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Abstract

The Constraint Satisfaction Problem (CSP) and a number of problems related to it have seen major
advances during the past three decades. In many cases the leading driving force that made these
advances possible has been the so-called algebraic approach that uses symmetries of constraint
problems and tools from algebra to determine the complexity of problems and design solution
algorithms. In this presentation we give a high level overview of the main ideas behind the algebraic
approach illustrated by examples ranging from the regular CSP, to counting problems, to optimization
and promise problems, to graph isomorphism.
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As Jeavons et al. [39] discovered in the mid 90s, symmetries or lack thereof of combinatorial
structures in many cases determine the complexity of the corresponding computational
problems. This was the starting point of the so-called algebraic approach that has been
initially developed for certain kinds of Constraint Satisfaction Problems (CSPs), and over
the course of 20 years has been instrumental in resolving a number of long standing open
problems, most important of which is the CSP Dichotomy Conjecture by Feder and Vardi [31].
These techniques also spread out and found applications in multiple areas somewhat related
to the CSP. The types of research problems the algebraic approach has been most useful
include complexity classifications and design of algorithms. It clearly does not apply to every
single kind of CSP-related problems, but whenever the algebraic approach is possible, it has
led to a significant progress in the area.

In this presentation we take a bird’s-eye view on the main ideas behind the algebraic
approach. We do not go into deep technical details, although we give links that can be used
by an interested reader, but give a collection of simple examples showing how algebraic
techniques can be used in various types of computational problems. In the first part of the
presentation, Sections 1,2 we introduce several common types of constraint problems and lay
out the basics of the algebraic approach. Then in Sections 3,4 we show how these ideas apply
to the CSP Dichotomy Conjecture, and also briefly outline how the algebraic approach works
for Counting, Promise, and Valued CSPs. We also mention a somewhat unexpected use of
the method in Graph Isomorphism. Although there has been developed a rich and beautiful
theory of CSPs on infinite domains [6, 7], we only focus here on finite domains. Also, we
leave out many areas were the approach has been successfully used: Quantified CSPs [45],
homomorphism lower bounds [41], robust approximation [3], proof complexity [1], global
cardinality constraints [20, 21], Subalgebra [12] and Ideal Membership Problems [46, 22],
solvability of equations [42], learnability [27], property testing [26], and many others.
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1 Constraint Problems

1.1 The problem
There are multiple ways to define the CSP. For our purpose here we give two equivalent
definitions [39, 43]. We use the terms predicate and relation interchangeably.

The first one, we refer to it as the logic definition, goes as follows. Fix a set A (always finite
in this paper), a domain. The input of the CSP is a collection I of constraints, R(x1, . . . , xk),
expressed as predicates over A, where the variables xi are from some finite set X of variables.
The goal is to decide whether a solution exists, that is, a mapping φ : X → A that satisfies
all the constraints. Alternatively, the input can be thought of as the conjunction of all the
constraints, and we want to know whether this formula is satisfiable.

The second definition of the CSP, which we will refer to as the homomorphic definition,
is given in terms of relational structures. Recall that a relational signature is a collection of
relational symbols, that is, names of relations we are going to use, each symbol R is assigned
a natural number kR, the arity of R. For instance, the relational signature of a graph or
digraph is {E}, only one relational symbol, whose arity is 2. For a signature σ a relational
structure A with signature σ is a set A along with a predicate RA ⊆ AkR for each R ∈ σ,
called an interpretation of R. The set A is called the base set of A. Structures with signature
σ are often referred to as σ-structures and structures with the same signature are called
similar. Let A, B be two σ-structures with base sets A, B, respectively. A homomorphism
from A to B is a mapping φ : A → B such that RB(φ(a1), . . . , φ(akR

)) = 1 for every R ∈ σ

and any a1, . . . , akR
∈ A with RA(a1, . . . , akR

) = 1. If there is a homomorphism from A to
B, we write A → B.

In the homomorphic version of the CSP the input is a pair of similar relational structures
A, B ( always finite in this paper). The question is to decide whether there exists a homo-
morphism from A to B. A translation between the two versions of the CSP is straightforward,
it will be illustrated in Example 2 below.

▶ Example 1. In the 3-SAT problem the question is to decide the satisfiability of a 3-CNF.
3-SAT is readily a CSP in the logic form, it is a conjunction of clauses, each of which
represents a ternary predicate on {0, 1}.

▶ Example 2. In the 3-Coloring problem we need to decide the existence of a proper 3-coloring
of a given graph G. It can be stated as a CSP by treating the vertices of G as variables that
need to be assigned one of the three colors, and edges of G as constraints requiring that if
uv ∈ E(G) then the values of u, v satisfy the predicate ̸=3 (u, v), which is the disequality
relation on the set of colors.

Note that 3-Coloring can also be naturally represented in the homomorphic form: Any
proper 3-coloring of G is a homomorphism from G to K3. Using this approach one can
generalize 3-Coloring to H-Coloring, where H is a fixed graph. The goal in this problem is to
decide the existence of a homomorphism from a given graph G to H.

This transition between the two forms of the CSP can be extended to more general case:
The structure A in the homomorphic form encodes the interaction between constraints, while
the structure B encodes the constraints themselves.

▶ Example 3. A system of linear (as well as any other type of equations) naturally provides
a conjunction of constraints, in which every constraint is represented by an equation.

▶ Example 4. The Clique problem, in which we are given a number k and a graph G, asks
whether or not G contains a clique of size at least k. This problem can be reformulated as
the question about the existence of a homomorphism from Kk to G, that is, a CSP in the
homomorphic form.
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▶ Example 5. The Perfect Matching problem asks whether a graph G has a perfect matching
It is representable as a CSP in the logic form, although in a slightly more sophisticated way.
The edges of G represent the variables of our CSP instance I(G) that take values 1 or 0
(in a matching or not), and the vertices correspond to constraints. For each v ∈ V (G) of
degree d we introduce a constraint of the form R1-in-d(x1, . . . , xd), where x1, . . . , xd are the
edges incident to v, which is true if and only if exactly one of x1, . . . , xd equals 1 and the
rest equal 0. As is easily seen, any solution of I(G) corresponds to a perfect matching in G

and vice versa.

In order to capture specific computational problems the general CSP is often restricted in
a certain way. It can be easily done for the homomorphic version of the CSP [43]. Let A,B

be classes of similar structures with signature σ. Then CSP(A,B) denotes the class of CSP
instances A, B, in which A ∈ A and B ∈ B. If A or B is the class of all σ-structures, we use
CSP(−,B) and CSP(A, −), respectively. If one of the classes contains only one structure,
we write CSP(−, B), CSP(A, −) instead of CSP(−, {B}), CSP({A}, −). The general CSP is
NP-complete as the examples above show, and assuming the Exponential Time Hypothesis
it cannot be solved faster than |B|O(|A|) [33]. However, restricted problems may have much
lower complexity, and this is the drive to understand the complexity of restricted problems
that has been guiding the study of the CSP.

▶ Example 6. All the problems from Examples 1–5 can be viewed as CSP(A,B) for
appropriate classes A,B.

3-SAT is the problem CSP(−, B3-SAT) where B3−SAT is the relational structure with base
set {0, 1} and 8 predicates that are defined by the 8 possible 3-clauses.
3-Coloring is the problem CSP(−, K3). More generally, the H-Coloring problem for a
graph or digraph H can be represented as CSP(−, H).
Representing Linear Equations requires a relational structure with an infinite signature:
a predicate symbol for each possible linear equation. It is therefore a common practice
to first observe that every system of linear equations is equivalent to one in which every
equation contains at most 3 variables; it may require introducing new variables. Then in
the case of a finite field F such a problem is the same as CSP(−, B3-Lin), where B3-Lin is
the relational structure with the base set F whose predicates are given by all the possible
linear equations over F containing at most 3 variables.
The Clique problem is CSP(K, −), where K is the class of all cliques.
The Perfect Matching problem is a bit more difficult to represent. Let σ be an (infinite)
signature that contains one symbol R1-in-d for every natural d. Then Perfect Matching
is equivalent to CSP(A2, B1-in), where A2 is the class of σ-structures A in which every
element of the base set appears in exactly two tuples from the predicates of A. Then
B1-in is the σ-structure with the base set {0, 1} and whose predicates are interpreted as
in Example 5. Note that the Perfect Matching problem can be expressed more naturally
as a holant problem [24].

In this paper we focus on the problems of the form CSP(−, B), which are often referred
to as nonuniform CSPs. We will shorten the notation to CSP(B). In this case it is often
convenient to replace the structure B with a constraint language, the set of relations given by
the predicates of B. For any collection Γ of relations over a set A such a problem is denoted
by CSP(Γ). The base set of B or the set on which Γ is defined on will be called the domain
of CSP(B) or CSP(Γ).

ICALP 2021
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1.2 Friends of the CSP

The CSP is not limited to just the decision problem from the previous section. It can also be
modified to include other types of problems, some of which we will consider next. Most of
the variations below were considered in [28] in the case of a 2-element domain.

Quantified CSP

The CSP in the logic form can also be thought of as checking the validity of an existentially
quantified sentence ∃x1, . . . , xn(R1 ∧ · · · ∧ Rk). The problem that allows for an arbitrary
quantifier prefix is known as the Quantified CSP or QCSP for short. Examples of QCSPs
are the Quantified Satisfiability problem (QSAT) as well as a number of standard problems
in PSPACE. For a structure B or a constraint language Γ, QCSP(B), QCSP(Γ) denote the
Quantified CSPs restricted in the same way as the regular CSP [28, 45].

Counting CSPs

In the Counting CSP, or #CSP, the goal is to find the number of solutions of a CSP instance.
In general, such problems belong to the class #P and many of them are #P-complete.
Counting CSPs restricted by specifying a relational structure or a constraint language are
denoted by #CSP(B), #CSP(Γ).

Optimization problems

There are several ways to convert a CSP into an optimization problem, see [28] for some
examples. The most natural one is, given a CSP instance that may have no solution, find an
assignment of variables that maximizes the number of satisfied constraints. This optimization
problem is called the Max-CSP. Clearly, even when CSP(Γ) can be solved efficiently, the
optimization problem may be hard. Linear Equations provides a well known example of such
problem. More examples will be mentioned in Section 4.2 and can be found in [28]. The
book [28] also presents the range of possible complexities of Max-CSPs on the domain {0, 1}.

Another way to optimize a CSP instance is to look for a solution that assigns a specific
value to a maximal number of variables. For instance, Max-Ones is the version of SAT that
seeks for an assignment in which as many propositional variables as possible are assigned 1.

Valued CSPs

The Valued CSP, or the VCSPs for short, is a generalization of optimization constraint
problems such as Max-CSP and Max-Ones. In order to introduce them we need to replace
predicates in the regular CSP with more general functions. Let A be a domain and K an
ordered semiring, e.g. the ring of natural, integer, rational, or real numbers. Instead of
predicates we now consider functions R : Ak → K for some k. An instance of the Valued
CSP consists of a set X of variables and a collection C of function applications of the form
R(x1, . . . , xk), where each R is as above. For a mapping φ : X → A define its weight to
be w(φ) =

∑
R(x1,...,xk)∈C R(φ(x1), . . . , φ(xk)). The goal now is to find a mapping φ that

yields the maximal (or minimal) weight possible. Similar to regular CSPs, VCSPs can also
be parametrized by a constraint language, which in this case is a set of functions that are
allowed in VCSP instances.
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Figure 1 The gadget used to reduce 3-SAT to 3-Coloring.

▶ Example 7 (Max-CSP as a VCSP). Let Γ be a constraint language, that is, a set of
predicates on some set A. We view the predicates from Γ as functions from Cartesian powers
of A to N. They take values 0, 1. This way every instance of CSP(Γ) is treated as an instance
of VCSP(Γ). As is easily seen, a mapping that maximizes the number of satisfied constraints
in a CSP instance also has the maximal weight in the corresponding instance of the VCSP.

▶ Example 8 (Max-Ones as a VCSP). Transforming the Max-Ones problem into a VCSP is
less straightforward, because we need to make sure that optimization is only happening over
solutions of a Max-Ones instance. This is achieved by adding the infinity elements −∞, ∞
to N. In terms of order and arithmetic operations they relate to other elements of N in the
natural way. Let Γ be a constraint language on {0, 1}, and let Γ′ = {R′ | R ∈ Γ}∪{O}, where
O : {0, 1} → N with O(0) = 0, O(1) = 1, and R′(a1, . . . , ak) = 1 when R(a1, . . . , ak) = 1,
a1, . . . , ak ∈ {0, 1}, and R′(a1, . . . , ak) = −∞ otherwise. Take an instance I of Max-Ones(Γ),
replace every predicate R(x1, . . . , xk) with a function application R′(x1, . . . , xk), and for
each variable x ∈ X of I add the function application O(x). Denote the resulting instance
by I ′, it is an instance of VCSP(Γ′). The weight of a mapping φ : X → {0, 1} in I ′ is not
negative infinite if and only if φ is a solution of I. Moreover, if w is a solution of I we have
w(φ) = m + ℓ, where m is the number of constraints in I that does not depend on φ, and ℓ

is the number of variables that are assigned 1 by φ. Thus φ maximizes the number of ones if
and only if it maximizes the weight in I ′.

2 Reductions and symmetries

In this section we look at the formalism that includes primitive-positive definitions and
interpretations, and that captures one of the oldest tools in complexity theory, gadget
reductions. We then introduce higher level symmetries of problems, polymorphisms, that set
boundaries of what can be done using gadget reductions. Finally, we give some examples
showing that polymorphisms can also be useful when designing solution algorithms. A more
detailed and technical exposition can be found in [4].

2.1 Gadget reductions and primitive-positive definitions
A usual gadget reduction known from a basic course in complexity looks somewhat like what
is shown in Fig. 1. They may be complicated and often difficult to come up with. Can we
make the process of constructing such gadgets more orderly?

ICALP 2021
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Let Γ be a set of relations (predicates) over a set A. A predicate R over A is said to
be primitive-positive (pp-) definable in Γ if R(x) = ∃y Φ(x, y), where Φ is a conjunction
that involves predicates from Γ and equality relations. The formula above is then called a
pp-definition of R in Γ. A constraint language ∆ is pp-definable in Γ if so is every relation
from ∆. In a similar way pp-definability can be introduced for relational structures.

▶ Example 9. Let K3 = ({0, 1, 2}, E) be a 3-element complete graph. Its edge relation is
the binary disequality relation ̸=3 on {0, 1, 2}. Then the pp-formula

Q(x, y, z) = ∃t, u, v, w(E(t, x) ∧ E(t, y) ∧ E(t, z) ∧ E(u, v) ∧ E(v, w)
∧E(w, u) ∧ E(u, x) ∧ E(v, y) ∧ E(w, z))

defines the predicate Q that is true on all triples containing exactly 2 different elements
from {0, 1, 2}.

A link between pp-definitions and reducibility of nonuniform CSPs was first observed
in [39].

▶ Theorem 10 ([39]). Let Γ and ∆ be constraint languages and ∆ finite. If ∆ is pp-definable
in Γ then CSP(∆) is polynomial time reducible1 to CSP(Γ).

The gadget in Fig. 1 can be represented by a pp-formula, in which every variable
corresponds to a vertex in the graph, the large red vertices are the free variables, and the
edges are the constraints ̸=3. In general it seems plausible that pp-definitions and pp-
interpretations discussed later capture what we think of “gadgets” and “gadget reductions”.

2.2 Polymorphisms
While pp-definitions is a convenient and uniform way of representing gadgets, it is poly-
morphisms that are at the core of the algebraic approach.

Primitive positive definability can be concisely characterized using polymorphisms. An
operation f : Ak → A is said to be a polymorphism of a relation R ⊆ An if for any a1, . . . , ak ∈
R, ai = (ai1, . . . , ain), the tuple f(a1, . . . , ak) also belongs to R, where f(a1, . . . , ak) stands
for (f(a11, . . . , ak1), . . . , f(a1n, . . . , akn)). The parameter k above is called the arity of f .
Relation R is said to be invariant under f . Operation f is a polymorphism of a constraint
language Γ if it is a polymorphism of every relation from Γ. Similarly, operation f is a
polymorphism of a relational structure B if it is a polymorphism of every relation of B. The
set of all polymorphisms of language Γ or relational structure B is denoted by Pol(Γ), Pol(B),
respectively.

▶ Example 11. Let R be an affine relation, that is, R is the solution space of a system of
linear equations over a field F. Then the operation f(x, y, z) = x − y + z, where +, − are
operations of F, is a polymorphism of R. Indeed, let A · x = b be the system defining R, and
x, y, z ∈ R. Then

A · f(x, y, z) = A · (x − y + z) = A · x − A · y + A · z = b.

In fact, the converse can also be shown: if R is invariant under f , where f is defined in a
certain finite field F, then R is the solution space of some system of linear equations over F.

1 In fact, due to the result of [47] this reduction can be made log-space.
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Polymorphisms can be viewed as a generalization of homomorphisms of relational struc-
tures. We use [k] to denote the set {1, . . . , k}. For a structure B with signature σ and k ≥ 1,
let Bk denote the following relational structure. The base set of Bk is Bk, where B is the base
set of B. For every symbol R ∈ σ, say, ℓ-ary, the predicate RBk is given by (a1, . . . , aℓ) ∈ RBk

if and only if (a1i, . . . , aℓi) ∈ RB for each i ∈ [k], where aj = (aj1, . . . , ajk). Then a mapping
f : Bk → B is a polymorphism of B if and only if f is a homomorphism of Bk to B.

A link between polymorphisms and pp-definability of relations is given by Galois connec-
tion.

▶ Theorem 12 (Galois connection, [8, 34]). Let Γ be a constraint language on A, and let
R ⊆ An be a non-empty relation. Then R is preserved by all polymorphisms of Γ if and only
if R is pp-definable in Γ.

Every relation on a set A has projections as polymorphisms. A projection is an operation
f , say, k-ary, such that for some i ∈ [k], f(x1, . . . , xk) = xi. Theorem 12 means, in particular,
that if a constraint language Γ on A does not have polymorphisms other than the projections,
every relation is pp-definable in Γ.

The following statement is what makes the algebraic approach possible.

▶ Corollary 13. Let Γ and ∆ be constraint languages and ∆ finite. If Pol(Γ) ⊆ Pol(∆) then
CSP(∆) is polynomial time reducible to CSP(Γ).

For our next example we need another more technical result.

▶ Proposition 14 ([19]). Let Γ be a constraint language on a set A. Then either
1. there is a non-injective unary polymorphism f of Γ and CSP(Γ) is polynomial time

interreducible with CSP(f(Γ)), where f(Γ) = {f(R) | R ∈ Γ}, f(R) = {f(a) | a ∈ R}; or
2. all unary polymorphisms of Γ are injective and CSP(Γ) is polynomial time interreducible

with CSP(Γ∗), where Γ∗ = Γ ∪ {Ra | a ∈ A}, Ra = {(a)} is a constant relation, i.e. a
unary relation that contains only one tuple.

Constraint languages that contain all the constant relations are called idempotent.

▶ Example 15. We revisit the reducibility of 3-SAT to 3-Coloring. Let Γ = {≠3} be the
constraint language consisting of just the disequality relation ̸=3 on the 3-element set {0, 1, 2}.
As we noted in Example 2, CSP(Γ) is equivalent to 3-Coloring. Let also Γ3−SAT denote the
constraint language consisting of the 8 ternary relations represented by 3-clauses. Then
CSP(Γ3−SAT ) is equivalent to 3-SAT. We show that Γ3−SAT is pp-definable in Γ∗. By
Theorem 10 and Proposition 14 it implies that 3-SAT is reducible to 3-Coloring.

First, we prove that every polymorphism of ̸=3 has only one essential variable, that is, a
variable such that the value of the function can be changed by changing the value of this
variable only. Suppose there is f ∈ Pol( ̸=3) that has at least two essential variables. To save on
notation we assume that f(x, y) is binary. Assume first that for some a, a′, b, b′ ∈ {0, 1, 2} we
have f(a, b) ̸= f(a′, b), f(a, b) ̸= f(a, b′). Without loss of generality, let a = b = 0, a′ = b′ = 1.
Then since (0, 1), (1, 0) ∈≠3 and f is a polymorphism of ̸=3, we also have f(0, 1) ̸= f(1, 0). For
a similar reason f(2, 2) is not equal to any of f(0, 0), f(0, 1), f(1, 0), which is impossible. Next,
as y is an essential variable in f(x, y) there are a, b, b′ ∈ {0, 1, 2} such that f(a, b) ̸= f(a, b′).
Again, let us assume a = b = 0, b′ = 1. If f(0, 0) ̸= f(1, 0), or f(0, 0) ̸= f(2, 0), or
f(0, 1) ̸= f(1, 1), or f(0, 1) ̸= f(2, 1), we have the previous case. Otherwise f(0, 2) ̸= f(1, 0) =
f(0, 0), f(0, 2) ̸= f(1, 1) = f(0, 1), because (0, 1), (2, 0), (2, 1) ∈≠3 and f is a polymorphism
of ̸=3. By the same argument, either we have the previous case, or f(0, 2) = f(1, 2) = f(2, 2)
implying that x is not essential variable in f(x, y), a contradiction.

ICALP 2021
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Second, if f ∈ Pol( ̸=3) has only one essential variable, we have f(x1, . . . , xk) = g(xi)
for some operation g. Since f is a polymorphism of each constant relation Ra we get
g(a) = f(a, . . . , a) = a, that is, f is a projection. Thus, the only polymorphisms of Γ∗ are
projections. By Theorem 12 every relation on {0, 1, 2} is pp-definable in Γ∗. This includes
the relations from Γ3−SAT . By Theorem 10 CSP(Γ3−SAT ) is polynomial time reducible to
CSP(Γ).

Example 15 gives a reduction and a hardness proof only in one very special case. However,
we shall see soon that together with pp-interpretability introduced next this technique gives
a hardness proof for all NP-complete CSPs of the form CSP(Γ).

Let Γ, ∆ be constraint languages over sets A, B, respectively. We say that Γ pp-interprets
∆ if there exists a natural number ℓ, a set F ⊆ Aℓ, and an onto mapping π : F → B such
that Γ pp-defines the following relations
1. the relation F ,
2. the π-preimage of the equality relation on B, and
3. the π-preimage of every relation in ∆,
where by the π-preimage of a k-ary relation R on B we mean the ℓk-ary relation π−1(R) on
A defined by

π−1(R)(x11, . . . , x1k, x21, . . . , x2k, . . . , xℓ1, . . . , xℓk) is true

if and only if

R(π(x11, . . . , xℓ1), . . . , π(x1k, . . . , xℓk)) is true.

If ℓ = 1 in this definition, we say that Γ 1-pp-interprets ∆.

▶ Theorem 16 ([19, 4]). Let Γ and ∆ be constraint languages and ∆ finite. If ∆ is
pp-interpretable in Γ then CSP(∆) is polynomial time reducible to CSP(Γ).

▶ Example 17. We demonstrate how to use pp-interpretability in a small special case of the
H-Coloring problem, see Example 2. Consider graph H on the left hand side of Fig. 2, we show
that H-Coloring for this graph is NP-complete. In order to do that we will 1-pp-interpret
̸=3 in the constraint language Γ = {E = E(H)}. In the definition of pp-interpretation
above we set F = A = {0, 0′, 1, 2}, B = {0, 1, 2}, ∆ = {≠3}, ℓ = 1, and π : A → B as
shown in Fig. 2. The only thing we need to check is that π−1(B), π−1(=), and π−1( ̸=3)
are pp-definable in H2. The first and the last requirements are straightforward, because
π−1(B) = A and π−1(̸=3) = E. For the preimage of the equality relation, the relation
π−1(=) is the equivalence relation on A with classes {0, 0′}, {1}, {2}. This relation is defined
by the pp-formula

∃u, w(E(u, w) ∧ E(x, u) ∧ E(x, w) ∧ E(y, v) ∧ E(y, w)).

2 Note that although π is a homomorphism from H to K3, this does not yet give rise to a reduction from
H-Coloring to 3-Coloring. Indeed, any graph is a homomorphic image of a collection of disconnected
edges. Homomorphism π is a very special kind of homomorphism that gets along pp-definitions well.
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Figure 2 Pp-interpretations of 3-Coloring.

2.3 Polymorphisms and algorithms
So far we have only seen applications of polymorphisms and pp-interpretations for discovering
polynomial time reductions between CSPs. In this section we mention two examples when
polymorphisms also help developing efficient solution algorithms.

▶ Example 18. As we saw in Example 11, a relation can be represented as the set of solutions
of a system of linear equations over a finite field F if and only if it is invariant under the
affine operation f(x, y, z) = x − y + z, where +, − are the operations of the same field F.
This means that if a constraint language Γ is invariant with respect to f then any instance
of CSP(Γ) can be thought of as a system of linear equations over F and so can be solved
by Gaussian elimination. In particular, it is possible not only to decide the existence of a
solution in polynomial time, but also to construct a concise representation of the set of all
solutions – a basis of the solution space.

Affine operations are a special kind of more general Maltsev operations. A ternary
operation f is said to be Maltsev if it satisfies the equations f(x, y, y) = f(y, y, x) = x. The
affine operation clearly satisfies them. It was shown in [16] that if a constraint language
Γ has a Maltsev operation as a polymorphism, there is a polynomial time algorithm that
constructs a concise representation of the set of solutions of any instance of CSP(Γ). Note
that when applied to systems of linear equations this algorithm provides an alternative to
Gaussian elimination. This result was further generalized in [38].

▶ Example 19. For this example it will be convenient to use infix notation for binary
operations, that is, to write x · y rather than f(x, y). A binary operation · on a set A is said
to be semilattice if it is idempotent (x · x = x), commutative (x · y = y · x), and associative
(x · (y · z) = (x · y) · z), where the equations hold for all x, y, z ∈ A. A semilattice operation
defines a partial order on A: a ≤ b if and only if b = a · b.

Let R ⊆ Ak be a relation invariant with respect to ·. Let also Ri ⊆ A denote its ith
projection, the set Ri = {ai | (a1, . . . , ak) ∈ R}. As is easily seen, Ri is invariant under ·,
that is, a · b ∈ Ri for any a, b ∈ Ri. Every set Ri has a greatest element in terms of the order
≤, it is the product of all the elements of Ri. Let us denote this element by mi. Now, if
a1, . . . , ar is a list of all tuples from Ri, we have a1 · a2 · · · · · ar = (m1, . . . , mk). In other
words, the tuple, whose entries are the greatest elements of the corresponding projections,
belongs to R.
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The following algorithm known as the arc-consistency algorithm [40] uses the discussed
above properties of relations invariant under · to solve CSP(Γ) where Γ is any constraint
language invariant under ·. Let I be an instance of CSP(Γ) with the set of variables X.
The algorithm works in rounds until the instance cannot be further improved. Suppose
that two constraints R1(x, y) and R2(x, z) from I share a variable. Here y, z stand for
some variables involved in R1, R2, and clearly x does not have to be in the same position
in R1, R2. Let R1 = R1

1 ∩ R2
1. If R1 ̸= R1

1, we remove from R1 all tuples (a, b) such that
a ̸∈ R1. Then we repeat the procedure for R2. After the process converges, every variable
x ∈ X has a domain Ax ⊆ A such that the projection of every constraint containing x on
the corresponding coordinate position equals Ax. Finally, that · is a polymorphism of Γ
implies that the mapping φ : X → A, φ(x) = mx, where mx is the greatest element of Ax is
a solution of I.

3 Dichotomies

3.1 The CSP dichotomy

The first attempt for a broad classification of problems of the form CSP(Γ) was made in [48].
When translated into the language of polymorphisms, the main result is

▶ Theorem 20 ([48]). Let Γ be a constraint language over {0, 1}. Then CSP(Γ) is solvable
in polynomial time if and only if Γ has one of the following polymorphisms: a constant
operation, the affine operation x − y + z (mod 2), one of the semilattice operations x ∨ y or
x ∧ y, or the majority operation (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x). Otherwise it is NP-complete.

The hardness part of the theorem follows by an argument similar to that in Example 15.
The tractability part follows from Proposition 14 and Examples 18 and 19. The case of the
majority operation can be solved as 2-SAT or by a slightly stronger consistency algorithm,
see [40].

An important feature of Theorem 20 is that it leaves no room for CSPs of intermediate
complexity: every CSP(Γ) is either solvable in polynomial time or is NP-complete. Results of
this kind are also known as complexity dichotomies, and believed to be true for the majority
of “natural” problems, even though problems of intermediate complexity provably exist
provided P ̸=NP, [44].

A dichotomy for CSPs over arbitrary finite sets was conjectured in [31, 32]. This conjecture
has been referred to as the CSP Dichotomy Conjecture. The conjecture was refined by
providing a specific criterion of polynomial time solvability in [19], and settled in [14, 15, 51].

We now state the Dichotomy Theorem from [14, 15, 51]. Let Γ, ∆ be constraint languages
on sets A, B respectively and such that Γ 1-pp-interprets ∆. Suppose F ⊆ A and π : F → B

are the parameters of the pp-interpretation, and θ the equivalence relation on F that is
the π-preimage of the equality relation on B, or the kernel of π. For a ∈ F let a/θ denote
the θ-class containing a. Take a polymorphism f(x1, . . . , xk) of Γ. By fF,π we denote the
k-ary operation on B given by fF,π(x1, . . . , xk) = π(f(π−1(x1), . . . , π−1(xk))). Since θ is
invariant under f , the operation fF,π(x1, . . . , xk) is properly defined, that is, its value does
not depend on the choices of preimages π−1(xi). It is straightforward to verify that fF,π is a
polymorphism of ∆. Note that in order to define fF,π we do not need to specify constraint
language ∆, we only need F and π.

Also, by Proposition 14 it suffices to consider idempotent constraint languages.
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▶ Theorem 21 ([14, 15, 51]). Let Γ be an idempotent constraint language on a finite set A.
Then CSP(Γ) is NP-complete if and only if there is a pp-interpretation with parameters F, π

such that fF,π is a projection for any f ∈ Pol(Γ).

The criterion in Theorem 21 can be elevated to a higher level of abstraction that involves
considering sets of polymorphisms as a new algebraic structure and using the properties of
mappings between these structures, clone homomorphisms. We touch upon such approach in
Section 4.1.

3.2 Counting CSPs and polymorphisms
In this section we give some examples that hint at how a dichotomy result can be obtained
for the counting version of the CSP of the form #CSP(Γ).

We first remark that the algebraic approach works for counting CSPs as well as for
decision CSPs. Recall that Γ∗ for a constraint language Γ denotes Γ with added constant
relations.

▶ Theorem 22 ([17]). Let Γ be a constraint language on a finite set A.
1. #CSP(Γ) and #CSP(Γ∗) are polynomial time interreducible.
2. For any constraint language ∆ on A such that Pol(Γ) ⊆ Pol(∆) the problem #CSP(∆) is

polynomial time reducible to CSP(Γ).
3. For any constraint language ∆, if Γ pp-interprets ∆ then #CSP(∆) is polynomial time

reducible to #CSP(Γ).

Next we use the algebraic approach to prove a dichotomy theorem for #H-Coloring, the
counting version of H-Coloring, first proved in [29].

▶ Example 23. It was proved in [29] that #H-Coloring is #P-complete, unless every connected
component of H is either an isolated vertex, or a complete graph with all loops present, or a
complete bipartite graph. That #H-Coloring can be solved in polynomial time for graphs of
this kind is straightforward. We show how to prove the hardness part through the algebraic
approach in 3 easy steps.

First, using some algebraic machinery ([36] or Theorem 9.13 from [37]) it can be shown
that if a constraint language Γ does not have a Maltsev polymorphism, Γ pp-interprets a
binary reflexive but not symmetric relation R. Second, using the standard interpolation
technique (see e.g. [50]) [17] proves that #CSP(R) is #P-complete. This shows that #CSP(Γ),
not only #H-Coloring, is #P-complete for any Γ without a Maltsev polymorphism.

Finally, if a connected graph H is not a single vertex, a complete graph with all loops
present, or a complete bipartite graph, it contains the N-graph shown in Fig. 3 as an induced
subgraph (some of a, b, c, d may be equal). It remains to observe that no Maltsev operation
can be a polymorphism of such graph. Indeed, if f is a Maltsev operation on H then

f

((
a

c

)
,

(
a

d

)
,

(
b

d

))
=

(
b

c

)
̸∈ E(H).

It turns out that a generalized version of avoiding N-graphs is key in the case of general
counting CSPs, #CSP(Γ). A constraint language is said to be singular if for any pp-
interpretable equivalence relations θ, η a certain condition holds on the number of elements
in θ- and η-classes. For more details, see [18, 13, 30].

▶ Theorem 24 ([13, 30]). For a constraint language Γ on a finite set, #CSP(Γ) is solvable
in polynomial time if and only if Γ has a Maltsev polymorphism and is singular. Otherwise it
is #P-complete.

Theorem 24 has been generalized to the weighted version of the CSP in [25].
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Figure 3 The N-graph.

4 Beyond CSP

In this section we consider several examples in which some sort of algebraic approach is
used, although it requires significant modifications. In the first two examples, the Promise
CSP and the optimization version, the Valued CSP, while preserving the main motifs of the
algebraic approach, that is, rich families of polymorphisms give rise to easy problems, and
poor ones give rise to hard problems, new types of “polymorphism-like” objects need to be
introduced. In the third case, Graph Isomorphism, the algebraic approach does not (probably)
provide a general technique, but is useful in some special cases.

4.1 Promise CSP
Unlike the regular CSP that is often parametrized by a single relational structure, CSP(B),
a Promise CSP or PCSP for short is parametrized by a pair of similar relational structures,
PCSP(A, B), such that A → B. An instance of PCSP(A, B) is a relational structure C similar
to A, B, and the question is whether C → A or C ̸→ B; no specific answer is required if
C ̸→ A but C → B. It is also often formulated in a slightly different way: the input is a
structure C such that C → A, and the goal is to find a homomorphism from C to B, which
explains the “promise” in the name of the problem, [10, 23].

▶ Example 25. The Approximate Graph Coloring problem is parametrized by two numbers
k, c, k ≤ c, and the goal is to find a c-coloring of a given k-colorable graph. As is easily seen,
this problem is equivalent to PCSP(Kk, Kc).

Polymorphisms of a single relational structure A were defined as homomorphisms from Ak

to A. In the case of PCSPs such mappings do not make much sense. Instead, a polymorphism
of a pair A, B is a homomorphism from Ak to B. Let Pol(A, B) denote the set of all such
homomorphisms for all natural k. Note that as there is a homomorphism φ : A → B, there
also exist some homomorphisms in Pol(A, B): Fix i ∈ [k] the mapping φi : Ak → B given by
φi(a1, . . . , ak) = φ(ai) is a homomorphism. Homomorphisms φi are analogous to projections
in the realm of polymorphisms of a single structure.

We describe the algebraic approach to the PCSP at a higher level of abstraction than
that for the CSP. An operation f : An → B is a minor of operation g : Am → B if there
is a mapping π : [m] → [n] such that f(x1, . . . , xn) = g(xπ(1), . . . , xπ(m)). In other words,
f is obtained from g by permuting and identifying variables. For example, f(x1, x2, x3) =
g(x2, x3, x2, x1, x1, x3) is a minor of g(x1, x2, x3, x4, x5, x6). Let A1, B1, and A2, B2, A1 → B1,
A2 → B2, be two pairs of relational structures such that A1, B1 are similar and so are
A2, B2. A mapping Ψ : Pol(A1, B1) → Pol(A2, B2) (i.e., polymorphisms are mapped to
polymorphisms) is called a minion homomorphism if the following two conditions hold.
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1. Ψ preserves arity, that is, for an operation f : Ak
1 → B1, it holds Ψf : Ak

2 → B2.
2. Ψ preserves minors, that is, for any m-ary g ∈ Pol(A1, B1) and any π : [m] →

[n], if f(x1, . . . , xn) = g(xπ(1), . . . , xπ(m)) is a minor of g then Ψf(x1, . . . , xn) =
Ψg(xπ(1), . . . , xπ(m)).

The core of the algebraic approach to the PCSP is the following

▶ Theorem 26 ([23]). Let PCSP(A1, B1), PCSP(A2, B2) be two Promise CSPs such that
there is a minion homomorphism from Pol(A1, B1) to Pol(A2, B2). Then PCSP(A2, B2) is
polynomial time reducible to PCSP(A1, B1).

Note that by setting A1 = B1 and A2 = B2 Theorem 26 specializes to a statement about
sets of polymorphisms of a single relational structure. Thus, Theorem 26 is a generalized and
more abstract version of the combination of Corollary 13, Proposition 14, and Theorem 16.

▶ Example 27 ([23]). In this example we use Theorem 26 to prove that PCSP(K3, K4) is
NP-complete. In other words we outline a proof that given a 3-colorable graph it is in general
NP-hard to find its 4-coloring. In order to do this we present a minion homomorphism
from Pol(K3, K4) to Pol(A, A), where A is any 2-element relational structure that only has
projections as polymorphisms. Note that Pol(A, A) = Pol(A), and by Corollary 13 what
specific structure we choose is completely irrelevant. For instance, the structure with the
base set {0, 1} and the only predicate, which is R1-in-3, see Example 6, fits this purpose.
Since CSP(A) = PCSP(A, A) is NP-complete in this case, it implies the result.

The structure of polymorphisms from Pol(K3, K4) is described in [23, 9]. For each (say,
k-ary) f ∈ Pol(K3, K4), there exist t ∈ K4, i ∈ [k], and a mapping φ : K3 → K4 such that
f(a1, . . . , ak) ∈ {t, φ(ai)} for all a1, . . . , an ∈ K3. In other words, if the value of f is not t, it
depends only on xi. A mapping Ψ : Pol(K3, K4) → Pol(A, A) is defined as follows: For every
k-ary f ∈ Pol(K3, K4), Ψf is the k-ary projection p(x1, . . . , xk) = xi, where i is the parameter
associated with f . It is straightforward to verify that Ψ is a minion homomorphism.

4.2 Valued CSP, optimization
The VCSP and optimization problems admit some sort of algebraic approach, however the
concept of a polymorphism is substantially different. In this section we briefly outline how
the approach works when we want to find the exact optimum of a VCSP [49], and also for
approximation algorithms [11]. The functions we consider here are real-valued.

To introduce the notion of polymorphisms needed for VCSPs, we need to take into account
all the operations of certain arity on a set, rather than a single operation. Let O(k)

A denote the
set of all k-ary operations on a set A. Let R : Am → R be a function on A. A k-ary fractional
polymorphism of R is a probability distribution µ on O(k)

A that for any a1, . . . , ak ∈ Am,
ai = (ai1, . . . , aim) satisfies (in the case of minimization problems) the following condition

Ef∼µ[R(f(a1, . . . , ak))] ≤ avg(R(a1), . . . , R(ak)),

where f(a1, . . . , ak) = (f(a11, . . . , ak1), . . . , f(a1m, . . . , akm)). In the case of maximization
problems the inequality should be reversed. Distribution µ is a fractional polymorphism of a
valued constraint language Γ if it is a fractional polymorphism of every function from Γ.

▶ Example 28. Let A = {0, 1}, and let µ be the distribution on O(2)
A that assigns probability

1/2 to ∨ (disjunction) and ∧ (conjunction), which are binary operations on {0, 1}, and
probability 0 to all other operations. For a binary function R the inequality above is
transformed into

1
2(R(x1 ∨ x2, y1 ∨ y2) + R(x1 ∧ x2, y1 ∧ y2) ≤ 1

2(R(x1, y1) + R(x2, y2)),

which is the well known condition of submodularity.
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A binary fractional polymorphism µ (i.e., a distribution on O(2)
A ) is said to be symmetric

if it assigns nonzero probabilities only to operations f(x, y) satisfying f(x, y) = f(y, x).
▶ Theorem 29 ([49]). For a valued constraint language Γ with real values the problem
VCSP(Γ) is solvable in polynomial time if and only if Γ has a binary symmetric fractional
polymorphism.

Observe that the condition of submodularity is an example of a symmetric fractional
polymorphism.

Many VCSPs that cannot be solved exactly can be approximated within a constant factor.
Assuming the Unique Games Conjecture (UGC) [11] determines the best approximation factor,
so-called approximation threshold, for arbitrary VCSPs. The main tool in this result is a
variation of fractional polymorphisms. For a set A we again consider probability distributions
over O(k)

A . Let α ∈ [0, 1]. Distribution µ is said to be an α-approximation polymorphism of
R : Am → R if for any a1, . . . , ak ∈ Am it satisfies the following condition

α · Ef∼µ[R(f(a1, . . . , ak))] ≥ avg(R(a1), . . . , R(ak)).

For a definition of pseudorandom approximation polymorphisms the reader is referred to [11].
▶ Theorem 30 ([11]). Let Γ be a valued constraint language, and let αΓ be the greatest
constant such that there is a pseudorandom αΓ-approximation polymorphism of Γ. Then
(assuming the UGC) αΓ is the approximation threshold for VCSP(Γ).

4.3 Graph Isomorphism: bounded color classes
A somewhat surprising application of the algebraic approach in the Graph Isomorphism
problem was observed in [5]. In the Graph Isomorphism problem [35] the question is to decide
whether two given graphs are isomorphic. The equivalent formulation we use here asks
to find a generating set for the automorphism group Aut(G) of G. Often considering the
structure of G, e.g. the degrees of its vertices, it is possible to identify some restrictions on
the orbits of Aut(G), that is, which vertices can be mapped to each other by automorphisms.
For instance, a vertex can only be mapped to a vertex of the same degree. Usually such
restrictions are a result of some sort of color refinement process, but this is not important
here. Suppose that we can identify a partition of V (G) into classes V1, . . . , Vk such that any
automorphism φ maps Vi to Vi. Assume also that the sizes of the Vis are bounded by ℓ ∈ N.
Let us further assume for simplicity that |Vi| = ℓ for all i ∈ [k]. Then any φ ∈ Aut(G) is a
union of permutations φi of Vi, i ∈ [k], and the question is which combinations of such local
permutations give rise to an automorphism of G.

We describe how this problem can be reduced to CSP(Γ) where Γ is a constraint language
with a Maltsev polymorphism, see Example 18. Let Vi = {v1

i , . . . , vℓ
i } be some enumeration

of Vi, and let the symmetric group Sℓ of permutations of [ℓ] acts on Vi as follows: for
π ∈ Sℓ, π(vj

i ) = v
π(j)
i . The domain for our CSP is Sℓ, and the variables are V1, . . . , Vk.

For every pair Vi, Vj we introduce a constraint Rij(Vi, Vj) as follows. Suppose vs
i vr

j is an
edge of G. Then if φi, φj are a part of an automorphism of G, φi(vs

i )φj(vr
j ) ∈ E(G).

Permutations φi, φj correspond to some πi, πj ∈ Sℓ. Thus, we define Rij to be {(πi, πj) |
for any vs

i vr
j ∈ E(G), v

πi(s)
i v

πj(r)
j ∈ E(G)}. Let Γ = {Rij | i, j ∈ [k]}. Observe that Rij is

invariant under composition, i.e. if (πi, πj), (τi, τj) ∈ Rij then (πi ◦ τi, πj ◦ τj) ∈ Rij . In
particular, it is invariant under the operation x ◦ y−1 ◦ z of Sℓ, which is a Maltsev operation
on Sℓ.

The algorithm from [16] finds a concise representation of the set of solutions of the CSP
above, which then can be used to construct a generating set for Aut(G). The running time
of this algorithm is polynomial in k and |Sℓ| = ℓ!.
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5 Conclusion

As we have seen, algebraic methods in CSPs have found their applications in numerous areas
of computer science. In some of those areas such as decision, counting, and valued CSPs
comprehensive and broad results have been obtained. In some other areas active research is
ongoing. In particular the algebraic structure of the Promise CSP and CSPs over infinite
domains have received much attention recently, although major questions remain open. There
have been attempts to introduce the algebraic approach to the study of the holant problem
[2] and certain proof systems suitable for approximation (such as Sum-of-Squares) [22], but
these studies are in their infancy. Finally, from our perspective one of the most interesting
areas where the algebraic approach is yet to be developed is approximate counting. Apart
from the CSP itself it also has strong connections to other fields such as statistical physics,
and it would be very interesting to see what kind of algebraic structure is possible here.
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