprocessing time is Õ(nmax{1+β+η−θ,ρ+θ+ω(1,β,1)+β−σ,2+β−ρ}). Space
complexity is Õ(nmax{1+β+η−θ,ρ+max{2+β+θ,1+2β}−σ,2+β−ρ}). Each query costs Õ(nλ +nρ+σ)
time. ◀

Proof of Theorem 5. The algorithm is exactly the same as in [21], except for replacing
[21, Lemma 11] with Lemma 33. We skip most of the algorithm description and focus on
analyzing the time and space complexity.

For the algorithm we need to choose three constants t1, t2, t3 ∈ [0, 1]. The algorithm has
three parts.
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Part 1: Infrequent values. In the first part, we handle values that appear at most n1−t1

times. By maintaining n1−t1 balanced BSTs, this part can be done in Õ(n2−2t1) time per
operation. Space complexity is Õ(n2−t1).

Part 2: Newly modified values. We maintain a data structure holding frequent values that
rebuilds every nt2 operations. The data structure is discussed in Part 3. In Part 2, we deal
with values that have been modified in the last nt2 operations. This part can be done in
Õ(nt2) time and Õ(nt2) space.

Part 3: Data structure. In Part 3, we build the data structure. For this part, we call
Lemma 33 where A is an n1−t3 × nt1 matrix, B is an nt1 × n1−t3 monotone matrix with
total range O(n), and in the queries we have |S| = O(nt2). The dimensions α = γ = 1− t3
come from choosing n1−t3 evenly spaced points in [n], and β = t1 comes from the O(nt1)
values which appear more than n1−t1 times. In a query we pick the maximum interval whose
endpoints are chosen points inside the query interval, and S is the set of values modified in
the last nt2 operations.

Rebuilding costs Õ(n(1−t3) max{1+β+η−θ,ρ+θ+ω(1,β,1)+β−σ,2+β−ρ}−t2) time per operation6,
where β = t1

1−t3
, η = 1−t1

1−t3
, and 0 ≤ θ ≤ η, ρ ≥ 0, 0 ≤ σ ≤ β are constants to be chosen. One

query in Lemma 33 costs Õ(nt2 + n(1−t3)(ρ+σ)) time. Besides the above, we also need Õ(nt3)
time per operation to deal with elements not covered by the maximum interval of chosen
points inside the query interval.

Space cost of the data structure is Õ(n(1−t3) max{ρ+max{2+β+θ,1+2β}−σ,2+β−ρ}).

Summary. Running time per operation is

Õ(n2−2t1 + nt2 + n(1−t3) max{1+β+η−θ,ρ+θ+ω(1,β,1)+β−σ,2+β−ρ}−t2 + n(1−t3)(ρ+σ) + nt3),

subject to t1, t2, t3 ∈ [0, 1], β = t1
1−t3

, η = 1−t1
1−t3

, 0 ≤ θ ≤ η, ρ ≥ 0, 0 ≤ σ ≤ β.
Space cost is Õ(n2−t1 + nt2 + n(1−t3) max{ρ+max{2+β+θ,1+2β}−σ,2+β−ρ}).
As an observation, in the optimum case we have β ≥ 1, so we may use ω(1, β, 1) ≤ ω+β−1.

As a result, we can set t1 = ω+21
2ω+30 , t2 = t3 = ω+9

ω+15 , θ = 3−ω
6 , ρ = 3−ω

4 and σ = 5ω+9
12 to upper

bound the running time by Õ(n
ω+9

ω+15 ). The space complexity is dominated by Part 1, which
is Õ(n2−t1) = Õ(n

3ω+39
2ω+30 ).

Taking t1 = 0.67385, t2 = t3 = 0.6523, θ = 0.1239, ρ = 0.1859, σ = 1.6902 and using fast
rectangular matrix multiplication we get O(n0.6524) running time per operation. The space
complexity is again dominated by Part 1, which is Õ(n2−t1) = O(n1.3262). ◀
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Abstract
We continue the study of distance sensitivity oracles (DSOs). Given a directed graph G with n

vertices and edge weights in {1, 2, . . . , M}, we want to build a data structure such that given any
source vertex u, any target vertex v, and any failure f (which is either a vertex or an edge), it
outputs the length of the shortest path from u to v not going through f . Our main result is a DSO
with preprocessing time O(n2.5794M) and constant query time. Previously, the best preprocessing
time of DSOs for directed graphs is O(n2.7233M), and even in the easier case of undirected graphs,
the best preprocessing time is O(n2.6865M) [Ren, ESA 2020]. One drawback of our DSOs, though,
is that it only supports distance queries but not path queries.

Our main technical ingredient is an algorithm that computes the inverse of a degree-d polynomial
matrix (i.e. a matrix whose entries are degree-d univariate polynomials) modulo xr. The algorithm
is adapted from [Zhou, Labahn and Storjohann, Journal of Complexity, 2015], and we replace some
of its intermediate steps with faster rectangular matrix multiplication algorithms.

We also show how to compute unique shortest paths in a directed graph with edge weights in
{1, 2, . . . , M}, in O(n2.5286M) time. This algorithm is crucial in the preprocessing algorithm of our
DSO. Our solution improves the O(n2.6865M) time bound in [Ren, ESA 2020], and matches the
current best time bound for computing all-pairs shortest paths.
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1 Introduction

In this paper, we consider the problem of constructing a distance sensitivity oracle (DSO).
A DSO is a data structure that preprocesses a directed graph G = (V, E) with n vertices
and m edges, and supports queries of the following form: Given a source vertex u, a target
vertex v, and a failure f (which can be either a vertex or an edge), output the length of the
shortest path from u to v that does not go through f .

One motivation for constructing DSOs is the fact that real-life networks often suffer from
failures. Consider a communication network among n servers. When a server u wants to send
a message to another server v, the most efficient way would be to send the message along the
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shortest path from u to v. However, if a failure happens in a server or a link between two
servers, we would need to recompute the shortest path with the failure taken into account. It
may be too slow to compute the shortest path from scratch each time a failure happens. A
better solution is to construct a DSO for the communication network, and invoke the query
algorithm of the DSO whenever a failure happens.

1.1 Related Work

The problem of constructing DSOs has received a lot of attention in the literature. A naïve
solution is to precompute the answers for every possible query (u, v, f), but it requires
Ω(n2m) space to store this DSO. Demetrescu et al. [11] constructed a DSO with O(n2 log n)
space that answers a query in constant time. However, the preprocessing time of the DSO
in [11] is O(mn2 + n3 log n), which is inefficient for large networks. Subsequently, Bernstein
and Karger improved the preprocessing time to Õ(n2√

m) [5], and finally Õ(mn) [6].1 The
preprocessing time Õ(mn) matches the current best time bound for the easier problem of
computing all-pairs shortest paths (APSP), and it is conjectured that APSP requires mn1−o(1)

time [20]. In this sense, the Õ(mn) time bound of [6] is optimal. Duan and Zhang [14]
improved the space complexity of the DSO to O(n2), eliminating the last log n factor, while
preserving constant query time and Õ(mn) preprocessing time.

However, for dense graphs (i.e. m = Θ(n2)) with edge weights in [−M, M ], it is possible
to compute APSP in time faster than Õ(mn) = Õ(n3). The best APSP algorithm for
undirected graphs runs in Õ(nωM) time [27,30], and the best APSP algorithm for directed
graphs runs in O(n2.5286M) time [4, 42]. (Here ω < 2.3728596 is the exponent of matrix
multiplication [2,9, 19,32,37].) Therefore, it is natural to ask whether one can beat Õ(n3)
preprocessing time for DSOs in this regime.

The answer turned out to be yes. Weimann and Yuster [36] showed that for any constant
0 < α < 1, there is a DSO with Õ(n1−α+ωM) preprocessing time and Õ(n1+α) query time.
Subsequently, Grandoni and Williams [16] showed that for any constant 0 < α < 1, there
is a DSO with Õ(nω+1/2M + nω+α(4−ω)M) preprocessing time and Õ(n1−α) query time.
Recently, Chechik and Cohen [8] constructed the first DSO that achieves both sub-cubic
(O(n2.873M)) preprocessing time and poly-logarithmic query time simultaneously. For the
case that edge weights are positive, Ren [22] improved the previous results by presenting a
much simpler DSO with Õ(n2.7233M) preprocessing time and constant query time.

Note that most DSOs mentioned above are randomized. Recently, there are also some
efforts on derandomizing these DSOs, see e.g. [3, 23].

1.2 Our Results

Our main result is an improved DSO for directed graphs with integer edge weights in [1, M ].
In particular, our DSO has preprocessing time O(n2.5794M) and constant query time.

▶ Theorem 1.1 (Main). Given as input a directed graph G = (V, E) with edge weights in
{1, 2, . . . , M}, we can construct a DSO with O(n2.5794M) preprocessing time and constant
query time. With high probability over the randomized preprocessing algorithm, the DSO
answers every possible query correctly.

1 Õ hides polylog(n) factors.
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▶ Remark 1.2. Our preprocessing algorithm uses fast rectangular matrix multiplication
algorithms. To express our time bound as a function of ω, we could also simulate rectangular
matrix multiplications by square matrix multiplications, e.g. multiply an n × m matrix and
an m × n matrix by ⌈m/n⌉ square matrix multiplications of dimension n. In this case, the
preprocessing time becomes Õ(n2+1/(4−ω)M) < O(n2.6146M).

▶ Remark 1.3 (Comparison with Prior Works). The biggest advantage of our DSO is, of course,
its fast preprocessing algorithm. In fact, the preprocessing time bound is only an O(n0.051)
factor away from the current best time bound for APSP. Our DSO is also the first one to
break a barrier of Ω̃(n8/3) preprocessing time, while keeping constant query time.2 However,
our DSO has two drawbacks. First, it can only return the length of the shortest path. It
does not suggest an efficient way to produce this path. Second, it does not support negative
edge weights.

We highlight two technical ingredients that are crucial for the preprocessing algorithm of
our DSO.

Inverting a polynomial matrix modulo xr

Let r be an integer parameter, and F be a polynomial matrix of degree d (i.e. each entry of
F is a degree-d polynomial over some formal variable x) that is invertible. We show how to
compute F−1 mod xr in time

Õ(dnω) + (r2/d) · MM(n, nd/r, nd/r) · no(1).

(That is, we only preserve the monomials in F−1 with degrees at most r − 1.) Here,
MM(n1, n2, n3) is the time complexity of multiplying an n1 × n2 matrix and an n2 × n3
matrix.

It is shown in [40] that we can compute the full F−1 (instead of F−1 mod xr) in Õ(n3d)
time. We examine their algorithm carefully, and adapt it to our case where we only want to
compute F−1 mod xr. We modulo each polynomial in the intermediate steps of the algorithm
by xr, and use fast rectangular matrix multiplication to speed up the algorithm.

▶ Theorem 1.4. Let r be an integer, F be a finite field. Let F ∈ F[x]n×n be an n × n matrix
over the ring of univariate polynomials F[x], and let d ≥ 1 be an upper bound on the degrees
of entries of F. If F is invertible over (F[x]/⟨xr⟩)n×n, the number of field operations to
compute F−1 mod xr is at most

Õ(dnω) + (r2/d) · MM(n, nd/r, nd/r) · no(1).

▶ Remark 1.5. The idea of using polynomial matrices to capture distances is a common
technique in graph algorithms. It has found many applications in static algorithms [24],
fault-tolerant algorithms [35], and dynamic algorithms [25,33,34].

2 There are three previous DSOs with both sub-cubic preprocessing time and constant query time: [16], [8],
and [22]. (The query time of the first two DSOs can be brought down to constant using Observation 2.1
of [22]. In the case of [16], this increases the preprocessing time by an additive factor of Õ(n3−α).)
Even when ω = 2, the preprocessing time bounds of these DSOs are Õ(n8/3) (setting α appropriately),
Õ(n14/5), and Õ(n8/3) respectively.
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Computing consistent shortest path trees

Our DSO needs to invoke [22, Observation 2.1] (see also [6]), which needs a consistent set of
(incoming and outgoing) shortest path trees rooted at each vertex. Here, by consistent, we
mean that for every pair of vertices u, v and any two shortest path trees T1 and T2 (from the
2n trees; recall they are directed rooted trees), if u can reach v in both T1 and T2, then the
u⇝ v paths in T1 and T2 are the same path. In other words, we want to specify a unique
shortest path between each pair of vertices, such that for every vertex v, the shortest paths
starting from v (or ending at v, respectively) form a tree.

Note that this problem is quite nontrivial in small-weighted graphs. There may be many
shortest paths between two vertices, and it is not obvious how to pick one shortest path
for each vertex pair, while guaranteeing consistency. Also, we cannot randomly perturb
the edge weights by small values, as that would break the property that edge weights are
small integers. It is also unclear how to construct such a set of shortest path trees from the
APSP algorithm in [42]. Previously, combining ideas in [10, Section 3.4] and an algorithm
in [13], [22] showed how to compute such shortest path trees in Õ(n(3+ω)/2M) ≤ O(n2.6865M)
time; unfortunately, this time bound is worse than our claimed time bound O(n2.5794M) in
Theorem 1.1.

In this paper, we show how to construct consistent shortest paths trees in O(n2.5286M)
time, matching the currently best time bound for APSP [42]. Below is an informal statement,
see Theorem 5.1 for the precise version.

▶ Theorem 1.6 (Informal Version). Given a directed graph G = (V, E) with edge weights in
{1, 2, . . . , M}, we can compute a set of incoming and outgoing shortest path trees rooted at
each vertex that are consistent, in O(n2.5286M) time.

1.3 Warm-Up: DSO in Õ(n(3+ω)/2M) Preprocessing Time
Actually, the ideas in [35] of maintaining the adjoint of the symbolic adjacency matrix
(see Section 3), together with ideas in [22], already give us a DSO with Õ(n(3+ω)/2M)
preprocessing time and constant query time. As a warm-up, we briefly describe this DSO
before we proceed into the details of Theorem 1.1.

An r-truncated DSO [22] is a DSO that only needs to be correct for the queries (u, v, f)
whose answer (i.e. length of the corresponding shortest path) is at most r. If the answer is
greater than r, it should return r instead. In what follows, we will describe how to construct
an r-truncated DSO in Õ(rnω) preprocessing time and Õ(r) query time. Using techniques
in [22] (see also Section 3.3), this implies a DSO with Õ(n(3+ω)/2M) preprocessing time and
constant query time.

Let F be a sufficiently large finite field, and A be the following matrix. For every vertices
u, v, if there is an edge from u to v with weight l, then let Au,v = au,vxl, where au,v is
a random element in F, and x is an indeterminate. Furthermore, for every vertex v, let
Av,v = 1. It is well-known [24] that with high probability over the choices of au,v, the adjoint
matrix of A encodes the shortest path information of the input graph, as follows. Let adj(A)
be the adjoint matrix of A, and u, v be two vertices, then the lowest degree of adj(A)u,v is
exactly the distance from u to v. For example, if adj(A)u,v = 7x8 + 6x5 − 9x4, then the
distance from u to v is 4.

A big advantage of the adjoint matrix, exploited in [35] and also this work, is that it
is easy to perform low-rank updates, by the Sherman-Morrison-Woodbury formula (see
Theorem 3.2). Given a matrix A, its adjoint adj(A), and a low-rank matrix B, we can
compute a specific element of adj(A + B)u,v, in time much faster than brute force. Therefore,
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we answer a query (u, v, f) as follows: We first express the failure as a rank-one matrix F,
such that A + F is the matrix corresponding to the graph with f removed. Then we can
compute adj(A + F)u,v quickly. Given this element (a polynomial over F), we can easily
compute the answer to the query.

What is the time complexity of this DSO? Recall that we only want to construct an
r-truncated DSO, so we can modulo every entry in the process of computing adj(A) by the
polynomial xr. Every arithmetic operation in the commutative ring F[x]/xr only takes Õ(r)
time. Computing the adjoint of a matrix reduces to inverting that matrix, which takes Õ(nω)
arithmetic operations [7]. Therefore it takes Õ(rnω) time to compute adj(A) mod xr. A
close inspection of the Sherman-Morrison-Woodbury formula shows that each query can be
completed in O(1) arithmetic operations, i.e. Õ(r) time.

The Õ(rnω)-time algorithm for inverting a polynomial matrix modulo xr is not optimal;
the time bound in Theorem 1.4 is better. In Section 4, we use fast rectangular matrix
multiplication algorithms to speed up the algorithm in [40], obtaining a faster algorithm for
inverting polynomial matrices modulo xr.

2 Preliminaries

In this paper, we say an event happens with high probability (w.h.p.) if it happens with
probability at least 1 − 1/nc, for a constant c that can be made arbitrarily large. Our DSOs
(or r-truncated DSOs) will have a randomized preprocessing algorithm and a deterministic
query algorithm. We say a DSO is correct with high probability if w.h.p. over its (randomized)
preprocessing algorithm, it answers every possible query (u, v, f) correctly.

Notation

We use the following notation in [12,22].
Let p be a path, we use |p| to denote the number of edges in p, and use ∥p∥ to denote the
length of p (i.e. total weight of edges in p).
Let u, v be two vertices, we define ∥uv∥ as the length of the shortest path from u to v.
Furthermore, let f be a failure (which is either an edge or a vertex), we define ∥uv ⋄ f∥
as the length of the shortest path from u to v that does not go through f .
Let u, v be two vertices, we define |uv| as the number of edges in the shortest path from
u to v. In the case that there are many shortest paths from u to v, it turns out that the
following definition will be convenient in Section 5: We define |uv| as the largest number
of edges in any shortest path from u to v.

Fast matrix multiplication

Let ω be the exponent of matrix multiplication; the current best upper bound is ω ≤ 2.3728596
[2]. For positive integers n1, n2, n3, let MM(n1, n2, n3) denote the minimum number of
arithmetic operations needed to multiply an n1 ×n2 matrix and an n2 ×n3 matrix. We define
ω(a, b, c) to be the exponent of multiplying an na × nb matrix and an nb × nc matrix, i.e.

ω(a, b, c) = inf{w : MM(na, nb, nc) = O(nw)}.

It is a classical result that ω(1, 1, λ) = ω(1, λ, 1) = ω(λ, 1, 1) for any real number λ > 0 [21];
we denote ω(λ) = ω(1, 1, λ).

We will need the following lemmas about the exponent of rectangular matrix multiplication.
We refer the reader to the full version of this paper for their proofs.
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▶ Lemma 2.1. Let a, b, c, r be positive real numbers, then r + ω(a, b, c) ≤ ω(a, b + r, c + r).

▶ Lemma 2.2. Consider the function f(τ) = ω(1, 1 − τ, 1 − τ), where τ ∈ [0, 1]. Then
τ + f(τ) is monotonically non-increasing in τ , and 2τ + f(τ) is monotonically non-decreasing
in τ .

Polynomial operations

Let p, q ∈ F[x] be two polynomials of degree d. It is easy to compute p + q or p − q in
O(d) field operations. We can also compute p · q in Õ(d) field operations using fast Fourier
transform. (Here, Õ hides polylog(d) factors.) When p is invertible, it is also possible to
compute p−1 mod xd in Õ(d) field operations [1, Section 8.3].

3 Constructing a DSO in O(n2.5794M) Time

In this section, we show how to preprocess a distance sensitivity oracle in O(n2.5794M) time,
such that every query can be answered in constant time. Our preprocessing algorithm is
randomized; with high probability over the preprocessing algorithm, the query algorithm
always returns the correct answer.

3.1 Preliminaries
First, our preprocessing algorithm will use the following algorithm for inverting a polynomial
matrix. A sketch of this algorithm will be given in Section 4.

▶ Theorem 1.4. Let r be an integer, F be a finite field. Let F ∈ F[x]n×n be an n × n matrix
over the ring of univariate polynomials F[x], and let d ≥ 1 be an upper bound on the degrees
of entries of F. If F is invertible over (F[x]/⟨xr⟩)n×n, the number of field operations to
compute F−1 mod xr is at most

Õ(dnω) + (r2/d) · MM(n, nd/r, nd/r) · no(1).

Let G be a directed graph whose edge weights are integers in [1, M ]. We define its
symbolic adjacency matrix SA(G) as (see [24])

SA(G)i,j =


1 if i = j,

zi,jxl if there is an edge from i to j with weight l in G,

0 otherwise,

where zi,j are unique variables corresponding to edges of G.
It will be inefficient to deal with these variables zi,j , therefore we will pick a suitably

large field F, and substitute each variable zi,j by a random element in F. However, we still
keep the indeterminate x. Now, let Z be a matrix where each Zi,j ∈ F, we will use SAZ(G)
to denote the matrix SA(G) with each formal variable zi,j substituted by the field element
Zi,j . Note that SAZ(G) is a polynomial matrix where every entry is a polynomial over x

with degree at most M .
We recall the definition of adjoint matrix that will be crucial to our algorithm. Let A

be an n × n matrix, i, j ∈ [n]. We denote by Ai,j the matrix A with every element in the
i-th row and the j-th column set to zero, except that (Ai,j)i,j = 1. The adjoint matrix of A,
denoted as adj(A), is an n × n matrix such that adj(A)i,j = det(Aj,i) for every i, j ∈ [n]. A
basic fact about adj(A) is that if det(A) ̸= 0, then adj(A) = det(A) · A−1.
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There is a close relationship between the distances in the graph G, and the entries in the
adjoint of SA(G). Let p be a multivariate polynomial, we define deg∗

x(p) as the lowest degree
of the variable x in any monomial of p. If p = 0, then we define deg∗

x(p) := +∞. We have:

▶ Theorem 3.1 ([24, Lemma 4]). Let G be a directed graph with positive integer weights, i, j

be two vertices. Then the distance from i to j in G is deg∗
x(adj(SA(G))i,j).

We need the following theorem that allows us to maintain the adjoint of a matrix under
rank-1 queries. (This theorem is a special case of [35, Lemma 1.6].)

▶ Theorem 3.2. Let R be an arbitrary commutative ring, A ∈ Rn×n be an invertible matrix,
u, v ∈ Rn be column vectors, and γ = 1 + vTA−1u. Suppose γ is invertible, then A + uvT

is also invertible, and

adj(A + uvT) = det(A)(γA−1 − (A−1uvTA−1)).

Proof Sketch. By the matrix determinant lemma, we have

det(A + uvT) = γ · det(A).

Since γ is invertible, we can use the Sherman-Morrison-Woodbury formula [29,38]:

(A + uvT)−1 = A−1 − γ−1(A−1uvTA−1).

The theorem is proved by multiplying the above two formulas together. ◀

We need the Schwartz-Zippel lemma that guarantees the correctness of our randomized
algorithm.

▶ Theorem 3.3 (Schwartz-Zippel Lemma, [26, 41]). Let p(x1, x2, . . . , xm) be a non-zero
polynomial of (total) degree d over a field F. Let S be a finite subset of F, and r1, r2, . . . , rm

be independently and uniformly sampled from S. Then

Pr[p(r1, r2, . . . , rm) = 0] ≤ d

|S|
.

We also need the following algorithm that computes the determinant of a polynomial
matrix.

▶ Theorem 3.4 ([18, 31]). Let B ∈ F[x]n×n be a matrix of degree at most d, then we can
compute det(B) in Õ(dnω) field operations.

3.2 Constructing an r-Truncated DSO

Recall that for a failure f (which is either a vertex or an edge), ∥uv ⋄ f∥ denotes the length
of the shortest path from u to v that avoids f . An r-truncated DSO, as defined in [22], is a
DSO that given a query (u, v, f), outputs the value min{∥uv ⋄ f∥, r}. The main result of
this subsection is that given an integer r and an input graph G, an r-truncated DSO can be
constructed in time

Õ(nωM) + r2/M · MM(n, nM/r, nM/r) · no(1).
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Preprocessing algorithm

Let C be a large enough constant. First, we choose a prime p ∈ [nC , 2nC ] and let F = Zp.
Then we let Z be an n × n matrix over F, where every Zi,j is sampled independently from
F uniformly at random. We substitute Z into SA(G) to obtain the matrix SAZ(G). Recall
that each element of SAZ(G) is a polynomial over x with coefficients in F, whose degree is at
most M . Then we compute SAZ(G)−1 and det(SAZ(G)) using Theorem 1.4 and Theorem 3.4
respectively.

Since we only want an r-truncated DSO, we only need to compute SAZ(G)−1 modulo xr,
i.e. we only preserve the monomials with degree less than r in every entry of SAZ(G)−1. Note
that SAZ(G) is of the form I+xM for some matrix M ∈ F[x]n×n, therefore its determinant is
of the form 1 + x · p(x) for some polynomial p(x). As the determinant is invertible modulo xr,
SAZ(G) is also invertible modulo xr. By Theorem 1.4, we can compute SAZ(G)−1 mod xr

in time

Õ(nωM) + (r2/M) · MM(n, nM/r, nM/r) · no(1).

By Theorem 3.4, we can compute det(SAZ(G)) in Õ(nωM) time. Again, we only need to
store the polynomial det(SAZ(G)) mod xr. This concludes the preprocessing algorithm.

For the following query algorithms, we use ei to denote the i-th standard unit vector,
i.e. (ei)i = 1, and (ei)j = 0 for every index j ̸= i.

Query algorithm for an edge failure

A query consists of vertices u, v ∈ V and a failed edge e. We assume that e goes from vertex
a to vertex b, and has weight l. Let G′ be the graph obtained by removing e from G, then
we have SA(G′) = SA(G) + uvT, where u = ea and v = −za,bxleb. Let

γ = 1 + vTSA(G)−1u = 1 − za,bxlSA(G)−1
b,a,

β = (SA(G)−1uvTSA(G)−1)u,v = −SA(G)−1
u,aza,bSA(G)−1

b,vxl, and
α = det(SA(G))(γ · SA(G)−1

u,v − β),
then by Theorem 3.2, we have α = adj(SA(G′))u,v. (Note that since l ≥ 1, γ is always
invertible.)

Query algorithm for a vertex failure

A query consists of vertices u, v ∈ V and a failed vertex f ∈ V . It suffices to remove every
outgoing edge from f (and we do not need to also remove incoming edges to f), as f already
cannot appear as an intermediate vertex in every path from u to v. Therefore, we need to
compute adj(SA(G′))u,v, where G′ is obtained by removing all outgoing edges from f in G.
Let u = ef , and v be the negation of the transpose of the f -th row of SA(G), except that
vf = 0, i.e.,

vj =
{

−zf,jxl if there is an edge from f to j with weight l in G,

0 otherwise,

It is easy to see SA(G′) = SA(G) + uvT. To compute adj(SA(G′))u,v using Theorem 3.2,
we let

γ = 1 + vTSA(G)−1u. Note that (ef − v)T is exactly the f -th row of SA(G), so (ef −
v)TSA(G)−1 = eT

f , and vTSA(G)−1 = eT
f SA(G)−1 − eT

f . We have γ = 1 + eT
f SA(G)−1u −

eT
f u = SA(G)−1

f,f ;
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β = (SA(G)−1uvTSA(G)−1)u,v = (eT
uSA(G)−1u)(vTSA(G)−1ev)

= SA(G)−1
u,f (eT

f SA(G)−1ev) = SA(G)−1
u,f SA(G)−1

f,v;
and α = det(SA(G))(γ · SA(G)−1

u,v − β),
then we have α = adj(SA(G′))u,v. (Note that γ is always invertible since the constant term
of SA(G)−1

f,f must be 1.)
In the actual query algorithm, we will substitute each formal variable zi,j by Zi,j . Let γZ

denote the resulting polynomial after this substitution. Note that γZ is a polynomial in F[x].
Similarly we can define βZ and αZ. If αZ ̸≡ 0 (mod xr), then our query algorithm outputs
deg∗

x(αZ); otherwise it outputs r.
From the above formulas, we can compute γZ, βZ, and αZ in O(1) arithmetic operations

over polynomials. Note that we only need to compute these polynomials modulo xr, so each
such arithmetic operation takes Õ(r) time. The total query time is thus Õ(r).

▶ Remark 3.5 (Query Algorithm for Undirected Graphs). Our r-truncated DSO can also deal
with undirected graphs, but the details are a bit different from the case of directed graphs.
To remove an undirected edge, we need to update two entries in SA(G), which corresponds to
a rank-2 update to SA(G). To remove a vertex, we need to update one row and one column
in SA(G), which is also a rank-2 update to SA(G). Therefore, we need to use the rank-2
version of Theorem 3.2 (see [35, Lemma 1.6]). Actually, our r-truncated DSOs also support
deleting f failures, and the query time is Õ(fωr). We omit the details here and refer the
interested readers to [35].

▶ Theorem 3.6. For every integer r, we can construct an r-truncated DSO with preprocessing
time

Õ(nωM) + r2/M · MM(n, nM/r, nM/r) · no(1),

and query time Õ(r). Our r-truncated DSO is correct w.h.p.

(Recall that by saying our r-truncated DSO is correct w.h.p, we mean that w.h.p. over
its randomized preprocessing algorithm, it answers every query correctly.)

Proof of Theorem 3.6. We only need to prove the correctness of our r-truncated DSO.
Consider a query (u, v, f) where f is an edge or a vertex, and let G′ be the graph obtained
by removing f from G. By Theorem 3.2, we have αZ = adj(SAZ(G′))u,v. (Note that the
constant term of γZ is always 1, so γZ is always invertible.)

If ∥uv ⋄ f∥ ≥ r, then by Theorem 3.1, adj(SA(G′))u,v must be a polynomial whose
minimum degree over x is at least r. In this case, we have αZ ≡ 0 (mod xr) for every Z.
Therefore, our algorithm returns r, which is correct.

If ∥uv ⋄ f∥ = k < r, then by Theorem 3.1, adj(SA(G′))u,v must be a polynomial whose
minimum degree is exactly k. In this case, the coefficient of xk in α is a polynomial of zi,j

with (total) degree at most n. (This is because adj(SA(G′))u,v is the determinant of a certain
n × n matrix in which every entry has total degree at most one in the variables zi,j .) If
this polynomial is nonzero at Z, then deg∗

x(αZ) = k and our query algorithm is correct. By
Theorem 3.3, this polynomial is 0 with probability at most 1/nC−1. Therefore, our query
algorithm returns the correct answer k with probability at least 1 − 1/nC−1.

In conclusion, for every fixed query (u, v, f), our query algorithm is correct with probability
1−1/nC−1 over the choice of Z. By a union bound over O(n4) possible queries, the probability
(over our randomized preprocessing algorithm) that every query is answered correctly is at
least 1 − 1/Θ(nC−5), which is a high probability. ◀
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3.3 Constructing the Full DSO
Now we have constructed an r-truncated DSO, which we denote by Dstart. In this subsection,
we will extend it to a full DSO using the techniques in [22]. Specifically, we use the following
two algorithms from [22].

The first algorithm transforms an (r-truncated) DSO with a possibly large query time
into an (r-truncated) DSO with query time O(1). More precisely:

▶ Lemma 3.7 ([22, Observation 2.1]). Given an r-truncated DSO D with preprocessing time
P and query time Q, we can build an r-truncated DSO Fast(D) with query time O(1) which
is correct w.h.p. The preprocessing algorithm of Fast(D) is as follows:

It needs the all-pairs distance matrix of the input graph G, as well as the set of consistent
(incoming and outgoing) shortest path trees rooted at each vertex in G. By Theorem 1.6,
these shortest path trees can be computed in O(n2.5286M) time. For details, see Section 5.
It invokes the preprocessing algorithm of D on the input graph G once, and makes Õ(n2)
queries to D. The preprocessing time is P + Õ(n2)Q.

The second algorithm we use is implicit in the argument of [22, Section 2.3]. We formalize
it as the following lemma.

▶ Lemma 3.8. Given an r-truncated DSO D with preprocessing time P and query time
O(1), we can build a (3/2)r-truncated DSO Extend(D) with preprocessing time P + O(n2)
and query time Õ(nM/r). The new DSO is correct w.h.p.

Now, we are ready to explain our algorithm to build a full DSO. Given an r-truncated
DSO Dstart, we first obtain an r-truncated DSO D0 with query time O(1) by applying
Lemma 3.7.

Let i⋆ = ⌊log3/2(nM/r)⌋. For every 0 ≤ i ≤ i⋆, we construct an r(3/2)i+1-truncated DSO
Di+1 by applying Lemma 3.8 and Lemma 3.7 sequentially on Di, i.e. Di+1 = Fast(Extend(Di)).
Let the resulting DSO be Dfinal = Di⋆+1, since r(3/2)i⋆+1 ≥ nM , Dfinal is a full DSO.

We can also summarize our construction algorithm in one formula:

Dfinal = Fast(Extend(Fast(Extend(· · · Fast(Dstart)))))︸ ︷︷ ︸
O(log(nM/r)) times

.

Complexity of our DSO

Let r = Mnα, where α ∈ [0, 1] is a parameter to be determined. By Theorem 3.6, the
preprocessing time of Dstart is

Õ(nωM) + r2/M · MM(n, nM/r, nM/r) · no(1) ≤ Õ(nωM) + n2α+ω(1,1−α,1−α)+o(1)M,

and the query time of Dstart is Õ(r) = Õ(nαM). By Lemma 3.7, the preprocessing time of
D0 is

Õ(n2+αM + nωM) + n2α+ω(1,1−α,1−α)+o(1)M.

Now consider the preprocessing algorithm of Dfinal. We need to compute the all-pairs
distance matrix and in/out shortest path trees of G as required by Lemma 3.7, which
takes Õ(n2+µM) time by Theorem 1.6. We also need to run the preprocessing algorithm
of D0. Also, for every 0 ≤ i ≤ i⋆, we need to preprocess the oracle Di+1, which takes
n2 · Õ(nM/(r(3/2)i+1)) = Õ

(
n3−αM
(3/2)i

)
time.
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Therefore, the preprocessing time of Dfinal is:

Õ(n2+αM + nωM + n2+µM) + n2α+ω(1,1−α,1−α)+o(1)M +
⌊log3/2(nM/r)⌋∑

i=0
Õ

(
n3−αM

(3/2)i

)
≤ nmax{2+α,2+µ,3−α,2α+ω(1,1−α,1−α)}+o(1)M.

Let α = 0.420645, β = 1
1−α , then 1.5 < β < 1.75. Recall that for any real number λ, ω(λ)

is a shorthand for ω(1, 1, λ). We have

ω(1, 1 − α, 1 − α) = (1 − α)ω(β)

≤ (1 − α) · (1.75 − β)ω(1.5) + (β − 1.5)ω(1.75)
1.75 − 1.5 (1)

≤ 0.579355 · 4 · (0.023943 · ω(1.5) + 0.226058 · ω(1.75))
≤ 1.738094. (2)

Here, Equation (1) uses the convexity of the ω(·) function [21], and Equation (2) uses the
recent bounds in [15] that ω(1.5) ≤ 2.796537 and ω(1.75) ≤ 3.021591. We can see that

max{2 + α, 2 + µ, 3 − α, 2α + ω(1, 1 − α, 1 − α)} = 2α + ω(1, 1 − α, 1 − α) ≤ 2.579384.

By Lemma 3.7, the query time of Dfinal is O(1). Therefore, we can construct a DSO with
O(n2.5794M) preprocessing time and O(1) query time.

As the DSOs constructed in Lemma 3.7 always have size Õ(n2), our final DSO only
occupies Õ(n2) space. However, we remark that the preprocessing algorithm of our DSO
requires Õ(rn2) = O(n2.4207) space (in particular, to store SAZ(G)−1 mod xr).

4 Inverting a Polynomial Matrix Modulo xr

As we see in Section 3, the algorithm in Theorem 1.4 for inverting a polynomial matrix
modulo xr is very crucial for our results.

▶ Theorem 1.4. Let r be an integer, F be a finite field. Let F ∈ F[x]n×n be an n × n matrix
over the ring of univariate polynomials F[x], and let d ≥ 1 be an upper bound on the degrees
of entries of F. If F is invertible over (F[x]/⟨xr⟩)n×n, the number of field operations to
compute F−1 mod xr is at most

Õ(dnω) + (r2/d) · MM(n, nd/r, nd/r) · no(1).

Our algorithm is essentially the algorithm in [40]. In fact, the only difference is that we
only consider polynomials modulo xr. This allows us to invert the polynomial matrix in time
faster than Õ(n3d) using fast rectangular matrix multiplication algorithms.

In this section, we provide a very brief exposition of the algorithm in [40], and justify the
time bound in Theorem 1.4. A detailed description of the algorithm can be found in the full
version.

Let F be an input polynomial matrix where each entry has degree at most d. Suppose F
is invertible over (F[x]/⟨xr⟩)n×n. We will compute a kernel basis decomposition of F, which
is a chain of matrices A1, A2, . . . , Alog n and a diagonal matrix B, such that

F−1 = A1A2 . . . Alog nB−1. (3)
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Then, to compute F−1, we simply multiply the above matrices. Note that B is a diagonal
matrix, so its inverse is easy to compute.3

To start, we write F =
[
FU
FD

]
, where each FU or FD is an (n/2) × n matrix. Then we

compute two n × (n/2) matrices NR and NL with full rank, such that FUNR = 0, and
FDNL = 0. (This can be done by [39, Theorem 4.2].) Let A1 =

[
NL NR

]
, then A1 has full

rank, and

F · A1 =
[
FUNL FUNR
FDNL FDNR

]
=

[
FUNL

FDNR

]
.

Therefore, F · A1 is a block diagonal matrix with two blocks, each of size (n/2) × (n/2).
We can then recursively invoke the kernel basis decomposition of these two blocks, and
form the matrices A2, . . . , Alog n. The diagonal matrix B is created at the base case of the
recursion, where the diagonal blocks of F · A1 · · · · · Alog n are of size 1 × 1. It is shown in [40]
that the kernel basis decomposition takes only Õ(dnω) time to compute.

We still need to compute Equation (3). From the above algorithm, we can see that each
Ai is a block-diagonal matrix, which consists of 2i−1 blocks of size (n/2i−1) × (n/2i−1). Now
we assume that each entry in Ai also has degree at most d · 2i−1. (In reality, the behavior
of degrees in Ai may be complicated, and we need the notion of shifted column degree to
control them; see the full version of this paper for more details.)

To compute Equation (3), we define Mi = A1A2 . . . Ai, and compute each Mi by the
formula

Mi+1 = MiAi+1. (4)

The degree of each entry in Mi will be at most O(2i · d). As we only need the results
modulo xr, we can assume the degrees are actually O

(
min{r, 2i · d}

)
. Note that Ai+1 consists

of 2i blocks, each of size (n/2i) × (n/2i), and the degree of each (nonempty) entry in Ai+1 is
also O

(
min{r, 2i · d}

)
. Therefore, we can compute Equation (4) in

O
(
min{r, 2i · d}

)
· 2i · MM(n, n/2i, n/2i) (5)

time. (It is basically 2i matrix products of size n × (n/2i) and (n/2i) × (n/2i); we need to
multiply another factor of min{r, 2i · d} which is the degree of polynomials in these matrices.)

Now, it is easy to see that the bottleneck of this algorithm occurs when r = 2i · d, and
the time for computing Equation (4) is:

(5) = (r2/d) · MM(n, nd/r, nd/r).

5 Computing Unique Shortest Paths in Directed Graphs

In this section, we show how to compute unique shortest paths in a directed graph in
Õ(n2+µM) time, matching the current best time bound for computing the all-pairs dis-
tances [42]. Here µ < 0.5286 is the solution of ω(1, 1, µ) = 1 + 2µ [15]. This algorithm is
needed before we use Lemma 3.7.

3 Every diagonal element of B is a divisor of the largest invariant factor of F (see [40, Section 5.1]), which
is (again) a divisor of det(F). Since det(F) is invertible modulo xr, every diagonal element of B is also
invertible modulo xr.
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We may assume that before we proceed, we have already computed the all-pairs distances
∥uv∥ for every u, v ∈ V , using the APSP algorithm in [42].

Our tie-breaking method requires a (random) permutation π of all vertices, or equivalently
a bijection between the vertex set V and [n], i.e. π : V → [n]. According to π, for every
graph G on V and every u, v ∈ V , we will specify a shortest path ρG(u, v) in G from u to
v in a certain way. These shortest paths will be consistent and easy to compute, which is
captured by the following theorem. (See also [22, Theorem 1.3 and 1.4].)

▶ Theorem 5.1. Given a graph G on V , a representation of the set of shortest paths
{ρG(u, v)}u,v∈V can be computed in Õ(n2+µM) time, with high probability over the random
choice of permutation π, such that the following hold.

(Property a) Let G be a graph on V . For every u′, v′ ∈ ρG(u, v) such that u′ appears before
v′, the portion of u′ ⇝ v′ in ρG(u, v) coincides with the path ρG(u′, v′).

(Property b) Let G be a graph on V , u, v ∈ V , and G′ be a subgraph of G. Suppose ρG(u, v)
is completely contained in G′, then ρG′(u, v) = ρG(u, v).

From (Property a), for every vertex u, the shortest paths from u to every other vertex in
G form a tree, and we call this tree the outgoing shortest path tree rooted at u, denoted as
T out(u). Similarly, the shortest paths to u from every other vertex in G also form a tree, and
we call this tree the incoming shortest path tree rooted at u, denoted as T in(u). Actually, the
“representation” computed is exactly the set of n outgoing shortest path trees {T out(u)}u∈V

and the set of n incoming shortest path trees {T in(u)}u∈V .

The rest of this section

We first define the paths ρG(u, v) in Section 5.1. Then we explain how to compute them
efficiently in Section 5.2, by presenting an algorithm that computes the incoming and outgoing
shortest path trees in Õ(Mn2+µ) time. Finally, we prove (Property a) and (Property b) in
Section 5.3.

5.1 Defining ρG(u, v)

Let G be an input graph, and π : V → [n] be a (random) bijection. Let u, v ∈ V , P be a
path from u to v, we will say that any vertex on P that is neither u nor v is an internal
vertex of P .

Recall that we defined |uv| as the largest number of edges in any shortest path from u to
v. In particular:

|uv| = 0 if and only if u = v;
|uv| = 1 if and only if the edge (u, v) is the only shortest path from u to v;
|uv| = ∞ if there is no path from u to v in G;
otherwise, we have 2 ≤ |uv| < ∞.

We claim that the set of vertices mapped to small values by π is a good “hitting set”
w.h.p:

▷ Claim 5.2. Fix the graph G. For some large constant C, with high probability over the
choice of π, the following holds. For every pair of vertices u, v ∈ V such that 2 ≤ |uv| < ∞,
there is a shortest path ρ′(u, v) from u to v, and an internal vertex z on ρ′(u, v), such that
π(z) ≤ CMn ln n/∥uv∥.
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Proof. Fix two vertices u, v ∈ V , and any shortest path ρ′(u, v) from u to v. Denote r = ∥uv∥,
if r ≤ M ln n then the claim is trivial. Otherwise, there are at least r/1.1M vertices on
ρ′(u, v). Therefore, the probability over a random bijection π : V → [n] that π maps every
vertex on ρ′(u, v) to an integer greater than CMn ln n/r is at most

(1 − CM ln n/r)r/1.1M ≤ 1/nC/1.1.

Thus by a union bound, the probability that the above condition holds (for every u, v) is at
least 1 − 1/nC/1.1−2, which is a high probability. ◁

Let u, v ∈ V such that 2 ≤ |uv| < ∞. Define w(u, v) as the intermediate vertex with the
smallest label in any shortest path from u to v, i.e.

w(u, v) = argw min{π(w) : ∥uv∥ = ∥uw∥ + ∥wv∥, w ̸= u and w ̸= v}. (6)

Claim 5.2 states that w.h.p. for every vertices u, v ∈ V such that 2 ≤ |uv| < ∞, we have
that

π(w(u, v)) ≤ CMn ln n/∥uv∥. (7)

In the rest of this section, we assume that Equation (7) holds for every vertices u, v ∈ V

such that 2 ≤ |uv| < ∞. Now we define the paths ρG(u, v).

▶ Definition 5.3. Let u, v ∈ V such that |uv| ̸= ∞. The path ρG(u, v) is recursively defined
as follows.

If u = v, then ρG(u, v) is the empty path that starts and ends at u.
If |uv| = 1, then ρG(u, v) consists of a single edge, i.e. the edge from u to v.
Otherwise, let w = w(u, v), then ρG(u, v) is the concatenation of ρG(u, w) and ρG(w, v).

For every u, v such that 2 ≤ |uv| < ∞, since w is an intermediate vertex on some shortest
path from u to v, it is easy to see that |uw| < |uv| and |wv| < |uv|. Therefore ρG(u, v) is
well defined – it is inductively defined in the nondecreasing order of |uv|.

5.2 Computing Shortest Path Trees in Õ(Mn2+µ) Time
We will need the following classical algorithm for computing distance products:

▶ Lemma 5.4 ([42]). Let A be an n × m matrix, and B be an m × n matrix. Suppose every
entry in A or B is either +∞ or an integer with absolute value at most M . Then the distance
product of A and B can be computed in Õ(M · MM(n, m, n)) time.

Computing w(u, v)

We first show how to compute w(u, v) for every u, v ∈ V such that 2 ≤ |uv| < ∞ in Õ(Mn2+µ)
time. Then we use the values of all w(u, v) to compute the incoming and outgoing shortest
path trees in Õ(n2) additional time. Our strategy for computing w(u, v) is to mimic the
algorithm in [17,28] for computing maximum witness of Boolean matrix multiplication. In
particular, we divide the possible witnesses into blocks, and use fast matrix multiplication
algorithms to find the block containing w(u, v), for every u, v. After that, we use brute force
to find w(u, v) inside that block. Details follow.

Let r = 2k be a parameter, we show how to compute w(u, v) for every pair of vertices
u, v ∈ V such that r ≤ ∥uv∥ < 2r. Let
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Hr = {z ∈ V : π(z) ≤ CMn ln n/r}.

By Claim 5.2, for every vertices u, v such that ∥uv∥ ∈ [r, 2r), we have w(u, v) ∈ Hr.
We define an n × |Hr| matrix A and an |Hr| × n matrix B as follows. For every u ∈ V

and z ∈ Hr, we define

A[u, z] =
{

∥uz∥ if ∥uz∥ ≤ 2r and u ̸= z

+∞ otherwise
, and B[z, u] =

{
∥zu∥ if ∥zu∥ ≤ 2r and u ̸= z

+∞ otherwise
.

Then we compute the minimum witness of the distance product A ⋆ B. To be more precise,
we compute the matrix W [·, ·] such that for every u, v ∈ V ,

W [u, v] = argz min{π(z) : ∥uv∥ = A[u, z] + B[z, v]}.

Correctness. Fix u, v ∈ V , where ∥uv∥ ∈ [r, 2r). We will show that if |uv| = 1, then W [u, v]
does not exist; otherwise W [u, v] coincides with w(u, v) defined in Equation (6).

First, suppose |uv| = 1, then there are no intermediate vertex z such that ∥uv∥ =
∥uz∥ + ∥zv∥, which means W [u, v] does not exist.

Now we assume |uv| ≥ 2. Since ∥uv∥ ≥ r, by Claim 5.2, there is an intermediate vertex
z ∈ Hr such that ∥uz∥ + ∥zv∥ = ∥uv∥. Since ∥uz∥, ∥zv∥ ≤ ∥uv∥ < 2r, we can see that
∥uv∥ = A[u, z] + B[z, v], therefore W [u, v] exists. Let z = W [u, v], then by Equation (6),
π(w(u, v)) ≤ π(z). On the other hand, Claim 5.2 shows that w(u, v) ∈ Hr, so by the
definition of z = W [u, v], we have π(z) ≤ π(w(u, v)). Therefore z = w(u, v) and we have
established the correctness of W [·, ·].

Time complexity. Now we show how to compute the matrix W [·, ·] efficiently.
Let s = nµ, where µ ∈ (0, 1) is a parameter to be determined later. If |Hr| < s, then

we can compute the matrix W by brute force in Õ(n2s) time. Otherwise, we partition Hr

into blocks of size s, where the i-th block contains vertices that are mapped by π to values
between (i − 1) · s + 1 and i · s. For every block i, we compute the distance product of A and
B where only vertices in block i are allowed as witnesses. In other words, we compute the
following matrix

Di[u, v] = min{A[u, z] + B[z, v] : (i − 1) · s + 1 ≤ π(z) ≤ i · s}.

By Lemma 5.4, this matrix can be computed in Õ(r·MM(n, s, n)) time. There are O(|Hr|/s) =
Õ(Mn/(rs)) blocks, and we need to compute a distance product Di for each block i. Therefore
the total time for computing all these distance products is

Õ(r · MM(n, s, n) · Mn/(rs)) = Õ(M · (n/s) · MM(n, s, n)).

Now for every u, v ∈ V such that ∥uv∥ ∈ [r, 2r) and |uv| ≥ 2, we want to compute W [u, v],
which is the vertex z ∈ Hr with the minimum π(z), such that ∥uv∥ = A[u, z] + B[z, v]. First,
we find the smallest i such that Di[u, v] = ∥uv∥, and we know that W [u, v] is in the i-th
block. (If such i does not exist, then W [u, v] does not exist either, and |uv| = 1.) This step
takes Õ(Mn/(rs)) time. Then we iterate through the vertices in this block, and find the
vertex z with the smallest π(z) such that A[u, z] + B[z, v] = ∥uv∥. This step takes O(s) time.

ICALP 2021



76:16 Constructing a DSO in O(n2.5794M) Time

It follows that the time complexity for computing every w(u, v) where ∥uv∥ ∈ [r, 2r) is

Õ(M · MM(n, s, n) · (n/s) + n2 · Mn/(rs) + n2s)
≤ Õ(M · MM(n, s, n) · (n/s) + n2s) (8)

≤ Õ(M · nω(1,µ,1)+1−µ + n2+µ).

Here, Equation (8) is because n2 · Mn/(rs) ≤ n2 · M · (n/s) ≤ M · MM(n, s, n) · (n/s).
Let µ be the solution to ω(1, µ, 1) = 1 + 2µ, then µ < 0.5286 ([15,42]). It follows that the

time complexity for computing every w(u, v), where r ≤ ∥uv∥ < 2r, is at most Õ(Mn2+µ).

Putting it together. We run the above algorithm for k from 0 to ⌊log(nW )⌋, and for each
k, we update the values w(u, v) where ∥uv∥ ∈ [2k, 2k+1). The total time to compute w(u, v)
for all u, v is thus Õ(Mn2+µ).

From w(u, v) to unique shortest paths

For every u, v ∈ V , we will compute the parent of u in the tree T in(v), denoted as parentv(u).
In other words, parentv(u) is the second vertex in the path ρG(u, v) (the first being u). After
computing parentv(u) for every u, v ∈ V , it is easy to construct T in(v) for every vertex v. We
can compute every T out(u) in a symmetric fashion.

We proceed by nondecreasing order of ∥uv∥. Suppose that for every (u′, v′) such that
∥u′v′∥ < ∥uv∥, we have already computed parentv′(u′). Now we compute parentv(u) as follows.
Let w = w(u, v). If w does not exist, let parentv(u) = v; otherwise parentv(u) = parentw(u).

This algorithm (that given every w(u, v), computes every parentv(u)) clearly runs in
Õ(n2) time. Notice that if w exists, then w is an intermediate vertex in ρG(u, v), thus
∥uw∥ < ∥uv∥, and the second vertex in the path ρG(u, v) coincides with the second vertex in
the path ρG(u, w). Hence, the correctness of the algorithm can be easily proved by induction
on ∥uv∥.

5.3 Proof of Theorem 5.1
▶ Theorem 5.1. Given a graph G on V , a representation of the set of shortest paths
{ρG(u, v)}u,v∈V can be computed in Õ(n2+µM) time, with high probability over the random
choice of permutation π, such that the following hold.

(Property a) Let G be a graph on V . For every u′, v′ ∈ ρG(u, v) such that u′ appears before
v′, the portion of u′ ⇝ v′ in ρG(u, v) coincides with the path ρG(u′, v′).

(Property b) Let G be a graph on V , u, v ∈ V , and G′ be a subgraph of G. Suppose ρG(u, v)
is completely contained in G′, then ρG′(u, v) = ρG(u, v).

In this subsection, for any path P and vertices u′, v′ ∈ P such that u′ appears before v′

on P , we use P [u′, v′] to denote the portion of u′ ⇝ v′ on the path P .

Proof of (Property a). We prove it by induction on the number of edges of ρG(u, v). Let
P = ρG(u, v). If u = v or P has only one edge, (Property a) is trivial. Now suppose P has k

edges where k > 1. Let w = w(u, v), then w must lie on P . Consider the following three
cases:

Suppose u′ appears after (or coincides with) w on P . By definition, P [w, v] = ρG(w, v).
Then P [u′, v′] = ρG(u′, v′) by induction hypothesis on ρG(w, v) since it has fewer edges
than ρG(u, v).
Suppose v′ appears before (or coincides with) w. This case is symmetric to the above
case.
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Otherwise, w lies between u′ and v′ on P .
First, we claim that w = w(u′, v′). As w lies on some shortest path from u′ to v′

(i.e. P [u′, v′]), we have π(w(u′, v′)) ≤ π(w). On the other hand, suppose there exists w′

such that π(w′) < π(w) and w′ is on some shortest path from u′ to v′. Then w′ also lies
on some shortest path from u to v, so it is a better candidate for w(u, v), contradicting
the definition of w.
Second, by induction hypothesis on ρG(u, w), which has fewer edges than ρG(u, v), we
have P [u′, w] = ρG(u′, w). Similarly, P [w, v′] = ρG(w, v′). Therefore, by definition,
P [u′, v′] = P [u′, w] ◦ P [w, v′] = ρG(u′, v′). ◀

Proof of (Property b). We prove it by induction on the number of edges of ρG(u, v). Let
P = ρG(u, v). If u = v or P has only one edge, (Property b) is trivial.

Now suppose P has more than one edge. Let w = wG(u, v) (i.e. the vertex w(u, v)
defined in Equation (6) in graph G), we claim that w coincides with wG′(u, v) (i.e. the vertex
w(u, v) defined in Equation (6) in graph G′). Since P is also a shortest path from u to v

in G′, we have π(wG′(u, v)) ≤ π(w). On the other hand, suppose there exists w′ such that
π(w′) < π(w) and w′ is on some shortest path from u to v in G′. Then w′ also lies on some
shortest path from u to v in G, so it is a better candidate for wG(u, v), contradicting the
definition of w.

Since ρG(u, w) has fewer edges than ρG(u, v), and ρG(u, w) is completely contained in G′,
we can use induction hypothesis on ρG(u, w) to conclude that P [u, w] = ρG′(u, w). Similarly,
we can use the induction hypothesis on ρG(w, v) to conclude that P [w, v] = ρG′(w, v).
Therefore, by definition, ρG′(u, v) = ρG′(u, w) ◦ ρG′(w, v) = P . ◀

6 Conclusions and Open Problems

We presented an improved DSO for directed graphs with integer weights in [1, M ]. The
preprocessing time is O(n2.5794M) and the query time is O(1). However, there is still a small
gap between the preprocessing time of our DSO and the current best time bound for the
APSP problem in directed graphs, which is Õ(n2+µM) ≤ O(n2.5286M) [42]. Can we improve
the preprocessing time to Õ(n2+µM), matching the latter time bound? Another interesting
problem is to investigate the complexity of preprocessing a DSO in undirected graphs – here,
the best time bound for APSP is Õ(nωM) [27, 30]. Can we preprocess a DSO in Õ(nωM)
time on undirected graphs?

Compared to other DSOs [8, 16, 36], our oracle has two drawbacks. First, our query
algorithm only outputs the shortest distance, but we do not know how to find the actual
shortest paths. So another open problem is whether we can find the actual shortest path
with additional O(l) query time, where l is the number of edges in the returned shortest
path. Second, since we used [22, Observation 2.1], our oracle can only deal with positive
edge weights. Can we extend our oracle to also deal with negative edge weights?

For every parameter f , the r-truncated DSO in Section 3.2 can actually handle f

edge/vertex deletions in Õ(fωr) query time. (See also [35].) However, as far as we know, [22,
Observation 2.1] only works for one failure. It would be exciting to extend [22, Observation 2.1]
or our (full) DSO to also handle f failures.
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Abstract
This paper considers approximation algorithms for generalized k-median problems. This class of
problems can be informally described as k-median with a constant number of extra constraints,
and includes k-median with outliers, and knapsack median. Our first contribution is a pseudo-
approximation algorithm for generalized k-median that outputs a 6.387-approximate solution with
a constant number of fractional variables. The algorithm is based on iteratively rounding linear
programs, and the main technical innovation comes from understanding the rich structure of the
resulting extreme points.

Using our pseudo-approximation algorithm, we give improved approximation algorithms for k-
median with outliers and knapsack median. This involves combining our pseudo-approximation with
pre- and post-processing steps to round a constant number of fractional variables at a small increase
in cost. Our algorithms achieve approximation ratios 6.994 + ϵ and 6.387 + ϵ for k-median with
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1 Introduction

Clustering is a fundamental problem in combinatorial optimization, where we wish to partition
a set of data points into clusters such that points within the same cluster are more similar than
points across different clusters. In this paper, we focus on generalizations of the k-median
problem. Recall that in this problem, we are given a set F of facilities, a set C of clients, a
metric d on F ∪ C, and a parameter k ∈ N. The goal is to choose a set S ⊂ F of k facilities
to open to minimize the sum of connection costs of each client to its closest open facility.
That is, to minimize the objective

∑
j∈C d(j, S), where we define d(j, S) = mini∈S d(i, j).

The k-median problem is well-studied from the perspective of approximation algorithms,
and many new algorithmic techniques have been discovered while studying it. Examples
include linear program rounding [3, 13], primal-dual algorithms [10], and local search [1].
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Recently, there has been significant interest in generalizations of the k-median problem
[4, 11]. One such generalization is the knapsack median problem. In knapsack median, each
facility has a non-negative weight, and we are given budget B ≥ 0. The goal is to choose a
set of open facilities of total weight at most B (instead of having cardinality at most k) to
minimize the same objective function. That is, the open facilities must satisfy a knapsack
constraint. Another commonly-studied generalization is k-median with outliers, also known
as robust k-median. Here we open k facilities S, as in basic k-median, but we no longer have
to serve all clients; now, we are only required to serve at least m clients C ′ ⊂ C of our choice.
Formally, the objective function is now

∑
j∈C′ d(j, S).

Both knapsack median and k-median with outliers have proven to be much more difficult
than the standard k-median problem. Algorithmic techniques that have been successful in
approximating k-median often lead to only a pseudo-approximation for these generalizations
– that is, they violate the knapsack constraint or serve fewer than m clients [2, 4, 6, 9].
Obtaining “true” approximation algorithms requires new ideas beyond those of k-median.
Currently the best approximation ratio for both problems is 7.081 + ϵ due to the beautiful
iterative rounding framework of Krishnaswamy, Li, and Sandeep [12]. The first and only
other true approximation for k-median with outliers is a local search algorithm due to Ke
Chen [5].

Generalized k-Median

Both knapsack median and k-median with outliers maintain the salient features of k-median;
that is, the goal is to open facilities to minimize the connection costs of served clients. These
variants differ in the way we put constraints on the open facilities and served clients. For
example, in k-median with outliers, we are constrained to open at most k facilities, and serve
at least m clients.

In this paper, we consider a further generalization of k-median that we call generalized
k-median (GKM). As in k-median, our goal is to open facilities to minimize the connection
costs of served clients. In GKM, the open facilities must satisfy r1 given knapsack constraints,
and the served clients must satisfy r2 given coverage constraints. We define r = r1 + r2 to
be the number of side constraints overall.

For each knapsack constraint, we have a unique non-negative budget and each facility
has a non-negative cost with respect to that budget. The open facilities satisfy all budgets.
Similarly, for each coverage constraint, we have a unique non-negative quota and each client
has a non-negative value with respect to that quota. Then the served clients must satisfy all
quotas.

1.1 Our Results
The main contribution of this paper is a refined iterative rounding algorithm for GKM.
Specifically, we show how to round the natural linear program (LP) relaxation of GKM to
ensure all except O(r) of the variables are integral, and the objective function is increased
by at most a 6.387-factor. It is not difficult to show that the iterative rounding framework
in [12] can be extended to show a similar result. Indeed, a 7.081-approximation for GKM
with at most O(r) fractional facilities is implicit in their work. The improvement in this
work is the smaller loss in the objective value.

▶ Theorem 1 (Pseudo-Approximation for GKM). There exists a poly-time pseudo-
approximation for GKM that outputs a solution of cost at most 6.387 ·Opt with at most O(r)
fractional facilities.
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Our improvement relies on analyzing the extreme points of certain set-cover-like LPs.
These extreme points arise at the intermediate steps of our iterative rounding, and by using
their structural properties, we obtain our improved pseudo-approximation for GKM. This
work reveals some of the structure of such extreme points, and it shows how this structure
can lead to improvements.

Our second contribution is improved “true” approximation algorithms for two special
cases of GKM: knapsack median and k-median with outliers. For both problems, applying
the pseudo-approximation algorithm for GKM gives a solution with O(1) fractional facilities.
Thus, the remaining work is to round a constant number of fractional facilities to obtain
an integral solution. To achieve this goal, we apply known sparsification techniques [12] to
pre-process the instance, and then develop new post-processing algorithms to round the final
O(1) fractional facilities.

We show how to round these remaining variables for knapsack median at arbitrarily
small loss, giving a 6.387 + ϵ-approximation, improving on the best 7.081 + ϵ-approximation.
For k-median with outliers, a more sophisticated post-processing is needed to round the
O(1) fractional facilities. This procedure loses more in the approximation ratio. In the
end, we obtain a 6.994 + ϵ-approximation, modestly improving on the best known 7.081 + ϵ-
approximation.

▶ Theorem 2 (Approximation for Knapsack Median). For any ϵ > 0, there exists a n(1/ϵ)-time
(6.387 + ϵ)-approximation for knapsack median.

▶ Theorem 3 (Approximation for k-Median with Outliers). For any ϵ > 0, there exists a
n(1/ϵ)-time (6.994 + ϵ)-approximation for k-median with outliers.

Organization

In this paper, we develop and analyze the pseudo-approximation algorithm for GKM guaran-
teed by Theorem 1. We defer the “true” approximation algorithms guaranteed by Theorems
2 and 3 to the full version of this paper [8], §6.

1.2 Overview of Techniques
To illustrate our techniques, we first introduce a natural LP relaxations for GKM. The
problem admits an integer program formulation, with variables {xij}i∈F,j∈C and {yi}i∈F ,
where xij indicates that client j connects to facility i and yi indicates that facility i is open.
Relaxing the integrality constraints gives the linear program relaxation LP1. We focus on
only LP1 for now.

(LP1) minx,y

∑
i∈F

∑
j∈C

d(i, j) xij (LP2) : miny

∑
j∈C

∑
i∈Fj

d(i, j) yi∑
i∈F

xij ≤ 1 ∀j ∈ C y(Fj) ≤ 1 ∀j ∈ C

xij ≤ yi ∀i ∈ F, j ∈ C

W y ≤ b W y ≤ b∑
j∈C

aj(
∑

i∈F
xij) ≥ c

∑
j∈C

ajy(Fj) ≥ c

xij , yi ∈ [0, 1] ∀i ∈ F, j ∈ C yi ∈ [0, 1] ∀i ∈ F

The linear program LP1 is the standard k-median LP with the extra side constraints.
Note that

∑
i∈F xij ≤ 1 may seem opposite to the intuition that we want clients to get

“enough” coverage from the facilities, but that will be guaranteed by the coverage constraints
below.

The constraint Wy ≤ b corresponds to the r1 knapsack constraints on the facilities
y, where W ∈ Rr1×F

+ and b ∈ Rr1
+ . These r1 packing constraints can be thought of as a

multidimensional knapsack constraint over the facilities, and ensure that “few” facilities
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Figure 1 Half and quarter ball chasing.

are opened. Next,
∑

j∈C aj(
∑

i xij) ≥ c corresponds to the r2 coverage constraints on the
clients, where aj ∈ Rr2

+ for all j ∈ C and c ∈ Rr2
+ . These coverage constraints ensure that

“enough” clients are served. E.g., having one packing constraint
∑

i∈F yi ≤ k and one covering
constraint

∑
j∈C

∑
i∈F xij ≥ m ensures that at least m clients are covered by at most k

facilities; this is the k-median with outliers problem.

1.2.1 Constructing LP2

The idea from [12] is to prescribe a set Fj ⊆ F of permissible facilities for each client j such
that xij is implicitly set to yi1(i ∈ Fj). The procedure to construct these Fj ’s is given in
Proposition 4. Using this procedure, LP2 is also a relaxation for GKM. Note that in LP2,
we use the notation y(F ′) =

∑
i∈F ′ yi for F ′ ⊂ F .

Now consider solving LP2 to obtain an optimal extreme point ȳ. There must be |F |
linearly independent tight constraints at ȳ. The tight constraints of interest are the y(Fj) ≤ 1
constraints; in general, there are at most |C| such tight constraints, and we have little
structural understanding of the Fj-sets.

1.2.2 Prior Iterative Rounding Framework
Consider the family of Fj-sets corresponding to tight constraints, so F = {Fj | j ∈ C, ȳ(Fj) =
1}. If F is a family of disjoint sets , then the tight constraints of LP2 form a face of a
partition matroid polytope intersected with at most r side constraints (the knapsack and
coverage constraints.) Using ideas from, e.g., [12, 7], we can show that ȳ has at most O(r)
fractional variables.

Indeed, the goal of the iterative rounding framework in [12] is to control the set family F
to obtain an optimal extreme point where F is a disjoint family. To achieve this goal, they
iteratively round an auxiliary LP based on LP2, where they have the constraint y(Fj) = 1
for all clients j in a special set C∗ ⊂ C. Roughly, they regulate what clients are added to C∗

and delete constraints y(Fj) ≤ 1 for some clients. The idea is that a client j whose constraint
is deleted must be close to some client j′ in C∗. Since y(Fj′) = 1 we can serve j with the
facility for j′; the cost is small if j′’s facility is close to j.
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To get intuition, assume each client j can pay the farthest distance to a facility in Fj ,
and call this the radius of Fj . (Precisely, clients may not be able to afford this distance,
but we use this assumption to highlight the ideas behind our algorithmic decisions.) For
simplicity, assume every Fj-set is a ball whose radius is a power of two. Over time, this radius
shrinks if some y-variables in Fj are set to zero. Consider applying the following iterative
steps until none are applicable, in which case C∗ corresponds to the tight constraints: (1)
delete a constraint for j /∈ C∗ if the radius of Fj is at least that of some Fj′ for j′ ∈ C∗ and
Fj ∩ Fj′ ̸= ∅. (2) add j /∈ C∗ to C∗ if y(Fj) ≤ 1 is tight and for every j′ ∈ C∗ such that
Fj ∩ Fj′ ̸= ∅ it is the case that Fj′ has a radius strictly larger than Fj . If added then remove
all j′ from C∗ where j’s radius is half or less of the radius of j′ and Fj ∩ Fj′ ̸= ∅.

The approximation ratio is bounded by how much a client j with a deleted constraint
pays to get to a facility serving a client in C∗. After removing j’s constraint, the case to
worry about is if j’s closest client j′ ∈ C∗ is later removed from C∗. This happens only if j′′

is added to C∗, with Fj′′ having half the radius of Fj′ . Thus every time we remove j’s closest
client in C∗, we guarantee that j’s cost only increases geometrically. The approximation
ratio is proportional to the total distance that j must travel and can be directly related to
the distance of “ball-chasing” though these Fj sets. When we remove a client j from C∗

due to j′ ∈ C∗ such that Fj′ ∩ Fj ≠ ∅ and j′ has radius at most half of j, we call this a
half-chasing step. See Figure 1.

1.2.3 New Framework via Structured Extreme Points

The target of our framework is to ensure that the radius decreases in the ball-chasing at a
faster rate, in particular one-quarter. This gives closer facilities for clients whose constraints
are deleted. See Figure 1. To achieve this quarter-chasing step, we can simply change half to
one-quarter in step (2) above.

Making this change immediately decreases the approximation ratio; however, the challenge
is that F is no longer disjoint. Indeed, it can be the case that j, j′ ∈ C∗ such that Fj∩Fj′ ≠ ∅
if their radii differ by only a one half factor. Instead, our quarter ball-chasing algorithm
maintains that F is not disjoint, but has a bipartite intersection graph.

The main technical challenge is obtaining an extreme point with O(r) fractional variables,
which is no longer guaranteed as when F was disjoint. Indeed, if F has bipartite intersection
graph, then the tight constraints form a face of the intersection of two partition matroid
polytopes intersected with at most r side constraints. In general, we cannot upper bound
the number of fractional variables arising in the extreme points of such polytopes. However,
such extreme points have a nice combinatorial structure: the intersection graph can be
decomposed into O(r) disjoint paths. We exploit this “chain decomposition” of extreme
points arising in our iterative rounding to discover clients j that can be removed from C∗

even if there is not a j′ ∈ C∗ where Fj′ has one quarter of the radius of Fj . We continue
this procedure until we are left with only O(r) fractional variables.

The main technical contribution of this work is showing how the problem can be reduced
to structural characterization of extreme points corresponding to bipartite matching. This
illustrates some of the structural properties of polytopes defined by k-median-type problems.
We hope that this helps lead to other structural characterizations of these polytopes and
ultimately improved algorithms.
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2 Auxiliary LP for Iterative Rounding

In this section, we construct the auxiliary LP, LPiter. We note that we use the same relaxation
used in [12]. Recall the two goals of iterative rounding, outlined in the technical overview; we
want to maintain a set of clients C∗ ⊂ C such that {Fj | j ∈ C∗} has bipartite intersection
graph, and C∗ should provide a good set of open facilities for the clients that are not in
C∗. Thus, we want to define LPiter to accommodate moving clients in and out of C∗, while
having the LP faithfully capture how much we think the clients outside of C∗ should pay in
connection costs.

2.1 Defining F -balls
Our starting point is LP2, so we assume that we have sets Fj ⊂ F for all j ∈ C. The next
proposition states that such sets can be found efficiently so that LP2 is a relaxation of GKM.

▶ Proposition 4. There is a poly-time algorithm that given GKM instance I outputs sets
Fj ⊆ F for j ∈ C such that Opt(LP2) ≤ Opt(I).

Proof. Let I be the given instance of GKM and (x∗, y∗) be an optimal solution to LP1.
Observe that if x∗

ij ∈ {0, y∗
i } for all i ∈ F, j ∈ C, then we can define Fj = {i ∈ F | x∗

ij > 0}
for all j ∈ C. It is easy to verify in this case that y∗ is feasible for LP2 and achieves the
same objective value in LP2 as (x∗, y∗) achieves in LP1, which completes the proof.

Thus our goal is to duplicate facilities in F and re-allocate the x- and y-values appropriately
until x∗

ij ∈ {0, y∗
i } for all i ∈ F, j ∈ C. To prevent confusion, let F denote the original set of

facilities, and let F ′ denote the modified set of facilities, where make n = |C| copies of each
facility in F , so for each i ∈ F , we have copies i1, . . . , in ∈ F ′.

Now we define x′ ∈ [0, 1]F ′×C and y′ ∈ [0, 1]F ′ with the desired properties. For each
i ∈ F , we assume without loss of generality that 0 ≤ xi1 ≤ xi2 ≤ · · · ≤ xin ≤ yi. We define
x′

i11, . . . , x′
inn and y′

i1
, . . . , y′

in
recursively:

Let y′
i1

= xi1 and x′
i1j = xij for all j ∈ [n].

Now for k > 1, let y′
ik

= xik − xi(k−1) and x′
ikj =

{
0 , j < k

y′
ik

, j ≥ k
for all j ∈ [n].

It is easy to verify that (x′, y′) is feasible for LP1 (after duplicating facilities) and
x′

ij ∈ {0, y′
i} for all i ∈ F ′, j ∈ C, as required. Further, it is clear that this algorithm is

polynomial time. ◀

In the technical overview, we assumed the radii of the Fj sets were powers of two. To
formalize this idea, we discretize the distances to powers of τ > 1 (up to some random
offset.) The choice of τ is to optimize the final approximation ratio. The main ideas of the
algorithm remain the same if we discretize to powers of, say 2, with no random offset. Our
discretization procedure is the following:

Fix some τ > 1 and sample the random offset α ∈ [1, τ) such that loge α is uniformly
distributed in [0, loge τ). Without loss of generality, we may assume that the smallest non-
zero inter-point distance is 1. Then we define the possible discretized distances, L(−2) =
−1, L(−1) = 0, . . . , L(ℓ) = ατ ℓ for all ℓ ∈ N. For each p, q ∈ F ∪ C, we round d(p, q) up to
the next largest discretized distance. Let d′(p, q) denote the rounded distances. Observe that
d(p, q) ≤ d′(p, q) for all p, q ∈ F ∪ C. The next proposition bounds the cost of discretization.

▶ Proposition 5. For all p, q ∈ F ∪ C, we have E[d′(p, q)] = τ−1
loge τ d(p, q)
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Proof. If d(p, q) = 0, then the claim is trivial. Suppose d(p, q) ≥ 1. We can rewrite
d(p, q) = τ ℓ+f for some ℓ ∈ N, f ∈ [0, 1). Also, for convenience we define β = logτ α. Because
loge α is uniformly distributed in [0, loge τ), it follows that β is uniformly distributed in [0, 1).

It follows, d(p, q) is rounded to ατ ℓ = τ ℓ+β exactly when β ≥ f , and otherwise d(p, q) is
rounded to τ ℓ+β+1 when β < f . Thus we compute:

E[d′(p, q)] =
∫ f

β=0
τ ℓ+β+1 dβ +

∫ 1

β=f

τ ℓ+β dβ

= 1
loge τ

(τ ℓ+β+1|fβ=0 + τ ℓ+β |1β=f )

= 1
loge τ

(τ ℓ+f+1 − τ ℓ+1 + τ ℓ+1 − τ ℓ+f )

= 1
loge τ

(τ ℓ+f+1 − τ ℓ+f )

= τ − 1
loge τ

d(p, q). ◀

Now using the discretized distances, we can define the radius level of Fj for all j ∈ C by:

ℓj = min
ℓ≥−1
{ℓ | d′(j, i) ≤ L(ℓ) ∀i ∈ Fj}.

One should imagine that Fj is a ball of radius L(ℓj) in terms of the d′-distances. Thus, we
will often refer to Fj as the F -ball of client j. Further, to accommodate “shrinking” the Fj

sets, we define the inner ball of Fj by:

Bj = {i ∈ Fj | d′(j, i) ≤ L(ℓj − 1)}.

Note that we defined L(−2) = −1 so that if ℓj = −1, then Bj = ∅.

2.2 Constructing LPiter

Our auxiliary LP will maintain three sets of clients: Cpart, Cfull, and C∗. Cpart consists of
all clients, whom we have not yet decided whether we should serve them or not. Then for all
clients in Cfull and C∗, we decide to serve them fully. The difference between the clients in
Cfull and C∗ is that for the former, we remove the constraint y(Fj) = 1 from the LP, while
for the latter we still require y(Fj) = 1. Thus although we commit to serving Cfull, such
clients rely on C∗ to find an open facility to connect to. Using the discretized distances,
radius levels, inner balls, and these three sets of clients, we are ready to define LPiter:

min
y

∑
j∈Cpart

∑
i∈Fj

d′(i, j)yi +
∑

j∈Cfull∪C∗

(
∑
i∈Bj

d′(i, j)yi + (1− y(Bj))L(ℓj)) (LPiter)

s.t. y(Fj) ≤ 1 ∀j ∈ Cpart

y(Bj) ≤ 1 ∀j ∈ Cfull

y(Fj) = 1 ∀j ∈ C∗

Wy ≤ b∑
j∈Cpart

ajy(Fj) ≥ c−
∑

j∈Cfull∪C∗

aj

0 ≤ y ≤ 1
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This completes the construction of LPiter. Note that we use the rounded distances in the
definition of LPiter rather than the original distances. Keeping this in mind, if Cpart = C

and Cfull, C∗ = ∅, then LPiter is the same as LP2 up to the discretized distances, so the
following lemma is immediate. The algorithm described by the lemma is exactly the steps
we took in this section.

▶ Lemma 6. There exists a poly-time algorithm that takes as input a GKM instance I and
outputs LPiter such that E[Opt(LPiter)] ≤ τ−1

loge τ Opt(I).

The remainder of the paper shows how to iterative round LPiter to obtain our pseudo-
approximation for GKM.

2.3 Understanding LPiter

Initially, all clients are in Cpart. For clients in Cpart, we are not sure yet whether we should
serve them or not. Thus for these clients, we simply require y(Fj) ≤ 1, so they can be
served any amount, and in the objective, the contribution of a client from Cpart is exactly
its connection cost (up to discretization) to Fj .

The clients in Cfull correspond to the “deleted” constraints in the technical overview.
Importantly, for j ∈ Cfull, we do not require that y(Fj) = 1; rather, we relax this condition
to y(Bj) ≤ 1. Recall that we made the assumption that every client can pay the radius of its
Fj set. To realize this idea, we require that each j ∈ Cfull pays its connection costs to Bj in
the objective. Then, to serve j fully, j must find (1− y(Bj)) units of open facility to connect
to beyond Bj . Now j truly pays its radius, L(ℓj), for this (1− y(Bj)) units of connections in
LPiter, so we can do ball-chasing to C∗ to find these facilities. In this case, we say that we
re-route the client j to some destination.

Note that using the discretized distances, a half-chasing step corresponds to intersecting a
neighboring ball of one radius level smaller, and a quarter-chasing step is analogously defined.

For clients in C∗, we require y(Fj) = 1. Note that the contribution of a j ∈ C∗ to the
objective of LPiter is exactly its connection cost to Fj . The purpose of C∗ is to provide
destinations for Cfull.

Finally, because we have decided to fully serve all clients in Cfull and C∗, regardless of
how much they are actually served in their F -balls, we imagine that they every j ∈ Cfull∪C∗

contributes aj to the coverage constraints, which is reflected in LPiter.

3 Basic Iterative Rounding Phase

In this section, we describe the iterative rounding phase of our algorithm. This phase has
two main goals: (a) to simplify the constraint set of LPiter, and (b) to decide which clients
to serve and how to serve them. To make these two decisions, we repeatedly solve LPiter to
obtain an optimal extreme point, and then use the structure of tight constraints to update
LPiter, and reroute clients accordingly.

Throughout our algorithm, we will modify the data of LPiter - we will move clients
between Cpart, Cfull, and C∗ and modify the F -balls and radius levels. The key property
that we wish to maintain is the Distinct Neighbors Property.

▶ Definition 7 (Distinct Neighbors Property). For all j1, j2 ∈ C∗, if Fj1 ∩ Fj2 ≠ ∅, then
|ℓj1 − ℓj2 | = 1. In words, if the F -balls of two clients in C∗ intersect, then they differ by
exactly one radius level.
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This simple property will enable quarter-chasing and a structural characterization of the
extreme points of LPiter - both of which are crucial to our improved algorithm.

3.1 The Algorithm

Our algorithm repeatedly solves LPiter to obtain an optimal extreme point ȳ, and then
performs one of the following three possible updates, based on the tight constraints:

1. If some facility i is set to zero in ȳ, we delete it from the instance.
2. If constraint ȳ(Fj) ≤ 1 is tight for some j ∈ Cpart, then we decide to fully serve client j

by moving j to either Cfull or C∗. Initially, we add j to Cfull then run Algorithm 2 to
decide if j should be in C∗ instead.

3. If constraint ȳ(Bj) ≤ 1 is tight for some j ∈ Cfull, we shrink Fj by one radius level (so
j’s new F -ball is exactly Bj .) Then we possibly move j to C∗ by running Algorithm 2
for j.

These steps are made formal in Algorithms 1 (IterativeRound) and 2 (ReRoute).
IterativeRound relies on the subroutine ReRoute, which gives our criterion for moving a
client to C∗. This criterion for adding clients to C∗ is the key way in which our algorithm
differs from that of [12]. In [12], the criterion used ensures that {Fj | j ∈ C∗} is a family
of disjoint sets. In contrast, we allow F -balls for clients in C∗ to intersect, as long as they
satisfy the Distinct Neighbors Property. Thus, our algorithm allows for rich structures in the
set system {Fj | j ∈ C∗}.

Algorithm 1 IterativeRound.

Input: LPiter

Result: Modifies LPiter and outputs an optimal extreme point of LPiter

1 repeat
2 Solve LPiter to obtain optimal extreme point ȳ.
3 if there exists a facility i ∈ F such that ȳi ≥ 0 is tight then
4 Delete i from F .
5 else if there exists a client j ∈ Cpart such that y(Fj) ≤ 1 is tight then
6 Move j from Cpart to Cfull.
7 ReRoute(j)
8 else if there exists a client j ∈ Cfull such that ȳ(Bj) ≤ 1 is tight then
9 Update Fj ← Bj and decrement ℓj by 1.

10 Update Bj ← {i ∈ Fj | d′(j, i) ≤ L(ℓj − 1)}.
11 ReRoute(j)
12 else
13 Output ȳ and Terminate.
14 until termination

The modifications made by IterativeRound do not increase Opt(LPiter), so upon
termination of our algorithm, we have an optimal extreme point ȳ to LPiter such that
LPiter is still a relaxation of GKM and no non-negativity constraint, Cpart-constraint, or
Cfull-constraint is tight for ȳ. Further, it is easy to check that the Distinct Neighbors
Property is maintained.
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Algorithm 2 ReRoute.

Input: Client j ∈ Cfull

Result: Decide whether to move j to C∗ or not
1 if ℓj ≤ ℓj′ − 1 for all j′ ∈ C∗ such that Fj ∩ Fj′ ̸= ∅ then
2 Move j from Cfull to C∗.
3 For all j′ ∈ C∗ such that Fj ∩ Fj′ ≠ ∅ and ℓj′ ≥ ℓj + 2, move j′ from C∗ to Cfull.

3.2 Sketch of Analysis
Recall the goals from the beginning of the section: procedure IterativeRound achieves
goal (a) of making {Fj | j ∈ C∗} simpler while maintaining the Distinct Neighbors Property.
Since we moved facilities between C∗ and Cfull, achieving goal (b) means deciding which
facilities to open, and guaranteeing that each client has a “close-by” open facility. (Recall
from §2 that C∗ is the set of clients such that their Fj-balls are guaranteed to contain an
open facility, and Cfull are the clients which are guaranteed to be served but using facilities
opened in C∗.)

To achieve goal (b), we observe that ReRoute always gives quarter-chasing steps. That
is, if we move a client j from C∗ to Cfull, then we are guaranteed a neighboring client j′ ∈ C∗

with radius level at least two smaller than j. Thus, each time we re-route j to a further
destination (i.e. if j′ is subject to another quarter-chasing step), the extra distance j must
travel decreases geometrically. In the end, we can show that j will have an open facility
within O(1) times its radius.

4 Iterative Operation for Structured Extreme Points

In this section, we achieve two goals: (a) we show that the structure of the extreme
points of LPiter obtained from IterativeRound are highly structured, and admit a chain
decomposition. Then, (b) we exploit this chain decomposition to define a new iterative
operation that is applicable whenever ȳ has “many” (i.e., more than O(r)) fractional variables.
We emphasize that this characterization of the extreme points is what enables the new iterative
rounding algorithm.

4.1 Chain Decomposition
A chain is a sequence of clients in C∗ where the F -ball of each client j contains exactly two
facilities – one shared with the previous ball and other with the next.

▶ Definition 8 (Chain). A chain is a sequence of clients (j1, . . . , jp) ⊆ C∗ satisfying:
|Fjq
| = 2 for all q ∈ [p], and

Fjq
∩ Fjq+1 ̸= ∅ for all q ∈ [p− 1].

Our chain decomposition is a partition of the fractional C∗-clients given in the next
theorem, which is our main structural characterization of the extreme points of LPiter. (We
say a client j is fractional if all facilities in Fj are fractional; we denote the fractional clients
in C∗ by C∗

<1.) We defer the proof of the next structural theorem to the full version of this
paper [8] §8, and instead focus on how to apply it.

▶ Theorem 9 (Chain Decomposition). Upon termination of IterativeRound, there exists
a partition of C∗

<1 into at most 3r chains, along with a set of at most 2r violating clients
(clients that are not in any chain.)
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The proof relies on analyzing the extreme points of LPiter satisfying the Distinct Neighbors
Property. We show that this boils down to analyzing a bipartite matching polytope with r

side constraints.

4.2 Iterative Operation for Chain Decompositions
Leveraging Theorem 9, consider an optimal extreme point ȳ of LPiter, and its chain decom-
position. We show that if the number of fractional variables in ȳ is sufficiently large, there
exists a useful structure in the chain decomposition, which we call a candidate configuration.

▶ Definition 10 (Candidate Config). Let ȳ be an optimal extreme point of LPiter. A candidate
configuration is a pair of two clients (j, j′) ⊂ C∗

<1 such that:
1. Fj ∩ Fj′ ̸= ∅
2. ℓj′ ≤ ℓj − 1
3. Every facility in Fj and Fj′ is in at exactly two F -balls for clients in C∗

4. |Fj | = 2 and |Fj′ | = 2

One should imagine that a candidate configuration is two neighboring balls on a sufficiently
long chain.

▶ Lemma 11. If IterativeRound outputs an extreme point that has at least 15r fractional
facilities, then there exist a candidate configuration in C∗

<1.

To prove Lemma 11, which bounds the number of fractional facilities needed to have a
candidate configuration, we first prove a bound on the number of factional clients needed.
The bound on the number of facilities will follow by a dimension argument.

▶ Proposition 12. Suppose LPiter satisfies the Distinct Neighbors Property. Then each
facility is in at most two F -balls for clients in C∗.

Proof. Assume for contradiction that there exists a facility i such that i ∈ Fj1 ∩ Fj2 ∩ Fj3

for distinct clients j1, j2, j3 ∈ C∗. Then j1 and j2 differ by one radius level, and j2 and j3
differ by one radius level. However, now it cannot be the case that j1 and j3 also differ by
one radius level. This contradicts the Distinct Neighbors Property. ◀

▶ Lemma 13. Suppose LPiter satisfies all Basic Invariants, and let ȳ be an optimal extreme
point of LPiter such that no Cpart-, Cfull-, or non-negativity constraint is tight. If |C∗

<1| ≥
14r, then there exist a candidate configuration in C∗

<1.

Proof. We claim that in order for C∗
<1 to have a candidate configuration, it suffices to have

a chain of length at least four in C∗
<1. To see this, let (j1, j2, j3, j4, . . . ) ⊂ C∗

<1 be a chain
of length at least four. Then Fj2 ∩ Fj3 ̸= ∅, and by the Distinct Neighbors Property, either
ℓj3 = ℓj2 − 1 or ℓj2 = ℓj3 − 1.

We only consider the former case, because both cases are analogous. Thus, if ℓj3 = ℓj2−1,
then we claim that (j2, j3) forms a candidate configuration. We already have the first two
properties of a candidate configuration. Now we verify the last two. Because j2 and j3 are
part of a chain, we have |Fj2 | = 2 and |Fj3 | = 2. Further, j2 has neighbors j1 and j3 along
the chain. By Proposition 12, each facility in Fj2 is in at most two F -balls for clients in
C∗. In particular, one of the facilities in Fj2 is shared by Fj1 and Fj2 , and the other must
be shared by Fj2 and Fj3 . Thus, each facility in Fj2 is in exactly two F -balls for clients in
C∗. An analogous argument holds for Fj3 , so (j2, j3) satisfies all properties of a candidate
configuration, as required.

ICALP 2021



77:12 Structural Iterative Rounding for Generalized k-Median Problems

Now suppose |C∗
<1| ≥ 14r. By Theorem 9, C∗

<1 admits a chain decomposition into at
most 3r chains and a set of at most 2r violating clients. Then at least 12r of the clients
in C∗

<1 belong to the 3r chains. By averaging, there must exist a chain with size at least
12r
3r = 4, as required. ◀

Now we relate the number of fractional facilities with the number of fractional C∗-clients
by a dimension argument.

▶ Lemma 14. Let ȳ be an extreme point of LPiter such that no Cpart-, Cfull-, or non-
negativity constraint is tight. Then the number of fractional facilities in ȳ satisfies |F<1| ≤
|C∗

<1|+ r (recall that r is the number of side constraints.)

Proof of Lemma 14. We construct a basis ȳ. First, for each integral facility i ∈ F=1, we
add the integrality constraint ȳi ≤ 1 to our basis. Thus we currently have |F=1| constraints
in our basis.

It remains to choose |F<1| further linearly independent constraints to add to our basis.
Note that we have already added all tight integrality constraints to our basis, and no non-
negativity constraint is tight. Then the only remaining tight constraints we can add are the
C∗-constraints and the r side constraint.

We claim that we cannot add any C∗
=1-constraints, because every C∗

=1-constraint is of
the form y(Fj) = yij

= 1 for the unique integral facility ij ∈ F1. Note that here we used
the fact that there is no facility that is set to zero. Thus every C∗

=1-constraint is linearly
dependent with the tight integrality constraints, which we already chose.

It follows, the only possible constraints we can choose are the C∗
<1-constraints and the r

side constraints so:

|F<1| ≤ |C∗
<1|+ r. ◀

Lemma 11 is immediate by composing the above two lemmas.

Proof of Lemma 11. By Lemma 13, it suffices to show that |F<1| ≥ 15r implies that
|C∗

<1| ≥ 14r. Applying Lemma 14, we have:

15r ≤ |F<1| ≤ |C∗
<1|+ r. ◀

Our new iterative operation is easy to state. Find a candidate configuration (j, j′) and
move j from C∗ to Cfull.

Algorithm 3 ConfigReRoute.

Input: An optimal extreme point ȳ to LPiter s.t. there exists a candidate
configuration

Result: Modify LPiter

1 Let (j, j′) ⊂ C∗
<1 be any candidate configuration.

2 Move j from C∗ to Cfull.

It is easy to check that ConfigReRoute maintains the Distinct Neighbors Property
and weakly decreases Opt(LPiter).
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4.3 Sketch of Analysis
The first two properties of candidate configurations are used to re-route j to j′. Observe
a key difference between ReRoute and ConfigReRoute: In the former, we always
guarantee quarter-chasing steps. On the other hand, in ConfigReRoute, we only guarantee
a neighboring client of at least one radius level smaller, which corresponds to a half-chasing
step. This raises the worry that if all re-routings are due to ConfigReRoute, any potential
gains by ReRoute are not realized in the worst case. However we show that, roughly
speaking, the last two properties of candidate configurations guarantee that the half-chasing
steps of ConfigReRoute happen at most half the time.

In particular, suppose client j is re-routed via ConfigReRoute to j′ , which is exactly
one radius level smaller. If j′ is later re-routed via ReRoute, then we can re-route j to
j′ and then this new destination. This gives one half- and one quarter-chasing step. The
concern is if j′ is later re-routed via ConfigReRoute, which would give j two half-chasing
steps in a row. By analyzing the interactions between ReRoute and ConfigReRoute,
we show that there must exist a j′′ that gives j a quarter-chasing step. See Figure 2.

j j′

j′′

Figure 2 A chain of balls in C∗, where squares indicate facilities. First j is removed from C∗ as
part of candidate configuration (j, j′), so j′ has strictly smaller radius than j. Then j′′ is added to
C∗, which has strictly smaller radius than j′. This gives j a destination that is at least two radius
levels smaller.

5 Pseudo-Approximation Algorithm for GKM

The pseudo-approximation algorithm for GKM combine the iterative rounding algorithm
IterativeRound from §3 with the re-routing operation ConfigReRoute from §4 to
construct a solution to LPiter. PseudoApproximation is the algorithm guaranteed by
Theorem 1.

Algorithm 4 PseudoApproximation.

Input: LPiter

Result: Modifies LPiter and outputs an optimal extreme point of LPiter

1 repeat
2 Run IterativeRound to obtain an optimal extreme point ȳ of LPiter

3 if there exists a candidate configuration then
4 Run ConfigReRoute
5 else
6 Output ȳ and Terminate
7 until Termination
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5.1 Sketch of Analysis
There are two main components to analyzing PseudoApproximation. First, we show
that the output extreme point has O(r) fractional variables, which follows from Lemma 11.
Second, we bound the re-routing cost, which follows from the sketches in §3 and §4. In
particular, for each client, we can charge each of its half-chasing steps to a quarter-chasing
step. This improves on [12], where every re-routing is via half-chasing steps. Optimizing the
choice of τ (the discretization factor) gives our final approximation ratio.

5.2 Analysis of PseudoApproximation
In this section, we prove that PseudoApproximation satisfies the guarantees of Theorem 1.
We begin by analyzing the runtime and number of fractional facilities.

▶ Lemma 15. PseudoApproximation is a polynomial time algorithm that maintains the
Distinct Neighbors Property, weakly decreases Opt(LPiter), and outputs an optimal extreme
point of LPiter with at most 15r fractional variables.

Proof of Lemma 15. We first show that both IterativeRound and ReRoute are poly-
nomial time. It is clear that the latter runs in polynomial time. For IterativeRound, it
suffices to show that the number of iterations of IterativeRound is polynomial. In each
iteration, we make one of three actions. We either delete a facility from F , move a client
from Cpart to Cfull or shrink a F -ball by one radius level for a client in j ∈ Cfull.

We can delete each facility from F at most once, so we make at most |F | deletions. Each
client can move from Cpart to Cfull at most once, because we never move clients back from
Cfull to Cpart, so we do this operations at most |C| times. Finally, observe that ℓj ≥ −1 for
all j ∈ C over all iterations. We conclude that we can shrink each F -ball only polynomially
many times.

For the runtime of PseudoApproximation, it suffices to show that the number of calls
to IterativeRound and ConfigReRoute is polynomial.

In every iteration of PseudoApproximation, either we terminate or we are guaranteed
to move a client from C∗ to Cfull in ConfigReRoute. Each client can be removed from
C∗ only polynomially many times, because each time a client is removed, in order to be
re-added to C∗, it must be the case that we shrunk the F -ball of that client. However, again
because ℓj ≥ −1 for all j ∈ C, we can shrink each F -ball only polynomially many times.

It is easy to check that both IterativeRound and ReRoute maintain the Distinct
Neighbors Property and weakly decrease Opt(LPiter).

Finally, upon termination of PseudoApproximation, there is no candidate configuration,
so Lemma 11 implies that ȳ has at most 15r fractional variables. ◀

5.3 Analysis of Re-Routing Cost
We now bound the re-routing cost by analyzing how C∗ evolves throughout PseudoAp-
proximation. This is one of the main technical contributions of our paper, and it is where
our richer C∗-set and relaxed re-routing rules are used. [12] prove an analogous result about
the re-routing cost of their algorithm. In the language of the following theorem statement,
they show that α = τ+1

τ−1 for the case β = 1. We improve on this factor by analyzing the
interactions between ReRoute and ConfigReRoute. Interestingly, analyzing each of
ReRoute and ConfigReRoute separately would not yield any improvement over [12] in
the worst case, even with our richer set C∗. It is only by using the properties of candidate
configurations and analyzing sequences of calls to ReRoute and ConfigReRoute that
we get an improvement.
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▶ Theorem 16 (Re-Routing Cost). Upon termination of PseudoApproximation, let S ⊂ F

be a set of open facilities and β ≥ 1 such that d(j, S) ≤ βL(ℓj) for all j ∈ C∗. Then for all
j ∈ Cfull ∪ C∗, d(j, S) ≤ (2 + α)L(ℓj), where α = max(β, 1 + 1+β

τ , τ3+2τ2+1
τ3−1 ).

We will need the following discretized version of the triangle inequality.

▶ Proposition 17. Let j, j′ ∈ C such that Fj and Fj′ intersect. Then d(j, j′) ≤ L(ℓj)+L(ℓj′).

Proof. Let i ∈ Fj ∩ Fj′ . Then using the triangle inequality we can bound:

d(j, j′) ≤ d(j, i) + d(i, j′) ≤ d′(j, i) + d′(i, j′) ≤ L(ℓj) + L(ℓj′). ◀

The next lemma analyzes the life-cycle of a client that enters C∗ at some point in
PseudoApproximation. Our improvement over [12] comes from this lemma.

▶ Lemma 18. Upon termination of PseudoApproximation, let S ⊂ F be a set of
open facilities and β ≥ 1 such that d(j, S) ≤ βL(ℓj) for all j ∈ C∗. Suppose client j

is added to C∗ at radius level ℓ during PseudoApproximation (it may be removed
later.) Then upon termination of PseudoApproximation, we have d(j, S) ≤ αL(ℓ), where
α = max(β, 1 + 1+β

τ , τ3+2τ2+1
τ3−1 ).

Proof. Consider a client j added to C∗ with radius level ℓ. If j remains in C∗ until
termination, the lemma holds for j because α ≥ β. Thus, consider the case where j is later
removed from C∗ in PseudoApproximation. Note that the only two operations that can
possibly cause this removal are ReRoute and ConfigReRoute. We prove the lemma
by induction on ℓ = −1, 0, . . . . If ℓ = −1, then j remains in C∗ until termination because it
has the smallest possible radius level and both ReRoute and ConfigReRoute remove a
client from C∗ only if there exists another client with strictly smaller radius level.

Similarly, if ℓ = 0, we note that ReRoute removes a client from C∗ only if there exists
another client with radius level at least two smaller, which is not possible for j. Thus, if j

does not remain in C∗ until termination, there must exist some j′ that is later added to C∗

with radius level at most ℓ− 1 = −1 such that Fj ∩ Fj′ ≠ ∅. We know that j′ remains in C∗

until termination since it is of the lowest radius level. Thus:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(0) + L(−1) + βL(−1) = L(0).

Now consider ℓ > 0 where j can possibly be removed from C∗ by either ReRoute or
ConfigReRoute. In the first case, j is removed by ReRoute, so there exists j′ that is
added to C∗ such that ℓj′ ≤ ℓ− 2 and Fj ∩ Fj′ ≠ ∅. Applying the inductive hypothesis to j′,
we can bound:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(ℓ) + L(ℓ− 2) + αL(ℓ− 2) ≤ (1 + 1 + α

τ2 )L(ℓ).

It is easy to verify by routine calculations that 1 + 1+α
τ2 ≤ α given that α ≥ τ3+2τ2+1

τ3−1 .
For our final case, suppose j is removed by ConfigReRoute. Then there exists j′ ∈ C∗

such that Fj ∩ Fj′ ̸= ∅ and ℓj′ ≤ ℓ − 1. Further, |Fj′ | = 2. If j′ remains in C∗ until
termination, then:

d(j, S) ≤ d(j, j′) ≤ L(ℓ) + L(ℓ− 1) + βL(ℓ− 1) ≤ (1 + 1 + β

τ
)L(ℓ).

Otherwise, j′ is removed by ReRoute at an even later time because some j′′ is added to
C∗ such that ℓj′′ ≤ ℓj′ − 2 and Fj′ ∩ Fj′′ ≠ ∅. Applying the inductive hypothesis to j′′, we
can bound:

d(j, S) ≤ d(j, j′) + d(j′, j′′) + d(j′′, S) ≤ (1 + 2
τ

+ 1 + α

τ3 )L(ℓ).

where α ≥ τ3+2τ2+1
τ3−1 implies 1 + 2

τ + 1+α
τ3 ≤ α.
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Now, we consider the case where j′ is later removed by ConfigReRoute. To analyze this
case, consider when j was removed by ConfigReRoute. At this time, we have |Fj′ | = 2 by
definition of Candidate Configuration. Because Fj ∩Fj′ ̸= ∅, consider any facility i ∈ Fj ∩Fj′ .
When j is removed from C∗ by ConfigReRoute, we have that i is in exactly two F -balls
for clients in C∗, exactly Fj and Fj′ . However, after removing j from C∗, i is only in one
F -ball for clients in C∗ - namely Fj′ .

Later, at the time j′ is removed by ConfigReRoute, it must be the case that |Fj′ | = 2
still, so Fj′ is unchanged between the time that j is removed and the time that j′ is removed.
Thus the facility i that was previously in Fj ∩ Fj′ must still be present in Fj′ . Then this
facility must be in exactly two F -balls for clients in C∗, one of which is j′. It must be the
case that the other F -ball containing i, say Fj′′ , was added to C∗ between the removal of j

and j′.
Note that the only operation that adds clients to C∗ is ReRoute, so we consider the

time between the removal of j and j′ when j′′ is added to C∗. Refer to Figure 2. At this
time, we have j′ ∈ C∗, and Fj′ ∩ Fj′′ ≠ ∅ because of the facility i. Then it must be the case
that j′′ has strictly smaller radius level than j′, so ℓj′′ ≤ ℓj′ − 1 ≤ ℓ− 2. To conclude the
proof, we note that Fj ∩ Fj′′ ≠ ∅ due to the facility i, and apply the inductive hypothesis
to j′′:

d(j, S) ≤ d(j, j′′) + d(j′′, S) ≤ (1 + 1 + α

τ2 )L(ℓ, )

which is at most αL(ℓ). ◀

Now using the above lemma, we can prove Theorem 16.

Proof of Theorem 16. Consider any client j that is in Cfull ∪ C∗ upon termination of
PseudoApproximation. It must be the case that ReRoute(j) was called at least once
during PseudoApproximation. Consider the time of the last such call to ReRoute(j). If
j is added to C∗ at this time, note that its radius level from now until termination remains
unchanged, so applying Lemma 18 gives that d(j, S) ≤ αL(ℓj), as required. Otherwise, if j

is not added to C∗ at this time, then there must exist some j′ ∈ C∗ such that Fj ∩ Fj′ ≠ ∅
and ℓj′ ≤ ℓj . Then applying Lemma 18 to j′, we have:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(ℓj) + L(ℓj′) + αL(ℓj′) ≤ (2 + α)L(ℓj). ◀

5.4 Putting it all Together: Pseudo-Approximation for GKM
In this section, we prove Theorem 1. In particular, we use the output of PseudoApproxim-
ation to construct a setting of the x-variables with the desired properties.

Proof of Theorem 1. Given as input an instance I of GKM, our algorithm is first to
run the algorithm guaranteed by Lemma 6 to construct LPiter from LP1 such that
E[Opt(LPiter)] ≤ τ−1

loge τ Opt(I). Note that we will choose τ > 1 later to optimize our
final approximation ratio. Then we run PseudoApproximation on LPiter, so by The-
orem 15, PseudoApproximation outputs in polynomial time LPiter along with an optimal
solution ȳ with O(r) fractional variables.

Given ȳ, we define a setting x̄ for the x-variables: for all j ∈ Cpart, connect j to all
facilities in Fj by setting x̄ij = ȳi for all i ∈ Fj . For all j ∈ C∗, we have ȳ(Fj) = 1, so connect
j to all facilities in Fj . Finally, to connect every j ∈ Cfull to one unit of open facilities, we
use the following modification of Theorem 16:
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▶ Proposition 19. When PseudoApproximation terminates, for all j ∈ Cfull ∪ C∗, there
exists one unit of open facilities with respect to ȳ within distance (2 + α)L(ℓj) of j, where
α = max(1, 1 + 2

τ , τ3+2τ2+1
τ3−1 ).

The proof of the above proposition is analogous to that of Theorem 16 in the case β = 1,
so we omit it. To see this, note that for all j ∈ C∗, we have ȳ(Fj) = 1. This implies that
each j ∈ C∗ has one unit of fractional facility within distance L(ℓj). Following an analogous
inductive argument as in Lemma 18 gives the desired result.

By routine calculations, it is easy to see that α = τ3+2τ2+1
τ3−1 for all τ > 1. Now, for all

j ∈ Cfull, we connect j to all facilities in Bj . We want to connect j to one unit of open
facilities, so to find the remaining 1− ȳ(Bj) units, we connect j to an arbitrary 1− ȳ(Bj)
units of open facilities within distance (2 + α)L(ℓj) of j, whose existence is guaranteed by
Proposition 19. This completes the description of x̄.

It is easy to verify that (x̄, ȳ) is feasible for LP1, because ȳ satisfies all knapsack constraints,
and every client’s contribution to the coverage constraints in LP1 is exactly its contribution
in LPiter. Thus it remains to bound the cost of this solution. We claim that LP1(x̄, ȳ) ≤
(2 + α)Opt(LPiter), because each client in Cpart and C∗ contributes the same amount to
LP1 and LPiter (up to discretization), and each client j ∈ Cfull has connection cost at most
2 + α times its contribution to LPiter.

In conclusion, the expect cost of the solution (x̄, ȳ) to LP1 is at most:

(2 + α)E[Opt(LPiter)] ≤ τ − 1
loge τ

(
2 + τ3 + 2τ2 + 1

τ3 − 1

)
Opt(I).

Choosing τ > 1 to minimize τ−1
loge τ (2 + τ3+2τ2+1

τ3−1 ) gives τ = 2.046 and τ−1
loge τ (2 + τ3+2τ2+1

τ3−1 ) =
6.387. ◀

5.5 From Pseudo-Approximation to True Approximation
To extend PseudoApproximation to a true approximation algorithm for the special cases
of knapsack median and k-median with outliers, we need to round the final O(1) fractional
facilities from the output of PseudoApproximation. To do so, we wrap PseudoApprox-
imation with pre-processing and post-processing algorithms. The pre-processing involves
enumeration to overcome the unbounded integrality gap, and the post-processing rounds the
final O(1) fractional facilities. See [8], §6 for details.
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Abstract
We study the store-and-forward packet routing problem for simultaneous multicasts, in which
multiple packets have to be forwarded along given trees as fast as possible.

This is a natural generalization of the seminal work of Leighton, Maggs and Rao, which solved
this problem for unicasts, i.e. the case where all trees are paths. They showed the existence of
asymptotically optimal O(C + D)-length schedules, where the congestion C is the maximum number
of packets sent over an edge and the dilation D is the maximum depth of a tree. This improves over
the trivial O(CD) length schedules.

We prove a lower bound for multicasts, which shows that there do not always exist schedules of
non-trivial length, o(CD). On the positive side, we construct O(C + D + log2 n)-length schedules
in any n-node network. These schedules are near-optimal, since our lower bound shows that this
length cannot be improved to O(C + D) + o(log n).
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1 Introduction

We study how to efficiently schedule multiple simultaneous multicasts in the store-and-forward
model.

Unicasts and multicasts are two of the most basic and important information dissemination
primitives in modern communication networks. In a unicast a source sends information to a
receiver and in a multicast a source sends information to several receivers. Typically, many
such primitives are run simultaneously, causing these primitives to contend for the same
resources, most notably the bandwidth of communication links.
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78:2 Near-Optimal Simultaneous Multicasts

The store-and-forward model has been the classic model for developing a clean theoretical
understanding of how to most efficiently schedule many such primitives contending for the
same link bandwidth. In the store-and-forward model, a network is modeled as a simple
undirected graph G = (V, E) with n nodes. Time proceeds in synchronous rounds during
which nodes trade packets. In each round a node can send packets it holds to neighbors in
G, but at most one packet is allowed to be sent along an edge in each round. Nodes can
copy packets and send duplicate packets to neighbors, again subject to the constraint that at
most one packet crosses an edge each round.

The store-and-forward model, in turn, enables a formal definition of the problem of
scheduling many simultaneous multicasts or unicasts. A simultaneous multicast instance is
given by a set of rooted trees T – one for each multicast – on a store-and-forward network G.
Each Ti ∈ T has root ri and leaves Li along with a packet (a.k.a. message) mi, initially only
known to ri. A schedule instructs nodes what packets to send in which rounds, subject to the
constraint that mi can only be sent over edges in Ti. The quality of a schedule is its length;
i.e., the number of rounds until all nodes in Li have received mi for every i. A simultaneous
unicast instance is the simple case of a simultaneous multicast where all Ti are paths. The
goal of past work and this work is to understand the length of the shortest schedule.

The most important parameters in understanding the length of the shortest schedule has
been the congestion C = maxe |{Ti ∋ e}|, i.e., the maximum number of packets that need to
be routed over any edge in G and the dilation D = maxi depth(Ti), i.e., the maximum depth
of any multicast-tree or the maximum length of any path in the case of simultaneous unicast.
It is easy to see that any schedule requires at least max(C, D) = Ω(C + D) rounds: a tree
with depth D requires at least D rounds to deliver its message and any edge with congestion
C requires at least C rounds to forward all packets that need to be sent over it. On the
other hand, any instance can easily be scheduled in O(CD) rounds in a greedy manner: in
each round and for each edge e = (u, v), forward mi from u to v where Ti is an arbitrary
tree such that e ∈ Ti and u knows mi but v does not; it is easy to verify that this schedule
takes O(CD) rounds.

Classic results of Leighton, Maggs, and Rao [30] improve upon this trivial O(CD) bound
for the case of simultaneous unicast. They showed that introducing a simple independent
random delay for each packet at its source suffices to obtain schedules of length O(C +
D · log n) or O((C + D) · log n

log log n ). A similar strategy can be shown to also work for
simultaneous multicasts [12]. More surprisingly, Leighton et al. show how an intricate
repeated application of the Lovász Local Lemma [1] proves the existence of length O(C + D)
for any simultaneous unicast instance. This seminal paper initiated a long line of followup
work [39, 36, 43, 5, 28, 6, 35, 38, 34, 2, 12, 33], some of which even showed these O(C + D)-
length schedules are efficiently computable [31], even by distributed algorithms [34, 38].

In contrast, essentially nothing beyond the above trivial O(CD) and simple random delay
bounds of O(C+D·log n) and O((C+D)· log n

log log n ) is known for simultaneous multicast, despite
ample practical and theoretical motivation. In particular, simultaneous multicast forms an
important component of practical content-delivery systems [25, 8], as well as numerous recent
theoretical advances in distributed computing [9, 16, 13, 14, 18, 19, 20, 17, 21, 29, 27, 15].

The length of the optimal simultaneous multicast schedule is made all the more intriguing
by the work of Ghaffari [12]. This work studied a natural generalization of simultaneous
multicast, namely how to schedule many simultaneous distributed algorithms, which corres-
ponds to scheduling the routing of messages on directed acyclic graphs (DAGs). Ghaffari
showed that in this setting no O(C + D) schedules exist and, in fact, (up to O(log log n)
factors) the random delay upper bound of O(C + D · log n) is the closest that one can get to
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an O(C + D) bound. Given that multicasts are more general than unicasts but less general
than DAGs, it has remained an interesting open question whether an O(C + D) schedule
comparable to those for unicasts is also possible for multicasts or whether, like for DAGs, a
multiplicative O(log n) overhead is required.

1.1 Our Contributions
We show that, unlike in the unicast setting where O(C + D) schedules are possible, for
multicasts the trivial O(CD) upper bound cannot be improved without introducing a
dependence on the number of nodes, n.

▶ Theorem 1.1. For any C, D, n ∈ Z+ such that C2D+1 ≤ log n there exists a simultaneous
multicast instance on an n-node graph with congestion C and dilation D whose optimal
schedule requires at least CD

2 rounds.

We note that our lower bound also implies a new lower bound of Ω(CD) for the DAGs
case studied by Ghaffari [12] since the DAGs case generalizes simultaneous multicasts.

On the positive side, we show that if one allows a schedule’s length to depend on n then,
unlike in the DAGs case where O(C + D · log n) is the closest one can get to O(C + D), one
can get O(C + D) with a mere additive O(log2 n).

▶ Theorem 1.2. Each simultaneous multicast instance with congestion C and dilation D in
an n-node network admits a schedule of length at most O(C + D + log2 n).

We also verify that these schedules are efficiently computable both by a deterministic,
centralized polynomial-time algorithm and by a randomized distributed algorithm in the
CONGEST model. Our centralized algorithms are a straightforward extension of our
constructions while our distributed algorithms will be based on exponentially decreasing the
number of messages that must be sent by using a “rank-decomposition” idea from the union
find data structure; we defer the details of our algorithms to Section 7.

Complementing our proof that shows the existence of O(C + D + log2 n) schedules, we
extend our lower bound to show that any schedule with purely additive dependence on C,
D and any function of n incurs at least an additive Ω(log n) term. This implies that the
additive log2 n in Theorem 1.2 is essentially optimal.

▶ Theorem 1.3. Suppose there is a function f such that for any simultaneous multicast
instance with congestion C and dilation D, there is a schedule delivering all packets in
O(C + D) + f(n) steps. Then f(n) = Ω(log n).

In summary, our results give an essentially optimal characterization of what simultaneous
multicast schedules are possible and cleanly separate the complexity of simultaneous multicast
schedules from those of simultaneous unicasts and DAGs.

2 Related Work

While we have already mentioned the most relevant previous work, we give some additional
related work below.

The seminal work of Leighton et al. [30] initiated a series of works aimed at showing short
simultaneous unicast schedules exist. For example, [40, 36] improved the constants in the
O(C + D) schedules of Leighton et al., with [36] also generalizing this result to edges with
non-unit transit times and bandwidth. Rothvoss [39] presented a simplified proof compared
to that of [30] by way of the “method of conditional expectations”, and also increased the
constant in the Ω(C + D) lower bound.

ICALP 2021



78:4 Near-Optimal Simultaneous Multicasts

In addition to the mentioned work of Ghaffari [12], there is a variety of work in scheduling
of specific distributed algorithms. A classic result of Topkis [44] shows that h-hop broadcast
of k messages from different sources can be done in O(k + h) rounds. This is a special case of
simultaneous multicast, where k multicast instances are to be scheduled along edges of trees
with congestion C ≤ k and depth D. So, for this special case of simultaneous multicast a
O(C + D)-length schedule always exists. More recently, Holzer and Wattenhofer [22] showed
that n BFSs can be performed from different nodes in O(n) rounds. This was generalized by
Lenzen and Peleg [32] who showed that k many h-hop BFSs from different sources can be
done in O(k + h) rounds.

Another line of work on simultaneous unicast and related problem focused on computing
optimal or near-optimal schedules efficiently, starting with work of Leighton et al. [31]. There
has been work on simultaneous unicast focused on “local-control” or distributed algorithms,
where at each step each node makes decisions on which packets to move forward along their
paths, based only on the routing information that the packets carry and on the local history
of execution. The O(C + D · log n) algorithm of Leighton et al. [30], for example, is such a
distributed simultaneous unicast algorithm. Rabani and Tardos [38] improved this bound
to O(C) + D · (log∗ n)O(log∗ n) rounds, which was then further improved by Ostrovsky and
Rabani [34] to O(C + D + log1+ϵ n) rounds for any constant ϵ > 0. Another series of works
also studied centralized algorithms for simultaneous unicast where the source and sink pairs
are fixed but the algorithm is free to choose what paths it uses to deliver packets from sources
to sinks. Notably, Srinivasan and Teo [43] gave a constant approximation for this problem.
Bertsimas and Gamarnik [5] then provided an asymptotically-optimal algorithm, outputting
a schedule of length OPT + (

√
n · OPT ); i.e., OPT (1 + o(1)) for sufficiently large OPT .

Lastly, there has been work in computing schedules for single multicasts [4, 10] and even
simultaneous multicasts [23, 24] in models fundamentally different from the store-and-forward
model we study.

3 Intuition and Overview of Techniques

We now give an overview of and intuition for the techniques we use in proving the impossibility
of good simultaneous multicast schedules and our nearly matching upper bound.

3.1 Ω(CD) Lower Bound
The goal of our lower Ω(CD) lower bound construction is to repeatedly “accumulate” delays
by combining together already delayed multicast trees. Here, we build some intuition for
this strategy .

Consider a simultaneous multicast instance consisting of two trees S and T using a single
edge as in Figure 1. Since at most one message crosses this edge each round, we know that
after one round at least one of our trees’ messages will be delayed by 1 round, i.e., will not
have crossed the edge. More generally, if C trees all use a single edge e then for any fixed
schedule one of these trees will require at least C rounds until its message crosses e.

If we knew, a priori, for any C-congested edge which multicast tree was delayed by C,
producing a hard multicast instance would be easy as we could repeatedly combine together
the multicast trees delayed by C in each congested edge. For instance, consider the following
example, illustrated in Figure 2a where C = 2. We have four multicast trees S, T , U and V

where S and T have root r1 and U and V have root r2. Both roots connect to a vertex v

where (r1, v) is used by S and T and (r2, v) is used by U and V . If we knew that after a
single round T and V used edges (r1, v) and (r2, v) respectively, then we could “combine” S
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ST

Figure 1 A congested edge example on multicast trees S and T . Root of both trees given by
black node. Each multicast tree given in a different color and edges labeled by which multicast trees
use them.

ST UV

SU

r1 r2

v

u

(a) Accumulating delays if S and U delayed.
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(b) Guessing the delayed trees.

Figure 2 Illustration of how one can “guess” which trees are delayed. Roots given by black nodes.
Each multicast tree given in a different color and edges labeled by which multicast trees use them.

and U into a new edge (v, u). Then, the messages for S and U wouldn’t arrive at v until at
least two rounds have passed and since both S and U use the edge (v, u), one of the messages
of either S or U wouldn’t arrive at u until four rounds have passed, despite the fact that u is
only two hops from the root of each tree. We might hope, then, to recursively repeat this
strategy, combining together such gadgets to accumulate larger and larger delays.

However, we, of course, do not always know which trees are delayed and so combining
together the most delayed tree is not a feasible strategy. That is, we must provide a
construction which requires many rounds for every possible simultaneous multicast schedule,
not many rounds for one fixed schedule.

We overcome this challenge by using the fact that trees, unlike paths, branch. In particular,
we will use the branching of trees to “guess” which tree was delayed for every congested edge.
As a concrete example of this strategy consider the simultaneous multicast instance given in
Figure 2b. We have the instance as in Figure 2a but now instead of vertex u, we have four
vertices, one for each possible guess of which pair of elements in {S, T} {U, V } are delayed
at (r1, v) and (r2, v). Now notice that for any fixed simultaneous multicast schedule for this
instance we know that after one round only one of S and T ’s messages will cross (r1, v) and
only one of U and V ’s message will cross (r2, v). Without loss of generality suppose S and
U do not cross (r1, v) and (r2, v) respectively in the first round. We then know that one
of the edges (v, u′) corresponding to one of our guesses – in this case the edge used by S

and U – is such that the trees which use this edge will not deliver the their messages to v

until two rounds have passed. Similarly, we know that at most one of S and U ’s messages
arrive at u′ by the third round – without loss of generality U ’s message. Thus, S will not
successfully deliver its message to all leaves until at least four rounds have passed, despite
the fact that all leaves of S are only two hops from S’s root. More generally, if we repeated
this construction with a larger congestion C we would have that some multicast tree requires
at least 2C rounds to deliver its message to all leaves, despite the fact that C + D = C + 2.
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78:6 Near-Optimal Simultaneous Multicasts

Our lower bound construction will recursively stack trees like those in Figure 2b to guess
which multicast trees a schedule chooses to delay and accumulate a larger and larger delay
by combining together these delayed trees. We will guarantee that some sub-graph is always
correct in its guesses. We will also make use of the observation that if C trees all use a
single edge e then by Markov’s inequality at least C

2 of these trees will require C
2 rounds

until their message crosses e to reduce the amount of guessing we must do; this will allow us
to expand the possible values of C and D we can use when constructing our lower bound
graph which will aid in the proof of Theorem 1.3. We elaborate on our Ω(CD) construction
in Section 4 and then extend it in Section 6 to show that additive Ω(log n) is necessary for
length O(C + D) schedules.

3.2 Existence of O(C + D + log2 n) Simultaneous Multicast Schedules
The main intuition underlying our O(C +D +log2 n)-length simultaneous multicast schedules
is that every instance of multicast can be reduced to a series of unicast instances and,
as Leighton et al. [30] showed, unicast instances admit schedules of length linear in their
congestion and dilation. Our goal then is to gracefully reduce a simultaneous multicast to a
series of simultaneous unicasts.

Here, we discuss two natural approaches for such a reduction, argue that they fail and
extract intuition for our upper bound from this failure. In the first approach, for each
multicast tree Ti we define |Li| unicast instances, where for each leaf l ∈ Li we have a
unicast instance on the root-to-leaf path from ri to l. While this simultaneous unicast
instance has dilation D′ = D, it also has congestion potentially as high as C ′ = Ω(n):
unicasts corresponding to the same tree are run independently, and each edge in Ti is
contained in every root-to-leaf unicast path. Relying on the existence of schedules of length
O(C ′ + D′) guaranteed by [30], then, could yield schedules of length as bad as Ω(D + n).
In the second approach, we define a separate unicast instance for each edge in each Ti.
We then run a simultaneous unicast schedule for all edges from roots of multicast trees to
their children, then from roots’ children to their children, and so on and so forth. Here we
have at least obtained a sequence of simultaneous unicast instances with lower dilation –
D′ = 1 – and congestion no larger than what we started with – C ′ ≤ C. [30] guarantees
the existence of schedules of length O(C ′ + D′) for each such simultaneous unicast instance.
Unfortunately, we must concatenate together the schedules of D such simultaneous unicast
instances to solve the simultaneous multicast instance, which would yield schedules of length
Ω(D(C ′ + D′)) = Ω(CD); i.e., no better than the trivial schedule.

Thus, the challenge in reducing simultaneous multicast to simultaneous unicast is finding
a suitable way of balancing between these two approaches. In the first reduction, we were
able to solve a single simultaneous unicast problem with dilation D but one whose congestion
was much larger than the congestion of the simultaneous multicast problem with which we
started. In the second extreme, we were able to solve simultaneous unicast instances with
dilation and congestion only 1 and C but we had to solve many such problems.

Our goal, then, is to find a way of reducing simultaneous multicast to simultaneous
unicast in a way that keeps the dilation and congestion of the resulting simultaneous unicast
instances small but does not require solving too many simultaneous unicasts. We strike such a
balance by computing what we call a (log n, log n)-short path decomposition of each multicast
tree. This decomposition is based on subdividing paths in the heavy path decompositions
of [42]. By using such a decomposition on each multicast tree along with random delays
determining when to schedule each path in the decomposition, we obtain a sequence of

C
log n + D

log n + log n many simultaneous unicast instance whose congestion C ′ and dilation
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D′ are both at most O(log n) with high probability. Relying on the O(C ′ + D′) schedules
guaranteed by [30] for these simultaneous unicast instances, we find that every simultaneous
multicast instance admits a schedules of length O(C + D + log2 n). We elaborate on this in
Section 5. We also provide centralized and distributed algorithms for the computation of
these schedules in Section 7.

4 Ω(CD) Lower Bound

This section is dedicated to the proof of our Ω(CD) lower bound. We begin this section by
providing the family of instances we use to show this lower bound. We proceed to show how
this family requires Ω(CD) rounds, showing that O(C + D) simultaneous multicast schedules
are generally impossible and that the trivial O(CD) schedule is the best simultaneous
multicast schedule without a dependence on n. Specifically, we prove the following.

▶ Theorem 1.1. For any C, D, n ∈ Z+ such that C2D+1 ≤ log n there exists a simultaneous
multicast instance on an n-node graph with congestion C and dilation D whose optimal
schedule requires at least CD

2 rounds.

4.1 Multicast Instance
We will describe how our instance is constructed in a top-down manner. For the remainder
of this section we fix a desired congestion C and dilation D. We will recursively construct
a graph in which every edge receives C “labels” where the graph induced by each label is
a distinct multicast tree.1 As each label corresponds to a multicast tree, each label will
also have a root corresponding to it which will be the root of the corresponding multicast
tree. Ultimately, our instance corresponding to a fixed C and D will contain C · 2D−1

multicast trees and so throughout this section we will imagine we have C · 2D−1 distinct
labels. Throughout this section we will also let capital letters correspond to labels; e.g.
{S, T, U, V, W, X, Y, Z} is a set of 8 labels. Before moving onto specific details, we refer the
reader to Figure 5 for a visual preview of our lower bound construction.

4.1.1 Interleaving Labels
In order to rigorously define what it means to guess which multicast trees are delayed, we
introduce the idea of “interleaving” the sets of labels corresponding to our multicast trees.

Given sets S1 and S2, each consisting of C labels, we let the interleaving of S1 and S2
be I(S1, S2) := {S′

1 ∪ S′
2 : S′

i ⊆ Si, |S′
i| = C/2} be all subsets which take C/2 labels from

S1 and C/2 labels from S2. For example, if C = 2 and S1 = {S, T} and S2 = {U, V } then
I(S1, S2) = {{S, U}, {S, V }, {T, U}, {T, V }}. S1 and S2 will correspond to two adjacent
edges, each in a disjoint set of C multicast trees each and so I(S1, S2) will correspond to
all ways of guessing which C trees, taking C/2 trees from one edge and C/2 trees from the
other edge, are delayed among the 2C multicast trees which use one of the two edges.

Let S = (Si)2D−1

i=1 be a tuple partitioning our C · 2D−1 distinct labels into sets of size C.
That is, each Si is a set (with associated index i) containing C distinct labels and Si ∩ Sj = ∅
for i ̸= j. We call two sets in S adjacent if the index of one is 2i − 1 and the index of the
other is 2i for some i ∈ Z≥1. Finally, we let

I(S) := |S|/2
i=1 I(S2i−1, S2i)

1 The graph induced by a label χ on graph G is the subgraph of edges from G labeled χ.
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be all possible interleavings of adjacent sets in S where denotes an |S|/2-wise Cartesian
product. This tuple S will correspond to all edges of our construction at height D while a
pair of adjacent sets S2i−1 and S2i will correspond to two adjacent edges, each in disjoint
sets of C multicast trees; thus I(S) will correspond to all possible ways to guess how, among
all pairs of adjacent edges at height D, which C trees, taking C/2 trees from one edge and
C/2 trees from the other edge, are delayed in each pair.

We give a concrete example of our notation where C = 2 and D = 3. Let S =
(S1, S2, S3, S4) = ({S, T}, {U, V }, {W, X}, {Y, Z}). Then I(S) corresponds to all ways of
combining S1 and S2 by taking one element from each and all ways of combining S3 and S4
by taking one element from each. In particular, we have

I(S) = I(S1, S2) × I(S3, S4)
=

{
{S, U}, {S, V }, {T, U}, {T, V }

}
×

{
{W, Y }, {W, Z}, {X, Y }, {X, Z}

}
,

Notice that each S ′ ∈ I(S) is a tuple of sets, each of C labels, and the number of distinct
labels across all sets in S ′ is exactly half of the number of labels across all sets in S. Each
S ′ ∈ I(S) will correspond to a single recursive call in our construction.

4.1.2 Our Instance
With the above notation in hand, we now describe how we recursively construct our multicast
instance for a fixed C and D. Let S = (Si)2D−1

i=1 be an arbitrary partition of our C · 2D−1

distinct labels into sets of size C as above. Our recursion will be on D; that is, we will
recursively construct several instances of simultaneous multicast with dilation D − 1 and
congestion C and then combine together these instances into a single instance with congestion
C and dilation D (in fact, every edge will have congestion exactly C and every tree will have
depth exactly D). We let MS be the simultaneous multicast instance we construct from S
and let GS be its corresponding graph. As can easily be seen by induction on our recursive
depth, each root will inductively only be incident on a single edge and so we let χ(r) be the
set of labels of the one edge incident to root r.

Base case (D = 1): In this case we have S = (S1). We let MS consist of one edge (r, v)
which receives every label in S1 and let r be the root of every label/tree.
Inductive case (D > 1): We construct MS in three steps. See Figures 3, 4 and
5 for an illustration of the results of steps one, two and three respectively; we defer
the former two to the appendix. In the example in these figures C = 2, D = 3
and S = (S1, S2, S3, S4) = ({S, T}, {U, V }, {W, X}, {Y, Z}); roots of multicast trees are
indicated by black nodes and edges are colored according to their label/tree.

1. First, for each pair of adjacent sets S2i−1 and S2i in S we introduce vertices r2i−1, r2i

and vi and edges e2i−1 = (r2i−1, vi) and e2i = (r2i, vi). We let rj be the root of all
trees with a label in Sj and ej receive all labels in Sj for every j ( Figure 3).

2. Next, we “guess” which trees will be delayed on the ejs. In particular, we add to
our graph the disjoint union of GS′ for each S ′ ∈ I(S); each of the new connected
components in our graph at this point corresponds to some instance MS′ ; each edge
inherits the C labels it received in MS′ (Figure 4).

3. Finally, we connect up our guesses to the corresponding parents. In particular, for
each vertex r that was a root in M ′

S if χ(r) ∈ I(S2i−1, S2i), we identify r and vi as
the same vertex (Figure 5).

It is easy to verify by induction on our recursive depth that, indeed, each label and its
root induce a tree in the returned graph and so MS is an instance of simultaneous multicast.



B. Haeupler, D. E. Hershkowitz, and D. Wajc 78:9

ST UV WX YZ

Figure 3 The result of step one of our lower bound construction. Notice that we have an edge
for each set Si and each pair of adjacent Si are joined together at a vertex. We outline in red and
green v1 and v2 respectively. Left-to-right black nodes are r1, r2, r3 and r4.
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Figure 4 The result of step two of our construction. Notice that we now have a new connected
component for each S ′ ∈ I(S), each of which corresponds to a guess for which trees will be delayed
at v1 and v2. We outline in red and green the vertices which in step three we identify with v1 and
v2 respectively.

▶ Lemma 4.1. Let S = (Si)2D−1

i be a partition of C · 2D−1 distinct labels as above. Then
each label in

⋃
i Si induces a rooted tree in GS .

Proof. We prove this by induction on D. Let Tχ be the graph induced by label χ and let rχ

be χ’s root. We will prove the slightly stronger claim that Tχ is a tree containing rχ and for
any two labels χ ̸= χ′ we have rχ ∈ Tχ′ only if rχ = rχ′ . Call this latter property ⃝∗ .

As a base case suppose that D = 1. We then have that S = (S1) is a single set of labels
and so by definition of MS we have that our graph will consist of a single edge (r, v) where r

is the root for every label and (r, v) is labeled by every label in S1. Since each label induces
the edge (r, v) where r is the root for this label, clearly every label induces a rooted tree
containing its root. Moreover, ⃝∗ holds since every label has the same root.

As an inductive hypothesis suppose that for any D′ < D and S ′ of size C · 2D′−1, we have
that every label in MS′ induces a tree containing the label’s root and all induced trees in
MS′ satisfy ⃝∗ . Thus, our inductive hypothesis tells us that every label in MS′ for S ′ ∈ I(S)
induces a tree containing the label’s root where all labels satisfy ⃝∗ .

We will first verify that each Tχ is a tree containing rχ. Clearly, since the edge leaving
rχ is labeled χ, we have that rχ ∈ Tχ. Let T ′

χ be all trees induced by label χ in M ′
S for

S ′ ∈ I(S). MS is created by taking the disjoint union of GS′ for S ′ ∈ I(S), identifying
several roots of MS′ trees and then adding new roots and edges. Notice that for any χ this
identifying of nodes as the same nodes does not cause any cycles in a Tχ since by ⃝∗ we
identify exactly one node from each tree in T ′

χ with another node. Next, to see that ⃝∗ still
holds notice that if a node is designated a root in MS then it is incident to a single edge and
is a root for every label this edge was assigned. ◀
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Figure 5 Our construction (i.e. the result of step three) for S = (S1, S2, S3, S4) =
({S, T }, {U, V }, {W, X}, {Y, Z}), C = 2 and D = 3. Notice that we have modified the graph
in Figure 4 by adding one edge for each S2i−1 (resp. S2i) colored by the labels in S2i−1 (resp. S2i)
going from root r2i−1 (resp. r2i) to vi.

4.2 Proof of Ω(CD) Lower Bound
An induction on D demonstrates that our simultaneous multicast instance has the appropriate
congestion and dilation.

▶ Lemma 4.2. MS has congestion C and dilation D.

Proof. As each edge receives C labels in our construction, each of which corresponds to a
multicast tree, clearly the congestion is C. For the dilation, we prove by induction on D.
As a base case notice that if D is 1 then |S| is 1 and so G consists of a single edge used by
all all trees, giving a dilation of 1. Suppose that for D′ < D we have that the dilation of
MS′ is D′ where |S ′| = C · 2D−1. The claim follows by simply noticing that each tree in MS
extends the root of every tree in MS′ by 1 edge. ◀

Another simple induction on D and standard approximations allows us to bound the
number of nodes in our lower bound graph.

▶ Lemma 4.3. |V (GS)| ≤ 2C(2D+1).

Proof. Clearly, to upper bound the total number of vertices it suffices to upper bound the
total number of edges introduced. Thus, we will count the number of edges introduced at
each level of our recursion.

Fix C. Define mD := |E(GS)|. We claim by induction on D that mD ≤ 2C(2D)+D. As
a base case notice that when D = 1 we have m1 = 1 ≤ 2C(2D)+D. For our inductive step
consider GS . GS is constructed by introducing 2D−1 edges and unioning together GS′ for
S ′ ∈ I(S) of which there are

(
C

C/2
)2D−1

, each of which have mD−1 edges. Thus, we have

mD = 2D−1 +
(

C

C/2

)2D−1

mD−1

≤ 2D−1 + 2C2D−1
2C2D−1+D−1

(
By

(
C

C/2

)
≤ 2C and inductive hypothesis

)
≤ 2D−1 + 2C2D+D−1

≤ 2C2D+D
(

By 2D−1 ≤ 2C2D+D−1
)

Finally, we conclude the (somewhat loose) bound of 2C2D+1 on the number of vertices in our
graph since D ≤ C · 2D. ◀
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Having established the basic properties of our instance, we now argue that (asymptotically)
the best one can hope for on our instance is the trivial O(CD)-round schedule. As discussed
in Section 3.1, we will prove this by arguing that for any fixed schedule, some sub-graph in
G was correct in “guessing” which multicast trees were slowed down. In particular, we will
argue that for any fixed schedule there is some smaller instance of simultaneous multicast
which this schedule must solve as a sub-problem which takes at least C(D−1)

2 rounds but
which the schedule does not start making progress towards solving until at least C

2 rounds
have passed.

▶ Lemma 4.4. The optimal schedule on MS is of length at least CD
2 .

Proof. Fix an arbitrary simultaneous multicast schedule. We will prove by induction on D

that MS requires at least CD
2 rounds. The base case of D = 1 is trivial, as in this case MS

is a single edge with congestion C and so clearly requires at least C ≥ CD
2 rounds.

For the inductive step, D > 1, suppose that for any partition S ′ of C ·2D−1 distinct labels
into sets of size C, we have that MS′ requires at least C(D−1)

2 rounds. By definition of MS ,
any schedule which solves MS can be projected in the natural way onto MS′ as a schedule
which solves MS′ for any S ′ ∈ I(S). For example, any schedule which solves the instance
in Figure 5 induces a schedule which when projected onto Figure 4 solves MS′ for each of
the recursively constructed MS′ . Even stronger, notice that MS is created by combining
the union of all MS′ for S ′ ∈ I(S) in such a way that any schedule which solves MS must
also send all messages from roots of trees in MS to corresponding roots of trees in MS′ and
solve MS′ . That is, let r′ be an arbitrary root for MS′ and let χ(r′) be the labels associated
with the one edge for root r′ in MS′ . Then, if we identify r′ with vi when constructing MS
then a schedule for MS must both send r′ the C messages of χ(r′) from r2i−1 and r2i and
solve MS′ . Thus, clearly the time our schedule takes is at least the time it takes to send one
message in χ(r′) to r′ from r2i−1 and r2i for some root in MS′ plus the time it takes to solve
MS′ . For example, if we let S ′ = ({S, U}, {W, Y }) then any schedule which solves Figure 5
solves MS′ but before doing so must clearly send at least one message of {S, U} to v1 or at
least one message {W, Y } to v2.

We now define S̄ ′ where S̄ ′ ∈ I(S) so that MS̄′ is an instance of simultaneous multicast
embedded in MS which our fixed schedule must solve in order to solve MS but which it does
not start start solving until at least C/2 rounds have passed. In particular, consider what
our fixed schedule does in the first C/2 rounds. As C messages must cross each edge ej

and only one such message can cross per rounds, there are some C/2 multicast trees whose
message cannot cross ej before C/2 rounds have passed; let S′

j be these “slow” trees for edge
ej and let

S̄ ′ := (S′
2i−1 ∪ S′

2i)2D−2

i=1

be a partition of the labels corresponding to these slow edges into sets of size C.
The tuple S̄′ belongs to I(S) and so, as discussed above, the fixed schedule must first

send at least one message to a root in MS̄′ and then solve MS̄′ . By definition of S̄′, no
messages arrive at roots of trees in MS̄′ until at least C

2 rounds have passed. On the other
hand, by the inductive hypothesis, the latter sub-instance takes at least C(D−1)

2 additional
rounds. Thus, the schedule must use at least C(D−1)

2 + C
2 = CD

2 rounds. ◀

Combining Lemmas 4.2, Lemma 4.3 and 4.4 and noting that we can always add dummy
nodes to increase the number of vertices in our graph to a desired n immediately yields
Theorem 1.1.
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(a) Multicast tree Ti. (b) Heavy-light decomposition. (c) Cut heavy paths.

Figure 6 Our decomposition for multicast tree Ti. Each heavy path in Figure 6b and short path
in Figure 6c drawn in different colors. Notice the far right path is cut into two short paths since its
length is 5 > log2 n = 4.

5 Existence of O(C + D + log2 n)-Length Schedules

Here we demonstrate that length O(C + D + log2 n) simultaneous multicast schedules always
exist. For this result we rely on heavy path decompositions, introduced by Sleator and
Tarjan [42].

▶ Defintion 5.1 (Heavy path decomposition [42]). A heavy path decomposition of a rooted
tree T is obtained as follows. First, each non-leaf node selects one heavy edge, which is an
edge to a child with the greatest number of descendants (breaking ties arbitrarily). Other
edges are termed light. We consider inclusion-wise maximal paths consisting of heavy edges,
and for each highest node v of such a path p, we add to the path p the edge from v to its
parent (if any). The obtained paths form the heavy path decomposition.

It is easy to see that this is indeed a decomposition of the tree; that is, that each edge
belongs to exactly one path in the heavy path decomposition. Moreover, each root-to-leaf
path intersects at most log2 n heavy paths, as each such path can have at most log2 n light
edges because the number of nodes in a subtree decreases by at least a factor of two every
time one traverses down a light edge. This will allow us to decompose the trees into “short
paths” such that each root-to-leaf path intersects few short paths. Specifically, we define
a refinement of this decomposition in a top-down fashion, by breaking up each heavy path
into short paths of length at most log2 n; that is, starting from the top of a heavy path of
length l, we cut it into ⌈l/ log n⌉ short paths. See Figure 6. Both the decomposition and its
refinement exist, and are even computable deterministically in linear time.

As each root-to-leaf path intersects at most log2 n heavy paths, this refined decomposition
has each root-to-leaf path intersect at most D

log2 n +log2 n short paths. We will refer to such a
decomposition as a (log n, log n)-short (path) decomposition. We use this particular name as
we generalize this notion further in Section 7 and the full version to (l, k)-decompositions for
any integers k and l. This refined path decomposition together with some additional random
delays will allow us to reduce the task of simultaneous multicast to that of O

(
C

log n + D
log n +

log n
)

many simultaneous unicast instances with congestion and dilation O(log n), from
which we obtain the following result. We illustrate the schedules in this result in Figure 7.

▶ Theorem 1.2. Each simultaneous multicast instance with congestion C and dilation D in
an n-node network admits a schedule of length at most O(C + D + log2 n).

Proof. We prove this result by means of the probabilistic method. First, we consider a
(log n, log n) decomposition of each multicast tree. For each short path p in the (log n, log n)-
decomposition of a tree, we say p is at level j if there are exactly j − 1 other short paths
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between p’s root and the tree’s root. That is, if we were to schedule a particular tree by
forwarding along all paths of level j = 1, 2, . . . during R = O(log n) rounds, the path of level
j would be scheduled in rounds ((j − 1) · R, j · R], which we refer to as the j-th frame. Our
goal will be to schedule the sets of short paths with limited congestion in parallel, using
simultaneous unicast schedules guaranteed by [30].

In order to break up simultaneous multicast to multiple simultaneous unicasts, we shift
the levels of each tree Ti by a random offset XTi

chosen uniformly in [C/ log n]. Now a
short path of level j in tree Ti will be scheduled during frame j + XTi . Since each edge e

has congestion C, the expected number of paths of different trees that use e during any
given frame is at most O(log n). So, by standard Chernoff concentration inequalities, the
congestion of each edge during any frame is at most O(log n) w.h.p. Therefore, applying a
union bound over all edges and time frames, we find that w.h.p., all edges have congestion
at most O(log n) for all (shifted) frames j = 1, 2, . . . , C

log n + D
log n + log n (recall that each

root-to-leaf path intersects at most D
log n + log n paths of length at most log n). In particular,

there exist random delays such that each time frame consists of a simultaneous unicast
instance with congestion C ′ = O(log n) and dilation D′ = O(log n). Therefore, by [30, 31],
there exists a schedule of length O(C ′ + D′) = O(log n) for these time frames’ simultaneous
unicasts. Combining these schedules one time frame after another, we obtain a schedule of
length(

C + D

log n
+ log n

)
· O(log n) = O(C + D + log2 n). ◀

(a) Wait for Ti’s random delay.

P 1 P
2

(b) Run LMR on P1, P2.

P
3

P
4

P
5 P 6

P 7 P
8

(c) Run LMR on P3, . . . , P8.

Figure 7 Our multicast schedule on Ti using the decomposition from Figure 6. Nodes with mi

colored in black. Short unicast paths are dashed in black. “LMR” is the schedule given by [30].

The above proof can be made algorithmic, deterministic, and even allows for efficient
distributed algorithms. See Section 7 for details.

6 Additive Ω(log n) Necessary

In this section we use our Ω(CD) lower bound (Theorem 1.1) to show that any simultaneous
multicast bound of the form O(C + D) + f(n) must have f(n) = Ω(log n) (Theorem 1.3).
This result demonstrates the near optimality of the length O(C + D + log2 n) schedules we
gave in the previous section.

▶ Theorem 1.3. Suppose there is a function f such that for any simultaneous multicast
instance with congestion C and dilation D, there is a schedule delivering all packets in
O(C + D) + f(n) steps. Then f(n) = Ω(log n).

Proof of Theorem 1.3. Assume for the sake of contradiction that every simultaneous multic-
ast instance admitted a schedule of length α(C +D)+f(n) for constant α and f(n) = o(log n).
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Let D = 4α and let C = log n
24α+1 for n to be fixed later. Consider the simultaneous

multicast instance given by MS on graph GS as defined in Section 4 whose properties are
given by Theorem 1.1. Notice that C2D+1 = log n

24α+1 24α+1 = log n and so indeed we may apply
Theorem 1.1.

Furthermore, by Theorem 1.1 we have that the optimal schedule of this simultaneous
multicast instance with congestion C, dilation D and n nodes has length at least

L := CD

2 = α

24α
log n.

But, by our assumption for contradiction we have that this instance admits a schedule of
length at most

U := α(C + D) + f(n) = α

24α+1 log n + 4α2 + f(n).

We then have a contradiction because U < L. In particular for n sufficiently large,

U − L = − α

24α+1 log n + 4α2 + o(log n) < 0. ◀

7 Algorithmic Results

In this section we present centralized and distributed algorithms for the computation of
simultaneous multicast schedules of length O(C + D + log2 n), as guaranteed to exist by
Theorem 1.2.

7.1 Centralized Algorithm
It is easy to see that the probabilistic method proof in Theorem 1.2 yields a randomized
algorithm which succeeds with high probability. Moreover, by standard limited independence
methods [41], one can make this algorithm deterministic.

▶ Theorem 7.1. There exists a deterministic, centralized algorithm which, given a simultan-
eous multicast instance, outputs a schedule of length O(C + D + log2 n) in time polynomial
in |T | and n.

Proof. Let us begin by explaining why the proof of Theorem 1.2 immediately yields a
polynomial-time randomized algorithm which succeeds with high probability. Recall that the
schedules in Theorem 1.2 were produced by taking a heavy path decomposition of each Ti,
delaying each Ti by XTi

∼ [C/ log n] and then concatenating together unicast schedules given
by [30]. As noted in Section 5, a heavy path decomposition can be computed deterministically
in polynomial (in fact, linear) time. Clearly, drawing a random delay from [C/ log n] for
each Ti is also doable in polynomial time by a randomized algorithm. Lastly, by [31], the
schedules of [30] can be computed deterministically in polynomial time. By Theorem 1.2 the
resulting schedule is of the appropriate length.

Let us now explain how this algorithm can be made deterministic. Let n′ = n + |T |. The
only randomization used in the above algorithm is the random delays drawn from [C/ log n].
As with most proofs that show concentration by Chernoff bounds, it is easy to see that each
XTi need only be 1

polyn′ -approximate, O(log n′)-wise independent for the above algorithm to
succeed with high probability in n′. (For more background on limited independence, see [41].)
Recalling that one can generate polynomially-many binary 1

polyn′ -approximate O(log n′)-wise
independent random variables with only O(log n′) random bits, our deterministic algorithm
can simply brute force over all possible assignments to these O(log n′) bits, and check if each
resulting schedule is of the appropriate length. The result is a deterministic algorithm which
is polynomial-time in |T | and n and outputs a schedule of the stated length. ◀
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7.2 Distributed Algorithm

In this section we outline our distributed simultaneous multicast algorithm in the CONGEST
model. Please see the full version for additional details.

In the classic CONGEST model of distributed communication [37], a network is modeled
as an undirected simple n-node graph G = (V, E). Communication is conducted over discrete,
synchronous rounds. During each round each node can send an O(log n)-bit message along
each of its incident edges. Every node has an arbitrary and unique ID of O(log n) bits, first
only known to itself (this is the KT0 model of Awerbuch et al. [3]).

In the CONGEST model in a simultaneous multicast instance, each node initially knows
a unique ID associated with each tree Ti to which it belongs, as well as which of its incident
edges occur in which trees. We think of mi in this setting as being an O(log n)-bit message,
which is therefore transmittable along an edge in a single round. As in the centralized version
of the problem, initially only ri knows mi.

In the full version of this work we show CONGEST algorithms with the following
guarantees exists.

▶ Theorem 7.2. For any constant ϵ > 0, there exists a CONGEST algorithm which given
access to shared randomness solves simultaneous multicast in time

O

(
(C + D) ·

(
1 + log min{C, D}

log log n

)
+ log2+ϵ n

)
.

with high probability. If nodes also know their depth in each tree, then there exists another
CONGEST algorithm which solves simultaneous multicast in O(C + D + log2+ϵ) time.

As noted in the introduction, simultaneous multicast has proven to be a crucial subroutine
in many recent algorithms in CONGEST for fundamental problems like MST, shortest path
and approximate min cut. Therefore, improving simultaneous multicast in the CONGEST
model is an important step towards obtaining better algorithms for many of these fundamental
problems. Furthermore, in the above applications of simultaneous multicast the parameters
C and D are equal to the diameter of the graph up to polylogarithmic in n terms, provided
the input graph has certain structure such as being planar [14, 18, 16, 19]. If C and D

are sufficiently large polylogarithmic terms, i.e., max{C, D} = Ω(log2+ϵ n), then, assuming
nodes know their heights, our distributed algorithm gives an optimal O(C + D) time
distributed algorithm. Thus, we view our distributed algorithm as an important step towards
obtaining better algorithms for many distributed problems, including MST, shortest path
and approximate minimum cut.

Before proceeding, let us discuss the preprocessing assumptions in Theorem 7.2. Our
distributed algorithms assume nodes have access to shared randomness or to their height
in each of their incident multicast trees. Both of these assumptions can be dispensed with
provided nodes are allowed to do some preprocessing: see [11] for how to share randomness
and note that nodes can compute their heights by a single simultaneous multicast computation
where we could, for example, use the aforementioned O(C + D log n) length schedules. If
this preprocessing is performed only once and many simultaneous multicasts are performed,
the preprocessing step’s cost amortizes away. Thus, provided nodes share randomness we
have that after a preprocessing step equivalent to the current state of the art distributed
simultaneous multicast algorithm, subsequent simultaneous multicasts can be performed in
time O(C + D + log2+ϵ n), which as discussed earlier, is essentially as close as one can get to
a bound of O(C + D).
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7.2.1 Intuition and Overview
Here we provide an intuition for and an overview of our distributed algorithms. As mentioned
earlier, Ostrovsky and Rabani [34] provided a distributed algorithm for simultaneous unicast
using O(C+D+log1+ϵ n) rounds. Since our centralized algorithm has shown that simultaneous
multicast can be reduced to simultaneous unicast by way of a (log n, log n)-short decomposition
(i.e. a heavy path decomposition), the focus of our distributed algorithm is the efficient
distributed computation of a (log n, log n)-short decomposition.

The challenge of computing such a decomposition in a distributed manner is that it
seems as hard as solving simultaneous multicast. In particular, computing a heavy path
decomposition requires that every node in a Ti aggregate information from all of its children.
It is not hard to see that performing such a “convergecast” at every node can be seen as
performing a multicast on every Ti in reverse. Even worse, the message size sent by nodes to
their parents in such a convergecast to compute a heavy path decomposition must consist of
log2 n bits to count the size of their sub-tree; i.e. sending just one such message fully uses
the bandwidth of a CONGEST link in one round. Thus, it seems that if we want to solve
simultaneous multicast by using a (log n, log n)-short decomposition, then we must circularly
solve a simultaneous convergecast – i.e. simultaneous multicast in reverse – in which large
messages must be sent.

However, we show that, in fact, one can compute what is essentially a (log n, log n)-short
decomposition more efficiently than one can solve simultaneous multicast. In particular,
we show how to efficiently compute what we call a (log1+ϵ n, log n)-short decomposition.
We formally define these decompositions in the full version of this work but for now note
that they are a simple relaxation of heavy path decompositions. We demonstrate that a
(log1+ϵ n, log n)-short decomposition for every Ti can be efficiently computed in a distributed
fashion by using what we call a rank-decomposition – defined in the full version. Computing
a rank-decomposition will require nodes to send exponentially fewer bits to their parents
than computing a heavy path decomposition. That is, it will require that each node send
only O(log log n) bits to its parent rather than the O(log n) bits needed to encode the size of
a subtree by requiring nodes to send information about their “rank” rather than their subtree
size. By exploiting this exponential decrease in the total number of bits that must be passed,
we are able to efficiently pack rank information into messages and compute a (log1+ϵ n, log n)-
short decomposition. Specifically, by using random delays each edge transmits a message for
O(log n/ log log n) trees to which it belongs with high probability. Thus, we are able to to
transmit the O(log log n) bits of O(log n/ log log n) trees for each edge using the O(log n) bits
of one round of CONGEST. This becomes more challenging if an edge does not know which
trees’ messages are being sent which is what incurs the log(min{C, D})/ log log n) factor.
After computing the above decomposition in this way we are then able to translate our
centralized algorithm to the distributed setting by making use of the distributed simultaneous
unicast algorithms of [34].

8 Future Directions

We conclude our paper with future directions for work in the scheduling of simultaneous
multicasts. Of course, one can try and tighten the polylogarithmic additive terms in our
results. More interestingly, one could extend the simultaneous multicast setting in ways
similar to how the simultaneous unicast scheduling work of Leighton et al. [30, 31] has been
extended.
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We give two notable examples. First, one could study what sort of approximation
algorithms are possible if one is permitted to choose the trees over which multicast is
performed as was done in the simultaneous unicast setting [43, 5, 28]. Roughly speaking,
this corresponds to a depth-bounded version of the multicast congestion problem [45, 7, 26].
We point out that choices of trees with optimal congestion + dilation (or nearly-optimal, up
to constant multiplicative and additive polylogarithmic terms) combined with our algorithm
to output length O(C + D + log2 n)-length schedules would imply near-optimal simultaneous
multicasts for this setting. Second, we note that our schedules have logarithmic-sized edge
queues. That is, messages may have to wait up to Θ(log n) rounds before being sent over an
edge. This is not due to our use of the schedules of Leighton et al. [30], whose queue sizes are
constant, but rather due to Θ(log n) messages arriving to a node by the end of simultaneous
unicast frames used in our schedules. An interesting open question is whether there exist
efficient simultaneous multicast schedules which minimize both time and edges’ queue sizes.

References
1 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.
2 Friedhelm Meyer auf der Heide and Berthold Vöcking. Shortest-path routing in arbitrary

networks. Journal of Algorithms, 31(1):105–131, 1999.
3 Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between infor-

mation and communication in broadcast protocols. Journal of the ACM (JACM), 37(2):238–256,
1990.

4 Amotz Bar-Noy, Sudipto Guha, Joseph Naor, and Baruch Schieber. Message multicasting in
heterogeneous networks. SIAM Journal on Computing (SICOMP), 30(2):347–358, 2000.

5 Dimitris Bertsimas and David Gamarnik. Asymptotically optimal algorithms for job shop
scheduling and packet routing. Journal of Algorithms, 33(2):296–318, 1999.

6 Costas Busch, Malik Magdon-Ismail, Marios Mavronicolas, and Paul Spirakis. Direct routing:
Algorithms and complexity. In Proceedings of the 12th Annual European Symposium on
Algorithms (ESA), pages 134–145, 2004.

7 Robert Carr and Santosh Vempala. Randomized metarounding. Random Structures &
Algorithms, 20(3):343–352, 2002.

8 Yang Chu, Sanjay Rao, Srinivasan Seshan, and Hui Zhang. Enabling conferencing applica-
tions on the internet using an overlay muilticast architecture. ACM SIGCOMM computer
communication review, 31(4):55–67, 2001.

9 Michal Dory and Mohsen Ghaffari. Improved distributed approximations for minimum-weight
two-edge-connected spanning subgraph. In Proceedings of the 38th ACM Symposium on
Principles of Distributed Computing (PODC), pages 521–530, 2019.

10 Michael Elkin and Guy Kortsarz. Sublogarithmic approximation for telephone multicast:
path out of jungle. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 76–85, 2003.

11 Mohsen Ghaffari. Distributed broadcast revisited: Towards universal optimality. In Proceedings
of the 42nd International Colloquium on Automata, Languages and Programming (ICALP),
pages 638–649. Springer, 2015.

12 Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In Proceedings of the
34th ACM Symposium on Principles of Distributed Computing (PODC), pages 3–12, 2015.

13 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks I:
Planar embedding. In Proceedings of the 35th ACM Symposium on Principles of Distributed
Computing (PODC), pages 29–38, 2016.

14 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
Low-congestion shortcuts, mst, and min-cut. In Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 202–219, 2016.

ICALP 2021



78:18 Near-Optimal Simultaneous Multicasts

15 Mohsen Ghaffari and Bernhard Haeupler. Low-congestion shortcuts for graphs excluding dense
minors. arXiv preprint, 2020. arXiv:2008.03091.

16 Mohsen Ghaffari and Jason Li. New distributed algorithms in almost mixing time via
transformations from parallel algorithms. In Proceedings of the 32nd International Symposium
on Distributed Computing (DISC), pages 31:1–31:16, 2018.

17 Bernhard Haeupler, D Ellis Hershkowitz, and David Wajc. Round-and message-optimal
distributed graph algorithms. In Proceedings of the 37th ACM Symposium on Principles of
Distributed Computing (PODC), pages 119–128, 2018.

18 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without
embedding. In Proceedings of the 35th ACM Symposium on Principles of Distributed Computing
(PODC), pages 451–460, 2016.

19 Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-congestion shortcuts on
bounded parameter graphs. In Proceedings of the 30th International Symposium on Distributed
Computing (DISC), pages 158–172, 2016.

20 Bernhard Haeupler, Jason Li, and Goran Zuzic. Minor excluded network families admit
fast distributed algorithms. In Proceedings of the 37th ACM Symposium on Principles of
Distributed Computing (PODC), pages 465–474, 2018.

21 Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algorithms
for known topologies. In Proceedings of the 53rd Annual ACM Symposium on Theory of
Computing (STOC), 2021. To appear.

22 Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and ap-
plications. In Proceedings of the 31st ACM Symposium on Principles of Distributed Computing
(PODC), pages 355–364, 2012.

23 Jennifer Iglesias, Rajmohan Rajaraman, R Ravi, and Ravi Sundaram. Rumors across radio,
wireless, telephone. In 35th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), 2015.

24 Jennifer Iglesias, Rajmohan Rajaraman, R Ravi, and Ravi Sundaram. Plane gossip: Approx-
imating rumor spread in planar graphs. In Proceedings of the 13th Latin American Theoretical
Informatics Symposium (LATIN), pages 611–624, 2018.

25 John Jannotti, David K Gifford, Kirk L Johnson, M Frans Kaashoek, et al. Overcast: reliable
multicasting with on overlay network. In Proceedings of the 4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), page 14, 2000.

26 K Jansen and H Zhang. An approximation algorithm for the multicast congestion problem via
minimum steiner trees. In Proceedings of the 3rd International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), pages 77–90, 2002.

27 Naoki Kitamura, Hirotaka Kitagawa, Yota Otachi, and Taisuke Izumi. Low-congestion shortcut
and graph parameters. In Proceedings of the 33rd International Symposium on Distributed
Computing (DISC), pages 25:1–25:17, 2019.

28 Ronald Koch, Britta Peis, Martin Skutella, and Andreas Wiese. Real-time message routing and
scheduling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 217–230. Springer, 2009.

29 Shimon Kogan and Merav Parter. Low-congestion shortcuts in constant diameter graphs. In
Proceedings of the 40th ACM Symposium on Principles of Distributed Computing (PODC),
2021. To appear.

30 Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing and job-shop scheduling
in O(congestion+ dilation) steps. Combinatorica, 14(2):167–186, 1994.

31 Tom Leighton, Bruce Maggs, and Andrea W Richa. Fast algorithms for finding o (congestion+
dilation) packet routing schedules. Combinatorica, 19(3):375–401, 1999.

32 Christoph Lenzen and David Peleg. Efficient distributed source detection with limited
bandwidth. In Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing
(PODC), pages 375–382, 2013.

http://arxiv.org/abs/2008.03091


B. Haeupler, D. E. Hershkowitz, and D. Wajc 78:19

33 Friedhelm Meyer and Berthold Vöcking. A packet routing protocol for arbitrary networks. In
Proceedings of the 12th International Symposium on Theoretical Aspects of Computer Science
(STACS), pages 291–302. Springer, 1995.

34 Rafail Ostrovsky and Yuval Rabani. Universal O(congestion+dilation+log1+ϵ n) local control
packet switching algorithms. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing (STOC), volume 29, pages 644–653, 1997.

35 Britta Peis, Martin Skutella, and Andreas Wiese. Packet routing: Complexity and algorithms.
In Proceedings of the 7th Workshop on Approximation and Online Algorithms (WAOA), pages
217–228, 2009.

36 Britta Peis and Andreas Wiese. Universal packet routing with arbitrary bandwidths and transit
times. In Proceedings of the 13th Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 362–375, 2011.

37 David Peleg. Distributed computing. SIAM Monographs on discrete mathematics and applica-
tions, 5:1–1, 2000.

38 Yuval Rabani and Éva Tardos. Distributed packet switching in arbitrary networks. In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC), volume 96,
pages 366–375, 1996.

39 Thomas Rothvoß. A simpler proof for O(Congestion+Dilation) packet routing. In Proceedings
of the 16th Conference on Integer Programming and Combinatorial Optimization (IPCO),
pages 336–348, 2013.

40 Christian Scheideler. Universal routing strategies for interconnection networks, volume 1390.
Springer, 2006.

41 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

42 Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

43 Aravind Srinivasan and Chung-Piaw Teo. A constant-factor approximation algorithm for
packet routing and balancing local vs. global criteria. SIAM Journal on Computing (SICOMP),
30(6):2051–2068, 2001.

44 Donald M. Topkis. Concurrent broadcast for information dissemination. IEEE Transactions
on Software Engineering, SE-11(10):1107–1112, 1985.

45 Santosh Vempala and Berthold Vöcking. Approximating multicast congestion. In Proceedings
of the 10th Annual International Symposium on Algorithms and Computation (ISAAC), pages
367–372, 1999.

ICALP 2021





Analysis of Smooth Heaps and Slim Heaps
Maria Hartmann #

Institut für Informatik, Freie Universität Berlin, Germany

László Kozma #

Institut für Informatik, Freie Universität Berlin, Germany

Corwin Sinnamon #

Department of Computer Science, Princeton University, NJ, USA

Robert E. Tarjan #

Department of Computer Science, Princeton University, NJ, USA
Intertrust Technologies, Sunnyvale, CA, USA

Abstract
The smooth heap is a recently introduced self-adjusting heap [Kozma, Saranurak, 2018] similar
to the pairing heap [Fredman, Sedgewick, Sleator, Tarjan, 1986]. The smooth heap was obtained
as a heap-counterpart of Greedy BST, a binary search tree updating strategy conjectured to be
instance-optimal [Lucas, 1988], [Munro, 2000]. Several adaptive properties of smooth heaps follow
from this connection; moreover, the smooth heap itself has been conjectured to be instance-optimal
within a certain class of heaps. Nevertheless, no general analysis of smooth heaps has existed until
now, the only previous analysis showing that, when used in sorting mode (n insertions followed by n

delete-min operations), smooth heaps sort n numbers in O(n lg n) time.
In this paper we describe a simpler variant of the smooth heap we call the slim heap. We give a

new, self-contained analysis of smooth heaps and slim heaps in unrestricted operation, obtaining
amortized bounds that match the best bounds known for self-adjusting heaps. Previous experimental
work has found the pairing heap to dominate other data structures in this class in various settings.
Our tests show that smooth heaps and slim heaps are competitive with pairing heaps, outperforming
them in some cases, while being comparably easy to implement.
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1 Introduction

A heap (priority queue) data structure stores a collection of items, each with an associated
real-valued key (priority). Operations include inserting an item, deleting an item with
smallest key, decreasing the key of an item, or melding (merging) two heaps. Heaps are
among the most basic and well-studied structures in computer science, with applications in
sorting, event simulation, graph algorithms, and many other settings (see e.g. [2, 17] and the
references therein).

Williams’ implicit binary heap [27] and its variants remain the simplest, and in many
applications, the fastest implementation. Carefully engineered sequence-based heaps [22] tend
to be even faster in several (although not all) practical scenarios, because of their better use
of caching.
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To implement efficient meld and to obtain theoretically optimal running times for insert
and decrease-key, more sophisticated data structures have been proposed. The Fibonacci
heap [10] was the first heap implementation to obtain the asymptotically optimal amortized
bounds of O(lg n) time for delete-min and delete in a size-n heap, and O(1) time for all
other operations. (We denote by lg the base-two logarithm.) A large number of alternative
designs that match these bounds have been explored throughout the years, see e.g. [11] and
the references therein. Due to their relatively complex implementation, Fibonacci heaps
and other theoretically optimal heaps have been found to be slower in practice than simpler
heaps with sub-optimal guarantees [17].

Self-adjusting heaps. Is it possible to design data structures that are simple and efficient
in practice but also efficient in theory, at least in an amortized sense? Self-adjusting data
structures attempt to achieve this goal by allowing a very flexible structure with no (or
very little) bookkeeping. They react to user operations with local structural readjustments,
attempting to bring the data structure into a more favorable state for future operations.
Examples include the splay tree [24], a self-adjusting binary search tree, and the pairing
heap [9], a self-adjusting heap.

A pairing heap is a rooted, ordered tree (the children of each node are ordered) whose
nodes are the heap items, arranged in (min-)heap order: the parent of a node x has key no
greater than that of x. Heap order implies that the root has minimum key. A delete-min
operation deletes the root, thereby making each of its children into a root. These new roots
retain the order they had when they were children of the deleted root. The delete-min
combines the new roots into a single tree by linking them two at a time. One link operation
combines two adjacent roots, making the one with larger key the new leftmost child of the
other. In its original variant, the pairing heap combines roots by first linking pairs of adjacent
roots (the first and second, the third and fourth, etc.) from left to right, and then linking
the remaining roots consecutively from right to left. This variant performs all operations
in O(lg n) amortized time [9]. Although it was originally conjectured that pairing heaps
match the theoretical guarantees of Fibonacci-heaps, Fredman [8] and Iacono and Özkan [14]
showed that the amortized time of decrease-key in pairing heaps is Ω(lg lg n), and that the
same lower bound holds for broader classes of self-adjusting heaps.

The exact amortized complexity of the decrease-key operation in pairing heaps remains
unknown [13, 21, 5]1. In practice, however, pairing heaps have been found to dominate
Fibonacci heaps and other theoretically optimal heaps across a wide range of experimental
settings, and for some specific types of workloads (e.g. with a high frequency of decrease-key
operations) they even compare favorably with implicit heaps [17]. The pairing heap can thus
be considered a “robust choice” [23] in a variety of applications.

In addition, pairing heaps and other self-adjusting data structures hold the promise of
adaptivity, i.e. the ability to take advantage of regularities or biases in the usage pattern,
which may give improved performance in specific scenarios. The adaptivity of splay trees has
inspired a long line of research and is the subject of the dynamic optimality conjecture [24, 18].
Adaptivity in heaps is relatively less studied (see e.g. [16] and references therein).

Smooth heaps and slim heaps. The recently introduced smooth heap [16] is a self-adjusting
heap with a structure similar to that of the pairing heap. Like pairing heaps, smooth heaps
are built of rooted, ordered trees combined by links. The two data structures differ however,

1 The lack of structure of self-adjusting data structures makes their analysis both difficult and interesting.
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both in the order in which they do links, and in the implementation of the linking primitive
itself. Smooth heaps use stable linking: when linking two adjacent roots, the one with larger
key becomes the leftmost – or the rightmost – child of the other, depending on the original
left-to-right order of siblings.

The smooth heap was obtained from a correspondence between heaps and binary search
trees. In sorting mode (n insertions followed by n delete-min operations), the smooth
heap has the same asymptotic running time as Greedy BST, a self-adjusting binary search
tree strategy2. Greedy BST was proposed as a candidate dynamically optimal search tree
implementation [19, 20, 4]. In its original form, Greedy BST needs information about future
queries. Remarkably, this requirement can be removed (with a constant factor slowdown) [4].
Nonetheless, Greedy BST should be seen as a theoretical “proof of concept” that is largely
impractical, as compared to splay trees, which are simple and widely used in practice.
Surprisingly, despite its correspondence to Greedy BST, the smooth heap is simple and easy
to implement. In particular, operations do not require knowledge of the future. The pointer
structure and low-level complexity of operations in smooth heaps are comparable to those in
pairing heaps.

In [16], several bounds were shown for the time of operations on smooth heaps used
in sorting mode, by transferring results known for Greedy BST. The correspondence with
Greedy BST breaks down when additional operations are supported, or even when insert and
delete-min operations are intermixed. The smooth heap may be a viable general-purpose data
structure, but so far it has lacked a complete, self-contained analysis that covers unrestricted
operations.

In this paper we provide such an analysis. We begin by describing the implementation of
all standard heap operations, some of which were not fully specified in [16]. We also describe
and analyze the variant of smooth heaps that uses unstable (classical) linking, which we
call the slim heap. The bounds we obtain for smooth heaps and slim heaps match the best
known bounds for any self-adjusting heap, and differ from those of Fibonacci heaps only in
the O(lg lg n) bound (versus O(1)) for decrease-key (see Table 1). Despite the similarities
between pairing heaps, smooth heaps, and slim heaps, the analysis of pairing heaps does not
directly transfer to smooth heaps or slim heaps, since the behaviours of the data structures
differ. Indeed, even minor variants of the standard pairing heap are difficult to analyze, with
open questions remaining. See e.g. [5]. On the other hand, our analysis of smooth heaps and
slim heaps does use a variant of the potential function used to analyze pairing heaps.

Our O(lg lg n) bound for decrease-key in smooth heaps and slim heaps matches the lower
bounds of Fredman [8] and Iacono and Özkan [14], but our implementation, which is based on
Elmasry’s [6] implementation for pairing heaps, violates the assumptions of these bounds, so
they do not in fact apply to our algorithm. It remains open whether these lower bounds can
be extended to encompass an Elmasry-type implementation. A related question is whether
there is any self-adjusting heap with an O(lg lg n) bound for decrease-key that satisfies the
assumptions of these lower bounds. The sort heap [14] satisfies the assumptions of the Iacono-
Özkan bound, but its analysis is flawed [15], [12, § 6]. We also give a simple implementation
of decrease-key in smooth heaps and slim heaps based on the original implementation for
pairing heaps. This implementation satisfies the assumptions of both lower bounds.

We complement our theoretical results with a brief experimental study (Section 6). Since
the pairing heap was previously found to have good experimental performance and has been
extensively compared with other heaps, we limit ourselves to comparing smooth heaps and

2 The correspondence is subtle: going from the smooth heap to Greedy BST involves inverting and
reversing the permutation that is being sorted.
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slim heaps with pairing heaps. Our initial results show that smooth heaps and slim heaps are
competitive with pairing heaps, outperforming pairing heaps in some cases, particularly for
some structured usage patterns. This aligns with the adaptive properties shown previously
in an asymptotic sense for smooth heaps. Our results suggest the smooth heap or slim heap
as a drop-in alternative heap in applications where the pairing heap works well.

2 Smooth Heaps and Slim Heaps

In this section, we introduce the smooth heap and its variant, the slim heap, and state our
efficiency bounds. Both of these data structures store a collection of nodes, each node having
a real-valued key (not necessarily distinct for different nodes). They support the following
standard heap operations:

make-heap(h): Create a new, empty heap h.
find-min(h): Return a node of smallest key in heap h, or null if h is empty.
insert(x, h): Insert node x with predefined key into heap h. Node x must be in no other
heap.
delete-min(h): Delete from h the node that would be returned by find-min(h).
meld(h, h′): Meld node-disjoint heaps h and h′.
decrease-key(x, k, h): Decrease to k the key of node x in heap h, assuming that x is a
node in h and k is no larger than the current key of x. (Operation decrease-key is given a
pointer to node x in heap h, not just its key or some other identifier.)
delete(x, h): Delete node x from heap h, assuming that x is a node in heap h. Again,
delete is given a pointer to x in h.

Table 1 The best time bounds known for smooth, slim, Fibonacci, and pairing heaps. All bounds
are amortized. Smooth heaps are competitive with the best variants of pairing heaps. They fall short
of Fibonacci heaps on decrease-key (though self-adjusting heaps often perform better in practice [17]).
In all cases, make-heap and find-min take O(1) time, and delete takes O(lg n) time. Strict Fibonacci
heaps [3] achieve the same bounds as Fibonacci heaps, but without amortization.

insert delete-min meld decrease-key
Smooth Heaps (this paper) O(1) O(lg n) O(1) O(lg lg n)

Slim Heaps (this paper) O(1) O(lg n) O(1) O(lg lg n)
Fibonacci Heaps [10] O(1) O(lg n) O(1) O(1)

Pairing Heaps [9, 25, 13] O(1) O(lg n) O(1) O(lg n)
Alternative Analysis (Pettie [21]) O(4

√
lg lg n) O(lg n) O(4

√
lg lg n) O(4

√
lg lg n)

Elmasry Pairing Heaps [6]3 O(1) O(lg n) O(lg lg n) O(lg lg n)

2.1 Efficiency
Table 1 states our time bounds for smooth heaps and summarizes known results for some
competing heaps. In stating these bounds, we assume that n ≥ 4, so that lg lg n ≥ 1: if
n < 4 all operations take O(1) time. We shall prove the following theorem:

3 Elmasry [6] also claims a meld time of O(1) with a delete-min time of O(lg n + lg lg N), where N is the
number of items in all heaps.
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▶ Theorem 1. In a smooth heap or slim heap, delete-min and delete take O(lg n) amortized
time, decrease-key takes O(lg lg n) amortized time, and make-heap, find-min, insert, and
meld take O(1) time, where there are n nodes in the heap at the time of operation.

In some applications, a large number of nodes may be inserted and then never accessed,
for example if one inserts many nodes with large keys, and then repeatedly inserts and deletes
a few nodes with small keys. For this case, we shall prove the following theorem, which states
that nodes that are never deleted do not slow down deletions:

▶ Theorem 2. Operations delete-min and delete take O(lg t) amortized time, with the other
amortized bounds unchanged, where t is the number of nodes in the heap at the time of the
operation that will be deleted in the future.

2.2 Data structures and terminology
A smooth heap or slim heap consists of a forest of rooted, ordered trees whose nodes are the
nodes of the heap. Each tree is (min-)heap ordered: the key of a non-root node is no less
than that of its parent. The roots of the trees are stored in a list, with a root of minimum
key, the min-root, first. Each node stores a list of its children. For both the root list and
the lists of children, we identify the front of the list with “left” and the back of the list with
“right”, so that nodes early in the list are considered left of nodes later in the list.

The forest is altered by linking pairs of adjacent nodes in the list of roots or in a list of
children. A link makes the node with smaller key (the winner of the link) the parent of the
node of larger key (the loser of the link). If the keys are equal, the node on the right is the
winner. The link is a left link if the loser is originally left of the winner, a right link if the
loser is originally right of the winner.

The only difference between smooth and slim heaps is the position of the loser in its list
of new siblings after a link. (See Figure 1.) Slim heaps use one-sided links: the loser of
the link becomes the new leftmost child of the winner. This is the type of linking used in
Fibonacci heaps, pairing heaps, and many other similar data structures.

x

y

x

y

y

x

y

x

y

x

x

y

x

y

One-sided linking Stable linking
(Smooth heaps)(Slim heaps)

Figure 1 The result of a link of adjacent nodes x and y, where x has the smaller key, using
one-sided linking (left) and stable linking (right). A one-sided link always adds the child on the left,
whereas a stable link preserves left-to-right order. Slim heaps use one-sided links, smooth heaps use
stable links. In both smooth and slim heaps, all links are between adjacent nodes.

Smooth heaps use stable links: the loser becomes the new leftmost or rightmost child of
the winner, depending on whether the link is a left link or a right link. Stable links maintain
the left-to-right order of nodes (although insert, meld, and decrease-key operations perturb
it, as we shall see). A child of a node is either a left child or a right child, depending on
whether it was left or right of its parent just before they were linked. In a smooth heap
all left children in a list of children precede all right children; in a slim heap, left and right
children are in general intermixed.
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2.3 Operations
In this subsection we describe the implementation of all the heap operations except decrease-
key and delete; we cover these in Section 4. The description of smooth heaps in [16] did not
include a find-min operation, nor was the implementation of decrease-key fully specified. In
addition to adding these operations, we have changed some details of the original presentation.

As noted in the last subsection, slim heaps differ from smooth heaps only in the linking
method. The following descriptions apply to both smooth heaps and slim heaps if links are
done using the appropriate linking method, stable for smooth heaps, one-sided for slim heaps.

We store the root list of a heap in a circular singly-linked list, with the min-root first
(leftmost). Access is via the min-root. Circular linking supports melding in O(1) time. We
store each list of children in a singly-linked list, circular for smooth heaps. In a slim heap,
access to a list of children is via the leftmost child. In a smooth heap, access to such a list is
via the rightmost child; circular linking allows a new child to be added as the leftmost or
rightmost in O(1) time. Each node needs two pointers: to its right adjacent root or sibling,
and to its leftmost (slim heap) or rightmost (smooth heap) child. To support delete and
decrease-key we shall add a third pointer per node. See Section 4.

make-heap(h): Create and return an empty heap.
find-min(h): Return the min-root of h.
insert(x, h): Make x into a one-node tree and insert x into the root list of h, in first or
second position depending on whether its key is less than or not less than that of the
min-root of h; in the former case x becomes the new min-root.
meld(h, h′): Catenate the root lists of h and h′; set the min-root of the melded heap to
that of h or h′, whichever has smaller key.
delete-min(h): Delete the min-root x of h. Replace x in the list of roots of h by the list
of children of x, in the order they occur in the list of children. These new roots precede
all the undeleted (old) roots in the root list. Repeatedly link pairs of adjacent roots until
there is only one root remaining, using the leftmost locally maximum linking rule given
below. Make the remaining root the min-root of h.

The main novelty in smooth heaps and slim heaps is the leftmost locally maximum linking
rule used in delete-min. It is: find the leftmost node v in the root list whose key is no less
than those of both adjacent nodes, say u and w, and link v with whichever of u and w has
larger key, breaking a tie in favor of the node left of v. As special cases, if the leftmost
root has key no less than that of the right adjacent root, link these roots (the right one is
the winner); if the keys of all the roots are in strictly increasing order left-to-right, link the
rightmost root with the left adjacent root (the left one is the winner). One can eliminate the
special cases by adding dummy leftmost and rightmost nodes, both with key minus infinity,
and applying the leftmost locally maximum linking rule until there is only one non-dummy
root.)

To implement leftmost locally maximum linking, start at the leftmost root and proceed
rightward until finding a root v whose key is not less than that of its right adjacent root w,
or until reaching the rightmost root. In the latter case, link the two rightmost roots and
repeat until there is only one root, completing the linking. In the former case, link v with
whichever of the adjacent roots has higher key, choosing the left adjacent node in case of a
tie and linking with w (the right adjacent node) if v is the leftmost root. Then repeat, but
starting from the winner of the link: all roots preceding this winner are in strictly decreasing
order by key, left to right, and hence none is the leftmost local maximum.
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Leftmost locally maximum linking treapifies the list of roots: it arranges the roots into
a binary tree symmetrically ordered by root list order and heap-ordered by key, with ties
broken in favor of nodes on the right: if x is a node, its new left child, if any, has no smaller
key, and its new right child, if any, has strictly greater key.

In both linking and in the definition of “leftmost local maximum” our tie-breaking rule
in key comparisons is that the node on the right is treated as having smaller key. Other
tie-breaking rules work equally well: what is required is consistency (the outcome of a
key comparison between two nodes must remain the same throughout a delete-min) and
transitivity (if x, y, and z have equal keys and the tie-breaking rule declares that x has
smaller key than y and y has smaller key than z, then it must declare that x has smaller
key than z). An alternative tie-breaking rule with these properties is to break ties by node
identifier. The tie-breaking rule can depend on the keys, the nodes, and the position of the
nodes in the root list. Leftmost locally maximum linking is easy to implement, but a more
general linking rule does the same links if the tie-breaking rule is the same: Find any locally
maximum root v (a root with key greater than those of both adjacent roots); link it with the
adjacent node of greater key; repeat until one root remains.

Smooth heaps and slim heaps are efficient for two reasons. The first is that locally
maximum linking guarantees that a node acquires at most two new children during a
delete-min operation (Lemma 3). Pairing heaps do not have this property: in the second,
right-to-left linking pass during a pairing heap delete-min, a node can acquire an arbitrary
number of new children (see Figure 2). The second is that insertions and melds are lazy
(they do no links), but delete-min operations are eager (they do as many links as possible).
Pairing heaps are eager: except in the middle of an operation, a pairing heap consists of a
single tree, and insertions and melds are done by single links. We do not know whether it is
possible to obtain our bounds for a single-tree smooth heap or pairing heap.

Figure 2 A possible linking of roots during a delete-min in a smooth heap (above) and a pairing
heap (below), assuming key order e, a, g, c, b, d, f, h from smallest to largest.

▶ Lemma 3. During a delete-min, a root wins at most one left link and at most one right
link. Hence during a delete-min each node acquires at most one new left child and at most
one new right child.

Proof. Consider a link of the leftmost locally maximum node v during a delete-min. Node v

is linked with either the left adjacent node u or the right adjacent node w. Suppose the link
is with u. Then u has key strictly less than that of v; otherwise, u has locally maximum key
and is left of v, contradicting the choice of v. The link is a right link won by u. After this
link, either u is the rightmost node in the list or the node w adjacent to u on the right has
no larger key, and the node adjacent to u on the left, if any, has key strictly smaller than
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that of u. This makes u the leftmost local maximum, so u will participate in the next link
and lose it: if the link is with w, w will win by the link tie-breaking rule if the keys of u and
w are equal. Hence after the link of u and v, u cannot win another link, either left or right.

Suppose the link of v is with w. Since the key of w is no greater than that of v, w wins
the link, by the link tie-breaking rule if the keys of v and w are equal. The link is a left link.
After the link, the node u adjacent to w on the left, if it exists, has key strictly smaller than
that of w by the tie-breaking rule for choosing whether to link v with u or with w. Node u

cannot become a leftmost local maximum until w loses a link. Hence w cannot win another
left link, since it would be with u. ◀

3 Efficiency of operations

With the two-pointer-per-node representation in Section 2.3, each make-heap, find-min, insert,
and meld operation takes O(1) time worst-case: catenation of the two root lists during meld
takes two pointer changes, and each link, whether one-sided or stable, takes O(1) time. The
time for a delete-min is O(1) plus at most a constant times the number of links. We normalize
this time to be one plus the number of links. The number of links is one less than the number
of roots, new and old, after deletion of the min-root. We shall prove a bound of O(lg n) on
the amortized time of delete-min and of O(1) on the amortized times of the other operations
by using the potential method [26].

The previous analysis of smooth heaps [16] was restricted to sorting mode, and made use
of a geometric view of binary search trees [4]. Our analysis is free of such restrictions and is
self-contained.

3.1 Potential method

In the potential method, we assign to each state of the data structure a real-valued potential.
We define the amortized time of an operation to be its actual time plus the potential of the
structure after the operation minus the potential of the structure before it. That is, the
amortized time is the actual time plus the net increase in potential caused by the operation.
If we sum the amortized times of the operations in a sequence, the sum of the potential
differences telescopes: the sum of the actual times of the operations equals the sum of their
amortized times, plus the final potential (after the last operation), minus the initial potential
(before the first operation). If the initial potential is 0 (corresponding to an empty data
structure) and the final potential is non-negative, then the sum of the amortized times of the
operations is an upper bound on the sum of their actual times, allowing us to use the former
as a conservative bound on the latter.

3.2 Definition of the potential

The analyses of slim heaps and smooth heaps differ slightly. We develop them both at the
same time and point out the differences.

For each node x having children, we define the link order of the children to be the order
in which these children lost links to x, latest first, earliest last. This is exactly the order of
the children in the list of children of x if the heap is a slim heap, but not necessarily if the
heap is a smooth heap: in the latter, the link order is a merge of the left children in their
order in the list of children of x and of the right children in the reverse of their order in the
list of children of x.
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We define the size size(x) of a node x in a heap to be the number of its descendants,
including itself. We define the mass mass(x) of a child x to be the sum of the sizes of x and
of all its siblings after it in link order (those linked to their common parent before x). (We
do not need to define the masses of roots.)

We define the potential of a root x to be 2 + 2 lg size(x). In a slim heap, we define the
potential of a child x to be 0 if x is the first or second child of its parent, lg mass(x) otherwise
(at least two children were linked to the parent of x after x). In a smooth heap, we define
the potential of a child x to be 0 if it is the leftmost left child or rightmost right child in its
sibling list, lg mass(x) otherwise. We define the potential of a collection of heaps to be the
sum of the potentials of their nodes.

The slim heap potential is closely related to the one used in the original analysis of
pairing heaps [9], which assigns lg size(x) potential to each root x and lg mass(x) potential
to each child x. Here we give (at most) two children of a node zero potential. This limits
the increase in potential caused by a link in a delete-min to the logarithm of the size of the
winner before the delete-min. Our analysis relies on this limit.

3.3 Amortized bounds
The amortized time of a make-heap, find-min, insert, or meld is O(1), since the worst-case
time of each is O(1), and only an insert changes the potential, increasing it by 2.

We shall show that the amortized time of a delete-min is O(lg n).
Let x be the min-root. After its deletion, the list of roots consists of new roots, those

that were children of x, followed by old roots, those that were roots before the deletion of x.
See Figure 3. We separately analyze links won by old roots and links won by new roots.

deleted node of minimum key

︸ ︷︷ ︸

new roots
︸ ︷︷ ︸

old roots
︸ ︷︷ ︸

new roots
︸ ︷︷ ︸

old roots

Figure 3 The result of the delete-min operation. The root with smallest key is deleted, its
children become the new roots in its place, and then all roots are linked in a binary tree.

Each old root u has potential 2 + 2 lg size(u), where size(u) is the size of u just before
the delete-min. This potential covers the actual time (1 or 2) of the link or links that u wins
during the delete-min, if there are any, plus the increase in the potential of children of u

when u wins a link or two: if v and w respectively are the at most two children of u that
have potential zero before the delete-min, then when u wins one link, the potential of one
of v and w increases from 0 to lg mass(w) < lg size(u), and when u wins a second link the
potential of the other of v and w increases from 0 to lg mass(v) < lg size(u).

The heart of the analysis, the hard part, is that of links won by new roots. Let the
masses of the new roots be their masses before the deletion of x. Before this deletion, x has
potential 2 + 2 lg size(x). The deletion of x frees its potential. We transfer lg size(x) of this
potential from x to each of the at most two new roots with zero potential. Then every new
root u has a potential of at least lg mass(u).

Each new root u can acquire one or two new children by winning one or two links during
the delete-min. By the argument we used for old roots, the increase in potential of the
children of u when u wins a link is less than lg size(u) per link, where size(u) is the size of u
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just before the delete-min. We shall show that the sum of the base-two logarithms of the
masses of the new roots, which is at most the sum of their potentials after x is deleted and
its freed potential is transferred, plus 2 + lg size(x) for a slim heap or 2 + 2 lg size(x) for a
smooth heap, is at least the sum of the increases in potential of the children of these roots,
plus at least 2 per new root that wins a link. The extra 2 pays for the actual time of the
links won by new roots during the delete-min.

The first step is to shift some of the potential of the new roots so that each new root u

has at least lg mass(u) potential for each link it wins during the delete-min. This shifting
is different for slim heaps and smooth heaps. In slim heaps, for each new root u except
the last one in link order, if the root v after u in link order wins a left link, we shift
lg mass(u) ≥ lg mass(v) from u to v. See Figure 4.

u

v

t

lgmass(u)

w
lgmass(v)

Figure 4 An example of shifting potential among new roots in a slim heap. The dotted lines
represent links made during delete-min, with the losers are pictured lower than the winners, and
curved lines represent shifted potential. New root u gives potential to its adjacent sibling v because
v wins a left link with t and v gives potential to w because w wins a left link with v.

▶ Lemma 4. After the potentials are shifted in a slim heap, each new root u has potential at
least lg mass(u) if it wins one link during the delete-min, at least 2 lg mass(u) if it wins two.

Proof. Consider a new root v that wins one or two links during the delete-min. If v wins a
left link, it acquires at least lg mass(v) potential from the root before it in link order. For
v to lose potential to the node w after it in link order, w must win a left link. But then v

cannot win a right link, since if this link occurs before the left link that w wins, w must be
the loser, and hence cannot later win a link, and if this link occurs after the left link that w

wins, v must be the loser, and cannot later win a link. We conclude that if v wins both a
left link and a right link, it acquires at least lg mass(v) potential from the node before it in
link order and retains its own potential of at least lg mass(v); if v wins only a right link, it
retains its own potential of at least lg mass(v); and if v wins only a left link, it acquires at
least lg mass(v) potential from the node before it in link order, although it may lose its own
potential. Hence the lemma holds. ◀

In the case of smooth heaps, we call a new root a left or right root depending on whether
it was a left or right child of x before x was deleted. We must shift the potential of left and
right roots separately, since the link order of the latter is the reverse of their order on the list
of children of x before x was deleted. Specifically, for each left root u except the last in link
order, if the next left root v in link order wins a left link, we shift lg mass(u) ≥ lg mass(v)
from u to v; for each right root u except the last in link order, if the next right root v in link
order wins a right link, we shift lg mass(u) ≥ lg mass(v) from u to v. In addition, if the first
right root u in link order wins a (right) link with an old root, we give u lg size(u) ≤ lg size(x)
of the 2 + 2 lg size(x) extra potential allocated to the delete-min. This accounts for the extra
potential needed in the analysis for smooth heaps: since all the new roots precede all the
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old roots, a new root can only win a right link with an old root, not a left link. This is a
problem only when shifting potential to cover right links, which does not happen in slim
heaps. See Figure 5.

left roots right roots old roots

Additional potential given to rightmost right root

Figure 5 An example of shifting potential in a smooth heap. Every curved line represents a
transfer of potential equal to the logarithm of the mass of the new root at the start of the line.
Left roots transfer potential in the same way as a slim heap. Right roots transfer potential in the
symmetric way, and the rightmost right root receives additional potential to pay for a right link.

▶ Lemma 5. After the potentials are shifted in a smooth heap, each new root u has potential
at least lg mass(u) if it wins one link during the delete-min, at least 2 lg mass(u) if it wins
two.

Proof. The proof is that of Lemma 4 applied separately to left roots and right roots. Consider
a left root v that wins one or two links during the delete-min. If v wins a left link, it acquires
at least lg mass(v) potential from the left root preceding it in link order: there must be such
a root since if v wins a left link it must be with a left root. For v to lose potential, it must
be to the left root w after it in link order, and w must win a left link. But then v cannot
win a right link, since if this link occurs before the left link that w wins, w must be the loser,
and hence cannot later win a link, and if this link occurs after the left link that w wins, v

must be the loser, and cannot later win a link. We conclude that if v wins both a left link
and a right link, it acquires at least lg mass(v) potential from the left root preceding it in
link order and retains its own potential of at least lg mass(v); if v wins only a right link, it
retains its own potential of at least lg mass(v); and if v wins only a left link, it acquires at
least lg mass(v) potential from the left root preceding it in link order, although it may lose
its own potential. The symmetric argument applies to right roots, except that the first right
root in link order may win a right link (with an old root), and not receive any potential
for it. The additional lg size(x) potential allocated to a smooth heap delete-min covers this.
Hence the lemma holds. ◀

By Lemmas 4 and 5, every new root has enough potential to cover the increase in the
potential of its children if it wins one or two links. For each new root u that wins two
links during the linking, we allocate lg size(u) potential from u to the child whose potential
increases when the second link occurs. Each new root u that wins at least one link retains at
least lg mass(u) potential. We shall show that if we add 2 + lg size(x) additional potential,
there are at least two units of extra potential per new root u that wins at least one link, in
addition to the increase in potential of a child of u when u first wins a link. The latter is less
than lg size(u). We consider new roots that win at least one link from first to last in link order.
We maintain the invariant that the next root u that wins a link has at least 2 lg mass(u)
potential. To establish the invariant for the first such root u, we give it lg mass(u) < lg size(x)
of the 2 + lg size(x) additional potential.
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Let u be the current root under consideration and let v be the next new root after u

that wins a link. Node u currently has potential at least 2 lg mass(u). Since mass(u) ≥
size(u) + mass(v), the inequality 2 lg(size(u) + mass(v)) ≥ lg size(u) + lg mass(v) + 2 allows
us to move lg size(u) potential from u to its child whose potential increases when u first wins
a link, and to move lg mass(u) potential from u to v, establishing the invariant for v, with
at least two units of potential left over to pay for the link or links that u wins during the
delete-min. This argument covers all but the last new root w in link order that wins at least
one link, but w ends up with potential at least 2 lg mass(w), more than enough to cover the
increase in potential of one of its children when it first wins a link. We use the two units of
remaining added potential to pay for the actual time of the one or two links won by w.

The single root remaining after all the linking has a potential of 2 + 2 lg n. We conclude
that the amortized time of a delete-min is at most 5 + 3 lg n in a slim heap, at most 5 + 4 lg n

in a smooth heap: the links are covered by potential decreases, we added 2 + lg n or 2 + 2 lg n

extra potential, the remaining root needs potential 2 + 2 lg n, and the delete-min takes time 1
in addition to the links. This finishes the proof that delete-min takes O(lg n) amortized time.

4 Implementation of decrease-key and delete

In this section we implement decrease-key and delete. We give two implementations of
decrease-key, a simple one for which it is easy to prove an O(lg n) amortized bound, and a
more complicated one based on Elmasry’s for pairing heaps, which has an O(lg lg n) bound.

Our implementations of decrease-key and delete require adding a third pointer to each
node. If x is a child that is not leftmost on its list of siblings, its third pointer indicates its
previous sibling; if it is leftmost, its third pointer indicates its parent. If x is a root, its third
pointer indicates the left adjacent root on the root list, or the rightmost root on the root list
if x is the min-root. This makes the lists of children and the list of roots doubly linked, and
supports deletion of a node (and its subtree) from such a list in O(1) time.

4.1 Key decrease

A simple implementation of decrease-key(x, k, h) is the one used in pairing heaps: Set the key
of x to k. If x is not a root, cut x (and its subtree) from the list of children containing it, and
add x to the root list. Update the min-root. This takes O(1) actual time. Cutting x from
its parent and making it a root increases the potential only of x, by at most 2 + 2 lg size(x).
Thus the amortized time of decrease-key is O(lg n). A much more complicated argument
based on Pettie’s proof of the same method for decrease-key in pairing heaps gives a stronger
amortized bound. For lack of space, we have omitted this proof from this version of our
paper.

We obtain a smaller amortized bound for decrease-key if we use Elmasry’s implementation
for pairing heaps [6]. We maintain a buffer that contains roots whose keys have been
decreased. The buffer of a new heap is initially empty. To do decrease-key(x, k, h), we set
the key of x to k. If x is not a root, we first cut x (and its subtree) from its sibling list L.
Second, if x has a child, we cut its leftmost child y (and its subtree) from x, and replace x

by y in L. Third, we add x to the buffer. If the buffer contains at least lg n roots, we empty
it. Whether or not x was a root, we finish the decrease-key by updating the min-root.

When doing a delete-min, we begin by emptying the buffer. When doing a meld, we
empty the buffer of the smaller heap; the buffer of the larger heap becomes the buffer of the
melded heap.
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To empty the buffer, we sort the roots in the buffer in non-increasing order by key, and
link them using leftmost locally maximum linking, which makes each root the leftmost child
of the one of next-smaller key, whether the heap is a slim heap or a smooth heap. Each link
is a left link. We add to the root list the root remaining after the roots in the buffer are
linked.

To support find-min in O(1)-time, we maintain the min-root of the buffer as well as the
min-root of the roots not in the buffer. This adds O(1) time to each operation. We also need
to store with each heap the number of nodes it contains. This is easy to maintain in O(1)
time per operation.

This way of doing decrease-key reduces the amortized time to O(lg lg n). To prove this
we use the potential function of Section 3.2, with three changes:

(i) If x is a root in the buffer that lost a child y when its key was decreased, we give its
children the potential they had before y was cut from x. Since y is the leftmost child of
x before it is cut, if the heap is a slim heap y has zero potential. If the heap is a smooth
heap, y has zero potential unless y and all the children of x are right children, not left
children. In the latter case, x has at most one child of zero potential both before and
after y is cut. We conclude that after y is cut, x has at most one child of zero potential,
its most recently acquired child if the heap is a slim heap; its most recently acquired
right child if the heap is a smooth heap. This allows x to win a new left link without
increasing the potential of any of its children, including its new one.

(ii) To pay for emptying the buffer when it is full, we give each root u in the buffer a
potential of 4 + lg lg n, rather than the 2 + lg size(u) potential it would have if it were
in the root list.

(iii) To pay for emptying the buffer of a heap when it is melded with a larger heap, we give
each heap of n nodes an extra potential of 4 lg n.

The actual time to decrease the key of a node x is O(1). After x is cut from its sibling list
and its leftmost child is cut from it, its children have exactly the potential they need when x

is in the buffer. Replacing x by the first child of x does not increase the potential of any node
in the tree previously containing x. Thus the potential increase caused by a decrease-key is
at most the potential of the new root in the buffer, which is 4 + lg lg n, making the amortized
time of the decrease-key O(lg lg n) unless the buffer becomes full and is emptied.

The actual time to empty the buffer is O(lg lg n) per root in the buffer, with the sorting
time dominant. The potential of lg lg n per root in the buffer covers this time. Because of the
sorting, each root in the buffer acquires at most one new left child, which does not increase
the potential of any node in any of the trees rooted at these nodes. One root, say u, remains
after the roots in the buffer are linked. This node needs potential 2 + 2size(u) ≤ 4 lg n when
it is added to the root list. Since the buffer is full when it is emptied in a decrease-key, u

acquires the needed potential from the extra 4 units of potential per root in the buffer before
these roots are linked. Hence decrease-key takes O(lg lg n) time whether or not the buffer is
emptied.

If the buffer is emptied during a delete-min, the root formed by linking the roots in the
buffer needs potential at most 2 + 2 lg n, increasing the amortized time of the delete-min by
this amount, but the amortized time remains O(lg n).

It remains to consider insert and meld. Insertion is just a special case of meld, in which
one of the heaps contains only one item and an empty buffer. Consider a meld of two heaps,
with the larger heap, say h, containing n nodes. The heap resulting from the meld has size
at most 2n. The heap potential of the smaller heap covers the potential of the root formed

ICALP 2021



79:14 Analysis of Smooth Heaps and Slim Heaps

by linking the roots in its buffer when it is emptied. The heap potential of the new heap is
at most 4 lg(2n) = 4 lg n + 4, which is an increase of at most 4 of the heap potential of h.
Let k ≤ lg n be the number of roots in the buffer of h. The meld increases the sum of the
potentials of these roots by at most

k(lg lg (2n)− lg lg n) ≤ (lg n) lg
(

lg n + 1
lg n

)
= (lg n) lg(1+1/ lg n) ≤ (lg n)(lg e)/ lg n = lg e

by the inequality lg(1 + 1/ lg n) ≤ lg e/ lg n if n ≥ 2. We conclude that the amortized times
of insert and meld remain O(1).

4.2 Arbitrary deletion
To delete a node x in a heap h, if x is the min-root of h, we merely do delete-min(h). If x

is not the min-root of h, we offer three ways of doing the deletion. One is to decrease the
key of x to minus infinity and then do delete-min(h). Using either of our implementations
of decrease-key, this takes O(lg n) amortized time, with the delete-min time dominating.
An alternative that does not use decrease-key is to repeatedly link adjacent children of x

using leftmost locally maximum linking until x has only one child, and then replace x by its
only child in the root list, or in its list of siblings if x is not a root. This implementation
of delete also takes O(lg n) time, by an analysis like that of delete-min in Section 3.3. A
third alternative is to delay linking the children of the deleted node, by merely replacing
the deleted node in its list of siblings (or in the root list if it is a root) by its list of children.
This also takes O(lg n) amortized time, by an extension of the analysis in Section 3.3: we
must add O(lg n) additional potential to each group of siblings whose parent is deleted, to
help pay for the links they eventually win.

5 Permanent nodes do not count

In this section we prove Theorem 2, which states that nodes that are never deleted do not
slow down operations:

▶ Theorem 2. Operations delete-min and delete take O(lg t) amortized time, with the other
amortized bounds unchanged, where t is the number of nodes in the heap at the time of the
operation that will be deleted in the future.

Proof. Call a node temporary if it will eventually be deleted, and permanent otherwise. The
total time of a sequence of operations is O(1) per operation plus the number of links. All the
links except at most one per decrease-key operation are done during delete-min operations
and when a buffer of nodes whose keys have decreased is emptied. Thus it suffices to count
links. We separately count links won by permanent nodes and those won by temporary
nodes. A link won by a permanent node either remains permanent, or is cut by a subsequent
decrease-key operation: such links cannot be cut by deletions. It follows that there is at most
one such link per insert and at most two per decrease-key.

It remains to count links won by temporary nodes. To do this we redefine the size of a
node to be the number of temporary nodes in its subtree, and we redefine mass and potential
accordingly, except that we give a root with size 0 potential 2 and a child with mass 0
potential 0. It is easy to check that with the new potential function make-heap, find-min,
insert, and meld still take constant amortized time, and decrease-key still takes O(lg lg n)
amortized time.
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We make a few small changes to adapt the analysis of delete-min to the new potential
function. We apply the analysis of links won by old roots only to those that are temporary. We
add and shift potentials only among temporary new roots. The additional potential needed
for the analysis to work is O(lg t) rather than O(lg n). Thus we obtain an O(lg t) amortized
time bound for delete-min. We also obtain an O(lg t) amortized time bound for either
implementation of arbitrary deletion that does not use decrease-key; for the implementation
that uses decrease-key, the bound is O(lg t + lg lg n). ◀

6 Experimental evaluation

We implemented the pairing heap, the smooth heap, and the slim heap in Python 3, with
the same generic heap interface. We compared their performance in two scenarios: sorting
and Dijkstra’s single-source shortest paths algorithm. In both tasks we counted two types of
logical operations: comparisons between keys and links between nodes. Note that in pairing
heaps comparisons and links occur together, making the two counts equal. By contrast,
in smooth heaps and slim heaps the number of comparisons is larger than the number of
links by a factor of at most two (see [16])4. In practice, links are typically costlier than
comparisons, requiring several pointer changes. Thus the number of links is expected to be
indicative of the actual running time. We summarize the experimental setup and findings
(Figures 6, 7, 8) and refer to [12] for further experiments.5

Sorting. Given a list of roots containing the keys π1, . . . , πn of an input permutation π, we
execute n delete-min operations, sorting π. It has been hypothesized that the smooth heap
performs particularly well on structured inputs. To test this experimentally, we considered,
besides uniformly random inputs, classes of semi-random permutations. We tested four
families of input permutations:

(a) Uniformly random: We generated permutations of sizes n = 2, 22, . . . , 217 using the
pseudo-random random.shuffle function of Python, with 5 independent runs for each
size.

(b) Separable: Starting with the sequence 1, . . . , n, for n = 2, 22, . . . , 217, we did the following
shuffling: reverse the sequence with probability 1/2, then recursively process the first
half and second half of the sequence in the same way, doing 20 independent runs for each
size. The permutations obtained are separable (see e.g. [1]).

(c) Localized: We generated a sequence of length n = 10000 where each element is drawn from
a Gaussian normal distribution centered at its index, with standard deviation proportional
to a parameter ε, doing 10 independent runs for each value ε = 0, 0.01, . . . , 0.3.

(d) Sorted blocks: Starting with a uniform random permutation of size n = 10000, we sorted
contiguous blocks of elements, where the block sizes are chosen uniformly at random
from the range [1, . . . B], with 20 independent runs for each value B = 100, 200, . . . , 2000.

Shortest paths. For all three heaps we used a similar multi-tree implementation of insert
and decrease-key that simply adds the respective node to the end of the root list. (This
is not the standard pairing heap implementation, which maintains a single tree, and the

4 In the worst case 2k − Θ(lg k) comparisons are necessary to combine k roots during delete-min, since
the outcome corresponds to one of Θ(4k/k3/2) possible binary trees.

5 The scripts used can be found at https://git.imp.fu-berlin.de/hlm/smooth-heap-pub.
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implementation of decrease-key in smooth heaps and pairing heaps is the simple one.) Since
these structures differ only in the restructuring during delete-min, we counted the number of
links and comparisons only for delete-mins, taking averages over 10 independent runs. We
considered two families of undirected input graphs, with edge weights in both cases chosen
uniformly at random from {1, . . . , 10000}:

(e) Random graphs: with n = 500 vertices, generated according to the Erdős-Rényi model,
with edges present with probability p (for values p = 0, 0.05, . . . , 1), and

(f) Random 10-regular graphs: with n = 500, 1000, . . . , 10000 vertices.

Findings. In (a) the number of comparisons (and links) done by the pairing heap is a small
factor (≈ 1.2) above the information-theoretical lower bound of lg(n!). On our largest test,
the smooth (slim) heap performs about 22% (44%) more comparisons. In turn, the pairing
heap performs about 47% (11%) more links than the smooth (slim) heap.

In (b) the number of operations appears to be O(n) for all data structures. This is
consistent with the fact that there are 2O(n) such permutations of size n. In fact, for the
smooth heap, it is known [16] that sorting separable permutations takes time O(n), as implied
by more general results for Greedy BST. It can be observed that the pairing heap performs
on average both more comparisons and more links than the smooth and slim heaps. The
differences in the number of comparisons are small, but in the number of links the overhead
of pairing heaps is about 58% (65%) in our largest test. One can further notice that there is
less variation in the number of operations in smooth/slim heaps, whereas the pairing heap is
sensitive to the exact choice of input permutation.

In (c) the situation is similar to the uniformly random case, with the ordering slim,
smooth, pairing in the number of comparisons, and pairing, slim, smooth in the number of
links. Although the overall costs are smaller to (a), the smooth/slim heaps do not appear to
have a particular advantage in adapting to this type of structure.

In (d) the smooth/slim heaps have a clearer advantage. When the input permutation
consists of just about 10 sorted blocks, the pairing heap performs about 7 comparisons and
links per key, whereas both smooth and slim heaps perform about 6 comparisons and 4 links
per key. The advantage diminishes as the sizes of the sorted blocks decrease.

In the densest case of (e), the smooth (slim) heaps perform about 40% (45%) more
comparisons than the pairing heap, while the pairing heap performs about 22% (14%) more
links than the smooth (slim) heaps. In the largest case of (f), the smooth (slim) heaps
perform about 36% (48%) more comparisons, while the pairing heap performs about 23%
(6%) more links.

7 Remarks

Self-adjusting data structures are simple to describe and implement but hard to analyze.
Developing new approaches and tools for analyzing such data structures remains an exciting
field, with many questions still open. Our design of slim heaps and our analysis of smooth
and slim heaps (Theorems 1 and 2) add to what we know about such structures.

One property that makes smooth heaps and slim heaps efficient is that each delete-min
links at most two new children to each node. Neither the original version of pairing heaps
nor any of the proposed variants has this property, but there is one variant that does: the
pure pairing heap, in which the heap is a forest instead of a single tree, insert and meld are
done lazily by catenating the root lists, and delete-min performs a single pairing pass: after
the min-root is deleted, the remaining roots are linked in pairs, first and second, third and
fourth, and so on. During a delete-min, each node acquires at most one new child. We offer
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(a) Uniform random permutation (b) Random separable permutation

(c) Random permutation with locality parameter
ε = 0.15

(d) Random permutation with average sorted blocks
of length 15

Figure 6 Sample permutations of size 512 generated for the different families of permutations.

the pure pairing heap as a data structure for further study: our analysis fails, because this
structure does not have the second property that makes smooth and slim heaps efficient; a
delete-min can result in a list of roots rather than a single one.

We have proved that the simple method of doing decrease-key in smooth and slim heaps,
by merely cutting the node whose key decreases and adding it to the root list, takes O(lg n)
amortized time. For pairing heaps, Pettie has shown that the same method takes O(4

√
lg lg n)

amortized time. We think that his techniques will give a similar bound for smooth and slim
heaps, and we are currently working on this question.

Similarly to other self-adjusting data structures, smooth heaps and slim heaps are expected
to be adaptive, i.e. to show greater efficiency on some specific inputs. Through the connection
with Greedy BST [16], smooth heaps are known to be highly adaptive in sorting mode, but
these results do not seem easy to transfer to slim heaps. Adaptivity in general operation
sequences is much less understood. Our Theorem 2 can be seen as a first result in this
direction. We expect that other adaptive bounds, e.g. similar to those in [7] can also be
shown. A possible way for proving such bounds is to generalize the analysis in this paper to
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(a) Uniform random permutations. (b) Random separable permutations.

(c) Random permutations of size 104 with locality
parameter ε.

(d) Random permutations of size 104 with sorted
blocks.

Figure 7 Average number of links (dashed lines) and average number of comparisons (continuous
lines) for sorting permutations using pairing heap (red), smooth heap (green), and slim heap (blue);
note that for pairing heaps the two counts are equal. Shaded areas indicate ranges between minimum
and maximum costs.

(a) Random graphs with varying edge probability. (b) Random regular graphs of varying size.

Figure 8 Average number of links (dashed lines) and average number of comparisons (continuous
lines) for Dijkstra’s algorithm using pairing heap (red), smooth heap (green), and slim heap (blue).
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a weighted setting, much in the spirit of splay trees [24]. Such an extension of Theorem 1 is
indeed possible, but with the current potential function it does not appear to yield nontrivial
new bounds. A weighted analysis combined with a linear potential function, i.e. O(n) rather
than O(n lg n) may lead to such results.
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Abstract
We devise the first constant-factor approximation algorithm for finding an integral multi-commodity
flow of maximum total value for instances where the supply graph together with the demand edges
can be embedded on an orientable surface of bounded genus. This extends recent results for planar
instances. Our techniques include an uncrossing algorithm, which is significantly more difficult than
in the planar case, a partition of the cycles in the support of an LP solution into free homotopy
classes, and a new rounding procedure for freely homotopic non-separating cycles.
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1 Introduction

Multi-commodity flows, or multiflows for short, are well-studied objects in combinatorial
optimization; see, e.g., Part VII of [34]. A multiflow of maximum total value can be found
in polynomial time by linear programming. Often, a multiflow must be integral, and then
the problem is much harder; the well-known edge-disjoint paths problem is a special case.
Recently, constant-factor approximation algorithms have been found for maximum edge-
disjoint paths and integral multiflows in fully planar instances, i.e., when G + H, the supply
graph together with the demand edges, can be embedded in the plane [21, 16]. We generalize
these results to surfaces of bounded genus and devise the first constant-factor approximation
algorithm for that case.

Beyond using some ideas of [16, 21], we need several new ingredients. Like [16], we start
by computing an optimal (fractional) multiflow and “uncross” the cycles in its support as
much as possible, but uncrossing is significantly more complicated on general surfaces than
in the plane. Next, we need to deal with two cases separately: depending on whether most
of the fractional multiflow is on separating cycles (that case is similar to the planar case)
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or on non-separating cycles. In the latter case we partition the cycles into free homotopy
classes and define a cyclic order in each free homotopy class, which is possible due to the
uncrossing and allows for a simple greedy algorithm.

1.1 Our results
The (fractional) maximum multiflow problem can be described as follows. An instance
consists of an undirected graph (V, D ∪̇E) whose edge set is partitioned into demand edges,
in D, and supply edges, in E. We write G = (V, E), H = (V, D), and G + H = (V, D ∪̇E).
Moreover we have a function u : D ∪̇E → Z>0 which defines a capacity u(e) for each supply
edge e ∈ E and a demand u(d) for each demand edge d ∈ D. The goal is to satisfy as much
of the demand as possible by routing flow on supply edges. More precisely, we ask for an
s-t-flow fd of value at most u(d) for every demand edge d = {t, s} such that the total flow
on each supply edge is at most its capacity and the total value of all those flows is maximum.

It is well known that every s-t-flow can be decomposed into flow on s-t-paths and on cycles,
and for integral flows there is an integral decomposition. The cycles in such a decomposition
do not contribute to the value of the s-t-flow and can be ignored. An s-t-path in (V, E)
together with the demand edge d = {t, s} forms a D-cycle: a cycle in G + H that contains
exactly one demand edge. If we let C denote the set of all D-cycles in G + H, we can write
the maximum multiflow problem equivalently as

max
∑
C∈C

fC s.t.
{ ∑

C∈C:C∋e fC ⩽ u(e) for all e ∈ D ∪̇E

fC ⩾ 0 for all C ∈ C (1)

In some previous works, the problem has been defined with u(d) = ∞ for d ∈ D, and
this variant is easily seen to be equivalent. We call the linear program (1) the maximum
multiflow LP. The maximum integral multiflow problem is identical, except that the flow
must be integral:

max
∑
C∈C

fC s.t.
{ ∑

C∈C:C∋e fC ⩽ u(e) for all e ∈ D ∪̇E

fC ∈ Z⩾0 for all C ∈ C (2)

The special case where u(e) = 1 for every edge e ∈ D ∪̇E is known as the maximum
edge-disjoint paths problem. Even that special case is unlikely to have a constant-factor
approximation algorithm for general graphs (see Section 1.2). Our main result is a constant-
factor approximation algorithm in the case when G + H can be embedded on an orientable
surface of bounded genus.

▶ Theorem 1. There is a polynomial-time algorithm which takes as input an instance
(G, H, u) of the maximum integral multiflow problem such that G + H is embedded on an
orientable surface of genus g, and which outputs an integral multiflow whose value is at most
a factor O(g2 log g) smaller than the value of any fractional multiflow.

See Section 3 for an outline of the algorithm and the proof. In the full version of the
paper, we explain how to improve the approximation ratio of the algorithm to O(g2). It is
worth pointing out that almost all known hardness results for the maximum edge-disjoint
paths problem hold even when G is planar (see Section 1.2). Theorem 1, along with the two
recent papers [16, 21], highlight that for tractability one needs more than the planarity of G

alone. The topology of G + H together plays an important role.
The dual LP of (1) is:

min
∑

e∈D∪̇E

u(e)ye s.t.
{ ∑

e∈C ye ⩾ 1 for all C ∈ C
ye ⩾ 0 for all e ∈ D ∪̇E

(3)
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and this may be called the minimum fractional multicut problem. The minimum multicut
problem results from replacing the inequality ye ⩾ 0 in (3) by ye ∈ {0, 1} for all edges
e ∈ D ∪̇E. Again, many previous works considered the equivalent special case where
u(d) =∞ for d ∈ D, in which case no dual variables for demand edges are needed. By weak
duality, the value of any multiflow is at most the capacity of any multicut. Using Theorem 1
and a previous result of [36], we obtain (in Section 9):

▶ Corollary 2. For any instance (G, H, u) of the maximum integral multiflow problem such
that G + H is embedded on an orientable surface of genus g, the minimum capacity of a
multicut is at most O(g3.5 log g) times the maximum value of an integral multiflow.

In general the integral multiflow-multicut gap1, and even the integrality gap of (1), can
be as large as Θ(|D|), even when G is planar and G + H is embedded in the projective
plane [18]. In this paper we consider orientable surfaces only. Corollary 2 states that the gap
becomes constant when G + H has bounded genus. So far very few such constant integral
multiflow-multicut gaps are known, for example when G is a tree [18], or when G + H is
planar, as recently shown in [16, 21].

1.2 Related Work
Approximation algorithms and hardness for integral multiflows. Most of the hardness
results for the maximum integral multiflow problem follow from the special case of the
maximum edge-disjoint paths problem (EDP). The decision version of EDP is one of Karp’s
original NP-complete problems [22], and remains NP-complete even in many special cases [30],
including the case of interest in this paper, namely even when G + H is planar [28]. In
terms of approximation, EDP is APX-hard [2]. Assuming that NP ̸⊆DetTIME(nO(log n)),
where n = |V |, there is no no(1/

√
log n) approximation for EDP, even when G is planar

and sub-cubic [6]. Assuming that for some positive δ, NP ̸⊆RandTIME(2nδ ), there is no
nO(1/(log log n)2) approximation for EDP, even when G is planar and sub-cubic [7]. As far as
we know, no stronger hardness result is known for integral mutliflows.

On the positive side, EDP can be solved in polynomial time when the number of demand
edges is bounded by a constant [33]. The same holds for integral multiflows when G + H is
planar [35]. For exact algorithms in various special cases, see the survey [30]. In general,
the best known approximation guarantee for EDP and maximum integral multiflows is
O(
√

n) [4]. Approximation algorithms with better approximation ratios for various special
cases have been designed. We refer the readers to the survey [10] and to [18, 23, 30] and the
references therein.

Recent work on the planar case. Recently, [16] and [21] gave constant-factor approximation
algorithms for maximum integer multiflows when G + H is planar. Both papers proceed
by first obtaining a half-integral multiflow and then using the four color theorem to round
it to an integral solution (similar to Section 6). The main difference of the two works is
the way such half-integral multiflows are obtained. In [16], it is constructed by uncrossing a
fractional multiflow (see Section 5 for a definition) to construct a certain network matrix,
which is known to be totally unimodular; in [21], such a half-integral multiflow is obtained

1 There is a closely related, but different, notion of integral flow-cut gap introduced in [5]: they study the
smallest constant c such that whenever u(C ∩ E) ⩾ u(C ∩ D) for every cut C (the cut condition), there
is an integral multiflow satisfying all demands and violating capacities by at most a factor c.
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by rounding a feasible solution of a related problem in the planar dual graph of G + H . Both
approaches do not extend to higher genus graphs in a straightforward way, because the dual
of a cycle is no longer a cut in general and cycles cannot always be uncrossed.

Minimum multicut problem. The minimum multicut problem is NP-hard even when there
are only three demand edges [11]. In general, assuming that the Unique Games conjecture
holds, there is no O(1)-approximation [3], but a O(log |D|)-approximation algorithm [17].
Better approximations also have been shown for special cases; see [18, 36] and the references
therein. In particular, when G+H is planar, [25] gave an approximation scheme. When G has
genus g, an FPT-approximation scheme with parameters of g and |D| has been proposed [8].

Tools from topology. The design of multiflows on surfaces is closely related to the properties
of sets of curves on a surface. In a recent breakthrough, Przytycki [31] proved that the
maximum number of essential curves on a closed surface of genus g such that no two of
them are freely homotopic or intersect more than once is O(g3), improving on the previous
exponential upper bound by [27]. Very recently, this number was shown to be O(g2 log g)
by [19], which almost matches the lower bound Ω(g2) on the size of such sets [27]. We will
use this result in Section 7.

2 Preliminaries

Consider an instance (G, H, u) of the maximum integral multiflow problem, and let G + H =
(V, E ∪̇D) be the graph whose edge set is the disjoint union of the edge sets of the supply
graph G = (V, E) and the demand graph H = (V, D). Throughout the paper, we assume that
the graph G + H is connected, otherwise we can run the algorithm on each of its connected
components.

Graphs on surfaces. Surfaces are either orientable or non-orientable; in this paper we only
consider closed orientable surfaces. A closed orientable surface of genus g can be seen as a
connected sum of g tori, or equivalently a sphere with g handles attached on it, where g

is called the genus of the surface. Given an integer g ⩾ 0, all closed surfaces with genus g

are mutually homeomorphic, and we refer to any one of them as Sg. For instance, S0 is the
sphere and S1 is the torus.

A (multi)graph has genus g or is a genus-g graph, if it can be drawn on Sg without edge
crossings, but not on Sg−1. A genus-g graph may have several non-equivalent embeddings
on Sg, but all of them satisfy the same invariant, called the Euler characteristic: #Faces−
#Edges + #Vertices = 2− 2g.

A simple application of Euler’s formula gives the following upper bound on the coloring
number of genus-g graphs, when g ⩾ 1.

▶ Theorem 3 (Map color theorem). A genus-g graph can be colored in polynomial time with
at most χg ⩽ ⌊ 7+

√
1+48g
2 ⌋ colors.

For g = 0, this is an algorithmic version of the 4-color theorem [32]. For g ⩾ 1, the
coloring is obtained in polynomial time by a simple recursive algorithm that removes a vertex
of minimum degree and colors the remaining graph [20]. For additional details and results
about graphs on surfaces see e.g. [29, 9].
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Combinatorial embeddings. Given a graph, let δ(v) denote the set of edges incident to
a vertex v, and δ(U) the set of edges with exactly one endpoint in vertex set U . Given
an embedding of a graph on an orientable surface, and an arbitrary orientation of this
surface, for each vertex v, a clockwise cyclic order can be defined on the edges of δ(v). Note
that contracting an edge e = {u, v} results in removing e from δ(u) and from δ(v) and
concatenating the orders to obtain the clockwise cyclic order of the edges around the vertex
created by the contraction. Using these orders together with the incidence relation between
edges and faces, embeddings become purely combinatorial objects. For additional details see,
e.g., [29], Chapter 4.

Graph duality. Given an embedding of a genus-g graph G on Sg, there exists a uniquely
defined dual graph, denoted as G∗. This graph can be embedded on the same surface as G.
There exists a bijection between the faces of G and the vertices of G∗, a bijection between
the vertices of G and the faces of G∗, and a bijection between the edge sets of G and of G∗.
Moreover, the embeddings of G and G∗ are consistent: with this bijection, every edge only
crosses its dual edge, every face only contains its corresponding dual vertex and reciprocally.
For notational simplicity, the latter bijection is implicit.

Cycles and cuts. A path in a graph G is a sequence (v0, e1, v1, . . . , ek, vk) for some k ⩾ 0,
where v0, . . . , vk are distinct vertices and ei = {vi−1, vi} is an edge for all i = 1, . . . , k. A cycle
in a graph G is a sequence (v0, e1, v1, . . . , ek, vk) such that v1, . . . , vk are distinct vertices,
{vi−1, vi} is an edge for all i = 1, . . . , k, and v0 = vk. Sometimes we view cycles as edge sets
or as graphs. A cut is an edge set δ(U) for some proper subset ∅ ̸= U ⊂ V . A cut δ(U) is
simple if both U and V \ U are connected.

We say that an edge set F in a graph is a (simple) dual cut if the corresponding set of
edges F ∗ in the dual is a (simple) cut. A cycle C in G is called separating if it is a dual cut,
and non-separating otherwise. Note that every separating cycle is a simple dual cut.

Homotopy. Given a surface S, a (simple) topological cycle is a continuous injective map γ

from the unit cycle S1 := {z ∈ C, ||z|| = 1} to S. Two topological cycles γ1 and γ2 are freely
homotopic if there exists a continuous function φ : [0, 1]× S1 → S such that φ(0, ·) = γ1 and
φ(1, ·) = γ2. Intuitively, cycle γ1 is transformed into cycle γ2 by continuously moving it on
the surface. Free homotopy is an equivalence relation.

Given an embedding of the graph G + H on S, we say that a cycle C in G + H is
represented2 by a topological cycle γ of S if the image of γ is the embedding of C on S. Two
cycles in G + H are freely homotopic if and only if they can be represented by two freely
homotopic topological cycles. In the sequel, we use the following well-known fact.

▶ Fact 4. If two cycles C and C ′ are freely homotopic, then their symmetric difference is
a dual cut. If C and C ′ are additionally disjoint and non-separating, then their union is a
simple dual cut.

Intuitively, the image of the continuous homotopy function from C to C ′ on the surface
forms an annulus [12]. See Figure 1 for an illustration.

2 Topological cycles are considered up to orientation-preserving reparameterization. Therefore, a cycle in
G + H may be represented by a topological cycle from two classes, one for each orientation: the class of
γ and the class of γ′ where γ′(eiθ) = γ(e−iθ).
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Figure 1 Some cycles on an orientable surface of genus 2. On the left, two separating cycles. On
the right, three non-separating cycles. C and C′ are freely homotopic and their union disconnects
the surface.

3 Overview

In this section, we give an overview of our constant-factor approximation algorithm for the
maximum integral multiflow problem when G + H is embedded on an orientable surface Sg of
genus g, where g is bounded by a constant (Theorem 1). Again, without loss of generality, we
assume that G + H is connected. Here is the main algorithm. Steps 1,2,3,4 will be described
in detail in Sections 4,5,6,7, respectively.
1. Solve the linear program (1) to obtain a (fractional) multiflow f∗.
2. Construct another multiflow f such that any two cycles in the support of f cross at most

once (Lemma 7). See Definition 6 for the definition of “crossing.”
3. If at least half of the total value of f is contributed by separating cycles, these cycles

now form a laminar family. Construct a half-integral multiflow fhalf (Theorem 10), and
from there, using the map color theorem (Theorem 3), compute an integral multiflow f ′

(Lemma 11), which is the output.
4. Otherwise, partition the non-separating cycles in the support of f into free homotopy

classes. Pick the class H with largest total flow value. Remove the flow on all other cycles
and greedily construct an integral multiflow (Lemmas 20 and 17), which is the output.

It can be proved that we only lose a constant factor at every step of the algorithm: see
Section 8 for the analysis of the above algorithm, proving Theorem 1.

4 Finding a fractional multiflow (Step 1)

A feasible solution f to the maximum multiflow LP (1) will be simply called a multiflow.
Recall that C denotes the set of all D-cycles, i.e., all cycles in G+H that contain precisely one
demand edge. We denote by |f | =

∑
C∈C fC the value of f , and by C(f) := {C ∈ C | fC > 0}

the support of f . Although formulation (1) has an exponential number of variables, it is well
known that it can be reformulated by polynomially many flow variables and constraints (see,
e.g., [15, 1]) and thereby solved in polynomial time:

▶ Proposition 5. There is an algorithm that finds an optimal solution f∗ to the maximum
multiflow LP (1) such that |C(f∗)| ⩽ |D||E|. Its running time is polynomial in the size of
the input graph.

Proof. By introducing flow variables xd
e :=

∑
C∈C:d,e∈C fC for all d ∈ D and e ∈ D ∪̇E

we can maximize the total value
∑

d∈D xd
d subject to nonnegativity and flow conservation

constraints (for each d ∈ D and for each vertex). This is a linear program of polynomial size.
By flow decomposition, one can then construct a feasible solution to (1) of the same value
and with support at most |D||E|. ◀

Later we will restrict a multiflow to subsets of D-cycles. For C′ ⊆ C we define a multiflow
f ′ by f ′

C := fC for C ∈ C′ and f ′
C := 0 for C ∈ C \ C′, and write f(C′) := f ′.
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5 Making a fractional flow minimally crossing (Step 2)

In this section we show that for a given embedding, we can “uncross” a multiflow in such a
way that any two D-cycles in the support cross at most once. While doing this we will lose
only an arbitrarily small fraction of the multiflow value.

Uncrossing is a well-known technique in combinatorial optimization, but in most cases
it is applied to families of subsets of a ground set U . Such a family is said to be cross-free
if, for any two of its sets, A and B, at least one of the four sets A \ B, B \ A, A ∩ B, and
U \ (A ∪B) is empty. Here we want to uncross D-cycles in the topological sense, and this
can be reduced to the above (with some extra care) only if all these cycles are separating
(which, for example, is always the case if G + H is planar; cf. [16]).

▶ Definition 6. We say that two D-cycles C1 and C2 cross if there exists a path P (possibly
a single vertex), which is a subpath of both C1 and C2, and such that in the embedding, after
contracting the edges of P , the vertex v thus obtained is incident to two edges of C1 and to
two edges of C2, all distinct, and in the embedding the restriction of the cyclic order of δ(v)
to those four edges alternates between an edge of C1 and an edge of C2.

d1=d2

d1

d2

d1

d2

Figure 2 Each of the two figures on the left show two D-cycles, C1 (red, dotted) and C2 (blue,
solid). The edges belonging to D are marked as d1 and d2. Edges are arranged at every vertex in the
order of their embedding. Crossings are marked by yellow shade. The two D-cycles on the left cross
three times. The two D-cycles in the middle cross four times. The figure on the right shows two
D-cycles C1 and C2 that cross twice, and a third D-cycle C3 (green, dashed) that crosses neither C1

nor C2. Uncrossing C1 and C2 here generates a crossing of C3 with a new D-cycle (namely with the
triangle containing d2).

Two cycles may cross multiple times. We denote by cr(C, C ′) the number of times that
C and C ′ cross. See Figure 2 for three examples. In contrast to the planar case, it is possible
that two cycles cross exactly once and cannot be uncrossed. The third example in Figure 2
shows another difficulty: when uncrossing two D-cycles it might be necessary to generate
new crossings with other cycles.

▶ Lemma 7. Let ϵ > 0 be fixed. Given a multiflow f whose support has size at most |E||D|,
there is a polynomial-time algorithm to construct another multiflow f , of value at least
|f | ⩾ (1− ϵ)|f |, and such that any two cycles in the support of f cross at most once.

Proof. First we discretize the multiflow, losing an ϵ fraction in value; then we iteratively
modify it, without changing its value, to reduce the number of crossings or the total amount
of flow on all edges; finally, we analyze the process and argue that the number of iterations
is polynomially bounded.
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Discretization. The statement is trivial if |f | = 0. Otherwise, before uncrossing, we round
down the flow on every D-cycle to integer multiples of ϵ|f |

|E||D| . That is, we define f ′
C :=

ϵ|f |
|E||D|

⌊
|E||D|fC

ϵ|f |

⌋
for all C ∈ C. Note that f ′ is a multiflow. We claim that |f ′| ⩾ (1− ϵ)|f |.

Indeed,

|f ′| =
∑
C∈C

f ′
C ⩾

∑
C∈C(f)

(
fC −

ϵ|f |
|E||D|

)
= |f | − |C(f)| ϵ|f |

|E||D|
⩾ |f | − ϵ|f |.

The discretized multiflow f ′ can be represented by a multi-set S of unweighted D-cycles:
if f ′

C = k ϵ|f |
|E||D| , then k identical copies of cycle C are added to S. The number of cycles in S

(counting multiplicities) is at most |E||D|
ϵ because |S| =

∑
C∈C f ′

C
|E||D|

ϵ|f | ⩽
∑

C∈C fC
|E||D|

ϵ|f | =
|E||D|

ϵ .

Uncrossing. To construct f , we perform a sequence of transformations of the multiflow.
We will modify S while maintaining the following invariants:
(a) The number of elements of S (counting multiplicities) remains constant.
(b) For every e ∈ D ∪̇E, the number of elements of S (counting multiplicities) that contain

e never increases.
Thanks to (b), at any stage, f is a multiflow, where f is defined by fC = k ϵ|f |

|E||D| for C ∈ C,
where k is the multiplicity of C in S. Initially f = f ′. Thanks to (a), the value of the
multiflow is preserved. In the following we work only with S.

While there exist two cycles C1 and C2 in S that cross at least twice, do the following
uncrossing operation (on one copy of C1 and one copy of C2). Let d1 be the edge in C1 ∩D,
and let d2 be the edge in C2∩D. Let P and Q be two of the paths where C1 and C2 cross (cf.
Definition 6), such that Q contains only edges of E. Orient C1 so that in that orientation,
when traversing the entirety of P and then walking towards Q, edge d1 is traversed before
reaching Q. Let C⃗1 denote the resulting directed cycle. Let a be the first vertex on P in the
orientation of C⃗1, and let b be an arbitrary vertex on Q. Vertices a and b partition C⃗1 into a
path C+

1 from a to b that contains d1 and a path C−
1 from b to a that does not contain d1.

Case 1: P contains an edge of D. Then this edge is d1 = d2. We orient C2 so that the
orientation on P agrees with the orientation of C⃗1 on P . Let C⃗2 denote the resulting
directed cycle. Then the vertices a and b also partition C⃗2 into a path C+

2 from a to b

that contains d2 and a path C−
2 from b to a that does not contain d2.

Case 2: P contains edges of E only. Then we orient C2 so that in that orientation, when
traversing the entirety of P and then walking towards Q, edge d2 is traversed before
reaching Q. Let C⃗2 denote the directed cycle. With that orientation, vertices a and b

also partition C⃗2 into a path C+
2 from a to b that contains d2 and a path C−

2 from b to a

that does not contain d2.

To obtain C ′
1, we concatenate C+

1 and C−
2 , remove any cycle that does not contain d1,

and remove the orientation. To obtain C ′
2, we concatenate C+

2 and C−
1 , remove any cycle

that does not contain d2, and remove the orientation. Note that C ′
1 and C ′

2 are D-cycles
because each of C+

1 and C+
2 contains exactly one demand edge, and C−

1 and C−
2 contain no

demand edge.

See Figure 3 for two examples, one for each case.
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(a)

P

Q

a

b

d1=d2

(b) d1=d2

(c)

Q

P

bad1

d2

(d)

d1

d2

Figure 3 Uncrossing the pairs of D-cycles from Figure 2. (a) and (b) show an example for Case
1, (c) and (d) an example for Case 2. The initial situation (C1 red, dotted, and C2 blue, solid) and
a possible choice of P, Q, a, b and the resulting orientation is shown in (a) and (c). As the result of
the uncrossing operation, shown in (b) and (d), we have the new D-cycles C′

1 (red, dotted) and C′
2

(blue, solid) with fewer crossings among each other.

Analysis. From the construction it follows that C ′
1 and C ′

2 are D-cycles and C ′
1 ∪̇C ′

2 ⊆
C1 ∪̇C2. Hence removing one copy of C1 and C2 from S and adding one copy of C ′

1 and C ′
2

to S maintains the invariants (a) and (b).
To show that the after a polynomial number of uncrossing operations any pair of cycles

in S crosses at most once, we consider the total number of edges Φ1 =
∑

C∈S |C| (counting
multiplicities) and the total number of crossings Φ2 =

∑
C,C′∈S cr(C, C ′) (where we again

count multiplicities). Note that |S| remains constant by invariant (a), and Φ1 never increases
by invariant (b). Moreover 0 ⩽ Φ1 ⩽ |V ||S| and 0 ⩽ |Φ2| ⩽ |V ||S|2.

▷ Claim 8. Each uncrossing operation either decreases Φ1 or leaves Φ1 unchanged and
decreases Φ2.

To prove Claim 8, consider an uncrossing operation that replaces C1 and C2 by C ′
1 and

C ′
2, and suppose that Φ1 remains the same, so C ′

1 consists of C+
1 plus C−

2 , and C ′
2 consists

of C+
2 plus C−

1 . We first observe that cr(C ′
1, C ′

2) < cr(C1, C2). Indeed, the crossings at P

and at Q go away, and no new crossing arises.
Finally we need to show that for any cycle C ∈ C,

cr(C, C ′
1) + cr(C, C ′

2) ⩽ cr(C, C1) + cr(C, C2). (4)

To show (4), consider a crossing of C and C ′ ∈ {C ′
1, C ′

2} at a path R. Let e′
1 =

{v0, v1}, . . . , e′
k = {vk−1, vk} be the edges of R (k ⩾ 0), and let e0, ek+1, e′

0, e′
k+1 be edges

such that e0, e′
1, . . . , e′

k, ek+1 are subsequent on C and e′
0, e′

1, . . . , e′
k, e′

k+1 are subsequent on
C ′. After contracting R, the incident edges e0, e′

0, ek+1, e′
k+1 are embedded in this cyclic

order. (Note that e0 = ek+1 or e′
0 = e′

k+1 is possible if k ⩾ 1, then contracting R yields a
loop.) See Figure 4 (a).

Now e′
0 belongs to C1 or C2, say C1. If R contains neither a nor b, then e′

0, . . . , e′
k+1 all

belong to C1, and C1 crosses C at R. If R contains either a or b, say at vi, then e′
0, . . . , e′

i

belong to C1 and e′
i+1, . . . , e′

k+1 belong to C2. Moreover C1 and C2 cross at a path containing
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(a)

v0 v1 v2 v3 v4

e′
0 C′ e′

1 e′
2 e′

3 e′
4

e′
k+1e0

ek+1C
(b)

C1

C2

C

(c)
C1 C2 C

(d)
C1 C2 C

Figure 4 For each crossing of C with a new cycle C′ ∈ {C′
1, C′

2} at a path R there is a crossing
of C with one of the old cycles C1 and C2 at a subpath of R. This crossing is marked with yellow
shade in the three examples.

vi, so either C1 crosses C at a subpath of R (Figure 4(b)) or C2 crosses C at a subpath of R

(Figure 4(c)). Finally, if R contains a and b, say at vi and vj for 0 ⩽ i < j ⩽ k, then e′
0, . . . , e′

i

and e′
j+1, . . . , e′

k+1 belong to C1 and e′
i+1, . . . , e′

j belong to C2 (Figure 4(d)). Again, C1 or
C2 crosses C at a subpath of R. This concludes the proof of Claim 8.

We can now conclude the proof of Lemma 7 because Φ1 decreases at most |V ||S| times, and
while Φ1 is constant, Φ2 decreases at most |V ||S|2 times, so the total number of uncrossing
operations is at most |V |2|S|3 ⩽ |V |2|E|3|D|3

ϵ3 . ◀

6 Separating cycles: routing an integral flow (Step 3)

Let f result from Lemma 7, and let Csep denote the set of separating cycles in the support of
f . We now consider the case when the separating cycles contribute at least half to the total
flow value, i.e., |f(Csep)| ⩾ 1

2 |f |.
This branch of our algorithm consists of two steps:

1. Given f(Csep), construct a half-integral multiflow fhalf of value at least |f |/2;
2. Given fhalf, construct an integral multiflow of value at least |fhalf|/Θ(√g).

6.1 Obtaining a half-integral multiflow
To obtain a half-integral multiflow, we follow the technique used by [16] for the case where
G + H is planar. By the Jordan curve theorem, any cycle in a planar graph is separating.
As for the plane, the following property is easy to check for higher genus surfaces.

▶ Proposition 9. If C and C ′ are two cycles embedded on a surface, and C ′ is a separating
cycle, then C and C ′ must cross an even number of times.

Proof. C ′ is separating the surface into two sides. While walking along C from a vertex v,
we go from one side to the other each time we cross C ′. When we return at v, we are on the
same side where we started so the number of crossing is even. ◀

Since any pair of cycles in the support of f crosses at most once, Csep must be a non-
crossing family by Proposition 9. In particular, we can show that Csep have a laminar
structure.

We say that a family of subsets of the dual vertex set V ∗ is laminar if any two members
either are disjoint or one contains the other. Let us take any face of G + H that we call ∞.
For any cycle C ∈ Csep we define in(C) and out(C) to be the two connected components of
(G + H)∗ \ C∗, such that ∞ ∈ out(C). We claim that the family L := {in(C) : C ∈ Csep} is
laminar.
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Indeed, take any two cycles C and C ′ in Csep. Since they do not cross, either (i)
(C ′ \ C)∗ ⊆ in(C) or, (ii) (C ′ \ C)∗ ⊆ out(C). In case (i) we must have in(C ′) ⊆ in(C). In
case (ii), we have either (ii.a) in(C) ⊆ in(C ′) or (ii.b) in(C) ∩ in(C ′) = ∅, hence laminarity.

Using the terminology in [16], we say that a multiflow f is laminar if {C∗ : C ∈ C, fC >

0} = {δ(U) : U ∈ L} where L is a laminar family (of subsets of V ∗). Thus, f(Csep) is laminar
and we can apply the following result to get fhalf.

▶ Theorem 10 ([16]). If f is a laminar multiflow, then there exists a laminar half-integral
multiflow f ′ such that C(f ′) ⊆ C(f) of value |f ′| ⩾ 1

2 |f |. Such a multiflow can be computed
in polynomial time.

6.2 Obtaining an integral multiflow
In this section we show the following result, which is an extension of a result from [21, 16],
who proved it for planar graphs.

▶ Lemma 11. Let (G, H, u) be an instance of the maximum multiflow problem such that G+H

has genus g, and let fhalf be a laminar half-integral multiflow whose support C(fhalf) contains
only separating cycles. Then there exists an integral multiflow f ′ of value |f ′| ⩾ 2|fhalf|/χg

(such that C(f ′) ⊆ C(fhalf)). Such a multiflow can be found in polynomial time.

Our proof follows the same outline as the proof of Theorem 1 of Fiorini et al. [14]. Let
Chalf := C(fhalf) be the set of D-cycles C such that fhalf

C > 0. We first reduce the problem to
the case where all cycles in Chalf have flow value 1

2 and every edge has capacity 1. To do
that, we reduce the flow fhalf

C by ⌊fhalf
C ⌋ for each cycle C ∈ Chalf, and reduce edge capacities

accordingly. Then, since now fhalf is small, we can further reduce demands and capacities
to u′(e) = min{u(e), |C(fhalf)|} for each e ∈ E ∪ D, so that

∑
e∈D∪̇E u(e) is polynomially

bounded. We can then replace each edge e by u(e) parallel edges of unit capacity. Given a
cycle C such that fhalf

C = 1
2 , we replace each edge e ∈ C by one of its parallel edges. This

can be done while ensuring that the resulting flow is still feasible and laminar. To facilitate
the proof, we still denote this graph by G + H and keep all other notations.

Recall that cycles in Chalf ⊆ Csep are separating and do not cross each other, so that the
family {in(C), C ∈ Chalf} is laminar. We partially order Chalf with the following relation:
C ≺ C ′ if in(C) ⊂ in(C ′). We have the following simple property:

▶ Lemma 12. If C1, C2, C ′ ∈ Chalf are such that C1 ≺ C ′ and C2 ⊀ C ′, then C1 and C2 are
edge-disjoint.

For the proof, see the full version of the paper. Our goal is to get a large subset C′ ⊆ Chalf

such that any two cycles in C′, are edge-disjoint. This is equivalent to finding a large
independent set in a properly defined graph Int(Chalf) with vertex set Chalf and such that
two cycles are adjacent if they share at least one edge. Using Lemma 12 we can show:

▶ Lemma 13. Given a graph embedded in Sg, let Chalf be defined as above. Let Int(Chalf) be
the graph with vertex set Chalf and such that two cycles are adjacent if they share at least one
edge. Then Int(Chalf) is a genus-g graph.

Proof. We prove the statement by induction on g + |Chalf|. When g + |Chalf| ⩽ 2, it is
trivial. Otherwise let G be a connected genus-g graph, embedded on Sg, and Chalf a family
as described above.

Suppose first that {in(C) | C ∈ Chalf} are pairwise disjoint. Then, contract in G∗ each set
in(C) into a single node. Two cycles C and C ′ share an edge if and only if in this contracted
graph, the nodes corresponding to in(C) and in(C ′) are adjacent. This means that Int(Chalf)
is a minor of G∗, and in particular has genus less than or equal to the genus of G∗.
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The case where there is one cycle C̄ such that C ≺ C̄ for all C ∈ Chalf \ C̄ and
{in(C) | C ∈ Chalf \ C̄} are pairwise disjoint works similarly; here we contract out(C̄).

Otherwise there exists a triple C1, C2, C ∈ Chalf such that C1 ≺ C and C2 ⊀ C. The
separating cycle C divides Sg into two sides. Each side can be closed – by identifying the
boundary of a disk with the boundary form by C – so that they are homeomorphic to Sgin

and Sgout , respectively. The connected sum of these two surfaces is homeomorphic to Sg,
and in particular we have gin + gout = g. This equality can easily be checked with Euler’s
formula.

Let Gin (resp. Gout) be the subgraph of G induced by the vertices embedded on the
side corresponding to Sgin (resp. Sgout), such that both contain C. The embedding of
G in Sg induces an embedding of Gin in Sgin and an embedding of Gout in Sgout . Thus,
genus(Gin) + genus(Gout) ⩽ g.

Now we define Chalf
⪯C := {C ′ ∈ Chalf|C ′ ≺ C}∪{C} and Chalf

⊀C := {C ′ ∈ Chalf|C ′ ⊀ C}∪{C}.
The choice of C implies that these two families are proper subsets of Chalf. Since the cycles in
Chalf do not cross, we have {C ∈ Chalf : C ⊆ Gin} = Chalf

⪯C and {C ∈ Chalf : C ⊆ Gout} = Chalf
⊀C .

By the induction hypothesis, Int(Chalf
⪯C ) and Int(Chalf

⊀C ) can be embedded on Sgin and Sgout ,
respectively. By Lemma 12, the graph Int(Chalf) arises from Int(Chalf

⪯C ) and Int(Chalf
⊀C ) by

identifying the two vertices that correspond to C.
Finally we prove that Int(Chalf) can be embedded on a surface genus gin + gout ⩽ g. To

see that, remove small disks Din and Dout in Sgin and Sgout , respectively, around the point
that corresponds to vertex C and that intersects only edges incident to C, and glue them
together by identifying boundaries of Din and Dout. The surface obtained is homeomorphic
to Sgin+gout It is easy to see that C, and the edges incident to C, can be re-embedded in this
surface without intersecting any other edges. This terminates the proof of Lemma 13. ◀

Using Theorem 3, this lemma ensures that one can compute in polynomial time a subset
C′ ⊆ Chalf of at least |Chalf|/χg pairwise edge-disjoint D-cycles. From this set, we define an
integral multiflow by setting f ′

C = 1 for C ∈ C′ and f ′
C = 0 for C ∈ C \ C′. It is easy to check

that f ′ is a multiflow that satisfies the properties of Lemma 11.

7 Non-separating cycles: routing an integral multiflow (Step 4)

If the separating cycles contribute less than half to the total value of the multiflow f obtained
by Lemma 7, we consider the non-separating cycles in the support of f . We first partition
them into free homotopy classes. The next theorem gives an upper bound on the number of
such classes.

▶ Theorem 14 ([19]). Let Sg be an orientable surface of genus g. Then there are at most
O(g2 log g) topological cycles such that any two of them are in different free homotopy classes
and cross each other at most once.

▶ Corollary 15. The D-cycles in the support of f can be partitioned into O(g2 log g) free
homotopy classes in polynomial time.

Proof. Take pairs of cycles in the support of f and check whether they are freely homotopic,
for example as in [13, 26]. ◀
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7.1 Greedy algorithm
Let H be a free homotopy class of non-separating cycles whose total flow value |f(H)| is
largest. We will run the following simple greedy algorithm (Algorithm 1) on H to get an
integral multiflow.

Algorithm 1 Greedy algorithm for integral multiflows.

Input: a sequence C1, . . . , Ck of D-cycles of C(f).
Output: an integral multiflow f .
f ← the all-zero multiflow;
for i = 1 to k do

Set fCi
to be the greatest integer such that f remains feasible.

The value of the integral multiflow returned by this algorithm depends on the order of
the D-cycles in the input. If it is ordered according to the following definition, then we show
that we lose only a constant fraction of the flow value.

▶ Definition 16. A family of cycles {C1, C2, . . . , Ck} is cyclically ordered, or has a cyclic
order if, whenever two cycles Ca and Cb share an edge, where a < b, then this edge is:
1. shared by all cycles Ca, Ca+1, . . . , Cb−1, Cb,
2. or shared by all cycles Cb, Cb+1, . . . , Ck, C1, · · · , Ca−1, Ca.

The following lemma establishes the approximation ratio of Algorithm 1 on cyclically
ordered input.

▶ Lemma 17. Let f be a multiflow and H = {C1, C2, . . . , Ck} a cyclically ordered family of
C(f). Then Algorithm 1 returns in polynomial time an integral multiflow of value at least
|f({C1, . . . , Ck})|/2.

Proof. Let f be a multiflow and H = {C1, C2, . . . , Ck} a cyclically ordered family of C(f).
It is clear that Algorithm 1 runs in polynomial time and returns an integral multiflow. Let f

be this flow. We show that its value is at least |f(H)|/2.
Let us define Ha,b = {Ca, Ca+1, . . . , Cb−1} and Hb,a = {Cb, Cb+1, . . . , Ck, C1, . . . , Ca−1}

for all 1 ⩽ a ⩽ b ⩽ k. Additionally, for all edges e ∈
⋃

C∈H C, we define He := {C ∈ H |
e ∈ C}. Since we assumed that H is cyclically ordered, we know that for each e ∈

⋃
C∈H C,

there are indexes 1 ⩽ a, b ⩽ k, such that He = Ha,b.
We call i0 the smallest index 1 ⩽ i ⩽ k such that there exists an edge e ∈ Ci such that

f(H1,i+1)(e) = u(e) and Hi,1 ⊆ He. Remark that in particular, for all i > i0, we must have
fCi = 0, and thus |f | = |f(H1,i0+1)|.

We first show by induction that for all 1 ⩽ i < i0 we have |f(H1,i+1)| ⩾ |f(H1,i+1)|. For
i = 1, we have |f(H1,i+1)| = |f(H1,2)| = fC1 = min{u(e)|e ∈ C1} ⩾ fC1

= |f(H1,2)|.
Assume now that at some iteration 1 < i < i0 of the algorithm we set fCi

= x. By
the choice of x, we know that there is an edge e ∈ Ci such that u(e) = f(H1,i+1)(e). In
particular, notice that |f(He)| = |f(He ∩H1,i+1)| = u(e). By feasibility of f , we have

|f(He ∩H1,i+1)| = u(e) ⩾ |f(He)|. (5)

Now, let a, b be the two indexes such that Ha,b = He. Since we assumed that i < i0, we
must have i < b ⩽ k. There are two cases: either 1 ⩽ a ⩽ i < b or 1 < i < b < a.

ICALP 2021



80:14 Approximating Maximum Integral Multiflows on Bounded Genus Graphs

If 1 ⩽ a ⩽ i < b, then equation (5) becomes |f(Ha,i+1)| ⩾ |f(He)| ⩾ |f(Ha,i+1)|.
Together with the induction hypothesis we obtain:

|f(H1,i+1)| = |f(H1,a)|+ |f(Ha,i+1)| ⩾ |f(H1,a)|+ |f(Ha,i+1)| = |f(H1,i+1)|.

Otherwise if 1 < i < b < a, then H1,i+1 ⊆ He, and thus the inequality claimed follows
directly from equation (5). We have established the induction. In particular, we have proved
that |f | = |f(H1,i0+1)| ⩾ |f(H1,i0)| ⩾ |f(H1,i0)|. To conclude the proof of Lemma 17, it
remains to show that |f | ⩾ |f(Hi0,1)|.

By definition of i0, we know that there exists an edge e ∈ Ci0 such that f(e) = u(e) and
such that Hi0,1 ⊆ He. By feasibility of f , we deduce that |f(Hi0,1)| ⩽ u(e) = f(e) ⩽ |f |.
This concludes the proof. ◀

▶ Remark 18. The analysis of Algorithm 1 for cyclically ordered inputs is tight. To see
this, imagine that H = {C1, . . . , C2k−1}, and there are two edges e1, e2, both of capacity k,
such that {C ∈ H | e1 ∈ C} = {C1, . . . , Ck} and {C ∈ H | e2 ∈ C} = {Ck+1, . . . , C2k−1, C1}.
Then Algorithm 1 may only set fC1 = k while f could be such that fC = 1 for all C ∈ H,
for a total value 2k − 1.

7.2 Computing a cyclic order
Lemma 20, the second main result of the section, states that a family H of pairwise freely
homotopic cycles crossing at most once can be cyclically ordered in polynomial time. One
key ingredient in the proof is that cycles in H are pairwise non-crossing. This fact uses the
assumption that the surface is orientable. In a non-orientable surface, two freely homotopic
cycles may cross exactly once.

Recall that f denotes the minimally-crossing multiflow obtained by Lemma 7.

▶ Lemma 19. Two freely homotopic cycles in C(f) do not cross.

For the proof of this simple topological fact, see the full version.

▶ Lemma 20. A family of non-separating, pairwise non-crossing and freely homotopic cycles
of a graph embedded in an orientable surface can be cyclically ordered. Such a cyclic order
can be found in polynomial time.

This result holds more generally for a family of non-contractible3, pairwise non-crossing
and freely homotopic cycles. For simplicity, we only consider the special case of non-separating
cycles, which is sufficient for our main result.

Proof. Let H be a set of non-separating, pairwise freely homotopic and non-crossing cycles.
We first order the cycles in H and then prove that this is a cyclic order. We assume that
|H| ⩾ 3, otherwise any order on H is a cyclic order.

In topology it is usually more convenient to work with disjoint cycles. If two (graph)
cycles do not cross, but may share common edges, it is possible to continuously deform by
free homotopy one of them, into an arbitrarily small open neighborhood so that the two
resulting (topological) cycles are now disjoint.

In the context of graph cycles, we now give a reduction from the setting of Lemma 20 to
the special case where the cycles are disjoint. Initially, Q = G + H.

3 all cycles that are not freely homotopic to a point on the surface.
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Figure 5 Construction of Q.

Step 1: If an edge is shared by s cycles, replace it s parallel edges. Each of these edges
corresponds to a different cycle so that the resulting set of cycles is still pairwise non-
crossing. Now the cycles are pairwise edge-disjoint but may still share some vertices.

Step 2: Let v be a vertex shared by two cycles C and C ′. Edges incident to v are embedded
around v in the cyclic order e1, a1, . . . , ai, e2, b1, . . . , bj where C ∩ δ(v) = {e1, e2}. Since
C and C ′ do not cross, we have C ′ ∩ δ(v) ⊆ {a1, . . . , ai} or C ′ ∩ δ(v) ⊆ {b1, . . . , bj}.
Then replace v by two adjacent vertices v′, v′′ and distribute the incident edges so that
δ(v′) = (e1, a1, . . . , ai, e2, {v′, v′′}) and δ(v′′) = ({v′, v′′}, b1, . . . , bj). Repeat step 2 until
all cycles are vertex-disjoint.

It is easy to see that this graph is connected (since G + H is connected) and can be
embedded in the same surface Sg. Figure 5 illustrates the construction of Q. Moreover, a
cyclic ordering of the resulting cycles naturally induces a cyclic ordering of H. This completes
the reduction. For simplicity, let us also call H the family of cycles in Q.

In the dual Q∗, let K denote the set of connected components of Q∗ \
(⋃

C∈H C∗)
. They

correspond to the connected components of Sg \
(⋃

C∈H C
)
. We say that a cycle C ∈ H is

incident to a connected component K ∈ K if there is an edge in C∗ with one endpoint in K.
Consider the bipartite graph B that has a vertex for each cycle in H and a vertex for each
element of K, and whose edges represent the incidence relation. Next we show that the graph
B is a cycle, and we order the D-cycles in H according to the cyclic order induced by B.

▷ Claim 21. B is a cycle.

The connectivity of B follows by construction from the connectivity of Q. Then it is
enough to prove that this graph is 2-regular.

We first prove that each vertex of B that corresponds to a cycle in H has degree two
in B. Since the cycles in H are disjoint, each cycle C has one component on its left, and
one on its right, when we walk along the cycle. Assume, for a contradiction, that they are
the same component: C is incident to only one component of Sg \

(⋃
C∈H C

)
. This cycle is

also incident to only one component of Sg \ (C ∪ C ′) where C ′ is any other cycle in H. By
Fact 4, we know that Sg \ (C ∪ C ′) has two connected components. But since C is incident
to only one connected component of Sg \ (C ∪ C ′), Sg \ C ′ must also have two connected
components, which contradicts the assumption that C ′ is non-separating. Thus, each cycle
in B must have degree two.

Now we prove that each element of K has degree two. For a contradiction, assume
that an element of K is incident to three cycles C, C ′, C ′′ or more. Then one component
of Q∗ \ (C ∪ C ′ ∪ C ′′) is also incident to C, C ′ and C ′′, and Q∗ \ (C ∪ C ′ ∪ C ′′) has two or
three components in total. If it has three components, then one of the other two components
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would be incident to exactly one cycle, which would mean that this cycle is separating, a
contradiction. If Q∗\(C ∪ C ′ ∪ C ′′) has exactly two connected components, then Q∗\(C∪C ′)
must be connected which contradicts Fact 4. Thus, each component is incident to exactly
two cycles. This concludes the proof of the claim.

It remains to show that the order induced by B satisfies the property of Definition 16.
If an edge e = {u, v} of G + H is shared by some cycles C ′

1, . . . , C ′
ℓ, then the vertex v can

be mapped to a path P = (v1, . . . , vℓ) in Q, so that C ′
i ∩ P = {vi}, 1 ⩽ i ⩽ ℓ. See Figure

5. It follows that for all 1 ⩽ i ⩽ ℓ− 1, C ′
i and C ′

i+1 are both incident the same connected
component of Q∗ \

(⋃
C∈H C

)
that contains the edge {vi, vi+1}∗. In particular, C ′

i and C ′
i+1

are consecutive in the order induced by B. ◀

8 Proof of Theorem 1

By construction, the output of the algorithm is a feasible solution. We now analyze the
value of the output. Since (1) is a relaxation of the maximum integral multiflow problem,
|f∗| ⩾ OPT. By Lemma 7, |f | ⩾ (1− ϵ)|f∗|. For ϵ = 1

2 we have |f | ⩾ 1
2 |f

∗|.
Consider the multiflow restricted to separating cycles, f sep. If |f sep| ⩾ 1

2 |f |, then
by Theorem 10, Lemma 11, and Theorem 3 we obtain an integral flow of value at least
|f sep|/Θ(√g).

Otherwise, by Theorem 14 there exists a free homotopy class H of non-separating cycles
such that |f(H)| ⩾ |f |/Θ(g2 log g). Use Lemmas 17 and 20 to obtain that the output has
value at least |f∗|/Θ(g2 log g).

Finally, we analyze the running time. As observed in Section 4, an optimum fractional
multiflow f∗ can be found in polynomial time. (Discretizing and) uncrossing is done in
time polynomial in |E||D| by Lemma 7. Partitioning into free homotopy classes is done by
Corollary 15. Finally, the operations of Theorem 10, Theorem 3, Lemma 11, Lemma 17 and
Lemma 20 can all be done in polynomial time, hence polynomial running time overall.

9 Proof of Corollary 2

In this section, we observe how Corollary 2 follows from Theorem 1 and the following result
by Tardos and Vazirani [36] (based on work by Klein, Plotkin and Rao [24]).

▶ Theorem 22 ([36]). Let (G, H, u) be a multiflow instance and γ > 1 such that the supply
graph G does not have a Kγ,γ minor. Then the minimum capacity of a multicut is O(γ3)
times the maximum value of a (fractional) multiflow.

The following is well known.

▷ Claim 23. If a graph G has genus at most g, where g ⩾ 1, then it has no Kγ,γ minor for
any γ > 2(√g + 1).

Proof. Suppose that such a minor Kγ,γ exists in G. As the three operations for obtaining a
minor (deleting edges/vertices and contracting edges) do not increase the genus, Kγ,γ has
genus at most g. Furthermore, K has 2γ vertices, γ2 edges, and at most γ2

2 faces (since
there is no odd cycle in a bipartite graph). By Euler’s formula, 2− 2g ⩽ 2γ − γ2 + γ2

2 , which
implies γ ⩽ 2(√g + 1). ◁

By Claim 23 and Theorem 22, the ratio between the minimum capacity of a multicut and
the maximum value of a (fractional) multiflow is O(g1.5). This, combined with Theorem 1,
proves Corollary 2.
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Abstract
We consider the minimum-norm load-balancing (MinNormLB) problem, wherein there are n jobs,
each of which needs to be assigned to one of m machines, and we are given the processing times {pij}
of the jobs on the machines. We also have a monotone, symmetric norm f : Rm → R≥0. We seek an
assignment σ of jobs to machines that minimizes the f -norm of the induced load vector

−−→
loadσ ∈ Rm

≥0,
where loadσ(i) =

∑
j:σ(j)=i

pij . This problem was introduced by [4], and the current-best result
for MinNormLB is a (4 + ϵ)-approximation [5]. In the stochastic version of MinNormLB, the job
processing times are given by nonnegative random variables Xij , and jobs are independent; the goal
is to find an assignment σ that minimizes the expected f -norm of the induced random load vector.

We obtain results that (essentially) match the best-known guarantees for deterministic makespan
minimization (MinNormLB with ℓ∞ norm). For MinNormLB, we obtain a (2 + ϵ)-approximation for
unrelated machines, and a PTAS for identical machines. For stochastic MinNormLB, we consider the
setting where the Xijs are Poisson random variables, denoted PoisNormLB. Our main result here is
a novel and powerful reduction showing that, for any machine environment (e.g., unrelated/identical
machines), any α-approximation algorithm for MinNormLB in that machine environment yields a
randomized α(1 + ϵ)-approximation for PoisNormLB in that machine environment. Combining this
with our results for MinNormLB, we immediately obtain a (2 + ϵ)-approximation for PoisNormLB on
unrelated machines, and a PTAS for PoisNormLB on identical machines. The latter result substantially
generalizes a PTAS for makespan minimization with Poisson jobs obtained recently by [6].
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1 Introduction

In the minimum-norm load-balancing (MinNormLB) problem, we are given a set J of n jobs,
a set of m machines, and nonnegative job processing times (or sizes) {pij}i∈[m],j∈J . We use
[m] to denote {1, . . . , m}. We are also given a monotone, symmetric norm f : Rm 7→ R≥0.
Recall that f being a norm means that: (i) f(x) = 0 iff x = 0; (ii) f(x + y) ≤ f(x) + f(y) for
all x, y ∈ Rm, and (iii) f(θx) = |θ|f(x) for all x ∈ Rm, θ ∈ R. A monotone norm f satisfies
f(x) ≤ f(y) for all 0 ≤ x ≤ y, and symmetry is the property that permuting the coordinates
of x does not change its norm. An assignment σ : J → [m] of jobs to machines induces
the machine-load vector

−−→
loadσ =

(
loadσ(i)

)
i∈[m] ∈ Rm

≥0, where loadσ(i) :=
∑

j:σ(j)=i pij . The

goal in MinNormLB is to find an assignment σ that minimizes the f -norm of
−−→
loadσ.
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This problem was first considered by [4], as a natural problem in the genre of minimum-
norm optimization problems that they introduce. They gave a (38 + ε)-approximation
algorithm for MinNormLB, and the approximation factor was subsequently improved to
(4 + ε) by [5]. Ibrahimpur and Swamy [12] introduced the genre of stochastic minimum-norm
optimization, and considered StochNormLB, the stochastic generalization of MinNormLB, as
a prominent problem in this genre. In StochNormLB, the job processing times are given by
nonnegative random variables {Xij}i∈[m],j∈J with specified distributions, and the jobs are
independent (but Xij and Xi′j could be correlated); the goal is to find an assignment that
minimizes the expected f -norm of the induced random load vector. As discussed in these
works, one of the chief motivations and benefits of working with the rather broad class of
monotone, symmetric norms is that it captures a variety of appealing objectives, including
the frequently-considered (in both deterministic and stochastic settings) min-max (ℓ∞) and
min-sum (ℓ1) objectives, general ℓp-norms, as also another important class of norms called
Topℓnorms (for x ≥ 0, Topℓ(x) is the sum of the ℓ largest coordinates of x). Moreover,
by exploiting the closure properties of monotone, symmetric norms, one can also model
seemingly more general settings, such as when we have multiple monotone-symmetric-norm
budget constraints fℓ(x) ≤ Bℓ (a flexibility we leverage in Section 3).

The special case of MinNormLB where f = ℓ∞ yields the classical (deterministic) makespan-
minimization problem, which has been well studied for various machine environments. For
unrelated machines, a 2-approximation is known [17, 23], and improving this factor remains
a longstanding open problem, while various PTAS’es are known for identical and related
machines [11, 10, 13, 14]. Similar guarantees are known for MinNormLB with (general) ℓp

norms [2, 16, 20, 1]. Stochastic load balancing is less well-understood than its deterministic
counterpart (even for the makespan objective). Constant-factor approximations are known for
stochastic makespan minimization on identical [15] and unrelated [8] machines, StochNormLB
with ℓp norms [22] and Topℓ norms [12], and StochNormLB with (an arbitrary f and) Bernoulli
job sizes [12]. A common shortcoming of all these works is that the approximation factors
obtained are quite large, at least in the 100s (although these works were not aiming to
optimize the constant). With an eye towards obtaining small approximation factors, Goel and
Indyk [7] considered stochastic makespan minimization on identical machines with structured
distributions. They obtained (among other results) a 2-approximation for StochNormLB with
Poisson job sizes – i.e., where each Xij is a Poisson random variable – and very recently, this
was improved to a PTAS [6].

Our contributions. As suggested by the title of the paper, we obtain results for both
deterministic and stochastic load balancing with approximation factors that (essentially)
match the best-known approximation factors for the deterministic makespan-minimization
problem. Our salient results are as follows.

For MinNormLB, we devise a (2 + ϵ)-approximation for unrelated machines (Theorem 4.1),
and a PTAS for identical machines (Theorem 5.1).
For unrelated machines, this improves upon the previous-best (4 + ϵ)-approximation [5].
We consider StochNormLB with Poisson job sizes, denoted PoisNormLB, and give a novel,
clean, and fairly general reduction showing that, for any machine environment (e.g.,
unrelated/identical machines), any α-approximation algorithm for MinNormLB in that
machine environment can be used to obtain a randomized α(1 + ϵ)-approximation for
PoisNormLB in that machine environment (Theorem 3.1). Combining this with our results
for MinNormLB, we obtain a (2+ϵ)-approximation for PoisNormLB on unrelated machines,
and a PTAS for PoisNormLB on identical machines.
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Our approximation factors (which are for general monotone, symmetric norms) are
considerably smaller than the factors known (even) for stochastic makespan minimization
with general distributions. Our PTAS for PoisNormLB on identical machines substantially
generalizes the PTAS by [6] for stochastic makespan minimization with Poisson jobs. Our
techniques are quite different, and our approach, based on the reduction to MinNormLB,
while being more general, is in fact also simpler and cleaner than the one in [6].

All our algorithms require only a value oracle for the norm f . (In contrast, the results
of [4, 5] need more-sophisticated oracle access to f .)

Our techniques. We briefly discuss the key techniques underlying some of our results.
Consider first the reduction from PoisNormLB to MinNormLB. Let Pois(λ) denote a Poisson

random variable with parameter λ; recall that this has mean λ. The sum Pois(λ1) + Pois(λ2)
of independent Poisson random variables is a Pois(λ1 + λ2) random variable. So given
an assignment σ : J → [m], the load on any machine i is a Pois(Λσ

i ) random variable,
where Λσ

i is the expected load on machine i, and the objective value of σ is g(Λσ) :=
E

[
f(Pois(Λσ

1 ), Pois(Λσ
2 ), . . . , Pois(Λσ

m))
]
. It is known that if Topi(y) ≤ Topi(y′) for all i ∈ [m]

then g(y) ≤ g(y′) (Theorem 3.3). We argue that g is subhomogeneous, i.e., g(θy) ≤ θ ·g(y) for
any θ ≥ 1, and so one can generalize the above statement to say that if Topi(y) ≤ θ · Topi(y′)
for all i ∈ [m], then g(y) ≤ θ · g(y′). Let Λ∗ denote the Λ-vector of an optimal solution.
The idea now is to “guess” Topℓ(Λ∗) within a (1 + ε)-factor for all ℓ in a certain sparse
set POS ⊆ [m]; let B∗

ℓ denote such an overestimate of Topℓ(Λ∗). We now seek a solution
σ such that Topℓ(Λσ) ≤ αB∗

ℓ for all ℓ ∈ POS, for some α ≥ 1; this will imply that
Topi(Λσ) ≤ α

(
1 + O(ε)

)
Topi(Λ∗) for all i ∈ [m], and hence g(Λσ) ≤ α(1 + O(ε)

)
g(Λ∗). This

is where the generality of monotone, symmetric norms comes in handy. We can cast this
multiple-Topℓ-norm-budgets problem as a MinNormLB problem, with {λij} job sizes, and
monotone, symmetric norm given by h(v) := maxℓ∈POS Topℓ(v)/B∗

ℓ ; we can now use an
α-approximation algorithm for MinNormLB, say ADet, to find σ.

Note that the versatility afforded by MinNormLB as a model is crucial for the reduction,
and we really need ADet to work for an arbitrary monotone, symmetric norm. We need to
have fine-grained control of the Λσ vector (as dictated by the multiple Topℓ-norm budget
constraints), and we define a suitable (monotone, symmetric) norm h to enforce this. In
contrast, De et al. [6], who devise a PTAS for stochastic makespan minimization with Poisson
jobs follow a completely different approach, based on proving suitable concentration results.

Our (2 + ϵ)-approximation for MinNormLB on unrelated machines (Section 4) is based
on rounding the solution to a novel LP-relaxation for the problem. Let σ∗ be an optimal
solution, o⃗ be the induced load vector, and OPT = f(o⃗). It suffices to obtain an assignment σ

such that Topℓ(
−−→
loadσ) ≤

(
2 + O(δ)

)
Topℓ(o⃗) for all ℓ ∈ POS (see Theorem 2.4 and Claim 2.6).

Roughly speaking, for all ℓ ∈ POS, we guess the ℓ-th largest entry of o⃗, and use this to
linearly encode the constraint that Topℓ(

−−→
loadσ) ≤ Topℓ(o⃗). LP-rounding algorithms for the

special case of makespan minimization typically return a guarantee where the load on a
machine is at most its LP-load + (maximum cost (i.e., size) of a job assigned to it). In order
to bound the f -norm of the portion of the load-vector, say P , arising from the most-costly
jobs, we also consider the vector JL∗ comprising the costs of the m most-costly jobs under
σ∗. In [5], it is shown that f(JL∗) ≤ OPT. We indirectly encode that f(P ) ≤ f(JL∗) by
guessing the ℓ-th largest entry, say ζℓ, of JL∗ and encoding that there are at most ℓ − 1
jobs of higher cost, for all ℓ ∈ POS. We round a fractional solution to the resulting LP
using iterative rounding to obtain two types of guarantees simultaneously (see Lemma 4.3):
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(i) similar to above, the load on machine i is at most its LP-load + (1 + δ)×(maximum cost
of a job assigned to i); and (ii) the number of jobs having cost larger then ζℓ is at most
(1 + δ)ℓ − 1. The LP constraints explicitly encode that the Topℓ-norms of the LP-load vector
are roughly speaking at most Topℓ(o⃗), for all ℓ ∈ POS; guarantee (ii) allows us to argue that
f(P ) ≤

(
1 + O(δ)

)
OPT. Together, these imply a (2 + ϵ)-approximation.

We remark that the approach taken in the GAP-rounding algorithm of [23] (and also
used for Topℓ-norm minimization in [4]), wherein the problem is essentially reduced to a
bipartite matching problem, does not seem to be helpful in obtaining a (2 + ϵ)-approximation
for MinNormLB. This approach “hard-codes” the distinction between the most-costly job
assigned to a machine and the remaining jobs as a means of bounding the load on a machine
by its LP-load + (maximum cost of a job assigned to it). However, bounding f(P ) then entails
solving (to within a (1 + ϵ)-factor) a (bipartite) matching problem with |POS| = O(log m)
side-constraints, or essentially a min-norm matching problem, but neither of these has
(even) an O(1)-approximation. Instead, iterative rounding seems crucial for simultaneously
obtaining guarantees (i) and (ii) above, and (ii) allows us to obtain a sufficiently-tight bound
on the Topℓ-norms (and hence the f -norm) of P and thereby obtain our (2+ϵ)-approximation.

2 Preliminaries

For a vector v ∈ Rm
≥0, we use v↓ to denote v with its coordinates sorted in non-increasing order;

i.e., we have v↓
i = vπ(i), where π is a permutation of [m] such that vπ(1) ≥ vπ(2) ≥ . . . ≥ vπ(m).

We say that v is non-increasing if v1 ≥ . . . ≥ vm (i.e., v = v↓). Whenever we say norm in the
sequel, we always mean a monotone, symmetric norm. The following claim from [12] will be
useful in obtaining bounds on the optimal value.

▷ Claim 2.1 (Claim 3.2 in [12]). Let h : Rm 7→ R≥0 be a monotone, symmetric norm. For

any v ∈ Rm
≥0, we have

∑
i∈[m]

vi

m ≤ maxi∈[m] vi ≤ h(v)
h(1,0,...,0) ≤

∑
i∈[m] vi.

As established in prior work on minimum-norm optimization [4, 12], we can control the
norm of a vector by controlling all its Topℓ norms, which are defined below. Theorem 2.4
makes this notion precise. For x ∈ R, we use (x)+ to denote max{0, x}.

▶ Definition 2.2. Let ℓ ∈ [m]. The Topℓ norm is defined as follows: for v ∈ Rm
≥0, Topℓ(v) is

the sum of the ℓ largest coordinates of v, i.e., Topℓ(v) =
∑ℓ

i=1 v↓
i .

The following ways of reformulating the Topℓ-norm will be useful. For a vector v ∈ Rm

and θ ∈ R, define N>θ(v) :=
∣∣{i ∈ [m] : vi > θ}

∣∣.
▷ Claim 2.3. Let v ∈ Rm

≥0, and ℓ ∈ [m]. Then

Topℓ(v) = min
t≥0

(
ℓt +

∑
i∈[m]

(vi − t)+)
= ℓv↓

ℓ +
∑

i∈[m]

(vi − v↓
ℓ )+ =

∫ ∞

0
min{ℓ, N>θ(v)}dθ.

▶ Theorem 2.4 (Follows from structural result in [4], or majorization theory of [9]). If x, y ∈ Rm
≥0

are such that Topℓ(x) ≤ αTopℓ(y) + β for all ℓ ∈ [m], where α, β ≥ 0, then h(x) ≤
α · h(y) + β · h(1, 0, . . . , 0) for any monotone, symmetric norm h : Rm 7→ R≥0.

Theorem 2.4 will be our chief means for reasoning about the norm of a vector. Our
algorithms will “guess” (i.e., enumerate) the Topℓ norms (or certain associated quantities) of
the load vector o⃗ induced by an optimal solution, and will aim to obtain a solution whose
induced load vector

−−→
load satisfies Topℓ(

−−→
load) = O

(
Topℓ(o⃗)

)
. However, to make this approach
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polynomial time, we will only be able to enumerate the Topℓ norms for a certain sparse
subset of indices POS ⊆ [m]. The next few definitions and results make this precise, and
show that the move to this sparse subset only incurs the loss of a small factor.

Let δ > 0 be a parameter. We define POSm,δ ⊆ [m] iteratively as follows: include the
index 1 in POSm,δ; as long as the largest index ℓ ∈ POSm,δ is such that ⌈(1 + δ)ℓ⌉ ≤ m,
include ⌈(1 + δ)ℓ⌉ (which is larger than ℓ) in POSm,δ. (This definition is mathematically
slightly more convenient to work with than the one in [4], where POSm,δ is defined as{

min{⌈(1 + δ)s⌉ , m} : s ∈ Z≥0
}

, but this change is not crucial.)

▷ Claim 2.5. We have |POSm,δ| ≤ 1 + log1+δ m = O
( log m

δ

)
.

We frequently abbreviate POSm,δ to POS in the remainder of this section, and whenever
m, δ are clear from the context. For i ∈ [m], let next(i) be the smallest index in POS
(strictly) larger than i; if no such index exists, then we define next(i) := m + 1 for notational
convenience. Similarly, let prev(i) be the largest index in POS (strictly) smaller than i; set
prev(1) := 0. It is immediate from the definition of POS that next(ℓ) − 1 ≤ (1 + δ)ℓ for all
ℓ ∈ POS; it follows also that next(i) − 1 ≤ (1 + δ)i for all i ∈ [m]. Claim 2.6 and Lemma 2.7
show that focusing on only the indices in POS only results in a (1 + δ)-factor loss.

▷ Claim 2.6. Let u, v ∈ Rm
≥0 be such that Topℓ(u) ≤ Topℓ(v) for all ℓ ∈ POSm,δ. Then we

have h(u) ≤ (1 + δ)h(v) for any monotone, symmetric norm h : Rm 7→ R≥0.

Proof. Let i ∈ [m] \ POS, and ℓ = prev(i). Then i ≤ (1 + δ)ℓ, and therefore Topi(u) ≤
(1 + δ)Topℓ(u) ≤ (1 + δ)Topℓ(v) ≤ (1 + δ)Topi(v). The claim now follows from Theorem 2.4.

◁

▶ Lemma 2.7. Let u, v ∈ Rm
≥0 be such that u↓

ℓ ≤ v↓
ℓ for all ℓ ∈ POSm,δ. Then, we have

h(u) ≤ (1 + δ)h(v) for any monotone, symmetric norm h : Rm 7→ R≥0.

Proof. By Theorem 2.4, it suffices to show that Topi(u) ≤ (1 + δ)Topi(v) for all i ∈ [m]. So
fix i ∈ [m]. We mimic the proof of Lemma 4.2 in [4]. Define vectors α, β ∈ Rm

≥0 as follows:

αk =
{

u↓
k; if k ∈ {1, . . . , i}

0 otherwise
βk =

{
v↓

k; if k ∈ {1, . . . , i}
0 otherwise.

Clearly, both α and β are non-increasing vectors. For notational convenience, set αk :=
0, βk := 0 for any k > m. We have

Topℓ(u) =
m∑

k=1
αk =

∑
ℓ∈POS

next(ℓ)−1∑
k=ℓ

αk

≤
∑

ℓ∈POS
αℓ

(
(next(ℓ) − 1) − (ℓ − 1)

)
=

∑
ℓ∈POS

(
next(ℓ) − 1

)
(αℓ − αnext(ℓ))

where the inequality follows because α is a non-increasing vector. Now using the fact that
next(ℓ) − 1 ≤ (1 + δ)ℓ for all ℓ ∈ POS, and αℓ ≤ βℓ for all ℓ ∈ POS, we obtain that

Topℓ(u) ≤ (1 + δ)
∑

ℓ∈POS

ℓ(αℓ − αnext(ℓ)) = (1 + δ)
∑

ℓ∈POS

αℓ

(
ℓ − prev(ℓ)

)
≤ (1 + δ)

∑
ℓ∈POS

βℓ

(
ℓ − prev(ℓ)

)
≤ (1 + δ)

∑
ℓ∈POS

ℓ∑
k=prev(ℓ)+1

βk ≤ (1 + δ)
m∑

k=1

βi = (1 + δ)Topℓ(v).

The third inequality above follows because β is a non-increasing vector. ◀
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In our algorithms, we work with estimates of {o⃗↓
ℓ }ℓ∈POS, where o⃗ is the load vector induced

by an optimal solution. We show that these estimates then allow us to infer an estimate
of h(o⃗) for any monotone, symmetric norm h. We need the following notation. Given a
non-increasing vector v ∈ RPOS

≥0 , we define its expansion to be the vector vexp ∈ Rm
≥0 given by

vexp
i := vi for i ∈ POS, and vexp

i = vprev(i) for i ∈ [m] \ POS.

▶ Lemma 2.8. Let u ∈ Rm
≥0, and v ∈ RPOS

≥0 be a non-increasing vector. Let h : Rm 7→ R≥0
be a monotone, symmetric norm. Let ε, κ > 0.
(a) If u↓

ℓ ≤ vℓ for all ℓ ∈ POS, then Topi(u) ≤ Topi(vexp) for all i ∈ [m], and hence,
h(u) ≤ h(vexp).

(b) If vℓ ≤ (1 + ε)u↓
ℓ + κ for all ℓ ∈ POS, then Topi(vexp) ≤ (1 + δ)(1 + ε)Topi(u) + iκ for

all i ∈ [m], and hence, h(vexp) ≤ (1 + δ)(1 + ε)h(u) + mκ · h(1, 0, . . . , 0).
(c) Let v be as in part (b). Let δ ≤ 1 (in POS = POSm,δ). Let α ∈ Rm be such that α↓

1 ≤ v1
and N>vℓ(α) ≤ (1+δ)ℓ−1 for all ℓ ∈ POS. Then, Topi(α) ≤ (1+4δ)(1+ε)Topi(u)+5iκ

for all i ∈ [m]. Hence, h(α) ≤ (1 + 4δ)(1 + ε)h(u) + 5mκ · h(1, 0, . . . , 0).

Lemma 2.8 (c) can be seen as a generalization of Lemma 2.8 (b): the vector vexp satisfies
N>vℓ(vexp) ≤ ℓ − 1 for all ℓ ∈ POS, while the vector α satisfies a relaxed version of this
bound.

Proof. The inequalities involving h(.) in parts (a)–(c) follow from the corresponding bounds
on the Topi-norms, using Theorem 2.4. So we focus on the proving the bounds for the
Topi-norms.

Let γ = vexp. Part (a) follows immediately from the fact that u↓ ≤ γ. For part (b), define
β ∈ Rm

≥0 to be the expansion of (u↓
ℓ )ℓ∈POS. Then, we have γ ≤ (1 + ε)β + κ · 1, where 1 is

the vector of all 1s, and hence, Topi(γ) ≤ (1 + ε)Topi(β) + iκ, for any i ∈ [m]. Observe that
βℓ ≤ u↓

ℓ for all ℓ ∈ POS. Therefore, by Lemma 2.7, we have Topi(β) ≤ (1 + δ)Topi(u) for
any i ∈ [m].

For part (c), consider an index i ∈ [m]. We use the reformulation Topi(α) =∫ ∞
0 min{i, N>θ(α)}dθ stated in Claim 2.3. Since N>v1(α) = 0, we only need to go up

to v1 in the above integral. Let ℓ = i if i ∈ POS, and ℓ = prev(i) otherwise. Observe that
i ≤ (1 + δ)ℓ. We have the following chain of inequalities.

Topi(α) ≤
∫ v

ℓ

0
idθ +

∑
ℓ∈POS:1<ℓ≤ℓ

∫ vprev(ℓ)

vℓ

N>θ(α)dθ ≤ i · v
ℓ

+
∑

ℓ∈POS:1<ℓ≤ℓ

(vprev(ℓ) − vℓ)N>vℓ (α)

≤ i · v
ℓ

+
∑

ℓ∈POS:1<ℓ≤ℓ

(vprev(ℓ) − vℓ)
(
(1 + δ)ℓ − 1

)
≤ i · v

ℓ
+

∑
ℓ∈POS:1<ℓ≤ℓ

(vprev(ℓ) − vℓ)
(
(1 + δ)2prev(ℓ) + δ). (1)

The second inequality is because N>θ(α) is non-increasing in θ; the third is from condition
(ii) in the lemma statement; and the final inequality (1) follows since ℓ − 1 ≤ (1 + δ)prev(ℓ).
Recall that prev(1) = 0. Continuing, since i ≤ (1 + δ)ℓ ≤ (1 + δ)2ℓ, the RHS of (1) is at most

(1 + δ)2
∑

ℓ∈POS:ℓ≤ℓ

vℓ

(
ℓ − prev(ℓ)

)
+ δv1

≤ (1 + δ)2
∑

ℓ∈POS:ℓ≤ℓ

(
(1 + ε)u↓

ℓ + κ
)(

ℓ − prev(ℓ)
)

+ δ(1 + ε) · Topi(u) + δκ
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. . . ≤ (1 + δ)2(1 + ε)
ℓ∑

i′=1
u↓

i′ + (1 + δ)2ℓκ + δ(1 + ε) · Topi(u) + δκ

≤ (1 + 4δ)(1 + ε)Topi(u) + 5iκ. (since δ ≤ 1) ◀

Our algorithms will often need to estimate a non-increasing vector α (such as (o⃗↓
ℓ )ℓ∈POS).

We show that if we have suitable bounds on the coordinates of α, then one can identify a
(polynomially bounded) set containing a vector close to α.
▶ Lemma 2.9. Let L ⊆ [m] be an index-set. Let α ∈ RL

≥0 be a non-increasing vector, i.e.,
αℓ ≥ αℓ′ for indices ℓ, ℓ′ ∈ L, ℓ < ℓ′. Let ub be such that αℓ ≤ ub for all ℓ ∈ L. Let ε, κ > 0,
and ε′ = min{1, ε}.
(a) Let N1 := (2e)|L| +

( ub
κ

)O( 1
ε′ ). We can construct a set T ⊆ RL

≥0 with |T | ≤ N1 in O(N1)
time, containing a non-increasing vector v ∈ RL

≥0, such that αℓ ≤ vℓ ≤ (1 + ε)αℓ + κ for
all ℓ ∈ L.

(b) Suppose that we also have αℓ ≥ lb for all ℓ ∈ L, where lb > 0. Let N2 := (2e)|L| +( ub
lb

)O( 1
ε′ ). We can construct T ⊆ RL

≥0 with |T | ≤ N2 in O(N2) time, containing a
non-increasing vector v ∈ RL

≥0, such that αℓ ≤ vℓ ≤ (1 + ε)αℓ for all ℓ ∈ L.
Proof. We utilize the following standard result, lifted from [4], that gives a bound on the
number of non-increasing vectors with bounded coordinates.
▷ Claim 2.10. There are at most (2e)max{M,k} non-increasing sequences of k integers chosen
from {0, . . . , M}.

For part (a), consider the set

T :=
{

t⃗ ∈ RL
≥0 : t⃗ is a non-increasing vector,

∀ℓ ∈ L, tℓ = ub
(1+ε)k , where k ∈ Z≥0, tℓ ≥ κ

1+ε

}
.

Each t⃗ ∈ T is a non-increasing vector, and there are I := 1 +
⌊
log1+ε

(1+ε)ub
κ

⌋
= O

( log(ub/κ)
ε′

)
choices for log1+ε

ub
tℓ

for every ℓ ∈ POS. (Recall that ε′ = min{ε, 1}.) So Claim 2.10 implies

that |T | ≤ (2e)max{|L|,I}. We have (2e)I ≤
( ub

κ

)O( 1
ε′ ), so this yields the bound on |T | and

the time to construct T .
Consider the vector v ∈ RL

≥0, where for every ℓ ∈ L, vℓ is the smallest number of the
form ub/(1 + ε)k, k ∈ Z≥0 that is at least max{κ/(1 + ε), αℓ}. Then, v is a non-increasing
vector, v ∈ T , and αℓ ≤ vℓ ≤ (1 + ε)αℓ + κ for all ℓ ∈ L.

Part (b) is proved very similarly. We now take T to be the set of all non-increasing vectors
t⃗ ∈ RL

≥0 satisfying tℓ ≥ lb, tℓ = ub
(1+ε)k where k ∈ Z≥0, for all ℓ ∈ L. As before, one can infer

that the size of T and the time taken to construct it are bounded by (2e)|L| +
( ub

lb
)O( 1

ε′ )).
Now if v ∈ RL

≥0 is such that, for every ℓ ∈ L, vℓ is the smallest number of the form ub/(1+ε)k,
k ∈ Z≥0 that is at least αℓ, then, v is a non-increasing vector, v ∈ T , and αℓ ≤ vℓ ≤ (1 +ε)αℓ

for all ℓ ∈ L. ◀

Poisson random variables. A discrete random variable Z is said to have a Poisson distribu-
tion with parameter λ ≥ 0, denoted Z ∼ Pois(λ), if Pr

[
Z = k

]
= e−λλk/k! for all k ∈ Z≥0.

▶ Fact 2.11. The following facts about Poisson random variables are well known.
(a) The mean and variance of Pois(λ) are both equal to λ.
(b) Let {Zj}j be a collection of independent Poisson variables with parameters {λj}j . Then,

S =
∑

j Zj is distributed as Pois(
∑

j λj).
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3 Stochastic Minimum Norm Load Balancing with Poisson Jobs

We now consider StochNormLB with Poisson job sizes, denoted PoisNormLB, wherein the
processing time of a job j on machine i is a Pois(λij) random variable and we seek to minimize
the expected f -norm of the load vector. Jobs are independent, but processing times of the
same job could be correlated across machines. Our main result is a novel, clean, and versatile
black-box reduction from PoisNormLB to the deterministic problem, MinNormLB, showing
that, for any machine environment (i.e., unrelated/identical machines), guarantees obtained
for MinNormLB translate to yield essentially the same guarantees for PoisNormLB.

▶ Theorem 3.1. Let IPois = (J, [m], {λij}, f) be an instance of PoisNormLB, and ADet be an
ρ-approximation algorithm for MinNormLB-instances with job-set J , machine-set [m], and
{λij}i∈[m],j∈J job sizes. For any ε, η > 0, we can utilize ADet to obtain an ρ

(
1 + O(ε)

)
-

approximate solution to PoisNormLB with probability at least 1 − η, in time poly
(
m1/ε, n, 1

η

)
.

The run time also bounds the number of calls to ADet and the sample size.

We emphasize that: (a) the above reduction preserves the machine environment: for
instance, if we have identical machines (λij = λj for all i, j), we only need ADet to work for
identical machines; and (b) algorithm ADet is required to work for an arbitrary monotone,
symmetric norm (and not just the norm f): this generality is crucial for the above reduction
and brings to the fore a prime benefit of working at the level of generality of monotone,
symmetric norms. Combining the above reduction with our results for MinNormLB in
Sections 4 and 5 immediately yields the following results as corollaries. (We do not explicitly
indicate the failure probability η below; the sample size, for a fixed ε, is poly(m)/η.)

▶ Theorem 3.2.
(a) (Follows from Theorems 3.1 and 4.1) For any ε > 0, there is a randomized(

2 + O(ε)
)
-approximation algorithm for PoisNormLB on unrelated machines .

(b) (Follows from Theorems 3.1 and 5.1) There is a randomized PTAS for PoisNormLB
on identical machines.

We discuss the chief ideas behind the reduction in Theorem 3.1, deferring some details to
the full version of the paper. Since the sum of independent Poisson random variables is another
Poisson random variable (Fact 2.11 (b)), the objective value of an assignment σ : J → [m]
depends only the aggregate λ-vector Λσ = (Λσ

i )i∈[m], where Λσ
i :=

∑
j:σ(j)=i λij for all

i ∈ [m]. We drop σ in Λσ if the assignment σ is clear from the context. Overloading notation,
for a vector y ∈ Rm

≥0, we use Pois(y) to denote the random vector
(
Pois(y1), . . . , Pois(ym)

)
of independent Poisson random variables. Defining g(y) := E

[
f(Pois(y))

]
for y ∈ Rm

≥0, the
goal in PoisNormLB is to find an assignment σ that minimizes g(Λσ). The function g is not
convex, but it satisfies the following inequality [21] (see Chapter 11, Proposition E.6), which
is closely related to a property called Schur convexity that is satisfied by all symmetric convex
functions. Theorem 3.3 provides a means for controlling g(y), by bounding the Topℓ-norms
of y, and is key to our approach. We give a self-contained proof of Theorem 3.3 in the full
version.

▶ Theorem 3.3. Let y, y′ ∈ Rm
≥0. If Topi(y) ≤ Topi(y′) for all i ∈ [m], then g(y) ≤ g(y′).

To keep notation simple, we assume that f is normalized so that f(1, 0, . . . , 0) = 1;
clearly, this is without loss of generality. Let σ∗ be an optimal solution to the PoisNormLB-
instance IPois. Let Λ∗ := Λσ∗ . The idea underlying our reduction is strikingly simple. Given
Theorem 3.3, we aim to (ideally) find an assignment σ such that Topi(Λσ) ≤ Topi(Λ∗)
for all i ∈ [m]. One of our chief insights is that this amounts to solving a deterministic
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min-norm load balancing problem with job sizes {λij}i,j , and the monotone, symmetric norm
h : Rm → R≥0 given by h(v) := maxi∈[m] Topi(v)/Topi(Λ∗). Now σ∗ yields a solution to
this MinNormLB-instance of cost 1, and so solving this MinNormLB problem optimally, and
utilizing Theorem 3.3, would yield the desired solution.

Further ingredients are needed to make this idea work. We do not know the Topi(Λ∗)
values, and cannot “guess” these values for all i ∈ [m]; moreover, we cannot solve the
MinNormLB problem optimally. We utilize the sparsification tools from Section 2, and, with a
small loss in approximation, move to the sparse set POS = POSm,δ (for, say, δ = min{0.5, ε})
and work with estimates Bℓ of Topℓ(Λ∗) for all ℓ ∈ POS; so the norm in the MinNormLB
instance is now h(v) := maxℓ∈POS Topℓ(v)/Bℓ. Now, using the algorithm ADet with the
correct estimate-vector B∗ ∈ RPOS

≥0 (where each B∗
ℓ overestimates Topℓ(Λ∗) within a (1 + δ)-

factor), we obtain an assignment σ such that Topi(Λσ) ≤ α′Topi(Λ∗) for all i ∈ [m], where
α′ = α

(
1 + O(ε)

)
. Theorem 3.3 then shows that g(Λσ) ≤ g(α′Λ∗), but we need a bound

in terms of g(Λ∗). To this end, we prove the important property that g is subhomogeneous
(Lemma 3.5): g(θy) ≤ θ · g(y) for any θ ≥ 1. Finally, we cannot quite identify the correct
B∗, but we can isolate it in a polynomial-size set. We show how to estimate g(y) using
polynomially many samples (Lemma 3.6), and utilize this estimator to find (loosely speaking)
the best solution among those computed for each candidate estimate-vector in this set.
Combining these various ingredients yields Theorem 3.1.

▶ Lemma 3.4. Let y ∈ Rm
≥0. We have max{f(y), 1 − e−Topm(y)} ≤ g(y) ≤ Topm(y).

Proof. To prove the upper bound on g we use Claim 2.1 (recall that f is normalized) and
Fact 2.11 (a): E

[
f(Pois(y))

]
≤ E

[
Topm(Pois(y))

]
= E

[∑
i∈[m] Pois(yi)

]
= Topm(y). The

first lower bound follows from convexity of norms: E
[
f(Pois(y))

]
≥ f(E

[
Pois(y)

]
) = f(y).

Lastly, for the second lower bound, we use Claim 2.1:

E
[
f(Pois(y))

]
≥ E

[
Top1(Pois(y))

]
≥ Pr

[
Top1(Pois(y)) > 0

]
= 1 −

∏
i∈[m]

Pr
[
Pois(yi) = 0

]
= 1 − e−Topm(y). ◀

▶ Lemma 3.5 (Subhomogeneity). For any y ∈ Rm
≥0 and scalar θ ≥ 1, we have g(θy) ≤ θ ·g(y).

Proof. We prove this for rational θ. The proof for general θ then follows from a continuity
argument, which we defer to the full version. Let θ = a/b for integers a > b ≥ 1. (If
a = b, there is nothing to be shown.) Observe that g(θy) = g(az) and g(y) = g(bz),
where z = y/b. So, for the rational case, it suffices to prove that g(az) ≤ a

b g(bz) holds
for all z ∈ Rm

≥0 and integers a > b ≥ 1. Fix some z ∈ Rm
≥0. Let Z(0), Z(1), . . . , Z(a−1) be

a independent random vectors that are identically distributed copies of Pois(z) (so each
Z

(j)
i is an independent Pois(zi) random variable). For any i ∈ [m], Pois(azi) is identically

distributed as
∑a−1

j=0 Z
(j)
i (Fact b), so g(az) = E

[
f

(
Pois(az)

)]
= E

[
f

(∑a−1
j=0 Z(j))]

. Also, for
any subset S ⊆ {0, 1, . . . , a} with |S| = b, we have E

[
f

(∑
j∈S Z(j))]

= g(bz). Define size-b
index sets Sk := {(k + j) mod a : j = 0, . . . , b − 1}, for k = 0, 1, . . . , a − 1. Note that each
j ∈ {0, . . . , a − 1} is contained in exactly b of these sets.

g(az) = E
[
f

(a−1∑
j=0

Z(j))]
= E

[
f

( 1
b ·

a−1∑
k=0

∑
j∈Sk

Z(j))]
≤ 1

b
·

a−1∑
k=0

E
[
f

( ∑
j∈Sk

Z(j))]
= a

b
· g(bz). ◀

▶ Lemma 3.6. Let ε, η > 0. Let y ∈ Rm
≥0 be such that Topm(y) ≥ ε. Let N :=

2 max{m2, 4/ε}/(ε2η). Using at most N independent samples from Pois(y), we can compute
an estimate γ satisfying Pr

[
γ ∈ [(1 − ε)g(y), (1 + ε)g(y)]

]
≥ 1 − η.

ICALP 2021



81:10 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

Proof. Let x(1), . . . , x(N) be N independent samples from Pois(y), and let γ :=
1
N

∑N
j=1 f(x(j)) denote the sample f -average. We show that γ is the desired estimator

by using Chebyshev’s concentration inequality. To this end, we need a bound on the variance
of the real-valued random variable f(Pois(y)). We have Var

[
f(Pois(y))

]
≤ E

[
f2(Pois(y))

]
≤

E
[
Top2

m(Pois(y))
]

by Claim 2.1, and E
[
Top2

m(Pois(y))
]

= Var
[
Pois(Topm(y))

]
+(

E
[
Pois(Topm(y))

])2. By Fact b, Topm(Pois(y)) is distributed as Pois(Topm(y)). As the
variance of a Poisson variable with mean λ is λ, we obtain that

Var
[
f(Pois(y))

]
≤ Var

[
Pois(Topm(y))

]
+

(
E

[
Pois(Topm(y))

])2 ≤ 2Topm(y) max(1, Topm(y)).

Since γ is an average of f(Pois(y)) over N independent samples, we have Var
[
γ

]
=

Var
[
f(Pois(y))

]
/N . By Chebyshev’s inequality,

Pr
[
|γ−g(y)| > εg(y)

]
≤

Var
[
γ

]
ε2g2(y) ≤ 2

Nε2 · Topm(y) max(1, Topm(y))
g2(y) ≤ 2 max{m2, 4/ε}

Nϵ2 ≤ η

It remains to justify the penultimate inequality used above. First, observe that
Topm(y)/g(y) ≤ m for any y ∈ Rm

≥0, so the inequality holds when Topm(y) ≥ 1. Sup-
pose Topm(y) ∈ [ε, 1]. We have g(y) ≥ 1 − e−Topm(y) (by Lemma 3.4), which is at least
Topm(y)(1 − Topm(y)/2) ≥ Topm(y)/2. This finishes the proof of the lemma. ◀

Proof of Theorem 3.1. Set ϵ′ = δ = min{0.5, ε}. Let σsum be the assignment that minimizes
the expected sum of machine loads, so σsum(j) = argminiλij for all jobs j. Let Λsum := Λσsum ,
and UB := Topm(Λsum). If UB ≤ ϵ′, then we claim that σsum is a (1+ϵ′)-approximate solution
to PoisNormLB. This is because we have Topm(Λ∗) ≥ UB, and so by Lemma 3.4, we have
that g(Λsum) ≤ UB and g(Λ∗) ≥ 1 − e−UB ≥ UB(1 − UB/2) ≥ UB/(1 + ϵ′), where we use that
UB ≤ ϵ′ ≤ 1.

So suppose that UB ≥ ϵ′ (and so Topm(Λσ) ≥ ϵ′ for every assignment σ). We have
Top1(Λ∗) ≥ Topm(Λ∗)/m ≥ UB/m. Also, Topm(Λ∗) ≤ mTop1(Λ∗), and we have Top1(Λ∗) ≤
f(Λ∗) ≤ g(Λ∗) ≤ g(Λsum) ≤ UB; here, we have used Claim 2.1, Lemma 3.4 (twice), and the
optimality of σ∗. So we obtain that Topm(Λ∗) ≤ m · UB.

Now consider the non-increasing vector u which is (Λ∗
ℓ )ℓ∈POS with its coordinates listed in

decreasing order of ℓ. We apply Lemma 2.9 (b) on u, taking L = POS, and upper and lower
bounds m · UB and UB/m respectively, to obtain a poly(m1/δ)-size set T ⊆ RPOS

≥0 containing
a vector B∗ such that Topℓ(Λ∗) ≤ B∗

ℓ ≤ (1 + δ)Topℓ(Λ∗) for all ℓ ∈ POS.
For each B ∈ T , we do the following. Let hB : Rm → R≥0 be the monotone, symmetric

norm defined as hB(v) := maxℓ∈POS Topℓ(v)/Bℓ. We run ADet on the MinNormLB instance
with {λij}i∈[m],j∈J job sizes and norm hB , to obtain an assignment σB . Let ΛB = ΛσB . We
use Lemma 3.6 to compute an estimate γB such that Pr

[
γB ∈ [(1−ϵ′)g(ΛB), (1+ϵ′)g(ΛB)]

]
≥

1 − η
|T | . We output the assignment σB′ with smallest γB′ value among all B′ ∈ T .

We argue that this is an ρ
(
1+O(ε)

)
-approximation with probability at least 1−η. By the

union bound, with probability at least 1 − η, we have that γB ∈ [(1 − ϵ′)g(ΛB), (1 + ϵ′)g(ΛB)]
for all B ∈ T ; we assume that this event happens. Consider the correct guess B∗ ∈ T . We
have hB∗(Λ∗) ≤ 1, and so the solution σB∗ satisfies Topℓ(ΛB∗) ≤ ρB∗

ℓ ≤ ρ(1 + δ)Topℓ(Λ∗)
for all ℓ ∈ POS. Using Claim 2.6, we have Topi(ΛB∗) ≤ ρ(1 + δ)2Topi(Λ∗) for all i ∈ [m]. By
Theorem 3.3 and Lemma 3.5, we then obtain that g(ΛB∗) ≤ ρ(1 + δ)2g(Λ∗). Accounting for
the error due to the γB estimates, yields g(ΛB′) ≤ 1+ϵ′

1−ϵ′ · g(ΛB∗) ≤ ρ(1 + 15ϵ′)g(Λ∗). ◀
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4 A (2 + ϵ)-approximation for MinNormLB on unrelated machines

▶ Theorem 4.1. For any ε > 0, there is a
(
2+O(ε)

)
-approximation algorithm for MinNormLB

on unrelated machines.

Our algorithm yielding the above theorem is based on LP-rounding. Our relaxation
is different from the LP used in [4] and the convex program used in [5] for MinNormLB.
The latter relaxation, which was used to obtain the previous best (4 + ε)-approximation
has an integrality gap of (roughly) 4 [3], and therefore we need new ideas to obtain our
(2 + ε)-approximation algorithm. Indeed, our LP and rounding algorithm leverage and build
upon the ideas used in the above works in a novel fashion.

Let n = |J | be the number of jobs. Let σ∗ denote an optimal solution, o⃗ :=
(−−→
loadσ∗

)
be

the load vector induced by σ∗, and let OPT = f(o⃗) denote the optimal value. Define the
cost of a job j under σ∗ to be pσ∗(j)j . For any set S ⊆ J of jobs, define the job-cost vector

P ∗
S = P σ∗

S :=
(
pσ∗(j)j

)
j∈S

. Let ε > 0 be a parameter, and let δ = min{ε, 1}. Recall that we
abbreviate POSm,δ to POS. We may assume that n ≥

⌈
2(1 + δ)/δ3⌉

as otherwise we can
simply exhaustively search for the optimal assignment.

LP relaxation. As is standard, our LP has variables xij for every machine i and job j

denoting if job j is assigned to machine i (or, fractionally, the extent of j assigned to
machine i). Constraints (2) enforce that every job is assigned to a machine.

We are guided by Theorem 2.4, which shows that to obtain a solution whose load vector
has f -norm equal to O(OPT), it suffices to show that the Topℓ-norm of the load vector is
O

(
Topℓ(o⃗)

)
for all ℓ ∈ [m]; also, by Claim 2.6, one can focus on indices ℓ ∈ POS. We work with

“guesses” (i.e., estimates) tℓ of o⃗↓
ℓ , for all ℓ ∈ POS. Our LP seeks a fractional solution such

that the resulting load vector has Topℓ-norm at most Topℓ(o⃗) for all ℓ ∈ POS. Using Claim 2.3
and our estimates, we encode this via the constraint ℓtℓ +

∑
i

(∑
j pijxij − tℓ)+ ≤ Topℓ(texp)

for all ℓ ∈ POS; constraints (3), (4) linearize these. (Recall that texp ∈ Rm
≥0 is defined by

texp
i = ti for i ∈ POS, and texp

i = tprev(i) for i ∈ [m] \ POS.)
The last set of constraints of our LP is motivated by an insight in [5]. They show that

if JL∗ ∈ Rm
≥0 is the vector comprising the costs of the m most costly jobs under σ∗, then

we have f(JL∗) ≤ OPT, which also implies that f(P ∗
S) ≤ OPT for any set S of m jobs.

Chakrabarty and Swamy [5] include this (convex) constraint directly in their convex program,
and it plays a crucial role in obtaining their (4 + ε)-approximation for MinNormLB. We
also utilize this constraint, but incorporate it (loosely speaking) in our LP in a more subtle

fashion. We work with guesses ζℓ of JL∗
↓

ℓ for all ℓ ∈ POS, and encode (see constraints (5))
that there are at most ℓ − 1 jobs whose cost is larger than ζℓ, for all ℓ ∈ POS. This can
be seen as an indirect way of capturing f(JL∗) ≤ OPT, and this indirect way is crucial for
us because we show that we can round a fractional solution x with only a (1 + δ)-factor
violation of these constraints. For technical reasons, to facilitate this, we use another
partial enumeration step. Let ℓ0 be the smallest index in POS that is at least 2

δ3 . Note
that ℓ0 ≤

⌈
2(1 + δ)/δ3⌉

≤ n. We will guess the ℓ0 most costly jobs under σ∗ and their
σ∗-assignments. Let C = {(i1, j1), (i2, j2), . . . , (iℓ0 , jℓ0)} denote our guess of these jobs and

their σ∗-assignments. Note that given C, we know that JL∗
↓

ℓ is the ℓ-th largest value in

{pij : (i, j) ∈ C} for all ℓ ∈ [ℓ0], and we therefore set ζℓ = JL∗
↓

ℓ for all ℓ ∈ POS with ℓ ≤ ℓ0.
An important consequence of this enumeration step, which will be crucial in the analysis
(see the proof of Lemma 4.3), is that this fixes the assignment of all jobs whose cost under
σ∗ is larger than ζℓ0 ; we encode this in our LP via constraints (6).
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This yields the following LP, which is a feasibility LP depending on t⃗, ζ⃗, and C.
Throughout, we use i to index [m], and j to index J .

(LP(⃗t, ζ⃗, C))

x ≥ 0,
∑

i

xij = 1 ∀j ∈ J (2)

ℓtℓ +
∑

i

W ℓ
i ≤ Topℓ(texp) ∀ℓ ∈ POS (3)

W ℓ
i ≥ 0, W ℓ

i ≥
∑

j

pijxij − tℓ ∀i ∈ [m], ℓ ∈ POS (4)

∑
i,j:pij>ζℓ

xij ≤ ℓ − 1 ∀ℓ ∈ POS (5)

xij =
{

1 if (i, j) ∈ C

0 otherwise.
∀i ∈ [m], j ∈ J s.t. pij > ζℓ0 (6)

▷ Claim 4.2. (LP(⃗t, ζ⃗, C)) is feasible whenever: (i) tℓ ≥ o⃗↓
ℓ , ζℓ ≥ JL∗

↓

ℓ for all ℓ ∈ POS; and
(ii) C is the correct guess of the ℓ0 most costly jobs under σ∗ and their σ∗-assignments.

Rounding algorithm. Assume that (LP(⃗t, ζ⃗, C)) is feasible and (x, W ) is a feasible solution.
We consider the following auxiliary LP (Aux) for rounding x.

x ≥ 0,
∑

i

xij = 1 ∀j ∈ J,
∑

j

pijxij ≤
∑

j

pijxij ∀i ∈ [m],
∑

i,j:pij >ζℓ

xij ≤ ℓ − 1 ∀ℓ ∈ POS.

Clearly, x is a feasible solution to (Aux). We show that this can be rounded to an integer
solution x̃ so that

∑
i x̃ij = 1 for every job j, the load on each machine is at most its x-load

+ (1 + δ)×(cost of the most-costly job assigned to it), and the remaining constraints are
violated by a small factor. More precisely, in the analysis, we prove the following result.

▶ Lemma 4.3. We can round x efficiently to an integer solution x̃ satisfying the following.
(a) x̃ij = xij for all i, j such that xij ∈ {0, 1};
(b)

∑
i x̃ij = 1 for each job j;

(c)
∑

j pij x̃ij ≤
∑

i pijxij + (1 + δ) max
j:x̃ij=1 pij for every machine i;

(d)
∑

i,j:pij>ζℓ
x̃ij ≤ ℓ − 1 for all ℓ ∈ POS with ℓ ≤ ℓ0; and

(e)
∑

i,j:pij>ζℓ
x̃ij ≤ (1 + δ)ℓ − 1 for all ℓ ∈ POS with ℓ > ℓ0.

We apply the above lemma, and due to Lemma 4.3 (a), the integer solution x̃ yields an
assignment σ̃ of jobs to machines; we return this assignment.

Analysis. We assume again that f is normalized. Lemma 4.3 is the main technical result
that we need to prove. Its proof utilizes an iterative-rounding result of independent interest
(Theorem 4.6) that is very similar to Corollary 11 in [19], wherein iterative rounding is used
to round a point that lies in the base polytope of one matroid M0 and satisfies various other
matroid-independence and knapsack constraints, to a basis of M0 that is “approximately
independent” in the other matroids and violates the knapsack constraints by a certain additive
factor. In (Aux), the job assignment constraints correspond to the base-polytope constraints
(of a partition matroid), and the remaining constraints correspond to knapsack constraints.
First, we establish that, assuming Lemma 4.3, we obtain the stated guarantee.
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Suppose that we have the correct set C, and that t⃗ and ζ are “good” estimates of

(o⃗↓
ℓ )ℓ∈POS and (JL∗

↓

ℓ )ℓ∈POS respectively (we make this precise later). We analyze the load
vector

−−→
load

σ̃
by considering two vectors L = (Li)i∈[m] and P = (Pi)i∈[m]. For each i ∈ [m],

define Li =
∑

j pijxij , and Pi = max
j:σ̃(j)=i

pij ; note that Pi = 0 if there is no job assigned
by σ̃ to machine i. By Lemma 4.3 (c), we have that

−−→
load

σ̃
≤ L + (1 + δ)P , and we bound

both f(L) and f(P ) by roughly OPT. Constraints (3), (4) of our LP immediately allow us to
bound Topℓ(L) by Topℓ(texp) for all ℓ ∈ POS, which suffices since t⃗ well estimates (o⃗↓

ℓ )ℓ∈POS
(see Lemma 4.4). For the vector P , parts (d) and (e) of Lemma 4.3 yield the desired bound
on f(P ), due to Lemma 2.8 (c) (see Lemma 4.5). Before proving Lemmas 4.4 and 4.5, we
justify, and make precise, the assumption that we have the correct set C (specifying the
ℓ0 most costly jobs under σ∗ and their σ∗-assignments), and good estimates t⃗, JL∗. There
are at most

(
n
ℓ0

)
· mℓ0 choices for the set C. As noted earlier, for all ℓ ∈ POS with ℓ ≤ ℓ0,

this then fixes ζℓ = ζ∗
ℓ = JL∗

↓

ℓ to be the ℓ-th largest entry in {pij : (i, j) ∈ C}. Using
Claim 2.1, if we consider the assignment σsum that minimizes the sum of the machine loads –
so σsum(j) = argminipij for all jobs j – and set UB :=

∑
i loadσsum(i), then we obtain that

UB
m ≤ OPT ≤ UB, and so o⃗1, JL∗

1 ≤ UB. Set κ = εUB/m2. Let POS> := {ℓ ∈ POS : ℓ > ℓ0}.
So using Lemma 2.9 (a) (and since |POS| = O(log m/δ)), we can identify polynomial-size
sets containing vectors t⃗ = t∗ and (ζℓ)ℓ∈POS>

= (ζ∗
ℓ )ℓ∈POS>

such that:
(1) o⃗↓

ℓ ≤ t∗
ℓ ≤ (1 + ε)o⃗↓

ℓ + κ for all ℓ ∈ POS, and t∗ is a non-increasing vector; and

(2) JL∗
↓

ℓ ≤ ζ∗
ℓ ≤ (1 + ε)JL∗

↓

ℓ + κ for all ℓ ∈ POS>, and ζ∗ = (ζ∗
ℓ )ℓ∈POS is non-increasing.

For (1), we take L = POS, ub = UB, and κ as above; for (2), we take L = POS>, ub = JL∗
ℓ0 ,

and κ as above.) Recall that δ = min{ε, 1}.

▶ Lemma 4.4. We have f(L) ≤ (1 + δ)(1 + ε)OPT + mκ ≤ (1 + δ + 3ε)OPT.

Proof. We show that Topi(L) ≤ Topi(t∗exp) for all i ∈ [m]. For any ℓ ∈ POS, this follows
quite directly from constraints (3), (4) of our LP (LP(⃗t, ζ⃗, C)): we have Topℓ(L) ≤ ℓt∗

ℓ +∑
i′∈[m](Li′ − t∗

ℓ )+ ≤ Topℓ(t∗exp). For any i ∈ [m] \ POS, taking ℓ = prev(i), this then implies
that

Topi(L) ≤ it∗
ℓ +

∑
i′∈[m]

(Li′ − t∗
ℓ )+ ≤ Topℓ(t∗exp) + (i − ℓ)t∗

ℓ = Topi(t∗exp),

where the final equality follows because t∗exp
i′ = t∗

ℓ for all i′ ∈ {ℓ, ℓ+1, . . . , next(ℓ)−1}. Hence,
by Theorem 2.4, we have that f(L) ≤ f(t∗exp).

Since t∗
ℓ ≤ (1 + ε)o⃗↓

ℓ + κ for all ℓ ∈ POS, by Lemma 2.8 (b), taking u = o⃗ and v = t∗, we
obtain that f(t∗exp) ≤ (1 + δ)(1 + ε)f(o⃗) + mκ. The final inequality in the lemma statement
follows because mκ ≤ εOPT and (1 + δ)(1 + ε) ≤ (1 + δ + 2ε) as δ ≤ 1. ◀

▶ Lemma 4.5. We have f(P ) ≤ (1 + 4δ + 5ε)f(JL∗) + 5mκ ≤ (1 + 4δ + 10ε)OPT.

Proof. We apply Lemma 2.8 (c), taking u = JL∗, α = P , and v = (ζ∗
ℓ )ℓ∈POS. The conditions

in Lemma 2.8 (c) hold due to parts (d) and (e) of Lemma 4.3. This yields that f(P ) ≤ (1 +
4δ)(1+ε)f(JL∗)+5mκ. The lemma follows since δ ≤ 1, mκ ≤ εOPT, and f(JL∗) ≤ OPT. ◀

Proof of Theorem 4.1. Recall that σ̃ is the assignment returned by the algorithm. Lem-
mas 4.4 and 4.5 together with the fact that

−−→
load

σ̃
≤ L + (1 + δ)P immediately yield that

f(
−−→
load

σ̃
) ≤ (1 + δ + 3ε)OPT + (1 + δ)(1 + 4δ + 10ε)OPT ≤ (2 + 10δ + 23ε)OPT. ◀
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Proof of Lemma 4.3
We reproduce the system (Aux) below for easy reference.

(Aux)

x ≥ 0,
∑

i

xij = 1 ∀j ∈ J (7)∑
j

pijxij ≤
∑

j

pijxij ∀i ∈ [m] (8)

∑
i,j:pij>ζℓ

xij ≤ ℓ − 1 ∀ℓ ∈ POS (9)

We utilize the following iterative-rounding result that is quite similar to Corollary 11 in [19].

▶ Theorem 4.6 (Similar to Corollary 11 in [19]). Let Ms = (Ns, Is), for s = 0, . . . , k be
(k + 1) matroids, where each Ns is a subset of N := N0. Let rs be the rank function of
matroid Ms, for s = 0, . . . , k. Let w ∈ RN , A ∈ Rd×N

≥0 , b ∈ Rd
≥0. Consider the following LP.

max wT x (LPmatkn)
s.t. x(N) = r0(N), x(T ) ≤ r0(T ) ∀T ⊆ N

x(T ) ≤ rs(T ) ∀s = 1, . . . , k, ∀T ⊆ Ni

Ax ≤ b, x ≥ 0.

Let q1, . . . , qk ≥ 1 be integers, and µ1, . . . , µd ∈ R≥0 be such that:∑
s∈[k]:e∈Ns

1
qs

+
∑

s∈[d]:Ase>0

1
µs

≤ 1 ∀e ∈ N. (10)

If (LPmatkn) is feasible, then we can efficiently obtain a basis R of M0 such that:
(i) |T | ≤ qsrs(T ) for all s ∈ [k] and T ⊆ R ∩ Ns;
(ii)

∑
e∈R Ase ≤ bs + µs · maxe∈R Ase for all s ∈ [d]; and

(iii) w(R) ≥ OPTLPmatkn .

▶ Remark 4.7. The statement of Theorem 4.6 differs from that of Corollary 11 in [19] in three
respects. In [19]: (1) µ1, . . . , µd are assumed to be positive integers (but their proof does
not need the integrality requirement); (2) condition (10) is replaced by the weaker condition,∑

s∈[k]:e∈Ns

1
qs

+
∑

s∈[d]
Ase

(maxe∈N Ase)µs
≤ 1 for all e ∈ N ; and (3) one obtains the slightly

weaker additive error of µs · maxe∈N Ase in (ii) for the knapsack constraint for index s ∈ [d].
The proof of Corollary 11 in [19] is however easily adapted to yield the above statement; we
include the proof of Theorem 4.6 in the full version.

For our purposes, we only need a simpler version of Theorem 4.6, where we have only
one matroid M0 and other knapsack constraints. We include the more general statement
above (with its subtly stronger guarantee for the knapsack constraints, which turns out to
be crucial for us; see Remark 4.8) because we believe that this is of independent interest.

Before delving into the details of how we apply Theorem 4.6 to prove our lemma, we briefly
discuss the main idea, which will also elucidate why we need the partial enumeration step of
“guessing” the set C specifying the ℓ0 most costly jobs under σ∗ and their σ∗-assignments.

We can cast (Aux) as an instance of (LPmatkn) as follows. Let U = [m] × J . The
weight vector w is irrelevant. The matroid M0 is the partition matroid over U encoding
that each job j is assigned to at most one machine. It is immediate that (7) shows that
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x lies in the base polytope of M0. Constraints (8) correspond to knapsack constraints in
(LPmatkn). Constraints (9) can be incorporated into (LPmatkn) in three ways: (i) as matroid-
independence constraints in the (single) laminar matroid formed by the nested family of
sets {(i, j) ∈ U : pij > ζℓ}ℓ∈POS; (ii) as multiple matroid-independence constraints, where for
each ℓ ∈ POS, we have a matroid encoding the cardinality bound from {(i, j) ∈ U : pij > ζℓ};
or (iii) as additional knapsack constraints.

But utilizing Theorem 4.6 directly on the above system does not quite work for us. To
elaborate, in order to obtain the guarantee in 4.3 (c), we need to set the µis for the knapsack
constraints (8) to (1 + δ). But then if we view (9) as matroid independence constraints (in
one laminar matroid, or multiple matroids), we need to set the qs value for the corresponding
matroid(s) to be at least 2 in order to satisfy (10) resulting in (at least) a multiplicative
factor-2 violation of constraints (9), which is too large a violation. Suppose we incorporate
(9) as knapsack constraints and, for some constant ρ, take µℓ = ρℓ for constraint (9) for
index ℓ. But to satisfy (10), we need ρ to be at least

(
1 − 1

1+δ

)−1 ·
∑

ℓ′∈POS:ℓ′>1
1
ℓ′ = Ω

( 1
δ2

)
,

which again yields too large a violation of (9). (A more accurate estimate of
∑

ℓ′∈POS:ℓ′>1 is
ln(⌈1/δ⌉) + 1 + δ, but this still requires ρ to be large.)

However, a tweak of the latter approach does work, by noting that if xij first appears in
constraint (9) for index ℓ ∈ POS, then to satisfy (10), we really need that ρ ≥

(
1 − 1

1+δ

)−1 ·∑
ℓ′∈POS:ℓ′≥ℓ

1
ℓ′ ; the RHS is at most (1+δ)2

δ2ℓ , which is at most δ for large enough ℓ. This is
precisely where the enumeration of C turns out to be key, since it allows us to eliminate
constraints (9) for ℓ ≤ ℓ0. Recall that C specifies the ℓ0 most-costly jobs under σ∗ and
their σ∗-assignments, where ℓ0 is the smallest index in POS that is at least 2

δ3 . Due to
this enumeration, x is integral whenever pij > ζℓ, and so if we drop integral variables and
corresponding constraints from (Aux), we are left with constraints (9) for indices ℓ > ℓ0 in
POS. Now we can take µℓ = δℓ for all ℓ ∈ POS, ℓ > ℓ0, and these values satisfy (10), since
each ℓ > ℓ0 is large.

We now describe precisely how we utilize Theorem 4.6 to prove our lemma. We apply
Theorem 4.6 to (Aux) after getting rid of all integral variables, and modifying or dropping
constraints to take into account the integral variables. Recall that U = [m] × J . Let
E = {(i, j) ∈ U : xij ∈ (0, 1)}. We retain only the variables in E, and only these will be
rounded, so this takes care of part (a) of the lemma. We drop any constraint that contains
only integral variables. Thus, the POS-constraints (9) for all ℓ ∈ POS, ℓ ≤ ℓ0 are dropped,
and so part (d) holds. Let J ′ be the set of jobs corresponding to the remaining constraints (7);
note that all jobs in J ′ are completely assigned by (the variables in) E, and the remaining jobs
are completely assigned by the integral variables. Let I ⊆ [m] index the machine-constraints
(8) that remain, and IPOS ⊆ {ℓ ∈ POS : ℓ > ℓ0} index the POS-constraints (9) that remain.
This yields the following system of constraints.

(P’)



∑
i:(i,j)∈E

xij = 1 ∀j ∈ J ′

∑
j:(i,j)∈E

pijxij ≤
∑

j

pijxij −
∑

j:xij=1

pij ∀i ∈ I

∑
(i,j)∈E:pij>ζℓ

xij ≤ ℓ − 1 −
∣∣{(i, j) : pij > ζℓ, xij = 1}

∣∣ ∀ℓ ∈ IPOS

x ≥ 0.
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Clearly, (xij)(i,j)∈E is a feasible solution to (P’). We apply Theorem 4.6 to (P’), taking
M0 to be the partition matroid now with ground set E encoding that every job in J ′ is
assigned to at most one machine, and treating both the machine constraints indexed by I,
and the POS-constraints indexed by IPOS as knapsack constraints. The weight vector w is
irrelevant. We take µi = (1 + δ) for all i ∈ I, and µℓ = δℓ for all ℓ ∈ IPOS, and we claim that
this satisfies condition (10). To see this, consider any (i, j) ∈ E. Let ℓ be the smallest index
in IPOS whose POS-constraint contains the variable xij . Then, xij appears possibly in the
machine constraint for machine i, and the POS-constraints for indices ℓ′ ∈ POS, ℓ′ ≥ ℓ. We
have ∑

ℓ′∈IPOS:ℓ′≥ℓ

1
µℓ′

≤
∑

ℓ′∈POS:ℓ′≥ℓ

1
δℓ′ ≤ 1

δℓ
·
∑
k≥0

(1 + δ)−k = 1
δℓ

· 1 + δ

δ
≤ 1

δ2ℓ0
≤ δ

2 .

Since 1
1+δ + δ

2 ≤ 1, it follows that (10) is satisfied for (i, j).
Finally, we argue that applying Theorem 4.6 with the above parameters yields the lemma.

Let x̃ be the solution obtained by concatenating the integral portion of x, and the integer
solution returned by Theorem 4.6. Part (b) holds because we return a basis of M0, and the
jobs not in J ′ are completely assigned by the integral portion of x. Parts (c) and (e) follow
directly from our choice of the µ values. ◀

▶ Remark 4.8. We note that the subtly stronger guarantee obtained for the knapsack
constraint for index s, in Theorem 4.6, versus Corollary 11 in [19] – i.e., an additive error of
µs · maxe∈R Ase versus an additive error of µs · maxe∈N Ase – is crucial for us. The weaker
guarantee would yield, after dropping integral (and hence 0-valued) variables, that the load
on each machine i is at most

∑
j pijxij + (1 + δ) maxj:xij>0 pij . But it is hard to obtain a

bound on the f -norm of the vector {maxj:xij>0 pij}i∈[m], since multiple coordinates here
could correspond to the same job, and therefore constraints (9) do not help.

5 A PTAS for MinNormLB on identical machines

We now consider the oft-studied and important special case where all machines are identical
– that is, we have pij = pj for all jobs j and machines i – and devise a PTAS in this setting.

▶ Theorem 5.1. There is a PTAS for MinNormLB on identical machines.

The above result substantially generalizes the well-known PTAS by Hochbaum and Shmoys
for minimizing makespan (i.e., the special case of ℓ∞ norm) on identical machines [11]. We
utilize some of their insights, but need to combine them with various novel ideas to handle
the substantial richness of arbitrary monotone, symmetric norms. In the full version, we show
that our PTAS extends to a further generalization of MinNormLB, wherein each machine
incurs a cost given by a “bounded-growth” convex, non-decreasing function µ of its load, and
we seek to minimize the f -norm of the machine-cost vector. We also observe that Graham’s
list-scheduling rule – considering jobs in any sequence, schedule the next job on the currently
least-loaded machine – yields a simple 2-approximation algorithm.

▶ Theorem 5.2. Graham’s list-scheduling rule yields a 2-approximation for MinNormLB on
identical machines.

We defer the proof of Theorem 5.2 to the full version, and discuss the PTAS for MinNormLB
here. It is useful to first recall how the PTAS in [11] for makespan works. Their algorithm
considers a “guess”, say t1 ≥ maxj pj , of the optimal makespan, opt. We classify jobs as large
or small, based on whether pj ≥ εt1 (large jobs) or pj < εt1 (small jobs). A key insight is
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that since the large jobs have pj ∈ [εt1, t1], rounding their pjs to the nearest power of (1 + ε)
yields O

(
log1+ε

1
ε

)
distinct rounded job sizes, and a constant (depending on ε) number of

distinct possibilities, called configurations, for assigning large jobs to a machine so that its
rounded load is at most (1 + ε)t1. One can write an integer program, with a (ε-dependent)
constant number of variables, to determine which configurations are used on the machines,
which can be solved in time poly(m, n) for any fixed ε > 0 using the algorithm of Lenstra [18].
If opt ≤ t1, then this yields an assignment of large jobs having makespan at most (1 + ε)t1.
Finally, one can argue that either the small jobs can be packed (arbitrarily) on the machines
while maintaining a makespan of at most (1 + ε)t1, or we have opt > t1.

Now consider MinNormLB. We may assume that n > m as otherwise it is easy to see that
an optimal solution is to assign each job to a separate machine. Clearly, we may also assume
that pj > 0 for all jobs j. Recall that o⃗ is an optimal load vector, and OPT = f(o⃗). As
before, we assume that f is normalized. Since all machines are identical, it will be convenient
to re-index machines so that o⃗ = o⃗↓. Since we now need to control all Topℓ norms, following
a common theme, it is natural that we now work with guesses tℓ of oℓ (which is o⃗↓

ℓ ) for all
ℓ ∈ POS. The chief issue that arises is: how do we now define large and small jobs given
the multiple tℓs? Suppose we choose a threshold of εtℓ, for some ℓ ∈ POS, for this purpose.
For indices ℓ′ < ℓ, the problem then is that we need to consider all jobs with pj ∈ [εtℓ, tℓ′ ];
this would yield a non-constant number of job types, and hence a non-constant number of
configurations for machines i < ℓ. Machines i > ℓ also present a problem: the packing of
small jobs may cause us to exceed the target load of oi (or rather texp

i ) by εtℓ, which can
create too large an error compared to the target load.

We circumvent these issues as follows. We select a specific optimal solution. Given
distinct vectors u, v ∈ Rm, we say that u is lexicographically smaller than v, denoted u ≺ lex v

if there exists some index i ∈ [m] such that ui′ = vi′ for all i′ = 1, . . . , i − 1, and ui < vi.
Let o⃗↓ be the lexicographically smallest sorted load-vector among all optimal solutions, i.e.,
o⃗↓ ≺ lex (

−−→
loadσ)↓ for every optimal solution σ. As before, we may assume that o⃗ = o⃗↓. Let

σ∗ be an optimal solution yielding the load-vector o⃗. Let i∗ be the smallest index such that
machine i∗ has at least two jobs assigned to it under σ∗; this is well defined since n > m.

▷ Claim 5.3. Let o⃗, σ∗ and i∗ be as defined above. Then we have oi ≥ oi∗/2 for all i ≥ i∗.

In addition to our guess t⃗ of (oℓ)ℓ∈POS, we now also guess i∗ and the load oi∗ , and use
εoi∗ as the threshold demarcating large and small jobs. The small jobs are now indeed small
compared to the target load of oi for i ≥ i∗. Also, since machines i < i∗ only have one job
assigned to them, we can infer that these machines are assigned the i∗ − 1 largest jobs.

We describe our algorithm below, and conclude with its analysis.

▶ Algorithm 1 (PTAS for MinNormLB on identical machines).
Input: a non-increasing vector t⃗ ∈ RPOS

≥0 , an index i∗ ∈ [m], θ ∈ R≥0 intended to be a good
overestimate of oi∗ , and a parameter 0 < ε ≤ 1. We set δ = ε in the definition of POS = POSm,δ.
Output: an assignment σ̃ such that (

−−→
load

σ̃
)↓

ℓ ≤ (1 + ε)tℓ + εθ for all ℓ ∈ POS, or that (⃗t, i∗, θ) is an
invalid guess.

P1. Perform the following checks, and if any of these fail, then declare that (⃗t, i∗, θ) is invalid and
return. Define tm+1 := 0 for notational convenience.
(a) If i∗ ∈ POS, then check that θ = ti∗ , otherwise check that tnext(i∗) ≤ θ ≤ tprev(i∗).
(b) For all ℓ ∈ POS, ℓ ≤ i∗, check that there are at most ℓ − 1 jobs with pj > tℓ.
(c) Check that there are at most i∗ − 1 jobs with pj > θ.

P2. Assign the i∗ − 1 largest jobs to machines 1, . . . , i∗ − 1, assigning the largest job to machine 1,
the second-largest job to machine 2, and so on. Let J ′ be the remaining set of jobs. Note that
check (c) in step P1 implies that pj ≤ θ for all j ∈ J ′.
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P3. Let J ′
L := {j ∈ J ′ : pj ≥ εθ}, and J ′

S := {j ∈ J ′ : pj < εθ}. We refer to the jobs in J ′
L and J ′

S

as large and small jobs respectively.

P4. Round the processing time of each large job to the nearest power of (1 + ε), i.e., for each j ∈ J ′
L,

round its processing time to p′
j := (1 + ε)⌈log1+ε pj⌉. Let R = {p′

j : j ∈ J ′
L} be the distinct

rounded processing times, and N = |R|; note that N ≤ 1 + log1+ε

(
1
ε

)
. For a budget B ≥ 0,

define C(B) :=
{

ν ∈ ZR
≥0 \ {0} :

∑
p∈R

νp · p ≤ B
}

as the set of non-trivial configurations that
yield a total rounded load of at most B. (Observe that C(0) = ∅.)

Recall that texp ∈ Rm
≥0 is the expansion of t⃗, defined by texp

i = ti for i ∈ POS, and texp
i = tprev(i) for

i ∈ [m] \ POS. For notational convenience, define texp
m+1 := 0. For i ∈ {i∗, . . . , m + 1}, define its

load budget to be Bi = (1 + ε) min{θ, texp
i }. (Note that Bm+1 = 0.) For any 0 ≤ B ≤ Bi∗ , any

ν ∈ C(B) and p ∈ R, we have νp ≤ B/p ≤ 1+ε
ε

; so |C(B)| ≤
(

1
ε

+ 2
)N , and we can enumerate

the configurations in C(B) in polynomial time. Assign the large jobs by using the algorithm of
Lenstra [18] to solve the integer program (Config-IP), wherein the integer variable xν specifies
the number of machines in {i∗, . . . , m} for which configuration ν ∈ C(Bi∗ ) is used.

(Config-IP)

∑
ν∈C(Bi∗ )

νp · xν =
∣∣{j ∈ J ′

L : p′
j = p}

∣∣ ∀p ∈ R (11)

∑
ν∈C(Bi∗ )\C(Bℓ)

xν ≤ ℓ − i∗ ∀ℓ ∈ POS ∪ {m + 1} : ℓ > i∗ (12)

xν ∈ Z≥0 ∀ν ∈ C(Bi∗ ) (13)

If (Config-IP) is infeasible, declare that (⃗t, i∗, θ) is invalid and return. Otherwise, suppose that
x̃ is a feasible solution to (Config-IP). Obtain an assignment of the large jobs to machines
i∗, i∗ + 1, . . . , m from x̃ as follows. Let C̃ be the multiset of configurations where we have x̃ν

copies of each configuration ν ∈ supp(x̃). We map each ν ∈ C̃ to a disjoint set Aν of large jobs,
comprising νp large jobs with p′

j = p for every p ∈ R, so that (Aν)
ν∈C̃

forms a partition of J ′
L.

Constraint (11) shows that this is always possible.
We go over the configurations ν ∈ C̃ in non-increasing order of their load,

∑
p∈S

νp · p, and
assign one configuration each to machines i∗, i∗ + 1, . . . , i∗ + |C̃| − 1 in this order, where by
assigning a configuration ν to a machine i, we mean that we assign the jobs in Aν to machine i.
Note that |C̃| =

∑
ν∈C(Bi∗ ) x̃ν ≤ m + 1 − i∗ due to constraint (12) for index m + 1.

P5. We assign the small jobs to the machines in {i∗, . . . , m} arbitrarily while ensuring that the total
actual load (i.e., under the pj processing times) on each machine i is at most Bi + εθ. If we are
unable to assign all small jobs this way, then we declare that (⃗t, i∗, θ) is invalid, and return.

P6. Return the assignment σ̃ computed in steps P2, P4, and P5.

Analysis. Recall that σ∗ is the optimal solution yielding the sorted load vector o⃗↓ = o⃗. We
first assume that (⃗t, i∗, θ) is such that t⃗ ≥ (oℓ)ℓ∈POS, we have the right i∗, θ ≥ oi∗ , and (⃗t, i∗, θ)
passes the check in step P1(a). Under these assumptions, we show that the algorithm returns
an assignment σ̃, and

−−→
load↓

σ̃
is “close” to texp. This will then imply Theorem 5.1, since we

can find in polytime (t∗, i∗, θ∗) satisfying the above properties, and such that t∗
ℓ ≤ (1 + ε)oℓ

for all ℓ ∈ [m], and θ∗ ≤ (1 + ε)oi∗ .
We begin by observing in Claim 5.4 that (under the above assumptions), (⃗t, i∗, θ) passes

checks (b) and (c) in step P1, and that step P2 is valid. Then, in Lemmas 5.5 and 5.6, we
argue that steps P4 and P5 are successful.

▷ Claim 5.4. (i) (⃗t, i∗, θ) passes checks (b) and (c) in step P1. (ii) The optimal solution σ∗

assigns the i∗ − 1 largest jobs to machines 1, . . . , i∗ − 1, assigning one job per machine.
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▶ Lemma 5.5. Step P4 successfully returns an assignment of large jobs such that every
machine i ∈ {i∗, . . . , m} has (rounded and actual) load at most Bi.

Proof. Consider the following solution to (Config-IP). Each machine i ∈ {i∗, . . . , m} that
has jobs assigned to it under σ∗ naturally maps to a corresponding configuration ν, where νp

is the number of large jobs assigned to i with p′
j = p. We have∑

p∈R

νp · p =
∑

j∈J′
L

:σ∗(j)=i

p′
j ≤ (1 + ε)

∑
j:σ∗(j)=i

pj = (1 + ε)oi ≤ (1 + ε) min{θ, texp
i } = Bi

where the first inequality is because p′
j ≤ (1 + ε)pj for all j ∈ J ′

L. Thus, each machine
i ∈ {i∗, . . . , m} maps to a configuration in C(Bi) ⊆ C(Bi∗). Let x̂ ∈ ZC(Bi∗ )

≥0 be the integral
vector, where x̂ν is the number of machines that map to configuration ν, for each ν ∈ C(Bi∗).
By construction, it is easy to see that constraints (11) are satisfied. It is also clear that
constraint (12) holds for index ℓ = m+1. So consider constraint (12) for some index ℓ ∈ POS,
ℓ > i∗. A configuration ν with x̂ν > 0 whose load is larger than Bℓ corresponds to a machine
in {i∗, . . . , m} whose actual load is larger than Bℓ/(1 + ε) ≥ oℓ. There are at most ℓ − i∗

such machines, so (12) holds for index ℓ.
Since (Config-IP) is feasible, it follows that we return an assignment of large jobs to

machines i∗, i∗ + 1, . . . , m where every machine has rounded (and hence, actual) load at
most Bi∗ . Consider a machine i ∈ {i∗, . . . , m} that is assigned a configuration. Let ℓ = i

if i ∈ POS ∪ {i∗}, and ℓ = max{i∗, prev(i)} otherwise; note that Bi = Bℓ. If ℓ = i∗, then
Bi = Bi∗ , and there is nothing left to prove. So suppose ℓ ̸= i∗. Then ℓ ∈ POS, ℓ > i∗. By
constraint (12) there are at most ℓ − i∗ ≤ i − i∗ configurations in C̃ with load larger than Bℓ.
By the way in which we assign configurations to machines, it follows that machine i is not
assigned one of these configurations. Therefore, the total rounded (and hence, actual) load
on machine i is at most Bℓ = Bi. ◀

▶ Lemma 5.6. Step P5 successfully assigns all small jobs. At the end of this step every
machine i ∈ {i∗, . . . , m} has total actual load at most Bi + εθ.

Proof of Theorem 5.1. We can find (t∗, i∗, θ∗) in polytime such that oℓ ≤ t∗
ℓ ≤ (1 + ε)oℓ for

all ℓ ∈ POS, we have the right i∗, oi∗ ≤ θ∗ ≤ (1 + ε)oi∗ , and (t∗, i∗, θ∗) clears check P1 (a).
We prove this momentarily, but first show that this yields the desired performance guarantee.

Recall that ε ≤ 1 and δ = ε. By Lemma 2.8 (b), taking u = o⃗ and v = t∗, we obtain
that f(t∗exp) ≤ (1 + δ)(1 + ε)f(o⃗). Our analysis shows that the algorithm run with input
(t∗, i∗, θ∗) returns an assignment σ̃. Since we pass checks (b) and (c) in step P1, each machine
i ∈ {1, . . . , i∗ − 1} has load (due to the one job assigned to it) oi ≤ t∗exp

i . Lemmas 5.5 and 5.6
show that the total load on each machine i ∈ {i∗, . . . , m} is at most

Bi + εθ∗ ≤ (1 + ε)t∗exp
i + ε(1 + ε)oi∗ ≤ (1 + ε)t∗exp

i + 4εoi ≤ (1 + 5ε)t∗exp
i .

The second inequality follows from Claim 5.3 and since ε ≤ 1, and the last one since
t∗ ≥ (oℓ)ℓ∈POS (and therefore t∗exp ≥ o). It follows that

−−→
load

σ̃
≤ (1 + 5ε)t∗exp, and so

f(
−−→
load

σ̃
) ≤ (1 + 5ε)f(t∗exp). Combining this with the bound on f(t∗exp), and simplifying, we

obtain that f(
−−→
load

σ̃
) ≤ (1 + 23ε)f(o⃗).

We complete the proof by showing how to find (t∗, i∗, θ∗) in polynomial time satisfying
the properties stated at the beginning of the proof. There are only m choices for i∗. Given
the correct i∗, we know that the load on each machine i < i∗ is the processing time of
the i-th largest job. So we know o1, . . . , oi∗−1 exactly, and can set t∗

ℓ = oℓ for all ℓ ∈ POS,
ℓ < i∗. Let POS′ = {i∗} ∪ {ℓ ∈ POS : ℓ > i∗}. Let J ′ be the set of jobs excluding the
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i∗ − 1 largest jobs. Let UB′ :=
∑

j∈J′ pj . The jobs in J ′ are assigned by σ∗ to machines
in {i∗, . . . , m}, and we have oi∗ ≥ oi ≥ oi∗/2 for all i ≥ i∗ (Claim 5.3). It follows that

UB′

m−i∗+1 ≤ oi∗ ≤ T := min
{ 2UB′

m−i∗+1 , oi∗−1
}

. So by Lemma 2.9 (b), taking L = POS′, ub = T ,
and lb = UB′

2(m−i∗+1) , we can identify a set of size O
(
mO( 1

ε )) containing a non-increasing
vector v ∈ RPOS′

≥0 such that oℓ ≤ vℓ ≤ min{(1 + ε)oℓ, T} for all ℓ ∈ POS′. So the vector
t∗ =

(
(oℓ)ℓ∈POS:ℓ<i∗ , (vℓ)ℓ∈POS:ℓ≥i∗

)
and θ∗ = vi∗ have the desired properties. ◀
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Abstract
In a recent landmark result [Ji et al., arXiv:2001.04383 (2020)], it was shown that approximating
the value of a two-player game is undecidable when the players are allowed to share quantum states
of unbounded dimension. In this paper, we study the computational complexity of two-player
games when the dimension of the quantum systems is bounded by T . More specifically, we give a
semidefinite program of size exp

(
O
(
T 12(log2(AT ) + log(Q) log(AT ))/ϵ2)) to compute additive ϵ-

approximations on the value of two-player free games with T ×T -dimensional quantum entanglement,
where A and Q denote the number of answers and questions of the game, respectively. For fixed
dimension T , this scales polynomially in Q and quasi-polynomially in A, thereby improving on
previously known approximation algorithms for which worst-case run-time guarantees are at best
exponential in Q and A. For the proof, we make a connection to the quantum separability problem
and employ improved multipartite quantum de Finetti theorems with linear constraints that we
derive via quantum entropy inequalities.
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1 Introduction

Thanks to the celebrated discovery by John Bell [4], it is well-known that quantum correlations
can be used to overcome locality constraints, which was one of the earliest examples of
advantages provided by quantum correlations over classical correlations. This led to the
development of numerous quantum information processing tasks which make use of quantum
correlations as a resource to outperform their classical analogues. In general, understanding
the differences in the performance of distinct correlation sets for a given task is important
both fundamentally and practically. A common way to measure the quantitative advantages
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Referee

Alice Bob

q1 q2
a1 a2

Yes or No
1         0

no communication

Figure 1 Two-player games. The referee gives Alice and Bob questions q1 ∈ Q1 and q2 ∈ Q2

according to the question probability distribution π(q1, q2), and then Alice and Bob give answers
a1 ∈ A1 and a2 ∈ A2 back to the referee depending on the questions they received. The referee decides
whether Alice and Bob win or lose according to the rule function V : A1 × A2 × Q1 × Q2 → {0, 1},
where 0 denotes losing the game, and 1 denotes winning the game. Alice and Bob cannot communicate
with each other during the game, but they can agree on a strategy beforehand. We are interested in
determining the values of the game, i.e., the maximum achievable winning probabilities, for different
classes of strategies. For simplicity, we assume that |Q1| = |Q2| = Q and |A1| = |A2| = A.

of different sets of correlations is via a two-player game G (illustrated in Figure 1). In a
two-player game, the performance of a given correlation set is quantified by the maximum
achievable winning probability. For example, the classical value ωC(G) is the maximum
winning probability that can be achieved using shared randomness between the two players,
while the quantum value ωQ(G) is the maximum winning probability that can be achieved
by sharing arbitrary quantum states between the players.

In general, it is hard to compute ωC(G) and ωQ(G) for the given description of a two-
player game G. Approximating ωC(G) within some constant multiplicative factor is NP-hard
[2, 3], while approximating ωQ(G) has recently been shown not to be possible for an algorithm
running in finite time [20]. Despite these general hardness results, there are some special
classes of two-player games for which ωC(G) and ωQ(G) can be approximated in polynomial
time [10, 21, 1, 9]. In particular, for free games, i.e., games where the questions for the
two players are chosen independently, there exists a quasi-polynomial time algorithm that
can approximate ωC(G) within any constant additive error [1, 9]. Also, in practice, the
Navascués-Pironio-Acín (NPA) hierarchy [27, 29] provides semidefinite programming (SDP)
upper bounds on ωQ(G) which give approximately tight bounds for many games of interest.

1.1 Contributions
In this paper, we study the dimension-bounded quantum value ωQ(T )(G) – the maximum
winning probability that can be achieved by sharing quantum states of fixed dimension T ×T .
It is easy to see that ωQ(1)(G) = ωC(G) and ωQ(G) = supT ≥1 ωQ(T )(G). Computing ωQ(T )(G)
is of particular interest since it can be used as a dimension witness for an underlying system
in semi-device-independent quantum information processing protocols, see for example [15].
SDP upper bounds have been derived for ωQ(T )(G) in [25, 28, 26]. In [25], the authors exploit
a connection to the quantum separability problem, and in [28, 26], the authors employ a
moment matrix technique similar to the NPA hierarchy to derive SDP relaxations with better
performance than the ones in [25]. However, the worst case runtime guarantees for these
works is either not analytically quantified or is at best exponential in the number of questions
Q and the number of answers A of the game G.
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In our work, we provide approximation algorithms for ωQ(T )(G) whose runtime has an
improved dependence on both A and Q. More specifically, we construct a new hierarchy of
SDP relaxations, providing a sequence of upper bounds for ωQ(T )(G) for a given game G,
and then derive analytical bounds on the convergence speed. This gives an upper bound on
the computational complexity of calculating ωQ(T )(G) in terms of the size of the game G.
For the case of free games, a semidefinite program of size

exp
(

O
(

T 12

ϵ2 log(AT ) (log(Q) + log(AT ))
))

(1)

is sufficient for computing additive ϵ-approximations of ωQ(T )(G), where A and Q denote
the number of answers and questions, respectively. The dependence is quasi-polynomial
in A and polynomial in Q thus improving on the best previously known approximation
algorithms [25, 28, 26], for which only exponential bounds in A and Q are known. In the
classical limit (T = 1), our result recovers the quasi-polynomial time approximation scheme
for computing ωC(G) for two-player free games – which has a matching hardness result
assuming the Exponential Time Hypothesis [1, 9]. Besides analysing free games, we give
an algorithm for general games as well, leading to approximation algorithms that are still
quasi-polynomial in A but exponential in Q.

We construct our SDP relaxations by drawing a connection to a variant of the quantum
separability problem where the optimisation variables are additionally subject to some linear
constraints. Similar variants of the quantum separability problem have been studied in
[35, 34, 6]. The main tool we use to obtain the analytical convergence speed is improved
multipartite quantum de Finetti theorems with linear constraints, which we derive in our
work. One of the contributions towards this result, which we believe is of independent
interest, is an improved version of the optimal loss in distinguishability relative to quantum
side information.

1.2 Preliminaries on two-player games
A non-local game is a mathematical formulation for the correlations between distant parties.
In this paper, we will consider two-player games where only two distant parties are involved.
In this formulation, the correlation between two parties is considered to be a resource to win
the games.

In a two-player game G, two spatially separated agents, Alice and Bob, need to provide
correct answers a1 ∈ A1 and a2 ∈ A2 to the referee depending on the questions q1 ∈ Q1 and
q2 ∈ Q2 they received (see Figure 1). The correct answers are determined by a given rule
function of G

V : A1 × A2 × Q1 × Q2 → {0, 1}, (2)

where 0 means the answer is incorrect, and 1 means the answer is correct. The questions q1
and q2 are chosen by the referee according to a given probability distribution π(q1, q2) of G.
A specific two-player game G can be represented by the pair of rule function V (a1, a2, q1, q2)
and question probability distribution π(q1, q2), and hereafter we will denote a game G as
(V, π). Alice and Bob cannot communicate with each other during the game, but they can
agree on a strategy beforehand as well as make use of systems whose correlations lie within
a given class. When only classical shared randomness is allowed, the correlations take the
form

p(a1, a2|q1, q2) = e(a1|q1)d(a2|q2), (3)

ICALP 2021
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where e(a1|q1) and d(a2|q2) are conditional probability distributions for Alice and Bob
respectively. That is,

∑
a1

e(a1|q1) = 1 ∀q1 ∈ Q1, and
∑

a2
d(a2|q2) = 1 ∀q2 ∈ Q2. When

quantum resources are allowed, the correlations have a more general form

p(a1, a2|q1, q2) = tr
[
ρT T̂

(
ET (a1|q1) ⊗ DT̂ (a2|q2)

)]
, (4)

where ρT T̂ is a possibly entangled quantum state shared by Alice and Bob, and {ET (a1|q1)}a1

and {DT̂ (a2|q2)}a2 are positive-operator valued measurements (POVMs) performed by
Alice and Bob respectively for given q1 and q2, i.e.,

∑
a1

ET (a1|q1) = IT ∀q1 ∈ Q1 and∑
a2

DT̂ (a2|q2) = IT̂ ∀q2 ∈ Q2.
The quantitative advantage of each set of correlations can be captured by the maximum

winning probabilities achievable using the given correlation set. For a given two-player game
G = (V, π), the classical value is defined as

ωC(V, π) := max
(e,d)

∑
a1,q1,a2,q2

π(q1, q2)V (a1, a2, q1, q2)e(a1|q1)d(a2|q2), (5)

and the quantum value is given by

ωQ(V, π) := sup
(E⊗D,ρ)
on HT T̂

∑
a1,q1
a2,q2

π(q1, q2)V (a1, a2, q1, q2) tr
[
ρT T̂

(
ET (a1|q1) ⊗ DT̂ (a2|q2)

)]
. (6)

Here, the optimisation is taken over not only states and measurements but also the Hilbert
space HT T̂ . We can define the dimension-bounded quantum value as

ωQ(T )(V, π) := max
(E⊗D, ρ)

on
CT ⊗CT

∑
a1,q1
a2,q2

π(q1, q2)V (a1, a2, q1, q2) tr
[
ρT T̂

(
ET (a1|q1) ⊗ DT̂ (a2|q2)

)]
,

(7)

which is the central object of investigation in this paper.
If not stated otherwise, we assume that the choice of questions for Alice and Bob are

independent, i.e., π(q1, q2) = π1(q1)π2(q2), which corresponds to free games. We denote
H⊗n

A as An, and dim(HA) as |A|. For simplicity, we assume that |Q1| = |Q2| = Q and
|A1| = |A2| = A.

2 Derivation of semidefinite programming relaxations

2.1 Connection with quantum separability

Quantum separability problems are a special type of optimisation problems, where the
optimisation is taken over the set of separable quantum states. We show that computing
ωQ(T )(V, π) for a given two-player game (V, π) can be rephrased as an instance of the tripartite
quantum separability problem subject to additional linear constraints.
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▶ Lemma 1. For a two-player free game with V (a1, a2, q1, q2), π(q1, q2) = π1(q1)π2(q2), and
|T |2-dimensional quantum correlation, we have

ωQ(T )(V,π) = |T |2 · max
(E,D,ρ)

tr
[(

VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(
EA1Q1T ⊗ DA2Q2T̂ ⊗ ρSŜ

)]
s.t. ρSŜ ≥ 0 , tr

[
ρSŜ

]
= 1

EA1Q1T =
∑
a1,q1

π1(q1) |a1q1⟩⟨a1q1|A1Q1
⊗ ET (a1|q1)

|T |
≥ 0

DA2Q2T̂ =
∑
a2,q2

π2(q2) |a2q2⟩⟨a2q2|A2Q2
⊗

DT̂ (a2|q2)
|T |

≥ 0

trA1 [EA1Q1T ] =
∑
q1

π1(q1) |q1⟩⟨q1|Q1
⊗ IT

|T |

trA2

[
DA2Q2T̂

]
=
∑
q2

π2(q2) |q2⟩⟨q2|Q2
⊗

IT̂

|T |
, (8)

where ΦT T̂ |SŜ = |Φ⟩⟨Φ|T T̂ |SŜ is the (non-normalised) maximally-entangled state, |Φ⟩T T̂ |SŜ =∑
i |i⟩T T̂ |i⟩SŜ, and VA1A2Q1Q2 is a diagonal matrix whose entries are given by the rule

function V (a1, a2, q1, q2).

To prove Lemma 1, we need a slightly modified version of the swap trick.

▶ Lemma 2. Let MAB be a linear operator on HA ⊗ HB, and NA be a linear operator on
HA. Then, it holds that

tr [(NA ⊗ IB)MAB ] = tr
[(

FÂ|A ⊗ IB

) (
NÂ ⊗ MAB

)]
, (9)

where FÂ|A denotes the swap operator between Â and A.

Proof. By inspection, we have that

tr
[(

FÂ|A ⊗ IB

) (
NÂ ⊗ MAB

)]
= tr

(FÂ|A ⊗ IB

)∑
i,j

nij |i⟩⟨j|Â ⊗
∑

k,ℓ,s,t

m(kℓ)(st) |k⟩⟨ℓ|A ⊗ |s⟩⟨t|B


= tr

 ∑
i,j,k,ℓ,s,t

nij m(kℓ)(st) |k⟩⟨j|Â ⊗ |i⟩⟨ℓ|A ⊗ |s⟩⟨t|B


=
∑

i,j,s,t

nij m(ji)(st) = tr [(NA ⊗ IB)MAB ] , (10)

where we used NÂ =
∑

i,j nij |i⟩⟨j|Â and MAB =
∑

k,ℓ,s,t m(kℓ)(st) |k⟩⟨ℓ|A ⊗ |s⟩⟨t|B . ◀

ICALP 2021
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Proof of Lemma 1. Let us start from the expression for ωQ(T ) in Eq. (7). For free games,
i.e. π(q1, q2) = π1(q1)π2(q2), we can write

ωQ(T )(V, π) = |T |2 max
E,D,ρ

tr
[(

VA1A2Q1Q2 ⊗ ρT T̂

) (
EA1Q1T ⊗ DA2Q2T̂

)]
(11)

s.t. ρT T̂ ≥ 0 , tr
[
ρT T̂

]
= 1

EA1Q1T =
∑
a1,q1

π1(q1) |a1q1⟩⟨a1q1|A1Q1
⊗ ET (a1|q1)

|T |
≥ 0

DA2Q2T̂ =
∑
a2,q2

π2(q2) |a2q2⟩⟨a2q2|A2Q2
⊗

DT̂ (a2|q2)
|T |

≥ 0

trA1 [EA1Q1T ] =
∑
q1

π1(q1) |q1⟩⟨q1|Q1
⊗ IT

|T |

trA2

[
DA2Q2T̂

]
=
∑
q2

π2(q2) |q2⟩⟨q2|Q2
⊗

IT̂

|T |
,

where we define VA1A2Q1Q2 :=
∑

a1,a2,q1,q2
V (a1, a2, q1, q2) |a1, a2, q1, q2⟩⟨a1, a2, q1, q2|. Then,

using Lemma 2 we can rewrite the objective function in Eq. (11) as

tr
[(

VA1A2Q1Q2 ⊗ ρT T̂

) (
EA1Q1T ⊗ DA2Q2T̂

)]
= tr

[(
IA1A2Q1Q2 ⊗ ρT T̂

) ((
VA1A2Q1Q2 ⊗ IT T̂

) (
EA1Q1T ⊗ DA2Q2T̂

))]
= tr

[(
IA1A2Q1Q2 ⊗ FT T̂ |SŜ

)(((
VA1A2Q1Q2 ⊗ IT T̂

) (
EA1Q1T ⊗ DA2Q2T̂

))
⊗ ρSŜ

)]
(by Lemma 2)

= tr
[((

VA1A2Q1Q2 ⊗ FT T̂ |SŜ

)(
EA1Q1T ⊗ DA2Q2T̂ ⊗ ρSŜ

))]
,

(12)

which has a similar form to the objective function in Lemma 1 with the exception that FT T̂ |SŜ

replaces ΦT T̂ |SŜ . To complete the proof, we write the swap operator FA|Â in terms of the (non-
normalised) maximally-entangled state ΦA|Â = |Φ⟩⟨Φ|A|Â, where |Φ⟩A|Â =

∑dA

i=1 |i⟩A |i⟩Â.
Namely, we have FA|Â = ΦTA

A|Â, where TA denotes the transposition over the A subsystem.
Redefining the variable ρ as ρT , we then immediately obtain Eq. (8) as this last step leaves
the constraints invariant. ◀

In Lemma 1, the optimisation is now taken over all product states with respect to the
tripartition A1Q1T |A2Q2T̂ |SŜ satisfying the stated linear constraints. Since product states
are extreme points in the set of separable states, we can equivalently think of the above as
an optimisation over the convex hull of the feasible states, where the feasible states are all
product states satisfying the linear constraints. This gives the claimed connection to the
quantum separability problem.

2.2 Hierarchy of semidefinite programming relaxations
In the previous section, we showed that ωQ(T )(V, π) can be rephrased as a variant of the
quantum separability problem which is subject to additional linear constraints. However,
solving quantum separability problems is known to be NP-hard [16, 17], and our mapping
does not necessarily make the problem more approachable. Fortunately, there are well-known
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relaxations for the quantum separability condition; the Doherty-Parrilo-Spedalieri (DPS)
hierarchy [12] based on extendibility, which is strongly related to the notion of monogamy of
entanglement [33].

▶ Definition 3 (Extendibility). A bipartite quantum state ρAB is n-extendible if there exists a
multipartite quantum state ρABn such that

trBn−1 [ρABn ] = ρAB , (IA ⊗ Uπ
Bn) (ρABn) = ρABn ∀π ∈ S(Bn), (13)

where S(Bn) is the symmetric group over Bn, Uπ
Bn(·) = Uπ

Bn(·)(Uπ
Bn)† is the adjoint repres-

entation of the group, and Uπ
Bn is a unitary permutation operator acting on Bn.

Extendible states have two main advantages. Firstly, deciding if a state is n-extendible can
be done efficiently via SDPs [11, 12]; for fixed n, the computation resources scale polynomially
in the system dimension. Secondly, it is shown that a quantum state is n-extendible for all
n ≥ 2 if and only if the state is separable [14, 30]. Thus, the set of n-extendible states is
a good outer approximation for the separable set and converges to the separable set when
n → ∞. The same idea can be generalised to the tripartite case as well; (n1, n2)-extendible
states ρABC with the two-fold extension ρABn1 Cn2 . As in the bipartite case, the set of
(n1, n2)-extendible states converges to the set of tripartite separable states when n1 → ∞
and n2 → ∞ [13].

To derive SDP relaxations for ωQ(T )(V, π) in Eq. (8), we can simply replace the optimisa-
tion variables with (n, n)-extendible states with respect to the appropriate tripartition.

sdpn(V, π, T ) := |T |2 max
ρ

tr
[(

VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)
ρ(A1Q1T )(A2Q2T̂ )(SŜ)

]
(14)

s.t. ρ(A1Q1T )(A2Q2T̂ )n(SŜ)n ≥ 0 , tr
[
ρ(A1Q1T )(A2Q2T̂ )n(SŜ)n

]
= 1 (15)

ρ(A1Q1T )(A2Q2T̂ )n(SŜ)n perm. inv. on (A2Q2T̂ )n wrt (A1Q1T )(SŜ)n (16)

ρ(A1Q1T )(A2Q2T̂ )n(SŜ)n perm. inv. on (SŜ)n wrt (A1Q1T )(A2Q2T̂ )n (17)

trA1 [ρ(A1Q1T )(A2Q2T̂ )n(SŜ)n ] =
(

σQ1 ⊗ IT

|T |

)
⊗ ρ(A2Q2T̂ )n(SŜ)n (18)

trA2 [ρ(A1Q1T )(A2Q2T̂ )n(SŜ)n ] =
(

σQ2 ⊗
IT̂

|T |

)
⊗ ρ(A1Q1T )(A2Q2T̂ )(n−1)(SŜ)n (19)

ρ
TA1Q1T

(A1Q1T )(A2Q2T̂ )n(SŜ)n
≥ 0 , ρ

T(A2Q2T̂ )n

(A1Q1T )(A2Q2T̂ )n(SŜ)n
≥ 0, . . . , (20)

where σQi
=
∑

qi
πi(qi) |qi⟩⟨qi|Qi

for i = 1, 2, and the last line Eq. (20) contains all positive
partial transpose (PPT) conditions with respect to all the cuts

A1Q1T : A1
2Q1

2T̂ 1 : · · · : An
2 Qn

2 T̂ n : S1Ŝ1 : · · · : SnŜn. (21)

Note that in addition to the n-extendibility conditions Eq. (16)–(17) enforced by the DPS
hierarchy, we arrive at the additional linear constraints, Eq. (18)–(19), originating from
the constraints in Eq. (8). These additional constraints are crucial in order to obtain the
improved complexity bounds. Furthermore, we are able to combine our SDPs with the NPA
constraints [27], so that our new hierarchy is guaranteed to produce at least as good outputs
as the ones produced by the NPA hierarchy (see the full version [19, Section 5]),

sdpNPA
n (V, π, T ) := sdpn(V, π, T ) with Γn

(
ρ(A1Q1T )(A2Q2T̂ )n(SŜ)n

)
≥ 0, (22)

where Γn(ρ) denotes the n-th level NPA matrix.
It is worth noting that sdpn(V, π, T ) in Eq. (14) is naturally upper bounded by 1.
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▶ Proposition 4. Let sdpn(V, π, T ) be the n-th level SDP relaxation for the two-player
free game with rule matrix V , probability distribution π(q1, q2) = π1(q1)π2(q2), and |T |2-
dimensional quantum correlation. Then, we have that

0 ≤ sdpn(V, π, T ) ≤ 1. (23)

The proof can be found in the full version [19, Proposition 5].

3 Convergence of the hierarchy

3.1 Tripartite quantum de Finetti theorem with additional linear
constraints

Quantum de Finetti theorems provide a quantitative bound on how close n-extendible states
are to the set of separable states in trace distance as a function of both n and the system’s
dimensions. This information can be converted to the upper bound on the accuracy of
our SDP relaxations. However, since the quantum separability problem for ωQ(T )(V, π) in
Eq. (8) is subject to the additional linear constraints, we cannot directly exploit the standard
quantum de Finetti theorem and need an adapted version (we refer to [6, Example 3.7] for a
discussion of counterexamples). What we need is an upper bound on how close n-extendible
states satisfying the linear constraints are to the separable states satisfying the same linear
constraints.

In this paper, we derive improved multipartite quantum de Finetti theorems with ad-
ditional linear constraints employing the information-theoretic proof technique based on
quantum entropy inequalities [8, 9]. Using this adapted quantum de Finetti theorems is
crucial to obtain the improved complexity bounds on approximating ωQ(T )(V, π) in the next
section. Here, we state the tripartite version of the theorem.

▶ Theorem 5. Let ρABn1 Cn2 be a quantum state which is invariant under permutations
on Bn1 with respect to ACn2 and on Cn2 with respect to ABn1 , satisfying for linear maps
EA→Ã, ΛB→B̃, and ΓC→C̃ and operators XÃ, YB̃, and ZC̃ that

(EA→Ã ⊗ IBn1 Cn2 ) (ρABn1 Cn2 ) = XÃ ⊗ ρBn1 Cn2 linear constraint on A (24)
(ΛB→B̃ ⊗ IBn1−1Cn2 ) (ρBn1 Cn2 ) = YB̃ ⊗ ρBn1−1Cn2 linear constraint on B (25)
(IBn1 Cn2−1 ⊗ ΓC→C̃) (ρBn1 Cn2 ) = ZC̃ ⊗ ρBn1 Cn2−1 linear constraint on C. (26)

Then, there exist a probability distribution {pi}i∈I and sets of quantum states {σi
A}i∈I ,

{ωi
B}i∈I and {τ i

C}i∈I such that we have that∥∥∥ρABC −
∑
i∈I

piσ
i
A ⊗ ωi

B ⊗ τ i
C

∥∥∥
1

≤ min
{

183/2
√

|ABC|, 4|BC|
}

×
√

2 ln 2
(√

log |A| + 8 log |B|
n2

+ log |A|
n1

)
(27)

EA→Ã

(
σi

A

)
= XÃ, ΛB→B̃

(
ωi

B

)
= YB̃ , ΓC→C̃

(
τ i

C

)
= ZC̃ ∀i ∈ I. (28)

Like any other de Finetti theorem, Theorem 5 can be understood as a statement on the
monogamy of entanglement; a multipartite system, described by an extendible state, cannot
possess much entanglement between any tripartition. Instead of directly working with the
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trace distance, we prove the above theorem via quantum entropy inequalities and chain rules.
This approach allows us to carefully quantify how correlations are divided between different
partitions of the extendible states.

For k given quantum systems A1, ..., Ak and a classical system R described by the global
state ρA1A2···AkR, the conditional multipartite quantum mutual information is defined as

I(A1 : A2 : . . . : Ak|R) :=
k∑

i=1
S(AiR) − S(A1A2 . . . AkR) − S(R), (29)

where S(Ai) = − tr [ρAi log ρAi ] is the von Neumann entropy [23] of the marginal state ρAi .
This quantity has a few useful mathematical properties. One is its relation to the bipartite
ones [9, Lemma 3]

I(A1 : . . . : Ak|R) = I(A1 : A2|R) + I(A1A2 : A3|R) + . . . + I(A1 . . . Ak−1 : Ak|R), (30)

and another one is the chain rule

I(AB : C|D) = I(B : C|D) + I(A : C|BD). (31)

The conditional multipartite quantum mutual information is mathematically equivalent to
the relative entropy distance between the state and the tensor product of its conditional
marginals

I(A1 : A2 : . . . : Ak|R) = D(ρA1···Ak|R∥ρA1|R ⊗ . . . ⊗ ρAk|R), (32)

where ρAi|R is the marginal state of the conditional ρA1···Ak|R = ρ
−1/2
R ρA1···Ak

ρ
−1/2
R , and

D(ρ||σ) = tr[ρ(log ρ − log σ)] is the relative entropy between ρ and σ whenever supp(ρ) ⊂
supp(σ). The relative entropy can be further related to the trace distance via Pinsker’s
inequality. As the tensor product of marginal states is a separable state, if we can find an
upper bound on the conditional multipartite quantum mutual information of an extendible
state ρABn1 Cn2 , we can show Eq. (27) in Theorem 5.

For the first ingredient, we derive a general upper bound on the conditional multipartite
quantum mutual information of a state with classical subsystems.

▶ Lemma 6. Consider a quantum state ρAZn1 W n2 classical on the Z- and W -systems. Then,
there exist 0 ≤ m̄ < n1 and 0 ≤ l̄ < n2 such that

I(A : Zm̄+1 : Wl̄+1|Zm̄W l̄) ≤ log |A|
n1

+ log |A| + log |Z|
n2

. (33)

Moreover, by Pinsker’s inequality, this implies that

Ezm̄wl̄

{∥∥∥ρAZm̄+1Wl̄+1|zm̄wl̄ − ρA|zm̄wl̄ ⊗ ρZm̄+1|zm̄wl̄ ⊗ ρWl̄+1|zm̄wl̄

∥∥∥2

1

}
(34)

≤ 2 ln 2
(

log |A|
n1

+ log |A| + log |Z|
n2

)
.

Here, we use the notation ρA|z for the conditional state after measurement on classical
system Z when the measurement outcome is z, i.e.,

ρA|z :=
trZ [ρAZ(IA ⊗ |z⟩⟨z|Z)]
tr [ρAZ(IA ⊗ |z⟩⟨z|Z)] . (35)

The proof of Lemma 6 is as follows.
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Proof of Lemma 6. The multipartite quantum mutual information I(A : Zm̄+1 :
Wl̄+1|Zm̄W l̄) can be expressed in terms of bipartite ones using Eq. (30):

I(A : Zm̄+1 : Wl̄+1|Zm̄W l̄) = I(A : Zm̄+1|Zm̄W l̄) + I(AZm̄+1 : Wl̄+1|Zm̄W l̄). (36)

The two terms in the right hand side (RHS) are the bipartite mutual information between
quantum and classical systems, and this allows us to find an upper bound for each term
using the chain rule in Eq. (31). Additionally, we also make use of a general upper bound

I(A : Z|X) ≤ log |A| (37)

for a classical-quantum state ρAZX with classical Z and X systems [19, Lemma 13].
First term: For any l, it holds that

I(A : Zn1 |W l) =
n1−1∑
m=0

I(A : Zm+1|ZmW l) ≤ log |A|, (38)

where the first equality is the chain rule in Eq. (31) and the second inequality is found by
applying Eq. (37) to I(A : Zn1 |W l). Then, summing over all l gives us

n1−1∑
m=0

n2−1∑
l=0

I(A : Zm+1|ZmW l) ≤ n2 log |A|. (39)

Second term: Using the same argument, for any m, it holds that

I(AZm+1 : W n2 |Zm) =
n2−1∑
l=0

I(AZm+1 : Wl+1|ZmW l) ≤ log |AZm+1|, (40)

and summing over m gives us
n1−1∑
m=0

n2−1∑
l=0

I(AZm+1 : Wl+1|ZmW l) ≤ n1 (log |A| + log |Z|) . (41)

Combining Eq. (39) and Eq. (41) gives

n2 log |A| + n1 (log |A| + log |Z|)

≥
n1−1∑
m=0

n2−1∑
l=0

[
I(A : Zm+1|ZmW l) + I(AZm+1 : Wl+1|ZmW l)

]
≥ n1n2

[
I(A : Zm̄+1|Zm̄W l̄) + I(AZm̄+1 : Wl̄+1|Zm̄W l̄)

]
, (42)

where m̄ and l̄ are the indices of the smallest element in the sum. Dividing both sides by
n1n2 gives us the desired relation,

I(A : Zm̄+1 : Wl̄+1|Zm̄W l̄) = I(A : Zm̄+1|Zm̄W l̄) + I(AZm̄+1 : Wl̄+1|Zm̄W l̄)

≤ log |A|
n1

+ log |A| + log |Z|
n2

. (43)

This ends the proof of Eq. (33). Then, using Eq. (32) and Pinsker’s inequality we can obtain
Eq. (34). ◀

As another ingredient, we derive two different types of informationally complete measure-
ments that achieve the optimal loss in distinguishability.
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▶ Lemma 7.
1. ([8, Lemma 14]) There exist fixed measurements MA, MB, and MC with at most |A|8,

|B|8, and |C|8 outcomes, respectively, such that for every traceless Hermitian operator
γABC on HABC we have

∥γABC∥1 ≤ 183/2
√

|ABC| · ∥(MA ⊗ MB ⊗ MC) (γABC)∥1. (44)

2. There exists a fixed measurement MB with at most |B|6 outcomes such that for every
traceless Hermitian operator γAB on HAB we have

∥γAB∥1 ≤ 2|B| · ∥(IA ⊗ MB) (γAB)∥1. (45)

The first part is straightforward from [8, Lemma 14]. We remark that when a traceless
Hermitian operator already has a classical subsystem, i.e., γABCZ with classical Z-system,
the dimension factor only includes the dimension of the quantum systems

∥γABCZ∥1 ≤ 183/2
√

|ABC| · ∥(MA ⊗ MB ⊗ MC ⊗ IZ) (γABCZ)∥1. (46)

This follows easily as ∥
∑

z ρz
A ⊗ |z⟩⟨z|∥1 =

∑
z ∥ρz

A∥1 for classical-quantum states ρAZ .
The proof of the second part is given in Section 5. The main idea is to identify the

one-way quantum teleportation protocol as a candidate for the optimal measurement and is
largely inspired by [22, Theorem 16]. Our result improves on the factor

√
18B3/2 given in [9,

Eq.(68)]. Moreover, as there exist quantum states ρAB and σAB such that [24]

∥ρAB − σAB∥1 = 2 and sup
MB

∥(IA ⊗ MB) (ρAB − σAB)∥1 = 2
|B| + 1 , (47)

our result establishes that the dimension dependence for the optimal loss in distinguishability
relative to quantum side information is Θ(|B|). This answers a question left open in [6].

Then, for the extendible state ρABn1 Cn2 in Theorem 5, applying the optimal measurement
M as specified in Lemma 7 to the state (to make it partially classical), and applying Lemma 6
to the resulting classical-quantum state allows us to derive Theorem 5.

Proof of Theorem 5. Let MB→Y be a quantum-to-classical measurement from B to the
classical system Y , and MC→Z be a quantum-to-classical measurement from C to the
classical system Z. We apply these measurements to the quantum state ρABn1 Cn2 and will
denote the outcome classical-quantum state as ρAY n1 Zn2 . Then, according to Lemma 6,
there exist m ∈ {0, · · · , n1 − 1} and ℓ ∈ {0, · · · , n2 − 1} such that

Eymzℓ

{∥∥ρAYm+1Zℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρYm+1|ymzℓ ⊗ ρZℓ+1|ymzℓ

∥∥2
1

}
≤ 2 ln 2

(
log |A|

n1
+ log |A| + log |Y |

n2

)
. (48)

As ρABn1 Cn2 is invariant under permutations of the systems Bn1 and Cn2 , we can always
find m and l satisfying Eq. (48).

Now, let us define

γABC ≡ ρABm+1Cℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ . (49)

Note that

IA ⊗ MB→Y ⊗ MC→Z (γABC) = ρAYm+1Zℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρYm+1|ymzℓ ⊗ ρZℓ+1|ymzℓ .

(50)
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Using the second part of Lemma 7 iteratively, we can obtain

∥γABC∥1 ≤ 2|C|∥(IAB ⊗ MC→Z) (γABC)∥1

≤ 2|B| × 2|C|∥(IAC ⊗ MB→Y ) (IAB ⊗ MC→Z) (γABC)∥1

= 4|BC|∥(IA ⊗ MB→Y ⊗ MC→Z) (γABC)∥1, (51)

with |Y | ≤ |B|6. We can also exploit the first part of Lemma 7 to obtain

∥γABC∥1 ≤
√

183|ABC| ∥(MA ⊗ MB→Y ⊗ MC→Z) (γABC)∥1

≤
√

183|ABC| ∥(IA ⊗ MB→Y ⊗ MC→Z) (γABC)∥1 (52)

with |Y | ≤ |B|8, where the second inequality follows from the monotonicity of the trace norm
under completely positive and trace preserving (CPTP) maps. Depending on the dimensions,
we can freely choose the tighter bound between the two cases. Combining Eq. (48) with the
above two results we obtain

Eymzℓ

{∥∥ρABm+1Cℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

∥∥2
1

}
≤ min

{√
183|ABC|, 4|BC|

}2
× 2 ln 2

(
log |A|

n1
+ log |A| + 8 log |B|

n2

)
. (53)

Then, we have∥∥ρABm+1Cℓ+1 − Eymzℓ

{
ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

}∥∥
1

≤ Eymzℓ

{∥∥ρABm+1Cℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

∥∥
1

}
≤
√
Eymzℓ

{∥∥ρABm+1Cℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

∥∥2
1

}
≤ min

{√
183|ABC|, 4|BC|

}
×

√
2 ln 2

√ log |A|
n1

+ log |A| + 8 log |B|
n2

 , (54)

where we used the triangular inequality for Schatten p-norms in the second line and the con-
cavity of the square function in the third line. As Eymzℓ

{
ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

}
is a separable state with respect to the tripartition A|B|C, this proves the first half of the
theorem.

The remaining part is to check whether ρA|ymzℓ , ρBm+1|ymzℓ and ρCℓ+1|ymzℓ satisfy the
desired linear constraints. Let us denote Myi

Bi
and Mzi

Ci
as the POVM elements of the

measurements MBi→Yi
and MCi→Zi

corresponding to the measurement outcomes yi and zi,
respectively. Then, we find

EA→Ã

(
σi

A

)
= EA→Ã

(
ρA|ymzℓ

)
(55)

=
TrBmCℓ

[
(IA ⊗ My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
)EA→Ã (ρABmCℓ)

]
Tr
[
(IA ⊗ My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
)ρABmCℓ

]
=

TrBmCℓ

[
(IA ⊗ My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
) (XÃ ⊗ ρBmCℓ)

]
Tr
[
(IA ⊗ My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
)ρABmCℓ

]
= XÃ.
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ΛB→B̃

(
ωi

B

)
= ΛB→B̃

(
ρBm+1|ymzℓ

)
(56)

=
TrBmCℓ

[
(IB̃ ⊗ My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
)ΛB→B̃ (ρBm+1Cℓ)

]
Tr
[
(My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ IBm+1 ⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
)ρBm+1Cℓ

]
=

TrBmCℓ

[
(IB̃ ⊗ My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
) (YB̃ ⊗ ρBmCℓ)

]
Tr
[
(My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ IBm+1 ⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
)ρBm+1Cℓ

]
= YB̃ .

ΓC→C̃

(
τ i

C

)
= ΓC→C̃

(
ρCℓ+1|ymzℓ

)
(57)

=
TrBmCℓ

[
(IC̃ ⊗ My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
)ΓC→C̃ (ρBmCℓ+1)

]
Tr
[
(My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
⊗ ICℓ+1) (ρBmCℓ+1)

]
=

TrBmCℓ

[
(IC̃ ⊗ My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
) (ZC̃ ⊗ ρBmCℓ)

]
Tr
[
(My1

B1
⊗ · · · ⊗ Mym

Bm
⊗ Mz1

C1
⊗ · · · ⊗ Mzℓ

Cℓ
⊗ ICℓ+1) (ρBmCℓ+1)

]
= ZC̃ . ◀

Theorem 5 describes a general setting; both the extendible state and the linear constraints
do not have any refined structures. However, in our case, we have more information about
the state and the constraints. The extendible state ρ(A1Q1T )(A2Q2T̂ )n(SŜ)n in sdpn(V, π, T )
to which we apply the de Finetti theorem already has some classical subsystems, and the
linear constraints are partial trace constraints. We can exploit this information to obtain a
better bound in the quantum de Finetti theorem. We state this special case as a lemma.

▶ Lemma 8. Let ρ(AXX̃)Bn1 (CZZ̃)n2 be a quantum state with classical XX̃- and ZZ̃-systems
invariant under permutation on Bn1 and (CZZ̃)n2 with respect to the other systems, satisfying

trX

[
ρ(AXX̃)Bn1 (CZZ̃)n2

]
= XAX̃ ⊗ ρBn1 (CZZ̃)n2 (58)

trZ

[
ρ(AXX̃)Bn1 (CZZ̃)n2

]
= ZCZ̃ ⊗ ρ(AXX̃)Bn1 (CZZ̃)n2−1 (59)

for some operators XAX̃ , and ZCZ̃ . Then, there exist a probability distribution {pi}i∈I and
sets of quantum states {σi

AXX̃
}i∈I , {ωi

B}i∈I and {τ i
CZZ̃

}i∈I such that∥∥∥∥∥ρ(AXX̃)B(CZZ̃) −
∑
i∈I

pi σi
AXX̃

⊗ ωi
B ⊗ τ i

CZZ̃

∥∥∥∥∥
1

≤ min
{

183/2
√

|ABC|, 4|BC|
}

×
√

4 ln 2

√ log |X| + 8 log |B|
n2

+ log |X|
n1

 (60)

with trX

[
σi

AXX̃

]
= XAX̃ and trZ

[
τ i

CZZ̃

]
= ZCZ̃ for all i ∈ I.

The proof of Lemma 8 is similar to the one of Theorem 5 apart from the following two
ingredients – leading to the tighter bound in Eq. (60) in comparison to Eq. (27):

The partial trace constraints allow us to use a stronger bound on the conditional quantum
mutual information in the proof of Lemma 6 (instead of Eq. (37)). Namely, for a quantum
state ρABCD satisfying trA[ρABCD] = ρB ⊗ ρCD, we have that

I(AB : C|D)ρ = I(B : C|D) + I(A : C|DB) ≤ 2 log |A|. (61)

Using this results in a better bound with |X| instead of |AXX̃| in the square root part of
Eq. (60). Please see Section 4.2, especially Lemma 6 and Lemma 7, in the full version [19]
for a more detailed discussion.
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As we remarked in Eq. (46) after Lemma 7, the dimension factor only comes from the
measurements on the quantum systems. This is why there is no |XX̃ZZ̃| contribution in
the first part of Eq. (60).

3.2 Convergence of the hierarchy

Lemma 8 allows us to find an upper bound on the accuracy of the SDP relaxations in Eq. (14).
We derive analytical bounds on the convergence speed of our SDP hierarchy in terms of the
dimension |T | and the size of the game.

▶ Theorem 9. Let sdpn(V, π, T ) be the n-th level SDP relaxation for the two-player free game
with rule matrix V , probability distribution π(q1, q2) = π1(q1)π2(q2), and quantum correlation
of dimension |T |2. Then, we have

0 ≤ sdpn(V, π, T ) − ωQ(T )(V, π) ≤ O

(
|T |6

√
log |T ||A|

n

)
. (62)

Hence, we have ωQ(T )(V, π) = limn→∞ sdpn(V, π, T ).

Proof. Let ρA1Q1T A2Q2T̂ SŜ be the optimal state of the n-th level relaxation sdpn(V, π, T ).
The state should be (n, n)-extendible since all feasible states must be (n, n)-extendible states
satisfying the linear constraints. Then, we have

sdpn(V, π, T ) = |T |2 tr
[(

VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)
ρA1Q1T A2Q2T̂ SŜ

]
= |T |2 tr

[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(∑
i

pi σi
A1Q1T ⊗ ωi

A2Q2T̂ ⊗ τ i
SŜ

)]

+ |T |2 tr

[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(
ρA1Q1T A2Q2T̂ SŜ −

∑
i

pi σi
A1Q1T ⊗ ωi

A2Q2T̂ ⊗ τ i
SŜ

)]
≤ ωQ(T )(V, π)

+ |T |2 tr

[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(
ρA1Q1T A2Q2T̂ SŜ −

∑
i

pi σi
A1Q1T ⊗ ωi

A2Q2T̂ ⊗ τ i
SŜ

)]
, (63)

where
∑

i pi σi
A1Q1T ⊗ ωi

A2Q2T̂
⊗ τ i

SŜ
is one of the close separable states to ρA1Q1T A2Q2T̂ SŜ

specified by Lemma 8. As sdpn(V, π, T ) is an upper bound for ωQ(T )(V, π) we obtain∣∣∣sdpn(V, π, T ) − ωQ(T )(V, π)
∣∣∣

≤ |T |2
∣∣∣∣∣tr
[(

VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(
ρA1Q1T A2Q2T̂ SŜ −

∑
i

pi σi
A1Q1T ⊗ ωi

A2Q2T̂ ⊗ τ i
SŜ

)]∣∣∣∣∣
≤ |T |2

∥∥VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

∥∥
∞

∥∥∥∥∥ρA1Q1T A2Q2T̂ SŜ −
∑

i

pi σi
A1Q1T ⊗ ωi

A2Q2T̂ ⊗ τ i
SŜ

∥∥∥∥∥
1

(by Hölder’s inequality)

= |T |2∥VA1A2Q1Q2 ∥∞

∥∥ΦT T̂ |SŜ

∥∥
∞

∥∥∥∥∥ρA1Q1T A2Q2T̂ SŜ −
∑

i

pi σi
A1Q1T ⊗ ωi

A2Q2T̂ ⊗ τ i
SŜ

∥∥∥∥∥
1
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= |T |4
∥∥∥∥∥ρA1Q1T A2Q2T̂ SŜ −

∑
i

pi σi
A1Q1T ⊗ ωi

A2Q2T̂ ⊗ τ i
SŜ

∥∥∥∥∥
1(

by ∥VA1A2Q1Q2 ∥∞ = 1,
∥∥ΦT T̂ |SŜ

∥∥
∞

= |T |2
)

≤ |T |4
[

183/2|T |2
(√

2 ln 2
)(√ log |A1| + 8 log |SŜ|

n
+ log |A1|

n

)]
(by Lemma 8)

= 183/2|T |6
(√

2 ln 2
)(√ log |A| + 16 log |T |

n
+ log |A|

n

)
. (64)

Here, we set A = T , X = A1, X̃ = Q1 B = SŜ, C = T̂ , Z = A2, and Z̃ = Q2 when we
applied Lemma 8. ◀

It is worth noting that neither the PPT nor NPA constraints are used to derive this
convergence speed.

Theorem 9 allows us to provide an upper bound on the computational complexity of
calculating ωQ(T )(V, π) for two-player free games. To achieve a constant error ϵ, it is sufficient
to go up to the following level of the hierarchy:

O

(
|T |6

√
log |TA|

n

)
≤ ϵ ⇐⇒ n ≥ O

(
|T |12 log |TA|

ϵ2

)
. (65)

The resulting size of the program is stated in Eq. (1), where the dependence is quasi-polynomial
in A and polynomial in Q. Our result is the quantum extension of the quasi-polynomial
time approximation scheme for computing classical values ωC(V, π) of two-player free games
developed in [1, 9].

3.2.1 General games
We hitherto assume that the choice of questions for Alice and Bob is independent, i.e.,
π(q1, q2) = π1(q1)π2(q2), which corresponds to free games. We can use the same protocol
that we used for free games to derive upper bounds on the computational complexity of
calculating ωQ(T )(V, π) of general games, when π(q1, q2) ̸= π1(q1)π2(q2). The key difference
is that for general games we absorb π(q1, q2) into the rule matrix V (a1, a2, q1, q2) instead of
EA1Q1T and DA2Q2T̂ when we connect ωQ(T )(V, π) to the quantum separability problem in
Lemma 1. This leaves some additional factor |Q1||Q2| in the objective function, which leads
to a worse upper bound on the computational complexity. For a general two-player game
with |T |2-dimensional quantum correlation, we can compute additive ϵ-approximations of
ωQ(T )(V, π) with a semidefinite program of size

exp
(

O

(
|T |12|Q|4

(
log2 |A||T | + log |A||T | log |Q|

)
ϵ2

))
, (66)

where |A| and |Q| are the number of possible answers and questions, respectively. The
dependence is still quasi-polynomial in |A|, but exponential in |Q| in contrast to the case
of free games in Eq. (1). The detailed derivation can be found in Appendix C of the full
version [19, Appendix C].
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4 Conclusions

In this paper, we study the characterisation of quantum correlations of fixed dimension
and, more specifically, provide a converging hierarchy of SDP relaxations with improved
analytical convergence speed for the set of fixed-dimensional quantum correlations. This is
done by employing a variant of the quantum separability problem and multipartite quantum
de Finetti theorems with additional linear constraints. Our result leads to an upper bound
on the computational complexity of additive ϵ-approximation for ωQ(T )(V, π) of two-player
free games with T × T -dimensional quantum correlation.

We conclude with a few remarks on possible future studies. Firstly, for a given level n,
sdpn(V, π, T ) has a relatively large-sized optimisation variable. One possible way to improve
this aspect is to exploit the symmetry embedded in the program to reduce the size of the
optimisation variable. We could employ some existing symmetry-finding programs such
as [31] to achieve this. Secondly, it is still not certain whether the T -dependence in Eq. (1) is
optimal. In the classical limit (T = 1), our result matches the best-known classical result for
free games in terms of A and Q – which also has a matching hardness result [1]. This implies
that the dependence on A and Q in Eq. (1) is optimal, but there could be more efficient
approximation algorithm in terms of T -dependence. For example, one could explore ϵ-net
based methods as in [7, 32].

5 Proof of Lemma 7

In this section, we prove the second part of Lemma 7 which states that for a traceless
Hermitian operator γAB on HAB, there exists a measurement MB on HB with at most
|B|6 outcomes such that ∥(IA ⊗ MB) (γAB)∥1 ≥ 1

2|B| ∥γAB∥1. The proof is inspired by [22,
Theorem 16].

Proof of the second part of Lemma 7. Let us start with the maximally entangled state

ΦA′|B′ = |Φ⟩⟨Φ|A′|B′ where |Φ⟩A′|B′ = 1
|A′||B′|

∑
i

|i⟩A′ |i⟩B′ , and |A′| = |B′|. (67)

We can create a separable state ωA′B′ by mixing ΦA′|B′ with another separable state
σA′B′ = IA′B′ −ΦA′|B′

|B′|2−1 as

ωA′B′ = 1
|B′|

ΦA′B′ + |B′| − 1
|B′|

σA′B′ ∈ SEP(A’: B’), (68)

where SEP(A’: B’) denotes the set of separable states with respect to the bipartition A′|B′.
Hence, we can write ωA′B′ =

∑
i piω

i
A′ ⊗ ωi

B′ for some probability distribution {pi}i and
states {ωi

A′}i and {ωi
B′}i with at most |A′B′|2 elements [18]. Next, we define a measurement

MB with operators {M̃B(i, k)}i,k, as well as a set of measurements {Mi,k
A }i,k with operators

{M̃ i,k
A (j)}j as

M̃B(i, k) = trB′

[
piU

†
B(k)

√
ωi

B′ΦBB′

√
ωi

B′UB(k)
]

and (69)

M̃ i,k
A (j) = trA′

[√
ωi

A′U
†
A′(k)NAA′(j)UA′(k)

√
ωi

A′

]
, (70)

where U(k) denote generalised Pauli operators, ωi
A′ and ωi

B′ are the elements of the decom-
position of ωA′B′ , and {NAA′(j)}j are measurement operators defined later. We can check
that both definitions indeed correspond to valid measurements:
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∑
i,k

M̃B(i, k) = IB ,
∑

j

M̃ i,k
A (j) = IA, and M̃B(i, k), M̃ i,k

A (j) ≥ 0 ∀i, k, j. (71)

The goal is to show that MB defined in Eq. (69) gives rise to Eq. (45). Before showing
that, however, it is helpful to understand where these measurements came from. They are
related to the quantum teleportation protocol [5]. Without loss of generality, let us assume
that |A| ≥ |B| = |A′| = |B′|. Then, the quantum teleportation protocol from B to A is a
quantum channel defined as [5]

τABA′B′→AA′(·) =
|B|2∑
k=1

UA′(k) trBB′

[
(·)
(
IAA′ ⊗ UB(k)ΦBB′U †

B(k)
)]

U†
A′(k). (72)

For a traceless Hermitian operator γAB , we then consider

∥τABA′B′→AA′ (γAB ⊗ ωA′B′)∥1 =
∑

j

|tr [NAA′(j) (τABA′B′→AA′ (γAB ⊗ ωA′B′))]| , (73)

where we used the expression ∥XA∥1 = max{MA(i)}i

∑
i |tr [MA(i)XA]| for the trace norm

with corresponding arg max {NAA′(j)}j to be used in Eq. (70). Then, we have

∥τABA′B′→AA′ (γAB ⊗ ωA′B′ )∥1

=
∑

j

∣∣∣∣∣∑
k

tr
[
NAA′ (j)

(
UA′ (k) trBB′

[
(γAB ⊗ ωA′B′ )

(
IAA′ ⊗ UB(k)ΦBB′ U†

B(k)
)]

U†
A′ (k)

)]∣∣∣∣∣
=
∑

j

∣∣∣∣∣∑
k

tr
[ (

U†
A′ (k)NAA′ (j)UA′ (k) ⊗ IBB′

) (
(γAB ⊗ ωA′B′ )

(
IAA′ ⊗ UB(k)ΦBB′ U†

B(k)
)) ]∣∣∣∣∣

=
∑

j

∣∣∣∣∣∑
k

tr
[ (

U†
A′ (k)NAA′ (j)UA′ (k) ⊗ U†

B(k)ΦBB′ UB(k)
)(

γAB ⊗
(∑

i

piω
i
A′ ⊗ ωi

B′

))]∣∣∣∣∣
=
∑

j

∣∣∣∣∣∑
i,k

tr
[((√

ωi
A′ U

†
A′ (k)NAA′ (j)UA′ (k)

√
ωi

A′

)
⊗
(

piU
†
B(k)

√
ωi

B′ ΦBB′
√

ωi
B′ UB(k)

))
(γAB ⊗ IA′B′ )

]∣∣∣∣∣
=
∑

j

∣∣∣∣∣∑
i,k

tr
[
γAB

(
M̃ i,k

A (j) ⊗ M̃B(i, k)
)]∣∣∣∣∣ . (74)

The measurement MB defined in Eq. (69) now gives rise to

∥(IA ⊗ MB) (γAB)∥1 (75)

=
∑
i,k

∥∥trB

[(
IA ⊗ M̃B(i, k)

)
γAB

]∥∥
1 (76)

=
∑
i,k

max
{Mi,k

A
(j)}j

∑
j

∣∣∣tr [(M i,k
A (j) ⊗ M̃B(i, k)

)
γAB

]∣∣∣ (77)

≥
∑
i,k

∑
j

∣∣∣tr [(M̃ i,k
A (j) ⊗ M̃B(i, k)

)
γAB

]∣∣∣ (78)

≥
∑

j

∣∣∣∣∣∣
∑
i,k

tr
[(

M̃ i,k
A (j) ⊗ M̃B(i, k)

)
γAB

]∣∣∣∣∣∣ (79)
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= ∥τABA′B′→AA′ (γAB ⊗ ωA′B′)∥1 (by Eq. (74)) (80)

=
∥∥∥∥τABA′B′→AA′

(
γAB ⊗

(
1

|B|
ΦA′B′ + |B| − 1

|B|
σA′B′

))∥∥∥∥
1

(81)

=
∥∥∥∥ 1

|B|
τABA′B′→AA′ (γAB ⊗ ΦA′B′) + |B| − 1

|B|
τABA′B′→AA′ (γAB ⊗ σA′B′)

∥∥∥∥
1

(82)

≥ 1
|B|

∥τABA′B′→AA′ (γAB ⊗ ΦA′B′)∥1 −
∥∥∥∥τABA′B′→AA′

(
γAB ⊗

(
|B| − 1

|B|
σA′B′

))∥∥∥∥
1
,

(83)

where in the third line we substituted the measurement operators {M̃ i,k
A (j)}j instead of the

maximisation, and in the last line we used the reverse triangular inequality. Note that the
first term in the last line is equivalent to ∥γAB∥1 since ΦA′B′ is the maximally entangled state.
Let us investigate the second term more closely. We have a chain of elementary implications

|B| − 1
|B|

σA′B′ ≤ |B| − 1
|B|

σA′B′ + 1
|B|

ΦA′B′ = ωA′B′

γAB ⊗ |B| − 1
|B|

σA′B′ ≤ γAB ⊗ ωA′B′∥∥∥∥τABA′B′→AA′

(
γAB ⊗

(
|B| − 1

|B|
σA′B′

))∥∥∥∥
1

≤ ∥τABA′B′→AA′ (γAB ⊗ ωA′B′)∥1∥∥∥∥τABA′B′→AA′

(
γAB ⊗

(
|B| − 1

|B|
σA′B′

))∥∥∥∥
1

≤
∑

j

∣∣∣∣∣∣
∑
i,k

tr
[
γAB

(
M̃ i,k

A (j) ⊗ M̃B(i, k)
)]∣∣∣∣∣∣

(by Eq. (74))∥∥∥∥τABA′B′→AA′

(
γAB ⊗

(
|B| − 1

|B|
σA′B′

))∥∥∥∥
1

≤ ∥(IA ⊗ MB) (γAB)∥1 (by Eq. (79))

(84)

and substituting this into Eq. (83) yields the claim

∥(IA ⊗ MB) (γAB)∥1 ≥ 1
|B|

∥γAB∥1 − ∥(IA ⊗ MB) (γAB)∥1. (85)

It remains to quantify the number of measurement outcomes of MB with measurement
operators {M̃B(i, k)}i,k defined in Eq. (70). The index i came from the number of elements
in the separable state ωA′B′ , which is at most |A′B′|2 = |B|4, and the index k came from
the number of generalised Pauli operators, which is |B|2. Therefore, the number of outcomes
is at most |B|6. ◀
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Abstract
We consider the directed minimum weight cycle problem in the fully dynamic setting. To the best of
our knowledge, so far no fully dynamic algorithms have been designed specifically for the minimum
weight cycle problem in general digraphs. One can achieve Õ(n2) amortized update time by simply
invoking the fully dynamic APSP algorithm of Demetrescu and Italiano [J. ACM ’04]. This bound,
however, yields no improvement over the trivial recompute-from-scratch algorithm for sparse graphs.

Our first contribution is a very simple deterministic (1 + ϵ)-approximate algorithm supporting
vertex updates (i.e., changing all edges incident to a specified vertex) in conditionally near-optimal
Õ(m log (W )/ϵ) amortized time for digraphs with real edge weights in [1, W ]. Using known techniques,
the algorithm can be implemented on planar graphs and also gives some new sublinear fully dynamic
algorithms maintaining approximate cuts and flows in planar digraphs.

Additionally, we show a Monte Carlo randomized exact fully dynamic minimum weight cycle
algorithm with Õ(mn2/3) worst-case update that works for real edge weights. To this end, we
generalize the exact fully dynamic APSP data structure of Abraham et al. [SODA’17] to solve the
multiple-pairs shortest paths problem, where one is interested in computing distances for some k

(instead of all n2) fixed source-target pairs after each update. We show that in such a scenario,
Õ((m + k)n2/3) worst-case update time is possible.
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1 Introduction

The all-pairs shortest paths problem (APSP) is one of the most fundamental graph problems.
Given a real-weighted directed graph G with n vertices, the goal is to compute the distance
matrix between all pairs of vertices u, v in G. APSP can be computed in Õ(nm) time [29, 41],
which is clearly near-optimal for sparse graphs (since the output consists of n2 numbers),
but is also conjectured to be optimal for the entire range of possible graph sparsities. Some
of the other core directed graph problems such as computing the diameter, the radius, or
the minimum weight cycle1 can be trivially reduced to APSP in O(n2) time by simply
inspecting the entries of the distance matrix. In fact, as shown by Vassilevska Williams
and Williams [47], for dense graphs APSP is known to be subcubically equivalent to many
problems which look easier at first sight, especially because their output is just a single

1 Also called the girth, or the weighted girth of a digraph. For simplicity, in this paper we very often use
minimum weight cycle to refer to the length of such a cycle rather than to the actual cycle. Moreover,
throughout this paper, our focus is on computing/maintaining that length instead of the actual cycle.
The obtained algorithms, however, can be easily extended to return a sought cycle with no additional
asymptotic overhead.
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number (as opposed to n2 numbers in APSP). These include e.g., the radius, the minimum
weight cycle, and the second shortest simple s, t path problems. For all these problems, just
like for APSP, the best known algorithms run in Õ(nm) time. Lincoln et al. [36] gave some
compelling reasons why improving upon this bound may also be impossible.

In this paper, our focus is on fully dynamic graph algorithms. Fully dynamic graph
algorithms allow updating the graph under both edge insertions and deletions, as opposed to
partially dynamic algorithms that allow either only insertions (incremental setting) or only
deletions (decremental setting). Fully dynamic APSP has been widely studied in the past.
Demetrescu and Italiano [18] showed that the distance matrix can be explicitly maintained in
Õ(n2) amortized time under vertex updates which are allowed to change all edges incident to
a single vertex at once. Thorup [45] simplified and slightly improved their algorithm. Clearly,
if the algorithm is required to maintain all distances explicitly, one cannot break through the
O(n2) time barrier since even a single edge update may change all the n2 pairwise distances.
Much of the work in this topic [2, 24, 46] has been devoted to obtaining good worst-case
bounds on the time needed to recompute the distance matrix and it is known that Õ(n2+2/3)
worst-case update time is possible [2, 24]. Interestingly, none of the known fully dynamic
algorithms for real-weighted dynamic APSP has o(n2) update time and a non-trivial query
procedure running in o(m) time. Such an algorithm, with Õ(m

√
n) amortized update time

and Õ(n3/4) query time, has so far been only described for sparse enough unweighted graphs
by Roditty and Zwick [43].

The algorithm of Demetrescu and Italiano [18] immediately implies Õ(n2) amortized
update bound for fully dynamic variants of all the most fundamental problems “trivially
reducible” to APSP – the aforementioned diameter, radius, or minimum weight cycle.
Surprisingly, as shown in [3], such an update bound is likely to be the best possible for
maintaining both the diameter and the radius (conditionally on so-called Strong Exponential
Time- and Hitting Set hypotheses [1, 26]), even if the graph remains sparse at all times and
(3/2 − ϵ)-approximation is allowed.

It is thus natural to ask whether there exist fully dynamic algorithms for the minimum
weight cycle problem that improve upon the reduction to fully dynamic APSP for sparse graphs,
possibly allowing some small multiplicative approximation. The fundamental difference
between the minimum weight cycle and diameter/radius problems is that the trivial reduction
of minimum weight cycle requires reading only m entries of the distance matrix, as opposed
to all n2 in the case of radius and diameter. As a result, by using the aforementioned fully
dynamic algorithm of Roditty and Zwick [43], one immediately gets Õ(mn3/4) amortized
update bound but merely for unweighted graphs. Note that this bound is always better than
recompute-from-scratch, and is truly subquadratic for sparse graphs. It is however not clear
whether such a bound can be obtained for real-weighted graphs, nor whether a much better
bound is attainable if we allow approximation.

Motivated by the above, in this paper we initiate the study of the directed minimum
weight cycle problem in the fully dynamic setting. To the best of our knowledge, this problem
has not been explicitly studied in the literature before. It is worth noting, however, that a
non-trivial fully dynamic algorithm has been shown for undirected planar graphs [37].

1.1 Our results
A fully dynamic approximate minimum weight cycle algorithm. Our first contribution is
a simple deterministic fully dynamic algorithm maintaining a (1 + ϵ)-approximation of the
minimum weight ϕ(G) of a cycle in a real-weighted directed graph G. If G has a negative
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cycle, then we define ϕ(G) = −∞, thus allowing the sought cycle to be non-simple. Note that
if we wanted the minimum weight cycle to be simple and simultaneously allowed negative
edge weights, the problem would become NP-hard via a reduction from Hamiltonian cycle.

▶ Theorem 1. Let G be an initially empty fully dynamic real-weighted digraph such that the
weight of each positive weight cycle in G always belongs to the interval [c, C], c, C ∈ R.

There exists an algorithm maintaining an estimate ϕ′ satisfying ϕ(G) ≤ ϕ′ ≤ (1 + ϵ)ϕ(G)
under vertex updates to G with amortized update time O((m + n log n) · log (C/c)/ϵ).

By Theorem 1, a simpler amortized update time bound of O((m + n log n) · log (nW )/ϵ)
for the fully dynamic (1 + ϵ)-approximate minimum weight cycle problem can be obtained in
two special cases:

if G has real-weights in {0} ∪ [1, W ],
if G has integer weights in (−∞, W ].

Via known conditional lower bounds on the static approximate minimum weight cycle
problem, the update time bound in Theorem 1 – as a function of m alone – is near-optimal
for both vertex and edge updates if we allow approximation factor less than 2 and O(m2−δ)
preprocessing time (for some δ > 0). Indeed, Dalirrooyfard and Vassilevska Williams [17]
proved that under so-called k-Cycle hypothesis [3], one cannot approximate the minimum
weight cycle within factor less than 2 in O(m2−δ) time, for any δ > 0. Clearly, if there was, say,
a dynamic 3/2-approximate minimum weight cycle algorithm with O(m2−δ) preprocessing
time, O(m1−δ) update time, and the same interface as our algorithm, m edge/vertex updates
would be sufficient to obtain a static 3/2-approximate minimum weight cycle algorithm
running in O(m2−δ) time. This would refute the k-Cycle hypothesis.

Observe that the Ω(m2−o(1)) conditional lower bound [17] (which implies that the
Ω(mn1−o(1)) bound holds for some sparsity m) on the complexity of static approximate
minimum weight cycle problem does not rule out dynamic vertex update bounds of the form
Õ(nα · m1−α) for some α ∈ (0, 1] or Õ(m1+β/n2β) for some β ∈ (0, 1/2], e.g., Õ(n), Õ(

√
nm),

or Õ(m3/2/n). However, if we limit ourselves to “combinatorial” algorithms that do not
rely on fast matrix multiplication, such O(m1−ϵ) bounds are ruled out for infinitely many
sparsities of the form m = Θ(n1+2/(k−1)), where k ≥ 3 is an odd integer [17, 36].

We stress that the aforementioned static conditional lower bounds do not rule out Õ(n)
or even Õ(

√
nm) amortized update time in the edge update model. In this case, for similar

reasons, only combinatorial approximate algorithms with amortized update time that is
sublinear in n for many sparsities, e.g., Õ(mβ · n1−2β) for β ∈ (0, 1/2], are unlikely to exist.

Fully dynamic cycles, flows, and cuts in planar graph. Interestingly, if we limit our
attention to the case of single edge updates (as opposed to vertex updates) and real weights
in {0} ∪ [1, W ], the amortized update cost of the data structure of Theorem 1 can always
be charged to the cost of performing a single edge update plus a single distance query on
O(log (nW )/ϵ) fully dynamic exact distance oracles, each maintaining some subgraph of G.
For general digraphs, this amounts to running Dijkstra’s algorithm in each of these subgraphs
since no non-trivial fully dynamic distance oracles with both update and query time o(m)
are known. However, such dynamic distance oracles are well-known to exist for planar
digraphs [21, 31, 34] which immediately leads to the following result.

▶ Theorem 2. Let G be a planar digraph G with real weights in {0} ∪ [1, W ]. There exists
an algorithm maintaining an (1 + ϵ)-approximate estimate of ϕ(G) under planarity preserving
edge insertions and deletions with amortized update time Õ(n2/3 log (W )/ϵ).

ICALP 2021
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Previously, no sublinear fully dynamic algorithm for minimum weight cycle in planar
directed graphs has been described. An exact algorithm for planar undirected graphs with
Õ(n5/6) update time was given by Łącki and Sankowski [37].

There is a well-known correspondence between simple cuts in an undirected plane graph G,
and simple cycles in its dual G∗. The correspondence, in a way, extends to directed planar
graphs (see e.g. [35, 38]). Nevertheless, currently the best known min s, t-cut algorithms
in planar digraphs [9, 19] are less efficient and use entirely different techniques than their
counterparts for planar undirected graphs [28]. Generally speaking, for cut/flow applications,
undirected planar graphs proved much more friendly to work with (see e.g., the discussion
in [19] or [38]). As an example of this phenomenon, an exact fully dynamic max s, t-flow
oracle (accepting s, t as query parameters) with Õ(n2/3) update and query time exists for
undirected plane graphs [28], whereas no such dynamic algorithm has been described for
directed plane graphs, even allowing approximation and just a single fixed source-sink pair.

It is known that in a plane digraph G, an s, t-flow of value f can be routed iff the dual
G∗

s,t,f of a certain augmentation of Gs,t,f depending on s, t and f contains no negative
cycles [19, 30, 39]. Roughly speaking, since the algorithm of Theorem 2 supports negative
weights, by running it on G∗

s,t,f for O(log (nW )/ϵ) distinct values of f , we obtain the following.

▶ Theorem 3. Let G be a plane embedded digraph with real edge capacities in {0} ∪ [1, W ]
and a fixed source/sink pair s, t. There exists an algorithm maintaining a (1− ϵ)-approximate
estimate of the value of maximum s, t-flow in G under embedding preserving edge insertions
and deletions with Õ(n2/3 log (W )/ϵ) amortized update time.

To the best of our knowledge, the above constitutes the first known fully dynamic
maximum s, t-flow algorithm for plane directed graphs with a sublinear update time bound.

Exact fully dynamic minimum weight cycle and MPSP. Finally, we consider maintaining
the minimum weight cycle exactly in a fully dynamic real-weighted digraph. We show:

▶ Theorem 4. Let G be a real-weighted digraph. There exists a Monte Carlo randomized fully
dynamic algorithm maintaining ϕ(G) under vertex updates with O((m + n log n)n2/3 log4/3 n)
worst-case update time. The answers produced are correct with high probability.2

Note that for sparse graphs, Theorem 4 allows recomputing the minimum weight cycle
in Õ(n5/3) time, i.e., polynomially faster than recompute-from-scratch and the dynamic
algorithm of Demetrescu and Italiano [18]. However, observe that [18] yields a better
amortized update bound for m = ω(n4/3).

In order to obtain Theorem 4, we generalize the fully dynamic APSP algorithm of
Abraham et al. [2] in a non-trivial way to solve what we call the multiple pairs shortest
paths problem (MPSP). In the MPSP problem, which may be of independent interest, one
requires to maintain only k fixed entries of the distance matrix, i.e., after each update we are
interested in distances between some source-target pairs (si, ti) for i = 1, . . . , k. Recall that
the minimum weight cycle of a directed graph can be computed by inspecting distances for m

source-target pairs. We obtain the following bound for the fully dynamic MPSP problem.

▶ Theorem 5. Let G be a real-weighted digraph. There exists a Monte Carlo randomized fully
dynamic MPSP data structure supporting vertex updates with O((m+n log n+k)n2/3 log4/3 n)
worst-case update time. The answers produced are correct with high probability.

2 That is, with probability at least 1 − 1/nc for any chosen constant c ≥ 1.
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Note that the aforementioned data structure of Roditty and Zwick [43] trivially implies
an MPSP data structure for unweighted digraphs with Õ(m

√
n + kn3/4) amortized update

bound. Our result shows that a better (even worst-case) bound for (even real-weighted)
sparse graphs can be achieved if the set of source-target pairs is fixed throughout.

Actually, just as the worst-case update time of the data structure of Abraham et al. [2]
can be very easily improved to Õ(n2.5) for unweighted graphs [2, Section 4.2], an unweighted
variant of our MPSP data structure has Õ((m + k)

√
n) worst-case update time.

Interestingly, it seems that the other known approaches to fully dynamic APSP in real-
weighted graphs [18, 23, 45], if adjusted, cannot easily yield subquadratic (in n) update times
for “sparse” instances of MPSP where m, k = O(n). This is because they all reconstruct
shortest paths in a hierarchical manner, by inductively stitching [23] or extending [18, 45]
paths recomputed earlier in the process. Even though the number of input source-target pairs
of interest may be small, these may require answers for Θ(n2) distinct source-target pairs at
lower levels of the hierarchy. The data structure of Abraham et al. [2], on the contrary, does
not use a hierarchical approach and can be thought as using a single “stitching layer”.

Since the algorithm behind Theorem 4 (Theorem 5) is exact, the maintained information,
i.e., the minimum weight of a cycle (the entries of the distance matrix of interest, resp.) is
unique. Therefore, if we are interested in maintaining the corresponding weight (distances,
resp.) only, the bounds in Theorems 4 and 5 hold against an adaptive adversary. However, if
we are required to output some actual minimum weight cycle (edges on some of the desired
shortest paths, resp.) we have to assume an oblivious adversary.3

1.2 Related work

Computing minimum weight cycles statically. The best known algorithm for computing
the minimum weight cycle in sparse graphs exactly runs in O(nm) time [40]. One can improve
upon this for graphs with small integer weights using matrix multiplication [16, 27, 42]. A
subcubic-time (1+ϵ)-approximation can also be achieved this way [10, 48]. Much of the recent
work regarded approximating the minimum weight cycle within factor at least 2 [13, 14, 17].

Dynamic APSP. Apart from the fully dynamic setting, APSP has also been widely studied
in partially dynamic settings. There exist efficient exact algorithms for unweighted digraphs
with Õ(n3) total update time in both incremental [4] and decremental [5, 20] settings. The
fully dynamic APSP algorithm [18, 45] is known to have total update time Õ(n3) in the
decremental setting for real-weighted digraphs, but only when each update removes all edges
incident to a vertex (and thus there are at most ≤ n updates). For weighted digraphs, a
nearly optimal Õ(nm log(W )/ϵ) total update time partially dynamic algorithm is known in
the (1 + ϵ)-approximate setting [7]. This algorithm assumes an oblivious adversary though.
Less efficient algorithms that are either deterministic or assume an adaptive adversary are
known [20, 33, 32]. Note that many of the above algorithms maintain the distance matrix
explicitly so they can be obviously used to maintain the minimum weight cycle (possibly
approximately) in the respective partially dynamic scenarios.

Dynamic APSP has also been studied in undirected graphs [6, 8, 12, 15, 23, 25, 44].

3 Abraham et al. [2] show how to extend their data structure so that it is capable of tracking lexicograph-
ically smallest shortest paths and thus works against an adaptive adversary, even when returning actual
paths is required. Out of the box, this additional feature costs Ω(n2) extra time per update, though.
Adapting this idea to minimum weight cycle and MPSP is an interesting possible further step.
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1.3 Organization of the paper
The rest of this paper is organized as follows. In Section 2 we fix the notation. In Section 3
we show a fully dynamic threshold cycle detection data structure that constitutes the heart of
the fully dynamic (1 + ϵ)-approximate minimum weight cycle algorithm of Theorem 1 proved
in Section 4. The applications of Theorem 1 to planar graph algorithms, in particular the
proofs of Theorems 2 and 3, are covered in detail in Section 5. In Section 6 we describe the
exact fully dynamic minimum weight cycle and fully dynamic MPSP algorithms. Due to
space constraints, Section 6 contains merely an overview of the adjustments we make to the
fully dynamic APSP algorithm of [2], and the details can be found in the full version.

2 Preliminaries

In this paper we deal with real-weighted directed graphs. We write V (G) and E(G) to denote
the sets of vertices and edges of G, respectively. We denote by n and m numbers of vertices
and edges (resp.) in the input graph. A graph H is a subgraph of G, which we denote by
H ⊆ G, if and only if V (H) ⊆ V (G) and E(H) ⊆ E(G). We write uv ∈ E(G) when referring
to edges of G and use wG(uv) to denote the weight of uv.

For an edge set F , we sometimes write G + F to denote the graph (V (G), E(G) ∪ F ).
If F contains an edge uv of weight x and uv ∈ E(G), then we assume that wG+F (uv) =
min(wG(uv), x). For an edge e we sometimes use G + e to denote G + {e}. For a subset
D ⊆ V , we define G \ D to be the graph G with all edges incident to vertices in D removed.

A sequence of edges P = e1 . . . ek, where k ≥ 1 and ei = uivi ∈ E(G), is called an s → t

path in G if s = u1, vk = t and vi−1 = ui for each i = 2, . . . , k. For brevity we sometimes also
express P as a sequence of k + 1 vertices u1u2 . . . ukvk or as a subgraph of G with vertices
{u1, . . . , uk, vk} and edges {e1, . . . , ek}. A path P is simple if ui ̸= uj for i ̸= j. A cycle is a
path such that u1 = vk. A simple cycle is a cycle that is a simple path.

The hop-length of P is the number of edges in P . We also say that P is a k-hop path. The
length of the path ℓ(P ) is defined as ℓ(P ) =

∑k
i=1 wG(ei). For convenience, we sometimes

consider a single edge uv as a path of hop-length 1. If P1 is a u → v path and P2 is a v → w

path, we denote by P1 · P2 (or simply P1P2) a path obtained by concatenating P1 with P2.
The distance δG(u, v) between the vertices u, v ∈ V (G) is the length of the shortest u → v

path in G, or ∞, if no u → v path exists in G.
Note that the distance is well-defined only if G contains no negative cycles. It is well

known that G has no negative cycles if and only if there exists a feasible price function
p : V → R satisfying wG(e) + p(u) − p(v) ≥ 0 for all uv = e ∈ E(G). It is well-known that,
given a feasible price function of G, one can compute single-source shortest paths in G using
Dijkstra’s algorithm even if G has edges with negative weights.

Define ϕ(G) to be the infimum of ℓ(C) through all cycles C ⊆ G. Note that here C is not
necessarily a simple cycle: in general finding minimum weight simple cycles with arbitrary
negative weights is NP-hard. In particular, if G contains no cycles at all, then we define
ϕ(G) := ∞. If G contains a negative cycle, then ϕ(G) = −∞. On the other hand, if ϕ(G) ≥ 0,
then G contains a simple cycle C ′ with ℓ(C ′) = ϕ(G). We call any such cycle C ′ a minimum
weight cycle. Observe that if ϕ(G) ≥ 0, then ϕ(G) = minuv∈E(G){δG(v, u) + wG(uv)}.

▶ Observation 6. Let H be a non-negatively weighted digraph and let v be its vertex. The
minimum weight of a cycle in H that goes through v can be computed in O(m + n log n) time.

Proof. First compute single-source shortest paths from v using Dijkstra’s algorithm. Note
that the minimum weight cycle through v has length minuv∈E(H){δH(v, u) + wH(uv)}. ◀
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When characterizing dynamic graph algorithms, we use the term edge update to refer to
a graph update that changes (i.e., inserts, removes, or alters the weight) a single edge of G.
On the other hand, a vertex update can change all edges incident (incoming or outgoing) to a
single chosen vertex v ∈ V (G). In this case, we say that such a vertex update is centered at v.

3 Fully dynamic threshold cycle detection

Consider the following decision variant of the fully dynamic minimum weight cycle problem.
Suppose we would like to maintain the information whether the minimum weight ϕ(G) of a
cycle in a real-weighted digraph G is below some threshold µ ≥ 0. In this section we show:

▶ Theorem 7. Let G be an initially empty real-weighted digraph and let µ ≥ 0. There exist
a fully dynamic algorithm maintaining the information whether ϕ(G) < µ and supporting
vertex updates in O(m + n log n) amortized time.

The idea is to keep the edge set E partitioned into two subsets E0 and E1 such that the
following two invariants are satisfied:
(1) For G0 = (V, E0) we have ϕ(G0) ≥ µ.
(2) If E1 ̸= ∅, then ϕ(G) < µ.
Observe that by the above invariants, ϕ(G) < µ if and only if E1 ̸= ∅.

Let us first consider the case when G has non-negative edges only. Then we can assume
µ > 0 since the answer for µ = 0 is trivially “no”.

We store E1 partitioned into subsets E1(v) for v ∈ V , so that each edge uv ∈ E1 is stored
in either E1(u) or E1(v) (this choice is arbitrary). Since the data structure is initialized with
an empty graph, initially E0 = ∅ and E1(v) = ∅ for all v ∈ V .

We also store the vertices v with E1(v) ̸= ∅ of G in a list Q sorted by the time when the
last insertion around v happened, i.e., at the end of Q we have a vertex that has been most
recently subject to insertion of edges around v.

Let us now describe an auxiliary procedure update(v) that will be used to fix the
invariants. update(v) does the following. We assume that E1(v) ̸= ∅. We compute the
minimum weight x of a cycle going through v in G0 + E1(v) = (V, E0 ∪ E1(v)) as described
in Observation 6. If x ≥ µ, the edges E1(v) are moved to E0, and the set E1(v) is emptied.
This change is reflected in Q by removing v from Q.

To handle and insertion of a set Fv of edges centered at some vertex v, we simply add
the edges Fv to E1(v), move v to the end of Q, and, if Q = {v}, run update(v).

To handle a deletion of an arbitrary set of edges F ⊆ E, we first remove each edge f ∈ F

from E0 or some set E1(w), wherever f resides. If some E1(w) is emptied this way, w is
removed from Q accordingly. Next, while Q ≠ ∅, we repeatedly run update(v) for the first
element v ∈ Q and stop if update(v) fails to empty the respective set E1(v).

We now prove the correctness of the algorithm, whose pseudocode is given in Algorithm 1.

▶ Observation 8. Suppose ϕ(G0) ≥ µ and let v ∈ V . Then ϕ(G0 + E1(v)) < µ if and only
if the shortest cycle going through v in G0 + E1(v) has weight less than µ.

Proof. By ϕ(G0) ≥ µ, a cycle of weight less than µ in G0 + E1(v) has to go through an edge
of E1(v). All of these edges are incident to the vertex v. ◀

Clearly, E0 and E1 form a partition of E after each insertion or deletion: the proce-
dure update only moves edges from E1 to E0.
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Algorithm 1 Detecting a cycle of weight less than µ.
procedure update(v)

1: x := the minimum weight of a cycle going through v in G0 + E1(v)
2: if x ≥ µ then
3: E0 := E0 ∪ E1(v)
4: E1(v) := ∅
5: Q := Q \ {v}

procedure insert(Fv ̸= ∅)
1: E1(v) := E1(v) ∪ Fv

2: move-to-back(Q, v)
3: if Q = {v} then
4: update(v)

procedure delete(F ⊆ E(G))
1: E0 := E0 \ F

2: for uv = e ∈ F do
3: for w ∈ {u, v} do
4: E1(w) := E1(w) \ {e}
5: if E1(w) = ∅ then
6: Q := Q \ {w}
7: while Q ̸= ∅ do
8: v := front(Q)
9: update(v)

10: if E1(v) ̸= ∅ then
11: break

function cycle-below-threshold()
1: return Q ̸= ∅

▶ Lemma 9. Invariant (1) is maintained throughout the updates.

Proof. Note that no edge is added to E0 outside the update procedure. As a result, since
invariant (1) cannot be broken by removing edges from G0, to establish that invariant (1) is
maintained, it is enough to see that update only adds edges to E0 if ϕ(G0) ≥ µ afterwards. ◀

▶ Lemma 10. Invariant (2) is maintained throughout the updates.

Proof. Let G′, G′
0, E′

1 denote G, G0, E1 respectively before the graph update. Suppose that
after processing the update, invariant (2) is broken. Equivalently, E1 ̸= ∅ and ϕ(G) ≥ µ.

Suppose the update was insertion of edges Fv centered at v. Since adding edges can only
decrease the minimum weight of a cycle, ϕ(G′) ≥ µ. As invariant (2) was satisfied before,
E′

1 = ∅. So after Fv is moved to E1(v), we indeed have Q = {v}. Since ϕ(G0 + E1(v)) ≥
ϕ(G) ≥ µ, E1(v) should have been moved to E0 by update(v). But E1 = E1\E′

1 ⊆ E1(v) = ∅,
so E1 = ∅, a contradiction.

Now assume that the update deleted an arbitrary subset of edges. If after some update(v)
call we have E1(v) ̸= ∅, then ϕ(G0 + E1(v)) < µ, which implies ϕ(G) < µ, a contradiction.
If no such v exists, then Q is emptied, i.e., E1(v) = ∅ for all v ∈ V after the deletion is
processed. It follows that E1 = ∅, which again leads to a contradiction. ◀

Now let us analyze the running time of our algorithm.
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▶ Lemma 11. Each insertion is processed in O(m + n log n) worst-case time.

Proof. An insertion adds O(n) edges to a single set E1(v) and causes at most a single update
call. The running time of update is dominated by the time needed to find the minimum
weight of a cycle going through some vertex v in some subgraph of the current graph G. By
Observation 6, this time is no more than O(m + n log n). ◀

▶ Lemma 12. The total time needed to process arbitrary k updates is O
(∑k

i=1(mi + n log n)
)

,
where mi is the number of edges in G when the i-th update happened. In other words, the
amortized update time is O(m + n log n).

Proof. By Lemma 11, we only need to prove that the deletions take O
(∑k

i=1(mi + n log n)
)

time in total. The cost of removing the edges from the sets E0 and E1(w), w ∈ V , can be
charged to the insertions which added those edges to the graph.

After updating the edge set, a deletion is handled using a number of update(v) runs, in
the order in which vertices v appear in Q. At most one of these runs leaves E1(v) non-empty
afterwards. We charge the cost of this run to the considered deletion. For all other update(v)
runs during that deletion, they empty the set E1(v) that previously was non-empty. As a
result, we can charge the cost of that run to the last insertion of edges centered at v that
happened before the considered deletion.

We need to prove two things. First of all, to see that no insertion is charged twice, note
that after an insertion is charged for the first time, E1(v) is emptied. So, before update(v)
is called next time when handling a deletion, new edges have to be added to E1(v), which
can only happen during another later insertion centered at v.

We also have to prove that just before E1(v) is emptied in update(v), the number of
edges in G0 + E1(v) is O(|E′|), where E′ is the edge set of G immediately after the last
insertion I centered at v happened. To this end, we prove E(G0) ∪ E1(v) ⊆ E′.

We clearly had E1(v) ⊆ E′ immediately after I. Afterwards no more elements were added
to E1(v) (albeit some might have been removed), so we still have E1(v) ⊆ E′.

Now suppose there is an edge e ∈ E(G0) with e /∈ E′. Then, since G0 ⊆ G, e was inserted
into G after the insertion I, as a result of a later insertion I ′ centered at some w ̸= v. The
edge e could have been added to G0 only if E1(w) was emptied inside update(w) immediately
afterwards, but before update(v) was called. Since I was the last insertion centered at v

before update(v) was called, both v and w were in Q when update(w) was called. This is a
contradiction: update is always called on the earliest element of Q, whereas the fact that I

happened before I ′ implies that v lied earlier than w in Q when update(w) was called. ◀

▶ Remark 13. When handling a deletion, we could in principle call update(v) for vertices v

with E1(v) ̸= ∅ in arbitrary order, as opposed to in the order of least recent centered insertions.
However, then one could only show a weaker total update time bound of O(k(mmax +n log n)),
where mmax is the maximum number of edges in G during the first k updates.

3.1 Negative weights
In this section we extend the obtained basic algorithm to also work with negative edges. Recall
that we still assume µ ≥ 0. Note that the case µ = 0 is equivalent to dynamically maintaining
whether G has a negative cycle. Recall that if G has a negative cycle, ϕ(G) = −∞.

Unfortunately, in presence of negative weights or cycles we cannot simply use the algorithm
behind Observation 6 to find the minimum weight cycle through a vertex v in G0 + E1(v) as
we did in update(v). Instead, we use the following lemma.

ICALP 2021



83:10 Fully Dynamic Algorithms for Minimum Weight Cycle and Related Problems

▶ Lemma 14. Let H be a digraph with no negative cycles. Let p : V → R be a feasible price
function of H. Let F be a set of edges centered at some vertex v.

Then in O(m + n log n) time one can find the minimum weight of a cycle going through v

in H + F . Moreover, if H + F contains no negative cycles, within the same time bound one
can produce a feasible price function on H + F .

Proof. Clearly, since H has no negative cycles, a negative cycle in H +F has to go through v.
Let E+

v be the set of edges in H + F incoming to v. Note that H ′ = H + F − E+
v has

no negative cycles. Moreover, since H ′ differs from H by edges incident to v, the edge
costs reduced by p are non-negative for all edges of H ′ possibly except the outgoing edges
of v. However, since v has no incoming edges in H ′, a price function p′ obtained from p

by sufficiently increasing p(v) (e.g., to max{p(u) − w(vu) : vu ∈ E(H ′)}) is a feasible price
function of H ′. With price function p′ in hand, we can compute distances from v in H ′ using
Dijkstra’s algorithm in O(m + n log n) time.

Now let x = minuv∈E+
v

{δH′(v, u) + wH′(uv)}. Observe that x is indeed the minimum
weight of a simple cycle in H + F . Moreover, x ≥ 0 implies that p∗(y) := δH′(v, y) =
δH+F (v, y) is a feasible price function on the induced subgraph of (H + F )[R] reachable
from v. To extend that price function p∗ on R ⊆ V to entire V , it is enough to set
p∗(z) = p(z) + M for all z ∈ V \ R, where M is a sufficiently large number. To see that,
note that p∗ is clearly a feasible price function on (H + F )[R], (H + F )[V \ R], and there
are no edges from R to V \ R in H + F . For edges zy ∈ E(H + F ) ∩ ((V \ R) × R) we have
wH+F (zy) + p∗(z) − p∗(y) = wH+F (zy) + p(z) + M − p∗(y). For

M = max{p∗(y) − p(z) − wH+F (zy) : zy ∈ E(H + F ) ∩ ((V \ R) × R)},

all the required reduced costs are non-negative. ◀

Now, given Lemma 14, we modify the basic algorithm as follows. In addition to the
partition of E into E0 and E1, we always maintain a feasible price function p0 on G0. Then,
in update(v), we use Lemma 14 to find the minimum weight x of a cycle in G0 + E1(v). If
the edges E1(v) are moved to E0 (and thus x ≥ 0 since ϕ(G0 + E1(v)) ≥ µ ≥ 0), we update
the price function p0 to that produced by Lemma 14. Since the worst-case cost of running
the algorithm from Lemma 14 matches that of Observation 6, the time analysis remains
unchanged. Lemmas 9, 10, 12 and 14 together imply Theorem 7.
▶ Remark 15. For the problem of fully dynamically maintaining the information whether G

contains a negative cycle (i.e., the special case µ = 0) there exists a better algorithm
with O(m + n log n) worst-case (as opposed to only amortized) update time bound (see
Theorem 23). In fact, we make use of that algorithm when obtaining exact algorithms
with good worst-case bounds in Section 6. The main idea is to generalize the problem to
maintaining a minimum cost circulation in the graph G with imposed unit vertex/edge
capacities (the details can be found in the full version). This resembles Gabow’s reduction of
single-source shortest paths with negative weights to the minimum cost perfect matching
problem [22]. However, the min-cost circulation based algorithm is not as robust when it
comes to obtaining fully dynamic algorithms for planar graphs (described in Section 5).

4 A fully dynamic (1 + ϵ)-approximate algorithm

In this section we show how Lemma 12 can be used to obtain an (1+ϵ)-approximate minimum
weight cycle algorithm, for any ϵ ∈ (0, 1]. Suppose c ∈ R (C ∈ R) is a lower bound (an upper
bound, respectively) on the weight of a positive cycle in G.
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Suppose first that G has positively weighted edges. In order to convert the decision
version from Section 3, all we have to do is to run it simultaneously with µ = (1 + ϵ)k

for all integers k = ⌈log1+ϵ(c)⌉, . . . , ⌈log1+ϵ(C)⌉. . To maintain an approximate minimum
weight of a cycle G, one only needs to keep track of the minimum k such that the fully
dynamic decision algorithm for (1 + ϵ)k returns yes. If no such k exists, G is acyclic since
ϕ(G) < ∞ implies ϕ(G) ≤ C. Otherwise, we have (1 + ϵ)k−1 ≤ ϕ(G) < (1 + ϵ)k, so indeed
(1 + ϵ)k approximates ϕ(G) with multiplicative error no more than (1 + ϵ). Since each of the
O(log1+ϵ(C) − log1+ϵ(c)) = O(log (C/c)/ϵ) decision algorithms has O(m + n log n) amortized
update time, the amortized time of the approximate algorithm is O((m+n log n) log (C/c)/ϵ).

The same bound can be achieved even if G has non-positive edges (without, however,
changing the definition of c and C) by extending each threshold data structure as described
in Section 3.1. Apart from the data structures for thresholds µ = (1 + ϵ)k, we also need two
more threshold cycle detection data structures: one for µ = 0 to detect a negative cycle, and
one for µ = c to detect whether ϕ(G) = 0. We have thus proved Theorem 1.

▶ Theorem 1. Let G be an initially empty fully dynamic real-weighted digraph such that the
weight of each positive weight cycle in G always belongs to the interval [c, C], c, C ∈ R.

There exists an algorithm maintaining an estimate ϕ′ satisfying ϕ(G) ≤ ϕ′ ≤ (1 + ϵ)ϕ(G)
under vertex updates to G with amortized update time O((m + n log n) · log (C/c)/ϵ).

5 Dynamic algorithms for cycles, cuts and flows in planar graphs

In this section we argue that the fully dynamic threshold cycle detection algorithm can be
implemented on planar directed graphs using the known dynamic distance oracles on planar
graphs. Since the reduction in Section 4 uses the threshold data structure in a black-box
way, this will imply an (1 + ϵ)-approximate minimum weight cycle algorithm.

Using known reductions based on plane duality, this will yield fully dynamic (1 + ϵ)-
approximate algorithms for maintaining (1) the capacity of a global min-cut in a plane
digraph, (2) the value of maximum s, t-flow in a plane digraph.

The algorithms in this section handle edge updates, as opposed to more general vertex
updates as was the case in the previous sections. Observe that achieving sublinear update
time for vertex updates is not possible in general since a vertex update may need up to Θ(n)
space to be described. More concretely, we will allow a single update to either insert or
remove a single edge uv, provided that this update preserves planarity of G. In the cut/flow
applications we will additionally need to assume that the edge insertions are embedding
preserving, i.e., u and v lie on a single face of the current embedding of G.

Kaplan et al. [31], based on earlier work [21, 34], showed a dynamic distance oracle for
real-weighted plane graphs undergoing edge weight updates. As argued in [11], their bound
also holds if arbitrary, not necessarily embedding-preserving, edge updates are allowed.

▶ Theorem 16 ([11, 21, 31, 34]). Let G be a real-weighted planar digraph. There exists
a fully dynamic algorithm supporting edge insertions and deletions in Õ(n2/3) worst-case
time, such that for any query vertices s, t, the shortest s → t path in G can be computed in
Õ(n2/3) time. If an edge insertion creates a negative cycle in G, the update algorithm reports
it and refuses to perform that insertion. Edge insertions are not required to be embedding
preserving.

Fully dynamic threshold- and minimum weight cycles. Consider using the fully dynamic
threshold cycle detection algorithm of Section 3 in the edge update scenario. Suppose that
that algorithm attempts to moves edges from E1 to E0 single edge at a time. This does not
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influence correctness; the efficiency of processing a node update could deteriorate though
(which we do not mind). Then, the amortized update time to process the update involving
an edge uv can be actually bounded by the sum of times needed to:
1. update the set E1(u) to reflect the graph update,
2. if uv is deleted, remove uv from G0,
3. for some xy ∈ E, find the minimum weight of a cycle going through xy in G0 + xy,
4. if ϕ(G0 + xy) ≥ µ, insert the edge xy into G0.
Clearly, item 1 takes constant time. If we store the (planar) graph G0 in the data structure
of Theorem 16, items 2-4 above all require Õ(n2/3) time. Indeed, items 2 and 4 translated
to a single edge update to that data structure, whereas item 3 amounts to computing
δG0(y, x) + wG(xy) using a single query. We thus obtain the following analogue of Theorem 7.

▶ Theorem 17. Let G be a real-weighted planar digraph and let µ ≥ 0. There exist a fully
dynamic algorithm maintaining whether ϕ(G) < µ and supporting planarity-preserving edge
insertions and deletions in Õ(n2/3) amortized time.

Since Theorem 1 uses the threshold data structure in a black-box way, we obtain:

▶ Theorem 18. Let G be a fully dynamic real-weighted planar digraph G such that the weight
of any positive cycle in G always lies in the interval [c, C].

There exists an algorithm maintaining the minimum weight cycle in G under planarity
preserving edge insertions and deletions with amortized update time Õ(n2/3 log (C/c)/ϵ).

Note that Theorem 18 immediately implies Theorem 2.

Fully dynamic directed cuts and flows. Let G be a plane embedded digraph with real edge
capacities in {0} ∪ [1, W ]. Wlog. we assume that every edge e in G has its reverse eR of
capacity 0 embedded into the same curve. We can then think of any edge as traversable in
both directions, but the cost of such a traversal is 0 if the edge is traversed in the reverse
direction. This assumption clearly does not influence values of max-flows or min-cuts in G,
but makes the dual graph G∗ possess certain useful properties. We call a cycle in G∗

non-trivial if it is not of the form eeR for some edge e ∈ E(G∗) and its reverse eR.
We now state well-known properties relating flows/cuts in G to cycles in the dual G∗.

▶ Lemma 19 (see e.g. [35]). The global minimum cut in a plane graph G corresponds to the
minimum weight non-trivial cycle in G∗.

▶ Lemma 20 ([19, 30, 39]). Let G be a plane digraph with some fixed source s and sink t.
For f ≥ 0, let GP,f be a plane graph obtained from G adding an embedded s → t path P such
that for each edge e of P , the capacity of e is f , whereas the capacity of eR is −f .

There exists an s, t-flow of value f in G if and only if the dual G∗
P,f of GP,f does not

contain negative cycles.

By Lemma 19, maintaining the (approximate) global min-cut dynamically under edge
embedding preserving insertions/deletions can be reduced to maintaining the (approximate)
minimum weight non-trivial cycle in the dual under vertex splits and edge contractions.

Let us now explain how such operations can be simulated using O(1) updates to the data
structure of Theorem 18 maintained on a certain augmented version G∗

1 of G∗, so that the
minimum weights of a non-trivial cycle in G∗ and G∗

1 are equal. A similar reduction has
been previously described in [28, 35]. Each vertex v of the dual G∗ corresponds in G∗

1 to a
path Pv of degG∗(v) vertices connected using 0-weight edges traversable in both directions.
For an edge vu ∈ E(G∗) that is the i-th in (some) clockwise edge ring of v, and j-th in (some)
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clockwise edge ring of u, the i-th vertex of Pv is connected by an edge of weight wG∗(vu)
with the j-th vertex of Pu. This way, (1) each vertex of G∗

1 has constant degree, (2) each
non-trivial cycle in G∗ has a corresponding non-trivial cycle of the same weight in G∗

1, (3)
no additional (with respect to G∗) non-trivial cycles are introduced in G∗

1.
It is not hard to verify that each edge contraction or vertex split in G∗ can be reflected

using O(1) edge insertions or deletions issued to G∗
1.

Observe that the additional constraint that the minimum weight cycle is non-trivial does
not introduce any difficulties: in the data structure of Theorem 17 we compute the minimum
weight cycle through some edge e by issuing a distance query to a graph that does not contain
that edge. However, since a minimum weight non-trivial cycle through e in G0 + e can
traverse e in any of the two directions, we need to issue two distance queries instead of one.

We thus obtain the following theorem.

▶ Theorem 21. Let G be a plane digraph with real capacities in {0} ∪ [1, W ]. There is an
algorithm maintaining a (1 + ϵ)-approximate estimate of the capacity of the global min-cut
of G under embedding preserving edge updates with Õ(n2/3 log W/ϵ) amortized update time.

To obtain a dynamic max s, t-flow algorithm, we use Lemma 20. We keep track of
whether there exists a negative cycle (i.e., we set µ = 0) in the dual of a graph a GP,f , where
f = (1 + ϵ)k, for each k = 0, . . . , ⌈log1+ϵ (nW )⌉. Similarly as was the case for global min-cut,
one can simulate the effect that an embedding preserving edge update in G has on the
negative cycles of the dual of GP,f using O(1) updates to the data structure of Theorem 17
maintained on an analogous augmentation (GP,f )∗

1 of G∗
P,f .

There is one subtle detail about how GP,f is updated when G is subject to embedding
preserving edge insertions and deletions. Note that Lemma 20 requires us to embed any
additional simple s → t path P into G. Embedding P into G subdivides some of the original
faces of G. As a result, an edge uv to be inserted inside some face F of G may cross
some edges of the currently used path P in GP,f . We deal with this problem as follows.
We maintain an additional invariant that (the embedding of) the simple path P crosses each
face of G at most once.

Now, when a new edge uv is inserted inside F , and P has an edge e = xy inside F that
would cross uv, we first remove e from GP,f to allow the insertion of uv. This insertion
splits F into two faces F1, F2 such that x lies on F1 and y lies on F2. We now reconnect the
path P by embedding two edges xu, uy with appropriate capacities as required by Lemma 20.

On the other hand, when an edge uv is removed, two faces F1 of F2 of G are merged into
a single face F . If at most one of them F1, F2 contained an edge of P , we do not have to do
anything. Otherwise, suppose wlog. that F1 contains an edge xy = e1 ∈ P , and F2 contains
an edge ab = e2 ∈ P , such that e1 appears before e2 on P . Then, we remove e1, e2, and all
edges between e1 and e2 on P from GP,f , and replace them with a single edge xb embedded
in F . Afterwards, the invariant is satisfied and P remains a simple path.

Finally, observe that each update to G adds O(1) new edges to P in the worst case. An
edge deletion may remove a superconstant number of edges from P , but these removals can
be charged to the corresponding additions of new edges to P . To conclude, an edge update
to G translates to O(1) amortized edge updates to GP,f , and as a result, to O(1) amortized
operations on the data structure of Theorem 17 run on the augmented dual (GP,f )∗

1. We
have thus proved:

▶ Theorem 3. Let G be a plane embedded digraph with real edge capacities in {0} ∪ [1, W ]
and a fixed source/sink pair s, t. There exists an algorithm maintaining a (1− ϵ)-approximate
estimate of the value of maximum s, t-flow in G under embedding preserving edge insertions
and deletions with Õ(n2/3 log (W )/ϵ) amortized update time.

ICALP 2021



83:14 Fully Dynamic Algorithms for Minimum Weight Cycle and Related Problems

6 Exact fully dynamic algorithm for minimum weight cycle

In this section we argue that using a variant of the fully dynamic APSP algorithm of Abraham
et al. [2] one can achieve subquadratic update bounds for dynamic minimum weight cycle.

We will in fact first solve a slightly more general problem that we call the fully dynamic
multiple-pairs shortest paths (fully dynamic MPSP for short). Our goal is to have a data
structure that maintains distances δG(si, ti) for some fixed (throughout the course of the
algorithm) k source-target pairs (s1, t1), . . . , (sk, tk) subject to fully dynamic vertex updates.
Obviously, the classical fully dynamic APSP corresponds to the case k = n2.

In the following we sketch the approach of [2] to fully dynamic APSP. The presentation
is however directed towards our goal of obtaining an MPSP data structure. Some details
and proofs can be found only in [2]; we focus on the details of our adjustments.

Reduction to batch-deletion MPSP data structure. The first step is to reduce the fully
dynamic problem to a certain decremental problem, called the batch-deletion MPSP. In this
problem, we want to preprocess the input digraph G, so that one can efficiently compute
MPSP in G \ D for a subset D ⊆ V that constitutes the query parameter. We assume that
if G \ D has a negative cycle, the data structure has to report its existence instead.

▶ Lemma 22. Suppose we have a batch-deletion MPSP data structure with preprocessing
time Tpre(n, m, k) and worst-case query time Tq(n, m, k, d), where d = |D| is the size of the
removed vertex set. Then, for any integer ∆ > 0, there exists a fully dynamic MPSP algorithm
with worst-case update time O(Tpre(n, m, k)/∆ + Tq(n, m, k, ∆) + ∆(m + k + n log n)).

Proof sketch. To obtain an amortized (as opposed to worst-case) bound from the statement,
we split the timeline into phases of ∆ updates. When a new phase starts, we rebuild the
batch-deletion data structure from scratch on the graph G0 at the start of the phase; this
clearly incurs O(Tpre(n, m0, k)/∆) amortized time cost per update, where m0 = |E(G0)|.
At some point of a phase, let D ⊆ V , |D| ≤ ∆, be the vertices touched by updates in this
phase. To compute MPSP at that point, we first compute MPSP in G0 \ D = G \ D in
O(Tq(n, m0, k, |D|)) = O(Tq(n, m0, k, ∆)) time. To obtain MPSP in G, we need to check if
paths going through D in G improve upon those in G \ D, i.e., we compute MPSP in G

according to the equation δG(si, ti) = min
(
δG0\D(si, ti), minv∈D{δG(si, v) + δG(v, ti)}

)
.

Observe that all distances of the form δG(·, v) or δG(v, ·) for v ∈ D can be obtained by
running Dijkstra’s algorithm to/from each such v, in O(∆(m + n log n)) total time, as long
as a feasible price function of G is given. A feasible price function can be maintained in
O(m + n log n) worst-case time after a vertex update using the following theorem, whose
proof is deferred to the full version.

▶ Theorem 23. Let G be an initially empty real-weighted digraph. There exists an algorithm
maintaining the information whether G has a negative cycle and supporting vertex updates in
O(m + n log n) worst-case time. Additionally, whenever ϕ(G) ≥ 0, the algorithm maintains
a feasible price function p of G.

Theorem 23 is also used to keep track of whether the current G has a negative cycle. Once
these distances are available, the distances δG(si, ti) can be computed in O(∆ · k) time.

Unfortunately, the above argument is fully valid only if either the number of edges m is
of the same order throughout, i.e., m0 = O(m), or it cannot drop by more than a constant
factor during a single phase, e.g., m = Ω(n∆). If, say, Tpre(n, m, k) = Θ(nm), ∆ = n1/3 and
m = n5/4 = m0 at the beginning of the phase, and during n1/4 first updates in that phase m
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gets decreased to O(n), then the total update cost coming from the preprocessing in this
phase is Θ(nm0) = Θ(n9/4). If the amortized update time coming from the preprocessing
was indeed O(Tpre(n, m, k)/∆), the the total update cost coming from these terms in that
phase would be O(n1/4 · nm0/∆ + ∆ · n2/∆) = O(n13/6), i.e., polynomially less.

We circumvent this problem4 as follows. We build the batch-deletion MPSP data structure
on the graph G′

0 = G0 \ D∗ instead of G0, where D∗ is the set of ∆ vertices of G0 with
highest degree. Then, Dijkstra’s algorithm is used to separately compute shortest paths
through D ∪ D∗ in G, as opposed to only through D. Clearly, the cost of such computation
remains O(∆(m + k + n log n)). However, the update cost coming from the batch-deletion
MPSP data structure is decreased to O(Tpre(n, m′

0, k)/∆ + Tq(n, m′
0, k, ∆)), where m′

0 is the
number of edges in G′

0. It is hence enough to observe that m′
0 ≤ m throughout this phase.

Indeed, the updates centered at vertices D cannot remove more than
∑

v∈D degG0(v) edges
out of those originally contained in G0. As a result, m ≥ m0 −

∑
v∈D degG0

(v). On the
other hand, by removing D∗ from G0 we remove at least 1

2
∑

v∈D∗ degG0(v) edges from G0,
i.e, m′

0 ≤ m0 − 1
2
∑

v∈D∗ degG0
(v). We obtain m′

0 ≤ m as follows:

m′
0 ≤ m0 − 1

2
∑

v∈D∗

degG0
(v) ≤ m0 − 1

2
∑
v∈D

degG0
(v) ≤ m0 + 1

2(m − m0) = 1
2m′

0 + 1
2m.

Since the amortization comes only from a (costly) rebuilding step after every ∆ updates,
turning the amortized bound into a worst-case one is standard, see e.g., [2, Section 2]. ◀

The batch-deletion data structure. Abraham et al [2] showed a batch-deletion APSP data
structure with Õ(n3) preprocessing time and Õ(n2√

nd) query time which, by Lemma 22,
implies Õ(n2+2/3) worst-case update time for fully dynamic APSP. Their batch-deletion data
structure is Monte Carlo randomized and produces answers correct with high probability.
We generalize this data structure to MPSP and non-dense graphs.

▶ Theorem 24. There exists a Monte Carlo randomized batch-deletion MPSP data structure
with O((m + k)n log2 n) preprocessing and O((m + n log n + k)

√
nd log n) query time. The

answers produced are correct with high probability.

Before we prove Theorem 24, let us show how it can be used to obtain fully dynamic
MPSP and minimum weight cycle algorithms.

By choosing ∆ = n1/3 log2/3 n, and applying Lemma 22, we obtain:

▶ Theorem 5. Let G be a real-weighted digraph. There exists a Monte Carlo randomized fully
dynamic MPSP data structure supporting vertex updates with O((m+n log n+k)n2/3 log4/3 n)
worst-case update time. The answers produced are correct with high probability.

Now consider the fully dynamic minimum weight cycle problem. The minimum weight
of a cycle in G is given by ϕ(G) = minuv∈E(G){δG(v, u) + wG(uv)}. As a result, after each
update it is enough to recompute distances δG(sl, tl) in G for k = m pairs (sl, tl) such that
tlsl ∈ E(G). If the edge set of G was fixed (and, for example, the updates were only allowed
to change edge weights), so would be the set of source-target pairs of our interest. Hence, we
could simply use the fully dynamic MPSP data structure of Theorem 5 in a black-box way.
However, in general, E(G) is not fixed and we need to be more careful.

4 This problem does not arise in [2], since there m is assumed to be Θ(n2) throughout.
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We proceed as follows. In the reduction of Lemma 22, we will always build a batch-
deletion MPSP data structure with the set of source-target pairs equal to the edge set used
to build that data structure reversed. This means that at any point of the phase, we can
compute the minimum weight cycle in G \ (D∗ ∪ D) = G0 \ (D∗ ∪ D) in O(Tpre(n, m, m)/∆ +
Tq(n, m, m, ∆)) = O((m+n log n)n2/3 log4/3 n) worst-case time. Since G0 \(D∗ ∪D) contains
only a subset of edges of G0, reading the subset of entries of the distance matrix of G0\(D∗∪D)
corresponding to reversed edges of E(G0) is enough to this end. In order to find the minimum
weight cycle going through some vertex of D∗ ∪ D in G, we just run the algorithm of
Observation 6 (or, more generally, in presence of negative edges – the algorithm of Lemma 14
with a feasible price function maintained by the algorithm of Theorem 23) |D∗ ∪ D| = O(∆)
times. This costs O(∆(m + n log n)) = Õ(mn1/3) time.

▶ Theorem 4. Let G be a real-weighted digraph. There exists a Monte Carlo randomized fully
dynamic algorithm maintaining ϕ(G) under vertex updates with O((m + n log n)n2/3 log4/3 n)
worst-case update time. The answers produced are correct with high probability.

6.1 Overview of the batch-deletion MPSP data structure
Let us now sketch the idea behind our generalization of the batch-deletion data structure
of [2]. Due to space constraints, the detailed description can be found in the full version.

We first need to refer to some details of the construction of Abraham et al. [2]. The
batch-deletion data structure separately handles recomputing shortest paths of hop-length at
least

√
n/d (“long” paths), and separately “short” shortest paths – with hop-lengths in the

intervals of the form [h/2, h) for O(log n) values h = 21, 22, . . . ,
√

n/d.
The main difficulty lies in handling short paths, whereas handling long paths is an easier

task. The key idea (which dates back to Thorup [46]) is to compute an ordered subset
{v1, . . . , vℓ} ⊆ V with the following properties. Let Gi = G \ {v1, . . . , vi−1}. Let Pi be the
set of shortest ≤ h-hop paths from/to vi in Gi. Then:
(1) For any s, t ∈ V , an s → t path not longer than the shortest ≤ h-hop s → t path in G

can be obtained by stitching, for some i ∈ {1, . . . , ℓ}, the s → vi and vi → t paths of Pi.
(2) For any x ∈ V , x lies on at most Õ(hn) paths from

⋃ℓ
i=1 Pi.

Such an ordering, along with the paths Pi, can be computed in Õ(nmh) time deterministically
(then we have ℓ = n), or in Õ(nm) time using randomization (then ℓ = Õ(n/h)). Each
subsequent vertex vi in the ordering is picked to be, roughly speaking, the “most congested”
one out of V \ {v1, . . . , vi−1}, i.e., the one that has not been picked yet and appears most
often on the previously constructed paths

⋃i−1
j=1 Pj .

Given the above, Abraham et al. [2] show that after removing any D ⊆ V from G, the
“short” paths in G can be recomputed by:
(1) constructing a number of sketch graphs H1, . . . , Hℓ, where Hi ⊆ Gi \ D,
(2) rebuilding destroyed (by the removal of D) paths from Pi by running Dijkstra’s algorithm

from/to vi on Hi,
(3) stitching the reconstructed paths back to obtain paths at leas as good as the actual

shortest ≤ h-hop paths in G.
Abraham et al. [2] prove that if we denote by Ui the set of vertices u such that either of the
paths u → vi or vi → u from Pi has been destroyed by removing D, d = |D|, then we have∑ℓ

i=1 |Ui| = Õ(hnd), and the total number of edges M in the sketch graphs is

M = O

(
ℓ∑

i=1

(
n +

∑
u∈Ui

degG(u)
))

.
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It is easy to see that M = Ω(nℓ), and M = Õ(hn2d). Moreover, for each rebuilt path u → vi

or vi → u, stitching takes additional Θ(n) time – as one needs to traverse through Θ(n)
source-target pairs that might benefit from this – for a total of Õ(hn2d) time. Since h ranges
from O(1) to Θ

(√
n/d

)
, rebuilding short paths takes Ω(n2) and Õ(n2√

nd) time as claimed.

Now, to obtain our improved Õ((m + k)
√

nd) bound on batch deletion for sparse graphs
and small number k of source-target paths (si, ti) of interest, we make two main adjustments.

First of all, we show that even smaller sketch graphs Hi – with O
(∑ℓ

i

∑
u∈Ui

degG(u)
)

edges in total – can be used, thus eliminating the Ω(nℓ) term, which for small h is Ω(n2).
More importantly, we use a different weighted scheme for picking the ordered subset

{v1, . . . , vℓ}. Let us denote by K the undirected graph on V whose edges correspond to
the source-target pairs (si, ti) of interest. In our scheme, the congestion that a previously
computed ≤ h-hop path P = vi → u (or P = u → vi) incurs upon some vertex x with
x ∈ V (P ) is degG(u)+log n+degK(u), as opposed to 1 in [2]. This makes the total congestion
of each vertex x in the process possibly increase to Θ̃(h(m + n log n + k)), as opposed to
Õ(hn) in [2]. However, we show that the total cost of running Dijkstra’s algorithm on our
(more compact) sketch graphs H1, . . . , Hℓ can be charged to the part of the total congestion
of removed vertices D coming from the [degG(u) + log n] terms, which is Õ(dh(m + n log n)).
A similar argument applies to the cost of restitching, which we prove to be Õ(dhk).
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Abstract
Coboundary and cosystolic expansion are notions of expansion that generalize the Cheeger constant
or edge expansion of a graph to higher dimensions. The classical Cheeger inequality implies that for
graphs edge expansion is equivalent to spectral expansion. In higher dimensions this is not the case:
a simplicial complex can be spectrally expanding but not have high dimensional edge-expansion.
The phenomenon of high dimensional edge expansion in higher dimensions is much more involved
than spectral expansion, and is far from being understood. In particular, prior to this work, the
only known bounded degree cosystolic expanders were derived from the theory of buildings that is
far from being elementary.

In this work we study high dimensional complexes which are strongly symmetric. Namely, there
is a group that acts transitively on top dimensional cells of the simplicial complex [e.g., for graphs it
corresponds to a group that acts transitively on the edges]. Using the strong symmetry, we develop
a new machinery to prove coboundary and cosystolic expansion.

It was an open question whether the recent elementary construction of bounded degree spectral
high dimensional expanders based on coset complexes give rise to bounded degree cosystolic expanders.
In this work we answer this question affirmatively. We show that these complexes give rise to
bounded degree cosystolic expanders in dimension two, and that their links are (two-dimensional)
coboundary expanders. We do so by exploiting the strong symmetry properties of the links of these
complexes using a new machinery developed in this work.

Previous works have shown a way to bound the co-boundary expansion using strong symmetry in
the special situation of “building like” complexes. Our new machinery shows how to get coboundary
expansion for general strongly symmetric coset complexes, which are not necessarily “building like”,
via studying the (Dehn function of the) presentation of the symmetry group of these complexes.
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The term high dimensional expander means a simplicial complex that has expansion
properties that are analogous to expansion in a graph. Nevertheless, the question of what
is a high dimensional expander is still unclear. There is a spectral definition of high
dimensional expanders that generalizes the spectral definition of expander graphs and a
geometrical/topological definition that generalizes the notion of edge expansion (or Cheeger
constant) of a graph. For a graph the spectral and the geometric definitions of expansion
are known to be equivalent (via the celebrated Cheeger inequality) while in high dimensions
the spectral and geometric definitions are known to be NOT equivalent (see [9, Theorem 4]
and [19]).

The aim of this paper is to present elementary constructions of new families of 2-
dimensional simplicial complexes with high dimensional edge expansion, and in particular, of
new elementary bounded degree families of cosystolic expanders (see exact definition below).
The question of giving an elementary construction of a family of bounded degree spectrally
high dimensional expanders got recently a satisfactory answer. Namely, it was understood
that such a family needs to obey a specific local spectral criterion and in [11] we used
this understanding in order to construct elementary families of high dimensional spectrally
expanding families (prior non-elementary constructions were known). Here, we further study
the examples of [11], and show that they also give rise to bounded degree cosystolic expanders:

▶ Theorem 1 (New cosystolic expanders, Informal, see also Theorem 22). For every large
enough odd prime power q, the family of 2-skeletons of the 3-dimensional local spectral
expanders constructed in [11] using elementary matrices over Fq[t] is a family of bounded
degree cosystolic expanders.

Prior to this work, the known examples of bounded degree cosystolic expanders arose from
the theory of Bruhat-Tits buildings and were far from being elementary.

Relying on the work of the first named author and Evra (see Theorem 11 below), the
proof of this Theorem boils down to proving that the links of our construction are coboundary
expanders and that their coboundary expansion can be bounded independently of q (i.e.,
that the coboundary does not deteriorate as q increases). Thus, the real problem is bounding
the coboundary expansion of the links. This goal is achieved utilizing the fact that the links
are strongly symmetric coset complexes.

Coboundary expansion for strongly symmetric (coset) complexes

We call a simplicial complex strongly symmetric if it has a symmetry group acting transitively
on top dimensional simplices. As noted above, our problem is to show that the links in our
examples are coboundary expanders. In the graph setting, there is a classical Theorem (see
Theorem 12 below) stating that for a strongly symmetric graph the Cheeger constant can be
bounded from below by 1

2D , where D denotes the diameter of the graph.
We generalize this idea: we define a high dimensional notion of radius and show that for

strongly symmetric complexes, this radius can be used to bound the coboundary expansion.
We then show that this radius can be bounded using filling constants of the complex. These
ideas of bounding the coboundary expansion for symmetric complexes using filling constants
already appeared implicitly in Gromov’s work [8] and in the work of Lubotzky, Meshulam
and Mozes [17]. However, these previous works considered the setting of spherical buildings
and “building-like complexes” and thus bounding the filling constants in these examples
were relatively simple due to the existence of apartments in the building (or “apartment-like”
sub-complexes in “building-like” complexes). In our setting, we consider a more general
situation (not assuming “apartment-like” sub-complexes) and thus bounding the filling
constants becomes a much harder task.
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What helps to solve this harder problem of bounding the filling constants is working
with strongly symmetric coset complexes (see Definition 16). We note that this is not a very
restrictive assumption - under some mild assumptions, every strongly symmetric complex is a
coset complex (see proof in [13]). For a coset complex one can fully reconstruct the complex
via its symmetry group and its subgroup structure. Thus every geometrical/topological
property of a coset complex (including coboundary expansion) is encoded in some way in the
presentation of its symmetry group. Using this philosophy, we are able to prove a bound
for filling constants for two dimensional coset complex in terms of the presentation of its
symmetry group (namely, in terms on its Dehn function - see definition below). Thus, for
two dimensional coset complexes, we get a bound on the coboundary expansion in terms of
presentation-theoretic properties of the symmetry group.

Coboundary expansion of the links in our construction

If follows from our work described above that in order to show that the links in our
construction are coboundary expanders, we should verify a presentation-theoretic property
for their symmetry group (namely, to bound its Dehn function). Luckily for us, the symmetry
group of the links in our construction is a generalization of the group of unipotent groups
over finite fields. For the finite field case, the presentation of these unipotent groups was
studied by Biss and Dasgupta [2]. Using their ideas, we are able to show that the symmetry
groups of links in our construction fulfil the presentation-theoretic condition that allows us
to bound their coboundary expansion. Namely, we prove the following:

▶ Theorem 2 (New coboundary expanders, Informal, see also Theorem 21). For every odd
prime power q, the links of the 3-dimensional local spectral expanders constructed in [11] using
elementary matrices over Fq[t] are coboundary expanders and their coboundary expansion
can be bounded from below independent of q.

Simplicial complexes
An n-dimensional simplicial complex X is a hypergraph whose maximal hyperedges are of
size n+ 1, and which is closed under containment. Namely, for every hyperedge τ (called
a face) in X, and every η ⊂ τ , it must be that η is also in X. In particular, ∅ ∈ X. For
example, a graph is a 1-dimensional simplicial complex. Let X be a simplicial complex, we
fix the following terminology/notation:
1. X is called pure n-dimensional if every face in X is contained in some face of size n+ 1.
2. The set of all k-faces (or k-simplices) of X is denoted X(k), and we will be using the

convention in which X(−1) = {∅}.
3. For 0 ≤ k ≤ n, the k-skeleton of X is the k-dimensional simplicial complex X(0) ∪X(1) ∪

... ∪X(k). In particular, the 1-skeleton of X is the graph whose vertex set is X(0) and
whose edge set is X(1).

4. For a simplex τ ∈ X, the link of τ , denoted Xτ is the complex

{η ∈ X : τ ∪ η ∈ X, τ ∩ η = ∅}.

We note that if τ ∈ X(k) and X is pure n-dimensional, then Xτ is pure (n − k − 1)-
dimensional.

5. A family of pure n-dimensional simplicial complexes {X(s)}s∈N is said to have bounded
degree if there is a constant L > 0 such that for every s ∈ N and every vertex v in X(s),
v is contained in at most L n-dimensional simplices of X(s).
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The coboundary/cosystolic expansion and high order Cheeger constants
Let us recall the geometric notion of expansion in graphs known as the edge expansion or
Cheeger constant of a graph:

▶ Definition 3 (Cheeger constant of a graph). For a graph X = (V,E) :

h(X) := minA̸=∅,V
|E(A, Ā)|

min{w(A), w(Ā)}
,

where for a set of vertices U ⫋ V , w(U) denotes is the sum of the degrees of the vertices
in U .

The generalization of the Cheeger constant to higher dimensions originated in the works
of Linial, Meshulam and Wallach ([15], [18]) and independently in the work of Gromov ([8])
and is now known as coboundary expansion. Later, a weaker variant of high dimensional
edge expansion known as cosystolic expansion arose in order to answer questions regarding
topological overlapping.

In order to define coboundary and cosystolic expansion, we also need some terminology.
Let X be an n-dimensional simplicial complex. Fix the following notations/definitions:
1. The space of k-cochains denoted Ck(X) = Ck(X,F2) is the F2-vector space of functions

from X(k) to F2.
2. The coboundary map dk : Ck(X,F2) → Ck+1(X,F2) is defined as:

dk(ϕ)(σ) =
∑

τ⊂σ,|τ |=|σ|−1

ϕ(τ),

3. The spaces of k-coboundaries and k-cocycles are subspaces of Ck(X) defined as:
Bk(X) = Bk(X,F2) = Image(dk−1) = the space of k-coboundaries.
Zk(X) = Zk(X,F2) = Ker(dk) = the space of k-cocycles.

4. The function w :
⋃n
k=−1 X(k) → R+ is defined as

∀τ ∈ X(k), w(τ) = |{σ ∈ X(n) : τ ⊆ σ}|(
n+1
k+1
)
|X(n)|

.

We note that
∑
τ∈X(k) w(τ) = 1.

5. For every ϕ ∈ Ck(X), w(ϕ) is defined as

w(ϕ) =
∑

τ∈supp(ϕ)

w(τ).

6. For every 0 ≤ k ≤ n− 1, define the following k-expansion constants:

Expkb (X) = min
{

w(dkϕ)
minψ∈Bk(X) w(ϕ+ ψ) : ϕ ∈ Ck(X) \Bk(X)

}
.

Sysk(X) = min
{
w(ψ) : ψ ∈ Zk(X) \Bk(X)

}
,

and

Expkz(X) = min
{

w(dkϕ)
minψ∈Zk(X) w(ϕ+ ψ) : ϕ ∈ Ck(X) \ Zk(X)

}
.

After these notations, we can define coboundary/cosystolic expansion:
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▶ Definition 4 (Coboundary expansion). Let ε > 0 be a constant. We say that X is an
ε-coboundary expander if for every 0 ≤ k ≤ n− 1, Expkb (X) ≥ ε.

▶ Remark 5. We leave it for the reader to verify that in the case where X is a graph, i.e.,
the case where n = 1, Exp0

b(X) is exactly the Cheeger constant of X. Thus, we think of
Expkb (X) as the k-dimensional Cheeger constant of X.

▶ Definition 6 (Cosystolic expansion). Let ε > 0, µ > 0 be constants and X an n-dimensional
simplicial complex X. We say that X is a (ε, µ)-cosystolic expander if for every 0 ≤ k ≤ n−1,
Expkz(X) ≥ ε and Sysk(X) ≥ µ.

▶ Remark 7. We note that if Expkb (X) > 0, then it can be shown that Bk(X) = Zk(X)
and thus Expkb (X) = Expkz(X). However, there are examples of simplicial complexes with
Expkb (X) = 0 and Expkz(X) > 0, Sysk(X) > 0.

As in expander graphs, we are mainly interested in a family of bounded degree cosystolic
expanders (and not a single complex that is a cosystolic expander):

▶ Definition 8 (A family of bounded degree cosystolic expanders). A family of n-dimensional
simplicial complexes {Y (s)}s∈N is a family of bounded degree cosystolic expanders if:

The number of vertices of Y (s) tends to infinity with s.
{Y (s)}s∈N has bounded degree.
There are universal constants ε > 0, µ > 0 such that for every s, Y (s) is a (ε, µ)-cosystolic
expander.

▶ Remark 9. The motivation behind the definition of a family of cosystolic expanders is to
proved a family of bounded degree complexes that have the topological overlapping property
(see [13] for the exact definition).

The Evra-Kaufman criterion for cosystolic expansion
In [6], Evra and the first named author gave a criterion for cosystolic expansion. In order to
state this criterion, we will need the following definition:

▶ Definition 10 (Local spectral expansion). For λ ≥ 0, a pure n-dimensional simplicial
complex X is called a (one-sided) λ-local spectral expander if for −1 ≤ k ≤ n− 2 and every
τ ∈ X(k), the one-skeleton of Xτ is a connected graph and the second largest eigenvalue of
the random walk on the one-skeleton of Xτ is less or equal to λ.

The idea behind the Evra-Kaufman criterion for cosystolic expansion is the following:
We can deduce cosystolic expansion from local spectral expansion and local coboundary
expansion (i.e., coboundary expansion in the links) given that the local spectral expansion is
“strong enough” so it “beats” the local coboundary expansion. More formally:

▶ Theorem 11 ([6, Theorem 1] Evra-Kaufman criterion for cosystolic expansion). For every
ε′ > 0 and n ≥ 3 there are µ(n, ε′) > 0, ε(n, ε′) > 0 and λ(n, ε′) > 0 such that for every pure
n-dimensional simplicial complex if

X is a λ-local spectral expander.
For every 0 ≤ k ≤ n− 2 and every τ ∈ X(k), Xτ is a ε′-coboundary expander.

Then the (n− 1)-skeleton of X is a (ε, µ)-cosystolic expander.

Thus, in order to prove cosystolic expansion in examples, we should verify two things:
local spectral expansion and coboundary expansion in the links. In our examples from [11]
described below, local spectral expansion is already known and we are left with proving
coboundary expansion for the links. In order to do so, we will develop machinery to prove
coboundary expansion for symmetric complexes of a special type called coset complexes.
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Coboundary expansion for strongly symmetric simplicial complexes
As noted above, unlike the case of graphs, in simplicial complexes a high dimensional version
of Cheeger inequality does not hold. Thus, there is a need to develop machinery in order
to prove coboundary expansion that does not rely on spectral arguments. For graphs such
machinery is available, under the assumptions that the graph has a large symmetry group.
A discussion regarding the Cheeger constant of symmetric graphs appear in [3, Section 7.2]
and in particular, the following Theorem is proven there:

▶ Theorem 12 ([3, Theorem 7.1]). Let X be a finite connected graph such that there is a
group G acting transitively on the edges of X. Denote h(X) to be the Cheeger constant of X
and D to be the diameter of X. Then h(X) ≥ 1

2D .

▶ Remark 13. Note that the inequality stated in the Theorem does not hold without the
assumption of symmetry. For instance, let XN be the graph that is the ball of radius N in
the 3-regular infinite tree. Then the diameter of X is 2N + 1 and h(XN ) is of order O( 1

2N ).
In this paper, using the ideas of [8] and [17], we prove a generalization of Theorem 12

to the setting of (strongly) symmetric simplicial complexes. We first define the notion of
strongly symmetric simplicial complexes.

▶ Definition 14 (Strongly symmetric complex). A simplicial complex X is called strongly
symmetric if there is a group that acts simply transitively on its top dimensional faces. E.g.,
For graphs (one dimensional complexes) we require a group that acts simply transitively on
the edges.

We then define a high dimensional notion of radius which we call a cone radius, but this
definition is a little technical and thus appears in Section 2 (see Definition 28). We then
prove the following:

▶ Theorem 15 (Informal, see Theorem 30 for the formal statement). Let X be a strongly
symmetric simplicial complex. If the k-dimensional (cone) radius of X is bounded by D, then
Expkb (X) ≥ 1

(n+1
k+1)D

, i.e., the k-coboundary expansion is bounded from below as a function of
the k-th radius.

Bounding the high dimensional radius for coset complexes
By Theorem 15, in order to prove coboundary expansion for strongly symmetric complexes,
it is enough to bound their high dimensional radius. Following the ideas of Gromov [8], we
bound the radius by bounding certain filling constants, that we will not define here. In order
to bound these filling constants and thus the high dimensional radius, we will assume that
our strongly symmetric complex is of a special type, namely that it is a coset complex:

▶ Definition 16 (Coset complex). Given a group G with subgroups K{i}, i ∈ I, where I is a
finite set. The coset complex X = X(G, (K{i})i∈I) is a simplicial complex defined as follows:
1. The vertex set of X is composed of disjoint sets Si = {gK{i} : g ∈ G}.
2. For two vertices gK{i}, g

′K{j} where i, j ∈ I, g, g′ ∈ G, {gK{i}, g
′K{j}} ∈ X(1) if i ̸= j

and gK{i} ∩ g′K{j} ̸= ∅.
3. The simplicial complex X is the clique complex spanned by the 1-skeleton defined above,

i.e., {g0K{i0}, ..., gkK{ik}} ∈ X(k) if for every 0 ≤ j, j′ ≤ k, gjK{ij} ∩ gj′K{ij′ } ̸= ∅.

Although this Definition may seem daunting at first, we note that it is very natural in
examples. Namely, in [13] we shows that under some mild assumptions, strongly symmetric
simplicial complexes are actually coset complexes.
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As noted above, for coset complexes, every property of the complex should be reflected
in some way in its symmetry group and its subgroup structure. Following this philosophy,
we prove that for coset complexes, the 0-th and 1-th dimensional coboundary expansion can
be bounded using the presentation of the group from which the complex arose.

In order to describe our result, we recall some definitions from group theory. Given a
group G, a generating set S ⊆ G is a set of elements of G such that every element in G

can be written as a finite product (or sum if G is commutative) of elements of S. One can
always take S = G, but usually one can make due with a smaller set. For example, for the
group G of addition of integers modulo n, G = (Z/nZ,+), one can take S = {±1}. Given a
group G with a generating set S, a word with letters in S is called trivial if it equal to the
identity. For example, in G = (Z/nZ,+) with S = {±1}, the words 1 + 1 + (−1) + (−1) and
1 + ...+ 1 (n summands) = n · 1 are trivial.

We say that a group G has a presentation G = ⟨S|R⟩, if S is a generating set of G and
R is a set of trivial words called relations such that every trivial word in G can be written
using the words in R ∪ {ss−1, s−1s : s ∈ S} (allowing products, conjugations and inverses).
Again, one can always take S = G \ {e} and R to be the entire multiplication table of G,
i.e., all the words of the form g1g2g

−1
3 = e, where g1g2 = g3. However, in concrete examples,

one can usually make due with fewer generators and relations. For example, for the group
G = (Z/nZ,+) it is sufficient to take S = {±1} and the single relation n · 1. We note that it
is not always easy to determine if a set of relations gives a presentation of G.

Given a presentation G = ⟨S|R⟩, the Dehn function for this presentation is a function
Dehn : N → N such that Dehn(m) describes how many elements of R ∪ {ss−1, s−1s : s ∈ S}
does one need to write a trivial word in G of length ≤ m. With this terminology, we prove
the following:

▶ Theorem 17. Let G be a finite group with subgroups K{i}, i ∈ {0, 1, 2}. Denote X =
X(G, (K{i})i∈{0,1,2}). Assume that G acts strongly transitively on X.

For every i ∈ {0, 1, 2}, denote Ri to be all the non-trivial relations in the multiplication
table of K{i}, i.e., all the relations of the form g1g2g3 = e, where g1, g2, g3 ∈ K{i} \ {e}.
Assume that G = ⟨

⋃
iK{i}|

⋃
iRi⟩ and let Dehn denote the Dehn function of this presentation.

Then:
1. For

N ′
0 = 1 + max

g∈G
min

{
l : g = g1...gl and g1, ..., gl ∈

⋃
i

K{i}

}
,

it holds that Exp0
b(X) ≥ 1

3N ′
0
.

2. There is a universal polynomial p(x, y) independent of X such that

Exp1
b(X) ≥ 1

3p(2N ′
0 + 1,Dehn(2N ′

0 + 1)) .

Our construction
So far, we described general tools that we developed in order to prove coboundary and
cosystolic expansion. Now we will describe our construction from [11] on which we aim to
apply these tools.

In [11], we used coset complexes to construct n-dimensional spectral expanders. Below,
we only describe the construction for n = 3: Fix s ∈ N, s > 4 and q be a prime power. Denote
G

(s)
q to be the group of 4 × 4 matrices with entries in Fq[t]/⟨ts⟩ generated by the set

{e1,2(a+ bt), e2,3(a+ bt), e3,4(a+ bt), e4,1(a+ bt) : a, b ∈ Fq}.
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For 0 ≤ i ≤ 2, define H{i} to be the subgroup of G(s)
q generated by

{ej,j+1(a+ bt), e4,1(a+ bt) : a, b ∈ Fq, 1 ≤ j ≤ 3, j ̸= i+ 1}

and define H{3} to be the subgroup of G(s) generated by

{e1,2(a+ bt), e2,3(a+ bt), e3,4(a+ bt) : a, b ∈ Fq}.

Denote X(s)
q = X(G(s)

q , (H{i})i∈{0,...,3}) to be the coset complex as defined above.
The main result of [11] applied to {X(s)

q }s>4 above can be summarized as follows:
1. The family {X(s)

q }s>4 has bounded degree (that depends on q).
2. The number of vertices of X(s)

q tends to infinity with s.
3. For every s, X(s)

q is 1√
q−3 -local spectral expander.

In light of Theorem 17, we will also need some facts regrading the links of X(s)
q . We

give the following explicit description of the links in our construction: We note that for
every fixed q it holds that there is a complex X such that for every s > 4 and every vertex
v ∈ X

(s)
q , there is a coset complex denoted Xlink,q such that the link of v is isomorphic to

Xlink,q (all the links are isomorphic).
The complex Xlink,q can be described explicitly as follows: Denote the group Glink,q

to be a subgroup of 4 × 4 invertible matrices with entries in Fq[t] in generated by the set
{ei,i+1(a+ bt) : a, b ∈ Fq, 1 ≤ i ≤ 4}. More explicitly, an 4 × 4 matrix A is in Glink,q if and
only if

A(i, j) =


1 i = j

0 i > j

a0 + a1t+ ...+ aj−it
j−i i < j, a0, ..., aj−i ∈ Fq

,

(observe that all the matrices in G are upper triangular).
For 0 ≤ i ≤ 3, define a subgroup K{i} < G as

K{i} = ⟨ej,j+1(a+ bt) : j ∈ {1, ..., 4} \ {i+ 1}, a, b ∈ Fq⟩.

Define Xlink,q to be the coset complex Xlink,q = X(Glink,q, (K{i})i∈{0,1,2}). As noted above,
for every s > 4, all the 2-dimensional links of X(s)

q are isomorphic to Xlink,q. Also,

▶ Theorem 18 ([12, Theorems 2.4, 3.5]). The complex Xlink,q above is strongly symmetric,
namely the group Glink,q of unipotent matrices described above acts transitively on the
triangles of Xlink,q.

New coboundary and cosystolic expanders
Finally, we describe how the general machinery we developed can be applied in our construc-
tion.

First, by applying Theorem 11 on the family {X(s)
q }s∈N yields the following Corollary:

▶ Corollary 19. Let {X(s)
q }s∈N be the family of n-dimensional simplicial complexes from [11].

Assume there is a constant ε′ > 0 such that for every odd q, every s, every 0 ≤ k ≤ n− 2
and every τ ∈ X(k), Xτ is a ε′-coboundary expander. Denote Y (s)

q to be the (n− 1)-skeleton
of X(s)

q . Then for any sufficiently large odd prime power q, the family {Y (s)
q }s∈N is a family

of bounded degree cosystolic expanders.
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Thus, by this Corollary, in order to prove Theorem 1 it is enough to show that for every
odd q, there is a constant ε′ > 0 such that for every odd q and every s ∈ N, the 2-skeleton of
the link of every vertex v in X

(s)
q is a ε′ coboundary expander.

As we noted, the links are strongly transitive coset complexes which we denoted Xq,link

and described explicitly above. By Theorem 17, in order to bound the coboundary expansion
of the links, we need to consider the presentation of their symmetry group Glink,q defined
above. Generalizing on the work of Biss and Dasgupta [2] we prove the following:

▶ Theorem 20. For any prime power q denote Gq,link,K{0},K{1},K{2} as above and for
every i ∈ {0, 1, 2}, denote Ri to be all the non-trivial relations in the multiplication table of
K{i}. Then

sup
q odd prime power

(
max

g∈Gq,link

min
{
l : g = g1...gl and g1, ..., gl ∈

⋃
i

K{i}

})
< ∞.

For every odd q it holds that

Gq,link = ⟨
⋃
i

K{i}|
⋃
i

Ri⟩

and the Dehn function of this presentation is bounded independently of q.

This Theorem combined with Theorem 17 gives:

▶ Theorem 21 (First Main Theorem - new explicit two dimensional coboundary expanders).
For every odd prime power q, Xlink,q is a coboundary expander and Exp0(X),Exp1(X) are
bounded from below by a constant that is independent of q.

Applying Corollary 19 it follows that:

▶ Theorem 22 (Second Main Theorem - elementary two dimensional bounded degree cosytolic
expanders). Let s ∈ N, s > 4 and q be a prime power and X(s)

q as above. For every s, let Y (s)
q

be the 2-skeleton of X(s)
q , i.e., the 2-dimensional complex Y (s)

q = X
(s)
q (0) ∪X(s)

q (1) ∪X(s)
q (2).

For any sufficiently large odd prime power q, the family {Y (s)
q }s∈N,s>4 is a family of bounded

degree cosystolic expanders.

Technical details of the paper
In Section 1, we give the precise definitions and notations regarding (co)homology. In
Section 2, we define the cone radius of a simplicial complex and prove that for symmetric
simplicial complexes, the cone radius can be used to bound the coboundary expansion.

The other technical details of the paper are available in its Arxiv version [13]. Namely,
in [13] the reader can find the following:

A precise definition of the filling constants of a simplicial complex and a proof that the
filling constants of the complex can be used to bound the cone radius.
A review the idea of coset complexes and a proof that our assumption of strong symmetry
combined with some extra assumptions on a complex imply that it is a coset complex.
A bound on the first two filling constants for a coset complex in terms of algebraic
properties of the presentation of the group and subgroups from which it arises.
New examples of coboundaries expanders arising from coset complexes of unipotent
groups.
New examples of bounded degree cosystolic and topological expanders.
A proof that the existence of a cone function is equivalent to the vanishing of (co)homology.
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1 Homological and Cohomological definitions and notations

The aim of this section is to recall a few basic definitions regarding homology and cohomology
of simplicial complexes that we will need below.

Let X be an n-dimensional simplicial complex. A simplicial complex X is called pure if
every face in X is contained in some face of size n+ 1. The set of all k-faces of X is denoted
X(k), and we will be using the convention in which X(−1) = {∅}.

We denote by Ck(X) = Ck(X,F2) the F2-vector space with basis X(k) (or equivalently,
the F2-vector space of subsets of X(k)), and Ck(X) = Ck(X,F2) the F2-vector space of
functions from X(k) to F2.

The boundary map ∂k : Ck(X,F2) → Ck−1(X,F2) is:

∂k(σ) =
∑

τ⊂σ,|τ |=|σ|−1

τ,

where σ ∈ X(k), and the coboundary map dk : Ck(X,F2) → Ck+1(X,F2) is:

dk(ϕ)(σ) =
∑

τ⊂σ,|τ |=|σ|−1

ϕ(τ),

where ϕ ∈ Ck and σ ∈ X(k + 1).
For A ∈ Ck(X) and ϕ ∈ Ck(X), we denote

ϕ(A) =
∑
τ∈A

ϕ(τ),

Thus, for ϕ ∈ Ck(X) and A ∈ Ck+1(X)

(dkϕ)(A) = ϕ(∂k+1A)

We sometimes refer to k-chains as subsets of X(k), e.g., the 0-chain {u} + {v} will be
sometimes referred to as the set {{u}, {v}} . For A ∈ Ck(X), we denote |A| to be the size of
A as a set.

Well known and easily calculated equations are:

∂k ◦ ∂k+1 = 0 and dk+1 ◦ dk = 0 (1)

Thus, if we denote: Bk(X) = Bk(X,F2) = Image(∂k+1) = the space of k-boundaries.
Zk(X) = Zk(X,F2) = Ker(∂k+1) = the space of k-cycles.
Bk(X) = Bk(X,F2) = Image(dk−1) = the space of k-coboundaries.
Zk(X) = Zk(X,F2) = Ker(dk) = the space of k-cocycles.
We get from (1)

Bk(X) ⊆ Zk(X) ⊆ Ck(X) and Bk(X) ⊆ Zk(X) ⊆ Ck(X).

Define the quotient spaces H̃k(X) = Zk(X)/Bk(X) and H̃k(X) = Zk(X)/Bk(X), the
k-homology and the k-cohomology groups of X (with coefficients in F2).
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2 Cone radius as a bound on coboundary expansion

Below, we define a generalized notion of diameter (or more precisely radius) of a simplicial
complex. We will later show that in symmetric simplicial complexes a bound on this radius
yields a bound on the coboundary expansion of the complex.

▶ Definition 23 (Cone function). Let X be a pure n-dimensional simplicial complex. Let
−1 ≤ k ≤ n− 1 be a constant and v be a vertex of X. A k-cone function with apex v is a
linear function Conevk :

⊕k
j=−1 Cj(X) →

⊕k
j=−1 Cj+1(X) defined inductively as follows:

1. For k = −1, Conev−1(∅) = {v}.
2. For k ≥ 0, Conevk|⊕k−1

j=−1
Cj(X) is a (k − 1)-cone function with an apex v and for every

A ∈ Ck(X), Conevk(A) ∈ Ck+1(X) is a (k + 1)-chain that fulfills the equation

∂k+1 Conevk(A) = A+ Conevk(∂kA).

▶ Observation 24. By linearity, the condition that

∂k+1 Conevk(A) = A+ Conevk(∂kA), ∀A ∈ Ck(X)

is equivalent to the condition:

∂k+1 Conevk(τ) = τ + Conevk(∂kτ), ∀τ ∈ X(k).

▶ Remark 25. We note that by linearity, a k-cone function is needs only to be defined on
k-simplices, but it gives us homological fillings for every k-cycle in X: for every A ∈ Zk(X),

∂k+1 Conevk(A) = A+ Conevk(∂kA) = A+ Conevk(0) = A,

i.e., ∂k+1 Conevk(A) = A. This might be computationally beneficial for other needs (apart
from the results of this paper), since usually there are exponentially more k-cycles than
k-simplices.

▶ Example 26 (0-cone example). Let X be an n-dimensional simplicial complex. Fix some
vertex v in X. By definition, for every {u} ∈ X(0), Conev0({u}) is a 1-chain such that
∂0 Conev0({u}) = {u} + {v}.

If the 1-skeleton of X is connected, we can define Conev0({u}) to be a 1-chain that consists
of a sum of edges that form a path between {u} and {v}. If the 1-skeleton of X is not
connected, a 0-cone function does not exist: for {u} ∈ X(0) that is not in the connected
component of {v}, Conev0({u}) cannot be defined. Assuming that the 1-skeleton of X is
connected, we note that the construction of Conev0 is usually not unique: different choices of
paths between {u} and {v} give different 0-cone functions.

▶ Example 27 (1-cone example). Let X be an n-dimensional simplicial complex. Assume
that the 1-skeleton of X is connected and define a 0-cone function as in the example above
and define Conev2 on C0(X) as that 0-cone function. We note that for every {u,w} ∈ X(1),
{u,w} + Conev0({u}) + Conev0({w}) forms a closed path, i.e., a 1-cycle, in X. If H̃1(X) = 0,
we can deduce that {u,w} + Conev1({u}) + Conev1({w}) is a boundary. Therefore, for every
{u,w} ∈ X(1), we can choose Conev1({u,w}) ∈ X(2) such that

∂2 Conev1 = {u,w} + Conev1({u}) + Conev1({w}).
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▶ Definition 28 (Cone radius). Let X be an n-dimensional simplicial complex, −1 ≤ k ≤ n−1
and v a vertex of X. Given a k-cone function Conevk define the volume of Conevk as

Vol(Conevk) = max
τ∈X(k)

| Conevk(τ)|.

Define the k-th cone radius of X to be

Cradk(X) = min{Vol(Conevk) : {v} ∈ X(0),Conevk is a k-cone function}.

If k-cone functions do not exist, we define Crad(X) = ∞.

▶ Remark 29. The reason for the name “cone radius” is that in the case where k = 0,
Crad0(X) is exactly the (graph) radius of the 1-skeleton of X. Indeed, for k = 0, choose
{v} ∈ X(0) such that for every {v′} ∈ X(0),

max
{u}∈X(0)

dist(v, u) ≤ max
{u}∈X(0)

dist(v′, u),

where dist denotes the path distance. For such a {v} ∈ X(0), define Conev0({u}) to be the
edges of a shortest path between v and u. By our choice of v, it follows that Vol(Conev0) is
the radius of the one-skeleton of X and we leave it to the reader to verify that this choice
gives Crad0(X) = Vol(Conev0).

The main result of this section is that in a symmetric simplicial complex X, the k-th
cone radius gives a lower bound on Expkb (X):

▶ Theorem 30. Let X be a pure finite n-dimensional simplicial complex. Assume that X is
strongly symmetric, i.e., that there is a group G of automorphisms of X acting transitively
on X(n). For every 0 ≤ k ≤ n− 1, if Cradk(X) < ∞, then Expkb (X) ≥ 1

(n+1
k+1) Cradk(X)

.

Theorem 30 stated above generalizes a result of of Lubotzky, Meshulam and Mozes [17]
in which coboundary expansion was proven for symmetric simplicial complexes given that
they are “building-like”, i.e., that they have have sub-complexes that behave (in some sense)
as apartments in a Bruhat-Tits building.

We note that the notion of a cone function is already evident in Gromov’s original work [8].
Gromov considered what he called “random cones”, which was a probability over a family of
cone functions and show that the expectancy of the occurrence of a simplex in the support of
this family bounds Expkb (X) (see also the work of Kozlv and Meshulam [14, Theorem 2.5]).
Using Gromov’s terminology, in the proof of the Theorem above, we show that under the
assumption of symmetry a single cone function yields a family of random cones and the
needed expectancy is bounded by the cone radius. In the sake of completeness, we will not
prove the Theorem without using Gromov’s results.

In order to prove Theorem 30, we will need some additional lemmas.

▶ Lemma 31. For −1 ≤ k ≤ n − 1 and a k-cone function Conevk with apex v. Define the
contraction operator ιConev

k
,

ιConev
k

:
k⊕

j=−1
Cj+1(X) →

k⊕
j=−1

Cj(X)

as follows: for ϕ ∈ Cj+1(X) and A ∈ Cj(X), we define

(ιConev
k
ϕ)(A) = ϕ(Conevk(A)).

Then for every ϕ ∈ Ck(X),

ιConev
k
dkϕ = ϕ+ dk−1ιConev

k
ϕ.
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Proof. Let A ∈ Ck(X), then

ιConev
k
dkϕ(A) = (dkϕ)(Conevk(A)) =

ϕ(∂k+1(Conevk(A))) = ϕ(A+ (Conevk(∂kA))) =
ϕ(A) + (ιConev

k
ϕ)(∂kA) = ϕ(A) + (dk−1ιConev

k
ϕ)(A),

as needed. ◀

Naively, it might seem that this Lemma gives a direct approach towards bounding the
coboundary expansion: if one could find is some constant C = C(n, k,Cradk(X)) such that
w(ιConev

k
dkϕ) ≤ Cw(dkϕ), then for every ϕ,

w(dkϕ)
minψ∈Bk(X) w(ϕ+ ψ) ≥ 1

C

w(ιConev
k
dkϕ)

w(ϕ+ dk−1ιConev
k
ϕ) = 1

C
.

However, by Remark 13, we note that without symmetry, the existence of a k-cone function
cannot give an effective bound on the coboundary expansion.

Our proof strategy below is to improve on this naive idea by using the symmetry of X:
we will show that for a group G that acts on X, the group G also acts on k-cone functions
and we will denote this action by ρ. We then show that when G acts transitively on X(n),
we can average the action on the k-cone function that realizes the cone radius and deduce
that

1
|G|

∑
g∈G

w(ιρ(g).Conev
k
dkϕ) ≤

(
n+ 1
k + 1

)
Cradk(X)w(dkϕ).

Thus, using an averaged version of the naive argument above will get a bound on the
coboundary expansion.

We start by defining an action on k-cone functions. Assume that G is a group acting
simplicially on X. For every g ∈ G and every k-cone function Conevk define

(ρ(g).Conevk)(A) = g.(Conevk(g−1.A)), ∀A ∈
k⊕

j=−1
Cj(X).

▶ Lemma 32. For g ∈ G, −1 ≤ k ≤ n − 1 and a k-cone function Conevk with apex v,
ρ(g).Conevk is a k-cone function with apex g.v and Vol(g.Conevk) = Vol(Conevk). Moreover,
ρ defines an action of G on the set of k-cone functions.

Proof. If we show that g.Conevk is a k-cone function the fact that Vol(g.Conevk) = Vol(Conevk)
will follow directly from the fact that G acts simplicially.

The proof that ρ(g).Conevk is a k-cone function is by induction on k. For k = −1,

(ρ(g).Conev,−1)(∅) = g.Conev,−1(g−1.∅) = g.Conev,−1(∅) = g.{v} = {g.v},

then ρ(g).Conev,−1 is a (−1)-cone function with an apex g.v.
Assume the assertion of the lemma holds for k − 1. Thus, ρ(g).Conevk|⊕k−1

j=−1
Cj(X) is a

(k − 1)-cone function with an apex g.v and, by Observation 24, we are left to check that for
every τ ∈ X(k),

∂k+1(ρ(g).Conevk)(τ) = τ + ρ(g).Conevk(∂kτ).
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Note that the G acts simplicially on X and thus the action of G commutes with the ∂
operator. Therefore, for every τ ∈ X(k),

∂k+1(ρ(g).Conevk)(τ) = ∂k+1(g.(Conevk(g−1.τ))) = g.
(
∂k+1 Conevk(g−1.τ)

)
=

g.
(
g−1.τ + Conevk(∂kg−1.τ)

)
= τ + g.Conevk(g−1.∂kτ) =

τ + ρ(g).Conevk(∂kτ).

The fact that ρ is an action is straight-forward and left for the reader. ◀

Applying our proof strategy above, will lead us to consider the constant θ(η) defined in
the Lemma below.

▶ Lemma 33. Assume that G is a group acting simplicially on X and that this action is
transitive on n-simplices. Let 0 ≤ k ≤ n− 1 and assume that Cradk(X) < ∞. Fix Conevk to
be a k-cone function such that Cradk(X) = Vol(Conevk). For every η ∈ X(k + 1), denote

θ(η) = 1
w(η)|G|

∑
g∈G

∑
{w(τ) : τ ∈ X(k), η ∈ (ρ(g).Conevk)(τ))}.

Then for every η ∈ X(k + 1), θ(η) ≤
(
n+1
k+1
)

Cradk(X).

Proof. Fix some η ∈ X(k+ 1). First, we note that G acts transitively on X(n) and therefore⋃
gGη

{g.σ : σ ∈ X(n), η ⊆ σ} = X(n). This yields that

|X(n)| ≤ |G|
|Gη|

|{σ ∈ X(n) : η ⊆ σ}|,

and therefore |Gη| ≤ |G|
(
n+1
k+1
)
w(η).

Second, we note that for every g ∈ G, and every η ∈ X(k + 1),

η ∈ (ρ(g).Conevk)(τ) ⇔ η ∈ g.(Conevk(g−1.τ)) ⇔ g−1.η ∈ Conevk(g−1.τ).

Thus,

θ(η) = 1
w(η)|G|

∑
g∈G

∑
{w(τ) : τ ∈ X(k), η ∈ (ρ(g). Conev

k)(τ))} =

1
w(η)|G|

∑
g∈G

∑
{w(τ) : τ ∈ X(k), g−1.η ∈ Conev

k(g−1.τ)} =

1
w(η)|G|

∑
g∈G

∑
{w(g−1.τ) : τ ∈ X(k), g−1.η ∈ Conev

k(g−1.τ)} =

1
w(η)|G|

∑
g∈G

∑
{w(τ) : τ ∈ X(k), g−1.η ∈ Conev

k(τ)} =

1
w(η)|G|

∑
g∈G

∑
τ∈X(k)

∑
g−1.η∈Conev

k
(τ)

w(τ) =

1
w(η)

∑
τ∈X(k)

w(τ)
∑
g∈G

∑
g−1.η∈Conev

k
(τ)

1
|G| ≤

1
w(η)

∑
τ∈X(k)

w(τ)| Conev
k(τ)| |Gη|

|G| ≤

1
w(η)

∑
τ∈X(k)

w(τ) Cradk(X)
(

n + 1
k + 1

)
w(η) =

(
n + 1
k + 1

)
Cradk(X)

∑
τ∈X(k)

w(τ) =
(

n + 1
k + 1

)
Cradk(X),

as needed. ◀
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We turn now to prove Theorem 30:

Proof. Assume that G is a group acting simplicially on X such that the action is transitive
on X(n). Let 0 ≤ k ≤ n− 1 and assume that Cradk(X) < ∞. For ϕ ∈ Ck(X), we denote

[ϕ] = {ϕ+ ψ : ψ ∈ Bk(X)}, and w([ϕ]) = min
ϕ′∈[ϕ]

w(ϕ′).

Thus, we need to prove that for every ϕ ∈ Ck(X),

1(
n+1
k+1
)

Cradk(X)
w([ϕ]) ≤ w(dkϕ),

or equivalently,

|G|w([ϕ]) ≤ |G|w(dkϕ)
((

n+ 1
k + 1

)
Cradk(X)

)
.

Fix Conevk to be a k-cone function such that Cradk(X) = Vol(Conevk). By Lemma 32, for
every g ∈ G, ρ(g).Conevk is a k-cone function.

In the notation of Lemma 31, for every g ∈ G, denote ιg = ιρ(g).Conev
k
. By Lemma 31, for

every g ∈ G, w([ϕ]) ≤ w(ιgdkϕ) and therefore

|G|w([ϕ]) ≤
∑
g∈G

w(ιgdkϕ) =
∑
g∈G

∑
{w(τ) : τ ∈ supp(ιgdkϕ)} =

∑
g∈G

∑
{w(τ) : τ ∈ X(k), dkϕ(ρ(g).Conevk(τ)) = 1} ≤

∑
g∈G

∑
{w(τ) : τ ∈ X(k), supp(dkϕ) ∩ ρ(g).Conevk(τ) ̸= ∅} ≤

∑
η∈supp(dkϕ)

∑
g∈G

∑
{w(τ) : τ ∈ X(k), η ∈ ρ(g).Conevk(τ)} =

∑
η∈supp(dkϕ)

|G|w(η)θ(η) ≤Lemma 33 |G|w(dkϕ)
((

n+ 1
k + 1

)
Cradk(X)

)
,

as needed. ◀

The converse of Theorem 30 is also true, i.e., the existence of a cone function is equivalent
to vanishing of (co)homology and thus to coboundary expansion (for a proof see [13]).
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Abstract
Let G be a bipartite graph where every node has a strict ranking of its neighbors. For any node, its
preferences over neighbors extend naturally to preferences over matchings. A maximum matching
M in G is a popular max-matching if for any maximum matching N in G, the number of nodes that
prefer M is at least the number that prefer N . Popular max-matchings always exist in G and they
are relevant in applications where the size of the matching is of higher priority than node preferences.
Here we assume there is also a cost function on the edge set. So what we seek is a min-cost popular
max-matching. Our main result is that such a matching can be computed in polynomial time.

We show a compact extended formulation for the popular max-matching polytope and the
algorithmic result follows from this. In contrast, it is known that the popular matching polytope
has near-exponential extension complexity and finding a min-cost popular matching is NP-hard.
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1 Introduction

We consider a matching problem in a bipartite graph G = (A ∪ B,E) on n nodes and m

edges where every node has a strict ranking of its neighbors. The bipartite graph G need not
be complete. This is a very well-studied model in two-sided matching markets. This model
has been used to match students to schools and colleges [1, 4] and doctors to residencies in
hospitals [6, 28].

The goal is to find an optimal matching in G. The classical notion of optimality in such
an instance is stability. A matching M is stable if there is no edge that blocks M ; an edge
(a, b) blocks M if a and b prefer each other to their respective assignments in M . Stable
matchings always exist in G and one such matching can be computed in linear time by the
Gale-Shapley algorithm [17].

In several applications, along with node preferences, the definition of optimality may
involve attributes such as size, e.g., consider the problem of assigning doctors to hospitals
during a pandemic. For instance, during the Covid-19 pandemic in Mumbai, public hospitals
were overwhelmed with a rising number of patients and were severely short-staffed; so doctors
associated with private clinics were asked to also work in public hospitals1 [3, 22]. We
want the maximum number of doctors to get assigned to hospitals, i.e., we do not wish to

1 In the doctors-hospitals setting, one typically seeks a many-to-one matching since a hospital may need
several doctors. Here we focus on one-to-one matchings.
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compromise at all on the size of our matching. Thus the size of the matching is of higher
priority here than node preferences. We refer to [5] for more such applications: these include
school placement [1] and the assignment of sailors to billets [29, 34]. So the set of admissible
solutions in all these applications is the set of maximum matchings and among all maximum
matchings, we wish to find a best matching as per node preferences.

Note that a stable matching need not have maximum size. It is known that all stable
matchings match the same set of nodes [18]. When stable matchings are not admissible, a
natural alternative would be to seek a maximum matching with the least number of blocking
edges. However this is an NP-hard problem [5] and as shown there, this is NP-hard to
approximate within n1−ε, for any ε > 0.

Observe that stability empowers every edge with the “veto power” to block a matching.
Thus stability is a very strong notion and the notion of popularity is a meaningful relaxation of
stability that captures collective welfare. We say node u prefers matching M to matching N
if u prefers its assignment in M to its assignment in N ; being unmatched is the worst choice
for any node. We can compare any pair of matchings M and N by holding an election
between them where nodes are voters.

Let ϕ(M,N) be the number of nodes that prefer M to N and similarly, let ϕ(N,M)
be the number of nodes that prefer N to M . We say N is more popular than M if
ϕ(N,M) > ϕ(M,N).

▶ Definition 1. A matching M is popular if ∆(M,N) ≥ 0 for all matchings N in G, where
∆(M,N) = ϕ(M,N) − ϕ(N,M).

Thus a matching M is popular if there is no matching that is more popular than M .
Every stable matching is popular2 [19]. One of the main merits of popularity is that it
allows larger matchings compared to stable matchings. Since a stable matching is a maximal
matching, its size is at least |Mmax|/2 (where Mmax is a maximum matching in G) and there
are easy examples where this bound is tight. It is known that there is always a popular
matching of size at least 2|Mmax|/3 and there are simple instances with no larger popular
matching [23].

Since a popular matching need not be maximum, a natural alternative is to ask for
a maximum matching M that is popular within the set of maximum matchings, i.e., no
maximum matching is more popular than M . Since it is only maximum matchings that
are admissible and we are not willing to replace a maximum matching with a smaller one,
elections that involve non-maximum or inadmissible matchings are not relevant here. Hence
a natural candidate for a best maximum matching is a popular max-matching defined below.

▶ Definition 2. Call a maximum matching M in G = (A ∪B,E) a popular max-matching
if ∆(M,N) ≥ 0 for all maximum matchings N in G.

Thus what we seek is a weak Condorcet winner [7, 27] in the voting instance where
maximum matchings are candidates and nodes are voters. The relation “more popular than”
is not transitive and weak Condorcet winners need not exist in every voting instance. The
question of whether every instance admits a popular max-matching was considered in [23]
where it was shown that popular max-matchings always exist in G = (A ∪ B,E) and one
such matching can be computed in O(mn) time.

2 In an election between a stable matching S and any matching M , if node u prefers M to S then the node
M(u) has to prefer S to M , otherwise (u,M(u)) blocks S, which is forbidden. Hence ϕ(M,S) ≤ ϕ(S,M).
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In several applications there is a cost function c : E → R and for any matching M , its
cost c(M) =

∑
e∈M c(e). So among all popular max-matchings in G, what we seek is a

min-cost popular max-matching. There are no previous algorithmic/hardness results known
for this problem. We know that it is NP-hard to find a min-cost popular matching [13].

Finding a min-cost popular max-matching is a natural and interesting problem in discrete
optimization. Solving this problem efficiently implies efficient algorithms for a whole host of
popular max-matching problems such as finding one with forced/forbidden edges or one with
max-utility or one with min-regret. In general, a cost function allows us to “access” the entire
set of popular max-matchings; note that G may have more than 2n such matchings [32].

Let MG denote the popular max-matching polytope of G, i.e., this polytope is the convex
hull of the edge incidence vectors of popular max-matchings in G. A compact description of
MG (or some extension3 of it) implies a polynomial time algorithm to compute a min-cost
popular max-matching. Our main result is that the polytope MG has a compact extended
formulation. So unlike the min-cost popular matching problem, interestingly and quite
surprisingly, the min-cost popular max-matching problem is tractable.

▶ Theorem 3. Given G = (A ∪B,E) where nodes have strict preferences and c : E → R, a
min-cost popular max-matching can be computed in polynomial time.

So Theorem 3 shows that a natural variant of the min-cost popular matching problem
(which is NP-hard) admits a polynomial time algorithm. We also consider Pareto-optimality –
this is a far more relaxed notion than popularity that any reasonable matching in this domain
should satisfy. If M is a matching that is not Pareto-optimal then there is a matching N
such that no node is worse-off in N than in M and at least one node is better-off.

The unpopularity factor of M is defined as follows [26]: u(M) = maxN ̸=M
ϕ(N,M)
ϕ(M,N) .

Observe that a popular matching M satisfies u(M) ≤ 1. A matching M is Pareto-optimal
if u(M) < ∞. A maximum matching M that satisfies u(M) < ∞ is a Pareto-optimal
max-matching. We show the following hardness result here.

▶ Theorem 4. Given G = (A ∪B,E) with strict preferences and edge costs in {0, 1}, it is
NP-hard to compute a min-cost Pareto-optimal matching/max-matching in G. Moreover, it
is NP-hard to approximate this within any multiplicative factor.

1.1 Background
The notion of popularity was introduced by Gärdenfors [19] in 1975 where he observed that
every stable matching is popular. Many algorithmic questions in popular matchings have
been investigated in the last 10-15 years and we refer to [8] for a survey. In the domain of
popular matchings with two-sided preferences (every node has a preference order ranking
its neighbors), other than a handful of positive results [10, 20, 23, 25], most optimization
problems have turned out to be NP-hard [13].

Computing a min-cost quasi-popular matching M , i.e., u(M) ≤ 2, is also NP-hard [12].
Compact extended formulations for the dominant matching4 polytope [10, 12] and the
popular fractional matching polytope [24] are known but the popular matching polytope has
near-exponential extension complexity [12].

3 A polytope Q that linearly projects to a polytope P is an extension of P and a linear description of Q is
an extended formulation for P . The minimum size of an extension of P is the extension complexity of P .

4 These are popular matchings that are more popular than all larger matchings.
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Though an O(mn) time algorithm to find a popular max-matching in G is known [23],
there are no previous results on its optimization variant, i.e., to find a min-cost or max-utility
popular max-matching. It is common in this domain to have an efficient algorithm to find
a max-size matching in some class – say, popular matchings [20, 23] or Pareto-optimal
matchings for one-sided preferences (only nodes in A have preferences) studied in [2], however
finding a min-cost matching in these classes is NP-hard [2, 13]; Theorem 4 also shows such
a hardness result. Thus an efficient algorithm to find some popular max-matching was no
guarantee on the tractability of the min-cost popular max-matching problem.

There are several polynomial time algorithms to compute a min-cost stable matching and
some variants of this problem [11, 14, 15, 16, 21, 30, 31, 33]. Moreover, the stable matching
polytope of G has a linear-size description in Rm [30]. Thus in contrast to stable matchings,
the landscape of popular matchings has only a few positive results.

1.2 Our Techniques
An algorithm called the “|A|-level Gale-Shapley algorithm” was given in [23] to find a popular
max-matching in G = (A ∪B,E). As we show in Section 2, this algorithm is equivalent to
running the Gale-Shapley algorithm in an auxiliary instance G∗ with |A| copies of each node
in A. The proof in [23] can be easily adapted to show that there is a map from the set of
stable matchings in G∗ to the set of popular max-matchings in G (see Theorem 6). Our novel
contribution here is to show that this map is surjective, i.e., every popular max-matching in
G is the image of a stable matching in G∗.

Loosely speaking, the instance G∗ is made up of |A| copies of G and is inspired by an
instance from [10] that is made up of two copies of G. So our instance G∗ is much larger
than the instance used in [10]. In order to realize a popular max-matching in G as the image
of a stable matching in G∗, rather than be guided by blocking edges (as done in [10]), we
need a “global handle” over the given popular max-matching, i.e., we seek a function from
A ∪B to {0, . . . , |A| − 1} that guides us in how to “place” this matching in the instance G∗.

LP-duality gives us such a handle in terms of dual certificates. Dual certificates for
popular matchings are well-understood: these are in {0,±1}n [24]. To show a compact
extended formulation for MG (unlike the popular matching polytope), finding the right dual
certificates is crucial. Our proof consists of two parts: when G admits a perfect matching, it
is the easy case. We use total unimodularity, complementary slackness, and the fact that G
has a perfect matching to show that the given popular max-matching M has a dual certificate
α⃗ where αa ∈ {0,−2,−4, . . .} for a ∈ A and αb ∈ {0, 2, 4, . . .} for b ∈ B. Such an α⃗ can be
neatly used to realize M as the image of a stable matching in G∗ (see Theorem 8).

The general case. When G does not admit a perfect matching, things are more complicated.
The primal LP will not be as simple as (LP1) whose constraints describe the perfect matching
polytope. So we reduce the general case to the case when M is a perfect matching, i.e., we
use the dual solution α⃗ ∈ {0,±2,±4, . . .}2n0 that certifies M ’s optimality in the subgraph
G′ = G \ {nodes not matched in M} on 2n0 = 2|M | nodes.

We need to update α⃗ so that it certifies M ’s optimality in the entire graph G. Our main
technical novelty is in how we update α⃗ using certain rules (see Theorem 9). Let A′ ∪B′ be
the node set of G′ and let U be the set of nodes not matched in M .

We use the fact that M is a maximum matching to prove that our update procedure
terminates with a dual certificate α⃗ for M in G′ where αa ∈ {0,−2,−4, . . . ,−2(n0 − 1)} for
a ∈ A′ and αb ∈ {0, 2, 4, . . . , 2(n0 − 1)} for b ∈ B′ such that the neighbors of nodes in U take
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the highest possible α-values, i.e., (i) αa = 0 for a ∈ A′ ∩ Nbr(U) and (ii) αb = 2(n0 − 1) for
b ∈ B′ ∩ Nbr(U). Roughly speaking, such an α⃗ will take care of the edges of G missing in G′

and will allow us to realize M as the image of a stable matching in G∗ (see Theorem 10).

2 Popular Max-Matchings

In this section we first show a simple characterization of popular max-matchings. Then we
show a method to construct matchings that satisfy this characterization. Let M be any
matching in G = (A ∪ B,E). The following edge weight function wtM will be useful here.
For any (a, b) ∈ E:

let wtM (a, b) =


2 if (a, b) blocks M ;
−2 if a and b prefer their assignments in M to each other;
0 otherwise.

So wtM (e) = 0 for every e ∈ M . For any edge e, wtM (e) is the sum of votes (each vote is
in {0,±1}) of the endpoints of e for each other versus their respective assignments in M .

For any cycle/path ρ in G, let wtM (ρ) =
∑
e∈ρ wtM (e). Theorem 5 uses this edge weight

function to characterize popular max-matchings. Recall that an alternating path (resp.,
cycle) with respect to matching M is a path (resp., cycle) whose alternate edges are in M .

▶ Theorem 5. For any maximum matching M in G, M is a popular max-matching if and
only if (1) there is no alternating cycle C wrt M such that wtM (C) > 0 and (2) there is no
alternating path p with an unmatched node as an endpoint such that wtM (p) > 0.

Proof. Let M be a popular max-matching. We need to show that conditions (1) and (2)
given in the theorem statement hold. Suppose not. Then there exists either an alternating
path with an unmatched node as an endpoint or an alternating cycle wrt M (call this
path/cycle ρ) such that wtM (ρ) > 0. Since wtM (e) ∈ {0,±2}, wtM (ρ) ≥ 2.

Consider N = M ⊕ ρ. This is a maximum matching in G and observe that ∆(N,M) ≥
wtM (ρ) − 1. We are subtracting 1 here to count for that endpoint of ρ (when ρ is a path)
that is matched in M but will become unmatched in N . Since wtM (ρ) ≥ 2, ∆(N,M) ≥ 1.
So N is more popular than M ; this is a contradiction to M ’s popularity within the set of
maximum matchings. Thus conditions (1) and (2) have to hold.

To show the converse, suppose M is a maximum matching that obeys conditions (1)
and (2). Consider the symmetric difference M ⊕N , where N is any maximum matching in G
and let C be any alternating cycle here. We know from (1) that wtM (C) ≤ 0. Let p be any
alternating path in M ⊕N . Since M and N are maximum matchings, p is an alternating
path with exactly one node not matched in M as an endpoint. We know from (2) that
wtM (p) ≤ 0. So we have ∆(N,M) ≤

∑
ρ∈M⊕N wtM (ρ) ≤ 0. Thus no maximum matching is

more popular than M . ◀

A new instance. We will now construct a new instance G∗ = (A∗ ∪B∗, E∗) such that every
stable matching in G∗ maps to a maximum matching in G that satisfies properties (1) and (2)
given in Theorem 5. As mentioned earlier, the structure of the instance G∗ is inspired by an
instance from [10] whose stable matchings map to dominant matchings in G.

We first describe the node sets A∗ and B∗. Let n0 = |A|. For every a ∈ A, the set A∗

has n0 copies of a: call them a0, . . . , an0−1. So A∗ = ∪a∈A{a0, . . . , an0−1}.

ICALP 2021



85:6 Maximum Matchings and Popularity

Let B∗ = ∪a∈A{d1(a), . . . , dn0−1(a)}∪{b̃ : b ∈ B}, where B̃ = {b̃ : b ∈ B} is a copy of the
set B. So along with nodes in B̃, the set B∗ also contains n0 − 1 nodes d1(a), . . . , dn0−1(a)
for each a ∈ A. These will be called dummy nodes. The purpose of d1(a), . . . , dn0−1(a) is to
ensure that in any stable matching in G∗, at most one node among a0, . . . , an0−1 is matched
to a neighbor in B̃.

The edge set. For each (a, b) ∈ E, the edge set E∗ contains n0 edges (ai, b̃) for 0 ≤ i ≤ n0−1.
For each a ∈ A and i ∈ {1, . . . , n0 − 1}, E∗ also has (ai−1, di(a)) and (ai, di(a)).

Preference orders. Let a’s preference order in G be b1 ≻ · · · ≻ bk. Then a0’s preference
order in G∗ is b̃1 ≻ · · · ≻ b̃k ≻ d1(a), i.e., it is analogous to a’s preference order in G with
d1(a) added as a0’s last choice.

For i ∈ {1, . . . , n0 − 2}, the preference order of ai in G∗ is as follows: di(a) ≻ b̃1 ≻ · · · ≻
b̃k ≻ di+1(a). So ai’s top choice is di(a) and last choice is di+1(a).
The preference order of an0−1 is dn0−1(a) ≻ b̃1 ≻ · · · ≻ b̃k.

For each i ∈ {1, . . . , n0 − 1}, the preference order of di(a) is ai−1 ≻ ai. Since each of
a0, . . . , an0−2 and d1(a), . . . , dn0−1(a) is a top choice neighbor for some node, every stable
matching in G∗ has to match all these nodes. So the only node among a0, . . . , an0−1, d1(a), . . . ,
dn0−1(a) that can possibly be left unmatched in a stable matching in G∗ is an0−1.

Consider any b ∈ B and let its preference order in G be a ≻ · · · ≻ z. Then the preference
order of b̃ in G∗ is

an0−1 ≻ · · · ≻ zn0−1︸ ︷︷ ︸
all subscript n0 − 1 neighbors

≻ an0−2 ≻ · · · ≻ zn0−2︸ ︷︷ ︸
all subscript n0 − 2 neighbors

≻ · · · ≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
all subscript 0 neighbors

That is, b̃’s preference order in G∗ is all its subscript n0 − 1 neighbors, followed by all
its subscript n0 − 2 neighbors, so on, and finally, all its subscript 0 neighbors. For each
i ∈ {0, . . . , n0 − 1}: within all subscript i neighbors, the order of preference for b̃ in G∗ is the
same as b’s order of preference in G.

The set S′. For any stable matching S in G∗, define S′ ⊆ E to be the set of edges obtained
by deleting edges in S that are incident to dummy nodes and replacing any edge (ai, b̃) ∈ S

with the original edge (a, b) ∈ E. Since S matches at most one node among a0, . . . , an0−1 to
a neighbor in B̃, the set S′ is a matching in G.

The proof of Theorem 6 is based on the proof of correctness of the |A|-level Gale-Shapley
algorithm (from [23]) in the original instance G.

▶ Theorem 6. Let S be a stable matching in G∗. Then S′ is a popular max-matching in G.

Proof. Partition the set A into A0 ∪ · · · ∪ An0−1 where for 0 ≤ i ≤ n0 − 2: Ai = {a ∈ A :
(ai, b̃) ∈ S for some b̃ ∈ B̃}, i.e., ai is matched in S to a neighbor in B̃. The left-out nodes in
A, i.e., those in A \ (A0 ∪ · · · ∪ An0−2), form the set An0−1 (see Fig. 1).

Similarly, partition B into B0 ∪ · · · ∪Bn0−1 where for 1 ≤ i ≤ n0 − 1: Bi = {b : (ai, b̃) ∈ S

for some a ∈ Ai}, i.e., b̃’s partner in S is a subscript i node. Let B0 = B \ (B1 ∪ · · · ∪Bn0−1)
be the set of left-out nodes in B.

The following properties hold: (these are proved below)
1. S′ ⊆ ∪n0−1

i=0 (Ai ×Bi). Moreover, S′ restricted to each set Ai ∪Bi is stable.
2. For any i and edge (a, b) where a ∈ Ai+1, b ∈ Bi: we have wtS′(a, b) = −2.
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An0−1 Bn0−1

An0−2

A2

A1

A0

Bn0−2

B2

B1

B0

Figure 1 A = A0 ∪ · · · ∪An0−1 and B = B0 ∪ · · · ∪Bn0−1. The matching S′ ⊆ ∪n0−1
i=0 (Ai ×Bi).

All nodes unmatched in S′ are in An0−1 ∪B0. The dashed edges are blocking edges to S′.

3. G has no edge in Ai ×Bj where i ≥ j + 2.
4. Any blocking edge to S′ has to be in Ai ×Bj where i ≤ j − 1.
5. All nodes that are unmatched in S′ are in An0−1 ∪B0.
6. S′ is a maximum matching in G.

Properties 1–4 imply that for any alternating cycle C wrt S′, wtS′(C) ≤ 0. Similarly,
properties 1–5 imply that for any alternating path p with one unmatched node as an endpoint,
wtS′(p) ≤ 0. We refer to [23, Theorem 2] for more details. Property 6 states that S′ is a
maximum matching in G. Hence S′ is a popular max-matching in G (by Theorem 5). ◀

Properties 1-6. These six properties are proved below.
1. The inclusion S′ ⊆ ∪n0−1

i=0 (Ai ×Bi) follows from the definition of the sets B0, . . . , Bn0−1.
Recall that for 1 ≤ i ≤ n0 − 1, Bi is the set of nodes b such that (ai, b̃) ∈ S for some
a ∈ Ai. Also, B0 contains all nodes b such that (a0, b̃) ∈ S for some a ∈ A0. Thus
S′ ⊆ ∪n0−1

i=0 (Ai ×Bi).
The stability of S′ restricted to each set Ai ∪Bi is by b̃’s preference order in G∗. Recall
that within subscript i neighbors, the order of preference for b̃ in G∗ is b’s order of
preference in G. Thus the stability of S in G∗ implies the stability of S′ restricted to
Ai ∪Bi for each i.

2. Let a ∈ Ai+1. Then (ai+1, di+1(a)) /∈ S. So it has to be the case that (ai, di+1(a)) ∈ S.
Recall that di+1(a) is ai’s least preferred neighbor in G∗. So ai prefers b̃ to its partner in
S. Hence it follows from the stability of S in G∗ that b̃ prefers its partner in S (this is a
subscript i node zi) to ai, i.e., b prefers z to a.
Since b̃ prefers subscript i+ 1 nodes to subscript i nodes, b̃ prefers ai+1 to its partner zi
in S. It follows from the stability of S in G∗ that ai+1 has to prefer its partner w̃ in S to
b̃, otherwise (ai+1, b̃) would block S. Hence a prefers w to b. Thus wtS′(a, b) = −2.

3. Suppose a ∈ Ai where i ≥ j + 2 and b ∈ Bj . So the edge (aj+1, dj+2(a)) ∈ S. Since
dj+2(a) is aj+1’s least preferred neighbor in G∗, the stability of S implies that b̃ prefers
its partner in S to aj+1. However b ∈ Bj and so b̃’s partner in S is a subscript j node
zj . This contradicts b̃’s preference order that it prefers any subscript j + 1 neighbor to a
subscript j neighbor. Thus there is no edge (a, b) in G with a ∈ Ai and b ∈ Bj where
i ≥ j + 2.
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4. Property 4 follows from properties 1, 2, and 3 given above. Properties 2 and 3 tell us
that there is no blocking edge in Ai ×Bj where i ≥ j + 1. Property 1 tells us that there
is no blocking edge in Ai ×Bi for any i. So any blocking edge to S′ has to be in Ai ×Bj
where i ≤ j − 1.

5. Property 5 follows from the definitions of the sets A0, . . . , An0−2 and B1, . . . , Bn0−1. For
each a ∈ Ai where 0 ≤ i ≤ n0 − 2: we have (ai, b̃) ∈ S for some b̃ ∈ B̃ and thus (a, b) ∈ S′.
Similarly, for each b ∈ Bj where 1 ≤ j ≤ n0 − 1: we have (aj , b̃) ∈ S for some a ∈ Aj and
thus (a, b) ∈ S′. Hence all nodes unmatched in S′ are in An0−1 ∪B0.

6. Suppose S′ is not a maximum matching in G. Then there is an augmenting path ρ with
respect to S′. Let us refer to an edge e that satisfies wtS′(e) = −2 as a negative edge.
The endpoints of a negative edge prefer their respective partners in S′ to each other.
We know from property 5 above that all the nodes in A that are unmatched in S′ are
in An0−1 and all the nodes in B that are unmatched in S′ are in B0. We also know
that S′ ⊆ ∪i(Ai × Bi) (by property 1 above). Moreover, all the edges e in Aj+1 × Bj
are negative edges (by property 2) and there is no edge in Ai ×Bj where i ≥ j + 2 (by
property 3).
Thus the path ρ starts in An0−1 at an unmatched node a and since there cannot be any
negative edge incident to an unmatched node, all of a’s neighbors have to be in Bn0−1:
this is because every edge e in An0−1 ×Bn0−2 is a negative edge. The matched partners
of a’s neighbors are in An0−1. Then the next node can be in Bn0−2 (this is by property 3)
and its partner is in An0−2 and so on. Finally, there is no edge from A1 to an unmatched
node in B0: this is because there is no negative edge incident to an unmatched node and
we know all edges in A1 ×B0 are negative edges (by property 2).
So the shortest alternating path ρ from an unmatched a ∈ An0−1 to an unmatched b ∈ B0
moves across sets as follows: An0−1 −Bn0−1 −An0−1 −Bn0−2 −An0−2 −Bn0−3 − · · · −
A1 −B0 −A0 −B0. This implies there are at least n0 + 1 nodes in A. However |A| = n0.
So there is no such alternating path, i.e., there is no augmenting path with respect to
S′. In other words, S′ is a maximum matching in G. This finishes our proof of these six
properties.

Theorem 6 shows that every stable matching in G∗ maps to a popular max-matching
in G. In fact, as we show next, every popular max-matching in G has to be realized in this
manner. This is the tough part of the proof and as mentioned earlier, we will use LP-duality
here. We will see that appropriate dual certificates capture a very useful feature of popular
max-matchings.

3 Proving Surjectivity in a Special Case

In this section we consider the case when G admits a perfect matching. Let M be a popular
perfect matching in G. So no perfect matching in G is more popular than M .

Consider the following linear program (LP1) that computes a max-weight (wrt wtM )
perfect matching in G. For any node u, let δ(u) be the set of edges incident to u.

maximize
∑
e∈E

wtM (e) · xe (LP1)

subject to∑
e∈δ(u)

xe = 1 ∀u ∈ A ∪B and xe ≥ 0 ∀ e ∈ E.
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It follows from the definition of the function wtM that the optimal value of (LP1) is
maxN ∆(N,M) where N is a perfect matching in G. So if M is a popular perfect matching
then the optimal value of (LP1) is 0, which is ∆(M,M), i.e., the edge incidence vector of M
is an optimal solution to (LP1). The linear program (LP2) is the dual of (LP1). Hence if M
is a popular perfect matching then there exists a dual feasible α⃗ such that

∑
u∈A∪B αu = 0.

minimize
∑

u∈A∪B
yu (LP2)

subject to

ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E.

Let α⃗ be an optimal solution to (LP2). Observe that there exists an integral optimal
solution to (LP2) since the constraint matrix is totally unimodular. Thus we can assume
that α⃗ ∈ Z2n0 , where n0 = |A| = |B|.

▶ Lemma 7. If M is a popular perfect matching in G then there exists an optimal solution α⃗ to
(LP2) such that αa ∈ {0,−2,−4, . . . ,−2(n0−1)} for all a ∈ A and αb ∈ {0, 2, 4, . . . , 2(n0−1)}
for all b ∈ B.

Proof. The dual feasibility constraints are αa + αb ≥ wtM (a, b) for all (a, b) ∈ E. For each
edge (a, b) ∈ M : αa + αb = wtM (a, b) = 0 by complementary slackness. Since αb = −αa for
(a, b) ∈ M and because wtM (e) ∈ {0,±2} for each edge e, we can assume that in the sorted
order of distinct α-values taken by nodes in A, for any two consecutive values αa′ , αa′′ , where
αa′ > αa′′ , we have αa′ − αa′′ = 2.

Thus we can assume that αa ∈ {k, k − 2, k − 4, . . . , k − 2(n0 − 1)} for all a ∈ A and
αb ∈ {−k,−k+ 2,−k+ 4, . . . ,−k+ 2(n0 − 1)} for all b ∈ B, for some k ∈ Z. Observe that k
has no impact on the objective function

∑
u∈A∪B αu. This is because |A| = |B| and so k’s

and −k’s cancel each other out.
Let us update α⃗ as follows: αa = αa − k for every a ∈ A and αb = αb + k for every

b ∈ B. The updated vector α⃗ continues to be dual feasible since αa + αb, for any edge
(a, b), is unchanged by this update. Thus there is an optimal solution α⃗ to (LP2) such that
αa ∈ {0,−2, . . . ,−2(n0 − 1)} for all a ∈ A and αb ∈ {0, 2, . . . , 2(n0 − 1)} for all b ∈ B. ◀

Let M be a popular perfect matching in G. In order to define a stable matching S in G∗

such that M = S′ (the set S′ is defined above Theorem 6), we will use the vector α⃗ described
in Lemma 7. Since M is perfect, we know that for any a ∈ A, there is an edge (a, b) ∈ M for
some neighbor b of a. Recall that αa + αb = wtM (a, b) = 0 by complementary slackness. We
will include the edge (ai, b̃) in S where αa = −2i and αb = 2i. Thus we define S as follows:

S = ∪n0−1
i=0 {(ai, b̃) : (a, b) ∈ M and αa = −2i, αb = 2i} ∪ {necessary edges incident to

dummy nodes in G∗}.
In more detail, the edges incident to dummy nodes that are present in S are as follows: for

each a ∈ A, these edges are (aj , dj+1(a)) for 0 ≤ j ≤ i−1 and (aj , dj(a)) for i+1 ≤ j ≤ n0 −1,
where αa = −2i.

Since (ai, b̃) ∈ S, all the n0 nodes a0, . . . , an0−1 and the dummy nodes d1(a), . . . , dn0−1(a)
corresponding to a in G∗ are matched in S. This holds for every a ∈ A. Also every b̃ ∈ B̃ is
matched in S since M is a perfect matching in G. Thus S is a perfect matching in G∗. It is
easy to check that S′ = M . What we need to prove is the stability of S in G∗.
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▶ Theorem 8. The matching S is stable in G∗.

Proof. We need to show there is no edge in G∗ that blocks S. There is no blocking edge
incident to a dummy node: this is because a dummy node di(a) has only two neighbors and
when di(a) is matched in S to its second choice neighbor ai, its top choice neighbor ai−1
prefers its partner in S to di(a).

Let us now show that no node in a0, . . . , an0−1 has a blocking edge incident to it, for
any a ∈ A. Let (ai, b̃) ∈ S where (a, b) ∈ M . All of ai+1, . . . , an0−1 are matched to their
respective top choice neighbors di+1(a), . . . , dn0−1(a). So there is no blocking edge incident
to any of ai+1, . . . , an0−1.

All of a0, . . . , ai−1 are matched to their last choice neighbors – these are the dummy
nodes d1(a), . . . , di(a), respectively. Consider any neighbor w ∈ B of a. We need to
show that w̃ ∈ B̃ is matched in S to a neighbor preferred to all of a0, . . . , ai−1. We have
αa + αw ≥ wtM (a,w). Since αa = −2i and wtM (e) ≥ −2 for every edge e, it follows that
αw ≥ 2i− 2.

So (z, w) ∈ M for some neighbor z of w such that αz = −αw ≤ −(2i− 2). Equivalently,
(zj , w̃) ∈ S where j ≥ i−1. Thus there is no blocking edge between w̃ and any of a0, . . . , ai−2
by w̃’s preference order in G∗. We will now show that (ai−1, w̃) cannot be a blocking edge.

If j ≥ i then by w̃’s preference order in G∗, w̃ prefers zj to ai−1 and so (ai−1, w̃) does
not block S.
If j = i − 1 then wtM (a,w) ≤ αa + αw = −2i + 2i − 2 = −2. So both a and w prefer
their respective partners in M to each other. Thus w̃ prefers zi−1 to ai−1. So (ai−1, w̃)
does not block S.

Finally, we need to show there is no blocking edge incident to ai. By the above arguments,
we only need to consider edges (ai, w̃) where (zi, w̃) ∈ S. So wtM (a,w) ≤ αa + αw =
−2i+ 2i = 0. Hence either (a,w) ∈ M or at least one of a,w prefers its partner in M to the
other. So either (ai, w̃) ∈ S or at least one of ai, w̃ prefers its partner in S to the other; thus
the edge (ai, w̃) does not block S. Hence S is a stable matching in G∗. ◀

4 The General Case

We showed that when G has a perfect matching, our mapping from the set of stable matchings
in G∗ to the set of popular max-matchings in G is surjective. Now we look at the general
case, i.e., G need not have a perfect matching. Let M be a popular max-matching in G.

Let U ⊆ A ∪B be the set of nodes left unmatched in M . Consider (LP3) that computes
a max-weight perfect matching (with respect to wtM ) in the subgraph G′ induced on
V = (A ∪B) \ U . Let E′ be the edge set of G′. For any v ∈ V , let δ′(v) = δ(v) ∩ E′.

maximize
∑
e∈E′

wtM (e) · xe (LP3)

subject to∑
e∈δ′(v)

xe = 1 ∀ v ∈ V and xe ≥ 0 ∀ e ∈ E′.

The optimal value of (LP3) is maxN ∆(N,M) where N is a perfect matching in G′. Any
perfect matching in G′ is a maximum matching in G and since M is a popular max-matching
in G, ∆(N,M) ≤ 0 for any perfect matching N in G′. Since ∆(M,M) = 0, the edge incidence
vector of M is an optimal solution to (LP3). The linear program (LP4) is the dual of (LP3).
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minimize
∑
u∈V

yu (LP4)

subject to

ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E′.

Since M is a popular max-matching, the optimal value of (LP3) is 0. So there exists an
optimal solution α⃗ to (LP4) such that

∑
u∈V αu = 0. Moreover, we can assume the following

(see Lemma 7) where A′ = A \ U and B′ = B \ U . Here |A′| = |B′| = n0.

1. αa ∈ {0,−2,−4, . . . ,−2(n0 − 1)} for all a ∈ A′

2. αb ∈ {0, 2, 4, . . . , 2(n0 − 1)} for all b ∈ B′.

For any T ⊆ A ∪B, let Nbr(T ) be the set of neighbors in G of nodes in T . Theorem 9 is
our main technical result here. Let UA = U ∩A and UB = U ∩B.

▶ Theorem 9. Let M be a popular max-matching in G and let U be the set of nodes left
unmatched in M . There exists an optimal solution α⃗ to (LP4) such that

αa ∈ {0,−2, . . . , −2(n0 − 1)} for a ∈ A′ and αb ∈ {0, 2, . . . , 2(n0 − 1)} for b ∈ B′

(i) αa = 0 for a ∈ Nbr(UB) and (ii) αb = 2(n0 − 1) for b ∈ Nbr(UA).

Let us first finish our proof of surjectivity by assuming Theorem 9. Then we will prove
Theorem 9. Let M be any popular max-matching in G. Corresponding to M , there is a vector
α⃗ as given in Theorem 9. We will use this vector α⃗ to construct S = ∪n0−1

i=0 {(ai, b̃) : (a, b) ∈ M

and αa = −2i, αb = 2i} ∪ {necessary edges incident to dummy nodes in G∗}.
The edges in S incident to dummy nodes are: (aj , dj+1(a)) for 0 ≤ j ≤ n0 − 2 for a ∈ UA.

For a ∈ A\UA, these are (aj , dj+1(a)) for 0 ≤ j ≤ i− 1 and (aj , dj(a)) for i+ 1 ≤ j ≤ n0 − 1,
where αa = −2i. It is easy to see that S is a matching in G∗ and S′ = M .

▶ Theorem 10. The matching S is stable in G∗.

Proof. Let E′ be the edge set of G′, where G′ is the subgraph of G induced on (A ∪B) \ U .
Consider any edge (aj , w̃) in G∗ where (a,w) ∈ E′ and 0 ≤ j ≤ n0 − 1. The proof of
Theorem 8 shows that (aj , w̃) does not block S.

Consider any edge (a,w) in E \ E′. Such an edge has a node in U as an endpoint. A
useful observation is that every node in Nbr(U) has to be matched in M to some neighbor
that it prefers to all its neighbors in U . Otherwise M would not be a popular max-matching.

Suppose a ∈ UA. So w ∈ Nbr(UA) and αw = 2(n0 − 1) by property (ii) in Theorem 9. So
(zn0−1, w̃) ∈ S for some neighbor z that w prefers to a. Thus (an0−1, w̃) does not block S.
For i ∈ {0, . . . , n0 − 2}, none of the edges (ai, w̃) can block S (by w̃’s preference order).
Suppose w ∈ UB. So a ∈ Nbr(UB) and αa = 0 by property (i) in Theorem 9. Thus
(a0, b̃) ∈ S for some neighbor b that a prefers to w. Hence (a0, w̃) does not block S.
Moreover, none of the edges (ai, w̃) for i ∈ {1, . . . , n0 − 1} can block S since a1, . . . , an0−1
are matched to their respective top choice neighbors d1(a), . . . , dn0−1(a).

Finally, no edge incident to a dummy node blocks S (by the same argument as given in the
proof of Theorem 8). Hence S is a stable matching in G∗. ◀

Thus Theorem 9 allows us to show that for any popular max-matching M in G, there is
a stable matching S in G∗ such that M = S′. We will now prove Theorem 9.
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Proof of Theorem 9. We know there is an optimal solution α⃗ to (LP4) where αa ∈ {0,−2,
. . . ,−2(n0 − 1)} for a ∈ A′ and αb ∈ {0, 2, . . . , 2(n0 − 1)} for b ∈ B′. We now update α⃗
so that it remains an optimal solution to (LP4) in the above format and it also satisfies
properties (i) and (ii) given in the theorem statement.

Property (ii). Suppose the vector α⃗ ∈ {0,±2, . . . ,±2(n0 − 1)}2n0 does not satisfy prop-
erty (ii). So we have to update α⃗ so that property (ii) is satisfied. First, we increase the
α-values of the nodes in Nbr(UA) to 2(n0 − 1) and decrease the α-values of their partners
in M to −2(n0 − 1). Now α⃗ may no longer be a feasible solution to (LP4).

We use the following three update rules for all a ∈ A′ to make α⃗ feasible again. Let αa =
−2i where i ∈ {0, . . . , n0 − 1}. Suppose there is some (a, b) ∈ E′ with αa + αb < wtM (a, b).
Let M(b) be b’s partner in M .

Rule 1. If wtM (a, b) = 0 then update αb = 2i and αM(b) = −2i.
Rule 2. If wtM (a, b) = −2 then update αb = 2(i− 1) and αM(b) = −2(i− 1).
Rule 3. If wtM (a, b) = 2 then update αb = 2(i+ 1) and αM(b) = −2(i+ 1).

At the onset, α⃗ was a feasible solution to (LP4), so αa + αb ≥ wtM (a, b) for (a, b) ∈ E′.
Then we moved the nodes in Nbr(UA) and their partners in M to sets Bn0−1 and An0−1,
respectively, where Ai = {a ∈ A′ : αa = −2i} and Bi = {b ∈ B′ : αb = 2i} for all i. The
subscript i will be called the level of nodes in Ai ∪Bi.

The nodes that moved to An0−1 have a lower α-value than earlier and it is these nodes
that “pull” their neighbors upwards to higher levels as given by rules 1-3. Let a be a new
node in level i and let b be a neighbor of a such that αa + αb < wtM (a, b). Then b and M(b)
move to: (1) level i if wtM (a, b) = 0, (2) level i− 1 if wtM (a, b) = −2, else (3) level i+ 1, i.e.,
if wtM (a, b) = 2.

In turn, the nodes in A′ that have moved to these higher levels by rules 1-3 pull their
neighbors and the partners of these neighbors upwards to higher levels by these rules. Thus
we may get further new nodes in Bn0−1, An0−1 and so on. While any of rules 1-3 is applicable,
we apply that rule. So a rule may be applied many times to the same edge in E′.

Claim 11 (proved in Section 4.1) shows a useful property. We show in its proof that such
a blocking edge creates a forbidden alternating cycle/path wrt M , as given in Theorem 5.

▷ Claim 11. By applying the above rules, suppose a node v0 ∈ A′ moves to An0−1. Then
there is no blocking edge (e such that wtM (e) = 2) incident to v0.

Applying rules 1-3 increases the α-values of some nodes in B′ and it never decreases the
α-value of any node in B′. The nodes in B′ with increased α-values and their partners have
moved to higher levels (see Fig. 1). This upwards movement of nodes has to terminate at
level n0 − 1. For the α-value of any b ∈ B′ to be increased beyond 2(n0 − 1), we need a
blocking edge (a, b) where a ∈ An0−1 – this would cause rule 3 to be applied which would
increase αb to 2n0. However there is no such blocking edge (by Claim 11).

Since there are n0 levels and because |B′| = n0, there can be at most n2
0 applications

of these rules. When no rule is applicable, α⃗ is a feasible solution to (LP4). Moreover,∑
u∈V αu is invariant under this update of α-values, since we maintain αa + αb = 0 for every

(a, b) ∈ M . Hence α⃗ is an optimal solution to (LP4). Thus for every popular max-matching
M , there is an optimal solution α⃗ to (LP4) in the desired format that satisfies property (ii).
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Property (i). We now have an optimal solution α⃗ ∈ {0,±2, . . . , ±2(n0 − 1)}2n0 to (LP4),
where αa ≤ 0 for all a ∈ A′ and αb ≥ 0 for all b ∈ B′, such that αb = 2(n0 − 1) for all
b ∈ Nbr(UA). Suppose property (i) is not satisfied.

Then we increase α-values of certain nodes in A′ – this moves these nodes downwards
with respect to their level (see Fig. 1) and ensures that property (i) holds. First, we increase
the α-values of the nodes in Nbr(UB) to 0 and their partners also have α-values updated to 0.
Now α⃗ may no longer be a feasible solution to (LP4).

So we will use the following three update rules for all b ∈ B′. Let αb = 2i where
i ∈ {0, . . . , n0 − 1}. Suppose there is an edge (a, b) ∈ E′ such that αa + αb < wtM (a, b). Let
M(a) be a’s partner in M .

Rule 4. If wtM (a, b) = 0 then update αa = −2i and αM(a) = 2i.
Rule 5. If wtM (a, b) = −2 then update αa = −2(i+ 1) and αM(a) = 2(i+ 1).
Rule 6. If wtM (a, b) = 2 then update αa = −2(i− 1) and αM(a) = 2(i− 1).

Applying rules 4-6 increases the α-values of some nodes in A′ and it never decreases the
α-value of any node in A′. The nodes in A′ with increased α-values and their partners have
moved to lower levels. Moreover, the movement of nodes downwards has to stop at level 0
since no blocking edge can be incident to any node that moves to B0 (analogous to Claim 11).
While any of the above three rules is applicable, we apply that rule.

When no rule is applicable, α⃗ is a feasible solution to (LP4). Since
∑
u∈V αu = 0, α⃗ is an

optimal solution to (LP4). So there is an optimal solution α⃗ to (LP4) in the desired format
that satisfies property (i).

Properties (i) and (ii). Note that we cannot claim straightaway that the above α⃗ satisfies
both property (i) and property (ii). This is because applying rules 4-6 may have caused
αb < 2(n0 − 1) for some b ∈ Nbr(UA). Claim 12 shows this is not possible.

▷ Claim 12. The above α⃗ satisfies property (ii), i.e., αb = 2(n0 − 1) for b ∈ Nbr(UA).

Claim 12 is proved in Section 4.1. So we have an optimal solution α⃗ to (LP4) in the desired
format that satisfies both property (i) and property (ii). ◀

4.1 Proofs of Claim 11 and Claim 12
The proofs of Claim 11 and Claim 12 use the fact that certain alternating cycles/paths are
forbidden for popular max-matchings. These include the ones given in Theorem 5 and also
augmenting paths (since M is a maximum matching).

Proof of Claim 11. Let v0 be the first node that moves to An0−1 with a blocking edge incident
to it. Recall our update procedure – we initially added nodes in Nbr(UA) and their partners
in M to Bn0−1 and An0−1, respectively. Then we applied rules 1-3 in some order and this
resulted in the node v0 moving to An0−1. Corresponding to these rules, we will construct an
alternating path p = v0 −M(v0) − v1 −M(v1) − v2 − · · · − vk −M(vk) − u between v0 and
some node u ∈ UA.

The path p can be partitioned into k+ 1 pairs of edges for some k ≥ 0. For 0 ≤ i ≤ k− 1:
the i-th pair consists of the matching edge (vi,M(vi)) of weight 0 and the non-matching
edge ei = (M(vi), vi+1) where vi+1 is the node that pulled M(vi) and vi to their current
level due to the application of one of the above three rules. Rule 1 implies wtM (ei) = 0 while
rule 2 implies wtM (ei) = −2 and rule 3 implies wtM (ei) = 2.
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Observe that rule 1 places M(vi) in the same level as vi+1 while rule 2 places M(vi)
one level lower than vi+1 and rule 3 places M(vi) one level higher than vi+1. The last pair
of edges in p are (vk,M(vk)) ∈ An0−1 × Bn0−1 and (M(vk), u), where the latter edge has
weight 0. The node v0 is in level n0 − 1 and the node M(vk) is also in level n0 − 1. So v0
and vk are at the same level, hence the number of edges in p of weight −2 is exactly the
same as the number of edges of weight 2, thus wtM (p) = 0.

Suppose there is a blocking edge (v0, w). If w belongs to p, then it is easy to see that the
alternating cycle C obtained by joining the endpoints of the v0-w subpath in p with the edge
(v0, w) satisfies wtM (C) ≥ 2. This contradicts Theorem 5 since M is a popular max-matching.
Hence w does not belong to path p. So let us add the 2-edge path M(w)−w−v0 as a prefix to
the v0-u path p and call this alternating path q: we have wtM (q) = wtM (p) + wtM (v0, w) = 2.
Since wtM (q) > 0 and the unmatched node u is an endpoint of q, this again contradicts
Theorem 5. Hence there is no blocking edge incident to v0. ◁

Proof of Claim 12. Suppose there is a node w1 ∈ Nbr(UA) such that αw1 < 2(n0 − 1). So
there is some u ∈ UA such that (u,w1) ∈ E and though αw1 = 2(n0 − 1) just before we
started applying rules 4-6, the application of these rules caused αw1 to become less than
2(n0 − 1).

Initially we added nodes in Nbr(UB) and their partners in M to A0 and B0, respectively.
Then we repeatedly applied rules 4-6 and this resulted in w1 moving to a level lower than n0−1.
Corresponding to what caused w1 to be “pulled” downwards, we will construct an alternating
path p = w1 −M(w1)−w2 −M(w2)−· · ·−wr−M(wr)−u′ between w1 and a node u′ ∈ UB .

The path p will consist of r pairs of edges for some r ≥ 1. For 1 ≤ i ≤ r − 1: the i-th
pair of edges is (wi,M(wi)) and (M(wi), wi+1) where wi+1 is the node that pulled M(wi)
and wi to their current level due to the application of one of rules 4-6. The last pair of edges
in p is (wr,M(wr)) and (M(wr), u′), where wr ∈ B0,M(wr) ∈ A0, and u′ ∈ UB. Thus we
have an alternating path p between w1 and u′ ∈ UB .

By adding the edge (u,w1) as a prefix to the path p, we get an augmenting path
u − w1 − · · · − M(wr) − u′ with respect to M . However there cannot be any augmenting
path wrt M since M is a maximum matching in G. Thus α⃗ satisfies property (ii). ◁

This finishes the proof of Theorem 9. So the stable matching polytope of G∗ yields a
compact extended formulation for the popular max-matching polytope of G (by Theorem 6
and Theorem 10). This formulation is described in Section 4.2.

Linear programming on this formulation with min
∑
e∈E c(e) ·xe as the objective function

computes a min-cost popular max-matching in G in polynomial time. Equivalently, we can
compute a min-cost stable matching S in G∗ and return the corresponding matching S′ in G.
It follows from Theorem 6 and Theorem 10 that S′ is a min-cost popular max-matching in G.
This proves Theorem 3 stated in Section 1.

4.2 An Extended Formulation for the Popular Max-Matching Polytope

For any node u in G∗, let {v′ ≻u v} be the set of all neighbors of u in G∗ that it prefers to v.
Let δ∗(u) denote the set of edges incident to u in G∗.

Let T = ∪a∈A({a0, . . . , an0−2} ∪ {d1(a), . . . , dn0−1(a)}). Every node in T is a top choice
neighbor for some node, so every node in T has to be matched in all stable matchings in G∗.
The constraints given below describe the stable matching polytope of G∗, as shown in [30].
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∑
w≻ai

b̃

x(ai,w) +
∑
z≻b̃ai

x(z,b̃) + x(ai,b̃) ≥ 1 ∀(ai, b̃) ∈ E∗

∑
e∈δ∗(u)

xe = 1 ∀ u ∈ T

∑
e∈δ∗(u)

xe ≤ 1 ∀u ∈ A∗ ∪B∗ and xe ≥ 0 ∀e ∈ E∗.

1. The topmost constraint captures the stability constraint for edge (ai, b̃) ∈ E∗ where
(a, b) ∈ E and 0 ≤ i ≤ n0 − 1.

2. The constraint in the second line for u = ai−1 captures the stability constraint for the edge
(ai−1, di(a)) and for u = di(a) captures the stability constraint for the edge (ai, di(a)).

3. The constraints in the third line capture that x⃗ belongs to the matching polytope of G∗.

Consider the equations x(a,b) =
∑n0−1
i=0 x(ai,b̃) for all (a, b) ∈ E. It follows from Theorem 6

and Theorem 10 that these m equations along with the constraints of the stable matching
polytope of G∗ given above describe an extended formulation for the popular max-matching
polytope MG. So the extension complexity of the polytope MG is O(mn).

5 A Hardness Result

In this section we show that it is NP-hard to compute a min-cost Pareto-optimal matching
and a min-cost Pareto-optimal max-matching in an instance G = (A ∪B,E) with edge costs
in {0, 1}.

Given a 3SAT formula ψ, we will build an instance Gψ with edge costs in {0, 1} such
that Gψ admits a Pareto-optimal matching of cost 0 if and only if ψ is satisfiable. Any
Pareto-optimal matching of cost 0 would have to be a perfect matching in Gψ. Hence this
will prove the NP-hardness of both the min-cost Pareto-optimal matching problem and the
min-cost Pareto-optimal max-matching problem.

Our reduction resembles a hardness reduction from [9] that showed the NP-hardness of
deciding if an instance G has a stable matching M that is also dominant. As done in this
reduction, we will first transform ψ so that every clause contains either only positive literals
or only negative literals; moreover, there will be a single occurrence of each negative literal
in the transformed ψ. This is easy to achieve:

let X1, . . . , Xn be the starting variables. For i ∈ [n]: replace all occurrences of ¬Xi with
the same variable Xn+i (a new one) and add the two clauses (Xi∨Xn+i)∧ (¬Xi∨¬Xn+i)
to capture ¬Xi ≡ Xn+i. Thus there are 2n variables in the transformed ψ.

We build the graph Gψ as follows. There are two types of gadgets: those that correspond
to positive clauses and those that correspond to negative clauses. Fig. 2 (resp., Fig. 3) shows
how a positive (resp., negative) clause gadget looks like.

We now describe the preference lists of nodes in a positive clause Cℓ = x ∨ y ∨ z (see
Fig. 2). The nodes ax, a′

x, bx, b
′
x occur in x’s gadget and ay, a

′
y, by, b

′
y occur in y’s gadget

and az, a
′
z, bz, b

′
z occur in z’s gadget: these gadgets are in the ℓ-th clause gadget Cℓ. Every

occurrence of a literal has a separate gadget.
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bx ay by az

a′
x a′

y a′
zb′

x b′
z

b′
y

ax bz

Figure 2 The clause gadget for a positive clause Cℓ = x∨ y∨ z. Every occurrence of a literal in ψ
has a separate gadget. So we ought to use labels such as ax,ℓ, bx,ℓ, . . . here; for the sake of simplicity,
we used the labels ax, bx, . . . here.

ax a′
x ay a′

y az a′
z

bz bx bx by by bz

bx b′
x by b′

y bz b′
z

d′
x – d′

y – d′
z –

b′
x – b′

y – b′
z –

Here ax’s top choice is bz, second choice bx, third choice d′
x, fourth choice b′

x, and similarly
for other nodes. For every occurrence of a positive literal x: there will be a pair of consistency
edges – the pair (ax, d′

x) and (b′
x, cx) in Fig. 4 – between this gadget of x and the unique

gadget of ¬x. In our preferences, the neighbors on consistency edges are marked in red.

bx b′
x by b′

y bz b′
z

ay a′
x az a′

y ax a′
z

ax cx ay cy az cz

a′
x ax a′

y ay a′
z az

The preference lists of nodes that occur in a clause gadget with 2 positive literals will be
totally analogous to the preference lists of nodes in a clause gadget with 3 positive literals.

c′
xd′

x c′
yd′

y

dx

dycx

cy

Figure 3 A clause gadget corresponding to a negative clause Dk = ¬x ∨ ¬y; due to our
transformation of ψ, every negative clause has only 2 literals.

We will now describe the preference lists of nodes in a negative clause k – the overall
picture here is given in Fig. 3.

cx c′
x cy c′

y

dy dx dx dy

dx d′
x dy d′

y

b′
x,i – b′

y,i′ –
· · · – · · · –
b′

x,j – b′
y,j′ –

d′
x – d′

y –

dx d′
x dy d′

y

cy c′
x cx c′

y

cx ax,i cy ay,i′

c′
x · · · c′

y · · ·
– ax,j – ay,j′

– cx – cy

The nodes cx, c′
x, dx, d

′
x and cy, c′

y, dy, d
′
y occur in the gadgets of ¬x and ¬y, respectively.

The nodes b′
x,i, . . . , b

′
x,j (resp., b′

y,i′ , . . . , b
′
y,j′) in the preference lists above are the b′-nodes in

the x-gadgets (resp., y-gadgets) in the various clauses that x (resp., y) occurs in. Similarly,
ax,i, . . . , ax,j (resp., ay,i′ , . . . , ay,j′) are the a-nodes in the x-gadgets (resp., y-gadgets) in the
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various clauses that x (resp., y) occurs in. The preference order among the b′-nodes and
among the a-nodes in these lists is not important. The consistency edges between a gadget
of x and the gadget of ¬x are shown in Fig. 4.

bz ax bx ay

a′
xb′

x d′
x c′

x

cydxcxdy

Figure 4 For the sake of simplicity, we use ax, bx, a
′
x, b

′
x to denote the 4 nodes in the gadget of x

in the ℓ-th clause; cx, dx, c
′
x, d

′
x are the 4 nodes in the unique gadget of ¬x. The consistency edges

are the red dashed edges.

Edge costs. For each edge e in Gψ, we will set cost(e) ∈ {0, 1} as follows.
For each variable r ∈ {X1, . . . , X2n}: set cost(e) = 0 where e is any of the 4 edges in any
literal gadget ⟨ar, br, a′

r, b
′
r⟩ of r or any of the 4 edges in the gadget ⟨cr, dr, c′

r, d
′
r⟩ of ¬r.

For all other edges e, set cost(e) = 1.

In particular, for any edge e in the consistency pair for any variable, we have cost(e) = 1.
In our figures, all dashed edges have cost 1 and all solid edges have cost 0.

Let M be a Pareto-optimal matching in Gψ with cost(M) = 0. So M has to use only
cost 0 edges. Thus M is forbidden to use any edge other than the 4 edges in the gadget
of any literal. Moreover, since M is Pareto-optimal, M cannot leave two adjacent nodes
unmatched. Thus for r ∈ {X1, . . . , X2n}:
1. From a gadget of r (say, on nodes ar, br, a′

r, b
′
r), either (i) (ar, br), (a′

r, b
′
r) are in M or

(ii) (ar, b′
r), (a′

r, br) are in M .
2. From the gadget of ¬r (the nodes are cr, dr, c′

r, d
′
r), either (i) (cr, dr), (c′

r, d
′
r) are in M or

(ii) (cr, d′
r), (c′

r, dr) are in M .

Thus any Pareto-optimal matching in Gψ of cost 0 is a perfect matching. Lemma 13 will
be useful to us.

▶ Lemma 13. Let M be a Pareto-optimal matching in Gψ. For any r ∈ {X1, . . . , X2n}, both
(ar, b′

r) and (cr, d′
r) cannot simultaneously be in M .

Proof. The preferences of the nodes are set such that if both (ar, b′
r) and (cr, d′

r) are in
M then both the non-matching edges (ar, d′

r) and (b′
r, cr) in the alternating cycle ρ =

ar − (d′
r, cr) − (b′

r, ar) − d′
r are blocking edges to M . Consider M ⊕ ρ versus M . All the 4

nodes ar, b′
r, cr, d

′
r prefer M ⊕ ρ to M while the other nodes are indifferent between M ⊕ ρ

and M . Thus ϕ(M ⊕ ρ,M) = 4 and ϕ(M,M ⊕ ρ) = 0, so u(M) = ∞. This means M is
not Pareto-optimal, a contradiction. Thus for any r ∈ {X1, . . . , X2n}, we cannot have both
(ar, b′

r) and (cr, d′
r) in M . ◀

Theorem 14 is our main result here.

▶ Theorem 14. Gψ has a Pareto-optimal matching M with cost(M) = 0 if and only if ψ is
satisfiable.

Proof. Suppose Gψ has a Pareto-optimal matching M with cost(M) = 0. For any variable
r ∈ {X1, . . . , X2n}, consider the edges in ¬r’s gadget that are in M . If (cr, d′

r), (c′
r, dr) are

in M then set r = false else set r = true.

ICALP 2021
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Lemma 13 tells us that when we set r to false, the edges (ar,i, br,i), (a′
r,i, b

′
r,i) from r’s

gadget in the i-th clause have to be in M (where ar,i, br,i, a′
r,i, b

′
r,i are the 4 nodes from r’s

gadget in the i-th clause).

▷ Claim 15. The above assignment satisfies ψ.

Claim 15 uses the Pareto-optimality of M to show that every clause has at least one
literal set to true. Its proof is given after the proof of Theorem 14. Hence if Gψ admits a
Pareto-optimal matching M with cost(M) = 0, then ψ is satisfiable.

The converse. We will now show that if ψ is satisfiable then there is a Pareto-optimal
matching M in Gψ such that cost(M) = 0. There is a natural way of constructing the
matching M – we will use the satisfying assignment for ψ to choose edges from each literal
gadget. For any variable r, include the following edges in the matching M :

if r = true then take the edges (cr, dr), (c′
r, d

′
r) from ¬r’s gadget and the edges (ar,i, b′

r,i),
(a′
r,i, br,i) from r’s gadget in clause i (for every clause i that r belongs to).

if r = false then take the edges (cr, d′
r), (c′

r, dr) from ¬r’s gadget and the edges (ar,i, br,i),
(a′
r,i, b

′
r,i) from r’s gadget in clause i (for every clause i that r belongs to).

It is easy to see that cost(M) = 0. Since M is a perfect matching, there is no alternating
path ρ wrt M such that ϕ(M,M ⊕ ρ) = 0. This is because for every alternating path ρ wrt
M , we have |M ⊕ ρ| < |M | and the nodes matched in M and unmatched in M ⊕ ρ prefer
M to M ⊕ ρ, so ϕ(M,M ⊕ ρ) > 0. Hence in order to prove M ’s Pareto-optimality, what we
need to show is Claim 16.

▷ Claim 16. There is no alternating cycle ρ with respect to M such that ϕ(M ⊕ ρ,M) > 0
and ϕ(M,M ⊕ ρ) = 0.

The proof of Claim 16 is given below. This finishes the proof of Theorem 14. ◀

Proof of Claim 15. Suppose this assignment does not satisfy ψ. We have 3 cases here.
1. Let Ci = x ∨ y ∨ z. Suppose all the three variables x, y, z are in false state. Consider the

following alternating cycle ρ wrt M :

bz,i − (ax,i, bx,i) − (ay,i, by,i) − (az,i, bz,i) − ax,i.

All non-matching edges in this alternating cycle, i.e., the edges (bz,i, ax,i), (bx,i, ay,i),
(by,i, az,i), are blocking edges with respect to M . In the M⊕ρ versus M comparison, these
6 nodes ax,i, bx,i, ay,i, by,i, az,i, bz,i prefer M ⊕ ρ to M while all other nodes in Gψ are
indifferent between M ⊕ ρ and M . Thus we have ϕ(M ⊕ ρ,M) = 6 and ϕ(M,M ⊕ ρ) = 0.
Hence u(M) = ∞, contradicting the Pareto-optimality of M .

2. Let Cj = x ∨ y, i.e., this is a positive clause with 2 literals. Suppose both x and y are in
false state. Consider the following alternating cycle ρ wrt M :

by,j − (ax,j , bx,j) − (ay,j , by,j) − ax,j .

In the M⊕ρ versus M comparison, the 4 nodes ax,j , bx,j , ay,j , by,j prefer M⊕ρ to M while
all the other nodes in Gψ are indifferent between M ⊕ ρ and M . Thus ϕ(M ⊕ ρ,M) = 4
and ϕ(M,M ⊕ ρ) = 0. Hence u(M) = ∞, contradicting the Pareto-optimality of M .

3. Let Dk = ¬x ∨ ¬y. Suppose both ¬x and ¬y are in false state. Consider the following
alternating cycle ρ wrt M :

dy − (cx, dx) − (cy, dy) − cx.
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In the M ⊕ ρ versus M comparison, the 4 nodes cx, dx, cy, dy prefer M ⊕ ρ to M while
all the other nodes in Gψ are indifferent between M ⊕ ρ and M . So ϕ(M ⊕ ρ,M) = 4
and ϕ(M,M ⊕ ρ) = 0. Hence u(M) = ∞, contradicting the Pareto-optimality of M .

Thus every clause in ψ has at least one literal in true state. ◁

Proof of Claim 16. We need to show there is no alternating cycle ρ with respect to M such
that ϕ(M⊕ρ,M) > 0 and ϕ(M,M⊕ρ) = 0. Every non-matching edge in such an alternating
cycle ρ has to be a blocking edge wrt M .

First, we argue that every consistency edge is a non-blocking edge to M ; say, this is a
consistency edge corresponding to variable r in clause i. It follows from our construction of
M that M contains either:
1. (ar,i, b′

r,i), (a′
r,i, br,i) and (cr, dr), (c′

r, d
′
r) or

2. (ar,i, br,i), (a′
r,i, b

′
r,i) and (cr, d′

r), (c′
r, dr).

case 1: the node d′
r prefers M(d′

r) = c′
r to ar,i and the node cr prefers M(cr) = dr to b′

r,i.
case 2: the node ar,i prefers M(ar,i) = br,i to d′

r and the node b′
r,i prefers M(b′

r,i) = a′
r,i

to cr.
Thus in both cases, the consistency edges (ar,i, d′

r) and (b′
r,i, cr) are non-blocking edges to

M . Let H be the subgraph of Gψ obtained by preserving only the edges that are in M and
also blocking edges wrt M . Thus no non-blocking edge (other than edges in M) is included
in H – so no consistency edge belongs to H.

Since there are no consistency edges in H , any alternating cycle in H has to be contained
within a single clause. We will now show there is no such cycle in H by using the fact that
we constructed M using a satisfying assignment for ψ: thus every clause has at least one
literal set to true.

Let C = x∨y∨z and suppose y = true in ψ. Then (ay, b′
y) and (a′

y, by) are in M , however
the edge (a′

y, b
′
y) is non-blocking wrt M and hence it is missing in H. Thus there is no

alternating cycle in H that is contained within the clause C. Now consider a negative clause
D = ¬x ∨ ¬y and suppose x = false in ψ. Then (cx, d′

x) and (c′
x, dx) are in M , however the

edge (c′
x, d

′
x) is non-blocking wrt M and it is missing in H. Thus there is no alternating

cycle in H that is contained within the clause D.
Consider the 4 edges of any literal gadget (say, r) in Gψ: if (ar, br) ∈ M then (ar, b′

r) is
a non-blocking edge wrt M and if (a′

r, br) ∈ M then (a′
r, b

′
r) is a non-blocking edge wrt M .

Similarly, in the gadget of ¬r: if (cr, dr) ∈ M then (cr, d′
r) is a non-blocking edge wrt M

and if (c′
r, dr) ∈ M then (c′

r, d
′
r) is a non-blocking edge wrt M . Thus there is no alternating

cycle wrt M in H. So there is no alternating cycle ρ in Gψ such that ϕ(M ⊕ ρ,M) > 0 and
ϕ(M,M ⊕ ρ) = 0. ◁

Since any Pareto-optimal matching in Gψ of cost 0 is a perfect matching, Theorem 14
shows that the min-cost Pareto-optimal matching problem and the min-cost Pareto-optimal
max-matching problem are NP-hard. Moreover, these problems are NP-hard to approximate
to any multiplicative factor. Thus we have shown Theorem 4 stated in Section 1.
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Abstract
A map is a 2-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that
every face is homeomorphic to an open disc. An automorphism of a map can be thought of as a
permutation of the vertices which preserves the vertex-edge-face incidences in the embedding. When
the underlying surface is orientable, every automorphism of a map determines an angle-preserving
homeomorphism of the surface. While it is conjectured that there is no “truly subquadratic”
algorithm for testing map isomorphism for unconstrained genus, we present a linear-time algorithm
for computing the generators of the automorphism group of a map, parametrized by the genus of
the underlying surface. The algorithm applies a sequence of local reductions and produces a uniform
map, while preserving the automorphism group. The automorphism group of the original map can
be reconstructed from the automorphism group of the uniform map in linear time. We also extend
the algorithm to non-orientable surfaces by making use of the antipodal double-cover.
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1 Introduction

The graph isomorphism problem asks whether or not two given graphs are isomorphic. It is
one of the most fundamental problems in the theory of algorithms. It is probably the most
notorious problem whose computational complexity is still a huge open question, even after
Babai’s recent quasipolynomial-time breakthrough [2]. While some complexity theoretic
results indicate that this problem is unlikely NP-complete (if it was, the polynomial hierarchy
would collapse to its second level, see [28]), no polynomial-time algorithm is known, even
with extended resources like randomization or quantum computing.
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On the other hand, there is a number of important classes of graphs on which the graph
isomorphism problem is known to be solvable in polynomial time. These include graphs with
bounded degree [23, 9], bounded eigenvalue multiplicity [3], bounded tree-width [22, 10],
excluded small minors [11], etc.

In this paper, we are interested in planar graphs and, more generally, graphs of bounded
genus. In 1966, Weinberg [30] gave a very simple quadratic algorithm for the graph iso-
morphism of planar graphs. This was improved by Hopcroft and Tarjan [16] to O(n log n).
Building, on this earlier work, Hopcroft and Wong [17] published in 1974 a paper, where
they described a linear-time algorithm for isomorphism testing of planar graphs.

For graphs on surfaces of higher genus, the graph isomorphism problem seems much
harder. This can be perhaps explained in the following way. We can rather easily reduce the
problem to 3-connected graphs. For planar graphs, the famous result of Whitney [31] says
that embeddings of 3-connected planar graphs in the plane are (combinatorially) unique.
But for every simply connected surface, there exist 3-connected graphs with exponentially
many embeddings. This makes an essential difference between planar graphs and graphs of
higher genus.

For quite a long time it has been known that the isomorphism of bounded genus graphs can
be solved in time nO(g), where g is the genus of the underlying surface; see for example [27].
However, an interesting question is whether the result of Hopcroft and Wong [17] can be
generalized also for the bounded genus graphs, i.e., whether the isomorphism problem for
graphs of bounded genus can be solved in time f(g) · n, for some computable function f .
This motivates the study of the isomorphism problem for embedded graphs first.

By a topological map we mean a 2-cell decomposition of a closed compact surface, i.e., an
embedding of a graph into a surface such that every face is homeomorphic to an open disc.
An isomorphism of two maps is an isomorphism of the underlying graphs, which preserves
the vertex-edge-face incidences. In particular, a map isomorphism induces a homeomorphism
of the underlying surfaces. Our main result reads as follows.

▶ Theorem 1. Let M1 and M2 be maps on a surface of genus g. The set of all isomorphisms
Iso(M1,M2) from M1 to M2 can be determined in time f(g) · (∥M1∥ + ∥M2∥), where f is
some computable function and ∥M∥ denotes the size of the map M .

In [21], two of the authors deal with a much weaker version of this problem, where
only testing isomorphism is considered instead of constructing the whole set Iso(M1,M2).
Recently, a linear-time algorithm was announced [19] for testing isomorphism of bounded
genus graphs and the proposed approach heavily relies on our result. It should be also
mentioned, that an algorithm with running time nO((log g)c) for bounded genus graphs follows
from [26], however, this result is based on completely different techniques.

Determining the set of all isomorphisms between two maps is closely related to finding
the generators of the automorphism group Aut(M) of a map M , where an automorphism of
M is just an isomorphism M → M . More precisely, the set of all isomorphisms M1 → M2
can be expressed as a composition ψ · Aut(M1) where ψ : M1 → M2 is any isomorphism.
Thus, our first result goes hand-in-hand with the following.

▶ Theorem 2. Let M be a map on a surface of genus g. The generators of the automorphism
group Aut(M) of M can be computed in time f(g)·∥M∥, where f is some computable function
and ∥M∥ denotes the size of the map M .

Colbourn and Booth [7] proposed a way to modify the Hopcroft-Wong algorithm [17] to
compute the generators of the automorphism group of a spherical map. However, they state
the following: “We ... base our automorphism algorithms on the Hopcroft-Wong algorithm.
Necessarily, we will only be able to sketch our procedure. A more complete description and a
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proof of correctness would require a more thorough analysis of the Hopcroft-Wong algorithm
than has yet appeared in the literature.“ Sadly, the situation has not changed since, and the
only available description of the Hopcroft-Wong algorithm is the extended abstract [17],
which contains no proof of correctness and running time.1 Our contribution also fills in this
gap and we obtain much better insight into the Hopcroft-Wong algorithm by solving the
problem in a much greater generality; see [20] as well.

Roughly speaking, the key idea of the Hopcroft-Wong algorithm is to try to apply
contractions of edges to obtain two smaller isomorphic maps. In order to do this, edges must
be chosen canonically, which is not always possible. Since Hopcroft and Wong consider only
the spherical case, this situation occurs only in one special case. However, on the surfaces
of higher genus, this situation is quite common and requires a completely different, more
systematic, approach. As a consquence of considering the problem on the higher genus, our
approach turnes out to be much simpler even for planar graphs than the approach originally
proposed by Colbourn and Booth [7].

The Hopcroft-Wong algorithm reduces spherical maps to maps having the same degrees
of vertices and also the same degrees of faces (e.g. Platonic solids). These maps are then
treated separately. We, however, relax this condition and instead reduce our map to a map
having the same cyclic vector of face sizes at each vertex (e.g. on sphere these also include
Archimedean solids). The number of such maps is bounded for surfaces of genus g > 1, and
for surfaces of genus g ≤ 1 we give some special algorithms. This, surprisingly, allows a
much more unified method of reducing the map, while preserving its automorphisms and
isomorphisms.

Simultaneous conjugation problem. The problems of testing isomorphism of maps and
computing the generators of the automorphism group of a map are related to the problem of
simultaneous conjugation. In the latter problem, the input consists of two sets of permutations
α1, . . . , αd and β1, . . . , βd on the set {1, . . . , n}, each of which generates a transitive subgroup
of the symmetric group. The goal is to find a permutation γ such that γαiγ

−1 = βi, for
i = 1, . . . , d. Let us observe that this problem is a generalization of the map isomorphism
problem. If α1 and β1 are involutions, d = 2, and the set {1, . . . , n} is identified with the set
of darts of a map on a surface (see Section 2 for definitions), then this problem is exactly the
map isomorphism problem. If further α1 = β1 and α2 = β2, we get the map automorphism
problem.

Since mid 1970s it has been known that the simultaneous conjugation problem can be
solved in time O(dn2) [8, 15]. A faster algorithm, with running time O(n2 log d/ log n +
dn log n), was found only recently [6]. This implies an O(n2/ log n) algorithm for the
isomorphism and automorphism problems for maps of unrestricted genus. In complexity
theory, this is not considered to be a “truly subquadratic” algorithm. This motivates the
following conjecture.

▶ Conjecture 3. There is no ε > 0 for which there is an algorithm for testing isomorphism
of maps of unrestricted genus in time O(n2−ε).

An interesting open subproblem is to prove a conditional “truly superlinear” lower bound
for any of the mentioned problems. There has been some progress in the direction of
providing a lower bound. In particular it is known that the communication complexity of the
simultaneous conjugation problem is Ω(dn log(n)), for d > 1, and that under the decision
tree model the search version of the simultaneous conjugation problem has lower bound of
Ω(n log n) [5].

1 The PhD thesis of Wong also does not bring any new information compared to [17].
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2 Preliminaries

A map M is an embedding ι : X → S of a connected graph X to a closed connected compact
surface S such that every connected component of S \ ι(X) is homeomorphic to an open disc.
The connected components are called faces. By V (M), E(M), and F (M) we denote the sets
of vertices, edges, and faces of M , respectively. We put v(M) := |V (M)|, e(M) := |E(M)|,
and f(M) := |F (M)|.

Recall that closed connected compact surfaces are characterized by two invariants: ori-
entability and the Euler characteristic χ. For the orientable surfaces, the latter can be
replaced by the (orientable) genus g ≥ 0, which is the number of tori in the connected sum
decomposition of the surface, and for the non-orientable surfaces by the non-orientable genus
γ ≥ 1, which is the number of real projective planes in the connected sum decomposition of
the surface. The following is well-known.

▶ Theorem 4 (Euler-Poincaré formula). Let M be a map on a surface S. Then v(M) −
e(M) + f(M) = χ(S) = 2 − 2g if S has genus g and χ(S) = 2 − γ if S has non-orientable
genus γ.

We give an algebraic description of a map, where a map is defined by means of three
fixed-point-free involutions acting on flags. A flag is a triple representing a vertex-edge-face
incidence. The involutions are simply instructions on how to join the flags together to form
a map. There are several advantages: (i) in such a form, maps can be easily passed to an
algorithm as an input, (ii) verifying whether a mapping is an automorphism reduces to
checking three commuting rules, and (iii) group theory techniques can be applied to obtain
results about maps. For more details see for example [18] and [13, Section 7.6].

Oriented maps. Even though our main concern is in general maps, a large part of our
algorithm deals with maps on orientable surfaces, where the algebraic description is simpler.
An oriented map is a map on an orientable surface with a fixed global orientation. Every
oriented map can be combinatorially described as a triple (D,R,L). Here, D is the set of
darts. By a dart we mean an edge endowed with one of two possible orientations. Hence, each
edge gives rise to two darts. The permutation R ∈ Sym(D), called rotation, is the product
R = Πv∈V Rv, where each Rv cyclically permutes the darts originating at v ∈ V , following
the chosen orientation around v. The dart-reversing involution L ∈ Sym(D) is an involution
of D that, for each edge, swaps the two oppositely oriented darts arising from the edge.

Formally, a combinatorial oriented map is any triple M = (D,R,L), where D is a finite
non-empty set of darts, R is any permutation of darts, L is a fixed-point-free involution of
D, and the group ⟨R,L⟩ ≤ Sym(D) is transitive on D. By the size ∥M∥ of the map, we
mean the number of darts |D|. We require transitivity because the maps are connected by
definition.

The group ⟨R,L⟩ is called the monodromy group of M . The vertices, edges, and faces
of M are in one-to-one correspondence with the cycles of the permutations R, L, R−1L,
respectively. By the phrase “a dart x is incident to a vertex v” we mean that x ∈ Rv.
Similarly, “x is incident to a face f” means that x belongs to the boundary walk of f defined
by the respective cycle of R−1L. By the degree of a face we mean the length of its boundary
walk. A face of degree d will be called a d-face. Note that each dart is incident to exactly
one face. For convenience, we frequently use a shorthand notation x−1 = Lx, for x ∈ D.
The dual of an oriented map M = (D,R,L) is the oriented map M∗ = (D,R−1L,L).
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Apart from standard map theory references, we need to introduce labeled maps. A planted
tree is a rooted tree embedded in the sphere, i.e., a planted tree is a spherical map having
exactly one face. We say that a planted tree is integer-valued if an integer is assigned to each
vertex. A dart-labeling of an oriented map M = (D,R,L) is a mapping ℓ : D → T , where T
is the set of integer-valued planted trees. A labeled oriented map M is a 4-tuple (D,R,L, ℓ).
The dual map is the map M∗ defined as M∗ = (D,R−1L,L, ℓ).

Two labeled oriented maps M1 = (D1, R1, L1, ℓ1) and M2 = (D2, R2, L2, ℓ2) are iso-
morphic, in symbols M1 ∼= M2, if there exists a bijection ψ : D1 → D2, called an orientation-
preserving isomorphism from M1 to M2, such that

ψR1 = R2ψ, ψL1 = L2ψ, and ℓ1 = ℓ2ψ. (1)

The set of orientation-preserving isomorphisms from M1 to M2 is denoted by Iso+(M1,M2).
The orientation-preserving automorphism group of M is the set Aut+(M) := Iso+(M,M).
The following statement, which can be easily seen for unlabeled maps, extends also to labeled
maps.

▶ Theorem 5. Let M1 and M2 be labeled oriented maps with sets of darts D1 and D2,
respectively. For every x ∈ D1 and every y ∈ D2, there exists at most one isomorphism
M1 → M2 mapping x to y. In particular, Aut+(M1) is fixed-point-free on D1.

▶ Corollary 6. Let M1 and M2 be labeled oriented maps with sets of darts D1 and D2,
respectively. If x ∈ D1 and y ∈ D2, then it can be checked in time O(|D1| + |D2|) whether
there is an isomorphism mapping x to y.

Chirality. The mirror image of an oriented map M = (D,R,L) is the oriented map
M−1 = (D,R−1, L). Similarly, the mirror image of labeled oriented map M = (D,R,L, ℓ) is
the map M−1 = (D,R−1, L, ℓ−1), where ℓ−1(x) is the mirror image of ℓ(x) for each x ∈ D.

An oriented map M is called reflexible if M ∼= M−1. Otherwise the maps M and
M−1 form a chiral pair. For example, all the Platonic solids are reflexible. The set of all
isomorphisms from M1 to M2 is defined as Iso(M1,M2) := Iso+(M1,M2) ∪ Iso+(M1,M

−1
2 ).

Similarly, we put Aut(M) := Iso(M,M).

Maps on all surfaces. Let M be a map on any, possibly non-orientable, surface. In general,
a combinatorial non-oriented map is a quadruple (F, λ, ρ, τ), where F is a finite non-empty
set of flags, and λ, ρ, τ ∈ Sym(F ) are fixed-point-free2 involutions such that λτ = τλ and the
group ⟨λ, ρ, τ⟩ acts transitively on F . By the size ∥M∥ of the map M we mean the number
of flags |F |.

Each flag corresponds uniquely to a vertex-edge-face incidence triple (v, e, f). Geomet-
rically, it can be viewed as the triangle defined by v, the center of e, and the center of f .
The group ⟨λ, ρ, τ⟩ is called the non-oriented monodromy group of M . The vertices, edges,
and faces of M correspond uniquely to the orbits of ⟨ρ, τ⟩, ⟨λ, τ⟩, and ⟨ρ, λ⟩, respectively.
Similarly, an isomorphism of two non-oriented maps M1 and M2 is a bijection ψ : F1 → F2
which commutes with λ, ρ, τ . The even-word subgroup ⟨ρτ, τλ⟩ has index at most two in
the monodromy group of M . If it is exactly two, the map M is called orientable. For
every oriented map (D,R,L) it is possible to construct the corresponding non-oriented map

2 It is possible to extend the theory to maps on surfaces with boundaries by allowing fixed points of
λ, ρ, τ .
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(F, λ, ρ, τ). Conversely, from an orientable non-oriented map (F, λ, ρ, τ) it is possible to
construct two oriented maps (D+, R, L) and (D−, R−1, L), where D+ and D− are the two
orbits of the even word subgroup, and L = τλ, R = ρτ .

Test of orientability. For a non-oriented map M = (F, λ, ρ, τ ), it is possible to test in linear
time if M is orientable [12, 24]. The barycentric subdivision B of M is constructed by placing
a new vertex in the center of every edge and face, and then joining the centers of faces with
the incident vertices and with the center of the incident edges. The dual of B is a 3-valent
map, i.e., every vertex is of degree 3.

▶ Theorem 7. A map M = (F, λ, ρ, τ) is orientable if and only if the underlying 3-valent
graph of the dual of the barycentric subdivision of M is bipartite.

Light vertices. A map is called face-normal, if all its faces are of degree at least three. It is
well-known that every face-normal map on the sphere or on the projective plane has a vertex
of degree at most 5. The next theorem generalizes this for other surfaces.

▶ Theorem 8. Let S be a closed compact surface with Euler characteristic χ(S) ≤ 0 and let
M be a face-normal map on S. Then there is a vertex of valence at most 6(1 − χ(S)).

Proof. A bound for maximum degree is achieved by a triangulation, thus we may assume
that M is a triangulation. We have f = 2e/3. By plugging this in the Euler-Poincaré formula
and using the Handshaking lemma, we obtain 3v − dv/2 = 3χ(S), where d is the average
degree. By manipulating the equality, we get d− 6 = −6χ(S)/v. Since χ(S) ≤ 0, the right
hand side is maximized for v = 1. We conclude that d ≤ 6(1 − χ(S)). ◀

A vertex is called light if it is of minimum degree, otherwise it is called heavy.

Uniform and homogeneous maps. Given a map on an orientable surface, the cyclic vector
of degrees of faces incident with a vertex v, induced by the chosen global orientation, is called
the local type of v. A map is uniform3 if the local types of all vertices are the same. A map
is homogeneous of type {k, ℓ} if every vertex is of degree k and every face is of degree ℓ.

A dipole is a 2-vertex spherical map dual to a spherical cycle. A bouquet is a one-vertex
map that is a dual of a planted star (a tree with at most one vertex of degree > 1).

▶ Example 9. The face-normal uniform spherical maps are: the 5 Platonic solids, the 13
Archimedean solids, pseudo-rhombicuboctahedron, prisms, antiprisms, and cycles of length
at least 3. It easily follows from Euler’s formula that the spherical homogeneous maps are
the 5 Platonic solids, cycles, and dipoles.

3 Overview of the algorithm

We provide a high-level overview of the whole algorithm determining the automorphism group
of a map. The input consists of a non-oriented map given by the quadruple N = (F, λ, ρ, τ ).

First, using Theorem 7, we test whether N is orientable or not. If the map is orientable,
then we know that the underlying surface is orientable and we fix a global orientation
of the surface. We construct two oriented maps M = (D,R,L) and M−1 = (D,R−1, L)
representing N .

3 In [1] Babai uses the term semiregular instead of uniform.
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We start by determining Aut+(M). On the map M , we perform a sequence of elementary
local reductions (Section 4). There are two types of reductions: normalization and elimination
of vertices of minimum degree. The normalization is of the highest priority and its purpose
is to ensure that the resulting map is face-normal. In a face-normal map, it is guaranteed by
Theorem 8 that there is a vertex of small degree. The second elementary reduction replaces
a vertex of minimum degree by a polygon connecting its higher-degree neighbours and
reconnecting the other incident edges (see Figure 3). These two reductions are applied until
we are left with a map which has all vertices of degree k. Now, we observe that our reductions
do not really depend on the degrees of vertices, but rather on some vertex-labelling (not
related to dart labelling) which is linearly ordered. At this stage we can no longer distinguish
vertices based on their degreee. We refine the procedure by using the local types instead
of degrees. Note that the local types can be linearly ordered. It follows from Theorem 8
that the number of local types sufficient to consider is bounded. Thus, our reduction can be
applied in the same way, but instead of degrees we use local types. The result is a labeled
face-normal uniform oriented map M ′ = (D′, R′, L′, ℓ′) with Aut+(M) ∼= Aut+(M ′) and
D′ ⊆ D; for more details see Section 4.

The number of face-normal uniform oriented map M ′ on a surface of genus g > 1 is
bounded by a fucntion of g (Proposition 13), which means that a brute-force approach is
sufficient to determine Aut+(M ′). For the case of sphere and torus, the problem is non-trivial
since there are infinite families of face-normal uniform maps and a special treatment is
necessary; for more details see Section 5. Now, since Aut+(M) acts fixed-point-freely on D

and D′ ⊆ D, there is a unique way to extend Aut+(M ′) to Aut+(M). Finally, to construct
Aut(M), we run the whole algorithm again to determine Iso(M,M−1).

If the map is N is non-orientable, we construct its oriented antipodal double-cover
M̃ = (D,R,L) = (F, ρτ, τλ). We show that Aut(N) ≤ Aut+(M̃), and therefore, we can
again apply our algorithm to determine Aut+(M̃). Here, the most difficult part is to
determine Aut(N) within Aut+(M̃). For the case of projective plane and Klein bottle the
problem is highly non-trivial and a special treatment is again needed, while for the other
cases, again, a brute force approach is sufficient; for more details see Section 6.

4 From oriented maps to uniform oriented maps

In this section, we describe a set of elementary reductions defined on labeled oriented maps,
given by a quadruple (D,R,L, ℓ), in detail. The output of each elementary reduction is
always a quadruple (D′, R′, L′, ℓ′), satisfying D′ ⊆ D, v(M ′) + e(M ′) < v(M) + e(M), and
Aut+(M ′) ∼= Aut+(M). If none of the reductions apply, the map is a uniform oriented map.
The procedure defines a function which assigns to a given oriented map M a unique labeled
oriented map U with Aut+(M) ∼= Aut+(U). Since the darts of U form a subset of the darts
of M , by semiregularity, every generator of Aut+(U) can be extended to a generator of
Aut+(M) in linear time. We deal with the uniform oriented maps in Section 5.

After every elementary reduction, to ensure that Aut+(M ′) = Aut+(M), we need to
define a new labeling ℓ′. To this end, in the whole section, we assume that we have an
injective function Label : N×

⋃∞
k=1 T k → T , where T is the set of all integer-valued planted

trees. Moreover, we assume that the root of Label(t, T1, . . . , Tk) contains the integer t,
corresponding to the current step of the reduction procedure. After every elementary
reduction, this integer is increased by one; see the full version for more details.

Even though we defined our reductions only based on the minimum degree, it can be
easily seen that we are only using the fact that natural numbers are linearly ordered. Thus,
our reduction really works with any vertex lables, which are linearly ordered. In particular,
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if we replace degrees with local types together with a natural lexicographic linear ordering,
our reductions are well-defined. The consequence is thet every irreducible map with respect
to these reductions is a face-normal uniform map.

Normalization. By Theorem 8, there is always a light vertex in a face-normal map. The
purpose of the following reduction is to remove faces of degree one and two. This reduction is
of the highest priority and it is applied until the map is one of the following: (i) face-normal,
(ii) bouquet, (iii) dipole. In the cases (ii) and (iii), the whole reduction procedure stops with
a uniform map. In the case (i), the reduction procedure continues with further reductions.
We describe the reduction formally.

For technical reasons we split the reduction into two parts: deletion of loops, denoted by
Loops(M), and replacement of a dipole by an edge, denoted by Dipoles(M).

Reduction Loops. If M = (D,R,L, ℓ) with v(M) > 1 contains loops, we remove them. Let
L be the list of all maximal sequences of darts of the form s = {x1, x

−1
1 , . . . , xk, x

−1
k }, where

Rxi = x−1
i , for i = 1, . . . , k, Rx−1

i = xi+1 for i = 1, . . . , k− 1, and Rx−1
k ≠ x1. By definition,

R−1Lxi = xi, hence xi bounds a 1-face, for i = 1, . . . , k− 1; see Figure 1. Moreover, for each
such sequence s, all the darts xi are incident to the same vertex v ∈ V (M). We say that the
unique vertex v with Rv = (x0, x1, x

−1
1 , . . . , xk, x

−1
k , xk+1, . . . ) is incident to s. We call the

darts x0 and xk+1 the bounding darts of the sequence s.
The new map M ′ = (D′;R′, L′, ℓ′) =: Loops(M) is defined as follows. First, we put

D′ := D \
⋃

s∈L s, and L′ := L↾D′ . Let s = {x1, x
−1
1 , . . . , xk, x

−1
k } ∈ L with bounding darts

x0 and xk+1. If v is incident to s, then we put R′
v := (x0, xk+1, . . . ), else we put R′

v := Rv.
Moreover, we put ℓ′(x0) := Label(t, a0, . . . , ak) and ℓ′(xk+1) := Label(t, ak+1, bk, . . . , b1),
where t is the current step, ai = ℓ(xi), for i = 0, . . . , k + 1, and bi = ℓ(x−1

i ), for i = 1, . . . , k.
For every x ∈ D′ which is not a bounding dart in M , we put ℓ′(x) := ℓ(x). We obtain a
well-defined map M ′ with no faces of valence one; see Figure 1.

▶ Lemma 10. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩D2 = ∅, be labeled oriented maps.
Let M ′

1 := Loops(M1) and M ′
2 := Loops(M2). Then Iso+(M1,M2)↾D′

1
= Iso+(M ′

1,M
′
2). In

particular, Aut+(M1)↾D′
1

= Aut+(M ′
1).

Reduction Dipoles. If M = (D,R,L, ℓ) with v(M) > 2 contains dipoles. Let L be the list of
all maximal sequences s = (x1, . . . , xk) of darts, k > 1, satisfying Rxi = xi+1, (R−1L)2xi =
xi, and either Rxk ̸= x1 or Rx−1

1 ̸= x−1
k ; see Figure 2. Let s−1 := (x−1

k , . . . , x−1
1 ) ∈ L

be the inverse sequence. There are vertices u and v such that Ru = (y1, s, y2, . . . ) and

...

v

x0

x1

x
−1

1

x2 x
−1

2

x3

x
−1

3x4
...

v

x0 x4

Figure 1 A sequence of darts x1, x−1
1 , x2, x−1

2 , x3, x−1
3 with bounding darts x0 and x4.
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x1 x2 x3 x4 x5

...

...

x1

x
−

5

...

...

Figure 2 A sequence of darts x1, . . . , x5 forming a dipole.

Rv = (z1, s
−1, z2, . . . ), for some y1, y2, z1, z2 ∈ D. At least one of the sets {y1, y2}, {z1, z2}

is non-empty since otherwise v(M) = 2 and M is a dipole. We say that u, v are incident to
s, s−1, respectively; see Figure 2

The new map M ′ = (D′, R′, L′, ℓ′) =: Dipoles(M) is defined as follows. First, we put

D′ := D \
⋃

(x1,...,xk)∈L

{x2, . . . , xk} ∪ {x−1
1 , . . . , x−1

k−1}.

Let s = (x1, . . . , xk) ∈ L. If u and v are incident to s and s−1, respectively, then we put R′
u :=

(y1, x1, y2 . . . ) and R′
v := (z1, x

−1
k , z2, . . . ), else we put R′

u := Ru. Next, we put L′x1 := x−1
k ,

L′x−1
k := x1, and L′x := Lx if x /∈ s ∈ L. Finally, we put ℓ′(x1) := Label(t, a1, . . . , ak) and

ℓ′(x−1
k ) := Label(t, bk, . . . , b1), where t is the current step, ai = ℓ(xi) and bi = ℓ(x−1

i ), for
i = 1, . . . , k. We put ℓ′(x) := ℓ(x) for x /∈ s ∈ L. We obtain a well-defined map M ′ with no
2-faces; see Figure. 2.

▶ Lemma 11. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩D2 = ∅, be labeled oriented maps.
Let M ′

1 := Dipoles(M1) and M ′
2 := Dipoles(M2). Then Iso+(M1,M2)↾D′

1
= Iso+(M ′

1,M
′
2).

In particular, Aut+(M1)↾D′
1

= Aut+(M ′
1).

Face-normal maps. The input is a labeled face-normal oriented map M = (D,R,L, ℓ) and
a list L of all light vertices of degree d which have at least one heavy neighbour. For every
vertex v ∈ L, we denote by u0, . . . , uk−1, for some 1 ≤ k ≤ d, the cyclic sequence of all heavy
neighbours of v, following the prescribed orientation of the underlying surface. Denote by
x0, x1, . . . , xk−1 the darts based at u0, u1, . . . , uk−1, joining uj to v for j = 0, . . . , k − 1. Let
Rui

= (yi, xi, zi, . . . ), for i = 0, . . . , k − 1, and let

Rv = (x−1
0 , A0, x

−1
1 , A1, . . . , x

−1
k−1, Ak−1),

where each Ai is a (possibly empty) sequence of darts.
The new map M ′ = (D′, R′, L′, ℓ′) =: Delete(M) is defined as follows. We set D′ := D

and L′ := L. For a heavy vertex w with no light neighbour, we have R′
w := Rw. If

v ∈ L, with the above notation, we set R′
ui

:= (yi, Ai, xi, x
−1
i−1, zi, . . . ). Moreover, we set

ℓ′(xi) := Label(t, ℓ(xi)) and ℓ′(x−1
i ) := Label(t, ℓ(x−1

i )), where t is the current step number;
see Figure 3.

▶ Lemma 12. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩D2 = ∅, be labeled oriented maps.
Let M ′

1 := Delete(M1) and M ′
2 := Delete(M2). Then Iso+(M1,M2) = Iso+(M ′

1,M
′
2). In

particular, Aut+(M1) = Aut+(M ′
1).
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...

...

..
.

..
.

...
...

...

...

...

...

v

u0

u1

u2

u3

u4

x0

x1

x2

x3

x4 a0

a1
a2

a3

a4

y0

y1

y2

y3

y4

z0

z1

z2

z3

z4

A0

A1

A2

A3

A4

...

..
.

..
.

...

...
...

...

...
...

... u0

u1

u2u3

u4

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

z0

z1

z2

z3

z4

a0

a1

a2

a3

a4

A0

A1

A2

A3

A4

(a) (b)

Figure 3 An example of the reduction deleting a vertex.

Proof. Let ψ : M1 → M2 be an isomorphism. We prove that ψ is also an isomorphism of
M ′

1 and M ′
2. We check the commuting rules (1) for ψ. We have L′

i = Li, for i = 1, 2, so
L′

1ψ = ψL′
2. For R′

1 and R′
2, we need to check the commuting rules only at xi, x

−1
i , yi, ai ∈ D′

1,
for i = 0, . . . , k − 1, where ai is the last dart in the sequence Ai. We have

ψR′
1xi = ψR−1

1 L1xi = R−1
2 L2ψxi = R′

2ψxi,

ψR′
1x

−1
i = ψR1L1x

−1
i = R2L2ψx

−1
i = R′

2ψx
−1
i .

It remains to check the commuting rules at each yi and ai. Note that if Ai is empty there is
nothing to check. We have

ψR′
1yi = ψR1L1R1yi = R2L2R2ψyi = R′

2ψyi.

Further, using the relations R′
1ai = xi = L1R

q
1ai, for some q > 0, we get

ψR′
1ai = ψxi = ψL1R

q
1ai = L2R

q
2ψai = R′

2ψai.

Putting it together, we proved that ψR′
1 = R′

2ψ. Clearly, ℓ′
1(xi) = ℓ′

2(ψxi) if and only if
ℓ1(xi) = ℓ2(ψxi). Similarly for x−1

i .
For the converse, we assume that ψR′

1 = R′
2ψ and ψL′

1 = L′
2ψ and we prove ψR1 = R2ψ

and ψL1 = L2ψ. Similarly as above, we need to check the commuting rules for xi, x
−1
i , yi, ai ∈

D1.
By the definition of M ′

1 and M ′
2, we have R1xi = zi = (R′

1)2xi. Since Label is injective,
we have R2ψxi = ψzi = (R′

2)2ψxi. Using these relations, we get

ψR1xi = ψ(R′
1)2xi = (R′

2)2ψxi = R2ψxi.

By the definition of M ′
1 and M ′

2, we have R1x
−1
i = R

′m
1 L′

1x
−1
i , for some m. Since Label

is injective, we have R2ψx
−1
i = R

′m
2 L′

2ψx
−1
i . Using these relations, we get

ψR1x
−1
i = ψR

′m
1 L1x

−1
i = R

′m
1 L′

2ψx
−1
i = R2ψx

−1
i .

By the definition of M ′
1 and M ′

2, we have R1yi = xi = R
′m
1 yi, for some m. Since Label

is injective, R2ψyi = ψxi = R
′m
2 ψyi. Using these relations, we get

ψR1yi = ψR
′m
1 yi = R

′m
2 ψyi = R2ψyi.
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By the definition of M ′
1 and M ′

2, we have R1ai = L′
1R

′−1
1 L′

1R
′
1ai. Since Label is injective,

R2ψai = L′
2R

′−1
2 L′

2R
′
2ψai. Using these relations, we get

ψR1ai = ψL′
1R

′−1
1 L′

1R
′
1ai = L′

2R
′−1
2 L′

2R
′
2ψai = R2ψai.

Putting it togehter, we proved that ψR1 = R2ψ, which implies that ψ is an isomorphism
M1 → M2. This completes the proof. ◀

5 Irreducible maps on orientable surfaces

In this section, we provide an algorithm computing the automorphism group of irreducible
oriented maps, with fixed Euler characteristic, in linear time. The proof splits into three
parts: maps of negative Euler characteristic, maps on the sphere, and maps on torus.

Surfaces of negative Euler characteristic. If the Euler characteristic χ is negative, the
irreducible maps are exactly all the uniform face-normal maps. We prove that the number
of uniform face-normal maps is bounded by a function of χ. Therefore, generators of the
automorphism group can be computed by a brute force approach. Note that the following
lemma does not require the underlying surface to be orientable, it only requires χ to be
negative.

▶ Proposition 13. The number of edges of a uniform face-normal map on a closed compact
surface S with Euler characteristic χ(S) < 0 is bounded by a function of χ(S).

Proof. Babai noted in [1, Theorem 3.3] that the Hurwitz Theorem (see, e.g. [4] or [12])
implies that the number of vertices of a uniform map M on S is at most 84|χ(S)|. By
Theorem 8, the degree of a vertex of M is bounded by a function of χ(S) as well. Therefore,
the number of edges is also bounded by a function of χ(S) and the theorem follows. ◀

▶ Corollary 14. Let M = (D,R,L) be a uniform face-normal map M = (D,R,L) on an
orientable surface S with χ(S) < 0. Then Aut(M) can be computed in time f(χ(S))|D|, for
some computable function f .

Sphere. By the definition of the reductions in Section 4, the irreducible spherical maps
are the five Platonic maps, 13 Archimedean maps, pseudo-rhombicuboctahedron, prisms,
antiprisms, cycles, dipoles, and bouquets.

In the first three cases, the automorphism group can be computed by a brute force
approach. We show that for (labeled) prisms, antiprisms, dipoles and bouquets, the problem
can be reduced to computing the automorphism group of a vertex-labeled cycle.

▶ Theorem 15 ([17]). If M = (D,R,L) is an irreducible spherical map, then the generators
of Aut(M) can be computed in time O(|D|).

Torus. The toroidal irreducible maps are uniform face-normal maps. The universal covers of
uniform toroidal maps are uniform tilings (infinite maps with finite vertex and face degrees)
of the Euclidean plane. There are 12 of such tilings; see [14, page 63]. The corresponding
local types are (3, 3, 3, 3, 3, 3), (4, 4, 4, 4), (6, 6, 6), 2 × (3, 3, 3, 3, 6), (3, 3, 3, 4, 4), (3, 3, 4, 3, 4),
(3, 4, 6, 4), (3, 6, 3, 6), (3, 12, 12), (4, 6, 12), and (4, 8, 8). One type occurs in two forms, one
of the respective tilings is the mirror image of the other. Each of these tilings T gives rise
to an infinite family of toroidal uniform maps as follows. It is well-known that Aut+(T ) is
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isomorphic either to the triangle group ∆(4, 4, 2) or to ∆(6, 3, 2). Each of these contains an
infinite subgroup H of translations generated by two shifts. Every finite uniform toroidal
map of the prescribed local type can be constructed as the quotient T/K, where K is a
subgroup of H of finite index.

First, our algorithm reduces a uniform map to one of the two homogeneous types {4, 4}
and {6, 3}, while preserving the automorphism group. Then, the algorithm computes the
generators of the automorphism groups of a labeled homogeneous toroidal map M of type
{4, 4} or {3, 6}. For technical reasons, we transform the dart-labelling to a vertex-labelling
of M . These transformations can be done easily by, for a given vertex, encoding the lables of
the outgoing darts into the vertex. The following lemma describes some important properties
of Aut+(M).

▶ Lemma 16 ([29]). Let M be a toroidal map of type {4, 4} or {6, 3}. The orientation-
preserving automorphism group of a labeled map M is a semidirect product T ⋊H, where T
is a direct product of two cyclic groups, and |H| ≤ 6. Moreover, the action of T is regular on
the vertices of M .

Since the order of H is bounded by a constant, it takes linear time to check whether
every element of H is a label-preserving automorphism. The main difficulty is to find T .
The subgroup T is generated by α and β, where α is the horizontal, and β is the vertical
shift by the unit distance. Now the meaning of the parameters r, s, t is the following: |α| = r,
αt = βs, and s is the least power of β such that βs ∈ ⟨α⟩. The following lemma shows that
T can always be written as a direct product of two cyclic groups.

▶ Lemma 17. There exists δ and γ such that T = ⟨δ⟩ × ⟨γ⟩. Moreover, δ and γ can be
computed in time O(rs).

Lemma 17 can be viewed as a transformation of the shifted grid G to the orthogonal grid
G⊥. Note that the underlying graph may change, but both G and G⊥ are Cayley graphs
based on the group T , therefore, the vertex-labeling naturally transfers. Thus, we may
assume that t = 0 and T = ⟨α⟩ × ⟨β⟩ ∼= Zr × Zs. We need to compute generators of the
label-preserving subgroup of T .

From now on, we assume that we are given a cyclic orthogonal grid G of size rs, which is
graph with vertices identified with (i, j) ∈ G, where G = Zr ×Zs. For every (i, j), there is an
edge between (i, j) and (i+ 1 mod r, j), and between (i, j) and (i, j + 1 mod s). Moreover,
we are given an integer-labeling ℓ of the vertices of G. Clearly, G determines the ℓ-preserving
subgroup H of G, namely

H = {(x, y) : ∀(i, j) ∈ G, ℓ(i, j) = ℓ(i+ x, j + y)}.

The goal is to find the generators of H in time O(rs).
We give a description of any subgroup of the direct product of G that is suitable for our

algorithm. First, we define four important mappings. The two projections π1 : G → Zr and
π2 : G → Zs are defined by π1(x, y) = x and π2(x, y) = y, respectively. The two inclusions
ι1 : Zr → G and ι2 : Zs → G are defined by ι1(x) = (x, 0) and ι2(y) = (0, y), respectively.

▶ Lemma 18. Let G = Zr × Zs for r, s ≥ 1, and let H be a subgroup of G. Then there are
a, c ∈ Zr and b ∈ Zs such that

H = {(ia+ jc, jb) : i, j ∈ Z} = ⟨(a, 0), (c, b)⟩,

where ⟨a⟩ = ι−1
1 (H), ⟨b⟩ = π2(H), and c < a is the minimum integer such that (c, b) ∈ H.
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This description suggests an algorithm to find the generators of the given subgroup H

of Zr × Zs. In our setting, the subgroup H is given on the input by a labeling function ℓ,
defined on the vertices of the r × s orthogonal grid. The subgroup H is the ℓ-preserving
subgroup of Zr × Zs.

To compute the generators of H, it suffices, by Lemma 18, to determine a, c ∈ Zr and
b ∈ Zs such that ⟨a⟩ = ι−1

1 (H), ⟨b⟩ = π2(H), and c is the smallest integer such that (c, b) ∈ H .
Then H = ⟨(a, 0), (c, b)⟩.

▶ Lemma 19. There is an O(rs)-time algorithm which computes the integers a, b, c such
that ι−1

1 (H) = ⟨a⟩, π2(H) = ⟨b⟩ and c < a is the smallest integer such that (c, b) ∈ H.

The results of this subsection are summarized by the following.

▶ Theorem 20. If M = (D,R,L, ℓ) is a uniform face-normal labeled toroidal map, then the
generators of Aut(M) can be computed in time O(|D|).

6 Non-orientable surfaces

For a map M on a non-orientable surface S, we reduce the problem of computing the
generators of Aut(M) to the problem of computing the generators of Aut+(M̃), for some
orientable map M̃ . In particular, the map M̃ is the antipodal double cover of M .

Given a map M = (F, λ, ρ, τ) on a non-orientable surface of genus γ, we define the
antipodal double cover M̃ = (D,R,L) by setting D := F , R := ρτ , and L := τλ. Since M is
non-orientable, we have ⟨R,L⟩ = ⟨λ, ρ, τ⟩, so ⟨R,L⟩ is transitive and M̃ is well-defined. For
more details on this construction see [25]. We note that χ̃ = 2χ, where χ̃ and χ is the Euler
characteristic of the underlying surface of M̃ and M , respectively.

▶ Lemma 21. We have Aut(M) ≤ Aut+(M̃).

Proof. Let φ ∈ Aut(M). Then we have Rφ = (ρτ)φ = ρφτφ = ρτ = R and Lφ = (τλ)φ =
τφλφ = τλ = L. ◀

▶ Lemma 22. We have Aut(M) = {φ ∈ Aut+(M̃) : φτ = τφ}.

Proof. Let φ ∈ Aut+(M̃). We have φRφ−1 = R and φLφ−1 = L. By plugging in R = ρτ

and L = τλ, we obtain

φ(ρτ)φ−1 = ρτ and φ(τλ)φ−1 = λτ.

From there, by rearranging the left-hand sides of the equations, we get

(φρφ−1)(φτφ−1) = φ(ρτ)φ−1 = ρτ and (φτφ−1)(φλφ−1) = φ(τλ)φ−1 = τλ.

Finally, we obtain

φρφ−1 = ρτ(φτφ−1) and φλφ−1 = (φτφ−1)τλ.

If φ ∈ Aut(M), then, in particular, it commutes with τ . On the other hand, if φ commutes
with τ , then the last two equations imply that it also must commute with ρ and λ, i.e.,
φ ∈ Aut(M). ◀

The previous lemmas are key and suggest an approach for computing the generators of
the automorphism group of M . In particular, it is necessary to check which automorphisms
of M̃ commute with τ . The cases when the underlying surface is the projective plane, or the
Klein bottle, must be treated separately.

▶ Theorem 23. Let M = (F, λ, ρ, τ) be a map on a non-orientable a non-orietable surface
of genus γ. Then it is possible to compute the generators of Aut(M) in time f(γ)|F |.
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Abstract
We prove lower bounds on pure dynamic programming algorithms for maximum weight independent
set (MWIS). We model such algorithms as tropical circuits, i.e., circuits that compute with max and
+ operations. For a graph G, an MWIS-circuit of G is a tropical circuit whose inputs correspond to
vertices of G and which computes the weight of a maximum weight independent set of G for any
assignment of weights to the inputs. We show that if G has treewidth w and maximum degree d, then
any MWIS-circuit of G has 2Ω(w/d) gates and that if G is planar, or more generally H-minor-free for
any fixed graph H, then any MWIS-circuit of G has 2Ω(w) gates. An MWIS-formula is an MWIS-
circuit where each gate has fan-out at most one. We show that if G has treedepth t and maximum
degree d, then any MWIS-formula of G has 2Ω(t/d) gates. It follows that treewidth characterizes
optimal MWIS-circuits up to polynomials for all bounded degree graphs and H-minor-free graphs,
and treedepth characterizes optimal MWIS-formulas up to polynomials for all bounded degree
graphs.
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1 Introduction

In this paper, we prove lower bounds for tropical circuits computing the weight of a maximum
weight independent set (MWIS) of a graph. A tropical circuit is a circuit with Max and Plus
operations as gates. In particular, we consider MWIS-circuits of graphs. An MWIS-circuit
of a graph G is a tropical circuit whose inputs correspond to the vertices of G and which
computes the weight of a maximum weight independent set of G for any assignment of
weights to the inputs. An MWIS-formula is an MWIS-circuit where each gate has fan-out at
most one.

Our motivation for proving lower bounds for MWIS-circuits is that many algorithmic
techniques for maximum weight independent set implicitly build an MWIS-circuit of the
input graph, and therefore the running time of any algorithm resulting from such a technique
is bounded from below by the minimum size of an MWIS-circuit of the graph. Examples of
algorithmic techniques that build MWIS-circuits are dynamic programming over different
kinds of decompositions of graphs [3, 8, 16] and dynamic programming over potential
maximal cliques [10, 17, 29]. Examples of algorithmic techniques that build MWIS-formulas
are branching [20, 34] and maximal independent set enumeration [32].
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1.1 Our Results
We prove unconditional lower bounds for sizes of MWIS-circuits and MWIS-formulas para-
meterized by graph parameters treewidth and treedepth, respectively. The lower bounds are
exponential in treewidth and treedepth, and therefore well-known algorithms yield matching
upper bounds for them [3, 18]. We emphasize that our lower bounds are not worst-case
bounds over graph classes, but instead hold for each individual graph.

MWIS-Circuits and Treewidth

First we characterize optimal MWIS-circuits of bounded degree graphs.

▶ Theorem 1. Let G be any graph with treewidth w and maximum degree d. Any MWIS-
circuit of G has 2Ω(w/d) gates.

Theorem 1 is optimal up to a factor d in the sense that for each pair w, d we can construct
a graph with treewidth Ω(w) and maximum degree O(d) that admits an MWIS-formula with
d2w/d gates.

Then we extend the result to some graphs that may have high-degree vertices. A graph
H is a minor of a graph G if it can be obtained from G by vertex deletions, edge deletions,
and edge contractions. If H can be obtained by only vertex deletions and edge contractions,
then it is an induced minor.

▶ Theorem 2. Let G be any graph that contains an induced minor with treewidth w and
maximum degree d. Any MWIS-circuit of G has 2Ω(w/(d4d)) gates.

In Theorem 2 it is essential to require an induced minor instead of a minor because
a complete graph with n vertices admits an MWIS-circuit of size O(n), but contains all
n-vertex graphs as minors.

A graph G is H-minor-free if it does not contain the graph H as a minor.

▶ Corollary 3. Let H be any fixed graph and G any H-minor-free graph with treewidth w.
Any MWIS-circuit of G has 2Ω(w) gates.

Proof. For any fixed H , every H-minor-free graph of treewidth w contains an Ω(w) × Ω(w)-
grid as an induced minor [13]1. An Ω(w) × Ω(w)-grid has treewidth Ω(w) and maximum
degree 4, so the result follows from Theorem 2. ◀

Corollary 3 implies a 2Ω(w) lower bound for all planar graphs because planar graphs are
K5-minor-free [27].

The following corollary follows from Theorem 1, Corollary 3, constant-factor treewidth
approximation in 2O(w)nO(1) time [36], and dynamic programming over a tree decomposi-
tion [3].

▶ Corollary 4. There is an algorithm which, given a bounded degree or H-minor-free graph
G whose smallest MWIS-circuit has τ gates, constructs an MWIS-circuit of G with τO(1)

gates in τO(1) time.

In particular, a property analogous to automatizability of proof systems [6] holds for
MWIS-circuits on bounded degree graphs and H-minor-free graphs.

1 The stated result in [13] is that such a grid is a minor, but the same proof works directly to show that
the constructed grid minor is also an induced minor. In particular, the proof in [13] does not use any
edge deletions, and the corresponding result for bounded-genus graphs that it depends on [14] is already
stated in terms of contraction to a graph that can be turned into a grid by removing vertices without
decreasing treewidth by more than a constant factor.
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MWIS-Formulas and Treedepth

We characterize optimal MWIS-formulas of bounded degree graphs.

▶ Theorem 5. Let G be any graph with treedepth t and maximum degree d. Any MWIS-
formula of G has 2Ω(t/d) gates.

Again, Theorem 5 is optimal up to a factor d by the same construction as Theorem 1.
As formulas can be thought of as bounded space analogies of circuits, Theorem 5 gives
further evidence (in addition to e.g. [9, 26, 35]) supporting that while treewidth is the right
parameter for CSP-like problems when equipped with unlimited space, treedepth is the right
parameter when dealing with bounded space.

Obtaining a constant-factor single-exponential time parameterized approximation al-
gorithm for treedepth is a well-known open problem [12], so while we know that the converse
of Theorem 5 existentially holds in bounded degree graphs, we currently do not know how to
construct such MWIS-formulas without having the treedepth decomposition as an input.

1.2 Techniques
Our main circuit complexity tool is an adaptation of a circuit decomposition lemma used
in e.g. [22, 23, 37]. In particular, we show that this lemma can be adapted so that given
an MWIS-circuit with τ gates of a graph with treewidth w it extracts a family of τ vertex
separators each of size Ω(w). Once this family has been extracted, the main challenge for
proving Theorem 1 is to show that if this family of separators is too small, there exists an
independent set that intersects all of the separators. For this we use the lopsided Lovász
Local Lemma [15], though we note that more elementary arguments would suffice to prove
the theorem with a worse dependency on d. To extend the result from bounded degree graphs
to H-minor-free graphs we use the minor model of the bounded degree induced minor with
high treewidth to further control the structure of these separators.

For MWIS-formulas parameterized by treedepth t we similarly extract a family of 2τ

vertex sets each of size Ω(t) from a τ -gate MWIS-formula, showing that if an independent
set intersects all of these vertex sets the formula cannot compute it. The same application of
the Local Lemma is used to prove that such an independent set indeed exists in low degree
graphs if τ is too small. The argument for extracting the family from the formula is more
ad-hoc than the argument for circuits.

1.3 Related Work
The convention of modeling dynamic programming algorithms as tropical circuits originates
from the recent works of Jukna [24, 25], although some earlier results in monotone arithmetic
circuit complexity apply also to tropical circuits [23]. In general, tropical circuit lower bounds
imply lower bounds for monotone arithmetic circuits, but not necessarily the other way
around [24]. In addition to the works of Jukna, the other works explicitly giving lower
bounds for tropical circuits or formulas that we are aware of are [30, 31]. We are not aware
of prior works on lower bounds for tropical circuits or formulas considering maximum weight
independent set or the graph parameters treewidth or treedepth.

There are multiple worst-case hardness results related to different formulations of the
independent set polynomial. In [7] it was shown that the multivariate independent set
polynomial is VNP-complete. The univariate independent set polynomial is #P-hard to
evaluate at every non-zero rational point [5], and more fine-grainedly its evaluation has
2Ω(n/ log3 n) worst-case complexity assuming #ETH [21].
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Chvátal has shown that a certain proof system for maximum independent set which
naturally corresponds to branching algorithms requires exponential size proofs on almost all
graphs that have the number of edges linear in the number of vertices [11].

Multiple worst-case lower bounds of form nΩ(w) in limited models of computation for
graph homomorphism problems of a pattern graph with treewidth w to a graph with n

vertices are known [4, 26, 28]. In particular, recently it was shown that the worst-case
monotone arithmetic circuit complexity of homomorphism polynomial is Θ(nw+1), and the
worst-case monotone arithmetic formula complexity is Θ(nt), where t is the treedepth of the
pattern graph [26].

Recently, a lower bound of 2Ω(w) was shown for DNNF-compilation of monotone CNFs
with primal treewidth w and bounded degree and arity, applying to all such CNFs [2]. We
note that after the acceptance of this paper, we became aware of a reduction from MWIS-
circuits to DNNFs that allows to prove a weaker version of our Theorem 1 via the result
of [2]. In particular, the techniques of [2] yield an exponent of form Ω(w/2d) instead of the
best possible Ω(w/d) given in Theorem 1.

1.4 Organization

In Section 2 we present preliminaries on graph theory, define MWIS-circuits and prove simple
lemmas on them, and discuss the lopsided Lovász Local Lemma and prove a lemma using it.
In Section 3 we prove the lower bounds for MWIS-circuits parameterized by treewidth, i.e.,
Theorems 1 and 2. In Section 4 we prove the lower bound for MWIS-formulas parameterized
by treedepth, i.e., Theorem 5. In Section 5 we give the construction that shows the optimality
of Theorems 1 and 5 up to a factor d. We conclude and discuss future work in Section 6.

2 Preliminaries

2.1 Graphs

The vertex set of a graph G is denoted by V (G) and the edge set by E(G). The set of
neighbors of a vertex v is denoted by N(v) and the neighborhood of a vertex set X by
N(X) =

⋃
v∈X N(v) \ X. Closed neighborhoods are denoted by N [v] = N(v) ∪ {v} and

N [X] = N(X)∪X. The subgraph G[X] induced by a vertex set X ⊆ V (G) has V (G[X]) = X

and E(G[X]) = {{u, v} ∈ E(G) | u ∈ X ∧ v ∈ X}. We also use G \ X = G[V (G) \ X] to
denote induced subgraphs. An independent set of G is a vertex set I such that G[I] has no
edges. In particular, an empty set is an independent set.

A tree decomposition of a graph G is a tree T whose each vertex i ∈ V (T ) corresponds
to a bag Bi ⊆ V (G), satisfying that
1. V (G) =

⋃
i∈V (T ) Bi,

2. for each {u, v} ∈ E(G) there is a bag Bi with {u, v} ⊆ Bi, and
3. for each v ∈ V (G) the subtree of T induced by bags containing v is connected.
The width of a tree decomposition is max |Bi| − 1 and the treewidth tw(G) of a graph G is
the minimum width over its tree decompositions.

A treedepth decomposition of a graph G is a rooted forest F with vertex set V (F ) = V (G),
satisfying for each {u, v} ∈ E(G) that u and v have an ancestor-descendant relation in F .
The depth of F is the maximum number of vertices on a simple path from a root to a leaf in F .
The treedepth td(G) of a graph G is the minimum depth over its treedepth decompositions.
Note that tw(G) + 1 ≤ td(G).
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2.2 MWIS-Circuits
We start by giving a formal definition of a tropical circuit. Our definition is non-standard in
that it does not allow any other input constants than 0, which we can w.l.o.g. assume in
the context of maximum weight independent set. For a comprehensive treatment of tropical
circuits and their relations to monotone Boolean and monotone arithmetic circuits see [24].

▶ Definition 6. A tropical circuit over variables X is a directed acyclic graph with in-degree
of each vertex either 0 or 2. The vertices are called gates, the in-degree of a gate is called
fan-in, and the out-degree of a gate is called fan-out. Each gate with fan-in 0 is labeled with
a variable xi ∈ X or the constant 0 and each gate with fan-in 2 is labeled with either max or
+. One gate is designated as the output gate. A tropical formula is a tropical circuit where
each gate has fan-out at most 1.

With an assignment of real numbers to the variables X, a tropical circuit outputs a
number computed by the output gate by natural semantics, i.e., a gate labeled with a variable
xi computes the value of xi, a gate labeled with 0 computes 0, a gate labeled with + computes
the sum of the values computed by its children, and a gate labeled with max computes the
maximum of the values computed by its children. In particular, a tropical circuit computes a
tropical polynomial in the variables X over the tropical (R∪ {−∞}, max, +) semiring. In the
tropical semiring max corresponds to addition and + corresponds to multiplication, with −∞
as the zero and 0 as the unit. We will refer to max as addition and to + as multiplication.

We define an MWIS-polynomial with the following simple lemma.

▶ Lemma 7. Let G be a graph. A tropical circuit over variables V (G) computes the weight
of a maximum weight independent set of G for any assignment of real weights to the inputs
if and only if for the tropical polynomial f computed by the circuit it holds that
1. each monomial of f is of form v1 · . . . · vl, where {v1, . . . , vl} is an independent set of G

and
2. for each independent set {v1, . . . , vl} of G there is a monomial v1 · . . . · vl in f , including

the empty independent set corresponding to the empty product 0.

Proof. For the if-direction, (1) guarantees that the value computed by the circuit is at most
the weight of a maximum weight independent set and (2) guarantees that the value is at
least the weight of a maximum weight independent set.

For the only if-direction, if some monomial would not be multilinear, i.e., include a factor
v2 for some vertex v, the output would be incorrect when assigning weight 1 to v and 0 to
other vertices. If some monomial would be of form v1 · . . . · vl, where {v1, . . . , vl} is not an
independent set the output would be incorrect when assigning weight 1 to those vi and 0
to others. Finally, if the output polynomial would not include v1 · . . . · vl as a monomial
for some independent set {v1, . . . , vl} then the circuit would be incorrect when assigning
weight 1 to vertices of this independent set and −1 to others. ◀

An MWIS-polynomial of a graph G is a polynomial f satisfying (1) and (2) in Lemma 7.
An MWIS-circuit of G is a tropical circuit that computes an MWIS-polynomial of G. An
MWIS-formula of G is an MWIS-circuit of G that is a tropical formula.

We note that requiring the circuit to work for all real weights is not a strong assumption:
Any MWIS-circuit that works for weights {0, 1} can be turned into an MWIS-circuit that
works for weights R ∪ {−∞} by replacing each input variable vi by max(vi, 0). In particular,
the weight of an empty independent set is 0, so negative weights will never be used. Our
assumption that the only constant available to the circuit is 0 can be justified by noting
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that if an output monomial would contain a positive constant the circuit would be incorrect
on the all-zero input, and that if an output monomial would contain a negative constant it
should also occur without the constant. In particular, any other constants than 0 could be
replaced by 0.

Next we make some simple observations on the structure of MWIS-circuits.

▶ Definition 8. A partial MWIS-polynomial is a polynomial f satisfying (1) in Lemma 7. A
partial MWIS-circuit is a tropical circuit computing a partial MWIS-polynomial.

Note that by monotonicity of (max, +) computations we can assume that each gate of
an MWIS-circuit computes a partial MWIS-polynomial and therefore each subcircuit is a
partial MWIS-circuit.

▶ Definition 9. Let f be a partial MWIS-polynomial. We denote by Sup(f) the support of
f , that is, the variables that occur in the monomials of f .

We also use Sup(g) for a gate g to denote the support of the polynomial computed by
the gate. Note that each monomial of f corresponds to an independent set of G[Sup(f)].

The following property is the basis for proving lower bounds for MWIS-circuits.

▶ Lemma 10. Let f = g · h be a partial MWIS-polynomial of a graph G. The sets N [Sup(g)]
and Sup(h) are disjoint.

Proof. If there was a vertex v ∈ Sup(g) ∩ Sup(h) then f would contain a monomial with a
factor v2. If there was a vertex v ∈ Sup(g) and u ∈ Sup(h) with {u, v} ∈ E(G), then there
would be a monomial in f containing a factor u · v. ◀

We will say that a partial MWIS-polynomial f or a circuit computing f computes an
independent set I if f contains the monomial

∏
vi∈I vi. In particular, an MWIS-polynomial

computes every independent set.

2.3 Lopsided Lovász Local Lemma
The lopsided Lovász Local Lemma [15] (see [1] for the general version) is a method for
showing that there is a non-zero probability that none of the events in a collection of events
hold. In particular, we use it to show that independent sets satisfying certain requirements
exist.

▶ Definition 11. Let E1, . . . , En be events in a probability space. A graph Γ is a negative
dependency graph of the events if its vertices are V (Γ) = {E1, . . . , En} and for all events Ei

and subsets J ⊆ V (Γ) \ N(Ei) it holds that Pr[
⋃

j∈J Ej | Ei] ≥ Pr[
⋃

j∈J Ej ].

In words, the negative dependency graph should capture all negative correlations between
the events.

▶ Proposition 12 ([1]). Let E1, . . . , En be a collection of events with a negative dependency
graph Γ. If there exists real numbers x1, . . . , xn with 0 < xi < 1 such that for each i it holds
that Pr[Ei] ≤ xi

∏
Ej∈N(Ei)(1 − xj), then Pr[

⋂n
i=1 Ei] > 0.

2.4 Hitting Vertex Sets with Independent Sets
We prove a lemma which captures our use of the Local Lemma in Theorems 1 and 5. We
spell out the constants to emphasize that they are not particularly high, although noting
that a more careful proof could improve them a bit.
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▶ Lemma 13. Let G be a graph with maximum degree d and F a family of vertex subsets of
G, each member of F containing at least k vertices. If 6|F| ≤ ek/(6d), then there exists an
independent set of G that intersects all sets in F .

Proof. We assume d ≥ 2 as the lemma is easy to verify for d ≤ 1. We use the Local Lemma
to construct such an independent set. We let each vertex be in the independent set with
probability p = 1/(2d). Our bad events are Ee for each each edge e indicating that both
endpoints of e are selected in the independent set, and EA for each A ∈ F indicating that the
independent set does not intersect A. The negative dependency graph is a bipartite graph
connecting Ee to EA if at least one of the endpoints of e is in A. In particular, note that
the edge events Ee have non-negative correlation with each other and the vertex set events
EA also have non-negative correlation with each other. For all edge events Ee we choose
xe = 1/(3d2 + 1) and for all vertex set events EA we choose xA = 1/(5|F| + 1). Now, by
Proposition 12, it suffices to verify that

Pr[Ee] = p2 ≤ xe(1 − xA)|F| (1)

and

Pr[EA] = (1 − p)|A| ≤ xA(1 − xe)|A|d (2)

hold whenever 6|F| ≤ e|A|/6d.
For (1), a lower bound for the right hand side is e−1/5/(3d2 + 1), which can be verified to

be greater than p2 = 1/(4d2) when d ≥ 2. For (2), an upper bound for the left hand side is
e−|A|/(2d), and a lower bound for the right hand side is xAe−|A|d/(3d2), implying that (2) holds
if e−|A|/(2d)e|A|/(3d) ≤ xA. This simplifies to e−|A|/(6d) ≤ xA ⇔ e|A|/(6d) ≥ 5|F| + 1. ◀

3 Treewidth and MWIS-Circuits

In this section we prove lower bounds for MWIS-circuits parameterized by treewidth, i.e.,
Theorems 1 and 2.

We use a witness of high treewidth due to Robertson-Seymour treewidth approximation
algorithm [36]. A separation of a graph G is an ordered triple of vertex sets (A, S, B) such
that A, S, B are disjoint, A ∪ S ∪ B = V (G), and no vertex of A is adjacent to a vertex of B.
The order of a separation (A, S, B) is |S|. A separation (A, S, B) is a balanced separation of
a vertex set X ⊆ V (G) if |A ∩ X| ≤ 2|X|/3 and |B ∩ X| ≤ 2|X|/3.

▶ Lemma 14 ([36]). If a graph G has treewidth at least 4k, then there is a vertex set
X ⊆ V (G) such that any balanced separation of X in G has order at least k.

The next lemma is our main tool to connect circuit complexity with treewidth. This
lemma is an adaptation of a classical circuit decomposition lemma (e.g. Theorem 1 in [22],
Lemma 3 in [37]). In our applications the vertex set X will be the set given by Lemma 14.

▶ Lemma 15. Let G be a graph and X ⊆ V (G) with |X| ≥ 2. If there is an MWIS-circuit
of G with τ gates, then we can write an MWIS-polynomial of G as g1 · h1 + . . . + gτ · hτ ,
where for all i it holds that |Sup(gi) ∩ X| ≤ 2|X|/3 and |Sup(hi) ∩ X| ≤ 2|X|/3.

Proof. Let f + e be an MWIS-polynomial of G, where f can be computed by a tropical
circuit with τ gates. (The term e is here for the induction argument. In the first step we can
assume it to be empty.) We will show that there is an MWIS-polynomial f ′ + g · h + e of G,
where f ′ can be computed by a tropical circuit with τ − 1 gates, and |Sup(g) ∩ X| ≤ 2|X|/3
and |Sup(h) ∩ X| ≤ 2|X|/3. The lemma follows from this by induction.
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If |Sup(f) ∩ X| ≤ 2|X|/3 we are done. Otherwise, we traverse the circuit computing f

down starting from the output gate, always choosing the one of the two child gates whose
support has larger intersection with X, until we reach a gate v computing a polynomial
fv with |X|/3 ≤ |Sup(fv) ∩ X| ≤ 2|X|/3. Let fv=−∞ be the polynomial computed by the
circuit when the value of the gate v is set to −∞. Now we can write an MWIS-polynomial of
G as fv=−∞ + fv · g + e, for example by letting g be an MWIS-polynomial of G \ N [Sup(fv)].
Now, we observe that fv=−∞ can be computed by a circuit with τ − 1 gates. We also observe
that the supports of fv and g cannot intersect, and therefore |Sup(g) ∩ X| ≤ 2|X|/3. ◀

3.1 Proof of Theorem 1
Now we complete the proof of Theorem 1 by putting Lemmas 13, 14, and 15 together.

▶ Lemma 16. Let G be a graph with maximum degree d and treewidth at least 4k. Any
MWIS-circuit of G has at least ek/(6d)/6 gates.

Proof. Suppose there is an MWIS-circuit of G with τ gates. By Lemma 14 there is a vertex
set X ⊆ V (G) that does not admit a balanced separation of order less than k. By Lemma 15
we can write an MWIS-polynomial of G as g1 · h1 + . . . + gτ · hτ , where for all i it holds that
|Sup(gi) ∩ X| ≤ 2|X|/3 and |Sup(hi) ∩ X| ≤ 2|X|/3. Now, by Lemma 10 each multiplication
gi · hi defines a balanced separation (Sup(gi), V (G) \ Sup(gi · hi), Sup(hi)) of X. The order of
such a separation is |V (G) \ Sup(gi · hi)|, and therefore |V (G) \ Sup(gi · hi)| ≥ k. Note that
gi · hi does not compute an independent set I if I intersects V (G) \ Sup(gi · hi). Therefore,
by letting F be the collection of vertex sets {V (G) \ Sup(g1 · h1), . . . , V (G) \ Sup(gτ · hτ )},
Lemma 13 shows that if 6τ ≤ ek/(6d) we can construct an independent set that is not
computed by any of the multiplications, contradicting the assumption that we have an
MWIS-circuit. ◀

3.2 Proof of Theorem 2
An induced minor model of a graph H in a graph G is a function f : V (H) → 2V (G) \ {∅},
where 2V (G) denotes the power set of V (G), satisfying that
1. the sets f(u) and f(v) are disjoint for u ̸= v,
2. for each v ∈ V (H) the induced subgraph G[f(v)] is connected, and
3. {u, v} ∈ E(H) if and only if N(f(u)) intersects f(v).

A graph G contains a graph H as an induced minor if and only if there is an induced
minor model of H in G. For v ∈ V (H) we call the induced subgraphs G[f(v)] clusters.

First, we ensure that the maximum degree of each cluster is bounded.

▶ Lemma 17. Let G be a graph that contains a graph H with maximum degree d as an
induced minor. There is an induced minor model f of H in G such that the maximum degree
of each cluster G[f(v)] is at most d.

Proof. Consider an induced minor model f of H in G and a cluster G[f(v)] for some
v ∈ V (H). Because the degree of H is at most d, we can assign the cluster a set of at most
d terminal vertices whose connectivity should be preserved in order to satisfy that f is an
induced minor model of H in G. Now, we can remove from the cluster any vertices as long as
the terminals stay connected. In particular, if there is a vertex u with degree > d in G[f(v)],
then we can consider the shortest paths from u to the terminals, and remove from G[f(v)]
the vertices of N(u) ∩ G[f(v)] that do not participate in the shortest paths. This makes the
degree of u in G[f(v)] at most d. ◀
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We also need the following lemma.

▶ Lemma 18. Let I be an independent set selected uniformly at random from the set of
all independent sets of a graph G with maximum degree d. For all v ∈ V (G) it holds that
Pr[v ∈ I] ≥ 1/2d+1.

Proof. For any set J ⊆ N(v) it holds that Pr[I ∩ N(v) = J ] ≤ Pr[I ∩ N(v) = ∅] because
we can map any independent set I with I ∩ N(v) = J into an independent set I \ N(v).
Therefore Pr[I ∩ N(v) = ∅] ≥ 1/2d, so by observing that Pr[v ∈ I | I ∩ N(v) = ∅] ≥ 1/2 we
get Pr[v ∈ I] ≥ 1/2d+1. ◀

Next we finish the proof with similar arguments as in the proof of Theorem 1, but with a
different kind of construction of the independent set with the Local Lemma. In this case the
constants involved appear to be impractical.

▶ Lemma 19. Let G be a graph that contains a graph H with maximum degree d and
treewidth 4k as an induced minor. Any MWIS-circuit of G has 2Ω(k/(d4d)) gates.

Proof. Let f be the induced minor model of H in G. First, by Lemma 17 we can assume
that the maximum degree of each cluster G[f(v)] is at most d. Now, by Lemma 14 we let X ′

be a vertex set of H that has no balanced separation of order less than k. Then we let X be
a vertex set of G created by mapping each v ∈ X ′ to an element of f(v). For each balanced
separation (A, S, B) of X in G, the set S must intersect at least k different clusters, because
otherwise we could map it into a balanced separation of X ′ of order < k in H . Therefore, by
assuming that G has an MWIS-circuit with τ gates and applying Lemma 15 with the set X

we write an MWIS-polynomial of G as g1 · h1 + . . . + gτ · hτ , observing that for each i the set
Si = V (G) \ Sup(gi · hi) intersects at least k different clusters. Now it remains to show that
if τ is too small we can construct an independent set of G that intersects Si for all i.

By removing vertices from each Si we can assume that Si contains only vertices in clusters,
and moreover contains exactly one vertex from each cluster that it intersects. We use the
Local Lemma to construct the independent set. First we select each cluster independently
with probability p = 1/(4d2d), and then for each selected cluster G[f(v)] we select an
independent set uniformly at random from the set of all independent sets of G[f(v)]. By
Lemma 18 each vertex of G that is in some cluster will appear in the independent set with
probability at least p/2d+1. Vertices in different clusters appear in it independently of each
other.

Now our bad events are E{u,v} for all {u, v} ∈ E(H) indicating that both clusters G[f(u)]
and G[f(v)] have been selected and Ei for each Si indicating that the set Si does not intersect
the independent set. Our negative dependency graph has edges connecting each E{u,v} to
each Ei such that Si intersects f(u) or f(v). It also has all edges between all events Ei

because Ei and Ej can be negatively correlated if Si and Sj intersect a common cluster.
For edges {u, v} ∈ E(H) we let x{u,v} = 1/(15d24d + 1) and for sets Si we choose

xi = 1/(20τ + 1). Now it suffices to verify that

Pr[E{u,v}] = p2 ≤ x{u,v}(1 − xi)τ (3)

and

Pr[Ei] ≤ (1 − p/2d+1)|Si| ≤ xi(1 − xi)τ (1 − x{u,v})|Si|d (4)

hold whenever 30τ ≤ e7|Si|/(120d4d). We also assume that d ≥ 3 since if d ≤ 2 then the
treewidth of H is at most 2.
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For (3), a lower bound for the right hand side is e−1/20/(15d24d + 1), which is greater
than p2 = 1/(16d24d) when d ≥ 2. For (4), a lower bound for the right hand side
is xie

−1/20e−|Si|d/(15d24d) and an upper bound for the left hand side is e−|Si|/(8d4d), so
it holds whenever e−|Si|/(8d4d) ≤ xie

−1/20e−|Si|d/(15d24d) holds, which we can simplify to
e|Si|(1/(15d4d)−1/(8d4d)) ≤ xie

−1/20, and finally to e−7|Si|/(120d4d) ≤ 1/(20τ + 1)e−1/20, which
holds whenever 30τ ≤ e7|Si|/(120d4d). ◀

4 Treedepth and MWIS-Formulas

For treedepth we are not aware of linear high-treedepth witnesses similar to what Lemma 14
is for treewidth. However, it turns out that we can use very basic properties of treedepth
decompositions to establish the connection to formula complexity.

Recall that we denote the treedepth of a graph G with td(G). The following properties
follow from the definition of treedepth.

▶ Proposition 20. Let G be a graph with treedepth td(G). It holds that
1. td(G \ {v}) ≥ td(G) − 1 for any v ∈ V (G) and
2. td(G) is the maximum of td(G[C]) over the connected components C of G.

For our proof we need to introduce two definitions on MWIS-formulas. We start by
defining typical independent sets of a partial MWIS-formulas.

▶ Definition 21. Let F be a partial MWIS-formula of a graph G. An independent set I of G is
a typical independent set of F if for each multiplication gate g with td(G[Sup(g)]) ≥ td(G)/2 it
holds that I intersects a connected component C of G[Sup(g)] with td(G[C]) = td(G[Sup(g)]).

Note that by the property 2 of Proposition 20 such component indeed exists.
We also define the separator Sep(g) of a gate g. Note that an MWIS-formula forms a tree

rooted at the output gate, so we will use standard tree terminology (parent, child, ancestor,
descendant).

▶ Definition 22. The separator of the output gate o is Sep(o) = V (G)\Sup(o). The separator
of a gate g whose parent p is a multiplication gate is Sep(g) = Sep(p). The separator of a
gate g whose parent p is a sum gate is Sep(g) = Sep(p) ∪ Sup(p) \ Sup(g).

With the definitions of typical independent sets and separators of gates, we can state the
following lemma which will be applied with Lemma 13 to prove our lower bound.

▶ Lemma 23. Let G be a graph with td(G) ≥ 2 and F a partial MWIS-formula of G. If I is
a typical independent set of F and intersects Sep(g) for each gate g with |Sep(g)| ≥ td(G)/2,
then F does not compute I.

Proof. Let F be such a formula and I such an independent set. We say that a gate g of F is
redundant if F computes I if and only if F without g computes I. First, note that all gates
g such that I intersects Sep(g) are redundant because by the definition of separator there
is an ancestor gate g′ of g with a sum gate parent p such that none of the monomials M

contributed from g′ to p have M =
∏

vi∈I∩Sup(p) vi, implying that g′ is redundant and thus
all of its descendants are redundant.

Now, we prove by induction starting from the leaves that every gate g of F for which
|Sep(g)| + td(G[Sup(g)]) ≥ td(G) holds is redundant. First, for all such gates g with
td(G[sup(g)]) ≤ td(G)/2, including all leaves, we have that |Sep(g)| ≥ td(G)/2, making g

redundant by our definition of I. For a sum gate g and its child c we have by property 1
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of Proposition 20 that td(G[Sup(c)]) ≥ td(G[Sup(g)]) − |Sup(g) \ Sup(c)|, rearranging to
td(G[Sup(c)] ≥ td(G[Sup(g)]) − |Sep(c)| + |Sep(g)|, and finally to td(G[Sup(c)]) + |Sep(c)| ≥
td(G[Sup(g)]) + |Sep(g)|. This implies that if |Sep(g)| + td(G[Sup(g)]) ≥ td(G) then both
children of g are redundant, making g redundant. For a multiplication gate g with
td(G[Sup(g)]) ≥ td(G)/2 it follows from the typicality assumption that there is a child
c of g with td(G[Sup(c)]) + |Sep(c)| = td(G[Sup(g)]) + |Sep(g)| such that g is redundant if c

is redundant. Therefore the induction works, and because |Sep(o)| + td(G[Sup(o)]) ≥ td(G)
holds for the output gate o, the output gate is redundant and therefore the formula does not
compute I. ◀

Now the only thing left to complete the proof of Theorem 5 is to show that if a formula
has less than 2Ω(td(G)/d) gates then we can construct an independent set that is typical for
the formula and intersects Sep(g) whenever |Sep(g)| ≥ td(G)/2. For an independent set
to be typical it suffices that it intersects Sup(g) for all gates g with |Sup(g)| ≥ td(G)/2.
Therefore it suffices to apply Lemma 13 with F consisting of Sep(g) for all |Sep(g)| ≥ td(G)/2
and Sup(g) for all |Sup(g)| ≥ td(G)/2. This yields a lower bound of etd(G)/(12d)/12 for the
number of gates.

5 Optimality of Theorems 1 and 5

We show that for each pair w, d we can construct a graph with treewidth Ω(w) and maximum
degree O(d) that admits an MWIS-formula with d2w/d gates.

If d > w then a d-clique does the job. Otherwise, we take a bounded degree expander
with w/d vertices, having treewidth Ω(w/d), constructible by e.g. [19]. We replace each
vertex of the expander with a d-clique (which will be referred to as cluster) such that each
vertex of a cluster is connected to each vertex of the clusters of the adjacent vertices. We
denote the constructed graph with Gw,d

▶ Proposition 24. The graph Gw,d has treewidth Ω(w), maximum degree O(d), and admits
an MWIS-formula with d2w/d gates.

Proof. The maximum degree is at most (d + 1) times the maximum degree of the original
bounded degree expander. The treewidth is Ω(w) because if a balanced separator contains
one vertex from a cluster it must contain all vertices of the cluster.

Note that by a simple recursion any n-vertex graph admits an MWIS-formula with at
most 2n gates, so the original expander admits an MWIS-formula with 2w/d gates. We can
construct an MWIS-formula of Gw,d by taking the MWIS-formula of the original expander
and replacing each leaf corresponding to a vertex v with a d-gate construction computing
the maximum over the vertices of the cluster of v. ◀

6 Conclusions and Future Work

We investigated the tropical circuit complexity of maximum weight independent set. Our
initial motivation for this was the fact that lower bounds for tropical circuits imply lower
bounds for many actual algorithmic techniques for maximum weight independent set that are
widely used in both theory and practice. We showed that in bounded degree graphs optimal
MWIS-circuits are characterized by treewidth and optimal MWIS-formulas are characterized
by treedepth. We generalized the result for MWIS-circuits to apply beyond bounded degree
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graphs, to a graph class that includes all planar graphs, and more generally all H-minor-free
graphs. The constants hidden by the Ω-notation in Theorems 1 and 5 are somewhat practical
even though we did not specifically optimize them. For example, Theorem 1 shows that any
MWIS-circuit of the 5000 × 5000-grid has at least 1021 gates.

We identify some technical barriers for extending the results. First, we note that Lemma 13
is not effective in graphs with maximum degree higher than k: If |N(v)| ≥ k, we can add
N(v) to F to force the independent set to avoid v, essentially forcing us to work with
G \ {v}. Indeed an example of a graph with high treewidth and no small MWIS-circuits
for which Lemma 13 is unsuitable is a clique with each edge subdivided. In some cases,
including H-minor-free graphs and the subdivided clique, this barrier can be circumvented
with Theorem 2 by using a bounded degree induced minor with high treewidth. We also note
that our proofs do not exploit the fact that the separators given by Lemma 15 are balanced
beyond just the size bound.

The subdivided clique does not exclude any fixed graph as a minor, so the fact that
Theorem 2 works also for proving a lower bound for it seems to indicate that Theorem 2
is more powerful than what is captured by Corollary 3. We are in fact not aware of graph
families for which a 2Ω(w) lower bound can be proved but Theorem 2 does not apply.

An interesting general direction for future work could be to prove Corollary 4 for as large
graph classes as possible, starting by extending the 2Ω(w) lower bound as far as possible. In
particular, H-topological-minor-free graphs generalize both bounded degree and H-minor-
free graphs [33], so proving a 2Ω(w) lower bound for them seems like a natural next step.
Even more generally, it could be that such a lower bound could even apply to all bounded
degeneracy graphs. We hope that this line of work will lead to new insights on the structure
of independent sets that could even be useful for positive results on algorithms for maximum
weight independent set.
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1 Introduction

Sorting undoubtedly plays a central role in computer science. Great many problems can be
solved using sorting as a subcomponent. There are many practical variants of sorting based
either on what we sort (integers, rational numbers, strings, etc.) or how we sort (in parallel,
in distributed fashion, in external memory, etc.). Despite lots of research there are still many
basic questions about sorting unanswered.

The classical comparison based sorting takes time O(n log(n)) when sorting n integers.
Well known lower bound postulates that this is optimal for comparison based sorting. However,
this is a great over-simplification and the picture is much more nuanced: sorting integers
from a domain of size M can be done using binary search trees in time O(n log |M |), thus
sorting for example m-bit integers only needs O(nm) comparisons. Such an algorithm can be
implemented on a pointer machine, for example. In the RAM model, with the word size m

we can sort even faster: When m = O(log(n)) one can sort in time O(n) using radix sort, and
when m = Ω(log3(n)) one can also sort in linear time using the algorithm of Andersson [2].

When m = O(log3(m)) one can sort in expected time O
(

n
√

log m
log(n)

)
and linear space

using the algorithm of Han and Thorup [4]. It is an easy exercise to design Turing machines
that sort m-bit integers in time O(nm2).

In many cryptographic applications there is an interest in oblivious algorithms, algorithms
in which the sequence of the operations is independent of the processed data. Sorting plays
an important role in construction of oblivious RAM. An oblivious comparison based parallel
model of computation intended for sorting are sorting networks. Numbers in a sorting
network are thought of as signals which can only be compared. The seminal paper by Ajtai,
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Komlós, and Szemerédi [1] gives an asymptotically optimal sorting network of logarithmic
depth and thus having O(n log(n)) comparators matching the comparison based lower bound.
The AKS network has immense applications in theoretical computer science, and we use it
in this paper, too.

Another oblivious model of computation heavily used throughout theoretical computer
science are boolean circuits. One can turn the AKS sorting network into a circuit of size
O(nm log(n)) and depth O(log(m) log(n)) (see Section 4). However, when building boolean
circuits for sorting it is not clear whether one can take any advantage of some of the
faster algorithms for RAM or Turing machines as simulating random access memory or
Turing machine tapes by circuits requires substantial overhead. Asharov et al. [3] asked
the question whether one can sort m-bit integers in time o(nm log(n)) when m = o(log(n)).
They provide an answer to this question by constructing circuits for sorting m-bit integers of
size O(nm2(1 + log∗(n) − log∗(m))2+ε) and polynomial depth, for any ε > 0. We improve
their results: We build boolean circuits for sorting m-bit integers of size O(nm2) and depth
O(log(n) + m log(m)). Pending some unexpected breakthrough this size seems optimal. The
depth is provably optimal whenever m = O(log(n)/ log log(n)).

Asharov et al. [3] solve even a more general problem as their circuits partially sort n

numbers each of m bits by their first k bits using a circuit of size O(nmk(1 + log∗(n) −
log∗(m))2+ε). We improve on this result as well by presenting circuits that sort m-bit
integers according to their first k bits of size O(nmk(1 + log∗(n) − log∗(m))) and depth
O(log3(n)). Our small circuits of poly-logarithmic depth answer some of the open questions
of Asharov et al. [3]. In a work subsequent to ours, Lin and Shi [7] get circuits of depth
O(log(n) + log(k)) and size O(nkm · poly(log∗(n) − log∗(m))) whenever n > 24k+7. They
use substantially different approach. We state our results in the next section.

1.1 Our Results

We provide a family of boolean circuits that sort m-bit strings. Our circuits are smaller
than the circuits directly derived from the AKS sorting network, and they improve on
the result of Asharov et al. [3]. Our circuits achieve optimal logarithmic depth whenever
m log(m) ≤ log(n). Pending some unexpected breakthrough, their size seems also optimal.

▶ Theorem 1. For any integers n, m ≥ 1 there is a size O(nm2) and depth O(log(n) +
m log(m)) circuit that sorts n integers of m bits each.

For m ≥ Ω(log(n)), the existence of such a circuit directly follows from AKS sorting
networks. Our contribution is the construction of such circuits for m ≤ o(log(n)). Our
construction also uses a sorting network as a building block. We use the AKS sorting
network as one of our primitives but in principle, we could use any sorting network or sorting
circuit. In particular, we could use any circuit sorting n numbers of log(n) bits each in our
construction. Any improvement of asymptotic complexity of sorting of log(n)-bit numbers
would give us improved complexity of sorting short numbers.

The main idea behind our construction is to compress the input by computing the
number of occurrences of each m-bit integer. This gives a vector of 2m integers, each of size
O(log(n)). Decompressing this vector back gives the sorted input. Combining the counting
and decompressing circuit gives us a circuit that sorts. The main technical lemma is our
counting circuit which is of independent interest.
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▶ Lemma 2. For any integers n, m ≥ 1 where m ≤ log(n)/10 there is a circuit

FAST_COUNTn,m : {0, 1}n·m → {0, 1}⌈1+log(n)⌉2m

which given a sequence of n strings of m bits each outputs the number of occurrences of each
possible m-bit string among the inputs, that is for input x1, x2, . . . , xn ∈ {0, 1}m it outputs
n0m , n0m−11, . . . , n1m where for each string y ∈ {0, 1}m, ny ∈ {0, 1}⌈1+log(n)⌉ represents
|{j ∈ [n] | xj = y}| in binary. The size of the circuit FAST_COUNTn,m is O(nm2) and
depth O(log(n) + m log(m)).

We also provide a family of boolean circuits which sort the input integers by their first k

bits only. One can view this as sorting (key, value) pairs, where keys have k bits and values
have m − k bits. For the special case of k = 1 (that is partially sorting the numbers by a
single bit) the problem is equivalent to routing in super-concentrators (see Section 1.2), and
we use super-concentrators of Pippenger [8] as our building block. We get size improvement
over the result of Asharov et al. [3] while achieving also poly-logarithmic depth.

▶ Theorem 3. For any integers n, m, k ≥ 1 where k ≤ m and k ≤ log(n)/11 there is a
circuit

SORTn,m,k : {0, 1}nm → {0, 1}nm

which partially sorts n numbers each of m bits by their first k bits. The circuit SORTn,m,k

has size O(knm(1 + log∗(n) − log∗(m))) and depth O(log3(n)).

1.2 Our Techniques
One can take AKS sorting networks and turn them into circuits of size O(nm log(n)) and
depth O(log(m) log(n)). For m = o(log(n)) this is sub-optimal as shown by Asharov et al. [3].
Asharov et al. show how to reduce the problem of sorting m-bit integers according to the
first k bits into the problem of sorting m-bit integers according to just single bit. Sorting
according to single bit is essentially equivalent to routing in super-concentrators.

Super-concentrators have been studied originally by Valiant with the aim of proving
circuit lower bounds. A super-concentrator is a graph with two disjoint subsets of vertices
A, B ⊆ V (G), called inputs and outputs, with the property that for any set S ⊆ A and
T ⊆ B of the same size there is a set of vertex disjoint paths from each vertex of S to some
vertex of T . Pippenger [8] constructs super-concentrators with a linear number of edges
and an algorithm that on input describing S and T outputs the list of edges forming the
disjoint paths between S and T . This can be turned into a circuit of size O(n log(n)) and
depth O(log2(n)).

The result of Pippenger [8] can be used to build a circuit sorting by one bit, but the
circuit will be larger than we want (see Corollary 18.) Thus, Asharov et al. [3] used the
technique of Pippenger rather than his result to design a circuit sorting by one bit, and
iterate it to sort by k bits. Our technique differs substantially from that of Asharov et al.
yet, we use the circuits from AKS networks and from Pippenger’s super-concentrators as
black box.

To sort m-bit integers for 2m ≪ n our approach is to count the number of occurrences
of each number in the input. This compresses the input from nm bits into 2m log(n) bits.
We can then decompress the vector back to get the desired output. So the main challenge
is to construct counting (compressing) circuits of size O(nm2). Interestingly, we use the
sorting circuits derived from AKS networks to do that. But to avoid the size blow-up we
don’t use them on all of the integers at once but on blocks of integers of size 28m. Then the
O(log(n)) overhead of the circuits turns into the acceptable O(m) overhead. Each sorted
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block is then subdivided into parts of size 22m. Clearly, most parts in each block will be
monochromatic, they will contain copies of the same integer. There will be at most 2m

non-monochromatic parts. We move the parts within a block to one side using another
application of the AKS sorting circuit. Then we can afford to build a fairly expensive
counting circuit for the small fraction of non-monochromatic parts, while cheaply counting
the monochromatic parts. Summing the results by linear size circuit gives us the desired
compression. Our decompression essentially mirrors the compression.

We also design a circuit to sort according to a single bit improving the parameters of
Asharov et al. [3]. We take the circuit of Pippenger as basis and apply it iteratively to larger
and larger blocks of inputs. Again we start from blocks of size 2O(m), and increase the size
of the blocks exponentially at each iteration. We use Pippenger’s circuit to sort each block
by the bit. When we split the block into parts, only one will be monochromatic. Merging
multiple blocks into one gives a mega-block with only a small fraction of non-monochromatic
parts. These non-monochromatic parts can be separated from monochromatic ones, re-sorted,
and re-partitioned to give only one non-monochromatic part in the mega-block. Each part
takes on the role of an “m”-bit integer in the next iteration. Iterating this process leads to
the desired result.

To sort according to the first k bits we use the one-bit sorting similarly to Asharov et al. [3].
Thanks to our efficient sorting circuits for m-bit integers to sort the k-bit keys, we can avoid
the use of median finding circuits.

Organization

In the next section we review our notation. We provide basic construction tools including
naïve constructions of counting and decompression circuits in Section 3. In Section 4 we
recall basic facts on AKS sorting networks and related sorting circuits. In Section 5 we prove
our main result by constructing efficient counting and decompression circuits. Finally, we
provide a construction of partial sorting circuits for Theorem 3 in Section 6.

2 Notation

In this paper N denotes the set of natural numbers, and for 1 ≤ a ≤ b ∈ N, [a, b] =
{a, a + 1, . . . , b} and [a] = {1, . . . , a}. All logarithms are base two unless stated otherwise.
For m ∈ N, {0, 1}m is the set of all binary strings of length m. A string x ∈ {0, 1}m,
x = x1x2 · · · xm, represents the number

∑
j∈[m] xj2m−j in binary, and we often identify the

string with that number. (As the same integer has multiple binary representations differing in
the number of leading zeroes, the number of leading zeroes should be clear from the context.)
The most significant bit of x = x1x2 · · · xm is x1 and the least significant bit of x is xm.
Symbol ◦ denotes the concatenation of two strings. For strings x, y ∈ {0, 1}m, x ⊕ y denotes
the bit-wise XOR of x and y, x ∧ y denotes the bit-wise AND, and x ∨ y the bit-wise OR.

We assume the reader is familiar with boolean circuits (see for instance the book of
Jukna [5]). We assume boolean circuits consist of gates computing binary AND and OR, and
unary gates computing negation. For us, boolean circuits might have multiple outputs so a
circuit with n inputs and m outputs computes a function f : {0, 1}n → {0, 1}m. We usually
index a circuit family by multiple integral parameters. Inputs and outputs of boolean circuits
are often interpreted as sequences of substrings, e.g., a circuit Cn,m : {0, 1}nm → {0, 1}nm is
viewed as taking n binary strings of length m as its input, and similarly for its output. We
say a circuit family (Cn)n∈N is uniform, if there is an algorithm that on input 1n outputs
the description of the circuit Cn in time polynomial in n.
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3 Preliminaries

Here we review some of the circuits for basic primitives that we will use in our later
constructions. Most of them are well known facts but for the others we provide proofs for
the sake of completeness.

▶ Lemma 4 (Addition). There is a uniform family of boolean circuits ADDm : {0, 1}2m →
{0, 1}m+1 that given x, y ∈ {0, 1}m representing two numbers in binary outputs their sum
x + y ∈ {0, 1}m+1. The circuit ADDm has size Θ (m) and depth Θ(log(m)).

▶ Lemma 5 (Subtraction). There is a uniform family of boolean circuits SUBm : {0, 1}2m →
{0, 1}m that given x, y ∈ {0, 1}m representing two numbers in binary outputs the absolute
value of their difference |x − y| ∈ {0, 1}m. The circuit SUBm has size Θ (m) and depth
Θ (log (m)).

▶ Lemma 6 (Summation). There is a uniform family of boolean circuits

SUMn,m : {0, 1}n·m → {0, 1}⌈log(n)⌉+m

that given x1, x2, . . . , xn ∈ {0, 1}m interpreted as n numbers, each of m bits, outputs their
sum

∑n
j=1 xj. The circuit SUMn,m has size Θ(nm) and depth Θ (log(n) + log(m)).

Proof. We sketch the construction following the technique of Wallace [9]. Given three
numbers x, y, z ∈ {0, 1}k in constant depth and using Θ(k) gates we can compute p, q ∈
{0, 1}k+1 such that x + y + z = p + q. Here, p is the coordinate-wise addition without carry,
i.e., 0 ◦ (x ⊕ y ⊕ z), and q is the carry, i.e., ((x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)) ◦ 0. Thus as long as
there are at least three numbers to sum we can use this to transform x, y, z which takes 3k

bits into p, q which take 2k + 2 bits and continue summing those. Doing this in parallel for
disjoint triples of summants after O(log3/2(n)) = O(log(n)) rounds we are left with just two
numbers and we sum those using Lemma 4. ◀

▶ Lemma 7 (Comparator). There is a uniform family of boolean circuits

SWITCHm : {0, 1}2m → {0, 1}2m

that given two numbers x, y ∈ {0, 1}m outputs these two numbers sorted as integers, i.e.,
min(x, y) ◦ max(x, y). The size of the circuit SWITCHm is Θ(m) and depth is Θ(log(m)).

Technique similar to the proof of the next lemma will be used also later in the proofs of
Lemma 2 and Lemma 16 in order to achieve smaller circuit size. The main idea is to split
inputs into smaller blocks and process the blocks independently by smaller circuits.

▶ Lemma 8 (Binary to unary). There is a uniform family of boolean circuits

ONESb : {0, 1}b+1 → {0, 1}2b

such that for any number x ∈ {0, 1}b+1 represented in binary the output consists of x ones
followed by 2b − x zeroes, provided x ≤ 2b. The circuit ONESb has size Θ(2b) and depth
Θ(log(b)).

Proof. We first show how to construct a uniform family of boolean circuits (ONES’b) which
computes the same function, has the same size but depth O(b). Then we use ONES’log(b) to
construct the desired circuit ONESb.
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The main idea of the construction of ONES’b is to recursively split the number x into
two numbers xL, xR which describe how many bits set to one there should be in the first
and the second half of the output.

Each of the two numbers xL, xR will be represented by b bits with the convention that if
the most significant bit is equal to one then the number is a power of two (corresponding
to all output bits in this part of the output set to one). We recursively split the numbers
xL, xR in the same fashion until the numbers are represented by a single bit each at which
point they will represent the output bits. We set

xL = min(2b−1, x)
xR = min(2b−1, max(0, x − 2b−1))

note that if the number x is represented by b + 1 bits (x ∈ {0, 1}b+1) then the numbers
xL, xR can be represented by b bits (xL, xR ∈ {0, 1}b) as both of them represent at most half
of x. Given x ∈ {0, 1}b+1 we can compute the maximum and minimum defining xL, xR by
inspecting the two most significant bits of x:

If the most significant bit of x is set to one (thus x ≥ 2b) we set xL = xR = x/2 each
a power of two with the most significant bit set to one (and represented by a binary
string 10b−1).

If the most significant bit of x is set to zero and the second most significant bit is set to
one, then xL will be set to the binary number 10b−1 and xR will be x − xL (a copy of x

without the second most significant bit of x).

If the two most significant bits of x are equal to zero then xL = x (represented by one
less bit than x) and xR = 0.

See Figure 1 for an example of splitting of x into xL, xR.

0101

100

10

1 1

10

1 1

001

01

1 0

00

0 0

Figure 1 An example of splitting numbers where b = 3. The input number x = 5 is represented
as 0101 and is split into xL = 100, xR = 001 which are themselves split recursively. The bottom
nodes form the output.

Thus we can compute the transformation x 7→ (xL, xR) where x ∈ {0, 1}b+1 and xL, xR ∈
{0, 1}b using a circuit of size Θ(b) and depth Θ(1). Then each of the numbers xL, xR is again
split into two, etc. until we get single bit numbers which represent the final output. The
depth of the circuit ONES’b is Θ(b) as each splitting can be done in constant depth. If the
circuit splitting b + 1 bits into two b-bit numbers has size s(b) ≤ cb + d, for some universal
constants c and d, then the circuit ONES’b has size:
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s(b + 1) + 2s(b) + 4s(b − 2) + . . . + 2bs(1) =
b∑

j=0
2js(b − j)

≤
b∑

j=0
2jc(b − j) + 2jd

≤ c
(
2b+2 − b − 1

)
+ 2b+1d

= O(2b)

To build the circuit ONESb of depth O(log(b)) we proceed as follows. For any y > 1 we
denote the largest power of two that is at most y by ℓ(y) = max

{
2j | j ∈ N, 2j ≤ y

}
. We

divide the output bits into blocks of ℓ(b) bits and for each block j ∈
[

2b

ℓ(b)

]
of output bits

with positions [(j − 1)ℓ(b) + 1, jℓ(b)] (counting positions from one) we compute if it should
be constant (that is either constant zero when x ≤ (j − 1)ℓ(b) or constantly equal to one
when x > jℓ(b)). This check for constant values can be done in each block by a circuit of size
Θ(b) and depth Θ(log(b)). We compute ONES’log(ℓ(b)) with the input being the log(ℓ(b))
least significant bits of x. This circuit is of size O(b) and depth O(log(b)). In each block if
the block should not be monochromatic then we use the output of that circuit as the output
of the block, otherwise we use the appropriate constant one or zero copied ℓ(b)-times as the
output of the block. ◀

We will need a primitive that counts the number of occurrences of each string in the input.
A counting similar to Lemma 9 appears in Appendix A of the paper of Asharov et al. [3].
The construction of the counting circuit is rather straightforward, we just compare each
input string xj with a given string y getting an indicator bit set to one for equality and to
zero for inequality and then sum the indicator bits.

▶ Lemma 9 (Count). There is a uniform family of boolean circuits COUNTn,m : {0, 1}n·m →
{0, 1}2m⌈1+log(n)⌉ that given x1, x2, . . . , xn ∈ {0, 1}m counts the number of occurrences of
each y ∈ {0, 1}m among the inputs, i.e., the circuit outputs n0m , n0m−11, . . . , n1m where for
each y ∈ {0, 1}m, ny represents in binary |{j ∈ [n] | y = xj}| using ⌈1 + log(n)⌉ bits. The
size of the circuit COUNTn,m is O(nm2m) and depth O(log(n) + log(m)).

Proof. For each y ∈ {0, 1}m we build a sub-circuit computing the number of times y occurs
among the inputs x1, . . . , xn. This is done by comparing y to each xi in parallel, i ∈ [n], to
get an indicator bit whether they are equal. We obtain ny by summing up the indicator bits
using the circuit SUMn,1 of size Θ(n) and depth Θ(log(n)) from Lemma 6. Comparing y to
xi can be done by a circuit of size O(m) and depth O(log(m)). So we get ny using a circuit
of size Θ(nm) and depth Θ(log(n) + log(m)). Doing this for each y ∈ {0, 1}m in parallel we
get a circuit of size Θ(nm2m) and depth Θ(log(n) + log(m)). ◀

We will need also an inverse operation for the counting. To construct a circuit that
decompresses the counts we would like to first compute the interval where a given string x

should appear and then get indicator bits for this interval. We can compute the interval
using prefix sums of the counts. To get the indicator bits for the interval we utilize the circuit
from Lemma 8 which outputs a given number of bits set to one followed by bits set to zero.
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▶ Lemma 10 (Decompress). There is a uniform family of boolean circuits

DECOMPRESSn,m : {0, 1}⌈1+log(n)⌉2m

→ {0, 1}n·m

that decompresses its input that is on input numbers n0m , n0m−11, . . . , n1m , each represented
in binary by ⌈1 + log(n)⌉ bits, where

∑
x∈{0,1}m nx = s ≤ n, outputs the string

(0 · · · 0︸ ︷︷ ︸
m

)n0···0 ◦(0 · · · 0︸ ︷︷ ︸
m−1

1)n0···01 ◦(0 · · · 0︸ ︷︷ ︸
m−2

10)n0···010 ◦(0 · · · 0︸ ︷︷ ︸
m−2

11)n0···011 ◦· · ·◦(1 · · · 1︸ ︷︷ ︸
m

)n1···1 ◦(0m)n−s.

When s > n the output might be arbitrary. The size of the circuit DECOMPRESSn,m is
O(nm2m + 22m log(n)) and depth O(m + log log(n)).

Proof. Given n0m , n0m−11, . . . , n1m we can compute the total sum s =
∑

x∈{0,1}m nx and
for each y ∈ {0, 1}m, the number py of binary strings before the first occurrence of y,
i.e., py =

∑
x∈{0,1}m : x<y nx. Each of the numbers py can be computed using the circuit

SUMy,⌈1+log(n)⌉ from Lemma 6 of size O(2m log(n)) and depth O(m + log log(n)). Similarly
for s. Thus we can get all numbers py in parallel by a circuit of size O(22m log(n)). A
given string y ∈ {0, 1}m, y ̸= 1m, should appear at each position j ∈ [py + 1, py+1]. Let
Iy ∈ {0, 1}n be the indicator vector of positions where y should appear in the output. We
can use ONES⌈1+log(n)⌉(py) ⊕ ONES⌈1+log(n)⌉(py+1) to calculate Iy for each y ̸= 1m. For
y = 1m, Iy = ONES⌈1+log(n)⌉(py) ⊕ ONES⌈1+log(n)⌉(s). The size of ONES⌈1+log(n)⌉ is Θ(n).
As there are 2m different y’s, we need a circuit of size Θ(n2m) and depth Θ(log log(n)) to
calculate all Iy’s.

If x1, x2, . . . , xn are the output integers, for each output position j ∈ [n], we calculate
the k-bit of xj as∨

y∈{0,1}m

((Iy)j ∧ yk)

To compute all these ORs we need a circuit of total size Θ(nm2m) and depth Θ(m). ◀

4 Sorting Circuits from AKS Sorting Networks

In this section we recall the construction of circuits for sorting from the Ajtai-Komlós-
Szemerédi sorting networks. They will serve as the basic primitive for our later constructions.

Sorting networks

Sorting networks model parallel algorithms that sort values using only comparisons. A
sorting network consists of n wires and s comparators. The wires extend from left to right in
parallel. Each wire carries an integer from left to right. Any two wires can be connected by a
comparator at any point along their length. The comparator swaps the values carried along
the two wires if the higher wire carries a higher value at that point otherwise it has no effect.
The sorting network should be such when we input arbitrary integers to the wires on the left,
the integers always exit in sorted order from top to bottom. The depth of a sorting network
is the maximum number of comparators a value can encounter on its way. A figure of a small
sorting network is given in Figure 2. For a formal definition see, e.g., [1]. Observe that if the
depth of a sorting network is d and the number of inputs is n then there are at most s ≤ nd

comparators. Ajtai, Komlós and Szemerédi [1] established the existence of sorting networks
of logarithmic depth.

▶ Theorem 11 (AKS [1]). For any integer n ≥ 1, there is a sorting network for n integers
of depth O(log(n)).



M. Koucký and K. Král 88:9

x

y

z

min(x, y)
max(x, y)

max(min(x, y), z)

min(x, y, z)
median(x, y, z)

max(x, y, z)

Figure 2 An example of a sorting network with three inputs (the horizontal lines), three
comparators (the vertical lines), and depth three. The inputs on the left are numbers x, y, z

and after each comparator we noted what is on the horizontal line. Note that the bot-
tom most output is max(max(x, y), max(min(x, y), z)) = max(x, y, z) and the middle one is
min(max(x, y), max(min(x, y), z)) which is the median.

Sorting circuits

Here we give a precise definition of sorting by a circuit. First we consider a circuit sorting n

integers, each of them m bits long.

▶ Definition 12 (Sort). Let n, m ∈ N, and (Cn,m) be a family of boolean circuits. We say that
the circuit Cn,m : {0, 1}nm → {0, 1}nm sorts its input interpreted as n integers x1, x2, . . . , xn

each represented by m bits if it outputs y1, y2, . . . , yn ∈ {0, 1}m such that:
1. The outputs are sorted: For any i < j ∈ [n], yi ≤ yj.
2. The inputs and outputs form the same multiset: For each j ∈ [n], |{i ∈ [n] | yi = xj}| =

|{i ∈ [n] | xi = xj}|.

An immediate consequence of the existence of AKS sorting networks is the existence of
shallow sorting circuits, since by Lemma 7, each comparator can be replaced by a small
circuit:

▶ Corollary 13. There is a family of boolean circuits AKSn,m : {0, 1}n·m → {0, 1}n·m that
on an input x1, x2, . . . , xn ∈ {0, 1}m sorts these numbers. The size of the circuit AKSn,m is
O(nm log(n)) and depth O(log(n) log(m)).

We also need circuits that sort the n input integers, each of m bits, by the k most
significant bits where k < m. Such sorting can be thought of as sorting (key, value) pairs,
where keys are k-bit long and values (m − k)-bit long. Formally it can be defined as follows:

▶ Definition 14 (Partial Sort). Let n, m, k ∈ N, be such that k < m, and let (Cn,m,k) be a
family of boolean circuits. We say that the circuit Cn,m,k : {0, 1}nm → {0, 1}nm partially
sorts by the first k bits its input interpreted as n integers x1, x2, . . . , xn each represented by
m bits if it outputs y1, y2, . . . , yn ∈ {0, 1}m such that:
1. The outputs are partially sorted: For any i < j, (yi)1(yi)2 · · · (yi)k ≤ (yj)1(yj)2 · · · (yj)k.
2. The inputs and outputs form the same multiset: For each j ∈ [n], |{i ∈ [n] | yi = xj}| =

|{i ∈ [n] | xi = xj}|.

Using a circuit of size O(m) and depth O(log(k)) implementing a comparator which
swaps two m-bit integers based only on the first k bits we get the following variant of the
previous corollary.

▶ Corollary 15. There is a family of boolean circuits PARTIAL_AKSn,m,k : {0, 1}n·m →
{0, 1}n·m, for k ≤ m and k ≤ log(n), that on input x1, x2, . . . , xn ∈ {0, 1}m partially
sorts these numbers according to their k most significant bits. That is if yi, yj are two
output numbers where i < j then we have ⌊yi/2m−k⌋ ≤ ⌊yj/2m−k⌋. The size of the circuit
PARTIAL_AKSn,m,k is O(nm log(n)) and depth O(log(n) log(k)).
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5 Sorting n Binary Strings of Length m

Here we present a sorting circuit for short numbers. The construction consists of two circuits.
The first circuit counts the number of occurrences of various strings (as stated in Lemma 2)
and the second circuit decompresses these counts. Both of these constructions use heavily
the following technique: we divide the problem into blocks which can be efficiently sorted
using the AKS-based circuit. These blocks will be of size between 2O(m) and n/2O(m) where
m is the binary length of the input integers.

Thus when we sort the numbers inside each block and subdivide the block into parts,
then by the pigeon-hole principle, most of the parts will be monochromatic (containing
copies of a single string only). We can then separately count the strings in monochromatic
parts (count the first string and then multiply that by the length of the part) and in the
non-monochromatic parts (there are not that many strings in total in non-monochromatic
parts). However a priori we do not know which parts will be monochromatic and which will
be not. To save on circuitry we use sorting (on whole parts) to move the non-monochromatic
parts aside. We build the (expensive) counting circuits only for non-monochromatic parts.

Proof of Lemma 2. For the sake of simplicity let us assume that n is a power of two so, it
is divisible by 28m. (By our assumption n ≥ 210m, thus if n is not a power of two take the
circuit for the closest power of two larger than n and feed ones for the extra input bits.) We
partition the input into n/28m blocks each consisting of 28m numbers. We sort each block
by the circuit AKS28m,m of size O(28mm log(28m)) = O(28mm2) and depth O(m log(m)) as
given in Corollary 13 . Thus for this phase we need a circuit of total size O(nm2).

Then we subdivide each block into 26m parts each consisting of 22m numbers. Observe
that most of these parts are monochromatic: a part is monochromatic if it contains 22m

copies of a single m-bit number. We can upper bound the number of non-monochromatic
parts by 2m. We can add a single indicator bit to each part indicating whether this part is
monochromatic. As the parts are sorted it is enough to compare the first and last number
in each part and set the bit to 1 if the numbers are equal and to 0 otherwise. We sort the
parts prefixed by their indicator bit using the circuit PARTIAL_AKS26m,1+m22m,1 from
Corollary 15 to move all non-monochromatic parts to the front of each block. Thus the total
size of the circuit sorting parts inside each block is O

(
n

28m (26m)(1 + m22m)6m
)

= O(nm2)
and depth O(m). We call the first 2m parts of each block potentially non-monochromatic.
The other parts are definitely monochromatic.

From each definitely monochromatic part we take the first m-bit number and we count
them. This can be done by the circuit COUNT n

28m (26m−2m),m from Lemma 9 of size
O

((
n

22m − n
27m

)
m2m

)
≤ O(nm) and depth O(log(n) + log(m)). By multiplying each count

by 22m (that is by appending 2m zeroes) we get the number of occurrences of each number
in the definitely monochromatic parts.

As there are relatively few (exactly n
28m 2m22m) numbers overall in potentially non-

monochromatic parts we can use the circuit COUNTn/25m,m from Lemma 9 to count those
numbers by a circuit of size O

(
n

25m m2m
)

≤ O(nm) and depth O(log(n) + log(m)).
Thus we get two vectors of counts for numbers in potentially non-monochromatic and

definitely monochromatic blocks. Finally, we add the two vectors of 2m numbers each
consisting of at most ⌈1 + log(n)⌉ bits to get the resulting counts. This uses a circuit of size
O(m2m) = O(n) and depth O(log log(n)). Thus, the overall size of the circuit is O(nm2)
and depth O(log(n) + m log(m)). ◀
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▶ Lemma 16. For integers n, m ≥ 1 such that m ≤ log(n)/11, there is a family of boolean
circuits

FAST_DECOMPRESSn,m : {0, 1}⌈1+log(n)⌉2m

→ {0, 1}n·m

that decompresses its input as in Lemma 10. The size of FAST_DECOMPRESSn,m is
O(nm2) and its depth is O(m log(m) + log log(n)).

The construction of the decompression circuit mirrors the counting circuit albeit it
is somewhat simpler with a different choice of parameters. We separately decompress
monochromatic blocks (by decompressing just a single string from each block and then
creating the right number of copies) and the strings from non-monochromatic blocks (as
there are not many of those). We then use partial sorting to rearrange the blocks in the
proper order to construct a sorted sequence.

Proof. For the sake of simplicity let us assume that n is a power of two and let us set
k = n/28m. (Thus k is an integer.) We will think of the output as partitioned into 28m

blocks of size k. As in the proof of Lemma 10 we compute the prefix sums

px =
∑

y∈{0,1}m : y<x

ny for each x ∈ {0, 1}m

and we set p2m = n. (Here, we identify m-bit strings x and y with integers they represent.)
We can compute each px using the circuit SUM2m,1+log(n), thus computing all of them
using a circuit of size O(log(n)22m) ≤ O(n) (by the assumption m ≤ log(n)/11) and depth
O(m+log log(n)). Thus the string x ∈ {0, 1}m should appear at output positions [px+1, px+1].
For any x ∈ {0, 1}m we set:

rx = ((k − (px mod k)) mod k) + (px+1 mod k)

qx = nx − rx

k

The meaning is that if we partition the output into blocks of k consecutive numbers, then
for any x ∈ {0, 1}m the number rx tells the number of times the string x appears in non-
monochromatic blocks. (These occurrences are located in at most two non-monochromatic
blocks.) The number qx tells us in how many monochromatic blocks the string x ∈ {0, 1}m

appears. Observe that qx is an integer. Since n is a power of two, so is k, furthermore, k

is fixed for given n and m, and thus computing mod k and division by k corresponds to
selecting appropriate bits from the binary representation of numbers. All numbers px, qx

and rx are integers represented by 1 + log(n) bits. Hence, each qx and rx can be computed
from nx and px by one circuit ADD1+log(n) and two SUB1+log(n). The circuit computing
values qx and rx for all x has total size O(2m log(n)) and depth O(log log(n)).

The following holds:

nx = kqx + rx∑
x∈{0,1}m

qx =
∑

x∈{0,1}m

nx − rx

k
≤ n/k = 28m

∑
x∈{0,1}m

rx ≤ 2k2m = 2n/27m
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We use circuit DECOMPRESS28m,m(q0m , q0m−11, . . . , q1m) from Lemma 10 of size
O

(
m29m

)
and depth O (m) to decompress monochromatic blocks. We then just copy each

resulting number k times to create sorted monochromatic blocks. Last 28m −
∑

x∈{0,1}m qx

blocks contain zero padding corresponding to the numbers in non-monochromatic blocks.
They will be merged with the non-monochromatic blocks obtained next.

In order to properly match the non-monochromatic blocks to the padded zeroes we adjust
the count r0m :

r′
0m =

(
2n/27m

)
−

∑
x∈{0,1}m : x ̸=0m

rx

using circuit SUM2m,1+log(n) and SUB1+log(n) of size O(n) and depth O(m + log log(n)).
We use the circuit DECOMPRESS2n/27m,m(r′

0m , r0m−11, . . . , r1m) from Lemma 10 to de-
compress the non-monochromatic blocks. The circuit is of size

O
((

2n/27m
)

m2m + 22m log
(
2n/27m

))
≤ O

(
nm/26m

)
and of depth O(m + log log(n)). (Here, we used our assumption m ≤ log(n)/11, to bound
n ≥ 211m and 22m ≤ n3/4/26m.)

Finally, we compute the bit-wise OR of the last 2m+1 blocks of the output from the
previous step (monochromatic decompression) with the current output (non-monochromatic
decompression). This way we get a sequence of n numbers partitioned into blocks where
each block corresponds to one of the blocks in the desired output. However, we still need to
rearrange the blocks in the proper order. We will use partial sorting of the whole blocks to
do that.

For a given block let x be the first number in that block. We prefix the block by a
number 2x (represented by m + 1 bits) if the block is monochromatic or the number 2x + 1
if the block is non-monochromatic. To determine whether the block is monochromatic
we compare for equality the first and last number inside the block. We do this for each
block. Thus each block of k numbers is prefixed by an m + 1 bit number. Computing these
prefixes requires a circuit of total size O(28mm) = O(n) and depth O(log(m)). We then use
the PARTIAL_AKS28m,(m+1)+km,m+1 circuit of size O(nm2) and depth O(m log(m)) to
sort the blocks. Finally, we ignore the m + 1 bit prefixes of each block to get the desired
output. ◀

Proof of Theorem 1. This is just a combination of Lemma 2 with Lemma 16. ◀

Observe that the proofs of Lemma 2 and Lemma 16 do not depend on using specifically
the AKS sorting. In particular for the case of Lemma 2 if there is a circuit that sorts input
numbers that is linear in the number of input bits then there is a linear size circuit that
counts these numbers.

6 Partial Sorting by the First k Bits in Poly-logarithmic Depth

Here we design a family of boolean circuits that partially sorts by the first k bits out of
m bits which is asymptotically smaller than PARTIAL_AKSn,m,k. We will need super-
concentrators for our construction.

A directed acyclic graph G = (V, E, A, B), where V is the set of vertices, E is the set
of directed edges, and A and B are disjoint subsets of vertices of the same size, is a super-
concentrator if the following hold: The vertices in A (inputs) have in-degree zero, vertices in
B (outputs) have out-degree zero, and for any S ⊆ A and for any T ⊆ B : |S| = |T | there is
a set of pairwise vertex disjoint paths connecting each vertex from S to some vertex in T .
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We parametrize the super-concentrator by the number of input vertices n, and we measure
its size by the number of edges. We want the graph to have as few edges as possible. The
depth of the super-concentrator is the number of edges on the longest directed path.

Pippenger [8] shows a construction of super-concentrators of linear size and logarithmic
depth. He constructs a family of super-concentrators Sn for n being the number of inputs,
where the in-degree and out-degree of each vertex is bounded by some universal constant,
the number of edges is linear in n, and the depth is O(log(n)). Moreover there are finite
automatons which for any S ⊂ A, T ⊂ B : |S| = |T | when put on the vertices of the super-
concentrator find the set of vertex disjoint paths from S to T in O(log(n)) iterations, each
taking O(log(n)) steps, for the total number of O(n) steps of the automatons. We describe
this construction using the language of circuits. The circuit on input of characteristic vector
of S and T computes the set of |T | vertex disjoint paths connecting S and T . The circuit
outputs the characteristic vector of the set of edges participating in the paths.

▶ Theorem 17 (Pippenger [8]). There is a family of super-concentrators Sn as described
above and boolean circuits ROUTEn : {0, 1}2n → {0, 1}|Sn| of size O(n log(n)) and depth
O(log2(n)) that on input characteristic vector of any set T ⊆ [n] and characteristic vector of
any S ⊆ [n] where |T | = |S|, outputs the characteristic vector of edges that form |T | vertex
disjoint paths between S and T .

By routing m bits along each path in the super-concentrator we can use the above circuit
to build a circuit that partially sorts m-bit integers by their most significant bit.

▶ Corollary 18. There is a family of boolean circuits

PIPPENGER_SORTn,m,1 : {0, 1}n·m → {0, 1}n·m

that on input x1, x2, . . . , xn ∈ {0, 1}m partially sort these numbers according to their first
most significant bit. The size of the circuit PIPPENGER_SORTn,m,1 is O(nm + n log(n))
and depth O(log2(n)).

Proof. We give a sketch of the proof. First, we will use the graph Sn to get all inputs starting
with one to the proper place. Then, using the same construction we will move all inputs
starting by 0 to the proper place. We transform the graph Sn into a circuit by replacing
each vertex of in-degree d by a routing gadget (circuit) which takes d m-bit inputs together
with d control bits, one bit for each of the m-bit inputs, and outputs the bit-wise OR of
inputs for which their control bit is set to 1. Such a routing gadget of size O(dm) and depth
O(log(d)) can be easily constructed. If (u, v) is the j-th incoming edge of v in Sn, we connect
the j-th block of m input bits of the routing gadget corresponding to v to the output of the
routing gadget of u. The routing gadgets of input vertices of Sn are connected directly to
the appropriate inputs of the sorting circuit. The routing gadget will be used with at most
single control bit set to one, thus it will route the corresponding input.

It remains to calculate paths that will route the integers starting with 1 in the above circuit
in the desired way. For that, we calculate the sum s of the most significant bits by which we
are sorting using SUMn,1 from Lemma 6, we expand it back using ONES⌈log(n)⌉+1(s), and
reverse it to get the characteristic vector of a set T , where we want to route to. Together
with the most significant bits of each input integer (which form the characteristic vector of S

from which we route) we feed this as an input to ROUTEn. The output bits of ROUTEn

are connected to the appropriate control bits of our routing gadgets. The sorted output will
be obtained as the output of the n routing gadgets corresponding to the output vertices
of Sn.
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The size of the ROUTEn is O(n log(n)) and the total size of the circuits implementing
the routing gadgets is O(mn). These two terms dominate the overall size of the circuit. The
depth of the circuit is dominated by the depth of the ROUTEn. ◀

We can use the above circuit in an iterative fashion to build a smaller circuit for the same
primitive.

▶ Lemma 19. There is a family of boolean circuits ITERATIVE_SORTn,m,1 : {0, 1}n·m →
{0, 1}n·m that on input x1, x2, . . . , xn ∈ {0, 1}m partially sort these numbers according
to their first most significant bit. The size of the circuit ITERATIVE_SORTn,m,1 is
O(nm(1 + log∗(n) − log∗(m))) and its depth is O(log2(n)).

Proof. Assume m ≤ log(n)/11 otherwise use Corollary 18. We will build the circuit iteratively
using the circuit from Corollary 18 for blocks of various sizes. We will start with small blocks
of items and we will iteratively sort larger and larger number of items organized into mostly
monochromatic blocks. Without loss of generality we assume that m is a power of two, and
we will ignore the rounding issues. We will have two parameters mi and ni = 23mi , where
m0 = m and mi+1 = 2mi for i ≥ 0. At iteration i, all the items will be partitioned into parts
of consecutive numbers, each part will be either monochromatic containing all zeros, all ones,
or it will be mixed. (Here we refer to the most significant bits of the numbers in the part.)
For each part we will maintain two indicator bits which of the three possibilities occurs: an
indicator which is one if the block is mixed, and another color indicator which specifies the
highest order bit of the integers if the block is monochromatic. (For the latter we could
use the first bit of the first integer in the part.) At each iteration i > 0, mi will denote the
number of items in each part. ni/mi consecutive parts form a block, so each block contains
ni items. The blocks partition the input. We will maintain an invariant that the fraction of
mixed parts in each block is at most 2/m3

i .
At iteration 0 we apply PIPPENGER_SORTn0,m,1 to consecutive blocks of n0 input

integers. Afterwards, the block is partitioned into parts of size m1 and for each part we
determine its status by comparing the most significant bits of the first and last integer in the
part. It is clear that each block of size n0 contains at most one mixed part. As the number
of parts in the block is m3

1, the fraction of mixed parts in each block is at most 2/m3
1, and

this is also true for blocks of size n1.
At iteration i > 0, we divide the current sequence of parts of size mi into blocks containing

ni/mi parts, and we proceed in three steps:

Step 1. Sort the parts in each block using PIPPENGER_SORTni/mi,2+mi·m,1 according
to the mixed indicator. Hence, all the mixed parts will move to the end of the block.
There are at most 2ni/m3

i mixed parts in each block, the remaining parts must be
monochromatic.

Step 2. In each block, sort all the m-bit integers in the last 2ni/m3
i parts according to their

most significant bit using PIPPENGER_SORT2ni/m2
i
,m,1. This sorts together all the

integers in the mixed parts (and perhaps few other parts). Repartition them into parts of
mi consecutive numbers and determine their indicator bits. Only one of the parts should
be mixed at this point. Swap it with the last part in the block. (We provide details of
the swap later.)

Step 3. In each block, sort all the parts except for the last one according to their color
indicator using PIPPENGER_SORT(ni/mi)−1,2+mi·m,1. This moves all the parts of
color 0 to the front. Repartition all the numbers in the block into parts of mi+1 consecutive
integers and determine their indicator bits, where the last part is marked as mixed. At
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most two of the new parts should be mixed at this point. Notice, that out of m3
i+1 parts

in each block, at most two are marked as mixed so the invariant applies. We can move to
the next iteration.

We iterate the algorithm until mi ≥ log(n)/4. Once mi ≥ log(n)/4, the number of integers
in mixed parts is at most 2n/m2

i ≤ O(n/ log2(n)), remaining items are in monochromatic
parts. At this point we cannot form a block of size ni, but we can still perform the same
type of actions as in Steps 1-3: We can bring the monochromatic parts forward as in Step 1,
sort the last 32n/ log2(n) integers belonging to the mixed parts, move the remaining mixed
part to the end, sort the monochromatic parts and swap the mixed part with the first
monochromatic part of color 1.

To swap a single mixed part with the last part we can copy the mixed part into a buffer by
AND-ing every part bit-wise with the indicator whether that is the mixed part, and OR-ing
all the results together. This copies the mixed part into a buffer. In a similar fashion we can
copy the last part into the now unused part by letting each part bit-wise copy to its place
either its original content or the content of the last part, again conditioning on an appropriate
indicator bit. Hence, the swap can be implemented by a circuit of size proportional to the
total size of the parts and depth logarithmic in the number of parts.

Now we will bound the total size of the circuit we constructed. Step 1 requires n/ni circuits
of size O(nim + ni/mi log(ni/mi)) = O(nim), as log(ni) = O(mi), and of depth at most
O(log2(ni)). Step 2 requires n/ni sorting circuits of size O(mni/m2

i +2ni/m2
i log(2ni/m2

i )) =
O(ni) and of depth at most O(log2(ni)), together with a circuit of total linear size O(n) to
recalculate the parts and do the swaps. The last step requires the same amount of circuitry
as the first step.

Hence, each step requires circuits of total size O(nm). The same goes for the initial
sort at iteration 0, and the final sorts at the end. As there are at most log∗(n) − log∗(m)
iterations, the resulting size is O(nm(log∗(n) − log∗(m))). Each step requires a circuit of
depth O(log2(ni)), recall that by our choice ni = 24mi , thus log(ni) = 4mi. Since mi+1 = 2mi

and for each i we have mi ≤ log(n)/4, thus the total depth is dominated by the last iteration
where we use a circuit of depth O(log2(n)). ◀

Proof of Theorem 3. We assume that k ≤ log(n)/11 otherwise we can use Corollary 15 to
sort the elements. Without loss of generality we assume n is a power of two. We think
of the input as organized into an array. We extract the first k bits (key) from each input
element and we sort the keys using the circuit from Theorem 1 of size O(nk2) and depth
O(log(n) + k log(k)).

We will build recursively a circuit that will sort the input array of n elements according
to the first k bits when the input is augmented with the array of sorted keys. Now our goal
is to split the input array into two equal sized parts L and R where all elements in L are less
or equal to elements in R when comparing only the keys.

To do that we take the median, the n/2-th element among the keys, and we partition the
array according to it. We split the input array into three arrays L, M , and R of length n with
elements less than, equal to, and greater than the median, resp., and we mark the unused
elements as dummy using an extra bit associated to each element. We sort L and M so that
all non-dummy elements are to the left and R so that all non-dummy elements are to the
right. We use three circuits ITERATIVE_SORTn,m+1,1 to do that. Now, we flip the first
half of elements in M , i.e., swap the i-th element with the element in position (n/2) − i + 1,
and we replace the dummy elements in the first half of L by the corresponding elements in M .
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By one application of ITERATIVE_SORTn,m+1,1 we move all the remaining non-dummy
elements in M to the left, and we merge those elements with the second half of R. We discard
the second and first half of L and R, respectively. (They contain only dummy elements.)

If the highest order bit of the median is set to 0 then all the elements in L have the
highest order bit set to 0, otherwise all the elements in R have the highest order bit set
to 1. In either case we reduced the problem to one problem of sorting half of the elements
according to k − 1 bits and the other half according to k-bits. We recursively build a circuit
to sort SORTn/2,m,k−1 and SORTn/2,m,k when the input is augmented with the sorted
array of keys. We pass to each of the sorting sub-circuits the appropriate sub-problem and
we re-route the results from them to form the final output.

Not counting the two sub-circuits SORTn/2,m,k−1 and SORTn/2,m,k, this step requires
four copies of the circuit ITERATIVE_SORTn,m+1,1 and additional O(nm) gates to do
the moves and element comparison with the median. Denote the size of this part of the
circuit by Lm(n) = O(nm(1 + log∗(n) − log∗(m))). The depth of the resulting circuit to
perform all those operations is O(log2(n)) as the move operations are done in parallel (again,
not counting the depth of SORTn/2,m,k−1 and SORTn/2,m,k). If we denote by Sm,k(n) the
size of the circuit SORTn,m,k we get the following recurrence:

Sm,k(1) = O(m)
Sm,1(n) = O(nm(1 + log∗(n) − log∗(m)))

Sm,k(n) ≤ Lm(n) + Sm,k−1

(n

2

)
+ Sm,k

(n

2

)
when we iterate the recurrence:

Sm,k(n) = Lm(n) + Sm,k−1(n/2) + Sm,k(n/2)
= Lm(n) + Sm,k−1(n/2) + Lm(n/2) + Sm,k−1(n/4) + Sm,k(n/4)
= Lm(n) + Sm,k−1(n/2) + Lm(n/2)

+ Sm,k−1(n/4) + Lm(n/4) + Sm,k−1(n/8) + Sm,k(n/8)
= . . .

= (Lm(n) + Lm(n/2) + . . . + Lm(1))
+ (Sm,k−1(n/2) + Sm,k−1(n/4) + . . . + Sm,k−1(1)) + Sm,k(1)

≤ Lm(2n) + Sm,k−1(n) + O(m)

which gives us

Sm,k(n) = kLm(2n) + (k − 1)Sm,k(1) + Sm,1(n)
= kLm(2n) + O(nm(1 + log∗(n) − log∗(m)))
= O(knm(1 + log∗(n) − log∗(m)))

To bound the depth Dm,k(n) we use the following recurrence:

Dm,k(1) = O(1)
Dm,k(n) ≥ Dm,k−1(n)
Dm,1(n) = O(log2(n))
Dm,k(n) = O(log2(n)) + max (Dm,k(n/2) + Dm,k−1(n/2))

≤ O(log2(n)) + Dm,k(n/2)
≤ O(log3(n)) ◀
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7 Conclusion

We have provided improved sorting circuits. Our technique used in the proof of Theorem 1
can be viewed as information compression and decompression. This technique might prove
useful for other related problems. We list some open problems:

Most of our circuits are uniform. The non-uniform part is due to the use of the AKS
circuits and Pippenger’s super-concentrators. Can one make uniform circuits of the same
size?
Kospanov [6] shows that there is a family of sorting circuits with depth O(log(n)+log(m))
and size O(mn2) that sorts n numbers each of m bits. Is there a circuit family for sorting
with circuits of depth O(log(n) + log(m)) and size O(nm2)? In other words can we get
rid of the m log(m) factor in the circuit depth from Theorem 1 while keeping the O(nm2)
size?
Is it possible to partially sort n numbers of m bits each by their first bit using a circuit
of size O(nm) and depth O(log(n))?
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1 Introduction

In 1964 Erdős proved in [3] that (1 + o(1)) e ln(2)
4 k22k edges are sufficient to build a k-graph1

which is not two colorable. To this day that result provides the best known upper bound for
the minimum number of edges in such hypergraph. The Erdős’ bound results from the fact
that random k-graph with that number of edges, built on a set of k2/2 vertices can not be
colored properly with two colors with high probability. In some sense this value is not far
from being optimal since a straightforward probabilistic argument shows that any k-graph
with at most 2k−1 edges is two colorable. Using random recoloring method, introduced by
Beck in [1], Radhakrishnan and Srinivasan in [8] extended this result to k-graphs with at
most Θ(

√
k/ log(k)2k) edges (see also [2] for a simplified proof).

The best known deterministic construction of a k-graph that is not two colorable has
been obtained by Gebauer [5]. It requires 2k+Θ(k2/3) edges. It is also the first construction
in which the number of edges is 2k+o(k). The main result of the current paper is an upgrade
of this construction that allows to cut down the number of edges to 2k+Θ((k log(k))1/2).

Within the whole paper, log(.) stands for binary logarithm. We are only concerned with
vertex two coloring of hypergraphs. However, just like in the construction from [5], the
presented method naturaly generalizes to any fixed number of colors and gives analogous
improvement. Vertex coloring is proper if no edge is monochromatic. Following common
convention we use colors red and blue.

1 i.e. k-uniform hypergraph
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2 Gebauer’s construction

We start with recalling the construction of [5], as we are going to modify it. The whole
procedure is parameterized by t = t(k) that takes value roughly kα for some optimized
positive α < 1. It it convenient to organize the vertices of the constructed hypergraph into
a rectangular matrix M of 2t − 1 rows and s columns. In particular, the vertex set of the
hypergraphs has (2t − 1) · s elements. The value of s will be a subject of optimization and in
the final construction we are going to chose s = ⌈e (k/t) 2t⌉. Slightly abusing the notation,
we use M for both the matrix and the set of vertices. We use the same convention for
submatrices of M.

2.1 Preliminary choice of rows
As the vertices of constructed hypergraph are identified with the entries of M, vertex coloring
can be seen as assigning colors to the entries of the matrix. A color is dominating in a row if
at least half of its entries are colored with it (there can be two dominating colors). A matrix
for which one of the colors is dominating in all rows will be called consistently dominated. The
main part of the construction is designed to work with a consistently dominated submatrix
of M with t rows. Wlog we always assume that red is the dominating color in such a matrix.

Let M denote the set of submatrices of M built of every t rows. For every M ∈ M we apply
the main construction described in the next section. The construction outputs hypergraph
HM . The union of the edge sets of these hypergraphs forms the edge set of the resulting
hypergraph. For every coloring of M at least one submatrix M ∈ M is consistently dominated.
The main construction guarantees that in such a case, HM contains a monochromatic edge.

2.2 Main construction
Let M ∈ M, recall that M has t rows. Our goal is to build a hypergraph HM on the vertex
set M such that for every consistently dominated coloring of M , there exists a monochromatic
edge in HM . For (σ1, . . . , σt) ∈ [s]t, we denote by M(σ1, . . . , σt) matrix M in which for every
i ∈ [t], the i-th row has been cyclically shifted by σi. The construction proceeds as follows.

For every
1. sequence of shifts σ ∈ [s]t,
2. and set of indices I ⊂ [s] of size k/t,
add to HM an edge built from all elements of the columns of M(σ) with
indices in I.

Note that the edges of HM are of size k as required.
Let us fix a consistently dominated coloring of M . We assume wlog that red is the

dominating color of the rows. When the sequence of shifts is chosen randomly, the probability
that some fixed column is red is at least 2−t. As a consequence, for s ⩾ (k/t) 2t the expected
number of red columns is at least k/t. In particular, for some sequence of shifts, there exists
a set of k/t red columns. Hence the edge built for these shifts and columns is monochromatic.

2.3 Counting
We have(

2t − 1
t

)
< 22t
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choices for the subset of rows in the preliminary step. Then, in the main construction, every
sequence of t elements of [s] and a subset of k/t elements of [s] is used to build an edge. The
number of choices is

st ·
(

s

k/t

)
⩽ st ·

(
es

k/t

)k/t

.

For s = (k/t) 2t (we assume for simplicity that it is an integer) we obtain

(k/t)t 2t2
· ek/t 2k = 2t log(k/t)+t2+k/t log(e)+k.

The total number of edges is smaller than

22t+t log(k/t)+t2+k/t log(e)+k.

Finally we choose t so that the above exponent is minimized. That happens for t = Θ(k1/3).
In the end we obtain that the total number of edges is 2k+Θ(k2/3).

3 Improved construction

We modify only the main construction. Recall that we work with matrix M with t rows. For
a fixed consistently dominating coloring of M , sequence of shifts σ ∈ [s]t is called good if
M(σ) contains at least s 2−t red columns. The set of good sequences for a coloring C of M

is denoted by G(C).
If we fix a consistently dominating coloring of M and choose the sequence of shifts σ ∈ [s]t

uniformly at random, the expected number of red columns in M(σ) is s 2−t. That observation
was used to justify that there exists a good sequence. However, it also suggests that a large
number of shift sequences might be good. For the constructed hypergraph not to be two
colorable, it is sufficient that for every consistently dominated coloring of M , at least one
such sequence is used in the main construction.

We apply derandomization techniques to construct relatively small set of sequences of shifts
that can be used in the main construction instead of [s]t. For a family of sets F , a set that in-
tersects every element of that family is called a hitting set for F . In these terms we are looking
for a small hitting set for family GM = {G(C) : C is a consistently dominating coloring of M}.

3.1 Sequential choice of shifts

We start with estimating the size of the set of good shift sequences. While it is not directly
used in our construction, it provides a good opportunity to introduce some tools. It will also
allow us to derive a probabilistic argument that small hitting sets actually exist.

The property of being good is generalized to prefixes in the straightforward way – sequence
of shifts (σ1, . . . , σi) is good if the matrix trimmed to the first i rows and shifted according
to the sequence, has at least s 2−i red columns.

Suppose that (σ1, . . . , σi) is good. We want to estimate the number of possible choices
of σi+1 for which (σ1, . . . , σi, σi+1) is good as well. If the coloring of the (i + 1)-th row was
“random”, then about half of the choices would be right, and almost all of the choices would
be almost right. That property does not hold in the worst case scenario and hence we are
going to work with relaxed definitions.
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For ε > 0, a sequence of shifts (σ1, . . . , σi) is ε-good if the number of red columns in the
shifted matrix trimmed to the first i rows is at least s

( 1−ε
2

)i. Then, every ε-good sequence
of shifts of length t gives a shifted matrix with at least

s
(1 − ε)t−1

2t

red columns. For s ⩾ e (k/t) 2t and ε = 1/t, the number of red columns is at least k/t as
needed. In the modified construction we set s to ⌈e (k/t) 2t⌉.

We also define Gε(C) as the set of ε-good sequences for a coloring C of M and Gε
M as

{Gε(C) : C is a consistently dominating coloring of M}.
The following proposition is used to derive a lower bound for the number of ε-good

sequences. It is formulated in more general terms that needed here, but we are going to use
it again later. For a set A ⊂ [s] and a number x, set A + x is defined as the set A shifted
cyclically within [s] by x, formally A + x = {(a − 1 + x)( mod s) + 1 : a ∈ A}.

▶ Proposition 1. For any positive ε < 1 and sets A, B ⊂ [s], let α = |B|/s, there exist at
least

ε

1 − (1 − ε)α αs

elements x ∈ [s] for which |(A + x) ∩ B| ⩾ (1 − ε)α|A|.

Proof. Let random variable X denote the size of (A+x)∩B, when x ∈ [s] is chosen uniformly
at random. By the fact that |B| = αs and linearity of expectation we obtain

E(X) = α|A|.

From the definition of X, we get also

X ⩽ |A|.

We can observe now that a distribution that minimizes Pr[X > (1 − ε)α|A|] and satisfies the
above conditions, is supported only by values (1 − ε)α|A| and |A|. There is only one such
distribution that satisfies E(X) = α|A|. Straightforward calculations give

Pr[X > (1 − ε)α|A|] ⩾ εα

1 − (1 − ε)α. ◀

For |B| ⩾ s/2 we get that there exist at least

2ε

1 + ε
s/2

elements x ∈ [s] for which |(A + x) ∩ B| ⩾ (1 − ε)|A|/2.
Applying the proposition iteratively, we obtain that the number of ε-good sequences of

length j is at least(
ε

1 + ε
s

)j

.

(For a fixed j, and some ε-good sequence σ of length j − 1, let A be the set of indices of the
red columns in the matrix trimmed to the first j − 1 rows and shifted according to σ, and B

be the set of indices of red entries of the j-th row.)
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For j = t we get a lower bound for the number of ε-good sequences. Once we have that
bound, a typical application of the probabilistic method (along the lines of the proof from [3])
allows to proof that there exists a hitting set for Gε

M of size 2O(t log(t)). That argument is
briefly described below.

Recall that, for a fixed consistently dominated coloring of matrix M with t rows, the
volume of ε-good sequences is at least

p =
(

ε

1 + ε

)t

.

The volume is exactly the probability that uniformly random sequence is ε-good. Let S be a
set built from m uniformly and independently sampled random sequences from [s]t. (Since,
the sequences are sampled with repetitions, it may happen that |S| < m.) The following
formula upperbounds the expected number of consistently dominated colorings of M , for
which the set of ε-good sequences is not hit by S

2st · (1 − p)m < exp(st ln(2) − mp).

Therefore, whenever st ln(2) − mp ⩽ 0, some set of m sequences hits all the sets of ε-good
sequences for consistently dominating colorings. For s = ⌈e (k/t) 2t⌉ and ε = 1/t it is sufficient
to take m of the order 2O(t log(t)) to satisfy the inequality. As a consequence there exists a
hitting set for Gε

M of size 2O(t log(t)).

3.2 Expanders for hitting sets
Linial, Luby, Saks and Zuckerman [6] worked on deterministic constructions of small hitting
sets for combinatorial rectangles. We summarize in this section, their results that are relevant
for our developments. We follow closely their definitions.

Graph G = (V, E) is an (m, ∆, α)-expander if it has m vertices, maximum degree ∆ and
for any A ⊂ V , the fraction of vertices in V − A that have a neighbor in A is at least α|A|/m.
For a fixed graph G let Wr denote the set of walks in G of length r. Let Wr,d be the set
of subsequences of elements of Wr of length d (not necessarily subsequences of consecutive
elements). Set R ⊂ [m]d is a combinatorial rectangle if it is of a form R1 × . . . × Rd for some
R1, . . . , Rd ⊂ [m]. The volume of rectangle R, denoted as vol(R), is defined as |R|/md.

▶ Lemma 2 ([6]). Let m, d be positive integers and R be a rectangle in [m]d. Suppose G

is an (m, ∆, α)-expander with 1/2 > α > 0. If r = 1 + (4/α)(d + log(1/vol(R))), then Wr,d

contains a point from R.

The above lemma implies that a specific set of sequences Wr,d hits every combinatorial
rectangle in [m]d of sufficiently large volume.

The following rough estimations for the size of Wr,t will be sufficient for our needs. We
have

|Wr| ⩽ m(∆ + 1)r

and

|Wr,d| < 2r|Wr| ⩽ m (2(∆ + 1))r.

Lemma 2 leaves some space for the choice of expander graph. Authors of [6] used the
construction of Margulis [7] (see also [4]) which allows to build an expander with ∆ = 8
and α = (2 −

√
3)/4. A minor inconvenience is that the construction requires the number
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of vertices to be a perfect square. However, as observed already in [6], we can consider
the rectangles of our interest as subsets of a larger space [m′]d, and apply the lemma in
that space. For every m we can choose number m′ that is a perfect square and satisfies
m ⩽ m′ ⩽ 2m. While that change affects the volumes of rectangles, they get smaller at most
by a factor of 2−d. For our purposes this cost is negligible.

When we are interested in rectangles of volume at least V, Lemma 2 instructs to take

r = r(d, V) = 1 + (4/α)(d + log(2d/V)).

For some specific constant Ĉ and for all positive d and V we have

r(d, V) ⩽ Ĉ(d + log(1/V)).

▶ Corollary 3. There exists a constant C > 0 such that, for every integers m, d, and V > 0
there exists an efficiently constructible subset of [m]d of size at most

m · 2C(d+log(1/V)),

that intersects every combinatorial rectangle in [m]d of volume at least V.

We apply that result, to construct a small hitting set for Gε
M . That set is then used in

the modified main construction instead of the set of all shift sequences.

3.3 Under false assumption
Unfortunately, for a fixed consistently dominating coloring of M , the set of good or ε-good
shift sequences does not need to form a combinatorial rectangle. It is instructive to pretend
for a moment that it does. We assume (falsely) in this subsection that Gε

M contains only
combinatorial rectangles.

By the discussion that follows Proposition 1, for every consistently dominating coloring
of M , the set of ε-good shift sequences has volume at least

ν =
(

ε

2(1 + ε)

)t

.

By Corollary 3 there exists a hitting set HS for all rectangles of volume ν of size s·2C(t+log(1/ν)).
For ε = 1/t and s = ⌈e (k/t) 2t⌉, the size of HS is at most 22Ct log(t) (assuming that t is
sufficiently large). Note that in the original construction all possible shift sequences were
used. Using set HS instead of [s]t and choosing t = (k log(k))1/2, the total number of edges
becomes

2k+O((k log(k))1/2).

3.4 Decomposing good shift sequences
We showed in Section 3.1 that, for every consistently dominating coloring of M , the set of
ε-good shift sequences is large. While, in general, it does not have a structure of combinatorial
rectangle, in some sense it can be decomposed into a small number of such. We start by
altering the way that the sequences of shifts are represented. For the clarity of the exposition
we assume that t is a power of 2.
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Let T be a rooted plane complete binary tree with t leaves2. A subtree rooted at some
internal node of T consists of that node and all its descendants. A node of T is at level j if
its distance to the set of leaves is j. Let Sj be the set of inner nodes at level j. Note that
|Sj | = t 2−j , we denote that value by dj . For h = log(t), the tree has h + 1 levels with all
the leaves on level 0.

We associate leaves of T with rows of M in such a way that the i-th leaf from the left,
corresponds to the i-th row. Inner nodes of the tree are going to be labeled by elements of
[s]. These labels represent the relative shifts between neighboring rows of M . For an inner
node v, if l is the rightmost leaf of the left subtree of v and r is the leftmost leaf of the right
subtree of v, then the label of v describes how row r is shifted wrt l.

Labeling of a subtree rooted at node v is ε-good, if for r being the number of descendant
leaves of v, the submatrix of the rows that correspond to these leaves, shifted according to
the labels of the inner nodes of the subtree, has at least s ((1 − ε)/2)r red columns. Note
that ε-good labellings of the whole tree correspond to ε-good sequences (up to a cyclic shift
of the whole matrix, which is clearly redundant in the original construction).

We order the nodes of Sj from left to right and represent labellings of the nodes of Sj as
elements of [s]dj . We are going to work bottom up and label inner nodes in groups consisting
of the nodes of the same level. A labeling of T is ε-good up to level j if all the subtrees
rooted at level at most j are ε-good. In all the places where we use this definition, it can be
assumed that the labeling is undefined for the nodes of higher levels. Suppose that τ is a
labeling of T that is ε-good up to level j − 1. Then, a sequence of labels σ ∈ [s]dj is called
an ε-good level j extension (of τ) if the labeling τ in which the labels of the nodes of level j

has been set to σ is ε-good up to level j.

▶ Proposition 4. Suppose, that a labelling of T is ε-good up to level j − 1. Then, the set of
its ε-good level j extensions forms a combinatorial rectangle of volume at least

νj =
(

ε ((1 − ε)/2)−2j−1
)dj

.

Proof. Fix j and suppose that labeling τ is ε-good up to level j −1. We want to assign labels
to the nodes of Sj in such a way that all the subtrees rooted at depth j are ε-good shift trees
as well. Note that for any pair of distinct nodes of level j, the property of the corresponding
subtrees of being ε-good shift trees is determined by disjoint sets of rows of the underlying
matrix. That justify that the set of ε-good level j extensions forms a combinatorial rectangle.

Let v be a node of Sj and let A and B be the sets of indices of red columns respectively in
the shifted submatrices corresponding to the left and right subtrees of v. By the assumptions
we know that both these sets have cardinality at least

s ((1 − ε)/2)−2j−1
.

We need to estimate the number of x ∈ [s] for which the set A ∩ (B + x) has cardinality at
least

s ((1 − ε)/2)−2j

.

Proposition 1 gives that there exist at least

ε ((1 − ε)/2)−2j−1
s

2 i.e. all the internal nodes of T have two children (left and right) and all the leaves are of the same
distance from the root
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such values. We obtain that the volume of combinatorial rectangle of ε-good level j extensions
is at least(

ε ((1 − ε)/2)−2j−1
)dj

◀

By Corollary 3, there exists a set HSj of cardinality

s · 2C(dj+log(1/νj)),

that is a hitting set for the family of ε-good level j extensions for labellings that are ε-good
up to level j − 1. That implies the following proposition.

▶ Proposition 5. Set HS = HS1 × . . . × HSh is a hitting set for the family of sets of ε-good
labellings of T .

It remains to estimate the size of HS . We have

|HS | ⩽
∏

j=1...h

s · 2C(dj+log(1/νj))

= slog(t) · 2C
∑

j=1...h
(dj+log(1/νj))

< slog(t) · 2Ct · 2C
∑

j=1...h
log(1/νj)

,

and ∑
j=1...h

log(1/νj) =
∑

j=1...h

dj(log(1/ε) + 2j−1 log(2/(1 − ε)))

< t log(1/ε) + t
∑

j=1...h

log(4) (for ε < 1/2)

= t · log(1/ε) + 2t · log(t)

Therefore, for our parametrization (i.e. s = ⌈e (k/t) 2t⌉ and ε = 1/t), and for all sufficiently
large t we get

|HS | ⩽ 24t log(t).

3.5 Modified main construction
Let HS be the set from Proposition 5. As we already observed labellings of T correspond to
shift sequences up to a cyclic shift of the whole matrix. For a labeling τ let σ(τ) be a shift
sequence that is compatible with τ . Observe, that if τ is an ε-good labeling, then σ(τ) is
ε-good shift sequence. Recall that we chose s = e (k/t) 2t so that if σ is an ε-good sequence
for some consistently dominated coloring of M , then M(σ) has at least k/t red columns.
The modified main construction proceeds as follows.

For every
1. labeling of the tree τ ∈ HS,
2. and set of indices I ⊂ [s] of size k/t,
add to HM an edge build from all elements of the columns of M(σ(τ)) with
indices in I.

By Proposition 5 for every consistently dominated coloring of M , at least one ε-good
labeling τ is used in the construction. Then, for every such coloring, matrix M shifted
according to σ(τ) has at least k/t red columns. As a consequence at least one of the edges of
HM is monochromatic.
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Counting
Just like in the original construction, we have less than 22t choices for the subset of rows in
the preliminary step. Then, in the modified main construction, we use every sequence of HS
with every subset of k/t elements of [s] to build an edge. The number of choices is smaller
than

24t log(t) ·
(

s

k/t

)
< 24t log(t) ·

(
es

k/t

)k/t

.

Substituting the value of s we obtain a value that is smaller than

2 · 24t log(t) · e2k/t2k = 21+4t log(t)+(2k/t) log(e)+k.

The bound is multiplied by 2 to compensate for the ceiling in the definition of s. Taking into
account preliminary choices of rows, the total number of edges is smaller than

22t+1+4t log(t)+(2k/t) log(e)+k.

For t = (k/ log(k))1/2, the total number of edges becomes 2k+Θ((k log(k))1/2).
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Abstract
We study the rank of the Sum of Squares (SoS) hierarchy over the Boolean hypercube for Symmetric
Quadratic Functions (SQFs) in n variables with roots placed in points k ´ 1 and k. Functions of
this type have played a central role in deepening the understanding of the performance of the SoS
method for various unconstrained Boolean hypercube optimization problems, including the Max
Cut problem. Recently, Lee, Prakash, de Wolf, and Yuen proved a lower bound on the SoS rank
for SQFs of Ωp

a

kpn ´ kqq and conjectured the lower bound of Ωpnq by similarity to a polynomial
representation of the n-bit OR function.

Leveraging recent developments on Chebyshev polynomials, we refute the Lee–Prakash–de Wolf–
Yuen conjecture and prove that the SoS rank for SQFs is at most Op

?
nk logpnqq.

We connect this result to two constrained Boolean hypercube optimization problems. First,
we provide a degree Op

?
nq SoS certificate that matches the known SoS rank lower bound for an

instance of Min Knapsack, a problem that was intensively studied in the literature. Second, we
study an instance of the Set Cover problem for which Bienstock and Zuckerberg conjectured an
SoS rank lower bound of n{4. We refute the Bienstock–Zuckerberg conjecture and provide a degree
Op

?
n logpnqq SoS certificate for this problem.
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1 Introduction

Semialgebraic proof systems, also called certificates of nonnegativity, are systematic methods
to prove nonnegativity of polynomials over semialgebraic sets. One of the most successful
approaches for constructing theoretically efficient algorithms for polynomial optimization
problems is the Sum of Squares (SoS) certificate [17, 38, 39, 46],

For a wide variety of combinatorial optimization problems, SoS provides the best available
algorithms [1, 14, 5, 19, 34]. The strength of this method has also come to light for Max
CSP [32] and problems in robust estimation [21], dictionary learning [3, 45], tensor completion
and decomposition [4, 20, 41], and problems arising from statistical physics [13].
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However, the SoS algorithm also admits certain weaknesses. It is known to struggle with
solving certain combinatorial optimization problems, e.g., [7, 10, 18, 26, 49]. In a seminal
example, Grigoriev showed that a Ωpnq degree SoS certificate is needed to detect a simple
integrality argument for the Knapsack problem [15], see also [16, 24, 31]. A degree nΩpεq

SoS algorithm was proved to be unable to asymptotically certify an upper bound smaller
than 2 times the optimal value for Sherrington-Kirkpatric Hamiltonian [23, 13]. Moreover,
the degree Ωp

?
nq SoS hierarchy was proved to have problems scheduling unit size jobs on a

single machine to minimize the number of late jobs, see [27], even though the problem is
known to be solvable in polynomial time using the Moore-Hodgson algorithm [36]. Finally,
various examples where the SoS hierarchy fares very badly have been shown for the planted
clique [2, 35] and Max CSP problems [22, 48].

The discrepancy between the excellent performance of the SoS hierarchy and its severe
weaknesses has been studied extensively throughout the last decade. Thus, a natural question
arises: what factors determine the difficulty of solving a problem for the SoS method?

A prominent example that was studied through the lens of this question is the Max
Cut problem, which not only lies at the center of SoS research but was also one of the
first problems for which lower bounds of the SoS rank were studied. Grigoriev proved that
SoS needs at least degree t n

2 u to certify the size of the maximum cut in an odd clique of n

vertices [15], for alternative proofs see also [16, 24, 31]. In a breakthrough paper nearly two
decades later, Parrilo showed that the Grigoriev lower bound is tight by proving that every
n-variate polynomial of degree 2, nonnegative over Boolean hypercube has an SoS certificate
of degree at most r n

2 s, see [12]. Subsequently, the analog of the results by Grigoriev and
Parrilo for higher degree symmetric functions recently appeared in [25, 44], respectively.

Many of the problem instances with large lower bounds of the SoS rank target known
limitations of the SoS method such as an issue with dealing with integrality constraints.
Indeed, certifying the size of the maximum cut in a clique can be transformed into the
problem of proving nonnegativity of the Symmetric Quadratic Function (SQF) of the form
qr n

2 spxq over the Boolean hypercube, where, throughout this paper, qk : t0, 1un Ñ R is a
multivariate polynomial of the form

qkpxq :“ p|x| ´ kqp|x| ´ k ` 1q. (1.1)

The optimization of degree 2 polynomials over the Boolean hypercube plays a central
role in Theoretical Computer Science. This claim is supported by the fact that high degree
optimization problems attracted limited attention, especially since solving an NP-complete
problem can be reduced in polynomial time to proving nonnegativity of a degree-4 even
form [37]. Moreover, if an SQF has a complex root with a corresponding conjugate root, the
polynomial is globally nonnegative and admits an SoS certificate of degree 2. Similarly, there
exists an SoS certificate of nonnegativity of degree 2 for SQFs over the Boolean hypercube if
the roots are real and placed outside the interval r0, ns. Hence, the only interesting case is
when the roots are real and located within some interval rk ´ 1, ks for k P t1, . . . , nu.

Finding an SoS representation of the symmetric function qk has gained significant attention
in the SoS community. However, up to this day, the exact SoS rank for qk is not known. The
most recent result towards a characterization of the SoS rank of qk provides a lower and upper
bound of the SoS degree that approximates the function qk with SoS polynomials in l1 and l8

norm [33]. However, since finding an exact SoS certificate is at least as difficult as providing an
approximate SoS representation, the result implies that for k ě 2, qk does not admit an SoS
certificate of degree smaller than Ω

´

a

kpn ´ kq

¯

. Moreover, in [33], Lee, Prakash, de Wolf,
and Yuen conjectured that the lower bound of the SoS approximate representation with error
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at most ε in the l8 norm is expected to be Ω
´

a

kpn ´ kq `
a

n logp1{εq

¯

. They support
the conjecture by arguing about similarity with approximating n-bit OR functions [40, 50].
This conjecture, if true, would imply a lower bound on the exact SoS certificate for SQFs of
Ωpnq, even for small, constant values of k. Proving this conjecture is left as an open question
in [33]. In this paper, we refute the Lee–Prakash–de Wolf–Yuen (LPdWY) conjecture. We
show that certifying SQFs is easier than representing n-bit OR functions. More specifically,
we prove the following theorem.

▶ Theorem 1. For any k P t2, . . . , r n
2 su, there exists a degree Op

?
nk logpnqq SoS certificate

of nonnegativity for the Boolean function qk as in (1.1).

We motivate the research on the SoS degree of the SQFs qk by connecting it to two
combinatorial optimization problems. We first consider the instance of the Min Knapsack
(MK) problem. For P ě 2, the problem is defined as:

MK: min
ÿ

iPrns

xi s.t.
ÿ

iPrns

xi ě
1
P

, x P t0, 1un. (1.2)

For P “ 2, the problem was previously considered by Cook and Dash [11]. They proved that
the Lovasz-Schrijver hierarchy rank is n. For the Sherali-Adams hierarchy, Laurent proved
that the rank is also equal to n and raised the open question to find the rank for the SoS
hierarchy [30]. For n “ 2, they also proved that the SoS rank is 2, but the discussion of
general n was left as an open question. Currently, it is known that the SoS rank of the MK
problem falls within Ωp

?
nq and r

n`4r
?

ns

2 s, see [28]. In this paper, we prove an upper bound
on the SoS rank for the MK problem.

▶ Theorem 2. The SoS rank for the MK problem is Ωp
?

n logpP qq.

The existing lower bound for general P (see Lemma 14 of [28]) is Ωp
a

n logpP qq, so this is
tight when P is constant, though for larger P there is a gap of Op

a

logpP qq.
We also consider the following instance of the Set Cover (SC) problem:

SC: min
ÿ

iPrns

xi s.t.
ÿ

iPrnsztju

xi ě 1 @j P rns, x P t0, 1un. (1.3)

This instance was considered in [8] and it is known that the SoS hierarchy cannot solve this
problem with a degree smaller than Ωp

?
nq [28]. In [8], Bienstock and Zuckerberg raised

the question of what the actual SoS rank of this polytope is, conjecturing that, based on
numerical experiments, the SoS rank is at least n

4 . In this paper, using the SoS certificate
for SQFs in Theorem 1, we refute the Bienstock–Zuckerberg conjecture and provide a nearly
tight SoS rank for the SC problem:

▶ Theorem 3. The SoS rank for the SC problem is at most Op
?

n logpnqq.

2 Preliminaries

For n P N, let rns “ t1, . . . , nu. For x P Rn, let Rrxs “ Rrx1, . . . , xns be the ring of n-variate
real polynomials. For a set of polynomials G Ď Rrxs, the corresponding semialgebraic set is

G` :“ tx P Rn | gpxq ě 0 for all g P Gu Ď Rn.

Throughout this paper, we consider optimization problems on the Boolean hypercube t0, 1un

and therefore, for H :“ t˘px2
1 ´ x1q, . . . , ˘px2

n ´ xnqu, we assume that G is of the form

G :“ H Y tg1, . . . , gm : gi P Rrxs for all i P rmsu,
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where m P Ną0. This implies that G` Ď t0, 1un. Moreover, define the cone of nonnegative
polynomials with respect to a given semialgebraic set, G`, as

KpG`q :“ tf P Rrxs | fpxq ě 0 for all x P G`u.

For given f P Rrxs and G Ď Rrxs, define the corresponding Constrained Polynomial Optimiz-
ation Problem (CPOP) as

f˚ :“ mintfpxq | x P G`u “ maxtλ P R | f ´ λ P KpG`qu.

Generally, since CPOP is NP-hard, it is desirable to find a proper subset that is a good inner
approximation of KpG`q such that the corresponding program is computationally tractable.

The SoS method approximates the cone KpG`q by using the set of sum of square polyno-
mials. We define the set of finite sum of squares polynomials as Σ :“ ts | s “

řk
i“1 s2

i , si P

Rrxs @i P rks, k P Ną0u and let Σn,d :“ ts | s “
řk

i“1 s2
i , si P Rrxs ^ degpsiq ď d @i P rks, k P

Ną0u denote the polynomials which are sums of squares of polynomials of degree at most d.
We define the hierarchy of certificates of nonnegativity depending on d, n P N as

ΣG
n,d :“

#

s0 `

m
ÿ

i“1
sigi | si P Σn,d, gi P G @i P rms and s0 P Σ

n,2
Q

2d`degpGq

2

U

+

,

where degpGq “ maxtdegpgq | g P Gu. The degree d SoS certificate for f being nonnegative
over G` is f P ΣG

n,d. Moreover, throughout the paper we say that a multivariate polynomial f

is a degree d SoS modulo Boolean axioms if f P ΣH
n,d. The degree d SoS program for CPOP is

fd
Σ :“ maxtλ P R | f ´ λ P ΣG

n,du (2.1)

and is called exact if fd
Σ “ f˚. The smallest degree d such that the degree d SoS program is

exact is called the SoS rank. Over the Boolean hypercube, the degree d SoS program can be
solved via a semidefinite program (SDP) of size Opm

řd
k“0

`

n
k

˘

q. Moreover, the degree n SoS
program is exact, see, e.g., [6, 29, 30].

Throughout this paper, we often encounter the following type of multivariate polynomials.

▶ Definition 4. A polynomial f : t0, 1un Ñ R is symmetric if there exists a univariate
polynomial f̃ : R Ñ R such that fpxq “ f̃

`
řn

i“1 xi

˘

for all x P t0, 1un.

With this in mind, let |x| :“
řn

i“1 xi for any x P t0, 1un. To prove SoS rank upper bounds,
we consider symmetric multivariate polynomials over t0, 1un as univariate polynomials over
r0, ns and apply one of the many results on SoS certificates for univariate polynomials.
▶ Remark 5. Throughout this paper, we make frequent use of the fact that SoS certificates for
polynomials over r0, ns translate to SoS certificates for symmetric polynomials over t0, 1un.
More formally, if a univariate polynomial f̃ : R Ñ R has an univariate SoS certificate of
degree d on r0, ns, then the multivariate polynomial f : t0, 1un Ñ R such that fpxq :“ f̃p|x|q

has a degree d SoS certificate of nonnegativity over the Boolean hypercube.
In this paper, we use the following theorem to prove the SoS rank for univariate polynomials.

▶ Theorem 6 ([9, Theorem 3.72]). Let a ă b. Then the univariate polynomial ppxq is
nonnegative on ra, bs if and only if it can be written as

$

&

%

ppxq “ spxq ` px ´ aqpb ´ xq ¨ tpxq if degppq is even,
ppxq “ px ´ aq ¨ spxq ` pb ´ xq ¨ tpxq if degppq is odd,

where s, t are sum of squares. In the first case, we have degppq “ 2d, degpsq ď 2d, and
degptq ď 2d ´ 2. In the second, degppq “ 2d ` 1, degpsq ď 2d, and degptq ď 2d ´ 2.
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Finally, throughout the paper we use degree-d Chebyshev polynomials of the first type,
which were used is several applications for bounds of sum of squares ranks, i.e., [28, 47, 42].
We frequently use the following lemma.

▶ Lemma 7. Let n, d P N such that d ď n. Then,

1. For all c P r0, ns, T 2
d

`

´1 ´ c
n

˘

ě 1
4

ˆ

´1 ´

b

2c
n

˙2d

and T 2
d

`

´1 ´ c
n

˘

ď

ˆ

´1 ´ 2
b

2c
n

˙2d

.

Moreover, for constant c and n big enough, T 2
d

`

´1 ´ c
n

˘

ď

ˆ

´1 ´

b

2c`1
n

˙2d

.

2. For all c P pn, 8q, T 2
d

`

´1 ´ c
n

˘

ď
`

´1 ´ 3 c
n

˘2d.

Proof. It holds that:
1. Consider the characterization of Chebyshev polynomials given in [43, Equation 1.12]:

Tdpxq “ 1
2

ˆ

´

x ´
?

x2 ´ 1
¯d

`

´?
x2 ´ 1 ` x

¯d
˙

. For x “ ´1 ´ c
n and c P r0, ns, we

have T 2
d

`

´1 ´ c
n

˘

ě 1
4

ˆ

`

´1 ´ c
n

˘

´

b

`

´1 ´ c
n

˘2
´ 1

˙2d

ě 1
4

ˆ

´1 ´

b

2c
n

˙2d

and

T 2
d

ˆ

´1 ´
c

n

˙

ď

¨

˝

ˆ

´1 ´
c

n

˙

´

d

ˆ

´1 ´
c

n

˙2

´ 1

˛

‚

2d

ď

˜

ˆ

´1 ´
c

n

˙

´

c

2c

n
`

c2

n2

¸2d

ď

˜

´1 ´

c

c

n
´

c

2c

n
`

c

n

¸2d

ď

˜

´1 ´ 2
c

2c

n

¸2d

. (2.2)

Moreover, we have T 2
d

`

´1 ´ c
n

˘

ď

ˆ

`

´1 ´ c
n

˘

´

b

`

´1 ´ c
n

˘2
´ 1

˙2d

ď

ˆ

´1 ´

b

2c`1
n

˙2d

,

where the last inequality holds for n large compared to c.
2. For x “ ´1 ´ c

n and c P pn, 8q, we have

T 2
d

ˆ

´1 ´
c

n

˙

ď

¨

˝

ˆ

´1 ´
c

n

˙

´

d

ˆ

´1 ´
c

n

˙2
´ 1

˛

‚

2d

ď

˜

ˆ

´1 ´
c

n

˙

´

c

2c

n
`

c2

n2

¸2d

ď

˜

´1 ´
c

n
´

c

2c2

n2 `
c2

n2

¸2d

ď

ˆ

´1 ´ 3 c

n

˙2d

. (2.3)

◀

3 SoS rank for SQFs

In this section, we refute the LPdWY conjecture stated in [33] by proving Theorem 1. To
prove Theorem 1, it is sufficient to prove the following theorem.

▶ Theorem 8. For all n P N and all k P rns, there exists a polynomial spxq of degree
Op

?
kn logpnqq such that

1. s
`
řn

i“1 xi

˘

is a sum of squares (modulo the Boolean axioms).
2. For all x P r0, ns, px ´ k ` 1qpx ´ kq ´ spxq ě 0.
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Indeed, by Theorem 8 and Theorem 6, there exist sum of squares polynomials s, s1 and
s2 of degree Op

?
kn logpnqq s.t.

px ´ k ` 1qpx ´ kq “ spxq ` s1pxq ` s2pxqxpn ´ xq.

We now make the following observations:
1. By Theorem 8, sp

řn
i“1 xiq is a sum of squares polynomial modulo the Boolean axioms.

2. s1p
řn

i“1 xiq, s2p
řn

i“1 xiq are sum of squares polynomials.
3.

řn
i“1 xi “

řn
i“1 x2

i ´
řn

i“1
`

x2
i ´ xi

˘

is a sum of squares polynomial modulo the Boolean
axioms.

4. n ´
řn

i“1 xi “
řn

i“1 p1 ´ xiq “
řn

i“1

´

pxi ´ 1q
2

´
`

x2
i ´ xi

˘

¯

is a sum of squares polyno-
mial modulo the Boolean axioms.

Putting everything together, the multivariate polynomial qkpxq has an Op
?

kn logpnqq SoS
certificate modulo the Boolean axioms of the form

qk pxq “ s

˜

n
ÿ

i“1
xi

¸

` s1

˜

n
ÿ

i“1
xi

¸

` s2

˜

n
ÿ

i“1
xi

¸ ˜

n
ÿ

i“1
xi

¸ ˜

n ´

n
ÿ

i“1
xi

¸

.

Before we prove Theorem 8, we make the following observation which shows that our upper
bound for qkpxq applies for any symmetric quadratic function with roots in rk ´ 1, ks.

▶ Corollary 9. For any k P t1, . . . , rn{2su and any a ď b P rk ´ 1, ks, a polynomial fk :“
px ´ aqpx ´ bq admits an SoS certificate over the Boolean hypercube of degree at most the
degree of an SoS certificate over the Boolean hypercube for polynomial qk.

Proof. We have fkpxq ě
`

pk ´ aqpb ´ k ` 1q ` pk ´ bqpa ´ k ` 1q
˘

qkpxq as

p|x| ´ aqp|x| ´ bq

“
`

pk ´ aqp|x| ´ k ` 1q ` pa ´ k ` 1qp|x| ´ kq
˘ `

pk ´ bqp|x| ´ k ` 1q ` pb ´ k ` 1qp|x| ´ kq
˘

“ pk ´ aqpk ´ bqp|x| ´ k ` 1q
2

` pa ´ k ` 1qpb ´ k ` 1qp|x| ´ kq
2

`
`

pk ´ aqpb ´ k ` 1q ` pk ´ bqpa ´ k ` 1q
˘

p|x| ´ k ` 1qpx ´ |k|q

and invoke Theorem 1 to conclude the proof. ◀

3.1 Proof of Theorem 8
We construct spxq in two steps. We first construct a polynomial s1pxq which is a sum of
squares (modulo the Boolean axioms), is less than or equal to px ´ k ` 1qpx ´ kq on the
interval r0, 2k ´ 1s, and is not too large on the interval r2k ´ 1, ns. We then construct a
polynomial s2pxq which is a sum of squares, is less than or equal to 1 on the intervals r0, k ´1s

and rk, 2k ´ 1s, is greater than or equal to 1 on the interval rk ´ 1, ks, and is very small
on the interval r2k ´ 1, ns. We then take spxq “ s1pxqs2pxq. More precisely, we have the
following conditions on s1 and s2:
1. s1

`
řn

i“1 xi

˘

is a sum of squares (modulo the Boolean axioms) and s2pxq is a sum of
squares.

2. For all x P rk ´ 1, ks, s1pxq

px´k`1qpx´kq
ě 1 and s2pxq ě 1.

3. For all x P r0, k ´ 1s Y rk, 2k ´ 1s, s1pxq

px´k`1qpx´kq
ď 1 and s2pxq ď 1.

4. For all x P r2k ´ 1, ns,
ˇ

ˇ

ˇ

s1pxq

px´k`1qpx´kq

ˇ

ˇ

ˇ
ď n40k and s2pxq ď n´40k.

5. s1pxq has degree Opkq and s2pxq has degree Op
?

nk logpnqq.
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▶ Proposition 10. If s1pxq and s2pxq satisfy the above conditions and we take spxq “

s1pxqs2pxq then s
`
řn

i“1 xi

˘

is a sum of squares (modulo the Boolean axioms) and for all
x P r0, ns, px ´ k ` 1qpx ´ kq ´ spxq ě 0.

Proof. We make the following observations:
1. Since s1

`
řn

i“1 xi

˘

is a sum of squares (modulo the Boolean axioms) and s2pxq is a sum of
squares, the product s

`
řn

i“1 xi

˘

“ s1
`
řn

i“1 xi

˘

s2
`
řn

i“1 xi

˘

is a sum of squares (modulo
the Boolean axioms).

2. For all x P r0, k ´ 1s Y rk, 2k ´ 1s, since px ´ k ` 1qpx ´ kq ě 0, s1pxq

px´k`1qpx´kq
ď 1, and

0 ď s2pxq ď 1,

px ´ k ` 1qpx ´ kq ´ spxq “ px ´ k ` 1qpx ´ kq

ˆ

1 ´ s2pxq
s1pxq

px ´ k ` 1qpx ´ kq

˙

ě 0.

3. For all x P rk ´ 1, ks, since px ´ k ` 1qpx ´ kq ď 0, s1pxq

px´k`1qpx´kq
ě 1, and s2pxq ě 1,

px ´ k ` 1qpx ´ kq ´ spxq “ px ´ k ` 1qpx ´ kq

ˆ

1 ´ s2pxq
s1pxq

px ´ k ` 1qpx ´ kq

˙

ě 0.

4. For all x P r2k ´ 1, ns, since px ´ k ` 1qpx ´ kq ě 0,
ˇ

ˇ

ˇ

s1pxq

px´k`1qpx´kq

ˇ

ˇ

ˇ
ď n40k and |s2pxq| ď

n´40k,

px ´ k ` 1qpx ´ kq ´ spxq “ px ´ k ` 1qpx ´ kq

ˆ

1 ´ s2pxq
s1pxq

px ´ k ` 1qpx ´ kq

˙

ě 0. ◀

Thus, we have an SoS proof of degree Op
?

knlogpnqq that p|x| ´ k ` 1qp|x| ´ kq ě 0.

3.1.1 Constructing the polynomial s1pxq

We now construct the polynomial s1pxq.

▶ Lemma 11. For n P N and all k P rns, there exists a polynomial s1pxq such that
1. s1

`
řn

i“1 xi

˘

has a degree Opkq sum of squares (modulo the Boolean axioms) certificate.
2. For all x P rk ´ 1, ks, s1pxq

px´k`1qpx´kq
ě 1.

3. For all x P r0, k ´ 1s Y rk, 2k ´ 1s, s1pxq

px´k`1qpx´kq
ď 1.

4. For all x P r2k ´ 1, ns,
ˇ

ˇ

ˇ

s1pxq

px´k`1qpx´kq

ˇ

ˇ

ˇ
ď n40k.

Proof. For k “ 1, we can take s1pxq “ xpx ´ 1q so we can assume that n ě k ě 2. For k ě 2,
we use the following construction.1

▶ Definition 12. For all natural numbers k ě 2, define gkpxq to be the polynomial

gkpxq “ x16kpx ´ 2k ` 1q16k
ź

iPt0,...,2k´1uztk´1,ku

px ´ iq.

▶ Definition 13. Given a natural number n and k P t2, 3, . . . , nu, we define s1pxq as follows:
1. If k is odd, then we define s1pxq “

gkpxq

gkpk´1q
px ´ k ` 1qpx ´ kq.

2. If k is even, then we define s1pxq “ ´
gkpxqpx`1qpx´2kq

gkpk´1qkpk`1q
px ´ k ` 1qpx ´ kq.

1 Definitions 12 and 13 are only used in the current section, Section 3.
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We verify the desired properties. We first show that s1
`
řn

i“1 xi

˘

is a sum of squares (modulo
the Boolean axioms). If k is odd, then since gkpk ´ 1q ą 0,

ś2k´1
i“0

´

`
řn

i“1 xi

˘

´ i
¯

is a sum
of squares (modulo the Boolean axioms), and by [33, Lemma 4.4],

s1

˜

n
ÿ

i“1
xi

¸

“

`
řn

i“1 xi

˘16k
p
`
řn

i“1 xi

˘

´ 2k ` 1q16k

gkpk ´ 1q

2k´1
ź

i“0

¨

˝

˜

n
ÿ

i“1
xi

¸

´ i

˛

‚

is a sum of squares (modulo the Boolean axioms). If k is even, then since gkpk ´ 1q ă 0,
`
řn

i“1 xi

˘

` 1 and
ś2k

i“0

´

`
řn

i“1 xi

˘

´ i
¯

are sum of squares (modulo the Boolean axioms),

s1

˜

n
ÿ

i“1
xi

¸

“ ´

`
řn

i“1 xi

˘16k
p
`
řn

i“1 xi

˘

´ 2k ` 1q16k

gkpk ´ 1qkpk ` 1q

¨

˝

˜

n
ÿ

i“1
xi

¸

` 1

˛

‚

2k
ź

i“0

¨

˝

˜

n
ÿ

i“1
xi

¸

´ i

˛

‚

is a sum of squares (modulo the Boolean axioms). Finally, to argue about the degree, note
that by [33, Lemma 4.4],

ś2k´1
i“0

´

`
řn

i“1 xi

˘

´ i
¯

has a sum of squares (modulo the Boolean
axioms) certificate of degree 2k and thus, for all k, s1

`
řn

i“1 xi

˘

has a sum of squares (modulo
the Boolean axioms) certificate of degree Opkq.

For the fourth property, observe that for x P r0, ns, every term in the numerator (except
for px ` 1q when k is even) has magnitude at most n, every term in the denominator has
magnitude at least 1, and there are less than 40k terms in the numerator.

The second and third properties follow immediately from the following lemma.

▶ Lemma 14. For all natural numbers k ě 2, gkpxq satisfies the following properties:
1. For all x P r0, 2k ´ 1s, gkp2k ´ 1 ´ xq “ gkpxq.
2. For all x P rk ´ 1, ks, gkpxq

gkpk´1q
ě 1.

3. For all x P r0, k ´ 1s Y rk, 2k ´ 1s,
ˇ

ˇ

ˇ

gkpxq

gkpk´1q

ˇ

ˇ

ˇ
ď 1.

Proof. Since the first and second properties hold for every term in the product gkpxq “

p´1qk´1 `

xpx ´ 2k ` 1q
˘16k

´

śk´2
i“0 px ´ iqp2k ´ 1 ´ x ´ iq

¯

, they hold for gkpxq as well.
By symmetry, it suffices to show the third property for x P r0, k ´1s. For x P t0, 1, . . . , k ´

2u, gkpxq “ 0 and for x P pk ´ 2, k ´ 1q, the third property holds for every term in
this product, so it holds for gkpxq as well. To show that the third property holds for
x P r0, k ´ 2szt0, 1, . . . , k ´ 2u, we compare gkpx ´ mq and gkpxq, where x P pk ´ 2, k ´ 1q

and m P t0, 1, . . . , k ´ 2u. For this, we decompose gkpxq as gkpxq “ akpxqbkpxq16k, where
akpxq “

ś

iPt0,...,2k´1uztk´1,kupx ´ iq and bkpxq “ xp2k ´ 1 ´ xq.

▶ Lemma 15. Let akpxq “
ś

iPt0,...,2k´1uztk´1,kupx ´ iq “

´

śk´2
i“0 px ´ iq

¯ ´

ś2k´1
i“k`1 px ´ iq

¯

.

For all x P pk ´ 2, k ´ 1q and all m P t1, . . . , k ´ 2u,
ˇ

ˇ

ˇ

akpx´mq

akpxq

ˇ

ˇ

ˇ
ď e

16m2
k .

Proof. Observe that
ˇ

ˇ

ˇ

ˇ

akpx ´ mq

akpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

śm
j“1 px ´ k ` 2 ´ jq
śm

j“1 px ` 1 ´ jq
¨

śm
j“1 px ´ 2k ` 1 ´ jq
śm

j“1 px ´ k ´ jq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

śm
j“1 pk ´ 2 ´ x ` jq
śm

j“1 pk ´ x ` jq
¨

śm
j“1 p2k ´ x ´ 1 ` jq
śm

j“1 px ´ m ` jq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ź

j“1

ˆ

k ` 1 ` j

k ´ 2 ´ m ` j

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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We distinguish between two cases.
1. If m ď 3k

4 ´ 1, observe that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ź

j“1

ˆ

k ` 1 ` j

k ´ 2 ´ m ` j

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

m
ź

j“1

ˆ

1 `
m ` 3

k ´ 2 ´ m ` j

˙

ď

m
ź

j“1

ˆ

1 `
m ` 3

k ´ m ´ 1

˙

ď

m
ź

j“1
e

m`3
k´m´1 “ e

mpm`3q

pk´m`1q ď e
16m2

k .

2. If m ą 3k
4 ´ 1, then m ě 3k

4 ´ 3
4 ě 3k

8 (as k ě 2). Thus,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ź

j“1

ˆ

k ` 1 ` j

k ´ 2 ´ m ` j

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k´2
ź

j“1

ˆ

k ` 1 ` j

j

˙

“
p2k ´ 1q!

pk ´ 2q!pk ` 1q! ď 22k´1 ď e
16m2

k . ◀

▶ Lemma 16. Let bkpxq “ xp2k ´ 1 ´ xq. For x P pk ´ 2, k ´ 1q and m P rk ´ 2s,
ˇ

ˇ

ˇ

bkpx´mq

bkpxq

ˇ

ˇ

ˇ
ď

e´ m2
k2 .

Proof. Observe that

bkpx ´ mq

bkpxq
“

px ´ mqp2k ´ 1 ` m ´ xq

xp2k ´ 1 ´ xq
“

xp2k ´ 1 ´ xq ´ p2k ´ 1 ´ 2xqm ´ m2

xp2k ´ 1 ´ xq

ď 1 ´
m2

xp2k ´ 1 ´ xq
ď 1 ´

m2

k2 ď e´ m2
k2 . ◀

▶ Corollary 17. For all x P pk ´ 2, k ´ 1q and m P t1, . . . , k ´ 2u,
ˇ

ˇ

ˇ

gkpx´mq

gkpxq

ˇ

ˇ

ˇ
ď 1.

Proof. By Lemmas 15 and 16,
ˇ

ˇ

ˇ

gkpx´mq

gkpxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

akpx´mq

akpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

bkpx´mq

bkpxq

ˇ

ˇ

ˇ

16k

ď e
16m2

k

ˆ

e´ m2
k2

˙16k

“ 1.

◀

◀

◀

3.1.2 Constructing the polynomial s2pxq

We now construct the polynomial s2pxq.

▶ Lemma 18. For all n P N and all k P rns, there exists a polynomial s2pxq of degree
Op

?
knlogpnqq satisfying the following properties:

1. s2pxq is a sum of squares.
2. For all x P rk ´ 1, ks, s2pxq ě 1.
3. For all x P r0, k ´ 1s Y rk, 2k ´ 1s, s2pxq ď 1.
4. For all x P r2k ´ 1, ns, s2pxq ď n´40k.

Proof.

▶ Lemma 19. For C :“ e8
?

3 and k P t0, . . . , rn{2su, Hk “ T 2?
n
k

´

2 x
n ´ 1 ´ 2 2k´1

n

¯

satisfies
the following properties:
1. For all x P r2k ´ 1, ns, Hkpxq ď 1.
2. For all k P r0, 2k ´ 1s, H 1

kpxq ă 0.
3. Hkp0q ď C.
4. Hkpkq ě 1.5.
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Proof. Note that Hkpxq “ T 2?
n
k

´

2 x
n ´ 1 ´ 2 2k´1

n

¯

. Hence, Hkp2k´1q “ T 2?
n
k

p´1q “ 1 and

Hkpnq “ T 2?
n
k

´

1 ´ 2 2k´1
n

¯

ď 1, which implies the first property. We prove Properties (2)
and (3). By Lemma 7, for k such that 4k ´ 2 ď n, we have

Hkp0q “ T 2?
n
k

ˆ

´1 ´
4k ´ 2

n

˙

ď

˜

1 `

c

32k ´ 16
n

¸2
?

n
k

ď e2
?

32k´16
k ď e8

?
3

and for k such that 4k ´ 2 ě n, by Lemma 7, for c ě n, we have

Hkp0q “ T 2?
n
k

ˆ

´1 ´
4k ´ 2

n

˙

ď

ˆ

1 `
12k

n

˙2
?

n
k

ď

˜

1 `

c

12k

n

¸4
?

n
k

ď e4
?

12k
k ď e8

?
3.

Moreover, by Lemma 7 we have

Hkpkq “ T 2?
n
k

ˆ

´1 ´
2k ´ 2

n

˙

ě
1
4

˜

1 `

c

4k ´ 4
n

¸2
?

n
k

ě
1
4

˜

1 `

c

2k

n

¸2
?

n
k

,

where the last inequality holds because k ě 2. Finally, since n ě 2k,

1
4

˜

1 `

c

2k

n

¸2
?

n
k

ě
1
422

?
n
k

?
2k
n “

1
422

?
2 ě 1.5. ◀

▶ Lemma 20. For any constants a, b, C such that 1.5 ď a ă b ă C, there is a sum of squares
polynomial pa,b,Cpxq of degree at most 8rC2s such that the following hold:
1. For all x P ra, bs, pa,b,Cpxq ě 1.
2. For all x P r0, 1s, |pa,b,Cpxq| ď 1

2 .
3. For all x P r0, as Y rb, Cs, |pa,b,Cpxq| ď 1.

Proof. We can take the polynomial

pa,b,Cpxq “

ˆ

1 ´
px ´ aqpx ´ bq

C2

˙4rC2
s

.

We now make the following observations:
1. For all x P ra, bs, 1 ´

px´aqpx´bq

C2 ě 1 so pa,b,Cpxq ě 1.
2. For all x P r0, 1s, |1 ´

px´aqpx´bq

C2 | ď 1 ´ 1
4C2 so |pa,b,Cpxq| ď

`

1 ´ 1
4C2

˘4rC2
s

ď 1
2 .

3. For all x P r0, as Y rb, Cs, |1 ´
px´aqpx´bq

C2 | ď 1 so |pa,b,Cpxq| ď 1. ◀
We construct the polynomial s2pxq. For k P t2, . . . , rn{2su, let s2pxq :“
pa,b,C

`

Hkpxq
˘40rk logpnqs

, where a “ Hkpkq, b “ Hkpk ´ 1q, and C “ e8
?

3 is the constant
given by Lemma 19.

▶ Lemma 21. For any k P t2, . . . , rn{2su, s2pxq satisfies the properties in Lemma 18.

Proof. We make the following observations:
1. For all x P r0, k´1sYrk, 2k´1s, Hkpxq P r0, HkpkqsYrHkpk´1q, Cs so |pa,b,CpHkpxqq| ď 1

and thus s2pxq “ pa,b,C

`

Hkpxq
˘40rk logpnqs

ď 1.
2. For all x P rk ´ 1, ks, Hkpxq P rHkpkq, Hkpk ´ 1qs so pa,b,CpHkpxqq ě 1 and thus s2pxq “

pa,b,C

`

Hkpxq
˘40rk logpnqs

ě 1.
3. For all x P r2k ´ 1, ns, Hkpxq P r0, 1s so |pa,b,CpHkpxqq| ď 1 and thus, s2pxq “

pa,b,C

`

Hkpxq
˘40rk logpnqs

ď n´40k. ◀
◀
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4 SoS rank upper bound for the MK problem via SQF certification

In this section, we prove an upper bound of Op
?

n logpP qq on the SoS rank for the MK problem,
which, together with the lower bound presented in [28], constitutes proof of Theorem 2.

We first discuss the necessary properties a candidate SoS certificate for the MK problem
has to satisfy. A degree d SoS certificate for the MK problem is of the form

ř

iPrns xi ´ 1 “

s0pxq ` s1pxq

´

ř

iPrns xi ´ 1
P

¯

, where s0, s1 are SoS polynomials of degree 2d ` 2 and 2d,
respectively. Through permutation of indices, the existence of an SoS certificate for the
MK problem implies the existence of an SoS certificate such that s1 is symmetric, that is,
there exists s̃1 : R Ñ R such that s1pxq “ s̃1p|x|q for all x P t0, 1un. Since s0 is globally
nonnegative, s̃1 needs to satisfy

|x| ´ 1 ě s̃1p|x|q

ˆ

|x| ´
1
P

˙

for all x P t0, 1un. (4.1)

Thus, s̃1p0q ě P , s̃1p1q “ 0, and s̃1pxq ď x´1
x´ 1

P

for x P t2, . . . , nu.
We will construct a sum of squares polynomial s̃1 which satisfies the following slightly

stronger conditions:
1. s̃1p0q ą P

2. For all x P r1, 2s, s̃1pxq ď x´1
2

3. For all x P r2, ns, s̃1pxq ď 1
2

We will then observe that these conditions imply that

s̃0p|x|q “ |x| ´ 1 ´ s̃1p|x|q

ˆ

|x| ´
1
P

˙

is positive for all x P t0u Y p1, ns which is sufficient to show that s̃0pxq is a sum of squares
modulo the Boolean constraints.

A polynomial T2
?

np x´1`r0
n ´1q, where r0 is the smallest root of the polynomial T2

?
np x

n ´

1q, which for P “ 2 satisfies similar requirements was constructed in [28, Lemma 15] using
properties of Chebyshev polynomials.

To obtain our polynomial s̃1pxq, we generalize this construction using three parameters,
the degree d of the Chebyshev polynomial, a scaling factor α, and an even power m.

▶ Definition 22. Given an α ą 0, a natural number d, and an even natural number m, define
s̃α,d,mpxq :“ αTd

´

x´1`r0
n ´ 1

¯m

, where r0 is the smallest root of the polynomial Td

`

x
n ´ 1

˘

.

▶ Lemma 23. r0 ď π2n
4d2 .

Proof. Observe that Tdpxq “ cospd cos´1pxqq so the first zero of Tdpxq is cos
`

´π ` π
2d

˘

ď

´1 ` π2

4d2 . Thus, the first zero of Td

`

x
n ´ 1

˘

is at most π2n
4d2 . ◀

▶ Lemma 24. For d ą π
2

?
n the polynomial s̃α,d,mpxq satisfies the following properties:

1. For all x P r1, ns, s̃α,d,mpxq ď min t αd2

n px ´ 1q, αu.

2. s̃α,d,mp0q ě α

˜

1
4

ˆ

1 `

b

2p1´r0q

n

˙d
¸m

.
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Proof. For the first statement, observe that by the Markov Brothers’ Theorem, since |Tdpxq| ď

1 for all x P r´1, 1s, |T 1
dpxq| ď d2 for all x P r´1, 1s. This implies that

ˇ

ˇ

ˇ

ˇ

T 1
d

´

x´1`r0
n ´ 1

¯

ˇ

ˇ

ˇ

ˇ

ď d2

n

for all x P r1 ´ r0, 2n ` 1 ´ r0s. Since Td

´

x´1`r0
n ´ 1

¯

“ 0, when x “ 1,
ˇ

ˇ

ˇ

ˇ

Td

´

x´1`r0
n ´ 1

¯

ˇ

ˇ

ˇ

ˇ

ď

min t
d2

px´1q

n , 1u for all x P r1, ns, which implies the result.

For the second statement, by Lemma 7, if 0 ď c ď n then |Tdp´1 ´ c
n q| ě 1

4

ˆ

1 `

b

2c
n

˙d

.

Applying this lemma with c “ 1 ´ r0, the result follows. ◀

▶ Corollary 25. If the conditions
1. d ě 3

?
n,

2. α ď n
2d2 ď 1

2 ,
3. m ą

lnpP q´lnpαq

d ln
ˆ

1`

b

2p1´r0q

n

˙

´lnp4q

,

are satisfied, then the following properties hold:
1. s̃α,d,mp0q ą P .
2. For all x P r1, 2s, s̃α,d,mpxq ď x´1

2 .
3. For all x P r2, ns, s̃α,d,mpxq ď 1

2 .
Thus, px ´ 1q ´ s̃α,d,mpxqpx ´ 1

P q ą 0 whenever x P t0u Y p1, ns.

Proof. The first statement follows from algebraic manipulations provided that
1
4

ˆ

1 `

b

2p1´r0q

n

˙d

ě 1. To confirm that this holds, observe that r0 ď π2n
4d2 ď 1

2 . Thus,

˜

1 `

c

2p1 ´ r0q

n

¸d

ě

ˆ

1 `
1

?
n

˙d

ě 2
d?
n ě 8.

For the second and third statements, we use the facts that for all x P r1, ns, s̃α,d,mpxq ď
αd2

n px ´ 1q and s̃α,d,mpxq ď α, respectively.
To show that px ´ 1q ´ s̃α,d,mpxqpx ´ 1

P q ą 0 whenever x P t0u Y p1, ns, we make the
following observations:
1. For x “ 0, ´1 ´ s̃α,d,mp0qp´ 1

P q ą ´1 ´ P
`

´ 1
P

˘

“ 0.
2. For x P p1, 2s, px ´ 1q ´ s̃α,d,mpxqpx ´ 1

P q ď px ´ 1q ´ x´1
2

`

x ´ 1
P

˘

ą 0.
3. For x P r2, ns, px ´ 1q ´ s̃α,d,mpxqpx ´ 1

P q ď px ´ 1q ´ 1
2

`

x ´ 1
P

˘

ą 0. ◀

We now confirm that

s̃0 “ px ´ 1q ´ s̃α,d,mpxq

ˆ

x ´
1
P

˙

is a sum of squares modulo the Boolean axioms. To see this, observe that since s̃0pxq ą 0
for x P t0u Y p1, ns, s̃0pxq must have an even number of roots in p0, 1s and no other roots in
r0, ns. Thus, we can write

s̃0pxq “ p
l

ź

i“1
px ´ aiqpx ´ biq

for some polynomial p which is positive on r0, ns and some real roots a1, . . . , al, b1, . . . , bl P

p0, 1s. Since p is positive on r0, ns, p is a sum of squares modulo the Boolean axioms. By
Corollary 9, since |x|p|x| ´ 1q is a sum of squares modulo the Boolean axioms, for each i P rls,
px ´ aiqpx ´ biq is also a sum of squares modulo the Boolean axioms. Thus, s̃0pxq is a sum
of squares modulo the Boolean axioms.
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Finally, we observe that we can satisfy the required conditions on d, α, and m by taking
d “ r3

?
ns, α “ 1

2d2 « 1
18n , and m “ OplogpP qq, which gives a sum of squares certificate of

degree Op
?

n logpP qq.

5 SoS rank upper bound for the SC problem via SQF certification

In this section, we refute the Bienstock–Zuckenberg conjecture for the SC problem. We
provide a degree Op

?
n logpnqq SoS certificate for the SC problem on the Boolean hypercube,

thus proving Theorem 3. For this proof, we use the SoS rank for certifying SQFs for k “ 2 in
Theorem 1. We present an alternative direct proof in Section 6.

We begin this section with a discussion on the properties necessary for an SoS polynomial
s to even be considered as a possible candidate for an SoS certificate for the SC problem. An
SoS certificate for the SC problem is of the form

ř

iPrns xi ´ 2 “ s0pxq `
ř

iPrns sipxqgipxq,

where gipxq “

´

ř

jPrnsztiu xj ´ 1
¯

. As opposed to the discussion in Section 4, an SoS
certificate for the SC problem not only has multiple constraints but also displays a certain
type of asymmetry, which is present in the formulation of the polynomials gi for i P rns. One
could hope to abuse this asymmetry by constructing different SoS polynomials si P Σn,d for
certain d P rns, but for this proof, we proceed in a similar fashion as for the MK problem
and instead construct only one symmetric SoS polynomial s : t0, 1un Ñ R and look for
the certificate of the form

ř

iPrns xi ´ 2 “ s0pxq `
ř

iPrns spxqgipxq. Through permutation of
indices, the existence of an SoS certificate for the SC problem implies the existence of an SoS
certificate such that s is symmetric, that is, there exists an s̃ : R Ñ R such that spxq “ s̃p|x|q

for all x P t0, 1un. As for the MK problem, we are interested in the requirements that
polynomial s̃ needs to satisfy such that s constitutes part of an SoS certificate for the SC
problem. Let gpxq :“

ř

iPrns gipxq “ pn ´ 1qp
řn

i“1 xiq ´ n and note that g is a symmetric
polynomial; there exists a univariate polynomial g̃ such that g̃p|x|q “ gpxq for all x P t0, 1un.
Since s0 is globally nonnegative, this implies that s needs to satisfy

|x| ´ 2 ě s̃p|x|q
`

|x|p|x| ´ 2q ` pn ´ |x|qp|x| ´ 1q
˘

“ s̃p|x|qppn ´ 1q|x| ´ nq “ s̃p|x|qg̃p|x|q for all x P t0, 1un. (5.1)

This implies that s̃p0q ě 2
n , s̃p1q ě 1, s̃p2q “ 0 and s̃pxq ď x´2

3pn´1qx´n for all x P t3, 4, . . . , nu.
We will construct a sum of squares polynomial s̃pxq which satisfies the following slightly
stronger conditions:
1. s̃pxq ě 1 for all x P r0, 1s.
2. For all x P r1, 2q, s̃pxq

x´2 ă 0 and s̃pxq

x´2 is increasing.
3. s̃pxq ď

px´2q

2n for all x P r2, 3s.
4. s̃pxq ď 1

2n for all x P r3, ns.
We will then observe that these conditions imply that s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq is
positive for x P r0, 1q Y p2, ns and has exactly two zeros in the interval r1, 2s, one of which is
x “ 2. We can then use Theorem 1 and Corollary 9 to show that s̃0 is a sum of squares of
degree degps̃q ` Op

?
n logpnqq modulo the Boolean axioms.

▶ Lemma 26. For d “ 3
?

n, α “ 1
18n , and m “ 2rlog2p

?
18nqs the polynomial s̃pxq “

s̃α,d,mpx ´ 1q satisfies the following properties:
1. s̃pxq ě 1 for all x P r0, 1s.
2. For all x P r1, 2q, s̃pxq

x´2 ă 0 and s̃pxq

x´2 is increasing.
3. s̃pxq ď

px´2q

2n for all x P r2, 3s.
4. s̃pxq ď 1

2n for all x P r3, ns.
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Proof. For the first statement, just as in the proof of Corollary 25, r0 ď π2n
4d2 ď 1

2 . Thus,

˜

1 `

c

2p1 ´ r0q

n

¸d

ě

ˆ

1 `
1

?
n

˙d

ě 2
d?
n ě 8

Hence, by Lemma 24, s̃p1q “ s̃α,d,mp0q ě α2m ě 1. Since degps̃q is even, all roots of s̃ are
real and the smallest root of s̃ is 2, s̃ is positive and decreasing when x ă 2 so s̃pxq ě 1
whenever x P r0, 1s, as needed.

For the second statement, observe that since degps̃q is even, all roots of s̃ are real and
the smallest root of s̃ is 2, s̃pxq

x´2 is negative and increasing whenever x ă 2.
For the third statement, observe that by Lemma 24, for all x P r2, 3s, s̃pxq “ s̃α,d,mpx´1q ď

α d2

n px ´ 2q ď x´2
2n .

For the fourth statement, observe that by Lemma 24, for all x P r3, ns, s̃pxq “ s̃α,d,mpx ´

1q ď α ă 1
2n . ◀

▶ Corollary 27. For d “ 3
?

n, α “ 1
n , m “ 2rlog2pnqs, and s̃pxq “ s̃α,d,mpx ´ 1q the

polynomial s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq is positive for x P r0, 1q Y p2, ns and has exactly
two zeros in the interval r1, 2s, one of which is x “ 2.

Proof. We make the following observations:
1. For all x P r0, 1q,

s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq ě x ´ 2 ´ ppn ´ 1qx ´ nq “ pn ´ 2qp1 ´ xq ą 0.

2. For all x P r1, 2s, s̃0
x´2 “ 1 ´ ppn ´ 1qx ´ nq s̃

x´2 . When x P r n
n´1 , 2s, ppn ´ 1qx ´ nq s̃

x´2 ď 0
so s̃

x´2 ą 0. When x P r1, n
n´1 q, both ppn ´ 1qx ´ nq and s̃

x´2 are negative and increasing
so ppn´1qx´nq s̃

x´2 is positive and decreasing and thus s̃0
x´2 is increasing. Since s̃0p1q

1´2 ď 0
and s̃0p n

n´1 q
n

n´1 ´2 ą 0, s̃0pxq

x´2 must have exactly one zero in the interval r1, n
n´1 s.

3. For all x P p2, 3s, s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq ě x ´ 2 ´
pn´1qx´n

2n px ´ 2q ą 0.
4. For all x P r3, ns, s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq ě x ´ 2 ´

pn´1qx´n
2n ą x

2 ´ 3
2 ě 0.

◀

▶ Corollary 28. s̃0p|x|q is a sum of squares of degree Op
?

n logpnqq modulo the Boolean
axioms.

Proof. Since s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq is positive for x P r0, 1q Y p2, ns and has
exactly two zeros in the interval r1, 2s, one of which is x “ 2, we can write

s̃0pxq “ p̃px ´ aqpx ´ 2q,

for some a P r1, 2q where p̃pxq is positive for has no real roots in the interval r0, ns. Since
p̃pxq is positive and has no real roots in the interval r0, ns, p̃p|x|q is a sum of squares modulo
the Boolean axioms. By Theorem 1 and Corollary 9, px ´ aqpx ´ 2q is a sum of squares of
degree Op

?
n logpnqq modulo the Boolean axioms. ◀

Thus, there exists a degree Op
?

n logpnqq SoS certificate of nonnegativity for the SC problem.
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6 Alternative Proof for the SoS rank upper bound for the SC problem

In this section, we provide an alternative proof of Theorem 3. More precisely, we prove an
Op

?
n logpnqq upper bound on the SoS rank for the SC problem without using Theorem 1.

By the problem formulation, Definition (1.2), and Equation (2.1), the SoS rank for the SC
Problem is the smallest d for which there exist SoS polynomials s0 P Σn,2d`2 and si P Σn,2d

for i P rns such that

n
ÿ

i“1
xi ´ 2 “ s0pxq `

n
ÿ

i“1
si

¨

˚

˚

˝

n
ÿ

j“1
j‰i

xj ´ 1

˛

‹

‹

‚

.

Equivalently, it is the smallest positive integer d such that
řn

i“1 xi ´ 2 P ΣG
n,d.

To prove the SoS rank upper bound for the SC problem, we define the polynomials
h1pxq :“ |x| ´ 1 and h2pxq :“ |x|

`

|x| ´ 2
˘

and require the following lemma, in which we use
the asymmetry inherent to the constraints of the SC problem.

▶ Lemma 29. For polynomials h1, h2 it holds that h1pxq P ΣG
n,0 and h2pxq P ΣG

n,1.

Proof. Consider the first polynomial, h1, and note that

n
ÿ

i“1
xi ´ 1 “

1
n ´ 1

n
ÿ

i“1

¨

˚

˚

˝

n
ÿ

j“1
j‰i

xj ´ 1

˛

‹

‹

‚

`
1

n ´ 1 P ΣG
n,0.

Polynomial h2 can be written as

n
ÿ

j“1

xj

¨

˝

n
ÿ

i“1

xi ´ 2

˛

‚“

n
ÿ

j“1

¨

˚

˝

xj

¨

˝

n
ÿ

i“1

xi ´ xj ´ 1

˛

‚` px2
j ´ xjq

˛

‹

‚

“

n
ÿ

j“1

¨

˚

˚

˚

˝

x2
j

¨

˚

˚

˝

n
ÿ

i“1
i‰j

xi ´ 1

˛

‹

‹

‚

´ px2
j ´ xjq

¨

˚

˚

˝

n
ÿ

i“1
i‰j

xi ´ 1

˛

‹

‹

‚

` px2
j ´ xjq

˛

‹

‹

‹

‚

P ΣG
n,1. ◀

Although Lemma 29 uses asymmetry in the constraints of the SC problem, both h1 and
h2 are symmetric polynomials. We can thus define polynomials h̃1, h̃2 : R Ñ R such that
h̃1p|x|q “ h1pxq, and h̃2p|x|q “ h2pxq, respectively. We are working towards a proof of the
existence of polynomials p1, p2 : R Ñ R such that

px ´ 2q ´ p1pxqh̃1pxq ´ p2pxqh̃2pxq ě 0 for all x P r0, ns. (6.1)

6.1 Construction of polynomials p1, p2

We consider necessary, but not sufficient requirements that the polynomials p1 and p2 have to

satisfy, that is, p1p2qh̃1p2q`p2p2qh̃2p2q “ 0,
”

p1h̃1 ` p2h̃2

ı

1

p2q “ 1, and
”

p1h̃1 ` p2h̃2

ı

2

p2q ă

0. It is easy to check that these requirements are satisfied if p1 has a double root at x “ 2,
p2p2q “ 1{2, and 1 ` 4p

1

2p2q ` 2 p1p2q

px´2q2 ă 0. We use these guidelines to construct polynomials

p1pxq :“ 1
2n2c1

px ´ 2q2 T 2
2

?
n logpnq

ˆ

2x ´ 2
n

´ 1
˙

, (6.2)

p2pxq :“ 1
2nc2

T 2
2

?
n logpnq

ˆ

2x ´ 3
n

´ 1
˙

,
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where c1 and c2 are constants equal to 1
2n2 T 2

2
?

n logpnq

`

´ 2
n ´ 1

˘

and 1
n T 2

2
?

n logpnq

`

´ 2
n ´ 1

˘

,
respectively, such that p1p1q “ 1 and p2p2q “ 1{2.

▶ Lemma 30. There exists C P N such that for n ě C, the polynomial p1 satisfies the
following properties:
1. p1pxq ě 4 for x P r0, 1

2 s.
2. p1pxq ď

`

´0.9px ´ 1q ` 1
˘

px ´ 2q2 for x P r1, 2s.
3. p1pxq ď 1

2n2 px ´ 2q2 for x P r2, ns.

Proof. Since p1pxq is decreasing for x ď 1, to prove Property (1) it is enough to show that
p1p 1

2 q ě 4. By Lemma 7 and for sufficiently big n, it holds

p1p1{2q “

9
4 T 2

2
?

n logpnq

`

´3
n ´ 1

˘

T 2
2

?
n logpnq

`

´ 2
n ´ 1

˘ ě
1
2

¨

˚

˝

1 `

b

6
n

1 `

b

5
n

˛

‹

‚

4
?

n logpnq

.

Since 1
2

ˆ

1`
?

6
n

1`
?

5
n

˙4
?

n logpnq

ě 4 for n ě 32 and by monotonicity, Property (1) is satisfied.

To prove Property (3), note that for every x P r2, ns and d P N we have T 2
d p2x´2

n ´

1q ď 1 and for every n ě 2, by Lemma 7, we have c1 “ 1
2n2 T 2

2
?

n logpnq

`

´ 2
n ´ 1

˘

ě

1
2n2

1
4

ˆ

1 `

b

4
n

˙4
?

n logpnq

ě 1.

To prove Property (2), we show that 1
2n2 T 2

2
?

n logpnq

`

2 x´2
n ´ 1

˘

ď
`

´0.9px ´ 1q ` 1
˘

for
every x P r1, 2s. By construction, it is satisfied for x “ 1 and by Property (3), it is satisfied for
x “ 2. Since the function T 2

2
?

n logpnq

`

2 x´2
n ´ 1

˘

is convex in the interval r1, 2s, the property
is satisfied for x P r1, 2s. ◀

▶ Lemma 31. There exists a constant C P N such that for n ě C, the polynomial p2 satisfies
the following properties:
1. p2pxq ě 4 for x P r0, 1s.
2. p2p2q “ 1

2 .
3. p

1

2pxq ď ´1 for x P r1, 2s.
4. p2pxq ď ´0.45px ´ 2q ` 1

2 for x P r2, 3s.
5. p2pxq ď 1

2n for x P r3, ns.

Proof. Since p2pxq is decreasing for x ď 1, to prove Property (1), it is enough to show that
p2p1q ě 4. For sufficiently big n we get:

p2p1q :“
1
2 T 2

2
?

n logpnq

`

´ 4
n ´ 1

˘

T 2
2

?
n logpnq

`

´ 2
n ´ 1

˘ ě
1
8

¨

˚

˝

´1 ´

b

8
n

´1 ´

b

5
n

˛

‹

‚

4
?

n logpnq

.

Since 1
8

ˆ

´1´
?

8
n

´1´
?

5
n

˙4
?

n logpnq

ě 4 for n ě 13 and by monotonicity, Property (1) is satisfied.

Property (2) is satisfied by construction.
Since for every x P r3, ns and d P N we have

∣∣Tdp2 x´3
n ´ 1q

∣∣ ď 1 and for every n ě 2, by

Lemma 7, we have c2 “ 1
n T 2

2
?

n logpnq

`

´ 2
n ´ 1

˘

ě 1
n

1
4

ˆ

´1 ´

b

4
n

˙4
?

n logpnq

ě 1, Property (5)

is satisfied.
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Since p2pxq is convex for x P r1, 2s, to prove Property (3), it is enough to show p
1

2p2q ď ´1.
Note that BTdpxq

Bx “ dUd´1pxq and BT 2
d pxq

Bx “ 2dTdpxqUd´1pxq, where Udpxq is a Chebyshev
polynomial of the second type. Thus,

p
1

2pxq “
4 logpnqT2

?
n logpnq

´

2px´3q

n ´ 1
¯

U2
?

n logpnq´1

´

2px´3q

n ´ 1
¯

?
nT2

?
n logpnq

`

´1 ´ 2
n

˘ ,

which implies that

p
1

2p2q “
4 logpnqU2

?
n logpnq´1

`

´1 ´ 2
n

˘

?
nT2

?
n logpnq

`

´1 ´ 2
n

˘ “

«

B

Bx

T2
?

n logpnq

`

2 x´3
n ´ 1

˘

T2
?

n logpnq

`

´1 ´ 2
n

˘

ff

p2q .

Since T2
?

n logpnq

`

2 x´3
n ´ 1

˘

for x “ 2.5 takes at most half of the value for x “ 2 and since
T2

?
n logpnq

`

2 x´3
n ´ 1

˘

is convex in the interval r2, 3s, p
1

2pxq ď ´1. By Lemma 7,

T 2
2

?
n logpnq

`

´ 2
n ´ 1

˘

T 2
2

?
n logpnq

`

´ 1
n ´ 1

˘ ě
1
4

¨

˚

˝

´1 ´

b

4
n

´1 ´

b

3
n

˛

‹

‚

2
?

n logpnq

.

Since 1
4

ˆ

´1´
?

4
n

´1´
?

3
n

˙2
?

n logpnq

ě 2 for n ě 100 and by monotonicity, Property (3) is satisfied.

By Property (2), Property (4) holds for x “ 2. By Property (5), it holds for x “ 3 and
n ě 10. Since p2pxq is convex for x P r2, 3s, the property holds for x P r2, 3s. ◀

Now we are ready to prove the main lemma of this section.
▶ Lemma 32. It holds that

fpxq :“ x ´ 2 ´ p1pxqh1pxq ´ p2pxqh2pxq ě 0 for x P r0, ns. (6.3)

Proof. Note that h1pxq, h2pxq ď 0 for x P r0, 1s. For all x P r0, 1
2 s, p1pxq is decreasing and

h1pxq is increasing in x. Thus, by Property (1), for x P r0, 1
2 s, fpxq ě x ´ 2 ´ p1pxqh1pxq ě

´2 ´ p1p1{2qh1p1{2q ě ´2 ` 4 ¨ 1
2 ě 0. For x P r 1

2 , 1s, both p2pxq and h2pxq are decreasing.
Thus, for x P r 1

2 , 1s and by Property (1), fpxq ě x ´ 2 ´ p2pxqh2pxq ě ´ 3
2 ´ p2p1qh2p1{2q ě

´ 3
2 ` 4 ¨ 3

4 ě 0. To prove the statement for x P r1, 2s, we show that for every a P r0, 1s,
we have fp2 ´ aq ě 0. By construction, we have fp2q “ 0. Thus, the property holds
for a “ 0. By Property (2), for polynomial p1, we have p1p2 ´ aq ď p0.9a ` 0.1qa2. By
Properties (2) and (3), for polynomial p2, we have p2p2 ´ aq ě 1{2 ` a. Thus, fp2 ´ aq ě

´a ´ p0.9a ` 0.1qa2p1 ´ aq ` p1{2 ` aqap2 ´ aq “ a2pp0.9a ´ 1.8qa ` 1.4q, which is nonnegative
for a P r0, 1s. This proves the statement for x P r1, 2s.

To prove the statement for x P r2, 3s we show that for every a P r0, 1s, it holds that
fp2`aq ě 0. By Property (3), for x P r2, 3s and n ě 2, we get p1p2`aq ď 1

4 a2. By Property (4),
we get that p2p2`aq ď ´0.45a` 1

2 . Thus, fp2`aq ě a´ 1
4 a2p1`aq´

`

´0.45a ` 1
2

˘

p2`aqa “

p0.15 ` 0.2aqa2, which is non-negative for a P r0, 1s. This proves the statement for x P r2, 3s.
Finally, for x P r3, ns, we have fpxq ě x ´ 2 ´ 1

2n2 px ´ 2q2px ´ 1q ´ 1
2n xpx ´ 2q ě 0. ◀

6.2 Proof of Theorem 3
By Lemma 32, x ´ 2 ´ p1pxqh1pxq ´ p2pxqh2pxq ě 0 for x P r0, ns and the degree of the
polynomial on the LHS is at most Op

?
n logpnqq. Thus, by Theorem 6, there exist SoS

polynomials s0, s1 such that x ´ 2 ´ p1pxqh1pxq ´ p2pxqh2pxq “ s0pxq ` xpn ´ xqs1pxq. Thus,
x ´ 2 “ s0pxq ` xpn ´ xqs1pxq ` p1pxqh1pxq ` p2pxqh2pxq. Remark 5 and the fact that
|x|pn ´ |x|q has a degree 1 SoS certificate over the Boolean hypercube imply the existence of
a degree Op

?
n logpnqq certificate over the Boolean hypercube for the polynomial

řn
i“1 xi ´ 2.

ICALP 2021



90:18 SoS Certification for SQFs and Its Connection to Boolean Hypercube Optimization

References
1 S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and graph

partitioning. J. ACM, 56(2):5:1–5:37, 2009.
2 B. Barak, S. B. Hopkins, J. A. Kelner, P. Kothari, A. Moitra, and A. Potechin. A nearly tight

sum-of-squares lower bound for the planted clique problem. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 428–437, 2016.

3 B. Barak, J. A. Kelner, and D. Steurer. Dictionary learning and tensor decomposition via
the sum-of-squares method. In STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
143–151, 2015.

4 B. Barak and A. Moitra. Noisy tensor completion via the sum-of-squares hierarchy. In COLT
2016, New York, USA, June 23-26, 2016, pages 417–445, 2016.

5 B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite programming hierarchies
via global correlation. In FOCS, pages 472–481, 2011.

6 B. Barak and D. Steurer. Proofs, beliefs, and algorithms through the lens of sum-of-squares,
2016. URL: https://www.sumofsquares.org.

7 Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Guruswami, and
Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph. In
SODA, 2012.

8 D. Bienstock and M. Zuckerberg. Subset algebra lift operators for 0-1 integer programming
(extended version), 2002. Extended version of: Subset algebra lift operators for 0-1 integer
programming - SIAM Journal on Optimization, 1(15): 63-95, 2004. URL: http://www.corc.
ieor.columbia.edu/reports/techreports.html.

9 Grigoriy Blekherman, Pablo A Parrilo, and Rekha R Thomas. Semidefinite optimization and
convex algebraic geometry. SIAM, 2012.

10 K. K. H. Cheung. Computation of the Lasserre ranks of some polytopes. Math. Oper. Res.,
32(1):88–94, 2007.

11 W. Cook and S. Dash. On the matrix-cut rank of polyhedra. Math. Oper. Res., 26(1):19–30,
2001.

12 Hamza Fawzi, James Saunderson, and Pablo A. Parrilo. Sparse sum-of-squares certificates on
finite abelian groups. In 54th IEEE Conference on Decision and Control, CDC 2015, Osaka,
Japan, December 15-18, 2015, pages 5909–5914, 2015. doi:10.1109/CDC.2015.7403148.

13 Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham
Rajendran. Sum-of-squares lower bounds for sherrington-kirkpatrick via planted affine planes.
In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 954–965,
2020.

14 M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,
42(6):1115–1145, 1995.

15 D. Grigoriev. Complexity of positivstellensatz proofs for the knapsack. Comput. Complexity,
10(2):139–154, 2001.

16 D. Grigoriev, E. A. Hirsch, and D. V. Pasechnik. Complexity of semi-algebraic proofs. In
STACS, pages 419–430, 2002.

17 D. Grigoriev and N. Vorobjov. Complexity of null-and positivstellensatz proofs. Ann. Pure
App. Logic, 113(1-3):153–160, 2001.

18 Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1-2):613–622, 2001.

19 V. Guruswami and A. K. Sinop. Lasserre hierarchy, higher eigenvalues, and approximation
schemes for graph partitioning and quadratic integer programming with psd objectives. In
FOCS, pages 482–491, 2011.

https://www.sumofsquares.org
http://www.corc.ieor.columbia.edu/reports/techreports.html
http://www.corc.ieor.columbia.edu/reports/techreports.html
https://doi.org/10.1109/CDC.2015.7403148


A. Kurpisz, A. Potechin, and E. S. Wirth 90:19

20 S. B. Hopkins, T. Schramm, J. Shi, and D. Steurer. Fast spectral algorithms from sum-of-
squares proofs: tensor decomposition and planted sparse vectors. In STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 178–191, 2016.

21 P. Kothari, J. Steinhardt, and D. Steurer. Robust moment estimation and improved clustering
via sum of squares. In STOC 2018, 2018.

22 P. K. Kothari, R. Mori, R. O’Donnell, and D. Witmer. Sum of squares lower bounds for
refuting any CSP. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 132–145, 2017.

23 Dmitriy Kunisky and Afonso S. Bandeira. A tight degree 4 sum-of-squares lower bound for
the sherrington-kirkpatrick hamiltonian. CoRR, abs/1907.11686, 2019. arXiv:1907.11686.

24 A. Kurpisz, S. Leppänen, and M. Mastrolilli. Sum-of-squares hierarchy lower bounds for
symmetric formulations. In Integer Programming and Combinatorial Optimization - 18th
International Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings, pages
362–374, 2016.

25 A. Kurpisz, S. Leppänen, and M. Mastrolilli. Tight sum-of-squares lower bounds for binary
polynomial optimization problems. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 78:1–78:14, 2016.

26 A. Kurpisz, S. Leppänen, and M. Mastrolilli. On the hardest problem formulations for the 0/1
lasserre hierarchy. Math. Oper. Res., 42(1):135–143, 2017.

27 A. Kurpisz, S. Leppänen, and M. Mastrolilli. An unbounded sum-of-squares hierarchy integrality
gap for a polynomially solvable problem. Math. Program., 166(1-2):1–17, 2017.

28 Adam Kurpisz. Sum-of-squares bounds via boolean function analysis. In ICALP July 9-12,
2019, Patras, Greece, 2019.

29 J. B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In Integer
Programming and Combinatorial Optimization, 8th International IPCO Conference, Utrecht,
The Netherlands, June 13-15, 2001, Proceedings, pages 293–303, 2001.

30 M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations
for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003.

31 M. Laurent. Lower bound for the number of iterations in semidefinite hierarchies for the cut
polytope. Math. Oper. Res., 28(4):871–883, 2003.

32 J. R. Lee, P. Raghavendra, and D. Steurer. Lower bounds on the size of semidefinite
programming relaxations. In STOC, pages 567–576, 2015.

33 T. Lee, A. Prakash, R. Wolf, and H. Yuen. On the sum-of-squares degree of symmetric
quadratic functions. In 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, pages 17:1–17:31, 2016.

34 László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information
Theory, 25:1–7, 1979.

35 Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for planted
clique. In Proceedings of the 47th Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, pages 87–96, 2015.

36 M. J. Moore. An n job, one machine sequencing algorithm for minimizing the number of late
jobs. Management Science, 15:102–109, 1968.

37 Katta G. Murty and Santosh N. Kabadi. Some np-complete problems in quadratic and nonlinear
programming. Mathematical Programming, 39(2):117–129, 1987. doi:10.1007/BF02592948.

38 Y. Nesterov. Global quadratic optimization via conic relaxation, pages 363–384. Kluwer
Academic Publishers, 2000.

39 P. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robust-
ness and Optimization. PhD thesis, California Institute of Technology, 2000.

40 R. Paturi. On the degree of polynomials that approximate symmetric boolean functions
(preliminary version). In Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 468–474, 1992.

ICALP 2021

http://arxiv.org/abs/1907.11686
https://doi.org/10.1007/BF02592948


90:20 SoS Certification for SQFs and Its Connection to Boolean Hypercube Optimization

41 A. Potechin and D. Steurer. Exact tensor completion with sum-of-squares. In COLT 2017,
Amsterdam, The Netherlands, 7-10 July 2017, pages 1619–1673, 2017.

42 Aaron Potechin. Sum of squares bounds for the ordering principle. In Proceedings of the 35th
Computational Complexity Conference, pages 1–37, 2020.

43 T. Rivlin. The chebyshev polynomials. SERBIULA (sistema Librum 2.0), February 1974.
44 S. Sakaue, A. Takeda, S. Kim, and N. Ito. Exact semidefinite programming relaxations with

truncated moment matrix for binary polynomial optimization problems. SIAM Journal on
Optimization, 27(1):565–582, 2017.

45 T. Schramm and D. Steurer. Fast and robust tensor decomposition with applications to
dictionary learning. In COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017, pages
1760–1793, 2017.

46 N. Shor. Class of global minimum bounds of polynomial functions. Cybernetics, 23(6):731–734,
1987.

47 Lucas Slot and Monique Laurent. Improved convergence analysis of lasserre’s measure-
based upper bounds for polynomial minimization on compact sets. CoRR, 2019. doi:
10.1007/s10107-020-01468-3.

48 J. Thapper and S. Zivny. The power of sherali-adams relaxations for general-valued csps.
SIAM J. Comput., 46(4):1241–1279, 2017.

49 Madhur Tulsiani. Csp gaps and reductions in the lasserre hierarchy. In STOC, pages 303–312,
2009.

50 R. Wolf. A note on quantum algorithms and the minimal degree of ϵ-error polynomials for
symmetric functions. Quantum Information & Computation, 8(10):943–950, 2010.

https://doi.org/10.1007/s10107-020-01468-3
https://doi.org/10.1007/s10107-020-01468-3


On Counting (Quantum-)Graph Homomorphisms
in Finite Fields of Prime Order
J. A. Gregor Lagodzinski #

Hasso Plattner Institute, University of Potsdam, Germany

Andreas Göbel #

Hasso Plattner Institute, University of Potsdam, Germany

Katrin Casel #

Hasso Plattner Institute, University of Potsdam, Germany

Tobias Friedrich # Ñ

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
We study the problem of counting the number of homomorphisms from an input graph G to a
fixed (quantum) graph H̄ in any finite field of prime order Zp. The subproblem with graph H

was introduced by Faben and Jerrum [ToC’15] and its complexity is still uncharacterised despite
active research, e.g. the very recent work of Focke, Goldberg, Roth, and Zivný [SODA’21]. Our
contribution is threefold.

First, we introduce the study of quantum graphs to the study of modular counting homomor-
phisms. We show that the complexity for a quantum graph H̄ collapses to the complexity criteria
found at dimension 1: graphs. Second, in order to prove cases of intractability we establish a
further reduction to the study of bipartite graphs. Lastly, we establish a dichotomy for all bipartite
pK3,3zteu, dominoq-free graphs by a thorough structural study incorporating both local and global
arguments. This result subsumes all results on bipartite graphs known for all prime moduli and
extends them significantly. Even for the subproblem with p “ 2 this establishes new results.
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1 Introduction

The study of graph homomorphisms represents one of the classic bodies of work in both
discrete mathematics and computer science but remains a very active research area. These
homomorphisms play a crucial role in the study of graph limits and networks [4, 19, 20, 47],
in the study of databases [11, 33, 39, 40], and in the study of spin-systems in statistical
physics [2, 5]. Formally, a graph-homomorphism from G to H is a map from V pGq to V pHq

that preserves edges. Many classic problems studied in computer science can be expressed
with graph homomorphisms. Examples range from the decision problem of determining the
chromatic number of a graph, through the problem of counting the number of independent
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sets, to the problem of counting the number of k-colourings using all k colours. The latter
can be expressed by a linear combination of the number of graph homomorphisms to a set of
non-isomorphic graphs.

Graph homomorphisms are a prime example of a very general class of problems that
frequently yields complexity dichotomies with structural characterisations, where the prop-
erties of a graph implying (in)tractibility are easily computable. However, the dichotomy
itself is hard to establish and by Ladner [37] not obvious to exist. Hell and Nešetřil studied
the decision problem HomsToH with fixed image graph H, that asks whether there exists
a homomorphism from an input graph G to H. In [35] they showed that the problem
HomsToH can be solved in polynomial time if H contains a loop or is bipartite; otherwise
it is NP-complete. Dyer and Greenhill introduced the counting problem #HomsToH with
fixed image graph H , that asks for the number of homomorphisms from an input graph G to
H. In their seminal work [16] they showed that #HomsToH can be solved in polynomial
time if the connected components of H are complete bipartite graphs or reflexive complete
graphs; otherwise it is # P-complete.

Lovász [38] observed that there are many graph parameters that can only be expressed
by a linear combination of computational problems #HomsToH for a set of at least two
graphs H P H. Examples are the class of vertex surjective homomorphisms and compactions
studied in this context by Focke, Goldberg, and Zivný [24]. Lovász [38] introduced the notion
of a quantum graph for a linear combination of finitely many graphs called its constituents.
We refer by the dimension of a quantum graph to its number of constituents and find the set
of graphs at dimension 1. With every increase of dimension, the set of graph parameters
expressible by #HomsToH increases as well. For a quantum graph H̄ the counting problem
#HomsToH̄ denotes then linear combination of problems #HomsToH for all constituents
H of H̄ . Chen, Curticapean and Dell [12] studied the complexity of #HomsToH̄ and showed
that the complexity is inherited from the complexity of #HomsToH for all constituents H of
H̄, which is given by the criterion of Dyer and Greenhill. Motivated by this strong connection,
Chen et al. raised the question of whether techniques based on quantum graphs can advance
the state of the art of open problems regarding modular counting homomorphisms.

We study the complexity of the problem #pHomsToH̄ for any prime p and answer the
question of Chen et al. in the affirmative, where the problem #pHomsToH̄ asks for the value
of #HomsToH̄ in the finite field Zp. Our contribution is threefold. First, we obtain results
for the whole class of quantum graphs by showing that the complexity of #pHomsToH̄ is
inherited from the complexity #pHomsToH . Second, we reduce the study of #pHomsToH

to a study of bipartite graphs by establishing a reduction to a restricted homomorphism
problem. Finally, we employ a structural analysis on the set of pK3,3zteu, dominoq-free
graphs and establish a dichotomy for these.

The line of research on modular counting homomorphisms was initiated with the study
of the parity of #HomsToH by Faben and Jerrum [21]. Despite the clear picture on the
non-modular version #HomsToH the modulus implies additional cases of tractibility as
structures in H implying intractibility for #HomsToH get “cancelled” when counting in
a finite field Zp. Faben and Jerrum [21] showed that automorphisms of order p capture a
subset of these “cancellations” and reduced the study to a structural analysis of parameter
graphs H that do not enjoy such automorphisms. These graphs are called order p reduced. In
particular, for p “ 2 they conjectured that automorphisms of order 2 capture all cancellations
and that #2HomsToH for an order 2 reduced graph enjoys the same complexity criterion
as the non-modular version #HomsToH given by Dyer and Greenhill. Despite a growing
line of research by Göbel, Goldberg, and Richerby [26, 27] and the very recent work of Focke,
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Table 1 History of the study of #pHomsToH on bipartite graphs H. (Note that the complexity
study can be restricted to bipartite graphs by the bipartization result of this paper.) Crosses denote
that the result incorporates the dichotomy for the graphclass, a p denotes that the result holds for
all primes. Parenthesis denote that the result is not intrinsic but given by additional argumentation.

Mod Trees Cactus Square- K4-minor- pK3,3zteu, dominoq-
free free free

Faben and Jerrum [21] 2 ˆ̂̂

Göbel et al. [26] 2 ˆ̂̂ ˆ̂̂

Göbel et al. [27] 2 ˆ̂̂ ˆ̂̂

Focke et al. [23] 2 ˆ̂̂ ˆ̂̂ (ˆ̂̂) ˆ̂̂

Göbel et al. [28] p ˆ̂̂

Kazeminia and Bulatov [36] p ˆ̂̂ ˆ̂̂

This paper p ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

Goldberg, Roth, and Zivný [23] the conjecture remains open. The body of work is dominated
by a study of structures as the modulus commands incorporating not only the local but also
global properties of the graph H.

The research on #pHomsToH for arbitrary primes p was already suggested by Faben
and Jerrum [21] as they showed that their results concerning automorphisms of order p

apply for any prime p. However, Valiant [48] showed the existence of computational counting
problems that enjoy a change of complexity with respect to different moduli. Therefore, a
uniform complexity criterion for #pHomsToH would emphasize the special role of graph
homomorphisms even more. The study of #pHomsToH was finally initiated by Göbel,
Lagodzinski, and Seidel [28] and followed by Kazeminia and Bulatov [36]. In light of the richer
structure due to the higher moduli far less is known about the complexity of #pHomsToH

compared to #2HomsToH . Even though Faben and Jerrum [21] as well as Göbel et al. [28]
considered an extension of the conjecture to all prime moduli and the results so far suggest
it, no one has gone that far yet. We illustrate the individual contributions and the state of
the art in Table 1.

1.1 Contribution
We establish a plethora of technical results, which we believe to be a major asset to future
works on the complexity of #pHomsToH and may be of independent interest to different
lines of research. The main contributions are given in the following and discussed in more
depth in the subsequent subsection.

Quantum Homomorphisms

We introduce the study of quantum graphs to the study of #pHomsToH . For any quantum
graph H̄ we find that #pHomsToH̄ is equivalent to #pHomsToH̄ 1, where H̄ 1 is a quantum
graph whose constituents are order p reduced with coefficients in Z˚

p “ Zpzt0u. We call
these constituents the p-constituents of H̄ 1. Focusing on these “reduced” quantum graphs we
obtain the following inheritance theorem.

▶ Theorem 1.1. Let p be a prime and H̄ “
ř

HPH αH H be a quantum graph with p-
constituents H “ tH1, . . . , Hru that are order p reduced pairwise non-isomorphic graphs and
a set of associated constants tαHuHPH that are in Z˚

p . Then,
if there exists a graph H P H such that #pHomsToH is #p P-hard, then #pHomsToH̄

is #p P-hard;
if, for all H P H, #pHomsToH is solvable in polynomial time, then #pHomsToH̄ is
also solvable in polynomial time.
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This shows that the complexity of #pHomsToH̄ collapses to the complexity of #pHomsToH .
Even though the set of graph parameters expressible by #HomsToH̄ is arbitrarily larger
compared to the parameters expressible by #HomsToH, the complexity behaviour is
captured at dimension r “ 1, i.e. graphs.

In the same spirit, we show that the reduction technique applied to show Theorem 1.1
yields a universal technique that can be applied to obtain so-called pinning in classes of
graph-homomorphisms closed under the composition. This technique is helpful for our
study as we also obtain pinning for the restricted class of homomorphisms introduced in the
following.

Bipartization

We restrict the study of #pHomsToH to the study of bipartite graphs by a restricted class of
homomorphisms. For two bipartite graphs G “ pLG, RG, EGq and H “ pLH , RH , EHq with
fixed bipartition we say that a homomorphism from G to H preserves the order of the bipar-
tition if the homomorphism maps LG to LH and RG to RH . The problem #pBipHomsToH

with fixed bipartite graph H then asks for the number of these homomorphisms to H. It
allows us to restrict the study of #pHomsToH to the study of bipartite graphs by the
following theorem.

▶ Theorem 1.2. For any prime p and any graph H, there exists a bipartite graph H 1 such
that

if #pBipHomsToH 1 is #p P-hard then #pHomsToH is #p P-hard;
if #pBipHomsToH 1 is solvable in polynomial time then #pHomsToH is solvable in
polynomial time.

This implies that a dichotomy for #pBipHomsToH 1 yields a dichotomy for #pHomsToH .
As we will later show, the graph H 1 is a collection of complete bipartite graphs if and only if
H satisfies the Dyer and Greenhill criterion. An additional feature of Theorem 1.2 is that it
allows for the graph H to contain loops whereas the bipartite graph H’ is always loop-less by
definition. So far no study of #pHomsToH allowed for loops. The structural implications
of a bipartite graph H are also heavily exploited in the following analysis.

Hardness in Bipartite pK3,3zteu, dominoq-Free Graphs

In the longest and most technically involved part of the paper we study bipartite graphs H

not satisfying the Dyer and Greenhill criterion with the goal of finding enough structural
information to establish hardness of #pBipHomsToH. We find that it suffices to study
bipartite graphs in the class denoted G˚p

bip consisting of bipartite graphs without automor-
phisms of order p, that preserve the order of the bipartition. To this end, we conduct a
rigorous structural analysis of the class of bipartite graphs that contain no induced subgraph
isomorphic to K3,3zteu or domino (see Figure 1 for an illustration). Our insights on the
structure of bipartite graphs allow us to establish the following theorem.

▶ Theorem 1.3. Let p be a prime and H P G˚p
bip be a pK3,3zteu, dominoq-free graph.

If there exists a connected component of H that is not a complete bipartite graph, then
#pBipHomsToH is #p P-hard.

In many cases, a domino as induced subgraph yields a pair of vertices x, y where x

dominates y. The class of bipartite domination-free K3,3zteu-free graphs is one of the focal
points of the seminal work by Feder and Vardi [22]. They showed that the class of graph
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Figure 1 From left to right: K3,3zteu; domino; Example of a bipartite pK3,3zteu, dominoq-free
and asymmetric graph containing locally and globally K4 as a minor.

We are thus reduced to showing injectivity of 8 when H is a complete
graph on nodes [1, 2, ..., n] where (say) nodes 1 through m are looped.
Putting *=8(w) and

Z := :
n

i=1

wi

we have

Z=\wi

*i +
1�r

=\wj

*j +
1�r

+wj

for every i, j with 1�i�m< j�n. Since each of these expressions for Z is
strictly increasing in its corresponding variable wi or wj , we must have
w<w$ or w>w$ (say, the former) if w and w$ are distinct vectors with
8(w)=8(w$)=*.

But this cannot be, since if i minimizes w$i �wi then z$i �zi�w$i �wi hence
8(w$) i<8(w) i . Thus the first part of the proof is complete.

For the second, we begin by providing the seven minimal fertile graphs,
illustrated in Fig. 6. Each of them has three or four nodes, with node set,
edges, and loops as follows:

the stick: [a, b, c, d]; [a, b], [b, c], [c, d]; no loops

the pipe: [a, b, c]; [a, b], [b, c]; loop at a
the wrench: [a, b, c]; [a, b], [b, c]; loops at a and b
the wand: [a, b, c]; [a, b], [b, c]; loops at a and c
the hinge: [a, b, c]; [a, b], [b, c]; loops at a, b and c
the key: [a, b, c, d]; [a, b], [a, c], [b, c], [c, d]; no loops

the gun: [a, b, c, d]; [a, b], [a, c], [b, c], [c, d]; loop at c.

The following observation will be used twice.

FIG. 6. The seven minimal fertile graphs.

248 BRIGHTWELL AND WINKLER

Figure 2 Depiction of the seven minimal fertile graphs as given in Brightwell and Winkler [5,
Fig. 6].

retract problems – a notion equivalent to a partially labelled graph homomorphism – to
the class of bipartite domination-free K3,3zteu-free graphs contains as much computational
power as the whole class of constraint satisfaction problems (CSP’s), i.e. every CSP is
polynomially equivalent to a partially labelled graph homomorphism problem, where the
image is a bipartite domination-free K3,3zteu-free graph.

Consider the graphs studied in the work of Brightwell and Winkler [5] shown in Figure 2.
The set of graph homomorphisms to these graphs played a key role in their study of spin
systems in statistical physics. Prior results incorporate only two out of the seven minimal
fertile graphs: “the stick” and “the key”. Following the line of argumentation, our results
incorporate the previous and three additional minimal fertile graphs. The only missing ones
are “the hinge” and “the gun” as the construction used for bipartization yields graphs that are
not domino-free. In fact, the class of bipartite pK3,3zteu, dominoq-free graphs captures all
the classes of bipartite graphs studied in previous works on #2HomsToH and #pHomsToH

except for the recent work by Focke et al. [23] on K4-minor-free graphs. Clearly, every biclique
with at least 3 vertices in each part contains a K4 as minor, as is the case with K3,3zteu. A
domino is K4-minor-free. Hence, our result given by a local property is orthogonal to the
result of Focke et al. [23] given by a global property. An example is depicted in Figure 1.

1.2 Technical Overview
We are going to explain our results and argumentative routes in more detail. Due to their
length, details are omitted but can be found in the full version.
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In this work, hardness for modular counting problems is indicated by reducing from
problems that are #p P-hard. The class #p P contains functions of the form “f mod p2,
where f P # P. Notably, for the case p “ 2 the whole polynomial hierarchy reduces to
problems in #2 P by Toda [46].

We briefly discuss the insights by Faben and Jerrum [21]. For a pair of graphs G, H we
denote by HompG Ñ Hq the set of homomorphisms from G to H. By hompG Ñ Hq we
denote the cardinality |HompG Ñ Hq| and, for a modulus p, by homppG Ñ Hq we denote
hompG Ñ Hq pmod pq. The computational problem #HomsToH with parameter H then
asks to compute hompG Ñ Hq for an input G. Similarly, #pHomsToH asks to compute
homppG Ñ Hq. A central point in the study of #pHomsToH is the (non)-existence of
automorphisms of order p, where for p “ 2 these automorphisms are called involutions. Given
an automorphism ϱ of order p acting as a derangement on the subset V 1 Ď V pHq, Faben
and Jerrum [21] showed that the number of homomorphisms σ from any input graph G

to H is equivalent to 0 in Zp if the image of σ intersects V 1. They deduced that, for the
subgraph Hϱ of H induced by the fixpoints V pHqzV 1, there exists a parsimonious reduction
from #pHomsToHϱ to #pHomsToH. Iteratively applying this reduction, one ends up
with a subgraph H˚p of H that admits no automorphism of order p called the order p

reduced form of H. This subgraph is also unique up to ismomorphism and thus well defined
by [21, Theorem 3.7]. The study of #pHomsToH focusses on graphs H that do not admit
automorphisms of order p, which are called order p reduced.

1.2.1 Quantum Homomorphisms
It has been observed by Borgs, Chayes, Kahn, and Lovász [3] that the study of linear
combinations of homomorphisms provides great insights especially on the comparability of
pairs of graphs, for instance if one is a subgraph of the other. Lovász [38] introduced the
term quantum graph, denoted H̄, for a linear combination of finitely many graphs and calls
the set of pairwise non-isomorphic graphs H with coefficient αH ‰ 0 in H̄ its constituents:

H̄ “
ÿ

HPH
αH H.

A computational problem on H̄ translates into the linear combination of computational
problems on entities H in H with coefficient αH . By Lovász [38] every graph parameter has –
if any – a unique expression by a linear combination of finitely many graph homomorphisms
up to isomorphisms.

We establish a polynomial time reduction from #pHomsToH to #pHomsToH̄, for
any quantum graph H̄ and any constituent H in H̄. Such a polynomial time reduction is
commonly referred to as a pinning-reduction because it enables us to consider the subproblem
where a partially mapping is already fixed. One of the main problems of reduction algorithms
on modular counting problems is the loss of control of summations in a finite field because we
cannot infer from a number of non-zero summands that the sum is non-zero. For instance, let
p “ 2 and H̄ be the quantum graph consisting of the two graphs H1 and H2 with coefficients
αH1 “ αH2 “ 1, where H1 is an asymmetric tree and H2 is the disjoint union of a copy
of H1 and an isolated vertex. Let G be a connected graph and input for #HomsToH̄,
then we obtain hompG Ñ H2q “ hompG Ñ H1q ` hompG Ñ K1q. Consequently, when
computing hompG Ñ H1q ` hompG Ñ H2q in Z2 the term referring to H1 vanishes and
this amounts to computing hompG Ñ K1q, which is polynomial time solvable. However,
Theorem 1.1 yields that #2HomsToH̄ is #2 P-hard. The reason is that the split into
hompG Ñ H1q ` hompG Ñ K1q only works if G is connected and by utilizing disconnected
graphs the additional vertex in H2 yields enough information to distinguish between H1 and
H2. Therefore, we can extract homppG Ñ H1q from homppG Ñ H̄q.



J. A. G. Lagodzinski, A. Göbel, K. Casel, and T. Friedrich 91:7

In finite fields, reduction algorithms usually rely heavily on multiplication. We find that
the beautiful insight on specific matrices defined on families F of simple graphs provided
by Borgs, Chayes, Kahn, and Lovász [3, Lemma 4.2] is able to lift us above this hurdle. In
order to adapt this result we first extend it to allow for graphs that contain loops. Then, we
translate the result to counting in a finite field of prime order. A straightforward application
of the modulo operator is not sufficient as the graphs in F might contain a number of
automorphisms that is a multiple of p. We restrict to order p reduced graphs and argue why
this allows for an application of the modulo operator. In this way, we show the following.

▶ Corollary 1.4. Let k ě 1 and let F “ tF1, . . . , Fku be a finite family of non-isomorphic
order p reduced graphs closed under surjective homomorphic image, that contain no multi-edge.
Then the matrix

Mhom “ rhomppFi Ñ Fjq sk
i,j“1

is nonsingular.

The strength of this result for our purposes is twofold. First, it allows us to show
Theorem 1.1 in a concise manner. Given a quantum graph F̄ with set of p-constituents
F “ pF1, . . . , Frq closed under surjective homomorphic image, we obtain by Corollary 1.4
that any system of linear equations of the form x̄ Mhom “ v̄ has a unique solution in the field
Zp. Therefore, for any vector v̄ with entries pviqiPrks there exists a unique linear combination
of entities in F with coefficients αF that yield the vector v̄. In fact, we observe that this
corresponds to a quantum graph F̄ 1 with homppF̄ 1 Ñ Fiq “ vi that implements the vector v̄.
In particular, there exists a quantum graph F̄ 1 implementing the i-th standard vector allowing
us to “pick” the i-th entry of F , i.e. homppF̄ 1 Ñ Fjq “ 1 if j “ i and homppF̄ 1 Ñ Fjq “ 0
otherwise. Given an input graph G for homppG Ñ F̄ q, we then construct a quantum graph
F̄ ˚ from G and F̄ 1 such that homppF̄ ˚ Ñ F̄ q “ homppG Ñ Fiq. The main problem for this
application is then that the set F of p-constituents might not be closed under surjective
homomorphic image. Given any quantum graph H̄ with set of p-constituents H, we need
to define a suitable family F that contains all the image graphs needed. We find that the
subgraphs of the maximal closure are sufficient for this purpose and obtain Theorem 1.1.

The second strength is the adaptability to subproblems of homomorphisms. The main
property needed is that the subset of homomorphisms has to be closed under composition,
i.e. the subset is actually a subgroup of the group of homomorphisms. Examples are vertex
surjective homomorphisms and compactions as studied by Focke et al. [24]. A homomorphism
σ P HompG Ñ Hq is vertex surjective if the image-set of σ is the whole set V pHq. The
homomorphism σ is a compaction if it is vertex surjective and every non-loop edge e is
in the image of σ. A closely related example is the problem of counting partially labelled
homomorphisms #PartLabHomsToH, that are homomorphisms from an input graph G to
H that have to respect a given mapping from a subset VG Ă V pGq to a subset VH Ă V pGq

and are also referred to as retractions (see e.g. Focke et al. [24]). The reduction from
#pPartLabHomsToH to #pHomsToH is a building stone of every paper in the study of
#pHomsToH and can be obtained in a swift manner due to the strength of Corollary 1.4.
A third example will be discussed in the next subsection.

1.2.2 Bipartization
Chen et al. [12] employed the tensor product H b K2 “ H 1 to reduce to #HomsToH from
#HomsToH 1, where H 1 is bipartite. The main problem when adapting this construction to
modular counting #pHomsToH is that for every graph G the number of homomorphisms
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hom2pG Ñ K2q is 0 and thus the tensor product with K2 annihilates seemingly any structure
that might imply hardness. Instead of branching the study of #pHomsToH into one studying
the modulus 2 and one studying the modulus of odd primes, we solve this issue in a uniform
way for all prime moduli.

The key insight towards this is that for an involution-free graph H the tensor product
H 1 “ H b K2 only yields involutions on H 1 that exchange the parts of the bipartition.
A very important example is the graph H consisting of a single edge with one loop, for
which it is known that #HomsToH is equivalent to counting the number of independent
sets. The graph H 1 “ H b K2 is then the path with 4 vertices (see Figure 2), that admits
only the reflection across the middle edge. It is known that #HomsToH 1 is equivalent to
counting the number of bipartite independent sets #BIS and also that #4HomsToH 1 is
#2 P-hard (see [28]) whereas #2HomsToH 1 is polynomial time solvable. In order to evade
the artificial involutions yielded by the tensor product with K2 we introduce the study on
the problem of counting homomorphisms between bipartite graphs that preserve the order of
the bipartition denoted #BipHomsToH . For example, if H is the path with 4 vertices then
#2BipHomsToH is equivalent to #4HomsToH.

▶ Lemma 1.5. Let p be a prime, let H be a graph, and let H 1 “ H b K2. Then,
#pBipHomsToH 1 reduces to #pHomsToH under parsimonious reduction.

We note that the graph H 1 “ H b K2 is a collection of complete bipartite graphs if and
only if H satisfies the Dyer and Greenhill criterion, for these graphs #pBipHomsToH 1 is
solvable in polynomial time.

The reduction from #pBipHomsToH has the downside that the machinery developed
over the course of multiple papers on #pHomsToH is not stated for the subgroup of
homomorphisms counted by #pBipHomsToH. We remedy this. First, by the strong
adaptability of Corollary 1.4 and the subsequent reduction algorithm we obtain pinning
for the problem #pBipHomsToH. Second, using automorphisms of order p that preserve
the order of the bipartition we reduce the bipartite graph H to a part-wise order p reduced
bipartite graph pHq

˚p. We deduce that the goal towards a dichotomy for #HomsToH is
captured by Theorem 1.2. The chain of reductions is displayed below.

#pBipPartLabHomsToH∗ #pBipHomsToH∗ #pBipHomsToH ′=P ≤pars

(H ′ = H ⊗K2)

≤pars #pHomsToH
(H∗ = (H ′)∗p)

We employ a gadgetry that establishes a reduction to #pBipHomsToH from a variant
of #BIS with weights on both types of vertices. Such a gadgetry yielding hardness is called a
p-hardness gadget. By an adaptation of the dichotomy for #BIS with weights on the vertices
in the independent set given in [28] this reduction establishes hardness when counting in Zp

if and only if none of the weights is equivalent to 0 in Zp. The problem of #BIS with weights
on the vertices in the independent set is established as terminal problem yielding hardness
in the study of #pHomsToH [28, 36] as the bigger modulus implies a richer structure
compared to the study of #2HomsToH that traditionally focusses on counting the number
of independent sets.

1.2.3 Hardness in Bipartite pK3,3zteu, dominoq-Free Graphs
A central argument in the work of Chen et al. [12] is that for a bipartite graph H and the
problem #HomsToH there exists a simple reduction from #HomsToB, where B is the ball
of radius 2 around a vertex v in H denoted B2pvq, i.e. vertices of distance at most 2 from v.
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v0 v1 v2 v3 v4

Figure 3 For p “ 3 the tree H contains no ball of radius 2 around any vertex with enough
structure to yield hardness even though #3HomsToH is #3 P-hard.

By an iterative application of this argument they establish a reduction from #HomsToP ,
where P is a generalization of the path with 4 vertices. Even though the reduction argument
can be made valid for #pHomsToH and #pBipHomsToH the restriction to a substructure
might destroy the properties that yield hardness already for trees H, a class of graphs for
which the dichotomy is proved (see [21, 28]). An example is depicted in Figure 3.

In a nutshell, the induced subgraphs of radius at most 2 can admit too many auto-
morphisms of order p. In Figure 3 we observe that the problem originates from too many
instances of complete bipartite graphs K1,b, where b ” 0 pmod 3q or b ” 1 pmod 3q. The way
to overcome this is to also consider the global structure. In the case displayed in Figure 3 the
number of walks of length 4 from v4 to a vertex v in the neighbourhood of v1 is 0 pmod 3q

if v “ v2 and 1 else. The goal is then to construct a reduction restricting the study to
B2pv0qztv2u, a graph that yields hardness. We do this in a general form by a second type of
gadgetry called pB, pq-gadget that reduces #pBipHomsToH from #pBipHomsToB.

As we have argued, one of the main obstacles for the study on #pHomsToH are complete
bipartite graphs. The graph K3,3zteu denotes the graph obtained from K3,3 by deleting an
edge, and the graph domino denotes the graph obtained from K3,3 by deleting two edges
without introducing a cut-vertex (see Figure 1). By the restriction to pK3,3zteu, dominoq-free
bipartite graphs we study exactly the case of a great many of complete bipartite induced
subgraphs. To this end, we observe that for every vertex v P H the induced subgraph
B2pvq splits into connected components obtained from deleting v. The split of B2pvq at v

corresponds to the set of these connected components, where every component contains a
copy of v. By the absence of induced subgraphs isomorphic to K3,3zteu or domino we deduce
that the blocks containing v in these components have to be complete bipartite.

The overall line of argumentations towards Theorem 1.3 is then the following. First, we
establish the dichotomy for all pK3,3zteu, dominoq-free bipartite graphs H of radius at most
2 by a combination of pB, pq- and p-hardness gadgets. This is done by a careful structural
study of the split of H at a central vertex v. An important first result is then that any
bipartite graph H in G˚p

bip that contains a vertex v where B2pvq falls into the hard cases of the
dichotomy, is itself such that #pBipHomsToH is #p P-hard. Second, we study graphs H of
radius larger than 2 in order to establish enough structural information of H allowing us to
construct either a p-hardness gadget for H or a pB, pq-gadget such that #pBipHomsToB

is #p P-hard. This second step is very long and technically involved because the class of
pK3,3zteu, dominoq-free graphs allows for many cases commanding us to explore the global
structure of H. Before we shed more light on how we proceed towards the second step, we
display the chain of reduction arguments below, where the intermediate steps for Hi refer to
H itself or an induced subgraph obtained by a pHi, pq-gadget.

#pBISκ`,κr

λ`,λr
#pBipHomsToHk #pBipHomsToH1 #pBipHomsToH≤P ≤P ≤P ≤P. . .
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Figure 4 For p “ 3 the left figure depicts an example of a generalized hardness path and the
right figure depicts an example of a p-mosaic path.

Informally, we split the study of bipartite pK3,3zteu, dominoq-free graphs of radius larger
than 2 into two broad cases: graphs with no pair of vertices that have a multiple of p common
neighbours, and graphs with such a pair of vertices. Focusing on the first case, if the graph H

contains a cycle of length at least 6 we argue that the cycle provides enough structure to show
hardness. Otherwise, the more restricted structure of H renders the graph “tree-like”. The
“leafs” of H are vertices v, such that the split of B2pvq at v contains at most one component
adjacent to a vertex not in B2pvq. We call such a vertex a dead end and traverse the graph
H along a path P starting at a dead end v. The path P is constructed such that it allows
us to establish hardness depending only on the local properties of its endvertices, we call
such a path P a generalized hardness path; an example is depicted in Figure 4. The first
broad case is then established by showing that H contains a generalized hardness path whose
endvertices are such that P yields hardness.

Turning towards the second broad case, we traverse the graph H again along a path P .
Contrary to the first case, we can encounter a pair of vertices with a multiple of p common
neighbours. For our purposes, it is important to evade such pairs of vertices. We argue that
by the property of H being in G˚p

bip we are always able to do so. This leads to a structure we
call p-mosaic path that, similar to a generalized hardness path, provides enough structural
information towards establishing hardness depending only on the local properties of its
endvertices. An example is shown in Figure 4. We find that if a p-mosaic path is a cycle
then this cycle satisfies the same properties we found to be sufficient to yield hardness in the
first broad case. Interestingly, we show that if the p-mosaic path does not yield hardness
the only remaining option for an endvertex of a p-mosaic path is to also be the endvertex
of a generalized hardness path. We conclude that H has to contain a concatenation of
generalized hardness paths and p-mosaic paths. Arguing by the finiteness of H we show that
this concatenation has to yield hardness.

1.2.4 Beyond pK3,3zteu, dominoq-Free Graphs
In light of our findings we conjecture that for a bipartite graph H in G˚p

bip the problem
#pBipHomsToH is #p P-hard if H is not a collection of complete bipartite graphs. This
conjecture then extends towards a conjecture on #pHomsToH and also incorporates the
conjecture of Faben and Jerrum.

▶ Conjecture 1.6. Let p be a prime and H a graph with order p reduced form H˚p. Then,
#pHomsToH is solvable in polynomial time if the connected components of H˚p are complete
bipartite or reflexive complete. Otherwise, #pHomsToH is #p P-complete.
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Figure 5 Illustration of a 5-Catherine wheel. Edges to encircled sets illustrate edges to every
vertex in the set. The smaller substructure in the sets R1, . . . , R5 is illustrated to the right, where
the vertices in the sets Ri are the more prominent ones at the bottom of the row.

We emphasize this conjecture by a study of the set of partially surjective homomorphisms
from a graph G to a graph H denoted PartSurjpG Ñ Hq. Partially surjective homomorphisms
have to be surjective on a set of distinguished vertices V dist Ď V pHq and a set of distinguished
edges Edist Ď EpHq. We deduce that it suffices to study graphs H without automorphisms
of order p acting bijectively on V dist and Edist. However, this reduction does not capture all
cancellations because the graph H might still admit too many general automorphisms.

By our results on quantum graphs and an application of the inclusion-exclusion principle
we find that the dichotomy presented in Conjecture 1.6 extends to a dichotomy on the
whole class of partially surjective homomorphisms. Contrary to the non-modular version
established in [12], this dichotomy does not state a clear structural characterisation of
the hard instances due to the mentioned possibility of additional cancellations. For the
special cases in which the parameter graph H is order p reduced we amplify the dichotomy
such that it states clear structural characterisations. Two examples for this case are the
problems #pVertSurjHomsToH and #pCompToH of counting in Zp the number of
vertex surjective homomorphisms and compactions, respectively. We obtain the following
criteria analogous to the criteria in the non-modular setting given by Focke et al. [24].

▶ Corollary 1.7. Let p be a prime and H be a graph. The problem #pVertSurjHomsToH

is solvable in polynomial time if either H admits an automorphism of order p, or every
connected component of H is a complete bipartite graph or a reflexive complete graph.

The problem #pCompToH is solvable in polynomial time if either H admits an auto-
morphism of order p, or every connected component of H is an irreflexive star or a reflexive
complete graph of size at most two.

Assuming Conjecture 1.6 both problems are #p P-hard in every other case.

In order to prove Conjecture 1.6, we need to study bipartite graphs that contain K3,3zteu

or domino as an induced subgraph. The strong restrictions on the structure of the graphs
under study are a double-edged sword. On one hand, it is more plausible to find enough
structure that yields hardness. On the other hand, it is more difficult to pin the structural
analysis down to a handful of cases. Furthermore, the higher moduli imply even more
complexity of the structural analysis. We illustrate an especially difficult example in Figure 5.

We call such a graph as illustrated in Figure 5 a p-Catherine wheel. Even though these
graphs are 2-connected and of radius 2 their highly symmetric global structure together with
the lack of small structure in the sets Ri makes it difficult to identify sources for hardness.
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Here, the case displayed in Figure 5 where the sets Ri only yield a collection of trees and the
sum of degrees of the vertices in the sets is 0 pmod pq is especially difficult. We note that
such a graph cannot be part-wise order p reduced for p “ 2, 3, which highlights the gain of
complexity due to higher moduli.

1.3 Related Literature
Before we conclude the introduction, we mention related bodies of work. The study of
homomorphisms under the point of view of parameterized algorithms has been long established
(see Diaz, Serna, and Thilikos [18]) but enriched by the work of Amini, Fomin, and Saurabh [1]
and by Curticapean, Dell, and Marx [13], who also introduced linear combinations of graph
homomorphisms to the study and motivated subsequent works, for instance Roth and
Wellnitz [41].

The study of homomorphisms from the point of view of extremal combinatorics incorpo-
rates important conjectures like Sidorenko’s conjecture [43, 44], which states a universal lower
bound on the number of homomorphisms from a bipartite graph and, in a weaker version,
can be found in the work of Simonovits [45]. Until today the conjecture remains open but
still enjoys new contributions like the recent article by Shams, Ruozzi, and Csikvári [42].

This leads to the body of work studying approximation algorithms including the work
of Goldberg and Jerrum [30] on tree homomorphisms and the work of Galanis, Goldberg,
and Jerrum [25], who showed that approximating the number of homomorphisms to a fixed
graph H is #BIS-hard, a notorious complexity class in this body of work. These findings
yield an interesting connection to ours in the form of the reduction from (versions of) #BIS.

The body of studies concerning different versions of homomorphism problems is vast. It
contains dichotomies for the affiliated problem, where the pre-image is from a fixed class
of graphs, given by Dalmau and Jonsson [14] and Grohe [32]. Turning towards versions
of the problem with fixed image, Focke, Goldberg, and Zivný [24] gave a dichotomy for
surjective homomorphisms and compactions, and Dyer, Goldberg, and Paterson [15] gave a
dichotomy for directed homomorphisms if the target is acyclic. The line of research towards
the dichotomy for the generalization of #HomsToH allowing weights by Cai, Chen, and
Lu [9] incorporates works by Bulatov and Grohe [7] and Goldberg, Grohe, Jerrum, and
Thurley [29]. Recently, Govorov, Cai, and Dyer [31] extended this research body.

The connection of homomorphisms and CSP’s was already shown by Feder and Vardi [22].
Bulatov [6] showed that the problem of counting satisfying assignments to a CSP enjoys a
dichotomy theorem, a result on which Dyer and Richerby [17] shed more light. Furthermore,
a complete dichotomy for directed homomorphism can be found in the dichotomy on counting
weighted versions of CSP’s by Cai and Chen [8]. Guo, Huang, Lu, and Xia [34] gave a
dichotomy for the associated modular problem.

Finally, the recent work by Cai and Govorov [10] studied the power of expression of the
class of homomorphisms. By studying algebras of quantum graphs they provide a general
technique and showed, for instance, that the problem of counting perfect matchings cannot
be expressed by counting homomorphisms to a fixed graph H regardless of possible weights.
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Abstract
A stable or locally-optimal cut of a graph is a cut whose weight cannot be increased by changing the
side of a single vertex. Equivalently, a cut is stable if all vertices have the (weighted) majority of
their neighbors on the other side. Finding a stable cut is a prototypical PLS-complete problem that
has been studied in the context of local search and of algorithmic game theory.

In this paper we study Min Stable Cut, the problem of finding a stable cut of minimum weight,
which is closely related to the Price of Anarchy of the Max Cut game. Since this problem is NP-hard,
we study its complexity on graphs of low treewidth, low degree, or both. We begin by showing
that the problem remains weakly NP-hard on severely restricted trees, so bounding treewidth alone
cannot make it tractable. We match this hardness with a pseudo-polynomial DP algorithm solving
the problem in time (∆ · W )O(tw)nO(1), where tw is the treewidth, ∆ the maximum degree, and W

the maximum weight. On the other hand, bounding ∆ is also not enough, as the problem is NP-hard
for unweighted graphs of bounded degree. We therefore parameterize Min Stable Cut by both tw
and ∆ and obtain an FPT algorithm running in time 2O(∆tw)(n + log W )O(1). Our main result for
the weighted problem is to provide a reduction showing that both aforementioned algorithms are
essentially optimal, even if we replace treewidth by pathwidth: if there exists an algorithm running
in (nW )o(pw) or 2o(∆pw)(n + log W )O(1), then the ETH is false. Complementing this, we show that
we can, however, obtain an FPT approximation scheme parameterized by treewidth, if we consider
almost-stable solutions, that is, solutions where no single vertex can unilaterally increase the weight
of its incident cut edges by more than a factor of (1 + ε).

Motivated by these mostly negative results, we consider Unweighted Min Stable Cut. Here
our results already imply a much faster exact algorithm running in time ∆O(tw)nO(1). We show that
this is also probably essentially optimal: an algorithm running in no(pw) would contradict the ETH.
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1 Introduction

In this paper we study problems related to stable cuts in graphs. A stable cut of an edge-
weighted graph G = (V, E) is a partition of V into two sets V0, V1 that satisfies the following
property: for each i ∈ {0, 1} and v ∈ Vi, the total weight of edges incident on v whose other
endpoint is in V1−i is at least half the total weight of all edges incident on v. In other words,
a cut is stable if all vertices have the (weighted) majority of their incident edges cut.

The notion of stable cuts has been very widely studied from two different points of view.
First, in the context of local search, a stable cut is a locally optimal cut: switching the side
of any single vertex cannot increase the total weight of the cut. Hence, stable cuts have
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been studied with the aim to further our understanding of the basic local search heuristic for
Max Cut. Second, in the context of algorithmic game theory a Max Cut game has often
been considered, where each vertex is an agent whose utility is the total weight of edges
connecting it to the other side. In this game, a stable cut corresponds exactly to the notion
of a Nash equilibrium, that is, a state where no agent has an incentive to change her choice.
The complexity of producing a Nash stable or locally optimal cut of a given edge-weighted
graph has been heavily studied under the name Local Max Cut. The problem is known
to be PLS-complete, under various restrictions (we give detailed references below).

In this paper we focus on a different but closely related optimization problem: given an
edge-weighted graph we would like to produce a stable cut of minumum total weight. We call
this problem Min Stable Cut. In addition to being a fairly natural problem on its own, we
believe that Min Stable Cut is interesting from the perspective of both local search and
algorithmic game theory. In the context of local search, Min Stable Cut is the problem of
bounding the performance of the local search heuristic on a particular instance. It is folklore
(and easy to see) that in general there exist graphs where the smallest stable cut has size
half the maximum cut (e.g. consider a C4) and this is tight since any stable cut must cut at
least half the total edge weight. However, for most graphs this bound is far from tight. Min
Stable Cut therefore essentially asks to estimate the ratio between the largest and smallest
stable cut for a given specific instance. Similarly, in the context of algorithmic game theory,
solving Min Stable Cut is essentially equivalent to calculating the Price of Anarchy of the
Max Cut game on the given instance, that is, the ratio between the smallest stable cut and
the maximum cut. Since we will mostly focus on cases where Max Cut is tractable, Min
Stable Cut can, therefore, be seen as the problem of computing either the approximation
ratio of local search or the Price of Anarchy of the Max Cut game on a given graph.

Our results. It appears that little is currently known about the complexity of Min Stable
Cut. However, since finding a (not necessarily minimum) stable cut is PLS-complete, finding
the minimum such cut would be expected to be hard. Our focus is therefore to study the
parameterized complexity of Min Stable Cut using structural parameters such as treewidth
and the maximum degree of the input graph1. Our results are the following.

First, we show that bounding only one of the two mentioned parameters is not sufficient
to render the problem tractable. This is not suprising for the maximum degree ∆, where
a reduction from Max Cut allows us to show the problem is NP-hard for ∆ ≤ 6 even
in the unweighted case (Theorem 4). It is, however, somewhat more disappointing that
bounded treewidth also does not help, as the problem remains weakly NP-hard on trees
of diameter 4 (Theorem 1) and bipartite graphs of vertex cover 2 (Theorem 3).
These hardness results point to two directions for obtaining algorithms for Min Stable
Cut: first, since the problem is “only” weakly NP-hard for bounded treewidth one could
hope to obtain a pseudo-polynomial time algorithm in this case. We show that this is
indeed possible and the problem is solvable in time (∆ · W )O(tw)nO(1), where W is the
maximum edge weight (Theorem 5). Second, one may hope to obtain an FPT algorithm
when both tw and ∆ are parameters. We show that this is also possible and obtain an
algorithm with complexity 2O(∆tw)(n + log W )O(1) (Theorem 6).
These two algorithms lead to two further questions. First, can the (∆ · W )O(tw)nO(1) algo-
rithm be improved to an FPT dependence on tw, that is, to running time f(tw)(nW )O(1)?
And second, can the 2∆tw parameter dependence of the FPT algorithm be improved,

1 We assume familiarity with the basics of parameterized complexity as given in standard textbooks [21].
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for example to 2O(∆+tw) or even ∆O(tw)? We show that the answer to both questions
is negative, even if we replace treewidth with pathwidth: under the ETH there is no
algorithm running in (nW )o(pw) or 2o(∆tw)(n + log W )O(1) (Theorem 8).
Complementing the above, we show that the problem does become FPT by treewidth
alone if we allow the notion of approximation to be used in the concept of stability: there
exists an algorithm which, for any ε > 0, runs in time (tw/ε)O(tw)(n + log W )O(1) and
produces a cut with the following properties: all vertices are (1 + ϵ)-stable, that is, no
vertex can unilaterally increase its incident cut weight by more than a factor of (1 + ε);
the cut has weight at most equal to that of the minimum stable cut.
Finally, motivated by the above mostly negative results, we also consider Unweighted
Min Stable Cut, the restriction of the problem where all edge weights are uniform.
Our previous results give a much faster algorithm with parameter dependence ∆O(tw),
rather than 2∆tw (Corollary 12). However, this poses the natural question if in this case
the problem finally becomes FPT by treewidth alone. Our main result in this part is to
answer this question in the negative and show that, under the ETH, Unweighted Min
Stable Cut cannot be solved in time no(pw) (Theorem 13).

Taken together, our results paint a detailed picture of the complexity of Min Stable
Cut parameterized by tw and ∆. All our exact algorithms (Theorems 5, 6) are obtained
using standard dynamic programming on tree decompositions, the only minor complication
being that for Theorem 6 we edit the decomposition to make sure that for each vertex
some bag contains all of its neighborhood (this helps us verify that a cut is stable). The
main technical challenge is in proving our complexity lower bounds. It is therefore perhaps
somewhat surprising that the lower bounds turn out to be essentially tight, as this indicates
that for Min Stable Cut and Unweighted Min Stable Cut, the straightforward DP
algorithms are essentially optimal, if one wants to solve the problem exactly.

For the approximation algorithm, we rely on two rounding techniques: one is a rounding
step similar to the one that gives an FPTAS for Knapsack by truncating weights so that the
maximum weight is polynomially bounded. However, Min Stable Cut is more complicated
than Knapsack, as an edge which is light for one of its endpoints may be heavy for the
other. We therefore define a more general version of the problem, allowing us to decouple
the contribution each edge makes to the stability of each endpoint. This helps us bound
the largest stability-weight by a polynomial, but is still not sufficient to obtain an FPT
algorithm, as the lower bound of Theorem 8 applies to polynomially bounded weights. We
then go on to apply a technique introduced in [46] (see also [2, 10, 43, 44]) which allows us
to obtain FPT approximation algorithms for problems which are W-hard by treewidth by
applying a different notion of rounding to the dynamic program. This allows us to produce
a solution that is simultaneously of optimal weight (compared to the best stable solution)
and almost-stable, using essentially the same algorithm as in Theorem 5. However, it is
worth noting that in general there is no obvious way to transform almost-stable solutions to
stable solutions [11, 17], so our algorithm is not immediately sufficient to obtain an FPT
approximation for Min Stable Cut if we insist on obtaining a cut which is exactly stable.

Related work. From the point of view of local search algorithms, there is an extensive
literature on the Local Max Cut problem, which asks us to find a stable cut (of any size).
The problem has long been known to be PLS-complete [42, 52]. It remains PLS-complete
for graphs of maximum degree 5 [27], but becomes polynomial-time solvable for graphs of
maximum degree 3 [48, 51]. The problem remains PLS-complete if weights are assigned to
vertices, instead of edges, and the weight of an edge is defined simply as the product of the
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weights of its endpoints [31]. Even though the problem is PLS-complete, it has long been
observed that local search quickly finds a stable solution in most practical instances. One
theoretical explanation for this phenomenon was given in a recent line of work which showed
that Local Max Cut has quasi-polynomial time smoothed complexity [3, 12, 18, 29].
Local Max Cut is of course polynomial time solvable if all weights are polynomially
bounded in n, as local improvements always increase the size of the cut.

In algorithmic game theory much work has been done on the complexity of computing
Nash equilibria for the cut game and the closely related party affiliation game, in which
players, represented by vertices, have to pick one of two parties and edge weights indicate how
much two players gain if they are in the same party [6, 7, 19, 30, 35]. Note that for general
graphical games finding an equilibrium is PPAD-hard on trees of constant pathwidth [25].
Because computing a stable solution is generally intractable, approximate equilibria have
also been considered [11, 17]. Note that the notion of approximate equilibrium corresponds
exactly to the approximation guarantee given by Theorem 11, but unlike the cited works,
Theorem 11 produces a solution that is both approximately stable and as good as the optimal.

The problem we consider in this paper is more closely related to the problem of computing
the worst (or best) Nash equilibrium, which in turn is closely linked to the notion of Price
of Anarchy. For most problems in algorithmic game theory this type of question is usually
NP-hard [13, 20, 26, 32, 34, 37, 53] and hard to approximate [5, 16, 22, 39, 49]. Even though
these results show that finding a Nash equilibrium that maximizes an objective function is
NP-hard under various restrictions (e.g. graphical games of bounded degree), to the best of
our knowledge the complexity of finding the worst equilibrium of the Max Cut game (which
corresponds to the Min Stable Cut problem of this paper) has not been considered.

Finally, another topic that has recently attracted attention in the literature is that
of MinMax and MaxMin versions of standard optimization problems, where we search
the worst solution which cannot be improved using a simple local search heuristic. The
motivation behind this line of research is to provide bounds and a refined analysis of such basic
heuristics. Problems that have been considered under this lens are Max Min Dominating
Set [8, 24], Max Min Vertex Cover [15, 54],Max Min Separator [38], Max Min
Cut [28], Min Max Knapsack [4, 33, 36], Max Min Edge Cover [45], Max Min
Feedback Vertex Set [23]. Some problems in this area also arise naturally in other forms
and have been extensively studied, such as Min Max Matching (also known as Edge
Dominating Set [41]) and Grundy Coloring, which can be seen as a Max Min version
of Coloring [1, 9].

2 Definitions – Preliminaries

We generally use standard graph-theoretic notation and consider edge-weighted graphs, that
is, graphs G = (V, E) supplied with a weight function w : E → N. For a vertex v ∈ V , The
weighted degree of a vertex v ∈ V is dw(v) =

∑
uv∈E w(uv). A cut of a graph is a partition

of V into V0, V1. A cut is stable for vertex v ∈ Vi if
∑

vu∈E∧u∈V1−i
w(vu) ≥ dw(v)

2 , that is, if
the total weight of edges incident on v crossing the cut is at least half the weighted degree of
v. In the Min Stable Cut problem we are given an edge-weighted graph and are looking
for a cut that is stable for all vertices that minimizes the sum of weights of cut edges (that
is, edges with endpoints on both sides of the cut). In Unweighted Min Stable Cut we
restrict the problem so that the w function returns 1 for all edges. When describing stable
cuts we will sometimes say that we “assign” value 0 (or 1) to a vertex; by this we mean that
we place this vertex in V0 (or V1 respectively).
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For the definitions of treewidth, pathwidth, and the related (nice) decompositions we
refer to [21]. We will use as a complexity assumption the Exponential Time Hypothesis
(ETH) [40] which states that there exists a constant c > 1 such that 3-SAT with n variables
and m clauses cannot be solved in time cn+m. In fact, we will use the slightly weaker and
simpler form of the ETH which states that 3-SAT cannot be solved in time 2o(n+m).

3 Weighted Min Stable Cut

In this section we present our results on exact algorithms for (weighted) Min Stable Cut.
We begin with some basic NP-hardness reductions in Section 3.1, which establish that the
problem remains (weakly) NP-hard when either the treewidth or the maximum degree are
bounded. These set the stage for two algorithms, given in Section 3.2, solving the problem in
pseudo-polynomial time for constant treewidth; and in FPT time parameterized by tw + ∆.
In Section 3.3 we present a more fine-grained hardness argument, based on the ETH, which
shows that the dependence on tw and ∆ of our two algorithms is essentially optimal.

3.1 Basic Hardness Proofs
▶ Theorem 1. Min Stable Cut is weakly NP-hard on trees of diameter 4.

Proof. We describe a reduction from Partition. Recall that in this problem we are given
n positive integers x1, . . . , xn such that

∑n
i=1 xi = 2B and are asked if there exists S ⊆ [n]

such that
∑

i∈S xi = B. We construct a star with n leaves and subdivide every edge once.
For each i ∈ [n] we select a distinct leaf of the tree and set the weight of both edges in the
path from the center to this leaf to xi. We claim that the graph has a stable cut of weight
3B if and only if there is a partition of x1, . . . , xn into two sets with the same sum.

For the first direction, suppose S ⊆ [n] is such that
∑

i∈S xi = B. For each i ∈ S we
select a degree two vertex of the tree whose incident edges have weight xi and assign it value
1. We assign all other degree two vertices value 0 and assign to all leaves the opposite of the
value of their neighbor. We give the center value 0. This partition is stable as the center has
edge weight exactly B towards each side, and all degree two vertices have a leaf attached that
is placed on the other side and contributes half their total incident weight. The total weight
cut is 2B from edges incident on leaves, plus B from half the weight incident on the center.

For the converse direction, observe that in any stable solution all edges incident on leaves
are cut, contributing a weight of 2B. As a result, in a stable cut of size 3B, the weight of cut
edges incident on the center is at most B. However, this weight is also at least B, since the
edge weight incident on the center is 2B. We conclude that the neighborhood of the center
must be perfectly balanced. From this we can infer a solution to the Partition instance. ◀

▶ Remark 2. Theorem 1 is tight, because Min Stable Cut is trivial on trees of diameter at
most 3.

▶ Theorem 3. Min Stable Cut is weakly NP-hard on bipartite graphs with vertex cover 2.

▶ Theorem 4. Unweighted Min Stable Cut is strongly NP-hard and APX-hard on
bipartite graphs of maximum degree 6.

3.2 Algorithms
▶ Theorem 5. There is an algorithm which, given an instance of Min Stable Cut with n

vertices, maximum weight W , and a tree decomposition of width tw, finds an optimal solution
in time (∆ · W )O(tw)nO(1).
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▶ Theorem 6. There is an algorithm which, given an instance of Min Stable Cut with
n vertices, maximum weight W , maximum degree ∆ and a tree decomposition of width tw,
finds an optimal solution in time 2O(∆tw)(n + log W )O(1).

Proof. We describe an algorithm which works in a way similar to the standard algorithm
for Max Cut parameterized by treewidth, except that we work in a tree decomposition that
is essentially a decomposition of the square of G. More precisely, before we begin, we do
the following: for each v ∈ V we add to every bag of the decomposition that contains v all
the vertices of N(v). It is not hard to see that we now have a decomposition of width at
most (∆ + 1)(tw + 1) and also that the new decomposition is still a valid tree decomposition.
Crucially, we now also have the following property: for each v ∈ V there exists at least one
bag of the decomposition that contains all of N [v].

The algorithm now performs dynamic programming by storing for each bag the value of
the best solution for each partition of Bt. As a result, the size of the DP table is 2O(∆tw).
The only difference with the standard Max Cut algorithm (beyond the fact that we are
looking for a cut of minimum weight) is that when we consider a bag that contains all of N [v],
for some v ∈ V , we discard all partitions which are unstable for v. Since the bag contains all
of N [v], this can be checked in time polynomial in n and log W (assuming weights are given
in binary). ◀

3.3 Tight ETH-based Hardness
We first give a reduction from 3-Set Splitting to Min Stable Cut whose main properties
are laid out in Lemma 7. This reduction gives the lower bound of Theorem 8.

▶ Lemma 7. There is a polynomial-time algorithm which, given a 3-Set Splitting instance
H = (V, E) with n elements, produces a Min Stable Cut instance G with the following
properties: (i) G is a Yes instance if and only if H is a Yes instance; (ii) if ∆ is the
maximum degree of G and pw its pathwidth, then ∆ = O(log n) and pw = O(n/ log n); (iii)
the maximum weight of G is W = O(2∆).

...

}log n

{
n/ log n

...

...

...

1
2
4
8

2log n

Figure 1 Sketch of the construction of Lemma 7. On the left, the general architecture: m columns,
each with n vertices, partitioned into groups of size log n. On each column we add a checker vertex
(on top). Between the same groups of consecutive columns we add propagator vertices. On the right,
more details about the exponentially increasing weights of edges incident on propagators.
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Proof. Let H = (V, E) be the given 3-Set Splitting instance, V = {v0, . . . , vn−1} and
suppose that E contains e2 sets of size 2 and e3 sets of size 3, where |E| = e2 + e3 will be
denoted by m. Assume without loss of generality that n is a power of 2 (otherwise add some
dummy elements to V ). Let δ = log n. We construct a graph by first making m copies of V ,
call them Vj , j ∈ [m] and label their vertices as Vj = {v(i,j) | i ∈ {0, . . . , n − 1}}. Intuitively,
the vertices {v(i,j) | j ∈ [m]} are all meant to represent the element vi of H . We now add to
the graph the following:

1. Checkers: Suppose that the j-th set of E contains elements vi1 , vi2 , vi3 . Then we construct
a vertex cj and connect it to v(i1,j), v(i2,j), v(i3,j) with edges of weight 1. If the j-th set
has size two, we do the same (ignoring vi3).

2. Propagators: For each j ∈ [m − 1] we construct ρ = ⌈n/δ⌉ vertices labeled p(i,j), i ∈
{0, . . . , ρ − 1}. Each p(i,j) is connected to (at most) δ vertices of Vj and δ vertices of
Vj+1 with edges of exponentially increasing weight. Specifically, for i ∈ {0, . . . , ρ − 1}, ℓ ∈
{0, . . . , δ − 1}, we connect p(i,j) to v(iδ+ℓ,j) and to v(iδ+ℓ,j+1) (if they exist) with an edge
of weight 2ℓ.

3. Stabilizers: For each j ∈ [m], i ∈ {0, . . . , n − 1} we attach to v(i,j) a leaf. The edge
connecting this leaf to v(i,j) has weight 3 · 2(i mod δ).

This completes the construction of the graph. Let Lw be the total weight of edges incident
on leaves and P be the total weight of edges incident on Propagator vertices p(i,j). We set
B = Lw + P

2 + e2 + 2e3 and claim that the new instance has a stable cut of weight B if and
only if H can be split.

For the forward direction, suppose that H can be split by the partition of V into
L, R = V \ L. We assign the following values for our new instance: for each j ∈ [m] odd,
we set v(i,j) to value 0 if and only if vi ∈ L; for each j ∈ [m] even, we set v(i,j) to value 0 if
and only if vi ∈ R. In other words, we use the same partition for all copies of V , but flip
the roles of 0, 1 between consecutive copies. We place leaves on the opposite side from their
neighbors and greedily assign values to all other vertices of the graph to obtain a stable
partition. Observe that all vertices v(i,j) are stable with the values we assigned, since the
edge connecting each such vertex to a leaf has weight at least half its total incident weight.

In the partition we have, we observe that (i) all edges incident on leaves are cut (total
weight Lw) (ii) all Propagator vertices have balanced neighborhoods, so exactly half of their
incident weight is cut (total weight P/2) (iii) since L, R splits all sets of E, each checker
vertex will have exactly one neighbor on the same side (total weight e2 + 2e3). So, the total
weight of the cut is B.

For the converse direction, suppose we have a stable cut of size B in the constructed
instance. Because of the stability condition, this solution must cut all edges incident on
leaves (total weight Lw); at least half of the total weight of edges incident on Propagators
(total weight P/2); and for each checker vertex all its incident edges except at most one
(total weight at least e2 + 2e3). We conclude that, in order to achieve weight B, the cut
must properly balance the neighborhood of all Propagators and make sure that each Checker
vertex has one neighbor on its own side.

We now argue that because the neighborhood of each Propagator is balanced we have for
all i ∈ {0, . . . , n − 1}, j ∈ [m − 1] that v(i,j), v(i,j+1) are on different sides of the partition. To
see this, suppose for contradiction that for two such vertices this is not the case and to ease
notation consider the vertices v(iδ+ℓ,j), v(iδ+ℓ,j+1), where 0 ≤ ℓ ≤ δ − 1. Among all such pairs
select one that maximizes ℓ. Both vertices are connected to the Propagator p(i,j) with edges
of weight 2ℓ. But now p(i,j) has strictly larger edge weight connecting it to the side of the
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partition that contains v(iδ+ℓ,j) and v(iδ+ℓ,j+1) than to the other side because (i) for neighbors
of p(i,j) connected to it with edges of higher weight, the neighborhood of p(i,j) is balanced by
the maximality of ℓ (ii) the total weight of all other edges is 2 · (2ℓ−1 + 2ℓ−2 + . . . + 1) < 2 · 2ℓ.

We thus have that for all i, j, v(i,j), v(i,j+1) must be on different sides, and therefore all
Vj are partitioned in the same way (except some have the roles of 0 and 1 reversed). From
this, we obtain a partition of V . To conclude this direction, we argue that this partition of
V must split all sets. Indeed, if not, there will be a checker vertex such that all its neighbors
are on the same side, which, as we argued, means that the cut must have weight strictly
more than B.

Finally, let us show that the constructed instance has the claimed properties. The
maximum degree is ∆ = 2δ = O(log n) in the Propagators vertices (all other vertices
have degree at most 4); the maximum weight is O(2δ) = O(2∆). Let us also consider the
pathwidth of the constructed graph. Let Gj be the subgraph induced by Vj and its attached
leaves, the Checker cj , and all Propagators adjacent to Vj . We claim that we can build
a path decomposition of Gj that contains all Propagators adjacent to Vj in all bags and
has width O(n/ log n). Indeed, if we place all the (at most ⌈2n/δ⌉) Propagators and cj

in all bags, we can delete them from Gj , and all that is left is a union of isolated edges,
which has pathwidth 1. Now, since the union of all Gj covers all vertices and edges, we can
construct a path decomposition of the whole graph of width O(n/ log n) by gluing together
the decompositions of each Gj , that is, by connecting the last bag of the decomposition of
Gj to the first bag of the decomposition of Gj+1. ◀

▶ Theorem 8. If the ETH is true then (i) there is no algorithm solving Min Stable Cut
in time (nW )o(pw) (ii) there is no algorithm solving Min Stable Cut in time 2o(∆pw)(n +
log W )O(1). These statements apply even if we restrict the input to instances where weights
are written in unary and the maximum degree is O(log n).

4 Approximately Stable Cuts

In this section we present an algorithm which runs in FPT time parameterized by treewidth
and produces a solution that is (1 + ε)-stable and has weight upper bounded by the weight
of the optimal stable cut. Before we proceed, we will need to define a more general version
of our problem. In Extended Min Stable Cut we are given as input: a graph G = (V, E);
a cut-weight function w : E → N; and a stability-weight function s : E × V → N. For v ∈ V

we denote ds(v) =
∑

vu∈E s(vu, v), which we call the stability degree of v. If we are also
given an error parameter ρ > 1, we will then be looking for a partition of V into V0, V1 which
satisfies the following: (i) each vertex is ρ-stable, that is, for each i ∈ {0, 1} and v ∈ Vi

we have
∑

vu∈E∧u∈V1−i
s(vu, v) ≥ ds(v)

2ρ (ii) the total cut weight
∑

u∈V0,v∈V1,uv∈E w(uv) is
minimum. Observe that this extended version of the problem contains Min Stable Cut as
a special case if ρ = 1 and for all uv ∈ E we have s(uv, v) = s(uv, u) = w(uv).

The generalization of Min Stable Cut is motivated by three considerations. First, the
algorithm of Theorem 5 is inefficient because it has to store exact weight values to satisfy
the stability constraints; however, it can efficiently store the total weight of the cut. We
therefore decouple the contribution of an edge to the size of the cut (given by w) from a
contribution of an edge to the stability of its endpoints (given by s). Second, our strategy
will be to truncate the values of s so that the DP of the algorithm of Theorem 5 can be run
more efficiently. To do this we will first simply divide all stability-weights by an appropriate
value. However, a problem we run into if we do this is that the edge uv could simultaneously
be one of the heavier edges incident on u and one of the lighter edges incident on v, so it
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is not clear how we can adjust its weight in a way that minimizes the distortion for both
endpoints. As a result it is simpler if we allow edges to contribute different amounts to the
stability of their endpoints. In this sense, s(uv, u) is the amount that the edge uv contributes
to the stability of u if the edge is cut. Observe that with the new definition, if we set a new
stability-weight function for a specific vertex u as s′(uv, v) = c · s(uv, v) for all v ∈ N(u),
that is, if we multiply the stability-weight of all edges incident on u by a constant c and
leave all other values unchanged, we obtain an equivalent instance, and this does not affect
the stability of other vertices. Finally, the parameter ρ allows us to consider solutions where
a vertex is stable if its cut incident edges are at least a ( 1

2ρ )-fraction of its stability degree.
Armed with this intuition we can now explain our approach to obtaining our FPT

approximation algorithm. Given an instance of the extended problem, we first adjust the s

function so that its maximum value is bounded by a polynomial in n. We achieve this by
dividing s(uv, u) by a value that depends only on ds(u) and n. This allows us to guarantee
that near-stable solutions are preserved. Then, given an instance where the maximum value
of s is polynomially bounded, we apply the technique of [46], using the algorithm of Theorem
5 as a base, to obtain our approximation. We give these separate steps in the Lemmas below.

▶ Lemma 9. There is an algorithm which, given a graph G = (V, E) on n vertices and a
stability-weight function s : E × V → N with maximum value S, runs in time polynomial in
n+log S and produces a stability-weight function s′ : E ×V → N with the following properties:
(i) the maximum value of s′ is O(n2) (ii) for all partitions V into V0, V1, i ∈ {0, 1}, v ∈ Vi

we have

(
∑

vu∈E,u∈V1−i
s(vu, v)

ds(v) )/(
∑

vu∈E,u∈V1−i
s′(vu, v)

ds′(v) ) ∈ [1 − 1/n, 1 + 1/n]

Using Lemma 9 we can assume that all stability-weights are bounded by O(n2). The most
important part is that Lemma 9 guarantees us that almost-optimal solutions are preserved
in both directions, as for any cut and for each vertex the ratio of stability weight going to
the other side over the total stability-degree of the vertex does not change by more than a
factor (1 + 1

n ). Let us now see the second ingredient of our algorithm.

▶ Lemma 10. There is an algorithm which takes as input a graph G = (V, E), a cut-weight
function w : E → N with maximum W , a stability-weight function s : E × V → N with
maximum S, a tree decomposition of G of width tw, and an error parameter ε > 0 and returns
a (1+2ε)-stable solution that has cut-weight at most equal to that of the minimum (1+ϵ)-stable
solution. If S = O(n2), then the algorithm runs in time (tw/ε)O(tw)(n + log W )O(1).

Proof. We use the methodology of [46]. Before we proceed, let us explain that we are actually
aiming for an algorithm with running time roughly (log n/ε)O(tw). This type of running time
implies the time stated in the lemma using a standard Win/Win argument: if tw ≤

√
log n

then (log n)O(tw) is no(1), so the (log n)O(tw) factor is absorbed in the nO(1) factor; while if
log n ≤ tw2, then an algorithm running in (log n)tw actually runs in time (tw)O(tw).

To be more precise, if the given tree decomposition has height H, then we will formulate
an algorithm with running time (H log S/ε)O(tw)(n + log W )O(1). This running time achieves
parameter dependence (log n/ε)O(tw) if we use the fact that S = O(n2) and a theorem due
to [14] which proves that any tree decomposition can be edited (in polynomial time) so that
its height becomes O(log n), without increasing its width by more than a constant factor.

The basis of our algorithm will be the algorithm of Theorem 5, appropriately adjusted to
the extended version of the problem. Let us first sketch the modifications to the algorithm
of Theorem 5 that we would need to do to solve this more general problem, since the details
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are straightforward. First, we observe that in solution signatures we would now take into
account stability-weights, and signatures would have values going up to S. Second, in Forget
nodes, since we are happy with a (1 + ε)-stable solution, we would only discard solutions
which violate this constraint. With these modifications, we can run this exact algorithm to
return the minimum (1 + ε)-stable solution in time (2S)O(tw)(n + log W + log(1/ε))O(1).

The idea is to modify this algorithm so that the DP tables go from size (2S)tw to roughly
(H log S)tw. To do this, we define a parameter δ = ε

5H . We intend to replace every value x

that would be stored in the signature of a solution in the DP table, with the next larger integer
power of (1 + δ), that is, to construct a DP table where x is replaced by (1 + δ)⌈log(1+δ) x⌉.

More precisely, the invariant we maintain is the following. Consider a node t of the
decomposition at height h, where h = 0 corresponds to leaves. We maintain a collection
of solution signatures such that: (i) each signature contains a partition of Bt and for each
v ∈ Bt an integer that is upper-bounded by ⌈log(1+δ) ds(v)⌉; (ii) Soundness: for each stored
signature there exists a partition of B↓

t which approximately corresponds to it. Specifically,
the partition and the signature agree exactly on the assignment of Bt and the total cut-weight;
the partition is (1 + 2ε)-stable for all vertices of B↓

t \ Bt; and for each v ∈ Bt, if the signature
stores the value x(v) for v, that is, it states that v has approximate stability-weight (1+δ)x(v)

towards its own side in B↓
t \ Bt, then in the actual partition the stability-weight of v to

its own side of B↓
t \ Bt is at most (1 + δ)h(1 + δ)x(v). (iii) Completeness: conversely, for

each partition of B↓
t that is (1 + ε)-stable for all vertices of B↓

t \ Bt there exists a signature
that approximately corresponds to it. Specifically, the partition and signature agree on the
assignment of Bt and the total cut-weight; and for each v ∈ Bt, if the stability-weight of v

towards its side of the partition of B↓
t \ Bt is y(v), and the signature stores the value x(v),

then (1 + δ)x(v) ≤ (1 + δ)hy(v).
In more simple terms, the signatures in our DP table store values x(v) so that we estimate

that in the corresponding solution v has approximately (1 + δ)x(v) weight towards its own
side in B↓

t , that is, we estimate that the DP of the exact algorithm would store approximately
the value (1 + δ)x(v) for this solution. Of course, it is hard to maintain this relation exactly,
so we are happy if for a node at height h the “true” value which we are approximating is at
most a factor of (1 + δ)h off from our approximation.

Now, the crucial observation is that the approximate DP tables can be maintained
because our invariant allows the error to increase with the height. For example, suppose
that t is a Forget node at height h and let u ∈ Bt be a neighbor of the vertex v we forget.
The exact algorithm would construct the signature of a solution in t by looking at the
signature of a solution in its child node, and then adding to the value stored for u the weight
s(vu, u) (if u, v are on the same side). Our algorithm will take an approximate signature
from the child node, which may have a value at most (1 + δ)h−1 the correct value, add to
it s(vu, u) and then, perhaps, round-up the value to an integer power of (1 + δ). The new
approximation will be at most (1 + δ)h larger than the value that the exact algorithm would
have calculated. Similar argumentation holds for Join nodes. Furthermore, in Forget nodes
we will only discard a solution if according to our approximation it is not (1 + 2ε)-stable.
We may be over-estimating the stability-weight a vertex has to its own side of the cut by
a factor of at most (1 + δ)h ≤ (1 + ε

5H )H ≤ 1 + ε
2 so if for a signature our approximation

says that the solution is not (1 + 2ε)-stable, the solution cannot be (1 + ε)-stable, because
(1 + ε)(1 + ε

2 ) < 1 + 2ε (for sufficiently small ε).
Finally, to estimate the running time, the maximum value we have to store for each vertex

in a bag is log(1+δ) S = log S
log(1+δ) ≤ O( log n

δ ) = O( H log n
ε ). Using the fact that H = O(log n)

we get that the size of the DP table is (log n/ε)O(tw). ◀
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Figure 2 Checker gadget for Theorem 13. On the right two Selector gadgets. This Checker
verifies that we have not taken an edge which has endpoints (2, 3), hence t1, t3 are connected to the
first 2 and 3 vertices of the Selectors.

▶ Theorem 11. There is an algorithm which, given an instance of Min Stable Cut
G = (V, E) with n vertices, maximum weight W , a tree decomposition of width tw, and a
desired error ε > 0, runs in time (tw/ε)O(tw)(n + log W )O(1) and returns a cut with the
following properties: (i) for all v ∈ V , the total weight of edges incident on v crossing the
cut is at least (1 − ε) dw(v)

2 (ii) the cut has total weight at most equal to the weight of the
minimum stable cut.

5 Unweighted Min Stable Cut

In this section we consider Unweighted Min Stable Cut. We first observe that applying
Theorem 5 gives a parameter dependence of ∆O(tw), since W = 1. We then show that this
algorithm is essentially optimal, as the problem cannot be solved in no(pw) under the ETH.

▶ Corollary 12. There is an algorithm which, given an instance of Unweighted Min
Stable Cut with n vertices, maximum degree ∆, and a tree decomposition of width tw,
returns an optimal solution in time ∆O(tw)nO(1).

We now first state our hardness result, then describe the construction of our reduction,
and finally go through a series of lemmas that establish its correctness.

▶ Theorem 13. If the ETH is true then no algorithm can solve Unweighted Min Stable
Cut on graphs with n vertices in time no(pw). Furthermore, Unweighted Min Stable
Cut is W[1]-hard parameterized by pathwidth.

To prove Theorem 13 we will describe a reduction from k-Multi-Colored Independent
Set, a well-known W[1]-hard problem that cannot be solved in no(k) time under the ETH [21].
In this problem we are given a graph G = (V, E) with V partitioned into k color classes
V1, . . . , Vk, each of size n, and we are asked to find an independent set of size k which selects
one vertex from each Vi. In the remainder we use m to denote the number of edges of E and
assume that vertices of V are labeled v(i,j), i ∈ [k], j ∈ [n], where Vi = {v(i,j) | j ∈ [n]}.

Before we proceed, let us give some intuition. Our reduction will rely on a k × m grid-like
construction, where each row represents the selection of a vertex in the corresponding color
class of G and each column represents an edge of G. The main ingredients will be a Selector
gadget, which will represent a choice of an index in [n]; a Propagator gadget which will make
sure that the choice we make in each row stays consistent throughout; and a Checker gadget
which will verify that we did not select the two endpoints of any edge. Each Selector gadget
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will contain a path on (roughly) n vertices such that any reasonable stable cut will have to
cut exactly one edge of the path. The choice of where to cut this path will represent an
index in [n] encoding a vertex of G.

In our construction we will also make use of a simple but important gadget which we will
call a “heavy” edge. Let A = n5. When we say that we connect u, v with a heavy edge we
will mean that we construct A new vertices and connect them to both u and v. The intuitive
idea behind this gadget is that the large number of degree two vertices will force u and v to
be on different sides of the partition (otherwise too many edges will be cut). We will also
sometimes attach leaves on some vertices with the intention of making it easier for this vertex
to achieve stability (as its attached leaves will always be on the other side of the partition).

Let us now describe our construction step-by-step.

1. Construct two “palette” vertices p0, p1 and a heavy edge connecting them. Note that all
heavy edges we will add will be incident on at least one palette vertex.

2. For each i ∈ [k], j ∈ [m] construct the following Selector gadget:
a. Construct a path on n + 1 vertices P(i,j) and label its vertices P 1

(i,j), . . . , P n+1
(i,j) .

b. If j is odd, then add a heavy edge from P 1
(i,j) to p1 and a heavy edge from P n+1

(i,j) to p0.
If j is even, then add a heavy edge from P 1

(i,j) to p0 and a heavy edge from P n+1
(i,j) to p1.

c. Attach 5 leaves to each P ℓ
(i,j) for ℓ ∈ {2, . . . , n}. Attach A + 5 leaves to P 1

(i,j) and
P n+1

(i,j) .
3. For each i ∈ [k], j ∈ [m − 1] construct a new vertex connected to all vertices of the paths

P(i,j) and P(i,j+1). This vertex is the Propagator gadget.
4. For each j ∈ [m] consider the j-th edge of the original instance and suppose it connects

v(i1,j1) to v(i2,j2). We construct the following Checker gadget (see Figure 2)
a. We construct four vertices t1

j , t2
j , t3

j , t4
j . These are connected to existing vertices as

follows: t1
j is connected to {P 1

(i1,j), . . . , P j1
(i1,j)} (that is, the first j1 vertices of the path

P(i1,j)); t2
j is connected to {P j1+1

(i1,j), . . . , P n+1
(i1,j)} (that is, the remaining n+1−j1 vertices

of Pi1,j); similarly, t3
j is connected to {P 1

(i2,j), . . . , P j2
(i2,j)}; and finally t4

j is connected
to {P j2+1

(i2,j), . . . , P n+1
(i2,j)}.

b. We construct four independent sets T 1
j , T 2

j , T 3
j , T 4

j with respective sizes j1, n + 1 −
j1, j2, n + 1 − j2. We connect t1

j to all vertices of T 1
j , t2

j to T 2
j , t3

j to T 3
j , and t4

j to T 4
j .

We attach two leaves to each vertex of T 1
j ∪ T 2

j ∪ T 3
j ∪ T 4

j .
c. We construct three vertices aj , bj , cj . We connect cj to both aj and bj . We connect

aj to an arbitrary vertex of T 1
j and an arbitrary vertex of T 3

j . We connect bj to an
arbitrary vertex of T 2

j and an arbitrary vertex of T 4
j .

Let L1 be the number of leaves of the construction we described above and L2 be the
number of degree two vertices which are part of heavy edges. We set B = L1 + L2 + km +
k(m − 1)(n + 1) + m(2n + 6).

▶ Lemma 14. If G has a multi-colored independent set of size k, then the constructed
instance has a stable cut of size at most B.

▶ Lemma 15. If the constructed instance has a stable cut of size at most B, then G has a
multi-colored independent set of size k.

▶ Lemma 16. The constructed graph has pathwidth O(k).
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6 Conclusions

Our results paint a clear picture of the complexity of Min Stable Cut with respect to tw
and ∆. As directions for further work one could consider stronger notions of stability such
as demanding that switching sets of k vertices cannot increase the cut, for constant k. We
conjecture that, since the structure of this problem has the form ∃∀k, its complexity with
respect to treewidth will turn out to be double-exponential in k [47]. Another direction is to
consider hedonic games where vertices self-partition into an unbounded number of groups.
The complexity of finding a stable solution in such games parameterized by tw + ∆ has
already been considered by Peters [50], whose algorithm runs in time exponential in ∆5tw.
Can we bridge the gap between this complexity and the 2O(∆tw) complexity of Min Stable
Cut?
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Testing Triangle Freeness in the General Model in
Graphs with Arboricity O(

√
n)

Reut Levi #

Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya, Israel

Abstract
We study the problem of testing triangle freeness in the general graph model. This problem was first
studied in the general graph model by Alon et al. (SIAM J. Discret. Math. 2008) who provided
both lower bounds and upper bounds that depend on the number of vertices and the average degree
of the graph. Their bounds are tight only when dmax = O(d) and d̄ ≤

√
n or when d̄ = Θ(1), where

dmax denotes the maximum degree and d̄ denotes the average degree of the graph. In this paper
we provide bounds that depend on the arboricity of the graph and the average degree. As in Alon
et al., the parameters of our tester is the number of vertices, n, the number of edges, m, and the
proximity parameter ϵ (the arboricity of the graph is not a parameter of the algorithm). The query
complexity of our tester is Õ(Γ/d̄ + Γ) · poly(1/ϵ) on expectation, where Γ denotes the arboricity
of the input graph (we use Õ(·) to suppress O(log log n) factors). We show that for graphs with
arboricity O(

√
n) this upper bound is tight in the following sense. For any Γ ∈ [s] where s = Θ(

√
n)

there exists a family of graphs with arboricity Γ and average degree d̄ such that Ω(Γ/d̄ + Γ) queries
are required for testing triangle freeness on this family of graphs. Moreover, this lower bound holds
for any such Γ and for a large range of feasible average degrees 1.
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1 Introduction

Testing triangle-freeness is one of the most basic decision problems on graphs. The existence
of triangles in a graph is often a crucial property for various applications. In the realm of
property testing, decision problems are relaxed so that a tester for a property P is only
required to distinguish between graphs that have the property P from graphs which are “far”
according to some predetermined distance measure, from having the property P, which in
our case are graphs which are far from being triangle free.

Testing triangle freeness is known to be possible with query complexity which only
depends on the proximity parameter, ϵ, in graphs which are either dense or sparse. More
specifically, Alon, Fischer, Krivelevich and Szegedy [2] showed that in the dense-graphs
model [8] it is possible to test triangle-freeness with query complexity which is independent

1 For a graph, G, whose arboricity is Γ, the number of edges is at most n · Γ and at least Γ2. Thus, the
average degree of G is at least Γ2/n and at most Γ.
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of the size of the graph but has a tower-type dependence in 1/ϵ. In the other extreme,
Goldreich and Ron [9] observed that in the bounded-degree model [9] it is possible to test
triangle-freeness with query complexity O(1/ϵ) given that the maximum degree of the input
graph is constant.

Alon, Kaufman, Krivelevich, Ron [3] were the first to study this problem in the general-
graphs model [12, 11]. This model is more stringent in the sense that we do not assume
anything on the density of the graph and the distance is measured with respect to the actual
number of edges in the graph (instead of the maximum possible number of edges). They
provided several upper bounds which apply for almost the entire range of average degrees.
They also provided lower bounds that show that their upper bounds are at most quadratic
in the optimal bounds. Shortly after, Rast [13] and Gugelmann [10] improved their upper
bounds and lower bounds, respectively, for some ranges of the parameters.

Although there is a fairly significant gap between the known upper bounds and lower
bounds for the vast range of parameters, there has been no progress on this question since
then. In this paper we provide an upper bound and several lower bounds which are tight for
a large range of parameters. Surprisingly, our bounds depend on the arboricity of the graph
although it is not a parameter of our algorithm.

1.1 Results

We provide an upper bound whose running time complexity is Õ(Γ/d̄ + Γ) · poly(1/ϵ) on
expectation. Therefore, for m ≤ n our upper bound is Õ(Γ/d̄) and when m > n our upper
bound is Õ(Γ) (ignoring polynomial dependencies in 1/ϵ).

We provide three lower bounds, each suitable for a different range of parameters.

1. For any Γ and any feasible m ≥ 1, we provide a lower bound of Ω((Γn)/m) = Ω(Γ/d̄)
queries. Therefore our upper bound is tight when m ≤ n (up to polynomial dependencies
in 1/ϵ and O(log log n) factors).

2. For any Γ and any feasible m ≥ Γ3 we provide a lower bound of Ω(Γ) queries. Therefore,
our upper bound is also essentially tight as long as m ≥ Γ3 (notice that since m ≤ n · Γ,
it is implied that this lower bound applies only for graphs in which Γ = O(n1/3)). Since
we may assume that m ≥ n (otherwise we already have essentially tight lower bound),
one implication of this lower bound is that our upper bound is tight in the strong sense
for graphs with arboricity O(n1/3) (namely it is tight for any feasible m) as it is always
the case that m ≥ Γ3 for Γ = O(n1/3).

3. For any Γ ≤ (n/2)1/2 and any feasible n ≤ m ≤ Γ3 we provide a lower bound of Ω(m1/3)
queries. Since it is always the case that m ≥ Γ2, a lower bound of Ω(Γ2/3) queries is also
implied.

To summarize, for graphs of arboricity Γ = O(n1/2) we obtain that our upper bound is
tight for a large range of average degrees. Additionally, for the range of average degrees in
which we do not provide tight bounds, our upper bound is essentially O(Γ) while our lower
bound is Ω(Γ2/3) in the worst case.



R. Levi 93:3

1.2 Related Work

1.2.1 Property testing of triangle freeness

As mentioned above, testing triangle freeness, in the context of property testing, was first
studied by Alon et al. [2] in the dense graphs model. They showed that triangle freeness
can be tested in time which is independent of the size of the graph. However, their upper
bound has tower-type dependence in 1/ϵ. Alon [1] showed that the query complexity of this
problem in the dense-graphs model is indeed super-polynomial in 1/ϵ.

In the bounded degree model Goldreich and Ron [9] observed that it is possible to test
triangle freeness with query complexity O(1/ϵ) in graphs of maximum degree bounded by
some constant.

The problem of testing triangle freeness in the general graph model was first stud-
ied by Alon, Kaufman, Krivelevich, Ron [3]. The query complexity of their algorithms
dependent on n and d̄, the number of vertices in the graph and the average de-
gree, respectively. They provided sublinear upper bounds for almost the entire range
of parameters. Moreover, their upper bounds are at most quadratic in their lower
bounds. Specifically, their upper bound, which is combined from several upper bounds
is Õ(min{(nd̄)1/2/ϵ3/2, (n4/3/d̄2/3)/ϵ2}). Their lower bound, which is also combined from
several lower bounds, is Ω(max{(n/d̄)1/2, min{d̄, n/d̄}, min{d̄1/2, n2/3/d̄1/3} · n−o(1)}).

Rast [13] improved the upper bound of [3] for graphs with average degree in the
range [c1n1/5, c2n1/2] where c1 and c2 are some constants. The upper bound in [13] is
O(max{(nd̄)4/9, n2/3/d̄1/3}).

Gugelmann [10] provided a lower bound which improves the lower bound in [3] for graphs
with average degree in the range [c1n2/5, c2n4/5] where c1 and c2 are some constants. The
lower bound in [10] is Ω(min{(nd̄)1/3, n/d̄}).

1.2.2 Sublinear algorithms that receive the arboricity of the graph as a
parameter

Eden, Ron and Rosenbaum [5] designed an algorithm that given n, the number of edges of
the input graph and an upper bound on the arboricity of the input graph, Γ, the algorithm
makes O(Γ/d̄ + log3 n/ϵ) queries on expectation and samples an edge of the graph almost
uniformly. More specifically, each edge in the graph is sampled with probability in the range
[(1 − ϵ)m, (1 + ϵ)m].

Eden, Ron and Seshadhri [6] estimate the degree distribution moments of an undirected
graph. In particular, for estimating the average degree of a graph, their algorithm has
query complexity of Õ(Γ/d̄). As they show in their paper, if Γ is not given as an input to
the algorithm then estimating the average degree is not possible in general with this query
complexity.

In another paper, Eden, Ron and Seshadhri [7] give a (1 ± ϵ)-approximation for the
number of k-cliques in a graph given a bound on the arboricity of the graph Γ. In particular
for triangles they provide an upper bound with expected running time, in terms of n, Γ and
the number of triangles in the graph, n3, of min{nΓ2/n3, n/n

1/3
3 +(mΓ)/n3}·poly(log n, 1/ϵ).

ICALP 2021



93:4 Testing Triangle Freeness in the General Model in Graphs with Arboricity O(
√

n)

1.2.3 Testing graphs for bounded arboricity

Eden, Levi and Ron [4] provided an algorithm for testing whether a graph has bounded
arboricity. Specifically, they provide a tolerant tester that distinguished graphs that are
ϵ-close to having arboricity Γ from which are c · ϵ-far from having arboricity 3Γ, where c is
an absolute constant. The query complexity and the running time of their algorithm is in
terms of n, m and Γ is Õ(n/

√
m + nΓ/m) and is quasi-polynomial in 1/ϵ.

1.3 Comparison between our upper bound and upper bounds in previous
work

As mentioned before, Alon et al. [3] provide tight bounds only in two cases. The first case
is when dmax = O(d̄) and d̄ ≤

√
n, where dmax denotes the maximum degree and d̄ denotes

the average degree of the graph. In this case, it follows that Γ = Θ(dmax) = Θ(d̄) an so
our upper bounds essentially match. Additionally we note that a bound on the arboricty
of the graph does not imply a bound on the maximum degree of the graph. In fact, the
maximum degree could be Θ(n) while the arboricity is Θ(1) (as it is the case in the star
graph). Consequently, the tightness of our upper bound is not restricted for graphs which
have bounded maximum degree.

The second case is when d̄ = Θ(1), for these graphs the running time complexity of their
algorithm is Θ̃(n1/2). For this case, the running time complexity of our upper bound is
Õ(Γ). We note that in graphs in which d̄ = Θ(1), Γ could range between Θ(1) and Θ(n1/2).
Therefore when d̄ = Θ(1) the complexity of our upper bound is not worse than the complexity
of the upper bound in [3] but could be much better, depending on Γ.

For average degree in the range between Ω(1) and O(n2/5) and in the range between
Ω(n1/2) and O(n2/3) the upper bound of O(m1/2) queries of Alon et al. achieves the best
running time, in terms of n and m. For these ranges, the running time of our algorithm
is Õ(Γ). Since m1/2 ≥ Γ, we obtain that for this ranges as well the performances of our
algorithm are at least as good (up to O(log log n) and poly(1/ϵ) factors) but could be
significantly better.

For average degree in the range between Ω(n2/5) and O(n1/2) the upper bound of
O(max{(nd̄)4/9, n2/3/d̄1/3}) queries of Rast [13] achieves the best running time. In this
range our upper bound is always better than the upper bound of [13] for graphs of arboricity
O(n12/21).

1.4 High-level of Our Algorithm

It is well known that a graph which is ϵ-far from being triangle free has Ω(ϵm) edge-disjoint
triangles (see Claim 1). Therefore if we were able to sample edges uniformly from the graph
then after sampling O(1/ϵ) edges we would sample an edge {u, v} which belongs to a triangle.
Thus, if we revealed the entire neighborhood of u and the entire neighborhood of v then we
would find a triangle in the graph. Our algorithm is based on this simple approach. There
are only two problems that need to be addressed. The first problem is that sampling edges
uniformly in a graph in which the degrees have high variability is too costly. The second
problem, which also stems from the variability of the degrees in the graph, is that revealing
the entire neighborhood of a vertex can be too costly, depending on its degree.

This is where the arboricity of the graph comes into play. For a graph of arboricity Γ,
as was shown in [4], the fraction of edges in the subgraph induced on heavy vertices, that
is, vertices with degree greater than cΓ/ϵ where c is some absolute constant, is at most ϵ/2.
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Therefore, if Γ was given to us as a parameter then we could, in some sense, ignore the
subgraph induced on vertices of degree greater than Θ(Γ/ϵ) since a graph which is ϵ-far from
being triangle free still have Ω(ϵm) violating edges (and Ω(ϵm) edge-disjoint triangles) even
after we remove this subgraph entirely. Ignoring this subgraph allows us on one hand to
sample edges almost uniformly from the resulting graph while making only Ω(Γ/d̄) queries,
and also guarantees that there are Ω(ϵm) violating edges for which both endpoints are not
heavy. This solves the two problems we had with taking the simple approach.

However a bound on the arboricty of the graph is not given to the algorithm as a
parameter. Since approximating the arboricity of a graph up to a constant factor is not
possible in sublinear time (to see this consider a graph with a hidden clique), we estimate
a different parameter which we informally refer to as the effective arboricity of the graph.
We show that this parameter suffices for our needs. In fact, this parameter could be much
smaller than Γ, in which case the complexity of our algorithm is better than O(Γ/d̄ + Γ).
We reduce the problem of approximating the effective arboricity of the graph to the problem
of estimating the number of edges in the graph in which we remove the subgraph induced on
heavy vertices, where heavy vertices are defined with respect to increasing thresholds. We
stop increasing our threshold once the estimation of the number of edges is sufficiently large.
As we prove, with high constant probability, our approximation to the effective arboricity is
bounded by O(Γ) which leads to a tester with running time O(Γ/d̄ + Γ), as claimed.

1.5 Lower Bounds

Our first lower bound of Ω(Γ/d̄) for graphs in which d̄ ≤ 1 is based on a simple hitting
argument. Specifically, construct a graph which is 1/3-far from being triangle free in which
Ω(Γ/d̄ + Γ) = Ω(Γ/d̄) queries are required in order to sample a vertex which is not isolated
with probability that is at least 1/3.

Our other two lower bounds are simple adaptations of the lower bound of Ω(min{d̄, n/d̄})
queries presented in Alon et al. [3].

2 Preliminaries

Let G = (V, E) be an undirected graph and let d̄ = 2m/n denote the average degree of
G where n = |V | and m = |E|. For each vertex v ∈ V , let deg(v) denote the number of
neighbors of v. For a subset of vertices S ⊆ V we denote by G([S]) the subgraph induced on
S. For a directed graph D we denote by d̄out(D) the average out-degree of D.

A graph G is triangle free if for every three vertices, u, v, w in G at least one pair in
{{u, v}, {v, w}, {w, u}} is not an edge of G. A graph G is ϵ-far from being triangle free if
more than ϵm edges need to be removed in order to make G triangle free.

In the general graph model the tester accesses the graph via the following oracle queries.
1. Degree queries: on query v the oracle returns deg(v).
2. Neighbor queries: on query (v, i) where i ∈ [deg(v)], the oracle returns the i-th neighbor

of v.
3. Vertex-pair queries: on query {v, u} the oracle returns whether there is an edge between

u and v.

An algorithm is a tester for the property of triangle freeness if given a proximity parameter
ϵ and access to an input graph G, it accepts G with probability at least 2/3 if G is triangle
free and rejects G with probability at least 2/3 if G is ϵ-far from being triangle free. If the
tester always accepts graphs which are triangle free we say it has one-side error. Otherwise
we say it has two-sided error.

ICALP 2021
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▷ Claim 1. A graph G = (V, E) which is ϵ-far from being triangle free has at least ϵm/3
edge-disjoint triangles.

Proof. Consider a procedure that given a graph G, as long as there is triangle, t in G it
deletes all the edges of t and proceeds in this manner until there are no triangles in the graph.
The number of edges which are deleted by this process is at least ϵm. Therefore the number
of edge disjoint triangles that are deleted is at least ϵm/3. The claim follows. ◁

The arboricity of an undirected graph G, denoted by Γ(G), is the minimum number of
forests into which its edges can be partitioned. Equivalently it is the minimum number of
spanning forests needed to cover all the edges of the graph.

3 The Algorithm

3.1 First Step: computing the threshold for defining heavy vertices

As described above, for an input graph G, the number of edges in the subgraph induced
on the heavy vertices w.r.t. the threshold 4Γ(G)/ϵ is at most (ϵ/2)|E(G)| (see Claim 4).
Therefore, when testing triangle freeness, we may, roughly speaking, ignore this subgraph
with the hope of obtaining better complexity. Since Γ(G) is not given to the algorithm as
a parameter, we compute, in Algorithm 1, a different parameter of the graph, denoted by
Γ∗, which is, roughly speaking, an approximation of the effective arboricity of the graph. In
order to specify the guarantees on Γ∗ we shall need a couple of definitions.

▶ Definition 2. For a graph G = (V, E) and a threshold t we define the set of heavy vertices
with respect to t as Ht(G) = {v ∈ V : d(v) > t} and the set of light vertices with respect to
t as Lt(G) = V \ Ht(G).

When G is clear from the context we may simply use Ht and Lt. Using the definition of
Ht(G), we next define the graph H(G, t) which is defined w.r.t. G and a threshold t.

▶ Definition 3 (The undirected graph H(G, t)). For a graph G = (V, E) and a threshold t,
the graph H(G, t) is an undirected graph defined as follows. The set of vertices of H(G, t) is
V and the set of edges of H(G, t) is E(G) \ {{u, v} : u ∈ Ht(G) and v ∈ Ht(G)}. Namely,
H(G, t) is the graph G after removing the edges for which both endpoints are heavy with
respect to t.

▷ Claim 4. For a graph G, Γ′ ≥ Γ(G) and η ∈ (0, 1] it holds that |E(H(G, Γ′/η))| ≥
(1 − 2η)|E(G)|.

Proof. We shall prove the claim about Γ′ = Γ. The general claim will follow from the fact
that |E(H(G, x)| is monotonically non-decreasing in x. Let G([Ht]) denote the sub-graph
induced on Ht(G) where t = Γ/η and let k denote the number of edges of this graph. Our
goal is to show that k < 2ηm where m = |E(G)|. The sum of the degrees of vertices in
Ht(G) is greater than t · |Ht(G)|, therefore m > t · |Ht(G)|/2. On the other hand, since
the arboricity of G([Ht]) is also bounded by Γ it follows that k ≤ |Ht(G)| · Γ. Therefore
k < 2m/t · Γ = 2ηm, as desired. ◁

The guarantees on Γ∗, which is the return value of Algorithm 1 (that will be described
next), are as described in the following claim.
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▷ Claim 5. With probability at least 5/6, Γ∗ returned by Algorithm 1 is such that:
1. |E(H(G, t))| ≥ (1 − (ϵ/6))m where t = Γ∗/(48ϵ),
2. Γ∗ ≤ 2Γ(G).

Algorithm 1 proceeds in iterations where in each iteration it multiplies Γ∗ by a factor of 2,
where initially Γ∗ is set to 1. It stops when the estimated number of edges in E(H(G, t)), for
t which is Θ(Γ∗/ϵ), is at least |E(G)|(1 − Θ(ϵ)). In order to estimate the number of edges in
E(H(G, t)), Algorithm 1 calls Algorithm 2.

In turn, Algorithm 2 uses the directed graph D(G, t), which we defined momentarily, that
is constructed from G and can be accessed by making a constant number of queries to G.

▶ Definition 6 (The directed graph D(G, t)). The graph D(G, t) is a directed version of the
graph H(G, t) in which we orient the edges as follows. For every edge {u, v} of H(G, t), we
orient the edge from u to v if: (a) u ∈ Lt and v ∈ Ht or (b) both u ∈ Lt and v ∈ Lt and
id(u) < id(v). Otherwise, we orient it from v to u.

Algorithm 1 Compute Γ∗.

Input: Access to a graph G and parameters n, m and ϵ ∈ (0, 1]
Output: Γ∗ as described in Lemma 5

1 Set Γ1 = 1
2 for i = 1 to log n do
3 Run Algorithm 2 on G with parameters n, m, ϵ/24, ti and δ = Θ(log log n) where

ti
def= Γi/(24ϵ) . Let Zi denote the returned value.

4 If Zi ≤ (1 − ϵ/12)m then set Γi+1 = 2Γi, otherwise, return Γi

Algorithm 2 Estimate the number of edges of H(G, t).

Input: Access to an undirected graph G and parameters parameters n, m, ϵ, t and δ,
where n = |V (G)| and m = |E(G)|

Output: Estimation to the number of edges of H(G, t)
1 Sample r = Θ(δ−1ϵ−2t/d̄), where d̄ = m/n, vertices v1, . . . , vr, uniformly at random

from V (G).
2 For each i ∈ [r]:

1. Sample a random neighbor of vi, u. If the edge between u and vi is oriented from
vi to u in D then set Yi = 1, otherwise set Yi = 0

2. Set Xi = (dout(v)+din(v))·Yi

t

Return X = t·|V (G)|
r ·

∑
i∈[r] Xi

The following claim specifies the guarantees of Algorithm 2.

▷ Claim 7. Given a query access to a graph G and parameters n, m, ϵ, t and δ where
n = |V (G)| and m = |E(G)|, Algorithm 2 outputs X such that w.p. at least 1 − 21/δ,
(1 − ϵ)m′ ≤ X ≤ (1 + ϵ)m′ if m′ ≥ (1 − 2ϵ)m, and X < (1 − ϵ)m, otherwise, where
m′ = |E(H(G, t))|.

Proof. First observe that Yi is an indicator variable to the event that the edge selected in the
i-th iteration of Algorithm 2, {vi, u} is an out-edge of vi in D(G, t). Since V (G) = V (D(G, t))
we obtain the following.

ICALP 2021
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E(Yi) = 1
|V (D(G, t))| · Σv∈V (D(G,t))

dout(v)
dout(v) + din(v) . (1)

Similarly,

E(Xi) = 1
|V (D(G, t))| · Σv∈V (D(G,t))

dout(v) + din(v)
t

· dout(v)
dout(v) + din(v)

= 1
|V (D(G, t))| · Σv∈V (D(G,t))

dout(v)
t

= d̄out(D(G, t))
t

. (2)

Observe that if vi ∈ Ht(G) then dout(v) = 0 and so Yi = Xi = 0. On the other hand, if
vi ∈ Lt(G) then dout(v) + din(v) ≤ t. Therefore, in both cases Xi ∈ [0, 1]. Thus, for r which
is Θ(1/(δϵ2E(X1))) it follows by Multiplicative Chernoff’s bound that with probability at
least 1 − 21/δ,

(1 − ϵ)E(X1) ≤
∑
i∈[r]

Xi/r ≤ (1 + ϵ)E(X1) .

And so

t · |V (G)| · (1 − ϵ)E(X1) ≤ X ≤ t · |V (G)| · (1 + ϵ)E(X1) .

Since t · |V (G)| · E(X1) = |E(H(G, t))| we obtain that

(1 − ϵ) · |E(H(G, t))| ≤ X ≤ (1 + ϵ) · |E(H(G, t))| .

Hence, if |E(H(G, t))| ≥ (1 − 2ϵ)m then d̄out(D(G, t)) = Θ(d̄(G)) and so E(X1) =
Θ(d̄(G)/t), implying that r = Θ(1/(δϵ2E(X1))), as desired. On the other hand, if
|E(H(G, t))| < (1−2ϵ)m, then it is not hard to see that the claim follows by a straightforward
coupling argument. More specifically, first assume that |E(H(G, t))| = (1 − 2ϵ)m and so by
the above, with probability at least 1 − 21/δ,

X ≤ (1 + ϵ)|E(H(G, t))| = (1 + ϵ)(1 − 2ϵ)m < (1 − ϵ)m.

Therefore, it follows by a coupling argument that with probability at least 1 − 21/δ, X <

(1 − ϵ)m also in the case that |E(H(G, t))| < (1 − 2ϵ)m. ◁

▷ Claim 8. For an input graph G and parameters n, m, ϵ, t and δ, where n = |V (G)| and
m = |E(G)|, the time complexity and query complexity of Algorithm 2 is O(δ−1ϵ−2t/d̄(G)).

Proof. The claim follows from the fact that in order to implement Steps 2.1 and 2.2 of
Algorithm 2 the algorithm makes a constant number of queries to G. Specifically, for each vi

the algorithm either performs a single degree query (in case vi ∈ Ht(G) then Yi = Xi = 0)
or a single adjacency-list query and 2 degree queries in case vi ∈ Lt(G) (the orientation of
the edge {vi, u} can be determined by the degrees and ids of vi and u). The implementation
of Step 2.2 does not require additional queries as dout(vi) + din(vi) = dG(vi). ◁

We are now ready to prove Claim 5.

Proof of Claim 5. For the sake of analysis assume that Algorithm 1 performs all log n iterations
of the for-loop. Let Ei denote the event that Zi is as claimed in Claim 7. By Claim 7, for a
fixed i, the probability that Ei occurs is at least 1/(6 log n) for an appropriate setting of δ.
Therefore, by the union bound the probability that Ei occurs for all i ∈ [log n] is at least
5/6. From this point on we condition on the event that indeed Ei occurs for all i ∈ [log n].
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Let mi = |E(H(G, ti))| for every i ∈ [log n]. Let j denote the iteration in which
Algorithm 1 returns a value. By Step 4 of Algorithm 1, Zj > (1 − ϵ/12)m. By Claim 7, it
follows that mj ≥ (1 − ϵ/6)m, as desired (to see this note that if mj < (1 − ϵ/6)m then By
Claim 7, Zj < (1 − ϵ/12)m).

To prove the claim about Γ∗ we consider the minimum j′ ≥ 1, for which 2j′−1 ≥ Γ.
If j < j′ then clearly Γ∗ < Γ, as desired. Otherwise, we claim that j = j′ (namely, that
Γ∗ = 2j′−1) which implies that Γ∗ ≤ 2Γ, as desired. To see this, first note that by Claim 4,
for any Γ′ ≥ Γ and η ∈ (0, 1], |E(H(G, Γ′/η))| ≥ (1 − 2η)m. Therefore m′

j ≥ (1 − ϵ/24)m.
Therefore, by Claim 7, Zj′ ≥ (1 − ϵ/24)m′

j ≥ (1 − ϵ/24)2m > (1 − ϵ/12)m, which implies
that the algorithms stops at the j′-th iteration. ◁

3.2 Second Step: sampling edges almost uniformly given a threshold for
heavy vertices

Given a threshold t, Algorithm 3 samples an edge from H(G, t) almost uniformly as described
in the next claim.

▷ Claim 9. Algorithm 3 samples an edge from H(G, t) such that for each edge, e, of
H(G, t), the probability to sample e is in

[
c1
m′ , c2

m′

]
, where c1 and c2 are absolute constants

and m′ def= |E(H(G, t))|. If t is such that m′ ≥ |E(G)|/2 then the expected running time of
the algorithm is O(t/d̄(G)).

Proof. Consider a single iteration of the while loop of Algorithm 3. For an edge e in H(G, t)
let p(e) denote the probability that e is returned in this iteration of Algorithm 3. If e is an
edge such that both endpoints are in Lt(G), then p(e) = 2

n · 1
t . If e is an edge such that one

endpoint in Lt(G) and the other endpoint is in Ht(G), then p(e) = 1
n · 1

t . Therefore for any
two edges e1 and e2 in H(G, t) the probability that e1 is picked by the algorithm is at most
twice the probability that e2 is picked by the algorithm. Since Algorithm 3 only returns
edges in H(G, t), the claim about the probability to sample an edge follows.

For a fixed iteration of the while loop, the probability that the algorithm returns one
of the edges of E(H(G, t)) is at least m′ · 1

n · 1
t which is at least d̄(G)/(2t) in the case that

m′ ≥ |E(G)|/2. Therefore in this case the expected number of iterations of the while loop is
at most (2t/d̄(G)). Hence the claim about the expected running time follows. ◁

Algorithm 3 Sample an edge from H(G, t) almost uniformly.

Input: Access to a graph G and a parameter t.
1 while do
2 Pick u.a.r. a vertex v from V (G)
3 Pick u.a.r. j ∈ [t]
4 If v ∈ Lt(G) and v has a j-th neighbor, u, then return {v, u}.

▶ Remark 10. We remark that Algorithm 3 is stated as a Las Vegas algorithm. Moreover,
if m < |E(G)|/2 then we can not obtain from Claim 9 any bound on the expected running
time of the algorithm. However, we note that since t and d̄(G) are known then we can set
a timeout for the algorithm (specifically ct/d̄(G) for some constant c) and incorporate the
event that we were forced to stop the algorithm in the failure probability of the tester.

ICALP 2021
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3.3 Putting things together - the algorithm for testing triangle freeness

Using Algorithms 2 and 3 we are now ready to describe our tester (Algorithm 4).

Algorithm 4 Testing Triangle-Freeness.

Input: Access to a graph G and parameters n, m, and ϵ.
1 Execute Algorithm 2 with parameters n, m and ϵ and let Γ∗ denote the returned

value
2 Let t = Γ∗/ϵ

3 for i = 1 to s = Θ(ϵ−1) do
4 Execute Algorithm 3 on G with parameter t and let {u, v} denote the edge

returned by the algorithm.
5 If both u ∈ Lt(G) and v ∈ Lt(G) then return REJECT if N(u) ∩ N(v) ̸= ∅
6 Return ACCEPT

Since the tester has one-sided error (it rejects only if it finds a witness for violation, i.e.,
a triangle) its correctness follows from the following claim.

▷ Claim 11. If G is ϵ-far from being triangle free then Test Triangle Freeness finds
a triangle with probability at least 2/3. The expected running time of the algorithm is
Õ

(
Γ/d̄(G) + Γ

)
· poly(ϵ−1).

Proof. Let G = (V, E) be an input graph which is ϵ-far from being triangle free. There are
at least ϵm/3 edge-disjoint triangles in G (see Claim 1). Let E1 denote the event that for Γ∗

that is return by Algorithm 1 it holds that |E(H(G, t))| ≥ (1 − (ϵ/6))m where t = Γ∗/ϵ. By
Claim 5 E1 occurs with probability at least 5/6. Given that E1 occurred, it follows that there
are at least (ϵ/3)m − (ϵ/6)m = (ϵ/6)m edge-disjoint triangles in H(G, t). Let {t1, . . . , tk}
be an arbitrary subset of these edge-disjoint triangles where k

def= (ϵ/6)m. By the definition
of H(G, t) it holds that for every edge {u, v} ∈ E(H(G, t)) either u ∈ Lt(G) or v ∈ Lt(G).
Thus, for every i ∈ [k] the triangle ti includes an edge {xi, yi} such that both xi and yi are
in Lt(G). Therefore, there are at least k edges in H(G, t) such that if Algorithm 3 returns
one of these edges in Step 4 of Algorithm 4 then Algorithm 4 rejects. For every i ∈ [s], let
E2,i denote the event that Algorithm 3 returns one of these edges in the i-th iteration of
Algorithm 4.

By Claim 9, given that E1 occurred, the probability that E2,i occurs (given that the
algorithm did not return REJECT before the i-th iteration) is at least cϵ for some absolute
constant c. Therefore the probability that both E1 and E2,i occur for some i ∈ [s] is at least
2/3 for an appropriate setting of s. Thus the algorithm rejects with probability at least 2/3
as desired. ◁

4 Lower Bounds

4.1 Lower bound of Ω((Γn)/m) for any Γ and any feasible m ≥ 1

▶ Theorem 12. For any Γ ≤ n − 1 and any m ≥ 1 which is feasible w.r.t. Γ, any algorithm
for testing triangle-freeness must perform Ω((Γn)/m) queries where n, m and Γ denote the
number of vertices, the number of edges and the arboricity of the input graph, receptively.
This lower bound holds even if the algorithm is allowed two-sided error.
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Proof. We consider the following graph G over n vertices, m edges and of arboricity Γ. V1
and V2 are subsets of 2m/(3Γ) vertices each and V3 is a subset of Γ/2 vertices. V1, V2 and
V3 are pairwise disjoint. The edges of the graph are as follows. The sub-graph induced on V1
and V3 is a complete bipartite graph with V1 on one side and V3 on the other side. Similarly
the subgraph induced on V2 and V3 is also a complete bipartite graph. Between V1 and V2 we
take Γ/2 edge disjoint prefect matchings. Consequently the degree of every node in V1 and
V2, as well as the arboricity of the graph, is exactly Γ. The number of edge disjoint triangles
in the graph is at least m/3. To see this consider the following correspondence between an
edge {u, v} such that u ∈ V1 and v ∈ V2 and a triangle in the graph. Let i ∈ [Γ/2] denote the
matching for which {u, v} belongs to, then triangle that corresponds to {u, v} is {u, v, wi}.

Therefore the graph is (1/3)-far from being triangle free (if t1, . . . , tm/3 are edge disjoint
triangles of G then we need to delete at least one edge per triangle in order to make G

triangle free). The number of queries we need to make to hit either V1 or V2 is Ω((Γn)/m).
The number of queries we need to make to hit V3 is Ω(n/Γ). Since m = Ω(Γ2), we obtain
a lower bound of Ω((Γn)/m) queries in order to hit a vertex from V1 ∪ V2 ∪ V3. Therefore
unless the tester makes Ω((Γn)/m) queries, it can not distinguish between G and the empty
graph. The theorem follows. ◀

4.2 Lower bound of Ω(Γ) for any Γ and any feasible m ≥ Γ3

We adapt the following lower bound of Alon et al. [3].

▶ Theorem 13. Any algorithm for testing triangle-freeness must perform Ω(min{d̄, n/d̄})
queries. This lower bound holds even if the algorithm is allowed two-sided error and even for
dmax = O(d̄).

Using Theorem 13, we shall prove the following claims.

▷ Claim 14. For any Γ and any feasible m w.r.t. Γ such that m ≥ Γ3, any algorithm for
testing triangle-freeness must perform Ω(Γ) queries, where m and Γ denote the number of
edges and the arboricity of the input graph, respectively. This lower bound holds even if the
algorithm is allowed two-sided error.

Proof. Assume towards contradiction that there exists an algorithm A for testing triangle-
freeness that is allowed two-sided error and performs o(Γ) queries even for input graphs
for which m ≥ Γ3, where m and Γ denote the number of edges and the arboricity of the
input graph of A, respectively. We will show that there exists an algorithm B for testing
triangle-freeness (with two-sided error) for graphs in which M/N = Γ, N = m/Γ and the
maximum degree is Γ, whose query complexity is o(Γ), where M and N denote the number
of edges and the number of vertices of the input graph of B, respectively. This will contradict
the lower bound in Theorem 13 as min{M/N, N2/M} = min{Γ, m/Γ2} = Γ, where the last
inequality follows from the fact that m ≥ Γ3.

Let m, n and Γ be such that m is feasible w.r.t. Γ and m ≥ Γ3. Therefore Γ3 ≤ m ≤ Γn.
Let G be a graph over N vertices and M edges for which M/N = Γ, N = m/Γ and the
maximum degree is Γ. Given such an input graph G, the algorithm B simulates A on another
graph, G′, that will be described momentarily, and returns the output of A on G′. The graph
G′ is constructed from G and has the following properties:
1. G′ has arboricity Γ.
2. Any query on G′ can be answered by performing at most a single query to G

3. If G is triangle free then G′ is triangle free as well.
4. If G is ϵ-far from being triangle free then G′ is ϵ-far from being triangle free as well.
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G′ is simply the graph G with n − N isolated vertices (observe that n ≥ N since m ≤ Γn).
Since M = m, Item 4 follows. Items 1 and 3 follow from construction and the bound on the
maximum degree of G. Item 2 follows from the fact that any query to the graph G′ is can
be answered either by performing a single query the graph G′ or to without performing any
query to G (in case the algorithm queries the subgraph induced on the additional n − N

isolated vertices of G′).
The completeness and soundness of algorithm B follows from the correctness of algorithm A

and Items 3 and 4, respectively. The claim about the query complexity of algorithm B follows
from Item 2 and the assumption on the query complexity of algorithm A. This completes
the proof of the claim. ◁

4.3 Lower bound of Ω(m1/3) for any Γ ≤ (n/2)1/2 and any feasible
n ≤ m ≤ Γ3

▷ Claim 15. For any Γ ≤ (n/2)1/2 and any feasible m w.r.t. Γ such that n ≤ m ≤ Γ3,
any algorithm for testing triangle-freeness must perform Ω(m1/3) queries, where m, n and
Γ denote the number of edges, number of vertices and the arboricity of the input graph,
respectively. This lower bound holds even if the algorithm is allowed two-sided error.

Proof. The proof of this claim follows the same lines as the proof of Claim 14. Assume
towards contradiction that there exists an algorithm A for testing triangle-freeness that
is allowed two-sided error and performs o(m1/3) queries even for input graphs for which
n ≤ m ≤ Γ3, where m, n and Γ denote the number of edges, number of vertices and the
arboricity of the input graph, respectively. We will show that there exists an algorithm B for
testing triangle-freeness (with two-sided error) for graphs in which M = N3/2 = Θ(m) and
the maximum degree is M/N , whose query complexity is o(M/N), where M and N denote
the number of edges and the number of vertices of the input graph of B, respectively. This
will contradict the lower bound in Theorem 13 as min{M/N, N2/M} = M/N , where the
last inequality follows from the fact that M = N3/2.

Let m, n and Γ be such that m is feasible w.r.t. Γ and n ≤ m ≤ Γ3. Let G be a graph
over N vertices and M edges for which M = N3/2 = m/2 and for which the maximum degree
is M/N . Given such an input graph G, the algorithm B simulates A on another graph, G′,
that will be described momentarily, and returns the output of A on G′. The graph G′ is
constructed from G and has the following properties:
1. G′ has arboricity Γ.
2. Any query on G′ can be answered by performing at most a single query to G

3. If G is triangle free then G′ is triangle free as well.
4. If G is ϵ-far from being triangle free then G′ is at least ϵ/2-far from being triangle free as

well.
G′ is composed of the graph G, a complete bipartite graph A over 2Γ vertices and a
graph I of n − N − 2Γ isolated vertices. Observe that n − N ≥ 2Γ since Γ2 ≤ n/2 and
N = M2/3 ≤ Γ2/22/3 ≤ n/2. The graph A has Γ vertices on each side, A1 and A2 and Γ2

edges. Item 4 follows from the fact that M = m − Γ2 ≥ m − n/2 ≥ m/2. Observe that
maximum degree of G is at most Γ since M/N ≤ m1/3 ≤ Γ. Therefore, Items 1 and 3 follow
from the fact that the arboricity of A is Γ and the bound on the maximum degree of G.
Item 2 follows from the fact that any query to the graph G′ is can be answered either by
performing a single query the graph G′ or to without performing any query to G (in case
the algorithm queries the subgraphs A or I).
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The completeness and soundness of algorithm B follows from the correctness of algorithm A
and Items 3 and 4, respectively. The claim about the query complexity of algorithm B follows
from Item 2 and the assumption on the query complexity of algorithm A. This completes
the proof of the claim. ◁
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Abstract
A probabilistic representation of a string x ∈ {0, 1}n is given by the code of a randomized

algorithm that outputs x with high probability (Oliveira, ICALP 2019, [30]). We employ probabilistic
representations to establish the first unconditional Coding Theorem in time-bounded Kolmogorov
complexity. More precisely, we show that if a distribution ensemble Dm can be uniformly sampled
in time T (m) and generates a string x ∈ {0, 1}∗ with probability at least δ, then x admits a
time-bounded probabilistic representation of complexity O(log(1/δ) + log(T ) + log(m)). Under mild
assumptions, a representation of this form can be computed from x and the code of the sampler in
time polynomial in n = |x|.

We derive consequences of this result relevant to the study of data compression, pseudode-
terministic algorithms, time hierarchies for sampling distributions, and complexity lower bounds.
In particular, we describe an instance-based search-to-decision reduction for Levin’s Kt complexity
(Levin, Information and Control 1984, [23]) and its probabilistic analogue rKt [30]. As a consequence,
if a string x admits a succinct time-bounded representation, then a near-optimal representation
can be generated from x with high probability in polynomial time. This partially addresses in a
time-bounded setting a question from [23] on the efficiency of computing an optimal encoding of a
string.
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1 Introduction

Shannon’s information theory provides a foundation for the study of data transmission and
data compression. However, it inherently considers probability distributions and random
variables, and for this reason it does not apply to an individual object. The theory of
Kolmogorov complexity on the other hand captures the information or computational content
of an individual string or message. Despite significant conceptual differences between the
two theories, results obtained in one setting sometimes admit an analogue in the other (see
e.g. the textbooks [12, 24, 34]).
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94:2 Efficient Coding Theorem via Probabilistic Representations

A fundamental result connecting the distributional framework of Shannon and the
information of an individual object x is the Coding Theorem in Kolmogorov complexity [22].1
This theorem states that if a randomized machine A generates a string x with probability δ,
then its Kolmogorov complexity K(x) is at most log(1/δ) + OA(1). The result is part of a
deep and beautiful theory that we will not be able to survey here. For a complexity-theoretic
perspective that is closer to our work, we refer to [21], where the coding theorem is referred
to as one of the four pillars of Kolmogorov complexity.

An issue with this result and with Kolmogorov complexity more broadly is that many
aspects of the theory are nonconstructive. For instance, computing or even estimating K(x)
of an input string x is known to be undecidable. This limits the applicability of Kolmogorov
complexity and of the aforementioned coding theorem in algorithms and complexity theory.

In order to import methods of Kolmogorov complexity from computability to complexity
theory, a number of works have introduced time-bounded variants of Kolmogorov complexity
(cf. [1, 2, 13, 3] for a survey of results). In other words, one considers the minimum description
length of a string x with respect to machines that operate under a time constraint. Among
many applications, this idea has led Sipser [35] to a proof that BPP is contained in the
polynomial hierarchy, and Levin [23, Section 1.3] to further develop universal search and
optimal search algorithms.

Naturally, many authors have investigated time-bounded variants of the main results in
Kolmogorov complexity.2 Unfortunately, under standard hardness assumptions some of its
most powerful theorems do not survive in time-bounded settings. Two notable examples
are the language compression theorem (see [8] and references therein) and the principle of
symmetry of information (see [26, 27]).

Our focus in this work is on the coding theorem and its applications. Interestingly, there
is no barrier to proving certain versions of the coding theorem in a time-bounded setting.
For instance, Fortnow and Antunes [5] have implicitly established a form of this result, under
a strong computational assumption. While their results are conditional and currently beyond
reach without an assumption, they indicate that a useful time-bounded version of the coding
theorem might be true.

Before proceeding with our discussion, we recall Levin’s time-bounded Kolmogorov
complexity. Let M be a deterministic machine and |M | be its description length. For a
string x ∈ {0, 1}∗,

Kt(x) def= min
TM M, t≥1

{|M | + log t | M(ε) outputs x in t steps},

where M(ε) denotes the computation of M over the empty string.3 An important advantage of
this definition over Kolmogorov complexity K(x) is that an encoding of minimal Kt complexity
can be computed in exponential time via exhaustive search. Moreover, given an encoding w

of x of Kt complexity at most k, we can recover x from w in time at most 2k. Beyond its
established applications in topics such as optimal search algorithms and pseudorandomness,
Levin’s Kt complexity plays an important role in a few other areas. Recent examples
include hardness magnification (e.g. [31, 10]) and the investigation of non-disjoint promise
problems [18].

1 Some authors also refer to it as the Source Compression Theorem or Source Coding Theorem.
2 Troy Lee’s PhD thesis [21] contains a particularly nice exposition of the contrast between Kolmogorov

complexity and its time-bounded variants, including pointers to relevant references.
3 To obtain precise results about the encoding lengths, it is necessary to fix a universal machine and to

consider short inputs for this machine that produce x, as done by Levin. Since our techniques are not
sensitive to encoding choices and our results incur a constant factor overhead in the encoding length,
this is not relevant for our discussion.
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A probabilistic version of Levin’s Kt complexity has been recently investigated in [30]. In
this definition, we minimize over randomized machines that output x with probability at
least 2/3 after computing for at most t steps. In other words,

rKt(x) def= min
RTM M, t≥1

{|M | + log t | M(ε) outputs x in t steps with probability ≥ 2/3}.

Consequently, an rKt description w of a string x provides a probabilistic representation of x,
in the sense that x can be recovered with high probability from w. (Note that the description
itself is a deterministic object.)

Under a mild derandomization assumption, Kt(x) = Θ(rKt(x)) for every string x [30,
Theorem 5]. If so, this would show that any object that can be succinctly described in a
probabilistic way can also be succinctly described in a deterministic way, and that results
about rKt can be transferred to Kt. However, we appear to be far from establishing this
relation, and it is consistent with our knowledge that there is an infinite sequence {xn}n≥1
where each xn is an n-bit string satisfying rKt(x) = O(log n) and Kt(x) = Ω(n).

We do know without assumptions that various natural objects such as certain n-bit prime
numbers can have rKt complexity no(1) [30, 32], while establishing even an upper bound of
o(n) on the Kt complexity of a sequence of n-bit primes would lead to a breakthrough in the
deterministic generation of primes [37]. It seems therefore that probabilistic representations
are useful to represent data, given our current knowledge of algorithms and complexity.

Another interesting aspect of rKt is that, despite its conjectured equivalence to Kt, we
are able to settle basic questions about rKt that remain longstanding conjectures in the
case of Kt. For instance, a natural computational problem is to approximate, given a
string x, the value rKt(x). In other words, we would like to decide if a string has a short
probabilistic representation. [30] proved unconditionally that this problem cannot be solved
in probabilistic polynomial time. In contrast, showing that computing Kt cannot be done
in deterministic polynomial time (i.e., proving MKtP /∈ P) is an important problem in
time-bounded Kolmogorov complexity (cf. [4]).

We are motivated by these intriguing recent results and by the possibility of studying
algorithmic information theory from the vantage point of probabilistic descriptions. The
following questions are particularly relevant in this context.

1. Is it possible to employ rKt to establish new results in time-bounded Kolmogorov com-
plexity? Specifically, can we establish an unconditional version of the coding theorem
discussed above?

2. We have natural examples where probabilistic representations might be helpful, but no
positive algorithmic results about finding such descriptions. Is it possible to compute a
probabilistic representation of a string in some non-trivial way?

3. Can we further develop the theory of probabilistic representations and show stronger
results for natural objects, such as prime numbers?

1.1 Contributions
We make progress in the context of these questions, obtaining results that suggest new
research directions connected to data compression, time-bounded Kolmogorov complexity,
search-to-decision reductions, and related areas. In particular, our results highlight the
usefulness of probabilistic representations in algorithms and complexity. We describe these
contributions in detail next.
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1.1.1 Main results
For an algorithm or machine A, recall that we use |A| to denote its description length under
a fixed encoding scheme. One of our main contributions in this work is to show that an
important result in Kolmogorov complexity survives in the time-bounded setting.

▶ Theorem 1 (Efficient Coding Theorem for rKt). Suppose there is a randomized algorithm A

for sampling strings such that A(1m) runs in time T (m) and outputs a string x ∈ {0, 1}∗ of
length n ≤ T (m) with probability at least δ > 0. Then

rKt(x) = O
(

log(1/δ) + log(T (m)) + log(m)
)
,

where the constant behind the O(·) depends on |A| and is independent of the remain-
ing parameters. Moreover, given x, m, the code of A, and δ, it is possible to com-
pute with probability ≥ 0.99 some rKt encoding of x of at most this complexity in time
poly(|A|, log(m), |x|, log(1/δ)).

A few comments are in order. It is not hard to prove an effective coding theorem for a
distribution whose cumulative probability function is computable in polynomial time (cf. [24]).
Other works have established incomparable results under the assumption that deciding if a
string is in the support of the distribution is easy (see e.g. [39]). Crucially, the theorem above
only assumes that the distribution is samplable, which makes it more broadly applicable. To
our knowledge, Theorem 1 is the first result that provides a general approach to constructing
a probabilistic encoding of a string.

It follows from Shannon’s Coding Theorem that the expected encoding length in Theorem 1
is essentially optimal up to a constant factor. An interesting feature of the result is that
the algorithm computing the rKt encoding runs in polynomial time regardless of the time
complexity of the sampler A(1m). Furthermore, producing the encoding of a string x only
requires knowledge of a lower bound on its probability weight, in contrast to encoding
algorithms such as Huffman coding where knowledge of the probabilities of all elements in
the support of the distribution is necessary.

Using an argument of Levin (see [16] and [21, Section 5.3] or [28, Section A.3]), under the
existence of one-way functions there is a polynomial-time samplable source Dn supported over
{0, 1}n such that every x ∈ Support(Dn) has probability weight Dn(x) ≥ 2−nε , but Dn does
not admit a pair (Encn, Decn) of efficient (probabilistic) encoding and decoding algorithms
such that each x ∈ Support(Dn) is assigned a description of length ≤ n − 3. In contrast,
Theorem 1 is able to sidestep this limitation by using an efficient encoding algorithm whose
associated decoding procedure (provided by the rKt representation itself) is not necessarily
efficient. There are applications where this trade-off might be acceptable, i.e., where it is
crucial to achieve high compression rates and fast (or low energy) encoding, but for which
decoding is allowed to take more resources.4

Similarly to the coding theorem in Kolmogorov complexity, it is possible to derive a
variety of consequences from Theorem 1. We cover in more detail one of its most unexpected
implications, deferring the discussion of a couple of other results to Section 1.1.2 below.

A search-to-decision reduction is an efficient procedure that allows one to find solutions
to a problem from the mere ability to decide when a solution exists. These reductions
are particularly important in algorithms and complexity. On the one hand, theories of
computational complexity are often easier to develop in the context of decision problems.

4 As a speculative scenario, one can imagine data transmission for deep space exploration.
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On the other hand, in practice solving a search problem tends to be the relevant task. A
search-to-decision reduction for a given problem shows that the complexities of its search
and decision versions are similar.

It is well known that any NP-complete problem admits a search-to-decision reduction.
However, there are problems of interest for which such reductions are still unknown. A
notable example in the realm of time-bounded Kolmogorov complexity is whether MCSP,
the Minimum Circuit Size Problem, admits a search-to-decision reduction (cf. [19] for a
discussion and a recent result).

We establish the existence of the following search-to-decision reductions for rKt and Kt
complexities.

▶ Theorem 2 (Instance-based search-to-decision reductions). The following results hold:
(i) There is a randomized polynomial-time algorithm that, when given an input string

x ∈ {0, 1}n and a value k ≥ rKt(x), outputs with probability ≥ 0.99 a valid rKt
representation of x of complexity O(k).

(ii) Similarly, there is a randomized polynomial-time algorithm that, when given an input
string x ∈ {0, 1}n and a value k ≥ Kt(x), outputs with probability ≥ 0.99 a valid Kt
representation of x of complexity O(k).

We note that [4] established that any language in deterministic exponential time E can be
non-uniformly reduced via polynomial-size circuits to the problem of deciding Kt complexity
(or even of just approximating Kt on a large fraction of inputs). Since the problem of finding
a minimal Kt representation of an input string can be encoded as a language in E, it follows
from their work that there is a polynomial-size search-to-decision reduction for Kt. Observe
that the reduction given by [4] finds a description of minimum length, while Theorem 2 only
provides a description that is within a constant factor of the optimal description length.

There are now a number of search-to-decision reductions in the context of time-bounded
Kolmogorov complexity with respect to a variety of string complexity measures (e.g. [9, 17, 19,
20, 25]). We are not aware, however, of a previous instance-based search-to-decision reduction
in the sense of Theorem 2. In other words, Theorem 2 shows that it is possible to produce a
near-optimal Kt representation of x from a decision oracle for Kt that is only queried on x.5
In contrast, the aforementioned reductions require an oracle to the decision problem that
is correct on all or at least on a large fraction of inputs. More broadly, search-to-decision
reductions for problems in other domains such as circuit satisfiability and graph theory tend
to query inputs that modify the original input x.

As a result of the property described above, we are able to derive consequences from
Theorem 2 that do not follow from other reductions. Unsurprisingly, our approach employs
significantly different techniques compared to the papers cited above. In particular, it departs
from the PRG-based approach of [4] and of a few other subsequent works.

We elaborate next on some aspects of Theorem 2 that make it particularly interesting,
at least to the authors. Note that Kt (similarly for rKt and probabilistic algorithms) is a
universal complexity measure for data compression, in the following precise sense. If a string
x can be encoded/decoded by some uniform compression scheme in time ≤ T and using a
description of length ≤ log T , then its Kt complexity is at most O(log T ). As a consequence,
compressing a string x to O(Kt(x)) bits is not far from optimal in a strong sense.

5 A binary search is sufficient to compute rKt(x) ∈ N from a decision oracle that checks if rKt(x) ≤ γ for
a given threshold γ.
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Now suppose we have a string x of length n, and we estimate its Kt complexity to be at
most, say, O(

√
n). Then finding a valid Kt representation of this complexity via exhaustive

search would take time 2O(
√

n). Assuming the widely believed hardness of estimating the Kt
complexity of a string (which is provably true for rKt by [30]), one is tempted to conjecture
that nothing better can be done. Still, Theorem 2 tells us that there is an algorithm that
can produce a valid Kt representation of x of complexity O(

√
n) in time just poly(n).6 This

result addresses to some extent in the time-bounded setting a question from [23, Page 5] on
the efficiency of generating programs of length close to the optimal description length.

It is unclear to us whether there are deterministic search-to-decision reductions for Items
(i) and (ii) of Theorem 2. Although this requires more investigation, it is possible that these
reductions provide natural examples of randomized algorithms that cannot be replaced by
deterministic ones with only a polynomial overhead.7

1.1.2 Further applications and open problems
Efficient construction of time-bounded programs and complexity lower bounds for estim-
ating rKt. By executing the efficient search-to-decision reduction from Theorem 2 with all
values of k = O(n) that are powers of 2, the following corollary is immediate.

▶ Corollary 3 (Effective short lists with short programs in short time). Given an arbitrary
string x of length n, it is possible to compute with high probability and in polynomial time
a collection of at most d = log(n) + O(1) strings w1, . . . , wd such that at least one of these
strings is a valid rKt encoding of x of complexity O(rKt(x)).

The same result can be obtained for Kt complexity. Corollary 26 should be contrasted
with the results from [7, 6] in the context of (time-unbounded) Kolmogorov complexity. They
achieve optimal compression rates, by mapping a string of Kolmogorov complexity k to a
collection of strings that contains a valid representation of length k + O(1). While we are
not able to achieve this level of compression, our setting is more stringent, since we need
to construct a short representation that can be decompressed under a time constraint. It
would be interesting to explore connections between our techniques and those employed in
Kolmogorov complexity to see if our parameters can be further improved.

In light of Corollary 3 and the complexity lower bound for estimating the rKt complexity
of a string ([30]; see Theorem 14), it follows that the intractability of estimating rKt does not
lie in the exhaustive search required to find a succinct representation. Instead, the hardness
is a consequence of the intractability of checking if a given rKt representation is valid for a
string x.

It is unlikely that circuit minimization of a given truth-table (MCSP) admits a search-to-
decision reduction of the form given by Theorem 2. This would allow one to construct in time
polynomial in the size of the input truth-table a collection of circuits that contains a circuit
of near-optimal size for the truth-table. As opposed to rKt, checking if a circuit correctly
encodes a string can be done in polynomial time, which implies that such a search-to-decision
reduction provides a natural property in the sense of [33]. Consequently, under cryptographic
assumptions, minimizing circuit size and minimizing Kt/rKt behave differently with respect
to instance-based search-to-decision reductions.

6 This does not contradict the intractability result from [30]. Indeed, it implies that checking if a given
representation generates a particular string is the problem that requires super-polynomial time.

7 Note that this is not inconsistent with P = BPP because these are not decision problems.
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Hardness of approximately sampling distributions. It is not hard to show that if Promise-
BPP ⊆ Promise-P then BPTIME[·] admits a time hierarchy theorem. This easily follows from
the deterministic time hierarchy theorem for decision problems. As a consequence of our
results, we observe that a similar derandomization hypothesis for decision problems implies a
strong time hierarchy theorem for sampling distributions.

To our knowledge, a uniform time hierarchy theorem for sampling distributions was
first established in [41]. While the results of his work are unconditional, [41] left open the
problems of proving an almost-everywhere lower bound and of achieving a larger statistical
gap [41, Section 5]. Our next result provides a conditional solution to these questions.

▶ Theorem 4 (A strong time hierarchy theorem for sampling distributions). Under the assump-
tion that Promise-BPE ⊆ Promise-E, there is a constant ζ > 0 for which the following holds.
Let n1/ζ ≤ T (n) ≤ 2n be any constructive time bound. There is an ensemble {Dn}n≥1 of
distributions Dn such that:

(i) Each distribution Dn is supported over a single string zn ∈ {0, 1}n.
(ii) There is a deterministic algorithm A(1n) that samples Dn and runs in time O(T (n)).
(iii) For each randomized algorithm B(1n) that runs in time O(T (n)ζ) and for every large

enough n, the statistical distance of Dn and B(1n) is at least 1 − 1/T (n)ζ .

We are not aware of a previous time hierarchy theorem for sampling distributions able
to produce hard distributions of support size one, even under computational assumptions.
(Interestingly, the unconditional results of [41] hold for support size k ≥ 2.) Note that
Theorem 4 exploits uniformity in a crucial way: each distribution Dn can be sampled by a
(non-uniform) linear-size circuit Cn that ignores its random input and outputs the unique
string zn in the support of Dn.

Computational patterns in prime numbers. We now step back and revisit one of the most
basic questions associated with the power of probabilistic representations. The problem
stated below is concerned with the computational (in)compressibility of n-bit prime numbers.

▶ Problem 5 (Primes with short descriptions). Is there an infinite sequence {pn}n≥1 of prime
numbers pn ∈ [2n−1, 2n − 1] such that rKt(pn) = o(n)?

This would show that there are primes of every large length that admit effective short
encodings, i.e., such primes possess computational patterns that translate into effective
representations (e.g. Mersenne primes). A partial result appears in [32], where this is proved
for infinitely many n. Consequently, some primes can have short descriptions. Is this a rare
phenomenon, or does it happen for primes of all lengths? This is the question captured by
Problem 5.

We note that obtaining a solution to Problem 5 is necessary before showing the existence
of a deterministic algorithm that generates n-bit primes in time 2o(n). We refer to [37] for
more background on this problem.

Theorem 1 offers a path to solving this problem. In other words, it shows that it is enough
to sample n-bit numbers in time 2o(n) in a way that assigns enough weight to some (possibly
unknown) prime. Given that many advances to our understanding of prime numbers employ
probabilistic ideas (see e.g. [38, 29] and references therein), this perspective could be fruitful.

Our last result shows that the existence of a sampler of this form is in fact equivalent to
a positive solution to Problem 5.
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▶ Theorem 6 (Equivalence between faster samplability and improved time-bounded descriptions).
The following statements are equivalent:

(i) Sampling Algorithm. For every ε > 0, there is a randomized algorithm A(1n) sampling
strings in {0, 1}∗ that runs in time T (n) = O(2εn) and for which the following holds.
For every large n, there is an n-bit prime qn such that Pr[A(1n) outputs qn] ≥ 2−εn.

(ii) Short Descriptions. Let δ > 0 be an arbitrary constant. For every large n, there is an
n-bit prime pn such that rKt(pn) ≤ δn.

We stress that the equivalence in Theorem 6 is not particular to prime numbers and to
exponential time bounds. It can be seen as the analogue for rKt of Levin’s fundamental
insight that a sequence of objects (such as n-bit primes or solutions to search problems) can
be deterministically generated in time T (n) if and only if they have Kt complexity of order
log(T (n)).

Finally, complementing the applications and open problems mentioned above, it would
be interesting to understand when a mathematical method employed to show the existence
of certain combinatorial objects also implies the existence of objects of bounded rKt com-
plexity. This is particularly interesting in settings where the desired objects are “rare” and
the probability of producing them is small (e.g. Lovász local lemma and techniques from
discrepancy theory). Extracting rKt upper bounds from existential proofs offers an alternate
way of designing non-trivial algorithms for generating the corresponding objects, since it is
sufficient to exhaustively search for objects of bounded description length.8

1.2 Techniques
In this section, we describe the main conceptual ideas behind Theorems 1 and 2. Since
our goal is to establish a coding theorem in a time-bounded setting and our applications
require an algorithm that produces a valid encoding in polynomial time, it is not clear if
arguments employed in the context of (unbounded) Kolmogorov complexity can be adapted
to our setting. For instance, it is not hard to construct an encoding given all strings in the
support of the distribution and their corresponding probabilities, but we cannot assume in
the time-bounded setting that this is available. Similarly, under additional assumptions on
the distribution, such as the ability to compute its cumulative probability function, producing
an encoding is easier. However, we are aiming for a result that applies to the larger class of
samplable distributions.

Sketch of the proof of Theorem 1. We are given a randomized algorithm A(1m) that runs
in time T and samples from a distribution Dm. Fix a string x ∈ Support(Dm), and assume that
its probability weight Dm(x) ≥ δ. Our goal is to (efficiently) produce a succinct probabilistic
representation of x in the sense of rKt complexity. The first thing to notice is that there are at
most 1/δ strings y ∈ Support(Dm) such that Dm(y) ≥ δ. Let Sδ

def= {y ∈ {0, 1}∗ | Dm(y) ≥ δ}
be the set of such strings, which includes our target string x. We assume for simplicity of
the exposition that Sδ ⊆ {0, 1}n, where n = |x| is the length of x.

Let’s pretend for now that we know the set Sδ. Note that this is not really a realistic
assumption, since we are aiming to output a valid rKt description of x in a number of
steps that might not even allow us to sample a single string from Dm. We will revisit this
assumption later on, and argue that explicit knowledge of Sδ is not needed to produce a
probabilistic representation of x.

8 In some applications, one might need to consider conditional rKt complexity. The techniques employed
in this work also extend in this direction.
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Our current goal is to be able to identify x among the elements of Sδ, ideally with an
advice string of length close to O(log |Sδ|) = O(log(1/δ)). A natural way to try to achieve
this goal is by producing a “fingerprint” or “hash value” from x that uniquely specifies
this string. In other words, we would like to have a function h : Sδ → {0, 1}∗ such that
h(x) ̸= h(y) for every y ∈ Sδ\{x}. Then we can identify x in Sδ using h and the value
z = h(x). Assuming that we know Sδ, the total description length of x would be upper
bounded by roughly |h| + |z|, where |h| is the description length of h and |z| is the length
of z.

This is a basic algorithmic problem, and one way to achieve this goal with a reasonable
upper bound on the description length is as follows. Given an explicit polynomial-time
computable error-correcting code E : {0, 1}n → {0, 1}O(n), let Tδ

def= E(Sδ), i.e., each string
y′ ∈ Tδ is obtained by applying E to a string y ∈ Sδ. Consequently, for every distinct pair
y′, y′′ ∈ Tδ, their relative hamming distance d(y′, y′′) = Ω(1). For this reason, it follows by a
simple probabilistic analysis that if we randomly project about O(log(1/δ)) coordinates of
the strings in Tδ, we are likely to produce a “fingerprint” that uniquely specifies each string.
Thus to specify x in Sδ it is enough to compute E(x) and to store O(log(1/δ)) random
pairs (i, bi), where i ∼ [O(n)] and bi

def= E(x)i, the i-th bit of the string E(x). Following our
notation from above, one can think of h as being given by the sequence of coordinates, and z

by the bits obtained from the projection of E(x).9
There are two potential issues with this approach:

(a) In order to store x’s fingerprint information (h and z), we still need O(|h| + |z|) =
O(log(1/δ) · log(n) + log(1/δ)) bits, instead of just O(log(1/δ)).

(b) We have assumed explicit knowledge of Sδ to recover x from h and z.

The first issue is of a quantitative nature, and it can be handled via standard techniques.
By projecting coordinates of E(x) according to a random walk on an explicit constant-
degree expander graph on O(n) vertices, the total description length can be reduced to
O(log(n) + log(1/δ)).

Regarding the more challenging issue (b), first notice that the argument we have described
so far uses randomness only to produce h. In particular, it gives a randomized algorithm
that with high probability produces a deterministic representation of x from h, z = h(x),
and Sδ. Therefore, we have not yet exploited the power of probabilistic representations.

A simple but crucial idea is that we can use the code of the sampler A and m to efficiently
compute a valid rKt representation of x, without ever running A(1m). More precisely, the rKt
instructions to output x include running A(1m) about O((1/δ) · log(1/δ)) times to collect
(with high probability) a superset Wδ ⊇ Sδ. Let’s assume for simplicity that Wδ = Sδ (it
is possible to take care of extra elements by a more delicate argument). Given the set Wδ,
n = |x|, and an independently generated h obtained before we compute the rKt representation,
h and the hash value z = h(x) are likely to isolate x among the elements in Wδ. A careful
implementation of these ideas allows us in randomized polynomial-time to generate an rKt
representation of x whose description length is O(log(m) + log(1/δ) + log(n)) and whose
logarithm of the running time is O(log(T (m)) + log(1/δ)). Since generating an n-bit string x

takes time T ≥ n, the overall rKt complexity (description length + log of the running time)
is O(log(1/δ) + log(T (m)) + log(m)). ◀

9 Notice that an explicit error-correcting code together with a bounded number of random coordinates of
the string E(x) were used to minimize the description length of x’s fingerprint. We can also generate a
fingerprint by collecting the value of random XORs χS applied to x, but storing the relevant sets S
would have been expensive.
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Sketch of the proof of Theorem 2. First, we discuss a reduction for rKt. Given a string x

and a parameter k ≥ rKt(x), we need to output a valid rKt representation of x of complexity
O(k). This is not a lot of information, but we have a general tool at our disposal: the Coding
Theorem for rKt (Theorem 1). In particular, if we could sample x in time 2O(k) and with
probability 2−Ω(k) using an explicit algorithm A, we would be done by the moreover part of
this result. The only challenge is to uniformly construct an explicit sampler of this form.

Fortunately, there is a universal sampler U that works for all strings of rKt complexity at
most k. In more detail, the sampler randomly selects the code of a randomized machine M of
length at most k, simulates M with its internal randomness for at most 2k steps, and outputs
whatever is left on the output tape of M after this simulation. Using that rKt(x) ≤ k, which
implies that some randomized machine of length at most k outputs x within 2k steps with
probability at least 2/3, it is easy to see that x has probability weight at least 2−Ω(k) under
U . Given that the code of U is explicit and we know x and k, the desired representation of
x can be generated with high probability in polynomial time via Theorem 1.

We now consider a search-to-decision reduction for Kt. Recall that, under a derandomiza-
tion assumption, Kt(x) = Θ(rKt(x)) [30, Theorem 5]. Moreover, it is not hard to adapt the
proof to give an efficient deterministic algorithm that converts a probabilistic representation
in the sense of rKt into a deterministic one in the sense of Kt. For this reason, it is pos-
sible to show, under a plausible computational assumption, that there is an instance-based
search-to-decision reduction for Kt.

The most interesting aspect of Item (ii) of Theorem 2 is that it is possible to uncondi-
tionally establish the result. This is obtained by a more careful investigation of the elements
employed in the proofs of Theorem 1 and Theorem 2 Item (i), which reveals that the
derandomization assumption is not really needed. We refer the reader to the main body of
the paper for the details. ◀

Organization. The proof of Theorem 1 appears in Section 3, while the remaining results
are established in Section 4. Due to lack of space, the proof of the strong time hierarchy
theorem for sampling distributions (Theorem 4) appears in the full version of the paper [28].

2 Preliminaries

2.1 Basic notions
We use |x| to denote the length of a binary string x ∈ {0, 1}∗. We abuse notation and use |M |
denote the length of the binary encoding of a machine M with respect to a fixed universal
machine. Although this will not be essential, we assume a prefix-free encoding of machines,
and remark that our statements are robust with respect to encoding choices.

Probabilistic machines have an extra tape with random bits. We use M≤t to denote a
random variable that represents the content of the output tape of M when it computes for t

steps over the empty string ε (or its final content if the machine halts before that).

▶ Definition 7 (rKtδ Complexity). For δ ∈ [0, 1] and a string x ∈ {0, 1}∗, we let

rKtδ(x) = min
M,t

{
|M | + ⌈log t⌉ | Pr[M≤t = x] ≥ δ

}
.

The randomized time-bounded Kolmogorov complexity of x is given by rKt(x) def= rKt2/3(x).

Levin’s complexity Kt(x) can be defined similarly, either by taking δ = 1 in the definition
above or by restricting the minimization over M and t to deterministic machines. For more
information about rKt, see [30].
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We will assume from our encoding that for every string x of length n, rKt(x) ≤ γ · n,
where γ ∈ N is a universal constant. This is achieved by a trivial machine that simply stores
x and prints it when given an empty string. Since printing a string x takes time at least
|x|, we have Kt(x) ≥ rKt(x) ≥ log |x|. We might implicitly use this fact to omit certain log n

additive factors in our upper bounds.
These definitions and conventions are sufficient for the formalization of our results,

given that the proof of Theorem 1 incurs a constant factor overhead in the resulting rKt
upper bound. For the interested reader, we present a careful discussion of the parameters
of Theorem 1 in the full version [28, Section A]. For more background in time-bounded
Kolmogorov complexity, see [24].

For a discrete probability distribution D, we use Support(D) to denote its support. For x ∈
Support(D), we let D(x) denote its probability weight under D. We extend this definition to a
set T in the natural way, i.e., D(T ) =

∑
x∈T D(x). If D and D′ are distributions with support

contained in a set S, their statistical distance |D − D′| is defined as maxT ⊆[S] |D(T ) − D′(T )|.

▶ Definition 8 (Entropy). The entropy H(D) of a discrete probability distribution D is defined
as

H(D) =
∑

x∈Support(D)

D(x) · log 1
D(x) ,

where log is the binary logarithm function.

We will also require a standard application of expander graphs in order to minimize the
amount of randomness in one of our constructions.

▶ Definition 9 (Expander Graph). An m-vertex undirected graph G is an (m, d, λ)-expander
if G is d-regular and λ(G) ≤ λ, where λ(G) denotes the second largest eigenvalue (in absolute
value) of the normalized adjacency matrix of G (i.e., the adjacency matrix of G divided by d).

2.2 Technical tools
The version of the concentration bound appearing below can be found for instance in [40].

▶ Theorem 10 (Chernoff Bound). Let X =
∑n

i=1 Xi, where each Xi is an independent
0/1-valued random variable. The following inequalities hold.

(i) For every γ > 0, if µ ≥ E[X] then Pr[X ≥ (1 + γ)µ] ≤
(

eγ

(1+γ)(1+γ)

)µ

.

(ii) For every 0 < γ ≤ 1, if µ ≤ E[X] then Pr[X ≤ (1 − γ)µ] ≤
(

e−γ

(1−γ)(1−γ)

)µ

.

▶ Theorem 11 (Explicit ECCs; see e.g. [36]). There is a constant C ∈ N and a polynomial-time
computable function En : {0, 1}n → {0, 1}Cn such that for each n ≥ 1 and for any distinct
strings a, b ∈ {0, 1}n, the relative hamming distance between En(a) and En(b) is at least
1/10.

We will rely on the following explicit construction of expander graphs.

▶ Theorem 12 ((Strongly) Explicit Expander Graphs [14]). There are constants d ∈ N and
0 < λ < 1 for which the following holds. There is an (m, d, λ)-expander family {Gm} of
m-vertex graphs and a deterministic algorithm A that on inputs m ∈ N, v ∈ [m], and i ∈ [d]
outputs the i-th neighbor of v in Gm in time polynomial in log(m).

We will also need the following well-known property of a random walk on an expander
graph.
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▶ Theorem 13 (Expander Chernoff Bound [15]). Let Gm = (V, E) be an (m, d, λ)-expander,
f : V → {0, 1} be an arbitrary function, and µ

def= Ev∼V [f(v)]. Let v1 ∼ V be a uniformly
chosen vertex and v1, . . . , vt be a random walk on G of length t. Then, for any α > 0,

Pr
v1,...,vt

[
1
t

t∑
i=1

f(vi) < µ − α

]
≤ e−(1−λ)α2t/4.

It is known that estimating the rKt complexity of an input string is intractable.

▶ Theorem 14 (Hardness of estimating rKt [30]). Let ε ∈ (0, 1) and C ∈ N. There is no
randomized algorithm A running in time T (n) = O(n(log n)C ) such that for every large enough
n:

For every x ∈ {0, 1}n such that rKt(x) ≤ nε, PrA[A(x) = 1] ≥ 2/3.
For every x ∈ {0, 1}n such that rKt(x) ≥ n − 10, PrA[A(x) = 0] ≥ 2/3.

3 A Coding Theorem via Probabilistic Representations

3.1 An efficient String Isolation Lemma
The next lemma allows us to efficiently isolate a string x from a collection W of strings using
a short advice string v whose length depends on the logarithm of the size of W . We follow a
construction described in the proof of [11, Lemma 6.1].

▶ Lemma 15 (String Isolation Lemma). There is a deterministic algorithm M for which the
following holds. For any set W ⊆ {0, 1}n of size ℓ, there exists a string u ∈ {0, 1}O(log(n·ℓ))

such that M(1n, u) runs in poly(n) time and outputs a Boolean circuit that computes a
function H : {0, 1}n → {0, 1}O(log ℓ) with the following property:

H(w) ̸= H(w′) for every distinct pair w, w′ ∈ W.

Moreover, the same guarantee is achieved by a random string u of the same length with
probability at least 0.99.

Proof. Let En : {0, 1}n → {0, 1}Cn be the error-correcting code from Theorem 11. Moreover,
let t = c1 log ℓ, where c1 is a large enough universal constant. Finally, let GCn be the
expander graph from Theorem 12, where m = Cn.

Given a walk γ = (v1, . . . , vt) in GCn, we define the function Hγ : {0, 1}n → {0, 1}t as
follows. On a string z, let z′ = En(z), and set Hγ(z)i = z′

vi
, where vi ∈ [Cn] is given by γ

and z′
j denotes the j-th bit of z′.

For distinct strings z1, z2 ∈ {0, 1}n, En(z1) and En(z2) have relative distance at least
1/10. As a consequence, if γ is a length-t random walk on GCn, it follows from the Expander
Chernoff Bound (Theorem 13) that

Pr
γ

[
Hγ(z1) = Hγ(z2)

]
≤ Pr

γ

[
1
t

·
t∑

i=1
1[Hγ (z1)i ̸=Hγ (z2)i] <

1
20

]
≤ e−Ω(t) <

1
100ℓ2 ,

where we have used that c1 is a large enough constant in the definition of t. By a union
bound over all distinct pairs of strings in W , there is some length-t random walk such that
the corresponding function H satisfies the condition of the lemma.

Note that any length-t walk γ = (v1, . . . , vt) can be described by a string of length
log(Cn) + O(t) = O(log(n · ℓ)), given that GCn is an m-vertex d-regular graph with d = O(1)
and m = Cn.
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Finally, given 1n and a description u of a length-t walk γ, it is possible to produce a
circuit that computes as the function Hγ in time polynomial in n. This is because En, GCn

and the walk encoded by u can be computed in time poly(n, t) = poly(n, log ℓ) = poly(n),
where the last step uses that ℓ ≤ 2n. This completes the proof of the lemma. ◀

The power of Lemma 15 comes from the fact that we don’t need to know the set W ,
i.e., an upper bound on its size is sufficient. We remark that it is possible to achieve better
parameters in Lemma 15 if we do not consider the efficiency of M . However, we need an
efficient M for our applications in time-bounded Kolmogorov complexity. We also note that
in our proofs we will only need that for a particular string x ∈ W fixed in advance the value
H(x) is not contained in the image of H on W\{x}.

3.2 An efficient Coding Theorem for rKt
We prove Theorem 1 in this section, restated below for convenience of the reader.

▶ Theorem 16 (Efficient Coding Theorem for rKt). Suppose there is a randomized algorithm
A for sampling strings such that A(1m) runs in time T (m) and outputs a string x ∈ {0, 1}∗

of length n ≤ T (m) with probability at least δ > 0. Then

rKt(x) = O(log(1/δ) + log(T (m)) + log(m)),

where the constant behind the O(·) depends on |A| and is independent of the remaining
parameters. Moreover, given x, m, the code of A, and δ, it is possible to compute with
probability ≥ 0.99 some rKt encoding of x of at most this complexity in randomized time
poly(|A|, log(m), |x|, log(1/δ)).

Proof. Let x be a string generated with probability at least δ by a sampler A(1m). Since we
only need a lower bound on the probability and our rKt upper bound is stated asymptotically,
for representation purposes we assume without loss of generality that δ is of the form 2−ℓ for
some ℓ ∈ N. We now show how to obtain an rKt description of x.

With the binary descriptions of m and 1/δ, we first run the sampler A(1m) for t =
64 · (1/δ) · log(1/δ) times to obtain a multi-set of strings S0 of size t. Let V be the set

V
def= {y | A(1m) outputs y with probability at least δ}.

Note that x ∈ V and that |V | ≤ 1/δ. Also, without loss of generality, we assume δ < 2/3;
otherwise the sampler A(1m) yields a desired rKt description of x.

▷ Claim 17. With probability at least 5/6 (over S0), every y ∈ V appears in S0 at least
α = 32 · log(1/δ) times.

Proof of Claim 17. Fix a y ∈ V . Note that the expected number of times that y appears in
S0 is at least

µ
def= t · δ = 64 · log(1/δ).

By the Chernoff bound (Item (ii) of Theorem 10), we have

Pr
S0

[y appears in S0 less than α times] ≤
(

e−1/2

(1/2)(1/2)

)64·log(1/δ)

< δ6.

By a union bound over the strings in V , where |V | ≤ 1/δ, we have that the probability that
there exists a y ∈ V such that y appears in S0 less than α times is less than δ5 < 1/6. ◁
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▷ Claim 18. With probability at most 1/6 (over S0), there exists a string z in S0 such that
z appears at least α = 32 · log(1/δ) times in S0 and that A(1m) outputs z with probability
less than δ/32.

Proof of Claim 18. Let’s view S0 as an ordered multi-set (z1, z2, . . . , zt). For zi ∈ S0, we say
“zi is bad” if that A(1m) outputs zi with probability less than δ/32 and that it appears in S0
at least α times. Let E be the event that there exists some zi ∈ S0 such that zi is bad. Then
we have

Pr[E ] ≤
t∑

i=1
Pr[zi is bad]. (1)

Fix an i ∈ [t], we have

Pr
z1,z2,...,zt∼A

[zi is bad] =
∑

z : A outputs z
w.p. less than δ/32

Pr[zi = z AND zi appears in S0 at least α times]

≤
∑

z as above

Pr[zi appears in S0 at least α times | zi = z] · Pr[zi = z]

≤ max
z as above

Pr[zi appears in S0 at least α times | zi = z]

≤ max
z as above

Pr[z appears S0\{zi} at least α − 1 times]. (2)

Note that if for a string z, A outputs z with probability less than δ/32, then the expected
number of times that z appears in the multi-set S0\{zi} is less than

µ
def= (t − 1) · δ/32 = 2 · log(1/δ) − δ/32,

and hence α − 1 > 11 · µ. Then by the Chernoff bound (Item (i) of Theorem 10), we have

Equation (2) ≤
(

e9

1010

)log(1/δ)

< δ18.

Therefore, we have

Equation (1) ≤ t · δ18 < 64 · (1/δ)2 · δ18 < 1/6,

as desired. ◁

Next, from S0, we build a set S by removing every string in S0 that appears less than
α = 32 · log(1/δ) times in S0, and keeping only one copy for each of the remaining strings.
Let W be the set

W
def= {w | A(1m) outputs w with probability at least δ/32}.

Note that |W | ≤ 32/δ. From Claim 17 and Claim 18, we get that with probability at least
2/3 over the choices of S0, we obtain a “good” set S in the sense that V ⊆ S (hence x ∈ S)
and S ⊆ W .

Consider the algorithm in the String Isolation Lemma (Lemma 15), and let n = |x| ≤ T (m).
Let u be a string of length O(log(n · |W |)) = O(log(T (m))+log(1/δ)) such that the algorithm
in Lemma 15 running on u produces a good hash function H : {0, 1}n → {0, 1}τ for all
length-n strings in W , where τ = O(log(|W |)) = O(log(1/δ)). That is, for every distinct
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w, w′ ∈ W ∩ {0, 1}n, we have H(w) ̸= H(w′). Then for every “good” set S, H maps the
strings in S of length n into different buckets. Therefore, given u, n, and the hash value for
x, H(x), we can recover x from a good set S.

The whole algorithm runs in randomized time poly(m, T (m), 1/δ) and requires an advice
of length O(log(1/δ) + log(m) + log(n)), which gives the desired upper bound for rKt(x).

For the moreover part of the theorem, first observe that to output a description of x it
is not necessary to run the sampling algorithm A(1m) nor to know an upper bound on its
running time. We need instead the following information: the code of A, the input parameter
m, the probability lower bound δ, the length n = |x|, the advice string u given by Lemma 15,
and the hash value H(x). Crucially, the proof of Lemma 15 shows that a random string
u (encoding a random walk) satisfies the conditions of the lemma with probability ≥ 0.99.
Furthermore, the same proof shows that, given u and x, we can compute H(x) in time
poly(n) = poly(|x|). Therefore, by sampling a random string u of an appropriate length that
depends on n and δ, it is possible to compute a correct description of x with probability at
least 0.99. The necessary information can be computed from x, the code of A, n, and δ in
time poly(|A|, log(m), |x|, log(1/δ)). ◀

4 Applications

4.1 Equivalence between samplability and succinct probabilistic
descriptions

It will be useful in the proof of some results to introduce the following sampler.

Definition of U(1m).
1. Given 1m, U samples an integer ℓ ∼ [m] uniformly at random. It then samples a uniformly

random string z of length ℓ, and an independent uniformly random string r of length 2m.
2. U interprets z as the code of a randomized machine Mz, simulates Mz on the empty

input string with randomness r for 2m steps, and outputs the string y that is left on the
output tape of Mz after this simulation.

This sampler satisfies the following properties.

▷ Claim 19. On every input 1m and for every choice of its randomness, U(1m) runs in time
at most 2O(m).

Proof. This is immediate from the definition. ◁

▷ Claim 20. Suppose x ∈ {0, 1}∗ is a string such that rKt(x) ≤ k. Then the probability of x

under U(1k) is at least (1/k) · 2−k · (2/3).

Proof. Since rKt(x) ≤ k, there is a randomized machine M running in time at most t such
that

Pr[M≤t = x] ≥ 2/3 and |M | + log t ≤ k.

Let ℓ = |M | ≤ k, and note that t ≤ 2k. It is clear that x is output by U(1k) with probability
at least (1/ℓ) · 2−ℓ · (2/3) ≥ (1/k) · 2−k · (2/3). ◁

We state next an immediate consequence of the coding theorem for rKt and the existence
of universal time-bounded samplers. For concreteness, we focus on the generation of prime
numbers in the context of Problem 5.

ICALP 2021



94:16 Efficient Coding Theorem via Probabilistic Representations

▶ Theorem 21 (Equivalence between fast samplability and short time-bounded descriptions).
The following statements are equivalent:

(i) Sampling Algorithm. For every ε > 0, there is a randomized algorithm A(1n) sampling
strings in {0, 1}∗ that runs in time T (n) = O(2εn) and for which the following holds.
For every large n, there is an n-bit prime qn such that Pr[A(1n) outputs qn] ≥ 2−εn.

(ii) Short Descriptions. Let δ > 0 be an arbitrary constant. For every large n, there is an
n-bit prime pn such that rKt(pn) ≤ δn.

Proof. That samplability as in the first item leads to short descriptions follows immediately
from Theorem 16 by taking ε > 0 small enough as a function of the given δ > 0. For the
other direction, for a given ε > 0, we consider the sampler A(1n) def= U(1m) with m = ε′n,
where ε′ = ε/C for a large constant C. By Claim 19, A(1n) runs in time O(2εn). Under the
assumption that (ii) holds, Claim 20 guarantees that for large n there is an n-bit prime qn

that is output by A(1n) with probability at least 2−εn. ◀

This should be contrasted with the equivalence between the existence of primes of bounded
Kt complexity and fast deterministic generation of primes. As mentioned in Section 1.1.2,
the equivalence in Theorem 21 also holds in a broader sense.

4.2 Instance-based search-to-decision reduction for rKt and its
consequences

In this section, we show that there is a uniform polynomial-time “approximate” search-to-
decision reduction for rKt. More precisely, we show that given a linear approximation of the
rKt complexity of the input string, it is possible to output a valid rKt representation that is
optimal up to a constant factor.

We will need the following definition.

▶ Definition 22. Let γ : N → R. We say that a function O : {0, 1}∗ → N γ-approximates rKt
complexity if for every string x ∈ {0, 1}∗,

rKt(x)
γ(|x|) ≤ O(x) ≤ γ(|x|) · rKt(x).

If this holds for a constant γ ∈ N, we say that O linearly approximates rKt.

▶ Theorem 23 (An instance-based search-to-decision reduction for rKt). Let O be a function
that linearly approximates rKt complexity. There is a randomized polynomial-time algorithm
with access to O that, when given an input string x, outputs with probability ≥ 0.99 a valid
rKt representation of x of complexity O(rKt(x)). Furthermore, this algorithm makes a single
query q to O, where q = x.

Proof. Given an input x ∈ {0, 1}∗, let k̃
def= O(x) be the estimate provided by the oracle, and

recall that rKt(x)/C ≤ k̃ ≤ C · rKt(x) for a universal constant C. By Claim 20, we get that
the universal sampler U(1C ·̃k) outputs x with probability at least δ

def= (1/(C ·k̃))·2−C ·̃k ·(2/3).
In addition, by Claim 19, the running time of this sampler is bounded by 2O(C ·̃k). It then
follows from the “moreover” part of Theorem 16 that it is possible to efficiently compute
with probability at least 0.99 a valid rKt representation of x of complexity O(C · k̃) =
O(C2 · rKt(x)) = O(rKt(x)). ◀
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As explained in Section 1, an interesting aspect of this reduction is that it works on an
input by input basis. In other words, if we are able to linearly approximate the rKt complexity
of the input string, then we can compute a near-optimal representation for the same string.

We note that a reduction that works on an input by input basis is easy to come up with in
the setting of (time-unbounded) Kolmogorov complexity: from an upper bound on K(x), it is
possible to compute a string that represents x of complexity at most K(x) simply by running
in parallel all machines of at most this description length. Theorem 23 can be interpreted as
an analogue result in the more challenging setting of time-bounded Kolmogorov complexity.

Using ideas from the proof of the coding theorem for rKt, we can also show an unconditional
instance-based search-to-decision reduction for Kt.

▶ Theorem 24 (An instance-based search-to-decision reduction for Kt). Let O be a function
that linearly approximates Kt complexity. There is a randomized polynomial-time algorithm
with access to O that, when given an input string x, outputs with probability ≥ 0.99 a valid
Kt representation of x of complexity O(Kt(x)). Furthermore, this algorithm makes a single
query q to O, where q = x.

Proof. We are given an input x ∈ {0, 1}∗ where |x| = n, and Kt(x)/C ≤ k̃ ≤ C · Kt(x) for
a universal constant C, where k̃ is obtained via a single query to O on x. Our encoding
algorithm is as follows:
1. Pick u ∈ {0, 1}d uniformly at random, where d = O

(
log

(
n · 2 · 2C ·̃k

))
= O(k̃ + log(n)).

2. Invoke the deterministic algorithm M(1n, u) from Lemma 15 to obtain a hash function
H : {0, 1}n → {0, 1}O(̃k), and compute z = H(x).

3. Output (n, k̃, u, z).

It is easy to verify that the output of the above procedure has length

O(log(k̃) + log(n)) = O(Kt(x) + log(n)) = O(Kt(x)).

Next, we claim that with probability at least 0.99 over the choice of u, the tuple generated in
Step 3 can be easily converted into a valid Kt representation of x. (Note that the randomness
is only over the encoding algorithm that generates the Kt representation, which provides a
deterministic description.) To decode x from this information, we first run M(1n, u) from
Lemma 15 to recover the hash function H. We then enumerate each deterministic machine
of description length at most C · k̃ and simulate it for at most 2C ·̃k steps. For each output
y of these machines that is in {0, 1}n, we compute H(y) and output the first y such that
H(y) = z. Note that there are at most ℓ = 2 · 2C ·̃k distinct machines of length at most C · k̃,
and each machine produces at most one output string. By the fact that Kt(x) ≤ C · k̃, at
least one of them will output x. Also, by Lemma 15, for at least a fraction of .99 of the
u’s, the hash function H obtained from u isolates every n-bit string in the set of outputs
of these ℓ machines, and x is the only string such that H(x) = z. Therefore, for any such
“good” u, the string x can be decoded correctly from n, k̃, u, and z. It is easy to see that
the running time of the decoding algorithm is poly(n) · 2O(̃k), so the Kt complexity of the
resulting representation for x is O(Kt(x)). ◀

Note that Theorem 23 (search-to-decision reduction for rKt) and Theorem 24 (search-to-
decision reduction for Kt) complete the proof of Theorem 2 from Section 1.

The next result should be contrasted with the unconditional lower bound of [30] for
estimating the rKt complexity of an input string x.
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▶ Theorem 25 (Efficient generation of rKt descriptions). There is a randomized polynomial-
time algorithm E such that on any input string x ∈ {0, 1}n, given as advice a string α = α(x)
of length ≤ log log n + O(1), E(x, α) outputs with probability ≥ 0.99 an rKt description of x

of complexity O(rKt(x)).

Proof. Algorithm E computes on x ∈ {0, 1}n as follows. It expects α ∈ {0, 1}log log n+O(1)

to encode a tight approximation k̃ to the value k
def= rKt(x) ∈ [γ · n], where γ ∈ N is a

universal constant, and γ · n is an upper bound on max{rKt(x) | x ∈ {0, 1}n}. Since we are
only aiming for a constant factor approximation of rKt(x), we use α to encode the smallest
integer β such that 2β ≥ rKt(x). Since β ≤ log n + Oγ(1), α can be encoded with just
log log n + O(1) bits, and a value k̃ such that k ≤ k̃ ≤ 2k can be obtained from α. E(x, α)
considers the universal sampler U(1k̃) as the algorithm A(1k̃) in Theorem 16. Furthermore, it
sets δ

def= (1/k̃) · 2−k̃ · (2/3). By Claims 19 and 20, A(1k̃) ≡ U(1k̃) outputs x with probability
at least δ and in time at most T = 2O(k̃). As a consequence, from the “moreover” part of
Theorem 16 it follows that E(x, α) can compute with probability at least 0.99 a valid rKt
representation of x of complexity O(log(k̃) + log(T ) + log(1/δ)) = O(k̃) = O(rKt(x)) in time
poly(|U |, log(k̃), n, log(1/δ)) = poly(n). ◀

The next corollary is immediate from Theorem 23.

▶ Corollary 26 (Time-bounded short lists with short programs in short time). Given an arbitrary
string x of length n, it is possible to compute with high probability and in polynomial time
a collection of at most d = log(n) + O(1) strings w1, . . . , wd such that at least one of these
strings is a valid rKt encoding of x of complexity O(rKt(x)).

Proof. We can enumerate all values of k ∈ [O(n)] that are a power of 2, and run the instance-
based search-to-decision reduction from Theorem 23 on x using k as the query answer. One
of such k will be a linear approximation of rKt(x), and the output of the search-to-decision
reduction for this k will be a rKt description of x with complexity O(rKt(x)). ◀
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In the General Factor problem, we are given an undirected graph G and for each vertex v ∈ V (G)
a finite set Bv of non-negative integers. The task is to decide if there is a subset S ⊆ E(G) such that
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improve upon the previous (M + 1)3twnO(1) time algorithm by Arulselvan et al. from 2018.

We prove that this algorithm is essentially optimal for all cases that are not trivial or polynomial
time solvable for the decision, minimization or maximization versions. Our lower bounds show that
such an improvement is not even possible for B-Factor, which is General Factor on graphs
where all sets Bv agree with the fixed set B. We show that for every fixed B where the problem
is NP-hard, our (max B + 1)twnO(1) algorithm cannot be significantly improved: assuming the
Strong Exponential Time Hypothesis (SETH), no algorithm can solve B-Factor in time
(max B + 1 − ϵ)twnO(1) for any ϵ > 0. We extend this bound to the counting version of B-Factor
for arbitrary, non-trivial sets B, assuming #SETH.

We also investigate the parameterization of the problem by cutwidth. Unlike for treewidth,
having a larger set B does not appear to make the problem harder: we give a 2cutwnO(1) algorithm
for any B and provide a matching lower bound that this is optimal for the NP-hard cases.
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1 Introduction

Matching problems for graphs are widely studied in computer science [1, 7, 11, 18, 19, 24,
27, 31, 32, 34]. The most prominent ones are Perfect Matching (PerfMatch) and
Maximum-Weight Matching. Both problems have long known polynomial-time algorithms
[19, 32] and various generalizations were investigated in the graph-theory literature. These
range from simple extensions such as the k-factor problem for a positive integer k (every
vertex has to be incident to exactly k edges) [2, 27], to more complex ones, where the
vertices are assigned intervals [34]. These problems are generally solved by a reduction to
PerfMatch by replacing the vertices of the original instance with suitable gadgets. Lovász
introduced a general version of these problems which we call General Factor [31]:

▶ Definition 1.1 (General Factor (GenFac)). Let G = (V, E) be an undirected node
labeled graph where the label of a vertex v is a set Bv ⊆ N. We say S ⊆ E is a solution if
degS(v) ∈ Bv for all v ∈ V . GenFac is the problem of deciding whether G has a solution.

The minimization and maximization versions of GenFac are the problems of finding the
size of the solution with smallest and largest cardinality, respectively.

Polynomial-Time Solvable Cases. For several cases (e.g. k-factor, sets are intervals) reduc-
tions to PerfMatch are known, leading directly to polynomial-time algorithms. Cornuéjols
analyzed the complexity of the general problem to identify properties of the sets that make
the problem easier to solve [7]. For this he introduced the gap of a set: A gap is a finite
sequence of consecutive integers not contained in the set but whose boundaries are contained
in the set (cf. Definition 2.2). For example, the set {1, 5, 6, 8} has gaps of size 3 and 1. For a
set S, max-gap S denotes the size of its largest gap. Cornuéjols showed that if the max-gaps
of all sets are at most 1, then the problem is polynomial-time solvable. Later this result was
extended to the maximization and minimization (optimization) versions of GenFac.

▶ Theorem 1.2 ([7, 18]). The decision, maximization, and minimization version of GenFac
can be solved in polynomial time on arbitrary graphs if for all nodes v, max-gap Bv ≤ 1.

On the other side Cornuéjols proved GenFac to be NP-complete if there are nodes with a
gap of size two, namely {1} and {0, 3}, by a reduction from exact 3-cover. More generally, it
can be deduced from the work of Feder [22] that GenFac becomes NP-complete whenever
every set Bv is restricted to be the same fixed set B having gap size at least two.

Treewidth. This paper is part of a long sequence of works studying problems parameterized
by treewidth and related metrics like cutwidth or cliquewidth. Treewidth received significant
attention as many NP-hard problems like Colouring, Independent Set, or Dominating
Set (see [4] for a survey) are polynomial-time solvable on bounded-treewidth graphs. Cour-
celle’s Theorem [8, 9] shows that a large class of graph problems can be solved in linear time
on graphs of bounded treewidth. Recent developments on the algorithmic side include various
techniques such as Cut & Count [15, 33], rank-based dynamic programming [3, 14, 23] and
fast subset convolution [37, 38]. On the negative side, there have been a large number of
results showing lower bounds based on complexity assumptions such as the Exponential
Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis (SETH)
[5, 12, 29, 30]. For many such problems, their optimal algorithms utilize some form of dy-
namic programming, where a “state” is stored for every node in the tree decomposition. The
number of such states determines the running time of the algorithms, seemingly suggesting
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that this number is a natural barrier to the running time of any algorithm. Typically, the
conditional lower bounds confirm this intuition by showing that no algorithm can break this
barrier.

New Faster Algorithms. One of the first algorithmic results for GenFac parameterized
by treewidth was given by Arulselvan et al. [1]. They present an algorithm for a restricted
version of the problem where the sets contain zero and an interval of integers. This algorithm
can be easily extended to handle arbitrary instances while preserving the running time of
(M + 1)3twnO(1) where M is the maximum over all sets assigned to the vertices. Their
algorithm is based on the standard dynamic programming approach when parameterizing by
treewidth, i.e. it considers all possible states for each node of the tree decomposition. The
number of states in the dynamic programming is about (M + 1)tw+1: one needs to keep
track of the degree of the partial solution at each of the at most tw + 1 vertices of a bag
of the tree decomposition, and this degree can be between 0 and M . Therefore, a natural
question is whether the algorithm can be improved to obtain an (M + 1)twnO(1) running
time, matching the number of states. Such improvements are known for other problems,
for example for Dominating Set and #PerfMatch in [38]. We base our algorithm on
the same dynamic programming idea, but instead of processing all combination of states
at join nodes, we make use of the technique of van Rooij [37] to compute fast convolutions,
avoiding this bottle-neck of the computation. The algorithm can be easily generalized to the
optimization and counting versions as well; to unify the results, we present the algorithm in
a way that counts all solutions of a certain given size.

▶ Theorem 1.3. Given a GenFac instance G and a tree decomposition of width tw. Let
M = maxv∈V (G) max Bv. Then for all s, we can count the solutions of size exactly s in time
(M + 1)twnO(1).

As we shall see, this algorithm is essentially optimal for every fixed B where B-Factor is
NP-hard. Note that in order to obtain this optimal running time, we have to use a well-known,
but non-trivial technique; beyond that, our algorithm does not provide new insights into the
problem. Due to space constraints, we omit the algorithm here and refer the reader instead
to the full version.

Tight Lower Bounds for the Decision Version. To investigate how the properties of the
sets Bv influence the complexity of the problem, we give conditional lower bounds based
on SETH for the restrictive B-Factor problem, where all sets have to be the same fixed
set B. By a careful design our lower bounds also hold for a parameterization by pathwidth.
Note that if the set is not fixed, Arulselvan et al. showed that GenFac is W[1]-hard when
parameterizing only by treewidth [1]. Thus, it is reasonable to focus only on the cases with
fixed sets to prove tight lower bounds.

▶ Theorem 1.4 (Lower Bound for Decision Version). Let B ⊆ N be a fixed, finite set with
0 /∈ B and max-gap B > 1. If, given a path decomposition of width pw, B-Factor can be
solved in time (max B + 1 − ϵ)pwnO(1) for some ϵ > 0 even on graphs with degree at most
2 max B, then SETH is false.

The same result immediately follows for treewidth as for all graphs the pathwidth forms an
upper-bound for the treewidth [13]. Hence, our algorithm is optimal not only for GenFac
but also for B-Factor parameterized by treewidth and does not allow major improvements.
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Tight Lower Bounds for the Optimization Version. It suffices to consider the maximization
version with max-gap B > 1 and 0 ∈ B for the optimization version. The other cases are
either polynomial-time solvable (max-gap B ≤ 1 or 0 ∈ B for Min-B-Factor) [18] or the
hardness directly follows from the lower bound for the decision version. Observe that the
assumption 0 ∈ B does not make the problem trivially solvable. For these cases, we give
essentially the same lower bound as for the decision version. Again the bound rules out that
we can improve the given algorithm substantially; the running time is essentially optimal.

▶ Theorem 1.5 (Lower Bound for Maximization Version). Let B ⊆ N be a fixed, finite set with
max-gap B > 1. If, given a path decomposition of width pw, Max-B-Factor can be solved
in time (max B + 1 − ϵ)pwnO(1) for some ϵ > 0 even on graphs with degree at most 2 max B,
then SETH is false.

Counting. It is well known that PerfMatch can be solved in polynomial time [19].
Surprisingly, Valiant showed in [35] that counting the number of perfect matchings of a
graph is as hard as counting satisfying assignment of a boolean formula. This is curious as
(presumably) no polynomial-time algorithm for the decision version of the latter problem
exists. The observation then led to the definition of the complexity class #P containing
the counting problems whose corresponding decision version lies in NP. Indeed, this feature
that some structures are easy to find but hard to count appears in our work as well. Apart
from #PerfMatch, which itself is #{1}-Factor, our results imply that #B-Factor
is #P-hard for any finite, fixed B. This contrasts with the decision version, where the
problem is easy when max-gap B ≤ 1. Over and above showing #P-hardness, we show a
tight lower bound for #B-Factor, assuming #SETH, the counting version of SETH. There
have been several results [10, 11, 17] based on #SETH and #ETH. Some of our constructions
were inspired by one such work by Curticapean and Marx [11], where they show a lower
bound of (2 − ϵ)pwnO(1) for #PerfMatch on graphs assuming #SETH. We prove a wide
generalization of this result by providing a tight lower bound for every #B-Factor problem.
As for the optimization and decision version, our algorithm shows the tightness of this lower
bound.

▶ Theorem 1.6 (Lower Bound for Counting Version). Let B ⊆ N be a nonempty, fixed, and
finite set such that B ̸= {0}. If, given a path decomposition of width pw, #B-Factor can
be solved in time (max B + 1 − ϵ)pwnO(1) for some ϵ > 0 even on graphs with degree at most
2 max B + 6, then #SETH is false.

We also investigate #Max-B-Factor, the problem of counting maximum-sized solutions.
The following argument shows that #{max B}-Factor can be reduced to #Max-B-Factor
without increasing pathwidth, hence Theorem 1.6 gives a lower bound of (max B + 1 −
ϵ)pwnO(1). Consider an instance of #{max B}-Factor on a graph G of pathwidth pw. In
polynomial time, check if G has some {max B}-Factor [7]. If it does not, then output 0.
If it does, then solve #Max-B-Factor on G. As now every maximum-sized B-factor is
actually a {max B}-factor, this indeed solves the #{max B}-Factor problem.

▶ Corollary 1.7. Let B ⊆ N be a fixed, finite set such that B ̸= {0}. If, given a path
decomposition of width pw, #Max-B-Factor can be solved in time (max B + 1 − ϵ)pwnO(1)

for some ϵ > 0 even on graphs with degree at most 2 max B + 6, then SETH is false.

We leave open the question of a tight lower bound for the minimization version.
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Parameterizing by Cutwidth. As previously mentioned, pathwidth and treewidth are not
the only parameters used in parameterized complexity. Cutwidth, cliquewidth, genus, and
crossing number are only a few more examples of a vast class of possible parameters. For
cutwidth, we consider linear layouts of graphs with n vertices, which are just enumerations
v1, . . . , vn of all graph vertices. Then the cut after vertex vi consists of all edges in G with
one end in {v1, . . . , vi} and the other end in {vi+1, . . . , vn}. The cutwidth of a linear layout
is the maximum over the size of the cut after every vi. The cutwidth cutw of a graph is the
minimum over the cutwidths of all possible linear layouts. As tw ≤ pw ≤ cutw, it is not
completely surprising that we get different upper bounds for cutwidth. But now a simple
dynamic program suffices to prove the upper bound for this case. Further, the running time
of the algorithm is independent from the maximum of the set B.

▶ Theorem 1.8. Given a linear layout of a GenFac instance G with width cutw, for all s

we can count the number of solutions of size exactly s in time 2cutwnO(1),.

This again matches the number of states for each cut of the linear layout. Like before, we
omit the algorithm here and refer the reader to the full version. Note that the running times
appearing in Theorems 1.3 and 1.8 cannot be directly compared: the base is lower when
parameterized by cutwidth, but cutwidth can be larger than treewidth.

By a modified high-level construction, we show matching lower bounds based on SETH
for the decision and optimization versions, and, based on #SETH, for the counting version.

▶ Theorem 1.9 (Lower Bounds for Cutwidth). Let B ⊆ N be a fixed, nonempty set of finite
size. If, given a linear layout of width cutw, the following problems can be solved in time
(2 − ϵ)cutwnO(1) for any ϵ > 0 even on graphs with degree at most 2 max B + 6, then SETH
(resp. #SETH) fails: (1) B-Factor and Min-B-Factor if 0 /∈ B and max-gap B > 1,
(2) Max-B-Factor if max-gap B > 1, and (3) #B-Factor if B ̸= {0}.

2 Preliminaries

We introduce homogeneous graphs to formally define B-Factor.

▶ Definition 2.1 (Homogeneous Graphs and B-Factor). Let B ⊆ N be some fixed, finite set.
We say a node-labeled graph is B-homogeneous if for each node v ∈ V it holds that Bv = B.
Then B-Factor is the restriction of GenFac to B-homogeneous graphs.

This definition directly transfers to the optimization and counting version. We now formally
introduce the max-gap of integer sets along with some other properties.

▶ Definition 2.2. Let B ⊆ N be finite. We define max-gap B as the largest non-negative
integer d such that there is an a ∈ B with [a, a + d + 1] ∩ B = {a, a + d + 1}.

In this paper we regularly insert graphs into other graphs. To make this operation formal,
we make use of dangling edges: these are edges that have only one endpoint. We denote a
dangling edge with endpoint v by (?, v). For the sake of completeness we now formally define
this procedure of replacing the relations, i.e. the insertion of a graph into another graph.

▶ Definition 2.3 (Insertion). Let G = (V, E) be a graph and v ∈ V be of degree k, with incident
edges e1 = (v1, v), . . . , ek = (vk, v) that are ordered in some fixed way. Let H = (W, F ) be
a graph with dangling edges d1 = (?, u1), . . . , dk = (?, uk) where the ui are not necessarily
pairwise distinct. Inserting H in G at v gives us a new graph G′ = (V ′, E′) where:

V ′ = (V ∪ W ) \ {v} and E′ = (E ∪ F ) \ {e1, . . . , ek, d1, . . . , dk} ∪ {(v1, u1), . . . , (vk, uk)}
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All lower bounds we prove in this paper are based on the Strong Exponential Time
Hypothesis. But instead of using the original statement we use a formulation which is more
useful to work with.

▶ Conjecture 2.4 (Strong Exponential Time Hypothesis (SETH) [6, 25]). For all
δ > 0, there is a k ≥ 3 such that satisfiability of k-CNF formulas on n variables requires
more than (2 − δ)n time.

About Relations. A relation R : {0, 1}k → {0, 1} can also be seen as a set R′ ⊆ {0, 1}k such
that x ∈ R′ iff R(x) = 1. We can also identify R with a set R′′ ⊆ 2[k], where each element of
R′′ contains the positions of the 1s of an accepted input. Precisely, x′ = {i | x[i] = 1} ∈ R′′ iff
R(x) = 1. We switch between these definitions depending on the context. Recall, a relation
is symmetric if its output only depends on the Hamming weight of its input.

To simplify notation, we introduce the following generic classes of symmetric relations.

▶ Definition 2.5. For a vector x ∈ {0, 1}k, we define hw(x) as the number of 1s in x, i.e.
the Hamming weight of x. We define the following for S ⊆ N, and i, j ∈ N:

HW(j)
∈S := {x ∈ {0, 1}j | hw(x) ∈ S} EQj := HW(j)

∈{0,j} HW(j)
=i := HW(j)

∈{i}

EQj is the equality relation on j inputs. We use HW∈S to denote HW(j)
∈S when the arity j of

the relation is implicit. We also use this as the set of the relations HW(j)
∈S for all j ∈ N. We

transfer this abuse of notation to HW=i.

Note that assigning the relations HW∈B to a vertex corresponds to assigning the set B to the
vertex. Which notation is used depends on the context we are in.

3 Lower Bound when Parameterizing by Pathwidth

We show the lower bounds in two steps. The first step is a reduction from CNF-SAT to
the intermediate problem B-Factor with Relations. In the second step, we reduce to
the actual version of B-Factor for which we want to show the lower bound. As the lower
bounds are for pathwidth they immediately hold for treewidth as it can be upper-bounded
by pathwidth for all graphs.

▶ Definition 3.1 (B-Factor with Relations (B-FactorR)). Let B ⊆ N be fixed of finite
size. G = (VS ∪̇ VC , E) is an instance of B-Factor with Relations if all nodes in VS

are labeled with set B and all nodes v ∈ VC are labeled with a relation Rv that is given as a
truth table such that the following holds:
1. Let I(v) be the set of edges incident to v in G. Then Rv ⊆ 2I(v).
2. There is an even cv > 0 such that for all x ∈ Rv we have hw(x) = cv.
A set Ê ⊆ E is a solution for G if (1) for v ∈ VS: deg

Ê
(v) ∈ B and (2) for v ∈ VC :

I(v) ∩ Ê ∈ Rv. B-FactorR is the problem of deciding if such an instance has a solution.
We call VS the set of simple nodes and VC the set of complex nodes.

Using this intermediate problem, we can formally state the first part of the reduction. The
lower bound needs a careful formulation: when we reduce B-FactorR to B-Factor by
inserting gadgets realizing the relations at the complex nodes, the size and pathwidth of the
graph can increase significantly. Therefore, we state a stronger lower bound that can tolerate
additional terms to take care of such increases. The key point is that this increase is mainly
influenced by the total degree of the complex nodes in a bag of the path decomposition.
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Figure 1 An example illustrating the construction from the proof of Theorem 3.2. The simple
nodes are represented by circles while the complex nodes are represented by boxes.

▶ Theorem 3.2. Let B ⊆ N be a fixed set of finite size with B ̸= {0}. Given a B-FactorR in-
stance along with a path decomposition of width pw such that ∆∗ = maxbag X

∑
v∈X∩VC

deg(v).
Assume B-FactorR can be solved in (max B + 1 − ϵ)pw+fB(∆∗)nO(1) time on graphs with
n vertices for some ϵ > 0 and some function fB : N → R+ that may depend on the set B.
Then SETH fails.

High Level Idea. We follow the ideas of previous lower bound reductions from [30] and
combine them with the concept of using relations from [11]. From now on let M := max B.
Let ϕ be the given CNF formula with n variables and clauses C1, . . . , Cm. Instead of encoding
each variable separately, we group q variables together and encode (partial) assignments to
these groups. For each partial assignment, we define a vector in [0, M ]g, where g is chosen
such that 2q ≤ (M + 1)g. For each group we define a layer with g parallel rows, where
each row corresponds to one dimension of the vector. The layers consist of an alternation
of g parallel simple nodes and a complex node that is related to a clause. All simple nodes
are connected to their neighboring complex nodes by M parallel edges. The vector from
above then corresponds to the number of selected edges from a simple node to the following
shared complex node. The complex nodes check whether the assignment represented by the
selected edges of a layer satisfies the related clause. For each clause we connect the related
complex nodes by a path. This path is used to propagate the information whether the clause
is already satisfied by some partial assignment or whether it still needs to be satisfied. We
ensure that each clause is initially not satisfied and eventually all clauses must be satisfied.
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Constructing the B-FactorR Instance. See Figure 1 for an example of the following
construction. Split the variables of ϕ into t := ⌈n/q⌉ groups F1, . . . , Ft of size at most q,
where q is chosen later. For each of the t groups we encode the 2q partial assignments by
vectors from [0, M ]g for some g chosen later. Instead of using all (M + 1)g possible encodings
we only use those vectors where the total weight of the coordinates is equal to gM/2 (we
will choose g as a multiple of 4, hence gM/2 is an even number). It can easily be shown that
there are more than (M + 1)g/(gM + 1) vectors with exactly this weight. Thus, after setting
q = ⌊log((M + 1)g) − log(gM + 1)⌋, we can map each of the 2q assignments of a group Fi to
a distinct vector [0, M ]g with weight exactly gM/2. We say that an partial assignment τ

to a group Fi satisfies a clause Cj if at least one literal in the clause is satisfied under the
assignment τ . Note, that a group Fi does not have to cover all variables of Cj to satisfy the
clause.

We define the graph now as follows:
1. For all i ∈ [t], ℓ ∈ [g], and j ∈ [m]: create a simple node Jj

i,ℓ.
2. For all i ∈ [t] and j ∈ [m]: create complex nodes rj

i with relation Rj
i to be defined later.

3. For all i ∈ [t]: create complex nodes r0
i and rm+1

i with relation R0.
4. For all j ∈ [m]: create complex nodes rj

0 (resp. rj
t+1) with relation HW=0 (resp. HW=1).

5. For all i ∈ [t], ℓ ∈ [g], and j ∈ [m]: make Jj
i,ℓ adjacent to rj

i−1 and rj
i by M parallel edges

each. We call these edges backwards and forwards edges, respectively.
6. For all i ∈ [t] and j ∈ [m], make rj

i additionally adjacent to rj
i−1 and rj

i+1 by one edge
each. The degree of the nodes is now 2gM + 2.

We call the set of nodes {rj
i , Jj

i,ℓ}j,ℓ the ith layer. The set {Jj
i,ℓ}j forms the ℓth row of the

ith layer. For a fixed j ∈ [m], the set of nodes {rj
i }i is called the jth column.

The idea is now the following: For each partial assignment τ to a group Fi, we define a
vector vτ ∈ [0, M ]g of weight gM/2 as its encoding.1 Then vτ [ℓ] corresponds to the number
of selected forward edges of the simple nodes in the ℓth row of the ith layer. The vertical
edges encode whether a clause was already satisfied. That is, if the edge between rj

i and
rj

i+1 is selected, then there is some group Fk with k ≤ i where the corresponding assignment
satisfies the clause Cj . By the relation of the nodes rj

0 every clause is initially not satisfied.
But the relation of the rj

t+1 nodes ensures that every clause is eventually satisfied.

Defining the Relations. R0 accepts exactly those inputs of Hamming weight exactly gM/2,
an even number by assumption, where the selected edges for each row must precede the
unselected edges, i.e. the first k edges are selected, the next M − k are not selected.

The relation Rj
i ⊆ {0, 1}2Mg+2 of node rj

i is defined as follows:
For ℓ ∈ [g], let xℓ (resp. yℓ) be the number of selected incident edges to Jj

i,ℓ (resp. Jj+1
i,ℓ ).∑

ℓ∈[g] xℓ = gM/2 =
∑

ℓ∈[g] yℓ.
⟨x1, . . . , xg⟩ describes a valid encoding, i.e. it corresponds to a partial assignment for Fi.
xℓ + yℓ = M . Further, the xℓ (resp. yℓ) selected edges precede the M − xℓ (resp. M − yℓ)
unselected edges of the M parallel edges going to a simple node.
If the ingoing top edge is selected, then the outgoing bottom edge is also selected.
If the ingoing top edge is not selected:

If Cj does not contain a variable of Fi, then the outgoing bottom edge is not selected.
If Cj contains at least one variable of Fi, then the outgoing bottom edge is selected if
and only if the selected edges correspond to a valid partial assignment satisfying Cj .

1 Note that for different groups the encoding of the same partial assignment do not need to be the same.
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Final Modifications. Due to parity issues, we can only realize relations where the Hamming
weight of the accepted inputs is an even constant for each relation. Thus, we slightly have to
modify this construction. We leave the exact details to the full version.

▶ Lemma 3.3. ϕ is satisfiable if and only if there is a solution to the B-FactorR instance.

To obtain a tight lower bound, we need to analyze the pathwidth of our construction and
have to bound the degree of the complex nodes.

▶ Lemma 3.4. The graph has O(tgm) simple and O(tm) complex nodes. The degree of the
complex nodes is bounded by 2gM + 4. The degree of the simple nodes is bounded by 2M .
We can efficiently construct a path decomposition of width tg + O(1) where at most three
complex nodes are simultaneously in one bag.

Now we have everything ready to prove the lower bound for the intermediate problem B-
FactorR based on the previous construction. Recall, we defined ∆∗ as the maximum total
degree of the complex nodes appearing in one bag, that is ∆∗ = maxbag X

∑
v∈X∩VC

deg(v).

Proof of Theorem 3.2 (Sketch). As (M + 1)g ≈ 2q and t ≈ n/q, we intuitively get

(M + 1 − ϵ)tgnO(1) = ((M + 1 − ϵ)g)
n
q nO(1) ≪ ((M + 1)g)

n
q nO(1) = (2q)

n
q nO(1) = 2nnO(1),

showing that the reduction and the assumed algorithm would solve the SAT instance too
fast. Note that due to rounding and other issues the calculation has to be done way more
carefully and is thus deferred to the full version. ◀

4 Decision Version

In this section we prove the lower bound for the decision version of B-Factor by a reduction
from the intermediate B-FactorR problem. For this we formally define the concept of
realizations and show that we can realize all relations of a B-FactorR instance. Replacing
the nodes and their relations by these realizations yields the final lower bound.

▶ Definition 4.1 (Realization). Let R ⊆ {0, 1}k be a relation. Let G be a node-labeled graph
with dangling edges D = {d1, . . . , dk} ⊆ E(G). We say that graph G realizes R if for all
D′ ⊆ D: D′ ∈ R if and only if there is a solution S ⊆ E(G) with S ∩ D = D′. We say that G

B-realizes R if G is B-homogeneous. The endpoints of the dangling edges are called portals.

The crucial part of the reduction is the proof of the following theorem. We postpone its
proof and first show the lower bound.

▶ Theorem 4.2. Let B ⊆ N be a fixed set of finite size with max-gap B > 1 and 0 /∈ B.
There is a f : N → N such that the following holds. Let R ⊆ {0, 1}e be an even relation (i.e.
hw(x) is even for all x ∈ R). Then we can B-realize R by a simple graph with f(e) vertices
of degree at most max B + 2, the portal nodes are pairwise distinct.

Now we can prove the lower bound under SETH. We assume that B ⊆ N is a fixed, finite set
such that 0 /∈ B and max-gap B > 1.

Proof of Theorem 1.4 (Sketch). Replace every complex node v and its relation Rv in the B-
FactorR instance H by its B-realization of size at most f(deg(v)) according to Theorem 4.2.
This increases the size of the graph at most by a factor of f(∆∗). As we can bound the
pathwidth of the inserted graphs by their size, we modify each bag of the path decomposition
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of H by replacing all complex nodes with the nodes of their realization. Thus, the pathwidth
of the new graph is bounded by pwH + ∆∗f(∆∗). Assuming the faster algorithm, this already
contradicts SETH by Theorem 3.2. ◀

From now on let B ⊆ N be our fixed, finite set with min B ≥ 1 and max-gap B = d > 1 such
that [a, a + d + 1] ∩ B = {a, a + d + 1} for some a ≥ 1. We first realize three quite basic
relations which we use later to realize the more complex relations.

▶ Lemma 4.3. We can B-realize each of the relations HW(2)
=2, EQd+1, and EQ2 by a simple

graph with O(poly(max B)) vertices of degree at most max B.

Proof.
1. Define a min B + 1-clique with new vertices. Split an arbitrary edge (u, v) into two

dangling edges (?, u) and (?, v). The construction of the clique and the fact that we chose
min B as degree forces the two dangling edges to be selected in any solution.

2. We start with two new vertices u, v and connect each to a many common HW(2)
=2 nodes.

We add d + 1 dangling edges to u and zero to v. Finally the nodes are replaced by their
realization. Observe that u has a forced edges and d + 1 dangling edges. Thus we must
select none or all of the dangling edges since [a, a + d + 1] ∩ B = {a, a + d + 1}.

3. Define a d + 2-clique with EQd+1 nodes. Split an arbitrary edge (u, v) into two dangling
edges (?, u) and (?, v). Replace the nodes by their realization.
Either both dangling edges are selected in which case all nodes have d + 1 incident edges
in the solution, or neither is selected in which case every node has zero incident edges in
the solution. ◀

The following lemma helps us to keep the later constructions simple. Instead of constructing
the relations for arbitrary degree, only the very low degree cases are necessary.

▶ Lemma 4.4. If we can realize HW(a)
=1 for a ∈ {1, 2, 3} by a simple graph with at most N

vertices of degree at most D, then we can realize HW(k)
=1 for all k ≥ 1 by a simple graph using

O(kN) nodes of degree at most D.

Proof. We construct the graph for the realization inductively starting with the basis for
k = 1, 2, 3. See Figure 2 for an example.

For the inductive step from k to k + 1 we start with a node u with relation HW(k)
=1 . Connect

one dangling edge of u to a new node v with HW(2)
=1. Connect the other dangling edge of v to

a node w with relation HW(3)
=1. Observe that the final graph has k + 1 dangling edges.

Assume one dangling edge of u is selected, then the edge between u and v is not selected
but the edge from v to w is. Hence, no dangling edge of w can be selected. The analogue
holds if one of the dangling edges of w is selected. It cannot be the case that more than one
or zero dangling edges are selected, as then the relation of one of the three nodes u, v, or w

would not be satisfied. ◀

Due to parity issues, the construction of the realizations depends on the set B. Each of the
possible cases (B contains only even numbers, only odd number, or even and odd numbers)
is treated separately. We focus on the all even case and refer the reader to the full version
for the other cases.

▶ Lemma 4.5. If B contains only even numbers, we can B-realize the following relations by
simple graphs:
1. EQk for even k ≥ 2 using O(k poly(max B)) vertices of degree at most max B.
2. HW(k)

=1 together with HW(ℓ)
=1 for all k, ℓ ≥ 1 using O((k + ℓ) poly(max B)) vertices of degree

at most max B + 2.
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HW
(5)
=1HW

(4)
=1HW

(3)
=1

Figure 2 Example of the inductive construction from Lemma 4.4 for HW(6)
=1 using HW(3)

=1 and HW(2)
=1.

o1

oe

v1

vr

a0

a1

HW=1

HW=1

EQ

Figure 3 An example illustrating the construction from the proof of Theorem 4.2 for the relation
R with R(000011) = R(110011) = R(111001) = R(111100) = 1 and zero otherwise.

Proof.
1. For k = 2 we can use the construction of Lemma 4.3. For the other case we first realize

EQ4. Then we use a chain of these relations to realize EQk for even k ≥ 6.
Start with a EQd+1 node u and make it adjacent to d+1−4

2 many EQ2 nodes (note that an
even B can have only gaps of odd size, hence d is odd). Then we add four dangling edges
to u. hence the construction actually works. The graph is simple as the dangling edges
in the realization of EQ2 are different.

2. To use Lemma 4.4 for the general construction, observe that the number of HW=1 nodes
used in the construction is odd. Hence, we will always realize two nodes. For this we
show how to realize HW(k)

=1 together with HW(ℓ)
=1 for all k, ℓ ∈ {1, 2, 3}.

Start with two vertices u, v. Make u and v adjacent to max B − 1 common HW(2)
=2 nodes.

We add k dangling edges to u and ℓ dangling edges to v. As B does not contain max B −1,
the correctness follows. ◀

Now we have everything ready to prove that even relations can be realized.

Proof of Theorem 4.2. See Figure 3 for an example of the following construction. We use
essentially the construction from Lemma 3.3 in [11]. Let R = {x1, . . . , xr} ⊆ {0, 1}e be the
even relation for some r. Let further P = {(1 + e mod 2), 0}.
1. Create nodes o1, . . . , oe with relation HW=1.
2. Create vertices aj for all j ∈ P with relation HW=1.
3. For all i ∈ [r]:

a. Let Oi = {n
(i)
1 , . . . , n

(i)
hi

} = {k ∈ [e] | xi[k] = 0} for hi = e − hw(xi).
b. Create the node vi with relation EQ and connect it to o

n
(i)
j

for all j ∈ [hi].
c. Connect vi to all aj .

4. Replace all nodes by their realization.

There are |P | + e many HW=1 nodes. Since |P | = 1 + (1 + e mod 2), we can replace
pairs of these nodes by their realization. Every vi is connected to |P | + |Oi| nodes, where
|Oi| = e − hw(xi). Thus, vi has even degree as the relation R is even, i.e. hw(x) is even.
Hence, we can replace these nodes by their realization according to the previous lemmas.
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To show that the construction actually realizes the relation, assume the selected dangling
edges corresponds to some element x ∈ R, let it w.l.o.g. be x1. Then we can select all edges
incident to x1, the dangling edges, and the extension of this to all nodes as a solution. As
x1 is adjacent to all aj they are in a valid state. Further x1 is adjacent to those ok where
x1[k] = 0 and hence every ok is incident to exactly one edge in the solution.

Now assume we are given a solution. As the nodes aj have exactly one incident edge in
the solution, there is exactly one node vi where all incident edges are in the solution. Let
O be the set of nodes ok to which vi is adjacent. By construction vi corresponds to some
x ∈ R with x[k] = 0 iff k ∈ O. As all selected dangling edges must be in the solution, let O′

be the set of nodes incident to the selected dangling edges. But as we are given a solution
we get O ∪̇ O′ = {o1, . . . , oe}. Hence, the dangling edges correspond to x. ◀

5 Optimization Version

In the previous section we have seen the realization of the relations for the decision version.
As we are interested in the largest solution for Max-B-Factor, we also allow 0 ∈ B since
this does not make the problem trivially solvable. This makes it necessary to change the
definition of a realization, as the pure existence of a solution is not sufficient anymore. We
change it such that if the relation is satisfied (i.e. the dangling edges are selected in a good
way), then there is a large solution. Otherwise, there must be a gap by which any solution is
smaller compared to the solutions in the good cases. We call this gap the penalty (of the
realization).

▶ Definition 5.1 (Realization). Let R ⊆ {0, 1}k be a relation. Let G be a node labeled graph,
with dangling edges D = {d1, . . . , dk}. We say that graph G realizes R with penalty β if we
can efficiently construct/find a target value α > 0 such that for all D′ ⊆ D:

If D′ ∈ R, then there is a solution S ⊆ E(G) with S ∩ D = D′ and |S| = α.
If D′ /∈ R, then for all solutions S ⊆ E(G) with S ∩ D = D′ we have |S| ≤ α − β.

We say that G B-realizes R if G is additionally B-homogeneous. We call the endpoints of
the dangling edges portal nodes.

In the main part of this section we show how to realize the relations of B-FactorR. The
following theorem corresponds to Theorem 4.2 for the decision version.

▶ Theorem 5.2 (Realization of Relations). Let B ⊆ N be a fixed, finite set with max-gap B > 1
and 0 ∈ B. There is a f : N2 → N such that the following holds. Let R ⊆ {0, 1}e be a relation
with a constant cR ∈ 2N such that for all x ∈ R we have hw(x) = cR.

We can B-realize the relation R with arbitrary penalty β > 0 by a simple graph with
f(e, β) vertices of degree at most max B + 2.

It remains to compute the target value by which we decide if the B-FactorR instance has a
solution or not.

▶ Lemma 5.3. Let G be a B-FactorR instance from Section 3. Let G′ be a B-Factor
instance resulting from G by replacing every complex nodes with degree δ by its realization
with penalty 2δ. Then, there is an efficiently computable constant α such that G has a
solution if and only if the largest solution for G′ has size α.

Proof (Sketch). The target value α is essentially the sum of the target values αv for the
realizations of the complex nodes v ∈ VC . But we have to take care that the edges between
complex nodes are not counted twice. ◀
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Now we are ready to prove the conditional lower bound for Max-B-Factor when 0 ∈ B.

Proof of Theorem 1.5. Use Lemma 5.3 to construct the final graph and the target value.
Then the proof goes analogous to the proof for the decision version (cf. Theorem 1.4). ◀

High Girth Graphs. We know that there is a gap of size at least two between a and a + d + 1
in B. This allows us to define relatively simple conditions of the form “if one incident edge
of a vertex with degree a + d + 1 is not selected, then another edge is also not selected”. In
other words, this propagates the penalty to a neighboring vertex. We combine this with high
girth graphs to introduce an arbitrary large penalty for not selecting an edge.

The construction of r regular graphs with girth g is a long studied problem in graph
theory. Erdős and Sachs proved the existence of such graphs for all combinations of r and g.

▶ Lemma 5.4 (Theorem 1 in [20]). For all r ≥ 2 and g ≥ 3, there is a r-regular graph Gr,g

of girth g with at most 4grg vertices.

Finding the smallest graph for each r, g is a non-trivial task and known as the (r, g)-cage
problem. For several cases (e.g. r is a prime power) constructions are known reducing the
number of vertices in the graph. See [16, 21, 26, 28] for more results.

Realizing Relations. From now on let d := max-gap B > 1 such that [a, a + d + 1] ∩ B =
{a, a + d + 1} for some a ≥ 0. As we allow 0 ∈ B, we can always find a trivial solution. Thus,
we cannot force edges as we did for the decision version. Instead we construct a gadget where
we can select many edges when the “forced” edges are selected. Otherwise we ensure that
the solution is small. We use the graphs with high girth for this.

▶ Lemma 5.5. There is a f : N → N such that the following holds. We can B-realize HW(2)
=2

(with distinct portal vertices) with arbitrary penalty β by simple graphs using at most f(β)
vertices of degree at most max B.

Proof. We use Lemma 5.4 to get an a + d + 1-regular graph Ga+d+1,β of girth at least β.
Split an arbitrary edge (u, v) into two dangling edges for u and v each and assign the set B

to every vertex.
The graph has the claimed properties: If both dangling edges are selected, then we can

use the set of all edges in the graph as a solution since a + d + 1 ∈ B.
It remains to check the case when at least one dangling edge is not selected, let it w.l.o.g.

be the one incident to u. Assume S is the optimal solution. We show that this solution does
not contain more than |Ea+d+1,β | − β edges.

By assumption degS(u) ≤ a. Hence, there must be at least one other incident edge to u

that is not in the solution, because a + d − 1 ≥ a + 1 /∈ B. Then we can apply this argument
always to the next vertex. Observe that this sequence can only stop if we reach another
vertex w we have already visited because for this vertex we already know that two incident
edges were not selected in the solution. The length of this path, i.e. the number of not
selected edges from w to w, is at least the girth of the graph. Hence the number of edges
that are not selected in the solution is at least the girth of the graph which is at least β. ◀

The remaining part follows mainly the constructions from the decision version. However, as
we care about the size of the solution a more careful construction and analysis is needed.
The detailed construction of the realization is given in the full paper.
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6 Counting Version

From a certain perspective the optimization version can be seen as a relaxation of the decision
version: The assumption min B > 0 is dropped while still assuming max-gap B > 1. For the
counting version we now even drop this last assumption such that there might be no gap at
all in B. Thus the only polynomial-time solvable cases for the counting version are B = {0}
and B = ∅ with one and zero solutions, respectively. This implies that we additionally must
realize equality relations. Surprisingly this also reduces to realizing HW(1)

=1 nodes in the end,
i.e. forcing edges.

We use the Holant framework and lemmas and definitions analogous to those from [11].
A signature graph Ω is a graph with weights we for all edges e and all vertices are labeled by
signatures fv : {0, 1}I(v) → Q, which are rational functions on the incidence vector I(v) of
the edges incident to v. We define Holant(Ω) to be the quantity∑

x∈{0,1}E(Ω)

∏
e∈x

we

∏
v∈V (Ω)

fv(x|I(v)).

The Holant framework can be seen as a natural generalization of GenFac. If each signature
fv is a symmetric Boolean function and each edge weight is 1, then it is exactly #GenFac.
If additionally each vertex has signature HW∈B , this corresponds to #B-Factor.

▶ Definition 6.1 (Holant(F )). If F is a set of rational functions, we say that Holant(F ) is
the set of all Holant problems where the signature graph has signatures only from F .

▶ Definition 6.2 (Gate). A gate is a signature graph Γ, possibly containing a set D ⊆ E(Γ)
of dangling edges, all of which have edge weight 1. The signature realized by Γ is the function
SIG(Γ) : {0, 1}D → Q that maps an assignment of dangling edges x ∈ {0, 1}D to

SIG(Γ, x) =
∑

y∈{0,1}E(Γ)\D

 ∏
e∈E(Γ)

w(e)
∏

v∈V (Γ)

fv

(
(x ∪ y)|I(v)

)
Note that unless mentioned otherwise, we restrict ourselves to signature graphs with unit
edge weights and hence they are usually omitted.

In essence, gates in the Holant framework play the role of realizations in the previous
sections. Given these definitions, we are now ready to state our main theorem, which can
then be used to prove Theorem 1.6. Observe for this that the reduction in Theorem 3.2 is
parsimonious.

▶ Theorem 6.3. For all fixed, finite B ⊆ N with B ̸= {0} there is a f : N → N such
that the following holds. Let G = (VS ∪̇ VC , E) be an instance of #B-FactorR with a
path decomposition of width pw such that ∆∗ = maxbag X

∑
v∈X∩VC

deg(v). Then there is a
f(∆∗)nO(1) time Turing reduction from #B-FactorR to #B-Factor such that for every
constructed instance of #B-Factor pathwidth and cutwidth increase at most by f(∆∗).

We can think of #B-FactorR as a Holant problem where the allowed signatures are either
HW∈B or restricted even relations. We first use a lemma from [11] to realize these relations
through nodes with signature HW=1. Since their constructions are in the perfect matching
setting, they can equivalently be seen as gates that use vertices with signature HW=1. After
using this lemma to reduce from #B-FactorR to a Holant problem, we give a chain of
reductions (see Figure 4) that ends at #B-Factor and preserves the pathwidth up to an
additive constant.

▶ Lemma 6.4 (Informal, Lemma 3.3 from [11]). Every even relation can be realized through a
graph whose vertices have signature HW=1 and whose edges have weights in {−1, 1

2 , 1}.
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#B-FactorR Holant(HW∈B , HW=1)

Holant(HW∈B , HW∈{0,1})maxB − 1 /∈ B

Holant(HW∈B , HW
(1)
=1)Holant(HW∈B , HW

(2)
=2)Holant(HW∈B)

Holant(HW∈B , HW=1)
with edge weights

maxB − 1 ∈ B

Figure 4 The chain of reductions that starts with B-FactorR and ends at #B-Factor (i.e.
Holant(HW∈B)). Arrows show the direction of Turing or many-one reductions.

Main Ideas. The next step is to remove the edge weights. We do this through polynomial
interpolation, which was first used by Valiant [36]. The idea is that we can recover a
polynomial P (·) if we know the value of P (x) for sufficiently many x. We represent the
solution of one problem as the value of a polynomial P (·) and the second problem as a
function f(P ) of the polynomial itself. Then, we recover the value of the second problem by
using an oracle of the first problem, giving a Turing reduction from the second problem to
the first.

For the removal of the edge weight it suffices by the polynomial interpolation to consider
edge weights that are a power of two. Assume for simplicity, we just have edge weight 2.
Replace such edges by two parallel edges of unit weight. This leaves the output unchanged,
as we duplicated the number of solutions, which compensates for the unit edge weight.

The main difficulty is to realize HW=1 nodes using HW∈B nodes. To replace the HW=1 nodes,
we distinguish between the case where max B − 1 is in B or not. In the latter case, the
construction from the decision version works. But in the former case we use an argument
similar to the procedure for the final step. The last step replaces HW(2)

=2 nodes by HW∈B nodes.
For this we “separate” the case where the forced edges are selected and where they are not.
We define a pathlike gadget with many solutions if the dangling edges are not selected and
significantly fewer otherwise. Each vertex on this long path is connected to many fresh
vertices. We choose their number to be higher than the maximum element of B. Then, if an
incident edge of the path is already selected, there are fewer solutions as if the edge is not
selected. Combining this with the interpolation we arrive at a point, where all nodes have
relation HW∈B .

We now describe one case in the final step in the chain of reductions, where we realize
HW(2)

=2 nodes by HW∈B nodes. For the remaining cases and steps, we refer the reader to the
full version of this paper.

For the interpolation we make use of the following result which is proven in the full
version.

▶ Proposition 6.5. Suppose we have two non-zero sequences {An}n∈N, {Bn}n∈N that are
related as[

An

Bn

]
= M

[
An−1
Bn−1

]
= MnU , where U =

[
A0
B0

]

and M is a symmetric and invertible 2 × 2 matrix such that U is not an eigenvector of M .
Then { Bn

An
}n∈N is a sequence which does not contain any repetitions.

▶ Lemma 6.6. Let B ⊆ N be a fixed finite set. There is a polynomial-time Turing reduction
from Holant(HW∈B , HW(2)

=2) to Holant(HW∈B) increasing pathwidth and cutwidth only by a fixed
constant and leaving the max degree unaffected, or increasing it to 2 max B + 6.
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m−2︷ ︸︸ ︷ m−2︷ ︸︸ ︷ m−2︷ ︸︸ ︷ m−2︷ ︸︸ ︷

Figure 5 The gadget for case 1: Black nodes are HW∈B nodes.

Proof. If 0 /∈ B, we can use the construction from Lemma 4.3 to get a HW(2)
=2 node. For the

case when 0 ∈ B, we do a case-by-case analysis depending on B. In either case, we attach a
subgraph with a constant pathwidth and cutwidth to vertices. This does not affect either of
them by more than 2 max B + 6, a fixed constant.

Case 1: B contains 1. Define m ≥ 2 to be the smallest integer not in B. Consider the
gadget in Figure 5. Suppose there are d such vertices with m − 2 pendant nodes each. Let all
of them have the relation HW∈B . Let P1(d) be the number of solutions of the gadget where
the dangling edge is selected in the solution. Similarly define P0(d) when the dangling edge
is not selected. We claim that the gadget described can be effectively used to force edges, i.e.
a HW(1)

=1 node. Two such gadgets will give us a HW(2)
=2 node. Suppose any graph G contains t

such gadgets. We have

Holant(G) =
t∑

i=0
Ai(P0(d))t−i(P1(d))i = (P0(d))t

t∑
i=0

Ai

(
P1(d)
P0(d)

)i

where Ai is the number of ways of extending the solution in G when i of the gadgets choose
to match their dangling edge. Through standard interpolation techniques, we can recover
the Ais, and thus At will give us the solution where each gadget behaves like a HW(1)

=1. Now,
we can replace HW(2)

=2 nodes in the Holant(HW∈B , HW(2)
=2) instance with pairs of HW(1)

=1 nodes.
To argue that we can do the interpolation, we need to show that P1(d)

P0(d) will take at least t

unique values, and that these are computable in polynomial time. Since we can define such a
gadget for any integer d we have

P0(d) = kP0(d − 1) + kP1(d − 1) and P1(d) = kP0(d − 1) + (k − 1)P1(d − 1)

for k = 2m−2. We now apply Proposition 6.5 with M =
[

k k
k k−1

]
and U =

[
k
k

]
.

This completes the realization for the case when B contains 1. The remaining cases when
B does not contain 1 but some odd number and when B only consists of even numbers can
be found in the full version. ◀

Proof of Theorem 6.3 (Sketch). Given any instance of #B-FactorR, we can sequentially
apply the reductions from Figure 4 to get a polynomial number of instances of #B-Factor
such that the pathwidth is affected only by some function of ∆∗. ◀

7 Lower Bound when Parameterizing by Cutwidth

The algorithmic result from Theorem 1.8 shows that the pathwidth lower bound breaks when
parameterizing by cutwidth. Nevertheless, we can show that this “improved” running time is
the best we can hope for assuming SETH and #SETH. For this we use the same high level
ideas Curticapean and Marx presented in Figure 6 of [11] where they reduce from #SAT to
computing the Holant and then reduce to counting perfect matchings. But the construction
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Figure 6 The example graph for a formula containing the clause (x1 ∨ x̄3 ∨ x4).

can also be seen as a modification of our reduction for the pathwidth lower bound. We again
first reduce to the intermediate problem B-FactorR and then to B-Factor. By this we
can reuse the results of realizing relations that we have seen in the previous sections.

▶ Theorem 7.1. Let B ⊆ N be a fixed set of finite size. Given a CNF-formula ϕ with n

variables and m clauses. We can construct a (simple) B-FactorR instance G with O(nm)
vertices, bounded degree and a linear layout of width cutw ≤ n + O(1) in time linear in the
output size. Further, the number of solutions for ϕ is equal to the number of solutions for G.

Recall, that for the pathwidth lower bound we grouped variables together. This was
needed to keep the pathwidth of the construction low. But this increased the cutwidth of
the graph. Now, we do not group variables together but encode each variable on its own.
See Figure 6 for an example of the construction we describe formally in the following.

Let x1, . . . , xn be the variables and C1, . . . , Cm the clauses of ϕ. For each i ∈ [n] and
every j ∈ [m] we create a vertex rj

i . We assign the relation R+ to rj
i if xi appears positively

in Cj , R− if it appears negatively, and otherwise R0, where R0, R+, and R− are defined
later. Additionally add vertices r0

i and rm+1
i with relation HW∈{0,2} for all i ∈ [n]. We say

that the vertices r0
i , . . . , rm+1

i form the ith row, i.e. the row of variable xi. Create new nodes
rj

0 and rj
n+1 and assign the relations HW=0 and HW=1 to them for all j ∈ [m], respectively. We

say the vertices {rj
i }i form the jth column. We connect two nodes rj

i and rj′

i′ by an edge
if |i − i′| ≤ 1 and |j − j′| ≤ 1 for all i, i′ ∈ [0, n + 1] and j, j′ ∈ [0, m + 1], i.e. if they are
neighbors in the grid.

The idea is the same as for the pathwidth construction, except that selecting the edges of
the ith row corresponds to setting the variable xi to true. The edges between the nodes of
a column represent if a clause is already satisfied. The relation HW=0 ensures that we start
with an initially unsatisfied clause. At each node rj

i we check whether the assignment to this
variable xi satisfies the clause Cj and then force the output edge (i.e. the bottom edge) to be
selected. Otherwise we propagate the current state (i.e. the selection of edges). Eventually
we reach rj

n+1 with relation HW=1 where the edge has to be selected and thus the clause must
be satisfied.

ICALP 2021
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The relations R0, R+, and R− accept exactly those inputs that satisfy all of the following
conditions:
1. The left edge is selected if and only if the right edge is selected.
2. If the top edge is selected, the bottom edge is selected.
3. Only for R+: If the top edge is unselected and the left edge is selected, then the bottom

edge is selected.
4. Only for R−: If the top edge is unselected and the left edge is not selected, then the

bottom edge is selected.

For the proofs of the lower bounds, i.e. Theorem 1.9, we follow the ideas from the
pathwidth lower bounds in Section 3. Thus we also have to modify the graph a bit such that
we obtain a B-FactorR instance and can replace all relations by their realizations. The
details can be found in the full version of the paper.
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Abstract
Kahale proved that linear sized sets in d-regular Ramanujan graphs have vertex expansion at least
d
2 and complemented this with construction of near-Ramanujan graphs with vertex expansion no
better than d

2 . However, the construction of Kahale encounters highly local obstructions to better
vertex expansion. In particular, the poorly expanding sets are associated with short cycles in the
graph. Thus, it is natural to ask whether the vertex expansion of high-girth Ramanujan graphs
breaks past the d

2 bound. Our results are two-fold:
1. For every d = p + 1 for prime p ≥ 3 and infinitely many n, we exhibit an n-vertex d-regular

graph with girth Ω(logd−1 n) and vertex expansion of sublinear sized sets bounded by d+1
2 whose

nontrivial eigenvalues are bounded in magnitude by 2
√

d − 1 + O
(

1
logd−1 n

)
.

2. In any Ramanujan graph with girth C logd−1 n, all sets of size bounded by n0.99C/4 have
near-lossless vertex expansion (1 − od(1))d.

The tools in analyzing our construction include the nonbacktracking operator of an infinite graph, the
Ihara–Bass formula, a trace moment method inspired by Bordenave’s proof of Friedman’s theorem [8],
and a method of Kahale [16] to study dispersion of eigenvalues of perturbed graphs.
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1 Introduction

This paper is concerned with expander graphs, which are ubiquitous in theoretical computer
science. A natural and highly well-studied quantity associated with a d-regular graph is its
edge expansion defined as

min
|S|≤ϵn

E(S, S)/|S|,

for some constant ϵ. Namely it is the minimum ratio of edges leaving a set S to the size of S
for all S of appropriately bounded size. While edge expansion is known to be intractable to
compute, there are explicit constructions of good edge expanders, and it is closely related
to the second largest magnitude eigenvalue of its adjacency matrix, also known as spectral
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expansion of a graph, via the expander mixing lemma and Cheeger’s inequality [1]. Spectral
expansion is easily computable. In particular, an application of the expander mixing lemma
proves that small enough sets in graphs with spectral expansion o(d) have near-optimal edge
expansion of (1 − od(1))d.

A natural analog to edge expansion is vertex expansion, defined as

min
|S|≤ϵn

|Γ(S)|/|S|

for some constant ϵ, where Γ(S) is the neighborhood of the set S (potentially containing
vertices of S). However, as difficult as edge expansion is to ascertain, vertex expansion has
proven far more challenging.

As witnessed by the neighborhood of a vertex, we cannot hope for vertex expansion greater
than d− 1. Therefore we call a graph a lossless vertex expander if for every δ, there exists an
ϵ such that there is vertex expansion d− 1 − δ for sets of size ϵn. Lossless vertex expanders
exist since a random d-regular graph is one with high probability (see [15, Theorem 4.16]
for a proof). However no deterministic construction of such graphs is known. In an effort
to understand lossless vertex expansion better and give explicit constructions, a natural
question to ask is: what properties of random graphs leads to lossless vertex expansion?

Since a random d-regular graph is near-Ramanujan with high probability [11], and since
near-Ramanujan graphs have near-optimal edge expansion, it is natural to inquire if spectral
expansion has any implications for vertex expansion as well. Kahale [16] showed that the
spectral expansion gives a bound on the vertex expansion. Specifically, Ramanujan graphs
(namely graphs with optimal spectral expansion) have vertex expansion at least d/2. While
this is a nontrivial implication, it falls short of achieving the coveted losslessness property.
Kahale also proved that the bound of d/2 is tight. In particular, he exhibited an infinite
family of near-Ramanujan graphs with vertex expansion d/2, which means spectral expansion
alone is not sufficient for lossless vertex expansion.

The occurrence of a copy of K2,d
1 as a subgraph is the obstruction to lossless vertex

expansion in Kahale’s example. Kahale’s example deviates from a random graph in that
it is highly unlikely for a random graph to contain a copy of K2,d as a subgraph. More
generally, random graphs have the property that with high probability any two “short” cycles
are far apart, which Kahale’s example doesn’t satisfy. Thus, it is natural to ask if the
“near-Ramanujan” property in conjunction with the “separatedness of cycles” property of
random graphs break past the d/2 barrier of Kahale. The “separatedness of cycles” property
is especially interesting to consider since it is a key property of random graphs exploited in
proofs of Alon’s conjecture [11, 8]. A concrete question we can ask is: Do Ramanujan graphs
with Ω(logd−1 n) girth have lossless vertex expansion?

An affirmative answer to the above question would prove that the Ramanujan graphs of
Lubotzky, Phillips, and Sarnak [18] are lossless vertex expanders. Towards answering the
above question, we prove the following negative result:

▶ Theorem 1. For every d = p+ 1 for prime p ≥ 3, there is an infinite family of d-regular
graphs G on n vertices of girth ≥

( 2
3 − on(1)

)
logd−1 n where there is a set of vertices U such

that |Γ(U)| ≤ (d+1)|U |/2, |U | ≤ n1/3, and max{λ2(G),−λn(G)} ≤ 2
√
d− 1+O(1/logd−1 n).

We also complement the above with a positive result which can be summarized as “small
enough sets in Ramanujan graphs expand nearly losslessly”:

1 complete bipartite graph with 2 vertices on one side and d vertices on the other
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▶ Theorem 2. Let G be a d-regular Ramanujan graph with girth C logd−1 n, then every set
of S of size ≤ nκ for κ < C

4 has vertex expansion (1 − od(1))d.

After posting our preprint, Amitay Kamber informed us that a theorem in an alternative
version of [16] gives the same bound by a different argument. Moreover, his theorem does
not depend on the spectral expansion of the graph. However, our proof may be of interest as
an alternate method.

1.1 Technical Overview
We give a brief description of how Theorem 1 and Theorem 2 are proved.

1.1.1 Overview of Proof of Theorem 1
Our proof is inspired by that of Kahale’s. At a high level, Kahale embeds a copy of K2,d

within a Ramanujan graph. We proceed similarly to Kahale, but instead of embedding a
K2,d, we embed a single subgraph H that is high girth but a lossy vertex expander and show
that if H has size nα for some 0 < α ≤ 1/3, the overall graph is still near-Ramanujan.

Our proof involves two steps: the first step is in proving that the subgraph H being
embedded has spectral radius bounded by 2

√
d− 1, and the second step is in proving that

planting H within a Ramanujan graph results in a near-Ramanujan graph. For the first step,
we describe an infinite graph containing H and bound its spectral radius via a trace moment
method. The trace moment method involves bounding the number of closed walks satisfying
certain properties within a graph, and is inspired by an encoding argument from Bordenave’s
proof of Friedman’s theorem [8].

The second step is in proving that our method of embedding a copy of H within a
Ramanujan graph does not perturb the eigenvalues by a large amount. Towards doing so,
we use the fact that the spectral radius of H is bounded by 2

√
d− 1 in conjunction with

Kahale’s argument about dispersion of eigenvalues in high-girth graphs.

1.1.2 Overview of Proof of Theorem 2
We first prove that if a set S in a Ramanujan graph has “lossy” vertex expansion, then we
can construct a graph H on vertex set S such that (i) the girth of H is at least half the
girth of G, and (ii) the average degree of H is “high” (in particular, the worse the vertex
expansion of S, the higher the average degree of H). We then employ the irregular Moore
bound, which gives a quantitative tradeoff between the average degree of a graph and its
girth. In particular, this would imply that a Ramanujan graph with “lossy” vertex expansion
necessarily must have “low” girth.

1.2 Related Work

1.2.1 Applications of Vertex Expanders
There are many applications of expander graphs where having vertex expansion is particularly
useful. For example, lossless expanders are particularly of interest in the field of error
correcting codes [19, 26, 27]. Lossless vertex expanders give linear error correcting codes that
are decodable in linear time [26]. Guruswami, Lee and Razborov [14] use bipartite vertex
expanders to construct large subspaces of Rn where all vectors x in the subspace satisfy
(log n)−O(log log log n)||x||2 ≤ ||x||1 ≤

√
n||x||2.
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1.2.2 Explicit Constructions
Constructions of Ramanujan graphs of [18, 20, 22] of all degrees that are of the form pr + 1
for p prime, as well as the construction of near-Ramanujan graphs of every degree of [21]
have vertex expansion ∼ d

2 just by virtue of being Ramanujan via Kahale’s result. In fact no
deterministic construction has improved upon the d/2 bound obtained from solely spectral
information. In a remarkable work, Capalbo et al. [10] exhibited an explicit construction of
a bipartite graph where subsets of one side of the bipartite graph expand losslessly to the
other, using a zig-zag product so the the losslessness of a small, random-like graph boosts
the expansion from a large, potentially lossy vertex expanding graph.

1.2.3 Quantum Ergodicity
Quantum ergodicity is another area where both local and global properties of random-like
graphs are used. In particular, Anantharaman and Le Masson [6] proved that graphs that have
few short cycles (and are therefore close to high girth) and spectral expansion are quantum
ergodic, which in this context means the eigenvectors are equidistributed across vertices.
Anantharaman, as well as Brooks, Le Masson, and Lindenstrauss exhibited alternative
proofs [5, 9]. The proof from [9] shows that quantum ergodicity is equivalent to the mixing
of a certain graphical operator. They then use high girth to show that this is equivalent to
showing mixing on the infinite tree, then expansion to show the nonbacktracking operator
mixes on the tree.

1.2.4 Eigenvector Delocalization
Ganguly and Srivastava, and later Alon, Ganguly and Srivastava [12, 3] give a perturbation
of the LPS graph similar to Kahale’s argument, but instead of individual vertices, two trees
are added and connected to the graph. By assuming the tree is sufficiently deep and carefully
connecting the tree to the rest of the graph, the authors create a graph that is high girth
but contains eigenvectors that are localized. These graphs are also lossy vertex expanders.
However, they show that these graphs cannot be Ramanujan, but rather have spectral radius
at least (2 + c)

√
d− 1 where c > 0 is a constant. Alon [2] used eigenvector delocalization

to create near-Ramanujan expanders of every degree by perturbing known constructions of
Ramanujan or near-Ramanujan graphs. Paredes [23] used similar techniques to remove short
cycles in a graph while preserving expansion and uses this to algorithmically create graphs
that are near-Ramanujan and also have girth at least Ω(

√
log n).

1.2.5 Complexity of Constraint Satisfaction Problems
Proofs that it is hard for even linear degree Sum-of-Squares to refute random 3XOR and
3SAT instances on n variables [13, 25] rely on lossless vertex expansion of some sets in a graph
underlying a random instance, which suggests a connection between deterministic algorithms
for constructing lossless vertex expanders and algorithms for explicit hard instances for
Sum-of-Squares.

2 Preliminaries

2.1 Elementary Graph Theory
▶ Definition 3. The girth g(G) of a graph G is the length of the smallest cycle in G.

▶ Definition 4. For G = (V,E), the valency of a ∈ V to B ⊂ V is |Γ(a) ∩B|, where Γ(S)
for S ⊂ V is the set of neighbors of S in G.
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▶ Definition 5. The ball of radius h around a set U ⊂ V , denoted Ballh(U), is the set of
vertices of distance at most h from U .

▶ Definition 6. The vertex expansion of a set U ⊂ V is

Ψ(U) := |Γ(U)|
|U |

.

Similarly, the ϵ-vertex expansion of a graph G is:

Ψϵ(G) = min
|U |≤ϵ|V |

Ψ(U)

where U ranges over subsets of V , and ϵ is an arbitrary constant.

▶ Definition 7. Given a graph G, we use AG to denote its adjacency matrix. When G is a
finite graph on n vertices, the eigenvalues of AG can be ordered as λ1(G) ≥ λ2(G) ≥ · · · ≥
λn(G).

▶ Definition 8. We use BG to denote the nonbacktracking matrix of a graph G which is a
matrix with rows and columns indexed by directed edges of G defined as follows:

B[(u, v), (w, x)] =
{

1 if v = w and u ̸= x

0 otherwise.

▶ Definition 9. The spectral expansion of a finite graph G, denoted λ(G) is defined as
max{λ2(G),−λn(G)}, which can equivalently be described as the “second largest absolute
eigenvalue”.

We now state the following standard fact known as the expander mixing lemma (see [15,
Lemma 2.5]).

▶ Lemma 10 (Expander Mixing Lemma). Let G be a d-regular graph on n vertices. For any
two subsets of vertices, S, T ⊆ V (G), let e(S, T ) be the number of pairs of vertices (x, y) such
that x ∈ S, y ∈ T and {x, y} is an edge in G. Then:∣∣∣∣e(S, T ) − d

n
|S| · |T |

∣∣∣∣ ≤ λ(G)
√

|S| · |T |.

And finally, we state the “irregular Moore bound” of [4] which articulates a tradeoff between
the average degree of a graph and its girth.

▶ Lemma 11. Let G be a n-vertex graph with average degree-d. Then

g(G) ≤ 2 logd−1 n+ 2.

2.2 Operator Theory
In this section, let V be a countable set and T : ℓ2(V ) → ℓ2(V ) be a bounded linear operator.

▶ Definition 12. The spectrum of T , which we denote spec(T ), is the set of all λ ∈ such
that λI − T is not invertible.

▶ Definition 13. The spectral radius of T , which we denote ρ(T ) is defined as sup{|λ| : λ ∈
spec(T )}.
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▶ Observation 14. The operator norm of T , which we write as ∥T∥ is equal to
√
ρ(TT ∗)

where T ∗ is the adjoint of T .2

▶ Observation 15. ρ(T ) = limℓ→∞ ∥T ℓ∥1/ℓ.

▶ Observation 16 (Consequence of [24, Theorem 6]). Suppose T is a self-adjoint operator,
and Φ is a basis of ℓ2(V ). Then:

ρ(T ) = sup
ϕ∈Φ

lim sup
k→∞

|⟨ϕ, T kϕ⟩|1/k.

▶ Observation 17. Let A be any principal submatrix of T . Then ρ(A) ≤ ρ(T ).

▶ Corollary 18. If H is a subgraph of (possibly infinite) graph G, then ρ(AH) ≤ ρ(AG).

3 Infinite Trees Hanging from a Biregular Graph

Let H be any (2, d− 1)-biregular graph where the partition with degree-(d− 1) vertices is
called U and the partition with degree-2 vertices is called V . Let X be the infinite graph
constructed from H as follows:

At every vertex in U , the (d− 1)-regular partition, glue an infinite tree where the root
has degree-1 and the remaining vertices have degree-d. At every vertex in V , the 2-regular
partition, glue an infinite tree where the root has degree-(d− 2) and every other vertex has
degree-d.

Note that X is a d-regular infinite graph. The main result of this section is:

▶ Lemma 19. ρ(AX) ≤ 2
√
d− 1.

To prove Lemma 19, we instead turn our attention to the nonbacktracking matrix of X,
called BX . In particular, we bound ρ(BX) and then employ the Ihara–Bass formula of [7]
for infinite graphs to translate the bound on ρ(BX) into a bound on ρ(AX).

Thus, we first prove:

▶ Lemma 20. ρ(BX) ≤
√
d− 1.

We use the following version of the Ihara–Bass formula of [7] for infinite graphs.

▶ Theorem 21. Let G be a (possibly infinite) graph. Then

spec(BG) = {±1} ∪ {λ : (DG − I) − λAG + λ2I is not invertible}.

An immediate corollary that we will use is:

▶ Corollary 22. Let G be a d-regular graph. Then ρ(BG) ≤
√
d− 1 implies that ρ(AG) ≤

2
√
d− 1.

Proof. If there is µ in spec(AG) such that |µ| > 2
√
d− 1, then µI − AG is not invertible.

Consequently, by Theorem 21 λ = µ+
√

µ2−4(d−1)
2 , which is greater than

√
d− 1, is in

spec(BG). ◀

In light of Corollary 22, we see that Lemma 20 implies Lemma 19.
Towards proving Lemma 20, we first make a definition.

2 Since ℓ2(V ) comes equipped with the inner product ⟨f, g⟩ :=
∑

v∈V
f(v)g(v), T ∗ is simple the “transpose”

of T .
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▶ Definition 23. We call a walk W a (a× b)-linkage if it can be split into a segments, each
of which is a length-b nonbacktracking walk.

Proof of Lemma 20. By Observation 15

ρ(BX) = lim sup
ℓ→∞

∥Bℓ
X∥1/ℓ.

Since ∥Bℓ
X∥ =

√
ρ(Bℓ

X(B∗
X)ℓ) it suffices to bound ρ(T ) where T := Bℓ

X(B∗
X)ℓ is a bounded

self-adjoint operator, and hence by Observation 16:

ρ(T ) = max
uv∈E⃗(X)

lim sup
k→∞

|⟨1uv, T
k1uv⟩|1/k.

The quantity ⟨1uv, T
k1uv⟩ is bounded by the number of (2k × (ℓ + 1))-linkages that start

and end at vertex u, which we can bound via an encoding argument. In particular, we will
give an algorithm to uniquely encode such linkages and bound the total number of possible
encodings.

3.1 Encoding Linkages
Each length-(ℓ+ 1) nonbacktracking segment can be broken into 3 consecutive phases (of
which some can possibly be empty): the phase where distance to H decreases on each step
(Phase 1), the second phase where distance to H does not change on each step (Phase 2),
and the third phase where distance to H increases on each step (Phase 3). We further break
the third phase into two (possibly empty) subphases – the first subphase where the distance
to u decreases on each step (Phase 3a), and the second subphase where the distance to u

increases on each step (Phase 3b).
To encode the linkage, for each length-(ℓ+ 1) nonbacktracking we specify four numbers

denoting the lengths of Phases 1, 2, 3a, and 3b. Note that Phase 2 is nonempty only if it is
contained in H . For each step ab in Phase 2 that goes from U (the (d− 1)-regular partition)
to V (the 2-regular partition) we specify a number i in [d− 1] such that b is the ith neighbor
of a within H. If the first step ab in Phase 2 is from V to U we specify a number in [2]
denoting if b is the first or second neighbor of a. For each step ab in Phase 3b we specify a
number i in [d− 1] such that b is the ith neighbor of a that does not lie in the path between
between u and H.

3.2 Recovering Linkages from Encodings
We recover a linkage from its encoding “segment-by-segment”. Suppose the first t segments
have been recovered, we show how to recover the (t+ 1)-th segment. Let x be the vertex
the walk is at after it has traversed the first t segments. The steps taken in Phase 1 can be
recovered from the length of the Phase since there is a unique path from any vertex to H.
The steps in Phase 2 alternate between stepping from V to U and from U to V . It is easy to
recover the first step of Phase 2 as well as any step from U to V ; a step ab from V to U that
is not the first step of Phase 2 is uniquely determined by the previous step, since a has 2
neighbors in U and by the nonbacktracking nature of the walk there is only one choice for b.
Note that Phase 3a is nonempty only if u is not in H and all the steps are contained in the
same branch as u. Since there is a unique shortest path between the start vertex of Phase 3a
and u, the steps taken in Phase 3a can be recovered from its length. Finally, it is easy to
recover the steps taken in Phase 3b since they are explicitly given in the encoding.
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3.3 Counting Encodings
Now we turn our attention to bounding the total number of encodings. For given α, β ≥ 0
such that α + β = 2k(ℓ + 1) we first bound the number of walks such that α steps occur
in Phase 2 (i.e. are within H) and β steps occur outside Phase 2 (i.e. are outside H). Let
v1, v2, . . . , v2k(ℓ+1) be the sequence of vertices visited by the walk in order. By d(x, y) we
denote the graphical distance between vertices x and y, and for a set of vertices A, we
write d(x,A) := miny∈A d(x, y). Since d(v1, H) = d(v2k(ℓ+1), H), |d(vi, H) − d(vi+1, H)| ≤ 1
always and |d(vi, H) − d(vi+1, H)| = 0 for every step in Phase 2, the number of steps of the
walk that occur in Phase 3 of their respective segments is at most β

2 . In particular, the
number of steps that occur in Phase 3b of their respective segments is bounded by β

2 . The
following bounds hold:

The number of possible encodings of the lengths of phases is at most (ℓ+ 1)8k.
The number of possible encodings of the first step of Phase 2 of each segment is at
most 22k.
The number of possible encodings of the list of U -to-V steps in Phase 2 is at most
(d− 1) α+1

2 because the steps taken in Phase 2 alternate between going from V to U and
from U to V .
The number of possible encodings of the list of steps in Phase 3b is at most (d− 1)

β
2 .

The above bounds combine to give a bound of

(ℓ+ 1)8k22k(d− 1)
α+1

2 (d− 1)
β
2 ≤ (ℓ+ 1)8k22k

√
d− 1

2k(ℓ+1)+1
.

As there are at most 2kℓ choices for (α, β) pairs, the number of (2k × (ℓ+ 1))-linkages is at
most

2kℓ(ℓ+ 1)8k22k
√
d− 1

2k(ℓ+1)+1
.

Thus,

ρ(T ) ≤ lim sup
k→∞

(
2kℓ(ℓ+ 1)8k22k

√
d− 1

2k(ℓ+1)+1)1/k

= 4(ℓ+ 1)8√
d− 1

2(ℓ+1)
.

Consequently,

ρ(BX) ≤ lim sup
ℓ→∞

ρ(T )1/2ℓ ≤ lim sup
ℓ→∞

(
4(ℓ+ 1)8√

d− 1
2(ℓ+1))1/2ℓ

=
√
d− 1. ◀

4 High-Girth Near-Ramanujan graphs with Lossy Vertex Expansion

We will plant a high girth graph with low spectral radius within a d-regular Ramanujan
graph. We will show that such a construction is a spectral expander, but has low vertex
expansion. By u ∼G v, we mean that u and v are adjacent in the graph G. We will write
u ∼ v when the graph is clear from context.

Consider a (2, d− 1) biregular bipartite graph H = (U, V,E), with vertex components U
and V . U is the degree-(d− 1) component and V the degree-2 component. Therefore if we
define γ := |U |, requiring γ to be even, then |V | = (d − 1)γ/2. Call the vertices of U and
V {u1, . . . , uγ} and {v1, . . . , vγ(d−1)/2}, respectively. We connect U and V in such a way to
maximize the girth of H.

▶ Lemma 24.

g(H) ≥ 2 logd−1 γ.
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Figure 1 H ′, with labeled components for d = 4, γ = 4. Note that Ψ(U) = (d + 1)/2. To create
G′, we connect Q and R to a well spaced matching in G.

Proof. Because of the valency conditions on H , there is a graph H̃ on γ vertices {ũ1, . . . , ũγ},
where ũi ∼H̃ ũj if and only if ∃vk ∈ H such that ui ∼H vk and uj ∼H vk. Namely, U
corresponds to the vertex set of H̃, and V corresponds to the edge set. H̃ is d− 1 regular,
and, as paths in H̃ of length r correspond to paths of length 2r in H, g(H) = 2g(H̃).

By a result of Linial and Simkin [17], there exists a graph H̃ that has girth at least
c logd−2 γ, for any c ∈ (0, 1), assuming γ is even. Therefore by setting c = log(d−2)/ log(d−1),
we have that g(H̃) ≥ logd−1 γ and g(H) ≥ 2 logd−1 γ. ◀

We add a new set of vertices Q = {q1, . . . , qγ} and add a matching between Q and U ,
adding the edge qiui for 1 ≤ i ≤ γ. Similarly, we add another set of vertices R = {ri,j}, 1 ≤
i ≤ γ(d− 1)/2, 1 ≤ j ≤ d− 2. For each 1 ≤ i ≤ γ(d− 1)/2, we then add an edge from vi to
each of ri,j for 1 ≤ j ≤ (d− 2).

We call H ′ the graph on U ∪ V ∪Q∪R. At this point vertices of U and V have degree-d,
and vertices of Q and R have degree-1. Also, note Ψ(U) = (d+ 1)/2. We wish to embed H ′

into a larger, high girth expander, and show that this new graph maintains high girth and
expansion, even though the set U is a lossy vertex expander. Our argument follows that of
[16, Section 5], but instead of embedding individual vertices, we will embed H ′.

▶ Theorem 25 (Theorem 1 in more detail). For every d = p + 1 for prime p ≥ 3, there is
an infinite family of d-regular graphs Gm = (Vm, Em) on m vertices, such that ∃Um ⊂ Vm

with Ψ(Um) = (d + 1)/2 for |Um| ≤ m1/3, g(Gm) = ( 2
3 − om(1)) logd−1 m, and such that

λ(Gm) ≤ 2
√
d− 1 +O(1/logd−1 m).

Proof. By the result of Lubotzky, Phillips and Sarnak [18], for such d, there exists an infinite
family of d-regular graphs, where graphs of n vertices have girth ( 4

3 − on(1)) logd−1 n and
have spectral expansion ≤ 2

√
d− 1.

For a given graph G = (V,E) of this type of size n, we attach H ′ by removing a matching
M ⊂ E, M = {(a1,1, a1,2), . . . , (ak,1, ak,2)} for

k := γ(d− 1)(2 + (d− 1)(d− 2))/4. (1)

We take a matching such that the pairwise distance between edges in the matching is
maximized in G.
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▶ Lemma 26. In a d-regular graph on n vertices, there exists a matching M of size k such
that for every pair of edges (ai1,1, ai1,2), (ai2,1, ai2,2) ∈ M , i1 ̸= i2,

d((ai1,1, ai1,2), (ai2,1, ai2,2)) ≥ logd−1 n− logd−1 γ −On(1).

Proof. For a given pair of adjacent vertices (ai,1, ai,2), as our graph is d regular, there are
at most 1 + d (d−1)r−1

d−2 vertices at distance at most r from ai,1, and at most (d− 1)r vertices
at distance r from ai,2 and distance r + 1 from ai,1. Therefore for any d ≥ 4, the number
of edges at distance at most r from a given edge is less than 4(d − 1)r. We then greedily
add edges by choosing an arbitrary edge with vertices at distance at least r away from all
already chosen edges. A kth such edge will exist as long as 4k(d− 1)r ≤ n. For our k given
in (1) we can set r = logd−1 n− logd−1 γ −On(1). ◀

To connect H ′ to G, we first delete the matching M . Then for every vertex of Q and R,
we add d− 1 edges to the set of vertices of M , connecting to each vertex of M exactly once.
Namely, the induced subgraph on (Q ∪R) ∪M is a (d− 1, 1) biregular bipartite graph. Call
G′ = (V ′, E′) the new graph formed from G and H ′.

We wish to show that G′ remains high girth and a good spectral expander. For the girth
of G′, cycles are either completely contained in H ′, completely contained in G, or a mix
between the two. Cycles in H ′ have length at least 2 logd−1 γ by Lemma 24. Cycles in G

have length at least ( 4
3 − on(1)) logd−1 n by the construction of [18]. For cycles that are a

mix of H ′ and G, we must go from one vertex of H ′ to another vertex of H ′ through G.
Therefore by Lemma 26, the length of such a cycle is at least logd−1 n− logd−1 γ −On(1),
giving

g(G′) ≥ min{2 logd−1 γ, logd−1 n− logd−1 γ −On(1)}.

To show that the spectrum is not adversely affected, we follow the argument of [16,
Theorem 5.2], with some adjustments. For our new graph, assume that there is an eigenvector
g ⊥ 1 corresponding to an eigenvalue |µ| > 2

√
d− 1.

Call A the adjacency matrix of G′, and AG the adjacency matrix of G padded with zeros
so it is of the same size as A. Then we have

g∗Ag = g∗
GAGgG + g∗

H′AgH′ − 2
k∑

i=1
g(ai,1)g(ai,2) +

∑
u∈Q∪R
ai,j∈M
u∼ai,j

g(u)g(ai,j)

where gG and gH′ are the projections of g onto G and H ′, respectively.
We know that

|g∗
GAGgG| ≤ 2

√
d− 1||gG||2 + d

n

(∑
u∈G

g(u)
)2

by decomposing g into parts parallel and perpendicular to the all ones vector.
By a combination of Lemma 19 and Corollary 18, the spectral radius of H ′ is at most

2
√
d− 1, and therefore we have

|g∗
GAGgG| + |g∗

H′AgH′ | ≤ 2
√
d− 1||g||2 + d

n

(∑
u∈H′

g(u)
)2

as
∑

G g(u) = −
∑

H′ g(u), considering g ⊥ 1.
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To show that |µ| = 2
√
d− 1 +O(1/ log n), we then need to show

1
∥g∥2

 d

n

(∑
H′

gH′(u)
)2

− 2
k∑

i=1
g(ai,1)g(ai,2) +

∑
u∈Q∪R
ai,j∈M
u∼ai,j

g(u)g(ai,j)

 = O

(
1

log n

)
. (2)

The first term of (2) can be bounded as

d

n

(∑
H′

gH′(u)
)2

≤ d

n
|H ′| ∥gH′∥2 ≤ γ(2 + (d− 1)(d− 2))d

2n ∥gH′∥2. (3)

The second term we can bound as∣∣∣∣∣2
k∑

i=1
g(ai,1)g(ai,2)

∣∣∣∣∣ ≤
∑

ai,j∈M

g(ai,j)2. (4)

Now we will bound the last term of (2) using the Cauchy-Schwarz inequality.∣∣∣∣∣∣∣∣∣∣
∑

u∈Q∪R
ai,j∈M
u∼ai,j

g(u)g(ai,j)

∣∣∣∣∣∣∣∣∣∣
≤
√

(d− 1)
∑

u∈Q∪R

g(u)2
√ ∑

ai,j∈M

g(ai,j)2. (5)

We use the following lemma to bound the right hand sides of (4) and (5). The lemma is
a generalized version of [16, Lemma 5.1]. The result follows from the same proof, which we
reproduce for completeness. Here, for two vectors a, b ∈ Rn, a ≤ b if ∀i ∈ [n], a(i) ≤ b(i).

▶ Lemma 27 (Lemma 5.1 of [16]). Consider a graph on a vertex set W , a subset X of W , a
positive integer h, and s ∈ L2(W ). Let Xi be the set of nodes at distance i from X. Assume
the following conditions hold:
(1) For h− 1 ≤ i, j ≤ h, all nodes in Xi have the same number of neighbors in Xj.
(2) If u ∈ Xh−1 and v ∈ Xh and u ∼ v, then s(u)/s(v) does not depend on the choices of u

and v.
(3) s is nonnegative and As ≤ µs on Ballh−1(X), where µ is a positive real number.

Proof. Let A be the adjacency matrix of W . Let Ph−1 and Ph(X) be the orthogonal
projections onto Xh−1 and onto Xh, respectively. Let P≤h−1 and P≤h(X) be the orthogonal
projections onto Ballh−1(X) and Ballh(X), respectively. We need to show that

∥Phg∥2

∥Phs∥2 ≥ ∥Ph−1g∥2

∥Ph−1s∥2 .

Call Ah = P≤hAP≤h (so Ah performs the adjacency operator on Ballh(X)). By the conditions
of the lemma, we know that there are constants α, β and γ such that

PhAhs = γPhs (6)

and

AhPhs = αPhs+ βPh−1s. (7)
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By assumption,

Ahs ≤ µP≤h−1s+ γPhs. (8)

Therefore by applying P≤h−1 to both sides of (8),

P≤h−1Ahs ≤ µP≤h−1s

≤ µP≤hs− µPhs.

Now we apply Ah to both sides:

AhP≤h−1Ahs ≤ µAhs− µAhPhs

≤ µAhs− µ(αPhs+ βPh−1s) by (7)
≤
(
µ2P≤h−1 + µ(γ − α)Ph − µβPh−1

)
s. by (8)

Define the matrix B := µ2P≤h−1 + µ(γ − α)Ph − µβPh−1 − AhPh−1Ah. B has no
positive entries on the off-diagonal. Take any eigenvector ψ of B. Without loss of generality
assume that ψ has a positive entry. Then take i = argmaxuψ(u)/s(u). As ψ ≤ (ψ(i)/s(i))s,
(Bψ)(i) ≥ (B(ψ(i)/s(i))s)(i). The quantity on the right is nonnegative, meaning that the
eigenvalue with eigenvector ψ is nonnegative. As ψ was arbitrary, B is positive semidefinite.

Because B is positive semidefinite,

g∗AhP≤h−1Ahg ≤ g∗ (µ2P≤h−1 + µ(γ − α)Ph − µβPh−1
)
g. (9)

For any orthogonal projection P , P 2 = P . Therefore g∗AhP≤h−1Ahg = ∥P≤h−1Ahg∥2.
Moreover (9) becomes

∥P≤h−1Ahg∥2 ≤ µ2∥P≤h−1g∥2 + µ(γ − α)∥Phg∥2 − µβ∥Ph−1g∥2.

By assumption, ∥P≤hAhg∥ = µ∥P≤hg∥. Therefore

(γ − α)∥Phg∥2 ≥ β∥Ph−1g∥2. (10)

As Ah and Ph are self adjoint, s∗AhPhs = s∗PhAhs, so α∥Phs∥2 + β∥Ph−1∥2 = γ∥Phs∥2.
Combining this with (10), we obtain (11). ◀

For any g ∈ L2(W ) such that |Ag(u)| = µ|g(u)| for u ∈ Ballh−1(X), we have∑
v∈Xh

g(v)2∑
v∈Xh

s(v)2 ≥
∑

v∈Xh−1
g(v)2∑

v∈Xh−1
s(v)2 . (11)

To use the lemma, we set X0 = U ∪ V , and h will vary from 2 ≤ h ≤ ⌊r/2⌋. Assuming
that the girth of G′ is at least r, the ⌊r/2⌋ neighborhoods of each vertex do not overlap.

Our test vector decays exponentially, with a small adjustment.

s(y) =


1

(d−1)h/2 y ∈ Xh,U

2√
d−1 − 1

(d−1)3/2 y ∈ X0,V(
2

d−2 − 2
(d−1)(d−2)

)
1

(d−1)(h−1)/2 y ∈ Xh,V , h ≥ 1.

For this assignment of values we have As ≤ (2
√
d− 1)s. In fact, this inequality is sharp at

all coordinates except for y ∈ X1,V .
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For this s, we have that
∑

y∈Xh
s(y)2 is constant for h = 1, . . . , ⌊r/2⌋. Also, recall

Q ∪R = X1 and M = X2. By Lemma 27, as g corresponds to an eigenvalue |µ| > 2
√
d− 1,

the mass on each of first 2 layers of X can only be at most 2/(r − 2) of the total mass.
Combining (3), (4), and (5), we can bound (2) as

(2) ≤ γ(2 + (d− 1)(d− 2))d
2n ∥gH′∥2 +

∑
a∈X2

g(a)2 +
√

(d− 1)
∑

u∈X1

g(u)2
√∑

a∈X2

g(a)2

≤
(
γ(2 + (d− 1)(d− 2))d

2n + (1 +
√
d− 1) 2

r − 2

)
∥g∥2.

If we set γ = n1/3 and r = 2
3 logd−1 n−On(1), for fixed d this becomes

O

(
1

log n

)
∥g∥2,

meaning that µ ≤ 2
√
d− 1 + O(1/ log n). This also gives the desired bounds on vertex

expansion and girth, by setting U = Um. Because |V ′| = (1 + on(1))n, the bounds on Ψ(Um),
g(G′) and λ(G′) given in terms of n do not change when they are given in terms of m. ◀

5 Lossless Expansion of Small Sets

In this section, we prove that sufficiently small sets in a high-girth spectral expander expand
losslessly.

▶ Theorem 28 (Theorem 2 in detail). Let G be a d-regular graph on n vertices with girth at
least 2α logd−1 n+ 4. Then for any set S with nκ vertices,

|Γ(S)|
|S|

≥ d− λ(G) − d2κ/α

2 − d

n1−κ
.

Proof. Let S be a set of vertices of size nκ in G. Let eS denote the number of internal edges
within S. Let ni denote the number of vertices in Γ(S) that have i edges from S incident
to it. Then: |Γ(S)| = n1 + n2 + · · · + nd and |E(S,Γ(S))| = n1 + 2n2 + · · · + dnd. Note
that |E(S,Γ(S))| is also equal to d|S| − 2eS . Now consider the graph HS on vertex set S
and edge set given by induced edges on S along with new edges introduced by adding an
arbitrary spanning tree for every set of i vertices that are neighbors of a vertex in Γ(S) with
exactly i neighbors in S. The number of edges in HS is equal to

eS + n2 + 2n3 + · · · + (d− 1)nd = eS + |E(S, ∂S)| − |Γ(S)| = d|S| − eS − |Γ(S)|.

The edges in HS that are not in G correspond to paths of length at most 2 in G. There-
fore g(HS) ≥ 1

2g(G) ≥ α logd−1 n + 2. As a consequence of the expander mixing lemma
(Lemma 10), eS ≤

(
λ(G) + d|S|

n

)
|S|. Consequently,

|E(HS)| ≥
(
d− λ(G) − d|S|

n

)
|S| − |Γ(S)|,

which means the average degree is lower bounded by

2
(
d− λ(G) − d|S|

n
− |Γ(S)|

|S|

)
.
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Thus by the irregular Moore bound (Lemma 11),

g(HS) ≤ 2 lognκ

log
(

2
(
d− λ(G) − d|S|

n − |Γ(S)|
|S|

)
− 1
) + 2

and hence
α

log(d− 1) ≤ 2κ
log
(

2
(
d− λ(G) − d|S|

n − |Γ(S)|
|S|

)
− 1
) .

This implies

d− λ(G) − d|S|
n

− |Γ(S)|
|S|

− 1
2 ≤ d2κ/α

2 ,

and finally by rearranging the above and plugging in |S| = nκ

|Γ(S)|
|S|

≥ d− λ(G) − d2κ/α − 1
2 − d

n1−κ
. ◀

▶ Remark 29. If G is a n-vertex d-regular Ramanujan graph with girth 4
3 logd−1 n (which is

a condition satisfied by the Ramanujan graphs of [18]) then for every set S of size nκ for
κ < 1/3,

|Γ(S)|
|S|

≥ d(1 − od(1)).
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Abstract
This paper gives a k-means approximation algorithm that is efficient in the relational algorithms
model. This is an algorithm that operates directly on a relational database without performing a
join to convert it to a matrix whose rows represent the data points. The running time is potentially
exponentially smaller than N , the number of data points to be clustered that the relational database
represents.

Few relational algorithms are known and this paper offers techniques for designing relational
algorithms as well as characterizing their limitations. We show that given two data points as cluster
centers, if we cluster points according to their closest centers, it is NP-Hard to approximate the
number of points in the clusters on a general relational input. This is trivial for conventional data
inputs and this result exemplifies that standard algorithmic techniques may not be directly applied
when designing an efficient relational algorithm. This paper then introduces a new method that
leverages rejection sampling and the k-means++ algorithm to construct a O(1)-approximate k-means
solution.
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1 Introduction

Kaggle surveys [2] show that the majority of learning tasks faced by data scientists involve
relational data. Conventional formats usually represent data with multi-dimensional points
where each dimension corresponds to a feature of the data. In contrast, a relational
database consists of tables T1, T2, . . . , Tm where the features could be stored partially in the
tables. The columns in each table are a subset of features1 and the rows are data records for

1 In relational database context the columns are also referred to as attributes but here we call them
features per the tradition of broader communities.
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these features. The underlying data is represented by the design matrix J = T1 ⋊⋉ · · · ⋊⋉ Tm

where each row in J can be interpreted as a data point. Here the join (⋊⋉) is a binary operator
on two tables Ti and Tj . The result of the join is the set of all possible concatenations of two
rows from Ti and Tj such that they are equal in their common columns/features. If Ti and
Tj have no common columns their join is the cross product of all rows. See Table 1 for an
example of join operation on two tables.

Table 1 A join of tables T1 and T2. Each has 5 rows and 2 features, sharing f2. The join has
all features from both tables. The rows with f2 = x in the join is the cross product of all rows
with f2 = x from T1 and T2. For example, for f2 = 1, the four rows in T1 ⋊⋉ T2 has (f1, f3) values
{(1, 1), (1, 2), (2, 1), (2, 2)}, this is the cross product of f1 ∈ {1, 2} from T1 and f3 ∈ {1, 2} from T2.

T1
f1 f2
1 1
2 1
3 2
4 3
5 4

T2
f2 f3
1 1
1 2
2 3
5 4
5 5

T1 ⋊⋉ T2
f1 f2 f3
1 1 1
1 1 2
2 1 1
2 1 2
3 2 3

Almost all learning tasks are designed for data in matrix format. The current standard
practice for a data scientist is the following.

Standard Practice:
1. Extract the data points from the relational database by taking the join of all tables

to find the design matrix J = T1 ⋊⋉ · · · ⋊⋉ Tm.
2. Then interpret each row of J as a point in a Euclidean space and the columns as the

dimensions, corresponding to the features of data.
3. Import this design matrix J into a standard algorithm.

A relational database is a highly compact data representation format. The size of J can
be exponentially larger than the input size of the relational database [10]. Extracting J makes
the standard practice inefficient. Theoretically, there is a potential for exponential speed-up
by running algorithms directly on the tables in relational data. We call such algorithms
relational algorithms if their running time is polynomial in the size of tables when the
database is acyclic. Acyclic databases will be defined shortly. This leads to the following
exciting algorithmic question.

The Relational Algorithm Question:
A. Which standard algorithms can be implemented as relational algorithms?
B. For standard algorithms that are not implementable by relational algorithms, is

there an alternative efficient relational algorithm that has similar performance?

This question has recently been of interest to the community. However, few algorithmic
techniques are known. Moreover, we do not have a good understanding of which problems can
be solved on relational data and which cannot. Relational algorithm design has a interesting
combinatorial structure that requires a deeper understanding.

We design a relational algorithm for k-means. It has a polynomial time complexity for
acyclic relational databases. The relational database is acyclic if there exists a tree with
the following properties. There is exactly one node in the tree for each table. Moreover, for
any feature (i.e. column) f , let V (f) be the set of nodes whose corresponding tables contain
feature f . The subgraph induced on V (f) must be a connected component. Acyclicity can
be easily checked, as the tree can be found in polynomial time if it exists [27].
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Luckily, most of the natural database schema are acyclic or nearly acyclic. Answering
seemingly simple questions on general (cyclic) databases, such as if the join is empty or
not is NP-Hard. For general databases, efficiency is measured in terms of the fractional
hypertree width of the database (denoted by “fhtw”). The parameter measures how close
the database structure is to being acyclic. It is 1 for acyclic databases and larger as the
database is farther from being acyclic.

State-of-the-art algorithms for queries as simple as counting the number of rows in the
design matrix have linear dependency on nfhtw where n is the maximum number of rows
in all input tables [7]. Running in time linear in nfhtw is the goal, as fundamental barriers
need to be broken to be faster. Notice that this is polynomial time when fhtw is a fixed
constant (i.e. nearly acyclic). Our algorithm has linear dependency on nfhtw, matching the
state-of-the-art.

Relational Algorithm for k-means. k-means is perhaps the most widely used data mining
algorithm (e.g. k-means is one of the few models in Google’s BigQuery ML package [1]).
The input to the k-means problem consists of a collection S of points in a Euclidean space
and a positive integer k. A feasible output is k points c1, . . . , ck, which we call centers.
The objective is to choose the centers to minimize the aggregate squared distance from each
original point to its nearest center.

Recall extracting all data points could take time exponential in the size of a relational
database. Thus, the problem is to find the cluster centers without fully realizing all of the
data points the relational data represents.

[15] was the first paper to give a non-trivial k-means algorithm that works on relational
inputs. The paper gives an O(1)-approximation. The algorithm’s running time has superlinear
dependency on kd when the tables are acyclic and thus is not polynomial. Here k is the
number of cluster centers and d is the dimension (a.k.a number of features) of the points.
This is equivalently the number of distinct columns in the relational database. For a small
number of dimensions, this algorithm is a large improvement over the standard practice and
they showed the algorithm gives up to 350x speed up on real data versus performing the
query to extract the data points (not even including the time to cluster the output points).

Several questions remain. Is there a relational algorithm for k-means? What algorithmic
techniques can we use as building blocks to design relational algorithms? Moreover, how can
we show some problems are hard to solve using a relational algorithm?

Overview of Results. The main result of the paper is the following.

▶ Theorem 1. Given an acyclic relational database with tables T1, T2, . . . Tm where the design
matrix J has N rows and d columns. Let n be the maximum number of rows in any table.
Then there is a randomized algorithm running in time polynomial in d, n and k that computes
an O(1) approximate k-means clustering solution with high probability.

The discussion about the algorithm’s time complexity for cyclic databases is left out due
to space limits. To illustrate the challenges for finding such an algorithm as described in the
prior theorem, even when the database is acyclic, consider the following theorem.

▶ Theorem 2. Given an acyclic relational database with tables T1, T2, . . . Tm where the design
matrix J has N rows and d columns. Given k centers c1, . . . , ck, let Ji be the set of points in
J that are closest to ci for i ∈ [k]. It is #P -Hard to compute |Ji| for k ≥ 2 and NP -Hard to
approximate |Ji| to any factor for k ≥ 3.
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We show the proof in Section 2.1. We prove it by reducing a NP -Hard problem to
the problem of determining if Ji is empty or not. Counting points closest to a center is
a fundamental building block in almost all k-means algorithms. Moreover, we note that
performing one iteration of the classic Lloyd’s algorithm, that is, to re-compute the centroids
of all Ji’s, is also #P -Hard. The proof is omitted here.

Together this necessitates the design of new techniques to address the main theorem,
shows that seemingly trivial algorithms are difficult relationally, and suggests computing a
coreset is the right approach for the problem as it is difficult to cluster the data directly.

Overview of Techniques. We first compute a coreset of all points in J . That is, a collection
of points with weights such that if we run an O(1) approximation algorithm on this weighted
set, we will get a O(1) approximate solution for all of J . To do so, we sample points
according to the principle in k-means++ algorithm and assign weights to the points sampled.
The number of points chosen will be Θ(k log N). Any O(1)-approximate weighted k-means
algorithm can be used on the coreset to give Theorem 1.

k-means++. k-means++ is a well-known k-means algorithm [9, 8]. The algorithm iter-
atively chooses centers c1, c2, . . .. The first center c1 is picked uniformly from J . Given
that c1, . . . , ci−1 are picked, a point x is picked as ci with probability P (x) = L(x)

Y where
L(x) = minj∈[i−1](∥x − cj∥2

2) and Y =
∑

x∈J L(x). Here [i − 1] denotes {1, 2, . . . , i − 1}.
Say we sample Θ(k log N) centers according to this distribution, which we call the k-

means++ distribution. It was shown in [8] that if we cluster the points by assigning them
to their closest centers, the total squared distance between points and their cluster centers is
at most O(1) times the optimal k-means cost with high probability. Note that this is not a
feasible k-means solution because more than k centers are used. However, leveraging this,
the work showed that we can construct a coreset by weighting these centers according to the
number of points in their corresponding clusters.

We seek to mimic this approach with a relational algorithm. Let’s focus on one iteration
where we want to sample the center ci given c1, . . . , ci−1 according to the k-means++
distribution. Consider the assignment of every point to its closest center in c1, . . . , ci−1.
Notice that the k-means++ probability is determined by this assignment. Indeed, the
probability of a point being sampled is the cost of assigning this point to its closest center
(minj∈[i−1] ∥x − cj∥2

2) normalized by Y . Y is the summation of this cost over all points.
The relational format makes this distribution difficult to compute without the design

matrix J . It is hard to efficiently characterize which points are closest to which centers. The
assignment partitions the data points according to their closest centers, where each partition
may not be easily represented by a compact relational database (unlike J).

A Relational k-means++ Implementation. Our approach will sample every point according
to the k-means++ distribution without computing this distribution directly. Instead, we use
rejection sampling [13], which allows one to sample from a “hard” distribution P using an
“easy” distribution Q. Rejection sampling works by sampling from Q first, then reject the
sample with another probability used to bridge the gap between Q and P . The process is
repeated until a sample is accepted. In our setting, P is the k-means++ distribution, and we
need to find a Q which could be sampled from efficiently with a relational algorithm (without
computing J). Rejection sampling theory shows that for the sampling to be efficient, Q

should be close to P point-wise to avoid high rejection frequency. In the end, we will perfectly
simulate the k-means++ algorithm.
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We now describe the intuition for designing such a Q. Recall that P is determined by
the assignment of points to their closest centers. We will approximate this assignment up
to a factor of O(i2d) when sampling the ith center ci, where d is the number of columns in
J . Intuitively, the approximate assignment makes things easier since for any center we can
easily find the points assigned to it using an efficient relational algorithm. Then Q is found
by normalizing the squared distance between each point and its assigned center.

The approximate assignment is designed as follows. Consider the d-dimensional Euclidean
space where the data points in J are located. The algorithm divides space into a laminar
collection of hyper-rectangles2 (i.e., {x ∈ Rd : vj ≤ xj ≤ wj , j = 1, . . . , d}, here xj is the
value for feature fj). We assign each hyper-rectangle to a center. A point assigns itself to
the center that corresponds to the smallest hyper-rectangle containing the point.

The key property of hyper-rectangles that benefits our relational algorithm is: we can
efficiently represent all points from J inside any hyper-rectangle by removing some entries
in each table from the original database and taking the join of all tables. For example,
if a hyper-rectangle has constraint vj ≤ xj ≤ wj , we just remove all the rows with value
outside of range [vj , wj ] for column fj from the tables containing column fj . The set of
points assigned to a given center can be found by adding and subtracting a laminar set of
hyper-rectangles, where each hyper-rectangle can be represented by a relational database.

Weighting the Centers. We have sampled a good set of cluster centers. In order to get a
coreset we need to assign weights to them. As we have already mentioned, assuming P ̸= #P ,
the weights cannot be computed relationally. In fact, they cannot be approximated up to
any factor in polynomial time unless P = NP . Rather, we design an alternative relational
algorithm for computing the weights. Each weight will not be an approximate individually,
but we prove that the weighted centers form an O(1)-approximate coreset in aggregate.

The main algorithmic idea is that for each center ci we generate a collection of hyperspheres
around ci containing geometrically increasing numbers of points. The space is then partitioned
using these hyperspheres where each partition contains a portion of points in J . Using the
algorithm from [3], we then sample a poly-log sized collection of points from each partition,
and use this subsample to estimate the fraction of the points in this partition which are
closer to ci than any other center. The estimated weight of ci is aggregated accordingly.

Paper Organization. As relational algorithms are relatively new, we begin with some special
cases which help the reader build intuition. In Section 2 we give a warm-up by showing how
to implement 1-means++ and 2-means++ (i.e. initialization steps of k-means++). In this
section, we also prove Theorem 2 as an example of the limits of relational algorithms. In
Section 3 we go over background on relational algorithms that our overall algorithm will
leverage. In Section 4 we give the k-means++ algorithm via rejection sampling. Section 5
shows an algorithm to construct the weights and then analyze this algorithm.

2 Warm-up: Efficiently Implementing 1-means++ and 2-means++

This section is a warm-up to understand the combinatorial structure of relational data. We
will show how to do k-means++ for k ∈ {1, 2} (referred to as 1- and 2-means++) on a simple
join structure. We will also show the proof of Theorem 2 which states that counting the
number of points in a cluster is a hard problem on relational data.

2 A laminar set of hyper-rectangles means any two hyper-rectangles from the set either have no intersection,
or one of them contains the other.
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First, let us consider relationally implementing 1-means++ and 2-means++. For better
illustration, we consider a special type of acyclic table structure named path join. The
relational algorithm used will be generalized to work on more general join structures when
we move to the full algorithm in Section 4.

In a path join each table Ti has two features/columns fi, and fi+1. Table Ti and Ti+1
then share a common column fi+1. Assume for simplicity that each table Ti contains n rows.
The design matrix J = T1 ⋊⋉ T2 ⋊⋉ . . . ⋊⋉ Tm has d = m + 1 features, one for each feature (i.e.
column) in the tables.

Even with this simple structure, the size of the design matrix J could still be exponential
in the size of database - J could contain up to nm/2 rows , and dnm/2 entries. Thus the
standard practice could require time and space Ω(mnm/2) in the worst case.

Table 2 A path join instance where the two tables T1 and T2 have m = 2 and n = 5. This shows
T1, T2, the design matrix J , and the resulting layered directed graph G. Every path from the left
most layer to the right most layer of this graph G corresponds to one data point for the clustering
problem (i.e. a row of the design matrix).

T1
f1 f2
1 1
2 1
3 2
4 3
5 4

T2
f2 f3
1 1
1 2
2 3
5 4
5 5

J = T1 ⋊⋉ T2
f1 f2 f3
1 1 1
1 1 2
2 1 1
2 1 2
3 2 3

Graph Illustration of the Design Matrix. Conceptually consider a directed acyclic graph
G, where there is one layer of nodes corresponding to each feature fi(i = 1, . . . , d), and edges
only point from nodes in layer fi to layer fi+1.

The nodes in G correspond to feature values, and edges in G correspond to rows in tables.
There is one vertex v in layer fi for each value that appears in column fi in table Ti−1 or
Ti, and one edge pointing from u in layer fi to v in layer fi+1, if (u, v) is a row in table Ti.
Then, there is a one-to-one correspondence between full paths in G (paths from layer f1 to
layer fd) and rows in the design matrix.

A Relational Implementation of 1-means++. Implementing the 1-means++ algorithm
is equivalent to generating a full path uniformly at random from G. We generate this path
by iteratively picking a row from table T1, . . . , Tm, corresponding to picking an arc pointing
from layer f1 to f2, f2 to f3, ..., such that concatenating all picked rows (arcs) will give a
point in J (full path in G).

To sample a row from T1, for every row r ∈ T1, consider r ⋊⋉ J , which is all rows in J

whose values in columns (f1, f2) are equivalent to r. Let the function F1(r) denote the total
number of rows in r ⋊⋉ J . This is also the number of full paths passing arc r. Then, every
r ∈ T1 is sampled with probability F1(r)∑

r′∈T1
F1(r′) , notice

∑
r′∈T1

F1(r′) is the total number of

full paths. Let the picked row be r1.
After sampling r1, we can conceptually throw away all other rows in T1 and focus only on

the rows in J that uses r1 to concatenate with rows from other tables (i.e., r1 ⋊⋉ J). For any
row r ∈ T2, let the function F2(r) denote the number of rows in r ⋊⋉ r1 ⋊⋉ J , also equivalent
to the total number of full paths passing arc r1 and r. We sample every r with probability
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F2(r)∑
r′∈T2

F2(r′) . Notice that
∑

r′∈T2
F2(r′) = F1(r1), the number of full paths passing arc r1.

Repeat this procedure until we have sampled a row in the last table Tm: for table Ti and
r ∈ Ti, assuming we have sampled r1, . . . , ri−1 from T1, . . . , Ti−1 respectively, throw away all
the other rows in previous tables and focus on r1 ⋊⋉ . . . ⋊⋉ ri−1 ⋊⋉ J . Fi(r) is the number of
rows in r ⋊⋉ r1 ⋊⋉ . . . ⋊⋉ ri−1 ⋊⋉ J and r is sampled with probability proportional to Fi(r). It
is easy to verify that every full path is sampled uniformly.

For every table Ti we need to find the function Fi(·) which is defined on all its rows.
There are m such functions. For each Fi(·), we can find all Fi(r) values for r ∈ Ti using a
one-pass dynamic programming and then sample according to the values. Repeating this
procedure m rounds completes the sampling process. This gives a polynomial time algorithm.

A Relational Implementation for 2-means++. Assume x = (x1, . . . , xd) is the first center
sampled and now we want to sample the second center. By k-means++ principles, any row
r ∈ J is sampled with probability ∥r−x∥2∑

r′∈J
∥r′−x∥2 . For a full path in G corresponding to a

row r ∈ J we refer to ∥r − x∥2 as the aggregated cost over all d nodes/features.
Similar to 1-means++, we pick one row in each table from T1 to Tm and putting all the

rows together gives us the sampled point. Assume we have sampled the rows r1, r2, . . . , ri−1
from the first i − 1 tables and we focus on all full paths passing r1, . . . , ri−1 (i.e., the new
design matrix r1 ⋊⋉ . . . ⋊⋉ ri−1 ⋊⋉ J). In 1-means++, we compute Fi(r) which is the total
number of full paths passing arc r1, . . . , ri−1, r (i.e., r ⋊⋉ r1 ⋊⋉ . . . ⋊⋉ ri−1 ⋊⋉ J .) and sample
r ∈ Ti from a distribution normalized using Fi(r) values. In 2-means++, we define Fi(r) to
be the summation of aggregated costs over all full paths which pass arcs r1, . . . , ri−1, r. We
sample r ∈ Ti from a distribution normalized using Fi(r) values.

It is easy to verify the correctness. Again, each Fi(·) could be computed using a one-pass
dynamic programming which gives the values for all rows in Ti when we sample from Ti. This
would involve m rounds of such computations and give a polynomial relational algorithm.

2.1 Hardness of Relationally Computing the Weights
Here we prove Theorem 2. We first show that given a set of centers, counting the number of
points in J that is closest to any of them is #P -hard. We prove #P -Hardness by a reduction
from the well known #P -hard Knapsack Counting problem. The input to the Knapsack
Counting problem consists of a set W = {w1, . . . , wh} of nonnegative integer weights, and a
nonnegative integer L. The output is the number of subsets of W with aggregate weight at
most L. To construct the relational instance, for each i ∈ [h], we define the tables T2i−1 and
T2i as follows:

T2i−1
f2i−1 f2i

0 0
0 wi

T2i

f2i f2i+1
0 0
wi 0

Let centers c1 and c2 be arbitrary points such that points closer to c1 than c2 are those
points p for which

∑d
i=1 pi ≤ L. Then there are 2h rows in J , since wi can either be selected

or not selected in feature 2i. The weight of c1 is the number of points in J closer to c1 than
c2, which is in turn exactly the number of subsets of W with total weight at most L.

Now we prove the second part of Theorem 2: given an acyclic database and a set of
centers c1, . . . , ck, it is NP-Hard to approximate the number of points assigned to each center
when k ≥ 3. We prove it by reduction from Subset Sum. In Subset Sum problem, the input
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is a set of integers A = w1, . . . , wm and an integer L, the output is true if there is a subset
of A such that its summation is L. We create the following acyclic schema. There are m

tables. Each table Ti has a single unique column xi with two rows wi, 0. Then the join of
the tables has 2m rows, and it is a cross product of the rows in different tables in which each
row represents one subset of A.

Then consider the following three centers: c1 = ( L−1
m , L−1

m , . . . , L−1
m ), c2 = ( L

m , . . . , L
m ),

and c1 = ( L+1
m , L+1

m , . . . , L+1
m ). The Voronoi diagram that separates the points assigned to

each of these centers consists of two parallel hyperplanes:
∑

i xi = L−1/2 and
∑

i xi = L+1/2
where the points between the two hyperplanes are the points assigned to c2. Since all the
points in the design matrix have integer coordinates, the only points that are between these
two hyperplanes are those points for which

∑
i xi = L. Therefore, the approximation for the

number of points assigned to c2 is non-zero if and only if the answer to Subset Sum is True.

3 Related Work and Background

Related Work on K-means. Constant approximations are known for the k-means problem
in the standard computational setting [20, 18]. Although the most commonly used algorithm
in practice is a local search algorithm called Lloyd’s algorithm, or sometimes confusingly
just called “the k-means algorithm”. The k-means++ algorithm from [9] is a Θ(log k)
approximation algorithm, and is commonly used in practice to seed Lloyd’s algorithm. Some
coreset construction methods have been used before to design algorithms for the k-means
problem in other restricted access computational models, including steaming [17, 12], and
the MPC model [16, 11], as well as speeding up sequential methods [21, 25].

Relational Algorithms for Learning Problem. Training different machine learning models
on relational data has been studied; however, many of the proposed algorithms are not
efficient under our definition of a relational algorithm. It has been shown that using
repeated patterns in the design matrix, linear regression, and factorization machines can be
implemented [23] more efficiently. [19, 24, 5] has improved the relational linear regression
and factorization machines for different scenarios. A unified relational algorithm for problems
such as linear regression, singular value decomposition and factorization machines proposed
in [6]. Algorithms for training support vector machine is studied in [26, 4]. In [14], a relational
algorithm is introduced for Independent Gaussian Mixture Models, and they have shown
experimentally that this method will be faster than materializing the design matrix.

Relational Algorithm Building Blocks. In the path join scenario, the 1- and 2-means++
sampling methods introduced in subsection 2 have similar procedures: starting with the first
table T1, iteratively evaluate some general function Fi(·) defined on all rows in the table Ti,
sample one row ri according to the distribution normalized from Fi(·). The function Fi(·)
for table Ti is defined on the matrix r1 ⋊⋉ . . . ⋊⋉ ri−1 ⋊⋉ J where J is the design matrix. This
matrix is also the design matrix of a new relational database, constructed by throwing away
all rows in previous tables apart from the sampled r1, . . . , ri−1.

We can generalize the computation of Fi(·) functions into a broader class of queries
that we know could be implemented efficiently on any acyclic relational databases, namely
SumProd queries. See [7] for more details. In the following lemmas assume the relational
database has tables T1, . . . , Tm and their design matrix is J , let n be the maximum number
of rows in each table Ti, m be the number of tables and d be the number of columns in J .
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▶ Definition 3. For the jth feature (j ∈ [d]) let qj : R → S be an efficiently computable
function that maps feature values to some set S. Let the binary operations ⊕ and ⊗ be any
operators such that (S, ⊕, ⊗) forms a commutative semiring. The value of

⊕
x∈J

⊗
j∈[d] qj(xj)

is a SumProd query.
▶ Lemma 4 ([7]). Any SumProd query can be computed efficiently in time O(md2nfhtw log(n))
where fhtw is the fractional hypertree width of the database. For acyclic databases fhtw=1 so
the running time is polynomial.

Despite the cumbersome formal definition of SumProd queries, below we list their key
applications used in this paper. With a little abuse of notation, throughout this paper we
use Ψ(n, d, m) to denote the worst-case time bound on any SumProd queries.
▶ Lemma 5. Given a point y ∈ Rd and a hyper-rectangle b = {x ∈ Rd : vi ≤ xi ≤ wi, i =
1, . . . , d} where v and w are constant vectors, we let J ∩ b denote the data points represented
by rows of J that also fall into b. Pick any table Tj. Using one single SumProd query we
can compute for all r ∈ Tj the value

∑
p∈r⋊⋉J∩b ∥p − y∥2

2. The time required is at most that
required by one SumProd query, Ψ(n, d, m),

Lemma 5 is intuitively based on the fact that we can efficiently represent all points in
J ∪ b by a new relational database, which is constructed by removing some entries in each
table from the original database. The following lemma follows by an application of the main
result in [3].
▶ Lemma 6 ([3]). Given a hypersphere {x ∈ Rd : ∥x − y0∥2 ≤ z2

0} where y0 is a given point
and z0 is the radius, a (1 + ϵ)-approximation of the number of points in J that lie inside this
hypersphere could be computed in O

(
m6 log4 n

ϵ2 Ψ(n, d, m)
)

time.

Notice that a SumProd query could be used to output either a scalar (similar to Lemma 6)
or a vector whose entries are function values for every row r in a chosen table Tj (in Lemma 5).
We say the SumProd query is grouped by Tj in the latter case.

4 The k-means++ Algorithm

In this section, we describe a relational implementation of the k-means++ algorithm. It is
sufficient to explain how center ci is picked given the previous centers c1, . . . , ci−1. Recall
that the k-means++ algorithm picks a point x to be ci with probability P (x) = L(x)

Y where
L(x) = minj∈[i−1] ∥x − cj∥2

2 and Y =
∑

x∈J L(x) is a normalizing constant.
The implementation consists of two parts. The first part, described in Section 4.1, shows

how to partition the d-dimensional Euclidean space into a laminar set of hyper-rectangles
(referred to as boxes hereafter) that are generated around the previous centers. The second
part, described in Section 4.2, samples according to the “hard” distribution P using rejection
sampling and an “easy” distribution Q.

Conceptually, we assign every point in the design matrix J to an approximately nearest
center among c1, . . . , ci−1. This is done by assigning every point in J to one of the centers
contained in the smallest box this point belongs to. Then Q is derived using the squared
distance between the points in J and their assigned centers.

4.1 Box Construction
Here we explain the algorithm for constructing a set of laminar boxes given the centers
sampled previously. The construction is completely combinatorial. It only uses the given
centers and we don’t need any relational operation for the construction.
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Algorithm Description. Assume we want to sample the ith point in k-means++. The
algorithm maintains two collections Gi and Bi of tuples. Each tuple consists of a box and a
point in that box, called the representative of the box. This point is one of the previously
sampled centers. One can think of the tuples in Gi as “active” ones that are subject to
changes and those in Bi as “frozen” ones that are finalized, thus removed from Gi and added
to Bi. When the algorithm terminates, Gi will be empty, and the boxes in Bi will be a
laminar collection of boxes that we use to define the “easy” probability distribution Q.

The initial tuples in Gi consist of one unit hyper-cube (side length is 1) centered at each
previous center cj , j ∈ [i − 1], with its representative point cj . Up to scaling of initial unit
hyper-cubes, we can assume that initially no pair of boxes in Gi intersect. This property of Gi

is maintained throughout the process. Initially Bi is empty. Over time, the implementation
keeps growing the boxes in Gi in size and moves tuples from Gi to Bi.

The algorithm repeats the following steps in rounds. At the beginning of each round,
there is no intersection between any two boxes in Gi. The algorithm performs a doubling step
where it doubles every box in Gi. Doubling a box means each of its d − 1 dimensional face is
moved twice as far away from its representative. Mathematically, a box whose representative
point is y ∈ Rd may be written as {x ∈ Rd : yi − vi ≤ xi ≤ yi + wi, i = 1, . . . , d} (vi, wi > 0).
This box becomes {x ∈ Rd : yi − 2vi ≤ xi ≤ yi + 2wi, i = 1, . . . , d} after doubling.

After doubling, the algorithm performs the following operations on intersecting boxes
until there are none. The algorithm iteratively picks two arbitrary intersecting boxes from
Gi. Say the boxes are b1 with representative y1 and b2 with representative y2. The algorithm
executes a melding step on (b1, y1) and (b2, y2), which has the following procedures:

Compute the smallest box b3 in the Euclidean space that contains both b1 and b2.
Add (b3, y1) to Gi and delete (b1, y1) and (b2, y2) from Gi.
Check if b1 (or b2) is a box created by the doubling step at the beginning of the current
round and hasn’t been melded with other boxes ever since. If so, the algorithm computes
a box b′

1 (resp. b′
2) from b1 (resp. b2) by halving it. That is, each d − 1 dimensional

face is moved so that its distance to the box’s representative is halved. Mathematically,
a box {x ∈ Rd : yi − vi ≤ xi ≤ yi + wi, i = 1, . . . , d} (vi, wi > 0), where vector y is its
representative, becomes {x ∈ Rd : yi − 1

2 vi ≤ xi ≤ yi + 1
2 wi, i = 1, . . . , d} after halving.

Then (b′
1, y1) (or (b′

2, y2)) is added to Bi. Otherwise do nothing.
Notice that melding decreases the size of Gi.

The algorithm terminates when there is one tuple (b0, y0) left in Gi, at which point the
algorithm adds a box that contains the whole space with representative y0 to Bi. Note that
during each round of the doubling and melding, the boxes which are added to Bi are the
ones that after doubling were melded with other boxes, and they are added at their shapes
before the doubling step.

▶ Lemma 7. The collection of boxes in Bi constructed by the above algorithm is laminar.

Proof. Note that right before each doubling step, the boxes in Gi are disjoint and that is
because the algorithm in the previous iteration melds all the boxes that have intersection
with each other. We prove by induction that at all time, for every box b in Bi there exist a
box b′ in Gi such that b ⊆ b′. Since the boxes added to Bi in each iteration are a subset of
the boxes in Gi before the doubling step and they do not intersect each other, laminarity of
Bi is a straight-forward consequence.

Initially Bi is empty and therefore the claim holds. Assume in some arbitrary iteration
ℓ this claim holds right before the doubling step, then after the doubling step since every
box in Gi still covers all of the area it was covering before getting doubled, the claim holds.
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Furthermore, in the melding step every box b3 that is resulted from melding of two boxes b1
and b2 covers both b1 and b2; therefore, b3 will cover b1 and b2 if they are added to Bi, and
if a box in Bi was covered by either of b1 or b2, it will be still covered by b3. ◀

The collection of boxes in Bi can be thought of as a tree where every node corresponds
to a box. The root node is the entire space. In this tree, for any box b′, among all boxes
included by b′, we pick the inclusion-wise maximal boxes and let them be the children of b′.
Thus the number of boxes in Bi is O(i) since the tree has i leaves, one for each center.

4.2 Sampling
To define our easy distribution Q, for any point x ∈ J , let b(x) be the minimal box in
Bi that contains x and y(x) be the representative of b(x). Define R(x) = ∥x − y(x)∥2

2,
and Q(x) = R(X)

Z where Z =
∑

x∈J R(x) normalizes the distribution. We call R(x) the
assignment cost for x. We will show how to sample from target distribution P (·) using Q(·)
and rejection sampling, and how to implement the this designed sampling step relationally.

Rejection Sampling. The algorithm repeatedly samples a point x with probability Q(x),
then either (A) rejects x and resamples, or (B) accepts x as the next center ci and finishes the
sampling process. After sampling x, the probability of accepting x is L(x)

R(x) , and that of rejecting
x is 1 − L(x)

R(x) . Notice that here L(x)
R(x) ≤ 1 since R(x) = ∥x − y(x)∥2

2 ≥ minj∈[i−1] ∥x − cj∥2
2.

If S(x) is the the event of initially sampling x from distribution Q, and A(x) is the event
of subsequently accepting x, the probability of choosing x to be ci in one given round is:

Pr[S(x) and A(x)] = Pr[A(x) | S(x)] Pr[S(x)] = L(x)
R(x)Q(x) = L(x)

Z

Thus the probability of x being the accepted sample is proportional to L(x), as desired.
We would like Q(·) to be close to P (·) point-wise so that the algorithm is efficient.

Otherwise, the acceptance probability L(x)
R(x) is low and it might keep rejecting samples.

Relational Implementation of Sampling. We now explain how to relationally sample a
point x with probability Q(x). The implementation heavily leverages Lemma 5, which states
for given box b∗ with representative y∗, the cost of assigning all points in r ⋊⋉ J ∩ b∗ to y∗ for
each row r ∈ Ti can be computed in polynomial time using a SumProd query grouped by Ti.
Recall that we assign all points in J to the representative of the smallest box they belong to.
We show that the total assignment cost is computed by evaluating SumProd queries on the
boxes and then adding/subtracting the query values for different boxes.

Following the intuition provided in Section 2, the implementation generates a single row
from table T1, T2, . . . , Tm sequentially. The concatenation of these rows (or the join of them)
gives the sampled point x. It is sufficient to explain assuming we have sampled r1, . . . , rℓ−1
from the first ℓ − 1 tables, how to implement the generation of a row from the next table Tℓ.
Just like 1- and 2-means++ in subsection 2, the algorithm evaluates a function Fℓ(·) defined
on rows in Tℓ using SumProd queries, and samples r with probability Fℓ(r)∑

r′∈Tℓ
Fℓ(r′) . Again,

we focus on r1 ⋊⋉ . . . ⋊⋉ rℓ−1 ⋊⋉ J , denoting the points in J that uses the previously sampled
rows. The value of Fℓ(r) is determined by points in r ⋊⋉ r1 ⋊⋉ . . . ⋊⋉ rℓ−1 ⋊⋉ J .

To ensure we generate a row according to the correct distribution Q, we define the function
Fℓ(·) as follows. Let Fℓ(r) be the total assignment cost of all points in r ⋊⋉ r1 ⋊⋉ . . . ⋊⋉ rℓ−1 ⋊⋉ J .
That is, Fℓ(r) =

∑
x∈r⋊⋉r1⋊⋉...⋊⋉rℓ−1⋊⋉J R(x). Notice that the definition of function Fℓ(·) is

very similar to 2-means++ apart from that each point is no longer assigned to a given center,
but the representative of the smallest box containing it.
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Let G(r, b∗, y∗) denote the cost of assigning all points from r ⋊⋉ r1 ⋊⋉ . . . ⋊⋉ rℓ−1 ⋊⋉ J that
lies in box b∗ to a center y∗. By replacing the J in Lemma 5 by r1 ⋊⋉ . . . ⋊⋉ rℓ−1 ⋊⋉ J , we can
compute all G(r, b∗, y∗) values in polynomial time using one SumProd query grouped by Tℓ.
The value Fℓ(r) can be expanded into subtraction and addition of G(r, b∗, y∗) terms. The
expansion is recursive. For a box b0, let H(r, b0) =

∑
x∈r⋊⋉r1⋊⋉...⋊⋉rℓ−1⋊⋉J∩b0

R(x). Notice that
Fℓ(r) = H(r, b0) if b0 is the entire Euclidean space. Pick any row r ∈ Tℓ. Assume we want
to compute H(r, b0) for some tuple (b0, y0) ∈ Bi.

Recall that the set of boxes in Bi forms a tree structure. If b0 has no children this is
the base case - H(r, b0) = G(r, b0, y0) by definition since all points in b0 must be assigned to
y0. Otherwise, let (b1, y1), . . . , (bq, yq) be the tuples in Bi where b1, . . . , bq are children of b0.
Notice that, by definition all points in b0 \ (

⋃
j∈[q] bj) is assigned to y0. Then, one can check

that the following equation holds for any r:

H(r, b0) = G(r, b0, y0) −
∑
j∈[q]

G(r, bj , y0) +
∑
j∈[q]

H(r, bj)

Starting with setting b0 as the entire Euclidean space, the equation above could be used
to recursively expand H(·, b0) = Fℓ(·) into addition and subtraction of O(|Bi|) number of
G(·, ·, ·) terms, where each term could be computed with one SumProd query by Lemma 5.

Runtime Analysis of the Sampling. We now discuss the running time of the sampling
algorithm simulating k-means++. These lemmas show how close the probability distribution
we compute is as compared to the k-means++ distribution. This will help bound the running
time.

▶ Lemma 8. Consider the box construction algorithm when sampling the ith point in the
k-means++ simulation. Consider the end of the jth round where all melding is finished but
the boxes have not been doubled yet. Let b be an arbitrary box in Gi and h(b) be the number
of centers in b at this time. Let ca be an arbitrary one of these h(b) centers. Then:
A. The distance from ca to any d − 1 dimensional face of b is at least 2j.
B. The length of each side of b is at most h(b) · 2j+1.

Proof. The first statement is a direct consequence of the definition of doubling and melding
since at any point of time the distance of all the centers in a box is at least 2j . To prove
the second statement, we define the assignment of the centers to the boxes as following.
Consider the centers inside each box b right before the doubling step. We call these centers,
the centers assigned to b and denote the number of them by h′(b). When two boxes b1 and
b2 are melding into box b3, we assign their assigned centers to b3.

We prove each side length of b is at most h′(b)2j+1 by induction on the number j of
executed doubling steps. Since h′(b) = h(b) right before each doubling, this will prove the
second statement. The statement is obvious in the base case, j = 0. The statement also
obviously holds by induction after a doubling step as j is incremented and the side lengths
double and the number of assigned boxes don’t change. It also holds during every meld step
because each side length of the newly created larger box is at most the aggregate maximum
side lengths of the smaller boxes that are moved to Bi, and the number of assigned centers
in the newly created larger box is the aggregate of the assigned centers in the two smaller
boxes that are moved to Bi. Note that since for any box b all the assigned centers to b are
inside b at all times, h′(b) is the number of centers inside b before the next doubling. ◀

This lemma bounds the difference of the two probability distributions.
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▶ Lemma 9. Consider the box generation algorithm when sampling the ith point in the
k-means++ simulation. For all points x, R(x) ≤ O(i2d) · L(x).

Proof. Consider an arbitrary point x. Let cℓ, ℓ ∈ [i − 1], be the center that is closest to x

under the 2-norm distance. Assume j is minimal such that just before the (j + 1)-th doubling
round, x is contained in a box b in Gi. We argue about the state of the algorithm at two
times, the time s just before doubling round j and the time t just before doubling round j +1.
Let b be a minimal box in Gi that contains x at time t, and let y be the representative for
box b. Notice that we assign x to the representative of the smallest box in Bi that contains
it, so x will be assigned to y. Indeed, none of the boxes added into Bi before time t contains
x by the minimality of j, and when box b gets added into Bi (potentially after a few more
doubling rounds) it still has the same representative y. By Lemma 8 the squared distance
from from x to r is at most (i − 1)2d22j+2. So it is sufficient to show that the squared
distance from x to cℓ is Ω(2j).

Let b′ be the box in Gi that contains cℓ at time s. Note that x could not have been inside
b′ at time s by the definition of t and s. Then by Lemma 8 the distance from cℓ to the edge
of b′ at time t is at least 22j−2, and hence the distance from cℓ to x is also at least 22j−2 as
x is outside of b′. ◀

The following theorem bounds the running time.

▶ Theorem 10. The expected time complexity for running k′ iterations of this implementation
of k-means++ is O(k′4dmΨ(n, d, m)).

Proof. When picking center ci, a point x can be sampled with probability Q(x) in time
O(miΨ(n, m, d)). This is because the implementation samples one row from each of the m

tables. To sample one row we evaluate O(|Bi|) SumProd queries, each in O(Ψ(n, m, d)) time.
As mentioned earlier Bi can be thought of as a tree of boxes with i − 1 leaves, so |Bi| = O(i).

By Lemma 9, the probability of accepting any sampled x is L(x)
R(x) = 1

O(i2d) . The expected
number of sampling from Q until getting accepted is O(i2d). Thus the expected time of
finding ci is O(i3dmΨ(n, m, d)). Summing over i ∈ [k′], we get O(k′4dmΨ(n, m, d)). ◀

5 Weighting the Centers

Our algorithm samples a collection C of k′ = Θ(k log N) centers using the k-means++
sampling described in the prior section. We give weights to the centers to get a coreset.

Ideally, we would compute the weights in the standard way. That is, let wi denote the
number of points that are closest to point ci among all centers in C. These pairs of centers
and weights (ci, wi) are known to form a coreset. Unfortunately, as stated in Theorem 2,
computing such wi’s even approximately is NP hard. Instead, we will find a different set of
weights which still form a coreset and are computable.

Next we describe a relational algorithm to compute a collection W ′ of weights, one weight
w′

i ∈ W ′ for each center ci ∈ C. The proof that the centers with these alternative weights
(ci, w′

i) also form a coreset is postponed until Section 6.

Algorithm for Computing Alternative Weights. Initialize the weight w′
i for each center

ci ∈ C to zero. In the d-dimensional Euclidean space, for each center ci ∈ C, we generate a
collection of hyperspheres (also named balls) {Bi,j}j∈[lg N ], where Bi,j contains approximately
2j points from J . The space is then partitioned into {Bi,0, Bi,1 − Bi,0, Bi,2 − Bi,1, . . .}. For
each partition, we will sample a small number of points and use this sample to estimate
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the number of points in this partition that are closer to ci than any other centers, and thus
aggregating w′

i by adding up the numbers. Fix small constants ϵ, δ > 0. The following steps
are repeated for j ∈ [lg N ]:

Let Bi,j be a ball of radius ri,j centered at ci. Find a ri,j such that the number of points
in J ∩ Bi,j lies in the range [(1 − δ)2j , (1 + δ)2j ]. This is an application of Lemma 6.
Let τ be a constant that is at least 30. A collection Ti,j of τ

ϵ2 k′2 log2 N “test” points are
independently sampled following the same approximately uniform distribution with
replacement from every ball Bi,j . Here an “approximately uniform” distribution means
one where every point p in Bi,j is sampled with a probability γp,i,j ∈ [(1 − δ)/|Bi,j |, (1 +
δ)/|Bi,j |] on each draw. This can be accomplished efficiently similar to the techniques
used in Lemma 6 from [3]. We leave out the details due to space limit.
Among all sampled points Ti,j , find Si,j , the set of points that lie in the “donut”
Di,j = Bi,j − Bi,j−1. Then the cardinality si,j = |Si,j | is computed.
Find ti,j , the number of points in Si,j that are closer to ci than any other center in C.
Compute the ratio f ′

i,j = ti,j

si,j
(if si,j = ti,j = 0 then f ′

i,j = 0).
If f ′

i,j ≥ 1
2k′2 log N

then w′
i is incremented by f ′

i,j · 2j−1, else w′
i stays the same.

At first glance the algorithm appears naive: w′
i can be significantly underestimated if in

some donuts only a small portion of points are closest to ci, making the estimation inaccurate
based on sampling. However, we prove the following theorem which shows that the alternative
weights computed by our algorithm actually form a coreset.

▶ Theorem 11. The centers C, along with the computed weights W ′, form an O(1)-
approximate coreset with high probability.

The running time of a naive implementation of this algorithm would be dominated by
sampling of the test points. Sampling a single test point can be accomplished with m

applications of the algorithm from [3] and setting the approximation error to δ = ϵ/m.
Recall the running time of the algorithm from [3] is O

(
m6 log4 n

δ2 Ψ(n, d, m)
)

. Thus, the time

to sample all test points is O
(

k′2m9 log6 n
ϵ4 Ψ(n, d, m)

)
. Substituting for k′, and noting that

N ≤ nm, we obtain a total time for a naive implementation of O
(

k2m11 log8 n
ϵ4 Ψ(n, d, m)

)
.

6 Analysis of the Weighting Algorithm

The goal in this subsection is to prove Theorem 11 which states that the alternative weights
form an O(1)-approximate coreset with high probability. Throughout our analysis, “with
high probability” means that for any constant ρ > 0 the probability of the statement not
being true can be made less than 1

Nρ asymptotically by appropriately setting the constants
in the algorithm.

Intuitively, if a decent fraction of the points in each donut are closer to center ci than
any other center, then Theorem 11 can be proven by using a straight-forward application
of Chernoff bounds to show that each alternate weight w′

i is likely close to the true weight
wi. The conceptual difficultly is if only a very small portion of points in a donut Di,j are
closer to ci than any other points, in which case the estimated f ′

i,j < 1
2k′2 log N

and thus
the “uncounted” points in Di,j would contribute no weight to the computed weight w′

i. We
call this the undersampled case. If many donuts around a center i are undersampled, the
computed weight w′

i may well poorly approximate the actual weight wi.
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To address this, we need to prove that omitting the weight from these uncounted points
does not have a significant impact on the objective value. We break our proof into four parts.
The first part, described in subsubsection 6.1, involves conceptually defining a fractional
weight wf

i for each center ci ∈ C. Each point has a weight of 1, and instead of giving
all this weight to its closest center, we allow fractionally assigning the weight to various
“near” centers. wf

i is then the aggregated weight over all points for ci. The second part,
described in subsubsection 6.2, establishes various properties of the fractional weight that
we will need. The third part, described in subsubsection 6.3, shows that each fractional
weight wf

i is likely to be closely approximated the computed weight w′
i. The fourth part,

described in subsubsection 6.4, shows that the fractional weights of the centers in C form a
O(1)-approximate coreset. Subsubsection 6.4 also contains the proof of Theorem 11.

6.1 Defining the Fractional Weights
To define the fractional weights we first define an auxiliary directed acyclic graph G = (S, E)
where there is one node in S corresponding to each row in J . For the rest of this section,
with a little abuse of notation, we use S to denote both the nodes in graph G, and the set of
d-dimensional data points in the design matrix. Let p be an arbitrary point in S − C. Let
α(p) denote the subscript of the center closest to p, i.e., if ci ∈ C is closest to p then α(p) = i.
Let Di,j be the donut around ci that contains p. If Di,j is not undersampled then p will have
one outgoing edge (p, ci). Therefore, let us now assume that Di,j is undersampled. Defining
the outgoing edges from p in this case is a bit more complicated.

Let Ai,j be the points q ∈ Di,j that are closer to ci than any other center in C (i.e.,
α(q) = i). If j = 1 then Di,1 contains only the point p, and the only outgoing edge from p goes
to ci. Therefore, let us now assume j > 1. Let ch the center that is closest to the most points in
Di,j−1, the next donut in toward ci from Di,j . That is ch = arg maxcj∈C

∑
q∈Di,j−1

1α(q)=cj
.

Let Mi,j−1 be points in Di,j−1 that are closer to ch than any other center. That is, Mi,j−1
is the collection of q ∈ Di,j−1 such that α(q) = h. Then there is a directed edge from p to
each point in Mi,j−1. Before defining how to derive the fractional weights from G, let us
take a detour to note that G is acyclic.

▶ Lemma 12. G is acyclic.

Proof. Consider a directed edge (p, q) ∈ E, and ci be the center in C that p is closest to,
and Di,j the donut around ci that contains p. Then, since p ∈ Di,j it must be the case
that ∥p − ci∥2

2 > ri,j−1. Since q ∈ Bi,j−1 it must be the case that ∥q − ci∥2
2 ≤ ri,j−1. Thus

∥p − ci∥2
2 > ∥q − ci∥2

2. Thus, the closest center to q must be closer to q than the closest
center to p is to p. Thus as one travels along a directed path in G, although identify of the
closest center can change, the distance to the closest center must be monotonically decreasing.
Thus, G must be acyclic. ◀

We explain how to compute a fractional weight wf
p for each point p ∈ S using the network

G. Initially, each wf
p is set to 1. Then conceptually these weights flow toward the sinks in G,

splitting evenly over all outgoing edges at each vertex. More formally, the following flow step
is repeated until is no longer possible to do so:

Flow Step. Let p ∈ S be an arbitrary point that currently has positive fractional weight
and that has positive outdegree h in G. Then for each directed edge (p, q) in G increment
wf

q by wf
p /h. Finally, set wf

p to zero.
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As the sinks in G are exactly the centers in C, the centers in C will be the only points that
end up with positive fractional weight. Thus, we use wf

i to refer to the resulting fractional
weight on center ci ∈ C.

6.2 Properties of the Fractional Weights
Let fi,j be the fraction of points that are closest to ci among all centers in C in this donut
Di,j = Bi,j − Bi,j−1. We show in Lemma 13 and 14 that with high probability, either the
estimated ratio is a good approximation of fi,j , or the real ratio fi,j is very small.

We show in Lemma 16 that the maximum flow through any node is bounded by 1+ϵ when
N is big enough. This follows by induction because each point has Ω(k′ log N) neighbors
and every point can have in degree from one set of nodes per center. We further know every
point that is not uncounted actually contributes to their centers’ weight.

▶ Lemma 13. With high probability, either |fi,j − f ′
i,j | ≤ ϵfi,j or f ′

i,j ≤ 1
2k′2 log N

.

▶ Lemma 14. If fi,j > 1+ϵ
2k′2 log N then with high probability f ′

i,j ≥ 1
2k′2 log N .

The proofs of Lemmas 13 and 14 are omitted; see [22] for the full version of this work.
We now seek to bound the fractional weights computed by the algorithm. Let ∆i(p)

denote the total weight received by a point p ∈ S \ C from other nodes (including the initial
weight one on p). Furthermore, let ∆o(p) denote the total weight sent by p to all other nodes.
Notice that in the flow step ∆o(p) = ∆i(p) for all p in S \ C.

▶ Lemma 15. Let ∆i(p) denote the total weight received by a point p ∈ S \C from other nodes
(including the initial weight one on p). Furthermore, let ∆o(p) denote the total weight sent by
p to all other nodes. With high probability, for all q ∈ S, ∆i(q) ≤ 1+ 1+2ϵ

log N maxp:(p,q)∈E ∆o(p).

Proof. Fix the point q that redirects its weight (has outgoing arcs in G). Consider its direct
predecessors: P (q) = {p : (p, q) ∈ E}. Partition P (q) as follows: P (q) =

⋃
i=1,...,k′ Pci

(q),
where Pci

(q) is the set of points that have flowed their weights into q, but ci is actually their
closest center in C. Observe the following. The point q can only belong to one donut around
ci. Due to this, Pci

(q) is either empty or contains a set of points in a single donut around ci

that redirect weight to q.
Fix Pci

(q) for some ci. If this set is non-empty suppose this set is in the j-th donut
around ci. Conditioned on the events stated in Lemma 13 and 14, since the points in Pci(q)
are undersampled, we have |Pci

(q)| ≤ (1+ϵ)2j−1

2k′2 log N
. Consider any p ∈ Pci

(q). Let βi be the
number of points that p charges its weight to (this is the same for all such points p). It is
the case that βi is at least (1−δ)2j−1

2k′ since p flows its weights to the points that are assigned
to the center that has the most number of points assigned to it from ci’s (j − 1)th donut.

Thus, q receives weight from |Pci
(q)| ≤ (1+ϵ)2j−1

2k′2 log N
points and each such point gives its

weight to at least (1−δ)2j−1

2k′ points with equal split. The total weight that q receives from
points in Pci

(q) is at most the following.

2k′

(1 − δ)2j−1

∑
p∈Pci

(q)

∆o(p)

≤ 2k′

(1 − δ)2j−1

∑
p∈Pci

(q)

max
p∈Pci

(q)
∆o(p)
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≤ 2k′

(1 − δ)2j−1 · (1 + ϵ) · 2j−1

2k′2 log N
max

p∈Pci
(q)

∆o(p) [|Pci(q)| ≤ (1+2ϵ)2j−1

2k′2 log N
]

≤ 1 + 2ϵ

k′ log N
max

p∈Pci
(q)

∆o(p) [δ ≤ ϵ
2 ≤ 1

10 ]

Switching the max to maxp:(p,q)∈E ∆o(p), summing over all centers ci ∈ C and adding
the original unit weight on q gives the lemma. ◀

The following crucial lemma bounds the maximum weight that a point can receive.

▶ Lemma 16. Fix η to be a constant smaller than log(N)
10 and ϵ < 1. Say that for all q ∈ S \C

it is the case that ∆o(q) = η∆i(q). Then, with high probability for any p ∈ S \ C it is the
case that ∆i(p) ≤ 1 + 2η

log N .

Proof. We can easily prove this by induction on nodes. The lemma is true for all nodes
that have no incoming edges in G. Now assume it is true for all nodes whose longest path
that reaches them in G has length t − 1. Now we prove it for nodes whose longest path
that reaches then in G is t. Fix such a node q. For any node p such that (p, q) ∈ E, by
induction we have ∆i(p) ≤ 1 + 2η

log N , so ∆o(p) ≤ 2(1 + 2η
log N ). By Lemma 15, ∆i(q) ≤

1 + 1+2ϵ
log N maxp:(p,q)∈E ∆o(p) ≤ 1 +

(
η(1+2ϵ)

log N

) (
1 + 2η

log N

)
= 1 + η

log N + η
log N · 2(1+2ϵ)η+2ϵ

log N ≤
1 + 2η

log N . ◀

6.3 Comparing Alternative Weights to Fractional Weights
It only remains to bound the cost of mapping points to the centers they contribute weight
to. This can be done by iteratively charging the total cost of reassigning each node with
the flow. In particular, each point will only pass its weight to nodes that are closer to their
center. We can charge the flow through each node to the assignment cost of that node to its
closest center, and argue that the cumulative reassignment cost bounds the real fractional
assignment cost. Further, each node only has 1 + ϵ flow going through it. This will be
sufficient to bound the overall cost in Lemma 18.

▶ Lemma 17. With high probability, for every center ci, it is the case that the estimated
weight w′

i computed by the weighting algorithm is (1±2ϵ)wf
i where wf

i is the fractional weight
of i.

The proofs of Lemmas 17 is omitted; see [22] for the full version of this work.

6.4 Comparing Fractional Weights to Optimal
Next, we bound the total cost of the fractional assignment defined by the flow. According
to the graph G, any point p ∈ S and ci ∈ C, we let ω(p, ci) be the fraction of weights that
got transferred from p to ci. Naturally we have

∑
ci∈C ω(p, ci) = 1 for any p ∈ S and the

fractional weights wf
i =

∑
p∈S ω(p, ci) for any ci ∈ C.

▶ Lemma 18. Let ϕopt be the optimal k-means cost on the original set S. With high
probability, it is the case that:∑

p∈S

∑
ci∈C

ω(p, ci)∥p − ci∥2 ≤ 160(1 + ϵ)ϕopt
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Proof. Let ϕ∗ =
∑

p∈S ∥p − cα(p)∥2. Consider any p ∈ S and center ci such that ω(p, ci) > 0.
Let P be any path from p to ci in G. If node p’s only outgoing arc is to its closest center
cα(p) = ci, then P = p → ci, we have

∑
c∈C ω(p, c)∥p − c∥2 = ∥p − cα(p)∥2. Otherwise

assume P = p → q1 → q2 → . . . → qℓ → ci. Note that the closest center to qℓ is ci.
Let ∆(P ) be the fraction of the original weight of 1 on p that is given to ci along this
path according to the flow of weights. As we observed in the proof of Lemma 12, we have
∥p−cα(p)∥ > ∥q1 −cα(p)∥ ≥ ∥q1 −cα(q1)∥ > ∥q2 −cα(q1)∥ ≥ ∥q2 −cα(q2)∥ > . . . > ∥qℓ −cα(qℓ)∥.
This follows because for any arc (u, v) in the graph, v is in a donut closer to cα(u) than the
donut u is in, and v is closer to cα(v) than cα(u).

We use the relaxed triangle inequality for squared ℓ2 norms. For any three points x, y, z,
we have ∥x − z∥2 ≤ 2(∥x − y∥2 + ∥y − z∥2). Thus, we bound ∥p − ci∥2 by

∥p − ci∥2 = ∥p − cα(p) + cα(p) − q1 + q1 − ci∥2

≤ 2∥p − cα(p) + cα(p) − q1∥2 + 2∥q1 − ci∥2 [relaxed triangle inequality]
≤ 2(∥p − cα(p)∥ + ∥cα(p) − q1∥)2 + 2∥q1 − ci∥2 [triangle inequality]
≤ 8∥p − cα(p)∥2 + 2∥q1 − ci∥2 [∥p − cα(p)∥ ≥ ∥cα(p) − q1∥].

Applying the prior steps to each qi gives the following.

∥p − ci∥2 ≤ 8(∥p − cα(p)∥2 +
ℓ∑

j=1
2j∥qj − cα(qj)∥2)

Let Pq(j) be the set of all paths P that reach point q using j edges. If j = 0, it means
P starts with point q. We seek to bound

∑∞
j=0 2j

∑
P ∈Pq(j) ∆(P )∥q − cα(qj)∥2. This will

bound the charge on point q above over all path P that contains it.
Define a weight function ∆′(p) for each node p ∈ S \ C. This will be a new flow of weights

like ∆, except now the weight increases at each node. In particular, give each node initially a
weight of 1. Let ∆′

o(p) be the total weight leaving p. This will be evenly divided among the
nodes that have outgoing edges from p. Define ∆′

i(p) to be the weight incoming to p from all
other nodes plus one, the initial weight of p. Set ∆′

o(p) to be 2∆′
i(p), twice the incoming

weight.
Lemma 16 implies that the maximum weight of any point p is ∆′

i(p) ≤ 1 + 4
log N . Further

notice that for any q it is the case that ∆′
i(q) =

∑∞
j=0 2j

∑
P ∈Pq(j) ∆(P ). Letting P(p, ci) be

the set of all paths that start at p to center ci. Notice such paths correspond to how p’s unit
weight goes to ci. We have ω(p, ci) =

∑
P ∈P(p,ci) ∆(P ). Let P denote the set of all paths,

ℓ(P ) denote the length of path P (number of edges on P ) , and let P (j) denote the jth node
on path P . Thus we have the following.∑

p∈S

∑
ci∈C

ω(p, ci)∥p − ci∥2 =
∑
p∈S

∑
ci∈C

∑
P ∈P(p,ci)

∆(P )∥p − ci∥2

≤ 8
∑
p∈S

∑
ci∈C

∑
P ∈P(p,ci)

∆(P )(
ℓ(p)−1∑

j=0
2j∥P (j) − cα(P (j))∥2)

= 8
∑
P ∈P

∆(P )(
ℓ(p)−1∑

j=0
2j∥P (j) − cα(P (j))∥2)

= 8
∑
q∈S

+∞∑
j=0

∑
P ∈Pq(j)

2j∆(P )∥q − cα(q)∥2 = 8
∑
q∈S

∆′
i(q)∥q − cα(q)∥2

≤
∑
q∈S

8(1 + 4
log N

)∥q − cα(q)∥2 = 8(1 + 4
log N

)ϕ∗



B. Moseley, K. Pruhs, A. Samadian, and Y. Wang 97:19

Lemma 18 follows because if k′ ≥ 1067k log N , ϕ∗ ≤ 20ϕopt with high probability by
Theorem 1 in [8]. ◀

Finally, we prove that finding any O(1)-approximation solution for optimal weighted
k-means on the set (C, W ′) gives a constant approximation for optimal k-means for the
original set S. Let W f = {wf

1 , . . . , wf
k′} be the fractional weights for centers in C. Let ϕ∗

W f

denote the optimal weighted k-means cost on (C, W f ), and ϕ∗
W ′ denote the optimal weighted

k-means cost on (C, W ′). We first prove that ϕ∗
W f = O(1)ϕOPT, where ϕOPT denote the

optimal k-means cost on set S.

▶ Lemma 19. Let (C, W f ) be the set of points sampled and the weights collected by fractional
assignment ω. With high probability, we have ϕ∗

W f = O(1)ϕOPT.

Proof. Consider the cost of the fractional assignment we’ve designed. For ci ∈ C, the weight
is wf

i =
∑

p∈S ω(p, ci). Denote the k-means cost of ω by ϕω =
∑

p∈S

∑
c∈C ω(p, c)∥p − c∥2.

By Lemma 18, we have that ϕω ≤ 160(1 + ϵ)ϕOPT.
Intuitively, in the following we show ϕ∗

W f is close to ϕω. As always, we let COPT denote the
optimal centers for k-means on set S. For a set of points X with weights Y : X → R+ and a
set of centers Z, we let ϕ(X,Y )(Z) =

∑
x∈X Y (x) minz∈Z ∥x−z∥2 denote the cost of assigning

the weighted points in X to their closest centers in Z. Note that ϕ∗
W f ≤ ϕ(C,W f )(COPT)

since COPT is chosen with respect to S.

ϕ∗
W f ≤ ϕ(C,W f )(COPT) =

∑
ci∈C

∑
p∈S

min
c∈COPT

ω(p, ci)∥ci − c∥2 [wf
i =

∑
p∈S ω(p, ci)]

≤
∑
ci∈C

∑
p∈S

min
c∈COPT

ω(p, ci) · 2(∥p − ci∥2 + ∥p − c∥2) [relaxed triangle inequality]

= 2ϕω + 2ϕOPT ≤ 322(1 + ϵ)ϕOPT ◀

Using the mentioned lemmas, we can prove the final approximation guarantee.

Proof of Theorem 11. Using Lemma 17, we know w′
i = (1±2ϵ)wf

i for any center ci. Let C ′
k

be k centers for (C, W ′) that is a γ-approximate for optimal weighted k-means. Let Cf
OPT be

the optimal k centers for (C, W f ), and C ′
OPT optimal for (C, W ′). We have ϕ(C,W f )(C ′

k) ≤
(1 + 2ϵ)ϕ(C,W ′)(C ′

k) for the reason that the contribution of each point grows by at most
(1+2ϵ) due to weight approximation. Using the same analysis, ϕ(C,W ′)(Cf

OPT) ≤ (1+2ϵ)ϕ∗
W f .

Combining the two inequalities, we have

ϕ(C,W f )(C ′
k) ≤ (1 + 2ϵ)2ϕ(C,W ′)(C ′

k) ≤ (1 + 2ϵ)2γϕ∗
W ′

≤ (1 + 2ϵ)2γϕ(C,W ′)(Cf
OPT) [by optimality of ϕ∗

W ′ ]
≤ (1 + 2ϵ)3γϕ∗

W f ≤ 322γ(1 + 2ϵ)4ϕOPT [using Lemma 19]
(1)

Let ϕS(C ′
k) =

∑
p∈S minc∈C′

k
∥p − c∥2. For every point p ∈ S, to bound its cost

minc∈C′
k

∥p − c∥2, we use multiple relaxed triangle inequalities for every center ci ∈ C ,
and take the weighted average of them using ω(p, ci).

ϕS(C′
k) =

∑
p∈S

min
c∈C′

k

∥p − c∥2 =
∑
p∈S

∑
ci∈C

ω(p, ci) min
c∈C′

k

∥p − c∥2 [
∑

ci∈C
ω(p, ci) = 1]

≤
∑
p∈S

∑
ci∈C

ω(p, ci) min
c∈C′

k

2(∥p − ci∥2 + ∥ci − c∥2) [relaxed triangle inequality]

= 2ϕω + 2ϕ(C,W f )(C
′
k) [

∑
p∈S

ω(p, ci) = wf
i ]

≤ 2ϕω + 2 · 322γ(1 + 2ϵ)4ϕOPT [inequality (1)]

≤ 2 · 160(1 + ϵ)ϕOPT + 2 · 322γ(1 + 2ϵ)4ϕOPT [Lemma 18]
= O(γ)ϕOPT ◀
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Abstract
We continue the line of work initiated by Goldreich and Ron (Journal of the ACM, 2017 ) on testing
dynamic environments and propose to pursue a systematic study of the complexity of testing basic
dynamic environments and local rules. As a first step, in this work we focus on dynamic environments
that correspond to elementary cellular automata that evolve according to threshold rules.

Our main result is the identification of a set of conditions on local rules, and a meta-algorithm
that tests evolution according to local rules that satisfy the conditions. The meta-algorithm has
query complexity poly(1/ϵ), is non-adaptive and has one-sided error. We show that all the threshold
rules satisfy the set of conditions, and therefore are poly(1/ϵ)-testable. We believe that this is a rich
area of research and suggest a variety of open problems and natural research directions that may
extend and expand our results.
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1 Introduction

Property testing [12, 5] is the study of algorithms that distinguish between objects that have
a given property and those that are far from having the property, by performing a small
number of queries to the object. Goldreich and Ron [6] initiated the study of testing dynamic
environments, which introduces a temporal aspect to property testing. In this context, the
entity being tested changes with time, and is referred to as an environment.

Starting from some initial configuration (say, a vector or a matrix), the environment
is supposed to evolve according to a prespecified local rule. The rule is local in the sense
that the value associated with each location in the environment at time t is determined by
the values of nearby locations at time t − 1. The goal of the testing algorithm is then to
distinguish between the case that the environment indeed evolves according to the rule, and
the case in which the evolution significantly strays from obeying the rule. To this end, the
algorithm can query the value of any location of the environment at any of the available
time steps, as long as it does not “go back in time”. Namely, the algorithm cannot choose to
query a location at time t after it has queried some location at time t′ > t. We refer to this
as the time-conforming requirement. The aim is to design time-conforming algorithms with
low query complexity.

Goldreich and Ron [6] investigate the complexity landscape of testing dynamic environ-
ments from multiple angles. From a hardness perspective, they show that there are dynamic
environments whose testing requires high query complexity and running time, and that
adaptivity and time-conformity are relevant constraints which can significantly impact the
query complexity. However, as we discuss in Section 1.4, relatively little is known regarding
positive results for testing specific rules.
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98:2 Testing Dynamic Environments: Back to Basics

In our quest for understanding which natural families of dynamic environments can
be tested efficiently, we propose to first “go back to the basics” and study testing in the
simplest of dynamic environments. Namely, in this work we consider environments defined
by one-dimensional configurations, which evolve according to local rules that are functions
of the current location and its two immediate neighbors. These dynamic environments,
originally introduced by von Neumann [13], have been extensively studied under the name of
Elementary Cellular Automata [14] (see definition in Section 1.1). While these environments
can be described in simple terms, they are nevertheless able to capture complex behavior.1

Cellular automata have played a role in various research fields and applications. Examples
include modeling physical [2] and chemical [7] systems, VLSI design [3], music generation [1],
analyzing plant population dynamics [15], forest fire spread [17], city traffic [11], urban
sprawl [8], and more.

As we discuss in Section 1.4, there are several hardness results (both regarding the
query complexity and the running time) for testing dynamic environments that correspond
to one-dimensional cellular automata (over non-binary alphabets) [6]. Hence, in order to
obtain efficient algorithms, it is necessary to restrict the rules considered. In the current
work, our main focus is on perhaps the most basic and natural rules, defined by threshold
functions. Such functions have received much attention within the study of propagation of
information/influence in networks (see, e.g., the review paper of Peleg [10], and the recent
Ph.D. thesis of Zehmakan [16] and references within).

Our testers are based on a general meta-algorithm which works for rules that satisfy a
set of conditions that we define. In essence, the conditions capture a certain type of behavior
leading to ultimate convergence. This behavior induces a global structure on the environment
which we exploit in our meta-algorithm.

We hope this work can serve as a basis for further extensions and generalizations, some
of which we discuss shortly in Section 1.5.

1.1 Testing basic evolution rules

We now formally define the problems we study. We use [m] to denote the set {0, ..., m − 1}.
For two integers n and m, let ENV : [m] × Zn → {0, 1} denote the evolving environment,
and for any t ∈ [m] let ENVt : Zn → {0, 1} (the environment at time t) be defined by
ENVt(i) = ENV(t, i). In general, we refer to a function σ : Zn → {0, 1} as a configuration.
When convenient, we may view σ as a (cyclic) binary string of length n.

For a function (evolution rule) ρ : {0, 1}3 → {0, 1}, we say that ENV evolves according to
ρ, if for every i ∈ Zn and t > 0, we have that ENVt(i) = ρ(ENVt−1(i − 1), ENVt−1(i), ENVt−1(i +
1)), where all operations are modulo n. We use Eρ

m,n to denote the set of environments
ENV : [m] × Zn → {0, 1} that evolve according to ρ. As in [6], we employ the standard notion
of distance used in property testing and say that ENV : [m] × Zn → {0, 1} is ϵ-far from
evolving according to ρ (ϵ-far from Eρ

m,n) if |{(t, i) : ENV(t, i) ̸= ENV′(t, i)}| > ϵmn for every
ENV′ ∈ Eρ

m,n.2

1 Some rules are even Turing complete [4].
2 In the context of dynamic environments, this notion of distance can be interpreted as capturing

“measurement errors” due to some noise process. Namely, it can be viewed as allowing the testing
algorithm to accept not only “perfect” environments, but also environments that correspond to a
correct evolution with a bounded fraction of corruptions. Also note that being ϵ-far from evolving
according to ρ does not simply translate to there being an ϵ-fraction of pairs (t, i) for which ENVt(i) ̸=
ρ(ENVt−1(i − 1), ENVt−1(i), ENVt−1(i + 1)) (which would be trivial to test).
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Given n, m, and a distance parameter ϵ ∈ (0, 1), a testing algorithm for evolution
according to a rule ρ should distinguish with constant success probability between the case
that an environment ENV belongs to Eρ

m,n and the case that it is ϵ-far from Eρ
m,n. To this end,

the algorithm is given query access to ENV, where a query on a pair (t, i) cannot follow any
query on (t′, i′) for t′ > t. We are interested in bounding both the total number of queries
performed by the algorithm (as a function of ϵ, and possibly m and n) and the maximum
number of queries it performs at any time step (which we refer to as its temporal query
complexity).

1.2 Our results

We identify several conditions on local rules (which are formally stated in Section 3), such
that if a rule ρ satisfies these conditions, then evolution according to ρ can be tested with
query complexity poly(1/ϵ) with one-sided error. Our testers have the advantage that they
are non-adaptive, and therefore, in particular, time-conforming.

▶ Theorem 1. Let Ψ be the set of conditions specified in Section 3. For every rule ρ that
satisfies the conditions in Ψ, it is possible to test evolution according to ρ by performing
O(1/ϵ4) queries. Furthermore, the testing algorithm is non-adaptive and has one-sided error.

To establish Theorem 1, we present a meta-algorithm for testing evolution and prove
its correctness for rules that satisfy the aforementioned conditions (the set Ψ). It is a
meta-algorithm in the sense that it is based on certain subroutines that are rule-specific
(but have a common functionality of detecting violations of evolution according to the tested
rule). We provide a high-level discussion of the conditions and the algorithm in Section 1.3.

Our main application of the meta-algorithm is to the natural family of threshold rules.

▶ Definition 1. We say that a rule ρ : {0, 1}3 → {0, 1} is a threshold rule if there exist a
threshold integer 0 ≤ b ≤ 3 and a bit α ∈ {0, 1} such that ρ(β1, β2, β3) = α if and only if
β1 + β2 + β3 ≥ b.

We prove:

▶ Theorem 2. For each threshold rule ρ, evolution according to ρ can be tested with query
complexity O(1/ϵ4). Furthermore, the testing algorithm is non-adaptive and has one-sided
error.

We also show that the conditions hold for two additional (non-threshold) rules, so the
applicability of our meta-algorithm is more general (for details, see full version of this
paper [9]). We believe that appropriate (perhaps more complex) variants of our algorithm
can be used to test an even larger variety of basic local rules (see Section 1.5), where we
conjecture that this is true for all rules that ultimately converge. Interestingly, while the
two additional rules are not threshold rules as per Definition 1, they can be represented as
weighted threshold rules (which are a subclass of ultimately converging rules).

1.3 The high-level ideas behind our results

In this high-level discussion, we assume for simplicity that m ≥ n (the case m < n can be
essentially reduced to this case).
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1.3.1 Convergence, final/non-final locations and prediction functions
To give an intuition on the convergence behavior that our conditions capture, it is useful
to first discuss the notion of ultimate convergence. A rule ρ ultimately converges if, for any
initial configuration ENV0, an environment evolving according to ρ converges after a bounded
number of steps to either a single final configuration or to a constant number of configurations
between which it alternates. For example, consider the majority rule (threshold 2). Unless the
initial configuration is (01)n/2, the environment ultimately converges to some configuration
that consists of blocks of 0s and 1s of size at least 2 each (and if it is (01)n/2, then it alternates
between (01)n/2 and (10)n/2).

Once an environment converges, testing is straightforward since we can easily predict the
values of locations in future time steps and then verify that indeed they hold the predicted
values (or else we reject). The issue, however, is that convergence is not ensured to be
reached after a small number of time steps.3 In other words, knowing that a rule ultimately
converges cannot be exploited directly. Hence, the challenge is to identify and formalize
conditions that allow for “pre-convergence prediction”. Namely, conditions that imply the
ability to predict future values of locations based on the current values of these and other
locations (before convergence is reached).

In this context, our conditions try to formalize the idea that rules exhibit a certain
local convergence, which “expands” with time. The first ingredient of our approach is
the observation that, in the case of the majority rule, if at any time step t, ENVt(i) ∈
{ENVt(i − 1), ENVt(i + 1)} , then ENVt′(i) = ENVt(i) for any t′ > t (operations are modulo n).
We say in such a case that location i is final at time t (in ENV). Otherwise it is non-final.
Crucially for us, whether a location i is final or not at a certain time step depends solely on
its local neighborhood at that time (and can hence be verified with a constant number of
queries).

An important property of a location being final at time t (in addition to converging to
their final value, up to alternations), is the aforementioned expansion (or “transmission of
finality”). Namely, a location i that is non-final at time t becomes final at time t + 1 if either
i − 1 or i + 1 is final at time t (possibly both). Furthermore, it cannot become final if both
its neighbors are non-final. Another related property of final locations is that (under certain
circumstances), they can be used to predict the values of locations that become final in the
future, based on a (rule-specific) prediction function. A similar statement holds for non-final
locations (though the circumstances are different).

1.3.2 The meta-algorithm: the grid and violating pairs
Based on these properties (which are formalized in the conditions we introduce), our (meta)
algorithm works in two stages. In the first stage, it queries the environment at time t1 = Θ(ϵm)
on O(1/ϵ2) equally spaced locations, which we refer to as the grid locations, and their local
neighborhoods. This allows the algorithm to determine which of the grid locations are
final at time t1 and which are non-final. If the answers it gets are not consistent with any
environment that evolves according to ρ (in which case we say that the grid is not feasible),
then it rejects.

In its second stage, the algorithm uniformly samples O(1/ϵ) random time-location pairs
(t, i) and queries ENVt on i and its local neighborhood. It then checks whether the answers
are consistent with the answers to queries in the first stage (on the grid locations and their
neighborhoods) or constitute a violation. The definition of consistency/violation is based on
the aforementioned prediction functions of the tested rule.

3 In fact, there are initial configurations that require Ω(n) steps before they ultimately converge.
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One may have hoped that such a consistency check is sufficient, in the sense that all (or
almost all) pairs (t, i) can be predicted based on the answers to the queried grid locations.
Unfortunately, this is not the case. There are (possibly many) pairs (t, i) whose 0/1 values
are not determined given the first-stage answers. However, we show that such pairs are
constrained in a different way (in environments that evolve according to ρ): their location
must have become final by time t2 = t1 + ∆, where ∆ is the distance between grid location.
Hence, for each selected pair (t, i), the algorithm also queries ENVt2 on location i (and its
neighborhood) and checks consistency with the queried locations at time t2.

1.3.3 On the analysis of the algorithm and “backward prediction”
To show that the algorithm always accepts environments that evolve according to the tested
rule ρ, we prove that our definition of violation is such that there are no violations in such
environments (assuming ρ satisfies the aforementioned conditions). The more involved part
of the analysis is proving that if the environment ENV is ϵ-far from evolving according to ρ,
then the algorithm will detect this with probability at least 2/3. To this end, we prove the
contrapositive statement. Namely, we show that if the algorithm accepts with probability at
least 2/3, then there exists an environment that evolves according to ρ and is ϵ-close to ENV.
This is done by showing that we can construct an initial configuration ENV′0, such that if
we let it evolve according to ρ, resulting in an environment ENV′ ∈ Eρ

m,n, then we can upper
bound the number of pairs (t, i) such that ENVt(i) ̸= ENV′t(i) by ϵmn.

Here we build on a useful property of the prediction functions, by which they allow us a
certain “prediction back in time”. Namely (for t1 and t2 as mentioned above), we use the
queried grid locations at time t1 as well as some locations at time t2 (which have not been
queried) to determine values of locations at the earlier time 0 in ENV′. We prove that this
can be done in a way that ensures that ENV′ agrees with ENV on all pairs (t, i) that are not
violating.

1.4 A short overview of the results in [6]
As stated earlier, the study of testing dynamic environments was initiated by Goldreich and
Ron [6], who present several general results as well as analyze two natural specific rules. We
first provide a short overview of their main general results.

They prove that the query complexity of testing (one-dimensional) rules may have high
query complexity. Specifically, they show that there exists a constant c > 0 and an evolution
rule ρ : Σ3 → Σ such that any tester of evolution according to ρ requires Ω(nc) queries.4
They also prove that testing dynamic environments may be NP-Hard, provided that the
temporal query complexity is “significantly sublinear” (where f(x) is significantly sublinear
if f(x) < x1−Ω(1)). More precisely, they show that for every constant c > 0 there exists
an evolution rule ρ : Σ3 → Σ such that no (time-conforming) polynomial-time testing
algorithm with temporal query complexity n1−c can test whether n-sized environments
evolve according to ρ (assuming N P ̸⊆ BPP). Their general results also include a theorem
concerning the usefulness of adaptivity in testing dynamic environments, a study of the
relation between testing and learning dynamic environments, and a result on the power of
being non time-conforming.

4 Observe that it is possible to test the evolution according to any rule ρ over configurations of size n
by performing O(n + 1/ϵ) queries (n queries to the initial configuration and O(1/ϵ) uniformly selected
queries elsewhere). To get sublinear temporal query complexity, a total of O(n/ϵ) uniformly selected
queries suffice (by applying a simple union bound over all possible initial configurations).
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Goldreich and Ron [6] also provide testers for evolution according to two specific (classes
of) rules. The first is the class of linear rules, which in the binary 1-dimensional case
corresponds to the XOR rule in elementary cellular automata. They show that for any d ≥ 1
and any field Σ of prime order, there exists a constant γ < d such that the following holds.
For any linear rule ρ : Σ3d → Σ there exists a time-conforming oracle machine of (total) time
complexity poly(1/ϵ) · nγ that tests the consistency of an evolving environment with respect
to ρ. Furthermore, the tester is non-adaptive and has one-sided error.

Their second specific positive result, loosely stated, captures fixed-speed movement of
objects in one-dimension such that colliding objects stop forever. They present a (time-
conforming) algorithm of (total) time complexity poly(1/ϵ) that tests the consistency of
evolving environments with respect to that rule.

1.5 Future directions
Basic dynamic environments. A natural question that arises is whether a more nuanced
version of the set of conditions formalized in this paper and the meta-algorithm can be
defined and proved to work for other rules in the realm of basic dynamic environments.
Indeed, preliminary results suggest that several other rules that ultimately converge exhibit
behaviors that “resemble” the ones captured by our conditions. This leads us to the following
conjecture.

▶ Conjecture. If a rule ρ ultimately converges, then it is poly( 1
ϵ )-testable.

While our meta-algorithm does not apply to rules that do not ultimately converge, there
are natural rules that fall under this category (the XOR rule for instance). This raises the
question of whether poly(1/ϵ) testers exist for such rules. The answer is that there are
poly(1/ϵ)-testable rules that do not ultimately converge, but as we’ll see, the question should
be slightly rephrased.5 To give one example, for the rule ρ defined as ρ(x, y, z) = x, each
configuration is simply a copy of the previous configuration, shifted one location to the right.
That is, while an environment evolving according to this rule does not, technically, ultimately
converge, this rule is trivially poly(1/ϵ)-testable. However, this particular rule and other
rules that are capable of producing such “shifting behaviors” also have the property of not
being symmetric (i.e., it does not hold that ρ(x, y, z) = ρ(z, y, x) for every x, y, z). Hence,
one way to rephrase the question is restricting it to symmetric rules.

▶ Open Problem 1. Are there any symmetric rules that do not ultimately converge and are
poly(1/ϵ)-testable?

Another way to rephrase this question is to define a more general notion of ultimate
convergence. Specifically, we say that a rule ρ ultimately converges up to a shift if, for any
initial configuration ENV0, an environment evolving according to ρ converges after a bounded
number of steps to a constant number of configuration equivalence classes between which it
alternates, where two configurations are equivalent if they are equal up to a shift.

▶ Open Problem 2. Are there any non-symmetric rules that do not ultimately converge up
to a shift and are poly(1/ϵ)-testable?

As mentioned in Section 1.4, it has been shown in [6] that the XOR rule is sublinearly
testable. However, the query complexity of the tester depends on the size of the environment
and is only mildly sublinear (the complexity is O(n0.8) for an environment of size n). This

5 We thank one of the anonymous reviewers of this paper for pointing this out.
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raises the question of whether there exists a tester for the XOR rule with significantly lower
query complexity (maybe even polylogarithmic). Another question that can be raised is
whether there are other symmetric rules, ones that do not ultimately converge, that can be
tested with a sublinear query complexity that depends on the size of the environment.

▶ Open Problem 3. Which symmetric rules that do not ultimately converge can be tested
with query complexity that is sublinear in (but strictly grows with) the size of the environment?

More general dynamic environments. Building on the ideas for testing basic dynamic
environments, it may be possible to venture into more general environments. One such
generalization is to consider rules that depend on more than just the three locations consti-
tuting the immediate neighborhood. Other generalizations are to environments and rules
over non-binary values, higher dimensions, and environments that evolve on more general
graphs.

Non-deterministic rules. We also suggest considering local rules that are non-deterministic
in the sense that given some configuration, the rule allows several configurations to follow.
An example of one such rule, which can be thought of as a relaxation of the OR rule, is the
rule in which each value is restricted to be monotonically non-decreasing with respect to the
previous values at the location’s neighborhood.

Missing details
Due to space constraints, not all details appear in this extended abstract, and can be found
in the full version of this paper [9].

2 Preliminaries

In addition to the basic definitions provided in Section 1.1 regarding testing dynamic
environments, here we introduce several more definitions and notations.

In all that follows, when performing operations on locations i ∈ Zn, these operations are
modulo n. For a pair of locations i, j ∈ Zn we use [i, j] to denote the sequence i, i + 1, . . . , j

(so that it is possible that j < i).

▶ Definition 2. For a location i ∈ Zn and an integer r, the r-neighborhood of i, denoted
Γr(i), is the sequence [i − r, i + r]. For a set of locations I ⊆ Zn, we let Γr(I) denote the set
of locations in the union of sequences [i − r, i + r] taken over all i ∈ I.

▶ Definition 3. For an integer n and a local rule ρ, let Mρ(n) denote the (deterministic)
state machine that is defined as following. Each state of Mρ(n) corresponds to a different
configuration σ : Zn → {0, 1}. If a state corresponds to a configuration σ, then it has a single
transition going to the state corresponding to the configuration that results from applying ρ

to σ.
The period of Mρ(n), denoted pρ(n), is the longest size of a (directed) cycle in Mρ(n).

If there exists a constant p such that pρ(n) = p (pρ(n) ≤ p) for every sufficiently large n,
then we say that ρ has period (at most) p, and that ρ ultimately converges.

Observe that for every Mρ(n), each strongly connected component in Mρ(n) is either a
single state with no edges in the component or a cycle (where in particular, the cycle may
be a self-loop). For example, if ρ is the OR function, then it has period 1 (as it contains
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only two cycles: one is a self-loop for the state corresponding to the configuration 1n and the
other is a self loop for the state corresponding to the configuration 0n). On the other hand,
there are rules, such as XOR, for which pρ(n) = Ω(n).

▶ Definition 4. For two locations i, i′ ∈ Zn, we let −−→dist(i, i′) = i′ − i denote the directed
distance from i to i, and let dist(i, i′) = min{

−−→dist(i, i′), −−→dist(i′, i)} denote the (undirected)
distance.

Note that since operations on locations are modulo n, we have that −−→dist(i, i′) ≤ n − 1, while
dist(i, i′) ≤ n/2 for all i, i′ ∈ Zn.

▶ Definition 5. For t ∈ [m] and i ∈ Zn, we refer to (t, i) as a time-location pair (or simply
pair).

Given two locations, i, i′ ∈ Zn and two time steps t, t′ ∈ [m] where t > t′, we say that the
pair (t, i) descends from the pair (t′, i′) if dist(i, i′) ≤ t − t′. We say that (t, i) is a descendant
of (t′, i′) and that (t′, i′) is an ancestor of (t, i).

▶ Definition 6. For an integer r, an r-pattern is a string in {0, 1}r.

3 The Conditions

Let ρ : {0, 1}3 → {0, 1} be a local rule. We present several conditions, such that if they
all hold, then the rule ρ can be tested with poly(1/ϵ) queries. These conditions capture
properties of local rules that can be exploited by our (meta) algorithm.

The conditions are defined with respect to a constant (integer) k (which depends on ρ,
but for the sake of simplicity we suppress the dependence on ρ and use k rather than kρ),
and a partition of all (2k + 1)-patterns.6 The partition is denoted by (Fρ, Fρ), where F
stands for final and F for non-final.

We shall say that a pair (t, i) is final (respectively, non-final) with respect to ENV and ρ if
ENVt(Γk(i)) ∈ Fρ (respectively, Fρ). Roughly speaking, if (t, i) is final (with respect to ENV
and ρ), then location i does not change from time t and onward (or, more generally, ENVt′(i)
for t′ > t can be predicted based on ENVt(i)). Furthermore, if (t, i) is non-final, then (t + 1, i)
is final if and only if (t, i − 1) or (t − 1, i + 1) is final (so that finality is “infectious”).

In our statements of the conditions, we make use of the parity function, which we denote
by parity : N → {0, 1} (so that parity(x) = 1 if x is odd and parity(x) = 0 if x is even).

Before each of the conditions is stated formally, we give a short, informal description. It will
also be useful to have a running example of a specific rule ρ, which is the majority rule. Namely,
MAJ(β1, β2, β3) = 1 for any three bits β1, β2, β3, if and only if β1 + β2 + β3 ≥ 2. For the
majority rule, k = 1, and FMAJ = {111, 110, 011, 000, 001, 100} (so that FMAJ = {101, 010}).

The first condition says that if a location is final, then it remains final.

▶ Condition 1. Let ENV ∈ Eρ
m,n be an environment that evolves according to ρ. For any time

step t ∈ [m − 1] and location i ∈ Zn, if ENVt(Γk(i)) ∈ Fρ, then ENVt+1(Γk(i)) ∈ Fρ.

Indeed, for the majority rule, if ENVt(Γ1(i)) = 111, then ENVt+1(Γ1(i)) = 111 ∈ FMAJ, if
ENVt(Γ1(i)) = 110, then ENVt+1(Γ1(i)) ∈ {110, 111} ⊂ FMAJ, and if ENVt(Γ1(i)) = 110,
then ENVt+1(Γ1(i)) ∈ {110, 111} ⊂ FMAJ (analogous statements hold for ENVt(Γ1(i)) ∈
{000, 001, 100}).

6 For the local rules we apply our conditions to, k is either 0 or 1, but using a variable parameter k will
hopefully allow to extend our results more easily.
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The second condition says that if a location is non-final, then it can become final in one
time step if and only if it has a final neighbor.

▶ Condition 2. Let ENV ∈ Eρ
m,n be an environment that evolves according to ρ. For any time

step t ∈ [m − 1] and location i ∈ Zn, if ENVt(Γk(i)) ∈ Fρ, then ENVt+1(Γk(i)) ∈ Fρ if and
only if ENVt(Γk(i − 1)) ∈ Fρ or ENVt(Γk(i + 1)) ∈ Fρ (or both).

For the majority rule, consider the case that ENVt(Γ1(i)) = 101 (so that it belongs to FMAJ).
In this case, ENVt(Γ1(i−1)) ∈ {110, 010} and ENVt(Γ1(i+1)) ∈ {011, 010}. If ENVt(Γ1(i−1)) =
110 (which belongs to FMAJ), then ENVt+1(Γ1(i)) ∈ {110, 111} ⊂ FMAJ, and the case that
ENVt(Γ1(i + 1)) = 011 is analogous. On the other hand, if both ENVt(Γ1(i − 1)) = 010
and ENVt(Γ1(i + 1)) = 010 (so that they both belong to FMAJ), then ENVt+1(Γ1(i)) = 010
(and it belongs to FMAJ as well). Note that, if for every location i ∈ Zn, it holds that
ENV0(Γ1(i)) ∈ {010, 101} (that is, every location in the initial configuration is non-final),
then no location would ever become final throughout the evolution of the rule. In particular,
in this case the environment alternates between (01)n/2 and (10)n/2, where all the locations
are non-final.

The first two conditions intuitively imply that one can determine whether certain locations
are final or non-final using particular “past” locations that are known to be final or non-final.
The next two conditions capture the idea that the actual values at certain locations (and not
only whether or not they are final) can also be determined based on past locations.

In particular, the third condition captures how values at locations that are final at a
certain time step can be predicted using a function that depends on “past” final locations
from which they descend (and to which they are closest).

▶ Condition 3. Let ENV ∈ Eρ
m,n be an environment that evolves according to ρ. There exists

a function fρ : {0, 1}3 → {0, 1} for which the following holds. First, fρ is the XOR of its
first argument and a subset of the other two arguments. Second, let (t, i) and (t′, i′) be any
two pairs such that (t, i) descends from (t′, i′), ENVt(Γk(i)), ENVt′(Γk(i′)) ∈ Fρ, and for every
i′′ ̸= i′ satisfying dist(i, i′′) ≤ dist(i, i′) it holds that ENVt′(Γk(i′′)) ∈ Fρ. Then

ENVt(i) = fρ(ENVt′(i′), parity(t − t′), parity(dist(i, i′)) .

For the majority rule, fMAJ is simply the identity function on its first argument, namely,
fMAJ(β, ·, ·) = β.

The fourth condition captures how locations that are non-final at a certain time step can
be predicted using a function that depends on “past” non-final locations from which they
descend (conditioned on there not being any final location among its ancestors in that past
time step).

▶ Condition 4. Let ENV ∈ Eρ
m,n be an environment that evolves according to ρ. There exists

a function hρ : Fρ × {0, 1} × Zn → Fρ for which the following holds. First, hρ is reversible
in the sense that for each fixed τ ∈ Fρ, β ∈ {0, 1} and ℓ ∈ Zn, there exists a unique τ ′ such
that hρ(τ ′, β, ℓ) = τ . Second, let (t, i) and (t′, i′) be any two pairs such that (t, i) descends
from (t′, i′), ENVt(Γk(i)), ENVt′(Γk(i′)) ∈ Fρ, and ENVt′(Γk(i′′)) ∈ Fρ for every i′′ such that
(t, i) descends from (t′, i′′). Then

ENVt(Γk(i)) = hρ(ENVt′(Γk(i′)), parity(t − t′), −−→dist(i′, i)) .

For the majority rule, hMAJ(010, β, x) = 010 if β ⊕ parity(x) = 0 and hMAJ(010, β, x) = 101 if
β ⊕ parity(x) = 0. Similarly, hMAJ(101, β, x) = 101 if β ⊕ parity(x) = 0 and hMAJ(101, β, x) =
010 if β ⊕ parity(x) = 1.
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The additional two conditions presented below are a bit more involved than Conditions 1–
4, and perhaps initially less intuitive. They do not play a role in the definition of the meta
algorithm, but are applied in the proof of Lemma 2 (and we recommend that the reader
return to them in that context). In a nutshell, they allow us to show that if our testing
algorithm accepts the environment ENV with high constant probability, then there exists an
environment ENV′ that evolves according to ρ and is relatively close to ENV. In particular,
they aid us in defining the initial configuration ENV′0 based on ENVt for some appropriate
time step t.

▶ Condition 5. Let σ : Zn → {0, 1} be a configuration and let [x, y] be an interval of locations
such that σ(Γk(x)) ∈ Fρ and σ(Γk(y)) ∈ Fρ. There exists a configuration σ̃ ∈ Zn, which
differs from σ only on locations inside [x, y], for which the following holds: For every i ∈ [x, y]
we have that σ̃(Γk(i)) ∈ Fρ, and if σ(Γk(i)) ∈ Fρ, then σ̃(i) = σ(i).

This condition also covers the special case in which y = x and we interpret [x, y] as
x, x + 1, . . . , x + n (with a slight abuse of notation).

▶ Condition 6. Let σ : Zn → {0, 1} be a configuration and z ∈ Zn such that σ(Γk(z)) ∈ Fρ.
Let ν ∈ {τk+1 : τ ∈ Fρ} and γ, γ′ ∈ {0, 1}. There exists a configuration σ̃ : Zn → {0, 1} for
which the following hold. There is a location z′ ∈ [z + 1, z + 2k + 1] where σ̃(Γk(z′)) ∈ Fρ,
and fρ(σ̃(z′), γ, parity(z′− z) ⊕ γ′) = ν. Furthermore, for every i ∈ [z + 1, z′− 1] it holds that
σ̃(Γk(i)) ∈ Fρ, and for every i /∈ [z + k, z′ + k], σ̃(i) = σ(i).

A (symmetric) variant of the above should also hold if we replace z′ ∈ [z + 1, z + 2k + 1]
by z′ ∈ [z − 2k − 1, z − 1], i ∈ [z + 1, z′ − 1] by i ∈ [z′ + 1, z − 1], and i /∈ [z + k, z′ + k] by
i /∈ [z′ − k, z − k].

4 The Meta-Algorithm

In this section, we present a meta-algorithm for testing evolution of local rules that satisfy
the sufficient conditions (specified in Section 3). Here we give an algorithm whose complexity
is ⌈n/m⌉ · poly(1/ϵ) and, in the full version of this paper [9], we explain how to remove the
dependence on n/m.

In order to precisely describe our meta-algorithm, we need to first define a particular
set of locations that we designate as the 1-dimensional grid and the notion of violating
time-location pairs with respect to the 1-dimensional grid. The 1-dimensional grid is defined
in Section 4.1 and the notion of violating pairs is defined in Section 4.2. Then, in Section 4.3,
we describe our meta-algorithm.

In the full version of this paper [9], we show that these conditions hold for all (non-trivial)
threshold rules, as well as a couple of additional rules.

4.1 The grid
In this subsection we introduce the notion of a one-dimensional “grid”, which will be a central
building block of the meta algorithm (and its analysis). Recall that a configuration is a
function σ : Zn → {0, 1}. A partial configuration is a function σ′ : Zn → {0, 1} ∪ ⊥, which
will serve us to denote restrictions of configurations to a subset of the locations.

Let ∆ = ϵ2

b0
· min{n, m} where b0 is a sufficiently large constant. We assume for simplicity

that ∆ and n/∆ are both integers. Let G ⊆ Zn (the grid) be the set of locations {j ·
(n/∆)}n/∆−1

j=0 .
As we shall see in Section 4.3, our algorithm queries the tested environment on all grid

locations and their k-neighborhoods at a specific time step t1 (which will be set subsequently).
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Let ENVt[G] be the partial configuration that agrees with ENVt on all locations in {Γk(g) :
g ∈ G} and is ⊥ elsewhere.

▶ Definition 7. Given a time step t > 0, we say that the partial configuration ENVt[G] induced
by the k-neighborhoods of the grid locations at time t is feasible with respect to a rule ρ, if
there exists an environment ENV′ that evolves according to ρ and such that ENV′t(i) = ENVt(i)
for every i ∈ Γk(G). We say in such a case that ENV′ is a feasible completion of ENVt[G] with
respect to ρ.

▶ Definition 8. Given a pair of grid locations g1, g2 ∈ G, a time step t and a subset
S ⊂ {0, 1}2k+1, if for every grid location g ∈ G ∩ [g1, g2] it holds that ENVt(Γk(g)) ∈ S, then
we say that the interval [g1, g2] is an S grid interval with respect to ENVt. We say that [g1, g2]
is a maximal S grid interval with respect to ENVt, if both ENVt(g1 − ∆) and ENVt(g2 + ∆) do
not belong to S.

In particular, we shall be interested in the case that S is Fρ or Fρ. Note that a grid interval
[g1, g2] contains all the locations between g1 and g2, and not just the grid locations. Also
note that if ENVt(Γk(g)) ∈ S for every g ∈ G, then by Definition 8, there is no maximal S
grid interval with respect to ENVt (we shall deal with such cases separately).

4.2 Violating Pairs
Let ρ be a fixed local rule that satisfies all the conditions stated in Section 3. Let t1 = b1∆

ϵ ,
where b1 is a sufficiently large constant and ∆ is as defined in Section 4.1. Let t2 = t1 +∆. We
now define the concept of a violating pair (t, i) ∈ [m] × Zn with respect to ENVt1 . Generally
speaking, these are pairs in the environment ENV whose values are inconsistent with evolving
according to the rule ρ given the values at the grid locations at time t1. The definition of
a violating pair serves us later by allowing our algorithm to reject when it encounters one,
which, as we prove, happens with high constant probability if ENV is ϵ-far from evolving
according to the rule ρ.

Figure 4.1 An illustration for the sets A, B, C, and U . Here [g1, g2] is a maximal Fρ grid interval,
g3 = g2 + ∆, where [g3, g4] is a maximal Fρ grid interval, and g5 = g4 + ∆ is an endpoint of a
maximal Fρ grid-interval. The area marked by A corresponds to pairs (t, i) such that t > t2 and
i ∈ [g1 + t1, g2 − t1]. These pairs are supposed to be final. The area marked by B corresponds to
pairs (t, i) such that t > t2, i ∈ [g2 − t1 + ∆, g2 + (t − t1)], and dist(g2, i) < dist(g5, i) − ∆. These
pairs are supposed to be final too. The area marked by C corresponds to pairs (t, i) such that
t > t2, i ∈ [g3, g4], and (t, i) neither descends from (t1, g3 + 1) nor from (t1, g4 − 1). These pairs are
supposed to be non-final. Finally, the areas marked by U correspond to pairs (t, i) such that t > t2

and one of the following holds: (1) i ∈ [g2 − t1 + 1, g2(i) − t1 + ∆]; (2) i ∈ [g3, g4] and either (a)
(t, i) descend from (t1, g3 − ∆) or (t1, g4 + ∆) and |dist(g3, i) − dist(g4, i)| ≤ ∆, or (b) (t, i) does not
descend from either (t1, g3 − ∆) or (t1, g4 + ∆) but it descends from either (t1, g3) or (t1, g4).
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We next define three disjoint sets of time-location pairs, denoted A, B and C, and for each
of these three sets we state conditions under which the pair is considered to be a violating
pair with respect to ENVt1 [G]. The proof that the three sets are pairwise disjoint appears in
Section 5, and for an illustration, see Figure 4.1.

If ENVt1(Γk(g)) ∈ Fρ for every g ∈ G, then A = {(t, i) : t2 < t < m, i ∈ Zn}. Otherwise,
A is the set of pairs (t, i) where t2 < t < m and i ∈ Zn such that there exists a maximal Fρ

grid interval [g1(i), g2(i)] with respect to ENVt1 for which i ∈ [g1(i) + t1, g2(i) − t1].

▶ Definition 9. A pair (t, i) ∈ A is said to be a violating pair with respect to ENVt1 [G],
if at least one of the following requirements does not hold. (1) ENVt2(Γk(i)) ∈ Fρ. (2)
ENVt(Γk(i)) ∈ Fρ. (3) ENVt(i) = fρ(ENVt2(i), parity(t−t2), 0) where fρ is the function referred
to in Condition 3.

Let B be the set of pairs (t, i), where t2 < t < m and i ∈ Zn for which the following
holds. First, there exists a maximal Fρ grid interval [g1(i), g2(i)] with respect to ENVt1

such that either i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1] or i ∈ [g2(i) − t1 + ∆ + 1, g2(i) +
(t − t1)]. Second, for every other maximal Fρ grid interval [g′1, g′2] (with respect to ENVt1),
if i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1], then dist(g1(i), i) < dist(g′2, i) − ∆, and if
i ∈ [g2(i) − t1 + ∆ + 1, g2(i) + (t − t1)], then dist(g2(i), i) < dist(g′1, i) − ∆.

▶ Definition 10. A pair (t, i) ∈ B is said to be a violating pair with respect to ENVt1 [G],
if at least one of the following requirements does not hold. (1) ENVt(Γk(i)) ∈ Fρ. (2)
Let [g1(i), g2(i)] be the maximal Fρ grid interval ensured by the definition of B given (t, i).
Let g(i) be the grid location in G ∩ ([g1(i), g1(i) + t1 − ∆] ∪ [g2(i), g2(i) − t1 + ∆]) that is
closest to i (if there are two such grid locations, then select the one closer to g1(i)). Then
ENVt(i) = fρ(ENVt1(g(i)), parity(t − t1), parity(dist(i, g(i)))), where fρ is the function referred
to in Condition 3.

If ENVt1(Γk(g)) ∈ Fρ for every g ∈ G, then C = {(t, i) : t2 < t < m, i ∈ Zn}. Otherwise,
C is the set of pairs (t, i) where t2 < t < m and i ∈ Zn for which the following holds.
First, there exists a maximal Fρ grid interval [g1(i), g2(i)] with respect to ENVt1 such that
i ∈ [g1(i), g2(i)]. Second, the pair (t, i) neither descends from the pair (t1, g1(i) + 1) nor from
the pair (t1, g2(i) − 1).

▶ Definition 11. A pair (t, i) ∈ C is said to be a violating pair with respect to ENVt1 , if at least
one of the following requirements does not hold. (1) ENVt(Γk(i)) ∈ Fρ. (2) Let g(i) ∈ G be
a grid location satisfying dist(g(i), i) < ∆ (if there are two such grid locations, then select
the one closer to g1(i)). Then ENVt(Γk(i)) = hρ(ENVt1(Γk(g(i))), parity(t − t1), −−→dist(g(i), i)).

Finally, we define the set U of uncertain pairs (t, i), for which we cannot determine, given
ENVt1 [G] and the corresponding pairs (t2, i), whether they are violating or not.

▶ Definition 12. The set U consists of all pairs (t, i) ∈ Zn × [m] such that t > t2 and
(t, i) /∈ A ∪ B ∪ C.

In Section 5 show that the number of pairs (t, i) belonging to the set U is relatively small,
provided that ENVt1 [G] is feasible.

4.3 The testing algorithm
Recall that Let ∆ = ϵ2

b0
·min{n, m}, t1 = b1∆

ϵ , and t2 = t1 +∆ (where b0 and b1 are constants
that will be set in the analysis).
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Algorithm 1 The testing algorithm.

Tester for evolution according to a rule ρ

1. Query ENVt1 on all locations in Γk(G). If ENVt1 [G] is infeasible with respect to ρ, reject.
2. Select uniformly at random Θ( 1

ϵ ) pairs (t, i) where i ∈ Zn and t2 < t < m.
For each selected pair (t, i), query ENVt(Γk(i)) and ENVt2(Γk(i)).

3. If some pair selected in Step 2 is a violating pair with respect to ρ, then reject.
Otherwise, accept.

▶ Theorem 3. Let ρ be any local rule that satisfies Conditions 1–6. Algorithm 1 is a one-sided
error non-adaptive testing algorithm for evolution according to ρ whose query complexity is
O(⌈n/m⌉/ϵ2).

The bound on the query complexity of the algorithm follows from the fact that the number of
queries performed in Step 1 is O(n/∆) = O(⌈n/m⌉/ϵ2) (recall that k is a constant), and the
number of queries performed in Step 3 is O(1/ϵ). The correctness of the algorithm follows
from the next two lemmas. We prove Lemma 1 in Section 6 and Lemma 2 in Section 7.

▶ Lemma 1 (Completeness of the meta-algorithm). Let ρ be any local rule that satisfies
Conditions 1–6. If the environment ENV evolves according to ρ, then the algorithm accepts
with probability 1.

▶ Lemma 2 (Soundness of the meta-algorithm). Let ρ be any local rule that satisfies Condi-
tions 1–6. If the environment ENV is ϵ-far from evolving according to ρ, then the algorithm
rejects with probability at least 2/3.

5 Observations and simple claims

In this subsection we present several observations and simple claims that will be used in our
proofs of Lemma 1 and Lemma 2.

The first two observations are directly implied by Conditions 1 and 2.

▶ Observation 1. Let ρ be a local rule that satisfies Conditions 1 and 2, ENV ∈ Eρ
m,n an

environment that evolves according to ρ and (t, i) ∈ [m] × Zn. If (t, i) has an ancestor (t′, i′)
such that ENVt′(Γk(i′)) ∈ Fρ, then ENVt(Γk(i)) ∈ Fρ.

Note that Observation 1 implies that if ENVt(Γk(i)) ∈ Fρ, then ENVt′(Γk(i′)) ∈ Fρ for every
ancestor (t′, i′) of (t, i).

▶ Observation 2. Let ρ be a local rule that satisfies Conditions 1 and 2, ENV ∈ Eρ
m,n an

environment that evolves according to ρ and (t, i) ∈ [m] × Zn, t ≤ n/2. If ENVt(Γk(i)) ∈ Fρ,
then the location i belongs to an interval whose size is at least 2t such that ENV′t(Γk(j)) ∈ Fρ

for every location j in this interval.

The observation below directly follows from Observation 2 (as well as the definition of
the grid G and Definitions 7 and 8).

▶ Observation 3. Let ρ be a local rule that satisfies Conditions 1 and 2. Suppose that ENVt[G]
for t ≤ n/2 is feasible with respect to ρ. Then for every [g1, g2] that is a maximal Fρ grid
interval with respect to ENVt, the number of locations in [g1, g2] is at least 2t − ∆.
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The next observation follows directly from Observation 1 (as well as the definition of G

and Definitions 7 and 8).

▶ Observation 4. Let ρ be a local rule that satisfies Conditions 1 and 2. Suppose that ENVt[G]
for t ≤ n/2 is feasible with respect to ρ and let g ∈ G be such that ENVt(Γk(g)) ∈ Fρ. If
ENV′ is a feasible completion of ENVt[G] (with respect to ρ), then ENV′t′(Γk(i)) ∈ Fρ for every
t′ ≥ t + ∆ and i ∈ [g − ∆, g + ∆].

Claim 5, stated next, also deals with feasible completions.

▷ Claim 5. Let ρ be a local rule that satisfies Conditions 1 and 2. Suppose that ENVt[G] is
feasible with respect to ρ for t ≥ ∆ and let g ∈ G be such that both ENVt(Γk(g)) ∈ Fρ and
ENVt(Γk(g + ∆)) ∈ Fρ. If ENV′ is a feasible completion of ENVt[G] (with respect to ρ), then
ENV′t(Γk(i)) ∈ Fρ for every i ∈ [g, g + ∆].

Recall the definitions of the sets A, B and C from Section 4.2.

▷ Claim 6. The sets A, B, and C are pairwise disjoint.

In the last claim of this subsection, we bound the size of the set U of uncertain pairs (as
defined in Definition 12).

▷ Claim 7. If ENVt1 [G] is feasible (with respect to ρ), then |U | ≤ 5ϵ
b1

mn (where b1 is the
constant in the setting of t1 = b1∆

ϵ ).

We note that Claim 7 does not depend on the setting of ∆, but only on the definition of t1
as a function of ∆ (as well as the definition of the grid G, which, too is defined based on ∆,
and in turn is used to determine U).

6 Proof of Lemma 1: Completeness of the meta-algorithm

Let ρ be any local rule that satisfies Conditions 1–6 (where in this proof we do not make use
of Conditions 5 and 6, which are provided in the next subsection), and let ENV ∈ Eρ

m,n be a
dynamic environment that evolves according to ρ. The only steps in which our algorithm
may reject are Step 1 and Step 3. The grid is feasible by definition, and hence the algorithm
does not reject in Step 1. To show that it also does not reject in Step 3, we show that there
are no violating pairs with respect to ENVt1 [G]. Recall that each violating pair belongs to
one of the three sets A, B, or C (as defined in Section 4.2). Specifically, we next show that
in each of the three cases ((t, i) ∈ A, (t, i) ∈ B, and (t, i) ∈ C), the requirements (specified
in Section 4.2) for (t, i) being a non-violating pair hold. In what follows, if we say that a
pair (t, i) is final (similarly, non-final), then we mean with respect to ENV, and when we refer
to maximal grid intervals, it is always with respect to ENVt1 , and violations are always with
respect to ENVt1 [G].

Pairs (t, i) ∈ A. By the definition of A, t > t2 and there exists a grid location g(i) ∈ G

such that dist(i, g(i)) ≤ ∆ and ENVt1(Γk(g(i))) ∈ Fρ (this holds both in the case that
ENVt1(Γk(g)) ∈ Fρ for every g ∈ G and in the case that there exists a maximal Fρ grid interval
[g1(i), g2(i)] such that i ∈ [g1(i) + t1, g2(i) − t1].) By Observation 4, both ENVt2(Γk(i)) ∈ Fρ

and ENVt(Γk(i)) ∈ Fρ. Turning to the third requirement, by Condition 3, applied with
t′ = t2 and i′ = i, we get that ENVt(i) = fρ(ENVt2(i), parity(t − t2), 0). Therefore, all three
requirements on pairs in A hold, and hence (t, i) is not a violating pair.
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Pairs (t, i) ∈ B. By the definition of B, t > t2 and there exists a maximal Fρ grid interval
[g1(i), g2(i)] with respect to ENVt1 such that either i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1] or
i ∈ [g2(i) − t1 + ∆ + 1, g2(i) + (t − t1)]. Furthermore, for every other maximal Fρ grid interval
[g′1, g′2] (with respect to ENVt1), if i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1], then dist(g1(i), i) <

dist(g′2, i)−∆, and if i ∈ [g2(i)−t1 +∆+1, g2(i)+(t−t1)], then dist(g2(i), i) < dist(g′1, i)−∆.
Let g(i) be the grid location closest to i in G∩([g1(i), g1(i) + t1 − ∆] ∪ [g2(i) − t1 + ∆, g2(i)])
(as defined in the second requirement concerning (non-)violating pairs (t, i) ∈ B).

We claim that (t, i) descends from (0, g(i)). To see why, first consider the case in which
i ∈ [g1(i) − (t − t1), g1(i)] ∪ [g2(i), g2(i) + (t − t1)]. In this case, either g(i) = g1(i) or
g(i) = g2(i), which means that dist(i, g(i)) ≤ t − t1 ≤ t. Second, consider the case in which
i ∈ [g1(i), g1(i) + t1 − ∆ − 1] ∪ [g2(i) − t1 + ∆ + 1, g2(i)]. In this case, the grid location closest
to i in G ∩ ([g1(i), g1(i) + t1 − ∆] ∪ [g2(i) − t1 + ∆, g2(i)]) is within a distance of at most ∆
from the location i. Hence, dist(i, g(i)) ≤ ∆ ≤ t. Therefore, in any case, dist(i, g(i)) ≤ t,
and thus the pair (t, i) descends from the pair (0, g(i)).

Assume (without loss of generality) that g(i) ∈ [g2(i)−t1+∆, g2(i)]. Since ENVt1(Γk(g2(i)+
∆)) ∈ Fρ (as [g1(i), g2(i)] is a maximal final grid interval), we know (by Observation 1)
that ENV0(Γk(j)) ∈ Fρ for every j ∈ [g2(i) + ∆ − t1, g2(i) + ∆ + t1]. However, since
ENVt1(Γk(g2(i)) ∈ Fρ, there must be some location ℓ ∈ [g2(i) − t1, g2(i) + ∆ − t1 − 1] such
that ENV0(Γk(ℓ)) ∈ Fρ. Among the locations ℓ that satisfy these conditions, let ℓ∗ be the
one that minimizes dist(ℓ, g2(i) + ∆ − t1), so that for every ℓ′ ∈ [ℓ∗ + 1, g2(i) + ∆ − t1]
we have that ENV0(Γk(ℓ′)) ∈ Fρ. Hence, for every i′′ ≠ g(i) satisfying dist(g(i), i′′) ≤
dist(g(i), ℓ∗) it holds that ENV0(i′′) ∈ Fρ. Additionally, since g(i) ∈ [g2(i) − t1 + ∆, g2(i)]
and ℓ∗ ∈ [g2(i) − t1, g2(i) + ∆ − t1 − 1], it must hold that dist(g(i), ℓ∗) ≤ t1, which means
that the pair (t1, g(i)) descends from the pair (0, ℓ∗). Also, both ENVt1(g(i)) ∈ Fρ and
ENV0(ℓ∗) ∈ Fρ. Thus, we can apply Condition 3 for the two pairs (0, ℓ∗) and (t1, g(i)) to get
that ENVt1(g(i)) = fρ(ENV0(ℓ∗), parity(t1), parity(dist(ℓ∗, g(i)))).

Since the pair (t, i) descends from the pair (t1, g(i)), and the pair (t1, g(i)) descends
from the pair (0, ℓ∗), it holds that the pair (t, i) must also descend from the pair (0, ℓ∗).
Additionally, both both ENVt(i) ∈ Fρ and ENV0(ℓ∗) ∈ Fρ. Also, by the second requirement
on (t, i), involving other maximal Fρ grid intervals [g′1, g′2], for every i′′ ̸= i satisfying
dist(i, i′′) ≤ dist(i, ℓ∗) it holds that ENV0(i′′) ∈ Fρ. Thus, we can apply Condition 3 for the
two pairs (0, ℓ∗) and (t, i) to get that ENVt(i) = fρ(ENV0(ℓ∗), parity(t), parity(dist(ℓ∗, i))). But
then, since fρ is the XOR of its first argument and a subset of the other two, and parity(t−t1) =
parity(t1) ⊕ parity(t) as well as parity(dist(g(i), i))) = parity(dist(ℓ∗, g(i))) ⊕ parity(dist(ℓ∗, i)),
we get that ENVt(i) = fρ(ENVt1(g(i)), parity(t − t1), parity(dist(g(i), i))).

Pairs (t, i) ∈ C. There are two cases (where in both t > t2). The first is that ENVt1(Γk(g)) ∈
Fρ for every g ∈ G (so that i may be any location in Zn). In the second case there exists a
maximal Fρ grid interval [g1(i), g2(i)] such that i ∈ [g1(i), g2(i)], and (t, i) does not descend
from either (t1, g1(i)−1) or (t1, g2(i)+1), which implies that for every j ∈ Zn, if the pair (t, i)
descends from (t1, j), then j ∈ [g1(i), g2(i)]. In both cases, by Claim 5, all ancestors (t1, j)
of (t, i) satisfy ENVt1(Γk(j)) ∈ Fρ. By Observation 1 this implies that ENVt(Γk(i)) ∈ Fρ, so
that the first requirement is met. As for the second requirement, since the grid location
g(i) defined in the second requirement is such that (t1, g(i)) is an ancestor of (t, i) (and
ENVt1(Γk(g(i))) ∈ Fρ), we can apply Condition 4 (with t′ = t1 and i′ = g) to get that
ENVt(Γk(i)) = hρ(ENVt1(Γk(g(i))), parity(t − t1), −−→dist(g(i), i), as required.

We’ve shown that under the premise of the lemma, there is no pair (t, i) ∈ A ∪ B ∪ C

that is a violating pair. Thus, our algorithm cannot reject at Step 3.
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7 Proof of Lemma 2: Soundness of the meta-algorithm

Let ENV be any environment that is ϵ-far from evolving according to ρ, where ρ is a local rule
that satisfies Conditions 1–6. If ENVt1 [G] is infeasible with respect to ρ, then the algorithm
rejects (in Step 1). Hence, we assume from now on that ENVt1 [G] is feasible.

We claim that the number of violating pairs with respect to ENVt1 [G] is at least ϵ
b2

mn,
where b2 > 1 is a constant. Lemma 2 follows, since the algorithm selects s = Θ(1/ϵ) pairs
(in Step 2), and rejects if any of them is found to be a violating pair (in Step 3). Hence, the
probability that the algorithm rejects is at least 1 − (1 − ϵ/b2)s, which is at least 2/3 for
s ≥ 2b2/ϵ.

Suppose by way of contradiction that there are less than ϵ
b2

mn violating pairs. We show
how, based on ENV (to be precise, ENVt1 [G] and ENVt2) we can define an environment ENV′ for
which the following holds. First, ENV′ evolves according to ρ. Second, ENV′ differs from ENV
on at most ϵmn pairs (t, i) ∈ Zn × [m]. But this contradicts the premise that ENV is ϵ-far
from evolving according to ρ. Details follow in the next subsections.

We first provide all details (in Section 7.1 and Section 7.2) under the assumption that
there exist grid locations g ∈ G for which ENVt1(Γk(g)) ∈ Fρ as well as grid locations g′ ∈ G

for which ENVt1(Γk(g′)) ∈ Fρ. We discuss (in the full version of this paper [9]) the two
special cases for which either ENVt1(Γk(g)) ∈ Fρ for every g ∈ G or ENVt1(Γk(g)) ∈ Fρ for
every g ∈ G, which we refer to as the homogeneous cases.

7.1 The definition of ENV′

To construct the dynamic environment ENV′, we define its initial configuration ENV′0, and then
apply the local rule ρ for m − 1 steps. Hence, ENV′ evolves according to ρ by construction.
The initial configuration ENV′0 is defined with respect to a configuration σ on which we
perform several transformations to obtain ENV′0. We define the configuration σ by specifying
the value of σ(i) for each location i ∈ Zn as explained next. In what follows, whenever we
refer to maximal Fρ grid intervals (similarly, maximal Fρ grid intervals), it is with respect
to ENVt1 .

We shall make use of a function h←ρ : Fρ × {0, 1} × Zn (based on hρ – see Condition 4).
Recall that by Condition 4, for each fixed τ ∈ Fρ, β ∈ {0, 1} and ℓ ∈ Zn, there exists a
unique τ ′ such that hρ(τ ′, β, ℓ) = τ .

▶ Definition 8. For any τ ∈ Fρ, β ∈ {0, 1} and ℓ ∈ Zn, h←ρ (τ, β, ℓ) equals the (unique)
pattern τ ′ for which hρ(τ ′, β, ℓ) = τ .

We also make the following observation, based on Condition 3, by which fρ is the XOR
of its first argument and a subset of the other two.

▶ Observation 9. For any β1, β2, β3 ∈ {0, 1}, if fρ(β1, β2, β3) = β′1, then fρ(β′1, β2, β3) = β1.
Furthermore, for any β′2, β′3 ∈ {0, 1}, fρ(fρ(β1, β2, β3), β′2, β′3) = fρ(β1, β2 ⊕ β′2, β3 ⊕ β′3), and
in particular, fρ(fρ(β1, β2, β3), β2, β3) = β1.

For each maximal Fρ grid interval [g1, g2], let J(g1, g2) = [g1 − t1 − k, g2 + t1 + k] and let
J be the union over all such sets. We also define J1(g1, g2) = [g1 − t1, g2 + t1] (for each Fρ

grid interval [g1, g2]), and let J1 ⊂ J be the union over all such sets.
We first establish two simple claims.

▷ Claim 10. Let ρ be any local rule that satisfies Conditions 1–4. For every two maximal
Fρ grid interval [g1, g2] and [g′1, g′2], we have that J(g1, g2) ∩ J(g′1, g′2) = ∅.
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▷ Claim 11. Let ρ be any local rule that satisfies Conditions 1–4. Let ENV′′ be any
environment that is a feasible extension of ENVt1 [G] with respect to ρ, and let [g1, g2] be
a maximal Fρ grid interval (with respect to ENVt1 [G]). Then ENV′′0(Γk(i)) ∈ Fρ for every
i ∈ J1(g1, g2). Furthermore, ENV′′0(Γk(i)) = h←ρ (ENVt1(Γk(g)), parity(t1), −−→dist(i, g)) for any
g ∈ G ∩ [g1, g2] and every ancestor (0, i) of (t1, g).

Observe that Claim 11 implies that ENV′′0 is uniquely determined by ENVt1 [G] on all
location in J for every ENV′′ that is a feasible extension of ENVt1 [G] (with respect to ρ). Based
on this observation, we start by setting the locations of σ that belong to J as in such ENV′′0 .
In particular we have that σ(Γk(i)) ∈ Fρ for every i ∈ J1, and furthermore,

∀i ∈ J1, g ∈ G s.t. (t1, g) descends from (0, i) and,

σ(Γk(i)) = h←ρ (ENVt1(Γk(g)), parity(t1), −−→dist(i, g)) . (7.1)

Turning to the locations not yet set in σ, for each location i ∈ Zn \ J , σ(i) =
fρ(ENVt2(i), parity(t2), 0). Note that by Observation 9, fρ(σ(i), parity(t2), 0) = ENVt2(i).

We next explain how we modify σ so as to obtain ENV′0 using Condition 5 and Condition 6.
The modifications are performed (strictly) within the following set of intervals S.

S =
{[

a = g1 − ∆ + t1, b = g2 + ∆ − t1
]

: [g1, g2] is a maximal Fρ grid interval
}

. (7.2)

The intervals in S are clearly disjoint (as each is a sub-interval of a different maximal
Fρ grid interval), and by Observation 3, each is non-empty. Note that for each maximal
Fρ grid interval [g1, g2], we have that g1 − ∆ and g2 + ∆ are endpoints of maximal Fρ grid
interval. Therefore, a, b ∈ J1 for each interval [a, b] ∈ S, and by the setting of σ and Claim 11,
σ(Γk(a)), σ(Γk(b)) ∈ Fρ.

For each [a, b] ∈ S and the corresponding [g1, g2], let α(a, b) = ENVt1(g1), β(a, b) =
ENVt1(g2), γ(a, b) = parity(t1), γ′(a, b) = parity(t1 − ∆). We shall apply Condition 5 and
Condition 6 to modify σ on all [a, b] ∈ S “in parallel” as described next, and set ENV′0 to be
the resulting configuration.

For each [a, b] ∈ S we first apply Condition 6 with z = a, ν = α(a, b), γ = γ(a, b) and
γ′ = γ′(a, b). We let a′ = z′ (recall that z′ ∈ [z + 1, z + 2k + 1] and σ̃(Γk(z′)) ∈ Fρ). Next we
apply Condition 6 in its second (symmetric) variant with z = b, ν = β(a, b), γ = γ(a, b) and
γ′ = γ′(a, b). We let b′ = z′ (recall that in this variant, z′ ∈ [z − 2k − 2, z − 1], and here too
σ̃(Γk(z′)) ∈ Fρ). Finally we apply Condition 5 on the modified configuration with x = a′

and y = b′.

7.2 The distance between ENV and ENV′

In this subsection we show that based on the counter-assumption regarding the number of
violating pairs, the number of pairs (t, i) ∈ Zn × [m] on which ENV and ENV′ differ is at most
ϵmn. To this end we show that each (t, i) such that ENVt(i) ̸= ENV′t(i) belongs to one of the
following sets:
1. The set of pairs (t, i) for which 0 ≤ t ≤ t2.
2. The uncertainty set U .
3. The set of (t, i) pairs where (t, i) is a violation with respect to ENVt1 [G].
By the setting of t2 (t1) and ∆, the number of pairs in the first set is at most (b1+1)ϵ

b0
mn. By

Claim 7, |U | ≤ 5ϵ
b1

mn. By our counter-assumption, the number of violating pairs is at most
ϵ

b2
mn . Setting b1 = 15, b0 = 48 and b2 = 3, we get a total of at most ϵmn pairs, as claimed.
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Figure 7.1 An illustration for the setting of ENV0. As in Figure 4.1, [g1, g2] is a maximal Fρ grid
interval, g3 = g2 + ∆, where [g3, g4] is a maximal Fρ grid interval, and g5 = g4 + ∆ is an endpoint
of a maximal Fρ grid-interval. The maximal Fρ grid interval [g3, g4] is used to set the locations
between g3 − t1 = g2 − t1 + ∆ and g4 + t1 (more precisely, between g3 − t1 − k and g4 + t1 + k based
on Claim 11. The location b = g2 − t1 + ∆ is an endpoint of an interval in S, and the location b′ is
determined by the application of Condition 6. The values in the k-neighborhood of b′ are set so that
the evolution of ρ will result in the ENVt1 (g2) at time t1. The pair (t, i) belongs to the set B.

To establish the claim that each (t, i) for which ENVt(i) ̸= ENV′t(i) belongs to one of the
above three sets, we prove the contrapositive. Suppose the pair (t, i) is not in the uncertainty
set U and that t > t2. It follows that (t, i) ∈ A ∪ B ∪ C. We show that for each of the three
types of pairs ((t, i) ∈ A, (t, i) ∈ B, and (t, i) ∈ C), if the pair (t, i) is not a violating pair
with respect to ENVt1 [G], it must hold that ENVt(i) = ENV′t(i).

Pairs (t, i) ∈ A. By the definition of A, there exists a maximal Fρ grid interval [g1(i), g2(i)]
(with respect to ENVt1) for which i ∈ [g1(i) + t1, g2(i) − t1]. Since (t, i) is not a violating pair
with respect to ENVt1 [G], it must hold that ENVt2(Γk(i)), ENVt(Γk(i)) ∈ Fρ and that ENVt(i) =
fρ(ENVt2(i), parity(t − t2), 0). Since i ∈ [g1(i) + t1, g2(i) − t1], we know that i /∈ J . Hence, by
the definition of the configuration σ, we have that σ(i) = fρ(ENVt2(i), parity(t2), 0) and that
σ(Γk(i)) ∈ Fρ. Let [a(i), b(i)] = [g1(i) − ∆ + t1, g2(i) + ∆ − t1], so that i ∈ I(a(i), b(i)). By
the definition of E′0, based on Condition 5 we have that ENV′0(i) = σ(i) and ENV′0(Γk(i)) ∈ Fρ.
Since ENV′ evolves according to ρ, by Condition 3,

ENV′
t2 (i) = fρ(ENV′

0(i), parity(t2), 0) = fρ(fρ(ENVt2 (i), parity(t2), 0), parity(t2), 0) = ENVt2 (i)

where the last equality follows from (the second part of) Observation 9. Additionally, by
Condition 1, ENV′t2

(i) ∈ Fρ. Therefore, by Condition 3,

ENV′t(i) = fρ(ENV′t2
(i), parity(t − t2), 0) = fρ(ENVt2(i), parity(t − t2), 0) = ENVt(i) .

Pairs (t, i) ∈ B. By the definition of B, there exists a maximal Fρ grid interval [g1(i), g2(i)]
with respect to ENVt1 such that either i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1] or i ∈
[g2(i) − t1 + ∆ + 1, g2(i) + (t − t1)]. Assume (without loss of generality) that the latter
holds. By the definition of B we also know that for every other maximal Fρ grid interval
[g′1, g′2] it holds that dist(i, g2(i)) < dist(i, g′1), dist(i, g′2) − ∆. Let g(i) be the grid location
closest to i in [g2(i) − t1 + ∆, g2(i)]. Since i ∈ [g2(i) − t1 + ∆ + 1, g2(i) + (t − t1)], necessarily,
g(i) ∈ [g2(i) − t1, g2(i)]. For the sake of conciseness, in what follows we shall use g1, g2, and
g as a shorthand for g1(i), g2(i) and g(i), respectively.
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Since [g1, g2] is a maximal Fρ grid interval, [a = g1 − ∆ + t1, b = g2 + ∆ − t1] ∈ S.
Hence, to obtain ENV′0 from the configuration σ, we invoked Condition 6 (the symmetric
version) with z = b, ν = ENVt1(g2), γ = parity(t1), and γ′ = parity(t1 −∆) = parity(dist(g2, b)).
By Condition 6, letting b′ = z′, ENVt1(g2) = fρ(ENV′0(b′), parity(t1), parity(dist(g2, b′))). By
Observation 9,

ENV′0(b′) = f←ρ (ENVt1(g2), parity(t1), parity(dist(g2, b′))) . (7.3)

As b′ ∈ [b − 2k − 1, b − 1], which by the setting of b implies that b′ ∈ [g2 + ∆ − t1 − 2k −
1, g2 + ∆ − t1 − 1], we have that (0, b′) is an ancestor of (t1, j) for every j ∈ [g2 − t1, g2]. In
particular this holds for the grid location g (that is closest to i in G ∩ [g2 − t1, g2]). Since
(t, i) descends from (t1, g), we get that (t, i) also descends from (0, b′).

We claim that for every b′′ ̸= b′ with dist(i, b′′) < dist(i, b′) it holds that ENV′0(b′′) ∈ Fρ. To
verify this, let [g3, g4] be the maximal Fρ grid interval where g3 = g2 +∆, and let g5 = g4 +∆,
so that g5 is the endpoint of a maximal Fρ grid interval. By the definition of ENV′0 (based on
σ and Condition 6) we have that ENV′0(Γk(j)) ∈ Fρ for every j ∈ [b′ + 1, b − 1] ∪ J1(g3, g4) =
[b′ + 1, g4 + t1]. Since (by the second requirements on pairs in B), dist(i, g2) < dist(i, g5) − ∆
and b′ ∈ [g2 − t1 + ∆ − 2k − 1, g2 − t1 + ∆ − 1], we have that ENV′0(b′′) ∈ Fρ for every b′′ ̸= b′

with dist(i, b′′) < dist(i, b′). Therefore, we can apply Condition 3 to obtain that

ENV′t(i) = fρ(ENV0(b′), parity(t), parity(dist(i, b′)))
= fρ(fρ(ENVt1(g2), parity(t1), parity(dist(g2, b′))), parity(t), parity(dist(i, b′))) (7.4)
= fρ(ENVt1(g2), parity(t − t1), parity(dist(i, g2))) (7.5)

where the last equality follows from Observation 9.
Consider first the case that g = g2. Since the pair (t, i) is not a violating pair,

ENVt(i) = fρ(ENVt1(g2), parity(t − t1), parity(dist(i, g2))) , (7.6)

and hence in this case, ENVt(i) = ENV′t(i), as desired. We next turn to the case that g ≠ g2.
We claim that since ENVt1 [G] is feasible,

ENVt1(g) = fρ(ENV′0(b′), parity(t1), parity(dist(g, b′))) . (7.7)

Conditioned on Equality 7.7 holding, the argument is the same as for the case that g = g2
(replacing g2 with g in Equations (7.4)–(7.6)).

To verify Equation (7.7), we introduce the notion of a source for a final pair. Let ENV′′ be
an environment that evolves according to ρ, and (t′, i′) a final pair with respect to ENV′′ and
ρ. We say that (0, b′′) is the source of (t′, i′) (at time 0) in ENV′′ if (0, b′′) is an ancestor of
(t′, i′), is final, and dist(b′′, i′) < dist(j, i′) for every other final (0, j). Consider any feasible
extension E′′ of ENVt1 [G]. By Claim 11 and the discussion above, the source (0, b′′) of
(t1, g2) (at time 0 in ENV′′) must satisfy b′′ ∈ [g2 − t1, g2 − t1 + ∆ − 1]. Furthermore, (0, b′′)
must also be the source of (t1, g′) for every grid location g′ ∈ [g2 − t1, g2]. Therefore, for
each such grid location, ENVt1(g′) = ENV′′t1

(g′) = fρ(ENV′′0(b′′), parity(t1), parity(dist(g′, b′′))),
where ENV′′0(b′′) = f←ρ (ENVt1(g2), parity(t1), parity(dist(g2, b′′))). If fρ and f←ρ do no depend
on their third argument, then, by Equation (7.3), ENV′0(b′) = ENV′′0(b′′) and if they do, then
ENV′0(b′) = ENV′′0(b′′) ⊕ parity(dist(b′, b′′)) . In either case, Equation (7.7) follows.

Pairs (t, i) ∈ C. By the definition of C, there exists a maximal Fρ grid interval [g1(i), g2(i)]
such that g1(i) ≤ i ≤ g2(i). Additionally, the pair (t, i) does not descend from either the
pair (t1, g1(i) − 1) or from the pair (t1, g2(i) + 1). Let g(i) be the grid location defined in
Definition 11 (of violating pairs in C), so that g(i) ∈ G ∩ [g1(i), g2(i)] and dist(i, g(i)) < ∆.
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By the definition of ENV′0 (based on σ – recall Equation (7.1)), we have that
ENV′0(Γk(i)) = h←ρ (ENVt1(Γk(g(i))), parity(t1), −−→dist(i, g(i))). By the definition of h←ρ (Defin-
ition 8), this implies that ENVt1(Γk(g(i))) = hρ(ENV′0(Γk(i)), parity(t1), −−→dist(i, g(i))). Since
ENV′0(Γk(j)) ∈ Fρ for every location j ∈ J(g1(i)), g2(i)), and the environment ENV′

evolves according to ρ where ρ satisfies Condition 4, we know that ENV′t1
(Γk(g(i))) =

hρ(ENV′0(Γk(i)), parity(t1), −−→dist(i, g(i))). Hence, ENV′t1
(Γk(g(i))) = ENVt1(Γk(g(i))). Further-

more, using in addition the fact that (t, i) does not descend from either (t1, g1(i) − 1)
or (t1, g2(i) + 1), we get all ancestors of (t1, j) of (t, i) satisfy ENV′t1

(Γk(j)) ∈ Fρ, so
that ENV′t(Γk(i)) = hρ(ENV′t1

(Γk(g(i))), parity(t − t1), −−→dist(g(i), i))). Since (t, i) is not a
violating pair, ENVt(Γk(i)) = hρ(ENVt1(Γk(g(i))), parity(t − t1), −−→dist(g(i), i)), and using
ENV′t1

(Γk(g(i))) = ENVt1(Γk(g(i))) we get that ENV′t(i) = ENVt(i).
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Abstract
We study decision problems for sequences which obey a second-order holonomic recurrence of
the form f(n + 2) = P (n)f(n + 1) + Q(n)f(n) with rational polynomial coefficients, where P is
non-constant, Q is non-zero, and the degree of Q is smaller than or equal to that of P . We show
that existence of infinitely many zeroes is decidable. We give partial algorithms for deciding the
existence of a zero, positivity of all sequence terms, and positivity of all but finitely many sequence
terms. If Q does not have a positive integer zero then our algorithms halt on almost all initial values
(f(1), f(2)) for the recurrence. We identify a class of recurrences for which our algorithms halt for
all initial values. We further identify a class of recurrences for which our algorithms can be extended
to total ones.
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1 Introduction

A sequence (f(n))n≥1 of real numbers is called holonomic or P-finite if its terms satisfy an
algebraic equation of the form

Pr(n)f(n + r) + Pr−1(n)f(n + r − 1) + · · · + P0(n)f(n) = 0,

where P0, . . . , Pr ∈ R[X] are polynomials, not all zero. The number r is called the order of the
recurrence. When all polynomials Pr, . . . , P0 are constant we recover the familiar example of
ordinary linear recurrence sequences. Alternatively, holonomic sequences are characterised as
the coefficients of formal power series which satisfy a non-trivial homogeneous linear ordinary
differential equation with polynomial coefficients [10]. Strikingly, holonomic sequences with
rational polynomial coefficients can be tested for equality automatically [11]. This allows for
automatic proving of highly non-trivial special function identities with numerous applications
in mathematics and the sciences [7].

It is natural to ask if holonomic sequences can be automatically tested for inequality as
well. This reduces to the problem of deciding whether all terms of a given holonomic sequence
(f(n))n are positive. In full generality this question seems to be completely out of reach,
even in the case where the polynomials Pr, . . . , P0 are all constant. While this problem, often
called the Positivity Problem, is widely believed to be decidable in the constant coefficient
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Figure 1 Example of a partition of the space of initial values into the five regions identified in
Theorem 1. The asymptotic dynamic behaviour of the signs of a sequence is completely determined
by the region containing the initial values.

case, a feasible decision method for linear recurrences of order six or higher would entail
major breakthroughs in Diophantine approximation [6]. Nonetheless, decision methods are
known for constant coefficient linear recurrence sequences of order up to five.

There is hence some hope that one can obtain decidability results on the Positivity
Problem for low-order holonomic sequences as well. In this paper we investigate the problem
for sequences satisfying a second-order holonomic recurrence of the form

f(n + 2) = P (n)f(n + 1) + Q(n)f(n) (1)

with P non-constant and 0 ≤ deg Q ≤ deg P . This constitutes arguably the simplest class of
non-trivial instances of the Positivity Problem. By a straightforward reduction, our results
extend to the larger class of holonomic recurrences of the form

R(n)f(n + 2) = P (n)f(n + 1) + Q(n)f(n)

with P non constant, R without positive integer zeroes, and 0 ≤ deg R + deg Q ≤ deg P .
We study the possible behaviours that a sequence satisfying a recurrence of the form

(1) may exhibit as n → ∞. Up to shifting the recurrence by finitely many terms we may
assume that Q does not have any positive integer zeroes. We then show that the plane of
initial values (f(1), f(2)) ∈ R2 decomposes into five disjoint pieces – the origin O, two rays
L+ and L−, and two open half-planes H+ and H− – such that the behaviour of the sequence
(f(n))n≥1 for large n depends only on the piece that contains the initial values and the signs
of the leading coefficients of P and Q. See Figure 1 for a graphical illustration. Depending
on these data, unless the sequence is identically zero, it will be eventually strictly positive,
strictly negative, or alternating between strictly positive and strictly negative. Moreover,
we can compute on each of the five pieces for any initial value a number N such that the
sequence (fn)n has the described behaviour for all n ≥ N .

Up to potentially shifting the recurrence by finitely many terms, the line L = L+ ∪L− ∪O

has a well-defined slope, given by the (necessarily convergent) continued fraction − K∞
n=1

Q(n)
P (n) .

This allows us to approximate the line L numerically to any given finite precision. We can
hence determine, by means of a potentially non-terminating algorithm, if a given pair of
rational initial values (f(1), f(2)) ∈ Q2 is outside the line and in that case determine the
behaviour of the sequence for large n. This yields a partial algorithm for deciding the
Positivity Problem and related problems on the class of sequences satisfying recurrences of
the form (1).
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While we do not obtain a total algorithm for all second-order holonomic recurrences
of the form (1), we identify a class of recurrences for which the slope of the line L is an
effectively computable rational number. In this case we can extend our algorithm to a total
one. One can effectively check if a given recurrence belongs to this class.

Our algorithm is also total for the class of all recurrences such that the slope of the line
L is irrational. We establish non-trivial effective criteria that guarantee this.

Related Work. Decidability of the Positivity Problem for second-order holonomic sequences
is investigated in [4]. It is shown that for sequences with linear polynomial coefficients, the
Positivity Problem reduces to the problem of deciding the equality of certain effectively given
quantities, closely related to periods [5] whose equality is conjectured to be decidable [5,
Conjecture 1].

Gerhold and Kauers [2] give a partial algorithm for deciding Positivity for general
holonomic sequences based on symbolic methods from real algebraic geometry. To the best of
our knowledge its precise termination behaviour is not known, even for low-order sequences.
Further practical partial algorithms in the spirit of [2] are introduced in [3, 8, 9]. In those
papers sufficient termination criteria are given for recurrences of the form

Pr(n)f(n + r) + · · · + P0(n)(f) = 0

with deg P0 = deg Pr and deg Pj ≤ deg P0 for all j ≤ r. This situation is disjoint from the
one we investigate. Similarly to our main result, one of the algorithms in [3] is shown to
terminate for all second-order recurrences of the above form on almost all initial values. All
further termination criteria established in the aforementioned papers put restrictions on
the eigenvalues of the holonomic recurrence but no restrictions on the initial values. The
algorithms may fail to converge for all initial values of a recurrence that does not meet the
restrictions on the eigenvalues.

Key contributions. There remains a dearth of algorithmic results on positivity and inequality
problems for second-order (and higher) holonomic sequences. The present paper makes two
substantial contributions to these outstanding open problems: (i) we identify a large class of
second-order holonomic recurrences for which we can precisely characterise all the possible
asymptotic behaviours (Theorem 1); and (ii) building upon this, we identify a substantial
subclass of holonomic sequences for which we exhibit total algorithms for the Positivity and
Skolem problems.

2 Results

Let us first introduce the decision problems we seek to investigate. The Skolem Problem is
the problem of deciding for a given recurrence of the form (1) and for given initial values
f(1), f(2) if the induced recurrence sequence (f(n))n has a zero. The Infinite Zero Problem
asks if the sequence (f(n))n thus given has infinitely many zeroes. The Positivity Problem
asks if all terms of the sequence (f(n))n are positive. The Ultimate Positivity Problem is
the problem of deciding if there exists an index N such that all terms f(n) with n ≥ N are
positive.

Our results are best stated for holonomic recurrences that are normalised in the following
sense. A second-order holonomic recurrence f(n + 2) = P (n)f(n + 1) + Q(n)f(n) with P

non-constant and 0 ≤ deg Q ≤ deg P is said to be in normal form if P, Q ∈ Z[X] are integer
polynomials such that P has a positive leading coefficient, P and Q have no positive real
zeroes, P (n)2 + 4Q(n) > 0 for all positive integers n, and there is no prime number p such
that p divides all coefficients of P and p2 divides all coefficients of Q.

ICALP 2021
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For the most part, the above assumptions on P and Q do not present essential restrictions:
Given any second-order holonomic recurrence of the form (1) we can effectively compute
integers c and N such that the holonomic recurrence g(n+2) = cP (N +n)g(n+1)+c2Q(N +
n)g(n) is in normal form. For any given pair of initial values f(1), f(2) ∈ Q, we can effectively
compute g(1) = cN+1f(N + 1) and g(2) = cN+2f(N + 2). The sequence (g(n))n is then
equal to (cnf(n))n>N . Thus, the behaviour of (f(n))n is easily deduced from that of (g(n))n

and the finite sequence f(1), . . . , f(N). In particular, the above mentioned decision problems
reduce in this way to their specialisation to recurrences in normal form. However, since in
general there may exist initial values for which our algorithm is not guaranteed to terminate,
we also need to understand which initial values for the original recurrence get mapped to
such ones. We will discuss this below, after we have stated our main results.

It is worth pointing out that our results extend to holonomic recurrences of the form
R(n)f(n + 2) = P (n)f(n + 1) + Q(n)f(n) with P non constant, R without positive integer
zeroes, and 0 ≤ deg R + deg Q ≤ deg P . Indeed, if (f(n))n satisfies a recurrence of this
form then the sequence g(n) = R(1) · · · · · R(n)f(n) satisfies the recurrence g(n + 2) =
R(n + 2)P (n)f(n + 2) + R(n + 2)R(n + 1)Q(n), which falls within the class we investigate.
Note that up to shifting the recurrence appropriately we may assume that R(n) has constant
(non-zero) sign, so that the behaviour of (f(n))n is easily deduced from that of (g(n))n.

Our first result is a complete classification of the possible behaviours that a holonomic
recurrence of the form (1) may exhibit for large n. We say that a sequence (xn)n of real
numbers is eventually positive if there exists an N ∈ N such that xn > 0 for all n ≥ N . We
say that it is eventually negative if there exists an N ∈ N such that xn < 0 for all n ≥ N .
We say that it is eventually alternating if there exists an N ∈ N such that xN ̸= 0 and
sgn(xn+1) = − sgn(xn) for all n ≥ N . We say that it is eventually zero if there exists an
N ∈ N such that xN = 0 for all n ≥ N . In each of these cases we call any admissible choice
for N a witness for the respective behaviour.

▶ Theorem 1. Let f(n + 2) = P (n)f(n + 1) + Q(n)f(n) be a holonomic recurrence in
normal form. Then there exists a partition of R2 into five pieces, the origin O, two rays
L+ and L−, and two open half-planes H+ and H−, such that for all pairs of initial values
(f(1), f(2)) ∈ R2 we have:
1. If (f(1), f(2)) ∈ O then the sequence is constant equal to zero.
2. If (f(1), f(2)) ∈ H+ then the sequence is eventually positive.
3. If (f(1), f(2)) ∈ H− then the sequence is eventually negative.
4. If (f(1), f(2)) ∈ L+ then the sequence is eventually positive if the leading coefficient Q is

negative, and eventually alternating if the coefficient is positive.
5. If (f(1), f(2)) ∈ L− then the sequence is eventually negative if the leading coefficient Q

is negative, and eventually alternating if the coefficient is positive.

We will call the line L = O ∪ L+ ∪ L− the critical line of the holonomic recurrence. We
can compute its slope to any given finite precision thanks to the following continued fraction
representation:

▶ Proposition 2. Let f(n + 2) = P (n)f(n + 1) + Q(n)f(n) be a holonomic recurrence
in normal form. Then we can compute a number N such that for the shifted recurrence
g(n + 2) = P (n + N)g(n + 1) + Q(n + N)g(n), in the notation of Theorem 1, the line
L = O ∪ L+ ∪ L− has slope

−
∞

K
n=N

Q(n)
P (n) = −

Q(N)

P (N) +
Q(N + 1)

P (N + 1) + . . .

.
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Theorem 1 suggests the following computational problem: given a holonomic recurrence
in normal form and initial values (f(1), f(2)) ∈ Q2, report whether the sequence (f(n))n thus
defined is eventually positive, eventually negative, eventually alternating, or eventually zero
and output a witness N for this. Let us call this the Ultimate Sign Problem. By Theorem 1
this problem is well-defined. It is clear that the Skolem Problem, the Positivity Problem, the
Ultimate Positivity Problem, and the Infinite Zero Problem reduce to this.

Unfortunately we only obtain a partial computability result:

▶ Theorem 3. There exists an algorithm which takes as input a holonomic recurrence
f(n + 2) = P (n)f(n + 1) + Q(n)f(n) in normal form, together with a pair (f(1), f(2)) ∈ Q2

of rational initial values and halts if and only if (f(1), f(2)) /∈ L+ ∪ L−. Upon halting the
algorithm reports if (f(1), f(2)) is zero, belongs to H+, or belongs to H−, and in the latter
two cases returns a number N such that the sequence (f(n))n has constant sign for all
n ≥ N .

Theorem 3 yields a total algorithm for deciding the Infinite Zero Problem and partial
algorithms for deciding the Skolem Problem, the Positivity Problem, and the Ultimate
Positivity Problem. The set of problem instances where the algorithm does not halt is “small”
in the sense that it is contained in a set of codimension one.

While we do not obtain a total algorithm in general, there are special instances for which
we do. To describe these instances we need to introduce further concepts. The companion
matrix of the holonomic recurrence (1) is the matrix

M(n) =
(

0 1
Q(n) P (n)

)
.

Note that we have(
f(n)

f(n + 1)

)
=

n−1∏
j=1

M(j)
(

f(1)
f(2)

)
.

Its nth characteristic polynomial is given by

z2 − P (n)z − Q(n).

For holonomic recurrences in normal form, the discriminant of this polynomial is by definition
strictly positive for all n ∈ N. Hence the characteristic polynomial has two distinct real roots

λ1(n) = 1
2

(
P (n) +

(
P (n)2 + 4Q(n)

)1/2
)

and

λ2(n) = 1
2

(
P (n) −

(
P (n)2 + 4Q(n)

)1/2
)

.

In the case where λ2(n) is a constant function of n we can compute the slope of the line
L, yielding a total algorithm.

▶ Proposition 4. Let f(n + 2) = P (n)f(n + 1) + Q(n)f(n) be a holonomic recurrence in
normal form. If λ2(n) = λ2 is a constant function of n then, in the notation of Theorem 1,

L+ ∪ L− ∪ O =
{

(x, y) ∈ R2 | y = λ2x
}

.

ICALP 2021
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▶ Corollary 5. The Ultimate Sign Problem is computable for the class of all holonomic
recurrences in normal form which have the additional property that λ2(n) is a constant
function of n.

The following criterion allows us to check whether λ2 is constant, increasing, or decreasing:

▶ Proposition 6. Write P (n) = adnd + · · · + a0, Q(n) = bdnd + · · · + b0 with ad > 0. Let

χj = det
(

bd bj

ad aj

)
for j = 1, . . . , d − 1. Let

χ0 = det
(

bd b0
ad a0

)
+ b2

d/ad

The function λ2 is either constant, strictly monotonically increasing for sufficiently large n, or
strictly monotonically decreasing for large n. It is constant if and only if χ0 = · · · = χd = 0.
It is decreasing if and only if there exists a j0 such that χj0 > 0 and χj = 0 for j > j0. It is
increasing if and only if there exists a j0 such that χj0 < 0 and χj = 0 for j > j0.

We also obtain a total algorithm for the Ultimate Sign Problem in the case where the
critical line contains no rational points. We collect some sufficient conditions that guarantee
this.

▶ Theorem 7. Let f(n + 2) = P (n)f(n + 1) + Q(n)f(n) be a holonomic recurrence in
normal form with integer polynomial coefficients P (n) = adnd + · · · + a1n + a0 and Q(n) =
bdnd + · · · + b1n + b0. Then the critical line L contains no non-trivial rational points if any
of the following sufficient conditions is met:
1. bd = 0.
2. | lcof(Q)/ lcof(P )| < 1.
3. | lcof(Q)/ lcof(P )| = 1 and λ2(n) is non-constant, positive and increasing for large n.
4. | lcof(Q)/ lcof(P )| = 1 and λ2(n) is non-constant, negative and decreasing for large n.
5. | lcof(Q)/ lcof(P )| = 1 and λ2(n) is non-constant, positive, decreasing for large n, and{

|a0 + b0 − 1| < 3a1 if d = 1,

|ad−1 + bd−1| < (d + 2)ad otherwise.

6. | lcof(Q)/ lcof(P )| = 1 and λ2(n) is non-constant, negative, increasing for large n, and{
|a0 − b0 + 1| < 3a1 if d = 1,

|ad−1 − bd−1| < (d + 2)ad otherwise.

Finally, let us discuss how the reduction to normal form affects the termination behaviour
of our algorithm. Let f(n + 2) = P (n)f(n + 1) + Q(n)f(n) be a holonomic recurrence of the
form (1), and let g(n + 2) = cP (n + N)g(n + 1) + c2Q(n + N)g(n) be a recurrence in normal
form as above. The map which sends initial values (f(1), f(2)) for the original recurrence to
the initial values (cN+1f(N + 1), cN+2f(N + 2)) for the recurrence in normal form is a linear
map A : R2 → R2. The map A is bijective if and only if Q does not have any positive integer
zeroes. If Q does have positive integer zeroes then the kernel of A is one-dimensional. In the
cases where we have a total algorithm for the Ultimate Sign Problem for the recurrence in
normal form the reduction of course yields a total algorithm. Assume that we only have a
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partial algorithm that halts outside the union of the two rays L+ and L−. If Q does not
have any positive integer zeroes, then applying the partial algorithm for the Ultimate Sign
Problem after the reduction yields an algorithm that halts outside the union of the two
rays A−1(L+) and A−1(L−). Thus, the behaviour of the algorithm is unchanged. If Q has
positive integer zeroes then either A sends all initial values outside its kernel into the union of
the rays L+ and L−, or it sends all such initial values into the union of H+ and H−. In the
latter case we obtain a total algorithm, but in the former case we obtain an algorithm that
only halts on the one-dimensional kernel of A. Thus, in the former scenario the dimension of
the set of inputs which lead to termination decreases by one.

Let us illustrate some of our results with the help of a simple example.

▶ Example 8. Consider the holonomic recurrence

f(n + 2) = (n − 1)f(n + 1) + nf(n).

We have λ1(n) = n and λ2(n) = −1 for all n ∈ N. Proposition 4 allows us to easily compute
the critical line:

L =
{

(x, y) ∈ R2 | x = −y
}

.

Using elementary linear algebra we can explicitly compute the nth term of the sequence:

f(n) = (−1)n f(1) − f(2)
2 +

(
n!

n + 1 +
n−1∑
k=1

(−1)n−kk!
(k + 1)(k + 2)

)
f(1) + f(2)

2 .

We hence have H+ =
{

(x, y) ∈ R2 | x > −y
}

and H− =
{

(x, y) ∈ R2 | x < −y
}

.
Thus, if we fix f(1) > 0 and let ft(2) = −f(1) + t with t ∈ [0, 1] the sequence with

initial values (f(1), ft(2)) is eventually positive for all t > 0. For sufficiently small t > 0 the
sequence will alternate between positive and negative values a finite number N(t) of times
before attaining only positive values. We have N(t) → ∞ as t → 0. For t = 0 the sequence
alternates between positive and negative values forever, a witness for this being given by
N(0) = 1.

If we let the sequence start at the index n = 0 then the matrix product has the following
closed form:

n∏
j=0

M(j) =
(

0 1
0 −1

)
.

Thus, every initial value gets mapped onto the critical line for the same recurrence with
starting index n = 1. The sequence is alternating for all initial values. Since λ2 is a constant
function our algorithm is total and hence able to detect this.

3 Proof of the Results

3.1 Preliminaries
Consider a second-order holonomic recurrence f(n+2) = P (n)f(n+1)+Q(n)f(n) in normal
form. Let M(n) be its companion matrix. Using that M(n) has two distinct real eigenvalues
for all n, write M(n) = S(n)D(n)S(n)−1, where

D(n) =
(

λ2(n) 0
0 λ1(n)

)
, S(n) =

(
1 1

λ2(n) λ1(n)

)
,

S(n)−1 = 1
λ1(n) − λ2(n)

(
λ1(n) −1

−λ2(n) 1

)
.

ICALP 2021
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Then we have:

M(n)M(n−1)·· · ··M(k) = S(n)D(n)S(n)−1S(n−1)D(n−1)S(n−1)−1·· · ··S(k)D(k)S(k)−1.

Intuitively, the products S(n + 1)−1S(n) are very close to the identity matrix for large n,
but we need to study the error terms precisely. Thus, define real-valued functions εi,j(n) by:

S(n + 1)−1S(n) =
(

1 + ε1,1(n) ε1,2(n)
ε2,1(n) 1 + ε2,2(n)

)
.

More explicitly:

ε1,1(n) = λ2(n + 1) − λ2(n)
λ1(n + 1) − λ2(n + 1) ε1,2(n) = λ1(n + 1) − λ1(n)

λ1(n + 1) − λ2(n + 1)

ε2,1(n) = λ2(n) − λ2(n + 1)
λ1(n + 1) − λ2(n + 1) ε2,2(n) = λ1(n) − λ1(n + 1)

λ1(n + 1) − λ2(n + 1)

We want to study the product M(n)M(n − 1) · · · · · M(k). To this end, define functions
a(k, n), b(k, n), c(k, n), and d(k, n) via:

n∏
j=k

M(j) = S(n)
(

a(k, n) b(k, n)
c(k, n) d(k, n)

)
S(k)−1.

Define functions stay-small, switch-big, switch-small, and stay-big as follows:

stay-small(n) = λ2(n + 1)(1 + ε1,1(n)) switch-big(n) = λ2(n + 1)ε1,2(n)
switch-small(n) = λ1(n + 1)ε2,1(n) stay-big(n) = λ1(n + 1)(1 + ε2,2(n)).

A straightforward calculation then shows that we have recursive equations:

a(k, n + 1) = stay-small(n)a(k, n) + switch-big(n)c(k, n)
b(k, n + 1) = stay-small(n)b(k, n) + switch-big(n)d(k, n)
c(k, n + 1) = stay-big(n)c(k, n) + switch-small(n)a(k, n)
d(k, n + 1) = stay-big(n)d(k, n) + switch-small(n)b(k, n). (2)

By definition we have the following initial values:

a(k, k) = λ2(k) b(k, k) = 0 c(k, k) = 0 d(k, k) = λ1(k).

The next three lemmas constitute the key steps in the proof of Theorem 1. We defer
their technical proof to Section 3.4.

▶ Lemma 9.
1. The function λ1(n) is positive, strictly monotonically increasing, and satisfies λ1(n) =

Θ(P (n)) as n → ∞.
2. The function λ2(n) is either positive for all n or negative for all n. It is either constant,

strictly monotonically decreasing for large n, or strictly monotonically increasing for large
n. It satisfies λ2(n) = Θ(ndeg Q−deg P ) as n → ∞.

3. We have stay-big(n) = Θ(P (n)) as n → ∞.
4. We have switch-big(n) = Θ(ndeg Q−deg P −1) as n → ∞.
5. We have stay-small(n) = Θ(ndeg Q−deg P ) as n → ∞.
6. If λ2 is constant then switch-small = 0 for all n. Otherwise switch-small = O(n−2)

and switch-small = Ω(n1−3 deg P ) as n → ∞.
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▶ Lemma 10. We can compute a number K ∈ N such that for all k ≥ K there exists N ∈ N
such that d(k, n) > 0 for all n ≥ N .

▶ Lemma 11. Let K be as in Lemma 10. Let k ≥ K be fixed and n ≥ k + 5 such that
d(k, n′) > 0 for all n′ ≥ n. Then |a(k, n)/d(k, n)| ∈ O(1/nP (n)) and |b(k, n)/d(k, n)| ∈
O(1/nP (n)).

▶ Lemma 12. Let K be as in Lemma 10. Let k ≥ K be fixed and n ≥ k + 3 such that
d(k, n′) > 0 for all n′ ≥ n. Then the sequence c(k, n)/d(k, n) converges to a limit L(k) as
n → ∞. We have L(k) = O(1/k2P (k)2) as k → ∞. The number L(k) is equal to zero if λ2
is constant. If λ2 is decreasing and positive or increasing and negative then the number L(k)
is positive. If λ2 is increasing and positive or decreasing and negative then the number L(k)
is negative. Moreover, for any given p ∈ N we can compute a rational number L̃ ∈ Q with
|L̃ − L(k)| < 2−p.

3.2 Proof of Theorem 1
With the asymptotic behaviour of the matrix entries being established, we can study the
asymptotic behaviour of the sequence (f(n))n. Using Lemmas 10 and 12 we can compute
a number K such that for all k ≥ K, the number L(k) is defined and 1 − L(k) > 0. By
definition of M(n) we have for all k ≥ K:(

f(n)
f(n + 1)

)
=

n−1∏
j=k

M(j)
(

f(k)
f(k + 1)

)

= S(n)
(

a(k, n − 1) b(k, n − 1)
c(k, n − 1) d(k, n − 1)

)
S(k)−1

(
f(k)

f(k + 1)

)
.

By calculating the right hand side explicitly we obtain:

(λ1(k) − λ2(k))f(n) =(
a(k, n − 1) (λ1(k)f(k) − f(k + 1)) +b(k, n − 1) (f(k + 1) − λ2(k)f(k))

+c(k, n − 1) (λ1(k)f(k) − f(k + 1)) +d(k, n − 1) (f(k + 1) − λ2(k)f(k))
)
.

Using Lemma 11 we obtain:

(λ1(k) − λ2(k)) f(n)
d(k,n−1) = (3)

c(k,n−1)
d(k,n−1) (λ1(k)f(k) − f(k + 1)) + (f(k + 1) − λ2(k)f(k)) + O(1/nP (n)) (4)

Passing to the limit as n → ∞ we obtain, using Lemma 12:

lim
n→∞

(λ1(k) − λ2(k)) f(n)
d(k,n−1) = (1 − L(k))f(k + 1) + (λ1(k)L(k) − λ2(k))f(k). (5)

Let ℓ(k) = (1 − L(k))f(k + 1) + (λ1(k)L(k) − λ2(k))f(k). Note that this defines a straight
line for all k, since 1 − L(k) ̸= 0 by assumption.

Now there are two cases:
1. There exists a k ≥ K such that ℓ(k) ̸= 0. In this case the sign f(n) is eventually constant

and the same as that of ℓ(k). It follows from Lemma 12 that ℓ(k) is computable. This
together with the estimate (4) with an effective constant for the O(1/nP (n)) term allows
us to compute an index N such that the sign of f(n) is equal to that of ℓ(k) for all n ≥ N .
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2. We have ℓ(k) = 0 for all k ≥ K. Then the sequence satisfies the first-order recurrence
relation

f(k + 1) = λ2(k) − λ1(k)L(k)
1 − L(k) f(k)

for all k ≥ K. In particular, if λ2 is negative for all k then the sequence (f(n))n≥K is
zero or alternating, and if λ2 is positive then the sign of every sequence element f(n)
with n ≥ K is equal to that of f(K).

Now, since Q(n) is assumed to have no integer zeroes, the matrices M(n) are non-singular
for all n. It follows with the above that if ℓ(n) ̸= 0 then the behaviour of the sequence as
n → ∞ is robust under small perturbations, while if ℓ(n) ̸= 0 then the behaviour changes
under arbitrarily small perturbations of the initial values. It follows that for all n ≥ K, the
matrix M(n) sends the line Ln =

{
(x, y) ∈ R2 | (1 − L(n))y + (λ1(n)L(n) − λ2(n))x

}
to the

line Ln+1. Hence ℓ(k) = 0 for some k ≥ K if and only if ℓ(k) = 0 for all k ≥ K. Thus, the
first case in the above case alternative occurs if and only if ℓ(K) ̸= 0. Also note that since
the matrices M(j) are all invertible, if the sequence (f(n))n is eventually zero then it is
everywhere zero. It follows that in the second case alternative above the sequence is either
eventually alternating or eventually has constant sign.

Let h = M(K − 1) · · · · · M(1). Let

H+ = h−1 ({(x, y) ∈ R2 | (1 − L(K))y + (λ1(K)L(K) − λ2(K))x > 0
})

H− = h−1 ({(x, y) ∈ R2 | (1 − L(K))y + (λ1(K)L(K) − λ2(K))x < 0
})

L+ = h−1 ({(x, y) ∈ R2 | (1 − L(K))y + (λ1(K)L(K) − λ2(K))x = 0, x > 0
})

L− = h−1 ({(x, y) ∈ R2 | (1 − L(K))y + (λ1(K)L(K) − λ2(K))x = 0, x < 0
})

.

Theorems 1 and 3 follow.
Proposition 2 is now proved as follows: For n ≥ K, let S(n) denote the slope of the line

Ln =
{

(x, y) ∈ R2 | (1 − L(n))y + (λ1(n)L(n) − λ2(n))x
}

. Using that M(n) maps Ln onto
Ln+1 we obtain the equation S(n) = − Q(n)

P (n)−S(n+1) . This yields S(K) = − K∞
m=K

Q(m)
P (m) , and

this is the slope of the critical line of the recurrence shifted by K.
If λ2 is a constant function of n then Ln = 0 for all n, as is readily seen from the recursive

equation (2) for c(n, k). Thus, ℓ(K) = y−λ2x. Since the vector (1, λ2) is an eigenvector for all
matrices M(1), . . . , M(K − 1) we have h−1 ({(x, y) | y − λ2x = 0}) = {(x, y) | y − λ2x = 0}.
It follows that we have L+ ∪ L− ∪ O = {(x, y) | y = λ2x}. This establishes Proposition 4.
Corollary 5 follows together with the above discussion.

Let us now prove Proposition 6. Write P (n) = adnd + · · · + a0 and Q(n) = bdnd + · · · + b0
with ad > 0. Then the limit of λ2(n) as n → ∞ is equal to −bd/ad. This follows for instance
from the series representation (10) in Section 3.4. We have seen in Lemma 9 that λ2 is
either constant or strictly monotone. It follows that λ2 is decreasing or constant if and only
if λ2(n) ≥ −bd/ad for all sufficiently large n, with λ2 being decreasing if and only if the
inequality is strict. By writing out the definition of λ2(n) and applying basic algebra we
obtain that this is equivalent to:

P (n) + 2bd/ad ≥
(
P (n)2 + 4Q(n)

) 1
2 .

For sufficiently large n the expressions on both sides are positive, so the inequality is equivalent
to the same inequality with both sides squared:

P (n)2 + 4P (n)bd/ad + 4b2
d/a2

d ≥ P (n)2 + 4Q(n).
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This is further equivalent to the inequality:

P (n)bd − adQ(n) + b2
d/ad ≥ 0.

Proposition 6 follows.

3.3 Proof of Theorem 7
By the proof of Theorem 1 the critical line is, up to potentially shifting the recurrence, given
by the equation

(1 − L(1))f(2) + (λ1(1)L(1) − λ2(1))f(2).

If the equation has a non-zero rational solution then it has a non-zero integer solution. Thus,
assume that the equation has an integer solution (f(1), f(2)) with f(1) and f(2) not both
zero. Then the recurrence sequence (f(n))n satisfies

f(n + 1) = λ2(n) − L(n)λ1(n)
1 − L(n) f(n). (6)

If deg Q < deg P or deg Q = deg P and | lcof(Q)| < | lcof(P )| then it follows from Lemma
9 that |λ2(n)| → c with 0 ≥ c < 1 as n → ∞. It follows from (6) that f(n) ∈ o(1). But since
(f(n))n is an integer sequence it follows that f(n) = 0 for all large n. But then f(n) = 0 for
all n by Theorem 1. Hence, the only integer solution is (0, 0).

It remains to consider the cases where deg Q = deg P and | lcof(Q)| = | lcof(P )|.
We claim that in the case where λ2 is negative and decreasing or positive and increasing

the sequence (f(n))n is bounded. In this case |λ2(n)| < 1 for all n. It follows from (6) and
Lemma 12 that there exists a constant c such that |f(n)| ≤

∏n
k=1(1+ c

k2 )|f(1)|. Boundedness
of the sequence follows by taking logarithms on both sides and noting that the sequence∑∞

n=1 n−2 converges.

We claim that if λ2 is positive and decreasing and d ≥ 2 then |f(n)| ≤ Cn

∣∣ ad−1+bd−1
ad

∣∣
.

By assumption on λ2 and Lemma 12 the number L(n) is positive, so that we have for all
sufficiently large n:∣∣∣∣λ2(n) − L(n)λ1(n)

1 − L(n)

∣∣∣∣ ≤ λ2(n)

There exist constants c and c′ such that for all sufficiently large n we have:

|λ2(n)| ≤ 1 +
∣∣∣∣bd−1 + ad−1

ad

∣∣∣∣ 1
n − c′ + c

n2 .

It follows that, for sufficiently large M and all N ≥ M we have:

f(N) ≤ |f(M)|
N∏

n=M

(
1 +

∣∣∣∣bd−1 + ad−1

ad

∣∣∣∣ 1
n − c′ + c

n2

)
.

Taking logarithms on both sides we obtain:

log f(N) ≤ log |f(M)| +
N∑

n=M

log
(

1 +
∣∣∣∣bd−1 + ad−1

ad

∣∣∣∣ 1
n − c′ + c

n2

)
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Using log(1 + x) = x + O(x2) we obtain:

log f(N) ≤ log |f(M)| +
N∑

n=M

(∣∣∣∣bd−1 + ad−1

ad

∣∣∣∣ 1
n − c′ + c

n2 + O(1/n2)
)

(7)

≤ log |f(M)| +
∣∣∣∣bd−1 + ad−1

ad

∣∣∣∣ log(N) + C ′, (8)

where C ′ is a constant.
We have used in (7) that

∑N
n=1

1
n ≤ log(N) + γ + 1 for all large N , where γ ≈ 0.5572 . . .

is the Euler-Mascheroni constant. Since
∑N

n=1
1
n diverges, it follows that

∑N
n=M

1
n ≤ log(N)

for large M . Now apply the exponential function to both sides of (8):

f(N) ≤ |f(M)|N
∣∣ bd−1+ad−1

ad

∣∣
eC′

.

This proves the claim. An analogous argument shows that f(N) ∈ O

(
N

∣∣ bd−1+ad−1
ad

∣∣)
if λ2

is negative and increasing and d ≥ 2. Analogous claims hold for the case that d = 1. Now,
by assumption we have

L(n) = λ2(n)f(n) − f(n + 1)
λ1(n)f(n) − f(n + 1) . (9)

By our previous considerations, the denominator of this expression is in O( 1
P (n) ) if λ2(n)

is positive and increasing or if λ2(n) is negative and decreasing. If λ2(n) is, say, positive

and decreasing and d ≥ 2 then the expression is in O

(
n

∣∣ bd−1+ad−1
ad

∣∣
P (n)

)
. Similarly for the

other cases we consider. Thus, if λ2(n) is positive and increasing or negative and decreasing,
or for instance if d ≥ 2 and it is positive and decreasing and

∣∣∣ bd−1+ad−1
ad

∣∣∣ < deg P + 2, then
the numerator of (9) has to be in o(1).

In other words, we have a sequence of pairs of non-zero integers (xn, yn) with |xn|, |yn| ≤ np

for some positive integer p such that |λ2(n)xn − yn| → 0 as n → ∞. We may assume that
p ≥ 2. Now use the series representation (10) of λ2(n) computed in Section 3.4:

|λ2(n)xn − yn|

=

∣∣∣∣∣∣−xn

∞∑
m=1

2m−1Q(n)m

m!

m−1∏
j=1

(1 − 2j) P (n)1−2m − yn

∣∣∣∣∣∣
=

∣∣∣∣∣∣xn

2p∑
m=1

2m−1Q(n)m

m!

m−1∏
j=1

(1 − 2j) P (n)1−2m + yn + O
(
npQ(n)2p/P (n)4p−1)∣∣∣∣∣∣

=

∣∣∣∣∣∣P (n)1−4p

xn

 2p∑
m=1

2m−1Q(n)m

m!

m−1∏
j=1

(1 − 2j) P (n)4p−2m

+ ynP (n)4p−1

∣∣∣∣∣∣
+ O

(
npQ(n)2p/P (n)4p−1) .

In order for this to converge to zero we must have

xn

 2p∑
m=1

2m−1Q(n)m

m!

m−1∏
j=1

(1 − 2j) P (n)4p−2m

+ ynP (n)4p−1 ∈ o(P (n)4p−1).
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But the left hand side is an integer linear combination of two polynomials of degree
(4p − 1) deg P . By assumption, their leading coefficients are either equal or additive in-
verses of each other – depending on the sign of λ2(n). It follows that xn = yn or xn = −yn

for all sufficiently large n. Let us without loss of generality assume that the former holds
true.

Then, for all sufficiently large n the lines

Ln = {(x, y) | (λ1(n)L(n) − λ2(n))x + (1 − L(n)) = 0}

are all equal to the diagonal x = y. Since the matrix M(n) sends the line Ln line onto the line
Ln+1, it follows that the vector (1, 1) is an eigenvector for every M(n). The corresponding
eigenvalue must be λ2(n). But since the vector gets mapped to itself it follows that λ2(n) = 1
for all n, contradicting our initial assumption.

3.4 Proof of Lemmas 11 and 12
We will expand the terms a(k, n), b(k, n), c(k, n), and d(k, n) into large sums based on
the above recursive equations. It will be convenient to describe these sums with the
help of a finite automaton. Consider the finite automaton A over the alphabet Σ =
{stay-big, switch-small, stay-small, switch-big} defined in Figure 2.

big small

switch-small

stay-big

switch-big

stay-small

Figure 2 The automaton A.

Let [small → small] ⊆ Σ∗ denote the set of all words that are accepted by A with initial
state “small” and accepting state “small”. Define the sets [small → big], [big → small], and
[big → big] analogously.

For each symbol s ∈ Σ, let JsK : N → R be the obvious function associated with it. For a
word w = w1 · · · · ·ws over the alphabet Σ and n ≥ s, let JwK(n) = Jw1K(n) · · · · ·JwsK(n−s+1).

For k ≤ n, let

A(k, n) = [small → small] ∩ Σn−k B(k, n) = [small → big] ∩ Σn−k

C(k, n) = [big → small] ∩ Σn−k D(k, n) = [big → big] ∩ Σn−k

From the above recursive equations and initial values we obtain for all n > k:

a(k, n) = λ2(k)
∑

w∈A(k,n)

JwK(n − 1) b(k, n) = λ1(k)
∑

w∈B(k,n)

JwK(n − 1)

c(k, n) = λ2(k)
∑

w∈C(k,n)

JwK(n − 1) d(k, n) = λ1(k)
∑

w∈D(k,n)

JwK(n − 1).

We study the asymptotic behaviour of the quotients a(k, n)/d(k, n), b(k, n)/d(k, n), and
c(k, n)/d(k, n). In order to do so, we first need to study the asymptotic behaviour of the
functions stay-big, switch-small, stay-small, switch-big. In the sequel we will denote
these functions by stb, sws, sts, swb for short.
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Recall that we have

λ1(n) = 1
2

(
P (n) +

(
P (n)2 + 4Q(n)

)1/2
)

and

λ2(n) = 1
2

(
P (n) −

(
P (n)2 + 4Q(n)

)1/2
)

The Taylor series expansion of h(x) = x1/2 about x = P (n)2 is

x1/2 =
∞∑

m=0

(x − P (n)2)m

2mm!

m−1∏
j=1

(1 − 2j)

P (n)1−2m.

Hence:

(
P (n)2 + 4Q(n)

)1/2 =
∞∑

m=0

2mQ(n)m

m!

m−1∏
j=1

(1 − 2j)

P (n)1−2m. (10)

Let

ρ(n) =
∞∑

m=1

2m−1Q(n)m

m!

m−1∏
j=1

(1 − 2j) P (n)1−2m.

Then we have

λ1(n) = P (n) + ρ(n),

and

λ2(n) = −ρ(n).

Note that the series
∞∑

m=1

2m−1Q(n)m

m!

m−1∏
j=1

(1 − 2j) P (n)1−2m

is majorised by the geometric series P (n)
∑∞

m=1

(
4Q(n)
P (n)2

)m

. In particular we have

∞∑
m=k

2m−1Q(n)m

m!

m−1∏
j=1

(1 − 2j) P (n)1−2m = O

(
Q(n)k

P (n)2k−1

)
.

Let us now prove Lemma 9.

Proof of Lemma 9. It is clear that λ1(n) is positive and monotonically increasing. It follows
easily from the series representation (10) that λ1(n) has the claimed asymptotic behaviour.

If Q(n) is negative for all n then
(
P (n)2 + 4Q(n)

)1/2
< P (n) and λ2(n) is positive for all

n. If Q(n) is positive for all n then
(
P (n)2 + 4Q(n)

)1/2
> P (n) and λ2(n) is negative for all

n. It follows easily from the series representation (10) that λ2(n) has the claimed asymptotic
behaviour.

The claimed asymptotic behaviour of the functions stb, swb, and sts is easily verified.



E. Neumann, J. Ouaknine, and J. Worrell 99:15

It remains to prove that λ2 is either constant or monotone and to study the asymptotic
behaviour of sws. To this end we compute the derivative of λ2(z) for z ∈ R:

λ′
2(z) = P ′(z)(P (z)2 + 4Q(z))1/2 − P (z)P ′(z) − 2Q′(z)

2(P (z)2 + 4Q(z))−1/2 .

Let A(z) = P ′(z)(P (z)2 + 4Q(z))1/2 and B(z) = P (z)P ′(z) − 2Q′(z). Then A(z)2 and B(z)2

are polynomials. Hence, if the functions A(z) and B(z) are not equal everywhere, then there
exists a positive constant c such that |A(z)2 − B(z)2| ≥ c for all sufficiently large z. Thus,

|A(z) − B(z)| = |A(z)2 − B(z)2|/|A(z) + B(z)| ≥ c/|A(z) + B(z)|.

This already establishes that λ2 is either constant or monotone.
We have sws ∈ Θ(λ2(n) − λ2(n + 1)). If λ2 is constant then clearly sws = 0. Assume

now that λ2 is not constant. The upper bound sws ∈ O(n−2) can be deduced from the
easily established fact that if the degree of P and Q is bounded by d, then the degree of
Q(n)P (n + 1) − Q(n + 1)P (n) is bounded by 2d − 2.

From the series representation (10) we obtain |A(z)+B(z)| ∈ O(z2 deg P −1) and 2(P (z)2 −
4Q(z))−1/2 ∈ O(zdeg P ). It follows that |λ′

2(z)| ∈ Ω(z1−3 deg P ). Then, by the mean value
theorem, |λ2(n) − λ2(n + 1)| ∈ Ω(n1−3 deg P ). ◀

The signs of the coefficients stb, sws, swb, sts can be easily deduced from Lemma 9. They
depend on the behaviour of the function λ2(n). Recall that this function is either constant,
positive, or negative and either increasing or decreasing. This leads to four possible sign
configurations, indicated in Figures 3 - 7.

We will treat the case where λ2 is constant and the case where λ2 is non-constant
separately. Let us focus on the latter case for now. Let D(k, n)+ denote the set of words
in D(k, n) which contain each of the symbols sws and sts an even number of times. Let
D(k, n)− denote its complement. Clearly, for every word w ∈ D(k, n)+, the number JwK(n)
is positive.

The following proposition is trivial but useful when comparing sums over large index sets:

▶ Proposition 13. Let A and B be finite sets of positive real numbers. Let µ : A → B be a
function. Assume that a/µ(a) < ε for some ε > 0 and µ−1(b) contains at most c elements.
Then∑

a∈A

a/
∑
b∈B

b < cε.

▶ Lemma 14. Assume that λ2 is non-constant. For all sufficiently large k and n ≥ k we
have ∑

w∈D(k,n)+

JwK(n − 1) > 2
∑

w∈D(k,n)−

|JwK(n − 1)|

Proof. Let D(k, n)1 denote the set of words with an odd number of sws. Let D(k, n)2 denote
the set of words with an even number of sws. Consider the map µ : D(k, n)1 → D(k, n)2
defined as follows: For a word w ∈ D(k, n)1 there exist unique words p, r such that
w = p · sws · r with sws not occurring in r. Let µ(w) = p · stb|r|+1.

For w = p · sws · r we have

µ−1(µ(w)) =
{

p · sws · stsj · swb · stb|r|−j−1 | j ∈ {0, . . . , |r| − 1}
}

.
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Figure 5 λ2 positive and increasing.
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Figure 6 λ2 negative and increasing.

big small
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Figure 7 λ2 negative and decreasing.

We have

∑
v∈µ−1(µ(w))

|JvK(n − 1)|/|Jµ(w)K(n − 1)|

=
n−k−|p|−2∑

j=0

∣∣∣∣ sws(n−|p|−1)·
∏j

l=1
sts(n−|p|−l−1)·swb(n−|p|−j−2)·

∏n−|p|−j−3
l=k

stb(l)
stb(n−|p|−1)·····stb(k)

∣∣∣∣
≤

n−k−|p|−2∑
j=0

∣∣∣∣c/(n − |p| − 1)2 · cj · c/(n − |p| − j − 2)
P (n − |p| − 1) · · · · · P (n − |p| − j − 2)

∣∣∣∣

for some constant c. Now, for large k we have P (k) > c and we can estimate:
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n−k−|p|−2∑
j=0

∣∣∣∣c/(n − |p| − 1)2 · cj · c/(n − |p| − j − 2)
P (n − |p| − 1) · · · · · P (n − |p| − j − 2)

∣∣∣∣
≤ c2

k(n − |p| − 1)2

n−k−|p|−2∑
j=0

(
c

P (k)

)j

≤ c2

k3
P (k)

P (k) − c
.

It follows that∑
w∈D(k,n)1

|JwK(n − 1)|/
∑

w∈D(k,n)2

|JwK(n − 1)| ≤ c2

k3
P (k)

P (k) − c
.

Define a map σ : D(k, n)2 → D(k, n)+ as follows: For a word w ∈ D(k, n)2, if w contains
the symbol sts an even number of times, let σ(w) = w. If w contains the symbol sts an odd
number of times then there exists a unique integer e ≥ 1 and unique words p, q such that

w = p · sws · stse · q

and q does not contain the symbol sts. Now, let

σ(w) = p · stb · sws · stse−1 · q.

Then σ is a well-defined map of type D(k, n)2 → D(k, n)+. Every word in D(k, n)+ has at
most two preimages under σ.

Let w = p · sws · stse · q ∈ D(k, n)2 be a word which contains the symbol sts an odd
number of times. Then

|JwK(n − 1)|/Jσ(w)K(n − 1) = |sws(n − |p| − 1) · sts(n − |p| − 2)|
|stb(n − |p| − 1) · sws(n − |p| − 2)| ≤ c

P (k)
with the same constant c > 0 as above. It follows that∑

w∈D(k,n)2

|JwK(n − 1)|/
∑

w∈D(k,n)+

JwK(n − 1) ≤ 2.

Further, letting D(k, n)−
2 denote the set of words in D(k, n)2 which contain the symbol sts

an odd number of times, the same estimate shows that∑
w∈D(k,n)−

2

|JwK(n − 1)|/
∑

w∈D(k,n)+

JwK(n − 1) ≤ c

P (k) .

Thus, in total, we have:∑
w∈D(k,n)− |JwK(n − 1)|∑
w∈D(k,n)+JwK(n − 1)

≤
∑

w∈D(k,n)−
2

|JwK(n − 1)| +
∑

w∈D(k,n)1
|JwK(n − 1)|∑

w∈D(k,n)+JwK(n − 1)

=
∑

w∈D(k,n)−
2

|JwK(n − 1)|∑
w∈D(k,n)+JwK(n − 1) +

∑
w∈D(k,n)1

|JwK(n − 1)|∑
w∈D(k,n)2

|JwK(n − 1)| ·
∑

w∈D(k,n)2
|JwK(n − 1)|∑

w∈D(k,n)+JwK(n − 1)

≤ c

P (k) + 2 c2

k3
P (k)

P (k) − c
.

The right hand side converges to zero as k → ∞. In particular it is smaller than 1/2 for all
sufficiently large k, which yields the claim. ◀
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Lemma 14 immediately implies Lemma 10. The computability of the constant K is
obtained by observing that we can effectively find all constants that appear in the estimates
in the proof. We are now ready to prove Lemmas 11 and 12.

Proof of Lemma 11. We only prove the claim for b(k, n). The claim for a(k, n) is proved
analogously.

Let us first assume that λ2 is non-constant. Then by Lemma 14 it suffices to show that∑
w∈B(k,n)

|JwK(n − 1)|/
∑

w∈D(k,n)

|JwK(n − 1)| = O(1/nP (n)).

By Lemma 9 we have sws ∈ Ω(n1−3 deg P ). Define a map µ : B(k, n) → D(k, n) as follows:
for a word w = p · q in B(k, n) with |p| = 5, let µ(w) = stb4 · s · q, where s = sws if
q ∈ [small → big] and s = stb if q ∈ [big → big]. Then the set µ−1(µ(w)) contains at most 16
elements. By Proposition 13 it suffices to show that |JwK(n−1)|/|Jµ(w)K(n−1)| ∈ O(1/nP (n)).

Consider two cases. The first case is that w = p · q with p ∈ [small → small], |p| = 5.
Note that |JpK(n − 1)| is smaller than Jsts5K(n − 1) or Jswb · stb3 · swsK(n − 1). Now,
µ(sts5 · q) = stb4 · sws · q, with

Jsts5 · qK(n − 1)
Jstb4 · sws · qK(n − 1)

= sts(n − 1) · · · · · sts(n − 5)
stb(n − 1) · · · · · stb(n − 4) · sws(n − 5)

= Θ(n5(deg P −deg Q))
Θ(n4 deg P n1−3 deg P )

= O

(
1

nP (n)

)
.

It remains to check the other possibility. µ(swb · stb3 · sws · q) = stb4 · sws · q, with

Jswb · stb3 · sws · qK(n − 1)
Jstb4 · sws · qK(n − 1)

= swb(n − 1)
stb(n − 1) = O(1/n)

Θ(P (n)) = O

(
1

nP (n)

)
.

The second case is that w = p · q with p ∈ [small → big], |p| = 5. Again, |JpK(n − 1)| is
smaller than Jswb · stb4K(n − 1) or Jsts4 · swbK(n − 1). We have µ(swb · stb4 · q) = stb5 · q

with
Jswb · stb4 · qK(n − 1)

Jstb5 · qK(n − 1)
= swb(n − 1)

stb(n − 1) = O

(
1

nP (n)

)
and µ(sts4 · swb · q) = stb5 · q with

Jsts4 · swb · qK(n − 1)
Jstb5 · qK(n − 1)

= sts(n − 1) · · · · · sts(n − 4) · swb(n − 5)
stb(n − 1) · · · · · stb(n − 5) = O

(
1

nP (n)

)
.

This proves the claim.
It remains to examine the case where λ2 is constant. In this case, sws = 0, so that

d(k, n) = stb(n − 1) · · · · · stb(k)λ1(k).

We have

B(k, n) =
{

stse · swb · stbn−k−e | e ∈ {0, . . . , n − k}
}

,

so that

b(k, n) = λ2(k)
n−k∑
e=0

 e∏
j=1

sts(n − j)

 swb(n − e − 1)

 n−k∏
j=e+1

stb(n − j − 1)

 .
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It follows that

b(k, n)/d(k, n) = λ2(k)
λ1(k)

n−k∑
e=0

(∏e
j=1 sts(n − j)

)
swb(n − e − 1)∏e

j=0 stb(n − j − 1)
.

Now, by Lemma 9 there exists a positive constant c such that |sts(n−j)| ≤ c, |swb(n−e−1)| ≤
c/(n − e), and |stb(n − j − 1)| ≥ P (n)/c. Thus:

|b(k, n)/d(k, n)| ≤
n−k∑
e=0

c2e+1

(n − e)P (n) · P (n − 1) · · · · · P (n − e)

≤ c

nP (n − k)

n−k∑
e=0

(c2)e

(n − 1) · · · · · (n − e)

≤ c

nP (n − k)

n−k∑
e=0

(c2)e

e!

≤ c exp(c2)
nP (n − k)

= O(1/nP (n)). ◀

Proof of Lemma 12. If sws = 0 then c(k, n) = 0 for all k and n, so that the claim is trivial.
Let us hence assume that sws ̸= 0. Define a map µ : C(k, n) → D(k, n) as follows: Let w =

p · q ∈ C(k, n) with |q| = 3. If p ∈ [big → big] then let µ(w) = p · stb3. If p ∈ [big → small]
then let µ(w) = p·swb·stb2. One easily verifies that |JwK(n−1)/Jµ(w)K(n−1)| ∈ O(1/k2P (k))
with a constant that does not depend on n. It follows from Lemma 14, Lemma 9, and
Proposition 13 that

|c(k, n)/d(k, n)| = O(1/k2P (k)2) (11)

with a constant that does not depend on n. In particular, for all fixed k the sequence
(c(k, n)/d(k, n))n is bounded.

Now, by (2) we have:

c(k, n + 1)
d(k, n + 1) = stb(n)c(k, n) + sws(n)a(k, n)

stb(n)d(k, n) + sws(n)b(k, n)

= stb(n)c(k, n)
stb(n)d(k, n) + sws(n)b(k, n) + sws(n)a(k, n)

stb(n)d(k, n) + sws(n)b(k, n) .

Thus,∣∣∣∣ c(k, n + 1)
d(k, n + 1) − c(k, n)

d(k, n)

∣∣∣∣
≤ swb(n)c(k, n)

swb(n)d(k, n)
sws(n)b(k, n)

stb(n)d(k, n) + sws(n)b(k, n) + sws(n)a(k, n)
stb(n)d(k, n)

= O(1)O
(

1
nP (n)2

)
+ O

(
1

nP (n)2

)
= O

(
1

nP (n)2

)
.

It follows that the distance
∣∣∣ c(k,n+m)

d(k,n+m) − c(k,n)
d(k,n)

∣∣∣ is majorised by the tail of a convergent series.

The convergence of
(

c(k,n)
d(k,n)

)
n

follows.
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The asymptotics of L(k) follow from (11). The computability of L(k) to any given finite
precision is obtained by observing that we can make all implicit constants in the above
estimates into explicit ones, yielding explicit error estimates.

It remains to compute the sign of L(k). The case where λ2 is constant is trivial. For
the other cases, note that essentially the same argument as in Lemma 14 shows that
the sum

∑
w∈C(k,n)JwK(n − 1) is dominated by the terms with an even number of sts

and an odd number of sws. The number of swb is even in all such terms, so that the
sign of the sum

∑
w∈C(k,n)JwK(n − 1) for sufficiently large n is the sign of sws(k). Since

c(k, n) = λ2(k)
∑

w∈C(k,n)JwK(n − 1), the sign of c(k, n) is the sign of λ2(k) · sws(k). Since
d(k, n) is positive for large n it follows that the sign of L(k) is the sign of λ2(k) · sws(k). ◀
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Abstract
Estimating the length of the longest increasing subsequence (LIS) in an array is a problem of
fundamental importance. Despite the significance of the LIS estimation problem and the amount
of attention it has received, there are important aspects of the problem that are not yet fully
understood. There are no better lower bounds for LIS estimation than the obvious bounds implied
by testing monotonicity (for adaptive or nonadaptive algorithms). In this paper, we give the first
nontrivial lower bound on the complexity of LIS estimation, and also provide novel algorithms that
complement our lower bound.

Specifically, we show that for every ϵ ∈ (0, 1), every nonadaptive algorithm that outputs an
estimate of the LIS length in an array of length n to within an additive error of ϵn has to make
logΩ(log(1/ϵ)) n queries. Next, we design nonadaptive LIS estimation algorithms whose complexity
decreases as the number of distinct values, r, in the array decreases. We first present a simple
algorithm that makes Õ(r/ϵ3) queries and approximates the LIS length with an additive error
bounded by ϵn. This algorithm has better complexity than the best previously known adaptive
algorithm (Saks and Seshadhri; 2017) for the same problem when r ≪ poly log(n). We use our
algorithm to construct a nonadaptive algorithm with query complexity Õ(

√
r · poly(1/λ)) that, when

the LIS is of length at least λn, outputs a multiplicative Ω(λ)-approximation to the LIS length. Our
algorithm improves upon the state of the art nonadaptive LIS estimation algorithm (Rubinstein,
Seddighin, Song, and Sun; 2019) in terms of the approximation guarantee.

Finally, we present a O(log n)-query nonadaptive erasure-resilient tester for monotonicity. Our
result implies that lower bounds on erasure-resilient testing of monotonicity does not give good
lower bounds for LIS estimation. It also implies that nonadaptive tolerant testing is strictly harder
than nonadaptive erasure-resilient testing for the natural property of monotonicity.
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1 Introduction

Estimating the length of the longest increasing subsequence (LIS) in an array is a problem
of fundamental importance. For arrays of length n, one can solve this problem exactly
in time O(n log n) using dynamic programming [9] or patience sorting [2]. Approximating
the length of the LIS has also been well-studied, and there are several sublinear-time
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algorithms [15, 1, 19, 18] for this task. In the approximation task, for a real-valued array A

of size n, the goal is to estimate the length of the LIS within an additive error (of ϵn) or
multiplicative error. An additive ϵn-approximation algorithm for this problem can also be
used to estimate, with the same approximation guarantee, the Hamming distance of A to
the closest sorted array1 (a.k.a. distance to monotonicity).

Early sublinear-time algorithms for LIS estimation [15, 1] provided multiplicative (2+o(1))-
approximation for the distance to monotonicity, and thereby, additive n

2 -approximation to
the length of the LIS. Saks and Seshadhri [19] made a major improvement to the state of the
art, and presented an algorithm that approximates the LIS length to within an additive error
of ϵn for arbitrary ϵ ∈ (0, 1). All these algorithms have query complexity polylogarithmic2

in n for constant ϵ. Subsequently, Rubinstein, Seddighin, Song, and Sun [18] presented a
nonadaptive algorithm that computes a multiplicative Ω(λ3)-approximation to the LIS length,
with query complexity Õ(

√
n·poly(1/λ)), where λ is the ratio of the LIS length to n. In a very

recent work (independent and parallel to ours), Mitzenmacher and Seddighin [11] developed
a sublinear algorithm for LIS estimation with query complexity Õ(n1−Ω(ϵ) · poly(1/λ)) that
obtains an approximation ratio of Ω(λϵ) for arbitrary ϵ ∈ (0, 1).

Despite the significance of the LIS estimation problem and the amount of attention it
has received, there are important aspects of the problem that are not yet fully understood.
There is no better lower bound on the query complexity of LIS estimation, for adaptive or
nonadaptive algorithms, other than the obvious bound of Ω(log n) implied by monotonicity
testing [8]. Another issue is to investigate whether the input length n is the right parameter
to express the complexity of LIS estimation algorithms. In other words, it is unknown
whether there are other input parameters that capture the fine-grained complexity of LIS
estimation by making use of the underlying combinatorics of the problem.

In this paper we address both these issues. We prove the first nontrivial lower bound on
the query complexity of nonadaptive algorithms for additive error LIS estimation. We also
design nonadaptive LIS estimation algorithms whose query complexity is parameterized in
terms of the number of distinct values in the input array.

Lower Bound for LIS Estimation. We show that there is no nonadaptive algorithm
that approximates the LIS length to arbitrary additive error and has query complexity
polylogarithmic in n. Specifically, for arbitrary constant ϵ ∈ (0, 1), every nonadaptive LIS
estimation algorithm that has an additive error bounded by ϵn has to make logΩ(log(1/ϵ)) n

queries. Interestingly, our lower bound construction uses ideas from the lower bound [4] on the
query complexity of 1-sided error nonadaptive testers for the property of (k, . . . , 2, 1)-freeness.
This is the first lower bound that improves upon the obvious lower bound of Ω(log n).

One general approach for proving lower bounds on the complexity of LIS estimation
was proposed by Dixit, Raskhodnikova, Thakurta, and Varma [6], who showed that lower
bounds for erasure-resilient testing of monotonicity provides lower bounds for estimating
the distance to monotonicity up to an additive error. We prove that this method cannot
provide a nontrivial lower bound for LIS estimation, by showing a O(log n)-query nonadaptive
algorithm for erasure-resilient monotonicity testing.

1 It is necessary and sufficient to modify the values that do not belong to an LIS to make the array sorted.
2 The query complexity of the algorithm by Saks and Seshadhri [19] depends on the approximation

parameter ϵ as O((1/ϵ)1/ϵ) and hence is within aforementioned bound only if ϵ is constant. In particular,
the query complexity ceases to be sublinear as as soon as ϵ is O(1/ log(n)).
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Sublinear Algorithms for LIS Estimation. Our starting point here is to understand the
dependence of the query complexity of LIS estimation on the range size of an input array.
This is a major direction of study for the simpler problem of monotonicity testing, since the
only tight lower bound [8] holds for exponential range. Recently, Pallavoor, Raskhodnikova,
and Varma [14], and Belovs [3], gave efficient algorithms for monotonicity testing whose query
complexity beats the above lower bound when range size is small. There were no explicit
results on LIS estimation for limited range size before our work.3 In this paper, we give
efficient nonadaptive LIS estimation algorithms whose complexity is parameterized by r, the
number of distinct values in the array, which is always at most the range size. Our algorithms
improve upon the state of the art algorithms in both complexity and approximation guarantee
when the range is small.

We first show a Õ(r/ϵ3)-query nonadaptive algorithm for LIS estimation, of additive error
ϵn, for arbitrarily small ϵ. In particular, when the LIS length is a constant fraction of n, our
algorithm can be used to get a multiplicative (1 ± ϵ)-approximation for the LIS length. We
add that our algorithm is the only sublinear nonadaptive algorithm giving this approximation
guarantee when r = o(n). Furthermore, when r = o(logk n) (for an appropriate power k), our
algorithm outperforms the adaptive algorithm of Saks and Seshadhri [19], not only in terms
of the dependence of query complexity on the input size n, but also in terms of its dependence
on the approximation parameter ϵ. Hence, our algorithm bridges the gap between the known
Ω(poly log n)-query algorithm for the general range and the O(1)-query algorithm for the
Boolean range.

An additional main result of this paper is a Õ(
√

r)-query nonadaptive algorithm that
gives a multiplicative approximation to the LIS length even when the LIS is relatively
small. Namely, the algorithm makes Õ(

√
r · poly(1/λ)) queries and outputs a multiplicative

Ω(λ)-aproximation to the LIS length, where λ denotes the LIS length normalized by the
input length. This is an improvement over the algorithm by Rubinstein, Seddighin, Song, and
Sun [18], which makes Õ(

√
n · poly(1/λ)) nonadaptive queries and outputs a multiplicative

Ω(λ3)-approximation to the LIS length. Our algorithm improves upon [18] in terms of
approximation guarantee (even in the general case of r = n) as well as query complexity
(when r ≪ n), and further, works for any value of r. Finally, the query complexity of our
algorithm is always better than that of the recent LIS estimation algorithm by Mitzenmacher
and Seddighin [11] that outputs a multiplicative Ω(λϵ)-approximation to the LIS length for
arbitrary ϵ ∈ (0, 1).4

Separating Distance Estimation from Erasure-Resilient Testing. As mentioned before, a
general method for proving lower bounds on distance estimation (or tolerant testing [15]) is
via proving lower bounds on erasure-resilient testing [6].

Our nonadaptive erasure-resilient tester for monotonicity with complexity O(log n) and
our lower bound on the query complexity of nonadaptive algorithms for LIS estimation imply
that nonadaptive tolerant testing is strictly harder than nonadaptive erasure-resilient testing
for the natural property of monotonicity, thereby making progress towards solving an open
question raised by Raskhodnikova, Ron-Zewi, and Varma [16].

3 For the case of Boolean arrays, Berman, Raskhodnikova, and Yaroslavtsev [5] showed that one can
approximate the LIS length to within an additive error of ϵn by making O(1/ϵ2) queries.

4 We point out that the LIS estimation algorithm of Mitzenmacher and Seddighin [11] uses the algorithm
of Rubinstein et al. [18] as a subroutine. By using our algorithm instead, the query complexity of the
algorithm of Mitzenmacher and Seddighin [11] can be improved.
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1.1 Discussion of Results and Overview of Techniques
In this section, we state our results more formally, and provide an overview of the techniques
used to prove them. We use ideas from [18], [12] and [4]. Given a real-valued array A of
length n, an LIS in A is the longest nondecreasing sequence of values in A. In other words,
the LIS is a largest cardinality set L of indices such that for u, v ∈ L, we have u < v if and
only if A[u] ≤ A[v]. We abuse notation and also use the term LIS to denote |L| when this
is clear from the context. A real-valued array of length n can be equivalently viewed as a
function from [n] to the reals. Adopting this view, we use the term monotone array to refer
to a sorted array. Throughout, we denote by r, the number of (or a guaranteed upper bound
on) distinct values in the array. That is, r = |R| for R = {A[i] : i ∈ [n]}. Thus, for the
unrestricted case it is assumed that r = n.

1.1.1 Lower bound on the query complexity of nonadaptive LIS
estimation algorithms

Our first result proves that there is no nonadaptive algorithm that approximates the LIS
length in an array of length n to within an additive error of ϵn and has query complexity
polylogarithmic in n, for arbitrary constant ϵ ∈ (0, 1).

▶ Theorem 1.1. For every ϵ ∈ (0, 1), every nonadaptive algorithm that on an array A of
length n, outputs an additive ϵn-approximation to the length of the LIS in A, has to make
logΩ(log(1/ϵ)) n queries.

We note that this is the first lower bound on LIS estimation that is not directly implied
by the lower bound for testing monotonicity [8].

To prove our lower bound, we construct two distributions with different LIS lengths
such that every deterministic nonadaptive algorithm distinguishing the distributions with
probability at least 2/3, has query complexity logω(1)(n). More specifically, for every natural
number h, we construct distributions D(h)

0 and D(h)
1 that are supported on inputs whose LIS

lengths differ by exp(−h). We then prove that every deterministic nonadaptive algorithm
that takes input from the union of the supports of D(h)

0 and D(h)
1 , and aims to correctly

identify the distribution from which the input is taken, either fails for most inputs or makes
Ω(logh n) queries. Interestingly, our lower bound construction uses ideas from the lower
bound of Ben-Eliezer, Canonne, Letzter, and Waingarten [4] on the query complexity of
1-sided error nonadaptive testers for the property of (k, . . . , 2, 1)-freeness, where an array
A of length n is (k, . . . , 2, 1)-free if there are no k indices i1 < i2 < · · · < ik such that
A[i1] > A[i2] > · · · > A[ik].

Using reductions from erasure-resilient testing

As mentioned before, a general method for proving lower bounds on distance estimation is
via proving lower bounds on erasure-resilient testing [6].

▶ Definition 1.2 (Erasure-resilient monotonicity tester). Given ϵ, α ∈ (0, 1) and a real-valued
array A containing at most α-fraction of erased values5, the goal of an α-erasure-resilient
ϵ-tester for monotonicity is to determine whether A can be completed to a monotone array
or whether every completion of A has Hamming distance at least ϵn to monotonicity.

5 Erasures are made adversarially before the tester makes its queries and the tester is unaware of the
location of the erasures. A tester that queries the value at an erased location is returned a special
symbol ⊥.



I. Newman and N. Varma 100:5

Dixit, Raskhodnikova, Thakurta and Varma [6] observed that the complexity of erasure-
resilient (ER) testing a property, falls in between the complexity of standard testing the
property and estimating the distance to that property (with additive error). Hence, a lower
bound on the complexity of ER testing monotonicity implies the same lower bound for
estimating the LIS length up to an additive error. The only previously known ER tester
for monotonicity [6] is adaptive and has query complexity O(log(n)/ϵ). Hence, a nontrivial
lower bound for (adaptive) LIS estimation cannot be obtained this way.

We present a nonadaptive ER tester that makes O(log n) queries and works for all fraction
of erasures. This makes the results on ER testing monotonicity tight, and also shows that
one cannot obtain a lower bound for LIS estimation via ER testing.

▶ Theorem 1.3. Let ϵ, α ∈ (0, 1) such that α + ϵ < 1. There exists a nonadaptive α-
erasure-resilient ϵ-tester for monotonicity that makes O

(
log n

ϵ2 + 1
ϵ3

)
queries for n-length

arrays.

The ER testers designed by Dixit et al. [6] for various properties, are all either adaptive, or
obtained by repeating a (standard) tester that makes independent and uniformly distributed
queries. Our tester is different, and is in this sense, the first nontrivial nonadaptive ER
tester for a natural property. Consider an array A of length n with at most α fraction
of erasures, where α ∈ [0, 1). Our tester samples an index s ∈ [n] uniformly at random
and does a randomized binary search for s on the array as if it were monotone. It queries
the array values on these indices, and looks for violations to monotonicity on the search
path to s. In case there are no erasures, this is a good strategy to detect a violation to
monotonicity [7]. However, when values at a constant fraction of indices are erased, it could
be the case that most of the values on the search path are erased. We show that a slightly
modified version of this tester can be used for testing monotonicity. Specifically, our tester,
in addition to querying the values along the binary search path, also queries the indices in a
small constant-sized interval around the search point s. To analyze this modified tester, we
rely on a combinatorial lemma by Newman, Rabinovich, Rajendraprasad, and Sohler [12]. A
nonerased index x ∈ [n] is γ-deserted for γ ∈ (0, 1) if there exists an interval I ⊆ [n] such
that x ∈ I and at most γ fraction of the values in I are nonerased. Roughly speaking, the
lemma implies that the fraction of γ-deserted indices in A is proportional to γ · α. Using this,
we are able to argue that, with high probability, the index s that we sample as the search
point is not γ-deserted (for an appropriate choice of γ) and that it forms a violation with
enough other nonerased indices, so as to ensure a high probability of success.

1.1.2 Parameterized and nonadaptive algorithms for LIS estimation
We present efficient nonadaptive LIS estimation algorithms. The novelty is that we paramet-
erize the complexity of LIS estimation algorithms in terms of the number of distinct values r

in an array. We first show an LIS estimation algorithm with query complexity Õ(r).

▶ Theorem 1.4. There exists a nonadaptive algorithm that, given a real-valued array A of
length n containing at most r distinct values, and a parameter ϵ ∈ (0, 1), makes Õ(r/ϵ3)
queries and outputs, with probability at least 2/3, an estimate for the LIS size that is
accurate to within additive ϵn-error. Moreover, the queries of the algorithm are uniformly
and independently distributed, and the algorithm runs in time Õ(r/ϵ3).

We mention that the approximation guarantee provided by the algorithm is quite strong
and holds even for non-constant error parameter ϵ. It matches the approximation guarantee
of the adaptive LIS estimation algorithm by Saks and Seshadhri [19], which makes polylog(n)
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queries when ϵ = θ(1). In particular, when the length of the LIS L is a constant fraction
of n, our algorithm can be used to get a multiplicative (1 ± ϵ)-approximation for the LIS
length. We add that our algorithm is the only nonadaptive sublinear algorithm giving this
approximation guarantee as soon as r = o(n). Furthermore, when r = o(logk n) (for an
appropriate power k), our algorithm performs much better than the algorithm of Saks and
Seshadhri, not only in terms of the dependence of query complexity on the input size n, but
also in terms of the dependence on the approximation parameter ϵ.

The high level idea of the algorithm is that it is enough to restrict attention to special
subarrays that are dense and nice, as elaborated in the following. Let L be a fixed unknown
LIS in the input array. A subarray is dense if a constant fraction of its indices belong to
L, and it is nice if the LIS takes at most one distinct value in the subarray. Informally,
we divide the array into O(r/ϵ) subarrays. This will make most dense subarrays nice with
respect to L (for an appropriate density parameter). We then sample O(log r) indices in
each subarray to find the values that are “typical” in each subarray.

Our goal is to output as an estimate for |L|, the size of L′, which is the restriction of L
to such typical values. This will naturally be an underestimate, but with a small additive
error. To estimate the size of L′, we consider all possible increasing sequences of the typical
values, taking one value from each subarray. Since most subarrays are nice, the size of L′

restricted to such a sequence of values is quite close to |L′|. Finally, for a given nice subarray
Ai, the largest subsequence in Ai that takes one given value v can be easily determined –
this is just the distance to the array taking the value v everywhere.

Next, we use the above Õ(r)-query algorithm to obtain a nonadaptive LIS estimation
algorithm with query complexity Õ(

√
r).

▶ Theorem 1.5. There exists a nonadaptive algorithm that, given a real-valued array A of
length n containing at most r distinct values and |LIS(A)| = λ · n, makes Õ(

√
r · poly(1/λ))

queries and outputs, with probability at least 2/3, an estimate est such that Ω(λ · |LIS(A)|) ≤
est ≤ O(|LIS(A)|). Moreover, the algorithm runs in time Õ(r · poly(1/λ)).

As mentioned before, this result is an improvement over a recent LIS estimation algorithm
by Rubinstein, Seddighin, Song and Sun [18], in terms of the approximation guarantee.
Additionally, the complexity of our algorithm improves as the number of distinct values in
the input array decreases. Another advantage of our algorithm (also that of [18]) is that its
query complexity is sublinear, even if λ is sub-constant.

Our Õ(
√

r)-query nonadaptive algorithm is somewhat complicated. In the following, we
present a high-level description of the algorithm. We denote the input array by A and use
L to denote a fixed LIS in A. We visualize the array values as points in an r × n grid Gn.
The vertical axis of Gn represents the range R of the array and is labeled with the at most r

distinct array values in increasing order and the horizontal axis is labeled with the indices in
[n]. We refer to an index-value pair in the grid as a point. The grid has n points, to which
we do not have direct access. We use queries to the array to form some approximate picture
of the location of points in this grid, and use it to estimate |L|.

The main idea is to build, in Õ(
√

r) queries, a data structure that possesses enough
information to compute an estimate est, which is a lower bound on |L| and is also a reasonably
good approximation. Roughly speaking, the first step in building this data structure is the
following. We divide the r × n grid Gn into y∗ rows and x columns that partitions Gn into a
y∗ ×x grid G′ of boxes, where y∗ = Θ(

√
r) and x = Θ(

√
r). Specifically, we divide the interval

[n] into x contiguous subarrays. For i ∈ [x], let Di denote the i-th subarray. Additionally,
we divide the range R into y∗ contiguous intervals of array values, where for j ∈ [y∗], we use
Ij to denote the j-th interval when the intervals are sorted in the nondecreasing order of
values. The set of boxes in G′ is then {(Di, Ij) : i ∈ [x], j ∈ [y∗]}.
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For simplicity, we assume that r = n for the rest of the high-level description. The y∗ × x

grid of boxes G′ induces a poset on the y∗x boxes, which is similar to the natural poset defined
on Gn. Namely, for two boxes in G′ (or for two points in Gn), we have (Di, Ij) ⪯ (It, Ds)
(or (i, j) ≤ (t, s)) if i ≤ s and j ≤ t. The points in L form a chain in the above poset in
Gn. Conversely, each chain in the poset Gn forms an increasing subsequence in the array A.
Further, the boxes in G′ through which L passes also forms a chain in the poset in G′. On
the other hand, every chain of boxes in the poset in G′ induces a number of chains in the
poset in Gn, but of possibly quite different lengths. Our strategy is to find a small collection
of chains in the poset in G′ that cover all boxes through which the fixed L passes, and then
to estimate the length of an LIS in each of these chains of boxes.

Let I ⊆ R be a subset of the range R of values and B be a subarray of A. The density of
the box (B, I), denoted by den(B, I), is defined to be the fraction of indices in the subarray
B whose values belong to the interval I. In other words, for each box (Di, Ij) ∈ G′, its
density den(Di, Ij) is the fraction of indices in the subarray Di whose values land in the
interval Ij . For β < 1, a box (Di, Ij) is said to be β-dense, if den(Di, Ij) ≥ β. There can be
at most 1

β boxes that are β-dense in any particular subarray Di.
Suppose that we know (a good approximation of) the density of every box in G′ (this is

what we require from our data structure, and this will be achieved via sampling). Then, we
may restrict our attention to the at most x/β dense boxes in G′ and compute the LIS only
in the corresponding part of Gn. This is obviously an underestimate of the size of L, but
one that can be afforded; deleting every box that is not β-dense from the chain of boxes that
L passes through causes the deletion at most βn points from L.

We note that the same global idea is also used in the algorithms of [18] and (implicitly)
also of [19], but in a completely different setting (and grid sizes) which makes the first one
weaker in term of approximation guarantees, and the second one necessarily adaptive.

Next, in order to further reduce the number of possible chains of boxes in which we need
to compute LIS, we note that we can delete large antichains of boxes from G′, while not
decreasing the LIS size by much. For this, we first consider a finer partition of each dense
box into dense cells of nearly equal densities, and then define a poset on the set of all dense
cells in the whole array. We then remove large antichains from this latter poset and argue
that the removal of dense cells participating in these antichains does not hurt the LIS too
much. Finally, by using Dilworth’s theorem, we are able to obtain a collection of a constant
number of chains in G′, that covers the restriction of L to the undeleted boxes.

The next idea is to estimate the LIS in each of the constantly many remaining chains.
This results in a loss of a multiplicative constant factor in the LIS size estimation.

At this point, we have reduced the problem to the estimation of the LIS in a given fixed
chain of β-dense boxes in G′. Such a chain can be partitioned into two chains, one that
contains only strictly horizontal chains on disjoint subarrays, and the other that contains
only strictly vertical chains on disjoint interval ranges (see Figure 3). We will estimate the
LIS in each, losing possibly another multiplicative 2-factor, which we are prepared to accept.

The final idea is the following. For the vertical going chain, one can just sample a constant
number of vertically going subchains, estimate the LIS length in each one of them, and use
these estimates to estimate the LIS length in the vertical chain. By the Hoeffding bound,
this will be a good approximation. When r = n, estimating the LIS in a single vertical going
subchain is trivial; we just query all n/x = Õ(

√
n) points in the subarray Di corresponding

to that subchain. For smaller r, this is not possible, and what we do is to reduce to the
algorithm implied in Theorem 1.4, using the fact that most vertically going chains span a
small range (this later fact will have to be argued from the way the data structure is formed).
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For horizontally going chains, we will need a bit more from our data structure. The
partition G′ of Gn will be such that every layer formed by i ∈ [y∗] contains either a small
fraction of points from L, or it contains only one range value. This is the only place in which
we actually make use of the fact that y∗ = Ω(

√
n), which lower bounds the query complexity

of the algorithm. Having this guarantee on the grid G′, it would have been enough to sample
a constant number of horizontally going subchains, and estimate the LIS within. Further, by
the guarantee above, each horizontal layer in G′ contains only a small number of distinct
values. This implies that we could again employ our algorithm of Theorem 1.4. However,
this will make the whole algorithm adaptive (as one has to “locate” the horizontal segments).
Instead, we show that we can concentrate on short (spanning a constant number of boxes)
subchains, which will allow us to employ the algorithm given by Theorem 1.4 nonadaptively.

1.1.3 Separating erasure-resilient testing from tolerant testing
Tolerant testing is a generalization of property testing [17, 10] defined by Parnas, Ron and
Rubinfeld [15]. Specifically, a (δ, ϵ + δ)-tolerant tester of monotonicity distinguishes, with
probability at least 2/3, between the cases that the distance of A to monotonicity is less
than δn and at least (ϵ + δ)n, where ϵ, δ ∈ (0, 1).

It has been observed [15] that a tolerant tester for a property is equivalent to an algorithm
for estimating the distance to that property with an additive error guarantee. Hence, the
task of estimating the LIS up to an additive error is equivalent to tolerant monotonicity
testing. This allows us to restate Theorem 1.1 in terms of tolerant testing as follows.

▶ Theorem 1.6. For every ϵ ∈ (0, 1), there exists a constant δ ∈ (0, 1) such that every
nonadaptive 2-sided error (δ, δ + ϵ)-tolerant tester of monotonicity has query complexity
logΩ(log(1/ϵ)) n.

Theorem 1.6 and Theorem 1.3 together imply that for the property of monotonicity, non-
adaptive tolerant testing is strictly harder than nonadaptive ER testing, and also significantly
less efficient than adaptive tolerant testing. Our results make progress towards answering
the open question raised by Raskhodnikova, Ron-Zewi, and Varma [16] on the existence of
natural properties for which one can show a separation between tolerant testing and ER
testing in terms of query complexity.

1.2 Organization
We set our notations in Section 2. The proof for an important special case of our lower bound
on the query complexity of nonadaptive LIS estimation (Theorem 1.6) is presented in Section 3
and the proof in its full generality is deferred to the full version [13]. Our nonadaptive
and parameterized algorithm for multiplicative error LIS estimation (Theorem 1.5) and
its analysis are presented in Section 4. Our algorithm for additive error LIS estimation
(Theorem 1.4), and our nonadaptive erasure-resilient monotonicity tester (Theorem 1.3)
can both be found in the full version [13]. All omitted proofs can also be found in the full
version [13].

2 Notations and Preliminaries

For a natural number n, we use [n] to denote the set {1, 2, . . . , n}. For a real-valued array A

of length n, we use A[i] to denote the i-th entry of A for i ∈ [n]. For x ≤ y ∈ [n] we denote
by [x, y] the set {x, x + 1, . . . , y}. The array A is monotone if for every two indices u, v ∈ [n]
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such that u < v, we have A[u] ≤ A[v]. If A is not monotone, two indices u, v ∈ [n] are said
to violate monotonicity if u < v and A[u] > A[v]. For ϵ ∈ (0, 1), we say that A is ϵ-far from
monotone if the values on at least ϵ · n indices need to be modified to get a monotone array.
A is ϵ-close to monotone if there is a way to modify the values on fewer than ϵ · n indices
to get a monotone array. For a parameter α ∈ [0, 1), we say that A is α-erased, if at most
α fraction of the array values evaluate to a special symbol ⊥. An assignment of values to
the erased points in an array is called a completion. An α-erased array is monotone if there
exists a completion that is monotone; it is ϵ-far from monotone if every completion is ϵ-far
from monotone. We assume that algorithms accesses an input array A via an oracle; that is
when the algorithm makes a query i ∈ [n], the oracle returns a special symbol ⊥ if the array
value at index i is erased, and A[i] otherwise. An algorithm is adaptive if its queries depend
on the answers to its previous queries, and is nonadaptive otherwise. A partially ordered set
(poset) is a set P associated with a reflexive, transitive, antisymmetric order relation ⪯ on
its elements. We denote the poset by ⟨P , ⪯⟩. A chain in ⟨P , ⪯⟩ of length k is a sequence
of elements x1 ⪯ x2 ⪯ · · · ⪯ xk. An antichain is a set S ⊆ P such that for u, v ∈ S neither
u ⪯ v nor v ⪯ u.

3 Lower Bounds for Nonadaptive LIS Estimation

In this section, we prove our lower bounds (Theorem 1.1) on the query complexity of 2-sided
error nonadaptive algorithms for estimating the distance of real-valued arrays of length n from
monotonicity up to an additive error of ϵ · n for some constant ϵ ∈ (0, 1). Equivalently, our
lower bounds also hold for algorithms that (δ, ϵ + δ)-tolerant test monotonicity for constants
δ, ϵ ∈ (0, 1). Interestingly, our lower bounds use ideas from the lower bound on the query
complexity of 1-sided error nonadaptive testers for the property of (k, . . . , 2, 1)-freeness [4],
where an array A of length n is (k, . . . , 2, 1)-free if there are no k indices i1 < i2 < · · · < ik

such that A[i1] > A[i2] > · · · > A[ik].
An algorithm is said to be comparison-based if its decisions are based only on the ordering

relation between the queried values, and not on the values themselves. The following
Lemma 3.1, which follows from the work of Fischer [8], states that it is enough to restrict
our attention to comparison-based algorithms.

▶ Lemma 3.1 ([8]). There is an optimal comparison-based algorithm for computing an
additive ϵn-approximation to the LIS in real-valued arrays of length n for all constant
ϵ ∈ (0, 1).

Even though Fischer [8] proves the above statement in the context of testing monotonicity
in the standard model, his proof also works for the case of tolerant testing monotonicity,
and in turn for LIS estimation. In the rest of this section, we restrict our attention to
comparison-based algorithms for LIS estimation.

3.1 An Ω(log2 n) Lower Bound
As a starting point, we prove an Ω(log2 n) lower bound. Throughout this section, we assume
that n is of the form 22x for some natural number x. We prove the lower bound using
Yao’s method. Specifically, we describe two distributions D0 and D1 over real-valued arrays
of length n, with different distances to monotonicity (Lemma 3.2), and show that every
deterministic nonadaptive comparison-based algorithm distinguishing these distributions
with probability at least 2/3, has to make Ω(log2 n) queries (Lemma 3.3).
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Figure 1 The relative values in j1-blocks of D0 either look like the left or right diagrams above,
with equal probability.

For ease in describing our distributions, we first define some notation. We think of the
indices of an array of length n as the leaves of an ordered binary tree T of height log(n) + 1.
We associate bit positions in the log n-bit representation of the numbers in [n] with the
non-leaf nodes of T . The root is associated with the most significant bit (or the bit position
log n). Every node at distance i ∈ [log(n) − 1] from the root is associated with bit position
log(n) − i. The bit position associated with a node is also referred to as its level (and the
level of the root is log n). The edges connecting a node with its left and right children are
labeled 0 and 1, respectively. Clearly, the string obtained by concatenating all the edge labels
on a root-to-leaf path in T gives the binary representation of the index corresponding to the
leaf. For two indices x, y ∈ [n] (which are, by definition, the leaves in T ), we use LCA(x, y) to
denote the lowest common ancestor of x and y in T . For j ∈ [log n] there are obviously n/2j

subtrees of T , each rooted at level j. In a left to right ordering, these n/2j subtrees partition
[n] into blocks of size 2j . The “the ℓ-th j-block” is the ℓ-th block from left with size 2j .

The distributions D0 and D1

We first describe the steps that are common to constructing the distributions D0 and D1.
Sample numbers j1, j2 ∈ [log n] such that j1 < log(n) − 14, and j2 < j1 − 14. We refer to the
numbers j1, j2 as the scales of the distributions.

We start with the monotone array A in which A[u] = u for all u ∈ [n]. Swap the array
values between the left and right halves of every j1-block. See the left part of Figure 1 to
see how the relative values in each j1-block of the array will look like at this point. For
ℓ ∈ [n/2j1 ], let Bℓ denote the ℓ-th j1-block.

Distribution D0: Independently for each ℓ ∈ [n/2j1 ]:
1. with probability 1

2 , for each j2-block inside Bℓ, swap the array values between the left
and right halves of that j2-block.

Distribution D1: Independently for each ℓ ∈ [n/2j1 ]:
1. with probability 1

2 , for each j2-block inside the left half of Bℓ, swap the array values
between the left and right halves of that j2-block,

2. with the remaining probability 1
2 , for each j2-block inside the right half of Bℓ, swap

the array values between the left and right halves of that j2-block.

The relative values taken by the array A on indices in an arbitrary j1-block in distributions
D0 and D1 can be visualized as in Figures 1 and 2. We note that in both D0, D1, all values in
the ℓ-th j1-block are smaller than the values in the (ℓ + 1)-th j1-block for all ℓ ∈ [(n/2j1) − 1].
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Figure 2 The relative values in j1-blocks of D1 either look like the left or right diagrams above,
with equal probability.

▶ Lemma 3.2. The distance to monotonicity of every array sampled from D0 is, with
probability 1 − δ/2, within 5

8 ± δ, where δ ≤ 1
26 . The distance to monotonicity of every array

sampled from D1 is equal to 1/2.

Proof. Consider an array A sampled from one of the distributions. Let j1 > j2 be the scales
used. First, observe that there are no violations to monotonicity across j1-blocks. Therefore,
it is enough to focus on repairing individual j1-blocks and making them monotone (without
inducing new violations). Consider a j1-block Bℓ for ℓ ∈ [n/2j1 ].

Assume that A is constructed from D0, and that Bℓ is such that the values in the left
and right halves of every j2-block in Bℓ are swapped (happens with probability 1

2 for that
block). Then we need to modify the values of at least 3/4 fraction of indices in Bℓ to make
it monotone, since Bℓ contains an exact cover by disjoint decreasing subsequences, each of
size 4. Further, it is easy to see that by correcting a 3/4 fraction of indices we can make Bℓ

monotone. In case swapping of values is done for none of the j2-blocks in Bℓ (happens with
probability 1

2 ), then we can repair Bℓ if and only if we modify the values on half the indices
in Bℓ. Therefore, the expected distance to monotonicity of each block Bℓ, and thereby, of A

is equal to 5/8. Note that the specific values of the scales did not matter in the above.
Let δ = 1/26. We now show that the distance of A from monotonicity is 5

8 ± δ, with
high probability. For a block Bℓ, ℓ ∈ [n/2j1 ], let dist(Bℓ) denote the distance of the block
from monotonicity, normalized by the block length 2j1 . We can see that the random
variable (

∑
ℓ dist(Bℓ))/(n/2j1) corresponds to the normalized Hamming distance of A from

monotonicity. By Hoeffding’s bound, we have, Pr
[∣∣∣∣∑

ℓ
dist(Bℓ)

n/2j1 − 5
8

∣∣∣∣ > 1
26

]
≤ 2

exp(8) ≤ 1
27 = δ

2 .

Assume now that A is constructed from D1. For ℓ ∈ [n/2j1 ], if the swap of values happens
within every j2-block in the left half of Bℓ, then we can repair Bℓ by setting every value
in the left half of that block to the smallest value in the right half of the same block. An
analogous repair can be done if the swap happens in the right hand side of the block. In both
cases, we only change values of at most half the number of indices in each block. The reader
can easily convince themselves that at least half the values per block need to be changed to
make a j1-block monotone, which concludes the proof for the given scales. As before, the
argument is independent of the choice of the scales. ◀

▶ Lemma 3.3. Every comparison-based nonadaptive deterministic algorithm that, with
probability at least 2/3, distinguishes the distributions D0 and D1 has to make Ω(log2 n)
queries.

Proof. Consider an arbitrary deterministic comparison-based nonadaptive algorithm T that
makes o(log2 n) queries and aims to distinguish D0 and D1. Let Q ⊆ [n] denote the set of
queries that T makes.
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Consider an array A sampled according to one of the distributions. Recall that T denotes
an ordered binary tree whose leaves are the indices of A. Let j1, j2 ∈ [log n] such that j2 < j1
denote the scales used while constructing A. Let E denote the (bad) event that Q contains
four indices w < x < y < z ∈ [n] such that for some ℓ ∈ [n/2j1 ], (1) Each of {w, x, y, z}
belongs to the same ℓ-th j1-block, (2) LCA(w, x) and LCA(y, z) are both nodes in T at level
j2, and (3) LCA(x, y) is at level j1. By an argument of Ben-Eliezer, Canonne, Letzter, and
Waingarten [4], the probability, over the choice of the scales j1, j2, of the event E is at most
1/3. In the rest of the proof, we fix the scales (j1, j2) for which E does not happen.

Let x, y ∈ Q be such that LCA(x, y) is at level j2 in T . In the rest of the proof, for
simplicity, we refer to such queries as being j2-cousins. Let B be a j1-block, and let QL(B)
be the queries in Q that are in the left half of B, and QR(B) the queries in Q that are in the
right half of B. By our conditioning, for each j1-block B, either all j2-cousins in B belong
to QL(B) or to QR(B) but not both. Consider the half of B that does not contain any
j2-cousins. In the algorithm’s view, the array values in that half are increasing, whether A is
sampled from D0 or D1.

Assume that A is sampled from D0. We show that there is a way to sample an array A′

from D1 such that the algorithm’s view on A and A′ are identical. The scales of A′ have to
be identical to those of A. We only need to specify how swapping of values is done inside the
j1-blocks, as part of constructing A′.

Note that we only need to consider the j1-blocks in which at least two queries fall.
Consider such a block B, and assume that QR(B) contains no j2-cousins. Consider the case
that swapping of values was done within every j2-block inside the block B while constructing
A. Then, in A′, we swap the values only within the j2-blocks inside the left half of B. In the
other case that no swapping of values (within j2-blocks) was done while constructing A, we
swap the values only within the j2-blocks inside the right half of B. It is easy to see that the
relative values within block B in the array A′ are consistent with that of an array sampled
from D1. One can make similar arguments about coupling the arrays A and A′ on blocks B

such that the only occurrences of indices x, y ∈ Q ∩ B that are j2-cousins are in the right
half of B.

We conclude that for any scales j1, j2 for which E does not happen, the view of the
algorithm making queries Q is identical on A′ and A. Hence the algorithm cannot distinguish
between the case that the array is sampled from D0 or from D1 for such scales. As this is
true for any scales for which E does not happen, this concludes the proof.

Observe that the only place in the analysis where we made use of the bound on the
number of queries is in arguing that the event E happens with low probability. ◀

3.2 A logω(1) n Lower Bound

Next, we strengthen the Ω(log2 n) lower bound and prove Theorem 1.1. We make use of the
idea of Ben-Eliezer et al. [4] for lower bounding query complexity of nonadaptive detection of
larger forbidden order patterns. The idea is to use more than just two scales. This, in turn,
makes the difference between the distances of arrays sampled from the two distributions
smaller, which is why we only get a logω(1) n lower bound.

Let h ≥ 2 be an integer parameter. We describe the two distributions D(h)
0 and D(h)

1
on real-valued arrays, such that no comparison-based deterministic nonadaptive algorithm
that makes o(logh n) queries can distinguish between the distributions with high probability.
Further, the distance to monotonicity of each array sampled from D(h)

0 will be significantly
different than that of arrays sampled from D(h)

1 .
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The distributions are defined recursively, where, for the base case h = 2, let D(2)
0 and

D(2)
1 be equal to D0 and D1 defined with scales j1, j2 as in Section 3.1, respectively. The

details of the distributions and the proof of lower bound for the general case is much more
technical and it is deferred to the full version [13].

4 Parameterized and Nonadaptive Algorithm for LIS Estimation

Our final goal in this paper is to present a sublinear algorithm that, for an array of length
n containing at most r distinct values, approximates the LIS length within a bounded
multiplicative error (Theorem 1.5). Our algorithm is described in the following subsections,
and it uses as a subroutine, the algorithm guaranteed by Theorem 1.4 that approximates
the LIS length within a bounded additive error. The description and analysis of the latter
algorithm can be found in the full version of the paper [13].

4.1 Õ(
√

r)-Query Nonadaptive Algorithm
Let L denote the set of points in an arbitrary and fixed LIS in the input array A. For
simplicity of the presentation, we assume that our algorithm knows a lower bound λn on |L|.
Disregarding this assumption, the algorithm will output, with high probability, a lower bound
estimate of the size of an increasing sequence in A. If λn is indeed a bound as assumed, it
will be guaranteed that the estimate is within the multiplicative error that is stated. Hence λ

can be checked by running the algorithm, in parallel, for a geometrically decreasing sequence
of λ’s. The reader may think of λ < 1 as a small constant (although the algorithm works for
λ = o(1) as well).

Throughout this section, we visualize the array values as points in an r × n grid Gn. The
vertical axis of Gn represents the range R of the array and is labeled with the at most r

distinct array values in increasing order and the horizontal axis is labeled with the indices in
[n]. We refer to an index-value pair in the grid as a point. The grid has n points, to which
we do not have direct access.

We divide the r × n grid Gn into y∗ rows and x columns that partitions Gn into a
y∗ × x grid G′ of boxes, where y∗ = Θ(

√
r) and x = Θ(

√
r). Specifically, we divide the

interval [n] into x contiguous subintervals. For i ∈ [x], let Di denote the subarray induced
by the indices in the i-th subinterval. Additionally, we divide the range R into y∗ contiguous
intervals of array values, where for j ∈ [y∗], we use Ij to denote the j-th interval when the
intervals are sorted in the nondecreasing order of values. The set of boxes in G′ is then
{(Di, Ij) : i ∈ [x], j ∈ [y∗]}.

The y∗ × x grid of boxes G′ induces a poset ⟨P , ⪯⟩ on the y∗x boxes, which is similar
to the natural poset defined on Gn. Namely, for two boxes in G′ (or for two points in Gn),
we have (Di, Ij) ⪯ (Ds, It) (or (i, j) ≤ (s, t)) if i ≤ s and j ≤ t. The points in L form a
chain in the above poset in Gn. Further, each chain in the poset in Gn forms an increasing
subsequence in the array A. The boxes in G′ through which L passes also forms a chain in
the poset in G′. Every chain of boxes in the poset in G′ induces a number of chains in the
poset in Gn, but of possibly quite different lengths.

▶ Definition 4.1 (Density of a box). Let I ⊆ R be a subset of the range R of values and B

be a subarray of A. The density of the box (B, I), denoted by den(B, I), is defined to be the
fraction of indices in the subarray B whose values belong to the interval I.

In other words, for each box (Di, Ij) ∈ G′, its density den(Di, Ij) is the fraction of points in
the subarray Di that land in the box (Di, Ij). For β < 1 (that the reader can think of as a
small constant), a box (Di, Ij) is said to be β-dense, if den(Di, Ij) ≥ β.
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4.1.1 Forming the grid G′ of boxes

Our goal in this section is to describe a procedure that determines the grid G′ of boxes.
Specifically, as we do not know the range R and only know an upper bound r on its size
|R|, we start by forming an approximation of R and an approximation of the densities of
subinterval ranges in R in the array A. To do this, we first partition R into Õ(

√
r) sub-ranges

called layers. For the sake of generality, we describe the procedure for a subarray B of A.
More generally, given a subarray B, and a parameter y, our goal is to partition the range

R into roughly y intervals of roughly equal densities, where the densities are with respect to
B. We note that although the size r of the range R might be relatively large, it is possible
that some values appear in B much more frequently than others. One of our goals is to
identify such values and well-approximate their densities. We now define a “nice” partition as
follows. Given y and B, a nice y-partition of the values in B is a partition R = ∪y∗

i=1Ii, if for
each i ∈ [y∗], either Ii contains only one value vi and den(B, Ii) ≥ 1

2y , or den(B, Ii) ≤ 2
y . In

the former case, we call Ii a single-valued layer. In the latter, we say that Ii is a multi-valued
layer (although in an extreme case it might contain only one value). We also require y∗ ≤ 2y.

Next, we describe our procedure Layering(B, y, t) that forms a y-nice partition of a
subarray B, along with a good approximation of the densities of the single-valued layers.
This is quite technical, although standard. We advise the reader to avoid it on first reading,
and assume that, when needed, we have a nice partition along with a good approximation to
the densities of layers.

Algorithm 1 Layering.

1: procedure Layering(B, y, t)
2: Goal: To divide the set of array values in the subarray B into roughly y contiguous

intervals of roughly equal densities. The parameter t is used to control the success probability.
3: Sample a set of ℓ = t·y log y indices S from B, uniformly at random and independently.

▷ Note that a value v is expected to appear in proportion to its density in the array. Hence
the collection of values obtained is a multiset of size ℓ.

4: We sort the multiset of values V = {B[p] : p ∈ S} to form a strictly increasing
sequence seq = (v′

1 < . . . < v′
q), where with each i ∈ [q] we associate a weight wi that

equals the multiplicity of v′
i in the multiset V of values. ▷ Note that

∑
i∈[q] wi = ℓ.

5: We now partition the sequence W = (w1, . . . , wq) into maximal disjoint contiguous
subsequences W1, . . . Wy∗ such that for each j ∈ [y∗], either

∑
w∈Wj

w < 2t log y, or Wj

contains only one member w for which w > t log y.
Note that this can be done greedily as follows. If w1 > t log y then W1 will contain

only w1, otherwise W1 will contain the maximal subsequence (w1, . . . , wi) whose sum is
at most 2t log y. We then delete the members of W1 from W and repeat the process. For
i ∈ [y∗], let w(Wi) denote the total weight in Wi.

Correspondingly, we obtain a partition of the sequence seq of sampled values into at
most y∗ subsequences {Si}i∈[y∗]. Some subsequences contain only one value of weight
at least t log y and are called single-valued. The remaining subsequences are called
multi-valued.

For a subsequence Si, let αi = min(Si) and βi = max(Si). Let β0 = −∞. Note that
αi ≤ βi and βi−1 < αi for all i ∈ [y∗].

6: For i ∈ [y∗], we associate with the subsequence Si, an interval (layer) Ii ⊆ R, where
Ii = (βi−1, βi], and an approximate density d̃en(B, Ii) = w(Wi)/ℓ.

7: end procedure
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Let {Ii}y∗

i=1 be the set of layers that are created by a call to Layering(B, y, t). Recall
that w(Wi) ≥ t log y if Ii is a single-valued layer and w(Wi) < 2t log y if Ii is multi-valued,
where Wi denotes the sum of multiplicities of the values in the sample Si.

For a multi-valued layer Ii, let Ei denote the event that den(B, Ii) < 4
y . For a single-valued

layer Ii such that den(B, Ii) ≥ 1
2y , let Ei denote the event that den(B,Ii)

2 ≤ d̃en(B, Ii) ≤
3
2 den(B, Ii). For a single-valued layer Ii such that den(B, Ii) < 1

2y , let Ei be the event that
d̃en(B, Ii) ≤ 3

2 den(B, Ii). Let E =
⋂y∗

i=1 Ei. The following claim asserts that the layering
above well-represents the structure of the range w.r.t. B.

▷ Claim 4.2. Layering(B, y, t) returns a collection of intervals {Ii}y∗

i=1 such that, y∗ ≤ 2y,
and Pr(E) = 1 − exp(Ω(−t)).

We now define the grid G′ of boxes as follows. We first use the procedure Layering on
the original array, B = A, with parameters y =

√
r

ϵ and t = O(1), where the value of t is
set to ensure a success probability of 99/100 in Claim 4.2. This defines the set of y∗ layers
that partitions R as R =

⋃
i∈y∗ Ii. Next we partition [n] into x = ϵ ·

√
r contiguous intervals

D1, . . . Dx each of size n/x, which defines G′ as the grid of boxes {(Di, Ij) : (j, i) ∈ [y∗]× [x]}
in the r × n grid, some of which may be empty, while some may contain many points.

We set β = ϵ3λ. Next, our goal is to find all the β-dense boxes in G′ by making Õ(
√

r)
queries and then restrict our attention only to these boxes. As described in the high level
overview Introduction, doing this will not make the LIS in this restricted array too short.
This is made formal in the following claim.

▷ Claim 4.3. The number of points in L that belong to boxes that are not β-dense is at
most βn · (1 + 2y/x).

We do not know which boxes are β-dense. We approximate this by sampling, and this is
formally presented below as algorithm Gridding. The algorithm assumes the partition of [n]
and of the range R as above. As before, t = O(1) in this procedure can be set appropriately
to ensure a large constant success probability.

Algorithm 2 Gridding.

1: procedure Gridding(A, {Ij}j∈[y∗], {Di}i∈[x], β)
2: for i ∈ [x] do
3: Sample ℓ = t · 1

β · log( x
β ) indices from Di uniformly and independently at random.

4: for j ∈ [y∗] do
5: Label box (Di, Ij) as dense if and only if the values on at least 3

4 βℓ points
from the sample fall into the box; namely, if for at least 3

4 βℓ indices sampled from Di,
the values are in Ij .

6: end for
7: end for
8: end procedure

Let D be the event that all β-dense boxes are tagged as dense by the procedure, and that
every box that is not β/8-dense is not tagged as dense.

▷ Claim 4.4. Pr[D] ≥ 1 − exp(−Ω(t)).

From now on, we assume that we have the grid G′ for which the events E and D hold.
This is the initialization of our data structure as described in the Introduction. We now
refine the data structure as follows.
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A β-dense box may have density that is anything in [β, 1]. For a better approximation
guarantee, we need to identify the regions with density nearly equal to β. To achieve this,
we perform the following finer layering using the procedure Layering on each dense box.

Finer layering of each dense box. For each i ∈ [x], call Layering on the array Di with
y = 1/β and t′ = Θ(log(x/β)). Here, we do not collapse the single-valued intervals into a
single layer, but rather just leave them as different layers of the same value and density β.

Let {I ′
k}k∈[y∗

i
] be the set of intervals returned by the procedure. We restrict our attention

to the boxes (Di, I ′
k) contained in some β-dense box (Di, Ij), and call them β-dense cells.

Fix Di. The number of β-dense cells in Di is at most 2y = 2/β. Claim 4.2 asserts that,
with probability 1 − exp(−Ω(t′)) = 1 − β

100x , each Di is layered so that each β-dense cell has
true density at most 3β/2 and at least β/8. Additionally, the portion of a β-dense box that
is not covered by β-dense cells has true density smaller than β. This implies that for all
i ∈ [x] this event happens with probability at least 99/100. We denote this event by F , and
assume in what follows that F happens.

4.1.2 Chain reduction
In this section, we define a poset over dense cells and argue that in order to well-approximate
the LIS, it is enough to restrict our attention to LIS’s in a few chains in this poset.

Since dense cells, by definition, are contained inside dense boxes, we denote dense cells
using triplets (Di, Ij , k), where this triplet denotes the k-th dense cell inside the dense box
(Di, Ij), i ∈ [ϵ

√
r], j ∈ [

√
r/ϵ].

Recall that there is a poset ⟨P , ⪯⟩ on the dense boxes. Now, we define another poset
⟨P⋆, ⪯⋆⟩ whose elements are the (at most) 2x/β dense cells. The order relation ⪯⋆ is defined
by (Di, Ij , k) ⪯⋆ (Di′ , Ij′ , k′) if and only if either (Di, Ij) ̸= (Di′ , Ij′) and (Di, Ij) ⪯ (Di′ , Ij′),
or if j′ = j, i′ = i and k ≤ k′. Note that the poset ⪯⋆ is not consistent with a grid poset, it
rather inherits the order from P for cells in different boxes.

Let L1 be the LIS L restricted to dense boxes, let C(L1, P) be the set of dense boxes in
which L1 passes, and let C(L1, P⋆) be the set of dense cells in which L1 passes. We observe
that C(L1, P) and C(L1, P⋆) are chains in the corresponding posets.

Our goal now is to show that there are a small number of chains in P⋆ that cover
C(L1, P⋆). This is done as follows.

For parameter τ = 5/λ, repeatedly remove antichains of size larger than τ from P⋆.
Here, by removing, we mean the deletion of the points in the cells of the corresponding
antichain from the array6.

Let the resulting poset be denoted by P⋆⋆. The maximum antichain in this poset has size at
most τ , and Dilworth’s theorem implies that there is a decomposition of P⋆⋆ into at most τ

chains. These chains, being made of dense cells, is naturally extended to at most τ (possibly
intersecting) chains of the poset P . Let these chains be C1, . . . , Cτ . We bound the “loss” to
the LIS incurred by chain reduction in Claim 4.5.

▷ Claim 4.5. Conditioned on the events E ∪ D ∪ F , the number of points in L1 that does
not belong to ∪τ

i=1Ci is at most 4n/τ .

6 For a single-valued cell a = (Di, Ij , k) taking the value v, there might be other points with value v in
the dense box containing a. When we remove a from P⋆, we “mentally” remove some βn/x points of
value v from the box (Di, Ij). This is not algorithmically done, but will just be used in the analysis.
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D1 D2 D3 D
ǫ·

√

r

Figure 3 A staircase like chain, and its decomposition into two chains, one that contains only
horizontal blocks and one that contains only vertical blocks. In each of the chains, no two blocks
share a layer or a subarray.

Let L2 denote the LIS L1 after chain reduction. The following claim is straightforward.

▷ Claim 4.6. There exists i ∈ [τ ] such that |LIS(Ci)| ≥ |L2|
τ .

We point out that no query is made at this stage.

4.1.3 Estimating the LIS restricted to poset chains
Let P ′ denote the poset obtained from P after removing the large antichains in P⋆. At this
point, we have covered the poset P ′ using at most τ chains C1, . . . , Cτ . This reduces the LIS
estimation to estimating the LIS in one of these chains.

In what follows, we fix such one chain C, and denote by L(C), the LIS in the array
restricted to C. The chain C is composed of a sequence of horizontal and vertical blocks,
arranged in a staircase manner (see Figure 3), where a horizontal block is a sequence of
contiguous boxes in the chain from the same layer, and a vertical block is a sequence of
contiguous dense boxes in the chain that belong to the same subarray.

Let H1, H2 be two maximal horizontal blocks in C. Blocks H1, H2 have a subarray Di

in common if there are boxes (Di, Ij) ∈ H1 and (Di, Is) ∈ H2. In particular, there is a
vertical block between them. Two horizontal chains have at most one subarray in common,
and if this happens, then the common subarray Di defines the rightmost box of the “lower”
horizontal chain (the horizontal chain in the lower layer) and the leftmost box of the “upper”
horizontal chain. We conclude that if we arrange the horizontal blocks from bottom to top
as H1, . . . Hs, and remove the rightmost box from Hi if it has a common subarray with Hi+1,
we get a sequence of horizontal blocks in which no two share a subarray. We use CH to
denote this subchain of C. Notice that CV = C \ CH is a chain that contains only vertical
blocks, where no two share a layer (see Figure 3, as how the whole chain C decomposes into
a chain of horizontal blocks and a chain of vertical blocks).

To estimate the size of L(C), we estimate the LIS within CH and CV separately, and
use the larger for the size estimate for L(C). In the following, we denote LH and LV for
LIS(CH) and LIS(CV ), respectively. The main advantage of this decomposition of C into
CH and CV is given by the following observation.

▶ Observation 4.7. For any chain C, we have |LH | =
∑

B∈CH
|LIS(B)|, where the sum

is over the horizontal blocks B in CH . A similar statement holds for CV in which case,
horizontal blocks are replaced with vertical blocks.

The observation leads to an immediate adaptive way to approximate the lengths of LH

and LV . We sample a constant number of blocks from the chain, estimate the LIS in each
block, and normalize to estimate the LIS in the entire chain. By the Hoeffding bound, we can
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see that the estimate is accurate enough with high probability. The adaptivity is needed to
locate each block, and to estimate the LIS within a block (horizontal and vertical), which we
did not yet specify how to do. To avoid adaptivity, we will rely on the fact that if LV is large,
then it must contain a large number of small vertical blocks. Thus, sampling uniformly in [n]
will hit such blocks frequently enough to facilitate the Hoeffding bound above. Further, for
the estimation of LIS within a short vertical block, we will use the algorithm guaranteed by
Theorem 1.4. For horizontal blocks, we need some further relaxations. We will show below
that we may restrict ourselves to short horizontal blocks, due to the choice of parameters in
the formation of the grid G′. This again will facilitate the use of the algorithm guaranteed
by Theorem 1.4. The details now follow.

Estimating the length of LIS in a horizontal chain. A horizontal block belonging to a
multi-valued layer is referred to as a multi-valued horizontal block, and a horizontal block
belonging to a single-valued layer is a single-valued horizontal block. We treat these horizontal
blocks separately.

Let m = ϵ/λ2. Let L′
H denote the restriction of LH after deleting multi-valued horizontal

blocks containing more than m boxes. We first show that the length of L′
H is not much

smaller than LH .

▷ Claim 4.8. |L′
H | ≤ |LH | − 4λ2ϵn.

Let C ′
H denote the chain obtained after removing multi-valued horizontal blocks containing

more than m boxes. If there are at most ϕ = ϵλ2y multi-valued horizontal blocks in the chain
C ′

H , then, by removing all of them, we end up losing only ϕ · 4n
y ≤ 4nϵλ2 points (as each

multi-valued layer has density at most 4/y). If there are at least ϕ multi-valued horizontal
blocks in C ′

H , then the average number of values in such a horizontal block is at most
r
ϕ ≤ r

ϵλ2y =
√

r
λ2 by our choice of y. That is, with probability at least 1− 1

100 log(τ) , a uniformly
random multi-valued horizontal block in C ′

H contains at most 100
√

r log(τ)
λ2 values. Thus,

we have reduced the problem to estimating the LIS in a collection of (possibly very long)
single-valued horizontal blocks and several short multi-valued horizontal blocks containing
O(

√
r log(τ)

λ2 ) values.
In the following, we use the term segment to denote a subarray composed of 2m subarrays

{Di, Di+1, . . . , Di+2m−1} for some i ∈ [x−2m+1]. A segment is said to contain a multi-valued
horizontal block H if all the subarrays forming H are contained in the segment.

Fix r′ = 100
√

r log(τ)
λ2 . Our algorithm for estimating the length of LH is as follows:

1. Sample t log2(τ) uniformly random segments.
2. For each sampled segment B, query s = Θ

(
m log(τ)

β · r′

ϵ3λ6 log
(

r′2

ϵλ

))
points uniformly

and independently at indexes from B and run the algorithm given by Theorem 1.4 with
parameters r′ (for the number of distinct values) and ϵλ2 (for approximation guarantee)
using the samples that fall into the multi-valued horizontal block H contained in the
segment B, if any.

3. Estimate the contribution to the LIS from multi-valued horizontal blocks by summing
the answers returned by the algorithm in the previous steps and then normalizing
appropriately.

4. Estimate the contribution to the LIS from single-valued horizontal blocks by summing
the estimates of the densities of all single-valued horizontal blocks in CH (as we already
know these estimates from the Gridding stage).

5. Output an estimate LH of the length of LH by summing the above two estimates.
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Clearly, the contribution to LH from single-valued horizontal blocks is estimated within
multiplicative (1 ± 1

2 )-error, by our conditioning on the event F . We show the following.

▷ Claim 4.9. With probability 1 − O( log(τ)
τ2 ), the contribution to LH from multi-valued

horizontal blocks is estimated within an additive error of ϵλ2n.

Estimating the length of the LIS in a vertical chain. Let ν = ϵλ2. We may assume that
the vertical chain is composed of at least ν · x vertical blocks, for otherwise, we can abandon
the entire vertical chain by incurring a “loss” to the LIS amounting to at most ν · n points.
Additionally, since the boxes from different vertical blocks belong to different layers, using a
similar averaging argument as before, we can show that with probability at least 1− 1

100 log(τ) ,
a uniformly random vertical block contains at most 100

√
r log(τ)
λ2 distinct values.

Therefore, in order to estimate the length of the LIS in the vertical chain, we sample
O(log(τ)) subarrays Di, i ∈ [x] and run the pseudo-solution-based LIS estimation algorithm,
restricted to the vertical box, if any, that belongs to this subarray while making sure that
the success probability is at least 1 − 1

100 log τ and the error parameter is ϵλ2. The details of
how to implement this procedure nonadaptively are identical to how we implemented the
estimation of the LIS in CH in the preceding section. The query complexity is also identical.

▷ Claim 4.10. With probability 1 − O( log(τ)
τ2 ), we estimate the contribution of vertical blocks

to within an additive error of ϵλ2n.

4.1.4 Correctness, approximation guarantee, and query complexity
In this section, we complete the analysis of our algorithm and finish the proof of Theorem 1.5.

Success probability. The probability that any of Layering, Gridding and Finer Gridding
fail is at most 3/100. For a specific chain of boxes, by Claims 4.9 and 4.10, we know
that estimating the length of LIS within them is within the approximation guarantee with
probability at least 1 − O( log(τ)

τ2 ). By a union bound over all τ chains, we can see that the
probability of incorrectly estimating the LIS length in some chain is at most 1/100. Thus,
overall, the failure probability is at most a small constant.

Query complexity. The query complexity is clearly Õ(
√

r · poly(1/λ)) from the description
of the algorithm.

Approximation guarantee. Consider a fixed true LIS L. The loss to L due to ignoring
boxes that are not β-dense (β = ϵ2λ) is at most ϵ3λn + ϵλn. The loss to L due to antichain
removal is at most 4n/τ , which is equal to 4λn/5. The resulting increasing sequence has
length at least |L| − ϵ3λn − ϵλn − 4λn/5, which is at least (1 − ϵ3 − ϵ − 4/5) · |L|, since,
by our assumption |L| ≥ λn. After chain decomposition, the length of the LIS in the best
chain is at least (1 − ϵ3 − ϵ − 4/5) · |L|/τ , which is equal to λ

5 · |L| · (1/5 − ϵ3 − ϵ). Since
we split the chains into horizontal and vertical chains, we further lose a factor of 2, and
the resulting LIS length becomes λ

10 · |L| · (1/5 − ϵ3 − ϵ). In case of horizontal chains, we
additionally lose a 9ϵλ2n and in the case of vertical chains, we additionally lose ϵλ2n. That
is the length of LIS in the (best) horizontal chain is at least λ

10 · |L| · (1/5 − ϵ3 − 11ϵ). Finally,
using Claims 4.9 and 4.10, we can see that we estimate the lengths of the best horizontal
and vertical chains to within a constant multiplicative factor. Overall, the approximation
guarantee is multiplicative Ω(λ).
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Abstract
Indexing highly repetitive strings (i.e., strings with many repetitions) for fast queries has become
a central research topic in string processing, because it has a wide variety of applications in
bioinformatics and natural language processing. Although a substantial number of indexes for highly
repetitive strings have been proposed thus far, developing compressed indexes that support various
queries remains a challenge. The run-length Burrows-Wheeler transform (RLBWT) is a lossless
data compression by a reversible permutation of an input string and run-length encoding, and it
has received interest for indexing highly repetitive strings. LF and ϕ−1 are two key functions for
building indexes on RLBWT, and the best previous result computes LF and ϕ−1 in O(log log n) time
with O(r) words of space for the string length n and the number r of runs in RLBWT. In this paper,
we improve LF and ϕ−1 so that they can be computed in a constant time with O(r) words of space.
Subsequently, we present OptBWTR (optimal-time queries on BWT-runs compressed indexes), the
first string index that supports various queries including locate, count, extract queries in optimal
time and O(r) words of space.
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1 Introduction

A string index represents a string in a compressed format that supports locate queries
(i.e., computing all the positions at which a given pattern appears in a string). The
FM-index [10, 11] is an efficient string index on a lossless data compression called the
Burrows-Wheeler transform (BWT) [5], which is a reversible permutation of an input string.
In particular, locate queries can be efficiently computed on an FM-index by performing a
backward search, which is an iterative algorithm for computing an interval corresponding to
the query on a suffix array (SA) [19] storing all the suffixes of an input string in lexicographical
order. The FM-index performs locate queries in O(m + occ) time with O(n( log σ

log n + 1
s )) words

of space for a string T of length n, query string of length m, alphabet size σ, parameter s,
and number occ of occurrences of a query in T [3].

A highly repetitive string is a string including many repetitions. Examples include the
human genome, version-controlled documents, and source code in repositories. A significant
number of string indexes on various compressed formats for highly repetitive strings have been
proposed thus far (e.g., SLP-index [8], LZ-indexes [6, 12], BT-indexes [7, 21]). For a large
collection of highly repetitive strings, the most powerful and efficient compressed format is
the run-length (RL) Burrows Wheeler transform (RLBWT) [5], which is a BWT compressed
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by run-length encoding. Mäkinen et al. [18] presented an RLBWT-based string index, named
the RLFM-index, that solves locate queries by executing a backward search algorithm on
RLBWT. While the RLFM-index can solve locate queries in O(r + n/s) words of space in
O((m + s · occ)( log σ

log log r + (log log n)2)) time for the number r of runs in the RLBWT of T and
parameter s ≥ 1, the size of the index depends on the string length. Recently, Gagie et al. [13]
presented the r-index, which can reduce the space usage of the RLFM-index to one linearly
proportional to the number of runs in RLBWT. The r-index can solve locate queries space
efficiently with only O(r) words of space and in O(m log logw(σ + (n/r)) + occ log logw(n/r))
time for a machine word size w = Θ(log n). If the r-index allows O(r log logw(σ +n/r)) words
of space to be used, it can solve locate queries in the optimal time, O(m + occ). Although
there are other important queries including count query, extract query, decompression and
prefix search for various applications to string processing, no previous string index can
support various queries in addition to locate queries based on RLBWT in an optimal time
with only O(r) words of space. That is, developing a string index for various queries in an
optimal time with O(r) words of space remains a challenge.

Contribution. In this paper, we present OptBWTR (optimal-time queries on BWT-runs
compressed indexes), the first string index that supports various queries including locate,
count, extract queries in optimal time and O(r) words of space for the number r of runs
in RLBWT. LF and ϕ−1 are important functions for string indexes on RLBWT. The best
previous data structure computes LF and ϕ−1 in O(log logw(n/r)) time with O(r) words of
space [13]. In this paper, we present a novel data structure that can compute LF and ϕ−1 in
constant time and O(r) words of space. Subsequently, we present OptBWTR that supports
the following five queries in optimal time and O(r) words of space.

Locate query: OptBWTR can solve a locate query on an input string in O(r) words of
space and O(m log logw σ + occ) time, which is optimal for strings with polylogarithmic
alphabets (i.e., σ = O(polylog n)).
Count query: OptBWTR can return the number of occurrences of a query string on
an input string in O(r) words of space and O(m log logw σ) time, which is optimal for
polylogarithmic alphabets.
Extract query: OptBWTR can return substrings starting at a given position book-
marked beforehand in a string in O(1) time per character and O(r + b) words of space,
where b is the number of bookmarked positions. Resolving extract queries is sometimes
called the bookmarking problem [12, 9].
Decompression: OptBWTR decompresses the original string of length n in optimal
time (i.e., O(n)). This is the first linear-time decompression algorithm for RLBWT in
O(r) words of working space.
Prefix search: OptBWTR can return the strings in a set D that include a given pattern
as their prefixes in optimal time (i.e., O(m + occ′)) and O(r′) words of space, where occ′

is the number of output strings and r′ is the number of runs in the RLBWT of a string
made by concatenating the strings in D.

The state-of-the-art string indexes for each type of query are summarized in Table 1.
This paper is organized as follows. In Section 2, we introduce the important notions used

in this paper. Section 3 presents novel data structures for computing LF and ϕ−1 in constant
time. Section 4 presents a data structure supporting a modified version of a backward
search on RLBWT. The backward search leverages the two data structures introduced in
Section 3. Sections 5 and 6 present OptBWTR that supports all five queries mentioned
above by leveraging the modified backward search, LF, and ϕ−1.
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Table 1 Summary of space and time for (i) locate and (ii) count queries, (iii) extract queries
(a.k.a the bookmarking problem), (iv) decompression of BWT or RLBWT and (v) prefix searches
for each query, where n is the length of the input string T , m is the length of a given string
P , occ is the number of occurrences of P in T , σ is the alphabet size of T , w = Θ(log n) is the
machine word size, r is the number of runs in the RLBWT of T , s is a parameter, g is the size of a
compressed grammar deriving T , b is the number of input positions for the bookmarking problem,
G = max{1, log∗ g − log∗( g

b
− b

g
)}, D is a set of strings of total length n, occ′ is the number of strings

in D such that each string has P as a prefix and r′ is the number of runs in the RLBWT of a string
made by concatenating the strings in D.

(i) Locate query Space (words) Time
RLFM-index [18] O(r + n/s) O((m + s · occ)( log σ

log log r
+ (log log n)2))

r-index [13] O(r) O(m log logw(σ + (n/r)) + occ log logw(n/r))
O(r log logw(σ + (n/r))) O(m + occ)

O(rw logσ logw n) O(⌈m log(σ)/w⌉ + occ)
OptBWTR O(r) O(m log logw σ + occ)

(ii) Count query Space (words) Time
RLFM-index [18] O(r) O(m( log σ

log log r
+ (log log n)2))

r-index [13] O(r) O(m log logw(σ + (n/r)))
O(r log logw(σ + (n/r))) O(m)

O(rw logσ logw n) O(⌈m log(σ)/w⌉)
OptBWTR O(r) O(m log logw σ)

(iii) Extract query Space (words) Time per character Overhead
Gagie et al.[12] O(g + b log∗ n) O(1) -
Gagie et al.[13] O(r log(n/r)) O(log(σ)/w) O(log(n/r))

Cording et al.[9] O((g + b)G) O(1) -
OptBWTR O(r + b) O(1) -

(iv) Decompression Space (words) Time
Lauther and Lukovszki [17] O(n(log log n + log σ)/w) O(n)

Golynski et al.[14] O((n log σ)/w) O(n log log σ)
Predecessor queries [4] O(r) O(n log logw(n/r))

OptBWTR O(r) O(n)
(v) Prefix search Space (words) Time

Compact trie [20] (n log σ)/w + O(|D|) O(m + occ′)
Z-fast trie [2] (n log σ)/w + O(|D|) expected O(⌈ m log(σ)

w
⌉ + log m + log log σ + occ′)

Packed c-trie [25] (n log σ)/w + O(|D|) expected O(⌈ m log(σ)
w

⌉ + log log n + occ′)
c-trie++ [26] (n log σ)/w + O(|D|) expected O(⌈ m log(σ)

w
⌉ + log logσ w + occ′)

OptBWTR O(r′ + |D|) O(m + occ′)

2 Preliminaries

Let Σ = {1, 2, . . . , σ} be an ordered alphabet of size σ, T be a string of length n over Σ, and
|T | be the length of T . Let T [i] be the i-th character of T (i.e., T = T [1], T [2], . . . , T [n])
and T [i..j] be the substring of T that begins at position i and ends at position j. For two
strings, T and P , T ≺ P means that T is lexicographically smaller than P . Let ε be the
empty string, i.e., |ε| = 0. We assume that (i) σ = nO(1) and (ii) the last character of
string T is a special character $ not occurring on substring T [1..n − 1] such that $ ≺ c holds
for any character c ∈ Σ \ {$}. For two integers, b and e (b ≤ e), interval [b, e] is the set
{b, b + 1, . . . , e}. Occ(T, P ) denotes all the occurrence positions of a string P in a string T ,
i.e., Occ(T, P ) = {i | i ∈ [1, n−|P |+1] s.t. P = T [i..(i+ |P |−1)]}. A count query on a string
T returns the number of occurrences of a given string P in T , i.e., |Occ(T, P )|. Similarly, a
locate query on string T returns all the starting positions of P in T , i.e., Occ(T, P ).
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A rank query rank(T, c, i) on a string T returns the number of occurrences of a character
c in T [1..i], i.e., rank(T, c, i) = |Occ(T [1..i], c)|. A select query select(T, c, i) on a string T

returns the i-th occurrence of c in T (i.e., it returns the smallest integer j ≥ 1 such that
|Occ(T [1..j], c)| = i) if T contains c; otherwise it returns −1. Assume that T [b..e] contains
a character c for an interval [b, e] ⊆ [1, n]. Let b̂ and ê be the first and last occurrences
of a character c in T [b..e] (i.e., b̂ = min{i | i ∈ [b, e] s.t. T [i] = c} and ê = max{i | i ∈
[b, e] s.t. T [i] = c}). Then, we can compute b̂ and ê by the following lemma.

▶ Lemma 1. The following statements hold: (i) T [b..e] contains a character c if and only
if rank(T, c, e) − rank(T, c, b − 1) ≥ 1 holds. (ii) b̂ = select(T, c, rank(T, c, b − 1) + 1) and
ê = select(T, c, rank(T, c, e)) hold if T [b..e] contains c.

A suffix array (SA) of a string T is an integer array of size n such that SA[i] stores
the starting position of the i-th suffix of T in lexicographical order. Formally, SA is a
permutation of [1, n] such that T [SA[1]..n] ≺ · · · ≺ T [SA[n]..n] holds. Each value in SA is
called an sa-value.

The suffix array interval (sa-interval) of a string P is an interval [b, e] ⊆ [1, n] such
that SA[b..e] represents all the occurrence positions of P in string T , i.e., Occ(T, P ) =
{SA[b], SA[b + 1], . . . , SA[e]}. The sa-interval of the empty string ε is defined as [1, n].

LF is a function that returns the position with sa-value SA[i] − 1 on SA (i.e., SA[LF(i)] =
SA[i] − 1) for a given integer i ∈ [1, n] if SA[i] ̸= 1; otherwise, it returns the position with
sa-value n (i.e., SA[LF(i)] = n). ϕ−1 [15] is a function that returns SA[i + 1] for a given
sa-value SA[i] ∈ [1, n] (i.e., ϕ−1(SA[i]) = SA[i + 1]) if i ̸= n; otherwise, it returns SA[1].

We will use base-2 logarithms throughout this paper unless indicated otherwise. Our
computation model is a unit-cost word RAM with a machine word size of w = Θ(log n)
bits. We evaluate the space complexity in terms of the number of machine words. A bitwise
evaluation of space complexity can be obtained with a log n multiplicative factor.

2.1 Rank-select data structure
We describe a set {c1, c2, . . . , cσ′} and function γ for a string T . c1, c2, . . . , cσ′ are all the
distinct characters in T , i.e., {c1, c2, . . . , cσ′} = {T [i] | i ∈ [1, |T |]} (c1 < c2 < · · · < cσ′). The
function γ returns the rank of a given character c ∈ Σ in a string T ; i.e., γ(T, c) = j if there
exists an integer j such that c = cj holds; otherwise γ(T, c) = −1.

A rank-select data structure R(T ) consists of three data structures Rrank, Rselect, and
Rmap. Rrank is a rank data structure for solving a rank query on a string T in O(log logw σ)
time and with O(|T |) words of space [4]. Rselect consists of σ′ arrays H1, H2, . . . , Hσ′ . The
size of Hj is |Occ(T, cj)| for each j ∈ {1, 2, . . . , σ′}, and Hj [i] stores select(T, cj , i) for each
i ∈ [1, |Occ(T, cj)|]. Rmap is a deterministic dictionary [24] storing the mapping function γ

for T . The deterministic dictionary can compute γ(T, c) for a given character c in constant
time, and its space usage is O(σ′) words. The space usage of the rank-select data structure
is O(|T |) words in total, because σ′ ≤ |T | holds. We can compute a given select query
select(T, c, i) in two steps: (i) compute j = γ(T, c); and (ii) return −1 if j = −1 or |Hj | < i;
otherwise, return Hj [i]. Hence, the rank-select data structure can support rank and select
queries on T in O(log logw σ) and O(1) time, respectively.

2.2 BWT and run-length BWT (RLBWT)
The BWT [5] of a string T is a string L of length n built by permuting T as follows: (i)
all n circular strings of T (i.e., T [1..n], T [2..n]T [1], T [3..n]T [1..2], . . ., T [n]T [2..n − 1]) are
sorted in lexicographical order; (ii) L[i] is the last character at the i-th circular string in
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i SA LF F L
1 15 10 $ baababaabaaba b
2 7 11 a abaabab$baaba b
3 10 12 a abab$baababaa b
4 2 13 a ababaabaabab$ b
5 13 14 a b$baababaabaa b
6 5 15 a baabaabab$baa b
7 8 2 a baabab$baabab a
8 11 3 a bab$baababaab a
9 3 4 a babaabaabab$b a
10 14 5 b $baababaabaab a
11 6 6 b aabaabab$baab a
12 9 7 b aabab$baababa a
13 1 1 b aababaabaabab $
14 12 8 b ab$baababaaba a
15 4 9 b abaabaabab$ba a

Sorted circular strings

Figure 1 Table illustrating the BWT (L), SA, LF function, F, and the sorted circular strings of
T = baababaabaabab$.

the sorted order for i ∈ [1, n]. Similarly, F is a string of length n such that F [i] is the first
character at the i-th circular string in the sorted order. Formally, let L[i] = T [SA[LF(i)]] and
F [i] = T [SA[i]].

Let C be an array of size σ such that C[c] is the number of occurrences of characters
lexicographically smaller than c ∈ Σ in string T i.e., C[c] = |{i | i ∈ [1, n] s.t. T [i] ≺ c}|. The
BWT has the following property. For any integer i ∈ [1, n], LF(i) is equal to the number of
characters that are lexicographically smaller than the character L[i] plus the rank of L[i] on
the BWT. Thus, LF(i) = C[c] + rank(L, c, i) holds for c = L[i]. This is because LF(i) < LF(j)
if and only if either of the following conditions holds: (i) L[i] ≺ L[j] or (ii) L[i] = L[j] and
i < j for two integers 1 ≤ i < j ≤ n.

Let [b, e] be the sa-interval of a string P and [b′, e′] be the sa-interval of cP for a character
c. Then, the following relation holds between [b, e] and [b′, e′] on the BWT L.

▶ Lemma 2 (e.g., [10]). Let b̂ and ê be the first and last occurrences of c in L[b..e] (i.e.,
b̂ = min{i | i ∈ [b, e] s.t. L[i] = c} and ê = max{i | i ∈ [b, e] s.t. L[i] = c}). Then,
b′ = LF(b̂), e′ = LF(ê), and SA[b′] = SA[b̂] − 1 hold if P and cP are substrings of T .

Figure 1 illustrates the BWT, SA, LF function, F , L and sorted circular strings of a string
T = baababaabaabab$. For example, let P = ab, c = b. Then [b, e] = [5, 9], [b′, e′] = [14, 15],
b̂ = 5, and ê = 6 (see also Figure 1). Moreover, b′ = LF(b̂) and e′ = LF(ê) hold by Lemma 2.

The RLBWT of T is a BWT encoded by run-length encoding; i.e., it is a partition of L into
r substrings rlbwt(L) = L1, L2, . . . , Lr such that each substring Li is a maximal repetition of
the same character in L (i.e., Li[1] = Li[2] = · · · = Li[|Li|] and Li−1[1] ̸= Li[1] ̸= Li+1[1]).
Each Li is called a run. Let ℓi be the starting position of the i-th run of BWT L, i.e.,
ℓ1 = 1, ℓi = ℓi−1 + |Li−1| for i ∈ [2, r]. Let ℓr+1 = n + 1. The RLBWT is represented
as r pairs (L1[1], ℓ1), (L2[1], ℓ2), . . ., (Lr[1], ℓr) using 2r words. For example, rlbwt(L) =
bbbbbb, aaaaaa, $, aa for BWT L illustrated in Figure 1. The RLBWT is represented as
(b, 1), (a, 7), ($, 13), and (a, 14).

Let δ be a permutation of [1, r] satisfying LF(ℓδ[1]) < LF(ℓδ[2]) < · · · < LF(ℓδ[r]). The LF
function has the following properties on RLBWT.
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▶ Lemma 3 (e.g., Lemma 2.1 in [16]). The following two statements hold: (i) Let x be the
integer satisfying ℓx ≤ i < ℓx+1 for some i ∈ [1, n]. Then, LF(i) = LF(ℓx) + (i − ℓx); (ii)
LF(ℓδ[1]) = 1 and LF(ℓδ[i]) = LF(ℓδ[i−1]) + |Lδ[i−1]| for all i ∈ [2, r].

Proof. (i) Let y = (i − ℓx) and c = L[ℓx + (i − ℓx)]. LF(ℓx + y) = C[c] + rank(L, c, ℓx + y)
holds by the BWT property. rank(L, c, ℓx + y) = rank(L, c, ℓx) + y holds because the x-th
run Lx is a repetition of the character c. Hence LF(ℓx + y) = C[c] + rank(L, c, ℓx + y) =
C[c] + rank(L, c, ℓx) + y = LF(ℓx) + y holds. By i = ℓx + y, LF(i) = LF(ℓx) + (i − ℓx) holds.

(ii) Clearly, LF(ℓδ[1]) = 1. Next, LF(ℓδ[i]) = LF(ℓδ[i−1]) + |Lδ[i−1]| holds for any i ∈ [2, r],
because (a) the LF function maps the interval [ℓδ[i], ℓδ[i] + |Lδ[i]| − 1] into the interval
[LF(ℓδ[i]), LF(ℓδ[i]) + |Lδ[i]| − 1] by Lemma 3(i) for any i ∈ [1, r], (b) LF is a bijection from
[1, n] to [1, n], and (c) LF(ℓδ[1]) < LF(ℓδ[2]) < · · · < LF(ℓδ[r]) holds. ◀

The sequence u1, u2, . . ., ur+1 consists of sa-values such that (i) {u1, u2, . . ., ur} =
{SA[ℓ1 + |L1| − 1], SA[ℓ2 + |L2| − 1], . . . , SA[ℓr + |Lr| − 1]}, and (ii) u1 < u2 < · · · < ur. Let
δ′ be a permutation of [1, r] satisfying ϕ−1(uδ′[1]) < ϕ−1(uδ′[2]) < · · · < ϕ−1(uδ′[r]), and let
ur+1 = n + 1. ϕ−1 has the following properties on RLBWT.

▶ Lemma 4 (Lemma 3.5 in [13]). The following three statements hold: (i) Let x be the integer
satisfying ux ≤ i < ux+1 for some integer i ∈ [1, n]. Then ϕ−1(i) = ϕ−1(ux) + (i − ux); (ii)
ϕ−1(uδ′[1]) = 1 and ϕ−1(uδ′[i]) = ϕ−1(uδ′[i−1]) + d for all i ∈ [2, r], where d = uδ′[i−1]+1 −
uδ′[i−1]; (iii) u1 = 1.

Proof. (i) Lemma 4(i) clearly holds for i = ux. We show that Lemma 4(i) holds for i ̸= ux (i.e.,
i > ux). Let st be the position with sa-value ux+t for an integer t ∈ [1, y] (i.e., SA[st] = ux+t),
where y = i − ux. st is not the ending position of a run (i.e., (ux + t) ̸∈ {u1, u2, . . . , ur}),
and thus, two adjacent positions st and st + 1 are contained in an interval [ℓv, ℓv + |Lv| − 1]
on SA (i.e., st, st + 1 ∈ [ℓv, ℓv + |Lv| − 1]), which corresponds to the v-th run Lv of L. The
LF function maps st into st−1, where s0 is the position with sa-value ux. LF also maps
st + 1 into st−1 + 1 by Lemma 3(i). The two mapping relationships established by LF
produce y equalities ϕ−1(SA[s1]) = ϕ−1(SA[s0]) + 1, ϕ−1(SA[s2]) = ϕ−1(SA[s1]) + 1, . . .,
ϕ−1(SA[sy]) = ϕ−1(SA[sy−1]) + 1. The equalities lead to ϕ−1(SA[sy]) = ϕ−1(SA[s0]) + y,
which represents ϕ−1(i) = ϕ−1(ux) + (i − ux) by SA[sy] = i, SA[s0] = ux, and y = i − ux.

(ii) Clearly, ϕ−1(uδ′[1]) = 1. ϕ−1(uδ′[i]) = ϕ−1(uδ′[i−1])+d holds for any i ∈ [2, r], because
(a) ϕ−1 maps the interval [uδ′[i], uδ′[i]+d−1] into the interval [ϕ−1(uδ′[i]), ϕ−1(uδ′[i])+d−1] by
Lemma 4(i) for any i ∈ [1, r], (b) ϕ−1 is a bijection from [1, n] to [1, n], and (c) ϕ−1(uδ′[1]) <

ϕ−1(uδ′[2]) < · · · < ϕ−1(uδ′[r]) holds.
(iii) Let p be the integer satisfying Lp = $. Then there exists an integer q′ such that uq′

is the sa-value at position ℓp, because the length of Lp is 1. Hence, u1 = uq′ = 1 holds. ◀

Here, we give an example of Lemma 3. In Figure 1, (ℓ1, ℓ2, ℓ3, ℓ4) = (1, 7, 13, 14) and
(LF(ℓ1), LF(ℓ2), LF(ℓ3), LF(ℓ4)) = (10, 2, 1, 8). Hence, LF(3) = LF(ℓ1) + (3 − ℓ1) = 12 and
LF(8) = LF(ℓ2) + (8 − ℓ2) = 3 hold by Lemma 3(i).

Next, we give an example of Lemma 4. In Figure 1, (u1, u2, u3, u4) = (1, 4, 5, 9) and
(ϕ−1(u1), ϕ−1(u2), ϕ−1(u3), ϕ−1(u4)) = (12, 15, 8, 1). Hence ϕ−1(3) = ϕ−1(u1)+(3−u1) = 14
and ϕ−1(8) = ϕ−1(u3) + (8 − u3) = 11 hold by Lemma 4(i).

3 Novel data structures for computing LF and ϕ−1 functions

In this section, we present two new data structures for computing LF and ϕ−1 functions in
constant time with O(r) words of space. Our key idea is to (i) divide the domains and ranges
of two functions into at least r non-overlapping intervals on RLBWT and (ii) compute two
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Figure 2 Left figure illustrates input and output intervals created by I = (1, 10), (2, 11), (3, 12),
(7, 1), (14, 8). The i-th input and output intervals are connected by a black line. Right figure
illustrates two permutation graphs G(Iout

0 ) and G(Iout
1 ) for I.

functions for each domain and range by a linear search in constant time. First, we introduce
a notion named disjoint interval sequence that is used for a function with non-overlapping
intervals for its domain and range. Then, we present a move query for computing a function
on each disjoint interval sequence and a novel data structure for efficiently computing move
queries. Finally, we show that LF and ϕ−1 can be computed on two disjoint interval sequences
using move queries.

3.1 Disjoint interval sequence and move query
Let I = (p1, q1), (p2, q2), . . . , (pk, qk) be a sequence of k pairs of integers. We introduce a
permutation π of [1, k] and sequence d1, d2, . . . , dk for I. π satisfies qπ[1] ≤ qπ[2] ≤ · · · ≤ qπ[k],
and di = pi+1 − pi for i ∈ [1, k], where pk+1 = n + 1. We call the sequence I a disjoint
interval sequence if it satisfies the following three conditions: (i) p1 = 1 < p2 < · · · < pk ≤ n

holds, (ii) qπ[1] = 1, and (iii) qπ[i] = qπ[i−1] + dπ[i−1] holds for each i ∈ [2, k].
We call the two intervals [pi, pi + di − 1] and [qi, qi + di − 1] the i-th input and output

intervals of the disjoint interval sequence I, respectively, for each i ∈ [1, k]. The input
intervals [p1, p1 + d1 − 1], [p2, p2 + d2 − 1], . . ., [pk, pk + dk − 1] do not overlap, i.e., [pi, pi +
di − 1] ∩ [pj , pj + dj − 1] = ∅ holds for any pair of two distinct integers i, j ∈ [1, k]. Hence,
the union of the input intervals is equal to the interval [1, n], i.e.,

⋃k
i=1[pi, pi + di − 1] = [1, n].

Similarly, the output intervals [q1, q1 + d1 − 1], [q2, q2 + d2 − 1], . . ., [qk, qk + dk − 1]) do not
overlap, and their union is equal to [1, n].

A move query Move(I, i, x) returns a pair (i′, x′) on a disjoint interval sequence I for a
position i ∈ [1, n] and the index x of the input interval of I containing the position i (i.e., x

is the integer satisfying i ∈ [px, px + dx − 1]). Here, i′ = qx + (i − px) and x′ is the index of
the input interval of I containing i′. We can represent a bijective function using a disjoint
interval sequence and move query. Formally, let fI(i) = i′ for an integer i ∈ [1, n], where i′ is
the first value of the pair outputted by Move(I, i, x). fI maps the j-th input interval into
the j-th output interval (i.e., fI(i) = qj + (i − pj) for i ∈ [pj , pj + dj − 1]). Hence, fI is a
bijective function from [1, n] to [1, n].

In Figure 2, the left figure illustrates the input and output intervals of the disjoint
interval sequence I = (1, 10), (2, 11), (3, 12), (7, 1), (14, 8), where n = 15. The input
intervals created by I are [1, 1], [2, 2], [3, 6], [7, 13], and [14, 15]. The output intervals created
by I are [10, 10], [11, 11], [12, 15], [1, 7], and [8, 9]. For example, Move(I, 3, 3) = (12, 4),
Move(I, 5, 3) = (14, 5), and Move(I, 8, 4) = (2, 2).
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3.2 Move data structure
In this section, we present a data structure called move data structure for computing move
queries in constant time. To do so, we introduce three notions, i.e., the permutation graph,
split interval sequence, and balanced interval sequence. A permutation graph G(I) is a
directed graph for a disjoint interval sequence I. The number of nodes in G(I) is 2k, and the
nodes correspond one-by-one with the input and output intervals of I. Each input interval
[pi, pi + di − 1] has a single outgoing edge pointing to the output interval [qj , qj + dj − 1]
containing pi; i.e., j is the integer satisfying pi ∈ [qj , qj + dj − 1]. Hence, G(I) has k edges.
We say that I is out-balanced if every output interval has at most three incoming edges.

A split interval sequence Iout
t is a disjoint interval sequence for a disjoint interval sequence

I and an integer t ≥ 0. Let Iout
0 = I. For t ≥ 1, we define Iout

t using Iout
t−1 and two integers j, d

if Iout
t−1 is not out-balanced. Let (i) Iout

t−1 = (p′
1, q′

1), (p′
2, q′

2), . . . , (p′
k′ , q′

k′), (ii) j be the smallest
integer such that the j-th output interval of Iout

t−1 has at least four incoming edges in G(Iout
t−1),

and (iii) d be the largest integer satisfying |[qj , qj + d − 1] ∩ {p1, p2, . . . , pk′}| = 2. Then,
Iout

t is defined as (p′
1, q′

1), (p′
2, q′

2), . . ., (p′
j−1, q′

j−1), (p′
j , q′

j), (p′
j + d, q′

j + d), . . ., (p′
k′ , q′

k′). In
other words, Iout

t is created by splitting the j-th pair (p′
j , q′

j) of Iout
t−1 into two pairs (p′

j , q′
j)

and (p′
j + d, q′

j + d). Let τ ≥ 0 be the smallest integer such that Iout
τ is out-balanced.

In Figure 2, the right figure illustrates two permutation graphs G(Iout
0 ) and G(Iout

1 ), where
I is the disjoint interval sequence illustrated in the left figure, i.e., I = (1, 10), (2, 11), (3, 12),
(7, 1), (14, 8). The fourth output interval [1, 7] of Iout

0 has four incoming edges, and the other
output intervals have at most one incoming edge in G(Iout

0 ). Hence, Iout
1 = (1, 10), (2, 11),

(3, 12), (7, 1), (9, 3), (14, 8) holds by j = 4 and d = 2. Iout
1 is out-balanced, and hence τ = 1

holds.
The split interval sequence has the following four properties for each t ∈ [0, τ ]: (i) Iout

t

consists of k + t pairs. (ii) Iout
t consists of at least 2t pairs. (iii) Let d′

i = p′
i+1 − p′

i for
i ∈ [1, k′] and p′

k′+1 = n + 1. Both output intervals [q′
j , q′

j + d − 1] and [q′
j + d, q′

j + d′
j − 1]

have at least two incoming edges in G(Iout
t ). (iv) Let fI and f t

I be the two bijective functions
represented by I and Iout

t , respectively. Then, fI(i) = f t
I(i) holds for i ∈ [1, n]. Formally, we

obtain the second property from the following lemma.

▶ Lemma 5. |Iout
t | ≥ 2t holds for any t ∈ [0, τ ].

Proof. Let Q(Iout
t−1) be the set of the starting positions of input intervals in G(Iout

t−1) (i.e.,
Q(Iout

t−1) = {p′
1, p′

2, . . . , p′
k′}). Then Q(Iout

t ) = Q(Iout
t−1) ∪ {p′

j + d} holds from the definition of
Iout

t . Next, let Edge2(Iout
t−1) be the set of output intervals such that each output interval has at

least two incoming edges in G(Iout
t−1), i.e., Edge2(Iout

t−1) = {[q′
i, q′

i+d′
i−1] | i ∈ [1, k′] s.t. |[q′

i, q′
i+

d′
i − 1] ∩ Q(Iout

t−1)| ≥ 2}, where d′
i = p′

i+1 − p′
i. [q′

i, q′
i + d′

i − 1] ∈ Edge2(Iout
t ) holds if

[q′
i, q′

i +d′
i −1] ∈ Edge2(Iout

t−1) for any integer i ∈ [1, k′]\{j}. This is because (i) [q′
i, q′

i +d′
i −1]

is also an output interval of Iout
t , and (ii) ([q′

i, q′
i +d′

i −1]∩Q(Iout
t−1)) ⊆ ([q′

i, q′
i +d′

i −1]∩Q(Iout
t ))

holds by Q(Iout
t−1) ⊆ Q(Iout

t ). [q′
j , q′

j + d − 1], [q′
j + d, q′

j+1 − 1] ∈ Edge2(Iout
t ) also holds by

the third property of Iout
t . Hence, we obtain an inequality |Edge2(Iout

t )| ≥ |Edge2(Iout
t−1)| + 1

for any integer t ∈ [1, τ ]. The inequality |Edge2(Iout
t )| ≥ |Edge2(Iout

t−1)| + 1 guarantees that
|Edge2(Iout

t )| ≥ t holds for any integer t ∈ [0, τ ]. The inequality |Edge2(Iout
t )| ≥ t indicates

that Iout
t consists of at least 2t pairs, because each output interval in Edge2(Iout

t ) has at least
two incoming edges from distinct input intervals. Hence, Lemma 5 holds. ◀

A balanced interval sequence B(I) is defined as Iout
τ for a disjoint interval sequence I.

We obtain the lemma below from the four properties of Iout
τ .
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▶ Lemma 6. Let fI and fB(I) be the two bijective functions represented by I and B(I),
respectively for a disjoint interval sequence I of length k. The following three statements
hold: (i) |B(I)| ≤ 2k, (ii) B(I) is out-balanced, and (iii) the two disjoint interval sequences
I and B(I) represent the same bijective function, i.e., fI(i) = fB(I)(i) for i ∈ [1, n].

Proof. (i) We obtain an inequality τ ≤ k from the first and second properties of Iout
t ,

because k + t ≥ 2t must hold for any t ∈ [0, τ ]. Hence, Iout
τ consists of at most 2k pairs;

i.e., |B(I)| ≤ 2k holds. (ii) Iout
τ is out-balanced, and thus, B(I) is out-balanced. (iii)

fI(i) = f0
I (i) = f1

I (i) = · · · = fτ
I (i) = fB(I)(i), and thus, fI(i) = fB(I)(i) for i ∈ [1, n]. ◀

The move data structure F (I) is built on a balanced interval sequence B(I) = (p1, q1),
(p2, q2), . . ., (pk′ , qk′) for a disjoint interval sequence I, and it supports move queries on B(I).
The move data structure consists of two arrays Dpair and Dindex of size k′. Dpair[i] stores the
i-th pair (pi, qi) of B(I) for each i ∈ [1, k′]. Dindex[i] stores the index j of the input interval
containing qi. Hence, the space usage is O(k′) words in total.

Now let us describe an algorithm for solving a move query Move(B(I), i, x) = (i′, x′) on
B(I), where x and x′ are the indexes of the two input intervals of B(I) containing i and
i′, respectively, and i′ = qx + (i − px). The algorithm consists of three steps. In the first
step, the algorithm computes i′ = qx + (i − px). In the second step, the algorithm finds the
x′-th input interval by a linear search on the input intervals of B(I). Let b = Dindex[x]. The
linear search starts at the b-th input interval [pb, pb+1 − 1], reads the input intervals in the
left-to-right order, and stops if the input interval containing position i′ is found (i.e., the
x′-th input interval). The linear search is always successful (i.e., x′ ≥ b), because i′ ≥ qx

holds. In the third step, the algorithm returns the pair (i′, x′). The running time of the
algorithm is O(x′ − b + 1) in total.

The running time is computed as follows. Let ibeg and iend be the indexes of the first
and last input intervals that are connected to the x-th output interval in G(B(I)). The x-th
output interval has at most three incoming edges, and hence, iend − ibeg + 1 ≤ 3 holds. Since
b is the index of an input interval that overlaps the x-th output interval, ibeg − 1 ≤ b ≤ iend.
Similarly, ibeg − 1 ≤ x′ ≤ iend. Therefore, x′ − b ≤ 3 and we can solve the move query in
constant time.

3.3 Computing LF and ϕ−1 functions using move data structures
Here, we show that we can compute the LF function using a move data structure. Recall that
ℓi is the starting position of the i-th run on BWT L for i ∈ [1, r], and δ is the permutation of
[1, r] introduced in Section 2.2. The sequence ILF is defined as r pairs (ℓ1, LF(ℓ1)), (ℓ2, LF(ℓ2)),
. . ., (ℓr, LF(ℓr)). ILF satisfies the three conditions of a disjoint interval sequence by Lemma 3,
i.e., (i) ℓ1 = 1 < ℓ2 < · · · < ℓr ≤ n, (ii) LF(ℓδ[1]) = 1, and (iii) LF(ℓδ[i]) = LF(ℓδ[i−1])+|Lδ[i−1]|
holds for each i ∈ [2, r]. Hence ILF is a disjoint interval sequence.

Let fLF be the bijective function represented by the disjoint interval sequence ILF. Then,
fLF(i) = LF(ℓx) + (i − ℓx) holds, where x is the integer such that ℓx ≤ i < ℓx+1 holds. On
the other hand, we have LF(i) = LF(ℓx) + (i − ℓx) by Lemma 3(i). Hence, fLF and LF are
the same function, i.e., LF(i) = fLF(i) for i ∈ [1, n].

Let F (ILF) be the move data structure built on the balanced interval sequence B(ILF)
for ILF. By Lemma 6, the move data structure requires O(r) words of space, and LF(i) = i′

holds for a move query Move(B(I), i, x) = (i′, x′) on B(ILF). Hence, we have proven the
following theorem.
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Figure 3 Example of modified toehold lemma.

▶ Theorem 7. Let x and x′ be the indexes of the two input intervals of B(ILF) containing
an integer i ∈ [1, n] and LF(i), respectively. We can compute LF(i) and x′ in constant time
by using F (ILF) and (i, x).

Similarly, we can show that we can compute ϕ−1 by using a move data structure.
A sequence ISA consists of r pairs (u1, ϕ−1(u1)), (u2, ϕ−1(u2)), . . ., (ur, ϕ−1(ur)), where
u1, u2, . . . , ur are the integers introduced in Section 2.2. ISA has the following three properties:
(i) u1 = 1 < u2 < · · · < ur ≤ n holds by Lemma 4(iii), (ii) ϕ−1(uδ′[1]) = 1 by Lemma 4(ii),
and (iii) ϕ−1(uδ′[i]) = ϕ−1(uδ′[i−1]) + (uδ′[i−1]+1 − uδ′[i−1]) holds by Lemma 4(ii) for each
i ∈ [2, r], where δ′ is the permutation of [1, r] introduced in Section 2.2. Hence, ISA satisfies
the three conditions of a disjoint interval sequence by Lemma 4.

Let fSA be the bijective function represented by the disjoint interval sequence ISA. Then
fSA(i) = ϕ−1(ux) + (i − ux) holds, where x is the integer such that ux ≤ i < ux+1 holds. On
the other hand, ϕ−1(i) = ϕ−1(ux) + (i − ux) holds by Lemma 4(i). Hence fSA and ϕ−1(i)
are the same function.

Let F (ISA) be the move data structure built on the balanced interval sequence B(ISA)
for ISA. Then, the result of a move query on B(ISA) contains ϕ−1(i) for i ∈ [1, n], and hence,
we have proven (i) of the following theorem.

▶ Theorem 8. Let x, x′, x̂ be the indexes of the three input intervals of B(ISA) containing
an integer i ∈ [1, n], ϕ−1(i), and i − 1, respectively. Then, the following two statements hold:
(i) We can compute ϕ−1(i) and x′ in constant time using data structure F (ISA) and the pair
(i, x). (ii) We can compute the index x̂ using F (ISA) and (i, x).

Proof. (ii) Let B(ISA) = (p1, q1), (p2, q2), . . ., (pk′ , qk′). The x-th input interval is [px, px+1 −
1], which contains i. x̂ = x holds if px ̸= i; otherwise, x̂ = x − 1. We can verify px ̸= i holds
in constant time by using F (ISA). ◀

Theorems 7 and 8 indicate that we can compute the position obtained by recursively
applying LF and ϕ−1 to a position i ∈ [1, n] t times in O(t) time if we know the index of
the input interval containing i. For example, let x, x′, x′′, and x′′′ be the indexes of the
four input intervals of B(ILF) containing i, LF(i), LF(LF(i)), and LF(LF(LF(i))), respectively.
LF(LF(LF(i))) can be computed by computing three move queries Move(B(ILF), i, x) =
(LF(i), x′), Move(B(ILF), LF(i), x′) = (LF(LF(i)), x′′), and Move(B(ILF), LF(LF(i)), x′′) =
(LF(LF(LF(i))), x′′′).

4 New data structure for backward searches

Here, we present a modified version of the backward search [10, 1], which we call backward
search query for OptBWTR (BSR query), for computing the sa-interval of cP for a given
string P and character c. To define the BSR query, we will introduce a new tuple: a balanced
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sa-interval of a string P is a 6-tuple (b, e, SA[b], i, j, v). Here, (i) [b, e] is the sa-interval of P ;
(ii) i and j are the indexes of the two input intervals of B(ILF) containing b and e, respectively;
(iii) v is the index of the input interval of B(ISA) containing SA[b]. The balanced sa-interval
of P is undefined if the sa-interval of P is ∅ (i.e., P is not a substring of T ). The input of
the BSR query is the balanced sa-interval (b, e, SA[b], i, j, v) of a string P and a character c.
The output of the BSR query is the balanced sa-interval (b′, e′, SA[b′], i′, j′, v′) of string cP if
the sa-interval of cP is not the empty set; otherwise BSR outputs a mark ⊥.

Now, we will present a data structure called the BSR data structure. The BSR data
structure supports BSR queries in O(log logw σ) time. It consists of five data structures
F (ILF), F (ISA), R(Lfirst), SA+, and SA+

index. Here, F (ILF) and F (ISA) are the two move
data structures introduced in Section 3.3. Let B(ILF) = (p1, q1), (p2, q2), . . . , (pk, qk). Then
Lfirst is the string satisfying Lfirst = L[p1], L[p2], . . . , L[pk]. R(Lfirst) is a rank-select data
structure built on Lfirst, which is defined in Section 2. R(Lfirst) requires O(|Lfirst|) words
of space, and it supports rank and select queries on Lfirst in O(log logw σ) and O(1) time,
respectively. SA+ is an array of size k such that SA+[x] stores the sa-value at the starting
position of the x-th input interval of B(ILF) for each x ∈ [1, k] (i.e., SA+[x] = SA[px]). Let
B(ISA) = (p′

1, q′
1), (p′

2, q′
2), . . . , (p′

k′ , q′
k′). SA+

index is an array of size k such that SA+
index[x]

stores the index y of the input interval of B(ISA) containing the position SA+[x] (i.e., y is
the integer satisfying SA+[x] ∈ [p′

y, p′
y+1 − 1]). The space usage of the five data structures is

O(|B(ILF)| + |B(ISA)|) words, and |B(ILF)|, |B(ISA)| = O(r) holds by Lemma 6(i).
Next, we will present a key observation on BSR queries, which is based on the toehold

lemma (see, e.g., [23, 13, 1]). Let L′ be a sequence of k substrings L[p1..p2 − 1], L[p2..p3 −
1], . . . , L[pk..pk+1 − 1] of BWT L, where pk+1 = n + 1. Then, L′ has the following properties:
(i) L′ represents a partition of L. (ii) Each string of L′ consists of a repetition of the
same character. (iii) Each character Lfirst[t] corresponds to the first character of the t-th
string of L′. (iv) The i-th and j-th strings of L′ contain the b-th and e-th characters of
BWT L, respectively. (v) Let b̂ and ê be the first and last occurrences of c in L[b..e] (i.e.,
b̂ = min{t | t ∈ [b, e] s.t. L[t] = c} and ê = max{t | t ∈ [b, e] s.t. L[t] = c}). Similarly, let î

and ĵ be the indexes of the two strings of L′ containing the b̂-th and ê-th characters of BWT
L, respectively. Then î and ĵ are equal to the first and last occurrences of c in Lfirst[i..j].
We obtain the following relations among the four positions b, b̂, e, and ê by using the above
five properties: (i) b̂ = b if Lfirst[i] = c; otherwise, b̂ = pî. (ii) Similarly, ê = e if Lfirst[j] = c;
otherwise b̂ = pĵ+1 − 1. We call these two relations the modified toehold lemma.

Let v̂ be the index of the input interval of B(ISA) containing position SA[b̂]. v̂ = v

and SA[b̂] = SA[b] hold if b̂ = b; otherwise, v̂ = SA+
index [̂i] and SA[b̂] = SA+ [̂i] by the

modified toehold lemma. We can compute the balanced sa-interval of cP by using F (ILF)
and F (ISA) after computing the six integers b̂, ê, î, ĵ, v̂, SA[b̂], because b′ = LF(b̂), e′ = LF(ê),
and SA[b′] = SA[b̂] − 1 hold by Lemma 2.

Figure 3 illustrates an example of the modified toehold lemma for a BWT L = bbbbbb

aaaaaa$aa. In this example, c = a and L′ = bbb, bbb, aaaaaa, $, aa. (i) k = 5, (ii)
(p1, p2, p3, p4, p5) = (1, 4, 7, 13, 14), (ii) Lfirst = bba$a, (iii) (b, e) = (3, 14), (iv) (b̂, ê) = (7, 14),
(v) (i, j) = (1, 5), and (vi) (̂i, ĵ) = (3, 5). The i-th string of L′ is not a repetition of the
character c, and the î-th string of L′ contains the b̂-th character of L. Hence b̂ = pî = 7
holds by the modified toehold lemma. Similarly, the j-th string of L′ is a repetition of c, and
hence ê = e holds by the modified toehold lemma.

We solve a BSR query in four steps. In the first step, we verify whether Lfirst[i..j] contains
character c by computing two rank queries rank(Lfirst, c, j) and rank(Lfirst, c, i). By Lemma 1(i),
Lfirst[i..j] contains c if rank(Lfirst, c, j) − rank(Lfirst, c, i) ≥ 1; otherwise, cP is not a substring
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of T , and hence BSR outputs a mark ⊥. In the second step, we compute two integers î and
ĵ using rank and select queries on the string Lfirst. î = select(Lfirst, c, rank(Lfirst, c, i − 1) + 1)
and ĵ = select(Lfirst, c, rank(Lfirst, c, j)) hold by Lemma 1(ii). In the third step, we compute b̂,
ê, v̂, and SA[b̂] by the modified toehold lemma. In the fourth step, we compute the balanced
sa-interval of cP by processing the six integers b̂, ê, î, ĵ, v̂, SA[b̂], i.e., we compute (i) the pair
(b′, i′) using a move query on B(ILF) for the pair (b̂, î), (ii) the pair (e′, j′) using a move query
on B(ILF) for the pair (ê, ĵ), and (iii) the pair (SA[v′], v′) by Theorem 8(ii). The running
time is O(log logw σ) in total.

5 OptBWTR

Here, we present OptBWTR, which supports optimal-time queries for polylogarithmic
alphabets by leveraging data structures for computing LF and ϕ−1 functions. Let P be a
string of length m in a count or locate query and occ = |Occ(T, P )|. The goal of this section
is to prove the following theorem.

▶ Theorem 9. OptBWTR requires O(r) words, and it supports count and locate queries on
a string T in O(m log logw σ) and O(m log logw σ + occ) time, respectively. We can construct
OptBWTR in O(n + r log r) time and O(r) words by processing the RLBWT of T .

Proof. See the full version of this paper [22] for the proof of the construction time and
working space in Theorem 9. ◀

OptBWTR consists of the five data structures composing the BSR data structure, i.e.,
F (ILF), F (ISA), R(Lfirst), SA+, and SA+

index. First, we present an algorithm for a count query
using OptBWTR that consists of two phases. In the first phase, the algorithm computes
the balanced sa-interval of P by iterating BSR query m times. The input of the i-th BSR
query is the (m − i + 1)-th character of P (i.e., P [m − i + 1]) and the balanced sa-interval
of P [m − i + 2..m] for each i ∈ [1, m]. Here, P [m + 1..m] is defined as the empty string ε.
The balanced sa-interval of ε is (1, n, n, 1, |B(ILF)|, |B(ISA)|), because (i) the sa-interval of
the empty string is [1, n], and (ii) SA[1] = n. The i-th BSR query outputs the balanced
sa-interval of P [m − i + 1..m] if P [m − i + 1..m] is a substring of T ; otherwise it outputs a
mark ⊥. If a BSR query outputs ⊥, the pattern P does not occur in T . In this case, the
algorithm stops and returns 0 as the solution for the count query. In the second phase, the
algorithm returns the length of the sa-interval [b, e] of P (i.e., e − b + 1) as the solution for
the count query, because occ = e − b + 1 holds. The sa-interval of P is contained in the
balanced sa-interval of P ; hence, the running time is O(m log logw σ) in total.

Next, we present an algorithm for a locate query using OptBWTR. Assume that we
already computed the balanced sa-interval of P by the algorithm for the count query. Let
vt be the index of the input interval of B(ISA) containing SA[b + t] for t ∈ [0, e − b]. Then
SA[b + 1..e] can be computed by computing (e − b) move queries Move(B(ISA), SA[b], v0) =
(SA[b+1], v1), Move(B(ISA), SA[b+1], v1) = (SA[b+2], v2), . . ., Move(B(ISA), SA[e−1], ve−b) =
(SA[e], ve−b+1) on B(ISA). The first sa-value SA[b] and the index v0 are stored in the balanced
sa-interval of P .

The algorithm for a locate query also consists of two phases. In the first phase, the
algorithm computes the balanced sa-interval of P by iterating BSR query m times. In the
second phase, it computes (e − b) move queries Move(B(ISA), SA[b], v0), Move(B(ISA), SA[b +
1], v1), . . ., Move(B(ISA), SA[e − 1], ve−b) by using the move data structure F (ISA), and
outputs SA[b..e]. Hence, we can solve a locate query in O(m log logw σ + occ) time.
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6 Applications

In this section, we show that OptBWTR can support extract, decompression, and prefix
search queries in optimal time.

Extract query. Let a string T of length n have b marked positions i1, i2, . . . , ib ∈ [1, n]. An
extract query (also called the bookmarking problem) is to return substring T [ij ..ij + d − 1]
for a given integer j ∈ [1, b] and d ∈ [1, n − ij + 1].

We will use FL function to solve extract queries. FL is the inverse function of LF
function, i.e., FL(LF(i)) = i holds for i ∈ [1, n]. We will also use the function FLx and
integers h1, h2, . . . , hb. FLx(i) returns the position obtained by recursively applying the FL
function to a given integer i x times, i.e., FL0(i) = i and FLx(i) = FLx−1(FL(i)) for x ≥ 1.
hj is the position with sa-value ij on SA (i.e., SA[hj ] = ij). The FL function returns the
position with the sa-value y + 1 on SA for a given position with sa-value y, and hence
T [ij ..ij + d − 1] = F [FL0(hj)], F [FL1(hj)], . . . , F [FLd−1(hj)] holds for j ∈ [1, b], where F is
the string described in Section 2.2. We can construct a data structure of O(r) words to
compute FL function in constant time by modifying Theorem 7 and can solve an extract
query in linear time by using the data structure. See the full version of this paper [22] for
details of our data structure for solving extract queries.

▶ Theorem 10. There exists a data structure of O(r + b) words that solves the bookmarking
problem for a string T and b positions i1, i2, . . . , ib (1 ≤ i1 < i2 < · · · < ib ≤ n). This data
structure supports an exact query in constant time per character. We can construct the data
structure in O(n) time and O(r + b) words of space by processing the RLBWT and positions
i1, i2, . . . , ib.

Proof. See the full version of this paper [22]. ◀

Decompression of RLBWT. We apply Theorem 10 to T [1..n] with marked position 1.
Then, our data structure for extract queries can return the string T in O(n) time (i.e., the
data structure can recover T from the RLBWT of T in linear time to n). The O(n) time
decompression is the fastest among other decompression algorithms on compressed indexes
in O(r) words of space, as the following theorem shows.

▶ Theorem 11. We can compute the characters of T in left-to-right order (i.e., T [1], T [2],
. . ., T [n]) in O(n) time and O(r) words of space by processing the RLBWT of string T .

Prefix search. The prefix search for a set of strings D = {T1, T2, . . . , Td} returns the
indexes of the strings in D that include a given string P as their prefixes (i.e., {i | i ∈
[1, d] s.t. Ti[1..|P |] = P}). We can construct a data structure supporting the prefix search
by combining Theorem 10 with compact trie [20].

A compact trie for a set of strings D is a trie for D such that all unary paths are collapsed,
and each node represents the string by concatenating labels on the path from the root to the
node. For simplicity, we assume that the set D is prefix-free, i.e., Ti is not a prefix of Ti′ for
any pair of two strings Ti and Ti′ in D. Each leaf in the compact trie represents a distinct
string in D by the assumption. Let v be the node such that (i) P is a prefix of the string
represented by the node and (ii) P is not a prefix of the string represented by its parent.
Then, the leaves under v are the output of the prefix search query for P .
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To find v, we decode the string on the path from the root to the node v in linear time
using exact queries for the path. After we find v, we traverse the subtree rooted at v and
output all the leaves in the subtree. This procedure runs in O(|P | + occ′) time, where occ′ is
the number of leaves under the lowest node. See the full version of this paper [22] for the
details of our data structure for solving prefix search queries.

▶ Theorem 12. Let r′ be the number of runs in the RLBWT of a string T containing all the
strings in D = {T1, T2, . . . , Td}. There exists a data structure that supports a prefix search
on D in O(|P | + occ′) time and O(r′ + d) words of space for a string P . The data structure
also returns the number of the strings in D that include P as their prefixes in O(|P |) time.

Proof. See the full version of this paper [22]. ◀

7 Conclusion

We presented OptBWTR, the first string index that can support count and locate queries on
RLBWT in optimal time with O(r) words of space for polylogarithmic alphabets. OptBWTR
also supports extract queries and prefix searches on RLBWT in optimal time for any alphabet
size. In addition, we presented the first decompression algorithm working in optimal time
and O(r) words of working space. This is the first optimal-time decompression algorithm
working in O(r) words of space.

We presented a new data structure of O(r) words for computing LF and ϕ−1 functions in
constant time by using a new data structure named move data structure, provided that we
use an additional input. We also showed that the backward search works in optimal time
for polylogarithmic alphabets with O(r) words of space using the data structure. The two
functions and the backward search are general and applicable to various queries on RLBWT.

The following problems remain open: Does there exist a string index of O(r) words
supporting locate queries in optimal time for any alphabet size? We assume σ = O(polylog n)
for supporting locate queries in optimal time with O(r) words. As mentioned in Section 1, a
faster version of r-index can support locate queries in optimal time with O(r log logw(σ +
(n/r))) words. Thus, improving OptBWTR so that it can support locate queries in optimal
time with O(r) words for any alphabet size is an important future work. For this goal, one
needs to solve a rank query on a string of length Θ(r) in constant time and O(r) words of
space. However, this seems impossible because any data structure of O(r) words requires
Ω(log logw σ) time to compute a rank query on a string of length r [4]. Perhaps, we may be
able to compute the sa-interval of a given pattern in O(m) time and O(r) words of space
without using rank queries. After computing the sa-interval of the pattern, we can solve the
locate query in optimal time by using our data structure for the ϕ−1 function.
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Abstract
The Lasserre Hierarchy, [18, 19], is a set of semidefinite programs which yield increasingly tight
bounds on optimal solutions to many NP-hard optimization problems. The hierarchy is param-
eterized by levels, with a higher level corresponding to a more accurate relaxation. High level
programs have proven to be invaluable components of approximation algorithms for many NP-hard
optimization problems [3, 7, 26]. There is a natural analogous quantum hierarchy [5, 8, 24], which is
also parameterized by level and provides a relaxation of many (QMA-hard) quantum problems of
interest [5,6,9]. In contrast to the classical case, however, there is only one approximation algorithm
which makes use of higher levels of the hierarchy [5]. Here we provide the first ever use of the
level-2 hierarchy in an approximation algorithm for a particular QMA-complete problem, so-called
Quantum Max Cut [2,9]. We obtain modest improvements on state-of-the-art approximation factors
for this problem, as well as demonstrate that the level-2 hierarchy satisfies many physically-motivated
constraints that the level-1 does not satisfy. Indeed, this observation is at the heart of our analysis
and indicates that higher levels of the quantum Lasserre Hierarchy may be very useful tools in the
design of approximation algorithms for QMA-complete problems.
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1 Introduction

The study of many body quantum systems, and their corresponding spectra is of utmost
importance in many sub-fields of physics [4]. These systems generally have an exponentially
large dimension, so a direct calculation is intractable. Indeed, determining the highest or
lowest energy of a quantum state is the canonical QMA-hard problem [4,17], so we should not
expect to solve the problem even with access to a quantum computer. Hence, the study of
algorithms which produce approximate solutions emerges as an interesting direction of study.
These problems are made even more interesting by the fact that, in contrast to the classical
case [29,30], there are relatively few known rigorous approximation algorithms known.
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Prior work. The 2-Local Hamiltonian problem has been a cornerstone of quantum complexity
theory; however, it has been recently studied in the context of approximation algorithms [2,5,
6,9,12,22]. Many of these algorithms draw inspiration from the seminal Goemans-Williamson
Max Cut approximation algorithm [10] or other appropriate classical counterparts [26].
For classical approximation algorithms, an effective meta-algorithm is to solve a linear or
semidefinite program (SDP) which relaxes the (NP-hard) optimization problem, followed by
a rounding procedure which seeks to turn the optimal SDP variable into a solution in the
appropriate domain (binary, integral, etc.). The SDP provides a polynomial-time-computable
bound on the optimization problem hence bounding the loss in objective allows one to
bound the ratio of the objective obtained to the optimal solution (this quantity is called
the approximation factor). In the quantum case, the SDP variable is polynomial size, and
the goal is to produce a (classical description) of an exponentially large quantum state,
again with quantifiable loss. Most such results use the same quantum generalization [5, 6, 9]
of a semidefinite programming hierarchy discovered independently by several authors in
the classical case [11, 18, 23]. Variations in the aforementioned results [6, 9, 12, 22] derive
from differences in either the SDP used to relax the problem [12], changing the rounding
algorithm [6,9,12,22], or in some cases by slightly modifying the approximation algorithm
and providing a better analysis for the formal proof of the approximation factor [22].

With only one exception, [2], these results all have a rounding step which produces a
product state. Since there are upper bounds on the performance of product states [9], these
results all have necessarily limited performance, and it is desireable to produce non-product
states for a better objective. Another common thread in many of these works is the use of
the level-1 instance of the quantum Lasserre Hierarchy. As we will demonstrate in Section 3,
this is a relatively loose relaxation which does not satisfy important physical constraints that
a consistent quantum state would satisfy. Hence, to get a better objective it is important to
use a higher level of Lasserre, for a tighter bound on the optimal quantum state.

There are two works of particular interest in the current context: [2] and [5], which we
comment on. We will first need to formally describe a specific 2-Local Hamiltonian problem,
introduced as a quantum analog of Max Cut [9]. Note that here and throughout the paper,
we will use the notation σi to mean the 2 × 2 matrix σ acting on i tensored with the I ∈ C2×2

acting on each of the other qubits (the total number of qubits, n, will be clear from context
when this notation is used). The formal definition of Quantum Max Cut, QMC(G,w) is:

▶ Definition 1 (QMC(G,w)). Given a graph G = (V,E) with |V | = n, let H ∈ C2n×2n such
that:

H =
∑
ij∈E

wij(I −XiXj − YiYj − ZiZj)

Then, we define QMC(G,w) to be the largest eigenvalue of H. Ideally, one also seeks to
produce a (description) of a state achieving this value.

Gharibian and Parekh [9] introduced this problem as a maximization version of the well-
known problem of finding ground states for the quantum Heisenberg model. They give a
classical 0.498-approximation using product states, where a 1

2 -approximation is the best
possible in the product state regime. Anshu, Gosset, and Morenz [2] present a classical
rounding algorithm that outputs a description of an entangled state and are able to deliver a
0.531-approximation. To the best of our knowledge, this is the first approximation algorithm
for a 2-Local Hamiltonian problem to move beyond product states. Likewise, the analysis
in [2] differs from the analysis in the other related works. Instead of using SDPs to upper
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bound the optimal quantum objective, [2] uses physical considerations for the particular
kind of Hamiltonian they study [20]. The key technical component is an upper bound on
QMC(G,w) where G is a star graph. The rounding algorithm is also fundamentally different
in that the output quantum state is produced from direct consideration of the Hamiltonian
and its weights, rather than a solution to an SDP.

Another important work for understanding our contribution is that of Brandão and
Harrow [5], since this paper makes use of higher levels of the quantum Lasserre Hierarchy.
Essentially the relevant rounding algorithm from this paper proceeds in the same way as the
classical counterpart by Barak, Raghavendra, and Steurer [26], where a set of subsystems
is sampled and all other density matrices are sampled according to single qubit density
matrices conditioned on this set. There are additional issues that arise in the analysis
from the quantum-ness of the problem, but the rounding algorithm is semantically similar.
Additionally, all of the results presented in [5] make strong non-local assumptions on the
particular “topology” or structure of the instance.

Our contributions. In contrast to previous approaches, we make only local assumptions on
the 2-Local terms, and apply the second level of the Lasserre Hierarchy in a radical new way
which makes crucial use of “monogamy of entanglement” inequalities. Indeed, we believe
that the methods we introduce constitute the most interesting contribution of this work.

We bridge the gap between [2] and more traditional SDP-based approximation algorithms
by showing that the monogamy of entanglement bound derived in [2], based on a seminal
result of Lieb and Mattis [20], is a consequence of the second level of a quantum analog [5,8,24]
of the classical Lasserre Hierarchy [18,19]. To the best of our knowledge this is a first explicit
example of such a connection. This establishes the second level of the quantum Lasserre
Hierarchy as the source of the best upper bound for Quantum Max Cut that is amenable to
analysis. We show that weaker versions of this SDP relaxation, including the first level, fail
to yield the monogamy of entanglement bound. In addition we slightly improve upon the
best-known approximation factor for QMC [2] through a simple rounding algorithm that uses
an SDP solution to guide construction of an entangled solution. This is a significant departure
from existing approximation algorithms for 2-Local Hamiltonian problems, requiring new
connections between quantum SDP relaxations and the convex hull of matchings in a graph.
Quantum Max Cut has emerged as a vehicle for advancement of approximation algorithms for
2-Local Hamiltonian problems, since it maintains the hardness and essence of more general
problems while hiding technical details that hinder progress [2, 9, 22]. We expect that the
insights we develop here for Quantum Max Cut may be generalized for other problems.

Our methods. As stated previously, our rounding algorithm begins by formulating and
solving an appropriate SDP, which comes from the quantum generalization of the Lasserre
Hierarchy. The SDP assigns a “value” for each edge, roughly corresponding to “how close”
the parameters of the edge are to a singlet. An edge with large value has parameters nearly
matching the singlet. Loosely speaking, if an edge has large value then the SDP “thinks”
an optimal quantum solution is nearly a singlet along the edge. The rounding algorithm
proceeds by picking a threshold and adding every edge with value over the threshold to
the large edge set (denoted L in the paper). In a legitimate quantum state, the concept of
monogamy of entanglement implies that we cannot have too many large edges attached to
the same vertex. Since the SDP relaxation we use is relatively strong (Section 3), this implies
the graph induced by the small edges must have low degree. Hence, if we find a maximum
matching on this graph, and place a singlet (the state in Equation (1)) on each edge in the
matching, we obtain a quantum state with performance approximately comparable to the
SDP on this subgraph. For the remainder of the qubits we place the maximally mixed state.
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Intuitively, this technique of thresholding the edges and then finding a matching has poor
performance when all the edges have small values. However, in this case a product state
gives a good approximation to the objective: if all the edges are small then the state does
not align well with the singlet along the edges in the Hamiltonian, hence entanglement is not
really needed to emulate the state. The rounding algorithm checks the value of both of these
strategies (singlets on large edges vs. product state rounding) and takes whichever is better.

Future work. Our analysis is not optimal, and it is possible to obtain improvements. For
example, we may consider stronger valid inequalities for Quantum Max Cut solutions arising
from our relaxation, which we know exist through numerical experiments. How far can
such an improvement be pushed? Can we significantly improve the approximation ratio
for Quantum Max Cut beyond ≈ 0.53? Our analysis shows that the second level of the
quantum Lasserre Hierarchy is exact for star graphs. Can similar results be achieved for
more interesting classes of graphs?

Another important direction is the search for upper bounds on achievable approximation
factors. For classical optimization problems there are many such bounds known [15, 16].
Most of these rely on a complexity theoretic conjecture referred to as the Unique Games
Conjecture (UGC) [14], i.e. if UGC holds then we have the corresponding upper bound on the
approximation factor. No analogous results are known for quantum optimization problems.

2 Preliminaries

We use standard quantum information and graph theory notation, highlighting a few specific
definitions below.

For an integer l ≥ 1, we let [l] := {1, . . . , l}. For a set S, RS refers to R|S|, where the
dimensions of the Euclidean space are associated with the elements of S. We generally refer
to the elements of a vector x ∈ RS as xl for l ∈ S; however, we will also refer to xl as
variables comprising a solution x in the context of semidefinite and linear programs.

Quantum information. The Pauli matrices take their usual definition:

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
.

We follow the standard practice of using subscripts to indicate quantum subsystems among
n qubits, and we use the notation σi to denote a Pauli matrix σ ∈ {X,Y, Z} acting on qubit
i, i.e. σi := I ⊗ I ⊗ . . . ⊗ σ ⊗ . . . ⊗ I ∈ C2n×2n , where the σ occurs at position i. The sets
S(X ) and H(X ) refer to the symmetric and Hermitian matrices, respectively, acting on the
(complex) Euclidean space X .

Graph theory. We deal with only finite and simple graphs G = (V,E), with vertex set V
and edge set E. The notation E(G) is the edge set of a graph G. We will refer to an edge e
with endpoints i, j ∈ V as ij ∈ E, or simply as e ∈ E when endpoints are immaterial. We
generally consider weighted graphs where a weight we ≥ 0 is specified for each edge e ∈ E.

For a graph G = (V,E), and a set of vertices S ⊆ V , we denote the induced subgraph on S,
consisting of all edges in E with both endpoints in S, as G[S]. For a set of vertices and edges
S ⊆ V and F ⊆ E, respectively, the edge set δF (S) is defined as {ij ∈ F | |{i, j} ∩ S| = 1},
and EF (S) := {ij ∈ F | |{i, j} ∩ S| = 2}. We drop the subscript F when F = E, and for a
vertex i ∈ V , we abbreviate δF ({i}) as δF (i).
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A graph is k-vertex connected if it has at least k vertices and deleting any set of fewer
than k vertices (and any incident edges) leaves a connected graph. A matching M is a set of
edges such that no two distinct e, f ∈ M share a common vertex. A perfect matching in G is
a matching of size |V |

2 .

2.1 Approximation Algorithm Overview
The formal rounding algorithm we propose is presented in Algorithm 1.

Algorithm 1 Approximation Algorithm for Quantum Max Cut.

1. Given as input a graph G = (V,E) with weights w = {we ≥ 0}e∈E , solve Lasserre2(G,w)
(Definition 4). Let the matrix M be an optimal solution.

2. For each ij ∈ E calculate vij := [M(XiXj , I)+M(YiYj , I)+M(ZiZj , I)]/3, where M(Γ,Φ)
refers to the (Γ,Φ) entry of the matrix M . Set xij := −vij .

3. Pick an integer d ≥ 1, and define L := {e ∈ E | xe > α(d) := d+3
3(d+1) }. Find a maximum-

weight matching F in the graph GL := (V,L) with respect to the weights {we}e∈L. Let
U be the vertices unmatched by F .

4. Define a quantum state:1

ρF :=
∏

ij∈F

(
I −XiXj − YiYj − ZiZj

4

) ∏
v∈U

Iv

2 . (1)

5. Execute the randomized approximation algorithm for Quantum Max Cut from [9], yielding
a product state ρP S from a Lasserre1 solution.

6. Output the better of ρF and ρP S .

To understand the significance of the parameter d in Step 3, recall that we find a set of
“large” edges L based on a threshold. The strength of Lasserre2 implies that GL has bounded
degree. d is the degree upper bound we prove (Lemma 14) corresponding to threshold
α(d) = (d+ 3)/(3(d+ 1)). In particular, if d = 1 then no vertex has two adjacent edges and
we may select all edges in L for our matching. The problem with this strategy, however, is
that if all the edges have small values then the product state rounding algorithm (Step 5)
has relatively poor performance. Hence, we obtain the result for d = 2. This allows us to get
better performance for product state rounding but requires more work to show a maximum
matching has good performance with respect to the SDP.

Analysis outline. The main theorem of this work (Theorem 2) proves the stated approxi-
mation factor of Algorithm 1. The proof of this theorem requires first demonstrating (in
Section 3) several inequalities on the optimal solution of the second level of the quantum
Lasserre Hierarhcy (demonted Lasserre2). Roughly there are two sets of techniques we use to
prove the inequalities we need. The first set (Section 3.2) involves using invariance of the the
objective function under certain permutations of the SDP variable and Schur complements.
The second set of bounds follows from sum-of-squares proof techniques Section 3.3.

Understanding the performance of the thresholding (Step 3 in the algorithm) involves
showing that constraints satisfied by the SDP (Section 3) imply that the “large” edges L
can be scaled by a not too small constant and brought into the convex hull of matchings

1 Recall Xi is a tensor product of identity operators and a single X operator in the ith position. So,
((I + X)/2) ⊗ ((I + X)/2) is expressed as

∏2
i=1(I + Xi)/2 rather than

⊗2
i=1(I + Xi)/2
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(Theorem 16). This provides a lower bound on the performance of the state ρF , then we
may appeal to [9] to lower bound the performance of ρP S . We will prove the main theorem
first, using components proved subsequently. The reader is encouraged to come back to this
proof after reading the document

▶ Theorem 2 (Main Theorem). Let G = (V,E) be a graph and {we}e∈E be a set of weights
with we ≥ 0 for all e ∈ E. Let H be the QMC Hamiltonian in Definition 1, and let ρ be the
density matrix output by Algorithm 1. Then,

E[Tr(Hρ)]
QMC(G,w) ≥ 0.533,

where the numerator is the expected objective value obtained by Algorithm 1

Proof. Let d = 2, let {xe}e∈E be the values obtained from the SDP as in Item 2, let L be
the set of edges found in Item 3, let S := E−L, and let {y∗

e}e∈E be such that {0, 1} ∋ y∗
e = 1

if and only if edge e is chosen in the matching for ρF (see Lemma 17).
Define:

s :=
∑

e∈S we(1 + 3xe)∑
e∈S we(1 + 3xe) +

∑
e∈L we(1 + 3xe) ,

and note that s ∈ [0, 1] since the comment below Lemma 12 implies that (1 + 3xe) ≥ 0 for
e ∈ E. It holds that∑

e∈S we(1 + 3y∗
e) +

∑
e∈L we(1 + 3y∗

e)∑
e∈S we(1 + 3xe) +

∑
e∈L we(1 + 3xe) =

∑
e∈S we(1 + 3y∗

e)∑
e∈S we(1 + 3xe)s+

∑
e∈L we(1 + 3y∗

e)∑
e∈L we(1 + 3xe) (1−s)

Now we can apply Lemma 17,∑
e∈S we(1 + 3y∗

e)∑
e∈S we(1 + 3xe)s+

∑
e∈L we(1 + 3y∗

e)∑
e∈L we(1 + 3xe) (1 − s) ≥ 3

8s+ 3
4(1 − s).

A similar argument for ρP S using Lemma 18 yields:

E[Tr(HρP S)]∑
e∈S we(1 + 3xe) +

∑
ij∈L we(1 + 3xe) ≥ 0.557931s+ 0.498766(1 − s)

A lower bound on the expected approximation factor is

min
s∈[0,1]

max
{

3
8s+ 3

4(1 − s), 0.557931s+ 0.498766(1 − s)
}
,

which is calculated by the linear program,

0.533 ≤ min r

s.t.

{
3
8s+ 3

4(1 − s) ≤ r, 0.557931s+ 0.498766(1 − s) ≤ r, 1 ≥ s ≥ 0
}
. ◀

3 The Level-2 Quantum Lasserre Hierarchy

3.1 Definitions
The classical or commutative Lasserre Hierarchy (and the dual Sum-of-Squares Hierarchy) is a
set of semidefinite programs which relaxes the notion of a probability distribution to a pseudo-
distribution [3]. A pseudo-distribution is an assignment of values to low order moments which
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respects some, but not all, of the properties that a fully consistent probability distribution
would satisfy. To understand this consider n binary random variables (A1, ..., An). We will
be interested in expectations of polynomials in the Ai. For each monomial of degree t ≤ 2k in
these variables, the level-k instance of the hierarchy assigns value: vk(Ai1Ai2 . . . Ait) ∈ [0, 1].
The value vk is meant to represent the expectation ED[Ai1Ai2 . . . Ait

] for a valid probability
distribution D, but it is also possible that it assigns values in such a way that it is impossible
to have vk(Ai1Ai2 . . . Ait

) = ED[Ai1Ai2 . . . Ait
] for any valid distribution D. The level-k

SDP assigns values so that polynomials of degree at most k behave as they should for a
valid distribution. In particular the SDP assigns values to monomials in such a way that
if one expanded p(A1, . . . , An)2 as a linear combination of monomials and applied vk to
the individual terms, the resulting value vk(p(A1, . . . , An)2) ≥ 0. Note that the expected
behavior for random variables is the same: ED[p(A1, . . . , An)2] ≥ 0 for a distribution D. The
level k can be thought of as checking that the distribution looks valid from the perspective
of low order polynomials.

A quantum analog of the Lasserre Hierarchy [5,8, 24] is essentially the same except that
it is checking the validity of low order polynomials in the Pauli matrices with respect to
an overall quantum distribution (density matrix). The values we will assign are meant to
represent values of Tr(Γρ) for Γ a “low-order” tensor product of Pauli matrices and ρ a valid
density matrix. However, the relaxation will likely assign values v(Γ) in such a way that it is
impossible for v(Γ) = Tr(Γρ) to hold for any density matrix (and for all Γ)2. In this context,
by “low-order monomial” we mean the following:

▶ Definition 3 (Pn(k)). Given k, n define Pn(k) as the set of Pauli operators of weight ≤ k.
Formally, Γ ∈ Pn(k) if Γ is a tensor product of n operators, each of which is in {I, X, Y, Z}
such that at most k are not I.

Lasserrek will assign values to monomials (elements of Pn(2k)) in such a way that if
p =

∑
Φ∈Pn(k) cΦΦ, then v(p2) =

∑
Φ,Φ′ cΦcΦ′v(ΦΦ′) ≥ 0. A value assignment which respects

low order statistics is equivalent to a positive-semidefinite (PSD) constraint on a “moment
matrix”. To understand this imagine we had a PSD matrix M with rows and columns indexed
by elements of Pn(k), and we assigned values so that v(Γ) := M(Φ,Ψ) if ΦΨ = Γ. Then,
given some polynomial p,

v(p2) = v


 ∑

Φ∈Pn(k)

cΦΦ

2
 =

∑
Φ,Φ′

∈Pn(k)

cΦcΦ′v(ΦΦ′) =
∑
Φ,Φ′

∈Pn(k)

cΦcΦ′M(Φ,Φ′) = cTMc,

where c ∈ RPn(k) is the vector of monomial coefficients. Since M was assumed PSD we
are guaranteed that the RHS is ≥ 0. Indeed, if we assign values based on a PSD matrix
subject to appropriate constraints, we are guaranteed that Lasserrek will respect low degree
polynomials:

2 Indeed, if we were able to constrain the low order statistics to be globally consistent with some (physical)
density matrix, then we could find the largest eigenvalue and solve a QMA-complete problem [21].
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▶ Definition 4 (Lasserrek(G,w)). Given k, a graph G = (V,E) on n vertices, as well
as a vector of non-negative weights {we}e∈E let γ := |Pn(k)|. For each ij ∈ E, define
Cij ∈ S(Rγ×γ) where rows and columns are indexed by elements of Pn(k) such that

Cij(σi, σj) := −1
2 for σ ∈ {X,Y, Z},

Cij := 0 otherwise.

Let M ∈ S(Rγ×γ) be an SDP variable with rows and columns indexed by elements of Pn(k).
We define Lasserrek(G,w) as the following SDP:

max
∑
ij∈E

wij (1 + Tr(CijM)) (2)

s.t. M(Γ,Γ) = 1 ∀ Γ ∈ Pn(k), (3)
M(Γ,Φ) = 0 ∀ Γ,Φ ∈ Pn(k) s.t. ΓΦ is not Hermitian, (4)
M(Γ,Φ) = M(Γ′,Φ′) ∀ Γ,Φ,Γ′,Φ′ ∈ Pn(k) s.t. ΓΦ = Γ′Φ′, (5)
M(Γ,Φ) = −M(Γ′,Φ′) ∀ Γ,Φ,Γ′,Φ′ ∈ Pn(k) s.t. ΓΦ = −Γ′Φ′, (6)

M ⪰ 0, (7)
M ∈ S(Rγ×γ). (8)

We will denote Lasserrek(G) as the above problem with uniform weights (set all wij = 1).
Note that we employ a real version of the Lasserre Hierarchy rather than the usual complex
version. This still provides an upper bound on the optimal quantum state as shown below in
Theorem 7.

Since in Lasserre2 we have constraints M(σi, σj) = M(σiσj , I), we could have equivalently
defined the objective matrix using these moment matrix entries, i.e. taking Cij(σiσj , I) ̸= 0.

▶ Definition 5 (Lasserrek Edge Values). From a solution M to Lasserrek(G,w) (Definition 4),
we define edge values that are used by the rounding algorithm, Algorithm 1. Such values
are defined for every pair of distinct vertices i, j, hence we assume, when referring to these
values, that E is edge set of a complete graph, denoted Kn. We may set we = 0 for edges
e ∈ E that do not contribute to the objective value. We define:

vij := M(XiXj , I) +M(YiYj , I) +M(ZiZj , I)
3 , and xij := −vij ,

for all ij ∈ E := E(Kn). We say an edge is large if xij ≈ 1 (and vij ≈ −1).

We will also need to define a modified version of Lasserre1. This is simply Lasserre1
supplemented with positivity of 2-qubit marginals. This is a relaxation of intermediate
strength between Lasserre1 and Lasserre2, so we have denoted is Lasserre1.5. The additional
marginal constraints are crucial for the analysis presented in [22], so a precise understanding
of its strength is very interesting. We will define it only for unweighted graphs, since it will
not be used in the context of the approximation algorithm.
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▶ Problem 6 (Lasserre1.5(G)). Given a graph G = (V,E) on n vertices, for each ij ∈ E let
Cij be as defined in Lasserre1. Solve the following SDP:

max
∑
ij∈E

(1 + Tr(CijM)) (9)

s.t. M(Γ,Γ) = 1 ∀Γ ∈ Pn(1), (10)
M(Γ,Φ) = 0 ∀Γ,Φ ∈ Pn(1) s.t. ΓΦ is not Hermitian, (11)
M(σi, ηj) = Tr[σ ⊗ η ρij ] ∀ij ∈ E and σ, η ∈ {X,Y, Z}, (12)
M(σi, I) = Tr[σi ⊗ I ρij ] ∀ij ∈ E and σ ∈ {X,Y, Z}, (13)
M(σj , I) = Tr[I ⊗ σj ρij ] ∀ij ∈ E and σ ∈ {X,Y, Z}, (14)

Tr[ρij ] = 1 ∀ij ∈ E, (15)
ρij ⪰ 0 ∀ij ∈ E, (16)
ρij ∈ H(C4×4) ∀ij ∈ E, (17)
M ⪰ 0, (18)

M ∈ S(R(3n+1)×(3n+1)). (19)

Note that the main difference between Lasserre1.5 and Lasserre1 is the presence of
constraints Equation (12)-Equation (14). As stated previously, their intent is to force
consistency of 2-local moment matrices by forcing them to correspond to physical 2-qubit
density matrices. These relaxations are important because they relax quantum states, hence
can be used as upper bounds on 2-Local Hamiltonian problems:

▶ Theorem 7. For any constant k Lasserrek is an efficiently computable semidefinite program
that provides an upper bound on QMC(G,w).

Proof. Except for M ⪰ 0, the constraints and objective are affine on the entries of M , hence
we do indeed have an SDP. Since M is of polynomial size (it has length O(nk) on one side),
and there are polynomially many linear constraints (O(n2k) many), the usual considerations
show computational efficiency: All feasible M have bounded norm since moment matrices
are constrained to be 1 along the diagonal, the identity matrix is feasible so strong duality
holds, and there is a “ball” of operators around the identity which are feasible. Hence, the
program can be solved to arbitrary additive precision in polynomial time via the ellipsoid or
interior point methods (e.g., [28]).

Let |ψ⟩ be an eigenvector corresponding to λmax(H) where H is the 2-Local Hamiltonian
in QMC (Definition 1). Set M(Φ,Γ) = Tr(ΦΓρ). M is PSD since for a complex vector v,
v†Mv = Tr(S2ρ) for S some polynomial as previously described. The remaining issue is that
if ΦΓ is not Hermitian then the corresponding value of M is purely imaginary, so we may
not be satisfying Equation (4). The solution is simply to set a new moment matrix M ′ as
M ′ = (M +M∗)/2 where M∗ is the same as M but with complex conjugate entries. Note
that M ′ is PSD since M∗ must also be PSD. For the objective, note that

Tr (wij(I −XiXj − YiYj − ZiZj) |ψ⟩ ⟨ψ|) = wij(1 + Tr(MCij)).

Hence we have established that the optimal quantum state has the same energy as the
objective for some feasible M . It follows that the optimal M has objective which upper
bounds the optimal quantum solution. ◀
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M(σi, ηk) =



1 if i = k and σ = η

−1 if i = 0 and σ = η

1 if i ̸= 0 ̸= k, and σ = η

1 if σi = I = σk

0 otherwise

(a) Formal Description of Optimal Moment Matrix.

M =



0 1 2 ... n I

0 I −I −I . . . −I 0
1 −I I I . . . I 0
2 −I I I . . . I 0
...

...
...

...
. . .

...
...

n −I I I . . . I 0
I 0 0 0 . . . 0 1


(b) Informal Description of Optimal Moment Ma-
trix.

1 −1 −1 . . . −1
−1 1 1 . . . 1
−1 1 1 . . . 1
...

...
. . .

...
−1 1 1 . . . 1


(c) One of the Diagonal Blocks of M .

1 1 . . . 1
...

...
...

1 1 . . . 1

−


−1
−1
...

−1

 [
−1 −1 . . . −1

]
⪰ 0

(d) Schur Complement to complete the proof.

Figure 1 Matrices Needed For Proof of Theorem 9.

3.2 Relative Strength of Relaxations

An important contribution of this work is that the level-2 instances of the Lasserre Hierarchy
satisfy important physical constraints which are not satisfied by the first level, even when the
first level is further constrained with positive 2-qubit marginals (Lasserre1.5). The physical
property of interest can be thought of as a “monogamy of entanglement” with respect to
specific partitions of the quantum state. Let G = (V,E) be a graph on n+ 1 vertices with
vertex set {0, 1, ..., n}. Further, let the edge set be E = {(0, 1), (0, 2), ..., (0, n)}. This graph is
easily visualized as n “leaves” connected to a central vertex 0. The Hamiltonian for QMC(G),
H, can be thought of as “testing” entanglement along the edges since it is testing overlap
with respect to a maximally entangled state. If a state |ψ⟩ had value ⟨ψ|H|ψ⟩ = 4n, then |ψ⟩
would appear to be maximally entangled along all the edges in E. Indeed, this is impossible,
and the value of the maximum possible ⟨ψ|H|ψ⟩ (or the maximum eigenvalue of H) is an
important result for the analysis presented in [2]:

▶ Theorem 8 (Star Bound [2, 20]). If G is a star graph with n leaves, QMC(G) = 2(n+ 1).

This was proven by Anshu, Gosset, and Morenz [2] using a well-known monogamy of
entanglement result for the Heisenberg model on complete bipartite interaction graphs by
Lieb and Mattis [20].

The first observation we have is that the Lasserre1 SDP violates this property in a
maximal sense. By this, we mean that the optimal solution has objective 4n, rather than
2(n + 1). Using the informal language we used to describe Lasserrek, if we only tracked
1-local Pauli polynomials, we would think it is possible to have a state which is maximally
entangled along many overlapping edges:

▶ Theorem 9. For G a star graph on n vertices, Lasserre1(G) has optimal objective 4n.
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Proof. We can demonstrate an optimal solution to Lasserre1(G) by showing that the solution
which “picks up” all the edges is feasible. Since the moment matrix must be PSD, and since
the diagonal blocks are forced to be I, this is the maximum possible solution for any SDP
variable and a solution with this objective value must be optimal. Define moment matrix
M as in Figure 1a. We can describe this matrix pictorially by partitioning the rows and
columns into blocks corresponding to individual qubits, i.e. block i would correspond to
indices {Xi, Yi, Zi}, as well as a block corresponding to the I index. With these partitions,
we can write M as in Figure 1b where 0 denotes the zero vector [0, 0, 0]. It is easy to see
that M satisfies all the linear constraints on the matrix elements, the remaining task is to
prove it is PSD. We may reshuffle the rows/columns to write M in block diagonal form as
four blocks, where one of the blocks is 1 and three of the blocks have the form Figure 1c.
Using the method of Schur complements [31], PSDness of this matrix above is equivalent to
Figure 1d, which holds trivially. Hence M is block diagonal with PSD blocks so it must be
PSD. ◀

One direction for fixing this problem is to note that many of the low-order statistics
present in the optimal moment matrix (see Figure 1a) are non-sensical even for very small
states. The submatrix corresponding to qubits 1 and 2, for instance, has the form:



X1 Y1 Z1 X2 Y2 Z2

X1 1 0 0 1 0 0
Y1 0 1 0 0 1 0
Z1 0 0 1 0 0 1
X2 1 0 0 1 0 0
Y2 0 1 0 0 1 0
Z2 0 0 1 0 0 1


which is impossible for any (reduced) two qubit density martrix ρ12 [13]. This can be
remedied in the SDP by adding variables ρij ∈ C4×4 for every pair of vertices i, j which force
submatrices of the above form to conform to moment matrices of legitimate 2-qubit quantum
states, as in [22] and as in in Lasserre1.5.

Unfortunately, this relaxation is still not strong enough to enforce the star bound
(Theorem 8):

▶ Theorem 10. If G is a star graph on n vertices, then Lasserre1.5(G) has optimal objective:

n+ 3
√
n(1 + (n− 1)/3).

Proof. Let M be the optimal moment matrix. We may permute the leaves without changing
the objective since the graph is unweighted, which corresponds to M → UMUT for U
some orthogonal matrix. Formally, if f : [n] → [n] is some permutation on the leaves,
then define U as in Figure 2d for all σ ∈ {X,Y, Z}. Then, the set of marginal density
matrix variables can be redefined using UMUT . Similarly, we can permute {X,Y, Z} within
each block. We will assume that each {Xi, Yi, Zi} is permuted in the same way so as to
not change the objective. By taking convex combinations of the described permutations
(setting M to be a convex combination of terms of the form UMUT for U orthogonal
matrices), we can then assume WLOG that M has been fully symeterized and hence it is
invariant to such permutations. We can also assume that the entries M(σi, I) are zero for
σ ∈ {X,Y, Z}. To see this observe that these terms do not participate in the objective,
and that if they are non-zero in the optimal M they can be set to zero without altering
positivity. We have shown that M has the form Figure 2a where the rows/columns are
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M =



0 1 2 ... n I

0 I P1 P1 . . . P1 0
1 PT

1 I P2 . . . P2 0
2 PT

1 P2 I . . . P2 0
...

...
...

...
. . .

...
...

n PT
1 P2 . . . P2 I 0

I 0 0 0 . . . 0 1


(a) Symmeterized Optimal Moment Matrix.

Q :=


1 α α . . . α

α 1 β . . . β

α β 1 β
...

...
. . .

...
α β . . . β 1


(b) One Block of M .


1 β . . . β

β 1 β
...

. . .
...

β . . . β 1

−


α

α

α
...
α

 [
α α α . . . α

]
⪰ 0

(c) Schur Complement for Proof.

U(σj , σi) =

{
1 if f(i) = j or σi = I = σj

0 otherwise

(d) Permutation Matrix for Symmeterization.

Figure 2 Matrices Needed For Proof of Theorem 10.

indexed according to {X0, Y0, Z0, X1, Y1, Z1, ..., Xn, Yn, Zn, I}. Further, according to the
symmeterization argument we can assume P1 has the same entry on each diagonal, P2 has
the same entry on each diagonal and P2 is symmetric. Consider the submatrix corresponding
to just the X operators, and denote if Q as in Figure 2b where α = M(X0, Xi) and
β = M(X1, X2). We know this matrix is PSD because it is a submatrix of a PSD matrix.
Further, since the submatrix corresponding to qubits 1 and 2 must correspond to the (valid)

density matrix ρ12, by [13,22] −1 ≤ β ≤ 1/3. Writing Q in block diagonal form
[
A B

BT C

]
with A equal to the top left entry, and we can apply the method of Schur complements [31]
to obtain Figure 2c.

We can take the inner product with the all ones vector to obtain the inequality n(1 + (n−
1)β)−α2n2 ≥ 0. Observe that this is a concave (down) parabola, to so to get a uniform bound
on α we must set β to the largest possible value. Hence we derive α ≥ −

√
(1 + (n− 1)/3)/n

with β = 1/3. The objective is n+ (3nα), so far we have shown the optimal solution is at
most n+ 3

√
n(1 + (n− 1)/3). To see the SDP achieves this upper bound note we can take

P1 ∝ αI and P2 ∝ βI for α and β saturating the upper bound. Just as in Theorem 9, M
decomposes into a block diagonal form where every block is PSD. ◀

Lasserre2, on the other hand, does satisfy the star bound, which will be an important
fact for the analysis of our rounding algorithm.

▶ Theorem 11. Let G = (V,E) be a star graph with n leaves. If G is a subgraph of a larger
graph G′ on n′ vertices, and if M is any feasible solution to Lasserre2(G′), then the values
{xe}e∈E (as in Algorithm 1) satisfy

∑
e∈E(1 + 3xe) ≤ 2(n+ 1). Additionally, Lasserre2(G)

has optimal solution with objective 2(n+ 1).
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Proof. This proof is very similar to Theorem 10. Let M be the optimal solution to
Lasserre2(G′). We will once again permute the leaves. Consider some permutation of
the leaves of G f : [n] → [n]. Let U ∈ C2n′

×2n′

be the (Clifford) unitary which satisfies
UσiU

† = σj if σ ∈ {X,Y, Z} and f(i) = j. Then, define the |Pn′(2)| × |Pn′(2)| permutation
matrix W as:

W (Γ,Φ) =
{

1 if UΦU † = Γ
0 otherwise

and define M ′ = WMWT . Constraint Equation (5) holds because if ΓΦ = ΘΠ then
(U †ΓU)(U†ΦU) = (U†ΘU)(U†ΠU) so

M ′(Γ,Φ) = M(U†ΓU,U †ΦU) = M(U †ΘU,U †ΠU) = M ′(Θ,Π)

The other constraints are similar. Just as in Theorem 10, we can also permute {X,Y, Z} in
each block. Note that by permuting the leaves we have potentially reduced the objective
value of M overall (including the edges outside of the star graph), however we have not
changed the sum of the values of edges in the star:

∑
e∈E(1 + 3xe).

Now extract the submatrix corresponding to the 2-local terms along the edges correspond-
ing to the G, as well as the identity. Denote this as Q. Formally, Q is the submatrix induced
by the index set

{X0X1, Y0Y1, Z0Z1, X0X2, ..., X0Xn, Y0Yn, Z0Zn, I}. (20)

By symmeterization, we may assume Q has the following block form3:

1 −α −α

−α 1 −α

−α −α 1
βI . . . βI

α

α

α

βI
1 −α −α

−α 1 −α

−α −α 1
. . .

...
α

α

α

...
. . . . . . βI ...

βI . . . βI
1 −α −α

−α 1 −α

−α −α 1

α

α

α

α α α α α α α α α α α α 1

(21)

Note that rows and columns are indexed as the same order as the set in Equation (20). By
Lemma 12, −1 ≤ β ≤ 1/3.

Now observe that Q ⪰ 0 since it is a submatrix of a PSD matrix. Consider this matrix in

2 × 2 block form
[
A B

C D

]
where D = 1 is the bottom right entry. Exactly as in previous

proofs we can then use the method of Schur complement to derive a necessary condition for
positivity:

−3nα2 − 2α+ (1 + (n− 1)β) ≥ 0.

3 Note that off-diagonal elements of off-diagonal blocks are imaginary for a quantum state: X0Xj · Y0Yk ∝
iZ0XjYk. So, those entries correspond to non-Hermitain matrices and are set to zero by constraint
Equation (4)
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Observe that this is a concave down parabola in α, so to get a uniform bound we need to
take β as large as possible. Setting β = 1/3 and solving for the zeros of the polynomial yields
the bounds −(n+ 2)/(3n) ≤ α ≤ 1/3. The lower bound yields the star bound for the sum of
the edge values.

To show Lasserre2(G) has optimal solution meeting the star bound note from the previous
analysis we have that the optimal objective is upper bounded by the star bound. Further, by
Theorem 8 and the fact that we are considering a relaxation on the 2-Local Hamiltonian
problem (Theorem 7) the optimal objective must be at least the star bound. The result
follows. ◀

3.3 Valid Inequalities for Lasserre2

We now turn our attention to deriving inequalities that any Lassere2 solution must satisfy.
These will be used in the subsequent analysis of Algorithm 1. Let M be a feasible solution
to Lasserre2(G,w). Consider a Cholesky decomposition UTU = M ⪰ 0; we will refer to the
vectors obtained from the columns of U as u(Γ) ∈ Rl, corresponding to Γ ∈ Pn(k) and the
rows or columns of M . Thus we have

u(Γ)Tu(Φ) = M(Γ,Φ) ∀Γ,Φ ∈ Pn(k), (22)

and in particular each u(Γ) is a unit vector by Equation (3). We will establish linear
inequalities on the values ve of Definition 5, as these are the input to the rounding portion
of Algorithm 1. First we establish bounds on the ve.

▶ Lemma 12. For all ij ∈ E, 0 ≤ 1 −M(XiXj , I) −M(YiYj , I) −M(ZiZj , I) ≤ 4.

Proof. We will use properties of the vectors u(Γ) and M . In particular suppose σ, η, τ ∈
{X,Y, Z} are distinct Paulis, giving us:

u(σiσj)Tu(ηiηj) = M(σiσj , ηiηj) [by Equation (22)]
= M(σiηiσjηj , I) [by Equation (5)]
= −M(τiτj , I) [by Equation (6)].

The above in conjunction with u(Γ)Tu(Γ) = 1 and u(σiσj)Tu(I) = M(σiσj , I) yields the
lower bound we seek to prove:

0 ≤ [u(I) − u(XiXj) − u(YiYj) − u(ZiZj)]T [u(I) − u(XiXj) − u(YiYj) − u(ZiZj)]
= 4[1 −M(XiXj , I) −M(YiYj , I) −M(ZiZj , I)].

For the upper bound, let the vector z(1) := u(I)−u(XiXj)+u(YiYj)+u(ZiZj). Analogously
to above, we have

0 ≤ 1
4z(1)T z(1) = 1 −M(XiXj , I) +M(YiYj , I) +M(ZiZj , I). (23)

If we let z(2) := u(I) +u(XiXj) −u(YiYj) +u(ZiZj) and z(3) := u(I) +u(XiXj) +u(YiYj) −
u(ZiZj), then

0 ≤
∑
l∈[3]

1
4z(l)

T z(l) = 3 +M(XiXj , I) +M(YiYj , I) +M(ZiZj , I),

by the analogs of Equation (23) for z(2) and z(3). The above inequality is equivalent to the
upper bound we seek to prove. ◀
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The lemma implies that −1 ≤ ve ≤ 1
3 and − 1

3 ≤ xe ≤ 1, for all e ∈ E. We next derive
inequalities for odd cycles in G.

▶ Lemma 13. For an odd-length cycle C ⊆ E,
∑

e∈C ve ≥ 2 − |C|.

Proof. We take the same basic approach as the proof of Lemma 12, namely the inequality
will follow from a positive combination of inequalities derived from zT z ≥ 0, for appropriately
chosen vectors z. First we consider the case when |C| = 3; let C consist of ij, ik, jk ∈ E, and
let σ ∈ {X,Y, Z}. Letting the vector z(σ) := u(I) + u(σiσj) + u(σiσk) + u(σjσk), we see:

0 ≤ 1
4z(σ)T z(σ) = 1 +M(σiσj , I) +M(σiσk, I) +M(σjσk, I),

since u(σpσq)Tu(σqσr) = M(σpσq, σqσr) = M(σpσr, I), for p, q, r ∈ V . Averaging the above
inequality over σ ∈ X,Y, Z yields:

0 ≤ 1
3

∑
σ∈{X,Y,Z}

1
4z(σ)T z(σ) = 1 + vij + vik + vjk, (24)

establishing the lemma for |C| = 3. We establish another flavor of the triangle inequality
above in order to extend the |C| = 3 bound to larger cycles. This time we let z(σ) :=
u(I) + u(σiσj) − u(σiσk) − u(σjσk), ultimately yielding:

0 ≤ 1
3

∑
σ∈{X,Y,Z}

1
4z(σ)T z(σ) = 1 + vij − vik − vjk. (25)

Let us derive the bound for |C| = 5. Suppose the vertices of C are in [5]. We sum three
instances of the above inequalities: Equation (24) for triangles on {1, 2, 5} and {2, 3, 4}, and
1+v45−v24−v25 ≥ 0 for the triangle on {2, 4, 5}. The sum is 3+v12+v23+v34+v45+v15 ≥ 0, as
desired. More generally, for |C| = 2k+1 with k > 2, we may sum k instances of Equation (24)
and k − 1 instances of Equation (25) to derive the desired inequality. These 2k − 1 triangles
represent a triangulation of the cycle C; chords introduced by the triangulation appear in
exactly two triangles, and edges of C appear in exactly one triangle. The k − 1 instances of
Equation (25) are used to cancel out variables on such chords. ◀

The inequalities of the above lemma are actually implied by level 2 of the classical Lasserre
Hierarchy for the classical Max Cut problem. This is captured by restricting Pn(2) to only
contain tensor products of at most two Pauli Z’s and setting vij := M(ZiZj , I).

4 Analysis of Lasserre2 Rounding

Our goal is to provide bounds on the quality of the rounded solutions produced by Algorithm 1,
ρF and ρP S , relative to our Lasserre2 relaxation. For each of these solutions, we consider
both the contribution of the edges selected by Algorithm 1 to be in L as well as those in
S := E − L.

4.1 Bounding the Quality of the Matching-Based Solution
Algorithm 1 leverages a matching on a graph obtained by keeping only edges with high-
magnitude fractional SDP values. Here we show that the resulting graph has bounded degree
and why this approach produces a matching of relatively large weight.
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We consider the values xe for e ∈ E = E(Kn) (Definition 5) obtained from the
Lasserre2(G,w) SDP (Definition 4), so that the SDP’s objective value is 1 + 3xe for each
e ∈ E. Recall from Algorithm 1 that we threshold these variables so that L = {e ∈ E | xe >

α(d) ≥ 0}, where α(d) = d+3
3(d+1) . The star bound allows us to bound the maximum degree in

the resulting graph, GL = (V,L).

▶ Lemma 14. The graph GL, as defined above, has maximum degree at most d.

Proof. Suppose a vertex i ∈ V in has degree at least d+ 1 in GL. Let D ⊆ δ(i) be a set of
d+ 1 edges. We then have∑

e∈D

(1 + 3xe) > (d+ 1)(1 + 3α(d)) = 2(d+ 2),

violating Theorem 11 for the star rooted at vertex i and containing the edges in D. ◀

Algorithm 1 finds a matching F ∗ in GL that maximizes
∑

e∈F we over matchings F in
GL. The algorithm obtains a quantum state ρF ∗ from F ∗ by putting a singlet, 1

4 (I−XiXj −
YiYj −ZiZj), on each edge in F ∗ and a maximally mixed state, 1

2 I, on each vertex unmatched
by F ∗. Since the objective is wij(I −XiXj − YiYj − ZiZj) for each edge ij ∈ E, this earns
a weight of 4wij for every ij ∈ F ∗ and a weight of wij for every ij ∈ E − F ∗. If we define
y∗

e = 1 for e ∈ F ∗ and y∗
e = 0 otherwise, then we may express the weight earned by ρF ∗

on an edge e ∈ E as: 4wey
∗
e + we(1 − y∗

e) = we(1 + 3y∗
e). We would like to show that the

total weight of F ∗ on the edges in L is approximately the weight earned by the SDP on L:∑
e∈L we(1 + 3xe). The following lemma suggests a strategy for accomplishing this.

▶ Lemma 15. If, for some β ∈ [0, 1], the vector βx ∈ R|E| is a convex combination of
matchings, then

∑
e∈L we(1 + 3y∗

e) ≥
∑

e∈L we(1 + 3βxe).

Proof. Write βx =
∑

l µlMl, where the latter is a convex combination of incidence vectors
of matchings. We have, for the vector of weights w, βwTx =

∑
l µlw

TMl, so there is some l′
with wTMl′ ≥ βwTx. Since y∗ is the incidence vector of a maximum-weight matching with
respect to w, we get wT y∗ ≥ wTMl′ ≥ βwTx, completing our proof. ◀

The hypothesis of the above lemma is equivalent to showing that βx is in the convex hull
of matchings for our graph G, and the convex hull of matchings in a graph is well understood.

▶ Theorem 16 (Pulleyblank and Edmonds [25]; see [27], Section 25.2). The convex hull of
matchings in a graph G = (V,E) is defined by the following linear inequalities:∑

e∈δ(i)

ye ≤ 1 ∀i ∈ V, (26)

∑
e∈E(S)

ye ≤ |S| − 1
2 ∀S ∈ F , (27)

ye ≥ 0 ∀e ∈ E, (28)

where F := {S ⊆ V | |S| ≥ 3, and G[S] is factor critical and 2-vertex connected}. A graph
H is called factor critical (or hypomatchable) if deleting any vertex in H leaves a graph
containing a perfect matching (hence |H| must be odd).

We obtain our main lemma by determining a relatively large β ∈ [0, 1] for which ye = βxe is
a feasible solution for the inequalities above, when we take d = 2.
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▶ Lemma 17. Suppose ve for e ∈ E is a feasible solution to the SDP Definition 4, and set
xe := −ve. Let L := {e ∈ E | xe >

5
9 = α(2)} and GL := (V,L) be the graph consisting of

the edges in L. If F ∗ is an maximum-weight matching in GL with respect to the weights
we ≥ 0 for e ∈ L, then∑

e∈L we(1 + 3y∗
e)∑

e∈L we(1 + 3xe) >
3
4 , (29)

where {0, 1} ∋ y∗
e = 1 if and only if e ∈ F ∗. If S := E − L, then∑

e∈S we(1 + 3y∗
e)∑

e∈S we(1 + 3xe) ≥ 3
8 . (30)

Proof. We begin by considering Equation (29) and first showing that the variables βxe

satisfy the inequalities of Theorem 16 for GL with β = 9
14 . Then, Lemma 15 gives us∑

e∈L we(1 + 3y∗
e)∑

e∈L we(1 + 3xe) ≥
∑

e∈L we(1 + 3βxe)∑
e∈L we(1 + 3xe) , (31)

and we may focus our attention on bounding the latter, which only depends on the xe.

Satisfying the inequalities of Theorem 16. Inequality (28) is satisfied since e ∈ L implies
xe ≥ 0. To see that the vector 9

14x is feasible for the inequality (26), first note that since we
take d = 2, GL has maximum degree at most 2 by Lemma 14. Inequality (26) is satisfied for
vertices of degree 1 since SDP Definition 4 gives us xe ≤ 1 for all e. Now another application
of the star bound ( Theorem 11) to a degree-2 vertex, i in GL with neighbors j and k, gives
us that

(1 + 3xij) + (1 + 3xik) ≤ 6 ⇒ xij + xik ≤ 4
3 , (32)

hence 9
14xij + 9

14xik ≤ 3
4xij + 3

4xik ≤ 1.
Next we will show that Inequality (27) is satisfied. For these inequalities, we may assume

that the induced subgraph on S ∈ F in GL, GL[S], is an odd cycle. The set F contains only
odd-sized sets that are (2-vertex) connected, and GL has degree at most 2; hence, GL[S]
must be a path or a cycle. The graph GL[S] cannot be a path since it must be factor critical,
and removing a penultimate vertex in a path leaves a graph with no perfect matching.

Pick some S ∈ F , and sum the inequalities of (26) over i ∈ S. This yields∑
e∈δL(S)

ye +
∑

e∈EL(S)

2ye ≤ |S| ⇒
∑

e∈EL(S)

ye ≤ |S|
2 ,

since ye ≥ 0 by Inequality (28). This shows that any vector y that satisfies Inequality (26)
gives a RHS of |S|

2 instead of the desired value, |S|−1
2 for Inequality (27). To make such a

vector feasible for Inequality (27), we must scale it by maxk≥1
2k

2k+1 = 2
3 . In our case, 3

4x

satisfies Inequality (26), hence 2
3 · 3

4x = 1
2x is feasible for the inequalities of Theorem 16.

However, we can do better by considering additional inequalities satisfied by the xe that are
implied by our Lasserre2 SDP relaxation. Lemma 13 gives us that xij + xik + xjk ≤ 1 for
ij, ik, jk ∈ E, hence the inequalities of (27) for |S| = 3 are satisfied by the vector x (in fact,
since xe >

5
9 for all e ∈ L, GL contains no triangles).

For any cycle C ⊆ L on 5 vertices, Lemma 13 yields
∑

e∈C xe ≤ 3, so that
∑

e∈C
3
4xe ≤ 9

4 .
Hence, 3

4x must be scaled by an additional factor of 8
9 in order satisfy the inequalities of (27)

for |S| = 5. For |S| ≥ 7, an additional factor of maxk≥3
2k

2k+1 = 6
7 suffices. Thus 6

7 · 3
4x = 9

14x

is a feasible solution for the inequalities of Theorem 16, and it is consequently a convex
combination of incidence vectors of matchings in GL.
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Establishing Equation 29. For the RHS of Equation (31), we have∑
e∈L we(1 + 3βxe)∑
e∈L we(1 + 3xe) ≥ min

{e∈L|we>0}

we(1 + 3βxe)
we(1 + 3xe) , (33)

since 1 + 3xe > 0 for all e ∈ L, and the LHS above is a convex combination of the
ratios (1 + 3βxe)/(1 + 3xe) for e ∈ L with we > 0. This reduces our task to bounding
(1 + 3βxe)/(1 + 3xe), for a worst-case value of xe achieving the minimum above. If e is an
isolated edge in GL (i.e. it is not incident to any other edges in L), then we may assume e
is in the maximum-weight matching F ∗ without loss of generality, since we can apply the
arguments of this section to each connected component of GL. For such an edge e, we may
simply take β = 1, yielding (1 + 3βxe)/(1 + 3xe) = 1. If e is not isolated in GL, then it is
incident to another edge f at a vertex of degree 2 in GL. Since xf >

5
9 , by Equation (32) we

see that xe ≤ 4
3 − xf <

7
9 . We consequently have, for β = 9

14 :

min
{e∈L|we>0}

we(1 + 3βxe)
we(1 + 3xe) ≥ min

xe∈( 5
9 , 7

9 )

1 + 3βxe

1 + 3xe
= β + min

xe∈( 5
9 , 7

9 )

1 − β

1 + 3xe
>

3
10 + 7

10β = 3
4 ,

demonstrating Equation (29).

Establishing Equation 30. We now turn our attention to the edges in S = E −L. Since F ∗

includes no edges in S, we have y∗
e = 0 for e ∈ S. By the definition of S, xe ≤ 5

9 for e ∈ S.
These facts yield Equation (30). ◀

Finding a maximum-weight matching in GL. We note that since each vertex in GL has
degree at most 2 when d = 2, each connected component of GL is a path or cycle. In this
case a maximum-weight matching may be found in linear time by a dynamic programming
algorithm.

4.2 Bounding the Quality of the Product State Solution
We have established performance bounds on the matching part of the rounding algorithm.
The only remaining piece is a performance bound on the product state solution produced by
the rounding algorithm, ρP S .

▶ Lemma 18. Suppose ve for e ∈ E are values derived from the optimal solution to Lasserre2,
and set xe := −ve. Let L := {e ∈ E | xe >

5
9 = α(2)} and let S := E −L. Then, with respect

to the weights we ≥ 0, the approximation algorithm from [9] produces a random product state
ρ satisfying:∑

ij∈L wijE[Tr((I −XiXj − YiYj − ZiZj)ρ)]∑
ij∈L wij(1 + 3xij) ≥ 0.498766, (34)

and∑
ij∈S wijE[Tr((I −XiXj − YiYj − ZiZj)ρ)]∑

ij∈S wij(1 + 3xij) ≥ 0.557931. (35)

Proof. Let M be the optimal solution to Lasserre2(G,w) produced by Algorithm 1. The
product state approximation algorithm of [9] relies on a feasible solution to Lasserre1(G,w),
which we may obtain from M . In particular the [9] algorithm takes as input the vectors
u(Φ), from Equation (22), for Φ ∈ Pn(1) and rounds them to a product state solution.
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Let Γ and 2F1 be the Gamma and Hyergeometric functions as they are normally defined [1].
The analysis of the [9] algorithm considers a worst-case edge ij ∈ E and depends on the
value vij = −xij . The worst-case approximation ratio is determined by the quantity

min
vij∈[−1, 1

3 ]

1 − F (vij)
1 − 3vij

, where F (t) = 2
3

(
Γ(2)

Γ(3/2)

)2

2F1

[
1/2 1/2
5/2 ; t2

]
. (36)

For more details see the paragraph above Section 4.1 in [9], where t in that paper is equal
to vij in our terminology. The first inequality, Equation (34) is immediate because it is the
worst case approximation factor for their algorithm.

The worst-case value of vij in Equation (36) is close to −1. We take advantage of the
fact that vij ≥ −α(2) for ij ∈ S, avoiding the worst case. In particular we get a ratio of:

min
vij∈[− 5

9 , 1
3 ]

1 − F (vij)
1 − 3vij

= 3
8 (1 − F (5/9)) ≥ 0.557931. ◀
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Abstract
We present a simple proof that the competitive ratio of any randomized online matching algorithm
for the line exceeds

√
log2(n+1)/15 for all n = 2i−1 : i ∈ N, settling a 25-year-old open question.
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1 Online matching, on the line

In online metric matching [7, 9] n points of a metric space are designated as servers. One by
one n requests arrive at arbitrary points of the space; upon arrival each must be matched
to a yet unmatched server, at a cost equal to their distance. Matchings should minimize
the ratio between the total cost and the offline cost attainable if all requests were known
beforehand. A matching algorithm is c(n)-competitive if it keeps this ratio no higher than
c(n) for all possible placements of servers and requests.

It is widely acknowledged [1, 10, 14] that the line is the most interesting metric space for
the problem. Matching on the line models many scenarios, like a shop that must rent to
customers skis of approximately their height, where a stream of requests must be serviced
with minimally mismatched items from a known store. Despite matching being specifically
studied on the line since at least 1996 [8], no tight competitiveness bounds are known.

As for upper bounds, the line is a doubling space and thus admits an O(log n)-competitive
randomized algorithm [5]; a sequence of recent developments [1, 12, 13] yielded the same
ratio without randomization. Better bounds have been obtained only by algorithms with
additional power, such as that to re-assign past requests [6, 11] or predict future ones [2].

As for lower bounds, the competitive ratio is at least 4.591 for randomized algorithms
and 9 for deterministic ones since the cow-path problem is a special case of matching on
the line [8]. These bounds were conjectured tight [8] until a complex adversarial strategy
yielded a lower bound of 9.001 for deterministic algorithms [4]. Beyond some Ω(log n) bounds
for restricted classes of algorithms [3, 10, 12], there has been no further progress on the
lower-bound side before this work.
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2 An Ω(
√

log n)-competitiveness bound

We prove a simple Ω(
√

log n) lower bound on the competitive ratio of randomized online
matching algorithms for the line.

For any n = 2i −1 with i ∈ N consider the [0, n+1] interval; for each positive integer j ≤ n

place a server at point j, and place n requests over log2(n+1) rounds as follows. On the rth

round (for 1 ≤ r ≤ log2(n+1)) partition the interval into (n+1)/2r subintervals of length 2r,
choose within each uniformly and independently at random an origin point, and place a
request on the closest integer multiple of 2−n breaking ties arbitrarily. “Discretizing” requests
instead of directly using the corresponding origins prevents some technical difficulties – see
our remark at the end.

We prove in Lemma 1 that the expected distance between the ℓth leftmost server and the
ℓth leftmost origin is O(

√
log n), so servers and requests can be matched with an expected

offline cost O(n
√

log n). Conversely, we prove in Lemma 2 that any online matching algorithm
ALG incurs an expected Ω(n) cost in any given round, for a total cost Ω(n log n). The two
results can be combined to prove that on some request sequence ALG incurs Ω(

√
log n) times

the offline cost.

▶ Lemma 1. The expected distance between the ℓth leftmost origin and the ℓth leftmost server
is at most

√
log2(n+1) + 3.

Proof. Let Sℓ be ℓth leftmost server and gℓ be the number of origins to its left. Note that
if gℓ equals respectively ℓ or ℓ − 1, the ℓth origin is the first immediately to the left, or to
the right of Sℓ; and since the first round placed one origin in every subinterval of size 2,
such an origin is within distance 3 of Sℓ. By the same token, denoting by δℓ the quantity
|gℓ − (ℓ − ℓ

n+1 )|, the ℓth leftmost origin is within distance 2δℓ + 3 of Sℓ. Note that δℓ is
the absolute deviation from the mean of rℓ, since rℓ is the sum of n independent indicator
random variables each denoting whether a given origin was placed to the left of Sℓ, with
total expectation n

n+1 ℓ = ℓ − ℓ
n+1 (by construction, the expected density of origins is constant

throughout the main interval). At most one such variable in a given round has variance
greater than 0, albeit obviously at most 1/4: that corresponding to the origin placed in a
subinterval holding Sℓ strictly in its interior. Adding the individual variances we obtain that
the variance of rℓ, i.e. the expectation of δ2

ℓ , is at most log2(n+1)/4; and since by Jensen’s
inequality E[δℓ] ≤ E[δ2

ℓ ] 1
2 , the expected distance between Sℓ and the ℓth leftmost origin is at

most
√

log2(n+1) + 3. ◀

▶ Lemma 2. Any randomized online matching algorithm incurs an expected cost greater
than (n+1)/12 in each round.

Proof. Consider an origin placed uniformly at random in a subinterval of size 2r during the
rth round. Assume m unmatched servers in the interior points of that subinterval divide it
into m + 1 segments of (integer) length d0, . . . , dm. Then the probability the corresponding
request falls within a segment of length d is d/2r, in which case the expected distance of the
request from the segment’s closer endpoint is d/4. Adding over all the sr segments in all
the round’s subintervals, applying Jensen’s inequality, and noting that sr does not exceed
the number of subintervals (i.e. (n+1)/2r) plus the total number of unmatched servers (i.e.
(n+1)/2r−1 − 1), the expected cost to service all requests in the round is at least:

sr∑
h=1

dh

4 · dh

2r
≥ 1

4 · 2r
sr

(
n+1
sr

)2
>

(n+1)2

4 · 2r
· 2r

3(n+1) = n+1
12 . ◀
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We can then easily prove the following:

▶ Theorem. The competitive ratio of any randomized online matching algorithm for the line
exceeds

√
log2(n+1)/15 for all n = 2i − 1 : i ∈ N.

Proof. Let CA(σ) be the expected cost incurred by a randomized online matching algorithm
ALG on a request sequence σ, and CO(σ) the offline cost; and let pσ be the probability of
generating σ through the origin-request process described earlier. Since ∀ai, bi > 0 we have
that (

∑
i ai)/(

∑
i bi) is a convex linear combination of the individual ratios ai/bi, focusing

on the case
√

log2(n+1)/15 ≥ 1 for which
√

log2(n+1) + 3 + 2−n < (5/4)
√

log2(n+1):

max
σ:pσ ̸=0

CA(σ)
CO(σ) ≥

∑
σ:pσ ̸=0

CA(σ)pσ∑
σ:pσ ̸=0

CO(σ)pσ
>

(n+1) log2(n+1)/12
n(

√
log2(n+1) + 3 + 2−n)

>

√
log2(n+1)

15 . ◀

▶ Remark. Without discretized requests the term
∑

σ:pσ ̸=0 CA(σ)pσ in the theorem’s proof
would have been an integral, potentially ill-defined (for example, if ALG serviced requests
for rational points in an interval with one server and for irrational points with another).
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Abstract
Cardinality estimation is perhaps the simplest non-trivial statistical problem that can be solved via
sketching. Industrially-deployed sketches like HyperLogLog, MinHash, and PCSA are mergeable, which
means that large data sets can be sketched in a distributed environment, and then merged into a
single sketch of the whole data set. In the last decade a variety of sketches have been developed that
are non-mergeable, but attractive for other reasons. They are simpler, their cardinality estimates are
strictly unbiased, and they have substantially lower variance.

We evaluate sketching schemes on a reasonably level playing field, in terms of their memory-
variance product (MVP). E.g., a sketch that occupies 5m bits and whose relative variance is 2/m

(standard error
√

2/m) has an MVP of 10. Our contributions are as follows.

Cohen [14] and Ting [35] independently discovered what we call the Martingale transform for
converting a mergeable sketch into a non-mergeable sketch. We present a simpler way to analyze
the limiting MVP of Martingale-type sketches.
Pettie and Wang proved that the Fishmonger sketch [31] has the best MVP, H0/I0 ≈ 1.98, among
a class of mergeable sketches called “linearizable” sketches. (H0 and I0 are precisely defined
constants.) We prove that the Martingale transform is optimal in the non-mergeable world, and
that Martingale Fishmonger in particular is optimal among linearizable sketches, with an MVP of
H0/2 ≈ 1.63. E.g., this is circumstantial evidence that to achieve 1% standard error, we cannot
do better than a 2 kilobyte sketch.
Martingale Fishmonger is neither simple nor practical. We develop a new mergeable sketch called
Curtain that strikes a nice balance between simplicity and efficiency, and prove that Martingale
Curtain has limiting MVP ≈ 2.31. It can be updated with O(1) memory accesses and it has lower
empirical variance than Martingale LogLog, a practical non-mergeable version of HyperLogLog.
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1 Introduction

Cardinality estimation1 is a fundamental problem in streaming and sketching with diverse
applications in databases [12, 21], network monitoring [5, 8, 39, 11], nearest neighbor
search [33], caching [37], and genomics [30, 17, 38, 2]. In the sequential setting of this
problem, we receive the elements of a multiset A = {a1, a2, . . . , aN} one at a time. We

1 (aka F0 estimation or Distinct Elements)
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maintain a small sketch S of the elements seen so far, such that the true cardinality λ = |A|
is estimated by some λ̂(S). The distributed setting is similar, except that A is partitioned
arbitrarily among several machines, the shares being sketched separately and combined into
a sketch of A. Only mergeable sketches are deployed in distributed settings; see Definition 2
below.

▶ Definition 1. In the random oracle model A ⊆ [U ] and we have oracle access to
a uniformly random permutation h : [U ] → [U ] (or a uniformly random hash function
h : [U ]→ [0, 1]). In the standard model we can generate random bits as necessary, but
must explicitly store any hash functions in the sketch.

▶ Definition 2. Suppose A(1),A(2) are multisets such that A = A(1) ∪ A(2). A sketching
scheme is mergeable if, whenever, A(1),A(2) are sketched as S(1), S(2) (using the same
random oracle h or the same source of random bits in the standard model), the sketch
S of A can be computed from S(1), S(2) alone.

Standard model sketches [1, 3, 4, 6, 22, 27] usually make an (ϵ, δ)-guarantee, i.e.,

Pr
(

λ̂ ̸∈ [(1− ϵ)λ, (1 + ϵ)λ]
)

< δ.

The state-of-the-art standard model sketch [6, 27] uses O(ϵ−2 log δ−1 + log U) bits, which
is optimal at this level of specificity, as it meets the space lower bounds of Ω(log U), Ω(ϵ−2)
(when δ = Θ(1)), and Ω(ϵ−2 log δ−1) [1, 25, 26]. However, the leading constants hidden
by [6, 27] are quite large.

In the random oracle model the cardinality estimate λ̂ typically has negligible bias,
and errors are expressed in terms of the relative variance λ−2 ·Var(λ̂ | λ) or relative standard
deviation λ−1

√
Var(λ̂ | λ), also called the standard error. Sketches that use Ω(m) bits

typically have relative variances of O(1/m). Thus, the most natural way to measure the
quality of the sketching scheme itself is to look at its limiting memory-variance product
(MVP), i.e., the product of its memory and variance as m→∞.

Until about a decade ago, all standard/random oracle sketches were mergeable,
and suitable to both distributed and sequential applications. For reasons that are not clear
to us, the idea of non-mergeable sketching was discovered independently by multiple
groups [10, 24, 14, 35] at about the same time, and quite late in the 40-year history of
cardinality estimation. Chen, Cao, Shepp, and Nguyen [10] invented the S-Bitmap in
2011, followed by Helmi, Lumbroso, Martínez, and Viola’s[24] Recordinality in 2012. In 2014
Cohen [14] and Ting [35] independently invented what we call the Martingale transform, which
is a simple, mechanical way to transform any mergeable sketch into a (better) non-mergeable
sketch.2

In a companion paper [31], we analyzed the MVPs of mergeable sketches under the
assumption that the sketch was compressed to its entropy bound. Fishmonger (an entropy
compressed variant of PCSA with a different estimator function) was shown to have MVP =
H0/I0 ≈ 1.98, where

H0 = (ln 2)−1 +
∞∑

k=1
k−1 log2(1 + 1/k) and I0 = ζ(2) = π2/6.

2 Cohen [14] called these Historical Inverse Probability (HIP) sketches and Ting [35] applied the prefix
Streaming to emphasize that they can be used in the single-stream setting, not the distributed setting.
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Furthermore, H0/I0 was shown to be the minimum MVP among linearizable sketches, a
subset of mergeable sketches that includes all the popular sketches (HyperLogLog, PCSA,
MinHash, etc.).

Our aim in this paper is to build a useful framework for designing and analyzing non-
mergeable sketching schemes, and, following [31], to develop a theory of space-variance
optimality in the non-mergeable world. We work in the random oracle model. Our
results are as follows.

Although the Martingale transform itself is simple, analyzing the variance of these sketches
is not. For example, Cohen [14] and Ting [35] estimated the standard error of Martingale
LogLog to be about ≈

√
3/(4m) ≈ 0.866/

√
m and about ≈ 1/(2αmm), respectively,

where the latter tends to
√

ln 2/m ≈ 0.8326/
√

m as m→∞.3 We give a general method
for determining the limiting relative variance of Martingale sketches that is strongly
influenced by Ting’s perspective.
What is the most efficient (smallest MVP) non-mergeable sketch for cardinality estimation?
The best Martingale sketches perform better than the ad hoc non-mergeable S-Bitmap and
Recordinality, but perhaps there is a completely different, better way to systematically
build non-mergeable sketches. We prove that up to some natural assumptions4 the best
non-mergeable sketch is a Martingale X sketch, for some X. Furthermore, we prove that
Martingale Fishmonger, having MVP of H0/2 ≈ 1.63, is optimal among all Martingale
X sketches, where X is linearizable. This provides some circumstantial evidence that
Martingale Fishmonger is optimal, and that if we want, say, 1% standard error, we need
to use a H0/2 · (0.01)−2-bit sketch, ≈ 2 kilobytes.
Martingale Fishmonger has an attractive MVP, but it is slow and cumbersome to implement.
We propose a new mergeable sketch called Curtain that is “naturally” space efficient and
easy to update in O(1) memory accesses, and prove that Martingale Curtain has a limiting
MVP ≈ 2.31.

1.1 Prior Work: Mergeable Sketches
Let Si be the state of the sketch after processing (a1, . . . , ai).

The state of the PCSA sketch [20] is a 2D matrix S ∈ {0, 1}m×log U and the hash function
h : [U ]→ [m]×Z+ produces two indices: h(a) = (j, k) with probability m−12−k. Si(j, k) = 1
iff ∃i′ ∈ [i].h(ai′) = (j, k). Flajolet and Martin [20] proved that a certain estimator has
standard error 0.78/

√
m, making the MVP around (0.78)2 log U ≈ 0.6 log U .

Durand and Flajolet’s LogLog sketch [16] consists of m counters. It interprets h exactly as
in PCSA, and sets Si(j) = k iff k is maximum such that ∃i′ ∈ [i].h(ai′) = (j, k). Durand and
Flajolet’s estimator is of the form λ̂(S) ∝ m2m−1

∑
j

S(j) and has standard error ≈ 1.3/
√

m.
Flajolet, Fusy, Gandouet, and Meunier’s HyperLogLog [19] is the same sketch but with the
estimator λ̂(S) ∝ m2(

∑
j 2−S(j))−1. They proved that it has standard error tending to

≈ 1.04/
√

m. As the space is m log log U bits, the MVP is ≈ 1.08 log log U .
The MinCount sketch (aka MinHash or Bottom-m [13, 15, 7]) stores the smallest m hash

values, which we assume requires log U bits each. Using an appropriate estimator [23, 9, 29],
the standard error is 1/

√
m and MVP = log U .

3 Here αm =
(
m

∫ ∞
0

(
log2

(
2+u
1+u

))m
du

)−1 is the coefficient of Flajolet et al.’s HyperLogLog estimator.
4 (the sketch is insensitive to duplicates, and the estimator is unbiased)
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It is straightforward to see that the entropy of PCSA and LogLog are both Θ(m).
Scheuermann and Mauve [34] experimented with entropy compressed versions of PCSA and
HyperLogLog and found PCSA to be slightly superior. Rather than use the given estimators
of [20, 19, 16], Lang [28] used Maximum Likelihood-type Estimators and found entropy-
compressed PCSA to be significantly better than entropy-compressed LogLog (with MLE
estimators). Pettie and Wang [31] defined the Fisher-Shannon (Fish)5 number of a sketch
as the ratio of its Shannon entropy (controlling its entropy-compressed size) to its Fisher
information (controlling the variance of a statistically efficient estimator), and proved that
the Fish-number of any base-q PCSA is H0/I0, and that the Fish-number of base-q LogLog is
worse, but tends to H0/I0 in the limit as q →∞. (The constants H0, I0 were defined earlier.)

Table 1 A selection of results on composable sketches (top) and non-composable Martingale
sketches (bottom) in terms of their limiting memory-variance product (MVP). Logarithms are
base 2.

Mergeable Sketch Limiting MVP Notes
PCSA [20] .6 log U ≈ 38.9 For U = 264

LogLog [16] 1.69 log log U ≈ 10.11 For U = 264

MinCount [23, 9, 29] log U = 64 For U = 264

HyperLogLog [19] 1.08 log log U ≈ 6.48 For U = 264

Fishmonger [31] H0/I0 ≈ 1.98

Non-Mergeable Sketch
S-Bitmap [10] O(log2(U/m))
Recordinality [24] O(log(λ/m) log U)
Martingale PCSA new 0.35 log U ≈ 22.4 For U = 264

Martingale LogLog [14, 35] 0.69 log log U ≈ 4.16 For U = 264

Martingale MinCount [14, 35] 0.5 log U = 32 For U = 264

Martingale Fishmonger new H0/2 ≈ 1.63 H0 = (ln 2)−1 +
∑

k≥1
log2(1+1/k)

k

Martingale Curtain new ≈ 2.31 Theorem 4 with (q, a, h) = (2.91, 2, 1)

Non-Mergeable Lower Bound
Martingale X new ≥ H0/2 X is a linearizable sketch

1.2 Prior Work: Non-Mergeable Sketches

Chen, Cao, Shepp, and Nguyen’s S-Bitmap [10] consists of a bit string S ∈ {0, 1}m and m

known constants 0 ≤ τ0 < τ1 < · · · < τm−1 < 1. It interprets h(a) = (j, ρ) ∈ [m]× [0, 1] as
an index j and real ρ and when processing a, sets S(j)← 1 iff ρ > τHammingWeight(S). One
may confirm that S is insensitive to duplicates in the stream A, but its state depends on
the order in which A is scanned. By setting the τ -thresholds and estimator properly, the
standard error is ≈ ln(eU/m)/(2

√
m) and MVP = O(log2(U/m)).

Recordinality [24] is based on MinCount; it stores (S, cnt), where S is the m smallest hash
values encountered and cnt is the number of times that S has changed. The estimator looks
only at cnt, not S, and has standard error ≈

√
ln(λ/em)/m and MVP = O(log(λ/m) log U).

5 Fish is essentially the same as MVP, under the assumption that the sketch state is compressed to its
entropy.
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Cohen [14] and Ting [35] independently described how to turn any sketch into a non-
mergeable sketch using what we call the Martingale transform. Let Si be the state of the
original sketch after seeing (a1, . . . , ai) and Pi+1 = Pr(Si+1 ≠ Si | Si, ai+1 ̸∈ {a1, . . . , ai})
be the probability that it changes state upon seeing a new element ai+1.6 The state of the
Martingale sketch is (Si, λ̂i). Upon processing ai+1 it becomes (Si+1, λ̂i+1), where

λ̂i+1 = λ̂i + P −1
i+1 ·

r
Si+1 ̸= Si

z
.

Here
r
E
z

is the indicator variable for the event E . We assume the original sketch is insensitive
to duplicates, so

E(λ̂i+1) =
{

λ̂i when ai+1 ∈ {a1, . . . , ai} (and hence Si+1 = Si)
λ̂i + 1 when ai+1 ̸∈ {a1, . . . , ai}.

Thus, with λ̂0 = λ0 = 0, λ̂i is an unbiased estimator of the true cardinality λi = |{a1, . . . , ai}|
and (λ̂i − λi)i is a martingale. The Martingale-transformed sketch requires the same space,
plus just log U bits to store the estimate λ̂.

Cohen and Ting [14, 35] both proved that Martingale MinCount has standard error
1/(2
√

m) and MVP = (log U)/2. They gave different estimates for the standard error of
Martingale LogLog. Ting’s estimate is quite accurate, and tends to

√
ln 2/m as m → ∞,

giving it an MVP = ln 2 log log U ≈ 0.69 log log U .

▶ Remark 3. We call Martingale sketches non-mergeable because, in a distributed environment,
there is no obvious way to merge the cardinality estimates (λ̂). On the other hand, Ting [36]
has shown that if (SA, λ̂A) and (SB , λ̂B) are Martingale MinCount sketches obtained by
sequentially processing A and B, that λ̂A, λ̂B carry useful information for estimating |A∪B|
and |A ∩B| beyond that contained in SA, SB .

1.3 The Dartboard Model
The dartboard model [31] is useful for describing cardinality sketches with a single, uniform
language. The dartboard model is essentially the same as Ting’s [35] area cutting process,
but with a specific, discrete cell partition and state space fixed in advance.

The dartboard is the unit square [0, 1]2, partitioned into a set C = {c0, . . . , c|C|−1} of cells
of various sizes. Every cell may be either occupied or unoccupied; the state is the set of
occupied cells and the state space some S ⊆ 2C.

We process a stream of elements one by one; when a new element is encountered we
throw a dart uniformly at random at the dartboard and update the state in response. The
relationship between the state and the dart distribution satisfies two rules:
(R1) Every cell with at least one dart is occupied; occupied cells may contain no darts.
(R2) If a dart lands in an occupied cell, the state does not change.

As a consequence of (R1) and (R2), if a dart lands in an empty cell the state must change,
and occupied cells may never become unoccupied. Dart throwing is merely an intuitive way
of visualizing the hash function. Base-q PCSA and LogLog use the same cell partition but
with different state spaces; see Figure 1.

6 These probabilities are over the choice of h(ai+1), which, in the random oracle model, is independent
of all other hash values.
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. . .

. . .

(a) (b) (c)

Figure 1 The unit square is partitioned into m columns. Each column is partitioned into cells.
Cell j covers the vertical interval [q−(j+1), q−j). (b) The state of a PCSA sketch records precisely
which cells contain a dart (gray); all others are empty (yellow). (c) The state of the corresponding
LogLog sketch.

It was observed [31] that the dartboard model includes all mergeable sketches, and
some non-mergeable ones like S-Bitmap. Recordinality and the Martingale sketches obey
rules (R1),(R2) but are not strictly dartboard sketches as they maintain some small state
information (cnt or λ̂) outside of the set of occupied cells. Nonetheless, it is useful to speak
of the dartboard part of their state information.

1.4 Linearizable Sketches
The lower bound of [31] applies to linearizable sketches, a subset of mergeable sketches. A
sketch is called linearizable if it is possible to encode the occupied/unoccupied status of its
cells in some fixed linear order (c0, . . . , cC−1), so whether ci is occupied only depends on
the status of c0, . . . , ci−1 and whether ci has been hit by a dart. (Thus, it is independent of
ci+1, . . . , cC−1.) Specifically, let Yi, Zi be the indicators for whether ci is occupied, and has
been hit by a dart, respectively, and Yi = (Y0, . . . , Yi). The state of the sketch is YC−1; it is
called linearizable if there is some monotone function ϕ : {0, 1}∗ → {0, 1} such that

Yi = Zi ∨ ϕ(Yi−1).

I.e., if ϕ(Yi−1) = 1, ci is forced to be occupied and the state is forever independent of Zi.
PCSA-type sketches [20, 18] are linearizable, as are (Hyper)LogLog [19, 16], and all

MinCount, MinHash, and Bottom-m type sketches [13, 7, 23, 9, 29]. It is very easy to engineer
non-linearizable sketches; see [31]. The open problem is whether this is ever a good idea in
terms of memory-variance performance.

1.5 Organization
In Section 2 we introduce the Curtain sketch, which is a linearizable (hence mergeable)
sketch in the dartboard model. In Section 3 we prove some general theorems on the bias
and asymptotic relative variance of Martingale-type sketches, and in Section 4 we apply
this framework to bound the limiting MVP of Martingale PCSA, Martingale Fishmonger, and
Martingale Curtain.

In Section 5 we prove some results on the optimality of the Martingale transform itself,
and that Martingale Fishmonger has the lowest variance among those based on linearizable
sketches.
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Section 6 presents some experimental findings that demonstrate that the conclusions
drawn from the asymptotic analysis of Martingale sketches are extremely accurate in the
pre-asymptotic regime as well, and that Martingale Curtain has lower variance than Martingale
LogLog.

All the missing proofs can be found in the full version [32].

2 The Curtain Sketch

Design Philosophy

Our goal is to strike a nice balance between the simplicity and time-efficiency of (Hyper)LogLog,
and the superior information-theoretic efficiency of PCSA, which can only be fully realized
under extreme (and time-inefficient) compression to its entropy bound [31, 28]. Informally,
if we are dedicating at least 1 bit to encode the status of a cell, the best cells to encode
have mass Θ(λ−1) and we should design a sketch that maximizes the number of such cells
encoded.

We assume the dartboard is partitioned into m columns; define Cell(j, i) to be the cell in
column i covering the vertical interval [q−(j+1), q−j). In a PCSA sketch, the occupied cells
are precisely those with at least one dart. In LogLog, the occupied cells in each column are
contiguous, extending to the highest cell containing a dart. In Figure 1, cells are drawn with
uniform sizes for clarity.

Consider the vector v = (g0, g1, . . . , gm−1) where Cell(gi, i) is the highest occupied cell in
LogLog/PCSA. The curtain of v w.r.t. allowable offsets O is a vector vcurt = (ĝ0, ĝ1, . . . , ĝm−1)
such that (i) ∀i ∈ [1, m−1]. ĝi− ĝi−1 ∈ O, and (ii) vcurt is the minimal such vector dominating
v, i.e., ∀i. ĝi ≥ gi. Although we have described vcurt as a function of v, it is clearly possible
to maintain vcurt as darts are thrown, without knowing v.

We have an interest in |O| being a power of 2 so that curtain vectors may be encoded
efficiently, as a series of offsets. On the other hand, it is most efficient if O is symmetric
around zero. For these reasons, we use a base-q “sawtooth” cell partition of the dartboard;
see Figure 2. Henceforth Cell(j, i) is defined as usual, except j is an integer when i is even
and a half-integer when i is odd. Then the allowable offsets are Oa = {−(a− 1/2),−(a−
3/2), . . . ,−1/2, 1/2, . . . , a− 3/2, a− 1/2}, for some a that is a power of 2.

. . .

. . .

(a) (b) (c)

Figure 2 (a) The base-q “sawtooth” cell partition. (b) and (c) depict a Curtain sketch w.r.t.
O = {−3/2, −1/2, 1/2, 3/2} and h = 1. (b) Gray cells contain at least one dart; light yellow cells
contain none. The curtain vcurt = (ĝi) is highlighted with a pink boundary. (c) Columns that are
in tension have a ⋆ in their curtain cell. All dark gray cells are occupied and all dark yellow cells
are free according to Rule 3. All other cells are occupied/free (light gray, light yellow) according to
Rules 1 and 2.
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Let Cell(gi, i) be the highest cell containing a dart in column i in the sawtooth cell partition
and vcurt = (ĝi) be the curtain vector of v = (gi) w.r.t. offsets O = Oa. We say column i

is in tension if (· · · , ĝi−1, ĝi − 1, ĝi+1, · · · ) is not a valid curtain, i.e., if ĝi − ĝi−1 = min(O)
or ĝi+1 − ĝi = max(O). In particular, if column i is not in tension, then Cell(ĝi, i) must
contain at least one dart, for if it contained no darts the curtain would be dropped to ĝi − 1
at column i. However, if column i is in tension, then Cell(ĝi, i) might not contain a dart.

The Curtain sketch encodes vcurt = (ĝi) w.r.t. the base-q sawtooth cell partition and
offsets Oa, and a bit-array b = {0, 1}h×m. This sketch designates each cell occupied or free
as follows.
Rule 1. If column i is not in tension then Cell(ĝi, i) is occupied, and b(·, i) encodes the

status of the h cells below the curtain, i.e., Cell(ĝi − (j + 1), i) is occupied iff b(j, i) = 1,
j ∈ {0, . . . , h− 1}.

Rule 2. If column i is in tension, then Cell(ĝi−j, i) is occupied iff b(j, i) = 1, j ∈ {0, . . . , h−1}.
Rule 3. Every cell above the curtain is free (Cell(ĝi + j, i), when j ≥ 1) and all remaining

cells are occupied.

Figure 2 gives an example of a Curtain sketch, with O = {−3/2,−1/2, 1/2, 3/2} and h = 1.
(The base q of the cell partition is unspecified in this example.)

▶ Theorem 4. Consider the Martingale Curtain sketch with parameters q, a, h (base q, Oa =
{−(a−1/2), . . . , a−1/2}, and b ∈ {0, 1}h×m), and let λ̂ be its estimate of the true cardinality
λ.
1. λ̂ is an unbiased estimate of λ.
2. The relative variance of λ̂ is:

1
λ2 Var(λ̂ | λ) =

(1 + oλ/m(1) + om(1))q ln q

2m(q − 1)

(
q − 1

q
+ 2

qh(qa−1/2 − 1)
+ 1

qh+1

)
,

As a result, the limiting MVP of Martingale Curtain is

MVP = (log2(2a) + h)× q ln q

2(q − 1)

(
q − 1

q
+ 2

qh(qa−1/2 − 1)
+ 1

qh+1

)
.

Proof. Follows from Theorems 11 and 17. ◀

Here oλ/m(1) and om(1) are terms that go to zero as m and λ/m get large. Recall that
for practical reasons we want to parameterize Theorem 4 with a a power of 2 and h an
integer, but it is realistic to set q > 1 to be any real. Given these constraints, the optimal
setting is q = 2.91, a = 2, and h = 1, exactly as in the example in Figure 2. This uses
log log U + 3(m− 1) bits to store the sketch proper, log U bits7 to store λ̂, and achieves a
limiting MVP ≈ 2.31. In other words, to achieve a standard error 1/

√
b, we need about 2.31b

bits.

Implementation Considerations

We encode a curtain (ĝ0, ĝ1, . . . , ĝm−1) as ĝ0 and an offset vector (o1, o2, . . . , om−1), oi =
ĝi − ĝi−1, where ĝ0 takes log2 logq U ≤ 6 bits and oi takes log2 |O| = log2(2a) bits. Clearly,
to evaluate ĝi we need to compute the prefix sum ĝ0 +

∑
i′≤i oi′ .

7 It is fine to store an approximation λ̃ of λ̂ with O(log m) bits of precision.
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▶ Lemma 5. Let (x0, . . . , xℓ−1) be a vector of t-bit unsigned integers packed into ⌈tℓ/w⌉
words, where each word has w = Ω(log(tℓ)) bits. The prefix sum

∑
j∈[0,i] xj can be evaluated

in O(tℓ/w + log w) time.

Proof. W.l.o.g. we can assume i = ℓ− 1, so the task is to sum the entire list. In O(⌈(tℓ)/w⌉)
time we can halve the number of summands, by masking out the odd and even summands
and adding these vectors together. After halving twice in this way, we have a vector of ℓ/4
(t + 2)-bit integers, each allocated 4t bits. At this point we can halve the number of words
by adding the (2i + 1)th word to the 2ith word. Thus, if Tw(ℓ, t) is the time needed to solve
this problem, Tw(ℓ, t) = Tw(ℓ/8, 4t) + O(⌈(tℓ)/w⌉), which is O((tℓ)/w + log w). ◀

In our context t = log2(2a) = 2, so even if m is a medium-size constant, say at most
256 or 512, we only have to do prefix sums over 8 or 16 consecutive 64-bit words. If m

is much larger then it would be prudent to partition the dartboard into m/c independent
curtains, each with c = 256 or 512 columns. This keeps the update time independent of m

and increases the space overhead negligibly.
We began this section by highlighting the design philosophy, which emphasizes conceptual

simplicity and efficiency. Our encoding uses fixed-length codes for the offsets, and can be
decoded very efficiently by exploiting bit-wise operations and word-level parallelism. That
said, we are mainly interested in analyzing the theoretical performance of sketches, and will
not attempt an exhaustive experimental evaluation in this work.

3 Foundations of the Martingale Transform

In this section we present a simple framework for analyzing the limiting variance of Martingale
sketches, which is strongly influenced by Ting’s [35] work. Theorem 7 gives simple unbiased
estimators for the cardinality and the variance of the the cardinality estimator. The upshot
of Theorem 7 is that to analyze the variance of the estimator, we only need to bound E(P −1

k ),
where Pk is the probability the kth distinct element changes the sketch. Theorem 11 further
shows that for sketches composed of m subsketches (like Curtain, HyperLogLog, and PCSA),
the limiting variance tends to 1

2κm , where κ is a constant that depends on the sketch scheme.
Section 4 analyzes the constant κ for each of PCSA, LogLog, and Curtain. Using results
of [31] on the entropy of PCSA we can calculate the limiting MVP of PCSA, LogLog, Curtain,
and Fishmonger.

3.1 Martingale Estimators and Retrospective Variance

Consider an arbitrary sketch with state space S. We assume the sketch state does not change
upon seeing duplicated elements, hence it suffices to consider streams of distinct elements.
We model the evolution of the sketch as a Markov chain (Sk)k≥0 ∈ S∗, where Sk is the state
after seeing k distinct elements. Define Pk = Pr(Sk ̸= Sk−1 | Sk−1) to be the state changing
probability, which depends only on Sk−1. In the dartboard terminology Pk is the total size of
all unoccupied cells in Sk−1.
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▶ Definition 6. Let
r
E
z

be the indicator variable for event E. For any λ ≥ 0, define:

Eλ =
λ∑

k=1

r
Sk ̸= Sk−1

z
· 1

Pk
, the martingale estimator,

and Vλ =
λ∑

k=1

r
Sk ̸= Sk−1

z
· 1− Pk

P 2
k

, the “retrospective” variance.

Note that E0 = V0 = 0.

The Martingale transform of this sketch stores λ̂ = Eλ in one machine word and returns
it as a cardinality estimate. It can also store Vλ in one machine word as well. Theorem 7
shows8 that the retrospective variance Vλ is a good running estimate of the empirical squared
error (Eλ − λ)2.

▶ Theorem 7. The martingale estimator Eλ is an unbiased estimator of λ and the retro-
spective variance Vλ is an unbiased estimator of Var(Eλ). Specifically, we have,

E(Eλ) = λ, and Var(Eλ) = E(Vλ) =
λ∑

k=1
E

(
1

Pk

)
− λ.

▶ Remark 8. Theorem 7 contradicts Ting’s claim [35], that Vλ is unbiased only at “jump”
times, i.e., those λ for which Sλ ̸= Sλ−1, and therefore inadequate to estimate the variance.
In order to correct for this, Ting introduced a Bayesian method for estimating the time that
has passed since the last jump time. The reason for thinking that jump times are different is
actually quite natural. Suppose we record the list of distinct states s0, . . . , sk encountered
while inserting λ elements, λ being unknown, and let pi be the probability of changing from
si to some other state. The amount of time spent in state si is a geometric random variable
with mean p−1

i and variance (1− pi)/p2
i . Furthermore, these waiting times are independent.

Thus,
∑

i∈[0,k) p−1
i and

∑
i∈[0,k)(1 − p−1

i )/p2
i are unbiased estimates of the cardinality λ′

and squared error upon entering state sk. These exactly correspond to Eλ and Vλ, but they
should be biased since they do not take into account the λ− λ′ elements that had no effect
on sk. As Theorem 7 shows, this is a mathematical optical illusion. The history is a random
variable, and although the last λ − λ′ elements did not change the state, they could have,
which would have altered the observed history s0, . . . , sk and hence the estimates Eλ and Vλ.

3.2 Asymptotic Relative Variance

3.2.1 The ARV Factor

We consider classes of sketches composed of m subsketches, which controls the size and
variance. In LogLog, PCSA, and Curtain these subsketches are the m columns. When
considering a sketch with m subsketches, instead of using λ as the total number of insertions,
we always use λ to denote the number of insertions per subsketch and therefore the total
number of insertions is λm. We care about the asymptotic relative variance (ARV) as m

and λ both go to infinity (defined below). A reasonable sketch should have relative variance
O(1/m). Informally, the ARV factor is just the leading constant of this expression.

8 The proof can be found in the full version [32].
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▶ Definition 9 (ARV factor). Consider a class of sketches whose size is parameterized by
m. For any k ≥ 0, define Pm,k to be the probability the sketch changes state upon the kth
insertion and Em,k the martingale estimator. The ARV factor of this class of sketches is
defined as

lim
λ→∞

lim
m→∞

m · Var(Em,λm)
(λm)2 . (1)

3.2.2 Scale-Invariance and the Constant κ

Few sketches have strictly well-defined ARV factors. In Martingale LogLog, for example, the
quantity

(
limm→∞ m

Var(Em,λm)
(λm)2

)
is not constant, but periodic in log2 λ; it does not converge

as λ→∞. We explain how to fix this issue using smoothing in Section 3.2.3. Scale-invariant
sketches must have well-defined ARV factors.

▶ Definition 10 (scale-invariance and constant κ). A combined sketch is scale-invariant if
1. For any λ, there exists a constant κλ such that λ · Pm,λm converges to κλ almost surely

as m→∞.
2. The limit of κλ as λ→∞ exists, and κ

def= limλ→∞ κλ.
The constant of a sketch A is denoted as κA, where the subscript A is often dropped when
the context is clear.

The next theorem proves that under mild regularity conditions, all scale-invariant sketches
have well defined ARV factors and there is a direct relation between the ARV factor and the
constant κ.

▶ Theorem 11 (ARV factor of a scale-invariant sketch). Consider a sketching scheme satisfying
the following properties.
1. It is scale-invariant with constant κ.
2. For any λ > 0, the limit operator and the expectation operator of { 1

Pm,λm
}m can be

interchanged.
Then the ARV factor of the sketch exists and equals 1

2κ .

The constant κ together with Theorem 11 is useful in that it gives a simple and systematic
way to evaluate the asymptotic performance of a well behaved (scale-invariant) sketch scheme.

MinCount [23, 9, 29] is an example of a scale-invariant sketch. The function h(a) =
(i, v) ∈ [m]× [0, 1] is interpreted as a pair containing a bucket index and a real hash value. A
(k, m)-MinCount sketch stores the smallest k hash values in each bucket.

▶ Theorem 12. (k, m)-MinCount is scale-invariant and κ(k,m)-MinCount = k.

Proof. When a total of λm elements are inserted to the combined sketch, each subsketch
receives (1 + o(1))λ elements as λ → ∞. Since we only care the asymptotic behavior, we
assume for simplicity that each subsketch receives exactly λ elements.

Let P
(i)
λ be the probability that the sketch of the ith bucket changes after the λth element

is thrown into the ith bucket. Then by definition, we have

Pm,λm =
∑m

i=1 P
(i)
λ

m
.

Since all the subsketches are i.i.d., by the law of large numbers, λ · Pm,λ → λ · E
(

P
(1)
λ

)
almost surely as m→∞.
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Let X be the kth smallest hash value among λ uniformly random numbers in [0, 1], which
distributes identically with P

(1)
λ . By standard order statistics, X is a Beta random variable

Beta(k, λ− 1 + k) which has mean k
λ+1 . Thus κλ = λ · E(X) = kλ

λ+1 . We conclude that

κ = lim
λ→∞

κλ = lim
λ→∞

kλ

λ + 1 = k. ◀

Applying Theorem 11 to (k, m)-MinCount, we see its ARV is 1
2km ,9 matching Cohen [14]

and Ting [35]. Technically its MVP is unbounded since hash values were real numbers,
but any realistic implementation would store them to log U bits of precision, for a total of
km log U bits. Hence we regard its MVP to be 1

2 · log2 U .

3.2.3 Smoothing Discrete Sketches
Sketches that partition the dartboard in some exponential fashion with base q (like LogLog,
PCSA, and Curtain) have the property that their estimates and variance are periodic in logq λ.
Pettie and Wang [31] proposed a simple method to smooth these sketches and make them
truly scale-invariant as m→∞.

We assume that the dartboard is partitioned into m columns. The base-q smoothing
operation uses an offset vector r⃗ = (r0, . . . , rm−1). We scale down all the cells in column
i by the factor q−ri , then add a dummy cell spanning [q−ri , 1) which is always occupied.
(Phrased algorithmically, if a dart is destined for column i, we filter it out with probability
1 − q−ri and insert it into the sketch with probability q−ri .) When analyzing variants of
(Hyper)LogLog and PCSA, we use the uniform offset vector (0, 1/m, 2/m, . . . , (m − 1)/m).
The Curtain sketch can be viewed as having a built-in offset vector of (0, 1/2, 0, 1/2, 0, 1/2, . . .)
which effects the “sawtooth” cell partition. To smooth it, we use the offset vector10

(0, 1/2, 1/m, 1/2 + 1/m, 2/m, 1/2 + 2/m, . . . , 1/2− 1/m, 1− 1/m).

As m→∞, r⃗ becomes uniformly dense in [0, 1].
The smoothing technique makes the empirical estimation more scale-invariant (see [31,

Figs. 1& 2]) but also makes the sketch theoretically scale-invariant according to Definition
10. Thus, in the analysis, we will always assume the sketches are smoothed. However, in
practice it is probably not necessary to do smoothing if q < 3.

In the next section, we will prove that smoothed q-LL, q-PCSA, and Curtain are all
scale-invariant.

4 Analysis of Dartboard Based Sketches

Consider a dartboard cell that covers the vertical interval [q−(t+1), q−t). We define the height
of the cell to be t. In a smoothed cell partition, no two cells have the same height and all
heights are of the form t = j/m, for some integer j. Thus, we may refer to it unambiguously
as cell t. Note that cell t is an m−1 × 1

qt
q−1

q rectangle.

9 For simplicity, we assume the second condition of Theorem 4 holds for all the sketches analyzed in this
paper.

10 In [31], the smoothing was implemented via random offsetting, instead of the uniform offsetting. In
Curtain we need to use uniform offsetting so that the offset values of columns are similar to their
neighbors.
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4.1 Poissonized Dartboard
Since we care about the asymptotic case where λ→∞, we model the process of “throwing
darts” by a Poisson point process on the dart board (similar to the “poissonization” in the
analysis of HyperLogLog [19]). Specifically, after throwing λm darts (events) to the dartboard,
we assume the number of darts in cell t is a Poisson random variable with mean λ 1

qt
q−1

q and
the number of darts in different cells are independent. For the poissonized dartboard, the
range of height of cells naturally extend to the whole set of real numbers, instead of just
having cells with positive height.

For any t ∈ R, let Yt,λ be the indicator whether cell t contains at least one dart. Note
that the probability that a Poisson random variable with mean λ′ is zero is e−λ′ . Thus we
have,

Pr(Yt,λ = 0) = e
− λ

qt
q−1

q .

Here, we note some simple identities for integrals that we will use frequently in the
analysis.

▶ Lemma 13. For any q > 1, we have∫ 1
qt

e
− 1

qt dt = 1
ln q

e
− 1

qt + C.

Furthermore, let c0, c1 be any positive numbers, we have∫ ∞

−∞

c0
qt

e
− c1

qt dt = c0
c1

1
ln q

.

4.2 The Constant κ

Let Zt,λ be the indicator of whether the cell t is free. Unlike Yt,λ, Zt,λ depends on which
sketching algorithm we are analyzing. Since the state changing probability is equal to the
sum of the area of free cells, we have

Pm,λm =
∞∑

j=0

1
m

(
1

qj/m
− 1

qj/m+1

)
Zj/m,λ. (2)

If Pm,λm converges to κλ/λ almost surely as m→∞, then E(Pm,λm) also converges to
κλ/λ as m→∞. Thus we have, from (2),

κλ/λ = lim
m→∞

E(Pm,λm) = lim
m→∞

∞∑
j=0

1
m

(
1

qj/m
− 1

qj/m+1

)
E(Zj/m,λ)

=
∫ ∞

0

(
1
qt
− 1

qt+1

)
E(Zt,λ)dt ≈

∫ ∞

−∞

(
1
qt
− 1

qt+1

)
E(Zt,λ)dt, (3)

where we can extend the integration range to negative infinity without affecting the limit of
κλ as λ→∞.11 We conclude that

κ = lim
λ→∞

κλ = lim
λ→∞

λ

∫ ∞

−∞

(
1
qt
− 1

qt+1

)
E(Zt,λ)dt. (4)

The formula (4) is novel in the sense that, in order to evaluate κ, we now only need to
understand the probability that Zt,λ is 1 for fixed t and λ.12

11 See [32].
12 Technically, to apply formula (4) one needs to first prove that the state changing probability Pm,λm

converges almost surely to some constant κλ/λ for any λ, which is a mild regularity condition for
any reasonable sketch. Thus in this paper we will assume the sketches in the analysis all satisfy this
regularity condition and claim that a sketch is scale-invariant if formula (4) converges.
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4.3 Analysis of Smoothed q-PCSA and q-LL
The sketches q-PCSA and q-LL are the natural smoothed base-q generalizations of PCSA [20]
and LogLog [16].

▶ Theorem 14. q-PCSA and q-LL are scale-invariant. In particular, we have,

κq-PCSA = 1
ln q

, and κq-LL = 1
ln q

q − 1
q

.

Proof. For q-LL, cell t is free iff both itself and all the cells above it in its column contain no
darts. Thus we have

E(Zt,λ) =
∞∏

i=0
Pr(Yt+i,λ = 0) =

∞∏
i=0

e
− λ

qt+i
q−1

q = e
− λ

qt .

Insert it to formula (4) and we get

κq-LL = lim
λ→∞

λ

∫ ∞

−∞

(
1
qt
− 1

qt+1

)
e

− λ
qt dt = 1

ln q

q − 1
q

.

For q-PCSA, cell t is free iff it has no dart. Thus Zt,λ = 1− Yt,λ and by formula (4) we
have

κq-PCSA = lim
λ→∞

λ

∫ ∞

−∞

(
1
qt
− 1

qt+1

)
e

− λ
qt

q−1
q dt = 1

ln q
. ◀

The Fishmonger [31] sketch is based on a smoothed, entropy compressed version of base-e
PCSA. The memory footprint of Fishmonger approaches its entropy as m→∞, which was
calculated to be mH0 [31, Lemma 4]. From Theorem 14, we know κe-PCSA = 1.

▶ Corollary 15. Fishmonger has limiting MVP H0/2 ≈ 1.63.

Proof. By Theorem 11, limiting MVP equals mH0 · 1
2m = H0

2 . ◀

4.4 Asymptotic Local View
For any t and λ, since we want to evaluate Zt,λ, whose value may depend on its “neighbors”
on the dartboard, we need to understand the configurations of the cells near cell t. Since we
consider the case where m goes to infinity, we may ignore the effect of smoothing to the cells
in the immediate vicinity of cell t.

After taking these asymptotic approximations, we can index the cells near cell t as follows.

▶ Definition 16 (neighbors of cell t). Fix a cell t. Let i ∈ Z and c ∈ R. The (i, c)-neighbor
of cell t is a cell whose column index differs by i (negative i means to the left, positive to the
right) and has height t + c, it covers the vertical interval [q−(t+c+1), q−(t+c)). In the sawtooth
partition, c is an integer when i is even and a half-integer when i is odd. (Note that we are
locally ignoring the effect of smoothing.)

Once cell t is fixed, define W (i, c) to be the indicator for whether the (i, c)-neighbor of
cell t has at least one dart in it. Thus, for fixed t, λ, we have

Pr(W (i, c) = 0) = Pr(Yt+c,λ = 0) = e
− λ

qt+c
q−1

q .

In the asymptotic local view, we lose the property that a cell can be uniquely identified
by its height, hence the need to refer to nearby cells by their position relative to cell t.
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4.5 Analysis of Curtain
We first briefly state some properties of curtain. For any a ≥ 1, recall that Oa = {−(a −
1/2),−(a− 3/2), . . . ,−1/2, 1/2, . . . , a − 3/2, a− 1/2}. It is easy to see that for any vector
v = (g0, g1, . . . , gm−1), vcurt = (ĝi) can be expressed as

ĝi = max
j∈[0,m−1]

{gj − |i− j|(a− 1/2)}.

For each i, we define the tension point τi to be the lowest allowable value of ĝi, given the
context of its neighboring columns.

τi = max
j∈[0,m−1]\{i}

{gj − |i− j|(a− 1/2)},

and thus we have ĝi = max(gi, τi). We see that the column i is in tension iff gi ≤ τi, that is,
ĝi = τi.

▶ Theorem 17. Curtain is scale-invariant with

κCurtain = 1
ln q

q − 1
q

1
q−1

q + 2
qh(qa−1/2−1) + 1

qh+1

.

Proof. Fix cell t and λ. Define W1(k) to be the height of the highest cell containing darts in
the column k away from t’s column. I.e., define ι =

r
k is odd

z
/2 to be 1/2 if k is odd and

zero if k is even, and W1(k) def= max{t + i + ι | i ∈ Z and W (k, i + ι) = 1}.
We have for any i ∈ Z,

Pr(W1(k) ≤ t + i + ι) =
∞∏

j=1
Pr(W (k, i + j + ι) = 0) = e

− λ

qt+1+i+ι .

Let T1 be the tension point of the column of cell t, which equals max
j∈Z\{0}

{W1(j)−|j|(a−1/2)}.

We have for any i ∈ Z,

Pr (T1 ≤ i + t) = Pr
(

max
j∈Z\{0}

{W1(j)− |j|(a− 1/2)} ≤ i + t

)
=

∏
j∈Z\{0}

Pr(W1(j)− |j|(a− 1/2) ≤ i + t)

=

 ∞∏
j=1

e
−λ 1

qt+i+1+j(a−1/2)

2

= e
−λ 2

qt+i+1
1

qa−1/2−1 .

From the rules of Curtain, we know that a cell is free iff it contains no dart, it is at most
h− 1 below its column’s tension point, and at most h below the highest cell in its column
containing darts. Thus,

Zt,λ =
r

Yt,λ = 0
z
·
r

t ≥ T1 − (h− 1)
z
·
r

t ≥W1(0)− h
z

,

Note that T1 is independent from Yt,λ and W1(0). In addition, Yt,λ is also independent fromr
t ≥W1(0)− h

z
, since the latter only depends on Yt′,λ with t′ ≥ h + t + 1. Thus, we have

E(Zt,λ) = Pr(Yt,λ = 0) · Pr(T1 ≤ t + h− 1) · Pr(W1(0) ≤ t + h)

= e
− λ

qt
q−1

q e
−λ 2

qt+h
1

qa−1/2−1 e
− λ

qt+h+1

= exp
(
− λ

qt

(
q − 1

q
+ 2

qh(qa−1/2 − 1)
+ 1

qh+1

))
.
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Thus by formula (4), we have

κCurtain = lim
λ→∞

λ

∫ ∞

−∞

(
1
qt
− 1

qt+1

)
exp

(
− λ

qt

(
q − 1

q
+ 2

qh(qa−1/2 − 1)
+ 1

qh+1

))
dt

= 1
ln q

q − 1
q

1
q−1

q + 2
qh(qa−1/2−1) + 1

qh+1

. ◀

5 Optimality of Martingale Fishmonger

Martingale sketches have several attractive properties, e.g., being strictly unbiased and
insensitive to duplicate elements in the data stream. In Section 5.1 we argue that any sketch
that satisfies these natural assumptions can be systematically transform into a Martingale
X sketch with equal or lesser variance, where X is a dartboard sketch. In other words, the
Martingale transform is optimal.

In Section 5.2 we prove that within the class of linearizable dartboard sketches, Martingale
Fishmonger is optimal. The class of linearizable sketches is broad and includes state-of-the-art
sketches, which lends strong circumstantial evidence that the memory-variance product of
Martingale Fishmonger cannot be improved.

5.1 Optimality of the Martingale Transform
Consider a non-mergeable sketch processing a stream A = (a1, a2, . . .). Let Si be its state
after seeing (a1, . . . , ai), λi = |{a1, . . . , ai}|, and λ̂(Si) be the estimate of cardinality λi when
in state Si. We make the following natural assumptions.
Randomness. The random oracle h is the only source of randomness. In particular, Si is a

function of (h(a1), h(a2), . . . , h(ai)).
Duplicates. If ai ∈ {a1, . . . , ai−1}, Si = Si−1, i.e., duplicates do not trigger state transitions.
Unbiasedness. Suppose one examines the data structure at time i and sees Si = si and then

examines it at time j. Then λ̂(Sj)− λ̂(si) is an unbiased estimate of λj − λi.

In the full version [32], we show that as a consequence of the Randomness, Duplicates,
and Unbiased assumptions, the Martingale estimator has minimum variance.

▶ Remark 18. We should note that under some circumstances it is possible to achieve smaller
variance by violating the duplicates and unbiasedness assumptions. For example, suppose
the sketch state after seeing i elements were (λ̂i, Si, i). If the stream is duplicate-heavy,
“i” carries no useful information, but if nearly all elements are distinct, i is also a good
cardinality estimate. Since λi ≤ i, the cardinality estimate min{λ̂i, i} is never worse than λ̂i

alone, but when λi ≈ i, it is biased and has a constant factor lower variance.

5.2 Optimality of Martingale Fishmonger
Given an abstract linearizable sketching scheme X, its space is minimized by compressing it
to its entropy. On the other hand, by Theorem 11 the variance of Martingale X is controlled
by the normalized expected probability of changing state: 2λ · E(Pλ). Theorem 19 lower
bounds the ratio of these two quantities for any sketch that behaves well over a sufficiently
large interval of cardinalities λ ∈ [ea, eb]. The proof technique is very similar to [31], as is the
take-away message (that X=Fishmonger is optimal up to some assumptions). However, the
two proofs are mathematically distinct as [31] focuses on Fisher information while Theorem 19
focuses on the probability of state change.
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▶ Theorem 19. Fix reals a < b with d = b − a > 1. Let H̄, R̄ > 0. For any linearizable
sketch, let H(λ) be the entropy of its state and Pλ be the probability of state change13 at
cardinality λ satisfies that
1. for all λ > 0, H(λ) ≤ H̄, and
2. for all λ ∈ [ea, eb], 2λE(Pλ) ≥ R̄, then

H̄

R̄
≥ H0

2
1−max(8d−1/4, 5e−d/2)

1 + (344+4
√

d)
d

H0
I0

(
1−max(8d−1/4, 5e−d/2)

) = H0
2 (1− od(1)).

▶ Corollary 20. The MVP of any linearizable and scale-invariant sketch is at least H0
2 .

6 Experimental Validation

Throughout the paper we have maintained a possibly unhealthy devotion to asymptotic
analysis, taking m→∞ whenever it was convenient. In practice m will be a constant, and
possibly a smallish constant. How do the sketches perform in the pre-asymptotic region?

In turns out that the theoretical analysis predicts the performance of Martingale sketches
pretty well, even whem m is small. In the experiment of Figure 3, we fixed the sketch size at
a tiny 128 bits. Therefore HyperLogLog uses m1 = ⌊128/6⌋ = 21 counters. The Martingale
LogLog and Martingale Curtain sketches encode the martingale estimator with a floating point
approximation of λ̂ in 14 bits, with a 6-bit exponent and 8-bit mantissa. Thus, Martingale
LogLog uses m2 = (128− 14)/6 = 19 counters, and Martingale Curtain uses m3 = 37.14

For larger sketch sizes, the distribution of λ̂/λ is more symmetric, and closer to the
predicted performance. Figure 4 gives the empirical distribution of λ̂/λ over 100,000 runs
when λ = 106 and the sketch size is fixed at 1,200 bits. Here MartingaleCurtain uses m = 400,
and both Martingale LogLog and HyperLogLog use m = 200. The experimental and predicted
relative variances and standard errors are given in Table 2.

Figure 3 The sketch size is fixed at 128 bits. Figure 4 The sketch size is fixed at 1200 bits.

13 The probability of state change Pλ is itself a random variable.
14 It uses the optimal parameterization (q, a, h) = (2.91, 2, 1) of Theorem 4.

ICALP 2021



104:18 Non-Mergeable Sketching for Cardinality Estimation

Table 2 The relative variance is 1
λ2 Var(λ̂ | λ) and standard error is 1

λ

√
Var(λ̂ | λ). The

predictions for Martingale LogLog and Martingale Curtain use Theorems 11, 14, and 17. The
predictions for HyperLogLog are from Flajolet et al. [19, p. 139].

Sketch
Using 128 bits Using 1200 bits
Experiment Prediction Experiment Prediction
Var StdErr Var StdErr Var StdErr Var StdErr

HyperLogLog 0.0573 23.94% 0.0549 23.44% 0.00541 7.36% 0.00539 7.35%
Martingale LogLog 0.0348 18.65% 0.0365 19.10% 0.00350 5.91% 0.00347 5.89%
Martingale Curtain 0.0211 14.54% 0.0208 14.43% 0.00189 4.35% 0.00193 4.39%

7 Conclusion

The Martingale transform is attractive due to its simplicity and low variance, but it results in
non-mergeable sketches. We proved that under natural assumptions,15 it generates optimal
estimators automatically, allowing one to design structurally more complicated sketches,
without having to worry about designing or analyzing ad hoc estimators. We proposed the
Curtain sketch, in which each subsketch only needs a constant number of bits of memory, for
arbitrarily large cardinality U .16

The analytic framework of Theorems 7 and 11 simplifies Cohen [14] and Ting [35], and
gives a user-friendly formula for the asymptotic relative variance (ARV) of the Martingale
estimator, as a function of the sketch’s constant κ. We applied this framework to Martingale
Curtain as well as the Martingale version of the classic sketches (MinCount, HLL and PCSA).

Assuming perfect compression, one gets the memory-variance product (MVP) of an
sketch by multiplying its entropy and ARV. It is proved that for linearizable sketches,
Fishmonger is optimal for mergeable sketches [31] (limiting MVP = H0/I0 ≈ 1.98). In
this paper we proved that in the sequential (non-mergeable) setting, if we restrict our
attention to linearizable sketches, that Martingale Fishmonger is optimal, with limiting
MVP = H0/2 ≈ 1.63 (Section 5.2). We conjecture that these two lower bounds hold for
general, possibly non-linearizable sketches.
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In this paper we continue a long line of work on representing the cut structure of graphs. We classify
the types of minimum vertex cuts, and the possible relationships between multiple minimum vertex
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1 Introduction

One of the strong themes running through graph theory is to understand the cut structure
of graphs and to apply these structural theorems to solve algorithmic and data structural
problems. Consider the following exemplars of this line of work:
Gomory-Hu Tree. Gomory and Hu (1961) [31] proved that any weighted, undirected graph

G = (V, E) can be replaced by a weighted, undirected tree T = (V, ET ) such that for
every s, t ∈ V , the minimum s-t cut partition in T (removing a single edge, partitioning
V into two sets) corresponds to a minimum s-t cut partition in G. These are sometimes
called cut-equivalent trees [1].

Cactus Representations. Dinitz, Karzanov, and Lomonosov (1976) [13] proved that all
the global minimum edge-cuts of any weighted, undirected graph G = (V, E) could be
succinctly encoded as an (unweighted) cactus graph. A cactus is a connected multigraph
in which every edge participates in exactly one cycle. It was proved that there exists a
cactus C = (VC , EC) and an embedding ϕ : V → VC such that the minimum edge-cuts in
C (2 edges in a common cycle) are in 1-1 correspondence with the minimum edge-cuts of
G. A corollary of this theorem is that there are at most

(
n
2
)

minimum edge-cuts.
Picard-Queyrenne Representation. In a directed s-t flow network there can be exponentially

many min s-t cuts. Picard and Queyrenne (1980) [56] proved that the family S = {S |
(S, S) is a min s-t} corresponds 1-1 with the downward-closed sets of a partial order, and
is therefore closed under union and intersection.

Block Trees, SPQR Trees, and Beyond. Whitney (1932) [61, 62] proved that the cut ver-
tices (articulation points) of an undirected graph G = (V, E) partition E into single edges
and 2-edge connected components (blocks). This yields the block tree representation. Di
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1 (a) A weighted undirected graph; (b) Its Gomory-Hu (cut-equivalent) tree [31]. (c) A
weighted undirected graph (unmarked edges have unit weight); (d) the Cactus representation [13]
of its minimum edge cuts. (e) A directed s-t flow network; (f) A dag whose downward-closed sets
(that include s but not t) correspond to min s-t cuts (Picard-Queyrenne [56]). (g) An abstract
representation of a 2-connected graph; (h) The representation of its 3-connected components as an
SPQR tree (Di Battista-Tamassia [4]).

Battista and Tamassia (1989) [5, 4] formally defined the SPQR tree, which succinctly
encodes all 2-vertex cuts in a biconnected graph, and Kanevsky, Tamassia, Di Battista,
and Chen [42] extended this structure to represent 3-vertex cuts in a triconnected graph.1

It is natural to ask how, and to what extent, these structures can be extended and
generalized. Gusfield and Naor [34] combined the Gomory-Hu tree and the Picard-Queyrenne
representation for edge-connetivity. They [33] also described an analogue of Gomory-Hu
trees (cut-equivalent trees) for vertex connectivity, i.e., a tree that compactly represents a
minimum s-t vertex cut for every s, t ∈ V . It used a result of Schnorr [57] on an analogue of
Gomory-Hu trees for “roundtrip” flow-values in directed networks. These claims were refuted
by Benczur [6], who illustrated that Schnorr’s and Gusfield and Naor’s proofs were incorrect
and could not be rectified. In particular, there are no cut-equivalent trees for s-t vertex
connectivity and directed s-t cuts. Benczur [6, p. 505-506] suggested a way to construct a
flow-equivalent tree for vertex connectivity (vertex capacitated s-t flows) using a result of

1 Many of the structural insights behind [4, 42] were latent in prior work. See, for example. Mac Lane [48],
Tutte [59, 60] (1961-6), Hopcroft and Tarjan [36], and Cunningham and Edmonds [12].
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Cheng and Hu [9]. This, too, turned out to be incorrect. Hassin and Levin [35] proved that
a graph can have Ω(n2) s-t vertex-capacitated cut values, which cannot be captured by a
flow-equivalent tree. We take these episodes as a reminder that having published proofs
(even incorrect ones) is essential for facilitating self-correction in science.

The inspiration for this paper is an extended abstract of Cohen, Di Battista, Kanevsky,
and Tamassia [11] from STOC 1993. Their goal was to find a cactus-analogue for global
minimum vertex cuts, or from a different perspective, to extend SPQR trees [4] and [42]
from κ ∈ {2, 3} vertex cuts to arbitrarily large κ. As an application of their ideas, they
described a data structure for κ-connected graphs occupying space O(κ3n) that, given u, v,
decided whether u, v are separated by a κ-cut or (κ + 1)-connected. There are no suspect
claims in [11]. On the other hand, the paper is 7 pages and leaves many of its central
claims unproven.2 We believe that understanding the structure of minimum vertex cuts is a
fundamental problem in graph theory, and deserving of a complete, formal treatment.

In this paper we investigate the structure of the set of all minimum vertex cuts and classify
the relationships between different minimum vertex cuts. Our work reveals some structural
features of minimum κ-cuts not evident in Cohen, Di Battista, Kanevsky, and Tamassia [11],
and ultimately allows us to develop a simpler data structure to answer pairwise κ-cut queries
in a κ-connected graph. It occupies (optimal) O(κn) space and can be constructed in
randomized Õ(m + poly(κ)n) time, in contrast to [11], which occupies O(κ3n) space and is
constructed in exp(κ)n5 time.3

1.1 Related Work

Dinitz and Vainshtein [17, 18] combined elements of the cactus [13] and Picard-Queyrenne [56]
representations, which they called the connectivity carcass. Given an undirected, unweighted
G = (V, E) and S ⊆ V of terminals, λS is the size of the minimum edge-cut that separates S.
The carcass represents all size-λS separating cuts in O(min{m, λSn}) space and answers
various cut queries in O(1) time.4

Benczur and Goemans [7] generalized the cactus representation [13] in a different direction,
by giving a compact representation of all cuts that are within a factor 6/5 of the global
minimum edge-cut.

Dinitz and Nutov [14] generalized the cactus representation [13] in another direction,
by giving an O(n)-space representation of all λ and λ + 1 edge cuts, where λ is the edge-
connectivity of the undirected, unweighted graph. Another feature of representations in [17,
18, 14] worth to mention is that they answer connectivity queries with supporting edge
insertions in the graph. Unpublished manuscripts [15, 16] give detailed treatments of the λ

odd and λ even cases separately.
Georgiadis et al. [30, 22, 28, 29] investigated various notions of 1- and 2-edge and vertex

connectivity in directed graphs, and the compact representation of edge/vertex cuts.
Gabow [25] provided a O(m log n2/m) data structure for all mincuts of a directed graph

by drawing a correspondence between cuts and intersecting set families.

2 The full version of this paper was never written (personal communication with R. Tamassia, 2011, and
R. Di Battista, 2016).

3 The algorithm enumerates all minimum κ-cuts, which can be as large as Ω(2κ(n/κ)2); modern vertex
connectivity algorithms [23, 27, 26] may reduce the exponent of n in the running time.

4 The carcass was introduced in extended abstracts [17, 18] and the (simpler) case of odd λS was analyzed
in detail in a journal article [19]. We are not aware of a full treatment of the case when λS is even.
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Granot and Hassin [32] generalized the Gomory-Hu tree into node- and arc-capacitated
case and gave an algorithm for finding a cut-tree over a set of terminals K by solving |K| − 1
minimum-cut problems.

Sparsification

One general way to compactly represent connectivity information is to produce a sparse graph
with the same cut structure. Nagamochi and Ibaraki [50] proved that every unweighted,
undirected graph G = (V, E) contains a subgraph H = (V, EH) with |EH | < (k + 1)n
(arboricity k + 1) such that H is computable in O(m) time and contains exactly the same
k′-vertex cuts and k′-edge cuts as G, for all k′ ∈ {1, . . . , k}. Benczur and Karger [8] proved
that for any capacitated, undirected graph G = (V, E), there is another capacitated graph
H = (V, EH) with |EH | = O(ϵ−2n log n) such that the capacity of every cut in G is preserved
in H up to a (1± ϵ)-factor. This bound was later improved to O(ϵ−2n) by Batson, Spielman,
and Srivastava [3], which is optimal.

In directed graphs, Baswana, Choudhary, and Roditty [2] considered the problem of
finding a sparse subgraph that preserves reachability from a single source, even if d vertices
are deleted. They proved that Θ(2dn) edges are necessary and sufficient for d ∈ [1, log n].

d-Failure Connectivity

An undirected graph can be compactly represented such that connectivity queries can be
answered after the deletion of any d vertices/edges (where d could be much larger than the
underlying connectivity of the graph). Improving on [54, 43, 20], Duan and Pettie [21] proved
that d vertex failures could be processed in Õ(d2) time such that connectivity queries are
answered in O(d) time, and d edge failures could be processed in O(d log d log log n) time such
that connectivity queries are answered in O(log log n) time. The size of the [21] structure
is Õ(m) for vertex failures and Õ(n) for edge failures. Choudhary [10] gave an optimal
O(n)-space data structure that could answer directed reachability queries after d ∈ {1, 2}
vertex or edge failures.

Labeling Schemes

Benczur’s refutation [6] of [57, 33] shows that all pairwise vertex connectivities cannot be
captured in a tree structure, but it does not preclude other representations of this information.
Hsu and Lu [37] designed a O(k log n)-bit labeling scheme to determine whether κ(u, v) ≥ k,
given just the labels of u and v. This improved [45] and matched an Ω(k log n)-bit lower
bound of Katz, Katz, Korman, and Peleg [44]. By applying it to all k ∈ {1, . . . , κ}, the
Hsu-Lu labeling has size O(κ2 log n) and reports min{κ(u, v), κ}. Using a different approach,
Izsak and Nutov [38] gave a O(κ log3 n)-bit labeling scheme for computing min{κ(u, v), κ}.
The schemes [37, 45, 44, 38] have large polynomial construction times, and cannot report a
u-v cut of size κ(u, v)

Vertex Connectivity Algorithms

In optimal linear time we can decide whether the connectivity of a graph is κ = 1, κ = 2, or
κ ≥ 3 [58, 36]. For larger κ, the state-of-the-art in vertex connectivity has been improved
substantially in the last few years. Forster, Nanongkai, Yang, Saranurak, and Yingchare-
onthawornchai [23] gave a Monte Carlo algorithm for computing the vertex connectivity
κ of an undirected graph in Õ(m + nκ3) time, w.h.p.5 A new result of Li, Nanongkai,

5 The algorithm does not produce a witness, and hence may err with small probability.
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Panigrahi, Saranurak, and Yingchareonthawornchai [46] gave a randomized algorithm run-
ning in O(m4/3+o(1)) time. The best deterministic algorithm, due to Gao, Li, Nanongkai,
Peng, Saranurak, and Yingchareonthawornchai [27], computes the connectivity κ < n1/8

in O((m + n7/4κO(κ))no(1)) time or O((m + n19/20κ5/2)no(1)) time. For κ > n1/8, Gabow’s
algorithm [26] runs in O(κn2 + κ2n ·min{n3/4, κ3/2}) time.

The connectivity augmentation problem is to improve the global vertex connectivity or
specific pairwise connectivities by adding few edges. See, for example, Frank and Jordán [24],
Jordán [40], Jackson and Jordán [39], and Nutov [52] for positive results, and Nutov [51] for
a hardness of approximation result.

1.2 Organization
In Section 2 we review basic definitions and lemmas regarding vertex cuts. Section 3 gives the
basic classification theorem for minimum vertex cuts, and lists some useful corollaries. In short,
every pair of cuts have laminar, wheel, crossing matching, or small relation. Sections 3.1–3.4
analyze these four categories in more detail. Section 4 exhibits a new O(κn)-space6 data
structure that, given two vertices, answers (κ + 1)-connectivity queries in O(1) time, and
produces a separating κ-cut (if one exists) in O(κ) time. We conclude with some remarks and
open problems in Section 5. All missing proofs appear in the full version of the paper [55].

2 Preliminaries

The input is a simple, connected, undirected graph G = (V, E) with n = |V | and m = |E|.
Let the subgraph of G induced by A be denoted G|A. We call U ⊂ V a cut if the graph

G|V \U is disconnected. A side of the cut U is a connected component of G|V \U . If P is
a side of U and A ⊆ P , we say A is within a side of U , and let SideU (A) = P denote the
side containing A. A region of a cut U is a side, or the union of several sides of U . Denote
RegionU (A) as the region containing the sides of U that intersects with A. 7 We say a
cut disconnects or separates A and B if they are in distinct sides of U . In particular, if
B = V \(A ∪ U), we say U disconnects or separates B from the rest of the graph.

A path π = v1v2 · · · vl is from A to B, if v1 ∈ A and vl ∈ B. Two paths π, π′ from v1 to
vl are internally vertex disjoint if they have no common vertices, except for v1, vl. We say U

blocks π if U ∩ {v2, . . . , vl−1} ̸= ∅.
A k-cut is a cut of size k. Define κ(u, v) to be the minimum k such that there exists

a k-cut separating u and v, where {u, v} ≠ E(G). Define κ = κ(G) to be the minimum of
κ(u, v) over all pairs {u, v} ∈

(
V (G)

2
)
\E(G). We say G is k-connected if κ(G) ≥ k.

In this paper we assume that κ < n/4 and consider the set of all (minimum) κ-cuts.
▶ Remark 1. There is some flexibility in defining the corner cases. Some authors leave κ(u, v)
undefined when {u, v} ∈ E(G) or define it to be n− 1. Other authors define connectivity
as the maximal number of vertex-disjoint paths. In [11] a k-cut is defined to be a mixed
set of edges and vertices whose removal disconnects the graph. Under this definition, when
{u, v} ∈ E(G), κ(u, v) = k if removing k − 1 vertices and {u, v} disconnects u and v. The
last two definitions are equivalent and are compatible with Menger’s theorem.

▶ Theorem 2 (Menger [49]). Let G = (V, E) be an undirected graph and {u, v} a pair not in
E. Let U ⊂ V be a minimum size cut disconnecting u and v and Π be a maximum size set
of internally vertex disjoint paths from u to v. Then κ(u, v) = |U | = |Π|.

6 Formally speaking, this is O(κn) words of space, where a word store the index of a vertex, and takes up
O(log n) bits of space.

7 Note when A is a singleton set {u}, RegionU (A) = SideU (A).
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The following categories make sense when applied to non-minimal vertex cuts, but we
are only interested in applying them to minimum vertex cuts. Henceforth cut usually means
minimum cut.

Laminar Cuts

Let U be a cut and P be a side of U . If W is a cut and W ⊂ U ∪ P , we say W is a laminar
cut of U in side P .8

Figure 2 A 7-cut U with two sides, and two 7-cuts W1, W2 that are laminar w.r.t. U .

Small Cuts

Informally, when a side of a cut is tiny we call the cut small. We define three levels of small
cuts. Let U be a cut with sides A1, A2, . . . , Aa. We say that
1◦ U is (I, t)-small if there exists an index i♯ such that

∑
i̸=i♯ |Ai| ≤ t. Ai♯ is called the

large side of U and the others the small sides of U .
2◦ U is (II, t)-small if there exists i♯ such that for every i ̸= i♯, |Ai| ≤ t.
3◦ U is (III, t)-small, if there exists i♯ such that |Ai♯ | ≤ t. In this case Ai♯ is the small side

of U .

Note that for any t, I-small cuts are II-small, and II-small cuts are III-small. We typically
apply this definition with t = κ, t = Θ(κ), or t =

⌈
n−κ

2
⌉
.

Wheel Cuts

Suppose V can be partitioned into a series of disjoint sets T , {Ci}, {Si} (1 ≤ i ≤ w, w ≥ 4,
subscripts are taken module w), such that the {Ci} and {Si} are nonempty (T may be
empty), and Ci ∪ T ∪ Ci+2 disconnects Si ∪ Ci ∪ Si+1 from the rest of the graph. We say
(T ; C1, C2, . . . , Cw) forms a w-wheel with sectors S1, S2, . . . , Sw. We call T the center of the
wheel, {Ci} the spokes of the wheel, and C(i, j) = Ci ∪ T ∪ Cj the cuts of the wheel. Define
D(i, j) = Si ∪ Ci+1 ∪ · · · ∪ Cj−1 ∪ Sj−1.

Recall that we are only interested in wheels whose cuts are minimum κ-cuts. The
cut of the wheels discussed in this paper are all κ-cuts. It is proved in Lemma 10 that, if
(T ; C1, C2, . . . , Cw) forms a wheel, then for every i, j such that j−i /∈ {1, w−1}, C(i, j) is a κ-
cut with exactly two sides, namely D(i, j) and D(j, i). Note that a w-wheel (T ; C1, C2, . . . , Cw)
contains x-wheels, x ∈ [4, w − 1]. Specifically, for any subset {i1, i2, . . . , ix} ⊆ {1, 2, . . . , w}
with x ≥ 4, (T ; Ci1 , Ci2 , . . . , Cix

) forms an x-wheel called a subwheel of the original. If a
wheel is not a subwheel of any other wheel, it is a maximal wheel. If there exists an index i♯

such that,
∑

i̸=i♯ |Si| ≤ κ, then we say this is a small wheel.9

8 These are sometimes called parellel cuts.
9 For a small wheel, all its cuts C(i, j) are (II, O(κ2))-small.
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Figure 3 A 6-wheel of 8-cuts with a center of size |T | = 2.

Note that wheel cuts resemble the “cycle cuts” of a cactus, or the set of 2−cuts of a cycle.

Matching Cuts and Crossing Matching Cuts

Let U be a cut, A be a side of U , and P ⊆ U be a subset of the cut. We call a cut W a
matching cut of U in side A w.r.t. P if (i) U\P ⊆ W ⊆ U ∪ A, (ii) A\W ̸= ∅, and (iii) W

disconnects P ∪ (V \(U ∪A)) from A\W . The set MatchU ;A(P ) def= W\U is the neighborhood
of P restricted to A. Note that a matching cut is a type of laminar cut.

Now suppose U is a cut with exactly two sides A and B, and let P ⊆ U be a non-empty
subset of U . We call W a crossing matching cut of U in side A w.r.t. P if (i) W ∩ B ̸= ∅,
(ii) (U\P ) ∪ (W ∩A) is a matching cut of U in side A w.r.t. P ,

Figure 4 A cut U (drawn vertically) with two sides A and B. Dotted lines indicate two crossing
matching cuts w.r.t. P1 (bottom 3 vertices of U) and P2 (top 2 vertices of P1).

One could view U and a crossing matching cut W as a degenerate 4-wheel, in which
one sector S1 = ∅ is empty. Such cuts should not be regarded as wheels, as they do not
possess key properties of wheels, e.g., that when U and W are (minimum) κ-cuts, that
|C1| = · · · = |C4| = κ−|T |

2 , because C1 ∪ T ∪ C2 is not a cut.

Lemmas 3 and 4 are used throughout the paper. Recall here κ = κ(G) is the vertex
connectivity of G.

▶ Lemma 3. Suppose U is a κ-cut and P a side of U . For every p ∈ P and u ∈ U , there
exists a path from p to u that is not blocked by V \P .

▶ Lemma 4. Suppose U and W are two cuts, P is disconnected by U from the rest of the
graph G and Q is disconnected by W from the rest of the graph G. Then we have the following
two rules:

(Intersection Rule) If P ∩Q ̸= ∅, then P ∩Q is disconnected by (U∩Q)∪(U∩W )∪(W ∩P )
from the rest of the graph G;
(Union Rule) If V \(U ∪ P ∪W ∪Q) ̸= ∅, then P ∪Q is disconnected by (U\Q) ∪ (W\P )
from the rest of the graph G.

ICALP 2021
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(a) (b)

Figure 5 (a) Intersection rule; (b) Union rule.

3 The Classification of Minimum Vertex Cuts

The main binary structural theorem for vertex connectivity is, informally, that every two
minimum vertex cuts have a relationship that is Laminar, Wheel, Crossing Matching, or
Small; cf. [11]. Moreover, any strict subset of this list would be inadequate to capture all
possible relationships between two vertex cuts.10

▶ Theorem 5. Fix a minimum κ-cut U with sides A1, A2, . . . , Aa, a ≥ 2, and let W be
any other κ-cut with sides B1, B2, . . . , Bb, b ≥ 2. Denote T = U ∩W , Wi = W ∩ Ai and
Uj = U ∩Bj. Then W may be classified w.r.t. U as follows:
Laminar type. W is a laminar cut of U , and in particular, there exists indices i∗ and j∗

such that Bj∗\Ai∗ = (U\W ) ∪ (∪i̸=i∗Ai) and Ai∗\Bj∗ = (W\U) ∪ (∪j ̸=j∗Bj).
Wheel type. a = b = 2, and (T ; U1, W1, U2, W2) forms a 4-wheel with sectors A1 ∩ B1,

A1 ∩B2, A2 ∩B2 and A2 ∩B1.
Crossing Matching type. a = b = 2, and w.l.o.g., A1∩B1 ≠ ∅, A2∩B2 ≠ ∅, but A1∩B2 = ∅.

We have |W2| = |U1| > 0, |W1| = |U2| > 0, and W is a crossing matching cut of U in
side A1 w.r.t. U2. Furthermore, if A2 ∩B1 ̸= ∅, then |U1| ≥ |U2|.

Small type. U is (I, κ − 1)-small, and the small sides of U are within W , or W is (I,
κ− 1)-small, and the small sides of W are within U .

▶ Remark 6. Minimum cuts with at least three sides (i.e., a ≥ 3 or b ≥ 3) are sometimes called
shredders. It it known that there are O(n) shredders [41, 47] and that, in the terminology of
Theorem 5, two shredders have a laminar or small relationship.

Proof of Theorem 5. Suppose there is a single index i∗ such that Wi∗ ̸= ∅ and Wi = ∅ for
all i ̸= i∗. It follows that W ⊆ Ai∗ ∪U is a laminar cut of U in side Ai∗ . It remains to prove
the other properties of the laminar type. By Lemma 3 there exists paths from any vertex in
Ai, i ̸= i∗, to U\W that are not blocked by W , so they all lie within one side of W ; let us
denote this side by Bj∗ . Then (U\W ) ∪ (∪i̸=i∗Ai) ⊆ Bj∗ , and because V = U ∪ (∪a

i=1Ai),
we obtain Bj∗\Ai∗ = (U\W ) ∪ (∪i̸=i∗Ai). Now that U ⊆ W ∪ Bj∗ is laminar w.r.t. W , so
based on the same reasoning we have Ai∗\Bj∗ = (W\U) ∪ (∪j ̸=j∗Bj).

We proceed under the assumption that such indices i∗, j∗ do not exist, and without loss
of generality assume that W1, W2, U1, U2 ̸= ∅. We now wish to prove that all Ui, Wi are
non-empty. Suppose Wi

def= W ∩Ai = ∅ were empty, then Ai would be contained within a
side of W , say Ai ⊆ Bj . By Lemma 4 (intersection rule), whenever Ai ∩ Bj ̸= ∅, the set
Wi ∪ T ∪ Uj disconnects Ai ∩Bj from the rest of the graph. It follows that

10 The existence of Small cuts as a category – an a priori unnatural class – indicates that there may be
other ways to capture all minimum vertex cuts through an entirely different classification system.
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|Wi|+ |T |+ |Uj | = |T |+ |Uj | ≥ κ = |T |+
b∑

l=1
|Ul| ,

which implies that Uj is the only non-empty U∗-set, contradicting U1, U2 ̸= ∅. Therefore,
Wi ̸= ∅ for all i and similarly, Uj ̸= ∅ for all j.

Define Ω = {(i, j) | Ai ∩Bj ̸= ∅} to be the side-pairs whose intersections are non-empty.
We consider the following possibilities, which are exhaustive.
1◦ There exist (i, j), (i′, j′) ∈ Ω such that i ≠ i′, j ̸= j′. Then by Lemma 4 (intersection

rule)

|Wi|+ |T |+ |Uj | ≥ κ

and |Wi′ |+ |T |+ |Uj′ | ≥ κ.

On the other hand,

|Uj |+ |Uj′ |+ |T | ≤ |U | = κ

and |Wi|+ |Wi′ |+ |T | ≤ |W | = κ.

Thus all these inequalities must be equalities, and, adding the fact that all Wi, Uj ̸= ∅, we
conclude that a = b = 2, |Wi| = |Uj′ |, |Wi′ | = |Uj |. W.l.o.g. we fix i = j = 1, i′ = j′ = 2.
See Figure 6.

Figure 6 A depiction of cuts U, W in case 1◦.

1.1◦ Suppose A1 ∩ B2 ≠ ∅ and A2 ∩ B1 ≠ ∅. Then |Wı̂| + |Uȷ̂| ≥ κ − |T | for every
ı̂, ȷ̂ ∈ {1, 2}, so we conclude that

|U1| = |U2| = |W1| = |W2| =
κ− |T |

2 .

Now that Wı̂ ∪T ∪Uȷ̂ disconnects Aı̂ ∩Bȷ̂ from the rest of the graph, U1 ∪T ∪U2 = U

disconnects (A1 ∩B1) ∪W1 ∪ (A1 ∩B2) = A1 from (A2 ∩B1) ∪W2 ∪ (A2 ∩B2) = A2,
W1 ∪T ∪W2 = W disconnects (A1 ∩B1)∪U1 ∪ (A2 ∩B1) = B1 from (A1 ∩B2)∪U2 ∪
(A2 ∩B2) = B2, we conclude that (T ; U1, W1, U2, W2) forms a 4-wheel.

1.2◦ Suppose A1 ∩B2 = ∅ (or symmetrically, that A2 ∩B1 = ∅). Then A1 = A1 ∩ (B1 ∪
W ) = (A1∩B1)∪W1. By Lemma 4, W1∪T ∪U1 separates A1∩B1 from the rest of the
graph. Since U2 ⊆ V \((A1∩B1)∪(U1∪T ∪W1)), it follows that W1∪T ∪U1 disconnects
U2 from A1∩B1 = A1\(W1∪T ∪U1), i.e., it is a matching cut of U in side A1 w.r.t. U2.
See Figure 7. Because W2 = W ∩A2 ̸= ∅ and (W ∩A1) ∪ (U\U2) = W1 ∪ T ∪ U1, W

is a crossing matching cut of U in side A1 w.r.t. U2.
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Figure 7 A depiction of the cuts U, W in case 1.2◦.

If A2∩B1 ̸= ∅, by Lemma 4 (intersection rule) |U1|+ |W2|+ |T | ≥ κ = |W1|+ |T |+ |W2|,
so |U1| ≥ |U2|.

2◦ Suppose there exists a j♯ such that ∀i.∀j ̸= j♯.(i, j) ̸∈ Ω, i.e., Ai ∩Bj = ∅. This implies
that ∪j ̸=j♯Bj ⊆ U , and because Uj♯ ̸= ∅,

∣∣∪j ̸=j♯Bj

∣∣ is strictly smaller than κ. Therefore
W is a (I, κ− 1)-small cut, and all the small sides of W are within U .

3◦ There exists i♯ such that ∀i ≠ i♯.∀j.(i, j) ̸∈ Ω. Symmetric to case 2◦; U is (I, κ− 1)-small,
and all the small sides of U are within W .

4◦ Ω = ∅. Then ∪a
i=1Ai ⊆ W , so |V | = |U ∪ (∪a

i=1Ai)| ≤ |U ∪W | ≤ 2κ. This is possible,
but not one we consider as it contradicts our initial assumption that n > 4κ. ◀

▶ Corollary 7 (cf. [41, 47, 53]). If U is a κ-cut that is not (I, κ− 1)-small and has at least
3 sides, then all other κ-cuts have a laminar type relation with U , or are themselves (I,
κ− 1)-small cuts.

▶ Corollary 8. Suppose U is a κ-cut that is not (I, κ− 1)-small, with exactly two sides A

and B. Suppose W is a κ-cut with sides K, L (and possibly others), such that W ∩A ̸= ∅,
W ∩B ≠ ∅, A ⊆ K ∪W , and L ∩ U ̸= ∅. Then W only has two sides, and W is a crossing
matching cut of U in side A w.r.t. L ∩ U .

▶ Corollary 9. Define CutsC;D to be the set of all κ-cuts that disconnect disjoint, non-empty
vertex sets C and D. If CutsC;D ̸= ∅, it contains a unique minimal element MinCutC;D,
such that for any cut U ∈ CutsC;D, RegionMinCutC;D

(C) ⊆ RegionU (C).

Theorem 5 classifies the pairwise relationship between two minimum κ-cuts. In Sec-
tions 3.1–3.4 we further explore the properties of wheel cuts, (crossing) matching cuts, laminar
cuts, and small cuts.

3.1 Wheels and Wheel Cuts
Recall that a w-wheel (T ; C1, . . . , Cw) satisfied, by definition, the property that Ci∪T ∪Ci+2
formed a κ-cut, but did not say anything explicitly about C(i, j) = Ci ∪ T ∪ Cj . Lemma 10
proves that these are also cuts, and bounds their number of sides.

▶ Lemma 10. Suppose (T ; C1, C2, . . . , Cw) forms a w-wheel with sectors S1, S2, . . . , Sw.
(Subscripts are modulo w.) For any i ̸= j, C(i, j) is a κ-cut that disconnects D(i, j) from
the rest of the graph. Moreover, when j − i ̸∈ {1, w − 1}, C(i, j) has exactly two sides, which
are D(i, j) and D(j, i). Furthermore, |Ci| = κ−|T |

2 .
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▶ Theorem 11. Suppose (T ; C1, C2, . . . , Cw) forms a w-wheel with sectors S1, S2, . . . , Sw.
(Subscripts are given by modulo w.) Let X be any minimum κ-cut. Then one of the following
is true:
1◦ X = C(i, j) for some i ̸= j.
2◦ X ⊆ C(i, i + 1) ∪ Si for some i, i.e., X is a laminar cut of C(i, i + 1).
3◦ X has crossing matching type relation with some C(i, i + 1) or some C(i, i + 2).
4◦ X is a (I, κ− 1)-small cut.
5◦ (T ; C1, C2, . . . , Cw) is a small wheel.
6◦ There exists i < j, such that X ⊆ Si∪T ∪Sj , and (T ; C1, . . . , Ci, X∩Si, Ci+1, . . . , Cj , X∩

Sj , Cj+1, . . . , Cw) forms a (w + 2)-wheel; or there exists i ̸= j, X ⊆ Si ∪ T ∪ Cj, and
(T ; C1, . . . , Ci, X ∩ Si, Ci+1, . . . , Cw) forms a (w + 1)-wheel. In other words, the wheel
(T ; C1, C2, . . . , Cw) is a subwheel of some other wheel.

3.2 Matching Cuts and Crossing Matching Cuts

Define N(P ) to be the neighborhood of P ⊂ V and NA(P ) def= N(P ) ∩A.

▶ Theorem 12. Let U be an arbitrary κ-cut and A a side of U .
1◦ If there exists a matching κ-cut of U in side A w.r.t. P , then it is W = (U\P ) ∪NA(P ),

and |P | = |NA(P )| < |A|. In particular, MatchU ;A(P ) = NA(P ).
2◦ When there is such a matching cut W , G contains a matching between P and its

neighborhood NA(P ) = MatchU ;A(P ) in side A.
3◦ Suppose MatchU ;A(P ) and MatchU ;A(Q) exist. If P ∩ Q ̸= ∅, then MatchU ;A(P ∩ Q)

exists, and

MatchU ;A(P ∩Q) = MatchU ;A(P ) ∩MatchU ;A(Q).

If |A| > |P ∪Q|, then MatchU ;A(P ∪Q) exists, and

MatchU ;A(P ∪Q) = MatchU ;A(P ) ∪MatchU ;A(Q).

Fix a κ-cut U and a side A of U . Define Θ = {P | MatchU ;A(P ) exists}. According to Part
3◦ of Theorem 12, Θ is closed under union and intersection, and is therefore characterized by
its minimal elements. Define Θ∗ = {∩u∈P,P ∈ΘP | u ∈ U}. It can be seen from the definition
that ∩u∈P,P ∈ΘP corresponds to the minimum matching cut for vertex u.

In the most extreme case Θ may have 2κ − 1 elements (e.g., if the graph induced by
U ∪ NA(U) is a matching), which may be prohibitive to store explicitly. From definition
we know that |Θ∗| ≤ κ, so it works as a good compression for Θ. Lemmas 13 and 14 also
highlights some ways in which Θ∗ is a sufficient substitute for Θ.

▶ Lemma 13. Let U be a κ-cut and let Θ be defined w.r.t. the matching cuts of U in a side
A. Suppose that P ∈ Θ∗ and P ⊆ Q ∈ Θ, and that W is a crossing matching cut of U in side
A w.r.t. Q. Then (W\MatchU ;A(Q)) ∪ (Q\P ) ∪MatchU ;A(P ) is also a crossing matching
cut of U in A w.r.t. P . Moreover, if Q = P1∪P2∪· · ·∪Pℓ where each Pi ∈ Θ∗, then any pair
disconnected by W is also disconnected by some (W\MatchU ;A(Q))∪ (Q\Pi)∪MatchU ;A(Pi).

▶ Lemma 14. Let U be a κ-cut with two sides A and B, and let Θ be defined w.r.t. its
matching cuts in side A. For P ∈ Θ∗, define U∗(P ) to be the cut separating P from
A\MatchU ;A(P ) minimizing

∣∣SideU∗(P )(P )
∣∣.

1◦ U∗(P ) is either a crossing matching cut of U in side A w.r.t. P , or else there is no such
crossing matching cut and U∗(P ) = (U\P ) ∪MatchU ;A(P ) is a matching cut.

2◦ Suppose X is a crossing matching cut of U in side A w.r.t. P . If u, v are separated by
X, then they are also separated by either U∗(P ) or (X\MatchU ;A(P )) ∪ P , which is a
laminar cut of U .
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3.3 Laminar Cuts
In this section we analyze the structure of laminar cuts. Throughout this section, U refers to
a cut that is not (I, κ− 1)-small, not a wheel cut C(i, j) in some wheel, and has a side A

with |A| > 2κ.
Consider the set of all cuts W that are laminar w.r.t. U , contained in U ∪A and not (I,

κ− 1)-small. It follows that W has a side, call it S(W ), that contains U\W and all other
sides of U .11 Define R(W ) to be the region containing all other sides of W beside S(W ). We
call W a maximal laminar cut of U if there does not exist another laminar cut W ′ such that
R(W ) ⊆ R(W ′).

▶ Theorem 15. Let U be the reference cut.
1. If there exist matching cuts of U in side A, define Θ∗ w.r.t. U, A, define Q = ∪P ∈Θ∗P ,

and let X = (U\Q) ∪MatchU ;A(Q) be the matching cut in side A having the smallest
intersection with U . Then every laminar cut W of U in side A is

(i) a laminar cut of X in region A\MatchU ;A(Q), or
(ii) a matching cut of U , or
(iii) a crossing matching cut of X.

2. If there are no matching cuts of U in side A, every laminar cut of U in side A is a
maximal laminar cut, or a laminar cut of some maximal laminar cut Wi in a side of R(Wi).
Moreover, whenever Wi, Wj are distinct maximal laminar cuts, R(Wi) ∩R(Wj) = ∅.

3.4 Small Cuts
Fix a vertex u and a threshold t ≤

⌈
n−κ

2
⌉
. Define Smt(u) to be a cut U minimizing |SideU (u)|

with |SideU (u)| ≤ t. We show that Smt(u), if it exists, is unique. Also, note this is not
immediately derived using intersection-union(submodularity) property of cuts, or lemma 4.

▶ Theorem 16. If there exists a (III, t)-small cut that is small w.r.t. u, then there exists
a unique such cut, denoted Smt(u), such that for any other cut U , u ̸∈ U , SideSmt(u) ⊆
SideU (u).

4 A Data Structure for (κ + 1)-Connectivity Queries

In this section we design an efficient data structure that, given u, v, answers (κ+1)-connectivity
queries, i.e., reports that κ(u, v) = κ and produces a minimum κ-cut separating u, v, or
reports that κ(u, v) ≥ κ + 1.

We work with the mixed-cut definition of κ(u, v) (see Remark 1), which is the minimum
size set of vertices and edges that need to be removed to disconnect u and v, or equivalently,
the maximum size set of internally vertex-disjoint paths joining u and v.12

▶ Theorem 17. Given a κ-connected graph G, we can construct in Õ(m + poly(κ)n) time a
data structure occupying O(κn) space that answers the following queries. Given u, v ∈ V (G),
report whether κ(u, v) = κ or ≥ κ + 1 in O(1) time. If κ(u, v) = κ, report a κ-cut separating
u, v in O(κ) time.

11 S(W ) is exactly Bj∗ of Theorem 5, if using its notation on U and W .
12 If {u, v} ̸∈ E(G) and κ(u, v) = κ, then there exists U ⊂ V , |U | = κ, such that removing U disconnects

u, v. If {u, v} ∈ E(G) then there exists U ⊂ V , |U | = κ−1, such that removing U and {u, v} disconnects
u, v. In this case the single-edge path {u, v} would count for one of the κ internally vertex disjoint
paths, the other κ − 1 passing through distinct vertices of U .
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In O(m) time, the Nagamochi-Ibaraki [50] algorithm produces a subgraph G′ that has
arboricity κ + 113 and hence at most (κ + 1)n edges, such that κG′(u, v) = κG(u, v) whenever
κG(u, v) ≤ κ+1, and κG′(u, v) ≥ κ+1 whenever κG(u, v) ≥ κ+1. Without loss of generality
we may assume G is the output of the Nagamochi-Ibaraki algorithm.

Data Structure

Throughout this section we fix the threshold t =
⌈

n−κ
2

⌉
. Define Sm(u) = Smt(u) to be

the unique minimum κ-cut with SideSm(u)(u) ≤ t, if any such cut exists, and Sm(u) =⊥
otherwise. The data structure stores, for each u ∈ V (G), Sm(u), | SideSm(u)(u)|, a O(log n)-
bit identifier for SideSm(u)(u), and for each vertex v ∈ N(u) ∩ Sm(u), a bit bu,v indicating
whether {{u, v}} ∪ Sm(u)\{v} is a mixed cut disconnecting u and v. Furthermore, when
| SideSm(u)(u)| ≤ κ − 1, we store SideSm(u)(u) explicitly. When Sm(u) =⊥ we will say
SideSm(u)(u) = G and hence

∣∣SideSm(u)
∣∣ = n. The total space is O(κn).

Connectivity Queries

The query algorithm proceeds to the first applicable case. Note in the following, Sm(u) may
be ⊥, and for all vertices v, we define v /∈⊥.
Case I: Sm(u) = Sm(v) and SideSm(u)(u) = SideSm(v)(v). Then κ(u, v) ≥ κ + 1.
Case II: u ̸∈ Sm(v) and v ̸∈ Sm(u). Then κ(u, v) = κ. Without loss of generality sup-

pose that
∣∣SideSm(u)(u)

∣∣ ≤ ∣∣SideSm(v)(v)
∣∣. Then Sm(u) is a κ-cut separating u and

v.
Case III: v ∈ Sm(u) ∩ N(u), or the reverse. The bit bu,v indicates whether κ(u, v) ≥

κ + 1 or κ(u, v) = κ, in which case {{u, v}} ∪ Sm(u)\{v} is the κ-cut.
Case IV: v ∈ Sm(u), u ∈ Sm(v). Then κ(u, v) ≥ κ + 1.
Case V: v ∈ Sm(u), u ̸∈ Sm(v), or the reverse. If

∣∣SideSm(v)(v)
∣∣ ≤ κ− 1, directly check

whether u ∈ SideSm(v)(v). If so then κ(u, v) ≥ κ + 1; if not then Sm(v) disconnects
them. Thus

∣∣SideSm(v)(v)
∣∣ ≥ κ. If

∣∣SideSm(v)(v)
∣∣ ≤ ∣∣SideSm(u)(u)

∣∣ then Sm(v) is a κ-cut
separating u and v, and otherwise κ(u, v) ≥ κ + 1.

Lemmas 18, 19, and Theorem 20 establish the correctness of the query algorithm. Its
construction algorithm is described and analyzed in Section 4.1.

▶ Lemma 18. If v ∈ SideSm(u)(u), then either Sm(v) = Sm(u) or Sm(v) is a laminar cut
of Sm(u) with SideSm(v)(v) ⊂ SideSm(u)(u).

▶ Lemma 19. Suppose u and v are not (κ + 1)−connected, i.e., κ(u, v) = κ. If {u, v} ̸∈
E(G), then they are disconnected by Sm(u) or Sm(v), and if {u, v} ∈ E(G), then they are
disconnected by {(u, v)} ∪ Sm(u)\{v} or {(u, v)} ∪ Sm(v)\{u}.

Proof. First suppose {u, v} /∈ E(G) and let X be any cut separating u and v. When
t =

⌈
n−κ

2
⌉

either |SideX(u)| ≤ t or |SideX(v)| ≤ t. W.l.o.g. suppose it is the former, then
Sm(u) exists and by Theorem 16, SideSm(u)(u) ⊆ SideX(u), so Sm(u) also separates u and v.

If {u, v} ∈ E(G), suppose (κ− 1) vertices W = {w1, w2, . . . , wκ−1} and {u, v} disconnect
u and v. After removing W from the graph, G\W is still connected. By deleting the
edge {u, v}, the graph breaks into exactly two connected components, say A and B with
u ∈ A and v ∈ B. Then W ∪ {u} forms a κ-cut with SideW ∪{u}(v) = B, and W ∪ {v}

13 Namely, G′ is a union of k forests, as mentioned before.
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also forms a κ-cut with SideW ∪{v}(u) = A. Clearly we have n = |W | + |A| + |B| =
κ − 1 + |A| + |B|. W.l.o.g. suppose |A| ≤ |B|, then |A| ≤

⌊
n−κ+1

2
⌋

=
⌈

n−κ
2

⌉
= t. Thus

Sm(u) exists, SideSm(u)(u) ⊆ SideW ∪{v}(u), and Sm(u) is either W ∪ {v} or a laminar cut
of W ∪ {v} in side A. Since {u, v} ∈ E(G), we have v ∈ Sm(u). If we remove {u, v} from
G, then any path from u to v goes through a vertex in W , but any path from u to a vertex
in W goes through a vertex in Sm(u)\{v}. Therefore, {{u, v}} ∪ Sm(u)\{v} is a mixed cut
separating u, v as it blocks all u-v paths. ◀

▶ Theorem 20. The query algorithm correctly answers (κ + 1)-connectivity queries.

Proof. Suppose the algorithm terminates in Case I. It follows that u ̸∈ Sm(v), v ̸∈ Sm(u),
and neither Sm(u) nor Sm(v) disconnect u and v. Lemma 19 implies that κ(u, v) ≥ κ + 1.

In Case II, if Sm(u) ̸=⊥ but Sm(v) =⊥ then Sm(u) is the cut separating u, v and
since

∣∣SideSm(u)(u)
∣∣ <

∣∣SideSm(v)(v)
∣∣ = n, then the query is answered correctly. If both

Sm(u), Sm(v) ̸=⊥, then by Lemma 18, v /∈ SideSm(u)(u) and once again the query is answered
correctly.

In Case III, by Lemma 19, if u and v are separated by a κ-cut, they are separated
by {{u, v}} ∪ Sm(u)\{v} (if Sm(u) ̸=⊥) or {{u, v}} ∪ Sm(v)\{u} (if Sm(v) ̸=⊥), and this
information is stored in the bit bu,v, bv,u.

If we get to Case IV then {u, v} ̸∈ E(G) and neither Sm(u) nor Sm(v) separate u, v,
hence by Lemma 19, κ(u, v) ≥ κ + 1 and the query is answered correctly.

Case V is the most subtle. Because v ∈ Sm(u) and {u, v} ̸∈ E(G), Lemma 19 implies
that if κ(u, v) = κ, then u, v must be separated by Sm(v). If Sm(v) =⊥ then κ(u, v) ≥ κ + 1
and the query is answered correctly. If | SideSm(v)(v)| ≤ κ − 1 then the query explicitly
answers the query correctly by direct lookup. Thus, we proceed under the assumption that
Sm(v) ̸=⊥ exists and is not small.

If u ∈ SideSm(v)(v) then Sm(v) does not disconnect u and v, and by Lemma 18,∣∣SideSm(v)(v)
∣∣ >

∣∣SideSm(u)(u)
∣∣, so the query is handled correctly in this case.

If u /∈ SideSm(v)(v) then Sm(v) separates u and v, so we must argue that
∣∣SideSm(v)(v)

∣∣ ≤∣∣SideSm(u)(u)
∣∣ for the query algorithm to work correctly. It cannot be that Sm(v) and Sm(u)

have a laminar relation, so by Theorem 5 they must have a crossing matching, wheel, or
small type relation. If they have the small-type relation then the small sides of Sm(u) are
contained in Sm(v) (contradicting u ̸∈ Sm(v)) or the small sides of Sm(v) are contained in
Sm(u), but we have already ruled out this case. Thus, the remaining cases to consider are
wheel and crossing matching type.

Suppose Sm(u), Sm(v) form a 4-wheel (T ; C1, C2, C3, C4). Then u ̸∈ Sm(v) appears in a
sector of the wheel, say S1. Then C(1, 2) is a cut violating the minimality of Sm(u) = C(1, 3).

Suppose Sm(u), Sm(v) have a crossing matching type relation. Let A1 = SideSm(u)(u)
and A2 be the other side of Sm(u), and B1 = SideSm(v)(v) and B2 be the other side of Sm(v).
Then u ∈ A1∩B2, and it must be that the diagonal quadrant A2∩B1 = ∅. Suppose otherwise,
i.e., A2 ∩ B1 ̸= ∅, and let X = (Sm(u) ∩ B2) ∪ (Sm(v) ∩ A1) ∪ (Sm(u) ∩ Sm(v)). Then by
Corollary 9 X is a κ-cut with SideX(u) = A1 ∩B2, contradicting the minimality of Sm(u).
Thus, Sm(v) is a crossing matching cut of Sm(u) in side A2 w.r.t. some Q ⊆ Sm(u) ∩B1
with v ∈ Q. By Theorem 5 and u ∈ A1 ∩B2 ̸= ∅, we have

|A1 ∩ Sm(v)| = |B2 ∩ Sm(u)| ≥ |A2 ∩ Sm(v)| = |B1 ∩ Sm(u)| = |Q|.

Thus,

| SideSm(u)(u)| = |A1| > |(A1 ∩B1) ∪Q| = | SideSm(v)(v)|,

establishing the correctness in the crossing matching case. (The strictness of the inequality
is because A1 ∩B2 ̸= ∅.) ◀
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Refer to the full version for a Õ(m + poly(κ)n)-time algorithm to construct this data
structure, in particular, to find all minimal cuts {Sm(u)}u∈V .

4.1 Construction of the Data Structure
We assume Nagamochi-Ibaraki sparsification [50] has already been applied, so G has arboricity
κ + 1 and O(κn) edges. We use the recent Forster et al. [23] algorithm for computing the
connectivity κ = κ(G) in Õ(poly(κ)n) time and searching for κ-cuts.

▶ Corollary 21 (Consequence of Forster, Nanongkai, Yang, Saranurak, and Yingchareonthaworn-
chai [23]). Given x ∈ V (G) and an integer s ≤

⌈
n−κ

2
⌉
, we can, with high probabil-

ity 1− 1/ poly(n), compute Sms(x) in Õ(| SideSms(x)(x)| ·κ3) time, or determine that Sms(x)
does not exist in Õ(sκ3) time.

We call the procedure of Corollary 21 FindSmall(x, s).

▶ Definition 22. Let U be a cut, A a side of U . We use the notation A = G\(U ∪ A)
to be the region of all other sides of U . Define G(U, A) to be the graph induced by U ∪ A,
supplemented with a κ-clique on U . If W is a cut in G(U, A), define SideG(U,A)

W (x) to be
SideW (x) in the graph G(U, A).

Lemma 23 is useful for constructing the algorithm in lemma 24.

▶ Lemma 23. Let U be a κ-cut, A be a side of U , and W be a set of κ vertices in G(U, A).
Then W is a κ-cut in G(U, A) if and only if W is a laminar cut of U in one of the sides of
A. Moreover, when W is such a cut, for any vertex u ∈ U\W ,

SideW (u) = SideG(U,A)
W (u) ∪A.

Lemma 24 shows how, beginning with a cut X where SideX(u) is small, can find another
cut Y (if one exists) where SideY (u) is about M , in Õ(Mκ4) time. The difficulty is that
there could be an unbounded number of cuts “between” X and Y that would prevent the
FindSmall algorithm from finding Y directly.

▶ Lemma 24. For any integer M ≤ t/2, vertex u, and cut X with A = SideX(u), |A| ≤ 2M ,
the algorithm Expand(u, A, M) runs in time Õ(Mκ4) and, w.h.p., returns a cut Y satisfying
the following properties.

SideX(u) ⊆ SideY (u).
|SideY (u)| ≤ 2M .
If there exists a cut Z that is (III, M)-small w.r.t. u, then |SideY (u)| ≥ |SideZ(u)|.

The content of Expand(u, A, M) is given below.

Initially Y ← X. While |SideY (u)| < M ,
a. For each vertex v ∈ Y , in parallel,

i. In the graph G(Y, SideY (u)), run FindSmall(v, M).
b. The moment any call to FindSmall halts in step (i) with a cut W , stop all such calls

and set Y ←W . If all |Y | calls to FindSmall run to completion without finding a cut,
halt and return Y .

We use Corollary 25 to find Smt(u) for potentially many vertices u in bulk.

▶ Corollary 25 (Consequence of Picard and Queyrenne [56]). Fix two disjoint, non-empty
vertex sets C and D. In O(κ2(n − |C| − |D|)) time, we can output a cut S(v) for every
v ∈ V \(C ∪D), such that if Sm(v) exists and C ⊆ SideSm(v)(v), then S(v) = Sm(v).

ICALP 2021
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We are now ready to present the entire construction algorithm.

Preamble. The algorithm maintains some κ-cut T (u) for each u, which is initially ⊥, and
stores | SideT (u)(u)|. If the algorithm makes no errors, T (u) = Smt(u) = Sm(u) at the end
of the computation. The procedure Update(u, U) updates T (u)← U if U is a better cut,
i.e., | SideU (u)| ≤ min{| SideT (u)(u)| − 1, t}, and does nothing otherwise. Update(A, U) is
short for Update(u, U) for all u ∈ A.

Step1: very small cuts. For each u ∈ V , let U ← FindSmall(u, 100κ) and then Update(u, U).
This takes Õ(nκ4) time.

Step2: unbalanced cuts. For each index i such that 100κ < 2i ≤ t, let α = 2i, and pick
a uniform sample Vi ⊂ V of size (n log n)/α.14 For each u ∈ Vi, compute Smα(u) ←
FindSmall(u, α). If Smα(u) = Sm(u) ̸=⊥, we first do an Update(SideSm(u)(u), Sm(u)),
then compute Y ← Expand(u, Sm(u), α). For each v ∈ Y , compute Wv ← FindSmall(w, α)
and then Update(v, Wv). We then run the algorithm of Corollary 25 with C = SideSm(u)(u)
and D = V \(Y ∪ SideY (u)), which returns a set of cuts {S(v)}v∈V \(C∪D). For each such
v ∈ SideY (u)\ SideSm(u)(u), do an Update(v, S(v)). For each index i, the running time is
Õ(|Vi| · ακ4) = Õ(nκ4), which is Õ(nκ4) overall.

Step3: balanced cuts. Sample O(log n) pairs (x, y) ∈ V 2. For each such pair, compute
U ← FindSmall(x, t). If U ̸=⊥, apply the algorithm of Corollary 25 to C = SideSm(x)(x)
and D = {y}, which returns a set {S(v)}. Then do an Update(v, S(v)) for every v ∈
V \(C ∪D). By Corollary 21 this takes Õ(κ3n) time.

Step4: adjacent vertices At this point it should be the case that T (u) = Sm(u) for all
u. For each v ∈ T (u) ∩ N(u) compute and set the bit bu,v. (This information can be
extracted from the calls to FindSmall and the algorithm of Corollary 25 in the same time
bounds.)

▶ Lemma 26. Suppose Sm(u) and Sm(v) exists, u ∈ SideSm(v)(v), and suppose there is a
cut W such that κ ≤

∣∣SideSm(v)(v)
∣∣ < |SideW (u)| ≤ t. Then v ∈W ∪ SideW (u).

Lemma 26 is critical to proving the correctness of the algorithm’s search strategy.

▶ Theorem 27. The construction algorithm correctly computes {Sm(v)}v∈V and runs in
time Õ(nκ4).

Proof. If | SideSm(v)(v)| ≤ 100κ, then T (v) = Sm(v) after Step 1, with high probability.
Suppose that | SideSm(v)(v)| ∈ [2j , 2j+1] and 2j+1 ≤ t. Then with high probability, at least

one vertex x ∈ Vj is sampled in Step 2 such that x ∈ SideSm(v)(v). Step 2 (Expand) computes
a cut Y such that | SideY (x)| ≥ | SideSm(v)(v)|, so by Lemma 26, either v ∈ SideY (x) or
v ∈ Y . In the former case Sm(v) is computed using the Corollary 25 algorithm. In the latter
case Sm(v) is computed directly using FindSmall.

Finally, if Sm(v) is balanced, say | SideSm(v)(v)| ≥ t/4, then w.h.p. we would pick a pair
(x, y) in Step 3 such that x ∈ SideSm(v)(v) and y ∈ V \(Sm(v) ∪ SideSm(v)(v)). If this holds
the algorithm of Corollary 25 correctly computes Sm(v). ◀

14 The Forster et al. [23] algorithm samples vertices proportional to their degree. Note that after the
Nagamochi-Ibaraki [50] sparsification, the minimum degree is at least κ and the density of every induced
subgraph is at most κ + 1, so it is equally effective to do vertex sampling.



S. Pettie and L. Yin 105:17

5 Conclusion

This paper was directly inspired by the extended abstract of Cohen, Di Battista, Kanevsky,
and Tamassia [11]. Our goal was to substantiate the main claims of this paper, and to
simplify and improve the data structure that answers (κ + 1)-connectivity queries.

We believe that our structural theorems can, ultimately, be used to develop even more
versatile vertex-cut data structures. For one example, is it possible to succinctly represent
all minimum vertex cuts so that the following queries can be answered efficiently?
Is-it-a-cut?(u1, . . . , uκ): Return true iff {u1, . . . , uκ} forms a κ-cut.
List-cuts(u): Return all the κ-cuts containing u.
Note that if all minimum cuts have a wheel or laminar relationship, then they can be
represented as a tree, as in [4, 11]. Whether there is a clean representation that also captures
all small and crossing matching cuts is an open problem.

We assumed throughout the paper that κ was not too large, specifically κ < n/4.
When n < 2κ, all cuts are (I,κ)-small by our classification, and the classification theorem
(Theorem 5) says very little about the structure of such cuts. Understanding the structure of
minimum vertex cuts when κ is large, relative to n, is an interesting open problem.
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Abstract
Knapsack and Subset Sum are fundamental NP-hard problems in combinatorial optimization.
Recently there has been a growing interest in understanding the best possible pseudopolynomial
running times for these problems with respect to various parameters.

In this paper we focus on the maximum item size s and the maximum item value v. We give
algorithms that run in time O(n + s3) and O(n + v3) for the Knapsack problem, and in time
Õ(n + s5/3) for the Subset Sum problem.

Our algorithms work for the more general problem variants with multiplicities, where each input
item comes with a (binary encoded) multiplicity, which succinctly describes how many times the
item appears in the instance. In these variants n denotes the (possibly much smaller) number of
distinct items.
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1 Introduction

In the Knapsack problem we are given a (multi-)set consisting of N items, where the i-th
item has size si and value vi, and a knapsack capacity t. The task is to find a subset of items
with the maximum total value such that its total size does not exceed the capacity t. In the
related Subset Sum problem we are given a (multi-)set of N positive integers and a target
value t, and the task is to find a subset of integers with the total sum exactly equal to t. The
Subset Sum problem can thus be seen as a decision variant of the Knapsack problem with
the additional restriction that si = vi for every item i.

Knapsack and Subset Sum are fundamental problems in computer science and discrete
optimization. They are studied extensively both from practical and theoretical points of view
(see, e.g. [23] for a comprehensive monograph). The two problems are (weakly) NP-hard, and
Bellman’s seminal work on dynamic programming [7] gives pseudopolynomial O(Nt) time
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algorithms for both of them. Recently there has been a growing interest in understanding
the best possible pseudopolynomial running times for these problems with respect to various
parameters, see, e.g., [9, 6, 16, 5, 11].

In this paper we consider binary multiplicity encoding of the Knapsack and Subset Sum
instances. Each item i given in the input has a (binary encoded) positive integer multiplicity
ui, which denotes that up to ui copies of this item can be used in a solution. In these
variants n denotes the (possibly much smaller) number of distinct items and N =

∑
i∈[n] ui.1

Binary multiplicity encoding can be challenging because one requires the algorithm to
run in polynomial time in the input size, which can be exponentially smaller compared
to the naive encoding. A notable example of this setting is the breakthrough result of
Goemans and Rothvoß [18] showing that Bin Packing with few different item sizes (and
binary multiplicity encoding) can be solved in polynomial time.

Formally, Knapsack with multiplicities can be defined as an integer linear program:
maximize

∑
i∈[n] vixi subject to 0 ⩽ xi ⩽ ui, xi ∈ Z, and

∑
i∈[n] sixi ⩽ t. Similarly, Subset

Sum with multiplicities can be defined as a feasibility integer linear program with constraints
0 ⩽ xi ⩽ ui, xi ∈ Z, and

∑
i∈[n] sixi = t. Throughout the paper we use u to denote the

maximum item multiplicity maxi∈[n] ui, and w.l.o.g. we assume that u ⩽ t.

1.1 Our results
We focus on pseudo-polynomial time algorithms with respect to the maximum item size
s = maxi∈[n] si (or maximum item value v = maxi∈[n] vi, which is essentially equivalent). We
note that s is a stronger parameter compared to t in the sense that s can be much smaller
than t, but not vice versa. Yet, s is less well understood than t. In the regime where n

is large compared to s, an O(n + poly(s)) time algorithm would be desirable. We show
that the Knapsack problem can indeed be solved in such a time. Prior results (even for 0-1
Knapsack, that is, without multiplicities) only came with the form O(poly(n) · poly(s)) or
O(poly(s) · poly(t)).

This raises the natural question what the best exponent in the polynomial is. In this
paper we address the question from the upper bound side. We give algorithms for Knapsack
running in O(n + s3) and O(n + v3) time, and for Subset Sum running in Õ(n + s5/3) time2.
Our algorithms are in the word RAM model, and we assume that each integer in the input
fits in one word. In particular, arithmetic operations on integers of size polynomial in the
sum of the input’s integers require constant time.

Our first result is an algorithm for Knapsack. We use proximity techniques due to
Eisenbrand and Weismantel [16] which allow us to prove that there is an efficiently computable
solution that differs only very little from an optimal solution. Then we apply a fast algorithm
for structured (min, +)-convolution [22] to search for this optimal solution within the limited
space. This results in a running time which is cubic in the maximum item size.

▶ Theorem 1.1. Knapsack (with multiplicities) can be solved in deterministic O(n + s3)
time.

The definition of (the decision variant of) the Knapsack problem is symmetric with respect
to sizes and values. We give a simple transformation that allows us to apply our algorithm
also to the case where the maximal item value (and not the maximal item size) is small.

1 We use [n] to denote {1, 2, . . . , n}.
2 Throughout the paper we use a Õ(·) notation to hide polylogarithmic factors.
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▶ Theorem 1.2. Knapsack (with multiplicities) can be solved in deterministic O(n + v3)
time.

Theorem 1.1 already implies that Subset Sum can also be solved in O(n + s3). Our algorithm
uses as a subprocedure an O(n + st) time Knapsack algorithm (see Lemma 2.2). If we simply
replaced it with a Õ(N + t) time algorithm for Subset Sum [9], we would get a Õ(n + s2)
time algorithm for Subset Sum. We improve on this by introducing a refined proximity
argument that lets us further reduce an instance, where the maximum item multiplicity
u can be of the order of s, to two instances with u ≪ s each. By combining this with
additive combinatorics methods, originally developed by Galil and Margalit [17] and recently
generalized by Bringmann and Wellnitz [11], we then obtain a subquadratic algorithm.

▶ Theorem 1.3. Subset Sum (with multiplicities) can be solved in randomized Õ(n + s5/3)
time, with a one-sided error algorithm that returns a correct answer with high probability.

All our algorithms can also retrieve a solution, without increasing the asymptotic running
times. This is notable especially for our Subset Sum algorithm, in which we use as a black
box the Bringmann-Wellnitz algorithm that gives only yes/no answers. We can deal with
this presumable obstacle because we can afford to spend more time on retrieving a solution
than the Bringmann-Wellnitz algorithm could.

A limitation of our algorithms is that they can provide an answer only for a single target
value t at a time. Conversely, many (but not all) known Knapsack and Subset Sum algorithms
can give answers for all target values between 0 and t at the same time. This limitation is
however unavoidable: We aim at running times independent of the target value t, thus we
cannot afford output size linear in t, because t cannot be bounded in terms of n and s only.

In the next section we discuss how our results fit a broader landscape of existing Knapsack
and Subset Sum algorithms.

1.2 Related work
Pseudopolynomial time algorithms for Knapsack

Bellman [7] was the first to show that the Knapsack problem admits a pseudopolynomial
time algorithm. He presented an O(Nt) time algorithm based on dynamic programming.
Pisinger [28] gave an O(Nsv) time algorithm, which is an improvement for instances with
both small sizes and small values. He proved that only balanced feasible solutions to Knapsack
need to be considered in order to find an optimal solution. Then he used this observation to
decrease the number of states of the dynamic program. His arguments may be thought of as
an early example of proximity-based arguments.

Kellerer and Pferschy [22] studied approximation algorithms for Knapsack. As a subroutine
they developed a Õ(N + vp) time (exact) algorithm, where p denotes the optimal total value.
Their algorithm can be easily modified to work in Õ(N + st) time. Their approach, based on
fast (min, +)-convolution for structured (convex) instances was rediscovered and improved by
Axiotis and Tzamos [5]. Bateni et al. [6] achieved the same Õ(N + st) running time with a
different method, which can be seen as a far-reaching refinement of Pisinger’s idea [28]. They
also developed the prediction technique, which let them achieve Õ(N + vt) running time.

Eisenbrand and Weismantel [16] studied more general integer linear programs, and
presented a Õ(ns2) time algorithm for Knapsack with multiplicities, based on proximity-
based arguments. To the best of our knowledge they are the first to consider Knapsack with
multiplicities. Subsequently Axiotis and Tzamos [5] improved logarithmic factors (in the

ICALP 2021



106:4 Knapsack and Subset Sum with Small Items

Table 1 Pseudopolynomial time algorithms for Knapsack. N is the total number of items, n is
the number of distinct items, t is the knapsack capacity, s is the maximum size and v the maximum
value of an item. Symbol (–) means that no non-trivial optimization is given for the respective
regime; running times can still be derived from the trivial inequalities n ⩽ N and t ⩽ Ns. We use
symbol (‡) when Remark 1.4 applies and (†) when Remark 1.5 applies.

0-1 Knapsack with multiplicities Reference

O(Nt) Õ(nt)‡ Bellman [7]
O(Nsv) – Pisinger [28]
Õ(N + st) Õ(n + st)† Kellerer and Pferschy [22], also [6, 5]
Õ(N + vt) Õ(n + vt)† Bateni et al. [6]
– Õ(ns2 min{n, s}) Bateni et al. [6]
O(N min{s2, v2}) – Axiotis and Tzamos [5]
– Õ(ns2) Eisenbrand and Weismantel [16]

– O(n + min{s3, v3}) This paper

non-multiplicity setting) and gave an O(Ns2) time algorithm, which they also generalized
to O(Nv2) time. Bateni et al. [6] also explicitly consider the Knapsack problem with
multiplicities and independently designed a Õ(ns2 min{n, s}) time algorithm.

Axiotis and Tzamos suggested [5, Footnote 2] that the fast convex convolution can be
combined with proximity-based arguments of Eisenbrand and Weismantel [16] to obtain an
algorithm for small items with running time independent of t. However, a direct application
of Eisenbrand and Weismantel [16] proximity argument (see [16, Section 4.1]) reduces an
instance to t ⩽ O(ns2), which, in combination with O(N + st) algorithm, yields O(N + ns3)
runtime. Our algorithm improves it to O(n + s3) by a more careful proximity argument
and a convex convolution that explicitly handles negative items. Moreover, we show how to
extend this reasoning to the multiplicity setting.
▶ Remark 1.4. Lawler [26] showed that the variant with multiplicities can be reduced to the
0-1 variant. His reduction transforms a multiset composed of at most u copies of each of n

distinct numbers bounded by s into an instance of O(n log u) numbers bounded by O(us).
This easily enables us to adapt algorithms with no time dependence on s (e.g., the O(Nt)
time algorithm of Bellman) into the setting with multiplicities (with logarithmic overhead).
▶ Remark 1.5. There is also a folklore reduction that enables us to bound N ⩽ Õ(t) for the
variant with multiplicities. For each x ∈ [s] keep ⌊t/x⌋ most profitable items of size si = x.
This leaves us with at most N ⩽ O(t log(t)) items and does not increase the item sizes.

See Table 1 for a summary of the known results for Knapsack.

Pseudopolynomial time algorithms for Subset Sum

Subset Sum is a special case of Knapsack and we expect significantly faster algorithms for it.
Pisinger’s algorithm [28] runs in O(Ns) time for Subset Sum. The first improvement in all
parameter regimes over the O(Nt) time algorithm of Bellman was given by Koiliaris and
Xu [24]. They presented Õ(

√
Nt + N), Õ(N + t5/4) and Õ(Σ) time deterministic algorithms

for Subset Sum, where Σ is the total sum of items. A by now standard method, used by all
these algorithms, is to encode an instance of Subset Sum as a convolution problem that can
be solved using Fast Fourier Transform. Subsequently, Bringmann [9] presented a Õ(N + t)
randomized time algorithm for Subset Sum based on the color-coding technique. Jin and
Wu [21] later gave an alternative Õ(N + t) randomized time algorithm based on Newton’s
iterative method. Their proof is notable for being very compact.
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Table 2 Pseudopolynomial time algorithms for Subset Sum. N is the total number of items, n

is the number of distinct items, t is the target value, Σ is the sum of all items, s is the maximum item,
and u is the maximum multiplicity of an item. Symbol (–) means that no non-trivial optimization
is given for the respective regime; running times can still be derived from the trivial inequalities
n ⩽ N ⩽ nu and t ⩽ Ns. In (⋆) the instance cannot have two items with the same size, the algorithm
works only for u = 1. We use symbol (‡) when Remark 1.4 applies.

0-1 Subset Sum with Multiplicities Reference

O(Nt) Õ(nt)‡ Bellman [7]
O(Ns) – Pisinger [28]
Õ(N +

√
Nt) Õ(n +

√
nt)‡ Koiliaris and Xu [24]

Õ(N + t5/4) Õ(n + t5/4)‡ Koiliaris and Xu [24]
Õ(Σ) – Koiliaris and Xu [24]
Õ(N + t) Õ(n + t)‡ Bringmann [9]
Õ(N + s3/2) ⋆ (not applicable) Galil and Margalit [17]
– Õ(N + u1/2s3/2) Bringmann and Wellnitz [11]

– Õ(n + s5/3) This Paper

From a different perspective, Galil and Margalit [17] used additive combinatorics methods
to prove that Subset Sum can be solved in near linear time when t ≫ Σs/N2 and all items
are distinct. Very recently Bringmann and Wellnitz [11] generalized that result to multisets.
Their algorithm combined with the Õ(N + t) time algorithm [9] yields a Õ(N + u1/2s3/2)
time algorithm for Subset Sum with multiplicities (cf., Lemma 2.4). For u = 1 this gives the
currently fastest Õ(N + s3/2) time algorithm (in terms of small s). With our Õ(n + s5/3)
time algorithm we improve upon their result for u ≫ s1/3. We note that even with the naive
(not binary) multiplicity encoding our improvement is nontrivial, since the mentioned case
with u = 1 requires that each item has a different size. For example, even an O(N + s1.99)
time algorithm does not follow immediately from [9] when multiple items can have the same
size. We discuss their additive combinatorics methods in more detail in Section 5.2.

See Table 2 for a summary of the known results for Subset Sum.

Lower bounds

Bringmann’s Subset Sum algorithm [9], which runs in time Õ(N + t), was shown to be
near-optimal by using the modern toolset of fine-grained complexity. More precisely, any
t1−ε2o(N) algorithm for Subset Sum, for any ε > 0, would violate both the Strong Exponential
Time Hypothesis [1] and the Set Cover Conjecture [14]. This essentially settles the complexity
of the problem in the parameters N and t. These lower bounds use reductions that produce
instances with t = Θ̃(s), and therefore they do not exclude a possibility of a Õ(N + s) time
algorithm for Subset Sum. The question if such an algorithm exists is still a major open
problem [4].

Bringmann and Wellnitz [11] excluded a possibility of a near-linear algorithm for Subset
Sum in a dense regime. More precisely, they showed that, unless the Strong Exponential Time
Hypothesis and the Strong k-Sum Hypothesis both fail, Subset Sum requires (sΣ/(Nt))1−o(1)

time (where Σ is the total sum of items).
For the Knapsack problem Bellman’s algorithm [7] remains optimal for the most natural

parametrization by N and t. This was explained by Cygan at el. [15] and Künnemann
et al. [25], who proved an (N + t)2−o(1) lower bound assuming the (min, +)-Convolution
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Conjecture. Their hardness constructions create instances of 0-1 Knapsack where s and t

are Θ̃(N). This is also the best lower bound known for Knapsack with multiplicities. In
particular, an O(N + s2−ε) time algorithm is unlikely, and our O(n + s3) upper bound leaves
the gap for the best exponent between 2 and 3.

Other variants of Knapsack and Subset Sum

We now briefly overview other variants of Knapsack and Subset Sum, which are not directly
related to our results. The Unbounded Knapsack problem is the special case with ui = ∞,
for all i ∈ [n], and one can assume w.l.o.g. N = n ⩽ s. For that variant Tamir [31] presented
an O(n2s2) time algorithm. Eisenbrand and Weismantel [16] improved this result and
gave an O(ns2) time algorithm using proximity arguments. Bateni et al. [6] presented a
Õ(ns + s2 min{n, s}) time algorithm. Then, an O(n + min{s2, v2}) algorithm for Unbounded
Knapsack was given independently by Axiotis and Tzamos [5] and Jansen and Rohwedder [19].
Finally, Chan and He [13] gave a Õ(ns) time algorithm. Unbounded Knapsack seems to be
an easier problem than 0-1 Knapsack because algorithms do not need to keep track of which
items are already used in partial solutions. Most of the Unbounded Knapsack techniques do
not apply to 0-1 Knapsack.

In the polynomial space setting, Lokshtanov and Nederlof [27] presented a Õ(N4sv)
time algorithm for Knapsack and a Õ(N3t) time algorithm for Subset Sum. The latter was
subsequently improved by Bringmann [9], who gave a Õ(Nt1+ε)) time and Õ(N log t) space
algorithm. Recently, Jin, Vyas and Williams [20] presented a Õ(Nt) time and Õ(log(Nt))
space algorithm (assuming a read-only access to Õ(log N log log N + log t) random bits).

In the Modular Subset Sum problem, all subset sums are taken over a finite cyclic group
Zm, for some given integer m. Koiliaris and Xu [24] gave a Õ(m5/4) time algorithm for this
problem, which was later improved by [4] to O(m log7 m). Axiotis et al. [3] independently
with Cardinal and Iacono [12] simplified their algorithm and gave an O(m log m) time
randomized and O(m polylog(m)) deterministic time algorithms. Recently, Potępa [29] gave
the currently fastest O(m log(m)α(m)) deterministic algorithm for Modular Subset Sum
(where α(m) is the inverse Ackerman function).

Bringmann and Nakos [10] designed a near-linear time algorithm for output sensitive
Subset Sum by using additive combinatorics methods. Finally, Jansen and Rohwedder [19]
considered the Unbounded Subset Sum problem and presented a Õ(s) time algorithm.

2 Techniques

In this section we recall several known techniques from different fields, which we later
combine as black boxes in order to get efficient algorithms in the setting with binary encoded
multiplicities. We do not expect the reader to be familiar with all of them, and we include
their brief descriptions for completeness. Nevertheless, it should be possible to skip reading
this section and still get a high-level understanding of our results.

2.1 Proximity arguments

Now we introduce proximity arguments, which will allow us to avoid a dependency on the
multiplicities ui in the running time. Very similar arguments were used by Eisenbrand and
Weismantel [16] for more general integer linear programs. We reprove them for our simpler
case to make the paper self-contained.
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We will show that we can efficiently compute a solution to Knapsack which differs from
an optimal solution only in a few items. To this end, we define a maximal prefix solution
to be a solution obtained as follows. We order the items by their efficiency, i.e. by the ratios
vi/si, breaking ties arbitrarily. Then, beginning with the most efficient item, we select items
in the decreasing order of efficiency until the point when adding the next item would exceed
the knapsack’s capacity. At this point we stop and return the solution.

Note that a maximal prefix solution can be found in time O(n): We first select the
median of vi/si in time O(n) [8]. Then, we check if the sum of all the items that are more
efficient than the median exceeds t. If so, we know that none of the other items are used
in the maximal prefix solution. Otherwise, all the more efficient items are used. In both
cases we can recurse on the remaining n/2 items. The running time is then of the form of a
geometric sequence that converges to O(n).

▶ Lemma 2.1 (cf., [16]). Let p be a maximal prefix solution to Knapsack. There is an
optimal solution z that satisfies ∥z − p∥1 ⩽ 2s, where ∥z − p∥1 denotes

∑
i∈[n] |zi − pi|.

Proof. Let z be an optimal solution which minimizes ∥z − p∥1. If all the items fit into the
knapsack, p and z must be equal. Otherwise, we can assume that the total sizes of both
solutions, i.e.

∑
i∈[n] sizi and

∑
i∈[n] sipi, are both between t − s + 1 and t. In particular, we

have that

−s <
∑
i∈[n]

si(pi − zi) < s. (1)

For the sake of the proof consider the following process. We start with the vector z − p,
and we move its components towards zeros, carefully maintaining the bounds of (1). That is,
in each step of the process, if the current sum of item sizes is positive, we reduce a positive
component by 1; if the sum is negative, we increase a negative component by 1. The crucial
idea is that during this process in no two steps we can have the same sum of item sizes.
Otherwise, one could apply to z the additions and removals performed between the two steps,
and therefore obtain another solution that is closer to p and is still optimal. Indeed, the
optimiality follows from the fact that this operation does not increase the total size of the
solution, and it also cannot decrease the value of the solution, because every item selected
by p but not by z has efficiency no lower than every item selected by z but not by p. Hence,
the number of steps, i.e., ∥z − p∥1, is bounded by 2s. ◀

This lemma can be used to avoid the dependency on multiplicities u1, u2, . . . , un as follows.
We compute a maximal prefix solution p. Then we know that there is an optimal solution z

with

zi ∈ {0, . . . , ui} ∩ {pi − 2s, . . . , pi + 2s} ∀i ∈ [n].

Hence, we can obtain an equivalent instance by fixing the choice of some items. Formally, we
remove max{0, pi − 2s} many copies of item i and subtract their total size from t. If some
item still has more than 4s copies, we can safely remove the excess. This shows that one can
reduce a general knapsack instance to an instance with ui ⩽ 4s for all i ∈ [n]. In particular, a
naive application of Bellman’s algorithm would run in time O(t ·

∑n
i=1 ui) ⩽ O(n2s3). Later

in this paper we will apply the same proximity statement in more involved arguments.
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2.2 Fast structured (min, +)-convolution
Another technique that we use in this paper is a fast algorithm for structured instances of
the (min, +)-convolution problem. This technique was already applied in several algorithms
for Knapsack [22, 6, 5]. We use it to find solutions for all knapsack capacities in {0, . . . , t} in
time O(n + st + t log2(t)). We consider a slightly more general variant, where the values of
items may also be negative and the knapsack constraint has to be satisfied with equality. To
avoid confusion, we let v̄i ∈ Z, i ∈ [n], denote these possibly negative values of items.

▶ Lemma 2.2. Let v̄1, v̄2, . . . , v̄n ∈ Z. In time O(n + st + t log2(t)) one can solve

max
x∈Zn

∑
i∈[n]

v̄ixi subject to
∑
i∈[n]

sixi = t′ and ∀i∈[n] 0 ⩽ xi ⩽ ui, (2)

for all t′ ∈ {0, . . . , t}.

Proof. For h ∈ [s + 1] let w(<h) = ⟨w(<h)
0 , w

(<h)
1 , . . . , w

(<h)
t ⟩ where w

(<h)
t′ denotes the value

of an optimal solution to (2) for the knapsack capacity t′ when restricting the instance to
items i with si < h. If there is no solution satisfying the equality constraint with t′, we let
w

(<h)
t′ = −∞. Our goal is to compute the vectors w(<1), w(<2), . . . , w(<h+1) iteratively. We

define the vector w(h) = ⟨w(h)
0 , w

(h)
1 , . . . , w

(h)
t ⟩ which describes the optimal solutions solely of

items j with sj = h. For each i, the component w
(h)
t′ for t′ = ih is equal to the total value

of the i most valuable items of size h, or to −∞ if there are less than i items of size h. All
components for indices not divisible by h are −∞.

Hence, to compute w(h) it suffices to find the ⌈t/h⌉ most valuable items of size h in the
decreasing order of values. In time O(n+s) we partition the items by their size si. Extracting
the t/h most valuable items for all h ∈ [s] requires in total a time of O(n +

∑
h∈[s] t/h) ⩽

O(n + t log(t)). Finally, sorting all sets takes in total O(
∑

h∈[s] t/h · log(t/h)) ⩽ O(t log2(t))
time.

Given w(<h) for some h we want to compute the vector w(<h+1) in time O(t). Then
the lemma follows by iteratively applying this step. To this end we notice that w(<h+1) is
precisely the (max, +)-convolution of w(h) and w(<h), that is,

w
(<h+1)
i = max

{
w

(h)
j + w

(<h)
i−j | j ∈ {0, . . . , i}

}
.

While in general computing a (max, +)-convolution is conjectured to require quadratic
time [15, 25], in this case it can be done efficiently by exploiting the simple structure of w(h).
For each remainder r ∈ {0, . . . , h − 1} we separately compute the entries of indices that are
equal to r modulo h. We define the matrix M ∈ Z⌈t/h⌉×⌈t/h⌉ with

M [i, j] = w
(<h)
jh+r + w

(h)
(i−j)h,

where w
(h)
(i−j)h = −∞ if j > i. We do not explicitly construct the matrix, but we can compute

any entry of M in the constant time. To produce the vector w(<h+1) it suffices to find the
maximum of each row of M . This can be done efficiently, since M is inverse-Monge, that is,

M [i, j] + M [i + 1, j + 1] = w
(<h)
jh+r + w

(h)
(i−j)h + w

(<h)
jh+h+r + w

(h)
(i−j)h

⩾ w
(<h)
jh+r + w

(h)
(i−j)h+h + w

(<h)
jh+h+r + w

(h)
(i−j)h−h = M [i + 1, j] + M [i, j + 1].

Therefore, we can compute the row maxima in time O(t/h) with SMAWK algorithm [2].
This implies a total running time of O(t) for all remainders r and proves the lemma. ◀
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2.3 Additive combinatorics
In this section, we introduce a near-linear time algorithm for dense instances of Subset Sum,
more precisely, instances with N2 ≫ us.

The techniques behind the algorithm were introduced by Galil and Margalit [17], and
recently generalized to the multiset setting by Bringmann and Wellnitz [11]. We focus on
the modern description of [11], and show in Section 5.3 that in our application we can
additionally report a solution.

▶ Theorem 2.3 (Bringmann and Wellnitz [11]). There exists λ = Θ̃(usΣ/N2) such that in
time Õ(N) we can construct a data structure that for any t satisfying λ ⩽ t ⩽ Σ/2 decides
in time O(1) whether t is a subset sum.

This is non-trivial when λ ⩽ Σ/2, that is when N2 ≫ us. We note that in the setting of
Subset Sum with multiplicities Theorem 2.3 gives an Õ(N + u1/2s3/2) time algorithm. We
denote by S(I) all subset sums of a multiset I, and we write Σ(I) =

∑
a∈I a.

▶ Lemma 2.4. Given a multiset I of size N , in Õ(N + s3/2u1/2) time we can construct a
data structure that, for any t ∈ N,
(a) determines whether t ∈ S(I) in time O(1), and
(b) if t ∈ S(I), it finds X ⊆ I with Σ(X) = t in time Õ(N + s3/2u1/2).
In order to prove that we can retrieve a solution with the given running time we will need to
get into technical details behind the proof of Theorem 2.3. We do it in Section 5.3. Now, we
sketch how to use Theorem 2.3 as a blackbox to give an Õ(N + u1/2s3/2) time algorithm
that can only detect if there is a solution.

Proof of Lemma 2.4 (a). Let λ be defined as in Theorem 2.3. If the total sum of items Σ is
bounded by Õ(s3/2u1/2), then we can use Bringmann’s Õ(N+t) time Subset Sum algorithm [9]
to compute S(I). Therefore from now on we can assume that s3/2u1/2 ⩽ Õ(Σ) ⩽ Õ(Ns). In
particular, this means that

√
us ⩽ Õ(N). Hence,

λ ⩽ Õ
(

usΣ
N2

)
⩽ Õ

(
us2

N

)
⩽ Õ(u1/2s3/2).

This means that we can afford Õ(λ) time. In time Õ(N + λ) we find all subset sums in
S(I) ∩ [0, λ] using Bringmann’s algorithm [9]. For t ∈ [λ, Σ/2] we use Theorem 2.3 to decide
in Õ(N) time if t ∈ S(I). For t > Σ/2 we ask about Σ − t instead. ◀

3 Knapsack with small item sizes

In this section we obtain an O(n + s3) time algorithm for Knapsack by combining the
proximity and convolution techniques.

Proof of Theorem 1.1. Let p be a maximal prefix solution. By Lemma 2.1 there is an
optimal solution z with ∥z − p∥1 ⩽ 2s. We will construct an optimal solution x that is
composed of three parts, that is, x = p − x− + x+. Our intuition is that x+ is supposed to
mimic the items that are included in z but not in p. We denote these items by (z − p)+,
where (·)+ takes for each component the maximum of it and 0. Likewise, x− intuitively
stands for (p − z)+, the items in p but not in z.

To find x+ and x− we will invoke twice the O(n + st + t log2(t)) time algorithm of
Lemma 2.2. Let ∆ = t −

∑
i∈[n] sipi, that is, the remaining knapsack capacity in the prefix

solution. We can assume w.l.o.g. that ∆ < s, since otherwise p already includes all items and
must be optimal. We use Lemma 2.2 to compute optimal solutions to the following integer
programs for every k ∈ {0, . . . , 2s2 + ∆}.
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max
x∈Zn

∑
i∈[n]

vixi subject to
∑
i∈[n]

sjxi ⩽ k and ∀i∈[n] 0 ⩽ xi ⩽ ui − pi (3)

max
x∈Zn

∑
i∈[n]

−vixi subject to
∑
i∈[n]

sixi = k and ∀i∈[n] 0 ⩽ xi ⩽ pi (4)

We denote the resulting solutions by x+(k) and x−(k). Note, that formally the algorithm
in Lemma 2.2 outputs solutions to the variant of (3) with equality, we can transform it to
the above form with a single pass over the solutions.

For any k the solution x(k) = p − x−(k) + x+(k + ∆) is feasible. We compute values of all
such solutions and select the best of them. To show that this is indeed an optimal solution,
it suffices to show that for one such k the solution is optimal. Let k =

∑
i∈[n] max{0, si(pi −

zi)} ⩽ 2s2, then (x − z)+ is feasible for (3) with k + ∆ and (p − z)+ for (4) with k. Thus,∑
i∈[n]

vi(x(k))i =
∑
i∈[n]

vipi −
∑
i∈[n]

vi(x−(k))i +
∑
i∈[n]

vi(x+(k + ∆))i

⩾
∑
i∈[n]

vipi −
∑
i∈[n]

vi max{0, pi − zi} +
∑
i∈[n]

vi max{0, zi − pi} =
∑
i∈[n]

vizi.

It remains to bound the running time. The maximal prefix solution can be found in time
O(n). Each of the two calls to the algorithm of Lemma 2.2 takes time O(n+s3 +s2 log2(s)) =
O(n + s3) and selecting the best solution among the 2s2 candidates takes time O(s2). ◀

4 Knapsack with small item values

In this section we show that it is also possible to solve Knapsack in time O(n + v3), proving
Theorem 1.2. This can be derived directly from the O(n+s3) time algorithm from the previous
section. Essentially, we swap the item values and sizes by considering the complementary
problem of finding the items that are not taken in the solution. Then our goal is to solve

min
x

∑
i∈[n]

vixi subject to
∑
i∈[n]

sixi ⩾
∑
i∈[n]

uisi − t and ∀i∈[n]0 ⩽ xi ⩽ ui. (5)

Suppose we are satisfied with any solution that has value at least some given v⋆. Then this
can be solved by

max
x

∑
i∈[n]

sixi subject to
∑
i∈[n]

vixi ⩽
∑
i∈[n]

uivi − v⋆ and ∀i∈[n]0 ⩽ xi ⩽ ui.

Notice that this is now a Knapsack problem with item sizes bounded by v. Hence, our
previous algorithm can solve it in time O(n + v3). It remains to find the optimum of (5) and
use it for the value of v⋆. Notice that the maximal prefix solution p gives a good estimate of
this v⋆, because its value is between v⋆ − v + 1 and v⋆. Thus, one could in a straight-forward
way implement a binary search for v⋆ and this would increase the running time only by a
factor of log(v), but we can avoid this and get an O(n + v3) time algorithm.

It is enough to devise an algorithm that in time O(n + v3) computes a solution for each
of the v potential values values of v⋆ at once. Then we can return the largest v⋆ for which
the solution requires a knapsack of size at most t. Fortunately, our original Theorem 1.1 can
compute solution to every t′ ∈ {t − v, t − v + 1, . . . , t} and the O(n + v3) time algorithm for
Knapsack follows.
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We include a small modification of Knapsack algorithm from Section 3 for completeness.

▷ Claim 4.1. In O(n + s3) time we can compute an optimal solution to Knapsack for every
t′ ∈ {t − s, t − s + 1, . . . , t}.

Proof. Recall that the intermediate solutions x+(k) and x−(k) depend only on the maximal
prefix solution p and the only property of p that is needed is that it differs from the optimal
solution by O(s) items. Notice that the maximal prefix solutions with respect to each of
the values t′ above differ only by at most s items. Hence, p, the prefix solution for t, differs
from each of the optimal solutions only by O(s). Hence, we only need to compute x+(k) and
x−(k) once. Given these solutions the remaining computation takes only O(s2) for each t′;
thus, O(s3) in total. ◁

5 Subset Sum

In this section we give a Õ(n+s5/3) time algorithm for Subset Sum with multiplicties proving
Theorem 1.3. Our algorithm is a combination of additive combinatorics and proximity
arguments. Throughout this section, we denote by S(A) the set of all subset sums of a
(multi-)set of integers A. In other words, t ∈ S(A) if there exists some B ⊆ A with Σ(B) = t.

Algorithm 1 Õ(n + s5/3) time algorithm for Subset Sum with multiplicties.

Algorithm : SubsetSum(I, t).
Output : Multiset X ⊆ I with Σ(X) = t or NO if such a multiset does not exists.

1 Preprocess I using Lemma 2.1 so that ui ⩽ O(s) for all i ∈ [n]
2 Set k :=

⌊
s1/3⌋

3 Construct I↑ := {(max{0, ⌊ui/k⌋ − 8}, si) : (ui, si) ∈ I}
4 Construct I↓ := {(ui − k · max{0, ⌊ui/k⌋ − 8}, si) : (ui, si) ∈ I}
5 Construct oracle to S(I↓) // with Lemma 2.4
6 Construct set of candidates C(I↑) ⊆ S(I↑) // with Lemma 5.1
7 foreach t′ ∈ C(I↑) do
8 if t − k · t′ ∈ S(I↓) then
9 Recover A ⊆ I↑ with Σ(A) = t′

10 Recover B ⊆ I↓ with Σ(B) = t − k · t′

11 return (k · A) ∪ B

12 return NO

We now give a high level overview of the algorithm (see Algorithm 1). In the following
we assume w.l.o.g. that u ⩽ O(s) by using the preprocessing described after Lemma 2.1.
First, we split the instance I into two parts I↑ and I↓: Let k = ⌊s1/3⌋. For every item si

with multiplicity ui we add u↑
i = max{0, ⌊ui/k⌋ − 8} = O(s2/3) many items of size si into

multiset I↑. The rest of the items of size si, i.e., u↓
i = ui − k · u↑

i = O(s1/3) many, are added
to multiset I↓. Intuitively, I↑ stands for taking bundles of k items. The set I↓ consists of
the remaining items. In particular, it holds that:

S(I) =
{

kt↑ + t↓ : t↑ ∈ S(I↑) and t↓ ∈ S(I↓)
}

.

Our goal is to decide whether there exists an integer t′ ∈ S(I↑) with the property that
t − kt′ ∈ S(I↓). The strategy of the algorithm is as follows: we will use proximity arguments
to bound the number of candidates for such a t′ ∈ S(I↑) and efficiently enumerate them in
time Õ(s5/3).
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▶ Lemma 5.1. In time Õ(s5/3), we can construct C(I↑) ⊆ S(I↑) of size |C(I↑)| ⩽ Õ(s5/3)
with the property that if t ∈ S(I), then there exists t′ ∈ C(I↑) and t − kt′ ∈ S(I↓). Moreover,
for any t′ ∈ C(I↑) we can find X ⊆ I↑ with Σ(X) = t′ in time Õ(s5/3).

We will prove this lemma in Section 5.1. To check the condition t − kt′ ∈ S(I↓) we observe
that the set I↓ has bounded multiplicity and large density. To accomplish that we use
Lemma 2.4. It uses a recent result of Bringmann and Wellnitz [11] and enables us to
decide in constant time if t − kt′ ∈ S(I↓) for any t′ after a preprocessing that requires time
Õ(|I↓| + s3/2(u↓)1/2) ⩽ Õ(s5/3) because |I↓| ⩽ O(s · u↓) and u↓ ⩽ O(s1/3). We extend their
methods to be able to construct the solution within Õ(s5/3) time (see Section 5.3 for the
proof of Lemma 2.4).

Now, we analyse the correctness of Algorithm 1. The running time is bounded by
Õ(n + s5/3) because the number of candidates is |C(I↑)| ⩽ Õ(s5/3) by Lemma 5.1. The
algorithm is correct because set C(I↑) has the property that if an answer to the Subset Sum
is positive, then there exists t′ ∈ C(I↑) with t − k · t′ ∈ S(I↓)

Moreover, when the answer is positive we have t′ ∈ C(I↑) with t − k · t′ ∈ S(I↓). We
use Lemma 5.1 to recover A ⊆ I↑ with Σ(A) = t′. Then we use Lemma 2.4 to find B ⊆ I↓

with Σ(B) = t − k · t′. We construct a final solution (k · A) ∪ B by unbundling items in
A (duplicating them k times) and joining them with set B. This concludes the proof of
Theorem 1.3.

5.1 Finding a small set of candidates
In this section we derive a small set of candidates C(I↑) and prove Lemma 5.1. This is based
on the proximity result (Lemma 2.1). Recall that for p, a maximal prefix solution, we know
that there exists some feasible solution that differs only by O(s) items (if the instance is
feasible). Suppose we split p between I↑ and I↓ into p↑ and p↓. As each of the items in I↑

stands for k items in I, one might expect that the part of the optimal solution that comes
from I↑ differs from p↑ by only O(s/k) items. This is not necessarily true if p↑ and p↓ are
chosen unfavorably. Fortunately, we can show that with a careful choice of p↑ and p↓ it can
be guaranteed.

▶ Definition 5.2 (Robust split). Let p = (p1, . . . , pn) ∈ Nn be a maximal prefix solution. Let
p↑, p↓ ∈ Nn be defined by

p↑
i =


0 if pi ⩽ 4k or ui ⩽ 8k,

⌊ui/k⌋ − 8 if pi ⩾ ui − 4k and ui > 8k,

⌊pi/k⌋ − 2 if pi ∈ (4k, ui − 4k) and ui > 8k,

and p↓
i = pi − kp↑

i , for every i ∈ [n]. We call p↑, p↓ the robust split of p.

An important property of the choice of p↑ and p↓ is that there is some slack for p↓
i . Namely,

if we were to change pi slightly (say, by less than k) then we only need to change p↓
i (and do

not need to change p↑
i ) to maintain pi = kp↑

i + p↓
i .

▶ Lemma 5.3. Let p be a maximal prefix solution and let p↑, p↓ be its robust split. If t ∈ S(I),
then there are solutions x↑, x↓ of I↑ and I↓ such that:∑

i∈[n]

(kx↑
i + x↓

i )si = t and ∥x↑ − p↑∥1 ⩽ O(s/k).
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Figure 1 Schematic idea behind the proof of Lemma 5.3 in the case ui > 8k. We select p↓
i such

that it is never in the red hatched regions. The property of p↑, p↓ is that any solution that differs by
at most k elements can take the same elements from I↑ as p↑

i . In that case the situation where the
optimal solution is of the form z (in the figure) can always be avoided to instead get the situation
with x.

Proof. The proof consists of straightforward, but tedious, calculations; see Figure 1 for an
intuition.

By Lemma 2.1 we know that there is a feasible solution x with ∥x − p∥1 ⩽ O(s). Let us
use this solution and construct x↑ and x↓. We consider each index i ∈ [n] individually and
show that there is a split of xi into x↑

i , x↓
i which are feasible for I↑, I↓, that is, they satisfy

the bounds [0, u↑
i ] and [0, u↓

i ], and we have that |x↑
i − p↑

i | ⩽ 19|xi − pi|/k. This implies the
lemma. To this end, consider two cases based on |xi − pi|.

Case 1: |xi − pi| < k. In this case we set x↑
i = p↑

i and x↓
i = xi − kx↑

i . This choice does
not contribute anything to the norm ∥x↑ − p↑∥1 because x↑

i = p↑
i . We need to show that x↑

i

and x↓
i are feasible solutions to the subset sum instances I↑ and I↓.

Clearly, x↑
i is between 0 and u↑

i = max{⌊ui/k⌋−8, 0} in the first two cases of Definition 5.2.
In the last case, we have that 4k < pi < ui − 4k and therefore 0 ⩽ ⌊pi/k⌋ − 2 = p↑

i .
Furthermore, p↑

i = ⌊pi/k⌋ − 2 < pi/k − 3 < ui/k − 7 < ⌊ui/k⌋ − 8 = u↑
i .

Therefore, it remains to show that x↓
i is feasible for I↓. More precisely, we will prove

that:

0 ⩽ xi − kp↑
i ⩽ ui − k · max{⌊ui/k⌋ − 8, 0}.

To achieve that, we will crucially rely on our choice for p↑ in Definition 5.2.

Case 1a: ui ⩽ 8k or pi ⩽ 8k. When ui ⩽ 8k or pi ⩽ 8k then the claim follows because
p↑

i = x↑
i = 0.

Case 1b: pi ⩾ ui − 4k and ui > 8k. In this case we have p↑
i := ⌊ui/k⌋ − 8. Inequality

xi − kp↑
i ⩾ 0 follows from xi > pi − k ⩾ ui − 5k ⩾ k⌊ui/k⌋ − 8k = kp↑

i . Next, we use the
fact xi ⩽ ui to conclude xi − k ⌊ui/k⌋ + 8k ⩽ ui − k ⌊ui/k⌋ + 8k.

Case 1c: 4k < pi < ui − 4k and ui > 8k. In this case we have p↑
i := ⌊pi/k⌋ − 2. The

inequality xi > pi − k ⩾ k ⌊pi/k⌋ − k = kp↑
i + k shows that xi − kp↑

i ⩾ 0. Next, we use
inequality pi − k ⌊pi/k⌋ < k to show that

xi − k ⌊pi/k⌋ ⩽ pi − k ⌊pi/k⌋ + k ⩽ 2k < ui − k ⌊ui/k⌋︸ ︷︷ ︸
⩾0

+8k.
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Case 2: |xi − pi| ⩾ k. We set x↑
i := min{⌊xi/k⌋ , u↑

i } and x↓
i := xi − kx↑

i . Clearly,
0 ⩽ x↑

i ⩽ u↑
i . Furthermore, x↓

i ⩾ 0 and if x↑
i = u↑

i then x↓
i ⩽ ui − ku↑

i = u↓
i ; otherwise,

x↓
i = xi − k ⌊xi/k⌋ < k < u↓

i .
It remains to bound the difference between x↑

i and p↑
i . Note that because of our choice of

p↑ we have |p↑
i − ⌊pi/k⌋ | ⩽ 8. Also, |u↑

i − ⌊ui/k⌋ | ⩽ 8. Therefore,

|x↑
i − p↑

i | ⩽
∣∣ min{⌊xi/k⌋ , u↑

i } − ⌊pi/k⌋
∣∣ + 8 ⩽

∣∣ min{⌊xi/k⌋ , ⌊ui/k⌋}︸ ︷︷ ︸
=⌊xi/k⌋

− ⌊pi/k⌋
∣∣ + 16

⩽ |xi − pi|/k + 18.

Recall that we assumed |xi − pi| ⩾ k. Thus,

|x↑
i − p↑

i | ⩽ 19|xi − pi|/k. ◀

Now we are ready to proceed with the algorithmic part and prove Lemma 5.1.

Proof of Lemma 5.1. Let tp be the value of p↑ in I↑, that is, tp :=
∑

i∈[n] p↑
i si. Let A− be

the multiset of numbers selected in p↑. Moreover, let A+ denote all other elements in I↑.
We now compute

S+ := S(A+) ∩ [c · s5/3] and S− := S(A−) ∩ [c · s5/3].

Here c is a constant that we will specify later. These sets can be computed in time Õ(s5/3)
with Bringmann’s algorithm [9]. Next, using FFT we compute the sumset

C(I↑) := {tp + a − b | a ∈ S+, b ∈ S−}.

Any element in C(I↑) is an integer of the form tp + a − b, integer a is the sum of elements
not in p↑, and integer tp − b is the contribution of elements in p↑. This operation takes time
Õ(s5/3) because the range of values of S+ and S− is bounded by O(s5/3). We return set
C(I↑) as the set of possible values of the candidates. To recover a solution we will use the
fact that Bringmann’s algorithm can recover solutions and the property that we can find a
witness to FFT computation in linear time. Since S+ and S− are subsets of [c · s5/3] we know
that C(I↑) is a subset of {tp − c · s5/3, . . . , tp + c · s5/3}. In particular, |C(I↑)| ⩽ Õ(s5/3).

It remains to to show that C(I↑) contains some t′ such that t − kt′ ∈ S(I↓) if t ∈ S(I).
By Lemma 5.3 it suffices to show that C(I↑) contains all values

∑
i∈[n] x↑

i si for x↑ with
∥x↑ − p↑∥1 ⩽ c · s/k, where c is the constant in the lemma. This holds because S+ contains∑

i∈[n]:x↑
i
⩾p↑

i
(x↑

i − p↑
i )si and S− contains

∑
i∈[n]:x↑

i
⩽p↑

i
(p↑

i − x↑
i )si. ◀

5.2 Introduction to additive combinatorics methods
In this section we review the structural ideas behind the proof of Theorem 2.3. Next, in
Section 5.3 we show how to use them to recover a solution to Subset Sum with multiplicities.

The additive combinatorics structure that we explore is present in the regime when
N2 ≫ us. We formalize this assumption as follows:

▶ Definition 5.4 (Density). We say that a multiset X is δ-dense if it satisfies |X|2 ⩾ δus.

Note that if all numbers in X are divisible by the same integer d, then the solutions to
Subset Sum are divisible by d. Intuitively, this situation is undesirable, because our goal is
to exploit the density of the instance. With the next definition we quantify how close we are
to the case where almost all numbers in X are divisible by the same number.
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▶ Definition 5.5 (Almost Divisor). We write X(d) := X ∩ dZ to denote the multiset of all
numbers in X that are divisible by d and X(d) := X \ X(d) to denote the multiset of all
numbers in X not divisible by d. We say that an integer d > 1 is an α-almost divisor of X if
|X(d)| ⩽ αuΣ(X)/|X|2.

Bringmann and Wellnitz [11] show that this situation is not the hardest case.

▶ Lemma 5.6 (Algorithmic Part of [11]). Given an Θ̃(1)-dense multiset X of size N in time
Õ(N) we can compute an integer d ⩾ 1, such that X ′ := X(d)/d is Θ̃(1)-dense and has no
Θ̃(1)-almost divisors.

They achieve that with novel prime factorization techniques. This lemma allows them
essentially to reduce to the case that there are no Θ̃(1)-almost divisors. We will give more
details on this in the end of Section 2.3. In our proofs we use the Lemma 5.6 as a blackbox.
Next, we focus on the structural part of their arguments.

Structural part

The structural part of [11] states the surprising property. If we are given a sufficiently
dense instance with no almost divisors then every set with target within the given region is
attainable.

▶ Theorem 5.7 (Structural Part of [11]). If X is Θ̃(1)-dense and has no Θ̃(1)-almost divisor
then [λX , . . . , Σ(X) − λX ] ⊆ S(X) for some λX = Θ̃(usΣ(X)/|X|2)).

Therefore, Bringmann and Wellnitz [11] after the reduction to the almost-divisor-free setting
can simply output YES on every target in the selected region. Our goal is to recover the
solution to subset sum and therefore, we need to get into the details of this proof and show
that we can efficiently construct it. The crucial insight into this theorem is the following
decomposition of a dense multiset.

▶ Lemma 5.8 (Decomposition, see [11, Theorem 4.35]). Let X be a Θ̃(1)-dense multiset of
size n that has no Θ̃(1)-almost divisor. Then there exists a partition X = R ⊎ A ⊎ G and an
integer κ = Õ(uΣ(X)/|X|2) such that:

set S(R) is κ-complete, i.e., S(R) mod κ = Zκ,
set S(A) contains an arithmetic progression P of length 2s and step size κ satisfying
max{P} ⩽ Õ(usΣ(X)/|X|2),
the multiset G has sum Σ(G) ⩾ Σ(X)/2.

Now, we sketch the proof of Theorem 5.7 with the decomposition from Lemma 5.8. This is
based on the proof in [11].

Sketch of the proof of Theorem 5.7 assuming Lemma 5.8. We show that any target t ∈
[λX , . . . , Σ(X) − λX ] is a subset sum of X. For that we will assume without loss of generality
that t ⩽ Σ(X)/2 (note that t is a subset sum if and only if Σ(X) − t is). By Lemma 5.8 we
get a partition of X into R ⊎ A ⊎ G. We know that S(A) contains an arithmetic progression
P ⊆ S(A), with P = {a + κ, a + 2κ, . . . , a + 2sκ}. We construct a subset of X that sums to
t as follows. First, we greedily pick G′ ⊆ G by iteratively adding elements until:

t − Σ(G′) ∈ [a + κ(s + 1), a + κ(s + 1) + s].

This is possible because the largest element is bounded by s, t is at most Σ(X)/2 ⩽ Σ(G),
and λX is selected such that:

t ⩾ λX ⩾ a + κ(s + 1).
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The next step is to select a subset R′ ⊆ R that sums up to a number congruent to
(t − Σ(G′) − a) modulo κ. Recall, that set R is κ-complete, hence such a set must exist.
Moreover, w.l.o.g. R′ < κ, and Σ(R′) < κs. Therefore, we need extra elements of total sum

t − Σ(G′ ∪ R′) ∈ [a + κ, a + 2κs], and t − Σ(G′ ∪ R′) ≡ a mod κ.

Finally, we note that this is exactly the range of elements of the arithmetic progression P . It
means that we can pick a subset A′ ⊆ A, that gives the appropriate element of the arithmetic
progression P and t = Σ(G′ ∪ R′ ∪ A′). ◀

5.3 Recovering a solution
In this section, we show how to recover a solution to Subset Sum. We need to overcome
several technical difficulties. First, we need to reanalyze Lemma 5.8 and show that the
partition X = A ⊎ R ⊎ G can be constructed efficiently. This step follows directly from [11].
However, we do not know of an efficient way to construct κ and a. We show that we do not
really need it. Intuitively, for our application we can afford to spend a time Õ(N + λI). This
observation enables us to use the Õ(N + t) time algorithm of Bringmann [9] to reconstruct
the solution. We commence with the observation that the decomposition into R ⊎ A ⊎ G can
be constructed within the desired time.

▷ Claim 5.9 (Recovering decomposition). Let X be a Θ̃(1)-dense multiset that has no
Θ̃(1)-almost divisor. Let K = 42480 · u · Σ(X) log(2u)/|X|2. Then in Õ(N + uΣ(X)/|X|2)
time we can explicitly find a partition X = R ⊎ A ⊎ G such that:

set S(R) is d-complete for any d ⩽ K,
there exists an integer κ ⩽ K such that the set S(A) contains an arithmetic progression
P of length 2s and step size κ satisfying max{P} ⩽ Õ(usΣ(X)/|X|2),
the multiset G has sum Σ(G) ⩾ Σ(X)/2.

Proof of Claim 5.9 based on arguments from [11]. We follow the proof of Theorem 4.35 in [11].
We focus on the construction of partition X and present only how the construction follows
from [11].

To construct the set R, Bringmann and Wellnitz use [11, Theorem 4.20]. We start by
picking an arbitrary subset R′ ⊆ X of size τ = Θ̃(uΣ(X)/|X|2). Next we generate the set S

of all prime numbers p with p ⩽ τ . We can do this in Õ(τ) time by the sieve of Eratosthenes
algorithm [30]. Then, we compute the prime factorization of every number in R′ by [11,
Theorem 3.8] in Õ(τ) time. This enables us to construct the set P of primes p with p ⩽ τ such
that every p ∈ P does not divide at least τ/2 numbers in R′. Bringmann and Wellnitz [11]
show that |P | ⩽ 2 log s. Next, for every p ∈ P we select an arbitrary subset Rp ⊆ X(p) of
size |Rp| = τ . This can be done in Õ(N) time because |P | = Õ(1). Finally Bringmann and
Wellnitz [11] construct R = R′ ∪

(⋃
p∈P Rp

)
. See Theorem 4.20 in [11] for a proof that the

constructed R is d-complete for any d ⩽ K.
To construct set A we do exactly the same as Bringmann and Wellnitz [11] and we pick

at most ⌊n/4⌋ smallest elements from X \ R. At the end we set G = X \ (R ∪ A). See [11]
for a proof that A and G have a desired properties. ◁

Now, we are ready to prove our result about recovering the solution

▶ Lemma 5.10 (Restatement of Lemma 2.4). Given a multiset I of N elements, in Õ(N +
s3/2u1/2) time we can construct a data structure that for any t ∈ N can decide if t ∈ S(I) in
time O(1). Moreover if t ∈ S(I) in Õ(N + s3/2u1/2) time we can find X ⊆ I with Σ(X) = t.
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In the rest of this section we prove Lemma 2.4. We assume that all considered t are
at most Σ(I)/2 because for larger t we can ask about Σ(I) − t instead. Let λI and be
defined as in Theorem 2.3. When the total sum of the elements Σ(I) is bounded by
Õ(s3/2u1/2), Bringmann’s algorithm [9] computes S(I) and retrieves the solution in the
declared time. Therefore, we can assume that s3/2u1/2 ⩽ Õ(|I|s). In particular, this means
that

√
us ⩽ Õ(|I|) and the set I is Θ̃(1)-dense. Hence,

λI ⩽ Õ
(

usΣ(I)
|I|2

)
⩽ Õ

(
us2

|I|

)
⩽ Õ(u1/2s3/2).

This means, that we can afford Õ(λI) time. In time Õ(|I| + λI) we can find all subset
sums in S(I) that are smaller than Θ̃(λI) using Bringmann’s algorithm. Additionally, when
t ⩽ Θ̃(λI) Bringmann’s algorithm can find X ⊆ I in the output sensitive time.

We are left with answering queries about targets greater than λI . To achieve that within
Õ(λI)-time preprocessing we use the Additive Combinatorics result from [11].

Observe, that if we were interested in a data structure that works in Õ(N + λI) ⩽
Õ(N + s3/2u1/2) and decides if t ∈ S(I) we can directly use [11] as a blackbox. Therefore,
from now, we show that we can also reconstruct the solution in Õ(N + λI) time.

▷ Claim 5.11. We can find a set X ⊆ I with Σ(X) = t in Õ(N + λI) time for any
t ∈ [λI , Σ(I)/2] if such an X exists.

Proof. First, we use Lemma 5.6 to find an integer d ⩾ 1, such that set I ′ := I(d)/d has no
Θ̃(1)-almost divisor and is Θ̃(1)-dense. Observe, that the integer d can be found in Õ(N)
time and set I ′ can be constructed in Õ(N) time.

Bringmann and Wellnitz [11, Theorem 3.5] prove that (recall that I is Θ̃(1)-dense and
t ⩾ λI):

t ∈ S(I) if and only if t mod d ∈ (S(I) mod d).

Therefore, the first step of our algorithm is to use Axiotis et al. [4] to decide if t mod d ∈
(S(I) mod d) and recover set D ⊆ I \ I(d) if such a set exists (Axiotis et al. [4] enables to
recover solution and by density assumption it works in Õ(N) time).

If such a set exists by reasoning in [11] we know that a solution must exist (otherwise we
output NO). We are left with recovering set K ⊆ I ′ with Σ(K) := (t − Σ(D))/d.

Next, we use Claim 5.9 to find a partition I ′ = R ⊎ A ⊎ G. We can achieve that in
Õ(uΣ(I ′)/|I ′|2) ≪ Õ(N + λI) time. Ideally, we would like to repeat the reasoning presented
in the proof of Theorem 5.7. Unfortunately, we do not know how to explicitly construct a

and κ within the given time. Nevertheless, Theorem 5.7 guarantees that t ∈ S(I) and that
such integers a and κ exist.

Based on the properties of sets in Theorem 5.7 we have

t ∈ S(G ⊎ R ⊎ A) = S(G) ⊕ (S(R ∪ A) ∩ [0, Õ(λI)]).

With a Bringmann’s algorithm we can compute the set T := S(R∪A)∩[0, Õ(λI)] in Õ(N +λI)
time. Now, recall that in the proof of Theorem 5.7 we have chosen set G′ ⊆ G greedily to
satisfy Σ(G′) ⩾ t − a − κ(s + 1) for some a, κ and s. Therefore it is enough to iterate over
every greedily chosen G′ ⊆ G and check whether t − Σ(G′) ∈ T . Notice that there are only
N options for G′ that can be generated in O(N + λI) time. For each of them we can check
whether t − Σ(G′) ∈ T in O(1) time because we have access to T . If we find such a set, we
just report K := G′ ∪ T ′, where T ′ ⊆ R ∪ A with Σ(T ′) + Σ(G′) = t. ◁

This concludes the proof of Lemma 2.4.
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Abstract
Random walks on graphs are an essential primitive for many randomised algorithms and stochastic
processes. It is natural to ask how much can be gained by running k multiple random walks
independently and in parallel. Although the cover time of multiple walks has been investigated for
many natural networks, the problem of finding a general characterisation of multiple cover times for
worst-case start vertices (posed by Alon, Avin, Koucký, Kozma, Lotker, and Tuttle in 2008) remains
an open problem.

First, we improve and tighten various bounds on the stationary cover time when k random walks
start from vertices sampled from the stationary distribution. For example, we prove an unconditional
lower bound of Ω((n/k) log n) on the stationary cover time, holding for any n-vertex graph G and
any 1 ≤ k = o(n log n). Secondly, we establish the stationary cover times of multiple walks on
several fundamental networks up to constant factors. Thirdly, we present a framework characterising
worst-case cover times in terms of stationary cover times and a novel, relaxed notion of mixing time
for multiple walks called the partial mixing time. Roughly speaking, the partial mixing time only
requires a specific portion of all random walks to be mixed. Using these new concepts, we can
establish (or recover) the worst-case cover times for many networks including expanders, preferential
attachment graphs, grids, binary trees and hypercubes.
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1 Introduction

A random walk on a graph is a stochastic process that at each time step chooses a neighbour
of the current vertex as its next state. The fact that a random walk visits every vertex of
a connected, undirected graph in polynomial time was first used to solve the undirected
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s − t connectivity problem in logarithmic space [4]. Since then random walks have become a
fundamental primitive in the design of randomised algorithms which feature in approxima-
tion algorithms and sampling [32, 40], load balancing [23, 42], searching [19, 33], resource
location [24], property testing [12, 26, 27], graph parameter estimation [7, 11] and biological
applications [8, 20].

The fact that random walks are local and memoryless (Markov property) ensures they
require very little space and relatively unaffected by changes in the environment, e.g.,
dynamically evolving graphs or graphs with edge failures. These properties make random
walks a natural candidate for parallelisation, where running parallel walks has the potential
of lower time overheads. One early instance of this idea are space-time trade-offs for
the undirected s − t connectivity problem [9, 18]. Other applications involving multiple
random walks are sublinear algorithms [13], local clustering [6, 43] or epidemic processes on
networks [29, 38].

Given the potential applications of multiple random walks in algorithms, it is important to
understand fundamental properties of multiple random walks. The speed up, first introduced
in [5], is the ratio of the worst-case cover time by a single random walk to the cover time of k

parallel walks. Following [5] and subsequent works [15, 16, 22, 25, 41] our understanding of
when and why a speed up is present has improved. In particular, various results in [5, 15, 16]
establish that as long as the lengths of the walks are not smaller than the mixing, the
speed-up is linear in k. However, there are still many challenging open problems, for example,
understanding the effect of different start vertices or characterising the magnitude of speed-up
in terms of graph properties, a problem already stated in [5]: “...which leads us to wonder
whether there is some other property of a graph that characterises the speed-up achieved by
multiple random walks more crisply than hitting and mixing times.” Addressing the previous
questions, we introduce new quantities and couplings for multiple random walks, that allow us
to improve the state-of-the-art by refining, strengthening or extending results from previous
works.

While there is an extensive body of research on the foundations of (single) random walks
(and Markov chains), it seems surprisingly hard to transfer these results and develop a
systematic theory of multiple random walks. One of the reasons is that processes involving
multiple random walks often lead to questions about short random walks, e.g., shorter than
the mixing time. Such short walks may arise in applications including generating random
walk samples in massively parallel systems [28, 40], or in applications where random walk
steps are expensive or subject to delays (e.g., when crawling social networks like Twitter [11]).
The challenge of analysing short random walks (shorter than mixing or hitting time) has
been mentioned not only in the area of multiple cover times (e.g., [15, Sec. 6]), but also in the
contexts of concentration inequalities for random walks [31, p. 863] and property testing [13].

1.1 Our Contribution

Our first set of results provide several tight bounds on t
(k)
cov(π) in general (connected) graphs,

where t
(k)
cov(π) is the expected time for each vertex to be visited by at least one of k independent

walks each started from a vertex independently sampled from the stationary distribution π.
The main findings of Section 3 include:
Proving general bounds of O

(( |E|
kdmin

)2 log2 n
)
, O

( maxv∈V Eπ [ τv ]
k log n

)
and O

( |E| log n

kdmin
√

1−λ2

)
on t

(k)
cov(π), where dmin is the minimum degree, Eπ [ τv ] is the single-walk hitting time

of v ∈ V from a stationary start vertex and λ2 is the second largest eigenvalue of the
transition matrix of the walk. All three bounds are tight for certain graphs. The first
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bound improves over [9], the second result is a Matthew’s type bound for multiple random
walks, and the third yields tight bounds for non-regular expanders such as preferential
attachment graphs.
We prove that for any graph G and 1 ≤ k = o(n log n), t

(k)
cov(π) = Ω((n/k) log n). Weaker

versions of this bound were obtained in [16], holding only for certain values of k or
under additional assumptions on the mixing time. Our result matches the fundamental
Ω(n log n) lower bound for single random walks (k = 1) [17], and generalises it in the
sense that the total amount of work by all k stationary walks together for covering is
always Ω(n log n). We establish the Ω((n/k) log n) bound by reducing the multiple walk
process to a single, reversible Markov chain, and applying a general lower bound on
stationary cover times [3].
A technical tool that provides a bound on the lower tail of the cover time by k walks from
stationary for graphs with a large and (relatively) symmetric set of hard to hit vertices
(Lemma 9). When applied to 2d tori and binary trees this yields a tight lower bound.

In Section 4 we introduce a novel quantity for multiple walks we call partial mixing.
Intuitively, instead of mixing all (or at least half) of the k walks, we only need to mix a
specified number k̃ of them. We put this idea on a more formal footing and prove min-max
theorems which relate worst case cover times t

(k)
cov to partial mixing times t

(k̃,k)
mix and stationary

cover times:
For any graph G and any 1 ≤ k ≤ n, we prove that:

t(k)
cov ≤ 16 · min

1≤k̃<k
max

(
t
(k̃,k)
mix , t(k̃)

cov(π)
)

.

For now, we omit details such as the definition of the partial mixing time t
(k̃,k)
mix as well as

some max-min characterisations that serve as lower bounds (these can be found in Section 4).
Intuitively these characterisations suggest that for any number of walks k, there is an “optimal”
choice of k̃ so that one first waits until k̃ out of the k walks are mixed, and then considers
only these k̃ stationary walks when covering the remainder of the graph.

This argument involving mixing only some walks extends and generalises previous results
that involve mixing all (or at least a constant portion) of the k walks [5, 15, 16]. Previous
approaches only imply a linear speed-up as long as the lengths of the walks are not shorter
than the mixing time of a single random walk. In contrast, our characterisation may still
yield tight bounds on the cover time for random walks that are much shorter than the mixing
time.

To demonstrate how our insights can be used, we derive worst case cover times for several
well-known graph classes. Due to space limitations we could not include this in the main
body of this work, however we have summarised our results in Table 1. The corresponding
results with full proofs can be found in corresponding section of the full paper [39]. As a
first step to calculating t

(k)
cov, we determine the stationary cover time; this is based on our

bounds from Section 3. Secondly, we derive lower and upper bounds on the partial mixing
times. Finally, with the stationary cover times and partial mixing times at hand, we can
apply the characterisations from Section 4 to infer lower and upper bounds on the worst case
stationary times. For some of those graphs the worst case cover times were already known
before, while for, e.g., binary trees and preferential attachment graphs, our bounds are new.

For the graph families of binary trees, cycles, d-dim. tori (d = 2 and d ≥ 3), hypercube,
clique, and (possibly non-regular) expanders we determine the cover time up to constants,
for both worst-case and stationary start vertices (see Table 1 for the quantitative results).
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We believe that this new methodology constitutes some progress towards the open question
of Alon et al. [5] about a characterisation of worst-case cover times.

1.2 Novelty of Our Techniques
While a lot of the proof techniques in previous work [5, 15, 16, 41] are based on direct
arguments such as mixing time (or relaxation time), our work introduces a number of new
methods which, to the best of our knowledge, have not been used in the analysis of cover
time of multiple walks before. In particular, one important novel concept is the introduction
of the partial mixing time. The idea is that instead of waiting for all (or a constant portion
of) k walks to mix, we can just mix some k̃ ≤ k walks to reap the benefits of coupling these
k̃ walks to stationary walks. This then presents a delicate balancing act where one must find
an optimal k̃ minimising the overall bound on the cover time, for example in expanders the
optimal k̃ is linear in k whereas in binary trees it is approximately

√
k, and for the cycle it is

roughly log k. This turning point reveals something about the structure of the graph and our
results relating partial mixing to hitting time of sets helps one find this. Another tool we
frequently use is a reduction to random walks with geometric resets, similar to a PageRank
process, which allows us to relate multiple walks from stationary to a single reversible Markov
chain.

2 Notation & Preliminaries

Throughout G = (V, E) will be a finite undirected, connected graph with n := |V | vertices
and m := |E| edges. For any k ≥ 1, let Xt =

(
X

(1)
t , . . . , X

(k)
t

)
be multiple random walk

process, where each X
(i)
t is an independent random walk on G. Let

Eu1,...,uk
[ · ] := E [ · | X0 = (u1, . . . , uk) ]

denote the conditional expectation where, for each 1 ≤ i ≤ k, X
(i)
0 = ui ∈ V is the start vertex

of the ith walk. Unless mentioned otherwise, walks will be lazy, i.e., at each step the walk
stays at its current location with probability 1/2, and otherwise moves to a neighbour chosen
uniformly at random. We let the random variable τ

(k)
cov (G) = inf{t :

⋃t
i=0{X

(1)
i , . . . , X

(k)
i } =

V } be the first time every vertex of the graph has been visited by some walk X
(i)
t . For

u1, . . . , uk ∈ V let

t(k)
cov((u1, . . . , uk), G) = Eu1,...,uk

[
τ (k)

cov (G)
]

, t(k)
cov(G) = max

u1,...,uk∈V
t(k)
cov((u1, . . . , uk), G)

denote the cover time of k walks from (u1, . . . , uk) and the cover time of k walks from worst
case start positions respectively. For simplicity, we drop G from the notation if the underlying
graph is clear from the context. We shall use π to denote the stationary distribution of a
single random walk on on a graph G, for v ∈ V this is given by π(v) = d(v)

2m which is the
degree over twice the number of edges. We use πk, which is a distribution on V k given by the
product measure of π with itself, to denote the stationary distribution of a multiple random
walk. For a probability distribution µ on V let Eµk [ · ] denote expectation with respect to k

walks where each start vertex is sampled independently from µ and

t(k)
cov(µ, G) = Eµk

[
τ (k)

cov (G)
]

.

In particular t
(k)
cov(π, G) denotes the expected cover time from independent stationary start

vertices. For a set S ⊆ V we define

τ
(k)
S = inf{t : there exists 1 ≤ i ≤ k such that X

(i)
t ∈ S}
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Table 1 All results above are Θ(·), that is bounded above and below by a multiplicative constant,
apart from the mixing time of expanders which is only bounded from above. PA above is the
preferential attachment process where each vertex has m initial links, the results hold w.h.p., see
[10, 34]. Cells shaded in Yellow are new results proved in this paper with the exception that for
k = O(log n) upper bounds on the stationary cover time for binary trees, expanders and preferential
attachment graphs can be deduced from general bounds for the worst case cover time in [5]. Cells
shaded Gray in the second to last column are known results we re-prove in this paper using our
partial mixing time results, for the 2-dim grid we only re-prove upper bounds. References for the
second to last column are given in the corresponding section in the full version, except for the
Barbell, see [15, Page 2]. The Barbell consists of two cliques on n/2 vertices connected by single
edge; we include this in the table as an interesting example where the speed up by stationary walks
is exponential in k. All other results for single walks can be found in [2], for example.

Graph Cover Hitting Mixing k-Cover Time, where 2 ≤ k ≤ n

family tcov thit tmix Worst case t
(k)
cov From πk, t

(k)
cov (π)

n log2 n n log n n

(n/k) log2 n

Binary if k ≤ log2 n.

tree (n/
√

k) log n

if k ≥ log2 n.

n log n

k
log

(
n log n

k

)

Cycle n2 n2 n2 n2

log k

(
n

k

)2
log2 k

n log2 n n log n n

(n/k) log2 n

2-Dim. if k ≤ log2 n.

Tori n

log(k/ log2 n)

if k ≥ log2 n.

n log n

k
log

(
n log n

k

)

d-Dim.

n log n n n2/d

(n/k) log n

Tori if k ≤ n1−2/d log n.

d ≥ 3 n2/d

log(k/(n1−2/d log n))

if k ≥ n1−2/d log n.

n

k
log n

Hypercube n log n n log n log log n

(n/k) log n

if k ≤ n/ log log n.

log n log log n

if k ≥ n/ log log n.

n

k
log n

Expanders n log n n O(log n) n

k
log n

n

k
log n

PA, m ≥ 2 n log n n O(log n) n

k
log n

Barbell n2 n2 n2 n2/k
2−kn2

k
+ n log n

k
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as the first time the set S is visited by any of the k independent random walks, if S = {v} is
a singleton set we use τv, dropping brackets. Let

t
(k)
hit (G) = max

u1,...,uk∈V
max
v∈V

Eu1,...,uk

[
τ (k)

v

]
be the worst case vertex to vertex hitting time. When talking about a single random walk
we drop the (1) index, i.e. t

(1)
cov(G) = tcov(G); we also drop G from the notation when the

graph is clear. If we wish the graph G to be clear we shall also use the notation Pu,G[·] and
Eu,G [ · ]. For a single random walk Xt with stationary distribution π and x ∈ V , let d(t) and
sx(t) be the total variation and separation distances for Xt given by

d(t) = max
x∈V

||P t
x,· − π||T V and sx(t) = max

y∈V

[
1 −

P t
x,y

π(y)

]
,

where P t
x,· is the t-step probability distribution of a random walk starting from x and, for

probability measures µ, ν, ||µ − ν||T V = 1
2

∑
x∈V |µ(x) − ν(x)| is the total variation distance.

Let s(t) = maxx∈V sx(t), then for 0 ≤ ε ≤ 1 the mixing and separation times [30, (4.32)] are

tmix(ε) = inf{t : d(t) ≤ ε} and tsep(ε) = inf{t : s(t) ≤ ε}, (1)

and tmix := tmix(1/4) and tsep = tsep(1/e). A strong stationary time (SST) σ, see [30, Ch. 6]
or [1], is a randomised stopping time for a Markov chain Yt on V with stationary distribution
π if

Pu[Yσ = v | σ = k] = π(v) for any u, v ∈ V and k ≥ 0. (2)

Let trel = 1
1−λ2

be the relaxation time of G, where λ2 is the second largest eigenvalue of the
transition matrix of the (lazy) random walk on G.

For random variables Y, Z we say that Y dominates Z (Y ⪰ Z) if P [ Y ≥ x ] ≥ P [ Z ≥ x ]
for all x.

3 Multiple Stationary Cover Times

We shall state our general upper and lower bound results for multiple walks from stationary
in Sections 3.1 & 3.2 respectively. All proofs can be found in the full version [39].

3.1 Upper Bounds
Broder, Karlin, Raghavan, and Upfal [9] showed that for any graph G and k ≥ 1,

t(k)
cov(π) = O

((m

k

)2
log3 n

)
.

We prove a general bound which improves this bound by a multiplicative factor of d2
min log n

which may be Ω(n2 log n) for some graphs.

▶ Theorem 1. For any graph G and any k ≥ 1,

t(k)
cov(π) = O

((
m

kdmin

)2
log2 n

)
.
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This bound is tight for the cycle if k = nΘ(1), see Table 1. Theorem 1 is proved by relating
the probability a vertex v is not hit up to a certain time t to the expected number of returns
to v by a walk of length t from v and applying a bound by Oliveira and Peres [35].

The next bound is analogous to Matthew’s bound [2, Theorem 2.26] for the cover time of
single random walks from worst case, however it is proved by a different method.

▶ Theorem 2. For any graph G and any k ≥ 1, we have

t(k)
cov(π) = O

(
maxv∈V Eπ [ τv ] log n

k

)
.

This bound is tight for many graphs, see Table 1. Since the acceptance of this paper, the
stronger bound t

(k)
cov(π) = O(tcov/k) has been proved by Hermon & Sousi [21]. This bound

implies Theorem 2 by a simple application of the aforementioned Matthew’s Bound for single
random walks. A version of Theorem 2 for t

(k)
cov was established by Alon et al. [5] provided

k = O(log n), the restriction on k is necessary (for worst case) as witnessed by the cycle.
Theorem 2 also gives the following explicit bound.

▶ Corollary 3. For any graph G and any k ≥ 1, we have

t(k)
cov(π) = O

(
m

kdmin

√
trel log n

)
.

Proof. Use maxv∈V Eπ [ τv ] ≤ 20m
√

trel + 1/dmin from [35, Theorem 1] in Theorem 2. ◀

Notice that, for all values k ≥ 1, this bound is tight for any expander with dmin = Ω(m/n),
such as preferential attachment graphs (see Table 1 and the full version for more details).

We also establish the following two bounds for classes of graphs with “not too large”
return probabilities.

▶ Lemma 4. Let G be any graph satisfying πmin = Ω(1/n), trel = o(n) and
∑t

i=0 P i
vv =

O(1 + tπ(v)) for any t ≤ trel. Then for any 1 ≤ k ≤ n,

t(k)
cov(π) = Θ

(n

k
log n

)
.

The bound above applied to a broad class of graphs with expander like properties but large
relaxation time, this includes the hypercube and high dimensional grids. The following bound
holds for graphs with sub-harmonic return times, this includes binary trees and 2d-grid/tori.

▶ Lemma 5. Let G be any graph with
∑t

i=0 P i
v,v = O(t/n + log t) for any t ≤ n(log n)2 for

all v ∈ V and tmix = O(n). Then for any 1 ≤ k ≤ (n log n)/3,

t(k)
cov(π) = O

(
n log n

k
log

(
n log n

k

))
.

3.2 Lower Bounds
Generally speaking, lower bounds for random walks are more challenging to derive than
upper bounds. In particular, the problem of obtaining a lower bound for the cover time of a
simple random walk on an undirected graph was open for many years [2]. This was finally
resolved by Feige [17] who proved tcov ≥ (1 − o(1))n log n. We prove a generalisation of this
bound, up to constants, that holds for k random walks which start from stationarity (thus
also for worst case).
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▶ Theorem 6. There exists a constant c > 0 such that for any graph G and 1 ≤ k ≤ c ·n log n,

t(k)
cov(π) ≥ c · n

k
· log n.

We remark that in this section all results hold (and are proven) for non-lazy random walks,
which by stochastic domination implies that the same result also holds for lazy random
walks. Theorem 6 is tight, uniformly for all 1 ≤ k ≤ n, for the hypercube, expanders and
high-dimensional tori, see Table 1. We note that [16] proved this bound for any start vertices
under the additional assumption that k ≥ nϵ, for some constant ε > 0. One can track the
constants in the proof of Theorem 6 and show that c > 2 · 10−11, we have not optimised this
but note that c ≤ 1 must hold in either condition of Theorem 6 due to the complete graph.

To prove this result we introduce the geometric reset graph, which allows us to couple the
multiple random walk to a single walk to which we can apply a lower bound by Aldous [3]. The
random reset graph is a small modification to a graph G which gives an edge-weighted graph
Ĝ(x) such that the simple random walk on Ĝ(x) emulates a random walk on G with Geo(x)
resets to stationarity, where Geo(x) is a geometric random variable with expectation 1/x.

▶ Definition 7 (The Geometric Reset Graph Ĝ(x)). For any graph G the undirected, edge-
weighted graph Ĝ(x), where 0 < x ≤ 1, consists of all vertices V (G) and one extra vertex
z. All edges from G are included with edge-weight 1. Further, z is connected to each vertex
u ∈ G by an edge with edge-weight x · d(u)/(1 − x), where d(u) is the degree of vertex u in G.

Given a graph with edge weights {we}e∈E the probability a non-lazy random walk moves
from u to v is given by wuv/

∑
w∈V wuw. Thus the walk on Ĝ(x) behaves as a random

walk in G, apart from that in any step, it may move to the extra vertex z with probability
x·d(u)/(1−x)

x·d(u)/(1−x)+d(u) = x. Once the walk is at z it moves back to a vertex u ∈ V \{z} with
probability proportional to d(u). Hence the stationary distribution π̂ of the random walk on
Ĝ(x) is proportional to π on G, and for the extra vertex z we have

π̂(z) =
∑

v∈V xd(u)/(1 − x)∑
v∈V d(u) +

∑
v∈V xd(u)/(1 − x) = x/(1 − x)

1 + x/(1 − x) = x.

Using the next lemma we can then obtain bounds on the multiple stationary cover time
by simply bounding the cover time in the augmented graph Ĝ(x) for some x.

▶ Lemma 8. Let G be any graph G, k ≥ 1 and x = Ck/T where C > 30 and T ≥ 5Ck.
Then

Pπk,G

[
τ (k)

cov >
T

10Ck

]
> P

π̂,Ĝ(x)[τcov > T ] − exp
(

−Ck

50

)
.

The coupling above will also be used later in the paper to prove a lower bound for the
stationary cover time of the binary tree and 2-dimensional grid when k is small.

The next result we present utilises the second moment method to obtain a lower bound
which works very well for k = nΘ(1) walks on symmetric (e.g., transitive) graphs. In particular,
we apply this to get tight lower bounds for cycles, 2-dim. tori and binary trees (see the
corresponding section of the full version).

▶ Lemma 9. Let G be any graph. Let α ∈ (0, 1) be a fixed real constant and define
pv(t) = Pπ[τv ≤ t] for t ≥ 1. Suppose there exists a subset S ⊆ V , and real numbers p > 0
and 0 ≤ ε < 1 such that for all v ∈ S we have p(1 − ε) ≤ pv(t) ≤ p, with p ≤ α(log n)/k, and
that minv∈S π(v) = Ω(1/|S|). If in addition p2k = o(1), then

Pπk

[
τ (k)

cov < t
]

= O
(

(log n)2nα(1+ε)

k

)
.
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4 Mixing Few Walks to Cover Many Vertices

In this section we present several bounds on t
(k)
cov, the multiple cover time from worst case start

vertices, based on t
(k)
cov(π), the multiple cover time from stationarity, and a new notion that

we call partial mixing time. The intuition behind this is that on many graphs such as cycles
or binary trees, only a certain number, say k̃ out of k walks will be able to reach vertices that
are “far away” from the initial distribution. That means covering the whole graph hinges on
how quickly these k̃ “mixed” walks cover the graph G, however, we also need to take into
account the number of steps needed to “mix” those. Theorem 16 (see Subsection 4.2) makes
this intuition more precise and suggests that the best strategy for covering a graph might
be when k̃ is chosen so that the time to mix k̃ out of k walks and the stationary cover time
of k̃ walks are approximately equal. The first subsection (Subsection 4.1) contains details
of our new notions of mixing for multiple random walks, the second contains the bounds
on worst-case cover times we derive from these and the third contains some bounds on the
multiple mixing times.

4.1 Two Notions of Mixing for Multiple Random Walks
Recall the definition of strong stationary time (SST) given by (2) in Section 2. Then, for
any graph G, and any 1 ≤ k̃ < k, we define the partial mixing time:

t
(k̃,k)
mix (G) = inf

{
t ≥ 1 : there exists an SST τ such that min

v∈V
Pv[τ ≤ t] ≥ k̃/k

}
= inf

{
t ≥ 1 : s(t) ≤ 1 − k̃/k

}
.

(3)

Note that the two definitions above are equivalent by the following result.

▶ Proposition 10 ([1, Proposition 3.2]). If σ is an SST then P [ σ > t ] ≥ s(t) for any t ≥ 0.
Furthermore there exists an SST for which equality holds.

This notion of mixing, based on the idea of separation distance and strong stationary
times for single walks, will be useful for establishing an upper bound on the worst case cover
time. For lower bounds on the cover time we will now introduce another notion of mixing for
multiple random walks based on a different property of mixing times of single walks.

For single random walks, there is a fundamental connection between mixing times and
hitting times of sets. In particular if we let

tH(α) = max
u∈V,S⊆V : π(S)≥α

Eu [ τS ] , and tH := tH(1/4),

then the following theorem shows this large-set hitting time is equivalent to the mixing time.

▶ Theorem 11 ([36] and independently [37]). Let α < 1/2. Then there exist positive constants
c(α) and C(α) so that for every reversible chain

c(α) · tH(α) ≤ tmix(α) ≤ C(α) · tH(α).

In order to prove a lower bounds on the cover time we seek to replace the partial mixing
time by an analogue of hitting times of large sets, adapted to multiple walks:

t
(k̃,k)
large−hit(G) := min

{
t ≥ 1 : min

u∈V,S⊆V : π(S)≥1/4
Pu[τS ≤ t] ≥ k̃

k

}
. (4)
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Note that both of our mixing times, (4) and (3), are only defined for k̃ < k. However, by
the union bound, there exists a C < ∞ such that if we run k walks for Ctmix log k steps then
all k walks will be close to uniform in total variation norm.

In the following four results, we present some simple relations between t
(k̃,k)
mix and t

(k̃,k)
large−hit,

and tmix, where tmix is the total variation mixing time for a single random walk given by (1).
First we show a simple upper bound in terms of the single walk mixing time.

▶ Lemma 12. There exists a constant C < ∞ such that for any graph and 1 ≤ k̃ < k we
have

(i) t
(k̃,k)
mix ≤ 2 · tmix · log

(
4k

k − k̃

)
,

(ii) t
(k̃,k)
large−hit ≤ C · tmix · log

(
k

k − k̃

)
.

The partial mixing time can be bounded from below quite simply by mixing time.

▶ Lemma 13. For any graph and 1 ≤ k̃ < k we have

t
(k̃,k)
mix ≥ tmix

(
1 − k̃

k

)
.

We would prefer a bound in terms of tmix := tmix(1/4) instead of tmix(1 − k̃/k) as the
former is easier to compute for most graphs. The following Lemma establishes such a lower
bound for both notions of mixing time at the cost of a k̃/k factor.

▶ Lemma 14. There exists some constant c > 0 such that for any graph and 1 ≤ k̃ < k we
have

(i) t
(k̃,k)
mix ≥ c · k̃

k
· tmix,

(ii) t
(k̃,k)
large−hit ≥ c · k̃

k
· tmix.

We leave as an open problem whether our two notions of mixing for multiple random walks
are equivalent up to constants, but the next result gives partial progress in one direction.

▶ Lemma 15. For any graph and 1 ≤ k̃ < k/4 we have

t
(k̃,k)
large−hit ≤ t

(4k̃,k)
mix + 1 ≤ 2t

(4k̃,k)
mix .

4.2 Upper and Lower Bounds by Partial Mixing
Armed with our new notions of mixing time for multiple random walks from Section 4.1, we
can now use them to prove upper and lower bounds on the worst case cover time in terms of
stationary cover times and partial mixing times. We begin with the upper bound.

▶ Theorem 16. For any graph G and any 1 ≤ k ≤ n,

t(k)
cov ≤ 16 · min

1≤k̃<k
max

(
t
(k̃,k)
mix , t(k̃)

cov(π)
)

.

Proof. Fix any 1 ≤ k̃ < k. It suffices to prove that with k walks starting from arbitrary
positions running for

t := t
(k̃,k)
mix + 2t(k̃)

cov(π) ≤ 4 · max
(

t
(k̃,k)
mix , t(k̃)

cov(π)
)
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steps, we cover G with probability at least 1/4. Consider a single walk X1(t) on G. From
(3), we have that at time T = t

(k̃,k)
mix there exists a probability measure νv on V such that,

P T
v,w = (1 − sv(T ))π(w) + sv(T )νv(w).

Therefore, we can generate X1(T ) as follows: with probability 1 − sv(T ) ≥ k̃/k we sample
from π, otherwise we sample from νv. If we now consider k independent walks, the number
of walks that are sampled at time T from π has a binomial distribution Bin(k, k̃/k) with k

trials and probability k̃/k, whose expectation is k̃. Since the expectation k̃ is an integer it is
equal to the median, thus with probability at least 1/2, at least k̃ walks are sampled from
the stationary distribution. Now, consider only the k̃ independent walks starting from π.
After 2tcov(π, k̃) steps, these walks will cover G with probability at least 1/2, due to Markov’s
inequality.

We conclude that in t time steps, from any starting configuration of the k walks, the
probability we cover the graph is at least 1/4. Hence in expectation, after (at most) 4 periods
of length t we cover the graph. ◀

This theorem improves on various results in [5] and [15] which bound the worst case
cover time by mixing all k walks, and it also generalises a previous result in [16, Lemma 3.1],
where most walks were mixed, i.e., k̃ = k/2.

We also prove a lower bound for cover times, however this involves the related definition
of partial mixing time based on the hitting times of large sets.

▶ Theorem 17. For any graph G with πmax = maxu π(u) and any 1 ≤ k ≤ n,

t(k)
cov ≥ 1

16 · max
1≤k̃<k

min
(

t
(k̃,k)
large−hit,

1
k̃πmax

)
.

Further, for any regular graph G any δ > 0 fixed, there is a constant C = C(δ) > 0 such that

t(k)
cov ≥ C · max

nδ≤k̃<k
min

(
t
(k̃,k)
large−hit,

n log n

k̃

)
.

As we will see later, both Theorem 16 and Theorem 17 yield asymptotically tight (or
tight up to logarithmic factors) lower and upper bounds for many concrete networks. To
explain why this is often the case, note that both bounds include one non-increasing function
in k̃ and one non-decreasing in function in k̃. That means both bounds are optimised when
the two functions are as close as possible. Then balancing the two functions in the upper
bound asks for k̃ such that t

(k̃,k)
mix ≈ t

(k̃)
cov(π). Similarly, balancing the two functions in the first

lower bound demands t
(k̃,k)
large−hit ≈ n/k̃ (assuming πmax = O(1/n)). Hence for any graph G

where t
(k̃,k)
mix ≈ t

(k̃,k)
large−hit, and also t

(k̃)
cov(π) ≈ n/k̃, the upper and lower bounds will be close.

This turns out to be the case for many networks (see the corresponding section in the full
version).

One exception where Theorem 17 is far from tight is the cycle, we shall also prove a
min-max theorem but with a different notion of partial cover time which is tight for the
cycle.

For a set S ⊆ V we let τ
(k)
cov (S) be the first time that every vertex in S has been visited

by at least one of the k walks, thus τ
(k)
cov (V ) = τ

(k)
cov . Then we define the set cover time

t
(k)
large−cov = min

S:π(S)≥1/4
max

µ
Eµk

[
τ (k)

cov (S)
]

,

where the first minimum is over all sets S ⊆ V satisfying π(S) ≥ 1/4 and the second is over
all probability distributions µ on the set ∂S = {x ∈ S : exists y ∈ Sc, xy ∈ E}.
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▶ Theorem 18. For any graph G and any 1 ≤ k ≤ n,

t(k)
cov ≥ 1

4 · max
1≤k̃<k

min
(

t
(k̃,k)
large−hit, t

(k)
large−cov

)
.

4.3 Geometric Lower Bounds on the Large-Hit and Large-Cover Times

We will now derive two useful lower bounds on t
(k̃,k)
large−hit, one based on the conductance of the

graph, and a second one based on the distance to a large set the random walk needs to hit.
For two sets A, B ⊆ V the ergodic flow Q(A, B) is defined by Q(A, B) =∑

a∈A,b∈B π(a)Pa,b, where Pa,b denotes the transition matrix of a (lazy) single random
walk. We define the conductance Φ(S) of a set S ⊆ V with π(S) ∈ (0, 1/2] to be

Φ(S) = Q(S, Sc)
π(S) and let Φ(G) = min

S⊆V,0<π(S)≤1/2
Φ(S).

▶ Lemma 19. For any graph G with conductance Φ(G), any 1 ≤ k̃ ≤ k,

t
(k̃,k)
large−hit ≥ k̃

k
· 2

Φ(G) .

We remark that a similar bound was used implicitly in [41, Proof of Theorem 1.1], where
t
(k)
cov ≥

√
n

k·Φ(G) was shown.
The following lemmas will be useful to lower bound worst case cover times on cycles/tori.

▶ Lemma 20. Let G be a d-dimensional torus with constant d ≥ 2 (or cycle, d = 1), u ∈ V

and S be a set with |S| ≥ n/2. Then for any k̃ ≤ k/2,

t
(k̃,k)
large−hit = Ω

(
(dist(u, S))2 / log(k/k̃)

)
.

▶ Lemma 21. Let S ⊆ V be a subset of vertices with π(S) ≥ 1/4, t ≥ 2 be an integer and
k ≥ 100 such that for every u ∈ S,

t∑
s=0

P s
u,u ≥ 32 · t · π(u) · k.

Then for any starting distribution µ of k/8 walks,

Eµk

[
τ (k)

cov (S)
]

≥ t/5.

5 Conclusion & Open Problems

In this work, we derived several new bounds on multiple stationary and worst-case cover
times. We also introduced a new quantity called partial mixing time, which extends the
definition of mixing time from single random walks to multiple random walks. By means of
a min-max characterisation, we proved that the partial mixing time connects the stationary
and worst-case cover times, leading to tight lower and upper bounds for many graph classes.

In terms of worst-case bounds, Theorem 1 implies that for any regular graph G and any
k ≥ 1, t

(k)
cov(π) = O

((
n
k

)2 log2 n
)

. This bound is tight for the cycle when k is polynomial in
n but not for smaller k. We suspect that for any k ≥ 1 the cycle is (asymptotically) the
worst case for t

(k)
cov(π) amongst regular graphs, which suggests t

(k)
cov(π) = O

((
n
k

)2 log2 k
)

.
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Some of our results have been only proven for the independent stationary case, but it
seems plausible they extend to the case where the k random walks start from the same
vertex. For example, extending the bound t

(k)
cov(π) = Ω((n/k) log n) to this case would be

very interesting.
In Theorem 2 we prove t

(k)
cov(π) = O((maxv∈V Eπ [ τv ] log n)/k), can we prove the stronger

bound t
(k)
cov(π) = O(1/k · tcov(π, G)) without assuming anything on the mixing time of G?

Although our min-max characterisations involving partial mixing time yields tight bounds
for many natural graph classes, it would be interesting to establish a general approximation
guarantee (or find graph classes that serve as counter-examples). For the former, we believe
techniques such as Gaussian Processes and Majorising Measures used in the seminal work of
Ding, Lee and Peres [14] could be very useful.
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Abstract
Given a graph property Φ, we consider the problem EdgeSub(Φ), where the input is a pair of a
graph G and a positive integer k, and the task is to decide whether G contains a k-edge subgraph
that satisfies Φ. Specifically, we study the parameterized complexity of EdgeSub(Φ) and of its
counting problem #EdgeSub(Φ) with respect to both approximate and exact counting. We obtain
a complete picture for minor-closed properties Φ: the decision problem EdgeSub(Φ) always admits
an FPT (“fixed-parameter tractable”) algorithm and the counting problem #EdgeSub(Φ) always
admits an FPTRAS (“fixed-parameter tractable randomized approximation scheme”). For exact
counting, we present an exhaustive and explicit criterion on the property Φ which, if satisfied, yields
fixed-parameter tractability and otherwise #W[1]-hardness. Additionally, most of our hardness
results come with an almost tight conditional lower bound under the so-called Exponential Time
Hypothesis, ruling out algorithms for #EdgeSub(Φ) that run in time f(k) · |G|o(k/ log k) for any
computable function f .

As a main technical result, we gain a complete understanding of the coefficients of toroidal grids
and selected Cayley graph expanders in the homomorphism basis of #EdgeSub(Φ). This allows
us to establish hardness of exact counting using the Complexity Monotonicity framework due to
Curticapean, Dell and Marx (STOC’17). This approach does not only apply to #EdgeSub(Φ)
but also to the more general problem of computing weighted linear combinations of subgraph
counts. As a special case of such a linear combination, we introduce a parameterized variant of
the Tutte Polynomial T k

G of a graph G, to which many known combinatorial interpretations of
values of the (classical) Tutte Polynomial can be extended. As an example, T k

G(2, 1) corresponds
to the number of k-forests in the graph G. Our techniques allow us to completely understand the
parameterized complexity of computing the evaluation of T k

G at every pair of rational coordinates
(x, y). In particular, our results give a new proof for the #W[1]-hardness of the problem of counting
k-forests in a graph.
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1 Extended Abstract

Be it searching for cliques in social networks or understanding protein-protein interaction
networks, many interesting real-life problems boil down to finding (or counting) small
patterns in large graphs. Hence, to no surprise, finding (and counting) small patterns in large
graphs are among the most well-studied computational problems in the fields of database
theory [12, 40, 32, 13, 27], molecular biology and bioinformatics [38, 1, 56, 59], and network
science [60, 52, 53]. In fact, already in the 1970s, the relevance of finding patterns became
apparent in the context of finding cliques, finding Hamiltonian paths, or finding specific
subgraphs in general [19, 18, 62, 12]. However, with the advent of motif counting for the
frequency analysis of small structures in complex networks [52, 53], it became evident that
detecting the existence of a pattern graph is not enough; we also need to count all of the
occurrences of the pattern.

In this work, our patterns are (not necessarily induced) edge subgraphs that satisfy a
certain graph property: for instance, given a graph, we want to count all occurrences of edge
subgraphs that are are planar or connected.

From a classical point of view, often the problem of finding patterns is already NP-
hard: prime examples include the aforementioned problems of finding (maximum) cliques
or Hamiltonian paths. However, for the task of network motif counting, the patterns are
(almost) always much smaller than the network itself (see [52, 53, 1]). This motivates a
parameterized view: can we obtain fast algorithms to compute the number of occurrences
of “small” patterns? If we cannot, can we at least obtain fast (randomized) algorithms to
compute an estimate of this number? And if we cannot even do this, can we at least obtain
fast algorithms to detect an occurrence? In this work, we completely answer all of the above
questions for patterns that are specified by minor-closed graph properties (such as planarity)
or selected other graph properties (such as connectivity).

As it turns out, the techniques we develop for answering the above questions are quite
powerful: they easily generalize to a parameterized version of the Tutte polynomial. Spe-
cifically, our techniques allow us to completely understand at which rational points we can
evaluate said parameterized Tutte polynomial in reasonable time, and at which rational
points this is not feasible. This dichotomy turns out to be similar, but not equal, to the
complexity landscape of the classical Tutte polynomial due to Jaeger et al. [42].

Parameterized Counting and Hardness

By now, counting complexity theory is a well established subfield of theoretical computer
science. Already in the 1970s, Valiant started a formal study of counting problems when
investigating the complexity of the permanent [63, 64]: counting the number of perfect
matchings in a graph is #P-complete, and hence harder than any problem in the polynomial-
time hierarchy PH by Toda’s Theorem [61]. In contrast, detecting a perfect matching in a
graph is much easier and can be done in polynomial time [33]. Hence, counting problems
can be much harder than their decision problem counterparts.
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As an attempt to overcome the hardness of counting problems in general, the focus
shifted to a multivariate or parameterized view on these problems. Consider for example the
following problem: given a query φ of size k and a database B of size n, we want to count
the number of answers to φ in B. If we make the very reasonable assumption that k is much
smaller than n, then we may consider an algorithm running in time O(2k · n) as tractable.
Note that in particular, such an algorithm may even outperform an algorithm running in
time O(n2). Also consider [39] for a more detailed and formal discussion.
Formally, given a problem P and a parameterization κ that maps each instance I of P to
a parameter κ(I), we say that P is fixed-parameter tractable (FPT) with respect to κ, if
there is an algorithm that solves each instance I of size n in time f(κ(I)) · nO(1), for some
computable function f . This notion was introduced by Downey and Fellows in the early
1990s [29, 30] and has itself spawned a rich body of literature (see [35, 31, 23]). In the context
of the problems of detecting and counting small patterns in large networks, we parameterize
by the size of the pattern: given a pattern of size k and a network of size n, we aim for
algorithms that run in time f(k) · nO(1), for some computable function f . However, for some
patterns, even this goal is too ambitious: it is widely believed that even finding a clique of
size k is not fixed-parameter tractable; in particular, an FPT algorithm for finding a clique
of size k would also imply a breakthrough result for the Satisfiability Problem and thereby
refute the widely believed Exponential Time Hypothesis [15, 16]. If a problem P is at least
as hard as finding a clique (or counting all cliques) of size k, we say that P is W[1]-hard (or
#W[1]-hard, respectively).

For such a (#)W[1]-hard problem, the hope is to (significantly) improve upon the naive
brute-force algorithm, which runs in time nO(k) for the problems considered in this work.
However, in view of the aforementioned reduction from the Satisfiability Problem to the
problem of finding cliques of size k [14, 15], we can see that for finding cliques this, too,
would require a breakthrough for the Satisfiability Problem, which, again, is believed to
be unlikely [41]. In our paper, via suitable reductions from the problem of finding cliques,
we establish that exact algorithms significantly faster than the brute-force algorithms are
unlikely for the problems we study.

Parameterized Detection and Counting of Edge Subgraphs

Vertex-induced subgraphs as patterns are notoriously hard to detect or to count. The long
line of research on this problem [47, 17, 43, 44, 51, 45, 21, 57, 28, 58] showed that this holds
even if the patterns are significantly smaller than the host graphs, as witnessed by W[1] and
#W[1]-hardness results and almost tight conditional lower bounds. In case of exact counting,
it is in fact an open question whether there are non-trivial instances of induced subgraph
counting that admit efficient algorithms; recent work [58] supports the conjecture that no
such instances exist.

In search for fast algorithms, in this work, we hence consider a related, but different
version of network-motif counting: for a computable graph property Φ, in the problem
#EdgeSub(Φ) we are given a graph G and a positive integer k, and the task is to compute
the number of (not necessarily induced) edge subgraphs1 with k edges in G that satisfy Φ.
Similarly, we write EdgeSub(Φ) for the corresponding decision problem. Then, in contrast to
the case of counting vertex-induced subgraphs, for (#)EdgeSub(Φ), we identify non-trivial

1 Recall that an edge subgraph G′ of a graph G may have fewer edges than the subgraph of G that is
induced by the vertices of G′.

ICALP 2021



108:4 Detecting and Counting Small Subgraphs, and a Parameterized Tutte Polynomial

properties Φ for which (#)EdgeSub(Φ) is fixed-parameter tractable; we discuss this in more
detail later. First, however, let us take a detour to elaborate more on what is known already
for (#)EdgeSub(Φ).

If the property Φ is satisfied by at most a single graph for each value of the parameter k,
the decision problem EdgeSub(Φ) becomes the subgraph isomorphism problem. Hence,
naturally there is a vast body of known techniques and results for special properties Φ: for
FPT algorithms, think of the Colour-Coding technique by Alon, Yuster and Zwick [3], the
“Divide and Colour”-technique [16], narrow sieving [7], representative sets [36], or “extensor-
coding” [9] to name but a few. For hardness results, apart from the aforementioned example
of detecting a clique, Lin quite recently established that detecting a k-biclique is also W[1]-
hard [48]. However, a complete understanding of the parameterized decision version of
the subgraph isomorphism is one of the major open problems of parameterized complexity
theory [31, Chapter 33.1], that is still to be solved.

In the setting of parameterized counting, the situation is much better understood: Flum
and Grohe [34] proved #EdgeSub(Φ) to be #W[1]-hard when Φ is the property of being
a cycle, or the property of being a path. Curticapean [20] established the same result for
the property of being a matching. In [22], Curticapean and Marx established a complete
classification in case Φ does not hold on two different graphs with the same number of
edges, which is essentially the parameterized subgraph counting problem. In particular, they
identified a bound on the matching number as the tractability criterion. In a later work,
together with Dell [21], they presented what is now called the framework of Complexity
Monotonicity, which can be considered to be one of the most powerful tools in the field of
parameterized counting problems. Note that this does not classify the decision version, as
#W[1]-hardness for a counting problem does not imply W[1]-hardness for the corresponding
decision problem.

In contrast to the parameterized subgraph detection/counting problems, the problem
(#)EdgeSub(Φ) allows to search for more general patterns. For example, while the (para-
meterized) complexity of counting all subgraphs of a graph G isomorphic to a fixed connected
graph H with k edges is fully understood [22], the case of counting all connected k-edge
subgraphs of a graph G remained open so far. As one of our main results, we completely
understand the problem #EdgeSub(Φ) for the property Φ = connectivity. In what follows,
we present our results, followed by an exposition of the most important techniques. Due to
the space constraints, we have to defer the proofs to the full version.

Main Results
In a first part, we present our results on (#)EdgeSub(Φ); we continue with a definition and
our results for a parameterized Tutte polynomial in a second part.

Our main results on (#)EdgeSub(Φ) can be categorized in roughly three categories: (1)
exact algorithms and hardness results for the counting problem; (2) approximation algorithms
for the counting problem; and (3) algorithms for the decision problem. For minor-closed
properties Φ, we obtain exhaustive results for all three categories, for other (classes of)
properties that we study, we obtain partial criteria. For an overview over our results on
#EdgeSub(Φ), also consider Table 1; we go into more detail in the following.

Complete Classification for Minor-Closed Properties

Let us start with the case where the graph property Φ is closed under taking minors, that is,
if Φ holds for a graph, then Φ still holds after removing vertices or edges, or after contracting
edges. For minor-closed properties Φ, we obtain a complete picture of the complexity of
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Table 1 An overview of the complexity of (#)EdgeSub(Φ) for different classes and examples
of properties Φ, with respect to exact counting, approximate counting and decision. See further
below for the definition of the matching and star criterion. All run-time lower bounds rely on
the Exponential Time Hypothesis, and the absence of FPTRASes relies on the assumption that
W[1] does not coincide with FPT under randomised parameterized reductions. We write “mixed”
whenever the respective classes contain both tractable properties and hard properties. The known
results about the clique problem are added for completeness; note that W[1]-hardness of decision
immediately rules out an FPTRAS for approximate counting under the previous assumptions.

Property Φ Exact Counting Apx. Counting Decision

Minor-closed†

(e.g. Φ = planarity)
#W[1]-hard

not in f(k) · |G|o(k/ log k) FPTRAS FPT

(Main Theorem 1) (Main Theorem 1) (Main Theorem 1)

Φ = connectivity #W[1]-hard
not in f(k) · |G|o(k/ log k) FPTRAS FPT

(Main Theorem 2) (follows from [26]) (easy)

Φ = Hamiltonicity #W[1]-hard
not in f(k) · |G|o(k/ log k) unknown unknown

(Main Theorem 2)

Φ = Eulerianity #W[1]-hard
not in f(k) · |G|o(k/ log k) unknown unknown

(Main Theorem 2)

Φ = claw-freeness #W[1]-hard
not in f(k) · |G|o(k/ log k) unknown unknown

(Main Theorem 2)

Bounded matching FPT FPTRAS FPT
number (Proposition 1.2) (by exact counting) (by exact counting)

Bounded treewidth mixed‡ FPTRAS FPT
(Main Theorem 3) (follows from [55])

Matching crit. and mixed∗ FPTRAS FPT
star crit. (Main Theorem 3) (Main Theorem 4)

Matching crit. or mixed‡ mixed§ FPT
star crit. (Main Theorem 4)

Φ = Ψ #W[1]-hard no FPTRAS FPT
(see full version) (full version) (full version) (full version)

Φ = Clique #W[1]-hard no FPTRAS W[1]-hard
([34]) (implicitly by [30]) ([30])

†We assume that the minor-closed property Φ does not have bounded matching number, is not trivially true and

that each forbidden minor has a vertex of degree at least 3.
‡Φ = true and Φ = false always yield fixed-parameter tractability of exact counting. Φ(H) = 1 ⇔ H is a matching

yields #W[1]-hardness of exact counting [20]; note that the latter property is of bounded treewidth and satisfies the

matching criterion.
∗Φ = true always yields fixed-parameter tractability of exact counting. Φ(H) = 1 ⇔ (H is a matching or a star)

yields #W[1]-hardness by Theorem 1.4; note that the latter property satisfies the matching criterion and the star

criterion.
§Φ = true always yields an FPTRAS for approximate counting. Φ = Ψ (from the full version) does not allow for an

FPTRAS while satisfying the matching criterion.
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#EdgeSub(Φ) and EdgeSub(Φ). In what follows, we say that a property Φ has bounded
matching number if there is a constant bound on the size of a largest matching in graphs
satisfying Φ.

▶ Main Theorem 1. Let Φ denote a minor-closed graph property.
1. Exact Counting: If Φ is either trivially true or of bounded matching number, then the

(exact) counting version #EdgeSub(Φ) is fixed-parameter tractable. Otherwise, the
problem #EdgeSub(Φ) is #W[1]-hard. If, additionally, each forbidden minor of Φ has a
vertex of degree at least 3, and the Exponential Time Hypothesis holds, then #EdgeSub(Φ)
cannot be solved in time f(k) · |G|o(k/ log k), for any function f .

2. Approximate Counting: The problem #EdgeSub(Φ) always has a fixed-parameter tractable
randomised approximation scheme (FPTRAS).2

3. Decision: The problem EdgeSub(Φ) is always fixed-parameter tractable.

Consider for example the property Φ of being planar: planar graphs do not have bounded
matching number. Additionally, by Kuratowski’s Theorem, the forbidden minors of planar
graphs are the 3-biclique K3,3 and the 5-clique K5. Since both K3,3 and K5 contain a vertex
of degree at least 3, we conclude that computing the number of planar subgraphs with k edges
in a graph G is #W[1]-hard and, assuming ETH, cannot be solved in time f(k) · |G|o(k/ log k)

for any function f . In sharp contrast, approximating the number of planar subgraphs with k

edges in a graph, as well as deciding whether there is such a planar subgraph can be done
efficiently. We obtain Main Theorem 1 as a combination of our (more general) results for
each of the three settings that we study; we discuss these results next.

Results for Exact Counting

Let us return to the case of arbitrary graph properties Φ. Without any further assumptions
on Φ, the naive algorithm for #EdgeSub(Φ) on the input (k, G) proceeds by enumerating
the k-edge subsets of G and counting the number of cases where the corresponding subgraph
satisfies Φ. This leads to a running time of the form f(k) · |V (G)|2k+O(1). However, at
least the linear constant in the exponent can be substantially improved using the currently
fastest known algorithm for counting subgraphs with k edges due to Curticapean, Dell and
Marx [21]. In the full version, we show that it easily extends to the case of #EdgeSub(Φ):

▶ Proposition 1.1. Let Φ denote a computable graph property. Then #EdgeSub(Φ) can be
solved in time f(k) · |V (G)|0.174k+o(k), where f is some computable function.

On the other hand, it was shown by Curticapean and Marx [22] that for the property Φ of
being a matching, the problem #EdgeSub(Φ) cannot be solved in time f(k) · |V (G)|o(k/ log k)

for any function f , unless ETH fails. In other words, asymptotically and up to a factor of
1/ log k, the exponent of |V (G)| in the running time of #EdgeSub(Φ) cannot be improved
without posing any restriction on Φ.

The goal is hence to identify properties Φ for which the algorithm in Proposition 1.1
can be (significantly) improved. In the best possible outcome, we hope to identify the
properties for which the exponent of |V (G)| does not depend on k; those cases are precisely
the fixed-parameter tractable ones. An easy consequence of known results for subgraph
counting (see for instance [22]) establishes the following tractability criterion; we include the
proof only for the sake of completeness in the full version:

2 The formal definition is given in the full version; intuitively an FPTRAS is the parameterized equivalent
of a fully polynomial-time randomised approximation scheme (FPRAS).
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▶ Proposition 1.2. Let Φ denote a computable graph property satisfying that there is M > 0
such that for all k either the graphs with k edges satisfying Φ or the graphs with k edges
satisfying ¬Φ have matching number bounded by M . Then #EdgeSub(Φ) is fixed-parameter
tractable.

Examples of properties satisfying the tractability criterion of Proposition 1.2 include, among
others, the property of being a star, or the complement thereof. We conjecture that all
remaining properties induce #W[1]-hardness and rule out any algorithm running in time
f(k) · |G|o(k/ log k) for any function f , unless ETH fails.3 For the case of minor-closed graph
properties, we have seen above that this conjecture holds.

Further, the techniques we develop to prove hardness of #EdgeSub(Φ) for minor-closed
properties Φ in Main Theorem 1 can also be applied directly to show hardness for other
specific properties Φ. Below, we record several natural examples of such properties which
are covered by our methods.

▶ Main Theorem 2. Consider the following graph properties.
ΦC(H) = 1 if and only if H is connected.
ΦH(H) = 1 if and only if H is Hamiltonian.
ΦE(H) = 1 if and only if H is Eulerian.
ΦCF (H) = 1 if and only if H is claw-free.

For Φ ∈ {ΦC , ΦH , ΦE , ΦCF }, the problem #EdgeSub(Φ) is #W[1]-hard. Further, unless
ETH fails, the problem #EdgeSub(Φ) cannot be solved in time f(k) · |G|o(k/ log k) for any
function f .

Results for Approximate Counting and Decision

Our results on exact counting indicate that we have to relax the problem if we aim for
tractability results for a larger variety of properties. One approach is to only ask for
an approximate count of the number of k-edge subgraphs satisfying Φ. Tractability of
approximation in the parameterized setting is given by the notion of a fixed-parameter tractable
randomized approximation scheme (FPTRAS) as introduced by Arvind and Raman [5]. While
we give the formal definition in full version, it suffices for now to think of an FPTRAS as a
fixed-parameter tractable algorithm that can compute an arbitrarily good approximation of
the answer with high probability. Readers familiar with the classical notions of approximate
counting algorithms should think of an FPTRAS as an FPRAS in which we additionally
allow a factor of f(k) in the running time, for any computable function f .

For the statement of our results, we say that a property Φ satisfies the matching criterion
if it is true for all but finitely many matchings, and we say that it satisfies the star criterion
if it is true for all but finitely many stars. Furthermore, we say that Φ has bounded treewidth
if there is a constant upper bound on the treewidth of graphs that satisfy Φ.

▶ Main Theorem 3. Let Φ denote a computable graph property. If Φ satisfies the matching
criterion and the star criterion, or if Φ has bounded treewidth, then #EdgeSub(Φ) admits
an FPTRAS.

For example, the property of being planar satisfies both, the star and the matching
criterion. Moreover, we can show that every minor-closed graph property Φ has either
bounded treewidth or satisfies matching and star criterion, and thus always admits an

3 Note that it does not matter whether we choose |G| or |V (G)| for the size of the large graph since we
care about the asymptotic behaviour of the exponent.
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FPTRAS. Additionally, if not only exact but also approximate counting is intractable, we ask
whether we can at least obtain an efficient algorithm for the decision version EdgeSub(Φ).
Again, we obtain a tractability criterion; observe the subtle difference in the tractability
criterion compared to Main Theorem 3.

▶ Main Theorem 4. Let Φ denote a computable graph property. If Φ satisfies the matching
criterion or the star criterion, or if Φ has bounded treewidth, then EdgeSub(Φ) is fixed-
parameter tractable.

As an easy corollary, we can conclude that for monotone, that is, subgraph-closed
properties Φ, the problem EdgeSub(Φ) is always fixed-parameter tractable.4

For many previously studied problems, the complexity analysis of approximate counting
and decision were related: often an algorithm solving one setting can be used to solve the
other setting [51, 26]. However, in our results Main Theorems 3 and 4 we see an asymmetry
between the two settings: it suffices for Φ to satisfy only one of the star and the matching
criterion to induce tractability of the decision version, but we require satisfaction of both
for approximate counting. One might expect that this reflects a shortcoming of our proof
methods (and that in fact it suffices to check one of the criteria to have tractability of
approximate counting). Interestingly, this is not the case:

▶ Proposition 1.3. There is a computable graph property Ψ (see full version) that satisfies
the matching criterion, but not the star criterion, such that EdgeSub(Ψ) is fixed-parameter
tractable, but #EdgeSub(Ψ) does not admit an FPTRAS unless W[1] coincides with FPT
(the class of all fixed-parameter tractable decision problems) under randomised parameterized
reductions.

Dichotomy for Evaluating a parameterized Tutte Polynomial

As a final part of the presentation of our main results, let us discuss our results on a
parameterized Tutte polynomial.

The classical Tutte polynomial (as well as its specializations like the chromatic, flow
or reliability polynomial) have received widespread attention, both from a combinatorial
as well as a complexity theoretic perspective [42, 2, 65, 6, 37, 25, 10, 8]. The classical
Tutte polynomial is of special interest from a complexity theoretic perspective, as the Tutte
polynomial encodes a plethora of properties of a graph: prominent examples include the
chromatic number, the number of acyclic orientations, and the number of spanning trees; we
refer the reader to the work of Jaeger et al. [42] for a comprehensive overview. Formally, the
Tutte polynomial is a bivariate graph polynomial defined as follows (see [42]):

TG(x, y) :=
∑

A⊆E(G)

(x − 1)k(A)−k(E(G)) · (y − 1)k(A)+#A−#V (G) ,

where k(S) is the number of connected components of the graph (V (G), S). In the afore-
mentioned work, Jaeger et al. [42] also classified the complexity of evaluating the Tutte
Polynomial in every pair of (complex) coordinates, that is, for every pair (a, b), the complexity
of computing the function G 7→ TG(a, b) is fully understood.

4 Every graph property has either bounded treewidth or unbounded matching number. In the latter case,
if the property is additionally monotone, it must satisfy the matching criterion.
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In this work, we consider the following parameterized version of the Tutte Polynomial by
restricting to edge-subsets A in G of size k:

T k
G(x, y) :=

∑
A∈(E(G)

k )
(x − 1)k(A)−k(E(G)) · (y − 1)k(A)+k−#V (G) .

We observe that the parameterized Tutte polynomial can be seen as a weighted version of
counting small k-edge subgraph patterns by assigning to each k-edge subset A of G the
weight

(x − 1)k(A)−k(E(G)) · (y − 1)k(A)+k−#V (G) .

Moreover, we point out that T k
G(x, y) is related to a generalization of the bases generating

function for matroids [4]. By establishing a so-called deletion-contraction recurrence, we
show that T k

G(x, y) has similar expressive power as its classical counterpart TG(x, y):

▶ Main Theorem 5. For any graph G and positive integer k, the following graph invariants
are encoded in T k

G(x, y):
1. T k

G(2, 1) is the number of k-forests in G. In other words T k
G(2, 1) corresponds to the

problem #EdgeSub(Φ) for the property Φ of being a forest.
2. For each positive integer c, the values of T k

G(1 − c, 0) determine5 the numbers of pairs
(A, σ), where A is a k-edge subset of G, and σ is a proper c-colouring of (V (G), A).

3. From T k
G(2, 0) we can compute the numbers of pairs (A, η⃗), where A is a k-edge subset of

G, and η⃗ is an acyclic orientation of (V (G), A).
4. T k

G(2, 0) also determines the number of k-edge subsets A of G, such that (V (G), A) has
even Betti Number (we give a formal definition of the Betti number in the full version).

5. T k
G(0, 2) determines the number of k-edge subsets A of G, such that (V (G), A) has an

even number of components.

Note that, while #EdgeSub(Φ) only allows us to count the number of subgraphs with k

edges that satisfy Φ, the parameterized Tutte polynomial allows us to count more intricate
objects, such as tuples of an edge-subset and a colouring (or acyclic orientation) on the
induced graph. From a complexity theoretic point of view, we obtain a similar result as [42],
albeit only for rational coordinates: for each fixed pair (x, y) of coordinates, we consider
the problem receiving as input a graph G and a positive integer k and computing T k

G(x, y).
Following the paradigm of this work, we choose k as a parameter, that is, we consider inputs
in which k is significantly smaller than |G|.

▶ Main Theorem 6. Let (x, y) denote a pair of rational numbers. The problem of computing
T k

G(x, y) is solvable in polynomial-time if x = y = 1 or (x − 1)(y − 1) = 1, fixed-parameter
tractable, but #P-hard, if x = 1 and y ̸= 1, and #W[1]-hard otherwise.

The class #P is the counting version of NP [63, 64] and, in particular, the #P-hard cases
in the above classification are not polynomial-time tractable unless the polynomial-time
hierarchy collapses to P [61]. Consider Figure 1 for a depiction of the classification. Note
that Main Theorem 6 yields #W[1]-hardness for each of the aforementioned problems from
Main Theorem 5. Note further, that the tractable cases are similar, but not equal to the
classical counterpart [42].

5 They are equal up to trivial modifications; in particular, their complexities coincide.

ICALP 2021



108:10 Detecting and Counting Small Subgraphs, and a Parameterized Tutte Polynomial

1
x = 1

(x − 1)(y − 1) = 1

(x − 1)(y − 1) = 1
x

y

(a) Points of the parameterized Tutte polynomial
that can be computed in polynomial-time (blue)
and that are fixed-parameter tractable, but #P-
hard (red). Exact computation at any other point
(yellow) is #W[1]-hard.

y = 1

x = 1

(x − 1)(y − 1) = 1

(x − 1)(y − 1) = 1
x

y

(b) Points of the parameterized Tutte polynomial
that allow for an FPRAS (blue) and for an FPTRAS
(red); all points on the boundary of the blue area
are included. The complexity of approximation is
open for all points outside of the coloured region.

Figure 1 Points of the parameterized Tutte polynomial that can be computed in FPT-time
(a) exactly or (b) approximately. We emphasize that a full classification for exact counting is
established, while the complexity of approximation remains open outside of the coloured area.

Moreover, our proof uses entirely different tools than [42] and illustrates the power and
utility of the method presented in the subsequent discussion of our techniques.

Having fully classified the complexity of exact evaluation of the parameterized Tutte
Polynomial, we also consider the complexity of approximate evaluation. We identify two
regions bounded by the hyperbola (x − 1)(y − 1) = 1 and the lines x = 1 and y = 1 as
efficiently approximable; consider Figure 1b for a depiction.

▶ Main Theorem 7. Let (x, y) denote a pair of rational numbers. If 0 ≤ (x − 1)(y − 1) ≤ 1,
then T k

G(x, y) has an FPTRAS. If additionally x ̸= 1 or y = 1 then T k
G(x, y) even has a fully

polynomial-time randomized approximation scheme (FPRAS).

Techniques

Our Main Theorems 3, 4, and 7 are obtained easily: the proof of Main Theorem 3 is a
standard application (see for instance [51]) of the Monte-Carlo approach, in combination with
Ramsey’s theorem, and Arvind and Raman’s algorithm for approximately counting subgraphs
of bounded treewidth [5]. The proof of Main Theorem 4 uses a standard parameterized
Win-Win approach for graphs of bounded treewidth or bounded degree. Finally, the proof
of Main Theorem 7 is an easy consequence of the work of Anari et al. [4] on approximate
counting via log-concave polynomials.

Hence, in this technical discussion, we want to focus on the technique that enables us to
prove the lower bounds for Main Theorems 1 and 2 and, perhaps surprisingly, also for Main
Theorem 6.

As a main component, we use the Complexity Monotonicity framework of Curticapean,
Dell and Marx [20]. Given a property Φ and a positive integer k, we write #EdgeSub(Φ, k → ⋆)
for the function that maps a graph G to the number of k-edge subgraphs of G that satisfy Φ.
Using a well-known transformation via Möbius inversion [49, Chapter 5.2], we can show that
there are rational numbers a1, . . . , aℓ and graphs H1, . . . , Hℓ such that for each graph G we
have
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#EdgeSub(Φ, k → G) =
k∑

i=1
ai · #Hom(Hi → G) , (1)

where #Hom(Hi → G) is the number of graph homomorphisms from Hi to G. In other
words, we can express #EdgeSub(Φ, k → ⋆) as a finite linear combination of homomorphism
counts. Here, we can then apply the Complexity Monotonicity framework [21], which asserts
that computing a finite linear combination of homomorphism counts is precisely as hard as
its hardest term (among the terms with a non-zero coefficient). However, the complexity of
computing the number of homomorphisms from small pattern graphs to large host graphs is
very well-understood [24, 50]. Roughly speaking, the higher the treewidth of the pattern
graph, the harder the problem becomes; we make this formal in the full version.

Instead of our original problem #EdgeSub(Φ), we can thus consider the problem of
computing linear combinations of graph homomorphism counts. In particular, to obtain
hardness, it suffices to understand for which of the coefficients in equation (1) we have ai ̸= 0,
depending on k and Φ.

Relying on the well-known fact that the Möbius function of the partition lattice alternates
in sign, Curticapean, Dell, and Marx [21] observed that non-trivial cancellations cannot
occur in equation (1) if, for each k, every k-edge graph that satisfies Φ must have the same
number of vertices. Consequently, if the matching number is unbounded, those properties
yield #W[1]-hardness. An example for such a property is the case of Φ(H) = 1 if and only
if H is a tree. In contrast, the intractability result for the case of Φ = acyclicity (that is,
being a forest) turned out to be much harder to show [11], indicated by connections to
parameterized counting problems in matroid theory.

In later work, the coefficients ai were shown to have even more interesting structure:
the coefficients ai describe topological and algebraic invariants of the set of pattern graphs.
For example, in [57] it was shown that the coefficient of the k-clique in case of counting
vertex-induced subgraphs with property Φ is the reduced Euler characteristic of a simplicial
complex associated with Φ and can thus, if non-zero, be used to establish evasiveness of
certain graph properties [46].

In this work, we prove additional insights into said coefficients ai.6 For any graph H

we give an explicit formula for its coefficient aH in terms of a sum over the fractures on H,
an additional combinatorial structure on a graph H resembling, to some extent, a gadget
construction used for the classification of the subgraph counting problem [22] (see full version
for details). Our most crucial insight is then that we can drastically simplify the expression
of the coefficient aH modulo a prime ℓ if H admits a vertex-transitive action of a group of
order given by a power of ℓ. In this case, we obtain an action of the group on the set of
fractures on H and in the formula for aH all contributions from fractures not fixed by the
group cancel out modulo ℓ.

In particular, we consider graphs H which are Cayley graphs of a finite group of prime
power order and a symmetric set of generators. Since the Cayley graph of a group always
has a natural vertex-transitive action of this group, such Cayley graphs always have the
desired symmetry properties. We exploit this by showing that there is a constant number of
fractures fixed by the group action. This in turn allows us to write (aH modulo ℓ) as a finite
sum of terms depending on the value of Φ on some explicit graphs.

6 For technical reasons, the approach we describe below requires us to consider a coloured version of
#EdgeSub(Φ), which is, however, shown to be interreducible with the uncoloured one.
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Figure 2 Two isomorphic representations of the toroidal grid ⊚⊚⊚ℓ: On the left hand side as a grid
with connected endpoints, on the right hand side as a stylized torus.

Specifically, the first set of Cayley graphs we consider are the toroidal grids ⊚⊚⊚ℓ, which
are depicted in Figure 2. Since the treewidth of ⊚⊚⊚ℓ diverges with ℓ, we thus obtain a
#W[1]-hardness result whenever the coefficient a⊚⊚⊚ℓ

does not vanish for infinitely many ℓ.
Writing Mk for the matching of size k, P2 for the path consisting of 2 edges, Ck for the cycle
of length k, Sk for a sun (a cycle with dangling edges) of size k, and ⊚⊚⊚k for the toroidal grid
of size k, our first main technical result reads as follows:

▶ Theorem 1.4 (Simplified version). Let Φ denote a computable graph property and assume
that infinitely many primes ℓ satisfy the equation7

−6Φ(M2ℓ2 )+4Φ(Mℓ2 +ℓCℓ)+8Φ(ℓ2P2)−Φ(2ℓCℓ)−2Φ(ℓC2ℓ)−4Φ(ℓSℓ)+Φ(⊚⊚⊚ℓ) ̸= 0 mod ℓ . (2)

Then #EdgeSub(Φ) is #W[1]-hard.

As a toy example for an application of Theorem 1.4, let us consider the property Φ of
being connected. Observe that among the graphs in (2), only ⊚⊚⊚ℓ is connected, and thus the
sum is always 1 for ℓ ≥ 2. Thus, indeed the left-hand side of (2) is nonzero, proving that
#EdgeSub(Φ) is #W[1]-hard.

Using Theorem 1.4, we can prove most of the #W[1]-hardness results of Main Theorem 1.
However, using the toroidal grid ⊚⊚⊚ℓ we cannot prove (almost) tight conditional lower bounds:
the treewidth of ⊚⊚⊚ℓ grows only with the square-root of the parameter k (that is the number of
edges of the graph). To address this problem, we consider a second family of 4-regular Cayley
graphs, constructed explicitly by Peyerimhoff and Vdovina [54], which have the additional
property of being expander graphs. In particular, for these graphs, the treewidth grows
linearly in the number of edges. This allows us to obtain almost tight conditional lower
bounds. The variant of Theorem 1.4 for these Cayley graph expanders can be found in the
full version of this paper.

The only drawback of the Cayley graphs from [54] is that the corresponding groups always
have orders given by powers of 2 (in contrast to having arbitrary primes ℓ in Theorem 1.4).
Hence, our criterion for hardness is the nonvanishing of some expression modulo 2. Ultimately,
this is the reason why for the conditional lower bounds in Main Theorem 1 we need to
exclude forbidden minors having a vertex of degree 2 or less.

7 We write + for (disjoint) graph union and ℓH for the graph consisting of ℓ disjoint copies of H. Further,
we set Φ(H) = 1 if H satisfies Φ and Φ(H) = 0 otherwise.
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Finally, to obtain Main Theorem 6, we express the parameterized Tutte polynomial at
a rational point (x, y) as a linear combination of (fractures of) toroidal grids; the proof of
Theorem 1.4 then essentially shows that this linear combination always contains a graph
with unbounded treewidth, yielding #W[1]-hardness.

References
1 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S. Cenk Sahinalp.

Biomolecular network motif counting and discovery by color coding.Bioinformatics, 24(13):i241–
i249, July 2008. doi:10.1093/bioinformatics/btn163.

2 Noga Alon, Alan M. Frieze, and Dominic Welsh. Polynomial Time Randomized Approximation
Schemes for Tutte-Gröthendieck Invariants: The Dense Case. Random Struct. Algorithms,
6(4):459–478, 1995. doi:10.1002/rsa.3240060409.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

4 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
II: high-dimensional walks and an FPRAS for counting bases of a matroid. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1–12. ACM,
2019. doi:10.1145/3313276.3316385.

5 Vikraman Arvind and Venkatesh Raman. Approximation Algorithms for Some Parameterized
Counting Problems. In Algorithms and Computation, 13th International Symposium, ISAAC
2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, pages 453–464, 2002.
doi:10.1007/3-540-36136-7_40.

6 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Computing the Tutte
Polynomial in Vertex-Exponential Time. In 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 677–686.
IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.40.

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. doi:10.1016/j.
jcss.2017.03.003.

8 Andreas Björklund and Petteri Kaski. The Fine-Grained Complexity of Computing the Tutte
Polynomial of a Linear Matroid. Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Alexandria, VA, USA, January 10-13, 2021, to appear.

9 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 151–164, 2018. doi:10.1145/3188745.3188902.

10 Cornelius Brand, Holger Dell, and Marc Roth. Fine-Grained Dichotomies for the Tutte Plane
and Boolean #CSP. Algorithmica, 81(2):541–556, 2019. doi:10.1007/s00453-018-0472-z.

11 Cornelius Brand and Marc Roth. Parameterized Counting of Trees, Forests and Matroid
Bases. In Computer Science - Theory and Applications - 12th International Computer Science
Symposium in Russia, CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings, pages 85–98,
2017. doi:10.1007/978-3-319-58747-9_10.

12 Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive Queries
in Relational Data Bases. In Proceedings of the 9th Annual ACM Symposium on Theory of
Computing, May 4-6, 1977, Boulder, Colorado, USA, pages 77–90, 1977. doi:10.1145/800105.
803397.

13 Hubie Chen and Stefan Mengel. Counting Answers to Existential Positive Queries: A Com-
plexity Classification. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 315–326, 2016. doi:10.1145/2902251.2902279.

ICALP 2021

https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1002/rsa.3240060409
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1007/3-540-36136-7_40
https://doi.org/10.1109/FOCS.2008.40
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1145/3188745.3188902
https://doi.org/10.1007/s00453-018-0472-z
https://doi.org/10.1007/978-3-319-58747-9_10
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/2902251.2902279


108:14 Detecting and Counting Small Subgraphs, and a Parameterized Tutte Polynomial

14 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

15 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006. doi:
10.1016/j.jcss.2006.04.007.

16 Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Rossmanith,
Sing-Hoi Sze, and Fenghui Zhang. Randomized Divide-and-Conquer: Improved Path, Matching,
and Packing Algorithms. SIAM Journal on Computing, 38(6):2526–2547, 2009. doi:10.1137/
080716475.

17 Yijia Chen, Marc Thurley, and Mark Weyer. Understanding the Complexity of Induced
Subgraph Isomorphisms. In Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack
A: Algorithms, Automata, Complexity, and Games, pages 587–596, 2008. doi:10.1007/
978-3-540-70575-8_48.

18 Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,
USA, pages 151–158, 1971. doi:10.1145/800157.805047.

19 Derek G. Corneil and C. C. Gotlieb. An Efficient Algorithm for Graph Isomorphism. J. ACM,
17(1):51–64, 1970. doi:10.1145/321556.321562.

20 Radu Curticapean. Counting matchings of size k is w[1]-hard. In Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and
Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages 352–363.
Springer, 2013. doi:10.1007/978-3-642-39206-1_30.

21 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223,
2017. doi:10.1145/3055399.3055502.

22 Radu Curticapean and Dániel Marx. Complexity of Counting Subgraphs: Only the Bounded-
ness of the Vertex-Cover Number Counts. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 130–139,
2014. doi:10.1109/FOCS.2014.22.

23 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

24 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theor. Comput. Sci., 329(1-3):315–323, 2004. doi:10.1016/j.tcs.2004.08.008.

25 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential
Time Complexity of the Permanent and the Tutte Polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

26 Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sampling small
witnesses using a colourful decision oracle. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 2201–2211. SIAM, 2020. doi:10.1137/1.9781611975994.135.

27 Holger Dell, Marc Roth, and Philip Wellnitz. Counting Answers to Existential Questions. In
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, pages 113:1–113:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.113.

28 Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting Induced Sub-
graphs: An Algebraic Approach to #W[1]-hardness. In Peter Rossmanith, Pinar Heggernes,
and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical Found-
ations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume
138 of LIPIcs, pages 26:1–26:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.MFCS.2019.26.

https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1137/080716475
https://doi.org/10.1137/080716475
https://doi.org/10.1007/978-3-540-70575-8_48
https://doi.org/10.1007/978-3-540-70575-8_48
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/321556.321562
https://doi.org/10.1007/978-3-642-39206-1_30
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1145/2635812
https://doi.org/10.1137/1.9781611975994.135
https://doi.org/10.4230/LIPIcs.ICALP.2019.113
https://doi.org/10.4230/LIPIcs.MFCS.2019.26


M. Roth, J. Schmitt, and P. Wellnitz 108:15

29 Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and Completeness
I: Basic Results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

30 Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and Completeness
II: On Completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995. doi:10.1016/
0304-3975(94)00097-3.

31 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

32 Arnaud Durand and Stefan Mengel. Structural Tractability of Counting of Solutions
to Conjunctive Queries. Theory Comput. Syst., 57(4):1202–1249, 2015. doi:10.1007/
s00224-014-9543-y.

33 Jack Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17:449–467,
1965. doi:10.4153/CJM-1965-045-4.

34 Jörg Flum and Martin Grohe. The Parameterized Complexity of Counting Problems. SIAM
J. Comput., 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

35 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

36 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient Computation of Rep-
resentative Sets with Applications in Parameterized and Exact Algorithms. In Chandra
Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 142–151. SIAM,
2014. doi:10.1137/1.9781611973402.10.

37 Leslie Ann Goldberg and Mark Jerrum. The Complexity of Computing the Sign of the Tutte
Polynomial. SIAM J. Comput., 43(6):1921–1952, 2014. doi:10.1137/12088330X.

38 Joshua A. Grochow and Manolis Kellis. Network Motif Discovery Using Subgraph Enumer-
ation and Symmetry-Breaking. In Terry Speed and Haiyan Huang, editors, Research in
Computational Molecular Biology, pages 92–106, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

39 Martin Grohe. Parameterized Complexity for the Database Theorist. SIGMOD Rec., 31(4):86–
96, 2002. doi:10.1145/637411.637428.

40 Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of conjunctive
queries tractable? In Proceedings on 33rd Annual ACM Symposium on Theory of Computing,
July 6-8, 2001, Heraklion, Crete, Greece, pages 657–666, 2001. doi:10.1145/380752.380867.

41 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

42 F. Jaeger, Dirk L. Vertigan, and Dominic J. A. Welsh. On the computational complexity of
the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical
Society, 108(1):35–53, 1990. doi:10.1017/S0305004100068936.

43 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected subgraphs
and graph motifs. J. Comput. Syst. Sci., 81(4):702–716, 2015. doi:10.1016/j.jcss.2014.11.
015.

44 Mark Jerrum and Kitty Meeks. Some Hard Families of Parameterized Counting Problems.
TOCT, 7(3):11:1–11:18, 2015. doi:10.1145/2786017.

45 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd
induced subgraphs. Combinatorica, 37(5):965–990, 2017. doi:10.1007/s00493-016-3338-5.

46 Jeff Kahn, Michael E. Saks, and Dean Sturtevant. A topological approach to evasiveness.
Combinatorica, 4(4):297–306, 1984. doi:10.1007/BF02579140.

47 Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs
with hereditary properties. Theor. Comput. Sci., 289(2):997–1008, 2002. doi:10.1016/
S0304-3975(01)00414-5.

48 Bingkai Lin. The Parameterized Complexity of the k-Biclique Problem. J. ACM, 65(5):34:1–
34:23, 2018. doi:10.1145/3212622.

ICALP 2021

https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00224-014-9543-y
https://doi.org/10.1007/s00224-014-9543-y
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1137/1.9781611973402.10
https://doi.org/10.1137/12088330X
https://doi.org/10.1145/637411.637428
https://doi.org/10.1145/380752.380867
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1017/S0305004100068936
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1145/2786017
https://doi.org/10.1007/s00493-016-3338-5
https://doi.org/10.1007/BF02579140
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1145/3212622


108:16 Detecting and Counting Small Subgraphs, and a Parameterized Tutte Polynomial

49 László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications. Amer-
ican Mathematical Society, 2012. URL: http://www.ams.org/bookstore-getitem/item=
COLL-60.

50 Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112, 2010. doi:
10.4086/toc.2010.v006a005.

51 Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting
problems. Discrete Applied Mathematics, 198:170–194, 2016. doi:10.1016/j.dam.2015.06.
019.

52 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
Motifs: Simple Building Blocks of Complex Networks. Science, 298(5594):824–827, 2002.
doi:10.1126/science.298.5594.824.

53 Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzenshtat,
Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed networks. Science,
303(5663):1538–1542, 2004. doi:10.1126/science.1089167.

54 Norbert Peyerimhoff and Alina Vdovina. Cayley graph expanders and groups of finite width.
J. Pure Appl. Algebra, 215(11):2780–2788, 2011. doi:10.1016/j.jpaa.2011.03.018.

55 Jürgen Plehn and Bernd Voigt. Finding minimally weighted subgraphs. In Rolf H. Möhring,
editor, Graph-Theoretic Concepts in Computer Science, 16rd International Workshop, WG ’90,
Berlin, Germany, June 20-22, 1990, Proceedings, volume 484 of Lecture Notes in Computer
Science, pages 18–29. Springer, 1990. doi:10.1007/3-540-53832-1_28.

56 Ofer Rahat, Uri Alon, Yaakov Levy, and Gideon Schreiber. Understanding hydrogen-bond
patterns in proteins using network motifs. Bioinformatics, 25(22):2921–2928, September 2009.
doi:10.1093/bioinformatics/btp541.

57 Marc Roth and Johannes Schmitt. Counting Induced Subgraphs: A Topological Approach to
#W[1]-hardness. Algorithmica, 82(8):2267–2291, 2020. doi:10.1007/s00453-020-00676-9.

58 Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting Small Induced Subgraphs
Satisfying Monotone Properties. 61th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, to appear.

59 Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. StreaM - A Stream-
Based Algorithm for Counting Motifs in Dynamic Graphs. In Adrian-Horia Dediu, Francisco
Hernández-Quiroz, Carlos Martín-Vide, and David A. Rosenblueth, editors, Algorithms for
Computational Biology, pages 53–67, Cham, 2015. Springer International Publishing.

60 Falk Schreiber and Henning Schwöbbermeyer. Frequency Concepts and Pattern Detection for
the Analysis of Motifs in Networks. In Corrado Priami, Emanuela Merelli, Pablo Gonzalez, and
Andrea Omicini, editors, Transactions on Computational Systems Biology III, pages 89–104,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

61 Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM J. Comput.,
20(5):865–877, 1991. doi:10.1137/0220053.

62 Julian R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976.
doi:10.1145/321921.321925.

63 Leslie G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci.,
8:189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

64 Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput.,
8(3):410–421, 1979. doi:10.1137/0208032.

65 Dirk Vertigan. Bicycle Dimension and Special Points of the Tutte Polynomial. J. Comb.
Theory Ser. B, 74(2):378–396, 1998. doi:10.1006/jctb.1998.1860.

http://www.ams.org/bookstore-getitem/item=COLL-60
http://www.ams.org/bookstore-getitem/item=COLL-60
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.1089167
https://doi.org/10.1016/j.jpaa.2011.03.018
https://doi.org/10.1007/3-540-53832-1_28
https://doi.org/10.1093/bioinformatics/btp541
https://doi.org/10.1007/s00453-020-00676-9
https://doi.org/10.1137/0220053
https://doi.org/10.1145/321921.321925
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0208032
https://doi.org/10.1006/jctb.1998.1860


The Greedy Algorithm Is not Optimal for On-Line
Edge Coloring
Amin Saberi
Stanford University, CA, USA

David Wajc
Stanford University, CA, USA

Abstract
Nearly three decades ago, Bar-Noy, Motwani and Naor showed that no online edge-coloring algorithm
can edge color a graph optimally. Indeed, their work, titled “the greedy algorithm is optimal for
on-line edge coloring”, shows that the competitive ratio of 2 of the naïve greedy algorithm is best
possible online. However, their lower bound required bounded-degree graphs, of maximum degree
∆ = O(log n), which prompted them to conjecture that better bounds are possible for higher-degree
graphs. While progress has been made towards resolving this conjecture for restricted inputs and
arrivals or for random arrival orders, an answer for fully general adversarial arrivals remained elusive.

We resolve this thirty-year-old conjecture in the affirmative, presenting a (1.9 + o(1))-competitive
online edge coloring algorithm for general graphs of degree ∆ = ω(log n) under vertex arrivals. At
the core of our results, and of possible independent interest, is a new online algorithm which rounds
a fractional bipartite matching x online under vertex arrivals, guaranteeing that each edge e is
matched with probability (1/2 + c) · xe, for a constant c > 0.027.
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1 Introduction

An edge coloring of a graph is a decomposition of its edge-set into few vertex-disjoint edge-sets
(matchings), or colors. Edge coloring a graph of maximum degree ∆ trivially requires at
least ∆ colors, and this is tight for bipartite graphs, by the century-old result of König [28].
For general graphs, ∆ colors are not always sufficient (e.g., in odd-length cycles), yet ∆ + 1
colors are always sufficient, by Vizing’s Theorem [35].

Algorithmically matching, or approximating, the optimal ∆(+1) colors needed to edge
color a graph has been the focus of much concentrated effort, for numerous computational
models. These include offline, online, distributed, parallel, and dynamic algorithms (see,
e.g., [7–9, 11, 13, 25, 31, 34, 36] and references therein). These different models’ specific
challenges naturally impose limitations on the attainable approximations. For example,
Holyer’s Theorem [20] rules out efficient offline algorithms for computing an optimal edge
coloring in general graphs, unless P=NP.
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For online algorithms, the challenge is in making immediate and irrevocable decisions
concerning edges’ colors after only part of the input is revealed. For example, the input
graph can either be revealed edge-by-edge (edge arrivals) or vertex-by-vertex (vertex arrivals),
and an online algorithm must assign colors to edges after they are revealed, immediately
and irrevocably. The measure of an online algorithm is its competitive ratio, which is the
worst-case ratio of the number of colors used by the algorithm to those of the optimal offline
algorithm, namely, ∆ or ∆ + 1.

In both the edge-arrival and vertex-arrival settings, a simple greedy algorithm has
competitive ratio 2. The natural question, then, is whether a better online algorithm exists.
Some thirty years ago, Bar-Noy, Motwani and Naor [4] showed that this competitive ratio of
2 is best possible, and no online algorithm (randomized or deterministic) can do better, in
either arrival model.

However, noting that their result only holds for bounded-degree n-node graphs, of
maximum degree ∆ = O(log n), Bar-Noy et al. conjectured that better algorithms exist for
graphs of sufficiently high maximum degree.

▶ Conjecture 1.1 ( [4]). There exists a (2 − Ω(1))-competitive online edge coloring
algorithm under vertex arrivals in n-node graphs of maximum degree ∆ = ω(log n).

Bar-Noy et al. conjectured that the same holds under the more challenging edge-arrival
model, and that moreover a (1+o(1))-competitive algorithm exists. These conjectures remain
out of reach, though progress has been made on them over the years. For edge arrivals, a
positive resolution of the stronger conjecture was achieved under the assumption of random
order arrivals, where the input is generated adversarially, but its arrival order is randomly
permuted by nature [1, 3, 5]. For adversarial vertex arrivals, Cohen et al. [9] showed that
for bipartite graphs under one-sided vertex arrivals (vertices of one side are given, and the
other side’s vertices arrive), the conjectured (1 + o(1))-competitive ratio is achievable for
∆ = ω(log n). Whether the competitive ratio of 2 of the greedy algorithm is optimal under
general vertex arrivals, in general graphs, however, remained open.

We answer the above open question, resolving Conjecture 1.1 in the affirmative.

▶ Theorem 1.2. There exists an online edge coloring algorithm which is (1.897 + o(1))-
competitive w.h.p. on general n-node graphs with maximum degree ∆ = ω(log n) under
vertex arrivals.

▶ Remark 1.3. For general ∆, the o(1) term in the above theorem is of the form γ
√

log n/∆,
for some constant γ > 0. This implies a better than two approximation ratio for sufficiently
large ∆ = O(log n). For simplicity of exposition, we do not elaborate on this point.

1.1 Techniques
To obtain our results, we combine and extend several previous algorithmic ideas.

Our starting point is the following natural recursive approach, due to Karloff and
Shmoys [25], which reduces edge coloring a general graph G to edge coloring random bipartite
subgraphs. Their idea was to assign each vertex to either side of a random subgraph uniformly,
resulting in a bipartite subgraph H of G with maximum degree ∆/2 + o(∆) for ∆ = ω(log n),
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by standard tail bounds. Consequently, applying an α-approximate algorithm to the random
bipartite graph and recursing on the remaining edges is easily shown to result in an edge
coloring using α ·∆/2 + o(∆) + α ·∆/4 + o(∆) · · · = α ·∆ + o(∆) colors. Importantly for
us, this approach, originally used in the context of NC algorithms by [25], is implementable
online, by sampling the random bipartitions in advance. (See Section 5.)

At this point, one might be tempted to use the online algorithm of Cohen et al. [9] for
these random bipartite subgraphs. Unfortunately, the reduction of Karloff and Shmoys [25]
applied to online edge coloring with general vertex arrivals requires an online algorithm for
bipartite graphs with interleaved arrivals, and not one-sided arrivals, as handled by [9]. To
instantiate the Karloff-Shmoys approach, we therefore present a (2 − c)-competitive edge
coloring algorithm for interleaved vertex arrivals in bipartite graphs, which, when combined
with the approach of [25], then extends to general graphs.

To obtain an edge-coloring algorithm for bipartite graphs under interleaved vertex arrival,
we extend the approach of Cohen et al. [9], who showed that an (α + o(1))-competitive edge
coloring can be achieved by repeatedly applying a matching algorithm which matches each
edge with probability (1/α)/∆. For each vertex of degree ∆(1 − o(1)), such a matching
results in v being matched with probability (1/α) · (1 − o(1)). Repeating the above a
super-logarithmic number of times (making use of ∆ = ω(log n)) therefore decreases the
maximum degree of the graph at a rate of roughly one per α colors used. Cohen et al. used
this approach with α = 1 + o(1), using an online matching algorithm from [10], on bipartite
graphs under one-sided arrivals. We observe that this approach extends to arbitrary α and
any arrival model, including interleaved vertex arrivals in bipartite graphs. (See Section 6.)

Motivated by the above discussion, we design an online matching algorithm for bipartite
graphs under interleaved arrivals, which matches each edge with probability (1/2 + c)/∆,
for some constant c > 0. More generally, and of possible independent interest, we design an
online rounding algorithm for bipartite fractional matchings under interleaved vertex arrivals,
with a multiplicative factor of 1/2 + c. That is, we show how, given a bipartite graph G

and a fractional matching x in G revealed vertex-by-vertex, one can output a randomized
matching which matches each edge e in G with probability (1/2 + c) · xe. This extends a
similar online rounding algorithm previously developed by the authors with Papadimitriou
and Pollner [33] in the context of online stochastic optimization, but which only works under
one-sided vertex arrivals, and is therefore insufficient for our needs. This new rounding
algorithm is the technical meat of this paper, and is presented in Section 3.

Combining the above, we obtain Theorem 1.2, and the positive resolution of Conjecture 1.1.

1.2 Related Work
The first positive results for online edge coloring were under random order edge arrivals.
In this setting, Aggarwal et al. [1] showed that a (1 + o(1))-competitive ratio is achievable
in dense multigraphs with maximum degree ∆ = ω(n2). Bahmani et al. [3] then showed
that the greedy algorithm is sub-optimal for any graph of maximum degree ∆ = ω(log n).
Achieving the best of both these results, Bhattacharya et al. [5] recently obtained a (1 + o(1))-
competitive algorithm for graphs of maximum degree ∆ = ω(log n). As stated above, the
only prior algorithm which outperforms the greedy algorithm under adversarial arrivals is
the algorithm of Cohen et al. [9] for bipartite graphs under one-sided vertex arrivals. In this
work, we remove the assumption of bipartiteness and one-sided arrivals, and show how to
outperform greedy in general graphs under arbitrary vertex arrivals.

Our work also ties into the long line of work on online matching, initiated by Karp,
Vaizrani and Vazirani [26]. (See e.g., [2, 16, 18, 19, 21, 32] and references therein and [29] for a
survey of earlier work.) Historically, most research on online matching considered bipartite
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graphs with one-sided arrivals, due to applications in Internet advertising [17, 30]. A recent
line of work considers such problems subject to interleaved vertex arrivals (motivated by
more dynamic two-sided markets), as well as vertex arrivals in general graphs [2,19,21,22,37].
Our rounding algorithm for bipartite graphs with interleaved arrivals adds to the list of tools
for tackling problems in this space.

Few of the works in the online (bipartite) matching literature rely on randomized rounding.
At first blush, this seems surprising, given the integrality of the bipartite fractional matching
polytope, and the multitude of competitive fractional algorithms for problems in this area
[6, 17, 21, 22, 24, 37]. However, as pointed out in [12] and elaborated upon in [10], lossless
rounding of a fractional matching x is impossible in online settings. In particular, outputting a
matchingM which matches each edge e in a bipartite graph with probability Pr[e ∈M] = xe

is impossible in online settings, though it is easy to do offline. A natural question, then, is
what is the highest value of α < 1 for which one can guarantee Pr[e ∈ M] ≥ α · xe when
rounding bipartite fractional matchings online. The batched OCRS of Ezra et al. [15] gives
α = 1/2, unfortunately too low for our purposes. In prior work [33], motivated by a variation
of the online Bayesian selection problem, we improve this bound to α = 0.51, though only
for one-sided arrivals, which is insufficient for our needs here. In this work we generalize this
result, achieving a slightly higher α = 0.527, subject to interleaved vertex arrivals.

2 Preliminaries

The underlying (a priori unknown) input to our problem is an n-node graph G = (V, E) of
maximum degree ∆ (with n and ∆ both known). The vertices of G are revealed over time.
For notational convenience, we associate the n := |V | vertices with the numbers in [n] by
order of appearance, and denote by u < v the fact that u arrives before v. When a vertex v

arrives (at time v), all its edges (u, v) to its previously-arrived neighbors u < v are revealed.
After v arrives, and before arrival of vertex v + 1, an online edge coloring algorithm must
decide, irrevocably, which color to assign to all edges (u, v) with u < v. The objective is to
minimize the number of distinct colors used.

As outlined in the introduction, we will rely on the ability to edge color general graphs by
recursively coloring random bipartite subgraphs, as first proposed by Karloff and Shmoys [25],
in the context of NC algorithms. The extension and proof for online settings is essentially
the same, and is provided, for completeness, in Section 5.

▶ Lemma 2.1 (Implied by [25]). Given an online edge coloring algorithm which is α-competitive
w.h.p. on bipartite graphs of maximum degree ∆ = ω(log n) under interleaved vertex arrivals,
there exists an online edge coloring algorithm which is (α+o(1))-competitive w.h.p. on general
graphs of maximum degree ∆ = ω(log n) under vertex arrivals.

The following lemma, implied by the recent work of Cohen et al. [9], reduces α-competitive
edge coloring to online matching algorithms which match each edge with probability (1/α)/∆.
The proof is is provided, for completeness, in Section 6.

▶ Lemma 2.2 (Implied by [9]). Let A be an online matching algorithm which on any (bipartite)
graph of maximum degree ∆ ≤ ∆′ under vertex arrivals, matches each edge with probability
at least 1/(α∆′). Then, there exists an online edge coloring algorithm A′ which is (α + o(1))-
competitive w.h.p. for (bipartite) graphs of maximum degree ∆ = ω(log n) under vertex
arrivals.

Motivated by Lemma 2.2, we show how to (approximately) round fractional matchings
online. These are assignments of nonnegative xe ≥ 0 to edges e ∈ E, satisfying the fractional
matching constraint,

∑
e∋v xe ≤ 1 for all v ∈ V . This is a fractional relaxation of the
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matching constraint, which stipulates that the degree of any vertex in a matching be at
most one. Fittingly, we refer to

∑
w<v xu,w as the fractional degree of u before arrival of v

(or at its arrival time, if u = v). We shall show how to round fractional matchings up to a
multiplicative error of α < 2. This rounding subroutine applied to the fractional matching
assigning value 1/∆ to each edge of the graph thus matches each edge with probability
1/(α∆). Combined with lemmas 2.1 and 2.2, this yields our (α + o(1))∆ coloring algorithm.

2.1 Negative Association
In our work we will need to bound positive correlations between variables. At the core of
these proofs will be a use of negatively associated random variables. This section introduces
this notion of negative dependence and its properties which we use.

▶ Definition 2.3 ([23, 27]). Random variables X1, . . . , Xn are negatively associated (NA)
if every two monotone nondecreasing functions f and g defined on disjoint subsets of the
variables in X⃗ are negatively correlated. That is,

E[f · g] ≤ E[f ] · E[g]. (1)

The following simple example of NA variables will prove useful for us.

▶ Proposition 2.4 (0-1 Principle [14]). Let X1, . . . , Xn ∈ {0, 1} be binary random variables
satisfying

∑
i Xi ≤ 1 always. Then, the variables X1, . . . , Xn are NA.

Negative association is closed under several operations, allowing to construct more
elaborate NA distributions from simpler NA distributions as above (see [14,23,27]).

▶ Proposition 2.5 (Independent Union). Let X1, . . . , Xn be NA and Y1, . . . , Ym be NA, with
{Xi}i independent of {Yj}j. Then, the variables X1, . . . , Xn, Y1, . . . , Ym are all NA.

▶ Proposition 2.6 (Function Composition). Let X1, . . . , Xn be NA variables, and let f1, . . . , fk

be monotone nondecreasing functions defined on disjoint subsets of the variables in X⃗. Then
the variables f1(X⃗), . . . , fk(X⃗) are NA.

An immediate corollary of negative association, obtained by considering the functions
f(X⃗) = Xi and g(X⃗) = Xj for i ̸= j, is pairwise negative correlation.

▶ Proposition 2.7 (NA implies Negative Correlation). Let X1, . . . , Xn be NA variables. Then,
for all i ̸= j, we have that Cov(Xi, Xj) ≤ 0.

2.2 Probability Basics
Here we include, for completeness, a number of basic probabilistic results used in this paper.

▶ Proposition 2.8 (Chernoff Bound). Let X =
∑

i Xi be the sum of independent Bernoulli
random variables Xi ∼ Bernoulli(pi), with expectation µ := E[X] =

∑
i pi. Then, for any

ϵ ∈ (0, 1), and κ ≥ µ,

Pr[X ≥ κ · (1 + ϵ)] ≤ exp
(
−κ · ϵ2

3

)
.

Pr[X ≤ µ · (1− ϵ)] ≤ exp
(
−µ · ϵ2

2

)
.
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▶ Proposition 2.9 (Coupling). Let X1, . . . , Xm be binary random variables such that for all
i and x⃗ ∈ {0, 1}i−1,

Pr

Xi = 1

∣∣∣∣∣ ∧
ℓ∈[i−1]

(Xℓ = xℓ)

 ≥ pi.

If {Yi ∼ Bernoulli(pi)}i are independent random variables, then for any k ∈ R,

Pr
[∑

i

Xi ≤ k

]
≤ Pr

[∑
i

Yi ≤ k

]
.

▶ Proposition 2.10. Let A and B be Bernoulli random variables. Then

Cov(A, B) = Cov(1−A, 1−B).

3 Rounding Bipartite Fractional Matchings Online

In this section we present an online algorithm which (approximately) rounds a bipartite
fractional matching under interleaved vertex arrivals. In what follows, we let c ≥ 0.027 be
the largest value below 0.03 satisfying

(1/2− c)(1− 4c)(1/2− c− 6c/(1/2− c))− 2c ≥ 0. (2)

We note that this choice of c ≤ 0.03 also satisfies the following.1

min{1/2− c, 1− 4c, 1− 6c/(1/2− c)2} ≥ 0. (3)

We show the following.

▶ Theorem 3.1. There exists an online algorithm which, given an (unknown) bipartite
graph G under interleaved vertex arrivals, together with a fractional matching x in G,
outputs a random matching M matching each edge e ∈ E with probability

Pr[e ∈M] = (1/2 + c) · xe ≥ 0.527 · xe. (4)

We now turn to describing the algorithm claimed by the above theorem.

3.1 Intuition and Algorithm
Before presenting our algorithm, we describe the approach used to obtain Theorem 3.1
under one-sided arrivals [33], and then discuss the new ideas needed to extend this result to
interleaved arrivals.

Naturally, an edge (u, v) with u < v (i.e., v arriving later than u) can only be matched if
u is not already matched before the arrival of v. We denote by Fu,v the event that u is free
(i.e., is not matched in M) prior to the arrival of v. The guarantee of Theorem 3.1 implies
the following closed form for the probability of this event.

Pr[Fu,v] = g(u, v) := 1−
∑
w<v

(1/2 + c) · xu,w. (5)

1 We encourage the reader to think of c → 0, and note that inequalities (2) and (3) hold for sufficiently
small constant c > 0. Our choice of c ≈ 0.027 is simply the largest satisfying all these constraints.
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To achieve marginal probabilities of Pr[(u, v) ∈M] = (1/2 + c) · xu,v, our first step is to
have every arriving vertex v pick a random neighbor u < v with probability xu,v, and then,
if u is free, we match (u, v) with probability qu,v := min(1, (1/2 + c)/g(u, v)). For neighbors
u of low fractional degree upon arrival of v, i.e.,

∑
w<v xu,w ≤ 1/2−c

1/2+c , this last probability
is precisely qu,v = (1/2 + c)/ Pr[Fu,v]. Consequently, we match each such edge (u, v) with
probability Pr[(u, v) ∈M] = xu,v · Pr[Fu,v] · (1/2 + c)/ Pr[Fu,v] = (1/2 + c) · xu,v, as desired.
For edges (u, v) for which u has high fractional degree, on the other hand, this only gives us
Pr[(u, v) ∈M] ≥ (1/2− c) · xu,v, and this can be tight.

To increase the probability of an edge (u, v) to be matched to the desired (1/2 + c) · xu,v,
we repeat this process a second time, making a second pick, if v is not matched after its
first pick. Here, we must argue that the variables {Fu,v | u < v} do not have strong positive
correlation. Indeed, if, as an extreme case, we had Fu,v = Fw,v always for all u, w < v, and
v had only high-degree neighbors (for which qu,v = 1), then if v is not matched to its first
pick, then all its neighbors must be matched, and v is therefore never matched as a second
pick. This implies that a second pick does not increase Pr[(u, v) ∈M] in this case. As shown
in [33], under one-sided arrivals, this problematic scenario does not occur, since the matched
status of neighbors of v is rather weak. For interleaved arrivals, however, the underlying
argument does not carry through, as we now explain.

3.1.1 Extension to Interleaved Arrivals

The key difference between one-sided and interleaved arrivals is that now we require small
positive correlation between the matched statuses of every two nodes on the same side of
the bipartition, rather than just nodes on the “offline side”. For one-sided arrivals, the
weak positive correlation between offline vertices was due to two factors. (1) low-degree
offline vertices are matched only due to semi-adaptive matching choices, where precisely
one neighbor of an arriving online vertex is picked, and at most one is matched. (That is,
they are only matched as a first pick.) Therefore, by the 0-1 Principle (Proposition 2.4) and
closure properties of NA distributions (propositions 2.5 and 2.6), the indicators for a vertex
to be matched when it has low fractional degree are NA, and hence are negatively correlated.
(2) On the other hand, the probability of a node to be matched when it has high degree is
low, since each edge is matched with probability (1/2 + c) · xu,v, and the residual fractional
degree when v has high degree is 1− 1/2−c

1/2+c = 2c
1/2+c ≤ 4c. Putting (1) and (2) together, we

find that the matched statuses of any two offline vertices have small correlation.
Unfortunately, under interleaved arrivals, the above is no longer true. In particular, if

a vertex v has low fractional degree upon arrival, it may still be matched as a second pick
upon arrival (due to its high-degree neighbors). Consequently, the indicators for vertices on
the same side of the bipartition being matched when they have low fractional degree are no
longer negatively associated, thus undoing the entire argument used to bound Cov(Fu,v, Fw,v)
for vertices u, w < v on the same side of the bipartition.

To overcome this problem, we have each arriving vertex v with low fractional degree
upon arrival only pick once, and rely on its low fractional degree to pick each neighbor
with higher probability. In particular, when such a vertex v arrives, we pick at most
one neighbor with probability xu,v · 1/2+c

1/2−c . (Since v has low fractional degree on arrival,∑
u<v xu,v ≤ 1/2−c

1/2+c , this is well-defined.) Then, if this picked vertex u is free, we match
(u, v) with probability 1/2−c

Pr[Fu,v ] = 1/2−c
g(u,v) (≤ 1), resulting in the edge (u, v) being matched with

probability xu,v · (1/2 + c). Crucially for our analysis, this now allows us to show that the
indicators for vertices (in the same side of the graph) to be matched when they have low
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fractional degree is again negatively associated. This then results in the matched status
of vertices again being decomposable into two variables, with the first being negatively
correlated, and the second having low probability, from which we obtain that vertices on the
same side of the bipartition have low correlation.2

This discussion gives rise to Algorithm 1, which we prove in this section provides the
guarantees of Theorem 3.1.

Algorithm 1 Online rounding scheme.

1: Init: M← ∅
2: for all vertices v, on arrival do
3: read {xu,v | u < v}
4: if

∑
u<v xu,v ≤ 1/2−c

1/2+c then
5: pick at most one u < v with probability xu,v · 1/2+c

1/2−c

6: if u ̸= nil and u is unmatched in M then
7: with probability 1/2−c

g(u,v) do
8: M←M∪ {(u, v)}
9: else

10: pick at most one u < v with probability xu,v

11: if u ̸= nil and u is unmatched in M then
12: with probability min

(
1, 1/2+c

g(u,v)

)
do

13: M←M∪ {(u, v)}
14: if v is still unmatched in M then
15: pick at most one u < v with probability xu,v

16: if u ̸= nil and u is unmatched in M then
17: with probability pu,v guaranteeing Pr[(u, v) ∈M] = (1/2 + c) · xu,v do
18: M←M∪ {(u, v)}
19: Output M

3.2 High-Level Analysis
For our analysis and proof of Theorem 3.1, we will assume, by way of an inductive proof,
that Equation (4) holds for all edges (u, w) with u, w < v and therefore that for each u < v

we have Pr[Fu,v] = g(u, v), as stated in Equation (5).
Given the inductive hypothesis, it is easy to verify that Algorithm 1 guarantees marginal

probabilities of each edge to be matched to be precisely (1/2 + c) · xe. Indeed, for an arriving
vertex v with low fractional degree,

∑
u<v xu,v ≤ 1/2−c

1/2+c (lines 4-8), since by the inductive
hypothesis u is free at time v with probability Pr[Fu,v] = g(u, v), we have that

Pr[(u, v) ∈M] = xu,v ·
1/2 + c

1/2− c
· g(u, v) · 1/2− c

g(u, v) = (1/2 + c) · xu,v.

2 We note that Gamlath et al. [19] followed a superficially similar rounding approach, using two choices.
As they only required bounds on the (unweighted) matching’s size, their analysis relied on showing that
globally positive correlation is low. As we desire high matching probability on an edge-by-edge (or at
least vertex-by-vertex) basis, we must follow a more delicate approach.
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In the alternative case of lines 9-18, we trivially have that each edge (u, v) with u < v is
matched with probability precisely Pr[(u, v) ∈M] = (1/2 + c) · xe, due to lines 17-18. The
crux of the analysis, then, is in proving that this algorithm is well-defined, and in particular
that there exists some probabilities pu,v as stated in Line 17.

We note that all probabilistic lines in the algorithm except for Line 17 are trivially
well-defined. First, if v has low fractional degree before time v, i.e.,

∑
u<v xu,v ≤ 1/2−c

1/2+c , then
the probability of any neighbor to be picked in Line 5 is at most

∑
u<v xu,v · 1/2+c

1/2−c ≤ 1,
and so this line is well-defined. Next, by the fractional matching constraint, we have that∑

u<v xu,v ≤ 1, and consequently lines 10 and 15 are well-defined. Finally, by the fractional
matching constraint, we have that

∑
w<v(1/2 + c) · xu,w ≤ 1/2 + c, and therefore

Pr[Fu,v] = g(u, v) ≥ 1/2− c. (6)

Consequently, the term 1/2−c
g(u,v) in Line 7 is indeed a probability, by our choice of c = 0.027 ≤ 1/2.

We now turn to proving that probabilities pu,v as stated in Line 17 do indeed exist.
First, to show that pu,v ≥ 0, we must show that the probability of edge (u, v) to be

matched as a first pick in Line 13 does not on its own exceed (1/2 + c) · xu,v.

▶ Observation 3.2. The probability of an edge (u, v) to be matched in Line 13 is at most

Pr[(u, v) added to M in Line 13] ≤ (1/2 + c) · xu,v.

Proof. By the inductive hypothesis, we have that Pr[Fu,v] = g(u, v). Consequently,

Pr[(u, v) added to M in Line 13] = xu,v ·min
(

1,
1/2 + c

g(u, v)

)
· g(u, v) ≤ (1/2 + c) · xu,v. ◀

▶ Corollary 3.3. The parameter pu,v in Line 17 satisfies pu,v ≥ 0.

The core of the analysis will then be in proving that pu,v ≤ 1. For this, we will need to
argue that a second pick in lines 14-18 is likely to result in (u, v) being matched, provided
we set pu,v ≤ 1 high enough. We prove as much in the next section.

3.3 Core of the Analysis
In this section we prove that the second pick is likely to result in a match. To this end,
we prove that the matched statuses of neighbors of an arriving vertex v have low positive
correlation (if any). More formally, if G = (V1, V2, E) is our bipartite graph, we will prove
the following.

▶ Lemma 3.4. For any i = 1, 2, vertex v and vertices u, w < v with u, w ∈ Vi,

Cov(Fu,v, Fw,v) ≤ 6c.

Since the covariance of two binary variables A and B is equal to that of their complements,
Cov(A, B) = Cov(1−A, 1−B), we will concern ourselves with bounding Cov(Mu,v, Mw,v),
where Mu,v := 1− Fu,v is an indicator for u being matched in M before v arrives.

For this proof, we write Mu,v as the sum of two Bernoulli variables, Mu,v = ML
u,v + MH

u,v.
The indicators ML

u,v and MH
u,v correspond to u being matched to some neighbor w at a time

z when u had low or high fractional degree, respectively. That is,
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ML
u,v := I

(u, w) ∈M for some w < v with
∑

z<min{u,w}

xu,z ≤
1/2− c

1/2 + c

 ,

with MH
u,v = Mu,v −ML

u,v defined analogously.
In what follows, we will show that for any vertex v and index i = 1, 2, the variables

{ML
u,v | u ∈ Vi} are negatively correlated, while the variables {MH

u,v | u ∈ Vi} have low
probability, which implies that they have low positive correlation with any other binary
variable. These bounds will allow us to bound the correlation of the sums Mu,v = ML

u,v +MH
u,v.

We start by proving the negative correlation between ML
u,v variables, and indeed proving

negative association of these variables.

▶ Lemma 3.5. For any i = 1, 2 and vertex v, the variables {ML
u,v | u < v, u ∈ Vi} are NA.

By Proposition 2.7, this implies that the above variables are negatively correlated.

▶ Corollary 3.6. For any i = 1, 2, vertex v and earlier vertices u, w < v with u, w ∈ Vi,

Cov(ML
u,v, ML

w,v) ≤ 0.

Proof of Lemma 3.5. Recall that ML
u,v is an indicator for u being matched before arrival

of v before it has high fractional degree. By definition of Algorithm 1, this implies that a
matching event accounted for by ML

u,v can only occur in lines 8 or 13. Such matches occur
due to u picking a neighbor or being picked as a neighbor in line 5 or 10, and the probabilistic
test in line 7 or 12 (respectively), passing, if the picked vertex was previously unmatched in
M. We imagine we perform the probabilistic tests in lines 7 and 12 before testing whether
the picked vertex was unmatched in M.

For vertices w < z, let Aw,z be an indicator for z picking w in line 5 or 10, and
the probabilistic test in line 7 or 12 (respectively) passing. Then, by the 0-1 Principle
(Proposition 2.4), we have that for any vertex z, the variables {Aw,z | w < z} are NA.
Moreover, the families of variables {Aw,z | w < z} for distinct z are NA. Therefore, by closure
of NA under independent union (Proposition 2.5), the variables {Aw,z | z, w < z} are NA.
For notational simplicity, letting Az,w := Aw,z for z > w (recall that we only defined Aw,z

for w < z), we find that if z′ is the smaller of v − 1 and the first time z that u has high
fractional degree, the variables ML

u,v are precisely equal to

ML
u,v :=

∨
w≤z′

Aw,u.

Indeed, this is due to u being matched while it has low fractional degree upon the first
time that it is picked by a neighbor (or it picks a neighbor) in line 5 or 10, and the
corresponding probabilistic test in line 7 or 12 passes. Therefore, by closure of NA under
monotone function composition (Proposition 2.6), the variables {ML

u,v | u ∈ Vi}, which are
monotone nondecreasing functions of disjoint subsets of the variables Aw,u by bipartiteness,
are NA.3 ◀

We now turn to upper bounding the probability of the event MH
u,v.

3 This is the only place in our analysis where we use bipartiteness.
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▶ Lemma 3.7. For any edge (u, v) with u < v, we have that Pr[MH
u,v] ≤ 2c.

Proof. Recall that by the inductive hypothesis, Pr[(u, w) ∈ M] = (1/2 + c) · xu,w. On
the other hand, by the fractional matching constraint, we have that

∑
w<v xu,v ≤ 1, and

therefore Pr[Mu,v] ≤ 1/2 + c. On the other hand, if we denote by zu the first time u has
high fractional degree, then either zu ≥ v, in which case Pr[MH

u,v] = 0, or

Pr[ML
u,v] ≥

∑
w<zu

xu,w · (1/2 + c) ≥ 1/2− c

1/2 + c
· (1/2 + c) = 1/2− c,

in which case we have

Pr[MH
u,v] = Pr[Mu,v]− Pr[ML

u,v] ≤ 2c. ◀

We are now ready to prove Lemma 3.4, whereby vertices u, w on the same side of the
bipartition have weakly correlated matched statuses, namely Cov(Fu,v, Fw,v) ≤ 6c.

Proof. By definition of covariance, the binary variables Fu,v and Fw,v satisfy
Cov(Fu,v, Fw,v) = Cov(1 − Fu,v, 1 − Fw,v) = Cov(Mu,v, Mw,v) (see Proposition 2.10). We
therefore turn to upper bounding the covariance of the variables Mu,v and Mw,v.

By the additive law of covariance, the covariance of the variables Mu,v = ML
u,v + MH

u,v

and Mw,v = ML
w,v + MH

w,v, denoted by (⋆) = Cov(Mu,v, Mw,v), satisfies

(⋆) = Cov(ML
u,v + MH

u,v , ML
w,v + MH

w,v)
= Cov(ML

u,v, ML
w,v) + Cov(ML

u,v, MH
w,v) + Cov(MH

u,v, ML
w,v) + Cov(MH

u,v, MH
w,v)

≤ 0 + Pr[ML
u,v, MH

w,v] + Pr[MH
u,v, ML

w,v] + Pr[MH
u,v, MH

w,v]
≤ 0 + Pr[MH

w,v] + Pr[MH
u,v] + Pr[MH

u,v]
≤ 6c.

Here, the first inequality follows from Corollary 3.6, the second inequality follows from the
trivial bound on covariance of Bernoulli variables A and B given by Cov(A, B) = Pr[A, B]−
Pr[A] · Pr[B] ≤ Pr[A, B] ≤ Pr[A], and the final inequality follows from Lemma 3.7. ◀

Lemma 3.4 now allows us to argue that if u has high degree upon arrival of v, then Fu,v

is nearly independent of the event Rv, whereby v is rejected (not matched) after its first pick
of u1 (possibly u1 = nil). In particular, we have the following.

▶ Lemma 3.8. Let u < v be a vertex of high fractional degree,
∑

w<v xu,w, upon arrival of
v. Then, for all w ̸= u (including possibly w = nil), we have

Pr[Fu,v, Rv, u1 = w] ≥ Pr[Fu,v] · Pr[Rv, u1 = w] ·
(

1− 6c

(1/2− c)2

)
.

Proof. For w = nil the claim follows from the event u1 = nil implying Rv, and being
independent of Fu,v.

Pr[Fu,v, Rv, u1 = nil] = Pr[Fu,v] · Pr[Rv, u1 = nil].

Next, let w < v be some neighbor of v. If we denote by qw,v := min
(

1, 1/2+c
g(w,v)

)
the

probability that w does not reject v if it is picked first and is free, then the probability that
u1 = w and v gets rejected in its first pick is

Pr[Rv, u1 = w] = xw,v · (1− qw,v · Pr[Fw,v]) ≥ xw,v · (1/2− c), (7)
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where the inequality follows from Pr[Fw,v] = g(w, v) by Equation (6), which implies that
qw,v · Pr[Fw,v] ≤ 1/2 + c. Similarly, the probability u is free, u1 = w and v gets rejected in
its first pick is

Pr[Fu,v, Rv, u1 = w] = xw,v · (Pr[Fu,v]− qw,v · Pr[Fw,v, Fu,v])
≥ xw,v · (Pr[Fu,v]− qw,v · (Pr[Fw,v] · Pr[Fu,v] + 6c)) ,

≥ xw,v · (Pr[Fu,v]− qw,v · (Pr[Fw,v] · Pr[Fu,v])− 6c)

≥ xw,v · Pr[Fu,v] ·
(

1− qwv · Pr[Fw,v]− 6c

1/2− c

)
≥ Pr[Fu,v] · Pr[Rv, u1 = w] ·

(
1− 6c

(1/2− c)2

)
,

where the first inequality follows from Lemma 3.4, the second inequality follows from the
trivial bound qwv ≤ 1, the third inequality follows from Pr[Fu,v] = g(u, v) ≥ 1/2 − c by
Equation (5), and the final inequality follows from Equation (7). ◀

In what follows we denote by xnil,v := 1−
∑

w<v xw,v the probability with which u1 = nil.
From Lemma 3.8 and Equation (7), as well as Pr[Rv, u1 = nil] = Pr[u1 = nil] = xnil,v, we
obtain the following lower bound on Pr[Fu,v, Rv, u1 = w] in terms of xw,v.

▶ Corollary 3.9. For any vertex v and w (possibly w = nil), we have that

Pr[Fu,v, Rv, u1 = w] ≥ Pr[Fu,v] · xw,v ·
(

1/2− c− 6c

1/2− c

)
.

Finally, we are ready to prove that pu,v is a probability, and in particular pu,v ≤ 1.

▶ Lemma 3.10. The parameter pu,v in Line 17 satisfies pu,v ∈ [0, 1].

Proof. Non-negativity of pu,v was proven in Corollary 3.3. We turn to proving that pu,v ≤ 1
suffices to guarantee Pr[(u, v) ∈M] ≥ (1/2 + c) ·xu,v, from which we obtain that there exists
some pu,v ∈ [0, 1] which results in Pr[(u, v) ∈M] = (1/2 + c) · xu,v.

By Equation (6) we have that Pr[Fu,v] = g(u, v) ≥ 1/2− c, and therefore

Pr[(u, v) ∈M in Line 13] = xu,v ·min
(

1,
1/2 + c

g(u, v)

)
· g(u, v) ≥ (1/2− c) · xu,v. (8)

We therefore wish to prove that the probability of (u, v) being matched in Line 18 is at least
2c · xu,v, for some choice of pu,v ≤ 1. And indeed,

Pr[(u, v) added to M in Line 18] = xu,v ·
∑
w ̸=u

Pr[Fu,v, Rv, u1 = w] · pu,v

≥ xu,v · Pr[Fu,v] ·
∑
w ̸=u

xw,v ·
(

1/2 − c − 6c

1/2 − c

)
· pu,v

≥ xu,v · (1/2 − c) · (1 − 4c) ·
(

1/2 − c − 6c

1/2 − c

)
· pu,v

≥ 2c · xu,v,

where the first inequality follows from Corollary 3.9 and Equation (3). The second inequality
holds due to Equation (5) implying Pr[Fu,v] ≥ 1/2−c and due to vertex u having high degree
at time v, and therefore by the fractional matching constraint xu,v ≤ 1− 1/2−c

1/2+c = 2c
1/2+c ≤ 4c,

and hence
∑

w ̸=u xw,v ≥ 1− 4c ≥ 0 (again using Equation (3)). The final inequality holds
for pu,v = 1 and for our choice of c, by Equation (2).
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Consequently, combining the above with Equation (8), we find that setting pu,v = 1
results in (u, v) being matched in either Line 13 or Line 18 with probability at least

Pr[(u, v) ∈M] ≥ (1/2 + c) · xu,v. (9)

As the probability of (u, v) being added to M in Line 18 is monotone increasing in pu,v, we
conclude that there exists some pu,v ∈ [0, 1] for which Equation (9) holds with equality. ◀

Conclusion of Algorithm 1’s analysis. To conclude, Algorithm 1 is well-defined, and this
algorithm outputs a random matching M which matches each edge e with probability
precisely Pr[e ∈M] = (1/2 + c) · xe. Theorem 3.1 follows.
▶ Remark 3.11. Computational Aspects: As described, the only way we are aware of
to implement Algorithm 1 exactly (and in particular, computing all pu,v exactly) is using
an exponential-time algorithm maintaining the joint distributions as they evolve. However,
a simple modification of the algorithm, resulting in a polynomial-time algorithm with a
(1 + o(1)) additional multiplicative loss in each edge’s matching probability, can be readily
obtained by approximately estimating the above pu,v up to (1± o(1)) multiplicative errors,
by standard monte carlo methods. As this results in rather cumbersome descriptions and
subsequent calculations, and since running time is not our focus, we do not expand on this.

4 Putting it all Together

In this section we prove our main result, Theorem 1.2, restated below for ease of reference.

▶ Theorem 1.2. There exists an online edge coloring algorithm which is (1.897 + o(1))-
competitive w.h.p. on general n-node graphs with maximum degree ∆ = ω(log n) under vertex
arrivals.

Proof. For a graph of maximum degree at most ∆, assigning x-value 1/∆ to each edge
yields a fractional matching. Applying Algorithm 1 to this fractional matching in a bipartite
graph under vertex arrivals results in each edge being matched with probability 0.527/∆, by
Theorem 3.1. Therefore, by Lemma 2.2, there exists an online edge coloring algorithm whose
competitive ratio is (1/0.527 + o(1)) ≈ 1.897 + o(1) w.h.p. on bipartite graphs of maximum
degree ∆ = ω(log n) under (interleaved) vertex arrivals. Finally, Lemma 2.1 together with
union bound implies that the same competitive ratio (up to o(1) terms) carries over to
general graphs under vertex arrivals. ◀

▶ Remark 4.1. Our analysis extends to prove the slightly tighter result, whereby there
exist constants c1, c2 > 0 and a (2− c1)-competitive online algorithm for n-node graphs of
maximum degree at least c2 · log n under vertex arrivals. (See Remark 1.3.) For brevity’s
sake, we omit the details.

5 The Karloff-Shmoys Approach: Online

Here we substantiate our earlier assertion that α-competitive online edge coloring on high-
degree graphs is equivalent (up to o(1) terms) to the same task on high-degree bipartite
graphs. That is, we outline the proof of Lemma 2.1, restated below for ease of reference.

▶ Lemma 2.1 (Implied by [25]). Given an online edge coloring algorithm which is α-competitive
w.h.p. on bipartite graphs of maximum degree ∆ = ω(log n) under interleaved vertex arrivals,
there exists an online edge coloring algorithm which is (α+o(1))-competitive w.h.p. on general
graphs of maximum degree ∆ = ω(log n) under vertex arrivals.
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Proof. The general graph edge coloring algorithm relies on the following subroutine for
sampling balanced random subgraphs in subgraphs of maximum degree ∆′ ≥ 18 ·

√
∆ log n.

(Note that ∆ ≥ 18
√

∆ log n, by the hypothesis, whereby ∆ = ω(log n).) Assign each vertex
to a set Vi ⊆ V with i = 1, 2 chosen uniformly at random. For any vertex v ∈ V , let
d(v) denotes the degree of v in G, and Dv denotes the (random) degree of v in the random
bipartite subgraph H = H(V1, V2, E∩(V1×V2)). Then, we have that E[Dv] = d(v)/2 ≤ ∆′/2.
By Chernoff’s Bound (Proposition 2.8), since Dv is the sum of independent Bernoulli(1/2)
variables, we have that, for ϵ = 4

√
log n/∆ = o(1),

Pr[Dv ≥ (∆′/2) · (1 + ϵ)] ≤ exp
(
−(∆′/2) · ϵ2

3

)
≤ 1

n3 , (10)

using ∆′ ≥ 18 ·
√

∆ · log n, and consequently ∆ · ϵ2 ≥ 18 log n. The same high-probability
bound holds for d(v)−Dv, which is identically distributed to Dv.

To achieve an online edge coloring algorithm for G from the above, we apply the α-
competitive edge coloring algorithm to the random bipartite H, and recursively apply
the same approach to the random subgraph induced by the edges outside of H, namely
G \H = G[E \ (V1×V2)], until H is guaranteed to have degree at most 18 ·

√
∆ · log n w.h.p.

We note that this approach can be applied online, by assigning to each vertex v on arrival a
side of each of the recursive random bipartitions. Moreover, the colors of each recursive level
number ℓ can be associated with a contiguous set of integers of cardinality α ·∆ · ((1 + ϵ)/2)ℓ,
which is the high probability upper bound on the number of colors used in this recursive call.
Repeating the above recursively for t := log2/(1+ϵ)(18

√
∆/ · log n) ≤ log n levels results in a

random uncolored subgraph of maximum degree at most 18
√

∆ · log n = o(∆) w.h.p., which
we color greedily.

Taking union bound over the O(n2) bad events (some vertex degree Dv exceeding
∆′ · ((1 + ϵ)/2) in a random bipartite subgraph or its complement in a subgraph whose
maximum degree is ∆′ ≥ 18

√
∆ · log n, or any of the bipartite edge coloring algorithms

failing to be α competitive on the subgraph it is applied to), we have that w.h.p., the number
of colors C used is, as desired, at most

C ≤ α ·∆ · 1 + ϵ

2 + α ·∆ ·
(

1 + ϵ

2

)2
+ · · ·+ α ·∆ ·

(
1 + ϵ

2

)t

+ 36 ·
√

∆ · log n

≤ α ·
∑
i≥1

∆ ·
(

1 + ϵ

2

)i

+ 36 ·
√

∆ · log n

= α ·∆ · 1 + ϵ

1− ϵ
+ o(∆)

= (α + o(1)) ·∆. ◀

▶ Remark 5.1. As stated in the introduction, we note that the above reduction from general
to bipartite graphs results in bipartite graphs with interleaved vertex arrivals.

6 Edge Coloring from Random Matchings

In this section, we show how to reduce edge coloring in (bipartite) graphs under vertex
arrivals to computing a random matching which matches each edge with probability Ω(1/∆).

▶ Lemma 2.2 (Implied by [9]). Let A be an online matching algorithm which on any (bipartite)
graph of maximum degree ∆ ≤ ∆′ under vertex arrivals, matches each edge with probability
at least 1/(α∆′). Then, there exists an online edge coloring algorithm A′ which is (α + o(1))-
competitive w.h.p. for (bipartite) graphs of maximum degree ∆ = ω(log n) under vertex
arrivals.
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Proof. If α > 2, then the claim follows trivially from the greedy algorithm’s 2-competitiveness.
We therefore assume α ≤ 2. We give a subroutine which decreases the uncolored degree of a
subgraph of maximum degree ∆′ ≥ 48 · 4

√
∆3 log n at a rate of one per α + o(1) colors w.h.p.

(Note that ∆ ≥ 48 4
√

∆3 log n, by the hypothesis, whereby ∆ = ω(log n).)
Our subroutine is as follows. Let L := 12

√
∆ log n and ϵ := 4

√
(log n)/∆(= o(1) ≤ 1/2).

We note that by our choice of L and ϵ and our lower bound on ∆′, we have that

4L/∆′ ≤ 48
√

∆ log n/48 4
√

∆3 log n = 4
√

(log n)/∆ = ϵ. (11)

For i = 1, . . . , ⌈α ·L⌉, we run Algorithm A, which matches each edge with probability at least
(1/α)/∆′, and color all previously-uncolored matched edges in this run of A using a new
(common) color. Fix a vertex v whose degree in the subgraph is at least d(v) ≥ ∆′−⌈α·L⌉ and
let X1, . . . , XL be indicators of v having an edge colored during application i = 1, . . . , ⌈α ·L⌉
of Algorithm A. Since vertex v can have at most ⌈α · L⌉ ≤ 2 · L edges colored during these
L applications of Algorithm A, we find that the number of uncolored edges of v at any
point during this subroutine is at least ∆′ − 2⌈α · L⌉ ≥ ∆′ − 4L, independently of previous
random choices. On the other hand, since each uncolored edge is matched (and hence colored)
with probability at least (1/α)/∆′, we have that for any history H of random choices in
applications 1, 2, . . . , i− 1 of A, application i of A results in one of the (at least) ∆′ − 4L

uncolored edges of v being colored with probability at least

Pr[Xi | H] ≥ (1/α) · (∆′ − 4L)/∆′ = (1/α) · (1− 4L/∆′) ≥ (1/α) · (1− ϵ), (12)

where the last inequality relied on Equation (11). Combining Equation (12) with standard
coupling arguments (Proposition 2.9) together with a Chernoff Bound (Proposition 2.8), we
find that the number of colored edges of v, denoted by X :=

∑
i Xi satisfies

Pr[X ≤ L · (1− ϵ)2] ≤ exp
(
−L · (1− ϵ) · ϵ2

2

)
≤ exp

(
−L · ϵ2

4

)
= 1

n3 ,

where the second inequality follows from ϵ ≤ 1/2 and the equality follows from choice of L

and ϵ. Union bounding over the n vertices, we obtain the following high probability bound
on the maximum degree of the uncolored subgraph H after the ⌈α · L⌉ applications of A:

Pr[∆(H) ≥ ∆′ − L · (1− ϵ)2] ≤ 1
n2 . (13)

We now describe how to make use of this subroutine. For r = 1, . . . , ∆/L phases, let
∆i := ∆− (i− 1) · L · (1− ϵ)2. If ∆i < 48 4

√
∆3 log n, apply the greedy coloring. Otherwise,

apply the above subroutine with ∆′ = ∆i. A simple inductive argument together with
union bound, relying on Equation (13), shows that for i = 1, 2, . . . , ∆/L(≤ n), the uncolored
subgraph after the first i − 1 phases has maximum degree at most ∆′ ≤ ∆i w.h.p., or
alternatively it has maximum degree at most ∆′ ≤ 48 · 4

√
∆3 log n = o(∆). Moreover, each of

these ∆/L phases requires at most ⌈α · L⌉ ≤ α · L + 1 colors, by definition, and therefore
these ∆/L phases require at most α ·∆ + ∆/L = (α + o(1)) ·∆ colors in total. Finally, after
these phases we are guaranteed that the maximum degree of the uncolored subgraph is at
most min{48 · 4

√
∆3 log n, ∆− (∆/L) · L · (1− ϵ)2} = o(∆). Applying the greedy algorithm

to this uncolored subgraph after the ∆/L phases thus requires a further 2 · o(∆) = o(∆)
colors. This results in a proper edge coloring using (α + o(1)) ·∆ colors w.h.p.

Finally, we note that the above algorithm can be implemented online under vertex arrivals,
since A works under vertex arrivals. In particular, when a vertex arrives, we perform the
next steps of the different copies of Algorithm A (with the different settings of ∆i) on the
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uncolored subgraphs obtained from each phase, simulating the arrival of a vertex in each
such uncolored subgraph. Combined with the above, this yields the desired result: an edge
coloring algorithm which is (α + o(1))-competitive on general n-node graphs of maximum
degree ∆ = ω(log n) under vertex arrivals. ◀

▶ Remark 6.1. Lemma 2.2 naturally extends to edge arrivals. Unfortunately, no algorithm
matching each edge with probability (1/α)/∆ subject to edge arrivals is currently known for
any constant α < 2.

▶ Remark 6.2. The approach of Lemma 2.2 only requires matching algorithms which match
each edge with probability (1/α)/∆ for subgraphs of the input graph. Consequently, improved
matching algorithms, with smaller α ≥ 1, for any downward-closed family of graphs F imply
a similar improved (α + o(1))-competitive edge coloring algorithm for the same family.

7 Conclusion

In this work we resolve the longstanding conjecture of Bar-Noy, Motwani and Naor, namely
Conjecture 1.1. That is, we show that, while for bounded-degree graphs the greedy algorithm’s
competitive ratio of 2 is optimal among online algorithms, for high-degree graphs this is not
the case.

Some natural questions remain. What is the best achievable competitive ratio? Is a ratio
of 1 + o(1) possible, as for one-sided arrivals in bipartite graphs and random-order edge
arrivals [5, 9]? Can the same be achieved under adversarial edge arrivals? Bar-Noy et al. [4]
suggested a candidate algorithm for this latter model, but its analysis seems challenging.
Finally, does the online rounding Algorithm 1 have more applications beyond edge coloring?
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1 Introduction

1.1 Matrix scaling and matrix balancing
Matrix scaling is a basic linear-algebraic problem with many applications. A scaling of
an n × n matrix A with non-negative entries is a matrix B = XAY where X and Y are
positive diagonal matrices (everything straightforwardly extends to non-square A). In other
words, we multiply the i-th row with Xii and the j-th column with Yjj . We say A is exactly
scalable to marginals r ∈ Rn

+ and c ∈ Rn
+ if there exist X and Y such that the vector

r(B) = (
∑n

j=1 Bij)i∈[n] of row sums of the scaled matrix B equals r, and its vector c(B) of
column sums equals c. One typical example would be if r and c are the all-1 vectors, which
means we want B to be doubly stochastic: the rows and columns of B would be probability
distributions. In many cases it suffices to find approximate scalings. Different applications
use different notions of approximation. We could for instance require r(B) to be ε-close to r
in ℓ1- or ℓ2-norm, or in relative entropy (Kullback-Leibler divergence), for some parameter ε

of our choice, and similarly require c(B) to be ε-close to c.
A related problem is matrix balancing. Here we do not prescribe desired marginals, but

the goal is to find a diagonal X such that the row and column marginals of B = XAX−1

are close to each other. Again, different notions of closeness r(B) ≈ c(B) are possible.
An important application, used in theory as well as in practical linear-algebra software

(e.g. LAPACK [6] and MATLAB [40]), is in improving the numerical stability of linear-system
solving. Suppose we are given matrix A and vector b, and we want to find a solution to the
linear system Av = b. Note that v is a solution iff Bv′ = b′ for v′ = Xv and b′ = Xb. An
appropriately balanced matrix B will typically be more numerically stable than the original
A, so solving the linear system Bv′ = b′ and then computing v = X−1v′, is often a better
way to solve the linear system Av = b than directly computing A−1b.

Matrix scaling and balancing have surprisingly many and wide-ranging applications.
Matrix scaling was introduced by Kruithof for Dutch telephone traffic computation [37], and
has also been used in other areas of economics [50]. In theoretical computer science it has been
used for instance to approximate the permanent of a given matrix [38], as a tool to get lower
bounds on unbounded-error communication complexity [25], and for approximating optimal
transport distances [2]. In mathematics, it has been used as a common tool in practical linear
algebra computations [39, 12, 46, 42], but also in statistics [49], optimization [47], and for
strengthening the Sylvester-Gallai theorem [11]. Matrix balancing has a similarly wide variety
of applications, including pre-conditioning to make practical matrix computations more
stable (as mentioned above), and approximating the min-mean-cycle in a weighted graph [3].
Many more applications of matrix scaling and balancing are mentioned in [38, 31, 28].
Related scaling problems have applications to algorithmic non-commutative algebra [27, 17],
functional analysis [26], and quantum information [29, 18, 16].

1.2 Known (classical) algorithms
Given the importance of good matrix scalings and balancings, how efficiently can we actually
find them? For concreteness, let us first focus on scaling. Note that left-multiplying A
with a diagonal matrix X corresponds to multiplying the i-th row of A with Xii. Hence
it is very easy to get the desired row sums: just compute all row sums ri(A) of A and
define X by Xii = ri/ri(A), then XA has exactly the right row sums. Subsequently, it
is easy to get the desired column sums: just right-multiply the current matrix XA with
diagonal matrix Y where Yjj = cj/cj(XA), then XAY will have the right column sums.
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The problem with this approach, of course, is that the second step is likely to undo the good
work of the first step, changing the row sums away from the desired values; it is not at all
obvious how to simultaneously get the row sums and column sums right. Nevertheless, the
approach of alternating row-normalizations with column-normalizations turns out to work.
This alternating algorithm is known as Sinkhorn’s algorithm [49], and has actually been
(re)discovered independently in several different contexts.

For matrix balancing there is a similar method called Osborne’s algorithm [43, 45]. In
each iteration this chooses a row index i and defines Xii such that the i-th row sum and the
i-th column sum become equal. Again, because each iteration can undo the good work of
earlier iterations, convergence to a balancing of A is not at all obvious. Remarkably, even
though Osborne’s algorithm was proposed more than six decades ago and is widely used in
linear algebra software, an explicit convergence-rate bound was only proved recently [48, 44]!

At the same time there have been other, more sophisticated algorithmic approaches
for scaling and balancing. Just to mention one: we can parametrize X = diag(ex) and
Y = diag(ey) by vectors x, y ∈ Rn and consider the following convex potential function:

f(x, y) =
n∑

i,j=1
Aijexi+yj −

n∑
i=1

rixi −
n∑

j=1
cjyj .

Note that the partial derivative of this f w.r.t. the variable xi is
∑n

j=1 Aijexi+yj − ri =
ri(XAY)− ri, and the partial derivative w.r.t. yj is cj(XAY)− cj . A minimizer x, y of f

will have the property that all these 2n partial derivatives are equal to 0, which means
XAY is exactly scaled! Accordingly, (approximate) scalings can be obtained by finding
(approximate) minimizers using methods from convex optimization. In fact, Sinkhorn’s
original algorithm can be interpreted as block coordinate descent on this f , and Osborne’s
algorithm can similarly be derived by slightly modifying f . More advanced methods from
convex optimization have also been applied, such as ellipsoid methods [36, 33, 41], box-
constrained Newton methods [1, 21] and interior-point methods [21, 19].

Historically, research on matrix scaling and matrix balancing (and generalizations such
as operator scaling) has focused on finding ε-ℓ2-scalings. More recently also algorithms
for finding ε-ℓ1-scalings have been extensively studied, due to their close connection with
permanents and finding perfect matchings in bipartite graphs [38, 20], and because the
ℓ1-distance is an important error measure for statistical problems such as computing the
optimal transport distance between distributions [22, 2], even already for constant ε. By
the Cauchy-Schwarz inequality, an (ε/

√
n)-ℓ2-scaling for A is also an ε-ℓ1-scaling, but often

more direct methods work better for finding an ε-ℓ1-scaling.
Below in Table 1 we tabulate the best known algorithms for finding ε-scalings in ℓ1-

norm for entrywise-positive matrices and general non-negative matrices. We make the
standard assumptions that every entry of the target marginals r, c is non-zero, and that A is
asymptotically scalable: for every ε > 0, there exist X and Y such that

∥r(B)− r∥1 ≤ ε and ∥c(B)− c∥1 ≤ ε,

where B = XAY (this implies that the matrix has at least one non-zero entry in every row
and column). A sufficient condition for this is that the matrix is entrywise-positive. To state
the complexity results, let m be the number of non-zero entries in A (note that m ≥ n),
assume

∑n
i,j=1 Aij = 1, that its non-zero entries lie in [µ, 1], and ∥r∥1 = ∥c∥1 = 1 (so uniform

marginal is 1/n). We will assume ε ∈ (0, 1). The input numbers to the algorithm are all
assumed to be rational, with bit size bounded by polylog(n), unless specified otherwise.1

1 The complexity of our algorithms depends polylogarithmically on the magnitude of the entries; the
assumption on the bit size of the entries is made to simplify the presentation.

ICALP 2021



110:4 Quantum Algorithms for Matrix Scaling and Matrix Balancing

Note that the table contains both first-order and second-order methods; the former just
use the gradient of the potential (or a related potential), whereas the latter also use its Hessian.
The second-order methods typically have a polylogarithmic dependence on the inverse of
the desired precision ε, whereas the first-order methods have inverse polynomial dependence
on ε. For entrywise-positive matrices, second-order methods theoretically outperform the
classical first-order methods in any parameter regime. However, they depend on non-trivial
results for graph sparsification and Laplacian system solving which are relatively complicated
to implement, in contrast to the eminently practical (first-order) Sinkhorn and Osborne.

For matrix balancing, Osborne’s algorithm has very recently been shown to produce an
ε-ℓ1-balancing in time Õ(m/ε2) when in each iteration the update is chosen randomly [4].
Algorithms based on box-constrained Newton methods and interior-point methods can find
ε-balancings in time Õ(m log κ) and Õ(m1.5), respectively, where κ denotes the ratio between
the largest and the smallest entries of the optimal balancing.

Table 1 State-of-the-art time complexity of first- and second-order methods for finding an
ε-ℓ1-scaling, both to uniform marginals and to arbitrary marginals. The boldface lines are from this
paper, and the only quantum algorithms for scaling we are aware of. h is the smallest integer such
that hr, hc are integer vectors; m upper bounds the number of non-zero entries of A; κ is the ratio
between largest and smallest entries of the optimal scalings X and Y, which can be exponential in
n. Many references use a different error model (e.g., ℓ2 or Kullback-Leibler), which we convert to
guarantees in ℓ1-norm for comparison. Õ-notation hides polylogarithmic factors in n, 1/ε, 1/µ.

(1/n, 1/n) (r, c) References and remarks

General
non-negative

Õ(m/ε2) Õ(m/ε2) Sinkhorn, via KL [20]2

Õ(mn2/3/ε2/3) Õ(mn/(h1/3ε2/3)) first-order, via ℓ2 [1]
Õ(m log κ) Õ(m log κ) box-constrained method, via ℓ2 [21]
Õ(m1.5) Õ(m1.5) interior-point method, via ℓ2 [21]
Õ(

√
mn/ε4) Õ(

√
mn/ε4) Sinkhorn, quantum, Corollary 5

Õ(n2/ε) Õ(n3/ε) Sinkhorn, via ℓ2 [35, 34], hε ≤
√

2n

Entrywise Õ(n2/ε2) Õ(n2/ε2) Sinkhorn, via KL [2, 20]
positive Õ(n2) Õ(n2) box-constrained, via ℓ2 [1, 21]

Õ(n1.5/ε3) Õ(n1.5/ε3) Sinkhorn, quantum, Corollary 7

1.3 First contribution: quantum algorithms for ℓ1-scaling and balancing

Because a classical scaling algorithm has to look at each non-zero matrix entry (at least
with large probability), it is clear that Ω(m) is a classical lower bound. This is Ω(n2) in the
case of a dense or even entrywise-positive matrix A. As can be seen from Table 1, the best
classical algorithms also achieve this m lower bound up to logarithmic factors, with various
dependencies on ε. The same is true for balancing: Ω(m) queries are necessary, and this is
achievable in different ways, with different dependencies on ε and other parameters.

Our first contribution is to give (in Section 3) quantum algorithms for scaling and balancing
that beat the best-possible classical algorithms, at least for relatively large ε ∈ (0, 1):

2 Their proofs work only for input matrices that are exactly scalable. However, with our potential gap
bound we can generalize their analysis to work for arbitrary asymptotically-scalable matrices.
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Scaling: We give a quantum algorithm that (with probability ≥ 2/3) finds an ε-ℓ1-
scaling for an asymptotically-scalable n× n matrix A with m non-zero entries (given
by an oracle) to desired positive marginals r and c in time Õ(

√
mn/ε4). When A is

entrywise positive (so m = n2), the upper bound can be improved to Õ(n1.5/ε3).
Balancing: We give a quantum algorithm that (with probability ≥ 2/3) finds an
ε-ℓ1-balancing for an asymptotically-balanceable n × n matrix A with m non-zero
entries (given by an oracle) in time Õ(

√
mn/ε4).

Our scaling algorithms in fact achieve closeness measured in terms of the relative entropy,
and then use Pinsker’s inequality (∥p−q∥2

1 = O(D(p||q))) to convert this to an upper bound
on the ℓ1-error. Our algorithms achieve a sublinear dependence on the input size m.

Note that compared to the classical algorithms we have polynomially better dependence
on n and m, at the expense of a worse dependence on ε. There have recently been a number
of new quantum algorithms with a similar tradeoff: they are better than classical in terms
of the main size parameter but worse in terms of the precision parameter. Examples are
the quantum algorithms for solving linear and semidefinite programs [14, 8, 13, 7] and for
boosting of weak learning algorithms [10, 30, 32].

Conceptually our algorithms are quite simple: we implement the Sinkhorn and Osborne
algorithms but replace the exact computation of each row and column sum by quantum
amplitude estimation; this allows us to approximate the sum of n numbers up to some small
multiplicative error δ (with high probability) at the expense of roughly

√
n/δ queries to those

numbers, and a similar number of other operations.
Our analysis is based on a potential argument (for Sinkhorn we use the above-mentioned

potential f). The error δ causes us to make less progress in each iteration compared to
an “exact” version of Sinkhorn or Osborne. If δ is too large we may even make backwards
progress, while if δ is very small there is no quantum speed-up! We show there is a choice
of δ for which the negative contribution due to the approximation errors is of the same order
as the progress in the “exact” version, and that choice results in a speed-up. We should
caution, however, that it is quite complicated to actually implement this idea precisely and
to keep track of and control the various approximation errors and error probabilities induced
by the quantum estimation algorithms, as well as by the fact that we cannot represent the
numbers involved with infinite precision (this issue of precision is sometimes swept under the
rug in classical research on scaling algorithms). Finally, we note that due to the error δ our
potential need not decrease monotonically. The standard analysis of Sinkhorn still applies
if we can test whether the current scaling is an ε-scaling after each full Sinkhorn iteration.
We show how to do so efficiently in the quantum setting. However, in Osborne’s algorithm
one updates only a single (random) row/column per iteration, and the quantum cost of our
testing procedure is higher than the cost of updating (classically, this problem is overcome
by simply keeping track of the row and column marginals). To circumvent the need for
testing every iteration, we give a novel analysis of Osborne’s algorithm (and of a randomized
version of Sinkhorn) showing uniformly random iterates provide an ε-balancing with high
probability.

1.4 Second contribution: quantum lower bound for scaling
A natural question would be whether our upper bounds for the time complexity of matrix
scaling and balancing can be improved further. Since the output has length roughly n, there
is an obvious lower bound of n even for quantum algorithms. An Õ(n) quantum algorithm
would, however, still be an improvement over our algorithms, and it would be a quadratic
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speed-up over the best classical algorithm. In Section 4 we dash this hope for matrix scaling
by showing that our algorithm is essentially optimal for constant ε, even for the special case
of A that is exactly scalable to uniform marginals:

There exists a constant ε > 0 such that every quantum algorithm that (with probability
≥ 2/3) finds an ε-ℓ1-scaling for a given n × n matrix A that is exactly scalable to
uniform and has m potentially non-zero entries, has to make Ω(

√
mn) queries to A.

Our proof constructs instances A that hide permutations, shows how approximate scalings
of A give us information about the hidden permutation, and then uses the adversary
method [5] to lower bound the number of quantum queries to the matrix needed to find that
information. In particular, we show that for a permutation σ ∈ Sn, it takes Ω(n

√
n) queries

to the entries of the associated permutation matrix to learn σ(i) mod 2 for each i ∈ [n].

2 Preliminaries

2.1 Matrix scaling and balancing
Throughout we use r, c ∈ Rn as the desired row and column marginals. Unambiguously,
we also use r : Rn×n → Rn (resp. c : Rn×n → Rn) as the function that sends an n × n-
matrix to its row (resp. column) marginal: r(A) (resp. c(A)) is the vector whose i-th entry
equals ri(A) =

∑n
j=1 Aij (resp. ci(A) =

∑n
j=1 Aji). We use A(x, y) = (Aijexi+yj )i,j∈[n]

to denote the rescaled matrix A with scalings given by ex and ey. We say a non-negative
matrix A ∈ Rn×n

+ is exactly scalable to (r, c) ∈ Rn
+ × Rn

+, if there exist x, y ∈ Rn such that
r(A(x, y)) = r and c(A(x, y)) = c. For an ε > 0, we say A ∈ Rn×n

+ is ε-ℓ1-scalable to (r, c) ∈
Rn

+×Rn
+, if there exist x, y ∈ Rn such that ∥r(A(x, y))−r∥1 ≤ ε and ∥c(A(x, y))−c∥1 ≤ ε.

We say A ∈ Rn×n
+ is asymptotically scalable to (r, c) ∈ Rn

+ ×Rn
+ if it is ε-ℓ1-scalable to (r, c)

for every ε > 0. In the matrix-balancing setting we require y = −x, and the marginals are
compared to each other. We abbreviate A(x) = A(x,−x). We say a non-negative matrix
A ∈ Rn×n

+ is exactly balanceable, if there exists a vector x ∈ Rn such that r(A(x)) = c(A(x)).
For an ε > 0, we say A ∈ Rn×n

+ is ε-ℓ1-balanceable, if there exists an x ∈ Rn such that
∥r(A(x))−c(A(x))∥1

∥A(x)∥1
≤ ε. We say A ∈ Rn×n

+ is asymptotically balanceable if it is ε-ℓ1-balanceable
for every ε > 0. The associated optimization problems are as follows.

▶ Problem 1 (ε-ℓ1-scaling problem). Given A ∈ Rn×n
+ and desired marginals r, c ∈ Rn

+ with
∥r∥1 = ∥c∥1 = 1, find x, y ∈ Rn s.t. ∥r(A(x, y))− r∥1 ≤ ε and ∥c(A(x, y))− c∥1 ≤ ε.

▶ Problem 2 (ε-ℓ1-balancing problem). Given A ∈ Rn×n
+ , find x ∈ Rn s.t. ∥r(A(x)) −

c(A(x))∥1/∥A(x)∥1 ≤ ε.

For matrix scaling, our algorithm is most naturally analyzed with the error measured by
the relative entropy, which can be converted to give an upper bound on ℓ1-distance using (a
generalized version of) Pinsker’s inequality. We therefore also consider the following problem:

▶ Problem 3 (ε-relative-entropy-scaling problem). Given A ∈ Rn×n
+ and desired marginals

r, c ∈ Rn
+ with ∥r∥1 = ∥c∥1 = 1, find x, y ∈ Rn such that D(r∥r(A(x, y))) ≤ ε and

D(c∥c(A(x, y))) ≤ ε.
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2.2 Computational model
We assume sparse black-box access to the elements of A via lists of the potentially non-zero
entries for each row and each column. A quantum algorithm can make such queries also
in superposition. We also assume (classical) black-box access to the target marginals r, c.
Our computational model is of a classical computer (say, a Random Access Machine for
concreteness) that can invoke a quantum computer as a subroutine. The classical computer
can write to a classical-write quantum-read memory (“QCRAM”)3, and send a description
of a quantum circuit that consists of one- and two-qubit gates from some fixed discrete
universal gate set (say, the H and T gates, Controlled-NOT, and 2-qubit controlled rotations
over angles 2π/2s for positive integers s; these controlled rotations are used in the circuit for
the quantum Fourier transform (QFT), which we invoke later), queries to the input oracles,
and queries to the QCRAM to the quantum computer. The quantum computer runs the
circuit, measures the full final state in the computational basis, and returns the measurement
outcome to the classical computer. See [9, Sec. 2] for details.

3 A Sinkhorn algorithm with approximate updates

We state and analyze Algorithm 1, a variant of the well-known Sinkhorn algorithm. Here we
give an overview of its analysis, we refer to [9, Sec. 3] for the proofs. The algorithm’s objective
is to find scaling vectors x, y ∈ Rn such that the matrix A(x, y) = (Aijexi+yj )i,j∈[n] has row
and column marginals r and c, respectively. Sinkhorn-type algorithms do so in the following
iterative way. Starting from the rational matrix A ∈ [0, 1]n×n, find a vector x such that
the row marginals of (Aijexi)i,j∈[n] are r, and then find a y such that the column marginals
of A(x, y) are c. The second step may have changed the row marginals, so we repeat the
procedure. We can view this as updating the coordinates of x and y one at a time, starting
from the all-0 vectors. To update the row scaling vectors, we wish to find x̂ = x + ∆ such
that r(A(x̂, y)) = r. Expanding this equation yields e∆ℓ · rℓ(A(x, y)) = rℓ, for ℓ ∈ [n]. Every
row and column contains at least one non-zero entry, so this has a unique solution:

x̂ℓ = xℓ + ∆ℓ = xℓ + ln
(

rℓ

rℓ(A(x, y))

)
= ln

(
rℓ∑n

j=1 Aℓjeyj

)
. (3.1)

Similar formulas can be derived for the column-updates. We use the term “one Sinkhorn
iteration” to refer to the process of updating all n row scaling vectors, or updating all
n column scaling vectors. We state the Sinkhorn algorithm in terms of two subroutines,
ApproxScalingFactor and TestScaling. For both subroutines we provide both classical
and quantum implementations in [9, Sec. 4]. A key ingredient of both subroutines is a
procedure that computes the logarithm of a sum of exponentials, see Section 3.2 for a high-
level explanation of the quantum subroutine. For the analysis of Algorithm 1, we only use
the guarantees of the subroutines as stated, and do not refer to their actual implementation.

We study a version of Sinkhorn’s algorithm where, instead of computing row and column
marginals in each iteration exactly, we use a multiplicative approximation of the marginals
to compute δ-additive approximations of Equation (3.1) and similar for column-updates.
In the classical literature, δ can be chosen to be very small, since the cost per iteration
scales as polylog(1/δ), and hence that error is essentially a minor technical detail. In the
quantum setting, we obtain better dependence in terms of n at the cost of allowing a
poly(1/δ)-dependence, so the required precision δ merits detailed attention in the analysis.

3 Note that we do not require a full QRAM that can hold qubits as well. We believe QCRAM is a natural
assumption since it simply amounts to classical RAM that can be read in superposition.
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Algorithm 1 Full Sinkhorn with finite precision and failure probability.

Input: Oracle access to A ∈ [0, 1]n×n with ∥A∥1 ≤ 1 and non-zero entries at least
µ > 0, target marginals r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, iteration
count T ∈ N, bit counts b1, b2 ∈ N, estimation precision 0 < δ < 1, test
precision 0 < δ′ < 1 and subroutine failure probability η ∈ [0, 1]

Output: Vectors x, y ∈ Rn with entries encoded in (b1, b2) fixed-point format
Guarantee: For ε ∈ (0, 1], with parameters chosen as in Proposition 13, (x, y) form

an ε-relative-entropy-scaling of A to (r, c) with probability ≥ 2/3
1 x(0), y(0) ← 0; // entries in (b1, b2) fixed-point format

2 for t← 1, 2, . . . , T do
3 if t is odd then
4 for ℓ← 1, 2, . . . , n do
5 x

(t)
ℓ ← ApproxScalingFactor(Aℓ•, rℓ, y(t−1), δ, b1, b2, η, µ);

6 end for
7 y(t) ← y(t−1);
8 else if t is even then
9 for ℓ← 1, 2, . . . , n do

10 y
(t)
ℓ ← ApproxScalingFactor(A•ℓ, cℓ, x(t−1), δ, b1, b2, η, µ);

11 end for
12 x(t) ← x(t−1);
13 end if
14 if TestScaling(A, r, c, x(t), y(t), δ′, b1, b2, η, µ) then
15 return (x(t), y(t));
16 end if
17 end for
18 return (x(T ), y(T ));

The Sinkhorn algorithm thus has a number of tunable parameters (precision, error
parameters, iteration count). We show how to choose them in such a way that the resulting
quantum algorithm obtains an ε-relative-entropy-scaling in time Õ(

√
mn/ε2).

▶ Theorem 4. Let A ∈ [0, 1]n×n be a matrix with ∥A∥1 ≤ 1 and m non-zero entries, each
rational and at least µ > 0, let r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, and let ε ∈ (0, 1].
Assume A is asymptotically scalable to (r, c). Then there exists a quantum algorithm that,
given sparse oracle access to A, with probability ≥ 2/3, computes (x, y) ∈ Rn ×Rn such that
A(x, y) is ε-relative-entropy-scaled to (r, c), for a total time complexity of Õ(

√
mn/ε2).

A generalization of Pinsker’s inequality (cf. [9, Lem. 2.1]) implies the following corollary.

▶ Corollary 5. Let A, r, c and ε be as in Theorem 4. Then there exists a quantum algorithm
that with probability ≥ 2/3 computes (x, y) ∈ Rn × Rn such that A(x, y) is ε-ℓ1-scaled to
(r, c), for a total time complexity of Õ(

√
mn/ε4).

In [9, Thm. C.6], we show that if the matrix A is entrywise-positive, then the number
of iterations to obtain an ε-relative-entropy-scaling can be reduced to roughly 1/

√
ε rather

than roughly 1/ε, leading to the following theorem.
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Procedure ApproxScalingFactor(a, r, y, δ, b1, b2, η, µ).

Input: Oracle access to rational a ∈ [0, 1]n, rational r ∈ (0, 1], oracle access
to y ∈ Rn encoded in (b1, b2) fixed-point format, desired precision δ ∈ (0, 1],
desired failure prob. η ∈ [0, 1], lower bound µ > 0 on non-zero entries of a

Output: A number x encoded in (b1, b2) fixed-point format
Guarantee: If b1 ≥ ⌈log2(|ln(r/

∑n
j=1 ajeyj )|)⌉ and b2 ≥ ⌈log2(1/δ)⌉, then with

prob. ≥ 1− η, x is a δ-additive approximation of ln(r/
∑n

j=1 ajeyj )

Procedure TestScaling(A, r, c, x, y, δ, b1, b2, η, µ).

Input: Oracle access to rational A ∈ [0, 1]n×n with ∥A∥1 ≤ 1, rational r, c ∈ (0, 1]n,
oracle access to x, y ∈ Rn encoded in (b1, b2) fixed-point format, test
precision δ ∈ (0, 1), desired failure probability η ∈ [0, 1], lower bound µ > 0
on non-zero entries of A

Output: A bit indicating whether x, y forms a δ-relative-entropy-scaling of A to
target marginals r, c.

Guarantee: If b1 ≥ log2(|ln(rℓ/
∑n

j=1 Aℓjeyj )|) for all ℓ ∈ [n], and similarly for the
columns, and furthermore b2 ≥ ⌈log2(1/δ)⌉, then with probability at
least 1− η: outputs False if D(r∥r(A(x, y))) ≥ 2δ or
D(c∥c(A(x, y))) ≥ 2δ, outputs True if both are at most δ

▶ Theorem 6. Let A ∈ [µ, 1]n×n be a matrix with ∥A∥1 ≤ 1, each entry rational and at
least µ > 0, let r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, and let ε ∈ (0, 1]. Then there exists a
quantum algorithm that, given sparse oracle access to A, with probability ≥ 2/3, computes
(x, y) ∈ Rn × Rn such that A(x, y) is ε-relative-entropy-scaled to (r, c), at a total time
complexity of Õ(n1.5/ε1.5).

The next corollary also follows from the generalization of Pinsker’s inequality.

▶ Corollary 7. Let A, r, c and ε be as in Theorem 6. Then there exists a quantum algorithm
that with probability ≥ 2/3 computes (x, y) ∈ Rn × Rn such that A(x, y) is ε-ℓ1-scaled to
(r, c), for a total time complexity of Õ(

√
mn/ε3).

3.1 Potential argument
The analysis uses the convex potential function

f(x, y) =
n∑

i,j=1
Aijexi+yj −

n∑
i=1

rixi −
n∑

j=1
cjyj .

This function (already mentioned in the introduction) is often used in the context of matrix
scaling, as its gradient is the difference between the current and desired marginals. Many of
the more sophisticated algorithms for matrix scaling minimize this function directly. For our
purposes, we first bound the potential gap f(0, 0)− infx,y∈Rn f(x, y) (see [9, App. A]).

▶ Lemma 8 (Potential gap). Assume A ∈ [0, 1]n×n with ∥A∥1 ≤ 1 and non-zero entries at
least µ > 0. If A is asymptotically (r, c)-scalable, then f(0, 0)− infx,y∈Rn f(x, y) ≤ ln (1/µ) .

For matrices A that are exactly (r, c)-scalable, this bound is well-known (see e.g. [34, 20]),
but to the best of our knowledge, it has not yet appeared in the literature when A is only
assumed to be asymptotically scalable to (r, c).
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One can show that, for a Sinkhorn iteration in which we update the rows exactly, i.e.,
x̂ℓ = ln(rℓ/

∑n
j=1 Aℓjeyj ) for ℓ ∈ [n], the potential decreases by exactly the relative entropy:

f(x, y)− f(x̂, y) = D(r∥r(A(x, y))), (3.2)

and similarly for exact column updates. The next lemma generalizes this to allow for error
in the update; it shows that we can lower bound the decrease of the potential function in
every iteration in terms of the relative entropy between the target marginal and the current
marginal, assuming every call to the subroutine ApproxScalingFactor succeeds.

▶ Lemma 9. Let A ∈ Rn×n
+ , let x, y ∈ Rn, let δ ∈ [0, 1], and let x̂ ∈ Rn be a vector such

that for every ℓ ∈ [n], we have |x̂ℓ − ln(rℓ/
∑n

j=1 Aℓjeyj )| ≤ δ. Then

f(x, y)− f(x̂, y) ≥ D
(
r
∥∥r(A(x, y))

)
− 2δ.

A similar statement holds for an update of y (using c instead of r in the relative entropy).
When δ = 0, the inequality becomes an equality which is well-known, see e.g. [2] or [20].

The lemma shows that updating the scaling vectors with additive precision δ suffices to make
progress in minimizing the potential function f , as long as we are still Ω(δ) away from the
desired marginals (in relative entropy distance).

We thus wish to store the entries of x and y with additive precision δ > 0. We want
to do so using a (b1, b2) fixed-point format, so we need b2 ≥ ⌈log2(1/δ)⌉. The guaran-
tees of ApproxScalingFactor and TestScaling assert that this choice of b2 is also suf-
ficient. Lemma 10 shows how large we need to take b1 to ensure the requirements of
ApproxScalingFactor and TestScaling are satisfied in every iteration. The algorithm
returns as soon as TestScaling returns True, or after T iterations. However, to simplify
the analysis, we always assume that x(t) and y(t) are defined for t = 0, . . . , T .

▶ Lemma 10 (Bounding the scalings). Let A ∈ [0, 1]n×n with ∥A∥1 ≤ 1 and non-zero
entries at least µ > 0. Let T ≥ 1 and δ ∈ [0, 1]. Denote σ = max(|ln rmin|, |ln cmin|). Let
b2 = ⌈log2(1/δ)⌉ and choose b1 = ⌈log2(T ) + log2(ln( 1

µ ) + 1 + σ)⌉. If for all t ∈ [T ] the
subroutine ApproxScalingFactor succeeds, then for all t ∈ [T ] and ℓ ∈ [n] we have∣∣∣∣∣∣ln

 rℓ∑n
j=1 Aℓjey

(t)
j

∣∣∣∣∣∣ ≤ 2b1 ,

∣∣∣∣∣ln
(

cℓ∑n
i=1 Aiℓe

x
(t)
i

)∣∣∣∣∣ ≤ 2b1

and ∥(x(t), y(t))∥∞ ≤ t
(

ln
(

1
µ

)
+ δ + σ

)
≤ t

(
ln
(

1
µ

)
+ 1 + σ

)
.

To formally analyze the expected progress it is convenient to define the following events.

▶ Definition 11 (Important events). For t = 1, . . . , T , we define the following events:
Let St be the event that all n calls to ApproxScalingFactor succeed in the t-th iteration.
Define S to be the intersection of the events St, i.e., S = ∩T

t=1St.

To give some intuition, we note below that the event S is the “good” event where a
row-update makes the relative entropy between r and the updated row-marginals at most δ

(and similarly for the columns). We only use Lemma 12 in [9, App. C].

▶ Lemma 12. If S holds and δ ≤ 1, then the following holds for all t ∈ [T ]:
If t is odd, then D(r∥r(A(x(t), y(t)))) ≤ δ.
If t is even, then D(c∥c(A(x(t), y(t)))) ≤ δ.
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We can combine Lemmas 8 and 9 to show Algorithm 1 returns, with high probability, an
ε-relative-entropy-scaling to (r, c) by choosing δ = O(ε).

▶ Proposition 13. Let A ∈ [0, 1]n×n with ∥A∥1 ≤ 1 and non-zero entries at least µ > 0
and rational, and let r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1. Assume A is asymptotically
scalable to (r, c). For ε ∈ (0, 1], choose T =

⌈
8
ε ln

(
1
µ

)⌉
+ 1, δ = ε

16 , δ′ = ε
2 , η = 1

3(n+1)T ,
b2 = ⌈log2( 1

δ )⌉, and b1 = ⌈log2(T ) + log2(ln( 1
µ ) + σ + 1)⌉, where σ = max(|ln rmin|, |ln cmin|).

Then, Algorithm 1 returns (x, y) s.t. D(r∥r(A(x, y))) ≤ ε and D(c∥c(A(x, y))) ≤ ε with
probability ≥ 2/3.

3.2 Quantum approximate summing

ApproxScalingFactor and TestScaling both rely on the computation of additive approx-
imations to numbers of the form ln(

∑n
i=1 aie

yi). Here we sketch our approach and mention
some complications; see [9, Sec. 4] for details. If we assume the numbers bi = aie

yi can be
queried at unit cost, then we can efficiently compute ln(

∑n
i=1 bi) up to additive error δ using

amplitude estimation, as follows. After pre-processing (using quantum maximum finding [24])
one may assume that bi ∈ [0, 1] and maxi bi ≥ 1/2. With 2 queries to the bis and a small
number of other gates we prepare 1√

n

∑n
i=1 |i⟩

(√
bi |0⟩+

√
1− bi |1⟩

)
. The squared norm of

the part ending in |0⟩ equals p = 1
n

∑n
i=1 bi ∈ [1/2n, 1]. Let δ ∈ (0, 1/2] be an error parameter

that we instantiate later. Using amplitude amplification we estimate p up to multiplicative
error 1 ± δ using O( 1

δ

√
1/p) = O( 1

δ

√
n) queries to the bis, and Õ( 1

δ

√
n) gates, with error

probability ≤ 1/3 [15, Theorem 12]. We can reduce the error probability to a small η > 0, by
running this O(log(1/η)) times and outputting the median outcome. Naturally, multiplicative
approximation of

∑n
i=1 bi yields additive approximation of ln(

∑n
i=1 bi) = ln(

∑n
i=1 aie

yi).
One obstacle to efficiently implementing the above is that one cannot simply compute all

numbers to sufficient precision. For ApproxScalingFactor for instance, we aim to compute
a number ln(r/

∑n
j=1 ajeyj ) where the yj can (and typically do) grow linearly with n, so

we cannot compute eyj with sufficiently high precision in time sublinear in n. Instead we
compute additive approximations of relative quantities such as eyi−yj ≤ 1 for i, j ∈ [n] with
yj ≥ yi, and use properties of the log to relate this to the original desired quantity. This
approach is widely used in practice, e.g., [4]. Note that these issues concern both the classical
and quantum setting, but are particularly important for the latter, since we aim for a better
dependence on m and n for the time complexity. We implement everything such that the
fixed-point format (b1, b2) for both the input and output of the oracles is the same, avoiding
the need to change the encoding format in every Sinkhorn or Osborne iteration.

3.3 Time complexity

Combining the above, we prove one of our main results (already stated earlier), bounding
the time complexity of computing an ε-relative-entropy-scaling of A to marginals (r, c).

▶ Theorem 4. Let A ∈ [0, 1]n×n be a matrix with ∥A∥1 ≤ 1 and m non-zero entries, each
rational and at least µ > 0, let r, c ∈ (0, 1]n with ∥r∥1 = ∥c∥1 = 1, and let ε ∈ (0, 1].
Assume A is asymptotically scalable to (r, c). Then there exists a quantum algorithm that,
given sparse oracle access to A, with probability ≥ 2/3, computes (x, y) ∈ Rn ×Rn such that
A(x, y) is ε-relative-entropy-scaled to (r, c), for a total time complexity of Õ(

√
mn/ε2).
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Proof. We show that Algorithm 1 with the parameters chosen as in Proposition 13 has the
stated time complexity. Note that the cost of computing these parameters from the input
will be dominated by the runtime of the algorithm. Proposition 13 shows that Algorithm 1
runs for at most O(ln(1/µ)/ε) iterations. Next we show the time complexity per iteration is
Õ(
√

mn/ε), which implies the claimed total time complexity of Õ(
√

mn/ε2).
Theorem 4.5 in [9] formalizes the discussion of Section 3.2: using ApproxScalingFactor

with precision δ = Θ(ε) on a row containing s potentially non-zero entries incurs a cost
Õ(
√

s/ε), where we suppress a polylogarithmic dependence on n. One iteration of Algorithm 1
applies ApproxScalingFactor once to each row or once to each column, so by Cauchy–
Schwarz the total cost of the calls to ApproxScalingFactor in one iteration is

Õ
( n∑

i=1

√
sr

i /ε +
n∑

j=1

√
sc

j/ε
)
⊆ Õ(

√
mn/ε),

where we recall that sr
i and sc

j are the numbers of potentially non-zero entries in the i-th row
and j-th column of A, respectively, and m is the total number of potentially non-zero entries
in A (i.e.,

∑n
i=1 sr

i = m =
∑n

j=1 sc
j). Similarly, [9, Thm. 4.7] shows invoking TestScaling

with precision δ′ = Θ(ε) incurs a cost of order Õ(
√

mn/ε). Finally we observe that compiling
the quantum circuits (and preparing their inputs) for the calls to ApproxScalingFactor and
TestScaling can be done with at most a polylogarithmic overhead. ◀

Note that the dependency on ln(1/µ) is suppressed by the Õ, since we assume the
numerator and denominators of the rational inputs are bounded by a polynomial in n.

3.4 Complications in Osborne’s algorithm
For the matrix balancing problem one can use a similar approach as for the matrix scaling
problem. The idea is to fix the requirement of being ε-ℓ1-balanced for individual coordinates,
one at a time. More precisely, given an index ℓ ∈ [n], the update is given by x′ = x + ∆ℓeℓ,
where ∆ℓ is chosen such that rℓ(A(x′)) = cℓ(A(x′)). Expanding this and using Aℓℓ = 0
yields e∆ℓ · rℓ(A(x)) = e−∆ℓ · cℓ(A(x)). Since we assume every row and column contains at
least one non-zero entry, the above equation has a unique solution, given by

∆ℓ = ln
(√

cℓ(A(x))/rℓ(A(x))
)

. (3.3)

Note that the updates of multiple coordinates cannot be done simultaneously, since each
coordinate can potentially affect all row and column marginals. This is in contrast with the
Sinkhorn algorithm for matrix scaling, where all rows or all columns can be updated at the
same time. This provides a significant challenge in the analysis of the algorithm since we can
no longer test whether we have found an ε-balancing in between each iteration. We give a
novel analysis of Osborne’s algorithm [9, Sec. 6] and of a randomized version of Sinkhorn’s
algorithm [9, Sec. 5] that shows a uniformly random iterate provides an ε-balancing/scaling
with high probability. For matrix balancing this yields the following.

▶ Theorem 14. Let A ∈ [0, 1]n×n be a matrix whose non-zero entries are rational, at least
µ > 0, with zeroes on the diagonal, each row and column having at least one non-zero element,
and let ε ∈ (0, 1]. Assume A is asymptotically balanceable. Then there exists a quantum
algorithm that, given sparse oracle access to A, returns with probability ≥ 2/3 a vector
x ∈ Rn such that A(x) is ε-ℓ1-balanced, with expected time complexity Õ(

√
mn/ε4).
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4 Matching lower bound for matrix scaling with constant ε

We show that our algorithm for matrix scaling is in fact optimal with respect to the dependence
on n and m, for constant ε > 0. We prove an Ω(

√
mn) lower bound on the query complexity

of quantum algorithms for Θ(1)-ℓ1-scaling to the uniform marginals (1/n, 1/n). Here we
sketch the case m = n2; Section 7 in [9] gives the full proof also for the sparse case.

We consider the problem of learning a permutation “modulo two” in the following sense.4

▶ Definition 15 (Single-bit descriptor). Let σ ∈ Sn be a permutation. The single-bit descriptor
of σ is the bit string z ∈ {0, 1}n with entries zi ≡ σ(i) mod 2.

We first use the adversary method [5] to prove an Ω(n
√

n) bound for recovering the
single-bit descriptor, given (dense) oracle access to the permutation matrix. This is tight,
since one can use Grover on each column to fully recover the permutation matrix. We follow
a similar proof structure as in the Ω(

√
n)-query lower bound given in [5] for finding σ−1(1),

and the Ω(n
√

n)-query lower bound for graph connectivity [23].

▶ Lemma 16. Let n be a positive multiple of 4. Given an n × n permutation matrix P
corresponding to a permutation σ (i.e., Pij = δi,σ(j) for i, j ∈ [n]), recovering the single-bit
descriptor z of σ, with success probability at least 2/3, requires Ω(n

√
n) quantum queries to

a dense matrix oracle for P.

One can then boost this lower bound to show that even learning a (certain) constant
fraction of the entries of the single-bit descriptor of a permutation requires Ω(n

√
n) quantum

queries. (The precise constant depends on those in Lemma 16 and in Grover search.) We
then reduce the problem of learning the single-bit descriptor to the scaling problem, by
replacing each 1-entry of the permutation matrix by one of two 2× 2 gadget matrices (and
each 0-entry by the 2 × 2 all-0 matrix). These gadgets are such that we can determine
(most of) the single-bit descriptor from the column-scaling vectors y of an Θ(1)-ℓ1-scaling to
uniform marginals. Explicitly, the gadget matrices are as follows:

B0 =
[ 2

9
4
9

1
9

2
9

]
, B1 =

[ 4
9

2
9

2
9

1
9

]
,

Note that the two matrices have the same columns, but in reverse order. We show in the
next lemma that from an approximate scaling of Bi to uniform marginals, one can recover
the bit i.

▶ Lemma 17. The matrices B0, B1 ∈ { 1
9 , 2

9 , 4
9}

2×2 are entrywise positive, with entries
summing to one, and they are exactly scalable to uniform marginals. For i ∈ {0, 1}, let (x, y)
be 1

8 -ℓ1-scaling vectors for Bi to uniform marginals. If i = 0 then y1 − y2 > 0.18, while
if i = 1 then y1 − y2 < −0.18. Moreover, (x, (y2, y1)) are 1

8 -ℓ1-scaling vectors for B1−i to
uniform marginals.

In other words, the matrices can be distinguished just by learning the column-scaling
vectors, but they have the same set of possible row-scaling vectors.

4 Alternatively, one could consider the problem of learning an entire permutation, which would simplify
the notation and proofs slightly. However, for the reduction to matrix scaling, this seems to require
gadget matrices of size roughly log2 n × log2 n, leading to a slightly weaker lower bound.
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Proof. Since one matrix is obtained by swapping the columns of the other, the last claim is
immediately clear, and it suffices to prove the remaining claims for B0.

First, we note that B0 is exactly scalable, since[ 3
4 0
0 3

2

] [ 2
9

4
9

1
9

2
9

] [ 3
2 0
0 3

4

]
=
[ 1

4
1
4

1
4

1
4

]
has uniform marginals. Now suppose that (x, y) is an 1

8 -ℓ1-scaling of B0 to uniform marginals.
By the requirement on the column marginals, we have(

2
9ex1 + 1

9ex2

)
ey1 ≥ 1

2 −
1
8 and

(
4
9ex1 + 2

9ex2

)
ey2 ≤ 1

2 + 1
8 .

By dividing the first inequality by the second one we get

1
2 ·

ey1

ey2
≥ 3

5 ,

and so y1 − y2 ≥ ln 6
5 > 0.18. ◀

Together with Lemma 16 this leads to the following lower bound.

▶ Theorem 18. There exists a constant ε ∈ (0, 1) such that any quantum algorithm which,
given a sparse oracle for an n× n-matrix that is exactly scalable to uniform marginals and
has m potentially non-zero entries which sum to 1, returns an ε-ℓ1-scaling with probability
≥ 2/3, requires Ω(

√
mn) quantum queries to the oracle.
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Abstract
Recently several conjectures were made regarding the Fourier spectrum of low-degree polynomials.
We show that these conjectures imply new correlation bounds for functions related to Majority.
Then we prove several new results on correlation bounds which aim to, but don’t, resolve the
conjectures. In particular, we prove several new results on Majority which are of independent interest
and complement Smolensky’s classic result.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Fourier analysis, polynomials, Majority, correlation, lower bound, conjectures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.111

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/175

Funding Emanuele Viola: Supported by NSF CCF award 1813930.

Acknowledgements This paper includes the results in [28].
I am grateful to Chin Ho Lee for pointing out the work [5] to me, and to an anonymous reviewer for
suggesting the use of hypercontractivity to bound E|gk(x)| in the proof of Theorem 1 (alternatively
one can reason along the lines of the proof of Theorem 4).
A preliminary version of this paper had Theorem 7 only for d ≥ Ω(n1/3), and the degree bound was
O(d

√
log n). Jarosław Błasiok pointed out to us how to improve the proof to obtain Theorem 7. The

proof in the preliminary version was similar, but rather than performing a case analysis, detected
the two cases explicitly with an auxiliary polynomial, which led to d ≥ Ω(n1/3). It also used the
polynomials for Maj with polynomially-small error, as opposed to constant, which led to the extra
√

log n factor. Following these ideas, we also improved the results on the coin problem and h2. We
are very grateful to Jarosław Błasiok for letting us include the improved results!

1 Introduction and our results

The recent “polarizing random walks” paradigm [6, 8, 7, 5] constructs new pseudorandom
generators against classes of functions with “bounded Fourier tails.” For a function f :
{0, 1}n → {−1, 1} define

Lk(f) :=
∑

S⊆{1,2,...,n}:|S|=k

∣∣∣f̂(S)
∣∣∣ ,

Mk(f) :=
∑

S⊆{1,2,...,n}:|S|=k

f̂(S),

where f̂(S) := Exf(x)χS(x) for χS(x) := (−1)
∑

i∈S
xi is the Fourier transform of f [16].

These papers construct pseudorandom generators for functions with small Lk or Mk for
several settings of parameters.
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In an effort to use this framework to improve the state of pseudorandom generators
against low-degree polynomials over F2 = {0, 1} [3, 14, 26, 10], several conjectures have been
put forth about polynomials. Let p be a degree-d polynomial over F2 in n variables. For
f := (−1)p it has been conjectured (see [6, 8, 5]):

Lk(f) ≤ 2O(dk) ∀k. (1)
L2(f) ≤ O(d2), (2)

Mk(f) ≤ 2o(dk)+O(k log log n) ∀k ≤ O(log n). (3)

Conjecture (1) would not imply new pseudorandom generators, but would come close
to matching the state-of-the-art using this framework – something which was eventually
achieved in [5]. But conjectures (2) and (3) would imply new generators, improving on
long-standing open problems. One interesting feature of this approach is that, unlike the
influential approach by Nisan [15], it is not based on correlation bounds. In particular,
Conjecture (2) is not known to imply such bounds. Still, correlation bounds where shown to
be sufficient for this approach in [7].

We show that in fact correlation bounds are also necessary. That is, we show that this
approach requires proving new correlation bounds for polynomials. This is new information
about Conjecture (2). Conjecture (3) was shown in [5] to imply new pseudorandom generators
with good dependence on the error, and the latter are known to imply new correlation bounds
for a function in NP [26]. We give a direct proof of this implication which yields a function
in P (and other parameter improvements). In fact, we show that even weaker versions of
the conjectures, such as M2 ≤ o(

√
n) for polynomials of degree log2 n, already imply new

correlation bounds.

Correlation bounds

We say that a function f : {0, 1}n → {−1, 1} has δ-advantage (or (1−δ)-error) (probabilistic)
degree d if there is a distribution P on polynomials p : {0, 1}n → {0, 1} over F2 of degree d such
that for every input x we have P[(−1)P (x) = f(x)] ≥ δ. By Yao’s min-max argument [30], a
function f has δ-advantage degree d iff for every distribution D on {0, 1}n it has δ-advantage
degree d under D, meaning there exists a polynomial p over F2 of degree d such that
P[(−1)p(D) = f(D)] ≥ δ. If f has range {0, 1} instead of {−1, 1} we use the same notation
except (−1)P (x) is replaced simply by P (x).

For two functions f and g from {0, 1}n to {−1, 1} we define their correlation under a
distribution D by E[f(D)g(D)], which we note equals 2(P[f(D) = g(D)] − 1/2) and so it is
(twice) the distance of 1/2 from the advantage.

Since the classical works by Razborov and Smolensky [17, 19] the best-available explicit
probabilistic-degree lower bound for degree d ≥ log2 n gives error at best

1/2 − Ω(d/
√

n) (4)

which holds for the Majority function on n bits. In particular, it is consistent with our
knowledge that every explicit function has (1/2 + 1/

√
n)-advantage degree log2 n (while non-

constructively there exist functions which do not even have advantage exponentially close to
1/2 for polynomial degree). For recent progress on functions computable in exponential-time
classes see [29].

Proving correlation bounds is a fundamental open problem whose solution stands in the
way of progress on a striking variety of fronts, including: circuit lower bounds, multiparty
communication complexity, and matrix rigidity. For more on this long-standing challenge
and a discussion of the just-mentioned implications, we refer the reader to [25, 27, 29].
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The conjectures imply new correlation bounds

We show that bounds on Mk imply new probabilistic-degree lower bounds for an explicit
function hk. We now define hk and state our results.

Let gk : {0, 1}n → Z and hk : {0, 1}n → {−1, 1} be defined as

gk(x) :=
∑

S:|S|=k

χS(x),

hk(x) := Sign(gk(x)),

where Sign(i) = 1 if i > 0 and −1 otherwise (the value on i = 0 is arbitrary).

▶ Theorem 1. Let F be a distribution on functions from {0, 1}n to {−1, 1} such that
P[F (x) = hk(x)] ≥ 1/2 + ϵ for every x. Then there is an outcome f of F such that
Mk(f) ≥ 2ϵ · e−k

√(
n
k

)
.

To illustrate the theorem, consider first k = 2, in which case the conclusion becomes
M2(f) ≥ Ω(ϵn). This means that showing even just M2(p) ≤ o(

√
n) for every degree-d

polynomial requires showing that h2 does not have (1/2 + Ω(1/
√

n))-advantage degree d.
This would improve the tradeoff (4) mentioned above when d ≥ log2 n. Conjecture (2)
implies the stronger bound M2(p) ≤ O(d2) for every degree-d polynomial p. This would mean
that h2 does not even have (1/2 + cd2/n)-advantage degree d for a constant c, a quadratic
improvement on the tradeoff (4). Consider now the case of larger k. Assuming that hk has
(1/2+ ϵ)-advantage degree d, and assuming Conjecture (3) and using the bound

(
n
k

)
≥ (n/k)k

we obtain

2ϵ · e−k
(n

k

)k/2
≤ 2ϵ · e−k

√(
n

k

)
≤ 2o(dk)+O(k log log n).

This implies ϵ ≤ 2k(o(d)+O(log log n)−0.5 log2(n/k)). For k = log2 n this yields new correlation
bounds. Indeed, let d := log2 n. Then because o(d), log log n, and log(k) are all o(log n) we
obtain

ϵ ≤ 2−Ω(k log n) = 2−Ω(log2 n)

which improves on the tradeoff (4).

Proof. Note that for any function f , by linearity of expectation, we have

Mk(f) = Exf(x)gk(x).

Fix any x and let P[F (x) = hk(x)] be equal to 1/2 + ϵx ≥ 1/2 + ϵ. We can write

EF [F (x)gk(x)] = (1/2 + ϵx) · Sign(gk(x)) · gk(x) + (1/2 − ϵx) · (−Sign(gk(x))) · gk(x),

holding even if gk(x) = 0. Note that Sign(gk(x)) · gk(x) = |gk(x)|. Hence

EF [F (x)gk(x)] = (1/2 + ϵx)|gk(x)| + (1/2 − ϵx)(−|gk(x)|) = 2ϵx|gk(x)| ≥ 2ϵ|gk(x)|.

This gives Ex,F F (x)gk(x) ≥ Ex2ϵ|gk(x)|. In particular, there exists an outcome f such
that

Exf(x)gk(x) ≥ 2ϵEx|gk(x)|.
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There remains to bound Ex|gk(x)|. We make use of hypercontractivity from the analysis
of Boolean functions. Because gk is a polynomial of degree k, by Theorem 9.22 in [16] we
have

Ex|gk(x)| ≥ e−k
√
Ex|gk(x)|2.

Now observe that

Ex|gk(x)|2 = Ex

∑
S,T :|S|=|T |=k

χS(x)χT (x) = Ex

∑
S,T :|S|=|T |=k

χS⊕T (x) =
(

n

k

)
,

where ⊕ is symmetric difference. The last equality holds because the terms where S ≠ T

have expectation zero, and the others have expectation one. The result follows. ◀

A natural question is whether Theorem 1 holds even for functions that correlate with hk

under the uniform distribution. We show that it does not.

▶ Theorem 2. Let n be a power of 2. For any integer s between 0 and
√

n/2 there is a function
f : {0, 1}n → {−1, 1} such that P[f(x) = h2(x)] ≥1/2 + Ω(s/

√
n) but M2(f) ≤ O(s2).

To get a sense of the parameters let P[f(x) = h2(x)] = 1/2 + ϵ. Then M2(f) is only
O(ϵ2n) as opposed to Ω(ϵn) in Theorem 1. In particular, if s = O(1) and ϵ = Θ(1/

√
n) we

get M2(f) = O(1) as opposed to Ω(
√

n) in Theorem 1.

We have shown that understanding the probabilistic degree of the functions hk is also
important for the feasibility of recent approaches to pseudorandom generators against
polynomials. We obtain new bounds on the probabilistic degree of the functions hk which
however fall short of resolving whether the correlation bounds in the conclusion of Theorem
1 hold or not. We begin with studying h1 which is essentially the majority function Maj.
The results are of independent interest, and a natural step to tackle hk for larger k. Indeed,
below we use techniques developed for Maj to give new results on h2.

We point out that the probabilistic degree tradeoff of Majority is not known. Given the
tremendous interest in this function, this may come as a surprise. One might be tempted to
think that Smolensky’s tradeoff (4) is tight. We can show that it is indeed tight under the
uniform distribution.

▶ Theorem 3. Majority has (1/2 + Ω(d/
√

n))-advantage degree d under the uniform distri-
bution.

Recall this means that there are degree-d polynomials p over F2 such that Px[p(x) =
Maj(x)] ≥ 1/2 + Ω(d/

√
n), where x is uniform in {0, 1}n. Such a result was only known for

d = O(1) or d = Ω(
√

n), see [25].
However, there are harder distributions. We beat Smolensky’s bound for degree one.

While such polynomials are simple, in light of Theorem 3 this result already requires a
non-uniform distribution.

▶ Theorem 4. Majority does not have (1/2 + c/n)-advantage degree one, for some constant
c. This bound is tight up to the value of c.

We now turn to constructions of probabilistic polynomials for majority. This problem is
related to the so-called coin problem, defined next.
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▶ Definition 5. For δ ∈ [0, 1] we denote by N t
δ the distribution over {0, 1}t where the bits

are i.i.d. and each comes up 1 with probability δ. We say that a distribution F on boolean
functions on t bits (1/2 + α)-solves the δ-coin problem with advantage α if the following is
true:
(1) P[F (N t

δ) = 1] ≥ 1/2 + α; and
(2) P[F (N t

1−δ) = 0] ≥ 1/2 + α.

The study of the coin problem for low-degree polynomials goes back to [18] (see also the
thesis [24]) and has been the subject of several recent works including [13, 11, 21]. This
problem has also been studied in a variety of other models; the terminology “coin problem”
was coined in [4].

However, these works consider large advantage α = Ω(1). By contrast, we are interested
in the setting where α is close to 0. We give tight bounds in this setting, showing that with
degree d the best we can do is to boost the bias by d.

▶ Theorem 6. There is a distribution on polynomials of degree O(d) that (1/2 + dϵ)-solves
the (1/2 + ϵ)-coin problem, whenever dϵ < c for an absolute constant c. Moreover, this is
tight up to the constant in the O(.).

Computing Majority on n bits for odd n can be randomly reduced to solving the
(1/2 + 1/n)-coin problem, simply by selecting uniform bits from the input. Hence, Theorem 6
shows that Majority has (1/2 + d/n)-advantage degree ≤ O(d). We improve the advantage
to Ω(d2/n), and conjecture that this is tight.

▶ Theorem 7. Majority on n bits, for odd n, has (1/2 + d2/n)-advantage degree ≤ O(d).

▶ Conjecture 8. Theorem 7 is tight. A “hard” distribution can be uniform on the inputs of
Hamming weights n/2 + 2ℓ−1 and n/2 − 2ℓ−1 where d < 2ℓ.

To understand the choice of the hard distribution, recall that symmetric polynomials
of degree d < 2ℓ only depend on the weight of the input modulo 2ℓ (see Lemma 11). For
example, for ℓ = 1 symmetric polynomials of degree 1 < 2 only depend on the input weight
modulo 2. The two Hamming weights in the conjecture are congruent modulo 2ℓ; hence any
symmetric polynomial of degree < 2ℓ has correlation zero.

Finally, we turn to h2. One can reduce h2 to a majority on
(

n
2
)

bits, and then apply
Theorem 7 to obtain advantage 1/2 + Ω(d2/n2). We improve this to 1/2 + Ω(d2/n3/2), under
a condition on n.

▶ Theorem 9. Let ℓ be the smallest integer such that d ≤ 2ℓ. Suppose that the remainder of√
n divided by 2ℓ+100 is not in [0, 2d] ∪ [2ℓ+100 − 2d, 2ℓ+100].

Then h2 has (1/2 + d2/n3/2)-advantage degree O(d).

This result is not strong enough to disprove Conjecture (2). For that we require advantage
1/2 + ω(d2/n).

The rest of the paper is organized as follows. After some preliminaries in Section 2 we
prove the statements in the same order in which we discussed them, except that the proof of
Theorem 2 is in Section 8.

2 Preliminaries

In this section we collect several results which are used in later proofs.
The following lemma shows that the majority of several i.i.d. Bernoulli random variables

increases their bias, even in the regime where the bias is very small to start with.
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▶ Lemma 10. P[Maj(N t
1/2+α) = 1] ≥ 1/2 + Ω(α

√
t), whenever

√
tα < c for an absolute

constant c.

We are not aware of a source from which this result can be easily extracted, so we provide
a proof. But Jarosław Błasiok let us know that this lemma appears as Lemma 8 in [23].

Proof. We prove P[Maj(N t
1/2+α) = 1] − P[Maj(N t

1/2+α) = 0] ≥ Ω(α
√

t). The former
difference can be written as

t/2∑
i=1/2

(
t

t/2 + i

)(
(1/2 + α)t/2+i(1/2 − α)t/2−i − (1/2 − α)t/2+i(1/2 + α)t/2−i

)
,

where the sum is for i = 1/2, 1 + 1/2, 2 + 1/2, . . . , t/2.
Collecting a 2t factor and writing z for 2α this equals

2−t

t/2∑
i=1/2

(
t

t/2 + i

)(
(1 + z)t/2+i(1 − z)t/2−i − (1 − z)t/2+i(1 + z)t/2−i

)
.

Further collecting (1 − z)t/2(1 + z)t/2 = (1 − z2)t/2 we rewrite it as

2−t(1 − z2)t/2
t/2∑

i=1/2

(
t

t/2 + i

)((
1 + z

1 − z

)i

−
(

1 − z

1 + z

)i
)

.

Note that
(

1+z
1−z

)
> 1 and so

(
1+z
1−z

)i

−
(

1−z
1+z

)i

is positive and increasing with i. Hence
for any s we can bound below the expression by

2−t(1 − z2)t/2
t/2∑
i=s

(
t

t/2 + i

)((
1 + z

1 − z

)s

−
(

1 − z

1 + z

)s)
.

Moreover, let us write

(
1 + z

1 − z

)s

−
(

1 − z

1 + z

)s

= (1 + x)s − (1 − y)s

where x = 2z/(1 − z) and y = 2z/(1 + z). We bound below the right-hand side by

1 + xs − e−ys ≥ 1 + xs − (1 − ys + (ys)2) = s(x + y) − y2s2.

We pick s =
√

t/100+1/2. The above expression is Ω(
√

tα) as long as
√

tα = Θ(st) is
sufficiently small. Moreover, we have

2−t(1 − z2)t/2
t/2∑
i=s

(
t

t/2 + i

)
≥ Ω(1).

This holds because (1 − z2)t/2 ≥ Ω(1) and the sum of binomial coefficients is also Ω(2−t)
using Stirling’s approximation to the binomial coefficient. ◀

We use the following characterization of symmetric polynomials which is Theorem 2.4 in [2]
and follows from Lucas’ theorem.
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▶ Lemma 11. Let f : {0, 1}n → {0, 1} be a symmetric function that only depends on the
input Hamming weight modulo 2ℓ. Then f is computable by a symmetric F2 polynomial of
degree < 2ℓ. Conversely, any function f : {0, 1}n → {0, 1} computable by a symmetric F2
polynomial of degree < 2ℓ only depends on the input Hamming weight modulo 2ℓ.

Then we need constructions of probabilistic polynomials for symmetric functions, obtained
in [1]. The bounds in the earlier paper [20] would also suffice for the main points in this
paper. See also [22] for a recent characterization.

▶ Lemma 12 ([1]). Let f : {0, 1}n → {0, 1} be symmetric. Then f has (1 − ϵ)-advantage
degree O(

√
n log(1/ϵ)), for any ϵ.

3 Proof of Theorem 3

The main proof is for odd n. If n is even we can use the polynomial p′(x0, x1, . . . , xn−1) :=
p(x0, x1, . . . , xn−2)(1 − xn−1) where p is the polynomial with the highest correlation γ with
majority on input length n − 1. The correlation of p′ with majority is > γ/2.

We now proceed with the main proof. We can assume without loss of generality that d is
a power of 2 and ≤ 0.1

√
n. The polynomial witnessing the correlation will be symmetric. For

a symmetric function f : {0, 1}n → {0, 1} write fw : {0, 1, . . . , n} → {0, 1} for f(x) = fw(|x|)
where |x| is the Hamming weight of x. The correlation between a symmetric polynomial p

and (−1)Maj can be written as

2−n
n∑

i=0

(
n

i

)
(−1)pw(i)(−1)Majw(i).

To construct p we use Lemma 11 for ℓ = log2(2d). That shows that for any fw :
{0, 1, . . . , n} → {0, 1} that depends only on the input modulo 2ℓ there is a symmetric
polynomial p : {0, 1}n → {0, 1} of degree 2ℓ such that pw = fw.

The definition of fw and hence p is as follows. Define Block i to be the 2d integers
2di + 0, 2di + 1, . . . , 2di + 2d − 1. Let i∗ be the smallest i such that Block i contains an
integer larger than n/2. Let t be the number of integers less than n/2 in Block i∗. (If n + 1
is a power of 2 we have t = 0, and below there is no residual chunk.) Define fw to be 1 on
the smallest t inputs, 0 on the next t, 0 on the next d − t, and finally 1 on the next d − t.
Here’s an example for n = 17, d = 2, t = 1, i∗ = 2; the last row shows the division in blocks:

weight 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
- - - - - - - - - + + + + + + + + +

(−1)pw - + + - - + + - - + + - - + + - - +

Note that pw is by construction anti-symmetric in the sense, different from above, that:
pw(i) = 1 − pw(n − i). The same is true for Majw. Therefore g(i) := (−1)pw(i)(−1)Majw(i)

is symmetric, that is g(i) = g(n − i). Hence we only need to consider the bigger half of the
Hamming weights. Majority is always 1, and so we can rewrite the correlation as

2−n · 2 ·
(n−1)/2∑

i=0

(
n

(n + 1)/2 + i

)
(−1)pw((n+1)/2+i).

Enumerate the above binomial coefficients starting from the biggest one for i = 0. The term
(−1)pw((n+1)/2+i) will be +1 on the first t + (d − t) = d, then −1 on the next d, then again
+1 on the next d, and so on. We group the coefficients in chunks of length 2d; in each chunk
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the term is +1 for the first half and −1 for the second half. The number of coefficients is
(n + 1)/2. Hence we have ⌊(n + 1)/4d⌋ chunks, plus a residual truncated chunk of length
ℓ < 2d.

Hence we can write the correlation as follows.

2−n · 2 ·
⌊(n+1)/4d⌋−1∑

i=0

d−1∑
j=0

((
n

(n + 1)/2 + 2di + j

)
−
(

n

(n + 1)/2 + 2di + j + d

))

+ 2−n · 2 ·
ℓ−1∑
i=0

(
n

n − i

)
(−1)pw((n+1)/2+i).

By, say, a Chernoff bound the absolute value of the latter summand +2−n · · · is at most
2−Ω(n), using that ℓ < 2d = O(

√
n). Now consider the first summand. Because the binomials

are decreasing in size, each difference is positive. Hence we obtain a lower bound if we reduce
the range of i. We reduce it to ⌊

√
n/d⌋. So the correlation is at least

2−n · 2 ·
⌊
√

n/d⌋∑
i=0

d−1∑
j=0

((
n

(n + 1)/2 + 2di + j

)
−
(

n

(n + 1)/2 + 2di + j + d

))
− 2−Ω(n).

The next lemma bounds below the difference of two such binomial coefficients.

▶ Lemma 13. For s ≤ 4
√

n and d ≤ 0.1
√

n we have: 2−n
((

n
n/2+s

)
−
(

n
n/2+s+d

))
≥

Ω(sd/n3/2).

We apply the lemma with s = 1/2 + 2di + j which note is ≤ 1/2 + 2
√

n + 0.1
√

n ≤ 3
√

n.
The correlation is at least

⌊
√

n/d⌋∑
i=0

d−1∑
j=0

Ω((1/2 + 2di + j)d/n3/2) − 2−Ω(n) ≥
Ω(

√
n)∑

k=0
Ω(kd/n3/2) − 2−Ω(n) ≥ Ω(d/

√
n).

To justify the first inequality we use 1/2 + 2di + j ≥ di + j and then do the change of
variable k = di + j. For the second we use that the sum of all k up to Ω(

√
n) is Ω(n). This

concludes the proof except for the lemma.

Proof of lemma

We have(
n

n/2 + s

)
−
(

n

n/2 + s + d

)
= n!

(n/2 + s)!(n/2 − s)! − n!
(n/2 + s + d)!(n/2 − s − d)!

= n!
(n/2 + s)!(n/2 − s)!

[
1 − (n/2 − s)(n/2 − s − 1) · · · (n/2 − s − d + 1)

(n/2 + s + d)(n/2 + s + d − 1) · · · (n/2 + s + 1)

]
.

The ratio inside the square bracket is at most

(n/2 − s)d

(n/2)d
= (1 − 2s/n)d ≤ e−2sd/n ≤ 1 − sd/n,

where the last inequality holds because 2sd/n ≤ 1.
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The binomial coefficient outside of the square bracket is(
n

n/2 + s

)
≥ 2nh(1/2+s/n)√

8n(1/2 + s/n)(1/2 − sn)
≥ Ω

(
2n(1−O(s2/n2))

√
n

)
≥ Ω

(
2n

√
n

)
.

Here h is the binary entropy function, and the first inequality can be found as Lemma 17.5.1
in [9]. The second and third inequalities follow from the approximation h(1/2 + x) ≥ 1 − 4x2,
valid for every x, and s = O(

√
n).

The lemma follows by combining the two bounds.

4 Proof of Theorem 4

First let us discuss tightness. To show tightness for odd n we simply output a uniformly
selected bit. For even n this works for all inputs except those of Hamming weight = n/2.
To fix this, we modify the distribution on polynomials to equal 1 with probability 1/n.
On input of weight = n/2 we get the right value with probability 1/n + (1 − 1/n)(1/2) ≥
1/2+Ω(1/n). On inputs of Hamming weight ̸= n/2 we also get the right value with probability
(1 − 1/n)(1/2 + 1/n) ≥ 1/2 + Ω(1/n).

We now move to negative results. First we note that we can reduce the case of even n to
that of odd n: simply append a bit whose value is that of majority on balanced inputs. This
does not change the value of majority, and has negligible effect on the advantage. Hence it
suffices to prove a negative result for even n, and we do so in the rest of this section.

We select as the hard distribution the distribution D which is uniform on inputs of
Hamming weight n/2 + 1 and n/2 − 1. Our goal is to show that for every fixed degree-one
polynomial f we have P[f(D) = Maj(D)] ≤ 1/2 + O(1/n). Using generating functions we
obtain a proof which is nearly calculation-free, requiring only elementary bounds on binomials.
Let m = n/2 and f = x1 + x2 + · · · + xk for a parameter k. Let

b(n, m, k) =
k∑

i=0
(−1)i

(
m

i

)(
n − m

k − i

)
.

Note that b(n, m, k)/
(

n
k

)
is the probability that a uniform set of size k has odd intersection

with a fixed set of size m, minus the probability that it has even intersection. By the definition
of D and f one obtains that |P[f(D) = Maj(D)] − 1/2| is at most big-Oh of

α(n, n/2 − 1, k) :=

∣∣∣∣∣ 1(
n
k

) (b(n, n/2 − 1, k) − b(n, n/2 + 1, k))

∣∣∣∣∣ .
Note that we can assume that f has no constant term because we are taking absolute

values in the expression |P[f(D) = Maj(D)] − 1/2|.
First we use generating functions to obtain a closed form for b(n, m, k). Recall the

generating functions (see e.g. [12] for background on this technique)

(1 + z)n =
∑
i≥0

(
n

i

)
zi,

(1 − z)n =
∑
i≥0

(
n

i

)
(−1)izi.

We have

(1 − z)m(1 + z)n−m =
∑

i≥0,j≥0

(
m

i

)(
n − m

j

)
(−1)izi+j =

∑
k≥0

b(n, m, k)zk.
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If m = n/2 − t the left-hand side can be written as

(1 − z)n/2−t(1 + z)n/2−t(1 + z)2t

=(1 − z2)n/2−t(1 + z)2t

=
∑
i≥0

(−1)i

(
n/2 − t

i

)
z2i(1 + z)2t.

Similarly, if m = n/2 + t then it can be written as

(1 − z)n/2−t(1 + z)n/2−t(1 − z)2t

=
∑
i≥0

(−1)i

(
n/2 − t

i

)
z2i(1 − z)2t.

Specializing to t = 1 we obtain∑
k≥0

(b(n, n/2 − 1, k) − b(n, n/2 + 1, k))zk

=
∑
i≥0

(−1)i

(
n/2 − 1

i

)
z2i
(
(1 + z)2 − (1 − z)2)

=
∑
i≥0

(−1)i

(
n/2 − 1

i

)
z2i · 4z

=4
∑
i≥0

(−1)i

(
n/2 − 1

i

)
z2i+1.

Equating coefficients of zk yields

b(n, n/2 − 1, k) − b(n, n/2 + 1, k) = 4(−1)(k−1)/2
(

n/2 − 1
(k − 1)/2

)
if k is odd, otherwise the left-hand side is zero.

Hence we get

α = 4
(

n/2 − 1
(k − 1)/2

)
/

(
n

k

)
if k is odd, and α = 0 if k is even.
There remains to bound the right-hand side. First, we can assume that k ≤ n/2 because

replacing k with n−k does not change the value of α. If k = 0, 1 we readily have α = O(1/n),
using that n is even. Otherwise we can use the bounds

(n/k)k ≤
(

n

k

)
≤ (en/k)k

to again show α = O(1/n). We have

α ≤ 4
(

n

(k − 1)

)(k−1)/2(
k

n

)k

= 4
√

k

n

(√
1

k − 1 · k√
n

)k

.

We can conclude by noticing that if k ≤ 100 log2 n then this is at most poly log n/n1.5 ≤
O(1/n), using k ≥ 2; while if k ≥ 100 log2 n using that k ≤ n/2 and k − 1 ≥ 0.99k we have

α ≤ O(1) ·

( √
k√

0.99n

)k

≤ O(1)(
√

0.5/0.99)k ≤ O(1)(3/4)k ≤ 1/n.
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5 Proof of Theorem 6

The theorem follows immediately from the following more general lemma, which we will also
use later.

▶ Lemma 14. There is a distribution P on polynomials on s = O(d2) bits of degree O(d)
such that for every ϵ ∈ [−1/2, 1/2], ϵ ≤ 1/d, we have P[P (Ns

1/2+ϵ) = Sign(ϵ)] ≥ 1/2 + Ω(dϵ).

Proof. Let P ′′ : {0, 1}s → {0, 1} be the probabilistic polynomial of degree O(d) from
Theorem 12 which computes Maj on every input with probability 0.99, with input length
s = O(d2) which is assumed to be odd without loss of generality.

We modify P ′′ so that the probability that it makes a mistake on input x only depends on
||x| − n/2|. That is, it is the same on every two inputs of weights n/2 + i and n/2 − i. First,
let P ′ pick a random permutation of the input bits, and then apply P ′′. The probability
that P ′ makes a mistake only depends on |x|. Second, define P that on input x tosses a
coin, and if it is heads it outputs P ′(x), and if it is tails it complements x to obtain ¬x, runs
P ′(¬x), and flips the answer. Because Maj(x) = 1 − Maj(¬x) on inputs of odd length, the
probability that it makes a mistake on input x only depends on ||x| − n/2|

For an input y of Hamming weight i, denote

mi := P[P (y) ̸= Maj(y)].

We conclude the proof assuming ϵ ≥ 0. This will cover the case ϵ < 0 as well, since
P[P (Ns

1/2−ϵ) = 0] = P[P (Ns
1/2+ϵ) = 1].

Let pi := P[|Ns
1/2+ϵ| = i]. We can write

P[P (Ns
1/2+ϵ) = 1] =

∑
i>s/2

pi · (1 − mi) +
∑

i<s/2

pi · mi

=
∑

i>s/2

(pi · (1 − mi) + ps−i · ms−i)

=
∑

i>s/2

(pi − mi(pi − ps−i)) .

Where the last equality holds because by construction mi = mn−i for every i.
Because ϵ ≥ 0 and i > s/2, the factor (pi − ps−i) is positive. Hence we bound the sum

below if we replace mi with its maximum value 0.01, obtaining∑
i>s/2

(pi − 0.01(pi − ps−i)) = P[Maj(Ns
1/2+ϵ) = 1](1 − 0.01) + 0.01 · P[Maj(Ns

1/2+ϵ) = 0].

Writing P[Maj(Ns
1/2+ϵ) = 0] = 1 − P[Maj(Ns

1/2+ϵ) = 1] this becomes

P[Maj(Ns
1/2+ϵ) = 1](1 − 2 · 0.01) + 0.01.

By Lemma 10, P[Maj(Ns
1/2+ϵ) = 1] ≥ 1/2 + Ω(dϵ). Hence we conclude

P[P (Ns
1/2+ϵ) = 1] ≥ (1/2 + Ω(dϵ))(1 − 2 · 0.01) + 0.01 = 1/2 + Ω(dϵ). ◀

At first sight, it may seem suspicious that we can tolerate constant error in the polynomials
for majority. Some intuition why this might be OK follows. If P[P (Ns

1/2+ϵ) = 1] is close
to 1, constant error won’t bother us, since we are only aiming for advantage close to 1/2.
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On the other hand, if that probability is close to 1/2, the loss will recouped thanks to
the symmetrization. That is, mistakes will be made on Ns

1/2−ϵ with the same probability,
boosting the correctness.

To prove that this result is tight, suppose there is a distribution on degree-d polynomials
that solves the (1/2 + ϵ)-coin problem with advantage 1/2 + α. If we sample O(1/α)2 times
independently these polynomials, and compute the majority, a Chernoff bound shows that we
obtain advantage 0.99. By Lemma 12 the majority computation can be done with error 1/100
by a probabilistic polynomial of degree O(1/α). Composing this with the degree-d polynomial
we obtain a probabilistic polynomial of degree O(d/α) which solves the (1/2+ϵ)-coin problem
with advantage 0.98. By averaging we can fix the polynomial and still maintain advantage
0.96. Now we can appeal to a result proved in [13] which shows that any such polynomial
has degree Ω(1/ϵ). Hence, d/α ≥ Ω(1/ϵ). In other words, α ≤ O(dϵ), as desired.

6 Proof of Theorem 7

By Yao’s argument mentioned in the introduction, it suffices to show that for every distribution
Z on {0, 1}n there exists a polynomial which computes Maj correctly with probability
1/2 + Ω(d2/n) over Z. By averaging, it suffices to give, for any Z, a distribution P = P (Z)
on polynomials that computes Maj correctly with the same probability over both the input
drawn from Z and P . Our polynomials will depend only on the Hamming weight |Z| of Z.

Case: P[||Z| − n/2| ≥ d] ≥ 0.01

Let M : {0, 1}O(d2) → {0, 1} be the probabilistic polynomial of degree O(d) from Lemma 14.
Define P (x) to compute M on an odd number s := O(d2) bits y selected uniformly at random
from x. We first analyze the performance of this polynomial on any fixed input x of Hamming
weight w = n(1/2 + ϵ). Note that y has the distribution Ns

1/2+ϵ

We have

P[P (x) = Maj(x)] = P[M(Ns
1/2+ϵ) = Sign(ϵ)] ≥ 1/2 + Ω(dϵ),

By Lemma 14.
Now we use the assumption on Z. With probability Ω(1), we have |ϵ| ≥ d/n, in which

case the probability is ≥ 1/2 + Ω(d2/n). In every other case, the probability is at least 1/2.
Overall, P[P (Z) = Maj(Z)] ≥ 1/2 + Ω(d2/n), concluding this case.

Case: P[||Z| − n/2| ≤ d] ≥ 0.99

Let P be the polynomial of degree O(d) from Lemma 11 that computes Maj on every input
whose Hamming weight w has distance ≤ d from n/2. In this case, we have P[P (Z) =
Maj(Z)] ≥ P[||Z| − n/2| ≤ d] ≥ 0.99.

7 Proof of Theorem 9

As in the proof of Theorem 7, it suffices to show that for every distribution Z on {0, 1}n

there exists a distribution on polynomials which computes h2 well over Z. Our polynomials
will again depend only on the Hamming weight |Z| of Z.
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From the definition of g2 we have that on inputs x with n/2 + t zeroes and n/2 − t ones
we have

g2(x) = 2t2 − n/2.

As a function of t, this is a parabola which roots at t = ±
√

n/4 = ±n·r where r := 1/
√

4n.

Let L := [−nr − d, −nr + d]
⋂
Z and R := [nr − d, nr + d]

⋂
Z be the integers at distance

≤ d from either root.

Case: P[|Z| − n/2 ∈ L
⋃

R|] ≥ 0.99

In this case we use polynomials of degree O(d) from Lemma 11 to compute h2 correctly on
L
⋃

R. This definition is possible if the elements in L and R are not congruent modulo 2ℓ+100.
That is, we require that for every x, y of absolute value at most d the values −nr + x and
nr + y are not congruent modulo 2ℓ+100. For this it suffices that the remainder of 2nr =

√
n

divided by 2ℓ+100 is not in [0, 2d] ∪ [2ℓ+100 − 2d, 2ℓ+100], given by assumption.

Case: P[|Z| − n/2 ∈ L
⋃

R|] < 0.01

Consider the following process. With probability 1/(1 + 4r2) pick two uniform elements from
the input and output their XOR; otherwise output zero. On any input with weight 1/2 + α

the probability the process outputs 1 is

1/2 + ϵ := 1/2 + 2α2

1 + 4r2 = 1/2 + 2(r + α − r)2

1 + 4r2 = 1/2 +
2
(
α2 − r2)

1 + 4r2 .

Note ϵ = 0 exactly when α = ±r, and ϵ < 0 exactly when α is between these two roots.
Now repeat the process s times to generate Ns

1/2+ϵ, and run the polynomial from Lemma 14
on them.

On any input, we compute correctly with probability ≥ 1/2.
Assume now the input weight is not in L

⋃
R. Let c := 2/(1 + 4r2).

If |α| ≥ r + d/n then ϵ ≥ c(d2/n2 + 2rd/n) = Ω(rd/n).
If |α| ≤ r − d/n then ϵ ≤ c(d2/n2 − 2rd/n) = −Ω(rd/n).
In either case, by Lemma 14 we compute h2 correctly with probability 1/2+d ·Ω(rd/n) =

1/2 + Ω(d2/n3/2).

8 Proof of Theorem 2

We essentially define f to have correlation zero with h2 on every Hamming weight, except
for s Hamming weights where the value of g2 is as small as possible. Let M := {n/2 +√

n/2, n/2 +
√

n/2 − 1, . . . , n/2 +
√

n/2 − s + 1} and let Zi be the inputs with i zeroes. For
x ∈ Zi and i ∈ M let f(x) = h2(x) = −1. For x ∈ Z0 let, say, f(x) = 1 and for x ∈ Zn let
f(x) = −1. For any other Zi, divide the inputs in Zi in two equals parts, which is possible
by Lucas’ theorem because n is a power of 2. Let f be 1 on one part and −1 on the other.

Consider Ex[f(x)h2(x)]. We have Ex[f(x)h2(x)|x ∈ Z0 ∪ Zn] = 0, and Ex[f(x)h2(x)|x ∈
Zi] = 0 if i ̸∈ M and i ̸= 0 and i ≠ n, by definition. Otherwise the expectation is 1.
Hence Ex[f(x)h(x)] is the probability that x ∈ Zi for some i ∈ M . Assuming s ≤

√
n/2

this probability is ≥ Ω(s) · P[x ∈ Zn/2+
√

n/2]. The latter probability is Ω(1/
√

n) using the
standard bound

(
n

n/2+
√

n/2
)

= Θ(2n/
√

n) which can be verified using Stirling’s approximation.
Hence Ex[f(x)h2(x)] ≥ Ω(s/

√
n), and so P[f(x) = h2(x)] ≥ 1/2 + Ω(s/

√
n).
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Now consider Ex[f(x)g2(x)]. Again, this is zero unless the number of zeroes of x lies in M .
Note that g2(x) = 2t2 − n/2 on inputs in Zn/2+t. The maximum value of |g2(x)| for inputs
with weights in M is for t =

√
n/2 − s + 1 which yields value |2(

√
n/2 − s + 1)2 − n/2| =

|2(−s + 1)2 + (−s + 1)
√

n| ≤ O(s2 + s
√

n). For s ≤
√

n/2 the latter is O(s
√

n). The
chance that the number of zeroes of x lies in M is Θ(s/

√
n) as noted before. Hence we get

M2(f) ≤ O(s
√

n · s/
√

n) ≤ O(s2).
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Separations for Estimating Large Frequency
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Abstract
We study the classical problem of moment estimation of an underlying vector whose n coordinates
are implicitly defined through a series of updates in a data stream. We show that if the updates to
the vector arrive in the random-order insertion-only model, then there exist space efficient algorithms
with improved dependencies on the approximation parameter ε. In particular, for any real p > 2, we
first obtain an algorithm for Fp moment estimation using Õ

(
1

ε4/p · n1−2/p
)

bits of memory. Our
techniques also give algorithms for Fp moment estimation with p > 2 on arbitrary order insertion-only
and turnstile streams, using Õ

(
1

ε4/p · n1−2/p
)

bits of space and two passes, which is the first optimal
multi-pass Fp estimation algorithm up to log n factors. Finally, we give an improved lower bound
of Ω

(
1

ε2 · n1−2/p
)

for one-pass insertion-only streams. Our results separate the complexity of this
problem both between random and non-random orders, as well as one-pass and multi-pass streams.
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1 Introduction

The efficient computation of statistics has emerged as an increasingly important goal for large
databases storing information generated from financial markets, internet traffic, IoT sensors,
scientific observations, etc. The one-pass streaming model formally defines an implicit and
underlying dataset through sequential updates that arrive one at a time and describe the
evolution of the dataset over time. The goal is to aggregate or approximate some statistic of
the input data using space that is sublinear in the size of the input.

The frequency moment estimation problem is fundamental to data streams. Since
the celebrated paper of Alon, Matias, and Szegedy [1], the frequency moment estimation
problem has been a central problem in the streaming model; more than two decades of
research [1, 14, 4, 33, 24, 23, 29, 27, 26, 17, 10, 9, 6, 11, 19, 35] has studied the space or
time complexity of this problem. We first consider the insertion-only model, where updates
take the form u1, . . . , um in a stream of length m and each update ut is in [n] = {1, 2, . . . , n}
for t ∈ [m]. We assume for simplicity that m ≤ poly(n). The updates implicitly define a
frequency vector f ∈ Rn so that each update effectively increases a coordinate of f in the
sense that fi = |{t : ut = i}| for each i ∈ [n]. Given p, ε > 0, the Fp moment estimation
problem is to approximate Fp =

∑
i∈[n](fi)p within a (1 ± ε) factor. The complexity of
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112:2 Separations for Estimating Large Frequency Moments on Data Streams

this problem differs greatly for the range of p. For p > 2, [4, 14] showed that even for the
streaming model, the space usage for Fp-estimation requires polynomial factors in n and m,
whereas polylogarithmic factors are achievable for p ≤ 2 [1, 23, 29, 27, 26, 6].

We initially focus on the frequency moment estimation problem in the random-order
model, where the set of stream updates to the underlying frequency vector is worst case,
but the order of their arrival is uniformly random. As usual, the algorithms we initially
consider are only permitted a single pass over the stream, though we later relax this
constraint to permit adversarial ordering of updates, as well as both positive and negative
integer updates (with magnitude bounded by poly(n)) to the coordinates of the frequency
vector in the turnstile model. Random-order streams have been shown to be a natural
assumption for problems of sorting and selecting in limited space [32] and many other
real-world applications [21, 22, 16, 13]. Interestingly, there has sometimes been a significant
qualitative difference between random-order streams and adversarial (or arbitrary) order
streams [28, 9, 11]. In particular for Fp-moment estimation, the best known lower bound is
Ω

( 1
ε2

)
[12]. While the best known upper bound for p ∈ (0, 2] on arbitrary order insertion-only

streams is O
( 1

ε2 log n
)

[1, 27, 26], Braverman et. al. [11] gave an algorithm for p ∈ (0, 2) on
random-order streams that only used Õ

( 1
ε2 + log n

)
space, where for a function g(n, ε), we

use Õ (g(n, ε)) to denote a function bounded by g(n, ε) · polylog(g(n, ε)). They also gave an
algorithm for F2-moment estimation that only uses Õ

( 1
ε2 + log n

)
space, but requires the

assumption that F2 ≥ F1 · log n, i.e., the second moment must be a logarithmic factor larger
than the length of the stream.

The above works raise a number of important questions. A tantalizing open question,
studied extensively in [25], and dating back to the original work of Alon, Matias, and
Szegedy [1], is the exact space complexity of Fp-moment estimation in insertion-only streams.
For p > 2, the best known upper bound for Fp-moment estimation on arbitrary order
insertion-only streams is the minimum of O

(
n1−2/p

ε20

)
[9] and Õ

( 1
ε2 · n1−2/p

)
[17, 19]. For

insertion-only streams, the best known lower bound is Ω̃
(

n1−2/p

ε2 log n

)
[18]. We summarize these

results in Figure 1. There are also major gaps in our understanding for Fp-moment estimation

Reference Space Complexity Order
[24, 31, 2] Õ

(
n1−2/pε−O(1)) Arbitrary

[9] O
(
n1−2/pε−20)

Arbitrary
[3] Õ

(
n1−2/pε−2−6/p

)
Arbitrary

[5] Õ
(
n1−2/pε−2−4/p

)
Arbitrary

[17, 19] Õ
(
n1−2/pε−2)

Arbitrary
This work Õ

(
n1−2/pε−4/p

)
Random or Two-Pass Arbitrary

[1, 33] Ω
(
n1−5/p + ε−2)

Arbitrary
[14] Ω

(
n1−2/pε−2/p

)
Arbitrary

[34] Ω
(
n1−2/pε−4/p/ logO(1) n

)
Arbitrary, O (1)-Passes

[18] Ω
(
n1−2/pε−2/ log n

)
Arbitrary

[12] Ω(n1−2.5/p + ε−2) Random
This work Ω

(
n1−2/pε−2)

Arbitrary

Figure 1 Summary of recent work for large frequency moment estimation.



D. P. Woodruff and S. Zhou 112:3

for p > 2 in random order streams. The best known1 lower bound is Ω(n1−2.5/p + ε−2) [12],
while no upper bounds that do better in random order streams than in arbitrary insertion
streams are known.

1.1 Our Results
In this paper, we show a separation not only between random-order and arbitrary insertion-
only streams for the Fp moment estimation problem, but also one-pass and multi-pass streams.
We first show improved bounds for the Fp moment estimation problem for every p > 2 in
the random-order insertion-only streaming model.

▶ Theorem 1.1. For p > 2, there exists an algorithm that outputs a (1 + ε)-approximation
to the Fp moment of a random-order insertion-only stream with probability at least 2

3 , while
using total space (in bits) Õ

( 1
ε4/p · n1−2/p

)
.

Theorem 1.1 utilizes the random-order model to improve the algorithm on arbitrary-order
insertion-only streams using Õ

( 1
ε2 · n1−2/p

)
space [17, 19], in terms of the dependence on 1

ε .
We then give an algorithm that uses roughly the same bounds even for the two-pass streaming
model, even if the order of the updates is adversarial.

▶ Theorem 1.2. For p > 2, there exists a two-pass streaming algorithm that outputs a
(1 + ε)-approximation to the Fp moment with probability at least 2

3 .
If the stream is insertion-only, the algorithm uses Õ

( 1
ε4/p · n1−2/p

)
bits of space (see

Theorem 3.6).
If the steam has turnstile updates, the algorithm uses Õ

( 1
ε4/p · n1−2/p

)
bits of space (see

Theorem 3.5).
Theorem 1.2 is the first algorithm to match the lower bound of Ω̃

( 1
ε4/p · n1−2/p

)
for multi-pass

frequency moment estimation [34] up to log n factors.
By contrast, we give a lower bound for Fp estimation in the one-pass insertion-only

streaming model when the order of the updates is adversarial.

▶ Theorem 1.3. For any constant p > 2 and parameter ε = Ω
( 1

n1/p

)
, any one-pass

insertion-only streaming algorithm that outputs a (1 + ε)-approximation to the Fp moment
of an underlying frequency vector with probability at least 9

10 requires Ω
( 1

ε2 · n1−2/p
)

bits of
space.

Theorem 1.3 improves the lower bound of Ω
(

1
ε2 log n · n

1−2/p
)

for general insertion-only
streams for p > 2 by [17]. Together, Theorem 1.1 and Theorem 1.3 for small enough
ε > 0 show a somewhat surprising result that random-order streams are strictly easier than
arbitrary insertion-only streams. Similarly, Theorem 1.2 and Theorem 1.3 together show
that multiple passes are strictly easier than a single pass on arbitrary insertion-only streams.

1.2 Our Techniques
We first describe our random-order insertion-only algorithm. At a high level, our algorithm
interleaves the recent heavy-hitters algorithm of [7] with a subsampling procedure to estimate
the contributions of various level sets toward the frequency moment.

1 After discussion with the authors, there appears to be an error in [20], which claims a stronger lower
bound.
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Approximate frequencies of heavy-hitters. The heavy-hitters algorithm of [7] partitions
the updates of a random-order stream into blocks of updates. It then randomly chooses a
number of coordinates from the universe [n] to test in each block. The heavy-hitters will pass
the test and subsequently be tracked across a number of following blocks before estimates
for their frequencies are output. Due to the uniformity properties of the random-order
stream, the heavy-hitters are sufficiently “spread out”, so the algorithm crucially outputs
a (1 + ε)-approximation to the frequency of each heavy-hitter; algorithms with the same
guarantee and space complexity for arbitrary-order streams do not exist [18].

Using level sets to estimate frequency moments. Given the subroutine for finding (1 + ε)-
approximations to the frequencies of heavy-hitters, we now build upon a standard subsampling
approach to estimate the frequency moment. Informally, we conceptually define the level
sets so that level set Λi contains the coordinates k ∈ [n] such that fp

k ∈
[

Fp

2i ,
2Fp

2i

]
. Since the

level sets partition the universe, it is easy to see that if we define the contribution Ci of a
level set Λi by the sum of the contributions of all their coordinates, Ci :=

∑
k∈Λi

fp
k , then

Fp is just the sum of all the contributions of the level sets, Fp =
∑

i Ci.
[24] showed that the contributions of each “significant” level set can be estimated by

subsampling at exponentially smaller rates and considering the approximate frequencies of
the heavy-hitters in each of the subsamples. For example, a single item with contribution
Fp will be detected at the top level, while n items with contribution 1 will be detected
at a subsampling level where there are roughly Θ

( 1
εp

)
survivors in expectation. Crucially,

(1 + ε)-approximations to the contribution of the surviving heavy-hitters in each subsampling
level can then be rescaled by the sampling rate to obtain “good” approximations to the
contributions of each significant level set; these very good estimates are not available in
standard subsampling schemes for arbitrary order streams.

We adapt this approach for p > 2 to obtain Theorem 1.1. The first observation is that
an item i with fp

i ≥ ε2Fp should be identified to control the variance but also satisfies
f2

i ≥ ε4/p/n1−2/p · F2, so we can identify these items using the heavy-hitter algorithm of [7]
with the corresponding threshold; this induces the overall n1−2/p/ε4/p dependency. Moreover
as we subsample, the space of the universe decreases in expectation from n to n/2 to n/4 and
so forth. Thus determining the Lp-heavy hitters at lower subsampling rates can be done using
significantly less space. We can take advantage of this by requiring that our heavy-hitter
algorithm aggressively seeks heavy-hitters with lower thresholds at lower subsampling rates.
We can thus achieve a geometric series and avoid an additional O (log n) factor in our space.

From random-order to two-pass arbitrary order. As stated, our algorithm necessitates the
random-order model so that the heavy-hitter subroutine can output (1 + ε)-approximations
to the frequencies of heavy-hitters across different subsampling levels; these approximations
are then used to obtain (1 + ε)-approximations to the contributions of each level set. The
state-of-the-art heavy-hitter algorithms in insertion-only [8] or turnstile [15] streams with
arbitrary arrival order do not give a (1 + ε)-approximation to the frequency of each heavy-
hitter while still using space dependency 1

ε2 . Fortunately, our approach can be remedied in
two-passes over the data stream by first using a pass to identify each of the heavy-hitters
across the different subsampling levels and then using the second pass to exactly count their
frequencies; note that since n1−2/p/ε4/p ≥ 1

ε2 for n ≥ 1
ε2 , we are still permitted space to

track the frequencies of min
(
n, 1

ε2

)
items. We can then obtain (1 + ε)-approximations to the

contributions of each significant level set, thus obtaining a (1 + ε)-approximation to the Fp

frequency moment.
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Source of the separation. In summary, our improved upper bounds in both the random-
order and multi-pass models exploit each model to obtain (1 + ε)-approximate frequencies of
the heavy-hitters in each subsampling level. Due to the uniformity of heavy-hitters across
the stream in the random-order model, we are able to obtain (1 + ε)-approximate frequencies
by simply tracking the frequency of the heavy-hitters within a small block of the stream
and then scaling by the entire length of the stream. For multi-pass models, we are able to
identify heavy-hitters in the first pass and exactly track their frequencies in the second pass.
By contrast, obtaining (1 + ε)-approximate frequencies in adversarially ordered insertion-only
streams with the same space guarantees in a single pass cannot be done [18].

Lower bound. To prove our improved lower bound, we first recall the standard approach
for showing Fp moment estimation lower bounds in insertion-only streams for p > 2 that
uses the multiplayer set disjointness problem, e.g., [4, 18]. In this problem, t players have
binary vectors of length n and the promise is that the largest coordinate in the sum of all
vectors is either (1) at most 1 or (2) exactly t. For t = ε1/pn1/p, the Fp frequency moment
of the sum of the binary vectors differs by a factor of (1 + ε) between the two cases, so that
a (1 + ε)-approximation to Fp solves the multiplayer set disjointness problem. The total
communication complexity of the multiplayer set disjointness problem is Ω

(
n
t

)
so one of the

t players communicates Ω
(

n
t2

)
bits, and thus a lower bound of Ω

( 1
ε2/p · n1−2/p

)
follows.

To improve the ε dependency in the lower bound to 1
ε2 , we define the (t, ε, n)-player set

disjointness estimation problem so that there are t + 1 players P1, . . . , Pt+1 with private coins
in the standard blackboard model. The first t players each receive a vector vs ∈ {0, 1}n for
s ∈ [t], while player Pt+1 receives an index j ∈ [n] and a bit c ∈ {0, 1}. For u =

∑
s∈[t] vs,

the inputs are promised to satisfy ui ≤ 1 for each i ̸= j and either uj = 1 or uj = t,
similar to the multiparty set disjointness problem. With probability at least 9

10 , Pt+1 must
differentiate between the three possible input cases (1) uj + ct

ε ≤ t, (2) uj + ct
ε ∈

{
t
ε , t

ε + 1
}

,
or (3) uj + ct

ε = (1 + ε) t
ε , where ε ∈ (0, 1). We call coordinate j ∈ [n] the spike location

and show that the (t, ε, n)-player set disjointness estimation problem requires Ω
(

n
t

)
total

communication by using a direct sum embedding to decompose the conditional information
complexity into a sum of n single coordinate problems. The intuition is that the first t

players do not know the spike location, so they must effectively solve the problem on each
coordinate. We then bound the conditional information complexity of each single coordinate
problem by the Hellinger distances between inputs for which the outputs differ. We thus
apply the same reduction and set t = Θ

( 1
ε · n

1/p
)

to obtain the desired lower bound.
We remark that the (t, ε, n)-player set disjointness estimation problem can be seen as a

generalization of the augmented L∞ promise problem introduced by [30]. In the augmented
L∞ promise problem, there are only three players, but each coordinate in the first two players’
input vectors can be as large as εk for some fixed parameter k. [30] used the augmented L∞

promise problem to give a lower bound of Ω
(

log n
ε2 · n1−2/p

)
for Fp moment estimation on

turnstile streams. However, since their reduction crucially allows players to use turnstile
updates, we cannot adapt their techniques to obtain a reduction for insertion-only streams.

1.3 Preliminaries

For a positive integer n, we use the notation [n] to denote the set of integers {1, 2, . . . , n}.
For a frequency vector f with dimension n and p ≥ 2, we define the Fp moment function
by Fp(f) :=

∑
k∈[n] |fk|p and the Lp norm of f by Lp(f) = (Fp(f))1/p. When f is defined

through the updates of a insertion-only data stream, we simply use Fp to denote Fp(f).
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Thus for a subset I ⊆ [n], the notation Fp(I) is understood to mean
∑

k∈I fp
k . We also use

the notation ∥f∥p to denote the Lp norm of f . The Fp moment estimation problem and
the norm estimation problem are often used interchangeably, as a (1 + ε)-approximation
algorithm to one of these problems can be modified to output a (1 + ε)-approximation to the
other using a rescaling of ε, for constant p > 0.

We use log and ln to denote the base two logarithm and natural logarithms, respectively.
We use poly(n) to denote a fixed constant degree polynomial in n and 1

poly(n) to denote some
arbitrary degree polynomial in n corresponding to the choice of constants in the algorithms.
We use polylog(n) to denote polylogarithmic factors of n.

The Lp-heavy hitters problem is to output all coordinates i such that fi ≥ ε · Lp; such a
coordinate is called a heavy-hitter. The problem allows coordinates j with fj ≤ ε · Lp to be
output, provided that fj ≥ ε

2 · Lp. Moreover, each coordinate output by the algorithm must
also have a frequency estimation with additive error at most ε

2 · Lp.

2 Fp Estimation for p > 2 in Random-Order Streams

In this section, we give our Fp estimation algorithm for p > 2. We first introduce an algorithm
CountHH on random-order insertion-only streams that outputs an approximate frequency
for each L2 heavy-hitter.

▶ Theorem 2.1 (Theorem 28 in [7]). There exists a one-pass algorithm CountHH on
random-order insertion-only streams that outputs a list H of ordered pairs (j, f̂j) such that
f̂j = (1± 2ε)fj, for each j ∈ H, where f is the underlying frequency vector. Moreover, we
have that j ∈ H for each j ∈ [n] with f2

j ≥ ε2 ·F2 and j ̸∈ H for each j with f2
j ≤ ε2

2 ·F2. The
algorithm uses O

( 1
ε2

(
log2 1

ε + log2 log m + log n
)

+ log m
)

bits of space and succeeds with
probability at least 38/39.

A standard heavy-hitter algorithm such as CountSketch [15] or BPTree [8] outputs
each j ∈ [n] with f2

j ≥ ε2

2 ·F2 but only finds a constant-factor approximation to the frequency
of each heavy-hitter. By comparison, CountHH crucially uses the random-order stream to
output a (1 + ε)-approximation to the frequency of each heavy-hitter; we defer the full details
of the algorithm to the full version of the paper [36]. We use CountHH in a subsampling
approach to approximate the contributions of each of the level sets, defined as follows:

▶ Definition 2.2 (Level sets and contribution). Given F̂p such that F̂p ≤ Fp ≤ 1.01 · F̂p and a
uniformly random ζ ∈ [1, 2], we define the level set Λi for each i ∈ [log 4n] so that

Λi :=
{

k | fp
k ∈

[
ζ · F̂p

2i
,

2ζ · F̂p

2i

]}
.

Then we define the contribution Ci of level set Λi to be Ci :=
∑

k∈Λi
fp

k . We define the
fractional contribution ϕi of level set Λi to be the ratio ϕi := Ci

ζF̂p

, so that ϕi ∈ [0, 1.01].
For a stream of length m = poly(n), let α be an integer such that 2α > mp. We say a

level set Λi is significant if its fractional contribution ϕi is at least ε
2α log n . Otherwise, we

say the level set is insignificant.

Observe that it suffices to obtain a multiplicative
(
1 + ε

2
)
-approximation to the contribution

of each significant level set and estimate the contributions of the insignificant level sets to
be zero, since there are at most α log n level sets and thus the total additive error from the
insignificant level sets is at most ε

2α log n · Fp · α log n = ε
2 · Fp.



D. P. Woodruff and S. Zhou 112:7

To estimate the contribution of each level set, we use a combination of CountHH and
subsampling to approximate the frequencies of a number of heavy-hitters. The main idea is
that subsampling induces a separate substream with a frequency vector with a smaller Fp.
Thus the items in the level sets Λi with small i will be heavy-hitters of the frequency vector
while the items in the level sets Λi with larger i will be heavy-hitters of the substreams with
smaller sampling rates (if the items are subsampled), due to the lower Fp of the substreams.
We can then use a (1 + ε)-approximation to the frequency of each sampled heavy-hitter
to estimate a (1 + ε)-approximation to the contribution of the level set, due to uniformity
properties of random-order streams. Note that this is where we crucially use CountHH over
other possible heavy-hitter algorithms, due to its advantage of providing (1 + ε)-approximate
frequencies in the random-order model. We describe our algorithm for Fp estimation with
p > 2 for random-order insertion-only streams in Algorithm 1.

Algorithm 1 Fp Estimation in the Random-Order Insertion-Only Model, p > 2.

Input: Accuracy parameter ε ∈ (0, 1), F̂p ≤ Fp ≤ 1.01 · F̂p

Output: (1 + ε)-approximation to Fp.
1: Let ζ ∈ [1, 2] be chosen uniformly at random and α be a positive integer such that

2α > mp.
2: Let η >

∑
j≥0 2−j(p/16−1/8) be a sufficiently large constant.

3: γ ← 211, ni ← min
((

16αp log n
ε1−2/p

)(2p)/(p−2)
, 10γn

2i

)
, εi = ε

16η·2i(p/16−1/8) log 1
ε2

4: Let Ir
i be a (nested) subset of [n] subsampled at rate pi := min(1, 2−iγ).

5: Let Hr
i be the output of CountHH with threshold parameter (εi)2/p

80γ ·
(

1
ni

)1/2−1/p

on
the substream induced by Ir

i .
6: for i ∈ [α log n], r ≤ O (log log n) do
7: ℓi := min{k : 2k > 2i · ε2

k}

8: Let Sr
i be the set of ordered pairs (j, f̂j) in Hr

ℓi
with

(
f̂j

)p

∈
[

ζF̂p

2i ,
2ζF̂p

2i

]
.

9: Ĉi ← medianr
1

pℓi
·
(∑

(j,f̂j)∈Sr
i

(
f̂j

)p)
10: return F̃p :=

∑
i Ĉi

▶ Remark 2.3. We remark that Algorithm 1 is written requiring an input F̂p such that
F̂p ≤ Fp ≤ 1.01 · F̂p in order to correctly index the level sets defined by Definition 2.2.
Algorithm 1 can be rewritten by setting X = (F1)p to be an upper bound on Fp and
redefining the level sets in Definition 2.2 so that Λi :=

{
k | fp

k ∈
[

ζ·X
2i , 2ζ·X

2i

]}
. Then we

again have Fp =
∑

i Ci across the contributions of all the level sets.
We first show that there exists a subsampling rate such that items in each level set will be

reported as a heavy-hitter if they are successfully subsampled. Moreover, each item reported
as a heavy-hitter will also be reported with an “accurate” estimate of its frequency.

▶ Lemma 2.4. Let ε ∈ (0, 1), Λi be a fixed level set, and let ℓ := ℓi := min{k : 2k > 2i · ε2
k}.

For a fixed r, let E1 be the event that |Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤ 10γFp

2ℓ .
Conditioned on E1 and E2, there exists a (j, f̂j) in Sr

i for each j ∈ Λi ∩ Ir
ℓ such that with

probability at least 7
8 ,(

1− ε

8α log n

)
· fp

j ≤
(

f̂j

)p

≤
(

1 + ε

8α log n

)
· fp

j .
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Proof. Recall that Algorithm 1 considers Hr
ℓ across r ≤ O (log log n) independent subsamples

of [n], to construct Ĉi by subsampling at rate pℓ := min(1, 2−ℓγ).
Suppose 2i · ε2 < γ, so that ℓ := ℓi = min{k : 2k > 2i · ε2

k} ≤ log γ since εk ≤ ε for all k.
Then pℓ = min(1, 2−ℓγ) = 1 and all items are subsampled, i.e., Hr

ℓ = [n]. By Definition 2.2

of the level sets, each item j ∈ Λi satisfies fp
j ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
. Since ε2 ≥ 1

2i , then we have

fp
j ≥ ε2 · F̂p. We also have F̂p ≤ Fp ≤ 1.01 · F̂p and n1/2−1/p · F 1/p

p ≥ F
1/2
2 . Thus, each item

in j ∈ Λi satisfies

fj ≥
ε2/p

1.011/p
· F 1/p

p ≥ ε2/p

1.011/pn1/2−1/p
· F 1/2

2 ,

so that f2
j ≥ ε4/p

1.01n1−2/p F2. Then by Theorem 2.1, each item j ∈ Λi corresponds to some

estimate
(

f̂j

)2
reported by Hr

ℓ output by CountHH with threshold (εℓ)2/p

80γ , as εℓ ≤ ε and

nℓ = n. Hence, f̂p
j is a

(
1 + ε

8α log n

)
-approximation to fp

j . Furthermore, CountHH rounds

the estimate of the frequency of each heavy-hitter to the nearest power of
(

1 + ε
16pα log n

)
.

Hence, f̂p
j is a

(
1 + ε

8α log n

)
-approximation to fp

j .
Now suppose 2i · ε2 ≥ γ, so that ℓ := ℓi = min{k : 2k > 2i · ε2

k} ≥ log γ and pℓ :=
min(1, 2−ℓγ) ≥ γ

2·2iε2
ℓ

. Again by Definition 2.2 of the level sets, each item j ∈ Λi satisfies

fp
j ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
. Now if j /∈ Ir

ℓ , then it will not be reported by CountHH. Thus we

assume that j ∈ Ir
ℓ .

Conditioning on the event E2, we have that

Fp(Ir
ℓ ) ≤ 10γFp

2ℓ
≤ 20γFp

2iε2 .

Since F̂p ≤ Fp ≤ 1.01 · F̂p, then we have that fp
j ≥ ε2

80γ · Fp(Ir
ℓ ) and thus

fj ≥
ε2/p

(80γ)1/p
· F 1/p

p (Ir
ℓ ).

Instead of applying the inequality n1/2−1/p · F 1/p
p ≥ F

1/2
2 , we note that conditioning on

the event E1, we have that |Ir
ℓ | ≤ nℓ = 10γn

2ℓ . Hence, the frequency vector defined by the
substream Ir

ℓ potentially has much smaller support size than n. Thus we have

fj ≥
ε2/p

(80γ)1/p
·
(

1
nℓ

)1/2−1/p

· F 1/2
2 (Ir

ℓ ).

By Theorem 2.1, each item j ∈ Λi∩Ir
ℓ corresponds to some estimate f̂j reported by Hr

ℓ output

by CountHH with threshold (εℓ)2/p

80γ ·
(

1
nℓ

)1/2−1/p

, since εℓ ≤ ε. Moreover, the estimate of the

frequency of each heavy-hitter reported by CountHH is within a factor of
(

1 + ε
16pα log n

)
of the true frequency, since ni ≥

(
16αp log n

ε1−2/p

)(2p)/(p−2)
implies that the threshold is at most

ε
16pα log n . Hence for sufficiently small ε,

(
f̂j

)p

is a
(

1 + ε
8α log n

)
-approximation to fp

j . ◀

In summary, an item k ∈ Λi may not always be sampled by Ir
ℓ , but CountHH outputs a

quantity f̂k such that
(

f̂k

)p

is a
(

1 + ε
8α log n

)
-approximation to fp

k if k ∈ Ir
ℓ .
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These approximations allow us to recover a (1 + ε)-approximation to the Fp moment
through Lemma 2.5, which is our main correctness statement and which we now show.
Lemma 2.5 claims that the output F̃p of our algorithm serves as a (1 + ε)-approximation to
the Fp moment of the underlying frequency vector. The proof of Lemma 2.5 first considers
an idealized process and shows that we obtain “good” approximations to the contributions of
each significant level set. Since the contributions of the insignificant level sets can be ignored,
we thereby obtain a (1 + ε)-approximation to the Fp moment. We then show that when the
process is not idealized, the estimate F̃p only occurs a small error and thus still guarantees a
(1 + ε)-approximation to the Fp moment.

▶ Lemma 2.5. With probability at least 2
3 , we have that |F̃p − Fp| ≤ ε · Fp.

Proof. Let Λi be a fixed level set and let ℓ := ℓi := min{k : 2k > 2i · ε2
k}. Let k ∈ Λi ∩ Sr

ℓ ,

so that fp
k ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
and k is subsampled at the level in which its estimated frequency(

f̂k

)p

is used to estimate the contribution Ci of level set Λi. Then Lemma 2.4 shows that

we obtain an estimate
(

f̂k

)p

such that

(
1− ε

8α log n

)
· fp

k ≤
(

f̂k

)p

≤
(

1 + ε

8α log n

)
· fp

k ,

with constant probability. In an idealized process, we would have

ζ · F̂p

2i
≤

(
f̂k

)p

≤ 2ζ · F̂p

2i
,

so that the estimate
(

f̂k

)p

is used toward the estimation Ĉi of contribution Ci of level
set Λi. However, this may not always be the case because the value of fp

k may be near the

boundary of the interval
[

ζ·F̂p

2i ,
2ζ·F̂p

2i

]
and the value of the estimate

(
f̂k

)p

may lie outside

of the interval, so that the estimate
(

f̂k

)p

is used toward the estimation of some other level

set Λi′ . We first analyze an idealized process, so that
(

f̂k

)p

is correctly classified for all k

across all level sets, and show that the output is a (1 +O (ε))-approximation to Fp. We then
argue that because we randomize the boundaries of each interval due to the selection of ζ,
the overall guarantee is only slightly worsened but remains a (1 + ε)-approximation to Fp.

Idealized process. We first show that for an idealized process where
(

f̂k

)p

is correctly

classified for all k across all level sets, then for a fixed level set i, we have |Ĉi −Ci| ≤ εℓ

2 · Fp

with probability at least 1 − 1
polylog(n) . Let E1 be the event that |Ir

ℓ | ≤
10γn

2ℓ and let E2

be the event that Fp(Ir
ℓ ) ≤ 10γFp

2ℓ . Lemma 2.4 shows that conditioned on E1 and E2, then
CountHH outputs a

(
1 + ε

8α log n

)
-approximation to fp

k if k ∈ Ir
ℓ . We thus analyze the

approximation Ĉr
i to Ci for a given set of subsamples, where we define

Ĉr
i := 1

pℓi

·
∑

(k,f̂k)∈Sr
i

(
f̂k

)p

,
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so that Ĉi = medianr Ĉr
i . Conditioned on E1 and E2, we note that Ĉr

i is a
(

1 + ε
8α log n

)
-

approximation to

Dr
i := 1

pℓi

·
∑

k∈Sr
i

∩Λi

fp
k .

We thus analyze the expectation and variance of Dr
i .

We first analyze the expectation of Dr
i . Note that

E [Dr
i ] = 1

pℓ
·

∑
k∈Λi

pℓ · fp
k = Ci.

We next analyze the variance of Dr
i , which results from whether items k ∈ Λi are sampled

by Ir
ℓ . Since pℓ ≥ γ

2·2iε2
ℓ

, we have

Var(Dr
i ) = 1

p2
ℓ

·
∑

k∈Λi

pℓf
2p
k ≤

∑
k∈Λi

2 · 2iε2
ℓ

γ
· f2p

k .

Observe that for each k ∈ Λi, we have f2p
k ≤

16(Fp)2

22i and |Λi|
2i ≤ ϕi ≤ 1. Thus for γ = 211,

Var(Dr
i ) ≤ |Λi| ·

2 · 2iε2
ℓ

γ
· 16(Fp)2

22i
≤ ϕiε

2
ℓ(Fp)2 ≤ ε2

ℓ

64(Fp)2.

Hence, by Chebyshev’s inequality, we have that

Pr
[
|Dr

i − Ci| ≥
εℓ

2 · Fp

]
≤ 1

16 .

Since Ci ≤ Fp and Ĉr
i is a

(
1 + ε

8α log n

)
-approximation to Dr

i , then Ĉr
i gives an approx-

imation to Ci with additive error at most
(

ε
4α log n + εℓ

)
· Fp with probability at least 15

16 ,
conditioned on the events E1 and E2, and the correctness of the subroutine CountHH. By
Theorem 2.1, the correctness of CountHH occurs with probability at least 38

39 . By a union
bound, we have that conditioned on E1 and E2, then

Pr
[
|Ĉr

i − Ci| ≤
(

ε

4α log n
+ εℓ

)
· Fp

]
≥ 7

8 .

For a fixed r, let E1 be the event that |Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤
10γFp

2ℓ . Recall that Ir
ℓ is a nested subset of [n] subsampled at rate pℓ := min(1, 2−ℓγ). Thus

we have E [|Ir
ℓ |] ≤

γn
2ℓ , so that by Markov’s inequality, we have that Pr [E1] ≥ 9

10 . Similarly,
we have E [Fp(Ir

ℓ )] ≤ γFp

2ℓ , so that by Markov’s inequality, we have that Pr [E2] ≥ 9
10 . Hence

by a union bound, Pr [E1 ∧ E2] ≥ 8
10 .

By Lemma 2.4, conditioned on the events E1 and E2, we have that |Ĉr
i − Ci| ≤(

ε
4α log n + εℓ

)
· Fp for a fixed r, with probability at least 7

8 . Thus by a union bound,

we have that |Ĉr
i − Ci| ≤

(
ε

4α log n + εℓ

)
· Fp for a fixed r, with probability at least 5

8 .

Since Ĉi = medianr Ĉr
i across r ≤ O (log log n) iterations, then we have that |Ĉi − Ci| ≤(

ε
4α log n + εℓ

)
· Fp with probability at least 1− 1

polylog(n) .
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By a union bound over the α log n level sets, then with probability at least 1− 1
polylog(n) ,

we have that |Ĉi − Ci| ≤
(

ε
4α log n + εℓi

)
· Fp simultaneously for all i ∈ [α log n], where

ℓi := min{k : 2k > 2i ·ε2
k}. We form our estimate F̃p to Fp by setting F̃p :=

∑
i Ĉi and we have

Fp =
∑

i Ci. Since i ∈ [α log n], ℓi := min{k : 2k > 2i · ε2
k}, and εℓi = ε

16η·2ℓi(p/16−1/8) log 1
ε2

,
then

|F̃p − Fp| =

∣∣∣∣∣∑
i

Ĉi −
∑

i

Ci

∣∣∣∣∣ ≤∑
i

|Ĉi − Ci| ≤
∑

i

(
ε

4α log n
+ εℓi

)
· Fp

≤
∑

i∈[α log n]

ε

4α log n
· Fp +

∑
i:ℓi≤log 1

ε2

εℓi · Fp +
∑

i:ℓi>log 1
ε2

εℓi · Fp

≤ ε

4 · Fp + log 1
ε2 ·

ε

16 log 1
ε2

· Fp + ε

16 · Fp,

where the last bound on the last term follows from η >
∑

j≥0 2−j(p/16−1/8). Thus we have
that |F̃p − Fp| ≤ ε

2 · Fp with probability at least 1− 1
polylog(n) in an idealized process.

Effects of randomized boundaries. We say that for a fixed r, an item k ∈ [n] is misclassified
if there exists a level set Λi such that

ζ · Fp

2i
≤ fp

k ≤
2ζ · Fp

2i
,

but for an estimate
(

f̂k

)p

output by CountHH on the set Sr
ℓi

, we have

ζ · Fp

2i
≤

(
f̂k

)p

≤ 2ζ · Fp

2i
.

Recall that by Lemma 2.4, we have for any fixed value of ζ that(
1− ε

8α log n

)
· fp

k ≤
(

f̂k

)p

≤
(

1 + ε

8α log n

)
· fp

k .

Since ζ ∈ [1, 2], then the probability that item k ∈ [n] is misclassified is at most ε
2α log n .

Moreover, in the event that item k ∈ Λi is misclassified, it can only be misclassified into either
level set Λi+1 or level set Λi−1, since

(
f̂k

)p

is a
(

1± ε
8α log n

)
multiplicative approximation

to fp
k .
Thus in the event that item k ∈ [n] is misclassified, then

(
f̂k

)p

will be rescaled by an
incorrect probability, but only by at most a factor of two. Hence the error in the computation
of the contribution of fp

k to some level set Λi is at most 2fp
k . Then in expectation across all

k ∈ [n], the error due to the misclassification is at most 2Fp · ε
2α log n = ε

α log n · Fp. Hence by
Markov’s inequality for sufficiently large n, the misclassification error is at most an additive
ε
2 · Fp with probability at least 3

4 . Therefore in total, we have that |F̃p − Fp| ≤ ε · Fp with
probability at least 2

3 . ◀

It remains to analyze the space complexity of the algorithm as well as remove some additional
unnecessary assumptions.

▶ Theorem 1.1. For p > 2, there exists an algorithm that outputs a (1 + ε)-approximation
to the Fp moment of a random-order insertion-only stream with probability at least 2

3 , while
using total space (in bits) Õ

( 1
ε4/p · n1−2/p

)
.
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Proof. We first observe that we only require a 1.01-approximation F̂p to Fp as the input
of Algorithm 1 to create the level sets and analyze accordingly. However, we can instead
define the level sets using any upper bound X on F̂p by setting level set Λi to be the indices

k ∈ [n] for which fp
k ∈

[
ζX
2i , 2ζX

2i

]
, rather than

[
ζF̂p

2i ,
2ζF̂p

2i

]
, and the same analysis will

follow (see Remark 2.3). Intuitively, the fluidity of the definition of the level sets can be
seen from the fact that we randomize the boundaries by going through a multiplicative ζ

chosen randomly from [1, 2] anyway, and additional empty level sets will not change the
approximation guarantee. Thus by Lemma 2.5, there exists an algorithm that outputs a
(1 + ε)-approximation to the Fp moment.

It remains to analyze the space complexity. By Theorem 2.1, CountHH with threshold
ε requires O

( 1
ε2

(
log2 1

ε + log2 log m + log n
)

+ log m
)

bits of space. Algorithm 1 runs a

separate instance of CountHH with threshold (εi)2/p

80γ ·
(

1
ni

)1/2−1/p

to output a set Hr
i

for r ≤ O (log log n), where γ is a sufficiently large constant. Thus the total space for the
CountHH instances across all i for a fixed r is at most

C1 log n +
(
C2

1 log n
)
·

∑
i∈[α log n]

C1(ni)1−2/p

(εi)4/p
,

for some positive constants C1, α > 0. In particular, we have εi = ε
16η·2i(p/16−1/8) log 1

ε2
and

ni = min
((

16αp log n
ε1−2/p

)(2p)/(p−2)
, 10γn

2i

)
for a sufficiently large constant η. Then the total

space for the CountHH instances across all i for a fixed r is at most

C1 log n +
(
C1 log2 n

)
·

α log n∑
i=1

(
C2n1−2/p

ε4/p
· 2i(1/4−1/(2p))

2i(1−2/p) log2 1
ε

+ C2 log2 n

ε2

)
,

for some positive constants C1, C2 > 0. Observe that
∑∞

i=1
2i(1/4−1/(2p))

2i(1−2/p) =
∑∞

i=1
1

23i(1−2/p)/4

is a geometric series that is upper bounded by an absolute constant. Hence, the total space
across all i for a fixed r is at most O

( 1
ε4/p · n1−2/p log2 n log2 1

ε + 1
ε2 log5 n

)
and the total

space across all r ≤ O (log log n) is

O
(

1
ε4/p

· n1−2/p log2 n log2 1
ε

log log n + 1
ε2 log5 n log log n

)
,

which is Õ
( 1

ε4/p · n1−2/p
)

space in total, since n ≥ 1
ε2 implies 1

ε4/p · n1−2/p ≥ 1
ε2 . ◀

3 Fp Estimation for p > 2 in Two-Pass Streams

In this section, we consider two-pass algorithms for Fp estimation, with p > 2. For turnstile
streams, we require the guarantees of the well-known CountSketch algorithm for finding
heavy-hitters.

▶ Theorem 3.1 ([15]). There exists an algorithm CountSketch that reports all items
i ∈ [n] such that fi ≥ εL2 and no items j ∈ [n] such that fj ≤ ε

2 ·L2 in the turnstile streaming
algorithm. The algorithm uses O

( 1
ε2 log2 n

)
bits of space and succeeds with probability

1− 1
poly(n) .

For insertion-only streams, we use the more space-efficient BPTree algorithm for finding
heavy-hitters.
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▶ Theorem 3.2 ([8]). There exists an algorithm BPTree that reports all items i ∈ [n] such
that fi ≥ εL2 and no items j ∈ [n] such that fj ≤ ε

2 · L2 in the turnstile streaming algorithm.
The algorithm uses O

( 1
ε2 log n

)
bits of space and succeeds with probability 0.99.

Recall that the main idea of our one-pass algorithm in the random-order insertion-only
streaming model was to subsample at different rates and find (1 + ε)-approximations to
the frequencies of the heavy-hitters in each subsampling rate, which are then used to form
estimates of the contributions of each level set and ultimately estimate of the frequency
moment. The random-order setting crucially allowed us to obtain (1 + ε)-approximations
to the frequencies of the heavy-hitters. By contrast, in an adversarial-order setting, by the
time a possible heavy-hitter is detected, a significant fraction of its frequency may have
already appeared in the stream if we use a heavy-hitter algorithm with space dependency 1

ε2 .
Fortunately, in a two-pass setting, we can use the first pass to identify possible heavy-hitters
and the second pass to find their frequencies. We give the full details in Algorithm 2, where
the subroutine HeavyHitters denotes the algorithm CountSketch of Theorem 3.1 for
turnstile streams and BPTree of Theorem 3.2 for insertion-only streams.

Algorithm 2 Fp Estimation on Two-Pass Streams, p > 2.

Input: Accuracy parameter ε ∈ (0, 1), F̂p ≤ Fp ≤ 1.01 · F̂p

Output: (1 + ε)-approximation to Fp

1: Let η >
∑

j≥0 2−j(p/16−1/8) be a sufficiently large constant.
2: γ ← 211, ni ← 10γn

2i , εi = ε
16η·2i(p/16−1/8) log 1

ε2

3: Let Ir
i be a (nested) subset of [n] subsampled at rate pi := min(1, 2−iγ).

4: for first pass i ∈ [α log n], r ≤ O (log log n): do
5: Let Hr

i be the output of HeavyHitters with threshold parameter (εi)2/p

80γ ·(
1

ni

)1/2−1/p

on the substream induced by Ir
i .

6: for second pass do
7: Track the frequency fk for any coordinate k ∈ ∪Hr

i .

8: Let Sr
i be the items k ∈ [n] with fp

k ∈
[

F̂p

2i ,
2F̂p

2i

]
.

9: ℓi ← min{k : 2k > 2i · ε2
k}

10: Dr
i ← 1

pℓi
·
(∑

k∈Sr
i

fp
k

)
11: Ĉi ← medianr Dr

i

12: return F̃p :=
∑

i Ĉi

Using CountSketch as the subroutine for HeavyHitters on two-pass turnstile streams
and BPTree as the subroutine for HeavyHitters on two-pass insertion-only streams, we
obtain the following guarantees for Algorithm 2. We first show that there exists a subsampling
rate such that items in each level set will be reported as a heavy-hitter. The proof is similar
to the proof of Lemma 2.4, but we no longer require each reported item to also be reported
with a (1 + ε)-approximation to their frequency. In fact, this cannot be done in a single pass;
we will instead track their frequencies in the second pass.

▶ Lemma 3.3. Let ε ∈ (0, 1), Λi be a fixed level set, and let ℓ := ℓi := min{k : 2k > 2i · ε2
k}.

For a fixed r, let E1 be the event that |Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤ 10γFp

2ℓ .
Conditioned on E1 and E2, then HeavyHitters reports j ∈ Sr

i for each j ∈ Λi ∩ Ir
ℓ with

probability at least 1− 1
poly(n) .

ICALP 2021



112:14 Separations for Estimating Large Frequency Moments on Data Streams

Proof. We consider casework on the value of i. First suppose 2i · ε2 < γ, so that ℓ :=
ℓi = min{k : 2k > 2i · ε2

k} ≤ log γ since εk ≤ ε for all k. By Definition 2.2 of the level

sets, each item j ∈ Λi satisfies fp
j ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
. We also have F̂p ≤ Fp ≤ 1.01 · F̂p and

n1/2−1/p · F 1/p
p ≥ F

1/2
2 . Thus, each item in j ∈ Λi satisfies

fj ≥
ε2/p

1.011/p
· F 1/p

p ≥ ε2/p

1.011/pn1/2−1/p
· F 1/2

2 ,

so that f2
j ≥ ε4/p

1.01n1/2−1/p F2. Then by Theorem 3.1 or Theorem 3.2, each item j ∈ Λi is
reported by CountSketch or BPTree with threshold (εℓ)2/p

80γ , as εℓ ≤ ε and nℓ = n.
Otherwise, suppose 2i · ε2 ≥ γ, so that ℓ := ℓi = min{k : 2k > 2i · ε2

k} ≥ log γ and
pℓ := min(1, 2−ℓγ) ≥ γ

2·2iε2
ℓ

. Again by Definition 2.2 of the level sets, each item j ∈ Λi

satisfies fp
j ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
. If j /∈ Ir

ℓ , then j certainly will not be reported by HeavyHitters

(regardless of whether HeavyHitters is CountSketch or BPTree). Hence, we assume
that j ∈ Ir

ℓ .
Conditioning on the event E2,

Fp(Ir
ℓ ) ≤ 10γFp

2ℓ
≤ 20γFp

2iε2 .

Given F̂p ≤ Fp ≤ 1.01 · F̂p, then fp
j ≥ ε2

80γ · Fp(Ir
ℓ ). Therefore,

fj ≥
ε2/p

(80γ)1/p
· F 1/p

p (Ir
ℓ ).

Rather than applying the inequality n1/2−1/p · F 1/p
p ≥ F

1/2
2 , we observe that conditioning

on the event E1, it follows that |Ir
ℓ | ≤ nℓ = 10γn

2ℓ . Thus, the frequency vector defined by the
substream Ir

ℓ has significantly smaller support size than n, which we can leverage to use a
heavy-hitter algorithm with a lower threshold. We have

fj ≥
ε2/p

(80γ)1/p
·
(

1
nℓ

)1/2−1/p

· F 1/2
2 (Ir

ℓ ).

Therefore by Theorem 3.1 or Theorem 3.2, each item j ∈ Λi ∩ Ir
ℓ will be reported by Hr

ℓ

output by HeavyHitters with threshold (εℓ)2/p

80γ ·
(

1
nℓ

)1/2−1/p

, since εℓ ≤ ε. ◀

We now show our main correctness statement for our two-pass algorithms. Lemma 3.4 proves
that the output F̃p of our algorithm gives a (1 + ε)-approximation to the Fp moment of
the underlying frequency vector. Although the guarantees of Lemma 3.4 are similar to
the guarantees of Lemma 2.5 are similar, the proof of Lemma 3.4 is much simpler. We
show that we obtain (1 + ε)-approximations to the contributions of each significant level set,
thus obtaining a (1 + ε)-approximation to the Fp moment, since the contributions of the
insignificant level sets can be ignored. Unlike Lemma 2.5, we need not concern about an
idealized process since the frequency of each heavy-hitter is exactly tracked in the second pass
of the algorithm over the data stream, so no heavy-hitters can be accidentally misclassified
into an incorrect level set.

▶ Lemma 3.4. With probability at least 2
3 , we have that |F̃p − Fp| ≤ ε · Fp.
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Proof. Let Λi be a fixed level set and ℓ := min{k : 2k > 2i · ε2
k}. Let E1 be the event that

|Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤ 10γFp

2ℓ . By Lemma 3.3, CountSketch
returns each k ∈ Λi∩Ir

ℓ in Sr
i , conditioned on E1 and E2. Thus in the second pass, Algorithm 2

tracks the contribution fp
k explicitly, by tracking fk. We first analyze the approximation Ĉr

i

to Ci for a given set of subsamples, where we define

Dr
i := 1

pℓ
·

∑
k∈Λi∩Ir

ℓ

fp
k .

so that Ĉi = medianr Dr
i . Conditioned on E1 and E2, we note that

E [Dr
i ] = 1

pℓ
·

∑
k∈Λi

pℓ · fp
k = Ci.

We also have

Var(Dr
i ) = 1

p2
ℓ

·
∑

k∈Λi

pℓf
2p
k ≤

∑
k∈Λi

2 · 2iε2
ℓ

γ
· f2p

k ,

since pℓ ≥ γ
2·2iε2

ℓ

. Observe that for each k ∈ Λi, we have f2p
k ≤

16(Fp)2

22i and |Λi|
2i ≤ ϕi ≤ 1.

Thus for γ = 211,

Var(Dr
i ) ≤ |Λi| ·

2 · 2iε2
ℓ

γ
· 16(Fp)2

22i
≤ ϕiε

2
ℓ(Fp)2 ≤ ε2

ℓ

64(Fp)2.

Hence, by Chebyshev’s inequality, we have that

Pr
[
|Dr

i − Ci| ≥
εℓ

2 · Fp

]
≤ 1

16 .

In summary, Dr
i gives an approximation to Ci with additive error at most εℓ

2 · Fp with
probability at least 15

16 , conditioned on the events E1 and E2, and the correctness of the
subroutine CountSketch. Since CountSketch fails with probability at most 1− 1

poly(n)
by Theorem 3.1, then by a union bound, we have that conditioned on E1 and E2,

Pr
[
|Dr

i − Ci| ≤
(

ε

4α log n
+ εℓ

)
· Fp

]
≥ 7

8 .

For a fixed r, let E1 be the event that |Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤
10γFp

2ℓ . Recall that Ir
ℓ is a nested subset of [n] subsampled at rate pℓ := min(1, 2−ℓγ), so that

E [|Ir
ℓ |] ≤

γn
2ℓ . Thus by Markov’s inequality, Pr [E1] ≥ 9

10 . Similarly, E [Fp(Ir
ℓ )] ≤ γFp

2ℓ . Thus
by Markov’s inequality, Pr [E2] ≥ 9

10 . By a union bound, we first have Pr [E1 ∧ E2] ≥ 8
10 .

Applying another union bound, we have that |Dr
i −Ci| ≤ εℓ

2 ·Fp for a fixed r, with probability
at least 5

8 . Since Ĉi = medianr Dr
i across r ≤ O (log log n) iterations, then we have that

|Ĉi − Ci| ≤ εℓ

2 · Fp with probability at least 1− 1
polylog(n) .

By a union bound over the indices i ∈ [α log n], corresponding to the α log n level sets,
then with probability at least 1− 1

polylog(n) , we have that |Ĉi − Ci| ≤ εℓ

2 · Fp simultaneously
for all i ∈ [α log n], where ℓi := min{k : 2k > 2i · ε2

k}. We form our estimate F̃p to Fp by
setting F̃p :=

∑
i Ĉi and we have Fp =

∑
i Ci. Since i ∈ [α log n], ℓi := min{k : 2k > 2i · ε2

k},
and εℓi = ε

16η·2ℓi(p/16−1/8) log 1
ε2

, then
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|F̃p − Fp| =

∣∣∣∣∣∑
i

Ĉi −
∑

i

Ci

∣∣∣∣∣ ≤∑
i

|Ĉi − Ci| ≤
∑

i

(
ε

4α log n
+ εℓi

)
· Fp

≤
∑

i∈[α log n]

ε

4α log n
· Fp +

∑
i:ℓi≤log 1

ε2

εℓi · Fp +
∑

i:ℓi>log 1
ε2

εℓi · Fp

≤ ε

4 · Fp + log 1
ε2 ·

ε

16 log 1
ε2

· Fp + ε

16 · Fp,

where the last bound on the last term follows from η >
∑

j≥0 2−j(p/16−1/8). Therefore with
probability at least 1− 1

polylog(n) , we have that |F̃p − Fp| ≤ ε
2 · Fp. ◀

We now justify the full guarantees claimed by Theorem 1.2. We first handle two passes
over a turnstile stream.

▶ Theorem 3.5. For p > 2, there exists a two-pass turnstile streaming algorithm that
outputs a (1 + ε)-approximation to the Fp moment with probability at least 2

3 , while using
O

( 1
ε4/p · n1−2/p log2 n log log n

)
bits of space.

Proof. Our analysis is similar to the proof of Theorem 1.1. We again observe that by
redefining the level sets according to any upper bound on Fp, we do not require a 1.01-
approximation F̂p to Fp as the input of Algorithm 2. Thus by Lemma 3.4, there exists an
algorithm that outputs a (1 + ε)-approximation to the Fp moment on two pass turnstile
streams and it remains to analyze the space complexity. By Theorem 3.1, CountSketch
with threshold ε requires O

( 1
ε2 log2 n

)
bits of space to output the indices of the heavy-hitters.

Algorithm 2 runs a separate instance of CountSketch with threshold (εi)2/p

80γ ·
(

1
ni

)1/2−1/p

to output a set Hr
i for r ≤ O (log log n), where γ is a sufficiently large constant. Thus the

total space in the first pass across all indices i for a fixed r is at most

(
C1 log2 n

)
·

∑
i∈[α log n]

(ni)1−2/p

(εi)4/p
,

for some positive constants C1, α > 0. In particular, we have ni = 10γn
2i and εi =

ε
16η·2i(p/16−1/8) log 1

ε2
for a sufficiently large constant η. Then the total space in the first

pass across all indices i for a fixed r is at most

(
C1 log2 n

)
·

∞∑
i=1

C2n1−2/p

ε4/p
· 2i(1/4−1/(2p))

2i(1−2/p) ,

for some positive constants C1, C2 > 0. Since
∑∞

i=1
2i(1/4−1/(2p))

2i(1−2/p) =
∑∞

i=1
1

23i(1−2/p)/4 is a
geometric series that is upper bounded by a fixed constant, the total space in the first pass
across all i for a fixed r is O

( 1
ε4/p · n1−2/p log2 n

)
. Because r ∈ O (log log n), then the total

space is O
( 1

ε4/p · n1−2/p log2 n log log n
)
.

In the second pass, we track the frequencies of each item reported by some instance of
CountSketch. Since at most O

( 1
ε4/p · n1−2/p log log n

)
indices can be reported across

all instances of CountSketch and O (log n) bits of space can be used to track the
frequency of each reported index, then the total space for the second pass is at most
O

( 1
ε4/p · n1−2/p log n log log n

)
. Thus, the total space is O

( 1
ε4/p · n1−2/p log2 n log log n

)
. ◀



D. P. Woodruff and S. Zhou 112:17

Finally, we note that to report at most O
( 1

ε4/p · n1−2/p log log n
)

indices of possible heavy-
hitters in turnstile streams, CountSketch uses at most O

( 1
ε4/p · n1−2/p log2 n log log n

)
space. By the same reasoning, we use space O

( 1
ε4/p · n1−2/p log n log log n

)
in insertion-only

streams by using the more space efficient BPTree.

▶ Theorem 3.6. For p > 2, there exists a two-pass insertion-only streaming algorithm that
outputs a (1 + ε)-approximation to the Fp moment with probability at least 2

3 , while using
O

( 1
ε4/p · n1−2/p log n log log n

)
bits of space.

Proof. The proof of correctness is exactly the same as that of Theorem 3.5 since using
BPTree as the subroutine for HeavyHitters rather than CountSketch offers the same
guarantee for insertion-only streams. By Theorem 3.2, BPTree with threshold ε requires
O

( 1
ε2 log n

)
bits of space to output the indices of the heavy-hitters. To analyze the space

complexity, note that Algorithm 2 runs a separate instance of BPTree with threshold
(εi)2/p

80γ ·
(

1
ni

)1/2−1/p

to output a set Hr
i for r ≤ O (log log n), where γ is a sufficiently large

constant. Hence, the first pass across all indices i for a fixed r uses space at most

(C1 log n) ·
∑

i∈[α log n]

(ni)1−2/p

(εi)4/p
,

for some absolute constants C1, α > 0. Since ni = 10γn
2i and εi = ε

16η·2i(p/16−1/8) log 1
ε2

for a
sufficiently large constant η, the first pass uses space at most

(C1 log n) ·
∞∑

i=1

C2n1−2/p

ε4/p
· 2i(1/4−1/(2p))

2i(1−2/p) ,

for some absolute constants C1, C2 >0, across all indices i for a fixed r. As
∑∞

i=1
2i(1/4−1/(2p))

2i(1−2/p) =∑∞
i=1

1
23i(1−2/p)/4 is a geometric series that is upper bounded by some constant, then the

total space in the first pass is O
( 1

ε4/p · n1−2/p log n
)

across all indices i for a fixed r. Since
r ≤ O (log log n), then the total space in the first pass is O

( 1
ε4/p · n1−2/p log n log log n

)
.

The second pass tracks the frequencies of each item reported by some instance of
BPTree. Since at most O

( 1
ε4/p · n1−2/p log log n

)
indices can be reported across all instances

of BPTree and O (log n) bits of space can be used to track the frequency of each reported
index, then the total space for the second pass is at most O

( 1
ε4/p · n1−2/p log n log log n

)
.

Thus, the total space is O
( 1

ε4/p · n1−2/p log n log log n
)
. ◀

4 Lower Bounds

In this section, we first consider the standard blackboard communication model, where a
number of players each have a local input and the goal is to solve some predetermined
communication problem by sending messages to a shared medium. Each player is assumed
to have access to an unlimited amount of private randomness. The sequence of messages on
the shared blackboard is called the transcript and the maximum length of the transcript over
all inputs is the communication cost of a given protocol. The communication complexity of
f , denoted by Rδ(f), is the minimal communication cost of all protocols that succeed with
probability at least 1− δ for all legal inputs to f .
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▶ Definition 4.1. In the (t, ε, n)-player set disjointness estimation problem (t, ε, n) −
DisjInfty, there are t + 1 players P1, . . . , Pt+1 with private coins in the standard blackboard
model. For s ∈ [t], each player Ps receives a vector vs ∈ {0, 1}n and player Pt+1 receives
both an index j ∈ [n] and a bit c ∈ {0, 1}. For u =

∑
s∈[t] vs, the inputs are promised to

satisfy ui ≤ 1 for each i ̸= j and either uj = 1 or uj = t. With probability at least 9
10 , Pt+1

must differentiate between the three possible input cases:
(1) uj + ct

ε ≤ t

(2) uj + ct
ε ∈

{
t
ε , t

ε + 1
}

(3) uj + ct
ε = (1 + ε) t

ε ,
where ε ∈ (0, 1). We call coordinate j ∈ [n] the spike location.

Direct sum embedding. We use the direct sum technique by showing that even in the
case where ui ≤ 1 for all i ∈ [n], the information cost of the players is sufficiently high.
We describe the embedding performed by each player to sample coordinates independently
conditioned on the auxiliary variable D. We define the auxiliary variable D = (D1, . . . , Dn)
by first defining a distribution µ for Di and vs,i, for each fixed coordinate i ∈ [n] and across
all players s ∈ [t]:
(1) Di ∼ [t] uniformly at random, so that Di determines a player whose input bit will be

randomized while the remaining players have input bit zero.
(2) Conditioned on Di = s, then each player Pr with r ̸= s sets vr,i = 0 while player Ps

independently and uniformly sets vs,i ∈ {0, 1}.
We define the distribution ζ := µn so that the auxiliary random variable D = (D1, . . . , Dn)
is the vector whose i-th coordinate determines the player PDi

whose i-th bit vDi,i in their
input vector will vary, while the other players Ps have i-th bit vs,i zero in their vectors, for
s ≠ Di. Observe that under the distribution ζ, we indeed have ui ≤ 1 for each coordinate
i ∈ [n] of u =

∑
s∈[t] vs. Finally, we fix the input c = 0 to player Pt+1 and pick j ∈ [n]

according to any arbitrary distribution.

▶ Theorem 4.2. The total communication complexity for the (t, ε, n)-player set disjointness
estimation problem is Ω

(
n
t

)
.

We remark that the communication complexity of Theorem 4.2 matches the communica-
tion complexity of t-player set disjointness. However, since the problem requires correctness
on all inputs, then we can distinguish between the possible input cases by focusing on the
specific coordinate j given to player Pt+1. By contrast, the reduction of [18] from t-player set
disjointness requires an algorithm to “test” all coordinates i ∈ [n] for the spike location. Thus
the reduction requires that an Fp moment estimation algorithm succeeds with probability
1− 1

poly(n) , thereby losing a multiplicative O (log n) factor and achieving Ω
(

n1−2/p

ε2 log n

)
in the

space lower bound for Fp moment estimation. Since our communication problem gives
the specific spike location as input, our reduction only requires an Fp moment estimation
algorithm that succeeds with constant probability. We remark that a similar technique was
used in [30] for the L∞ promise problem.

Reduction. Let t = Θ
( 1

ε · n
1/p

)
. We reduce (1 + ε)-approximate Fp moment estimation

to an instance of (t, ε) − DisjInfty as follows. Let A be any fixed randomized one-pass
insertion-only streaming algorithm that outputs a

(
1 + ε

3
)
-approximation to the Fp moment

of the underlying frequency vector with probability at least 2
3 . Recall that the first t players

each receive a vector vs with s ∈ [t] and player Pt+1 receives both a special index j ∈ [n]
and a bit c ∈ {0, 1}.
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For each s ∈ [t], player Ps takes the state of the algorithm A, inserts the coordinates of
vector vs, and passes the state of the algorithm to player Ps+1.
Player Pt+1 takes the state of A, adds the vector ct

ε ·ej , where ej is the elementary vector
with a one in position j and zeros elsewhere, and then queries the state of A to obtain a(
1 + ε

3
)
-approximation to the Fp moment of underlying frequency vector.

▶ Theorem 4.3. For any constant p > 2 and parameter ε = Ω
( 1

n1/p

)
, any one-pass

insertion-only streaming algorithm that outputs a (1 + ε)-approximation to the Fp moment
of an underlying frequency vector with probability at least 9

10 requires Ω
( 1

ε2 · n1−2/p
)

bits of
space.

Proof. Player Pt+1 receives the state of A on the input u =
∑

s∈[t] vs and induces a frequency
vector x := u+ ct

ε ·ej . Recall that the inputs are promised to satisfy ui ≤ 1 for each i ̸= j and
either uj = 1 or uj = t. If c = 0, then x = u so that for a constant C > 0 and t = C

ε · n
1/p,

∥x∥p
p ≤ F0 + tp ≤ n + Cp

εp
· n.

If c = 1 and uj ≤ 1, then for t = C
ε · n

1/p, we have ∥x∥p
p ≥

(
t
ε

)p = Cp

ε2p · n and thus

∥x∥p
p ≤ F0 +

(
1 + t

ε

)p

≤ n + p + p · Cp

ε2p
· n.

Finally, if c = 1 and uj = t, then

∥x∥p
p ≥

(
t + t

ε

)p

=
(

1 + 1
ε

)p

· Cp

ε2p
· n.

For sufficiently small ε ∈ (0, 1) with ε = Ω
( 1

n1/p

)
and constant p > 2, there exists a constant

C > 0 such that these three cases are separated by a multiplicative (1 + ε). Since A outputs
a

(
1 + ε

3
)
-approximation to the Fp moment of the underlying frequency vector, then player

Pt+1 obtains a
(
1 + ε

3
)
-approximation to ∥x∥p

p and can differentiate between the three cases,
thus solving (t, ε)−DisjInfty with probability at least 9

10 . By Theorem 4.2, A uses Ω
(

n
t

)
total communication across the t + 1 players. Therefore, the space complexity of A is
Ω

(
n
t2

)
= Ω

( 1
ε2 · n1−2/p

)
for t = Θ

( 1
ε · n

1/p
)
. The result then follows from rescaling ε. ◀
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Breaking the 2n Barrier for 5-Coloring and
6-Coloring
Or Zamir #
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Abstract
The coloring problem (i.e., computing the chromatic number of a graph) can be solved in O˚

p2n
q time,

as shown by Björklund, Husfeldt and Koivisto in 2009. For k “ 3, 4, better algorithms are known
for the k-coloring problem. 3-coloring can be solved in Op1.33n

q time (Beigel and Eppstein, 2005)
and 4-coloring can be solved in Op1.73n

q time (Fomin, Gaspers and Saurabh, 2007). Surprisingly,
for k ą 4 no improvements over the general O˚

p2n
q are known. We show that both 5-coloring and

6-coloring can also be solved in O pp2 ´ εq
n

q time for some ε ą 0. As a crucial step, we obtain an
exponential improvement for computing the chromatic number of a very large family of graphs.
In particular, for any constants ∆, α ą 0, the chromatic number of graphs with at least α ¨ n

vertices of degree at most ∆ can be computed in O pp2 ´ εq
n

q time, for some ε “ ε∆,α ą 0. This
statement generalizes previous results for bounded-degree graphs (Björklund, Husfeldt, Kaski, and
Koivisto, 2010) and graphs with bounded average degree (Golovnev, Kulikov and Mihajlin, 2016).
We generalize the aforementioned statement to List Coloring, for which no previous improvements
are known even for the case of bounded-degree graphs.
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1 Introduction

The problem of k-coloring a graph, or determining the chromatic number of a graph (i.e.,
finding the smallest k for which the graph is k-colorable) is one of the most classic and
well studied NP-Complete problems. Computing the chromatic number is listed as one of
the first NP-Complete problems in Karp’s paper from 1972 [17]. In a similar fashion to
k-SAT, the problem of 2-coloring is polynomial, yet k-coloring is NP-complete for every
k ě 3 (proven independently by Lovász [22] and Stockmeyer [30]). An algorithm solving
3-coloring in sub-exponential time would imply, via the mentioned reductions, that 3-SAT
can also be solved in sub-exponential time. It is strongly believed that this is not possible
(as stated in a widely believed conjecture called The Exponential Time Hypothesis [15]), and
thus it is believed that exact algorithms solving k-coloring must be exponential.

There is a substantial and ever-growing body of work exploring exponential-time worst-
case algorithms for NP-Complete problems. A 2003 survey of Woeginger [31] covers and
refers to dozens of papers exploring such algorithms for many problems including satisfiability,
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113:2 Breaking the 2n Barrier for 5-Coloring and 6-Coloring

graph coloring, knapsack, TSP, maximum independent sets and more. Subsequent review
article of Fomin and Kaski [10] and book of Fomin and Kratsch [11] further cover the topic
of exact exponential-time algorithms.

For satisfiability (commonly abbreviated as SAT), the running time of the trivial al-
gorithm enumerating over all possible assignments is O˚p2nq. No algorithms solving SAT
in time O˚ pp2 ´ εq

n
q for any ε ą 0 are known, and a popular conjecture called The Strong

Exponential Time Hypothesis [5] states that no such algorithm exists. On the other hand, it
is known that for every fixed k there exists a constant εk ą 0 such that k-SAT can be solved
in O˚ pp2 ´ εkq

n
q time. A result of this type was first published by Monien and Speckenmeyer

in 1985 [23]. A long list of improvements for the values of εk were published since, including
the celebrated 1998 PPSZ algorithm of Paturi, Pudlák, Saks and Zane [25] and the recent
improvement over it by Hansen, Kaplan, Zamir and Zwick [13].

For coloring, on the other hand, the situation is less understood. The trivial algorithm
solving k-coloring by enumerating over all possible colorings takes O˚pknq time. Thus, it
is not even immediately clear that computing the chromatic number of a graph can be
done in O˚pcnq time for a constant c independent of k. In 1976, Lawler [21] introduced
the idea of using dynamic-programming to find the minimal number of independent sets
covering the graph. The trivial implementation of this idea results in an O˚p3nq algorithm.
More sophisticated bounds on the number of maximal independent sets in a graph and fast
algorithms to enumerate over them (Moon and Moser [24], Paull and Unger [26]) resulted
in an O˚p2.4422nq algorithm. This was improved several times (including Eppstein [8] and
Byskov [4]), until finally an algorithm computing the chromatic number in O˚p2nq time was
devised by Björklund, Husfeldt and Koivisto in 2009 [3]. This settled an open problem of
Woeginger [31]. A relatively recent survey of Husfeldt [14] covers the progress on graph
coloring algorithms.

For k “ 3, 4, better algorithms are known for the k-coloring problem. Schiermeyer [28]
showed that 3-coloring can be solved in O˚p1.415nq time. Beigel and Eppstein [1] gave
algorithms solving 3-coloring in O˚p1.3289nq time and 4-coloring in O˚p1.8072nq time in 2005.
Fomin, Gaspers and Saurabh [9] have improved the running time of 4-coloring to O˚p1.7272nq

in 2007. Unlike the situation in k-SAT, for every k ą 4 the best known running time for k-
coloring is O˚p2nq, the same as computing the chromatic number. Thus, a very fundamental
question was left wide open.

▶ Open Problem 1. Can 5-coloring be solved in O˚ pp2 ´ εq
n

q time, for some ε ą 0?

More generally,

▶ Open Problem 2. Can k-coloring be solved in O˚ pp2 ´ εkq
n

q time, for some εk ą 0, for
every k?

In our work, we answer Problem 1 affirmatively, the answer extends to 6-coloring as well.
We also make steps towards settling Problem 2.

The main technical theorem of our paper follows.

▶ Definition 3. For 0 ď α ď 1 and ∆ ą 0 we say that a graph G “ pV pGq, EpGqq is
pα, ∆q-bounded if it contains at least α ¨ |V pGq| vertices of degree at most ∆.

▶ Theorem 4. For every ∆, α ą 0 there exists ε∆,α ą 0 such that we can compute the
chromatic number of pα, ∆q-bounded graphs in O pp2 ´ ε∆,αq

n
q time.

In other words, we can answer Problem 2 affirmatively unless the graph has almost only
vertices of super-constant degrees. This theorem generalizes a few previous results. A similar
statement for the restricted case of bounded degree graphs was obtained by Björklund et
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al. in [2]. Golovnev, Kulikov and Mihajlin [12] used a variant of FFT to get an algorithmic
improvement for computing the chromatic number of graphs with bounded average degree.
Prior to that, Cygan and Pilipczuk [7] obtained an improvement for the running time required
for the Traveling Salesman Problem for graphs with bounded average degree.

It is important to stress that Theorem 4 is much more general than the mentioned
results. In particular, pα, ∆q-bounded graphs may have Ωpn2q edges (and in turn average
degree Ωpnq). The techniques used for graphs with bounded average degree do not extend to
this case. Another important difference is that our algorithms extend to finding a coloring
of the graph while the mentioned ones solve the decision problem, as later discussed in
Section 2.2. Moreover, the generality of Theorem 4 is crucial for our derivation of the
reductions resulting in the improvements for 5 and 6 coloring.

In the List Coloring problem (defined formally in Section 2), we are given a graph and
lists Cv of colors for each vertex v, and are asked to find a valid coloring of the graph such
that each vertex v is colored by some color appearing in its list Cv. In the k-list-coloring
problem each list Cv is of size at most k.

List Coloring can also be solved in O˚p2nq time [3], yet no improvements were known
even for the bounded-degree case. We extend Theorem 4 to k-list-coloring, for any constant
k, as follows.

▶ Theorem 5. For every k, ∆, α ą 0 there exists εk,∆,α ą 0 such that we can solve k-list-
coloring for pα, ∆q-bounded graphs in O pp2 ´ εk,∆,αq

n
q time, regardless of the size of the

universe of colors.

Using Theorem 4 as a crucial component, we devise the following reductions and corollaries.

▶ Theorem 6. Given an algorithm solving pk ´ 1q-list-coloring in time O pp2 ´ εq
n

q for some
constant ε ą 0, we can construct an algorithm solving k-coloring in time O

`

p2 ´ ε1q
n˘

for
some (other) constant ε1 ą 0. Furthermore, the reduction is deterministic.

▶ Theorem 7. Given an algorithm solving pk ´ 2q-list-coloring in time O pp2 ´ εq
n

q for some
constant ε ą 0, we can construct an algorithm solving k-coloring with high probability in time
O

`

p2 ´ ε1q
n˘

for some (other) constant ε1 ą 0.

From which we finally conclude the following, answering Problem 1 affirmatively.

▶ Theorem 8. 5-coloring can be solved in time O pp2 ´ εq
n

q for some constant ε ą 0.

▶ Theorem 9. 6-coloring can be solved with high probability in time O pp2 ´ εq
n

q for some
constant ε ą 0.

We note that our 5-coloring algorithm is deterministic, while our 6-coloring algorithm is
randomized with an exponentially small one-sided error probability.

As part of our work, we develop a new removal lemma for small subsets. This could be
of independent interest. Very roughly, it states that every collection of small sets must have
a large sub-collection that can be made pairwise-disjoint by the removal of a small subset of
the universe. The exact statement follows.

▶ Theorem 10. Let F be a collection of subsets of a universe U such that every set F P F is
of size |F | ď ∆. Let C ą 0 be any constant. Then, there exist subsets F 1 Ď F and U 1 Ď U ,
such that

|F 1| ą ρp∆, Cq ¨ |F | ` C ¨ |U 1|, where ρp∆, Cq ą 0 depends only on ∆, C.
The sets in F 1 are disjoint when restricted to UzU 1, i.e., for every F1, F2 P F 1 we have
F1 X F2 Ď U 1.

ICALP 2021
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In the full version of the paper we present an upper bound for the function ρ appearing
in Theorem 10. This upper bound implies that the constant ε we can obtain using our
technique must be very small.

2 Preliminaries

The terminology used throughout the paper is standard. For a graph G we denote by V pGq

and EpGq its vertex-set and edge-set, respectively. Throughout the paper, n is used to denote
|V pGq|. For a subset V 1 Ď V pGq we denote by GrV 1s the sub-graph of G induced by V 1. For
v P V we denote by degpvq the degree of v in G, by Npvq the set of neighbours of v, and by
N rvs :“ NpV q Y tvu.

For 0 ď α ď 1 and ∆ ą 0 we say that a graph G “ pV pGq, EpGqq is pα, ∆q-bounded if it
contains at least α ¨ |V pGq| vertices of degree at most ∆. Note that if α “ 1 this definition
coincides with the standard definition of a bounded degree graph.

In the k-coloring problem, we are given a graph G and need to decide whether there exists
a k-coloring c : V pGq Ñ rks of G, such that for every pu, vq P EpGq we have cpuq ‰ cpvq. If
a graph has a k-coloring, we say that it is k-colorable. In the chromatic number problem,
we are given a graph G and need to compute χpGq, the minimal integer k for which G is
k-colorable.

In the k-list-coloring problem, we are given a graph G and a set Cv Ď U of size |Cv| ď k

for every v P V pGq, where U is some arbitrary universe. We need to decide whether there
exists a coloring c : V pGq Ñ U such that for every v P V pGq we have cpvq P Cv and for every
pu, vq P EpGq we have cpuq ‰ cpvq.

In a general pa, bq-CSP (Constraint Satisfaction Problem, see [20] or [29] for a complete
definition and discussions) we are given a list of constraints1 on the values of subsets of size b

of n a-ary variables, and need to decide whether there exists an assignment of values to the
variables for which all constraints are satisfied. k-coloring and k-list-coloring are examples of
pk, 2q-CSP problems. k-SAT is an example of a p2, kq-CSP problem.

2.1 Inverse Möbius Transform
Let U be an n-element set. The Inverse Möbius transform (sometimes also called the Zeta
transform) [27] maps a function f : P pUq Ñ R from the power-set of U into another function
f̂ : P pUq Ñ R defined as

f̂pXq “
ÿ

Y ĎX

fpY q.

Naively, f̂pXq is computed using 2|X| additions. Thus, we can compute all values of f̂ in a
straightforward manner with Op3nq operations. Yates’ method from 1937 ([19, 32]) improves
on the above and computes all values of f̂ using just Opn2nq operations. The resulting
algorithm is usually called the fast möbius transform or the fast zeta transform ([3, 18]).
The authors of [2] and [3] use the fast Inverse Möbius Transform to devise algorithms for
combinatorial optimization problems such as computing the chromatic and the domatic
numbers of a graph. The algorithm of [3] is summarized in Section 3.

A description of Yates’ method follows.

1 A general constraint on a set x1, . . . , xb of a-ary variables is a subset T of the ab possible assignments
in tx1, . . . xbu Ñ ras. The constraint is satisfied by an assignment c, possibly on more variables, if
c
ˇ

ˇ

tx1,...xbu
P T .
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▶ Lemma 11. The Inverse Möbius Tranform f̂ for some function f : P pUq Ñ R can be
computed in Opn2nq time, where n :“ |U |.

Proof. Denote by U “ tu1, . . . , unu some enumeration of U ’s elements. Denote by f0 :“ f .
We preform n iterations for i “ 1, . . . , n, in which we compute all values of the function
fi : P pUq Ñ R defined using fi´1 as follows.

fipXq “

#

fi´1pXq ` fi´1pXztuiuq if ui P X

fi´1pXq otherwise

Namely, in the i-th iteration we add the values the function gets in the sub-cube defined
by ui “ 0 to the corresponding values in the sub-cube defined by ui “ 1.

A simple induction on i shows that fipXq “
ř

Y PSipXq fpY q where SipXq is the set of all
subsets Y Ď X such that

tuj P Y | j ą iu “ tuj P X | j ą iu

In particular, by the end of the algorithm fn “ f̂ . ◀

2.2 Decision versus Search

The k-coloring problem can be stated in two natural ways. In the first, given a graph G

decide whether it can be colored using k colors. The second, given a graph G return a
k-coloring for it if one exists, or say that no such coloring exists. A few folklore reductions
show that the two problems have the same running time up to polynomial factors. We state
one for completeness. Others appear in the survey of [14].

▶ Lemma 12. Let A be an algorithm deciding whether a graph is k-colorable in OpT pnqq

time. Then, there exists an algorithm A1 that finds a k-coloring for G, if one exists, in
O˚pT pnqq time.

Proof. We describe A1. First, use ApGq to decide whether G is k-colorable, if it returns
False we return that no k-coloring exists. Otherwise, repeat the following iterative pro-
cess. For every pair of distinct vertices pu, vq R EpGq that is not an edge of G, use
A pG1 :“ pV pGq, EpGq Y tpu, vquqq to check whether G stays k-colorable after adding pu, vq

as an edge. If it does, add pu, vq to EpGq. We stop when no such pair pu, vq exists.
The reader can verify that the resulting graph must be a complement of k disjoint cliques,

and thus we can easily construct a k-coloring. ◀

A problem comes up while trying to use this type of reductions in the settings of this
paper. The aforementioned reduction adds edges to the graph, and therefore increases the
degrees of vertices. In particular, we cannot use it (or other similar reductions) in a black-box
manner for statements like Theorem 4. The algorithm of [2] solves the decision version of
k-coloring for bounded degree graphs, and cannot be trivially converted into an algorithm
that finds a coloring. The algorithms presented in this paper, on the other hand, can be
easily converted into algorithms that find a k-coloring. This is briefly discussed later in
Section 4.4.

ICALP 2021
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3 Overview of the O˚p2nq algorithm

In this section we present a summary of Björklund, Husfeldt and Koivisto’s algorithm from [3].
We present a concise variant of their work that applies specifically to the coloring problem.
The original paper covers a larger variety of set partitioning problems and thus the description
in this section is simpler.

We begin by making the following very simple observation, yielding an equivalent phrasing
of the coloring problem.

▶ Observation 13. A graph G is k-colorable if and only if its vertex set V pGq can be covered
by k independent sets.

A short outline of the algorithm follows, complete details appear below. We need to
decide whether V pGq can be covered by k independent sets. In order to do so, we compute
the number of independent sets in every induced sub-graph and then use a simple inclusion-
exclusion argument in order to compute the number of (ordered) covers of V pGq by k

independent sets. We are interested in whether this number is positive.

▶ Definition 14. For a subset V 1 Ď V pGq of vertices, let ipGrV 1sq denote the number of
independent sets in the induced sub-graph GrV 1s.

We next show that using dynamic programming, we can quickly compute these values.

▶ Lemma 15. We can compute the values of ipGrV 1sq for all V 1 Ď V in O˚p2nq time.

Proof. Let v P V 1 be an arbitrary vertex contained in V 1. The number of independent sets
in V 1 that do not contain v is exactly ipGrV 1ztvusq. On the other hand, the number of
independent sets in V 1 that do contain v is exactly ipGrV 1zN rvssq. Thus, we have

ipGrV 1sq “ ipGrV 1ztvusq ` ipGrV 1zN rvssq.

We note that both V 1ztvu and V 1zN rvs are of size strictly less than |V 1|. Thus, we can
compute all 2n values of ipGr¨sq using dynamic programming processing the sets in non-
decreasing order of size. ◀

Consider the expression

F pGq “
ÿ

V 1ĎV pGq

p´1q|V pGq|´|V 1
| ¨ ipGrV 1sqk.

Using the values of ipGr¨sq computed in Lemma 15, we can easily compute the value of F pGq

by directly evaluating the above expression in O˚p2nq time.

▶ Lemma 16. Let S1 Ď S2 be sets. It holds that

ÿ

S1ĎSĎS2

p´1q|S| “

#

0 if S1 ‰ S2

p´1q|S2| if S1 “ S2

Proof. If S1 Ĺ S2 then there exists a vertex v P S2zS1. We can pair each set S1 Ď S Ď S2
with S△tvu, its symmetric difference with tvu. Clearly, in each pair of sets one is of odd size
and one is of even size, and thus their signs cancel each other. Therefore, the sum is zero. In
the second case, the claim is straightforward. ◀
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▶ Lemma 17. F pGq equals the number of k-tuples pI0, . . . , Ik´1q of independent sets in G

such that V pGq “ I0 Y . . . Y Ik´1.

Proof. As ipGrV 1sq counts the number of independent sets in GrV 1s, raising it to the k-th
power (namely, ipGrV 1sqk) counts the number of k-tuples of independent sets in GrV 1s.

Let pI0, . . . , Ik´1q be a k-tuple of independent sets in G. It appears exactly in terms of the
sum corresponding to sets V 1 such that I0 Y . . . Y Ik´1 Ď V 1 Ď V pGq. Each time this k-tuple
is counted, it is counted with a sign determined by the parity of V 1. By Lemma 16, the sum of
the signs corresponding to sets I0 Y . . . Y Ik´1 Ď V 1 Ď V pGq is zero if I0 Y . . . Y Ik´1 ‰ V pGq

and one if I0 Y . . . Y Ik´1 “ V pGq. ◀

We conclude with

▶ Corollary 18. F pGq can be computed in time O˚p2nq, and G is k-colorable if and only if
F pGq ą 0.

4 Faster Coloring Algorithms for pα, ∆q-bounded Graphs

The main purpose of this section is proving Theorem 4.
We first outline our approach. Let G be a graph with a constant chromatic number

χpGq ď k. It is well known that G must contain a large independent set. Let S be an
independent set in G. We think of |S| as a constant fraction of |V pGq|, when we consider k

as a constant. Let c : pV pGqzSq Ñ rks be a k-coloring of the induced sub-graph GrV pGqzSs.
We say that c can be extended to a k-coloring of G if there exists a proper k-coloring
c1 : V pGq Ñ rks such that c1

ˇ

ˇ

V pGqzS
“ c. For a subset V 1 Ď V pGqzS of vertices, we say that

c does not use the full palette on V 1 if |cpV 1q| ă k, namely, if c does not use all k colors on
the vertices of V 1. Clearly, a proper k-coloring c of V pGqzS can be extended to a proper
k-coloring of G if and only if |cpNpsqq| ă k for every s P S. Our approach, on a high-level, is
to construct an algorithm that finds an extendable k-coloring of V pGqzS. We aim to do so
in O

´

2|V pGqzS| p2 ´ εq
|S|

¯

time.

𝑠1

𝑠2

𝑠3

𝑁(𝑠1)

𝑁(𝑠2)

𝑁(𝑠3)

In Section 4.1 we consider a restricted version of the problem in which the independent
set S has the following two additional properties. First, we assume that every vertex s P S is
of degree degpsq ď ∆, where ∆ is some constant. Second, we assume that no pair of vertices
s1, s2 P S share a neighbor in G. Equivalently, the neighborhoods Npsq for every s P S are all
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disjoint. Under these conditions, we present an algorithm that runs in O
´

2|V pGqzS| p2 ´ εq
|S|

¯

time, where ε depends only on ∆. As ε does not depend on k, we can in fact compute the
chromatic number of G exponentially faster than O˚p2nq if G contains an independent set S

with these properties. We also observe that if G is of maximum degree ∆ then it contains a
large such independent set S. Our algorithm is based on methods that generalize Section 3,
and on a simple approach to implicitly compute values of the Inverse Möbius Transform.

𝑠1

𝑠2

𝑠3

𝑁(𝑠1)

𝑁(𝑠2)

𝑁(𝑠3)

In Section 4.2 we modify the algorithm of Section 4.1 and remove the second assumption
on S. Namely, we now only assume that S is an independent set and that for every s P S

we have degpsq ď ∆. Our algorithm still runs in O
´

2|V pGqzS| p2 ´ εq
|S|

¯

time. A main
ingredient in the modification is a new removal lemma for small subsets. The proof of this
combinatorial lemma is given in the full version of the paper and its statement is used in a
black-box manner in this section.

In Section 4.3 we extend the result to List Coloring.

4.1 k-coloring bounded-degree graphs
In this subsection we begin illustrating the ideas leading towards proving Theorem 4. We
also prove the following (much) weaker statement.

▶ Theorem 19. For every k, ∆ there exists εk,∆ ą 0 such that we can solve k-coloring for
graphs with maximum degree ∆ in O pp2 ´ εk,∆q

n
q time.

In fact, as a graph G with maximum degree ∆ has chromatic number χpGq ď ∆ ` 1,
we can compute the chromatic number of a graph with degrees bounded by ∆ in time
O pp2 ´ ε∆`1,∆q

n
q.

As outlined in the beginning of this section, our approach begins by finding a large
independent set with some additional properties. We show that a graph with bounded
degrees must contain a very large independent set S such that the distance between each
pair of vertices in S is at least three. In other words, S is an independent set, and no pair
of vertices in S share a neighbor. In particular, the neighborhoods Npsq for s P S are all
disjoint. The core theorem of this subsection is

▶ Theorem 20. Let G be a graph and S Ď V pGq a set of vertices such that the distance
between each two vertices in S is at least three and the degree of each vertex in S is at most
∆. For any k, we can solve k-coloring for G in O˚

`

2|V pGq|´|S| ¨ p2 ´ 2´∆q|S|
˘

time.
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It is important to note that the existence of such a set S is our sole use of the bound on the
graph degrees. Note that the bound of Theorem 20 does not depend on k. Thus, we get an
exponential improvement for computing the chromatic number of a graph G that contains a
large enough set S with the stated properties.

Before proving Theorem 20, we describe a simple algorithm for finding a set S with the
required properties in bounded-degree graphs.

▶ Lemma 21. Let G be a graph with maximum degree at most ∆. There exists a set
S Ď V pGq of at least 1

1`∆2 ¨ |V pGq| vertices such that the distance between every distinct pair
s1, s2 P S is at least three. Furthermore, we can find such S efficiently.

Proof. We construct S in a greedy manner. We begin with S “ H and V 1 “ V pGq. As long
as V 1 is not empty we pick an arbitrary vertex v P V 1 and add it to S. We then remove from
V 1 the vertex v and every vertex of distance at most two from it.

By construction, the minimum distance between a pair of vertices in S is at least three.
The size of the 2-neighborhood of a vertex is bounded by 1 ` ∆ ` ∆ ¨ p∆ ´ 1q “ 1 ` ∆2 and
thus we get the desired lower bound on the size of S. ◀

Theorem 19 now follows from Lemma 21 and Theorem 20.

Proof of Theorem 19. Let G be a graph of maximum degree at most ∆ and let k be an
integer. By Lemma 21, we can construct a set S of size |S| ě 1

1`∆2 ¨ |V pGq| satisfying the
conditions of Theorem 20. Thus, by Theorem 20, we can solve k-coloring for G in time

O˚
´

2n´ 1
1`∆2 n

¨ p2 ´ 2´∆q
1

1`∆2 n
¯

“ O˚

ˆˆ

2 ¨

´

1 ´ 2´p∆`1q
¯

1
1`∆2

˙n ˙

. ◀

In the rest of the subsection we prove Theorem 20.

▶ Definition 22. For subsets V 1 Ď V pGqzS and S1 Ď S denote by βpV 1, S1q the number
of independent sets I in GrV 1s that intersect every neighborhood Npsq of s P S1, that is,
I X Npsq ‰ H for every s P S1.

Consider, for a subset S1 Ď S, the following sum

hpG, S1q :“
ÿ

V 1ĎV pGqzS

p´1q|V pGq|´|V 1
| β

`

V 1, S1
˘k

.

The following proof is almost identical to the proof of Lemma 17 in Section 3.

▶ Lemma 23. hpG, S1q is the number of covers of V pGqzS by k-tuples pI0, . . . , Ik´1q of
independent sets in GrV pGqzSs such that Ii X Npsq ‰ H for every s P S1 and every 0 ď i ď

k ´ 1.

Proof. Each value of βpV 1, S1q counts independent sets in GrV 1s that intersect every neigh-
borhood Npsq for s P S1.

Each k-tuple pI0, . . . , Ik´1q of that type is counted in terms corresponding to sets V 1 such
that

I0 Y . . . Y Ik´1 Ď V 1 Ď V pGqzS.

By Lemma 16 the multiplicity with which such k-tuple is counted is one if

I0 Y . . . Y Ik´1 “ V pGqzS.

and zero otherwise. ◀
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Consider the following expression.

HpG, Sq :“
ÿ

S1ĎS

p´1q|S1
| hpG, S1q

HpG, Sq is the number of covers of V pGqzS by k-tuples of independent sets that do not
use the full palette on any neighborhood Npsq for s P S. The precise claim follows.

▶ Lemma 24. HpG, Sq is the number of covers of V pGqzS by k-tuples pI0, . . . , Ik´1q of
independent sets in GrV pGqzSs such that for every s P S there exists 0 ď i ď k ´ 1 such that
Ii X Npsq “ H.

Proof. In Lemma 23 we showed that hpG, S1q counts the number of covers of V pGqzS by
k-tuples pI0, . . . , Ik´1q of independent sets in GrV pGqzSs such that for every s P S1 and for
every 0 ď i ď k ´ 1 we have Ii X Npsq ‰ H.

A covering k-tuple of independent sets pI0, . . . , Ik´1q is counted exactly in terms corres-
ponding to subsets S1 such that for every 0 ď i ď k ´ 1 and every s P S1, the independent
set Ii intersects the neighborhood Npsq. These are exactly the subsets S1 such that

S1 Ď ts P S | @0 ď i ď k ´ 1, Ii X Npsq ‰ Hu.

Using Lemma 16 with S1 “ H and S2 “ ts P S | @0 ď i ď k ´ 1, Ii X Npsq ‰ Hu we
deduce that the multiplicity with which the k-tuple is counted is one if

ts P S | @0 ď i ď k ´ 1, Ii X Npsq ‰ Hu “ H

and zero otherwise. ◀

As outlined at the beginning of the section, we now claim that HpG, Sq is positive if
and only if G is k-colorable. Note that for the correctness of this lemma we still did not
use the disjointness of the neighborhoods Npsq. We will need this property to improve the
computation time.

▶ Lemma 25. Let G be a graph and S an independent set in it. Then, HpG, Sq ą 0 if and
only if G is k-colorable.

Proof. Assume that there exists a k-coloring c : V pGq Ñ rks of G. For 0 ď i ď k ´ 1 denote
by

Ii :“ tv P V pGqzS | cpvq “ iu

the subset of V pGqzS colored by i. Each Ii is an independent set as c is a proper coloring
of G. Furthermore, for each s P S, the neighborhood Npsq does not intersect Icpsq. Thus,
pI0, . . . , Ik´1q is a cover of V pGqzS by k independent sets that do not all intersect any
neighborhood Npsq of s P S. By Lemma 24, HpG, Sq ě 1.

On the other hand, if HpG, Sq ą 0 then by Lemma 24 there exists a cover by independent
sets and in particular a k-coloring c : V pGqzS Ñ rks of GrV pGqzSs such that the full palette
is not used on any neighborhood Npsq for s P S. Thus, we may extend c to a k-coloring
c1 : V pGq Ñ rks of the entire graph by coloring each s P S with a color that does not appear
in cpNpsqq. As S is an independent set, this coloring is proper. ◀

Up to this point, we have formalized the outline from the beginning of this section,
reducing k-coloring to a problem of k-coloring with some restrictions the smaller graph
GrV pGqzSs and then to the computation of HpG, Sq.
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Unfortunately, HpG, Sq is a sum of 2|S| terms, each of the form hpG, S1q which is a sum
of 2|V pGq|´|S| terms by itself. Evidently, there are 2n different terms of the form βpV 1, S1q

that are used in the definition of HpG, Sq. Thus, we cannot hope to compute HpG, Sq in
less than 2n steps if we need to explicitly examine 2n terms of the form βp¨, ¨q. Moreover, it
is also not clear how quickly we can compute the values of βp¨, ¨q.

We begin by explaining how values of βp¨q can be computed efficiently. The term hpG, S1q

is a weighted sum of the values β pV 1, S1q for all V 1 Ď V pGqzS. Denote by βµ pV 1, S1q the
indicator function that gets the value 1 if V 1 is an independent set in GrV pGqzSs and for
every s P S1 we have V 1 X Npsq ‰ H, and 0 otherwise. We can efficiently compute the
value of βµ for a specific input in a straightforward manner (i.e., checking whether it is an
independent set that intersects the relevant sets). We observe that

β
`

V 1, S1
˘

“
ÿ

V 2ĎV 1

βµ

`

V 2, S1
˘

,

thus, β “ β̂µ as functions of V 1, and we can compute the values of β pV 1, S1q for all
V 1 Ď V pGqzS in O˚p2|V pGq|´|S|q time using the Inverse Möbius Transform presented in
Section 2.1.

An improvement to the running time comes from noticing that for many inputs pV 1, S1q

the value of β pV 1, S1q is zero. In particular, if V 1 X Npsq “ H, for some s P S1, then
β pV 1, S1q “ 0 as no subset (and in particular no independent set) in V 1 intersects Npsq.
In the computation of hpG, S1q we only need to consider terms corresponding to subsets
V 1 Ď V pGqzS in which for every s P S1 the intersection V 1 X Npsq is non-empty, as the
values of other terms are all zero. We present a variant of the Inverse Möbius Transform
that computes only the non-zero values by implicitly setting the others to zero. We then
show that for most subsets S1 Ď S the number of non-zero entries is exponentially smaller
than 2|V pGq|´|S|.

▶ Definition 26. For any S1 Ď S denote by BpS1q :“ tV 1 Ď V pGqzS | @s P S1. V 1 X Npsq ‰

Hu the set of all subsets of V pGqzS intersecting all neighborhoods of S1.

As we observed above, for every V 1 R BpS1q we have β pV 1, S1q “ 0. We conclude that

▶ Observation 27. For every S1 we have

hpG, S1q “
ÿ

V 1PBpS1q

p´1q|V pGq|´|V 1
| β

`

V 1, S1
˘k

.

▶ Lemma 28. If the neighborhoods Npsq are disjoint for all s P S1, then we can compute
hpG, S1q in O˚p|BpS1q|q time.

Proof. It suffices to compute β pV 1, S1q for every V 1 P BpS1q and then use Observation 27.
We do so by introducing a variant of the Inverse Möbius Transform that implicitly sets the
value of β pV 1, S1q to zero for every V 1 R BpS1q.

We first note that

BpS1q – P

˜

V pGqz

˜

S Y
ď

sPS1

Npsq

¸¸

ˆ
ą

sPS1

pP pNpsqqztHuq .

Thus, we can efficiently construct a simple bijection between r|BpS1q|s and BpS1q as a
Cartesian product. We can also efficiently check if a set V 1 belongs to BpS1q. Let index :
BpS1q Ñ r|BpS1q|s be a map from BpS1q to indices of r|BpS1q|s. If V 1 R BpS1q we define
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indexpV 1q “ ´1. By the observation above, we can define index in way for which index

and index´1 are efficiently computable. We also arbitrarily order the vertices of V pGqzS as
v1, v2, . . . , v|V pGqzS|.

We describe the algorithm in pseudo-code.

Algorithm 1 Algorithm for the proof of Lemma 28.

Initialize an array f of size |BpS1q|;
for ℓ in r|BpS1q|s do

if index´1pℓq is an independent set in GrV pGqzSs then
fpℓq Ð 1 ;

else
fpℓq Ð 0 ;

for i in r|V pGqzS|s do
for ℓ in r|BpS1q|s do

V 1 Ð index´1pℓq ;
if vi P V 1 and indexpV 1ztviuq ‰ ´1 then

fpℓq Ð fpℓq ` fpindexpV 1ztviuqq;

We view f throughout the algorithm as function f : BpS1q Ñ N. Denote the function
represented by f at the end of the first for loop by f0. By definition, f0pV 1q “ βµ pV 1, S1q for
every V 1 P BpS1q. Denote by fi the function represented by f at the end of the i-th iteration
of the second (outer) for loop.

We observe that fi is defined using fi´1 as

fipV
1q “

#

fi´1pV 1q ` fi´1pV 1ztviuq if vi P V 1

fi´1pV 1q otherwise

where fi´1pV 1ztviuq is implicitly defined to be zero if V 1ztviu R BpS1q.
By induction on i, similar to this of Section 2.1, we can show that

fipV
1q “

ÿ

V 2
ĎV 1

V 2
ztv1,...,viu“V 1

ztv1,...,viu

fpV 2q.

In particular, by the end of the algorithm f “ f̂0 “ β̂µ “ β for the entire domain BpS1q. ◀

After computing hpG, S1q for every S1 Ď S we can compute HpG, Sq in O˚p2|S|q time.
We thus finish the proof of Theorem 20 with the following counting lemma.

▶ Lemma 29. Assume that the neighborhoods Npsq are disjoint for all s P S and that each
neighborhood is of size |Npsq| ď ∆. Then,

ř

S1ĎS |BpS1q| “ O˚
`

2|V pGqzS| ¨ p2 ´ 2´∆q|S|
˘

.

Proof. Denote npsq :“ |Npsq|. Also denote by N “
Ť

sPS Npsq all neighbors of vertices of S

and by N c “ pV pGqzSq zN their complement in V pGqzS. We have

|BpS1q| “ 2|Nc
| ¨

ź

sPS1

´

2npsq ´ 1
¯

¨
ź

sPSzS1

2npsq

“ 2|Nc
| ¨

ź

sPS1

´

1 ´ 2´npsq
¯

¨
ź

sPS

2npsq

“ 2|Nc
| ¨

ź

sPS1

´

1 ´ 2´npsq
¯

¨ 2|N |

“ 2|V pGqzS| ¨
ź

sPS1

´

1 ´ 2´npsq
¯

.
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For every s P S we have npsq ď ∆ and thus
`

1 ´ 2´npsq
˘

ď
`

1 ´ 2´∆˘

. Hence,

|BpS1q| ď 2|V pGqzS| ¨
ź

sPS1

`

1 ´ 2´∆˘

“ 2|V pGqzS| ¨
`

1 ´ 2´∆˘|S1
|
.

Therefore we have
ÿ

S1ĎS

|BpS1q| ď
ÿ

S1ĎS

2|V pGqzS| ¨
`

1 ´ 2´∆˘|S1
|

“ 2|V pGqzS| ¨

|S|
ÿ

i“0

ˆ

|S|

i

˙

`

1 ´ 2´∆˘i

“ 2|V pGqzS| ¨ p2 ´ 2´∆q|S|. ◀

4.2 From bounded-degree graphs to pα, ∆q-bounded graphs
In this section we prove the main technical theorem of the paper.

▶ Theorem 4. For every ∆, α ą 0 there exists ε∆,α ą 0 such that we can compute the
chromatic number of pα, ∆q-bounded graphs in O pp2 ´ ε∆,αq

n
q time.

We prove the following seemingly weaker statement.

▶ Theorem 30. For every k, ∆, α ą 0 there exists εk,∆,α ą 0 such that we can solve k-coloring
for pα, ∆q-bounded graphs in O pp2 ´ εk,∆,αq

n
q time.

We then note that Theorem 30 in fact implies Theorem 4. Let G be a pα, ∆q-bounded
graph. We use Theorem 30 for every 1 ď k ď ∆. If we did not find a valid coloring of G,
then χpGq ě ∆ ` 1 and we may use a standard argument (fully presented in the full version
of the paper) to show that removing all vertices of degree at most ∆ does not change χpGq.
By definition of pα, ∆q-bounded graphs, removing these vertices leaves a graph with at most
p1 ´ αqn vertices and thus the standard chromatic number algorithm runs in O˚p2p1´αqnq

time.
As in Section 4.1, we deduce Theorem 30 from the following theorem.

▶ Theorem 31. Let G be a graph and S Ď V pGq an independent set in G. Assume that
the degree of each vertex in S is at most ∆. Then, we can solve k-coloring for G in
O˚

`

2|V pGq| ¨ p1 ´ εk,∆q|S|
˘

time, for some constant εk,∆ ą 0.

Let G be a graph with a subset U Ď V pGq of vertices such that for every v P U we
have degpvq ď ∆. In a similar fashion to Lemma 21 of the previous subsection (and even
slightly simpler), we can greedily construct a subset S Ď U of size |S| ě 1

1`∆ ¨ |U | which
is an independent set. Thus, Theorem 31 immediately implies Theorem 4. Unlike the
case of Section 4.1, this time the neighborhoods Npsq for s P S are not necessarily disjoint.
Thus, statements comparable to Lemma 29 are not true. Our solution for this problem
is surprisingly general. In the full version of the paper we prove Theorem 10. Plugging
F “ tNpsqusPS , we get a small set U 1 Ď V pGqzS of graph vertices, and a large subset S1 Ď S

of the independent set, such that the neighborhoods Npsq of s P S1 become pairwise disjoint if
we remove the vertices of U 1 from G. As we want to preserve the correctness of the algorithm,
we do not actually remove U 1 from G, but enumerate over the colors they receive in a proper
k-coloring, if one exists. The main technical gap is adjusting the algorithm and proofs of
Section 4.1 to the case in which some of the graph vertices have fixed colors.
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▶ Theorem 32. Let G be a graph, V0 Ď V pGq a subset of its vertices and c : V0 Ñ rks a
proper k-coloring of GrV0s. Denote by V :“ V pGqzV0. Let S Ď V be an independent set in
G such that the distance in GrV s between each two vertices of S is at least three and the
degree in GrV s of each vertex in S is at most ∆. For any k, we can decide whether c can be
extended to a k-coloring of the entire graph G in O˚

`

2|V |´|S| ¨ p2 ´ 2´∆q|S|
˘

time.

Throughout the rest of the section, it is important to carefully distinguish V pGq from V .
Note that V does not include the vertices of V0, as their colors are already fixed. For j P rks,
denote by V j

0 :“ c´1pjq the subset of V0 colored by j color. Note that V0 “
Ťk

j“1 V j
0 . We

begin adapting the algorithm by redefining the βp¨, ¨q function.

▶ Definition 33. For subsets V 1 Ď V zS, S1 Ď S, and a color j P rks, we denote by βjpV 1, S1q

the number of sets I Ď V 1 such that I Y V j
0 is an independent set in G and that I Y V j

0

intersects Npsq for every s P S1, that is, for every s P S1 we have
´

I Y V j
0

¯

X Npsq ‰ H.

We also revise the definition of

hpG, S1q :“
ÿ

V 1ĎV zS

p´1q|V |´|V 1
|

k´1
ź

j“0
βj

`

V 1, S1
˘

.

The proof of Lemma 23 can be easily revised to show the following.

▶ Lemma 34. hpG, S1q is the number of covers of V zS by k-tuples of sets I0, . . . , Ik´1 such
that for every j P rks, Ij Y V j

0 is an independent set in G and that for every s P S1 and every
j P rks the set Ij Y V j

0 intersects the neighborhood Npsq.

Without revising the definition of HpG, Sq, the proof of Lemma 24 now shows that

▶ Lemma 35. HpG, Sq is the number of covers of V zS by k-tuples of sets I0, . . . , Ik´1 such
that for every j P rks, Ij Y V j

0 is an independent set in G and that for every s P S the
neighborhood Npsq is not intersected by at least one of the k independent sets

´

Ij Y V j
0

¯

for
j P rks.

Therefore, we have

▶ Lemma 36. Let G be a graph, V0 Ď V pGq a subset of its vertices and c : V0 Ñ rks a
proper k-coloring of GrV0s. Denote by V :“ V pGqzV0. Let S Ď V be an independent set in
G. Then, HpG, Sq ą 0 if and only if c can be extended to a k-coloring of G.

The non-trivial part of the revision and the heart of this subsection, is adjusting the
algorithm for computing the values of hpG, S1q without increasing the running time.

For j P rks, denote by

Sj :“ ts P S | Npsq X V j
0 ‰ Hu

the set of vertices in S whose neighborhood intersects V j
0 . The key observation of this

subsection follows.

▶ Lemma 37. For any j P rks, S1 Ď S, V 1 Ď V , we have

βj

`

V 1, S1
˘

“ βj

`

V 1, S1 Y Sj

˘

Proof. For any set I Ď V 1 the set I Y V j
0 intersects every set in tNpsqusPSj

. In particular,
an independent set I Ď V 1 intersects all of tNpsqusPS1 if and only if it intersects all of
tNpsqusPpS1YSj q. ◀
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Lemma 37 implies that it is enough to compute βj pV 1, S1q only for sets S1 Ď SzSj , as its
other values can be deduced from these as βj pV 1, S1q “ βj pV 1, S1zSjq.

For any S1 Ď S we again denote by BpS1q :“ tV 1 Ď V zS | @s P S1. V 1 X Npsq ‰ Hu the
set of all subsets of V zS intersecting all neighborhoods of S1. Note the slight difference from
Section 4.1 of considering subsets of V zS and not of V pGqzS.

As for every s P SzSj , Npsq X V j
0 “ H, we still have that for every V 1 R BpS1q the value

of βj pV 1, S1q is zero. In particular, we can still use the implicit Inverse Möbius Transform of
Lemma 28 and get

▶ Lemma 38. Assume S1 Ď SzSj. We can compute βj pV 1, S1q for every V 1 P BpS1q in
O˚p|BpS1q|q time.

By Lemma 29 we get
ÿ

S1ĎSzSj

|BpS1q| “ O˚
´

2|V zS| ¨ p2 ´ 2´∆q|SzSj |
¯

.

We can thus compute βj pV 1, S1q for every S1 Ď SzSj and every V 1 P BpS1q in
O˚

`

2|V zS| ¨ p2 ´ 2´∆q|SzSj |
˘

time. This is the time to emphasise a crucial point. Note
that if we would consider every S1 Ď S instead of S1 Ď SzSj , then the running time would be
O˚

`

2|V zS| ¨ p2 ´ 2´∆q|SzSj | ¨ 2|Sj |
˘

, as the neighborhoods corresponding to Sj are intersected
by V j

0 . This is why we compute every βj separately, and do so for all relevant sets S1 before
computing even a single value hpG, S1q. As it always holds that |SzSj | ď |S|, we conclude
that

▶ Corollary 39. We can compute βj pV 1, S1q for all j P rks, S1 Ď SzSj and V 1 P BpS1q in
O˚

`

2|V zS| ¨ p2 ´ 2´∆q|S|
˘

time.

Note that k “ O˚p1q.

We are now ready to compute the values of hpG, S1q. We start by making the fol-
lowing observation.

▶ Observation 40. If
Şk´1

j“0 Sj ‰ H then c cannot be extended to a coloring of G.

This holds as if some s P S has neighbors colored in each of the k colors then it cannot be
properly colored. We are thus dealing with the case where

Şk´1
j“0 Sj “ H.

▶ Lemma 41. For any S1 Ď S and V 1 Ď V zS such that V 1 R BpS1q we have

k´1
ź

j“0
βj

`

V 1, S1
˘

“ 0.

Proof. As V 1 R BpS1q there exists some s P S such that V 1 X Npsq “ H. As
Şk´1

j“0 Sj “ H,
there exists a j P rks for which s R Sj . Thus, V j

0 X Npsq “ H as well. We conclude that
βj pV 1, S1q “ 0. ◀

From Lemma 37 and Lemma 41 we conclude that

hpG, S1q :“
ÿ

V 1PBpS1q

p´1q|V |´|V 1
|

k´1
ź

j“0
βj

`

V 1, S1zSj

˘

.
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Thus, we can compute hpG, S1q in O˚p|BpS1q|q time using the values computed in Corollary 39.
Using Lemma 29 once again, we get that

ÿ

S1ĎS

|BpS1q| “ O˚
´

2|V zS| ¨ p2 ´ 2´∆q|S|
¯

which completes the proof of Theorem 32.

We can now prove Theorem 31.

Proof. We apply the removal lemma of Theorem 10 to F “ tNpsqusPS with C to be chosen
later. We thus get a sub-collection S1 Ď S and a subset of vertices V0 Ď V pGqzS such that
|S1| ą ρp∆, Cq ¨ |S| ` C ¨ |V0| and that for every s1, s2 P S1 it holds that Nps1q X Nps2q Ď V0.
Denote by V “ V pGqz pS1 Y V0q. We enumerate over all k-colorings c : V0 Ñ rks. For each
coloring c, we check if it is a proper k-coloring of GrV0s and if so we apply Theorem 32 on G

with V0, c, S1. If any of the applications of Theorem 32 returned that there exists a valid
extension of c to a coloring of G, we return that G is k-colorable, and otherwise that it is not.

The running time of the entire algorithm, up to polynomial factors, is

k|V0| ¨

´

2|V zS1
| ¨ p2 ´ 2´∆q|S1

|
¯

“ 2|V | ¨ k|V0| ¨ p1 ´ 2´p∆`1qq|S1
|

ď 2|V | ¨ k|V0| ¨ p1 ´ 2´p∆`1qqρp∆,Cq¨|S|`C¨|V0|.

By picking C “
log k

´ logp1´2´p∆`1qq
ą 0 we have

k|V0| ¨ p1 ´ 2´p∆`1qqC¨|V0| “ 1

and thus the running time is bound by

2|V | ¨ p1 ´ 2´p∆`1qqρp∆,Cq¨|S|. ◀

4.3 Generalization to List Coloring
In this Section we deduce Theorem 5.

Proof. Let G “ pV, Eq be a pα, ∆q-bounded graph with color lists Cv of size at most k

for each v P V . Denote by U “
Ť

vPV Cv the color universe. Note that |U | might be as
large as kn, where n “ |V |. We construct a new graph G1 on the set of vertices V Y U by
adding |U | isolated vertices to the graph G and then connecting each node v P V to every
node u P U such that u R Cv. If we color each u P U by the color u, then there is an extension
of this coloring to a (regular) |U |-coloring for all of G1 if and only if G is list-colorable.

We now follow the proof of Theorem 31. We can again find a subset S Ă V of size
|S| ě α

1`∆ n which is an independent set in G that contains only vertices of degree at
most ∆. We then apply the removal lemma of Theorem 10 to F “ tNpsqusPS where the
neighbourhoods are within G and C is to be chosen later. Define S1 and V0 as in the proof
of Theorem 31. Since every color-list Cv is of size at most k, there are only k|V0| possible
colorings c : V0 Ñ U . We enumerate over these colorings and for each one which is a proper
coloring of GrV0s we apply Theorem 32 on G1 where U Y V0 are already colored (by their
corresponding colors and by c, respectively). The crucial point here is that in Theorem 32
the running time depends on |V |, the number of uncolored vertices, and is independent of
the number of colored vertices. In particular, the total runtime is thus

k|V0| ¨

´

2|V zpS1
YV0q|

¨ p2 ´ 2´∆q|S1
|
¯

ď 2|V | ¨ k|V0| ¨ p1 ´ 2´p∆`1qq|S1
|

ď 2|V | ¨ k|V0| ¨ p1 ´ 2´p∆`1qqρp∆,Cq¨|S|`C¨|V0|.
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We can thus again pick C “
log k

´ logp1´2´p∆`1qq
ą 0 to have

k|V0| ¨ p1 ´ 2´p∆`1qqC¨|V0| “ 1

which results in a running time bounded by

2|V | ¨ p1 ´ 2´p∆`1qqρp∆,Cq¨|S|. ◀

4.4 On finding a coloring
In both previous subsections, we used the bounds on the degrees only in order to construct a
good independent set S. After doing so, we may apply the self-reduction of Section 2.2 to the
graph GrV pGqzSs, in which we no longer care about the number of edges nor the degrees.
This would result in finding a k-coloring of GrV pGqzSs. Such coloring can be extended to a
k-coloring of G by the constructive proof of Lemma 25. The exact claim follows.

▶ Lemma 42. In the conditions of Theorem 20 or Theorem 31 we can also find a k-coloring
of G.

Proof. Consider the reduction between the decision and search versions of k-coloring of
Lemma 12. Since adding edges to vertices whose both endpoints are in V pGqzS does
not violate the conditions of the theorems, we may apply the reduction of Lemma 12 to
GrV pGqzSs. By the end of the reduction, we have a k-coloring of GrV pGqzSs that is a
restriction of some k-coloring of G. We can extend this k-coloring to a k-coloring of G using
the algorithm of Lemma 25. ◀

As a corollary, in the conditions of Theorem 4 we can also find a k-coloring of G.

5 Summary of the full version of this paper

Due to length limitation, several main components of the paper appear only in the full
version of the paper. The full version is available on-line.

5.1 Removal Lemma For Small Sets
We show that any collection of small sets must contain a large sub-collection of almost
pairwise-disjoint sets. The precise statement follows.

▶ Theorem 10. Let F be a collection of subsets of a universe U such that every set F P F is
of size |F | ď ∆. Let C ą 0 be any constant. Then, there exist subsets F 1 Ď F and U 1 Ď U ,
such that

|F 1| ą ρp∆, Cq ¨ |F | ` C ¨ |U 1|, where ρp∆, Cq ą 0 depends only on ∆, C.
The sets in F 1 are disjoint when restricted to UzU 1, i.e., for every F1, F2 P F 1 we have
F1 X F2 Ď U 1.
We should think of the statement of Theorem 10 in the following manner. We interpret an

almost pairwise-disjoint sub-collection as a sub-collection that would become pairwise-disjoint
after the removal of a small number of elements of the universe. If ∆ is a constant, then the
precise meaning of small and large is that on the one hand, the size of the sub-collection is
at least a constant fraction of the size of the entire collection, and on the other hand, its
size is arbitrarily larger than the number of removed universe elements. The constant C

represents the exact meaning of arbitrarily larger.
We also discuss the optimality of Theorem 10. In particular, we show that in the settings

of Theorem 10 we must have ρp∆, Cq ď pC ` 1q´∆.

ICALP 2021



113:18 Breaking the 2n Barrier for 5-Coloring and 6-Coloring

5.2 Reducing k-coloring to pk ´ 1q-list-coloring
We prove the following reduction.

▶ Theorem 6. Given an algorithm solving pk ´ 1q-list-coloring in time O pp2 ´ εq
n

q for some
constant ε ą 0, we can construct an algorithm solving k-coloring in time O

`

p2 ´ ε1q
n˘

for
some (other) constant ε1 ą 0. Furthermore, the reduction is deterministic.

Beigel and Eppstein [1] show that 4-list-coloring (as a special case of a p4, 2q-CSP) can be
solved in time Op1.81nq. Therefore we conclude the proof of Theorem 8 regarding 5-coloring.

We include a short intuitive description of the reduction. By Theorem 4, it suffices to
solve k-coloring for graphs in which most vertices have high degrees. We show that in this
case, the graph has a small dominating set, this is a subset R of vertices such that every
vertex not in R is adjacent to at least one vertex of R. Given a k-coloring of the dominating
set, the problem of extending the coloring to a k-coloring of the entire graph becomes a
problem of pk ´ 1q-list-coloring the rest of the graph. This is because each vertex not in the
dominating set has a neighbor in it, and thus has at least one of the k colors which it cannot
use. Assuming the dominating set is small enough, we can enumerate over the k-colorings
of vertices in it, and then solve the remaining pk ´ 1q-list-coloring problem. The complete
details appear in the full version.

5.3 Reducing k-coloring to pk ´ 2q-list-coloring
We then prove the following much more complicated reduction.

▶ Theorem 7. Given an algorithm solving pk ´ 2q-list-coloring in time O pp2 ´ εq
n

q for some
constant ε ą 0, we can construct an algorithm solving k-coloring with high probability in time
O

`

p2 ´ ε1q
n˘

for some (other) constant ε1 ą 0.

Once again, we use the 4-list-coloring algorithm of Beigel and Eppstein [1] to conclude
the proof of Theorem 9 regarding 6-coloring.

The problem with generalizing the idea used in the proof of Theorem 6 is that even if R

contains several neighbors of every graph vertex, it could be that in the correct k-coloring
all of these neighbors are colored by the same color. In that case, the size of the list of
possible colors would not get smaller than pk ´ 1q. Thus, more involved algorithmic ideas
are necessary for proving Theorem 7.

6 Conclusions and Open Problems

The main algorithmic contribution of the paper is Theorem 4. We use it in order to answer a
few fundamental questions regarding the running time of k-coloring algorithms. In particular,
we present the first O pp2 ´ εq

n
q algorithms solving 5-coloring and 6-coloring, for some ε ą 0.

While the ε we can get using our tools is very small, this serves as the first proof that
5-coloring can be solved faster than we can currently compute the chromatic number in
general. The upper bound on ρ in the full version shows that the magnitude of ε is a necessary
consequence of using the removal lemma.

The main open problem that we leave unsettled is

▶ Open Problem 43. Can we solve k-coloring in O˚ pp2 ´ εkq
n

q time for some εk ą 0, for
every k?
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Theorem 4 makes some progress towards answering it, by giving some additional conditions
on the input graph under which the answer is affirmative. In particular, we show that it
holds for every graph that does not contain almost only vertices of super-constant degrees.
In [12] very different techniques (using modifications of the FFT algorithm) were used to
get a statement similar to Theorem 4 for graphs with bounded average degree. It seems
like their methods do not extend to the case of pα, ∆q-bounded graphs, nevertheless, it is
intriguing to find out whether a combination of their techniques with these presented in this
paper can lead to further improvements.

While it is believed that O˚p2nq is the right bound for computing the chromatic number,
we have no strong evidence to support this. There are reductions from popular problems
and conjectures (like SETH) to other partitioning problems [6] or other parameterizations of
the coloring problem [16]. It is interesting whether it can be showed that an O˚ pp2 ´ εq

n
q

algorithm for computing the chromatic number would refute any other popular conjecture.
This question was raised several times, including in the book of Fomin and Kratsch [11].

Another technical contribution of the paper is Theorem 10. We believe that the presented
removal lemma could serve as a tool in the design of other exponential time algorithms. It
would be interesting to find more problems for which it can be used.
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Deterministic Maximum Flows in Simple Graphs
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Abstract
In this paper we are interested in deterministically computing maximum flows in undirected simple
graphs where edges have unit capacities. When the input graph has n vertices and m edges, and
the maximum flow is known to be upper bounded by τ as prior knowledge, our algorithm has
running time 1Õ(m + n5/3τ1/2); in the extreme case where τ = Θ(n), our algorithm has running
time Õ(n2.17). This always improves upon the previous best deterministic upper bound Õ(n9/4τ1/8)
by [Duan, 2013]. Furthermore, when τ ≥ n0.67 our algorithm is faster than a classical upper bound
of O(m + nτ3/2) by [Karger and Levin, 1998].
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1 Introduction

Let G = (V, E) be an undirected simple graph on n vertices and m edges, where each edge
has unit capacity. Fix two special vertices s, t ∈ V and we are interested in deterministic
algorithms that compute an exact maximum flow from s to t in graph G. There has been
a long line of literature on the study of maximum flows since the 60’s. As one of the
pioneering works, Ford and Fulkerson [5] introduced the idea of augmenting paths and
proposed an algorithm that runs in time O(mτ); here τ is an upper bound on the maximum
flow value. Subsequent improvements came along in [3, 7], which are known as the blocking
flow algorithm and the push-relabel algorithm. For several decades, the best running time was
Õ(m min{m1/2, n2/3} log U) (U being the largest integer capacity) by [6]. Recently, a new
line of developments [17, 14, 18, 16, 15, 13, 19] based on the interior point method surpassed
the blocking flow barrier; for large capacities, the best running time is Õ((m + n1/2) log U)
[19], while for small capacities, the best running time so far is O(m4/3+o(1)U1/3) [15, 13].

Another branch of literature focuses on a special case when the maximum flow is known
to be small as a prior knowledge. Let τ be a known upper bound on the maximum flow
value. Karger proposed the first such kind of upper bound in [10], which is a randomized
algorithm running in time Õ(m2/3n1/3τ) for simple graphs. This was improved later in [11]
to randomized upper bounds of Õ(m + nτ5/4) and Õ(m + n11/9τ) and deterministic upper
bound O(m + nτ3/2). This line of works culminated in [12] as a randomized upper bound
Õ(m + nτ). In a very recent work [1], the authors obtained a deterministic upper bound of
Õ(mτ2/3) time which is even faster when τ is small.

A gap between randomized and deterministic algorithms has remained so far. For many
years, the best deterministic algorithm has running time Õ(m + nτ3/2) [11], so in simple
graphs this upper bound could be as large as Ω(n2.5). The basic idea of this algorithm is

1 Õ hides poly-logarithmic factors.
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to sparsify the residual graph so that it always has O(nτ1/2) directed edges, and it uses
connectivity structures to handle undirected edges, and in this way each flow augmentation
takes time only proportional to the number of directed edges, yielding a total running time
of O(m + nτ3/2). It was explicitly asked by the authors in [11] whether one could achieve a
full sparsification of O(nτ1/2) edges so that running the blocking flow algorithm of [6] on the
sparsified graph would take time Õ(m + n5/3τ1/2).

To break through the 2.5 exponent even in simple graphs when τ = Θ(n), the author
of [4] managed to combine the original approach of [11] with the blocking flow technique and
achieved a better running time Õ(n9/4τ1/8) in simple graphs; this upper bound is always at
most Õ(n2.375) so it beats the 2.5 exponent in the worst case when τ = Θ(n).

1.1 Our result

In this chapter, we answer the question from [11] in the affirmative for simple graphs.

▶ Theorem 1. Assume τ ≥ n2/3 is an upper bound on the value of the maximum s-t flow,
then there is a deterministic algorithm that computes s-t maximum flows in undirected simple
graphs in Õ(n5/3τ1/2) running time.

Our algorithm is always faster than [4] for any choice of 1 ≤ τ < n in simple graphs; in
the extreme case where τ = Ω(n), we have a running time of O(n2.17). For a moderately
large τ ≥ n0.67, our result is also better than the classical algorithm from [11] which has
O(m + nτ3/2) running time.

1.2 Technical overview

Generalizing the blocking flows. Our algorithm will be based on [4], so let us first try to
summarize the benchmark. Throughout iterations, it maintains a set of disjoint connected
components V in the residual graph, and define a binary edge weight function µ : E → {0, 1},
where inter-component edges have weight 1, and intra-component edges have weight 0. In
each iteration, the algorithm searches for a blocking flow whose augmentation would increase
the s-t distance in the residual graph under edge weight µ. To search for a blocking flow in the
current residual graph, the algorithm performs a depth-first search only on inter-component
edges, and use a connectivity data structure to route flows within components. Therefore, in
general their algorithm needs to keep the total number of inter-component edges small.

The first obstacle of this approach is that the total number of directed edges would grow
during augmentations. As all directed edges are inter-component ones, this immediately
affects the time of finding blocking flows. To work around this issue, the algorithm of [4]
was to perform a decycle operation between every pair of consecutive levels in terms of
distances from s. Although this could keep the number of directed edges small, it merely
translates directed edges to inter-component undirected edges, so the total number of inter-
component edges remains large. To handle this large number of inter-component edges, their
algorithm builds a decremental clustering structure between each pair of consecutive levels
that comprises a collection of disjoint clusters and a sparse graph. More specifically, their
data structure accepts an integer parameter h and decrementally maintains a set of disjoint
star subgraphs, each of size > h, such that the number of edges incident tn unclustered
vertices is bounded by O(nh). The key motivation of using star subgraphs is that it ensures
each flow augmentation uses at most O(n/h) inter-component edges, so that the number of
inter-component edges grows slowly.
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A better clustering approach. One downside of [4]’s decremental clustering algorithm is
that each edge deletion could add O(n) more edges incident on unclustered vertices. This
substantially limits the usage of the decremental data structure since it needs frequently
rebuilding as the number of edges incident on unclustered vertices increases fast. Our new
data structure does not need any rebuilding, and furthermore, this advantage allows us
to apply it to maintain the set of disjoint components V directly, instead of maintaining
inter-component edges between consecutive levels. In this way, we can directly upper bound
the length of each flow, and so we do not need any decycling step, which simplifies the
blocking flow approach of [4] as well.

Comparison with layered core decompositions. Our new decremental clustering data
structure is actually inspired by the layered core decompositions devised in a recent paper [2],
but ours is much simpler and weaker in some sense. The total update time of our algorithm
is at least quadratic, and it also depends on the pattern of updates, while the layered
core decomposition has almost linear total update time in the worst case. Furthermore,
in our clustering scheme, each cluster is simply a star subgraph, where in the layered core
decomposition each cluster is an expander.

One reason we do not directly apply the layered core decomposition in the maximum flow
computations is that it is a heavy tool and may probably make an overkill. When computing
maximum flows, edge updates to the clustering scheme always have some benign properties,
and so even though star graphs are far less robust than expanders, the clustering scheme
does not have to work against strong adversaries. Furthermore, a more technical reason
is that paths within the same core may have sub-polynomial lengths, while each star only
has diameter 2, which contributes to the length of augmenting paths. Therefore, using the
layered core decompositions might induce an extra sub-polynomial factor in the running time
of max-flows.

2 Preliminaries

Let G = (V, E) be an undirected simple graph with unit-capacities, and let s, t ∈ V be a
source and a sink. For the rest, G will be the input graph where we compute max-flows.

For any graph H = (X, F ) and vertex subset S ⊆ H, let H[S] be the induced subgraph
of H on S. An edge orientation on the edge set is represented as O : V × V → {−1, 0, 1},
such that for each edge (u, v) ∈ E, O(u, v) is equal to 1 if the edge (u, v) is oriented from u

to v, and −1 if it is from v to u, and 0 if it is not oriented. For each u ∈ V , define degH(u)
to be the number of neighbors of u in H. If an orientation O : F → {−1, 0,−1} of edges is
imposed on F , then let deg+

H,O(u), deg−
H,O(u) be the out/in-degree of u in G. Usually, when

H and O are known from context, we would ignore the subscripts.
For any s-t flow f in G, let |f | denote the value of the flow, and Ef the set of edges

carrying the flow. The residual graph of G with respect to f is denoted by Gf , which is
defined as following.

▶ Definition 2 (residual graph). Given a flow f in G, a residual graph Gf is defined as
following: for each edge (u, v) ∈ E such that f(u, v) = 1, there is a directed edge from v to u

with capacity 2.

Here we emphasize that the orientation of edges have nothing to do with the direction of
edges in the residual graph.

Next, we state some lemmas regarding flows from previous works.
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▶ Lemma 3 ([11]). An acyclic flow f in a graph with integer capacities and no parallel edges
uses at most 2n

√
|f | edges.

▶ Lemma 4 ([11]). In a simple undirected graph, it is possible to take a flow f and find an
acyclic flow f ′ of the same value in time Õ(|Ef |).

▶ Lemma 5 ([11]). Given an acyclic flow f , finding k augmenting paths takes Õ(m + kn(k +
|f |)1/2) deterministic time.

We will also be using a dynamic maximum spanning forest algorithm with fast amortized
update time.

▶ Lemma 6 ([8, 9]). Given an undirected weighted graph on n vertices undergoing edge in-
sertions and deletions, there is a deterministic dynamic algorithm that maintains a maximum
spanning forest with O(log4 n) amortized update time.

3 Decremental layered clustering

In this section, let H = (V, F ) be an arbitrary undirected simple graph on n vertices that
undergoes a sequence of edge deletions.

▶ Definition 7. For any undirected simple graph H = (X, F ), a subset A ⊆ X is called
d-pruned with respect to graph H, if all edges incident on A could be oriented under an
orientation O of F such that
(1) All edges between A and X \A are directed outward from A.
(2) Out-degree of every vertex in A is less than d.

▶ Lemma 8. For any simple graph H = (X, F ), there exists a d-pruned set A, such that for
any u ∈ X \A, degH[X\A](u) ≥ d; plus such A can be computed in linear time.

Proof. The set A is constructed in the greedy manner: starting with A ← ∅, repeatedly
check if there is a vertex u ∈ X \A such that degH[X\A] < d; if so, orient all edges incident
on u in H[X \ A] away from u, and move u to A. So, in this way, the out-degree is small
deg+

H(u) < d. Clearly, the algorithm can be implemented in linear time. By the stopping
condition, all vertices in the induced subgraph H[X \A] have degree at least d. ◀

Now, let us define a layering scheme of H.

▶ Definition 9 (layering). Let h > 0 be an integer parameter. A partition
(A0, A1, · · · , A⌈log(n/h)⌉) of V , together with an orientation O of all edges in E, is called a
layering scheme of H, if the following requirements are satisfied.
(1) (u, v) ∈ E such that u ∈ Ai, v ∈ Aj , i < j, this edge is oriented from u to v, namely
O(u, v) = 1.

(2) For each index b ≥ 0, u ∈ Ab, we have deg+
H,O(u) < 2b+1h.

To initialize a layering of H, consider the following procedure: initialize X = V , and for
i = 0, 1, 2, · · · , ⌈log(n/h)⌉ − 1, apply Lemma 8 on H[X] with parameter d = 2ih to compute
a set Ai, and then update X ← X \ Ai. After all iterations, define A⌈log(n/h)⌉ = X and
orient edges in E ∩ (A⌈log(n/h)⌉ ×A⌈log(n/h)⌉) arbitrarily. By construction, for each u ∈ Ab,
all its out-neighbors are in

⋃
i≥b Ai, and deg+

H,O(u) ≤ 2bh < 2b+1h.
On top of the layering scheme, we need to define a clustering scheme of vertices.
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▶ Definition 10 (clustering). Given a layering (A0, A1, · · · , A⌈log(n/h)⌉) of H, a set of tuples
{(Cb, Yb, Zb)}b≥1 is called a cluster structure on layer (A0, A1, · · · ), where each layer Ab, b ≥ 1
can be divided into two parts Ab = Yb ∪ Zb, if the following properties hold.
(1) Yb is partitioned into a collection of clusters Cb = {C1, C2, · · · } of subsets, where each

Ci has size ≥ 2b−1h + 1 and is spanned by a star subgraph of H. For each Ci, its center
is defined to be the center of a star subgraph that spans Ci.

(2) Each vertex z ∈ Zb is adjacent to some vertices in Yb ∪
⋃

i>b Ai.
Besides, define edge weight function ω associated with this cluster structure as follows.
(a) All edges of star graphs in Cb have weight 2b.
(b) All non-star edges incident on Yb in H[Ab], and edges between Ab and

⋃
i>b Ai have

weight 2b− 1.
(c) All edges in H[Zb] have weight 2b− 2.

▶ Lemma 11. Given any layering (A0, A1, · · · , A⌈log(n/h)⌉) of H, a cluster structure
{(Cb, Yb, Zb)}b≥1 can be computed in Õ(n2) time.

Proof. For each b ≥ 1, construct Yb in the greedy manner: starting with an empty set Yb = ∅,
whenever there exists a vertex c ∈ Ab \ Yb with degH[Ab\Yb](u) ≥ 2bh, take an arbitrary set
of 2bh neighbors u1, u2, · · · , u2bh ∈ Ab \ Yb and add this cluster {c, u1, u2, · · · , u2bh} to Yb,
with c being its center. In the end when the above procedure stops, define Zb = Ab \ Yb.
Clearly this procedure takes O(|F |) = O(n2) time.

To verify property (2), by construction of the layering scheme, for each z ∈ Zb,
degH[∪i≥bAi](z) ≥ 2bh. So if z was not added to Yb as a star center, then z must be
adjacent to some vertices from Yb ∪

⋃
i>b Ai. ◀

Next, we try to maintain the layering (A0, A1, · · · ) together with a clustering structure
when edges are being deleted from G. During the execution of our decremental algorithm,
we need to ensure a basic requirement.

▶ Invariant 12. During the decremental algorithm, vertices could only move from layers
Ab+1 to Ab, ∀b ≥ 0; in other words, vertices only move from upper layers to lower layers.

The rest of the section would be devoted to the following statement.

▶ Lemma 13. Suppose H undergoes a sequence of edge deletions. Then a clustering structure
{(Cb, Yb, Zb)}b≥1 together with an induced edge weight ω in Definition 10 can be explicitly
maintained using total update time Õ(

∑⌈log(n/h)⌉
b=1 2bDbh+n2), plus that the dynamic algorithm

meets Invariant 12; here Db is an upper bound on the number of edges which are incident on
layer Ab right when they get deleted.

3.1 Maintaining clusters under edge deletions

In this subsection we describe the algorithm behind Lemma 13. Let us first focus on a fixed
layer Ab. Assume the updates to H[Ab] are either edge deletions or vertex transfers from
Ab+1 to Ab; if b = ⌈log(n/h)⌉ then Ab+1 is always empty. Initialize an arbitrary clustering
(Cb, Yb, Zb) as in Lemma 11. We will be maintaining all adjacency lists in the induced
subgraph H [

⋃
i≥b Ai], and more importantly, the following auxiliary data structure based on

edge orientation O.
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Auxiliary data structures based on edge orientation O
(i) For each u ∈ Ab, a list of all out-neighbors in H. By Invariant 12, these out-

neighbors are all in
⋃

i≥b Ai.
(ii) For each u ∈ Ab, a list of neighbors Z−(u) = {z | (u, z) ∈ E,O(u, z) = −1, z ∈ Zb}.
(iii) For each u ∈ Zb, a list of neighbors Z+(u) = {z | (u, z) ∈ E,O(u, z) = 1, z ∈ Zb}.
(iv) A priority queue on all vertices in Zb, which are ordered by degrees degH[Zb](u) =

|Z−(u)|+ |Z+(u)|, ∀u ∈ Zb in the induced subgraph H[Zb].

In other words, for each vertex in Zb, it knows both its out-neighbors and in-neighbors in
H[Zb], while for each vertex in Yb, it only knows its in-neighbors in Zb. Plus, all vertices in
Zb are ordered by their degrees in the induced subgraph H[Zb].

Vertex insertions. Assume a new vertex u has moved to Ab from upper layer Ab+1. First,
for each edge (u, v) where v ∈

⋃
i>b Ai, we need to adjust the orientation of O(u, v) = 1,

reassign edge weights for all edges ω(u, v) = 2b− 1.
By definition of layering, before u came downward from Ab+1, all its edges incident on

Ab were directed inward. So when it joins Ab, Z+(u) should be empty. After insertion of
u, we add u to Zb, and initialize Z−(u) by scanning u’s adjacency list in H, and initialize
Z+(u) = ∅. Then, for each v ∈ Ab adjacent to u, add u to the list Z+(v). Next, update
the keys of u and its neighbors in Zb in the priority queue. Finally, if v ∈ Yb, stay with
ω(u, v) = 2b− 1, and otherwise reassign ω(u, v) = 2b− 2.

After that, repeat the following greedy procedure (1)(2)(3) to form star subgraphs out of
H[Zb]. For a more concise description of this procedure, check pseudo-code GreedyCluster.
(1) If there exists c ∈ Zb such that degH[Zb](c) = |Z−(c)|+ |Z+(c)| ≥ 2bh, pick an arbitrary

such vertex c; if there is none, then halt.
(2) Find all of c’s neighbors u1, u2, · · · , uk ∈ Zb by scanning Z−(c) ∪ Z+(c). Then move

all vertices c, u1, u2, · · · , uk from Zb to Yb, and add the star subgraph around all ui’s
centered at c as a cluster to Cb.

(3) Lastly, we need to maintain all lists Z+(·), Z−(·) and edge weights. To maintain lists
and edge weights, for every vertex x ∈ {c, u1, u2, · · · , uk}, do the following steps.
(a) For each z ∈ Z−(x), remove x from Z+(z); for each z ∈ Z+(x), remove x from

Z−(z). Then, for each such edge (x, z), reassign ω(x, z) = 2b − 1, and for all star
edges (c, ui), 1 ≤ i ≤ k, assign ω(c, ui) = 2b.

(b) Scan the out-neighborhood of x, then for each (x, y) such that O(x, y) = 1 and
y ∈ Yb, remove x from Z−(y).

Non-star edge deletions. Now assume an edge deletion (u, v) occurs in subgraph H [
⋃

i≥b Ai],
and u ∈ Ab. Let us first study the simpler case where (u, v) is not a star edge in any cluster
of Cb.

A preliminary step is updating these four lists Z+(u), Z−(u), Z+(v), Z−(v) due to (u, v)’s
deletion. After this, some vertex z ∈ Zb might have a small degree in subgraph H[

⋃
i≥b Ai],

and in this case we would have to move it to Ab−1 to ensure each z ∈ Zb is adjacent to some
vertices in Yb ∪

⋃
i>b Ai. More specifically, while some vertices in z ∈ Zb have degree less

than 2bh in subgraph H [
⋃

i≥b Ai], move z from Zb to Ab−1, do the following steps to restore
our data structures.
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Algorithm 1 GreedyCluster.

1 while ∃c ∈ Zb such that degH[Zb](c) ≥ 2bh do
2 list all neighbors of c in H[Zb] as u1, u2, · · · , uk;
3 form a star subgraph around u1, u2, · · · , uk centering at c, and add this as a

cluster to Cb;
4 for each x ∈ {c, u1, u2, · · · , uk}, scan Z−(x), Z+(x) to maintain all other affected

lists Z−(z), Z+(z), z ∈ Zb, and update the induced edge weights ω;
5 for each x ∈ {c, u1, u2, · · · , uk}, scan its out-neighbors in H[Ab] to update all

Z−(y), ∀y ∈ Yb;

(1) Scan z’s adjacency list, and for each of its neighbor y ∈ Ab, remove z from Z+(y), Z−(y),
and update the orientation O(z, y) = 1 if necessary. Finally, remove z from the priority
queue on Zb.

(2) Besides, for each of z’s neighbor x in H[
⋃

i≥b Ai], reassign ω(z, x) = 2b− 3.

The pseudo-code of the above procedure is presented below as GreedyPrune.

Algorithm 2 GreedyPrune.

1 while ∃z ∈ Zb such that degH[
⋃

i≥b
Ai](z) < 2bh do

2 move z from Zb to Ab−1, and scan its adjacency list to update all affected lists
Z+(·), Z−(·), and update ω and O properly;

Star edge deletions. Now consider the harder case where the deleted edge is a star edge of
a cluster in Cb. In this case, let (c, u) be the deleted edge and c be the cluster center. After
the edge deletion, one or more vertices in the cluster centered at c might have to leave Yb.
The two possibilities are the following.

Excluding u, if the star subgraph now has at most 2b−1h vertices, the whole cluster
should be destroyed and removed from Yb back to Zb.
Otherwise, only u needs to join Zb.

Let vertex subset S be the set of all vertices in this cluster that might join Zb shortly, so S

is either a singleton {u} or the whole star cluster. For each vertex v ∈ S \ {c}, a preliminary
step is reweighing ω(c, v) = 2b− 1 as (c, v) is no longer a star edge.

Go over all vertices v ∈ S in an arbitrary order and do the following. Scan the list of all
out-neighbors of v to find the set Sv of its out-neighbors in Zb; remember that currently we
do not maintain Z+(v) as v /∈ Zb, so instead of directly retrieving Sv = Z+(v), we have to
scan all of v’s out-neighbors. Now, as we have already maintained Z−(v), we can now decide
whether v has at least 2bh (undirected) neighbors in Zb by checking if |Sv|+ |Z−(v)| ≥ 2bh.
We need to study both possibilities.
|Sv|+ |Z−(v)| < 2bh. In this case, set Z+(v) = Sv. Move v from Yb to Zb. To restore
orientation-based data structures, first, for each z ∈ Z−(v) add v to Z+(z), and for every
z ∈ Sv add v to Z−(z); second, scan the out-neighbors of v, and for every (v, y) such
that y ∈ Yb, add v to Z−(y).
Finally, to restore edge weights, for each of z ∈ Sv ∪Z−(v), change the edge weight ω(v, z)
from 2b− 1 to 2b− 2.
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|Sv|+ |Z−(v)| ≥ 2bh. In this case, we would directly collect a star cluster around v using
Sv ∪ Z−(v). Namely, move all vertices in Sv ∪ Z−(v) from Zb to Yb, and add the star
subgraph centered at v as a cluster to Cb. To restore the auxiliary data structures and
edge weights, go over all vertices x ∈ Sv ∪ Z−(v) and follow the same steps (3)(a) and
(3)(b) when handling vertex insertions.

After we have iterated over all vertices from S, each v ∈ S either has entered Zb or formed
a new cluster in Cb. Subgraph H[Zb] could still contain vertices whose degree is at least 2bh,
so we perform another round of GreedyCluster to exhaustively collect new clusters out of
Zb. Finally, to ensure property (2) in Definition 10, we invoke GreedyPrune on Zb to remove
vertices with small degrees.

Stacking all layers. In order to maintain the entire clustering structures {(Cb, Yb, Zb)}b≥1
across all layers (A0, A1, · · · ) against edge deletions to H , we simply apply the above algorithm
for each layer Ab, b ≥ 1. When vertices move from upper layers to lower layers, it is equivalent
to vertex insertions to lower layers, which can be handled by the algorithm.

3.2 Proof of correctness
The proof of correctness of our algorithm is divided into several lemmas.

▶ Lemma 14. Invariant 12 is preserved by the algorithm, and (A0, A1, · · · ) is always a
layering satisfying the requirements in Definition 9.

Proof. During the algorithm, vertices never move from lower levels Ab to higher levels Ab+1,
so Invariant 12 is satisfied.

Now let us turn to verify properties of Definition 9. For property (1), when vertices move
across different layers, our algorithm always adjusts O to ensure this requirement, so this
property holds. As for property (2), by the algorithm description, whenever a vertex z ∈ Zb

moves from Ab to Ab−1, it must be the case that degH[
⋃

i≥b
Ai](z) < 2bh. In the near future,

as long as z stays in Ab−1, its out-neighbors under orientation O should always be a subset
of its current neighbors in

⋃
i≥b Ai, and so the number of its out-neighbors is always bounded

by 2bh, and thus property (2) holds. ◀

▶ Lemma 15. During edge deletions, the algorithm correctly maintains the auxiliary data
structures based on the edge orientation O.

Proof. Maintaining part (i)(iv) is straightforward, so we only focus on part (ii)(iii).
Vertex insertions. Zb could only change during GreedyCluster. Consider any new cluster
c, u1, · · · , uk centered at c. To move them from Zb to Yb, for each x ∈ {c, u1, · · · , uk}, on
the one hand, we need to go over all of its neighbors in H [Zb] to fix lists Z−(z), Z+(z) for
all z ∈ Zb; on the other hand, we only need to scan x’s out-neighbors to fix lists Z−(y)
for all y ∈ Yb, since we do not require Z+(·) for vertices in Yb, which is a key point behind
the design of the auxiliary data structures.
Non-star edge deletions. In this case, some vertices might move from Zb downward to
Ab−1. As the maintenance of the auxiliary data structures is done in the straightforward
manner, so correctness should follow easily.
Star edge deletions. This case involves two rounds of vertex transfers between Yb and Zb.
The first round is when it enumerates all vertices v ∈ S and check if |Sv|+ |Z−(v)| < 2bh.
In this case, we have discussed two possibilities.
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If |Sv| + |Z−(v)| < 2bh, then the algorithm moves v from Yb to Zb. To restore part
(ii)(iii), it suffices to scan Z−(v) and all out-neighbors of v, which is what the algorithm
does.
Otherwise if |Sv|+ |Z−(v)| ≥ 2bh, the algorithm would collect a star cluster around
v with Sv ∪ Z−(v). To move Sv ∪ Z−(v) to Yb, we would use a similar procedure as
steps (3)(a)(b) of vertex insertions, and so the auxiliary data structures should be
maintained correctly as well.

The second round is when it invokes GreedyCluster to further remove vertices z ∈ Zb such
that degH[Zb](z) ≥ 2bh. After that, the algorithm calls GreedyPrune to remove vertices
z ∈ Zb such that degH[

⋃
i≥b

Ai](z) < 2bh. Using the same analysis as before, we know the
algorithm always correctly maintains the auxiliary data structures. ◀

▶ Lemma 16. A cluster structure {(Cb, Yb, Zb)}b≥1 from Definition 10 is correctly maintained
by our algorithm.

Proof. It is straightforward to verify that our algorithm correctly maintains the edge weight
ω. So let us only focus on properties (1)(2).

Property (1) is automatically guaranteed by the algorithm, since the algorithm only
collects star clusters of size ≥ 2bh, and whenever a star cluster becomes smaller than 2b−1h

after losing too many of its leaves due to edge deletions, the algorithm would try to move it
back to Zb. Now, let us turn to property (2).

▷ Claim 17. After every update, it holds that for each vertex z ∈ Zb, degH[
⋃

i≥b
Ai](z) ≥ 2bh,

degH[Zb](z) < 2bh.

Proof of claim. When the cluster structure has just been initialized, this claim holds by
construction of the layers (A0, A1, · · · ). Next, consider vertex insertions and edge deletions
separately.

Vertex insertions. After a vertex insertion from upper layers, the degrees of vertices
in Zb in subgraph H[

⋃
i≥b Ai] remains unchanged. By the GreedyCluster procedure, all

vertices in Zb should have degree less than 2bh in H[Zb] afterwards.
Edge deletions. After an edge deletion, by the end of the algorithm, it performs one
round of GreedyCluster and then GreedyPrune, which first moves vertices in Zb whose
degree in H [Zb] is at least 2bh to Yb, and then moves vertices whose degree in H [

⋃
i≥b Ai]

is less than 2bh downward to Ab−1. So the claim should hold when it finishes. ◀

By this claim, for any vertex z ∈ Zb, on the one hand we know degH[
⋃

i≥b
Ai](z) ≥ 2bh,

and on the other hand degH[Zb](z) < 2bh, so there exists y ∈
⋃

i≥b Ai \ Zb = Yb

⋃
i>b Ai

adjacent to z, which is property (2). ◀

3.3 Running time analysis
▶ Lemma 18. The total time of the algorithm for handling layer Ab is bounded by O(2bDbh+
n2).

Proof. Let us first analyze the total time of GreedyPrune throughout edge deletions. During
this subroutine, the algorithm repeatedly picks z ∈ Zb such that degH[

⋃
i≥b

Ai](z) < 2bh and
move it to Ab−1. This requires scanning the adjacency list of z. Since each z can transfer
from Ab to Ab−1 for at most once, the total time is bounded by O(|F |) = O(n2).
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For each cluster C ∈ Cb, define del(C) to be the current number of star edges that have
been deleted since C joined Cb. Define a potential function, where K is a large constant:

Φ = |F ∩ (Zb × Zb)|+ 2bh|Zb|+ K · 2bh
∑

C∈Cb

del(C) = O(K · 2bDbh + n2)

▷ Claim 19. The total time of GreedyCluster across all updates is bounded by O(2bhDb +n2).

Proof of claim. In the while-loop, locating a c ∈ Zb such that degH[Zb](c) = |Z−(c)| +
|Z+(c)| ≥ 2bh takes O(log n) time using the priority queue. By the algorithm, forming a
cluster around c requires scanning all neighbors in H[Zb] for each x ∈ {c, u1, u2, · · · , uk},
plus x’s out-neighbors in H [

⋃
i≥b Ai]. Suppose the total number of edges in H [Zb] incident on

{c, u1, u2, · · · , uk} is m0. Then, on the one hand, the time cost would be O(m0 + 2bh(k + 1)),
as each x has out-neighbors at most 2b+1h by Definition 9; on the other hand, the potential
decrease of Φ is exactly m0 + 2bh(k + 1) as well, which cancels out the time cost. Hence, the
total time of GreedyCluster across all updates is bounded by O(2bhDb + n2). ◁

A dominant part of the overall running time is handling star edge deletions, where we
need to iterate over the set S. Let C be the star cluster centered at c. For any v ∈ S,
computing the number of v’s neighbors in Zb takes time at most 2b+1h as out-degree is
bounded deg+

H,O(v) ≤ 2b+1h and Z−(v) is accessible as a list. Now consider two possibilities.
|Sv∪Z−(v)| < 2bh. In this case, the algorithm moves v back to Zb by scanning Sv∪Z−(v)
plus all out-neighbors, and the running time is bounded by O(2bh). As for potential
change, moving v to Zb increases Φ by |Sv ∪Z−(v)|+ 2bh ≤ 2b+1h, so the amortized cost
is bounded by O(2bh).
|Sv ∪ Z−(v)| ≥ 2bh. In this case, we would collect a new cluster around v. Similar to the
analysis of GreedyCluster, the amortized cost of this part is zero.

If S = {v}, then this part of the amortized cost incurred by a star edge deletion is
bounded by O(2bh). Plus that del(C) increases by 1, the amortized cost would be K2bh.

Otherwise, if S is the entire cluster centered at c, then on the one hand, summing up the
above two cases, the amortized cost of iterating over S is O(2bh|S|); on the other hand, since
the star C centered at c is canceled from Cb, the potential decrease would be K · 2bh · del(C).
So the amortized cost of handling S would be O(2bh|S|)−K · 2bh · del(C).

A key point is that, by the algorithm, when C joined Cb it had at least 2bh leaves by then,
but now when C leaves it has 2b−1h leaves. Therefore, del(C) ≥ |S|. Hence, if we choose K

to be a sufficiently large constant, the amortized cost O(2bh|S|)−K · 2bh · del(C) would be
negative.

To summarize, we have proved that each star edge deletion has amortized cost at most
K2bh, plus that other costs are bounded by O(2bhDb + n2). So the total update time is
O(2bhDb + n2). ◀

4 The main algorithm

Initialization. Let f be an empty flow, and we will keep augmenting f throughout O(n2/3)
iterations. Apply Lemma 13 on G to initialize a layering (A0, A1, · · · ) as well as a clustering
{(Cb, Yb, Zb)}b≥1 together with edge weights ω, where h = ⌈τ1/2⌉; we can enforce s, t ∈ A0 at
the beginning since this would only increase O(n) edges incident on A0. We maintain two
disjoint edge sets F0 and F1, where initially F0 includes all edges in G[V \A0], and let F1 be
the rest. So initially F1 contains at most O(nh) edges.
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Throughout the iterations, (V, F0 ∪ F1) will be the residual graph Gf , and F0 will be
the set of all undirected edges used by the clustering structure, and F1 could contain both
undirected and directed edges in the residual graph Gf .

Iterations. In each iteration, we try to find a blocking flow with respect to f with increasing
path (unweighted) length. Denote by Gf the residual graph with respect to f .

For each edge (u, v) ∈ F0 ∪F1, associate it with a binary weight µ such that µ(u, v) = 0 if
(u, v) ∈ F0, and µ(u, v) = 1 otherwise. To keep track of all connected components of (V, F0),
maintain a fully dynamic maximum weight spanning forest MSF on (V, F0) according to
weights ω using standard approach [8], and for each u ∈ V , let mst(u) denote the maximum
weight spanning tree in MSF containing u (if u ∈ A0, then mst(u) refers to u itself).

The following invariant regarding the s-t distance in Gf under edge weight µ will be
guaranteed by our algorithm.

▶ Invariant 20. At the beginning of the l-th iteration, the s-t distance in Gf is at least l.

At the beginning of each iteration, perform Dijkstra’s algorithm on Gf = (V, F0 ∪ F1, µ)
from s, and so each vertex u ∈ V has a distance label level(u) which is set to the distance
from s to u under edge weight µ. Since all edges in F0 are undirected and have zero µ-weight,
for shortest paths computations we could contract all edges in F0, and so Dijkstra’s algorithm
takes time O(|F1|+ n log n); plus, vertices in any tree component in MSF can share the same
label.

Later on when we search for augmenting paths, more edge weights µ(·) would turn from
0 to 1 as edges are deleted from F0. However, during this iteration, we will keep the labels
level(·) unchanged and ensure the following property.

▶ Invariant 21. For any vertex u ∈ V , the distance from s to u in the residual graph Gf

under edge weight µ is always at least level(u).

Depth first search. Next, let focus on a single iteration. Each vertex in V has two phases:
active or inactive. At the beginning of the search, activate all vertices whose label is < l

as well as terminal t. Starting with source vertex u = s. Assume inductively that we have
found a sequence of vertices s = u0, u1, · · · , uk. As long as k < l and s is active, repeat the
following steps.
(1) Enumerate all vertices in v ∈ mst(uk). For each v, try to find an edge (v, w) in Gf such

that:
(a) w is active, and level(w) = level(v) + 1.
(b) Either the edge (v, w) is undirected or it is from v to w.
If such an edge (v, w) is found, then assign uk+1 ← w, k ← k + 1.

(2) If no such edge (v, w) can be found, then deactivate all vertices in mst(uk) and k ← k−1.

Now, suppose at some point k = l. Since uk is active, we know uk = t. Then we try
to send flows from s to t in Gf on an augmenting path of length l under edge weights µ.
Recalling the way we found all of u0, u1, · · · , ul, each mst(ui) and mst(ui+1) are connected
by an edge (vi−1, ui) with positive capacity in Gf , and each pair of ui, vi are in the same
tree component of (V, F0), so we can route one unit of flow from s to t going through
u0, u1, · · · , ul.

Let the augmenting path be s = p0, p1, · · · , pe = t, and augment f by sending one unit
of flow along this path. After that, we need to update the residual graph Gf , the subgraph
H on which the layered clustering is maintained, the maximum spanning forest MSF. Go
over all 0 ≤ i < e, and consider the following two cases.
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If (pi, pi+1) is an undirected edge in F0, then delete it from F0, and add a directed edge
(pi+1, pi) to F1 with residual capacity 2.
If (pi, pi+1) is an undirected edge in F1, then it is connecting two vertices with consecutive
labels. In this case, add a directed edge (pi+1, pi) to F1 with residual capacity 2, and
delete the old edge from F1.
If (pi, pi+1) is a directed edge in F1, then remove it from F1 and add an undirected edge
(pi, pi+1) with unit capacity to F1.

After Gf is updated, we should reset k ← 0, and update the layered clustering structure, the
maximum spanning forest accordingly.

The whole blocking flow computation is summarized as pseudo-code BlockingFlow.

Algorithm 3 BlockingFlow(f, l).

1 maintain layered clustering {(Cb, Yb, Zb)}b≥1, maximum spanning forest MSF;
2 compute distance labels level(·);
3 activate all vertices whose label is < l as well as terminal t;
4 u0 ← s, k ← 0;
5 while s is active do
6 if k < l then
7 if exists (v, w) such that w is active, v ∈ mst(uk), level(w) = level(v) + 1 then
8 uk+1 ← w and k ← k + 1;
9 else

10 deactivate the entire mst(uk) and backtrack k ← k − 1;

11 else
12 send one unit of s-t flow;
13 reset k ← 0, update residual graph, layered clustering, maximum spanning

forest;

Now we can summarize our main algorithm as a piece of pseudo-code MaxFlow below.

Algorithm 4 MaxFlow(G, τ).

1 initialize empty flow f ;
2 initialize a layered clustering structure on G parameterized by h = ⌈τ1/2⌉;
3 for l = 1, 2, · · · , ⌈2n2/3⌉ do
4 call BlockingFlow(f, l);
5 decycle f using Lemma 4;
6 apply Lemma 5 on f exhaustively;
7 return f ;

4.1 Proof of correctness
▶ Lemma 22. Invariant 21 is preserved after Gf is updated.

Proof. When a connected component in MSF is split due to edge deletions in F0, the current
distances in Gf cannot increase. If vertices move from V \ A0 to A0 due to degree losses,
some inter-component edges would be inserted to Gf . However, such kind of edge insertions
can never decrease distances, as they were connecting vertices with the same label value
level(·). ◀
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After the depth-first search is completed, we need to prove that the distance from s to t

in the contracted graph Gf is at least l + 1, namely preserving Invariant 20 for the next
iteration.

▶ Lemma 23. After the depth-first search which augments f , the distance from s to t in the
residual graph Gf under edge weights µ is at least l + 1.

Proof. Suppose after all the augmentations by a blocking flow, there still exists an s-t flow
with length at most l under edge weights µ. So there exists a path s = p0, p1, · · · , pe = t in
Gf such that e ≤ l. Consider two possibilities.

level(pi) = i, ∀0 ≤ i ≤ e. Then it must be e = l. For any edge (pi, pi+1), the capacity
from pi to pi+1 should always be positive throughout the depth-first search, since the
algorithm never pushes flows from level i + 1 to i. Hence, the depth-first search could not
have terminated, which is a contradiction.
There exists 0 ≤ i < e such that level(pi+1) > level(pi) + 1. By the algorithm, the
depth-first search never adds flows directly across nonconsecutive levels, so the capacity
from pi to pi+1 should be positive at the beginning as well. Then, by the shortest paths
computation, level(pi+1) should be at most level(pi) + 1, which makes a contradiction as
well. ◀

By the above lemma together with Lemma 4.6 from [4], we have the following corollary.

▶ Corollary 24 ([4]). After 2n2/3 iterations, the residual flow of f (namely, maximum flow
in Gf ) becomes at most n2/3.

Proof. By the pigeon-hole principle, there exists a pair of consecutive levels in the residual
graph Gf whose union contains at most n1/3 vertices. Therefore, the capacity of the cut
between these two levels is at most 2 · ( n1/3

2 )2 < n2/3. ◀

4.2 Running time analysis
Finally, let us analyze the running time of our max flow algorithm. To analyze the total time
of maintaining the layered clusters, first we need some properties regarding the maximum
spanning forest MSF.

▶ Lemma 25. For each index b, all star edges in Cb are tree edges in the maximum spanning
forest. Plus, for each vertex z ∈ Zb, there exists y ∈ Yb ∪

⋃
i>b Ai such that (y, z) is also a

tree edge.

Proof. Consider any star edge (c, u) with c being the center. If (c, u) is not a tree edge,
then the tree path between u, c connects u to another vertex v ̸= c. By definition of ω,
ω(u, v) ≤ 2b− 1, so switching (c, u) for (u, v) in the spanning forest gives a strictly larger
total weight, which makes a contradiction.

Now consider the second half of the statement. By property (2) of the clustering structure,
there exists y ∈ Yb∪

⋃
i>b Ai adjacent to z, and so ω(y, z) = 2b−1. If (y, z) is not a tree edge,

then there exists a tree path that connects z to y. Consider the first edge (z, w) on this path.
As the spanning forest has maximum total weight, it must be ω(z, w) ≥ ω(z, y) = 2b− 1. As
z /∈ Yb, it can only be the case that ω(z, w) = 2b− 1, and so w cannot be in Zb or

⋃
i<b Ai.

Hence, w ∈ Yb

⋃
i>b Ai, which completes the proof. ◀

▶ Corollary 26. For each u ∈ Ab, there exists a tree path of at most log n edges connecting u

to a star center in
⋃

i≥b Yi.
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▶ Lemma 27. For each index b, and for each spanning tree T ∈ MSF, suppose it contains k

centers in
⋃

i≥b Yi, then any tree path of T contains at most O(k log n) vertices in Ab.

Proof. Suppose otherwise a tree path contains 20k log n vertices in Ab, then there exists a
sub-sequence of this tree path u1, u2, · · · , u2k vertices in Ab, such that for each 1 ≤ j < 2k,
the tree path from uj to uj+1 has at least 9 log n tree edges. By Corollary 26, there exists a
center vj ∈

⋃
i≥b Yi such that uj , vj are connected by a tree path of length at most log n in

MSF. By the pigeon-hole principle, there exists distinct indices j1 < j2 such that vj1 = vj2 ,
which means uj1 , uj2 are connected by a tree path of at most 2 log n edges, contradiction. ◀

▶ Lemma 28. The overall running time throughout all iterations of maintaining the layered
clusters

{(Cb, Yb, Zb)}b≥1

together with its induced edge weight ω is bounded by Õ(n2 + nτ). Also, the total update time
of maintaining the maximum spanning forest MSF is also bounded by Õ(n2 + nτ).

Proof. Consider any unit flow that we send from s to t during this round. Focus on the part
within the same component of MSF. By the routing scheme, the flow always uses the tree
edges of the maximum spanning tree. By Lemma 27, the length of the tree path is at most
proportional to the number of centers. Therefore, for the b-th layer, the number of vertices
in Ab on the unit flow is bounded by O( n

2bh
log n). Since the augmenting path is a simple

path, the number of edge deletions incident on Ab is at most O( n
2bh

log n) as well. Summing
over at most τ augmentations, the total edge deletions incident on Ab is at most Õ( nτ

2bh
). By

Lemma 13, the total update time of maintaining the layered clustering is Õ(n2 + nτ).
As for the dynamic maximum spanning forest MSF, the number of changes to Gf and ω

is always upper bounded by the time to maintain the layered clustering, so the total time of
maintaining MSF is bounded similarly. ◀

Next we bound the total number of new inter-component edges added to F1 throughout
all 2n2/3 iterations for a single round.

▶ Lemma 29. During the for-loop of MaxFlow, the total number of edges in F1 is bounded
by O(nτ1/2 log n).

Proof. Similar to the previous lemma, we can prove that each augmentation turns at
most O(n/h log n) undirected edges from F0 to be directed edges in F1. Since F1 contains
at most O(nh) initially before the first iteration, the overall edges to F1 is bounded by
O(nh + nτ log n

h ) = O(nτ1/2 log n). ◀

The above lemma helps us bounding the total time of computing blocking flows through
all iterations.

▶ Lemma 30. The running time of a single iteration takes time Õ(nτ1/2).

Proof. First, invoking Dijkstra’s algorithm takes time O(|F1|+ n log n) = Õ(nτ1/2). Next,
we need to argue that in each iteration, the blocking flow procedure takes time Õ(|F1|+ n) as
well. In fact, we claim that each edge (v, w) ∈ F1 can be visited by at most twice during the
depth-first search. If level(w) ̸= level(v) + 1, then the algorithm does to need to consider it
when searching for augmenting paths, as level(·) does not change within this iteration. Now
let us assume level(w) = level(v)+1. If (v, w) is a directed edge, then after two augmentations
it would be a directed edge from w to v, and so it would never be visited again; if (v, w) is an
undirected edge, then after one augmentation it would be a directed one from w to v as well.
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Finally, we efficiently enumerate edges incident on any tree in MSF under edge deletions,
we could arrange all vertices in this tree according to the Euler-tour which supports fast link
and cut operations on trees. ◀

By the above lemmas, the total time of for-loop is bounded by Õ(n2 + nτ + n5/3τ1/2) =
Õ(n5/3τ1/2). After the while-loop, the total residual flow is bounded by O(n2/3), so by
Lemma 5 the rest takes time Õ(n5/3τ1/2) as well.
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time. arXiv preprint, 2020. arXiv:2009.03260.

14 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In 2014 IEEE

55th Annual Symposium on Foundations of Computer Science, pages 424–433. IEEE, 2014.
15 Yang P Liu and Aaron Sidford. Faster divergence maximization for faster maximum flow.

arXiv preprint, 2020. arXiv:2003.08929.
16 Yang P Liu and Aaron Sidford. Faster energy maximization for faster maximum flow. In

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages
803–814, 2020.

ICALP 2021

http://arxiv.org/abs/2009.03260
http://arxiv.org/abs/2003.08929


114:16 Deterministic Maximum Flows in Simple Graphs

17 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages
253–262. IEEE, 2013.

18 Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pages 593–602. IEEE,
2016.

19 Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, mdps, and ell_1-regression in nearly linear time for
dense instances. arXiv e-prints, 2021. arXiv:2101.05719.

http://arxiv.org/abs/2101.05719


Arboreal Categories and Resources
Samson Abramsky #

Department of Computer Science, University of Oxford, UK

Luca Reggio #

Department of Computer Science, University of Oxford, UK

Abstract
We introduce arboreal categories, which have an intrinsic process structure, allowing dynamic notions
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1 Introduction

In previous work ([1, 5, 6]), it has been shown how a range of model comparison games
which play a central role in finite model theory, including Ehrenfeucht-Fraïssé, pebbling,
and bisimulation games, can be captured in terms of resource-indexed comonads on the
category of relational structures and homomorphisms. This was done for k-pebble games
in [1], and extended to Ehrenfeucht-Fraïssé games, and bisimulation games for the modal
fragment, in [5]. In subsequent work, this has been further extended to games for generalized
quantifiers [9], and for guarded fragments of first-order logic [3]. An important feature of
this comonadic analysis is that it leads to novel characterisations of important combinatorial
parameters such as tree-width and tree-depth. The coalgebras for each of these comonads
correspond to certain forms of tree decompositions of structures, with the resource index
matching the corresponding combinatorial parameter.

This leads to the question motivating the present paper:

Can we capture the significant common elements of these constructions?
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Our aim is to develop an elegant axiomatic account, based on clear conceptual prin-
ciples, which will yield all these examples and more, and allow a deeper and more general
understanding of resources.

Conceptually, a key ingredient is the assignment of a process structure – an intensional
description – to an extensional object, such as a function, a set, or a relational structure.
It is this process structure, unfolding in space and time, to which a resource parameter
can be applied, which can then be transferred to the extensional object. At the basic level
of computability, this happens when we assign a Turing machine description or a Gödel
number to a recursive function. It is then meaningful to assign a complexity measure to the
function. The same phenomenon arises in semantics: for example, the notion of sequentiality
is applicable to a process computing a higher-order function. Reifying these processes in
the form of game semantics led to a resolution of the famous full abstraction problem for
PCF [2, 11], and to a wealth of subsequent results [20].

It is now becoming clear that this phenomenon is at play in the game comonads described
in [1, 5, 6, 9, 3]. They build tree-structured covers of a given, purely extensional relational
structure. Such a tree cover will in general not have the full properties of the original
structure, but be a “best approximation” in some resource-restricted setting. More precisely,
this means that we have an adjunction, yielding the corresponding comonad. The objects of
the category where the approximations live have an intrinsic tree structure, which can be
captured axiomatically. The tree encodes a process for generating (parts of) the relational
structure, to which resource notions can be applied.

In this paper, we make this intuition precise. We introduce a notion of arboreal category,
and show how all the examples of game comonads considered to date arise from arboreal covers,
i.e. adjunctions between extensional categories of relational structures, and arboreal categories.
Importantly, these adjunctions are comonadic, and the categories of coalgebras provide a
setting for a general notion of bisimulation, which yields a wide range of logical equivalences
in the examples. This notion refines the open maps formulation of bisimulation [13, 12] with
the condition that the maps are pathwise embeddings, generalizing the ideas introduced in [6].
This allows a much wider range of logical equivalences to be captured.

After some preliminaries, we shall develop the axiomatization of paths, open pathwise
embeddings and bisimulations, and arboreal categories. Then we establish the correspondence
between bisimulations and back-and-forth equivalences in the setting of arboreal categories.
Next, we show how many of the fundamental notions of finite model theory and descriptive
complexity arise from instances of arboreal covers. We shall use the concrete constructions
in finite model theory as running examples throughout.

We conclude this introduction by observing that the notion of extendability, a key
ingredient for Rossman-type preservation theorems [19], can be defined in this general setting
(more details are provided in the expanded version [4]).

2 Preliminaries

We shall assume familiarity with standard notions in category theory. All needed background
can be found in [7, 16]. All categories under consideration are assumed to be locally small
and well-powered, i.e. every object has a set of subobjects (as opposed to a proper class).

▶ Example 1. The extensional categories of primary interest in this paper are categories
of relational structures. A relational vocabulary σ is a set of relation symbols R, each
with a specified positive integer arity. A σ-structure A is given by a set A, the universe of
the structure, and for each R in σ with arity n, a relation RA ⊆ An. A homomorphism
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h : A → B is a function h : A → B such that, for each relation symbol R of arity n in σ,
for all a1, . . . , an in A, RA(a1, . . . , an) ⇒ RB(h(a1), . . . , h(an)). We write Struct(σ) for the
category of σ-structures and homomorphisms. The Gaifman graph of a structure A is a
graph with vertices A, such that two distinct elements are adjacent if they both occur in
some tuple a⃗ ∈ RA for some relation symbol R in σ.

2.1 Proper factorisation systems
We recall the notion of weak factorisation system in a category C. Given arrows e and m in
C, we say that e has the left lifting property with respect to m, or that m has the right lifting
property with respect to e, if for every commutative square as on the left-hand side below

• •

• •

e

m

• •

• •

e

d

m

there exists a (not necessarily unique) diagonal filler, i.e. an arrow d such that the right-hand
diagram above commutes. If this is the case, we write e⋔m. For any class H of morphisms
in C, let ⋔H (respectively H⋔) be the class of morphisms having the left (respectively right)
lifting property with respect to every morphism in H.

▶ Definition 2. A pair of classes of morphisms (Q,M) in a category C is a weak factorisation
system provided it satisfies the following conditions:

(i) every morphism f in C can be written as f = m ◦ e with e ∈ Q and m ∈M;
(ii) Q = ⋔M and M = Q⋔.

A proper factorisation system is a weak factorisation system (Q,M) such that Q ⊆ {epis}
and M ⊆ {monos}. A proper factorisation system is stable if, for any e ∈ Q and m ∈ M

with common codomain, the pullback of e along m exists and belongs to Q.1

▶ Remark 3. Any proper factorisation system is an orthogonal factorisation system, i.e. the
diagonal fillers are unique. In particular, factorisations are unique up to (unique) isomorphism.

▶ Example 4. If A is a relational structure, then for any S ⊆ A, there is an induced
substructure with universe S. The inclusion map S ↪→ A is an embedding, i.e. an injective
homomorphism which reflects as well as preserves relations. Any embedding m : A → B
factors as A ∼= Im(m) ↪→ B. Taking Q to be the surjective homomorphisms and M to be the
embeddings gives a proper factorisation system on Struct(σ). This factorisation system is
stable because pullbacks in Struct(σ) are computed in the category of sets and functions,
where (surjections, injections) is a stable proper factorisation system.

Next, we state some well known properties of weak factorisation systems (cf. [10] or [18]):

▶ Lemma 5. Let (Q,M) be a weak factorisation system in C. The following hold:
(a) Q and M are closed under compositions.
(b) Q ∩M = {isomorphisms}.
(c) The pullback in C of an M-morphism along any morphism, if it exists, is again in M.
Moreover, if (Q,M) is proper, then the following hold:
(d) g ◦ f ∈ Q implies g ∈ Q.
(e) g ◦ f ∈M implies f ∈M.

1 In the literature, the adjective stable is usually reserved for the stronger property stating that, for every
e ∈ Q, the pullback of e along any morphism exists and belongs to Q.
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Throughout this paper, we will refer to M-morphisms as embeddings and denote them by
↣. Q-morphisms will be referred to as quotients and denoted by ↠.

Assume C is a category admitting a proper factorisation system (Q,M). In the same way
that one usually defines the poset of subobjects of a given object X ∈ C, we can define the
poset of M-subobjects of X. Given embeddings m : S ↣ X and n : T ↣ X, let us say that
m ⊴ n provided there is a morphism i : S → T such that m = n ◦ i (note that i is necessarily
an embedding). This yields a preorder on the class of all embeddings with codomain X. The
symmetrization ∼ of ⊴ can be characterised as follows: m ∼ n if, and only if, there exists an
isomorphism i : S → T such that m = n ◦ i. Let SX be the class of ∼-equivalence classes of
embeddings with codomain X, equipped with the natural partial order ≤ induced by ⊴. We
shall systematically represent a ∼-equivalence class by any of its representatives. Because C

is well-powered and M ⊆ {monos}, we see that SX is a set.
For any morphism f : X → Y and embedding m : S ↣ X, we can consider the (Q,M)-

factorisation S ↠ ∃f S ↣ Y of f ◦m. This yields a monotone map ∃f : SX → SY sending
m to the embedding ∃f S ↣ Y . (Note that the map ∃f is well-defined because factorisations
are unique up to isomorphism.) Further, if (Q,M) is stable and f is a quotient, we let
f∗ : SY → SX be the monotone map sending n : T ↣ Y to its pullback along f . It is not
difficult to see that f∗ is right adjoint to ∃f .

▶ Lemma 6. Let C be any category equipped with a stable proper factorisation system, and
let f : X → Y be any morphism in C. The following statements hold:
(a) If f is an embedding, then ∃f : SX → SY is an order-embedding.
(b) If f is a quotient, then f∗ : SY → SX is an order-embedding.

Proof. For item (a) note that, as f : X → Y is an embedding, ∃f : SX → SY sends m to
f ◦m. Let m1 : S1 ↣ X and m2 : S2 ↣ X be embeddings such that f ◦m1 ≤ f ◦m2. Then
there exists k : S1 → S2 such that f ◦m1 = f ◦m2 ◦ k. Because f is a monomorphism, it
follows that m1 = m2 ◦ k, i.e. m1 ≤ m2. Hence, ∃f is an order-embedding.

For item (b), it is enough to prove that ∃f f∗n = n for any n : T ↣ Y , for then
f∗n1 ≤ f∗n2 implies n1 = ∃f f∗n1 ≤ ∃f f∗n2 = n2. Consider the pullback of f along n, as
displayed on the left-hand side below.

f∗T T

X Y

f∗n

⌟
n

f

f∗T T

∃f f∗T Y

n

∃f f∗n

Since the square on the right-hand side above commutes, there exists a diagonal filler
T → ∃f f∗T . Note that this diagonal filler must be both a quotient and an embedding, hence
an isomorphism. Therefore, ∃f f∗n = n in SY . ◀

3 Path Categories

3.1 Paths
Throughout this section, we fix a category C equipped a stable proper factorisation system.

If (P,≤) is a poset, then C ⊆ P is a chain if it is linearly ordered. (P,≤) is a forest if,
for all x ∈ P , the set ↓x := {y ∈ P | y ≤ x} is a finite chain. The height of a forest is the
supremum of the cardinalities of its chains. The covering relation ≺ associated with a partial
order ≤ is defined by u ≺ v if and only if u < v and there is no w such that u < w < v. It is
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convenient to allow the empty forest. The roots of a forest are the minimal elements. A tree
is a forest with at most one root. Morphisms of forests are maps which preserve roots and
the covering relation. Equivalently, a monotone map φ : U → V between forests is a forest
morphism if, for all u ∈ U , the restriction of φ yields a bijection between ↓u and ↓φ(u). The
category of forests is denoted by F, and the full subcategory of trees by T. We equip these
categories with the factorisation system (surjective morphisms, injective morphisms).

▶ Definition 7. An object X of C is called a path provided the poset SX is a finite chain.
Paths will be denoted by P, Q, R, . . ..

▶ Example 8. The paths in F and T are the finite chains, i.e. the trees consisting of a single
branch.

▶ Example 9. We define a forest-ordered σ-structure (A,≤) to be a σ-structure A with a
forest order ≤ on A. A morphism of forest-ordered σ-structures f : (A,≤) → (B,≤′) is a
σ-homomorphism f : A → B that is also a forest morphism. This determines a category R(σ).
We equip R(σ) with the factorisation system given by (surjective morphisms, embeddings),
where an embedding is a morphism which is an embedding qua σ-homomorphism.

In [6], it is shown that the categories of coalgebras for the various comonads studied there
are given, up to isomorphism, by subcategories of R(σ) (or minor variants thereof):

For the Ehrenfeucht-Fraïssé comonad, this is the full subcategory RE(σ) determined by
those objects satisfying the condition (E): adjacent elements of the Gaifman graph of
A are comparable in the forest order. For each k > 0, RE

k (σ) is the full subcategory of
RE(σ) of those forest orders of height ≤ k. The objects (A,≤) of RE

k (σ) are forest covers
of A witnessing that its tree-depth is ≤ k [17].
For the pebbling comonad, for each k > 0 this is the category RP

k whose objects have the
form (A,≤, p), where (A,≤) is a forest-ordered σ-structure, and p : A→ [k] is a pebbling
function. In addition to condition (E), these structures have to satisfy the condition
(P): if a is adjacent to b in the Gaifman graph of A, and a < b in the forest order, then
for all x such that a < x ≤ b, p(a) ̸= p(x). It is shown in [6] that these structures are
equivalent to the more familiar form of tree decomposition used to define tree-width [14].
Morphisms have to preserve the pebbling function.
For the modal comonad, the category RM

k has as objects the tree-ordered σ-structures of
height ≤ k satisfying the condition (M): for x, y ∈ A, x ≺ y if and only if for some unique
binary relation Rα in σ (“transition relation”), RA

α (x, y).

The paths in each of these categories are those structures in which the order is a finite
chain. These are our key motivating examples for paths. Note that in the (multi-)modal
case, ignoring propositional variables, these correspond to synchronization trees consisting of
a single branch, i.e. traces.

The following fact is an immediate consequence of Lemma 6:

▶ Lemma 10. Let f : X → Y be any morphism in C. The following statements hold:
(a) If Y is a path and f is an embedding, then X is a path.
(b) If X is path and f is a quotient, then Y is a path.

A path embedding is an embedding P ↣ X whose domain is a path. Given any object X

of C, we let PX be the sub-poset of SX consisting of the path embeddings. By Lemma 10(b),
for any arrow f : X → Y , the monotone map ∃f : SX → SY restricts to a monotone map

P f : PX → PY, (m : P ↣ X) 7→ (∃f m : ∃f P ↣ Y ).

By the uniqueness up to isomorphism of factorisations, this assignment is functorial.
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3.2 Path categories

▶ Definition 11. A path category is a category C satisfying the following conditions:
(i) C has a stable proper factorisation system;
(ii) C has all coproducts of small families of paths;
(iii) for any paths P, Q, R, if a composite P → Q→ R is a quotient, then so is P → Q.

▶ Remark 12. Item (iii) above is equivalent to the following condition: For any paths P, Q, R

and morphisms f : P → Q and g : Q→ R, if any two of f , g, and g ◦ f are quotients, then so
is the third. Thus, we shall refer to (iii) as the 2-out-of-3 condition.

Any path category has an initial object, obtained as the coproduct of the empty family.

▶ Example 13. F and T are path categories. Coproducts of forests are given by disjoint
union. For trees, coproducts are given by smash sum, with the bottom elements identified.
Since forest morphisms preserve height, we see that F and T satisfy the 2-out-of-3 condition.
Similarly, it is not difficult to see that R(σ) and its subcategories mentioned in Example 9
are all path categories (R(σ) has an initial object because we allow empty σ-structures).

▶ Theorem 14. Let C be a path category. Then the assignment X 7→ PX induces a functor
P : C→ T into the category of trees.

To prove this theorem, we start by showing that each poset PX is a tree.

▶ Lemma 15. Let C be a path category. For any object X of C, PX is a non-empty tree.

Proof. Using Lemma 6(a), it is not difficult to see that the sub-poset of PX consisting of
those elements that are below a given P ∈ PX is isomorphic to PP . In turn, PP ∼= SP by
Lemma 10(a). Since SP is a finite chain, we see that PX is a forest. Now, let 0 ↠ 0̃ ↣m X

be the (quotient, embedding) factorisation of the unique morphism 0→ X from the initial
object. We claim that m : 0̃ ↣ X is the unique root of PX.

Note that 0 is a path: just observe that any embedding S ↣ 0 admits the unique
morphism 0→ S as a right inverse, and thus is a retraction. It follows that S ∼= 0, i.e., S0
is the one-element poset. In particular, 0 is a path. Thus, 0̃ is a path by Lemma 10(b). We
show that m : 0̃ ↣ X is the least element of PX. If m′ : P ↣ X is any path embedding, we
have a commutative square as follows.

0 0̃

P X

m

m′

Hence there exists a diagonal filler d : 0̃→ P , and so m ≤ m′ in PX. ◀

We next show that the functor P sends morphisms in a path category to tree morphisms,
thus completing the proof of Theorem 14.

▶ Proposition 16. Let C be a path category. For any arrow f in C, P f is a tree morphism.

Proof. It is enough to show that, for any path embedding m : P ↣ X, the induced map
P f : ↓m→ ↓P f(m) is a bijection.
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We start by establishing surjectivity, i.e. ↓P f(m) ⊆ P f(↓m). Let (e, j) be the (quotient,
embedding) factorisation of f ◦m. If n : Q ↣ Y is a path embedding such that n ≤ P f(m)
in PY , there exists an embedding k : Q ↣ ∃f P such that the left-hand diagram below
commutes. Consider the pullback of k along e, as displayed in the right-hand diagram below.

P X Y

∃f P Q

m

e

f

j n

k

R Q

P ∃f P

⌟
k

e

Then R is a path by Lemmas 5(c) and 10(a), and the composite i : R ↣ P ↣ X is a path
embedding which is below m in the poset PP . Further, the top horizontal arrow in the
pullback square is a quotient and so, by the uniqueness up to isomorphism of factorisations,
the (quotient, embedding) factorisation of f ◦ i is R ↠ Q ↣n Y , i.e., P f(i) = n.

For injectivity, let m1 : P1 ↣ X and m2 : P2 ↣ X be path embeddings in ↓m. Since P

is a path, m1 and m2 are comparable in the order of PX. Assume without loss of generality
that m1 ≤ m2, i.e., there exists an embedding k : P1 ↣ P2 such that m1 = m2 ◦ k. If
P f(m1) = P f(m2), there exists an isomorphism k′ : ∃f P1 → ∃f P2 making the left-hand
diagram below commute.

P1 ∃f P1

X Y

P2 ∃f P2

m1

k k′f

m2

P1 P2 ∃f P2
k

In particular, the diagram on the right-hand side above commutes, where the top horizontal
arrow is the composition of P1 ↠ ∃f P1 with the isomorphism k′ : ∃f P1 → ∃f P2. By the
2-out-of-3 condition, k is an isomorphism, and so m1 = m2 in PX. ◀

We conclude this section with the following useful observation:

▶ Lemma 17. The following statements hold for any object X of a path category C:
(a) Any subset U ⊆ PX admits a supremum

∨
U in SX.

(b) For any path embedding m ∈ PX and non-empty set S ⊆ SX, if m =
∨
S then m ∈ S.

Proof. For item (a), consider a set of path embeddings

U = {mi : Pi ↣ X | i ∈ I} ⊆ PX.

Let S :=
∐

i∈I Pi be the coproduct in C of the paths Pi and consider the (quotient, embedding)
factorisation of the canonical morphism δ : S → X whose component at Pi is mi:

S T Xe

δ

m

Each path embedding mi ∈ U factors through m, thus m is an upper bound for U . We claim
that m is the least upper bound, i.e., m =

∨
U in SX. Suppose that all path embeddings in

U factor through some embedding m′ : T ′ ↣ X. By the universal property of S, we get a
morphism φ : S → T ′. Further, using again the universal property of S, it is not difficult to
see that m′ ◦ φ coincides with δ, and so the following square commutes.
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S T

T ′ X

φ

e

m

m′

Therefore, there exists a diagonal filler T → T ′. In particular, the commutativity of the lower
triangle entails that m ≤ m′, as was to be proved.

For item (b), let m : P ↣ X be a path embedding and S ⊆ SX a non-empty set such
that m =

∨
S. Then n ≤ m for each n ∈ S. Since P is a path, ↓m is a finite chain in SX and

so S must be a finite set whose largest element coincides with m. In particular, m ∈ S. ◀

4 Pathwise Embeddings, Open Maps, and Bisimulations

Throughout this section, we fix a category C equipped with a stable proper factorisation
system.

Pathwise embeddings and open maps

Following [6], let us say that a morphism f : X → Y in C is a pathwise embedding if,
for all path embeddings m : P ↣ X, the composite f ◦ m is a path embedding. Hence,
P f(m) = f ◦m for all m ∈ PX. Following again [6], we introduce a notion of open map –
inspired by [13] – that, combined with the concept of pathwise embedding, will allow us to
define an appropriate notion of bisimulation. A morphism f : X → Y in C is said to be open
if it satisfies the following path-lifting property: Given any commutative square

P Q

X Y
f

with P, Q paths, there exists a diagonal filler Q→ X (i.e., an arrow Q→ X making the two
triangles commute). Note that, if it exists, such a diagonal filler must be an embedding.

▶ Remark 18. The previous definition of open map differs from the one given in [13] because
we require that, in the square above, the top horizontal morphism and the vertical ones be
embeddings. However, a pathwise embedding is open in C (according to the definition above)
if, and only if, it is open (in the sense of [13]) in the subcategory C∗ of C having the same
objects as C and morphisms the pathwise embeddings.

For pathwise embeddings f : X → Y , openness can be characterised in terms of the
corresponding monotone map P f : PX → PY :

▶ Proposition 19. The following are equivalent for any pathwise embedding f : X → Y :
1. f is open.
2. P f is a p-morphism, i.e. P f(↑m) = ↑P f(m) for all m ∈ PX.

Proof. (1) ⇒ (2). Suppose f is open, and let m : P ↣ X be an arbitrary element of PX.
The inclusion P f(↑m) ⊆ ↑P f(m) follows at once from monotonicity of P f . For the converse
inclusion, assume that n : Q ↣ Y is an element of PY above P f(m) = f ◦m. Then, the
composite f ◦m must factor through n, say f ◦m = n ◦ s for some embedding s : P ↣ Q.
Hence, we have a commutative square as displayed below.
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P Q

X Y

s

m nm′

f

Since f is open, there exists a diagonal filler m′ : Q ↣ X. The commutativity of the upper
triangle entails that m′ ∈ ↑m, while the commutativity of the lower triangle implies that
P f(m′) = n. Therefore, ↑P f(m) ⊆ P f(↑m).

(2)⇒ (1). Assume P f is a p-morphism, and consider a commutative square as follows,

P Q

X Y

s

m n

f

where P and Q are paths. We have P f(m) ≤ n in PY , and thus there exists a path embedding
m′ : P ′ ↣ X satisfying m ≤ m′ and P f(m′) = n. The inequality m ≤ m′ amounts to saying
that m = m′ ◦ l for some embedding l : P ↣ P ′, while the equality P f(m′) = n means
that f ◦m′ = n ◦ k for some isomorphism k : P ′ → Q. We have a commutative diagram as
displayed below.

X Y

P P ′ Q

f

m

l

s

k

m′ n

We claim that m′ ◦k−1 : Q→ X satisfies m′ ◦k−1 ◦ s = m and f ◦m′ ◦k−1 = n, thus showing
that f is open. To start with, note that k ◦ l = s. Just observe that

n ◦ k ◦ l = f ◦m′ ◦ l = f ◦m = n ◦ s,

and so k ◦ l = s because n is a monomorphism. Now, by diagram chasing we see that

m′ ◦ k−1 ◦ s = m′ ◦ k−1 ◦ k ◦ l = m′ ◦ l = m

and f ◦m′ ◦ k−1 = n ◦ k ◦ k−1 = n. This concludes the proof. ◀

Bisimulations

A bisimulation between objects X, Y of C is a span of open pathwise embeddings X ← Z → Y

in C. If such a bisimulation exists, we say that X and Y are bisimilar.

▶ Example 20. This definition directly generalizes that in [6], and the notions of bisimulation
given there for the Ehrenfeucht-Fraïssé, pebbling and modal comonads are the special cases
arising in the categories RE

k (σ), RP
k (σ) and RM

k (σ) respectively, as described in Example 9.

▶ Remark 21. Let C be a path category. If we regard trees as Kripke models where the
accessibility relation is the tree order, then it follows from Theorem 14 and Proposition 19
that a span of pathwise embeddings X

f←− Z
g−→ Y in C is a bisimulation if, and only if,

PX
P f←−− PZ

P g−−→ PY is a bisimulation of Kripke models in the usual sense.
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Given a bisimulation X ← Z → Y , we would like to think of Z as providing a winning
strategy for Duplicator in an appropriate game played “between X and Y ”. To substantiate
this idea, in the next two sections we introduce arboreal categories – a refinement of the
concept of path category – and show that, in these categories, bisimilarity is captured by
back-and forth systems which model the dynamic nature of games.

5 Arboreal Categories

By Theorem 14, any path category C admits a functor P : C→ T into the category of trees.
In general, the tree PX may retain little information about X. We are interested in the case
where X is determined by PX. This leads us to the notion of path-generated object.

Path-generated objects

Let C be a path category. For any object X of C, we have a diagram with vertex X consisting
of all path embeddings with codomain X:

X

P Q

The morphisms between paths are those which make the obvious triangles commute. Choosing
representatives in an appropriate way, this can be seen as a cocone over the small diagram
PX. We say that X is path-generated provided this is a colimit cocone in C. Intuitively, an
object is path-generated if it is the colimit of its paths.

Let Cp be the full subcategory of C defined by the paths and recall that a functor
J : A→ B is dense if every b ∈ B is the colimit of the diagram J↓b π−→ A

J−→ B, where J↓b is
the comma category and π is the natural forgetful functor.

▶ Lemma 22. The following statements are equivalent for any path category C:
1. Every object of C is path-generated.
2. The inclusion Cp ↪→ C is dense.

Arboreal categories

We now state the axioms for an arboreal category. To this end, let us say that an object
X of a path category C is connected if, for all small families of paths {Pi | i ∈ I} in C, any
morphism X →

∐
i∈I Pi factors through some coproduct injection Pj →

∐
i∈I Pi.

▶ Definition 23. An arboreal category is a path category C satisfying the following conditions:
(i) every object of C is path-generated;
(ii) every path in C is connected.

▶ Example 24. The category T of trees is arboreal; this is essentially the observation that (i)
every tree is the colimit of the diagram given by its branches and the embeddings between
them, and (ii) finite chains are connected in T. Similarly, F is arboreal. Our key examples of
the categories RE

k (σ), RP
k (σ) and RM

k (σ) from Example 9 are also arboreal.

Note that, in view of Theorem 14, any arboreal category C admits a functor P : C→ T

into the category of trees. This crucial fact is what will allow us, given an arboreal cover
(cf. Section 7), to regard process structures as tree-like objects.

We collect some useful consequences of the axioms above.
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▶ Lemma 25. Let C be an arboreal category. The following statements hold:
(a) Between any two paths there is at most one embedding.
(b) For any object X of C and any m ∈ SX, m =

∨
{p ∈ PX | p ≤ m}.

(c) If f is a quotient in C, then P f is a surjection.

Proof. For item (a), since there is at most on tree morphism between any two finite chains,
it suffices to show that P : C→ T is faithful on embeddings between paths. That is, whenever
f, g : P ⇒ Q are embeddings between paths, P f = P g implies f = g. We show that, in fact,
P is faithful on all pathwise embeddings in C. Suppose f, g : X ⇒ Y are pathwise embeddings.
If P f = P g then, for all path embeddings m : P ↣ X,

f ◦m = P f(m) = P g(m) = g ◦m.

As X is path-generated, it follows that f = g.
For item (b), let m : S ↣ X be an arbitrary embedding. Clearly,

∨
{p ∈ PX | p ≤ m} ≤

m. For the converse direction, assume that n : T ↣ X is an upper bound for {p ∈ PX |
p ≤ m}. This means that each path embedding P ↣ X that factors through m must factor
through n. We then have a commutative diagram as displayed below.

T

S

Pi Pj

γ

Because S is path-generated, the cocone with vertex S is a colimit cocone. Therefore, there
exists a unique mediating arrow γ : S → T making the diagram commute. Using the universal
property of S, it is not difficult to see that the composite S

γ−→ T ↣n X coincides with m,
and so m ≤ n.

For item (c), suppose that f : X ↠ Y is a quotient in C. We first assume that Y = P is
a path, and then settle the general case. To show that P f is a surjection, it suffices to prove
that idP ∈ P f(PX), where idP : P → P is the identity. We have

f∗idP =
∨
{p ∈ PX | p ≤ f∗idP } by item (b)

=
∨
{p ∈ PX | ∃f p ≤ idP } since ∃f ⊣ f∗

=
∨

PX,

and so (using the fact that left adjoints preserve suprema)

idP = ∃f f∗idP =
∨

P f(PX),

where the first step follows from the fact that ∃f ◦ f∗ is the identity of SP (cf. the proof of
Lemma 6(b)). Hence, idP ∈ P f(PX) by Lemma 17(b).

For the general case, let m : P ↣ Y be an arbitrary path embedding and consider the
following pullback square in C.

f∗P P

X Y

g

f∗m
⌟

m

f

By the argument above, there is a path embedding n : Q ↣ f∗P such that P g(n) = idP . It
follows easily that P f(f∗m ◦ n) = m. ◀
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The next proposition will allow us to construct an object from a prescribed set of path
embeddings, without adding any new paths in the process.

▶ Proposition 26. Let C be an arboreal category, X an object of C, and U ⊆ PX. A path
embedding m ∈ PX is below

∨
U if, and only if, it is below some element of U .

Proof. Fix an arbitrary object X of C and a set of path embeddings U = {mi : Pi ↣ X |
i ∈ I}. Let m : P ↣ X be an arbitrary path embedding. If m is below some element of
U , then clearly m ≤

∨
U . For the converse direction, suppose that m ≤

∨
U . Recall from

the proof of Lemma 17(a) that the supremum of U is obtained by taking the (quotient,
embedding) factorisation

∐
i∈I Pi

e−→→ S ↣n X of the canonical morphism
∐

i∈I Pi → X. With
this notation,

∨
U = n. Since m ≤

∨
U , there exists an embedding m′ : P ↣ S such that

m = n ◦m′. Consider the pullback of m′ along e:

T P

∐
i∈I Pi S

j

r

⌟
m′

e

Applying Lemma 25(c) to the quotient r, we see that there exists a path embedding k : Q ↣ T

such that r◦k is a quotient. Because Q is connected, j ◦k : Q ↣
∐

i∈I Pi must factor through
some coproduct injection φi : Pi →

∐
i∈I Pi, i.e., j ◦ k = φi ◦ p for some path embedding

p : Q ↣ P . We then have a commutative diagram as follows.

Q P

Pi S X

r◦k

p m′ m

e◦φi

mi

n

As m ◦ r ◦ k = mi ◦ p and the right-hand side of the equation is an embedding, r ◦ k is an
isomorphism. So m ≤ mi ∈ U , thus concluding the proof. ◀

6 Back-and-Forth Systems and Games

Throughout this section, we work in a fixed arboreal category C. First, we introduce back-and-
forth systems in C and show that they capture precisely the bisimilarity relation defined in
Section 4 in terms of spans of open pathwise embeddings. Then, we show that back-and-forth
systems can be equivalently seen as appropriate back-and-forth games.

Back-and-forth systems

Given objects X and Y of C, we consider spans of (equivalence classes of) path embeddings
of the form X ↢m P ↣n Y . Such a span can be thought of as a partial isomorphism “of shape
P” between X and Y . A back-and-forth system between X and Y is a collection of such
spans containing an “initial element” and satisfying an appropriate extension property.

Let X, Y be any two objects of C. Given m ∈ PX and n ∈ PY , we write Jm, nK to denote
that dom(m) ∼= dom(n). Observe that (i) any two embeddings in the same ∼-equivalence
class have isomorphic domains, and (ii) given Jm, nK, there exist path embeddings m′ ∼ m

and n′ ∼ n such that dom(m′) = dom(n′). Hence, the pairs of the form Jm, nK capture the
partial isomorphisms X ↢m P ↣n Y “of shape P”.



S. Abramsky and L. Reggio 115:13

▶ Definition 27. A back-and-forth system between objects X, Y of C is a set B = {Jmi, niK |
mi ∈ PX, ni ∈ PY, i ∈ I} satisfying the following conditions:

(i) J⊥X ,⊥Y K ∈ B, where ⊥X and ⊥Y are the least elements of PX and PY , respectively;
(ii) if Jm, nK ∈ B and m′ ∈ PX are such that m ≺ m′, there exists n′ ∈ PY satisfying

n ≺ n′ and Jm′, n′K ∈ B;
(iii) if Jm, nK ∈ B and n′ ∈ PY are such that n ≺ n′, there exists m′ ∈ PX satisfying

m ≺ m′ and Jm′, n′K ∈ B.
A back-and-forth system B is strong if, for all Jm, nK ∈ B and all m′ ∈ PX, n′ ∈ PY , if
m′ ≺ m and n′ ≺ n then Jm′, n′K ∈ B.

Two objects X and Y of C are said to be (strong) back-and-forth equivalent if there exists
a (strong) back-and-forth system between them.
▶ Remark 28. The definition of (strong) back-and-forth system given above is a variant of the
notion of (strong) path bisimulation from [12]. The nomenclature adopted here is motivated
by the analogy with back-and-forth systems of partial isomorphisms from model theory [15].

The aim of this section is to prove the following result:

▶ Theorem 29. In an arboreal category with binary products, any two objects are bisimilar
if, and only if, they are strong back-and-forth equivalent.

In all our key examples of arboreal categories, binary products exist:

▶ Example 30. The category T has binary products. These are computed as “synchronous
products” consisting of the pairs (x, y) of elements having the same height, with the compon-
entwise order. Similarly, F has binary products, and so does the category R(σ) if the relations
in the synchronous product are interpreted componentwise. As synchronous products do not
increase the height of forests, we see that the category RE

k (σ) from Example 9 has binary
products. Finally, binary products exist in RP

k (σ) and RM
k (σ) and can be described again as

variants of synchronous products.

▶ Remark 31. Direct inspection of the relevant proofs shows that Theorem 29 can be slightly
generalized to the effect that, for any two objects X and Y of an arboreal category, if
the product X × Y exists, then X and Y are bisimilar precisely when they are strong
back-and-forth equivalent.

We start by establishing the easy direction of Theorem 29.

▶ Proposition 32. Any two bisimilar objects of an arboreal category are strong back-and-forth
equivalent.

Proof. Suppose that X
f←− Z

g−→ Y is a span of open pathwise embeddings in an arboreal
category C. We claim that

B := {JP f(m),P g(m)K | m ∈ PZ}

is a strong back-and-forth system between X and Y . We show that items (i), (ii), and (iii)
in Definition 27 are satisfied.

For item (i), let ⊥Z be the least element of PZ. Then P f(⊥Z) = ⊥X and P g(⊥Z) =
⊥Y because tree morphisms preserve roots, and so J⊥X ,⊥Y K ∈ B. For item (ii), let
JP f(m),P g(m)K ∈ B and m′ ∈ PX be such that P f(m) ≺ m′. Let us denote P := dom(m)
and P ′ := dom(m′). As f ◦m ≤ m′ in PX, there exists k : P ↣ P ′ such that f ◦m = m′ ◦ k

in C. Therefore, we have a commutative square as follows.
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P P ′

Z X

k

m m′

f

Since f is open, there exists a diagonal filler n : P ′ ↣ Z. Thus, m′ = P f(n) and Jm′,P g(n)K ∈
B. It remains to show that P g(m) ≺ P g(n). Note that m ≤ n and P f(m) ≺ P f(n) entail
m ≺ n, and so P g(m) ≺ P g(n) because P g preserves the covering relation.

The proof of item (iii) is the same, mutatis mutandis, as for (ii). Finally, observe that
the back-and-forth system B is strong. To see this, suppose that JP f(m),P g(m)K ∈ B, and
let p1 ∈ PX and p2 ∈ PY satisfy p1 ≺ P f(m) and p2 ≺ P g(m). As P f is a tree morphism,
there exists m′ ∈ PZ such that m′ ≺ m and P f(m′) = p1. But then P g(m′) ≺ P g(m)
implies P g(m′) = p2, and therefore Jp1, p2K ∈ B. ◀

To establish the other direction of Theorem 29, we start by considering a strong back-and-
forth system B = {Jmi, niK | i ∈ I} between X and Y , and attempt to construct an object Z

and a span of open pathwise embeddings X ← Z → Y . Intuitively, Z is obtained by gluing
together the paths Pi := dom(mi), for i ∈ I, by taking a colimit in C. This colimit can be
equivalently described as the supremum of a set of path embeddings as we now explain.

Consider an arbitrary Jmi, niK ∈ B and assume without loss of generality that dom(mi) =
Pi = dom(ni) for some path Pi. Then the product arrow ⟨mi, ni⟩ : Pi → X × Y is an
embedding. In fact, it suffices that mi be an embedding (or, symmetrically, that ni be
an embedding), for then mi = πX ◦ ⟨mi, ni⟩ entails that ⟨mi, ni⟩ is an embedding, where
πX : X × Y → X is the projection. Therefore, we can identify each Jmi, niK ∈ B with
a path embedding ⟨mi, ni⟩ ∈ P (X × Y ) and compute the supremum m : Z ↣ X × Y in
S (X × Y ) of all these path embeddings. (It is not difficult to see that the assignment
Jmi, niK 7→ ⟨mi, ni⟩ ∈ P (X × Y ) does not depend on the choice of the representatives in the
equivalence classes of mi and ni.) We note in passing the following immediate fact:

▶ Lemma 33. Let B = {Jmi, niK | i ∈ I} be a back-and-forth system between X and Y . If B
is strong, then {⟨mi, ni⟩ ∈ P (X × Y ) | i ∈ I} is downwards closed in S (X × Y ).

To show that the span X
πX ◦m←−−−− Z

πY ◦m−−−−→ Y is a bisimulation, we exploit the fact that
Z does not admit more path embeddings than those prescribed (cf. Proposition 26). The
following proposition then completes the proof of Theorem 29:

▶ Proposition 34. In an arboreal category with binary products, any two strong back-and-forth
equivalent objects are bisimilar.

Proof. Let C be an arboreal category with binary products, and let X, Y be any two objects
of C. Assume that there is a strong back-and-forth system B = {Jmi, niK | i ∈ I} between X

and Y , and consider the set

U := {⟨mi, ni⟩ ∈ P (X × Y ) | i ∈ I}.

Let m : Z ↣ X × Y be the supremum of U in S (X × Y ). We claim that

X Z Y
πY ◦mπX ◦m

is a bisimulation between X and Y .
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To see that this is a span of pathwise embeddings, consider an arbitrary path embedding
n : P ↣ Z. In view of Proposition 26 and Lemma 33, m ◦ n ∈ U . That is, m ◦ n = ⟨mi, ni⟩
in P (X × Y ) for some Jmi, niK ∈ B. It follows that m ◦ n = ⟨mi, ni⟩ ◦ φ in C for some
isomorphism φ, and so πX ◦m◦n and πY ◦m◦n are embeddings because πX ◦m◦n = mi ◦φ

and πY ◦m ◦ n = ni ◦ φ.
It remains to show that πX ◦m and πY ◦m are open. We prove that πX ◦m is open;

the proof for πY ◦m follows by symmetry. Consider a commutative square in C as displayed
below, where P and Q are paths.

P Q

Z X

k

n mj

πX ◦m

Reasoning as above, we see that m ◦ n = ⟨mi, ni⟩ in P (X × Y ) for some Jmi, niK ∈ B.
Therefore, in PX, we have mi = πX ◦ m ◦ n ≤ mj . Applying item (ii) in Definition 27
(possibly finitely many times), it follows that there exists nj ∈ PY such that ni ≤ nj

and Jmj , njK ∈ B. Suppose without loss of generality that dom(mj) = dom(nj). Then,
⟨mj , nj⟩ ∈ U and so ⟨mj , nj⟩ : Q ↣ X × Y factors through the supremum m : Z ↣ X × Y

of U . That is, ⟨mj , nj⟩ = m ◦ h in C for some morphism h : Q → Z. We claim that the
following diagram commutes, thus establishing that πX ◦m is open.

P Q

Z X

k

n mj
h

πX ◦m

For the commutativity of the lower triangle, just observe that

πX ◦m ◦ h = πX ◦ ⟨mj , nj⟩ = mj .

Now, assume without loss of generality that dom(mi) = R = dom(ni) for some path R. As
already observed above, m ◦ n = ⟨mi, ni⟩ in P (X × Y ) implies that m ◦ n = ⟨mi, ni⟩ ◦φ in C

for some isomorphism φ : P → R. Thus, for the upper triangle, we have

n = h ◦ k ⇔ m ◦ n = m ◦ h ◦ k

⇔ ⟨mi, ni⟩ ◦ φ = ⟨mj , nj⟩ ◦ k

⇔

{
mi ◦ φ = mj ◦ k

ni ◦ φ = nj ◦ k

where in the first step we used the fact that m is a monomorphism. In turn, the inequalities
mi ≤ mj and ni ≤ nj entail the existence of embeddings k1, k2 : R ⇒ Q such that mi = mj◦k1
and ni = nj ◦k2. By Lemma 25(a) we have k1 ◦φ = k = k2 ◦φ. It follows that mi ◦φ = mj ◦k

and ni ◦ φ = nj ◦ k, and so n = h ◦ k. ◀

Back-and-forth games

Let C be an arboreal category and let X, Y be any two objects of C. We define a back-and-
forth game G(X, Y ) played by Spoiler and Duplicator on X and Y as follows. Positions in the
game are pairs of (equivalence classes of) path embeddings (m, n) ∈ PX × PY . The winning
relation W(X, Y ) ⊆ PX × PY consists of the pairs (m, n) such that dom(m) ∼= dom(n).
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Let ⊥X : P ↣ X and ⊥Y : Q ↣ Y be the roots of PX and PY , respectively. If P ̸∼= Q,
then Duplicator loses the game. Otherwise, the initial position is (⊥X ,⊥Y ). At the start of
each round, the position is specified by a pair (m, n) ∈ PX ×PY , and the round proceeds as
follows: Either Spoiler chooses some m′ ≻ m and Duplicator must respond with some n′ ≻ n,
or Spoiler chooses some n′′ ≻ n and Duplicator must respond with m′′ ≻ m. Duplicator wins
the round if they are able to respond and the new position is in W(X, Y ). Duplicator wins
the game if they have a strategy which is winning after t rounds, for all t ≥ 0.
▶ Remark 35. It is shown in [6] that the abstract game G(X, Y ) restricts, in the case of the
arboreal categories RE

k (σ), RP
k (σ) and RM

k (σ), to the usual k-round Ehrenfeucht-Fraïssé,
k-pebble and k-round bisimulation games, respectively.

The following straightforward observation makes precise the translation between strong
back-and-forth systems and back-and-forth games.

▶ Lemma 36. Two objects X, Y of an arboreal category C are strong back-and-forth equivalent
if, and only if, Duplicator has a winning strategy in the game G(X, Y ).

Proof. Clearly, if B = {Jmi, niK | i ∈ I} is a strong back-and-forth system between X and
Y , then the plays in the set

{(mi, ni) | i ∈ I} ⊆ PX × PY

yield a winning strategy for Duplicator in the game G(X, Y ).
Conversely, a winning strategy for Duplicator in the game G(X, Y ) determines a set

W ⊆W(X, Y ) of the plays following this strategy, and

B := {Jm, nK | (m, n) ∈W}

is a back-and-forth system. It is not difficult to see that B is strong. ◀

The previous lemma, combined with Theorem 29, yields at once the following result:

▶ Theorem 37. Let C be an arboreal category with binary products. Any two objects X, Y of
C are bisimilar if, and only if, Duplicator has a winning strategy in the game G(X, Y ).

7 Arboreal Covers

We return to the underlying motivation for the axiomatic development in this paper. Arboreal
categories have a rich intrinsic process structure, which allows “dynamic” notions such as
bisimulation and back-and-forth games, and resource notions such as the height of a tree, to
be defined. A key idea is to relate these process notions to extensional, or “static” structures.
In particular, much of finite model theory and descriptive complexity can be seen in this way.

In the general setting, we have an arboreal category C, and another category E, which we
think of as the extensional category.

▶ Definition 38. An arboreal cover of E by C is given by a comonadic adjunction

C E .
L

R

⊥

As for any adjunction, this induces a comonad on E. The comonad is (G, ε, δ), where G := LR,
ε is the counit of the adjunction, and δa : LRa → LRLRa is given by δa := L(ηRa), with
η the unit of the adjunction. The comonadicity condition states that the Eilenberg-Moore



S. Abramsky and L. Reggio 115:17

category of coalgebras for this comonad is isomorphic to C. The idea is then that we can
use the arboreal category C, with its rich process structure and all the associated notions,
to study the extensional category E via the adjunction. Both the co-Kleisli category of the
comonad, and the full Eilenberg-Moore category, are useful in this regard.

We now bring resources into the picture.

▶ Definition 39. Let C be an arboreal category, with full subcategory of paths Cp. We say that
C is resource-indexed by a resource parameter k if for all k ≥ 0, there is a full subcategory
Ck

p of Cp closed under embeddings2 with

C0
p ↪→ C1

p ↪→ C2
p ↪→ · · ·

This induces a corresponding tower of full subcategories Ck of C, with the objects of Ck those
whose cocone of path embeddings with domain in Ck

p is a colimit cocone in C.

▶ Example 40. One resource parameter which is always available is to take Ck
p to be given

by those paths in C whose chain of subobjects is of length ≤ k. In the case of F and T, the
corresponding categories Fk and Tk are the forests and trees of height ≤ k. We can think of
this as a temporal parameter, restricting the number of sequential steps, or the number of
rounds in a game. For the Ehrenfeucht-Fraïssé and modal comonads, we recover RE

k and RM
k

as described in Example 9, corresponding to k-round versions of the Ehrenfeucht-Fraïssé and
modal bisimulation games respectively [6]. However, note that for the pebbling comonad,
the relevant resource index is the number of pebbles, which is a memory restriction along a
computation or play of a game. This leads to RP

k as described in Example 9.

In Proposition 42 below we shall see that, given a resource-indexed arboreal category
{Ck}, each category Ck is arboreal. This allows us to exploit the ideas developed in this
paper for any choice of the resource parameter k. We start by proving the following fact:

▶ Lemma 41. Let {Ck} be a resource-indexed arboreal category and suppose that X ↣ Y is
an embedding in C. For any k, if Y ∈ Ck then also X ∈ Ck.

Proof. We start by showing that, for any path embedding P ↣ Y in C, if Y ∈ Ck then
P ∈ Ck

p. Consider the set

U := {p ∈ PY | dom(p) ∈ Ck
p}.

(Note that U is well-defined because any two representatives in the equivalence class of p

have isomorphic domains, and Ck
p is closed under isomorphisms.) As Y is the colimit in C of

the subdiagram of PY consisting of those path embeddings whose domain is in Ck
p, it follows

that
∨
U = idY in SY . If there exists a path embedding m : P ↣ Y , then m ≤

∨
U in PY

and so, by Proposition 26, m factors through some p ∈ U . In particular, there exists an
embedding P ↣ dom(p). Because dom(p) ∈ Ck

p, we see that P ∈ Ck
p.

Now, suppose that j : X ↣ Y is an embedding in C and Y ∈ Ck. Since X is path-
generated, it is the colimit in C of the small diagram PX. We show that, for any path
embedding P ↣ X, the path P must belong to Ck

p. It then follows immediately that X ∈ Ck.
Let m : P ↣ X be an arbitrary path embedding. The composite j ◦m : P ↣ Y is also a
path embedding, and so P ∈ Ck

p by the argument above. ◀

2 That is, for any embedding P ↣ Q in C with P, Q paths, if Q ∈ Ck
p then also P ∈ Ck

p .
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▶ Proposition 42. Let {Ck} be a resource-indexed arboreal category. Then Ck is an arboreal
category for each k.

Proof. If C is equipped with the stable proper factorisation system (Q,M), consider the
classes of morphisms Q′ := Q ∩ Ck and M′ := M ∩ Ck. It is not difficult to see that (Q′,M′)
is a proper factorisation system in Ck. Just observe that, whenever W → Z is a morphism
in Ck and

W ↠ X ↣ Y

is its (quotient, embedding) factorisation in C, then X ∈ Ck by Lemma 41. Using again
Lemma 41, along with the fact that embeddings are stable under pullbacks, it follows at
once that (Q′,M′) is stable (and, in fact, pullbacks of Q′-morphisms along M′-morphisms are
computed in C). With respect to this factorisation system, it is not difficult to see that the
paths in Ck are precisely the objects of Ck

p.
Moreover, Ck has all coproducts of small families of paths, and they are computed in C.

To see this, consider a set of paths {Pi ∈ Ck
p | i ∈ I} and let

∐
i∈I Pi be the coproduct in C.

If m : P ↣
∐

i∈I Pi is any path embedding in C then, because P is connected, m must factor
through some coproduct injection. In particular, there exist i ∈ I and an embedding P ↣ Pi.
Since Pi ∈ Ck

p, we get P ∈ Ck
p. As

∐
i∈I Pi is path-generated in C, it follows at once that∐

i∈I Pi ∈ Ck. Hence,
∐

i∈I Pi coincides with the coproduct of the family {Pi ∈ Ck
p | i ∈ I}

in Ck.
We conclude that Ck is a path category. Further, every object of Ck is path-generated by

definition, and paths in Ck are connected because any path in Ck is also a path in C and, as
observed above, coproducts of paths in Ck are computed in C. Therefore, Ck is arboreal. ◀

▶ Definition 43. Let {Ck} be a resource-indexed arboreal category. A resource-indexed
arboreal cover of E by C is an indexed family of comonadic adjunctions

Ck E

Lk

Rk

⊥

with corresponding comonads Gk on E.

▶ Example 44. Our key examples arise by taking the extensional category E to be Struct(σ).
For each k ≥ 0, there are evident forgetful functors

LE
k : RE

k → Struct(σ), LP
k : RP

k → Struct(σ), LM
k : RM

k → Struct(σ)

which forget the forest order, and in the case of RP
k , also the pebbling function. These

functors are all comonadic over Struct(σ). (To be precise, in the modal logic case the category
E consists of pointed structures, cf. [6].) The right adjoints build a forest over a structure
A by forming sequences of elements over the universe A, suitably labelled and with the
σ-relations interpreted so as to satisfy the conditions (E), (P) and (M) respectively. This
yields the comonads described concretely in [1, 6]. The sequences correspond to plays in the
Ehrenfeucht-Fraïssé, pebbling and modal bisimulation games respectively.

We now show how resource-indexed arboreal covers can be used to define important
notions on the extensional category. For a resource-indexed arboreal cover of E by C, with
adjunctions Lk, Rk and comonads Gk, we define three resource-indexed equivalence relations
on objects of E. The first two use the co-Kleisli category of Gk, while the third uses the
Eilenberg-Moore category.
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▶ Definition 45. Consider a resource-indexed arboreal cover of E by C, and objects a, b ∈ E.
1. We define a ⇄C

k b iff there are co-Kleisli morphisms Gka→ b and Gkb→ a.
2. We define a ∼=C

k b iff a and b are isomorphic in the co-Kleisli category of Gk.
3. We define a↔C

k b iff there is a bisimulation between Rka and Rkb in Ck.

▶ Proposition 46. Assume E has binary products. For objects a and b of E, a↔C
k b iff Rka

and Rkb are strong back-and-forth equivalent, iff Duplicator has a winning strategy in the
game G(Rka, Rkb).

Proof. This follows directly from Theorems 29 and 37, and Proposition 42 (cf. also Re-
mark 31). Just observe that, since right adjoints preserve limits, the product of Rka and
Rkb in Ck exists and can be identified with Rk(a× b). ◀

What do these notions mean in Example 44? For each of our three types of model
comparison game, there are corresponding fragments Lk of first-order logic [15, 8]:

For Ehrenfeucht-Fraïssé games, Lk is the fragment of quantifier-rank ≤ k.
For pebble games, Lk is the k-variable fragment.
For bisimulation games, Lk is the modal fragment with modal depth ≤ k.

In each case, we write ∃Lk for the existential positive fragment of Lk, and Lk(#) for the
extension of Lk with counting quantifiers [15]. For each logic L, there is the usual equivalence
on σ-structures: A ≡L B iff for all φ in L, A |= φ ⇐⇒ B |= φ.

We now have the following result from [6]:

▶ Theorem 47. For σ-structures A and B:
1. A ≡∃Lk B ⇐⇒ A ⇄C

k B.
2. A ≡Lk B ⇐⇒ A ↔C

k B.
3. A ≡Lk(#) B ⇐⇒ A ∼=C

k B.

Note that this is really a family of three theorems, one for each type of game arising from
a resource-indexed arboreal cover C as in Example 44. Thus in each case, we capture the
salient logical equivalences in syntax-free, categorical form.

We return to the general setting. Given a resource-indexed arboreal cover of E by C, we
know by comonadicity that for each k, Ck is isomorphic to the Eilenberg-Moore category for
the comonad Gk. For each a ∈ E, we can ask if it carries a Gk-coalgebra structure; that is,
whether there is a morphism α : a→ Gka satisfying the Gk coalgebra conditions. Moreover,
we can ask for the least k such that this is the case. We call this the coalgebra number of a.

The intuition behind this, as explained in [1, 6], is that the resource parameter is bounding
access to the structure, making it more difficult to have a morphism in E with codomain
Gka. So the least k for which this is possible is a significant invariant of the structure. This
intuition is born out by the following result from [1, 6].

▶ Theorem 48.
1. For the Ehrenfeucht-Fraïssé comonad, the coalgebra number of A corresponds precisely to

the tree-depth of A.
2. For the pebbling comonad, the coalgebra number of A corresponds precisely to the tree-

width of A.
3. For the modal comonad, the coalgebra number of A corresponds precisely to the modal

unfolding depth of A.
What underlies these results is the comonadicity of the arboreal covers, which means that
the coalgebras are witnesses for the various forms of tree decompositions of structures in E

corresponding to these combinatorial invariants.
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As a further illustration of the use of our axiomatic setting, we note that it is possible to
give an account of the key notion of extendability, used by Rossman in his seminal results on
homomorphism preservation [19], at this level of generality. For more details, see [4].
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Abstract
We study the dynamic membership problem for regular languages: fix a language L, read a word w,
build in time O(|w|) a data structure indicating if w is in L, and maintain this structure efficiently
under letter substitutions on w. We consider this problem on the unit cost RAM model with
logarithmic word length, where the problem always has a solution in O(log |w| / log log |w|) per
operation.

We show that the problem is in O(log log |w|) for languages in an algebraically-defined, decidable
class QSG, and that it is in O(1) for another such class QLZG. We show that languages not
in QSG admit a reduction from the prefix problem for a cyclic group, so that they require
Ω(log |w| / log log |w|) operations in the worst case; and that QSG languages not in QLZG admit a
reduction from the prefix problem for the multiplicative monoid U1 = {0, 1}, which we conjecture
cannot be maintained in O(1). This yields a conditional trichotomy. We also investigate intermediate
cases between O(1) and O(log log |w|).

Our results are shown via the dynamic word problem for monoids and semigroups, for which we
also give a classification. We thus solve open problems of the paper of Skovbjerg Frandsen, Miltersen,
and Skyum [29] on the dynamic word problem, and additionally cover regular languages.
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1 Introduction

This paper studies how to handle letter substitution updates on a word while maintaining the
information of whether the word belongs to a regular language. Specifically, we fix a regular
language L – for instance L = a∗b∗. We are then given an input word w, e.g., w = aaaa. We
first preprocess w in linear time to build a data structure, which we can use in particular to
test if w ∈ L. Now, w is edited by letter substitutions, and we want to update w and keep
track at each step of whether w ∈ L. For instance, an update can replace the third letter
of w by a b, so that w = aaba, which is no longer in L. Then another update can replace,
e.g., the fourth letter of w by a b, so that w = aabb, and now we have w ∈ L again. Our
problem, called dynamic membership, is to devise a data structure to handle such update
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operations and determine whether w ∈ L, as efficiently as possible. We study this task from
a theoretical angle, but it can also be useful in practice to maintain a Boolean condition
(expressed as a regular language) on a user-edited word.

Dynamic membership was studied for various update operations, e.g., append operations
for streaming algorithms or the sliding window model [14, 13, 15], letter substitutions for
the dynamic word problem for monoids [29], or concatenations and splits [22]. It was also
studied in the case of pattern matching, where we check if the word contains some target
pattern [9], which is also assumed to be editable. It is also connected to the incremental
validation problem, which has been studied for strings and for XML documents [5]. The
problem was also studied from the angle of dynamic complexity, which does not restrict the
running time but the logical language used to handle updates [16]; and very recently refined
to a study of the amount of parallel work required [28].

Our focus in this work is to identify classes of fixed regular languages for which dynamic
membership can be solved extremely efficiently, e.g., in constant time or sublogarithmic time.
Our update language only allows letter substitutions to the input word, in particular the
length of the input word can never be changed by updates. We make this choice because
insertions and deletions already make it challenging to efficiently maintain the word itself (see
Section 7). We work within the computational model of the unit-cost RAM, with logarithmic
cell size.

Dynamic word problem for monoids [29]. Our problem closely relates to the work by
Skovbjerg Frandsen, Miltersen, and Skyum on the dynamic word problem for monoids [29]:
fix a finite monoid, read a word which is a sequence of monoid elements, and maintain under
substitution updates the composition of these elements according to the monoid’s internal
law. Indeed, the dynamic membership problem for a language L reduces to the dynamic word
problem for any monoid that recognizes L; but the converse is not true. Hence, studying
the dynamic word problem for monoids is coarser than studying the dynamic membership
problem for languages, although it is a natural first step and is already very challenging.

In the context of monoids, Skovbjerg Frandsen et al. [29] propose a general algorithm for
the dynamic word problem that can handle each operation in time O(log n/ log log n), for
n the length of the word. This is a refinement of the elementary O(log n) algorithm that
decomposes the word as a balanced binary tree whose nodes are annotated with the monoid
image of the corresponding infix. They show that the O(log n/ log log n) bound is tight for
some monoids, namely noncommutative groups, and a generalization of them defined via an
equation. This is obtained by a reduction from the so-called prefix-Zd problem, for which an
Ω(log n/ log log n) lower bound [12] is known in the cell probe model [17]. We will reuse this
lower bound in our work.

They also show that the problem is easier for some monoids. For instance, commutative
monoids can be maintained in O(1), simply by maintaining the number of element occurrences.
They also show a trickier O(log log n) upper bound for group-free monoids: this is based on a
so-called Krohn-Rhodes decomposition [27] and uses a predecessor data structure implemented
as a van Emde Boas tree [34]. However, there are non-commutative monoids for which the
problem is in O(1) (as we will show), and there is still a gap between group-free monoids
(with an upper bound in O(log log n)) and the monoids for which the Ω(log n/ log log n) lower
bound applies. This was claimed as open in [29] and not addressed afterwards. While there
is a more recent study by Pǎtraşcu and Tarniţǎ [23], it focuses on single-bit memory cells.
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Our contributions. In this paper, we attack these problems using algebraic monoid theory.
This unlocks new results: first on the dynamic word problem for monoids, where we extend
the results of [29], and then on the dynamic membership problem for regular languages.

We start with our results on the dynamic word problem for monoids, which are summarized
in Figure 1 along with a table of the main classes in Table 1. First, in Section 3, we show how
a more elaborate O(log log n) algorithm can cover all monoids to which the Ω(log n/ log log n)
lower bound of [29] does not apply: we dub this class SG and characterize it by the equation
xω+1yxω = xωyxω+1, for any elements x and y, where ω denotes the idempotent power. Our
algorithm shares some ideas with the O(log log n) algorithm of [29], in particular it uses van
Emde Boas trees, but it faces significant new challenges. For instance, we can no longer use
a Krohn-Rhodes decomposition, and proceed instead by a rather technical induction on the
J -classes of the monoid. Thus, we have an unconditional dichotomy between monoids in
SG, which are in O(log log n), and monoids outside of SG, which are in Θ(log n/ log log n).

Second, in Section 4, we generalize the O(1) result on commutative monoids to the monoid
class ZG [4]. This class is defined via the equation xω+1y = yxω+1, i.e., only the elements
that are part of a group are required to commute with all other elements. We show that the
dynamic word problem for these monoids is in O(1): we use an algebraic characterization to
reduce them to commutative monoids and to monoids obtained from nilpotent semigroups,
for which we design a simple but somewhat surprising algorithm. We also show a conditional
lower bound: for any monoid M not in ZG, we can reduce the prefix-U1 problem to the
dynamic word problem for M . This is the problem of maintaining a binary word under letter
substitution updates while answering queries asking if a prefix contains a 0. It can be seen
as a priority queue (slightly weakened), so we conjecture that no O(1) data structure for
this problem exists in the RAM model. If this conjecture holds, ZG is exactly the class of
monoids having a dynamic word problem in O(1).

We then extend our results in Section 5 from monoids to the dynamic word problem
for semigroups. Our results for SG extend directly: the upper bound on SG also applies
to semigroups in SG, and semigroups not in SG must contain a submonoid not in SG so
covered by the lower bound. For ZG, there are major complications, and we must study
the class LZG of semigroups where all submonoids are in ZG. Semigroups not in LZG
are covered by our conditional lower bound on prefix-U1, but it is very tricky to show the
converse, i.e., that imposing the condition on LZG suffices to ensure tractability. We do so
by showing tractability for ZG ∗ D, the semigroups generated by semidirect products of ZG
semigroups and so-called definite semigroups, and by showing in [3] that ZG ∗ D = LZG, a
locality result of possible independent interest.

Next, we extend our results in Section 6 from semigroups to languages. This is done
using the notion of stable semigroup [6, 7], denoted as the Q operator; and specifically the
class QSG of regular languages where the stable semigroup of the syntactic morphism in
is SG, and the class QLZG where all local monoids of the stable semigroup of the syntactic
morphism are in ZG. We obtain:

▶ Theorem 1.1. Let L be a regular language, and consider the dynamic membership problem
for L on the unit-cost RAM with logarithmic word length under letter substitution updates:

If L is in the class QLZG, then the problem is in O(1).
If L is not in the class QLZG but is in the class QSG, then the dynamic membership
problem is in O(log log n) with n the length of the word. Further, solving it in O(1) time
gives an O(1) implementation of a structure for the prefix-U1 problem.
If L is not in the class QSG, then the dynamic membership problem is in
Θ(log n/ log log n).

ICALP 2021



116:4 Dynamic Membership for Regular Languages

We last present in Section 7 some extensions and questions for future work: preliminary
observations on the precise complexity of languages in QSG \ QLZG (as the O(log log n)
bound is not shown to be tight), the complexity of deciding which case of the theorem applies,
the support for insertion and deletion updates, and the support for infix queries. Because of
space constraints, the complete proofs of results are deferred to the full version [2].

2 Preliminaries and Problem Statement

Computation model. We work in the RAM model with unit cost, i.e., each cell can store
integers of value at most polynomial in O(|w|) where |w| is the length of the input, and
arithmetic operations (addition, successor, modulo, etc.) on two cells take unit time. As the
integers have at most polynomial value, the memory usage is also polynomially bounded.

We consider dynamic problems where we are given an input word, preprocess it in linear
time to build a data structure, and must then handle update operations on the word (by
reflecting them in the data structure), and query operations on the current state of the word
(using the data structure). The complexity of the problem is the worst-case complexity of
handling an update or answering a query.

Like in [29], the lower bounds that we show actually hold in the coarser cell probe
model, which only considers the number of memory cells accessed during a computation.
Furthermore, they hold even without the assumption that the preprocessing is linear.

Given two dynamic problems A and B, we say that A has a (constant-time) reduction
to B if we can implement a data structure for problem A having constant-time complexity
when using as oracle constantly many data structures for problem B (built during the
preprocessing). In other words, queries and updates on the structure for A can perform
constant-time computations using its own memory, but they can also use the data structures
for B as an oracle, i.e., perform a constant number of queries and updates on them, which are
considered to run in O(1). We similarly talk of a dynamic problem having a (constant-time)
reduction to multiple problems, meaning we can use all of them as oracle. If problem A

reduces to problems B1, . . . , Bn, then any complexity upper bound that holds on all problems
B1, . . . , Bn also holds for A, and any complexity lower bound on A extends to at least one
of the Bi.

Problem statement. Our problems require some algebraic prerequisites. We refer the
reader to the book of Pin [25] and his lecture notes [26] for more details. A semigroup is a
set S equipped with an associative composition law (written multiplicatively), and a monoid
is a semigroup M with a neutral element, i.e., an element 1 such that 1x = x1 = x for all
x ∈ M ; the neutral element is then unique. One example of a monoid is the free monoid Σ∗

defined for a finite alphabet Σ and consisting of all words with letters in Σ (including the
empty word), with concatenation as its law. Except for the free monoid, all semigroups and
monoids considered are finite.

A semigroup element x ∈ S is idempotent if xx = x. For x ∈ S, we denote by ω the
idempotent power of x, i.e., the least positive integer such that xω is idempotent. A zero
for S is an element 0 ∈ S such that 0x = x0 = 0 for all x ∈ S: if it exists, it is unique. Given
a semigroup S, we write S1 for the monoid obtained by adding a fresh neutral element to S

if it does not already have one.
A morphism from a semigroup S to a semigroup S′ is a map µ : S → S′ such that for

any x, y ∈ S, we have µ(xy) = µ(x)µ(y). A morphism from a monoid M to a monoid M ′

must additionally verify that µ(1) = 1′, for 1 and 1′ the neutral elements of M and M ′

respectively.
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The direct product of two monoids M1 and M2 is M1×M2 with componentwise composition;
it is also a monoid. A quotient of a monoid M is a monoid M ′ such that there is a surjective
morphism from M to M ′. A submonoid is a subset of a monoid which is also a monoid.
The analogous notions for semigroups are defined in the expected way. A pseudovariety of
monoids (resp., semigroups) is a class of monoids (resp., semigroups) closed under direct
product, quotient and submonoid (resp., subsemigroup). The pseudovariety of monoids
(resp., semigroups) generated by a class V of monoids (resp., of semigroups) is the least
pseudovariety closed under these operations and containing V. As we are working with finite
semigroups and monoids, we refer to pseudovarieties simply as varieties.

We consider dynamic problems where we maintain a word w on a finite alphabet Σ,
every letter being stored in a cell. We allow letter substitution updates of the form (i, a) for
1 ≤ i ≤ |w| and a ∈ Σ. The letter substitution update (i, a) replaces the i-th letter of w

by a; the size |w| of the word never changes. Given the input word w, we first preprocess
it in time O(|w|) to build a data structure. The data structure must then support update
operations for letter substitution updates, and some query operations (to be defined below).
The complexity that we measure is the worst-case complexity of an update operation or query
operation, as a function of |w|. Our definition does not limit the memory used. However, all
our upper complexity bounds actually have memory usage in O(|w|). Further, all our lower
bounds hold even when no assumption is made on the memory usage.

We focus on three related dynamic problems, allowing different query operations. The
first is the dynamic word problem for monoids: fix a monoid M , the alphabet Σ is M , and
the query returns the evaluation of the current word w, i.e., the product of the elements
of w (it is an element of M). This is the problem studied in [29]. The second is the dynamic
word problem for semigroups, which is the same but with a semigroup, and assuming that
|w| > 0. The third is the dynamic membership problem for regular languages: we fix a regular
language L on the alphabet Σ, and the query checks whether the current word belongs to L.

We study the data complexity of these problems in the rest of this paper, i.e., the
complexity expressed as a function of w, with the monoid, semigroup, or language being fixed.
Let us first observe that, for monoids and more generally for semigroups, the usual algebraic
operators of quotient, subsemigroup, and direct product, do not increase the complexity of
the problem:

▶ Proposition 2.1. Let S and T be finite semigroups. The dynamic word problem of
subsemigroups or quotients of S reduces to the same problem for S, and the dynamic word
problem of S × T reduces to the same problem for S and T .

Hard problems. All our lower bounds are obtained by reducing from the problem prefix-M ,
for M a fixed monoid. In this problem, we maintain a word of M∗ under letter substitution
updates, and handle prefix queries: given a prefix length, return the evaluation of the prefix
of that length.

In particular, for d ≥ 2, we consider the problem prefix-Zd for Zd the cyclic group of
order d, i.e., Zd = {0, . . . , d − 1} with addition modulo d, where the evaluation of prefix is
the sum of its elements modulo d. The following lower bound is known already in the cell
probe model:

▶ Theorem 2.2 ([12, 29]). For any fixed d ≥ 2, any structure for prefix-Zd on a word of
length n has complexity Ω(log n/ log log n).

We also consider the problem prefix-U1, where U1 = {0, 1} is the multiplicative monoid
whose composition is the logical AND, i.e., prefix queries check if the prefix contains an
occurrence of 0. Equivalently, we must maintain a subset S of a universe {1, . . . , n} (intuitively
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n is the length of the word) under insertions and deletions, and support threshold queries that
ask, given 0 ≤ i ≤ n, whether S contains some element which is ≤ i (i.e., if some position
before i has a 0). The prefix-U1 problem can be solved in O(log log n) [33] with a priority
queue data structure, or even in expected O(

√
log log n) if we allow randomization [18].

Note that prefix-U1 is slightly weaker than a priority queue as we can only compare the
minimal value to a value given as input. We do not know of lower bounds on prefix-U1, but
conjecture [20] that it cannot be solved in O(1):

▶ Conjecture 2.3. There is no structure for prefix-U1 with complexity O(1).

Note that the best algorithm for prefix-U1 works by sorting small sets of large integers. This
takes linear time in the cell probe model, so does not rule out the existence of an O(1)
priority queue [33]. Hence, a lower bound for prefix-U1 would need to apply to the RAM
model specifically, which would require new techniques.

Our last hard problem is prefix-U2 where U2 is the monoid {1, a, b} with composition
law xy = y for x, y ∈ {a, b}, i.e., queries check if the last non-neutral element is a or b (or
nothing). By adapting known results on the colored predecessor problem [24], we have:

▶ Theorem 2.4 (Adapted from [24]). Any structure for prefix-U2 on a word of length n must
be in Ω(log log n).

General algorithms. Of course, the “hard” prefix problems, and the three problems that
we study, can all be solved in O(|w|) by re-reading the whole word at each update. We can
improve this to O(log |w|) by maintaining a balanced binary tree on the letters of the word,
with each node of the tree carrying the evaluation in the monoid of the letters reachable
from that node. Any letter substitution update on the word can be propagated up to the
root in logarithmic time, and the annotation of the root is the evaluation of the word. This
algorithm has been implemented in practice [22]. A finer bound is given in [29] using a
folklore technique of working with (log n)-ary trees rather than binary trees, and using the
power of the RAM model. We recall it here for monoids (but it applies to all three problems):

▶ Theorem 2.5 ([29]). For any fixed monoid M , the dynamic word problem and prefix
problem for M are in O(log n/ log log n).

Our goal in this paper is to solve the dynamic word problem and dynamic membership
problem more efficiently for specific classes of monoids, semigroups, and languages. We start
our study with monoids in the next two sections, by studying the varieties SG and ZG.

3 Dynamic Word Problem for Monoids in SG

We define the class SG of monoids by the equation xω+1yxω = xωyxω+1 for all x, y. It
incidentally occurs in [10, Theorem 3.1], but to our knowledge was not otherwise studied.
The name SG means swappable groups. Intuitively, a monoid M is in SG iff, for any two
elements r, t ∈ M belonging to the same subgroup of M , we can swap them, i.e., rst = tsr

for all s ∈ M . We first recall the lower bound from [29] on the dynamic word problem for
monoids not in SG, and then show an upper bound for monoids in SG.

Lower bound. The monoids not in SG are in fact those covered by the lower bound of [29].
Namely, we have the following, implying the Ω(log n/ log log n) lower bound by Theorem 2.2:

▶ Theorem 3.1 ([29], Theorem 2.5.1). For any monoid M not in SG, there exists d ≥ 2
such that the prefix-Zd problem reduces to the dynamic word problem for M .
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Upper bound. The rest of this section presents our upper bound on monoids in SG. In
fact, we show a more general claim on the dynamic word problem for semigroups in SG, i.e.,
those satisfying the equation of SG. This covers in particular the monoids of SG:

▶ Theorem 3.2. The dynamic word problem for any semigroup in SG is in O(log log n).

This result extends the result of [29] on group-free monoids, because SG contains all
aperiodic monoids and all commutative monoids. Indeed, an aperiodic monoid satisfies
the equation xω+1 = xω, and then xω+1yxω = xωyxω = xωyxω+1. Besides, commutative
monoids clearly satisfy the equation. Of course, SG captures monoids not covered by [29],
e.g., products of a commutative monoid and an aperiodic monoid.

The result of [29] uses van Emde Boas trees [34], which we extend to store values in an
alphabet Σ. Fixing an alphabet Σ, a vEB tree (or vEB) is a data structure parametrized by
an integer n called its span, which stores a set X ⊆ {1, . . . , n} and a mapping µ : X → Σ,
and supports the following operations: inserting an integer x ∈ {1, . . . , n} \ X with a
label µ(x) := a; retrieving the label of x ∈ {1, . . . , n} if x ∈ X (or a special value if x /∈ X);
removing an integer x ∈ X and its label; finding the next integer of X that follows an input
x ∈ {1, . . . , n} (or a special value if none exists); and finding the previous integer.

We can implement vEBs so that these five operations run in O(log log n) time in the
worst case, and so that a vEB can be constructed in linear time from an ordered list.

We use vEBs in our inductive proof to represent words with “gaps”: a vEB represents the
word obtained by concatenating the labels of the elements of X in order. For a semigroup S

and span n ∈ N, the dynamic word problem on vEBs for S is to maintain a vEB T of span n

on alphabet S under insertions and deletions, and to answer queries asking the evaluation
in S of the word currently represented by T . As before, the complexity is the worst-case
complexity of an insertion, deletion, or query, measured as a function of the span n (which
never changes). The data structure for this problem must be initialized during a preprocessing
phase on the initial vEB T , which must run in O(n). Note that when T is empty then its
evaluation is not expressible in the semigroup S: we then return a special value.

It is then clear that Theorem 3.2 follows from its generalization to vEBs, as a word in
the usual sense can be converted in linear time to a vEB where X = {1, . . . , n}:

▶ Theorem 3.3. Let S be a semigroup in SG. The dynamic word problem for S on a vEB
of span n is in O(log log n).

We show this result in the rest of the section. We assume without loss of generality
that S has a zero, as otherwise we can simply add one. We first introduce some algebraic
preliminaries, and then present the proof, which is an induction on J -classes of the semigroup.

Preliminaries and proof structure. The J -order of S is the preorder ≤J on S defined by
s ≤J s′ if S1sS1 ⊆ S1s′S1, recalling that S1 is the monoid where we add a neutral element
to S if it does not already have one. The equivalence classes of the symmetric closure of this
preorder are called J -classes. We lift the J -order to J -classes C, C ′ by writing C ≤J C ′ if
u ≤J v for all u ∈ C and u′ ∈ C ′. A J -class is maximal if it is maximal for this order.

We show Theorem 3.3 by induction on the number of J -classes of the semigroup. More
precisely, at every step, we consider a maximal J -class C, and remove it by reducing to the
semigroup S \ C. Remember that the number of classes only depends on the fixed semigroup
S, so it is constant. Thus, as the constant number of operations on vEBs at each class each
take time O(log log n), the overall bound is indeed in O(log log n).
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The base case of the induction is that of a semigroup with a single J -class; from our
assumption that the semigroup has a zero, that J -class must then consist of the zero, i.e., we
have the trivial monoid {0}, and the image is always 0 (or undefined if the word is empty).

We now show the induction step of Theorem 3.3. Take a semigroup S with more than one
J -class, and fix a maximal J -class C of S: we know that S \ C is not empty. What is more:

▷ Claim 3.4. For any x, y of S with xy ∈ C, then x ∈ C and y ∈ C.

Thus, whenever a combination of elements “falls” outside of the maximal class C, then it
remains in S \ C; and we can see S \ C as a semigroup, which still has a zero, and has strictly
less J -classes. So we will study how to reduce to S \ C. We now make a case disjunction
depending on whether C is regular, i.e., whether it contains an idempotent element.

Non-regular maximal classes. This case is easy, because products of two or more elements
of C are never in C. To formalize this property, for a maximal J -class C of S, we call a
word w on S∗ pair-collapsing for C if the product of any two adjacent letters of w is in S \ C.
We show:

▶ Lemma 3.5. Let C be a maximal J -class. If C is non-regular, then any word is pair-
collapsing: for any x, y ∈ C, we have xy ∈ S \ C.

We can then show the following, which we will reuse for regular maximal classes:

▶ Lemma 3.6. Let S be a semigroup and let C be a maximal J -class of S. Consider the
dynamic word problem for S on vEBs of some span n where we assume that, at every step,
the represented word is pair-collapsing for C. Then that problem reduces to the dynamic word
problem for S \ C on vEBs of span n.

Thanks to Lemma 3.5, this allows us to settle the case of a non-regular maximal J -class,
using the induction hypothesis to maintain the problem on S \ C.

Case of a regular maximal class. We now consider a maximal J -class C that is regular.
Consider the semigroup C0 := C ∪ {0} for a fresh zero 0, i.e., the multiplication is that of C

except that x0 = 0x = 0 for all x ∈ C0, and that xy = 0 in C0 for all x, y ∈ C for which the
product xy in S is not an element of C. Note that 0 is unrelated to the zero which S was
assumed to have; intuitively, the 0 of C0 stands for combinations of elements that are not
in C. Another way to see C0 is as the quotient of S by the ideal S \ C, i.e., we identify all
elements of S \ C to 0. By Prop. 4.35 of Chapter V of [26], we know that C0 is a so-called
0-simple semigroup. By the Rees-Sushkevich theorem (Theorem 3.33 of [26]), S is isomorphic
to some Rees matrix semigroup with 0. This is a semigroup M0(G, I, J, P ) with I and J two
non-empty sets, G a group called the structuring group, and P a matrix indexed by J × I

having values in G0. The elements of the semigroup are the elements of I × G × J and the
element 0, with x0 = 0x = 0 for any element x ∈ I × G × J , and for (i, g, j) and (i′, g′, j′)
two elements of I × G × J , their product is 0 if pj,i′ = 0, and (i, gpj,i′g′, j′) otherwise.

With this representation, the idea is to collapse together the maximal runs of consecutive
elements of C0 whose product is not 0, i.e., does not “fall” outside of C. Once this is done,
the product of two elements always falls in S \ C, so we can conclude using Lemma 3.6.

However, we cannot do this in a naive fashion. For instance, if we insert a letter in the
vEB in the middle of such a maximal run, we cannot hope to split the run and know the
exact group annotation of the two new runs – this could amount to solving a prefix-Zd

problem. Instead, we must now use the fact that S is in SG, and derive the consequences
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of the equation in terms of the Rees-Sushkevich representation. Intuitively, the equation
ensures that the structuring group G is commutative, and that annotations in G can “move
around” relative to other elements in S without changing the evaluation. Formally:

▷ Claim 3.7. The structuring group G is commutative.

▷ Claim 3.8. Let r, s, t ∈ S∗ and (i, g, j), (i′, g′, j′) ∈ I×G×J . Write w = r(i, g, j)s(i′, g′, j′)t
and w′ = r(i, gg′, j)s(i′, 1, j′)t where 1 is the neutral element of G. Then eval(w) = eval(w′).

This allows us to reduce the dynamic word problem on S to the same problem where we
assume that the word is always pair-collapsing:

▷ Claim 3.9. The dynamic word problem for S on vEBs (of some span n) reduces to the
same problem on vEBs of span n where we additionally require that, at every step, the
represented word is pair-collapsing for the maximal J -class C.

Proof sketch. We maintain a mapping where all maximal runs of word elements evaluating
to C are collapsed to a single element, which we can evaluate following the Rees-Sushkevich
representation. The tricky case is whenever an update breaks a maximal run into two parts:
we cannot recover the G-component of the annotation of each part, but we use Claim 3.8 to
argue that we can simply put it on the left part without altering the evaluation in S. ◁

This claim together with Lemma 3.6 implies that the dynamic word problem for S reduces
to the same problem for S \ C, for which we use the induction hypothesis. This establishes
the induction step and concludes the proof of Theorem 3.2.

4 Dynamic Word Problem for Monoids in ZG

We pursue our study of the dynamic word problem for monoids with the class ZG, introduced
in [4] and defined by the equation xω+1y = yxω+1 for all x, y. This asserts that elements
of the form xω+1, which are the ones belonging to a subgroup of the monoid, are central,
i.e., commute with all other elements. By the equations, and recalling that xω+1 = xωxω+1,
clearly ZG ⊆ SG. In this section, we show an O(1) upper bound on the dynamic word
problem for monoids in ZG, and a conditional lower bound for any monoid not in ZG.

Upper bound. Recall the result on commutative monoids from [29]:

▶ Theorem 4.1 ([29]). The dynamic word problem for any commutative monoid is in O(1).

Our goal is to generalize it to the following result:

▶ Theorem 4.2. The dynamic word problem for any monoid in ZG is in O(1).

This generalizes Theorem 4.1 (as commutative monoids are clearly in ZG) and covers
other monoids, e.g., the monoid M = {1, a, b, ab, 0} with a2 = b2 = ba = 0, where it intuitively
suffices to track the position of a’s and b’s and compare them if there is only one of each.

We now prove Theorem 4.2. A semigroup S is nilpotent if it has a zero and there exists
k > 0 such that Sk = {0}, i.e., all products of k elements are equal to 0. Alternatively [26,
Chapter X, Section 4], S is nilpotent iff it satisfies the equation xωy = yxω = xω. We then
consider the monoids of the form S1 where S is nilpotent – an example of this is the monoid
M described above. The variety generated by such monoids is called MNil and was studied
by Straubing [30]. We can show:
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▶ Proposition 4.3. For any nilpotent S, the dynamic word problem for S1 is in O(1).

Proof sketch. We maintain a (non-sorted) doubly-linked list L of the positions of the word w

that contain a non-neutral element. As S is nilpotent, the evaluation of w is 0 unless constantly
many non-neutral letters remain, which we can then find in O(1) with L. ◀

In [3] we show that ZG is generated by such monoids S1 and by commutative monoids:

▶ Proposition 4.4 (Corollary 3.6 of [3]). The variety ZG is generated by commutative monoids
and monoids of the form S1 for S a nilpotent semigroup.

In view of Theorem 4.1 and Proposition 4.3, the dynamic word problem is in O(1) for
the semigroups that generate the variety ZG (Proposition 4.4). Theorem 4.2 then follows
from Proposition 2.1.

Lower bound. We now show a conditional lower bound on the dynamic word problem for
monoids outside of ZG. To do this, we will reduce from the prefix-U1 problem:

▶ Theorem 4.5. For any monoid M in SG \ ZG, the prefix-U1 problem reduces to the
dynamic word problem for M .

Proof sketch. We consider the variety ZE [1] of monoids whose idempotents are central,
i.e., the variety defined by the equation xωy = yxω. We show that ZG = SG ∩ ZE. We
then show that, for any monoid not in ZE, we can reduce from the prefix-U1 problem by
encoding the elements 0 and 1 of U1 using carefully chosen elements of the monoid. ◀

Using Conjecture 2.3, and together with Theorem 3.1 for the monoids not in SG, this
implies a conditional super-constant lower bound for monoids outside ZG.

5 Dynamic Word Problem for Semigroups

We have classified the complexity of the dynamic word problem for monoids: it is in
O(log log n) for monoids in SG, in O(1) for monoids in ZG, in Ω(log n/ log log n) for monoids
not in SG, and non-constant for monoids not in ZG conditionally to Conjecture 2.3. In this
section, we extend our results from monoids to semigroups.

Submonoids and local monoids. A submonoid of a semigroup S is a subset of the semigroup
which is stable under its composition law and is a monoid. We first notice via Proposition 2.1
that a semigroup that contains a hard submonoid is also hard:

▷ Claim 5.1. The dynamic word problem for any submonoid of a semigroup S reduces to
the same problem for S.

We will investigate if studying the submonoids of a semigroup suffices to understand the
complexity of its dynamic word problem. To do so, we focus on a certain kind of submonoids:
the local monoids. A submonoid N of S is a local monoid if there exists an idempotent
element e of S such that N = eSe, i.e., N is the set of elements that can be written as ese

for some s ∈ S. The point of local monoids is that they are maximal in the sense that every
submonoid T of S is a submonoid of a local monoid: indeed, taking 1 the neutral element
of T , all elements of T can be written as 1T1 ⊆ 1S1 and 1S1 is a local monoid. For V a
variety of monoids, we denote by LV the variety of semigroups such that all local monoids
are in V. As we explained, this is equivalent to imposing that all submonoids are in V (since
varieties are closed under the submonoid operation).
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Case of SG. We now revisit our results on monoids to extend them to semigroups, starting
with SG. We denote by LSG the variety of semigroups whose local monoids are in SG. We
show that a semigroup where all local monoids are in SG must itself be in SG:

▷ Claim 5.2. We have LSG = SG as varieties of semigroups.

Semigroups in SG are already covered by our upper bound (Theorem 3.2), and semigroups
not in LSG have a submonoid not in SG, so we can use Claim 5.1 and Theorem 3.1. Hence:

▶ Corollary 5.3. Let S be a semigroup. If S is in SG, then the dynamic word problem for S

is in O(log log n). Otherwise, the dynamic word problem for S is in Ω(log n/ log log n).

Case of ZG. The variety ZG is not equal to LZG. For instance, let S be the syntactic
semigroup of a∗b∗, that is the semigroup {a, b, ab, 0} defined with a2 = a, b2 = b and ba = 0.
It is not in ZG, since a and b are idempotents that do not commute. However, its local
monoids are either trivial or U1, so they are all in ZG, showing that this semigroup is in LZG.
Still, we can extend our characterization from monoids to semigroups up to studying LZG:

▶ Theorem 5.4. Let S be a semigroup. If S is in LZG, then the dynamic word problem
for S is in O(1). Otherwise, unless prefix-U1 is in O(1), the dynamic word problem for S is
not in O(1).

The second part of the claim is by Claim 5.1 and Theorem 3.1, but the first part is much
trickier. We use a characterization of LZG as a semidirect product ZG ∗ D, which follows
from a very technical locality result on ZG [3], and then design an algorithm for the dynamic
word problem for semigroups in ZG ∗ D. We prove Theorem 5.4 in the rest of this section.

Given two semigroups S and T , a semigroup action of S on T is defined by a map act : S ×
T → T such that act(s1, act(s2, t)) = act(s1s2, t) and act(s, t1t2) = act(s, t1)act(s, t2). We
then define the product ◦act on the set T × S as follows: for all s1, s2 in S and t1, t2 in T , we
have: (t1, s1) ◦act (t2, s2) := (t1act(s1, t2), s1s2). The set T × S equipped with the product
◦act is a semigroup called the semidirect product of S by T , denoted T ◦act S.

We say that a semigroup D is definite if there exists an integer k ∈ N such that for all
y, x1, . . . , xk in D, we have yx1 · · · xk = x1 · · · xk. Alternatively, a semigroup is definite iff it
satisfies the equation yxω = xω [31, Proposition 2.2] for all x, y in D. In particular, every
nilpotent semigroup is definite. We write D for the variety of definite semigroups.

Our alternative definition of LZG will be the variety of semigroups ZG ∗ D generated by
semigroups that are the semidirect product of a ZG monoid by a definite semigroup.

The variety ZG ∗ D of semigroups is not immediately related to the variety LZG defined
above. One can easily show that ZG ∗ D ⊆ LZG, but the other direction is much more
challenging to establish. We show this as a so-called locality theorem, which we defer to a
separate paper [3] because it uses different tools and is of possible independent interest:

▶ Theorem 5.5 ([3], Theorem 1.1). We have: ZG ∗ D = LZG.

To conclude the proof of Theorem 5.4, by the locality theorem above, it suffices to solve the
dynamic word problem for semigroups in ZG ∗ D. By Proposition 2.1, it suffices to consider
the semigroups that generate the variety. We do this below, establishing Theorem 5.4:

▶ Proposition 5.6. Let S be a definite semigroup, let T be a semigroup of ZG, and let act
be a semigroup action of S on T . The dynamic word problem for the semigroup T ◦act S

reduces to the same problem for T .

Proof sketch. We express the direct product of the letters of the input word as a product
involving elements of T and prefix sums of elements of S, which we can maintain in O(1). ◀

ICALP 2021



116:12 Dynamic Membership for Regular Languages

6 Dynamic Word Problem for Languages

We now turn to the dynamic membership problem for regular languages, and show Theorem 1.1
using the three previous sections and some extra algebraic results.

Connection to the dynamic word problem. A regular language L is recognized by a finite
monoid if there exists a morphism η : Σ∗ → M such that L = η−1(η(L)). The syntactic
congruence of L is the equivalence relation on Σ∗ where u, v ∈ Σ∗ are equivalent iff, for each
r, t ∈ Σ∗, either rut ∈ L and rvt ∈ L, or rut /∈ L and rvt /∈ L. The syntactic monoid M of L

is the quotient of Σ∗ by the syntactic congruence of L, and the syntactic morphism is the
morphism mapping Σ∗ to M ; the syntactic morphism witnesses that the syntactic monoid
recognizes L.

The dynamic membership problem for a language clearly reduces to the dynamic word
problem for its syntactic monoid. However, the converse is not true: the language L :=
(aa)∗ba∗ has a syntactic monoid M that can be shown to be outside of SG, but we can solve
dynamic membership for L in O(1) by counting the b’s at even and odd positions. Intuitively,
M has a neutral element 1 so that the dynamic word problem for M has a reduction from
prefix-Z2, but 1 is not achieved by a letter of the alphabet so dynamic membership for L is
easier.

We extend our results to languages using the notion of stable semigroup [6, 7]. This
allows us to remove the neutral element (as it is a semigroup not a monoid) and ensures that
all semigroup elements can be achieved by subwords of some constant length (the stability
index).

Formally, let L be a regular language and η : Σ∗ → M its syntactic morphism. The
powerset of M is the monoid whose elements are subsets of M and for E, F ⊆ M , the product
EF is {xy | x ∈ E, y ∈ F}. The stability index of L is the idempotent power s of η(Σ) in the
powerset monoid. Intuitively, this choice of s ensures that, for any two words w1, w2 ∈ Σs,
the value η(w1w2) of their concatenation in the monoid can be achieved by another word
of Σs, i.e., η(w1w2) = η(w) for some w ∈ Σs. Then η(Σs) is a subsemigroup of M , because
(η(Σs))2 = η(Σs): we call it the stable semigroup of L. For any class of semigroups V, we
denote by QV the class of languages whose stable semigroup is in V.

Upper bounds. We first show that the dynamic membership problem for a regular language
reduces more specifically to the dynamic word problem for its stable semigroup:

▶ Proposition 6.1. Let L be a regular language. The dynamic membership problem for L

reduces to the dynamic word problem for the stable semigroup of L.

Proof sketch. We partition the word of L into chunks of size s (plus one of size ≤ s) for s

the stability index, and feed them to the data structure for the stable semigroup of L. ◀

By Corollary 5.3 and Theorem 5.4, this implies that languages in QSG (resp., in QLZG)
have a dynamic membership problem in O(log log n) (resp., in O(1)).

Lower bounds. We now show that languages whose stable semigroup is not in LV admit a
reduction from the dynamic word problem of a monoid of V.

▶ Proposition 6.2. Let V be a variety of monoids and let L be a regular language not
in QLV. There is a monoid not in V whose dynamic word problem reduces to the dynamic
membership problem for L.
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Proof sketch. If L is not in QLV, then its stable semigroup contains a submonoid M not
in V, and all elements can be achieved by a block of s letters for s the stability index. ◀

Again by Corollary 5.3 and Theorem 5.4, we deduce that languages outside of QSG have
complexity at least Ω(log n/ log log n). Further, assuming Conjecture 2.3, and languages
outside of QLZG do not have complexity O(1).

7 Extensions, Problem Variants, and Future Work

We have presented our results on the dynamic word problem for monoids and semigroups,
and on the dynamic membership problem for regular languages. We conclude the paper
by a discussion of problems for further study. We first discuss the question of intermediate
complexities between O(1) and O(log log n). We then study the complexity of deciding which
case applies as a function of the target language, semigroup, or monoid. We last explore the
issue of handling insertions and deletions on the input word, and of supporting infix queries.

Intermediate complexities. Our O(log log n) upper bound in Theorem 3.2 and its variants
may not be tight. Still, we can identify a language LU2 in QSG \ QLZG for which we show
that the dynamic membership problem is in Θ(log log n) (even allowing randomization and
allowing a probably correct answer), because the prefix-U2 problem reduces to it.

We can also identify a language of QSG \ QLZG that reduces to prefix-U1 and so can be
solved in expected O(

√
log log n). This shows that languages in QSG \ QLZG have different

complexity regimes, at least when allowing randomization.

▶ Proposition 7.1. There is a language LU2 in QSG\QLZG which is equivalent to prefix-U2
under constant-time reductions, and a language LU1 in QSG \ QLZG which is equivalent to
prefix-U1 under constant-time reductions.

Deciding which case applies. A natural question about our results is the question of
efficiently identifying, given a regular language, which of the cases of Theorem 1.1 applies, or
in particular of determining, given an input monoid or semigroup, if it is in SG, or in ZG.
This depends on how the input is represented. If we are given a monoid explicitly (as a table
of its operations), then the equations of ZG and of SG can be checked in polynomial time.
If the monoid is represented more concisely as the transition monoid of some automaton,
then the verification can be performed in PSPACE. We do not know if the problems are
PSPACE-hard, though this seems likely at least for SG because of its proximity to aperiodic
monoids [8]. We leave open the precise complexities of this task, in particular for the L and
Q operators.

Handling insertions and deletions. Another natural question is to handle insertion and
deletion updates, i.e., inserting letter a at position k transforms the word w1 · · · wk−1wk · · · wn

into w1 · · · wk−1awk · · · wn, and deleting at position k does the opposite. Any regular language
can be maintained under such updates in O(log n) using a Fenwick tree, but it makes the
problem much harder for most languages. For example, if the alphabet has two letters a

and b, just testing if the word that we maintain contains an a requires Ω(log n/ log log n)
by [21]. This is why we do not study such updates in this work. Interestingly, notice that our
algorithm in Theorem 3.3 supports insertions and deletions on words represented as vEBs,
but the semantics are different (they use explicit positions in a fixed range).
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Infix queries. A natural extension of dynamic membership for a regular language L is the
dynamic infix membership problem, where we can query any infix of the word (identified by
its endpoints) to ask whether it is in L. The O(log n/ log log n) algorithm of Theorem 2.5
supports this, and so can the O(log log n) algorithm of [29] for group-free monoids. However,
the infix problem can be harder. Consider for instance the language L2 on {a, b} of words
with an even number of a’s. Dynamic membership has complexity O(1) because L2 is
commutative, but infix queries (or even prefix queries) require Ω(log n/ log log n) as prefix-Z2
reduces to it.

We leave open the study of the complexity of the infix problem. We note, however,
that this problem for a language L can be studied as the dynamic membership problem
for a regular language defined from L. So our results cover the infix problem via this
transformation; we leave to future work a characterization of the resulting classes.

▷ Claim 7.2. For any fixed regular language L, the dynamic infix membership problem
is equivalent up to constant-time reductions to the dynamic membership problem for the
language Σ∗xLxΣ∗ where x is a fresh letter.

Other open questions. A natural question for future work would be to study the complexity
of our problems in weaker models, e.g., pointer machines [32], or machines with counters.
One could also extend our study to languages that are not regular, e.g., generalizing bounds
on maintaining the language of well-parenthesized strings ([19, Proposition 1] and [11]).
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Appendix

Table 1 Summary of the main classes of monoids and semigroups used in the paper.

Class Description Equation References

ZE Monoids/semigroups with central idempotents xωy = yxω [1]
ZG Monoids/semigroups with central groups xω+1y = yxω+1 [4]
SG Monoids/semigroups with swappable groups xω+1yxω = xωyxω+1 [10, 29]
A Aperiodic semigroups/monoids xω+1 = xω [26]
Com Commutative semigroups/monoids xy = yx [26]
Nil Nilpotent semigroups xωy = yxω [26]
MNil Monoids dividing a nilpotent semigroup [30]
D Definite semigroups yxω = xω [31]
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Figure 1 Complexity of the dynamic word problem for common classes of monoids. Arrows denote
inclusion and are labeled with languages (with an implicit neutral letter e) whose syntactic monoids
separate the classes. The classes ZG and SG are maximal for the O(1) region and O(log log n)
region respectively.
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1 Introduction

Most classical results in computability theory focus on the so-called extensional properties
of programs, i.e., on the properties of the partial functions they compute. Notably, the
renowned Rice’s Theorem [25] states that any nontrivial extensional property of programs is
undecidable. Despite being very general, Rice’s Theorem and similar results in computability
theory, due to the requirement of extensionality, leave out several intensional properties which
are of utmost importance in the practice of programming. Essential intensional properties
of programs include their asymptotic complexity of computation, their logical invariants
(e.g., relations between variables at program points), or any event that might happen during
program computation while not affecting the program output.
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State-of-the-Art

A generalisation of well-established results of computability theory to the realm of program
complexity has been put forward by Asperti [1]. A first observation is that Blum’s complexity
classes [2], i.e., sets of recursive functions (rather than sets of programs) with some given
(lower or upper) bound on their (space and/or time) complexity, are not adequate for
investigating the decidability aspects of program complexity: in fact, viewed as program
properties they are trivially extensional. Thus, a key idea in [1] is to focus on the so-called
complexity cliques, namely, sets of programs (i.e., program indices) closed with respect to their
extensional input/output behaviour and their asymptotic complexity. Asperti [1] showed
how this approach enables intensional versions of Rice’s theorem, Rice-Shapiro theorem, and
Kleene’s second recursion theorem ([8, 28] are standard references for these foundational
results) for complexity cliques.

More recently, a different approach has been considered by Moyen and Simonsen in [19],
where the classical definition of extensionality has been weakened to a notion of partial
extensionality. Roughly, a given set of programs is partially extensional if it includes the set
of all programs computing a given partial recursive function. It is shown in [19] that if a set
of programs and its complement are partially extensional, then they cannot be both recursive.
Interestingly, this result can be further generalised by replacing the extensionality with an
equivalence relation on programs satisfying some suitable structural conditions, notably, the
existence of a so-called intricated switching family. Moyen and Simonsen [19] show how to
derive within their framework intensional versions of Rice’s Theorem – generalising Asperti’s
result [1] – and Rice-Shapiro Theorem.

Main Contributions

Along the lines traced by Asperti [1], we investigate whether and how some fundamental
extensional results of computability theory can be systematically generalised to intensional
aspects of computation, but rather than focussing on specific intensional properties we
deal with generic abstract program semantics. More in detail, we distill two fundamental
properties of abstract program semantics in our approach: the strong smn property and the
existence of a universal fair program, roughly, an interpreter that preserves the abstract
semantics. We show that for abstract semantics satisfying the strong smn property and
admitting a universal fair program, a generalisation of Kleene’s second recursion theorem can
be proved. This, in turn, leads to a generalisation of Rice’s theorem. Besides relying on a
general abstract program semantics, inspired by Moyen and Simonsen’s approach [19], we also
relax the extensionality condition to partial extensionality. This weakening provides stronger
impossibility results as it allows us to show that it is undecidable whether a given program
can have a particular semantics, i.e., even nontrivial overapproximations of such properties
are undecidable. On a different route, we establish a precise connection with Moyen and
Simonsen’s work [19] by showing that for any abstract program semantics satisfying the
strong smn property and a structural branching condition (roughly, expressing some form of
conditional choice), we can prove the existence of an intricated switching family, which turns
out to be the crucial hypothesis in [19] for deriving an intensional version of Rice’s theorem.

Therefore, on the one hand, we generalise the results in [1], going beyond complexity
cliques, and, on the other hand, we provide an explicit characterisation of a class of program
semantics that admit intricated switching families so that the results in [19] can be applied.

Finally, we show some applications of our intensional Rice’s theorem that generalise some
undecidability results for intensional properties used in static program analysis. In particular,
we focus on program analysis in Karr’s abstract domain of affine relations between program
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variables [13]. By exploiting an acute reduction to the undecidable Post correspondence
problem, Müller-Olm and Seidl [20] prove that for affine programs with positive affine guards
it is undecidable whether a given nontrivial affine relation holds at a given program point
or not. Here, we first show that this class of affine programs with positive affine guards,
modeled as control flow graphs, turns out to be Turing complete since, by selecting a suitable
program semantics, these programs can simulate a URM. Then, this allows us to derive the
undecidability result in [20] as a consequence of our results.

The rest of the paper is structured as follows. In Section 2, we provide some background
and our basic notions. In Section 3, we introduce the strong smn property, fair universal
programs, and the branching condition that will play a fundamental role in our results. In
Section 4, we provide our generalisation of Kleene’s second recursion theorem and use it
to derive our intensional Rice’s theorem. We also establish an explicit connection with the
notion of intricated switching family given in [19]. Section 5 provides some applications of
our results to the analysis of affine programs. Section 6 discusses in detail the relation with
some of Asperti’s results [1] and with Rogers’ systems of indices [27, 28]. Finally, Section 7
concludes and outlines some directions of future work.

2 Basic Notions

Given an n-ary partial function f : Nn → N, we denote by dom(f) the domain of f and
by rng(f) ≜ {f(x⃗) : x⃗ ∈ dom(f)} its range. We write f(x⃗) ↓ if x⃗ ∈ dom(f) and f(x⃗) ↑
if x⃗ /∈ dom(f). Moreover, λx⃗. ↑ denotes the always undefined function. We denote by
Fn ≜ Nn → N the class of all n-ary (possibly partial) functions and by F ≜

⋃
n Fn the class

of all such functions. Additionally, Cn ⊆ Fn denotes the subset of n-ary partial recursive
functions (C stands for computable) and C ≜

⋃
n Cn the set of all partial recursive functions.

▶ Assumption 2.1 (Turing completeness). Throughout the paper, we assume a fixed Turing
complete model and we denote by P the corresponding set of programs. Moreover, we
consider a fixed Gödel numbering for the programs in P and, given an index a ∈ N, we
write Pa for the a-th program in P. A program can take a varying number n of inputs and
we denote by ϕ

(n)
a ∈ Cn the n-ary partial function computed by Pa. Therefore, by Turing

completeness, {ϕ(n)
a | a, n ∈ N} = C must hold. ⌟

The binary relation between programs that compute the same n-ary function is called
Rice’s equivalence and denoted by ∼n

R, i.e.,

a ∼n
R b

△⇐⇒ ϕ(n)
a = ϕ

(n)
b .

Classical Rice’s theorem [25] compares the extension of programs, i.e., the functions they
compute, and shows that unions of equivalence classes of programs computing the same
function are undecidable. In Asperti’s work [1], by relying on the notion of complexity
clique, the asymptotic program complexity can be taken into account. The idea here is to
further generalise the approach in [1] by considering generic program semantics rather than
asymptotic program complexity. Additionally, an equivalence relation on program semantics
allows us to further abstract and identify programs with different extensional semantics. More
precisely, such an equivalence relation allows us to reason on semantic program properties
that may not hold with functional equivalence.
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▶ Definition 2.2 (Abstract semantics). An abstract semantics is a pair ⟨π,≡π⟩ where:
(1) π : N2 → F associates a program index a and arity n with an n-ary function π

(n)
a ∈ Fn,

called semantics of a;
(2) ≡π ⊆ F × F is an equivalence relation between functions.
Given n ∈ N, the n-ary program equivalence induced by an abstract semantics ⟨π,≡π⟩ is the
equivalence ∼n

π ⊆ N× N defined as follows: for all a, b ∈ N,

a ∼n
π b

△⇐⇒ π(n)
a ≡π π

(n)
b . ⌟

The notation for the case of arity n = 1 will be simplified by omitting the arity, e.g., ϕa

instead of ϕ(1)
a and ∼π in place of ∼1

π. Abstract semantics can be viewed as a generalisation of
the notion of system of indices (or numbering), as found in standard reference textbooks [22,
28] and discussed in detail later in Section 6.2. Let us now show how the standard extensional
interpretation of programs, complexity and complexity cliques can be cast into our setting.

▶ Example 2.3 (Concrete semantics). The concrete input/output semantics can be trivially
seen as an abstract semantics ⟨ϕ,=⟩ where ϕ(n)

a is the n-ary function computed by Pa and =
is the equality between functions. Observe that this concrete semantics induces an n-ary
program equivalence which is Rice’s equivalence ∼n

R. ⌟

▶ Example 2.4 (Domain semantics). For a given set of inputs S ⊆ N, consider ⟨ϕ,≡S⟩ where
ϕ

(n)
a is the n-ary function computed by Pa and for f, g : Nn → N, their equivalence is defined

by f ≡S g
△⇐⇒ dom(f) ∩ S = dom(g) ∩ S. ⌟

▶ Example 2.5 (Blum complexity). Let Φ : N2 → C be a Blum complexity [2], i.e., for all
a ∈ N and x⃗ ∈ Nn, (1) Φ(n)

a (x⃗) ↓ ⇔ ϕ
(n)
a (x⃗) ↓ holds, and (2) for all m ∈ N, the predicate

Φ(n)
a (x⃗) = m is decidable. Letting Θ(f) to denote the standard Big Theta complexity class

of a function f , the pair ⟨Φ,≡Φ⟩ defined by

Φ(n)
a ≡Φ Φ(n)

b

△⇐⇒ Φ(n)
a ∈ Θ(Φ(n)

b )

is an abstract semantics. ⌟

▶ Example 2.6 (Complexity clique). Complexity cliques as defined by Asperti in [1] can
be viewed as an abstract semantics ⟨π,≡π⟩, that we will refer to as the complexity clique
semantics. For each arity n and program index a let us define:

π(n)
a ≜ λy⃗.⟨⟨ϕ(n)

a (y⃗),Φ(n)
a (y⃗)⟩⟩

where ⟨⟨_,_⟩⟩ : N2 → N is an effective bijective encoding for pairs and Φ : N2 → C is a Blum
complexity. The equivalence ≡π is defined as follows: for all a, b, n ∈ N,

π(n)
a ≡π π

(n)
b

△⇐⇒ ϕ(n)
a = ϕ

(n)
b ∧ Φ(n)

a ≡Φ Φ(n)
b . ⌟

Classical Rice’s theorem states the undecidabilty of extensional program properties.
Following [19], we parameterise extensional sets by means of a generic equivalence relation.

▶ Definition 2.7 (∼-extensional set). Let ∼ ⊆ N × N be an equivalence relation between
programs whose equivalence classes are denoted by [a]∼. A set of indices A ⊆ N is called:
∼-extensional when for all a, b ∈ N, if a ∈ A and a ∼ b then b ∈ A;
partially ∼-extensional when there exists a ∈ N such that [a]∼ ⊆ A;
universally ∼-extensional when for all a ∈ N, [a]∼ ∩A ̸= ∅. ⌟
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In words, a set A is ∼-extensional if A is a union of ∼-equivalence classes, partially
∼-extensional if A contains at least a whole ∼-equivalence class, and universally ∼-exten-
sional if A contains at least an element from each ∼-equivalence class, i.e., its complement
N∖A is not partially ∼-extensional. Notice that if A is not trivial (i.e., A ̸= ∅ and A ̸= N)
and ∼-extensional then A is partially ∼-extensional and not universally ∼-extensional. Let
us observe that ∼R-extensionality is the standard notion of extensionality so that classical
Rice’s theorem [25] states that if A is ∼R-extensional and not trivial then A is not recursive.1

3 Fair and Strong smn Semantics

In this section, we identify some fundamental properties of abstract semantics that will be
later used in our intensional computability results. A first basic property stems from the
fundamental smn theorem and intuitively amounts to requiring that the operation of fixing
some parameters of a program is effective and preserves its abstract semantics.

▶ Definition 3.1 (Strong smn semantics). An abstract semantics ⟨π,≡π⟩ has the strong smn
(ssmn) property if, given m,n ≥ 1, there exists a total computable function s : Nm+2 → N
such that for all a, b ∈ N, x⃗ ∈ Nm:

λy⃗.π(n+1)
a (ϕ(m)

b (x⃗), y⃗) ≡π π
(n)
s(a,b,x⃗). (1)

In such a case, the abstract semantics ⟨π,≡π⟩ is called strong smn. ⌟

The above definition requires the property (1) which is slightly stronger than one would
expect. The natural generalisation of the standard smn property, in the style, e.g., of [1], would
amount to asking that, given m,n ≥ 1, there exists a total computable function s : Nm+1 → N
such that for any program index a ∈ N and input x⃗ ∈ Nm, it holds λy⃗.π(m+n)

a (x⃗, y⃗) ≡π π
(n)
s(a,x⃗).

The concrete semantics ⟨ϕ,=⟩ of Example 2.3 clearly satisfies this ssmn property. In fact, the
function λa, b, y⃗.π

(n+1)
a (ϕ(m)

b (x⃗), y⃗) is computable (by composition, relying on the existence
of universal functions), hence the existence of a total computable s : Nm+2 → N such
that λy⃗.π(n+1)

a (ϕ(m)
b (x⃗), y⃗) ≡π π

(n)
s(a,b,x⃗) holds, as prescribed by Definition 3.1, follows by the

standard smn theorem. It is easily seen that the same applies to the domain semantics of
Example 2.4.

The reason for the stronger requirement (1) in Definition 3.1 is that, to deal with generic
abstract semantics, thus going beyond asymptotic complexity, a suitable smn definition needs
to embody a condition on program composition (of a and b in Definition 3.1). Indeed, if we
consider the semantics based on program complexity (i.e., Examples 2.5 and 2.6), it turns out
that whenever they enjoy the smn property in [1, Definition 11] and, additionally, they satisfy
the linear time composition hypothesis in [1, Section 4] relating the asymptotic complexities
of a program composition to those of its components, then they are ssmn semantics according
to Definition 3.1. More details on the relationship with Asperti’s approach [1] will be given
later in Section 6.1.

Note that for an ssmn abstract semantics ⟨π,≡π⟩, there always exists a program whose
denotation is equivalent to the always undefined function, namely,

for any arity n ∈ N there exists a program index e0 ∈ N such that π(n)
e0
≡π λy⃗.↑ . (2)

1 In [19], the term “extensional” is replaced by “compatible” when one refers to generic equivalence
relations ∼.
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In fact, if b is a program index for the always undefined function λy⃗.↑ then, by (1), we
have that λy⃗.π(n+1)

0 (ϕb(0), y⃗) = λy⃗.↑ ≡π π
(n)
s(0,b,0), so that we can pick e0 ≜ s(0, b, 0).

It is also worth exhibiting an example of abstract semantics which is not ssmn. Let πa(x⃗)
be defined as the number of different variables accessed in a computation of the program a

on the input x⃗. Then, let us observe that the mere fact that πa is always a total function
trivially makes the abstract semantics ⟨π,=⟩ non-ssmn.

To generalise Kleene’s second recursion theorem, besides the ssmn property, we need
to postulate the existence of so-called fair universal programs, namely, programs that can
simulate every other program w.r.t. a given abstract semantics. This generalises the analogous
notion in [1, Definition 26], where this simulation is specific to complexity cliques and must
preserve both the computed function and its asymptotic complexity.

▶ Definition 3.2 (Fair semantics). An index u ∈ N is a fair universal program for an abstract
semantics ⟨π,≡π⟩ and an arity n ∈ N if for all a ∈ N:

π(n)
a ≡π λy⃗.π

(n+1)
u (a, y⃗).

An abstract semantics is fair if it admits a fair universal program for every arity. ⌟

Clearly, the concrete (Example 2.3) and domain (Example 2.4) semantics are fair. In
general, as noted in [1], the existence of a fair universal program may not only depend on the
reference abstract semantics, but also on the underlying computational model. For instance,
when considering program complexity, as argued by Asperti [1, Section 6] by relying on some
remarks by Blum [3], multi-tape Turing machines seem not to admit fair universal programs.
By contrast, single tape Turing machines do have fair universal programs, despite the fact
that this is commonly considered a folklore fact and cannot be properly quoted. Hereafter,
when referring to the complexity-based semantics of Examples 2.5 and 2.6, we will implicitly
use that they are ssmn and fair semantics.

4 Kleene’s Second Recursion Theorem and Rice’s Theorem

In this section, we show how some foundational results of computability theory can be
extended to a general abstract semantics. The first approach relies on a generalisation of
Kleene’s second recursion theorem, which is then used to derive a corresponding Rice’s
theorem. A second approach consists in identifying conditions that ensure the existence of
an intricated switching family in the sense of [19], from which Rice’s theorem also follows.

4.1 Kleene’s Second Recursion Theorem
We show that Kleene’s second recursion theorem holds for any fair ssmn abstract semantics.
This generalises the analogous result proved by Asperti [1, Section 5] for complexity cliques.

▶ Theorem 4.1 (Intensional Second Recursion Theorem). Let ⟨π,≡π⟩ be a fair ssmn abstract
semantics. For any total computable function h : N → N and arity n ∈ N, there exists an
index a ∈ N such that a ∼n

π h(a).

As an example, this result, instantiated to the complexity semantics of Example 2.5,
entails the impossibility of designing a program transform that modifies the asymptotic
complexity of every program, even without preserving its input-output behavior.
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A [a0]∼π[a1]∼π

Figure 1 A graphical representation of Theorem 4.3.

▶ Example 4.2 (Fixpoints of Blum complexity semantics). Let ⟨Φ,≡Φ⟩ be the Blum complexity
semantics of Example 2.5. A program transform h : N→ N is a total computable function
which maps indices of programs into indices of transformed programs. By applying The-
orem 4.1, for any arity n ∈ N, we know that there exists an index of a program a such that
a ∼n

π h(a) holds, so that the program transform h necessarily does not alter the asymptotic
complexity of, at least, the program a. ⌟

This second recursion theorem allows us to obtain an intensional version of Rice’s theorem
for fair and ssmn abstract semantics. Inspired by [19], we generalise the statement to cover
partially extensional properties.

▶ Theorem 4.3 (Rice by fair and ssmn semantics). Let ⟨π,≡π⟩ be a fair and ssmn semantics.
If A ⊆ N is partially ∼n

π-extensional and not universally ∼n
π-extensional, for some arity

n ∈ N, then A is not recursive.

Fig. 1 provides a graphical representation of this result: if we can find two program
indices a0, a1 ∈ N such that A overapproximates the ≡π-equivalence class [a1]∼π

and A does
not intersect [a0]∼π , then A cannot be recursive. For example, as observed in Section 3,
the asymptotic complexity on a suitable computational model such as single tape Turing
machines is a fair ssmn semantics, so that Theorem 4.3 applies. Let us illustrate some further
applications of Theorem 4.3.

▶ Example 4.4 (Halting set). Let ⟨ϕ,≡N⟩ be the domain semantics of Example 2.4 with
S = N, hence f ≡N g when dom(f) = dom(g). The halting set K ≜ {a ∈ N | ϕa(a)↓} can
be proved to be non-recursive by resorting to Theorem 4.3 for ⟨ϕ,≡N⟩. Let e0, e1 ∈ N be
such that ϕe0 = λx.↑ and ϕe1 = λx.1. Since [e1]≡N is the set of programs that compute total
functions, we have that [e1]≡N ⊆ K. Moreover, [e0]≡N is the set of nonterminating programs
for any input, so that [e0]≡N ∩K = ∅. This means that ⟨ϕ,≡N⟩ satisfies the hypotheses of
Theorem 4.3, thus entailing that K is not recursive. ⌟

▶ Example 4.5 (Complexity sets). Let ⟨ϕ,=⟩, ⟨Φ,≡Φ⟩ be, resp., the semantics of Examples 2.3
and 2.5. Let sort : N→ N be a total function that takes as input an encoded sequence of
numbers and outputs the encoding of the corresponding sorted sequence. It turns out that
by applying Theorem 4.3, the following sets can be proved to be non-recursive:
(1) A ≜ {a | Φa ∈ Θ(n log n) ∧ ϕa = sort},
(2) B ≜ {a | Φa ∈ O(n log n)},
(3) C ≜ {a | Φa ∈ Ω(n log n)}.
Let is, ms be different implementations of sort, i.e., ϕis = ϕms = sort, such that Φis ∈ Θ(n2)
and Φms ∈ Θ(n log n) – is and ms could be, resp., insertion and merge sort. Recall that
∼R denotes the Rice equivalence induced by ⟨ϕ,=⟩ (i.e., a∼R b⇔ ϕa = ϕb), and, in turn,
let ∼ΦR = ∼Φ ∩ ∼R be the equivalence induced by the complexity clique semantics of
Example 2.6, which is a fair ssmn semantics. Then, we have that:
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117:8 A Rice’s Theorem for Abstract Semantics

(1) since [is]∼ΦR
∩A = ∅ and [ms]∼ΦR

⊆ A, by Theorem 4.3 A is non-recursive;
(2) since [is]∼Φ ∩B = ∅ and [ms]∼Φ ⊆ B, by Theorem 4.3 B is non-recursive;
(3) let e be any program index such that Φe ∈ Θ(1). Since [e]∼Φ ∩ C = ∅ and [is]∼Φ ⊆ C,

by Theorem 4.3, the set C is non-recursive. ⌟

It is worth remarking that in Example 4.5, n log n could be replaced by any function,
thus showing the undecidability of the asymptotic complexities “big O” (case (2)) and “big
Omega” (case (3)). Let us also point out that Example 4.4 shows how easily the halting set
K can be proved to be non-recursive by applying Theorem 4.3.

4.2 Branching Semantics
Let us investigate the connection between our results and the key notion of intricated
switching family used by Moyen and Simonsen [19] for proving their intensional version of
Rice’s theorem. Firstly, we argue that every ssmn abstract semantics admits an intricated
switching family whenever it is able to express a suitable form of conditional branching. This
allows us to derive an intensional Rice’s theorem. Moreover, we show that for fair and ssmn
semantics, the identity can always play the role of intricated switching family.

▶ Definition 4.6 (Branching and discharging semantics). An abstract semantics ⟨π,≡π⟩ is
branching if, given n ≥ 1, there exists a total computable function r : N4 → N such that
∀a, b, c1, c2, x ∈ N such that c1 ̸= c2:

λy⃗.π
(n)
r(a,b,c1,c2)(x, y⃗) ≡π


λy⃗.π

(n)
a (x, y⃗) if x = c1

λy⃗.π
(n)
b (x, y⃗) if x = c2

λy⃗.↑ otherwise

Moreover, ⟨π,≡π⟩ is (variable) discharging if, for all n ≥ 1, there exists a total computable
function t : N→ N such that for all a, x ∈ N:

π(n)
a ≡π λy⃗.π

(n+1)
t(a) (x, y⃗). ⌟

Hence, intuitively, an abstract semantics is branching when it is able to model the
branching structure of conditional statements with multiple positive guards, while the
property of being variable discharging holds when one can freely add fresh and unused
variables without altering the abstract semantics. Let us recall the notion of intricated
switching family from [19, Definition 5].2

▶ Definition 4.7 (Intricated switching family [19, Definition 5]). Let ∼ ⊆ N × N be an
equivalence relation on program indices. An intricated switching family (ISF) w.r.t. ∼ is
an indexed set of total computable functions {σa,b}a,b∈N, with σa,b : N→ N, such that for
all a, b ∈ N, the sets Aa,b = {x ∈ N | σa,b(x) ∼ a} and Ba,b = {x ∈ N | σa,b(x) ∼ b} are
recursively inseparable (i.e., no recursive C exists such that Aa,b ⊆ C and C ∩Ba,b = ∅). ⌟

Moyen and Simonsen [19, Theorem 3] show that if an equivalence ∼ admits an ISF,
then every partially ∼-extensional and not universally ∼-extensional set is not recursive. A
simplified version of their intensional result, tailored for our setting, can be stated as follows.

2 For the sake of simplicity, [19, Definition 5] is here instantiated to the case of recursive sets.
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▶ Theorem 4.8 ([19, Theorem 3]). Let ∼ ⊆ N× N be an equivalence relation. If A ⊆ N is
partially ∼-extensional, not universally ∼-extensional and there exists an ISF w.r.t. ∼ then
A is not recursive.

Branching semantics allow us to derive the following intensional version of Rice’s Theorem.

▶ Theorem 4.9 (Rice by branching, discharging and ssmn semantics). Let ⟨π,≡π⟩ be a branching,
discharging and ssmn semantics. If A ⊆ N is partially ∼n

π-extensional and not universally
∼n

π-extensional for some arity n ∈ N, then A is not recursive.

Let us discuss more in detail the relationship with the approach in [19]. Firstly, it
turns out that a fair ssmn semantics always admits a canonical ISF, namely, the identity
Id ≜ {(λx.x)a,b}a,b∈N.

▶ Proposition 4.10. Let ⟨π,≡π⟩ be a fair and ssmn semantics. Then, the identity Id is an
ISF w.r.t. ∼n

π, for all n ≥ 1.

Let us point out that the identity function has not been exploited in [19], that instead
focuses on the standard switching family. It turns out that the identity function plays a key
role as ISF.

▶ Proposition 4.11. Let ∼ ⊆ N× N be an equivalence relation. The following statements
are equivalent:
(1) Every set A ⊆ N partially ∼-extensional and not universally ∼-extensional is non-

recursive.
(2) The identity Id is an ISF w.r.t. ∼.
(3) There exists an ISF w.r.t. ∼.

Therefore, the above result roughly states that the identity function is the “canonical”
ISF, meaning that if an ISF exists, then Id is an ISF as well. Moreover, the intensional
Rice’s Theorem 4.8 of [19] provides a sufficient condition (i.e., the existence of an ISF) for a
partially and not universally extensional set to be undecidable. Proposition 4.11 enhances
Theorem 4.8 by showing that such a sufficient condition is necessary as well, or, equivalently,
that a partially and not universally extensional set is undecidable iff there exists an ISF.

We conclude this section by discussing an alternative notion of branching, which requires
the preservation of a full conditional statement with positive and negative guards. This is
an adaptation to our framework of a property that would be needed to exploit a so-called
standard switching family as defined in [19, Example 1].

▶ Definition 4.12 (Strongly branching semantics). An abstract semantics ⟨π,≡π⟩ is strongly
branching if, given n ≥ 1, there exists a total computable function r : N3 → N such that for
all a, b, c, x ∈ N:

λy⃗.π
(n)
r(a,b,c)(x, y⃗) ≡π

{
λy⃗.π

(n)
a (x, y⃗) if x = c

λy⃗.π
(n)
b (x, y⃗) otherwise ⌟

Despite appearing to be more natural, the preservation of conditionals with positive and
negative conditions is a stronger requirement than the one we considered in Definition 4.6.
Indeed, it turns out that every ssmn and strongly branching semantics is a branching
semantics.

▶ Proposition 4.13 (Strongly branching implies branching). If ⟨π,≡π⟩ is an ssmn and strongly
branching semantics, then ⟨π,≡π⟩ is branching.
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4.3 An Application to Static Program Verifiers
We adapt the general definition of static program verifier of Cousot et al. [7, Definition 4.3]
to our framework. Given a program property P ⊆ N to check, a static program verifier is a
total recursive function V : N→ {0, 1}, which is sound when for all p ∈ N, V(p) = 1⇒ p ∈ P ,
while V is precise if the reverse implication also holds, i.e., when V(p) = 1⇔ p ∈ P holds.
Informally, soundness guarantees that only false negatives are allowed, i.e., N∖P is merely a
subset of {p ∈ N : V(p) = 0}, while precise verifiers output true positives and true negatives
only (i.e., they decide P ).

Classical Rice’s theorem clearly entails the impossibility of designing a precise verifier
for a nontrivial extensional property. However, one may wonder whether there exist sound
verifiers with “few” false negatives. By applying our intensional Theorem 4.3, we are able to
show that sound but imprecise verifiers necessarily have at least one false negative for each
equivalence class of programs, even for intensional properties.

▶ Example 4.14 (Constant value verifier). Assume we are interested in checking if a program
can output a given constant value, for instance, zero with the aim of statically detecting
division-by-zero bugs. Let V be a sound static verifier for the set P=0 ≜ {p ∈ N | 0 ∈ rng(ϕp)}
of programs that output zero for some input. The set N ≜ {p ∈ N | V(p) = 0} is recursive
since V is assumed to be a total computable function. By soundness of V, we have that
N ∖ P=0 ⊆ N , so that N includes, for example, the programs computing the constant
function λx.1. Therefore, N is partially extensional, and, by Theorem 4.3, N has to be
universally extensional. This means that for any computable function f ∈ C there exists a
program p ∈ N that computes f such that V(p) = 0. Thus, when 0 ∈ rng(f) holds (e.g., for
f = λx.0), V necessarily outputs a false negative for p. Hence, V outputs infinitely many
false negatives. ⌟

▶ Example 4.15 (Complexity verifier). Consider a speculative sound static verifier V for
recognizing programs that meet some lower bound, for instance, programs having a cubic lower
bound PΩ(n3) ≜ {p ∈ N | Φp = Ω(n3)}. Thus, N ≜ {p ∈ N | V(p) = 0} has to be recursive
and if ∼Φ is the program equivalence induced by the Blum complexity semantics ⟨Φ,≡Φ⟩ of
Example 2.5 then, by soundness of V , we have, for example, {p ∈ N | Φp = Θ(1)} ⊆ N . This
means that N is partially ∼Φ-extensional and, by Theorem 4.3, N is universally extensional,
namely, V will output 0 for at least a program in each Blum complexity class. For instance,
even some programs with an exponential lower bound will be wrongly classified by V as
programs that do not meet a cubic lower bound. ⌟

As shown by Cousot et al. [7, Theorem 5.4], precise static verifiers cannot be designed
(unless for trivial program properties). The examples above prove that, additionally, we
cannot have any certain information on an input program p whenever the output of a sound
(and imprecise) verifier for p is 0. In fact, when this happens, p could compute any partial
function (cf. Example 4.14) or have any complexity (cf. Example 4.15).

5 On the Decidability of Affine Program Invariants

Karr’s abstract domain [13] consisting of affine equalities between program variables, such as
2x− 3y = 1, is well known and widely used in static program analysis [18, 26]. Karr [13] put
forward an algorithm that infers for each program point q of a control flow graph modelling
an affine program P (i.e., an unguarded program with non-deterministic branching and
affine assignments) a set of affine equalities that hold among the variables of P when the
control reaches q, namely, an affine invariant for P . Müller-Olm and Seidl [20] show that
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Karr’s algorithm actually computes the strongest affine invariant for affine programs (this
result has been extended to a slightly larger class of affine programs in [23, Theorem 5.1]).
Moreover, they design a more efficient algorithm implementing this static analysis and
they extend in [21] the algorithm for computing bounded polynomial invariants, i.e., the
strongest polynomial equalities of degree at most a given d ∈ N. Later, Hrushovski et al. [11]
put forward a sophisticated algorithm for computing the strongest unbounded polynomial
invariants of affine programs, by relying on the Zariski closure of semigroups.

On the impossibility side, Müller-Olm and Seidl [20, Section 7] prove that for affine
programs allowing positive affine guards it is undecidable whether a given nontrivial affine
equality holds at a given program point or not. In practical applications, static analyses on
Karr’s domain of guarded affine programs ignore non-affine Boolean guards, while for an
affine guard b, the current affine invariant i is propagated through the positive branch of b by
the intersection i ∩ b, that remains an affine subspace. By the aforementioned undecidability
result [20, Section 7], this latter analysis algorithm for guarded affine programs turns out to
be sound but necessarily imprecise, thus inferring affine invariants which are not the strongest
ones.

Müller-Olm and Seidl [20, Section 7] prove their undecidability result by exploiting an
acute reduction to the undecidable Post correspondence problem, inspired by early reductions
explored in data flow analysis [9, 12]. In this section, we show that our Theorem 4.9 allows
us to derive and extend this undecidability result by exploiting an orthogonal intensional
approach. More precisely, we prove that any nontrivial (and not necessarily affine) relation
on the states of control flow graphs of programs allowing: (1) zero, variable and successor
assignments, resp., x := 0, x := y and x := y + 1, and (2) positive equality guards x = y?
and x = v?, turns out to be undecidable. Since these control flow graphs form a subclass
of affine programs with positive affine guards, the undecidability result of Müller-Olm and
Seidl [20, Section 7] is retrieved as a consequence.

We consider control flow graphs that consist of program points connected by edges labeled
by assignments and guards. Variables are denoted by xi, with i ∈ N, and store values ranging
in N, while Karr’s abstract domain is designed for variables assuming values in Q. Clearly,
from a computability perspective, this is not a restriction simply by considering a computable
bijection between N and Q.

▶ Definition 5.1 (Basic affine control flow graph). A basic affine control flow graph (BACFG)
is a tuple G = (N,E, s, e), where N is a finite set of nodes, s, e ∈ N are the start and end
nodes, and E ⊆ N × Com×N is a set of labelled edges, where the set Com of commands
consists of assignments of type xn := 0, xn := xm, xn := xm + 1, and equality guards of type
xn = xm?, xn = v?, with v ∈ N. ⌟

Let us remark that BACFGs only include basic affine assignments and positive affine
guards, in particular inequality checks such as xn ̸= xm? and xn ̸= v? are not allowed. Thus,
BACFGs are a subclass of affine programs with positive affine guards.

As in dataflow analysis and abstract interpretation [6, 9, 26], BACFGs have a collecting
semantics where, given a set of input states In, each program point is associated with the set
of states that occur in some program execution from some state in In. A finite number of
variables may occur in a BACFG, so that a state of a BACFG G is a tuple (x1, . . . , xk) ∈ Nk,
where k is the maximum variable index occuring in G and k = 0 is a degenerate case for trivial
BACFGs with N0 = {•}. The collecting transfer function f(·)(·) : Com → ℘(Nk) → ℘(Nk)
for k ∈ N variables and with n,m ∈ [1, k] is defined as follows:
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fxn:=0(S) ≜ {(x1, . . . , xn−1, 0, xn+1, . . . , xk) | x⃗ ∈ S},
fxn:=xm(S) ≜ {(x1, . . . , xn−1, xm, xn+1, . . . , xk) | x⃗ ∈ S},

fxn:=xm+1(S) ≜ {(x1, . . . , xn−1, xm + 1, xn+1, . . . , xk) | x⃗ ∈ S},
fxn=v?(S) ≜ {x⃗ ∈ S | xn = v},

fxn=xm?(S) ≜ {x⃗ ∈ S | xn = xm}.

A no-op ϵ command is a syntactic sugar for x1 := x1, i.e., fϵ ≜ fx1:=x1 = λS.S. Given
k, k′ ∈ N and S ∈ ℘(Nk′), the projection S ↾k∈ ℘(Nk) is defined as follows:

S ↾k ≜


S × Nk−k′ if 0 ≤ k′ < k

S if k′ = k

{(x1, . . . , xk) | x⃗ ∈ S} if k < k′

▶ Definition 5.2 (Collecting semantics of BACFGs). Given a BACFG G = (N,E, s, e) with
k ∈ N variables and a set of input states S ⊆ Nk′ , with k′ ≤ k, the collecting semantics
JGKS : N → ℘(Nk) is the least, w.r.t. pointwise set inclusion, solution in ℘(Nk)|N | of the
following system of constraints:{

JGKS [s] ⊇ S ↾k for the start node s
JGKS [v] ⊇ fc(JGKS [u]) for each edge (u, c, v) ∈ E ⌟

Let us observe that, since the collecting transfer functions fc are additive on the complete
lattice ⟨℘(Nk),⊆⟩, by Knaster-Tarski fixpoint theorem, JGKS is well defined. For x⃗ ∈ Nk′ ,
we write JGKx⃗ instead of JGK{x⃗}. Notice that JGK(·) is an additive function, so that, for any
program point u ∈ N , JGKS [u] =

⋃
x⃗∈SJGKx⃗[u] holds.

5.1 Turing Completeness of BACFGs
Let us recall that an ssmn abstract semantics needs an underlying Turing complete concrete
semantics of programs (cf. Assumption 2.1). A crucial observation is that any URM (Unlimited
Register Machine3) program, provided with suitable operational semantics, can be simulated
by a BACFG, that is, BACFGs turn out to be Turing complete despite not including full
(both positive and negative) Boolean tests.

▶ Theorem 5.3 (Turing completeness of BACFGs). BACFGs are a Turing complete computa-
tional model.

It is worth providing an intuition of the proof of Theorem 5.3. First, we point out that
all four types of instructions of URMs, namely, using the definition and notation of [8],

z(n): sets register rn to 0 (rn ← 0) and transfers the control to the next instruction;
s(n): increments register rn by 1 (rn ← rn + 1) and transfers the control to the next
instruction;
t(m,n): sets register rn to rm (rn ← rm) and transfers the control to the next instruction;
j(m,n, p): if rm = rn and Ip is a proper instruction, then it jumps to the instruction Ip;
otherwise, it skips to the next instruction;

3 Recall that URMs are a Turing complete computational model [8].
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qi

qi+1

xn := 0

qi

qi+1

xn := xn + 1

qi

qi+1

xn := xm

Figure 2 BACFGs simulating: z(n) (left), s(n) (center), t(m, n) (right).

qi

inci

qi+1

qp

xm = xn? z := xm + 1
z := xn + 1

xn = z? xm = z?

z := z + 1

Figure 3 BACFG simulating a jump instruction j(m, n, p).

can be simulated by the BACFGs depicted in Figures 2 and 3. While the BACFGs in
Figure 2 are trivial, let us describe more in detail how to simulate a jump instruction by
the BACFG in Figure 3. Intuitively, a difficulty arises for simulating the negative branch
xn ̸= xm?. Here, the BACFG at node qi initialises a fresh unused variable z with both
xn + 1 and xm + 1 and transfers the control to a node inci where z is incremented infinitely
many times. Thus, in the least fixpoint solution, at node inci the variable z stores any value
v > min(xm, xn), including z = max(xm, xn). Suppose now that xn > xm holds: in this case,
the guard xn = z? between nodes inci and qi+1 eventually will be made true and at the node
qi+1 the store will retain the original values of all variables (xm and xn included), except
for the new variable z which will be ignored by the remaining nodes. The case xm > xn is
analogous. Therefore, it turns out that the node qi+1 will be reached if and only if xm ̸= xn

holds, while qp will be reached if and only if xm = xn holds, thus providing a simulation for
the jump instruction j(m,n, p).

5.2 Concrete and Abstract Semantics
One key insight is that the concrete semantics is defined on the URM programs that satisfy
the Assumption 2.1 of Turing completeness, while the abstract semantics is defined on
BACFGs. Let us consider two Gödel numberings for BACFGs and URMs, so that for an
index a ∈ N, Ga and RM a denote, resp., the a-th BACFG and URM programs. The concrete
semantics ⟨ϕ,=⟩ of URMs, for an index a ∈ N and an arity n ∈ N, is defined as follows: for
all x⃗ ∈ Nn,

ϕ(n)
a (x⃗) ≜

{
y if RM a on input x⃗ halts with value y on its first register,
↑ otherwise.

On the other hand, the abstract semantics of BACFGs is as follows.
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▶ Definition 5.4 (State semantics of BACFGs). Let Q ⊆ ℘(Nt) be a predicate on sets of
states with t ∈ N variables. The state semantics ⟨Q,=⟩ of BACFGs, for any index a ∈ N and
arity n ∈ N, is given by the function Q

(n)
a : Nn → {0, 1} defined as follows: for all x⃗ ∈ Nn,

Q(n)
a (x⃗) ≜


1 if JGaKx⃗[ea] ̸= ∅ ∧ JGaKx⃗[ea]↾t ∈ Q
0 if JGaKx⃗[ea] ̸= ∅ ∧ JGaKx⃗[ea]↾t ̸∈ Q
↑ if JGaKx⃗[ea] = ∅

where ea is the end node of the a-th BACFG Ga. ⌟

Predicates of type Q ⊆ ℘(Nt) are also known as hyperproperties [5] and the state semantics
of Definition 5.4 models the validity of a given predicate Q at the end node of a BACFG.
Note that it is not restrictive to consider the end node, since this can be arbitrarily chosen
in a BACFG.

▶ Theorem 5.5. The state semantics of Definition 5.4 is ssmn, branching and discharging.

Let us now consider a state semantics ⟨Q,=⟩ for some predicate Q ⊆ ℘(Nt). For all n ≥ 1,
let us define two sets A∀Q and A∃Q, by distinguishing two cases depending on whether Q
includes the empty set, that models nontermination, or not:

(1) if ∅ /∈ Q then A∀Q ≜ {a ∈ N | ∀y⃗. Q(n)
a (y⃗) = 1} and A∃Q ≜ {a ∈ N | ∃y⃗. Q(n)

a (y⃗) = 1};
(2) if ∅ ∈ Q then A∀Q ≜ {a ∈ N | ∀y⃗. Q(n)

a (y⃗) ∈ {1, ↑}} and A∃Q ≜ {a ∈ N | ∃y⃗. Q(n)
a (y⃗) ∈

{1, ↑}}.

Hence, A∀Q (A∃Q) is the set of BACFGs such that Q holds at ea for any (some) input
state. It turns out that if A∀Q is nontrivial then it is not recursive. Indeed, observe that
A∀Q is ∼Q-extensional, so that Theorem 5.5 enables applying Theorem 4.9 to ⟨Q,=⟩. The
same argument applies to the existential version A∃Q. We have therefore the following
consequence.

▶ Corollary 5.6. If Q is not trivial then A∀Q and A∃Q are not recursive.

Corollary 5.6 means that we cannot decide if a nontrivial predicate Q holds at a given
program point of a BACFG for all input states, neither whether there exists an input state
that will make Q true. It is worth remarking that the predicates Q are arbitrary and
include, but are not limited to, relational predicates between program variables such as affine
equalities of Karr’s abstract domain. Let us define some noteworthy examples of predicates:

(1) Given a set of affine equalities aff = {a⃗j · x⃗ = bj}m
j=1, with a⃗j ∈ Zt and bj ∈ Z,

Qaff ≜ {S ∈ ℘(Nt) | ∀v⃗ ∈ S.∀j ∈ [1,m]. a⃗j · v⃗ = bj};
(2) Given i ∈ [1, t] and c ∈ N, Q=c ≜ {S ∈ ℘(Nt) | ∃v⃗ ∈ S. vi = c};
(3) Given a size k ∈ N, Qfink

≜ {S ∈ ℘(Nt) | |S| = k} and Qfin ≜ ∪k∈NQfink
.

Therefore, Corollary 5.6 for A∀Qaff entails the undecidability result of Müller-Olm and
Seidl [20, Section 7] discussed above. The predicate Q=c can be used to derive the unde-
cidability of checking if some variable xi may store a given constant c for affine programs
with positive affine guards, e.g., for c = 0 this amounts to the undecidability of detecting
division-by-zero bugs. Finally, with Qfin0 we obtain the undecidability of dead code elim-
ination, Qfin1 entails the well-known undecidability of constant detection [9, 24], while the
existential predicate Qfin encodes whether some program point may only have finitely many
different states.
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6 Discussion of Related Work

In this section we discuss in detail the relation with some of Asperti’s results [1] and with
Rogers’ systems of indices [27, 28].

6.1 Relation with Asperti’s Approach
We show that our ssmn property in Definition 3.1 is a generalisation of the smn property
in Asperti’s approach [1], in a way that the Kleene’s second recursion theorem and Rice’s
theorem for complexity cliques in [1] arise as instances of the corresponding results in our
approach. Let us first recall and elaborate on the axioms for the complexity of function
composition studied by Lischke [15, 16, 17] and assumed in [1, Section 4].

▶ Definition 6.1 (Linear time and space complexity composition). Consider a given concrete
semantics ϕ and a Blum complexity Φ. The pair ⟨ϕ,Φ⟩ has the linear time composition
property if there exists a total computable function h : N2 → N such that for all i, j ∈ N:
(1) ϕh(i,j) = ϕi ◦ ϕj ,
(2) Φh(i,j) ∈ Θ(Φi ◦ ϕj + Φj).
If (2) is replaced by
(2′) Φh(i,j) ∈ Θ(max{Φi ◦ ϕj ,Φj})
then ⟨ϕ,Φ⟩ has the linear space composition property. ⌟

Roughly speaking, the linear time composition property states that there exists a program
h(i, j) which computes the composition ϕi(ϕj(x)) in an amount of time which is asymptotically
equivalent to the sum of the time needed for computing Pi on input ϕj(x) and the time to
compute Pj on input x. On the other hand, the linear space composition property aims at
modeling the needed space, so that rather than adding the complexities of Pi and Pj , their
maximum is considered, since this intuitively is the maximum amount of space needed for
computing a composition of programs.

By observing that Θ(max{Φi ◦ ϕj ,Φj}) = Θ(Φi ◦ ϕj + Φj) we can merge the linear time
and space properties of Definition 6.1 and extend them for n-ary compositions as follows.

▶ Definition 6.2 (Linear complexity composition). Given a concrete semantics ϕ and a Blum
complexity Φ, the pair ⟨ϕ,Φ⟩ has the linear complexity composition property if, given n,m ≥ 1,
there exists a total computable function h : N2 → N such that for all i, j ∈ N:

ϕ
(m+n)
h(i,j) = λx⃗λy⃗. ϕ

(n+1)
i (ϕ(m)

j (x⃗), y⃗),
Φ(m+n)

h(i,j) ∈ Θ(λx⃗λy⃗. (Φ(n+1)
i (ϕ(m)

j (x⃗), y⃗)) + Φ(m)
j (x⃗))). ⌟

We can now recall the smn property as defined in [1, Definition 11].

▶ Definition 6.3 (Asperti’s smn property). Given a concrete semantics ϕ, a Blum complexity Φ
and m,n ≥ 1, the pair ⟨ϕ,Φ⟩ has the Asperti’s smn property if there exists a total computable
function s : Nm+1 → N such that ∀e ∈ N, x⃗ ∈ Nm:

λy⃗.ϕ
(m+n)
e (x⃗, y⃗) = ϕ

(n)
s(e,x⃗),

λy⃗.Φ(m+n)
e (x⃗, y⃗) ∈ Θ(λy⃗.Φ(n)

s(e,x⃗)(y⃗)). ⌟

Informally, the smn property of Definition 6.3 states that the operation of fixing para-
meters preserves both the concrete semantics and the asymptotic complexity. Under these
assumptions, we can show that Asperti’s complexity clique semantics satisfies our ssmn
property.

ICALP 2021
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▶ Lemma 6.4. Let ⟨π,≡π⟩ be the complexity clique semantics of Example 2.6. If ⟨π,≡π⟩
satisfies Asperti’s smn and linear complexity composition properties then ⟨π,≡π⟩ is ssmn.

This result, together with the observation that the notion of fairness (Definition 3.2)
instantiated to the complexity clique semantics is exactly that of [1, Definition 26], allows
us to retrieve Kleene’s second recursion theorem and Rice’s theorem for complexity cliques
in [1] as instances of our corresponding results given in Section 4.1.

6.2 Relation with Systems of Indices
As mentioned in Section 2, our definition of abstract semantics resembles the acceptable
systems of indices [22, Definition II.5.1] or numberings [28, Exercise 2-10], firstly studied by
Rogers [27]. In this section we discuss how such notions compare.

▶ Definition 6.5 (System of indices [22, Definition II.5.1]). A system of indices is a family of
functions {ψn}n∈N such that each ψn : N→ Cn is a surjective map that associates program
indices to n-ary partial recursive functions.

{ψn}n∈N has the parametrization (or smn) property if for every m,n ∈ N there is a total
computable function s : Nm+1 → N such that ∀e ∈ N, x⃗ ∈ Nm:

λy⃗.ψm+n
e (x⃗, y⃗) = ψn

s(e,x⃗).

{ψn}n∈N has the enumeration property if for every n ∈ N there exists u ∈ N such that
for all and e ∈ N and y⃗ ∈ Nn:

ψn
e = λy⃗.ψn+1

u (e, y⃗). ⌟

Any standard Gödel numbering associating a program with the function it computes is a
system of indices with the parametrization and enumeration properties. Moreover, exactly as
we did in Example 2.3, any system of indices {ψn}n∈N can be viewed as an abstract semantics
⟨π,=⟩ with πa

n ≜ ψn
a . In this context, the enumeration and parametrization properties

correspond to our fairness and ssmn conditions: fairness is exactly enumeration while ssmn
follows from parametrization and enumeration, as discussed in Section 3 for the concrete
semantics (cf. Example 2.3).

A system of indices is defined to be acceptable if it allows to get back and forth with a
given system of indices satisfying the parametrization and enumeration properties through a
pair of total computable functions.

▶ Definition 6.6 (Acceptable system of indices [27, Definition 4]). Let {φn}n∈N be a given
system of indices with the parametrization and enumeration properties. A system of indices
{ψn}n∈N is acceptable if there exist two total computable functions f, g : N→ N such that
for all a, n ∈ N:

ψn
a = φn

f(a) and φn
a = ψn

g(a). ⌟

As shown in [22, Proposition II.5.3], it turns out that a system of indices is acceptable if
and only if it satisfies both enumeration and parametrization (a proof of this characterization
was first given by Rogers [27, Section 2]). Consequently, an acceptable system of indices
{ψn}n∈N can be viewed as an abstract semantic ⟨π,=⟩, where πn

a = ψn
a , which, by this

characterization of acceptability, is ssmn and fair, and therefore, by Theorem 4.1 it enjoys
Kleene’s second recursion theorem, as already known from [22, Corollary II.5.4]. Under this
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perspective, a generic abstract semantics according to Definition 2.2 can be viewed as a
proper generalisation of the notion of acceptable system of indices, which merely encodes a
change of program numbering and does not allow to take into account an actual abstraction
of the concrete input/output behaviour of programs.

7 Conclusion and Future Work

This work generalises some traditional extensional results of computability theory, notably
Kleene’s second recursion theorem and Rice’s theorem, to intensional abstract program
semantics that include the complexity cliques investigated by Asperti [1]. Our approach was
also inspired by Moyen and Simonsen [19] and relies on weakening the classical definition of
extensional program property to a notion of partial extensionality w.r.t. abstract program
semantics that satisfy some structural conditions. As an application, we strengthened and
generalised a result by Müller-Olm and Seidl [20] proving that for affine programs with
positive affine guards it is undecidable whether an affine relation holds at a given program
point. Our results also shed further light on the claim that these undecidability results hinge
on the Turing completeness of the underlying computational model, as argued in [19].

As future work, a natural question would be to investigate intensional extensions of
Rice-Shapiro’s theorem that fit our framework based on abstract semantics. This appears to
be a nontrivial challenge. Generalisations of Rice-Shapiro’s theorem have been given in [1,
Section 5] and [19, Section 5.1]. A generalisation in the vein of the approach in [1] seems to be
viable, but would require structural assumptions on abstract program semantics that, while
natural in [1] whose focus is on complexity properties, would be artificial for abstract program
semantics and would limit a general applicability. A further stimulating research topic is to
apply our approach to abstract semantics as defined by abstract interpretation of programs,
in particular for investigating the relationship with the notion of abstract extensionality
studied by Bruni et al. [4]. Finally, while our framework relies on the assumption of an
underlying Turing complete computational model, in a different direction, one could try to
consider intensional properties for classes of programs indexing subrecursive functions (e.g.,
primitive recursive functions), whose extensional properties have been already studied (see,
e.g., [10, 14]). Despite the fact that we suppose that our approach will fall short on these
program classes, as one cannot expect to have a universal program inside the class itself or
the validity of Kleene’s second recursion theorem, we think that this represents an intriguing
research challenge.
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1 Introduction

Weighted finite automata (WFAs) are an expressive class of models representing functions
defined over sequences. The approximate minimization problem is concerned with finding an
automaton that approximates the behaviour of a given minimal WFA, while being smaller in
size. This second automaton recognizes a different language, and the objective is to minimize
the approximation error [11, 12]. Approximate minimization becomes particularly useful in
the context of spectral learning algorithms [5, 7, 9, 23]. When applied to a learning task,
such algorithms can be viewed as working in two steps. First, they compute a minimal WFA
that explains the training data exactly. Then, they obtain a model that generalizes to the
unseen data by producing a smaller approximation to the minimal WFA. It is not just a
question of saving space by having a smaller state space; the exact machine will overfit the
data and generalize poorly. To obtain accurate results it is crucial to guess correctly the size
of the minimal WFA, in particular when the data is generated by this type of machine.

The minimization task is greatly shaped by the way we decide to measure the approxima-
tion error. It is thus natural to wonder if there are norms that are preferable to others. We
believe that the chosen norm should be computationally reasonable to minimize. For instance,
the distance between WFAs can be computed using a metric based on bisimulation [8]. While
this approach could still be interesting, the fact that this metric is hard to compute makes
it unsuitable for our purposes. Moreover, this metric is specifically designed for WFAs, so
it is not directly applicable to other models dealing with sequential data. We think that
being transferable is a second important feature for a norm. In fact, being able to compare
different classes of models is desirable for future applications of this method. For example,
one can think of the burgeoning literature on approximating Recurrent Neural Networks
(RNNs) using WFAs, where the objective is to extract from a trained RNN an automaton
that accurately mimics its behaviour [37, 41, 32, 4, 19]. With this in mind, we think that it
is preferable to consider a norm defined on the input-output function – or the Hankel matrix
– rather than the parameters of the specific model considered. Finally, it is important to
choose a norm that can be computed accurately. The spectral norm seems to be a good
candidate for the task. In particular, it allows us to exploit the work of Adamyan, Arov and
Krein which has come to be known as AAK theory [1]: a series of results connecting the
theory of complex functions on the unit circle to Hankel matrices, a mathematical object
representing functions defined over sequences. The core of this theory provides us with
theoretical guarantees for the exact computation of the spectral norm of the error, and a
method to construct the optimal approximation. We summarize our main contributions:

We use AAK theory to study the approximate minimization problem of WFAs. To
connect those areas, we establish a correspondence between the parameters of a WFA and
the coefficients of a complex function on the unit circle. To the best of our knowledge,
this paper represents the first attempt to apply AAK theory to WFAs.
We present a theoretical analysis of the optimal spectral-norm approximate minimization
problem for WFAs, based on their connection with finite-rank infinite Hankel matrices.
We provide a closed form solution for real weighted automata A = ⟨α,A,β⟩ over a
one-letter alphabet, under the assumption ρ(A) < 1 on the spectral radius. We bound
the approximation error, both in terms of spectral and ℓ2 norm.
We propose a self-contained algorithm that returns the unique optimal spectral-norm
approximation of a given size.
We tighten the connection, made in [12], between WFAs and discrete dynamical systems,
by adapting some of the control theory concepts, e.g. the allpass system.
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2 Background

2.1 Preliminaries
We denote with N, Z and R the set of natural, integers and real numbers, respectively. We
use bold letters for vectors and matrices; all vectors considered are column vectors. We
denote with 1 the identity matrix, specifying its dimension only when not clear from the
context. We refer to the i-th row and the j-th column of M by M(i, :) and M(:, j). Given
a matrix M ∈ Rp×q of rank n, a rank factorization is a factorization M = PQ, where
P ∈ Rp×n, Q ∈ Rn×q and rank(P) = rank(Q) = n. Let M ∈ Rp×q of rank n, the compact
singular value decomposition SVD of M is the factorization M = UDV⊤, where U ∈ Rp×n,
D ∈ Rn×n, V ∈ Rq×n are such that U⊤U = V⊤V = 1, and D is a diagonal matrix. The
columns of U and V are called left and right singular vectors, while the entries of D are the
singular values. The Moore-Penrose pseudo-inverse M+ of M is the unique matrix such
that MM+M = M, M+MM+ = M+, with M+M and MM+ Hermitian [43]. The spectral
radius ρ(M) of a matrix M is the largest modulus among its eigenvalues.

A Hilbert space is a complete normed vector space where the norm arises from an inner
product. A linear operator T : X → Y between Hilbert spaces is bounded if it has finite
operator norm, i.e. ∥T∥op = sup∥g∥X ≤1 ∥Tg∥Y <∞. We denote by T the (infinite) matrix
associated with T by some (canonical) orthonormal basis on H. An operator is compact if
the image of the unit ball in X is relatively compact. Let T : X → Y be a compact operator
between Hilbert spaces, the adjoint operator T ∗ is the linear operator T ∗ : Y → X such
that ⟨Tx, y⟩Y = ⟨x, T ∗y⟩X , with x ∈ X, y ∈ Y and ⟨·, ·⟩ denotes the inner product of the
corresponding Hilbert space. The singular numbers {σn}n≥0 of T are the square roots of the
non-negative eigenvalues of the self-adjoint operator T ∗T , arranged in decreasing order. A
σ-Schmidt pair {ξ,η} for T is a couple of norm 1 vectors such that: Tξ = ση and T∗η = σξ.
The Hilbert-Schmidt decomposition provides a generalization of the compact SVD for the
infinite matrix of a compact operator T using singular numbers and orthonormal Schmidt
pairs: Tx =

∑
n≥0 σn⟨x, ξn⟩ηk [43]. The spectral norm ∥T∥ of the matrix representing the

operator T is the largest singular number of T . Note that the spectral norm of T corresponds
to the operator norm of T .

Let ℓ2 be the Hilbert space of square-summable sequences over Σ∗, with norm ∥f∥2
2 =∑

x∈Σ∗ |f(x)|2 and inner product ⟨f, g⟩ =
∑
x∈Σ∗ f(x)g(x) for f, g ∈ RΣ∗ . Let T = {z ∈ C :

|z| = 1} be the complex unit circle, D = {z ∈ C : |z| < 1} the (open) complex unit disc. Let
1 < p < ∞, Lp(T) be the space of measurable functions on T for which the p-th power of
the absolute value is Lebesgue integrable. For p =∞, we denote with L∞(T) the space of
measurable functions that are bounded, with norm ∥f∥∞ = sup{|f(x)| : x ∈ T}.

2.2 Weighted Finite Automata
Let Σ be a fixed finite alphabet, Σ∗ the set of all finite strings with symbols in Σ. We use ε
to denote the empty string. Given p, s ∈ Σ, we denote with ps their concatenation.

A weighted finite automaton (WFA) of n states over Σ is a tuple A = ⟨α, {Aa},β⟩, where
α, β ∈ Rn are the vector of initial and final weights, respectively, and Aa ∈ Rn×n is the
matrix containing the transition weights associated with each symbol a. Every WFA A with
real weights realizes a function fA : Σ∗ → R, i.e. given a string x = x1 · · ·xt ∈ Σ∗, it returns
fA(x) = α⊤Ax1 · · ·Axt

β = α⊤Axβ. A function f : Σ∗ → R is called rational if there exists
a WFA A that realizes it. The rank of the function is the size of the smallest WFA realizing
f . Given f : Σ∗ → R, we can consider a matrix Hf ∈ RΣ∗×Σ∗ having rows and columns
indexed by strings and defined by Hf (p, s) = f(ps) for p, s ∈ Σ∗.
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▶ Definition 1. A (bi-infinite) matrix H ∈ RΣ∗×Σ∗ is Hankel if for all p, p′, s, s′ ∈ Σ∗ such
that ps = p′s′, we have H(p, s) = H(p′, s′). Given a Hankel matrix H ∈ RΣ∗×Σ∗ , there exists
a unique function f : Σ∗ → R such that Hf = H.

▶ Theorem 2 ([16, 20]). A function f : Σ∗ → R is realized by a WFA A if and only if Hf

has finite rank n. In that case, n is the minimal number of states of any A such that f = fA.

Given a WFA A = ⟨α, {Aa},β⟩, the forward matrix of A is the infinite matrix FA ∈
RΣ∗×n given by FA(p, :) = α⊤Ap for any p ∈ Σ∗, while the backward matrix of A is
BA ∈ RΣ∗×n, given by BA(s, :) = (Asβ)⊤ for any s ∈ Σ∗. Let Hf be the Hankel matrix of
f , its forward-backward (FB) factorization is: Hf = FB⊤. A WFA with n states is reachable
if rank(FA) = n, while it is observable if rank(BA) = n. A WFA is minimal if it is reachable
and observable. If A is minimal, the FB factorization is a rank factorization [7].

We recall the definition of the singular value automaton, a canonical form for WFAs [11].

▶ Definition 3. Let f : Σ∗ → R be a rational function and suppose Hf admits an SVD,
Hf = UDV⊤. A singular value automaton (SVA) for f is the minimal WFA A realizing
f such that FA = UD1/2 and BA = VD1/2.

The SVA can be computed with an efficient algorithm relying on the following matrices [12].

▶ Definition 4. Let f : Σ∗ → R be a rational function, Hf = FB⊤ a FB factorization. If the
matrices P = F⊤F and Q = B⊤B are well defined, we call P the reachability Gramian
and Q the observability Gramian.

Note that if A is an SVA, then the Gramians associated with its FB factorization satisfy
PA = QA = D, where D is the matrix of singular values of its Hankel matrix. The
Gramians can alternatively be characterized (and computed [12]) using fixed point equations,
corresponding to Lyapunov equations when |Σ| = 1 [28].

▶ Theorem 5. Let |Σ| = 1, A = ⟨α,A,β⟩ a WFA with n states and well-defined Gramians P,
Q. Then X = P and Y = Q solve the equations X−AXA⊤ = ββ⊤ and Y −A⊤YA = αα⊤.

Finally, we recall the definition of generative probabilistic automata (GPA). A WFA
A = ⟨α, {Aa},β⟩ is a GPA if fA(x) ≥ 0 for every x and

∑
x∈Σ∗ fA(x) = 1, i.e. if fA

computes a probability distribution over Σ∗.

▶ Example 6. Let |Σ| = 1, Σ = {x}. The WFA A: A =
(

0 1
2

1
2 0

)
, α = β =

(√
3

2
0

)
, is a

GPA. Ideed, fA(x) ≥ 0 and
∑
x∈Σ∗ fA(x) = 1, since the rational function is:

fA(x · · ·x) = fA(k) = α⊤Akβ =
{

0 if k is odd
3
4 2−k if k is even

where k corresponds to the string where x is repeated k-times. We remark that A is minimal

and in its SVA form, with Gramians P = Q =
( 4

5 0
0 1

5

)
, and fA has rank 2. Finally, the

corresponding Hankel matrix, also of rank 2, is:

H =


fA(0) fA(1) fA(2) . . .

fA(1) fA(2) fA(3) . . .

fA(2) fA(3) fA(4) . . .
...

...
...

. . .

 =


3
4 0 3

16 . . .

0 3
16 0 . . .

3
16 0 3

64 . . .
...

...
...

. . .

 . (1)
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2.3 AAK Theory
Theorem 2 provides us with a way to associate a minimal WFA A with n states to a
Hankel matrix H of rank n. The approach we propose to approximate A is to find the
WFA corresponding to the matrix that minimizes H in the spectral norm. We recall the
fundamental result of Schmidt, Eckart, Young and Mirsky [18].

▶ Theorem 7 ([18]). Let H be a Hankel matrix corresponding to a compact Hankel operator
of rank n, and σm, with 0 ≤ m < n and σ0 ≥ · · · ≥ σn−1 > 0, its singular numbers. Then,
if R is a matrix of rank k, we have: ∥H − R∥ ≥ σk. The equality is attained when R
corresponds to the truncated SVD of H.

Note that a low-rank approximation obtained by truncating the SVD is not in general a
Hankel matrix. This is problematic, since G needs to be Hankel in order to be the matrix
of a WFA. Surprisingly, we can obtain a result comparable to the one of Theorem 7 while
preserving the Hankel property. This is the possible thanks to AAK theory [1], a theory of
optimal approximation. To apply this theory, we will need to rewrite the approximation
problem in functional analysis terms. First, we will associate a linear operator to the Hankel
matrix. Then, we will use Fourier analysis to reformulate the problem in a function space. A
comprehensive presentation of the concepts recalled in this section can be found in [31, 34, 29].

Let f : Σ∗ → R be a rational function, we interpret the corresponding Hankel matrix Hf

as the expression of a linear (Hankel) operator Hf : ℓ2 → ℓ2 in terms of the canonical basis.
We recall that a Hankel operator Hf is bounded if and only if f ∈ ℓ2 [12]. This property,
together with the fact that we only consider finite rank operators (corresponding to the
Hankel matrices of WFAs), is sufficient to guarantee compactness.

To introduce AAK theory, we need to consider a second realization of Hankel operators
on complex spaces. Since in this paper we work with two classes of functions – functions over
sequences and complex functions – to avoid any confusion we will make explicit the dependence
on the complex variable z = eit. We start by recalling a few fundamental definitions from the
theory of complex functions. Note that a function ϕ(z) ∈ L2(T) can be represented, using
the orthonormal basis {zn}n∈Z, by means of its Fourier series: ϕ(z) =

∑
n∈Z ϕ̂(n)zn, with

Fourier coefficients ϕ̂(n) =
∫
T ϕ(z)z̄ndz, n ∈ Z. This establishes an isomorphism between the

function ϕ(z) and the sequence of the corresponding Fourier coefficients ϕ̂. Thus, we can
partition the function space L2(T) into two subspaces.

▶ Definition 8. For 0 < p ≤ ∞ , the Hardy space Hp and the negative Hardy space
Hp− on T are the subspaces of Lp(T) defined as:

Hp = {ϕ(z) ∈ Lp(T) : ϕ̂(n) = 0, n < 0}, Hp− = {ϕ(z) ∈ Lp(T) : ϕ̂(n) = 0, n ≥ 0}.

Interestingly, the elements of the Hardy space can be canonically identified with the set of
functions analytic in D, with the property that the p-th power of their absolute value is
integrable on T (a proof can be found in [31]). Thus, we will make no difference between
these functions in the unit disc and their boundary value on the circle.

We can now embed the sequence space ℓ2 into ℓ2(Z) by “duplicating” each vector, i.e. by
associating µ = (µ0, µ1, . . . ) ∈ ℓ2 to µ(2) = (. . . , µ1, µ0, µ1, . . . ) ∈ ℓ2(Z). Then, we can use
the Fourier isomorphism to map the vector µ(2) ∈ ℓ2(Z) to the function space L2(T). In this
way each vector µ ∈ ℓ2 corresponds to two functions in the Hardy spaces:

µ−(z) =
∞∑
j=0

µjz
−j−1 ∈ H2

−, µ+(z) =
∞∑
j=0

µjz
j ∈ H2. (2)
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This leads to an alternative characterization of Hankel operators in Hardy spaces.

▶ Definition 9. Let ϕ(z) be a function in the space L2(T). A Hankel operator is an operator
Hϕ : H2 → H2

− defined by Hϕf(z) = P−ϕf(z), where P− is the orthogonal projection from
L2(T) onto H2

− . The function ϕ(z) is called a symbol of the Hankel operator Hϕ.

We briefly recall the following theorem, due to Nehari [30], characterizing bounded Hankel
operators.

▶ Theorem 10 ([30]). Let ϕ ∈ L2(T) be a symbol of the Hankel operator on Hardy spaces
Hϕ : H2 → H2

−. Then, Hϕ is bounded on H2 if and only if there exists ψ ∈ L∞(T) such that
ψ̂(m) = ϕ̂(m) for all m < 0. If the conditions above are satisfied, then:

∥Hϕ∥ = inf{∥ψ∥∞ : ψ̂(m) = ϕ̂(m), m < 0}. (3)

As a consequence of Theorem 10, if Hϕ is a bounded operator, we can consider without
loss of generality ϕ(z) ∈ L∞(T). We remark that a Hankel operator has infinitely many
different symbols, since Hϕ = Hϕ+ψ for ψ(z) ∈ H∞.

▶ Remark 11. Note that, in the standard orthonormal bases {zk}k≥0 of H2 and {z−(j+1)}j≥0
of H2

−, Hϕ has Hankel matrix H(j, k) = ϕ̂(−j − k − 1) for j, k ≥ 0.

▶ Example 12. In the case of the Hankel matrix in Example 6, we have that H(j, k) = 0 if j+k
is odd, and H(j, k) = 3

4 2−(j+k) if j+k is even. Since H(j, k) = ϕ̂(−j−k− 1), we can recover
the corresponding symbol: P−ϕ =

∑
n≥0 ϕ̂(−n− 1)z−n−1 =

∑
n≥0

3
4 2−2nz−2n−1 = 3z

4z2−1 .

▶ Definition 13. The complex function ϕ(z) is rational if ϕ(z) = p(z)/q(z), with p(z) and
q(z) polynomials. The rank of ϕ(z) is the maximum between the degrees of p(z) and q(z). A
rational function is strictly proper if the degree of p(z) is strictly smaller than that of q(z).

We remark that the poles of a complex function ϕ(z) correspond to the zeros of 1/ϕ(z). The
following result of Kronecker relates finite-rank infinite Hankel matrices to rational functions.

▶ Theorem 14 ([25]). Let Hϕ be a bounded Hankel operator with matrix H. Then H has
finite rank if and only if P−ϕ is a strictly proper rational function. Moreover the rank of H
is equal to the number of poles (with multiplicities) of P−ϕ inside the unit disc.

▶ Example 15. The function in Example 12 is rational with degree 2 and has two poles
inside the unit disc at z = ± 1

2 . Thus, the Hankel matrix associated has rank 2.

We state as remark an important takeaway from this section.

▶ Remark 16. Given a rank n Hankel matrix H, we can look at it in two alternative ways. On
the one hand we can consider the Hankel operator over sequences Hf : ℓ2 → ℓ2, associated
to a function f : Σ∗ → R. In this case H(i, j) = f(i+ j) for i, j ≥ 0, and f is rational in the
sense that it is realized by a WFA of size n. On the other hand, we can consider the Hankel
operator over complex (Hardy) spaces Hϕ : H2 → H2

−, associated to a function ϕ(z) ∈ L2(T),
the symbol. In this case H(j, k) = ϕ̂(−j − k − 1) for j, k ≥ 0, and P−ϕ = ϕ̂(−j − k − 1) is
rational of rank n in the sense of Definition 13.

We can introduce now the main result of Adamyan, Arov and Krein [1]. The theorem,
stated for Hankel operators over Hardy spaces, shows that for infinite dimensional Hankel
matrices the constraint of preserving the Hankel property does not affect the achievable
approximation error.
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▶ Theorem 17 (AAK-1[1]). Let Hϕ be a compact Hankel operator of rank n and singular
numbers σm, with 0 ≤ m < n and σ0 ≥ · · · ≥ σn−1 > 0. Then there exists a unique Hankel
operator G of rank k < n such that:

∥H−G∥ = σk. (4)

We can reformulate the theorem in terms of symbols. Let Rk ⊂ H∞
− be the set of strictly

proper rational functions of rank k, and H∞
k = {ψ ∈ L∞(T) : ∃g ∈ Rk, ∃l ∈ H∞, ψ = g+ l}.

▶ Theorem 18 (AAK-2 [1]). Let ϕ(z) ∈ L∞(T). Then, there exists ψ(z) ∈ H∞
k such that:

∥ϕ(z)− ψ(z)∥∞ = σk(Hϕ). (5)

The solutions of Theorem 17 and 18 are strictly related.

▶ Corollary 19. Let ψ(z) = g(z) + l(z) ∈ H∞
k , with g(z) ∈ Rk, l(z) ∈ H∞. If ψ(z) solves

Equation 5, then G = Hg is the unique Hankel operator from Theorem 17.

Proof of Corollary 19. Let Hϕ be a Hankel operator with symbol ϕ(z) ∈ L∞(T) and matrix
H. Let ψ(z) = g(z) + l(z) ∈ H∞

k be the solution of Equation 5. We have:

∥Hϕ −Hψ∥ = ∥Hϕ−ψ∥ (6)
= ∥Hσkη

−
k

(z)/ξ+
k

(z)∥ (7)

≤ σk∥η−
k (z)/ξ+

k (z)∥∞ = σk (8)

where first we used Corollary 20 and then we applied Theorem 10. Now, using the definition
of Hankel operator, we have:

∥Hϕ −Hψ∥ = ∥Hϕ −Hg∥ = ∥H−G∥ ≤ σk. (9)

Since ∥H−G∥ ≥ σk (from Eckart-Young theorem [18]), it follows that ∥H−G∥ = σk. Note
that G has rank k, as required, because g ∈ Rk(Theorem 14). ◀

We state as corollary the key point of the proof of AAK Theorem, that provides us with
a practical way to find the best approximating symbol.

▶ Corollary 20. Let ϕ(z) and {ξk,ηk} be a symbol and a σk-Schmidt pair for Hϕ. A function
ψ(z) ∈ L∞ is the best AAK approximation according to Theorem 18, if and only if:

(ϕ(z)− ψ(z))ξ+
k (z) = σkη

−
k (z). (10)

Moreover, the function ψ(z) does not depend on the particular choice of the pair {ξk,ηk}.

3 Approximate Minimization

3.1 Assumptions
To apply AAK theory to the approximate minimization problem, we consider only automata
with real weights, defined over a one-letter alphabet. In this case, the free monoid generated
by the single letter can be identified with N, and canonically embedded into Z. This passage
is fundamental to use Fourier analysis and the isomorphism that leads to Theorem 17 and
18. Unfortunately, this idea cannot be directly generalized to bigger alphabets, since in this
case we would obtain a free non-abelian monoid (not identifiable with Z).
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118:8 Optimal Approximate Minimization of WFAs

Theorem 17 requires the Hankel operator H to be bounded. To ensure that a minimal
WFA A = ⟨α,A,β⟩ satisfies this condition, we assume ρ(A) < 1, where ρ is the spectral
radius of A [12]. As a matter of fact, to guarantee the boundness of the Hankel operator it
is enough that the considered WFA computes a function f ∈ ℓ2 [12]. However, the stricter
assumption on the spectral radius is needed when computing the symbol associated to a WFA.
This condition directly implies the existence of the SVA, and of the Gramian matrices P and
Q, with P = Q and diagonal [12]. We assume A = ⟨α,A,β⟩ is in SVA form. In this case,
given the size of the alphabet, the Hankel matrix H is symmetric, so A = A⊤. Moreover, if
we denote with λi the i-th non-zero eigenvalue of H, and we consider the coordinates of α

and β, we have that αi = sgn(λi)βi, where sgn(λi) = λi/|λi|.
For example, we note that a minimal GPA computes a function f ∈ ℓ1, so the condition

on ρ(A) is automatically satisfied by this class of WFAs [12]. Possible relaxations of the
spectral radius assumption are discussed in Section 5, together with an alternative method
to find the optimal spectral-norm approximation of a Hankel matrix without extracting a
WFA.

Finally, in this paper we consider only automata with weights in R, though results remain
true for complex numbers. The method we present can be easily extended to vector-valued
automata [36], but the solution to the optimal approximation problem will not be unique [34].

3.2 Problem Formulation
Let A = ⟨α,A,β⟩ be a minimal WFA with n states in SVA form, defined over a one-letter
alphabet. Let H be the Hankel matrix of A, we denote with σi, for 0 ≤ i < n, the singular
numbers. Given a target number of states k < n, we say that a WFA Âk with k states solves
the optimal spectral-norm approximate minimization problem if the Hankel matrix G of Âk
satisfies ∥H−G∥ = σk(H). Note that the content of the “optimal spectral-norm approximate
minimization” is equivalent to the problem solved by Theorem 17, with the exception that
here we insist on representing the inputs and outputs of the problem effectively by means of
WFAs. Based on the AAK theory sketched in Section 2.3, we draw the following steps:

1. Compute a symbol ϕ(z) for H using Remark 16. We obtain the negative Fourier coefficients
of ϕ(z) and derive its Fourier series.

2. Compute the optimal symbol ψ(z) using Corollary 20. The main challenge here is to find a
suitable representation for the functions ψ(z) and e(z) = ϕ(z)− ψ(z). We define them in
terms of two auxiliary WFAs. The key point is to select constraints on their parameters to
leverage the properties of weighted automata, while still keeping the formulation general.

3. Extracting the rational component by solving for g(z) in Corollary 19. This step is
arguably the most conceptually challenging, as it requires to identify the position of the
function’s poles. In fact, we know from Theorem 14 that g(z) has k poles, all inside the
unit disc.

4. Find a WFA representation for g(z). Since in Step 2 we parametrized the functions using
WFAs, the expression of g(z) directly reveals the WFA Âk.

3.3 Spectral-Norm Approximate Minimization
In the following sections we will consider a minimal WFA A = ⟨α,A,β⟩ with n states in
SVA form, defined over a one-letter alphabet Σ = {a}, its Hankel matrix H, corresponding
to the bounded operator H, and the singular numbers σi, for 0 ≤ i < n. Let f : Σ∗ → R be
the function realized by A. We denote by x the string where a is repeated x times, so we
have f(x) = α⊤Axβ.



B. Balle, C. Lacroce, P. Panangaden, D. Precup, and G. Rabusseau 118:9

3.3.1 Computation of a Symbol for A
To determine the symbol ϕ(z) of H, we recall that each entry of the Hankel matrix corresponds
simultaneously to the values of f and to the negative Fourier coefficients of ϕ(z). In fact, as
seen in Remark 16, we have:

H =

fA(0) fA(1) . . .

fA(1) fA(2) . . .
...

...
. . .

 =

ϕ̂(−1) ϕ̂(−2) . . .

ϕ̂(−2) ϕ̂(−3) . . .
...

...
. . .

 . (11)

We obtain:

P−ϕ(z) =
∑
k≥0

f(k)z−k−1 =
∑
k≥0

α⊤Akβz−k−1 = α⊤(z1−A)−1β (12)

where we use the fact that ρ(A) < 1 for the last equality. Since the function obtained is
already bounded, we can directly consider ϕ(z) = α⊤(z1−A)−1β as a symbol for H.

▶ Example 21. If we apply the formula in Equation 12 to the GPA in Example 6, we recover
the rational function ϕ(z) = 3z

4z2−1 found in Example 12.

3.3.2 Computation of the Optimal Symbol
We consider two auxiliary WFAs. Let Â = ⟨α̂, Â, β̂⟩ be a WFA with j ≥ k states, satisfying
the following properties:
1. 1 is not an eigenvalue of Â
2. the automaton E = ⟨αe,Ae,βe⟩ is minimal, with

Ae =
(

A 0
0 Â

)
, αe =

(
α

−α̂

)
, βe =

(
β

β̂

)
. (13)

Using the parameters of the automaton Â and a constant C, we define a function
ψ(z) = α̂⊤(z1− Â)−1β̂ +C. We remark that the poles of ψ(z) correspond to the eigenvalues
of Â, counted with their multiplicities. By assumption, 1 is not an eigenvalue of Â, so ψ(z)
does not have any poles on the unit circle, and therefore ψ(z) ∈ L∞(T). Analogously, the
function e(z) = ϕ(z)− ψ(z) = α⊤

e (z1−Ae)−1βe − C is also bounded on the circle.
Our objective is to compute the parameters of Â = ⟨α̂, Â, β̂⟩ that make ψ(z) the best

approximation of ϕ(z) according to Theorem 18. In particular, we will use Corollary 20 to
find the triple α̂, Â, β̂ such that ψ(z) satisfies Equation 10. Note that, with this purpose,
the constant term C ∈ H∞ becomes necessary to characterize ψ(z). In fact, while the H∞-
component of the symbol does not affect the Hankel norm, it plays a role in the computation
of the L∞-norm (in Equation 5) according to Theorem 10, so it cannot be dismissed.

The following theorem provides us with an explicit expression for the functions in the
Hardy space corresponding to a σk-Schmidt pair.

▶ Theorem 22. Let σk be a singular number of the Hankel operator H. The singular
functions associated with the σk-Schmidt pair {ξk,ηk} of H are:

ξ+
k (z) = σ

−1/2
k α⊤(1− zA)−1ek (14)

η−
k (z) = σ

−1/2
k β⊤(z1−A)−1ek. (15)

If ψ(z) is the best approximation to the symbol, then σ−1
k e(z) has modulus 1 almost everywhere

on the unit circle ( i.e. it is unimodular).
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Proof. Let F and B be the forward and backward matrices, respectively, with H = FB⊤,
P = F⊤F,Q = B⊤B. We consider the σk-Schmidt pair {ξk,ηk}. By definition, we have
H⊤Hξk = σ2

kξk. Rewriting in terms of the FB factorization, we obtain:

H⊤Hξk = σ2
kξk (16)

BF⊤FB⊤ξk = σ2
kξk (17)

BPB⊤ξk = σ2
kξk (18)

BPek = σ2
kξk (19)

where in the last step we set ek = B⊤ξk, to reduce the SVD problem of H to the one of QP.
Note that, since P and Q are diagonal, ek is the k-th coordinate vector (0, . . . , 0, 1, 0, . . . , 0)⊤.
Since ek is an eigenvector of QP for σ2

k, we get:

BQ−1QPek = σ2
kξk (20)

BQ−1ek = ξk. (21)

Moreover, H is symmetric, so we have that the singular vectors ηk and ξk have the same
coordinates up to the sign of the corresponding eigenvalues. We obtain:

ξ+
k (z) =

∞∑
j=0

σ
−1/2
k α⊤Ajekzj = σ

−1/2
k α⊤(1− zA)−1ek (22)

η−
k (z) =

∞∑
j=0

σ
−1/2
k β⊤Ajekz−j−1 = σ

−1/2
k β⊤(z1−A)−1ek (23)

where the singular functions have been computed following Equation 2. If r is the multiplicity
of σk, from Corollary 20 we get the following fundamental equation:

(ϕ(z)− ψ(z))α⊤(1− zA)−1V = σkβ⊤(z1−A)−1V

where V =
(
0 1r

)⊤ is a n× r matrix. Consequently, we obtain the unimodular function:

σ−1
k e(z) = β⊤(z1−A)−1V

α⊤(1− zA)−1V

which is unimodular, since αi = sgn(λi)βi. ◀

It is reasonable to wonder how the fact that σ−1
k e(z) is unimodular reflects on the structure

of the WFA E = ⟨αe,Ae,βe⟩ associated with it. We remark that, a priori, the controllability
and observability Gramians of E might not be well defined. The following theorem provides
us with two matrices Pe and Qe satisfying properties similar to those of the Gramians. This
theorem is the analogous of a control theory result [17], rephrased in terms of WFAs. The
proof, that relies on the minimality of the WFA E [39], can be found in [17].

▶ Theorem 23 ([17]). Consider the function e(z) = α⊤
e (z1−Ae)−1βe − C and the corres-

ponding minimal WFA E = ⟨αe,Ae,βe⟩ associated with it. If σ−1
k e(z) is unimodular, then

there exists a unique pair of symmetric invertible matrices Pe and Qe satisfying:
(a) Pe −AePeA⊤

e = βeβ
⊤
e

(b) Qe −A⊤
e QeAe = αeα

⊤
e

(c) PeQe = σ2
k1

We can now derive the parameters of the WFA Â = ⟨α̂, Â, β̂⟩.
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▶ Theorem 24. Let A = ⟨α,A,β⟩ be a minimal WFA with n states in its SVA form, and let
ϕ(z) = α⊤(z1−A)−1β be a symbol for its Hankel operator H. Let σk be a singular number
of multiplicity r for H, with σ0 ≥ · · · > σk = · · · = σk+r−1 > σk+r ≥ · · · ≥ σn−1 > 0. We
can partition the Gramian matrices P, Q and, conformally to them, A, α and β, as follows:

P = Q =
(

Σ 0
0 σk1r

)
, A =

(
A11 A12
A⊤

12 A22

)
, α =

(
α1
α2

)
, β =

(
β1
β2

)
. (24)

where Σ ∈ R(n−r)×(n−r) is the diagonal matrix containing the remaining singular numbers.
Let R = σ2

k1n−r −Σ2, we denote by (·)+ the Moore-Penrose pseudo-inverse. If the function
ψ(z) = α̂⊤(z1− Â)−1β̂ + C is the best approximation of ϕ(z), then:

If α2 ̸= 0:
β̂ = −ÂA12(β⊤

2 )+

α̂ = Â⊤RA12(α⊤
2 )+

Â(A11 −A12(β⊤
2 )+β⊤

1 ) = 1
(25)

If α2 = 0:
β̂ = (1− ÂA11)(β⊤

1 )+

α̂ = −(R − Â⊤RA11)(α⊤
1 )+

ÂA12 = 0
(26)

Proof. Since σ−1e(z) = ϕ(z) − ψ(z) is unimodular, from Theorem 23 there exist two
symmetric nonsingular matrices Pe, Qe satisfying the fixed point equations:

Pe −AePeA⊤
e = βeβ

⊤
e (27)

Qe −A⊤
e QeAe = αeα

⊤
e (28)

and such that PeQe = σ2
k1. We can partition Pe and Qe according to the definition of

Ae (see Eq. 13):

Pe =
(

P11 P12
P⊤

12 P22

)
, Qe =

(
Q11 Q12
Q⊤

12 Q22

)
.

From Equation 27 and 28, we note that P11 and Q11 corresponds to the controllability and
observability Gramians of A:

P11 = Q11 = P =
(

Σ 0
0 σk1

)
.

Moreover, since PeQe = σ2
k1, we get P12Q⊤

12 = σ2
k1−P2. It follows that P12Q⊤

12 has rank
n− r. Without loss of generality we can set dim Â = j = n− r, and choose an appropriate
basis for the state space such that P12 =

(
1 0

)⊤ and Q12 =
(
R 0

)⊤, with R = σ2
k1−Σ2.

Once P12 and Q12 are fixed, the values of P22 and Q22 are automatically determined. We
obtain:

Pe =

Σ 0 1
0 σk1 0
1 0 −ΣR−1

 , Qe =

Σ 0 R
0 σk1 0
R 0 −ΣR

 . (29)
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Now that we have an expression for the matrices Pe and Qe of Theorem 23, we can
rewrite the fixed point equations to derive the parameters α̂, Â and β̂. We obtain the
following systems:

P−APA = ββ⊤

N−ANÂ⊤ = ββ̂
⊤

−ΣR−1 + ÂΣR−1Â⊤ = β̂β̂
⊤


P−APA = αα⊤

M−A⊤MÂ = −αα̂⊤

−ΣR + Â⊤ΣRÂ = α̂α̂⊤
(30)

where N =
(

1
0

)
and M =

(
R
0

)
. We can rewrite the second equation of each system as

follows:1−A11Â⊤ = β1β̂
⊤

−A⊤
12Â⊤ = β2β̂

⊤

{
R −A11RÂ = −α1α̂⊤

Â⊤RA12 = α̂α⊤
2

(31)

If α2 ̸= 0, then also β2 ̸= 0 (recall that αi = sgn(λi)βi), and we have:
β̂ = −ÂA12(β⊤

2 )+

α̂ = Â⊤RA12(α⊤
2 )+

Â(A11 −A12(β⊤
2 )+β⊤

1 ) = 1
(32)

with (α⊤
2 )+ = α2

α⊤
2 α2

and (β⊤
2 )+ = β2

β⊤
2 β2

.
If α2 = 0, we have ÂA12 = 0. We remark that Â has size (n− r)× (n− r), while A12 is

(n − r) × r, so the system of equations corresponding to ÂA12 = 0 is underdetermined if
r < n

2 , in which case we can find an alternative set of solutions:
β̂ = (1− ÂA11)(β⊤

1 )+

α̂ = −(R − Â⊤RA11)(α⊤
1 )+

ÂA12 = 0
(33)

with Â ≠ 0. On the other hand, if r ≥ n
2 , i.e. if the multiplicity of the singular number σk is

more than half the size of the original WFA, the system might not have any solution unless
Â = 0 (or unless A12 was zero to begin with). In this setting, the method proposed returns
Â = 0. An alternative in this case is to search for an approximation of size k− 1 or k+ 1, so
that r < n

2 , and the system in Equation 33 is underdetermined. ◀

3.3.3 Extraction of the Rational Component
The function ψ(z) = α̂⊤(z1− Â)−1β̂ + C found in Theorem 24 corresponds to the solution
of Theorem 18. To find the solution to the approximation problem we only need to “isolate”
the function g(z) ∈ Rk, i.e. the rational component. To do this, we study the position of
the poles of ψ(z), since the poles of a strictly proper rational function lie in the unit disc
(Theorem 14). As noted before, we parametrized ψ(z) so that its poles correspond to the
eigenvalues of Â. After a change of basis (detailed in Paragraph 3.3.3), we can rewrite Â in
block-diagonal form:

Â =
(

Â+ 0
0 Â−

)
(34)

where the modulus of the eigenvalues of Â+ (resp. Â−) is smaller (resp. greater) than one.
We apply the same change of coordinates on α̂ and β̂.
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To conclude the study of the eigenvalues of Â, we need the following auxiliary result from
Ostrowski [33]. A proof of this theorem can be found in [42].

▶ Theorem 25 ([33]). Let |Σ| = 1, and let P be a solution to the fixed point equation
X −AXA⊤ = ββ⊤ for the WFA A = ⟨α,A,β⟩. If A is reachable, then:

The number of eigenvalues λ of A such that |λ| < 1 is equal to the number of positive
eigenvalues of P.
The number of eigenvalues λ of A such that |λ| > 1 is equal to the number of negative
eigenvalues of P.

We can finally find the rational component of the function ψ(z), i.e. the function g(z)
from Corollary 19 necessary to solve that approximate minimization problem.

▶ Theorem 26. Let Â+, α̂+, β̂+ be as in Theorem 24. The rational component of ψ(z) is
the function g(z) = α̂⊤

+(z1− Â+)−1β̂+.

Proof. Clearly ψ(z) = g(z) + l(z), with l(z) = α̂⊤
−(z1 − Â−)−1β̂−, l ∈ H∞. To conclude

the proof we need to show that g(z) has k poles inside the unit disc, and therefore has rank
k. We do this by studying the position of the eigenvalues of Â+.

Since Â is reachable (follows from the minimality of E), we can use Theorem 25 and solve
the problem by directly examining the eigenvalues of −ΣR. From the proof of Theorem 24
we have −ΣR = Σ(Σ2 − σ2

k1), where Σ is the diagonal matrix having as elements the
singular numbers of H different from σk. It follows that −ΣR has only k strictly positive
eigenvalues, and Â has k eigenvalues with modulus smaller than 1. Thus, Â+ has k

eigenvalues, corresponding to the poles of g(z). ◀

Block Diagonalization

In this paragraph we detail the technical steps necessary to rewrite Â in block-diagonal form.
The problem of computing the Jordan form of a matrix is ill-conditioned, hence it is not
suitable for our algorithmic purposes [40]. Instead, we compute the Schur decomposition, i.e.
we find an orthogonal matrix U such that U⊤ÂU is upper triangular, with the eigenvalues
of Â on the diagonal. We obtain:

T = U⊤ÂU =
(

Â+ Â12

0 Â−

)
(35)

where the eigenvalues are arranged in increasing order of modulus, and the modulus of those
in Â+ (resp. Â−) is smaller (resp. greater) than one. To transform this upper triangular
matrix into a block-diagonal one, we use the following result.

▶ Theorem 27 ([38]). The matrix X is a solution of the equation Â+X−XÂ− + Â12 = 0 if

and only if M =
(

1 X
0 1

)
and M−1 =

(
1 −X
0 1

)
satisfy M−1TM =

(
Â+ 0
0 Â−

)
, where

T is the matrix defined in Equation 35.

Setting Γ =
(
1k 0

)
we can now derive the rational component of the WFA:

Â+ = ΓM−1U⊤ÂUMΓ⊤, α̂+ = ΓM⊤U⊤α̂, β̂+ = ΓM−1U⊤β̂. (36)
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3.3.4 Solution to the Approximation Problem
In the previous sections, we have derived the rational function g(z) corresponding to the
symbol of G, the operator that solves Theorem 17. To find the solution to the approximation
problem we only need to find the parameters of Âk, the optimal approximating WFA. These
are directly revealed by the expression of g(z), thanks to the way we parametrized the
functions.

▶ Theorem 28. Let A = ⟨α,A,β⟩ be a minimal WFA with n states over a one-letter alphabet.
Let A be in its SVA form. The optimal spectral-norm approximation of rank k is given by
the WFA Âk = ⟨α̂+, Â+, β̂+⟩.

Proof. From Corollary 19 we know that g(z) is the rational function associated with the
Hankel matrix of the best approximation. Given the correspondence between the Fourier
coefficients of g(z) and the entries of the matrix (Remark 16), we have:

g(z) = α̂⊤
+(z1− Â+)−1β̂+ =

∑
k≥0

α̂⊤
+Âk

+β̂+z
−k−1 =

∑
k≥0

f̄(k)z−k−1 (37)

where f̄ : Σ∗ → R is the function computed by Âk, and α̂+, Â+, β̂+ are the parameters. ◀

3.4 Error Analysis
The theoretical foundations of AAK theory guarantee that the construction detailed in
Section 3.3 produces the rank k optimal spectral-norm approximation of a WFA satisfying
our assumptions, and the singular number σk provides the exact error.

Similarly to the case of SVA truncation [12], due to the ordering of the singular numbers,
the error decreases when k increases, meaning that allowing Âk to have more states guarantees
a better approximation of A. We remark that, while the solution we propose is optimal in
the spectral norm, the same is not necessarily true in other norms. Nonetheless, we have the
following bound between ℓ2-norm and spectral-norm.

▶ Theorem 29. Let A be a minimal WFA computing f : Σ∗ → R, with matrix H. Let Âk be
its optimal spectral-norm approximation, computing g : Σ∗ → R, with matrix G. Then:

∥f − g∥ℓ2 ≤ ∥H−G∥ = σk. (38)

Proof. Let e0 =
(
1 0 · · ·

)⊤, f : Σ∗ → R, g : Σ∗ → R with Hankel matrices H and G,
respectively. We have:

∥f−g∥ℓ2 =
( ∞∑
n=0
|fn − gn|2

)1/2

= ∥(H−G)e0∥ℓ2 ≤ sup
∥x∥ℓ2 =1

∥(H−G)x∥ℓ2 = ∥H−G∥ = σk

where the second equation follows by definition and by observing that matrix difference is
computed entry-wise. ◀

4 Algorithm

In this section we describe the algorithm for spectral-norm approximate minimization. The
algorithm takes as input a target number of states k < n, a minimal WFA A with ρ(A) < 1,
α2 ≠ 0, n states and in SVA form, and its Gramian P. Note that, in the case of α2 = 0, it is
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Algorithm 1 AAKapproximation.

input : A minimal WFA A, with α2 ̸= 0, n states and in SVA form,
its Gramian P, a target number of states k < n

output : A WFA Âk with k states
1 Let α1,α2,β1,β2,A11,A12,A22,Σ be the blocks defined in Eq. 24
2 Let (α⊤

2 )+ = α2
α⊤

2 α2
, (β⊤

2 )+ = β2
β⊤

2 β2

3 Let R = σ2
k1−Σ2

4 Let Â = (A11 −A12(β⊤
2 )+β⊤

1 )−1

5 Let α̂ = Â⊤RA12(α⊤
2 )+

6 Let β̂ = −ÂA12(β⊤
2 )+

7 Let Â = ⟨α̂, Â, β̂⟩
8 Let Âk ← BlockDiagonalize(Â)
9 return Âk

Algorithm 2 BlockDiagonalize.

input : A WFA Â

output : A WFA Âk wit ρ < 1
1 Compute the Schur decomposition of Â = UTU⊤, where |T11| ≤ |T22| ≤ . . .
2 Solve Â11X−XÂ22 + Â12 = 0 for X

3 Let M =
(

1 X
0 1

)
and M−1 =

(
1 −X
0 1

)
4 Let Γ =

(
1k 0

)
5 Let Â+ = ΓM−1U⊤ÂUMΓ⊤

6 Let α̂+ = ΓM⊤U⊤α̂

7 Let β̂+ = ΓM−1U⊤β̂

8 Let Âk = ⟨α̂+, Â+, β̂+⟩
9 return Âk

enough to substitute the Steps 4, 5, 6 with the analogous from Equation 26. The constraints
on the WFA A to be minimal and in SVA form are non essential. In fact a WFA with n

states can be minimized in time O(n3) [15], and the SVA computed in O(n3) [12].
Using the results of Theorem 24, we outline in Algorithm 1, AAKapproximation, the

steps necessary to extract the best spectral-norm approximation of a WFA.
The algorithm involves a call to Algorithm 2, BlockDiagonalize. This corresponds to

the steps, outlined in Paragraph 3.3.3, necessary to derive the WFA Âk corresponding to
the rational function g(z). We remark that Step 2 in BlockDiagonalize can be performed
using the Bartels-Stewart algorithm [14].

To compute the computational cost we recall the following facts [40]:
The product of two n × n matrices can be computed in time O(n3) using a standard
iterative algorithm, but can be reduced to O(nω) with ω < 2.4.
The inversion of a n × n matrix can be computed in time O(n3) using Gauss-Jordan
elimination, but can be reduced to O(nω) with ω < 2.4.
The computation of the Schur decomposition of a n×n matrix can be done with a two-step
algorithm, where each step takes O(n3), using the Hessenberg form of the matrix.
The Bartels-Stewart algorithm applied to upper triangular matrices to find a matrix
m× n takes O(mn2 + nm2).
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The running time of BlockDiagonalize with input a WFA Â with (n− r) states is thus in
O((n− r)3), where r is the multiplicity of the singular value considered. The running time
of AAKapproximation for an input WFA Â with n states is in O((n− r)3).

5 Possible Extensions

5.1 Relaxing the Spectral Radius Assumption
It is possible to extend part of our method to WFAs over a one-letter alphabet with ρ(A) ̸= 1,
but the approximation recovered is not optimal in the spectral norm.

Let A = ⟨α,A,β⟩, with ρ(A) ̸= 1, be a WFA with n states that we want to minimize.
The idea is to block-diagonalize A like we did in Section 3.3.3, and tackle each component
separately. The case of A+ = ⟨α+,A+,β+⟩, the component having ρ(A) < 1, can be dealt
with in the way presented in the previous sections. This means that we can find an optimal
spectral-norm approximation of the desired size for A+. Now we can consider the second
component, A− = ⟨α−,A−,β−⟩. The key idea is to apply the transformation zj−1 7→ z−j

for j ≥ 1 to the function ϕ′′(z) associated to A−. Then, the function

ϕ′′(z−1) =
∑
k≥0

α⊤
−Ak

−z
kβ− = α⊤

−(1− zA−)−1β− (39)

is well defined, as the series converges for z with small enough modulus. Using this trans-
formation we obtain a function with poles inside the unit disc and we can apply the method
presented in the paper. An important choice to make is the size of the approximation of A−,
as it can influence the quality of the approximation. Analyzing the effects of this parameter
on the approximation error constitutes an interesting direction for future work, both in the
theoretical and experimental side. We refer the reader to the control theory literature [21],
where some theoretical work has been done to study an analogous approach for continuous
time systems and their approximation error.

5.2 Polynomial method
We remark that Equation 10 from Corollary 20 can be rewritten as

ψ(z) = ϕ(z)−
Hξ+

k (z)
ξ+
k (z)

, (40)

where ξ+
k (z) is the function in H2 associated to the vector ξk ∈ Ker(H∗H− σ2

k1) (and ψ(z)
does not depend on the choice of the specific ξk). There is an alternative way to find the
best approximation, particularly useful when the objective is to approximate a finite-rank
infinite Hankel matrix with another Hankel matrix, without necessarily extract a WFA. We
can consider the adjoint operator H∗ and its matrix H∗. The singular numbers and singular
vectors of H correspond to the eigenvalues and eigenvectors of R = (H∗H)1/2. Hence, it is
possible to compute σk and a corresponding singular vector ξk. The function ξ+

k (z) is then
obtained following Equation 2. Then, the Hankel matrix G that best approximates H is
given by G = H−M, where M is the Hankel matrix having Hξ+

k
(z)

ξ+
k

(z) as symbol.

6 Related Work

The study of approximate minimization for WFAs is very recent, and only a few works have
been published on the subject. In [11, 12] the authors present an approximate minimization
technique using a canonical expression for WFAs, and provide bounds on the error in the
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ℓ2 norm. The result is supported by strong theoretical guarantees, but it is not optimal
in any norm. An extension of this method to the case of Weighted Tree Automata can be
found in [13]. A similar problem is addressed in [26], with less general results. In [27], the
authors connect spectral learning to the approximate minimization problem of a small class
of Hidden Markov models, bounding the error in terms of the total variation distance.

The control theory community has largely studied approximate minimization in the
context of linear time-invariant systems [3]. A parallel with those results can be drown by
noting that the impulse response of a discrete Single-Input-Single-Output SISO system can
be parametrized as a WFA over a one-letter alphabet. In [21] Glover presents a state-space
solution for the case of continuous Multi-Input-Multi-Output MIMO systems. His method
led to a widespread application of these results, thanks to its computational and theoretical
simplicity. This stems from the structure of the continuous Lyapunov equations. For discrete
systems, though, the quadratic nature of the Lyapunov equations does not allow for a simple
closed form formula for the state space solution [17]. Thus, most of the results for the discrete
case work with a suboptimal version of the problem [6, 2, 24]. A solution for the SISO case
can be found using a polynomial approach, but it does not provide an explicit representation
of the state space nor it generalizes to the MIMO setting. The first to actually extend Glover
results is Gu, who provides an elegant solution for the MIMO discrete problem [22]. Glover
and Gu’s solutions rely on building an all-pass system, equivalent to the WFA E in our case.
Part of our contribution is the adaptation of some of the control theory tools to WFAs.

7 Conclusion

In this paper we applied the AAK theory for Hankel operators and complex functions to the
framework of WFAs in order to construct the best possible approximation to an automaton
given a bound on the size. We provide an algorithm to find the parameters of the best
WFA approximation in the spectral norm, and bounds on the error. Our method applies
to real WFAs A = ⟨α,A,β⟩, defined over a one-letter alphabet, with ρ(A) < 1. While this
setting is certainly restricted, we believe that this work constitutes a first fundamental step
towards optimal approximation. Furthermore, the use of AAK techniques has proven to be
very fruitful in related areas like control theory; we think that automata theory can also
benefit from it. The use of such methods can help deepen the understanding of the behaviour
of rational functions. This paper highlights and strengthens the interesting connections
between functional analysis, automata theory and control theory, unifying tools from different
domains in one formalism.

A compelling direction for future work is to extend our results to the multi-letter case.
The work of Adamyan, Arov and Krein provides us with a powerful theory connecting
sequences to the study of complex functions. We note that, unfortunately, this approach
cannot be directly generalized to the multi-letter case because of the non-commutative nature
of the monoid considered. Extending this work would require adapting standard harmonic
analysis results to the non-abelian case. A recent line of work in functional analysis is
centered around extending this theory to the case of non-commutative operators, and in [35]
a non-commutative version of the AAK theorem is presented. However, those results are
non-constructive, making this direction, already challenging, even harder to pursue.
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Abstract
In this work, we revisit the problem of testing membership in regular languages, first studied by Alon
et al. [1]. We develop a one-sided error property tester for regular languages under weighted edit
distance that makes O(ε−1 log(1/ε)) non-adaptive queries, assuming that the language is described
by an automaton of constant size. Moreover, we show a matching lower bound, essentially closing
the problem for the edit distance. As an application, we improve the space bound of the current
best streaming property testing algorithm for visibly pushdown languages from O(ε−4 log6 n) to
O(ε−3 log5 n log log n), where n is the size of the input. Finally, we provide a Ω̄(max(ε−1, log n))
lower bound on the memory necessary to test visibly pushdown languages in the streaming model,
significantly narrowing the gap between the known bounds.

2012 ACM Subject Classification Theory of computation → Regular languages

Keywords and phrases property testing, regular languages, streaming algorithms, visibly pushdown
languages

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.119

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding This work was partially funded by the grants ANR-19-CE48-0016 and ANR-20-CE48-0001
from the French National Research Agency (ANR).

1 Introduction

A one-sided error ε-property tester for a language L is a randomised algorithm that accepts
an input u of length n if u ∈ L with probability one, and rejects if the distance from u to L

is at least εn with probability ≥ 2/3. In the property testing setting, we do not have access
to the whole input u, but instead must take the decision by querying as few symbols of the
input as possible. The number of queried symbols is called the query complexity of the tester.

The study of property testing of formal languages was initiated in the seminal paper
of Alon et al. [1], who showed a property tester for regular languages as well as lower bounds
for context-free languages. Property testing of regular languages has been also studied
in [6, 17, 19, 20]. Apart from regular languages, there is a series of work that studied the
question of testing membership in Dyck(s), the language of well-parenthesized expressions
with s types of parentheses [1, 4, 21]. When the distance allows sufficient modifications of the
input, such as moves of arbitrarily large factors, it was shown that any context-free language
is testable with a constant number of queries [3].

In this work, we revisit the problem of property testing of regular languages. Recall that
the Hamming distance is the number of mismatches between two equal-length strings, and
the edit distance between two strings is the smallest number of insertions, deletions, and
substitutions required to convert one string into another. The weighted edit distance is a
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generalisation of the edit distance for weighted words (see Section 2 for a definition). Fix
a regular language specified by an automaton with m states and k connected components.
The first property tester for regular languages was given by Alon et al. [1]. The tester of
Alon et al. is for the Hamming distance, it queries O(k2m · ε−1 log3(m/ε)) symbols of the
input, and its runtime is exponential in the size of the automaton that defines the regular
language. Alon et al. [1] also showed a Ω̄(1/ε) lower bound for such testers1. Magniez and
De Rougemont [17] built upon [1] to show a property tester for regular languages under the
edit distance with moves. The query complexity of their algorithm is O(m3 · ε−1 log2(m/ε))
and its running time exponential. Later, Fischer et al. [3] improved the query complexity
to remove the dependency on m. Ndione et al. [19, 20] continued this line of work with
a goal of devising property testers that run in polynomial time, both for the Hamming
distance and the edit distance. Their tester for the Hamming distance has query complexity
O(k2m4 · ε−1 log3(km4/ε)) and runtime O(k2m10 · ε−1 log3(km4/ε)). Unfortunately, their
tester for the edit distance, which is of more interest to us, contains a fatal error in one of
the key lemmas, which is why we do not give its complexities here2. Finally, François et
al. [5, 6] gave a tester for regular languages under the weighted edit distance with query
complexity O(m3 · ε−2) and O(km5 · ε−2) running time.

Table 1 Summary of property testing algorithms for regular languages, assuming that a regular
language is described by an automaton on a constant-size alphabet Σ with m states and k strongly
connected components.

Queries Time Distance
Alon et al. [1] O(k2m · ε−1 log3(m/ε)) O(2m2

+ ε−k) Hamming
Magniez et
De Rougemont [17]

O(m3 · ε−1 log2(m/ε)) O(2mm5 · ε−1 log2(m/ε)) edit w. moves

Fischer et al. [3] O( Σ2/ε log |Σ|
ε4 ) m|Σ|O(1/ε)

edit w. moves
Ndione et al. [19, 20] O(k2m4 ·ε−1 log3(km4/ε)) O(k2m10·ε−1 log3(km4/ε)) Hamming
François et al. [6] O(m3 · ε−2) O(km5 · ε−2) weight. edit
This work O(km · ε−1 log(m/ε)) O(km3 · ε−1 log(m/ε)) weight. edit

Our main contribution is a tight bound on query complexity of property testing of regular
languages under the weighted edit distance. First, we show a new property tester with query
complexity O(km · ε−1 log(m/ε)) and time complexity O(km3 · ε−1 log(m/ε))(Theorem 5).
Essentially, our tester is very simple: it samples a set of short factors of the input string u,
and checks whether the factors can be complemented to a word that belongs to the given
regular language L. The analysis is much more involved. Our inspiration originates from the
ideas from [5, 19, 20], which we extend in a non-trivial way to show a better (and correct)
bound. In Theorem 15, we complement the upper bound with a matching lower bound. As
the Hamming distance is always larger than the edit distance, the bound also holds for the
Hamming distance, improving the lower bound by Alon et al. [1]. See Table 1 for a summary
of previously known results and comparison with our work.

1 We use the following asymptotic notation: For functions f, g : N → R≥0, f(n) = Ω̄(g(n)) holds if
f(n) ≥ c · g(n) for some c > 0 and infinitely many n ∈ N.

2 The error is in [19, Lemma 12], namely, the value l′ chosen in the last two sentences of the proof does
not necessarily exist (confirmed via personal communication with the authors).
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As an almost straightforward application of our result, in Section 4 we plug our property
tester into the algorithm of François et al. [5] to show an improved space bound for streaming
property testing for the class of visibly pushdown languages (VPL) (that, in particular,
contains regular languages and Dyck(s)). Informally, a streaming property tester for a
language L is an algorithm that receives an input word u of length n as a stream, one
symbol at a time, and must accept if u ∈ L with probability one and reject if the distance
from u to L is at least εn with probability at least 2/3. Assuming that the automaton that
specifies a VPL L is of constant size, the streaming property tester of François et al. [6]
requires O(ε−4 log6 n) bits of space. Our result improves this bound to O(ε−3 log5 n log log n)
(Corollary 22). François et al. [5] showed that for ε = 0, a streaming property tester for
visibly pushdown languages must use Ω(n) bits, even when randomisation is allowed. As our
final contribution, we show a space lower bound of Ω̄(max(ε−1, log n)) bits (Theorem 23),
thus narrowing the gap between the best existing bounds by log2 n/ log log n.

Apart from VPL, the problem of testing membership in formal languages in the streaming
setting has been studied for Dyck(s) [14, 16, 18], and for DLIN and LL(k) [2]. A variant of the
streaming setting, called the sliding window model, where one must decide the membership
for the n-length suffix of the stream after each symbol arrival, has been considered for regular
languages [9, 10, 11, 12], VPL [8], and context-free languages [13].

2 Preliminaries

An alphabet Σ is a finite set the elements of which are called symbols. The length of a
word u, denoted |u|, is the number of symbols in u. For 1 ≤ i ≤ j ≤ |u|, we let u[i] denote
the i-th symbol in u, and v = u[i, j] the word u[i] . . . u[j], which we call a factor of u. A
factor of length l is called an l-factor. If i = 1, then v is called a prefix of u, and if j = n, a
suffix. We let Σn denote the set of all n-length words over Σ and Σ∗ =

⋃
n∈N Σn ∪ ϵ, where ϵ

is the empty word. Any subset of Σ∗ is called a language.
The edit distance between two words u and v, ed(u, v), is defined as the minimum number

of deletions, insertions, and substitutions of symbols required to transform u into v. The
indel distance between two words u, v, δ(u, v), is defined as the smallest number of insertions
and deletions needed to convert u into v.

We say that a word u ∈ Σ∗ is weighted if each position i of u has a non-zero integer
weight that we denote by weight(u[i]). We define the weight of u, weight(u), as the sum of
the weights of its positions. The weighted edit distance between a weighted word u and a
(non-weighted) word v, wed(u, v), is defined as the minimum cost of deletions and insertions
of symbols that we must apply to u to obtain v. The cost of deletion or insertion of a symbol
is equal to its weight. (Substitutions are not allowed.) For example, if u = abb and the
weights of the positions are 3, 2, 2, and v = abc then wed(u, v) = 3: we delete u[2] = b with
weight 2, and insert c with weight 1.

▶ Observation 1. Consider two words u, v, and assume that the weight of any position in u

equals 1. We then have ed(u, v) ≤ wed(u, v) ≤ 2ed(u, v).

▶ Definition 2. The weight distribution over a word u ∈ Σn is the probability distribution
over {1, . . . n} where the probability to sample a position i is equal to weight(u[i])/weight(u).

▶ Definition 3. A non-deterministic finite automaton (NFA) is defined as a tuple A =
(Σ, Q, Qin, Qf , ∆), where:

Σ is a finite input alphabet,
Q is a finite set of states Qin ⊆ Q of initial states, and Qf ⊆ Q of final states,
∆ ⊆ Q× Σ×Q is the transition relation. For (p, a, q) ∈ ∆, we write p

a−→∆ q.
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For a word u = u[1] . . . u[n] and states p, q ∈ Q, we write p
u−→∆ q if there exists a sequence

of states p = q0, . . . , qn = q such that ∀i = 1, . . . , n qi−1
u[i]−−→∆ qi. The sequence q0, . . . , qn

is called a run labelled by u. A word u is recognized by A if there exists (qin, qf ) ∈ Qin×Qf

such that qin
u−→∆ qf . We write L(A) for the set of all words recognized by A. A language

L ⊆ Σ∗ is regular if there exists an NFA A such that L = L(A).

Property testing model

For a given distance function d on Σ∗, we define the distance from a word u ∈ Σ∗ to L,
d(u, L) = minw∈L d(u, w). If a word u is weighted, we say that it is ε-far from L if
d(u, L) ≥ ε · weight(u). In the unweighted case, if d(u, L) ≥ ε · |u|.

In the property testing model, we assume that we can query any symbol of the input
according to the weight distribution over it in constant time. In the unweighted case, this is
equivalent to constant-time random access.

▶ Definition 4 (Property tester). An ε-property tester for a language L for a distance d is a
randomised algorithm that:

accepts if u ∈ L with probability 1,
rejects with probability at least 2/3 if u is ε-far from L under d,
accepts or rejects otherwise.

In addition to standard complexity measures, we are interested in so-called query com-
plexity which is defined to be the number of symbols of u that a tester queries. The time
complexity is defined as usual, and the space complexity of a tester is defined as space used
beyond the space required to store the input.

Property testers can be non-adaptive (the symbols to query are selected offline) and
adaptive (the position of the i-th queried symbol depends on the first i− 1 queried symbols).
In this work, we focus on non-adaptive testers.

3 Property testing of regular languages

In this section, we show an improved upper bound and a matching lower bound on the query
complexity of property testing of regular languages under weighted edit distance.

3.1 Upper bound
We start by showing the following theorem:

▶ Theorem 5. Let A = (Σ, Q, Qin, Qf , ∆) be an NFA, m = |Q|, and k be the number of
strongly connected components in the underlying graph. There exists an ε-property tester for
membership of a weighted word u in the regular language L = L(A) under the weighted edit
distance. The query complexity of the tester is O(km · ε−1 log(m/ε)) and the time complexity
is O(km3 · ε−1 log(m/ε)), assuming constant-size alphabet.

3.1.1 Combinatorics of blocking factors and fragments
▶ Definition 6 (Blocking factor). Consider a strongly connected component C of A. We
say that a factor v of a word u is a C-blocking factor if for any two states p, q of C we
have p

v↛∆ q.
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We say that a sequence of components P = (C1, . . . , Cj) is a component path of A if for
any 1 ≤ i ≤ j − 1 there is p ∈ Ci, q ∈ Ci+1 such that p

a−→∆ q for some symbol a ∈ Σ. Note
that j ≤ k ≤ m.

▶ Definition 7 (P -partition, β-saturation). Let u ∈ Σ∗, β > 0 and P = (C1, . . . , Cj) be a
component path. We build the P -partition of u recursively. We start with i = 1. Let u = vxu′,
where v ∈ Σ∗, x ∈ Σ, and vx is the shortest Ci-blocking prefix of u. If weight(x) > β·weight(u),
we say that x is heavy, and otherwise we call it light. Consider three cases:

If x is not Ci-blocking, add vx to the set Bi(P );
If x is Ci-blocking and heavy, add it to the set Hi(P );
If x is Ci-blocking and light, add it to the set Li(P ).

Recurse for u = u′ and the value of i computed as follows:

i =


mini′({i′ | i′ > i, ∃p ∈ Ci′−1 ∪ Ci′ , q ∈ Ci′ , p

x−→∆ q} ∪ {j + 1}), if x is heavy;
i + 1, if x is light and

(
|Bi(P )| ≥ β · weight(u) or weight(Li(P )) ≥ β · weight(u)

)
;

i, otherwise.

Stop if i = j + 1, if u is empty, or if there is no Ci-blocking factor in u. If we reach i = j + 1,
we say that u β-saturates P . The sets Bi(P ), Hi(P ), Li(P ), i ≤ j form the P -partition of u.

We show that if a word is ε-far from L, then it β-saturates P for β = ε/(6m). The proof
is by contradiction: we show that if a word does not β-saturate P , then we can obtain a
word in L by deleting the factors in ∪iLi(P ) and then inserting a small number of factors of
length and weight at most m.

▶ Lemma 8. Let u ∈ Σ∗ be such that weight(u) ≥ 6km/ε and P = (C1, . . . , Cj) be a
component path of A. Let β = ε/(6m). If u is ε-far from L, then u β-saturates P .

Proof. By contrapositive: assume that u does not β-saturate P , in other words, the algorithm
that built the P -partition of u reached the end of u but i ̸= j +1. We will show that there is a
word u′ ∈ L such that the weighted edit distance between u and u′ is at most ε ·weight(u). We
first delete all the elements in Li(P ), for all i. Note that weight(Li(P )) ≤ 2β · weight(u) for
any i, so the total weight of the deleted factors is at most 2kβ ·weight(u) = ε·weight(u)k/(3m).
Next, we edit the elements of Bi(P ) as follows: let v ∈ Bi(P ), v = v′x where v′ ∈ Σ∗, x ∈ Σ.
Since v is a minimal blocking prefix, v′ is not Ci-blocking, and there exist p, q ∈ Ci such
that p

v′

−→∆ q. Similarly, as v ∈ Bi(P ), x is not Ci-blocking and labels a run within Ci, from
p′ to q′. Therefore, we can edit v into v′′ = v′wx, where q

w−→∆ p′ and |w| ≤ |Ci|. Since Ci

is strongly connected, we can similarly insert factors of length at most |Ci| between the
elements of Bi(P ) to obtain a word wi that labels a run within Ci. Note that we can choose
the weights of the inserted symbols arbitrarily, and we put them equal to one. Hence, the
cost of this step is at most |Bi(P )| · |Ci| for each i. Finally, we insert factors of length at
most m in between the words wi and the heavy blocking 1-factors in Hi(P ), as well as before
and after the last factor, so that the resulting word u′ belongs to L. Again, we put the
weights of the symbols of the inserted factors equal to one, and hence the cost of this step is
at most 2km. We have the following bound on the weighted edit distance of u to L:

d(u, L) ≤ d(u, u′) ≤ ε · weight(u)k/(3m) + 2km +
j∑

i=1
2 · |Bi(P )| · |Ci|

≤ ε(weight(u)/3 + weight(u)k/(3m)) + 2km ≤ ε · weight(u)

A contradiction. ◀
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Suppose that u β-saturates a component path P = (C1, . . . Cj), in other words, the
algorithm that built the P -partition reached i = j + 1. For every 1 ≤ i ≤ j, let Si(P ) =
Bi(P ) ∪ Li(P ) ∪Hi(P ). We define indices 0 = a0 ≤ · · · ≤ aj so that for each i either Si(P )
is empty (because Ci was skipped by the algorithm of Definition 7 due to a heavy factor), or
all the factors in it are the factors of u[ai−1 + 1, ai]. For i = 0, we let a0 = 0, and then for all
i, ai = ai−1 if Si(P ) = ∅ and the largest index of a symbol in Si(P ) otherwise. If Si(P ) ̸= ∅,
then by Definition 7, one of the following holds:

The total weight of Ci-blocking 1-factors in Hi(P ) ∪ Li(P ) is at least β · weight(u);
|Bi(P )| ≥ β · weight(u).

Blocking factors are witnesses of the fact that u /∈ L. If there are many short blocking factors,
as in the first case, we can sample them with a few queries. However, in the second case, the
factors can be arbitrarily long. To develop an efficient tester, we must give a more accurate
bound.

▶ Corollary 9. Let γ = ⌈2/β⌉ = ⌈12m/ε⌉. If |Bi(P )| ≥ β · weight(u), then Bi(P ) contains
at least weight(u)/γ disjoint Ci-blocking factors of length at most γ.

Proof. Since the factors in Bi(P ) are disjoint and their total weight is bounded by weight(u),
at most weight(u)/γ of them can have weight (and length) larger than γ. Consequently,
Bi(P ) contains at least β · weight(u)− weight(u)/γ ≥ weight(u)/γ factors of length ≤ γ. ◀

Let us now introduce the notion of a fragment that will allow us to test the sampled
factors efficiently.

▶ Definition 10 (Fragment). Given a set of factors u[ir, jr], 1 ≤ r ≤ t, consider the
decomposition of the set S =

⋃
1≤r≤t[ir, jr] into maximal disjoint intervals, that is, S =

⊔1≤r≤t′ [i′
r, j′

r], where i′
1 ≤ j′

1 < i′
2 ≤ j′

2 < . . . i′
t′ ≤ j′

t′ . The fragment F formed by the factors
is the word F = ∗ u[i′

1, j′
1] ∗ u[i′

2, j′
2] ∗ · · · ∗ u[i′

t′ , j′
t′ ] ∗, where “∗” is a special symbol not

in Σ. A word v contains F as a fragment if there exist words w1, . . . wt′+1 ∈ Σ∗ such that by
replacing the i-th symbol “∗” with wi in F , we obtain v.

For example, for u = abbabbab the fragment formed by factors u[1, 2], u[2, 3], u[4, 4], and
u[6, 8], is F = ∗ u[1, 4] ∗ u[6, 8] ∗ = ∗ abba ∗ bab ∗. The word cabbadebabcde contains F .

▶ Definition 11 (Blocking fragment). A fragment F is A-blocking if none of the words that
contain F as a fragment belongs to L(A).

The following lemma relates Ci-blocking factors and A-blocking fragments and is crucial
for correctness of our tester. To show it, we prove by induction that any run that starts
in C1 and is labelled by the prefix of the fragment containing the factors in ∪1≤i≤tHi(P ) and
at least one Ci-blocking factor from each Si ≠ ∅, 1 ≤ i ≤ t, must end at a state in ∪i≥t+1Ci.

▶ Lemma 12. If for any component path P = (C1, . . . , Cj) and i, the fragment F contains
all factors in

⋃
i Hi(P ), and a Ci-blocking factor from u[ai−1 + 1, ai] for each i such that

Hi(P ) = ∅ and Li(P ) ∪Bi(P ) ̸= ∅, then F is A-blocking.

Proof. By contradiction, suppose that there is a word w ∈ L(A) that contains F as a
fragment. Since w ∈ A, there is a run in A labelled by w that goes through the connected
components C1, . . . , Cj . Consider the path P = (C1, . . . , Cj) and let 0 ≤ a0 ≤ a1 · · · ≤ aj

be the indices such that for each i either Si(P ) is empty (because Ci was skipped by the
algorithm of Definition 7 due to a heavy factor), or all the factors in it are the factors of
u[ai−1 + 1, ai]. Let wt be the shortest prefix of w that contains the blocking factors from each
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of the non-empty intervals u[ai−1 + 1, ai], 1 ≤ i ≤ t, as well as all factors in
⋃

1≤i≤t Hi(P ).
We show by induction on t that every run that starts at a state in C1 and is labelled by wt

ends after Ct, i.e. in a state of
⋃

t′>t Ct′ .
As w1 contains a C1-blocking factor, any run labelled by w1 that starts in C1 exits C1

and therefore ends after C1. Suppose that the induction hypothesis holds for some t′ < j.
We show that there is no run labelled by wt′+1 from C1 to Ct′+1. There are two possibilities.
First, Ct′+1 was skipped because of a heavy Ct-blocking factor, for some t ≤ t′, which
is therefore included in wt′+1, and ends after Ct′+1. The other possibility is that wt′+1
is wt′ with an additional Ct′+1-blocking factor. If any run labelled by wt′ ends after Ct′+1,
so does the run labelled by wt′+1, and we are done. If some of these runs end in Ct′+1,
the Ct′+1-blocking factor that appears in wt′+1 but not in wt′ ensures that the run labelled
by wt′+1 ends after Ct′+1.

Adding symbols to wj to obtain w, we get that there is no run labelled by w that starts
in C1 and ends in Cj , a contradiction. ◀

3.1.2 Tester
Our tester is as stated in Algorithm 1. We define the l-factor sampling over u as the
distribution over factors v of u that have length at most l, where a position i is selected
according to the weight distribution over u, and v = u[i, min(i + l − 1, |u|)].

Algorithm 1 ε-property tester for regular languages.

1: β ← ε/(6m), γ ← 2/β

2: if weight(u) ≤ 6km/ε then
3: Query all symbols of u and run the automaton A on it
4: Reject if A rejects, else accept
5: else
6: Query τ = ⌈2 ln(9k · 2k)/β⌉ 1-factors of u

7: for t = 0 to T = ⌈log(2γ)⌉ do
8: ℓt ← 2t, rt ← ⌈2 ln(9k · 2k)γ/ℓt⌉
9: Query u[1, 2ℓt]

10: Query rt factors of u according to the 2ℓt-factor distribution
11: Reject if the fragment formed by the sampled factors is A-blocking, else accept

If weight(u) ≤ 6km/ε, the length of u is at most 6km/ε as well, and hence Algorithm 1
queries O(6km/ε) symbols. Otherwise, Algorithm 1 first makes O(2 ln(9k · 2k)/β) = O(km ·
ε−1) queries to sample 1-factors, and then for each t = 0, . . . , T , another 2t+1 · (rt + 1) =
O(4 ln(9k2k)γ) = O(km · ε−1) queries. Hence, it has query complexity O(km · ε−1 log(m/ε)).
To estimate the time complexity, we must explain how we check if the sampled fragment F

is A-blocking. Given a fragment F and S ⊆ Q, let reach(F, S) denote the set of states that
can be reached from a state of S when following a run labelled by some word v that contains
F as a fragment, i.e.

reach(F, S) = {q ∈ Q | ∃p ∈ S, v ∈ Σ∗ : p
v−→∆ q and v contains the fragment F}

By definition, F is A-blocking if and only if reach(F, Qin) ∩Qf = ∅.

▶ Lemma 13. For any F, S, reach(F, S) can be computed in time O(|F | ·m2).
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Proof. Recall that a constant-size alphabet is assumed. If |F | = 1, reach(F, S) can be
computed in time and space O(m2). If F = a ∈ Σ, reach(a, S) = {q ∈ Q | ∃p ∈ S, p

a−→∆ q}.
In this case, we can compute reach(a, S) by following every transition that is labelled by a

and starts at a state p ∈ S. If F = ∗, reach(∗, S) is the set of states q such that there exists
a path from a state p ∈ S to q. It can therefore be computed using a breadth-first traversal
of the graph induced by the automaton, initialized at every p ∈ S. For any F , |F | > 1, we
have reach(F, S) = reach(F [2, |F |], reach(F [1], S)). Therefore, we can compute reach(F, S)
in a recursive manner: let S0 = S, and for every 1 ≤ i ≤ |F |, Si = reach(F [i], Si−1). By
induction, we have S|F | = reach(F, S). The algorithm makes |F | calls to the reach function
on a single symbol, which requires O(|F | ·m2) time. ◀

The fragment F constructed in Algorithm 1 has size O(km · ε−1 log(m/ε)), and therefore
the time complexity of the tester is O(km3 · ε−1 log(m/ε)).

3.1.3 Correctness of the tester

In what follows, let W := weight(u). If W ≤ 6km/ε, we query all symbols of u and run the
automaton on u, the answer is correct with probability 1. Below we assume that W > 6km/ε.

If u ∈ L, there is no A-blocking fragment in u, and therefore the tester accepts with
probability 1. We must now show that if u is ε-far from L, then the tester accepts with
probability at most 1/3, or in other words, the probability that F is not blocking is at most 1/3.
By Lemma 12, the probability that F is not blocking is smaller than the probability that
there exist a component path P = (C1, . . . , Cj) and an index i, 1 ≤ i ≤ j such that F contains
neither the factor from Hi(P ) (if Hi(P ) ̸= ∅), nor a factor from Li(P )∪Bi(P ) (if Hi(P ) = ∅).
Fix a path P and an index i. If weight(Hi(P )) ≥ β ·W or weight(Li(P )) ≥ β ·W , then
by sampling independently ln(9k · 2k)/β factors of length 1 w.r.t. the 1-factor distribution,
we miss such a factor with probability at most 1/(9k · 2k). Otherwise, if Si ̸= ∅, we have
|Bi(P )| ≥ β ·W .

▶ Lemma 14. Assume W > 6km/ε and |Bi(P )| ≥ β ·W . Algorithm 1 fails to sample a
Ci-blocking factor with probability at most 1/(9k2k).

Proof. Consider a fixed t ∈ [0, T ]. If u[1, 2ℓt] contains a factor from Bi(P ), u[1, 2ℓt] is
Ci-blocking and we are done. Assume that this is not the case.

We estimate the number of 2ℓt-factors that contain a factor from Bi(P ). For brevity, let
B′ = {v ∈ Bi(P ) : |v| ≤ γ}. Let v1, v2, . . . , vft

be the factors in B′ of length at most ℓt, in
the order of appearance in u. For all j > 1, the number of 2ℓt-factors such that vj is the first
factor appearing in them is equal to min(2ℓt − |vj |+ 1, dist(vj−1, vj)), where dist(vj−1, vj)
is the difference between the starting positions of vj−1 and vj . Since |vj | ≤ ℓt, we have
2ℓt− |vj | ≥ ℓt. We also have dist(vj−1, vj) ≥ |vj−1|, since the factors vj and vj−1 are disjoint.
Therefore, for all j > 1, min(2ℓt− |vj |+ 1, dist(vj−1, vj)) ≥ min(ℓt, |vj−1|) = |vj−1|. The first
term corresponds to the case where there is no interval of length 2ℓt that contains both vj−1
and vj : if vj starts at a position p in u, it ends at position p + |vj | − 1, and the interval can
start at any position p′ such that p′ ≤ p and p′ +2ℓt−1 ≥ p+ |vj |−1, i.e. p− (2ℓt−|vj |) ≤ p′.
The second term is equal to the number of positions between the start of vj−1 and the start
of vj in u: if an interval that contains vj also contains vj−1, then it does not contain vj as
its first blocking factor, and therefore it is associated with vj−1. By summing over all j, we
obtain that the number of 2ℓt-factors containing a factor from B′ is at least
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2ℓt − |v1|+
ft∑

j=1
|vj−1| ≥ ℓt +

ft−1∑
j=0
|vj | ≥ lvft

+
ft−1∑
j=0
|vj | ≥

ft∑
j=0
|vj |.

Let pt be the probability that a factor of length 2ℓt = 2t+1 sampled according to the
2ℓt-factor distribution is Ci-blocking. As any factor containing a factor from B′ is Ci-blocking,
from above we obtain that pt ≥ 1

W

∑ft

j=0 |vj | ≥ 1
W

∑
v∈B′:|v|≤ℓt

|v|.
Consequently, for a fixed t, the probability that none of the rt factors is Ci-blocking is at

most (1− pt)rt ≤ e−ptrt . By independence, the probability p that the algorithm failed to
sample a Ci-blocking factor for every t satisfies:

p ≤
T∏

t=0
exp(−ptrt) ≤ exp

(
T∑

t=0
−ptrt

)
≤ exp

− T∑
t=0

2 ln(9k · 2k)γ2−t

W

∑
v∈B′:|v|≤ℓt

|v|

 .

We now show that
∑T

t=0 2−t
∑

v∈B′:|v|≤ℓt
|v| ≥W/(2γ), which implies that p ≤ e− ln(9k·2k) =

1/(9k2k). We have:

T∑
t=0

2−t
∑

v∈B′:|v|≤ℓt

|v| =
∑

v∈B′

|v|
T∑

t=⌈log(|v|)⌉

2−t =
∑

v∈B′

|v| 1
2⌈log |v|⌉

1− 2−(T −⌈log |v|⌉+1)

1− 1/2

≥
∑

v∈B′

(
1− 2−(T −⌈log |v|⌉+1)

)
≥
∑

v∈B′

1− |v|2γ
≥
∑

v∈B′

1/2 ≥W/(2γ),

where the last inequality holds because of Corollary 9. ◀

Hence, for fixed P and i, the probability that the fragment F built by Algorithm 1
contains neither the factor from Hi(P ) (if Hi(P ) ̸= ∅) nor a factor from Li(P ) ∪Bi(P ) (if
Hi(P ) = ∅) is bounded from above by

( 1
9k2k + 1

9k2k + 1
9k2k

)
≤ 1

3k2k . By the union bound
over all P and all k, and since there are at most 2k component paths in A, we obtain that
Pr [F is not blocking] ≤ 1

3 . This concludes the proof of Theorem 5.

3.2 Lower bound
In this section we show that the query complexity of Theorem 5 is tight. Note that the indel
distance is the weighted edit distance when all weights are equal to one, and hence it suffices
to show the lower bound for the former.

▶ Theorem 15. There exists a regular language L and constants ε0, C > 0 such that on an
input of length n and for any 1/n1/3 < ε < ε0, a non-adaptive ε-property tester for L under
the indel distance has query complexity ≥ Cε−1 log(1/ε).

Note that by running a property tester twice, the error probability can be reduced from
1/3 to 1/9, while increasing the query complexity by a factor of two. From that and by
Yao’s minimax principle [23], it suffices to find a distribution D on {a, b, c, d}∗ and a constant
C > 0 such that any deterministic algorithm A that makes at most Cε−1 log(1/ε) queries
and accepts all inputs in L, errors with probability > 1/9.

Let n be the length of the input. Below, we fix arbitrarily a precision parameter 1/n1/3 ≤
ε < 1/2−48. Consider regular languages L0 = {u ∈ {a, c}∗ : u contains an even number of c}
and L = (a | bL0d)∗. Define the distribution D as follows. Let r be a fair coin. For ℓ = ⌈5/ε⌉,
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divide [1, n] into z = ⌊n/ℓ⌋ ≥ 1 intervals of size ℓ each, except for the last one that can be
longer. Let [aj , bj ] be the j-th interval. We associate with it a random variable τj , distributed
as follows:

τj =
{

t, with probability pt = 12ε2t/ log(1/ε) for t = 1, 2, . . . , ⌈log(1/ε)⌉;
0, with probability p0 = 1−

∑⌈log(1/ε)⌉
t=1 pt.

For any ε < 2−48, we have p0 = 1 −
∑⌈log(1/ε)⌉

t=1 pt > 0, and hence the distribution is
well-defined. The variable τj characterizes the length of the instances of L0 that we will put
in the j-th interval. If τj = 0, we put no instances at all: set u[aj , bj ] = aa . . . a. If τj = t > 0,
set u[aj , bj ] = (bwjd)⌈2−t/ε⌉aa . . . a, where wj is a word of length 2t chosen uniformly at
random from L0 if r = 0 and from {a, c}∗ \ L0 otherwise.

Notice that D produces a positive instance with probability at least 1/2, since whenever
r = 0, u ∈ L. We prove in the following lemma that D also produces a word ε-far from L

with constant probability.

▶ Lemma 16. Let u be a word of length n sampled w.r.t. D. With probability at least 1/4,
δ(u, L) ≥ εn.

Proof. Assume r = 1 and let ξj = ⌈2−τj /ε⌉ if τj > 0, and 0 otherwise (ξj is the number of
instances of L0 in the j-th interval). The variables ξj are independent, and for every j, we
have 1 ≤ ξj ≤ 1/ε. Let ξ =

(∑z
j=1 ξj

)
/z. We have:

E [ξ] = E [ξj ] =
∑
t>0

pt · ⌈2−t/ε⌉ =
∑
t>0

12ε2t

log(1/ε) · ⌈2
−t/ε⌉ ≥

∑
t>0

12
log(1/ε) ≥ 12.

By Hoeffding’s inequality, we have Pr [ξ ≥ 6] ≥ 1 − e
− 72z2

z/ε2 = 1 − e−72ε2z ≥ 1/2 and
z = ⌊n/⌈5/ε⌉⌋ ≥ εn/6, as 1/n1/3 ≤ ε < 2−48. Hence, Pr

[∑
j ξj ≥ εn

]
≥ Pr [ξ ≥ 6] ≥ 1/2.

It remains to show that conditioned on r = 1, the indel distance between u and L is
at least

∑
j ξj . As each word of form bwjd, where wj ∈ {a, c}∗ \ L0 requires at least one

insertion or deletion to become a factor of a word in L, the bound follows by construction.
Hence, Pr [δ(u, L) ≥ εn] ≥ Pr [r = 1] · Pr

[∑
j ξj ≥ εn

]
≥ 1/4. ◀

▶ Lemma 17. Let qj be the number of symbols queried by A in the j-th interval [aj , bj ].
Consider an input u sampled w.r.t. D. If for all j such that τj > 0 we have qj < 2τj , then A

must accept u.

Proof. Assume that A rejects u. If u ∈ L, we immediately get a contradiction. If u is a
negative instance, then for all j such that τj > 0 we have u[aj , bj ] = (bwjd)⌈2−τj /ε⌉aa . . . a,
where wj is a word of length 2τj not in L0. Since A queries less than 2τj symbols in u[aj , bj ],
there is a symbol of wj that A does not query. Hence, there is a word in L0 that we denote
by w′

j that has length 2τj and does not differ from wj on the queried symbols. We replace
all copies of wj by w′

j . Let u′ denote the resulting word. Notice that u′ ∈ L, and all the
symbols for u and u′ in the queried positions are equal and therefore A rejects it as well.
The probability of u′ under the distribution D is non-zero, and therefore there is a non-zero
probability that A rejects a positive instance, a contradiction. ◀

Proof of Theorem 15. We finally derive that if A queries
∑

j qj < 1/(3 · 192ε) log(1/ε)
symbols, then it errs with probability > 1/9, which implies the theorem.
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Consider an input u of length n generated according to the distribution D. Let A(u)
denote the output of A on u: 1 for accepting, 0 for rejecting. Let F denote the event
“δ(u, L) ≥ εn”. The probability that A rejects inputs that are far from L is given by:

Pr [A(u) = 0 | F ] = Pr [A(u) = 0 ∧ F ] /Pr [F ] ≤ Pr [A(u) = 0] /Pr [F ]
≤ 4 · Pr [A(u) = 0] (Lemma 16)
≤ 4 · Pr [∃j : qj ≥ 2τj ∧ τj > 0] (Lemma 17)

≤ 4 ·
∑

j

Pr [qj ≥ 2τj ∧ τj > 0] (union bound)

≤ 4 ·
∑

j

⌈log qj⌉∑
t=1

pt ≤ 4
∑

j

12ε

log(1/ε)

⌈log qj⌉∑
t=1

2t ≤ 192ε

log(1/ε)
∑

j

qj < 1/3.

The probability that A gives an incorrect answer is at least the probability that it accepts
a word that is ε-far. In other words, this probability is equal to Pr [A(u) = 1 ∧ F ] =
Pr [A(u) = 1 | F ] · Pr [F ] > (2/3) · (1/4) > 1/9, concluding the proof. ◀

4 Streaming property testing of VPLs

Let us start by reminding the formal definitions of visibly pushdown languages and streaming
property testers. Let Σ = Σ+ ⊔ Σ= ⊔ Σ−. We refer to the symbols in Σ+ as push symbols,
and the symbols in Σ− as pop symbols.

▶ Definition 18 (Visibly pushdown automaton). A visibly pushdown automaton (VPA) A
over Σ is a tuple (Σ, Γ, Q, Qin, Qf , ∆), where

Γ is a finite set of stack symbols,
Q is a finite set of states, Qin ⊆ Q of initial states, Qf ⊆ Q of final states,
∆ ⊆ (Q× Σ+ ×Q× Γ) ∪ (Q× Σ= ×Q) ∪ (Q× Σ− × Γ×Q) is the transition relation.

When running the automaton on a word u ∈ Σn, we maintain a stack. Let ⊥ /∈ Γ be
a special symbol to denote the bottom of the stack. A configuration of a VPA A is a tuple
(σ, q) ∈ (⊥ · Γ∗)×Q. For a ∈ Σ, there is a transition from a configuration (σ, q) to (σ′, q′),
denoted (σ, q) a−→∆ (σ′, q′), in the following cases:

if a ∈ Σ+, σ′ = σ · γ, γ ∈ Γ and (q, a, q′, γ) ∈ ∆ (we write q
a−→∆ (q′, push(γ))),

if a ∈ Σ−, σ = σ′ · γ, γ ∈ Γ and (q, a, γ, q′) ∈ ∆ (we write (q, pop(γ)) a−→∆ q′),
if a ∈ Σ= and (q, a, q′) ∈ ∆ (we write q

a−→∆ q′).
For a word u ∈ Σn, if for all 1 ≤ i ≤ n, (σi−1, qi−1) u[i]−−→∆ (σi, qi), we write (σ0, q0) u−→∆
(σn, qn). A word u is accepted by an automaton A if there exists a initial state qin ∈ Qin and
a final state qf ∈ Qf such that (⊥, qin) u−→∆ (⊥, qf ). We denote the language of all words
accepted by L(A). A language L ⊆ Σ∗ is a visibly pushdown language (VPL) if L = L(A)
for some VPA A.

▶ Definition 19 (Streaming property testing algorithm). A streaming ε-property testing
algorithm for a language L under distance d is an algorithm that given streaming access to
a word u:

accepts if u ∈ L with probability 1,
rejects with probability at least p if u is ε-far from L w.r.t. d,
accepts or rejects otherwise.

If p = 1, we say that a streaming ε-property testing algorithm is deterministic. If p = 2/3,
we say that it is randomised. The space complexity of the algorithm is defined to be the total
space used (in bits) including the space needed to store any information about the input.
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4.1 Upper bound
François et al. [5] showed that streaming property testing of visibly pushdown languages
can be reduced to the problem of (approximately) encoding words as relationships in finite
automata3. Consider a (non-deterministic) finite automaton A = (Σ̂, Q̂, Q̂in, Q̂f , ∆̂). For
Σ̂′ ⊆ Σ̂, define a distance function wedΣ̂′ as the weighted edit distance where the insertions
are restricted to symbols in Σ̂′. For a word u, let Ru = {(p, q) | p, q ∈ Q̂, p

u−→∆̂ q}.

▶ Definition 20 (ξ-approximation). A relation R ⊆ Q2 is an (ξ, Σ′)-approximation of Ru if
the following two conditions are satisfied:

For all p, q such that p
u−→∆̂ q, (p, q) ∈ R,

If (p, q) ∈ R, then there exists a word v such that wedΣ̂′(u, v) ≤ ξ ·weight(u) and p
v−→∆̂ q.

We call A Σ̂′-closed if p
u−→

Q̂
q for some u ∈ (Σ̂)∗ iff p

u′

−→
Q̂

q for some u′ ∈ (Σ̂′)∗. The
Σ̂′-diameter of A, denoted by d, is the maximum over all pairs of states p, q of min{|u| : u ∈
(Σ̂′)∗, p

u−→∆̂ q}, whenever this minimum is not over the empty set. Finally, for a fragment F

and S ⊆ Q̂, let reachΣ̂′(F, S) denote the set of states that can be reached from a state of S

when following a run labelled by some word v that contains F as a fragment and such that
all symbols in v \F belong to Σ̂′. By extending our property tester for regular languages, we
obtain:

▶ Lemma 21. Let A be Σ̂′-closed. Given a query access to a word u, Algorithm 2 computes
a (ξ, Σ̂′)-approximation of Ru = {(p, q) | p, q ∈ Q̂, p

u−→
Q̂

q} correctly with probability ≥ 1− µ.

Proof. For every p, q ∈ Q̂ and every fragment F of u, if p
u−→

Q̂
q, then q ∈ reachΣ̂′(F, {p}).

Therefore, the algorithm can err only if there exist p, q ∈ Q̂ such that (p, q) ∈ R and for
every word w such that p

w−→
Q̂

q there is wedΣ̂′(w, u) ≥ ξ · weight(u). This is equivalent to
saying that wedΣ̂′(u, L(Ap,q)) ≥ ξ · weight(u), where Ap,q is the finite automaton A with a
unique initial state p and a unique final state q. As A is Σ̂′-closed, an argument analogous
to Theorem 5 shows that the algorithm errs for p, q with probability at most µ/m2. The
claim follows by the union bound. ◀

By plugging this result into the framework of François et al. [5], we obtain:

▶ Corollary 22. Let ε > 0 be a constant, A = (Q, Σ, Γ, Qin, Qf , ∆) be a VPA of constant
size over Σ = Σ+ ⊔ Σ= ⊔ Σ−, and L = L(A). There is a randomised streaming property
tester for L that uses O(ε−3 log5 n log log n) space.

Proof. François et al. showed that property testing of visibly pushdown languages can be
solved by running O(ε−1 log2 n) instances of the approximation algorithm of Lemma 21 with
ξ = ε/(6 log n) and µ = 2/3n, on an NFA of constant size [5, Theorem 5.4]. Furthermore,
sampling factors of the input strings according to the ℓ-factor distribution can be imitated in
streaming at an expense of O(ℓ · (ℓ + log n)) space per sample [5, Fact 4.6]. We implement
reachΣ̂′ similar to Lemma 13 using constant extra space. Therefore, an instance of the
approximation algorithm of Lemma 21 requires space

O(ξ−1 log(1/µ) +
∑

t

rtℓt · (ℓt + log n)) =

= O(ξ−2 log2(1/µ) + ξ−1 ln(1/µ) log(ξ−1 ln(1/µ)) log n) = O(ε−2 log3 n log log n).

The bound follows. ◀

3 In this section, we refer to a more complete arXiv version of the paper.
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Algorithm 2 Building an (ξ, Σ̂′)-approximation R of Ru. Here k is the number of strongly
connected components of A, and m = |Q̂|.

1: β ← ξ/(6m), γ ← 2/β

2: if weight(u) ≤ 6kmd/ξ then
3: Read the whole input u

4: R = {(p, q) | p ∈ Q̂, q ∈ reachΣ̂′(u, {p})}
5: else
6: Query τ = ⌈2 ln(3k2km2/µ)/β⌉ 1-factors of u

7: for t = 0 to T = ⌈log(2γ)⌉ do
8: ℓt ← 2t, rt ← ⌈2 ln(3k2km2/µ)γ/ℓt⌉
9: Query u[1, 2ℓt]

10: Query rt 2ℓt-factors of u according to the 2ℓt-factor distribution
R = {(p, q) | p ∈ Q̂, q ∈ reachΣ̂′(F, {p}}

11: return R

4.2 Lower bound
▶ Theorem 23. There exist a VPL L and a constant ε0 such that for any 1/n ≤ ε <

ε0 any deterministic streaming ε-property tester for L under the edit distance uses space
Ω̄(n(1− 16ε log(1/ε))). Any randomised streaming ε-property tester for VPLs under the edit
distance uses space Ω̄(max(ε−1, log n)).

Proof of Theorem 23. We first prove the deterministic bound, and then use it to derive the
randomised one. Let Lmirror be a VPL over Σ = {0, 1, 0̄, 1̄} defined as Lmirror = {ww̄, w ∈
{0, 1}}, where w̄ = w[n] . . . w[1]. For example, if w = 1101 then w̄ = 1̄0̄1̄1̄. Recall that the
indel distance δ(u, v) between two words u, v is equal to the minimum number of insertions
and deletions needed to transform u into v and that a lower bound for the indel distance
gives an asymptotically equal lower bound for the edit distance.

▶ Lemma 24. Assume n is even. Let u, v ∈ Σn/2. If δ(u, v) > 2εn, then δ(uv̄, Lmirror) > εn.

Proof. We prove the claim by contrapositive. We assume that δ(uv̄, Lmirror) ≤ εn and show
that δ(u, v) ≤ 2εn. Let ww̄ be a word of Lmirror such that δ(uv̄, Lmirror) = δ(uv̄, ww̄). By
the triangle inequality, we have δ(u, v) ≤ δ(u, w) + δ(w, v) = δ(u, w) + δ(w̄, v̄).

Let us start with an auxiliary claim. Consider y ∈ Σk, z ∈ Σl. Let y1 (resp. y2) denote
y[1, ⌈k/2⌉] (resp. y[⌈k/2⌉ + 1, k]), and similarly for z. We show that if δ(y, z) = 2, then
δ(y1, z1) + δ(y2, z2) ≤ 4.

We have either k = l or |k− l| = 2. If k = l, then |y1| = |z1|, |y2| = |z2|, and the two edits
are one insertion and one deletion. If the two edits occur in y1, we have δ(y1, z1) ≤ 2 and
δ(y2, z2) = 0. The case when the two edits occur in y2 is symmetric. If one edit occurs in y1
and the other in y2, then y1 is transformed into a prefix of z of length |y1| − 1 or |y1|+ 1,
and y2 into a suffix of z of length |y2|+ 1 or |y2|+ 1, respectively. Therefore, δ(y1, z1) ≤ 2
and δ(y2, z2) ≤ 2. Assume now |k − l| = 2. W.l.o.g., k = l + 2, and the two edit operations
are deletions. Since k = l + 2, we have |y1| = |z1|+ 1, |y2| = |z2|+ 1. Consider two cases:

One deletion occurs in y1, and one deletion occurs in y2. In this case, y1 is transformed
into z1, and y2 into z2. Hence, δ(y1, z1) + δ(y2, z2) = 2.
The two deletions occur in y1 (the proof for y2 is symmetrical). In this case, y1 is
transformed into a prefix of v of length |y1| − 2 = |z1| − 1, and y2 is equal to the suffix of
v of length |y2|. Therefore, δ(y1, z1) ≤ 3 and δ(y2, z2) = 1, and the claim follows.
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For simplicity, let T = δ(uv̄, ww̄). Note that T is even, as both words have even length. For
every 0 ≤ t ≤ T , let xt be the word obtained by applying the first t edit operations to uv̄ in the
sequence that transforms uv̄ into ww̄, and let xt

1 = xt[1, ⌈|xt|/2⌉] and xt
2 = xt[⌈|xt|/2⌉+1, |xt|].

For all t ≤ T − 2, δ(xt, xt+2) = 2, and therefore δ(xt
1, xt+2

1 ) + δ(xt
2, xt+2

2 ) ≤ 4. Finally, we
obtain

δ(u, w) + δ(v̄, w̄) = δ(x0
1, xT

1 )+ δ(x0
2, xT

2 ) ≤
T/2∑
t=0

δ(x2t
1 , x2t+2

1 ) +
T/2∑
t=0

δ(x2t
2 , x2t+2

2 )

≤
T/2∑
t=0

(
δ(x2t

2 , x2t+2
2 ) + δ(x2t

2 , x2t+2
2 )

)
≤ 4T/2 ≤ 2εn

In short, we have δ(u, w) + δ(v̄, w̄) ≤ 2εn, which completes the proof. ◀

▷ Claim 25. Let u ∈ {0, 1}n and B(u, k, n) = {v ∈ {0, 1}n| δ(u, v) ≤ k}. For all 2/n ≤ α < 1,
we have |B(u, αn, n)| ≤ 2αn(1+2 log 8e/α)/2.

Proof. Let 2t be the largest even number smaller or equal to αn. Let v ∈ B(u, k, n). Since
|u| = |v| = n, we can obtain v from u using t insertions and t deletions. (If δ(u, v) < 2t, we
can insert a symbol (2t− δ(u, v))/2 times, and then delete it (2t− δ(u, v))/2 times.)

W.l.o.g., assume that the insertions occur before the deletions. After t insertions, we
obtain a word of size n + t. The number of possible ways to delete t symbols in this word is
therefore

(
n+t

t

)
. We give an upper bound on the number of words that can be reached with t

insertions from a word of length n the following way: in a word of length n + t, there are t

symbols that have been inserted, and there are two options for each symbol. Therefore, there
are at most 2t

(
n+t

t

)
such words. The number of words in B(u, k, n) is at most the number of

words reached after a sequence of t insertions, multiplied by the number of sequences of t

deletions. Overall, we obtain:

|B(u, αn, n)| ≤ 2t

(
n + t

t

)2
≤ 2t

(
e(n + t)

t

)2t

≤ 2(1+2 log e)t(n

t
+ 1)2t

≤ 2(1+2 log e)t(8/α)2t ≤ 2αn(1+2 log e+2 log(8/α))/2

≤ 2αn(1+2 log(8e/α))/2 ◁

▶ Corollary 26. There exists a constant ε0 such that for any 1/n ≤ ε < ε0, any de-
terministic streaming ε-property tester for Lmirror under the indel distance uses space
Ω̄(n(1− 16ε log(1/ε))).

Proof. Assume n is even. Consider the memory state of a tester after reading two words
u, v ∈ {0, 1}n/2. Suppose that they give the same memory state. We can then continue the
streams with ū, and since the algorithm must accept uū ∈ Lmirror, it must also accept vū.
By the definition of a streaming ε-property tester and Lemma 24, we have δ(u, v) ≤ 2εn.
Therefore, the number of distinct memory states of the tester after reading n/2 symbols is at
least 2n/2/|B(u, 2εn, n/2)|. The space s(n) used by the tester is at least the logarithm of the
number of memory states. Therefore,

s(n) ≥ log(2n/2/|B(u, 2εn, n/2)|)

≥ log(2n/2/2εn(1+2 log(2e/ε))) (applying Claim 25 for α = 4ε and size n/2)

≥ n/2− εn(1 + 2 log(2e/ε)) ≥ n

2 (1− 16ε log(1/ε)) ◀
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The deterministic bound for the edit distance follows immediately. We now derive the
randomised lower bound. We show Ω̄(log n) and Ω̄(1/ε) space lower bounds separately, and
then combine them to yield the theorem.

▶ Corollary 27. Any randomised streaming ε-property tester for Lmirror under the edit
distance uses space Ω̄(log n).

Proof. A streaming ε-property tester for a VPL L with an input of length n can be viewed
as an automaton An whose states are the memory states of the algorithm. Deterministic
algorithms are deterministic automata, and randomised algorithms are probabilistic automata
(see Rabin [22] for definitions).

Consider a randomised streaming ε-property testing algorithm An for Lmirror on inputs
of length n. Let L(An) = {u ∈ {0, 1, 0̄, 1̄}n | An accepts u with probability ≥ 2/3}. By
definition, a deterministic streaming algorithm that recognizes L(An) is a streaming ε-property
tester for Lmirror. By [7, Lemma 6.4], the space complexity of An is at least the logarithm
of the space complexity of the deterministic one, that is Ω̄(log(n(1 − 16ε log(1/ε)))) =
Ω̄(log n). ◀

We now show the Ω̄(1/ε) bound. Consider a VPL Ldisj = {xȳ | x, y ∈ {0, 1}n and ∀1 ≤
i ≤ n, x[i] · y[i] = 0}.

▷ Claim 28. Let α = ⌊1/ε⌋ and assume that n is a multiple of α. Define a morphism
ϕ : Σ∗ → Σ∗ such that for any a ∈ Σ we have ϕ(a) = a6n/α. Consider a word u = xȳ, where
x, y ∈ Σα. If u ∈ Ldisj , then ed(ϕ(u), Ldisj) = 0, and otherwise ed(ϕ(u), Ldisj) > εn.

Proof. The first part of the claim is obvious. The rest of the proof is devoted to the case
u /∈ Ldisj . Assume by contradiction that ed(ϕ(u), Ldisj) ≤ εn, in other words, that there
exists a sequence of at most εn edits such that when applied to ϕ(u), we obtain a word in
Ldisj . W.l.o.g. assume that the edits are applied only to the first half of ϕ(u), i.e. to ϕ(x).
Since u /∈ Ldisj , there exists i such that x[i] · y[i] = 1. Consider the middle part of ϕ(x[i]),
i.e. the factor w = ϕ(u)[(i− 1) · (6n/α) + 2n/α + 1, (i− 1) · (6n/α) + 4n/α]. After we apply
the at most εn ≤ n/α edits to ϕ(x), there is at least one symbol of w that does not change
and therefore is equal to 1, let it be w[j]. Moreover, the index of this symbol in the resulting
word is between (i− 1) · (6n/α) + n/α + 1 and (i− 1) · (6n/α) + 5n/α. On the other hand,
ϕ(y[i]) can be shifted by at most εn positions to the left or to the right. Therefore, w[j] will
be aligned with a symbol in ϕ(y[i]) equal to 1 as well, a contradiction. ◁

The Ω̄(1/ε) bound follows immediately from the linear space lower bound for randomised
streaming 0-property testing algorithms for Ldisj [5, 15]. ◀
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Abstract
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures
equivalent to a Datalog program, in terms of an existential pebble game. We also show that for
every class C of finite structures that can be expressed in MSO and is closed under homomorphisms,
and for all ℓ, k ∈ N, there exists a canonical Datalog program Π of width (ℓ, k), that is, a Datalog
program of width (ℓ, k) which is sound for C (i.e., Π only derives the goal predicate on a finite
structure A if A ∈ C) and with the property that Π derives the goal predicate whenever some Datalog
program of width (ℓ, k) which is sound for C derives the goal predicate. The same characterisations
also hold for Guarded Second-order Logic (GSO), which properly extends MSO. To prove our results,
we show that every class C in GSO whose complement is closed under homomorphisms is a finite
union of constraint satisfaction problems (CSPs) of ω-categorical structures.
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1 Introduction

Monadic Second-order Logic (MSO) is an important logic in theoretical computer science.
By Büchi’s theorem, a formal language can be defined in MSO if and only if it is regular (see,
e.g., [24]). MSO sentences can be evaluated in polynomial time on classes of structures whose
treewidth is bounded by a constant; this is known as Courcelle’s theorem [16]. The latter
result even holds for the more expressive logic of Guarded Second-order Logic (GSO) [21, 18],
which extends First-order Logic by second-order quantifiers over guarded relations. Guarded
Second-order Logic contains Guarded First-order Logic (which itself captures many description
logics [20]).
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120:2 Datalog for Guarded Second-Order Logic

Another fundamental formalism in theoretical computer science, which is heavily studied
in database theory, is Datalog (see, e.g., [24]). Every Datalog program can be evaluated on
finite structures in polynomial time. Like MSO, Datalog strikes a good balance between
expressivity and good mathematical and computational properties. Two important parameters
of a Datalog program Π are the maximal arity ℓ of its auxiliary predicates (IDBs), and the
maximal number k of variables per rule in Π. We then say that Π has width (ℓ, k), following
the terminology of Feder and Vardi [19]. These parameters are important both in theory
and in practice: ℓ closely corresponds to the exponent of the size of the memory space and k

to the exponent of the number of computation steps needed when evaluating Π on a given
structure (see, e.g., [4]).

In some scenarios we are interested in having the good computational properties of
expressibility in Datalog and having the good computational properties of expressibility in
MSO. A wide variety of popular query formalisms (among them (unions of) conjunctive queries,
(2-way conjunctive) regular path queries, monadic Datalog, guarded Datalog, monadically
defined queries, or nested monadically defined queries) are known to be both in Datalog
and GSO [25]. Also, all these formalisms have favourable properties when it comes to static
analysis, most notably decidable query containment [25]. Note that on the contrary, query
containment in unrestricted Datalog is undecidable, as is query containment in unrestricted
MSO / GSO. So it is really the interplay of the restrictions imposed by both formalisms that
is required to ensure decidability of a central task in databases and that makes this fragment
interesting and worthwhile investigating.

In this paper we investigate two questions that (perhaps surprisingly) turn out to be
closely related:
1. Which classes of finite structures are simultaneously expressible in MSO and in Datalog?
2. Which constraint satisfaction problems (CSPs) can be expressed in MSO, or, more

generally, in GSO?
For a structure B with a finite relational signature τ , the constraint satisfaction problem
for B is the class of all finite τ -structures that homomorphically map to B. Every finite-
domain constraint satisfaction problem can already be expressed in monotone monadic SNP
(MMSNP; [19]), which is a small fragment of MSO. On the other hand, the constraint
satisfaction problem for (Q;<), which is the class of all finite acyclic digraphs (V ;E), cannot
be expressed in MMSNP [6], but can be expressed in MSO by the sentence

∀X ̸= ∅ ∃x ∈ X ∀y ∈ X : ¬E(x, y).

The class of CSPs of arbitrary infinite structures B is quite large; it is easy to see that a
class D of finite structures with a finite relational signature τ is a CSP of a countably infinite
structure if and only if

it is closed under disjoint unions, and
A ∈ D for any A that maps homomorphically to some A′ ∈ D.

The second item can equivalently be rephrased as the complement of D (meant within the
class of all finite τ -structures; this comment applies throughout and will be omitted in the
following) being closed under homomorphisms: a class C is closed under homomorphisms if
for any structure A ∈ C that maps homomorphically to some C we have C ∈ C. Examples
of classes of structures that are closed under homomorphisms naturally arise from Datalog.
We say that a class C of finite τ -structures is definable in Datalog1 if there exists a Datalog

1 Warning: Feder and Vardi [19] say that a CSP is in Datalog if its complement in the class of all finite
τ -structures is in Datalog.
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program Π with a distinguished predicate nullary goal such that Π derives goal on a finite
τ -structure if and only if the structure is in C; in this case, we write JΠK for C. Every class of
τ -structures in Datalog is closed under homomorphisms. However, not every class of finite
structures in Datalog describes the complement of a CSP: consider for example, for unary
predicates R and B, the class CR,B of finite {R,B}-structures A such that RA is empty or
BA is empty. Clearly, CR,B is not closed under disjoint unions. However, a finite structure is
in CR,B if and only if the Datalog program that consists of just one rule

goal :− R(x), B(y)

does not derive goal on that structure.
An important class of CSPs is the class of CSPs for structures B that are countably

infinite and ω-categorical. A structure B is ω-categorical if all countable models of the
first-order theory of B are isomorphic. A well-known example of an ω-categorical structure is
(Q;<), which is a result due to Cantor [15]. Constraint satisfaction problems of ω-categorical
structures can be evaluated in polynomial time on classes of treewidth bounded by some
constant k ∈ N, by a result of Bodirsky and Dalmau [7]. The polynomial-time algorithm
presented by Bodirsky and Dalmau is in fact a Datalog program of width (k − 1, k). A
Datalog program Π is called sound for a class of τ -structures C if JΠK ⊆ C. Bodirsky and
Dalmau showed that if C is the complement of the CSP of an ω-categorical τ -structure B

then there exists for all ℓ, k ∈ N a canonical Datalog program of width (ℓ, k) for C, i.e., a
Datalog program Π of width (ℓ, k) such that

Π is sound for C, and
JΠ′K ⊆ JΠK for every Datalog program Π′ of width (ℓ, k) which is sound for C.

Moreover, whether the canonical Datalog program of width (ℓ, k) for C derives goal on a
given τ -structure A can be characterised in terms of the existential pebble game from finite
model theory, played on (A,B) [7]. The existential ℓ, k pebble game is played by two players,
called Spoiler and Duplicator (see, e.g., [17, 19, 23]). Spoiler starts by placing k pebbles on
elements a1, . . . , ak of A, and Duplicator responds by placing k pebbles b1, . . . , bk on B. If
the map that sends a1, . . . , ak to b1, . . . , bk is not a partial homomorphism from A to B, then
the game is over and Spoiler wins. Otherwise, Spoiler removes all but at most ℓ pebbles from
A, and Duplicator has to respond by removing the corresponding pebbles from B. Then
Spoiler can again place all his pebbles on A, and Duplicator must again respond by placing
her pebbles on B. If the game continues forever, then Duplicator wins. If B is a finite, or
more generally a countable ω-categorical structure then Spoiler has a winning strategy for
the existential ℓ, k pebble game on (A,B) if and only if the canonical Datalog program for
CSP(B) derives goal on A (Theorem 19). This connection played an essential role in proving
Datalog inexpressibility results, for example for the class of finite-domain CSPs [2] (leading
to a complete classification of those finite structures B such that the complement of CSP(B)
can be expressed in Datalog [3]).

Results and Consequences
We present a characterisation of those GSO sentences Φ that are over finite structures
equivalent to a Datalog program. Our characterisation involves a variant of the existential
pebble game from finite model theory, which we call the (ℓ, k)-game. This game is defined
for a homomorphism-closed class C of finite τ -structures, and it is played by the two players
Spoiler and Duplicator on a finite τ -structure A as follows.

Duplicator picks a countable τ -structure B such that CSP(B) ∩ C = ∅.
The game then continues as the existential (ℓ, k) pebble game played by Spoiler and
Duplicator on (A,B).
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In Section 4 we show that a GSO sentence Φ is over finite structures equivalent to a Datalog
program of width (ℓ, k) if and only if

JΦK is closed under homomorphisms, and
Spoiler wins the existential (ℓ, k)-game for JΦK on A if and only if A |= Φ.

We also show that for every GSO sentence Φ whose class of finite models C is closed under
homomorphisms and for all ℓ, k ∈ N there exists a canonical Datalog program Π of width
(ℓ, k) for C (Theorem 22). To prove these results, we first show that every class of finite
structures in GSO whose complement is closed under homomorphisms is a finite union of
CSPs that can also be expressed in GSO (Lemma 16; an analogous statement holds for MSO).
Moreover, every CSP in GSO is the CSP of a countable ω-categorical structure (Corollary 10);
this allows us to use results from [7] to make the link to existential pebble games. We also
present an example of such a CSP which is even expressible in MSO and coNP-complete, and
hence not the CSP of a reduct of a finitely bounded homogeneous structure, unless NP=coNP
(Proposition 23). Note that our results imply that every class of finite structures that can be
expressed both in in GSO and in Datalog is a finite intersection of the complements of CSPs
for ω-categorical structures. In general, it is not true that a Datalog program describes a
finite intersection of complements of CSPs (we present a counterexample in Example 18).

2 Preliminaries

In the entire text, τ denotes a finite signature containing relation symbols and sometimes
also constant symbols. If R ∈ τ is a relation symbol, we write ar(R) for its arity. If A is a
τ -structure we use the corresponding capital roman A letter to denote the domain of A; the
domains of structures are assumed to be non-empty. If R ∈ τ , then RA ⊆ Aar(R) denotes
the corresponding relation of A.

A primitive positive τ -formula (in database theory also conjunctive query) is a first-
order τ -formula without disjunction, negation, and universal quantification. Every primitive
positive formula is equivalent to a formula of the form

∃x1, . . . , xn(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic τ -formulas, i.e., formulas built from relation symbols in τ or
equality. An existential positive τ -formula is a first-order τ -formula without negation and
universal quantification. We write ψ(x1 . . . , xn) if the free variables of ψ are from x1, . . . , xn.
If A is a τ -structure and ψ(x1, . . . , xn) is a τ -formula, then the relation

R := {(a1, . . . , an) | A |= ψ(a1, . . . , an)}

is called the relation defined by ψ over A; if ψ can be chosen to be primitive positive (or
existential positive) then R is called primitively positively definable (or existentially positively
definable, respectively).

For all logics over the signature τ considered in this text, we say that two formulas
Φ(x1, . . . , xn) and Ψ(x1, . . . , xn) are equivalent (over finite structures) if for all (finite) τ -
structures A and all a1, . . . , an ∈ A we have

A |= Φ(a1, . . . , an) ⇔ A |= Ψ(a1, . . . , an).

It is easy to see that every existential positive τ -formula is a disjunction of primitive positive
τ -formulas (and hence referred to as a union of conjunctive queries in database theory).
Formulas without free variables are called sentences; in database theory, formulas are often
called queries and sentences are often called Boolean queries. If Φ is a sentence, we write
JΦK for the class of all finite models of Φ.
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A reduct of a relational structure A is a structure A′ obtained from A by dropping some
of the relations, and A is called an expansion of A′.

2.1 Datalog
In this section we refer to the finite set of relation and constant symbols τ as EDBs (for
extensional database predicates). Let ρ be a finite set of new relation symbols, called the
IDBs (for intensional database predicates). A Datalog program is a set of rules of the form

ψ0 :− ψ1, . . . , ψn

where ψ0 is an atomic ρ-formula and ψ1, . . . , ψn are atomic (ρ ∪ τ)-formulas; we also assume
that every variable that appears in the head also appears in the body. If A is a τ -structure,
and Π is a Datalog program with EDBs τ and IDBs ρ, then a (τ ∪ ρ)-expansion A′ of A is
called a fixed point of Π on A if A′ satisfies the sentence

∀x̄(ψ0 ∨ ¬ψ1 ∨ · · · ∨ ¬ψn)

for each rule ψ0 :− ψ1, . . . , ψn. If A1 and A2 are two (ρ∪ τ)-structures with the same domain
A, then A1 ∩A2 denotes the (ρ∪ τ)-structure with domain A such that RA1∩A2 := RA1 ∩RA2 .
Note that if A1 and A2 are two fixed points of Π on A, then A1 ∩ A2 is a fixed point of Π on
A, too. Hence, there exists a unique smallest (with respect to inclusion) fixed point of Π on
A, which we denote by Π(A). It is well-known that if A is a finite structure then Π(A) can
be computed in polynomial time in the size of A [24]. If R ∈ ρ, we also say that Π defines
RΠ(A) on A. A Datalog program together with a distinguished predicate R ∈ ρ may also be
viewed as a formula, which we also call a Datalog query, and which over a given τ -structure
A denotes the relation RΠ(A). If the distinguished predicate has arity 0, we often call it
the goal predicate; we say that Π derives goal on A if goalΠ(A) = {()}. The class C of finite
τ -structures A such that Π derives goal on A is called the class of finite τ -structures defined
by Π, and denoted by JΠK. Note that this class C is definable in universal second-order logic
(we have to express that in every expansion of the input by relations for the IDBs that
satisfies all the rules of the Datalog program the goal predicate is non-empty).

2.2 Second-Order Logic
Second-order logic is the extension of first-order logic which additionally allows existential
and universal quantification over relations; that is, if R is a relation symbol and ϕ is a
second-order τ ∪ {R}-formula, then ∃R : ϕ and ∀R : ϕ are second-order τ -formulas. If A is a
τ -structure and Φ is a second-order τ -sentence, we write A |= Φ (and say that A is a model of
Φ) if A satisfies Φ, which is defined in the usual Tarskian style. We write JΦK for the class of
all finite models of Φ. A second-order formula is called monadic if all second-order variables
are unary. We use syntactic sugar and also write ∀x ∈ X : ψ instead of ∀x(X(x) ⇒ ψ) and
∃x ∈ X : ψ instead of ∃x(X(x) ∧ ψ).

2.3 Guarded Second-Order Logic
Guarded Second-order Logic (GSO), introduced by Grädel, Hirsch, and Otto [21], is the
extension of guarded first-order logic by second-order quantifiers. Guarded (first-order)
τ -formulas are defined inductively by the following rules [1]:
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1. all atomic τ -formulas are guarded τ -formulas;
2. if ϕ and ψ are guarded τ -formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.
3. if ψ(x̄, ȳ) is a guarded τ -formula and α(x̄, ȳ) is an atomic τ -formula such that all free

variables of ψ occur in α then ∃ȳ
(
α(x̄, ȳ)∧ψ(x̄, ȳ)

)
and ∀ȳ

(
α(x̄, ȳ) ⇒ ψ(x̄, ȳ)

)
are guarded

τ -formulas.
Guarded second-order formulas are defined similarly, but we additionally allow (unrestricted)
second-order quantification; GSO generalises Courcelle’s logic MSO2 from graphs to general
relational structures.

▶ Definition 1. A second-order τ -formula is called guarded if it is defined inductively by the
rules (1)–(3) for guarded first-order logic and additionally by second-order quantification.

There are many semantically equivalent ways of introducing GSO [21]. Let B be a
τ -structure. Then (t1, . . . , tn) ∈ Bn is called guarded in B if there exists an atomic τ -formula
ϕ and b1, . . . , bk such that B |= ϕ(b1, . . . , bk) and {t1, . . . , tn} ⊆ {b1, . . . , bk}. Note that (for
n = 1) every element of B is guarded (because of the atomic formula x = x). A relation
R ⊆ Bn is called guarded if all tuples in R are guarded. Note that all unary relations
are guarded. If Ψ is an arbitrary second-order sentence, we say that a finite structure A

satisfies Ψ with guarded semantics, in symbols A |=g Φ, if all second-order quantifiers in Ψ
are evaluated over guarded relations only. Note that for MSO sentences, the usual semantics
and the guarded semantics coincide.

▶ Proposition 2 (see [21]). Guarded Second-order Logic and full Second-order Logic with
guarded semantics are equally expressive.

It follows that GSO is at least as expressive as MSO. There are Datalog programs that
are equivalent to a GSO sentence, but not to an MSO sentence. The proof is based on a
variant of an example of a Datalog query in GSO given in [13] (Example 2).

▶ Proposition 3. There is a Datalog query that can be expressed in GSO but not in MSO.

Proof. Let τ be the signature consisting of the binary relation symbols S, T,R,N , and let C
be the class of finite τ -structures such that the following Datalog program with one binary
IDB U derives goal.

U(x, y) :−S(x, y)
U(x′, y′) :−U(x, y), N(x, x′), N(y, y′), R(x′, y′)

goal :−U(x, y), T (x, y) ◀

On the left of Figure 1 one can find an example of a {S, T,R,N}-structure B where the
given Datalog program derives goal. To show that C is not MSO definable, suppose for
contradiction that there exists an MSO sentence Φ such that JΦK = C. We use Φ to construct
an MSO sentence Ψ which holds on a finite word w ∈ {a, b}∗ (represented as a structure with
signature Pa, Pb, < in the usual way [24]) if and only if w ∈ {anbn | n ≥ 1}; this contradicts
the theorem of Büchi-Elgot-Trakhtenbrot (see, e.g., [24]). Let Φ′ be the MSO sentence
obtained from Φ by replacing all subformulas of Φ of the form

S(x, y) by a formula ϕS(x, y) that states that x is the smallest element with respect to
<, that Pb(y), and that there is no z < y in Pb;
T (x, y) by a formula ϕT (x, y) that states that Pa(x), that there is no z > x in Pa, and
that y is the largest element with respect to <;
R(x, y) by the formula ϕR(x, y) given by x < y;
N(x, y) by a formula ϕN (x, y) stating that y is the next element after x with respect
to <.
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v1 v2 v3 v4

w1 w2 w3 w4

S TR R

N N N

N N N

(a) Structure B

v1 v2 v3 v4

w1 w2 w3 w4

< < <

< < <

>

Pb Pb PbPb

Pa Pa Pa Pa

(b) Structure A

aaaabbbb

(c) Word wA

Figure 1 An example of an {S, T, R, N}-structure B in the class C of Proposition 3.

The resulting MSO sentence Ψ1 has the signature {Pa, Pb, <}; let Ψ be the conjunction of
Ψ1 with the sentence Ψ2 which states that for all x, y ∈ A, if x < y and Pa(y) then Pa(x).
We first show that if A is a {<,Pa, Pb}-structure that represents a word wA ∈ {a, b}∗, then
A |= Ψ if and only if wA is of the form anbn for some n ≥ 1. Let B be the {S, T,R,N}-
structure such that for X ∈ {S, T,R,N} we have XB := {(x, y) | A |= ϕX(x, y)}. See
Figure 1 for an example of a structure A such that wA = a4b4 and the corresponding
{S, T,R,N}-structure B.

If wA is of the form anbn for some n ≥ 1, then A clearly satisfies Ψ2. To show that
it also satisfies Ψ1, let v1, . . . , vn, w1, . . . , wn ∈ A be such that {v1, . . . , vn} = PA

a and
{w1, . . . , wn} = PA

b such that for all i, j ∈ {1, . . . , n}, if i < j then vi <
A vj and wi <

A wj .
Then

(v1, w1) ∈ SB, (vn, wn) ∈ TB,

(vi, wi) ∈ RB for all i ∈ {2, . . . , n− 1}, (1)
(vi, vi+1), (wi, wi+1) ∈ NB for all i ∈ {1, . . . , n− 1}.

It follows that B satisfies Φ and therefore A |= Ψ.
For the converse direction, suppose that A |= Ψ. Clearly, wA ∈ a∗b∗ because A |= Ψ2.

Moreover, since A |= Ψ1 we have that B |= Φ, and hence there exist n ∈ N and elements
v1, . . . , vn, w1, . . . , wn ∈ A such that B satisfies (1). We first prove that PA

a = {v1, . . . , vn}
and |PA

a | = n. Since (vn, wn) ∈ TB we have ϕT (vn, wn) and hence vn ∈ PA
a . Since

B |= N(v1, v2), . . . , N(vn−1, vn) we have that v1 < v2 < · · · < vn−1 < vn holds in A

and it also follows that |PA
a | = n. Then for every i ∈ n we have that vi ∈ PA

a because
vi ≤ vn, vn ∈ PA

a , and wA ∈ a∗b∗. Now suppose for contradiction that there exists
x ∈ PA

a \ {v1, . . . , vn}; choose x largest with respect to <A. Since (vn, wn) ∈ TB and x ∈ PA
a

we must have x ≤ vn, and hence x < vn since x /∈ {v1, . . . , vn}. Then there exists y ∈ A such
that ϕN (x, y) holds in A. Since y ≤ vn, vn ∈ PA

a , and wA ∈ a∗b∗, we must have PA
a . By the

maximal choice of x we get that y = vi for some i ∈ {1, . . . , n}. But then ϕN (x, vi) implies
that x ∈ {v1, . . . , vn−1}, a contradiction. Similarly, one can prove that PA

b = {w1, . . . , wn}
and that |PA

b | = n. This implies that wA = anbn.
We finally have to prove that C is in GSO. Let Φ be the GSO {S, T,R,N} sentence with

existentially quantified unary relations V,W , and existentially quntified binary relations
R′ ⊆ R and N ′ ⊆ N , which states that

there are elements v1, vn ∈ V and w1, wn ∈ W such that S(v1, w1) and T (vn, wn) hold;
for every x ∈ V \ {v1} there exists a unique element y ∈ V \ {vn} such that N ′(y, x)
holds;
for every x ∈ V \ {vn} there exists a unique element y ∈ V \ {v1} such that N ′(x, y)
holds;
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for every x ∈ W \ {w1} there exists a unique element y ∈ W \ {wn} such that N ′(y, x)
holds;
for every x ∈ W \ {wn} there exists a unique element y ∈ W \ {w1} such that N ′(x, y)
holds;
for all v ∈ V and w ∈ W we have that N ′(v1, v) ∧N ′(w1, w) implies R′(v, w).
for all v, v′ ∈ V \ {v1, vn} and w,w′ ∈ W \ {w1, wn} we have that R′(v, w) ∧N ′(v, v′) ∧
N ′(w,w′) implies R′(v, w).
For all v ∈ V and w ∈ W we have that N ′(v, vn) ∧N ′(w,wn) implies R′(v, w).

Then Φ holds on a finite {S, T,R,N}-structure B if and only if B has elements
v1, . . . , vn, w1, . . . , wn satisfying (1), which is the case if and only if B ∈ C.

Sometimes, we will also use the term GSO (MSO, Datalog) to denote all problems (i.e.,
all classes of structures) that can be expressed in the formalism. In particular, this justifies
to say that a certain CSP is in GSO (MSO, Datalog).

3 Homomorphism-Closed GSO

We prove that the class of finite models of a GSO sentence is a finite union of CSPs of
ω-categorical structures whenever its complement is closed under homomorphisms. In
particular, every CSP in GSO (and therefore every CSP in MSO) is the CSP of an ω-
categorical structure. CSPs that can be formulated as the CSP of an ω-categorical structure
have been characterised [10]; this characterisation will be recalled in the next section.

3.1 CSPs for Countably Categorical Structures
By the theorem of Ryll-Nardzewski, a countable structure B is ω-categorical if and only if for
every n ∈ N there are finitely many orbits of the componentwise action of the automorphism
group of B on Bn (see, e.g., [22]). We now present a condition that characterises classes of
structures that are CSPs of ω-categorical structures. Let C be a class of finite τ -structures. Let
Λn be the class of primitive positive τ -formulas with free variables x1, . . . , xn whose canonical
database is in C. We define ∼C

n to be the equivalence relation on Λn such that ϕ1 ∼C
n ϕ2 holds if

for all primitive positive τ -formulas ψ(x1, . . . , xn) we have that ϕ1(x1, . . . , xn)∧ψ(x1, . . . , xn)
is satisfiable in a structure from C if and only if ϕ2(x1, . . . , xn) ∧ ψ(x1, . . . , xn) is satisfiable
in a structure from C. The index of an equivalence relation is the number of its equivalence
classes.

▶ Theorem 4 (Bodirsky, Hils, Martin [10], Theorem 4.27). Let C be a constraint satisfaction
problem. Then there is an ω-categorical structure B such that C = CSP(B) iff ∼C

n has finite
index for all n. Moreover, the structure B can be chosen so that for all n ∈ N the orbits of
the componentwise action of the automorphism group of B on Bn are primitively positively
definable in B.

▶ Example 5. The structure B1 := (Z;<) is not ω-categorical. However, ∼CSP(B1)
n has finite

index for all n, and indeed CSP(Z;<) = CSP(Q;<) and (Q;<) is ω-categorical. On the
other hand, for B2 := (Z; Succ) we have that the index ∼CSP(B2)

2 is infinite, and it follows
that there is no ω-categorical structure B such that CSP(B2) = CSP(B); see [6].

A rich source of examples of ω-categorical structures are structures with finite relational
signature that are homogeneous, i.e., every isomorphism between finite substructures can
be extended to an automorphism. There are uncountably many countable homogeneous
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digraphs with pairwise distinct CSP, and it follows that there are homogeneous digraphs
with undecidable CSPs. A structure B is called finitely bounded if there exists a finite set F
of finite structures such that a finite structure A embeds into B if and only if no structure in
F embeds into A.

It is well-known that if a structure is ω-categorical, then all of its reducts are ω-categorical
as well [22]. Moreover, it is easy to see that the CSP of reducts of finitely bounded structures
is in NP. It has been conjectured that the CSP of reducts of finitely bounded homogeneous
structures is in P or NP-complete [12]; this conjecture generalises the finite-domain complexity
dichotomy that was conjectured by Feder and Vardi [19] and proved by Bulatov [14] and by
Zhuk [26].

3.2 Quantifier Rank
In order to construct ω-categorial structures for a given CSP in GSO, we need to verify the
condition given in Theorem 4; in this context, it will be convenient to work with signatures
that also contain constant symbols. The quantifier rank of a second-order τ -formula Φ is the
maximal number of nested (first-order or second-order) quantifiers in Φ; for this definition,
we view Φ as a second-order sentence with guarded semantics, just as in [5]. If A and B are
τ -structures and q ∈ N we write A ≡GSO

q B if A and B satisfy the same GSO τ -sentences of
quantifier rank at most q.

▶ Lemma 6 (Proposition 3.3 in [5]). Let q ∈ N and τ be a finite signature with relation and
constant symbols. Then ≡GSO

q is an equivalence relation with finite index on the class of all
finite τ -structures. Moreover, every class of ≡GSO

q can be defined by a single GSO sentence
with quantifier rank q. The analogous statements hold for MSO as well.

If A is a τ -structure and ā is a k-tuple of elements of A, then we write (A, ā) for a
τ ∪ {c1, . . . , ck}-structure expanding A where c1, . . . , ck denote fresh constant symbols being
mapped to the corresponding entries of ā. If A and B are τ -structures and ā ∈ Ak, b̄ ∈ Bk,
and when writing (A, ā) ≡GSO

q (B, b̄) we implicitly assume that we have chosen the same
constant symbols for ā and for b̄.

▶ Lemma 7 (Proposition 3.4 in [5]). Let q ∈ N and let A and B be τ -structures. Then
A ≡GSO

q+1 B if and only if the following properties hold:
(first-order forth) For every a ∈ A, there exists b ∈ B such that (A, a) ≡GSO

q (B, b).
(first-order back) For every b ∈ B, there exists a ∈ A such that (A, a) ≡GSO

q (B, b).
(second-order forth) For every expansion A′ of A by a guarded relation, there exists an
expansion B′ of B by a guarded relation such that A′ ≡GSO

q B′.
(second-order back) For every expansion B′ of B by a guarded relation, there exists an
expansion A′ of A by a guarded relation such that A′ ≡GSO

q B′.

In the following, τ denotes a finite relational signature.

▶ Definition 8. Let ρ := {c1, . . . , cn} be a finite set of constant symbols. Then Dn is defined
to be the set of all pairs (A,B) of finite (τ ∪ ρ)-structures such that

cA = cB for all constant symbols c ∈ ρ;
{cA1 , . . . , cAn} = A ∩B = {cB1 , . . . , cBn }.

We write A ⊎ B for the structure with domain A ∪B such that RA⊎B := RA ∪RB for each
relation symbol R ∈ τ and cA⊎B = cA = cB for each constant symbol c ∈ ρ.

The following theorem in the special case of n = 0 is Proposition 4.1 in [5].
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▶ Theorem 9. Let q, n, r, s ∈ N, let (A1,B1), (A2,B2) ∈ Dn, and let ā1 ∈ (A1)r, ā2 ∈ (A2)r,
b̄1 ∈ (B1)s, b̄2 ∈ (B2)s be such that (A1, ā1) ≡GSO

q (A2, ā2) and (B1, b̄1) ≡GSO
q (B2, b̄2).

Then

(A1 ⊎ B1, ā1, b̄1) ≡GSO
q (A2 ⊎ B2, ā2, b̄2).

Proof. Our proof is by induction on q. Every quantifier-free formula is a Boolean combination
of atomic formulas, so for q = 0 it suffices to consider atomic formulas ϕ. By symmetry, it
suffices to show that if (A1 ⊎B1, ā1, b̄1) |= ϕ then (A2 ⊎B2, ā2, b̄2) |= ϕ. Then ϕ is built using
a relation symbol R ∈ τ , and the tuple that witnesses the truth of ϕ in A1 ⊎B1 must be from
RA1 or from RB1 , by the definition of A1 ⊎ B1. We first consider the former case; the latter
case can be treated similarly. If a constant that appears in ϕ is from A1 ∩B1, then by the
definition of Dn this element is denoted by a constant symbol c ∈ ρ, and therefore we may
assume without loss of generality that ϕ is a formula over the signature of (A1, ā1). Hence,
(A1, ā1) |= ϕ and by assumption (A2, ā2) |= ϕ. This in turn implies that (A2 ⊎B2, ā2, b̄2) |= ϕ.

For the inductive step, suppose that the claim holds for q, and that (A1, ā1) ≡GSO
q+1 (A2, ā2)

and (B1, b̄1) ≡GSO
q+1 (B2, b̄2). By symmetry and Lemma 7 it suffices to verify the properties

(first-order forth) and (second-order forth). Let c1 ∈ A1 ∪B1. We may assume that c1 ∈ A1;
the case that c1 ∈ B1 can be shown similarly. By Lemma 7, there exists c2 ∈ A2 such that
(A1, ā1, c1) ≡GSO

q (A2, ā2, c2). By the inductive assumption, this implies that

(A1 ⊎ B1, ā1, c1, b̄1) ≡GSO
q (A2 ⊎ B2, ā2, c2, b̄2)

and concludes the proof of (first-order forth).
Now let R be a guarded relation of A1 ⊎ B1 of arity k. Let A′

1 be the expansion of A1
by the guarded relation R ∩ Ak1 , and B′

1 be the expansion of B1 by the guarded relation
R ∩ Bk1 . By Lemma 7 there are expansions A′

2 of A and B′
2 of B2 by guarded relations

such that (A′
1, ā1) ≡GSO

q (A′
2, ā2) and (B′

1, b̄1) ≡GSO
q (B′

2, b̄2). By the inductive assumption,
this implies that (A′

1 ⊎ B′
1, ā1, b̄1) ≡GSO

q (A′
2 ⊎ B′

2, ā2, b̄2), which completes the proof of
(second-order forth). ◀

▶ Corollary 10. Let C be a CSP that can be expressed in GSO. Then there exists a countable
ω-categorical structure B such that C = CSP(B).

Proof. Let τ be the signature of C, and let Φ be a GSO τ -formula with quantifierrank q such
that C = JΦK. By Theorem 4 it suffices to show that the equivalence relation ∼C

n has finite
index for every n ∈ N. Let ρ := {c1, . . . , cn} be a set of new constant symbols. By Lemma 6,
there exists an m ∈ N such that ≡GSO

q has m equivalence classes on (τ ∪ ρ)-structures. If
ϕ(x1, . . . , xn) is a primitive positive τ -formula, then define Sϕ to be the (τ ∪ ρ)-structure
whose elements are the equivalence classes of the smallest equivalence relation on the variables
of ϕ that contains all pairs x, y such that ϕ contains the conjunct x = y, and such that
(C1, . . . , Cn) ∈ RS for R ∈ τ if and only if there are y1 ∈ C1, . . . , yn ∈ C2 such that
R(y1, . . . , yn) is a conjunct of ϕ; finally, we set cSϕ

i := [xi] for all i ∈ {1, . . . , n}.
We claim that if Sϕ ≡GSO

q Sψ, then ϕ ∼C
n ψ. Let θ(x1, . . . , xn) be a primitive positive

τ -formula; we may assume that the existentially quantified variables of θ are disjoint from
the existentially quantified variables of ϕ and of ψ, so that (Sϕ,Sθ), (Sψ,Sθ) ∈ Dn. Since
Sϕ ≡GSO

q Sψ and Sθ ≡GSO
q Sθ, we have Sϕ ⊎ Sθ ≡GSO

q Sψ ⊎ Sθ by Theorem 9. Now
suppose that ϕ ∧ θ is satisfiable in a model of Φ. This is the case if and only if Sϕ ⊎ Sθ

satisfies Φ, which in turn implies that Sψ ⊎ Sθ satisfies Φ since Φ has quantifierrank q. This
in turn is the case if and only if ψ ∧ θ is satisfiable in a model of Φ, which proves the claim.

The claim implies that ∼C
n has at most m equivalence classes, concluding the proof. ◀
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▶ Example 11. Let Φ be the following MSO sentence.

∀X
(
∃x : X(x) ⇒ ∃x, y ∈ X ∀z ∈ X(¬E(x, z) ∨ ¬E(y, z))

)
It is easy to see that JΦK is closed under disjoint unions and that its complement is closed
under homomorphisms. Corollary 10 implies that there exists a countable ω-categorical
structure with CSP(B) = JΦK.

3.3 Finite Unions of CSPs
In this section we prove that every class in GSO whose complement is closed under homo-
morphisms is a finite union of CSPs (Lemma 16); the statement announced at the beginning
of Section 3 then follows (Corollary 17). Throughout this section, let C be a non-empty class
of finite τ -structures whose complement is closed under homomorphisms. In particular, C
contains the structure I with only one element where all relations are empty.

Let ∼ be the equivalence relation defined on C by letting A ∼ B if for every C ∈ C we
have A⊎C ∈ C if and only if B⊎C ∈ C; here ⊎ denotes the usual disjoint union of structures,
which is a special case of Definition 8 for n = 0. Note that the equivalence classes of ∼ are
in one-to-one correspondence to the equivalence classes of ∼C

0 . Also note that C is closed
under disjoint unions if and only if ∼ has only one equivalence class.

If A ∈ C, then we write [A] for the equivalence class of A with respect to ∼. The following
observations are immediate consequences from the definitions:
1. each ∼-equivalence class is closed under homomorphic equivalence.
2. each ∼-equivalence class is closed under disjoint unions.
3. A ∈ [I] if and only if A ⊎ B ∈ C for all B ∈ C.

▶ Lemma 12. Let A ∈ C and let D be the smallest subclass of C that contains [A] and whose
complement is closed under homomorphisms. Then
1. D is a union of equivalence classes of ∼, and
2. if ∼ has more than one equivalence class, then C \ D is non-empty.

Proof. Let C ∈ [A], let B be a finite structure with a homomorphism to C, and let B′ ∈ [B].
Since B ⊎ C and C are homomorphically equivalent, we have that B ⊎ C ∼ C. We claim that
B′ ⊎ C ∼ C. To see this, let D ∈ C. Then

C ⊎ D ∈ C ⇔ (B ⊎ C) ⊎ D ∈ C (since B ⊎ C ∼ C)
⇔ B ⊎ (C ⊎ D) ∈ C
⇔ B′ ⊎ (C ⊎ D) ∈ C (since B ∼ B′)
⇔ (B′ ⊎ C) ⊎ D ∈ C

which shows the claim. So B′ ⊎ C ∈ [C] = [A]. Since B′ has a homomorphism to B′ ⊎ C we
obtain that B′ ∈ D; this proves the first statement.

To prove the second statement, first observe that the statement is clear if A ∈ [I], since
the complement of [I] is closed under homomorphisms. The statement therefore follows from
the assumption that ∼ has more than one equivalence class. Otherwise, if A /∈ [I], then there
exists a structure B ∈ C such that A ⊎ B /∈ C. Then B ∈ C \ D can be shown indirectly as
follows: otherwise B would have a homomorphism to a structure A′ ∈ [A]. Since B ⊎ A′ is
homomorphically equivalent to A′, we have B ⊎ A′ ∼ A′ ∼ A and in particular B ⊎ A′ ∈ C.
But B ⊎ A′ ∈ C if and only if B ⊎ A ∈ C since A ∼ A′. This is in contradiction to our
assumption on B. ◀
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▶ Example 13. We consider a signature τ := {R1, R2, R3} of unary relation symbols. Define
for every i ∈ {1, 2, 3} the τ -structure Si to be a one-element structure where Ri is non-empty
and Rj , for j ̸= i, is empty. Let

C := CSP(S1 ⊎ S2) ∪ CSP(S2 ⊎ S3) ∪ CSP(S3 ⊎ S1).

Clearly, the complement of C is closed under homomorphisms. The equivalence classes of ∼
can be described as follows. For distinct i, j ∈ {1, 2, 3},

[Si ⊎ Sj ] = CSP(Si ⊎ Sj) \ (CSP(Si) ∪ CSP(Sj))
[Si] = CSP(Si) \ [I]

[I] = CSP(I).

For the remainder of the section we fix a GSO τ -sentence Φ of quantifier rank q. Recall
that Lemma 6 asserts that the equivalence relation ≡GSO

q on the class of finite τ -structures has
finitely many equivalence classes C1, . . . , Cm, and that each of the equivalence classes Ci can be
defined by a single GSO τ -sentence Ψi with quantifier rank q; we write T τq := {Ψ1, . . . ,Ψm}
for this set of GSO sentences. Let J ⊆ {1, . . . ,m} be such that {Ψj ∈ T τq | j ∈ J} is exactly
the set of all sentences in T τq that imply Φ. Then |J | is called the degree of Φ. It is easy
to see that the degree of Φ is exactly the index of ≡GSO

q restricted to JΦK. Let ∼ be the
equivalence relation defined in the beginning of this section for the class C := JΦK.

▶ Lemma 14. For every ∼-class D there exists I ⊆ {1, . . . ,m} such that D =
⋃
i∈IJΨiK.

Proof. As in the proof of Corollary 10 one can use Theorem 9 to show for all finite τ -structures
A,B that if A ≡GSO

q B, then A ∼ B. This means that D is a union of ≡GSO
q -classes and

therefore there exists I ⊆ J ⊆ {1, . . . ,m} such that D =
⋃
i∈IJΨiK. ◀

▶ Corollary 15. The index of ∼ is smaller than or equal to the degree of Φ.

▶ Lemma 16. If the complement of JΦK is closed under homomorphisms, then there are
GSO τ -sentences Φ1, . . . ,Φt each of which describes a CSP such that Φ is equivalent to
Φ1 ∨· · ·∨Φt. If Φ is an MSO sentence, then Φ1, . . . ,Φt can be be chosen to be MSO sentences
as well.

Proof. We prove the statement by induction on the degree n of Φ. By Lemma 15 the
equivalence relation ∼ has at most n equivalence classes on τ -structures. Hence, if n = 1,
then JΦK is closed under disjoint unions, and we are done.

Let A1, . . . ,As be τ -structures such that {[A1], . . . , [As]} is the set of all equivalence
classes of ∼ that are distinct from [I]. Let Di be the smallest subclass of JΦK that contains
[Ai] and whose complement is closed under homomorphisms. Note that JΦK =

⋃
i≤s Di since

[I] is contained in Di for all i ≤ s. By Lemma 12 (1), each Di is a union of ∼-classes which are
themselves a union of ≡GSO

q -classes by Lemma 14. It follows that there exists Ii ⊆ {1, . . . ,m}
such that Di =

⋃
j∈Ii

JΨjK. We define Φi :=
∨
j∈Ii

Ψj . Note that the GSO sentence Φi is of
quantifier rank q such that Di = JΦiK. Hence, Φ is equivalent to

∨
i≤s Φi. Lemma 12 (2)

asserts that JΦK \ Di is non-empty, and hence the degree of Φi must be strictly smaller than
n for all i ∈ {1, . . . , s}. The statement now follows from the inductive assumption. The same
argument applies to MSO as well. ◀

Lemma 16 together with Corollary 10 implies the following.
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▶ Corollary 17. Every GSO sentence which is closed under homomorphisms is equivalent to
a finite conjunction of GSO sentences each of which describes the complement of a CSP of a
countable ω-categorical structure. The analogous statement holds for MSO.

Not every homomorphism-closed class of structures that can be expressed in Second-order
Logic is a finite intersection of complements of CSPs. We even have an example of a class of
finite τ -structures that can be expressed in Datalog but cannot be written in this form.

▶ Example 18. Let S and T be unary, and let R be a binary relation symbol. Let C be the
class of all finite {S, T,R}-structures A such that the following Datalog program Π with the
binary IDB E derives goal on A.

E(x, y) :− S(x), S(y)
E(x, y) :− E(x′, y′), R(x′, x), R(y′, y)

goal :− T (x), E(x, x′), R(x′, y)

For n ∈ N, let Pn be the {S, T,R}-structure on the domain {1, . . . , n} with

SPn := {1} TPn := {n} RPn :=
{

(i, i+ 1) | i ∈ {1, . . . , n− 1}
}
.

It is easy to see that each of the structures in {Pn | n ≥ 1} is not contained in C, and that
the disjoint union of Pi and Pj , for i ̸= j, is contained in C. It follows that C is not a finite
intersection of complements of CSPs (and, by Corollary 17, cannot be expressed in GSO).

4 Canonical Datalog Programs

A remarkable fact about the expressive power of Datalog for constraint satisfaction problems
over finite domains is the existence of canonical Datalog programs [19]; this has been
generalised to CSPs for ω-categorical structures.

▶ Theorem 19 (Bodirsky and Dalmau [7]). Let B be a countable ω-categorical τ -structure.
Then for all ℓ, k ∈ N there exists a canonical Datalog program Π of width (ℓ, k) for the
complement of CSP(B). Moreover, for every finite τ -structure A the following are equivalent:

Π derives goal on A;
Spoiler has a winning strategy for the existential (ℓ, k)-pebble game on (A,B).

We later need the following well-known fact.

▶ Lemma 20. If C1 and C2 are in Datalog, then so are C1 ∪ C2 and C1 ∩ C2. If Π1 and Π2
are Datalog programs of width (ℓ, k), then there is a Datalog program Π of width (ℓ, k) for
JΠ1K ∪ JΠ2K and for JΠ1K ∩ JΠ2K.

Proof. For union, let Π be obtained by taking the union of the rules of Π1 and of Π2, possibly
after renaming IDB predicate names to make them disjoint except for goal. For intersection,
we proceed similarly, but we first rename the symbol goal in Π1 to goal1 and the symbol goal
in Π2 to goal2. Finally we add the new rule goal :− goal1, goal2 to the union of Π1 and Π2.
It is clear that these constructions preserve the width. ◀

▶ Theorem 21. Let Φ be a GSO sentence such that JΦK is closed under homomorphisms.
Let ℓ, k ∈ N. Then there exists a canonical Datalog program Π of width (ℓ, k) for JΦK.
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Proof. By Corollary 17 there are GSO sentences Φ1, . . . ,Φm and ω-categorical structures
B1, . . . ,Bm such that Φ is equivalent to Φ1 ∧ · · · ∧ Φm and J¬ΦiK = CSP(Bi). Let Πi be
the canonical Datalog program for CSP(Bi) which exists by Theorem 19. Then Lemma 20
implies that there exists a Datalog program Π such that JΠK = JΠ1K ∩ · · · ∩ JΠmK. It is clear
that Π is sound for JΦK. To see that Π is a canonical Datalog program for JΦK, suppose
that A is such that some Datalog program Π′ of width (ℓ, k) which is sound for JΦK derives
goal on A. Since, for every i ∈ {1, . . . ,m}, the program Π′ is also sound for JΦiK, and
Πi is a canonical Datalog program for JΦiK, the program Πi derives goal on A. Hence,
A ∈ JΠK = JΠ1K ∩ · · · ∩ JΠmK. ◀

▶ Theorem 22. Let Φ be a GSO sentence. Then JΦK can be defined in Datalog if and only if
1. JΦK is closed under homomorphisms, and
2. there exist ℓ, k ∈ N such that for all finite structures A, Spoiler wins the (ℓ, k)-game for

JΦK on A if and only if A |= Φ.

Proof. First suppose that JΦK is in Datalog. That is, there exists ℓ, k ∈ N and a Datalog
program Π of width (ℓ, k) such that JΦK = JΠK. Then clearly JΦK is closed under homomor-
phisms, and by Lemma 16, there are GSO sentences Φ1, . . . ,Φm such that Φ is equivalent
to Φ1 ∧ · · · ∧ Φm and JΦiK is the complement of a CSP, for each i ∈ {1, . . . ,m}. Corol-
lary 10 implies that there exists an ω-categorical structure Bi such that CSP(Bi) = J¬ΦiK.
Now suppose that A is a finite τ -structure such that A |= Φ. Then Spoiler wins the
(ℓ, k)-game as follows. Suppose that Duplicator plays the countable structure B such that
CSP(B) ∩ JΦK = ∅. Then CSP(B) ∩ JΦiK = ∅ for some i ∈ {1, . . . ,m}; otherwise, if there
is a structure Ai ∈ CSP(B) ∩ JΦiK for every i ∈ {1, . . . ,m}, then the disjoint union of
A1, . . . ,Am satisfies Φi since Φi is closed under homomorphisms, and is in CSP(B) since
CSP(B) is closed under disjoint unions; but this is in contradiction to our assumption that
CSP(B) ∩ JΦK = ∅. Hence, CSP(B) ⊆ CSP(Bi) and hence there is a homomorphism h from
B to Bi (see [7]). Note that Π is sound for CSP(Bi), and Π derives goal on A, and hence
Theorem 19 implies that Spoiler wins the existential (ℓ, k)-pebble game on (A,Bi). But since
B homomorphically maps to Bi, this implies that Spoiler wins the existential (ℓ, k)-pebble
game on (A,Bi). Now suppose that A |= ¬Φ. Hence, there exists i ∈ {1, . . . ,m} such that
A |= ¬Φi. Then Duplicator wins the (ℓ, k)-game as follows. She starts by playing Bi. Then
A homomorphically maps to Bi, and Duplicator can win the existential (ℓ, k) pebble game
on (A,Bi) by always playing along the homomorphism.

For the converse implication, suppose that 1. and 2. hold. Since JΦK is closed under
homomorphisms, Corollary 17 implies that there are GSO sentences Φ1, . . . ,Φm and ω-
categorical structures B1, . . . ,Bm such that Φ is equivalent to Φ1 ∧ · · · ∧ Φm and J¬ΦiK =
CSP(Bi). By Theorem 19, for every i ∈ {1, . . . ,m} there exists a canonical Datalog program
Πi of width (ℓ, k) for JΦiK. Then Lemma 20 implies that there exists a Datalog program
Π such that JΠK = JΠ1K ∩ · · · ∩ JΠmK. Since each Πi is sound for JΦiK, it follows that Π is
sound for JΦK. Hence, it suffices to show that if A is a finite τ -structure such that A |= Φ,
then Π derives goal on A. Since A |= Φi for all i ∈ {1, . . . ,m}, the assumption implies that
Spoiler wins the existential (ℓ, k) pebble game on (A,Bi). By Theorem 19, it follows that Πi

derives goal on A. Hence, Π derives goal on A. ◀

5 A coNP-complete CSP in MSO

In this section we show that the class of CSPs in MSO is (under complexity-theoretic
assumptions) larger than the class of CSPs for reducts of finitely bounded structures (see
Section 3.1). Let T = {T2,T3, . . . } be the set of Henson tournaments: the tournament Tn,
for n ≥ 2, has vertices 0, 1, . . . , n+ 1 and the following edges:
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(i, i+ 1) for i ∈ {0, . . . , n};
(0, n+ 1);
(j, i) for i+ 1 < j and (i, j) ̸= (0, n+ 1).

The class C of all finite loopless digraphs that do not embed any of the digraphs from T is
an amalgamation class, and hence there exists a homogenous structure H with age C. It has
been shown in [9] that CSP(H) is coNP-complete.

▶ Proposition 23. CSP(H) can be expressed in MSO.

Proof. We have to find an MSO sentence that holds on a given digraph (V ;E) if and only if
(V ;E) does not embed any of the tournaments from T . We specify an MSO {X,E}-sentence
Φ, for a unary relation symbol X, that is true on a finite {X,E}-structure S if and only if
(XS;ES) is isomorphic to Tn, for some n ≥ 2. In ϕ we existentially quantify over

two vertices s, t ∈ X (that stand for the vertex 0 and the vertex n+ 1 in Tn).
a partition of X \ {s} into two sets A and B (they stand for the set of even and the set
of odd numbers in {1, . . . , n+ 1}).

The formula Φ has the following conjuncts:
1. a first-order formula that states that E defines a tournament on X;
2. a first-order formula that expresses that E is a linear order on A with maximal element a;
3. a first-order formula that expresses that E is a linear order on B with maximal element b;
4. E(s, t), E(s, a), E(a, b), and E(x, s) for all x ∈ X \ {a, t};
5. a first-order formula that states that if there is an edge from an element x ∈ A to an

element y ∈ B then there is precisely one element z ∈ A such that (y, z), (z, x) ∈ E,
unless y = t;

6. a first-order formula that states that if there is an edge from an element x ∈ B to an
element y ∈ A then there is precisely one element z ∈ B such that (y, z), (z, x) ∈ E,
unless y = t.

We claim that the MSO sentence ∀x : ¬E(x, x)∧∀X : ¬Φ holds on a finite digraph if and only
if the digraph is loopless and does not embed Tn, for all n ≥ 3. The forwards implication
easily follows from the observation that if (X;T ) is isomorphic to Tn, for some n ≥ 2, then
ϕ holds; this is straightforward from the construction of Φ (and the explanations above
given in brackets). Conversely, suppose that Φ holds. Then (X;T ) is a tournament. We
construct an isomorphism f from (X;T ) to T|X|−1 as follows. Define f(s) := 0, f(a) := 1,
and f(b) = 2. Since E(a, b), by item 5 there exists exactly one a′ ∈ A such that E(b, a′)
and E(a′, a). Define f(a′) := 3. If a′ = t then we have found an isomorphism with T2.
Otherwise, the partial map f defined so far is an embedding into Tn for some n ≥ 3. Item 6
and E(b, a′) imply that there exists exactly one b′ ∈ B such that E(a′, b′) and E(b′, b), and
we define f(b′) := 4. Continuing in this manner, we eventually define f on all of X and find
an isomorphism with T|X|−1. ◀

This shows that CSP(H) cannot be expressed, unless NP = coNP, as CSP(B) for some
reduct of a finitely bounded structure and such CSPs are in NP. We do not know how to show
this statement without complexity-theoretic assumptions, even if we just want to rule out
that CSP(H) can be expressed as CSP(B) for some reduct of a finitely bounded homogeneous
structure.

6 Conclusion and Open Problems

We provided a game-theoretic characterisation of those problems in Guarded Second-order
Logic that are equivalent to a Datalog program. We also proved the existence of canonical
Datalog programs for GSO sentences whose models are closed under homomorphisms. To
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prove these results, we showed that every class of finite τ -structures in GSO whose complement
is closed under homomorphisms is a finite union of CSPs. We also showed that every CSP in
GSO can be formulated as a CSP of an ω-categorical structure. These results also imply that
the so-called universal-algebraic approach, which has eventually led to the classification of
finite-domain CSPs in Datalog [3], can be applied to study problems that are simultaneously
in Datalog and in GSO (also see [11]). Our results might also pave the way towards a
syntactic characterisation of Datalog ∩ GSO. We close with two open problems.
1. Nested monadically defined queries (Nemodeq) have been introduced by Rudolph and

Krötzsch [25]; they prove that Nemodeq is contained both in MSO and in Datalog. We
ask wether conversely, every problem in MSO ∩ Datalog is expressible as a Nemodeq.

2. Is every CSP of a reduct of a finitely bounded homogeneous structure in GSO?
We are also confident that our results will advance the understanding of CSPs (the com-
plements of) which are obtained as the homomorphism-closure of the set of some theory’s
finite models. For example, the homomorphism-closures of the model sets of guarded- and
guarded-negation-theories have recently been found to be GSO-expressible [8] so, by virtue
of our results, we immediately know they must be (complements of) ω-categorical CSPs.
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Abstract
The promise constraint satisfaction problem (PCSP) is a recently introduced vast generalisation of
the constraint satisfaction problem (CSP) that captures approximability of satisfiable instances. A
PCSP instance comes with two forms of each constraint: a strict one and a weak one. Given the
promise that a solution exists using the strict constraints, the task is to find a solution using the
weak constraints. While there are by now several dichotomy results for fragments of PCSPs, they
all consider (in some way) symmetric PCSPs.

1-in-3-SAT and Not-All-Equal-3-SAT are classic examples of Boolean symmetric (non-promise)
CSPs. While both problems are NP-hard, Brakensiek and Guruswami showed [SODA’18] that given
a satisfiable instance of 1-in-3-SAT one can find a solution to the corresponding instance of (weaker)
Not-All-Equal-3-SAT. In other words, the PCSP template (1-in-3, NAE) is tractable.

We focus on non-symmetric PCSPs. In particular, we study PCSP templates obtained from
the Boolean template (t-in-k, NAE) by either adding tuples to t-in-k or removing tuples from
NAE. For the former, we classify all templates as either tractable or not solvable by the currently
strongest known algorithm for PCSPs, the combined basic LP and affine IP relaxation of Brakensiek
and Guruswami [SODA’20]. For the latter, we classify all templates as either tractable or NP-hard.
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1 Introduction

How hard is it to find a 6-colouring of a graph if it is promised to be 3-colourable? We do not
know but believe it to be NP-hard. Despite sustained effort, this so-called approximate graph
colouring problem has been elusive since it was considered by Garey and Johnson almost 50
years ago [22]. The current state of the art, established in 2019, is NP-hardness of finding a
5-colouring of a 3-colourable graph [17]. Approximate graph colouring is an example of the
very general promise constraint satisfaction problem, which is the focus of this paper. We
start with (non-promise) constraint satisfaction problems to set the stage.

Constraint satisfaction. While deciding whether a graph is 2-colourable is solvable in
polynomial time, deciding 3-colourability is NP-complete [26]. The constraint satisfaction
problem (CSP) is a general framework that captures graph colourings and many other
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fundamental computational problems. Feder and Vardi initiated a systematic study of
so-called fixed-template decision CSPs. Let A be a fixed finite relational structure, called
the template or constraint language; i.e., A consists of a finite universe A and finitely many
relations on A, each of possibly different arity. The fixed-template CSP over A, denoted
by CSP(A), is the class of CSPs in which all constraint relations come from A. In more
detail, CSP(A) denotes the following computational problem: Given a structure X over the
same signature as A, is there a homomorphism from X to A, denoted by X → A? (Formal
definitions can be found in Section 2.) If A = K3 is a clique on 3 vertices then CSP(A) is
precisely the standard graph 3-colouring problem.

A classic result of Schaefer shows that, for any A on a 2-element set, CSP(A) is either
solvable in polynomial time or NP-complete. The non-trivial tractable cases from Schaefer’s
classification are taught in undergraduate algorithms courses: 2-SAT, (dual) Horn-SAT,
and linear equations over {0, 1}. Two concrete CSPs that are NP-hard by Schaefer’s result
are the (positive) 1-in-3-SAT and (positive) Not-All-Equal-3-SAT. For both problems, the
instance is a list of triples of variables. In 1-in-3-SAT, the task is to find a mapping from the
variables to {0, 1} so that in each triple exactly one variable is set to 1. Formally, 1-in-3-
SAT is CSP(A), where A = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}). In Not-All-Equal-3-SAT,
the task is to find a mapping from the variables to {0, 1} so that in each triple not all
variables are assigned the same value. Formally, Not-All-Equal-3-SAT is CSP(A), where
A = ({0, 1}; {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}).

If A is a graph (i.e., a single symmetric binary relation) then, as shown by Hell and
Nešetřil [24], CSP(A) is either solvable in polynomial time or NP-complete. In this case,
essentially the only non-trivial tractable case is graph 2-colouring.

Based on these two examples and a connection to logic, Feder and Vardi famously
conjectured [20] that, for any finite A, CSP(A) is either solvable in polynomial time or
NP-complete. Bulatov [16], and independently Zhuk [31], proved the conjecture in the
affirmative, both relying on the algebraic approach to CSPs [25, 15, 6]. In this case, the
tractable cases are complicated and hard to describe in an elementary way.

Promise constraint satisfaction. Austrin, Guruswami, and Håstad [2] and Brakensiek and
Guruswami [8, 9] initiated the investigation of the promise constraint satisfaction problem
(PCSP), which is a vast generalisation of the CSP. Let A and B be two relational structures
such that A → B. The fixed-template PCSP over A and B, denoted by PCSP(A,B), is the
following computational problem: Given X such that X → A, find a homomorphism from X
to B (which exists by the composition of the promised homomorphism from X to A and the
homomorphism from A to B). If we take A = K3 to be a clique on 3 vertices and B = K6 to
be a clique on 6 vertices, then PCSP(A,B) is an instance of the approximate graph colouring
problem mentioned at the beginning of this article. Actually, what we described is the search
version of the PCSP. The decision version is as follows: Given X, return Yes if X → A and
return No if X ̸→ B. (The promise in the decision version is that it does not happen that
X ̸→ A but X → B.) It is well known that the decision version reduces to the search version
but it is not known whether there is a reduction the other way [5]. In most results (including
ours), hardness is established for the decision version and tractability for the search version.

If A = B then PCSP(A,B) is the same as CSP(A) and thus PCSPs indeed generalise
CSPs. For CSPs, the decision and search versions are known to be equivalent [15].

Building on the result of Barto, Opršal, and Pinsker [7] that the complexity of CSP(A)
is captured by certain types of identities of higher-order symmetries (called polymorphisms)
of A, Barto, Bulín, Krokhin, and Opršal showed that the basics of the algebraic approach
developed for CSPs [7] can be generalised to PCSPs [17, 5], thus introducing a general
methodology for investigating the computational complexity of PCSPs.
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Related work. Motivated by the goal to understand the computational complexity of all
fixed-template PCSPs, a recent line of research has focused on restricted classes of templates,
with the main directions being Boolean templates (i.e., templates on a two-element set) and
symmetric templates (i.e., all relations in the template satisfy that if a tuple belongs to a
relation then so do all of its permutations).

Austrin, Guruswami, and Håstad [2] considered the (1, g, k)-SAT problem: Given an
instance of k-SAT with the promise that there is an assignment satisfying at least g literals in
each clause, find an assignment that satisfies at least one literal in each clause. They showed
that this problem is NP-hard if g

k <
1
2 , and polynomial-time solvable otherwise. (1, g, k)-SAT

is a Boolean PCSP with a (symmetric) template that includes the binary disequality relation
and a relation containing all tuples of particular Hamming weights. The NP-hardness in [2]
was proved via reduction from the label cover problem using the idea of polymorphisms lifted
from CSPs to PCSPs. Building on the algebraic theory from [17, 5], Brandts, Wrochna, and
Živný [13] extended the classification of (1, g, k)-SAT to arbitrary finite domains.

Brakensiek and Guruswami [9] managed to classify all PCSPs over symmetric Boolean
templates with the disequality relation as NP-hard or solvable in polynomial time. Ficak,
Kozik, Olšák, and Stankiewicz [21] extended this result to all symmetric Boolean templates.

In very recent work, Barto, Battistelli, and Berg [4] explored symmetric PCSPs on three-
and four-element domains.

While the approximate graph colouring problem remains open, hardness was proved under
stronger assumptions (namely Khot’s 2-to-1 Conjecture [27] for k-colourings with k ≥ 4 and
its non-standard variant for 3-colourings) by Dinur, Mossel, and Regev [18]. Guruswami and
Sandeep [23] recently established this result under a weaker assumption, the so-called d-to-1
conjecture for any fixed d ≥ 2. For approximate hypergraph colouring, another important
PCSP, NP-hardness was established by Dinur, Regev, and Smyth [19]. There has been some
recent progress on approximate graph colourings [30] and related PCSPs, e.g. approximate
graph homomorphism problems [28, 30], and rainbow vs. normal hypergraph colourings [1].

Unlike most previous works, which focused on symmetric PCSPs, we investigate non-
symmetric PCSPs. Our first motivation is that a classification of more concrete PCSP
templates is needed to improve and extend the general algebraic theory from [17, 5]. At the
moment, even an analogue of Schaefer’s result, i.e., classifying all Boolean PCSPs, seems
out of reach. Our second motivation is the pure beauty of the template (1-in-3,NAE).
While PCSP(1-in-3,NAE) admits a polynomial-time algorithm [9, 10], Barto showed [3, 5]
that this tractability result cannot be obtained via an algebraic reduction to tractable
finite-domain CSPs.

Contributions. Consider the Boolean PCSP(t-in-k,NAE), which is a natural generalisation
of PCSP(1-in-3,NAE). This is a symmetric, tractable PCSP. When can we add tuples to
t-in-k to keep the PCSP tractable? When can we remove tuples from NAE to keep the
PCSP tractable? Note that these changes generally do not give symmetric templates.

For the second question, we give a complete answer in Theorem 11: If t is odd, k is even,
and tuples of only even Hamming weight are removed from NAE, the resulting PCSP is
solvable in polynomial time. In all other cases, the resulting PCSP is NP-hard.

For the first question, we give a second-best possible answer in Theorem 10: If t is
odd, k is even, and tuples of only odd Hamming weight are added to t-in-k, the resulting
PCSP is tractable. In all other cases, the resulting PCSP is not solved by the combined
basic LP and affine IP relaxation of Brakensiek and Guruswami [11], the currently strongest
known algorithm for PCSPs. The power of this relaxation has recently been characterised by
Brakensiek, Guruswami, Wrochna, and Živný [12].
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2 Preliminaries

We denote by [n] the set {1, 2, . . . , n}. For a k-tuple x, we write x = (x1, . . . , xk). We denote
by ≤p a polynomial-time many-one reduction.

A relational structure is a tuple A = (A;R1, . . . , Rp), where A is a finite set called the
domain of A, and each Ri is a relation of arity ar(Ri) ≥ 1, that is, Ri is a non-empty
subset of Aar(Ri). A relational structure is symmetric if each relation in it is invariant
under any permutation of coordinates. Two relational structures A = (A;R1, . . . , Rp) and
B = (B;S1, . . . , Sq) have the same signature if p = q and ar(Ri) = ar(Si) for every i ∈ [p].
In this case, a mapping ϕ : A → B is called a homomorphism from A to B, denoted by
ϕ : A → B, if ϕ preserves all relations; that is, for every i ∈ [p] and every tuple x ∈ Ri, we
have ϕ(x) ∈ Si, where ϕ is applied component-wise. The existence of a homomorphism from
A to B is denoted by A → B. A PCSP template is a pair (A,B) of relational structures
over the same signature such that A → B.

▶ Definition 1. Let (A,B) be a PCSP template. The decision version of PCSP(A,B) is the
following problem: Given as input a relational structure X over the same signature as A
and B, output Yes if X → A and No if X ̸→ B. The search version of PCSP(A,B) is the
following problem: Given as input a relational structure X over the same signature as A
and B such that X → A, find a homomorphism from X to B.

We call PCSP(A,B) tractable if any instance of PCSP(A,B) can be solved in polynomial
time in the size of the input structure X. It is easy to show that the decision version
reduces to the search version [5]. Our hardness results will be for the decision version and
our tractability results for the search version. For a relational structure A, the constraint
satisfaction problem with the template A, denoted by CSP(A), is PCSP(A,A).

The following notion of polymorphisms is at the heart of the algebraic approach to (P)CSPs.
Intuitively, an arity m polymorphism of a PCSP template (A,B) is a homomorphism from
the m-th Cartesian power of A to B.

▶ Definition 2. Let (A,B) be a PCSP template. A function f : Am → B is a polymorphism
of arity m of (A,B) if for each pair of corresponding relations Ri and Si from A and B,
respectively, the following holds: For any (k ×m) matrix M whose columns are tuples in Ri,
the application of f to rows of M gives a tuple in Si. We denote by Pol(A,B) the set of all
polymorphisms of (A,B).

In a PCSP template (A,B) we view tuples from A and B as columns. When writing
tuples in text we may write them as rows to simplify notation but they should still be
understood as columns. For a k-ary relation R on the set [t], we denote by Rc = [t]k \ R
the complement of R. For a relational structure A, we denote by Ac the structure with
relations Rc for each relation R in A. Most of our relational structures will be on the Boolean
domain {0, 1} and contain a single relation of arity k. The (Hamming) weight of a tuple
x ∈ {0, 1}k, denoted throughout by d, is the number of 1’s in x. For 1 ≤ t < k, the Boolean
relational structure t-in-k consists (of one relation consisting) of all k-tuples with weight t.
The Boolean relational structure NAE contains all k-tuples except 0k and 1k.

We need a definition and some notation to state existing results on Boolean (P)CSPs.

▶ Definition 3. A function f : {0, 1}m → {0, 1} is
an ORm (ANDm) if it returns the logical OR (respectively logical AND) of its arguments;
an alternating threshold ATm if m ≥ 1 is odd and

f(x1, . . . , xm) = 1[x1 − x2 + x3 − · · · + xm] > 0;
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a parity function XORm if f(x1, . . . , xm) = x1 + · · · + xm mod 2;
a q-threshold THRq,m (for q a rational between 0 and 1 and mq not an integer) if
f(x1, . . . , xm) = 0 if

∑m
i=1 xi < mq and 1 otherwise;

a majority MAJm if f is a 1
2 -threshold.

We denote by OR and AND the set of all ORm and ANDm functions, respectively, for
m ≥ 2. We denote by AT and XOR the set of all ATm and XORm functions, respectively,
for odd m ≥ 1. Finally, THRq denotes the set of all THRq,m functions for qm ̸∈ Z.

Define f , the inversion of f , as the function x 7→ 1 − f(x), and for a family of functions
F , define the inversion of F by F = {f |f ∈ F}.

Schaefer’s celebrated dichotomy theorem classified all Boolean CSP templates.

▶ Theorem 4 ([29]). Let B be a Boolean CSP template. If Pol(B) contains a constant,
AND2, OR2, MAJ3, or XOR3, then CSP(B) is tractable. Otherwise, CSP(B) is NP-hard.

Ficak et al. classified all symmetric Boolean PCSP templates [21].

▶ Theorem 5 ([21]). Let (A,B) be a symmetric Boolean PCSP template. If Pol(A,B)
contains a constant or at least one of OR, AND, XOR, AT, THRq (for some q) or their
inversions, then PCSP(A,B) is tractable. Otherwise, PCSP(A,B) is NP-hard.

The only possibly unresolved promise templates are those with NP-hard CSP templates.

▶ Proposition 6. Let (A,B) be a promise template such that at least one of CSP(A), CSP(B)
is tractable. Then PCSP(A,B) is tractable.

Theorem 4 established NP-hardness of two natural CSPs: CSP(1-in-3) and CSP(NAE).
Interestingly, PCSP(1-in-3,NAE) is solvable in polynomial-time, as first shown by Braken-
siek and Guruswami [9]. (Note that this shows that the converse of Proposition 6 is
false.) A natural generalisation of 1-in-3 is t-in-k. Theorem 4 implies that CSP(t-in-k)
is NP-hard. Theorem 5 implies that the tractability of PCSP(1-in-3,NAE) also holds for
PCSP(t-in-k,NAE); both observations are proved in the full version [14].

▶ Proposition 7. For k ≥ 3 and 1 ≤ t < k,CSP(t-in-k) is NP-hard.

▶ Proposition 8. For k ≥ 2 and 1 ≤ t < k,PCSP(t-in-k,NAE) is tractable.

We now give a characterisation of the power of a certain convex relaxation useful for
tractability of (the decision version of) PCSPs. The relaxation is called the combined basic
LP and affine IP relaxation (BLP+AIP) and was introduced in [11]; see also [10]. All known
tractable PCSPs are solvable by either BLP+AIP or a reduction to a tractable CSP.

A (2m+ 1)-ary function f is called 2-block-symmetric if its 2m+ 1 coordinates of f can
be partitioned into two blocks of size m + 1 and m in such a way that the value of f is
invariant under any permutation of coordinates within each block. Without loss of generality,
we will assume that the two blocks are the odd and even coordinates of f .

▶ Theorem 9 ([12, Theorem 5.1]). Let (A,B) be a PCSP template. Then (the decision
version of) PCSP(A,B) is tractable via BLP+AIP if and only if Pol(A,B) contains 2-block-
symmetric functions of all odd arities.

In the proof of one of our results (Theorem 10) we will use Theorem 9 to rule out solvability
by BLP+AIP. However, for our tractability results, we will only need a characterisation
result (in terms of polymorphisms) of a weaker relaxation, namely the affine IP relaxation
(AIP) [5], which also works for the search version of PCSPs; details can be found in [14].

ICALP 2021
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3 Our results

Our results are concerned with templates that arise from (t-in-k,NAE) by either adding
tuples to t-in-k or removing tuples from NAE. For a set of tuples S ⊆ {0, 1}k, we write
t-in-k ∪ S for the relational structure whose (only) relation contains all k-tuples of weight t
and the tuples from S, and similarly for NAE \ S.

▶ Theorem 10 (Main #1). Let k ≥ 3 and ∅ ≠ S ⊆ (t-in-k)c ∩ NAE. If t is odd, k is
even, and S contains tuples of only odd weight, then PCSP(t-in-k ∪ S,NAE) is tractable.
Otherwise, PCSP(t-in-k ∪ S,NAE) is not solved by BLP+AIP.

The tractability part of Theorem 10 follows easily from existing work, cf. [14]. Our
contribution is ruling out the applicability of BLP+AIP from [11]. Using Theorem 9, we
prove the second part of Theorem 10 for t = 1 in Section 4 and for general t in [14].

▶ Theorem 11 (Main #2). Let k ≥ 3 and ∅ ≠ S ⊆ (t-in-k)c ∩ NAE. If t is odd, k is
even, and S contains tuples of only even weight, then PCSP(t-in-k,NAE \ S) is tractable.
Otherwise, PCSP(t-in-k,NAE \ S) is NP-hard.

Again, the tractability part of Theorem 11 follows easily from existing work. Our
contribution is establishing the hardness. It essentially follows from the following result.

▶ Theorem 12. Let k ≥ 3 and let T ⊆ {0, 1}k be a relation such that CSP(T) is NP-hard.
Then PCSP(t-in-k,T) is tractable if and only if T = NAE.

Theorem 12 is proved in Section 5 and relies on Theorem 5, as well as a symmetrisation
trick (Proposition 14, observed independently in [4]) and the following simple observation.

▶ Proposition 13. Let t, t′ ≥ 1 and let R be a symmetric relation on [t]. For any function
f : [t] → [t′], the component-wise image of R under f , denoted f(R), is also symmetric.

Proof. Suppose that y ∈ f(R), so y = f(x) for some x ∈ R. We must show that π(y) ∈ f(R)
for an arbitrary permutation π. But since R is symmetric, we have π(x) ∈ R, and so
f(π(x)) = π(y) since f is applied component-wise. ◀

▶ Proposition 14. Let (A,B) be a PCSP template with A symmetric. For each relation
R ∈ B, let R′ be the largest symmetric relation contained in R. Let B′ be the relational
structure with the same domain as B but with relations R′ instead of R. Then PCSP(A,B)
is polynomial-time equivalent to PCSP(A,B′).

Proof. We must first check that (A,B′) is a valid PCSP template, i.e., that there is a
homomorphism A → B′. Let ϕ be a homomorphism from A to B. By Proposition 13, ϕ(A)
is symmetric, and since B′ is the largest symmetric relational structure contained in B, we
have ϕ(A) ⊆ B′. Therefore (A,B′) is a valid PCSP template.

The reduction PCSP(A,B) ≤p PCSP(A,B′) is trivial since B′ ⊆ B.
To see that PCSP(A,B′) ≤p PCSP(A,B), suppose that a relation R ∈ B gives rise to

the symmetric relation R′ ∈ B′ as described above. For each constraint C = R′(x1, ..., xk) of
the symmetrised instance of PCSP(A,B′), we create k! constraints by taking all coordinate
permutations of C. Homomorphisms to A are preserved since A is symmetric. Conversely,
suppose that we have a homomorphism ψ from the created instance to B and suppose that
the tuple x was removed from R to create R′. Then no constraint is assigned x under ψ,
since by our construction this would force all permutations of x to appear in constraints,
violating membership in the relation R. Therefore, for any removed tuple x, applying ψ does
not produce x in any constraint, so ψ is a homomorphism from the original input to B′. To
complete the reduction, we repeat this construction for each R ∈ B. ◀
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4 Adding tuples for t = 1

We will rule out 2-block-symmetric polymorphisms of certain odd arities for PCSP templates
of the form (1-in-k ∪ {x},NAE) such that the weight of x is even if k is even. This implies
the second part of Theorem 10 with t = 1. The more general case stated in Theorem 10, for
any t ≥ 1, can be found in [14].

Any 2-block-symmetric function f : {0, 1}2m+1 → {0, 1} of odd arity 2m+1 is determined
by the values on the (m+ 2)(m+ 1) possible combinations of weights of the two blocks. Thus
we will represent f by f(x, y), where x and y are the number of 1’s on the odd and even
coordinates, respectively.

▶ Proposition 15. Let k ≥ 3 and 2 ≤ d ≤ k+1
2 be such that if k is even then so is d. Let x

be a tuple of weight d. Then, Pol(1-in-k ∪ {x},NAE) has no 2-block-symmetric function of
arity 2(k − d+ 1) + 1.

Proof. Since NAE is symmetric, permuting the rows of a matrix of inputs to a polymorphism
permutes the values of the output tuple and does not affect membership in NAE. Hence we
will assume that x = 1d0k−d. Let f be a 2-block-symmetric function of arity 2(k− d+ 1) + 1.
Thus the odd block is of size k−d+ 2 and the even block is of size k−d+ 1. We exhibit a set
of tableaux such that for any f , one of these tableaux prevents f from being a polymorphism
of (1-in-k ∪ {x},NAE). Each tableau in this set contains the same construction on its even
coordinates: the tuple x as its first column, followed by the (k − d) × (k − d) identity matrix
below and to the right of x, so that every row has exactly one 1. An illustration is given in
Figure (1a).



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(a) Even block.



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(b) Odd block if f(0, 1) = f(1, 1).

Figure 1 Example with k = 9 and d = 4.

It remains to give only the description of each tableau’s odd coordinates.
If f(0, 1) = f(1, 1), then the block of odd coordinates consists of the (k−d+2)×(k−d+2)

identity matrix on top of d− 2 rows of zeros. Since 2 ≤ d < k, the dimensions of the identity
matrix are between 3 and k. An illustration is given in Figure (1b).

If f(1, 1) = f(2, 1), then we obtain the block of odd coordinates by adding any tuple of
weight 1 to the block of even coordinates.

Otherwise we have f(0, 1) ̸= f(1, 1) ̸= f(2, 1), so f(0, 1) = f(2, 1).
If the number of odd coordinates k − d + 2 is even, then we place two copies of the

k−d+2
2 × k−d+2

2 identity matrix in the first k−d+2
2 rows, followed by zeros in the remaining rows.

There are always enough rows to accommodate these matrices since k−d+2
2 ≤ k ⇔ k + d ≥ 2.

An illustration is given in Figure (2a).
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1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(a) Odd block with d = 5
and k − d + 2 = 6 even.



1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(b) Odd block with d = 4
and k − d + 2 = 7 odd.

Figure 2 Example with k = 9 and f(0, 1) = f(2, 1).

If k − d+ 2 is odd then so is k − d. By the assumption “even k implies even d”, we must
have k odd and d even. The construction consists of the tuple x with the d × d identity
matrix to its right. To fill the remaining k − 2d+ 1 columns (assuming d ≤ k+1

2 ), we place
two copies of the k−2d+1

2 × k−2d+1
2 identity matrix starting from row d+ 1 and column d+ 2,

and fill any remaining rows with zeros. There are always enough rows to accommodate the
identity matrices since k−2d+1

2 ≤ k − d. An illustration is given in Figure (2b). ◀

▶ Proposition 16. Let k ≥ 3 and k+1
2 < d < k be such that if k is even then so is d. Let x

be a tuple of weight d. Then, Pol(1-in-k ∪ {x},NAE) has no 2-block-symmetric function of
arity 2k + 1.

Proof. Without loss of generality let x = 1d0k−d. The proof is similar to the proof of
Proposition 15: We will again exhibit a set of tableaux such that for any f , one of these
tableaux prevents f from being a polymorphism of (1-in-k ∪ {x},NAE). Each tableau in
this set has the k × k identity matrix as its even coordinates, so it remains only to give
a description of each tableau’s odd coordinates. Consider the values f(1, 1), f(2, 1), and
f(3, 1): At least two of these must be equal since f takes only the values 0 and 1.

If f(1, 1) = f(2, 1), then taking the odd coordinates to be the k× k identity matrix along
with any other tuple of weight 1 prevents f from being a polymorphism.

If f(1, 1) = f(3, 1), the odd coordinates are as follows: the first column is the tuple x,
followed immediately below and to the right by the (k − d) × (k − d) identity matrix, and
then by two copies of the d

2 × d
2 identity matrix in the upper-right corner. The tuple x and

the (k − d) × (k − d) matrix occupy k − d+ 1 columns, leaving d columns to be filled by the
two d

2 × d
2 identity matrices, and since d is even, d

2 is always an integer. An illustration is
given in Figure (3a).

Finally, if f(2, 1) = f(3, 1), the odd coordinates are as follows: two columns of x, followed
immediately below and to the right by two copies of the (k − d) × (k − d) identity matrix,
and then by the (2d− k − 1) × (2d− k − 1) identity matrix in the upper-right corner. This
fills all the columns. To place the two (k − d) × (k − d) identity matrices requires 2(k − d)
columns after the x’s. This is always possible since 2(k − d) ≤ k − 1 ⇔ d ≥ k+1

2 . After
placing these, there remain 2d − k − 1 columns for the final identity matrix, and since
(2d−k− 1) ≤ k ⇔ d ≤ k+ 1

2 , the number of available rows is never exceeded. An illustration
is given in Figure (3b). ◀
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1 0 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0


(a) Odd block with f(1, 1) = f(3, 1).



1 1 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0


(b) Odd block with f(2, 1) = f(3, 1).

Figure 3 Example with k = 9 and d = 6.

5 Removing tuples

In this section, we will prove Theorem 12 and show how it implies Theorem 11.

▶ Theorem (Theorem 12 restated). Let k ≥ 3 and let T ⊆ {0, 1}k be a relation such that
CSP(T) is NP-hard. Then PCSP(t-in-k,T) is tractable if and only if T = NAE.

Proof. By Proposition 14, we can assume that T is symmetric. If T = NAE then
PCSP(t-in-k,T) is tractable by Proposition 8. Otherwise, we show that Pol(t-in-k,T)
does not contain any of the tractable polymorphism families identified in the symmetric
Boolean PCSP dichotomy (Theorem 5), and therefore PCSP(t-in-k,T) is NP-hard.

The families are constants, OR, AND, XOR, AT, and THRq for q ∈ Q, as well as
their inversions. We deal first with the non-inverted families. Since 0k ̸∈ T and 1k ̸∈ T,
Pol(t-in-k,T) does not contain constants. Let Ct

k be the k × k matrix containing the k
cyclic shifts of the column 1t0k−t. Then Ct

k prevents the polymorphism families OR, AND,
XOR (if k is odd), and THRq for all q ̸= t

k . For all k, it remains to show that Pol(t-in-k,T)
contains neither THR t

k
nor AT. For even k it remains to show that Pol(t-in-k,T) excludes

XOR when t is even, and likewise when t is odd and T is missing a tuple of odd weight.

THR t
k

: Suppose that T does not contain the tuple x = 1d0k−d of weight d where 1 ≤ d < k.
Note that we cannot have d = t as this would violate t-in-k → T, so either t < d or t > d.

If t < d, then the k × d matrix M formed by placing Ct
d on top of the (k − d) × d zero

matrix returns the forbidden tuple x when THR t
k ,d is applied. An illustration is given in

Figure (4a).
We must check that THR t

k ,d is indeed in THR t
k

, which requires that d× t
k ̸∈ Z. This is

equivalent to dt ̸≡ 0 (mod k). However this is not always true, for example when t = 2, k = 6
and d = 3. When dt ≡ 0 (mod k), we take instead THR t

k ,2d+1 and the k × (2d+ 1) input
matrix M ′ consisting of two side-by-side copies of M and any extra column from M . In the
first d rows of M , t of the d entries are 1’s, so THR t

k ,d returns 1 since t
d >

t
k . Alternatively,

in the first d rows of M ′, at least 2t of the 2d + 1 entries are 1’s, so THR t
k ,2d+1 returns 1

since 2t
2d+1 > t

k . Both THR t
k ,d and THR t

k ,2d+1 return 0 when applied to any of the last
k − d rows of M and M ′, respectively, since these rows contain only 0’s. This completes the
case t < d.

If t > d, let M be the d× (k − d) 1’s matrix on top of Ct−d
k−d. Then applying THR t

k ,k−d

THR t
k

to M returns the forbidden tuple x. An illustration is given in Figure (4b).
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THR 3
7 ,5



1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0


=

1
1
1
1
1
0
0

(a) t = 3 and d = 5.

THR 4
7 ,5



1 1 1 1 1
1 1 1 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1


=

1
1
0
0
0
0
0

(b) t = 4 and d = 2.

Figure 4 Example with k = 7.

Again we have to check that (k − d) × t
k ̸∈ Z, or equivalently, that (k − d)t ̸≡ 0 (mod

k). If (k − d)t ≡ 0 (mod k), then d ̸= 1, and we use instead THR t
k ,k−d+1 and the input

matrix M ′ which is equal to M but with any one column repeated. Both THR t
k ,k−d and

THR t
k ,k−d+1 return 1 when applied to the first d rows of M and M ′, respectively. In the last

k− d rows of M , t− d of the k− d entries are 1’s, so THR t
k ,k−d returns 0 as t−d

k−d <
t
k . In the

last k − d+ 1 rows of M ′, at most t− d+ 1 of the k − d+ 1 entries are 1’s, so THR t
k ,k−d+1

returns 0 since t−d+1
k−d+1 <

t
k (note that d > 1 in this case). This completes the proof for t > d,

and thus we conclude that THR t
k

̸⊆ Pol(t-in-k,T).

AT: Again we split into the cases t < d and t > d.
Let t < d and suppose that T does not contain the tuple x = 1d0k−d of weight d where

1 ≤ d < k. We construct an input that returns x when a specific AT function is applied.
This is done in two stages. First, we construct a matrix M such that for some AT function
f , f(M) agrees with x on all coordinates but one. Next we pad the input M with a matrix
P such that for another AT function f ′, we have f ′(M |P | · · · |P ) = x.

To ease readability, we will separate the odd and even columns into two contiguous blocks,
with the odd columns appearing first in the matrices. We take f = AT2d−1 and define M
to be the following k × (2d− 1) matrix. In the d odd columns, we fill the first d rows with
the matrix Ct

d. We fill the remaining k − d rows with 0’s. In the d − 1 even columns, we
place on top a row of 1’s, followed by d− 1 rows of 0’s, then t− 1 rows of 1’s, and finally
k − d− t+ 1 rows of 0’s. An illustration is given in Figure (5a).

AT9



1 0 0 1 1 1 1 1 1
1 1 0 0 1 0 0 0 0
1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0


=

0
1
1
1
1
0
0
0

(a) AT9.

P =



1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1


(b) P .

Figure 5 t = 3, k = 8, and d = 5.
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Notice that AT2d−1(M) agrees with x everywhere except the first coordinate. This
happens because the first row of M has too many 1’s in the even columns; we would require
at least (d− 1) − t+ 1 = d− t more 1’s in the odd columns for f to output 1 on the first
row. We can achieve this by padding M with a matrix P that increases the proportion of 1’s
in the odd coordinates of the first row but does not affect the output of AT functions on the
other rows.

Take f ′ = AT2d−1+2t(d−t) and define the k× 2t matrix P as follows. In the t odd columns
of P , we place t rows of 1’s followed by k − t rows of 0’s. In the even columns of P , we place
Ct−1

t in the first t rows, followed by k − t− 1 rows of 0’s, and then by a final row of 1’s. An
illustration is given in Figure (5b).

By padding M with copies of P , we increase the proportion of 1’s in odd columns in the
first t < d rows, and in particular in the first row. The 0’s in rows t+1, . . . , k−1 do not affect
the output, and the 1’s in the last row do not affect the output since they are in even columns
and the last coordinate of x is always zero since d < k. Therefore f ′(M |P | · · · |P ) = x, where
P appears d− t times. This completes the case t < d.

Now let t > d and again suppose that T does not contain the tuple x = 1d0k−d of weight
d. Define the k× (2d− 1) input matrix M to AT2d−1 as follows. In the d odd columns of M ,
we first place d rows of 1’s. Then in next t− d+ 1 rows, we place side-by-side as many copies
of Ct−d

t−d+1 as we can, removing columns of the last copy if necessary. We fill the remaining
rows with 0’s. In the d− 1 even columns, we place a row of 0’s, then t rows of 1’s, and then
fill the remaining rows with 0’s. An illustration is given in Figure (6).

AT7



1 1 1 1 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 1 1 1 1
1 0 1 1 1 1 1
0 1 1 0 1 1 1
0 0 0 0 0 0 0


=

1
1
1
1
0
0
0
0

Figure 6 t = 6, k = 8, and d = 4.

We have AT2d−1(M) = x, which concludes the case t > d. Therefore AT ̸⊆ Pol(t-in-k,T).

XOR: Let t and k be even. Applying XORk to the matrix Ct
k returns the tuple 0k, so

applying XORk−1 to the first k − 1 columns of Ct
k returns the last column 1t−10k−t1. We

can “fill in” the 0’s in the output by swapping 0-1 pairs of values in the input matrix. In
particular, in the columns k − 1, k − 3, . . . , t + 1, we swap the entries in the pairs of rows
(k − 1, k − 2), (k − 3, k − 4), . . . , (t+ 1, t), respectively. The resulting k × (k − 1) matrix M
then satisfies XORk−1(M) = 1k and the arity k − 1 is odd as required. An example with
swapped values in bold is illustrated in Figure (7a).

Now let t be odd, k be even, and suppose that T does not contain the tuple x = 1d0k−d

of odd weight d. If t < d, then XORd applied to the input matrix Ct
d padded with k− d rows

of 0’s returns x. If t > d, let M be the k × (t− d+ 1) matrix with d rows of 1’s followed by
the matrix Ct−d

t−d+1. Fill any extra rows with 0’s. Then XORt−d+1(M) = x. An illustration
is given in Figure (7b). Therefore XOR ̸⊆ Pol(t-in-k,T).

ICALP 2021



121:12 Beyond PCSP(1-in-3, NAE)

XOR7



1 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0
1 1 1 1 1 0 0
0 1 1 1 0 0 0
0 0 1 1 1 1 1
0 0 0 1 1 1 0
0 0 0 0 1 1 1


=

1
1
1
1
1
1
1
1

(a) t = 4 and k = 8.

XOR3



1 1 1
1 1 0
1 0 1
0 1 1
0 0 0
0 0 0


=

1
0
0
0
0
0

(b) t = 3, k = 6, and d = 1.

Figure 7 XOR.

Inversions: Let F be a family of functions. We reduce the task of showing F ̸⊆ Pol(t-in-k,T)
to the already completed task of showing F ̸⊆ Pol(t-in-k,T). Let x ∈ {0, 1}k \ T, let
f ∈ F be a function of arity m, and let M be a k × m matrix of inputs to f whose
columns are t-in-k tuples. We established F ̸⊆ Pol(t-in-k,T) by finding f and M with
f(M) = x, and in the remaining cases we must find f ∈ F and M such that f(M) = x.
But since f(M) = x ⇔ f(M) = x, it suffices to find f ∈ F such that f(M) = x, where
x = (1 − x1, . . . , 1 − xk) if x = (x1, . . . , xk).

The families AND, OR, and XOR (except when t is odd and k is even) are excluded from
Pol(t-in-k,T) in the same way as AND, OR, and XOR, with the same matrices serving
as counterexamples. To see that AT and THR t

k
are also excluded, let x ̸∈ T be a tuple

of weight d, d ̸= t, 1 ≤ d < k. Then the tuple x of weight k − d can be returned by an AT
function and a THR t

k
function by the arguments above. If k − d = t, then the AT and

THR t
k

functions of arity 1 output x on input x.
Finally, when t is odd and k is even, and T does not contain the tuple x of odd weight

d, the XOR argument above applies since x also has odd weight k − d. Again, if k − d = t,
then the XOR function of arity 1 outputs x on input x. ◀

Schaefer’s dichotomy theorem (Theorem 4) allows us to obtain a simple description of all
T with CSP(T) tractable and t-in-k → T; a proof can be found in [14].

▶ Proposition 17. Let k ≥ 3, 1 ≤ t < k, and suppose that t-in-k → T. Then CSP(T) is
tractable if and only if
1. 0k ∈ T or 1k ∈ T, or
2. t is odd, k is even, and T contains all tuples of odd weight.

Observe that Proposition 17 in particular implies Proposition 7, NP-hardness of
CSP(t-in-k).

With Proposition 17 in hand, we can prove Theorem 11.

▶ Theorem (Theorem 11 restated). Let k ≥ 3 and ∅ ̸= S ⊆ (t-in-k)c ∩ NAE. If t is odd, k
is even, and S contains tuples of only even weight, then PCSP(t-in-k,NAE \ S) is tractable.
Otherwise, PCSP(t-in-k,NAE \ S) is NP-hard.

Proof. The tractability in the first statement of the theorem is proved in [14]. Otherwise, t
is even, or k is odd, or S contains a tuple of odd weight. Take T = NAE \ S. Observe that
case (1) of Proposition 17 does not apply as neither 0k nor 1k is part of the template. Moreover,
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case (2) of Proposition 17 does not apply either: If t is odd and k is even then S contains a tuple
of odd weight and hence NAE\S cannot have all odd weight tuples. Thus, by Proposition 17,
CSP(T) is NP-hard. Then, by Theorem 12, PCSP(t-in-k,T) = PCSP(t-in-k,NAE \ S) is
NP-hard. ◀
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Abstract
Subshifts of finite type (SFTs) are sets of colorings of the plane that avoid a finite family of forbidden
patterns. In this article, we are interested in the behavior of the growth of the number of valid
patterns in SFTs. While entropy h corresponds to growths that are squared exponential 2hn2

, surface
entropy (introduced in Pace’s thesis in 2018) corresponds to the eventual linear term in exponential
growths. We give here a characterization of the possible surface entropies of SFTs as the Π3 real
numbers of [0, +∞].
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1 Introduction

For a finite alphabet of colors, a two dimensional subshift is the set of all colorings of the
plane Z2 that respect some local constraints. These constraints are usually given as a family
of forbidden patterns. The most studied class of subshift are Subshifts of Finite Type (SFTs),
subshifts that can be defined by a finite family of forbidden patterns. A famous special case
is defined by Wang tilesets (unit squares with colored edges that may be placed side by side
only when the colors on the edges match) are a famous special: the set of all tilings by some
Wang tileset is always an SFT.

Subshifts were introduced in order to discretize continuous dynamical systems and are
themselves dynamical systems. While it has long been known that most problems concerning
Wang tiles (and thus subshifts) are undecidable [2, 5, 6], the role of computability has since
shifted from an obstacle to a major tool in the study of SFTs and other related classes of
subshifts. An aperiodic subshift has for instance been constructed [4] based on Kleene’s
fixed-point theorem [11], a classical theorem of computability theory. Many conjugacy
invariants have been characterized using computability or complexity classes. The first such
characterization was for topological entropy, which measures the exponential growth of the
number of valid colorings of finite patterns. For a subshift X, its (topological) entropy is
defined by:
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h(X) = lim log NX(n)
n2

where NX(n) denotes the number of n × n patterns appearing in colorings of X. Having
entropy h corresponds to having NX = 2hn2+o(n2). It turns out that the possible entropies
for Z2 are exactly the upper semi-computable [8] real numbers. Another invariant related to
growth, called entropy dimension, was then characterized using the arithmetical hierarchy
of real numbers [13]. Many other invariants have since been linked to computability: for
instance, there is a relationship between periodic colorings and computational complexity
classes [10], subactions [7, 1, 3] can be characterized through recursively enumerable forbidden
patterns, and many more.

We focus here on the notion of surface entropy, a notion which was introduced in Dennis
Pace’s thesis [14] in order to quantify the linear term inside exponential growth functions.
Indeed, topological entropy cannot distinguish between the two following behaviors of the
complexity function:

NX(n) ≈ 2hn2
and NX(n) ≈ 2hn2+2sn.

Surface entropy corresponds roughly to the s term in the second behavior and will be
introduced more formally in Subsection 2.2. In his thesis, Pace realizes Π1 and Σ1 numbers of
the arithmetical hierarchy of real numbers and conjectures that surface entropies are exactly
the Π3 numbers. This is exactly what we prove here:

▶ Theorem 1. The class of surface entropies of Z2 SFTs is [0, +∞] ∩ Π3.

In fact, surface entropies still cover the whole class of Π3 real numbers for sofic subshifts,
which are the letter-by-letter projections of SFTs, and for effective subshifts, which are the
subshifts that can be defined with a recursively enumerable family of forbidden patterns:

▶ Theorem 2. The class of surface entropies of Z2 sofic subshifts, and of Z2 effective
subshifts, is [0, +∞] ∩ Π3.

The paper is organized as follows. The next section recalls some background and useful
definitions. Section 3 and Section 4 focus on the proof of Theorem 1, and provide in
particular a construction which creates Z2 SFTs with arbitrary Π3 surface entropies. Some
open questions are then discussed in Section 5.

2 Preliminaries

2.1 Subshifts
This subsection introduces some standard definitions and facts about subshifts. The reader
may consult [12] for more details.

Let Σ be a finite alphabet of colors. A Zd configuration (in this paper, d = 1 or d = 2)
is a coloring x : Zd 7→ Σ, and the value of x at position z is noted xz. A (d-dimensional)
pattern is a coloring p : D 7→ Σ, with D ⊆ Zd a finite domain. For a configuration x, we say
that a pattern p appears in x (noted p ⊑ x) if there exists some position t ∈ Zd such that for
all z ∈ D, pz = xt+z. A subshift is a set of colorings/configurations defined by some family of
forbidden patterns. Each family of forbidden patterns F defines a subshift, possibly empty:

XF = {(x : Zd 7→ Σ) : ∀p ∈ F , p ̸⊑ x}.
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A subshift is effective if it can be defined by a recursively enumerable family of forbidden
patterns. A subshift is of finite type (SFT) if it can be defined by a finite family of forbidden
patterns. A subshift Y on Σ is sofic if there exists an SFT X on an alphabet Σ′ and a
letter-by-letter projection π : Σ′ 7→ Σ that sends X on Y .

Finally, for any Z subshift X1, the Z2 lift of X1 is the subshift Y2 whose configurations
are vertically repeated configurations of X1:

Y2 = {(y : Z2 7→ Σ) : ∃x ∈ X1, ∀i, j ∈ Z, y(i,j) = xi}.

2.2 Complexity function of Z2 subshifts
Given a Z2 subshift X, its complexity function NX(m, n) (for m, n ∈ N) is the number of
different patterns that appear in a rectangle of size m × n in the configurations of X:

NX(m, n) =
∣∣{p ∈ Σm×n : ∃x ∈ X, p ⊑ x

}∣∣ .
This complexity function can be used to define the (topological) entropy h(X):

h(X) = lim
n→+∞

log NX(n, n)
n2 .

This led Dennis Pace to introduce in [14] the notion of surface entropy, which corresponds
to the “linear term” of the complexity function. Here, we define surface entropy with
eccentricity α as:

hs(X, α) = lim sup
n→+∞

log NX(pn, qn) − pqn2h(X)
(p + q)n with α = p

q
∈ Q+,

where p, q are relatively prime integers. This definition slightly differs from the one of [14];
this will be further discussed in Section 5.

Note that in the definition of the topological entropy, only square patterns are used. In
fact, any rectangular patterns would generate the same value. Interestingly, this is no longer
the case with surface entropy: the eccentricity (ratio of the patterns’ widths to heights) affects
the value of the calculations. This explains why hs is a function of both a subshift X and a
rational parameter α = p/q. The study in [14] focuses on both the realizability of specific
surface entropies, and the behavior of surface entropies as functions of their eccentricities.

While surface entropy is not a conjugacy invariant, it was proved in [14] that the finiteness
of surface entropy is invariant under conjugacy. For more details or examples about surface
entropies, one may refer to [14, Section 3.2].

Links with other growth-type invariants

Links with (topological) entropy. If X1 is a Z subshift, and Y2 its Z2 lift (ie. the subshift
whose configuration are vertically repeated configurations of X1), then hs(Y2, α) = α

1+α h(X1).

Links with entropy dimension. In [13], a growth-type invariant called entropy dimension
was introduced as hd(X) = lim supn→+∞(log log NX(n))/ log n. It roughly represents the
exponent α if log NX(n) ≃ nα. For any Z2 subshift X, 0 ≤ hd(X) ≤ 2.

Entropy dimension and surface entropies are linked as follows:
If hd(X) = 2, then hs(X) can be either finite or infinite (similarly to hd(X) = 1);
If 1 < hd(X) < 2, then hs(X) = +∞;
If hd(X) = 1, hs(X) can either be finite (if log NX(n) = O(n), see [14, Example 3.2.14])
or infinite (for example, if log NX(n) ≃ n log n, see [14, Example 3.2.4]);
If 0 ≤ hd(X) < 1, then hs(X) = 0.

ICALP 2021
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2.3 Arithmetical hierarchy of real numbers
In order to state our main result, this section recalls from [15] the arithmetical hierarchy
of real numbers, which classifies elements of the real line according to their computational
properties. Denote by ΓQ the set of total computable functions f : Nk 7→ Q for any k. For
n ≥ 1, the classes of real numbers Σn, Πn and ∆n are defined as follows:

Σn = { sup
i1

inf
i2

sup
i3

. . . f(i1, . . . , in) | f ∈ ΓQ }

Πn = { inf
i1

sup
i2

inf
i3

. . . f(i1, . . . , in) | f ∈ ΓQ }

∆n = Σn ∩ Πn.

It is known that for any n ≥ 1, the inclusions Πn ⊂ Σn+1 and Σn ⊂ Πn+1 are proper. One
may refer to [15] for more details.

In this paper, we will be interested in the third level of the hierarchy, and one of its
equivalent characterization proved in [15]:

x ∈ Π3 iff there exists f ∈ ΓQ such that x = lim sup
i

inf
j

f(i, j).

3 Arithmetical restrictions of surface entropies

In this section, we prove the first and easiest direction of Theorem 1:

▶ Theorem 3. For any Z2 SFT X and α ∈ Q+:

hs(X, α) ∈ [0, +∞] ∩ Π3

Proof. Let X be a Z2 an SFT. We prove that NX(m, n) is a Π1 real number (it is not
computable in X: indeed, NX(m, n) = 0 if and only if X = ∅; the latter is well-known for
being undecidable). A pattern is said to be admissible if it does not contain a pattern which
is forbidden: any valid pattern of X is admissible, but the converse is false. For j ≥ m, n,
define N

(j)
X (m, n) as the number of m × n patterns that appear at the center of admissible

patterns of size j × j (ie. the squares of size j × j in which none of the forbidden patterns of
X appear).

By compactness, if a pattern is not valid in X, there exists some j such that it does not ap-
pear in any admissible pattern bigger than j ×j: this proves NX(m, n) = infj≥m,n N

(j)
X (m, n).

In particular, this implies that log NX(m, n) is a Π1 real number.
It follows that h(X) is a Π1 real number (as proved in [8]). As the difference of two Π1

real numbers is a ∆2 real number, this proves that for any α = p/q ∈ Q+, and for every
n ∈ N, the following is a ∆2 real number:

log NX(pn, qn) − pqn2h(X)
(p + q)n

which then leads to hs(X, α) ∈ Π3. Finally, by sub-additivity hs(X, α) ≥ 0 (see [14]). ◀

A very similar reasoning proves that this is still the case for sofic or effective subshifts:

▶ Remark 4. For any Z2 sofic or effective subshift X and α ∈ Q+, hs(X, α) ∈ [0, +∞] ∩ Π3.
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Proof. As sofic subshifts are effective, we can focus on the latter. For X an effective subshift,
we slightly alter the definition of N

(j)
X (m, n): it will now count the number of patterns of

size m × n which appear in the squares of size j × j in which none of the first j enumerated
forbidden patterns of X appear. Then we still have NX(m, n) = infj≥m,n N

(j)
X (m, n), and

this still leads to log NX(m, n) ∈ Π1 and h(X) ∈ Π1.
After this, the end of the proof is the same. ◀

4 Realization of Π3 real numbers as surface entropies

In this section, we prove the other (and harder) direction of Theorem 1. Because [14] provides
examples of SFTs with infinite surface entropy, we now prove:

▶ Theorem 5. For any x ∈ [0, +∞) ∩ Π3, there exists an SFT X with surface entropy:

∀α ∈ Q+, hs(X, α) = min(α, 1)
1 + α

· x.

Theorem 1 and 2 are consequences of the previous section together with this statement.
A naive construction could consist in lifting Z subshifts to obtain Z2 SFTs with specific

surface entropies. However, as the topological entropy of a Z effective subshift is a Π1 real
number (by ideas similar to Section 3), lifts can only have Π1 surface entropies (cf. the link
between Z entropies and Z2 surface entropies in Section 2.2).

Any method to overcome this limitation would need some creative spatial distribution.
Hence the sparse squares we develop below.

Proof. Let x ∈ [0, +∞) ∩ Π3 be a Π3 real number.
Let e ∈ N and x′ ∈ [0, 1) be such that x = e + x′. Because x′ is also a Π3 real number,

there exists a computable function f : N2 7→ Q such that x′ = lim supk inf l f(k, l) (see the
characterization in Subsection 2.3). We can assume that f only takes values in [0, 1).

In the following subsections, we create an SFT X which verifies the property of Theorem 5.
The proof is organized as follows:
1. Subsection 4.1 introduces our “sparse squares” construction, which aims at creating a set

of colorings of the plane with controlled surface entropy. All the following sections focus
on implementing this geometrical construction into an actual SFT X.

2. Subsection 4.2 recalls the Toeplitz sequences, which are sequences of uniform densities.
They will be used in the sparse square layout to control the density of each square.

3. In Subsection 4.3, we create a Z effective subshift X1. Effectiveness gives us a lot of room
to control its patterns, and we will use X1 as the foundation of X.

4. We use the fixed-point construction of [3] to create a Z2 SFT which simulates X1.
Subsection 4.4 provides an intermediary lemma about the entropy and the surface entropy
of this construction: in our case, it proves that the intermediary construction has surface
entropy zero.

5. In Subsection 4.5, we then create the desired SFT X, which arranges the sparse squares
on the plane (with the help of the previous points).

6. Finally, in Subsection 4.6 and Subsection 4.7 we create and compute the surface entropy
of X. This proves that X is a valid example for Theorem 5.

ICALP 2021



122:6 Computational Characterization of Surface Entropies for Z2 Subshifts of Finite Type

4
4

(a) 4th sparse square.

22 23 24

(b) (Portion of) the sparse square layout.

Figure 1 Presentation of the sparse square layout.

4.1 The sparse squares and the sparse square layout
To understand the idea behind this construction, consider the full shift over Z2 on the
alphabet {0, 1}. Configurations are full grids of free bits, ie. bits that are allowed to vary
freely in {0, 1}. It is not difficult to see that for the full shift, log Nfull(n, n) = n2. In
particular, its complexity function is quadratic in n, and its entropy is 1.

To realize specific surface entropies, we first need to figure out a way to contribute linearly
to log NX , instead of quadratically. To do this, we create a sequence of sparse squares. A
sparse square is, roughly, a finite piece taken from the full shift, but whose points are moved
apart from one another: the square is sparsified.

More precisely, the sparse square of index k (see Figure 1a) is a set of positions that form
a finite grid. Any position not in this set of points is blank. In the grid, there are k columns
(the distance between two columns is also k), and in each column there are k points (the
distance between two points in a column is also k).

The sparse square layout (see Figure 1b) makes the sparse squares sit next to one another
on a single line, according to their indices. We set the distance between the square of index
k − 1 and the square of index k to 2k.

The key feature of this geometrical layout lies in its linearity: the kth square has edges of
size k(k − 1) + 1: thus it has an area which is roughly

(
k2)2, while it also contains k2 points.

In addition, as the distance between two points increases as one considers squares of greater
indices, compactness will only lead to degenerate configurations that contain at most one
point. As such, they will not contribute significantly to the complexity function.

For now, the set of positions in the sparse square layout is not very interesting. In order
to increase the complexity function, we will allow free bits to vary at each position inside a
sparse square. Additionally, to create a surface entropy related to x, the density of free bits
in each square will be related to x.

More precisely, define x′
k = inf l f(k, l) (recall that x = e+x′, and x′ = lim supk inf l f(k, l)).

For each k, let tk be a word of size k over the alphabet {On, Off}, whose density of On is x′
k.

Then, define the subshift X ′ as (the closure of) the following configurations (see Figure 2):
These configurations follow the sparse square layout.
Each position not marked in the sparse square layout is blank (ie. marked with □).
The word tk is written in each row of the kth square.

On the positions marked by On, we then allow free bits to vary. On every position of the
sparse square, we also allow free letters to vary in {1, . . . , 2e}. With this, the square of index
k contributes to log NX′ with a term k2(x′

k + e). More precisely:

▶ Lemma 6. The kth sparse square contributes to log NX′ more than k2(e + x′
k) + O(k).
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t1(0) t2(0)

t2(0)

t2(1)

t2(1)

t3(0)

t3(0)

t3(0)

t3(1)

t3(1)

t3(1)

t3(2)

t3(2)

t3(2)

Figure 2 A sequence of words (tk) written in (a finite piece of) the sparse square layout.

Proof. As this is a lower bound, consider the position of the kth sparse square fixed, and
only look at the contribution induced by its “free bits” and “free letters”.

Free bits: (For now, we assume the “free letters” are fixed). A word tk of density x′
k is

written in this square, and the square contains k|tk|On free bits: indeed, there are k identical
lines, and in each line there are |tk|On positions marked with On. Additionally, one has
|tk|On = kx′

k + O(1) (because the density is x′
k). This implies that all the free bits of the kth

sparse square (fixed at this position), when marked with tk, contribute to the complexity
function with a term exp2(k|tk|On) = exp2(k2x′

k + O(k)).
Free letters: Recall that free letters vary in the alphabet {1, . . . , 2e} at each point in

the kth sparse squares. There are k2 points in this square, so the previous contribution is
multiplied by exp2(k2e). This concludes the proof. ◀

This provides a lower bound for the complexity function: for a given size of pattern, we
only count the biggest square that fits in it. If the squares do not interfere too much, one
should expect the surface entropy to “converge” towards lim supk x′

k + e = x′ + e = x.
The previous paragraphs were a draft of a geometrical construction. Below, we create an

actual Z2 SFT X which implements this subshift (with some additional construction lines).
Then, we formally prove that X has the desired surface entropy.

4.2 Effective Z upper-density Toeplitz subshifts
In order to create specific densities of letters in a subshift, we recall the useful Toeplitz
sequences from [9]. Let 0 ≤ y =

∑+∞
i=1 yi2−i ≤ 1 be a real number. A Toeplitz sequence

associated to y is a bi-infinite sequence b ∈ {0, 1}Z such that:

∀k ≥ 1, ∃jk /∈

(
k−1∑
i=1

ji + 2iZ

)
, bjk+2kZ = yk

i.e. one bit in two is y1; on the remaining bits, one bit in two is y2; etc. . .
For any y ∈ [0, 1), we define the upper-density Toeplitz subshift T (y) associated to y:

T (y) = {(b) ∈ {0, 1}Z : ∃0 ≤ y′ ≤ y, (b) is a Toeplitz sequence associated to y′}.

In the following subsection, we will use subwords of Toeplitz sequences on the alphabet
{On, Off} (rather than {1, 0}). They have high regularity and tightly controlled densities.
Indeed, assume that tn is a factor of length n which appears in T (y). Then the number of
letters On in tn is bounded by 0 ≤ |tn|On ≤ ny + O(1).

We will use these subshits in the context of Π1 real numbers. Indeed:

ICALP 2021
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▶ Lemma 7. If y ∈ Π1 ∩ [0, 1), then T (y) is an effective Z subshift.

Proof. If y ∈ Π1, there exists a computable total function f : N 7→ Q such that y = infn f(n).
It is possible to recursively enumerate the different values of f , to computably forbid patterns
of T (y) which do not respect the structure of Toeplitz sequences, and to computably forbid
patterns of T (y) that respect the structure of Toeplitz sequences but whose density is too
high. ◀

4.3 Building the base line

Consider the line on which all the sparse squares sit in the previous layout. We call
it the base line. In this section, we create a Z effective subshift X1 on the alphabet
Σ = {#, S, E, B, On, Off} which implements the base line: its configurations will be all the
possible values for this base line.

Base of the kth sparse square. The base of the kth sparse square is composed of k points,
each separated by k − 1 blanks (in X1, these blanks will be marked by B). In each point,
a letter On or Off is written, and the word tk composed by these k letters is a Toeplitz
subword of T (x′

k), where x′
k = inf l f(k, l).

This naturally leads to defining the set of all possible bases for the kth sparse square:

Wk = {tk(1) Bk−1 tk(2) Bk−1 . . . Bk−1 tk(k) | tk is a toeplitz subword in T (x′
k)}.

Prefixes for the squares. In order to implement the sparse square layout, we will build
the sparse squares on top of the base line. In order to build the squares properly, we set a
specific prefix before the base of each square. These prefixes have no meaning in terms of
surface entropy, and can be considered as construction lines.

In the layout, the positions of these prefixes were blank; in the implementation, they
are marked with letters S, B and E, which will have different roles when building other
construction lines in Subsection 4.5.

These prefixes are s1 = S, and for k ≥ 2, sk = SBk−2E.

The whole subshift. We now create a whole base line with these considerations: for any k,
the base of the kth sparse square is a word of Wk; before the base of the kth sparse square,
we add the word sk; and the other positions are marked with blanks #.

For the rest of the paper, we denote X1 as the closure of the following configurations:

X1 = cl{#∞s1w1 #22−2 s2w2 . . . sk−1wk−1 #2k−k skwk · · · | ∀k, wk ∈ Wk}

(for ease of understanding, we highlight the base of each sparse square in red).
The construction below relies on the fact that X1 (ie. the set of all possible base lines)

is a Z effective subshift. Indeed, it is possible to computably enumerate all the patterns in
which at least two letters of the set {On, Off} appear, and to forbid each of these patterns
that do not respect the structure of the configurations above. Furthermore, by definition
each x′

k = inf l f(k, l) is a Π1 real number, and its upper-density Toeplitz subshift T (x′
k) is

effective. We conclude that X1 is an effective Z subshift.



A. Callard and P. Vanier 122:9

4.4 Entropy of the fixed-point realization of effective Z subshifts as
subactions of Z2 SFTs

We now have a Z subshift X1 which can be used as a foundation in order to implement the
whole sparse square layout into an actual SFT. In this section, we recall a particular method
(from [3]) which transforms Z effective subshifts into Z2 SFTs. Additionally, we compute
how much this method impacts the surface entropy.

The construction of fixpoint-based tile sets was originally introduced in [4]. One particular
application of this construction, explained in [3], is the following theorem: for any Z effective
subshift X1, the Z2 lift Y2 of X1 (ie. the subshift whose configurations are the configurations
of X1 repeated vertically) is sofic.

It was also proved in [1] with a different method. These constructions improve the original
construction of [7], which realized Z effective subshifts as Z3 sofic subshifts. We use the
construction of [3] in order to prove:

▶ Lemma 8. Let X1 be a Z effective subshift. There exists a Z2 SFT X2 composed of two
superimposed layers of tilings such that:
1. The projection of X2 on its first layer is the Z2 lift Y2 of X1, whose configurations are

the configurations of X1 repeated vertically.
2. The second layer of X2 is composed of tilings of a fixpoint based tile set.
3. (New) For any p, q relatively prime,

h(X2) = h(Y2) = 0 and hs(X2, α) = hs(Y2, α) = α

1 + α
h(X1).

Proof. Points 1 and 2 of this lemma come directly from the construction of Theorem 1 in [3].
We prove point 3, and use notations from [3]. The reader should feel free to skip this proof
and go directly to the next section if they are more interested in the geometrical construction.

Let X1 be some Z effective subshift, and X2 (resp. Y2) be the SFT (resp. the sofic
subshift) given by the first two points of Lemma 8. Below, we compute the entropies and
the surface entropies of X2 and Y2.

First, we prove that log NX2(pn, qn) = pnh(X1) + o(n).
By definition of Z entropy, log NX1(n) = nh(X1) + o(n). As any configuration of Y2 is

entirely determined by a single line, one has log NY2(pn, qn) = log NX1(pn) = pnh(X1)+o(n).
The complexity function of X2 is at least the contribution of its first layer, which leads to
log NX2(pn, qn) ≥ log NY2(pn, qn) = pnh(X1) + o(n).

On the other hand, one can find an upper bound of log NX2(pn, qn) by considering the
contributions of the two layers independently. As the contribution of the first layer is the
contribution of Y2, we now focus on the contribution of all the tilings obtained from the
fixpoint-based tile set. Here, we use notions and notations of [3].

In the basic construction of a self-simulating tile set, each macro-tile of level i (ie. of
size Ni) is entirely determined by its four macro-colors, which fit in O(log Ni) bits. In the
construction used in [3] to transform Z effective subshifts into Z2 SFTs, these macro-colors
contain additional data: the level of the macro-tile (log Ni bits), one segment of li and three
segments of li+1 letters from configurations of X1, and the position in the grand-father macro-
tile (log Ni+2 bits). By taking (as in [3]) Ni = 2C2i with C being a constant, Li =

∏i−1
j=0 Ni

and li = log log Li, we obtain that these macro-colors still fit in O(log Ni) bits.
For any n big enough, there exists i verifying Li ≤ pn ≤ Li+1 and qn ≤ Li+2 (indeed,

limi→+∞ Li+2/Li+1 = +∞). In this context, a pattern of size pn × qn can partially cover
at most four macro-tiles of level i + 2. These macro-tiles are entirely determined by their
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four macro-colors; each macro-tile of level i + 1 entirely determines the macro-tiles of inferior
levels that compose it; and by the previous paragraph each macro-color fits on O(log Ni+2)
bits (and the constant in the O does not depend on i): all these considerations imply that
the number of patterns of size pn × qn on the second layer is at most polynomial in Ni+2.

Considering now the contribution of the two layers independently, one obtains that
log NX2(pn, qn) ≤ log NY2 + log poly(Ni+2). We have just proved:

log NX2(pn, qn) = pn h(X1) + o(n) and log NY2(pn, qn) = pn h(X1) + o(n).

This immediately leads to:

h(X2) = lim
n→+∞

nh(X1) + o(n)
n2 = 0 = h(Y2)

hs(X2, p/q) = lim sup
n→+∞

pnh(X1) + o(n)
(p + q)n = p

p + q
h(X1) = hs(Y2, p/q). ◀

4.5 Building the sparse square layout
In this section, we use the Z subshift X1 to build the whole sparse square layout.

First, apply Lemma 8 from the previous section: there exists a Z2 SFT X2 with two
superimposed layers, such that its first layer (Base Layer 1) contains all the vertical
replications of configurations of X1, and the second layer (Computation Layer 2) contains
some embedded computations. We then create a Z2 SFT X3 by superimposing a third layer
to X2, which we describe below.

This third layer (Square Layer 3) is itself a superimposition of several sub-layers:
1. First, one must choose a line to be the base line on Base Layer 1. It is composed of the

same line repeated vertically: we choose one. To do so, we add a [Layer 3a] with three
colors (black, white and gray) whose only type of configurations are the following three:

, ,

The base line will appear in gray (if it exists).
▶ Important. The other markings of the Square Layer 3 (Layers 3b to 3d) will only be
applied on white and gray areas. Additionally, they are not applied on areas marked by #
on Base Layer 1.

2. Add [Layer 3b] with purple construction lines (see Figure 3a). Any E marked in gray (on
[Layer 3a]) starts a line at its top, and this line goes up.
Purple lines have the ability to “start” an orange line (on [Layer 3c]). Each time they
start an orange line, they move to their left (it ensures that there are at most k orange
lines in the kth sparse square).
Purple lines can only end on an S.
Because compactness might lead to surprising results (like infinitely many purple lines
behaving erratically), we add colored areas below and above these lines. In these areas of
color, we forbid any other purple line to exist: this ensures that there are exactly one
purple line per square.

3. Add [Layer 3c] with orange construction lines (see Figure 3a). These lines will highlight
the rows of the sparse squares. They can only be started by the purple line at their left,
and end just before a # on the right. Additionally, an E colored in gray (on [Layer 3a])
must start an orange line.
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(a) Base Layer 1 and 3a–3c. Layer 3b ensures there are at most 4 orange lines on Layer 3c.
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(b) Base Layer 1 and 3a–3d. Layer 3d enforces the positions of the orange lines.

Figure 3 Behavior of the construction for a pattern which contains the 4th sparse square. These
figures highlight the effect of each layer. (Positions of the sparse square are highlighted for the
convenience of the reader).
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Figure 4 Two examples of degenerate configurations.
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(In the figure, we highlight in bold the tk(i) marked by an orange line. These lines mark
the future rows of the sparse squares, and these letters On, Off marked by an orange
line will be at the exact non-blank positions of the sparse squares layout.)

4. Add [Layer 3d] with blue construction lines (see Figure 3b). These lines are diagonals.
Each tk(i) colored in orange (on [Layer 3c]) and not in gray (on [Layer 3a]) should start
a line that goes diagonally down and left. Additionally, these lines should end either on a
letter S (colored in purple on [Layer 3b]), or on the next column marked with tk(i − 1)
at a position which is colored in orange (on [Layer 3c]).
We also impose with colored areas that at each horizontal position, there can be only
one blue line between two orange lines. These blue lines ensure the structure of the
sparse squares, and constrain the behavior of degenerate configurations (see Figure 4 for
examples of these degenerate configurations).

4.6 Contributing to the entropy
The subshift X3 reflects the sparse square layout in the following way: by considering letters
tk(i) marked in orange on [Layer 3c], we obtain a set of positions that respects the layout.

The final step of the construction consists in adding a fourth layer (Entropy Layer 4)
to X3 with free letters (ie. letters in the alphabet 1, . . . , 2e) and free bits (ie. bits in {0, 1})
to obtain an SFT X with the right surface entropy. More precisely:

Free letters. At each site in the sparse square layout (ie. for each position marked by
On or Off on Base Layer 1, and which is marked in orange on [Layer 3c], we add a free
letter which varies in {1, . . . , 2e}.
Free bits. At each activated position in the sparse square layout (ie. for each position
marked by On on Base Layer 1, and which is marked in orange on [Layer 3c]), we add a
free bit which varies in {0, 1}.

Let X be the SFT composed of these four superimposed layers. We prove in Subsection 4.7:

▶ Lemma 9. For any α = p/q ∈ Q+ (for p and q relatively prime), and for any n ∈ N, if k

is the integer such that k(k − 1) + 1 ≤ min(p, q)n < (k + 1)k + 1, then the complexity function
of the SFT X (defined in Section 4) behaves as follows:

min(p, q)n (e + x′
k) + o(n) ≤ log NX(pn, qn) ≤ min(p, q)n

(
e + sup

log n≤i
x′

i

)
+ o(n).

In particular, this first implies that h(X) = 0, then that:

hs(X, α) = lim sup
n→+∞

log NX(pn, qn)
(p + q)n = min(p, q)

p + q

(
e + lim sup

n→+∞
x′

n

)
= min(p, q)

p + q
x

which concludes the proof of Theorem 5. ◀

4.7 Computation of the complexity function
This section solely proves Lemma 9. The reader not interested in the precise computation of
the complexity function NX should feel free to skip these pages.

Let α = p/q (for p and q relatively prime) be a positive rational number. In this section,
we compute the complexity function NX(pn, qn) of the SFT X introduced in the previous
section. We recall that x = e + x′ is a Π3 real number with x′ ∈ Π3 ∩ [0, 1), given by
x′ = lim supi inf l f(i, l), and that we defined x′

i = inf l f(i, l).
We now prove Lemma 9. In this statement, the value k(k − 1) + 1 corresponds to the

length of the edges of the kth sparse square.
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Proof. As we already proved the lower bound (see Lemma 6), we focus on the upper bound.
Here is the structure of the proof:
1. We first consider the contribution of “degenerate configurations” (ie. configurations

that do not respect the structure of the sparse square layout: these are obtained when
defining X1 as a closure) to log NX(pn, qn), and prove that they contribute only as o(n)
(subsection 4.7.1).

2. Then, we consider how many sparse squares can appear simultaneously in a pattern of
size pn × qn (subsection 4.7.2), and:
a. We provide an upper bound for the sparse square that appear simultaneously in a

pattern of size pn × qn (subsection 4.7.3). As these squares have very low indices, they
only contribute as o(n).

b. We provide an upper bound for the sparse squares that appear alone (subsection 4.7.4;
they contribute with the significant term of the upper bound). To obtain it, we bound
the number of positions that can appear simultaneously (in a pattern of size pn × qn)
of such a sparse square.

Before we begin, in the whole proof we denote by k the integer such that k(k − 1) + 1 ≤
min(p, q)n < (k + 1)k + 1. (As mentioned above, k(k − 1) + 1 is the length of the edges of the
kth sparse square). In the rest of the proof, we look for an upper bound of log NX(pn, qn).

4.7.1 Contribution of degenerate configurations
We call degenerate the configurations that do not respect the structure of the sparse square
layout. There are two possible sources for these configurations: some were obtained when
X1 was defined as a closure (first kind); and some are obtained if Base Layer 1 respects the
structure of a line in the sparse square layout, but [Layer 3a] does not choose a base line for
the squares to sit on (second kind).

▷ Claim 10. The contribution of these configurations to log NX(pn, qn) is o(n).

Proof. First, we consider the case of a degenerate configurations of the first kind: Base
Layer 1 is not a base line. The number of such patterns only depends on the position of
the gray line on [Layer 3a] (if it exists at all), of the position of the letter On or Off in the
pattern, etc. . . There exists at most one varying bit in this pattern (there can be at most one
letter On or Off colored in orange in such a degenerate configuration, because of the colored
areas of the blue line on [Layer 3d]), which only multiplies the number of patterns by two.

All these patterns depend on finitely many parameters that range from 0 to max(p, q)n.
These configurations contribute polynomially in n to NX(pn, qn), so they contribute O(log n)
to log NX(pn, qn).

Consider then the case of degenerate configurations of the second kind: [Layer 3a] does
not have a gray line (ie. it does not choose a line for the squares to sit on). If [Layer 3a] is a
full black configuration, there are no markings at all on Square Layer 3 or Entropy Layer
4, and the number of patterns depends only on Base Layer 1. If [Layer 3a] is a full white
configuration, then purple lines on [Layer 3b] can only go up, and never go left: if they did,
there would be an orange line on [Layer 3c], which is impossible because of the blue areas of
color on [Layer 3d]. This implies that the number of patterns again only depends on Base
Layer 1 (and by Lemma 8, it contributes o(n) to log NX(pn, qn)).

All in all, degenerate configurations contribute o(n) to log NX(pn, qn). ◁

In the rest of the proof, we assume that we consider non-degenerate configurations, ie.
configurations that respect the sparse square layout.
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We also assume that the gray line of [Layer 3a] is fixed at the bottom of the pattern of
size pn × qn that we consider: this maximizes the number of free bits/free letters in the
pattern. Furthermore, we will happily forget to count the different horizontal positions of
the squares in the patterns.

Indeed, all these other patterns can be taken into account by translating the figure/vary-
ing some parameters which range between 0 and max(p, q)n: these considerations only
multiply the complexity function by a polynomial in n, or in other words only add a o(n) to
log NX(pn, qn).

We also define the following set of words for any l ∈ N and y ∈ [0, 1) (usually T (y) is
defined on the alphabet {0, 1} rather than {On, Off}; otherwise, there is no difference):

Tl(y) = {tl ∈ {On, Off}l : tl is a subword of T (y)}.

As we are looking at non-degenerate configurations, [Layers 3b–3d] (construction layers)
are fixed by the line chosen by [Layer 3a]. This means that we can now focus the different
Toeplitz words written on Base Layer 1, and on the contribution from the free bits and free
letters that appear on Entropy Layer 4. To count these patterns, we mainly have to compute
how many free bits/letters can fit in a pattern at the same time.

4.7.2 Which sparse squares can only appear alone in a pattern?
To find an upper bound of the complexity function, we ask the following question: how many
sparse squares can fit in a pattern of size pn × qn?

▷ Claim 11. For n ≥ p, if at least two different sparse squares appear (maybe partially) in a
pattern of size pn × qn, then their indices are below 2 log n.

Proof. Assume that a range of squares from i to j, with i < j, appear (maybe partially) in a
pattern of size pn × qn. Then the horizontal space before the square of index j is entirely
contained in the pattern, ie 2j < pn. Then for any n ≥ p, one has j ≤ 2 log n. ◁

Reciprocally,

▷ Claim 12. If a sparse square can only appear alone in a pattern of size pn × qn, then its
index is greater than log n.

Proof. Assume that a square of index j can “only” appear alone in a pattern of size pn × qn.
This means that the space before the sparse square, and the space after the sparse square,
are bigger than the horizontal size of the pattern pn. In other words, 2j ≥ pn, which becomes
j ≥ log n + log p ≥ log n. ◁

4.7.3 Contribution of simultaneously appearing sparse squares
▷ Claim 13. The sparse squares that can appear grouped with others contribute as M1 = o(n)
to log NX(pn, qn).

Proof. Assume that a range (between i and j, i < j) of sparse squares appear (partially) in
a pattern of size pn × qn. For n big enough, one has j ≤ 2 log n by Claim 11. Additionally,
because we are interested in an upper bound of log NX(pn, qn), we can freely assume that
all the free bits of the sparse squares of index i and j appear in this pattern.
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If Ci,j denotes the contribution to NX(pn, qn) of this slice of squares between i and j,
then an upper bound on Ci,j is (we count all the Toeplitz subwords written in the squares
on Base Layer 1, and then their free bits and free letters on Entropy Layer 4 ):

Ci,j ≤
∑

ti∈Ti(x′
i
),...,tj∈Tj(x′

j
)

exp2

(
j∑

r=i

r|tr|On + e

j∑
t=i

r2

)

≤
∑

ti∈Ti(x′
i
),...,tj∈Tj(x′

j
)

exp2

(
j∑

r=1
(r|tr|On + er2)

)

≤
∑

ti∈Ti(x′
i
),...,tj∈Tj(x′

j
)

exp2(j3(1 + e))

≤
∑

t1,...,tj∈{On,Off}1+···+j

exp2((2 log n)3(1 + e))

≤ exp2(j2 + o(j2)) exp2((2 log n)3(1 + e))

≤ exp2(O((log n)3)).

As there are less than (2 log n)2 different tuples of i, j ≤ 2 log n, the contribution M1 of these
sparse squares to log NX(pn, qn) verifies:

M1 ≤ log

 ∑
i<j≤2 log n

Ci,j

 ≤ log
[
(4(log n)2) exp2(O((log n)3))

]
≤ log exp2(O((log n)3)))
≤ o(n). ◁

4.7.4 Contribution of the other sparse squares

The other sparse squares can only appear alone (maybe partially) in a pattern of size pn × qn.
We distinguish two cases for them:

The sparse squares of indices i ≤ k. As they can fit entirely in a pattern of size pn × qn

(recall that k(k + 1) − 1 ≤ min(p, q)n ≤ (k + 1)k + 1), we assume they do (this maximizes
the number of free bits that appear simultaneously).
The sparse squares of indices i > k. They can only fit partially in a pattern of size
pn × qn, and we need to “count” the number of their free bits/letters that can appear
simultaneously.

Contribution of the sparse squares of index i ≤ k.

▷ Claim 14. The sparse squares that can only appear alone in a pattern of size pn × qn,
and of indices i ≤ k, contribute to log NX(pn, qn) with a term:

M2 ≤ min(p, q)n
(

e + max
log n≤i≤k

x′
i

)
+ o(n).
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Proof. As #Ti(x′
i) ≤ 2i, each of these squares contribute with a term (again, we count the

words of Ti(x′
i) on Base Layer 1, and free letters and free bits on Entropy Layer 4 ):

Ci ≤ (2e)i2
×

∑
ti∈Ti(x′

i
)

exp2(i|ti|On)

≤ exp2(ei2) × exp2(i) exp2(i2x′
i + O(i))

≤ exp2(i2(e + x′
i) + O(i)).

By Claim 12, such a square must be of index ≥ log n. This implies that all these squares
contribute to log NX(pn, qn) with a term:

M2 ≤ log

 k∑
i=log n

Ci


≤ log

 k∑
i=log n

exp2(i2(e + x′
i) + O(i))


≤ log

(
k exp2

(
k2
(

e + max
log n≤i≤k

x′
i

)
+ O(k)

))
≤ log exp2

(
k2
(

e + max
log n≤i≤k

x′
i

)
+ O(k)

)
≤ k2

(
e + max

log n≤i≤k
x′

i

)
+ O(k)

≤ min(p, q)n
(

e + max
log n≤i≤k

x′
i

)
+ o(n). ◁

Contribution of the sparse squares of index i ≥ k. Finally, we consider the sparse squares
of indices i ≥ k: these square only appear partially in a pattern of size pn × qn. They
contribute significantly to log NX(pn, qn), as explained in the following claim:

▷ Claim 15. The sparse squares of indices i ≥ k contribute to log NX(pn, qn) with a term:

M3 ≤ min(p, q)n
(

e + max
k≤i≤max(p,q)(k+1)2

x′
i

)
+ o(n).

Proof. This proof is organized as follows:
1. We provide an upper bound on the contribution Ci of the ith sparse square to NX(pn, qn),

for i ≥ k, according to the number of free bits/free letters of these squares that can
appear simultaneously in a pattern of size pn × qn.

2. Then, we provide an upper bound on the contribution M3 of all these sparse squares of
indices i ≥ k to log NX(pn, qn).

3. By studying the variations of two functions h : N 7→ N and v : N 7→ N we prove that for
any i ≥ k the number of simultaneously appearing free bits/free letters of the ith sparse
square is h(i)v(i) ≤ min(p, q)n + o(n). This will conclude the proof.

Contribution Ci of the sparse square of index i. First, we need to answer the following
question: how many bits can appear simultaneously in a pattern of size pn × qn? Recall that
there are exactly i bits in the square of index i per row (and per column). If h(i) denotes
the number of horizontal bits that can appear simultaneously in a slice of width pn (and
height 1), and v(i) the number of vertical bits in a slice of height qn (and width 1), then:
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h(i) = min
(

i,

⌊
pn − 1

i

⌋
+ 1
)

v(i) = min
(

i,

⌊
qn − 1

i

⌋
+ 1
)

.

h and v are eventually decreasing, and limi→+∞ h(i) = limi→+∞ v(i) = 1. There exists
an integer Jk ≤ max(p, q)(k + 1)2 such that for any i ≥ Jk, one has v(i) = h(i) = 1.

We now count free letters and free bits to compute an upper bound on the contribution Ci

of a square of index i ≥ k. As opposed to the previous cases, in which the squares appeared
entirely in the pattern of size pn × qn, here we can only see at once h(i) different column:
but thanks to the use of Toeplitz sequences, which have a very uniform distribution, the
density of a Toeplitz subword of size h(i) is still less than or equal to h(i)x′

i + O(1):

Ci ≤
∑

ti∈T (x′
i
)h(i)

exp2 [h(i)v(i)e + v(i)|ti|On)]

≤ exp2 [h(i)v(i)(e + x′
i) + O(v(i))] .

Additionally, as v(i) ≤ qn−1
i + 1, i ≥ k and k = Θ(

√
n), one has O(v(i)) = O(

√
n).

Contribution M3 of the sparse square of index i ≥ k. This implies that the contribution
M3 of all these squares of indices i ≥ k is:

M3 ≤ log
(

Jk∑
i=k

exp2[h(i)v(i)(e + x′
i) + o(h(i)v(i))]

)

≤ log
(

Jk exp2

([
max

k≤i≤Jk

h(i)v(i) + o(h(i)v(i))
]

×
[
e + max

k≤i≤Jk

x′
i

]))
≤
[

max
k≤i≤Jk

h(i)v(i) + o(h(i)v(i))
]

×
[
e + max

k≤i≤Jk

x′
i

]
+ o(n).

Study of the product h(i)v(i) for k ≥ i ≥ Jk. We now have to study the product h(i)v(i)
for k ≤ i ≤ Jk. Below, we will prove that ∀k ≤ i ≤ Jk, h(i)v(i) ≤ min(p, q)n + O(

√
n).

Without any loss of generality, assume q ≥ p. We prove that:

h(i)v(i) ≤ pn + O(
√

n), i.e. M3 ≤ pn

(
e + max

k≤i≤max(p,q)(k+1)2
x′

i

)
+ o(n).

As p = min(p, q), one has h(i) =
⌊

pn−1
i

⌋
+ 1 and v(i) = min

(
i,
⌊

qn−1
i

⌋
+ 1
)
. For the first

values of i, h is an increasing function, and it then decreases for i large enough: below, we
study these variations and conclude about the product h(i)v(i).

For any i ≤ ⌊
√

qn − 1⌋, one has
⌊

qn−1
i

⌋
+ 1 ≥ i (which implies v(i) = i). Indeed,⌊

qn − 1
i

⌋
+ 1 ≥

⌊√
qn − 1

⌋
+ 1

≥ i.

For any k ≤ i ≤ ⌊
√

qn − 1⌋, one has h(i)v(i) ≤ pn + O(
√

n). Indeed,

h(i)v(i) = h(i)i ≤
(⌊

pn − 1
i

⌋
+ 1
)

i

≤ i

⌊
pn − 1

i

⌋
+ i

≤ pn − 1 + i

≤ pn + O(
√

n).
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For any i ≥ ⌊
√

qn − 1⌋ + 1, one has i ≥
⌊

qn−1
i

⌋
+ 1 (which implies v(i) =

⌊
qn−1

i

⌋
+ 1).

Indeed,⌊
qn − 1

i

⌋
+ 1 ≤

⌊
qn − 1√
qn − 1

⌋
+ 1

≤
⌊√

qn − 1
⌋

+ 1

≤ i.

For any ⌊
√

qn − 1⌋ + 1 ≤ i ≤ Jk, one has h(i)v(i) ≤ pn + O(
√

n). Indeed,

h(i)v(i) = h(i)
(⌊

qn − 1
i

⌋
+ 1
)

=
⌊

pn − 1
i

+ 1
⌋⌊

qn − 1
i

+ 1
⌋

≤
⌊

pn − 1√
qn − 1

+ 1
⌋⌊

qn − 1√
qn − 1

+ 1
⌋

≤
⌊

pn − 1√
qn − 1

+ 1
⌋(√

qn − 1 + 1
)

≤ pn + O(
√

n).

With all of these computations, we conclude that

max
k≤i≤Jk

h(i)v(i) ≤ pn + o(n).

In the case p ≥ q, the computations are completely symmetric and one obtains:

max
k≤i≤Jk

h(i)v(i) ≤ qn + O(
√

n). ◁

4.7.5 End of the proof
We can now conclude the proof of Lemma 9 about the bounds of log NX(pn, qn):

min(p, q)n (e + x′
k) + o(n) ≤ log NX(pn, qn) ≤ min(p, q)n

(
e + sup

log n≤i
x′

i

)
+ o(n).

The lower bound comes from Lemma 6. Indeed, if k(k − 1) + 1 ≤ min(p, q)n ≤ k(k + 1) + 1,
then k2 = min(p, q)n + o(n), which leads to the desired lower bound. In order to compute
the upper bound, we can count the contributions of the different layers independently.

Base Layer 1 and Computation Layer 2 (the 1D subshift composed of the base line
repeated vertically, and the tilings obtained with self-simulating tile sets) do not contribute
to the surface entropy by Lemma 8. Indeed, the 1D entropy of the base line is h(X1) = 0. In
other words, these two layers add o(n) to log NX(pn, qn).

Degenerate configurations, Square Layer 3, along with considerations on the different
shifts of the configurations, also contribute as o(n) to log NX(pn, qn) (they indeed contribute
polynomially in n to NX(pn, qn), see the remark at the end of “Contribution of degenerate
configurations”). Finally, in the previous sections, we provided 3 quantities M1, M2, M3
whose sum is greater than the contribution of Entropy Layer 4 (and which take into account
the different written words on non-degenerate configurations of Base Layer 1 ).

With these considerations, we conclude that:

log NX(pn, qn) ≤ o(n) + M1 + M2 + M3

≤ o(n) + o(n) + min(p, q)n
(

e + max
log n≤i≤max(p,q)(k+1)2

x′
i

)
+ o(n)

≤ min(p, q)n
(

e + max
log n≤i≤max(p,q)(k+1)2

x′
i

)
+ o(n). ◀
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5 Conclusive remarks and open questions

Many questions remain open about the notion of surface entropy.

Computational behavior of the definition in [14]. The definition of surface entropy used
in this paper differs from the original notion of surface entropy in Pace’s thesis [14], which
was: for any eccentricity α ∈ R+,

hs(X, α) = sup
(xn,yn)∈(N2)N:

xn,yn→+∞, xn
yn

→α

lim sup
n→+∞

log NX(xn, yn) − xnynh(X)
xn + yn

.

This definition was chosen in [14] because it provides a unified approach for rational (ie.
α ∈ Q+) and irrational eccentricities. However, we are currently unsure of how the supremum
over all sequences impacts the computational characterization of surface entropies. Our
construction still realizes any Π3 surface entropy with the definition of [14], but surface
entropies may not be Π3 real numbers anymore. For all we know, they may not be at any
level of the arithmetical hierarchy.

Equivalence between the two definitions. Furthermore, as we modified [14]’s definition of
surface entropy, a natural question is whether our new definition coincides with it in the case
of rational eccentricities. In other words, can the supremum over all sequences be removed
when the eccentricity is a rational number. We are not sure of the answer at the time of
writing.

Arbitrary topological entropy with an arbitrary surface entropy. Finally, in the main
section of this paper, we created SFTs with zero topological entropy and any Π3 surface
entropy. It was proved in [8] that the class of entropies of Z2 SFTs is exactly the class of
Π1 real numbers. This led us to wonder whether we could create a family of Z2 SFTs with
arbitrary Π1 entropy and arbitrary Π3 surface entropy.
As we do not know the surface entropies of the main constructions of Π1 entropies, we could
not answer this problem with the straightforward solution (ie. a Cartesian product of our
construction with one for Π1 entropies).
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Abstract
We consider the following question: given an automaton or a game with a Muller condition, how
can we efficiently construct an equivalent one with a parity condition? There are several examples
of such transformations in the literature, including in the determinisation of Büchi automata.

We define a new transformation called the alternating cycle decomposition, inspired and extending
Zielonka’s construction. Our transformation operates on transition systems, encompassing both
automata and games, and preserves semantic properties through the existence of a locally bijective
morphism. We show a strong optimality result: the obtained parity transition system is minimal
both in number of states and number of priorities with respect to locally bijective morphisms.

We give two applications: the first is related to the determinisation of Büchi automata, and the
second is to give crisp characterisations on the possibility of relabelling automata with different
acceptance conditions.
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1 Introduction

Games and automata form the theoretical basis for the verification and synthesis of reactive
systems; we refer to the recent Handbook [5] for a broad exposition of this research area,
in particular Chapters 2 and 27. A milestone objective is the synthesis of reactive systems
specified in Linear Temporal Logic (LTL). The original approach of Pnueli and Rosner [24]
using automata and games devised more than four decades ago is today at the heart of
the state of the art synthesis tools [8, 16, 20, 21]. The bottleneck is the determinisation of
Büchi automata: given a non-deterministic Büchi automaton, construct an equivalent parity
automaton. This problem has a long history; it was originally solved by McNaughton [18],
and the first asymptotically optimal construction is due to Safra [25], see also [15] for a recent
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exposition. Most of the recent theoretical and practical solutions of this problem are based on
the construction of Piterman [23]. Schewe’s [26] enlightening perspective on this construction
is to decompose it into two steps: first construct a deterministic Muller automaton, and
then transform it into an equivalent deterministic parity automaton. Piterman and Schewe’s
determinisation procedure is one of many examples of constructions using as an intermediate
step (subclasses of) Muller conditions before transforming them into parity conditions, either
working with automata models or games models.

The objective of this work is to focus on this particular step and study transformations
from Muller to parity. We work with general transition systems to seamlessly encompass
both automata and games models.

There are several existing constructions transforming subclasses of Muller conditions to
parity. The first is the Latest Appearance Record (LAR) [9], which applies to all Muller
conditions. It was proved to be optimal in the worst case [17]: there exists a family of Muller
automata for which the obtained parity automata are minimal. Many refinements of the
LAR have been constructed for subclasses of Muller conditions, e.g. [17, 13].

The starting point of our work is the notion of a Zielonka tree of a Muller condition,
which was introduced in [30] and shown to capture the exact memory requirements of Muller
games [7]. In the long version of [7], it implicitly appears that the Zielonka tree of a Muller
condition can be used to construct a parity automaton recognising this Muller condition.
Our first observation is to show a strong optimality result: for all Muller conditions, the
parity automaton obtained from the Zielonka tree of a Muller condition is minimal both in
the number of states and in the number of priorities. This result has also been obtained
in the independent unpublished work [19]. This optimality result is much stronger than
the worst case optimality result of the LAR transformation; in essence, it shows that the
Zielonka tree of a Muller condition precisely captures the properties of the Muller condition,
whereas for instance the LAR only depends on the number of colours.

Our first insight is to note that all existing constructions, including the one based on
Zielonka trees, only consider the Muller condition but do not take into account the structure
of the underlying transition system. In other words, all transformations work at the level
of conditions: they transform a Muller condition into a parity condition, and ignore the
interplay between the condition and the transition structure.

Our main contribution is to construct a new transformation called the alternating cycle
decomposition (ACD) which captures this interplay: the ACD transforms a Muller transition
system T into a parity transition system PACD(T ), extending Zielonka trees by considering
the alternation of accepting and rejecting cycles in T .

Our second insight is to introduce the notion of locally bijective morphisms to capture
the notion of a “transformation”, preserving many natural semantic properties (such as
language equivalence, being deterministic, unambiguous, or good for game in the context
of automata, and the winner for games). We use this notion to state and prove a strong
optimality result for the ACD transformation: PACD(T ) is minimal both in the number of
states and in the number of priorities amongst parity transition systems admitting a locally
bijective morphism into T .

We present two applications. The first is an improvement in the determinisation of
Büchi automata: the second step of the Piterman and Schewe construction is a locally
bijective transformation of some deterministic Muller automaton into a deterministic parity
automaton; we show that our ACD transformation yields in all cases smaller (and in some
sense minimal) automata, and in many cases strictly smaller. The second application is
a set of crisp characterisations for relabelling transition systems with different classes of
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acceptance conditions: for instance, given a transition system with a Rabin condition, does
there exist a parity condition on the same structure yielding an equivalent transition system?
This unifies and extends results from [1, 30].

The outline of the paper follows the narration of this introduction. We show in Section 3
how the Zielonka tree yields a parity automaton recognising the Muller condition, inducing a
transformation at the level of conditions. We then lift this transformation from conditions to
transition systems: we introduce the alternating cycle decomposition and its transformation
in Section 4. Our two applications are discussed in Section 5.

2 Notations and definitions

The symbol ω denotes the ordered set of non-negative integers. For i, j ∈ ω, i ≤ j, the
notation [i, j] stands for {i, i + 1, . . . , j − 1, j}. For a set Σ, a word over Σ is a sequence
of elements from Σ. The length of a word u is |u|. The set of words of finite length (resp.
of length ω) over Σ will be written Σ∗ (resp. Σω). We let Σ∞ = Σ∗ ∪ Σω. For a word
u ∈ Σ∞ we write ui to represent the i-th letter of u. If u = v · w for v ∈ Σ∗, u, w ∈ Σ∞,
we say that v is a prefix of u and we write v ⊑ u (it induces a partial order on Σ∗). For
a finite word u ∈ Σ∗ we write First(u) = u1 and Last(u) = u|u|. For a word u ∈ Σ∞,
we let Inf (u) = {a ∈ Σ : ui = a for infinitely many i ∈ ω} and Occ(u) = {a ∈ Σ :
∃i ∈ ω such that ui = a}. Given a map α : A → B, we implicitly extend α to words
component-wise, i.e., α : A∞ → B∞ will be defined as α(a1a2 . . . ) = α(a1)α(a2) . . . . A
directed graph is a tuple (V, E, Source, Target) where V is a set of vertices, E a set of edges
and Source, Target : E → V are maps indicating the source and target for each edge. A path is
a word ϱ ∈ E∗ such that Source(ϱi+1) = Target(ϱi) for i < |ϱ|. A graph is strongly connected
if there is a path connecting each pair of vertices. A subgraph of (V, E, Source, Target) is
a graph (V ′, E′, Source′, Target ′) such that V ′ ⊆ V , E′ ⊆ E and Source′ and Target ′ are
the restriction to E′ of Source and Target, respectively. A strongly connected component
is a maximal strongly connected subgraph. For a subset of vertices A ⊆ V we write:
In(A) = {e ∈ E : Target(e) ∈ A} and Out(A) = {e ∈ E : Source(e) ∈ A}.

Transition systems. A transition system graph TG = (V, E, Source, Target, I0) is a directed
graph with a non-empty set of initial vertices I0 ⊆ V . We will also refer to vertices and
edges as states and transitions, respectively. We will suppose that every vertex has at least
one outgoing edge. A transition system T is obtained from a transition system graph TG by
adding:

A function γ : E → Γ. The set Γ will be called a set of colours and the function γ a
colouring function.
An acceptance condition Acc ⊆ Γω.

For technical convenience we use transition-labelled systems: acceptance conditions are
defined over edges instead of over states. These can be easily transformed into state-labelled
systems. We will usually take Γ = E and γ the identity function. In that case we will omit γ

in the description of T . We let |T | denote |V |, for V the set of vertices.
A (finite or infinite) run from q ∈ V on a transition system graph T is a path ϱ =

e1e2 · · · ∈ E∞ starting at q. For A ⊆ V we let RunT ,A denote the set of runs on T starting
from some q ∈ A, and RunT = RunT ,I0 the set of runs starting from some initial vertex. A
run ϱ ∈ RunT is accepting if γ(ϱ) ∈ Acc, and rejecting otherwise. In this work we suppose
that only infinite runs can be accepted.
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We say that a vertex v ∈ V is accessible if there exists a finite run ϱ ∈ RunT ending in v.
A set of vertices B ⊆ V is accessible if every vertex v ∈ B is accessible. The accessible part
of a transition system is the set of accessible vertices.

We might want to add additional information to a transition system (as illustrated
in the following paragraphs). For this purpose we introduce labelled transition system: a
vertex-labelled (resp. edge-labelled) transition system is a transition system T with a labelling
function lV : V → LV (resp. lE : E → LE) from vertices (resp. edges) into a set of labels.

Automata as transition systems. An automaton is an edge-labelled transition system
A = (V, E, Source, Target, I0, Acc, lE) where lE : E → Σ, for Σ a finite set called the input
alphabet (we say that A is an automaton over Σ). Given a word w ∈ Σω, a run over w is an
infinite run ϱ ∈ RunT such that lE(ϱi) = wi for every i > 0. The word w ∈ Σω is accepted
by the automaton A if there exists an accepting run over w in A. The language accepted by
an automaton A is the set L(A) := {u ∈ Σω : u is accepted by A}.

We say that an automaton A is deterministic if |I0| = 1 and for every q ∈ V and every
a ∈ Σ there is exactly one edge e ∈ Out(v) such that lE(e) = a. In this case, we write δ(q, a)
for the only state reachable from q taking the transition labelled with a. We extend the
function δ(q, −) to finite words in the natural way. If A is deterministic then there is a single
run over w for each w ∈ Σω, written A(w).

Games as transition systems. A game Gv0 = (V, E, Source, Target, v0, Acc, lV ) is a vertex-
labelled transition system with a single initial vertex v0 and vertices labelled by a function
lV : V → {Eve, Adam} that induces a partition of V into vertices controlled by two different
players. A play is an infinite run produced by moving a token along edges: the player
controlling the current vertex chooses what transition to take. It is winning for Eve if it is
accepting, and winning for Adam otherwise. We say that player P ∈ {Eve, Adam} wins the
game Gv0 if P can force to always produce a winning play. The winning region for player
P is the set of vertices v ∈ V such that P wins the game Gv obtained by setting the initial
vertex to v.

Classes of acceptance conditions. We present the main classes of ω-regular conditions.
Let Γ be a finite set of colours, it will usually be the set of edges of a transition system.
Büchi A Büchi condition AccB is represented by a subset B ⊆ Γ. An infinite word u ∈ Γω

belongs to AccB if some colour from B appears infinitely often in u.
Rabin A Rabin condition AccR is represented by a family of Rabin pairs, R = {(E1, F1), . . . ,

(Er, Fr)}, where Ei, Fi ⊆ Γ. A word u ∈ Γω belongs to AccR if Inf (u) ∩ Ei ≠ ∅ and
Inf (u) ∩ Fi = ∅ for some index i ∈ {1, . . . , r}.

Streett A word u ∈ Γω belongs to the Streett condition AccS associated to the family
S = {(E1, F1), . . . , (Er, Fr)}, Ei, Fi ⊆ Γ if Inf (u) ∩ Ei ≠ ∅ → Inf (u) ∩ Fi ≠ ∅ for every
i ∈ {1, . . . , r}.

Parity To define a parity condition we suppose that Γ is a finite subset of N. A word u ∈ Γω

belongs to the condition AccP if min Inf (u) is even. The elements of Γ are called priorities
in this case. We associate to a parity condition the interval [µ, η], where µ = min Γ and
η = max Γ.

Muller A Muller condition AccF is given by a family F ⊆ P(Γ). A word u ∈ Γω is accepted
if the colours appearing infinitely often in u form a set of the family F .
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Equivalent conditions. Two different acceptance conditions over a set Γ are equivalent if
they define the same set Acc ⊆ Γω. Given a transition system graph TG, two representations
R1, R2 of acceptance conditions are equivalent over TG if they define the same accepting
subset of runs of RunT . We write (TG, R1) ≃ (TG, R2) in that case.

If A is the transition system graph of an automaton and R1, R2 are two representations
of acceptance conditions such that (A, R1) ≃ (A, R2), then they recognise the same language:
L(A, R1) = L(A, R2). However, the converse only holds for deterministic automata.

▶ Proposition 2.1. Let A be the the transition system graph of a deterministic automaton
over the alphabet Σ and let R1, R2 be two representations of acceptance conditions such that
L(A, R1) = L(A, R2). Then, both conditions are equivalent over A, (A, R1) ≃ (A, R2).

▶ Remark. A parity condition given by Γ ⊆ N is equivalent to Rabin and Streett conditions
over Γ. Any of the previous conditions over a set Γ is equivalent to a Muller condition.

Trees. A tree is a set of sequences of non-negative integers T ⊆ ω∗ that is prefix-closed: if
τ · i ∈ T , for τ ∈ ω∗, i ∈ ω, then τ ∈ T . In this paper we will only consider finite trees.

The elements of T are called nodes. A subtree of T is a tree T ′ ⊆ T . The empty sequence ε

belongs to every non-empty tree and it is called the root of the tree. A node of the form τ · i,
i ∈ ω, is called a child of τ , and τ is called its parent. We let Children(τ) denote the set of
children of a node τ . Two different children σ1, σ2 of τ are called siblings, and we say that
σ1 is older than σ2 if Last(σ1) < Last(σ2). If two nodes τ, σ verify τ ⊑ σ, then τ is called an
ancestor of σ, and σ a descendant of τ (we add the adjective “strict” if in addition they are
not equal). A node is called a leaf of T if it is a maximal sequence of T . A branch of T is
the set of prefixes of a leaf. The set of branches of T is denoted Branch(T ). We order the
set of branches from left to right.

For a node τ ∈ T we define SubtreeT (τ) as the subtree consisting on the set of nodes that
appear below τ , or above it in the same branch: SubtreeT (τ) = {σ ∈ T : σ ⊑ τ or τ ⊑ σ}.

Given a node τ of a tree T , the depth of τ in T is defined as the length of τ , Depth(τ) = |τ |.
The height of a tree T , written Height(T ), is defined as the maximal depth of a leaf of T

plus 1. The height of the node τ ∈ T is Height(T ) − Depth(τ).
A labelled tree is a pair (T, ν), where T is a tree and ν : T → Λ is a labelling function

into a set of labels Λ.

3 An optimal transformation of Muller into parity conditions

In this section we show how to use the Zielonka tree of a Muller condition to construct a
deterministic parity automaton recognising the Muller condition. This can be seen as an
extension of the existing constructions transforming Muller conditions into parity conditions
such as the LAR [9] or the Index Appearance Record (IAR) [13, 17]. We prove that for all
Muller conditions, the parity automaton has a minimal number of states (Theorem 3.7) and
a minimal number of priorities (Proposition 3.6).

3.1 The Zielonka tree automaton
▶ Definition 3.1 (Zielonka tree of a Muller condition [30]). Let Γ be a finite set of colours and
F ⊆ P(Γ) a Muller condition over Γ. The Zielonka tree of F , written TF , is a tree labelled
with subsets of Γ via the labelling ν : TF → P(Γ), defined inductively as:

ν(ε) = Γ
If τ is a node already constructed labelled with S = ν(τ), we let S1, . . . , Sk be the maximal
subsets of S verifying the property Si ∈ F ⇔ S /∈ F , for i ∈ {1, . . . , k}. For each
i ∈ {1, . . . , k} we add a child to τ labelled with Si.
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We say that the condition F and the tree TF are even (resp. odd) if Γ ∈ F (resp. Γ /∈ F).
To each node τ of the Zielonka tree we associate the priority pZ(τ) = Depth(τ), and we add
1 to it if TF is odd.

This way, pZ(τ) is even if and only if ν(τ) ∈ F . We represent nodes τ ∈ TF such that
pZ(τ) is even as a circle (round nodes), and those for which pZ(τ) is odd as a square.

▶ Example 3.2. Let Γ1 = {a, b, c} and F1 = {{a}, {b}}. The Zielonka tree TF1 is shown in
Figure 1. It is odd.

Let Γ2 = {a, b, c, d} and F2 = {{a, b, c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b}, {a, d}, {b, c},

{b, d}, {a}, {b}, {d}}. The Zielonka tree TF2 is even and it is shown on Figure 2.
On the right of each tree there are the priorities assigned to the nodes of the corresponding

level. We have named the branches of the Zielonka trees with greek letters and we indicate
the names of the nodes in violet.

a,b,c

a b

1

2

α β

⟨ε⟩

⟨0⟩ ⟨1⟩

Figure 1 Zielonka tree TF1 .

a,b,c,d

a,b,c c,d

a,b b,c d

c

0

1

2

3
α

β

γ

⟨ε⟩

⟨0⟩ ⟨1⟩

⟨0,0⟩ ⟨0,1⟩ ⟨1,0⟩

⟨0,1,0⟩

Figure 2 Zielonka tree TF2 .

We show next how to use the Zielonka tree of F to build a deterministic automaton
recognizing the Muller condition F . This automaton can be implicitly found in [7].

For a branch β ∈ Branch(TF ) and a colour a ∈ Γ we define Supp(β, a) = τ as the deepest
node (maximal for ⊑) in β such that a ∈ ν(τ).

Given a node τ ∈ β, if τ is not a leaf then it has a unique child σβ such that σβ ∈ β. In
this case, we let Nextchild(β, τ ) be the next sibling of σβ on its right, or the smallest child of
τ if σβ is the biggest one.

We define Nextbranch(β, τ ) as the leftmost branch in T below Nextchild(β, τ ), if τ is not
a leaf, and we let Nextbranch(β, τ) = β if τ is a leaf of T .

▶ Definition 3.3 (Zielonka tree automaton). Given a Muller condition F over Γ with Zielonka
tree TF , we define the Zielonka tree automaton ZF as a deterministic automaton over Γ
using a parity acceptance condition given by p : E → [µ, η], where

Q = Branch(TF ), the set of states is the set of branches of TF .
The initial state q0 is irrelevant, we pick the leftmost branch of TF .
The transitions are: δ(β, a) = Nextbranch(β, Supp(β, a)), for β ∈ Branch(TF ) and a ∈ Γ.
µ = 0, η = Height(TF ) − 1 if F is even; µ = 1, η = Height(TF ) if F is odd.
p(β, a) = pZ(Supp(β, a)).

The transitions of the automaton are determined as follows: if we are in a branch β

and we read a colour a, then we move up in the branch β until we reach a node τ that
contains the colour a in its label. Then we pick the child of τ just on the right of the branch
β (in a cyclic way) and we move to the leftmost branch below it. We produce the priority
corresponding to the depth of τ .
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▶ Example 3.4. Let us consider the conditions of Example 3.2. The Zielonka tree automaton
for the Muller condition F1 is shown in Figure 3, and that for F2 in Figure 4.

α β

a : 2

b, c : 1

a, c : 1

b : 2

Figure 3 The Zielonka tree automaton ZF1 .

α β

γ

a, b : 2

c : 1

d : 0

b : 2

c : 3
a : 1

d : 0

c : 1 d : 2

a, b : 0

Figure 4 The Zielonka tree automaton ZF2 .

▶ Proposition 3.5 (Correctness). Let F ⊆ P(Γ) be a Muller condition over Γ. Then, a word
u ∈ Γω verifies Inf (u) ∈ F if and only if u is accepted by ZF .

3.2 Optimality of the Zielonka tree automaton
We prove in this section the strong optimality of the Zielonka tree automaton, both for the
number of priorities (Proposition 3.6) and for the size (Theorem 3.7). These results have
been obtained independently in a recent unpublished work by Meyer and Sickert [19].

▶ Proposition 3.6 (Optimal number of priorities, independently proved in [19]). The Zielonka
tree ZF uses the optimal number of priorities for recognizing a Muller condition F . More
precisely, if [µ, η] are the priorities used by ZF and P is another parity automaton recognizing
F , then P uses at least η − µ + 1 priorities, and in case of equality, its smallest priority has
the same parity as µ.

▶ Theorem 3.7 (Optimal size of the Zielonka tree automaton, independently proved in [19]).
Every deterministic parity automaton P accepting a Muller condition F over Γ verifies
|ZF | ≤ |P|.

The proof of both results appear in the full version of this paper [4], and Proposition 3.6
can also be deduced from the results of [22]. We sketch the proof of Theorem 3.7: for a set
of letters X ⊆ Σ we define an X-SCC of an automaton A over Σ as a strongly connected
component of the graph obtained restricting the transitions of A to those labelled with letters
from X. We prove that if A and B are the labels of two siblings in the Zielonka tree TF ,
and P is a parity automaton recognising the Muller condition F , then A-SCCs and B-SCCs
of P must be disjoint. Finding such disjoints X-SCC for the children of the nodes of the
Zielonka tree allows us to conclude the proof by induction.

4 An optimal transformation of Muller into parity transition systems

In the previous section we have shown how the Zielonka tree yields a transformation of a
Muller condition into a parity condition, through the construction of a deterministic parity
automaton. This can be naturally lifted to transition systems by composing the automaton
with the transition system. However this approach is oblivious to the transition system,
meaning it does not consider the possibly fruitful interplay between the transition structure
and the condition. All existing transformations follow this approach.
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In this section we present our main contribution: an optimal transformation of Muller
transition systems into parity transition systems. The key novelty is that it precisely captures
the way the transition structure interacts with the condition. In the seminal work [28],
Wagner introduces the alternating chains of loops of an automaton. This idea has been
successfully applied to determine the complexity of computing the Rabin index of different
types of ω-automata [2, 14, 22, 29]. Inspired by the notion of Zielonka trees and Wagner’s
alternating chains, we define a data structure called the alternating cycle decomposition
(ACD) analysing the alternating chains of accepting and rejecting cycles of the transition
system. We arrange this information in a collection of Zielonka trees obtaining a data
structure, the alternating cycle decomposition, that subsumes all the structural information
of the transition system necessary to determine whether a run is accepted or not.

We start in Subsection 4.1 by defining the notion of “transformations” using locally
bijective morphisms. This will allow us to state the strong optimality result of Proposition 4.8
and Theorem 4.10: for all Muller transition system T , the parity transition system PACD(T )
is minimal both in number of states and number of priorities amongst parity transition
systems admitting a locally bijective morphism into T .

4.1 Locally bijective morphisms as witnesses of transformations
▶ Definition 4.1. Let T = (V, E, Source, Target, I0, Acc), T ′ = (V ′, E′, Source′, Target ′,

I ′
0, Acc′) be two transition systems. A morphism of transition systems, written φ : T → T ′,

is a pair of maps (φV : V → V ′, φE : E → E′) such that:
φV (v0) ∈ I ′

0 for every v0 ∈ I0 (initial states are preserved).
Source′(φE(e)) = φV (Source(e)) for every e ∈ E (origins of edges are preserved).
Target ′(φE(e)) = φV (Target(e)) for every e ∈ E (targets of edges are preserved).
For every run ϱ ∈ RunT , ϱ ∈ Acc ⇔ φE(ϱ) ∈ Acc′ (acceptance condition is preserved).

For labelled transition systems, we say that φ is a morphism of labelled transition systems if
it also preserves the labels.

We will denote both maps by φ whenever no confusion arises.

▶ Definition 4.2. Given two transition systems T and T ′, a morphism of transition systems
φ : T → T ′ is called locally bijective if for every v ∈ V the restriction of φE (resp. φV ) to
Out(v) (resp. I0) is a bijection into Out(φ(v)) (resp. I ′

0).

This is a very similar concept to the usual notion of bisimulation. The main difference
is that locally bijective morphisms treat the acceptance of a run as a whole, allowing us to
compare transition systems using different classes of acceptance conditions.

▶ Observation 4.3. If φ : T → T ′ is a locally bijective morphism, then φ induces a bijection
between the runs in RunT and RunT ′ that preserves their acceptance.

Intuitively, if we transform a transition system T1 into T2 “without adding non-
determinism”, we will have a locally bijective morphism φ : T2 → T1. In particular, if
we take the product T2 = T1 × B of T1 by some deterministic automaton B, the projection
over T1 yields a locally bijective morphism.

The existence of a locally bijective morphism is a witness of the fact that two systems
share the same semantic properties: languages recognised by automata are preserved, as well
as winning regions of games. Moreover, other important semantic properties of automata,
such as being unambiguous or good for games (notions studied, respectively, in [3] and [10])
are preserved too. We refer to the full version for details [4].
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4.2 The alternating cycle decomposition
In the following we will consider Muller transition systems T = (V, E, Source, Target, I0, F)
with the Muller acceptance condition using edges as colours. We can always suppose
this, however, the size of the representation of the condition F might change. Making
this assumption corresponds to considering what are called explicit Muller conditions. In
particular, solving Muller games with explicit Muller conditions is in PTIME [11], while
solving general Muller games is PSPACE-complete [12].

▶ Example 4.4. We will use the transition system T in Figure 5 as a running example. Its
Muller condition is given by F = {{c, d, e}, {e}, {g, h, i}, {l}, {h, i, j, k}, {j, k}}.

q0 q1 q2

q3 q4 q5

a

b

c

f

d
e

g

h

i

j

k l

Figure 5 Transition system T .

Given a transition system T , a loop is a subset of edges l ⊆ E such that exists v ∈ V and a
finite run ϱ ∈ RunT,v starting and ending in v and Occ(ϱ) = l. The set of loops of T is denoted
Loop(T ). For a loop l ∈ Loop(T ) we write States(l) := {v ∈ V : ∃e ∈ l, Source(e) = v}.

There is a natural partial order in the set Loop(T ) given by set inclusion. The maximal
loops of Loop(T ) are disjoint and in one-to-one correspondence with the strongly connected
components of T .

In the system T in Figure 5, examples of loops are l1 = {c, d, e} or l2 = {j, k}, with
States(l1) = {q1, q2} and States(l2) = {q4, q5}. The loop l1 is maximal.

▶ Definition 4.5 (Alternating cycle decomposition). Let T be a Muller transition system
with acceptance condition given by F ⊆ P(E). The alternating cycle decomposition of T ,
noted ACD(T ), is a family of labelled trees (t1, ν1), . . . , (tr, νr) with nodes labelled by loops
in Loop(T ), νi : ti → Loop(T ). We define it inductively as follows:

Let {l1, . . . , lr} be the set of maximal loops of Loop(T ). For each i ∈ {1, . . . , r} we consider
a tree ti and define νi(ε) = li.
Given an already defined node τ of a tree ti we consider the maximal loops of the set
{l ⊆ νi(τ) : l ∈ Loop(T ) and l ∈ F ⇔ νi(τ) /∈ F} and for each of these loops l we add
a child to τ in ti labelled by l.

For notational convenience we add a special tree (t0, ν0) with a single node ε labelled with
the edges not appearing in any other tree of the forest, i.e., ν0(ε) = E \

⋃r
i=1 li. We define

States(ν0(ε)) := V \
⋃r

i=1 States(li).
We call the trees t1, . . . , tr the proper trees of the alternating cycle decomposition of T .

Given a node τ of ti, we note Statesi(τ) := States(νi(τ)).

The ACD of T is shown in Figure 6. It consists of two proper trees, t1 and t2, corresponding
to the strongly connected components of T and the tree t0 that corresponds to the edges not
appearing in the strongly connected components.
▶ Remark. The Zielonka tree for a Muller condition F can be seen as a special case of this
construction, for an automaton with a single state.
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a,b,f
q0

1
⟨ε⟩

Tree t0.

c,d,e
q1, q2

c,d
q1, q2

2

3

⟨ε⟩

⟨0⟩

Tree t1.

g,h,i,j,k,l
q3, q4, q5

g,h,i
q3, q4

l
q5

h,i,j,k
q3, q4, q5

g
q3

h,i
q3, q4

h,i
q3, q4

1

2

3

⟨ε⟩

⟨0⟩ ⟨1⟩
⟨2⟩

⟨0,0⟩ ⟨0,1⟩ ⟨2,0⟩

Tree t2. In bold orange, the subtree tq4 .

Figure 6 Alternating cycle decomposition of T . The priority assigned to the nodes of each level
of the trees is indicated on the right. Nodes with an even priority are drawn as circles and those
with an odd priority as rectangles (excepting the special node forming the root of t0). Each node τ

is labelled with νi(τ) and with Statesi(τ). In violet the names of the nodes.

Since each state and edge of T appears in exactly one of the trees of ACD(T ), we can
define the index of a state q ∈ V (resp. of an edge e ∈ E) in ACD(T ) as the only number
j ∈ {0, 1, . . . , r} such that q ∈ Statesj(ε) (resp. e ∈ νj(ε)).

For each state q ∈ V of index j we define the subtree associated to the state q as the
subtree tq of tj consisting in the set of nodes {τ ∈ tj : q ∈ Statesj(τ)}.

In Figure 6, state q4 has index 2, and the subtree associated to q4 is shown in bold orange.

For each proper tree ti of ACD(T ) we say that ti is even if νi(ε) ∈ F and that it is odd if
νi(ε) /∈ F . We say that ACD(T ) is odd if all the trees of maximal height of ACD(T ) are odd.

For each τ ∈ ti, i = 1, . . . , r, we define the priority of τ in ti as pi(τ) = Depth(τ), adding
1 if ti is odd. In the case where ACD(T ) is odd we add 2 to nodes on even trees in order to
use an optimal number of priorities. We assign to p0(ε) the minimal priority appearing in
other trees (0 or 1).

We proceed to show how to use the alternating cycle decomposition of a Muller transition
system to obtain a parity one.

▶ Definition 4.6 (ACD-transformation). Let T be a Muller transition system with altern-
ating cycle decomposition ACD(T ) = {(t0, ν0), (t1, ν1), . . . , (tr, νr)}. We define its ACD-
transformation PACD(T ) = (VP , EP , SourceP , TargetP , I ′

0, p : EP → N) as follows:
For each state q ∈ T we consider the subtree tq consisting of the nodes with q in its label,

and we add a state for each branch of this subtree. For each initial state in T , we choose one
of its corresponding states in PACD(T ) and we set it as initial (the leftmost branch of tq).

To define transitions in PACD(T ) we move simultaneously in T and in ACD(T ). When
we take a transition e in T that goes from q to q′, while being in a branch β, we climb the
branch β searching the lowest node τ with e and q′ in its label (the support). We produce the
priority corresponding to the level reached. If no such node exists in the branch β, we jump
to the root of the tree containing q′, producing the priority assigned to this root. After having
reached the support τ , we move to the next child of τ on the right of β in the tree tq′ , and we
pick the leftmost branch under it in tq′ . If we had jumped to the root of tq′ from a different
tree, we just pick the leftmost branch of tq′ .

For a formal definition we refer the reader to the full version of this paper [4].

In Figure 7 we show the ACD-transformation PACD(T ) of T . States are labelled with the
corresponding state qj in T , the tree of its index and a node τ ∈ ti that is a leaf in tqj

.
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We have tagged the edges of PACD(T ) with names of edges from T , in order to indicate
the image of the edges by the morphism φ : PACD(T ) → T .

q0, t0
⟨ε⟩

q1, t1
⟨0⟩

q2, t1
⟨0⟩

q3, t2
⟨0,0⟩

q3, t2
⟨0,1⟩

q3, t2
⟨2,0⟩

q4, t2
⟨0,1⟩

q4, t2
⟨2,0⟩

q5, t2
⟨1⟩

q5, t2
⟨2⟩

a : 2

b : 2

c : 3

f : 1
d : 3 e : 2

g : 3
h : 2

g : 2
h : 3

g : 1

h : 3

i : 3
j : 1

i : 3

j : 2

k : 2

l : 1k : 1

l : 2

Figure 7 Transition system PACD(T ).

▶ Proposition 4.7 (Correctness). Let T be a (possibly labelled) Muller transition system and
PACD(T ) its ACD-transformation. Then, there exists a locally bijective morphism (of labelled
transition systems) φ : PACD(T ) → T .

4.3 Optimality of the alternating cycle decomposition transformation
▶ Proposition 4.8 (Optimality of the number of priorities). Let T be a Muller transition
system and let PACD(T ) be its ACD-transition system. If P is another parity transition
system such that there is a locally bijective morphism φ : P → T , then P uses at least the
same number of priorities than PACD(T ).

In the case of deterministic automata, the results from [22] imply this proposition:

▶ Proposition 4.9. If A is a deterministic Muller automaton, then PACD(A) uses the optimal
number of priorities to recognize L(A).

Finally, we state the optimality of PACD(A) for size.

▶ Theorem 4.10 (Optimality of the number of states). Let T be a Muller transition system
and let PACD(T ) be its ACD-transition system. If P is another parity transition system such
that there is a locally bijective morphism φ : P → T , then |PACD(T )| ≤ |P|.

The proof of Theorem 4.10 follows the same lines as for Theorem 3.7, we refer to the
full version of this paper [4]. We note that from the hypothesis of Theorem 4.10 we cannot
deduce that there is a morphism from P to PACD(T ) or vice-versa.

5 Applications

Determinisation of Büchi automata
The best theoretical bounds for the determinisation of Büchi automata are achieved by
Piterman’s construction [23]. In [26], Schewe revisits this construction and presents it as
two consecutive steps: a first one producing a deterministic Rabin automaton RB, and a
second one transforming RB into a parity automaton PB. This second step induces a locally
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bijective morphism from PB to RB, therefore, thanks to Theorem 4.10 it is guaranteed that
the ACD-transformation PACD(RB) always yields a smaller deterministic parity automaton
that uses less priorities. In particular, by Proposition 4.9 the number of priorities used by
PACD(RB) are the optimal one for recognising L(B) (that is, ACD(RB) gives the parity index
of the language).

In many cases, the gain in both size and number of priorities is strict (we refer to the
full version for one example [4]). However, both steps of Piterman Schewe’s construction
are already optimal in the worst case [6, 27], and applying the ACD-transformation in this
worst-case example would generate the same parity automaton.

Relabelling of transition systems by acceptance conditions
We use the information provided by the alternating cycle decomposition to obtain results
about the possibility of relabelling Muller transition systems with parity, Rabin and Streett
conditions. The results presented here lift the seminal results of [30, Section 5] from conditions
to transition systems.

Given a Zielonka tree TF , we say that it has Rabin shape (resp. parity shape) if every
node with an even (reps. even or odd) priority assigned has at most one child. Given a
Muller transition system T , we say that its alternating cycle decomposition ACD(T ) is a
Rabin ACD (resp. parity ACD) if for every state q ∈ V , the tree tq has Rabin shape (resp.
parity shape).

▶ Theorem 5.1. Let T be a Muller transition system. The following conditions are equivalent:
1. We can define a Rabin (resp. parity) condition that is equivalent to F over T .
2. For every pair of loops l1, l2 ∈ Loop(T ), if l1 /∈ F and l2 /∈ F (resp. l1 and l2 are both in

F or both in P(Γ) \ F), then l1 ∪ l2 /∈ F (resp. l1 ∪ l2 ∈ F ⇔ l1 ∈ F).
3. ACD(T ) is a Rabin ACD (resp. parity ACD).
By duality, a symmetric result of the Rabin case holds for Streett conditions.

Similar results can be obtained for weak automata, see the full version for details [4].

▶ Corollary 5.2. Given a transition system graph TG and a Muller condition F ⊆ P(E), we
can define a parity condition p : E → N equivalent to F over TG if and only if we can define
both Rabin and Streett conditions over TG, R and S, such that (TG, F) ≃ (TG, R) ≃ (TG, S).

The previous results are stated for non-labelled transition systems. We must be careful
when translating these results to non-deterministic automata [1, Section 4]. However,
Proposition 2.1 allows us to obtain analogous results for deterministic automata.

▶ Corollary 5.3 (First proven in [1, Theorem 7]). Let A be a deterministic automaton such that
there are a Rabin condition R and a Streett condition S over A such that L(A, R) = L(A, S).
Then, there exists a parity condition p over A such that L(A, p) = L(A, R) = L(A, S).

6 Discussions

In this work we have introduced the alternating cycle decomposition of a transition system,
uncovering the interplay between a transition system and its acceptance condition. In order
to formalise the notion of a “transformation” we have introduced locally bijective morphisms,
which open new lines of research concerning questions such as the complexity of minimising
automata with respect to these morphisms. We formulate the following conjecture, which
implies that lower bounds established for Muller, Rabin or Streett automata [6] yield lower
bounds for parity automata.
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▶ Conjecture 6.1. If A is a minimal deterministic Muller (resp. Rabin) automaton re-
cognising L(A), then PACD(A) is a minimal deterministic parity automaton recognising
L(A).
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Abstract
Graphs and games on graphs are fundamental models for the analysis of reactive systems, in
particular, for model-checking and the synthesis of reactive systems. The class of ω-regular languages
provides a robust specification formalism for the desired properties of reactive systems. In the
classical infinitary formulation of the liveness part of an ω-regular specification, a “good” event must
happen eventually without any bound between the good events. A stronger notion of liveness is
bounded liveness, which requires that good events happen within d transitions. Given a graph or a
game graph with n vertices, m edges, and a bounded liveness objective, the previous best-known
algorithmic bounds are as follows: (i) O(dm) for graphs, which in the worst-case is O(n3); and
(ii) O(n2d2) for games on graphs. Our main contributions improve these long-standing algorithmic
bounds. For graphs we present: (i) a randomized algorithm with one-sided error with running time
O(n2.5 log n) for the bounded liveness objectives; and (ii) a deterministic linear-time algorithm for
the complement of bounded liveness objectives. For games on graphs, we present an O(n2d) time
algorithm for the bounded liveness objectives.
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1 Introduction

Graphs and games on graphs. Graphs and two-player games played on graphs provide
a general mathematical framework for a wide range of problems in computer science: in
particular, for the analysis of reactive systems, where the vertices of the graph represent the
states of a reactive system and the edges represent the transitions between the states. The
classical synthesis problem (the problem of Church) asks for the construction of a winning
strategy in a game played on the graph [13, 21, 20] and the fundamental model-checking
problem is an algorithmic graph problem [14].

EA
T

C
S

© Krishnendu Chatterjee, Monika Henzinger, Sagar Sudhir Kale, and Alexander Svozil;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 124; pp. 124:1–124:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:krish.chat@ist.ac.at
mailto:monika.henzinger@univie.ac.at
mailto:sagar.kale@univie.ac.at
mailto:alexander.svozil@univie.ac.at
https://doi.org/10.4230/LIPIcs.ICALP.2021.124
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


124:2 Faster Algorithms for Bounded Liveness in Graphs and Game Graphs

Omega-regular specifications: strength and weakness. In the analysis of reactive systems,
the desired temporal properties that the system should satisfy constitute the specification.
The class of ω-regular languages provides a robust specification formalism [18, 20]. Every
ω-regular objective can be decomposed into a safety part and a liveness part [3]. The safety
part ensures that the system will not do anything “bad” (such as violating an invariant)
within any finite number of transitions. The liveness part ensures that the system will do
something “good” (such as proceed or respond) in the long-run. Liveness can be violated only
in the limit, by infinite sequences of transitions, as no bound is specified on when a “good”
event must happen. This infinitary formulation has several strengths, such as robustness and
simplicity [18, 23]. However, there is also a weakness of the classical definition of liveness: it
can be satisfied by systems that are unsatisfactory because no bound can be put between
the occurrence of desired events.

Stronger notion of liveness. For the weakness of the infinitary formulation of liveness,
alternative and stronger formulations of liveness have been proposed. The first formulation
is bounded liveness which ensures, given a bound d, that eventually, good events happen
within d transitions. The second formulation is finitary liveness which requires the existence
of a bound such that eventually good events happen within the bound. Finitary liveness
was proposed in [4] and has been widely studied; e.g., games on graphs with finitary ω-
regular objectives [12], and logics such as PromptLTL based on finitary liveness [17]. The
notion of bounded liveness has also been investigated in many contexts, such as MSO with
bounding quantifiers [7], bounded model-checking [6], and “bounded until” in logics such as
RTCTL [15].

Algorithmic questions for bounded liveness. In this work, we consider graphs and games
on graphs with bounded liveness objectives. Consider a graph with n vertices, m edges,
and a bounded liveness objective with bound d. A basic algorithmic approach is to reduce
the bounded liveness objective to a liveness objective on a larger graph (that we call the
auxiliary graph) that explicitly keeps track of the number of transitions since the last good
event. This basic approach yields the following bounds: (a) an O(dm)-time algorithm for
graphs (applying the linear-time algorithm for liveness objectives on graphs), and (b) an
O(n2d2)-time algorithm for games on graphs (applying the current best-known O(n2)-time
algorithm for games on graphs with liveness objectives [11]). A fundamental algorithmic
question is whether the above bounds can be improved.

Our contributions. In this work, our main contributions are improved algorithmic bounds
for bounded liveness on graphs and games on graphs.

In graphs, there are two relevant semantics: (a) an existential semantic that asks whether
there exists a path to satisfy the objective, and (b) a universal semantic that asks whether
all paths satisfy the objective. The answer to the universal semantics with bounded
liveness is “Yes” if and only if the answer is “No” for existential semantics with the
complementary bounded coliveness objective. We consider graphs with the existential
semantics and bounded liveness and bounded coliveness objectives. For bounded liveness
objectives, all previous algorithmic approaches yield an O(n3) worst-case time-bound
(where d = O(n)) and we present a randomized algorithm with one-sided error whose
worst-case time-bound is O(n2.5 log n). For bounded coliveness objectives, we present a
deterministic linear-time algorithm.
For games on graphs with bounded liveness objectives, we present an O(n2d)-time
algorithm that improves the previous O(n2d2)-time algorithm.
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Significance of the contributions. On the technical front, it is threefold.
1. To break the O(n3)-time barrier for graphs, we exploit randomization to estimate for all

pairs of good events how far they are from each other. Using this information along with
a suitably modified auxiliary graph results in the faster O(n2.5 log n)-time algorithm.

To get the improved time bound of O(n2d) for game graphs:
2. we construct an auxiliary game graph (similar to the graph case) and make a crucial

observation that this game graph after each iteration has a lot of structure, a property
we call induced symmetry;

3. we strategically introduce as many “layover” vertices as there are good events; in combin-
ation with induced symmetry, this enables us to prove that a significant chunk of the
auxiliary game graph is deleted after each iteration.

Furthermore, there are several important implications of our contributions. First, for
graphs with bounded liveness objectives, the previous worst-case time-bound is O(n3). In
recent years, many such algorithmic problems with O(n3) bound have been shown to be
conditionally optimal with a reduction from classical problems such as BMM (boolean matrix
multiplication) [1, 2, 8, 9, 10, 24]. Our new algorithm breaks the O(n3) barrier and shows
that such conditional lower bound approaches do not apply for bounded liveness in graphs.
Second, for graphs with bounded coliveness objectives our linear-time bound shows that there
is a very efficient algorithm for the complement of the bounded liveness objectives. Finally,
we show that the basic algorithmic approach for games on graphs can also be improved.
Given our results improve the bounds for graphs and games on graphs with bounded liveness
objectives, there are several interesting questions for future work. Whether the bounds can
be further improved or a deterministic sub-cubic time algorithm can be obtained for graphs
with bounded liveness objectives are the most interesting algorithmic open questions.

2 Preliminaries

Since the notation and definitions are standard, we base this section on the definitions section
by Chatterjee and Henzinger [11].

Game graphs and graphs. A game graph Γ = ((V, E), ⟨V1, V2⟩) is a directed graph, where
V is a finite set of vertices, E is a finite set of edges, and ⟨V1, V2⟩ is a partition of V into
player-1 vertices V1 and the adversarial player-2 vertices V2. Graphs are a special case of
game graphs with V2 = ∅. Define Out(v) = {u ∈ V | (v, u) ∈ E} to be the set of vertices to
which v has an outgoing edge and In(v) = {u ∈ V | (u, v) ∈ E} to be the set of vertices from
which v has an incoming edge. As is standard, we assume that there are no self-loops and
that every vertex has an outgoing edge. Let n = |V | be the number of vertices and m = |E|
be the number of edges.

Plays. A play ⟨v0, v1, v2, . . .⟩ is an infinite sequence of vertices in Γ such that each (vi−1, vi) ∈
E for all i ⩾ 1. We denote by Ω the set of all plays. A finite play V ∗ is a prefix of a play.

Strategies. A player-ρ strategy tells which edge to follow next given a finite play that ends
in a player-ρ vertex. More formally, a player-1 strategy is a function σ : V ∗ · V1 7→ V such
that for ω ∈ V ∗ · V1 and v being the last vertex, (v, σ(ω)) ∈ E. A player-2 strategy is defined
in the same way. We denote by Σ the set of all player-1 strategies and by Π the set of all
player-2 strategies.
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Outcome of strategies. Given a starting vertex v and the strategies σ ∈ Σ and π ∈ Π,
there is a unique play ω(v, σ, π) = ⟨v0, v1, v2, . . .⟩, which is defined as follows: v0 = v; for all
i > 0 if vi ∈ V1 then σ(⟨v0, . . . , vi⟩) = vi+1, and if vi ∈ V2, then π(⟨v0, . . . , vi⟩) = vi+1.

Objectives. An objective Φ ⊆ Ω is a set of “winning” plays. The main objectives of this
paper are the bounded Büchi objective for player 1 and the complementary bounded coBüchi
objective for player 2. For a play ω, we define by Inf (ω) the set of vertices that occur
infinitely often in ω. More formally, if ω = ⟨v0, v1, v2, . . .⟩ ∈ Ω, then Inf (ω) = {v ∈ V | ∀i ⩾
0∃j > i : vj = v}. We also need the reachability, safety, Büchi and the coBüchi objectives for
the analyses. In the following definitions, assume that we are given a game graph Γ.
1. Reachability and Safety objectives. For T ⊆ V , the reachability objective states that at

least one vertex in T be visited, and dually, the safety objective states that only vertices
in C be visited. Formally, Reach(T, Γ) = {⟨v0, v1, v2, . . . ⟩ ∈ Ω | ∃k ⩾ 0 : vk ∈ T} and
Safety(C, Γ) = {⟨v0, v1, v2, . . . ⟩ ∈ Ω | ∀k ⩾ 0 : vk ∈ C}. The two objectives are dual, i.e.,
Reach(T, Γ) = Ω \ Safety(V \ T, Γ).

2. Büchi and coBüchi objectives. Given a set of Büchi vertices, the Büchi objective states
that some Büchi vertex be visited infinitely often, and dually, the coBüchi objective
states that only vertices in a given set C be visited infinitely often. Formally, given
B ⊆ V , define Büchi(B, Γ) = {ω ∈ Ω | Inf (ω) ∩ B ̸= ∅} and given C ⊆ V , define
coBüchi(C, Γ) = {ω ∈ Ω | Inf (ω) ⊆ C}. The two objectives are dual, i.e., Büchi(B, Γ) =
Ω \ coBüchi(V \B, Γ).

3. Bounded Büchi and bounded coBüchi objectives. Given a set of Büchi vertices and an
integer d ⩾ 0, the bounded Büchi objective states that from some point on, the distance
between any two consecutive Büchi vertices is at most d. Dually, given C ⊆ V , the
bounded coBüchi objective requires that there are at least d consecutive vertices in C

infinitely often. Formally, the sets of winning plays are boundedBüchi(B, d, Γ) = {ω ∈
Ω | ∃i ⩾ 0∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩ B ̸= ∅} and boundedcoBüchi(C, d, Γ) =
{ω ∈ Ω | ∀i ⩾ 0 ∃j ⩾ i s.t. {vj , vj+1, . . . , vj+d−1} ⊆ C}. These are also dual, i.e.,
boundedBüchi(B, d, Γ) = Ω \ boundedcoBüchi(V \B, d, Γ).

When studying bounded Büchi (and bounded coBüchi) objectives, one can assume without
loss of generality that d ⩽ n, because otherwise they are equivalent to Büchi objectives.
We omit Γ from the definition of the objectives if it is obvious on which game graph the
objectives are defined.

For an objective Φ, a strategy σ ∈ Σ is a winning strategy for player 1 from vertex v if for
all player-2 strategies π ∈ Π the resulting play ω(v, σ, π) ∈ Φ, and the set of winning vertices
for player 1 is W1(Φ) = {v ∈ V | ∃σ ∈ Σ s.t. ∀π ∈ Π : ω(v, σ, π) ∈ Φ}. Player-2 winning
strategies and winning vertices are defined in the same way.

Remark about determinacy. The following theorem shows that every vertex in V either
belongs to the winning set of bounded Büchi objectives of player 1 or to the winning set of
bounded coBüchi objectives for player 2. The same holds for Büchi and coBüchi objectives.
We say that a vertex is either winning for player 1 or winning for player 2.

▶ Theorem 1 (Determinancy [19]). For all game graphs Γ, all (bounded) Büchi objectives Φ
for player 1 and the complementary (bounded) coBüchi objectives Ψ = Ω \ Φ for player 2 we
have W1(Φ) = V \W2(Ψ).

Observe that for (bounded) Büchi objectives Φ for player 1 and the (bounded) coBüchi
objectives Ψ = Ω \ Φ, by definition, we have V \ W2(Ψ) = {v ∈ V | ∀π ∈ Π ∃σ ∈
Σ s.t. ω(v, σ, π) ∈ Φ}. Theorem 1 allows to change existential and universal quantifiers, i.e.,
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V \W2(Ψ) = {v ∈ V | ∃σ ∈ Σ s.t. ∀π ∈ Π ω(v, σ, π) ∈ Φ} = W1(Φ). If for every strategy π

of player 2, there exists a strategy σ for player 1 that wins from vertex v, then there exists a
(unique) strategy σ for player 1 that wins against every strategy π of player 2.

The computational problem. Given a game graph with bounded Büchi objective Φ the
goal is to compute the set W1(Φ). The focus of this paper is on bounded Büchi and bounded
coBüchi objectives, and when we mention winning vertices or winning strategies, we mean
winning for bounded Büchi objectives, unless stated otherwise.

Closed Sets. A set U ⊆ V of vertices is a closed set for player 1 if ∀u ∈ (U∩V1) : Out(u) ⊆ U

and ∀u ∈ (U ∩ V2) : Out(u) ∩ V2 ̸= ∅. We define player-2 closed sets analogously. Observe
that every closed set U induces a subgame graph denoted G ↾ U .

A connection between closed sets, winning for safety, reachability and coBüchi objectives
in the following proposition.

▶ Proposition 2 ([11, Proposition 2.2]). Consider a game graph Γ, and a closed set U for
player 1. Then, the following assertions hold:
1. Player 2 has a winning strategy for the objective Safety(U) for all vertices in U , that is,

player 2 can ensure that if the play starts in U , then the play never leaves the set U .
2. If U ∩B = ∅ (i.e., there is no Büchi vertex in U), then every vertex in U is winning for

player 2 for the coBüchi objective.

Attractors. For a set of “target” vertices T ⊆ V , the set of vertices from which player ρ

can reach T against all strategies of the other player, is called the player-ρ attractor of T ;
formally [25, 23], attrρ(T, Γ) = Wρ(Reach(T, Γ)). An attractor A = attrρ(T, Γ) can be
computed in O(m) time [5, 16].

The following observation stipulates the connection between closed sets and attractors.

▶ Observation 3 ([11]). For all game graphs Γ, all players ρ ∈ {1, 2}, and all sets U ⊆ V

we have the following: The set V \ attrρ(U, Γ) is a closed set for player ρ, i.e., no player-ρ
vertex in V \ attrρ(U, Γ) has an edge to attrρ(U, Γ) and every vertex of the other player in
V \ attrρ(U, Γ) has an edge in V \ attrρ(U, Γ).

3 Algorithms for Graphs

Graphs are a special case of game graphs with V2 = ∅. Hereon, we will call this “the graph
case” as opposed to “the game graph case” (where V1 ≠ ∅ and V2 ≠ ∅). The objectives we
consider are prefix independent, i.e., if ω ∈ Ω, then any play obtained by adding or removing
a finite prefix to or from ω is also in Ω. Hence, with respect to computing winning vertices,
it is enough to focus on strongly connected graphs. The reasoning is as follows.

In the input graph, we call a strongly connected component (SCC) S good if the graph
restricted to S has a winning vertex. Due to prefix independence, all vertices in a good
SCC and those from which you can reach a good SCC are winning. We will prove that such
vertices are exactly the winning vertices, and that this set can be computed by the following
procedure:

Compute the SCCs of the input graph (can be done in linear time [22]).
Determine for each SCC if it is good (this step depends on the objective).
Consider the set of all vertices belonging to a good SCC. Perform reachability to this set.
(This can also be done in linear time.)
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▶ Lemma 4. A vertex v is a winning vertex if and only if it there is path from v to some
vertex in a good SCC.

Proof. As mentioned before, due to prefix independence, if v has a path to some vertex in a
good SCC, then it is winning. Next, we show the converse.

If v is winning, then there is a winning play ω starting at v. Since SCCs themselves form
a directed acyclic graph (DAG), ω must eventually enter an SCC S and stay there. Again,
due to prefix independence, the vertices visited by ω in S are also winning, i.e., S is a good
SCC. ◀

By Lemma 4 and the procedure described above it, the problem of computing the winning
vertices is reduced to determining, given a strongly-connected graph, whether there is a
winning vertex or not. More formally, we get the following lemma.

▶ Lemma 5. Let S1, S2, . . . be SCCs of the graph G = (V, E). When V2 = ∅, i.e., in the
graph case, for a prefix independent objective, the set of winning vertices can be computed in
time O(m +

∑
i t(Si)) time, where m = |E| and t(Si) is the time required to compute whether

Si is a good SCC or not.

In this paper, we consider bounded Büchi and bounded coBüchi objectives.

3.1 The Bounded Büchi Objective
We are given a graph G = (V, E), a set B of Büchi vertices, and a positive integer d. A
cyclic-walk in G is a walk (v1, v2, . . . , vℓ) such that v1 = vℓ. We say that a cyclic-walk C is
feasible if it has at least one Büchi vertex and the number of edges in C between any two
consecutive Büchi vertices is at most d. We assume that G is strongly connected, and our
goal is to determine if there is a winning vertex in G. Then, using Lemma 5, we generalize
the result to a graph that might not be strongly connected. The following lemma reduces
this problem to finding a feasible cyclic-walk in G.

▶ Lemma 6. The strongly-connected input graph G has a winning vertex with respect to the
bounded Büchi objective if and only if it has a feasible cyclic-walk.

Proof. If G has a winning vertex, say v, then there is a winning play ω that starts at
v. Let ω = ⟨v0 = v, v1, v2, . . .⟩; so by the definition of winning play, ∃i ⩾ 1 such that
∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩ B ̸= ∅. Consider the set Inf (ω) of vertices that appear
infinitely often in ω. Since ω is winning, Inf (ω) ∩B ̸= ∅. Thus, we can choose a j′ ⩾ i such
that vj′ ∈ Inf (ω) ∩ B. Since vj′ appears infinitely often, for some j′′ > j′, we have that
vj′′ = vj′ . Thus (vj′ , vj′+1, . . . , vj′′ = vj′) is a feasible cyclic-walk because j′ ⩾ i and, as
mentioned earlier, ∀j ⩾ i : {vj , vj+1, . . . , vj+d−1} ∩B ̸= ∅.

In the other direction, if G has a feasible cyclic-walk, then we can keep traversing it to
construct a winning play, which means G has a winning vertex. ◀

An O(dm)-time algorithm for bounded Büchi
Next, we recall the basic O(dm)-time algorithm to determine if there is a feasible cyclic-walk.
This algorithm tries to trace a feasible cycle by maintaining a counter with each possible non-
Büchi vertex denoting how far away we are from the last visit to a Büchi vertex. We construct
a (d+1)-layered auxiliary graph G∗ = (V ∗, E∗), where V ∗ = (B×{0})∪((V \B)×{1, . . . , d}).
We define a more general graph here that we also use in Section 4. We illustrate an example
in Figure 1. So, for (v, ℓ) ∈ V ∗, the integer ℓ corresponds to the aforementioned counter. We
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call the vertices in B × {0} Büchi vertices and the vertices in (V \B)× {1, . . . , d} non-Büchi
vertices. The edge set E∗ is constructed by Algorithm 1. The last layer of the auxiliary
graph is actually not needed for the graph case but is needed for the game graph case later.
Observe that the auxiliary graph is also a game graph. (The ownership of the vertices will
be defined later in a natural way.)

Algorithm 1 Construction of the auxiliary graph G∗ from G, B, and d. It is easy to see that the
running time of this algorithm is O(dm) and G∗ has at most dm edges.

procedure ConstructAuxiliaryGraph(G = (V, E), B ⊆ V , d)
V ∗ ← (B × {0}) ∪ ((V \B)× {1, . . . , d}) and E∗ ← ∅.
for (u, v) ∈ E such that v /∈ B (add counter-incrementing edges) do

if u /∈ B then
for i ∈ {1, . . . , d−1} do

Add ((u, i), (v, i+1)) to E∗.
Add ((u, d), (v, d)) to E∗ (edges in the last layer to V \B stay in the last layer).

else Add ((u, 0), (v, 1)) to E∗.
for (u, v) ∈ E such that v ∈ B (add counter-resetting edges) do

if u /∈ B then
for i ∈ {1, . . . , d} do

Add ((u, i), (v, 0)) to E∗.
else Add ((u, 0), (v, 0)) to E∗.

return G∗ = (V ∗, E∗)
procedure AuxiliaryGraph-d-Layers(G = (V, E), B ⊆ V , d)

G∗ ← ConstructAuxiliaryGraph(G = (V, E), B ⊆ V, d)
Return the graph resulted by removing layer-d from G∗, called G′ = (V ′, E′).

(b1, 0)

(b2, 0)

...

(bi, 0)

...

(bj , 0)

...

Layer 0
B-vertices

(v1, 1)

(v2, 1)

...

(vi, 1)

...

(vj , 1)

...
Layer 1
V \B vertices

· · · (vi, ℓ)

...

(vj , ℓ)

...
Layer ℓ

V \B vertices

(vj , ℓ+1)

· · ·

(v1, d)

(v2, d)

...

(vi, d)

...

(vj , d)

...
Layer d

V \B vertices

to (v
j , 2)

Figure 1 An illustration of how the auxiliary layered graph is constructed. If G contains the
edges (bj , bi), (bi, vj), (v2, bj), and (vi, vj), then the auxiliary layered graph G∗ will have shown
edges.
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▶ Lemma 7. The running time of the procedures ConstructAuxiliaryGraph and Auxi-
liaryGraph-d-Layers in Algorithm 1 is O(dm).

Proof. In ConstructAuxiliaryGraph, each of the outer for loop runs for at most m

iterations, and each of the inner for loops runs for at most d iterations. AuxiliaryGraph-
d-Layers just calls ConstructAuxiliaryGraph and removes the last layer, which takes
O(dm) time. ◀

For the graph case, we are interested in G∗ induced on layers-{0, 1, . . . , d−1}. Let G′

denote this graph.

▶ Lemma 8. The strongly-connected input graph G has a feasible cyclic-walk if and only if
G′ has a cycle.

Proof. Let C = (b1, v1,1, . . . , v1,ℓ1 , b2, v2,1, . . . , v2,ℓ2 , b3, . . . , b1), where each bi ∈ B, each
vi,j ∈ V \B, and each ℓi ⩽ d− 1, be a feasible cyclic-walk in G. There is a corresponding
cyclic-walk C ′ in G′:

for each (bi, vi,1) ∈ C, the edge ((bi, 0), (vi,1, 1)) ∈ E′,
for each (vi,j , vi,j+1) ∈ C, the edge ((vi,j , j), (vi,j+1, j+1)) ∈ E′,
for each (vi,ℓj

, bi+1) ∈ C, the edge ((vi,ℓj
, ℓj), (bi+1, 0)) ∈ E′, and

for the final edge (vi,ℓj
, b1) ∈ C, the edge ((vi,ℓj

, ℓj), (b1, 0)) ∈ E′.
If C ′ consists of union of cycles can be short-cut to get a cycle in G′.

In the other direction, consider a cycle in G′. A projection of this cycle on the first
coordinate of the vertices, by construction, gives a feasible cyclic-walk in G, because the
number of edges between consecutive Büchi vertices is at most d. ◀

Thus, by Lemmas 6 and 8, we get Algorithm 2.

Algorithm 2 This algorithm determines if the strongly-connected input graph has a winning
vertex with respect to the bounded Büchi objective.

procedure BoundedBüchi(G = (V, E), B ⊆ V , d)
G′ ← AuxiliaryGraph-d-Layers(G, B, d)
Run depth-first search on G′ to determine if it has a cycle.
if G′ has a cycle then

return “G has a winning vertex.”
else

return “G does not have a winning vertex.”

▶ Lemma 9. Algorithm 2 determines if the strongly-connected input graph G has a winning
vertex with respect to the bounded Büchi objective in O(dm) time.

Proof. By Lemmas 6 and 8, G has a winning vertex if and only if G′ has a cycle. Since a
depth-first search finds if there is a cycle in G′, the correctness of the algorithm is established.
By Lemma 7, AuxiliaryGraph-d-Layers takes O(dm) time, and a depth-first search on
G′ takes time O(dm), because the number of edges in G′ is O(dm). ◀

Thus, by Lemma 5, we get the following theorem.

▶ Theorem 10. The set of winning vertices for the bounded Büchi objective in the graph
case can be computed in time O(dm).

Proof. Let S1, S2, . . . be SCCs of the input graph G = (V, E). Let m1, m2, . . . be the number
of edges in the SCCs S1, S2, . . .. Then, by Lemma 9, for i = 1, 2, . . ., we can determine in
time O(dmi) whether Si is good. Since m ⩾

∑
i mi, the proof is complete by Lemma 5. ◀
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An O(|B|m)-time algorithm for bounded Büchi
Now, we briefly discuss an O(|B|m)-time algorithm for bounded Büchi. Given G = (V, E)
and B, consider the graph G′ = (B, E′) such that (b, b′) ∈ E′ if the distance from b to b′ in
G is at most d. We allow self loops in G′. It is easy to see that G has a feasible-cyclic walk
if and only if G′ has a cycle. To construct G′, we perform |B| breadth-first searches, one
starting from each vertex in B. This takes time O(|B|m). Then, by a similar argument as in
the proof of Theorem 10, we get the following theorem.

▶ Theorem 11. The set of winning vertices for the bounded Büchi objective in the graph
case can be computed in time O(|B|m).

▶ Remark 12. Note that both algorithms that we have seen so far can take Θ(n3) time if
m = Θ(n2) and B and d are Θ(n). The next algorithm we see is combinatorial and has
running time O(n2.5 log n) for the worst setting of the parameters and breaks the cubic
barrier. This also rules out any conditional lower bound approaches to get an Ω(n3) lower
bound for combinatorial algorithms.

An O((m + |B|2)
√

n log n)-time algorithm for bounded Büchi
In this section, we present an O((m+ |B|2)

√
n log n)-time algorithm for bounded Büchi in the

graph case. This is one of our main contributions. Here, we give a procedure that computes
distances between all pairs of Büchi vertices if the distance is at least

√
N , where N ⩾ |V | is

a parameter that we will fix later. This information can be used to reduce the number of
layers in the auxiliary graph to

√
N . By dist, we denote the distance function with respect

to G. For any u, v ∈ V , if u ̸= v, then dist(u, v) denotes the length of a shortest path from u

to v, and for any u ∈ V , dist(u, u) denotes the length of a shortest cycle through u.

Algorithm 3 This algorithm determines if the strongly-connected input graph has a winning
vertex with respect to the bounded Büchi objective.

procedure RandBoundedBüchi(G = (V, E), B ⊆ V , d, N)
if d <

√
N then

return BoundedBüchi(G = (V, E), B ⊆ V , d)
Sample 4

√
N ln N vertices uniformly at random, independently, and with replacement.

S ← the set of sampled vertices.
for s ∈ S do

Perform incoming and outgoing breadth-first search (BFS) to and from s.
Compute distances dist(b, s) and dist(s, b) for each b ∈ B during the BFSs.

G′ ← AuxiliaryGraph-d-Layers(G, B,
√

N − 1)
for b ∈ B do

for b′ ∈ B do
distS(b, b′)←∞
for s ∈ S do

distS(b, b′)← min{distS(b, b′), dist(b, s) + dist(s, b′)}
if distS(b, b′) ⩽ d then

Add ((b, 0), (b′, 0)) to E′ (this would be a self-loop if b = b′).
Run depth-first search on G′ to determine if it has a cycle.
if G′ has a cycle then

return “G has a winning vertex.”
else

return “G does not have a winning vertex.”
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▶ Lemma 13. Let N ⩾ |V |. Algorithm 3 determines with probability at least 1 − 1/N2

if the strongly-connected input graph G has a winning vertex with respect to the bounded
Büchi objective in O((m + |B|2)

√
N log N) time. It never returns a false positive, i.e., if it

outputs that G has a winning vertex, then it is correct with probability 1. Its running time is
O((m + |B|2)

√
N log N).

Proof. If d <
√

N , then we are done by Lemma 9. Thus, we assume for the rest of the proof
that d ⩾

√
N .

For any b, b′ ∈ B, by T (b, b′), we denote a fixed shortest cycle through b if b = b′ or a
fixed shortest path from b to b′ otherwise. Let the event that a vertex v(b, b′) ∈ T (b, b′) is
sampled into S be denoted by E(b, b′). Since v(b, b′) ∈ T (b, b′), we have that dist(b, b′) =
dist(b, v(b, b′)) + dist(v(b, b′), b′). This implies that if E(b, b′) occurs, then dist(b, v(b, b′)) and
dist(v(b, b′), b′) are computed by the algorithm using the incoming and outgoing BFS at
v(b, b′), and hence distS(b, b′) = dist(b, b′). Let Ec(b, b′) be the complement of E(b, b′). Now,
Pr[Ec(b, b′)] = (1− dist(b, b′)/|V |)4

√
N ln N , because 1− dist(b, b′)/|V | is the probability that

a fixed sample does not contain a vertex of T (b, b′) and we draw 4
√

N ln N independent
samples.

For any b, b′ ∈ B, where dist(b, b′) ⩾
√

N , we denote the event that distS(b, b′) = dist(b, b′)
by E ′(b, b′). As noted earlier, distS(b, b′) = dist(b, b′) if E(b, b′) occurs, hence:

Pr[E ′(b, b′)] ⩾ Pr[E(b, b′)] = 1− Pr[Ec(b, b′)] E(b, b′) is a subevent of E ′(b, b′),

= 1−
(

1− dist(b, b′)
|V |

)4
√

N ln N

by the argument earlier,

⩾ 1−
(

1− 1√
N

)4
√

N ln N

because dist(b, b′)/|V | ⩾ 1/
√

N ,

⩾ 1− 1
N4 by well-known fact (1− 1/x)x ⩽ 1/e.

Since N ⩾ |B|, by the union bound and because the E ′(b, b′) are independent, we have
Pr[∀(b, b′) ∈ B × B : E ′(b, b′)] ⩾ 1 − 1/N2. Let us condition on the event that for all
(b, b′) ∈ B ×B : E ′(b, b′), and let G′ be the auxiliary graph constructed by the algorithm.

Suppose G has a winning vertex. By Lemma 6, there is a feasible cyclic-walk C in G.
Then for any consecutive Büchi vertices b and b′ in C, either dist(b, b′) ⩾

√
N , in which

case there is an edge ((b, 0), (b′, 0)) or dist(b, b′) <
√

N , in which case there exists a cycle
((b, 0), (u1, 1), (u2, 2), . . . , (uℓ, ℓ), (b′, 0)) in G′, where ℓ <

√
N − 1. Thus, C induces a cycle

in G′.
On the other hand, if there is a cycle C ′ in G′, then a projection of C ′ on the first

coordinate of the vertices, by construction of G′, gives a feasible cyclic-walk in G after
replacing all edges in C ′ of the form ((b, 0), (b′, 0)) by corresponding paths of length at most
d that certify distS(b, b′). By Lemma 6, G has a winning vertex.

Also, if the algorithm does return that G has a winning vertex, then G′ has a cycle, and
existence of a feasible cyclic-walk in G can be shown in the same way as above. This shows
that the algorithm never returns a false positive.

Running time. Incoming and outgoing BFSs from the vertices in S take time O(m
√

N log N).
Auxiliary-Graph-d-Layers takes O(m

√
N) time. Computing distS takes time

O(|B|2
√

N log N). DFS on G′ takes time O(|B|2 + m
√

N). In total, Algorithm 3 has
running time O((m + |B|2)

√
N log N). ◀
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Finally, we use Lemma 5 to generalize the above to a graph that may not be strongly
connected. Fix N to be n in Algorithm 3 when running it for each SCC. Then, by a similar
argument as in the proof of Theorem 10, we get the following theorem.

▶ Theorem 14. The set of winning vertices for the bounded Büchi objective can be computed
with probability at least 1−1/n in time O((m+|B|2)

√
n log n) which is O(n2.5 log n). Moreover,

the algorithm never returns a false positive, i.e., each vertex in the set it outputs is a winning
vertex with probability 1.

Proof. Let S1, S2, . . . be SCCs of the input graph G = (V, E). Let m1, m2, . . . be the number
of edges and by β1, β2, . . . , be the number of Büchi vertices in the SCCs S1, S2, . . ., respectively.
Then, by Lemma 13, for i = 1, 2, . . ., the algorithm outputs in time O((mi + β2

i )
√

n log n)
whether Si is good. Since m ⩾

∑
i mi and |B|2 = (

∑
i βi)2 ⩾

∑
i β2

i , the running time bound
is proved.

The probability bound is obtained by a union bound over at most n SCCs. Moreover,
the algorithm never returns a false positive by Lemma 13. ◀

3.2 The Bounded coBüchi Objective
Given a graph G = (V, E), a set C of vertices, and a positive integer d, a walk W is called
a feasible walk if W ⊆ C and the number of vertices in W is at least d. Let G[C] be the
graph induced by C. The bounded coBüchi problem reduces to finding a feasible walk, which
further reduces to finding whether there is a cycle in G[C] (can be done in linear time), and
if not G[C] is a directed acyclic graph (DAG), so it reduces to determining whether the
length of a longest path in the DAG G[C] is at least d (also can be done in linear time).
This gives us the following theorem.

▶ Theorem 15. The set of winning vertices for the bounded coBüchi objective in the graph
case can be computed in time O(m).

4 Algorithms for Game Graphs

In this section, we present algorithms for the bounded Büchi objective in game graphs.
We first introduce the auxiliary game graph similar to the auxiliary graph defined earlier.
We then show that we can compute in O(n2d2) time the winning set of a given bounded
Büchi objective on game graphs by computing the winning set of a coBüchi objective on
the auxiliary game graph. Finally, we show how to improve the running time to O(n2d) by
using structural properties of the auxiliary game graph and adapting a known technique for
solving Büchi Games [11].

The Auxiliary Game Graph. Given a game graph Γ = (V, E, ⟨V1, V2⟩) with n vertices, m

edges and a bounded Büchi objective boundedBüchi(B, d), we first construct the auxiliary
graph by calling ConstructAuxiliaryGraph((V, E), B, d) in Algorithm 1 and additionally
partition the vertices of the auxiliary graph V ∗ into player-1 vertices V ∗

1 and player-2 vertices
V ∗

2 , i.e., for each (v, ℓ) ∈ V ∗ we get (v, ℓ) ∈ V ∗
1 if v ∈ V1 and (v, ℓ) ∈ V ∗

2 if v ∈ V2. The
auxiliary game graph has O(nd) = O(n2) vertices and O(md) = O(mn) edges. We say that
a vertex (v, ℓ) ∈ V ∗ is a layer-ℓ vertex and v is its first component.

For any play λ, we denote by λk the kth vertex of the play. If a play has a superscript,
it denotes the starting vertex of the play, e.g λv means that the play λ starts at v. By
λv

k we refer to the kth vertex of the play λv which starts at v. Given a finite feasible play
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λ(w,ℓ) in Γ∗ starting at (w, ℓ), we define Proj(λ(w,ℓ)) to be the projection of λ(w,ℓ) on the
first component of the vertices in it; by definition, this finite play starts at w and is feasible
in Γ. Analogously, given a finite feasible play λw in Γ, we define Lift(λw, ℓ) to be the unique
finite feasible play in Γ∗ starting at (w, ℓ) such that the first component of Lift(λw, ℓ)k is the
same as λw

k . For (u, v) in E such that (u, j) ∈ V ∗ define (the appropriate next layer number
if you followed the copy of (u, v) starting in layer j)

NxtLyr(u, v, j) =


j + 1 if j < d and v /∈ B

d if j = d and v /∈ B

0 if v ∈ B .

Now, define Lift(λw, ℓ)1 = (w, ℓ), and for k > 1, given Lift(λw, ℓ)k−1 = (λw
k−1, j) define

Lift(λw, ℓ)k = (λw
k , NxtLyr(λw

k−1, λw
k , j)). Similarly, given the finite feasible play λ(w,ℓ) in Γ∗,

we define Shift(λ(w,ℓ), ℓ′) to be the finite play that starts at (w, ℓ′) in Γ∗ such that, for any
k, the first components of λ

(w,ℓ)
k and Shift(λ(w,ℓ), ℓ′)k are the same. By construction of Γ∗

the finite play Shift(λ(w,ℓ), ℓ′) is well-defined because (1) edges going from layer-i vertices
to layer-(i + 1) vertices (1 ⩽ i ⩽ d − 1) exist in all layers with the same respective first
components except in layer-d where these edges go again to layer-d, (2) edges going to layer-0
vertices exist in all layers (1 ⩽ i ⩽ d) and (3) because edges originating from layer-0 vertices
implies that both plays are currently visiting the same layer-0 vertex.

In comparison, the goal of the two operations Proj(·) and Lift(·) is to map finite plays
between Γ∗ and Γ such that the finite play in Γ∗ has, for all vertices, the same first component
as the corresponding finite play in Γ and vice versa. In contrast, Shift(λ(w,ℓ), ℓ′) maps a
finite play in Γ∗ to a finite play also in Γ∗ which has the same first component but a “shifted”
starting vertex.

4.1 An O(n2d2)-time Algorithm for Bounded Büchi in Games
In this section, we show that we can compute the winning set of a given bounded Büchi
objective on game graphs by computing the winning set of a coBüchi objective on the auxiliary
game graph. Then we apply the best-known algorithm for computing the winning set of a
Büchi objective on the auxiliary game graph to get the desired result.

In the following lemma, we prove that computing W1(boundedBüchi(B, d, Γ)) is the
same as computing W1(coBüchi(C∗, Γ∗)) where C∗ are the vertices in layers-{0, 1, . . . , d−1}.
Intuitively, when a play ϕ in coBüchi(C∗, Γ∗) stays in layers-{0, 1, . . . , d−1}, it reaches a
vertex in layer 0 every at most d steps by construction of Γ∗. The layer-0 vertices correspond
to the vertices in B which means that a play ϕ′ in Γ defined as the projection on the first
component of the vertices in ϕ visits a vertex in B every at most d steps which implies that
ϕ′ ∈ boundedBüchi(B, d, Γ). On the other hand, when player 1 has a strategy in Γ to visit a
vertex in B every at most d steps, a similar strategy which visits the same vertices in the
first component in Γ∗ allows player 1 to stay in the first d layers of the auxiliary graph.

▶ Lemma 16. Let Γ = (V, E, ⟨V1, V2⟩) be a game graph with bounded Büchi objective
boundedBüchi(B, d), let Γ∗ = (V ∗, E∗, ⟨V ∗

1 , V ∗
2 ⟩) be the corresponding auxiliary game graph,

and let C∗ be the vertices in the first d layers of the auxiliary graph, i.e., C∗ = {(v, i) ∈
V ∗ | 0 ⩽ i ⩽ d − 1}. Then {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)), for some 0 ⩽ i ⩽ d} =
W1(boundedBüchi(B, d, Γ)).
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Proof. We first prove that {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)), for some 0 ⩽ i ⩽ d} ⊆
W1(boundedBüchi(B, d, Γ)). Let (w, i) ∈W1(coBüchi(C∗, Γ∗)). Then player 1 has a winning
strategy σ∗ in Γ∗ such that for all player-2 strategies π∗, we have that ω((w, i), σ∗, π∗) ∈
coBüchi(C∗, Γ∗).

Whenever player 1 makes a move in Γ∗, we define the corresponding move in Γ as follows:
For any finite play λw in Γ that ends in a player-1 vertex, define σ(λw) to be the first
component of σ∗(Lift(λw, i)). (It does not matter how we define σ for plays that do not start
at w.)

Next, we argue why σ is a winning player-1 strategy for boundedBüchi(B, d, Γ) starting
at w. Let π be an arbitrary player-2 strategy in Γ. We define a corresponding player-2
strategy π∗ in Γ∗: for λ(w,i) that ends in a player-2 vertex (u, j), let v = π(Proj(λ(w,i))) and
define π∗(λ(w,i)) = (v, NxtLyr(u, v, j)).

Now, it is straightforward to show that the first component of ω((w, i), σ∗, π∗)k is equal
to ω(w, σ, π)k by induction on k.

Since the play ω((w, i), σ∗, π∗) ∈ coBüchi(C∗, Γ∗), it stays in C∗ after a finite number of
steps. Note that to stay in C∗ means to visit a layer-0 vertex after every at most d steps
because there are only d layers in C∗ and each step that does not go to a layer-0 vertex
increases the layer counter. Since the first component of each layer-0 vertex is in B, the play
ω(w, σ, π) visits a vertex in B every at most d steps after a finite number of steps and is in
boundedBüchi(B, d, Γ).

The other direction, W1(boundedBüchi(B, d, Γ)) ⊆ {w | (w, i) ∈ W1(coBüchi(C∗, Γ∗)),
for some 0 ⩽ i ⩽ d} can be shown with a similar argument. ◀

To compute W1(coBüchi(C∗)) in Γ∗, we observe that, by Theorem 1, W1(coBüchi(C∗)) =
V ∗ \W2(Büchi(V ∗ \ C∗)) = V ∗ \W2(Büchi({(v, d) ∈ V ∗})). Since, traditionally, we always
compute the player-1 winning set of a given objective, we swap player-1 and player-2 vertices
in Γ∗. Then we compute W = W1(Büchi({(v, d) ∈ V ∗})) using the algorithm of Chatterjee
and Henzinger [11], which is the fastest algorithm for Büchi games known, and project V ∗ \W

on the first coordinate. We illustrate the details in Algorithm 4.

Algorithm 4 Determine W1(boundedBüchi(B, d)), given a game graph Γ.

1: procedure BoundedBüchiGames(Γ = (V, E, ⟨V1, V2⟩), B, d)
2: (V ∗, E∗)← ConstructAuxiliaryGraph((V, E))
3: V ∗

1 ← {(v, i) ∈ V ∗ | v ∈ V1}, V ∗
2 ← {(v, i) ∈ V ∗ | v ∈ V2}

4: Γ∗ ← (V ∗, E∗, V ∗
1 , V ∗

2 ); B∗ ← {(v, d) ∈ V ∗ | v ∈ V \B}
5: W ← BüchiGamesFast(Γ∗ = (V ∗, E∗, ⟨V ∗

2 , V ∗
1 ⟩), B∗) ([11], Algorithm 5)

6: return {x | (x, i) ∈ V ∗ \W for some 0 ⩽ i ⩽ d}

The correctness of Algorithm 4 is due to the correctness of the fast Büchi games al-
gorithm [11, Theorem 2.14], the argument above, and Lemma 16. The argument for the
running time of Algorithm 4 is as follows. We first construct Γ∗ in O(md) time and then com-
pute the winning set of coBüchi(C∗) in time O(|V ∗|2) [11, Theorem 2.14]. As |V ∗| = O(nd)
and d = O(n), we get the following theorem.

▶ Theorem 17. The set of winning vertices for the bounded Büchi objectives in games can
be computed in time O(n2d2) = O(n4).
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4.2 An O(n2d)-time Algorithm for Bounded Büchi in Games
In this section, we give a refined running time analysis of Algorithm 4 giving us an O(n2d)-
time algorithm for bounded Büchi games. We first describe the fastest algorithm for Büchi
Games [11] for completeness. Then, we identify key ideas of the refined running time analysis
when the input is an auxiliary game graph and prove the improved running time formally.

4.2.1 The Büchi Games Algorithm of [11]
Given a game graph Γ = (V, E, ⟨V1, V2⟩) and a set B of Büchi vertices1, we fix an order on
the edges. In this fixed order, the edges (u, v) where u is a non-Büchi player-2 vertex, i.e.,
u ∈ (V2 \B), come before all other edges. We call them priority-1 edges. All the other edges
are priority-0 edges.

▶ Definition 18. Given a game graph Γ = (V, E, ⟨V1, V2⟩), let Γi = (V, Ei, ⟨V1, V2⟩) for
1 ⩽ i ⩽ log n be a subgraph of Γ which we define as follows: For all u ∈ V , the set Ei

contains the following edges:
1. If the outdegree of u in E is at most 2i, Ei contains all edges of the form (u, v), i.e., if
|Out(u)| ⩽ 2i then the set {(u, v) | v ∈ Out(u)} ⊆ Ei.

2. If the edge (v, u) belongs to the first 2i inedges of vertex u in E, we have (v, u) ∈ Ei

(“first” means with respect to the fixed order we specified above).
Note that Ei−1 ⊆ Ei since the order of the edges is fixed. We form a partition of V in Γi by
giving each vertex a color:

Blue: A player-1 vertex v in Γi is blue if the outdegree of v is greater than 2i.
Red: A player-2 vertex u in Γi is red if it has no outedge in Ei.2
All other vertices are white.

Thus, if a player-1 vertex is white then all its outedges are in Ei, and if a player-2 vertex is
white then it has at least one outgoing edge in Ei.

Algorithm description. The input of Algorithm 5 is a game graph Γ and a set of Büchi
vertices B. Recall that every vertex in a player-1 closed set S without Büchi vertices cannot
be in the player-1 winning set of the given Büchi objective W1(Büchi(B)) (Proposition 2 (2)).
We repeatedly find such a set S by removing from V the player-1 attractor of the set B

(Proposition 3) and forming S from all the remaining vertices. Then we remove the player-2
attractor of S. In the algorithm, we identify such a set Sj at Line 11 and remove the
attractor at Line 15. Note that a naive algorithm would take O(nm) time, as the attractor
of S could always be of size 1 and computing the attractor is in O(m) time. To obtain a
quadratic-time (in the number of vertices) algorithm, the improved algorithm of Chatterjee
and Henzinger constructs, for i = 1, . . . , log n, the graph Γi which has at most 2i edges.
Due to the properties of Γi, it can be shown that the set Sj has size of at least 2i−1. In
this way, the attractor computation take time proportional to the removed vertices. Since
player-1 vertices with missing outgoing edges or player-2 vertices with no outgoing edge in
Γi, i.e., non-white vertices might still be able to reach a vertex in B, we compute the player-1
attractor of the non-white vertices combined with the vertices in B. We illustrate the details
in Algorithm 5.

1 not to be confused with the input for the bounded Büchi problem in the previous and later sections
2 In the algorithm of Chatterjee and Henzinger [11] red vertices are player-2 vertices where an edge of

E is missing. We change this definition slightly, i.e., without changing their algorithm or correctness
argument, by saying that player-2 vertices are red if they do not have any outedges in Ei.
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Algorithm 5 Determine W1(Büchi(B)), given a game graph Γ [11].

1: procedure BüchiGamesFast(Γ = (V, E, ⟨V1, V2⟩), B)
2: Let j ← 0; U ← ∅; Y0 ← attr1(B, Γ); S0 ← V \ Y0; D0 ← attr2(S0, Γ); Γj ← Γ;
3: j ← j + 1;
4: while Dj−1 ̸= ∅ do
5: Remove the vertices in Dj−1 from Γj−1 to obtain Γj ; and U ← U ∪Dj−1;
6: i← 1;
7: repeat
8: Construct Γj

i from Γj as described in Definition 18.
9: Let Zj

i be the vertices of V j that are either red or blue;
10: Y j

i ← attr1(Bj ∪ Zj
i , Γj

i );
11: Sj ← V j \ Y j

i ;
12: i← i + 1
13: until Sj is nonempty or i ⩾ 1 + log n

14: if Sj ̸= ∅ then
15: Dj ← attr2(Sj , Γj)
16: else
17: return V \ U

18: j ← j + 1

The definition of a separating cut further refines the definition of the winning regions for
player 2 in this regard.

Separating cut. A set S of vertices induces a separating cut in a game graph Γi or Γj
i in

Algorithm 5 if
1. the only edges from S to V \ S come from player-2 vertices in S

2. every player-2 vertex in S has an edge to another vertex in S

3. every player-1 vertex in S is white and
4. B ∩ S = ∅.
Thus, a separating cut S is a player-1 closed set where (i) player-1 vertices are white and
which (ii) does not contain a vertex in B.

The following lemmas are needed to establish the improved running time guarantees in
the next section. Detailed proofs can be found in the paper by Chatterjee and Henzinger [11].

Lemma 19 below says that the set Sj is indeed a separating cut in Γj (not only in Γj
i )

and that due to the careful construction of Γj
i from the game graph Γj in iteration j, Sj does

not include a vertex of the player-1 attractor of the Büchi vertices in Γj .

▶ Lemma 19 ([11, Lemma 2.9]). Let Sj be the non-empty set computed by Algorithm 5 in
iteration j. Then, (1) Sj is a separating cut in Γj; and (2) Sj ∩ attr1(Bj , Γj) = ∅.

Lemma 20 establishes that the separating cut found in Γj
i is indeed the maximum

separating cut in Γj
i . Also, if Γj

i contains a separating cut, Algorithm 5 finds it.

▶ Lemma 20 ([11, Lemma 2.11]). Let Γj
i be the game graph in iteration j of the outer loop

and iteration i of the inner loop. If S induces a separating cut in Γj
i , then S ⊆ Sj.

Lemma 21 says that the set Sj is a separating cut in Γj
i . This does not follow from

Lemma 19(1) because Γj
i might have less edges than Γj and separating cuts are not preserved

if we only consider a subset of edges in Γj (property 2 might be violated).

▶ Lemma 21 ([11, Lemma 2.12]). Consider an iteration j of the outer loop of Algorithm 5
such that the algorithm stops the inner loop at value i and identifies a non-empty set Sj.
Then, Sj is a separating cut in Γj

i .
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4.2.2 Faster Algorithm for Bounded Büchi Games
In this section, we give the refined running time analysis of Algorithm 4. We note that Γ∗

gets redefined to be (V ∗, E∗, ⟨V ∗
2 , V ∗

1 ⟩) in Algorithm 4 on Line 4. Therefore, from hereon,
when we say player 1 (respectively player 2), we mean the player controlling the vertices in
V ∗

2 (respectively, those in V ∗
1 ).

Distinct vertices. We call a set of vertices S in Γ∗ distinct if, for each pair of vertices
(v, ℓ), (v′, ℓ′) ∈ S, we have v ̸= v′.

Copies of a vertex. Let Copies(v) denote the set of “copies” of a vertex v ∈ V ∗, i.e., for
a layer-0 vertex (v, 0) we have that Copies((v, 0)) = {(v, 0)} and for a vertex (v, ℓ), where
ℓ > 0, we have Copies((v, ℓ)) = {(v, 1), . . . , (v, d)}.

The improved running time guarantee is due to two key ideas.

Key idea 1. When there is a vertex (v, ℓ) in Dj then Copies((v, ℓ)) ⊆ Dj , i.e., all its copies
are in Dj .

On a very high level, the argument is that if there is a player-2 strategy to go from a
vertex to Sj , then there exists a player-2 strategy from all copies of that vertex to Sj . While
the idea is simple to state, a complicated machinery is needed to prove it formally. We prove
the key idea in Claim 27 building on Definition 25 and Claim 26.

Now, if we follow the original running-time argument [11], then we can only claim that
we remove 2i−1 vertices in total if the inner loop at Line 7 stops at iteration i, but the second
key idea states something stronger.

Key idea 2. If the inner loop at Line 7 stops at iteration i∗, we remove 2i∗−1 distinct
vertices.

Combining the key ideas, we remove from the game graph in iteration j all copies of
those distinct vertices. The ith iteration of the loop at Lines 7–13 takes time O(2ind) for
constructing the auxiliary version of (Γ∗)i and performing the attractor computations. The
iterations of the loop in Lines 7–13 before i′ < i amount to a total running time of O(2ind).
Thus, we charge the 2i−1 removed distinct vertices the cost of the iteration and the iterations
before, i.e., each such removed orginal vertex is charged O(nd). As we can remove only n

distinct vertices since they correspond to the vertices in the game graph Γ, we have a total
cost of O(n2d).

For the second key idea to work, we must modify the original bounded Büchi instance
(Γ, B, d) carefully. For every vertex in v ∈ B we add a player-2 vertex v′ which is not in
B and an edge (v′, v). Then we redirect all edges which go to v in the original instance
and make them go to v′ instead, i.e., for all v ∈ B we have V2 ← V2 ∪ {v′} and E ←
(E∪{(v′, v)}∪{(u, v′) | (u, v) ∈ E})\{(u, v) ∈ E}. Also, we increase d by one, as we increase
the distance to all vertices in B by one. Note that this simple modification allows us to
assume, without loss of generality, that all vertices in B have incoming edges from player-2
vertices only. Since we swap the player-1 vertices with player-2 vertices in Algorithm 4 we
can assume that all incoming edges to a layer-0 vertex are from player-1 vertices. This adds
at most n vertices and edges to Γ.

▶ Observation 22. We can assume, without loss of generality, that all layer-0 vertices v ∈ V ∗

of the auxiliary game graph Γ∗ created at Line 4 in Algorithm 4 have no incoming edges from
player-2 vertices, i.e., if (v, 0) ∈ V ∗ then In((v, 0)) ∩ V ∗

2 = ∅.
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With the above observation, we can prove the following proposition which is the crux of
this section.

▶ Proposition 23. Algorithm 4 runs in time O(n2d) = O(n3).

Proof. In this proof we denote by (Γ∗, B∗) the input of Algorithm 5 at Line 4 of Algorithm 4.
The input to Algorithm 4 is (Γ, B, d). If we can show that the running time of the call to
Algorithm 5 at Line 4 is in O(n2d) = O(n3) we are done, as the rest of the operations of
Algorithm 4 are in O(md). This entails constructing (Γ∗, B∗) and going through W . We
therefore prove the following lemma.

▶ Lemma 24. The total time Algorithm 4 spends in Algorithm 5 is O(n2d) = O(n3).

Every vertex v in Γ∗ has only O(n) out-edges by the definition of the auxiliary game graph.
Thus, when we consider the graphs (Γ∗)i of Definition 18 for 1 ⩽ i ⩽ log n, we have
(Γ∗)log n = Γ∗. The construction of (Γ∗)i (1 ⩽ i ⩽ log n) takes time O(nd · 2i).

We split the running time argument into two parts. In the first part, we bound the
running time of all except the last iteration of the while loop at Line 4. In the second part of
the analysis, we bound the running time of the last iteration of the same loop.

Running time bound for all iterations of the while loop except the last. Consider iteration
j, and assume that Algorithm 5 stops the repeat-until loop at Line 13 with value i∗ and it is
not the last iteration of the while loop at Line 4. Thus, Sj is not empty. By Lemma 21, the
set Sj is a separating cut in (Γ∗)j

i∗ . We make a detour to set up some claims.
We need the following definition because it helps us translate plays and strategies from a

vertex to its copies.

▶ Definition 25. If Γ∗
s is an induced subgraph of Γ∗ such that for all (u, ℓs) in Γ∗

s we have
that Copies((u, ℓs)) are also in Γ∗

s, then we say that Γ∗
s has the induced-symmetry property

or that it is symmetrically induced.

The following claim is about the translation of a strategy from a vertex to its copy.

▷ Claim 26. Suppose Γ∗
s is symmetrically induced. Then, in Γ∗

s, if a player has a strategy
to reach a copy of w from a copy of u, then from all copies of u, she has a strategy to reach
some copy of w. More formally, in Γ∗

s, if player ρ has a strategy π to reach (w, ℓd) from
(u, ℓs), then for all copies (u, ℓ′

s), she also has a strategy π′ to reach (w, ℓ′
d) for some ℓ′

d.

Proof. We define π′. Consider a finite feasible play λ(u,ℓ′
s) that ends in a player-ρ vertex

(v, j). Let π(Shift(λ(u,ℓ′
s), ℓs)) = (y, p). Define π′(λ(v,ℓ′

s)) = (y, NxtLyr(v, y, j)). Now, the
play Shift(λ(u,ℓ′

s), ℓs) is feasible and the strategy π′ is well defined because Γ∗
s is symmetrically

induced.
We argue why player ρ can reach a copy of w using π′. Let σ′ be an arbitrary strategy for

the other player, i.e., player (3− ρ). For any finite feasible play λ(u,ℓs) that ends in a player-
(3− ρ) vertex (v, j), let σ′(Shift(λ(u,ℓs), ℓ′

s)) = (y, p). Define σ(λ(u,ℓs)) = (y, NxtLyr(v, y, j)).
Again, Shift(λ(u,ℓs), ℓ′

s) is feasible and σ is well defined because Γ∗
s is symmetrically induced.

Now, it is straightforward to show by induction on k that the first components of
ω((u, ℓs), σ, π)k and ω((u, ℓ′

s), σ′, π′)k are the same. This means that if ω((u, ℓs), σ, π)k

reaches (w, ℓd), then ω((u, ℓ′
s), σ′, π′)k reaches (w, ℓ′

d) for some ℓ′
d. ◁

The following claim is a formal version of the first key idea.
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▷ Claim 27. If a vertex (v, ℓ) is in Dj , then Copies((v, ℓ)) ⊆ Dj ; and, (Γ∗)j has induced
symmetry.

Proof. We prove the claim by induction on j.

Base case, j = 0. If (v, ℓ) ∈ D0, then there is a player-2 strategy π1 to reach (w, p) ∈ S0.
The set S0 = V \ attr1(B∗, Γ∗) is a player-1 closed set by Observation 3: This means that
there is a player-2 strategy π2 to stay inside S0. By construction of Γ∗, any edge from a
non-layer-d vertex goes to the next layer or to layer-0. Then, since S0 ∩ B∗ = ∅, that is,
since S0 does not contain any layer-d vertices, any (infinite) play that stays inside S0 must
eventually return to layer-0. Thus, player 2 can first use π1 to reach (w, p) ∈ S0 from (v, ℓ),
then use π2 to reach (x, 0) ∈ S0 from (w, p); effectively, this gives a player-2 strategy to go
to (x, 0) ∈ S0 from (v, ℓ). Then, by Claim 26, player 2 has a strategy to reach a copy of
(x, 0) from (v, ℓ′) for any ℓ′ because Γ∗ itself has induced symmetry. Now, (x, 0) does not
have any other copy, this means player 2 has a strategy to reach (x, 0) ∈ S0 from (v, ℓ′). By
induced symmetry of Γ∗ again, we have that all copies of (v, ℓ), i.e., Copies((v, ℓ)) are in
Γ∗; moreover, by the above argument, for each of these copies, there is a player-2 strategy
to reach S0, which implies that Copies((v, ℓ)) ⊆ D0. Noting that (Γ∗)0 = Γ∗ has induced
symmetry finishes the base case.

Induction step, j ⩾ 1. By induction hypothesis, (Γ∗)j−1 has induced symmetry, and if a
vertex (v, ℓ) is in Dj−1, then Copies((v, ℓ)) ⊆ Dj−1. This implies that deleting Dj−1 from
(Γ∗)j−1 to get (Γ∗)j means deleting all copies of a vertex being deleted. Therefore, since
(Γ∗)j−1 has induced symmetry, (Γ∗)j also has induced symmetry.

Since Sj is a separating cut (by Lemma 19), it is a player-1 closed set. Thus, by the same
argument as in the base case that uses the induced symmetry of (Γ∗)j , if (v, ℓ) is in Dj , then
Copies((v, ℓ)) ⊆ Dj . This completes the induction step and the proof. ◁

The following claim is the formal proof of the second key idea.

▷ Claim 28. The set Sj contains at least 2i∗−1 distinct vertices.

Proof. The proof is similar to the proof of [11, Lemma 2.13] except that we must now argue
that all of the 2i∗−1 vertices are distinct. Consider the set Sj in the game graph of the
iteration before, i.e., we argue about Sj in (Γ∗)j

i∗−1. Note that we have the following two
cases.

In the first case, Sj contains a player-1 vertex (x, ℓ) for 1 ⩽ ℓ ⩽ d that is blue in (Γ∗)j
i∗−1.

Thus, (x, ℓ) has outdegree at least 2i∗−1 in (Γ∗)j
i∗ and none of these edges go to vertices

in V j \ Sj in (Γ∗)j
i∗ . Thus, Sj contains at least 2i∗−1 vertices. Note that vertex (x, ℓ) can

only have edges to vertices which are distinct to (x, ℓ), i.e., for all ((x, ℓ), (y, ℓ′)) ∈ E∗ we
have x ̸= y because the game graph Γ does not have self loops.
In the second case, all player-1 vertices in Sj are white in (Γ∗)j

i∗−1. Thus, their outedges
in (Γ∗)j

i∗ and (Γ∗)j
i∗−1 are identical. We now argue, why a player-2 vertex in Sj exists:

Assume for contradiction that no player-2 vertex in Sj exists. Hence, Sj is a separating
cut only consisting of player-1 vertices. As Sj is a separating cut in (Γ∗)j

i∗ we have
Sj ∩B = ∅. Thus, Sj is also a separating cut in (Γ∗)j

i∗−1. But then, by Lemma 20, the
algorithm would have terminated in iteration i∗ − 1 which is a contradiction because it
terminated in iteration i∗.
Note that repeat-until loop at Lines 7–13 would have stopped in iteration i∗ − 1 in
(Γ∗)j

i∗−1 as all player-1 vertices in Sj are white.
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Consider a player-2 vertex u in Sj . Note that u must have an edge (u, v) ∈ (E∗)j
i with

v ∈ Sj because Sj is a separating cut in (Γ∗)j
i∗ (Lemma 21). Again, there are two

possibilities:
For all player-2 vertices u ∈ Sj there exists a vertex v ∈ Sj with (u, v) ∈ (E∗)j

i∗−1.
But then Sj would be a separating cut in (Γ∗)j

i∗−1 as the outedges of player 1 are
identical in (Γ∗)j

i∗ and (Γ∗)j
i∗−1. By Lemma 20, the separating cut would have been

found in iteration i∗ − 1 of the repeat-until loop at Line 7, which is a contradiction.
Therefore, there exists a player-2 vertex u ∈ Sj that has an edge (u, v) ∈ (E∗)j

i∗ to a
vertex v ∈ Sj but this edge is not contained in (E∗)j

i∗−1. This can only happen if v has
at least 2i∗−1 other inedges in (E∗)j

i∗−1. Note that u is a player-2 vertex not in (B∗)j

(because all vertices of (B∗)j belong to Y j), and hence the edge (u, v) has priority 1
and recall that by the fixed inorder of edges priority-1 edges come before all priority-0
edges. Thus, it follows that since the edge (u, v) is not in (Γ∗)j

i∗−1, all inedges of v

that are in (Γ∗)j
i∗−1 must have priority 1 by the fixed order of inedges, that is, all the

inedges of v in (Γ∗)j
i∗−1 are from non-Büchi player-2 vertices. Note that v ∈ Sj and

since Sj is a separating cut and, thus, a closed set, all player-2 vertices which are not
in B∗ with an edge to v are also in Sj . Since v has at least 2i∗−1 inedges from player-2
vertices which are not in B∗, the set Sj must contain at least 2i∗−1 vertices.
Furthermore, all incoming edges are from distinct vertices: Note that v cannot be a
layer 0 vertex of Γ∗, because by Observation 22 all vertices in B of the given bounded
Büchi objective have no incoming edges from a player-2 vertex. Also, layer-d vertices
cannot be in Sj as they are in B∗ and would be in the player-1 attractor Y j

i∗ computed
at Line 10. All other vertices in Γ∗ have incoming edges only from distinct vertices.
Thus, all 2i∗−1 such vertices are distinct. ◁

Due to Claim 28, Sj contains at least 2i∗−1 distinct vertices, and since Sj ⊆ Dj , the set
Dj also contains all copies of all vertices in Sj due to Claim 27. All of Dj is deleted. We
resume from the detour. The time spent in all graphs (Γ∗)j

1, . . . , (Γ∗)j
i∗ , i.e., the time spent

in the repeat-until loop at Line 7 for the graph construction and the attractor computations,
sums up to O(2i∗ · nd). We charge O(nd) work to each distinct vertex. This accounts for all
the running time except for the last iteration of the outer loop. Since we always remove all
copies of a vertex v ∈ Sj , the algorithm deletes at most n distinct vertices throughout a run
of the algorithm. Thus, the total time spent over the whole algorithm other than the last
iteration is O(n2d).

The last iteration of the outer loop. In the last iteration j∗ of the outer loop, when no
vertex is deleted, the algorithm works on all log n game graphs, spending time O(n · 2i)
on game graph (Γ∗)j∗

i . Since each graph (Γ∗)j∗

i has at most nd · 2i+1 edges and there are
log n graphs, the total number of edges worked in the last iteration is

∑log n
i=1 nd · 2i+1 =

4nd
∑log n

i=1 2i−1 = 4nd(2log n − 1) = 4nd(n− 1) = O(n2d). ◀

▶ Theorem 29. The set of winning vertices for the bounded Büchi objective and bounded
coBüchi objectives in game graphs can be computed in time O(n2d) = O(n3).
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Abstract
Many properties of communication protocols stem from the combination of safety and liveness
properties. Characterizing such combined properties by means of a single inference system is
difficult because of the fundamentally different techniques (coinduction and induction, respectively)
usually involved in defining and proving them. In this paper we show that Generalized Inference
Systems allow for simple and insightful characterizations of (at least some of) these combined
inductive/coinductive properties for dependent session types. In particular, we illustrate the role of
corules in characterizing weak termination (the property of protocols that can always eventually
terminate), fair compliance (the property of interactions that can always be extended to reach client
satisfaction) and also fair subtyping, a liveness-preserving refinement relation for session types.
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1 Introduction

Session types [21, 22, 4, 23] describe communication protocols at the type level. By making
sure that processes use session channels according to their session type, a session type system
enables the modular enforcement of various desirable properties, including the absence of
communication errors, protocol fidelity and in some cases deadlock freedom. These are
all examples of safety properties, which are informally identified by the motto “nothing
bad ever happens” [28]. Less frequent are (session) type systems also enforcing liveness
properties, those identified by the motto “something good eventually happens”. In a network of
communicating processes, a typical example of liveness property is the fact that a protocol or
a process can always eventually terminate. It is well known that characterizations and proofs
of safety and liveness properties rely on fundamentally different (dual) techniques [24, 2, 3, 8]:
safety properties are usually based on invariance (coinductive) arguments, whereas liveness
properties are usually based on well foundedness (inductive) arguments. As a consequence,
it is generally difficult to characterize and enforce complex properties that exhibit a mixture
of safety and liveness by means of a single inference system (such as a session type system),
in which the inference rules are interpreted either all inductively or all coinductively.
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To tame such difficulty, in this work we advocate the use of Generalized Inference Systems
(GISs) [5, 16]. A GIS allows for the definition of predicates that are a fixed point of the
inference operator associated with the inference system, but not necessarily the least or the
greatest one. This is made possible by coaxioms and corules, whose purpose is to provide
an inductive definition of a space within which a coinductive definition is used. A recurring
example in the literature of GISs is the predicate maxElem(l, x), asserting that x is the
maximum element of a possibly infinite list l. If we consider the inference system

maxElem(x :: Λ, x)
maxElem(l, y)

maxElem(x :: l,max{x, y})

where Λ denotes the empty list and :: is the constructor, we can give two natural interpretations
to these rules. The inductive one, obtained by taking the least fixed point of the inference
operator, restricts the set of derivable judgments to those for which there is a well-founded
derivation tree. In this case, the maxElem predicate is sound but not complete, since it does
not hold for any infinite list, even those for which the maximum exists. The coinductive
interpretation of these rules, obtained by taking the greatest fixed point of the inference
operator, allows us to derive judgments by means of non-well-founded derivation trees. In this
case, the maxElem predicate is complete but not sound. In particular, it becomes possible
to derive any judgment maxElem(l, x) where x is greater than the elements of the list, but is
not an element of the list.

This is one situation in which the sought predicate is neither the least nor the greatest
fixed point of a given inference operator, but is somewhere “in between” the two extremes.
We can repair the above inference system by adding the following coaxiom:

maxElem(x :: l, x)
=================

Read naively, this coaxiom seems to assert that the first element of any list is also its
maximum. In the context of a GIS, however, its effect is that of ruling out those judgments
maxElem(l, x) in which x is not an element of the list. In a sense, the coaxiom adds a
well-foundedness element to the derivability of a judgment maxElem(l, x), by requiring that
x must be found in – at some finite distance from the head of – the list l.

The main contribution of this work is the realization that corules can be used to eas-
ily characterize properties of session types involving a mixture of coinduction/safety and
induction/liveness. We consider three such properties: weak termination (the property of
protocols that can always eventually terminate), fair compliance (the property of client/server
interactions that can always be extended to reach client satisfaction) and fair subtyping (a
liveness-preserving refinement relation for session types). We show how to provide sound and
complete characterizations of these properties just by adding a few corules to the inference
systems of their “unfair” counterparts, those focusing on safety but neglecting liveness. Not
only the added corules shed light on the liveness(-preserving) property of interest, but we can
conveniently appeal to the bounded coinduction principle of GISs [5] to prove the completeness
of the provided characterizations, thus factoring out a significant amount of work. We also
make two side contributions. First, the aforementioned characterizations are given for a
family of dependent session types [33, 34, 32, 14] in which the length and structure of the
protocol may depend in non-trivial ways on the content of exchanged messages. Thus, we
extend previously given characterizations of fair subtyping [29, 30] to a much larger class
of protocols. Second, we provide an Agda [27] formalization of all the notions and results
stated in the paper. In particular, we give the first machine-checked formalization of a
liveness-preserving refinement relation for (dependent) session types.
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The rest of the paper is structured as follows. We quickly recall the key definitions of GISs
in Section 2 and describe syntax and semantics of (dependent) session types in Section 3. We
define and characterize weak termination, fair compliance and fair subtyping in Sections 4–6
and conclude in Section 7. The Agda formalization is accessible from a public repository [15].

2 Generalized Inference Systems

In this section we briefly recall the key notions of Generalized Inference Systems (GISs). In
particular, we see how GISs enable the definition of predicates whose purely (co)inductive
interpretation does not yield the intended meaning and we review the canonical technique to
prove the completeness of a defined predicate with respect to a given specification. Further
details on GISs may be found in the existing literature [5, 16].

An inference system [1] I over a universe U of judgments is a set of rules, which are pairs
⟨pr , j⟩ where pr ⊆ U is the set of premises of the rule and j ∈ U is the conclusion of the rule.
A rule without premises is called axiom. Rules are typically presented using the syntax

pr
j

where the line separates the premises (above the line) from the conclusion (below the line).
▶ Remark 2.1. In many cases, and in this paper too, it is convenient to present inference
systems using meta-rules instead of rules. A meta-rule stands for a possibly infinite set of
rules, which are obtained by instantiating the meta-variables occurring in the meta-rule.
For example, the rules for maxElem discussed in Section 1 are meta-rules referring to the
meta-variables x, y and l. The actual rules of the discussed inference system result from all
possible instantiations of such meta-variables with numbers and (possibly infinite) lists. In
the rest of the paper we will not insist on this distinction and we will use “(co)rule” even
when referring to meta-(co)rules. If necessary, we will use side conditions to constrain the
valid instantiations of the meta-variables occurring in such meta-(co)rules. ⌟

An interpretation of an inference system I identifies a subset of U whose elements are
called derivable judgments. To define the interpretation of an inference system I, consider
the inference operator associated with I, which is the function FI : ℘(U) → ℘(U) such that

FI(X) = {j ∈ U | ∃pr ⊆ X : ⟨pr , j⟩ ∈ I}

for every X ⊆ U . Intuitively, FI(X) is the set of judgments that can be derived in one step
from those in X by applying a rule of I. Note that FI is a monotone endofunction on the
complete lattice ℘(U), hence it has least and greatest fixed points.

▶ Definition 2.2. The inductive interpretation IndJIK of an inference system I is the least
fixed point of FI and the coinductive interpretation CoIndJIK is the greatest one.

From a proof theoretical point of view, IndJIK and CoIndJIK are the sets of judgments
derivable with well-founded and non-well-founded proof trees, respectively.

Generalized Inference Systems enable the definition of (some) predicates for which neither
the inductive interpretation nor the coinductive one give the expected meaning.

▶ Definition 2.3 (generalized inference system). A generalized inference system is a pair
⟨I, Ico⟩ where I and Ico are inference systems whose elements are called rules and corules,
respectively. The interpretation of a generalized inference system ⟨I, Ico⟩, denoted by
GenJI, IcoK, is the greatest post-fixed point of FI that is included in IndJI ∪ IcoK.
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From a proof theoretical point of view, a GIS ⟨I, Ico⟩ identifies the set of judgments that
are derivable with an arbitrary (not necessarily well-founded) proof tree in I and whose nodes
(the judgments occurring in the proof tree) are all derivable with a well-founded proof tree in
I ∪ Ico. Recalling maxElem from Section 1, the judgments referring to a “maximum” which
does not belong to the list are ruled out since they cannot be derived using a well-founded
proof tree in the inference system with the coaxiom.

Consider now a specification S ⊆ U that contains the valid judgments. We can relate
S to the interpretation of a (generalized) inference system using one of the following proof
principles. The induction principle allows us to prove the soundness of an inductively defined
predicate by showing that S is closed with respect to I. That is, whenever the premises of a
rule of I are all in S, then the conclusion of the rule is also in S.

▶ Proposition 2.4. If FI(S) ⊆ S, then IndJIK ⊆ S.

The coinduction principle allows us to prove the completeness of a coinductively defined
predicate by showing that S is consistent with respect to I. That is, every judgment of S is
the conclusion of a rule whose premises are also in S.

▶ Proposition 2.5. If S ⊆ FI(S), then S ⊆ CoIndJIK.

The bounded coinduction principle allows us to prove the completeness of a predicate
defined by a generalized inference system ⟨I, Ico⟩. In this case, one needs to show not
only that S is consistent with respect to I, but also that S is bounded by the inductive
interpretation of the inference system I ∪ Ico. Formally:

▶ Proposition 2.6. If S ⊆ IndJI ∪ IcoK and S ⊆ FI(S), then S ⊆ GenJI, IcoK.

Proving the boundedness of S amounts to proving the completeness of I ∪Ico (inductively
interpreted) with respect to S. All of the GISs that we are going to discuss in Sections 4–6
are proven complete using the bounded coinduction principle.

3 Syntax and Semantics of Dependent Session Types

We assume a set V of values that can be exchanged in communications. This set may include
booleans, natural numbers, strings, and so forth. Hereafter, we assume that V contains at
least two elements, otherwise branching protocols cannot be described and the theoretical
development that follows becomes trivial. We use x, y, z to range over the elements of V.

We define the set S of dependent session types over V using coinduction, to account for
the possibility that session types (and the protocols they describe) may be infinite.

▶ Definition 3.1. Let S be the largest set such that T ∈ S implies either T = nil or T = ?f or
T = !f where f ∈ V → S is a total function from V to S. We use T , S and R to range over
elements of S and f , g to range over elements of V → S. We say that T ∈ S is a (dependent)
session type over V and that f ∈ V → S is a continuation over V.

A session type can be of three forms. An input session type ?f describes a channel used
first for receiving a message x ∈ V and then according to f(x). An output session type
!f describes a channel used first for sending a message x ∈ V and then according to f(x).
Finally, the session type nil describes an unusable session channel. As we will see shortly, we
use nil in combination with input and output session types to describe unexpected inputs
and impossible outputs. We call the functions f continuations since they take as input a
message (the one being exchanged on the session channel) and compute the session type that
describes the usage of the channel after the exchange. Continuations allow us to describe
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protocols whose structure depends on previously exchanged messages. We do not detail
the concrete language in which continuations are specified, but in practice they will be a
small subset of the computable functions. For example, in our Agda formalization [15, file
SessionType.agda] continuations are well-typed Agda functions. This way, we can leverage
on Agda and its library [27] for constructing dependent session types.
▶ Remark 3.2. Session types as defined in Definition 3.1 are isomorphic to the possibly
infinite trees coinductively generated by the productions

S, T ::= nil | ?{x : Tx}x∈V | !{x : Tx}x∈V

where we represent continuations f with their graph {x : f(x)}x∈V. The structure of session
types we have chosen in Definition 3.1, besides suggesting an effective representation of
dependent session types, is also aimed at streamlining as much as possible not only the
syntax but also the semantics of session types. In the end, this choice allowed us to reduce
the inevitable complexity bloat that we had to face when formalizing these notions and the
related proofs in Agda [15]. ⌟

It is convenient to introduce some notation for presenting session types in a more readable
and familiar form. Given a set X ⊆ V of values, we write X.T for the continuation

(X.T )(x) def=
{
T if x ∈ X

nil otherwise

so that we can write session types like !B.T (send a boolean and continue as T ) and ?N.S
(receive a natural number and continue as S). We abbreviate {x} with x when no confusion
may arise. So we write !true.T instead of !{true}.T . We let ?end def= ?∅.nil and !end def= !∅.nil.
Both ?end and !end describe session channels on which no further communications may occur,
although they differ slightly with respect to the session types they can be safely combined
with (more on this later). We also define a partial binary operation ⊔ on session types
such that nil ⊔ T = T ⊔ nil = T and that is undefined otherwise. We extend this operation
pointwise to continuations, so that (f ⊔ g)(x) = f(x) ⊔ g(x). It is intended that f ⊔ g is
undefined if so is f(x) ⊔ g(x) for some x ∈ V. We can now express the familiar external and
internal choice of session types as the (partial) operations + and ⊕ defined by

?f + ?g def= ?(f ⊔ g) !f ⊕ !g def= !(f ⊔ g)

It it easy to see that + and ⊕ are commutative and associative and respectively have
?end and !end as units. We assume that they bind less tightly than the “.” in continuations.
Finally, we let dom(f) def= {x ∈ V | f(x) ̸= nil} be the proper domain of the continuation f ,
namely the set of messages for which f yields a session type other than nil.

▶ Example 3.3. The session types T1 and S1 that satisfy the equations

T1 = !true.!N.T1 ⊕ !false.?end S1 = !true.!N+.S1 ⊕ !false.?end

both describe a channel used for sending a boolean. If the boolean is false, the communication
stops immediately (?end). If it is true, the channel is used for sending a natural number (a
strictly positive one in S1) and then according to T1 or S1 again. Notice how the structure
of the protocol after the output of the boolean depends on the value of the boolean.

The session types T2 and S2 that satisfy the equations

T2 = ?true.!N.T2 + ?false.?end S2 = ?true.!N+.S2 + ?false.?end

differ from T1 and S1 in that the channel they describe is used initially for receiving a boolean.
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As a final example, the session type T3 = !f where

f(0) = T3 f(n+ 1) = !B.f(n)

describes an channel used for sending streams of sequences beginning with a natural number
n followed by n boolean messages. ⌟

We define the operational semantics of session types by means of a labeled transition
system. Labels, ranged over by α, β, γ, have either the form ?x (input of message x) or the
form !x (output of message x). Transitions T α−→ S are defined by the following axioms:

[t-input]

?f ?x−→ f(x)

[t-output]

!f !x−→ f(x)
x ∈ dom(f)

There is a fundamental asymmetry between send and receive operations: the act of
sending a message is active – the sender may choose the message to send – while the act of
receiving a message is passive – the receiver cannot cherry-pick the message being received.
We model this asymmetry with the side condition x ∈ dom(f) in [t-output] and the lack
thereof in [t-input]: a process that uses a session channel according to !f refrains from
sending a message x if x ̸∈ dom(f), whereas a process that uses a session channel according to
?f cannot decide which message x it will receive, but the session channel becomes unusable if
an unexpected message arrives. These transition rules allow us to appreciate a little more the
difference between !end and ?end. While both describe a session endpoint on which no further
communications may occur, !end is “more robust” than ?end since it has no transitions,
whereas ?end is “more fragile” than !end since it performs transitions, all of which lead to nil.
For this reason, we use !end to flag successful session termination (Section 5), whereas ?end
only means that the protocol has ended.

To describe sequences of consecutive transitions performed by a session type we use
another relation φ=⇒ where φ and ψ range over strings of labels. As usual, ε denotes the
empty string and juxtaposition denotes string concatenation. The relation φ=⇒ is the least
one such that T ε=⇒ T and if T α−→ S and S

φ=⇒ R, then T
αφ=⇒ R.

4 Weak Termination

A session type is weakly terminating if it preserves the possibility of reaching !end or ?end
along all of its transitions that do not lead to nil. Weak termination of T does not necessarily
imply that there exists an upper bound to the length of communications that follow the
protocol T , but it guarantees the absence of “infinite loops” whereby the communication is
forced to continue forever.

To formalize weak termination we need the notion of trace, which is a finite sequence of
actions performed on a session channel while preserving usability of the channel.

▶ Definition 4.1 (traces and maximal traces). The traces of T are defined as tr(T ) def= {φ |
∃S : T φ=⇒ S ̸= nil}. We say that φ ∈ tr(T ) is maximal if φψ ∈ tr(T ) implies ψ = ε.

For example, we have tr(nil) = ∅ and tr(!end) = tr(?end) = {ε}. Note that !end and
?end have the same traces but different transitions (hence different behaviors). A maximal
trace is a trace that cannot be extended any further. For example ε is a maximal trace of
both !end and ?end but not of !B.?end whereas !true and !false are maximal traces of !B.?end.
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[nil]

nil⇓

[in]
f(x)⇓ (∀x∈V)

?f⇓

[out]
f(x)⇓ (∀x∈V)

!f⇓

[co-in]
f(x)⇓

?f⇓
===== x ∈ dom(f)

[co-out]
f(x)⇓

!f⇓
===== x ∈ dom(f)

Figure 1 Generalized inference system ⟨T , Tco⟩ for weak termination.

▶ Definition 4.2 (weak termination). We say that T is weakly terminating if, for every
φ ∈ tr(T ), there exists ψ such that φψ ∈ tr(T ) and φψ is maximal.

▶ Example 4.3. All of the session types presented in Example 3.3 except T3 are weakly
terminating. The session type T3 is not weakly terminating because no trace of T3 can
be extended to a maximal one. Note that also S3

def= !true.T3 ⊕ !false.?end is not weakly
terminating, even though there is a path leading to ?end, because weak termination must be
preserved along all possible transitions of the session type, whereas S3

!true−−→ T3 and T3 is not
weakly terminating. Finally, nil is trivially weakly terminating since it has no trace. ⌟

To find an inference system for weak termination observe that the set W of weakly
terminating session types is the largest one that satifies the following two properties: (1) it
must be possible to reach either !end or ?end from every T ∈ W \ {nil}; (2) the set W must
be closed by transitions, namely if T ∈ W and T

α−→ S then S ∈ W. Neither of these two
properties, taken in isolation, suffices to define W: the session type S3 from Example 4.3
enjoys property (1) but is not weakly terminating; the set S is obviously the largest one with
property (2), but not every session type is weakly terminating. This suggests the definition
of W as the largest subset of S satisfying (2) and whose elements are bounded by property
(1), which is precisely what corules allow us to specify.

Figure 1 shows a GIS ⟨T , Tco⟩ for weak termination, where T consists of all the (singly-
lined) rules whereas Tco consists of all the (doubly-lined) corules (we will follow these naming
and syntactic conventions also in the subsequent GISs). The axiom [nil] indicates that nil
is weakly terminating in a trivial way (it has no trace), while rules [in] and [out] indicate
that weak termination is closed by transitions. Note that these three rules, interpreted
coinductively, are satisfied by all session types, hence {T | T⇓ ∈ CoIndJT K} = S.

▶ Theorem 4.4. T is weakly terminating if and only if T⇓ ∈ GenJT , TcoK.

The proof of the “if” part of Theorem 4.4 crucially relies on the corules to extend each trace
of T to a maximal one. Indeed, suppose T⇓ ∈ GenJT , TcoK and consider a trace φ ∈ tr(T ).
That is, T φ=⇒ S for some S ̸= nil. Using [in] and [out] we deduce S⇓ ∈ GenJT , TcoK by
means of a simple induction on φ. Now S⇓ ∈ GenJT , TcoK implies S⇓ ∈ IndJT ∪ TcoK by
Definition 2.3. Another induction on the (well-founded) derivation of this judgment, along
with the witness messages of [co-in] and [co-out], allows us to find ψ such that φψ is a
maximal trace of T .

5 Compliance

In this section we define and characterize two compliance relations for session types, which
formalize the “successful” interaction between a client and a server connected by a session.
The notion of “successful interaction” that we consider is biased towards client satisfaction,
but see Remark 6.7 below for a discussion about alternative notions. To formalize compliance
we need to model the evolution of a session as client and server interact. To this aim, we
represent a session as a term R ∥ T where R describes the behavior of the client and T that
of the server. Sessions reduce according to the rule
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R ∥ T → R′ ∥ S′ if R α−→ R′ and T
α−→ T ′

where α is the complementary action of α defined by ?x = !x and !x = ?x. We extend · to
traces in the obvious way and we write ⇒ for the reflexive, transitive closure of →. We write
R ∥ T → if R ∥ T → R′ ∥ T ′ for some R′ and T ′ and R ∥ T X→ if not R ∥ T →.

The first compliance relation that we consider requires that, if the interaction in a session
stops, it is because the client “is satisfied” and the server “has not failed” (recall that a
session type can turn into nil only if an unexpected message is received). Formally:

▶ Definition 5.1 (compliance). We say that R is compliant with T if R ∥ T ⇒ R′ ∥ T ′ X→
implies R′ = !end and T ′ ̸= nil.

This notion of compliance is an instance of safety property in which the invariant being
preserved at any stage of the interaction is that either client and server are able to synchronize
further, or the client is satisfied and the server has not failed.

The second compliance relation that we consider adds a liveness requirement namely
that, no matter how long client and server have been interacting with each other, it is always
possible to reach a configuration in which the client is satisfied and the server has not failed.

▶ Definition 5.2 (fair compliance). We say that R is fair compliant with T if R ∥ T ⇒ R′ ∥ T ′

implies R′ ∥ T ′ ⇒ !end ∥ T ′′ with T ′′ ̸= nil.

It is easy to show that fair compliance implies compliance, but there exist compliant
session types that are not fair compliant, as illustrated in the following example.

▶ Example 5.3. Recall Example 3.3 and consider the session types R1 and R2 such that

R1 = ?true.?N.R1 + ?false.!end R2 = !true.(?0.!end + ?N+.R2)

Then R1 is fair compliant with both T1 and S1 and R2 is compliant with both T2 and S2.
Even if S1 exhibits fewer behaviors compared to T1 (it never sends 0 to the client), at the
beginning of a new iteration it can always send false and steer the interaction along a path
that leads R1 to success. On the other hand, R2 is fair compliant with T2 but not with S2.
In this case, the client insists on sending true to the server in hope to receive 0, but while
this is possible with the server T2, the server S2 only sends strictly positive numbers.

This example also shows that weak termination of both client and server is not sufficient,
in general, to guarantee fair compliance. Indeed, both R2 and S2 are weakly terminating,
but they are not fair compliant. The reason is that the sequences of actions leading to !end
on the client side are not necessarily the same (complemented) traces that lead to ?end on
the server side. Fair compliance takes into account the synchronizations that can actually
occur between client and server. ⌟

Figure 2 presents the GIS ⟨C, Cco⟩ for fair compliance. Rule [win] relates a satisfied
client with a non-failed server. Rules [in-out] and [out-in] require that, no matter which
message is exchanged between client and server, the respective continuations are still fair
compliant. The side conditions dom(f) ̸= ∅ and dom(g) ̸= ∅ guarantee progress by making
sure that the sender is capable of sending at least one message. As we will see, the coinductive
interpretation of C, which consists of these three rules, completely characterizes compliance
(Definition 5.1). However, these rules do not ensure that the interaction between client and
server can always reach a successful configuration as required by Definition 5.2. For this, the
corules [co-in-out] and [co-out-in] are essential.
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[in-out]
f(x) ⊣ g(x) (∀x∈dom(g))

?f ⊣ !g
dom(g) ̸= ∅

[out-in]
f(x) ⊣ g(x) (∀x∈dom(f))

!f ⊣ ?g
dom(f) ̸= ∅

[win]

!end ⊣ T
T ̸= nil

[co-in-out]
f(x) ⊣ g(x)

?f ⊣ !g
=========== x ∈ dom(g)

[co-out-in]
f(x) ⊣ g(x)

!f ⊣ ?g
=========== x ∈ dom(f)

Figure 2 Generalized inference system ⟨C, Cco⟩ for fair compliance.

▶ Theorem 5.4 (compliance). For every R, T ∈ S, the following properties hold:
1. R is compliant with T if and only if R ⊣ T ∈ CoIndJCK;
2. R is fair compliant with T if and only if R ⊣ T ∈ GenJC, CcoK.

To illustrate the role of the corules, let us sketch the proof that the GIS in Figure 2 is
sound with respect to fair compliance. Suppose that R ⊣ T ∈ GenJC, CcoK and consider a
reduction R ∥ T ⇒ R′ ∥ T ′. An induction on the length of this reduction, along with [in-out]
and [out-in], allows us to deduce R′ ⊣ T ′ ∈ GenJC, CcoK. Then we have R′ ⊣ T ′ ∈ IndJC ∪ CcoK
by Definition 2.3. An induction on this (well-founded) derivation allows us to find a reduction
R′ ∥ T ′ ⇒ !end ∥ T ′′ such that T ′′ ̸= nil.

Observe that the corules are at once essential and unsound. For example, without them
we would be able to derive the judgment R2 ⊣ S2 despite the fact that R2 is not fair compliant
with S2 (Example 5.3). At the same time, if we treated corules as plain rules, we would be able
to derive the judgment !N.!end ⊣ ?0.?end despite the reduction !N.!end ∥ ?0.?end → !end ∥ nil
since there exists an interaction that leads to the successful configuration !end ∥ ?end (if the
client sends 0) but none of the others does.

6 Subtyping

The notions of compliance given in Section 5 induce corresponding semantic notions of
subtyping, which embed a substitution principle for session types. The key idea is the same
used for defining testing equivalences for processes [26, 20, 31], except that we use the term
“client” instead of the term “test”. Therefore, T is a subtype of S if any client that successfully
interacts with T does so with S as well.

▶ Definition 6.1 (subtyping). We say that T is a subtype of S if R compliant with T implies
R compliant with S for every R.

▶ Definition 6.2 (fair subtyping). We say that T is a fair subtype of S if R fair compliant
with T implies R fair compliant with S for every R.

According to these definitions, when T is a (fair) subtype of S, a process that behaves
according to T can be replaced by a process that behaves according to S without compromising
(fair) compliance with the clients of T . At first sight this substitution principle appears to be
just the opposite of the expected/intended one, whereby it is safe to use a session channel of
type T where a session channel of type S is expected if T is a subtype of S. The mismatch
is only apparent, however, and can be explained by looking carefully at the entities being
replaced in the substitution principles recalled above (processes in one case, session channels
in the other). The interested reader may refer to Gay [18] for a nice study of these two
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[nil]

nil ⩽ T

[end]

p end ⩽ T
T ̸= nil

[converge]
∀φ ∈ tr(T ) \ tr(S) : ∃ψ ≤ φ, x ∈ V : T (ψ!x) ⩽ S(ψ!x)

T ⩽ S
=====================================================

[in]
f(x) ⩽ g(x) (∀x∈dom(f))

?f ⩽ ?g
dom(f) ̸= ∅
dom(f) ⊆ dom(g)

[out]
f(x) ⩽ g(x) (∀x∈dom(g))

!f ⩽ !g
dom(g) ̸= ∅
dom(g) ⊆ dom(f)

Figure 3 Generalized inference system ⟨F , Fco⟩ for fair subtyping.

different, yet related viewpoints. What matters here is that the above notions of subtyping
are “correct by definition” but do not provide any hint as to the shape of two session types
T and S that are related by (fair) subtyping. This problem is well known in the semantic
approaches for defining subtyping relations [17, 7] as well as in the aforementioned testing
theories for processes [26, 20, 31], which the two definitions above are directly inspired from.
Therefore, it is of paramount importance to provide equivalent characterizations of these
relations, particularly in the form of inference systems.

The GIS ⟨F ,Fco⟩ for (fair) subtyping is shown in Figure 3 and described hereafter.
Rule [nil] states that nil is the least element of the subtyping preorder, which is justified
by the fact that no client successfully interacts with nil. Rule [end] establishes that ?end
and !end are the least elements among all session types different from nil. In our theory, this
relation arises from the asymmetric form of compliance we have considered: a server p end
satisfies only !end, which successfully interacts with any server different from nil. Rules [in]
and [out] indicate that inputs are covariant and outputs are contravariant. That is, it is safe
to replace a server with another one that receives a superset of messages (dom(f) ⊆ dom(g)
in [in]) and, dually, it is safe to replace a server with another one that sends a subset of
messages (dom(g) ⊆ dom(f) in [out]). The side condition dom(g) ̸= ∅ in [out] is important
to preserve progress: if the server that behaves according to the larger session type is unable
to send any message, the client may get stuck waiting for a message that is never sent. On
the other hand, the side condition dom(f) ̸= ∅ is unnecessary from a purely technical view
point, since the rule [in] without this side condition is subsumed by [end]. We have included
the side condition to minimize the overlap between different rules and for symmetry with
respect to [out]. Overall, these rules are aligned with those of the subtyping relation for
session types given by Gay and Hole [19] (see also Remark 6.7).

To discuss the corule [converge] that characterizes fair subtyping we need to introduce
one last piece of notation concerning session types.

▶ Definition 6.3 (residual of a session type). Given a session type T and a trace φ of T we
write T (φ) for the residual of T after φ, namely for the session type S such that T φ=⇒ S.

The notion of residual is well defined since session types are deterministic: if T φ=⇒ S1
and T

φ=⇒ S2, then S1 = S2. It is implied that T (φ) is undefined if φ ̸∈ tr(T ).
For the sake of presentation we describe the corule [converge] incrementally, showing

how it contributes to the soundness proof of the GIS in Figure 3. In doing so, it helps bearing
in mind that the relation T ⩽ S is meant to preserve fair compliance (Definition 5.2), namely
the possibility that any client of T can terminate successfully when interacting with S. As a
first approximation observe that, when the traces of T are included in the traces of S, the
corule [converge] boils down to the following coaxiom:
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T ⩽ S
====== tr(T ) ⊆ tr(S)

Now consider a client R that is fair compliant with T . It must be the case that R ∥ T ⇒
!end ∥ T ′ for some T ′ ̸= nil, namely that R φ=⇒ !end and T

φ=⇒ T ′ for some sequence φ of
actions. The side condition tr(T ) ⊆ tr(S) ensures that φ is also a trace of S, therefore
R ∥ S ⇒ !end ∥ S′ for the S′ ̸= nil such that S φ=⇒ S′. In general, we know from rule [out]
that S may perform fewer outputs than T , hence not every trace of T is necessarily a trace
of S. Writing ≤ for the prefix order relation on traces, the premises

∀φ ∈ tr(T ) \ tr(S) : ∃ψ ≤ φ, x ∈ V : T (ψ!x) ⩽ S(ψ!x)

of [converge] make sure that, for every trace φ of T that is not a trace of S, there exists a
common prefix ψ of T and S and an output action !x shared by both T (ψ) and S(ψ) such
that the residuals of T and S after ψ!x are one level closer, in the proof tree for T ⩽ S, to
the residuals of T and S for which trace inclusion holds. The fact that ψ must be followed by
an output !x is fundamental, since the client R must be able to accept all the outputs of T .

Note that the corule is unsound in general. For instance, !0.?end ⩽ !N.?end is derivable
by [converge] since tr(!0.?end) ⊆ tr(!N.?end), but !0.?end is not a subtype of !N.?end.

▶ Example 6.4. Consider once again the session types Ti and Si of Example 3.3. It is easy
to see that Ti ⩽ Si ∈ CoIndJFK for i = 1, 2. In order to derive Ti ⩽ Si in the GIS ⟨F ,Fco⟩
we must find a well-founded proof tree of T ⩽ S in F ∪ Fco and the only hope to do so
is by means of [converge], since Ti and Si share traces of arbitrary length. Observe that
every trace φ of T1 that is not a trace of S1 has the form (!true!pk)k!true!0 . . . where pk ∈ N+.
Thus, it suffices to take ψ = ε and x = 0, noted that T1(!0) = S1(!0) = ?end, to derive

=========
?end ⩽ ?end
=========
T1 ⩽ S1

with two applications of [converge]. On the other hand, every trace φ ∈ tr(T2) \ tr(S2)
has the form (?true!pk)k?true!0 . . . where pk ∈ N+. All the prefixes of such traces that are
followed by an output and are shared by both T2 and S2 have the form (?true!pk)k?true where
pk ∈ N+, and T2(ψ!p) = T2 and S2(ψ!p) = S2 for all such prefixes and p ∈ N+. It follows that
we are unable to derive T2 ⩽ S2 with a well-founded proof tree in F ∪ Fco. This is consistent
with the fact that, in Example 5.3, we have found a client R2 that is fair compliant with
T2 but not with S2. Intuitively, R2 insists on poking the server waiting to receive 0. This
can eventually happen with T2, but not with S2. In the case of T1 and S1 no such client can
exist, since the server may decide to interrupt the interaction at any time by sending a false
message to the client. ⌟

Example 6.4 also shows that fair subtyping is a context-sensitive relation in that the
applicability of a rule for deriving T ⩽ S may depend on the context in which T and S occur.
For instance, in the non-well-founded derivation

...
T1 ⩽ S1

[out]
!N.T1 ⩽ !N+.S1

[end]
?end ⩽ ?end

[out]
T1 ⩽ S1

(1)
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the rule [out] is used infinitely many times to relate the output session types !N.T1 and
!N+.S2. In this context, rule [out] can be applied harmlessly. On the contrary, if we attempt
to find a derivation for T2 ⩽ S2 we obtain the non-well-founded tree

...
T2 ⩽ S2

[out]
!N.T2 ⩽ !N+.S2

[end]
?end ⩽ ?end

[in]
T2 ⩽ S2

(2)

which is isomorphic to the one shown in Equation (1) with the difference that some applications
of [out] have been replaced by applications of [in]. Here too [out] is used infinitely many
times, but this time to relate the output session types !N.T2 and !N+.S2. This derivation
allows us to prove T2 ⩽ S2 ∈ CoIndJFK, but not T2 ⩽ S2 ∈ GenJF ,FcoK, because [out]
removes the 0 output from S2 that a client of T2 may depend upon.
▶ Remark 6.5. As observed by one reviewer, rule [converge] is hard not only to understand,
but also to formalize in Agda. We have been unable to conceive a sound and complete GIS
for fair subtyping that is based on simpler corules, but it should be noted that the property
enforced by [converge] is fundamentally non-local and therefore difficult to express in terms
of immediate subtrees of a session type. To illustrate the point, consider the following
alternative set of corules meant to replace [converge] in Figure 3:

[co-inc]

T ⩽ S
====== tr(T ) ⊆ tr(S)

[co-in]
f(x) ⩽ g(x) (∀x∈dom(f))

?f ⩽ ?g
======================

[co-out]
f(x) ⩽ g(x)

!f ⩽ !g
=========== x ∈ dom(f)∩dom(g)

It is easy to see that these rules provide a sound approximation of [converge], but they are
not complete. Indeed, consider the session types T = ?true.T +?false.(!true.?end⊕ !false.?end)
and S = ?true.S + ?false.!true.?end. We have T ⩽ S and yet T ⩽Ind S cannot be proved with
the above corules: it is not possible to prove T ⩽Ind S using [co-inc] because tr(T ) ̸⊆ tr(S).
If, on the other hand, we insist on visiting both branches of the topmost input as required
by [co-in], we end up requiring a proof of T ⩽Ind S in order to derive T ⩽Ind S. ⌟

▶ Theorem 6.6. For every T, S ∈ S the following properties hold:
1. T is a subtype of S if and only if T ⩽ S ∈ CoIndJFK;
2. T is a fair subtype of S if and only if T ⩽ S ∈ GenJF ,FcoK.

▶ Remark 6.7. Most session type theories adopt a symmetric form of session type compatibility
whereby client and server are required to terminate the interaction at the same time. It is easy
to define a notion of symmetric compliance (also known as peer compliance [7]) by turning
T ′ ≠ nil into T ′ = ?end in Definition 5.1. The subtyping relation induced by symmetric
compliance has essentially the same characterization of Definition 6.1, except that the axiom
[end] is replaced by the more familiar p end ⩽ q end [19]. On the other hand, the analogous
change in Definition 5.2 has much deeper consequences: the requirement that client and
server must end the interaction at the same time creates a large family of session types that
are syntactically very different, but semantically equivalent. For example, the session types
T and S such that T = ?N.T and S = !B.S, which describe completely unrelated protocols,
would be equivalent for the simple reason that no client successfully interacts with them
(they are not weakly terminating, since they do not contain any occurrence of end). We
have not investigated the existence of a GIS for fair subtyping induced by symmetric fair
compliance. A partial characterization (which however requires various auxiliary relations) is
given by Padovani [30]. ⌟
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7 Concluding Remarks

We have shown that generalized inference systems are an effective framework for defining
sound and complete proof systems of (some) combined safety and liveness properties of
(dependent) session types (Definitions 4.2 and 5.2), as well as of a liveness-preserving subtyping
relation (Definition 6.2). We think that this achievement is more than a coincidence. One
of the fundamental results in model checking states that every property can be expressed
as the conjunction of a safety property and a liveness property [2, 3, 6]. The connections
between safety and liveness on one side and coinduction and induction on the other make
GISs appropriate for characterizing combined safety and liveness properties.

Murgia [25] studies a wide range of compliance relations for processes and session types,
showing that many of them are fixed points of a functional operator, but not necessarily the
least or the greatest ones. In particular, he shows that progress compliance, which is akin to
our compliance (Definition 5.1), is a greatest fixed point and that should-testing compliance,
which is akin to our fair compliance (Definition 5.2), is an intermediate fixed point. These
results are consistent with Theorem 5.4. We have extended these results to subtyping
(Definition 6.1) and fair subtyping (Definition 6.2). Previous alternative characterizations
of fair subtyping and the related should-testing preorder either require several different
relations [29, 30] or are denotational in nature [31] and therefore not as insightful as desirable.
Using GISs, we have obtained complete characterizations of fair compliance and fair subtyping
by simply adding a few corules to the proof systems of their “unfair” counterparts.

We have coded all the notions and results discussed in the paper in Agda [27], thus
providing the first machine-checked formalization of liveness properties and liveness-preserving
subtyping relations for dependent session types. Theorem 4.4 and item (2) of Theorems 5.4
and 6.6 are proved considering V = B instead of an arbitrary set of values. This is because
the version of the Agda library for GISs [11, 13] used for the formalization does not support
(co)rules with infinitely many premises, which are necessary if V is infinite. However, all of the
key aspects of the characterizations of weak termination, fair compliance and fair subtyping
already emerge in this simplified setting. The Agda formalization is not entirely constructive
since it makes use of three postulates: the law of excluded middle, the extensionality axiom
and the duality between a universally quantified, inductive characterization of convergence
(see [converge] in Figure 3) and its negation, which is characterized using an existentially
quantified, coinductive definition. Note that the Agda library for GISs is a standalone
development [11, 13, 12], on top of which we have built our own [15]. This makes it easy to
extend our results to other families of processes or to different properties.

In this paper we have focused on properties of session types alone. The most important
piece of future work that we plan to carry out next is the development of a session type
system making use of fair subtyping for the enforcement of liveness properties of processes.
This problem has remained open for a long time [29, 30] because the integration of fair
subtyping into a coinductively-interpreted session type system is (unsurprisingly) challenging.
By contrast, session type systems making use of safety-preserving subtyping relations are
quite widespread [19, 9, 23, 10]. The achievements described in this paper suggest that GISs
could provide just the right framework for defining such type system. Somewhat connected
with this future development is also the handling of delegation and therefore of higher-order
session types. Previous developments [30] have shown that delegation is orthogonal to the
characterizing features of fair subtyping, since the communication of session channels does not
(usually) affect the branching structure of session types (but there are a few exceptions [9, 10]).
For this reason, we think that this extension can be accounted for without substantial issues.
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Abstract
We show that it is decidable whether two regular languages of infinite trees are separable by
a deterministic language, resp., a game language. We consider two variants of separability, depending
on whether the set of priorities of the separator is fixed, or not. In each case, we show that separability
can be decided in EXPTIME, and that separating automata of exponential size suffice. We obtain
our results by reducing to infinite duration games with ω-regular winning conditions and applying
the finite-memory determinacy theorem of Büchi and Landweber.
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1 Introduction

One of the most intriguing and motivating problems in the field of automata theory is the
membership problem. For two fixed classes of languages C (input class) and D (output class),
the pC, Dq-membership problem asks, given a representation of a language in C, whether
this language belongs to D. Among the first results of this type is the famous theorem by
Schutzenberger [40] and McNaughton-Papert [30], characterising, among all regular languages
of finite words, the subclass of languages that can be defined in first-order logic.

In this paper we consider the class C of regular languages of infinite trees. While there
are many semantically equivalent automata models for this class – e.g., Muller, Rabin,
and Street automata [27] – parity automata are without doubt the most established such
model [25]. The most important descriptional complexity measure of a parity automaton
is the set of priorities C Ď N it is allowed to use, which is called its index. Not only a
larger index allows the automaton to recognise more languages [32], but the computational
complexity of known procedures for the emptiness problem crucially depends on the index
(the current best bound is quasi-polynomial [8]). The most famous open problem in the
area of regular languages of infinite trees is the nondeterministic index membership problem,
which is the pC, Dq-membership problem for D the class of languages recognised by some
nondeterministic parity automaton of a fixed index C (cf. [18]). In many cases, the solution of
the membership problem relies either on algebraic representations or determinisation, however
algebraic structures for regular languages of infinite trees are of limited availability (cf. [2])
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and deterministic automata do not capture all regular languages. While on infinite words
this problem was essentially solved by Wagner already at the end of the ’70s [43], its solution
for infinite trees seems still far away.

Known decidability results abound if we restrict either the input class C or the output
class D. Results of the first kind are known for C being the class of deterministic [35] and,
more generally, game automata [26, Theorem 1.2]. Results of the second kind (i.e., when
the input class C is the full class of regular languages) exist for the output class D being
the lower levels of the index hierarchy [29, 44] and of the Borel hierarchy [4], the class of
deterministic languages [33], and Boolean combinations of open sets [6]. Other variants
of the index membership problem are known to be decidable, including the early result of
Urbański showing that it is decidable whether a given deterministic parity tree automaton is
equivalent to some nondeterministic Büchi one [42], the weak alternating index problems for
the class of deterministic automata [31] and Büchi automata [17, 41], and deciding whether
a given parity automaton is equivalent to some nondeterministic co-Büchi automaton [17].

Another problem closely related to membership is separability. The pC, Dq-separability
problem asks, given a pair of languages L, M in C, whether there exists a language S in D
(called a separator) s.t. L Ď S and1 S K M . Intuitively, a separator S provides a certificate
of disjointness, yielding information on the structure of L, M up to some chosen granularity.
The separability problem is a generalisation of the membership problem if the class C is closed
under complement, since we can always take M to be the complement of L, in which case
the only candidate for the separator is L itself. There are many elegant results in computer
science, formal logic, and mathematics showing that separators always exist. Instances include
Lusin’s separation theorem in topology (two disjoint analytic sets are always separable by
a Borel set; cf. [28, Theorem 14.7]), a folklore result in computability theory (two disjoint
co-recursively enumerable sets are separable by a recursive set), Craig’s theorems in logic
(jointly contradictory first-order formulas can be separated by a formula containing only
symbols in the shared vocabulary [19]) and model theory (two disjoint projective classes
are separable by an elementary class [19]); in formal language theory, a generalisation of a
theorem suggested by Tarski and proved by Rabin [38, Theorem 29] states that two disjoint
Büchi languages of infinite trees are separable by a weak language (cf. [39]).

In this work we study the pC, Dq-separability problems where C is the full class of regular
languages of infinite trees, and D is one of four kinds of sub-classes thereof, depending on
whether the automaton is deterministic or game, and depending on whether we fix a finite
index C Ď N or we leave it unrestricted C “ N. Our main result is that all four kinds of the
separability problems above are decidable and in EXPTIME. Moreover, we show that if a
separator exists, then there is one of exponential size.

▶ Theorem 1. The deterministic and game separability problems can be solved in EXPTIME,
both for a fixed finite index C Ď N, and an unrestricted one C “ N. Moreover, separators
with exponentially many states and polynomially many priorities suffice.

Our work is permeated by the observation that the separability problem for two languages
L, M can be phrased in terms of a game of infinite duration with an ω-regular winning
condition. In such a separability game there are two players, Separator trying to prove that
L, M are separable, and Input with the opposite objective. In the simple case of pC, Dq-
separability where C is the class of regular languages of ω-words and D the subclass induced
by deterministic parity automata of finite index C, the i-th round of the game is as follows:

1 We write S K M for S X M “ H.
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Separator plays a priority ci P C.

Input plays a letter ai from the finite alphabet Σ.

The resulting infinite play pc0, a0qpc1, a1q ¨ ¨ ¨ is won by Separator if 1) a0a1 ¨ ¨ ¨ P L implies
c0c1 ¨ ¨ ¨ is accepting and 2) a0a1 ¨ ¨ ¨ R L implies c0c1 ¨ ¨ ¨ is rejecting. Since the winning
condition is ω-regular, by the result of Büchi and Landweber [7] we can decide who wins the
game and moreover finite-memory strategies for Separator suffice. Thanks to a correspondence
between such strategies and deterministic separators, Separator wins such a game iff there
exists a deterministic automaton with priorities in C separating L, M . This provides both
decidability of the separability problem and an upper-bound on the size of separators. We
design analogous games with ω-regular winning conditions for the more involved case of
infinite trees for the separability problems mentioned above and apply [7].

The separability problems we consider have been open so far and generalise the corres-
ponding membership problems. A solution for deterministic separability can easily be derived
from [34], however our techniques based on games are novel and provide a unified view on
all problems. When instantiated to the specific case of membership, our decidability results
generalise the deterministic case (for both fixed and unconstrained index) [34, 33] and the
game membership case for unconstrained index [26, Theorem 7.12]. We believe the game
approach is much more direct than the combinatorial and pattern-based techniques used in
the previous solutions, cf. [26, Section 7, pp. 29–37]. The game membership problem for
a fixed index C has been open so far.

We are not aware of computation complexity results for separability problems over
regular languages of infinite trees, neither of an analysis of the size of separators. Regarding
deterministic membership, EXPTIME-completeness is known [34, Corollary 11], as well as
EXPTIME upper [33, end of page 12] and lower bounds [44, Theorem 4.1] (cf., also [29]) for
computing the optimal deterministic index. Devising non-trivial complexity lower bounds for
the separability problem is left for future work, as well as extending our approach to other
classes of separators.

Related works. Over finite words, variants of the pC, Dq-separability problem have been
studied for classes C both more general than the regular languages, such as the context
free languages [23, 45] and higher-order languages [14] (later extended to safe schemes over
finite trees [1]), and for classes D more restrictive than the regular languages, such as
in [36, 37]. The separability and membership problems have also been studied for several
classes of infinite-state systems, such as vector addition systems [11, 10, 24], well-structured
transition systems [22], one-counter automata [21], and timed automata [13, 12]. Recent
developments on efficient algorithms solving parity games are based on the ability to find
a simple separator, yielding both upper bounds on the problem, and lower bounds for a
wide family of algorithms [5, 20, Chapter 3]. Finally, it is worth mentioning that games
have already been successfully used to provide several characterisation results, such as
in [18, 17, 16, 3, 41, 9].

Outline. In Section 2 we introduce automata and other mathematical preliminaries. In
Sections 3–6 we present the game-theoretic characterisations of the separability problems we
consider. We believe this is the most interesting aspect of this work. A technical report is
available [15] where a detailed complexity analysis is performed and full proofs are provided.
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2 Preliminaries

A nonempty finite set Σ of letters a P Σ is called an alphabet. A (Σ-labelled) tree is a function
t : tL, Ru˚ Ñ Σ assigning to each node u P tL, Ru˚ a label tpaq P Σ. The root of a tree is
denoted ϵ. The set of all Σ-labelled trees is denoted TrΣ. The symbols L, R are called directions
and a branch is an infinite sequence thereof d0d1 ¨ ¨ ¨ P tL, Ruω. A tree t is uniquely defined by
the set of its paths Pathptq “ tpa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL, Ruqω | @i. ai “ tpd0d1 ¨ ¨ ¨ di´1qu,
which is extended to languages pointwise as PathpLq “ tPathptq | t P Lu.

Automata. Fix a nonempty finite set of priorities C Ď N. A (top-down, nondeterministic,
parity, tree) automaton is a tuple A “ pΣ, Q, q0, Ω, ∆q, where Σ is a finite alphabet, Q is
a finite set of states, amongst which q0 P Q is the initial state, Ω: Q Ñ C assigns a priority
to every state, and ∆ Ď Q ˆ Σ ˆ Q ˆ Q is a set of transitions. The priority function Ω is
extended to a transition δ “ pq, _, _, _q as Ωpδq :“ Ωpqq, pointwise to an infinite sequence of
states Ωpq0q1 ¨ ¨ ¨ q :“ Ωpq0qΩpq1q ¨ ¨ ¨ P Cω and transitions Ωpδ0δ1 ¨ ¨ ¨ q “ Ωpδ0qΩpδ1q ¨ ¨ ¨ P Cω.
An infinite sequence of priorities c0c1 ¨ ¨ ¨ P Cω is accepting if the maximal priority occurring
infinitely often is even. Similarly, an infinite sequence of states ρ “ q0q1 ¨ ¨ ¨ P Qω or of
transitions ρ “ δ0δ1 ¨ ¨ ¨ P ∆ω is accepting whenever Ωpρq is accepting. We write ∆pq, aq “

tpq, a, qL, qRq P ∆u for the set of transitions from a state q P Q over a letter a P Σ, and
∆paq “

Ť

t∆pq, aq | q P Qu for all transitions over a. We extend the notation above to
an infinite path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL, Ruqω by writing ∆pbq for the set of infinite
sequences of transitions δ⃗ “ δ0δ1 ¨ ¨ ¨ P ∆ω of the form δi “ pqi, ai, qL,i, qR,iq for every i, which
are conform to b in the sense that q0 is the initial state of the automaton and qi`1 “ qdi,i.

A run of an automaton A as above over a tree t P TrΣ is a Q-labelled tree ρ P TrQ

s.t. ρpϵq “ q0 is the initial state and for every node in the tree u P tL, Ru˚ the quadruple
`

ρpuq, tpuq, ρpuLq, ρpuRq
˘

belongs to ∆. Such a run is accepting if for every branch d0d1 ¨ ¨ ¨ P

tL, Ruω the sequence of states
`

ρpd0 ¨ ¨ ¨ di´1q
˘

iPω
is accepting. The set of all trees t P TrΣ

s.t. A has an accepting run over t is denoted LpAq and is called the language recognised
by A. The corresponding path language is LpathpAq :“ PathpLpAqq Ď pΣ ˆ tL, Ruqω. If
q P Q is a state of an automaton A then by Aq we denote the same automaton as A but
with the initial state q0 changed to q. Thus, LpAqq is the set of trees over which A has
an accepting run ρ starting at ρpϵq “ q. In the rest of the paper we assume that all states q

in an automaton are productive in the sense that LpAqq ‰ H.

Deterministic and game automata. We say that A is a game automaton if, for every
q P Q and a P Σ, either we have a conjunctive transition ∆pq, aq “ tpq, a, qL, qRqu or two
disjunctive transitions ∆pq, aq “ tpq, a, qL, Jq, pq, a, J, qRqu (cf. [26, Definition 3.2]), where
J ‰ q0 represents a distinguished state in Q accepting every tree (i.e., LpAJq “ TrΣ) and
qL, qR ‰ J. An automaton A is deterministic if it is a game automaton with only conjunctive
transitions and in this case for every tree t P TrΣ there exists a unique run ρ of A over t. A
tree language L is deterministic, resp., game, if it can be recognised by some deterministic,
resp., game automaton. Game automata can be complemented with very low complexity by
just increasing every priority by one and by swapping conjunctive and disjunctive transitions.

▶ Lemma 2. If A is a game parity tree automaton, then TrΣzLpAq can be recognised by
a game parity tree automaton with the same number of states and priorities.



L. Clemente and M. Skrzypczak 126:5

Acceptance games. We present a game-theoretic view on accepting runs. This will serve
both as an example of the kind of games that we consider throughout paper, and as a
technical tool in the proofs from Sections 5 and 6. Let t P TrΣ be a tree. The acceptance
game GaccpA, tq is played in rounds by two players, Automaton and Pathfinder. The goal of
Automaton is to show that t P LpAq; Pathfinder has the complementary objective t R LpAq.

Acceptance game GaccpA, tq

At the i-th round starting at a position vi “ pui, qiq P V :“ tL, Ru˚ ˆ Q:
[A : δ] Automaton plays a transition δi “ pqi, tpuiq, qL,i, qR,iq P ∆pqi, tpuiqq.
[P : d] Pathfinder plays a direction di P tL, Ru.

The next position is vi`1 :“ puidi, qdi,iq.

The initial position is v0 :“ pϵ, q0q. Automaton wins the resulting infinite play π “

pδ0, d0qpδ1, d1q ¨ ¨ ¨ if the sequence of transitions δ0δ1 ¨ ¨ ¨ is accepting. Automaton’s moves in
the acceptance game GaccpA, tq are performed according to a strategy for Automaton. This is
a tuple M “ pM, ℓ0, δ, τq, where M is a set of memory states, of which ℓ0 P M is the initial
memory state, δ : V ˆ M Ñ ∆ is an output function which in a position pu, qq and a memory
state ℓ selects a transition δ

`

pu, qq, ℓ
˘

P ∆pq, tpuqq of A, and τ : V ˆ M ˆ tL, Ru Ñ M is a
memory update function which, in a given position v, memory state ℓ, and direction d selects
the next memory state τpv, ℓ, dq P M . An infinite play π as above is conform to a strategy
M if during the play π Automaton keeps track of the current position vi and memory state
ℓi, updating them after each round (i.e., ℓi`1 :“ τpvi, ℓi, diq) and her consecutive choices of
transitions δi are done according to δpvi, ℓiq. A strategy M is winning if every play conform
to it is winning for Automaton. Automaton wins the acceptance game if she has a winning
strategy. The following proposition is folklore.

▶ Proposition 3. Let t P TrΣ and A be an automaton over the alphabet Σ. Automaton wins
the acceptance game GaccpA, tq if, and only if, t P LpAq.

Disjointness games. Let A and B be two nondeterministic automata. We recall a standard
game used to characterise whether LpAq K LpBq. This will be crucial in the correctness
proofs throughout Sections 3–6. The disjointness game GdispA, Bq is played by two players,
Automaton and Pathfinder. Automaton’s aim is to incrementally build a tree accepted by
both A and B, witnessing LpAq X LpBq ‰ H, while Pathfinder has the opposite objective.2
The set of positions of the game is QA ˆ QB, and the initial position is pqA

0 , qB
0 q.

Disjointness game GdispA, Bq

At the i-th round starting at a position pqA
i , qB

i q:
[A : a] Automaton plays a letter ai P Σ.

[A : δA] Automaton plays a transition δA
i “ pqA

i , ai, qA
L,i, qA

R,iq P ∆ApqA
i , aiq.

[A : δB] Automaton plays a transition δB
i “ pqB

i , ai, qB
L,i, qB

R,iq P ∆BpqB
i , aiq.

[P : d] Pathfinder plays a direction di P tL, Ru.
The next position is pqA

di,i, qB
di,iq.

2 The disjointness game could equivalently be phrased as a nonemptiness game for the product automaton
A ˆ B recognising LpAq X LpBq. However, in our technical development it will be more direct to use the
disjointness game.
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Let the resulting infinite play be π “ pa0, δA
0 , δB

0 , d0qpa1, δA
1 , δB

1 , d1q ¨ ¨ ¨ . Such a play
induces an infinite path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ and two sequences of transitions δ⃗A :“
δA

0 δA
1 ¨ ¨ ¨ and δ⃗B :“ δB

0 δB
1 ¨ ¨ ¨ . The rules of the game guarantee that δ⃗A P ∆Apbq and

δ⃗B P ∆Bpbq. Automaton wins the play π if both sequences δ⃗A and δ⃗B are accepting.
In the rest of the paper it will be more useful to consider Pathfinder’s point of view. Since

her winning condition can be presented as Rabin condition, whenever she wins, she has a
memoryless (i.e., M “ tℓ0u) winning strategy. Such a memoryless strategy for Pathfinder in
the disjointness game can be represented by a function P :

`
Ť

aPΣ ∆Apaq ˆ ∆Bpaq
˘

Ñ tL, Ru,
which we call a pathfinder.

▶ Lemma 4. If LpAq K LpBq then there is a pathfinder P which is winning for Pathfinder in
the disjointness game GdispA, Bq.

▶ Corollary 5. Assume that LpAq K LpBq and let P be a pathfinder as above. Let b “

pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL, Ruqω be a path and δ⃗A “ δA
0 δA

1 ¨ ¨ ¨ P ∆Apbq, δ⃗B “ δB
0 δB

1 ¨ ¨ ¨ P

∆Bpbq be two sequences of transitions of these automata that are conform to b. If for every
i P ω we have PpδA

i , δB
i q “ di then at least one of the sequences δ⃗A and δ⃗B is rejecting.

The construction above has a specific property if one of the involved automata (e.g., A)
is a game automaton. Since we assume that every state is productive, positions of the form
pJ, qBq are losing for Pathfinder in GdispA, Bq. Therefore, without loss of generality we can
assume that the pathfinder P satisfies the following observation.
▶ Remark 6. Consider a transition δA “ pqA, a, qA

L , Jq (resp., δA “ pqA, a, J, qA
R q) in a game

automaton A. Then, PpδA, _q is constantly equal to L (resp., R).

3 Separability by deterministic automata with priorities in C

In this section we present a game-theoretic characterisation of separability by deterministic
automata over a fixed finite set of priorities C Ď N. Let A, B be two nondeterministic
automata over infinite trees. We extend the game from the introduction over ω-words with
two additional actions, a selector for Separator and a direction for Input.

C-deterministic-separability game Gsep
detpA, B, Cq

At the i-th round:
[S : c] Separator plays a priority ci P C.
[I : a] Input plays a letter ai P Σ.

[S : f ] Separator plays a selector fi P tL, Ru∆B
paiq.

[I : d] Input plays a direction di P tL, Ru.

Intuitively, a selector encodes a direction for each (relevant) transition of B and this
is used for the correctness of the separator. Assume that the resulting infinite play is
π “ pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ , with the induced infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ .
Separator wins the play π if the following two conditions are satisfied:
1. π P WA: If there exists an accepting sequence of transitions δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq,

then c0c1 ¨ ¨ ¨ is accepting.
2. π P WB: If there exists an accepting sequence of transitions δ⃗B “ δB

0 δB
1 ¨ ¨ ¨ P ∆Bpbq s.t. for

every i P ω we have fipδ
B
i q “ di, then c0c1 ¨ ¨ ¨ is rejecting.

The following lemma states that the separability game correctly characterises the determ-
inistic separability problem.
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▶ Lemma 7. Separator wins Gsep
detpA, B, Cq if, and only if, LpAq, LpBq can be separated by

a deterministic parity tree automaton with priorities in C.

We present a full proof in order to show the rôle of Separator’s selectors.

Soundness. Assume that Separator wins the separability game G :“ Gsep
detpA, B, Cq by a finite-

memory winning strategy M “ pM, ℓ0, pc, fq, τq. Strategy M has two decision functions:
c assigns to each ℓ P M a priority cpℓq P C, and f assigns to each ℓ P M and a P Σ
a selector fpℓ, aq P tL, Ru∆B

paq. Moreover, the type of the memory update function is τ : M ˆ

Σ ˆ tL, Ru Ñ M . Consider a deterministic parity tree automaton S :“ pΣ, M, ℓ0, ΩS , ∆Sq

which has the same set of states M and initial state ℓ0 as M, priorities are induced by
the decision function c of M as ΩSpℓq :“ cpℓq, and transitions are of the form ∆S “

tpℓ, a, τ pℓ, a, Lq, τpℓ, a, Rqq | ℓ P M, a P Σu.
We show that S separates LpAq, LpBq. We first show LpAq Ď LpSq. Let t P LpAq be

a tree that is accepted by the automaton A, as witnessed by an accepting run ρA. Let ρS

be the unique run of S over t. Consider any branch d0d1 ¨ ¨ ¨ P tL, Ruω. We need to show
that the sequence of priorities

`

ΩSpρSpd0 ¨ ¨ ¨ di´1qq
˘

iPω
is accepting. Consider a play π of G

where at the i-th round Separator plays according to the strategy M with current memory
state ℓi P M and Input plays according to the letters from t and directions d0d1 ¨ ¨ ¨ fixed
above:

[S : c] Separator plays the priority ci :“ cpℓiq P C.
[I : a] Input plays the letter ai :“ tpuiq P Σ, where ui :“ d0 ¨ ¨ ¨ di´1.

[S : f ] Separator plays the selector fi :“ fpℓi, aiq P tL, Ru∆B
paiq (the selector is irrelevant

in this part of the proof).
[I : d] Input plays the direction di P tL, Ru as fixed above.

The next memory state is ℓi`1 :“ τpℓi, ai, diq. Let the resulting infinite play be π “

pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ . By the construction of S we know that ℓi “ ρSpuiq and
therefore ci “ ΩSpρSpuiqq. Since t P LpAq, there exists an accepting sequence of transitions
δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq along the path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ . Since Separator is winning,

π P WA and thus the sequence c0c1 ¨ ¨ ¨ is accepting, as required.
We now argue that LpSq and LpBq are disjoint. Towards reaching a contradiction, assume

that t P LpSq X LpBq belongs to their intersection. Let ρS be the unique run of S over t, and
let ρB be an accepting run of B over t. Consider a play π “ pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ of
G where the i-th round is played as above except that Input plays the direction di :“ fipδ

B
i q,

obtained by applying the selector fi to the transition δB
i :“

`

ρBpuiq, tpuiq, ρBpuiLq, ρBpuiRq
˘

determined according to the run ρB. By the choice of directions di’s, the sequence of
transitions δ⃗B “ δB

0 δB
1 ¨ ¨ ¨ P p∆Bqω satisfies fipδ

B
i q “ di for every i P ω. Since the run ρB is

accepting, δ⃗B is accepting. Since Separator is winning, π P WB and thus the sequence of
priorities c0c1 ¨ ¨ ¨ is rejecting. However, this is a contradiction, because for each i P ω we
have ℓi “ ρSpuiq and ci “ ΩSpℓiq and we assumed that the run ρS is accepting. ◀

Completeness. Assume that S “ pΣ, QS , qS
0 , ∆S , ΩSq is a deterministic automaton with

priorities in C separating LpAq, LpBq, and we show that Separator wins the separability
game G. Since S is a separator, we have that LpSqKLpBq, and by Lemma 4 there exists
a pathfinder P . Consider the following strategy of Separator, with memory structure QS and
initial memory state qS

0 . At the i-th round of G, starting with a memory state qS
i ,

[S : c] Separator plays the priority ci :“ ΩSpqS
i q P C.

[I : a] Input plays an arbitrary letter ai P Σ.
[S : f ] Separator plays the selector fi :“ PpδS

i , _q P tL, Ru∆B
paiq, where ∆SpqS

i , aiq “ tδS
i u.

[I : d] Input plays an arbitrary direction di P tL, Ru.
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The next memory state is qS
i`1 :“ qS

di,i, where δS
i “ pqS

i , ai, qS
L,i, qS

R,iq. This concludes the
description of the i-th round of G. Let the resulting infinite play be π “ pc0, a0, f0, d0q

pc1, a1, f1, d1q ¨ ¨ ¨ , with induced infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ . Let δ⃗S :“ δS
0 δS

1 ¨ ¨ ¨ be
the sequence of transitions used to define the selectors fi. Clearly δ⃗S P ∆Spbq.

First, we argue that π P WA holds. Let δ⃗A “ δA
0 δA

1 ¨ ¨ ¨ P ∆Apbq be an accepting sequence
of transitions of the automaton A. Since each state of A is productive, one can construct
a tree t P LpAq s.t. b P Pathptq. Since LpAq Ď LpSq by the assumption, t P LpSq as well,
and since S is deterministic, the unique run of S over t is accepting. By the definition of
Separator’s strategy, the sequence of priorities along the branch d0d1 ¨ ¨ ¨ of this accepting
run is precisely c0c1 ¨ ¨ ¨ , which thus must be accepting, as required.

Regarding WB, let δ⃗B :“ δB
0 δB

1 ¨ ¨ ¨ P ∆Bpbq be an accepting sequence of transitions over
the path b conform to the selectors fi, i.e., for every i P ω we have fipδ

B
i q “ di. By the

definition of fi, for every i P ω we have di “ PpδS
i , δB

i q. Thus, the assumptions of Corollary 5
are satisfied and at least one of the sequences δ⃗S , δ⃗B must be rejecting. Since we assumed
that δ⃗B is accepting, it means that δ⃗S is rejecting, and so is c0c1 ¨ ¨ ¨ since ci “ ΩSpδS

i q. ◀

4 Separability by deterministic automata

In this section we present a game-theoretic characterisation of the deterministic separability
problem. Notice that here we do not fix in advance a finite set of priorities C. The
deterministic-separability game Gsep

detpA, Bq below is a variant of the game with fixed priorities
C from Section 3.

Deterministic-separability game Gsep
detpA, Bq

At the i-th round:
[I : a] Input plays a letter ai P Σ.

[S : f ] Separator plays a selector fi P tL, Ru∆B
paiq.

[I : d] Input plays a direction di P tL, Ru.

Separator wins the resulting infinite play π “ pa0, f0, d0qpa1, f1, d1q ¨ ¨ ¨ , with induced infinite
path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ , if at least one of the two conditions below fails:
1. π P WA: There exists an accepting sequence of transitions δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq.

2. π P WB: There exists an accepting sequence of transitions δ⃗B “ δB
0 δB

1 ¨ ¨ ¨ P ∆Bpbq s.t. for
every i P ω we have fipδ

B
i q “ di.

Before we prove the equivalence between the game and the existence of a separator, we
define a separator candidate, namely the path-closure of LpAq. This is important since it
will turn out that if a separator exists, then the path-closure is itself a separator. Given
a language of trees L, its path-closure, denoted @PathpLq, is the set of all trees t s.t. for
every path b P Pathptq there exists some tree t1 P L s.t. b P Pathpt1q as well. The path-closure
operator is directly connected with deterministic automata.

▶ Lemma 8 (cf. [34, Proposition 1]). Given a nondeterministic automaton A one can construct
a deterministic automaton Apath recognising the path closure of LpAq, i.e., LpApathq “

@PathpLpAqq. Moreover, LpApathq is the smallest deterministic language containing LpAq.

The following lemma binds together the game Gsep
detpA, Bq, separability, and path-closures.

▶ Lemma 9. The following three conditions are equivalent:
1. Separator wins the deterministic-separability game Gsep

detpA, Bq.
2. The automaton Apath is a deterministic separator for LpAq, LpBq.
3. There exists a deterministic separator for LpAq, LpBq.
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Proof sketch. Consider the implication “1 ñ 2”. Firstly, LpAq Ď LpApathq because the
operator @Pathp_q is non-decreasing. Moreover, the fact that LpApathq K LpBq is witnessed
by the choices of selectors fi by a winning strategy of Separator in Gsep

detpA, Bq. The implication
“2 ñ 3” is trivial. The proof of the implication “3 ñ 1” is similar to the proof of completeness
in Lemma 7 – a separating automaton S can be used to construct a pathfinder P , witnessing
that LpSq and LpBq are disjoint. Now, one can construct a strategy of Separator in Gsep

detpA, Bq

by simulating S and using P to choose the selectors fi. ◀

5 Separability by game automata

In this section we provide a game-theoretic characterisation for the game automata separability
problem. Fix two automata A and B and consider the following separability game Gsep

gamepA, Bq.
The new ingredient is that Separator can choose a mode – a symbol from the set t_, ^u. It
has two uses. First, in the construction of the separating game automaton, the mode dictates
whether there will be a conjunctive or a disjunctive transition. Second, depending on the
chosen mode, Separator will have to play a selector for the automaton A or B, which will
guarantee that the constructed automaton is a separator.

Game-separability game Gsep
gamepA, Bq

At the i-th round:
[I : a] Input plays a letter ai P Σ.

[S : m] Separator plays a mode mi P t_, ^u.
[S : f ] Separator plays either

a. a selector fi P tL, Ru∆A
paiq for A if mi “ _ or

b. a selector fi P tL, Ru∆B
paiq for B if mi “ ^.

[I : d] Input plays a direction di P tL, Ru.

Separator wins an infinite play π “ pa0, m0, f0, d0qpa1, m1, f1, d1q ¨ ¨ ¨ inducing a path b “

pa0, d0qpa1, d1q ¨ ¨ ¨ whenever at least one of the two conditions below fail:
1. π P WA: There exists an accepting sequence of transitions δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq s.t. for

all i P N we have pmi “ _q ñ fipδ
A
i q “ di.

2. π P WB: There exists an accepting sequence of transitions δ⃗B “ δB
0 δB

1 ¨ ¨ ¨ P ∆Bpbq s.t. for
all i P N we have pmi “ ^q ñ fipδ

B
i q “ di.

▶ Lemma 10. Separator wins the separability game Gsep
gamepA, Bq if, and only if, there exists

a game automaton S separating LpAq, LpBq.

In the proof of this lemma we will build separating automata with a more general
acceptance condition than the parity condition, which will simplify the technical details.
A generalised game automaton A “ pΣ, Q, q0, ∆, Dq is just like a game automaton except
that the priority mapping Ω is replaced by a deterministic ω-word parity automaton D over
alphabet Σ ˆ tL, Ru. A run ρ P TrQ of such an automaton over a tree t P TrΣ is accepting
if for every path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P Pathptq either ρpd0 ¨ ¨ ¨ di´1q “ J for some i P ω, or
b P LpDq. The acceptance game GaccpA, tq can easily be adapted to the case of a generalised
game automaton A by only modifying the winning condition.

▶ Lemma 11. A generalised game automaton A with a generalised acceptance condition
recognised by a deterministic parity automaton D can be transformed into an equivalent
(ordinary) game automaton B of size polynomial in A and D.
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We now prove Lemma 10. Its proof is given in full details because, unlike in Sections 3
and 4, it is not obvious how to construct a separator from a winning strategy for Separator.

Soundness. Assume that Separator wins the game-separability game G :“ Gsep
gamepA, Bq

and we show that there exists a game automaton S separating LpAq from LpBq. Let
M “ pM, ℓ0, pm, fq, τq be a finite-memory winning strategy of Separator in G.

Before we move to the construction of the separating automaton, we first define its
generalised acceptance condition. Let LA (resp., LB) be the set of those paths b “

pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL, Ruqω s.t. the unique play π of G in which Input plays con-
secutive letters and directions from b and Separator uses her winning strategy M satisfies the
condition WA (resp., WB). Since the strategy M is winning for Separator, the languages LA
and LB are disjoint. Moreover, since the strategy M is finite memory and both WA, WB
are ω-regular, so are the languages LA and LB. Let D be any deterministic automaton over
ω-words that separates LA from LB (the simplest case is to take D recognising the language
LA). We build a separating automaton as a generalised game automaton

S :“ αpM, Dq :“ pΣ, M Y tJu, ℓ0, ∆S , Dq, where

∆S`

ℓ, a
˘

:“
#

tpℓ, a, ℓL, Jq, pℓ, a, J, ℓRqu if mpℓ, aq “ _,
tpℓ, a, ℓL, ℓRqu if mpℓ, aq “ ^,

for every ℓ P M and a P Σ, where for d P tL, Ru we have ℓd :“ τpℓ, a, dq. We now show that
S separates LpAq from LpBq. In order to show LpAq Ď LpSq, let t P LpAq as witnessed by
an accepting run ρA. We show that Automaton wins the acceptance game GS :“ GaccpS, tq.
To show this we play in parallel the separability game G and the acceptance game GS ,
maintaining the following invariant: At the i-th round, the current finite path of the input
tree t is pa0, d0q ¨ ¨ ¨ pai´1, di´1q, Separator’s winning strategy M in the separability game G

is in memory state ℓi, the current state of the separating automaton S in the acceptance
game GS is also ℓi, and ρApd0 ¨ ¨ ¨ di´1q “ qA

i . The i-th round is then played as follows:
G.rI : as Input plays the letter ai :“ tpuiq for ui :“ d0 ¨ ¨ ¨ di´1.

G.rS : ms Separator plays the mode mi :“ mpℓi, aiq P t_, ^u.
G.rS : f s Separator plays either

a. a selector fi :“ fpℓi, aiq P tL, Ru∆A
paiq for A if mi “ _ or

b. a selector fi :“ fpℓi, aiq P tL, Ru∆B
paiq for B if mi “ ^.

GS .rA : δs Automaton plays the transition δS
i P ∆Spℓi, aiq, defined as follows. Let δA

i :“
`

ρApuiq, tpuiq, ρApuiLq, ρApuiRq
˘

be the A-transition used in ui by the run ρA. We
distinguish two cases.
a. In the first case, assume that Separator played mi “ _ and fi P tL, Ru∆A

paiq.
It means that ∆S`

pℓi, qiq, ai

˘

contains two disjunctive transitions, δS
L,i :“

pℓi, ai, ℓL,i, Jq and δS
R,i :“ pℓi, ai, J, ℓR,iq. Let us put δS

i :“ δS
fipδA

i
q,i

, i.e., the
transition that sends a non-J state in the direction given by fipδ

A
i q.

b. In the second case, Separator played mi “ ^ and fi P tL, Ru∆B
paiq. It means

that ∆S`

ℓi, ai

˘

contains one conjunctive transition δS
i :“ pℓi, ai, ℓL,i, ℓR,iq.

GS .rI : ds Input plays an arbitrary direction di P tL, Ru.
G.rI : ds Input plays the direction di P tL, Ru.

If mi “ _ and di ‰ fipδ
A
i q then the next position of the acceptance game GS is puidi, Jq,

which is a winning position for Automaton. Therefore, w.l.o.g. we assume that:

@i P ω. pmi “ _q ñ fipδ
A
i q “ di. (1)
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Moreover, the new state of S in GS is ℓi`1 :“ τpℓi, ai, diq. Similarly, the new mem-
ory state of M in G is ℓi`1. This concludes the description of the i-th round of both
games. Clearly the invariant is preserved. We argue that Automaton wins the resulting
infinite play pδS

0 , d0qpδS
1 , d1q ¨ ¨ ¨ of the acceptance game GS . Consider the infinite play

π “ pa0, m0, f0, d0qpa1, m1, f1, d1q ¨ ¨ ¨ of the separability game G. Since the run ρA is ac-
cepting, the infinite sequence of A-transitions δA

0 δA
1 ¨ ¨ ¨ is accepting. Thus, (1) implies that

π P WA. Therefore, the infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ belongs to LA Ď LpDq and thus
the corresponding infinite play pδS

0 , d0qpδS
1 , d1q ¨ ¨ ¨ of the acceptance game GS is winning for

Automaton, as required. This concludes the argument establishing LpAq Ď LpSq.
It remains to show that LpSq K LpBq, which is the same as LpBq Ď LpScq for the comple-

ment game automaton. This follows directly from the construction above via the duality of
the game G. ◀

Completeness. Assume that there exists a game automaton S that separates LpAq from
LpBq. We need to show that Separator wins the separability game G :“ Gsep

gamepA, Bq.
Let R :“ Sc be the syntactic dual of the game automaton S as in Lemma 2. Thus,
the automata S and R share the same set of states. Also, their transitions are related:
the conjunctive transitions of S correspond to disjunctive transitions of R and vice versa.
By slightly rephrasing the separation condition, we have LpAq K LpRq and LpBq K LpSq.
This means that Pathfinder wins both disjointness games GdispR, Aq and GdispS, Bq. Thus,
we can apply Lemma 4 to obtain pathfinders PA :

`
Ť

aPΣ ∆Rpaq ˆ ∆Apaq
˘

Ñ tL, Ru and
PB :

`
Ť

aPΣ ∆Spaq ˆ ∆Bpaq
˘

Ñ tL, Ru.
We will now provide a strategy of Separator in G. The constructed strategy uses as its

memory states the set of states of S that are distinct than J. Let the initial memory state
be q0. Assume that the current memory state is qi and consider the i-th round of the game.

[I : a] Input plays an arbitrary letter ai P Σ.
[S : m] Separator plays the mode mi P t_, ^u defined as follows. We consider the following

two cases for the mode of the transitions ∆Spqi, aiq.

a. If ∆Spqi, aiq “ tδS
i u is a single conjunctive transition δS

i “ pqi, ai, qL,i, qR,iq then
we put mi :“ ^ and fi :“ PBpδS

i , _q is a selector for B.
b. Otherwise, ∆Spqi, aiq is a pair of disjunctive transitions which means that

∆Rpqi, aiq is a single conjunctive transition δR
i “ pqi, ai, qL,i, qR,iq. In this case

we put mi :“ _ and fi :“ PApδR
i , _q is a selector for A.

[S : f ] Separator plays the selector fi defined above (notice that fi is either a selector for
A or for B, according to mi).

[I : d] Input plays an arbitrary direction di P tL, Ru.

The next memory state of our strategy is the state qdi,i taken from one of the transitions
δS

i or δR
i , see above. We now argue that Separator wins the corresponding infinite play

π “ pa0, m0, f0, d0qpa1, m1, f1, d1q ¨ ¨ ¨ . Let b “ pa0, d0qpa1, d1q ¨ ¨ ¨ be the corresponding path.
Consider a number i P ω. By the construction of the strategy above, we have two cases:
1. If mi “ ^, then a conjunctive transition δS

i “ pqi, ai, qL,i, qR,iq of S was used to determine
fi. In this case, define δR

i as the following disjunctive transition of R: if di “ L then
δR

i :“ pqi, ai, qL,i, Jq, otherwise di “ R and δR
i :“ pqi, ai, J, qR,iq.

2. If mi “ _, then a conjunctive transition δR
i “ pqi, ai, qL,i, qR,iq of R was used to determine

fi. In this case, define δS
i as the following disjunctive transition of S: if di “ L then

δS
i :“ pqi, ai, qL,i, Jq, otherwise di “ R and δS

i :“ pqi, ai, J, qR,iq.
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The definitions above provide two sequences of transitions δ⃗S :“ δS
0 δS

1 ¨ ¨ ¨ P ∆Spbq, δ⃗R :“
δR

0 δR
1 ¨ ¨ ¨ P ∆Rpbq. Since for every i P ω the transitions δS

i and δR
i are from the same state

qi ‰ J, δ⃗S is accepting in S if, and only if, δ⃗R is rejecting in R. Assume that δ⃗S is accepting
(the other case is analogous). We will show that WB is violated (if δ⃗R is accepting then
WA is violated). Assume for the sake of contradiction that WB holds, as witnessed by
a sequence of B-transitions δ⃗B “ δB

0 δB
1 ¨ ¨ ¨ P ∆Bpbq. By Remark 6 we obtain that whenever

mi “ _ and δS
i is a disjunctive transition of S then PBpδS

i , _q is constantly equal to di. By
the assumption on δ⃗B from WB we know that whenever mi “ ^ then fipδ

B
i q “ di. However,

if mi “ ^ then fipδ
B
i q “ PBpδS

i , δB
i q. Therefore, in both cases we know that PBpδS

i , δB
i q “ di.

This means that the assumptions of Corollary 5 are met and at least one of the sequences δ⃗S ,
δ⃗B is rejecting – a contradiction, since we assumed both these sequences to be accepting. ◀

6 Separability by game automata with priorities in C

In this section we present our last game-theoretic characterisation, namely game auto-
mata separability for a fixed finite set C Ď N of priorities. Fix two automata A “

pΣ, QA, qA
0 , ΩA, ∆Aq and B “ pΣ, QB, qB

0 , ΩB, ∆Bq over the same alphabet Σ. The game is a
variation of Gsep

gamepA, Bq from Section 5 where Separator additionally plays priorities from C.

C-game-automata separability game Gsep
gamepA, B, Cq

At the i-th round:
[S : c] Separator plays a priority ci P C.
[I : a] Input plays a letter ai P Σ.

[S : m] Separator plays a mode mi P t_, ^u.
[S : f ] Separator plays either

a. a selector fi P tL, Ru∆A
paiq for A if mi “ _, or

b. a selector fi P tL, Ru∆B
paiq for B if mi “ ^.

[I : d] Input plays a direction di P tL, Ru.

Separator wins an infinite play π “ pc0, a0, m0, f0, d0qpc1, a1, m1, f1, d1q ¨ ¨ ¨ inducing a path
b “ pa0, d0qpa1, d1q ¨ ¨ ¨ whenever both conditions below hold:
1. π P WA: If there exists an accepting sequence of transitions δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq

s.t. for all i P ω we have pmi “ _q ñ fipδ
A
i q “ di, then c0c1 ¨ ¨ ¨ is accepting.

2. π P WB: If there exists an accepting sequence of transitions δ⃗B “ δB
0 δB

1 ¨ ¨ ¨ P ∆Bpbq s.t. for
all i P ω we have pmi “ ^q ñ fipδ

B
i q “ di, then c0c1 ¨ ¨ ¨ is rejecting.

▶ Lemma 12. Separator wins Gsep
gamepA, B, Cq if, and only if, there exists a game automaton

S with priorities in C separating LpAq, LpBq.

This lemma can be proved similarly as Lemma 10 except for the acceptance condition of the
separator which is given by the priorities ci’s as in the proof of Lemma 7.
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Abstract
In this paper, we initiate a study of the expressive power of tree algebras, and more generally
infinitely sorted algebras, based on their asymptotic complexity. We provide a characterization of
the expressiveness of tree algebras of bounded complexity.

Tree algebras in many of their forms, such as clones, hyperclones, operads, etc, as well as other
kind of algebras, are infinitely sorted: the carrier is a multi sorted set indexed by a parameter that
can be interpreted as the number of variables or hole types. Finite such algebras – meaning when all
sorts are finite – can be classified depending on the asymptotic size of the carrier sets as a function
of the parameter, that we call the complexity of the algebra. This naturally defines the notions of
algebras of bounded, linear, polynomial, exponential or doubly exponential complexity. . .

We initiate in this work a program of analysis of the complexity of infinitely sorted algebras. Our
main result precisely characterizes the tree algebras of bounded complexity based on the languages
that they recognize as Boolean closures of simple languages. Along the way, we prove that such
algebras that are syntactic (minimal for a language) are exactly those in which, as soon as there are
sufficiently many variables, the elements are invariant under permutation of the variables.
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1 Introduction

Infinitely sorted algebras occur naturally in many contexts of language theory, graph theory
or logic. A typical example is the case of tree algebras (such as clones, hyperclones, operads):
plugging a subtree into another one requires a mechanism for identifying the leaf/leaves in
which the substitution has to be performed. Notions such as variables, hole types, or colors
are used for that. Another example is the one of graphs (HR- and VR-algebras [8]) in which
basic operations (a) glue graphs together using a set of colors (sometimes called ports) for
identifying the glue-points, or (b) add all possible edges between vertices of fixed given colors.
In these examples, the algebras are naturally sliced into infinitely many sorts based on the
number of variables/hole types/colors that are used simultaneously.

However, a technical difficulty arises immediately when using such algebras. Even when
all sorts are finite (what we call a finite algebra), these algebras are not really finite due to
the infinite number of sorts. This forbids, for instance, to entirely and explicitly describe the
whole algebra in a finite way. And this is of course a problem for describing and using these
algebras in an algorithm. Indeed, a concrete algorithm can only maintain a subset of the
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algebra in its memory, say up to some given sort, or resort to other forms of representations,
which often means not really working with the algebra. This is particularly annoying since
often these objects are used for analyzing properties that admit finite descriptions, such as
tree automata or logical formulae (eg in monadic second-order logic for describing properties
of graphs).

This hurdle to handle infinitely sorted algebras can, arguably, be seen as one of the
causes of the many years that it took before having a good definition of an algebra for
infinite trees [2], or the time that it took before it was possible to characterize logically the
expressiveness of recognizable properties of graphs under bounded tree-width hypothesis [4].
Also, the long history of results characterizing language families by decidable algebraic
properties (initiated by the famous Schützenberger result [11]) has proven hard to extend to
these more complex objects, such as trees.

Classifying algebras based on their complexity. In this paper, we initiate a new approach
in the study of such algebras, which is to try to understand infinitely sorted algebras in
simpler cases. And we define these simpler cases using complexity considerations. Indeed, in
each of the above cases, the sorts are naturally indexed by a natural number parameter: the
number of variables, or hole types, or colors. Hence, an algebra A would have a carrier of
the form

(An)n∈N,

together with suitable operations that depend on the particular algebra type. This algebra
will be called finite if all the An sets are finite, and, in this case, we naturally define the
complexity map of the algebra cA : N→ N as follows:

cA(n) = |An| , for all n ∈ N.

Finite algebras can naturally be classified using this map c. Simple classes are then algebras
of bounded complexity if cA is bounded, of polynomial complexity if cA is bounded from above
by some polynomial in n, etc.

Other interesting complexity classes can be defined using orbits. Indeed, in all of
the mentioned examples, there is a natural operation that performs a renaming of the
variables/hole types/colors. This renaming is parameterized by a bijection over variables/hole
types/colors, and this permutation acts on the corresponding sort. Said differently, in all
examples, there is an action of the symmetric group over n elements, Sym(n), over An. It is
thus natural to consider the orbit complexity map c◦

A as follows

c◦
A(n) = |An/Sym(n)| , for all n ∈ N,

and define accordingly what are finite algebras of bounded orbit complexity, or polynomial
orbit complexity, etc.

Related works. As mentioned above, there is a long history of understanding the expressive
power of regular languages of words based on algebraic properties. The first work in this
direction [11], characterizing star-free languages, intiated a long list of deep results. It was
natural to extend this approach to trees. Here, the notion of algebra was less obvious,
and several definitions have been used. Some algebras for trees are one sorted, such as
deterministic bottom up automata (that can be seen as algebras). Some are two sorted,
such as forest algebras [7]. Some others, such as preclones [9], have infinitely many sorts.
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Characterizations of classes have been obtained using these approaches [5, 10, 6], but remain
very limited due to difficulties inherent to the tree case. The study of algebras for infinite
trees renewed the interest in these questions [1, 2, 3]. This line of works also highlights
the difficulty to work with tree algebras, and the poor understanding we have so far of the
mechanism of recognition for infinite objects.

Contributions of the paper. In this paper we establish some first results in this complexity
analysis of infinitely sorted algebras, for the simplest complexity class, bounded complexity.
Our results are of two kinds: a characterization of algebras of bounded complexity; and a
characterization of the languages that they recognize, meaning we give a syntactic description
of the properties that can be recognized by algebras in this class. We more particularly
prove:

A characterization of syntactic finite tree algebras of bounded complexity as those
syntactic algebras in which, as soon as there are sufficiently many variables, the elements
are invariant under permutation of variables. See Theorem 5.
A characterization of languages recognized by finite tree algebras of bounded complexity
as Boolean closures of simple languages. See Theorem 14.

The second result actually uses the first as a building block in its proof.

Structure of the paper. In Section 2, we recall some classical definitions, and introduce
our notions of algebras. In Section 3, we look at the permutations of variables in finite
tree algebras, and prove Theorem 5. In Section 4, we study in more depth the bounded
complexity case for finite tree algebras, and establish our main result, Theorem 14. Section 5
is our conclusion.

2 Definitions

We denote by N the set of all non-negative integers. Given n ∈ N, we write [n] = {0, 1, ..., n−
1}. The symmetric group (resp. alternating group) over [n] is denoted Sym(n) (resp.
Alt(n)), the symmetric group of any set X is denoted Sym(X). We denote by Ac the
complement of a set A.

We fix a finite ranked alphabet Σ; the arity of a symbol a ∈ Σ is denoted ar(a). It is a
constant if ar(a) = 0, and is unary if ar(a) = 1. For k ∈ N, we set Σk = {a ∈ Σ | ar(a) = k}.
A∗ is the set of finite words over A, and A+ = A∗ \ {ε}.

2.1 Trees
In this section, we introduce notions and notations for trees.

We fix a countable set of variables. Given a finite set of variables X, a Σ, X-tree is,
informally, a tree in which nodes are labelled by elements of Σ and leaves also possibly by
variables. All variables have to appear at least once. Formally, a Σ, X-tree is a partial map
t : N∗ → Σ ⊎X such that dom(t) is non-empty and prefix-closed, and furthermore:

For all u ∈ dom(t) there exists n ∈ N such that {i | ui ∈ dom(t)} = [n], and
either t(u) ∈ Σn (symbol node), or
t(u) ∈ X and n = 0 (variable node). Note that a variable node is always a leaf.

All variables from X appear in t, i.e. for all x ∈ X, t(u) = x for some u ∈ dom(t).
The root is not a variable, i.e. t(ε) ̸∈ X.
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Σ, ∅-trees are simply called Σ-trees. The elements in dom(t) are called nodes. The prefix
relation over nodes is called the ancestor relation. The node ε is called the root of the tree.
The tree t is finite if it has finitely many nodes. A branch of a tree t is a maximal set of nodes
ordered under the ancestor relation. Let FiniteTrees(Σ, X) bet the set of finite Σ, X-trees,
for all finite set of variables X.

Building trees. We introduce now some operations on trees. See Fig. 1.
a(x0, . . . , xn−1), for x0, . . . , xn−1 variables and a ∈ Σn, denotes the Σ, {x0, . . . , xn−1}-tree
consisting of a root labelled a, and children 0, . . . , n−1 labelled with variables x0, . . . , xn−1
respectively.
s ·x t, for two trees s ∈ FiniteTrees(Σ, X), t ∈ FiniteTrees(Σ, Y ) and a variable x ∈ X, is
the Σ, (X \{x})∪Y -tree s in which t is substituted for every occurrences of the variable x.
σ̃(t), for a tree t ∈ FiniteTrees(Σ, X) and σ : X → Y a surjective map, is the Σ, Y -tree
obtained as t in which variable σ(x) has been substituted to x for all x ∈ X. Note that
σ̃ ◦ τ̃ = σ̃ ◦ τ .
t[x0 ← t0, . . . , xn−1 ← tn−1] denotes the tree of sort X \ {x0, . . . , xn−1} ∪

⋃
i Yi obtained

from t by simultaneously substituting the tree ti for the variable xi for all i ∈ [n], where
t is a tree of sort X, x0, . . . , xn−1 ∈ X, and t0, . . . , tn−1 are trees of sort Yi for all i ∈ [n].
Note that this operation is equivalent to a combination of the previous ones.
a(t0, ..., tn−1), for a ∈ Σn, denotes the tree of root a and children t0, . . . , tn−1 at respective
positions 0, . . . , n−1. Again, this operation is equivalent to a combination of the previous
ones.

▶ Lemma 1. All finite trees can be obtained from the a(x0, . . . , xn−1)’s using the operation ·.

Expressions denoting finite trees. For X a finite set of variables, an FTΣ-expression of
sort X (over the alphabet Σ) is an expression built inductively as follows:

a(x0, . . . , xn−1) is an FTΣ-expression of sort {x0, . . . , xn−1} for every symbol a ∈ Σn,
S ·x T is an FTΣ-expression of sort X \ {x} ∪ Y for all FTΣ-expressions S of sort X, all
FTΣ-expressions T of sort Y , and all variables x ∈ X (substitution),
σ̃(T ) is an FTΣ-expression of sort Y for all FTΣ-expressions T of sort X, and surjective
map σ : X → Y (renaming).

For an FTΣ-expression T of sort X, [[T ]] denotes its evaluation into a finite Σ, X-tree using
the operations of substitution and renaming.

Contexts. We define now contexts, which are terms with a specific leaf called the hole.
Since we work in a multi-sorted algebra, the hole itself has a sort. Essentially, to a hole of
sort X will be substituted a term of sort X. Formally, for fixed finite set of variables Y , an
context of sort X with hole of sort Y (or simply a FTΣ-context) is defined inductively as an
expression of sort X, using the extra construction □Y (the hole of sort Y ) which is a context
of sort Y with hole of sort Y . This new construction may appear multiple times in a context
but has to appear at least once.

For C a context of sort X with hole of sort Y , [[C]] : FiniteTrees(Σ, Y )→ FiniteTrees(Σ, X)
is the function which to a tree of sort Y t associates the tree of sort X obtained by evaluating
the operations as above, interpreting □Y as t.



T. Colcombet and A. Jaquard 127:5

a
x y

a

x b
x

a
z z

a

a
x y

b
x

a

x □{y}

t = a(x, y) t ·y b(x) σ̃(t) t[x← t, y ← b(x)] a(x,□{y})

Figure 1 Trees and contexts with their notations. Here σ(x) = σ(y) = z.

2.2 Finite tree algebras
Our notion of tree algebra is the natural notion associated to finite trees equipped with the
above operations. We give here a more formal definition, though the detail of identities is
more for reference. What matters is that it is defined such that the free algebra coincides
with finite trees.

An FTΣ-algebra A consists of an infinite collection of carrier sets AX indexed by finite
sets of variables X, together with operations:

σA : AX → AY for all surjective maps σ : X → Y ,
a(x0, . . . , xn−1)A ∈ A{x0,...,xn−1} for all a ∈ Σn and variables x0, . . . , xn−1,
·Ax : AX ×AY → AX\{x}∪Y for all finite sets of variables X, Y and x ∈ X,

that satisfy the expected identities, i.e. the ones guaranteeing that several ways to describe
the same tree yield the same evaluation in the algebra. Formally, for all s, t, u that belong
to AX , AY , AZ respectively,

(s ·Ax t) ·Ay u = x ·Ax (t ·Ay u) for all x ∈ X ∩Z and y ∈ X ∩Y (horizontal associativity), and
(s ·Ax t) ·Ay u = x ·Ax (t ·Ay u) for all x ∈ X and y ∈ Y \X ∪ {x} (vertical associativity),

for all s, t that belong to AX , AY , x ∈ X and surjection σ : X → Y ,
σA(s ·Ax t) = σA(s) ·Ax t if σ−1(σ(x)) = {x} and σ(y) = y for all y ∈ X ∩ Y \ {x},
σA(s ·Ax t) = s ·x σA(t) if σ(y) = y for all y ∈ X ∩ Y \ {x},

for all surjective maps σ : X → Y and τ : Y → Z, (τ ◦ σ)A = τA ◦ σA, and for all surjec-
tions σ : {x0, . . . xn−1} → Y and a ∈ Σn, σA(a(x0, . . . , xn−1)A) = a(σ(x0), . . . , σ(xn−1))A.
In practice, we shall not explicitly use these identities, and simply write two elements of the
algebra equal as soon as they obviously come from expressions denoting the same trees.

A morphism of FTΣ-algebras from A to B is a family of maps αX : AX → BX for all
finite sets of variables X which preserves all operations, i.e. αY (σA(s)) = σB(αX(s)) for all
surjective map σ : X → Y , α(a(x0, . . . , xn−1)A) = a(x0, . . . , xn−1)B, and αX\{x}∪Y (s ·Ax t) =
αX(s) ·Bx αY (t) for all s ∈ AX , t ∈ AY and x ∈ X.

The FiniteTrees(Σ, X) sets equipped with the operations of substitution and renaming
form an FTΣ-algebra (it is the free FTΣ-algebra generated by ∅). For A a FTΣ-algebra, its
associated evaluation morphism is the unique morphism from FiniteTrees(Σ) to A.

A congruence ∼ over a FTΣ-algebra A is a family ∼ of equivalence relations over the
AX ’s (each denoted ∼) such that, for any a ∼ b ∈ AX , c ∼ d ∈ AY , y ∈ Y and surjective
σ : X → Y : c ·y a ∼ c ·y b; c ·y a ∼ d ·y a and σ̃(a) ∼ σ̃(b). From such a congruence, one can
define the quotient algebra A/ ∼ in the natural way.

Compact presentation, and complexity. Our definition of algebras does not so far match
the one used in the introduction. In the introduction, algebras were considered as using
natural numbers as sorts, while here, our sorts are indexed by finite sets. What would be
these algebras should be pretty clear. The presentation used here is simpler to present and
to use. It is an exercise to show the equivalence.

What matters is that in what follows, a FTΣ-algebra is of bounded complexity if there
exists a bound K such that |AX | ⩽ K for all finite sets of variables X.

ICALP 2021
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2.3 Languages and syntactic algebras
A language of finite Σ-trees L is a set of Σ-trees. It is recognized by an FTΣ-algebra A if
there is a set P ⊆ A∅ such that L = α−1(P ) in which α is the evaluation morphism of A.

The syntactic congruence ∼L of a language L of finite Σ-trees is defined in the following
way s ∼L t for s, t finite Σ-trees if, for all FTΣ-contexts C, [[C]](s) ∈ L if and only if
[[C]](t) ∈ L. It is easy to prove that ∼L is indeed a congruence. The quotient algebra
FiniteTrees(Σ)/∼L

is called the syntactic algebra of L.

▶ Example 2. The language of all finite trees in which the symbol a appears has for syntactic
FTΣ-algebra the algebra with sorts AX = {0, 1}, for all finite set of variables X, and whose
evaluation morphism is such that α(t) = 1 if and only if t is a tree in which a appears.

2.4 Tree automata
A tree automaton B = (Q, I, (δa)a∈Σ) over Σ has a finite set Q of states, a set of accepting
states I ⊆ Q and a transition relation δa ⊆ Q × Qar(a) for every symbol a ∈ Σ. A run of
B over a finite tree t is a mapping ρ : dom(t) → Q such that, for any vertex u ∈ dom(t)
with t(u) = a ∈ Σ, (ρ(u), (ρ(u0), ..., ρ(u(ar(a)− 1)))) ∈ δa. A run is accepting if ρ(ε) ∈ I. A
language L of finite trees is called regular if it is recognized by a tree automaton B, meaning
the trees in L are exactly those for which there is an accepting run in B.

Ex. 3 shows the translation from tree automata to tree algebra.

▶ Example 3 (Automaton algebra). Consider a regular language L of finite trees recognized
by the tree automaton B = (Q, q0, (δa)a∈Σ).

Consider some finite set of variables X. An X-run profile is a tuple τ ∈ Q×P(Q)X . For
a Σ, X-tree t, τ = (p, (Ux)x∈X) is a run profile over t if there exists a run ρ of the automaton
over Q such that ρ(ε) = p and for all variables x ∈ X, Ux is the set of states assumed by
ρ at leaves labelled x. We define a tree algebra A that has as elements of sort X sets of
X-run profiles. The definition of the operations is natural, and is such that the image of a
Σ, X-tree t under the evaluation morphism yields the set of run profiles over t. It naturally
recognizes the language L.

Note that this definition yields an algebra of doubly exponential complexity (and hence,
this is an upper bound for regular languages). Of course, in practice, one can restrict the
algebra to the reachable elements, and this may dramatically reduce the complexity.

The converse translation is also true, yielding the following classical result (it is for instance
proved for preclones in [9]).

▶ Proposition 4. A finite tree language is regular if and only if it is recognized by a finite
FTΣ-algebra.

3 Fundamental results on permutations in tree algebras

This section studies some fundamental phenomena concerning the effect of variable permuta-
tions on tree algebras. Its main objective is to prove Theorem 5. It is a characterization of
syntactic FTΣ-algebras of bounded complexity which turns out to be key in the subsequent
developments. Beyond that, several intermediate results in this section may also be relevant
in the analysis of algebras of unbounded complexity.

In this section, given an FTΣ-algebra A, φA
X : Sym(X)→ Sym(AX) (or simply φX when

there is no ambiguity) denotes the group morphism σ 7→ σA, for all finite sets of variables X.
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▶ Theorem 5. A finite syntactic FTΣ-algebra A is of bounded complexity if and only for all
sufficiently large finite set of variables X, ker(φA

X) = Sym(X).

The meaning of ker(φX) = Sym(X) is that permuting the variables has no effect on AX (i.e.
σA = IdAX

for every σ ∈ Sym(X)). We fix from now the FTΣ-algebra A.
Our first step is to define a relation ≡ A which we show to be a congruence equivalent to

the syntactic one (Proposition 6). We set for all a ∈ AX :

⟨a⟩ : (A∅)X → A∅

b 7→ a[x0 ← b(x0), ..., xn−1 ← b(xn−1)] ,

in which X = {x0, ..., xn−1}. Define now a ≡A a′, for a, a′ ∈ AX to hold if ⟨a⟩ = ⟨a′⟩ (note
that it does not depend on the numbering of variables).

▶ Proposition 6. ≡ A is a congruence. If A is a syntactic FTΣ-algebra, then a = b if and
only if a ≡ A b, for all a, b in A.

By a simple counting argument, we obtain the following corollary.

▶ Corollary 7. Let A be a finite syntactic FTΣ-algebra, then

|AX | ≤ |A∅||A∅||X|
.

Recall the following result from finite group theory:

▶ Proposition 8. Let φ : Sym(X)→ G be a group morphism. If |X| ≥ 5, then ker(φ) equals
either Sym(X), Alt(X) or {IdX}.

Using Propositions 6 and 8, we prove that, whenever X is large enough, ker(φX) may
only be Sym(X) or {IdX}.

▶ Proposition 9. Let A be a finite syntactic FTΣ-algebra. There is an integer M such that,
for all X of cardinal at least M , either ker(φX) = Sym(X) or ker(φX) = {IdX}.

Proof. Let M = max(5, |A∅| + 1). Let X be a finite set of variables such that |X| ≥
M . By Prop. 8, ker(φX) is either Sym(X), Alt(X) or {IdX}. Assume, for the sake of
contradiction, that ker(φX) = Alt(X). This implies that the image of φX has exactly 2
elements: permutations of signature +1 are sent to IdAX

, and those of signature −1 are sent
to another (distinct) element. Let us call τ this permutation of AX .

Let t ∈ Sym(X) be a transposition, let us show that tA = IdAX
. According to Pro-

position 6, we only need to prove that ⟨tA(a)⟩ = ⟨a⟩ for all a ∈ AX . Let b ∈ (A∅)X , since
n ≥ |A∅| + 1, there must exists x ̸= y in X such that b(x) = b(y), thus: ⟨tA(a)⟩(b) =
⟨τ(a)⟩(b) = ⟨(x y)A(a)⟩(b) = ⟨a⟩(b ◦ (x y)) = ⟨a⟩(b). Since this holds for all a ∈ AX ,

tA = IdAX
. This is a contradiction. ◀

According to Proposition 9, for X large enough, ker(φX) may only be Sym(X) or {IdX}.
The next result shows that one of these two cases in fact holds for all sufficiently large X.

▶ Proposition 10. Let A be a finite syntactic FTΣ-algebra. There is an integer M such
that, either ker(φX) = Sym(X) for all X with |X| ≥M , or ker(φX) = {IdX} for all X with
|X| ≥M .

By simple counting, if ker(φX) = {IdX}, then |Sym(AX)| ≥ |Sym(X)| and hence
|AX | ≥ |X|. This yields the following corollary, which is one direction of Theorem 5.
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▶ Corollary 11. Let A be a syntactic FTΣ-algebra of bounded complexity. There is an integer
M such that, for every X with |X| ≥M , ker(φX) = Sym(X).

Heading toward the converse implication, we now show that when ker(φX) = Sym(X),
then ⟨a⟩ can only take very simple forms.

▶ Lemma 12. Let A be a finite syntactic FTΣ-algebra, and n be such that ker(φX) = Sym(X)
whenever |X| ∈ {n− 1, n}. Then, for all a ∈ AX with |X| = n,

⟨a⟩(b) = ⟨a⟩(b′)

for all b, b′ ∈ AX
∅ such that Im(b) = Im(b′).

Proof. Note first that for |X| ∈ {n− 1, n} we have ker(φX) = Sym(X). Hence for for all
permutations σ ∈ Sym(X),

⟨a⟩(b ◦ σ) = ⟨σA(a)⟩(b) = ⟨a⟩(b) . (⋆)

As a consequence, what matters is to prove that we can “duplicate” some b(x)’s. For Y ⊆ X

where Y = {y0, ..., yk−1} as well as h ∈ (A∅)Y and a ∈ AX , we simplify the notation with

a[h] = a[y0 ← h(y0), . . . , yk−1 ← h(yk−1)] .

Let x, y, z ∈ X be distinct variables and b, b′ ∈ (A∅)X be such that b and b′ coincide
everywhere but for b(z) = b(y) and b′(z) = b(x), we claim that

⟨a⟩(b) = ⟨a⟩(b′) . (⋆⋆)

Indeed, for σ that maps y to z and leaves all other variables unchanged, we have

a[x← d, y ← d′, z ← d′][h] = σA(a)[x← d, z ← d′][h]
= σA(a)[x← d′, z ← d][h] (by (⋆) applied to X \ {y})
= a[x← d′, y ← d, z ← d][h] (by (⋆) applied to X)
= a[x← d, y ← d′, z ← d][h] .

in which d, d′ ∈ A∅ and h ∈ (A∅)X\{x,y,z}, from which the claim (⋆⋆) follows.
At this point, (⋆⋆) allows to change the value b(z) to another providing that its values

before and after the change appear elsewhere in b, and (⋆) allows to permute all the b(x)’s.
Hence, by iterative applications of them, we obtain of (⋆) and (⋆⋆), ⟨a⟩(b) = ⟨a⟩(b′) providing
that b and b′ have same image. ◀

As a consequence of the above lemma, assuming that ker(φX) = Sym(X) for all sufficiently
large X, we can bound the number of possible elements in AX . This yields Corollary 13
below, which is the second direction of Theorem 5.

▶ Corollary 13. A finite syntactic FTΣ-algebra such that ker(φX) = Sym(X) for all
sufficiently large set of variables X, has bounded complexity.

Proof. By Lemma 12, we know that, for a ∈ AX , ⟨a⟩ must be chosen in a set of at most
|A∅|2

|A∅| functions, this is an upper bound on the number of elements of AX that does not
depend on |X| for X sufficiently large. ◀
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4 Finite tree algebras of bounded complexity

The main theorem of this section, Theorem 14, provides a characterization of the languages
recognized by FTΣ-algebras of bounded complexity as Boolean combinations of simple
languages. We proceed as follows. We state Theorem 14 and establish its easier parts in
Section 4.1. In Section 4.2, we establish Lemma 22 which essentially amounts to the result for
trees with “sufficiently many branches”, which is the hardest part of the proof of Theorem 14.

4.1 Statement of the result
The main theorem of this section, Theorem 14, requires some preliminary definitions.

a

b

d

g

a

c

c

a

g

e c

c

upref(t) = ab (unary prefix)

fnu(t) = d (first non-unary symbol)

symb(t) = {a, b, c, d, e, g} (symbols in t)

pbsymb(t) = {a, c, e, g} (post-branching symbols)

Figure 2 A finite tree t and its associated data.

For a given finite tree t, we associate to it some data (see Figure 2 for an illustration).
Let n, be the depth of the first node labelled with a non unary symbol; formally, n is the
least natural number such that ar(t(0n)) ̸= 1. The unary prefix of t, denoted upref(t) is
the word t(01)...t(0n−1) ∈ Σ∗

1. The first non-unary symbol of t is t(0n), which we denote by
fnu(t). The set of symbols in t is symb(t) = {t(u) | u ∈ dom(t)} and its set of post-branching
symbols is, if it exists, pbsymb(t) = {t(0nv) | 0nv ∈ dom(t), v ̸= ε}.

▶ Theorem 14. For a language of finite trees, the following properties are equivalent:
1. being recognized by a FTΣ-algebra of bounded complexity,
2. having its syntactic FTΣ-algebra of bounded complexity,
3. being equal to a Boolean combination of languages of the following kinds:

a. The language of finite trees with unary prefix in a given regular language of words
L ⊆ Σ∗

1.
b. The language of finite trees with first non-unary symbol a for a fixed non-unary

symbol a.
c. The language of finite trees with post-branching symbols B, for B ⊆ Σ.
d. A regular language K of bounded branching, meaning that there exists a natural

number k such that all trees t ∈ K have at most k branches.
Let us establish the easiest parts of this statement. To start with, it is a generic fact–

generic meaning independent of the type of algebras under consideration–that the syntactic
FTΣ-algebra of a language divides1 any FTΣ-algebra that recognizes the same language.
Hence, each sort of the syntactic FTΣ-algebra has a lesser size than the same sort in any
other FTΣ-algebra recognizing the same language. Thus 1 implies 2.

We now prove the second easiest implication, 3 implies 1. For this, it is sufficient to prove
that the languages of kind 3a to 3d are recognized by FTΣ-algebras of bounded complexity,
and that FTΣ-algebras of bounded complexity are closed under all the Boolean connectives.
This is stated in Lemmas 15 to 17 below. All are straightforward.

1 Divides in the morphism sense: being a quotient of a sub-algebra.
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Given a regular language of words L ⊆ Σ∗
1, a non unary symbol a and a set B ⊆ Σ of

symbols, let us denote by UPref(L), FNU(a) and PBSymb(B), respectively the language
of trees with unary prefix in L, the language of trees with first non-unary symbol c, and
the language of trees t with pbsymb(t) = B. Lemma 15 shows that these languages are
recognized by algebras of bounded complexity, i.e. it treats Cases 3a to 3c.

▶ Lemma 15. Given a regular language of words L, a non unary symbol a ∈ Σ ̸=1 and a
set of symbols B ⊆ Σ, the languages UPref(L), FNU(a) and PBSymb(B) are recognized by
FTΣ-algebras of bounded complexity.

Proof. For space considerations, we only detail the case of UPref(L), which is arguably
the hardest one. Let φ : Σ∗

1 →M be a monoid morphism that recognizes L, meaning there
exists P ⊆ M such that φ−1(P ) = L. Define on FiniteTrees(Σ) the relation ∼ by s ∼ t if
φ(upref(s)) = φ(upref(t)), this relation is easily seen to be a congruence, and UPref(L) is
obviously recognized by the quotient algebra FiniteTrees(Σ)/ ∼. Because ∼ only has |M |
equivalence classes in every sort, we just described a FTΣ-algebra recognizing UPref(L) of
bounded complexity. ◀

Next we deal with the languages that have bounded branching, i.e. Case 3d. It is done
with a modification of the automaton algebra of Example 3 so that it is also able to count
the number of branches of a tree up to the bound k. The key observation is that a tree
with k different variables must have at least k branches. This means that the sort AX where
X is a finite set of variables such that |X| > k can be collapsed to one element only. Note
that this is tightly related to our assumption that every variable from X must occur in all
Σ, X-trees. We do not give any further detail here.

▶ Lemma 16. The regular languages of finite trees of bounded branching are recognized by
FTΣ-algebras of bounded complexity.

Finally, using standard constructions, we can provide the last ingredient of the proof that
3 implies 1 in Theorem 14:

▶ Lemma 17. The languages recognized by FTΣ-algebras of bounded complexity are closed
under Boolean operations.

4.2 Trees with many branches
In this section, we fill the missing gap in the proof of Theorem 14, namely the implication
from 2 to 3.

Given two finite trees s and t and a FTΣ-algebra A with evaluation morphism α, let
s ≃A t hold if α(s) = α(t). We omit the sub- and superscript A when it is clear from the
context. Our goal is to prove Lemma 22 which states that if A is of bounded complexity, then
for all trees s and t with sufficiently many branches, if upref(s) = upref(t), fnu(s) = fnu(t)
and pbsymb(s) = pbsymb(t), then s ≃ A t

Given an Σ, X ⊎ {γ1, . . . , γn}-tree t in which the γi’s only appear once, and given trees
t1,. . . , tn, we denote t(t1, . . . , tn) the tree t[γ1 ← t1, . . . , γn ← tn]. We will use these
distinguished variables γi’s in this section.

The results we prove throughout this section are consequences of the properties of
permutations in FTΣ-algebras of bounded complexity and, more particularly, consequences
of Corollary 11. Our first objective is to show that if there are sufficiently many branches
in a tree, it is possible to exchange any two subtrees which are not related by the ancestor



T. Colcombet and A. Jaquard 127:11

relationwithout changing evaluation in the algebra (see Lemma 20). Lemma 18 is a first step
towards this goal: it says that, in a syntactic algebra, whenever a tree has many branches, it
is possible to exchange some of its subtrees. More precisely:

▶ Lemma 18. For every syntactic FTΣ-algebras A of bounded complexity, there exists an
integer N0 such that, for all finite trees t(t1, t2) such that t has at least N0 branches,

t(t1, t2) ≃ A t(t2, t1) .

Proof. Let N0 be the integer introduced in Corollary 11. Assume that t is a Σ, X ⊎ {γ1, γ2}-
tree that has at least N0 branches. Let s be a Σ, X ⊎ {γ1, γ2} ⊎ {x1, ..., xN0−2}-tree and let
s0, ..., sN0−2 be trees such that s[x1 ← s1, ..., xN0−2 ← sN0−2] = t. As such, s has at least
N0 variables. Hence by Corollary 11, t′ ≃ A σA(t′) in which σ is the transposition of γ1
and γ2. We now compute:

t(t1, t2) ≃ A s[γ1 ← t1, γ2 ← t2][x1 ← s1, ..., xN0−2]
≃ A σA(s)[γ1 ← t1, γ2 ← t2][x1 ← s1, ..., xN0−2]
= s[γ1 ← t2, γ2 ← t1][x1 ← s1, ..., xN0−2] = t(t2, t1) . ◀

Here, notice the similarity between this proof and the observations we made in the proof
of Lemma 12: this is the exact same argument, we just used the fact that a tree with many
branches can always be obtained from some tree with many variables. Taking this similarity
further, we may apply the other arguments we used in the proof of Lemma 12 to prove
Lemma 19, and change the number of occurrences of plugged subtrees.

▶ Lemma 19. For every syntactic FTΣ-algebras A of bounded complexity, there exists an
integer N1 such that, for any finite tree t(t1, t2, t2) such that t has at least N1 branches,

t(t1, t2, t2) ≃ A t(t1, t1, t2) .

The next step is to establish Lemma 20, which is very similar to the previous Lemma 18
but for the fact that it is sufficient to have many branches in t(t1, t2) instead of many branches
in t to be allowed to swap t1 and t2. It is obtained by repeated and careful applications of
Lemma 18.

▶ Lemma 20. For all syntactic FTΣ-algebras A of bounded complexity, there is an integer
N3 such that, for any finite tree t(t1, t2) where t(t1, t2) has at least N3 branches,

t(t1, t2) ≃ A t(t2, t1) .

As such, we may exchange two subtrees of a tree with many branches without changing
evaluation in the algebra. We will use this result to prove that two trees with the same unary
prefix, first non-unary symbol and set of post-branching symbols are not distinguished by
the algebra (Lemma 22).

Using Lemmas 19 and 20, we first establish Lemma 21 that allows in some situation to
make a symbol “appear” or “disappear”.

▶ Lemma 21. For all syntactic FTΣ-algebras A of bounded complexity, there exists an
integer N4 that has the following property. For all finite trees s(γ1, γ2), all finite trees t with
at least N4 branches, and all symbols c, d ∈ symb(t), c constant,

s(t, c) ≃ A s(t, d(c, . . . , c)) .
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In combination with Lemmas 19 and 20, it means that under the same assumptions,
s(t, c) ≃ A s(t, t′) for all finite trees t′ that use only symbols appearing in t. This building
block, used iteratively, allows to shuffle and change the number of occurrences of all symbols
that appear below a first non-unary symbol as soon as there are sufficiently many branches.
This is our key Lemma 22.

▶ Lemma 22. Let A be a syntactic FTΣ-algebra of bounded complexity. There is an
integer N , such that, for all finite trees s and t, both of which have at least N branches, if
upref(s) = upref(t), fnu(s) = fnu(t) and pbsymb(t) = pbsymb(t), then t ≃ A s.

Putting everything together we establish the last implication in Theorem 14:

▶ Lemma 23. A language of finite trees L recognized by a FTΣ-algebra of bounded complexity
can be written as a Boolean combination of languages of kinds 3a-3d in Theorem 14.

The idea behind this last proof is as follows. Given a regular word language K ⊆ Σ∗
1,

a non-unary symbol a, and a set of symbols B, let LK,a,B be the set of trees t such
that upref(t) ∈ K, fnu(t) = a and pbsymb(t) = B. Such languages can be written as
the intersection of UPref(K), FNU(a) and PBSymb(B) which are of the kinds 3a-3d in
Theorem 14. Let N be the value from Lemma 22.

In a first step, we construct finitely many tuples (Ki, ai, Bi), such that L and
⋃

i LKi,ai,Bi

coincide over all trees with sufficiently many branches. For this, for all t ∈ L with at least N

branches, consider the least language Kt ⊆ Σ∗
1 recognized by A{x} such that upref(t) ∈ Kt

(in which upref(t) is recognized by A{x} when seen as a tree made of unary symbols and the
variable x). The language Kt is regular and has the property that exchanging the unary
prefix of t for any other word in Kt leaves the tree in L. We use as the (Ki, ai, Bi)’s all
the tuples (Kt, fnu(t), pbsymb(t)) for t ranging over the trees in L with at least N branches
(note that since all the Kt’s are recognized by A{x}, there are finitely many of them). One
can show using Lemma 22 that, as claimed, L and

⋃
i LKi,ai,Bi

coincide over all trees with
at least N branches. In a second step one defines Li to be the set of trees in LKi,ai,Bi that
have at least N branches. Let also L′ be L restricted to trees with less than N branches.
One gets

L = L′ ∪
⋃

i

Li ,

and this is by construction a Boolean combination of languages of the kinds 3a-3d.
This concludes our proof of Lemma 23, and hence Theorem 14.

5 Conclusion

In this paper, we initiated a complexity analysis of the expressiveness of infinitely sorted
algebras. Our main result gives a descriptive characterization of the languages of finite
trees recognized by algebras of bounded complexity, Theorem 14. In this work, we made a
design choice in the definition of tree algebras. Indeed, we require that in a tree of sort X,
every variable occurs at least once. Removing this assumption would change our bounded
complexity characterization result, yielding only Boolean combinations of languages of the
form “the root symbol is a”. Another possible variant is to allow trees restricted to a single
variable: in this case our results remain unchanged.
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Extensions to infinite trees. We also obtained a similar characterization for algebras for
infinite trees. We did not include it in this short abstract for space considerations (this was
in fact our original question). In this case, the algebras have to include an extra iterating
construct that allows to build all infinite regular trees (i.e. unfolding of finite graphs). By
Rabin’s lemma, regular languages of infinite trees are entirely characterized by the regular
trees they contain, and as a consequence such algebras describe regular languages of infinite
trees. Our result characterizes such algebras of bounded complexity along the same line as
Theorem 14. We show that over infinite trees, such algebras can express two extra things
(1) the existence of subtrees of unary shape that belong to a prescribed prefix-invariant
regular language of infinite words, and (2) the existence of subtrees in which a set of letters C

appears densely, i.e. every letter in C appears in every subtree.

Future work. The next simplest cases seem to be the algebras of polynomial complexity
and of bounded orbit complexity. An example in this case is the language of Σ-trees such
that the leftmost branch does not contain the symbol a (we assume the existence of other
symbols of arity 0, and at least 2). It is recognized by an algebra which is both of polynomial
complexity and bounded orbit complexity. So far, we do not even know whether these two
classes differ.
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Abstract
We investigate computational complexity of the reachability problem for vector addition systems
(or, equivalently, Petri nets), the central algorithmic problem in verification of concurrent systems.
Concerning its complexity, after 40 years of stagnation, a non-elementary lower bound has been
shown recently: the problem needs a tower of exponentials of time or space, where the height of
tower is linear in the input size. We improve on this lower bound, by increasing the height of tower
from linear to exponential. As a side-effect, we obtain better lower bounds for vector addition
systems of fixed dimension.
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1 Introduction

Petri nets [38] are a long established model of concurrency, with extensive applications in
modelling and analysis of hardware [6, 25], software [16, 5, 20] and database [3, 4] systems,
as well as chemical [1], biological [37, 2] and business [43, 31] processes (the references
on applications are illustrative). The model admits various alternative but essentially
equivalent presentations, most notably vector addition systems (vas) [22], and vector addition
systems with states (vass) [17, Sec.5], [19]. The central algorithmic problem for this model
is reachability: whether from the given initial configuration there exists a sequence of
valid execution steps that reaches the given final configuration. Each of the alternative
presentations admits its own formulation of the reachability problem, all of them being
equivalent due to straightforward polynomial-time translations that preserve reachability; for
further details, see e.g. Schmitz’s survey [42, Section 2.1]. For instance, in terms of vas, the
problem is stated as follows: given a finite set T of integer vectors in d-dimensional space
and two d-dimensional vectors v and w of nonnegative integers, does there exist a walk from
v to w such that it stays within the nonnegative orthant, and its every step modifies the
current position by adding some vector from T? Emphasizing vass, a natural extension of
vas with finite control, in the sequel we use the name ’vass reachability problem’.

Importance of the problem is widespread, as a plethora of problems from formal languages
[8], logic [21, 11, 10, 7], concurrent systems [15, 13], process calculi [35], linear algebra [18]
and other areas (the references are again illustrative) are known to admit reductions from the
vass reachability problem; for more such problems and a wider discussion, we refer to [42].
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State of the art. The complexity of the vass reachability problem was remaining unsettled
over the past half century. The late 1970s and the early 1980s saw the initial burst of activity.
After an incomplete proof by Sacerdote and Tenney [40], decidability of the problem was
established by Mayr [33, 34], whose proof was then simplified by Kosaraju [23]. Building
on the further refinements made by Lambert in the 1990s [24], there has been substantial
progress over the past ten years [26, 27, 28], culminating in the first upper bound on the
complexity [29], recently improved to Ackermannian [30].

In contrast to the progress on refining the proof of decidability and obtaining upper
bounds on the complexity, Lipton’s landmark result that the vass reachability problem
requires exponential space [32] has remained the state of the art on lower bounds for over 40
years. Moreover, in conjunction with an apparent tightness of Lipton’s construction, this
has led to the conjecture that the problem is ExpSpace-complete becoming common in
the community. The conjecture has been falsified by a recent breakthrough construction
of [9] that shows the vass reachability problem is hard for the class Tower of all decision
problems that are solvable in time or space bounded by a tower of exponentials whose height
is an elementary (bounded by a tower of exponentials of fixed height) function of the input
size.

Contribution. This paper provides a further improvement on the lower bound. The
construction of [9] proves hardness of the vass reachability problem for the class Tower,
with respect to elementary reductions. However, in terms of the more fine-grained hierarchy
defined with respect to polynomial-time reductions only, the result states that the problem
needs a tower of exponentials of time or space, where the height of tower is linear in input
size. As our primary result we increase the height of the tower from linear to exponential,
namely we prove that the problem actually needs a tower of exponentials of time or space,
where the height of the tower is itself exponential in input size:

222...n
}

height O(n) ⇝ 222...n
}

height 2O(n).

In addition, as a side effect of our improved construction we obtain better lower bounds
for vass of fixed dimension. It has been known, as shown in [9], that the reachability
problem for vass in dimension d is O(d)-ExpSpace-hard (specifically: d-ExpSpace-hardness
for dimension d + 13). We show that the reachability problem for vass in dimension d is
2O(d)-ExpSpace-hard (specifically: 2d-ExpSpace-hardness for dimension 2d + 13).

Clearly, these new lower bounds do not formally exclude the vass reachability problem
from still being in Tower (and hence being Tower-complete with respect to elementary
reductions). However, we believe that the result makes this less likely. Intuitively speaking,
we rule out a natural algorithmic scheme of solving the reachability problem, where each
additional control state or dimension leads to an additional exponential blowup of time or
space. Presently, the most optimistic scheme must suffer, for each additional control state or
dimension, from at least doubling of the number of exponentials.

Organisation of the paper. We start by defining the model, in Section 2, and then the
reachability problem, in Section 3. In the latter section we also recall the lower bounds of [9]
and formally formulate our improved ones. The following two sections are devoted to proofs.
First, in Section 4 we show 2d-ExpSpace-hardness of the reachability problem for vass of
dimension 2d + 13, as a preparation before Section 5, in which we prove our primary result:
without restriction on dimension, the problem needs a tower of exponentials of time or space,
of height exponential in input size.
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2 Counter programs

As mentioned in the introduction, Petri nets [38], vas [22], and vass [17, 19] are alternative
presentations of the same model of concurrent processes, in the sense that between each
pair there exist straightforward polynomial-time translations that preserve reachability [42,
Sec. 2.1]. Following [12] and [9], instead of working directly with vass, as our primary
language we choose imperative nondeterministic programs operating on variables called
counters, that range over nonnegative integers. These programs may be seen as user-friendly
presentations of vass.

Counter programs. A counter program is a sequence of commands, each of which is of one
of the following three types:

x += 1 (increment counter x)
x −= 1 (decrement counter x)
goto L or L′ (jump to either line L or line L′)

except that the last command is of the form:

halt if x1, . . . , xl = 0 (terminate provided all the listed counters are zero).

Counters are only allowed to have nonnegative values, they may be incremented or decremen-
ted but, notably, counters may not be zero-tested. As an illustration, consider the following
program:

1: goto 7 or 2
2: x += 1
3: x′ −= 1
4: y += 1
5: y += 1
6: goto 1
7: halt if x′ = 0.

It repeats the block of three commands in lines 2–5 some number of times chosen non-
deterministically (possibly zero, although not infinite because x′ is decreasing and hence its
initial value bounds the number of iterations) and then halts provided counter x′ is zero.

We emphasise that counters are not permitted to have negative values. In the example
above, that is why the decrement in line 3 works also as a non-zero test.

We assume that initially all counters are set to 0. A run of a counter program is a sequence
of commands, as expected. We say that such a run is halting if, and only if it has successfully
executed its halt command (which is necessarily the program’s last); otherwise, the run is
either partial or infinite. Observe that, due to a decrement that would cause a counter to
become negative, or due to an unsuccessful terminal check for zero, a partial run may fail to
continue because it is blocked from further execution. Moreover, due to nondeterministic
jumps, the same program may have various runs in each of the three categories: halting runs,
maximal partial runs, and infinite runs.

By the size of a program we mean the number of commands in it, and by its dimension
we mean the number of counters. We sometimes speak also of program fragments, which are
not ended with a halt command.
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3 The reachability problem

Counter programs can be seen as presentations of vass, where the latter are required to start
with all vector components zero and to finish with vector components zero as specified by
the halt command, and hence the vass reachability problem can be stated as:

vass reachability problem
Input: A counter program.
Question: Does it have a halting run?

We remark that restricting further to programs where no counter is required to be zero
finally (i.e., where the last command is just halt) turns this problem into the vass coverability
problem, which is concerned with reachability of just a control location, with no requirement
on the final values of counters. Lipton’s ExpSpace lower bound [32] holds already for the
coverability problem, which is in fact ExpSpace-complete [39].

For stating our results we recall the standard complexity classes bases on exponential
hierarchy of fast-growing functions. We write T (n) for a tower of exponentials:

T2(k, n) = 222...n
}

height k T (n) = T2(n, n) = 222...n
}

height n.

Formally, let T2(0, n) = n and T2(k + 1, n) = 2T2(k,n). For a fixed positive integer k, the
class k-ExpSpace contains all decision problems solvable in space T2(k, poly(n)). The class
Tower contains all decision problems solvable in time or space bounded by a tower of
exponentials whose height is an elementary function of the input size, namely

Tower =
⋃

f elementary
Space(T (f(n)))

with f(_) ranging over all elementary functions, i.e., functions bounded by T2(k, _) for some
k. Tower is thus closed under elementary reductions.

For the results of this paper we need a fine-grained hierarchy inside Tower, with respect
to dependency of the height of exponentials on the input size. For a fixed elementary function
f , let f(n)-Tower denote the class of all decision problems solvable in (time or) space
T (f(poly(n))), i.e., in (time or) space bounded by a tower of exponentials of height f(nk),
for some k, where n is the input size:

f(n)-Tower =
⋃
k∈N

Space(T (f(nk))).

Each class f(n)-Tower is a strict subclass of Tower as it is closed under polynomial-time
reductions but, contrarily to Tower, not under arbitrary elementary reductions.

We recall the results of [9]. First, once one fixes the dimension of vass, the reachability
problem requires a tower of exponentials of space, where the height of the tower is linear in
the dimension:

▶ Theorem 1 ([9], Cor. 5). For any positive integer d, the vass reachability problem in
dimension d + 13 is d-ExpSpace-hard, with respect to polynomial-time1 reductions.

1 All results mentioned in this section are actually shown using linear-time reductions.
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The main result of [9] is a non-elementary lower bound of the vass reachability problem:
Tower-hardness with respect to elementary reductions. The construction of [9] shows that
the problem requires a tower of exponentials of space, where the height of tower is linear in
the input size, and hence the result can be stated in terms of the fine-grained hierarchy as
follows:

▶ Theorem 2 ([9], Thm. 4). The vass reachability problem is hard for n-Tower, with
respect to polynomial-time reductions.

As our first main result, we improve the lower bound of Theorem 1, namely we prove that
solving the vass reachability problem in dimension 2d + 13 requires at least T2(2d, n) space:

▶ Theorem 3. For any positive integer d, the vass reachability problem in dimension 2d + 13
is 2d-ExpSpace-hard.

Clearly, without restriction of dimension, Theorem 3 does not exclude membership of the
problem in Tower, neither it excludes its membership in n-Tower. Our primary result
excludes the latter possibility: it states that the vass reachability problem requires a tower
of exponentials of space, where the height of tower is exponential in the input size, thus
improving the bound of Theorem 2:

▶ Theorem 4. The vass reachability problem is hard for 2n-Tower, with respect to
polynomial-time reductions.

Again, Theorem 4 does not formally exclude membership of the vass reachability problem in
Tower, it makes it however less imaginable as mentioned in the introduction.

Theorems 3–4 are proved in the following two sections. The proofs are a refinement and
an optimisation of the construction of [9], involving certain amount of programming effort in
the setting of counter programs.

4 Proof of Theorem 3

In this and in the next section we proceed by reductions from space-bounded variants of the
halting problem for the standard model of (deterministic) Minsky machines [36]. The reader
is referred to [14, Theorem 3.1] for translations between space-bounded 3-counter Minsky
machines and Turing machines.

Following [9], for technical reasons we prefer to work with factorials instead of exponentials.
We write F(k, _) for the tower of factorials of height k: F(0, n) = n and F(k+1, n) = F(k, n)!.
We note that all the complexity classes from the previous section are robust with respect to
the choice of the fast-growing function hierarchy: exponential function can be equivalently
replaced by factorial [41, Section 4.1].

Our proof is a refinement of the reduction of [9], from the following bounded version of the
halting problem for Minsky machines with 3 counters, which is (k − 1)-ExpSpace-complete
for any fixed positive integer k:

k-exp-bounded halting problem
Input: A 3-counter Minsky machine M of size n.
Question: Does it have a halting run where all counters are bounded by F(k, n)?
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Let h be a fixed positive integer. Given a 3-counter Minsky machine M of size n, the
reduction of [9, Lem. 6] transforms M, in time O(n + h), into a counter program P with
h + 13 counters, including h + 2 counters x−1, x0, x1, . . . , xh which are required to be zero by
the final halt command, plus 11 other counters, of the form2

H−1︸︷︷︸
size O(n)

H0 H1 · · · Hh︸ ︷︷ ︸
constant size each

Hh+1︸ ︷︷ ︸
size O(n)

halt if x−1, x0, . . . , xh = 0,

for some program fragments H−1, H0, . . . , Hh+1 (for technical convenience, the indexing starts
at −1). We refer to the program fragments H−1, H0, . . . , Hh+1 as segments. Furthermore,
the first segment H−1 and the last one Hh+1 are of size O(n), the remaining ones are of
constant size, and the reduction is correct due to:

▷ Claim 5 (Correctness). M has a halting run with all counters bounded by F(h + 1, n) if,
and only if, P has a halting run.3

Moreover, the counter program P has the following two crucial properties:
(i) Each counter xj appearing in the final halt command appears in segments Hj and

Hj+1 only, for j = −1, 0, . . . , h:

︸ ︷︷ ︸
x−1 only here

H−1

x0 only here︷ ︸︸ ︷
H0 ︸ ︷︷ ︸

x1 only here

H1

x2 only here︷ ︸︸ ︷
H2 H3 . . . ︸ ︷︷ ︸

xh−1 only here

Hh−1

xh only here︷ ︸︸ ︷
Hh Hh+1.

We say, to some extent informally, that P is a relay-race with respect to counters
x−1, x0, . . . , xh, by which we mean the last appearance of every counter xj , for j < h, is
in the same segment as the first appearance of the next counter xj+1, and counters xj

and xj+2, for j < h − 1, never appear in the same segment.

(ii) Each segment Hj , for j = 0, 1, . . . , h, is obtained from the same4 program fragment
H, not using counters x−1, x0, . . . , xh, by replacing a counter x appearing in H by xj−1,
and another counter x′ appearing in H by xj . We denote the replacement as:

Hj = H[x 7→ xj−1, x′ 7→ xj ]. (1)

Let h = 2d for some positive integer d. We prove Theorem 3 by transforming P into an
equivalent counter program P̃ of (slightly larger) size O(n + d · 2d), but of exponentially
smaller dimension 2d + 13. We will rely on the relay-race property with respect to h counters
x0, x1, . . . , xh−1 (call these counters relay-race counters), and thus the transformation will
not affect counters x−1 and xh. The intuitive idea is to re-cycle counters x0, x1, . . . , xh−1
appearing in segments H0, H1, . . . , Hh. Our transformation proceeds in (d − 1) steps, in each
step reducing by half the number of relay-race counters and adding two additional fresh
counters.

2 Whenever convenient we compose counter program fragments horizontally, for the ease of presentation.
3 Roughly speaking, H−1 simply computes n, then the sequence of segments H0, H1, . . . , Hh is responsible

for computation of (h + 1)th iterate of factorial of n, which is then used in Hh+1 for simulating M.
4 For the ease of presentation we slightly simplify the structure of P; in fact, in order to rigorously express

the construction of [9] one needs to use two different program fragments instead of just one H, one of
them for even j and the other one for odd j. As will be clear later, this simplification is inessential.
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The first step. We split the first step of the transformation into two sub-steps. As the first
sub-step, consider the following transformation of P. Let h′ = 1

2 h = 2d−1. We introduce
h′ additional fresh counters y0, . . . , yh′−1, initially set to 0, with the idea that counter yk

invariantly equals to the sum of counters x2k +x2k+1. This is achieved by adding, immediately
after each command anywhere in fragments H0, H1, . . . , Hh−1 that operates on counter xj ,
for j = 0, . . . , h − 1, an additional command operating in the same way on yj div 2:

xj ∗= 1 7→ xj ∗= 1 yj div 2 ∗= 1,

where j div 2 is the largest nonnegative integer k such that 2k ≤ j, and ∗ ∈ {+, −}. This
addition yields a counter program P ′ (recall that both h and h′ are even):

y0 = x0+x1︷ ︸︸ ︷ y2 = x4+x5︷ ︸︸ ︷ . . .

︸ ︷︷ ︸
x−1

H−1

x0︷ ︸︸ ︷
H0 ︸ ︷︷ ︸

x1

H1

x2︷ ︸︸ ︷
H2 ︸ ︷︷ ︸

x3

H3

x4︷ ︸︸ ︷
H4 . . .

xh−2︷ ︸︸ ︷
Hh−2 ︸ ︷︷ ︸

xh−1

Hh−1

xh︷ ︸︸ ︷
Hh Hh+1

︸ ︷︷ ︸
y1 = x2+x3

︸ ︷︷ ︸
yh′−1 = xh−1+xh−1

(2)

Furthermore, we remove counters x0, x1, . . . , xh−1 from the halt command, and put counters
y0, y1, . . . , yh′−1 instead:

halt if x−1, x0, . . . , xh = 0 7→ halt if x−1, xh, y0, y1, . . . , yh′−1 = 0.

▷ Claim 6. P ′ satisfies invariantly yk = x2k + x2k+1, for k = 0, 1, . . . , h′ − 1.

We use that claim for entailing:

▷ Claim 7 (Correctness). P has a halting run if, and only if, P ′ has one.

Proof. We show that halting runs of P are in one-to-one correspondence with halting runs of
P ′, using Claim 6 in both directions. In one direction, every halting run of P, ending with
all counters x−1, x0, . . . , xh equal 0, has a corresponding halting run of P ′ ending with x−1, xh

and all added counters y0, y1, . . . , yh′−1 equal 0 as well. For the opposite direction consider
any halting run of P ′. As every counter yk is 0 at the end of the run, the sum of every two
consecutive counters x2k + x2k+1 is 0 at the end, and hence also each individual counter xj

is forced to be 0 as well (without even checking that it is so, in the final halt command).
Therefore, dropping operations on the added counters yields a halting run of P. ◁

As the second sub-step, we introduce two fresh counters a0, a1, and replace each operation
on every counter xj , for j = 0, 1, . . . , h − 1, anywhere in segments H0, H1, . . . , Hh−1, by the
analogous operation on aj mod 2.

xj ∗= 1 7→ aj mod 2 ∗= 1. (3)

The replacement removes h counters x0, x1, . . . , xh−1 definitely from P ′, yielding a counter
program P ′′:

y0 only here︷ ︸︸ ︷ y2 only here︷ ︸︸ ︷ . . .

︸ ︷︷ ︸
x−1

H−1

x0 7→ a0︷ ︸︸ ︷
H0 ︸ ︷︷ ︸

x1 7→ a1

H1

x2 7→ a0︷ ︸︸ ︷
H2 ︸ ︷︷ ︸

x3 7→ a1

H3

x4 7→ a0︷ ︸︸ ︷
H4 . . .

xh−2 7→ a0︷ ︸︸ ︷
Hh−2 ︸ ︷︷ ︸

xh−1 7→ a1

Hh−1

xh︷ ︸︸ ︷
Hh Hh+1

︸ ︷︷ ︸
y1 only here

︸ ︷︷ ︸
yh′−1 only here

(4)
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with the same halt command as P ′. Note that the size of P ′′ is larger by O(2d) than the
size of P, but its dimension decreased from 2d + 13 to 2d−1 + 15, as h = 2d counters have
been removed and another h′ + 2 = 2d−1 + 2 counters have been introduced instead.

We have thus completed the description of a transformation P 7→ P ′′. Formally, by
composing the two sub-steps, we see that P ′′ has the form:

H−1︸︷︷︸
size O(n)

H′′
0 H′′

1 · · · H′′
h︸ ︷︷ ︸

constant size each

Hh+1︸ ︷︷ ︸
size O(n)

halt if x−1, xh, y0, y1, . . . , yh′−1 = 0,

where each segment H′′
i is obtained from Hi by the simultaneous substitution, for all

j = 0, 1, . . . , h − 1:

xj ∗= 1 7→ aj mod 2 ∗= 1 yj div 2 ∗= 1. (5)

The following fact is crucial for correctness, i.e., for proving that the second sub-step,
and hence also the whole step, preserves reachability:

▷ Claim 8. In every halting run of P ′′, aj mod 2 = 0 at the end of H′′
j+1 for every j ∈

{0, . . . , h − 1}.

Proof. Consider any halting run of P ′′. By induction on j we prove that for every even
j ∈ {0, 1, . . . , h − 1}, a0 = 0 at the end of H′′

j+1, and a1 = 0 at the end of H′′
j+2.

Let j ≥ 0 and asssume the claim holds for smaller values of j. Let v0 ∈ N (resp. v1 ∈ N)
denote the value of counter a0 (resp. counter a1), at the beginning of fragment H′′

j (resp. H′′
j+1).

By induction assumption (or due to initial 0 values of counters) we have v0 = v1 = 0.
According to the substitution (5), every operation on a0 in H′′

j and H′′
j+1 (recall that these

are the only fragments where xj appears) is also performed on yj div 2. Likewise, every
operation on a1 in H′′

j+1 and H′′
j+2 (these are the only fragments where xj+1 appears) is

also performed on yj div 2. Also according to (5), these are the only operations on yj div 2
performed along the run. Therefore, denoting by v′

0 (resp. v′
1) the value of counter a0

(resp. counter a1), at the end of fragment H′′
j+1 (resp. H′′

j+2), we know that the value of
counter yj div 2 at the end of the run is (v′

0 − v0) + (v′
1 − v1) = v′

0 + v′
1. As the counter yj div 2

is checked to be 0 by the final halt command, we deduce v′
0 + v′

1 = 0. Finally, since both
values are necessarily nonnegative, we deduce v′

0 = v′
1 = 0, as required. ◁

▷ Claim 9 (Correctness). P ′ has a halting run if, and only if, P ′′ has one.

Proof. We show that halting runs of P ′ are in one-to-one correspondence with halting runs
of P ′′. As P ′′ is obtained from P ′ by merging all counters xj , for even j, to one counter a0,
and all counters xj , for odd j, to one counter a1, every halting run of P ′ has a corresponding
halting run of P ′′ such that a0 is the sum of values of all counters xj for even j and a1 is the
sum of values of all counters xj for odd j. For the opposite direction we rely on Claim 8.
According to the claim, replacing in a halting run of P ′′ each operation on aj mod 2 in H′′

j

and H′′
j+1 by the same operation on xj is safe, namely it is guaranteed that counters xj stay

nonnegative. Therefore we get a halting run of P ′′. ◁

Iterating steps. A crucial but simple observation, cf. (4), is that the so described step of
the transformation preserves the relay-race property, and hence can be iterated:

▷ Claim 10 (Relay-race preservation). The counter program P ′′ is a relay-race with respect
to counters y0, y1, . . . , yh′−1.
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Proof. According to the substitution (5), each counter yk only appears in three consecutive
segments H′′

2k, H′′
2k+1 and H′′

2k+2. Therefore the relay-race condition is satisfied: the last
appearance of every counter yk, for k + 1 < h′, is in the same segment H′′

2k+2 as the first
appearance of the next counter yk+1, and counters yk and yk+2, for k + 2 < h′, never appear
in the same segment. ◁

We apply the transformation step d − 1 times. Initially, P has 2d relay-race counters, and
13 other counters including x−1 and xh. Each ith iteration, for i = 0, 1, . . . , d − 2, decreases
the number of relay-race counters twice, from 2d−i to 2d−i−1, and adds two additional
counters ai

0 and ai
1. Therefore, after d − 1 iterations5 we arrive at a counter program P̃

with just two relay-race counters, say z0, z1, plus 2(d − 1) added counters, say ai
0, ai

1 for
i = 0, 1, . . . , d − 2, and 13 remaining counters, of the form:

H−1︸︷︷︸
size O(n)

H̃0 H̃1 · · · H̃h︸ ︷︷ ︸
size O(d) each

Hh+1︸ ︷︷ ︸
size O(n)

halt if x−1, xh, z0, z1 = 0. (6)

By iterating the substitution (5), one sees that H̃i is actually obtained from Hi by the
following simultaneous substitution, for ∗ ∈ {+, −} and j = 0, 1, . . . , h − 1

xj ∗= 1 7→ a0
j0

∗= 1 a1
j1

∗= 1 . . . ad−2
jd−2

∗= 1 zjd−1 ∗= 1, (7)

where jd−1 . . . j1j0 = bin(j) is the binary representation of j using d bits, in the order of
decreasing significance of bits. Indeed, observe that j0 = j mod 2, j1 = (j div 2) mod 2,
j2 = ((j div 2) div 2) mod 2, and so on. Therefore, by iterating the substitution (5), we
first replace xj by a0

j0
and a relay-race counter yj div 2, then replace yj div 2 by a1

j1
and some

further relay-race counter z(j div 2) div 2, and so on. In the sequel we uniformly write ad−1
b

instead of zb appearing in (6) and (7), for b = 0, 1. Let b = 1 − b denote bit negation.

▷ Claim 11. In every halting run of P̃ , ai
b = 0 at the end of H̃j for every j ∈ {1, . . . , h} such

that ji = b and ji−1 = . . . = j0 = 0.

Proof. Follows by iterating the substitution (5) and Claim 8. ◁

▶ Example 12. As an illustration consider d = 3, and hence h = 8. The construction yields
a counter program P̃ with 6 added counters a0

0, a0
1, a1

0, a1
1, a2

0, a2
1, and hence of dimension

19. Halting runs of P and P̃ are in one-to-one correspondence, and the values of counters
x0, x1, . . . , x7 in a halting run of P are related, via the equalities depicted below, to the values
of counters a0

0, a0
1, a1

0, a1
1, a2

0, a2
1 in the corresponding halting run of P̃.

a2
0 = x0+x1+x2+x3︷ ︸︸ ︷

a1
0 = x0+x1︷ ︸︸ ︷ a1

0 = x4+x5︷ ︸︸ ︷
︸ ︷︷ ︸

x−1

H̃−1

a0
0 = x0︷ ︸︸ ︷

H̃0 ︸ ︷︷ ︸
a0

1 = x1

H̃1

a0
0 = x2︷ ︸︸ ︷

H̃2 ︸ ︷︷ ︸
a0

1 = x3

H̃3

a0
0 = x4︷ ︸︸ ︷

H̃4 ︸ ︷︷ ︸
a0

1 = x5

H̃5

a0
0 = x6︷ ︸︸ ︷

H̃6 ︸ ︷︷ ︸
a0

1 = x7

H̃7

xh︷ ︸︸ ︷
H̃8 H̃9

︸ ︷︷ ︸
a1

1 = x2+x3

︸ ︷︷ ︸
a1

1 = x6+x7︸ ︷︷ ︸
a2

1 = x4+x5+x6+x7

5 One additional dth iteration could be also performed, which would however result in replacing 2 counters
by 3 other ones, and hence the dimension would increase.
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Indeed, iterating the proof of Claims 7 and 9 three times, we learn that ai
b is the sum of values

of all counters xj where ji = b, for instance a1
0 = x0 + x1 + x4 + x5. However, according to

Claim 11, we have a1
0 = 0 at the end of H̃2, and hence a1

0 = x4 + x5 in H̃4 . . . H̃6.
In particular, we obtain (cf. Claim 14 below) 8-ExpSpace-hardness for vass in dimension

19 which, according to Theorem 1, has been known before to be 6-ExpSpace-hard. ⌟

▷ Claim 13 (Correctness). P has a halting run if, and only if, P̃ has one.

Proof. Iterating Claims 7 and 9 we deduce that halting runs of P are in one-to-one corres-
pondence with halting runs of P̃ . In one direction, every halting run of P has a corresponding
halting run of P̃ where each counter ai

b, for i = 0, 1, . . . , d − 2 and b = 0, 1, invariantly equals
to the sum of all counters xj with ji = b: ai

b =
∑

j : ji=b xj . For the opposite direction we
deduce, using Claim 11, that dropping operations on the added counters in every halting run
of P̃ , and replacing each operation on aj mod 2 in H̃j and H̃j+1 by the same operation on xj ,
yields a halting run of P. ◁

The dimension of P̃ is 2d + 13. The size of every segment H̃j , for j = 0, 1, . . . , h, is O(d)
times the constant size of Hj , therefore the size of P̃ is O(n + d · 2d).

Due to Claims 5 and 13, the reduction M 7→ P of [9], composed with the transformation
P 7→ P̃ just described, yield the required reduction M 7→ P̃:

▷ Claim 14. Let d be a positive integer. Given a 3-counter Minsky machine M of size n,
one can compute in time O(n + d · 2d) a counter program P̃ of dimension 2d + 13 such that
M has a halting run with counters bounded by F(2d + 1, n) if, and only if, P̃ has a halting
run.

For every fixed d the reduction is computable in linear time with respect to the input size n,
and hence the vass reachability problem in dimension 2d + 13 is 2d-ExpSpace-hard.

5 Proof of Theorem 4

In order to prove Theorem 4 we refine further our reduction from Section 4. The refinement
involves certain amount of low-level programming with counter programs.

Formally, we will set up a linear-time reduction from the following problem:

exp-tower halting problem
Input: A 3-counter Minsky machine M of size n.
Question: Does it have a halting run where all counters are bounded by F(2n, n)?

We argue, similarly as before, that the problem is complete for the class 2n-Tower, with
respect to polynomial-time reductions, cf. [14, Theorem 3.1] and [41, Section 4.1].

In this section we strongly rely on condition (ii) from Section 4: each segment Hj in (6),
for j = 0, 1, . . . , h, is obtained by the substitution (1) applied to the same program fragment
H of constant size. Combining this substitution with the substitution (7) we deduce that
each H̃j , for j = 0, 1, . . . , h, is obtained from H by applying the following two substitutions:

x ∗= 1 7→ C∗
j−1

x′ ∗= 1 7→ C∗
j

(8)

where program fragments C∗
j are defined, for ∗ ∈ {+, −} and j = 0, 1, . . . , h − 1, as the

sequence of commands:

C∗
j = a0

j0
∗= 1 a1

j1
∗= 1 . . . ad−2

jd−2
∗= 1 ad−1

jd−1
∗= 1.
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We apply here the proviso that the former substitution, referring to x, is not applied when
j = 0, and the latter one, referring to x′, is not applied when j = h. Indeed, recalling (1)
and (4), x in H0 refers actually to x0, and likewise x′ in Hj refers actually to xh+1.

Relying on the substitutions (8) we are going to optimise the counter program P̃, as
defined in (6), by replacing all segments H̃1, . . . , H̃h−1 by a single program fragment G of
size O(d), and thus obtaining the final counter program P (see (11) below).

We start by defining a single program fragment C∗ of size O(d) that achieves the effect
of any C∗

j in a way parametric with respect to j. The program fragment C∗ uses a bit-wise
representation of the value of j, ranging over 0, . . . , h − 1. To this aim we introduce d new
counters b0, b1, . . . , bd−1 to represent the binary representation bin(j) = jd−1 . . . j0 of current
value j; thus these counters will only take values 0 or 1. In addition, we introduce another
d counters b0, b1, . . . , bd−1 to represent negations of bits b0, b1, . . . , bd−1. We are going to
enforce the following equalities to hold invariantly:

bi + bi = 1 (for i = 0, . . . , d − 1). (9)

In particular, as expected, counters bi are initialised to 0, while counters bi are incremented
to 1 at the start of P. Having (9), one easily implements a conditional construct

if bi = 1 then G else G′ (10)

that executes one of program fragments G, G′ depending on the value of the ith bit bi:

1: goto 2 or 5
2: bi −= 1 bi += 1
3: G
4: goto 7
5: bi −= 1 bi += 1
6: G′

7: . . .

Note that exactly one of the two branches fails (because of bi = 0 or bi = 0) and the other
one succeeds. Line 2 is a non-zero test on bi, while line 5 is, due to the equality (9), a
zero-test on bi. The original values of counters bi, bi are retrieved by increments in lines 2
and 5. The conditional construct allows us to write the code for C∗:

1: if b0 = 1 then a0
1 ∗= 1 else a0

0 ∗= 1
2: if b1 = 1 then a1

1 ∗= 1 else a1
0 ∗= 1

. . .

if bd−1 = 1 then ad−1
1 ∗= 1 else ad−1

0 ∗= 1

Also, using the above conditional construct (10) as a building block, one writes down
two further program fragments Inc and Dec, both of size O(d). Fragment Inc (resp. Dec)
increments (resp. decrements) the current value j represented by counters b0, . . . , bd−1,
assuming that this value is below h − 1 (resp. above 0), by means of bit operations. In
order to keep the invariant (9), every increment bi += 1 of ith bit is accompanied by the
corresponding decrement bi −= 1, and symmetrically every decrement bi −= 1 of ith bit is
accompanied by the increment bi += 1.

Let H denote the result of applying the following substitutions to H, for ∗ ∈ {+, −}:

x ∗= 1 7→ Dec C∗ Inc

x′ ∗= 1 7→ C∗
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This exactly implements substitutions (8): assuming the current value of j is represented in
counters bi and bi, as described above, execution of the program fragment C∗ has the same
effect as execution of C∗

j ; and execution of Dec C∗ Inc has the same effect as decrementing j,
executing C∗

j , and incrementing j to retrieve its actual current value, which is equivalent to
execution of C∗

j−1.
The size of H is O(d). It remains to wrap up this program fragment inside a loop that

increments the value j, represented by counters b0, . . . , bd−1, from 0 to h − 1. Using an
aggregated conditional construct if b0 = b1 = . . . = bd−1 = 1 then goto L of size O(d),
defined as expected, we write down the following program fragment G, again of size O(d):6

1: Inc

2: if b0 = b1 = . . . = bd−1 = 1 then goto 6
3: H
4: Inc

5: goto 2
6: . . .

Assuming the initial values bi = 0 and bi = 1 for all j = 0, . . . , d − 1, G sets values bi = 1
and bi = 0 for all j = 0, . . . , d − 1, once line 6 is reached. We use G as a part of the final
counter program P . As the substitutions (8) apply fully only when j = 1, . . . , h − 1, we keep
the first and the last segments H̃0 and H̃h as defined in (6)–(7), and replace all others by G.
The counter program P has the following form:

H−1︸︷︷︸
size O(n)

H̃0︸︷︷︸
size O(d)

G︸︷︷︸
size O(d)

H̃h︸︷︷︸
size O(d)

Hh+1︸ ︷︷ ︸
size O(n)

halt if x−1, xh, ad−1
0 , ad−1

1 = 0. (11)

Its size is O(n + d) and its dimension is larger by 2d than the dimension of P̃.

▷ Claim 15 (Correctness). P̃ has a halting run if, and only if, P has one.

Proof. Again, halting runs of P̃ are in one-to-one correspondence with halting runs of P.
Indeed, a halting run of P̃ is faithfully simulated in P by iterating through j = 0, 1, . . . , h − 1
in G. Conversely, by the very construction of P, its every halting run simulates in this way
some halting run of P̃. Note that P has also other runs which are necessarily partial (i.e.,
they fail to reach the halt command), because of choosing a failing branch in some of the
conditional constructs (10). ◁

The optimisation P 7→ P̃ described above yields a reduction M 7→ P, whose correctness
follows by Claims 5, 13 and 15:

▷ Claim 16. Given a 3-counter Minsky machine M of size n and a positive integer d, one
can compute in time O(n + d) a counter program P of dimension 4d + 13 such that M has a
halting run with counters bounded by F(2d + 1, n) if, and only if, P has a halting run.

Putting d = n, we obtain a linear-time reduction from the exp-tower halting problem.
In consequence, the vass reachability problem is 2n-Tower-hard, with respect to polynomial-
time reductions.

6 As remarked in the footnote 4 in Section 4, G adapts straightforwardly if, instead of just one H, two
different program fragments are used, say H0 and H1, one of them for even j and the other one for odd
j. It is enough to replace line 3 by if b0 = 1 then H1 else H0
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Abstract
Register automata are finite automata equipped with a finite set of registers ranging over the
domain of some relational structure like (N; =) or (Q; <). Register automata process words over
the domain, and along a run of the automaton, the registers can store data from the input word
for later comparisons. It is long known that the universality problem, i.e., the problem to decide
whether a given register automaton accepts all words over the domain, is undecidable. Recently, we
proved the problem to be decidable in 2-ExpSpace if the register automaton under study is over
(N; =) and unambiguous, i.e., every input word has at most one accepting run; this result was shortly
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single-register automata over (Q; <). As a third technical contribution we prove that the problem is
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registers can take values nondeterministically, if defined over (N; =) and only one register is used.
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1 Introduction

Certainly, determinism plays a central role in the research about computation models. Re-
cently, a lot of active research work [1, 6, 3, 16, 14] is devoted to its weaker form: unambiguity.
A system is unambiguous if for every input word there is at most one accepting run. Un-
ambiguous systems exhibit elegant properties; in particular many natural computational
problems turn out to be easier compared to the general case. A prominent example is
the universality problem for finite automata, i.e., the problem of deciding whether a given
automaton accepts every input word. It is in PTime [18] and even in NC2 [19] in the
unambiguous case, as opposed to PSpace-complete in the general case.
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In his seminal overview article about unambiguity, Colcombet [5] states some very natural
conjectures about unambiguous systems that are so fundamental that one can be surprised
that they are still open. An example conjecture, motivated by the fact that the universality
problem for unambiguous finite automata is in PTime, was that for every unambiguous finite
automaton the complement of its language can be accepted by another unambiguous finite
automaton with at most polynomial size with respect to the size of the original automaton.
This conjecture was surprisingly resolved negatively by Raskin [17], who provided a family
of automata where a blowup Θ(nlog log log(n)) is unavoidable. Still, a lot of other natural
questions remain unresolved. Some of them are not algorithmic (as the above one), while
others ask for the existence of faster algorithms in the unambiguous case.

Usually one cannot hope for designing more efficient algorithms for the emptiness problem,
as it is often easy to transform a nondeterministic system to a deterministic (and thus
unambiguous) system which has empty language if and only if the accepted language of the
original system is empty. Indeed, it is often sufficient to change the labelling of every transition
of the system to its unique transition name. This transformation preserves the emptiness
property, but not much more. Therefore there is a hope that the unambiguity assumption may
result in faster solving of problems like universality, equivalence and language containment.
Recently there was a substantial amount of research in this area [11, 4, 7, 14, 6, 1]. The
considered problem is often the universality problem. Indeed, the universality problem is
probably the easiest nontrivial problem for which there is a hope to obtain an improvement
in the unambiguous case. Equivalence and containment are often not much harder, even
though sometimes a bit more involved techniques are needed.

For register automata, this line of research was started in [14]. Register automata (RA,
for short) extend finite automata with a finite set of registers that take values from an infinite
data domain for later comparisons. More detailed, RA are defined over a relational structure,
like (N; =) or (Q; <, =); they process finite words over the domain of the relational structure,
and the registers can store values from the input word for comparing them using the relations
provided by the relational structure. In the more expressive model of register automata
with guessing (GRA) the registers can even take arbitrary values. In [14] it is shown that
for unambiguous RA (URA) over (N; =) the containment problem is in 2-ExpSpace and in
ExpSpace for a fixed number of registers. Without the unambiguity assumption, this problem
is known to be much harder. Concretely, the universality problem is undecidable as soon as
the automaton uses two registers [12, 15, 9], and Ackermann-complete in the one-register
case [10]. In the case of GRA even the one-register case is undecidable.1 The result for URA
in [14] was improved by Barloy and Clemente [1] who have shown that the problem is in
2-ExpTime and in ExpTime for a fixed number of registers, using very different tools such as
linear recursive sequences in two dimensions.

Our contribution

Our result improves statements of Barloy and Clemente [1] even further. We provide three
results shown by two different techniques. Our first technique is to show that in some cases
one can assume that only a linear or exponential number of different configurations can
be reached via an input word. This claim immediately provides an improved upper bound
compared to [1].

1 A proof for undecidability can be done using a reduction from the undecidable reachability problem for
Minsky machines, following the lines of the proof of Theorem 5.2 in [8]. The nondeterministic guessing
can be used to express that there exists some decrement for which there is no matching preceding
increment.
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▶ Theorem 1. The containment problem L(A) ⊆ L(B) is in ExpSpace, if A is an RA and
B is a URA over (N; =). The containment problem is in PSpace on inputs A, B both having
a bounded number of registers.

This approach can also be applied to unambiguous one-register automata over (Q; <, =).

▶ Theorem 2. The universality problem for one-register URA over (Q; <, =) is in PSpace.

Our techniques used to show Theorems 1 and 2 differ from techniques used previously
in [14]. In [14] a reached configuration was compressed if it was too big. More concretely, if
two different data values were equivalent in a certain sense with respect to the current config-
uration, one of them was eliminated from the configuration, and the resulting configuration
was equivalent. In that way, a compressed configuration had only non-equivalent data values
and therefore its size was bounded. In this work, we analyse a reachable configuration much
more locally, looking only at states with the same location. We show that if there are too
many states with the same location in a certain configuration, then it is not possible that
the considered unambiguous automaton is universal. In that quite different way we provide
a bound on the size of a reachable configuration in an unambiguous universal automaton.

However, we will see that the techniques for URA do not work for unambiguous GRA
(GURA), not even in the one-register case. In that case we solve the universality problem,
and even the containment problem, with the use of more sophisticated analysis, closer related
to the technique from [14]. In short, we show that we can modify the set of reachable
configurations such that it becomes small and equivalent in some sense, which also allows us
to obtain a more efficient algorithm.

▶ Theorem 3. The containment problem L(A) ⊆ L(B) is in ExpSpace, if A is a GRA over
(N; =) and B is a one-register GURA over (N; =).

Independently from our work, Bojańczyk, Klin and Moerman [2] have recently published
a result about orbit-finite vector spaces, which, for GURA with register values comparable
wrt. a linear order, implies an algorithm that works in ExpTime if the number of registers
is not fixed, and in PTime if the number of registers is fixed. However, we believe that
our contribution does not only provide an improved complexity of the considered problem
(compared with previous results), but also techniques that can be useful in future research
on unambiguous systems.

2 Preliminaries

In this section, we define register automata, introduced by Kaminski et al. [12, 13]. We start
with some basic notions used throughout the paper. We use Σ to denote a finite alphabet,
and N and Q denote the set of non-negative integers and rational numbers, respectively.
Given a, b ∈ N with a ≤ b, we write [a, b] to denote the set {a, a + 1, . . . , b}.

A relational structure is a tuple D = (D; R1, . . . , Rk), where D is an infinite domain, and
R1, . . . , Rk are binary relations over D, and we assume that Rk is the equality relation. In
this paper, we are mainly interested in the relational structures (N; =) of the non-negative
integers with equality, and (Q; <, =) of the rationals with the usual order and equality
relations.

A data word is a finite sequence (σ1, d1) . . . (σk, dk) ∈ (Σ × D)∗. If Σ = {σ} is a singleton
set, we may write d1 · d2 · . . . · dk shortly for (σ, d1)(σ, d2) . . . (σ, dk). We use ε to denote the
empty data word. A data language is a set of data words. We use data(w) to denote the set
{d1, . . . , dk} of all data occurring in w.

ICALP 2021



129:4 New Techniques for Universality in Unambiguous Register Automata

Let D⊥ denote the set D ∪ {⊥}, where ⊥ ̸∈ D. We let ⊥ ̸= d for all d ∈ D, and ⊥
is incomparable with respect to ≤ to all d ∈ D. We use boldface lower-case letters like
a, b, . . . , u . . . to denote tuples in Dn

⊥, where n ∈ N. Given a tuple a ∈ Dn
⊥, we write ai for

its i-th component, and data(a) denotes the set {a1, . . . , an} ⊆ D⊥ of all data occurring in a.
Let R = {r1, . . . , rn} be a finite set of registers. A register valuation is a mapping

u : R → D⊥; we may write ui as shorthand for u(ri). Let DR
⊥ denote the set of all register

valuations. A register constraint over D and R is defined by the grammar

ϕ ::= true | R(t1, t2) | ¬ϕ | ϕ ∧ ϕ

where R is a binary relation symbol from the relational structure D, and ti ∈ {#} ∪ {r, ṙ |
r ∈ R}. Here # is a symbol representing the current input datum, r refers to the current
value of the register r, and ṙ refers to the future value of the register r. We use Φ(D, R)
to denote the set of all register constraints over D and R. The satisfaction relation |= on
DR

⊥ × D × DR
⊥ is defined by structural induction as follows. We only give some atomic cases;

the other cases can be derived easily. We have (u, d, v) |= ϕ if
ϕ is of the form true,
ϕ is of the form R(ri, #) and D |= R(ui, d),
ϕ is of the form R(ṙi, ri) and D |= R(vi, ui),
ϕ is of the form R(ṙi, #) and D |= R(vi, d).

For example, ϕ := ¬(r = #) ∧ (ṙ = r) is a register constraint over (N; =) and R = {r}, and
we have (1, 2, 1) |= ϕ, whereas (1, 2, 3) ̸|= ϕ.

It is important to note that only register constraints of the form ṙ = r and ṙ = # uniquely
determine the new value of r. In absence of such a register constraint, the register r can
nondeterministically take any of infinitely many data values from D, with the following
restrictions: the register constraint ¬(ṙ = #) requires that the new value of r is different
from the current input datum, so that r may take any datum in D except for the input
datum. Likewise, the register constraint ¬(ṙ = r) requires that r takes any datum in D
except for the current value of r. Register automata that allow for such nondeterministic
guessing of future register values are also called register automata with guessing. Formally, a
register automaton with guessing (GRA) over D and Σ is a tuple A = (R, L, ℓinit, Lacc, E),
where

R is a finite set of registers,
L is a finite set of locations,
ℓinit ∈ L is the initial location,
Lacc ⊆ L is the set of accepting locations,
E ⊆ L × Σ × Φ(D, R) × L is a finite set of edges.

If every edge of A contains some constraint of the form ṙ = r or ṙ = #, for every r ∈ R,
so that the future value of every register is uniquely determined, then we simply speak of
register automata (RA, for short), i.e., register automata without guessing. If the number
of registers of a GRA (RA, respectively) is fixed to k ∈ N, then we speak of k-GRA (k-RA,
respectively).

A state of A is a pair (ℓ, u) ∈ L ×DR
⊥ , where ℓ is the current location and u is the current

register valuation. Abusing notation a bit, we usually write ℓ(u) instead of (ℓ, u). The state
ℓinit(uinit), where uinit maps every register r ∈ R to ⊥, is called the initial state, and a
state ℓ(u) is called accepting if ℓ ∈ Lacc. Given two states ℓ(u) and ℓ′(u′) and some input
letter (σ, d) ∈ Σ × D, we postulate a transition ℓ(u) σ,d−−→A ℓ′(u′) if there exists some edge
(ℓ, σ, ϕ, ℓ′) ∈ E such that (u, d, u′) |= ϕ. A run of A on the data word (σ1, d1) . . . (σk, dk) is a
sequence ℓ0(u0) σ1,d1−−−→A ℓ1(u1) σ2,d2−−−→A . . .

σk,dk−−−→A ℓk(uk) of such transitions. We say that
a run as above starts in ℓ0(u0); similarly, the run ends in ℓk(uk). A state ℓ(u) is reachable
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ℓ0 ℓ1 ℓ2
¬(ṙ = #) ṙ = r

r = #

ṙ = r

¬(r = #)

Figure 1 A 1-GURA.

Table 1 Universality over (N; =).

# registers RA URA
∗ undecidable [8] in ExpSpace (Th. 7)
1 Ackermann-cpl. [10] in PSpace (Th. 7)
# registers GRA GURA
∗ undecidable [13]
1 undecidable in ExpSpace (Th. 3)

in A if there exists a run that ends in ℓ(u). A run is initialized if it starts in the initial state,
and a run is accepting if it ends in some accepting state. A data word w is accepted from
ℓ(u) if there exists an accepting run on w that starts in ℓ(u). The data language accepted by
A, denoted by L(A), is the set of data words that are accepted from the initial state.

A GRA is unambiguous if for every input data word w there is at most one initialized
accepting run. Note that unambiguity is a semantic condition; it can be checked in polynomial
time [5]. We write GURA and URA to denote unambiguous GRA and RA, respectively.

▶ Example 4. Let us study the behaviour of the 1-GRA depicted in Figure 1. The GRA is
over (N; =) and the singleton alphabet Σ = {σ} (we omit the letter σ from all transitions
in the figure). Suppose the first input letter is d1. In order to satisfy the constraint of
the transition from ℓ1 to ℓ2, the automaton has to nondeterministically guess some datum
d′ ̸= d1 and store it into its register r. Being in the state ℓ1(d′), the automaton can only
move to the accepting location ℓ2 if the next input datum is equal to d′ (indicated by the
constraint r = d); for every other input letter, the automaton satisfies the constraint ¬(r = d)
and stays in ℓ1, and it keeps the register value to satisfy the constraint ṙ = r. In this way,
the automaton accepts the language {d1 · . . . · dk | ∃k ≥ 2 ∀1 ≤ i < k. di ̸= dk}. Note
that the automaton is unambiguous: for every input data word there is only one accepting
run. We remark that the accepted data language cannot be accepted by any RA (without
guessing) [13]. Hence, GRA are more expressive than RA.

In this paper, we study the universality problem: given a GRA A, is A universal, i.e.,
does L(A) = (Σ × D)∗ hold? In Table 1, we give an overview of the decidability status for
register automata over (N; =), in bold the new results for unambiguous register automata
that we present in this paper.

3 Basic Notions for Deciding Universality

For many computational models, a standard approach for solving the universality problem is
to explore the (potentially infinite) state space of the automaton under study. Starting from
the initial state, the basic idea is to input one letter after the other, and keep track of the
sets of states that are reached, building a reachability graph whose nodes are the reached
sets of states (per input letter). The key property of this state space is that it contains
sufficient information to decide whether the automaton under study is universal: this is the
case if, and only if, every node of the graph contains an accepting state. Let us formalize
this intuition for register automata.

Fix a k-GRA A = (R, L, ℓinit, Lacc, E) over D and Σ, for some k ∈ N. A configuration of
A is a subset of L × Dk

⊥. The set Cinit, denoting the singleton set containing the initial state
of A, is a configuration, henceforth called the initial configuration. Let C be a configuration,
and let (σ, d) ∈ (Σ × D). We use SuccA(C, (σ, d)) to denote the successor of C on the input
(σ, d), formally defined by
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129:6 New Techniques for Universality in Unambiguous Register Automata

SuccA(C, (σ, d)) := {ℓ(u) | ∃ ℓ′(u′) ∈ C ℓ′(u′) σ,d−−→A ℓ(u)}.

In order to extend this definition to data words, we define inductively SuccA(C, ε) := C

and SuccA(C, w · (σ, d)) := SuccA(SuccA(C, w), (σ, d)). We say that a configuration C is
reachable in A by the data word w if C = SuccA(Cinit, w); we say that C is reachable in A
if there exists some data word w such that C is reachable in A by w. We say that C is
coverable if there exists some C ′ ⊇ C such that C ′ is reachable in A. Given a configuration
C, we use data(C) to denote the set

⋃
ℓ(u)∈C data(u) of data occurring in C. Notice that

every configuration reachable in an RA (without guessing) is necessarily finite. In contrast,
the configuration {ℓ1(d′) | d′ ∈ N, d′ ≠ d1} is reachable in the GRA in Figure 1 by the
single-letter data word (σ, d1). If C = {ℓ(u)} is a singleton set, then we may, in slight abuse
of notation, omit the curly brackets and write ℓ(u).

We say that a configuration C is accepting if there exists ℓ(u) ∈ C such that ℓ ∈ Lacc;
otherwise we say that C is non-accepting. Clearly, A is universal if, and only if, every
configuration reachable in A is accepting. This suggests to reduce the universality problem
to a reachability problem for the state space corresponding to the given input GRA. However,
the state space of a GRA is infinite, in two different aspects.

First of all, the state space is infinitely branching, as each of the infinite data in D may give
rise to a unique successor configuration. The standard approach for solving this complication
is to abstract from concrete data, using the simple observation that, e.g., the data word 3 · 4
is accepted from the state ℓ(4) if, and only if, 5 · 2 is accepted from the state ℓ(2). This is
formalized in the following paragraph.

A partial isomorphism of D⊥ is an injective mapping π : D → D⊥ with domain dom(π) :=
D ⊆ D such that:

for every relation R of D and a, b ∈ dom(π), we have (a, b) ∈ R ⇔ (π(a), π(b)) ∈ R,
if ⊥ ∈ D then π(⊥) = ⊥.

Let π be a partial isomorphism of D⊥ and let C be a configuration such that data(C) ⊆
dom(π). We define the configuration π(C) := {ℓ(π(d1), . . . , π(dk))) | ℓ(d1, . . . , dk) ∈ C};
likewise, if {d1, . . . , dk} ⊆ dom(π), we define the data word π(w) = (σ1, π(d1)) . . . (σk, π(dk)).
We write ⟨C, w⟩ ∼ ⟨C ′, w′⟩ if there exists a partial isomorphism of D⊥ such that π(C) = C ′

and π(w) = w′.

▶ Proposition 5. Let A be a GRA. If ⟨C, w⟩ ∼ ⟨C ′, w′⟩, then SuccA(C, w) ∼ SuccA(C ′, w′).

Secondly, there can be infinitely many reachable configurations even up to the equivalence
relation ∼. As an example, consider the GURA in Figure 1. For every n ≥ 1, the configuration
Cn := {ℓ1(d′) | d′ ∈ N\{d1, . . . , dn}} ∪ {ℓ2(dn)} with pairwise distinct data values d1, . . . , dn

is reachable by the data word d1 · d2 · . . . · dn, and Cn ̸∼ Cn′ for n ̸= n′. There are similar
examples also for URA, cf. [14].

In order to obtain our results, we will prove that one can solve the reachability problem
for the state space of A by focussing on a subset of configurations reachable in the automaton
under study. The concrete methods are different for URA and GURA, however, for both
models we will take advantage of Proposition 5 and its simple consequence (cf. [14]).

▶ Corollary 6. Let A be a GRA. If ⟨C, w⟩ ∼ ⟨C ′, w′⟩ and SuccA(C, w) is non-accepting
(accepting, respectively), then SuccA(C ′, w′) is non-accepting (accepting, respectively).
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4 The Universality Problem for URA over (N; =)

In this section, we study the complexity of the universality problem for URA over the
relational structure (N; =). We prove the following theorem.

▶ Theorem 7. The universality problem is
in PSpace for k-URA for any fixed k ∈ N,
in ExpSpace for URA.

We start by showing that we can assume URA to have a specific form that simplifies the
coming proofs. Given some k-URA A, we say that A is pruned if for every state ℓ(u) that
is reachable in A there exists a data word w that is accepted from ℓ(u), and ui ≠ uj for
all 1 ≤ i < j ≤ k, i.e., no datum appears more than once in u. The proof of the following
proposition is simple and omitted.

▶ Proposition 8. For every k-URA one can compute in polynomial time an equivalent pruned
k-URA.

In the following we always assume that a k-URA is pruned, even if we do not explicitly
mention it. For simplicity, we also assume that the alphabet of the URA we consider are
singletons. The techniques we develop can be easily lifted to the more general case where Σ
is not a singleton.

We introduce some constants that bound from above the number of states with the same
location occurring in a configuration reachable in a universal URA. Let A be a k-URA. For
a configuration C of A, define MC ∈ N to be the maximal number M such that in C there
are M different states with the same location. Define MA ∈ N∪ {∞} to be the supremum of
MC , for C ranging over all the configurations C reachable in A, if A is a universal k-URA,
i.e., L(A) = D∗. In the sequel, we show that MA < ∞. In order to do so, for k ∈ N, define
Mk ∈ N ∪ {∞} to be the supremum of all the MA, for A ranging over pruned and universal
k-URA. The main technical result of this section is showing that Mk is finite and moreover
upper-bounded by an exponential function of k.

Let n be the number of locations of A. First observe that showing Mk ∈ N easily implies
the existence of a NPSpace algorithm deciding whether A is universal. Indeed, if Mk < ∞,
then every configuration C reachable in A has size at most n · Mk, as otherwise C contains
more than Mk states with the same location. Thus, in order to decide whether A is not
universal, we can apply the following algorithm:

By Corollary 6, A is not universal iff A does not accept some data word (σ1, d1)(σ2, d2) . . . ,
where di ∈ {0, . . . , i} for all i.
Guess, letter by letter, an input data word (σ1, d1)(σ2, d2) . . . , where di ∈ {0, . . . , i}.
For each i ≥ 1, define Ci := SuccA(Ci−1, (σi, di)), where C0 = Cinit.
If for some i ≥ 1, the configuration Ci is not accepting or its size exceeds n · Mk, we
know that A is not universal.
Otherwise we keep the configuration in the space linear with respect to n and count the
length of the word. If the length exceeds the number of possible configurations, then this
run is not accepting. The length counter can be also kept in linear space.

The above is hence a PSpace-algorithm for deciding non-universality for k-URA. By Savitch’s
theorem, there also exists one for deciding universality for k-URA. Moreover, if we show that
Mk is exponential in k, then the above algorithm works in space exponential with respect to
k, so is in ExpSpace even without fixing the number of registers k. Therefore, in order to
show Theorem 7, it is enough to prove that Mk is bounded by some exponential function of
k. The rest of this Section is devoted mainly to showing the following lemma.
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129:8 New Techniques for Universality in Unambiguous Register Automata

▶ Lemma 9. Mk ≤ (k · 4k · k!)k.

We first give here an argument showing that Mk is bounded by some doubly-exponential
function in k. We show this argument in order to illustrate the techniques, which needed
to be refined in our proof of Lemma 9. First recall that the Ramsey number Rm(n) is the
smallest number of vertices k of the graphs such that any clique of k vertices with its edges
coloured on m different colours contain a monochromatic subgraph G of n vertices, namely
such that all the edges in G are of the same colour. It can be shown by induction that Rm(n)
is finite, and indeed its growth is bounded by 2nO(m) .

▶ Proposition 10. Every set T ⊆ Dk
⊥ of size at least Rk+1(4k(k + 1)! + 1) contains a k-full

subset of size at least k + 1.

Proof. Construct a graph with vertices being tuples from T and edge between t and t′ be
coloured by the number of data values that t and t′ have in common. Clearly the colour
belongs to the set {0, . . . , k}, so there are k + 1 colours. Because |S| ≥ Rk+1(4k(k + 1)! + 1)
we know from Ramsey’s theorem that there are at least 4k(k + 1)! + 1 tuples such that every
intersection is of the same size - assume this size to be m. Let S be a set of 4k(k + 1)! + 1
such tuples and let s ∈ S be one of them. Let s = (d1, . . . , dk). Divide all the other tuples s′

into
(

k
m

)2 · m! sets depending on which m data values from {d1, . . . , dk} belong to s′ (there
are

(
k
m

)
options), on which positions they are located in s′ (also

(
k
m

)
options) and in which

order (m! options). It is easy to see that
(

k
m

)2 · m! ≤ 4kk!, as
(

k
m

)
≤ 2k and m! ≤ k!. We

divide 4k(k + 1)! tuples (we omit s) into at most 4kk! sets, so by the pigeonhole principle
at least one of them contains at least k + 1 elements: let these elements be s1, . . . , sk+1.
Notice now that the tuples s1, . . . , sk+1 form a k-full set: indeed on positions on which they
have the m shared data they are identical and on the other positions all the data values are
totally different. Thus T contains a k-full set of size k + 1, which finishes the proof. ◀

Before refining our argument to give an exponential bound, we remark that these
techniques alone cannot be used to lower even more the complexity of the universality
problem for k-URA or for URA. This is because Mk ≥ k!, which is the subject of the
following lemma.

▶ Lemma 11. Mk ≥ k!.

Proof. We define a family of pruned universal k-URA (Ak)k≥1 over Σ = {σ} such that
MAk

≥ k!. Consider the following part of a pruned universal k-URA Ak (shown for the case
k = 3):

. . . ℓ
r1 = # r2 = # r3 = #

. . . ℓ′
#∈{r1,r2,r3} #∈{r1,r2,r3}

# /∈{r1,r2,r3}

# /∈{r1,r2,r3}

#
/∈{r1 ,r2 ,r3 }

The rest of the automaton makes sure that the configuration

{ℓ(u) | u ∈ {1, . . . , k}k is a permutation} ∪ {ℓ′(1, . . . , k)}

is reachable in Ak by the k-letter data word 1 · 2 · . . . · k (e.g., each ℓ(u) is reached by a
path storing the input data in a different order). By taking the (disjoint) union with an
unambiguous automaton accepting every data word of length < k and every k letter word
that has a repeated data value, we obtain a universal automaton. ◀
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Our main tool to prove Lemma 9 is a structural observation, which delivers an understanding
of how reachable configurations in universal k-URA can look like. Before diving into it we
present an intuition by the following example.

▶ Example 12. Let C be a configuration reachable in some universal 2-URA A over Σ = {σ}
by some data word w, and assume that C contains three states ℓ(1, 2), ℓ(3, 4) and ℓ(5, 6)
sharing the same location ℓ. We will argue that this is impossible. Assume that from ℓ(1, 2)
the data word 1 · 2 · 7 is accepted. Then clearly also 3 · 4 · 7 is accepted from ℓ(3, 4), and
5 · 6 · 7 is accepted from ℓ(5, 6). Let us now consider the data word 8 · 9 · 7, where 8 and
9 are fresh data values, that is, they do not occur in w. Since A is universal, the data
word 8 · 9 · 7 must be accepted from some state ℓ′(d1, d2) in C. The set {d1, d2} has only
two elements, and so the intersection with at least one of the sets {1, 2}, {3, 4} and {5, 6}
must be empty. For instance, assume that {d1, d2} ∩ {1, 2} = ∅ and (d1, d2) = (3, 6). Note
that ⟨ℓ′(3, 6), 8 · 9 · 7⟩ ∼ ⟨ℓ′(3, 6), 1 · 2 · 7⟩, so that by Corollary 6, the data word 1 · 2 · 7 is
accepted from state ℓ′(3, 6), too. But then that there are two accepting runs for w · 1 · 2 · 7,
a contradiction to the unambiguity of A. Below we generalise this reasoning, in particular
to the case where some registers in the reached states keep the same value (i.e., not all are
different, as 1, 2, 3, 4, 5 and 6 in the above example). However the intuition stays the same.

We say that a set of tuples T ⊆ Dm
⊥ is m-full (or simply full if m is clear from the context)

if there exists a set of indices I ⊆ [1, m] such that:
all the tuples in T are identical in indices from I, namely for all i ∈ I and all t, t′ ∈ T we
have ti = t′

i;
all the data values occurring in tuples in T on indices outside I are different, namely
for all i ̸∈ I, all j ∈ {1, . . . , m}, and all t, t′ ∈ T we have ti ̸= t′

j unless both t = t′ and
i = j. Note that in particular, this condition applies to the case t′ = t, and thus ti ̸= tj

whenever i ̸∈ I and j ∈ {1, . . . , m} are different.
For instance, the set containing the tuples (1, 3, 2, 4), (1, 3, 5, 6), (1, 3, 7, 8) is a 4-full set with
I = {1, 2}, and the set {(3, 7, 2, 10, 8)} is a 5-full set, where I ⊆ [1, 5] can be chosen arbitrarily.
In contrast, {(1, 2), (3, 1)} is not a full set.

For a location ℓ and set of tuples T ⊆ Dk
⊥ we write ℓ(T ) = {ℓ(t) | t ∈ T}. The following

lemma delivers the key observation, which uses the notion of k-full sets.

▶ Lemma 13. If A is a pruned universal k-URA, then there exists no configuration C

reachable in A such that ℓ(T ) ⊆ C for some location ℓ ∈ L and some k-full set of tuples
T ⊆ Dk

⊥ of size more than k.

Proof. Let A be a pruned universal k-URA, and suppose towards contradiction that there
exists a configuration C reachable in A such that ℓ(T ) ⊆ C for some location ℓ and some
k-full set T ⊆ Dk

⊥ of size more than k. Let w be the data word such that C = SuccA(Cinit, w).
Assume without loss of generality that the indices on which tuples from T are identical are
I = {1, . . . , n} for some n ≤ k. Let us choose some k + 1 tuples from T , let the i-th of it
be of the form ti = (c1, . . . , cn, oi

1, . . . , oi
m), where n + m = k. We call the cj the common

data values and the oi
j the own data values of ti. A is pruned and ℓ(t1) is reachable in A, so

there must exist a data word w1 ∈ (Σ × D)∗ that is accepted from ℓ(t1). Without loss of
generality we can assume that w1 does not contain the own data values of any of the other
tuples t2, . . . , tk+1. Indeed, if this is the case, we can replace synchronously all occurrences
of such a data value by a fresh data value not occurring in data(w); the resulting data word
is still accepted from ℓ(t1). For every i ∈ [2, k + 1], let wi be the word w1 in which for
each j ∈ [1, m] the own data value o1

j is replaced by the data value oi
j . Clearly, for every

i ∈ [2, k + 1] ⟨ℓ(t1), w1⟩ ∼ ⟨ℓ(ti), wi⟩, so that by Corollary 6 the data word wi is accepted
from ℓ(ti).
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Let us now consider the data word wfresh that is obtained from w1 by replacing synchron-
ously every occurrence of every o1

j by some fresh data value each. As A is universal, also
the data word wfresh needs to be accepted from some state in C. Let qfresh = ℓ′(e1, . . . , ek)
be the state in C from which wfresh is accepted. Notice that we do not enforce ℓ ̸= ℓ′,
similarly ei may be equal to some of the ci or oj

i , but this does not have an effect on our
reasoning. For each tuple ti = (c1, . . . , cn, oi

1, . . . , oi
m), let the set of its own data values be

Oi = {oi
1, . . . , oi

m}. By assumption all the sets O1, . . . , Ok+1 are pairwise disjoint. As there
are k + 1 of them, we know that at least one of them is disjoint from the set of data values in
the state qfresh, namely with E = {e1, . . . , ek}. So let 1 ≤ i ≤ k + 1 be such that Oi ∩ E = ∅.
Then we have ⟨qfresh, wi⟩ ∼ ⟨qfresh, wfresh⟩, so that by Corollary 6 wi is also accepted from
qfresh. In consequence, there are at least two accepting runs over wi from configuration C,
one from ℓ(t1) and one from qfresh. Hence there are at least two initialized accepting runs
over w · wi. This is a contradiction to the unambiguity of A. ◀

The following result directly implies Lemma 9, when setting B = n = k.

▶ Lemma 14. Every set T ⊆ Dn
⊥ of size at least (B · 4n · n!)n + 1 contains an n-full subset

of size larger than B.

Proof. Let us denote by DB,n the maximal size of the set of n-tuples such that any n-full
subset has size at most B; in other words, DB,n is the least integer such that if X is a set of
n-tuples of size DB,n + 1, then X contains an n-full subset of size B + 1. Our aim is to show
that DB,n ≤ (B · 4n · n!)n. We show it by induction on n.

For the induction base assume n = 1. Then any set of data values is a full set, so clearly
DB,1 ≤ B ≤ B · 41 · 1!.

Assume now that DB,m ≤ (B · 4m · m!)m for all m < n and consider some set T ⊆ Dn
⊥ of

n-tuples. Assume that T contains no n-full subset of size larger than B. Pick some tuple
t = (d1, . . . , dn) ∈ T . We first show that there can be at most 4n · n! · DB,n−1 tuples in T

whose data intersect data(t). Let us denote N = 4n · n! · DB,n−1. Let S be the set of those
tuples, assume towards contradiction that the size of S exceeds the bound N . For each tuple
s ∈ S there are at most 2n − 1 choices for data(s) ∩ data(t), so by the pigeonhole principle
there are more than 2n · n! · DB,n−1 tuples which have the same set data(s) ∩ data(t). Those
data values can occur in tuples from S on at most 2n different sets of indices, and in at most
n! different orders, so by the pigeonhole principle more than DB,n−1 tuples from S have the
same data values shared with t on the same indices. After ignoring the indices shared with t

at most n − 1 indices remain on these tuples. So by induction assumption there is some full
set of size more than B among these tuples, which leads to a contradiction to the assumption
that for more than N tuples from T their data intersects data(t).

Therefore we know that all the tuples but the mentioned N ones have data disjoint
with data(t). Let use denote t1 = t and T1 to be the set of tuples with data disjoint from
data(t1). Let t2 ∈ T1. We now repeat the argument for t2 similarly as for t1 and get that
there are at most N tuples with data intersecting data(t2). Repeating this argument we get
a sequence of tuples t1, t2, . . . , tm such that for each i ≠ j we have data(ti) ∩ data(tj) = ∅.
After adding each tuple tj to the sequence we define the set Tj+1 of elements, which have
disjoint data with all the tuples t1, . . . , tj . As long as Tj+1 is nonempty we can continue the
process. It is easy to see that |Tj+1| ≥ |Tj | − N . Assume now towards contradiction that
DB,n > (B · 4n · n!)n, which implies that DB,n > (B · 4n · n!) · DB,n−1 = B · N . We can see
now that |TB | > 0, which means that we can construct tuples t1, t2, . . . , tB, tB+1 such that
for each i ̸= j we have data(ti) ∩ data(tj) = ∅. This however means that {t1, . . . , tB+1} is a
full set of size B + 1, which is more than B. This contradicts the assumption, which shows
that DB,n ≤ (B · 4n · n!)n and finishes the proof. ◀
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We can now apply a reduction from containment to universality provided by Barloy and
Clemente (Lemma 8 in [1]) to obtain Theorem 1 from the introduction.

5 Universality for URA over (Q; <, =)

In this section, we prove Theorem 2 by using the techniques developed in the preceding
section. Let us define constants MO

k for k-URA with order similarly as Mk for k-URA. The
main technical lemma is the following; Theorem 2 follows.

▶ Lemma 15. MO
1 = 1.

Proof. Towards contradiction suppose that for some pruned universal 1-URA A with order
there is a configuration C reachable in A by a data word wpref ∈ (Σ × Q)∗, such that
ℓ(d1), ℓ(d2) ∈ C for some location ℓ and data values d1 < d2. Because A is pruned, there
exists a data word w1 ∈ (Σ × Q)∗ that is accepted from ℓ(d1). Without loss of generality
we can assume that w1 does not contain any data in (d1, d2]. Indeed, if w1 contains some
datum in (d1, d2], then we can replace it synchronously by some datum greater than d2,
while taking care that that the relative order of all data in w1 is preserved, so that, for the
resulting data word w, we have ⟨ℓ(d1), w1⟩ ∼ ⟨ℓ(d1), w⟩. By Corollary 6, the resulting data
word w is also accepted from ℓ(d1). Notice that for similar reasons, also the data word w2
obtained from w1 by replacing every occurrence of d1 by d2 is accepted from ℓ(d2). Now,
if w1 does not contain d1, then w1 = w2. Hence w1 is accepted from both ℓ(d1) and ℓ(d2),
contradiction to unambiguity of A. So let us assume w1 contains d1. Pick some data value
dfresh that is fresh, i.e., it does not occur in wpref, and additionally d1 < dfresh < d2. We
clearly can choose such a fresh data value, as there are infinitely many rational numbers
between d1 and d2 and only finitely many of them occur in wpref. Let wfresh be the word
obtained from w1 by synchronously replacing every occurrence of d1 by dfresh. The word
wfresh is accepted from some configuration in C, let it be ℓ′(d′). Notice now that if d′ < dfresh,
then ⟨ℓ′(d′), wfresh⟩ ∼ ⟨ℓ′(d′), w2⟩, so that ℓ′(d′) accepts also w2 by Corollary 6; in the other
case, i.e., if d′ > dfresh, then we have ⟨ℓ′(d′), wfresh⟩ ∼ ⟨ℓ′(d′), w1⟩, so that ℓ′(d′) also accepts
w1. Therefore in the first case automaton A has two accepting runs over wpref · w2 and in
the second case over wpref · w1. This is a contradiction to the unambiguity of A. ◀

The following lemma shows that our techniques by themselves are not sufficient to solve
the case of 2-URA with order.

▶ Lemma 16. MO
2 = ∞.

Proof. For all n ≥ 1, consider the configuration Cn := {ℓ′(1, n)} ∪ {ℓ(1, 2), . . . , ℓ(n − 1, n)},
which is for all n ≥ 1 a subset of a configuration reachable in the following pruned universal
2-URA.

ℓ

ℓ′

ṙ2 = #
ṙ1 = #

r1 = #

r1 < #, ṙ2 = #

r1 > #, ṙ1 = #

r1 < #
ṙ2 = #

r1 > #
ṙ1 = #

r1 > # ∨ r2 ≤ #

r1 ≤ # < r2

r1 ≥ # ∨ r2 ≤ #

r1 < # < r2
ṙ2 = #

r1 < # < r2
ṙ1 = #

¬(r1 = #)
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The state ℓ′(d1, d2) keeps track of the first two distinct data read, with d1 < d2. It is
responsible for accepting any datum d outside the interval [d1, d2). The state ℓ(x, y) is
such that d1 ≤ x < y ≤ d2 and it is responsible for accepting every datum d′ in the
interval [x, y). Moreover, if d′ ∈ (x, y), then ℓ(x, y) splits into ℓ(x, d′) and ℓ(d′, y). The
automaton ensures that no two intervals [x, y), [x′, y′) overlap, and that all the intervals [x, y)
present in a configuration cover the interval [d1, d2), thus the automaton is unambiguous
and universal. ◀

6 Containment for GURA over (N; =)

In this section, we aim to prove the decidability of the universality problem for the more
expressive model of GURA. Let us first argue that the techniques developed in Section 4 do
not work for GURA.

▶ Example 17. One can easily construct a universal 1-GURA with reachable configuration C

containing ℓ(0), ℓ(1), and {ℓ′} × {n ∈ N | n ̸= 0, 1}. If from both ℓ and ℓ′ there are outgoing
edges with constraint r = # to some accepting state, then every data word n is accepted
from C. In particular, the word 0 is accepted from ℓ(0), but we cannot replace 0 by some
fresh datum to obtain a contradiction as in Example 12.

The example shows that we need more sophisticated methods to solve the universality
problem. Moreover, and in contrast to the result for RA, we cannot rely on the reduction
from containment to universality by Barloy and Clemente [1], as it holds for RA without
guessing only. We hence present a direct proof for containment as stated in Theorem 3. The
idea is based on exploring a sufficiently big part of the infinite synchronized state space of
both automata A and B, following the approach in [14]. The main difference with [14] lies in
the complications that arise due to the fact that a configuration of a GURA may be infinite.

6.1 Synchronized Configurations and Bounded Supports
For the rest of this section, let A = (RA, LA, ℓA

init, LA
acc, EA) be a GRA with RA =

{r1, . . . , rm}, and let B = (RB, LB, ℓB
init, LB

acc, EB) be a GURA with a single register r.
We aim to reduce the containment problem L(A) ⊆ L(B) to a reachability problem in

(S, ⇒) where:
S is the set of synchronized configurations (ℓ(d), C), where ℓ(d) ∈ (LA × NRA

⊥ ) is a single
state of A, and C is a configuration of B,
(ℓ(d), C) ⇒ (ℓ′(d′), C ′) if there exists a letter (σ, d) ∈ (Σ ×N) such that ℓ(d) σ,d−−→A ℓ′(d′),
and SuccB(C, (σ, d)) = C ′.

We define Sinit := (ℓA
init(vinit), Cinit) to be the initial synchronized configuration of A and

B. We say that a synchronized configuration S′ is reachable from S if there is a ⇒-path
from S to S′. S is reachable if it is reachable from Sinit. Call a synchronized configuration
(ℓ(d), C) bad if ℓ ∈ LA

acc is an accepting location and C is non-accepting, i.e., ℓ′ ̸∈ LB
acc for

all (ℓ′, u) ∈ C. Thus, a bad synchronized configuration is reachable iff L(A) ̸⊆ L(B).
We extend the equivalence relation ∼ defined in Section 3 to synchronized configurations

in a natural manner, i.e., (ℓ(d), C) ∼ (ℓ(d′), C ′) if there exists a partial isomorphism π of N⊥
such that data(d) ∪ data(C) ⊆ dom(π) and satisfying π(d) = d′ and π(C) = C ′. Clearly, an
analogue of Corollary 6 holds for this extended relation. In particular, we have the following:

▶ Proposition 18. Let S, S′ be two synchronized configurations of (S, ⇒) such that S ∼ S′.
If S reaches a bad synchronized configuration, so does S′.
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The support of a configuration C of B is the set supp(C) of data d′ such that at least one
of the following two conditions holds:

ℓ(d′) ∈ C for some ℓ ∈ L such that ({ℓ} × D) ∩ C is finite,
ℓ(d′) ̸∈ C for some ℓ ∈ L such that ({ℓ} × D) ∩ C is cofinite.

Note that supp(C) ⊆ data(w) whenever C = SuccB(Cinit, w).
Let S = (ℓ(d), C) be a synchronized configuration, and let a, b ∈ supp(C) be two data

values in the support of C. We say that a and b are indistinguishable in S, written a ≡S b,
if a, b ̸∈ data(d) and {ℓ ∈ L | ℓ(a) ∈ C} = {ℓ ∈ L | ℓ(b) ∈ C}.

Given a configuration C of B, we define for every datum d ∈ N the sets C+
d := {ℓ(d) ∈

L × {d} | ℓ(d) ∈ C and data(C ∩ ({ℓ} × N)) is finite}, and C−
d := {ℓ(d) ∈ L × {d} | ℓ(d) ̸∈

C and data(C ∩ ({ℓ} × N)) is infinite}.
We give here an example for the definition of C+

d and C−
d .

▶ Example 19. Let C = {ℓ1(0), ℓ1(1)} ∪ {ℓ2(d) | d ∈ N\{1, 2}} ∪ {ℓ3(d) | d ∈ N\{0, 1}}.
Then

C+
0 = {ℓ1(0)} C+

1 = {ℓ1(1)} C+
2 = ∅

C−
0 = {ℓ3(0)} C−

1 = {ℓ2(1), ℓ3(1)} C−
2 = {ℓ2(2)}

We say that a configuration C is essentially coverable if for every two ℓ(u), ℓ′(u′) ∈ C, the
set {ℓ(u), ℓ′(u′)} is coverable.

▶ Proposition 20. Let C be an essentially coverable configuration, and let b ∈ supp(C).
Then (C\C+

b ) ∪ C−
b is essentially coverable, too.

Proof. Let ℓ(c), ℓ′(c′) ∈ ((C\C+
b )∪C−

b ). If ℓ(c), ℓ′(c′) ∈ C\C+
b , then {ℓ(c), ℓ′(c′)} is coverable

by essential coverability of C. Suppose ℓ(c), ℓ′(c′) ∈ C−
b . By definition of C−

b , c = c′ = b.
Pick some value e ∈ N\{b} such that ℓ(e), ℓ′(e) ∈ C. Note that such a value e must exist, as
by definition of C−

b , the sets data(({ℓ} × N) ∩ C) and data(({ℓ′} × N) ∩ C) are cofinite, and
hence their intersection is non-empty. By essential coverability of C, {ℓ(e), ℓ′(e)} is coverable.
There must thus exist some data word w such that {ℓ(e), ℓ′(e)} ⊆ Succ(ℓinit(⊥), w). Let π

be any partial isomorphism satisfying π(e) = b and whose domain contains data(w). Clearly,
{ℓ(b), ℓ′(b)} ⊆ Succ(ℓinit(⊥), π(w)), and hence {ℓ(b), ℓ′(b)} is coverable. Finally, suppose
ℓ(c) ∈ C \ C+

b and ℓ′(c′) ∈ C−
b . By definition, we have c ̸= b = c′. Since data((ℓ′ × N) ∩ C)

is cofinite, there is d ̸= c such that ℓ′(d) ∈ C. By essential coverability of C, there exists a
data word w such that {ℓ(c), ℓ′(d)} ⊆ Succ(ℓinit(⊥), w). By picking a partial isomorphism π

such that π(d) = c′ and π(c) = c, we obtain that {ℓ(c), ℓ′(c′)} ⊆ Succ(ℓinit(⊥), π(w)), which
concludes the proof. ◀

The following is the main technical result of this section.

▶ Proposition 21. Let S = (ℓA(d), C) be a synchronized configuration of A and B such that
C is essentially coverable, and let a ̸= b be such that a, b ∈ supp(C) and a ≡S b. Then S

reaches a bad configuration in (S, ⇒) if, and only if, S′ := (ℓA(d), (C \ C+
b ) ∪ C−

b ) reaches a
bad configuration in (S, ⇒).

Proof. (⇐) Suppose there exists some data word w such that there exists an accepting run
of A on w that starts in ℓA(d), and SuccB(C\C+

b ∪ C−
b , w) is non-accepting. We assume in

the following that SuccB(C+
b , w) is accepting; otherwise we are done. Let ℓ+(b) ∈ C+

b be
the unique state such that SuccB(ℓ+(b), w) is accepting. In the following, we prove that we
can without loss of generality assume that w does not contain any a’s. Pick some a′ ∈ N
such that a′ ̸∈ data(w) ∪ supp(C) ∪ data(d). Let π be the isomorphism defined by π(a) = a′,
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π(a′) = a, and π(d) = d for all d ∈ N⊥\{a, a′}. Then π⟨ℓA(d), w⟩ = ⟨ℓA(d), π(w)⟩ (as
a ̸∈ data(d) by a ≡S b), and π⟨ℓ+(b), w⟩ = ⟨ℓ+(b), π(w)⟩. By Corollary 6, there exists an
accepting run of A on π(w) that starts in ℓA(d), and SuccB(ℓ+(b), π(w)) is accepting. We
prove that SuccB(ℓ(c), π(w)) is non-accepting, for every ℓ(c) ∈ C \ {ℓ+(b)} ∪ C−

b : first, let
ℓ(c) ∈ C \ {ℓ+(b)}. By essential coverability of C, {ℓ+(b), ℓ(c)} is coverable. By unambiguity
of B, SuccB(ℓ(c), π(w)) must be non-accepting. Second, let ℓ(c) ∈ C−

b . But then c = b, and
hence π⟨ℓ(c), w⟩ = ⟨ℓ(c), π(w)⟩. By assumption, SuccB(ℓ(c), w) is non-accepting, so that by
Corollary 6, SuccB(ℓ(c), π(w)) is non-accepting, too. Note that π(w) indeed does not contain
any a’s. We can hence continue the proof assuming that w does not contain any a’s.

Next, we prove that if we replace all b’s occurring in w by some fresh datum not occurring
in supp(C) ∪ data(w) ∪ data(d), we obtain a data word that guides S to a bad synchronized
configuration. Formally, pick some datum b′ ̸∈ data(w) ∪ supp(C) ∪ data(d), and let π be
the partial isomorphism defined by π(b) = b′, π(b′) = b, and π(d) = d for all d ∈ N⊥\{b, b′}.
Note that π(w) does not contain any a’s or b’s. Clearly, π⟨ℓA(d), w⟩ = ⟨ℓA(d), π(w)⟩. By
Corollary 6, there still exists an accepting run of A on π(w) that starts in ℓA(d). We prove
that SuccB(C, π(w)) is non-accepting. Let ℓ(c) ∈ C. We distinguish three cases.
1. Let c ̸∈ {b, b′}. Then π⟨ℓ(c), w⟩ = ⟨ℓ(c), π(w)⟩. Since SuccB(ℓ(c), w) is non-accepting by

assumption, so that by Corollary 6 also SuccB(ℓ(c), π(w)) is non-accepting.
2. Let c = b. By a ≡C b, the state ℓ(a) is in C and ℓ(a), π(w) ∼ ℓ(c), π(w) since a and c

do not appear in w. By essential coverability of C, {ℓ(a), ℓ(c)} ⊆ C is coverable. By
unambiguity of B, we obtain that SuccB(ℓ(c), π(w)) is non-accepting.

3. Let c = b′. Note that π⟨ℓ(b), w⟩ = ⟨ℓ(b′), π(w)⟩. Recall that b′ ̸∈ supp(C). This implies
that data(C ∩ ({ℓ} × N⊥)) is cofinite. We distinguish two cases.

b ∈ data(C ∩ ({ℓ} × N⊥)), i.e., ℓ(b) ∈ C. But note that ℓ(b) ̸∈ C+
b by cofiniteness of

data(C ∩ ({ℓ} × N⊥)). Hence ℓ(b) ∈ C\{ℓ+(b)}.
b ̸∈ data(C ∩ ({ℓ} × N⊥)), i.e., ℓ(b) ∈ C−

b .
In both cases, we have proved above that Succ(ℓ(b), w) is non-accepting. By π⟨ℓ(b), w⟩ =
⟨ℓ(b′), π(w)⟩ and Corollary 6, SuccB(ℓ(b′), π(w)) is non-accepting, too.

Altogether we have proved that SuccB(C, π(w)) is non-accepting, while there exists some
accepting run of A on π(w) starting in ℓA(d). This concludes the proof for the (⇐)-direction.

(⇒) Suppose there exists some data word w such that there exists some accepting
run of A on w starting in ℓA(d), and SuccB(C, w) is non-accepting. We assume in the
following that SuccB(C \ C+

b ∪ C−
b , w) is accepting; otherwise we are done. Let ℓ−(b) be a

state in C−
b such that SuccB(ℓ−(b), w) is accepting. Pick some datum a′ ∈ N⊥ such that

a′ ̸∈ data(w) ∪ supp(C) ∪ data(d). Let π be the isomorphism defined by π(b) = a, π(a) = a′,
π(a′) = b, and π(d) = d for all d ∈ N\{a, b, a′}. Clearly, π⟨ℓA(d), w⟩ = ⟨ℓA(d), π(w)⟩, so that
by Corollary 6, there exists some accepting run of A on π(w) starting in ℓA(d). We prove
that SuccB(C\C+

b ∪ C−
b , π(w)) is non-accepting. Let ℓ(c) ∈ C\C+

b ∪ C−
b . We distinguish the

following cases:
1. Let c = a, i.e., ℓ(a) ∈ C. By a ≡S b, we also have ℓ(b) ∈ C. Note that π⟨ℓ(b), w⟩ =

⟨ℓ(a), π(w)⟩ and that ℓ(b) ̸= ℓ−(b). By assumption, SuccB(ℓ(b), w) is non-accepting. By
Corollary 6, SuccB(ℓ(a), π(w)) is non-accepting, too.

2. Let c ̸= a. Note that also π⟨ℓ−(b), w⟩ = ⟨ℓ−(a), π(w)⟩. Recall that SuccB(ℓ−(b), w)
is accepting. By Corollary 6, SuccB(ℓ−(a), π(w)) is accepting. We prove below that
{ℓ−(a), ℓ(c)} is coverable. By unambiguity of B, this directly implies that SuccB(ℓ(c), π(w))
is non-accepting.
Recall that {d ∈ N | ℓ−(d) ∈ C} is cofinite. Pick some datum d ∈ N\{c} such that
ℓ−(d) ∈ C. We distinguish two cases.
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Assume ℓ(c) ∈ C\C+
b . Since C is essentially coverable, the set {ℓ−(d), ℓ(c)} is coverable.

Hence there must exist some data word u such that {ℓ−(d), ℓ(c)} ⊆ SuccB(ℓinit(⊥), u).
Let π′ be a partial isomorphism satisfying π′(d) = a, π′(a) = d, and π′(e) = e for all
e ∈ data(u) ∪ {c}. Then {ℓ−(a), ℓ(c)} ⊆ SuccB(ℓinit(⊥), π′(u)), hence {ℓ−(a), ℓ(c)} is
coverable.
Second suppose ℓ(c) ∈ C−

b , i.e., c = b. This implies that {e ∈ N | ℓ(e) ∈ C} is cofinite.
Pick some datum e ∈ N\{d} such that ℓ(e) ∈ C. Since C is essentially coverable,
the set {ℓ−(d), ℓ(e)} is coverable. Hence there must exist some data word u such
that {ℓ−(d), ℓ(e)} ⊆ SuccB(ℓinit(⊥), u). Let π′ be a partial isomorphism satisfying
π′(d) = a, π′(a) = d, π′(b) = e, π′(e) = b, and π′(f) = f for all f ∈ data(u). Then
{ℓ(b), ℓ−(a)} ⊆ SuccB(ℓinit(⊥), π′(u)), hence {ℓ(c), ℓ−(a)} is coverable.

Altogether we have proved that SuccB((C\C+
b ) ∪ C−

b , π(w)) is non-accepting, while there is
an accepting run of A on π(w) starting in ℓA(d). This finishes the proof for the (⇒)-direction,
and thus the proof of the Proposition. ◀

References
1 Corentin Barloy and Lorenzo Clemente. Bidimensional linear recursive sequences and univer-

sality of unambiguous register automata. In Proceedings of STACS’21, 2021. To appear.
2 Mikolaj Bojanczyk, Bartek Klin, and Joshua Moerman. Orbit-finite-dimensional vector

spaces and weighted register automata. In Proceedings of LICS’21, 2021. To appear. arXiv:
2104.02438.

3 Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. Weakly-Unambiguous
Parikh Automata and Their Link to Holonomic Series. In Artur Czumaj, Anuj Dawar, and
Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and
Programming (ICALP 2020), volume 168 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 114:1–114:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ICALP.2020.114.

4 Nicolas Bousquet and Christof Löding. Equivalence and inclusion problem for strongly
unambiguous Büchi automata. In Language and Automata Theory and Applications, 4th
International Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceedings, pages
118–129, 2010. doi:10.1007/978-3-642-13089-2_10.

5 Thomas Colcombet. Unambiguity in automata theory. In Proceedings of DCFS 2015, pages
3–18, 2015.

6 Wojciech Czerwinski, Diego Figueira, and Piotr Hofman. Universality problem for unambiguous
VASS. In Proceedings of CONCUR 2020, pages 36:1–36:15, 2020.

7 Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez,
and James Worrell. When is containment decidable for probabilistic automata? In 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, pages 121:1–121:14, 2018. doi:10.4230/LIPIcs.ICALP.
2018.121.

8 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3):16:1–16:30, 2009. doi:10.1145/1507244.1507246.

9 Stéphane Demri, Ranko Lazic, and Arnaud Sangnier. Model checking freeze LTL over one-
counter automata. In Proceedings of FOSSACS 2008, pages 490–504, 2008.

10 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and primitive-recursive bounds with dickson’s lemma. In Proceedings of LICS 2011, pages
269–278, 2011.

11 Dimitri Isaak and Christof Löding. Efficient inclusion testing for simple classes of unambiguous
ω-automata. Inf. Process. Lett., 112(14-15):578–582, 2012. doi:10.1016/j.ipl.2012.04.010.

ICALP 2021

http://arxiv.org/abs/2104.02438
http://arxiv.org/abs/2104.02438
https://doi.org/10.4230/LIPIcs.ICALP.2020.114
https://doi.org/10.1007/978-3-642-13089-2_10
https://doi.org/10.4230/LIPIcs.ICALP.2018.121
https://doi.org/10.4230/LIPIcs.ICALP.2018.121
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1016/j.ipl.2012.04.010


129:16 New Techniques for Universality in Unambiguous Register Automata

12 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

13 Michael Kaminski and Daniel Zeitlin. Finite-memory automata with non-deterministic reas-
signment. International Journal of Foundations of Computer Science, Volume 21, Issue 05,
2010.

14 Antoine Mottet and Karin Quaas. The containment problem for unambiguous register
automata. In Proceedings of STACS 2019, pages 53:1–53:15, 2019.

15 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

16 Erik Paul. Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata. In Artur
Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020), volume 168 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 137:1–137:15, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2020.137.

17 Mikhail Raskin. A superpolynomial lower bound for the size of non-deterministic complement
of an unambiguous automaton. In Proceedings of ICALP 2018, pages 138:1–138:11, 2018.

18 Richard Edwin Stearns and Harry B. Hunt III. On the equivalence and containment problems
for unambiguous regular expressions, regular grammars and finite automata. SIAM J. Comput.,
14(3):598–611, 1985.

19 Wen-Guey Tzeng. On path equivalence of nondeterministic finite automata. Inf. Process. Lett.,
58(1):43–46, 1996.

https://doi.org/10.4230/LIPIcs.ICALP.2020.137


The Theory of Concatenation over Finite Models
Dominik D. Freydenberger
Loughborough University, UK

Liat Peterfreund
DI ENS, ENS Paris, CNRS, PSL University, INRIA, France

Abstract
We propose FC, a new logic on words that combines finite model theory with the theory of
concatenation – a first-order logic that is based on word equations. Like the theory of concatenation,
FC is built around word equations; in contrast to it, its semantics are defined to only allow finite
models, by limiting the universe to a word and all its factors. As a consequence of this, FC has many
of the desirable properties of FO on finite models, while being far more expressive than FO[<]. Most
noteworthy among these desirable properties are sufficient criteria for efficient model checking, and
capturing various complexity classes by adding operators for transitive closures or fixed points.

Not only does FC allow us to obtain new insights and techniques for expressive power and efficient
evaluation of document spanners, but it also provides a general framework for logic on words that
also has potential applications in other areas.
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1 Introduction

This paper proposes a finite model version of the theory of concatenation: FC, a new logic
that is designed to describe properties of words and to query them. While the idea of using
logic on words is by no means new, the advantage of FC is its combination of expressive
power and tractable model checking and evaluation.

Logic on words. A common way of using logic on words is monadic second-order logic
(MSO) over a linear order (e. g. [53]). That is, a word w is seen as a sequence of positions,
and predicates Pa(x) express “letter a at position x of w”. This approach comes with
two disadvantages for querying. The first is that factors (continuous subwords) cannot be
expressed directly. Consider the query “return all factors of w”. As variables refer to positions,
the query would not return a factor u directly, but represent it as a set (or tuple) of positions
that describe a specific occurrence of u in w. If u occurs more than once, the query result
would contain each occurrence – unless the logic is powerful enough to prevent this.
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This leads us to the second disadvantage, namely that MSO cannot compare factors of
unbounded length. That is, while MSO can express queries like “return the positions of
factors of length k that occur twice in w” for a fixed length k, it is impossible to express
“return the positions of factors that occur twice in w”; or non-regular languages, like that
of all words ww with w ∈ {a, b}∗. As a result, many natural relations on factors of w are
inexpressible in MSO, in particular the concatenation x = yz.

Another approach to logic on words is the theory of concatenation (short: C). First
defined by Quine [48], this logic is built on word equations, that is, equations of the form
xx =̇ yyy, where variables like x and y stand for words over a finite alphabet Σ. While
less prominent than FO or MSO, the theory of concatenation has been studied extensively
since the 1970s, with particular emphasis on word equations. A fairly recent survey on the
satisfiability of word equations is [14]. More current research on word equations and the
theory of concatenation can be found in e. g. [7, 10, 11, 12, 44, 50].

In contrast to MSO, the logic C allows us to treat words as words (instead of intervals
of positions) and a position in w can be expressed as the corresponding prefix of w. More
importantly, C can express properties like “u is a factor of v” or concatenation like x = yz.
This expressive power comes at a price – even limited use of negation leads to an undecidable
theory (i. e., satisfiability is undecidable, see [17, 48]). Contrast this to first-order logic (FO)
over finite models: By Trakhtenbrot’s theorem, satisfiability is undecidable; but the model
checking problem is not just decidable, but can even be made tractable (see e. g. [18, 36]).

Another situation where using queries for words together with an open universe causes
problems occurs in string databases, see [4, 5, 27, 28]. These query languages treat words
as entries of the database instead of operating on a single word. Furthermore, they offer
transformation operations that assume an infinite universe. As a result, these query language
usually express Turing-complete functions from words to words.

Introducing FC. The new logic FC aims to bring the advantages of FO on finite models to
the theory of concatenation. The universe for C is usually assumed to be Σ∗, which means
that there is no meaningful distinction between satisfiability and model checking. The key
idea of FC is changing universe from Σ∗ to the set of all factors of a word w; comparable to
how the universe for MSO consists of all positions of a word w.

As FC-formulas are based on word equations, concatenation is straightforward to use.
For example, “return all factors that occur twice in w” can be expressed as

φ1(x) := ∃p1, p2, s1, s2 :
(
u =̇ p1 x s1 ∧ u =̇ p2 x s2 ∧ ¬p1 =̇ p2

)
,

where u represents w. In detail, φ1 expresses that there are two different ways of decomposing
w into w = p x s. If we also wanted to know the positions of these occurrences, we could
return p1 and p2 (by removing their quantifiers), as these encode the start of each occurrence
in w. This formula does not rely on the requirement that variables can only be mapped to
factors of w, as the u on the left side of the equations ensures this already. Instead, consider

φ2(x) := ∃y, z : y =̇ x z x,

which returns all factors x that have two non-overlapping occurrences in w. As we not need
to know where in w the factor xzx occurs, u is not needed in the formula.

The restriction to a finite universe allows us to translate various classical results from FO
to FC. Most importantly, model checking becomes not only decidable, but upper bounds
can be lowered in the same way as for FO (Section 4.1). In fact, FC can be extended with
iteration operators to characterize complexity classes from L to PSPACE, analogously to FO
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on ordered structures; which allows us to define a version of Datalog on words that includes
concatenation (Section 4.3). Furthermore, Section 5 also describes how FC can be extended
with constraints (aka predicates), while still keeping model checking tractable.

Spanners. An immediate application of FC is as a logic for document spanners (or just
spanners). Spanners are a rule-based framework for information extraction that was proposed
by Fagin, Kimelfeld, Reiss, and Vansummeren [19] to study the formal properties of the
query language AQL of IBM’s SystemT for information extraction. They can be understood
as a combination of regular expressions and relational algebra.

In the last years, spanners have received considerable attention in the database theory
community. The two main areas of interest are expressive power [19, 22, 23, 41, 43, 45, 47, 52]
and efficient evaluation [3, 21, 24, 41, 42, 45, 46, 52]; further topics include updates [3, 25, 37],
cleaning [20], distributed query planning [15], and a weighted variant [16].

But most of these articles do not focus on the full class of spanners that was introduced
by Fagin et al. (called core spanners, as they describe the core of AQL), but a much smaller
subclass, the regular spanners. The difference between these is that regular spanners cannot
express equality of factors. Hence, techniques for finite automata and MSO often work on
regular spanners; but they rarely work for core spanners. Furthermore, although spanners are
conceptually similar to relational algebra, many canonical approaches for relational databases
and the underlying FO are not viable in the spanner setting. In particular, while acyclic
conjuctive queries are well-known to be tractable for FO (see e. g. [1]), this does not hold for
the corresponding class of spanners (see [24]).

Although “pure” FC is not powerful enough to express core spanners, extending it with
constraints that decide regular languages results in a logic that captures core spanners
(Section 5.2). In addition to providing us with a rich and natural class of tractable spanners,
this connection also allows us to develop a new inexpressibility method (Section 5.3).

2 Preliminaries

Let ε denote the empty word. We use |x| for the length of a word, a formula, or a regular
expression x, or the number of elements of a finite set x. A word v is a factor of a word w,
written v⊑w, if there exists (possibly empty) words p, s with w = pvs. For words x and y,
let x⊑p y (x is a prefix of y) if y = xs for some s, and x⊏p y if x⊑p y and x ̸= y.

For alphabets A,B, a morphism is a function h : A∗ → B∗ with h(u · v) = h(u) · h(v) for
all u, v ∈ A∗. To define h, it suffices to define h(a) for all a ∈ A. Let Σ be a finite terminal
alphabet, and let Ξ be an infinite variable alphabet with Σ ∩ Ξ = ∅. We assume Σ is fixed
and |Σ| ≥ 2, unless stated otherwise. As a convention, we use typewriter letters (like a and b)
for terminals.

Patterns and the theory of concatenation. A pattern is a word from (Σ ∪ Ξ)∗. For every
pattern η ∈ (Σ ∪ Ξ)∗, let Var(η) denote the set of variables that occur in η. A pattern
substitution (or just substitution) is a partial morphism σ : (Σ ∪ Ξ)∗ → Σ∗ with σ(a) = a for
all a ∈ Σ. When applying a substitution σ to a pattern η, we assume σ is defined on Var(η),
that is, Dom(σ) ⊇ Var(η). A word equation is a pair of patterns, that is, a pair (ηL, ηR) with
ηL, ηR ∈ (Σ∪ Ξ)∗. We also write ηL =̇ ηR, and call ηL and ηR the left side and the right side
of the equation. A solution of ηL =̇ ηR is a substitution σ with σ(ηL) = σ(ηR).
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The theory of concatenation combines word equations with first-order logic. First the
syntax: The set C of formulas of the theory of concatenation uses word equations (ηL =̇ ηR)
with ηL, ηR ∈ (Σ ∪ Ξ)∗ as atoms. The connectives are conjunction, disjunction, negation,
and quantifiers with variables from Ξ. For every φ ∈ C, we define its set of free variables
free(φ) by free(ηL =̇ ηR) := Var(ηL) ∪ Var(ηR); extending this canonically.

The semantics build on solutions of word equations: For all φ ∈ C and all pattern
substitutions σ with Dom(σ) ⊇ free(φ), we define σ |= φ as follows: Let σ |= (ηL =̇ ηR) if
σ(ηL) = σ(ηR). For the quantifiers, we say σ |= ∃x : φ (or σ |= ∀x : φ) if σx 7→w |= φ holds
for an (or all) w ∈ Σ∗, where σx 7→w is defined by σx 7→w(x) := w and σx 7→w(y) := σ(y) for all
y ∈ (Σ ∪ Ξ)− {x}. The connectives’ semantics are defined canonically.

▶ Example 2.1. Let φ := xabcy =̇ ybcax ∧ ¬(x =̇ ε ∨ y =̇ ε). Then σ |= φ if and only if
σ(xabcy) = σ(ybcax), σ(x) ̸= ε, and σ(y) ̸= ε. For example, if σ(x) = abca and σ(y) = a.

We freely add and omit parentheses as long as the meaning stays clear. E-C, the existential
fragment of C, consists of those formulas that do not use universal quantifiers and that
apply negation only to word equations. The existential-positive fragment EP-C allows neither
universal quantifiers, nor negation. We also use this notation for other logics that we define.

3 Finite models in the theory of concatenation

The new logic finite model version of the theory of concatenation, namely FC, is built around
word equations; similarly to the theory of concatenation C. The latter can be understood as
first-order logic over the universe Σ∗ with concatenation – see for example [29], which refers
to C as FO(A∗, ·). In other words, for C, we can consider the universe to be fixed (for a given
terminal alphabet Σ). The key idea of FC is to replace the universe Σ∗ with a single word
and all its factors. In the formulas, this word is represented by a distinguished variable:

▶ Definition 3.1. We distinguish a variable u ∈ Ξ and call it the universe variable.

As the universe variable represents the universe (hence its name), it has a special role in
both syntax and semantics of FC. The syntax of FC restricts the syntax of C in two ways:

▶ Definition 3.2. The set FC of FC-formulas is defined recursively: The atoms are word
equations (ηL =̇ ηR) with ηL ∈ Ξ and ηR ∈ (Σ∪Ξ)∗. These can be combined using disjunction
(φ∨ψ), conjunction (φ∧ψ), negation ¬φ, and quantifiers ∃x : φ and ∀x : φ with x ∈ Ξ−{u}.

In other words, firstly, every word equation has a single variable on its left side. Secondly, the
universe variable u may not be bound by quantifiers. The reason for the first restriction is a
bit subtle; we shall discuss it after defining the semantics. But the other follows immediately
from the intuition that u shall represent the universe – hence, binding it would make no
sense. For the same reason, we also exclude u from the free variables of FC-formulas:

▶ Definition 3.3. The set free(φ) of free variables of an FC-formula φ is defined as for
C-formulas, with the exception that u is not considered a free variable.

The semantics of FC combine those of C with the additional condition that the universe
consists only of factors of the content of the universe variable u:

▶ Definition 3.4. For φ ∈ FC and a pattern substitution σ with Dom(σ) ⊇ free(φ) ∪ {u}, we
define σ |= φ as for C, but with the additional condition that σ(x)⊑σ(u) for all x ∈ Dom(σ).
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To highlight the special role of u, we also write (w, σ) |= φ if σ |= φ and w = σ(u). We may
shorten this to w |= φ if φ is a sentence – that is, if free(φ) = ∅. We write φ(x⃗) to denote
that x⃗ is a tuple of free variables of φ.

▶ Example 3.5. Define φ1(y) := ∃x : x =̇ papaya y banana and φ2 := ∃x : (x =̇ papaya ∨
x =̇ banana). Then (w, σ) |= φ1 if and only if σ(y) occurs in w between papaya and
banana, and w |= φ2 if and only if w contains papaya or banana as factor. Finally, let
φ3(x) := ∃p, s :

(
u =̇ p x s∧¬∃p̂, ŝ : (u =̇ p̂ x ŝ∧¬p̂ =̇ p)

)
. Then (w, σ) |= φ3 if and only if σ(x)

occurs exactly once in w.

When applying σ to an FC-formula, σ(u) always needs to be defined – otherwise, we would
have no universe to work with. But FC-formulas do not need to contain u. As a rule of
thumb, u is only required when referring to some “global” property of w. If we describe
properties that are more “local” (as in the next example), we usually do not need to use u.

▶ Example 3.6. Let φ⊑p(x, y) := ∃z : y =̇ xz. Then σ |= φ if and only if σ(x) and σ(y) are
factors of σ(u) with σ(x)⊑p σ(y). In other words, φ⊑p expresses x⊑p y. Consequently, we
can express x⊏p y through φ⊏p(x, y) := φ⊑p(x, y) ∧ ¬x =̇ y.

In fact, ⊏p and inequality can be expressed without negation (or universal quantifiers).
First, define φ(x) ̸=ε := ∃y :

∨
a∈Σ x =̇ a y to express x ̸= ε – that is, σ |= φ ̸=ε if and only if

σ(x)⊑σ(u) and σ(x) ̸= ε. We use this in ψ⊏p(x, y) := ∃z : (y =̇ x z ∧ φ ̸=ε(z)). Like φ⊏p , this
expresses x⊏p y; but without negation.

Finally, let φ ̸=(x, y) := ψ⊏p(x, y)∨ψ⊏p(y, x)∨
∨

a,b∈Σ,a̸=b ∃x1, y1, z : (x=̇z ax1∧y=̇z b y1).
This states that x⊏p y, y⊏p x, or x and y differ after a common prefix z – that is, x ̸= y.

We say φ,ψ ∈ FC are equivalent, written φ ≡ ψ, if for all σ with Dom(σ) ⊇ free(φ)∪ free(ψ)∪
{u}, we have that σ |= φ holds if and only if σ |= ψ. Thus, in Example 3.6, we have
φ⊏p ≡ ψ⊏p . If φ ∈ FC is a sentence, we define its language as L(φ) := {w | w |= φ}.

▶ Example 3.7. A language is called star-free if it is defined by a regular expression α

that is constructed from the empty set ∅, terminals a ∈ Σ, concatenation ·, union ∪, and
complement α. Given such an α, we define φα := ∃x : (u =̇x∧ψα(x)), where ψα(x) is defined
recursively by ψ∅(x) := ¬(x =̇ x), ψa(x) := (x =̇ a), ψ(α1·α2)(x) := ∃x1, x2 :

(
x =̇ x1 x2 ∧

ψα1(x1)∧ψα2(x2)
)
, ψ(α1∪α2)(x) := ψα1(x)∨ψα1(x), and ψα(x) := ¬ψα(x). Then σ |= ψα if

and only if σ(x) ∈ L(α) and σ(x)⊑σ(u). Thus, L(φα) = L(α).

We are now ready to discuss why Definition 3.2 restricts the left sides of word equations
to single variables. Assume we allowed, for instance, the word equation xy =̇ yx in an
FC-formula, and consider the case of σ(u) = a3 and σ(x) = σ(y) = a2. Then σ(x)⊑σ(u),
σ(y)⊑σ(u), and σ(xy) = σ(yx) hold, but σ(xy) = a4 is not a factor of σ(u), which means
that it is not in the universe.

There are two straightforward ways of allowing arbitrary word equations ηL =̇ ηR in FC
without changing the underlying universe. The first is adding the additional requirements
σ(ηL)⊑σ(u) and σ(ηR)⊑σ(u) to the definition of σ |= (ηL=̇ηR). This can also be understood
as declaring the concatenation as undefined if its result is not a factor of σ(u). The second is
interpreting ηL =̇ ηR as syntactic sugar for ∃x : (x =̇ ηL ∧ x =̇ ηR), where x is a new variable.

On the other hand, this re-interpretation of the solutions of word equations can be
considered non-intuitive, which makes formulas that rely on these easy to misunderstand.
To avoid these issues, this paper restricts every left side to a single variables, even though
this is not strictly necessary.
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4 Properties of FC

In this section we analyze FC dynamically by discussing its evaluation problem – given a
formula φ ∈ FC and a pattern substitution σ, decide whether σ |= φ. We call the special
case where φ is a sentence the model checking problem. We also consider the satisfiability
problem – given φ ∈ FC, decide whether there is a pattern substitution σ with σ |= φ. After
that, we also consider aspects of optimization of formulas.

4.1 Model checking vs satisfiability
For C, the model checking problem is undecidable. This is due to two reasons. Firstly, the
satisfiability problem for C is undecidable by Quine [48]. Secondly, for C, satisfiability reduces
to model checking – from a given φ ∈ C, we can construct a C-sentence φ′ by binding all
free variables of φ existentially. Then φ is satisfiable if and only if σ |= φ′, no matter which
substitution σ we choose. In contrast to this, the finite universe of FC drastically reduces the
complexity of model checking.

▶ Theorem 4.1. Evaluation is PSPACE-complete for FC and NP-complete for EP-FC.

In fact, the proof shows that the lower bounds hold even in the special case of model
checking a |= φ. Both the drop in complexity and the fact a very simple structure suffice are
comparable to FO on finite relations (see e. g. [36]), and the proofs are equally straightforward.
For both logics, the hardness of the problem comes from parameters of the formula and not
of the word or the relational structure. FO provides us with another parameter to lower the
complexity of model checking. We define the width wd(φ) of a formula φ as the maximum
number of free variables in any of its subformulas.

▶ Theorem 4.2. Model checking for FC can be solved in time O(k|φ|n2k), for k := wd(φ)
and n := |σ(u)|.

The proof also shows that this is only a rough upper bound; taking properties of variables
into account lowers the exponent. In principle, we can apply various structure parameters for
first-order formulas (see e. g. Adler and Weyer [2]) to FC. This assumes that we treat word
equations as atomic formulas, which is certainly possible – but we can do better than that.

Decomposing patterns. Using a word equation x =̇ α as an atom results in a formula
that has a width of at least |Var(α)|. Our goal is to lower that bound, by decomposing the
pattern into a formula. Technically, a pattern α = α1 · · ·αn with αi ∈ (Ξ ∪ Σ) is a term
f(α1, . . . , αn), where the function f is the n-ary concatenation. But there is a syntactic
criterion that allows us to decompose α into a conjunction of binary concatenations. This
builds on a result from combinatorics on words and formal languages, where a pattern α is
also treated as generators of the pattern languages L(α); the set of images of α under pattern
substitutions. In this context, Reidenbach and Schmid [49] started a series of articles on
classes of pattern languages with a polynomial time membership problem (surveyed in [40]),
most of which rely on the following definition (see [8] for the definition of treewidth).

▶ Definition 4.3. The standard graph of a pattern α = α1 · · ·αn with n ≥ 1 and αi ∈ (Σ∪Ξ)
is Gα := (Vα, Eα) with Vα := {1, . . . , n} and Eα := E<

α ∪ E=
α , where E<

α is the set of all
{i, i+ 1} with 1 ≤ i < n, and E=

α is the set of all {i, j} such that αi is some x ∈ Ξ, and αj

is the next occurrence of x in α. Then tw(α), the treewidth of α, is the treewidth of Gα.
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As artificial (but simple) example, consider the sequence of patterns αn := x1x1x2x2 · · ·xnxn.
Then |Var(αn)| = n, affecting the width of formulas that use αn accordingly, but tw(αn) = 1.
Using tree decompositions, we can rewrite patterns of bounded treewidth into formulas of
bounded width (similar to the proof of Kolaitis and Vardi [34] for variable bounded FO).

▶ Theorem 4.4. Let φ := ∃x1, . . . , xm : y =̇ α. Then there exists ψ ∈ EP-FC with ψ ≡ φ and
wd(ψ) ≤ 2tw(α) + v, where v = 2 + |free(y =̇ α)− {x1, . . . , xm}|.

For every fixed k, given φ with tw(α) ≤ k, we can compute ψ in polynomial time.

Combining Theorems 4.2 and 4.4 yields a (slightly) different proof of the polynomial time
decidability of the membership problem for classes of patterns with bounded treewidth
from [49]. As pointed out in [9], bounded treewidth does not cover all pattern languages
with a polynomial time membership problem, like e. g. patterns αk where tw(α) is bounded.
But these languages can be expressed by ∃x : (u =̇xk ∧φα(x)), where φα(x) is a formula that
expresses x ∈ L(α), thus increasing the width by one. We leave a systematic examination
whether all criteria for patterns with a tractable membership problem map to FC-formulas
of bounded width for future work.

Satisfiability. Another parallel to FO is that satisfiability is undecidable for FC, even if we
use only few variables. Let FCk denote the set of formulas with width at most k.

▶ Proposition 4.5. Satisfiability for FC3 is undecidable if |Σ| ≥ 2.

The problem is trivial for FC0 (see the proof of Theorem 4.8) and open for FC1 and FC2.

4.2 Static optimization
Apart from the width, Theorem 4.2 highlights the length of a formula as another parameter
that influences the complexity of model checking. While the length of the patterns in the
word equations might not seem to be factor that is overly important, there are patterns
where straightforward optimizations can lead to an exponential advantage.

▶ Example 4.6. For k ≥ 1, let φk(y) := ∃x : y =̇ x2k . Then φk ≡ ψk := ∃x1, . . . , xk :
(
y =̇

x1x1 ∧
∧k−1

i=1 xi =̇ xi+1xi+1
)
, and |φk| is exponential in k, while |ψk| is linear in k. We can

also rewrite ψk into a formula of width 3 by pulling quantifiers inwards and reusing variables.
More specifically, we first rewrite each ψk into the equivalent formula

∃x1 : (y =̇ x1x1 ∧ (∃x2 : x1 =̇ x2x2 ∧ · · · (∃xk−1 : xk =̇ xk−1xk−1) · · · )).

Then we replace every variable xi with x1 if i is odd or x2 if i is even. The resulting formula
has width 3 (due to y), is equivalent to φk, and has the same length.

This raises the questions whether we can computably minimize formulas and whether some
fragments are more succinct than others. We address these questions in order.

▶ Theorem 4.7. There is no algorithm that, given φ ∈ FC, computes an equivalent ψ such
that |ψ| is minimal. This holds even if we restrict this to minimization within EP-FC4.

This leaves open the decidability of, given φ ∈ FC (or φ ∈ EP-FC) and k > 0, is there an
equivalent ψ ∈ FCk. But without suitable inexpressibility methods (see Section 5.3), we cannot
even show that a language is inexpressible in FCk for some k > 0, which complicates tackling
this problem. The proof of Theorem 4.7 is actually more general and also demonstrates the
undecidability of other common problems, like containment and equivalence.
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Via Hartmanis’ [30] meta theorem, certain undecidability results provide insights into the
relative succinctness of models (see [35] or e. g. [23] for details). For two logics F1 and F2,
the tradeoff from F1 to F2 is non-recursive if, for every computable f : N→ N, there exists
some φ ∈ F1 that is expressible in F2, but |ψ| ≥ f(|φ|) holds for every ψ ∈ F2 with ψ ≡ φ.

▶ Theorem 4.8. There are non-recursive tradeoffs from EP-FC4 to regular expressions
and FC0; and from FC4 to EP-FC, patterns, and singleton sets {w}.

Note in particular that patterns can be parts of word equations. Hence, where Example 4.6
showed an exponential advantage in the rewriting, Theorem 4.8 shows FC4 can obtain far
larger advantages on certain classes of patterns.

4.3 Iteration and recursion
Iteration and recursion have been extensively studied in finite model theory and database
theory. In particular, FO[<] that is extended with operators for transitive closure or fixed
points captures various complexity classes (see e. g. [18, 36]). This is also closely connected to
the recursive query language Datalog (see e. g. [1]). In this section, we shall define FC-Datalog,
an FC-analog of Datalog. On the way, we shall also see that using transitive closures or fixed
points on FC instead of FO[<] characterizes the same complexity classes.

Iteration. The definitions of these operators and the resulting extensions of FC are straight-
forward adaptions of their FO[<]-versions (see e. g. [36] or [18]). But as they are also rather
lengthy, we only give the intuitions behind them (detailed definitions can be found in the
full version of this paper).

For k ≥ 1, an FC-formula with 2k free variables can be viewed as generator of a relation
over R ⊆ Sk×Sk, where S is the universe (the set of factors of u). The operator tc computes
the transitive closure tc(R) of R. If we view R as edge set of a directed graph over Sk, then
tc computes the reachability relation in this graph. The deterministic transitive closure dtc
is defined analogously, with the additional restriction that dtc stops at nodes with more than
one outgoing edge. FCtc and FCdtc extend FC with tc and dtc, respectively.

For fixed points, we introduce special relation symbols as part of inductive definitions.
Inside a fixed point operator, a formula φ may use a symbol Ṙ and at the same time also
define the relation R inductively. We start with R0 := ∅ and let R1 be the relation that is
defined by φ if Ṙ represents R0. This is repeated, each Ri giving rise to Ri+1, until a fixed
point is reached. For least fixed points, we ensure Ri ⊆ Ri+1 for all i. For partial fixed points,
this is not required. We use FClfp and FCpfp for the respective extensions of FC.

Complexity classes are commonly defined as classes of languages; and as we can treat FC
and its extensions as language generators, connecting these two worlds is straightforward.
We say that a logic F captures a complexity class C if C is the class of languages that are
F -definable – that is, C = {L(φ) | φ ∈ F}.

The following result mirrors that for the respective extensions of FO[<]:

▶ Theorem 4.9. FCdtc, FCtc, FClfp, FCpfp capture L, NL, P, PSPACE, respectively.

The result holds even if the formulas are required to be existential-positive. Thus, FC and
even EP-FC behave under fixed-points and transitive closures like FO[<].

Recursion. This connection immediately suggests another: Recall that FO with least-fixed
point operators can be used to define Datalog (see e. g. Part D of [1]). Analogously, we define
FC-Datalog, a version of Datalog that is based on word equations.
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An FC-Datalog-program is a tuple P := (R,Φ,Ans), where R is a set of relation symbols
that contains a special output symbol Ans, each R ∈ R has an arity ar(R), and Φ is a finite
set of rules R(x⃗)← φ1(y⃗1), . . . , φm(y⃗m) with R ∈ R, m ≥ 1, each φi is an FC-word equation,
and each x of x⃗ appears in some y⃗i.

We define JP K(w) incrementally, initializing the relations of all R ∈ R to ∅. For each rule
R(x⃗)← φ1(y⃗1), . . . , φm(y⃗m), we enumerate all σ with σ(u) = w and check if σ |= ∃y⃗ :

∧m
i=1 φi,

where y⃗ := (
⋃m

i=1 y⃗i)− x⃗. If this holds, we add σ(x⃗) to R. This is repeated until all relations
have stabilized. Then JP K(w) is the content of the relation Ans.

▶ Example 4.10. Define an FC-Datalog-program ({Ans, E},Φ), where ar(Ans) = 0, ar(E) = 3,
and Φ consists of the rules Ans()← u=̇xyz,E(x, y, z), and E(x, y, z)← x=̇ε, y =̇ε, z =̇ε, and
E(x, y, z)← x =̇ x̂a, y =̇ ŷb, z =̇ ẑc, E(x̂, ŷ, ẑ). This defines the language {anbncn | n ≥ 0}.

▶ Theorem 4.11. FC-Datalog captures P.

This is unsurprising, considering Datalog on ordered structures captures P, see e. g. [36], and
the analogous result for spanners with recursion [47]. But it allows us to use word equations
as a basis for Datalog on words. This provides potential applications for future insights into
acyclicity for patterns, which could be combined with existing techniques for Datalog.

FC-Datalog can also be seen as a generalization of range concatenation grammars (RCGs),
see [6, 31], to use outputs and relations. There has been some work on parsing of RCGs
(see [32] and its references). In the future, these might help identify tractable fragments of
FC-Datalog. Vice versa, insights into the latter might lead to new approaches to RCG-parsing.

5 FC as a logic for document spanners

Fagin et al. [19] introduced document spanners (or just spanners) as a formal model of
information extraction that is based on relational algebra (see e. g. [1]). This section connects
spanners to FC. After stating the necessary definitions (Section 5.1), we extend FC into a
logic for spanners (Section 5.2) and then use this for an inexpressibility proof (Section 5.3).

5.1 Spans and document spanners
A span of w := a1 · · · an with n ≥ 1 is an interval [i, j⟩ with 1 ≤ i ≤ j ≤ n+ 1. It describes
the factor w[i,j⟩ = ai · · · aj−1. For finite V ⊂ Ξ and w ∈ Σ∗, a (V,w)-tuple is a function µ

that maps each variable in V to a span of w. A spanner with variables V is a function P

that maps every w ∈ Σ∗ to a set P (w) of (V,w)-tuples. We use Var(P ) for the variables of a
spanner P . Accordingly, a spanner P is a function that takes an input word w and computes
a relation P (w) of (Var(P ), w)-tuples.

Like [19], we base spanners on regex formulas; regular expressions with variable bind-
ings x{α}. This matches the same words as the expression α and assigns the corresponding
span of w to the variable x. For the purpose of this article, this informal definition shall
suffice. Detailed definitions of the syntax and semantics of regex formulas can be found
in [19] (the original definition that uses parse trees) and [22] (a more lightweight definition
that uses the ref-words from Schmid [51]).

A regex formula is functional if on every word, every match has exactly one assignment
for each variable. The set of functional regex formulas is RGX. For α ∈ RGX, we define the
spanner JαK as follows. Every match on w ∈ Σ∗ defines a (Var(α), w)-tuple µ, where each
µ(x) is the span assigned to x; and JαK(w) is the set of all these µ.
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▶ Example 5.1. We consider the regex formula α := Σ∗(
x{banana} ∪ x{papaya}

)
Σ∗, which

matches every word w that contains an occurrence of banana or papaya. The corresponding
spanner JαK(w) contains all spans [i, j⟩ with w[i,j⟩ ∈ {banana, papaya}. Next, we define
β := Σ∗x{Σ∗}Σ∗y{Σ∗}Σ∗. For every w ∈ Σ∗, we have that JβK(w) contains those µ where
µ(x) refers to a span to the left of µ(y).

We use the spanner operations union ∪, natural join ▷◁, projection π, set difference −,
and equality selection ζ=. For spanners P1 and P2 with Var(P1) = Var(P2), union and set
difference are defined by (P1 ∪ P2)(w) := P1(w) ∪ P2(w) and (P1 − P2)(w) := P1(w)− P2(w)
on all w ∈ Σ∗. Furthermore, the projection πV P for a spanner P and a set of variables
V ⊂ Var(P ) is obtained for every w ∈ Σ∗ by restricting the domain of every µ ∈ P (w) to V .

The natural join P1 ▷◁ P2 combines spanner results by merging tuples that agree on the
common variables. That is, (P1 ▷◁ P2)(w) contains those (Var(P1) ∪ Var(P2), w)-tuples µ
for which there exist µ1 ∈ P1(w) and µ2 ∈ P2(w) such that µ1(x) = µ2(x) for all x ∈
Var(P1) ∩ Var(P2). An important consequence of this definition is that join is defined using
spans (and thereby positions in the input word), not using the factors that occur in the
spans. To compare factors, we use the equality selection ζ=

x,yP with x, y ∈ Var(P ). This is
defined by ζ=

x,yP (w) := {µ ∈ P (w) | wµ(x) = wµ(y)} for w ∈ Σ∗.
By combining regex formulas with symbols for spanner operations, we obtain spanner

representations; and their semantics are defined by applying the operations. The class of
generalized core spanner representations RGXgcore consists of combinations of RGX and any of
the five operators; the core spanner representations RGXcore exclude set difference. According
to Fagin et al. [19], “core spanners” capture the core functionality of IBM’s SystemT.

▶ Example 5.2. Let α and β be the regex formulas from Example 5.1. We define the spanner
representation ϱ1 := α(x) ▷◁ α(y) ▷◁ β(x, y). Then Var(ϱ1) = {x, y}, and Jϱ1K(w) contains
those µ where µ(x) occurs before µ(y) in w and each of wµ(x) and wµ(y) is banana or papaya.
Now let ϱ2 := ζ=

x,yϱ1. Then Jϱ2K(w) is the subset of Jϱ1K(w) that also has wµ(x) = wµ(y).

We identify spanners and their representations; e. g. by referring to a representation ϱ as a
spanner (technically, JϱK is the spanner) or by calling the elements of RGXcore core spanners.

5.2 Adding expressive power to FC
As core spanners are based on regular expressions, they can define all regular languages.
This makes them more powerful than EP-FC. To prove this, we first connect FC to C.

▶ Lemma 5.3. Given φ ∈ FC, we can construct in polynomial time ψ ∈ C such that σ |= φ

if and only if σ |= ψ. This also preserves the properties existential and existential-positive.

Hence, EP-FC is not more expressive than EP-C, which cannot express all regular languages –
not even comparatively “harmless” languages like e. g. {a, b}∗c (see Karhumäki, Mignosi,
Plandowski [33]). While we could define this specific language using negation, we shall
address the issue in a way that generalizes far beyond regular languages and that does
not require us to leave the existential-positive fragment (and its friendlier upper bounds).
Complexity is also a reason why we do not use MSO or define a second-order version of FC.

Instead, take inspiration from C (see Diekert [13]). The theory of concatenation with
regular constraints, C[REG], extends C by allowing regular constraints x ∈̇ α as atoms, where
x ∈ Ξ, α is a regular expression, and σ |= x ∈̇ α if σ(x) ∈ L(α). We define FC[REG]
analogously, where σ |= x ∈̇ α has the additional condition that σ(x)⊑σ(u) must hold.
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▶ Theorem 5.4. Theorem 4.1 and Theorem 4.2 also hold if we replace FC with FC[REG] and
EP-FC with EP-FC[REG].

In other words, evaluation is PSPACE-complete for FC[REG] and NP-complete for EP-FC[REG],
and formula width can be used as parameter to bound model checking for FC[REG]. This
generalizes to all constraints that can be decided in polynomial time, which allows us to
adapt FC to other settings as well.

For example, string solvers often use length constraints. There are predicates that compare
words by applying arithmetic to their lengths, like |x| + |y| = |z|. While the applications
of EP-C in a string solver context usually rely on deciding satisfiability, cases where model
checking suffices could benefit from using FC with appropriate constraints.

Regarding prior work, the C[REG]-fragments SpLog and SpLog¬ were introduced in [22]
as alternatives to RGXcore and RGXgcore, respectively. As these ensure the finite universe
purely through syntax, they are more cumbersome than FC and do not generalize as nicely.

Before we connect FC[REG] to spanners, we take a brief look at restricted regular expres-
sions that can be expressed in FC. We call a regular expression simple if the operator ∗ is
only applied to terminal words or to Σ (a shorthand for

⋃
a∈Σ a). That is, if Σ = {a, b, c},

then (abc)∗Σ∗ is simple, but (a ∪ b)∗ and (a(b)∗)∗ are not.

▶ Lemma 5.5. For every simple regular expression α, there is φα(x) ∈ EP-FC such that
(w, σ) |= φα if and only if σ(x) ∈ L(α) and σ(x)⊑w.

The proof uses the characterization of commuting words (see e. g. Lothaire [38]). We shall
use this Lemma in the proof of Theorem 5.14, to replace regular constraints.

FC[REG] and Spanners. As we want to use FC[REG] for spanners, we still need to close a
formal gap, namely that spanners reason over positions in a word, while FC[REG] reasons
over words. We bridge this gap through the notion of one realizing the other, which [22]
introduced for the logic SpLog. We begin with formulas that realize spanners.

▶ Definition 5.6. A substitution σ expresses a (V,w)-tuple µ if Dom(σ) ⊇ {xP , xC | x ∈ V }
and, for all x ∈ V , we have σ(xP ) = w[1,i⟩ and σ(xC) = w[i,j⟩ for [i, j⟩ = µ(x).

A formula φ ∈ FC[REG] realizes a spanner P if free(φ) = {xP , xC | x ∈ Var(P )} and, for
all w ∈ Σ∗, we have (w, σ) |= φ if and only if σ expresses some µ ∈ P (w).

In other words, xC is wµ(x) (the content of x), and xP is the prefix of w before wµ(x).

▶ Example 5.7. In Example 5.1, we defined α := Σ∗(
x{banana}∪x{papaya}

)
Σ∗. Its spanner

JαK is realized by φ(xP , xC) := ∃y : u =̇ xPxCy ∧
(
xC =̇ banana ∨ xC =̇ papaya

)
.

Then (w, σ) |= φ if σ expresses some µ ∈ JαK(w). That is, σ(xC) contains wµ(x) (i. e.,
banana or papaya), and σ(xP ) contains the prefix in w before it.

To show that FC[REG] cannot express more than the classes of spanners that we consider,
we also define the notion of spanners that realize formulas.

▶ Definition 5.8. A spanner P realizes φ ∈ FC[REG] if Var(P ) = free(φ) and, for all w ∈ Σ∗,
we have µ ∈ P (w) if and only if (w, σ) |= φ for the σ with σ(x) := wµ(x) for all x ∈ Var(P ).

There are polynomial-time conversions from a class of formulas (or spanners) A to a class of
spanners (or formulas) B if, given x ∈ A, we can compute in polynomial time y ∈ B that
realizes x. We write A ≡poly B if there are polynomial-time conversions from A to B and
from B to A.

▶ Theorem 5.9. FC[REG]≡poly RGXgcore and EP-FC[REG]≡poly RGXcore.
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5.3 Inexpressibility for FC, FC[REG], and spanners
There are currently only few inexpressibility methods for FC and FC[REG], as there are only
few such methods for related models like spanners or the theory of concatenation. A detailed
discussion from the point of view of RGXcore and SpLog can be found in Section 6 of [22].
These techniques do not account for negation, which makes them inapplicable for FC or
FC[REG]. A standard tool for FO-inexpressibility are Ehrenfeucht–Fraïssé games (e. g. [36]).
But as concatenation acts as a generalized addition, using these for FC or FO[EQ] is far from
straightforward. Another standard tool is the Feferman-Vaught theorem (see [39]). While
this can be used for FC, the factor universe of FC makes decomposing the structure into
disjoint sets inconvenient. Instead of following down this road, we introduce FO[EQ], an
extension of FO[<] that has the same expressive power as FC.

Connecting FC to FO[<]. In this section, we establish connections between FC and
“classical” relational first-order logic. It is probably safe to say that in finite model theory,
the most common way of applying first-order logic to words is the logic FO[<] (and the more
general MSO). This uses the equality =̇ and a vocabulary that consists of a binary relation
symbol < and unary relation symbols Pa for each a ∈ Σ. Every word w = a1 · · · an ∈ Σ+

with n ≥ 1 is represented by a structure Aw with universe {1, . . . , n}. For every a ∈ Σ,
the relation Pa consists of those i that have ai = a. To simplify dealing with ε, we slightly
deviate from this standard structure. For every w ∈ Σ∗, we extend Aw to A′

w by adding
an additional “letter-less” node |w| + 1 that occurs in no Pa. Then we have a one-to-one
correspondence between pairs (i, j) with i ≤ j from the universe of A′

w and the spans [i, j⟩
of w (see Section 5.1), and w = ε does not require a special case.

▶ Definition 5.10. FO[EQ] extends FO[<] with constants min and max, the binary relation
symbol succ, and the 4-ary relation symbol Eq. For every w ∈ Σ∗ and the corresponding
structure A′

w, these symbols express min = 1, max = |w|+ 1, succ = {(i, i+ 1) | 1 ≤ i ≤ |w|},
and Eq contains those (i1, j1, i2, j2) with i1 ≤ j1 and i2 ≤ j2 such that w[i1,j1⟩ = w[i2,j2⟩. We
write (w,α) |= φ to denote that α is a satisfying assignment for φ on A′

w.

▶ Example 5.11. The FO[EQ]-formula ∃x : Eq(min, x, x,max) defines {ww | w ∈ Σ∗}.

Technically, we do not need the symbols min, max, or succ, as these can be directly expressed
in FO[<]. But these constants allows us to better preserve the structural similarities when
converting between various fragments of FC and FO[EQ].

When comparing FC to FO[EQ], we need to address that one operates on words and the
other on positions. We can handle this in a way that is similar to the situation between
FC and spanners; and this can be used to show that there are polynomial time conversions
between FC and FO[EQ] that preserve the properties existential and existential-positive, and
only marginally increase the width of the formulas.

In fact, these transformations show that one could choose FO[EQ] over FC as a logic for
words (or for spanners, if one extends FO[EQ] with regular constraints or generalizes it to
MSO with Eq). This is a valid choice, if one prefers writing ∃x1, . . . , x6 :

(
Pp(x1) ∧ Pa(x2) ∧

Pp(x3)∧Pa(x4)∧Py(x5)∧Pa(x6)∧
∧5

i=1 succ(xi, xi+1)
)

over ∃x : x =̇ papaya or if one wants
to express x =̇ yz as ∃xm :

(
Eq(xo, xm, yo, yc) ∧ Eq(xm, xc, zo, zc)

)
instead.

Details on these conversions (and the required definitions) can be found in the full version
of this paper. For the sake of finding an inexpressibility result, we only require the following.

▶ Lemma 5.12. A language is definable in FC if and only if it is definable in FO[EQ].
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Proving inexpressibility. Lemma 5.12 allows us to use Feferman-Vaught theorem, at least
when considering languages that are restricted enough.

▶ Lemma 5.13. There is no FC-formula that defines {anbn | n ≥ 1}.

Moreover, we can show that regular constraints offer no help for defining this language.

▶ Theorem 5.14. FC[REG] cannot express the equal length relation |x| = |y|.

As FC[REG] has the same expressive power as RGXgcore, this is the first inexpressible result for
RGXgcore on non-unary alphabets. The proof has two parts, which both rely on the limited
structure of the language anbn. One part is using Lemma 5.13, wich applies the Feferman-
Vaught theorem. The other is using Lemma 5.5 to eliminate the regular constraints, which is
based on combinatorics on words. The authors expect that a more general inexpressibility
method for FC (or even FC[REG]) would need to combine more advanced techniques from
combinatorics on words (like those in [33]) with methods from logic.

6 Conclusions and future work

On words, concatenation is one of the most natural operations. But as seen for C, using
concatenation with first-order logic quickly becomes undecidable. Restricting the universe to
a word and all its factors changes the situation drastically. In contrast to C, the resulting
logic FC has a meaningful distinction between satisfiability and model checking; and the
latter is not only decidable, but we can use the structure of the formula to derive upper
bounds in the same way as for FO over finite structures. In addition to this, FC can also
replace FO[<] as “base” logic for characterizing complexity classes. Hence, while one might
certainly make a case against the claim that FC is the finite model version of the theory of
concatenation, the results leave little doubt that it is at least a valid approach.

FC also provides an extendable framework for querying and model checking words, in
particular for scenarios that rely on expressing that factors appear multiple times. If more
expressive power is needed, FC is easily extended with constraints, without affecting the
lower bounds on evaluation and model checking. In particular, we can translate core and
generalized core spanners to FC[REG] and then analyze or optimize these formulas with
respect to parameters like width. To a degree, this was also possible the spanner logic SpLog,
but FC is more elegant, easier to use, and behaves much more like FO on relational databases.

Future work
Many fundamental questions remain open, in particular for model checking and related
problems, like evaluation and enumeration.

Compilation into tractable fragments. One promising direction is the compiling of formulas
into equivalent formulas of a fragment where these problems can be solved more efficiently.
For example, Theorem 4.2 shows that bounding the width of the formulas leads to tractable
model checking. Theorem 4.4 then provides us with a sufficient criterion for formulas that can
be rewritten into formulas with a lower width, by decomposing the pattern of word equations.
It is likely that this approach can be further refined by not just rewriting single patterns,
but taking the larger formula into account. This approach can also be used with other
structure parameter for formulas (like acyclicity and bounded tree width), by developing a
corresponding variant of Theorem 4.4. One example of this is [26], which adapts the concept
of acyclic conjunctive queries to FC.
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A more fundamental question is whether all tractable fragments of FC can be explained
through the criterion of bounded width (or are subset of a larger tractable fragment that
is explained through it). A good starting point for this line of investigation is the question
whether all classes of pattern languages with a polynomial time membership problem can be
explained through bounded width.

Model checking as parsing. Another approach – that is not investigated in the present
paper – is the connection to parsing algorithms. This is a natural question, as model-checking
EP-FC-formulas can be understood as a parsing problem (where variables are mapped to
factors of the input word). Promising starting points for this are parsing algorithms for
RCGs (recall Section 4.3) and related grammars, and the extraction grammars from [45].

Data structures. Model checking algorithms will likely benefit from specialized data struc-
tures. For example, a naive representation of all factors of a word of length n would contain
about O(n2) elements, and if these are just represented directly as words, this would take
O(n3) memory. But using data structures like suffix trees and suffix arrays, one can create
in time O(n) a data structure that allows us to enumerate all factors with constant delay
(see [26], which also examines small word equations).

While these optimizations do not matter if one considers polynomial time efficient enough,
it would be very useful to know which fragments can be model-checked in time O(nk) for
small k, or even in sub-quadratic time.

Inexpressibility and satisfiability. Our results on inexpressibility also leave many questions
open. Lemma 5.13 heavily relies on the limited structure of the language. This is the same
situation as in Section 6.1 of [22], which describes an inexpressibility technique for EP-FC[REG].
Although these two approaches provide us with some means of proving inexpressibility, they
only cover special cases, and much remains to be done. It seems likely that a more general
method will need to combine approaches from finite model theory (like the Feferman-Vaught
theorem that we used for Lemma 5.13) with techniques from combinatorics on words (like
those in [33] that [22] uses). A related problem that is still open is whether EP-FC has the
same expressive power as EP-C.

Of particular interest is finding a method to prove inexpressibility in FCk for some k > 0.
This problem relates to the open questions whether there are algorithms that minimize the
width of a formula, and for which k the fragment FCk+1 is more expressive than FCk. The
authors conjecture that this holds for all k ≥ 0, which would contrast with FO[<], where
the fragment of formulas with width three has the same expressive power as the full logic.
Finally, it remains open whether satisfiability is decidable for FC1 or FC2.

Beyond FC. Using FC as a logic for spanners (and other models, potentially) raises further
questions. For example, while every tractable fragment of FC[REG] maps to a tractable
fragment of core spanners (namely, those that are obtained by converting the formulas), there
is no guarantee that the obtained fragment is natural. Hence, a more detailed investigation
into conversions between FC[REG] and RGXcore is justified.

There are many other possible directions. For example, one could easily define a second-
order version of FC and adapt various results from SO. Moreover, FC could be examined
from an algebra point of view, or related to rational and regular relations.
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Abstract
Category theory is famous for its innovative way of thinking of concepts by their descriptions, in
particular by establishing universal properties. Concepts that can be characterized in a universal
way receive a certain quality seal, which makes them easily transferable across application domains.
The notion of partiality is however notoriously difficult to characterize in this way, although the
importance of it is certain, especially for computer science where entire research areas, such as
synthetic and axiomatic domain theory revolve around it. More recently, this issue resurfaced in the
context of (constructive) intensional type theory. Here, we provide a generic categorical iteration-
based notion of partiality, which is arguably the most basic one. We show that the emerging free
structures, which we dub uniform-iteration algebras enjoy various desirable properties, in particular,
yield an equational lifting monad. We then study the impact of classicality assumptions and choice
principles on this monad, in particular, we establish a suitable categorial formulation of the axiom
of countable choice entailing that the monad is an Elgot monad.

2012 ACM Subject Classification Theory of computation Ñ Categorical semantics; Theory of
computation Ñ Constructive mathematics

Keywords and phrases Elgot monad, partiality monad, delay monad, restriction category

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.131

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2102.11828

Funding Sergey Goncharov: Support by Deutsche Forschungsgemeinschaft (DFG) under project
GO 2161/1-2 is gratefully acknowledged.

1 Introduction

Natural numbers form a prototypical domain for programming and reasoning. Both in
category theory and in type theory they are characterized by a universal property, which
consists of two parts: a definitional principle – (structural) primitive recursion and a reasoning
principle – induction. Dualization yields respectively co-natural numbers, co-recursion and
co-induction. Amid these two structuralist extremes, here, we analyse the challenging case of
non-structural recursion in the form of iteration, which arises as follows. A map

h : S Ñ X ` S

presents the simplest possible model of a computation process: with S regarded as a state
space, h sends any state either to a successor state or to a terminal value in X. We wish to be
able to form an object KX of denotations potentially reachable via such processes. Besides
the values of X reachable in a finite number of steps, KX must also contain a designated
value for divergence, generated by the right injection h “ inr. We then ask: what would be
the generic universal characterization of KX and what properties it would imply? Somewhat
surprisingly, this question has not been addressed yet on a level of generality, sufficiently
close to the settings where the question can be posed, although many similar closely related
questions have been addressed, mostly couched in type-theoretic terms.
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The question trivializes whenever one of the two following perspectives is adopted.
intensional perspective: the domain KX keeps track not only of results, but also of the
number of steps needed to reach them. This leads to the identification of KX as the final
coalgebra DX “ νγ. X ` γ, known as Capretta’s monad or the delay monad [10].
non-constructive perspective: assuming non-constructive principles, such as the law of
excluded middle, leads to the identification of KX as the maybe-monad X ` 1.

Here, we generally keep aloof from these interpretations of KX and work both extensionally
and generically, using the language of the category theory to analyse the issue in the abstract,
and keeping the potential class of models possibly large.

We introduce KX as a certain free structure, equipped with an iteration operator, which
sends any f : S Ñ KX ` S to f 7 : S Ñ KX, and satisfies the following two basic and
uncontroversial principles:

fixpoint: f 7 is in an obvious sense a fixpoint of f ;
uniformity: the structure of the state space S is ineffective (i.e. merging or adding new
states done coherently does not influence the result).

We dub such structures uniform-iteration algebras and show that on a high level of generality
(in any extensive category with finite limits and a stable natural number object) if KX exists
then it satisfies a number of other properties: K extends to a monad K, which is an equational
lifting monad [9], the Kleisli category of K is enriched over partial orders and monotone
maps, and the iteration operator is a least fixpoint operator w.r.t. this order; moreover, the
iteration operator satisfies an additional principle, previously dubbed compositionality [2].

In some environments, such as homotopy type theory (HoTT), K can be constructed
directly, by using higher inductive types. One can then define a universal map from the delay
monad D to K and regard it is a form of extensional collapse. However, proving K to be a
quotient of D seems to be impossible without using (weak) choice principles [11, 5, 16]. We
interpret this categorically, first by introducing a categorical limited principle of omniscience
(LPO) under which K turns out to be isomorphic to the maybe-monad p-- `1q and also
turns out to be an Elgot monad. This generalizes slightly previous results [17] obtained for
hyper-extensive categories [3]. Second, we identify other cases of K being a quotient of D and
additionally being an (initial) Elgot monad, by introducing certain coequalizer preservation
conditions, abstractly capturing the corresponding instances of the axiom of countable choice.

From the type-theoretic perspective, in our work we revisit the familiar waymarks of
using/avoiding principles of classical/constructive mathematics in view of the tradoffs in
expressive power of the corresponding constructions. Our present approach of uniform-
iteration algebras as a fundamental primitive is entirely new, though. Moreover, we would
like to emphasize that our results, being generic, apply to a wide range of categories, whose
objects need not be like sets, or types in any conventional sense. This has a massive impact
on the underlying proof methods. In topos theory, calculations are facilitated by existence of
the subobject classifier Ω, which is used as a global parent space for propositions. Predicative
theories, such as HoTT make do without Ω, but it is still possible to form predicative types
of propositions per universe, implying that the style of proofs can to a significant extent
be maintained, with Ω intuitively regarded as “scattered” over the cumulative universe
hierarchy. Contrastingly, here we do not assume any kind of general reference spaces for
propositions, which results in completely different proof methods. Nevertheless, we conjecture
that our results can be implemented in HoTT. This is clear for the universe of sets, which in
HoTT form a pretopos [30], and hence directly satisfy our assumptions. For types of higher
homotopy levels this should be possible by using existing recipes of formalizing precategories
of types [33].
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Previous related work. We relate to the work on iteration theories, starting from a
seminal paper of Elgot [15], who identified iteration as a fundamental unifying notion.
Equational properties of Elgot iteration were extensively explored by Bloom and Ésik [8]
with the initial iteration structure playing a prominent role, however, since the whole setup
therein is inherently classical, most of our present agenda is essentially moot there. The
uniformity property occurred under the name functorial dagger implication in Bloom and
Ésik’s monograph, and is an established and powerful principle, thus notably recognized
in Simpson and Plotkin’s work [32], in the context of generic recursion (as opposed to the
present dual case of generic iteration). Adámek et al [2] introduced axioms of (guarded) Elgot
algebras, and it follows from their results that these axioms are complete w.r.t. the algebras
of the delay monad. Uniform-iteration algebras are generally a proper weakening of Elgot
algebras, but we show that KX as a free uniform-iteration algebra over X is in fact also an
Elgot algebra.

Another line of research we relate to is concerned with notions of partiality, via dominances,
in particular the Rosolini dominance in synthetic domain theory [31], via equational lifting
monads [9], and via restriction categories [13]. We remark that these approaches are rather
concerned with specifying a notion of partiality than with defining it. This distinction is
particularly significant in the context of constructive type theories, such as HoTT, which
revitalized the interest to defining a notion of partiality both predicatively and constructively
and to understanding the impact of (restricted) choice principles. Chapman et al [11]
provided a construction of a partiality monad as a quotient of the delay monad assuming
countable choice. Also, Uustalu and Veltri [35] explored universal properties of the obtained
quotient as an initial ω-complete pointed classifying monad. Altenkirch et al [5] directly based
on ω-complete partial orders to obtain a partiality monad in HoTT as a certain quotient
inductive-inductive type without using any choice whatsoever, but established an equivalence
with the delay monad quotient under countable choice. Chapman et al [12] subsequently
used more basic quotient inductive types for the same purpose.

Recently, Escardó and Knapp [16] reinforced the issue of discrepancy between the quotient
of the delay monad and partiality monads, by showing that the quotient precisely captures
extensions of Turing computable values, whereas in the absence of any choice, the reasonable
partiality monads seem to yield proply larger carriers. The latter view is particularly fine
grained, and involves a monad, which is essentially our monad K. According to them, showing
the desired connection between K and the delay monad still amounts to (very weak) choice
principles (albeit still not natively available in HoTT), while equivalence to more expressive
monads would again require countable choice. Further relevant details of type-theoretic
analysis of partiality can be found in recent theses [37, 25]. A comparison of various lifting
monads in type theory using a unifying notion of container was recently provided by Uustalu
and Veltri [36].

2 Categories and Monads

We assume familiarity with standard categorical concepts [28, 6]. In what follows, we
generally work in an ambient extensive category C with finite products, a stable natural
number object N and exponentials XN. By |C| we refer to the objects of C. We often drop
indices of natural transformations to avoid clutter. For the same purpose, we juxtaposition
of morphisms as composition. Let us clarify this and fix some conventions.
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Extensive categories and pointful reasoning. Extensiveness means existence of disjoint
finite coproducts and stability of them under pullbacks (which must exist). Every extensive
category is distributive, that is, every morphism ridˆinl, idˆinrs : XˆY `XˆZ Ñ XˆpY `Zq

is an isomorphism whose inverse we denote dstr : X ˆ pY ` Zq Ñ X ˆ Y ` X ˆ Z. Let
dstl : pX ` Y q ˆ Z Ñ X ˆ Z ` Y ˆ Z be the obvious dual to dstr.

In order to simplify reasoning, we occasionally use a rudimentary pointful notation for
stating equalities in C, most notably we use the case distinction operator case, e.g. we write

fpxq “ case gpxq of inl y ÞÑ hpyq; inr z ÞÑ upzq

meaning f “ rh, us g where f : X Ñ W , g : X Ñ Y ` Z, h : Y Ñ W and u : Z Ñ W .

Natural numbers and primitive recursion. A stable natural number object (NNO) in a
Cartesian category C, is an object N equipped with two morphisms o : 1 Ñ N (zero) and
s : N Ñ N (successor) such that for any X, Y P |C| and any f : X Ñ Y and g : Y Ñ Y there
is unique initrf, gs : X ˆ N Ñ Y such that

X X ˆ N X ˆ N

Y Y

⟨id, o !⟩

f
initrf,gs

idˆs

initrf,gs

g

commutes. This combines two separate properties: there exists an initial p1 ` --q-algebra
pN, ro, ss : 1 ` N Ñ Nq, and pX ˆ N, r⟨id, o !⟩, id ˆ ss : X ` X ˆ N Ñ X ˆ Nq is an initial
pX ` --q-algebra. The latter property follows from the former in Cartesian closed categories.

More generally, we need the derivable Lawvere’s internalization of primitive recursion [27]:
Given f : X Ñ Y and g : Y ˆ X ˆ N Ñ Y there is unique p-recpf, gq : X ˆ N Ñ Y such that

p-recpf, gqpx, oq “ fpxq, p-recpf, gqpx, s nq “ gpp-recpf, gqpx, nq, x, nq.

We thus say that p-recpf, gq is defined by (primitive) recursion, whereas induction is a proof
principle, stating that p-recpf, gq “ w for any w : X ˆ N Ñ Y satisfying the same equations.

Exponentials XN are adjoint to products X ˆ N, meaning that there is an isomorphism
curry : CpX ˆ N, Y q Ñ CpX, Y Nq natural in X. This induces an evaluation morphism
ev “ curry-1 id : XN ˆ N Ñ X with the standard properties.

Strong functors and monads. A functor T is strong if it is equipped with a natural
transformation strength τX,Y : X ˆTY Ñ T pX ˆY q, satisfying standard coherence conditions
w.r.t. the monoidal structure p1, ˆq of C [26]. This induces the obvious dual τ̂X,Y : TX ˆY Ñ

T pX ˆ Y q. A natural transformation α : F Ñ G between two strong functors is itself strong
if it preserves strength in the obvious sense, i.e. α τ “ τ pid ˆ αq.

A monad T (in the form of a Kleisli triple) consists of an endomap T : |C| Ñ |C|, a family
of morphisms pηX P CpX, TXqqXP|C| and a lifting operation p--q‹ : CpX, TY q Ñ CpTX, TY q,
satisfying standard laws [29]. It then follows that T is an endofunctor with Tf “ pη fq‹, η

extends to a natural transformation, and the multiplication transformation µ : TT Ñ T is
definable as id‹. For every monad T, whose underlying functor T is strong, η and µ are
strong (with id being a strength of Id and pTτq τ being a strength of µ). Such monad T is
then called strong if both η and µ are strong. A strong monad is commutative if τ‹ τ̂ “ τ̂‹ τ .

We adopt Moggi’s perspective [29] to strong monads as carriers of computational effects,
and thus say that a morphism f : X Ñ TY computes a value in Y . Since, the only effect we
deal with here is divergence, f can either produce a value or diverge (modulo the inherent
linguistic inaccuracy of the excluded middle law baked into the natural language).
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Functor algebras and monad algebras. For an endofunctor T , we distinguish T -algebras,
which are pairs pA, a : TA Ñ Aq, from T-algebras, which can only be formed for monads T
on T : a T-algebra is a T -algebra pA, aq, which additionally satisfies a η “ id and a µ “ a Ta.
Both T - and T-algebras form categories under the standard structure preserving morphisms,
the latter fully embeds into the former.

With our assumptions on C, we mean to cover the following (classes of) categories.
1. Zermello-Fraenkel set theory with choice (ZFC) and further variants of set theory: ETCS,

ZF, CZF, etc.
2. Toposes satisfying countable choice, e.g. the topological topos [23].
3. Toposes not satisfying countable choice, e.g. nominal sets.
4. Pretoposes, e.g. ΠW -pretoposes, compact Hausdoff spaces.
5. The category of topological spaces Top, and its subcategories, such as the category of

directed complete sets dCpo.

3 Basic Properties of the Delay Monad

The final coalgebras DX “ νγ. X ` γ jointly yield a monad D, called the delay monad [10].
Capretta [10] showed that D is strong, which remains valid in our setting. By Lambek’s
lemma, the final coalgebra structure out : DX Ñ X ` DX is an isomorphism. Its inverse
out-1 “ rnow, laters : X ` DX Ñ DX is composed of the morphisms, conventionally called
now and later, of which the first one is the monad unit, and the effect of the second one is
intuitively to postpone the argument computation by one time unit. In what follows, we
will write ▷ instead of later for the sake of succinctness. As a final coalgebra, DX comes
together with a coiteration operator : for any f : Y Ñ X ` Y , coit f : Y Ñ DX is the unique
morphism, such that out pcoit fq “ pid ` coit fq f .

We denote D1 by N̄, and think of it as an object of co-natural or possibly infinite natural
numbers. Note that the initial algebra structure r⟨id, o !⟩, id ˆ ss : X ` X ˆ N Ñ X ˆ N, is
an isomorphism, and thus yields a D-coalgebra structure on X ˆ N. This induces a unique
D-coalgebra morphism ιX : X ˆ N Ñ DX. Alternatively, we can regard ιX as defined by
primitive recursion:

ιXpx, oq “ nowpxq ιXpx, spnqq “ ▷pιXpx, nqq

Let ι̂ : N Ñ N̄ be ι1 modulo the obvious isomorphism.
In our setting, DX need not be postulated, for it is in fact definable as a retract of the

object pX ` 1qN of infinite streams, which is elaborated in detail by Chapman et al [11].
This also entails that ι is a componentwise monic. Intuitively, DX consists of precisely those
streams, which contain at most one element of the form inl x. This intuition becomes precise
in (possibly non-classical) set theory, where

now x “ pinl x, inr ‹, inr ‹, . . .q ▷ pe1, e2, . . .q “ pinr ‹, e1, e2, . . .q

This explains why classically, more precisely, under the law of excluded, DX is isomorphic to
X ˆ N ` 1. We provide a stronger result to this effect further below. Let us record some
general facts about D first.
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▶ Proposition 1. The monad D admits the following characterization:
1. unit now : X Ñ DX of D satisfies out now “ inl;
2. Kleisli lifting of f : X Ñ DY is the unique morphism f‹ : DX Ñ DY , for which the

diagram

DX DY

X ` DX Y ` DY

out

f‹

out
rout f, inr f‹

s

commutes;
3. strength τ : X ˆ DY Ñ DpX ˆ Y q is a unique such morphism that the diagram

X ˆ DY DpX ˆ Y q

X ˆ pY ` DY q X ˆ Y ` X ˆ DY Y ` DY

idˆout

τ

out

dstr id`τ

commutes.

Proof. (1) and (2) follow from a more general characterization by Uustalu [34]; (3) is
established in [19]. ◀

▶ Proposition 2. D is commutative.

Let us proceed with a characterization of the situations when DX – X ˆ N ` 1. Recall that
a monic σ is called complemented if there exists σ1 : X 1 ↪Ñ Y , such that Y is a coproduct
of X and X 1 with σ and σ1 as coproduct injections. The law of excluded middle states that
any monic is complemented. We involve a rather more specific property.

▶ Proposition 3. The monic ι̂ : N ↪Ñ N̄ is complemented iff DX – X ˆ N ` 1.

Proof (Sketch). The necessity is obvious. Let us proceed with the sufficiency. Using
extensiveness of C one can obtain the following pullback:

X ˆ N N

DX N̄

snd

ι ι̂

D !

By assumption, ι̂ is complemented, and since C is extensive, so is ι. We obtain that
DX – N ˆ X ` R for some R, and then it follows from finality of DX that R – 1. ◀

The property of ι̂ : N ↪Ñ N̄ to be complemented is a categorical formulation of the limited
principle of omniscience (LPO), which is rejected in constructive mathematics. Informally,
LPO states that every infinite bit-stream either contains 1 at some position or contains
only 0 everywhere (the constraint that the stream contains at most one 1, does not make a
difference). We say that C is an LPO category if ι̂ : N ↪Ñ N̄ is complemented.

▶ Corollary 4. Suppose that (i) C has countable products and (ii) given a family
pσi : Ai Ñ AqiPω of complemented pairwise disjoint monos, the induced universal morphism
š

i Ai Ñ A is complemented. Then C satisfies LPO and hence DX – X ˆ N ` 1.

Proof. It is folklore that in categories with countable products N is isomorphic to the sum of ω

copies of 1. Thus ι̂ : N Ñ N̄ is the induced universal map, which is complemented by (ii). ◀
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▶ Example 5. As expected, Proposition 3 does not apply to models, designed with construct-
ivist principles in mind, such as intensional type theories, or realizability toposes, although,
it is technically possible to design a realizability topos, satisfying LPO [7], in which thus
DX – X ˆ N ` 1. Another class of examples to which Proposition 3 does not apply stems
from topology. In Top, N̄ is a subspace of the Cantor space 2N whose topology is generated
by the base of opens of the form tsr | r P t0, 1uωu with s P 2‹. Then N̄ is isomorphic to a
one-point compactification of N, i.e. it is the set N Y t8u, whose opens are all subsets of N
and additionally all complements of finite subsets of N in N Y t8u. Clearly, N̄ fl N ` 1. This
kind of arguments is inherited by higher order topology-based models, such as Johnstone’s
topological topos [23], which is a Grothendieck topos not satisfying LPO.

▶ Example 6. Proposition 3 and Corollary 4 cover quite a few models constructed in the
scope of classical mathematics. Every set theory satisfying the law of excluded middle satisfies
LPO. Every presheaf topos (w.r.t. a classical set theory) inherits countable coproducts from
Set and those satisfy (ii) of Corollary 4. As we indicated in Example 5, a Grothendieck
topos generally need not satisfy LPO, but, e.g. Schanuel topos (aka the topos of nominal
sets) does satisfy it, because this topos is Boolean. As we indicated in Example 5, Top does
not satisfy LPO, but curiously the full subcategory of directed complete partial orders dCpo
(under Scott topology) does. Both Top and dCpo have countable coproducts, but Top fails
to satisfy condition (ii), of Corollary 4, while dCpo does satisfy it. This can be read as a
manifestation of (undesirable) effects, which motivated synthetic domain theory [21].

Conditions (i) and (ii) in Corollary 4 are essentially the axioms of hyper-extensive categories
by Adámek et al [3] (modulo our background extensiveness assumption). An example of an
LPO category that fails (i) is Lawvere’s ETCS. Another example of a Grothendieck topos
that fails (ii) can be rendered as a certain category of Jónsson-Tarski algebras [3].

The above examples indicate that in models developed w.r.t. constructive foundations LPO
fails by design, while in models developed w.r.t. classical foundations, depending on the
purposes, constructively questioned principles may leak in from the metalogic level inside of
the category, possibly in a weakened form, resulting in an explicit expression for DX.

4 Unguarded Elgot Algebras

Recall the following notion from [2] where the term complete Elgot algebra over H is used.

▶ Definition 7 (Guarded Elgot Algebras). Given an endofunctor H, an (H-)guarded Elgot
algebra is a tuple pA, a : HA Ñ A, p--q7q where the iteration f 7 : X Ñ A for every given
f : X Ñ A ` HX, satisfies the following axioms:

(Fixpoint) for every f : X Ñ A ` HX, f 7 “ rid, a Hf 7s f ;
(Uniformity) for every f : X Ñ A ` HX every g : Y Ñ A ` HY and every h : X Ñ Y ,
pid ` Hhq f “ g h implies f 7 “ g7 h;
(Compositionality) for every h : Y Ñ X ` HY and f : X Ñ A ` HX, ppf 7 ` idq hq7 “
`

rpid ` H inlq f, inr pH inrqs rinl, hs : X ` Y Ñ A ` HpX ` Y q
˘7 inr.

H-guarded Elgot algebras form a category together with iteration preserving morphisms
defined as follows: a morphism h from pA, a, p--q7q to pB, b, p--q7q is a morphism h : A Ñ B

between carriers, such that h f 7 “ pph ` idq fq7 for every f : X Ñ A ` HX (this entails
h a “ b pHhq [2, Lemma 5.2]).

The Compositionality axiom is the most sophisticated one. It intuitively states that running h

in a loop over Y as the state space, and subsequently running f in a loop over X as the
state space, equivalently corresponds to running a certain term constructed from f and g in
a single loop over the combined state X ` Y .
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The axioms of guarded Elgot algebras are complete in the following sense.

▶ Theorem 8 ([2, Theorem 5.4, Corollary 5.7, Theorem 5.8]). For every X, a final coalgebra
νγ. X ` Hγ is a free H-guarded algebra over X, in particular, existence of final coalgebras is
equivalent to existence of free H-guarded Elgot algebras. The categories of H-guarded Elgot
algebras and algebras of the monad νγ. X ` Hγ are isomorphic.

By Theorem 8, free algebras of the delay monad are thus precisely the free Id-guarded
Elgot algebras. We then introduce un-guarded Elgot algebras as a certain subcategory of
Id-guarded ones.

▶ Definition 9 (Unguarded Elgot Algebras). We call Id-guarded Elgot algebras of the form
pA, id : A Ñ A, p--q7q unguarded Elgot algebras, or simply Elgot algebras if no confusion
arises. Given two Elgot algebras A and B, we call f : X ˆ A Ñ B right iteration preserving if

fpid ˆ h7q “
`

X ˆ Z
idˆh

ÝÝÝÑ X ˆ pA ` Zq
dstr

ÝÝÑ X ˆ A ` X ˆ Z
f`id

ÝÝÝÑ B ` X ˆ Z
˘7

for any h : Z Ñ A ` Z. This generalizes Elgot algebra morphisms under X “ 1.

We write simply “iteration preserving” instead of “right iteration preserving” in the sequel if
the decomposition of X ˆ A into the Elgot algebra part A and the parameter part X is clear
from the context. Parametrization will be needed later for characterizing stability of free
algebras (Lemma 18).

The unguarded Elgot algebras thus differ from the Id-guarded ones in that the Id-algebra
structures a : A Ñ A in the former case are forced to be trivial. This has an impact on
forming the corresponding free structures: in the guarded case, the Id-algebra structures
must be maximally unrestricted, which is the reason why we obtain a free Id-guarded Elgot
algebra DX with the Id-algebra structure playing the role of delays. Intuitively, a free
unguarded Elgot algebra must be a quotient of a free guarded one under removing delays,
which is indeed what happens for LPO categories, as we show later. Otherwise, the situation
is much more subtle, and it is one of our goals to demonstrate that free unguarded Elgot
algebras are exactly the semantic carriers generated by unguarded iteration.

In the unguarded case Compositionality can be replaced by a simpler looking new law
that we dub Folding:

▶ Proposition 10. Given A P |C|, pA, p--q7q is an Elgot algebra iff p--q7 satisfies
(Fixpoint) for every f : X Ñ A ` X, f 7 “ rid, f 7s f ;
(Uniformity) for every f : X Ñ A ` X every g : Y Ñ A ` Y and every h : X Ñ Y ,
pid ` hq f “ g h implies f 7 “ g7 h;
(Folding) for every h : Y Ñ X ` Y and f : X Ñ A ` X, pf 7 ` hq7 “ rpid ` inlq f, inr hs7.

The laws of Elgot algebras are summarised in Fig. 1 in the style of string diagrams, akin
to those, which are used for axiomatizing traced symmetric monoidal categories [24]. In
contrast to the latter, here we essentially can only form traces of morphisms of the form
X ` Y Ñ A ` Y where A is an Elgot algebra. Merging wires is to be interpreted as calling
codiagonal morphisms ∇ : X ` X Ñ X.

As expected, products and exponents of Elgot algebras can be formed in a canonical way.

▶ Lemma 11. Given two Elgot algebras pA, p--q7q and pB, p--q7q and an object X P |C|,
1. pA ˆ B, p--q7̂q is an Elgot algebra with h7̂ “ ⟨ppfst `idq hq7, ppsnd `idq hq7⟩ for any h : Z Ñ

A ˆ B ` Z.
2. If AX exists then pAX , p--q7̂q is an Elgot algebra with h7̂ “ curryppev `idq dstl ph ˆ idqq7

for any h : Z Ñ AX ` Z.
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Figure 1 Laws of (unguarded) Elgot algebras.

Every Elgot algebra pA, p--q7q comes together with a divergence constant K : 1 Ñ A “

pinr : 1 Ñ A ` 1q7. Note that K is automatically preserved by Elgot algebra morphisms.
By omitting the not entirely self-motivating Compositionality (or Folding) law, we obtain

what we dub uniform-iteration algebras. As we see later, this law is automatic for free
uniform-iteration algebras.

▶ Definition 12 (Uniform-Iteration Algebras). A uniform-iteration algebra is a tuple pA, p--q7q

as in Definition 9 but p--q7 is only required to satisfy Fixpoint and Uniformity. Morphisms
of uniform-iteration algebras are defined in the same way.

5 The Initial Pre-Elgot Monad

The goal of this section is to show that free uniform-iteration algebras coincide with free
Elgot algebras (Theorem 29), and enjoy a number of other characteristic properties. In
particular, we characterize the functor sending any X to a free uniform-iteration algebra
on X as an initial pre-Elgot monad. We define pre-Elgot monads as follows.

▶ Definition 13 (Pre-Elgot Monads). We call a monad T pre-Elgot if every TX is equipped
with an Elgot algebra structure, in such a way that h‹ f 7 “ pph‹ ` idq fq7 for any f : Z Ñ

TX ` Z and any h : X Ñ TY . A pre-Elgot monad T is strong pre-Elgot if T is strong as a
monad and strength is iteration preserving.

Pre-Elgot monads are to be compared with Elgot monads, which support a stronger type
profile for the iteration operator, and satisfy more sophisticated axioms.

▶ Definition 14 (Elgot Monads [15, 4]). A monad T is an Elgot monad if it is equipped with
an iteration operator sending each f : X Ñ T pY ` Xq to f : : X Ñ TY and satisfying:

(Fixpoint) f : “ rη, f :s‹ f ;
(Naturality) g‹ f : “ prpT inlq g, η inrs‹ fq: for f : X Ñ T pY ` Xq, g : Y Ñ TZ;
(Codiagonal) pT rid, inrs fq: “ f :: for f : X Ñ T ppY ` Xq ` Xq;
(Uniformity) f h “ T pid`hq g implies f : h “ g: for f : X Ñ T pY `Xq, g : Z Ñ T pY `Zq

and h : Z Ñ X.
If T is additionally strong then T is strong Elgot if moreover:

(Strength) τ pid ˆ f :q “ ppT dstrq τ pid ˆ fqq: for any f : X Ñ T pY ` Xq.
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▶ Proposition 15. (Strong) Elgot monads are (strong) pre-Elgot under f 7 “ prT inl, η inrs fq:.
It has been argued [17, 20] that strong Elgot monads are minimal semantic structures for
interpreting effectful while-languages. In that sense, we acknowledge an expressivity gap
between Elgot and pre-Elgot monads, which generally happen to be too weak. We will
consider approaches to close this gap, in particular by drawing on some versions of the axiom
of countable choice. Even though, in general, the gap presumably cannot be closed, we regard
the initial pre-Elgot monad to be an important notion, which arises from first principles and
carries a very clear operational intuition. The discrepancy between pre-Elgot monads and
Elgot monads seems to represent a very basic form of discrepancy between operational and
denotational semantics. We thus find it important to conceptually delineate between Elgot
monads and pre-Elgot monads, no matter how desirable it is to have them to be equivalent.

▶ Lemma 16. If for every X P |C| a free uniform-iteration algebra KX exists then K

extends to a monad K whose algebras are precisely uniform-iteration algebras.

As in the case of natural numbers, one cannot make much progress without stability.

▶ Definition 17 (Stable Free Uniform-Iteration Algebras). A free uniform-iteration algebra KY

over Y is stable if for every X P |C|, fst : X ˆ KY Ñ X is a free uniform-iteration algebra
in the slice category C{X.

▶ Lemma 18. For Y P |C|, KY is stable iff for every uniform-iteration A and every f : X ˆ

Y Ñ A, there is unique iteration preserving f# : X ˆ KY Ñ A such that f “ f# pid ˆ ηq.

Using Lemma 11, it is easy to show that in Cartesian closed categories every KX is stable.
For the rest of the section, we assume that all free uniform-iteration algebras KX exist and
are stable.

▶ Proposition 19. The monad K is strong, with the components of strength τ : X ˆ KY Ñ

KpX ˆ Y q uniquely identified by the conditions:

τ pid ˆ ηq “ η, τ pid ˆ h7q “ ppτ ` idq dstr pid ˆ hqq7 ph : Z Ñ KY ` Zq

Proof. In the notation of Lemma 18 we define strength of K as pη : X ˆ Y Ñ KpX ˆ Y qq#.
The axioms of strength are easy to verify. ◀

As a next step, we show that K is an equational lifting monad in the sense of Bucalo et al [9].
This means precisely that K is commutative and satisfies the equational law:

τ ∆ “ K⟨η, id⟩. (1)

This law is rather restrictive, and roughly means that some form of non-termination is the
only possible effect of the monad. Proving (1) is nontrivial. The key step is the following
property, which allows for splitting a loop involving a product of algebras into two loops.

▶ Lemma 20. Given uniform-iteration algebras A and B, f : Z Ñ A ˆ B ` Z and
h : A ˆ B Ñ C, pph ` idq fq7 “ pph ` idq dstr pid ˆ psnd `idq fqq7 ⟨ppfst `idq fq7, id⟩.

▶ Lemma 21. Given X, Z P |C|, and h : Z Ñ KX ` Z, then τ ⟨h7, h7⟩ “ ppτ ∆ ` idq hq7.

Proof. It follows from Lemma 20 that ppτ ` idq dstr pid ˆ hqq7 ⟨h7, id⟩ “ ppτ ∆ ` idq hq7. On
the other hand, by Proposition 19, ppτ ` idq dstr pidˆhqq7 ⟨h7, id⟩ “ τ ⟨h7, h7⟩. By combining
the last two identities, we obtain the goal. ◀
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▶ Theorem 22. K is an equational lifting monad.

Proof. Let us sketch the proof of (1). Since K⟨η, id⟩ “ pη ⟨η, id⟩q‹, using the definition of
Kleisli star for K, it suffices to show that τ ∆ is a unique iteration preserving morphism for
which η ⟨η, id⟩ “ τ ∆ η. Indeed, τ ∆ η “ τ pid ˆ ηq ⟨η, id⟩ “ η ⟨η, id⟩, and τ ∆ is iteration
preserving by Lemma 21. ◀

The fact that K is an equational lifting monad has a number of implications, in particular, the
Kleisli category of K is a restriction category [13]. That is, we can calculate the domain (of
definiteness), represented by an idempotent Kleisli morphism as follows: given f : X Ñ KY ,

dom f “ pK fstq τ ⟨id, f⟩ : X Ñ KX,

We additionally use the notation f ç g “ fst‹ τ ⟨f, g⟩, meaning: restrict f to the domain
of g. It is easy to see that dom f “ η ç f and f ç g “ f‹ pdom gq. Let f ⊑ g abbreviate
f “ g ç f . Under this definition, every CpX, KY q is partially ordered, which is a general
fact about restriction categories. In our case, moreover, this partial order additionally has a
bottom element K “ inr7; dompη fq “ η for any f : X Ñ KY , and dom f ⊑ η for any f .

▶ Proposition 23. The Kleisli category of K is enriched over pointed partial orders and
strict monotone maps. Moreover, strength preserves K and ⊑ as follows:

τ pid ˆ Kq “ K f ⊑ g implies τ pid ˆ fq ⊑ τ pid ˆ gq

▶ Corollary 24. K∅ – 1.

Proof. Since ! K “ id : 1 Ñ 1 and K ! “ id : K∅ Ñ K∅, we obtain an isomorphism K∅–1. ◀

▶ Proposition 25. The monad K is copyable and weakly discardable [18], i.e.: τ̂‹ τ ∆ “ K∆
and pK fstq τ̂‹ τ ⟨f, g⟩ ⊑ f for f : X Ñ KY and g : X Ñ KZ.

▶ Definition 26 (Bounded Iteration). Let A be a pointed object, i.e. an object with a canonical
map K : 1 Ñ A. Then we define bounded iteration p--q⟨7 : CpX, A ` Xq Ñ CpX ˆ N, Aq by
primitive recursion as follows:

f ⟨7px, oq “ K f ⟨7px, s nq “ case fpxq of inl a ÞÑ a; inr y ÞÑ f ⟨7py, nq.

Intuitively, f ⟨7px, nq behaves as f 7pxq except that at each iteration the counter n is decreased,
and K is returned once n “ o. We next show that f 7pxq is in a suitable sense a limit of the
f ⟨7px, nq as n tends to infinity. This is, of course, a form of Kleene fixpoint theorem.

▶ Theorem 27 (Kleene Fixpoint Theorem). Given f : X Ñ KY ` X, and g : X Ñ KY ,
(i) f ⟨7 ⊑ f 7 fst, and (ii) f ⟨7 ⊑ g fst implies f 7 ⊑ g.

▶ Corollary 28. Given f : X Ñ KY ` X, f 7 : X Ñ KY is the least pre-fixpoint of the map
rid, --s f : CpX, KY q Ñ CpX, KY q.

Finally, we obtain

▶ Theorem 29. K is an initial pre-Elgot monad and an initial strong pre-Elgot monad.
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D-algebras

uniform-iteration algebras/
search-algebras

D-algebras

Elgot algebras

Figure 2 Connections between classes of D-algebras.

6 Quotienting the Delay Monad

By Theorem 8, Id-guarded Elgot algebras are precisely the D-algebras. We proceed to
characterize uniform-iteration and Elgot algebras as certain D-algebras, which we dub search-
algebras. Intuitively, modulo identification of DA with a set of streams from pA ` 1qN, a
search-algebra structure a : DA Ñ A is guaranteed to find the first element in the stream of
the form inl a if it exists. We expect that this notion can be formulated more generally, but
we do not pursue it here.

▶ Definition 30 (Search-Algebra). We call a D-algebra pA, a : DA Ñ Aq a search-algebra if
it satisfies the conditions: a now “ id, a ▷ “ a. Search-algebras form a full subcategory of
the category of all D-algebras.

Uniform-iteration algebras capture the structure of search-algebras independently of the
assumption that D exists. This and further connections between categories of D-algebras
illustrated in Fig. 2 (arrows indicate full embeddings of categories) are formalized as follows.

▶ Proposition 31.
1. The categories of uniform-iteration algebras and search-algebras are isomorphic under:

pA, p--q7q ÞÑ pA, out7 : DA Ñ Aq,

pA, a : DA Ñ Aq ÞÑ pA, a coitp--q : CpX, A ` Xq Ñ CpX, Aqq.

2. Elgot algebras are precisely those D-algebras, which are search-algebras and D-algebras.

▶ Lemma 32. Every Elgot algebra pDA, a : DA Ñ Aq satisfies a ι‹ “ a pD fstq.

We proceed to model the construction of quotienting D by weak bisimilarity «, previously
described in type-theoretic terms [11]. Modulo identification of DX with the object of those
streams σ : N Ñ X ` 1 for which σpnq ‰ inr ‹ for at most one n, « can be described as
follows: σ « σ1 if for every a, σpnq “ a for some n iff σ1pnq “ a for some n.

Recall the embedding ι : X ˆ N ↪Ñ DX, and define the quotient of DX by the coequalizer

DpX ˆ Nq DX
~
DX

D fst

ι‹
ρX (2)

which we assume to exist and be preserved by products. It is then straightforward that
~
D

is a functor and ρX is natural in X. It also follows that X
now

ÝÝÝÑ DX
ρ

ÝÝÑ
~
DX is strong.

Following tradition, we denote
~
D1 as Σ.

▶ Lemma 33. ρ ▷ “ ρ.
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Defining ρ as a coequalizer of ▷ and id in the first place does not seem to be sufficient, though,
in particular, for showing the following property. We leave open the question of identifying
conditions under which it is possible.

▶ Proposition 34. The following is a coequalizer:

DpX ` pX ˆ N ` X ˆ Nqq DX
~
DX

rη, rη fst, ι pidˆsqss
‹

rη, rι pidˆsq, η fstss
‹

ρX (3)

The last proposition brings the definition of ρ in accordance with the intuition; the coproduct
X ` pX ˆ N ` X ˆ Nq covers three alternatives for σ « σ1: either σ “ σ1, or σ terminates
earlier than σ1 by a specified number, or the other way around. It can be verified that the
embedding DpX ` pX ˆ N ` X ˆ Nqq ↪Ñ DX ˆ DX is an internal equivalence relation.

▶ Theorem 35. The following conditions are equivalent:
1. for every X, coequalizer (2) is preserved by D;
2. every

~
DX extends to a search-algebra, so that each ρX is a D-algebra morphism;

3. for every X, p
~
DX, ρ now : X Ñ

~
DXq is a stable free Elgot algebra on X, ρX is a

D-algebra morphism and ρX “ ppρX now `idq outq7;
4.

~
D extends to a strong monad, so that ρ is a strong monad morphism.

If the equivalent conditions of Theorem 35 are satisfied, we obtain an explicit construction
of the initial pre-Elgot monad K, which we explored previously. Let us consider concrete
examples.

▶ Example 36 (Maybe-Monad). Suppose that C is an LPO category, and recall that DX is
isomorphic to X ˆ N ` 1. It is then easy to check that (2) exists, it is preserved by products,~
DX – X ` 1 and ρ “ fst `id : X ` 1 Ñ X ˆ N ` 1. Since D is the composition of p-- ˆNq

and p-- `1q, and both these functors preserve coequalizers (first as a left adjoint, and second
by extensiveness of C), D preserves (2). We thus obtain that the maybe-monad is an initial
pre-Elgot monad. This covers instances of LPO categories from Example 6. Moreover, the
initial pre-Elgot monad is in fact an initial Elgot monad in this case: the profiles of the
iteration operators p--q7 and p--q: agree up to rearrangement of summands, and the axioms
of Definition 14 become the axioms of Definition 13, except for Codiagonal, which can be
checked directly.

Note that Example 36 entails that the maybe-monad is the initial Elgot monad in dCpo.
This is a result of our assumption that dCpo is developed w.r.t. a classical set theory, which
entails that dCpo is an LPO category. This would not be the case if we defined dCpo
internally to a non-classical environment, which is indeed the core idea of synthetic domain
theory.

Another direction for obtaining an Elgot monad from (2) is by using a suitable instance
of the axiom of countable choice. In our setting this takes the following form.

▶ Theorem 37. Suppose that the coequalizers (2) are preserved by the exponentiation p--qN.
1. The equivalent conditions of Theorem 35 hold, in particular, K is an initial (strong)

pre-Elgot monad.
2. If every (3) is an effective quotient, i.e. DpX ` pX ˆ N ` X ˆ Nqq is a kernel pair of ρX ,

then K is a strong Elgot monad with f : being the least fixpoint of rη, --s‹ f : CpX, TY q Ñ

CpX, TY q for any f : X Ñ T pY ` Xq.
The effectiveness assumption in clause 2. is satisfied in any exact category (e.g. in any
pretopos) – by definition, every internal equivalence relation there is effective.
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▶ Example 38. Theorem 37 applies to Top, yielding a concrete description for K. Recall
that in Top, coequalizers are computed as in Set and are equipped with the quotient
topology. Note that DX is the set X ˆ N Y t8u whose base opens are tpx, nq | x P Ou and
tpx, kq | x P X, k ě nu Y t8u with n P N and O ranging over the opens of X. The collapse~
DX computed with (2) is thus the set X Y t8u, whose opens are those of X and additionally
the entire space X Y t8u, in particular,

~
D1 is the Sierpiński space.

To obtain that (2) is preserved by p--qN, it suffices to show that the opens of pX Y t8uqN

are precisely those, whose inverse images under ρN are open. This is in fact true for any
regular epi in Top. The effectiveness condition in 2. is not vacuous for Top, which is not an
exact category (and not even regular), but it can be checked manually.

In every pretopos, preservation of (2) by p--qN is a proper instance of the internal axiom
of countable choice, or internal projectivity of N, which means preservation of epis by p--qN,
roughly because every pretopos is exact and our quotienting morphism ρ is associated with
an internal equivalence relation by Proposition 34. Theorem 37 can thus be related to the
existing result in synthetic domain theory, that Rosolini dominance, i.e. our Σ, is indeed a
dominance [31], which applies to Hyland’s effective topos [22], as it satisfies countable choice.
Contrastingly, we cannot apply Theorem 37 to nominal sets, which falsify countable choice,
however, as a Boolean topos, nominal sets fall into the scope of Example 36.

We currently do not have a concrete example of K being definable, but not being an
Elgot monad. Theorem 37 and Example 36 indicate that a category to witness this must
neither support excluded middle nor the axiom of countable choice.

7 Conclusions and Further Work

Iteration and iteration theories emerged as unifying concepts for computer science semantics
and reasoning. By interpreting iteration suitably, one obtains a basic extensible equational
logic of programs, shown to be sound and complete across various models [8]. Elgot monads
implement this inherently algebraic view in the general categorical realm of abstract data
types and effects. The class of Elgot monads (over a fixed category) is stable under various
categorical constructions (monad transformers), and thus one can build new Elgot monads
from old, but the simplest Elgot monad, the initial one, does not arise in this way.

Here, we proposed an approach to defining an initial iteration structure from first
principles, characterized it in various ways, analysed conditions, under which it can be
concretely described, and to yield an Elgot monad. Unsurprisingly, these conditions generally
cannot be lifted, as the previous research in type theory indicates. We consider broadening
the scope in which results about notions of partiality apply, and unifying both classical
and non-classical models, as an important part of our contribution. Universal properties
play a central role in category theory, but many important concepts are not covered by
them. One example is Sierpiński space, which is fundamental in topology, duality theory
and domain theory. It follows from our results, that it is in fact a free uniform-iteration
algebra on one generator. We believe that the structure of our results can be reused in more
sophisticated setting, such as semantics of hybrid systems, which require a notion of partiality,
combined with continuous evolution, and rise semantic issues, structurally similar to those,
we considered here [14]. Another potential for taking further the present work is to consider
more general shapes of the basic functor (instead of the current pX ` --q), prospectively
leading to more sophisticated (non-)structural recursion scenarios (see e.g. [1]).



S. Goncharov 131:15

References
1 Jiří Adámek, Stefan Milius, and Lawrence S. Moss. On well-founded and recursive coalgebras.

In Jean Goubault-Larrecq and Barbara König, editors, Foundations of Software Science and
Computation Structures, pages 17–36. Springer International Publishing, 2020.

2 Jirí Adámek, Stefan Milius, and Jiri Velebil. Elgot algebras. Log. Meth. Comput. Sci., 2, 2006.
3 Jirı Adámek, Stefan Milius, and Jirı Velebil. Iterative algebras: How iterative are they. Theory

Appl. Categ, 19:61–92, 2008.
4 Jiří Adámek, Stefan Milius, and Jiří Velebil. Elgot theories: a new perspective of the equational

properties of iteration. Math. Struct. Comput. Sci., 21:417–480, 2011.
5 Thorsten Altenkirch, Nils Danielsson, and Nicolai Kraus. Partiality, revisited - the partiality

monad as a quotient inductive-inductive type. In Javier Esparza and Andrzej Murawski,
editors, Foundations of Software Science and Computation Structures, FOSSACS 2017, volume
10203 of LNCS, pages 534–549, 2017.

6 Steve Awodey. Category Theory. Oxford University Press, Inc., New York, NY, USA, 2nd
edition, 2010.

7 Andrej Bauer. An injection from the Baire space to natural numbers. Mathematical Structures
in Computer Science, 25(7):1484–1489, 2015.

8 Stephen Bloom and Zoltán Ésik. Iteration theories: the equational logic of iterative processes.
Springer, 1993.

9 Anna Bucalo, Carsten Führmann, and Alex K. Simpson. An equational notion of lifting
monad. Theor. Comput. Sci., 294(1/2):31–60, 2003.

10 Venanzio Capretta. General recursion via coinductive types. Log. Meth. Comput. Sci., 1(2),
2005.

11 James Chapman, Tarmo Uustalu, and Niccolò Veltri. Quotienting the delay monad by weak
bisimilarity. In Theoretical Aspects of Computing, ICTAC 2015, volume 9399 of LNCS, pages
110–125. Springer, 2015.

12 James Chapman, Tarmo Uustalu, and Niccolò Veltri. Quotienting the delay monad by weak
bisimilarity. Mathematical Structures in Computer Science, 29(1):67–92, 2019.

13 J Robin B Cockett and Stephen Lack. Restriction categories I: categories of partial maps.
Theoretical computer science, 270(1-2):223–259, 2002.

14 Tim Lukas Diezel and Sergey Goncharov. Towards Constructive Hybrid Semantics. In
Zena M. Ariola, editor, 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020), volume 167 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:19, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

15 Calvin Elgot. Monadic computation and iterative algebraic theories. In Logic Colloquium 1973,
volume 80 of Studies in Logic and the Foundations of Mathematics, pages 175–230. Elsevier,
1975.

16 Martín H. Escardó and Cory M. Knapp. Partial Elements and Recursion via Dominances
in Univalent Type Theory. In Valentin Goranko and Mads Dam, editors, 26th EACSL
Annual Conference on Computer Science Logic (CSL 2017), volume 82 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:16, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

17 Sergey Goncharov, Christoph Rauch, and Lutz Schröder. Unguarded recursion on coinductive
resumptions. In Mathematical Foundations of Programming Semantics, MFPS 2015, ENTCS,
2015.

18 Sergey Goncharov and Lutz Schröder. A relatively complete generic Hoare logic for order-
enriched effects. In Proc. 28th Annual Symposium on Logic in Computer Science (LICS 2013),
pages 273–282. IEEE, 2013.

19 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Julian Jakob. Unguarded recursion
on coinductive resumptions. Logical Methods in Computer Science, 14(3), 2018.

ICALP 2021



131:16 Uniform Elgot Iteration in Foundations

20 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying guarded
and unguarded iteration. In Javier Esparza and Andrzej Murawski, editors, Foundations of
Software Science and Computation Structures, FoSSaCS 2017, volume 10203 of LNCS, pages
517–533. Springer, 2017.

21 J. M. E. Hyland. First steps in synthetic domain theory. In Category Theory, volume 1144 of
LNM, pages 131–156. Springer, 1992.

22 J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. van Dalen, editors, The L. E.
J. Brouwer Centenary Symposium, volume 110 of Studies in Logic and the Foundations of
Mathematics, pages 165–216. Elsevier, 1982.

23 Peter T Johnstone. On a topological topos. Proceedings of the London mathematical society,
3(2):237–271, 1979.

24 Andrè Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119:447–468, April 1996.

25 Cory M. Knapp. Partial functions and recursion in univalent type theory. PhD thesis,
University of Birmingham, UK, 2018.

26 Anders Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113–120,
1972.

27 Bill Lawvere. An elementary theory of the category of sets. Proceedings of the National
Academy of Sciences of the United States of America, 52:1506–1511, 1964.

28 Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
29 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93:55–92, 1991.
30 Egbert Rijke and Bas Spitters. Sets in homotopy type theory. Mathematical Structures in

Computer Science, 25(5):1172–1202, 2015.
31 Guiseppe Rosolini. Continuity and Effectiveness in Topoi. PhD thesis, University of Oxford,

1986.
32 Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In

Logic in Computer Science, LICS 2000, pages 30–41, 2000.
33 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
34 Tarmo Uustalu. Generalizing substitution. ITA, 37:315–336, 2003.
35 Tarmo Uustalu and Niccolò Veltri. The delay monad and restriction categories. In Dang Van

Hung and Deepak Kapur, editors, Theoretical Aspects of Computing – ICTAC 2017, pages
32–50. Springer International Publishing, 2017.

36 Tarmo Uustalu and Niccolò Veltri. Partiality and container monads. In Bor-Yuh Evan Chang,
editor, APLAS, volume 10695 of Lecture Notes in Computer Science, pages 406–425. Springer,
2017.

37 Niccoló Veltri. A Type-Theoretical Study of Nontermination. PhD thesis, Tallinn University of
Technology, 2017.

https://homotopytypetheory.org/book


Powerset-Like Monads Weakly Distribute over
Themselves in Toposes and Compact Hausdorff
Spaces
Alexandre Goy # Ñ

Université Paris-Saclay, CentraleSupélec, MICS, France

Daniela Petrişan # Ñ

Université de Paris, IRIF, France

Marc Aiguier # Ñ

Université Paris-Saclay, CentraleSupélec, MICS, France

Abstract
The powerset monad on the category of sets does not distribute over itself. Nevertheless a weaker
form of distributive law of the powerset monad over itself exists and it essentially stems from
the canonical Egli-Milner extension of the powerset to the category of relations. On the other
hand, any regular category yields a category of relations, and some regular categories also possess
a powerset-like monad, as is the Vietoris monad on compact Hausdorff spaces. We derive the
Egli-Milner extension in three different frameworks : sets, toposes, and compact Hausdorff spaces.
We prove that it corresponds to a monotone weak distributive law in each case by showing that the
multiplication extends to relations but the unit does not. We provide an application to coalgebraic
determinization of alternating automata.
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1 Introduction

Composing monads is usually achieved using distributive laws. Unfortunately, sometimes
these do not exist. It is known since the work of Varacca [24] that there is no distributive
law between the monad D of probability distributions and the powerset monad P. The proof,
attributed to Plotkin, relies on a manipulation of the naturality squares of the unit of D.
More recently, [14] showed that there is no distributive law of the powerset P over itself,
and even more nor over its iterations. More negative results for other Set-based algebraic
theories are presented in [26].

One way to circumvent such negative results is to compose monads using weaker forms of
distributive laws. In the definition of a distributive law between monads we have four axioms
specifying the interactions of the law with the units, respectively with the multiplications
of the two monads. In a weak distributive law, an axiom involving the unit of one of the
monads is dropped. In our previous paper [11] we exhibited a canonical weak distributive law
between the monads D and P. It comes as no surprise that the axiom that is dropped from
the definition of such a law is the one involving the unit of D – on which the argument of
Plotkin relied. Our work in turn, was based on Garner’s results [10]. In loc. cit. he exhibited
a weak distributive law between the powerset monad and the ultrafilter monad β. This leads
to a weak lifting of the powerset to the category of Eilenberg-Moore algebras of β, that is,
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to the category of compact Hausdorff spaces KHaus. This weak lifting is the Vietoris monad
and is indeed the closest there is to a powerset-like monad on KHaus. In [10] it is also shown
that the powerset monad on Set weakly distributes over itself.

The weak distributive laws in [10] and [11] were all of the form TP → PT, where P is
the powerset monad on Set. The recipe for obtaining these laws was based on the monotone
weak extension of the monad T to the category of relations, this is, the Kleisli category of P.

The motivation of the present paper is to understand composition of monads via weak
distributive laws in other settings than for Set-based monads. In particular our aim here is
to build the technology necessary for combining various forms of nondeterminism (ordinary
and probabilistic) in a continuous setting.

An obvious starting point is to consider the category of compact Hausdorff spaces KHaus,
where we have the Vietoris monad V whose Kleisli category Kl(V) can be seen as a category
of relations satisfying additional continuity constraints. The first question we have asked
ourselves is whether the Vietoris monad V weakly distributes over itself. Can we extend
Garner’s result from Set to KHaus? It turns out the answer is positive, see Theorem 24. In
the process we have used various results from the literature, in particular, the work of [7] for
extending functors on a regular category C to the category of relations Rel(C). Nevertheless,
the results are far from immediate since Kl(V) is only a subcategory of Rel(KHaus), hence
some additional work is needed to obtain the canonical extension of V to Kl(V). We also
notice that despite the fact that the Vietoris functor does not preserve pullbacks (see also [6]),
it nearly preserves pullbacks, and this is exactly the condition needed in [7] to provide the
relational extension. Once the monotone extension of the monad V to Kl(V) is found, we
can provide the weak distributive law via the same mechanism as in [10].

Another extension we provide is for the powerset-like monad on a topos C. This monad is
defined on objects as ΩX where Ω is the subobject classifier of the topos. Notice that we are
not considering the contravariant powerset-like functor usually appearing in topos theory, but
rather the monad Eof [19]. Its Kleisli category is simply Rel(C) and, as far as the underlying
functor is concerned, a monotone extension is obtained again by leveraging the work in [7].
To obtain the extension of the monad E, we need to investigate the properties of its unit
and of its multiplication. As far as the multiplication is concerned, we can internalize the
proof from the Set case, using the internal logic of the topos. As far as the unit is concerned,
we show that it has the required property for obtaining a strong extension of the monad,
only when the topos is degenerate. In all other meaningful cases, we thus only obtain a weak
extension of Eto Kl( E), and hence a weak distributive law of Eover itself, see Theorem 13.

The paper is structured as follows. In Section 2 we recall the necessary preliminaries
on weak distributive laws and relations in regular categories. In Section 3 we recall the
weak distributive law of the powerset over itself and provide an application to coalgebraic
determinization of alternating automata. We find it instructive to understand the proofs first
in Set, as they will serve as a basis for the generalization to toposes, performed in Section 4.
In Section 5 we provide the weak distributive law of the Vietoris functor over itself and we
conclude with a summary and directions for future work in Section 6.

2 Preliminaries

Notations

For a relation R ⊆ X × Y between two sets and A ⊆ X, B ⊆ Y , we write R[A] = {y ∈ Y |
(x, y) ∈ R and x ∈ A} and R−1[B] = {x ∈ X | (x, y) ∈ R and y ∈ B}. The complement of
A ⊆ X is denoted by Ac. In the whole paper, C denotes a generic category, F , G : C → C
denote functors and α : F → G denotes a natural transformation. Identity morphisms,
functors and natural transformations will all be denoted by 1.
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2.1 (Weak) Extensions, (Weak) Distributive Laws, (Weak) Liftings

We assume the reader is familiar with the basic theory of monads, and fix here some
notations. A monad is a triple T = (T , ηT, µT) where T : C → C is a functor, ηT : 1 → T

and µT : TT → T are natural transformations called respectively unit and multiplication
and equations µT ◦ TηT = 1 = µT ◦ ηTT , µT ◦ TµT = µT ◦ µTT hold. In the following we fix
two monads T and S on C. The Kleisli category of S is denoted by Kl(S). A morphism in
Kl(S) will be denoted by X ↛ Y and corresponds to a morphism X → SY in C. The Kleisli
free and forgetful functor are denoted respectively by F S : C → Kl(S) and US : Kl(S) → C.
The Eilenberg-Moore category of T is denoted by EM(T), objects are algebras (X, x) where
X is an object of C and x : TX → X satisfies x ◦ ηT

X = 1X and x ◦ µT
X = x ◦ Tx. The

Eilenberg-Moore free and forgetful functor are denoted respectively by F T : C → EM(T) and
UT : EM(T) → C.

▶ Example 1. The powerset monad P on the category of sets and functions Set is defined as
follows. The functor P maps a set X to the set of its subsets and acts on functions by taking
direct images. Unit is given by the singleton operation ηP

X(x) = {x} and multiplication by
union µP

X(A) =
⋃

A.

Monads are not stable under composition. However, Beck introduced the framework of
distributive laws [1] as a tool to generate composite monads. Distributive laws are actually
one face of a three-sided coin comprising also extensions and liftings. Interestingly enough,
each component of this triptych can be weakened in such a way that the correspondence still
stands between weak distributive laws, weak extensions and weak liftings [10]. The rest of
this section aims at jointly recalling both the usual and the weakened framework.

An extension of F to Kl(S) is a functor F : Kl(S) → Kl(S) such that FF S = F SF .
Similarly, an extension of α : F → G is a natural transformation α : F → G such that the
equation αF S = F Sα holds.

▶ Definition 2 (Extension). An extension of T to Kl(S) is a monad T on Kl(S) whose functor,
unit and multiplication are extensions of those of T. A weak extension only requires the
extension of the functor and of the multiplication of T.

▶ Definition 3 (Distributive law). A distributive law of type TS → ST is a natural trans-
formation δ : TS → ST such that the four following diagrams commute

TTS TST STT TSS STS SST

TS ST TS ST

TS ST TS ST

S T

T δ

µTS (µT)

δT

SµT

δS

T µS (µS)

Sδ

µST

δ δ

δ δ

ηTS SηT

(ηT)
T ηS ηST

(ηS)

A weak distributive law only requires the (ηS), (µS) and (µT) diagrams.
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▶ Definition 4 (Lifting). A lifting of S to EM(T) is a monad Ŝ : EM(T) → EM(T) such
that UTŜ = SUT, UTη̂S = ηSUT and UTµ̂S = µSUT. A weak lifting of S on T is a
monad Ŝ : EM(T) → EM(T) along with two natural transformations π : SUT → UTŜ,
ι : UTŜ → SUT such that π ◦ ι = 1 and the following diagrams commute:

UTŜŜ SUTŜ SSUT SSUT SUTŜ UTŜŜ

UTŜ SUT SUT UTŜ

UTŜ SUT SUT UTŜ

UT UT

ιŜ

UTµ̂S (ιµ)

Sι

µSUT µSUT

Sπ

(πµ)

πŜ

UTµ̂S

ι π

ι π

UTη̂S ηSUT

(ιη)
ηSUT

UTη̂S

(πη)

Recall that an idempotent morphism e : X → X splits if there is an object Y and
morphisms f : X → Y , g : Y → X such that g ◦ f = e and f ◦ g = 1Y .

▶ Theorem 5 ([1, 10]). There is a bijective correspondence between extensions of T to Kl(S),
distributive laws of type TS → ST, and liftings of S to EM(T). This extends to a bijective
correspondence between weak extensions, weak distributive laws, and (if all idempotents split
in C) weak liftings.

2.2 Relations in Regular Categories
From now on, we make the assumption that C is a regular category, this is, finitely complete
with pullback-stable image factorizations. (Note that in a regular category, regular epis and
strong epis coincide; notions will be phrased in terms of strong epis, as in [7].) In particular,
C has all pullbacks: in this context, a weak pullback (resp. near pullback) is a commutative
square such that the mediating morphism into the pullback is a split epi (resp. strong epi).
The functor F is weakly cartesian (resp. nearly cartesian) if it maps pullbacks into weak
pullbacks (resp. near pullbacks), and α is weakly cartesian (resp. nearly cartesian) if its
naturality squares are weak pullbacks (resp. near pullbacks). Note that in the literature,
strong epis are sometimes called covers, and within this terminology a nearly cartesian
functor is a functor that covers pullbacks [22].

Regular categories have a (strong epi, mono) factorization system. In such a factorization
f = m ◦ e we recall that the subobject defined by the mono m is the image of the morphism
f . Note that these factorizations imply that idempotents split in C, so that Theorem 5 can
be fully applied. As explained in [7], one can build a category Rel(C) whose morphisms will
stand for relations. The objects of Rel(C) are the objects of C. A morphism r : X ⇝ Y in
Rel(C) is a subobject of X × Y in C and is called a relation – the notation ⇝ tells relations
apart from morphisms in C. We will not distinguish monomorphisms from their equivalence
classes, hence a relation is equivalently a jointly monic span

R

X Y

r1 r2
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The composition of relations r = ⟨r1, r2⟩ : R → X × Y and s = ⟨s1, s2⟩ : S → Y × Z is
obtained using a pullback Θ, by taking the image of the morphism Θ → X × Z below:

Θ

R S

X Y Z

θ1 θ2

r1 r2 s1 s2

This relational composition of r and s will be denoted by s.r. Identities are obtained via
the diagonal monomorphism ⟨1X , 1X⟩ : X → X × X. There is a contravariant involution
−◦ : Rel(C)op → Rel(C) given by X◦ = X and ⟨r1, r2⟩◦ = ⟨r2, r1⟩. The graph functor
G : C → Rel(C) is defined by GX = X and Gf = ⟨1X , f⟩ for any f : X → Y . These two
fundamental functors have a nice interplay, as for every r : X ⇝ Y we have r = Gr2.(Gr1)◦.
Most of the time, the mention of G will be omitted, e.g. the previous equation writes
r = r2.r◦

1 and functoriality of G writes g.f = g ◦ f . Given two relations r : R → X × Y and
s : S → X × Y , the subobject order is defined by:

r ≤ s ⇐⇒ ∃h : R → S, r = s ◦ h (1)

Accordingly, a functor H : Rel(C) → Rel(C) is called monotone if r ≤ s ⇒ Hr ≤ Hs.
A relational extension of F is a monotone functor Rel(F ) : Rel(C) → Rel(C) such that

Rel(F )G = GF . This actually forces Rel(F )X = FX and

Rel(F )r = (Fr2).(Fr1)◦ (2)

so that F has at most one relational extension. Similarly, a relational extension of α : F → G

is a natural transformation Rel(α) : Rel(F ) → Rel(G) such that Rel(α)G = Gα, and α has at
most one such extension. Collecting results from the literature ([7, §4.3], [21, Corollary 1.5.7])
we get the following existence theorem

▶ Theorem 6 (Existence of relational extensions). A functor F : C → C on a regular
category C has a (unique) relational extension if and only if F preserves strong epis and F is
nearly cartesian. Provided these conditions hold for both F and G, a natural transformation
α : F → G has a (unique) relational extension if and only if α is nearly cartesian.

Note that whenever Rel(F ) and Rel(G) exist, then Rel(G)Rel(F ) = Rel(GF ) (see also [7,
§4.4]).

3 Sets

There is no distributive law of type PP → PP on Set [14]. However, there is a weak
distributive law recently described by Garner [10]. In this section, we detail how this law
is obtained using Theorem 6. Our aim is twofold. First, we lay the ground for Sections 4
and 5 where we will generalize this reasoning in two different directions. Second, as an
application we present how this weak distributive law allows to retrieve a known procedure
that transforms alternating automata into non-deterministic automata [13].

In this section, C is the (regular) category Set of sets and functions and S is the powerset
monad P defined in Example 1. It turns out that both Kl(P) and Rel(Set) can be identified
to the category Rel of sets and relations. Under this identification we have F P = G. In this

ICALP 2021
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context a relation R : X ↛ Y is just a subset of the product R ⊆ X × Y and composition
is defined by the usual formula S ◦ R = {(x, z) ∈ X × Z | (x, y) ∈ R and (y, z) ∈ S}. A
relational extension of a functor is nothing but a (Kleisli) extension that is monotone with
respect to relation inclusion. The axiom of choice yields that all epis are split, henceforth any
functor automatically preserves strong epis, and near pullbacks coincide with weak pullbacks.
Theorem 6 therefore boils down to saying that F (resp. α) extends to Rel iff F (resp. α) is
weakly cartesian – this is [10, Proposition 15].

Let T also be the powerset monad P. The following example is essentially in [10] –
however the proofs there are done with T being the finite powerset monad. An obvious
consequence of the above paragraph is that P has a weak extension to Rel iff P and µP are
weakly cartesian, which both are known results, see e.g. [23] for P and [10] for µP. Further,
the unit ηP is not nearly cartesian [10], so that the weak extension is not an extension. We
recall these proofs here because they will be used in the next sections.

▶ Proposition 7. The powerset functor P is weakly cartesian.

Proof. Equivalently, P being nearly cartesian amounts to showing that for every f : X → Z,
g : Y → Z and (A, B) ∈ PX × PY such that f [A] = g[B], there is C ⊆ P := {(x, y) ∈
X × Y | f(x) = g(y)} such that π1[C] = A and π2[C] = B, where π1 : P → X, π2 : P → Y

are the projections from the pullback. One can easily check that C = π−1
1 (A) ∩ π−1

2 (B)
completes the proof. ◀

▶ Proposition 8. The unit ηP is not weakly cartesian.

Proof. Consider the naturality square for the unique map ! : {0, 1} → {0}. The corresponding
pullback {(0, {0}), (0, {1}), (0, {0, 1})} has cardinality 3, so there cannot be a surjective map
from {0, 1} into it. ◀

▶ Proposition 9. The multiplication µP is weakly cartesian.

Proof. For any f : X → Y and (A, B) ∈ PX × PPY such that f [A] =
⋃

B, we must find
A ∈ PPX such that

⋃
A = A and (Pf)[A] = B. Take A = {A ∩ f−1(B) | B ∈ B} and check

(Pf)[A] = {f [A ∩ f−1(B)] | B ∈ B} = {f [A] ∩ B | B ∈ B} = {B | B ∈ B} = B⋃
A = A ∩ f−1

(⋃
B

)
= A ∩ f−1(f [A]) = A ◀

Computing the weak extension of P to Rel using equation (2) yields the well-known
Egli-Milner relation

PR = {(A, B) ∈ PX×PY | ∀x ∈ A, ∃y ∈ B, (x, y) ∈ R and ∀y ∈ B, ∃x ∈ A, (x, y) ∈ R} (3)

The corresponding weak distributive law λ : PP → PP is given by

λX(A) =
{

B ∈ PX | B ⊆
⋃

A and ∀A ∈ A, A ∩ B ̸= ∅
}

(4)

The corresponding weak lifting of P to the category of complete join semi-lattices EM(P) is
as follows: P̂ (X, x) = (S, s) has underlying set S = {A ∈ PX | ∀B ⊆ A, B ≠ ∅ ⇒ x(B) ∈ A}
with join given for every A ∈ PS by s(A) = {x({aA | A ∈ A}) | ∀A ∈ A, aA ∈ A}. The
morphism π(X,x) : PX → S sends a subset A ⊆ X to its closure under non-empty join
{x(B) | B ∈ P (A) \ {∅}}, whereas ι(X,x) : S → PX is just the inclusion. Practically
speaking, disposing of such a weak lifting allows to perform generalized determinization of
PP -coalgebras as in [11, Section 5].
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An F -coalgebra (X, c) is a morphism c : X → FX, and a morphism of F -coalgebras
f : (X, c) → (Y, d) is a morphism f : X → Y such that Ff ◦ c = d ◦ f . Let Coalg(F ) be the
category of F -coalgebras. Generalized determinization of PP -coalgebras is a transformation
into a P -coalgebra via a process that factors through P̂ -coalgebras as follows:

Coalg(PP ) Coalg(P̂ ) Coalg(P )

Set EM(P) SetF P UP

(5)

More precisely, this construction maps a coalgebra X PPXc to

c+ = PX PPPX PPPX PPXP c λP X P µP
X (6)

so c+(A) =
{⋃

x∈A Bx | ∀x ∈ A, Bx ∈ c(x)
}

where c(x) is the closure of c(x) under non-
empty unions. See Figure 1 for a concrete example. An interesting view is to interpret
P -coalgebras as non-deterministic automata and PP -coalgebras as alternating automata,
meaning a transition from a state x ∈ X consists in choosing non-deterministically a set
U ∈ c(x), then going simultaneously into every state y ∈ U . Alternating automata have been
introduced in [8] and have known some difficulties to be properly modelled as PP -coalgebras
([2, 13]). In particular, this non-standard transformation of alternating automata was already
described in [13], but did not fit very well into any general framework. There, λ was only
identified as a non-distributive law, because the (ηT) diagram does not commute – which
in this case is equivalent to ηP not being weakly cartesian. We hereby pinpoint that this
automata transformation is canonical in the sense that it comes from the unique monotone
weak extension of P to Rel.

x0 {x0}

x1 x3 {x3} {x1} {x1, x3}

x2 {x2, x3} {x1, x2} {x1, x2, x3}

Figure 1 On the left, an alternating automaton: a transition consists in going in one of the solid
lines, then in all of the available dashed lines. On the right, a portion of the non-deterministic
automaton obtained after the process described in (5).

4 Toposes

The category Set is a special case of the more general notion of topos. Our contribution
in this section is to generalize the results of Section 3 to arbitrary toposes. Some standard
references about the theory of toposes are [12], [16], and our approach will be close to the one
of [19]. Our presentation of toposes will be self-contained, with the exception of internal logic.
In short, toposes are sufficiently set-behaved to internalize a logic in which one may reason
as if they were picking elements in sets, and accommodate internally constructive proofs,
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i.e., not using either the law of excluded middle or the axiom of choice. For more details
about the internal logic, see [12, Part D], [16, Section VI.5] or the more accessible [20], [18,
Chapters 14-16].

A topos is a finitely complete cartesian closed category with a subobject classifier Ω.
Having a subobject classifier means that there is a morphism out of the terminal object
true : 1 → Ω such that for every subobject m : A ↪→ X, there is a unique morphism
χm : X → Ω (called the characteristic morphism of m) such that the following diagram is a
pullback:

A 1

X Ω

m

!A

true

χm

Note that !A denotes the unique morphism of type A → 1. Toposes are finitely cocomplete.
Every topos is regular, and conversely a regular category C is a topos if and only if the graph
functor G : C → Rel(C) has a right adjoint ([19, §6.1.1], [9, §1.911]). This adjunction yields a
monad E: C → C which is the generalization of the powerset monad on the topos Set – as
hinted by the equality EX = ΩX in C similar to PX = 2X in Set. In the internal logic of the
topos, the data of Ecan be expressed as

Ef(a) = {y : Y | ∃x : X, x ∈ a ∧ f(x) = y} [20, Proposition 4.9]

η E
X(x) = {x′ : X | x = x′} [20, Proposition 4.17]

µ E
X(t) = {x : X | ∃s : ΩX , x ∈ s ∧ s ∈ t} [20, Proposition 4.19]

Another view on η E
X : X → ΩX is that it is the exponential transpose of the characteristic

morphism X ×X → Ω of the diagonal monomorphism ⟨1X , 1X⟩ : X ↪→ X ×X ([12, page 86]).
The Kleisli category of Eis nothing but the category Rel(C) ([19, §6.1.10]), with again the

identification F E= G and relational extensions being exactly monotone (Kleisli) extensions.
Given the similarities with Set, a natural question is whether the results of the previous
section extend to any topos: is there a weak distributive law of type EE→ EE?

Some of the ingredients required for obtaining such a law are already in the literature:

▶ Proposition 10 ([19, Proposition 6.5.1]). The functor Eis weakly cartesian and preserves
strong epis.

De Moor [19] deduces that the functor Eis a relator, i.e., it has a monotone extension to
Rel(C). One can compute this generalized Egli-Milner formula using equation (2) and the
internal logic notations, although it is not relevant for the subsequent developments.

The extension Ecorresponds to a distributive law between the functor Eand the monad
Eof type EE→ EE, called cross-operator in [19], meaning that the (ηS) and (µS) diagrams

relative to the inner Ecommute. We provide the missing results:

▶ Proposition 11. The unit η Eis nearly cartesian if and only if C is degenerate, i.e., the
initial object 0 and the terminal object 1 are isomorphic.

Proof sketch. If C is degenerate, then C is the category with a single object and a single
arrow, and every natural transformation is nearly cartesian in such a category. Conversely,
assume η Eis nearly cartesian. As η Ecomponents are mono (see [16, Lemma 1 p.166]), this
induces that η Eis cartesian, i.e., naturality squares are pullbacks. In particular, the left
square below is a pullback. (Note that this square is the one that appears in the proof of
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Proposition 8, because in Set we have {0} ∼= 1 and {0, 1} ∼= Ω.) Let p : 1 → ΩΩ be the
morphism that picks the maximal subobject Ω ⊆ Ω. The pasting law for pullbacks yields
that Θ ∼= Φ, where Θ and Φ are defined by the pullback squares on the right:

Ω 1 Θ Ω Φ 1

ΩΩ Ω 1 ΩΩ 1 Ω

!Ω

η E
Ω η E

1 !Θ η E
Ω !Φ

!Φ

η E
1

E!Ω
p E!Ω◦p

We can prove additionally that Θ ∼= Θ × Ω and Φ ∼= 1. Combining these results yields Ω ∼= 1,
and this in turn implies that the topos is degenerate. ◀

▶ Proposition 12. The multiplication µ Eis weakly cartesian.

Proof. Mimicking the computation of Proposition 9 in the internal logic of C produces a
valid proof, because the latter is a constructive intuitionistic proof, i.e., does not use either
the axiom of choice or the law of excluded middle. ◀

▶ Theorem 13. In any topos, there is a unique monotone weak distributive law of type
EE→ EE, which is a distributive law exactly when the topos is degenerate.

Proof. By Theorem 6, Propositions 10, 11, 12 and the fact that F E= G, the generalized
Egli-Milner relation defines the unique monotone weak extension of Eto Kl( E), and is a
monad extension iff the topos is degenerate. Applying Theorem 5 completes the proof. ◀

There is also a weak lifting of Eto the category EM( E) of internal complete join semi-
lattices, implying in particular that the generalized determinization procedure described in
Section 3 can be applied to EE-coalgebras in arbitrary toposes.

5 Compact Hausdorff Spaces

In this section, C is the category of compact Hausdorff spaces and continuous functions
KHaus. As recalled in [10], KHaus is isomorphic to the Eilenberg-Moore category of the
ultrafilter monad β : Set → Set. This yields that KHaus is regular, complete, and that limits
can be computed as in Set and given the initial topology afterwards. As KHaus is a pretopos
(see, e.g., [17]), strong epis are just epis, that is, (continuous) surjections. Given an object X

of KHaus, we denote its carrier set also by X and its topology by τX . Define V X to be the
set of all closed subsets of X equipped with the Vietoris topology, i.e., the topology generated
by the subbase

□U = {A ∈ V X | A ⊆ U} ♢U = {A ∈ V X | A ∩ U ̸= ∅} (7)

where U ranges over τX . The mapping X 7→ V X extends into a monad V on KHaus called
the Vietoris monad [10] in the same way as the powerset in Set. In concrete terms, V maps
a continuous function f : X → Y to its direct image V f : V X → V Y , ηV : 1 → V takes
singletons and µV : V V → V takes unions.

▶ Remark 14. It turns out that there is a monotone weak extension of β to Kl(P) ∼= Rel and
that the corresponding weak lifting is the Vietoris monad on EM(β) ∼= KHaus. This is the
main result of Garner’s paper [10].
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As KHaus is not a topos but only a pretopos, V cannot be obtained using the graph
functor KHaus → Rel(KHaus) as a left adjoint. This is closely related to the fact that V X,
being only part of a weak lifting, does not contain all subsets of X. Actually, Rel(KHaus) and
Kl(V) correspond to the two essential ways of embedding KHaus into a relational category
(see [4], where they are denoted by KHausR and KHausC). Let X, Y be compact Hausdorff
spaces and R ⊆ X × Y be a relation. Consider the following properties of R:

(i) ∀A ∈ V X, R[A] ∈ V Y

(ii) ∀B ∈ V Y, R−1[B] ∈ V X

(iii) ∀U ∈ τY , R−1[U ] ∈ τX

The relation R is closed if it satisfies properties (i) and (ii), or equivalently, if R is a
closed subset of the product topology τX×Y . The relation R is continuous if it satisfies
properties (i), (ii) and (iii). Note that these properties are preserved by the usual composition
of relations and satisfied by identity relations. The following are straightforward results:

▶ Proposition 15. The category of compact Hausdorff spaces and closed relations is iso-
morphic to Rel(KHaus).

▶ Proposition 16 (see [3, 4]). The category of compact Hausdorff spaces and continuous
relations is isomorphic to Kl(V).

As a summary, we have the wide subcategory inclusions

KHaus Kl(V) Rel(KHaus)
F V

G

(iii)
forget

Any endofunctor on Rel(KHaus) that preserves continuous relations – i.e. preserves
property (iii) – therefore restricts to an endofunctor on Kl(V). Similarly, given two such
endofunctors on Rel(KHaus), any natural transformation whose components are continuous
relations (e.g. every Rel(α)) automatically restricts to a natural transformation between their
restrictions on Kl(V). Putting this together with Theorem 6 and the definition of monad
extensions, we get

▶ Proposition 17. Assume that T preserves continuous surjections, that T and µT are nearly
cartesian, and that Rel(T ) preserves continuous relations. Then there is a monotone weak
extension of T to Kl(V), and this is an extension if and only if ηT is nearly cartesian.

Now we fix T = V and proceed to verify the assumptions of Proposition 17.

▶ Proposition 18. The Vietoris functor V preserves continuous surjections.

Proof. For such a continuous surjective f : X → Y , V f : V X → V Y is surjective because
any C ∈ V Y satisfies V f(f−1(C)) = C, with f−1(C) ∈ V X. ◀

▶ Proposition 19. The Vietoris functor V is nearly cartesian.

Proof. This is the same proof as for Proposition 7, with an additional check that if A ∈ V A

and B ∈ V B then C = π−1
1 (A) ∩ π−1

2 (B) indeed is in V R, by continuity of π1, π2. ◀

▶ Proposition 20. The unique relational extension Rel(V ) preserves continuous relations.
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Proof. Assume that R ⊆ X × Y is a closed relation that satisfies condition (iii), denote
its projections by r1 : R → X, r2 : R → Y and show that Rel(V )R satisfies condition (iii).
Sets of the form □U0 ∩

⋂
1≤i≤n ♢Ui with n ∈ ω and Ui ∈ τY form a base of τV Y , therefore

the identity (8) below suffices to conclude because R satisfying condition (iii) makes the
right-hand side an element of τV Y .

(Rel(V )R)−1

□U0 ∩
⋂

1≤i≤n

♢Ui

 = □R−1[U0] ∩
⋂

1≤i≤n

♢R−1[U0 ∩ Ui] (8)

We now prove (8). A subset C ∈ V X belongs to the left-hand side iff there exists D ∈ V Y

such that
1. ∀x ∈ C, ∃y ∈ D, (x, y) ∈ R

2. ∀y ∈ D, ∃x ∈ C, (x, y) ∈ R

3. D ⊆ U0
4. ∀i ∈ {1, ..., n}, D ∩ Ui ̸= ∅

A subset C ∈ V X belongs to the right-hand side iff
5. ∀x ∈ C, ∃y ∈ U0, (x, y) ∈ R

6. ∀i ∈ {1, ..., n}, ∃(xi, yi) ∈ R, xi ∈ C, yi ∈ U0 ∩ Ui

Let C ∈ V X and D ∈ V Y such that 1. − 4. are satisfied. For any x ∈ C, using 1. and 3.,
we can find y ∈ U0 such that (x, y) ∈ R, so that 5. holds. For any i ∈ {1, ..., n}, using 3. and
4. we find yi ∈ U0 ∩ Ui, then using 2. we find xi ∈ C such that (xi, yi) ∈ R, so that 6. holds.

For the other direction we note that every compact Hausdorff space is regular and use
the following property

▶ Lemma 21 ([25, Theorem 14.3]). A topological space Y is regular if and only if for every
U ∈ τY and every y ∈ U , there is a W ∈ τY such that y ∈ W and W ⊆ U .

Let C ∈ V X such that 5. − 6. hold. For every x ∈ C we fix yx ∈ U0 such that (x, yx) ∈ R.
For every i ∈ {1, ..., n} we fix (xi, yi) ∈ R such that xi ∈ C and yi ∈ U0 ∩ Ui. Apply
Lemma 21 to get Wx ∈ τY such that yx ∈ Wx and Wx ⊆ U0 and Wi ∈ τY such that yi ∈ Wi

and Wi ⊆ U0 ∩ Ui. For every x ∈ C, (x, yx) ∈ R and yx ∈ Wx so x ∈ R−1[Wx], hence
C ⊆

⋃
x∈C R−1[Wx]. As C is closed in a compact space, it is compact and we can extract a

finite subcover C ⊆
⋃

1≤k≤m R−1[Wxk
]. Define the closed set

K =
⋃

1≤i≤n

Wi ∪
⋃

1≤k≤m

Wxk
∈ V Y (9)

and consider D = V r2((C × K) ∩ R) ∈ V Y . For any x ∈ C, there is k ∈ {1, ..., m} and
y ∈ Wxk

⊆ K such that (x, y) ∈ R, hence y ∈ D and property 1. holds. Property 2. is
immediate from the expression of D. As Wi, Wxk

⊆ U0, we have D ⊆ K ⊆ U0 and property 3.

holds. For any i ∈ {1, ..., n}, (xi, yi) ∈ (C × K) ∩ R so yi ∈ D ∩ Ui and property 4. holds.
This achieves the proof. ◀

▶ Proposition 22. The Vietoris unit ηV is not nearly cartesian.

Proof. The counterexample of Proposition 8 still works by endowing the sets with the discrete
topology. Note that the discrete topology on a finite set is always compact Hausdorff. ◀

A consequence is that there is no relational extension of V to Rel(KHaus), hence also no
distributive law of type VV → VV can be obtained via Proposition 17. Further, there is no
possible distributive law of this type because the counter-example for PP → PP presented
in [14, Theorem 2.4] uses only finite sets: it is still valid in KHaus by endowing every set
with the discrete topology again.
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▶ Proposition 23. The Vietoris multiplication µV is nearly cartesian.

Proof. Consider f : X → Y and let P be the pullback of its µV naturality square. Surjectivity
of the mediating map h : V V X → P amounts to proving that for every C ∈ V X and
D ∈ V V Y such that V f(C) = µV

Y (D), there is a C ∈ V V X such that µV
X(C) = C and

V V f(C) = D. However, our usual candidate A = {C ∩ f−1(D) | D ∈ D} may not be a closed
subset of V X. In its place we take

C = (V f)−1(D) ∩ (♢(Cc))c ∈ V V X (10)

Note that C = {K ∈ V X | V f(K) ∈ D and K ⊆ C}. Inclusions µV
X(C) ⊆ C and

V V f(C) ⊆ D are immediate. For the other ones, note that A ⊆ C, hence C = µP
X(A) ⊆

µV
X(C) and D = PPf(A) ⊆ V V f(C). ◀

▶ Theorem 24. There is a monotone weak distributive law of type VV → VV defined by

λX(A) =
{

B ∈ V X | B ⊆
⋃

A and ∀A ∈ A, A ∩ B ̸= ∅
}

(11)

Proof. Use Proposition 17 together with Propositions 18, 19, 20, 22, 23 to get that there is
a monotone weak extension of V to Kl(V) defined by

V R = {(A, B) ∈ V X × V Y | ∀x ∈ A, ∃y ∈ B, (x, y) ∈ R and ∀y ∈ B, ∃x ∈ A, (x, y) ∈ R}

By Theorem 5, this corresponds to a weak distributive law with the wanted expression. ◀

Again, we also have a weak lifting of V to the category EM(V) – i.e., to continuous lattices,
see [10, § 2.3] – whose existence notably allows generalized determinization of V V -coalgebras.
▶ Remark 25. The Vietoris monad restricts to the full subcategory of Stone spaces and
continuous functions Stone ↪→ KHaus, which regularly attracts the interest of the coalgebraic
community ([15], [6]). Equation (11) clearly still defines a weak distributive law in Stone,
which may be useful to understand better double Vietoris coalgebras as described in [5].

6 Conclusion

In this article, we have detailed how to obtain a triptych weak extension - weak distributive
law - weak lifting using powerset-like monads. First we assembled results in the literature to
show that the usual method for obtaining weak extensions from Set to Rel can be adapted
to obtain weak extensions from any regular category C to its category of relations. We
proved that weak self-distributivity of the Set powerset monad – known since the paper of
Garner [10] – can actually be understood at the deeper level of toposes. Then we treated
compact Hausdorff spaces, for which the Vietoris monad plays the role of a powerset. This
case is particularly interesting because the category of closed relations and the Kleisli category
of the Vietoris monad do not have exactly the same morphisms. In every case, we find that
the unique monotone weak extension can be expressed with an Egli-Milner-shaped formula.
Using the corresponding weak distributive law, we provide an application to automata theory:
generalized determinization of alternating automata into non-deterministic automata. Here
alternating automata are to be understood as double powerset coalgebras, living in any
category previously considered.

To our knowledge, all previous examples of interesting weak distributive laws that are not
distributive laws were exhibited in the category Set. Our work provides some first instances
of such laws outside of Set. It would be an interesting research direction to find useful weak
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distributive laws that do not come from the extension result of Theorem 6, or that do not
live into a set-like category. However, categories of relations being a rich framework, looking
for more laws of the form TP → PT is also a promising direction. In particular, the category
KHaus possesses a probability monad R called the Radon monad. Maybe is it possible to
generalize the weak distributive law of type DP → PD presented in [11] (where D is the
finitely supported distribution monad) to a continuous version RV → VR in KHaus. We
leave this to future work.

Finally, we thank reviewers for bringing up the following remark. Although KHaus is
not a topos, the Vietoris monad V may be thought of as classifying subobjects, in the sense
that global elements of V X correspond to subobjects of X. It is an interesting question
whether our weak distributive law can be generalized to (regular) categories admitting a
monad classifying subobjects in this element-wise sense.
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Abstract
We study the first-order axiomatisability of finite semiring interpretations or, equivalently, the
question whether elementary equivalence and isomorphism coincide for valuations of atomic facts
over a finite universe into a commutative semiring. Contrary to the classical case of Boolean
semantics, where every finite structure is axiomatised up to isomorphism by a first-order sentence,
the situation in semiring semantics is rather different, and depends on the underlying semiring. We
prove that for a number of important semirings, including min-max semirings, and the semirings
of positive Boolean expressions, there exist finite semiring interpretations that are elementarily
equivalent but not isomorphic. The same is true for the polynomial semirings that are universal for
the classes of absorptive, idempotent, and fully idempotent semirings, respectively. On the other side,
we prove that for other, practically relevant, semirings such as the Viterby semiring V, the tropical
semiring T, the natural semiring N and the universal polynomial semiring N[X], all finite semiring
interpretations are first-order axiomatisable, and thus elementary equivalence implies isomorphism.
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1 Introduction

Semiring semantics is based on the idea to evaluate logical statements not just by true or
false, but by values in some commutative semiring (K,+, ·, 0, 1). In this context, the standard
semantics appears as the special case when the Boolean semiring B = ({⊥,⊤},∨,∧,⊥,⊤)
is used. Valuations in other semirings provide additional information, beyond the truth or
falsity of a statement: the Viterbi-semiring V = ([0, 1]R,max, ·, 0, 1) models confidence scores,
the tropical semiring T = (R∞

+ ,min,+,∞, 0) is used for cost analysis, and min-max-semirings
(K,max,min, a, b) for a totally ordered set (K,<) can model, for instance, different access
levels. More generally, semirings of polynomials, such as N[X] or B[X], allow us to track the
role of specific atomic facts for the evaluation of a logical statement, to describe evaluation
strategies for a formula, and to determine which combinations of literals prove the truth of a
formula.

Some of the motivation for the study of semiring semantics comes from the successful
development of semiring provenance in database theory and related fields (see e.g. [5, 6,
9, 14, 15, 18, 19, 20]), and the fact that the typical applications of provenance analysis,
such as confidence scores, cost analysis, proof counting, and the understanding of evaluation
strategies are of importance in many other areas of logic as well. However, semiring provenance
analysis for database queries had originally been largely confined to positive query languages,
such as conjunctive queries, positive relational algebra, and Datalog, and the treatment
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of negation poses non-trivial algebraic problems. Only recently, provenance analysis via
semiring semantics has been extended to logics with negation, and in particular to full
first-order logic [12, 13], by means of new algebraic constructions based on quotient semirings.
Semiring semantics has also been studied for other logics, including modal logics, description
logics, guarded logics, and fixed-point logic [1, 2, 3, 4], and this paper is part of a larger
project devoted to a systematic study of semiring semantics for various logics. An important
objective in this context is the understanding of the model theory of semiring semantics, and
the development of model-theoretic methods for semiring interpretations.

It turns out that this is much more involved and diverse than for Boolean semantics. In
the standard semantics, a model A assigns to each (instantiated) atomic formula a Boolean
value, whereas K-interpretations π, for a suitable semiring K, generalise this by assigning
to each literal a semiring value in K, where 0 is interpreted as false and all other semiring
values as nuances of true. Interpreting disjunction by + and conjunction by ·, we can extend
π to provide semiring valuations πJφK ∈ K for all first-order sentences φ, written in negation
normal form. Semiring semantics thus gives a finer distinction of logical statements, and
formulae that are equivalent in the Boolean sense (i.e. in the Boolean semiring) may have
different valuations in other semirings. As a consequence, standard facts of classical (finite)
model theory may lead to interesting and sometimes rather difficult questions in semiring
semantics, and the answer may strongly depend on algebraic properties of the underlying
semiring. Specific such questions that we study here concern the first-order axiomatisability of
finite K-interpretations or, what amounts to the same, the relationship between isomorphism
and elementary equivalence in this context.

It is a rather trivial fact of finite model theory that every finite structure A (with a
finite vocabulary τ) can be axiomatised, up to isomorphism, by a first-order sentence χA. In
particular, two finite τ -structures A and B are isomorphic if, and only if, they are elementarily
equivalent, in short A ≡ B, which means that they cannot be distinguished by any first-order
sentence. Is this also the case for semiring interpretations? Notice that standard notions such
as isomorphism and elementary equivalence generalise in a natural way from τ -structures to
semiring interpretations, which raises, for any given semiring K, the following

▶ Questions.
1. Are elementarily equivalent, finite K-interpretations always isomorphic?
2. Is every finite K-interpretation πA first-order axiomatisable, in the sense that there is

a set of axioms ΦA ⊆ FO such that whenever πBJφK = πAJφK for all φ ∈ ΦA, then
πB

∼= πA?
3. Does every finite K-interpretation admit an axiomatisation by a finite set of axioms?
4. Can every finite K-interpretation be axiomatised by a single first-order sentence?

Clearly, the first two questions are equivalent, and a positive answer to the third question
implies also positive ones to the first two. The converse is not necessarily true, because a first-
order axiomatisation of a finite semiring interpretation might require an infinite collection of
sentences, and, contrary to the Boolean case, it is a priori also not clear that an axiomatisation
by a finite set of sentences implies an axiomatisation by a single sentence, because from the
value of a conjunction we cannot necessary infer the values of its components.

We shall prove that the answers to these questions strongly depend on the chosen
semiring. There are in fact rather simple semirings, such as min-max semirings with at least
three elements, for which one can construct examples of non-isomorphic K-interpretations
which are, however, elementarily equivalent. The standard method for proving elementary
equivalence in model theory, the Ehrenfeucht–Fraïssé method, seems not really available in
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semiring semantics, an aspect that we shall discuss at the end of this paper. To establish
elementary equivalence, we shall hence develop new methods based on classes of semiring
homomorphisms and reduction arguments. Elementarily equivalent but non-isomorphic
semiring interpretations also exist for powerful polynomial semirings, such as S[X] and B[X],
which are universal for the classes of absorptive and idempotent semirings, respectively. On
the other side, there are practically relevant semirings, such as the Viterby semring V, the
tropical semiring T, the natural semiring N and the universal polynomial semiring N[X], for
which any finite K-interpretation is first-order axiomatisable, thus elementary equivalence
does indeed imply isomorphism. At least for V and T, finite axiomatisations are always
possible, but not axiomatisations by a single sentence, so there exist semirings where the
answers to questions (3) and (4) are different.

2 Semiring Interpretations

We briefly summarise semiring semantics for first-order logic, as introduced in [12].

▶ Definition 1 (Semiring). A commutative semiring K = (K,+, ·, 0, 1) is an algebraic
structure with two binary operations such that (K,+, 0) and (K, ·, 1) are commutative
monoids, multiplication distributes over addition and multiplication with zero annihilates
elements. We may identify K with its universe K if the operations are clear from the context.

In this paper, we only consider commutative semirings and simply call them “semirings”
for convenience. Any class of semirings is implicitly restricted to commutative semirings only.

Let τ denote a finite relational vocabulary. We write Litn(τ) for the set of atoms Rz and
negated atoms ¬Rz with R ∈ τ and where z is any tuple of variables taken from {x1, . . . , xn}.
For a universe A, we write LitA(τ) for the set of instantiated τ -literals Ra and ¬Ra with
a ∈ Aarity(R).

▶ Definition 2 (K-interpretation). For a semiring K, a mapping π : LitA(τ) → K is called a
K-interpretation over the universe A with signature τ . We call π model-defining if exactly
one of the values π(L) and π(L) is zero for all pairs of opposing literals L,L ∈ LitA(τ). In
that case, π induces the classical model Aπ with Aπ |= L if, and only if, π(L) ̸= 0.

▶ Definition 3 (Isomorphism). K-interpretations πA : LitA(τ) → K and πB : LitB(τ) → K

are isomorphic, denoted as πA
∼= πB, if there is a bijective mapping σ : A → B such that

πA(L) = πB(σ(L)) for all L ∈ LitA(τ), where σ(L) ∈ LitB(τ) is defined by replacing each
a ∈ A occurring in L with σ(a) ∈ B. The mapping σ : πA

∼−→ πB is called an isomorphism.

Given a K-interpretation π : LitA(τ) → K, a formula φ(x) ∈ FO(τ) in negation normal
form and an assignment a ⊆ A, the semiring semantics πJφ(a)K is straightforwardly defined
by induction on FO(τ). Equalities are simply mapped to their truth values by πJa = bK := 1 if
a = b and 0 otherwise, and vice versa for inequalities. Similarly to the semantics of weighted
logics introduced in [7], disjunctions and existential quantifiers are interpreted as sums, and
conjunctions and universal quantifiers as products:

πJψ(a) ∨ ϑ(a)K := πJψ(a)K + πJϑ(a)K πJψ(a) ∧ ϑ(a)K := πJψ(a)K · πJϑ(a)K

πJ∃xϑ(a, x)K :=
∑
a∈A

πJϑ(a, a)K πJ∀xϑ(a, x)K :=
∏
a∈A

πJϑ(a, a)K.

Our goal is to analyse classical model-theoretic concepts under semiring semantics.
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▶ Definition 4 (Elementary Equivalence). Two K-interpretations πA : LitA(τ) → K and
πB : LitB(τ) → K are elementarily equivalent, denoted as πA ≡ πB , if πAJψK = πBJψK holds
for all sentences ψ ∈ FO(τ).

Clearly, the notions of isomorphism and elementary equivalence of K-interpretations
are natural generalisations of the corresponding definitions for τ -structures. Further, it is
obvious that, as in classical semantics, isomorphism implies elementary equivalence.

▶ Lemma 5 (Isomorphism Lemma). Let πA : LitA(τ) → K and πB : LitB(τ) → K be two
K-interpretations, a ∈ Ak and b ∈ Bk be k-tuples and σ : πA

∼−→ πB an isomorphism with
σ(a) = b. Then, πAJφ(a)K = πBJφ(b)K holds for all φ(x) ∈ FO(τ) with k free variables.

Coarser definitions may be conceivable in semirings K with more than two elements, such
as replacing equality by a congruence relation ∼ ⊆ K ×K. However, Definition 4 indirectly
covers these variants, since any non-trivial congruence relation ∼ on K induces a semiring
homomorphism h∼ : K → K/∼, which is compatible with FO-semantics as follows [12].

▶ Lemma 6 (Fundamental Property). Let π : LitA(τ) → K be a K-interpretation and
h : K → L a semiring homomorphism. Then, (h ◦ π) is an L-interpretation such that
(h ◦ π)Jφ(a)K = h(πJφ(a)K) holds for all φ(x) ∈ FO(τ) and a ⊆ A.

3 Polynomial Semirings and the Universal Property

Semiring homomorphisms and the fundamental property open the possibility to reduce
semiring semantics to the evaluation of polynomials. For a finite set X of abstract provenance
tokens that are used to track atomic facts, consider the semiring N[X] of multivariate poly-
nomials with indeterminates from X and coefficients from N, whose generality is formalised
by the following universal property [14].

▶ Lemma 7 (Universal Property). For each commutative semiring K, every assignment
e : X → K induces a unique homomorphism he : N[X] → K with he(x) = e(x) for x ∈ X.

This property can be used to save computation resources, for example, if we would like
to evaluate a sentence ψ ∈ FO under several interpretations (πi)i∈I sharing the same set
of true literals. In such a scenario, we may build an N[X]-interpretation π that assigns a
unique variable x ∈ X to each positive literal. After computing the polynomial p := πJψK
once, the semiring semantics πiJψK for each i ∈ I may be computed by plugging the positive
literals’ values into their corresponding variables and evaluating the polynomial p instead of
starting from scratch.

The universality of N[X] also makes it relevant for model theory. Crucially, more restricted
polynomial semirings can be used to capture smaller classes of semirings in the sense of the
universal property. This is formalised in the following and summarised by Figure 1.

▶ Definition 8 (Idempotence and Absorption). A semiring K is called idempotent if a+ a = a

holds for all a ∈ K, that is, if addition is idempotent. It is multiplicatively idempotent if
a ·a = a for all a ∈ K. If both properties hold, we call K fully idempotent. Finally, a semiring
K is absorptive if a+ ab = a holds for all a, b ∈ K.

By dropping coefficients from N[X], we get the semiring B[X] whose elements are finite
sets of monomials. It has the universal property for the class of idempotent semirings.
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By collapsing exponents in B[X], we get the semiring W[X] of finite sums of monomials
that are linear in each argument. It is sometimes called the Why-semiring. While W[X]
is not fully idempotent itself due to (x + y) · (x + y) = x + xy + y, it still holds the
universal property for fully idempotent semirings.
For absorptive semirings, we require absorptive polynomials as introduced in [5]. An
absorptive polynomial is a sum of distinct monomials over a finite set of variables X,
with absorption among monomials: “shorter” monomials absorb “longer” monomials.
More formally, m1 absorbs m2, denoted m1 ⪰ m2, if it has smaller exponents, i.e.
m2 = m ·m1 for some monomial m. For example, xy2 ⪰ x3y2 and x ⪰ xy, but x2y and
xy2 are incomparable. Applying absorption after each operation induces the semiring of
absorptive polynomials S[X], which is universal for the class of all absorptive semirings.
By collapsing exponents in S[X], we obtain yet another polynomial semiring PosBool[X],
which is universal for the fully idempotent and absorptive semirings. Those are precisely
the semirings induced by distributive lattices, as shown in [17]. Incidentally, PosBool[X]
is the distributive lattice freely generated by the set X.

all commutative semirings N[X]

idempotent semirings B[X]

distributive
lattices

PosBool[X]

fully
idempotent
semirings

W[X]
absorptive
semirings

S[X]

Figure 1 Relationships between some classes of commutative semirings and their respective
universal polynomial semirings, adapted from [17].

4 Separating Elementary Equivalence from Isomorphism

We shall now, for certain semirings K, provide examples of finite, non-isomorphic K-
interpretations that are, however, elementarily equivalent. We thus provide negative answers
to Question (1) from the introduction, and hence also to Questions (2) to (4). For instance,
we claim that the following two K4-interpretations over the min-max-semiring with four
elements, K4 = {0, 1, 2, 3}, are elementarily equivalent, but not isomorphic.

πP Q :

A P Q ¬P ¬Q

a 1 3 0 0
b 2 1 0 0
c 3 2 0 0

πQP :

A P Q ¬P ¬Q

a 3 1 0 0
b 1 2 0 0
c 2 3 0 0
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Observe that πQP is obtained from πP Q by permuting the relations P and Q, or visually,
by permuting the “columns”. Moreover, for both interpretations, the Q-column can be
obtained by permuting the P -column. Informally, these properties ensure that the two
interpretations are “sufficiently similar” so that no first-order sentence can distinguish them.

Clearly, πP Q is not isomorphic to πQP , as intended. However, the only tool we presented
so far for proving elementary equivalence under semiring semantics is the Isomorphism Lemma
itself, which is not directly applicable for obvious reasons. Hence, we shall develop another
tool for proving elementary equivalence that enables the indirect use of the Isomorphism
Lemma after switching to a different semiring via homomorphisms.

4.1 Separating Pairs of Homomorphisms
The central idea of the reduction technique is to “decompose” the semiring K via homo-
morphisms. Observe that if πA ̸≡ πB, then there is a witnessing sentence ψ ∈ FO(τ) with
πAJψK ̸= πBJψK, hence a pair of distinct elements a, b ∈ K with πAJψK =: a ̸= b := πBJψK
exists. If we can find two homomorphisms hA, hB : K → K ′ with hA(a) ̸= hB(b), but we
are sure that the corresponding K ′-interpretations (hA ◦ πA) and (hB ◦ πB) are elementarily
equivalent, then we can exclude (a, b) as a witness for πA ̸≡ πB. If we are able to provide
enough pairs of homomorphisms so that each distinct pair (a, b) can be excluded, then
πA ≡ πB must hold. The following definition formalises the required properties.

▶ Definition 9 (Separating Homomorphism Pairs). A set S ⊆ Hom2(K,K ′) of homomorphism
pairs hA, hB : K → K ′ is called separating if for all a, b ∈ K with a ̸= b, there is a pair
(hA, hB) ∈ S such that hA(a) ̸= hB(b). S is called diagonal if hA = hB for all pairs
(hA, hB) ∈ S. In that case, we may write S as a subset of Hom(K,K ′).

Note that a single injective homomorphism h : K → K ′ induces the diagonal separating
set S := {(h, h)} with just one element. Moreover, some semirings, such as PosBool[X], can
be completely decomposed into K ′ := B using a diagonal separating set of semiring homomor-
phisms as follows. Any subset Y ⊆ X induces a unique homomorphism hY : PosBool[X] → B
by hY (x) = ⊤ for x ∈ Y and hY (x) = ⊥ for x ∈ X \ Y . Clearly, for any p ∈ PosBool[X], we
have that hY (p) = ⊤ if, and only if, p contains a monomial with only variables from Y .

▶ Lemma 10. The set S := {hY | Y ⊆ X} ⊆ Hom(PosBool[X],B) is a diagonal separating
set of homomorphisms.

Proof. Consider p, q ∈ PosBool[X] such that p ≠ q. Among the monomials that appear in
one of the two polynomials p, q but not in the other, let m be one whose set Y of variables is
minimal. By symmetry, we can assume that m appears in p but not in q. It follows that
hY (p) = ⊤. We claim that hY (q) = ⊥. Otherwise q must contain a monomial m′ with only
variables from Y . Since m′ has less variables than m, m′ must also be contained in p. But
m′ absorbs m, so m does not occur in p, a contradiction. ◀

On the other side, N[X], among other semirings, cannot be decomposed into B by a
diagonal separating set. For example, h(x + xy) = h(x) ∨ (h(x) ∧ h(y)) = h(x) for all
homomorphisms h : N[X] → B, but x + xy ̸= x. The reason why a decomposition into B
would be useful for model theory is given by the following reduction technique.

▶ Proposition 11 (Reduction Technique). Let πA : LitA(τ) → K and πB : LitB(τ) → K be
two K-interpretations, a ∈ Ak and b ∈ Bk be k-tuples and S ⊆ Hom2(K,K ′) a separating set
of homomorphism pairs. Then, for any formula φ(x1, . . . , xk) ∈ FO(τ), we have that whenever
(hA ◦ πA)Jφ(a)K = (hB ◦ πB)Jφ(b)K for all (hA, hB) ∈ S, then also πAJφ(a)K = πBJφ(b)K.
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Proof. We show the contraposition. Suppose that πAJφ(a)K ̸= πBJφ(b)K. Then, by definition
of S, there exists a pair (hA, hB) ∈ S such that hA(πAJφ(a)K) ̸= hB(πBJφ(b)K). Applying
the fundamental property yields (hA ◦ πA)Jφ(a)K ̸= (hB ◦ πB)Jφ(b)K. ◀

▶ Corollary 12. For S as above, (hA ◦πA) ≡ (hB ◦πB) for all (hA, hB) ∈ S implies πA ≡ πB.

With the target semiring K ′ := B, the corollary shows that proving equivalence in K may
be reduced to proving equivalence in B, which permits using results from standard semantics.

4.2 Applications to PosBool[X] and W[X]
Consider the following two PosBool[X]-interpretations πxy, πyx with X := {x, y} over the
universe A := {a, b, c, d} with four elements and a signature τ := {P,Q} with two unary
relation symbols.

πxy :

A P Q ¬P ¬Q

a 0 y x 0
b x 0 0 y

c y x 0 0
d 0 0 y x

πyx :

A P Q ¬P ¬Q

a y 0 0 x

b 0 x y 0
c x y 0 0
d 0 0 x y

Thanks to Lemma 10, the four homomorphisms S = {h∅, h{x}, h{y}, h{x,y}} induce a
separating set on PosBool[X] and with Corollary 12, it suffices to show that (h◦πxy) ≡ (h◦πyx)
in B for all h ∈ S in order to prove πxy ≡ πyx on PosBool[X]. Indeed, Figure 2 demonstrates
that (h ◦ πxy) ∼= (h ◦ πyx) holds for all h ∈ S.

Thus, we conclude that πxy ≡ πyx and due to πxy ̸∼= πyx, this shows that for finite
PosBool[X]-interpretations, elementary equivalence does not necessarily imply isomorphism.
Moreover, similar examples can be constructed for any distributive lattice semiring K thanks
to the universal property of PosBool[X], by assigning r, s ∈ K to the variables x, y.

πrs :

A P Q ¬P ¬Q

a 0 s r 0
b r 0 0 s

c s r 0 0
d 0 0 s r

πsr :

A P Q ¬P ¬Q

a s 0 0 r

b 0 r s 0
c r s 0 0
d 0 0 r s

Clearly, πrs ≡ πsr holds as above, and the only requirement for πrs ̸∼= πsr is that r and s
must be distinct. This yields the following theorem.

▶ Theorem 13. For any distributive lattice semiring K with at least three elements, there is
a pair of finite K-interpretations πrs, πsr over a universe with four elements and a signature
with two unary relation symbols such that πrs ≡ πsr, but πrs ̸∼= πsr.

Note that the two K4-interpretations πP Q and πQP from the opening example of this
section can be shown to be elementarily equivalent using a similar technique as above.
In fact, the above theorem even shows that the opening example was not minimal and a
counterexample with only three semiring elements in K3 = {0, 1, 2} exists.

We shall strengthen the result of Theorem 13 to the class of all fully idempotent se-
mirings by simply regarding πxy and πyx as W[X]-interpretations instead of PosBool[X]-
interpretations. However, the proof that πxy ≡ πyx becomes more involved, since a diagonal
separating set for W[X] into B does not exist. Nevertheless, a suitable separating set can
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h∅ ◦ πxy :

A P Q ¬P ¬Q

a ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊥
c ⊥ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊥

h∅ ◦ πyx :

A P Q ¬P ¬Q

a ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊥
c ⊥ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊥

h{x} ◦ πxy :

A P Q ¬P ¬Q

a ⊥ ⊥ ⊤ ⊥
b ⊤ ⊥ ⊥ ⊥
c ⊥ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊤

h{x} ◦ πyx :

A P Q ¬P ¬Q

a ⊥ ⊥ ⊥ ⊤
b ⊥ ⊤ ⊥ ⊥
c ⊤ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊥

h{y} ◦ πxy :

A P Q ¬P ¬Q

a ⊥ ⊤ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊤
c ⊤ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊥

h{y} ◦ πyx :

A P Q ¬P ¬Q

a ⊤ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊤ ⊥
c ⊥ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊤

hX ◦ πxy :

A P Q ¬P ¬Q

a ⊥ ⊤ ⊤ ⊥
b ⊤ ⊥ ⊥ ⊤
c ⊤ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊤

hX ◦ πyx :

A P Q ¬P ¬Q

a ⊤ ⊥ ⊥ ⊤
b ⊥ ⊤ ⊤ ⊥
c ⊤ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊤

Figure 2 Illustrations of h ◦ πxy next to h ◦ πyx for all h ∈ S = {h∅, h{x}, h{y}, h{x,y}}.

be obtained by exploiting homomorphisms into W[X] itself. Consider any permutation
σ : X → X of the variables. Surely, it induces an automorphism hσ of W[X]. In the previous
example, if σ swaps the variables x and y, then applying hσ to πxy yields an interpretation
that is isomorphic to πyx, as illustrated below.

(hσ ◦ πxy) :

A P Q ¬P ¬Q

a 0 x y 0
b y 0 0 x

c x y 0 0
d 0 0 x y

πyx :

A P Q ¬P ¬Q

a y 0 0 x

b 0 x y 0
c x y 0 0
d 0 0 x y

With this insight, we can construct a suitable separating set S ⊆ Hom2(W[X],W[X]),
starting with the pair (hσ, hid) ∈ S. This pair alone does not separate W[X], since we
have x ̸= y in W[X], but hσ(x) = y = hid(y). Hence, we add more homomorphisms by
annihilating some variables, similarly to the construction for PosBool[X] in Lemma 10. Fixing
a permutation σ : X → X, we want to construct a homomorphism hY

σ that annihilates all
variables in X \ Y and permutes the variables in Y . Observe that for each x ∈ Y there is a
minimal number r(x) ≥ 1 such that σr(x)(x) ∈ Y . Formally, we define σY : X → Y ∪ {0} by
setting σY (x) := σr(x)(x) for x ∈ Y , and σY (x) := 0 for x ∈ X \ Y . Note that σY induces a
homomorphism hY

σ : W[X] → W[X].

▶ Lemma 14. S := {(hY
σ , h

Y
id) | Y ⊆ X} ⊆ Hom2(W[X],W[X]) is a separating set of

homomorphism pairs.



E. Grädel and L. Mrkonjić 133:9

Proof. Suppose that p ̸= q for a pair p, q ∈ W[X]. A monomial in W[X] can be identified
with the set of its variables. Thus, without loss of generality, there is some Y ⊆ X with
Y ∈ p and Y /∈ q. Surely, hY

σ (p) contains the monomial hY
σ (Y ) = Y , but hY

id(q) only contains
monomials from q, hence it does not contain Y and hY

σ (p) ̸= hY
id(q). ◀

Before applying the reduction technique to obtain πxy ≡ πyx from Corollary 12, it only
remains to show that (hY

σ ◦ πxy) ≡ (hY
id ◦ πyx) for all Y ⊆ X := {x, y}. Since we have already

illustrated (hX
σ ◦ πxy) ∼= (hX

id ◦ πyx), we only need to consider the cases where Y ⊊ X. But
then, at most one variable is contained in Y and the remaining variables are annihilated by
hY

σ and hY
id, thus (hY

σ ◦πxy) ∼= (hY
id ◦πyx) clearly follows. The reduction technique then implies

that πxy ≡ πyx on W[X], which can naturally be lifted to all fully idempotent semirings
thanks to the universal property.

▶ Theorem 15. For any fully idempotent semiring K with at least three elements, there is a
pair of finite K-interpretations πrs, πsr over a universe with four elements and a signature
with two unary relation symbols such that πrs ≡ πsr, but πrs ̸∼= πsr.

In conclusion, the proof of πxy ≡ πyx on PosBool[X] illustrates how elementary equival-
ence in semiring semantics can be reduced to elementary equivalence on B by completely
decomposing PosBool[X] to B with homomorphisms. Moreover, the proof of elementary
equivalence on W[X] shows that it may even pay off to use separating sets of homomorphisms
from W[X] to W[X] itself.

5 Characteristic Sentences

The results of the previous section raise the question whether it is possible to construct a
similar example of non-isomorphic, but elementarily equivalent interpretations also for the
most general semiring N[X], and lift it to all commutative semirings with at least three
elements. In order to show that this is not possible, we draw inspiration from classical
semantics, where for each finite τ -structure A with universe A = {a1, . . . , an} one can
construct a characteristic sentence χA such that B |= χA if, and only if, A ∼= B. The
characteristic sentence is explicitly defined as

χA := ∃x1 . . . ∃xn(φ(x) ∧ ψ(x)) with

φ(x) :=
∧

1≤i<j≤n

xi ̸= xj ∧ ∀y
∨
i≤n

y = xi and ψ(x) :=
∧

{L(x) ∈ Litn(τ) | A |= L(a)}.

The subformula φ(x) of this sentence asserts that the universe has precisely n elements
assigned to the variables x. Since φ(x) uses only equalities and inequalities it can be used
as-is for semiring semantics in any semiring.

▶ Lemma 16. For every K-interpretation πB : LitB(τ) → K into an arbitrary semiring K
and every tuple b = (b1, . . . , bn), we have that πBJφ(b)K = 1 if B = {b1, . . . , bn} and bi ̸= bj

for i ̸= j, and πBJφ(b)K = 0, otherwise.

Proof. Semiring interpretations evaluate equalities and inequalities to 0 and 1, so

πBJφ(b)K =
∏
i<j

πBJbi ̸= bjK ·
∏
b∈B

(∑
i≤n

πBJb = biK
)

evaluates to 1 if b1, . . . , bn is a distinct enumeration of all elements of B, and to 0 otherwise. ◀

ICALP 2021



133:10 Elementary Equivalence Versus Isomorphism in Semiring Semantics

On the other side, ψ(a) is the conjunction of all true literals in A. Since A satisfies
precisely one literal out of each pair of opposing literals L and L, it is clear that ψ(a)
describes A up to isomorphism. However, this approach does not lift to arbitrary semiring
interpretations πA, since different literals in πA may have different non-zero values, but
conjunctions are interpreted as products, and it is in general impossible to trace the result
back to the contributions of the literals.

5.1 The Viterbi Semiring
The Viterbi semiring V = ([0, 1]R,max, ·, 0, 1) is used in confidence analysis, probabilistic
parsing, and Hidden Markov Models (see [8, 10]). It is isomorphic to the tropical semiring
T = (R∞

+ ,min,+,∞, 0), used for instance for cost analysis and performance evaluation, via
x 7→ e−x. Hence, all results that we establish for the Viterbi semiring also hold for the
tropical semiring. We can illustrate the shortcomings of the characteristic sentences in their
classical form by very simple V-interpretations with one element.

π19 : A P Q ¬P ¬Q

a 0.1 0.9 0 0
π91 : A P Q ¬P ¬Q

a 0.9 0.1 0 0

They are clearly not isomorphic, but trying to construct χ19 from π19 as above would yield
χ19 = ∃x(φ(x)∧ψ(x)) with ψ(x) = Px∧Qx, hence π19Jχ19K = 0.1 ·0.9 = 0.9 ·0.1 = π91Jχ19K.

However, under semiring semantics, and especially on the Viterbi semiring V, multiplica-
tion need not be idempotent; hence we can hope to distinguish two interpretations by simply
repeating one of the literals. In the given example, we can set ψ(x) := Px ∧ (Qx)2, which
is short for Px ∧Qx ∧Qx, to obtain π19Jχ19K = 0.1 · 0.92 ≠ 0.9 · 0.12 = π91Jχ19K. We now
generalise this idea to arbitrary finite V-interpretations. We shall associate with every finite
V-interpretation πA : LitA(τ) → V and every ε ∈ R+ a characteristic sentence

χπA,ε := ∃x1 . . . ∃xn(φ(x) ∧ ψε(x)),

with n := |A| and φ(x) as before, but a more involved construction of ψε(x):
Let a = (a1, . . . , an) be some fixed order on A and L1(a), . . . , Lk(a) an arbitrary enu-

meration of the “true” literals in LitA(τ) with πA(Li(a)) ̸= 0. Further, fix a sequence
f(1), . . . , f(k) of “exponents” in N, where f(1) = 1 and f(i+ 1) is chosen large enough so
that

(∗) (1 − ε)f(i+1) < εf(1)+···+f(i).

Then, put ψε(x) :=
∧k

i=1 Li(x)f(i), where “exponentiation” denotes repetition of a literal.
The idea is that χπA,ε should characterise πA up to isomorphism by repeating the literals

in ψε(x) “sufficiently often” so that the contribution of each literal can be distinguished and
changing the value for one literal surely alters the final value of ψε(x). Since the elements
of V are from [0, 1]R, the values of the literals can change by an arbitrarily small amount,
hence the “exponents” f(i) must depend on the “smallest possible change” ε. This intuition
is formalised as follows.

▶ Proposition 17. Let πA : LitA(τ) → V and πB : LitB(τ) → V be two finite, model-defining
V-interpretations, which induce the finite set of values

V := {πA(L) | L ∈ LitA(τ)} ∪ {πB(L) | L ∈ LitB(τ)}.

Then, for every ε ∈ R bounded by 0 < ε ≤ min{|r − s| | r, s ∈ V, r ̸= s}, we have that
πAJχπA,εK = πBJχπA,εK implies πA

∼= πB.
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Proof. Assume πAJχπA,εK = πBJχπA,εK. By construction, πAJχπA,εK > 0, so πBJχπA,εK > 0
as well. By Lemma 16, together with the fact that the existential quantifiers ∃x1 . . . ∃xn in
χπA,ε are interpreted as max in the Viterbi semiring V, this implies that |A| = |B|, and that
we have enumerations a = (a1, . . . , an) and b = (b1, . . . , bn) of the elements of A and B, such
that

πAJχπA,εK = πAJψε(a)K = πBJψε(b)K = πBJχπA,εK.

Recall that πAJψε(a)K =
∏k

i=1 πA(Li(a))f(i) > 0, hence πA(L1(a)), . . . , πA(Lk(a)) are all
positive. Accordingly, πBJψε(b)K =

∏k
i=1 πB(Li(b))f(i) > 0, so that πB(L1(b)), . . . , πB(Lk(b))

are positive as well. Given that πA and πB share the same signature and universe size, any
permutations a, b of their elements yield the same number of positive literals, which is k by
definition. We infer that all remaining literals in both interpretations are mapped to zero.
Hence, for i = 1, . . . , k, let ri := πA(Li(a)) > 0 and si := πB(Li(b)) > 0 be the values of the
positive literals, then it only remains to show that ri = si for all i ≤ k in order to conclude
that a 7→ b is indeed an isomorphism from πA to πB .

Towards a contradiction, assume that this is not the case and let j be the maximal index
among 1, . . . , k with rj ̸= sj . We can assume that rj < sj . Since the difference between the
two values is at least ε and since sj ≤ 1, it follows that rj ≤ sj − ε ≤ sj − εsj = (1 − ε)sj .
Further, we have ε ≤ si, ri ≤ 1 for all i. It follows that

r
f(1)
1 · · · rf(j)

j ≤ r
f(j)
j ≤ (1 − ε)f(j)s

f(j)
j

∗
< εf(1)+···+f(j−1) · sf(j)

j ≤ s
f(1)
1 · · · sf(j)

j .

However, since ri = si for i = j + 1, . . . , k, this would imply that

πAJψε(a)K =
∏
i≤k

r
f(i)
i ̸=

∏
i≤k

s
f(i)
i = πBJψε(b)K

and hence πAJχπA,εK ̸= πBJχπA,εK. ◀

Notice that none of the sentences χπA,ε characterises πA alone, but the countable set
XπA

:= {χπA,ε | ε ∈ Q+} does so. No infinite V-interpretation πB agrees with πA on any of
the ε-characteristic sentences χπA,ε due to φ(x), whereas for each finite V-interpretation πB ,
one can calculate an ε ∈ Q to apply the proposition just proved.

▶ Theorem 18. For finite V-interpretations πA and πB, πA ≡ πB implies πA
∼= πB.

As a consequence, there are indeed interesting semirings beyond the Boolean semiring B,
where elementary equivalence implies isomorphism on finite interpretations.

5.2 Finite Axiomatisability
The characteristic set XπA

raises the question whether a finite set of sentences suffices
to characterise a V-interpretation πA. We will answer this question positively using two
observations. By Proposition 17, we observe that χπA,ε characterises πA up to isomorphism
inside the class of V-interpretations that only use values in V = {πA(L) | L ∈ LitA(τ)}, with
ε := min{|r − s| | r, s ∈ V, r ̸= s}. Hence, πA can be characterised by adding sentences to
ensure that no values outside of V are used.

We will show that this is possible by building sentences that fix particular values πA(L).

▶ Definition 19. Let π : LitA(τ) → V be a finite V-interpretation over a universe A with n

elements and φ(x) ∈ FO(τ) a formula with k ∈ N free variables. The sequence (si
π,φ)1≤i≤nk

is defined as the non-increasingly sorted sequence of the values πJφ(a)K for a ∈ Ak.
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In particular, s1
π,φ is the largest possible value πJφ(a)K; further, s2

π,φ ≤ s1
π,φ is either the

second largest one, or equal to s1
π,φ if the maximal value is shared by two distinct tuples

a, b ∈ Ak, and so on. We construct a series of sentences that fix the values (si
π,φ)1≤i≤nk .

▶ Lemma 20 (Sorting Lemma). For φ(x) ∈ FO(τ) with k free variables and 1 ≤ i ≤ nk, let

ψi
φ := ∃x1 . . . ∃xi

( ∧
1≤j<ℓ≤i

xj ̸= xℓ ∧
i∧

j=1
φ(xj)

)
where x1, . . . xi are k-tuples of variables. Then, for any V-interpretation π : LitA(τ) → V
over a universe with n elements, we have that

πJψi
φK =

∏
1≤j≤i

sj
π,φ for 1 ≤ i ≤ nk.

Proof. Recall that existential quantifiers are interpreted as max on V. Due to monotonicity
of multiplication, the maximum πJψi

π,φK is achieved by picking the i pairwise distinct tuples
a1, . . . , ai that yield the largest values πJφ(aj)K = sj

π,φ and inserting them for x1, . . . , xi.
Clearly, this yields πJψi

φK =
∏

1≤j≤i s
j
π,φ. ◀

By observing that V is cancellative, i.e. ab = ac implies b = c for all a, b, c ∈ V with
a ̸= 0, we may disentangle the products

∏
1≤j≤i s

j
π,φ to draw the following conclusion.

▶ Corollary 21. Let φ(x) be as above, and consider two V-interpretations π : LitA(τ) → V
and π′ : LitB(τ) → V with |A| = |B| = n. If π and π′ agree on Ψ := {ψi

φ | 1 ≤ i ≤ nk}, then
si

π,φ = si
π′,φ for all 1 ≤ i ≤ nk. In other words, the values πJφ(a)K for a ∈ Ak and π′Jφ(b)K

for b ∈ Bk are the same, up to permutation.

If R ∈ τ is a k-ary relation, pick φ(x) := Rx and construct ΨR := {ψi
Rx | 1 ≤ i ≤ nk}

according to the Sorting Lemma. Similarly, construct Ψ¬R from φ(x) := ¬Rx. Then, define

Ψτ :=
⋃

R∈τ

ΨR ∪
⋃

R∈τ

Ψ¬R.

Clearly, any two V-interpretations over τ that agree on Ψτ use the same set of values from V.
Putting this together with the characteristic sentences χπA,ε from Proposition 17 provides a
finite axiomatisation of any V-interpretation.

▶ Theorem 22. Let π : LitA(τ) → V be a finite V-interpretation. Then, Ψτ ∪{χπ,ε} is a finite
axiomatisation of π up to isomorphism, where ε := min{|r − s| | r, s ∈ π(LitA(τ)), r ̸= s}.

Proof. Let π′ : LitB(τ) → V agree with π on all sentences in Ψτ ∪ {χπ,ε}. Due to the
construction of χπ,ε, π′ is finite and |A| = |B|. Since π′ agrees with π on Ψτ , we have
{π(L) | L ∈ LitA(τ)} = {π′(L) | L ∈ LitB(τ)}. Thus, we can invoke Proposition 17 by
observing that V = π(LitA(τ)) and conclude that πJχπ,εK = π′Jχπ,εK implies π ∼= π′. ◀

Under classical semantics, any finite axiom system Φ ⊆ FO(τ) can be collapsed to a single
axiom ψ :=

∧
Φ, but this is not the case in semiring semantics. To illustrate this, we shall

show that there are V-interpretations that cannot be axiomatised up to isomorphism by a
single sentence.

▶ Proposition 23. There exist V-interpretations π : LitA(τ) → V such that, for every
sentence ψ ∈ FO(τ), there exists an interpretation π′ : LitA(τ) → V such that π ̸∼= π′, but
πJψK = π′JψK.
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Proof. Take an interpretation with just two atoms Pa and Qa and with values π(Pa) = p

and π(Qa) = q such that 0 < p, q < 1 are multiplicatively independent real numbers, i.e.
k = ℓ = 0 is the only solution to pkqℓ = 1 with k, ℓ ∈ Z. Let πB be the corresponding
B[x, y]-interpretation, with πB(Pa) = x and πB(Qa) = y. A sentence ψ ∈ FO is evaluated
under πB to a polynomial πBJψK ∈ B[x, y], and by the universal property for idempotent
semirings, the homomorphism h : B[x, y] → V induced by h(x) = p and h(y) = q maps πBJψK
to πJψK. Writing πBJψK as a sum of monomials m = xiyj , we conclude that πJψK = piqj is the
maximal value m(p, q) for the monomials m occuring in πBJψK. Since p, q are multiplicatively
independent, no other monomial can take the same value, i.e. m′(p, q) < m(p, q) for all other
monomials m′ in πBJψK. We now can certainly find a value r ̸= p that is sufficiently close to
p, and a value s such that risj = piqj , i.e. m(r, s) = m(p, q), but m′(r, s) < m(r, s) for all
other monomials m′ in πBJψK. For the V-interpretation π′ with π′(Pa) = r and π′(Qa) = s

this implies that π′JψK = risj = piqj = πJψK, but clearly, π′ ̸∼= π. ◀

This result can be strengthened in many directions. It holds, in fact, for almost all
V-interpretations, as long as they do not map all literals to either 0 or 1. Further, we shall
exploit the isomorphism of V and T in order to prove explicit lower bounds on the number
of axioms that are needed to characterise an interpretation, depending on the number of
literals mapped to multiplicatively independent values.

5.3 Lower Bound for Axiomatisations of T- and V-interpretations
Recall that V = ([0, 1]R,max, ·, 0, 1) is isomorphic to T = (R∞

+ ,min,+,∞, 0) via isomorphisms
σV→T(a) = − logb(a) for any fixed base b ∈ R>1, and the corresponding inverse isomorphisms
σT→V(a) = b−a for any fixed b ∈ R>1. We formulate our result in terms of T.

▶ Theorem 24. Let π : LitA(τ) → T be any finite, model-defining T-interpretation with
|A| = n and | LitA(τ)| = 2ℓ, such that its finite values π(LitA(τ)) \ {∞} are linearly
independent over Q. Then, for any set of sentences Ψ ⊆ FO(τ) with |Ψ| < ℓ, there is an
interpretation π′ : LitA(τ) → T such that πJψK = π′JψK for all ψ ∈ Ψ, but π ̸∼= π′.

Proof. Since π is model-defining, there are ℓ literals L in LitA(τ) with π(L) ̸= ∞, which we
call the positive literals. Choose X := {x1, . . . , xℓ} and construct the B[X]-interpretation
πB : LitA(τ) → B[X] by assigning a unique variable to each of the positive literals. Clearly,
there is a homomorphism h : B[X] → T with h ◦ πB = π induced by mapping each variable
to the original value π(L) of the corresponding literal.

Enumerate Ψ = {ψ1, . . . , ψj} arbitrarily with j < ℓ and construct the polynomials
pi := πBJψiK ∈ B[X] for 1 ≤ i ≤ j. By the fundamental property, πJψiK = h(pi) holds for
1 ≤ i ≤ j.

We assume without loss of generality that pi ≠ 0 for all 1 ≤ i ≤ j, and we will construct π′

with the same positive literals as π. Thus, pi contains a monomial mi so that h(mi) is minimal
among {h(m) : m ∈ pi}. This monomial is unique thanks to the linear independence of the
values of π, which guarantees that h(m) ̸= h(m′) for m ̸= m′. Suppose for a contradiction
that h(m) = h(m′). We may write

h(m) = h

(
ℓ∏

i=1
x

m(xi)
i

)
=

ℓ∑
i=1

m(xi) · h(xi),

which implies that h(m) is a linear combination of the values of π. In particular, h(m) = h(m′)
implies that h(m − m′) = 0, hence m(xi) − m′(xi) = 0 for all 1 ≤ i ≤ j due to linear
independence.
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We conclude that there is a sufficiently small ε ∈ R>0 such that changing the numbers
h(xi) by less than ε does not affect the monomial order. In other words, view the values
v := (h(x1), . . . , h(xℓ)) ∈ Rℓ

≥0 as a vector and notice that any w ∈ Rℓ
≥0 with |v − w| < ε

preserves the monomial order, so that if we construct h′ : B[X] → T induced by h′(xi) = wi

for 1 ≤ i ≤ ℓ, we have h(m) < h(m′) if, and only if, h′(m) < h′(m′).
To complete the proof, it remains to ensure that h′(pi) = h(pi) stays the same for all

1 ≤ i ≤ j. By the above considerations, it suffices to ensure that h′(mi) = h(mi) for
the corresponding maximal monomials m1, . . . ,mj . Each of these monomials induces one
condition h(mi) − h′(mi) = 0, which translates to a linear equation

h(mi) − h′(mi) =
ℓ∑

i=1
mi(xi)(h(xi) − h′(xi)) =

ℓ∑
i=1

mi(xi) · (vi − wi) = 0

on (v − w).
Since there are only j < ℓ equations and ℓ variables, the solution space is at least one-

dimensional, meaning that we can pick w ̸= v adequately with |v − w| < ε to satisfy all
equations and obtain h′(pi) = h(pi) for all 1 ≤ i ≤ j. Note that due to linear independence,
none of the entries from v was zero, hence it is possible to ensure that w only has positive
entries. We thus can pick π′ := h′ ◦ πB with the desired properties. ◀

This result translates to V thanks to isomorphism. Linear independence of values from T
as Q-vectors translates to multiplicative independence of the corresponding values from V.

5.4 The Semirings N and N[X]
We will now provide a similar analysis of axiomatisablity for the most general semiring N[X]
by taking a detour via N. For the construction of the characteristic sentences for N, we shall
need the following combinatorial lemma.

▶ Lemma 25. For any two natural numbers k, c with c > 1, there exists a exponent e such
that, for any two non-decreasing sequences r1 ≤ r2 ≤ · · · ≤ rk and s1 ≤ s2 ≤ · · · ≤ sk of k
natural numbers, with rk, sk < c, the equation re

1 + · · · + re
k = se

1 + · · · + se
k implies that the

two sequences are the same, i.e. ri = si for all i ≤ k.

Proof. Choose e large enough so that (c/(c − 1))e > k. Towards a contradiction, assume
that there are two distinct sequences r1 ≤ r2 ≤ . . . rk < c and s1 ≤ s2 ≤ . . . sk < c such
that re

1 + · · · + re
k = se

1 + · · · + se
k. Let j be the maximal index with rj ̸= sj . Thanks

to additive cancellation, we can remove the summands with index i > j to obtain that
re

1 + · · · + re
j = se

1 + · · · + se
j . By symmetry we can assume that rj < sj . Since sj < c, it

follows that sj > (c/(c− 1))rj and hence se
j > k · re

j . But this implies that

re
1 + · · · + re

j ≤ j · re
j ≤ k · re

j < se
j ≤ se

1 + · · · + se
j ,

contradicting the equation above. ◀

▶ Lemma 26. Let (r1, . . . rk), (s1, . . . , sk) ∈ Nk be strictly bounded by c, that is ri, si < c for
all i ≤ k. Then, there is an exponent e depending only on c and k such that

k∑
i=1

re
i =

k∑
i=1

se
i

implies that there is a permutation σ ∈ Sk such that ri = sσ(i) for all 1 ≤ i ≤ k.
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Proof. Sort both sequences non-decreasingly, that is, permute them with ρ, τ ∈ Sk so that
rρ(1) ≤ . . . ≤ rρ(k) and sτ(1) ≤ . . . ≤ sτ(k). By the previous Lemma, there is a suitable e such
that rρ(i) = sτ(i) for all i ≤ k. Then, σ := τ ◦ ρ−1 is the desired permutation. ◀

We are now ready to construct characteristic sentences for finite N-interpretations
πA : LitA(τ) → N. For n = |A|, let L1(x), . . . , Lk(x) be an enumeration of all literals
in Litn(τ). For any constant q ∈ N we define the q-characteristic sentence χπA,q as

χπA,q := ∃x1 . . . ∃xn(φ(x) ∧ ψq(x))e, with ψq(x) :=
k∨

i=1
qi−1 · Li(x),

with φ(x) as given before and e is an exponent that depends on q, n and τ , according to
Lemma 26. The notation qi−1 · Li(x) denotes a disjunctive repetition of the literal Li(x) for
qi−1 times.

The idea of this construction is similar to the one for the Viterbi semiring. While
ε-characteristic sentences work for V-interpretations where the differences of two distinct
values are at least ε, q-characteristic sentences work for N-interpretations with values less
than q. With this in mind, we can explain the construction of ψq(x) as follows. If all values
in πA are less than q, we can picture the value

πAJψq(a)K =
k∑

i=1
qi−1πA(Li(a)),

to be in a number system with radix q, hence the values πA(Li(a)) can be seen as digits.
Thus, it is immediately clear that for any N-interpretation πB with universe enumerated by b
and values less than q, πAJψq(a)K = πBJψq(b)K implies that a ∼−→ b is an isomorphism between
πA and πB, since the corresponding “digits” πA(Li(a)) and πB(Li(b)) for each 1 ≤ i ≤ k

have to be the same.
The only remaining problem is the fact that existential quantifiers ∃x1 . . . ∃xn from χπA,q

are interpreted as a sum in N. Thus, the value πAJχπA,qK is not induced by a single variable
assignment a. The exponent e is used to separate the contributions of different variable
assignments to the sum on the basis of Lemma 26.

▶ Theorem 27. Let πA and πB are finite N-interpretations with values less than q. Then
πAJχπA,qK = πBJχπA,qK implies that πA

∼= πB.

Proof. Clearly, φ(x) takes care of the number of elements, hence we can assume a and b

enumerate the universes of πA and πB . Now, we have

πAJχπA,qK =
∑

σ∈Sn

πAJψq(σ(a))Ke =
∑

σ∈Sn

πBJψq(σ(b))Ke = πBJχπA,qK.

Recall that ψq(x) is constructed as a number with k “digits”, where the digits are the values
of the literals πA(Li(a)) and πB(Li(b)), which are bounded by q. Hence, πAJψq(σ(a))K and
πBJψq(σ(b))K are less than c := qk, which only depends on q, n and τ . By Lemma 26, there
is a sufficiently large e so that

∑
σ∈Sn

πAJψq(σ(a))Ke =
∑

σ∈Sn
πBJψq(σ(b))Ke implies that

both sums share the same summands. In particular, there are permutations σA, σB ∈ Sn

such that πAJψc(σA(a))K = πBJψc(σB(b))K.
Thanks to the construction of ψc(x), this yields πA(Li(σA(a)) = πB(Li(σB(b)) for all

literals Li of Litn(τ). Thus, σB ◦ (a 7→ b) ◦ σ−1
A is an isomorphism from πA to πB . ◀
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We can further use the q-characteristic sentences also for N[X]-interpretations instead of
N-interpretations. Let Xk = {x1, . . . , xk}, and let N[Xk](C, n) denote the set of polynomials
p ∈ N[Xk] with coefficients less than C and exponents less than n. If we choose a suitable
variable assignment Xk → N, we can obtain a homomorphism that assigns unique values to
all polynomials in N[Xk](C, n).

▶ Lemma 28. The variable assignment xi 7→ Cni−1 for 1 ≤ i ≤ k defines a homomorphism
h : N[Xk] → N which induces a bijection from N[Xk](C, n) to {0, . . . , c − 1} ⊆ N where
c := Cnk .

Proof. We proceed by induction on the number of variables k ∈ N. The base case k = 0 is
trivial, since N[∅] ∼= N and the empty assignment induces the corresponding isomorphism.
For k > 0, notice that N[Xk] ∼= N[Xk−1][xk]. Hence, each p ∈ N[Xk](C, n) may be written as

p =
n−1∑
i=0

qix
i
k, where qi ∈ N[Xk−1](C, n).

Thus, applying the induced homomorphism h yields

h(p) =
n−1∑
i=0

h(qi)h(xk)i =
n−1∑
i=0

h′(qi)(Cnk−1
)i,

where h′ : N[Xk−1] → N is induced by xi 7→ Cni−1 for 1 ≤ i < k. By induction hypothesis the
restriction h′|N[Xk−1](C,n) is a bijection from N[Xk−1](C, n) to {0, . . . , Cnk−1 − 1}. Clearly,
h(p) may be seen as a number with n digits h′(qi) ∈ {0, . . . , Cnk−1 − 1} for 0 ≤ i < n in the
number system with radix Cnk−1 . Thus, any number in {0, . . . , Cnk − 1} can be uniquely
represented as h(p) for p ∈ N[Xk](C, n), which completes the proof. ◀

▶ Corollary 29. For finite N[X]-interpretations πA and πB whose values are contained in
N[X](C, n), πAJχπA,cK = πBJχπA,cK implies πA

∼= πB with c := Cn|X| .

Proof. Transform πA and πB to N-interpretations π′
A := h◦πA and π′

B := h◦πB by applying
the homomorphism from above. The fundamental property yields π′

AJχπA,cK = π′
BJχπA,cK.

Since h|N[X](C,n) is a bijection from N[X](C, n) to {0, . . . , c}, the values of π′
A and π′

B are
less than c, hence we can invoke Theorem 27 to conclude π′

A
∼= π′

B . Now, the injectivity of h
on N[X](C, n) yields πA

∼= πB . ◀

Similarly to the implications of Proposition 17 on the Viterbi semiring V, we conclude that
finite N[X]-interpretations πA are characterised by a the set XπA

:= {χπA,c | c ∈ N, c > 1} of
characteristic sentences. The obvious consequence is that no counterexamples exist on N[X].

▶ Theorem 30. For finite N[X]-interpretations πA and πB, πA ≡ πB implies πA
∼= πB.

These results highlight the importance of cancellation for the construction of characteristic
sentences. V and N[X] allow multiplicative cancellation, and N[X] even allows additive
cancellation. We shall use this observation in the search for counterexamples on semirings
that do not admit cancellation.

6 Cancellation

There are indeed counterexamples for a large class of semirings that break cancellation,
including the polynomial semirings B[X] and S[X].
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▶ Definition 31. Let K be an idempotent semiring. A witness that K breaks cancellation is
a triple a, b, c ∈ K \ {0} such that
(1) a+ b = a+ c = a and
(2) ab = ac, but b ̸= c.1

For any such triple, we define the following two non-isomorphic K-interpretations.

πb :
A R ¬R

d a 0
e b 0

πc :
A R ¬R

d a 0
e c 0

▶ Lemma 32. The K-interpretations πb and πc are elementarily equivalent.

Proof. Consider the B[X] interpretation

π :
A R ¬R

d x 0
e y 0

Let hb, hc : B[X] → K be the unique homomorphisms induced by x 7→ a, y 7→ b and
x 7→ a, y 7→ c respectively. Obviously, πb = hb ◦ π and πc = hc ◦ π, hence, for each sentence
ψ ∈ FO({R}), the fundamental property yields πbJψK = hb(πJψK) and πcJψK = hc(πJψK). In
fact, if we set p := πJψK, we have πbJψK = hb(p) and πcJψK = hc(p), hence both interpretations
evaluate the same polynomial p under their own homomorphism.

It remains to show that hb(p) = hc(p). The automorphism h of B[X] induced by swapping
the variables x and y yields the B[X]-interpretation

h ◦ π = π :
A R ¬R

d y 0
e x 0

Clearly, π ∼= π by swapping d and e, hence p = πJψK = πJψK = h(πJψK) = h(p). In other
words, p is invariant under swapping variables, so for each pair i, j we have that xiyj ∈ p if,
and only if, xjyi ∈ p. In particular, xi ∈ p ⇔ yi ∈ p (∗).

Since p is finite and all exponents are less than some d ∈ N, we may write p as

p =
∑

i,j<d,xiyj∈p

xiyj =
∑

i<d,xi∈p

xi +
∑

j<d,yj∈p

yj +
∑

0<i,j<d,xiyj∈p

xiyj .

Set I := {i < d | xi ∈ p} ∗= {j < d | yj ∈ p} and M := {xiyj | 0 < i, j < d, xiyj ∈ p}. Then,

p =
∑
i∈I

(xi + yi) +
∑

m∈M

m.

For each m ∈ M , hb(m) = aibj = aicj = hc(m) due to condition (2) and i > 0. More
precisely, if i > 0, we can invoke (2) inductively to transform abj into acj due to commutativity
of multiplication. We now invoke condition (1) for each i ∈ I. For z ∈ {b, c} and using
idempotence of K (i), this yields

1 Strictly speaking, condition (2) suffices for breaking cancellation. Condition (1) imposes a further
restriction on the witness, which is needed for the proof of Lemma 32.

ICALP 2021



133:18 Elementary Equivalence Versus Isomorphism in Semiring Semantics

ai + zi (1)= (a+ z)i + zi =
i∑

j=0
ai−jzj + zi =

i−1∑
j=0

ai−jzj + zi + zi

(i)=
i−1∑
j=0

ai−jzj + zi = ai.

Hence, hb(xi +yi) = ai +bi = ai = ai +ci = hc(xi +yi) for each i ∈ I holds as well. Together,
we have

hb(p) =
∑
i∈I

hb(xi + yi) +
∑

m∈M

hb(m) =
∑
i∈I

hc(xi + yi) +
∑

m∈M

hc(m) = hc(p),

which completes the proof, since ψ was arbitrary and πbJψK = hb(p) = hc(p) = πcJψK. ◀

Since πb ̸∼= πc clearly holds for πb and πc from Definition 31, we can apply Lemma 32 to
construct counterexamples in many idempotent semirings, such as B[X] itself and S[X]. The
only requirement for this approach is the existence of an appropriate witness (a, b, c).

▶ Theorem 33. For X ⊇ {x, y}, there exists a pair of elementarily equivalent, but non-
isomorphic K-interpretations in the shape of πb and πc for both K = B[X] and K = S[X].

Proof. For B[X], choose a := x + y + x2 + xy + y2, b := x2 + y2 and c := x2 + xy + y2 to
obtain the following pair of B[X]-interpretations.

πb :
A R ¬R

d x + y + x2 + xy + y2 0
e x2 + y2 0

πc :
A R ¬R

d x + y + x2 + xy + y2 0
e x2 + xy + y2 0

To prove the desired properties, we only have to check conditions (1) and (2) from
Definition 31 and then invoke Lemma 32. Condition (1) is obvious, and for (2), it suffices to
expand the products ab and ac to calculate that

ab = ac = x3 + xy2 + x2y + y3 + x4 + x3y + x2y2 + xy3 + y4.

In S[X], we may use the “absorptive versions” a := x+ y, b := x2 + y2 and c := x2 + xy + y2

and apply the same argument. ◀

Finally, we will apply Lemma 32 to the Łukasiewicz semiring L = ([0, 1]R,max, ⋆, 0, 1),
which is used in many-valued logic. A witness that L breaks cancellation is easy to obtain
due to the multiplication ⋆ being defined as a ⋆ b := max{0, a+ b− 1}, which “cuts off” at 0.

▶ Theorem 34. There exists a pair of elementarily equivalent, but non-isomorphic L-
interpretations.

Proof. L is idempotent and the triple a := 1/2, b := 1/3, c := 1/4 ∈ L satisfies the con-
ditions (1) and (2) from Definition 31. Together with Lemma 32, we conclude that the
L-interpretations πb and πc, as constructed in the definition from the triple (a, b, c), are
elementarily equivalent, but non-isomorphic. ◀
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7 Conclusion and Outlook

Our analysis of first-order axiomatisations and elementary equivalence of finite semiring
interpretations has revealed some remarkable differences between semiring semantics and
classical Boolean semantics. Depending on the underlying semiring, there may exist finite
semiring interpretations that are elementarily equivalent without being isomorphic. Indeed,
this phenomenon happens already in very simple cases such as for min-max semirings with
three elements. On the other side, there are relevant semirings, used for instance in provenance
analysis in databases such as the tropical semiring or the Viterbi semiring, where every finite
interpretation is first-order axiomatisable, and in fact even by a finite set of axioms. However,
and this is again an interesting difference to Boolean semantics, a finite axiomatisation does
not imply an axiomatisation by a single axiom.

Also for the semirings of polynomials, fundamental for a general provenance analysis
that reveals which combinations of atomic facts are responsible for the truth of a logical
statement, the picture is not unique. While the most general semiring N[X], freely generated
by X, admits axiomatisations of all finite interpretations, so that elementary equivalence
implies isomorphism, this is not the case for the semirings PosBool[X], S[X], B[X] and W[X]
which are universal for important subclasses of semirings.

In the study of elementary equivalence for semiring semantics, it turns out that there is
no straightforward adaptation of Ehrenfeucht–Fraïssé games, or their generalisations such as
Hellas bijective pebble game [16], to semiring interpretations. Whatever the specific protocol
of possible moves in such games may be, they always result in a localisation, in the sense that
some tuples in the two structures are picked that are indistinguishable on the atomic level.
As shown by the very simple example of the interpretations πP Q and πQP at the beginning
of Sect. 4, this is not possible in semiring semantics. Although the two interpretations are
elementarily equivalent, no element of the first “looks the same” as any element of the second,
so any kind of localisation would result in a winning play of the Spoiler. It is an intriguing
open question how elementary equivalence of semiring interpretations can be captured by a
different notion of comparison games or back-and-forth systems à la Fraïssé. This not being
available (yet), we have established elementary equivalence by different methods, based on
homomorphisms, which we believe to be of independent interest.

There are many other model-theoretic issues that deserve to be studied in semiring
semantics. While we have limited ourselves here to finite semiring interpretations, the
study of semiring semantics over infinite universes is of course very interesting as well. It
requires certain restrictions on the underlying semirings, concerning existence and appropriate
algebraic properties of infinite sums and products, but there are useful semirings satisfying
such properties. A particularly interesting question is what kind of compactness and
preservation results are possible in such contexts.

We finally remark that an altogether different approach to semiring interpretations would
consider them as two-sorted structures, one sort being a finite or infinite structure (or just a
set), the second one consisting of the semiring, with functions from the first to the second
sort giving the semiring interpretation of the literals. This is very similar to the approach of
metafinite model theory [11], and to get a reasonable logical theory it is important that the
elements of the second sort, here the semiring, are treated differently than the elements of the
first sort. In particular, quantifiers should range only over the first sort, and operations on
the second sort are just the algebraic semiring operations and their aggregates, together with
equalities between terms. Such an approach is certainly useful for a number of questions and
permits the study of semiring interpretations via classical Boolean semantics. In particular,
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once semiring values are directly accessible in the logic, the construction of characteristic
sentences, axiomatising a finite structure up to isomorphism, can easily be translated into
such a setting. However, such an internalisation of the semiring values, from the meta-level
of truth values into the structures under consideration, does not really capture the essence of
semiring semantics.
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Abstract
The Weisfeiler-Leman (WL) algorithm is a well-known combinatorial procedure for detecting
symmetries in graphs and it is widely used in graph-isomorphism tests. It proceeds by iteratively
refining a colouring of vertex tuples. The number of iterations needed to obtain the final output is
crucial for the parallelisability of the algorithm.

We show that there is a constant k such that every planar graph can be identified (that is,
distinguished from every non-isomorphic graph) by the k-dimensional WL algorithm within a
logarithmic number of iterations. This generalises a result due to Verbitsky (STACS 2007), who
proved the same for 3-connected planar graphs.

The number of iterations needed by the k-dimensional WL algorithm to identify a graph
corresponds to the quantifier depth of a sentence that defines the graph in the (k + 1)-variable
fragment Ck+1 of first-order logic with counting quantifiers. Thus, our result implies that every
planar graph is definable with a Ck+1-sentence of logarithmic quantifier depth.
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1 Introduction

The Weisfeiler-Leman (WL) algorithm is a combinatorial procedure for detecting symmetries
in graphs. It is widely used in approaches to tackle the graph-isomorphism problem, both
from a theoretical ([4, 5, 24]) and from a practical perspective ([7, 23, 31, 32]). The algorithm
is derived from a technique called naïve vertex classification (or Colour Refinement), which
may be viewed as the 1-dimensional version WL1 of the WL algorithm. For every k ≥ 1,
the k-dimensional WL algorithm (WLk) iteratively colours k-tuples of vertices of a graph
by propagating local information until it reaches a stable colouring. Weisfeiler and Leman
introduced the 2-dimensional version WL2, today known as the classical WL algorithm,
in [37]. The algorithm WLk can be implemented to run in time O(nk+1 log n) on graphs of
order n [22].

The algorithm has striking connections to numerous areas of mathematics and computer
science, which surely is a reason why research on it has been active since its introduction
over half a century ago. For example, there are tight connections to linear and semidefin-
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ite programming [2, 3, 20], homomorphism counting [8, 10], and the algebra of coherent
configurations [6]. Most recently, the WL algorithm has been applied in several interesting
machine-learning contexts [1, 16, 33, 34, 39].

A very strong and highly exploited link between the algorithm and logic was established
by Immerman and Lander [22] and Cai, Fürer, and Immerman [5]: WLk assigns the same
colour to two k-tuples of vertices if and only if these tuples satisfy the same formulas of the
(k + 1)-variable fragment Ck+1 of first-order logic with counting quantifiers. Cai, Fürer, and
Immerman [5] used this correspondence and an Ehrenfeucht-Fraïssé game that characterises
equivalence for the logic Ck+1 to prove that, for every k, there are non-isomorphic graphs
of order O(k) that are not distinguished by WLk. Here we say that WLk distinguishes two
graphs if WLk computes different stable colourings on them, that is, there is some colour
such that the numbers of k-tuples of that colour differ in the two graphs.

We say that WLk identifies a graph G if it distinguishes G from all graphs G′ that are
not isomorphic to G. It has been shown that for suitable constants k, the algorithm WLk

identifies all planar graphs [13], all graphs of bounded tree width [18], and all graphs in many
other natural graph classes [12, 14, 15, 17, 19]. For some of these classes, fairly tight bounds
for the optimal value of k, called the Weisfeiler-Leman (WL) dimension, are known. Notably,
interval graphs have WL dimension 2 [12], graphs of tree width k have WL dimension in the
range ⌈k/2⌉ − 3 to k [26], and, most relevant for us, planar graphs have WL dimension 2
or 3 [27].

Another parameter of the WL algorithm that has received recent attention is the number
of iterations it needs to reach its final, stable colouring. Since a set of size nk can only be
partitioned nk − 1 times, a natural upper bound on the number of iterations to reach the
final output is nk − 1 (n always denotes the number of vertices of the input graph). This
bound cannot be improved for WL1, since there are infinitely many graphs on which the
algorithm takes n− 1 iterations to compute its final output [25]. However, for WL2, it was
shown that the bound Θ(n2) is asymptotically not tight [28]. Currently, the best upper
bound on the iteration number for WL2 is O(n log n) [30].

The number of iterations of WLk is crucial for the parallelisability of the algorithm: for
ℓ ≥ log n, it holds that ℓ iterations of WLk can be simulated in O(ℓ) steps on a PRAM with
O(nk) processors [21, 29]. In particular, if for a class C of graphs, all G,G′ ∈ C (of order
n) can be distinguished by WLk in O(log n) iterations, then the isomorphism problem for
graphs in C is in the complexity class AC1. Grohe and Verbitsky [21] proved that this is the
case for all classes of graphs of bounded tree width and all maps (graphs embedded into a
surface together with a rotation system specifying the embedding), and Verbitsky [36] proved
it for the class of 3-connected planar graphs.

Our results

We say that WLk distinguishes two graphs in ℓ iterations if the colouring obtained by WLk

in the ℓ-th iteration differs among the two graphs, and we say WLk identifies a graph in ℓ

iterations if it distinguishes the graph from every non-isomorphic graph in ℓ iterations.

▶ Theorem 1. There is a constant k such that WLk identifies every n-vertex planar graph
in O(log n) iterations.

The correspondence between WLk and the logic Ck+1 can be refined to a correspondence
between the number of iterations and the quantifier depth: WLk assigns the same colour to
two k-tuples of vertices in the ℓ-th iteration if and only if these two k-tuples satisfy the same
Ck+1-formulas of quantifier depth ℓ. Thus, the following theorem is equivalent to Theorem 1.
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▶ Theorem 2. There is a constant k such that for every n-vertex planar graph G, there is
a Ck-sentence of quantifier depth O(log n) that identifies G (that is, characterises G up to
isomorphism).

We exploit the logical characterisation of the WL algorithm in our proof, so it is actually
Theorem 2 that we prove. We first show that every planar graph G has a tree decomposition
of logarithmic height where each bag consists of at most four 3-connected components of G
and the adhesion is at most 6. Then we inductively construct a formula to identify G by
ascending through the tree, encoding all information about isomorphism types of the parsed
subgraphs in subformulas. At each node of the tree, we use Verbitsky’s result to deal with
the 3-connected components.

2 Preliminaries

All graphs in this paper are finite, simple, and undirected. For a graph G, we denote by V (G)
and E(G) its set of vertices and edges, respectively. The order of G is |G| := |V (G)|. We
write edges without parenthesis, as in vw. For v ∈ V (G), we let NG(v) := {w | vw ∈ E(G)}.

A subgraph of G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G). We set NG(H) :=⋃
v∈V (H) NG(v) \ V (H). We call a graph H a topological subgraph of G if a subdivision of H

(i.e., a graph obtained from H by replacing some edges with paths) is a subgraph of G. For
W ⊆ V (G), we let G[W ] := (W,E(G) ∩ {uv | u, v ∈ W}) and, for arbitrary sets W , we let
G \W := G[V (G) \W ].

A graph G is k-connected if |G| > k and there is no set S ⊆ V (G) with |S| ≤ k − 1 such
that G \ S is disconnected.

2.1 Logic
We denote by C the extension of first-order logic FO by counting quantifiers ∃≥mx with the
obvious meaning. C is only a syntactical extension of FO, because ∃≥mxφ(x) is equivalent to
∃x1 . . . ∃xm

(∧
i̸=j xi ̸= xj ∧

∧
i φ(xi)

)
. However, we are mainly interested in the fragments

Ck of C consisting of all formulae with at most k variables (which can, however, be reused
within the formula). If m > k, then ∃≥mx cannot be expressed in the k-variable fragment of
FO, this is why we add the counting quantifiers.

We write φ(x1, . . . , xℓ) to indicate that the free variables of φ are among x1, . . . , xℓ.
Then for a graph G and vertices u1, . . . , uℓ ∈ V (G), we write G |= φ(u1, . . . , uℓ) to denote
that G satisfies φ if, for all i, the variable xi is interpreted by ui. Moreover, we write
φ[G, u1, . . . , ui, xi+1, . . . , xℓ] to denote the set of all (ℓ − i)-tuples (ui+1, . . . , uℓ) such that
G |= φ(u1, . . . , uℓ).

The quantifier depth qd(φ) of a formula φ ∈ C is its depth of quantifier nesting. More
formally,

if φ is atomic, then qd(φ) = 0.
qd(¬φ) = qd(φ).
qd(φ1 ∨ φ2) = qd(φ1 ∧ φ2) = max{qd(φ1), qd(φ2)}.
qd(∃≥pxφ) = qd(φ) + 1.

We denote the set of all Ck-formulas of quantifier depth at most ℓ by Ck
ℓ .

It will often be convenient to use asymptotic notation, such as CO(1)
O(log n). The parameter

n always refers to the order of the input graph, and we will typically make assertions such
as: For every n, there exists a CO(1)

O(log n)-formula φ(n)(x) such that for all graphs G of order
|G| = n and all v ∈ V (G), [something holds]. What this means is that there is a constant
k and a function ℓ(n) ∈ O(log n) such that for every n, there exists a Ck

ℓ(n)-formula φ(n)(x)
such that for all graphs G of order |G| = n and all v ∈ V (G), [something holds].
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Throughout this paper, we will have to express properties of graphs and their vertices
using CO(1)

O(log n)-formulas. The basic building blocks that we use are connectivity statements
with formulas of logarithmic quantifier depth, as illustrated in the following example.

▶ Example 3. For every k ≥ 0, we define a C3
⌈log n⌉-formula dist≤k such that for every graph

G of order at most n and all vertices u, u′ ∈ V (G), it holds that G |= dist≤k(u, u′) if and
only if u and u′ have distance at most k in G. We let

dist’≤k(x, x′) :=


x = x′ if k = 0
E(x, x′) ∨ x = x′ if k = 1
∃yk

(
dist’≤⌊ k

2 ⌋(x, yk) ∧ dist’≤⌈ k
2 ⌉(yk, x

′)
)

otherwise.

Thus, for k ≤ n, the quantifier depth of dist’≤k is bounded by ⌈log n⌉. Now, it suffices to
note that we can actually get by with the three variables x, x′, yk by reusing them in the
subformulas that are defined inductively. We hence obtain the desired C3

⌈log n⌉-formula dist≤k.
Note that, for k ≥ 1, the C3

⌈log n⌉-formula dist=k(x, x′) := dist≤k(x, x′) ∧ ¬dist≤k−1(x, x′)
states that x and x′ have distance exactly k. Moreover, in every graph of order at most
n, the C3

⌈log n⌉-formula comp(x, x′) := dist≤n−1(x, x′) states that x and x′ lie in the same
connected component and the C3

⌈log n⌉-sentence connn := ∀x∀x′dist≤n−1(x, x′) states that the
graph is connected. ⌟

2.2 The WL Algorithm
We briefly review the WL algorithm. For details, we refer to the recent survey [24].

Let k ≥ 1. The atomic type atp(G, ū) of a k-tuple ū = (u1, . . . , uk) of vertices of a graph
G is the set of all atomic facts satisfied by these vertices, that is, all adjacencies and equalities
between the vertices. Hence, tuples ū = (u1, . . . , uk) and v̄ = (v1, . . . , vk) of vertices of
graphs G,H, respectively, have the same atomic type if and only if the mapping ui 7→ vi is
an isomorphism from the graph G[{u1, . . . , uk}] to H[{v1, . . . , vk}].

The algorithm WLk (the k-dimensional Weisfeiler-Leman algorithm) takes a graph G

as input and computes the following sequence of colourings wlki of V (G)k for i ≥ 0, until it
returns wlk∞ := wlki for the smallest i such that, for all ū, v̄, it holds that wlki (ū) = wlki (v̄) ⇐⇒
wlki+1(ū) = wlki+1(v̄). Set wlk0(ū) := atp(G, ū). In the (i+ 1)-st iteration, the colouring wlki+1
is defined by wlki+1(ū) :=

(
wlki (ū),Mi(ū)

)
, where, for ū = (u1, . . . , uk), we let Mi(ū) be the

multiset{{(
atp(G, (u1, . . . , uk, v)),wlki (u1, . . . , uk−1, v),

wlki (u1, . . . , uk−2, v, uk), . . . ,wlki (v, u2, . . . , uk)
)

| v ∈ V
}}

The algorithm WLk distinguishes two graphs G, H in ℓ iterations if there is a colour c in
the range of wlkℓ such that the number of tuples ū ∈ V (G)k with wlkℓ (ū) = c is different from
the number of tuples v̄ ∈ V (H)k with wlkℓ (v̄) = c. In this case, we say WLk

ℓ distinguishes
G and H. Moreover, WLk

ℓ identifies G if it distinguishes G from all graphs H that are not
isomorphic to G.

▶ Theorem 4 ([5, 22]). Let k ∈ N. Let G and H be graphs with |G| = |H| and let
ū := (u1, . . . , uk) ∈ V (G)k and v̄ := (v1, . . . , vk) ∈ V (H)k. Then, for all i ∈ N, the following
are equivalent.
1. wlki (ū) = wlki (v̄).
2. G |= φ(u1, . . . , uk) ⇐⇒ H |= φ(v1, . . . , vk) holds for every Ck+1

i -formula φ(x1, . . . , xk).



M. Grohe and S. Kiefer 134:5

3 3-Connected Planar Graphs

Verbitsky [36] proved that WLO(1)
O(log n) distinguishes any two 3-connected planar graphs. Before

we discuss the specific version of this result that we need here, let us briefly review some
background on planar graphs. Intuitively, a plane graph is a graph drawn into the plane
with no edges crossing. A planar graph is an abstract graph G isomorphic to a plane graph;
an isomorphism from G to a plane graph is a planar embedding of G. Now suppose G is a
plane graph. If we cut the plane along all edges of the graph, the pieces that remain are the
faces of G (note that one of these faces is unbounded). The closed walk along the vertices
and edges in the boundary of a face is the facial walk associated with this face. If G is
2-connected, then every facial walk is a cycle. If G is 3-connected, we can describe the facial
cycles combinatorially: a cycle C is a facial cycle of G if and only if C is an induced subgraph
of G and G \ V (C) is connected. (This is the statement of Whitney’s Theorem [38].) This
implies that all planar embeddings of a 3-connected planar graph have the same facial cycles,
which can be interpreted as saying that, combinatorially, all planar embeddings of the graph
are the same. Another way of describing a planar embedding combinatorially is by specifying,
for each vertex, the cyclic order in which the edges incident to this vertex appear. This is
what is known as a rotation system. It is easy to see that a rotation system determines all
facial walks, and, conversely, the facial walks determine the rotation system. One last fact
that we need to know about plane graphs is Euler’s formula: if G is a connected plane graph
with n vertices, m edges, and f faces, then n−m+ f = 2. (For details and more background,
we refer the reader to [9].)

Let us now turn to the version of Verbitsky’s theorem about 3-connected planar graphs
that we need here. It says that, in a 3-connected planar graph, we can find three vertices such
that once these vertices are fixed, we can identify every other vertex by a CO(1)

O(log n)-formula.

▶ Theorem 5 ([36]). Let n ∈ N and let G be a 3-connected planar graph of order |G| ≤ n

and v1v2 ∈ E(G). Then there is a v3 ∈ NG(v2) and for every w ∈ V (G) a CO(1)
O(log n)-

formula idw(x1, x2, x3, y) such that G |= idw(v1, v2, v3, w) and G ̸|= idw(v1, v2, v3, w
′) for all

w′ ∈ V (G) \ {w}.

The key step in Verbitsky’s proof is to define the rotation system underlying the unique
planar embedding of a 3-connected planar graph. To state this formally, we use the termino-
logy of [13, 15]. An angle of a plane graph G at a vertex v is a triple (w, v, w′) of vertices
such that vw and vw′ are successive edges in a facial walk of G. Two angles (v1, v2, v3) and
(w1, w2, w3) are aligned if w1 = v2 and w2 = v3 and both angles appear in the same facial
walk. Observe that, if we know all angles at a vertex v, we can define the cyclic permutation
of the edges incident with v induced by the embedding. If we know all angles of G and the
alignment relation between them, we can define the rotation system. By Whitney’s Theorem,
all planar embeddings of a 3-connected planar graph G have the same angles; we call them
the angles of G. Similarly, we can define abstractly if two angles of a 3-connected planar
graph are aligned.

▶ Lemma 6 ([36]). There are CO(1)
O(log n)-formulas ang(n)(x1, x2, x3) and aln(n)(x1, x2, x3, x4)

such that for all 3-connected planar graphs G of order |G| = n and all v1, v2, v3, v4 ∈ V (G),
we have

G |= ang(n)(v1, v2, v3) ⇐⇒ (v1, v2, v3) is an angle of G,

G |= aln(n)(v1, . . . , v4) ⇐⇒ (v1, v2, v3), (v2, v3, v4) are aligned angles of G.
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(a) (b)

Figure 1 Defining the faces of a 3-connected planar graph: (a) shows a 3-connected planar graph
G with 3 regions formed by faces with at most 6 edges in their boundary; (b) shows the derived
graph G(1); the faces of G(1) are in one-to-one correspondence to the white faces of G.

This lemma is an easy consequence of the results in [36, Section 4]. The terminology
there is different, the notion corresponding to (aligned) angles is that of a layout system.
Verbitsky’s proof is based on a careful (and tedious) analysis of how two paths between the
neighbours of a vertex may intersect.

To give the reader some intuition about the lemma, we sketch an alternative proof, which
is based on ideas from [14] (also see [15, Section 10.4]). Let G be a 3-connected planar graph,
and let us think of G as being embedded in the plane. It follows from Euler’s formula that
in every plane graph of minimum degree 3, a constant fraction of the edges is contained
in facial walks of length at most 6. Using Whitney’s Theorem, we can define the set of all
6-tuples that determine a facial cycle of length at most 6 using a C9-formula of logarithmic
quantifier depth. This gives us all the angles associated with these cycles and the alignment
relation on these angles. The faces corresponding to these facial cycles of size at most 6 can
be partitioned into regions, where two faces belong to the same region if their boundaries
share an edge (see Figure 1(a)).

We define a new graph G(1) as follows: for every region R of G, we delete all vertices
contained in the interior of R, all vertices on the boundary of R that have no neighbours
outside the region, and all edges that are either in the interior or on the boundary of the
region. Then we add a fresh vertex vR and edges from vR to all vertices that remain in the
boundary of the region R (see Figure 1(b)). Each face of G(1) corresponds to a face of G that
we have not found yet. Applying Euler’s formula again, we can prove that a constant fraction
of the edges of G that remain edges of G(1) are contained in facial walks of G(1) that contain
at most six vertices of degree ≥ 3. We can define the facial walks of the corresponding edges
in G, again using Whitney’s Theorem to test if a cycle is facial. Note that, for this, we do
not need G(1) to be 3-connected (in general, it is not); we always define facial cycles in the
original graph G. The new facial cycles together with those found in the first step give us
new regions (covering more faces of G), and from these, we construct a graph G(2). Iterating
the construction, we obtain a sequence of graphs G(i). The construction stops once we have
found all facial walks of G. Since we always use a constant fraction of the edges, this happens
after at most logarithmically many iterations. This completes our proof sketch of Lemma 6.
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Proof of Theorem 5. Let G be a 3-connected planar graph of order |G| = n. For angles
v = (v1, v2, v3), w = (w1, w2, w3), we write v ↷ w if v, w are aligned, and we write v ' w

if w1 = v3 and w2 = v2 and w3 ̸= v1. Note that, for every angle v, there is a unique w
such that v ↷ w, because, by the 3-connectedness of G, every angle is in the boundary of
a unique face, and the aligned angle belongs to the same face. There is also a unique w′

such that v ' w′, determined by the cyclic order of the edges and faces around a vertex. An
angle walk is a sequence v0, . . . , vℓ of angles such that for all i ∈ [ℓ], we have vi−1 ↷ vi or
vi−1 ' vi. The direction of the angle walk v0, . . . , vℓ is the tuple δ = (δ1, . . . , δℓ) ∈ {↷,'}ℓ

such that for every i ∈ [ℓ], we have vi−1δivi. Using Lemma 6, it is straightforward to prove
that for every δ ∈ {↷,'}≤n, there is a CO(1)

O(log n)-formula awalk(n)
δ

(x, y) such that for all
v, w ∈ V (G)3, we have G |= awalk(n)

δ
(v, w) if and only if there is an angle walk of direction

δ from v to w. Now let v1v2 ∈ E(G). Then there is a v3 such that (v1, v2, v3) is an angle.
Let v := (v1, v2, v3). Note that, for every w ∈ V (G) \ {v1, v2, v3}, there is an angle walk of
length at most n from v to some w = (w1, w2, w3) with w3 = w, simply because every path
in G can be extended to an angle walk. Let ∆(w) be the set of all directions δ of length
at most n such that there is an angle walk of direction δ̄ from v to some w = (w1, w2, w3)
with w3 = w. Note that the sets ∆(w) for w ∈ V (G) \ {v1, v2, v3} are mutually disjoint.
Let idδ̄(x1, x2, x3, y) := ∃y1∃y2awalk(n)

δ
(x1, x2, x3, y1, y2, y). Then for δ̄ ∈ ∆(w), we have

G |= idδ̄(v1, v2, v3, w) and G ̸|= idδ̄(v1, v2, v3, w
′) for all w′ ̸= w. ◀

4 Decomposition into Blocks

Let G be a graph. A tree decomposition of G is a pair (T, β) where T is a tree and
β : V (T ) → 2V (G) is a function such that for every v ∈ V (G), the set {t ∈ V (T ) | v ∈ β(t)}
is non-empty and induces a connected subgraph in T , and for every e ∈ E(G), there is a
t ∈ V (T ) such that e ⊆ β(t). For t ∈ V (T ), we call β(t) a bag of (T, β). The adhesion of
(T, β) is ad(T, β) := max

{
|β(t) ∩ β(u)|

∣∣ tu ∈ E(T )
}

(or 0 if E(T ) = ∅). The width of (T, β)
is wd(T, β) := maxt∈V (T ) |β(t)| − 1.

We denote the root of a rooted tree T by rT . For better readability, if the rooted tree is
referred to as T ∗, we set r∗ := rT ∗ . The height of T is the maximum length of a path from
rT to a leaf of T . We denote the descendant order of T by ⊴T . That is, t ⊴T u if t occurs
on the path from rT to u. A rooted tree decomposition is a tree decomposition where the
tree is rooted.

▶ Lemma 7 (Folklore). Let T be a tree and χ : V (T ) → R≥0. Then there is a node t ∈ V (T )
such that for every connected component C of T \ {t}, it holds that∑

t∈V (C)

χ(t) ≤ 1
2
∑

t∈V (T )

χ(t).

Proof. Orient all edges towards the larger sum of χ-weights in the connected components
that the removal of the edge would induce, breaking ties arbitrarily. There will be a node
such that all incident edges are oriented towards it. This node has the desired property. ◀

The following lemma is known in its essence (for example, [11]), though we are not aware
of a reference where it is stated in this precise form, which we will need later.

▶ Lemma 8. Let T be a tree, and let B ⊆ V (T ) be a set of size |B| ≤ 3. Then there
is a rooted tree decomposition (T ∗, β∗) of T with B ⊆ β∗(r∗) and the following additional
properties:
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(i) The height of T ∗ is at most 2 log |T |.
(ii) The width of (T ∗, β∗) is at most 3.
(iii) The adhesion of (T ∗, β∗) is at most 3.
(iv) For every t∗∈V (T ∗) and every child u∗ of t∗, the graph T

[
(
⋃

v∗⊵T ∗ u∗ β∗(v∗)) \ β∗(t∗)
]

is connected.

Proof. Condition (iv) is something that we can easily achieve for every rooted tree decom-
position: if, for the rooted subtree at some node, the subgraph induced by the bags in
this subtree is not connected, we simply create one copy of the subtree for each connected
component and only keep the vertices of that connected component in the copy. Moreover,
the adhesion of a tree decomposition of width 3 can only be larger than 3 if there are adjacent
nodes with the same bag. If this is the case, we can simply contract the edge between the
nodes. Repeating this, we can turn the decomposition into a decomposition of adhesion at
most 3. So we only need to take care of Conditions (i) and (ii).

The proof is by induction on n := |T |. We prove a slightly stronger statement; in addition
to B ⊆ β∗(r∗), we require |β∗(r∗) \B| ≤ 1.

The base case n ≤ 4 is easy: for n = 1, the 1-node tree decomposition of height 0 has
all the desired properties, and for 2 ≤ n ≤ 4, we can take a 2-node tree decomposition of
height 1 where the root bag is B and the leaf bag is V (T ).

For the inductive step, suppose n > 4.
Case 1: |B| < 3.

By Lemma 7, there is a node b ∈ V (T ) such that for every connected component C of
T \ {b}, it holds that |V (C)| ≤ n

2 .
Let C1, . . . , Cm be the vertex sets of the connected components of T \ {b}. For every
i ∈ [m], let ci be the unique neighbour of b in Ci, and let Bi := (B ∩ V (Ci)) ∪ {ci}. Note
that |Bi| ≤ 3.
By the induction hypotheses, for every i, there is a rooted tree decomposition (Ti, βi) of
Ci with the desired properties. In particular, the height of Ti is at most 2 log(n/2) =
2 logn− 2.
For every i, let ri be the root of Ti. We form a new tree T ∗ by taking the disjoint union
of all the Ti, adding fresh nodes r∗ and r∗

i for i ≤ m, and adding edges r∗r∗
i , r∗

i ri for all
i ∈ [m]. We define β∗ : V (T ∗) → 2V (T ) by

β∗(t) :=


B ∪ {b} if t = r∗,

Bi ∪ {b} if t = r∗
i ,

βi(t) if t ∈ V (Ti).

Then (T ∗, β∗) is a tree decomposition of T of width at most 3 and height at most 2 log n.
Case 2: |B| = 3.

By Lemma 7 applied to the characteristic function of B, there is a node b ∈ V (T ) such
that for every connected component C of T \ {b}, it holds that |V (C) ∩B| ≤ 1.
Let C1, . . . , Cℓ be the connected components of T \{b}, and for every i, let Bi := B∩V (Ci).
Then |Bi| ≤ 1.

▷ Claim 9. For every i ∈ [ℓ], there is a tree decomposition (Ti, βi) of width at most 3
such that the height of Ti is at most 2 log n − 1 and for the root ri of Ti it holds that
Bi ⊆ βi(ri) and |β(ri)| ≤ 2.
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Proof. Let ∈ [ℓ] and ni := |Ci|. By Lemma 7, there is a c ∈ V (Ci) such that for every
connected component D of Ci \ {c}, it holds that |D| ≤ ni/2. Choose such a c and let
D1, . . . , Dm be the connected components of Ci \ {c}. For every j ∈ [m], let dj be the
unique neighbour of c in Dj . Let Bij := (Bi ∩Dj) ∪ {dj}. Then |Bij | ≤ 2.
By the induction hypotheses, for every j, there is a rooted tree decomposition (Tij , βij) of
Dj of width 3 such that the height of Tij is at most 2 log |Di| ≤ 2 log(ni/2) ≤ 2 log n− 2.
Furthermore, for the root rij of Tij , it holds that Bij ⊆ βij(rij) and |βij(rij) \Bij | ≤ 1.
This implies |βij(rij)| ≤ 3.
We form a new tree Ti by taking the disjoint union of all the Tij for j ∈ [m], adding a
fresh node ri, and adding edges rij for all j ∈ [m]. We define βi : V (Ti) → 2V (Ci) by

βi(t) :=


Bi ∪ {c} if t = ri,

βij(rij) ∪ {c} if t = rij ,

βij(t) if t ∈ V (Tij) \ {rij}.

Then (Ti, βi) is a tree decomposition of Ci with the desired properties. ◁

To complete the proof of the lemma, we form a new tree T ∗ by taking the disjoint union
of the Ti of Claim 9 for i ∈ [ℓ], adding a fresh node r∗, and adding edges r∗ri for all
i ∈ [ℓ]. We define β∗ : V (T ∗) → 2V (T ) by

β∗(t) :=


B ∪ {b} if t = r∗,

β(ri) ∪ {b} if t = ri,

βi(t) if t ∈ V (Ti) \ {ri}.

Then (T ∗, β∗) is a tree decomposition of T of width at most 3 and height at most
2 logn. ◀

Let us now turn to decompositions of a graph into its 3-connected components. We need
a few more definitions. In the following, let G be a connected graph and X ⊆ V (G). The
torso of X is the graph GJXK with vertex set X and edge set{

vw ∈
(
X

2

) ∣∣∣ vw ∈ E(G) or v, w ∈ NG(C) for some connected component C of G \X
}
.

The adhesion of X is the maximum of |NG(C)| for all connected components C of G \X. It
is easy to see that if the adhesion of X is at most 2, then the torso GJXK is a topological
subgraph of G and if the adhesion of X is at most 1, then the torso GJXK is just the induced
subgraph G[X].

A block1 of G is a set B ⊆ V (G) such that
either GJBK is 3-connected and the adhesion of B is at most 2,
or GJBK is a complete graph of order 3 and the adhesion of B is at most 2,
or GJBK is a complete graph of order 2 and the adhesion of B is at most 1.

We call blocks with 3-connected torsos proper blocks and blocks of cardinality at most 3
degenerate blocks of order 3 and 2, respectively. It is easy to see that for distinct blocks
B,B′, neither B ⊆ B′ nor B′ ⊆ B holds and, furthermore, |B ∩B′| ≤ 2. A block separator

1 Our usage of the term “block” is non-standard. If anything, what we call a “block” might better be
called “2-block”. But just using “block” is more convenient.

ICALP 2021



134:10 WL on Planar Graphs

is a set S ⊆ V (G) such that there are distinct blocks B,B′ with S = B ∩B′, and the two
sets B \ S and B′ \ S belong to different connected components of G \ S. Note that by the
definition of blocks, block separators have cardinality at most 2.

Observe that the torsos of all blocks of a graph are topological subgraphs. As all
topological subgraphs of a planar graph are planar, the torsos of the blocks of a planar graph
are planar. In particular, the torsos of proper blocks are 3-connected planar graphs. This
will be important later.

Call a tree decomposition (T, β) small if for all distinct nodes t, u ∈ V (T ), it holds that
β(t) ̸⊆ β(u).

▶ Lemma 10 ([35]). Every connected graph G has a small tree decomposition (T, β) of
adhesion at most 2 such that for all t ∈ V (T ), the bag β(t) is a block of G.

The decomposition in this lemma is essentially Tutte’s well-known decomposition of a
graph into its 3-connected components described in a slightly non-standard way. The two main
differences are that, normally, the decomposition is only described for 2-connected graphs,
whereas arbitrary connected graphs are first decomposed into their 2-connected components.
We merge these decompositions into one. The second difference is that Tutte decomposes a
2-connected graph into 3-connected pieces (our proper blocks) and cycles. Instead of cycles,
we only allow triangles, i.e., degenerate blocks of order 3. This is possible because every
cycle can be decomposed into triangles. What we lose with our form of decomposition is
the canonicity: a graph may have several structurally different decompositions of the form
described in the lemma.

In the following, we apply Lemma 8 to the tree of the decomposition of Lemma 10 and
obtain a decomposition of logarithmic height that is still essentially a decomposition into
3-connected components.

▶ Lemma 11. Every connected graph G has a rooted tree decomposition (T ∗, β∗) with the
following properties.

(i) The height of T ∗ is at most 2 log |G|.
(ii) For every t∗ ∈ V (T ∗), there are sets B1, . . . , B4 (not necessarily distinct or disjoint)

such that β∗(t∗) =
⋃4

i=1 Bi and each Bi is either a block or a block separator.
(iii) The adhesion of (T ∗, β∗) is at most 6.
(iv) For every t∗ ∈ V (T ∗) and every child u∗ of t∗, the induced subgraph

G

( ⋃
v∗⊵T ∗ u∗

β∗(v∗)
)

\ β∗(t∗)


is connected.

Proof. Let (T, β) be the decomposition of G into its blocks obtained from Lemma 10. Let
(T ∗, β∗

T ) be the rooted tree decomposition of T obtained from Lemma 8. Let r∗ be the root
of T ∗, and let ⊴∗ := ⊴T ∗ be the partial descendant order associated with T ∗. For every
t∗ ∈ V (T ∗), let

γ∗
T (t∗):=

⋃
u∗⊵∗t∗

β∗
T (u∗)

and

σ∗
T (t∗):=

{
∅ if t∗ = r∗,

β∗
T (s∗) ∩ β∗

T (t∗) for the parent s∗ of t∗ in T ∗, otherwise .
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For every t ∈ V (T ), we let min∗(t) be the unique ⊴∗-minimal node t∗ ∈ V (T ∗) such that
t ∈ β∗

T (t∗). The uniqueness follows from the fact that the set of all t∗ ∈ V (T ∗) with t ∈ β∗
T (t∗)

is connected in T ∗.
Let us call t ∈ V (T ) active in t∗ ∈ V (T ∗) if t ∈ β∗

T (t∗) and t∗ ̸= min∗(t) and there is a
u ∈ NT (t) such that t∗ ⊴ min∗(u). We call u an activator of t in t∗.

▷ Claim 12. Suppose that t ∈ V (T ) is active in t∗ ∈ V (T ∗). Then there is a unique activator
of t in t∗.

Proof. Since t ∈ β∗
T (t∗) and t∗ ̸= min∗(t), we have min∗(t)◁t∗ and t ∈ β∗

T (min∗(t))∩β∗
T (t∗) ⊆

σ∗
T (t∗). Moreover, for every activator u of t, it holds that t∗ ⊴ min∗(u), which implies
u ∈ γ∗

T (t∗) \ σ∗
T (t∗).

Suppose towards a contradiction that t has two activators u1, u2 in t∗. Then u1, u2 ∈
NT (t) ∩

(
γ∗

T (t∗) \ σ∗
T (t∗)

)
. By Lemma 8(iv), the induced subgraph T [γ∗

T (t∗) \ σ∗
T (t∗)] is

connected. Thus, there is a path from u1 to u2 in T [γ∗
T (t∗) \ σ∗

T (t∗)]. As u1, u2 ∈ NT (t) and
t ∈ σ∗

T (t∗), there is a cyle in T , which is a contradiction. ◁

Hence, in the following we can speak of the activator of a node. Observe that if t is active
in t∗, then t is also active in all u∗ with min∗(t) ◁ u∗ ◁ t∗, with the same activator.

Now we are ready to define our tree decomposition (T ∗, β∗) of G. The tree T ∗ is the
same as in the decomposition (T ∗, β∗

T ) of T . We define β∗ : V (T ∗) → 2V (G) by letting β∗(t∗)
for t∗ ∈ V (T ∗) be the union of the following sets:

for all t ∈ β∗
T (t∗) such that t∗ = min∗(t): the block β(t), and

for all t ∈ β∗
T (t∗) such that t is active in t∗ with activator u: the block separator β(t)∩β(u).

▷ Claim 13. (T ∗, β∗) is a tree decomposition of G.

Proof. Every edge e ∈ E(G) is contained in some bag β(t), and β(t) ⊆ β∗(min∗(t)).
Now consider a vertex v ∈ V (G). Let

Sv := {t ∈ V (T ) | v ∈ β(t)},
S∗

v := {t∗ ∈ V (T ∗) | Sv ∩ β∗
T (t∗) ̸= ∅}.

Since (T, β) is a tree decomposition, Sv is connected in T , and as (T ∗, β∗
T ) is a tree decom-

position, S∗
v is connected in T ∗. Thus, there is a unique ⊴∗-minimal node s∗ in S∗

v . Let
s ∈ Sv ∩ β∗

T (s∗). Then s∗ = min∗(s) and therefore v ∈ β∗(s∗).
Let t∗ ∈ V (T ∗) such that v ∈ β∗(t∗). We shall prove that v ∈ β∗(v∗) for all v∗ on

the path from t∗ to s∗. This will prove that the set of all t∗ for which v ∈ β∗(t∗) holds is
connected in T ∗.

By the definition of β∗, since v ∈ β∗(t∗), there is a t ∈ β∗
T (t) such that v ∈ β(t) and either

t∗ = min∗(t) or t is active in t∗. We choose such a t. Then t ∈ Sv and therefore t∗ ∈ S∗
v . By

the minimality of s∗, this implies s∗ ⊴∗ t∗.
The proof that v ∈ β∗(v∗) holds for all v∗ on the path from t∗ to s∗ is by induction on

the distance d between t∗ and s∗. The base case d = 0 is trivial. So let us assume that d ≥ 1.
It follows from the definition of β∗ that v ∈ β∗(v∗) holds for all v∗ on the path from t∗ to
min∗(t). Thus, without loss of generality, we may assume that t∗ = min∗(t).

Let t = t1, . . . , tm = s be the path from t to s in T . Note that v ∈ β(ti) holds for all
i ∈ [m]. The edge tt2 = t1t2 must be covered by some bag β∗

T (u∗) that contains both t and
t2. Since t∗ = min∗(t), we have t∗ ⊴∗ u∗. As the pre-image of the path t1, . . . , tm in T ∗ is
connected and s∗ ⊴∗ t∗ ⊴∗ u∗, there is an i > 1 such that ti ∈ β∗(t∗). If min∗(ti) = t∗, we
find a j > i such that tj ∈ β∗(t), and, repeating this, we eventually arrive at a tk ∈ β∗(t) such
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that min∗(tk) ◁ t∗. Arguing as above, we find that v ∈ β∗(v∗) holds for all v∗ on the path
from t∗ to min∗(tk). Since min∗(tk) is closer to s∗ than t∗, we can now apply the induction
hypothesis to conclude that v ∈ β∗(v∗) holds for all v∗ on the path from min∗(tk) to s∗. ◁

Let us turn to proving that the tree decomposition (T ∗, β∗) has the desired properties.
Since (T, β) is a small decomposition, we have |T | ≤ |G|. Thus, Condition (i) follows

from Lemma 8(i). Also, Condition (ii) follows from Lemma 8(ii) and the definition of β∗(t).
To prove Condition (iii), let u∗ be a child of t∗. Let us assume that β∗

T (t∗) = {t1, . . . , t4}
and β∗

T (u∗) = {u1, . . . , u4} with t1 = u1, t2 = u2, and t3 = u3 and t4 ̸= ui, u4 ≠ ti for i ∈ [4].
The cases of smaller bags β∗

T (t∗), β∗
T (u∗) or a smaller intersection between them can be dealt

with similarly.
Let us first deal with the common elements ti = ui for i ∈ [3]. Note that min∗(ti) ⊴ t∗◁u∗.

If ti is not active in u∗, then it does not contribute to the β∗(u∗) and hence not to the
intersection of the two bags. If ti is active in u∗, say, with activator vi, then the block
separator Si := β(ti)∩β(vi) is contained in β∗(u∗). To simplify the notation, in the following,
we let Si := 0 if ti is not active in u∗.

Either ti is active in t∗ as well with the same activator and we have Si ⊆ β∗(t∗), or
t∗ = min∗(ti) and Si ⊆ β(ti) ⊆ β∗(t∗). In both cases,

Si ⊆ β∗(t∗) ∩ β(u∗). (1)

Next, let us look at the contribution of t4 and u4. The contribution of t4 to β∗(t∗) is contained
in β(t4), and the contribution of u4 to β∗(u∗) is contained in β(u4). Since the only neighbour
of ti in γ∗

T (u∗) \ σ∗
T (u∗) = γ∗

T (u∗) \ {t1, t2, t3} is vi (if ti is active in u∗, otherwise there is no
neighbour), all paths from ti to u4 go through vi. This implies that

β(ti) ∩ β(u4) ⊆ β(ti) ∩ β(vi) = Si. (2)

All paths from t4 to u4 go through t1, t2, t3, and therefore

β(t4) ∩ β(u4) ⊆
3⋃

i=1
β(ti) ∩ β(u4) ⊆ S1 ∪ S2 ∪ S3. (3)

Thus, overall, we have β∗(t∗) ∩ β∗(u∗) ⊆ S1 ∪ S2 ∪ S3.
To prove that Condition (iv) holds, let t∗ ∈ V (T ∗) and and let u∗ be a child of t∗. To

simplify the notation, let σ∗(u∗) := β(u∗) ∩ β∗(t∗) and

γ∗(u∗) :=
⋃

v∗⊵u∗

β∗(v∗). (4)

We need to prove that G[γ∗(u∗) \ σ∗(u∗)] is connected. The key observation is that

γ∗(u∗) \ σ∗(u∗) =
⋃

t∈γ∗
T

(u∗)\σ∗
T

(u∗)

β(t). (5)

The reason for this is that, for all t ∈ γ∗
T (u∗) \ σ∗

T (u∗), it holds that u∗ ⊴ min∗(t), which
implies that β(t) ⊆ β∗(min∗(t)) appears on the right-hand side of (4). It follows from
Lemma 8(iv) that the set γ∗

T (u∗) \ σ∗
T (u∗) is connected in T , and this implies that the union

on the right-hand side of (5) is connected. ◀

Our next goal will be to define the decomposition in the logic CO(1)
O(log n). The following

lemma yields a way to define blocks via triplets of vertices.
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▶ Lemma 14. Let G be a graph, and let B be a proper block of G. Let b1, b2, b3 ∈ B be
pairwise distinct vertices. Then B is the set of all v ∈ V (G) such that there is no set
S ⊆ V (G) \ {v} of cardinality at most 2 separating v from {b1, b2, b3}.

Proof. Let v ∈ B. Since GJBK is 3-connected, there are paths Pi ⊆ GJBK from v to bi that
are internally disjoint, that is, V (Pi) ∩ V (Pj) = {v} for i ̸= j. As GJBK is a topological
subgraph of G, these paths can be expanded to paths P ′

i from v to bi in G, and the P ′
i are

still internally disjoint. Since every S ⊆ V (G) \ {v} of cardinality at most 2 has an empty
intersection with at least one of the paths P ′

i , it does not separate v from {b1, b2, b3}.
Conversely, let v ∈ V (G) \ B, and let C be the connected component of G \ B with

v ∈ V (C), and let S := NG(C). Then |S| ≤ 2. Then S separates v from {b1, b2, b2}. ◀

Let G be a graph and S,X ⊆ V (G). We say that S separates X if there are two distinct
connected components C1, C2 of G \ S such that X ∩ V (Ci) ̸= ∅ for both i = 1, 2.

▶ Lemma 15. Let G be a graph, and let b1, b2, b3 ∈ V (G) be mutually distinct. Then there
is a proper block B with b1, b2, b3 ∈ B if and only if there is a vertex b4 ∈ V (G) \ {b1, b2, b3}
such that no set S ⊆ V (G) of cardinality at most 2 separates {b1, b2, b3, b4}.

Proof. For the forward direction, suppose that B is a proper block with b1, b2, b3 ∈ B. Let
b4 ∈ B \ {b1, b2, b3}. Then it follows from Lemma 14 that there is no S of cardinality at most
2 that separates {b1, b2, b3, b4}.

For the backward direction, let B be the set of all v ∈ V (G) such that no set S ⊆ V (G)\{v}
of cardinality at most 2 separates v from {b1, b2, b3}. Then b1, b2, b3 ∈ B and |B| ≥ 4. It is
easy to prove that B is a block. ◀

▶ Lemma 16. For all n ∈ N, there exist CO(1)
O(log n)-formulas block(n)(x1, x2, x3, y) and

torso(n)(x1, x2, x3, y, z) such that for all graphs G of order at most n and all b1, b2, b3, v ∈
V (G), we have

G |= block(n)(b1, b2, b3, v)

if and only if one of the following holds:
either {b1, b2, b3} is a degenerate block and v ∈ {b1, b2, b3},
or b1, b2, b3 are mutually distinct and there is a proper block B such that b1, b2, b3, v ∈ B.

Moreover, for all b1, b2, b3, v, w ∈ V (G), we have

G |= torso(n)(b1, b2, b3, v, w)

if and only if G |= block(n)(b1, b2, b3, v) and G |= block(n)(b1, b2, b3, w) and vw is an edge of
the torso of the block determined by b1, b2, b3.

Proof. It is easy to express in CO(1)
O(log n) that {b1, b2, b3} is a degenerate block. For proper

blocks, we use Lemmas 14 and 15. ◀

As an immediate consequence, we obtain a formula to define a block separator.

▶ Corollary 17. For all n ∈ N, there exists a CO(1)
O(log n)-formula blocksep(n)(x1, x2) such that

for all graphs G of order at most n and all s1, s2 ∈ V (G), we have

G |= blocksep(n)(s1, s2)

if and only if {s1, s2} is a block separator of G.
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We are ready to define the formula that yields the decomposition from Lemma 11.

▶ Lemma 18. For all h ≥ 0, n ≥ 1, there is a CO(1)
O(h+log n)-formula dec(n)

h (xj
i , yk | i ∈ [4], j ∈

[3], k ∈ [6]) such that the following holds. Let G be a graph of order |G| ≤ n and bj
i , sk ∈ V (G)

for i ∈ [4], j ∈ [3], k ∈ [6] (not necessarily distinct). Then

G |= dec(n)
h (bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6])

if and only if the following conditions are satisfied.
(i) For all i ∈ [4], either Bi := {b1

i , b
2
i , b

3
i } is a block separator or Bi := {b1

i , b
2
i , b

3
i } is a

degenerate block or b1
i , b

2
i , b

3
i are mutually distinct and there is a (unique) block Bi that

contains b1
i , b

2
i , b

3
i .

Let B := B1 ∪ . . . ∪B4.
(ii) S := {s1, . . . , s6} ⊂ B.
(iii) There is a (unique) connected component C of G \ S such that B ⊆ S ∪ V (C).
(iv) The induced subgraph G[S ∪ V (C)] has a rooted tree decomposition (T ∗, β∗) of height

at most h with B = β∗(r∗) for the root r∗ of T ∗.
(v) The tree decomposition (T ∗, β∗) satisfies Conditions (ii)–(iv) of Lemma 11, where all

blocks are blocks of the graph G (rather than of the subgraph G[S ∪ C]).

Proof. The proof is by induction on h ≥ 0.
However, before we begin the induction, we observe that using Lemma 16 and Corollary 17,

we can write a formula in the variables xj
i that expresses Condition (i). It is straightforward

to express Condition (ii), and, again using Lemma 16, to express Condition (iii). So in the
induction, we will focus on Conditions (iv) and (v).

For the case h = 0, observe that a decomposition of height 0 consists of a single node that
covers the whole graph. So we need to express that for the component C we obtain in (iii),
we have V (C) ∪ S = B. Then the 1-node tree decomposition of G[B] satisfies (iv) and (v).

For a 1-node decomposition, Conditions (iii) and (iv) of Lemma 11 are void, and Condi-
tion (ii) of Lemma 11 follows from Condition (i) of this lemma.

For the inductive step h → h+1, suppose we have a graph G and elements bj
i , sk satisfying

Conditions (i)–(iii) for suitable sets B,S,C. It suffices to express that for each connected
component C ′ of G[S ∪ V (C)] \B, we can find a decomposition of height h that covers C ′

and attaches to B in a way that satisfies the conditions of Lemma 11.
So let G′ := G[S∪V (C)], and let C ′ be a connected component of G′\B. Let S′ := NG(C ′).

If |S′| > 6, then there definitely is no decomposition with the desired properties. Suppose
that S′ = {s′

1, . . . , s
′
6}. Then, if there are b′j

i ∈ S′ ∪ V (C ′) such that G |= dec(n)
h (b′j

i , s
′
k |

i ∈ [4], j ∈ [3], k ∈ [6]), the desired decomposition that covers C ′ exists by the induction
hypothesis. If this is the case for all C ′, we can combine the decompositions to form the
desired decomposition of G′. Conversely, if there is a decomposition of G[S′ ∪ V (C ′)] of
height h in the sense of Lemma 11 such that for the root u∗, the bag β∗(u∗) contains S′,
then there are blocks or block separators B′

1, . . . , B
′
4 such that β∗(u∗) = B′

1 ∪ . . .∪B′
4. From

the B′
i, we obtain b′j

i such that G |= dec(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]), again by the

induction hypothesis.
To conclude, in addition to the subformulas taking care of Conditions (i)–(iii), the

formula dec(n)
h+1 must have a subformula stating that, for all connected components C ′ of

G′ \ B, there exist s′
k ∈ B for k ∈ [6] and b′j

i ∈ S′ ∪ V (C ′) for i ∈ [4], j ∈ [3] such that
{s′

1, . . . , s
′
6} = NG(C ′) and dec(n)

h (b′j
i , s

′
k | i ∈ [4], j ∈ [3], k ∈ [6])
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b1
1 b2

1 b2
2

b3
1 b3

2

b4
1

Figure 2 A (simplified) schematic visualisation of the rooted tree decomposition (T ∗, β∗) from
Lemma 11. For simplicity, all Bi in the bag of the purple node are depicted as distinct proper blocks.

Note that, in each step h → h+ 1, we need to use formulas of quantifier depth O(log n) to
express the desired connectivity conditions, for example to speak about components C ′, and
to express that the bj

i define blocks. However, the formula dec(n)
h occurs only in the scope of

constantly many (19, to be precise) quantifiers ranging over an element of the component(s)
C ′ and the b′j

i , s
′
k. Overall, the quantifier depth will be O(h) +O(log n). ◀

5 Canonisation

In this section, we finally prove Theorems 1 and 2. By the logical characterisation of the WL
algorithm given in Theorem 4, we obtain Theorem 1 as a corollary from Theorem 2, which
we prove below.

In the following, for a graph G and a list of vertices v1, . . . , vℓ ∈ V (G), we denote by
(G, v1, . . . , vℓ) the graph G with individualised vertices v1, . . . , vℓ. That is, (G, v1, . . . , vℓ)
and (G′, v′

1, . . . , v
′
ℓ′) have the same isomorphism type if and only if ℓ = ℓ′ and there is an

isomorphism from G to G′ that maps vi to v′
i for every i ∈ [ℓ].

▶ Lemma 19. For all h ≥ 0, n ≥ 1 and all connected planar graphs G of order |G| ≤ n, and
all bj

i , sk ∈ V (G) for i ∈ [4], j ∈ [3], k ∈ [6] (not necessarily distinct) such that

G |= dec(n)
h (bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6]),

there is a CO(1)
O(h+log n)-formula iso(n)

h (xj
i , yk | i ∈ [4], j ∈ [3], k ∈ [6]) (which depends on

the bj
i and the sk) such that the following holds. Let H be a connected graph of order

|H| ≤ n and b′j
i , s

′
k ∈ V (H) for i ∈ [4], j ∈ [3], k ∈ [6] (not necessarily distinct) and assume

H |= dec(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]). Then

H |= iso(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6])

if and only if for the connected components CG, CH that Lemma 18 yields for G and H, it
holds that

(
H[{s′

1, . . . , s
′
6} ∪ V (CH)], (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6])

) ∼=
(
G[{s1, . . . , s6} ∪

V (CG)], (bj
i , sk | i ∈ [4], j ∈ [3], k ∈ [6])

)
.

Proof. For the following arguments, see also Figure 2 for a better intuition.
Let n ∈ N and let G be a connected planar graph with |G| ≤ n. The proof is by induction

on h ≥ 0.
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First, given a second connected graph H of order at most |G| that satisfies the dec(n)
h -

formula, we can assume that the first four triplets of vertices form the same types of blocks
and block separators (of corresponding sizes), respectively, in H as in G, since otherwise we
can distinguish the graphs using the formulas from Lemma 16 and Corollary 17.

Note that there is a formula bag(n)(x1
1, . . . , x

3
4, y) ∈ CO(1)

O(log n) such that for all graphs
H of order at most n and all b′1

1 , b
′2
1 , b

′3
1 , . . . , b

′1
4 , b

′2
4 , b

′3
4 , v ∈ V (H), it holds that H |=

bag(n)(b′1
1 , . . . , b

′3
4 , v) if and only if each set {b′j

i | j ∈ [3]} for i ∈ [4] is a block separator Bi

or a degenerate block Bi or contained in a proper block Bi of H and v is in B :=
⋃4

i=1 Bi.
The case that h = 0 follows analogously as the formula for the isomorphism type of the

root bag in the inductive step. We therefore focus on the inductive step. Assume that for
every list of vertices (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]) ∈ V (G)18, where

G |= dec(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]),

there is a CO(1)
O(h+log n)-formula

isoG,(b′j
i

,s′
k

|i∈[4],j∈[3],k∈[6])(x
′1
1 , . . . , x

′3
4 , y

′
1, . . . , y

′
6)

that defines the isomorphism type of (G[{s′
1, . . . , s

′
6}∪V (C ′)], (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6])),

where C ′ is the connected component from Parts (iii)–(v) in Lemma 18.
Let (bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6]) ∈ V (G)18 be a list of vertices such that

G |= dec(n)
h+1(bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6]).

For B1, B2, B3, B4, B,C, S as described in Lemma 18, let (T ∗, β∗) be the rooted tree decom-
position from Condition (iv) in Lemma 18. Let r∗ be the root of T ∗. By Condition (iv) in
Lemma 18, it holds that β∗(r∗) = B =

⋃4
i=1 Bi. Consider a Bi with |Bi| ≥ 4. Then Bi

is a proper block, in which, by Theorem 5, we can find vertices v1
i , v

2
i , v

3
i such that for all

w ∈ Bi, there is a CO(1)
O(log n)-formula id′

w(x1
i , x

2
i , x

3
i , y) such that G[[Bi]] |= id′

w(v1
i , v

2
i , v

3
i , w)

and G[[Bi]] ̸|= id′
w(v1

i , v
2
i , v

3
i , w

′) for every w′ ∈ Bi \ {v}. (In every Bi with |Bi| ≤ 3, such
vertex-identifying formulas with four free variables exist trivially and they also identify the
vertex the entire graph G.)

For simplicity, first assume that for all i with |Bi| ≥ 4, the vertex vj
i equals bj

i for
j ∈ [3]. Then by replacing in id′

v(x1
i , x

2
i , x

3
i , y) every subformula of the form ∃≥kxψ with

∃≥kx(ψ ∧ block(n)(x1
i , x

2
i , x

3
i , x)) and every E(x, y) with torso(n)(x1

i , x
2
i , x

3
i , x, y), we easily

obtain for each v ∈ B a CO(1)
O(log n)-formula idv(x1

1, . . . , x
3
4, y) with idv[G, b1

1, . . . , b
3
4, y] = {v}.

Now we can use these formulas to address each vertex individually. More formally, we
can define the edge relation of G[B] by setting, for v, w ∈ B with v ̸= w,

φv,w(x, y) :=
{
E(x, y) if vw ∈ E(G),
¬E(x, y) otherwise.

Then the CO(1)
O(log n)-formula

isoB(x1
1, . . . , x

3
4) :=

∧
v,w∈B

∃=1x
(

idv(x1
1, . . . , x

3
4, x) ∧ ∃=1x′(idw(x1

1, . . . , x
3
4, x

′) ∧ φv,w(x, x′)
))

∧ ¬∃x
(

bag(n)(x1
1, . . . , x

3
4, x) →

∧
w∈B

¬idw(x1
1, . . . , x

3
4, x)

)
∧

∧
v ̸=w∈B

¬∃x
(

idv(x1
1, . . . , x

3
4, x) ∧ idw(x1

1, . . . , x
3
4, x)

)
defines the isomorphism type of (G[B], b1

1, . . . , b
3
4) (see the purple bag in Figure 2).
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We now construct a formula that describes how the connected components of G[S ∪
V (C)] \B are attached to G[B]. Let G′ := G[S ∪V (C)]. By Condition (iii) in Lemma 11, for
every connected component C ′ of G′ \B, it holds that |NG(C ′)| ≤ 6 (see the coloured shapes
attached to the purple one in Figure 2). Hence, we iterate over all tuples (s′

1, . . . , s
′
6) ∈ B6:

let Ms′
1,...,s′

6 be the multiset of isomorphism types of the graphs (G[S′ ∪ C ′], s′
1, . . . , s

′
6),

where S′ := {s′
i | i ∈ [6]} and C ′ is a connected component of G′ \B with NG(C ′) = S′.

Since G |= dec(n)
h+1(bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6]), for every (s′
1, . . . , s

′
6) ∈ B6 and

every connected component C ′ of G′ \ B with NG(C ′) = {s′
1, . . . , s

′
6}, there exist vertices

(b′j
i | i ∈ [4], j ∈ [3]) ∈ (S′ ∪ V (C ′))12 such that

G[S′ ∪ V (C ′)] |= dec(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]).

So, by the induction hypothesis, there is a formula isoM (x′1
1 , . . . , x

′3
4 , y

′
1, . . . , y

′
6) ∈ CO(1)

O(h+log n)

for the isomorphism type M of (G[{s′
1, . . . , s

′
6} ∪ V (C ′)], (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6])).

Note that by Condition (ii) in Lemma 18, at least one of the vertices b′j
i will lie outside B.

Using the counting quantifiers, we can use the isoM to make sure that every isomorphism
type appears with the correct multiplicity. More precisely, we first group all components
with equal isomorphism types. The fact that they are of the same size enables us to define
their number (e.g. the three green shapes in Figure 2). This then allows us to build a formula
iso′

M(y′
1, . . . , y

′
6) which identifies the graph (G[S′ ∪

⋃
C′:NG(C′)=S′ V (C ′)], s′

1, . . . , s
′
6) (where

M := Ms′
1,...,s′

6 and the C ′ are connected components of G′ \B). Using the dec(n)
h -formula,

we can turn iso′
M(y′

1, . . . , y
′
6) into a formula isoM(x1

1, . . . , x
3
4, y1, . . . , y6, y

′
1, . . . , y

′
6) that en-

sures that isoM(b1
1, . . . , b

3
4, s1, . . . , s6, s

′
1, . . . , s

′
6) describes for S′ := {s′

1, . . . , s
′
6} the subgraph

(G[S′ ∪
⋃

C′:NG(C′)=S′ V (C ′)], s′
1, . . . , s

′
6), where the C ′ are connected components of G′ \B,

up to isomorphism.
Hence, it suffices to conjugate isoB(x1

1, . . . , x
3
4) with a conjunction over all (s′

1, . . . , s
′
6) ∈ B6

of the following formula

∃y′
1 . . . ∃y′

6

( 6∧
i=1

ids′
i
(x1

1, . . . , x
3
4, y

′
i) ∧ isoM(x1

1, . . . , x
3
4, y1, . . . , y6, y

′
1, . . . , y

′
6)
)
,

where M := Ms1,...,s6 , to obtain the desired isoG,(bj
i
,sk|i∈[4],j∈[3],k∈[6])(x

1
1, . . . , x

3
4, y1, . . . , y6).

We now consider the general case where it does not necessarily hold for all i, j that
vj

i = bj
i . We assume for notational simplicity that for all i, the b1

i , b
2
i , b

3
i define a block. It is

easy to adapt the following construction to the situation that block separators are present.
We introduce one nested existential quantifier ∃x̃j

i for each of the vj
i so that our resulting

formula isoG,(bj
i
,sk|i∈[4],j∈[3],k∈[6])(x

1
1, . . . , x

3
4, y1, . . . , y6) looks as follows:

∃x̃1
1 . . . ∃x̃3

4

( 3∧
j=1

4∧
i=1

block(n)(x1
i , x

2
i , x

3
i , x̃

j
i ) ∧ isoB(x̃1

1, . . . , x̃
3
4) ∧

∧
(s′

1,...,s′
6)∈B6

∃y′
1 . . . ∃y′

6

( 6∧
i=1

ids′
i
(x̃1

1, . . . , x̃
3
4, y

′
i) ∧

isoM(x1
1, . . . , x

3
4, y1, . . . , y6, y

′
1, . . . , y

′
6)
))

.

The bounds on the quantifier depth and the number of variables follow similarly as in
the proof of Lemma 18. ◀

ICALP 2021



134:18 WL on Planar Graphs

Applying Lemma 8, we can deduce Theorem 2.

Proof of Theorem 2. Let n ∈ N and let G be a planar graph with order |G| = n. If G is
not connected, we construct one formula for each connected component of G (as described in
the following) and join them to obtain the identifying sentence.

So suppose G is connected. Then by Lemma 11, G has a rooted tree decomposition
(T ∗, β∗) of logarithmic height and adhesion at most 6 for which every bag is a union of four
(not necessarily distinct) blocks or block separators and also Condition (iv) of the lemma
holds. Let b1

1, . . . , b
3
4 be vertices that determine the blocks and block separators in the root

bag B of (T ∗, β∗).
If there is a vertex s ∈ B such that there is a unique connected component C of G \ {s}

with B ⊆ {s} ∪ V (C), then there are vertices bj
i , sk for i ∈ [4], j ∈ [3], k ∈ [6] (e.g. sk = s for

all k) such that G satisfies dec(n)
2 log |G|(b

j
i , sk | i ∈ [4], j ∈ [3], k ∈ [6]). Then the sentence

∃x1
1 . . . ∃x3

4∃y1 . . . ∃y6isoG,(bj
i
,sk|i∈[4],j∈[3],k∈[6])(x

1
1, . . . , x

3
4, y1, . . . , y6)

identifies G, where isoG,(bj
i
,sk|i∈[4],j∈[3],k∈[6]) is the formula from Lemma 19.

Otherwise, let s ∈ B be a vertex such that G \ {s} has multiple connected components
Ci and let Gi := G[V (Ci) ∪ {s}]. Then the restriction of (T ∗, β∗) to each Gi still satisfies
the conditions of Lemma 11, because the block structure of Gi is just the block structure
induced by G on V (Gi) (that is, the blocks of Gi are precisely those blocks of G contained
in V (Gi), and similarly for the block separators). This yields by Lemma 19 an identifying
formula φi(y) for each (Gi, s), which we can join by isomorphism type of (Gi, s) to obtain
an identifying sentence. ◀

We can directly deduce Theorem 1.

Proof of Theorem 1. The theorem follows from Theorems 2 and 4. ◀

6 Conclusion

We prove that planar graphs are identified by the WL algorithm with constant dimension
in a logarithmic number of iterations, thereby completing a project started by Verbitsky
fourteen years ago with his proof of the same result in the special case of 3-connected planar
graphs. Our proof is based on the careful analysis of a novel logarithmic-depth decomposition
of graphs into their 3-connected components.

It is unclear which dimension of the WL algorithm is necessary to identify planar graphs
in logarithmically many iterations and if there is a (provable) trade-off between dimension
and iteration number. This is not only interesting for planar graphs, and many questions
remain open.

We leave it as another interesting open project whether our result can be extended
to graph classes of bounded genus. As it stands, our proof heavily relies on properties
of 3-connected planar graphs that are not shared by 3-connected graphs of higher genus.
Similarly, we pose as a challenge to find good bounds on the iteration number of the WL
algorithm on other parameterised graph classes, such as graphs with a certain excluded minor
or graphs of bounded rank width.
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Abstract
We display an application of the notions of kernelization and data reduction from parameterized
complexity to proof complexity: Specifically, we show that the existence of data reduction rules for
a parameterized problem having (a). a small-length reduction chain, and (b). small-size (extended)
Frege proofs certifying the soundness of reduction steps implies the existence of subexponential size
(extended) Frege proofs for propositional formalizations of the given problem.

We apply our result to infer the existence of subexponential Frege and extended Frege proofs
for a variety of problems. Improving earlier results of Aisenberg et al. (ICALP 2015), we show
that propositional formulas expressing (a stronger form of) the Kneser-Lovász Theorem have
quasipolynomial size Frege proofs for each constant value of the parameter k.

Another notable application of our framework is to impossibility results in computational social
choice: we show that, for any fixed number of agents, propositional translations of the Arrow and
Gibbard-Satterthwaite impossibility theorems have subexponential size Frege proofs.
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1 Introduction

The central task of proof complexity [10, 30] is that of understanding (and distinguishing)
the relative power of various propositional proof systems. Proving lower bounds for stronger
and stronger proof systems might (in principle) be a way to eventually confirm the various
conjectures of computational complexity. Yet we are far from being able to prove exponential
lower bounds for some concrete problems in strong proof systems.

One of the most important open problems in this area, explicitly raised by Bonet, Buss
and Pitassi [6] is that of separating the complexity of Frege proof systems (“textbook style
propositional proofs”) from that of extended Frege proof systems (which in addition can
introduce new variables as substitutes for arbitrary propositional formulas). That is, we
would like to find explicit classes of propositional formulas that have extended Frege proofs
of polynomial size but have exponential lower bounds on the size of the shortest Frege proofs.

Many classes of problems that are candidates for separating the two systems have been
proposed, e.g. statements based on linear algebra [24,36], propositional encodings of the Paris-
Harrington independence results [11], Ramsey’s theorem [31], central theorems from extremal
combinatorics [1, 34], or the Kneser-Lovász formula from combinatorial topology [2, 27]).
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So far most of the proposed examples have turned out to have sub-exponential Frege proofs
(only a couple of candidate formula classes for the purported separation have been advanced,
such as local improvement principles [28], or truncations of the octahedral Tucker lemma [2]).
On the other hand many of the tractability results listed above have been obtained using
techniques that are highly problem-specific, with relatively little transferability to more
general classes of formulas. The existence of such general methods would be highly desirable:
such general results could guide the search for examples witnessing the desired separation by
pointing to structural properties one needs to avoid in order to construct them.

The purpose of this paper is to present a more general approach for proving sub-exponential
upper bounds for the Frege and extended Frege proof complexity of some classes of proposi-
tional formulas. We point out that concepts from the theory of parameterized complexity [18],
specifically those of data reduction and kernelization [19] may be relevant to proof complexity
as well1. We give a metatheorem that translates a data reduction for the original problem
whose soundness can be witnessed by polynomial size (extended) Frege proofs into subexpo-
nential proofs for the corresponding propositional translation of the original problem. The
exact size of these proofs is controlled by three factors: the length of the data reduction
chain, the nature and size of the proofs witnessing the soundness of the reduction rules, and
the size of proofs of unsatisfiability for the formulas in the kernel.

We give several applications of our metatheorem. The use of kernelization techniques
does not only allow to tackle the complexity of new problems, but also to improve existing
results: In [2] it was shown that propositional formulas Knesern,k expressing a principle
from topological combinatorics known as the Kneser-Lovász theorem have, for every fixed
value of parameter k, quasipolynomial size Frege proofs. We improve this result by showing
quasipolynomial upper bounds for a principle stronger than the Kneser-Lovász theorem,
known as Schrijver’s theorem. Other applications of our metatheorem concern several (mostly
graph-theoretic) problems whose kernelization had previously been studied in the theory
of parameterized algorithms. The problems we study are well-known examples satisfying
two conditions: First, their negative instances have natural formulations as unsatisfiable
CNF formulas. Second, they have efficient kernelizations, often with a small kernel. The
problems we have chosen illustrate an important point: several techniques used in the
literature to prove the existence of a kernelization can often be efficiently simulated by
(extended) Frege proofs. Perhaps the most interesting set of applications of our general
metatheorem comes, however, from the theory of computational social choice [7]: as it
was recently observed, various propositional formalizations of impossibility principles in
the theory of computational social choice have computer-assisted proofs that reduce the
task of mathematically proving these theorems to the verification of a finite number of
cases of unsatisfiability of propositional formulas (using SAT solvers; see [22] for a fairly
recent overview)2. We obtain subexponential upper bounds on the complexity
of Frege proofs for propositional formulations of Arrow’s theorem and the
Gibbard-Satterthwaite theorem: quasipolynomial in general, polynomial for a
fixed number of agents.

1 This is not the first time a connection between parameterized complexity and proof complexity was
made; see e.g. [5, 16]. However, our concerns are rather different.

2 A similar phenomenon had been independently uncovered for the Kneser-Lovász theorem [2].
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2 Preliminaries

We assume basic familiarity with concepts from three distinct areas: proof complexity,
parameterized algorithms and computational social choice. We refer the reader to [7, 19, 30]
for book-length treatments of these topics. Nevertheless, for purposes of readability we
review a couple of relevant notions in the sequel:

▶ Definition 1. A Frege proof system is a sound and complete propositional proof systems
having a finite number of axioms and inference rules. An extended Frege proof augments
Frege proofs by allowing new variables to substitute complex formulas.

All Frege proof systems are equivalent up to polynomial transformations [15]. Therefore,
for concreteness, we will employ a standard “textbook proof style” system having modus
ponens as the unique inference rule. In both cases we measure the length of a proof by
the number of steps in it. Thus the effect of the extension rule in extended Frege proofs is
reducing proof length.

We use the shorthand [m] for the set {1, 2, . . . , m}, [i : j] for {i, i + 1, . . . , j}, and write
A ∼= B when sets A, B have the same cardinality. Function f(·) is called quasipolynomial if
there exists k > 0 such that f(n) = O(2O(logk(n)). We will need the following simple

▶ Lemma 2. Suppose C is a CNF formula and Z1, . . . , Zm are literals s.t. C ∧ (Z1 ∧ Z2 ∧
. . . ∧ Zm) is unsatisfiable, as witnessed by a resolution (Frege) proof of length k. Then one
can derive from C clause Z1 ∨ Z2 ∨ . . . ∨ Zm via a resolution (Frege) proof of size at most k.

▶ Definition 3 (Parameterized problem). Let Σ be an alphabet. L is a parametrized problem
over Σ∗ iff L ⊆ Σ∗×N. Define the support of L, by supp(L) = {x ∈ Σ∗|(∃k ∈ N) : (x, k) ∈ L}.

Let L be a parameterized problem in co-NP. Let ϕ be a “canonical” reduction of L

to SAT . When ϕ is clear from the context, we identify L with the set of pairs ϕ(L) :=
{(ϕ(x, k), k) : (x, k) ∈ L}, slightly abusing notation, and writing L instead of ϕ(L).

▶ Example 4 (Graph colorability). Let COL = {(G, i) | χ(G) ≤ i} . We can encode instances
(G, k) of COL as SAT instances (ϕ(G, k), k) by the reduction ϕ informally defined by:

For v ∈ V (G) and 1 ≤ i ≤ k define boolean Xv,i =TRUE iff v is colored with color i.
For every pair of distinct vertices v, w ∈ G we define variable Yv,w. The semantics is that
Yv,w = TRUE means that v and w are connected by an edge. Thus, for all sets {v, w}
that correspond to an edge we add to ϕ(G, k) the unit clause Yv,w. On the other hand,
for sets {v, w} that correspond to non-edges we add to ϕ(G, k) the unit clause Yv,w.
For every v ∈ V add Xv,1 ∨ Xv,2 ∨ . . . ∨ Xv,k. (“v must be colored with one of colors 1
to k”)
For v ∈ V and 1 ≤ i < j ≤ k add Xv,i ∨ Xv,j . (“v cannot be colored with both i and j”)
For every set v, w ∈ V and i ∈ 1 . . . k, add clause Yv,w ∨ Xv,i ∨ Xw,i. (“if v and w are
connected then they cannot both be colored with color i”)

▶ Definition 5. Define graph, Knn,k, parameterized by an integer k ≥ 1: The vertex set of
Knn,k is

(
n
k

)
, the set of subsets of {1, 2, . . . , n} with k elements. Two sets A, B represent

adjacent vertices iff A ∩ B = ∅.

The Kneser-Lovász theorem (see e.g. [17]) is a statement about the chromatic number of
Knn,k, equivalently restated as χ(Knn,k) > n − 2k + 13. It is expressed as a parameterized
problem as follows: LKn =

{
(Knk

n, i) : n ≥ 2k > 1, i ≤ n − 2k + 1
}

. Note that LKn ⊆

3 actually χ(Knn,k) = n − 2k + 2. However, the existence of a (n − 2k + 2)-coloring is easy [17].

ICALP 2021
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COL, hence we can use the translation from Example 4 to canonically translate LKn as a set
of unsatisfiable propositional formulas. Similar propositional translations of other constraint
satisfaction problems appear e.g. in [25,33].

The next problem is just the graph coloring problem, but with a different parameterization:

▶ Definition 6. An instance of the Dual Coloring problem is a pair (G, k), where G is
a graph with n vertices and k is an integer. To decide: is χ(G) ≤ n − k ? That is, let
DualCol = {(G, k) : χ(G) ≤ n − k}. We have (G, k) ∈ DualCOL ⇔ (G, n − k) ∈ COL. For
this reason the translation of DualCOL into SAT modifies the one from COL to SAT in
Example 4 in an obivious way.

Given graph G, a vertex cover in G is a set S ⊆ V (G) such that for every edge e = (v, w),
v ∈ S or w ∈ S. We denote by vc(G) the size of the smallest vertex cover of G.

▶ Example 7 (Vertex Cover). Let V C = {(G, i) | i < vc(G)} be the set of unsatisfiable
instances of Vertex Cover. We can encode (negative) instances (G, k) of V C as instances
ϕ(G, k) of SAT by the reduction ϕ informally defined as follows:

For every v ̸= w ∈ V , (v, w) ∈ E add new unit clause Yv,w to the formula. For (v, w) ̸∈ E

add new unit clause Yv,w, to the formula.
For v ∈ V (G) and i ∈ 1 . . . k define boolean variable Xv,i with the informal semantics
Xv,i is TRUE when vertex v is the i’th vertex in a vertex cover of size k. To encode this
semantics add to the formula, for every v ∈ V and i ∈ 1, . . . , k, clause Xv,i ∨ (

∨
w ̸=v Yv,w).

This ensures that if v is chosen in the vertex cover then it covers some edge (v, w). With
some extra technical complications one can do away with adding these clauses.
For every i = 1, . . . , k we add to the formula clause

∨
v∈V Xv,i.

For every v ̸= w ∈ V and 1 ≤ i ≤ k we add to the formula clause Xv,i ∨ Xw,i.

For every v ∈ V and 1 ≤ i < j ≤ k we add to the formula clause Xv,i ∨ Xv,j .

For v ̸= w ∈ V add to the formula clause Yv,w ∨ Xv,1 ∨ . . . ∨ Xv,k ∨ Xw,1 ∨ . . . ∨ Xw,k.

▶ Definition 8 (Kernelization). Let L be a parametrized problem. A kernelization algorithm
(or, shortly, kernelization) Ker for the problem L is an algorithm that works as follows:
on input (x, k), Ker outputs (in time polynomial in |(x, k)| ) a pair (x′, k′), such that the
following are true: (x, k) ∈ L iff (x′, k′) ∈ L, and |x′|, k′ ≤ g(k), where g is a computable
function. Pair (x′, k′) is called the kernel of (x, k), while g(k) is called the size of the kernel.

One can convert a kernelization into an algorithm by solving kernel instances by other
means (e.g. brute force). A kernelization is often the reflexive, transitive closure of a finite
set of data reduction rules: we apply the rules as long as possible, until we are left with an
instance, the kernel, to which no rule can be applied anymore.

▶ Definition 9 (Data reduction rule). Let L be a parameterized problem. A data reduction
rule for L is an algorithm A that maps (in time polynomial in |x| + k) an instance (x, k)
of L to an instance (x′, k′) such that (x, k) ∈ L iff (x′, k′) ∈ L (we say that the two instances
are equivalent, or that the reduction rule is safe), and |x′| ≤ |x|. In practice, a data reduction
rule may be well-defined only for |x| ≥ f(k), for some function f(·), as we can simply extend
it to smaller instances (x, k) by defining A(x, k) = (x, k). All kernelizations in this paper
have this nature, and we will assume this to be true for all the results we give in the sequel.

▶ Definition 10 (Data reduction chain). Given parameterized problem L kernelizable via data
reductions (A1, A2, . . . , Ar), a data reduction chain for instance (x, k) of L is a sequence
(x0, k0), (x1, k1), . . . , (xm, km), where (x0, k0) = (x, k), At(xm, km) = (xm, km), for all t =
1, . . . r and, for all i = 1, . . . , m there exists j ∈ 1, . . . , r such that (xi, ki) = Aj(xi−1, ki−1).
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▶ Example 11 (Data reduction for Kneser instances:). Reductions (Kn2
n, a) −→ (Kn2

n−1, a − 1)
and (Kn3

n, a) −→ (Kn3
n−1, a − 1) were used in [27] to give polynomial size extended Frege

upper bounds for Kneser formulas for k = 2, 3.
For k ≥ 2 there exists N(k) ≤ k4 such that for n > N(k) (Kk

n, a) −→ (Kk
n−1, a − 1). This

was used in [2] to give polynomial size extended Frege upper bounds for Kneser formulas.
For k ≥ 2 there exists N(k) ≤ k4 such that for n > N(k) (Knk

n, a) −→ (Knk
n− n

2k
, a − n

2k ).
This was used in [2] to give quasipolynomial size Frege proofs for Kneser formulas.

Our results will work by formalizing data reductions which solve the decision for an
instance X1 of a parameterized problem by reducing it to a smaller instance X2 of the
same problem. This will map, propositionally, to witnessing the soundness of an implication
Φ1 ⊢ Φ2. However, to make Φ2 a propositional tranlation of an instance of the same problem,
we will need to use variable substitutions Y = Ξ[X]. That is, the reduction we witness
is actually Φ1[X] ⊢ Φ2[Y ]. When we will refer to the proof complexity of witnessing an
implication Φ1 ⊢ Φ2 using (extended) Frege proofs, what we mean is that one can derive
the clauses of Φ2[Y ] using the clauses of Φ1[X] as axioms. Since they use substitutions,
these are extended Frege proofs. To convert them into Frege proofs one needs to unwind the
definitions of newly defined variables.

▶ Definition 12. A crown decomposition of a graph G (see e.g. Fig. 1 (b).) is a
decomposition of V (G) into three subsets C, H, R, C ̸= ∅ such that (1). C is an independent
set. (2). No vertex in C is adjacent to a vertex in R. (3). There exists a matching of H in
C, i.e. a set of disjoint edges covering H with the other endpoint in C.

1, 2

3, 4

2, 5 1, 3

4, 5

3, 5

1, 2

1, 4 2, 4

2, 3

1
2 3

4

5
6

7

8
9

10

11

C

H

R

Figure 1 (a). The Kneser graph Kn5,2. (b). A crown decomposition of a graph.

Given a set S and T ⊆ S, we will denote, as in [37,38], by S−T the set S \ T . We will also
write S−a instead of S−{a}. When S = [m], of course [m]−T

∼= [m − |T |] for every T ⊆ [m].

▶ Definition 13. Given a set of m objects, identified with the set [m], a preference profile
is a linear ordering of [m], i.e. a permutation π ∈ Sm. Given a, b ∈ [m] we say that a is
preferred to b (written a <π b) iff π−1(a) < π−1(b). Note that preferred objects are
lower in the ordering. We denote by top(π) the object π−1(1), i.e. the object that is
preferred in π to all others. Given a preference profile π and T ⊆ [m], denote by π−T the
restriction of π to [m]−T , and by π+T the preference profile derived from π by making all
elements a ∈ T less preferred than any other b ∈ [m] (with an arbitrary fixed order among
them, e.g. the order induced on [m] by the identical permutation).

▶ Definition 14. Given a set of m objects, identified with the set [m] and a set of n agents,
a social choice function (SCF) is a mapping s : Sn

m → Z. Z is a set equal to Sm (for
Arrow’s theorem) and to [m] (for the Gibbard-Satterthwaite theorem). A SCF is dictatorial
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if there exists i ∈ [m] such that for all R1, R2, . . . , Rn ∈ Sm, s(R1, R2, . . . , Rn) = Ri

(s(R1, R2, . . . , Rn) = top(Ri) for the Gibbard-Satterthwaite theorem). A SCF is unanimous
if whenever a is preferred to b in all profiles R1, R2, . . . , Rn then a is preferred to b in
profile s(R1, R2, . . . , Rn). SCF s satisfies the independence of irrelevant alternatives
(IIA) axiom (for Arrow’s theorem) if whenever a, b ∈ [m] are two different objects and
(R1, R2, . . . , Rn) ∈ Sn

m and (R′
1, R′

2, . . . , R′
n) ∈ Sn

m are two vectors of preference profiles
such that, for all i = 1, . . . m, Ri and R′

i agree in their relative preference of a or b, then
s(R1, R2, . . . , Rn) and s(R′

1, R′
2, . . . , R′

n) agree in their relative preference of a or b. A SCF
is onto iff it is onto as a function. Finally, for every pair (R, o), R = (R1, . . . , Rn) and
player 1 ≤ i ≤ m, denote by pr(i, o, R) the set of objects o′ s.t. R−1

i (o) ≤ R−1
i (o′) (i.e. i

weakly prefers o to o′ in Ri). A SCF s is strategyproof (for the Gibbard-Satterthwaite
theorem) iff, for every strategy profile R, if o is the outcome of preference profile R then
i cannot misrepresent its preferences as π ∈ Sm, π ̸= Ri so that the social choice for the
resulting profile s(i, R, π) is an o′ that i strictly prefers to o.

Given an SCF W : [m]n → Z and B ⊆ [m] we define function W−B : [m]n−B → Z to be
defined as follows: W−B(R1, R2, . . . , Rn) = W (R+B

1 , R+B
2 , . . . , R+B

n )−B . In other words, we
extend profiles R1, R2, . . . , Rn by making objects in B less preferred than all other objects,
apply W on the resulting profiles, then drop objects from B from the result.

3 Main (Meta)Theorem and Applications

In the next definition we formalize the complexity of simulating data reduction steps by
(extended) Frege proofs. Clearly, we want to encode the scenario where each such step can
be simulated by efficient proofs. Our main result will allow a slightly more general setting,
where the safety of each reduction step can be established by a “case by case argument with
a limited number of cases”. This will lead not to a chain but to a tree of logical reductions:

▶ Definition 15. Given reduction rule A for problem L and function h(·), the soundness
of A has (extended) Frege proofs of size h(·) iff there is an integer R ≥ 1 s.t. for
every (x, k) ̸∈ L and every step (xi, ki) → (xi+1, ki+1) in the reduction chain the following
are true:

There exists r′
i ≤ R, tautology Ξi :=

∨r′
i

t=1 Ξi,t and formulas ηi,1, . . . ηi,r′
i

isomorphic (up
to a variable renaming) to Φ(xi+1, ki+1) s.t. for t = 1, . . . , r′

i, Φ(xi, ki) ∧ Ξi,t ⊢ ηi,t.
Proving the soundness of Ξi and of all reductions Φ(xi, ki)∧Ξi,t ⊢ ηi,t can be accomplished
by (extended) Frege proofs of total size at most h(|Φ(x, k)|).

In other words, the kernelization may encode a case-by-case construction with a constant
number, at most R, of cases. Each case will lead to a different reduced formula. The
consistency of all those reductions is witnessed by proofs with a common polynomial upper
bound. Given this definition, our main (meta)theorem is:

▶ Theorem 16. Let L be a parameterized problem that is kernelizable via a finite number of
data reduction rules (A1, A2, . . . , Ar) with kernel size g(·).
1. Assume that negative instance (x, k) of L has a data reduction chains of length C(x, k),

and that the soundness of each reduction rule A1, A2, . . . , Ar can be witnessed using
extended Frege proofs of size at most h(|Φ(x, k)|), for some function h(·). Then L has

extended Frege proofs of size O((
C(x,k)∑

i=0
Ri)[h(|Φ(x, k)|) + 2O(poly(g(k)))]). In particular, if

R = 1 and for every fixed k we have C(x, k) = O(poly(|Φ(x, k)|)) then, for every fixed k,
negative instances Φ(x, k) of L have extended Frege proofs of size polynomial in |Φ(x, k)|.
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2. Assume that negative instances (x, k) of L have data reduction chains of length C(x, k) =
O(1) (O(log(|Φ(x, k)|)), respectively), where the constant may depend on k, and that
the safety of each reduction Φ(xi, ki) ⊢ Φ(xi+1, ki+1) is witnessed by Frege proofs of size
≤ p(|Φ(x, k)|), for some fixed polynomial p(·) Then for every fixed k, negative instances
(Φ(x, k), k) of L have Frege proofs of size polynomial (quasipolynomial) in |Φ(x, k)|.

Proof.

1. Given an instance (x, k) of L, and data reduction chain (x, k) = (x0, k0), (x1, k1),,
. . . (xm, km), an extended Frege proof for Φ(x, k) is obtained by concatenating the proofs
for statements Φ(xi−1, ki−1) ⊢ Φ(xi, ki) with an extended Frege proof of the kernel
instance. There is one complication, though, induced by the fact that we allow at most R

cases in the reduction: the reduction chain maps to a tree of propositional proofs, since
for each node Φ(xi, ki) we have r′

i ≤ R children Ξi,t, all isomorphic to Φ(xi+1, ki+1) (but
different). The total number of nodes in this tree is at most

∑C(x,k)
t=0 Rt.

Then the whole chain of reductions from Φ(x, k) to Φ(xm, km) can be proved to be sound
by proofs of length (

∑C(x,k)
t=0 Rt) · h(|Φ(x, k)|). There are at most RC(x,k) copies of the

kernel instance. Each of them can be proved (in brute force) in size O(2|Φ(xm,km)|) =
O(2poly(g(k))), since (xm, km) ∈ ker(L) and any unsatisfiable formula Ξ with n variables
has Frege proofs of size O(2n).
The length of the total proof is thus O(

∑C(x,k)
t=0 Rt · [h(|Φ(x, k)|) + 2poly(g(k)))]. We infer

the desired result when C(x, k) = O(poly(|Φ(x, k)|)).

2. We unwind the substitions implicit in the extended Frege proofs. For R = 1 (i.e. a
reduction chain), arguing that the blow-up due to making substitutions is quasipolynomial
as long as the chain length is logarithmic is identical to similar arguments made in [9], [2]
for other problems, and we omit further details.
In our case the complication arises since we no longer have a chain but a tree. However,
we can upper bound the complexity of Frege proofs by RC(x,k) times the complexity of a
single chain (a root-to-leaf path in this tree). As long as C(x, k) = O(log(|Φ(x, k)|)), the
term RC(x,k) has a magnitude polynomial in |Φ(x, k)|. Multiplying this polynomial by the
quasipolynomial complexity of each chain still yields a proof of complexity quasipolynomial
in |Φ(x, k)|. ◀

▶ Observation 17. There is an important uniformity aspect of kernelization that we haven’t
used in the preceding proof: the fact that data reductions are specified by polynomial time
algorithms. This issue will be important in applying the above result: often the existence
of a data reduction is proved by an algorithm whose soundness (for all instances) would be
rather cumbersome to simulate in propositional proofs. This is the case when results involve
general techniques for developing kernelizations, such as the Crown Decomposition Lemma
or the Sunflower Lemma. As long as we do not insist, however, on actually generating the
proof, but merely on proving its existence, we can get away with proving the soundness of
individual instances. That is, if we can prove the soundness of an individual application of a
propositional reduction rule, Φ(x, k) ⊢ Φ(x′, k′), taking for granted the existence/definition of
(x′, k′), we can prove the existence of efficient proofs, without actually having to generate
a propositional proof of the soundness of the reduction techniques.

Next we highlight some applications of our main (meta)theorem:
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3.1 Proof Complexity of (Dual) Coloring
▶ Theorem 18. There exists a kernelization that reduces instances (G, k) of DUALCOL
to a kernel of size at most 3k − 2. The length of reduction chain in this kernelization is
O(k). The soundness of each reduction step can be witnessed by polynomial size Frege proofs.
Hence, for every fixed k, negative instances (G, k) of DUALCOL have Frege proofs of size
polynomial in |ΦG,k|.

Proof. The kernelization is a variant of the classical one from the parameterized complexity
literature, based on crown decompositions (Definition 12). It consists of three data reductions:
(a). Let All(G) be the set of vertices v adjacent to all other vertices in G. If All(G) ̸= ∅

then (G, k) ∈ DualCol ⇔ (G \ All(G), k − |All(G)|) ∈ DualCol.

(b). If All(G) = ∅ but G has a matching of size k, x1, y1, . . . , xk, yk, with xi being matched
to yi for i = 1, . . . , k, then (G, k) ∈ DualCol (so reduce it to an arbitrary positive
instance).

(c). Assume that rules (a),(b) do not apply. Let (C, H, R) be a crown decomposition of the
graph G. Reduce (G, k) to (G′, k′), by deleting H ∪ C from G and k′ = k − |H|.

Without loss of generality, we will only apply rule (c). to crown decompositions where
|H| ̸= ∅ and all nodes in C are matched to some node in H . This is possible for the following
reason: if |H| ̸= ∅ and the original crown decomposition had other vertices in C, just move
them to R. If, on the other hand |H| = ∅ then all vertices in C would be connected to
all vertices in C ∪ R, hence to all vertices of G. But this cannot happen, since the case
All(G) ̸= ∅ is covered by the first data reduction rule.

The Crown Decomposition Lemma (Lemma 4.5 of [19]) makes sure that at least one of
reduction rules (a),(b),(c) applies to every graph with more than 3k − 2 vertices.

The safety of reduction rule (c) can be informally justified as follows: since vertices in
a crown decomposition of G are matched in a matching m, vertices v ∈ H and m(v) is C

are not connected in G, hence they can be colored with the same color. At the same time,
m(v) is connected in G to all the vertices of G′, hence must assume a color different from all
the colors of vertices of G′. Also m(v1) and m(v2) are connected, so must assume distinct
colors. In conclusion, vertices of C must use |C| different colors, and G is n − k colorable if
and only if G′ is n − k − |C| colorable. But |G′| = n − 2|C|, so G is n − k colorable if and
only if G′ is |G′| − (k − |C|) colorable.

Rule (b). does not apply to unsatisfiable instances of DualCol. Hence we have to argue
about the size of Frege proofs witnessing the soundness of rules (a) and (c), namely: Let
Φv,1[Y ] be the formula ∧w ̸=vYv,w (informally, v ∈ All(G)). We need to provide proofs that
witness that

Φ(G, k) ∧ Φv,1[Y ] ⊢ Φ(G \ {v}, k − 1), and

Φ(G, k) ⊢ Φ(G′, k′).

For the first implication, define new variables Zw,i via the substitution, for w ̸= v ∈ V (G),
Zw,i′ ↔ Xw,i ∧ Xv,l, where i′ = i for i < l, i′ = i − 1 for i > l.

We start by deriving, by resolving unit literals Yv,w (which are part of the formula), for
all w ̸= v ∈ V (G) and i, clauses Xv,i ∨ Xw,i. Then we derive, for every w ̸= v ∈ V (G) and i,
clauses Xv,i ∨ (∨j ̸=iXw,j). This is done by resolving (∨k

j=1Xw,j) and Xv,i ∨ Xw,i. We then
derive clauses Xv,i ∨ (∨k−1

i′=1Zw,i′). By resolving all these clauses against ∨k
i=1Xv,i we derive

(∨k−1
i′=1Zw,i′). Similar tricks allow deriving clauses Zw,i ∨ Zw,j and Yv,w ∨ Zv,i ∨ Zw,i from the

corresponding clauses in the X variables.
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As for the second reduction rule, intuitively we want to encode the fact that if a vertex
v ∈ G′ is colored with color i in G, then coloring it with color i − less(v), where less(v) is
the number of nodes in H colored with a color smaller than i, yields a legal coloring of G′.
This is true since all nodes in H must get colors (in G) different from all colors in G′.

For an arbitrary vertex v ∈ G′, let less(v) be the number of nodes w ∈ C (here C refers to
the class of the crown decomposition of G) such that col(w) < col(v). One can compute the
binary representation of number less(v) using Frege proofs as follows: we create a boolean
variable Tv,w which will be true iff col(w) < col(v). One can compute Tv,w as

Tv,w :=
∨
i<j

Xw,i ∧ Xv,j .

Now we simply use the predicate COUNT (Tv,w)w∈C to compute the binary representation
of less(v). Here COUNT is the Buss counting predicate [8]. We will also derive the following
formulas:

Xv,i ∨
i∨

t=1
[less[v] = t] (1)

To accomplish that, we use the pigeonhole principle PHP i+1
i to prove that

Xv,i ∨ [COUNT ((Xw,j)w∈C,j<i) ≤ i] (2)

Indeed, assuming Xv,i = TRUE we can derive any disjunction of length i + 1 consisting
of literals of type Xw,j , with w ∈ C, j < i. This is because for all w1 ̸= w2 ∈ C, k1 ̸= k2
Xw1,k1 ∨ Xw2,k1 and Xw1,k1 ∨ Xw1,k2 are clauses of Φ(G, k). By Lemma 2 we can derive
equation (2). Next, simple arguments along the lines of [8] establishes the equivalence
between formulas U ≤ i and

∨i
k=1[U = k]. Here U is a bit vector of appropriate length to

represent i. We use (2) and this to derive (1).
Now, for every v ∈ V (G′) = R we define a new variable Zv,i, designed to be true iff the

color of v in the induced coloring on G′ is j. We will enforce this by making the substitutions

Zv,j :=
i∨

j=1
Xv,i ∧ [less(v) = i − j] (3)

First note that Z respects the color classes of G: if v1, v2 have the same color in G then they
have the same color in G′. Furthermore, the substitution does not collapse two different
color classes of G into a single color class in G′: it simply relabels the colors of vertices in
G′ with elements of 1, 2, . . . , k′. Therefore, if Zv1,j = Zv2,j = TRUE then there exists an
unique i0 such that Xv1,i0 = Xv2,i0 = TRUE.

We need to derive clauses
∨k′

t=1 Zv,t as well as, for vw ∈ E(G′), Zv,j ∨ Zw,j . Deriving the
first type of clauses is easy: we use formulas (1) and Xv,1 ∨ Xv,2 ∨ . . . ∨ Xv,k.

As for the second one, nota that all clauses Xv,i ∨ Xw,i are part of Φ(G, k). Given the
observation we made above and this fact, assuming Zv,j = Zw,j = TRUE we can derive
a contradiction. By Lemma 2 we can, therefore, derive (with the same complexity) clause
Zv,j ∨ Zw,j .

◀

3.2 Proof Complexity of Schrijver’s Theorem
In this section we deal with the proof complexity of a stronger version of the Kneser-Lovász
theorem known as Schrijver’s Theorem [35]. This is a statement about the chromatic number
of the so-called stable Kneser graph SKnn,k, defined as follows:
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▶ Definition 19. Call a set A ⊆
(

n
k

)
stable if A does not contain two elements that are

consecutive (we also consider n and 1 as consecutive). Denote the set of stable sets by
(

n
k

)
st

.
The stable Kneser graph SKnn,k is the subgraph of Knn,k induced by the set

(
n
k

)
st

.

Schrijver’s theorem asserts that the chromatic number of the stable Kneser graph SKnn,k

is n − 2k + 2. We are, of course, interested mainly in the harder part of this result, the lower
bound χ(SKnn,k) > n − 2k + 1. Since SKnn,k is the subset of the Kneser graph (see e.g.
Figure 1, where the central star is the stable Kneser graph SKn5,2), this strengthens the
(harder part of the) Kneser-Lovász theorem. The propositional translation of Schrijver’s
theorem is immediate, and the resulting unsatisfiable formulas, that we will denote by
Schrijvern,k are subformulas of formulas Knesern,k. We have the following:

▶ Theorem 20. For every fixed k, formulas Schrijvern,k have Frege proofs of size quasipoly-
nomial in n.

For the (somewhat more involved) proof of this theorem, we refer the reader to [26].

3.3 Buss Meets Buss: the Proof Complexity of Vertex Cover

In this subsection we study the proof complexity of Vertex Cover, the “drosophila of parame-
terized complexity” [20]. We apply our result to a variation of the standard kernelization of
VC (called in [20] the Buss reduction, hence the title of this subsection) to prove:

▶ Theorem 21. Instances (G, k) of VC have a kernelization with a data reduction chain of
length O(k) to a kernel with at most k2 vertices. The soundness of each step in this data
reduction can be witnessed by Frege proofs of size polynomial in |Φ(G, k)|. Hence, for every
fixed k negative instances Φ(G, k) of VC have Frege proofs of size polynomial in |Φ(G, k)|.

Proof. Informally, we will use the following two data reduction rules:
(a). if G has a vertex v of degree larger than k then G has a VC of size ≤ k if and only if

G \ {v} has a VC of size ≤ k − 1. Indeed, v must be part of any VC of G of size ≤ k.
(b). if Isolated(G) denotes the set vertices v in G that are isolated then G has a VC of size

≤ k iff G \ Isolated(G) has a VC of size ≤ k.
The kernel of these two reduction rules, the set of instances (G, k) of V C such that none of
the two rules applies is composed of graphs of at most k2 vertices only [19].

To encode the soundness of these rules by polynomial-size Frege proofs we use the
predicate COUNT n

k (x1, x2, . . . , xn) from [8]. Formula COUNT n
k (x1, x2, . . . , xn) is TRUE if

and only if at least k of the variables x1, x2, . . . , xn are true. For every fixed k, COUNT n
k

can be computed by polynomial size Frege proofs.
We will define a sequence of formulas:

1. For v ∈ V , Φv,1(Y ) = COUNT n−1
k ((Yv,w)w ̸=v∈V ). Informally, Φv,1 is true in graph G iff

the degree of v is at least k.

2. For v ∈ V , Φv,2(X, Y ) = (
k∧

i=1
Xv,i) ∧ Φv,1(Y ) ∧ ΦV C(G, k)[X, Y ].

For every neighbor w of v, by resolving Yv,w with clause Yv,w ∨ Xv,1 ∨ . . . ∨ Xv,k ∨ Xw,1 ∨
. . . ∨ Xw,k. of Φv,2 we derive clause Xv,1 ∨ . . . ∨ Xv,k ∨ Xw,1 ∨ . . . ∨ Xw,k. By resolving
successively with Xv,1, . . . , Xv,k we derive clause Xw,1 ∨ . . . ∨ Xw,k.
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Formula
∧

w∈N(v)
(Xw,1 ∨ . . . ∨ Xw,k) is isomorphic to the Pigeonhole Principle PHP k

|N(v)|

which has polynomial-size Frege refutations [8]. Plugging in this proof of this statement
into our argument, we conclude that that the implication Φv,2(X, Y ) ⊢ □ can be witnessed
by polynomial size Frege proofs, hence, by Lemma 2, so does the implication Φv,1(Y ) ∧

ΦV C(G, k)[X, Y ] ⊢
k∨

i=1
Xv,i.

As for the second reduction rule, it is just as easy: for every vertex v ∈ V which is isolated
and every i = 1, . . . , k, we first derive by resolution (using negative clauses Yv,w and clause
Xv,i ∨ (

∨
w ̸=v Yv,w) unit clauses Xv,i. We then use these clauses to resolve away every other

occurrence of Xv,i from the formula, obtaining a formula isomorphic to Φ(G\Isolated(G), k).
◀

3.4 Proof Complexity of Edge Clique Cover

In this section we study the proof complexity of the following problem:

▶ Definition 22 (Edge Clique Cover). Given graph G and integer k, to decide is whether one
can find sets of vertices V1, V2, . . . , Vk ⊆ V s.t. each Vi induces a clique, and for every edge
e = (v, w) ∈ E there exists 1 ≤ i ≤ k s.t. v, w ∈ Vi (“each edge is covered by some clique”).
We represent instance (G, k) of Edge Clique Cover by propositional formula ΦG,k as follows:

For every pair of distinct vertices v, w ∈ V define a variable Yv,w. For every edge
(v, w) ∈ E(G) add unit clause Yv,w. For (v, w) ̸∈ E(G) add unit clause Yv,w.
For v ∈ V and 1 ≤ i ≤ k define boolean variable Xv,i = TRUE iff v ∈ Vi.
For v, w ∈ V and 1 ≤ i ≤ k add Xv,i ∨ Xw,i ∨ Yv,w (“if v, w ∈ Vi then vw ∈ E(G)”) and
Yv,w ∨ (∨k

j=1(Xv,j ∧ Xw,j)). Of course, as written above the latter formula is not CNF,
but it can be converted easily by expanding the last disjunction.

The following is our result for the Edge Clique Cover problem. The main technical novelty
is reducing the length of the data reduction chain (compared to the usual kernelization) from
linear to logarithmic, so that we can get quasipolynomial-size Frege proofs:

▶ Theorem 23. There exists a kernelization that reduces instances (G, k) of problem EDGE
CLIQUE COVER with graph G having n vertices to a kernel with at most 2k nodes. The
length of the data reduction chain is O(log1+ 1

2k−1
(n)). The soundness of each reduction step

can be witnessed by polynomial size Frege proofs. Consequently, for fixed k, negative instances
(G, k) of EDGE CLIQUE COVER have extended Frege proofs of polynomial size and Frege
proofs of quasipolynomial size in |ΦG,k|.

Proof. We use the following data reduction rules:
(a). If |Isolated(G)| ≥ n

2k then reduce (G, k) to (G \ Isolated(G), k).
(b). If there exists a set S ⊆ V , |S| ≥ n

2k such that vertices in S induce a clique in G, and
for all v, w ∈ S we have N [v] = N [w], where N [v] stands for the closed neighborhood of
v, then reduce G to (G′, k′), where G′ is the graph obtained by identifying vertices v, w,
and k′ = k whenever N [v] = N [w] ̸= ∅, k′ = k − 1, otherwise.

The soundness of the first reduction rule, Φ(G, k) ⊢ Φ(G\Isolated(G), k) can be witnessed
by efficient Frege proofs similar to those for the vertex cover problem.

As for the second rule, the formula

ΞS(G) := ∧w,v∈S ∧r∈V (Yv,r ↔ Yw,r)
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(where, of course, A ↔ B can be equivalently rewritten as (A ∨ B) ∧ (A ∨ B)) expresses the
fact that N [v] = N [w] for all v, w ∈ S. So we need to prove the soundness of the rule

Φ(G, k) ∧ ΞS(G) ⊢ Φ(G′, k′). (4)

Without loss of generality we will only deal with the case N [v] ̸= ∅ for all v ∈ S, (the other
case, N [v] = ∅ for all v ∈ S, can be handled with minor modifications to this argument). By
slightly abusing notation, we will denote by S the vertex of G′ obtained by contraction. Let
s ∈ S be an arbitrary vertex.

We define substitutions: Y ′
v,w := Yv,w for all v, w ∈ G′, v, w ̸= S. If, say, v = S we define

Y ′
S,w := Ys,w. Also define X ′

v,i := Xv,i for v ̸= S, X ′
S,i := Xs,i. The substitution yields a

formula isomorphic to Φ(G′, k′), and the proof of the safety is basically trivial.
To obtain the result note that the number of vertices goes down geometrically, by a ratio

of 1 − 1
2k at each step.

▶ Lemma 24. Rules (a). (b). are safe. Also, for every graph G with n > 2k vertices one of
rules (a). (b). applies.

Proof. Let G be a graph to which rules (a). (b). do not apply and which has an edge clique
cover of size k. Consider an encoding b(v) of every vertex v on k bits such that for every
v ∈ V , b(v) is a bit vector whose i’th bit is one iff v is a part of the i’th clique.

There must be a set of vertices S ⊂ V , |S| ≥ n
2k such that for all u, v ∈ S, b(u) = b(v) = b,

for some b ∈ {0, 1}k.
If b = 0k then, since every edge in G must be covered by one of the k cliques, it follows

that every v ∈ S is an isolated vertex. Hence rule (a). applies.
If, on the other hand b ̸= 0k, say bi ≠ 0, then every v ∈ S must belong to the i’th clique.

Hence S induces a clique in G. ◀

◀

3.5 Proof Complexity of the Hitting set problem
In the d-Hitting Set problem we are given an universe U and a family A of subsets of U ,
all of cardinality at most d, as well as an integer k. To decide is whether there exists a set
H ⊆ U containing at most k elements, such that H intersects every P ∈ A.

A formalization of the d-Hitting set problem as an instance of SAT is obtained as follows:

▶ Example 25. Let P = (U, A, k) be an instance of d-Hitting set. Define formula ΦP by:
For i ∈ U , j = 1, . . . , k add variable Xi,j , TRUE iff i is the j’th chosen element.
For i ≠ i′ ∈ U , 1 ≤ j ≤ k add clauses ∨i∈U Xi,j (“some i is the j’th chosen element”) and
Xi,j ∨ Xi′,j (“at most one i can be the j’th chosen element”).
For A ∈ A add (∨i∈A(∨j=1,...kXi,j)) (“some element of A is among the k chosen elements”)

Our result, which only guarantees polynomial size extended Frege proofs, is:

▶ Theorem 26. There exists a kernelization mapping instances (U, A, k) of d-HittingSet with
|U | = n elements to a kernel with at most d · d! · kd sets (hence at most d2 · d! · kd elements).
The data reductions chains in this kernelization have length O(nd/k), and their soundness
can be witnessed by polynomial-size Frege proofs. Hence for every fixed k, d, unsatisfiable
instances Φ(U,A,k) of d-HittingSet have extended Frege proofs of size O(poly(|Φ(U,A,k)|)).

Proof. We employ the standard kernelization of d-Hitting set based on sunflowers [19]:

▶ Definition 27. A sunflower with k-petals and core Y is a colection of sets S1, . . . , Sk, all
different from Y , such that for 1 ≤ i < j ≤ k, Si ∩ Sj = Y .
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We are going to propositionally encode the following informally stated data reduction
rule: let (U, A, k) be an instance of the d-Hitting set such that A contains a sunflower
S = {S1, S2, . . . , Sk+1} of cardinality k + 1 with core Y . We reduce (U, A, k) to the instance
(U ′, A′, k), where A′ = (A \ S) ∪ {Y } and U ′ = ∪X∈A′X. Indeed, consider a hitting set H

for (U, A, k). By definition, H meets every element of A \ S. If H did not meet Y then it
would have to meet each of the k + 1 disjoint petals Sj \ Y . Hence |H| ≤ k iff H meets Y .

To simulate this argument propositionally, define for i ∈ U ′ substitutions X ′
i,j := Xi,j .

We need to (a). derive clause (∨i∈Y (∨j=1,...kXi,j)) (b). for every j = 1, . . . , k, derive clauses
∨i∈U ′Xi,j .

For the first clause we show that Φ(U, A, k)∧(∧i∈Y (∧j=1,...kXi,j)) ⊢ ∅ and then we invoke
Lemma 2. To do that we first derive, for l = 1, . . . , k + 1 (by resolving literals Xi,j) clauses
(∨i∈Sl\Y (∨j=1,...kXi,j)).

Substituting each variable Xi,j , where i ∈ Sj \ Y to a new variable Yi,j yields a formula
isomorphic to PHP k

k+1 which has polynomial size Frege proofs [8]. Putting all these things
together we get polynomial-size Frege proofs witnessing the soundness of one step of the
data reduction.

The number of clauses drops at every reduction step by k, so the length of the data
reduction chain is O(nd/k). ◀

4 Proof Complexity of principles in Computational Social Choice

A great number of applications come from the theory of Social Choice [7]: motivated
by pioneering work of [38], a significant amount of research in Artificial Intelligence has
investigated the provability of such results in logical settings (see [22] for a recent survey).
We show that the most interesting of these results (Arrow’s theorem and the Gibbard-
Satterthwaite theorem) have proof complexity counterparts: the unsatisfiability of formulas
encoding them can be certified by Frege proofs of subexponential length. A first example of
application is Arrow’s Theorem. The formulas encoding the nonexistence of a social welfare
function satisfying the conditions of Arrow’s theorem are rather large. Nevertheless, such an
encoding exists, and was used explicitly in [38] to give a computer-assisted proof of Arrow’s
theorem4:

▶ Definition 28. Consider an instance with n agents and m objects to rank. There are
(m!)n possible profiles for the complete rankings of the m objects, and m! possible aggregate
orderings of the m objects. Formula Arrowm,n (unsatisfiable for m, n ≥ 3) has (m!)n+1

variables XR,π, one for each possible pair (R, π) consisting of ranking profile R, and an
aggregate ordering π ∈ Sm. The constraints are the following:

For every R ∈ R and π1 ̸= π2 ∈ Sm add clauses
∨

π∈Sm
XR,π (“every profile is aggregated

to some ordering”) and XR,π1 ∨ XR,π2 (“no profile is aggregated to more than one
ordering”)
For i = 1, . . . , n we add to Arrowm,n clauses

∨
R∈R XR,Ri . These forbid aggregations

that always output the ordering given by the i’th agent, i.e. dictatorial rank aggregations.
For every two objects a, b let Sm

a,b be the set of orderings π where for all i = 1, . . . n,
π−1(a) < π−1(b) (i.e. a is preferred to b in ordering π). Let Ra,b be the set of profiles
such that for every i = 1, . . . , n, Ri ∈ Sm

a,b (i.e. all agents prefer a to b). For every
R ∈ Ra,b add to Arrowm,n clauses

∨
π∈Sm

a,b
XR,π. These constraints encode unanimity

(if all agents prefer object a to b then a is preferred to b in the aggregated ranking).

4 For encodings of Arrow’s Theorem in more powerful logical frameworks see [14,23].
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For all profiles R, R′ ∈ R and objects a, b such that all players rank a, b in the same way in
both R, R′ and all pairs π1, π2 ∈ Sm that rank a, b in a different way (i.e. π−1

1 (a) < π−1
1 (b)

but π−1
2 (a) > π−1

2 (b) or viceversa) we add to Arrowm,n clauses XR,π1 ∨ XR′,π2 . These
encode independence of irrelevant alternatives (if R, R′ coincide with respect to the relative
ordering of a, b then their aggregate orderings also rank a, b in the same way).

Results in [38] yield a kernelization for Arrowm,n with a reduction chain of length O(m + n).
We improve them by providing a kernelization with reduction chains whose length only
depends on n, implying the existence of polynomial size Frege proofs for constant values of n:

▶ Theorem 29. Formulas Arrowm,n have a kernelization with data reduction chains of length
≤ C(n + 1), with constant C independent from m, n, whose safety is witnessed by polynomial-
size Frege proofs. Hence (a) formulas Arrowm,n have Frege proofs of size quasipolynomial
in |Arrowm,n|). (b). For every fixed n ≥ 3 there exists a polynomial pn(·) such that for all
m ≥ 3 formulas Arrowm,n have Frege proofs of size at most pn(|Arrowm,n|).

Proof. The kernelization has two data reduction rules, described informally as follows:
(a). If n ≥ 2, m ≥ 6 and W : [Sm]n → [Sm] is a function that is non-dictatorial, IIA and

unanimous then there exists an T ⊆ [m], |T | = m − 5 such that W−T : [S[m]−T
]n →

[S[m]−T
] (see the end of Section 2) has the same properties. In other words, one can

reduce in one step the set of alternatives from [m] (which has m elements) to [m]−T

(which has 5).
(b). See [38]: If n, m ≥ 3 and W : [Sm]n → [Sm] is non-dictatorial, IIA and unanimous then

at least one of the functions W1,2, W1,3, W2,3 : [Sm]n−1 → [Sm] defined as follows:
Wi,j(R1, R2, . . . , R̂i, . . . , Rn) = W (R′

1, . . . , R′
n) is non-dictatorial, IIA and unanimous.

Here R′
i = Rj , R′(k) = Rk, k ̸= i. In other words, one can reduce in one step the number

of agents by one.

▶ Lemma 30. If W is unanimous, IIA and non-dictatorial then for every B ⊆ [m], function
W−B is unanimous and IIA.

Proof. Suppose that a, a′ ∈ [m]−B and a <Ri
a′ for all i ∈ [m]−B. Then a <R+B

i
a′. By

unanimity of W , a <W (R+B
1 ,...,R+B

n ) a′. Since a, a′ were arbitrary, it follows that W−B is
unanimous. As for IIA, let a, a′ ∈ [m]−B and (R1, R2, . . . , Rn) and (R′

1, R′
2, . . . , R′

n) be
preference profiles such that, for every i = 1, . . . , n, Ri and R′

i agree with respect to the
relative ordering of a, a′. Then for every i = 1, . . . , n, R+B

i and R′,+B
i agree with respect

to the relative ordering of a, a′. By the IIA axiom for W , W (R+B
1 , R+B

2 , . . . , R+B
n ) and

W (R′,+B
1 , R′,+B

2 , . . . , R′,+B
n ) agree with respect to the relative ranking of a, a′. Hence so do

WB(R1, R2, . . . , Rn) and WB(R′
1, R′

2, . . . , R′
n). ◀

▶ Lemma 31. Reduction (a). is safe.

Proof. Consider an arbitrary set T ⊆ [m] of cardinality m − 6, e.g. T = {7, . . . , m}. Let
x ̸∈ T , e.g. x = 6 and U = T ∪ {x}. If W−U is non-dictatorial we are done. Otherwise,
assume w.l.o.g. that agent 1 is a dictator for W−U . Since 1 is not a dictator for W , there
must exist indices c ̸= d ∈ [m] and preference profiles <1, . . . , <n on [m] such that c <1 d

but d <W (<1,...,<n) c. Let y, a, b ̸∈ T , different from x, c, d, and let V ⊆ [m], |V | = m − 5,
a, b, c, d, x ̸∈ V , y ∈ V . Such a V exists, since m ≥ 6. Clearly V ̸= U , since y ∈ V \ U . We
claim that function W−V is not dictatorial.

First note that 1 cannot be a dictator for W−V . Indeed, consider <i,−V the restriction
of <i to [m]−V . We have c <1,−V d but d <W−V (<1,−V ,...,<n,−V ) c. The first relation holds
because c <1 d and c, d ̸∈ V . The second relation holds because to compare c, d according to
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W−V (<1,−V , . . . , <n,−V ) we apply function W on (<+V
1,−V , . . . , <+V

n,−V ). But since c, d ̸∈ V ,
<+V

i,−V coincides with <i with respect to the ordering of c, d for i = 1, . . . , n. Invoking the IIA
property of W for tuples (<1, . . . , <n) and (<+V

1,−V , . . . , <+V
n,−V ) justifies the second relation.

Assume now that another agent, say 2, were a dictator for W−V . Let <1, <2 be preference
profiles on [m] s.t. a <1 b but b <2 a, and <3, . . . , <n be arbitrary preference profiles. First,
invoking the first relation, the fact that W−U is computed using W , and that 1 is a dictator for
W−U we get that a <W−U (<1,−U ,<2,−U ,...,<n,−U ) b. Invoking the IIA property of W on tuples
(<1,−U , <2,−U , . . . , <n,−U ) and (<1, <2, . . . , <n) we get that a <W (<1,<2,...,<n) b. Using a
similar reasoning for the function W−V we get that b <W (<1,<2,...,<n) a, a contradiction. ◀

The safety of reduction (b) was (mathematically) proved in [38]. Next we outline how to
simulate these mathematical arguments using polynomial-size Frege proofs. First, note that
formula Arrowm,n has (m!)n+1 variables, all of them appearing explicitly in the formula.
But n = O(log((m!)n+1)), so indeed a reduction chain of length O(n) has length logarithmic
in |Arrowm,n|. Invoking our metatheorem yields a proof of point (a) of Theorem 29. Point
(b) follows by invoking point 2 of the same metatheorem.

First reduction rule: Define, for Q ⊆ [m], |Q| = m − 5, and i = 1, . . . , n formulas

Nondict−Q,i :=
∨

R∈R−Q

XR+Q,R+Q
i

(informally, formula Nondict−Q,i is true iff i is not a dictator for W−Q).

Unanimous−Q :=
∧

a,b∈[m]−Q

∨
R∈Ra,b,−Q

π∈Sm
a,b

XR+Q,π+Q .

IIA−Q :=
∧

(R,R′,π,π′)∈R−Q

(XR+Q,π+Q
1

∨ XR′,+Q,π+Q
2

)

(where, for simplicity, we have ommitted the IIA restrictions on R, R′, π1, π2, see Defini-
tion 28). Note that Arrowm,n = Unanimous−∅ ∧ IIA−∅ ∧

∧n
i=1 Nondict−∅,i.

We will prove that

Arrowm,n ∧
n∧

i=1
Nondict−[6:m],i ⊢ Arrow5,n (5)

and, for i = 1, . . . , n

Arrowm,n ∧
n∨

i=1

∧
R∈R−[6:m]

X
R+[6:m],R

+[6:m]
i

⊢ Arrow5,n (6)

Employing tautology
∧n

i=1 Nondict−[6:m],i) ∨
∨n

i=1(
∧

R∈R−[6:n]
X

R+[6:m],top(R
+[6:m]
i

)) and
substitutions implicit in (5) and (6) we conclude that Arrowm,n ⊢ P1 ∨ P2, where both
P1, P2 are formulas isomorphic to Arrow5,n. Thus we are in the framework of our
metatheorem with R = 2.
We need to specify the substitutions implicit in (5) and (6). First, formalizing the
mathematical argument in Lemma 30 we show that Arrowm,n ⊢ IIA−Q ∧Unanimous−Q.
The propositional content of this implication is trivial: the clauses of Unanimous−Q and
IA−Q are simply subclauses of Arrowm,n.
Because of this, the substitution witnessing implication (5) is quite simple: it replaces a
restricted variable X ′

R,π of Arrow5,n with the variable XR+[6;m],π+[6:m] of Arrowm,n.
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As for (6), define, for all c < d ∈ [5] and i = 1, . . . , n, formulas

Witnessc,d,i :=
∨

R∈R:Ri∈Sm
c,d

π∈Sm
d,c

XR,π (7)

Informally, formula Witnessc,d,i is true when pair (c, d) acts as a witness that agent i is
not a dictator for W , since c <Ri d but d <W (R) c.
A next step is to prove that Arrowm,n ∧

∧
R∈R−[6:m]

X
R+[6:m],R

+[6:m]
i

⊢
∨

c<d∈[5]
Witnessc,d,i.

This is easy: we use literals X
R+[6:m],R

+[6:m]
i

to prove (by resolution)

Arrowm,n ∧
∧

R∈R−[6:m]

X
R+[6:m],R

+[6:m]
i

∧
∧

c<d∈[5]

∧
R∈R:Ri∈Sm

c,d

π∈Sm
d,c

XR,π ⊢ □ (8)

(the last conjunction negates formulas Witnessc,d,i) and then invoke Lemma 2 to get a
proof of the same length of the implication we claimed.
Now we prove, for all j = 1, . . . , n that Arrowm,n ∧Witness(c, d, i) ⊢ Nondict−V,j , where
V is defined as in the proof of Lemma 31.
The proof of the implication for j = i uses unit literal XR,Rj

(negation of one from
Nondict−V,i) and XR,π ∨ XR+V

−V
,π2

(part of the IIA part of Arrowm,n) to derive clauses
XR+V

−V
,π2

for all π2 that rank c, d in a different way than π. Resolving away these literals
from clause

∨
π∈Sm

XR+V
−V

,π (part of Arrowm,n) derives clause Nondict−V,i.

As for the case j ̸= i, we want to show that

Arrowm,n ∧ Witness(c, d, i) ∧
∧

R∈R[5]

X
R+[6:m],R

+[6:m]
j

⊢ □ (9)

By Lemma 2 this will imply Nondict−V,j . Let R = (R1, R2, . . . , Rn) be a profile on [5]
such that a <R1 b but b <R2 a (a, b ∈ [5] are defined as in Lemma 31). Combining the
derivations of Nondict−V,j in (9) with the ones of Unanimous−V and IIA−V (outlined
before), plus a bijective identification of of [m]−V and [5] yields a substitution that proves
Arrow5,n, completing the proof of (6).

Second reduction rule: We refer to Lemma 2 of [38] for (mathematical) details of the
reduction. What is important is that the soundness of the statement that at least one
of W1,2, W2,3, W1,3 is non-dictatorial is established by a case-by-case analysis. It is first
proved that it cannot be that all these functions have the same dictator. Then it is
established that if i is the dictator of W1,2, j the dictator of W1,3, k the dictator of W2,3
then i ∈ {2, 3}, j ∈ {2, 3}, k ∈ {1, 3}. For all eight possible cases for triplets (i, j, k) we
obtain a contradiction: either we explicitly provide a profile R showing that triplet (i, j, k)
cannot represent the set of dictators for the three function, or we employ an argument
similar to the one in the case i = j = k. ◀

As for the Gibbard-Satterthwaite theorem, we use the following formalization:

▶ Definition 32. Consider an instance with n agents and m objects. There are (m!)n possible
profiles for the complete rankings of the m objects, and m possible outcomes. Formula GSm,n

has (m!)n × m variables XR,o, one for each possible pair consisting of a strategy profile R

and a value o ∈ [m], the value of the SCF on profile R. The constraints are the following:
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For R ∈ R add clauses
∨

o∈[m] XR,o (“every joint profile is aggregated to some object”)
and XR,o1 ∨ XR,o2 (“no joint profile is aggregated to more than one object”).
For i = 1, . . . , n we add to GSm,n clauses

∨
R∈R XR,top(Ri). They forbid social choice

functions that always output the top preference of the i’th agent, i.e. dictatorial aggrega-
tions.
For i = 1, . . . , n add

∨
R∈R XR,o. This eliminates social choice functions that are not

onto.
Add, for every pair (R, o), player 1 ≤ i ≤ m and π ∈ Sm, XR,o∨(

∨
o′∈pr(i,o,R) Xs(i,R,π),o′).

These clauses state that the social choice function is strategyproof.

▶ Theorem 33. For every fixed m formulas GSn,m have a kernelization of length O(n)
whose soundness has polynomial time Frege proofs. Hence, formulas GSn,m expressing the
Gibbard-Satterthwaite theorem have (a). Frege proofs of size quasipolynomial in |GSn,m|, (b).
for every fixed n, Frege proofs of size polynomial in |GSn,m|.

Proof. The argument is very similar to that of Arrow’s theorem: We use the following
two data reductions: (a). for n ≥ 2, m ≥ 4, if W : [m]n → [m] is a social choice function
that is onto, non-dictatorial and strategy-proof then there exists T ⊆ [m], |T | = m − 3
such that function W−T : ([m]−T )n → [m]−T is onto, non-dictatorial and strategyproof,
and (b). [37] if W : [m]n → [m] is a social choice function that is onto, non-dictatorial
and strategy-proof then one of functions W1,2, W1,3, W2,3 : [Sm]n−1 → [m] defined by
Wa,b(R1, R2, . . . , R̂a, . . . , Rn) = W (R′

1, . . . , R′
n) is non-dictatorial, onto and strategy-proof.

Here R′
a = Rb, R′(k) = Rk for k ̸= a.

First, it is not obvious that, as formulated in the paragraph, W−B is well-defined. The
reason is that W−B(R) invokes W on profile R+B , and it is not obvious that if R is a profile
on [m]−B the the outcome of W is an element of [m]−B , as needed by the definition.

Suppose that W−B(R) = W (R+B) ∈ B for some profile R on [m]−B. We claim that
W (S) ∈ B for every profile S = (S1, S2, . . . , Sn), contradicting the hypothesis that W is onto.
Indeed, if W−B(R) = W (R+B) ∈ B then W−B(R−1, S1) = W (R+B

−1 , S+B
1 ) ∈ B, otherwise

agent 1 would have an opportunity to manipulate at profile R+B by misrepresenting its
preference as S+B

1 . Applying this argument inductively for agents 2, 3, . . . , n (replacing Ri

by Si) we infer that W (S) ∈ B, which is what we claimed.

▶ Lemma 34. If W : Sn
m → [m] is onto, strategyproof and non-dictatorial then for every

B ⊆ [m], function W−B is onto and strategyproof.

Proof. Suppose there exists some profile R and agent i ∈ [n]−B such that i could manipulate
W−B(R) by misrepresenting its profile as R′

i. This means that i could manipulate W

on profile R+B by misrepresenting its profile as R′,+B
i , contradicting the fact that W is

strategy-proof. Hence W−B is strategy-proof.
Suppose now that a ∈ [m]−B. Since W is onto, there must exist a profile R such that

W (R) = a. Consider the profile R′
i that modifies R by moving a to the top of preference

profile Ri. We claim that W (R′
i) = a. Indeed, if this was not the case then i could manipulate

on profile R′
i by misrepresenting its preferences. Continuing the argument inductively for all

agents we infer that if R is the profile that modifies R by moving a to the top of all profile
preferences then W (R) = a. This means that W is unanimous, hence W−B also is. But then
there is a profile R such that W−B(R) = a: simply make a the top of all profiles. Since a

was arbitrary, it follows that W−B is onto. ◀

ICALP 2021
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We next prove the safety of reduction rule (a) (for (b) see [37]). We show that there
exists T ⊆ [m], |T | = m − 3 such that W−T is non-dictatorial. Together with Lemma 34 this
establishes the safety of rule a.

Step 1. Given two different sets T1, T2 of size m − 3, |T1 ∩ T2| = m − 4 (in other words,
|T1| = |T2| = 3, |T1 ∩ T2| = 2), we show that functions W−T1 , W−T2 must have the same
dictator, if they have one.

Suppose, indeed, that W−T1 has dictator i, W−T2 has dictator j ̸= i. Let d ∈ T2 \ T1,
c ∈ T1 \ T2, a, b ∈ T1 ∩ T2. Define profiles

Rs = a < b < . . . < sorted(T2) < c, for s ̸= j

Rj = b < a < . . . < sorted(T2) < c.

W (R) = a, since i is a dictator for W−T1 . Now, if we replace Ri by

R′
i = a < b < . . . < c < sorted(T2).

obtaining profile R′, then W (R′) = a, otherwise agent i could manipulate by reporting
profile Ri instead. We continue changing iteratively profiles Rs, s ̸= j to R′

s = a < b < . . . <

c < sorted(T2), one profile at a time, until all profiles Rs except Rj have been replaced
by R′

s. Call this profile R. That is, Rs = a < b < . . . < c < sorted(T2) for s ̸= j, while
Rj = b < a < . . . < sorted(T2) < c.

Since no agent s ≠ j had an opportunity to manipulate, it must be that W (R) = a.
Consider now profile R′

j = b < a < . . . < c < sorted(T2). Since W−T2 has agent j as a
dictator, W (R1, . . . , R′

j , . . . , Rn) = W−T2(R1,−T2
, . . . , R′

j,−T2
, Rn,−T2

) = b. So agent j has
an opportunity to manipulate at profile (R1, . . . , R′

j , . . . , Rn) by reporting instead R′
j .

Step 2. Either there exists a set T of size m − 3 such that W−T is not dictatorial, or
all functions W−T , |T | = m − 3 must have the same dictator. Indeed, we can “interpolate”
between any two sets of cardinality m − 3 by a sequence of sets falling under step 1.

Step 3. We show that it is not possible that all functions W−T , |T | = m − 3 have the
same dictator i. Since W is not dictatorial, there exists a profile R such that b = W (R) is
different from a = top(Ri). Let T ⊆ [m], |T | = m − 3, a, b ̸∈ T and consider a profile R′ that
modifies R by moving b, sorted(T ) to the bottom of all preferences (in this order), that is
R′ = (R+b

−b)+sorted(T )
−sorted(T ).

We have W (R′) = W−T (R′
−T ) = top(R′

i) = a, since W−T has i as dictator and top(R′
i) =

a. Let us create a path between R and R′ by changing one profile Rs at a time to R′
s, the

last move being Ri. The value of W does not change at any step s, since W−T has i as
dictator, and the relative orders of elements in [m]−T does not change at any profile as a
result of a change Rs → R′

s, s ̸= i, or agent s would have an opportunity of manipulation at
one of the two profiles, using Rs, R′

s, whichever yields a result ranked lower in Rs, R′
s. But

this yields a contradiction, since W (R) = b and W (R′) = a ̸= b.

For some details on the propositional simulations we refer to [26]. ◀
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5 Conclusions and open problems

We believe that the most important contribution of our paper is to show that several
techniques for proving kernelization can sometimes be simulated by efficient extended Frege
proofs. The proof techniques in this list includes: crown decomposition, the sunflower lemma,
ad-hoc methods. It is an interesting challenge to enlarge the list of methods and problems
that have such a simulation or, conversely, show limits of some of these methods.

It is rewarding to note that methods from algebraic topology can be used to reframe and
extend results in both Topological Combinatorics and Computational Social Choice: Arrow’s
theorem has topological proofs [4, 12, 13]. On the other hand the original results on Kneser’s
conjecture [32] have been strengthened using more advanced topological methods, e.g. [3]
(see [29] for a book-length treatment). The results in [2,38] can be interpreted as stating that
in both cases one can bypass topological arguments by purely combinatorial arguments (plus
computer-assisted verification of finitely many cases). It is an interesting question whether
this is still true for the results requiring more sophisticated topological methods as well.

In Theorem 26 we have only obtained polynomial size extended Frege proofs. Similarly,
in Theorems 29, 33 we have only obtained polynomial-size Frege proofs when the number of
agents is fixed. We leave open the issue of improving these results. On the other hand, our
results have only touched on the most basic topics on the proof complexity of statements in
computational social choice. There has been significant progress in this area (see e.g. [22])
and we believe that our framework may be applicable to some of this work (e.g. to the
Preservation Theorem of [21]). It would be interesting to see if this is really the case.
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1 Introduction

Relational Hoare logics (RHL) are logics that allow us to reason about the relationship
between two programs. Roughly speaking, they can express facts like “if the variable x
in program ccc is equal to x in program ddd, then after executing ccc and ddd, respectively, the
content of variable y in program ccc is greater than that of y in ddd.” RHL was introduced in
the deterministic case by [6], and generalized to probabilistic programs by [4] (pRHL) and
to quantum programs by [17] (qRHL). RHLs have proven especially useful in the context
of verification of cryptographic schemes. For example, the CertiCrypt tool [4, 3] and its
successor EasyCrypt [2, 1] use pRHL to create formally verified cryptographic proofs. And
[16] implements a tool for verifying quantum cryptographic proofs based on qRHL.

On the other hand, “normal” (i.e., not relational) quantum Hoare logics have been
developed in the quantum setting, starting with the predicate transformers from [10], see
[11, 18, 7, 12]. Out of these, [10, 11, 18] use “expectations” instead of “predicates” for the
pre- and postconditions of the Hoare judgments. To understand the difference, consider the
case of classical probabilistic programs. Here, a predicate is (logically equivalent to) a set of
program states (and a program state is a function from variables to values). In contrast, an
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expectation is a function from program states to real numbers, basically assigning a value
to each program state. Probabilistic Hoare logic with expectations, implicit in [13], uses
expectations as the pre- and postconditions of a Hoare judgment. Then, roughly speaking,
the preexpectation tells us what the expected value of the postexpectation is after running
the program. This can be used to express much more fine-grained properties of probabilistic
programs, giving quantitative guarantees about their probabilistic behavior, instead of just
qualitative (a certain final state can or cannot occur). As [10] showed, the same approach can
be used for quantum programs. Here, an expectation is modeled by a self-adjoint operator A
on the space of all program states. The “value” of a given program state ρ is then computed
as the trace tr Aρ. While at the first glance not as obvious as the meaning of classical
expectations, this formalism has nice mathematical properties and is also equivalent to taking
the expectation value of the outcome of a real-valued measurement. By using this approach,
[10, 11, 18] can express more fine-grained judgments about quantum programs, by not just
expressing which final states are possible, but also with what probabilities.

Yet, qRHL [17] did not follow this approach (only mentioning it as possible future work).
As a consequence, qRHL does not enable as fine-grained reasoning about probabilities as the
non-relational quantum Hoare logics. On the other hand, the non-relational quantum Hoare
logics do not allow us to reason about the relationship between programs.

In this work, we combine the best of two worlds. We present a variant of qRHL,
expectation-qRHL, that reasons about pairs of programs, and at the same time supports
expectations as the pre- and postconditions, thus being as expressive as the calculi from
[10, 11, 18] when it comes to the probabilistic behavior of the programs.

Related work. The relevant prior work has already been discussed above. Concurrently
and independently, [5] presented a different formalization of expectation-qRHL. (The first
versions on arXiv appeared within two months of each other.) The biggest difference is the
definition of couplings which in our setting are separable quantum states, and in their setting
nonseparable quantum states. Therefore, the soundness proofs are totally different in [5] and
in the present paper, even for the same rules. As a consequence, we can avoid having to
reason about judgments with side-conditions, making compositional reasoning about more
complex programs much easier.

Organization. In Section 2 we introduce notation and preliminaries, including the concept
of expectations. In Section 3 we give syntax and semantics of the imperative quantum
programming language that we study. In Section 4 we give the definition of expectation-
qRHL. In Section 5, we present sound rules for reasoning about expectation-qRHL judgments.
And in Section 6, we analyze the quantum Zeno effect as an example of using our logic.

In the full version, we give a detailed comparison of our logic with [5] and full proofs of
our results.

2 Preliminaries: Variables, Memories, and Predicates

In this section, we introduce some fundamental concepts and notations needed for this paper,
and recap some of the needed quantum background as we go along. When introducing
some notation X, the place of definition is marked like this: X . For further mathematical
background we recommend [8, 9], and for an introduction to quantum mechanics [15].
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Variables. Before we introduce the syntax and semantics of programs, we first need to
introduce some basic concepts. A variable is described by a variable name x,y, z that
identifies the variable, and a nonempty type T . The type of x is simply the nonempty set of
all (classical) values the variable can take. E.g., a variable might have type {0, 1}, or N.1 Lists
or sets of variables will be denoted X,Y,Z . Given a list X = x1 . . .xn of variables, we say
its type is T1 × · · · × Tn if Ti is the type of xi. We write XY for the concatenation/disjoint
union of lists/sets of variables X,Y.

Memories and quantum states. An assignment assigns to each variable a classical value.
Formally, for a set X, the assignments over X are all functions m with domain X such that:
for all x ∈ X with type Tx, m(x) ∈ Tx. That is, assignments can represent the content of
classical memories.

To model quantum memories, we simply consider superpositions of assignments: A (pure)
quantum memory is a superposition of assignments. Formally, ℓ2[X] , the set of all quantum
memories over X, is the Hilbert space with basis2 {|m⟩}m where m ranges over all assignments
over X. Here |m⟩ simply denotes the basis vector labeled m. We often write |m⟩X to stress
which space we are talking about. We call a quantum memory ψ normalized iff ∥ψ∥ = 1.
Intuitively, a normalized quantum memory over X represents a state a quantum computer
with variables X could be in. We also consider quantum states over arbitrary sets X (as
opposed to sets of assignments). Namely, ℓ2(X) denotes the Hilbert space with orthonormal
basis {|x⟩}x∈X . (In that notation, ℓ2[X] is simply ℓ2(A) where A is the set of all assignments
on X.) Normalized elements of ℓ2[X] represent quantum states.

We often treat elements of ℓ2(T ) and ℓ2[X] interchangeably if T is the type of X since
there is a natural isomorphism between those spaces.

In many situations, we additionally need an additional symbol ⊥ that denotes that a
memory is not available because the program did not terminate. A quantum ⊥-memory over
X is an element of ℓ2[X]⊥ := ℓ2(A ∪ {⊥}) where A is the set of all assignments on X. That
is, a quantum ⊥-memory is a superposition between a quantum memory and |⊥⟩.

The tensor product ⊗ combines two quantum states ψ ∈ ℓ2(X), ϕ ∈ ℓ2(Y ) into a joint
system ψ ⊗ ϕ ∈ ℓ2(X × Y ). In the case of quantum memories ψ, ϕ over X,Y, respectively,
ψ⊗ϕ ∈ ℓ2[XY]. (And in this case, ψ⊗ϕ = ϕ⊗ψ since we are composing “named” systems.)

We will need to consider entangled pairs of memories. Specifically, a quantum bimemory
over X1,X2 is an element of ℓ2[X1]⊗ ℓ2[X2] = ℓ2[X1X2]. Similarly, a quantum ⊥-bimemory
is an element of ℓ2[X1]⊥⊗ ℓ2[X2]⊥, i.e., a tensor product of two quantum ⊥-memories. (Note:
“one-sided-⊥” states such as |m⟩ ⊗ |⊥⟩ are included in this.) For clarity, we often write
|⊥1⟩, |⊥2⟩ instead of ⊥ to emphasize whether we are talking about elements of ℓ2[X1]⊥ or
ℓ2[X2]⊥.

For a vector (or operator) a, we write a∗ for its adjoint. (In the finite dimensional
case, the adjoint is simply the conjugate transpose of a vector/matrix. The literature also
knows the notation a†.) The adjoint of a vector |x⟩ is also written as ⟨x|. We abbreviate
proj(ψ) := ψψ∗. This is the projector onto ψ when ∥ψ∥ = 1.

1 We stress that we do not assume that the type is a finite or even a countable set. Consequently, the
Hilbert spaces considered in this paper are not necessarily finite dimensional or even separable. However,
all results can be informally understood by thinking of all sets as finite and hence of all Hilbert spaces
as CN for suitable N ∈ N.

2 When we say “basis”, we always mean an orthonormal Hilbert-space basis.
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Mixed quantum memories. In many situations, we need to model probabilistic quantum
states (e.g., a quantum state that is |0⟩ with probability 1

2 and |1⟩ with probability 1
2 ). This

is modeled using mixed states (a.k.a. density operators). Having normalized state ψi with
probability pi is represented by the operator ρ :=

∑
i piproj(ψi).3 In particular, proj(ψ) is the

density operator of a pure quantum state ψ. Then ρ encodes all observable information about
the distribution of the quantum state (that is, two distributions of quantum states have
the same ρ iff they cannot be distinguished by any physical process). And tr ρ is the total
probability

∑
i pi. Note that we do not formally impose the condition tr ρ = 1 or tr ρ ≤ 1

unless explicitly specified. We call a mixed state normalized iff tr ρ = 1. We will often need
to consider mixed states of quantum memories (i.e., mixed states with underlying Hilbert
space ℓ2[X]). We call them mixed (quantum) memories over X. Analogously, we define
mixed bimemories and mixed ⊥-bimemories as mixed states of quantum (⊥-)bimemories.

Let P⊥ := proj(|⊥⟩) and P̸⊥ := id − P⊥. We can easily access the terminating and
non-terminating part of a mixed ⊥-memory: ↓⊥(ρ) := P⊥ρP⊥ and ↓ ̸⊥(ρ) := P ̸⊥ρP̸⊥ are the
memory ρ after measuring that we have termination or do not have termination, respectively.

For a mixed (⊥-)bimemory ρ over X1X2 the partial trace tri ρ (i = 1, 2) is the result of
throwing away the left/right memory (i.e., it is a mixed memory over Xi). Formally, tri is
defined as the continuous linear function satisfying tr1(σ⊗ τ) := τ · trσ, tr2(σ⊗ τ) := σ · tr τ .

A mixed memory ρ is (X,Y)-separable (i.e., not entangled between X and Y) iff it can
be written as ρ =

∑
i ρi ⊗ ρ′

i for mixed memories ρi, ρ
′
i over X,Y, respectively. (Potentially

infinite sum.) When X,Y are clear from the context, we simply say separable.
In this paper, when we write infinite sums of operators, convergence is always with respect

to the trace norm: ∥A∥tr := tr
√
AA†. (In the finite-dimensional case, the choice of norm is

irrelevant since all norms are equivalent then.)

Operations on quantum states. An operation in a closed quantum system is modeled by
an isometry U on ℓ2(X).4 If we apply such an operation on a mixed state ρ, the result is
UρU∗. In particular, denote by id the identity operation, i.e. idψ = ψ for all pure states ψ
in this space.

An operator A on ℓ2[X] can be interpreted as an operator on ℓ2[X]⊥ by setting A|⊥⟩ := 0.
To avoid confusion, we often write A⊕ 0⊥ for the operator on ℓ2[X]⊥. Similarly, an operator
A on ℓ2[X1]⊗ ℓ2[X2] can be seen as an operator on ℓ2[X1]⊥ ⊗ ℓ2[X2]⊥, we write A⊕ 0⊥⊥
for the operator on ℓ2[X1]⊥ ⊗ ℓ2[X2]⊥.

Most often, isometries will occur in the context of operations that are performed on a
single variable or list of variables, i.e., an isometry U on ℓ2[X]. Then U can also be applied
to ℓ2[Y] with Y ⊇ X: we identify U with U ⊗ idY\X. Furthermore, if X has type T , then an
isometry U on ℓ2(T ) can be seen as an isometry on ℓ2[X] since we identify ℓ2(T ) and ℓ2[X].
If we want to make X explicit, we write U on X for the isometry U on ℓ2[Y]. For example,
if U is a 2× 2-matrix and x has type bit, then U on x can be applied to quantum memories
over xy, acting on x only. This notation is not limited to isometries, of course, but applies to
other operators, too. (By operator we always mean a bounded linear operator in this paper.)

3 Mathematically, density operators are positive Hermitian trace-class operators on ℓ2(X). The re-
quirement “trace-class” ensures that the trace exists and can be ignored in the finite-dimensional
case.

4 That is, a norm-preserving linear operation. Often, one models quantum operations as unitaries instead
because in the finite-dimensional case an isometry is automatically unitary. However, in the infinite-
dimensional case, unitaries are unnecessarily restrictive. Consider, e.g., the isometry |i⟩ 7→ |i+ 1⟩ with
i ∈ N which is a perfectly valid quantum operation but not a unitary.
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In slight overloading of notation, we also write U on X for U acting on ⊥-memories, where
(U on X)|⊥⟩ = 0. (That is, U on X is short for the more precise (U on X)⊕0⊥.) We also write
U on X1 for U acting on ⊥-bimemories. In this case, we simply have U on X1 := (U on X1)⊗
id. In particular, (U on X1)(|m⟩ ⊗ |⊥⟩) = (U on X1)|m⟩ ⊗ |⊥⟩ but (U on X1)(|⊥⟩ ⊗ |m⟩) = 0.
Analogously for U on X2.

We will use only binary measurements in this paper. A binary measurement M on ℓ2[X]
has outcomes true, false and is described by two bounded operators Mtrue , Mfalse on ℓ2[X]
that satisfy M∗

trueMtrue +M∗
falseMfalse = id, its Krauss operators. Given a mixed memory ρ,

the probability of measurement outcome t is pt := trMtρM
∗
t , and the post-measurement

state is MtρM
∗
t /pt.

Expectations. In this work, we will use expectations as pre- and postconditions in Hoare
judgments. The idea of using expectations originated in [13] for reasoning about (classical)
probabilistic programs. Intuitively, an expectation is a quantitative predicate, that is for
any memory (or bimemory, in our case), it does not tell us whether the memory satisfies
the predicate but how much it satisfies the predicate. Thus, classically, an expectation is
simply a function from assignments to reals. By analogy, in the quantum setting, one might
want to define expectations, e.g., as functions f from quantum bimemories to reals (i.e., an
expectation would be a function ℓ2[X]→ R≥0). However, such expectations might behave
badly, for example, it is not clear how to compute the expected value f(ψ) for a random
ψ if the distribution of ψ is given in terms of a density operator. A better approach was
introduced by [10]. Following their approach, we define an expectation as a positive operator
A on quantum bimemories.5 (We use letters A,B,C, . . . for expectations in this paper.)
This expectation then assigns the value ψ∗Aψ to the quantum memory ψ (equivalently,
tr A proj(ψ)). To understand this, it is best to first look at the special case where A is a
projector. Then ψ∗Aψ = 1 iff ψ is in the image of A, and ψ∗Aψ = 0 iff ψ is orthogonal to
the image of A. Such an A is basically a predicate (by outputting 1 for states that satisfy
the predicate). Of course, states that neither satisfy the predicate nor are orthogonal to it
will output a value between 0 and 1. Any expectation A can be written as

∑
i piAi with

projectors Ai. Thus, A would give pi “points” for satisfying the predicate Ai. In this respect,
expectations in the quantum setting are similar to classical ones: classical expectations give
a certain amount of “points” for each possible classical input.

The nice thing about this formalism is that, given a density operator ρ =
∑
piproj(ψi),

we can easily compute the expected value of the expectation A. More precisely, the expected
value of ψ∗Aψ = tr Aproj(ψ) with ψ := ψi with probability pi. That expected value is∑
pi tr Aproj(ψi) = tr A(

∑
piproj(ψi)) = tr Aρ. This shows that we can evaluate how much a

density operator satisfies the expectation A by just computing tr Aρ. This formula will be
the basis for our definitions!

Analogously, we define ⊥-expectations on quantum ⊥-bimemories. However, we add one
restriction: The value of a ⊥-expectation should not change if we measure whether the
⊥-bimemory is in |⊥⟩ or not. Formally, a ⊥-expectation is a positive operator on quantum
⊥-bimemories that is invariant under E⊥ ⊗ E⊥ where E⊥ (ρ) := P⊥ρP⊥ + P̸⊥ρP̸⊥. (E⊥
corresponds to measuring and forgetting whether a given mixed ⊥-memory is |⊥⟩ or not.)
Note that for an expectation A, the operator A⊕ 0⊥⊥ is a ⊥-expectation. We can thus see
expectations as special cases of ⊥-expectations.

5 Recall from page 4 that operators are always bounded in our context. This means that A is bounded,
too. This means that the values that an expectation A can assign to states are between 0 and B for
some finite B.
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A very simple example of an expectation would be the matrix A :=
(

1
1
2

)
that assigns

1 to |0⟩, and 1
2 to |1⟩. And given the density operator ρ = 1

2 id (representing a uniform qubit),
tr Aρ = 3

4 are intuitively expected.

Quantum equality. In [17], a specific predicate X1 ≡q X2 was introduced to describe
the fact that two quantum variables (or list of quantum variables) have the same state.
Formally, X1 ≡q X2 is the subspace consisting of all quantum memories in ℓ2[X1X2] that are
invariant under SWAPX1X2 , the unitary that swaps variables X1 and X2.6 Or equivalently,
X1 ≡q X2 denotes the subspace spanned by all quantum memories of the form ϕ⊗ ϕ with
ϕ ∈ ℓ2[X1] = ℓ2[X2]. We write EQUAL on X1X2 for the projector onto X1 ≡q X2.

3 Quantum programs

Syntax. We will now define a small imperative quantum language.7 The set of all programs
is described by the following syntax:

ccc,ddd ::= apply U to X | X← ψ | if M [X] then ccc else ddd | while M [X] do ccc | ccc;ddd | skip | abort

Here X is a list of variables and U an isometry on ℓ2[X], ψ ∈ ℓ2[X] a normalized state,
and M is a binary measurement on ℓ2[X]. (There are no fixed sets of allowed U and ψ, any
isometry/state that we can describe can be used here).8

Intuitively, apply U to X means that the operation U is applied to the quantum
variables X. E.g., apply H to x would apply the Hadamard gate to the variable x (we
assume that H denote the Hadamard matrix). It is important that we can apply U to
several variables X simultaneously, otherwise no entanglement between variables can ever be
produced.

The program X← ψ initializes the variables X with the quantum state ψ. The program
if M [X] then ccc else ddd will measure the variables X with the measurement M , and, if the
outcome is true, execute ccc, otherwise execute ddd.

The program while M [X] do ccc measures X, and if the outcome is true, it executes ccc.
This is repeated until the outcome is false.

Finally, ccc;ddd executes ccc and then ddd. And skip does nothing. We will always implicitly
treat “;” as associative and skip as its neutral element. abort never terminates.

Semantics. The denotational semantics of our programs ccc are represented as completely
positive trace-reducing maps JcccK on the mixed memories over Xall, defined by recursion
on the structure of the programs. Here Xall is a fixed set of program variables, and we
will assume that all variables under consideration are contained in this set. The obvious
cases are JskipK := id and Jccc;dddK := JdddK ◦ JcccK and JabortK(ρ) := 0. And application of
an isometry U is also fairly straightforward given the syntactic sugar introduced above:
Japply U to XK(ρ) := (U on X)ρ(U on X)∗. (The notation U on X was introduced on
page 4.)

6 That is, SWAPX1X2 (ψ ⊗ ϕ) = ϕ⊗ ψ for ψ ∈ ℓ2[X1], ϕ ∈ ℓ2[X2].
7 Very similar to [18], except that we replace their case-statement by an if-statement and allow initialization

with arbitrary states instead of just |0⟩.
8 We will assume throughout the paper that all programs satisfy those well-typedness constraints. In

particular, rules may implicitly impose type constraints on the variables and constants occurring in
them by this assumption.
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Initialization of quantum variables is slightly more complicated: X← ψ initializes the
variables X with ψ, which is the same as removing X, and then creating a new variable
X with content ψ. Removing X is done by the operation trX (partial trace, see page 4).
And creating new variables X in state ψ is done by the operation ⊗proj(ψ). Thus we define
JX← ψK(ρ) := trX ρ⊗ proj(ψ).

The if-command first performs a measurement and then branches depending on the
outcome. We then have that the state after measurement (without renormalization) is
(Mt on X)ρ(Mt on X)∗ for outcome t = true, false. Then ccc or ddd is applied to that state and
the resulting states are added together to get the final mixed state. Altogether:

q
if M [X] then ccc else ddd

y
(ρ) := JcccK

(
↓true(ρ)

)
+ JdddK

(
↓false(ρ)

)
where ↓t(ρ) := (Mt on X)ρ(Mt on X)∗

While-commands are modeled similarly: In an execution of a while statement, we have n ≥ 0
iterations of “measure with outcome true and run ccc” (which applies JcccK ◦ ↓true to the state),
followed by “measure with outcome false” (which applies ↓false to the state). Adding all those
branches up, we get the definition:

q
while M [X] do ccc

y
(ρ) :=

∞∑
n=0
↓false

(
(JcccK ◦ ↓true)n(ρ)

)
We call a program ccc terminating iff trJcccK(ρ) = tr ρ for all ρ.

Semantics with explicit non-termination. JcccK is not trace-preserving if ccc is not terminating.
For technical reasons, we will need a variant of this function that is trace-preserving. This
can be achieved by outputting a mixed state that has an explicit state proj(|⊥⟩) to denote
non-termination. This semantic function JcccK⊥ takes mixed ⊥-memories to mixed ⊥-memories
and can be easily derived from JcccK:

JcccK⊥ (ρ) := JcccK(↓ ̸⊥(ρ)) +
(
tr ρ− trJcccK(↓̸⊥(ρ))

)
proj(|⊥⟩).

(P⊥, P ̸⊥ are defined on page 4.) Operationally, JcccK⊥ first measures if the state is ⊥. If so,
nothing happens. Otherwise, ccc is applied. If ccc does not terminate, the final output memory
is set to be ⊥. JcccK⊥ is easily seen to be trace-preserving. Moreover, we have the composition
property Jccc;dddK⊥ = JdddK⊥ ◦ JcccK⊥, since

JdddK⊥(JcccK⊥(ρ)) = JdddK⊥ [JcccK(ρ ̸⊥) + (tr ρ− trJcccK(ρ ̸⊥))proj(|⊥⟩)]
= JdddK(JcccK(ρ ̸⊥)) +

[
trJcccK⊥(ρ)− trJdddK(JcccK(ρ ̸⊥))

]
proj(|⊥⟩)

= Jccc;dddK(ρ ̸⊥) + (tr ρ− trJccc;dddK(ρ ̸⊥))proj(|⊥⟩) = Jccc;dddK⊥(ρ).

4 qRHL with expectations

Defining the logic. We now present our definition of expectation-qRHL. We follow the
approach from [17] to use separable couplings to describe the relationship between programs.
A coupling between two mixed states ρ1 and ρ2 is a mixed state ρ that has ρ1 and ρ2 as
marginals. (That is, trX2 ρ = ρ1 and trX1 ρ = ρ2 if ρ1, ρ2 are over X1,X2, respectively.) This
is analogous to probabilistic couplings: a coupling of distributions µ1, µ2 is a distribution µ

with marginals µ1, µ2. Note that couplings trivially always exist if ρ1 and ρ2 have the same
trace (namely, ρ := ρ1 ⊗ ρ2/ tr ρ1). Couplings become interesting when we put additional
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constraints on the state ρ. For example, if we require the support of ρ to be in the subspace
C := span{|00⟩, |11⟩}, then ρ1 = proj(|0⟩) and ρ2 = proj(|0⟩) have a coupling (namely,
ρ = proj(|00⟩)), as do ρ1 = proj(|1⟩) and ρ2 = proj(|1⟩) (namely, ρ = proj(|11⟩)), but not
ρ1 = proj(|0⟩) and ρ2 = proj(|1⟩). Things become particularly interesting when ρ1, ρ2 are not
pure states. E.g., ρ1 = 1

2 proj(|0⟩) + 1
2 proj(|1⟩) and ρ2 = 1

2 proj(|0⟩) + 1
2 proj(|1⟩) have such a

coupling as well (namely, ρ = 1
2 proj(|00⟩) + 1

2 proj(|11⟩) but ρ := ρ1 ⊗ ρ2 is not a coupling
with support in C).

Thus, a subspace such as C can be seen as a predicate describing the relationship of
ρ1, ρ2. The states ρ1, ρ2 satisfy C iff there is a coupling with support in C. This idea leads
to the following tentative definition of qRHL:

▶ Definition 1 (qRHL, tentative, without expectations). For subspaces A, B (i.e., spaces
of quantum memories over Xall

1 Xall
2 ), {A} ccc ∼ ddd {B} holds iff for any ρ1, ρ2 that have a

coupling with support in A, the final states JcccK(ρ1), JdddK(ρ2) have a coupling with support in B.

However, it was noticed in [17] that the definition becomes easier to handle if we impose
another condition on the couplings. Namely, the coupling should be separable, i.e., there
should be no entanglement between the two systems corresponding to ρ1, ρ2. That is, the
definition of qRHL used in [17] is Definition 1 with “coupling” replaced by “separable coupling”.
We will also adopt the separability condition in our definition of expectation-qRHL.9

So far, we have basically recapped the definition from [17]. However, that definition only
allows us to express Hoare judgments that do not involve expectations since A and B in
Definition 1 are subspaces (predicates), not expectations. To define expectation-qRHL, we
follow the same idea, but instead of quantifying over only the initial states satisfying the
precondition, we quantify over all initial states, and merely require that (the coupling of)
the final states satisfies the postexpectation at least as much as (the coupling of the) initial
states satisfy the preexpectation. That is:

▶ Definition 2 (Expectation-qRHL (eqRHL), first attempt). For expectations A,B,
{A} ccc ∼ ddd {B} holds iff for any ρ1, ρ2 with separable coupling ρ, the final states JcccK(ρ1), JdddK(ρ2)
have a separable coupling ρ′ such that tr Aρ ≤ tr Bρ′. (Recall that tr Aρ indicates how much
ρ satisfies A, and analogously tr Bρ′, cf. Section 2.)

For terminating programs ccc,ddd, this definition already works well. Unfortunately, if ccc,ddd
do not terminate with probability 1, we have some undesired effects: For example, assume
that ccc = skip, and ddd is a program that with probability 1− ε does nothing (skip), and but
with probability ε does not terminate (abort). Then {A} ccc ∼ ddd {B} does not hold for any
A,B. Why? The final states JcccK(ρ1), JdddK(ρ2) have trace 1 and 1− ε, respectively. Therefore
there exists no coupling ρ′ of JcccK(ρ1), JdddK(ρ2). (It follows from the definition of couplings
that the coupling must have the same trace as its marginals.) Hence {A} ccc ∼ ddd {B} does
not hold. Similarly, {A} ccc ∼ ddd {B} does not hold whenever there are two input states ρ1, ρ2
such that ccc,ddd terminate with different probabilities. (Even if this nontermination only occurs
for input states for which A evaluates to 0!) This makes it near impossible to reason about
non-terminating programs.10

9 [17] was not able to prove the Frame rule without adding this separability condition. Our reasons for
adopting the separability condition are slightly different: we do not have a Frame rule anyway, but
for other elementary rules such as the rule Equal in [17] with quantum expectations and quantum
variables, it is unclear how to prove them without the separability condition.

10 Even if we are interested in a Hoare logic with total correctness, this behavior is undesired. Instead,
we want that a nontermination with small probability simply introduces some small penalty in the
expectations. For example, in the case of non-relational Hoare with total correctness, {(1− ε)id}A {id}
means that A is nonterminating with probability ≤ ε.
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There are a number of approaches how one can circumvent this problem. E.g., one could
allow ρ′ to be a “subcoupling” instead of a coupling (i.e., its marginals do not have to equal
JcccK(ρ1), JdddK(ρ2) but only lower bound them);11 the subcoupling always exists, even if the
traces are not equal. However, we find that adding such “hacks” to the definition makes
it more difficult to understand what the definition exactly does in case of non-terminating
programs.

Instead, we choose an approach that makes non-termination explicit. That is, when
a program does not terminate, we assign a specific state |⊥⟩ to its output, and we allow
expectation to explicitly refer to it (e.g., an expectation could assign value 1 to nontermination,
and value 0 to termination). The denotation JcccK⊥ defined on page 7 does exactly that. And
expectations that live on a space that has an explicit nontermination-state |⊥⟩ were introduced
as ⊥-expectations on page 5. This leads to the following definition:

▶ Definition 3 (Expectation-qRHL, informal). For ⊥-expectations A,B, {A} ccc ∼ ddd {B} holds
iff for any ρ1, ρ2 with separable coupling ρ, the final states JcccK⊥(ρ1), JdddK⊥(ρ2) have a separable
coupling ρ′ such that tr Aρ ≤ tr Bρ′.

Note that a coupling of JcccK⊥(ρ1), JdddK⊥(ρ2) always exists since J·K⊥ is trace-preserving. (Below,
we will derive certain specific variants of eqRHL such as eqRHL with total correctness as
specific cases of this definition. Also, we will see that subcouling-based definitions can be
recovered as special cases in Lemma 9.) By plugging in the definition of couplings into
Definition 3, we get the following precise definition:

▶ Definition 4 (Expectation-qRHL, generic). Let A, B be ⊥-expectations and ccc, ddd programs.
Then {A} ccc gen∼ ddd {B} holds iff for any separable mixed ⊥-bimemory ρ over Xall

1 ,Xall
2 , there

is a separable mixed ⊥-bimemory ρ′ over Xall
1 ,Xall

2 such that
tr2 ρ

′ = JcccK⊥(tr2 ρ).
tr1 ρ

′ = JdddK⊥(tr1 ρ).
tr Aρ ≤ tr Bρ′.

In this definition, Xall
1 ,Xall

2 are isomorphic copies of the set Xall of variables. That is,
while strictly speaking, JcccK⊥ maps mixed ⊥-memories over Xall to mixed ⊥-memories over
Xall, we can also see it as mapping mixed ⊥-memories over Xall

1 to mixed ⊥-memories over
Xall

1 . Analogously for ddd and Xall
2 . We make use of this in the preceding definition when we

apply JcccK⊥, JdddK⊥ to ρ1, ρ2, respectively. In the rest of the paper, we simply call a mixed state
(ρ1, ρ2)-coupling if it is separable and has marginals ρ1 and ρ2.

Note that we defined ⊥-expectations to be invariant under E⊥⊗E⊥ (page 5), i.e., that they
implicitly measure first whether the quantum memories are |⊥⟩. Otherwise, we would not
even have {A} skip gen∼ skip {A} (rule Skip below), for example if A := proj( 1√

2 |0⟩+ 1√
2 |⊥⟩).

This is because even the program skip measures whether the memory is |⊥⟩ (by definition
of J·K⊥), so it may change the state if the memory is in a superposition between |⊥⟩ and
something else.

Partial/total correctness. The generic definition of eqRHL (Definition 4) allows us to
explicitly express in our pre-/postexpectations how nontermination should be treated. While
this allows for maximal generality, in practice it might be cumbersome to always have to
specify explicitly how the expectations behave on |⊥⟩. Instead, we define below three special
cases of eqRHL that hardcode the treatment of |⊥⟩.

11 This is explored further in Section 4 for special cases of our definition.
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The simplest case is eqRHL with total correctness: Here, nontermination is “forbidden”,
i.e., we assign value 0 to it. Recall from page 4 that for an expectation A, A⊕ 0⊥⊥ is the
corresponding ⊥-expectation. It assigns 0 to a state that has |⊥⟩ in the left or right memory.
Hence, eqRHL with total correctness simply means that all pre/postconditions are of the
form A⊕ 0⊥⊥. The following definition specifies convenient syntax for this special case:

▶ Definition 5 (Expectation-qRHL, total). Let A, B be expectations and ccc, ddd programs. Then
{A} ccc tot∼ ddd {B} iff {A⊕ 0⊥⊥} ccc

gen∼ ddd {B⊕ 0⊥⊥}.

A second common variant of Hoare logic is “partial correctness”. Here we allow non-
termination, i.e., if a program does not terminate, we assign the value 1. That is, we use
pre/postexpectations of the form (A⊕ 0⊥⊥) + T where T assigns value 1 when the left or
right memory is in state |⊥⟩:

▶ Definition 6 (Expectation-qRHL, partial). Let A, B be expectations and ccc, ddd pro-
grams. Then {A} ccc par∼ ddd {B} iff {(A⊕ 0⊥⊥) + T} ccc gen∼ ddd {(B⊕ 0⊥⊥) + T} where T :=(
proj(|⊥1⟩)⊗ P̸⊥

)
+

(
P̸⊥ ⊗ proj(|⊥2⟩)

)
+ proj(|⊥1⟩ ⊗ |⊥2⟩).

Unfortunately, this definition does not necessarily behave as we would like. E.g., if both ccc

and ddd terminate with probability ≤ 1
2 on all inputs, then {A} ccc par∼ ddd {B} holds for any A ≤ id,

B. That is, any property holds with probability 1
2 for those programs which is not what we

would expect! Why does this happen? Since JcccK⊥(ρ1), JdddK⊥(ρ2) are 50% nontermination, we
can “match up” the nonterminating part of JcccK⊥(ρ1) with the terminating part of JdddK⊥(ρ2) and
vice versa in the coupling ρ′ of the output states. Then trTρ′ = 1 and thus {A} ccc par∼ ddd {B}
holds. The problem here is that we treat nontermination as a “wildcard” that is allowed to
match any behavior of the other program. While there may be valid use cases for such a
notation, we believe that in most cases this is not what we want.

Instead, we define a notion we call “semipartial”. In this eqRHL-variant, we allow
nontermination, but only when it occurs in the two programs “in sync”. I.e., we consider
pre/postexpectations that assign 1 to |⊥⟩ ⊗ |⊥⟩, but 0 to a state where one program has
nonterminated and the other has terminated. Formally:

▶ Definition 7 (Expectation-qRHL, semipartial). Let A, B be expectations and ccc, ddd programs.
Then {A} ccc semi∼ ddd {B} iff

{(A⊕ 0⊥⊥) + proj(|⊥1⟩ ⊗ |⊥2⟩)} ccc
gen∼ ddd {(B⊕ 0⊥⊥) + proj(|⊥1⟩ ⊗ |⊥2⟩)}.

Pure initial states. In many cases, it is much easier to work with the definition of eqRHL
correctness if one can assume that the initial states of ccc,ddd are pure states, and that the initial
coupling is the tensor product of those states. (No nontrivial correlations.) The following
lemma shows that we can do so without loss of generality:

▶ Lemma 8. Let A, B be ⊥-expectations and ccc, ddd programs. Then {A} ccc gen∼ ddd {B} holds iff
for all unit quantum memories ψ1, ψ2 over X1, X2, respectively, there is a separable
⊥-mixed bimemory ρ′ over X1,X2 such that

tr2 ρ
′ = JcccK⊥(proj(ψ1)).

tr1 ρ
′ = JdddK⊥(proj(ψ2)).

tr A proj(ψ1 ⊗ ψ2) ≤ tr Bρ′.12

12 Or equivalently, ∥
√

A(ψ1 ⊗ ψ2)∥ ≤ tr Bρ′. Or (ψ1 ⊗ ψ2)∗A(ψ1 ⊗ ψ2) ≤ tr Bρ′.
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for all unit quantum memories ψ1 over X1, we have tr A proj(ψ1 ⊗ |⊥2⟩) ≤
tr B

(
JcccK⊥(proj(ψ1))⊗ proj(|⊥2⟩)

)
.

for all unit quantum memories ψ2 over X2, we have tr A proj(|⊥1⟩ ⊗ ψ2) ≤
tr B

(
proj(|⊥1⟩)⊗ JdddK⊥(proj(ψ2))

)
.

tr A proj(|⊥1⟩ ⊗ |⊥2⟩) ≤ tr B proj(|⊥1⟩ ⊗ |⊥2⟩).

Equivalent reformulations. As discussed after Definition 2, an alternative means of trying
to circumvent the problem that Definition 2 does handle nonterminating programs well is to
use subcouplings instead of couplings.

Here, we show that the notions of eqRHL with partial and total correctness can be
equivalently restated in terms of subcouplings (instead of the extended semantics J·K⊥ over
⊥-memories). However, we do not know such an equivalent reformulation for semipartial
correctness.

▶ Lemma 9. Let A, B be expectations and ccc, ddd programs. Then {A} ccc tot∼ ddd {B} iff for any
separable mixed bimemory ρ over Xall

1 ,Xall
2 , there is a separable mixed bimemory ρ′ over

Xall
1 ,Xall

2 such that
tr2 ρ

′ ≤ JcccK(tr2 ρ).
tr1 ρ

′ ≤ JdddK(tr1 ρ).
tr Aρ ≤ tr Bρ′.

▶ Lemma 10. Let A, B be expectations and ccc, ddd programs. Then {A} ccc par∼ ddd {B} holds iff
for any separable mixed bimemory ρ over Xall

1 ,Xall
2 , there is a separable mixed bimemory ρ′

over Xall
1 ,Xall

2 such that
tr2 ρ

′ ≤ JcccK(tr2 ρ).
tr1 ρ

′ ≤ JdddK(tr1 ρ).
tr ρ′ ≥ trJcccK(tr2 ρ) + trJdddK(tr1 ρ)− tr ρ.
tr Aρ ≤ tr Bρ′ + tr ρ− tr ρ′.

In this definition, tr ρ− tr ρ′ ≥ 0 is describe the nonterminating probability. Lemma 9
and Lemma 10 mean that total and partial correctness can be alternatively defined using
the concept of subcouplings, without considering the ⊥-extension of the expectations and
programs.

▶ Lemma 11. Let A, B be expectations and ccc, ddd programs. Then {A} ccc tot∼ ddd {B} (resp.
{A} ccc par∼ ddd {B}) holds iff for all unit quantum memories ψ1, ψ2 over Xall

1 , Xall
2 , respectively,

there is a separable mixed bimemory ρ over X1X2 such that
tr2 ρ ≤ JcccK(proj(ψ1)).
tr1 ρ ≤ JdddK(proj(ψ2)).
tr Aproj(ψ1 ⊗ ψ2) ≤ tr Bρ.13

(resp. tr Aproj(ψ1 ⊗ ψ2) ≤ tr Bρ+1− tr ρ and 1+tr ρ ≥ trJcccK(proj(ψ1))+trJdddK(proj(ψ2)).)

5 Description of the rules

We describe the rules of our logic one by one here. Recall that we essentially have four
different logics: partial, semipartial, total, and the general case from which the former three
are derived. To keep things readable, we only describe the rules for the partial, semipartial,
and total case here. (Listed in Figure 1.) In the full version, we state and prove the rules

13 Or equivalently, ∥
√

A(ψ1 ⊗ ψ2)∥ ≤ tr Bρ. Or (ψ1 ⊗ ψ2)∗A(ψ1 ⊗ ψ2) ≤ tr Bρ.
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Skip
{A} skip any∼ skip {A}

Apply1{
(U on X1)∗A(U on X1)

}
apply U to X any∼ skip

{
A

}
ExFalso
{0} ccc any∼ ddd {B}

Init1{
idX1 ⊗ (ψ∗ ⊗ id¬X1)A(ψ ⊗ id¬X1)

}
X← ψ

any∼ skip
{

A
}

Seq
{A} ccc1

any∼ ddd1 {B} {B} ccc2
any∼ ddd2 {C}

{A} ccc1; ccc2
any∼ ddd1;ddd2 {C}

Conseq
A′ ≤ A {A} ccc any∼ ddd {B} B ≤ B′

{A′} ccc any∼ ddd {B′}

Sym
{A} ccc any∼ ddd {B}

{SWAP∗ · A · SWAP}ddd any∼ ccc {SWAP∗ · B · SWAP}

Scale
{A} ccc any∼ ddd {B} λ ∈ [0, 1]

{λA} ccc any∼ ddd {λB}

If1
{AT } cccT

any∼ ddd {B} {AF } cccF
any∼ ddd {B}

{↓∗
true(AT ) + ↓∗

false(AF )} if M [X] then cccT else cccF
any∼ ddd {B}

JointIf9
{At,u} ccct

any∼ dddu {B} for t, u ∈ {true, false}{∑
t,u∈{true,false} ↓∗

t,u(At,u)
}

if M [X] then ccctrue else cccfalse
any∼ if N [Y] then dddtrue else dddfalse

{
B
}

JointIf
{Atrue} ccctrue

any∼ dddtrue {B} {Afalse} cccfalse
any∼ dddfalse {B}{

↓∗
true,true(Atrue)+↓∗

false,false(Afalse)
}

if M [X] then ccctrue else cccfalse
any∼ if N [Y] then dddtrue else dddfalse

{
B
}

While1{
A

}
ccc

any∼ skip
{
↓∗

true(A) + ↓∗
false(B)

}
while M [X] do ccc is terminating{

↓∗
true(A) + ↓∗

false(B)
}

while M [X] do ccc
any∼ skip

{
B

}
JointWhile

{A} ccc any∼ ddd {↓∗
true,true(A) + ↓∗

false,false(B)}
while M [X] do ccc or while N [Y] do ddd is terminating

{↓∗
true,true(A) + ↓∗

false,false(B)}while M [X] do ccc
any∼ while N [Y] do ddd {B}

Figure 1 Rules for total/semipartial/partial eqRHL. In these rules, “any” can be any of “tot”,
”semi”, ”par”. For any = par, the termination condition in While1 can be replaced by A ≤ id, and
for any = par, semi the termination condition in JointWhile can be replaced by A ≤ id. We refer
to the symmetric rules of Apply1, Init1, If1, and While1 (obtained by applying Sym) as Apply2,
Init2, If2, and While2.
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in the general case. The rules in Figure 1 are then simple consequences of the rules in the
general case. The sole exception are rules related to while-loops: here not all of the partial,
semipartial, total case follow directly from the general while rule. Those cases that do not
follow are proved separately.

5.1 Structural rules
First, we mention the “structural” rules, i.e., rules that do not related to a specific language
construct. There is Sym for exchanging the two programs. (In this rule, SWAP : ℓ2[Xall

2 ]⊗
ℓ2[Xall

1 ] 7→ ℓ2[Xall
1 ]⊗ ℓ2[Xall

2 ] is the unitary operator SWAP⊥ : (ψ ⊗ ϕ) = ϕ⊗ ψ.) ExFalso
allows us to show anything from an impossible preexpectation. Seq allows us to analyze
the sequential composition of programs. Conseq allows us to weaken a judgment. (The
preexpectation can be replaced by a smaller preexpectation, and the postexpectation can be
replaced by a larger preexpectation. ≤ is the Loewner order). And finally, Scale allows us
to scale pre- and postexpectations by a scalar factor.

5.2 One-sided rules
Conceptually simplest are the one-sided rules, i.e., rules that have skip on the right (or left)
hand side. By combining them with Seq, we can prove facts about pairs of programs one
statement at the time. Here, we only describe the rules with skip on the right side, the other
case is analogous.

Apply: First, consider the Apply1 rule. It is stated (like all our rules), in a backward
reasoning style, i.e., for any postexpectation A, the tells us the corresponding preexpectation,
here (U on X1)∗A(U on X1). (Recall that U on X1 denotes U applied to X1.) This is quite
intuitive: the left program applies U on X1, so the preexpectation corresponding to the
postexpectation A is what we get if we apply U on X1 and then compute the preexpectation,
i.e., (U on X1)∗A(U on X1). (And it is (U on X1)∗A(U on X1) and not A(U on X1) because
the latter is not Hermitian and thus not a valid expectation.)

A toy example how to apply this rule: we want to what x has to be so that it
will be |0⟩ after applying a Hadamard H. Thus our postexpectation is proj(|0⟩) on x1.
Applying rule Apply1, we get that {B}apply H to x any∼ skip {proj(|0⟩) on x1} for B :=
(H on x1)∗(proj(|0⟩) on x1)(H on x1). (Here any∼ can be any of tot∼, semi∼ , par∼.) A simple calculation
reveals: B =

(
H∗proj(|0⟩)H

)
on x1 = proj(|+⟩) on x1. Thus we learned (unsurprisingly) that

to get |0⟩, we need to start out with |+⟩.

Init: The rule Init1 rule stated in a similar backwards reasoning way as Apply1, but the
preexpectation is somewhat less intuitive. We will illustrate it with a toy example. Assume
we want to know what the probability is to measure |0⟩ after initializing a variable x with
|+⟩. That is, our postexpectation is A := proj(|0⟩) on x1 and our left program is x ← |+⟩.
We ask for a suitable preexpectation B in {B}x← |+⟩ any∼ skip {A}. The Init1 rule gives
us B = idx1 ⊗

(
⟨+| ⊗ id¬x1

)
A

(
|+⟩ ⊗ id¬x1

)
. (Here, ¬X1 := Xall

1 Xall
2 \X1.) By definition

of A, we have that
(
⟨+| ⊗ id¬x1

)
A

(
|+⟩ ⊗ id¬x1

)
= ⟨+|proj(|0⟩)|+⟩ ⊗ id¬x1 = 1

2 id¬x1 . Note
that this is not an expectation in our sense because it is an operator on all variable but x1.
But by tensoring with idx1 , we get the expectation B = 1

2 id. Thus the preexpectation is 1
2 id

which intuitively means that, no matter what the initial state, the probability of measuring
|0⟩ will be 1

2 , as we would expect.

If: The rule rule If1 allows us to prove a judgment about an if-statement from judgments
about the then- and the else-branch. If the preexpectations from the then- and else-branch
are AT and AF , then the preexpectations for the if-statement is ↓∗

true(AT ) + ↓∗
false(AF ). (Here
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↓∗
t (A) := (Mt on X1)∗A(Mt on X1).) This is natural since ↓∗

true(AT ) is AT restricted to
the case where the conditional holds, and ↓∗

false(AF ) is AF restricted to the case where the
conditional does not hold.

A toy example: We want to show
{

id
}

if M [x] then apply X to x else skip any∼ skip
{

B
}

with B := proj(|0⟩) on x1. Here M is a computational basis measurement (Mtrue = proj(|1⟩),
Mfalse = proj(|0⟩)), and X is the pauli-X matrix (quantum bit flip). That is, with probability
1 (preexpectation is id), if we measure x in the computational basis, and, in case of outcome 1
flip it, we get |0⟩ (postexpectation B). We derive easily (using rules Apply1 and Skip) that{

proj(|1⟩) on x1
}

apply X to x any∼ skip
{

B
}

and
{

proj(|0⟩) on x1
}

skip any∼ skip
{

B
}

. From
the If1 rule, we then get

{
A

}
if M [x] then apply X to x else skip any∼ skip

{
B

}
with A =

↓∗
true(proj(|1⟩) on x1) + ↓∗

false(proj(|0⟩) on x1). Thus A = proj(|1⟩) on x1 + proj(|0⟩) on x1 = id,
as desired.

While: The While1 rule is similar to the If1 rule. (The preexpectation in the conclusion
has the same form.) The main difference is that we need to guess the invariant A because
the postexpectation in the premise contains A. The rule also requires us to prove first that
the loop is terminating (except in the case of partial correctness). Since this is a statement
about a single program (non-relational), it can be shown using existing approaches (e.g., [14])
and is outside the scope of this paper.

5.3 Two-sided rules

The one-sided rules discussed in the previous section allow us to analyze two programs one
statement at a time. However, they are not sufficient if want to analyze the relationship of
two programs that go in lockstop. (E.g., two while loops that always take the same decision
whether to terminate.) For handling if- and while-statements that are in sync, our logic
provides the two-sided rules JointIf9, JointIf, and JointWhile. Notice that there are
not two-sided analogues to Apply1 and Init1. This is because the resulting rule would be
no different from using the one-sided rule twice. However, when random choices happen,
two-sided rules are useful. In our case, this happens in if- and while-statements because the
measurement of the loop-condition introduces randomness.

If: The JointIf9 rule allows us to compute the preexpectation of two
if-statements. It is analogous to the If1 rule, except that the result-
ing preexpectation is of the form

∑
t,u∈{true,false} ↓∗

t,u(At,u). (Here ↓∗
t,u(A) :=(

(Mt on X1)⊗ (Nt on Y2)
)∗A

(
(Mt on X1)⊗ (Nt on Y2)

)
.) That is, the preexpectations are

restricted to all four combinations of true/false for the two if-conditions. And, consequently,
we have a premise for each of those four cases. (The rule is called JointIf9 because, in the
general case, there are nine cases, due to explicit treatment of non-terminating cases.) For
convenience, we additionally state rule JointIf which considers only the cases where the
two if-statements are in sync (true/true or false/false).

While: Similar to JointIf, the JointWhile rule allows us to reason about while loops
that are in sync. Like with While1, in contrast to JointIf, we need to guess the invariant
A. For an example, see Section 6. One difference with the While1 rule is that While1
requires us to prove termination in the semipartial and total case (not in the partical case),
while JointWhile requires us to prove termination only in the total case. (Intuitively, this
is because in the semipartial case, termination is not required, it is only required that both
programs terminate with the same probability.)
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6 Example: Quantum Zeno effect

Motivation. In this section, we study (one specific incarnation of) the quantum Zeno effect
as an example of application of our logic. The Zeno effect implies that the following processes
have the same effect:

Start with a qubit in state |0⟩. Apply a continuous rotation (with angular velocity ω) to
it. (Thus, after time t, the state will have rotated by angle ωt.)
Start with a qubit in state |0⟩. Continuously observe the state. Namely, at time t,
measure whether the qubit has rotated by angle ωt.

The quantum Zeno effect implies that in both processes, the state evolves in the same way
(and that the measurement in the second situation always gives answer “yes”). Notice that
this means that the measurements can be used to rotate the state.

In our formalization, we will consider the discrete version of this phenomenon: The
rotation is split into n rotations by a small angle, and the continuous measurement consists
of n measurements. In the limit n → ∞, both processes yield the same state, but if we
consider the situation for a concrete value of n, the result of the processes will be slightly
different. (And the difference can be quantified in terms of n.) This makes this example a
prime candidate for our logic: We want to compare two processes (hence we need relational
Hoare logic), but the processes are not exactly equivalent (hence we cannot use qRHL
from [17]) but only close to equivalent (and the “amount of equivalence” can be expressed
using expectations).

Formalizing the processes. We now formalize the two processes as programs in our language.
Let n ≥ 1 be an integer.

In the first process, we have a continuous rotation, broken down into n small rotations.
For simplicity, we will rotate by the angle π/2 within n steps, thus each small rotation

rotates by angle π
2n . This is described by the rotation matrix R :=

(
cos π

2n − sin π
2n

sin π
2n cos π

2n

)
.

Let y be a variable of type {0, 1} (i.e., the qubit that is rotated). In order to apply the
rotation n times, we will need a counter x for the while loop. Let x be a variable of type Z.
We will have a loop that continues while (informally speaking) x < n. This is formalized
by the projector P<n onto states |i⟩ with i < n. I.e., P<n :=

∑
−∞<i<n proj(|i⟩). In slight

abuse of notation, we also write P<n for the binary measurement with Kraus operators
{P<n, id− P<n}. Furthermore, we need to increase the counter. For this let INCR be the
unitary on ℓ2(Z) with INCR|i⟩ 7→ |i+ 1⟩ Then the program that initializes y with |0⟩ and
then applies the rotation R n times can be written as:

ccc := x← |0⟩; y← |0⟩; while P<n[x] do (apply INCR to x; apply R to y) (1)

In the second process, instead of applying R, we measure the state in each iteration of
the loop. In the first iteration, we expect the original state ϕ0 := |0⟩, and after the i-th
iteration, we expect the state ϕi := Rϕi−1 for i ≥ 1. This can be done using the program
if proj(ϕi)[y] then skip else skip where we again write in slight abuse of notation proj(ϕi)
for the corresponding binary measurement. Since the if-statement first measures y and then
executes one of the skip-branches, this is effectively just a measurement. We abbreviate this
as if proj(ϕi)[y].

However, we cannot simply write if proj(ϕi)[y] in our loop body, because i should be
the value of x. So we need to define the projector that projects onto ϕi when x = |i⟩. This
is done by the following projector on ℓ2[xy]: Pϕ :=

∑
i proj(|i⟩ ⊗ ϕi). Then if Pϕ[y] will

measure whether y contains ϕi whenever x contains |i⟩.

ICALP 2021



136:16 QRHL with Expectations

Armed with that notation, we can now formulate the second process as a program:

ddd := x← |0⟩; y← |0⟩; while P<n[x] do (apply INCR to x; if Pϕ[xy]) (2)

Equivalence of the programs. We claim that the two processes, i.e., the programs ccc,ddd have
approximately the same final state in y. Having the same state can be expressed using the
“quantum equality” described in Section 2. Specifically, the postexpectation EQUAL on y1y2
corresponds to y1 and y2 having the same state. For example, {id} ccc tot∼ ddd {EQUAL on y1y2}
implies that the final state of ccc and ddd is the same (if we trace out all variables except y1,y2).14

The fact that the final states are approximately equal can be expressed by multiplying the
preexpectation with a real number close to 1. Specifically, in our case we claim that

{εn · id} ccc tot∼ ddd {EQUAL on y1y2} (3)

Here ε := (cos π
2n )2. This indeed means that the final states of ccc and ddd are the same

asymptotically since εn = (cos π
2n )2n n→∞−−−−→ 1.

Warm up. Before we prove (3), we investigate a simpler case as a warm up. We investigate
the special where n = 3, and instead of a while-loop, we simply repeat the loop body three
times.

ccc′ := y← |0⟩;apply R to y;apply R to y;apply R to y
ddd′ := y← |0⟩;if proj(ϕ1)[y]; if proj(ϕ2)[y]; if proj(ϕ3)[y]

(4)

We claim:

{ε3 · id} ccc′ tot∼ ddd′ {EQUAL on y1y2} (5)

First, we strengthen the postcondition. Let A3 := (proj(ϕ3 ⊗ ϕ3) on y1y2). (This post-
condition is intuitively what we expect to (approximately) hold at the end of the execution.
It means that y1 and y2 are both in state ϕ3, the result by rotating three times using R.
Since ϕ3⊗ϕ3 is in the image of the projector EQUAL, it follows that A3 ≤ (EQUAL on y1y2).
By rule Conseq it is thus sufficient to show {ε3 · id} ccc′ tot∼ ddd′ {A3}. And by rule Seq, we can
show that by the following sequence of Hoare judgments for some A0,A1,A2:{
ε3 · id

} y← |0⟩
tot∼ y← |0⟩

{
A0

} apply R to y
tot∼ if proj(ϕ1)[y]

{
A1

} apply R to y
tot∼ if proj(ϕ2)[y]

{
A2

} apply R to y
tot∼ if proj(ϕ3)[y]

{
A3

}
(6)

(These are four judgments, we just use a more compact notation to put them in one line.) We
will derive suitable values A0,A1,A2 by applying our rules backwards from the postcondition.

By applying rule Apply1, we get
{

A′
3
}

apply R to y tot∼ skip
{

A3
}

where A′
3 :=

(R† on y1)◦A3 and where we use A◦B as an abbreviation for ABA†. And by rule If2 (using
rule Skip for its premises), we get{

(proj(ϕ3) on y2) ◦ A′
3 + (1− proj(ϕ3) on y2) ◦ A′

3

}
skip tot∼ if proj(ϕ3)[y]

{
A′

3

}
.

14 This is seen as follows: The judgment implies that the finals states are marginals of a state that is
invariant under the projector EQUAL on y1y2, i.e., a state with support in the space Y1 ≡q Y2. That
means that this state is invariant under swapping Y1,Y2, and thus the marginals corresponding to Y1
and Y2 are equal.
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The precondition is lower bounded by A2 := (proj(ϕ3) on y2) ◦ A′
3. (The second term corre-

sponds to the measurement failing to measure ϕ3, in this case all is lost anyway, so we remove
that term.) Hence (with rules Seq and Conseq),

{
A2

}
apply R to y tot∼ if proj(ϕ3)[y]

{
A3

}
as desired in (6).

Analogously, we can instantiate

A1 := (proj(ϕ2) on y2) ◦ (R∗ on y1) ◦ A2 and A0 := (proj(ϕ1) on y2) ◦ (R∗ on y1) ◦ A1

in (6). We can simplify the expressions for A0,A1,A2 some more. We have

A2 = (proj
(
ϕ3

)
on y2) ◦ (R∗ on y1) ◦

(
proj(ϕ3 ⊗ ϕ3) on y1y2

)
= proj

(
R∗ϕ3 ⊗ proj(ϕ3)ϕ3

)
on y1y2 = proj(ϕ2 ⊗ ϕ3) on y1y2

And

A1 = (proj
(
ϕ2

)
on y2) ◦ (R∗ on y1) ◦

(
proj(ϕ2 ⊗ ϕ3) on y1y2

)
= proj

(
R∗ϕ2 ⊗ proj(ϕ2)ϕ3

)
on y1y2 = ε proj(ϕ1 ⊗ ϕ2) on y1y2.

(Note the slight difference: instead of proj(ϕ3)ϕ3 have proj(ϕ2)ϕ3 here, which simplifies to
ϕ2 · ϕ∗

2ϕ3 = ϕ2 ·
√
ε.) Analogously

A0 = ε2 proj(ϕ0 ⊗ ϕ1) on y1y2.

It is left to show the first judgment in (6), namely {ε3 · id}y← |0⟩ tot∼ y← |0⟩ {A0}. By
rules Init1 and Init2 (starting from the right), we have{

ε3 · id
}

(∗∗)=
{

idy2 ⊗
(
⟨0|y2 ⊗ id¬y2

)
◦ ε2(proj(ϕ1) on y2)

}
skip tot∼ y← |0⟩{

ε2(proj(ϕ1) on y2)
}

(∗)=
{

idy1 ⊗
(
⟨0|y1 ⊗ id¬y1

)
◦ A0

}
y← |0⟩ tot∼ skip

{
A0

}
. (7)

Here (∗) uses that ϕ0 = |0⟩ and thus ⟨0|proj(ϕ0)|0⟩ = 1, and (∗∗) uses that ϕ∗
1ϕ0 =

√
ε and

thus ⟨0|proj(ϕ1)|0⟩ = ε.
The first judgment in (6) then follows by rule Seq.
This completes the analysis, we have shown (5).

Analysis of the while-programs. Given the experiences from the analysis of the special
case (the programs from (4)), we now can solve the original problem, namely analyzing the
programs ccc,ddd from (1),(2).

As before, we can replace the postcondition in (3) by the stronger postcondition
B := (proj(|n⟩ ⊗ |n⟩ ⊗ ϕn ⊗ ϕn) on x1x2y1y2). By rule Conseq, it is sufficient to show
{εn · id} ccc tot∼ ddd {B}. By rule Seq, this follows if we can show{

εn · id
} x← |0⟩

tot∼ x← |0⟩

{
D

} y← |0⟩
tot∼ y← |0⟩

{
C

} whileccc
tot∼ whileddd

{
B

}
(8)

with

whileccc := while P<n[x] do (apply INCR to x; apply R to y)
whileddd := while P<n[x] do (apply INCR to x; if Pϕ[xy])

for suitably chosen expectations C, D.
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To prove the last judgment {C}whileccc
tot∼ whileddd {B} in (8), we use rule JointWhile.

This rule requires us to come up with a loop invariant A. To understand what the right loop
invariant is, we draw from our experiences in the special case. There, we had defined the
expectations A0, . . . ,A3, where Ai described the state of the programs right after the i-th
application of apply R to y and if proj(ϕi)[y]. We had

Ai = ε2−i proj(ϕi ⊗ ϕi+1) on y1y2 for i = 0, 1, 2 and A3 = proj(ϕ3 ⊗ ϕ3) on y1y2

One sees easily that this would generalize as

Ai = εn−i−1 proj(ϕi ⊗ ϕi+1) on y1y2 for i < n

and An = proj(ϕn ⊗ ϕn) on y1y2

for values n ̸= 3. Thus we expect that these expectations Ai also hold in the programs whileccc,
whileddd after the i-th iteration (or before the (i + 1)-st iteration). Additionally, we keep
track of the counter x, which should be |i⟩ after the i-th iteration (or before the (i+ 1)-st
iteration). This would be expressed by the expectation proj(|i⟩ ⊗ |i⟩) on x1x2. Thus, for the
i-th iteration, we use the “conjunction”

Ax
i := Ai · (proj(|i⟩ ⊗ |i⟩) on x1x2)

=
{
εn−i−1 proj(|i⟩ ⊗ |i⟩ ⊗ ϕi ⊗ ϕi+1) on x1x2y1y2 (i < n)

proj(|n⟩ ⊗ |n⟩ ⊗ ϕn ⊗ ϕn) on x1x2y1y2 (i = n)

(Note that · is not generally a sensible operation on expectations. But in this case, fv(Ai) =
y1y2 and fv(proj(|i⟩ ⊗ |i⟩) on x1x2) = x1x2, so the expectations commute and their product
is again an expectation.)

The final loop invariant A is then the “disjunction” of the Ax
i for i = 0, . . . , n−1, meaning

that in every iteration, one of the Ai should hold. (We do not include Ax
i with i = n here

because when applying the JointWhile rule, we only need the invariant to hold when
the loop guard was passed.) We define A :=

∑n
i=0 Ax

i . (In general, summation is not a
sensible operation representation of “disjunction”, but in the present case, all summands are
orthogonal.)

We have now derived a suitable candidate for the invariant A to use in rule JointWhile.
We stress that the above argumentation (involving words like “disjunction” and “conjunction”
of expectations, and claims that an expectation “holds” at a certain point) was not a formally
well-defined argument, merely an explanation how we arrived at our specific choice for A.
From the formal point of view, all we will need in the following are the definitions of A,Ax

i .
The rest of the argument above was semi-formal motivation.

We will now show the rightmost judgment in (8), namely {C}whileccc
tot∼ whileddd {B} (for

some suitable C). If we apply rule JointWhile (with A as defined above) to this, we get
the premise15

{
A

} =:bodyccc︷ ︸︸ ︷
apply INCR to x; apply R to y

tot∼ apply INCR to x; if Pϕ[xy]︸ ︷︷ ︸
=:bodyddd

{
P both

<n ◦ A + (P none
<n ) ◦ B︸ ︷︷ ︸

=:C′

}
(9)

15 We also additionally get the premise that whileccc is terminating. This can be shown with techniques
from prior work (e.g., [14]) and is quite obvious in the present case. Alternatively, we could have stated
this example with respect to partial correctness instead of total correctness. In that case, we do not
need to prove termination.
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with P both
<n := P<n ⊗ P<n on x1x2 and P none

<n := (id − P<n) ⊗ (id − P<n) on x1x2. (Here
we write A ◦ B as an abbreviation for ABA†.) By applying rules If2, Apply2, and twice
Apply1 (with Seq in between), we get{

(INCR on x1) ◦ (R on y1) ◦ (INCR on x2) ◦ B2
}

bodyccc
tot∼ bodyddd

{
C′}

where B2 := (Pϕ on x2y2) ◦C′ + (id− Pϕ on x2y2) ◦C′. Since B2 ≥ (Pϕ on x1y1) ◦C′, by rule
Conseq we can weaken this to{

A′} bodyccc
tot∼ bodyddd

{
C′}

with A′ := (INCR on x1) ◦ (R on y1) ◦ (INCR on x2) ◦ (Pϕ on x2y2)︸ ︷︷ ︸
=:L

◦ C′

If we can show that A ≤ A′ then we have proven (9). By definition of Ax
i , L, R, Pϕ, INCR,

P both
<n , we have

L ◦ P both
<n ◦ Ax

i = εn−i−1 proj(INCR∗|i⟩ ⊗ INCR∗|i⟩ ⊗R∗ϕi ⊗ proj(ϕi)ϕi+1) on x1x2y1y2

= εn−i proj(|i− 1⟩ ⊗ |i− 1⟩ ⊗ ϕi−1 ⊗ ϕi) on x1x2y1y2 = Ax
i−1.

And L ◦ P both
<n ◦ Ax

n = 0 since P both
<n ◦ Ax

n = 0. Thus L ◦ P both
<n ◦ A =

∑n−1
i=0 A

x
i−1 ≥

∑n−2
i=0 A

x
i .

And by definition of B, L, R, Pϕ, INCR, P none
<n , we have

L ◦ P none
<n ◦ B = proj

(
INCR∗|n⟩ ⊗ INCR∗|n⟩ ⊗R∗ϕn ⊗ proj(ϕn)ϕn+1

)
on x1x2y1y2

= proj
(
|n− 1⟩ ⊗ |n− 1⟩ ⊗ ϕn−1 ⊗ ϕn

)
on x1x2y1y2 = Ax

n−1.

Thus A′ = L ◦ C′ ≥
∑n−2

i=0 A
x
i +Ax

n−1 = A. Thus we have proven (9). By rule JointWhile,
this implies {C′}whileccc

tot∼ whileddd {B} with C′ as defined in (9). With C := Ax
0 ≤ C′,

{C}whileccc
tot∼ whileddd {B} follows by rule Conseq. This is the rightmost judgment in (8).

Using rules Init1, Init2, and Seq, we get {D}y← |0⟩ tot∼ y← |0⟩ {C} with D := εn ·
(proj(|0⟩ ⊗ |0⟩) on x1x2). (This is done very similarly to (7).) This shows the middle judgment
in (8).

Also using rules Init1, Init2, and Seq, we get {εn · id}x← |0⟩ tot∼ x← |0⟩ {D}. This
shows the leftmost judgment in (8).

Thus we have shown the three judgments in (8). By rule Seq, it follows that
{εn · id} ccc tot∼ ddd {B}. Since B ≤ (EQUAL on y1y2), by rule Conseq, we get (3).
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Abstract
Weighted timed games are two-player zero-sum games played in a timed automaton equipped with
integer weights. We consider optimal reachability objectives, in which one of the players, that we
call Min, wants to reach a target location while minimising the cumulated weight. While knowing if
Min has a strategy to guarantee a value lower than a given threshold is known to be undecidable
(with two or more clocks), several conditions, one of them being the divergence, have been given to
recover decidability. In such weighted timed games (like in untimed weighted games in the presence
of negative weights), Min may need finite memory to play (close to) optimally. This is thus tempting
to try to emulate this finite memory with other strategic capabilities. In this work, we allow the
players to use stochastic decisions, both in the choice of transitions and of timing delays. We give
for the first time a definition of the expected value in weighted timed games, overcoming several
theoretical challenges. We then show that, in divergent weighted timed games, the stochastic value
is indeed equal to the classical (deterministic) value, thus proving that Min can guarantee the same
value while only using stochastic choices, and no memory.
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1 Introduction

Real-time aspects are often inherent in the behaviour of critical software systems. Timed
automata [2] extend finite-state automata with timing constraints, providing an automata-
theoretic framework to model and verify real-time systems. While this has lead to the
development of mature verification tools, the design of programs verifying some real-time
specifications remains a notoriously difficult problem. One way to avoid the need to a
posteriori debugging is to automatise the process as much as possible. To do so, the situation
is modelled into a timed game, played by a controller and an antagonistic environment: they
act, in a turn-based fashion, over a timed automaton. A simple, yet realistic, objective for the
controller is to reach a target location. We are thus looking for a strategy of the controller,
that is a recipe dictating how to play so that the target is reached no matter how the
environment plays. Reachability timed games are decidable [4], and EXPTIME-complete [19].
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For many applications, this qualitative setting is often too coarse to model faithfully
the system. This motivated a shift to a quantitative setting, based on weighted extensions
of the models considered so far. Weighted extensions of these timed automata and games
have thus been considered in order to measure the quality of the winning strategy for the
controller [11, 1]: when the controller has several winning strategies, the quantitative version
of the game helps choosing a good one with respect to some metrics. More precisely, the
controller, which we now call player Min, wants to reach the target while minimising the
cumulated weight. The model we consider, called weighted timed game (WTG for short), is
defined as follows: the game takes place over a weighted (or priced) timed automaton [5, 3],
where locations are split among the two players, transitions are equipped with weights, and
locations with rates of weights (the cost is then proportional to the time spent in this location,
with the rate as proportional coefficient). In this setting, the possibility to use negative
weights on transitions and locations is crucial when one wants to model energy or other
resources that can grow or decrease during the execution of the system under study.

While solving the optimal reachability problem on weighted timed automata has been
shown to be PSPACE-complete [8] (i.e. the same complexity as the non-weighted version),
WTGs are known to be undecidable [13]. Many restrictions have then been considered in
order to regain decidability, the first and most interesting one being the class of strictly non-
Zeno cost with only non-negative weights (in transitions and locations) [11]: this hypothesis
requires that every execution of the timed automaton that follows a cycle of the region
automaton has a weight far from 0 (in interval [1, +∞), for instance). This setting has been
extended in the presence of negative weights in transitions and locations [16]: in the so-called
divergent WTGs, each execution that follows a cycle of the region automaton has a weight in
(−∞, −1] ∪ [1, +∞). A triply-exponential-time algorithm allows one to compute the values
and almost-optimal strategies, while deciding the divergence of a WTG is PSPACE-complete.

When studying optimal reachability objectives with both positive and negative weights, it
is known that strategies of player Min require memory to play optimally (see [15] for the case
of finite games). More precisely, the memory needed is pseudo-polynomial (i.e. polynomial if
constants are encoded in unary). For WTGs, the memory needed even becomes exponential.
An important challenge is thus to find ways to avoid using such complex strategies, e.g. by
proposing alternative classes of strategies that are more easily amenable to implementation.

Strategies considered so far are deterministic. Though the game has no stochastic edges,
it is possible to allow players to use stochastic strategies. This approach has been recently
studied in the setting of finite games [20], where it is shown that memory may indeed be
emulated using randomness in finite reachability games with integer weights. More precisely,
the minimal value Min can achieve using memoryless stochastic strategies is the same as
the value achievable using deterministic strategies. In the present work, we lift the results
obtained in [20] for finite games to the timed setting.

A first important challenge is to analyse how to play stochastically in WTGs. To our
knowledge, this has not been studied before. Starting from a notion of stochastic behaviours
in a timed automaton considered in [7] (for the one-player setting), we propose a new class of
stochastic strategies. Compared with [7], our class is larger in the sense that we allow Dirac
distributions for delays, which subsumes the setting of deterministic strategies. However,
in order to ensure that strategies yield a well-defined probability distribution on sets of
executions, we need measurability properties stronger than the one considered in [7] (we
actually provide an example showing that their hypothesis was not strong enough).

Then, we turn our attention towards the expected cumulated weight of the set of plays
conforming to a pair of stochastic strategies. We first prove that under the previous
measurability hypotheses, this expectation is well-defined when restricting to the set of plays
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Figure 1 On the left, a weighted timed game. Locations belonging to Min (resp. Max) are depicted
by circles (resp. squares). The target location is ℓ3. Location ℓ1 (resp. ℓ5) has (deterministic) value
+∞ (resp. −∞). As a consequence, the value in ℓ4 is determined by the edge to ℓ3, and depicted in
blue on the right. In location ℓ2, the value associated with the transition to ℓ3 is depicted in red,
and the deterministic value in ℓ2 is obtained as the minimum of these two curves.

following a finite sequence of transitions. In order to have the convergence of the global
expectation, we identify another property of strategies of Min, which intuitively ensures that
the set of target locations is reached quickly enough. This allows us to define a notion of
stochastic value (resp. memoryless stochastic value) of the game, i.e. the best value Min can
achieve using stochastic strategies (resp. memoryless stochastic strategies), when Max uses
stochastic strategies (resp. memoryless stochastic strategies) too.

In a second step, we aim at adapting the proof techniques of [20] from finite to infinite
games. It is well-known that the classical region abstraction of timed automata is not suited
to analyse WTGs (there are cases in which one has to split regions). In order to obtain
positive results, we focus on the class of divergent WTGs. We prove that the notion of
optimal deterministic switching strategy, which was central in the approach of [20], can be
adapted to divergent WTGs. Our main result is then to show that for these games, the two
versions of stochastic values are equal to the deterministic value. In other terms, we show
that Min can emulate memory using randomisation, and vice versa. Moreover, combining
memory and randomisation does not increase Min’s capabilities. Due to the lack of space,
detailed proofs of all results can be found in the long version [21].

2 Weighted timed games

We let C be a finite set of variables called clocks. A valuation is a mapping ν : C → R≥0. For
a valuation ν, a delay t ∈ R≥0 and a subset Y ⊆ C of clocks, we define the valuation ν + t

as (ν + t)(x) = ν(x) + t, for all x ∈ C, and the valuation ν[Y := 0] as (ν[Y := 0])(x) = 0
if x ∈ Y , and (ν[Y := 0])(x) = ν(x) otherwise. The valuation 0 assigns 0 to every clock.
A (non-diagonal) guard on clocks of C is a conjunction of atomic constraints of the form
x ▷◁ c, where ▷◁ ∈ {≤, <, =, >, ≥} and c ∈ N. A valuation ν : C → R≥0 satisfies an atomic
constraint x ▷◁ c if ν(x) ▷◁ c. The satisfaction relation is extended to all guards g naturally,
and denoted by ν |= g. We let Guards(C) denote the set of guards over C.

▶ Definition 1. A weighted timed game (WTG) is a tuple G = ⟨LMin, LMax, LT , ∆, wt⟩ where
LMin, LMax, LT are finite disjoint subsets of Min locations, Max locations, and target locations,
respectively (we let L = LMin ⊎ LMax ⊎ LT ), ∆ ⊆ L × Guards(C) × 2C × L is a finite set of
transitions, wt : ∆ ⊎ L → Z is the weight function.

ICALP 2021
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Without loss of generality, we suppose the absence of deadlocks except on target locations,
i.e. for each location ℓ ∈ L\LT and valuation ν, there exists (ℓ, g, Y, ℓ′) ∈ ∆ such that ν |= g,
and no transitions start in LT . The semantics of a WTG G is defined in terms of a game
played on an infinite transition system whose vertices are configurations of the WTG. A
configuration is a pair (ℓ, ν) with a location and a valuation of the clocks. Configurations
are split into players according to the location. A configuration is final if its location is a
target location of LT . The alphabet of the transition system is given by ∆ × R≥0: a pair
(δ, t) encodes the delay t that a player wants to spend in the current location, before firing
transition δ. For every delay t ∈ R≥0, transition δ = (ℓ, g, Y, ℓ′) ∈ ∆ and valuation ν, there
is an edge (ℓ, ν) δ,t−→ (ℓ′, ν′) if ν + t |= g and ν′ = (ν + t)[Y := 0]. The weight of such an edge
e is given by t × wt(ℓ) + wt(δ). An example is depicted on Figure 1.

A finite play is a finite sequence of consecutive edges ρ = (ℓ0, ν0) δ0,t0−−−→ (ℓ1, ν1) δ1,t1−−−→
· · · (ℓk, νk). We sometimes denote such a play (ℓ0, ν0) (δ0,t0)···(δk−1,tk−1)−−−−−−−−−−−−−→, since intermediate
locations and valuations are uniquely defined by the initial configuration and the sequence of
transitions and delays. We denote by |ρ| the length k of ρ. The concatenation of two finite
plays ρ1 and ρ2, such that ρ1 ends in the same configuration as ρ2 starts, is denoted by ρ1ρ2.
We denote by I(ρ, δ) the interval of delays t such that the play ρ can be extended with the
edge δ,t−→. We let FPlays be the set of all finite plays, whereas FPlaysMin (resp. FPlaysMax)
denote the finite plays that end in a configuration of Min (resp. Max). A play is then a
maximal sequence of consecutive edges (it is either infinite or it reaches LT ).

We call path a finite or infinite sequence π of transitions of G. Each play ρ of G is
associated with a unique path π (by projecting away everything but the transitions): we
say that ρ follows the path π. A target path is a finite path ending in the target set LT .
We denote by TPaths the set of target paths. We let TPathsρ (resp. TPathsn

ρ ) the subset
of target paths that start from the last location of the finite play ρ (resp. containing n

transitions). A path is said to be maximal if it is infinite or if it is a target path.
A deterministic strategy for Min (resp. Max) is a mapping σ : FPlaysMin → ∆ × R≥0

(resp. τ : FPlaysMax → ∆ × R≥0) such that for all finite plays ρ ∈ FPlaysMin (resp. ρ ∈
FPlaysMax) ending in non-target configuration (ℓ, ν), there exists an edge (ℓ, ν) σ(ρ)−−−→ (ℓ′, ν′).
We let dStratMin and dStratMax denote the set of deterministic strategies in G for players Min
and Max, respectively. A play or finite play ρ = (ℓ0, ν0) δ0,t0−−−→ (ℓ1, ν1) δ1,t1−−−→ · · · conforms
to a deterministic strategy σ of Min (resp. Max) if for all k such that (ℓk, νk) belongs to
Min (resp. Max), we have that (δk, tk) = σ((ℓ0, ν0) δ0,t0−−−→ · · · (ℓk, νk)). For all deterministic
strategies σ and τ of players Min and Max, respectively, and for all configurations (ℓ0, ν0),
we let Play((ℓ0, ν0), σ, τ) be the outcome of σ and τ , defined as the unique maximal play
conforming to σ and τ and starting in (ℓ0, ν0).

The objective of Min is to reach a target configuration, while minimising the cumu-
lated weight up to the target. Hence, we associate to every finite play ρ = (ℓ0, ν0) δ0,t0−−−→
(ℓ1, ν1) δ1,t1−−−→ · · · (ℓk, νk) its cumulated weight, taking into account both discrete and con-
tinuous costs: wtΣ(ρ) =

∑k−1
i=0 [ti × wt(ℓi) + wt(δi)]. Then, the weight of a maximal play ρ,

denoted by wt(ρ), is defined by +∞ if ρ is infinite (does not reach LT ), and wtΣ(ρ) if it ends
in (ℓT , ν) with ℓT ∈ LT .

A deterministic strategy σ ∈ dStratMin guarantees a certain value, against all pos-
sible strategies of the opponent: for all locations ℓ and valuations ν, we let dValσℓ,ν =
supτ∈dStratMax,G

wt(Play((ℓ, ν), σ, τ )). Then, for all locations ℓ and valuations ν, we let dValℓ,ν

be the deterministic value of G in (ℓ, ν), defined as dValℓ,ν = infσ∈dStratMin dValσℓ,ν . We say that
a deterministic strategy σ of Min is ε-optimal wrt the deterministic value if dValσℓ,ν ≤ dValℓ,ν+ε

for all (ℓ, ν). It is said optimal if this holds for ε = 0.
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As usual in related work [1, 11, 12, 16], we assume that all clocks are bounded by a constant
M ∈ N, i.e. every transition of the WTG is equipped with a guard g such that ν |= g implies
ν(x) ≤ M for all clocks x ∈ C. We denote by wL

max (resp. w∆
max, we

max) the maximal weight
in absolute values of locations (resp. of transitions, edges) of G, i.e. wL

max = maxℓ∈L |wt(ℓ)|
(resp. w∆

max = maxδ∈∆ |wt(δ)|, we
max = MwL

max + w∆
max).

In the following, we rely on the crucial notion of regions, as introduced in the seminal work
on timed automata [2]. A game G can be populated with the region information, without loss
of generality, as described formally in [16], e.g. The region automaton, or region game, R(G)
is thus the WTG with locations S = L × Reg(C, M) and all transitions ((ℓ, r), g′′, Y, (ℓ′, r′))
with (ℓ, g, Y, ℓ′) ∈ ∆ such that the model of guard g′′ (i.e. all valuations ν such that ν |= g′′)
is a region r′′, time successor of r such that r′′ satisfies the guard g, and r′ is the region
obtained from r′′ by resetting all clocks of Y . Distribution of locations to players, final
locations, and weights are inherited from G. We call region path a finite or infinite sequence
of transitions in this automaton, and we again denote by π such paths. A play ρ in G is
projected on a region path π, with a similar definition as the projection on paths: we again
say that ρ follows the region path π. It is important to notice that, even if π is a cycle
(i.e. starts and ends in the same location of the region game), there may exist plays following
it in G that are not cycles, due to the fact that regions are sets of valuations.

As shown in previous work [11, 16], knowing whether dValℓ,ν = +∞ for a certain
configuration is a purely qualitative problem that can be decided easily by using the region
game: indeed, dValℓ,ν = +∞ if and only if Min has no strategies that guarantee reaching the
target LT . This is thus a reachability objective, where weights are useless. Moreover, Max
has a strategy that guarantees that no plays reach the target LT from any configuration (ℓ, ν)
such that dValℓ,ν = +∞. In this situation, considering stochastic choices is not interesting.
We thus rule out this case by supposing in the following that no configurations
of G have a value +∞: such configurations can be removed in the region game by
strengthening the guard on transitions.

3 Playing stochastically in WTGs

Our first contribution consists in allowing both players to use stochastic choices in their
strategies. From a game theory point of view, this seems natural. From a controller synthesis
point of view, we claim that the question is natural too, especially because player Min may
require exponential memory to play optimally in WTGs. This is already the case even
without clocks (such games are then sometimes called shortest-path games) where it has
been shown in [20] that the memory required by Min could be traded for stochastic choices
instead (and vice versa). We aim at extending this result in the context of weighted timed
games. Before doing so, we must introduce stochastic strategies in the context of weighted
timed games, which has never been explored until now, as far as we are aware of. We
will however strongly rely on a recent line of works aiming at studying stochastic timed
automata [7, 9, 6, 10], thus extending the results in the context of two-player games (instead
of model-checking) and with weights, which indeed represents the main challenge in order to
give a meaning to the expected payoff.

Naturally, deterministic strategies for Min are extended to more general stochastic
strategies as mappings η : FPlaysMin → Dist(∆ × R≥0) where each finite play is associated
to a probability distribution over the set of pairs of transition and delay. Here, we let
Dist(S) the set of all probability distributions over a set S (equipped with an underlying
σ-algebra). Since ∆ is a finite set, this is equivalent to letting first Min choose a transition
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via η∆ : FPlaysMin → Dist(∆), and then, knowing the chosen transition, choose a delay via
ηR+ : FPlaysMin × ∆ → Dist(R≥0), the support of the distribution ηR+(ρ, δ) being included
in the interval I(ρ, δ) of valid delays. We can then recombine η∆ and ηR+ to obtain the
distribution η(ρ). Similar definitions hold for Max whose general strategies are denoted by θ.

Notice that deterministic strategies are a special case of strategies, where the distributions
are chosen to be Dirac distributions. Another useful restriction over strategies is the non-
use of memory: a strategy η is memoryless if for all finite plays ρ, ρ′ ending in the same
configuration, we have that η(ρ) = η(ρ′). A similar definition holds for Max.

Probability measure on plays. We fix two strategies η and θ for both players, and an
initial configuration (ℓ0, ν0). Our goal is to define a probability measure on plays. To do
so, and following the contribution of [7] for stochastic timed automata, the set of plays of a
WTG G starting from (ℓ0, ν0) and conforming to η and θ can naturally be equipped with
a structure of σ-algebra whose generators are all subsets of plays that start with a finite
prefix following the same finite path π (remember that paths are sequences of transitions,
with no information on the delayed time) with some Borel-measurable constraints on the
delays taken along π. The a priori idea is thus to define a probability measure Pη,θ

ℓ0,ν0
on such

generators which extends uniquely as a probability measure over the whole σ-algebra, by
Carathéodory’s extension theorem.

Consider thus a finite path π, starting in location ℓ, and a play ρ ending in the same
location ℓ. We define the probability Pη,θ

ρ (π) taking into account all possible plays that start
with ρ and continue according to π (we leave the Borel-measurable constraints on the delays for
now, but discuss them later). It is defined by induction on the length of π by Pη,θ

ρ (ε) = 1, and
for all transitions δ = (ℓ, g, Y, ℓ′) ∈ ∆, Pη,θ

ρ (δπ) =
∫

I(ρ,δ) η∆(ρ)(δ) × Pη,θ

ρ
δ,t−→(π) dηR+(ρ, δ)(t).

This definition is very similar to the one in [7] except that we choose to decouple the
distribution on pairs of ∆ × R≥0 by first selecting a transition and then delay, whereas
authors of [7] consider independent choices, the one on transitions being described by some
weights on transitions (depending on the current region).

For modelling purposes, authors of [7] enforce that probability distributions on delays do
not forbid any delays of the interval I(ρ, δ) of possible delays, thus ruling out singular distri-
butions like Dirac ones that would consider taking a single possible delay (like deterministic
strategies do). More formally, they require ηR+(ρ, δ) to be absolutely continuous (i.e. equival-
ent to the Lebesgue measure) on interval I(ρ, δ). We claim that even with this assumption,
the previous definition of the probability may not be well-founded, as demonstrated by the
example given in [21, Appendix A]. From this example, we see the importance to moreover
enforce that the distributions η∆(ρ) and ηR+(ρ, δ) are “measurable wrt the sequence of delays
along the play ρ”. This is easy to define for the transition part. For delays, since we want
deterministic strategies to be a subset of stochastic strategies, we must be able to choose
delays by using Dirac distributions, and by extension discrete distributions (that are not
absolutely continuous, as [7] requires). This results in the following hypothesis:

▶ Hypothesis 1. A strategy η satisfies this hypothesis if
1. for all transitions δ0, . . . , δk, δ, the mapping

(t0, . . . , tk−1) 7→ η∆

(
(ℓ0, ν0) (δ0,t0)···(δk−1,tk−1)−−−−−−−−−−−−−→

)
(δ)

is measurable; and
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2. for all plays ρ and transition δ, the probability distribution ηR+(ρ, δ) (of the random
variable t) is described by a cumulative distribution function (CDF) that is the sum of
an absolutely continuous function G(ρ, δ) and Heaviside functions1 t 7→

∑
i αi(ρ, δ)H(t −

ai(ρ, δ)). Moreover, for all transitions δ0, . . . , δk−1, δ, the mappings (t0, . . . , tk−1, t) 7→
G(ρ, δ)(t), (t0, . . . , tk−1) 7→ αi(ρ, δ), and (t0, . . . , tk−1) 7→ ai(ρ, δ) must be measurable
(where we use notation ρ to denote the play (ℓ0, ν0) (δ0,t0)···(δk−1,tk−1)−−−−−−−−−−−−−→).

This hypothesis allows us to obtain :

▶ Lemma 2. If η and θ are strategies satisfying Hypothesis 1, the probabilities Pη,θ
ρ (π) of

following a path π after the play ρ are well defined. It can be extended into a probability
distribution over maximal paths π starting in the last location of ρ.

Apart from the well-definition that is new, the rest of the proof is very close to the one
of [7]. The probability measure easily extends to unions of maximal paths: in particular,
Pη,θ

ℓ0,ν0
(TPathsℓ0,ν0) is set as the sum

∑
π∈TPathsℓ0,ν0

Pη,θ
ℓ0,ν0

(π) of probabilities of all paths
reaching LT from ℓ0. Authors of [7] go one step further, by using Carathéodory’s theorem
to extend the probability measure on paths (Pη,θ

ρ (π)) to a measure on plays (Pη,θ
ρ ), whose

σ-algebra is generated by maximal plays with Borel-measurable constraints on the delays.
We do not formally need this further extension and will only use such extension to give an
intuitive introduction of the expected payoff below. In the following, we let StratMin and
StratMax be the sets of (stochastic) strategies satisfying Hypothesis 1, for both players. We
let mStratMin and mStratMax be the respective subsets of memoryless strategies.

Expected payoff of plays. As explained before, by Carathéodory’s theorem, the set of plays
can be equipped with a probability distribution, and we are interested in the expectation
of the random variable wt(ρ) (where ρ conforms with two fixed strategies η and θ). This
only makes sense if the probability to reach a target location is equal to 1, since otherwise,
the expected weight will intuitively be +∞ (there is a non-zero probability to not reach
the target location, the weight of all such plays being +∞). We thus now require that
Pη,θ

ℓ0,ν0
(TPathsℓ0,ν0) = 1 (i.e. the probability to follow an infinite path is 0). We will see

afterwards that this is not a sufficient condition to ensure that the expected weight is finite.
We would like to define the expected weight to reach the target as (we write Eη,θ

ℓ0,ν0

instead of Eη,θ
ℓ0,ν0

(wt), since we only consider the expectation of the weight wt): Eη,θ
ℓ0,ν0

=∫
ρ

wt(ρ) dPη,θ
ℓ0,ν0

(ρ) where the integral is over all plays ρ that start in (ℓ0, ν0) and reach the
target LT (such restriction is again justified by the fact that the probability mass of all other
plays is 0). This is problematic a priori (and we will see below an example where this indeed
would be a problem) since the cumulated weight is not known to be a measurable function
of the play, wrt the measure Pη,θ

ℓ0,ν0
.

To overcome this challenge, we follow a different approach, consisting in mimicking the
construction of the probability before: first define the expected payoff of all plays following a
given path, and then sum over all possible paths.

▶ Definition 3. We define the expected weight Eη,θ
ρ (π) of plays that can extend ρ (the weight

of ρ is thus not counted in the expectation) and that follow the path π. It is defined by
induction on the length of π by Eη,θ

ρ (ε) = 0 and for all transitions δ = (ℓ, g, Y, ℓ′):

Eη,θ
ρ (δπ) =

∫
I(ρ,δ)

η∆(ρ)(δ)
[(

t wt(ℓ) + wt(δ)
)
Pη,θ

ρ
δ,t−→(π) + Eη,θ

ρ
δ,t−→(π)

]
dηR+(ρ, δ)(t)

We then define the expected weight Eη,θ
ρ =

∑
π∈TPathsρ

Eη,θ
ρ (π), when this sum converges.

1 We let H denote the mapping from R to [0, 1] such that H(t) = 0 if t < 0 and H(t) = 1 otherwise.
Recall that it is the CDF of the Dirac distribution choosing t = 0.
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Hypothesis 1 is sufficient to show the well-definition of all expectations Eη,θ
ρ (π):

▶ Lemma 4. If η ∈ StratMin and θ ∈ StratMax, Eη,θ
ρ (π) is well-defined for all ρ and π.

However, the infinite sum in Eη,θ
ρ can be problematic. We thus need a stronger hypothesis

to ensure its convergence. We adopt here an asymmetrical point of view, relying only on
hypothesis on the strategy η of Min. Our choice is grounded in our controller synthesis view,
Min being the controller desiring to reach a target location with minimum expected payoff,
while Max is an uncontrollable environment.

▶ Definition 5. A strategy η ∈ StratMin of Min is said proper if for all finite plays ρ and
strategies θ ∈ StratMax, Pη,θ

ρ (TPathsρ) = 1 and the infinite sum
∑

π∈TPathsρ
Eη,θ

ρ (π) converges.

We let Stratp
Min be the set of proper strategies of Min, mStratp

Min the subset of memoryless
proper strategies. Notice that a deterministic strategy of Min is proper as soon as it guarantees
to reach the target set of locations (remember that we have ruled out configurations with
a deterministic value dVal(ℓ, ν) = +∞ where Min cannot deterministically guarantee to
reach the target LT ): this shows that proper strategies exist (even without using memory).
For stochastic strategies, we have seen above that reaching the target set of locations with
probability 1 is a necessary but not sufficient condition to be proper. Not only Max must
reach the target almost surely, but he must do it quickly enough so that the expectation
converges. We now give a sufficient condition for a strategy to be proper, that we will use in
the rest of this article.

▶ Hypothesis 2. A strategy η ∈ StratMin of Min satisfies this hypothesis if there ex-
ist m ∈ N and α ∈ (0, 1] such that for all finite plays ρ and strategies θ ∈ StratMax,
Pη,θ

ρ (
⋃

n≤m TPathsn
ρ ) ≥ α.

This hypothesis is indeed a sufficient condition for a strategy to be proper:

▶ Lemma 6. All strategies of Min satisfying Hypothesis 2 are proper.

Sketch of proof. The idea is to decompose Eη,θ
ρ for all ρ as Eη,θ

ρ =
∑∞

n=0
∑

π∈TPathsn
ρ
Eη,θ

ρ (π).
Since TPathsn

ρ is a finite set, only the first sum must be shown to be converging. It is done
by noticing that the weight of plays of length n grows linearly wrt n, while the probability∑

π∈TPathsn
ρ
Pη,θ

ρ (π) decreases exponentially wrt n (thanks to Hypothesis 2). More precisely,
we show for all n ∈ N and all ρ ∈ FPlays, that
1. for all π ∈ TPathsn

ρ , |Eη,θ
ρ (π)| ≤ Pη,θ

ρ (π) n we
max; and

2.
∑

π∈TPathsn
ρ
Pη,θ

ρ (π) ≤ (1 − α)⌊n/m⌋.
This allows us to show that Pη,θ

ρ (TPathsρ) = 1 and that the sum Eη,θ
ρ =

∑
π∈TPathsρ

Eη,θ
ρ (π)

converges. ◀

Now that we have associated an expected payoff to each convenient pair of strategies, we
are able to mimic the classical definition of value to stochastic strategies. Let ℓ be a location
and ν be a valuation. For all η ∈ Stratp

Min and θ ∈ StratMax, we let Valηℓ,ν = supθ∈StratMax
Eη,θ

ℓ,ν .
Then, we let Valℓ,ν be the value of G in (ℓ, ν), defined as the best expected payoff Min
can hope for: Valℓ,ν = infη∈Stratp

Min
Valηℓ,ν . Both definitions can be generalised by replacing

configurations (ℓ, ν) by finite plays ρ: we let Valηρ and Valρ be the generalised versions. We
also define the memoryless values mValη and mVal, where all strategies are taken memoryless.

Our main contribution, presented in details in Section 5, is to compare the memoryless
(stochastic) value, the deterministic value and the stochastic value, showing their equality for
a fragment of WTGs. Along the way, we will need the following result showing that when Min
plays with a proper strategy, Max always has a best response strategy that is deterministic:
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▶ Lemma 7. Let η ∈ Stratp
Min and ε > 0. There exists a deterministic strategy τ ∈ dStratMax

such that for all finite plays ρ, Eη,τ
ρ ≥ Valηρ − ε. If η ∈ mStratp

Min is memoryless, then there
exists a deterministic strategy τ ∈ dStratMax such that for all finite plays ρ, Eη,τ

ρ ≥ mValηρ − ε.

4 Divergent weighted timed games

As we have already seen in the introduction, interesting fragments of WTGs have been
designed, in order to regain decidability of the problem of determining whether the value of a
WTG is below a certain threshold. One such fragment is obtained by enforcing a semantical
property of divergence (originally called strictly non-Zeno cost when only dealing with
non-negative weights [11]): it asks that every play following a cycle in the region automaton
has weight far from 0. We will consider this restriction in the following, since it allows for
a large class of decidable WTGs, with no limitations on the number of clocks. Formally, a
cyclic region path π of R(G) is said to be a positive cycle (resp. a negative cycle) if every
finite play ρ following π satisfies wtΣ(ρ) ≥ 1 (resp. wtΣ(ρ) ≤ −1).

▶ Definition 8 ([16]). A WTG is divergent if every cyclic region path is positive or negative.

In [16], it is shown that this definition is equivalent to requiring that for all strongly
connected components (SCC) S of the graph of R(G), either every cycle π inside S is positive
(we say that the SCC is positive), or every cycle π inside S is negative (we say that the SCC
is negative). The best computability result in this setting is:

▶ Theorem 9 ([16]). The deterministic value of a divergent WTG can be computed in
triply-exponential-time.

We explain how to recover from Theorem 9 the needed shape of ε-optimal strategies,
since this is one of the new technical ingredient we need afterwards.

Switching strategies for Min. Theorem 9 is obtained in [16] by using a value iteration
algorithm (originally described in [1] for acyclic timed automata). If V represents a value
function, i.e. a mapping L × RC

≥0 → R∞, we denote by Vℓ,ν the image V (ℓ, ν), for better
readability. One step of the game is summarised in the following operator F mapping each
value function V to the value function defined for all (ℓ, ν) ∈ L × RC

≥0 by F(V )ℓ,ν = 0 if
ℓ ∈ LT , F(V )ℓ,ν = sup(ℓ,ν)

δ,t−→(ℓ′,ν′)
[
t × wt(ℓ) + wt(δ) + Vℓ′,ν′

]
if ℓ ∈ LMax, and F(V )ℓ,ν =

inf(ℓ,ν)
δ,t−→(ℓ′,ν′)

[
t × wt(ℓ) + wt(δ) + Vℓ′,ν′

]
if ℓ ∈ LMin, where (ℓ, ν) δ,t−→ (ℓ′, ν′) ranges over

valid edges in G. Then, starting from V 0 mapping every configuration to +∞, except for the
targets mapped to 0, we let V i = F(V i−1) for all i > 0. The value function V i is intuitively
what Min can guarantee when forced to reach the target in at most i steps.

The value computation of Theorem 9 is then obtained in two steps. First, configura-
tions (ℓ, ν) of value dValℓ,ν = −∞ are found by using a decomposition of the region game R(G)
into strongly-connected components (SCC). Indeed, in divergent WTGs, configurations of
value −∞ are all the ones from which Min has a strategy to visit infinitely many times config-
urations of a single location (ℓ, r) of R(G) contained in a negative SCC. This is thus a Büchi
objective on the region game, that can easily be solved with some attractor computations.
Notice that if a configuration (ℓ, ν) has value −∞, this implies that all configurations (ℓ, ν′)
with ν′ in the same region as ν have value −∞. As we explained at the end of Section 2 for
the values +∞, we can then remove configurations of value −∞ by strengthening the guards
on transitions, while letting unchanged other finite values.
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Then, the (finite) value dVal is obtained as an iterate V H of the previous operator, with H

polynomial in the size of the region game and the maximal weights of G. This means that
playing for only a bounded number of steps is equivalent to the original game. In particular,
at horizon H , we have that F(V H) = V H+1 = dVal so that dVal is a fixpoint of F . As a side
effect, this allows one to decompose the clock space RC

≥0 into a finite number α of cells (a
refinement of the classical regions) such that dVal is affine on each cell.

Based on this, we can construct good strategies for Min that have a special form, the
so-called switching strategies (introduced in [15] in the untimed setting, further extended in
the timed setting with only one-clock in [14]).

▶ Definition 10. A switching strategy σ is described by two deterministic memoryless
strategies σ1 and σ2, as well as a switching threshold K. The strategy σ then consists in
playing strategy σ1 until either we reach a target location, or the finite play has length at
least K, in which case we switch to strategy σ2.

Our new contribution is as follows:

▶ Theorem 11. In a divergent WTG, for all ε > 0 and N ∈ N, there exists a switching
strategy σ for Min, for which the two components σ1 and σ2 satisfy Hypothesis 1, such that
for all configurations (ℓ, ν), dValσℓ,ν ≤ max(−N, dValℓ,ν) + ε.

In particular, if all configurations have a finite deterministic value, there exists an
ε-optimal switching strategy wrt the deterministic value. In the presence of a
configuration with a deterministic value −∞, we build from Theorem 11 a family of switching
strategies (indexed by the parameter N) whose value tends to −∞.

The proof of Theorem 11 requires to build both strategies σ1 and σ2, as well as a switching
threshold K. The second strategy σ2 only consists in reaching the target and is thus obtained
as a deterministic memoryless strategy from a classical attractor computation in the region
game R(G). It is easy to choose σ2 smooth enough so that it fulfils Hypothesis 1. In contrast,
the first strategy σ1 requires more care. We build it so that it fulfils two properties, that we
summarise in saying that σ1 is fake-ε-optimal wrt the deterministic value:
1. each finite play conforming to σ1 from (ℓ, ν) and reaching the target has a cumulated

weight at most dValℓ,ν + |ρ| ε (in particular, if dValℓ,ν = −∞, no such plays should exist);
2. each finite play conforming to σ1 following a long enough cycle in the region game R(G)

has a cumulated weight at most −1.
Here, “fake” means that σ1 is not obliged to guarantee reaching the target, but if it does so,
it must do it with a cumulated weight close to dValℓ,ν , the error factor depending linearly
on the size of the play. The second property ensures that playing long enough σ1 without
reaching the target results in diminishing the cumulated weight. Then, if the switch happens
at horizon K big enough, (K = (we

max|R(G)|(|L|α + 2) + N)(|R(G)|(|L|α + 1) + 1) suffices
for instance), Min is sure that the cumulated weight so far is low enough so that the rest
of the play to reach a target location (following σ2 only) will not make the weight increase
too much. In the absence of values −∞ in dVal, the first property allows one to obtain a
Kε-optimal strategy even in the case where the switch does not occur (because we reach
the target prematurely). The construction of a fake-ε/K-optimal strategy σ1 (the linear
dependency on the length of the play in the first property of fake-optimality is thus taken
care by a division by K here) relies on the fact that F(dVal) = dVal to play almost-optimally
at horizon 1. More formally:

For all configurations of value −∞, σ1 is built as a winning strategy for the Büchi
objective “visit infinitely often configurations of a location (ℓ, r) of R(G) contained in
a negative SCC”. By definition, all cyclic paths following σ1 will be inside a negative
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SCC, and thus be of cumulated weight at most −1, by divergence of the WTG. Moreover,
no plays conforming to σ1 from such a configuration of value −∞ will reach a target
location, since the chosen negative SCC is a trap controlled by Min. It is easy to choose
σ1 smooth enough so that it fulfils Hypothesis 1.
For the remaining configurations of finite value, we rely upon operator F , letting σ1

choose a decision that minimises the value at horizon 1. However, because of the guards
on clocks, infimum/supremum operators in F are not necessarily minima/maxima, and
we thus need to allow for a small error at each step of the strategy: this is the main
difference with the untimed setting, which by the way explains why our definition of
switching strategy needed to be adapted. We will use the arginfε operator defined for all
mappings f : A → R and B ⊆ A by arginfε

Bf = {a ∈ B | f(a) ≤ infB f + ε}. Then, for
all configurations (ℓ, ν) ∈ LMin × RC

≥0, we choose σ1(ℓ, ν) as a pair (δ, t) in

arginfε/K

(ℓ,ν)
δ,t−→(ℓ′,ν′)

(t wt(ℓ) + wt(δ) + dValℓ′,ν′)

This set is non empty since dVal is a fixpoint of operator F in this case. Moreover, knowing
that the mapping dValℓ is piecewise affine by the results shown in [16], it is possible to
choose σ1 so that it fulfils the measurability (even piecewise continuity) conditions of
Hypothesis 1. More precisely, we can consider it to take the same kind of decision for all
configurations of a same cell: same transition, and either no delay or a delay jumping to
the same border of cell.

The strategy σ1 thus built makes a small error wrt the optimal at each step. But once
again strongly relying on the divergence of the WTG, we can nevertheless show that σ1 is
fake-ε/K-optimal wrt the deterministic value.

Memoryless strategies for Max. WTGs are known to be determined [14], i.e. the de-
terministic value is also equal to dValℓ,ν = supτ∈dStratMax

infσ∈dStratMin wt(Play((ℓ, ν), σ, τ)).
In this setting, we can turn our study to the point of view of Max, looking for good
strategies for this other player. A deterministic strategy τ of Max has an associated value:
dValτℓ,ν = infσ∈dStratMin wt(Play((ℓ, ν), σ, τ)). It is ε-optimal wrt the deterministic value if
dValτℓ,ν ≥ dValℓ,ν − ε for all (ℓ, ν).

As Max does not wish to go to the target, we show that no switch is necessary to play
ε-optimally: memoryless strategies are sufficient to guarantee a value as close as wanted to
the deterministic value. For a configuration with a value equal to −∞, all the deterministic
strategies for Max are equivalent where they are all equally bad. Without loss of generality,
we can therefore suppose that there are no configurations in G with a value equal to −∞.
Then, it is shown in [16] that remaining values are bounded in absolute value by we

max|R(G)|,
since optimal plays have no cycles. We use that fact to build a memoryless deterministic
strategy τ analogous to strategy σ1 before:

▶ Theorem 12. In a divergent WTG, there exists a memoryless ε-optimal strategy for
player Max wrt the deterministic value (that moreover satisfies Hypothesis 1).

5 Emulate memory with randomness, and vice versa

The main contribution of this article, apart from defining a notion of expected value in
weighted timed games, is to relate the different notions of values. In divergent WTGs,
memory can thus be fully emulated with stochastic choices, and combining memory and
stochastic choices does not bring more power to players, which we summarise by:
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▶ Theorem 13. In all divergent WTGs, for all (ℓ, ν), dValℓ,ν = Valℓ,ν = mValℓ,ν .

The proof of this result is decomposed into several inequalities on these values. One is
easier, and holds for all WTGs: the stochastic value is at most equal to the deterministic
value, using the inclusion of deterministic strategies into stochastic ones, and Lemma 7.

▶ Lemma 14. In all WTGs G, for all configurations (ℓ, ν), Valℓ,ν ≤ dValℓ,ν .

We show in the rest of this section the inequalities comparing the deterministic value with
the other values: first we show that memoryless stochastic strategies can emulate deterministic
ones (mValℓ,ν ≤ dValℓ,ν); then we show that deterministic strategies can emulate stochastic
ones (dValℓ,ν ≤ Valℓ,ν and dValℓ,ν ≤ mValℓ,ν).

Simulating deterministic strategies with memoryless strategies. We focus here on showing
that, for all configurations (ℓ, ν), mValℓ,ν ≤ dValℓ,ν . We build a memoryless strategy of Min
at least as good as a deterministic strategy. By Theorem 11, we can start from a switching
strategy for Min. For N ∈ N and ε > 0, we thus consider a switching strategy σ = (σ1, σ2, K)
of value dValσℓ,ν ≤ max(−N, dValℓ,ν) + ε, and simulate it with a memoryless strategy for Min,
denoted ηp, with a probability parameter p ∈ (0, 1). This new strategy is a probabilistic
superposition of the two memoryless deterministic strategies σ1 and σ2.

Formally, we define ηp(ℓ, ν), with ℓ ∈ LMin, depending on the sign of the SCC containing
the location (ℓ, r), with r the region of ν, of the region game R(G).

In a positive SCC, Min always chooses to play σ1, thus looking for a negative cycle in
the next SCCs (in topological order) if any. Formally, letting (δ1, t1) = σ1(ℓ, ν), we define
ηp

∆(ℓ, ν) = Diracδ1 and ηp
R+((ℓ, ν), δ1) = Diract1 .

In a negative SCC, we let ηp(ℓ, ν) be the distribution picking σ1(ℓ, ν) with probability p,
and σ2(ℓ, ν) with probability 1 −p. Formally, ηp

∆ chooses the transition given by σ1(ℓ, ν) with
probability p and of σ2, with probability 1 − p, except if those transitions are equal, in which
case ηp

∆ chooses it with probability 1. If transitions chosen by σ1 and σ2 are distinct, ηp
R+ is

a Dirac distribution over the corresponding delay. Otherwise, ηp
R+ chooses with probability p

the delay given by σ1, and with probability 1 − p the one given by σ2.
Theorem 11 ensuring that strategies σ1 and σ2 satisfy Hypothesis 1, the superposition ηp

also satisfies these hypotheses. Moreover, we use the sufficient condition in Hypothesis 2 to
show that ηp is also proper:

▶ Lemma 15. For all p ∈ (0, 1), the strategy ηp satisfies Hypothesis 2.

To show the expected result, we prove that mValη
p

ℓ,ν ≤ max(−N, dValℓ,ν) + 3ε for all (ℓ, ν),
for p close enough to 1: we conclude that mValℓ,ν ≤ dValℓ,ν by taking the limit when N

tends to +∞ and ε tends to 0. We get that inequality by showing the following result, paired
with the fact that dValσℓ,ν ≤ max(−N, dValℓ,ν) + ε.

▶ Proposition 16. For all configurations (ℓ, ν) and ε > 0 small enough, there exists p̃ ∈ (0, 1)
so that for all p ∈ [p̃, 1), mValη

p

ℓ,ν ≤ dValσℓ,ν + 2ε.

Proof. Lemma 7 allows us to limit ourselves to deterministic strategies for Max. For all
deterministic strategies τ of Max, we compute a lower bound on p independent of τ such that
Eηp,τ

ℓ,ν ≤ dValσℓ,ν +3ε/2. By Lemma 7 (with ε/2), we obtain the desired mValη
p

ℓ,ν ≤ dValσℓ,ν +2ε.
The case where the whole region game only contains positive SCCs is easy, since then

ηp chooses the transition and delay given by σ1 with probability 1. By divergence, G then
contains no negative cycles. A play conforming to ηp is also conforming to the deterministic
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i

j

K

Π0,≤K

ΠN,≥K

Π̃

Figure 2 Partition of paths TPaths.

strategy σ1, so it must be acyclic. In particular, there exists only one play ρ conforming to
ηp and τ . This one is also conforming to σ and thus reaches the target with a cumulated
weight wtΣ(ρ) = Eηp,τ

ℓ,ν ≤ dValσℓ,ν as expected.
Now, suppose that the region graph contains at least a negative SCC. Thus, we let c > 0

be the maximal size of an elementary cycle of the region game (that visits a pair (ℓ, r) at
most once) and w− > 0 be the opposite of the maximal cumulated weight of an elementary
negative cycle in R(G) (necessarily bounded by we

max |R(G)|).
We partition the set FPlaysηp,τ

ℓ,ν into subsets Πi,j according to the number i of choices of
probability 1 − p along the play (the probability as described previously with the product
of the probabilities given by ηp

∆ and ηp
R+), and their length j (we always have i ≤ j). The

partition is depicted in Figure 2:
ΠN,≥K , depicted in blue, contains all plays with a length greater than K (the switching
threshold)
Π0,≤K , depicted in yellow, contains all plays without any probability 1 − p, with a length
at most K;
Π̃, depicted in red, contains the rest of the plays.

We can use the particular shape of the memoryless strategy ηp for Min, and the fact
that we fixed a deterministic strategy τ for Max, to decompose the expectation Eηp,τ

ρ on the
partition. Indeed, notice that the set of plays conforming to ηp and τ , from a particular
configuration (ℓ, ν), is countable. Moreover, we can associate a probability to each play
(instead of a probability to a path). For a finite play ρ = (ℓ0, ν0) δ0,t0−−−→ · · · (ℓk−1, νk−1)
conforming to ηp and τ , we let

Pηp,τ
ℓ,ν (ρ) =

k−1∏
i=0

pi

where, for all i ∈ {0, . . . , k − 1}

pi =
{

1 if ℓi ∈ LMax

ηp
∆(ℓi, νi)(δi) × ηp

R+((ℓi, νi), δi)(ti) if ℓi ∈ LMin

This definition allows us to recover the probability of a path π using the probability of all
plays following π. Then, we obtain easily

Eηp,τ
ℓ,ν =

∑
ρ∈Π0,≤K

wt(ρ)Pηp,τ
ℓ,ν (ρ)

︸ ︷︷ ︸
γ0,≤K

+
∑

ρ∈ΠN,≥K

wt(ρ)Pηp,τ
ℓ,ν (ρ)

︸ ︷︷ ︸
γN,≥K

+
∑
ρ∈Π̃

wt(ρ)Pηp,τ
ℓ,ν (ρ)

︸ ︷︷ ︸
γ̃

(1)
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We now compute and bound the three expectations γ0,≤K , γN,≥K and γ̃. In the following,
for a set Π of plays, we let Pηp,τ

ℓ,ν (Π) =
∑

ρ∈Π Pηp,τ
ℓ,ν (ρ).

Red zone is such that γ̃ ≤ ε/4. All plays in Π̃ have a length at most K: so the cumulated
weight of all such play is at most Kwe

max. So, we have

γ̃ =
∑
ρ∈Π̃

wt(ρ)Pηp,τ
ℓ,ν (ρ) ≤

∑
ρ∈Π̃

Kwe
maxP

ηp,τ
ℓ,ν (ρ) = Kwe

maxP
ηp,τ
ℓ,ν (Π̃)

But, all plays ρ ∈
⋃

j≤K Πi,j with i ≤ K take i transitions of probability 1 − p. In particular,
by bounding all other probabilities by 1, and since there are at most 2K plays in

⋃
j≤K Πi,j ,

we obtain (using that 1 − (1 − p)K ≤ 1)

Pηp,τ
ℓ,ν (Π̃) ≤ 2K

K−1∑
i=1

(1 − p)i = 2K (1 − p)(1 − (1 − p)K)
p

≤ 2K 1 − p

p
−→p→1 0 (2)

If we suppose that

p ≥ 1
1 + ε/(4 × 2KKwe

max)

we obtain as desired

γ̃ ≤ 2KKwe
max

1 − p

p
≤ ε

4

Yellow and blue zones are such that γ0,≤K + γN,≥K ≤ dValσℓ,ν + 5ε/4. All plays in
Π0,≤K reach the target without taking any probability 1 − p from ηp

∆, so they are conforming
to σ1. In the case where dValℓ,ν = −∞, Π0,≤K = ∅ and γ0,≤K = 0, since no play conforming
to σ1 from (ℓ, ν) reaches the target. In this case, Min can stay in a cycle with a negative
cumulated weight as long as he wants. Now, if dValℓ,ν is finite, Theorem 11 (see [21,
Lemma 19]) allows us to show that the cumulated weight of a play in Π0,≤K is at most
dValℓ,ν + Kε/K = dValℓ,ν + ε, as dValℓ,ν = infσ∈dStratMin dValσℓ,ν ≤ dValσℓ,ν . Therefore, in both
cases, we can write

γ0,≤K ≤
(
dValσℓ,ν + ε

)
Pηp,τ

ℓ,ν (Π0,≤K)

Let ρ be a play in Πi,j with 0 ≤ i and j ≥ K. Since ηp only allows cycles in negative
SCCs, all region cycles in ρ have a cumulated weight at most −1. By definition of K and
the proof of Theorem 11, wt(ρ) ≤ dValσℓ,ν ≤ dValσℓ,ν + ε.

By summing up the contribution of yellow and blue zones, we get

γ0,≤K + γN,≥K ≤
(
dValσℓ,ν + ε

)
Pηp,τ

ℓ,ν (Π0,≤K ∪ ΠN,≥K) (3)

We distinguish two cases.
If dValσℓ,ν ≥ −5ε/4, having Pηp,τ

ℓ,ν (Π0,≤K ∪ ΠN,≥K) ≤ 1, we get

γ0,≤K + γN,≥K ≤
(

dValσℓ,ν + 5ε

4

)
Pηp,τ

ℓ,ν (Π0,≤K ∪ ΠN,≥K) ≤ dValℓ,ν + 5ε

4

If dValσℓ,ν < −5ε/4, then by (2),

Pηp,τ
ℓ,ν (Π0,≤K ∪ ΠN,≥K) = 1 − Pηp,τ

ℓ,ν (Π̃) ≥ 1 − 2K 1 − p

p
−→p→1 1
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If we suppose that

p ≥ 2K

2K + 1 − dValσ
ℓ,ν

+5ε/4
dValσ

ℓ,ν
+ε

∈ (0, 1)

then

Pηp,τ
ℓ,ν (Π0,≤K ∪ ΠN,≥K) ≥

dValσℓ,ν + 5ε/4
dValσℓ,ν + ε

and, by negativity of dValσℓ,ν + ε, we can rewrite (3) as

γ0,≤K + γN,≥K ≤
(
dValσℓ,ν + ε

) dValσℓ,ν + 5ε/4
dValσℓ,ν + ε

= dValσℓ,ν + 5ε

4

In all cases, we have γ0,≤K + γN,≥K ≤ dValσℓ,ν + 5ε/4.

Gathering all constraints on p. We gather all the lower bounds over p that we need in the
proof:

p̃ =


max

(
1

1+ε/(4×2K Kwe
max) , 1

2

)
if dValσℓ,ν ≥ −5ε/4

max

 1
1+ε/(4×2K Kwe

max) , 1
2 , 2K

2K +1−
dValσ

ℓ,ν
+5ε/4

dValσ
ℓ,ν

+ε

 otherwise

Then, for p ∈ (p̃, 1), we have Eηp,τ
ℓ,ν ≤ dValσℓ,ν + 3ε/2. Since p̃ does not depend on τ , we

conclude that for p ∈ (p̃, 1), we have mValη
p

ℓ,ν ≤ dValσℓ,ν + 2ε. ◀

Simulating (stochastic) strategies with deterministic strategies. Finally, we show that, for
all configurations (ℓ, ν), dValℓ,ν ≤ Valℓ,ν and dValℓ,ν ≤ mValℓ,ν . To do so, we consider a proper
strategy η ∈ Stratp

Min of Min and an initial configuration (ℓ, ν). We build a deterministic
strategy σ such that dValσℓ,ν ≤ Valηℓ,ν + ε. Thus, in the case where Valℓ,ν ̸= −∞, we can
consider η to be an ε-optimal strategy so that dValσℓ,ν ≤ Valℓ,ν + 2ε which allows us to
conclude. In the case where Valℓ,ν = −∞, then, for all N ∈ N, we can consider η to be such
that Valηℓ,ν ≤ −N . Then, dValσℓ,ν ≤ −N + ε, which implies that dValℓ,ν = −∞, by taking the
limit when N tends to +∞.

The deterministic strategy σ uses the same kind of memory as η (in particular, it will be
memoryless if η is memoryless). However, we want this strategy to be relatively simple to
define, independent of the memory of η. Intuitively, we want to build a switching strategy
(as in Section 4) on a game induced by the memory of η, i.e. a deterministic strategy σ1 that
uses the memory capabilities of η, a memoryless deterministic strategy σ2 obtained by an
attractor in the region game, and a threshold K. Strategy σ then consists in playing σ1 for
at most K steps, before switching to strategy σ2. The construction of σ1 is done in a similar
way as in the deterministic case, Min always choosing the best possible candidate according to
the choices of η, thus trying to minimise the immediate reward obtained in one turn. Under
this condition, we verify that σ1 satisfies some properties similar to the fake-ε-optimality
encountered in Section 4. Then, by mimicking the techniques of Theorem 11, we obtain that
the switching strategy η obtained from η1 satisfies the desired inequality dValσℓ,ν ≤ Valηℓ,ν + ε.

ICALP 2021



137:16 Playing Stochastically in Weighted Timed Games to Emulate Memory

6 Conclusion

We have introduced stochastic strategies for WTGs, showing that, in divergent games, Min
can use randomisation to emulate memory, and vice versa. We aim at extending our study
to more general WTGs. As a first step, we may consider the class of almost-divergent WTGs
(adding the possibility for an execution following a region cycle to have weight exactly 0 ),
used in [12, 17] to obtain an approximation schema of the optimal value. We wonder if similar
ε-optimal switching strategies may exist also in this context, one of the crucial argument in
order to extend our emulation result. Another question concerns the implementability of the
randomised strategies: even if they use no memory, they still need to know the precise current
clock valuation. In (non-weighted) timed games, previous work [18] aimed at removing this
need for precision, by using stochastic strategies where the delays are chosen with probability
distributions that do not require exact knowledge of the clocks measurements. In our setting,
we aim at further studying the implementability of the randomised strategies of Min in
WTGs, e.g. by requiring them to be robust against small imprecisions.
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1 Introduction

Local consistency checking is an algorithmic technique that is central in computer science.
Intuitively speaking, it consists in propagating local information through a structure so as
to infer global information (consider, e.g., computing the transitive closure of a relation as
deriving global information from local one). Local consistency checking has a prominent role
in the area of constraint satisfaction, where one is given a set of variables V and constraints
and one has to find a satisfying assignment h : V → D for the constraints. In this setting,
the local consistency algorithm can be used to decrease the size of the search space efficiently
or even to correctly solve some constraint satisfaction problems in polynomial time (for
example, 2-SAT or Horn-SAT). However, the use of local consistency methods is not limited
to constraint satisfaction. Indeed, local consistency checking is also used for such problems
as the graph isomorphism problem, where it is is known as the Weisfeiler-Leman algorithm.
Again, the technique can be used to derive implied constraints that an isomorphism between
two graphs has to satisfy so as to narrow down the search space, but local consistency
is in fact powerful enough to solve the graph isomorphism problem over any non-trivial
minor-closed class of graphs [36]. Notably, the best algorithm for graph isomorphism to date
also uses local consistency as a subroutine [3]. Finally, local consistency can be used to solve
games involved in formal verification such as parity games and mean-payoff games [16].

One of the reasons for the ubiquity of local consistency is that its underlying principles
can be described in many different languages, such as the language of category theory [1], in
the language of finite model theory (by Spoiler-Duplicator games [38] or by homomorphism
duality [2]), and logical definability (in Datalog, or infinitary logics with bounded number
of variables). For constraint satisfaction problems over a finite template, the power of local
consistency checking can additionally be characterised algebraically. More precisely, there
are conditions on the set of polymorphisms of a template A such that local consistency
correctly solves its constraint satisfaction problem CSP(A) if, and only if, the polymorphisms
of A satisfy these conditions. Moreover, whenever local consistency correctly solves CSP(A),
where A is finite, then in fact only a very restricted form of local consistency checking is
needed [4]. This fact is known as the collapse of the bounded width hierarchy, and it has
strong consequences both for complexity and logic. On the one hand, the collapse gives
efficient algorithms that are able to solve all the CSPs that are solvable by local consistency
methods, and in fact this gives a polynomial-time algorithm solving instances of the uniform
CSP. On the other hand, this collapse induces collapses in all the areas mentioned at the
beginning of this paragraph.

Many natural problems from computer science can only be phrased as CSPs where the
template is infinite. This is the case for linear programming, some reasoning problems in
artificial intelligence such as ontology-mediated data access, or even problems as simple
to formulate as the digraph acyclicity problem. In order to understand the power of local
consistency in more generality it is thus necessary to consider its use for infinite-domain CSPs.
Infinite-domain CSPs with an ω-categorical template form a very general class of problems
for which the algebraic approach from the finite case can be extended, and numerous results
in the recent years have shown the power of this approach. An algebraic characterisation
of local consistency checking for infinite-domain CSPs is, however, missing. In fact, the
negative results of [19], refined in [35], show that no purely algebraic description of local
consistency is possible for CSPs with ω-categorical templates; this is even the case for
temporal CSPs [20]. These negative results are to be compared with the recent result by
Mottet and Pinsker [45] that did provide an algebraic description of local consistency for
several subclasses of ω-categorical templates.
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In the finite, the algebraic characterisation of local consistency relies on a set of algebraic
tools whose development eventually led to the solutions of the Feder-Vardi dichotomy
conjecture. Bulatov’s proof of the Feder-Vardi conjecture [30] builds on his theory of edge-
colored algebras, that were also used in his characterisation of bounded width [29]; Zhuk’s
proof [50, 51] relies on the concept of absorption, which was developed by Barto and Kozik
in their effort to prove the bounded width conjecture [5, 7]. Comparable algebraic tools, or a
general theory, are at the moment missing in the theory of infinite-domain CSPs, even with
an ω-categorical template. The most general results obtained so far use canonical operations,
which behave like operations on finite sets, and for which it is sometimes possible to mimic
the universal-algebraic approach to finite-domain CSPs. Canonical operations alone do not
seem to be sufficient in full generality and a characterisation of their applicability is also
missing, but on the positive side their applicability covers a vast majority of the results that
were proved in the area. The application of canonical operations to approach the question of
local consistency for infinite-domain CSPs has only been started recently [18, 45, 49].

1.1 Results

In the present paper, we focus on applying the theory of canonical functions to study the
power of local consistency checking for constraint satisfaction problems over ω-categorical
templates. Our objective is two-fold: on the one hand, we wish to obtain generic sufficient
conditions that imply that local consistency solves a given CSP, and on the other hand we
wish to understand the amount of locality needed for local consistency to solve the CSP, as
measured by the so-called relational width. The definitions of all concepts mentioned in this
section can be found in the preliminaries.

In order to solve the first objective, we build on recent work by Mottet and Pinsker [45]
and expand the use of their smooth approximations to fully suit equational (non-)affineness,
which is roughly the algebraic situation imposed by local consistency solvability. The main
technical contribution is a new loop lemma that exploits deep algebraic tools from the
finite [6] and, assuming the use of canonical functions is unfruitful, allows to obtain the
existence of polymorphisms of every arity n ≥ 2 and satisfying certain strong symmetry
conditions. Using this loop lemma, we are able to obtain a characterisation of bounded
width for particular classes of templates, namely for first-order reducts of unary structures
and for certain structures related to the logic MMSNP. In particular, we obtain a decidable
necessary and sufficient condition for an MMSNP sentence to be equivalent to a Datalog
program, solving an open problem from [11, 34].

▶ Theorem 1. The Datalog-rewritability problem for MMSNP is decidable, and is 2NExpTime-
complete.

In order to solve the second objective, we prove that sufficiently locally consistent instances
of a given CSP can be turned into locally consistent instances of a finite-domain CSP. If
the finite-domain CSP has bounded width then it has relational width (2, 3) by [4], which
allows us to obtain a collapse of bounded width for structures whose clone of canonical
polymorphisms satisfy suitable identities, thus obtaining a similar collapse as in the finite
case. In particular, it turns out that the relational width of a structure then only depends
on certain simple parameters of the structure whose automorphism group is considered in
the notion of canonicity.
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▶ Theorem 2. Let k, ℓ ≥ 1, and let A be a first-order reduct of a k-homogeneous ℓ-bounded
ω-categorical structure B.

If the clone of Aut(B)-canonical polymorphisms of A contains pseudo-WNUs modulo
Aut(B) of all arities n ≥ 3, then A has relational width (2k,max(3k, ℓ)).
If the clone of Aut(B)-canonical polymorphisms of A contains pseudo-totally symmetric
operations modulo Aut(B) of all arities, then A has relational width (k,max(k + 1, ℓ)).

Note that every finite structure A with domain {a1, . . . , an} is a first-order reduct of
the structure ({a1, . . . , an}; {a1}, . . . , {an}), which is easily seen to be 1-homogeneous and
2-bounded. Thus the width obtained in Theorem 2 coincides with the width given by Barto’s
collapse result from [4].

As a corollary of Theorem 2, we obtain a collapse of the bounded width hierarchy for
first-order reducts of the unary structures mentioned above, as well as of numerous other
structures studied in the literature [22, 18, 17, 39].

▶ Corollary 3. Let A be a structure that has bounded width. If A is a first-order reduct of:
the universal homogeneous graph G or tournament T, or of a unary structure, then A
has relational width at most (4, 6);
the universal homogeneous Kn-free graph Hn, where n ≥ 3, then at most (2, n);
(N; =), the countably infinite equivalence relation with infinitely many equivalence classes
Cω

ω, or the universal homogeneous partial order P, then at most (2, 3).

Proof. A first-order reduct of G or T has bounded width if and only if the algebraic condition
in the first item of Theorem 2 is satisfied [45]. Since both G and T are 2-homogeneous and
3-bounded our claim follows. First-order reducts of Hn, (N; =) or Cω

ω have bounded width if
and only if the condition in the second item of Theorem 2 is satisfied, by [17], [14] and [26],
respectively. Since Hn is 2-homogeneous and n-bounded, and since both (N; =) and Cω

ω are
2-homogeneous and 3-bounded, the claimed bound follows.

By appeal to Theorems 2 and 23 in the present paper our claim holds for first-order
reducts of unary structures.

Finally, a first-order reduct of P with bounded width is either homomorphically equivalent
to a first-order reduct of (Q;<) or it satisfies the algebraic condition in the second item of
Theorem 2 [39]. In the latter case we are done by Theorem 2, in the former we appeal to
the syntactical characterization of first-order reducts of (Q;<). Indeed, such a structure has
bounded width iff it is definable by a conjunction of so-called Ord-Horn clauses [20]. It then
follows by [28] that a first-order reduct of (Q;<) with bounded width has relational width
(2, 3). The result for P follows. ◀

The following example shows that for some of the structures under consideration, the
bounds on relational width provided by Corollary 3 are tight.

▶ Example 4. To show the tightness of the first bound in the case of the universal homo-
geneous graph, we exhibit a first-order reduct A such that for all i ≤ j with 1 ≤ j < 4
or 1 ≤ i < 6 there exists a non-trivial, (i, j)-minimal instance of CSP(A) that has no
solution. Let B := (A;E) be the universal homogeneous graph with edge relation E, and
let N := (A2 \ E) ∩ ̸=. Consider the first-order reduct A := (A;R=, R ̸=) of B, where
R= := {(a, b, c, d) ∈ A4 | E(a, b) ∧E(c, d) or N(a, b) ∧N(c, d)} and R ̸= := {(a, b, c, d) ∈ A4 |
E(a, b) ∧N(c, d) or N(a, b) ∧ E(c, d)}.

It can be seen that A has bounded width, so that Theorem 2 implies that A has relational
width (4, 6). It is easy to see that the instance

Φ = R=(v1, v2, v3, v4) ∧R ̸=(v1, v2, v3, v4)



A. Mottet, T. Nagy, M. Pinsker, and M. Wrona 138:5

is non-trivial, (i, j)-minimal for all i ≤ j with 1 ≤ i ≤ 3, and has no solution. Moreover, the
(4, 5)-minimal instance equivalent to the instance

Ψ = R=(v1, v2, v3, v4) ∧R ̸=(v3, v4, v5, v6) ∧R ̸=(v1, v2, v5, v6)

is non-trivial and has no solution. It follows that the exact relational width of A is (4, 6).

The bounds on relational width provided by the second and third item of Corollary 3
are easily seen to be tight as well. Indeed, let n ≥ 3, let B := (A;E) be the universal
homogeneous Kn-free graph, let N := (A2\E)∩ ̸= and let A := (A;E,N). A is preserved by
canonical pseudo-totally symmetric operations modulo Aut(B) of all arities and has therefore
relational width (2, n) by Theorem 2. But the non-trivial, (2, n− 1)-minimal instance

Φ =
∧

1≤i̸=j≤n

E(vi, vj)

has no solution; moreover, the instance Ψ = E(v1, v2)∧N(v1, v2) is non-trivial, (1, j)-minimal
for every j ≥ 1 and has no solution either.

For the other structures from Corollary 3, the tightness of the bound can be shown
similarly.

1.2 Related results
Local consistency for ω-categorical structures was studied for the first time in [13] where
basic notions were introduced and some basic results provided. First-order reducts of certain
k-homogeneous ℓ-bounded structures with bounded width were characterized in [45, 20].

A structure A has bounded strict width [33] if not only CSP(A) is solvable by local
consistency, but moreover every partial solution of a locally consistent instance can be
extended to a total solution. The articles [49] and [48] give the upper bound (2, ℓ) on the
relational width for some classes of 2-homogeneous, ℓ-bounded structures under the stronger
assumption of bounded strict width; it also follows from [49] that first-order reducts of Hn

with bounded width have relational width at most (2, n).

1.3 Organisation of the present article
In Section 2 we provide the basic notions and definitions. The reduction to the finite using
canonical functions which leads to the collapse of the bounded width hierarchy is given in
Section 3. We then extend the algebraic theory of smooth approximations in Section 4 before
applying it to first-order reducts of unary structures and MMSNP in Section 5. For lack of
space, some proofs are omitted and can be found in the full version of the paper.

2 Preliminaries

2.1 Structures and model-theoretic notions
For sets B, I, the orbit of a tuple b ∈ BI under the action of a permutation group G on
B is the set {α(b) | α ∈ G}. A countable structure B is ω-categorical if its automorphism
group Aut(B) is oligomorphic, i.e., for all n ≥ 1, the number of orbits of the action of
Aut(B) on n-tuples is finite. For ℓ ≥ 1, we say that B is ℓ-bounded if for every finite X, if all
substructures Y of X of size at most ℓ embed in B, then X embeds in B. For k ≥ 1, we say
that B is k-homogeneous if for all tuples a, b of arbitrary finite length, if all k-subtuples of a
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and b are in the same orbit under Aut(B), then a and b are in the same orbit under Aut(B).
We say that B is unary if all relations in its signature are unary. A first-order reduct of a
structure B is a structure on the same domain whose relations have a first-order definition
in B.

2.2 Polymorphisms, clones and identities
A polymorphism of a relational structure A is a homomorphism from some finite power of A
to A. The set of all polymorphisms of a structure A is denoted by Pol(A); it is a function
clone, i.e., a set of finitary operations on a fixed set which contains all projections and which
is closed under arbitrary compositions.

If C is a function clone, then we denote the domain of its functions by C; we say that
C acts on C. The clone C also naturally acts (componentwise) on Cl for any l ≥ 1, on any
invariant subset S of C (by restriction), and on the classes of any invariant equivalence
relation ∼ on an invariant subset S of C (by its action on representatives of the classes).
We write C ↷ Cl, C ↷ S and C ↷ S/∼ for these actions. Any action C ↷ S/∼ is called a
subfactor of C, and we also call the pair (S,∼) a subfactor. A subfactor (S,∼) is minimal
if ∼ has at least two classes and no proper subset of S intersecting at least two ∼-classes
is invariant under C. For a clone C acting on a set X and Y ⊆ X we write ⟨Y ⟩C for the
smallest C-invariant subset of X containing Y .

For n ≥ 1, a k-ary operation f defined on the domain C of a permutation group G is
n-canonical with respect to G if for all a1, . . . , ak ∈ Cn and all α1, . . . , αk ∈ G there exists
β ∈ G such that f(a1, . . . , ak) = β ◦ f(α1(a1), . . . , αk(ak)). In particular, f induces an
operation on the set Cn/G of G-orbits of n-tuples. If all functions of a function clone C are
n-canonical with respect to G, then C acts on Cn/G and we write Cn /G for this action; if G
is oligomorphic then Cn /G is a function clone on a finite set. A function is canonical with
respect to a permutation group G if it is n-canonical with respect to G for all n ≥ 1. We say
that it is diagonally canonical if it satisfies the definition of canonicity in case α1 = · · · = αk.

We write GC to denote the largest permutation group contained in a function clone C,
and say that C is oligomorphic if GC is oligomorphic. For n ≥ 1, the n-canonical (canonical)
part of C is the clone of those functions of C which are n-canonical (canonical) with respect
to GC. We write Ccan

n and Ccan for these sets which form themselves function clones.
For a set of functions F over the same fixed set C we write F for the set of those

functions g such that for all finite subsets F of C, there exists a function in F which
agrees with g on F . We say that f locally interpolates g modulo G, where f, g are k-
ary functions and G is a permutation group all of which act on the same domain, if g ∈
{β ◦ f(α1, . . . , αk) | β, α1, . . . , αk ∈ G}. Similarly, we say that f diagonally interpolates g
modulo G if f locally interpolates g with α1 = · · · = αk. If G is the automorphism group of a
Ramsey structure in the sense of [12], then every function on its domain locally (diagonally)
interpolates a canonical (diagonally canonical) function modulo G [25, 21]. We say that a
clone D locally interpolates a clone C modulo a permutation group G if for every g ∈ D there
exists f ∈ C such that g locally interpolates f modulo G. A clone C is a model-complete core
if its unary functions are equal to GC. A structure A is called a model- complete core if its
polymorphism clone is.

A function f is idempotent if f(x, . . . , x) = x for all values x of its domain; a function
clone is idempotent if all of its functions are. A k-ary operation w is called a weak near-
unanimity (WNU) operation if it satisfies the set of identities containing an equation for
each pair of terms in {w(x, . . . , x, y), w(x, y, . . . , x), . . . , w(y, x, . . . , x)}. It is called totally
symmetric if w(x1, . . . , xk) = w(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk} (where
1 ≤ |{x1, . . . , xk}| ≤ k). Each set of identities also has a pseudo-variant obtained by composing
each term appearing in the identities with a distinct unary function symbol. For example,
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a ternary pseudo-WNU operation f satisfies the identities: e1 ◦ f(y, x, x) = e2 ◦ f(x, y, x),
e3 ◦ f(y, x, x) = e4 ◦ f(x, x, y) and e5 ◦ f(x, y, x) = e6 ◦ f(x, x, y). If C is a function clone and
U ⊆ C is a set of unary functions, then C satisfies a set of pseudo-identities modulo U if it
satisfies the identities in such a way that the unary function symbols are assigned values
in U.

An arity-preserving map ξ : C → D between function clones is called a clone homomorph-
ism if it preserves projections, i.e., maps every projection in C to the corresponding projection
in D, and compositions, i.e., it satisfies ξ(f ◦ (g1, . . . , gn)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gn)) for
all n,m ≥ 1 and all n-ary f ∈ C and m-ary g1, . . . , gn ∈ C. An arity-preserving map ξ is
a minion homomorphism if it preserves compositions with projections, i.e., compositions
where g1, . . . , gn are projections. We say that a function clone C is equationally trivial if it
has a clone homomorphism to the clone P of projections over the two-element domain, and
equationally non-trivial otherwise. We also say that C is equationally affine if it has a clone
homomorphism to an affine clone, i.e., a clone of affine maps over a finite module. It is known
that a finite idempotent clone is either equationally affine or it contains WNU operations of
all arities n ≥ 3 ([43], this stronger version is attributed to E. Kiss in [40, Theorem 2.8]).
Similarly, if A is an ω-categorical model-complete core, then Pol(A)can is either equationally
affine, or it contains pseudo-WNU operations modulo Aut(A) of all arities n ≥ 3 (see [24, 45]
for the lift of the corresponding result from the finite).

If C, D are function clones and D has a finite domain, then a clone (or minion) homo-
morphism ξ : C → D is uniformly continuous if for all n ≥ 1 there exists a finite subset F of
Cn such that ξ(f) = ξ(g) for all n-ary f, g ∈ C which agree on F .

A first-order formula is called a primitive-positive (pp-)formula if it is built exclusively
from atomic formulae, existential quantifiers, and conjunction. A relation is pp-definable in
a structure B if it is first-order definable by a pp-formula; in that case, it is invariant under
Pol(B). Any ω-categorical model-complete core pp-defines all orbits of n-tuples with respect
to its own automorphism group, for all n ≥ 1.

2.3 CSP, Relational Width, Minimality
A CSP instance over a set A is a pair I = (V, C), where V is a finite set of variables, and C is
a set of constraints; each constraint C ∈ C is a subset of AU for some non-empty U ⊆ V (U
is the scope of C). We say that I is an instance of CSP(A) if for every C ∈ C with scope U ,
there exists an enumeration u1, . . . , uk of the elements of U and a k-ary relation R of A such
that for all f : U → A we have f ∈ C ⇔ (f(u1), . . . , f(uk)) ∈ R. Given a constraint C ⊆ AU

and K ⊆ U , the projection of C onto K is defined by C|K := {f |K : f ∈ C}.

▶ Definition 5. Let 1 ≤ k ≤ ℓ. We say that an instance I over V of CSP(A) is (k, ℓ)-minimal
if both of the following hold:

every non-empty subset of at most ℓ variables in V is the scope of some constraint in I;
for every at most k-element subset of variables K ⊆ V and any two constraints C1, C2 ∈ I
whose scopes contain K, the projections of C1 and C2 onto K coincide.

We say that an instance I of the CSP is non-trivial if it does not contain any empty
constraint. Otherwise, I is trivial.

Let 1 ≤ k ≤ ℓ. Clearly not every instance I over variables V of CSP(A) is (k, ℓ)-minimal.
However, every instance I is equivalent to a (k, ℓ)-minimal instance I ′ in the sense that I
and I ′ have the same set of solutions. In particular we have that if I ′ is trivial, then I has
no solutions. Moreover, if A is ω-categorical, then I ′ can be computed in time polynomial in
the size of I. Indeed, it is enough to introduce a new constraint AL for every set L ⊆ V with
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at most ℓ elements to satisfy the first condition. Then the algorithm removes tuples (in fact,
orbits of tuples with respect to Aut(A)) from the constraints in the instance as long as the
second condition is not satisfied. Since A is ω-categorical and thus every relation in I is a
union of a finite number of orbits of tuples with respect to Aut(A), the algorithm terminates.

▶ Definition 6. Let 1 ≤ k ≤ ℓ. A relational structure A has relational width (k, ℓ) if
every non-trivial (k, ℓ)-minimal instance of A has a solution. A has bounded width if it has
relational width (k, ℓ) for some natural numbers k ≤ ℓ.

▶ Theorem 7 ([7]). Let I be a non-trivial (2, 3)-minimal CSP instance over a finite set.
Suppose that the constraints of I are preserved by WNUs of all arities m ≥ 3. Then I has a
solution.

▶ Theorem 8 ([32, 33]). Let I be a non-trivial (1, 1)-minimal CSP instance over a finite set.
Suppose that the constraints of I are preserved by totally symmetric polymorphisms of all
arities. Then I has a solution.

2.4 Smooth Approximations
We are going to apply the fundamental theorem of smooth approximations [45] to lift an
action of a function clone to a larger clone.

▶ Definition 9. (Smooth approximations) Let A be a set, n ≥ 1, and let ∼ be an equivalence
relation on a subset S of An. We say that an equivalence relation η on some set S′ with
S ⊆ S′ approximates ∼ if the restriction of η to S is a (possibly non-proper) refinement of
∼. We call η an approximation of ∼.

For a permutation group G acting on A and leaving η as well as the ∼-classes invariant,
we say that the approximation η is smooth if each equivalence class C of ∼ intersects some
equivalence class C ′ of η such that C ∩ C ′ contains a G-orbit.

▶ Theorem 10 (The fundamental theorem of smooth approximations [45]). Let C ⊆ D be
function clones on a set A, and let G be a permutation group on A such that D locally
interpolates C modulo G. Let ∼ be a C-invariant equivalence relation on S ⊆ A with G-
invariant classes and finite index, and η be a D-invariant smooth approximation of ∼ with
respect to G. Then there exists a uniformly continuous minion homomorphism from D to
C ↷ S/∼.

3 Collapses in the Relational Width Hierarchy

▶ Definition 11. Let I = (V, C) be a CSP instance over A. Let G be a permutation group on
A, let k ≥ 1, and let O be the set of orbits of k-tuples under G. Let IG,k be the following
instance over O:

The variable set of IG,k is the set
(V

k

)
of k-element subsets of V. Thus, every variable K

of IG,k is meant to take a value in O, and we consider that the values for K are K-orbits,
i.e., orbits of maps f : K → A under the natural action of G.
For every constraint C ⊆ AU in I, IG,k contains the constraint CG,k ⊆ O(U

k) defined by

CG,k =
{
g :
(
U

k

)
→ O | ∃f ∈ C ∀K ∈

(
U

k

)
(f |K ∈ g(K))

}
.

Note that the notation f |K ∈ g(K) makes sense precisely because g(K) is a K-orbit.
Observe that if I is non-trivial, then so is IG,k.
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▶ Lemma 12. Let 1 ≤ a ≤ b. If I is (ak, bk)-minimal, then IG,k is (a, b)-minimal.

Note that for every solution h of I, the map χh :
(V

k

)
→ O defined by K 7→ {αh|K | α ∈ G}

defines a solution to IG,k. The next lemma proves that every solution to IG,k is of the form
χh for some solution h of I, provided that I is (k, ℓ)-minimal and that G = Aut(B) for some
ℓ-bounded k-homogeneous structure B.

▶ Lemma 13. Let 1 ≤ k < ℓ. Let B be ℓ-bounded and k-homogeneous, let A be a first-order
reduct of B, and let I be a (k, ℓ)-minimal instance of CSP(A). Then every solution to
IAut(B),k lifts to a solution of I.

Proof. Let h :
(V

k

)
→ O be a solution to IAut(B),k. Recall that for any K ∈

(V
k

)
, we view

h(K) as a K-orbit, and one can therefore restrict h(K) to any L ⊆ K by setting h(K)|L :=
{f |L | f ∈ h(K)}. Note that since I is (k, k)-minimal, we have h(K)|K∩K′ = h(K ′)|K∩K′

for all K,K ′ ∈
(V

k

)
.

We now define an equivalence relation ∼ on V. Suppose first that k = 1. Then every
orbit of B must be a singleton (for any orbit with two elements a, b, the pairs (a, a) and (a, b)
are not in the same orbit but their entries are, so that B is not 1-homogeneous). In that case,
we identify O with the domain B itself, and set x ∼ y if and only if h({x}) = h({y}); that is,
∼ is essentially the kernel of h.

Suppose next that k ≥ 2, and set x ∼ y iff there is K ∈
(V

k

)
containing x, y such that

h(K)|{x,y} consists of constant maps. It can be seen that one could equivalently ask that
this holds for all K containing x, y by 2-minimality, and that this is indeed an equivalence
relation by (2, 3)-minimality of I. Moreover, h descends to

(V /∼
k

)
: if K ′ = {[v1]∼, . . . , [vk]∼}

is a k-element set, define h̃(K ′) := h({v1, . . . , vk}). The definition of h̃ does not depend on
the choice of representatives, by the very definition of ∼.

Define a finite structure C with domain V /∼ in the signature of B as follows. Let
K = {[v1]∼, . . . , [vk]∼}. The orbit h̃(K) describes an atomic type on the elements of K;
one defines C such that its substructure induced by K has the same atomic type. This is a
well-defined construction by the previous paragraphs.

Finally, note that all substructures of C of size at most ℓ embed into B. Indeed, let
L be an ℓ-element substructure of C, and let L′ ⊆ V be an ℓ-element set containing one
representative for each element of L. By (k, ℓ)-minimality of I, there exists C ⊆ AL′ in
I, and a corresponding CAut(B),k ⊆ IAut(B),k. Thus, h|(L′

k ) ∈ CAut(B),k, so that there exists

g ∈ C such that for all K ∈
(

L′

k

)
, g|K ∈ h(K). Thus g corresponds to an embedding of every

k-element substructure of L into B, and since B is k-homogeneous, g is an embedding of L
into B. Finally, since B is ℓ-bounded, it follows that there exists an embedding e of C into B.

It remains to check that the composition of e with the canonical projection V → V /∼ is
a solution to I, which is trivial since the relations of A are definable in B. ◀

Every operation f that is canonical with respect to a group G induces an operation on
the set orbits of k-tuples under G, by definition. We denote this operation by fG,k.

▶ Lemma 14. Let f be a polymorphism of A that is canonical with respect to G. Every
constraint CG,k in IG,k is preserved under fG,k.

Finally, this allows us to prove Theorem 2 from the introduction.

Proof of Theorem 2. Suppose that the assumption of the first item of Theorem 2 is satisfied.
Let I be a non-trivial (2k,max(3k, ℓ))-minimal instance of CSP(A), and let IAut(B),k be the
associated instance of Definition 11. By Lemma 12, IAut(B),k is a (2, 3)-minimal instance,
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and it is non-trivial by definition. The constraints of IAut(B),k are preserved by WNUs of
all arities m ≥ 3 (Lemma 14). By Theorem 7, IAut(B),k admits a solution and since I is
(k,max(3k, ℓ))-minimal, this solution lifts to a solution of I by Lemma 13. Thus, A has
width (2k,max(3k, ℓ)).

Suppose now that the assumption in the second item is satisfied. By the same reasoning
but using Theorem 8 instead of Theorem 7, given a (k,max(k + 1, ℓ))-minimal instance I,
the associated instance IAut(B),k is (1, 1)-minimal and therefore has a solution. Since I is
(k,max(k + 1, ℓ))-minimal, this solution lifts to a solution of I. ◀

4 A New Loop Lemma for Smooth Approximations

We refine the algebraic theory of smooth approximations from [45]. Building on deep algebraic
results from [6] on finite idempotent algebras that are equationally non-trivial, we lift some
of the theory from binary symmetric relations to cyclic relations of arbitrary arity.

4.1 The loop lemma
▶ Definition 15. The linkedness congruence of a binary relation R ⊆ A×B is the equivalence
relation λR on proj(2) (R) defined by (b, b′) ∈ λR iff there are k ≥ 0 and a0, . . . , ak−1 ∈ A

and b = b0, . . . , bk = b′ ∈ B such that (ai, bi) ∈ R and (ai, bi+1) ∈ R for all i ∈ {0, . . . , k− 1}.
We say that R is linked if it is non-empty and λR relates any two elements of proj(2) (R).

If A is a set and m ≥ 2, then we call a relation R ⊆ Am cyclic if it is invariant under
cyclic permutations of the components of its tuples. The support of R is its projection on
any argument. We apply the same terminology as above to any cyclic R, viewing R as a
binary relation between proj(1,...,m−1) (R) and proj(m) (R).

If R is invariant under an oligomorphic group action on A×B, then there is an upper
bound on the length k to witness (b, b′) ∈ λR, and therefore λR is pp-definable from R; in
particular, it is invariant under any function clone acting on A×B and preserving R.

▶ Definition 16. Let G be a permutation group on a set A. A pseudo-loop with respect to G

is a tuple of elements of A all of whose components belong to the same G-orbit [46, 9, 10]. If
G contains only the identity function, then a pseudo-loop is called a loop.

▶ Theorem 17 (Consequence of the proof of Theorem 4.2 in [6]). Let C be an idempotent
function clone on a finite domain that is equationally non-trivial. Then any C-invariant
cyclic linked relation on its domain contains a loop.

The following is a generalization of [45, Theorem 10] from binary symmetric relations to
arbitrary cyclic relations.

▶ Proposition 18. Let n ≥ 1, and let D be an oligomorphic function clone on a set A which
is a model-complete core. Let C ⊆ Dcan

n be such that Cn/GD is equationally non-trivial. Let
(S,∼) be a minimal subfactor of the action Cn with GD-invariant ∼-classes. Then for every
D-invariant cyclic relation R with support ⟨S⟩D one of the following holds:
1. The linkedness congruence of R is a D-invariant approximation of ∼.
2. R contains a pseudo-loop with respect to GD.

Proof. Let R be given, and denote its arity by m. Assuming that (1) does not hold, we
prove (2).
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Denote by O the set of orbits of n-tuples under the action of GD thereon. Let R′ be the
relation obtained by considering R as a relation on O, i.e.,

R′ := {(O1, . . . , Om) ∈ Om | R ∩ (O1 × · · · ×Om) ̸= ∅}.

Thus, R′ is an m-ary cyclic relation with support S′ ⊆ O, and R′ contains a loop if and only
if R satisfies (2).

By assumption, the action Cn/GD is equationally non-trivial; moreover, it is idempotent
since D is a model-complete core. Note also that R′, and in particular S′, are preserved by
this action. It is therefore sufficient to show that R′ is linked and apply Theorem 17.

Recall that we consider R also as a binary relation between projm−1 (R) and ⟨S⟩D; similary,
we consider R′ as a binary relation between projm−1 (R′) and S′. By the oligomorphicity of
D, the linkedness congruence λR of R is invariant under D.

By our assumption that (1) does not hold, there exist c, d ∈ S which are not ∼-equivalent
and such that λR(c, d) holds; otherwise, λR would be an approximation of ∼. This implies
that the orbits Oc, Od of c, d are related via λR′ . By the minimality of (S,∼), we have
that ⟨S⟩D = ⟨{c, d}⟩D. Since D is a model-complete core, it preserves the GD-orbits, and it
follows that any tuple in ⟨S⟩D = ⟨{c, d}⟩D is λR-related to a tuple in the orbit of c. Hence,
λR′ = (S′)2, and thus R′ is linked. Theorem 17 therefore implies that R′ contains a loop,
and hence R contains a pseudo-loop with respect to GD, which is what we had to show. ◀

The following is a generalization of Lemma 12 in [45] from binary relations and functions
to relations and functions of higher arity.

▶ Lemma 19. Let n ≥ 1, and let D be an oligomorphic polymorphism clone on a set A that
is a model-complete core. Let ∼ be an equivalence relation on a set S ⊆ An with GD-invariant
classes. Let m ≥ 1, and let P be an m-ary relation on ⟨S⟩D. Suppose that every m-ary
D-invariant cyclic relation R on ⟨S⟩D which contains a tuple in P with components in at
least two ∼-classes contains a pseudo-loop with respect to GD.

Then there exists an m-ary f ∈ D such that for all a1, . . . , am ∈ An we have that if the
tuple (f(a1, . . . , am), f(a2, . . . , am, a1), . . . , f(am, a1, . . . , am−1)) is in P , then it intersects at
most one ∼-class.

5 Applications: Collapses of the bounded width hierachies for some
classes of infinite structures

We now apply the algebraic results of Section 4 and the theory of smooth approximations to
obtain a characterisation of bounded width for CSPs of first-order reducts of unary structures
(k = 2, ℓ = 2) and for CSPs in MMSNP (where k and ℓ are arbitrarily large). Moreover, the
results of Section 3 then imply a collapse of the bounded width hierarchy for such CSPs.

5.1 Unary Structures
▶ Lemma 20 (Proposition 6.5 in [18]). Let A be a first-order expansion of a stabilized partition
(N;V1, . . . , Vr). For every f ∈ Pol(A) there exists g ∈ Pol(A)can which is locally interpolated
by f modulo Aut(A).

▶ Proposition 21 (Proposition 6.6 in [18]). Let A be a first-order expansion of a stabilized
partition (N;V1, . . . , Vr), and assume it is a model-complete core. Suppose that Pol(A)
contains a binary operation whose restriction to Vi is injective for all 1 ≤ i ≤ r. Then the
following are equivalent:

Pol(A)can is equationally affine;
Pol(A)can ↷ N/Aut(A) is equationally affine.
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▶ Lemma 22 (Subset of the proof of Proposition 6.6 [18]). Let A be a first-order expansion
of a stabilized partition (N;V1, . . . , Vr), and assume it is a model-complete core. If Pol(A)
has no continuous clone homomorphism to P, then it contains operations of all arities whose
restrictions to Vi are injective for all 1 ≤ i ≤ r.

▶ Theorem 23. Let A be a first-order reduct of a unary structure, and assume that A is a
model-complete core. Then one of the following holds:

Pol(A)can is not equationally affine, or equivalently, it contains pseudo-WNUs modulo
Aut(A) of all arities n ≥ 3;
Pol(A) has a uniformly continuous minion homomorphism to an affine clone.

In the first case, A has relational width (4, 6) by Theorem 2, and in the second case it does
not have bounded width by results from [23, 41]. Theorem 23 gives a characterization of
bounded width for all first-order reducts of unary structures, since this class is closed under
taking model-complete cores by Lemma 6.7 in [18].

The two items of Theorem 23 are invariant under expansions of A by a finite number of
constants. Thus, by Proposition 6.8 in [18], one can assume that A is a first-order expansion
of (N;V1, . . . , Vr) where V1, . . . , Vr form a partition of N in which every set is either a singleton
or infinite. Such partitions were called stabilized partitions in [18], and we shall also call the
structure (N;V1, . . . , Vr) a stabilized partition.

Proof of Theorem 23. Let A as in Theorem 23 be given; by the remark preceding this proof,
we may without loss of generality assume that A is a first-order expansion of a stabilized
partition (N;V1, . . . , Vr). Assume henceforth that Pol(A)can is equationally affine; we show
that Pol(A) has a uniformly continuous minion homomorphism to an affine clone.

If Pol(A) has a continuous clone homomorphism to P, then we are done. Assume therefore
the contrary; then by Lemma 22, Pol(A) contains for all k ≥ 2 a k-ary operation whose
restriction to Vi is injective for all 1 ≤ i ≤ r. In particular, Proposition 21 applies, and
thus Pol(A)can ↷ N/Aut(A) is equationally affine. Let (S,∼) be a minimal subfactor of
Pol(A)can such that Pol(A)can acts on the ∼-classes as an affine clone; the fact that this
exists is well-known (see, e.g., Proposition 3.1 in [47]).

Let R be any Pol(A)-invariant cyclic relation with support ⟨S⟩Pol(A), containing a tuple
with components in pairwise distinct Aut(A)-orbits and which intersects at least two ∼-classes.
By Proposition 18, R either gives rise to a Pol(A)-invariant approximation of ∼, or it contains
a pseudo-loop with respect to Aut(A). In the first case, the presence of the tuple required
above implies smoothness of the approximation: if t ∈ R is such a tuple, c ∈ S appears in t,
and d ∈ S belongs to the same Aut(A)-orbit as c, then there exists an element of Aut(A)
which sends c to d and fixes all other elements of t. Hence, c and d are linked in R, and the
entire Aut(A)-orbit of c is contained in a class of the linkedness relation of R. Thus, Pol(A)
admits a uniformly continuous minion homomorphism to an affine clone by Theorem 10.

Hence we may assume that for any R as above the second case holds. We are now going
to show that this leads to a contradiction, finishing the proof of Theorem 23. By Lemma 19
applied with any m ≥ 2 and P the set of m-tuples with entries in pairwise distinct Aut(A)-
orbits within ⟨S⟩Pol(A), we obtain an m-ary function f ∈ Pol(A) with the property that the
tuple (f(a0, . . . , am−1), . . . , f(a1, . . . , am−1, a0)) intersects at most one ∼-class whenever it
has entries in pairwise distinct Aut(A)-orbits, for all a0, . . . , am−1 ∈ S. Let (A, <) be the
expansion of A by a linear order that is convex with respect to the partition V1, . . . , Vr and
dense and without endpoints on every infinite set of the partition. The structure (A, <) can
be seen to be a Ramsey structure, since Aut(A, <) is isomorphic as a permutation group to
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the action of the product
∏r

i=1 Aut(Vi;<), and each of the groups of the product is either
trivial or the automorphism group of a Ramsey structure [37]. By diagonal interpolation
we may assume that f is diagonally canonical with respect to Aut(A, <). Let a, a′ ∈ Am

be so that ai, a
′
i belong to the same orbit with respect to Aut(A) for all 1 ≤ i ≤ m. Then

there exists α ∈ Aut(A, <) such that α(a) = α(a′), and hence f(a) and f(a′) lie in the same
Aut(A)-orbit by diagonal canonicity; hence f is 1-canonical with respect to Aut(A). Applying
Lemma 20, we obtain a canonical function g ∈ Pol(A)can which acts like f on N/Aut(A).
The property of f stated above then implies for g that g(a0, . . . , am−1) ∼ g(a1, . . . , am−1, a0)
for all a0, . . . , am−1 ∈ S such that the values g(a0, . . . , am−1), . . . , g(am−1, a0, . . . , am−2) lie
in pairwise distinct Aut(A)-orbits.

By the choice of (S,∼) we have that Pol(A)can acts on S/∼ by affine functions over a finite
module. We use the symbols +, · for the addition and multiplication in the corresponding
ring, and also + for the addition in the module and · for multiplication of elements of
the module with elements of the ring. We denote by 1 the multiplicative identity of the
ring, by −1 its additive inverse, and identify their powers in the additive group with
the non-zero integers. The domain of the module is S/∼, and we denote the identity
element of its additive group by [a0]∼. Pick an arbitrary element [a1]∼ ̸= [a0]∼ from
S/∼, and let m ≥ 2 be its order in the additive group of the module, i.e., the minimal
positive number such that m · [a1]∼ = [a0]∼. Let g ∈ Pol(A)can be the m-ary operation
obtained in the preceding paragraph. If the values g(a0, . . . , am−1), . . . , g(am−1, a0, . . . , am−2)
lie in pairwise distinct Aut(A)-orbits, then computing indices modulo m we have that
g([a0]∼, . . . , [am−1]∼), . . . , g([am−1]∼, . . . , [am+m−1]∼) are all equal. If on the other hand they
do not, then g([ak]∼, . . . , [ak+m−1]∼) = g([ak+j ]∼, . . . , [ak+j+m−1]∼) for some 0 ≤ k < m and
1 ≤ j < m. Hence, in either case we may assume the latter equation holds. By assumption,
g acts on S/∼ as an affine map, i.e., as a map of the form (x0, . . . , xm−1) 7→

∑m−1
i=0 ci · xi,

where c0, . . . , cm−1 are elements of the ring which sum up to 1. We compute (with indices to
be read modulo m)

[a0]∼ = g([ak+j ]∼, . . . , [ak+j+m−1]∼) + (−1) · g([ak]∼, . . . , [ak+m−1]∼)

=
m−1∑
i=0

ci · [ak+j+i]∼ + (−1) ·
m−1∑
i=0

ci · [ak+i]∼

=
m−1∑
i=0

ci · (k + i+ j) · [a1]∼ + (−1) ·
m−1∑
i=0

ci · (k + i) · [a1]∼

=
(

m−1∑
i=0

ci

)
· j · [a1]∼ = j · [a1]∼.

But j · [a1]∼ ̸= [a0]∼ since the order of [a1]∼ equals m > j, a contradiction. ◀

5.2 MMSNP
MMSNP is a fragment of existential second order logic that was discovered by Feder and
Vardi in their seminal paper [33]. We prefer not to define the syntax of MMSNP, and rather
define it using a correspondence between MMSNP sentences and certain coloring problems.
We refer to [15] for a precise definition of all the terms employed here.

Let τ be a relational signature, let σ be a unary signature whose relations are called the
colors, and let F be a finite set of finite connected (τ ∪ σ)-structures whose vertices have
exactly one color. We call F a colored obstruction set in the following. The problem FPP(F)
takes as input a τ -structure G and asks whether there exists a (τ∪σ)-expansion G∗ of G whose
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vertices are all colored with exactly one color and such that for every F ∈ F , there exists no
homomorphism from F to G∗. The connection between MMSNP and FPP is shown in [42,
Corollary 3.7]: every MMSNP sentence Φ is equivalent to a union FPP(F1) ∪ · · · ∪ FPP(Fp),
in the sense that a τ -structure G satisfies Φ iff it is a yes-instance for one of the problems
FPP(Fi). We say Φ is connected if it is equivalent to a single FPP(F).

Every set F as above has a strong normal form G such that FPP(F) = FPP(G). We say
F is precolored if for every symbol M ∈ σ, there is an associated unary symbol PM ∈ τ , and
moreover if F contains for every M ̸= M ′ a 1-element structure whose vertex belongs to PM

and M ′. Every F has a standard precoloration, obtained by enlarging τ with the necessary
symbols and enlarging F with the associated obstructions.

It was shown in [15, Definition 4.3] that for every set F in strong normal form, there exists
an ω-categorical τ -structure AF such that for any finite τ -structure B, B is a yes-instance of
FPP(F) iff there exists an injective homomorphism from B to AF , and such that:

If F is precolored, then the orbits of the elements of AF under Aut(AF ) correspond to
the colors of F and to the corresponding predicates in τ . In particular, the action of
Pol(AF )can

1 on Aut(AF )-orbits of elements is idempotent [15, Proposition 7.1].
Every f ∈ Pol(AF ) locally interpolates an operation g ∈ Pol(AF )can

1 , and there exists a
linear order < on AF such that every f diagonally interpolates an operation f ′ that is
diagonally canonical with respect to Aut(AF , <).

We finally solve the Datalog-rewritability problem for MMSNP and prove that a connected
sentence Φ is equivalent to a Datalog-program iff the action of Pol(AF )can

1 on Aut(AF )-orbits
of elements is not equationally affine, where F is any strong normal form for Φ.

The following proposition is proved in [15] in the case where m = 2. Only small alterations
to the proof are needed to prove the more general version, so we omit it.

▶ Proposition 24. Let F be a precolored obstruction set and in normal form. Let B have
a homomorphism to AF and let m ≥ 1. There exists an embedding e of {1, . . . ,m} ×
B, the disjoint union of m copies of B, into AF such that (e(i1, a1), . . . , e(im, am)) and
(e(j1, b1), . . . , e(jm, bm)) are in the same orbit under Aut(AF , <) provided that:

ak and bk are in the same color for all k ∈ {1, . . . ,m}
ak and aℓ are in distinct colors for all k ̸= ℓ,
{i1, . . . , im} = {j1, . . . , jm} = {1, . . . ,m}.

The following proposition shows that for the question of Datalog-rewritability, one can
reduce to the precolored case without loss of generality. The same proposition was shown
in [15] for the P/NP-complete dichotomy, with P replacing affine clones in the statement.

▶ Proposition 25. Let F be a colored obstruction set in strong normal form and let G be its
standard precoloration. There is a uniformly continuous minion homomorphism from Pol(AG)
to an affine clone if and only if there is a uniformly continuous minion homomorphism from
Pol(AF ) to an affine clone.

Proof. It is shown in [15] that Pol(AG) has a uniformly continuous minion homomorphism to
Pol(AF ) and that Pol(AF , ̸=) has a uniformly continuous minion homomorphism to Pol(AG).
Thus, it suffices to show that if Pol(AF , ≠) has a uniformly continuous minion homomorphism
to an affine clone, then so does Pol(AF ).

Let p ≥ 2 be prime and let R0 and R1 be the relations defined by {(x, y, z) ∈ Zp |
x+ y + z = i mod p} for i ∈ {0, 1}. For an arbitrary ω-categorical structure B, it is known
that the existence of a uniformly continuous minion homomorphism Pol(B) to an affine clone
is equivalent to the existence of a p such that the relational structure (Zp;R0, R1) has a
pp-construction in B.
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Suppose that (Zp;R0, R1) has a pp-construction in (AF , ̸=). Thus, there is n ≥ 1
and pp-formulas ϕ0(x,y, z), ϕ1(x,y, z) defining relations S0, S1 such that (An;S0, S1) and
(Zp;R0, R1) are homomorphically equivalent; we take n to be minimal with the property
that such pp-formulas exist. Since R0 and R1 are totally symmetric relations (i.e., the order
of the entries in a tuple does not affect its membership into any of R0 or R1), we can assume
that S0 and S1 are, too, and that the formulas pp-defining them are syntactically invariant
under permutation of the block of variables x, y, and z.

We first claim that ϕi does not contain any equality atom or any inequality atom xj ̸= yj

for j ∈ {1, . . . , n} (so that by symmetry, also yj ̸= zj and xj ≠ zj do not appear). Let
h : (Zp;R0, R1) → (An;S0, S1) be a homomorphism. Since (0, 0, 0) ∈ R0, we have that
(h(0), h(0), h(0)) satisfies ϕ0, and therefore the listed inequality atoms cannot appear. The
same holds for ϕ1, by considering (h(0), h(0), h(1)) and its permutations.

In order to rule out equalities, we proceed as in [15]. Suppose that ϕ0 contains xi = xj

for i ̸= j. Then the entries i and j of h(q) are equal, for any q ∈ {0, . . . , p − 1}, since
every q belongs to the support of R0. Thus, one can also add xi = xj to ϕ1, since the
structure defined by the modified formula still admits a homomorphism from (Zp;R0, R1).
By existentially quantifying xj , yj , zj in ϕ0 and ϕ1, one obtains a pp-construction of some
(An−1;S′

0, S
′
1) that is still homomorphically equivalent to (Zp;R0, R1), a contradiction to the

minimality of n. If ϕ0 contains xi = yj for j ̸= i, then it also contains yj = zi and zi = xj

since we enforced that ϕ0 is syntactically symmetric. By transitivity, we obtain that xi = xj

is implied by ϕ0 and we are back in the first case. Suppose now that ϕ0 contains xi = yi.
Then the ith entry of h(0) and h(q) are equal, for all q ∈ {0, . . . , p− 1}, since for all q there
exists r such that (0, q, r) ∈ R0. Thus we can again reduce n by fixing the ith coordinate.

Let ψi be the formula obtained from ϕi by removing the possible inequality literals, and let
Ti be defined by ψi in AF . We claim that (An;T0, T1) and (An;S0, S1) are homomorphically
equivalent, which concludes the proof. Since ϕi implies ψi, we have that (An;S0, S1) is
a (non-induced) substructure of (An;T0, T1), and therefore it homomorphically maps to
(An;T0, T1) by the identity map. For the other direction, we prove the result by compactness
and show that every finite substructure B of (An;T0, T1) has a homomorphism to (An;S0, S1).
Let b1, . . . ,bm be the elements of B. Let C be the τ -structure over precisely n ·m elements
{ci

j | i, j} corresponding to the entries of bi
j , whose relations are pulled back from AF under

the map π : ci
j 7→ bi

j . Note that no structure from F has a homomorphism to C (otherwise, we
would obtain a homomorphism to AF by composition with π), and thus C admits an injective
homomorphism g to AF . We claim that if (bi,bj ,bk) ∈ T0 then (g(ci), g(cj), g(ck)) ∈ S0.
Indeed, suppose that (bi,bj ,bk) satisfies ψ0. Then by construction (g(ci), g(cj), g(ck))
satisfies ψ0. Moreover, by injectivity of g, we have g(ci

r) ̸= g(cj
s) as long as i ≠ j or r ̸= s.

Consider any inequality atom in ϕ0. By our first claim, it is not of the form xr ̸= yr, and
therefore it is satisfied by (g(ci), g(cj), g(ck)). Thus, (g(ci), g(cj), g(ck)) satisfies ϕ0. The
same reasoning for ϕ1 shows that g induces a homomorphism B → (An;S0, S1) by mapping
bi to g(ci). ◀

▶ Lemma 26. Let (S,∼) be a subfactor of Pol(AF )can
1 with Aut(AF )-invariant ∼-classes.

Let m ≥ 2, and let f ∈ Pol(AF ) be as in Lemma 19: for all a1, . . . , am ∈ AF we have that if
the entries of the tuple (f(a1, . . . , am), f(a2, . . . , am, a1), . . . , f(am, a1, . . . , am−1)) all belong
to different colors, then it intersects at most one ∼-class. Let O0, . . . , Om−1 ∈ S be pairwise
distinct orbits under Aut(AF ). There exists g ∈ Pol(AF )can

1 that is locally interpolated by f
and that satisfies

g(Ok, . . . , Ok+m−1) ∼ g(Oj+k, . . . , Oj+k+m−1) (⋆)

for some 0 ≤ k < m and 1 ≤ j < m.
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Proof. Recall that the expansion of AF by a generic linear order is a Ramsey structure [15].
Thus, f diagonally interpolates a function g ∈ Pol(AF ) with the same properties and which
is diagonally canonical with respect to Aut(AF , <), and without loss of generality we can
therefore assume that f is itself diagonally canonical.

Let B := {0, . . . ,m − 1} × AF be the disjoint union of m copies of AF and let e

be an embedding of {0, . . . ,m − 1} × B into AΦ with the properties stated in Proposi-
tion 24. Let ei(x) := e(i, x), which is a self-embedding of AF . Consider f ′(x0, . . . , xm−1) :=
f(e0x0, . . . , em−1xm−1), and note that f ′ is 1-canonical when restricted to m-tuples where
all entries are in pairwise distinct orbits. Let g be obtained by canonising f ′ with respect to
Aut(AF , <). In particular g ∈ Pol(AF )can

1 and g(Ok, . . . , Ok+m−1) and f ′(Ok, . . . , Ok+m−1)
are in S and ∼-equivalent for all k.

As in the proof of Theorem 23, there are suitable 0 ≤ k < m and 1 ≤ j < m such that

f(ekOk, . . . , ek+m−1Ok+m−1) ∼ f(ek+jOk+j , . . . , ek+j+m−1Oj+k+m−1)

holds, where indices are computed modulo m. Then

g(Ok, . . . , Ok+m−1) ∼ f(e0Ok, . . . , em−1Ok+m−1)
∼ f(ekOk, . . . , ek+m−1Ok+m−1) (⋆)
∼ f(ek+jOk+j , . . . , ek+j+m−1Ok+j+m−1)
∼ f(e0Ok+j , . . . , em−1Ok+j+m−1) (⋆)
∼ g(Ok+j , . . . , Ok+j+m−1),

where the equivalences marked (⋆) hold by the fact that f is diagonally canonical with respect
to Aut(AF , <) and by Proposition 24. ◀

The following theorem gives a characterization of Datalog-rewritability in terms of
precolored normal forms. The proof is similar to that of Theorem 23.

▶ Theorem 27. Let Φ be a connected MMSNP τ -sentence, let F be an equivalent colored
obstruction set and suppose that F is precolored and in strong normal form. The following
are equivalent:
1. ¬Φ is equivalent to a Datalog program;
2. Pol(AF ) does not have a uniformly continuous minion homomorphism to an affine clone;
3. The action of Pol(AF )can

1 on Aut(AF )-orbits of elements is not equationally affine;
4. AF has relational width (k,max(k + 1, ℓ)), where k and ℓ are such that AF is k-

homogeneous ℓ-bounded.

Proof. (1) implies (2) by general principles [41, 8].
(2) implies (3). We do the proof by contraposition. The proof is essentially the same

as in the case of reducts of unary structures (Theorem 23). Suppose that Pol(AF )can
1 ↷

AF/Aut(AF ) is equationally affine and let (S,∼) be a minimal module for this action.
Let m ≥ 2 and let R be an m-ary cyclic relation invariant under Pol(AF ) and containing

a tuple (a1, . . . , am) whose entries are pairwise distinct. By Proposition 18, either the
linkedness congruence of R defines an approximation of ∼, or R contains a pseudoloop
modulo Aut(AF ). In the first case, the approximation is smooth and we obtain a uniformly
continuous minion homomorphism from Pol(AF ) to a clone of affine maps. Any such clone
admits a uniformly continuous minion homomorphism to Zp for some p, and by composition
this gives us a uniformly continuous minion homomorphism Pol(AF ) → Zp.
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So let us assume that for all m ≥ 2, every such relation R contains a pseudoloop.
By applying Lemma 19, we obtain a polymorphism f such that for all a1, . . . , am, if
f(a1, . . . , am), . . . , f(am, a0, . . . , am−1) are pairwise distinct, then they intersect at most
one ∼-class. As in the proof of Theorem 23, pick an arbitrary a1 ∈ S such that [a1]∼ is not
the zero element of the module S/∼. Let m ≥ 2 be its order, and let Oi be the orbit of
i · [a1]∼, for i ∈ {0, 1, . . . ,m− 1}. By Lemma 26, we obtain g ∈ Pol(AF )can

1 such that

g(Ok, . . . , Ok+m−1) ∼ g(Oj+k, . . . , Oj+k+m−1)

for some k ∈ {0, . . . ,m−1} and j ∈ {1, . . . ,m−1}. The same computation as in Theorem 23
then gives a contradiction and concludes the proof.

(3) implies (4). First, note that AF is infinite, and therefore k ≥ 2. Let I be a non-trivial
(k,max(k + 1, ℓ))-minimal instance of AF . Let G be Aut(AF ). Consider the instance IG,1 as
in Definition 11. Thus, the variables of IG,1 are the same as the variables of I (up to the
natural bijection between V and

(V
1
)
) and the values for the variables are taken from the set

of colors of F . By Lemma 12, IG,1 is (2, 3)-minimal, and from (3) and Lemma 14 we obtain
that it has a solution h. Note that we cannot use Lemma 13 to obtain a solution to I, since
we only considered IG,1. Let B be the τ -structure described by I (i.e., B is the canonical
database of I). Let B∗ be the (τ ∪ σ)-expansion of B obtained by coloring the vertices of
B according to h. Since I is (k, ℓ)-minimal, it can be seen that B∗ does not contain any
homomorphic copy of F ∈ F , so that B admits a homomorphism to AF , i.e., I has a solution
in AF .

(4) implies (1). Trivial. ◀

Combining Proposition 25, Theorem 27, and known facts about MMSNP and normal
forms [15], this allows us to obtain Theorem 1 from the introduction.

▶ Theorem 1. The Datalog-rewritability problem for MMSNP is decidable, and is 2NExpTime-
complete.

Proof. Let Φ be an MMSNP sentence, which is equivalent to a disjunction Φ1 ∨ · · · ∨ Φp

of connected MMSNP sentences [15, Proposition 3.2]. Moreover, if p is minimal then ¬Φ is
equivalent to a Datalog program iff every ¬Φi is equivalent to a Datalog program (see, e.g.,
Proposition 3.3 in [15], for a proof of a similar fact).

By Theorem 4.3 in [15], one can compute for every Φi a coloured obstruction set Fi

that is in strong normal form. Let Gi be the standard precoloration of Fi. By Proposi-
tion 25, one has a uniformly continuous minion homomorphism from Pol(AGi

) to an affine
clone iff one has one from Pol(AFi) to an affine clone. Then, by Theorem 27, we get
that deciding Datalog-rewritability for Gi is equivalent to deciding whether Pol(AGi

)can
1 ↷

AGi/Aut(AGi) is equationally non-affine, which is known to be decidable in polynomial time
since Pol(AGi

)can
1 ↷ AGi

/Aut(AGi
) is idempotent.

The computation of a strong normal form is costly and can be performed in 2-ExpSpace.
In order to obtain a 2NExpTime-algorithm, we rather compute a normal form Fi for Φi

(by Lemma 3.1 in [15]), which can be done in doubly exponential-time. The consequence
of not working with a strong normal form is that the clone Pol(AFi

)can
1 ↷ AFi

/Aut(AFi
) is

not a core; its core is the action considered for the strong normal form. Deciding whether
such a clone admits a minion homomorphism to an affine clone is in NP [31, Corollary 6.8].
We obtain overall a 2NExpTime algorithm. The complexity lower bound is Theorem 18
in [27]. ◀
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Abstract
This paper introduces a new automata-theoretic class of string-to-string functions with polynomial
growth. Several equivalent definitions are provided: a machine model which is a restricted variant of
pebble transducers, and a few inductive definitions that close the class of regular functions under
certain operations. Our motivation for studying this class comes from another characterization,
which we merely mention here but prove elsewhere, based on a λ-calculus with a linear type system.

As their name suggests, these comparison-free polyregular functions form a subclass of polyregular
functions; we prove that the inclusion is strict. We also show that they are incomparable with
HDT0L transductions, closed under usual function composition – but not under a certain “map”
combinator – and satisfy a comparison-free version of the pebble minimization theorem.

On the broader topic of polynomial growth transductions, we also consider the recently introduced
layered streaming string transducers (SSTs), or equivalently k-marble transducers. We prove that a
function can be obtained by composing such transducers together if and only if it is polyregular,
and that k-layered SSTs (or k-marble transducers) are closed under “map” and equivalent to a
corresponding notion of (k + 1)-layered HDT0L systems.
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1 Introduction

The theory of transducers (as described in the surveys [21, 29]) has traditionally dealt with
devices that take as input strings of length n and output strings of length O(n). However,
several recent works have investigated function classes going beyond linear growth. We
review three classes in this landscape below.

Polyregular functions (§2.3) are thus named because they have (at most) polynomial
growth and include regular functions (§2.2) (the most expressive of the traditional
string-to-string transduction classes). They were defined in 2018 [4] by four equivalent
computational models, one of which – the pebble transducers – is the specialization to
strings of a tree transducer model that existed previously in the literature [28] (this
specialization had been investigated earlier in [17, 14]). A subsequent work [8] gave a
logical characterization based on Monadic Second-Order logic (MSO). They enjoy two
nice properties:
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preservation of regular languages (by preimage): if f : Γ∗ → Σ∗ is polyregular and
L ⊆ Σ∗ is regular, then f−1(L) ⊆ Γ∗ is regular;
closure under function composition: if f : Γ∗ → ∆∗ and g : ∆∗ → Σ∗ are both
polyregular, then so is g ◦ f : Γ∗ → Σ∗.

HDT0L transductions (§2.1) form another superclass of regular functions, whose output
size may be at most exponential in the input size. They are older than polyregular
functions, and we shall discuss their history in Section 2.1; suffice to say for now, they also
admit various equivalent characterizations scattered in several papers [20, 22, 13]. These
functions preserve regular languages by preimage, but are not closed under composition
(the growth rate of a composition of HDT0L transductions may be a tower of exponentials).
Very recently, the polynomially bounded HDT0L transductions (§2.3) have been charac-
terized using two transducer models [13]. One of them, the k-marble transducers (where
k ∈ N depends on the function to be computed), is obtained by putting a syntactic
constraint on the model of (unbounded) marble transducers [13] which computes HDT0L
transductions. But it can also be seen as a restricted variant of pebble transducers; it
follows (although this is not explicitly stated in [13]) that a HDT0L transduction has
polynomial growth if and only if it is polyregular. Moreover, as claimed in [13, Section 6],
the functions computed by k-marble transducers are not closed under composition either,
and thus form a strict subclass of polyregular functions.

A new subclass of polyregular functions. In this paper, we start by proving a few results
on the above classes (Section 3). For instance, we supply a proof for the aforementioned claim
of [13, Section 6], and show that the polyregular functions are exactly those computable by
compositions of k-marble transducers. Those complements are not particularly difficult nor
surprising and are included mostly for the sake of giving a complete picture.

But our main contribution is the introduction of a new class, giving its title to the paper;
as we show, it admits three equivalent definitions:

two ways to inductively generate the class (Sections 4 and 6 respectively):
by closing regular functions under a certain “composition by substitution” operation;
by combining regular functions and a certain kind of squaring functions (less powerful
than the squaring plus underlining functions used to characterize general poyregular
functions) with usual function composition;

a restriction on pebble transducers (Section 5) – we disallow comparing the positions
of a transducer’s multiple reading heads, hence the name comparison-free polyregular
functions (henceforth abbreviated as cfp).

Properties. By the third definition above, comparison-free polyregular functions are indeed
polyregular, while the second one implies that our new class contains the regular functions
and is closed under composition. (In fact, in the proof that our first definition is equivalent
to the second one, most of the work goes into showing that the former enjoys closure under
composition.) We rule out inclusions involving the other classes that we mentioned by proving
some separation results (Section 8): there exist

comparison-free polyregular functions that are not HDT0L (we take one example from [13]),
and polynomially bounded HDT0L transductions which are not comparison-free:

one of our examples follows from a precise characterization of cfp functions over unary
input alphabets (extending a known result for regular functions with unary inputs [10]),
which we give in Section 9;
another example shows that unlike (poly)regular functions, cfp functions are not closed
under a certain counterpart of the “map” operation in functional programming.

We summarize the inclusions and separations between classes that we get in Figure 1.
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comparison-free

polyregular

polyregular

⊂layered HDT0L

(layered HDT0L)*

HDT0L

=

⊂

⊂

⊃⊂
=

comparison-free

pebble

= (regular + sq)*

Figure 1 Summary of the known relationships between superlinear transduction classes, taking
our results into account. Inclusions ⊂ are strict, and ⊃⊂ means that there is no inclusion either way.
Finally C∗ denotes the composition closure of the class C.

Finally, we show in Section 7 that the number of pebbles required to compute a function
using a comparison-free transducer is related to its growth rate. The analogous result for
pebble transducers was proved recently, with a whole paper dedicated to it [25]; we adapt
its arguments to our setting, resulting in our longest and most technical proof. There is a
similar property for k-marble transducers [13], but it is proved using very different tools.

Motivations. Although this is the first proper paper to introduce comparison-free pebble
transducers, we were told that they had already been considered by several colleagues (Mikołaj
Bojańczyk, personal communication). But in fact, the starting point in our investigation
was a characterization of regular functions using a linear λ-calculus (in the sense of linear
logic) that we had previously obtained [30]; this was part of a research programme relating
automata and functional programming that we initiated in [31]. As we reported in a previous
version of the present paper (version 1 of the full paper archived on HAL), by tweaking a
parameter in this characterization, one gets the cfp functions instead; we initially defined the
latter using composition by substitution, and only later realized the connection with pebble
transducers. One interesting feature of the λ-calculus characterization is that it is trivially
closed under composition, and this led us to take inspiration from the category-theoretic
machinery that we used in [30] for our standalone composition proof in this paper.

2 Preliminaries

Notations. The set of natural numbers is N = {0, 1, . . . }. We write |w| for the length of a
string w ∈ Σ∗; for Π ⊆ Σ, we write |s|Π for the number of occurrences of letters from Π in w;
and for c ∈ Σ, we abbreviate |w|{c} as |w|c. The i-th letter of w ∈ Σ∗ is denoted by either
wi or w[i] (for i ∈ {1, . . . , |w|}). Given monoids M and N , Hom(M, N) is the set of monoid
morphisms. We write ε for the empty word and Σ = {a | a ∈ Σ} for a disjoint copy of the
alphabet Σ made of “underlined” letters.

2.1 HDT0L transductions and streaming string transducers

L-systems were originally introduced by Lindenmayer [26] in the 1960s as a way to generate
formal languages, with motivations from biology. While this language-centric view is still
predominant, the idea of considering variants of L-systems as specifications for string-to-string
functions – whose range are the corresponding languages – seems to be old. For instance, in a
paper from 1980 [18], one can find (multi-valued) string functions defined by ET0L systems.
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More recently, Ferté, Marin and Sénizergues [20] provided alternative characterizations1

(by catenative recurrent equations and higher-order pushdown transducers of level 2) of
the string-to-string functions that HDT0L systems can express – what we call here HDT0L
transductions. Later work by Filiot and Reynier [22] and then by Douéneau-Tabot, Filiot
and Gastin [13] – that does not build on [36, 20] – proved the equivalence with, respectively,
copyful SSTs (Definition 2.3) and unbounded marble transducers (not presented here).

▶ Definition 2.1 (following [22]). A HDT0L system consists of:
an input alphabet Γ, an output alphabet Σ, and a working alphabet ∆ (all finite);
an initial word d ∈ ∆∗;
for each c ∈ Γ, a monoid morphism hc ∈ Hom(∆∗, ∆∗);
a final morphism h′ ∈ Hom(∆∗, Σ∗).

It defines the transduction taking w = w1 . . . wn ∈ Γ∗ to h′ ◦ hw1 ◦ . . . ◦ hwn
(d) ∈ Σ∗.

(The definition of HDT0L systems given in [36, 20] makes slightly different choices of
presentation2.) To define the equivalent model of copyful streaming string transducers, we
must first introduce the notion of register assignment.

▶ Definition 2.2. Fix a finite alphabet Σ. Let R and S be two finite sets disjoint from Σ; we
shall consider their elements to be “register variables”.

For any word ω ∈ (Σ ∪ R)∗, we write ω† : (Σ∗)R → Σ∗ for the map that sends (ur)r∈R

to ω in which every occurrence of a register variable r ∈ R is replaced by ur – formally, we
apply to ω the morphism (Σ ∪ R)∗ → Σ∗ that maps c ∈ Σ to itself and r ∈ R to ur.

A register assignment3 α from R to S (over Σ) is a map α : S → (Σ ∪ R)∗. It induces
the action α† : u⃗ ∈ (Σ∗)R 7→ (α(s)†(u⃗))s∈S ∈ (Σ∗)S (which indeed goes “from R to S”).

▶ Definition 2.3 ([22]). A (deterministic copyful) streaming string transducer (SST) with
input alphabet Γ and output alphabet Σ is a tuple T = (Q, q0, R, δ, u⃗I , F ) where

Q is a finite set of states and q0 ∈ Q is the initial state;
R is a finite set of register variables, that we require to be disjoint from Σ;
δ : Q × Γ → Q × (R → (Σ ∪ R)∗) is the transition function – we abbreviate δst = π1 ◦ δ

and δreg = π2 ◦ δ, where πi is the projection from X1 × X2 to its i-th component Xi;
u⃗I ∈ (Σ∗)R describes the initial register values;
F : Q → (Σ ∪ R)∗ describes how to recombine the final values of the registers, depending
on the final state, to produce the output.

The function Γ∗ → Σ∗ computed by T is

w1 . . . wn 7→ F (qn)† ◦ δreg(qn−1, wn)† ◦ . . . ◦ δreg(q0, w1)†(u⃗I)

where the sequence of states (qi)0≤i≤n (sometimes called the run of the transducer over the
input word) is inductively defined, starting from the fixed initial state q0, by qi = δst(qi−1, wi).

1 Those characterizations had previously been announced in an invited paper by Sénizergues [36]. Some
other results announced in [36] are proved in [9].

2 The family (hc)c∈Γ is presented as a morphism H : Γ∗ → Hom(∆∗, ∆∗) (whose codomain is indeed a
monoid for function composition). And an initial letter is used instead of an initial word; this is of no
consequence regarding the functions that can be expressed (proof sketch: consider ∆′ = ∆ ∪ {x} with a
new letter x /∈ ∆, take x as the initial letter and let hc(x) = hc(w), h′(x) = h′(w)).

3 Some papers e.g. [11, 13] call register assignments substitutions. We avoid this name since it differs from
its meaning in the context of our “composition by substitution” operation.
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▶ Example 2.4. Let Σ = Γ ∪ Γ. We consider a SST T with Q = {q}, R = {X, Y } and

u⃗I = (ε)r∈R F (q) = Y ∀c ∈ Γ, δ(q, c) = (q, (X 7→ cX, Y 7→ cXY ))

If we write (v, w) for the family (ur)r∈R with uX = v and uY = w, then the action of the
register assignments may be described as (X 7→ cX, Y 7→ cXY )†(v, w) = (c · v, c · v · w).

Let 1, 2, 3, 4 ∈ Γ. After reading 1234 ∈ Γ∗, the values stored in the registers of T are

(X 7→ 4X, Y 7→ 4XY )† ◦ . . . ◦ (X 7→ 1X, Y 7→ 1XY )†(ε, ε) = (4321, 4321321211)

Since F (q) = Y , the function defined by T maps 1234 to 4321321211 ∈ (Γ ∪ Γ)∗ = Σ∗.

This gives us an example of HDT0L transduction Γ∗ → (Γ ∪ Γ)∗, since:

▶ Theorem 2.5 ([22]). A function Γ∗ → Σ∗ can be computed by a copyful SST if and only if
it can be specified by a HDT0L system.

▶ Remark 2.6. As observed in [22, Lemma 3.3], there is a natural translation from HDT0L
systems to SSTs whose range is composed precisely of the single-state SSTs whose transitions
and final output function do not access the letters of their output alphabet – those are
called simple SSTs in [13, §5.1]. This involves a kind of reversal: the initial register values
correspond to the final morphisms, while the final output function corresponds to the initial
word. Thus, Theorem 2.5 is essentially a state elimination result; a direct translation from
SSTs to single-state SSTs has also been given by Benedikt et al. [2, Proposition 8]. However,
it does not preserve the subclass of copyless SSTs (this would contradict Proposition 3.7).

The lookahead elimination theorem for macro tree transducers [19, Theorem 4.21] arguably
generalizes this to trees. Indeed, while those transducers are generally presented as a top-
down model, their formal definition can also be read as bottom-up register tree transducers
in the style of [7, §4], and top-down lookahead corresponds to bottom-up states.

2.2 Regular functions
▶ Definition 2.7 (Alur and Černý [1]). A register assignment α : S → (Σ ∪ R)∗ from R to S

is said to be copyless when each r ∈ R occurs at most once among all the strings α(s) for
s ∈ S, i.e. it does not occur at least twice in some α(s), nor at least once in α(s) and at least
once in α(s′) for some s ̸= s′. (This restriction does not apply to the letters in Σ.)

A streaming string transducer is copyless if all the assignments in the image of its
transition function are copyless. In this paper, we take computability by copyless SSTs as the
definition of regular functions (but see Theorem 5.3 for another standard definition).

▶ Remark 2.8. Thanks to Theorem 2.5, every regular function is a HDT0L transduction.
▶ Remark 2.9. The SST of Example 2.4 is not copyless: in a transition α = δreg(q, c), the
register X appears twice, once in α(X) = cX and once in α(Y ) = cXY ; in other words, its
value is duplicated by the action α†. In fact, it computes a function whose output size is
quadratic in the input size, while regular functions have linearly bounded output.

▶ Example 2.10 (Iterated reverse [4, p. 1]). The following single-state SST is copyless:

Γ = Σ with # ∈ Σ Q = {q} R = {X, Y } u⃗I = (ε)r∈R F (q) = XY

δ(q, #) = (q, (X 7→ XY #, Y 7→ ε)) ∀c ∈ Σ \ {#}, δ(q, c) = (q, (X 7→ X, Y 7→ cY ))

For u1, . . . , un ∈ (Σ \ {#})∗, it maps u1# . . . #un to reverse(u1)# . . . #reverse(un).
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1 2

a|a, c|a b|a b|b, c|b

a|b

Figure 2 An example of sequential transducer.

The concrete SSTs (copyless or not) that we have seen for now are all single-state. As a
source of stateful copyless SSTs, one can consider the translations of sequential transducers.
These are usual finite automata, whose transitions additionally produce a word catenated to
the end of the would-be output function. For instance, the one in Figure 2 computes the
function {a, b, c}∗ → {a, b}∗ that replaces each c in its input by the closest non-c letter on
its left (or a if no such letter exists). We do not give a detailed definition (which can be
found e.g. in [33, Chapter V]) here, but for our purpose, it suffices to observe any sequential
transducer can be translated into a copyless SST with the same set of states and a single
register.

2.3 Polynomial growth transductions
Next, we recall one way to define Bojańczyk’s polyregular functions [4].

▶ Definition 2.11 ([4]). The class of polyregular functions is the smallest class of string-to-
string functions closed under composition containing:

the functions computed by sequential transducers (for instance, the one of Figure 2);
the iterated reverse function of Example 2.10, over any finite alphabet containing #;
the squaring with underlining functions squaringΓ : Γ∗ → (Γ ∪ Γ)∗, for any finite Γ,
illustrated by squaringΓ(1234) = 1234123412341234.

As mentioned in the introduction, the intersection between the above class and HDT0L
transductions has been recently characterized by Douéneau-Tabot et al. [13].

▶ Theorem 2.12 ([13]). Let f : Γ∗ → Σ∗. The following conditions are equivalent:
f is both a polyregular function and a HDT0L transduction;
f is a HDT0L transduction and has at most polynomial growth: f(|w|) = |w|O(1);
there exists k ∈ N such that f is computed by some k-layered SST, defined below.

(Another equivalent model, the k-marble transducers, was mentioned in the introduction,
but we will not use it in the rest of the paper.) Those k-layered SST propose a compromise
between copyful and copyless SSTs: duplication is controlled, but not outright forbidden.

▶ Definition 2.13 ([13]). A register assignment α : R → (Σ ∪ R)∗ is k-layered (for k ∈ N)
with respect to a partition R = R0 ⊔ . . . ⊔ Rk when for 0 ≤ i ≤ k,

for r ∈ Ri, we have α(r) ∈ (Σ ∪ R0 ∪ . . . ∪ Ri)∗;
each register variable in Ri appears at most once among all the α(r) for r ∈ Ri (however,
those from R0 ⊔ . . . ⊔ Ri−1 may appear an arbitrary number of times).

A SST is k-layered if its registers can be partitioned in such a way that all assignments in
the transitions of the SST are k-layered.

Beware: with this definition, the registers of a k-layered SST are actually divided into k + 1
layers, not k. In particular, a SST is copyless if and only if it is 0-layered. (We chose this
convention for backwards compatibility with [13]; see also Remark 5.4.)
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For instance, the transducer of Example 2.4 is 1-layered with R0 = {X} and R1 = {Y }.
There also exist register assignments that cannot be made k-layered no matter the choice
of partition, such as X 7→ XX. Using such assignments, one can indeed build SSTs that
compute functions f such that e.g. |f(w)| = 2|w|.
▶ Remark 2.14. There is arguably an old precursor to this recent characterization of HDT0L
transductions with polynomial growth by a syntactic “layering” condition: Schützenberger’s
theorem on polynomially bounded Z-rational series, which dates back to the 1960s (see for
instance [3, Chapter 9, Section 2] – the preface of the same book describes this theorem as
“one of the most difficult results in the area”). Let us give a brief exposition.

A Z-rational series f : Σ∗ → Z is a function of the form f : w ∈ Σ∗ 7→ XT ·Φ(w) ·Y where
X, Y ∈ ZR and Φ is a morphism from Σ∗ to the multiplicative monoid of R-indexed square
matrices over Z, where R is a finite set. This data (X, Φ, Y ) has a clear interpretation as a
“simple SST” (cf. Remark 2.6) with register set R, whose register values are integers rather
than strings. Schützenberger’s theorem says that any Z-rational series f with polynomial
growth (i.e. |f(w)| = |w|O(1) where | · | on the left is the absolute value) can be written as
f : w 7→ XT · Φ(w) · Y where

(i) the image of Φ has a block triangular structure;
(ii) the projection of this image on each diagonal block is a finite monoid.

The first item gives us a partition of the register into layers where each layer “depends”
only on the ones below them. The finiteness condition in the second item is equivalent to
having bounded coefficients, which means that the register assignments within each layer are
bounded-copy, while in a layered SST, they would be copyless instead – but bounded-copy
SSTs are known to be equivalent to copyless SSTs (see e.g. [11]). The theorem also states a
relationship between the number of blocks and the growth rate; compare this to Remark 7.2.

Via the canonical isomorphism {a}∗ ∼= N, HDT0L transductions with unary output
alphabet are the same thing as N-rational series. The counterpart of Schützenberger’s
theorem over N is thus a corollary of the results of [13] on layered SSTs.

2.4 Transition monoids for streaming string transducers
To wrap up the preliminaries, let us recall some algebraic tools for working with SSTs (this
technical section can be safely skipped on a first reading). Let us start by putting a monoid
structure on register assignments (Definition 2.2).

▶ Definition 2.15. Let MR,Σ = R → (Σ ∪ R)∗ for R ∩ Σ = ∅. We endow it with the
following composition operation, that makes it into a monoid:

α • β = α⊙ ◦ β where α⊙ ∈ Hom((Σ ∪ R)∗, (Σ ∪ R)∗), α⊙(x) =
{

α(x) for x ∈ R

x for x ∈ Σ

The monoid MR,Σ thus defined is isomorphic to a submonoid of Hom((Σ ∪ R)∗, (Σ ∪ R)∗)
with function composition. It admits a submonoid of copyless assignments.

▶ Definition 2.16. We write Mcl
R,Σ for the set of all α ∈ MR,Σ such that each letter r ∈ R

occurs at most once among all the α(r′) for r′ ∈ R.

▶ Proposition 2.17. Mcl
R,Σ is a submonoid of MR,Σ. In other words, copylessness is

preserved by composition (and the identity assignment is copyless).

The following proposition ensures that this composition does what we expect. Recall from
Definition 2.2 that (−)† sends MR,Σ to (Σ∗)R → (Σ∗)R.
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▶ Proposition 2.18. For all α, β ∈ MR,Σ, we have (α • β)† = β† ◦ α†.

To incorporate information concerning the states of an SST, we define below a special
case of the wreath product of transformation monoids.

▶ Definition 2.19. Let M be a monoid whose multiplication is denoted by m, m′ 7→ m · m′.
We define M ≀ Q as the monoid whose set of elements is Q → Q × M and whose monoid
multiplication is, for µ, µ′ : Q → Q × M ,

(µ • µ′) : q 7→ (π1 ◦ µ′ ◦ π1 ◦ µ(q), (π2 ◦ µ(q)) · (π2 ◦ µ′ ◦ π1 ◦ µ(q)))

where π1 : Q × M → Q and π2 : Q × M → M are the projections.

For instance, if M is the trivial monoid with one element, Q ≀ M is isomorphic to Q → Q

with reverse composition as the monoid multiplication: f • g = g ◦ f .

▶ Proposition 2.20. Let (Q, q0, R, δ, u⃗I , F ) be an SST that computes f : Γ∗ → Σ∗ (using
the notations of Definition 2.3). For all c ∈ Γ, we have δ(−, c) ∈ MR,Σ ≀ Q, and the SST is
copyless if and only if {δ(−, c) | c ∈ Γ} ⊆ Mcl

R,Σ ≀ Q. Furthermore, for all w1 . . . wn ∈ Γ∗,

f(w1 . . . wn) = F (g(q0))†(α†(v⃗)) where (g, α) = δ(−, w1) • · · · • δ(−, wn)

Finally, it will sometimes be useful to consider monoids of assignments over an empty output
alphabet. This allows us to keep track of how the registers are shuffled around by transitions.

▶ Proposition 2.21. Let R and Σ be disjoint finite sets. There is a monoid morphism
MR,Σ → MR,∅, that sends the submonoid Mcl

R,Σ to Mcl
R,∅. For any Q, this extends to a

morphism MR,Σ ≀ Q → MR,∅ ≀ Q that sends Mcl
R,Σ ≀ Q to Mcl

R,∅ ≀ Q. We shall use the name
eraseΣ for both morphisms (R and Q being inferred from the context).

▶ Remark 2.22. Consider an SST with a transition function δ. Let φδ ∈ Hom(Γ∗, Mcl
R,∅≀Q) be

defined by φδ(c) = eraseΣ(δ(−, c)) for c ∈ Γ. The range φδ(Γ∗) is precisely the substitution
transition monoid (STM) defined in [11, Section 3].

▶ Proposition 2.23. For any finite R, the monoid Mcl
R,∅ is finite. As a consequence, the

substitution transition monoid of any copyless SST is finite.

Proof idea. For all α ∈ Mcl
R,∅ and r ∈ R, observe that |α(r)| ≤ |R|. ◀

3 Complements on HDT0L systems, SSTs and polyregular functions

Before embarking on the study of our new comparison-free polyregular functions, we state
some minor results that consolidate our understanding of pre-existing classes.

Layered HDT0L systems. Let us transpose the layering condition from SSTs to HDT0L
systems. The hierarchy of models that we get corresponds with an offset to layered SSTs.

▶ Definition 3.1. A HDT0L system (Γ, Σ, ∆, d, (hc)c∈Γ, h′) is k-layered if its working alphabet
can be partitioned as ∆ = ∆0 ⊔ · · · ⊔ ∆k such that, for all c ∈ Γ and i ∈ {0, . . . , k}:

for r ∈ ∆i, we have hc(r) ∈ (∆0 ⊔ · · · ⊔ ∆i)∗;
each letter in ∆i appears at most once among all the α(r) for r ∈ ∆i (but those in
∆0 ⊔ · · · ⊔ ∆i−1 may appear an arbitrary number of times).
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▶ Theorem 3.2. For k ∈ N, a function can be computed by a k-layered SST if and only if it
can be specified by a (k + 1)-layered HDT0L system.

In particular, regular functions correspond to 1-layered HDT0L systems.

The obvious translation from HDT0L systems to SSTs preserves 1-layeredness and produces
a single-state machine, so one may sacrifice copylessness to eliminate states for SSTs.

▶ Corollary 3.3. Every regular function can be computed by a single-state 1-layered SST.

The converse to this corollary does not hold: the single-state 1-layered SST of Example 2.4
computes a function which is not regular (cf. Remark 2.9).

Polyregular functions vs layered SSTs. By applying some results from [4], we can state a
variant of Definition 2.11 which is a bit more convenient for us.

▶ Proposition 3.4. Polyregular functions are the smallest class closed under composition
that contains the regular functions and the squaring with underlining functions squaringΓ.

This allows us to show that composing HDT0L transductions with at most polynomial growth
yields the polyregular functions. One direction of this equivalence is proved by encoding
squaringΓ as a composition of two SSTs, one of which is Example 2.4. More precisely:

▶ Theorem 3.5. Let f : Γ∗ → Σ∗. The following are equivalent:
(i) f is polyregular;
(ii) f can be obtained as a composition of layered SSTs;
(iii) f can be obtained as a composition of single-state 1-layered SSTs.

But layered SSTs by themselves are strictly less expressive than polyregular functions, as
we shall see later in Theorem 8.1. Therefore, as promised in the introduction:

▶ Corollary 3.6 (claimed in [13, Section 6]). Layered SSTs are not closed under composition.

The importance of being stateful. One interesting aspect of Theorem 3.2 is that 1-layered
HDT0L systems can be seen, through Remark 2.6, as a kind of one-way transducer model
for regular functions that does not use an explicit control state. This is in contrast with
copyless SSTs, whose expressivity critically depends on the states (unlike copyful SSTs).

▶ Proposition 3.7. The sequential (and therefore regular) function defined by the transducer
of Figure 2 (Section 2.2) cannot be computed by a single-state copyless SST.

In fact, the knowledgeable reader can verify that this counterexample belongs to the first-order
letter-to-letter sequential functions, one of the weakest classical transduction classes.

Closure under map. The pattern of Example 2.10 (iterated reverse) can be generalized:

▶ Definition 3.8. Let f : Γ∗ → Σ∗ and suppose that # /∈ Γ ∪ Σ. We define the function
map(f) : w1# . . . #wn ∈ (Γ ∪ {#})∗ 7→ f(w1)# . . . #f(wn) ∈ (Σ ∪ {#})∗.

▶ Proposition 3.9. If f is an HDT0L transduction, then so is map(f). For each k ≥ 1, the
functions that can be computed by k-layered HDT0L systems are also closed under map.

As an immediate corollary, closure under map holds for both regular and polyregular
functions, but this was already known. In fact, map(f, [x1, . . . , xn]) = [f(x1), . . . , f(xn)] is an
essential primitive in the regular list functions [6] and polynomial list functions [4, §4], two
list-processing programming languages that characterize regular and polyregular functions
respectively. We will come back to this point in Corollary 8.5 and the subsequent remark.
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4 Composition by substitution

At last, we now introduce the class of comparison-free polyregular functions. The simplest
way to define them is to start from the regular functions.

▶ Definition 4.1. Let f : Γ∗ → I∗, and for each i ∈ I, let gi : Γ∗ → Σ∗. The composition by
substitution of f with the family (gi)i∈I is the function

CbS(f, (gi)i∈I) : w 7→ gi1(w) . . . gik
(w) where i1 . . . ik = f(w)

That is, we first apply f to the input, then every letter i in the result of f is substituted by
the image of the original input by gi. Thus, CbS(f, (gi)i∈I) is a function Γ∗ → Σ∗.

▶ Definition 4.2. The smallest class of string-to-string functions closed under CbS and
containing all regular functions is called the class of comparison-free polyregular functions.

▶ Example 4.3. The following variant of “squaring with underlining” (cf. Definition 2.11) is
comparison-free polyregular: cfsquaringΓ : 123 ∈ Γ∗ 7→ 112321233123 ∈ (Γ ∪ Γ)∗.

Indeed, it can be expressed as cfsquaringΓ = CbS(f, (gi)i∈I) where I = Γ ∪ {#}, the
function f : w1 . . . wn 7→ w1# . . . wn# is regular (more than that, a morphism between free
monoids) and g# = id, gc : w 7→ c for c ∈ Γ are also regular. Its growth rate is quadratic,
while regular functions have at most linear growth. Other examples that also require a single
composition by substitution are given in Theorem 8.1.

We can already justify the latter half of the name of our new class. Using the “polynomial
list functions” mentioned at the end of the previous section, we prove:

▶ Theorem 4.4. Polyregular functions are closed under composition by substitution.

▶ Corollary 4.5. Every comparison-free polyregular function is, indeed, polyregular.

Fundamentally, Definition 4.2 is inductive: it considers the functions generated from the
base case of regular functions by applying compositions by substitution. The variant below
with more restricted generators is sometimes convenient.

▶ Definition 4.6. A string-to-string function is said to be:
of rank at most 0 if it is regular;
of rank at most k + 1 (for k ∈ N) if it can be written as CbS(f, (gi)i∈I) where f : Γ∗ → I∗

is regular and each gi : Γ∗ → Σ∗ is of rank at most k.

▶ Proposition 4.7. A function f is comparison-free polyregular if and only if there exists
some k ∈ N such that f has rank at most k. In that case, we write rk(f) for the least such k

and call it the rank of f . If (gi)i∈I is a family of comparison-free polyregular functions,

rk(CbS(f, (gi)i∈I)) ≤ 1 + rk(f) + max
i∈I

rk(gi)

A straightforward consequence of this definition is that, just like regular functions, cfp
functions are closed under regular conditionals and concatenation.

▶ Proposition 4.8. Let f, g : Γ∗ → Σ∗ be comparison-free polyregular functions and L ⊆ Γ∗

be a regular language. The function that coincides with f on L and with g on Γ∗ \ L is cfp,
and so is w ∈ Γ∗ 7→ f(w) · g(w); both have rank at most max(rk(f), rk(g)).
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5 Comparison-free pebble transducers

We now characterize our function class by a machine model that will explain our choice of
the adjective “comparison-free”, as well as the operational meaning of the notion of rank
we just defined. It is based on the pebble transducers first introduced for trees by Milo,
Suciu and Vianu [28] and later investigated in the special case of strings by Engelfriet and
Maneth [17, 14]. However, the definition using composition by substitution will remain our
tool of choice to prove further properties, so the next sections do not depend on this one.

▶ Definition 5.1. Let k ∈ N with k ≥ 1. Let Γ, Σ be finite alphabets and ▷, ◁ /∈ Γ.
A k-pebble stack on an input string w ∈ Γ∗ consists of an ordered list of p positions

in the string ▷w◁ (i.e. of p integers between 1 and |w| + 2) for some p ∈ {1, . . . , k}. We
therefore write Stackk = N0 ∪ N1 ∪ · · · ∪ Nk, keeping in mind that given an input w, we will
be interested in “legal” values bounded by |w| + 2.

A comparison-free k-pebble transducer (k-CFPT) consists of a finite set of states Q, an
initial state qI ∈ Q and a family of transition functions

Q × (Γ ∪ {▷, ◁})p → Q × (Np → Stackk) × Σ∗ for 1 ≤ p ≤ k

where the Np on the left is considered as a subset of Stackk. For a given state and given letters
(c1, . . . , cp) ∈ (Γ ∪ {▷, ◁})p, the allowed values for the stack update function Np → Stackk

returned by the transition function are:
(identity) (i1, . . . , ip) 7→ (i1, . . . , ip) ∈ Np

(move left, only allowed when cp ̸= ▷) (i1, . . . , ip) 7→ (i1, . . . , ip − 1) ∈ Np

(move right, only allowed when cp ̸= ◁) (i1, . . . , ip) 7→ (i1, . . . , ip + 1) ∈ Np

(push, only allowed when p ≤ k − 1) (i1, . . . , ip) 7→ (i1, . . . , ip, 1) ∈ Np+1

(pop, only allowed when p ≥ 1) (i1, . . . , ip) 7→ (i1, . . . , ip−1) ∈ Np−1

(Note that the codomains of all these functions are indeed subsets of Stackk.)

The run of a CFPT over an input string w ∈ Γ∗ starts in the initial configuration
comprising the initial state qI , the initial k-pebble stack (1) ∈ N1, and the empty string
as an initial output log. As long as the current stack is non-empty a new configuration is
computed by applying the transition function to q and to ((▷w◁)[i1], . . . , (▷w◁)[ip]) where
(i1, . . . , ip) is the current stack; the resulting stack update function is applied to (i1, . . . , ip)
to get the new stack, and the resulting output string in Σ∗ is appended to the right of the
current output log. If the CFPT ever terminates by producing an empty stack, the output
associated to w is the final value of the output log.

This amounts to restricting in two ways4 the definition of pebble transducers from [4, §2]:
in a general pebble transducer, one can compare positions, i.e. given a stack (i1, . . . , ip),
the choice of transition can take into account whether5 ij ≤ ij′ (for any 1 ≤ j, j′ ≤ p);
in a “push”, new pebbles are initialized to the leftmost position (▷) for a CFPT, instead
of starting at the same position as the previous top of the stack (the latter would ensure
the equality of two positions at some point; it is therefore an implicit comparison that we
must relinquish to be truly “comparison-free”).

4 There is also an inessential difference: the definition given in [4] does not involve end markers and
handles the edge case of an empty input string separately. This has no influence on the expressiveness
of the transducer model. Our use of end markers follows [15, 25].

5 One would get the same computational power, with the same stack size, by only testing whether ij = ip

for j ≤ p − 1 as in [28] (this is also essentially what happens in the nested transducers of [25]).
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This limitation is similar to (but goes a bit further than) the “invisibility” of pebbles in a
transducer model introduced by Engelfriet et al. [16] (another difference, unrelated to position
comparisons, is that their transducers use an unbounded number of invisible pebbles).
▶ Remark 5.2. Our definition guarantees that “out-of-bounds errors” cannot happen during
the run of a comparison-free pebble transducer. The sequence of successive configurations is
therefore always well-defined. But it may be infinite, that is, it may happen that the final
state is never reached. Thus, a CFPT defines a partial function.

That said, the set of inputs for which a given pebble tree transducer does not terminate
is always a regular language [28, Theorem 4.7]. This applies a fortiori to CFPTs. Using
this, it is possible6 to extend any partial function f : Γ∗ ⇀ Σ∗ computed by a k-CFPT
into a total function f ′ : Γ∗ → Σ∗ computed by another k-CFPT for the same k ∈ N, such
that f ′(x) = f(x) for x in the domain of f and f ′(x) = ε otherwise. This allows us to only
consider CFPTs computing total functions in the remainder of the paper.

A special case of particular interest is k = 1: the transducer has a single reading head,
push and pop are always disallowed.

▶ Theorem 5.3 ([1]). Copyless SSTs and 1-CFPTs – which are more commonly called
two-way (deterministic) finite transducers (2DFTs) – are equally expressive.

Since we took copyless SSTs as our reference definition of regular functions, this means
that 2DFTs characterize regular functions. But putting it this way is historically backwards:
the equivalence between 2DFTs and MSO transductions came first [15] and made this class
deserving of the name “regular functions” before the introduction of copyless SSTs.
▶ Remark 5.4. There are two different numbering conventions for pebble transducers. In [4, 25],
2DFTs are 1-pebble transducers, which is consistent with our choice. However, several other
papers (e.g. [28, 17, 14, 16, 12]) consider that a 2DFT is a 0-pebble transducer (likewise,
in [13], 2DFTs are 0-marble transducers). This is because they think of a pebble automaton
not as a restricted multi-head automaton, but as an enriched 2DFA that can drop stationary
markers (called pebbles) on input positions, with a single moving head that is not a pebble.

Let us now show the equivalence with Definition 4.2. The reason for this is similar to the
reason why k-pebble transducers are equivalent to the k-nested transducers7 of [25], which
is deemed “trivial” and left to the reader in [25, Remark 6]. But in our case, one direction
(Theorem 5.6) involves an additional subtlety compared to in [25]; to take care of it, we
use the fact that the languages recognized by pebble automata are regular (this is also part
of [28, Theorem 4.7]) together with regular conditionals (Proposition 4.8).

▶ Proposition 5.5. If f is computed by a k-CFPT, and the gi are computed by l-CFPTs,
then CbS(f, (gi)i∈I) is computed by a (k + l)-CFPT.

▶ Theorem 5.6. If f : Γ∗ → Σ∗ is computed by a k-CFPT, for k ≥ 2, then there exist a finite
alphabet I, a regular function h : Γ∗ → I∗ and a family (gi)i∈I computed by (k − 1)-CFPTs
such that f = CbS(h, (gi)i∈I).

▶ Corollary 5.7. For all k ∈ N, the functions computed by (k + 1)-CFPTs are exactly the
comparison-free polyregular functions of rank at most k.

6 Proof idea: do a first left-to-right pass to determine whether the input leads to non-termination of the
original CFPT; if so, terminate immediately with an empty output; otherwise, move the first pebble
back to the leftmost position and execute the original CFPT’s behavior. This can be implemented by
adding finitely many states, including those for a DFA recognizing non-terminating inputs.

7 Remark: nested transducers should yield a machine-independent definition of polyregular functions as
the closure of regular functions under a CbS-like operation that relies on origin semantics [29, §5].
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6 Composition of basic functions

Another possible definition of cfp functions consists in swapping out squaringΓ for some
other function in Proposition 3.4:

▶ Theorem 6.1. The class of comparison-free polyregular functions is the smallest class
closed under usual function composition and containing both all regular functions and the
functions cfsquaringΓ (cf. Example 4.3) for all finite alphabets Γ.

The hard part is to show that cfp functions are closed under composition. We exploit the
following combinatorial phenomenon, often applied to the study of copyless SSTs: a copyless
register assignment, i.e. an element of Mcl

R,∆ (cf. Section 2.4), can be specified by
a “shape” described by an element of the finite monoid Mcl

R,∅ (Proposition 2.23),
plus finitely many “labels” in Σ∗ (where Σ is the output alphabet) describing the constant
factors that will be concatenated with the old register contents to give the new ones.

▶ Proposition 6.2. There is a bijection

Mcl
R,∆

∼=

{(
α, ℓ⃗

) ∣∣∣∣∣ α ∈ Mcl
R,∅, ℓ⃗ ∈

∏
r∈R

(∆∗)|α(r)|+1

}

through which erase∆ : Mcl
R,∆ → Mcl

R,∅ can be seen as simply removing the “labels” ℓ⃗.

Proof idea. Let β ∈ Mcl
R,∆. For each r ∈ R, one can write β(r) = w0r′

1w1 . . . r′
nwn with

w0, . . . , wn ∈ ∆∗ and r′
1, . . . , r′

n ∈ R such that r′
1 . . . r′

n = erase∆(β)(r) ∈ R∗. ◀

This provides a clear way to represent a copyless register assignment inside the working
memory of an SST: store the shape in the state and the labels in registers. Another important
fact for us is that given two assignments β, β′ ∈ Mcl

R,∆ the labels of β • β′ can be obtained
as a copyless recombination of the labels of β and β′.

(There is a subtlety worth mentioning here: while the set of stateful transitions Mcl
R,∆ ≀ Q

also admits a “shape + labels” representation, its monoid multiplication does not have
this copylessness property. This prevents a naive proof of the closure under composition
of copyless SSTs from working. Nevertheless, the composition of two regular functions is
always regular, and we rely on this fact to prove Theorem 6.1.)

The rest of the proof of Theorem 6.1 is relegated to the technical appendix.

7 Rank vs asymptotic growth

Our next result is the comparison-free counterpart to recent work on polyregular functions
by Lhote [25], whose proof techniques (in particular the use of Ramsey’s theorem) we reuse.
Compare item (ii) below to the main theorem of [25] and item (iii) – which provides yet
another definition of cfp functions – to [25, Appendix A].

▶ Theorem 7.1. Let f : Γ∗ → Σ∗ and k ∈ N. The following are equivalent:
(i) f is comparison-free polyregular with rank at most k;
(ii) f is comparison-free polyregular and |f(w)| = O(|w|k+1);
(iii) there exists a regular function g : ({0, . . . , k} × Γ)∗ → Σ∗ such that f = g ◦ cfpow(k+1)

Γ ,
with the following inductive definition: cfpow(0)

Γ : w ∈ Γ∗ 7→ ε ∈ (∅ × Γ)∗ and

cfpow(n+1)
Γ : w 7→ (n, w1) · cfpow(n)

Γ (w) · . . . · (n, w|w|) · cfpow(n)
Γ (w)

To make (ii) =⇒ (i) more precise, if f is cfp with rk(f) ≥ 1, then it admits a sequence of
inputs w0, w1, . . . ∈ Γ∗ such that |wn| → +∞ and |f(wn)| = Ω(|wn|rk(f)+1).
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Note that cfpow(2)
Γ and cfsquaringΓ are the same up to a bijection {0, 1} × Γ ∼= Γ ∪ Γ.

▶ Remark 7.2. The growth of an HDT0L transduction is also related, in a very similar way
to item (ii) above, to the number of layers required in any SST that computes it [13, §5].

Some proof elements. Let us present a few definitions and lemmas to give an idea of the
ingredients that go into the proof. Those technical details take up the rest of this section.

Lhote’s paper [25] makes a heavy use of factorizations of strings that depend on a
morphism to a finite monoid. This is also the case for our proof, but we have found that a
slightly different definition of the kind of factorization that we want works better for us.

▶ Definition 7.3 (similar but not equivalent to [25, Definition 19]). An r-split of a string
s ∈ Γ∗ according to a morphism φ : Γ∗ → M is a tuple (u, v1, . . . , vr, w) ∈ (Γ∗)r+2 such that:

s = uv1 . . . vnw with vi non-empty for all i ∈ {1, . . . , r};
φ(u) = φ(uv1) = · · · = φ(uv1vr);
φ(w) = φ(vrw) = · · · = φ(v1 . . . vrw).

▶ Proposition 7.4 (immediate from the definition). (u, v1, . . . , vr, w) is an r-split if and only
if, for all i ∈ {1, . . . , r}, (uv1 . . . vi−1, vi, vi+1 . . . vrw) is a 1-split.

The difference with the (1, r)-factorizations of [25, Definition 19] is that we have replaced
the equality and idempotency requirements on φ(v1), . . . , φ(vn) by the “boundary conditions”
involving φ(u) and φ(w) (actually, (1, r + 2)-factorizations induce r-splits). This change
allows us to establish a subclaim used in the proof of Lemma 7.7 in an elementary way.

The point of r-splits is that given a split of an input string according to the morphism
that sends it to the corresponding transition in a SST, we have some control over what
happens to the output of the SST if we pump a middle factor in the split. Furthermore,
it suffices to consider a quotient of the transition monoid which is finite when the SST is
copyless (this is similar to Proposition 2.23). More precisely, we have the key lemma below,
which is used pervasively throughout our proof of Theorem 7.1:

▶ Lemma 7.5. Let f : Γ∗ → Σ∗ be a regular function. There exist a morphism to a finite
monoid νf : Γ∗ → N (f) and, for each c ∈ Σ, a set of producing triples P (f, c) ⊆ N (f)3

such that, for any 1-split according to νf composed of u, v, w ∈ Γ∗ – i.e. νf (uv) = νf (u) and
νf (vw) = νf (w) – we have:

if (νf (u), νf (v), νf (w)) ∈ P (f, c), then |f(uvw)|c > |f(uw)|c;
otherwise (when the triple is not producing), |f(uvw)|c = |f(uw)|c.

Furthermore, in the producing case, we get as a consequence that ∀n ∈ N, |f(uvnw)|c ≥ n.

▶ Definition 7.6. We fix once and for all a choice of N (f), νf and P (f, c) for each c ∈ Σ
and regular f : Γ∗ → Σ∗. We say that a 1-split (u, v, w) is producing with respect to (f, c)
when (νf (u), νf (v), νf (w)) ∈ P (f, c). For Π ⊆ Σ, we also set P (f, Π) =

⋃
c∈Π P (f, c).

Something like Lemma 7.5 (but not exactly) appears in the proof of [25, Lemma 18]. We
first apply it to prove the following lemma, which is morally a counterpart to the “k = 1 case”
of the central Dichotomy Lemma from [25], with r-splits instead of (k, r)-factorizations.

▶ Lemma 7.7. Let f : Γ∗ → Σ∗ be regular and φ : Γ∗ → M be a morphism with M finite.
Suppose that π ◦ φ = νf for some other morphism π : M → N (f). Let r ≥ 1 and Π ⊆ Σ.

We define L(f, Π, φ, r) to be the set of strings that admit an r-split s = uv1 . . . vrw

according to φ such that all the triples (uv1 . . . vi−1, vi, vi+1 . . . vrw) are producing with
respect to (f, Π) – let us call this a producing r-split with respect to (f, Π, φ).

Then L(f, Π, φ, r) is a regular language, and sup{|f(s)|Π | s ∈ Γ∗ \ L(f, Π, φ, r)} < ∞.
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Our proof of the above lemma uses the proposition below, analogous to [25, Claim 20].
Its statement is a bit stronger than necessary for this purpose, but it will be reused in the
proof of Theorem 8.3; as for its proof, this is where a standard Ramsey argument occurs.

▶ Proposition 7.8. Let Γ be an alphabet, M be a finite monoid and φ : Γ∗ → M be a
morphism. There exists N ∈ N such that any string s = uvw ∈ Γ∗ such that |v| ≥ N admits
an r-split s = u′v′

1 . . . v′
rw′ according to φ in which u is a prefix of u′ and w is a suffix of w′.

To leverage Lemma 7.7, we combine it with an elementary property of composition by
substitution that does not depend on the previous technical development. (Compare the
assumptions of the lemma below with the conclusion of Lemma 7.7.)

▶ Lemma 7.9. Let g : Γ∗ → I∗ be a regular function and, for each i ∈ I, let hi : Γ∗ → Σ∗ be
comparison-free polyregular of rank at most k. Suppose that sup

s∈Γ∗
|g(s)|J < ∞ where

J =
{

{i ∈ I | rk(hi) = k} when k ≥ 1
{i ∈ I | |hi(Γ∗)| = ∞} when k = 0

(Morally, regular functions with finite range play the role of “comparison-free polyregular
functions of rank −1”.) Then rk(CbS(g, (hi)i∈I)) ≤ k.

The above lemma can be compared to [25, Claim 22], but it also seems to be related
to the way the “nested transducer” Rk+1 is defined in the proof of the Dichotomy Lemma
in [25]: indeed, Rk+1 can call either a k-nested subroutine or a (k − 1)-nested one.

The remainder of the proof of Theorem 7.1 consists mainly of a rather technical induction
on the rank, which we present in the appendix.

8 Separation results

Let us now demonstrate that the class of cfp functions is incomparable with the class of
HDT0L transductions and is a strict subclass of polyregular functions.

▶ Theorem 8.1. There exist comparison-free polyregular functions which are not HDT0L:
(i) the function an ∈ {a}∗ 7→ (anb)n+1 ∈ {a, b}∗ for a ̸= b;
(ii) the function w ∈ Σ∗ 7→ w|w| for |Σ| ≥ 2 (a simplification of Example 4.3);
(iii) (from [13, §6]) the cfp functions that map an#w ∈ Σ∗ to (w#)n for a, # ∈ Σ, a ̸= #.
▶ Remark 8.2. The first example in [13, §5] shows that an 7→ an×n is HDT0L (via the
equivalent model of marble transducers), hence the necessity of |Σ| ≥ 2 above. More
generally, Douéneau-Tabot has shown very recently that every polyregular function with
unary output alphabet is HDT0L [12]. So polyregular functions with unary output coincide
with polynomial growth N-rational series (cf. Remark 2.14), and the latter admit several
algebraic characterizations in the literature (see [32] and [3, Chapter 9, Exercise 1.2]).

▶ Theorem 8.3. Some HDT0L transductions are polyregular but not comparison-free:
(i) f : an ∈ {a}∗ 7→ ban−1b . . . baabab (with f(ε) = ε and f(a) = b);
(ii) map(an 7→ an×n) : an1# . . . #ank 7→ an1×n1# . . . #ank×nk (cf. Definition 3.8).

▶ Remark 8.4. The function an1# . . . #ank 7→ an1×n1+···+nk×nk obtained by erasing the #s
in the output of map(an 7→ an×n) is also not comparison-free. This result implies the second
item of Theorem 8.3 by composition with the erasing morphism; we do not prove it here, but
it appears in Douéneau-Tabot’s aforementioned paper [12]. Therefore, according to [12], not
every polyregular function with unary output is comparison-free.
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To see why the first of the two functions in Theorem 8.3 is HDT0L, observe that it is
Example 2.4 for Γ = {a} (taking b = a). As for the second one, combine Proposition 3.9 and
the first observation in Remark 8.2.

The non-membership parts of Theorems 8.1 and 8.3 require more work. For the former,
we use pumping arguments on HDT0L systems. Item (ii) of Theorem 8.3 is handled by first
appealing to Theorem 7.1 to reduce to showing that map(an 7→ an×n) ̸= CbS(g, (hi)i∈I)
when g and all the hi are regular functions; a combination of pumping and of a combinatorial
argument then shows that inputs with |I| occurrences of # suffice to discriminate the two
sides of the inequality. This result also has the following consequence:

▶ Corollary 8.5. Comparison-free polyregular functions are not closed under map.

▶ Remark 8.6. Contrast with Proposition 3.9. The discussion that follows that proposition
lends some significance to the above corollary: the latter rules out the obvious conjectures
for a characterization of cfp functions in the style of regular/polynomial list functions.

As for item (i) of Theorem 8.3, it concerns a function whose domain consists of words
over a unary alphabet, i.e., up to isomorphism, a sequence. This motivates the study of such
sequences, which is the subject of the next section.

9 Comparison-free polyregular sequences

From now on, we identify N with the set of words {a}∗ and freely speak, for instance, of cfp
sequences N → Γ∗ instead of cfp functions {a}∗ → Γ∗. It turns out that cfp sequences admit
a characterization as finite combinations of what we call poly-pumping sequences.

▶ Definition 9.1. A poly-pumping sequence is a function of the form JeK : N → Σ∗ where
e is a polynomial word expression generated by e ::= w | e · e′ | e∗ where w ∈ Σ∗;
JwK(n) = w, Je · e′K(n) = JeK(n)Je′K(n) and Je∗K(n) = (JeK(n))n.

The star-height of a polynomial word expression is defined in the usual way.

▶ Theorem 9.2. Let s : N → Σ∗ and k ∈ N. The sequence s is comparison-free polyregular
with rk(s) ≤ k if and only if there exists p > 0 such that, for any m < p, there is a polynomial
word expression e of star-height at most k + 1 such that ∀n ∈ N, s((n + 1)p + m) = JeK(n).

In short, the cfp sequences are exactly the ultimately periodic combinations of poly-pumping
sequences. Our proof strategy is an induction on k.

The base case k = 0 says that regular sequences are ultimately periodic combinations of
pumping sequences n 7→ u0(v1)n . . . (vl)nul. An essentially equivalent result is stated with
a proof sketch using 2DFTs in [10, p. 90]; we propose an alternative proof using copyless
SSTs. (Non-deterministic two-way transducers (2NFTs) taking unary inputs have also been
studied [23]; furthermore, the notion of “k-iterative language” that appears in a pumping
lemma for general 2NFTs [35] is related to the shape of the above pumping sequences.)

To make the inductive step go through, it is enough to synchronize the periods of the
different poly-pumping sequences involved and to observe that CbS(JeK, (Je′

iK)i∈I) is realized
by an expression obtained by substituting the e′

i for i in e.
Coming back to Theorem 8.3, we show that an 7→ ban−1b . . . bab is not comparison-free

polyregular by proving that its subsequences are not poly-pumping: for every poly-pumping
sequence s : N → {a, b}∗, there is a uniform bound on the number of distinct contiguous
subwords of the shape baa . . . ab occuring in each s(n) for n ∈ N. Another consequence of
Theorem 9.2 that we establish by induction over expressions contrasts with Corollary 8.5:

▶ Corollary 9.3. If f : Γ∗ → Σ∗ and s : N → (Γ ∪ {#})∗ are cfp, so is map(f) ◦ s.
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10 Further topics

Functional programming. We mentioned in the introduction a forthcoming characterization
of cfp functions using Church-encoded strings in a λ-calculus with linear types, in the vein of
our previous results [31, 30]. Meanwhile, Corollary 8.5 could be understood as negative result
in the search for another kind of functional programming characterization (cf. Remark 8.6).

It is also worth noting that the copying discipline of layered SSTs is very similar to
what happens in the parsimonious λ-calculus [27]: a datum of type !τ cannot be duplicated
into two copies of the same type !τ , but it may yield an arbitrary number of copies of type
τ without the modality “!”. Since the function classes defined following the methodology
of [31, 30] are automatically closed under composition, Theorem 3.5 leads us to conjecture
that polyregular functions can be characterized in a variant of the parsimonious λ-calculus.

First-order interpretations. As we already said, regular and polyregular functions both
admit logical characterizations using Monadic Second-Order Logic [15, 8]. The basic conceit
behind these definitions is that a string w may be regarded as a finite model M(w) over a
signature containing the order relation ≤ on positions and predicates encoding their labeling.

The classes obtained by replacing MSO with first-order logic (FO) are to (poly)regular
functions what star-free languages are to regular languages, see [11, 4]. We expect that in
the same way, replacing regular functions (i.e. MSO transductions) by FO transductions in
Definition 4.2 and Theorem 6.1 results in the same class in both cases, which would then be the
natural FO counterpart of cfp functions. Furthermore, we believe it can be defined logically.
Given a finite model U = (U, R, . . .), we write Uk for the kth power (Uk, R1, . . . , Rk, . . .)
where Ri(x1, . . . , xm) of arity m is defined as R(πi(x1), . . . , πi(xm)) for 1 ≤ i ≤ k.

▶ Conjecture 10.1. A function f : Γ∗ → Σ∗ is “FO comparison-free polyregular” if and only
if there exists k ∈ N and a one-dimensional FO interpretation φ such that for every w ∈ Γ∗

with |w| ≥ 2, there is an isomorphism of structures M(f(w)) ≃ φ
(
M(w)k

)
.

On an intuitive level, this seems to capture the inability to compare the positions of two
heads of comparison-free pebble transducers. However, as mentioned to us by M. Bojańczyk,
the naive transposition of this conjecture to MSO fails because the direct product, generalized
to Henkin structures, does not preserve standard second-order models.

Integer sequences. Recall from Remarks 8.2 and 8.4 that for unary outputs, polyregular
and layered HDT0L transductions coincide, but comparison-free polyregular functions form
a strictly smaller class (those results come from [12]). If we also restrict to unary inputs – in
other words, if we consider sequences N → N – then we are fairly confident at this stage that
the three classes collapse to a single one, and that this can be shown by routine methods:

▷ Claim 10.2. The classes of polyregular, comparison-free polyregular and layered HDT0L
functions coincide on sequences of natural numbers.

Note that we already have a description of cfp integer sequences by specializing Theorem 9.2.

Membership and equivalence. We presented comparison-free polyregular functions as a
strict subclass of polyregular functions. This leads to a natural membership problem, for
which partial results were recently obtained by Douéneau-Tabot [12]:

▷ Problem 10.3. Is there an algorithm taking as input a (code for a) pebble transducer
which decides whether the corresponding function Σ∗ → Γ∗ is comparison-free or not?
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There are many similar problems of interest on the frontier between comparison-free
and general polyregular functions. We hope that investigating such issues may also lead to
machine/syntax-free characterizations of the containment between the two classes.

Finally, a major open problem on polyregular functions is the equivalence problem:

▷ Problem 10.4. Is there an algorithm taking as input two pebble transducers which decides
whether they compute the same function?

Interestingly, a positive answer is known for HDT0L transductions. There is an short
proof using Hilbert’s basis theorem [24], which is now understood to be an example of
a general approach using polynomial grammars (see e.g. [2, 5]). One could hope that a
restriction to comparison-free pebble transducers also puts the equivalence problem within
reach of known tools. Unfortunately, the extended polynomial grammars that would serve as
the natural target for a reduction from 2-CFPT equivalence already have an undecidable
zeroness problem (this was shown recently by Schmude [34]). This does not extend, however,
to an undecidability proof for the CFPT equivalence problem, so the latter is still open.
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Abstract
We show a new simple algorithm that solves the model-checking problem for recursion schemes:
check whether the tree generated by a given higher-order recursion scheme is accepted by a given
alternating parity automaton. The algorithm amounts to a procedure that transforms a recursion
scheme of order n to a recursion scheme of order n − 1, preserving acceptance, and increasing the
size only exponentially. After repeating the procedure n times, we obtain a recursion scheme of
order 0, for which the problem boils down to solving a finite parity game. Since the size grows
exponentially at each step, the overall complexity is n-EXPTIME, which is known to be optimal.
More precisely, the transformation is linear in the size of the recursion scheme, assuming that the
arity of employed nonterminals and the size of the automaton are bounded by a constant; this results
in an FPT algorithm for the model-checking problem.

Our transformation is a generalization of a previous transformation of the author (2020), working
for reachability automata in place of parity automata. The step-by-step approach can be opposed
to previous algorithms solving the considered problem “in one step”, being compulsorily more
complicated.
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1 Introduction

Recursion schemes are faithful and algorithmically manageable abstractions of the control flow
of programs involving higher-order functions [19]. Such functions are nowadays widely used
not only in functional programming languages such as Haskell and the OCAML family, but
also in mainstream languages such as Java, JavaScript, Python, and C++. Simultaneously,
the formalism of recursion schemes is equivalent via direct translations to simply-typed
λY -calculus [28]. Collapsible pushdown systems [15] and ordered tree-pushdown systems [10]
are other equivalent formalisms. Recursion schemes cover some other models such as indexed
grammars [1] and ordered multi-pushdown automata [3].

The most celebrated algorithmic result in the analysis of recursion schemes is the decid-
ability of the model-checking problem against regular properties of trees: given a recursion
scheme G and a parity tree automaton A, one can decide whether the tree generated by
G is accepted by A [23]. This fundamental result has been reproved several times, that
is, using collapsible higher-order pushdown automata [14], intersection types [20], Krivine
machines [26], and it has been extended in diverse directions such as global model checking [7],
logical reflection [5], effective selection [9], and a transfer theorem via models of lambda-
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calculus [27]. The model-checking problem for recursion schemes of order n is complete for
n-fold exponential time [23]. Despite this hardness result, the model-checking problem can
be solved efficiently on multiple nontrivial examples, thanks to the development of several
recursion-scheme model checkers [13, 21, 29] (including some model checkers that work only
for automata models weaker than parity tree automata [17, 18, 6, 22, 25]).

In this paper, we give a new simple algorithm solving the model-checking problem for
recursion schemes, mentioned above. The algorithm amounts to a procedure that transforms
a recursion scheme of order n to a recursion scheme of order n−1, preserving acceptance, and
increasing the size only exponentially. After repeating the procedure n times, we obtain a
recursion scheme of order 0, for which acceptance boils down to winning a finite parity game.
Since the size grows exponentially at each step, we reach the optimal overall complexity of
n-fold exponential time. In a more detailed view, the complexity looks even better: the size
growth is exponential only in the arity of types appearing in the recursion scheme, and in
the size of the parity automaton; if these two parameters are bounded by a constant, the
transformation is linear in the size of the recursion scheme. Since solving a finite parity game
is FPT in the number of priorities [8], our algorithm for the the model-checking algorithm is
FTP in the two parameters.1

The main difference between our algorithm and all the others is that we solve the problem
step by step, repeatedly reducing the order by one, while most previous algorithms work
“in one step”, being compulsorily more complicated. The only algorithms that have been
reducing the order by one, were algorithms using collapsible pushdown automata [14, 5, 9].
Notice, however, that these algorithms: first, are very technical; second, are contained only
in unpublished appendices and in an arXiv paper [4]; third, if we want to use them for
recursion schemes, it is necessary to employ a (nontrivial) translation from recursion schemes
to collapsible pushdown automata [15, 28, 9]. A reduction of order was also possible for a
subclass of recursion schemes, called safe recursion schemes [16], but it was not known how
to extend it to all recursion schemes.

The transformation presented in this paper generalizes of a previous transformation of
the author [24], working for reachability automata in place of parity automata. It has also a
close relationship with a transformation given by Asada and Kobayashi [2].

2 Preliminaries

For a number k ∈ N we write [k] for {1, . . . , k}. For any relation ⟶ we write ⟶∗ for the
reflexive transitive closure of ⟶.

For a function Z we write Z[z ↦ r] to denote the function that maps z to r while all
other elements of the domain of Z are mapped as in Z. Likewise, we write Z[zi ↦ ri ∣ i ∈ I]
to denote the function that maps zi to ri for all i ∈ I, while all other elements of the domain
of Z are mapped as in Z. We also use this notation without the “Z” part, for a function Z

with empty domain.

Recursion schemes. The set of (simple) types is constructed from a unique ground type
o using a binary operation →; namely o is a type, and if α and β are types, so is α→ β.
By convention, → associates to the right, that is, α→ β→ γ is understood as α→ (β→ γ).

1 This is not new. Actually, most previous algorithms reduce the model-checking problem to the problem
of solving a parity game whose size is polynomial (for a polynomial of a fixed degree, for some algorithms
just linear) in the size of the input, assuming that the arity of types appearing in the recursion scheme
and the size of the parity automaton are fixed. Thus, only the method introduced by us is new, not the
complexity results.
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We often abbreviate α→ ⋅ ⋅ ⋅→ αÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
ℓ

→ β as α
ℓ
→ β. The order of a type α, denoted ord(α),

is defined by induction: ord(α1 → ⋅ ⋅ ⋅→ αk → o) = max({0} ∪ {ord(αi) + 1 ∣ i ∈ [k]}); for
example ord(o) = 0, ord(o→ o→ o) = 1, and ord((o→ o)→ o) = 2.

Having a set of typed nonterminals X , a set of typed variables Y , and a set of symbols Σ,
terms over (X ,Y, Σ) are defined by induction:

nonterminal: every nonterminal X ∈ X of type α is a term of type α;
variable: every variable y ∈ Y of type α is a term of type α;
node constructor: if K1, . . . , Kk are terms of type o and a ∈ Σ, then ⟨a, K1, . . . , Kk⟩ is a
term of type o;
application: if K is a term of type α→ β, and L is a term of type α, then K L is a term
of type β.

The type of a term K is denoted tp(K). The order of a term K, written ord(K), is defined
as the order of its type.

A (higher-order) recursion scheme is a tuple G = (X , X0, Σ,R), where X is a finite set of
typed nonterminals, and X0 ∈ X is a starting nonterminal of type o, and Σ is a finite set of
symbols (called an alphabet), and R is a function assigning to every nonterminal X ∈ X a
rule of the form X y1 . . . yk → R, where tp(X) = (tp(y1)→ ⋅ ⋅ ⋅→ tp(yk)→ o), and R is a
term of type o over (X , {y1, . . . , yk}, Σ). The order of a recursion scheme, ord(G), is defined
as the maximum of orders of its nonterminals.

Having a recursion scheme G = (X , X0, Σ,R), for every set of variables Y we define a
reduction relation ⟶G between terms over (X ,Y, Σ) as the least relation such that

X K1 . . . Kk ⟶G R[K1/y1, . . . , Kk/yk] if the rule for X is X y1 . . . yk → R, where
R[K1/y1, . . . , Kk/yk] denotes the term obtained from R by substituting Ki for yi for all
i ∈ [k].

A (potentially infinite) tree over an alphabet Σ is defined by coinduction: every tree over
Σ is of the form ⟨a, T1, . . . , Tk⟩, where a ∈ Σ and T1, . . . , Tk are again trees over Σ (for an
introduction to coinductive definitions and proofs see, e.g., Czajka [12]). We employ the
usual notions of nodes, children, branches, etc. Formally, we can define nodes as sequences
of natural numbers; then for a tree T = ⟨a, T1, . . . , Tk⟩, the empty sequence () is a node of T

labeled by a, and any longer sequence (i1, i2, . . . , in) is a node of T labeled by b if i1 ∈ [k]
and (i2, . . . , in) is a node of Ti1 labeled by b. For a tree T and its node v, we write T↾v for
the subtree of T starting at v.

Again by coinduction, we define the tree generated by a recursion scheme G = (X , X0, Σ,

R) from a term M of type o (over (X ,∅, Σ)), denoted BTG(M):
if M ⟶

∗
G ⟨a, K1, . . . , Kk⟩, then BTG(M) = ⟨a, BTG(K1), . . . , BTG(Kk)⟩;

otherwise, BTG(M) = ⟨ω⟩ for a special symbol ω /∈ Σ.
The tree generated by G (without mentioning a term), denoted BT(G), is defined as BTG(X0).

Parity games. As already said, in the model-checking problem we are given a recursion
scheme G and an alternating parity automaton A, and we are asked whether the tree TG
generated by G is accepted by A. One can, however, create a product of G and A, which
is a recursion scheme GA generating the tree of all possible runs of A on TG . This tree is a
parity game; the game is won by Eve if and only if A accepts TG (see Appendix A of the full
version for more details). Due to this reduction, it is enough to work with recursion schemes
generating parity games, and consider the problem of finding a winner in such games.

For every d ∈ N+ we consider the alphabet Σd = {Adam, Eve} × [d]. A parity tree is
a tree over Σd where every node has at least one child. A parity recursion scheme is a
recursion scheme generating a parity tree (in particular the generated tree cannot have nodes
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without children, including ω-labeled nodes). For a node labeled by (℘, p) ∈ Σd, we say
that it belongs to the player ℘, and that it has priority p. For trees and terms we write
⟨℘, p, K1, . . . , Kk⟩ instead of ⟨(℘, p), K1, . . . , Kk⟩, avoiding excessive brackets.

A branch ξ in a parity tree T is won by Eve (Adam) if the greatest priority appearing
infinitely often on ξ is even (odd, respectively). A strategy ρ of a player ℘ ∈ {Adam, Eve} in
a parity tree T is a function that assigns numbers to nodes of T belonging to the player ℘; if
a node v has k children, we require that ρ(v) ∈ [k]. A branch ξ agrees with ρ if for every
node v on ξ that belongs to ℘, the next node of ξ is the ρ(v)-th child of v. A strategy ρ of ℘
is winning if all branches that agree with ρ are winning for ℘. Finally, ℘ wins in T if ℘ has
a winning strategy in T ; otherwise ℘ loses in T . It is a standard result that in every parity
tree T exactly one of the players wins.

It is useful to consider the following order ⪯ on positive natural numbers (priorities):
⋅ ⋅ ⋅ ⪯ 5 ⪯ 3 ⪯ 1 ⪯ 2 ⪯ 4 ⪯ 6 ⪯ . . . (first we have odd numbers in the reversed order, and
then positive even numbers). We use the words worse and better to say that a priority is,
respectively, earlier or later in this order. The intuition is that while playing a parity game,
Eve always prefers to see better priorities.

3 Transformation

In this section we present a transformation, called order-reducing transformation, resulting
in the main theorem of this paper:

▶ Theorem 3.1. For any n ≥ 1, there exists a transformation from order-n parity recursion
schemes to order-(n − 1) parity recursion schemes, and a polynomial pn such that, for any
order-n parity recursion scheme G, the winner in the tree generated by the resulting recursion
scheme G† is the same as in the tree generated by G, and ∣G†∣ ≤ 2pn(∣G∣).

Intuitions. Let us first present intuitions behind our transformation. While reducing the
order, we have to replace, in particular, order-1 functions by order-0 terms. Consider for
example a tree T generated from a term K L of type o, where K has type o→ o. Essentially,
T consists of a context CK , generated by K, where the tree TL generated by L is inserted in
some “holes”. Instead of playing in T , we propose the following modification of the game. At
the beginning, we ask Eve a question: how is she going to reach subtrees TL while playing
in T? She may declare that, according to her winning strategy,

she is able to ensure that the greatest priority seen before reaching TL will not be worse
than r, for some number r of her choice, or
she will not reach subtrees TL at all, which amounts to choosing for r an even number
greater than d, say r = 2d.

Then, we ask Adam if he believes in this declaration. If so, we simply read the declared
worst-case priority r, and we continue playing in TL (this possibility is unavailable for Adam,
if Eve declared that she will not visit TL). Otherwise, we check the declaration: we start
playing in CK ; while reaching a place where TL should be placed, Eve immediately wins
(loses) if her declaration is fulfilled (not fulfilled, respectively).

We can see that such a modification of the game (even applied in infinitely many places of
the considered tree) does not change the winner. A subtle point is that, in the modified game,
Eve has to make a declaration on the priority r before actually starting the game in the
tree generated from K L, and it is not completely obvious why the need for the declaration
introduces no disadvantage for Eve. Nevertheless, for a fixed Eve’s winning strategy, the
worst greatest priority seen before reaching TL is fixed, so that Eve can declare it as r.
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In the transformation, we change the order-1 term K into several order-0 terms: Kr

for r ∈ {1, . . . , d, 2d} (where d is a bound on priorities in the considered parity recursion
scheme G). These terms generate trees of the same shape as the context CK generated by
K but with some fixed trees substituted in place of the holes of CK (where originally trees
generated by the argument L were attached). The generated trees correspond to particular
declarations made by Eve, as described above. Namely, we consider some fixed trees ⊥ and
⊤ in which Eve loses and wins, respectively. Then, in the tree generated by Kr, the tree ⊤
is placed in holes such that the greatest priority on the path from the root to the hole is not
worse than r, and the tree ⊥ is placed in the remaining holes. In particular, the tree ⊥ is
placed in all holes of the tree generated by K2d, because all priorities actually appearing in
the tree are worse than 2d. Finally, we replace K L by ⟨Eve, 1, K

L
1 , K

L
2 , . . . , K

L
d , K2d⟩, where

K
L
r = ⟨Adam, 1, Kr, ⟨Eve, r, L⟩⟩. In this way we realize the modified game described above:

first Eve chooses a declaration r and then Adam either proceed to Kr or to L after seeing
priority r (the latter possibility is disabled for r = 2d). The priority 1 of the newly created
tree nodes should be seen as a neutral priority; higher priorities visited later will be more
important anyway.

When a term K of order 1 takes multiple arguments (instead of one argument L), we
proceed in the same way, allowing Eve to make declarations for each of the arguments.

While applying the above-described transformation to recursion schemes, it is possible
that the term K considered above contains some nonterminals or variables. Then, in order
to realize the transformation, we need to create multiple copies of these nonterminals and
variables, corresponding to particular declarations of Eve.

For example, say that in a recursion scheme we have (among others) the following two
rules:

X → Y Z,

Y z→ ⟨Eve, 1, z, ⟨Eve, 2, z⟩⟩.

Here X and Z are of type o, and Y is of type o→ o, so Y Z is an application that should be
replaced by the transformation. Assuming d = 2, we should obtain the following rules:

X′
→ ⟨Eve, 1, ⟨Adam, 1, Y1, ⟨Eve, 1, Z′⟩⟩, ⟨Adam, 1, Y2, ⟨Eve, 2, Z′⟩⟩, Y4⟩,

Y1 → ⟨Eve, 1,⍑, ⟨Eve, 2,⍑⟩⟩,
Y2 → ⟨Eve, 1,⍊, ⟨Eve, 2,⍑⟩⟩,
Y4 → ⟨Eve, 1,⍊, ⟨Eve, 2,⍊⟩⟩,

where ⍊ and ⍑ are nonterminals from which the trees ⊥ and ⊤ (in which Eve loses and
wins, respectively) are generated.

Another possibility is that in the original recursion scheme we have y Z instead of Y Z:

S→ T Y,

T y → y Z.

Then, the single parameter y gets transformed into three parameters:

S′
→ T′ Y1 Y2 Y4,

T′ y1 y2 y4 → ⟨Eve, 1, ⟨Adam, 1, y1, ⟨Eve, 1, Z′⟩⟩, ⟨Adam, 1, y2, ⟨Eve, 2, Z′⟩⟩, y4⟩.
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Formal definition. We now formalize the above intuitions. Fix a parity recursion scheme
G = (X , X0, Σd,R); in particular fix a bound d on priorities appearing in G.

A set Dd of Eve’s declarations is defined as Dd = {1, . . . , d, 2d}. For a priority p ∈ [d]
and a declaration r ∈ Dd we define a shifted declaration r↾p (obtained from r after seeing
priority p):

r↾p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p + 1 if p is odd and p > r,
p − 1 if p is even and p ≥ r,
r otherwise.

We remark that the same definition appears in Tsukada and Ong [30] (where shifts are called
left-residuals); a slightly different representation is present also in Salvati and Walukiewicz [26]
(with declarations called residuals and shifts called liftings).

The leader (“most important priority”) of a sequence of priorities π is the greatest priority
appearing in π, or 1 if π is empty. A sequence of priorities π fulfils a declaration r ∈ Dd

if r is worse or equal than the leader of π (where “worse” refers to the ⪯ order defined in
Section 2). For example, 1, 4, 2, and 1, 1, 1, both fulfil 3, but 1, 5, 4 does not. The empty
sequence fulfils r exactly when r is odd. No sequence of priorities from [d] fulfils 2d. The
following lemma is obtained by a direct analysis (see Appendix B of the full version):

▶ Lemma 3.2. A sequence of priorities p1, p2, . . . , pk ∈ [d] fulfils a declaration r ∈ Dd if
and only if p2, . . . , pk fulfils r↾p1 .

Having a type, we are interested in cutting off its suffix of order 1. Thus, we use the
notation α1→ ⋅ ⋅ ⋅→αk⇒ oℓ

→ o for a type α1→ ⋅ ⋅ ⋅→αk→ oℓ
→ o such that either k = 0 or

αk ≠ o. Notice that every type α can be uniquely represented in this form. We remark that
some among the types α1, . . . , αk−1 (but not αk) may be o. For a type α we write gar(α)
(“ground arity”) for the number ℓ for which we can write α = (α1→ ⋅ ⋅ ⋅→ αk ⇒ oℓ

→ o); we
also extend this to terms: gar(M) = gar(tp(M)).

We transform terms of type α to terms of type α
†d , which is defined by induction:

(α1→ ⋅ ⋅ ⋅→ αk ⇒ oℓ
→ o)†d

= ((α†d

1 )∣Dd∣gar(α1)
→ ⋅ ⋅ ⋅→ (α†d

k )∣Dd∣gar(αk)
→ o) .

Thus, we remove all trailing order-0 arguments, and we multiplicate (and recursively trans-
form) remaining arguments. The number of copies depends on the bound d on priorities
appearing in the considered parity recursion scheme.

For a finite set S, we write D
S
d for the set of functions A∶S → Dd. Moreover, we

assume some fixed order on functions in D
S
d , and we write P (QA)A∈DS

d
for an application

P QA1 . . . QA∣Dd∣∣S∣ , where A1, . . . , A∣Dd∣∣S∣ are all the functions from D
S
d listed in the fixed

order. The only function in D
∅
d is denoted ∅.

For every variable y and for every function A ∈ D
[gar(y)]
d we consider a variable y

†d

A of
type (tp(y))†d . Likewise, for every nonterminal X of G and for every function A ∈ D

[gar(X)]
d

we consider a nonterminal X
†d

A of type (tp(X))†d . As the new set of nonterminals we take
X †d

= {X†d

A ∣ X ∈ X , A ∈ D
[gar(X)]
d } ∪ {⍊,⍑}.

We now define a function trd transforming terms. Its value trd(A, Z, M) is defined when
M is a term over (X ,Y, Σd) for some set of variables Y , and A ∈ D

[gar(M)]
d , and Z∶Y ⇀ Dd

is a partial function such that dom(Z) contains only variables of type o. The intention is
that A specifies Eve’s declarations for trailing order-0 arguments, and Z specifies them for
order-0 variables (among those in dom(Z)). The transformation is defined by induction on
the structure of M , as follows:
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(1) trd(A, Z, X) = X
†d

A for X ∈ X ;
(2) trd(A, Z, y) = y

†d

A for y ∈ Y \ dom(Z);
(3) trd(∅, Z, z) =⍑ if Z(z) is odd;
(4) trd(∅, Z, z) =⍊ if Z(z) is even;
(5) trd(∅, Z, ⟨℘, p, K1, . . . , Kk⟩) = ⟨℘, p, trd(∅, Z↾p, K1), . . . , trd(∅, Z↾p, Kk)⟩, where Z↾p is

the function defined by Z↾p(z) = (Z(z))↾p for all z ∈ dom(Z);
(6) trd(A, Z, K L) = ⟨Eve, 1, K

L
1 , K

L
2 , . . . , K

L
d , K2d⟩ if tp(K) = (oℓ+1

→ o), where K
L
r =

⟨Adam, 1, Kr, ⟨Eve, r, trd(∅, Z↾r, L)⟩⟩ for r ∈ [d] and Kr = trd(A[ℓ + 1 ↦ r], Z, K) for
r ∈ Dd;

(7) trd(A, Z, K L) = (trd(A, Z, K)) (trd(B, Z, L))
B∈D

[gar(L)]
d

if tp(K) = (α1→⋅ ⋅ ⋅→αk⇒oℓ
→

o) with k ≥ 1.
In Cases (3), (4), and (5) the term is of type o, so the “A” argument is necessarily ∅ (a
function with an empty domain).

For every rule X y1 . . . yk z1 . . . zℓ → R in R, where ℓ = gar(X), and for every function
A ∈ D

[ℓ]
d , to R†d we take the rule

X
†d

A (y†d

1,B)
B∈D

[gar(y1)]
d

. . . (y†d

k,B)
B∈D

[gar(yk)]
d

→ trd(∅, [zi ↦ A(ℓ + 1 − i) ∣ i ∈ [ℓ]], R).

In the function A it is more convenient to count arguments from right to left (then we do
not need to shift the domain in Case (6) above), but it is more natural to have variables
z1, . . . , zℓ numbered from left to right; this is why in the rule for X

†d

A we assign to zi the value
A(ℓ+1−i), not A(i). Additionally, in R†d we have rules ⍊→ ⟨Eve, 1,⍊⟩ and ⍑→ ⟨Eve, 2,⍑⟩.
Then Eve loses (wins) in the tree ⊥ (⊤) generated by G† from ⍊ (⍑, respectively).

Finally, the resulting recursion scheme G† is (X †d , X
†d

0,∅, Σd,R†d). This finishes the
definition of the transformation. In the next section we analyze its complexity, and in
Section 5 we justify its correctness.
▶ Remark 3.3. Let us briefly compare our transformation with a transformation by Broadbent
et al. [4] reducing the order of a collapsible pushdown automaton by one while preserving the
winner of the generated parity game. Although their transformation seems technically more
complicated, its overall idea is quite similar to what we do in this paper. Their transformation
is split into three independent steps. First, they make the automaton “rank-aware”, which
means that it knows what was the highest priority visited between creation of a collapse link
and its usage. This corresponds to adding the parameters A and Z to our transformation,
so that we know whether a declaration is fulfilled when a variable z is used. Second, they
eliminate collapse links of order n, which in our case corresponds to removing trailing
arguments of order 0 and introducing the gadget asking Eve for a declaration. Third, they
reduce the order of the automaton by one, which we also do for recursion schemes.

4 Complexity

In this section we analyze complexity of our transformation. First, we formally define the
size of a recursion scheme. The size of a term is defined by induction on its structure:

∣X∣ = ∣y∣ = 1, ∣K L∣ = 1 + ∣K∣ + ∣L∣,
∣⟨a, K1, . . . , Kk⟩∣ = 1 + ∣K1∣ + ⋅ ⋅ ⋅ + ∣Kk∣.

Then ∣G∣, the size of G, is defined as the sum of ∣R∣ + k over all rules X y1 . . . yk → R of G.
In Asada and Kobayashi [2] such a size is called Curry-style size; it does not include sizes of
types of employed variables.
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We say that a type α appears in the definition of a type β if either α = β, or β = (β1→β2)
and α appears in the definition of β1 or of β2. We write AG for the largest arity of types
appearing in the definition of types of nonterminals in a recursion scheme G. Notice that
types of other objects used in G, namely variables and subterms of right-hand sides of
rules, appear in the definition of types of nonterminals, hence their arity is also bounded
by AG . It is reasonable to consider large recursion schemes, consisting of many rules, where
simultaneously the maximal arity AG is respectively small.

While the exponential bound mentioned in Theorem 3.1 is obtained by applying the order-
reducing transformation to an arbitrary parity recursion scheme, the complexity becomes
slightly better if we first apply a preprocessing step. This is in particular necessary, if we
want to obtain linear dependence in the size of G (and exponential only in the maximal arity
AG). The preprocessing, making sure that the recursion scheme is in a simple form (defined
below), amounts to splitting large rules into multiple smaller rules. A similar preprocessing
is present already in prior work [19, 2, 11, 24].

An application depth of a term R is defined as the maximal number of applications on
a single branch in R, where a compound application K L1 . . . Lk counts only once. More
formally, we define by induction:

ad(⟨a, K1, . . . , Kk⟩) = max{ad(Ki) ∣ i ∈ [k]},
ad(X K1 . . . Kk) = ad(y K1 . . . Kk) = max({0} ∪ {ad(Ki) + 1 ∣ i ∈ [k]}).

We say that a recursion scheme G is in a simple form if the right-hand side of each its rule
has application depth at most 2. We have the following:

▶ Lemma 4.1 ([24, Lemma 4.1]). For every recursion scheme G there exists a recursion scheme
G ′ being in a simple form, generating the same tree as G, and such that ord(G ′) = ord(G),
and AG ′ ≤ 2AG, and ∣G ′∣ = O(AG ⋅ ∣G∣). The recursion scheme G ′ can be created in time
linear in its size.

We now state and prove the main lemma of this section:

▶ Lemma 4.2. For every parity recursion scheme G = (X , X0, Σd,R) in a simple form,
the recursion scheme G† (i.e., the result of the order-reducing transformation) is also in
a simple form, and ord(G†) = max(0, ord(G) − 1), and AG† ≤ AG ⋅ (d + 1)AG , and ∣G†∣ =
O(∣G∣ ⋅ (d + 1)5⋅AG). Moreover, G† can be created in time linear in its size.

Proof. The part about the running time is obvious. It is also easy to see by induction that
ord(α†d) = max(0, ord(α) − 1). It follows that the order of the recursion scheme satisfies
the same equality, because nonterminals of G† have type α

†d for α being the type of a
corresponding nonterminal of G.

Recall that in the type α
†d obtained from α = (α1 → ⋅ ⋅ ⋅→ αk → o), every αi either

disappears or becomes (transformed and) repeated ∣Dd∣gar(αi) times, that is, at most (d+1)AG

times. This implies the inequality concerning AG† .
Every compound application can be written as f K1 . . . Kk L1 . . . Lℓ, where f is a

nonterminal or a variable, and ℓ = gar(f). In such a term, every Ki (after being transformed)
gets repeated ∣Dd∣gar(Ki) times, that is, at most (d + 1)AG times. Then, for every Li we
replicate the outcome d + 1 times, and we append a small prefix; this replication happens ℓ

times (and ℓ ≤ AG). In consequence, we easily see by induction that while transforming a
term of application depth c, its size gets multiplicated by at most O((d+ 1)2c⋅AG). Moreover,
every nonterminal X is repeated ∣Dd∣gar(X) times, that is, at most (d + 1)AG times. Because
the application depth of right-hand sides of rules is at most 2, this bounds the size of the
new recursion scheme by O(∣G∣ ⋅ (d + 1)5⋅AG).
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Looking again at the above description of the transformation, we can notice that the
application depth cannot grow; in consequence the property of being in a simple form is
preserved. ◀

Thus, if we want to check whether Eve wins in the tree generated by a parity recursion
scheme G of order n, we can first convert G to a simple form, and then apply the order-
reducing transformation n times. This gives us a parity recursion scheme of order 0, which
can be seen as a finite parity game with d priorities. Such a game can be solved in time
O(N4 ⋅ 2d), where N is its size [8]. Thus, by Lemmata 4.1 and 4.2, the whole algorithm
works in time n-fold exponential in AG and d, and polynomial (quartic) in ∣G∣.

If G is created as a product of a recursion scheme H and an alternating parity automaton A,
the running time is n-fold exponential in AH and ∣A∣, and quartic in ∣H∣ (cf. Appendix A of
the full version).

5 Correctness

In this section we finish a proof of Theorem 3.1 by showing that the winner in the tree
generated by the recursion scheme G† resulting from transforming a recursion scheme G is
the same as in the tree generated by the original recursion scheme G. Our proof consists
of three parts. First, we show that reductions performed by G can be reordered, so that
we can postpone substituting for (trailing) variables of order 0. To store such postponed
substitutions, called explicit substitutions, we introduce extended trees. Second, we show that
such reordered reductions in G are in a direct correspondence with reductions in G†. Finally,
we show how winning strategies of particular players from the tree generated by G† can be
transferred to the tree generated by G.

Extended trees and terms. In the sequel, trees and terms defined previously are sometimes
called non-extended trees and non-extended terms, in order to distinguish them from extended
trees and extended terms defined below. Having a set Z of variables of type o and a set of
symbols Σ, (potentially infinite) extended trees over (Z, Σ) are defined by coinduction: every
extended tree over (Z, Σ) is of the form either

⟨a, T1, . . . , Tk⟩, where a ∈ Σ and T1, . . . , Tk are again extended trees over Σ, or
z for some variable z ∈ Z, or
T LU/zM, where z /∈ Z is a variable of type o, and T is an extended tree over (Z ∪ {z}, Σ),
and U is an extended tree over (Z, Σ).

The construction of the form T LU/zM is called an explicit substitution. Intuitively, it denotes
the tree obtained by substituting U for z in T . Notice that the variable z being free in T

becomes bound in T LU/zM.
Likewise, having a set of typed nonterminals X , a set Z of variables of type o, and a set

of symbols Σ, extended terms over (X ,Z, Σ) are defined by induction:
if z /∈ Z is a variable of type o, and E is an extended term over (X ,Z ∪ {z}, Σ), and L

is a non-extended term of type o over (X ,Z, Σ), then ELL/zM is an extended term over
(X ,Z, Σ);
every non-extended term of type o over (X ,Z, Σ) is an extended term over (X ,Z, Σ).

Notice that explicit substitutions can be placed anywhere inside an extended tree, while in
an extended term they are allowed only to surround a non-extended term.

Of course an extended tree over (Z, Σ) can be also seen as an extended tree over (Z ′
, Σ),

where Z ′
⊇ Z; likewise for extended terms. In the sequel, such extending of the set of

variables is often performed implicitly.
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Having a recursion scheme G = (X , X0, Σ,R), for every set Z of variables of type o we
define an ext-reduction relation ↝G between extended terms over (X ,Z, Σ), as the least
relation such that

X K1 . . . Kk L1 . . . Lℓ ↝G R[K1/y1, . . . , Kk/yk, z
′
1/z1, . . . , z

′
ℓ/zℓ]LL1/z

′
1M . . . LLℓ/z

′
ℓM if

ℓ = gar(X), and R(X) = (X y1 . . . yk z1 . . . zℓ → R), and z
′
1, . . . , z

′
ℓ are fresh variables

of type o not appearing in Z.
Then, we define by coinduction the extended tree (over (Z, Σ)) ext-generated by G from an
extended term E (over (X ,Z, Σ)), denoted BText

G (E):
if E ↝

∗
G ⟨a, F1, . . . , Fk⟩, then BText

G (E) = ⟨a, BText
G (F1), . . . , BText

G (Fk)⟩;
if E ↝

∗
G F LL/zM, then BText

G (E) = BText
G (F )LBText

G (L)/zM;
otherwise, BText

G (E) = ⟨ω⟩.
The extended tree ext-generated by G (without mentioning a term), denoted BText(G), is
defined as BText

G (X0). Formally, the ext-generated extended tree is not unique, because
arbitrary fresh names may be used for bound variables; we should thus identify extended
trees differing only in names of bound variables.

Finally, we say how to convert extended trees to trees, by performing all postponed
substitutions. To this end, having fixed a set Σ of symbols, we define a simplification relation
↣ between extended trees over (∅, Σ) as the least relation such that

⟨a, T1, . . . , Tk⟩LL1/z1M . . . LLℓ/zℓM ↣ ⟨a, T1LL1/z1M . . . LLℓ/zℓM, . . . , TkLL1/z1M . . . LLℓ/zℓM⟩,
and
ziLL1/z1M . . . LLℓ/zℓM↣ LiLLi+1/zi+1M . . . LLℓ/zℓM.

Then, we define by coinduction the expansion of an extended tree T over (∅, Σ), being a
tree over Σ, and denoted BTs(T ):

if T ↣
∗ ⟨a, T1, . . . , Tk⟩, then BTs(T ) = ⟨a, BTs(T1), . . . , BTs(Tk)⟩;

otherwise, BTs(T ) = ⟨ω⟩.

The following lemma says that instead of generating a tree, we can first ext-generate an
extended tree, and then expand all the explicit substitutions:

▶ Lemma 5.1. For every recursion scheme G it holds that BT(G) = BTs(BText(G)).

The lemma can be proved in a standard way; a proof is contained in Appendix C of the
full version (similar lemmata appear in previous work [2, Lemma 18], [24, Lemma 5.1]).

Transforming extended parity trees. An extended parity tree is an extended tree whose
expansion is a parity tree. We now show how the transformation, defined previously for
terms, can be applied to extended parity trees. Namely, we define trt

d(Z, T ) when T is an
extended tree over (Z, Σd) for some set Z of variables of type o, and Z∶Z → Dd (we do
not need an “A” argument, used previously to store declarations for arguments, because
extended trees have no arguments). The definition is by coinduction:
(3’) trt

d(Z, z) = ⊤ if Z(z) is odd;
(4’) trt

d(Z, z) = ⊥ if Z(z) is even;
(5’) trt

d(Z, ⟨℘, p, K1, . . . , Kk⟩) = ⟨℘, p, trt
d(Z↾p, K1), . . . , trt

d(Z↾p, Kk)⟩;
(8’) trt

d(Z, T LU/zM) = ⟨Eve, 1, T
U
1 , T

U
2 , . . . , T

U
d , T2d⟩, where we take T

U
r = ⟨Adam, 1, Tr, ⟨Eve,

r, trt
d(Z↾r, U)⟩⟩ for r ∈ [d] and Tr = trt

d(Z[z ↦ r], T ) for r ∈ Dd.
Notice that trd transforms a term z to nonterminals ⍑ or ⍊, while trt

d transforms an extended
tree z to trees ⊤ or ⊥, generated from those nonterminals.

In the next lemma we observe that the tree generated by the transformed recursion
scheme G† can be obtained by transforming the extended tree ext-generated by the original
recursion scheme G:
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▶ Lemma 5.2. For every parity recursion scheme G it holds that trt
d(∅, BText(G)) = BT(G†).

The proof is purely syntactical, and is contained in Appendix D of the full version.

Transforming strategies. We finish our correctness proof by showing the following lemma:

▶ Lemma 5.3. Let T be an extended parity tree over (∅, Σd). If a player ℘ ∈ {Adam, Eve}
wins in trt

d(∅, T ), then ℘ wins also in BTs(T ).

Recall that the goal of this section is to prove that the winner in BT(G†) is the same as in
BT(G), for every parity recursion scheme G. This follows from the above lemma used for T =

BText(G), because BT(G†) = trt
d(∅, BText(G)) by Lemma 5.2 and BT(G) = BTs(BText(G))

by Lemma 5.1.
We now come to a proof of Lemma 5.3. In the sequel we assume a fixed extended parity

tree T over (∅, Σd). Suppose first that it is Eve who wins in trt
d(∅, T ); thus, we also fix her

winning strategy ρ in this tree. Our goal is to construct Eve’s winning strategy ρ
′ in BTs(T ).

In the proof, we use two additional notions. First, we say that a sequence of priorities
r1, . . . , rk is a ⪯-contraction of a sequence of priorities p1, . . . , pn if the latter can be split at
some indices i0, i1, . . . , ik, where 0 = i0 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ ik = n, so that for every j ∈ [k] the infix
pij−1+1, pij−1+2, . . . , pij

fulfils declaration rj . Likewise we define ⪯-contractions for infinite
sequences, only there are infinitely many splitting indices (which necessarily tend to infinity,
meaning that the whole infinite sequence is split).

Notice that we allow empty infixes, so one can arbitrarily insert odd numbers rj (i.e.,
numbers rj fulfilled by the empty sequence) to the ⪯-contraction. For example, 3, 4, 2 is
a ⪯-contraction of 4, 3, 2, 3, 4 because the empty sequence fulfils 3, and 4, 3 fulfils 4, and
2, 3, 4 fulfils 2. On the other hand, 3, 4, 2 is not a ⪯-contraction of 4, 3, 2, 3. The idea of
⪯-contractions is to describe what happens when we move from BTs(T ) to trt

d(∅, T ). Indeed,
if T has a subtree of the form ULV /zM, then in trt

d(∅, T ) the play can continue to V after
playing only an Eve’s declaration r (skipping completely U), while in BTs(T ) before reaching
V we traverse through U , where visited priorities are intended to fulfil r.

It is easy to see that ⪯-contractions are transitive, and that they can make the situation
only worse for Eve:

▶ Lemma 5.4. If a sequence π1 is a ⪯-contraction of a sequence π2, which is in turn a
⪯-contraction of a sequence π3, then π1 is a ⪯-contraction of π3.

▶ Lemma 5.5. If an infinite sequence π1 is a ⪯-contraction of an infinite sequence π2,
and the greatest priority appearing infinitely often in π1 is even, then the greatest priority
appearing infinitely often in π2 is even as well.

We now introduce the second notion (it concerns only finite sequences, and is relative to
the bound d on priorities): for a declaration r ∈ Dd and two sequences π1, π2 of priorities
from [d] we say that π1 is an r-extension of π2 if for every sequence π3 of priorities from [d]
that fulfils the declaration r, the sequence π1 is a ⪯-contraction of the concatenation π2 ⋅ π3.

For example, the sequence 3, 4, 4 is a 5-extension of the sequence 4, 3, 6 (independently
from the value of d ≥ 6), because the empty sequence fulfils 3, and 4, 3 fulfils 4, and
6, p1, . . . , pk fulfils 4 whenever p1, . . . , pk fulfils 5 (i.e., the maximum among p1, . . . , pk is
either even or at most 5). Notice, moreover, that every sequence is a 2d-extension of every
sequence, because no sequence of priorities from [d] can fulfil the declaration 2d.

The following lemma is a direct consequence of the definition and of Lemma 3.2:
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▶ Lemma 5.6. If a sequence π is an r-extension of a sequence p1, . . . , pn, then π is also an
r↾pn+1-extension of p1, . . . , pn, pn+1 for every priority pn+1 ∈ [d].

Additionally, for a node v (of some parity tree) we write π(v) for the sequence of priorities
in ancestors of v (not including the priority in v).

We now come back to the proof, showing how to construct the new strategy ρ
′, winning

for Eve in BTs(T ). In order to describe ρ
′, we play simultaneously in both trees, BTs(T )

and trt
d(∅, T ), and we use moves in one tree to choose moves in the other tree. Namely, at

every moment of the play, we remember
a current node v in BTs(T ),
nodes w0, w1, . . . , wℓ in trt

d(∅, T ), for some ℓ ∈ N,
variables z1, . . . , zℓ of type o,
functions Z0, Z1, . . . , Zℓ storing Eve’s declarations, where Zi∶ {zi+1, . . . , zℓ} → Dd for
every i, and
extended trees U0, U1, . . . , Uℓ, where every Ui is over ({zi+1, . . . , zℓ}, Σd).

They satisfy the following invariant:
(a) BTs(T )↾v = BTs(U0LU1/z1M . . . LUℓ/zℓM),
(b) trt

d(∅, T )↾wi
= trt

d(Zi, Ui) for all i ∈ {0, 1, . . . , ℓ},
(c) π(w0) is a ⪯-contraction of π(v), and
(d) π(wj) is a Zi(zj)-extension of π(wi), for all i, j such that 0 ≤ i < j ≤ ℓ.

We start with ℓ = 0, with v and w0 at the root of BTs(T ) and trt
d(∅, T ), respectively,

with Z0 = ∅, and with U0 = T . The invariant is clearly satisfied.
Then, during the play, we have one of three cases, depending on the shape of U0:

1. First, assume that U0 = ⟨℘, p, T1, . . . , Tk⟩. Then

BTs(T )↾v = ⟨℘, p, BTs(T1LU1/z1M . . . LUℓ/zℓM), . . . , BTs(TkLU1/z1M . . . LUℓ/zℓM)⟩;
trt

d(∅, T )↾w0 = ⟨℘, p, trt
d(Z0, T1), . . . , trt

d(Z0, Tk)⟩.

If ℘ = Adam, Adam chooses some child of v in BTs(T ), and we choose the same child of
w0 in trt

d(∅, T ). If ℘ = Eve, Eve chooses some child of w0 in trt
d(∅, T ), according to her

strategy ρ, and in ρ
′ we choose the same child of v. Thus, in both cases, we move both v

and w0 to their c-th child, for some c ∈ [k]. We also take Z0↾p as the new Z0 and Tc as
the new U0. Lemma 5.6 ensures that Item (d) of the invariant is preserved.

2. Another possibility is that U0 is a variable, that is, U0 = zc for some c ∈ [ℓ]. Then
trt

d(∅, T )↾w0 (i.e., trt
d(Z0, U0)) is either ⊥ or ⊤, depending on the parity of Z0(zc). But

our play in trt
d(∅, T ) follows an Eve’s winning strategy, so it will be won by Eve, thus the

subtree cannot be ⊥, in which Eve is losing. In consequence Z0(zc) is odd, so the empty
sequence fulfils Z0(zc). This implies that π(wc), being an Z0(zc)-extension of π(w0), is
its ⪯-contraction, and thus also an ⪯-contraction of π(v) (by Lemma 5.4). We discard
wi, zi, Zi, Ui for i < c (so that wc becomes now w0, etc.).

3. Finally, assume that U0 = V LW/zM. Then trt
d(∅, T )↾w0 = ⟨Eve, 1, V

W
1 , . . . , V

W
d , V2d⟩,

where V
W

r = ⟨Adam, 1, Vr, ⟨Eve, r, trt
d(Z0↾r, W )⟩⟩ for r ∈ [d] and Vr = trt

d(Z0[z ↦ r], V )
for r ∈ Dd. In such a node w0 Eve, according to her strategy ρ, chooses a declaration r

by going to an appropriate subtree V
W

r (or Vr if r = 2d). We then update our memory
as follows:

We leave v and wi, zi, Zi, Ui for i ≥ 1 unchanged.
We move w0 to the root of Vr (this adds once or twice priority 1 to π(w0), hence
Item (c) of the invariant is preserved).
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Let r
′
= r if r ∈ [d], and r

′
= 1 if r = 2d.

We add an additional node w0.5 between w0 and w1 (saying this differently, we shift
wi for i ≥ 1 by one, and we insert the new node in place of w1). For w0.5 we choose
the root of trt

d(Z0↾r′ , W ). Notice that π(w0.5) is an r-extension of π(w0) (for r ∈ [d]
because π(w0.5) is obtained from π(w0) by appending the priority r

′
= r, and for

r = 2d because no sequence of priorities from [d] fulfils 2d), and that every π(wj) for
1 ≤ j ≤ ℓ is a Z0↾r′(zj)-extension of π(w0.5) (by Lemma 5.6).
As Z0, U0, z0.5, Z0.5, and U0.5 we take Z0[z ↦ r], V , z, Z0↾r′ , and W , respectively.

Observe that after finitely many repetitions of Cases 2 and 3 necessarily Case 1 has to
occur, where the play advances in BTs(T ). Indeed, U0LU1/z1M . . . LUℓ/zℓM has to generate the
next node of BTs(T ) in finitely many steps; in particular, the number of explicit substitution
at the head of U0 has to be finite.

We have to prove that the infinite branch ξ of BTs(T ) obtained this way is won by Eve.
To this end, consider the corresponding sequence of “w0” nodes in the construction and
observe that this sequence converges to some infinite branch ζ in trt

d(∅, T ). Indeed, whenever
the sequence enters to a subtree of the form trt

d(Z0, V LW/zM) and stays there forever, then
either it enters to the subtree Vr = trt

d(Z0[z ↦ r], V ) for some r and stays there forever,
or, after some time, it enters to the subtree trt

d(Z0↾r, W ) for some r and stays there forever.
Moreover, the sequence of priorities on ζ is a ⪯-contraction of the sequence of priorities on
ξ (the function from elements of the former sequence to infixes of the latter sequence, as
needed for ⪯-contraction, is obtained as the limit of such functions witnessing that always
π(w0) is a ⪯-contraction of π(v)). Since ζ agrees with the strategy ρ, it is won by Eve, hence
by Lemma 5.5 also ξ is won by Eve, as required. This finishes the proof in the case of Eve
winning in trt

d(∅, T ).
Suppose now that it is Adam who wins in trt

d(∅, T ). The proof in this case is similar,
so we only list differences. First, ⪰-contraction is defined like ⪯-contraction, but for every
infix pij−1+1, pij−1+2, . . . , pij

in the split we require that rj is ⪰ (instead of ⪯) than the leader
of the infix. Second, we say that a sequence π1 of priorities from [d] is an r-neg-extension
of a sequence π2 of priorities from [d] if for every sequence π3 of priorities from [d] that
does NOT fulfil the declaration r, the sequence π1 is a ⪰-contraction of the concatenation
π2 ⋅ π3. In Items (c) and (d) of the invariant we replace ⪯-contraction by ⪰-contraction, and
r-extension by r-neg-extension. Then, in Case 1 of the construction we only swap the role of
Eve and Adam. In Case 2 we now have that the play is won by Adam, so Z0(zc) is even, that
is, not fulfilled by the empty sequence; this implies that π(wc), being an Z0(zc)-neg-extension
of π(w0), is also its ⪰-contraction. The main difference is in Case 3. For every r ∈ [d] we
know Adam’s decision in the root of V

W
r , according to his winning strategy. Take the worst

r ∈ [d] such that in V
W

r Adam goes to the left subtree, or r = 2d if he goes right everywhere;
in both cases, Adam’s strategy allows to enter Vr. Let also s be the best among priorities
that are worse than r; in V

W
s Adam goes to the right subtree (if there are no priorities worse

than r, we choose s arbitrarily, e.g., s = 1). Then as the new w0 we take the root of Vr, and
as w0.5 we take the root of trt

d(Z↾s, W ). Notice that π(w0.5) is an r-neg-extension of π(w0):
s is better or equal than the leader of every sequence not fulfilling r (also when r is the worst
priority, because no such a sequence exists), which ensures that the invariant is preserved.

6 Final remarks

We have presented a new, simple model-checking algorithm for higher-order recursion schemes.
One may ask whether this algorithm can be used in practice. Of course the complexity
n-EXPTIME for recursion schemes of order n is unacceptably large (even if we take into
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account the fact that we are n-fold exponential only in the arity of types and in the size of an
automaton, not in the size of a recursion scheme), but one has to recall that there exist tools
solving the considered problem in such a complexity. The reason why these tools work is that
the time spent by them on “easy” inputs is much smaller than the worst-case complexity (and
many “typical inputs” are indeed easy). Unfortunately, this is not the case for our algorithm:
the size of the recursion scheme resulting from our transformation is always large. Moreover,
it seems unlikely that any simple analysis of the resulting recursion scheme (like removing
useless nonterminals or some control flow analysis) may help in reducing its size. Indeed, one
can see that if no nonterminals nor arguments were useless in the original recursion scheme,
then also no nonterminals nor arguments are useless in the resulting recursion scheme. Thus,
our algorithm is mainly of a theoretical interest.

It seems feasible that a transformation similar to the one presented in this paper can
be used to solve the simultaneous unboundedness problem (aka. diagonal problem) [11] for
recursion schemes. Developing such a transformation is a possible direction for further work.
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Abstract
The fluted fragment is a fragment of first-order logic in which the order of quantification of variables
coincides with the order in which those variables appear as arguments of predicates. It is known
that the fluted fragment possesses the finite model property. In this paper, we extend the fluted
fragment by the addition of counting quantifiers. We show that the resulting logic retains the
finite model property, and that the satisfiability problem for its (m + 1)-variable sub-fragment
is in m-NExpTime for all positive m. We also consider the satisfiability and finite satisfiability
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1 Introduction

The fluted fragment, FL, is a fragment of first-order logic in which, very roughly, the order
of quantification of variables coincides with the order in which those variables appear as
arguments of predicates, for example:

No student admires every professor
∀x1(std(x1) → ¬∀x2(prof(x2) → admr(x1, x2))) (1)

No lecturer introduces any professor to every student
∀x1(lectr(x1) → ¬∃x2(prof(x2) ∧ ∀x3(std(x3) → intro(x1, x2, x3)))). (2)

More precisely, in fluted formulas, all atoms are of the form p(xℓ, . . . , xm), with a contiguous
sequence of variables as their arguments, Boolean combinations can only be formed from
formulas whose last free variable is the same, and only the last free variable in a formula
may be quantified. Equality is not present. It is known that FL has the finite model
property, and that its m-variable sub-fragment, FLm, is ⌊m/2⌋-NExpTime-hard for all
m ≥ 2 and in (m− 2)-NExpTime for all m ≥ 3 [17]. Hence, the satisfiability problem for
FL is Tower-complete in the system of trans-elementary complexity classes of [24]. (It was
incorrectly claimed in [20] that this problem is in NExpTime.)

Counting quantifiers are expressions of the form ∃[≤M ], ∃[≥M ] and ∃[=M ], where M is a
positive integer, with the interpretations “there exist at most/at least/exactly M . . . ”. We
investigate the addition of counting quantifiers and equality to the fluted fragment:

At most three lecturers introduce a professor to at least five students
∃[≤3]x1(lectr(x1) ∧ ∃x2(prof(x2) ∧ ∃[≥5]x3(std(x3) ∧ intro(x1, x2, x3)))) (3)

Every absent-minded professor introduces some student to himself
∀x1(abs-mnd(x1) ∧ prof(x1) → ∃x2∃x3(std(x3) ∧ x2 = x3 ∧ intro(x1, x2, x3))). (4)
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141:2 Fluted Logic with Counting

We denote this extension of FL by FLC, and its m-variable sub-fragment by FLCm. We
also consider the corresponding fragments SFC and SFCm, in which the fluting restriction is
waived for sub-formulas with at most two variables. (Formal definitions are given in Sec. 2.)

The definition of FL employed here is that given by Purdy [19], who traces its origins
to Quine [22]. (The term “fluted” is actually Quine’s.) While it is unclear whether the
quantification patterns specified by Purdy are really those that Quine had in mind, it is
Purdy’s definition which has established itself, and indeed which is – from the point of
view of recent work in computational logic – of greater interest. In particular, two-variable
fluted logic with counting, FLC2 includes (under a simple translation) the description logic
ALCHOQ, whose sub-fragments have been the focus of intensive investigation over recent
decades; and its semi-fluted extension, SFC2 coincides with C2, the two-variable fragment
of first-order logic with counting quantifiers, whose satisfiability and finite satisfiability
problems are known to be NExpTime-complete [6, 12, 15]. Of course, FL is not limited
in the number of variables formulas can contain, a property it shares with the guarded
fragment [1], which also has the finite model property, and whose satisfiability problem is in
2-ExpTime [5]. In fact, our logic SFC extends C2 with fluted formulas in much the same way
as the so-called triguarded fragment [23] extends the two-variable fragment of first-order logic
(without equality) with guarded formulas. The triguarded fragment has recently been shown
to have the finite model property [10]; its satisfiability problem is 2-NExpTime-complete,
but becomes undecidable in the presence of equality. We note that negation can be applied
freely in FLC and SFC. Thus, these fragments are not subject to any type of guardedness
restrictions: for example, (2) is not guarded or even negation-guarded [2].

In this extended abstract, we show that FLC has the finite model property, and that the
satisfiability problem for FLCm+1 is in m-NExpTime for all m ≥ 1. We also show that the
satisfiability and finite satisfiability problems for SFC remain decidable.

2 Preliminaries

In the context of fluted formulas, logical variables are taken from the sequence x̄ω = x1, x2, . . .,
and all signatures are purely relational, i.e., there are no individual constants or function
symbols; however, we allow 0-ary relations (proposition letters). We employ the syntax of
counting quantifiers ∃[≤M ], ∃[≥M ] and ∃[=M ], where M is a (numeral denoting a) positive
integer, under the expected semantics. A multiset over some carrier set X is a function f

from X to cardinal numbers, where, for each x ∈ X, f(x) is the multiplicity with which x

occurs in f . Informally, we identify multisets differing only by elements of multiplicity 0.
Almost all mulitplicities we encounter will be finite.

We begin with the syntax of the logics considered here. Define the sets of formulas
FLC[m], for all m ≥ 0, by simultaneous structural recursion as follows:

(i) any atom p(xℓ, . . . , xm), where xℓ, . . . , xm is a contiguous subsequence of x̄ω and p a
predicate of arity m− ℓ+ 1, is in FLC[m];

(ii) FLC[m] is closed under boolean combinations;
(iii) if φ is in FLC[m+1], then ∃xm+1.φ and ∀xm+1.φ are in FLC[m],
(iv) if φ is in FLC[m+1] and M a non-negative integer, then ∃[≤M ]xm+1.φ, ∃[≥M ]xm+1.φ

and ∃[=M ]xm+1.φ are in FLC[m].
It is intended that Clause (i) allows the case ℓ = m + 1 (empty sequence of arguments),
so that the atoms in question are proposition letters; and when m = ℓ + 1 (exactly two
arguments), we allow p to be the equality predicate. We define the sets of formulas FL[m]

similarly, except that we do not allow the equality predicate in Clause (i), and Clause (iv) is
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dropped altogether. The fluted fragment is the set of formulas FL =
⋃

m≥0 FL[m], and the
fluted fragment with counting and equality, the set of formulas FLC =

⋃
m≥0 FLC[m]. Finally,

we define FLm to be the fragment of FL in which at most the variables x1, . . . , xm appear
(free or bound); and similarly for FLCm. Thus, (1) is in FL2, and (2) in FL3, while (3)
and (4) are in FLC3. Do not confuse FLCm with FLC[m]: all of (1)–(4) are in FLC[0]. By
sentence, we mean a formula with no free variables.

Denote by C2 the two-variable fragment of first-order logic with counting, i.e. the set of
first-order formulas with (equality and) counting quantifiers over a purely relational signature,
and featuring only two logical variables. (We may without loss of useful expressive power
assume that all predicates have arity at most 2.) Formulas of C2 are not required to be
fluted. For example, ∀x1∃x2.r(x1, x2) ∧ ∀x2∃[≤1]x1.r(x1, x2) ∧ ∃x2∀x1¬r(x1, x2) is a formula
of C2, but not of FLC2. It is straightforward to see that this formula is satisfiable, but
only in infinite models. Thus, C2 lacks the finite model property. It is well-known that the
satisfiability and finite satisfiability problems for the three-variable fragment of first-order
logic (even without with counting) are undecidable.

In the context of FLC, the possibility arises of waiving the fluting restrictions on sub-
formulas featuring at most two free variables. Define the sets of formulas SFC[m] in the
same way as FLC[m], but with the additional clauses (for m ≥ 2):
(v) Any C2-formula ψ, whose set of free variables is equal to one of {xm−1, xm}, {xm} or

∅, is in SFC[m].
We then take the semi-fluted fragment with counting to be the set of formulas
SFC =

⋃
m≥0 SFC[m], denoting its m-variable sub-fragment by SFCm. If φ is a formula of

any of the above fragments, we take its size, ∥φ∥, to be the number of bits required to write
it, on the understanding that numerical subscripts are encoded as binary strings. Since SFC
contains C2, it lacks the finite model property. We can now state our main results.

▶ Theorem 1. The logic FLC has the finite model property. The satisfiability problem for
FLCm+1 is in m-NExpTime for all m ≥ 1.

▶ Theorem 2. The satisfiability and finite satisfiability problems for SFC are decidable.

Assuming, as we shall, that the arity of any predicate is fixed in advance, variables in
fluted logic convey no information at all, and therefore can be omitted. (This may have been
part of the motivation for Quine [21].) The same applies to fluted formulas with counting
quantifiers. For example, (3) and (4) can be written, respectively, as:

∃[≤3](lectr ∧ ∃(prof ∧ ∃[≥5](std ∧ intro))) (5)
∀(abs-mnd ∧ prof → ∃∃(std ∧ = ∧ intro)). (6)

It is straightforward to reconstruct (3) and (4) (up to a shift of variable indices) from (5)
and (6). Consequently, we employ variable-free notation for FLC in the sequel, as it is
more compact, though formulas such as “std ∧ = ∧ intro” admittedly take some getting
used to. It is important to realize that, with variable-free notation, any formula of FLC[m]

is, without lexical change, also a formula of FLC[m+1]. For example, the sub-formula
∃(prof ∧ ∃[≥5](std ∧ intro)) of (5) may be reconstructed as the FLC[1]-formula φ(x1) :=
∃x2(prof(x2) ∧ ∃[≥5]x3(std(x3) ∧ intro(x1, x2, x3))), or alternatively as the FLC[2]-formula
φ′(x1, x2) := ∃x3(prof(x3) ∧ ∃[≥5]x4(std(x4) ∧ intro(x2, x3, x4))), and so on.

Thus, using variable-free notation, the sets FLC[m] are the minimal family of sets of
formulas satisfying:
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141:4 Fluted Logic with Counting

(i) any predicate p of arity less than or equal to m is in FLC[m];
(ii) FLC[m] is closed under boolean combinations;
(iii) if φ is in FLC[m+1], then ∃φ and ∀φ are in FLC[m],
(iv) if φ is in FLC[m+1] and M a non-negative integer, then ∃[≤M ]φ, ∃[≥M ]φ and ∃[=M ]φ

are in FLC[m].
We also use the term sentence in this context to mean a formula of FLC[0], and we continue
to use the notation FLCm to denote the same set of formulas as defined above, but written
without variables. We remark that there is no difference between a quantifier-free formula of
FLCm and a quantifier-free formula of FLC[m]; it is just a Boolean combination of predicates
(including equality) of arity at most m.

If φ ∈ FLC[m], and ā = a1, . . . , am is an m-tuple of elements from some structure A

interpreting the signature of φ, we write A |= φ[ā] as usual to indicate that ā satisfies φ
in A, under the assignments x1 7→ a1, . . . , xm 7→ am. Observe that this notation remains
meaningful even with variable-free notation. Indeed, if ā ∈ Am and a ∈ A, then A |= φ[ā] if
and only if A |= φ[aā]. (This trick is important, because it will be used at various points in
Sec. 4.) The notation ∀m stands for a block ∀ · · · ∀ of m universal quantifiers.

Of course, we cannot – without further ado – use variable-free notation for SFC.
The analysis of decidable fragments is often simplified by the use of normal forms in the

style of [25]. Here, we adapt the normal forms for FL from [17, Lemma 4.1].

▶ Lemma 3. Let φ be a formula of FLCm+1 (m ≥ 1). Then we may compute, in time
bounded by a polynomial function of ∥φ∥, an FLCm+1-sentence satisfiable over the same
domains as φ, and having the form∧

s∈S

∀m(µs → ∃[=Ms]ζs) ∧
∧
t∈T

∀m(νt → ∀ηt) ∧ ∀m+1θ, (7)

where S and T are index sets, the µs and νt are quantifier-free FLCm-formulas, the ζs, ηt

and θ are quantifier-free FLCm+1-formulas, and the Ms are positive integers.

Proof. By prepending existential quantifiers if necessary, we may assume that φ is a sentence.
Call a quantifier of the form ∃[=M ] an equality quantifier. Somewhat counter-intuitively,
we first remove all equality quantifiers from φ. Let φ0 := φ, and suppose φ0 possesses
a sub-formula θ = ∃[=M ]χ, such that χ contains no equality quantifiers. Let ℓ be the
smallest number such that θ ∈ FLC[ℓ]. Let p, q be fresh predicates or arity ℓ, and define
φ1 := φ0[θ/(p ∧ q)] and

ψ1 := ∀ℓ(p ↔ ∃[≥M ]χ) ∧ ∀ℓ(q ↔ ∃[≤M ]χ).

It is obvious that φ0 and φ1 ∧ ψ1 are satisfiable over the same domains Now process φ1
in the same way to obtain φ2, until we eventually obtain a sentence φn containing no
equality quantifiers. This process evidently terminates in polynomial time. Since φ and
φn ∧ ψn ∧ · · · ∧ ψ1 are satisfiable over the same domains, we may simply assume, henceforth,
that φ contains no equality quantifiers.

Since there are no equality quantifiers in φ we may move negations inward in the usual
way, so that they apply to atomic formulas. At this point, we may follow the proof of
the analogous theorem for FL presented in [17, pp. 174], obtaining, in polynomial time, a
sentence satisfiable over the same domains as φ, and having the form∧

s∈S

∀m(µs → ∃[▷◁sMs]ζs) ∧
∧
t∈T

∀m(νt → ∀ηt) ∧ ∀m+1θ,
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where each ▷◁s is one of the symbols ≤ or ≥. We now eliminate all occurrences of ≤ and ≥
with =. For any conjunct ∀m(µs → ∃[≤Ms]ζs), we let qs be a new predicate of arity m+ 1
and replace this conjunct with

∀m(µs → ∃[=Ms]qs) ∧ ∀m+1(ζs → qs).

The case ≥ is treated similarly. ◀

We refer to formulas of the forms (7) as normal-form formulas of FLCm+1.
The following notions are useful for analysing FLC-formulas. Let Σ be a finite relational

signature. A fluted literal over Σ is an expression p or ¬p, where p ∈ Σ ∪ {=}. (Remember
that, under variable-free notation, we think of p as an atom p(xℓ, . . . , xm) of FLC[m].) The
arity of the literal is the arity of the underlying predicate. A fluted m-type τ (over Σ) is a
maximal consistent set of fluted literals over Σ having arity at most m. We call τ reflexive if
it contains the literal =. We silently identify fluted m-types with their conjunctions, thus
regarding them as quantifier-free FLm-formulas. Obviously, if τ is a fluted m-type and ψ a
quantifier-free FLCm-formula over the same signature, then either |= τ → ψ or |= τ → ¬ψ.
Suppose A is a structure over domain A interpreting Σ, and ā an m-tuple of elements from
A (m ≥ 1). Then there is a unique fluted m-type τ such that A |= τ [ā]. We denote τ by
ftpA[ā], and call it the fluted m-type of ā.

A fluted star-type σ of dimension m over Σ is a multiset of fluted (m+ 1)-types over Σ at
most one of which (counting multiplicities) is reflexive. The term “star-type” comes from [15];
in the present paper,we concern ourselves either with fluted star-types or semi-fluted star-types
(defined below). Since we may list the fluted (m+ 1)-types over Σ as τ1, . . . , τJ in some fixed
order (J ≤ 2|Σ|+1), we can regard any fluted star-type σ over Σ as a vector (σ(τ1), . . . , σ(τJ ))
of cardinal numbers. We say that σ is M -bounded if |σ| = σ(τ1) + · · · + σ(τJ) ≤ M . If ζ is
a quantifier-free FLCm+1-formula over Σ, the retract of σ to ζ is the fluted star-type σ↾ζ
given by:

(σ↾ζ)(τ) =
{
σ(τ) if |= τ → ζ

0 otherwise.

Thus, when performing a retract to ζ, we remove from σ all occurrences of those fluted
(m+ 1)-types inconsistent with ζ (i.e. set their multiplicities to 0). We say that σ is a fluted
ζ-star-type if σ = σ↾ζ. Suppose A is a structure over domain A interpreting Σ, and ā an
m-tuple of elements from A (m ≥ 1). If ζ is any quantifier-free formula of FLCm+1 over Σ,
we may define a fluted ζ-star-type σ of dimension m by setting, for each fluted (m+ 1)-type
τ over Σ, σ(τ) = |{b ∈ A : A |= τ [āb] and A |= ζ[āb]}|. We denote σ by fstAζ [ā], and call
it the fluted ζ-star-type of ā in A. As an aide to intuition, think of ā as emitting various
“ζ-rays”, each absorbed by some element b ∈ A such that A |= ζ[āb]. Every ζ-ray has a
“colour” specified by some fluted (m+ 1)-type τ such that |= τ → ζ. The fluted star-type
fstAζ [ā] simply counts how many rays of each colour arise in this way. To grasp the utility
of these notions, let φ be a normal-form formula (7), and suppose A |= φ. Now let B be a
structure such that, for every m-tuple b̄ from B, there exists an m-tuple ā from A satisfying:
(i) ftpB[b̄] = ftpA[ā]; (ii) fstBζs

[b̄] = fstAζs
[ā] for every s such that B |= µs[b̄], and (iii) for every

b′ ∈ B, there exists a′ ∈ A such that ftpB[b̄b′] = ftpA[āa′]. Then B |= φ.
We mentioned earlier that the logic C2 lacks the finite model property, but that its

satisfiability and finite satisfiability problems are in NExpTime – these being relatively
non-trivial results. The following lemma illustrates the comparative weakness of its fluted
sub-fragment, FLC2 by establishing that this has the finite model property. In fact, we adapt
a well-known proof (see [8, pp. 77 ff.], [9]) of the corresponding statement for the monadic
fragment of first-order logic [11].
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141:6 Fluted Logic with Counting

▶ Lemma 4. If φ is a satisfiable formula of FLC2, then φ has a model of size bounded by
an exponential function of ∥φ∥. The satisfiablity problem for FLC2 is in NExpTime.

Proof. By Lemma 3, we may assume that φ is of the form (7), over a signature Σ, where
m = 1. We may further assume that Σ features no predicates of arity 0, since their truth-
values can be guessed. Let M =

∑
s∈S Ms, and suppose A |= φ. For each fluted 1-type π

(over Σ) realized in A, let Bπ be a set of cardinality min(M + 1, |{a ∈ A | ftpA[a] = π}|) and
let B =

⋃
π Bπ. Thus, |B| ≤ (M + 1)2|Σ|+1. We define a structure B with domain B and

show that B |= φ. For each b ∈ Bπ, set ftpB[b] = π. These fluted 1-types involve only unary
predicates, and so may be assigned independently of each other. To complete the definition
of B we fix the extensions of binary predicates so as to determine ftpB[bb′] for any ordered
pair of elements ⟨b, b′⟩ ∈ B2.

Pick any b ∈ B, and let a ∈ A be such that ftpA[a] = ftpB[b] = π, say. Write
S′ = {s ∈ S : A |= µs[a]} and ζ ′ =

∨
s∈S′ ζs, and let A′ be the set of elements a′ ∈ A \ {a}

such that A |= ζ ′[aa′], say A′ = {a1, . . . , ak}, with k ≤ M . Thus we may choose a
subset B′ = {b1, . . . , bk} ⊆ B \ {b} such that, for all i (1 ≤ i ≤ k), ftpB[bi] = ftpA[ai].
However this is done, we are guaranteed that, for every b′ ∈ B \ (B′ ∪ {b}), we can find
some a′ ∈ A \ (A′ ∪ {a}) such that ftpA[a′] = ftpB[b′]. Now set ftpB[bb] = ftpA[aa] and
ftpB[bbi] = ftpA[aai] for all i (1 ≤ i ≤ k). Further, for all b′ ∈ B \ (B′ ∪ {b}), pick some
a′ ∈ A \ (A′ ∪ {a}) such that ftpA[a′] = ftpB[b′], and set ftpB[bb′] = ftpA[aa′]. Observe
that, in the latter case, A ̸|= ζ ′[aa′], and therefore B ̸|= ζ ′[bb′]. Hence, fstBζ′ [b] = fstAζ′ [a], so
that fstBζs

[b] =
(
fstBζ′ [b]

)
↾ζs =

(
fstAζ′ [a]

)
↾ζs = fstAζs

[a] for every s ∈ S′. By carrying out this
construction for every b ∈ B, we fully define B. Note that the fluted 2-types assigned in
this process never clash with the fluted 1-types already assigned, and never clash with each
other. Thus, for every element b ∈ B there exists a ∈ A such that: (i) ftpB[b] = ftpA[a]; (ii)
fstBζs

[b] = fstAζs
[a] for every s such that B |= µs[b], and (iii) for every element b′ ∈ B, there

exists a′ ∈ A such that ftpB[bb′] = ftpA[aa′]. Hence B |= φ. ◀

At various points in the ensuing argument, we need to vary the signatures interpreted
by structures. The following notation and terminology is standard. If A+ is any structure
interpreting a signature Σ+, and Σ ⊆ Σ+, we denote by A+↾Σ the structure obtained by
forgetting the predicates in Σ+ \ Σ. We call A = A+↾Σ the reduct of A+ to Σ, and say that
A+ is an expansion of A.

3 Existential Presburger quantifiers

In view of Lemma 4, a natural strategy for proving Theorem 1 suggests itself: reduce the
satisfiability problem for FLCm+1 to that for FLCm. This is nearly the strategy we follow.
To make it work, however, we must generalize the notion of counting quantifiers. Denote
the natural numbers {0, 1, 2, . . . } by N. A linear Diophantine inequality is an expression
a1v1 + · · · + anvn + b ≤ c1v1 + · · · + cnvn + d, with coeffecients in N. If E(v̄) is a system of
linear Diophantine inequalities in variables v̄, a solution of E is an assignment of natural
numbers ā to the variables v̄ which make all inequalities of E true. It was shown in [4] that
one can bound the values occurring in the solutions of such systems. (Various such bounds
are available: see, e.g. [13].) The following is adequate for our purposes:

▶ Theorem 5 (from [14], Corollary 1). Let E be a system of m linear Diophantine inequalities
in n variables, with maximum coefficient M . If E has a solution, then it has one in which all
values are bounded by (2 + (n+ 1)M)n+m.
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By Presburger arithmetic, we understand the set of first-order formulas (with equality)
over the signature {N,+,≤, ·} whose atomic sub-formulas are linear Diophantine inequalities.
We interpret these symbols over the domain N in the standard way (with the constants N
interpreted as themselves), and say that a tuple of natural numbers ā satisfies a formula
of Presburger arithmetic Θ(v̄) if N |= Θ[ā]. The size of Θ, denoted ∥Θ∥, is the number
of bits required to write it in the usual way, under the assumption that the individual
constants (i.e. coefficients of the linear Diophantine inequalities) are encoded as bit-strings.
By existential Presburger arithmetic, we mean the set of formulas of Presburger arithmetic
of the form Θ(v̄) = ∃ū.Ξ(v̄, ū), where Ξ is quantifier-free. Theorem 5 immediately yields (see
also, e.g. [7, Table 1]):

▶ Corollary 6. There is a non-deterministic procedure which, given a formula Θ(v̄) of
existential Presburger arithmetic and tuple ā of natural numbers bounded by M with the same
arity as v̄, has a successful run if and only if ā satisfies Θ(v̄). This procedure runs in time
bounded by a polynomial function of ∥Θ∥ + logM .

Now for our generalization of counting quantifiers.
Fix some m ≥ 1, and let Σ be a purely relational signature, M a positive integer and Θ a

formula of existential Presburger arithmetic in variables v̄ = v1, . . . , vJ corresponding to the
fluted (m+ 1)-types τ1, . . . , τJ over Σ. We call an expression Q⟨Σ,M,Θ⟩ a fluted existential
Presburger quantifier (or: fluted ep-quantifier). If ζ is a quantifier-free formula of FLm+1,
we allow formulas φ of the form Q⟨Σ,M,Θ⟩ζ, with semantics given by declaring, for any
structure A interpreting a signature Σ′ ⊇ Σ and any m-tuple ā of elements from A:

A |= φ[ā] if and only if fst(A↾Σ)
ζ [ā] is M -bounded and satisfies Θ(v̄). (8)

Recall in this connection that we regard a star-type over Σ as a vector with entries in N;
the star-type in question is M -bounded if the sum of those entries is at most M . By way of
maintaining some contact with familiar territory, the FLC-formula ∃[=M ]ζ can be written in
the new syntax as Q⟨Σ,M,Θ⟩ζ, where Θ is the single equation v1 + · · ·+vJ = M . (Of course:
this equation is just a conjunction of two linear inequalities, and so counts as a formula of
Presburger arithmetic). Note that there is no existential quantification in this case.

We define FLCm+1
ep to be the set of formulas φ given by∧

s∈S

∀m(µs → Q⟨Σ,Ms,Θs⟩ζs) ∧
∧
t∈T

∀m(νt → ∀ηt) ∧ ∀m+1θ, (9)

where Σ is a relational signature, the µs and νt are quantifier-free FLCm-formulas over Σ,
the ζs, ηt and θ are quantifier-free FLCm+1-formulas over Σ, the Ms are positive integers and
the Θs are formulas of existential Presburger arithmetic with free variables corresponding
to the fluted (m + 1)-types over Σ. We remark that we have defined FLCm+1

ep directly
interms of fomulas of the form (9), rather than establishing an analogue of Lemma 3 for a
language extending FLCm+1. This is intentional: formulas in which Q⟨Σ,Ms,Θs⟩ζ appears
with negative polarity might not be succinctly expressible in the form (9). We define the
effective size of φ, denoted #(φ), to be the quantity log(∥φ∥) + |S| + |T | + logM + |Σ|, where
M =

∑
s∈S Ms. Informally: when measuring the effective size of φ, we do not mind if ∥φ∥

becomes exponentially large, as long as Σ, S, T and the number of bits required to write the
various Ms do not.

We stress that fluted ep-quantifiers give us no additional expressive power beyond the
standard counting quantifiers. Indeed, if ζ is a quantifier-free formula of FLCm+1 over a
signature Σ, and supposing the fluted (m+ 1)-types over Σ to be enumerated as τ1, . . . , τJ ,
any formula Q⟨Σ,M,Θ⟩ζ is logically equivalent to the huge disjunction
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∨ 
J∧

j=1
∃[=σ(τj)]τj

∣∣∣∣∣∣ σ is an M -bounded fluted ζ-star-type over Σ satisfying Θ

 . (10)

However, fluted ep-quantifiers can be more compact, and we require the added strength of
the following routine extension of Lemma 4.

▶ Lemma 7. If φ is a satisfiable formula of FLC2
ep, then φ has a model of size bounded

by an exponential function of #(φ). The satisfiability problem for FLC2
ep is in NExpTime,

measured in terms of the effective size of the input.

Proof. For the first statement, let a formula φ of FLC2
ep be given. By definition, φ is in

the form (9) with m = 1. Now construct B as in the proof of Lemma 4. Still we have
B |= φ, since it does not matter whether the permitted star-types are specified by means
of standard counting quantifiers or fluted ep-quantifiers. Further, |B| ≤ (M + 1)2|Σ|+1 and
thus is bounded by an exponential function of #(φ). For the second statement, we may
simply guess a structure B subject to this size bound and check that it satisfies φ. It follows
from Lemma 5 that, for any b ∈ B and s ∈ S such that B |= µs[b], we may check, in
non-deterministic time bounded by an exponential function of #(φ), that fstBζs

[b], satisfies
Θs. Checking the remaining conditions of φ involves standard model-checking, and requires
only (deterministic) time bounded by an exponential function of #(φ). ◀

4 Proof of main result

In this section we prove Theorems 1 and 2, proceeding via the logics FLCm
ep. Fix some

FLCm+1
ep -formula φ as given in (9), with m ≥ 2. We show how to construct an FLCm

ep-formula
φ′, such that φ and φ′ are satisfiable over the same domains. The formula φ′ employs a
signature Σ′ formed by removing from Σ all (m + 1)-ary predicates, while adding a fresh
(m − 1)-ary predicate pS′,T ′ and a fresh m-ary predicate qS′,T ′ for each S′ ⊆ S and each
T ′ ⊆ T . It is obvious that |Σ′| ≤ |Σ| + 2|S|+|T |+1. The maximal arity of predicates in Σ is
m + 1, and in Σ′ is m. In addition to Σ and Σ′, we consider the signatures Σ+ = Σ ∪ Σ′

and Σ− = Σ ∩ Σ′. As explained in Sec. 2, we assume some fixed enumeration τ1, . . . , τJ of
the J = 2|Σ|+1 fluted (m + 1)-types over Σ. We write τ+

1 , . . . , τ
+
J+ for the corresponding

enumeration of fluted (m+ 1)-types over Σ+; likewise we enumerate the fluted m-types over
Σ′ as τ ′

1, . . . , τ
′
J′ , and over Σ− as τ−

1 , . . . , τ
−
J− .

Our essential problem is to get rid of the (m+ 1)-ary predicates appearing in φ without
affecting satisfiability. The following device will help. Let ψ be any quantifier-free FLCm+1-
formula over Σ. Clearly, there is, up to logical equivalence, a unique strongest quantifier-free
FLCm-formula over Σ− entailed by ψ, i.e. a quantifier-free FLCm-formula ψ◦ over Σ−

satisfying: (i) |= ψ → ψ◦; and (ii) for all quantifier-free FLCm-formulas χ over Σ− such that
|= ψ → χ, we have |= ψ◦ → χ. Indeed, since there are only finitely many such χ (ignoring
logical equivalents), we can take ψ◦ to be their conjunction. Strictly, of course, ψ◦ is only
defined up to logical equivalence, and in fact there are various ways to construct it. Thus, for
example, [16, 17] employ resolution theorem-proving; however, the procedure in the following
proof requires only basic propositional logic.

▶ Lemma 8. Let ψ be a quantifier-free FLCm+1-formula over Σ. Then we can compute ψ◦

in time bounded by an exponential function of ∥ψ∥ + |Σ|. Moreover, if τ− is a fluted m-type
over Σ− such that |= τ− → ψ◦, then there exists a fluted (m+ 1)-type τ over Σ extending
τ− such that |= τ → ψ.
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Proof. We begin by writing ψ, equivalently, in disjunctive normal form. Thus, ψ ≡
∨

{τ |
τ ∈ D}, where D is a set of fluted (m + 1)-types (over Σ). For each τ ∈ D, let τ◦ be the
fluted m-type over Σ− obtained by deleting from τ all conjuncts involving predicates not
in Σ−, and define ψ◦ to be

∨
{τ◦ | τ ∈ D}. Note that, since by assumption m ≥ 2, we will

never delete equality-literals. It is evident that this construction can be carried out in time
bounded by an exponential function of ∥ψ∥+ |Σ|. Since |= τ → τ◦ for any (m+1)-type τ , it is
immediate that |= ψ → ψ◦. On the other hand, suppose χ is a quantifier-free FLCm-formula
over Σ− entailed by ψ; without loss of generality, χ is in disjunctive normal form. We claim
that τ◦ is a disjunct of χ for all τ ∈ D. For if not, we have |= ψ → ¬τ◦, whence |= ψ → ¬τ ,
contradicting the supposition that ψ ≡

∨
{τ | τ ∈ D}. Hence, |= ψ◦ → χ. Given the above

construction of ψ◦, the second statement of the lemma is completely trivial. ◀

Also in this connection, we define a further operation on fluted star-types. Suppose that σ
is an m-dimensional fluted star-type over Σ. The reduct of σ to Σ−, denoted σ/Σ−, is the
(m− 1)-dimensional fluted star-type over Σ− given by

(σ/Σ−)(τ−) =
∑

{σ(τ) : τ a fluted (m+ 1)-type over Σ such that |= τ → τ−},

where τ− is any fluted m-type over Σ−. Thus, when forming a reduct to Σ−, we merge
together fluted (m+ 1)-types which look identical in the smaller signature.

To explain the intuition behind the construction of φ′, we first describe how a putative
model A |= φ can be expanded to a structure, A+, interpreting Σ+ = Σ ∪ Σ′. Taking A′ to
be the reduct of A+ to Σ′ (i.e. with all the (m + 1)-ary predicates removed), we observe
in (13), (14) and (15) that the formulas which will eventually form the conjuncts of φ′ are
all true in A′. We begin with the predicates pS′,T ′ for S′ ⊆ S and T ′ ⊆ T . Let ā ∈ Am−1 be
any (m− 1)-tuple of elements, and consider what φ tells us about the relationship of ā to
other elements in the structure. Since φ is fluted, and bearing in mind the form (9), what
really matters here are the different subsets S′ ⊆ S and T ′ ⊆ T for which there exists an
element a such that A |= µs[aā] for all s ∈ S′ and A |= νt[aā] for all t ∈ T ′. The (m− 1)-ary
predicates pS′,T ′ will simply record which pairs S′, T ′ are realized in this way. That is, we
set, for every S′ ⊆ S and T ′ ⊆ T ,

pA
+

S′,T ′ = pA
′

S′,T ′ = {ā ∈ Am−1 : for some a ∈ A, A |= µs[aā] for all
s ∈ S′ and A |= νt[aā] for all t ∈ T ′}. (11)

The predicates qS′,T ′ are only slightly more complicated. Fix S′ ⊆ S and T ′ ⊆ T for the
moment, and suppose that A+ |= pS′,T ′ [ā]. By construction, there exists a ∈ A such that
A |= µs[aā] for all s ∈ S′ and A |= νt[aā], for all t ∈ T ′. So pick any such a and denote it by
ȧ. The formula φ then guarantees that, for each s ∈ S′, the m-tuple ȧā satisfies the formula
Q⟨Σ,Ms,Θs⟩ζs. Defining Bā = {b ∈ A : A |= ζs[ȧāb] for some s ∈ S′}, we set

qA
+

S′,T ′ = qA
′

S′,T ′ = {āb ∈ Am : A+ |= pS′,T ′ [ā] and b ∈ Bā}. (12)

Thus, Bā serves to pick out the witnesses required by the various fluted ep-quantifiers
Q⟨Σ,Ms,Θs⟩ for the tuple ȧā, as s varies over S′. Letting ζS′ =

∨
s∈S′ ζs, we see that

Bā is the set of elements absorbing ζS′-rays emitted by ȧā. Observe, in particular, that
|Bā| ≤

∑
S′ Ms. The whole construction is illustrated in Fig. 1. Here we see, arranged in a

horizontal strip, the m-tuple ȧā, which satisfies µs for all s ∈ S′ and νt for all t ∈ T ′. The
elements b ∈ Bā absorbing the ζS′-rays emitted by ȧā, are taken to lie on the periphery of
the fan-shaped region. Each of these elements b absorbs a ζs-ray, for at least one (in general
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µs

ȧ

ζS′

ā

b ∈ Bā

pS′,T ′

νt

s ∈ S′, t ∈ T ′

qS′,T ′
ζs

Figure 1 Intended interpretations of the predicates pS′,T ′ and qS′,T ′ in A+ (and A′).

several) values of s ∈ S′. Discarding the element ȧ, we take the new predicate pS′,T ′ to
apply to the (m− 1)-tuple ā and the new predicate qS′,T ′ to apply to the m-tuples āb, where
b ∈ Bā.

We now construct the promised formula φ′ in three steps, guided by the structure A′ just
described. The first step is to write formulas reflecting the intended interpretations of the
predicates pS′,T ′ . Indeed, we see immediately that, for all S′ ⊆ S and T ′ ⊆ T ,

A′ |= ∀m
( ∧

s∈S′

µs ∧
∧

t∈T ′

νt → pS′,T ′
)
. (13)

The second step is to write formulas reflecting the intended interpretations of the predicates
qS′,T ′ , and specifically, the fact that they identify all ζS′-witnesses for m-tuples of interest.
Concretely, select an (m− 1)-tuple ā from A and suppose A |= pS′,T [ā]. Now let ȧ and Bā

be as chosen in the definition of qA′

S′,T ′ . Then b ̸∈ Bā implies that ȧāb does not satisfy ζs for
any s ∈ S′. On the other hand, ȧāb satisfies ηt for every t ∈ T ′ as well as θ. Thus, writing,
say, ψ for (

∧
s∈S′ ¬ζs ∧

∧
t∈T ′ ηt ∧ θ), we see that A |= ψ[ȧāb]. Recalling that ψ◦ denotes the

strongest quantifier-free formula over Σ− entailed by ψ, we obviously have A− |= ψ◦[ȧāb],
where A− denotes the reduct A↾Σ− = A′↾Σ−. But ψ◦ involves no predicates of arity m+ 1,
whence A− |= ψ◦[āb]. (Observe how we are here exploiting variable-free notation: while
ψ◦ is indeed a formula of FLC[m+1], it involves only predicates in Σ− , and therefore is
simultaneously a formula of FLC[m], which cannot “see” the element ȧ in the tuple ȧāb.)
Thus, since ψ◦ is also a formula over the signature Σ′, we have shown that, for all S′ ⊆ S

and T ′ ⊆ T ,

A′ |= ∀m−1(
pS′,T ′ → ∀

(
¬qS′,T ′ →

( ∧
s∈S′

¬ζs ∧
∧

t∈T ′

ηt ∧ θ
)◦))

. (14)

The final step in the construction of φ′ requires us to define, for all subsets S′ ⊆ S, a fluted
ep-quantifier Q⟨Σ′,MS′ ,ΘS′⟩. To motivate the definition, let ā again be any (m− 1)-tuple
from A, let S′, T ′ be such that A+ |= pS′,T ′ [ā], and let ȧ be the element selected in the
definition of qA+

S′,T ′ , so that we have

Bā = {b ∈ A : A |= ζs[ȧāb] for some s ∈ S′} = {b ∈ A : A′ |= qS′,T ′ [āb]}.

Remembering that ζS′ =
∨

s∈S′ ζs, define the fluted star-types σ = fstAζS′ [ȧā] (m-dimensional,
over Σ) and σ′ = fstA

′

qS′,T ′ [ā] ((m− 1)-dimensional, over Σ′). Define in addition the (m− 1)-
dimensional fluted star-type over Σ− by setting, for any fluted m-type τ− over Σ−,

σ−(τ−) = |{b ∈ Bā : A− |= τ−[āb]}|.
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We see immediately by consideration of the set Bā that σ/Σ− = σ− = σ′/Σ−. Warning: it
will not in general be the case that σ− arises as fstA

−

ζ− [ā] for any quantifier-free formula ζ−

over the signature Σ−. Indeed, A− interprets neither the predicate qS′,T ′ nor the predicates
of ζS′ , and is therefore insensitive to the extension of Bā used to define σ−. Nevertheless, we
have established:

σ/Σ− = σ′/Σ−. (L1)

A little thought shows that σ satisfies various further properties. Fix some s ∈ S′. Since
|= ζs → ζS′ , we see that the retract σ↾ζs is equal to the fluted star-type fstAζs

[ȧā] and hence
(from the fact that A |= φ), is Ms-bounded and satisfies Θs. Thus, we have:

for all s ∈ S′, σ↾ζs is Ms-bounded and satisfies Θs. (L2)

Now fix some t ∈ T ′. Since A |= φ, it follows immediately that, for every b ∈ Bā, A |= ηt[ȧāb],
and indeed A |= θ[ȧāb], whence:

for all t ∈ T and all τ such that σ(τ) > 0, |= τ → ηt. (L3)
for all τ such that σ(τ) > 0, |= τ → θ. (L4)

Casting this discussion in terms of σ′ = fstA
′

qS′,T ′ [ā] and writing MS′ =
∑

s∈S′ Ms, we see
that σ′ is MS′ -bounded and satisfies the property that there exists a fluted star-type σ such
that (L1)–(L4) hold. Crucially, this property can be naturally formulated using a formula
of existential Presburger arithmetic. Letting v̄ be a tuple of variables corresponding to the
fluted (m+ 1)-types over Σ and v̄′ a tuple of variables corresponding to the fluted m-types
over Σ′, we see that (L1) is a system of equations Av̄ = A′v̄′, where A, A′ are matrices with
entries in {0, 1} depending only on the fixed ordering of the fluted (m+ 1)-types over Σ and
the fixed ordering of the fluted m-types over Σ′ and Σ−. And certainly, (L3) and (L4) can be
expressed as a single equation setting certain values in v̄ to zero. Let us write Λ(v̄, v̄′) for the
conjunction of all the equations expressing (L1), (L3) and (L4). Considering that any retract
σ↾ζs amounts to the zeroing of certain entries in σ, we may assume without loss of generality
that the corresponding variables do not occur in Θs. (If they do, we may replace them by 0.)
And in that case, (L2) is expressed by the conjunction

∧
s∈S′ Θs(v̄). Thus, we may formulate

the above conditions on σ′ as the requirement that (considered as a vector v̄′ of length J ′

over N) it satisfies the formula of Presburger arithmetic ∃v̄
(
Λ(v̄, v̄′) ∧

∧
s∈S′ Θs(v̄)

)
. Writing

Θs(v̄) as ∃ūs.Ξs(ūs, v̄) for each s ∈ S, we obtain, by renaming variables to avoid clashes, the
equivalent existential Presburger formula ΘS′(v̄′) ≡ ∃v̄ū

(
Λ(v̄, v̄′) ∧

∧
s∈S′ Ξs(ūs, v̄)

)
, where

ū is the concatenation of the (disjoint) tuples ūs for s ∈ S′. Thus, we have shown:

A′ |= ∀m−1(pS′,T ′ → Q⟨Σ′,MS′ ,ΘS′⟩qS′,T ′). (15)

Now we are ready to define φ′ as the conjunction of the following formulas:∧
S′⊆S

∧
T ′⊆T

∀m
( ∧

s∈S′

µs ∧
∧

t∈T ′

νt → pS′,T ′
)

(16)

∧
S′⊆S

∧
T ′⊆T

∀m−1(pS′,T ′ → Q⟨Σ′,MS′ ,ΘS′⟩qS′,T ′) (17)

∧
S′⊆S

∧
T ′⊆T

∀m−1(
pS′,T ′ → ∀

(
¬qS′,T ′ →

( ∧
s∈S′

¬ζs ∧
∧

t∈T ′

ηt ∧ θ
)◦))

. (18)

By re-ordering of conjuncts, we see that φ′ is an FLCm
ep-formula. Moreover, it follows

from (13), (14) and (15) that A′ |= φ′. Hence, we have proved:
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▶ Lemma 9. If φ is satisfiable over some domain A, then so is φ′.

We now prove a converse to Lemma 9. Suppose B′ |= φ′, where B′ has domain B. We
proceed to construct a model B |= φ over the same domain. Let B− = B′↾Σ−. Notice that
B− features no predicates of arity m+ 1, and none of the “new” predicates pS′,T ′ or qS′,T ′ .
We shall expand B− to a structure B and then show that B |= φ. It suffices to specify, for
every a, b ∈ B and ā ∈ Bm−1, whether the tuple aāb is in the extension of each (m+ 1)-ary
predicate of Σ. Equivalently, we must specify the fluted (m+ 1)-type of every tuple aāb in B.

Fix a ∈ B and ā ∈ Bm−1. Let S′ = {s ∈ S | B− |= µs[aā]}, T ′ = {t ∈ T | B− |= νt[aā]}
and ζS′ =

∨
s∈S′ ζs. Since all the µs and νt are Σ−-formulas, we could equivalently have

replaced B− by B′ in the definitions of S′ and T ′. Define σ′ = (v′
1, . . . , v

′
J′) = fstB

′

qS′,T ′ [ā]
and Baā = {b ∈ B | B′ |= qS′,T ′ [āb]}. Notice that, since the sets S′ and T ′ depend on
a as well as ā, then so does the set Baā. It follows from (16) that B′ |= pS′,T ′ [ā], and
from (17), that σ′ is MS′ -bounded and satisfies the existential Presburger formula ΘS′(v̄′) ≡
∃v̄ū

(
Λ(v̄, v̄′) ∧

∧
s∈S′ Ξs(ūs, v̄)

)
. But ΘS′(v̄′) asserts that v̄′ is the vector representation of

a fluted star-type σ′ (over Σ′) for which there exists an m-dimensional fluted star-type σ
(over Σ) satisfying conditions (L1)–(L4). Letting σ− = σ′/Σ−, it follows from (L1) that
σ− = σ/Σ−. We proceed to set the fluted (m+ 1)-type of all tuples aāb, as b ranges over B;
we shall do this in such a way that fstBζS′ [aā] = σ. The plan is first to find all the required
witnesses in the set Baā, and then to ensure that no unwanted witnesses appear outside
this set.

We begin with the elements b ∈ Baā. We first partition Baā into groups which are
indistinguishable from the point of view of the signature Σ−. Specifically, we write σ− =
(v−

1 , . . . , v
−
J−), and for each j− (1 ≤ j− ≤ J−), we let Bj− = {b ∈ Baā | B− |= τ−

j− [ā, b]}.
Writing J−

aā for the set of indices j− for which Bj− is non-empty, we see that |Bj− | = vj−

for all j− (1 ≤ j− ≤ J−), vj− = 0 for all j− ̸∈ J−
aā, and the family of sets {Bj− | j− ∈ J−

aā}
forms a partition of Baā.

Now consider just one cell of this partition, say Bj− . We have

Bj− = {b ∈ Baā | B− |= τ−
j− [ā, b]} = {b ∈ Baā | B′ |= τj′ [ā, b] for some j′ s.t. |= τ ′

j′ → τ−
j−}.

And since v−
j− = |Bj− |, we obtain

v−
j− =

∑
{vj′ | 1 ≤ j′ ≤ J ′ and |= τ ′

j′ → τ−
j−} =

∑
{vj | 1 ≤ j ≤ J and |= τj → τ−

j−},

the second equality arising from the fact that σ/Σ− = σ′/Σ−. Thus, we may choose, for
each j such that |= τj → τ−

j− , a fresh collection Bj−,j of vj elements of Bj− , and for each
of these elements, b, set ftpB[aāb] = τj . Because |= τj → τ−

j− , the only predicates being
defined afresh here have arity (m + 1), so that these assignments represent an expansion
of B−. Once these assignments are made, the set Bj− will contain vj elements b such that
ftpB[aāb] = τj for all j such that |= τj → τ−

j− . Repeating this procedure for every j− ∈ J−
aā,

and writing Jaā = {j | 1 ≤ j ≤ J and |= τj → τ−
j− for some j− ∈ J−

aā}, we see that the set
Baā will contain vj elements b such that ftpB[aāb] = τj for all j ∈ Jaā. On the other hand,
σ′ = (v′

1, . . . , v
′
J′) = fstB

′

qS′,T ′ [ā], so that j− ̸∈ J−
aā implies v−

j− = 0 and hence∑
{vj | 1 ≤ j ≤ J and |= τj → τ−

j−} = 0,

since σ↾Σ− = σ−. That is, vj = 0 for all j ̸∈ Jaā, and we have shown that Baā contains vj

elements b such that ftpB[aāb] = τj , for all j (1 ≤ j ≤ J).
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Next, we deal with the elements b ∈ B \ Baā. By definition, B′ ̸|= qS′,T ′ [āb], so
that, abbreviating

∧
s∈S′ ¬ζs ∧

∧
t∈T ′ ηt ∧ θ by ψ, (18) yields B′ |= ψ◦[āb]. Writing τ− =

ftpB−
[ā, b], and noting that ψ◦ is a Σ−-formula, we have |= τ− → ψ◦. By Lemma 8, let τ̃ be

a fluted (m+ 1)-type over Σ extending τ− such that |= τ̃ → ψ, and set ftpB[aāb] = τ̃ . In
particular, B ̸|= ζS′ [aāb]. Thus, we have set the fluted (m + 1)-type of all (m + 1)-tuples
aāb, as b ranges over B. Repeating this process for each m-tuple aā, which we may do
independently, the structure B will have been completely defined. In the course of this
construction, we have shown that, for every b ̸∈ Baā, B ̸|= ζS′ [aāb]. But we showed above
that the number of elements b ∈ Baā such that B |= τj [aāb] is vj , where σ = (v1, . . . , vJ ). It
follows that fstBζS′ [aā] = σ, as required.

In constructing B, we have secured the following property. Take any m-tuple aā with
a ∈ B and ā ∈ Bm−1, and define S′ = {s ∈ S | B− |= µs[aā]}, T ′ = {t ∈ T | B− |= νt[aā]},
ζS′ =

∨
s∈S′ ζs and σ′ = fstB

′

qS′,T ′ [ā]. Then fstBζS′ [aā] = σ, where σ is some fluted star-type
over Σ satisfying (L1)–(L4), whose existence is guaranteed by the fact that σ′ satisfies the
existential Presburger formula ΘS′ . We have used (L1) in the construction of B. We now
use (L2)–(L4) to ensure that B |= φ.

We first show that, for all s ∈ S, B |= ∀m(µs → Q⟨Σ,Ms,Ls⟩ζs). For consider any
m-tuple aā with a ∈ B and ā ∈ Bm−1 such that B |= µs[aā], and let S′, ζS′ , and σ be as
just defined. Since s ∈ S′, we have |= ζs → ζS′ , and hence fstBζs

[aā] = σ↾ζs, which, by (L2), is
Ms-bounded and satisfies ΘS′ . We next show that, for all t ∈ T , B |= ∀m(νt → ∀ηt). Again,
consider any m-tuple aā with a ∈ B and ā ∈ Bm−1 such that B |= νt[aā], and let S′, T ′

and σ be as just defined. Pick any b ∈ B. If b is in the set Baā used in the construction
of B, then σ(ftpB[aāb]) > 0, whence by (L3), we have B |= ηt[aāb]. On the other hand, if
b ̸∈ Baā, then ftpB[aāb] was set to some τ̃ entailing

∧
s∈S′ ¬ζs ∧

∧
t∈T ′ ηt ∧ θ, so that, again

B |= ηt[aāb]. Finally, to show that B |= ∀m+1θ, we proceed as in the previous case, but
using (L4) instead of (L3). Thus we have proved:

▶ Lemma 10. If φ′ is satisfiable over some domain B, then so is φ.

▶ Lemma 11. The formula φ′ can be computed in time bounded by an exponential function
of ∥φ∥. Moreover, #(φ′) is bounded by an exponential function of #(φ).

Proof. Recalling that φ has the form∧
s∈S

∀m(µs → Q⟨Σ,Ms,Θs⟩ζs) ∧
∧
t∈T

∀m(νt → ∀ηt) ∧ ∀m+1θ

over signature Σ′, let M =
∑

s∈S Ms. Writing φ′ given by (16)–(18) in the same form, over
signature Σ′, we notice first of all that the sizes of the index sets certainly only increase by
an exponential. Let M ′ be the sum of all the numbers occurring in the fluted ep-quantifiers
of φ′, i.e.

∑
{2|T | · MS′ | S′ ⊆ S}, whence logM ′ ≤ |S| + |T | + logM ≤ #(φ). We noted

above that |Σ′| ≤ |Σ| + 2|S|+|T |+1 ≤ #(φ) + 2#(φ)+1. To show that log∥φ′∥ is also bounded
by an exponential function of #(φ), we need only show that log∥ΘS′∥ is bounded by an
exponential function of #(φ), for each S′ ⊆ S. Fix some S′ ⊆ S, then, and recall that

ΘS′(v̄′) ≡ ∃v̄{ūs}s∈S′
(
Λ(v̄, v̄′) ∧

∧
s∈S′

Ξs(ūs, v̄)
)
.

Let e be the maximum number of existentially quantified variables in any Θs as s ranges
over S; certainly, e ≤ ∥φ∥. The number of free variables in ΘS′ is simply the number of
fluted m-types over Σ′ and hence at most 2|Σ′|+1. The number of existentially quantified
variables in in ΘS′ is bounded by |S′|.e+ 2|Σ|+1. Moreover, Λ consists of 2|Σ−|+1 equations
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featuring at most 2|Σ|+1 + 2|Σ′|+1 terms. Finally we evidently have ∥
∧

s∈S′ Θs∥ ≤ |S′| · ∥φ∥.
Adding all of these together, we see that log∥ΘS′∥ is bounded by an exponential function of
#(φ), as required. ◀

▶ Lemma 12. Let m ≥ 1. Any satisfiable formula of FLCm+1
ep has a finite model. Moreover,

the satisfiability problem for FLCm+1
ep is in m-NExpTime, measured in terms of the effective

size of the input.

Proof. The case m = 1 is Lemma 4. The inductive step is from Lemmas 9, 10 and 11. ◀

We may now prove Theorem 1. Let a formula φ of FLCm+1 be given. By Lemma 3, we
may suppose without loss of generality that φ is in normal form (7). Further, we may replace
any sub-formula ∃[=Ms]ζs in φ by the equivalent sub-formula Q⟨Σ,Ms,Θs⟩ζs, where Θs is
simply the equation v1 + · · · + vJ = Ms, thus obtaining, in time bounded by an exponential
function of ∥φ∥, an FLCm+1

ep -formula φ0 equivalent to φ. Note that #(φ0) is bounded by a
polynomial function of ∥φ∥. The result then follows from Lemma 12.

5 The semi-fluted fragment

Finally, we consider the semi-fluted fragment with counting, SFC. The analysis proceeds
largely as for FLC. We remind the reader that variable-free notation is no longer available
in this case. Of course, we could employ predicate-functor-style syntax here; however, for
the little material remaining, this seems excessive.

Let Σ be a purely relational signature and m a positive integer. A semi-fluted m-atom
over Σ is a formula of the form p(x̄) or its negation where either: (i) p ∈ Σ and x̄ is a
contiguous sequence of variables xℓ, . . . , xm, or (ii) p ∈ Σ∪{=} and x̄ is a sequence of at most
two variables chosen (repeats allowed) from the set {xm−1, xm}. A semi-fluted m-literal is
either a semi-fluted m atom or its negation. Thus, we have the same restriction on argument
patterns as in fluted logic generally, except that semi-fluted m-literals of arity at most 2 may
feature the variables xm−1 and xm in any order we like. A semi-fluted m-type (over Σ) is a
maximal consistent set of semi-fluted m-literals (over Σ). For these purposes, consistency
takes account of the special meaning of the equality predicate: thus, {p(x1),¬p(x2), x1 = x2}
is not consistent. As before, where convenient, we identify a semi-fluted m-type τ with the
conjunction of its members and call τ reflexive if it contains xm−1 = xm. We remark that
semi-fluted 1- and 2-types are simply maximal consistent sets of literals (atomic formulas
or their negations) in the variables x1 and x2, and are usually referred to in the literature
simply as 1- and 2-types. If τ is a semi-fluted literal of arity m ≥ 2, define tp1(τ) to be the
set of literals in τ featuring only the variable xm−1. (Note that replacing the variable xm−1
in tp1(τ) by x1 would yield a 1-type.) A semi-fluted star-type of dimension m over Σ is a
multiset of semi-fluted (m+ 1)-types over Σ at most one of which is reflexive, subject to the
additional condition that the value tp1(τ) is the same for all τ occurring (i.e. having non-zero
multiplicity) in σ. A semi-fluted star-type is M -bounded if the sum of its multiplicities is M .
By enumerating the semi-fluted (m+ 1)-types over Σ in some fixed order, we may regard
any semi-fluted star-type as a vector of cardinal numbers.

If A is a structure interpreting Σ, and ā is an m-tuple of elements from A (repeats
allowed), there is a unique semi-fluted m-type satisfied by ā; we denote this by sftpA[ā].
If, in addition, ζ is a quantifier-free formula of SFCm+1, then we may define a semi-
fluted star-type σ of dimension m by setting, for each semi-fluted (m + 1)-type τ over Σ,
σ(τ) = |{b ∈ A : A |= τ [āb] and A |= ζ[āb}]|. Notice incidentally that for all τ occurring in
σ, we have A |= tp1(τ)[a], where a is the last element of ā, whence these 1-types are indeed
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all the same. We call σ the semi-fluted ζ-star-type of ā in A, and denote it by sfstAζ [ā]. As
with fluted ζ-star-types, so with their semi-fluted cousins, we can think of the tuple ā as
“emitting” various “ζ-rays”, which are “absorbed” by various elements of A. The principal
difference is that the (non-empty) semi-fluted ζ-star-type of ā gives us the 1-type satisfied by
the final element a of ā, and indeed of the full 2-types (not just the fluted 2-types) of the
pairs ab, for b an element absorbing one of the ζ-rays emitted by ā.

Normal forms analogous to those of Lemma 3 are easily obtainable:

▶ Lemma 13. Let φ be a formula of SFCm+1 (m ≥ 1). Then we may compute, in time
bounded by a polynomial function of ∥φ∥, an SFCm+1-sentence satisfiable over the same
domains as φ, and having the form∧

s∈S

∀x1 . . . ∀xm(µs → ∃[=Ms]xm+1.ζs) ∧
∧
t∈T

∀x1 . . . ∀xm(νt → ∀ηt) ∧ ∀xm+1.θ, (19)

where S and T are index sets, the µs and νt are quantifier-free SFCm-formulas, the ζs, ηt

and θ are quantifier-free SFCm+1-formulas, and the Ms are positive integers.

The proof proceeds as for Lemma 3, almost verbatim.
Extending the notion of ep-quantifiers to the semi-fluted case is again routine. If ζ is

a quantifier-free formula of SFCm+1, we allow formulas φ of the form Q⟨Σ,M,Θ⟩ζ. For
any structure A interpreting a signature Σ′ ⊇ Σ and any m-tuple ā of elements from A, we
declare:

A |= φ[ā] if and only if sfst(A↾Σ)
ζ [ā] is M -bounded and satisfies Θ(v̄), (20)

just as with (8). We then define SFCm+1
ep to be the set of formulas φ given by∧

s∈S

∀x1 . . . ∀xm(µs → Q⟨Σ,Ms,Θs⟩xm+1.ζs)∧∧
t∈T

∀x1 . . . ∀xm(νt → ∀xm+1.ηt) ∧ ∀x1 . . . ∀xm+1.θ, (21)

where Σ is a relational signature, the µs and νt are quantifier-free SFCm-formulas over Σ,
the ζs, ηt and θ are quantifier-free SFCm+1-formulas over Σ, the Ms are positive integers and
the Θs are formulas of existential Presburger arithmetic with free variables corresponding to
the semi-fluted (m+1)-types over Σ. Of course, this parallels the definition of FLCm+1

ep given
in (9). Again, semi-fluted ep-quantifiers give us no expressive power beyond the ordinary
counting quantifiers, since the translation (10) (with the counting quantifier taken to bind
the variable xm+1) holds also when ζ is only semi-fluted. We may define the effective size,
#(φ) of an SFCm

ep-formula φ exactly as with FLCm
ep-formulas.

At this point, we are in a position to sketch the proof of Theorem 2. Let an SFCm+1-
formula φ be given (m ≥ 1). By Lemma 13, we may assume without loss of generality that
φ is in the form (19). Clearly, this may be converted, in time bounded by an exponential
function of ∥φ∥, and with at most a polynomial increase in #(φ), into an SFCm+1

ep -formula
of the form (21). The reduction described in Sec. 4 can then be repeated almost verbatim,
since the transformation of φ into φ′ never affects the two final variables. Lemmas 9, 10
and 11 then continue to hold. This allows us to transform any formula of SFCm+1 (m ≥ 2)
eventually into a formula of SFC2

ep satisfiable over the same domains. But we have already
argued that any SFC2

ep-formula can be translated into equivalent formula of C2. Since
the satisfiability and finite satisfiability problems for C2 are in NExpTime, we thus obtain
Theorem 2, as promised.
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The complexity bound we may extract from the above argument is rather weak. The
translation given above from a SFC2

ep-formula φ to an equivalent C2-formula ψ′ runs in time
bounded by a doubly exponential function of ∥φ∥, and hence a triply exponential function of
#(φ). Since the satisfiability and finite satisfiability problems for C2 are in NExpTime, this
means that the corresponding problems for SFC2

ep are in non-deterministic time bounded by
quadruply exponential time as a function of #(φ). This results in an upper complexity bound
of (m + 3)-NExpTime for the satisfiability and finite satisfiability problems for SFCm+1

ep
(m ≥ 1). We claim that the satisfiability and finite satisfiability problems for SFCm+1 in
fact remain in m-NExpTime. However, the proof appears to require a modified version
of existing proofs of the complexity bounds for C2, in order to accommodate semi-fluted
ep-quantifiers. Such a reconstruction is beyond the scope of the current paper.

6 Discussion

For m ≥ 2, the upper complexity bound of m-NExpTime for FLCm+1 in Theorem 1 is laxer
than the corresponding upper complexity bound of (m− 1)-NExpTime for FLm+1 from [17].
The best known lower complexity bound on satisfiability for both logics is ⌊(m + 1)/2⌋-
NExpTime-hard, from the same source. It is currently not known how to close this gap. It
is plausible that, for m ≥ 2, the upper bound given in this extended abstract for FLCm+1

could be reduced by one exponential, by adapting the procedure of in [17] for FL3. The
probable difficulty of doing so coupled with the fact that a complexity gap would remain for
FLC5 and above acts, however, as a deterrent to trying.

It is shown in [18] that the satisfiability and finite satisfiability problems for the fluted
fragment, FL remain decidable even in the presence of a distinguished binary predicate
required to be interpreted as a transitive relation (equality is also permitted); with just two
transitive relations (or three transitive relations without equality), however, decidability is
lost. The question arises as to whether a single transitive relation can be added to FLC
without losing decidability of satisfiability. The argumentation of Sec. 4 will reduce this
problem (with blow-up given by the same towers of exponentials) to the corresponding
problem for FLC2 with a single transitive relation. However, this latter problem appears to
be open.

We noted above that the fluted ep-quantifiers introduced here do not extend the expressive
power of ordinary counting quantifiers. In this regard, they do less work than the “existential
Presburger formulas” of [3], which strictly extend the expressive power of C2, permitting,
saliently, counting modulo k for k ≥ 2. The objects referred to as “behaviours” in that paper
play a role very similar to the fluted star-types considered here, except that the values they
assign are not integers, but semi-linear sets of integers. Unifying these approaches seems
therefore to be a natural line of future enquiry.
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Abstract
Guarded Kleene Algebra with Tests (GKAT) is an efficient fragment of KAT, as it allows for
almost linear decidability of equivalence. In this paper, we study the (co)algebraic properties of
GKAT. Our initial focus is on the fragment that can distinguish between unsuccessful programs
performing different actions, by omitting the so-called early termination axiom. We develop an
operational (coalgebraic) and denotational (algebraic) semantics and show that they coincide. We
then characterize the behaviors of GKAT expressions in this semantics, leading to a coequation that
captures the covariety of automata corresponding to these behaviors. Finally, we prove that the
axioms of the reduced fragment are sound and complete w.r.t. the semantics, and then build on this
result to recover a semantics that is sound and complete w.r.t. the full set of axioms.
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1 Introduction

Kleene algebra with tests (KAT) [17] was introduced in the early 90’s as an extension of Kleene
algebra (KA), the algebra of regular expressions. The core idea of the extension was simple:
consider regular languages over a two-sorted alphabet, in which one sort represents Boolean
tests and the other denotes basic program actions. This seemingly simple extension enables
an important application for regular languages in reasoning about imperative programs with
basic control flow structures like branches (if -then-else) and loops (while). KAT largely
inherited the properties of KA: a language model [22], a Kleene theorem [19], a sound and
complete axiomatization [22], and a pspace decision procedure for equivalence [8].

In 2014, a specialized KAT called NetKAT [4] was proposed to program software-defined
networks. NetKAT was later extended with a probabilistic choice operator that enabled the
modelling of randomized protocols [9]. Interestingly, there exists a decision procedure for
NetKAT program equivalence that enables practical verification of reachability in networks
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with thousands of nodes and links, which seems to scale almost linearly despite the pspace-
completeness of this problem [10, 35]. This raised the question: do practical NetKAT programs
belong to a fragment of KAT that has more favorable properties than the full language?

Recently, this question was answered positively [34], in the form of Guarded Kleene
Algebra with Tests (GKAT), a fragment of KAT obtained by adding a Boolean guard to
the non-deterministic choice and iteration operators so that they correspond exactly to the
standard if-then-else and while constructs. GKAT is expressive enough to capture all
programs used in network verification while allowing for almost linear time1 decidability of
equivalence, thereby explaining the experimental results observed in NetKAT.

The use of GKAT as a framework for program analysis also raises further questions
about recovering the properties of KAT on the level of GKAT. Is there a class of automata
that provides a Kleene theorem? Is there a sound and complete axiomatization of GKAT
equivalence? The original paper [34] gave incomplete answers to these questions. First,
it proposed a class of well-nested automata that can be used to describe the semantics of
all GKAT programs, but left open whether this class covered all automata that accept the
behaviors of GKAT programs. Second, GKAT was axiomatized under the assumption of early
termination: intuitively, referring to a semantics of imperative programs where programs
that fail immediately are equated to programs that fail eventually. This semantics, though
useful, is too coarse in contexts where program behavior prior to failure matters.

In this paper, we take a new perspective on the semantics of GKAT programs and
their corresponding automata, using coequations. Coequations provide the right tool to
characterize fragments of languages as they enable a precise way to remove unwanted traces.
We are then able to give a precise characterization of the behaviors of GKAT programs and
prove a completeness theorem for each of the fragments of interest.

Our contributions. In a nutshell, the contributions of this paper are the following:
1. We give a denotational model for GKAT without early termination by representing

the behavior as a certain kind of tree. This allows us to design two coequations: one
characterizing the behaviors denoted by GKAT expressions, and another capturing only
the behaviors of GKAT expressions that terminate early.

2. We obtain two completeness results for GKAT: one for the model of the previous item
and the axiomatization of [34] without the early termination axiom; and building on this,
another for the full axiomatization. The former is new; the latter provides an alternative
proof to the completeness theorem presented in [34].

3. A concrete example of a well-nested GKAT automaton with a non-well-nested quotient.
This settles an open question of [34] and closes the door on an alternative proof of
completeness based on well-nested automata.

2 Guarded Kleene Algebra with Tests

At its heart, Guarded Kleene Algebra with Tests (GKAT) is an algebraic theory of imperative
programs. Expressions in GKAT are concise formulas for while programs [23], which are built
inductively from actions and tests with sequential composition and the classic programming
constructs of branches and loops: if b then e else f and while b do e.

1 Opnαpnqq, where αpnq is the inverse of Ackermann’s function
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Union Axioms Sequence Axioms Loop Axioms
U1. e `b e ” e S1. pe ¨ fq ¨ g ” e ¨ pf ¨ gq W1. epbq

” e ¨ epbq
`b 1

U2. e `b f ” f `b̄ e S2. 0 ¨ e ” 0 W2. pceq
pbq

” pe `c 1q
pbq

U3. pe `b fq `c g ” e `b^c pf `c gq S3. e ¨ 0 ” 0
W3.

Epeq ” 0 g ” eg `b f

g ” epbq
¨ f

U4. e `b f ” b ¨ e `b f S4. 1 ¨ e ” e; S5. e ” e ¨ 1
U5. e ¨ g `b f ¨ g ” pe `b fq ¨ g S6. b ¨ c ” b ^ c

Figure 1 Axioms for GKAT-expressions. Here, e, f, g P Exp and b, c P BExp.

Formally, these expressions are drawn from a two-sorted language of tests and programs.
The tests are built from a finite set of primitive tests T , as follows:

BExp Q b, c ::“ 0 | 1 | t P T | b̄ | b ^ c | b _ c.

Here, 0 and 1 are understood as the constant tests false and true respectively, b̄ denotes
the negation of b, and ^ and _ are conjunction and disjunction, respectively. We will use
A to denote the set of atomic tests (or just atoms), Boolean expressions of the form
d1 ^ ¨ ¨ ¨ ^ dl, where di P tti, t̄iu for each i ď l and tti | i ď lu is a fixed enumeration of T . It
is well known that any b P BExp can be written equivalently as the disjunction of the atoms
a P A that imply b under the laws of Boolean algebra. We will often identify each Boolean
expression b P BExp with this set of atoms and write b Ď A or a P b.

Programs are built from tests and a finite set of primitive programs or actions Σ,
disjoint from T . Formally, programs are generated by the grammar

Exp Q e, f ::“ b P BExp | p P Σ | e ¨ f | e `b f | epbq

Here, a test b abbreviates the statement assert b, the operator ¨ is sequential composition,
e `b f is shorthand for if b then e else f and epbq is shorthand for while b do e.

GKAT programs satisfy standard properties of imperative programs. For instance, swap-
ping the branches of an if-then-else construct should not make a difference, provided that
we also negate the condition; that is, the semantics of e `b f should coincide with that of
f `b e. The rules in Figure 1 axiomatize equivalences between programs. Together with the
axioms of Boolean algebra, these generate a congruence ” on Exp.

Some remarks are in order for axiom W3. The right-hand premise states that an expression
g has some self-similarity in the sense that it is equivalent to checking whether b holds, in
which case it runs e followed by recursing at g, and otherwise running f . Intuitively, this
says that g is loop-like, matching the conclusion that g is equivalent to epbq ¨ f . However,
this conclusion may not make sense when based on just the second premise. Specifically, if
we choose e, f , g and b to be 1, we can show that the premise holds and derive 1 ” 1p1q ¨ 1,
which is to say that assert true is equivalent to (while true do assert true); assert true.
Intuitively, this should be false: the first program terminates successfully and immediately,
but the second program does not. The problem is that the loop body does not perform any
actions that affect the state and make progress towards the end of the loop.

This is remedied by the left-hand premise, which distinguishes loop bodies that can accept
immediately from those that cannot. It plays the same role as the empty word property in
Salomaa’s axiomatization of the algebra of regular events [31]. Formally, given e P Exp, the
Boolean expression Epeq is defined inductively by setting Eppq “ 0, Epbq “ b, and

Epe ¨ fq “ Epeq ^ Epfq Epe `b fq “ pb ^ Epeqq _ pb̄ ^ Epfqq Epepbqq “ b̄
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We call e productive if Epeq ” 0. Axioms W2 and W3 are analogues of Salomaa’s axioms
A11 and R2 [31]. Specifically, W2 says that non-productive loop iterations do not contribute
to the semantics. This allows the use of W3 to reason about loops in general, for instance to
prove epbq ” epbq ¨ b, which says that the loop condition is false when a loop ends [34].

Axiom S3 identifies a program that fails eventually with the program that fails immediately.
As a consequence, ” cannot distinguish between processes that loop forever, like pp1q and qp1q,
even though they perform different actions [34]. Consequently, GKAT can be seen as a theory
of computation schemata, i.e., programs that need to halt successfully to be meaningful.

In contrast, it is also useful to be able to reason about process schemata, i.e., programs
that perform meaningful tasks, even when they do not terminate successfully. To this end,
we define the reduced congruence ”0 generated by the axioms of Figure 1 except S3.

Let rr´ss : Exp Ñ S be a semantics of GKAT. We say that rr´ss is sound w.r.t. ” if for
all e, f P Exp with e ” f , it holds that rress “ rrf ss. Similarly, rr´ss is sound w.r.t. ”0 if
e ”0 f implies that rress “ rrf ss.

Since ” encodes common program laws, one might wonder whether there is a single
interpretation in which programs are related by ” if and only if they have the same image.
Such an interpretation is called free w.r.t. ”. This question is not just of theoretical
interest: a free interpretation can help decide whether programs are provably equivalent, and
hence the same under any sound interpretation, by checking whether their free semantics
coincide. Naturally, the same question can be asked for ”0: is there a semantics that is free
w.r.t. ”0, i.e., where e ”0 f if and only if e and f have the same interpretation?

The remainder of this paper is organized as follows. In Section 3, we describe the
operational structure for GKAT expressions in terms of GKAT-automata, as in [34]. In
Section 4, we provide an explicit construction of a GKAT-automaton in which all other
automata can be uniquely interpreted. We then build a semantics that is sound w.r.t. ”0
in Section 5. In Section 6 we relate our coequational description of GKAT expressions to
the well-nested GKAT-automata of [34]. In Section 7, we prove that this semantics is in
fact complete w.r.t. ”0 and, building on this, obtain a semantics that is complete w.r.t. ”.
Omitted proofs are included in the extended version [32].

3 An operational model: GKAT-automata

In this section we discuss the small-step operational model for GKAT programs from [34]. The
operational perspective provides us with the tools to describe a semantics that is complete
w.r.t. ”0 and paves the way to a decision procedure.

We can think of a GKAT-program as a machine that evolves as it reads a string of atomic
tests. Depending on the most recently observed atomic test, the program either accepts,
rejects, or emits an action label and changes to a new state. For example, feeding if b do p

else q an atomic test a P b causes it to perform the action p and then terminate successfully.

▶ Definition 3.1. A GKAT-automaton [34, 23] is a pair X “ pX, δq, where X is a set
of states and δ : X ˆ A Ñ 2 ` Σ ˆ X is a transition function. We use x a|p

ÝÝÑX x1 as
a notation for δpx, aq “ pp, x1q. Similarly, x ñX a denotes that δpx, aq “ 1, and x ÓX a

denotes that δpx, aq “ 0. We drop the subscript X when the automaton is clear from context.

Intuitively, X represents the states of an abstract machine running a GKAT program, with
dynamics encoded in δ. When the machine is in state x P X and observes a P A, there are
three possibilities: if x Ó a, the machine rejects; if x ñ a, it accepts; and if x a|p

ÝÝÑ x1, it
performs the action p followed by a transition to the state x1.
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a P b

b ñ a p a|p
ÝÝÑ 1

a P b e ñ a

e `b f ñ a

a P b̄ f ñ a

e `b f ñ a

a P b e a|p
ÝÝÑ e1

e `b f a|p
ÝÝÑ e1

a P b̄ f a|p
ÝÝÑ f 1

e `b f a|p
ÝÝÑ f 1

e ñ a f ñ a

e ¨ f ñ a

e ñ a f a|p
ÝÝÑ f 1

e ¨ f a|p
ÝÝÑ f 1

e a|p
ÝÝÑ e1

e ¨ f a|p
ÝÝÑ e1

¨ f

a P b e a|p
ÝÝÑ e1

epbq a|p
ÝÝÑ e1

¨ epbq

a P b̄

epbq
ñ a

Figure 2 The transition structure of E . Here, e, e1, f, f 1
P Exp, b Ď A, a P A, and p P Σ.

Transitions that are not explicitly defined above are assumed to be failed termination.

▶ Remark 3.2. The reader familiar with coalgebra will recognize that GKAT-automata are
precisely coalgebras for the functor G “ p2 ` Σ ˆ Idq

A [34]. Indeed, the notions relating to
GKAT-automata, such as homomorphism, bisimulation, and semantics to follow are precisely
those that arise from G as prescribed by universal coalgebra [27].

We can impose an automaton structure on Exp yielding the syntactic GKAT-automaton
E “ pExp, Dq, where D is the transition map given by Brzozowski derivatives [34] as specified
in Figure 2. For instance, the operational behavior of ppbq as a state of E could be drawn as
follows, where x b|p

ÝÝÑ y denotes that x a|p
ÝÝÑ y for every a P b and rejecting transitions x Ó a

are left implicit:

b̄ ppbq 1 ¨ ppbq
b̄

b|p
b|p (1)

The operational structure of E is connected to ”0 as follows.

▶ Theorem 3.3 (Fundamental theorem of GKAT). For any e P Exp, e ”0 1 `Epeq Dpeq where

Dpeq “
ă

e a|pa
ÝÝÝÑea

pa ¨ ea and
ă

aPb

ea “

$

’

&

’

%

0 if b “ 0,

ea `a

˜

Ř

a1Pbza

ea1

¸

some a P b, otherwise.

The generalized guarded union above is well defined, in that the order of atoms does not
matter up to ”0. See [34] for more details about the generalised guarded union.

States of GKAT-automata have the same behavior if reading the same sequence of atoms
leads to the same sequence of actions, acceptance, or rejection. This happens when one state
mimics the moves of the other, performing the same actions in response to the same stimuli.
For instance, consider the GKAT-automaton in (1): the behavior of ppbq can be replicated by
the behavior of 1 ¨ ppbq, in that both either consume an a P b̄ and terminate or consume a P b

and emit p before transitioning to 1 ¨ ppbq. This can be made precise.

▶ Definition 3.4. Let R Ď X ˆ Y be a relation between the state spaces of GKAT-automata
X and Y. Then R is a bisimulation if for any px, yq P R and a P A,
(1) x ÓX a if and only if y ÓY a; and (2) x ñX a if and only if y ñY a; and
(3) if x a|p

ÝÝÑX x1 and y a|q
ÝÝÑY y1 for some x1 and y1, then p “ q and px1, y1q P R.

If a pair of states px, yq P X ˆ Y is contained in a bisimulation, we say that x and y are
bisimilar. If a bisimulation R is the graph of a function φ : X Ñ Y , we write φ : X Ñ Y
and call φ a GKAT-automaton homomorphism [27].

Indeed, bisimulations are designed to formally witness behavioral equivalence. We use
the term behavior as a synonym for the phrase bisimilarity (equivalence) class.
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4 The final GKAT-automaton

One way of assigning semantics to GKAT expressions is to find a sufficiently large GKAT-
automaton Z that contains the behavior of every other GKAT-automaton. In this section,
we provide a concrete explicit description of such a “semantic” GKAT-automaton – this is a
crucial step towards being able to devise a completeness proof.

Concretely, Z represents the behavior of a state as a tree that holds information about
acceptance, rejection, and transitions to other states (which are subtrees). Essentially, this
tree is an unfolding of the transition graph from that state.

We describe these trees using partial functions. Let us write A` for the set of all non-
empty words consisting of atoms. The state space Z of Z is the set of all partial functions
t : A` á 2 ` Σ with A Ď domptq, such that the following hold for all a P A and x P A`.

w P domptq tpwq P Σ
wa P domptq

w P domptq tpwq P 2
wx R domptq

The transition structure of Z is defined by the inferences

tpaq “ 0
t Ó a

tpaq “ 1
t ñ a

tpaq “ p P Σ
t a|p

ÝÝÑ λw.tpawq

When tpwq P Σ, we will write Bwt for λu.tpwuq. We can think of t P Z as a tree where the
root has leaves for atoms a P A with tpaq “ 1, and a subtree for every a P A with tpaq P Σ.
▶ Remark 4.1. Trees correspond to deterministic (possibly infinite) guarded languages [34, 23].
More precisely, every tree can be identified with a language L Ď pA ¨ Σq

˚
¨ A Y pA ¨ Σq

ω

satisfying (i) if wapσ, waqσ1 P L, then p “ q; and (ii) if wa P L, then wapσ R L for any pσ.
We forgo a description in terms of guarded languages in favor of trees because these trees
have the constraint about determinism built in.

A node of t is a word w P A˚ such that either w “ ϵ (the empty word), or w P domptq

and tpwq P Σ. We write Nodeptq for the set of nodes of t. A subtree of t is a tree t1 such
that t1 “ Bwt for some w P Nodeptq. A leaf of t is a word w P domptq such that tpwq P 2.

Next, we specialize Definition 3.4 to Z (c.f. [28, Theorem 3.1]).

▶ Lemma 4.2. R Ď Z ˆ Z is a bisimulation on Z iff for any pt, sq P R and a P A,
(1) tpaq “ spaq; and (2) if either Bat or Bas is defined, then both are defined and pBat, Basq P R.

We can now prove that bisimilar trees in Z coincide.

▶ Lemma 4.3 (Coinduction). If s, t P Z are bisimilar, then s “ t.

Thus, to show that two trees are equal, it suffices to demonstrate a bisimulation that
relates them. This proof method is called coinduction. We can also use Lemma 4.2 to
define algebraic operations on Z, and such definitions are said to be coinductive. Many of
the results in the sequel are argued using coinduction, and many of the constructions are
coinductive. With this in mind, we are now ready to prove that Z contains every behavior
that can be represented by a GKAT-automaton, as follows.

▶ Theorem 4.4. Z is the final GKAT-automaton. In other words, for every GKAT-automaton
X , there exists a unique GKAT-automaton homomorphism !X from X to Z.

Given a GKAT-automaton X , the unique map !X assigns a tree from Z to each of its
states. In particular, recalling that the syntactic GKAT-automaton E has Exp as its set of
states, !E is a semantics of GKAT programs in terms of trees. The following lemma states
that bisimulation is sound and complete with respect to this semantics.

▶ Lemma 4.5. States x and x1 of a GKAT-automaton X are bisimilar iff !X pxq “ !X px1q.
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5 Trees form an algebra

So far, we have seen that the behavior of a GKAT-program is naturally interpreted as a
certain kind of tree, and that each such tree is the state of the final GKAT-automaton Z.
In this section, we show that the trees in Z can themselves be manipulated and combined
using the programming constructs of GKAT. These operations satisfy all of the axioms that
build ”0, but fail the early-termination axiom S3. This gives rise to an inductive semantics
of GKAT-programs rr´ss : Exp Ñ Z that is sound w.r.t. ”0. As a matter of fact, we will see
that rr´ss coincides with the unique GKAT-automaton homomorphism !E : Exp Ñ Z.

We begin by interpreting the tests. Given b Ď A, we define rrbss as the characteristic
function of b as a subset of A`, i.e., rrbss paq “ 1 if a P b, and rrbss paq “ 0 otherwise.

On the other hand, primitive action symbols denote programs that perform an action in
one step and then terminate successfully in the next. For p P Σ, this behavior is described
by the unique tree rrpss such that rrpss paq “ p and Ba rrpss “ rr1ss for any a P A. When context
can disambiguate, we write b in place of rrbss and p in place of rrpss.

Each operation is defined using a behavioral differential equation (BDE) consisting
of a set of initial conditions tpaq “ ξa P 2`Σ indexed by a P A and a set of step equations
Bat “ sa indexed by the a P A with tpaq P Σ. This is possible because every BDE describes
a unique automaton, which (by Theorem 4.4) has a unique interpretation in Z [28]. Each
BDE below can be read more or less directly from Figure 2.

The first operation that we interpret in Z is sequential composition. For any s, t P Z, the
tree s ¨ t models sequential composition of programs by replacing each non-zero leaf of s by
the nodal subtree of t given by the corresponding atomic test. This can formally be defined
as the unique operation satisfying the following behavioral differential equation.

ps ¨ tqpaq “

#

tpaq if spaq “ 1,

spaq otherwise
Baps ¨ tq “

#

Bat if spaq “ 1,

Bas ¨ t otherwise.

Here, Bas ¨ t “ pBasq ¨ t. Using this operation, we define rre ¨ f ss “ rress ¨ rrf ss.
To interpret the guarded union operation, define `b to be the unique operation such that

ps `b tqpaq “

#

spaq if a P b,

tpaq otherwise
Baps `b tq “

#

Bas if a P b,

Bat otherwise.

As before, we define rre `b f ss “ rress `b rrf ss.
Finally, we interpret the guarded exponential operation. Following Figure 2, tpbq can be

defined as the unique tree satisfying

tpbq
paq “

$

’

&

’

%

1 if a R b,

tpaq if a P b and tpaq P Σ,

0 otherwise.
Baptpbq

q “ Bat ¨ tpbq

Similar to the other operators, we set
““

epbq
‰‰

“ rress
pbq. This completes our definition of the

algebraic homomorphism rr´ss : Exp Ñ Z.
As it happens, rr´ss is also a GKAT automaton homomorphism from E to Z. By uniqueness

of such homomorphisms (Theorem 4.4), we can conclude that rr´ss and !E are the same.

▶ Proposition 5.1. For any e P Exp, rress “ !Epeq.

This allows us to treat the algebraic and coalgebraic semantics as synonymous. Using
Lemma 4.5, we can then show soundness w.r.t. ”0 by arguing that ”0 is a bisimulation on E .
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v0 v1 bb̄

b|p

b̄|q

Figure 3 A GKAT-automaton without GKAT behaviors.

▶ Theorem 5.2. The semantics rr´ss is sound w.r.t. ”0.

On the other hand, Z does not satisfy S3. For instance, rrp ¨ 0ss ‰ rr0ss for any p P Σ. We
will adapt the model to overcome this in Section 7.3.

6 Well-nested automata and nested behavior

Not all behaviors expressible in terms of finite GKAT-automata occur in E . For example, the
two-state automaton in Figure 3 fails to exhibit any behavior of the form rress, with e P Exp,
when b, b̄ ‰ 0. This is proven in the extended version [32] where we show that no branch
of a GKAT behavior can accept both b and b̄ infinitely often. For another example, see [23],
where a particular three-state automaton is shown to exhibit no GKAT behavior.

Intuitively, both of the examples above fail to exhibit the behaviors of GKAT programs
because GKAT lacks a goto-statement that allows control to transfer to an arbitrary position
in the program; instead, GKAT automata corresponding to GKAT expressions are structured
by branches and loops. The question then arises: can we characterize the “shapes” of
automata whose behavior is goto-free, i.e., described by a GKAT expression?

In [34], the authors proposed the class of well-nested GKAT automata, consisting of
automata built inductively by applying a series of operations designed to mimic the structural
effects of loops. It was shown that the behavior of every GKAT expression can be described by
some well-nested automaton. Moreover, they proved that the class of well-nested automata
constitutes a sufficient condition: the behavior of a well-nested GKAT automaton is described
by a GKAT expression. Whether this condition is also necessary, i.e., whether every automaton
with behavior corresponding to a GKAT expression is well-nested, was left open.

Thus, a positive answer to the latter question amounts to showing that every GKAT
automaton whose behavior is the same as a well-nested GKAT automaton is itself well-nested.
Such a class of automata closed under behavioral equivalence is known as a covariety. Covari-
eties have desirable structural properties. In particular, they are closed under homomorphic
images [27, 12, 3]. Unfortunately, well-nested automata do not satisfy this property: we
have found a well-nested automaton whose homomorphic image is not well-nested, depicted
in Figure 4. In other words, there exists a non-well-nested automaton whose behavior is
still described by a GKAT expression. This also closes the door on a simpler approach to
completeness described in [34].

Thus, well-nested automata do not constitute a characterization of the GKAT automata
that correspond to GKAT expressions. To obtain such a characterization, we take a slightly
different approach: rather than describing shapes of these automata, we describe the shapes
of the trees that they denote. We refer to a set of trees U Ď Z as a coequation, and treat it
as a predicate: a GKAT-automaton X satisfies U, written X |ù U, if every behavior present
in X appears in U – in other words, if !X factors through U. We write CovpUq to denote the
class of all GKAT-automata that satisfy U. It is easily shown that CovpUq is a covariety.

The coequation that we give to describe the covariety of automata whose behavior
corresponds to a GKAT expression is driven by the intuition behind well-nested automata:
the trees in this coequation are built using compositions that enforce while-like behavior,
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v0 v1

v2 v3

v4 v5

v6 v7

a0, a1

a0, a1

a2, a3

a2, a3

a3

a3

a2 a2

a0

a0

a1 a1

Figure 4 As depicted, this automaton is well-nested. However, identifying v1 with v4, and v3

with v6, we obtain an automaton that is not well-nested.

and do not permit the construction of goto-like behavior. To this end, we need to define a
new continuation operation, as follows. Given s, t P Z, the continuation s ▷ t of s along t

is the unique tree satisfying the behavioral differential equation

ps ▷ tqpaq “

#

tpaq if spaq “ 1,

spaq otherwise
Baps ▷ tq “

#

Bat ▷ t if spaq “ 1,

Bas ▷ t otherwise.

Intuitively, s ▷ t is the tree that attaches infinitely many copies of t to s. This operation
can be thought of as the dual to Kleene’s original ˚-operation [16], which loops on its first
argument some number of times before continuing in the second.

▶ Definition 6.1. The nesting coequation W is the smallest subset of Z containing the
discrete coequation D :“ trrbss | b Ď Au and closed under the nesting rules below:

t, s P W
t ¨ s P W

p@a P Aq tpaq P Σ ùñ Bat P W
t P W

t, s P W
t ▷ s P W

The first and third nesting rules say that W is closed under composition and continuation;
the second rule says that integrals over nested trees are nested.

It is not too hard to see that W is a subautomaton of Z. In other words, if t P W, then
the derivatives of t are in W as well. In fact, W is a subalgebra of Z in that it is closed under
the operations of GKAT. This can be seen from the following observations: first, Bap “ 1
for all a P A, so p P W for any p P Σ by the second nesting rule. Second, W is closed under
sequential composition by definition. Third, if s, t P W and b Ď A, then every derivative
of s `b t is either a derivative of s or a derivative of t. Lastly, closure under the guarded
exponential is a consequence of the identity

tpbq
“ 1 ▷ pt̃ `b 1q, where t̃ :“

Ř

t a|pa
ÝÝÝÑta

pa ¨ ta.

This identity can be shown to hold for all t P Z and b Ď A using a coinductive argument. It
follows that the nesting coequation contains the image of rr´ss. A similar argument can be
used to establish the reverse containment as well, which leads to the following.

▶ Proposition 6.2. W is the set of GKAT program behaviors, i.e, W “ trress | e P Expu.

Proposition 6.2 characterizes W as the the set of behavioral patterns exhibited by GKAT
expressions: the states of a GKAT-automaton X behave like GKAT programs if and only if
X satisfies W, or, in other words, if X can be found in the covariety CovpWq. Since every
well-nested automaton has the behavior of some GKAT expression [34], it must satisfy W.

▶ Proposition 6.3. Well-nested GKAT-automata satisfy the nesting coequation.
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7 Completeness

This section contains two completeness theorems for GKAT . As in [34], we need to assume
that W3 is generalized to arbitrary (linear) systems of equations. This uniqueness axiom,
discussed in Section 7.1, will allow us to prove that the semantics rr´ss from Section 5 is
free with respect to ”0 – that is, rress “ rrf ss implies e ”0 f – in Section 7.2. This will then
provide an alternative route to completeness for GKAT in Section 7.3.

7.1 Uniqueness of solutions for Salomaa systems

In part, W3 from Figure 1 ensures that the equation g ” e ¨ g `b f with indeterminate g

has at most one solution in Exp{”0 for any e, f P Exp under the condition that e denotes a
productive program. In fact, we could have stated the axiom this way from the beginning,
as W1 provides the existence of a solution to this equation (even without the restriction on
productivity). As we will see, the uniqueness axiom makes a more general statement than
W3 about systems of equations with an arbitrary number of indeterminates.

▶ Definition 7.1. A system of (n left-affine) equations is a sequence of n equations
of the form xi “ ei1 ¨ x1 `bi1 ¨ ¨ ¨ `bipn´1q

ein ¨ xn `bin ci, indexed by i ď n, such that (1) xi

is an indeterminate variable; (2) pbijqjďn is a sequence of disjoint Boolean expressions,
i.e. bij ^ bik ” 0 for any j ‰ k; (3) ci is a Boolean expression disjoint from bij for all j ď n;
and (4) eij is a GKAT expression for any j ď n.

Given any congruence 9” satisfying the axioms of ”0, a solution in Exp{ 9” to such a
system is an n-tuple of GKAT expressions pgiqiďn such that the equivalence gi 9” ei1 ¨ g1 `bi1

¨ ¨ ¨ `bipn´1q
ein ¨ gn `bin

ci holds for all i ď n.

For example, the equation in the premise of W3 is a system of one left-affine equation, and
the conclusion prescribes a unique solution (in Exp{”0) to the premise. Every finite GKAT-
automaton X gives rise to a system of equations with variables indexed by X “ txi | i ď nu

and coefficients indexed by the transition map, as follows:

eij “
ă

xi
a|pa

ÝÝÝÑxj

pa ci “ ta P A | xi ñ au bij “ ta P A | xi
a|p

ÝÝÑ xju.

Solving this system of equations uncovers the GKAT-constructs the automaton implements.
The uniqueness axiom states that certain systems of equations, like the one in the premise

of W3, admit at most one solution. Choosing which systems the axiom should apply to
must be done carefully for the same reason that necessitates the side-condition on W3.
Crucially, we require that the system have productive coefficients, i.e. Epeijq ” 0 for all
i, j ď n, to admit a unique solution. As this condition is analogous to Salomaa’s empty word
property [31], a system of equations with productive coefficients is called Salomaa [34]. The
uniqueness axiom (for 9”) states that every Salomaa system of equations has at most one
solution in Exp{ 9”. It is sound with respect to the semantics rr´ss from Section 5.

▶ Theorem 7.2. For any i, j ď n, let sij P Z satisfy sijpaq ‰ 1 for any a P A, pbijqj‰n be a
sequence of disjoint Boolean expressions for any i ď n, and ci Ď A be disjoint from bij for
each i ď n. The system of equations xi “ si1 ¨ t1 `bi1 ¨ ¨ ¨ `bipn´1q

sin ¨ tn `bin ci, indexed by
i ď n has a unique solution in Zn.
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7.2 Completeness with respect to ”0

Next, we present a completeness theorem w.r.t. ”0. We have already seen that the behavior
of a program takes the form of a tree, and that the programming constructs of GKAT apply
to trees in such a way that equivalence up to the axioms of ”0 is preserved (Theorem 5.2).
The completeness theorem in this section shows that up to ”0-equivalence, GKAT programs
can be identified with the trees they denote.

▶ Theorem 7.3 (Completeness for ”0). Assume the uniqueness axiom for ”0 and let
e, f P Exp. If rress “ rrf ss, then e ”0 f .

Proof sketch. Since rress “ rrf ss, e and f are bisimilar as expressions. This bisimulation gives
rise to a Salomaa system of equations, which can be shown to admit both the derivatives of
e and f as solutions. By the unique solutions axiom, it then follows that e ”0 f . ◀

7.3 Completeness with respect to ”

Having found a semantics that is sound and complete w.r.t. ”0, we proceed to extend
this result to find a semantics that is sound and complete w.r.t. ”. Recall that the only
difference between these equivalences was S3, which equates programs that fail eventually
with programs that fail immediately. To coarsen our semantics, we need an operation on
labelled trees that forces early termination in case an accepting state cannot be reached.

▶ Definition 7.4. We say t P Z is dead when for all w P domptq it holds that tpwq ‰ 1. The
normalization operator is defined coinductively, as follows:

t^
paq “

#

0 tpaq P Σ ^ Bat is dead,

tpaq otherwise
Bapt^

q “ pBatq^.

▶ Example 7.5. Normalizing the tree rrp `b p ¨ 0ss prunes the branch corresponding to b̄,
since it has no accepting leaves. This yields the tree rrb ¨ pss.

We can compose the normalization operator with the semantics rr´ss to obtain a new
semantics rr´ss

^, which replaces dead subtrees with early termination. Composing normal-
ization with the earlier semantics of GKAT, we obtain the normalized semantics rr´ss

^.
This semantics is sound w.r.t. ”.

▶ Proposition 7.6. If e ” f , then rress
^

“ rrf ss
^.

For the corresponding completeness property, we need a way of “normalizing” a given
expression in Exp. The following observation gives us a way to do this.

▶ Lemma 7.7. W is closed under normalization.

When e P Exp, we have that rress P W. Moreover, by the above, rress
^

P W, which
means that there is an e1 P Exp such that rre1ss “ rress

^. We write e^ for this normalized
expression. As it turns out, we can derive the equivalence e^ ” e from the uniqueness
axiom for ”. This gives an alternative proof of the completeness result of [34] that highlights
the role of coequational methods in reasoning about failure modes.

▶ Corollary 7.8 ([34]). Assume the uniqueness axiom for ” and ”0. If rress
^

“ rrf ss
^, then

e ” f .

Proof sketch. If rress
^

“ rrf ss
^, then rre^ss “ rrf^ss. By completeness of ”0 w.r.t. rr´ss, we

can then derive that e ” e^ ”0 f^ ” f , and since ”0 is contained in ”, also e ” f . ◀
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By normalizing the trees in W, we obtain the coequation W^ “ tt^ | t P Wu. This co-
equation precisely characterizes GKAT programs with forced early termination. In particular,
since W^ Ď W, neither state in Figure 3 has a semantics described by rress

^ for some e P Exp.

8 Related work

This paper builds on [34], where GKAT was proposed together with a language semantics based
on guarded strings [15] and an axiomatization closely related to Salomaa’s axiomatization of
regular expressions based on unique fixpoints [31]. Note that the language of propositional
while programs from [23, 20] is closely related to GKAT in terms of semantics, although the
compact syntax and axiomatization were only introduced in [34].

Some GKAT-automata have behavior that does not correspond to any GKAT expression,
such as the example in [23]. The upshot is that the Böhm-Jacopini theorem [6, 13], which
states that every deterministic flowchart corresponds to a while program, does not hold
propositionally, i.e., when we abstract from the meaning of individual actions and tests [23].

In contrast with [34, 23], our work provides a precise characterization of the behaviors
denoted by GKAT programs using trees. In other words, we characterize the image of the
semantic map inside the space of all behaviors. This explicit characterization was essential
for proving completeness of the full theory of GKAT, including the early termination axiom.
KAT equivalence without early termination has been investigated by Mamouras [24].

Brzozowski derivatives [7] appear in the completeness proof of KA [18, 21, 14]. We were
more directly inspired by Silva’s coalgebraic analogues of Brzozowski derivatives used in
the context of completeness [33]. Rutten [28] and Pavlovic and Escardo [26] document the
connection between the differential calculus of analysis and coalgebraic derivatives.

Coequations have appeared in the coalgebra literature in a variety of contexts, e.g. [3, 1,
5, 29, 30], and notably in the proof of generalized Eilenberg theorems [36, 2]. The use of
coequations in completeness proofs is, as far as we are aware, new.

9 Discussion

GKAT was introduced in [23] under the name propositional while programs and extensively
studied in [34] as an algebraic framework to reason about simple imperative programs. We
presented a new perspective on the theory of GKAT, which allowed us to isolate a fragment of
the original axiomatization that captures the purely behavioral properties of GKAT programs.
We solved an open problem from [34], providing a proof that well-nested automata are
not closed under homomorphisms, thereby making it unlikely that these automata can be
used in a completeness proof that does not rely on uniqueness axioms. Finally, we proved
completeness for the full theory, respecting the early-termination property, in which programs
that fail immediately are equated with programs that fail eventually.

There are several directions for future work that are worth investigating. First, it was
conjectured in [34] that the uniqueness axiom follows from the other axioms of GKAT. This
remains open, but at the time of writing we think this conjecture might be false. Secondly,
the technique we use, based on coequations, can serve as basis for a general approach to
completeness proofs. We plan to investigate other difficult problems where our technique
might apply. Of particular interest is an open problem posed by Milner in [25], which consists
of showing that a certain set of axioms are complete w.r.t. bisimulation equivalence for
regular expressions. Recently, Grabmeyer and Fokkink [11] provided a partial solution. We
believe our technique can simplify their proofs and shed further light on Milner’s problem.
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We have chosen to adopt the axiomatization from [34], which can be described as a
Salomaa-style axiomatization – the loop is a unique fixpoint satisfying a side condition on
termination. We would like to generalize the results of the present paper to an axiomatization
in which the loop is a least fixpoint w.r.t. an order. The challenge is that there is no natural
order in the language because the ` of Kleene Algebra has been replaced by `b. However,
we hope to devise an order ď directly on expressions and extend the characterizations that
we have to the new setting. This new axiomatization would have the advantage of being
algebraic (that is, sound under arbitrary substitution), which makes it more suitable for
verification purposes as the number of models of the language would increase.

References
1 Jirí Adámek. A logic of coequations. In CSL, pages 70–86, 2005. doi:10.1007/11538363_7.
2 Jirí Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. Generalized Eilenberg

theorem: Varieties of languages in a category. ACM Trans. Comput. Log., 20(1):3:1–3:47, 2019.
doi:10.1145/3276771.

3 Jirí Adámek and Hans-E. Porst. On varieties and covarieties in a category. Math. Struct.
Comput. Sci., 13(2):201–232, 2003. doi:10.1017/S0960129502003882.

4 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole
Schlesinger, and David Walker. NetKAT: semantic foundations for networks. In POPL, pages
113–126, 2014. doi:10.1145/2535838.2535862.

5 Adolfo Ballester-Bolinches, Enric Cosme-Llópez, and Jan J. M. M. Rutten. The dual equivalence
of equations and coequations for automata. Inf. Comput., 244:49–75, 2015. doi:10.1016/j.
ic.2015.08.001.

6 Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines and languages with
only two formation rules. Commun. ACM, 9(5):366–371, 1966. doi:10.1145/355592.365646.

7 Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
doi:10.1145/321239.321249.

8 Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with tests.
Technical Report TR96-1598, Cornell University, July 1996. URL: https://hdl.handle.net/
1813/7253.

9 Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva.
Probabilistic NetKAT. In ESOP, pages 282–309, 2016. doi:10.1007/978-3-662-49498-1_12.

10 Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. A
coalgebraic decision procedure for NetKAT. In POPL, pages 343–355, 2015. doi:10.1145/
2676726.2677011.

11 Clemens Grabmayer and Wan J. Fokkink. A complete proof system for 1-free regular expressions
modulo bisimilarity. In LICS, pages 465–478, 2020. doi:10.1145/3373718.3394744.

12 H. Gumm. Elements of the general theory of coalgebras, 2000.
13 David Harel. On folk theorems. Commun. ACM, 23(7):379–389, 1980. doi:10.1145/358886.

358892.
14 Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.

In Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion
of His 65th Birthday, pages 375–404, 2006. doi:10.1007/11780274_20.

15 Donald M. Kaplan. Regular expressions and the equivalence of programs. J. Comput. Syst.
Sci., 3(4):361–386, 1969. doi:10.1016/S0022-0000(69)80027-9.

16 Stephen C. Kleene. Representation of events in nerve nets and finite automata. In Claude E.
Shannon and John McCarthy, editors, Automata Studies, pages 3–41. Princeton University
Press, 1956.

17 Dexter Kozen. Kleene algebra with tests and commutativity conditions. In TACAS, pages
14–33, 1996. doi:10.1007/3-540-61042-1_35.

ICALP 2021

https://doi.org/10.1007/11538363_7
https://doi.org/10.1145/3276771
https://doi.org/10.1017/S0960129502003882
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1016/j.ic.2015.08.001
https://doi.org/10.1016/j.ic.2015.08.001
https://doi.org/10.1145/355592.365646
https://doi.org/10.1145/321239.321249
https://hdl.handle.net/1813/7253
https://hdl.handle.net/1813/7253
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1007/11780274_20
https://doi.org/10.1016/S0022-0000(69)80027-9
https://doi.org/10.1007/3-540-61042-1_35


142:14 GKAT: Coequations, Coinduction, and Completeness

18 Dexter Kozen. Myhill-Nerode relations on automatic systems and the completeness of Kleene
algebra. In STACS, pages 27–38, 2001. doi:10.1007/3-540-44693-1_3.

19 Dexter Kozen. Automata on guarded strings and applications. Matematica Contemporanea,
24:117–139, 2003.

20 Dexter Kozen. Nonlocal flow of control and Kleene algebra with tests. In LICS, pages 105–117,
2008. doi:10.1109/LICS.2008.32.

21 Dexter Kozen. On the coalgebraic theory of Kleene algebra with tests. In Can Başkent,
Lawrence S. Moss, and Ramaswamy Ramanujam, editors, Rohit Parikh on Logic, Language
and Society, volume 11 of Outstanding Contributions to Logic, pages 279–298. Springer, 2017.
doi:10.1007/978-3-319-47843-2_15.

22 Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decidability.
In CSL, pages 244–259, 1996. doi:10.1007/3-540-63172-0_43.

23 Dexter Kozen and Wei-Lung Dustin Tseng. The Böhm-Jacopini theorem is false, propositionally.
In MPC, pages 177–192, 2008. doi:10.1007/978-3-540-70594-9_11.

24 Konstantinos Mamouras. Equational theories of abnormal termination based on Kleene
algebra. In FOSSACS, volume 10203 of Lecture Notes in Computer Science, pages 88–105,
2017. doi:10.1007/978-3-662-54458-7_6.

25 Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439–466, 1984. doi:10.1016/0022-0000(84)90023-0.

26 Dusko Pavlovic and Martín Hötzel Escardó. Calculus in coinductive form. In LICS, pages
408–417, 1998. doi:10.1109/LICS.1998.705675.

27 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

28 Jan J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theor. Comput. Sci., 308(1-3):1–53, 2003. doi:
10.1016/S0304-3975(02)00895-2.

29 Julian Salamanca, Adolfo Ballester-Bolinches, Marcello M. Bonsangue, Enric Cosme-Llópez,
and Jan J. M. M. Rutten. Regular varieties of automata and coequations. In MPC, pages
224–237, 2015. doi:10.1007/978-3-319-19797-5_11.

30 Julian Salamanca, Marcello M. Bonsangue, and Jurriaan Rot. Duality of equations and
coequations via contravariant adjunctions. In Ichiro Hasuo, editor, CMCS, pages 73–93, 2016.
doi:10.1007/978-3-319-40370-0_6.

31 Arto Salomaa. Two complete axiom systems for the algebra of regular events. J. ACM,
13(1):158–169, 1966. doi:10.1145/321312.321326.

32 Todd Schmid, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded Kleene algebra
with tests: Coequations, coinduction, and completeness, 2021. arXiv:2102.08286.

33 Alexandra Silva. Kleene coalgebra. PhD thesis, Radboud University, Nijmegen, 2010. URL:
https://hdl.handle.net/2066/83205.

34 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva.
Guarded Kleene algebra with tests: Verification of uninterpreted programs in nearly linear
time. In POPL, 2020. doi:10.1145/3371129.

35 Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter Kozen, and
Alexandra Silva. Scalable verification of probabilistic networks. In PLDI, pages 190–203, 2019.
doi:10.1145/3314221.3314639.

36 Henning Urbat, Jirí Adámek, Liang-Ting Chen, and Stefan Milius. Eilenberg theorems for
free. In MFCS, 2017. doi:10.4230/LIPIcs.MFCS.2017.43.

https://doi.org/10.1007/3-540-44693-1_3
https://doi.org/10.1109/LICS.2008.32
https://doi.org/10.1007/978-3-319-47843-2_15
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/978-3-540-70594-9_11
https://doi.org/10.1007/978-3-662-54458-7_6
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1109/LICS.1998.705675
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1007/978-3-319-19797-5_11
https://doi.org/10.1007/978-3-319-40370-0_6
https://doi.org/10.1145/321312.321326
http://arxiv.org/abs/2102.08286
https://hdl.handle.net/2066/83205
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.4230/LIPIcs.MFCS.2017.43


Analytical Differential Calculus with Integration
Han Xu #

Department of Computer Science and Technology, Peking University, Beijing, China

Zhenjiang Hu #

Key Laboratory of High Confidence Software Technologies (MoE),
Department of Computer Science and Technology, Peking University, Beijing, China

Abstract
Differential lambda-calculus was first introduced by Thomas Ehrhard and Laurent Regnier in 2003.
Despite more than 15 years of history, little work has been done on a differential calculus with
integration. In this paper, we shall propose a differential calculus with integration from a programming
point of view. We show its good correspondence with mathematics, which is manifested by how
we construct these reduction rules and how we preserve important mathematical theorems in our
calculus. Moreover, we highlight applications of the calculus in incremental computation, automatic
differentiation, and computation approximation.
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1 Introduction

Differential calculus has more than 15 years of history in computer science since the pioneer
work by Thomas Ehrhard and Laurent Regnier [9]. It is, however, not well-studied from
the perspective of programming languages; we would expect the profound connection of
differential calculus with important fields such as incremental computation, automatic
differentiation and self-adjusting computation just like how mathematical analysis connects
with mathematics. We want to understand what is the semantics of the derivative of a
program and how we can use these derivatives to write a program. That is, we wish to have
a clear description of derivatives and introduce integration to compute from operational
derivatives to the program.

The two main lines of the related work are the differential lambda-calculus [9, 8] and the
change theory [7, 4, 5]. On one hand, the differential lambda-calculus uses linear substitution
to represent the derivative of a term. For example, given a term x ∗ x (i.e., x2), with the
differential lambda-calculus, we may use the term ∂x∗x

∂x · 1 to denote its derivative at 1. As
there are two alternatives to substitute 1 for x in the term x ∗ x, it gives (1 ∗ x) + (x ∗ 1)
(i.e., 2x) as the derivative (where + denotes “choice”).

Despite that the differential lambda-calculus provides a concise way to analyze the
alternatives of linear substitution on a lambda term, there is a gap between analysis on terms
and computation on terms. For instance, let +′ denote our usual addition operator, and +
denote the choice of linear substitution. Then we have that ∂x+′x

∂x · 1 = (1 +′ x) + (x +′ 1),
which is far away from the expected 1 +′ 1. Moreover, it offers no method to integrate over a
derivative, say ∂t

∂x · y.
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On the other hand, the change theory gives a systematic way to define and propagate
(transfer) changes. The main idea is to define the change of function f as Derive f , satisfying

f(x ⊕ ∆x) = f(x) ⊕ (Derive f) x ∆x.

where ⊕ denotes an updating operation. It reads that the change over the input x by ∆x

results in the change over the result of f(x) by (Derive f) x ∆x. While change theory
provides a general way to describe changes, the changes it described are differences (deltas)
instead of derivatives. It is worth noting that derivative is not the same as delta. For example,
by change theory, we can deduce that f(x) will be of the form of x ∗ x + C if we know
(Derive f) x ∆x = 2 ∗ x ∗ ∆x + ∆x ∗ ∆x, but we cannot deduce this form if we just know
that its derivative is 2 ∗ x, because change theory has no concept of integration or limits.

Although a bunch of work has been done on derivatives [9, 8, 7, 4, 19, 16, 21, 10, 1],
there is unfortunately, as far as we are aware, little work on integration. It may be natural
to ask what a derivative really means if we cannot integrate it. If there is only a mapping
from a term to its derivative without its corresponding integration, how can we operate on
derivatives with a clear understanding of what we actually have done?

In this paper1, we aim at a new differential framework, having dual mapping between
derivatives and integrations. With this framework, we can manifest the power of this dual
mapping by proving, among others, three important theorems, namely the Newton-Leibniz
formula, the Chain Rule and the Taylor’s theorem.

Our key idea can be illustrated by a simple example. Suppose we have a function f map-
ping from an n-dimensional space to an m-dimensional space. Then, let x be (x1, x2, ..., xn)T ,
and f(x) be (f1(x), f2(x), ..., fm(x))T . Mathematically, we can use a Jacobian matrix A to
represent its derivative, which satisfies the equation

f(x + ∆x) − f(x) = A∆x + o(∆x), where A =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· · · · · · · · · · · ·
∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn


However, computer programs usually describe computation over data of some structure,
rather than just scalar data or matrix. In this paper, we extend the idea and propose a new
calculus that enables us to perform differentiation and integration on data structures. Our
main contributions are summarized as follows.

To our knowledge, we have made the first attempt of designing a calculus that provides
both derivative and integral. It is an extension of the lambda-calculus with five new
operators including derivatives and integrations. We give clear semantics and typing
rules, and prove that it is sound and strongly normalizing. (Section 2)
We prove three important theorems and highlight their practical application for incre-
mental computation, automatic differentiation, and computation approximation.

We prove the Newton-Leibniz formula:
∫ t2

t1
∂t
∂y |xdx = t[t2/y] ⊖ t[t1/y], which is also

known as Second Fundamental Theorem of Calculus. It shows the duality between
derivatives and integrations, and can be used for incremental computation. (Section 3)
We prove the Chain Rule: ∂f(g x)

∂x |t1 ∗ t = ∂f y
∂y |g t1 ∗ ( ∂g z

∂z |t1 ∗ t). It says
∀x, ∀x0, (f(g(x)))′ ∗ x0 = f ′(g(x)) ∗ g′(x) ∗ x0, and can be used for incremental compu-
tation and automatic differentiation. (Section 4)

1 A full version of this paper is available at https://arxiv.org/abs/2105.02632.
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Terms t ::= c constants of interpretable type
| x variable
| λx : T. t lambda abstraction
| t t function application
| (t1, t2, . . . , tn) | πj t n-tuple and projection
| t ⊕ t addition
| t ⊖ t subtraction
| t ∗ t multiplication
| ∂t

∂x |t derivative

|
∫ t

t
t dx integration

| inl t | inr t left/right injection
| case t of inl x1 ⇒ t | inr x2 ⇒ t case analysis
| fix t fix point

Types T ::= B base type
| (T1, T2, . . . , Tn) product type
| T → T function type
| T + T sum type

Contexts Γ ::= ∅ empty context
| Γ, x : T variable binding

Figure 1 Calculus Syntax.

We prove the Taylor’s Theorem: f t =
∞∑

k=0

1
k! (f

(k) t0) ∗ (t ⊖ t0)k. Different from

that one of the differential lambda-calculus [9], this Taylor’s theorem manifests res-
ults of computation instead of analysis on occurrence of terms. It can be used for
approximation of a function computation. (Section 5)

2 Calculus

In this section, we shall give a clear definition of our calculus with both derivatives and
integration. We explain important insights in our design, and prove some useful properties
and theorems that will be used later.

2.1 Syntax

Our calculus, as defined in Figure 1, is an extension of the simply-typed lambda calculus [20].
Besides the usual constant, variable, lambda abstraction, function application, and tuple, it
introduces five new operations: addition ⊕, subtraction ⊖, multiplication ∗, derivative ∂t

∂x |t
and integration

∫ t

t
t dx. The three binary operations, namely ⊕, ⊖, and ∗, are generalizations

of those from our mathematics. Intuitively, x ⊕ ∆ is for updating x with change ∆, ⊖ for
canceling updates, and * for distributing updates. We build up terms from terms of base
types (such as R, C), and on each base type we require these operations satisfy the following
properties:

ICALP 2021
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c : T ∈ Γ
Γ ⊢ c : T

(TCon)
x : T ∈ Γ
Γ ⊢ x : T

(TVar)

Γ ⊢ t : T1

Γ ⊢ inl t : T1 + T2
(TInl)

Γ ⊢ t : T2

Γ ⊢ inr t : T1 + T2
(TInr)

Γ ⊢ t1 : T ∗ Γ ⊢ t2 : T ∗

Γ ⊢ t1 ⊕ t2 : T ∗ (TAdd)
Γ ⊢ t1 : T ∗ Γ ⊢ t2 : T ∗

Γ ⊢ t1 ⊖ t2 : T ∗ (TSub)

Γ, x : T1 ⊢ t : T2

Γ ⊢ λx : T1. t : T1 → T2
(TAbs)

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2
(TApp)

Γ ⊢ t : T → T

Γ ⊢ fix t : T
(TFix)

Γ ⊢ t1 : T1 Γ, x : T1 ⊢ t2 : T2

Γ ⊢ ∂t2
∂x |t1 : ∂T2

∂T1

(TDer)

∀j ∈ [1, n], Γ ⊢ tj : Tj

Γ ⊢ (t1, t2, ..., tn) : (T1, T2, ..., Tn)
(TPair)

∀j ∈ [1, n], Γ ⊢ t : (T1, T2, ..., Tn)
Γ ⊢ πj t : Tj

(TProj)

Γ ⊢ t1 : ∂T ∗

∂T Γ ⊢ t2 : T

Γ ⊢ t1 ∗ t2 : T ∗ (TMul)

Γ ⊢ t1 : T Γ ⊢ t2 : T Γ, x : T ⊢ t : ∂T ∗

∂T

Γ ⊢
∫ t2

t1
t dx : T ∗

(TInt)

Γ, x1 : T1 ⊢ t1 : T Γ, x2 : T2 ⊢ t2 : T Γ ⊢ t : T1 + T2

Γ ⊢ case t of inl x1 ⇒ t1 | inr x2 ⇒ t2 : T
(TCase)

Figure 2 Typing Rules.

The addition and multiplication are associative and commutative, i.e., (a ⊕ b) ⊕ c =
a ⊕ (b ⊕ c), a ⊕ b = b ⊕ a, (a ∗ b) ∗ c = a ∗ (b ∗ c), a ∗ b = b ∗ a.
The addition and the subtraction are cancellable, i.e., (a ⊕ b) ⊖ b = a and (a ⊖ b) ⊕ b = a.
The multiplication is distributive over addition, i.e., a ∗ (b ⊕ c) = a ∗ b ⊕ a ∗ c.

▶ Example 1 (Basic Operations on Real Numbers). For real numbers r1, r2 ∈ R, we have the
following definitions.

r1 ⊕ r2 = r1 + r2
r1 ⊖ r2 = r1 − r2
r1 ∗ r2 = r1 r2

We use ∂t1
∂x |t2 to denote derivative of t1 over x at point t2, and

∫ t2
t1

t dx to denote
integration of t over x from t1 to t2.

2.2 Typing
As defined in Figure 1, we have base types (denoted by B), tuple types, function types, and
sum type. To make our later typing rules easy to understand, we introduce the following
type notations.

Type T ∗ ::= B base type
| (T ∗, T ∗, ..., T ∗) product type
| T → T ∗ arrow type
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T ∗ means the types that are addable (i.e., updatable through ⊕). We view the addition
between functions, tuples and base type terms as valid, which will be showed by our reduction
rules later. But here, we forbid the addition and subtraction between sum types because we
view updates such as inl 0⊕inr 1 as invalid. If we want to update the change to a term of sum
types anyway, we may do case analysis such as case t of inl x1 ⇒ inl (x1 ⊕ ...) | inr x2 ⇒
(x2 ⊕ ...).

Next, we introduce two notations for derivatives on types:

∂T

∂B = T,

∂T

∂(T1, T2, ..., Tn) = ( ∂T

∂T1
,

∂T

∂T2
, ...,

∂T

∂Tn
).

The first notation says that with the assumption that differences (subtraction) of values
of base types are of base types, the derivative over base types has no effect on the result
type. And, the second notation resembles partial differentiation. Note that we do not
consider derivatives on functions because even for functions on real numbers, there is no
good mathematical definition for them yet. Therefore, we do not have a type notation for

∂T
∂(T1→T2) . Besides, because we forbid the addition and subtraction between the sum types,
we will iew the differentiation of the sum types as invalid, so we do not have notations for

∂T
∂(T1+T2) either.

Figure 2 shows the typing rules for the calculus. The typing rules for constant, variable,
lambda abstraction, function application, tuple, and projection are nothing special. The
typing rules for addition and subtraction are natural, but the rest three kinds of rules are
more interesting. Rule TMul the typing rule for t1 ∗ t2. If t1 is a derivative of T1 over T2, and
t2 is of type T2, then multiplication will produce a term of type T1. This may be informally
understood from our familiar equation △Y

△X ∗ △X = △Y . Rule TDer shows introduction
of the derivative type through a derivative operation, while Rule TInt cancellation of the
derivative type through an integration operation.

2.3 Semantics
We will give a two-stage semantics for the calculus. At the first stage, we assume that all
the constants (values and functions) over the base types are interpretable in the sense there
is a default well-defined interpreter to evaluate them. At the second stage, the important
part of this paper, we define a set of reduction rules and use the full reduction strategy
to compute their normal form, which enjoys good properties of soundness, confluence, and
strong normalization.

More specifically, after the full reduction of a term in our calculus, every subterm (now in
a normal form of interpretable types) outside the lambda function body will be interpretable
on base types, which will be proved in the full version. In other words, our calculus helps to
reduce a term to a normal form which is interpretable on base types, and leave the remaining
evaluations to interpretation on base types. We will not give reduction rules to the operations
on base types because we do not want to touch on implementations of primitive functions on
base types.

For simplicity, in this paper we will assume that the important properties such as the
Newton-Leibniz formula, the Chain Rule, and the Taylor’s theorem, are satisfied by all the
primitive functions and their closures through addition, subtraction, multiplication, derivative
and integration. This assumption may seem too strong, since not all primitive functions on
base types meet this assumption. However, it would make sense to start with the primitive
functions meeting these requirements to build our system, and extend it later with other
primitive functions.
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t0 : B
∂(t1,t2,...,tn)

∂x |t0 → ( ∂t1
∂x |t0 , ∂t2

∂x |t0 , ..., ∂tn

∂x |t0)
(EAppDer1)

t0 : B
∂inl/inr t

∂x |t0 → inl/inr ∂t
∂x |t0

(EAppDer2)

t0 : B
∂(λy:T.t)

∂x |t0 → λy : T. ∂t
∂x |t0

(EAppDer3)

∀i ∈ [1, n], ti∗ = (t1, t2..., ti−1, xi, ti+1..., tn)
∂t
∂x |(t1,t2,...,tn) → ( ∂t[t1∗/x]

∂x1
|t1 , ∂t[t2∗/x]

∂x2
|t2 , ..., ∂t[tn∗/x]

∂xn
|tn)

(EAppDer4)

t1, t2 : B∫ t2
t1

(t11, t12, ...t1n)dx → (
∫ t2

t1
t11dx,

∫ t2
t1

t12dx, ...,
∫ t2

t1
t1ndx)

(EAppInt1)

t1, t2 : B∫ t2
t1

inl/inr t dx → inl/inr
∫ t2

t1
t dx

(EAppInt2)

t1, t2 : B∫ t2
t1

λy : T2.tdx → λy : T2.
∫ t2

t1
tdx

(EAppInt3)

∀i ∈ [1, n], ti∗ = (t21..., t2i−1, xi, t1i+1..., t1n)∫ (t21,t22,...,t2n)
(t11,t12,...t1n) tdx →

∫ t21
t11

π1(t[t1∗/x])dx1 ⊕ ... ⊕
∫ t2n

t1n
πn(t[tn∗/x])dxn

(EAppInt4)

Figure 3 Reduction Rules for Derivative and Integration.

2.4 Reduction Rules
Our calculus is an extension of simply-typed lambda-calculus. Our lambda abstraction and
application are nothing different from the simply-typed lambda calculus, and we have the
reduction rule:

(λx : T. t)t1 → t[t1/x].

We use an n-tuple to model structured data and projection πj to extract j-th component
from a tuple, and we have the following reduction rule:

πj(t1, t2, ...tn) → tj .

Similarly, we have reduction rules for the case analysis:

case (inl t) of inl x1 ⇒ t1 | inr x2 ⇒ t2 → t1[t/x1]

case (inr t) of inl x1 ⇒ t1 | inr x2 ⇒ t2 → t2[t/x2]

Besides, we introduce fix-point operator to deal with recursion:

fix f → f (fix f)

It is worth noting that tuples, having a good correspondence in mathematics, should be
understood as structured data instead of high-dimensional vectors because there are some
operations that are different from those in mathematics. As will be seen later, there is
difference between our multiplication and matrix multiplication, and derivative and integration
on tuples of tuples has no correspondence to mathematical objects.
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The core reduction rules in our calculus are summarized in Figure 3, which define three
basic cases for both reducing derivative terms and integration terms. For derivative, we use
∂t
∂x |t0 to denote the derivative of t over x at point t0, and we have four reduction rules:

Rule EAppDer1 is to distribute point t0 : B into a tuple. This resembles the case in
mathematics; if we have a function f defined by f(x) = (f1(x), f2(x), . . . , fm(x))T , its
derivative will be ( ∂f1

∂x , ∂f2
∂x , . . . , ∂fm

∂x )T . For example, if we have a function f : R → (R,R)
defined by f(x) = (x, x ∗ x), then its derivative will be (1, 2 ∗ x).
Rule EAppDer2 is similar to Rule EAppDer1.
Rule EAppDer3 is to distribute point t0 : B into a lambda abstraction. Again this is
very natural in mathematics. For example, for function f(x) = λy : B. x ∗ y, then we
would have its derivative on x as λy : B.y.
Rule EAppDer4 is to deal with partial differentiation, similar to the Jacobian matrix in
mathematics (as shown in the introduction). For example, if we have a function that maps
a pair (x, y) to (x ∗ x, x ∗ y ⊕ y), which may be written as λz : (B, B). (π1z ∗ π1z, (π1z ∗
π2z ⊕ π2z)) then we would have its derivative ∂(f z)

∂z |(x,y) as ((2 ∗ x, y), (0, x ⊕ 1)).

Similarly, we can define four reduction rules for integration. Rules EAppInt1,EAppInt2
and EAppInt3 are simple. Rule EAppInt4 is worth more explanation. It is designed to
establish the Newton-Leibniz formula∫ t2

t1

∂t

∂y
|xdx = t[t2/y] ⊖ t[t1/y]

when t1 and t2 are tuples:∫ (t21,t22,...,t2n)

(t11,t12,...,t1n)

∂t

∂y
|xdx = t[(t21, t22, ..., t2n)/y] ⊖ t[(t11, t12, ..., t1n)/y].

So we design the rule to have∫ t2j

t1j

∂t[(t21, ..., t2(j−1), x′
j , t1(j+1), ..., t1n)/y]

∂x′
j

|xj dxj =
∫ (t21,...,t2(j−1),t2j ,t1(j+1),...,t1n)

(t21,...,t2(j−1),t1j ,t1(j+1),...,t1n)

∂t

∂y
|xdx.

Notice that under our evaluation rules on derivative, πj( ∂t
∂x |x=(x1,x2,...,xn)) will be equal to

the derivative of t to its j-th parameter xj , so the integration will lead us to the original t.
Finally, we discuss the reduction rules for the three new binary operations, as summarized

in Figure 4. The addition ⊕ is introduced to support the reduction rule of integration. It is
also useful in proving the theorem and constructing the formula. We can understand the
two reduction rules for addition as the addition of high-dimension vectors and functions
respectively. Similarly, we can have two reduction rules for subtraction ⊖. The operator ∗ was
introduced as a powerful tool for constructing the Chain Rule and the Taylor’s theorem. The
first two reduction rules can be understood as multiplications of a scalar with a function and a
high-dimension vector respectively, while the last one can be understood as the multiplication
on matrix. For example, we have

((1, 4), (2, 5), (3, 6)) ∗ (7, 8, 9) = (50, 122)

which corresponds to the following matrix multiplication.

(
1 2 3
4 5 6

) 7
8
9

 =
(

50
122

)

ICALP 2021
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(t11, ..., t1n) ⊕ (t21, ..., t2n) → (t11 ⊕ t21, ..., t1n ⊕ t2n) (EAppAdd1)

(λx : T. t1) ⊕ (λy : T. t2) → λx : T. (t1 ⊕ t2[y/x]) (EAppAdd2)

(t11, ..., t1n) ⊖ (t21, ..., t2n) → (t11 ⊖ t21, ..., t1n ⊖ t2n) (EAppSub1)

(λx : T. t1) ⊖ (λy : T. t2) → λx : T. (t1 ⊖ t2[y/x]) (EAppSub2)

t0 : B
(t1, t2, ..., tn) ∗ t0 → (t1 ∗ t0, t2 ∗ t0, ..., tn ∗ t0)

(EAppMul1)

t0 : B
(λx : T.t) ∗ t0 → λx : T.(t ∗ t0)

(EAppMul2)

t0 : B
(inl/inr t) ∗ t0 → inl/inr (t ∗ t0)

(EAppMul3)

t1 : (t11, t12, ...t1n), t2 : (t21, t22, ...t2n)
t1 ∗ t2 → (t11 ∗ t21) ⊕ (t12 ∗ t22) ⊕ ... ⊕ (t1n ∗ t2n)

(EAppMul4)

Figure 4 Reduction Rules for Addition, Subtraction and Multiplication.

It is worth noting that while they are similar, ∗ is different from the matrix multiplication
operation. For example, we cannot write x as an m-dimensional vector (or m ∗ 1 matrix) in
Taylor’s theorem because no matrix A is well-performed under A ∗ x ∗ x, but we can write
Taylor’s Theorem easily under our framework. In the matrix representation, the number of
rows of the first matrix and the number of columns of the second matrix must be equal so
that we can perform multiplication on them. This means, we can only write case m = 1’s
Taylor’s theorem in matrices, while our version can perform for any tuples.

2.5 Properties
Next, we prove some properties of our calculus. The proof is rather routine with some small
variations.

▶ Lemma 2 (Properties). This calculus has the properties of progress, preservation and
confluence. Moreover, if a term t does not contain subterms fix t′, then t is strong
normalizable.

Proof. Full proof is in the full version, which is adapted from the standard proof. ◀

2.6 Term Equality
We need to talk a bit more on equality because we do not consider reduction or calculation
on primitive functions. This notion of equality has little to do with our evaluation but has
a lot to do with the equality of primitive functions. Using this notion of equality, we can
compute the result from completely different calculations. This will be used in our later
proof of the three theorems.

Since we have proved the confluence property, we know that every term has at most one
normal form after reduction. Thus, we can define our equality based on their normal forms;
the equality between unnormalizable terms is undefined.

https://arxiv.org/abs/2105.02632
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▶ Definition 3 (Term Equality). An open term t1 is said to be equal to a term t2, if and only
if for all free variables x1, x2, ..., xn in t1 and t2, for all closed and weak-normalizable term
ui whose type is the same as that of xi, we have t1[u1/x1, ..., un/xn] = t2[u1/x1, ..., un/xn].

A closed-term t1 = t2, if their normal forms n1 and n2 have the relation that n1 = n2,
where a normal form n1 is said to be equal to another normal form n2, if they satisfy one of
the following rules:

(1) n1 is a of type iB (Type iB is used to capture terms with base type constants and
functions, being defined by iB = iB → iB | B). A normal form of type iB is interpretable
by the base type interpreter. Detailed proof is in the full version), then n2 has to be of
the same type, and under the base type interpretation, n1 is equal to n2;
(2) n1 is (t1, t2, ..., tn), then n2 has to be (t′

1, t′
2, ..., t′

n), and ∀j ∈ [1, n], tj is equal to t′
j ;

(3) n1 is λx : T.t, then n2 has to be λy : T.t′ (y can be x), and n1 x is equal to n2 x.
(4) n1 is inl t′

1, then n2 has to be inl t′
2, and t′

1 is equal to t′
2.

(5) n1 is inr t′
1, then n2 has to be inr t′

2, and t′
1 is equal to t′

2.

▶ Lemma 4. The equality is reflexive, transitive and symmetric for weak-normalizable terms.

Proof. Based on the equality of terms of base types, we can prove it by induction. ◀

▶ Lemma 5. The equality is consistent, e.g., we can not prove equality between arbitrary
two terms.

Proof. Notice that except for the equality introduced by the base type interpreter, other
equality inferences all preserve the type. So for arbitrary t1 of type (B, B) and t2 of type B,
we can not prove equality between them. ◀

Next we give some lemmas that will be used later in our proof. It is relatively unimportant
to the mainline of our calculus, so we put their proofs in the full version.

▶ Lemma 6. If t1ρ∗t′
1, t2ρ∗t′

2, then t1[t2/x]ρ∗t′
1[t′

2/x].

▶ Lemma 7. If t1 = t′
1, t2 = t′

2, then t1 ⊕ t2 = t′
1 ⊕ t′

2.

▶ Lemma 8. For a term t, for any subterm s, if the term s’=s, then t[s’/s]=t. (We only
substitute the subterm s, but not other subterms same as s)

▶ Lemma 9. If t1 ∗ (t2 ⊕ t3) and (t1 ∗ t2)⊕ (t1 ∗ t3) are weak-normalizable, then t1 ∗ (t2 ⊕ t3) =
(t1 ∗ t2) ⊕ (t1 ∗ t3).

▶ Lemma 10. If (t1⊖t2)⊕(t2⊖t3) and t1⊖t3 are weak-normalizable, then (t1⊖t2)⊕(t2⊖t3) =
t1 ⊖ t3.

3 Newton-Leibniz’s Formula

The first important theorem we will give is the Newton-Leibniz’s formula, which ensures the
duality between derivatives and integration. This theorem lays a solid basis for our calculus.

▶ Theorem 11 (Newton-Leibniz). Let t contain no free occurrence of x, and both
∫ t2

t1
∂t
∂y |xdx

and t[t2/y] ⊖ t[t1/y] are well-typed and weak-normalizable. Then we have∫ t2

t1

∂t

∂y
|xdx = t[t2/y] ⊖ t[t1/y].

ICALP 2021
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Proof. If t1, t2 or t is not closed, then we need to prove ∀u1, ..., un, we have

(
∫ t2

t1

∂t

∂y
|xdx)[u1/x1, ..., un/xn] = (t[t2/y] ⊖ t[t1/y])[u1/x1, ..., un/xn].

By freezing u1, ..., un, we can apply the substitution [u1/x1, ..., un/xn] to make every term
closed. So, for simplicity, we will assume t, t1 and t2 to be closed.

We prove this by induction on types.

Case: t1,t2 and t are of base types. By the confluence lemma, we know there exists the
normal form t′, t′

1 and t′
2 of the term t, t1 and t2. Also, we know

∫ t2
t1

∂t
∂y |xdx =

∫ t′
2

t′
1

∂t′

∂y |xdx

and t[t2/y] ⊖ t[t1/y] = t′[t′
2/y] ⊖ t′[t′

1/y]. Since on base types we have
∫ t′

2
t′

1

∂t′

∂y |xdx =
t′[t′

2/y] ⊖ t′[t′
1/y], we have

∫ t2
t1

∂t
∂y |xdx = t[t2/y] ⊖ t[t1/y].

Case: t1,t2 are of base types, t is of type (T1, T2, ..., Tn). By the confluence lemmas, there
exist a normal form (t′

11, t′
12, ..., t′

1n) for t. Using Rules (EAppInt1) and (EAppDer1),
we know∫ t2

t1
∂t
∂y |xdx =

∫ t2
t1

∂(t′
11,t′

12,...,t′
1n)

∂y |xdx

=
∫ t2

t1
( ∂t′

11
∂y |x,

∂t′
12

∂y |x, ...,
∂t′

1n

∂y |x)dx

= (
∫ t2

t1

∂t′
11

∂y |xdx,
∫ t2

t1

∂t′
12

∂y |xdx, ...,
∫ t2

t1

∂t′
1n

∂y |xdx)

On the other hand, we have

t[t2/y] ⊖ t[t1/y]
= (t′

11[t2/y], t′
12[t2/y], ..., t′

1n[t2/y]) ⊖ (t′
11[t1/y], t′

12[t1/y], ..., t′
1n[t1/y])

= (t′
11[t2/y] ⊖ t′

11[t1/y], t′
12[t2/y] ⊖ t′

12[t1/y], ..., t′
1n[t2/y] ⊖ t′

1n[t1/y])

By induction, we have ∀j ∈ [1, n],
∫ t2

t1

∂t′
1j

∂y |xdx = t′
1j [t2/y] ⊖ t′

1j [t1/y] , so we have proven
the case.
Case: t1,t2 are of base types, t is of type A → B. By Lemma 8, we can use λz : A.t z (for
simiplicity, we use λz : A.t′ where t′ = t z) to substitute for t, where z is a fresh variable.
Now, we have for any u,

(
∫ t2

t1
∂t
∂y |xdx) u = (

∫ t2
t1

∂λz:A.t′

∂y |xdx) u

= λz : A.(
∫ t2

t1
∂t′

∂y |xdx) u

=
∫ t2

t1

∂t′[u/z]
∂y |xdx

and on the other hand, since z is free in t1 and t2, we have

(t[t2/y] ⊖ t[t1/y]) u = ((λz : A.t′)[t1/y] ⊖ (λz : A.t′)[t2/y]) u

= λz : A.(t′[t2/y] ⊖ t′[t1/y]) u

= (t′[t2/y] ⊖ t′[t1/y])[u/z]
= (t′[u/z])[t2/y] ⊖ (t′[u/z])[t1/y]

By induction (on B), we know
∫ t2

t1

∂t′[u/z]
∂y |xdx = (t′[u/z])[t2/y] ⊖ (t′[u/z])[t1/y], thus we

have proven the case.
Case: t1,t2 are of base types, t is of type T1 + T2. This case is impossible because the
righthand term is not well-typed.
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Case: t1,t2 are of type (T1, T2, ..., Tn), t is of any type T . By using the confluence lemma,
we know there exist the normal forms (t′

11, t′
12, ..., t′

1n) and (t′
21, t′

22, ..., t′
2n) for t1 and t2

respectively.
Applying Rules (EAppDer3) and (EAppInt3), we have∫ t2

t1
∂t
∂y |xdx =

∫ (t′
21,t′

22,...,t′
2n)

(t′
11,t′

12,...,t′
1n)

∂t
∂y |xdx

=
∫ t′

21
t′

11
π1( ∂t

∂y |x[(x1, t′
12, ...t′

1n)/x])dx1 ⊕ · · · ⊕∫ t′
2n

t′
1n

πn( ∂t
∂y |x[(t′

21, t′
22, ..., xn)/x])dxn

Notice that there is no occurrence of x in t, so we have∫ t′
2j

t′
1j

πj( ∂t
∂y |x[(t′

21, t′
22, ..., t′

2(j−1), xj , t′
1(j+1), ..., t′

1n)/x])dxj

=
∫ t′

2j

t′
1j

πj( ∂t
∂y |(t′

21,t′
22,...,t′

2(j−1),xj ,t′
1(j+1),...,t′

1n))dxj

=
∫ t′

2j

t′
1j

πj( ∂t[t1∗/y]
∂x1

|t′
21

, ∂t[t2∗/y]
∂x2

|t′
22

, ...,
∂t[t(j−1)∗/y]

∂xj−1
|t′

2(j−1)
,

∂t[tj∗/y]
∂x′

j
|xj

,
∂t[t(j+1)∗/y]

∂xj+1
|t′

1(j+1)
, ..., ∂t[tn∗/y]

∂xn
|t′

1n
)dxj

=
∫ t′

2j

t′
1j

∂t[(t′
21,t′

22,...,t′
2(j−1),x′

j ,t′
1(j+1),...,t′

1n)/y]
∂x′

j
|xj

dxj

By induction (on the case where t1, t2 are of type Tj , t is of type T ), we have

∫ t′
2j

t′
1j

∂t[(t′
21,t′

22,...,t′
2(j−1),x′

j ,t′
1(j+1),...,t′

1n)/y]
∂x′

j
|xj

dxj

= (t[(t′
21, t′

22, ..., t′
2(j−1), x′

j , t′
1(j+1), ..., t′

1n)/y])[t′
2j/x′

j ] ⊖
(t[(t′

21, t′
22, ..., t′

2(j−1), x′
j , t′

1(j+1), ..., t′
1n)/y])[t′

1j/x′
j ]

= (t[(t′
21, t′

22, ..., t′
2(j−1), t′

2j , t′
1(j+1), ..., t′

1n)/y]) ⊖
(t[(t′

21, t′
22, ..., t′

2(j−1), t′
1j , t′

1(j+1), ..., t′
1n)/y])

Note that the last equation holds because x′
j is a fresh variable and t has no occurrence

of x′
j .

Now we have the following calculation.∫ t2
t1

∂t
∂y |xdx

= { all the above }
((t[(t′

21, t′
12, ..., t′

1n)/y]) ⊖ (t[(t′
11, t′

12, ..., t′
1n)/y])) ⊕

((t[(t′
21, t′

22, ..., t′
1n)/y]) ⊖ (t[(t′

21, t′
12, ..., t′

1n)/y])) ⊕ · · · ⊕
((t[(t′

21, t′
22, ..., t′

2n)/y]) ⊖ (t[(t′
21, t′

22, ..., t′
1n)/y]))

= { Lemma 10 }
(t[(t′

21, t′
22, ..., t′

2n)/y]) ⊖ (t[(t′
11, t′

12, ..., t′
1n)/y])

= { Lemma 6 }
t[t2/y] ⊖ t[t1/y]

Thus we have proven the theorem. ◀

Application: Incremental Computation
A direct application is incrementalization [17, 7, 11]. Given a function f(x), if the input x is
changed by ∆, then we can obtain its incremental version of f(x) by f ′(x, ∆).

f(x ⊕ ∆) = f(x) ⊕ f ′(x, ∆)

ICALP 2021
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where f ′ satisfies that

f ′(x, ∆) =
∫ x⊕∆

x

∂f(x)
∂x

|x dx.

▶ Example 12 (Averaging a Pair of Real numbers). As a simple example, consider the average
of a pair of real numbers

average :: (R,R) → R
average = λx.(π1(x) + π2(x))/2

Suppose that we want to get an incremental computation of average at x = (x1, x2) when
the first element x1 is changed to x1 + d while the second component x2 is kept the same.
The incremental computation is defined by

inc(x, d) = average(x, (d, 0)) =
∫ x⊕(d,0)

x

∂average(x)
∂x

|x dx = d

2

which is efficient.

4 Chain Rule

The Chain Rule is another important theorem of the relation between function composition
and derivatives. This Chain Rule in our calculus has many important applications in
automatic differentiation and incremental computation.

▶ Theorem 13 (Chain Rule). Let f : T1 → T , g : T2 → T1. If both ∂f(g x)
∂x |t1 ∗ t and

∂f y
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t) are well-typed and weak-normalizable. Then for any t, t1 : T2, we have

∂f(g x)
∂x

|t1 ∗ t = ∂f y

∂y
|(g t1) ∗ (∂g z

∂z
|t1 ∗ t).

Proof. Like in the proof of Theorem 11, for simplicity, we assume that f , g, t and t1 are
closed. Furthermore, we assume that t and t1 are in normal form. We prove this by induction
on types.

Case T, T2 are base types, and T1 is any type. To be well-typed, T1 must contain no →
or + type. So for simplicity, we suppose T1 to be (B, B, B, ..., B) of n-tuples, but the
technique below can be applied to any T1 type (such as tuples of tuples) that makes the
term well-typed.
First we notice that

g z = (π1(g z), π2(g z), ..., πn(g z))
= ((λb′ : B.π1(g b′)) z, (λb′ : B.π2(g b′)) z, ..., (λb′ : B.πn(g b′)) z)

and for any j, we notice that πj(g b′) has only one free variable of base type, so it can
be reduced to a normal form, say Ej , of base type. Let gj be λb′ : B.Ej , then we have
g z = (g1 z, g2 z, ..., gn z).
Next, we deal with the term f :

f = λa : T1. (f a)
= λa : T1. ((λy1 : B. λy2 : B., ...λyn : B. (f (y1, y2, ..., yn))) π1(a) π2(a)... πn(a))
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and we know that (f (y1, y2, ..., yn)) only contains base type free variables, so it can be
reduced to a base type normal form, say N , so we have

f = λa : T. ((λy1 : B.λy2 : B., ...λyn : B. N) π1(a) π2(a)... πn(a)).

Now, we can calculate as follows:
∂f(g x)

∂x |t1 ∗ t

= ∂(λa:T.(λy1:B.λy2:B.,...λyn:B.N) π1(a) π2(a)... πn(a)) (g1 x,g2 x,...,gn x)
∂x |t1 ∗ t

= ∂(λy1:B.λy2:B.,...λyn:B.N) (g1 x) (g2 x)... (gn x)
∂x |t1 ∗ t

= ∂N [(g1 x)/y1,(g2 x)/y2,...(gn x)/yn]
∂x |t1 ∗ t

∂f y
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t)
= ∂f y

∂y |(g1 t1,g2 t1,...,gn t1) ∗ ( ∂(g1 z,g2 z,...,gn z)
∂z |t1 ∗ t)

= ∂f y
∂y |(g1 t1,g2 t1,...,gn t1) ∗ ( ∂g1 z

∂z |t1 ∗ t, ∂g2 z
∂z |t1 ∗ t, ..., ∂gn z

∂z |t1 ∗ t)

= ∂(λy1:B.λy2:B.,...λyn:B.N) π1(y) π2(y)... πn(y)
∂y |(g1 t1,g2 t1,...,gn t1)∗

( ∂g1 z
∂z |t1 ∗ t, ∂g2 z

∂z |t1 ∗ t, ..., ∂gn z
∂z |t1 ∗ t)

= ( ∂N [y′
1/y1,g2 t1/y2,...,gn t1/yn]

∂y′
1

|g1 t1 , ...,
∂N [g1 t1/y1,g2 t1/y2,...,y′

n/yn]
∂y′

n
|gn t1)∗

( ∂g1 z
∂z |t1 ∗ t, ∂g2 z

∂z |t1 ∗ t, ..., ∂gn z
∂z |t1 ∗ t)

= ( ∂N [y′
1/y1,g2 t1/y2,...,gn t1/yn]

∂y′
1

|g1 t1 ∗ ( ∂g1 z
∂z |t1 ∗ t)) ⊕ ...⊕

( ∂N [g1 t1/y1,g2 t1/y2,...,y′
n/yn]

∂y′
n

|gn t1 ∗ ( ∂gn z
∂z |t1 ∗ t))

Notice that by the base type interpretation, f(g1(x), g2(x), ..., gn(x)) = f ′
1(g1(x), g2(x), ...,

gn(x)) ∗ g′
1(x) + f ′

2(g1(x), g2(x), ..., gn(x)) ∗ g′
2(x) + ... + f ′

n(g1(x), g2(x), ..., gn(x)) ∗ g′
n(x)

where f ′
j means the derivative of f to its j-th parameter, so we get the following and

prove the case.
∂N [(g1 x)/y1,(g2 x)/y2,...(gn x)/yn]

∂x |t1 ∗ t

= ( ∂N [y′
1/y1,g2 t1/y2,...,gn t1/yn]

∂y′
1

|g1 t1 ∗ ( ∂g1 z
∂z |t1 ∗ t)) ⊕ ...⊕

( ∂N [g1 t1/y1,g2 t1/y2,...,y′
n/yn]

∂y′
n

|gn t1 ∗ ( ∂gn z
∂z |t1 ∗ t))

Case T2 is base type, T1 is any type, T is A → B. We prove that for any u of type A, we
have ( ∂f(g x)

∂x |t1 ∗ t) u = ( ∂f y
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t)) u.
First, let f ′ = λx : T1.(f x) u, g′ = g, then by induction we have

∂f ′(g′ x)
∂x |t1 ∗ t = ∂f ′ y

∂y |(g′ t1) ∗ ( ∂g′ z
∂z |t1 ∗ t)

that is, we have

( ∂f (g x) u
∂x |t1 ∗ t) = ( ∂f y u

∂y |(g t1) ∗ ( ∂g z
∂z |t1 ∗ t))

Then, we prove ( ∂f (g x) u
∂x |t1 ∗ t) = ( ∂f (g x)

∂x |t1 ∗ t) u by the following calculation.

( ∂f (g x)
∂x |t1 ∗ t) u = ( ∂λa:A.(f (g x)) a

∂x |t1 ∗ t) u

= (λa : A.( ∂(f (g x)) a
∂x |t1 ∗ t)) u

= ( ∂f (g x) u
∂x |t1 ∗ t)
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Next, we prove ( ∂f y
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t)) u = ∂f y u
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t). For simplicity,
we assume T1 to be (B, B, B, ..., B) of n-tuples (the technique below can be applied to
any T1 type which makes the term well-typed).
On one hand, by substituting (g1 z, g2 z, ..., gn z) for g z, we have

( ∂f y
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t)) u

= ∂f y
∂y |(g1 t1,g2 t1,...,gn t1) ∗ ( ∂(g1 z,g2 z,...,gn z)

∂z |t1 ∗ t) u

= ( ∂f(y1,g2 t1,...,gn t1)
∂y′

1
|g1 t1 ∗ ( ∂g1 z

∂z |t1 ∗ t) ⊕ ...⊕
∂f(g1 t1,g2 t1,...,yn)

∂y′
n

|gn t1 ∗ ( ∂gn z
∂z |t1 ∗ t)) u

Since

f(g1 t1, g2 t1, ..., gj−1 t1, yj , gj+1 t1, ..., gn t1)
= λa : A.f (g1 t1, g2 t1, ..., gj−1 t1, yj , gj+1 t1, ..., gn t1) a

which will be denoted as λa : A.t∗
j , we continue the calculation as follows.

( ∂f y
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t)) u

= ( ∂λa:A.t∗
1

∂y1
|g1 t1 ∗ ( ∂g1 z

∂z |t1 ∗ t) ⊕ ... ⊕ ∂λa:A.t∗
n

∂yn
|gn t1 ∗ ( ∂gn z

∂z |t1 ∗ t)) u

= λa : A.( ∂t∗
1

∂y1
|g1 t1 ∗ ( ∂g1 z

∂z |t1 ∗ t)) ⊕ ... ⊕ ( ∂t∗
n

∂yn
|gn t1 ∗ ( ∂gn z

∂z |t1 ∗ t)) u

= ∂t∗
1 [u/a]
∂y1

|g1 t1 ∗ ( ∂g1 z
∂z |t1 ∗ t) ⊕ ... ⊕ ∂t∗

n[u/a]
∂yn

|gn t1 ∗ ( ∂gn z
∂z |t1 ∗ t)

On the other hand, we have

( ∂f y u
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t))
= ∂f y u

∂y |(g1 t1,g2 t1,...,gn t1) ∗ ( ∂(g1 z,g2 z,...,gn z)
∂z |t1 ∗ t)

= ∂f (y1,g2 t1,...,gn t1) u
∂y1

|g1 t1 ∗ ( ∂g1 z
∂z |t1 ∗ t) ⊕ ...⊕

∂f (g1 t1,g2 t1,...,yn) u
∂yn

|gn t1 ∗ ( ∂gn z
∂z |t1 ∗ t)

= ∂(λa:A.t∗
1) u

∂y1
|g1 t1 ∗ ( ∂g1 z

∂z |t1 ∗ t) ⊕ ... ⊕ ∂(λa:A.t∗
n) u

∂yn
|gn t1 ∗ ( ∂gn z

∂z |t1 ∗ t)
= ( ∂t∗

1 [u/a]
∂y1

|g1 t1 ∗ ( ∂g1 z
∂z |t1 ∗ t)) ⊕ ... ⊕ ( ∂t∗

n[u/a]
∂yn

|gn t1 ∗ ( ∂gn z
∂z |t1 ∗ t))

Therefore, we have proven the case.
Case T2 is base type, T1 is any type, T is (T1, T2, ..., Tn). We need to prove that for all j,
we have πj( ∂f(g x)

∂x |t1 ∗ t) = πj( ∂f y
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t)). We may follow the proof for the
case when T has type A → B. Let f ′ = λx : T1. πj(f x), g′ = g, by induction, we have

∂πj(f(g x))
∂x |t1 ∗ t = ∂πj(f y)

∂y |(g t1) ∗ ( ∂g z
∂z |t1 ∗ t)

The rest of the proof is similar to that for the case when T = A → B.
Case T2 is base type, T1 is any type, T is T1 + T2. Notice that T1 has to be base type to
be well-typed. But either the case, the proof is similar to the case when T = A → B.
Case T2 , T1 and T are any type. Notice that T2 does not contain no → or + to be
well-typed (i.e., no derivative over function types). We have proved the case when T2 is
base type, and we assume that T2 has type (T1, T2, ..., Tn). Suppose the normal form of
t1 is (t′

11, t′
12, ..., t′

1n) and the normal form of t is (t′
21, t′

22, ..., t′
2n), Then

∂f(g x)
∂x |t1 ∗ t

= ∂f(g x)
∂x |(t′

11,t′
12,...,t′

1n) ∗ (t′
21, t′

22, ..., t′
2n)

= ( ∂f(g (x1,t′
12,...,t′

1n))
∂x1

|t′
11

, ...,
∂f(g (t′

11,t′
12,...,xn))

∂xn
|t′

1n
) ∗ (t′

21, ..., t′
2n)

= ( ∂f(g (x1,t′
12,...,t′

1n))
∂x1

|t′
11

∗ t′
21) ⊕ ... ⊕ ( ∂f(g (t′

11,t′
12,...,xn))

∂xn
|t′

1n
∗ t′

2n)
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On the other hand, we can use Lemma 9 (i.e., t1 ∗ (t2 ⊕ t3) = (t1 ∗ t2) ⊕ (t1 ∗ t3)) to do
the following calculation.

∂f y
∂y |(g t1) ∗ ( ∂g z

∂z |t1 ∗ t)
= ∂f y

∂y |(g t1) ∗ (( ∂g (x1,t′
12,...,t′

1n)
∂x1

|t′
11

∗ t′
21) ⊕ ... ⊕ ( ∂g (t′

11,t′
12,...,xn)

∂xn
|t′

1n
∗ t′

2n))
= ∂f y

∂y |(g t1) ∗ ( ∂g (x1,t′
12,...,t′

1n)
∂x1

|t′
11

∗ t′
21) ⊕ ...⊕

∂f y
∂y |(g t1) ∗ ( ∂g (t′

11,t′
12,...,xn)

∂xn
|t′

1n
∗ t′

2n)

Now by induction using f ′ = f, g′ = λx : Tj .g (t′
11, t′

12, ..., t′
1(j−1), x, t′

1(j+1), ..., t′
1n), we

have
∂f(g (t′

11,t′
12,...,t′

1(j−1),xj ,t′
1(j+1)...,t′

1n)
∂xj

|t′
1j

∗ t′
2j

= ∂f y
∂y |(g′ t′

1j
) ∗ ( ∂g (t′

11,t′
12,...,t′

1(j−1),xj ,t′
1(j+1)...,t′

1n)
∂xj

|t′
1j

∗ t′
2j)

= ∂f y
∂y |(g t1) ∗ ( ∂g (t′

11,t′
12,...,t′

1(j−1),xj ,t′
1(j+1)...,t′

1n)
∂xj

|t′
1j

∗ t′
2j)

Therefore by Lemma 7, we have proven the case.
Thus we have proven the theorem. ◀

Application: Automatic Differentiation
The Chain Rule provides another way to compute the derivatives. There are many applications
of the chain rule, and here we give an example of how to associate it with the automatic
differentiation [10].

▶ Example 14 (AD). This is an example from [10]. Let sqr and magSqr be defined as follows.

sqr :: R → R
sqr a = a ∗ a

magSqr :: (R,R) → R
magSqr (a, b) = sqr a ⊕ sqr b

First of all, let t1 and t2 two pairs, then it is easy to prove that ∂(t1⊕t2)
∂x |t3 = ∂t1

∂x |t3 ⊕ ∂t2
∂x |t3 .

Next, we can perform automatic differentiation on magSqr by the following calculation.

∂(magSqr x)
∂x |(a,b) ∗ t

= ∂(sqr(π1x)⊕sqr(π2x))
∂x |(a,b) ∗ t

= ∂(sqr y)
∂y |π1(a,b) ∗ ( ∂(π1x)

∂x |(a,b) ∗ t) ⊕ ∂(sqr y)
∂y |π2(a,b) ∗ ( ∂(π2x)

∂x |(a,b) ∗ t)
= 2 ∗ a ∗ ((1, 0) ∗ t) ⊕ 2 ∗ b ∗ ((0, 1) ∗ t)

Now, because the theorem applies for any t of pair type, we use (1, 0) and (0, 1) to
substitute for t respectively, and we will get ∂(magSqr x)

∂x |(a,b) = (2 ∗ a, 2 ∗ b), which means
its derivative to a is 2 ∗ a and its derivative to b is 2 ∗ b.

5 Taylor’s Theorem

In this section, we discuss Taylor’s Theorem, which is useful to give an approximation of
a k-order differentiable function around a given point by a polynomial of degree k. In
programming, it is important and has many applications in approximation and incremental
computation.
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First of all, we introduce some high-order notations.

∂0t1
∂x0 |t2 = t1

∂nt1
∂xn |t2 = ∂

∂n−1t1
∂xn−1 |x

∂x |t2

t ∗ t0
1 = t t ∗ tn

1 = (t ∗ t1) ∗ tn−1
1

f0 = f fn = (f ′)n−1

(λx : T. t)′ = λx : T. ∂t
∂x |x

Now our Taylor’s Theorem can be expressed as follows.

▶ Theorem 15 (Taylor’s Theorem). If both f t and
∞∑

k=0

1
k! (f

(k) t0) ∗ (t ⊖ t0)k are weak-

normalizable, then

f t =
∞∑

k=0

1
k! (f

(k) t0) ∗ (t ⊖ t0)k.

Proof. Like in the proof of Theorem 11, for simplicity, we assume that f , g, t and t1 are
closed. Furthermore, we assume that t and t1 are in normal form. We prove it by induction
on the type of f : T → T ′.

Case T ′ is a base type. T must contain no → by our typing, so for simplicity, we suppose
T to be (B, B, ..., B). Using the same technique in Theorem 13, we assume f to be

f = λx : T. (λx1 : B. λx2 : B., ...λxn : B. N) π1(x) π2(x)... πn(x)

(denoted by f = λx : T. t2 later), t to be (t11, t12, ..., t1n), and t0 to be (t21, t22, ..., t2n),
where each tij is a normal form of base type. Then we have

(f (n) t0) ∗ (t ⊖ t0)n

= ∂nt2
∂xn |t0 ∗ (t ⊖ t0)n

= ( ∂
∂n−1t2
∂xn−1 |(x1,t22,...,t2n)

∂x1
|t21 , ...,

∂
∂n−1t2
∂xn−1 |(t21,t22,...,xn)

∂xn
|t2n) ∗ (t ⊖ t0)n

= ( ∂
∂n−1t2
∂xn−1 |(x1,t22,...,t2n)

∂x1
|t21 ∗ (t11 ⊖ t21) ⊕ ... ⊕ ∂

∂n−1t2
∂xn−1 |(t21,t22,...,xn)

∂xn
|t2n

∗(t1n ⊖ t2n)) ∗ (t ⊖ t0)n−1

= ((
∂(

∂
∂n−2t2
∂xn−2 |(x1,t22,...,t2n)

∂x1
|x1 ,...,

∂
∂n−2t2
∂xn−2 |(x1,t22,...,xn)

∂xn
|t2n )

∂x1
|t21) ∗ (t11 ⊖ t21) ⊕ ...⊕

(
∂(

∂
∂n−2t2
∂xn−2 |(x1,t22,...,xn)

∂x1
|t21 ,...,

∂
∂n−2t2
∂xn−2 |(t21,t22,...,xn)

∂xn
|xn )

∂xn
|t2n

)

∗(t1n ⊖ t2n)) ∗ (t ⊖ t0)n−1

= ((
∂

∂
∂n−2t2
∂xn−2 |(x1,t22,...,t2n)

∂x1
|x1

∂x1
|t21) ∗ (t11 ⊖ t21)2 ⊕ ...⊕

((
∂

∂
∂n−2t2
∂xn−2 |(x1,t22,...,xn)

∂x1
|t21

∂xn
|t2n

) ∗ (t1n ⊖ t2n)) ∗ (t11 ⊖ t21),
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((
∂

∂
∂n−2t2
∂xn−2 |(x1,x2,...,t2n)

∂x2
|t22

∂x1
|t21) ∗ (t11 ⊖ t21)) ∗ (t12 ⊖ t22) ⊕ ...⊕

((
∂

∂
∂n−2t2
∂xn−2 |(t11,x2,...,xn)

∂x2
|t22

∂xn
|t2n) ∗ (t1n ⊖ t2n)) ∗ (t12 ⊖ t22),

...

(( ∂
∂

∂n−2t2
∂xn−2 |(x1,t22,...,xn)

∂xn
|t2n

∂x1
|t21) ∗ (t11 ⊖ t21)) ∗ (t1n ⊖ t2n) ⊕ ...⊕

( ∂
∂

∂n−2t2
∂xn−2 |(t11,t22,...,xn)

∂xn
|xn

∂xn
|t2n

) ∗ (t1n ⊖ t2n)2) ∗ (t ⊖ t0)n−2

= ...

As seen in the above, every time we decompose a ∂
∂xi

|(...), apply Rule EAppDer1,
and then make reduction with Rule EAppMul3 to lower down the exponent of (t ⊖
t0)n. Finally, we will decompose the last derivative and get the term t2 in the form of
t2[t′

21/x1, t′
22/x2, ..., t′

2n/xn] where ∀j ∈ [1, n], t′
2j is either t2j or xj .

Note that on base type we assume that we have Taylor’s Theorem:

f(x0 + h) = f(x0) +
∞∑

k=1

1
k! (

n∑
i=1

hi
∂

∂xi
)kf(x0)

where x0 and h is an n-dimensional vector, and xj , hj is its projection to its j-th
dimension.
So we have (f (k) t0) ∗ (t ⊖ t0)k corresponds to the k-th addend 1

k! (
n∑

i=1
hi

∂
∂xi

)kf(x0).

Case: T ′ is function type A → B. Similar to the proof in Theorem 13, for all u of type A,
we define f∗ = λx : T. f x u, and by using the inductive result on type B, we can prove
the case simiarly as that in Theorem 13.
Case: T ′ is a tuple type (T1, T2, T3, ...). Just define f∗ = λx : T. πj(f x) to use inductive
result. The rest is simple.
Case: T ′ is a tuple type T1 + T2. This case is impossible because the righthand is not
well-typed.

Thus we have proven the theorem. ◀

Application: Polynomial Approximation
Taylor’s Theorem has many applications. Here we give an example of using Taylor’s Theorem
for approximation. Suppose there is a point (1, 0) in the polar coordinate system, and we
want to know where the point will be if we slightly change the radius r and the angle θ.
Since it is extremely costive to compute functions such as sin() and cos(), Taylor’s Theorem
enables us to make a fast polynomial approximation.

▶ Example 16. Let function polar2catesian be defined by

polar2cartesian :: (R,R) → (R,R)
polar2cartesian(r, θ) = (r ∗ cos(θ), r ∗ sin(θ))
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We show how to expand polar2cartesian(r, θ) at (1, 0) up to 2nd-order derivative. Since

∂(polar2cartesian(x))
∂x |(1,0) = ∂(π1x∗cos(π2x),π1x∗sin(π2x)

∂x |(1,0)

= ( ∂(x1∗cos(0),x1∗sin(0))
∂x1

|1, ∂(1∗cos(x2),1∗sin(x2))
∂x2

|0)
= ((1, 0), (0, 1))

we have

∂(polar2cartesian(x))
∂x |(1,0) ∗ (∆r, ∆θ) = (∆r, ∆θ).

Again, we have

1
2

∂2(polar2cartesian(x))
∂x2 |(1,0) ∗ (∆r, ∆θ)2 = (((0, 0), (0, 1)), ((0, 1), (−1, 0))) ∗ (∆r, ∆θ)2

= (− 1
2 ∆θ2, ∆r ∗ ∆θ).

Combining the above, we can use (1⊕∆r⊖ 1
2 ∆θ2, ∆θ⊕∆r∗∆θ) to make an approximation

to polar2cartesian(1 + ∆r, ∆θ).

6 Related Work

Differential Calculus and The Change Theory. The differential lambda-calculus [9, 8]
has been studied for computing derivatives of arbitrary higher-order programs. In the
differential lambda-calculus, derivatives are guaranteed to be linear in its argument, where
the incremental lambda-calculus does not have this restriction. Instead, it requires that the
function should be differentiable. The big difference between our calculus and differential
lambda calculus is that we perform computation on terms instead of analysis on terms.

The idea of performing incremental computation using derivatives has been studied by
Cai et al. [7], who give an account using change structures. They use this to provide a
framework for incrementally evaluating lambda calculus programs. It is shown that the work
can be enriched with recursion and fix-point computation [4]. The main difference between
our work and change theory is that we describe changes as mathematical derivatives while
the change theory describe changes as (discrete) deltas.

Incremental/Self-Adaptive Computation. Paige and Koenig [19] present derivatives for a
first-order language with a fixed set of primitives for incremental computation. Blakeley et
al. [16] apply these ideas to a class of relational queries. Koch [14] guarantees asymptotic
speedups with a compositional query transformation and delivers huge speedups in realistic
benchmarks, though still for a first-order database language. We have proved Taylor’s
theorem in our framework, which provides us with another way to perform finite difference
on the computation.

Self-adjusting computation [2] or adaptive function programming [3] provides a dynamic
approach to incrementalization. In this approach, programs execute on the original input in
an enhanced runtime environment that tracks the dependencies between values in a dynamic
dependence graph; intermediate results are memoized. Later, changes to the input propagate
through dependency graphs from changed inputs to results, updating both intermediate and
final results; this processing is often more efficient than recomputation. Mathematically,
self-adjusting computations corresponds to differential equations (The derivative of a function
can be represented by the computational result of function), which may be a future work of
our calculus.
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Automatic Differentiation. Automatic differentiation [12] is a technique that allows for
efficiently computing the derivative of arbitrary programs, and can be applied to probabilistic
modeling [15] and machine learning [6]. This technique has been successfully applied to some
higher-order languages [21, 10]. As pointed out in [4], while some approaches have been
suggested [18, 13], a general theoretical framework for this technique is still a matter of open
research. We prove the chain rule inside our framework, which lays a foundation for our
calculus to perform automatic differentiation. And with more theorems in our calculus, we
expect more profound applications in differential calculus.

7 Conclusion

In this paper, we propose an analytical differential calculus which is equipped with integration.
This calculus, as far as we are aware, is the first one that has well-defined integration, which has
not appeared in both differential lambda calculus and the change theory. Our calculus enjoys
many nice properties such as soundness and strong normalizing, and has three important
theorems, which have profound applications in computer science. Also, our calculus is highly
extendable, it would be easy for users to add new features and prove more theorems inside
our calculus.
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