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Abstract
In this paper we consider a new type of space partitioning which bridges the gap between continuous
and discrete spaces in an error resilient way. It is motivated by the problem of rounding noisy
measurements from some continuous space such as Rd to a discrete subset of representative values,
in which each tile in the partition is defined as the preimage of one of the output points. Standard
rounding schemes seem to be inherently discontinuous across tile boundaries, but in this paper we
show how to make it perfectly consistent (with error resilience ϵ) by guaranteeing that any pair of
consecutive measurements X1 and X2 whose L2 distance is bounded by ϵ will be rounded to the same
nearby representative point in the discrete output space. We achieve this resilience by allowing a
few bits of information about the first measurement X1 to be unidirectionally communicated to and
used by the rounding process of the second measurement X2. Minimizing this revealed information
can be particularly important in privacy-sensitive applications such as COVID-19 contact tracing,
in which we want to find out all the cases in which two persons were at roughly the same place at
roughly the same time, by comparing cryptographically hashed versions of their itineraries in an
error resilient way.

The main problem we study in this paper is characterizing the achievable tradeoffs between
the amount of information provided and the error resilience for various dimensions. We analyze
the problem by considering the possible colored tilings of the space with k available colors, and
use the color of the tile in which X1 resides as the side information. We obtain our upper and
lower bounds with a variety of techniques including isoperimetric inequalities, the Brunn-Minkowski
theorem, sphere packing bounds, Sperner’s lemma, and Čech cohomology. In particular, we show
that when Xi ∈ Rd, communicating log2(d + 1) bits of information is both sufficient and necessary
(in the worst case) to achieve positive resilience, and when d=3 we obtain a tight upper and lower
asymptotic bound of (0.561 . . .)k1/3 on the achievable error resilience when we provide log2(k) bits
of information about X1’s color.
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4:2 Error Resilient Space Partitioning

1 Introduction

Studying various types of space partitioning of a continuous space such as Rd is a central topic
in computational geometry (see, e.g., [11, Chapters 6,12] and the references therein), and each
type of partition has different properties and applications within computer science, electrical
engineering, and applied mathematics. For example, in error-correcting codes (which are
extensively used in data communication) we try to squeeze the largest possible number of
equal sized disjoint balls into the input space, while in vector quantization [16] (which is
used extensively in data compression) we try to completely cover the input space with a
small number of tiles whose volumes are as similar as possible. In this paper we investigate a
new variant which can be viewed as “continuous error correction over the reals”. Our main
motivation is the problem of rounding noisy analog measurements in Rd, in order to digitally
process or store them (see, e.g., [2, 10]). This rounding process seems to be inherently
discontinuous across tile boundaries, and this problem is compounded by the fact that for
large d almost all input vectors are near boundaries. One natural solution to this discontinuity
problem is to try to minimize the fraction of pairs X1, X2 with distance(X1, X2) < ϵ which
are rounded differently by considering foam tilings that minimize the total surface area of
unit volume tiles (such a tiling is called “foam” since it emerges in physical collections of soap
bubbles). In a beautiful FOCS paper [22] (which was highlighted at CACM [23]), Kindler
et al. introduced a clever new construction of such tiles which they called spherical cubes.
What makes these tiles special is that they have the O(

√
d) surface area of a ball and yet

they can tile the whole Rd space without gaps, which solved an open problem posed by Lord
Kelvin in 1887.

In this paper we consider the more ambitious goal of achieving error resilience which
completely eliminates all the discontinuities in the rounding process rather than reducing
their fraction. We call such a rounding scheme consistent rounding1, and make it possible by
thinking about X1 and X2 as two consecutive noisy measurements of the same X. When
the first measurement X1 is rounded, we allow it to produce a few bits of side information
about how it was rounded, and to provide them as an auxiliary input to the process that
decides how to round X2. Note that both X1 and X2 are assumed to be real valued vectors
which require an infinite number of bits to fully specify them.

To demonstrate the basic idea, consider the one dimensional case in which X1 and X2 are
real values which have to be consistently rounded to the same nearby integer whenever they
are close enough. X1 is always rounded to the nearest integer, and it produces a single bit of
side information which is whether it was rounded to an even or an odd integer P . When
X2 is measured, it is rounded to the nearest integer which has the same parity as P . To
demonstrate this process, consider the problematic inputs X1 = 0.4999 and X2 = 0.5001:
X1 is rounded to 0, and X2 is also rounded to 0 since it is the closest even integer. In fact,
X2 could be anywhere between −1 and 1 and still be consistently rounded to 0, and thus
the rounding scheme is resilient to additive errors of up to 0.5. In fact (see Sec. 4.1), this
is the highest possible error resilience of any one dimensional consistent rounding scheme;
other natural schemes (such as providing one bit of side information about whether X1 was
rounded up or down) provide lower resilience.

The way we think about the problem is to consider a colored tiling of the real line with
two colors: All the values in [−0.5, 0.5), [1.5, 2.5), etc. are colored by 1, and all the values
in [0.5, 1.5), [2.5, 3.5), etc. are colored by 2. The side information provided about X1 is the

1 We note that in statistics, the term “consistent rounding” is used to denote a rounding that is consistent
with some external constraints; see [26, p. 237].
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Figure 1 A 3-colored hexagonal tiling of the plane, and a maximal non-intersecting inflation of
the tiles colored 1.

color of the tile in which it is located, and the way we process X2 is to round it to the
center of the closest tile which has the same color as that of X1. The essential property of
our partition is that the minimum distance between any two tiles with the same color is 1,
and thus we can “inflate” all the tiles of any particular color to their outer parallel body in
order to include any erroneously measured value X2 up to a distance of 0.5 away from the
original tile, and still get nonoverlapping tiles which make it possible to uniquely associate
such points with original tiles.

To make this perspective clearer, consider the two dimensional plane. In the obvious
checkerboard tiling by unit squares, we need at least 4 colors (and thus 2 bits of side
information) to color the tiles if we do not allow equi-colored tiles to touch. We can reduce
the number of colors to 3 (and thus, provide only log2(3) = 1.58 bits of side information) by
considering the hexagonal partition of the plane depicted in the left part of Figure 1. Given
a two dimensional point X1, we always round it to the center of the hexagon in which it
is located, and given X2 we round it to the center of the nearest hexagon which has X1’s
color. To determine the error resilience of this scheme, we inflate all the hexagonal tiles of a
particular color by the same amount until they touch each other, as depicted in the right part
of Figure 1. As it turns out, this natural scheme is not optimal since the inflated hexagons’
corners touch prematurely, leaving large gaps between them. A 3-colored tiling with a higher
error resilience will be described in Section 5.1.1, and an asymptotically optimal tiling for a
large number of colors will be described in Section 5.2.1.

For inputs X ∈ Rd, we can provide one bit of side information about each one of its d

entries separately, but for large d this is very inefficient. In our colored tiling formulation, it
suffices to reveal the color of X1 in order to consistently round X2, and thus if we can tile
the space with k colors, we need only log2(k) bits to specify this color. This naturally leads
to the question of what is the minimum number of colors needed to tile Rd by bounded sized
tiles so that no two tiles of the same color will touch (even at a corner). Surprisingly, we
could not find any reference to this natural question. As we show in Section 3, there can be
no such colored tiling with d colors, and as we show in Section 5.3, d + 1 colors are sufficient.
Consequently, log2(d + 1) bits of side information about X1 are necessary and sufficient (in
the worst case) to obtain a consistent rounding scheme with positive error resilience. To
prove the negative result, we use techniques borrowed from algebraic topology (namely, either
a generalization of Sperner’s lemma or the Čech cohomology and other cohomology theories),
and to prove the positive result we provide an explicit construction of such a colored tiling.

ICALP 2021



4:4 Error Resilient Space Partitioning

Table 1 Summary of our lower and upper bounds on the error resilience, for different d and k.

Scenario Lower Bound Upper Bound Techniques Source
(LB) on ER (UB) on ER

3 colors 0.354 0.413 Brunn-Minkowski ineq. (UB), Sec. 4.1 (UB),
in R2 Brick wall tiling (LB) Sec. 5.1.1 (LB)

4 colors 0.5 0.564 Brunn-Minkowski ineq. (UB), Sec. 4.1 (UB),
in R2 Brick wall tiling (LB) Sec. 5.1.1 (LB)

k colors 0.537
√

k − O(1) 0.537
√

k Circle packing (UB), Sec. 4.2 (UB),
in R2 HCR tiling (LB) Sec. 5.2.1 (LB)

4 colors 0.25 0.365 Brunn-Minkowski ineq. (UB), Sec. 4.1 (UB),
in R3 3-dim Brick wall (LB) Sec. 5.1.2 (LB)

k colors (0.561 − o(1))k1/3 0.561k1/3 Sphere packing (UB), Sec. 4.2 (UB),
in R3 CPB tiling (LB) Sec. 5.2.2 (LB)

k colors (0.707 − o(1))k1/8 0.707k1/8 Sphere packing (UB), Sec. 4.2 (UB),
in R8 CPB tiling (LB) Sec. 5.2.2 (LB)

k colors (1 − o(1))k1/24 k1/24 Sphere packing (UB), Sec. 4.2 (UB),
in R24 CPB tiling (LB) Sec. 5.2.2 (LB)

d + 1 colors Ω(1/d) O(log d/
√

d) Brunn-Minkowski ineq. (UB), Sec. 4.1 (UB),
in Rd Dimension reducing tiling (LB) Sec. 5.3 (LB)

ER – error resilience, LB – lower bound, UB – upper bound,
HCR – honeycomb of rectangles, CPB – close packing of boxes

In addition to minimizing the amount of side information, we study the question of
maximizing the error resilience for a given d and k. In the negative direction, in Section 4
we obtain several upper bounds on the achievable error resilience, using different techniques
from geometry and analysis (including isoperimetry, the Brunn-Minkowski inequality and
results on the sphere packing problem). In the positive direction, we construct in Section 5
a variety of tiling schemes. In particular, while for d = 2 and k = 3 the hexagonal tiling
scheme described above is resilient to additive errors of up to 0.31, we present a tiling with
resilience of 0.354, and show that no 3-color tiling can have resilience higher than 0.413. We
also show that the maximal resilience achieved by a (d + 1)-coloring of Rd is between Ω(1/d)
and O(log d/

√
d), and use the recent breakthrough results on sphere packing [6, 18, 25] to

obtain tight asymptotic lower and upper bounds on the resilience in dimensions 2, 3, 8, and
24. Our bounds are summarized in Table 1.

Applications. The problem of “continuous error correction over the reals” has numerous
applications. For example, in biometric identification, multiple measurements of the same
fingerprint are similar but not identical. It would be very helpful if all these slight variants
could be represented by the same rounded point P , and we can achieve this by storing a
small amount of side information in the biometric database during the initial registration of
a new employee.

Another example is the problem of developing a contact tracing app for the COVID-19
pandemic, where we want to record all the cases in which two smart phones were at roughly
the same place at roughly the same time. We can do this by measuring in each phone the
GPS location, the local time, and perhaps other parameters such as the ambient noise level
(in order to rule out the case of people living in different apartments which are separated by
a common wall). When someone tests positive for COVID-19, the health authority wants
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to reveal a list of his measurements, but in order to keep the patient’s privacy, it wants to
cryptographically hash each measurement before publishing it. Since the measurements are
likely to be slightly different for the infected and exposed persons, the health authority can
publish the small amount of side information along with the consistently rounded and then
hashed measurements.

Finally, the problem may also be relevant to the construction of quantum error correction
codes, since the state of a quantum computer is a complex-valued vector in a Hilbert space
with exponentially many dimensions which can be perturbed by external noise. Note that the
logarithmic number of side information bits we need for error correction can be stored and
processed classically. However, describing such potential applications is beyond the scope of
this paper.

Related work. A line of study that seems related to our work is fuzzy constructions that
were widely studied in the cryptographic literature, such as the fuzzy commitment scheme of
Juels and Wattenberg [20]). Dodis et al. [12] introduced the notions of fuzzy extractors and
secure sketches, which enable two parties to secretly reach a consensus value from multiple
noisy measurements of some high entropy source (a recent survey of such techniques can be
found in [14]). However, such schemes concentrate on the aspects of cryptographic security
(which we do not consider), and produce sketches whose size depends on the number of
possible inputs (which is meaningless for real valued inputs). In this sense our consistent
rounding scheme can be viewed as an exceptionally efficient reconciliation process, since it
can produce for each million entry vector of arbitrarily large real numbers a 20 bit “sketch”
(in the form of its color side information), and process this information with trivial point
location algorithms.

Open problems. While we fully solved the question of minimizing the amount of side
information required for error resilience, several questions remain open regarding the maximal
resilience rate that can be achieved for a given amount of side information. In particular,
for dimensions 2, 3, 8, 24 we determined the exact asymptotic resilience when log2 k bits of
information are allowed, using a connection to the densest sphere packing problem. When
only very few bits of information are allowed, the situation is much less clear. For example,
we do not even know whether the brick wall constructions we present in Section 5.1.1 have
the highest error resilience among rounding schemes in R2 with log2 3 and log2 4 bits of side
information. It will be interesting to obtain new upper bounds via different techniques or
new lower bound constructions.

2 Our Setting

In this section we present the basic setting that will be assumed throughout the paper.

Colored tiling. We study tilings of Rd, where each tile is connected, closed and bounded,
and the tiles intersect only in their boundaries. In some of the results we make additional
assumptions on the tiles or drop some of the assumptions; such changes are stated explicitly.
Each tile is colored in one of k colors.

Error resilience and inflation. In order to compute the error resilience of a given tiling
(with respect to the L2 distance), we consider all tiles of the same color and inflate them (i.e.,
replace the tile T by the set T ′ = {y : ∃x ∈ T, |x − y| < r} for some r > 0) until they touch
each other. Clearly, the error resilience is the maximal r for which such a non-intersecting

ICALP 2021



4:6 Error Resilient Space Partitioning

inflation is possible. We note that in convex geometry, such an inflation T ′ is called the
outer parallel body of radius r of T (see [15, p. 943]). The minimal distance between two
same-colored points in different tiles is denoted by t, and so, the error resilience is t/2.

Breaking ties. A fine point about consistent rounding schemes is how to break ties, and
here we deal differently with X1 and X2. We want to be able to deal with any X1, and
thus we think about the tiles as being closed sets which include their boundaries. Therefore,
points X1 which are on the boundary between tiles can have more than one possible color.
We allow such ties to be broken arbitrarily in the sense that X1 can be rounded to the center
of any one of the tiles that it belong to. However, when we think about X2 we allow it to be
at a distance of strictly less than some bound, and thus the inflated tiles (that contain all the
possible X2’s we are interested in) are open sets which have no intersections. Consequently,
each X2 can belong to at most one inflated tile, and is rounded to the center of that tile with
no possible ties.

Normalization. The d-dimensional volume of a figure T ⊂ Rd is denoted by λ(T ). We
normalize the tiling by assuming that the volume of each tile is bounded by 1 (like in the
1-dimensional case presented in the introduction, where all tiles are segments of length 1).
We make the natural assumption that any inflated tile T ′ satisfies λ(T̄ ′) = λ(T ′), where T̄ ′

is the topological closure of T ′. Normalization with respect to other natural metrics, as well
as alternative distance metrics, are discussed in the full version of the paper.

3 The Minimal Number of Colors Required for Error Resilience

In this section we prove that the minimal number of colors required for achieving any positive
error resilience in a tiling of Rd is d + 1. We provide two proofs, under different additional
natural assumptions on the tiles. The first assumes that all tiles are uniformly bounded
and relies on a generalization of Sperner’s lemma. The second proof assumes that the
tiles and their non-empty intersections are contractible (while not having to be uniformly
bounded) and uses a more advanced algebraic-topologic argument. The lower bound d + 1
on the number of required colors is tight; a matching construction for any d is presented in
Section 5.3.

3.1 Lower bound for bounded tiles, using Sperner’s Lemma

The main result of this subsection is the following.

▶ Proposition 1. For any m > 0, the following holds. Let T1, T2, . . . be a colored tiling of
Rd in d + 1 colors, in which each tile is contained in a box with side length m. If the error
resilience of the tiling is δ > 0, then there exist tiles in all d + 1 colors that intersect at a
point.
Consequently, any tiling with positive error resilience uses at least d + 1 colors.

We use a generalization of the classical Sperner’s lemma [24], called Bapat’s connector-free
lemma. As Bapat’s lemma was originally proved only in R2 and in a discrete setting, we first
provide a proof of a continuous version in Rd, and then derive Proposition 1 from it.
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3.1.1 Bapat’s connector-free lemma – continuous version
Let ∆ be a d-simplex in a Euclidean space, i.e., the convex hull of d + 1 points x0, . . . , xd

which do not lie in a d-space. The i’th face of ∆ is the span of {xj}j ̸=i. A connector in a
d-simplex is a connected set which intersects all its (d − 1)-dimensional faces.

Bapat’s connector-free lemma asserts the following:

▶ Theorem 2. Let C0, . . . , Cd be a cover of a d-simplex ∆ by closed sets such that the
minimal distance between two connected components of the same set is δ > 0. Suppose that
the interiors of the sets are disjoint and that no Ci contains a connector. Then

⋂d
i=0 Ci ̸= ∅.

In order to prove the theorem we will reduce it to an analogous discrete claim. The reduction
is simple, but requires some more terminology.

A triangulation T of a simplex ∆ ⊂ Rd is a cover of it by simplices whose interiors are
disjoint, such that the intersection of any set of simplices is either empty or the convex hull
of some vertices. Note that the vertices of ∆ are, in particular, vertices of the triangulation,
and that the faces of ∆ are endowed by an induced triangulation. The diameter of T is
the supremum of distances between vertices which share an edge. The 1-skeleton of T is
the graph formed by the vertices and the edges. A discrete connector is a connected subset
of the 1-skeleton of T which contains vertices from each facet of ∆. We can now state the
discrete version of Theorem 2 (which is the actual statement proved by Bapat, for d = 2).

▶ Theorem 3 (Bapat). Suppose that the vertices of T are partitioned into disjoint sets
A0, A1, . . . , Ad such that no Ai contains a discrete connector. Then there exists a simplex in
T whose d + 1 vertices belong to different sets Ai.

Proof of Theorem 2, assuming Theorem 3. Assume towards contradiction that there exist
sets C0, . . . , Cd which cover ∆, such that no Ci contains a connector, but

⋂d
i=0 Ci = ∅. Define

the function f : C0 × C1 · · · × Cd → R+ by setting f(p0, . . . , pd) to be the diameter of the
convex hull of (p0, . . . , pd), which is the maximal distance between two pi’s. The domain of
the function f compact (here we use the assumption that the minimal distance between two
connected components of the same Ci is at least δ) and its range is R+ (since we assumed⋂d

i=0 Ci = ∅). Hence, f attains a minimum ϵ > 0.
Let η = min(δ, ϵ)/3. Let C̃i be the η-thickening of Ci in ∆, i.e., C̃i = {p ∈

∆ : dist(p, Ci) < η}. Then C̃i is an open cover of ∆. By the choice of η, neither C̃i

contains a connector,2 and
⋂

i∈{0,...,d} C̃i = ∅.
Let T be a triangulation of ∆ whose diameter is less than η and all whose vertices lie in

the interiors of the sets Ci. (Clearly, such a triangulation exists.) Define Ai as the subset of
vertices which lie in int(Ci). These sets are well defined since the interiors of the different
Ci’s are disjoint. Since the triangulation is of diameter less than η, each edge between two
vertices which belong to the same Ai lies in C̃i. Indeed, its endpoints are in Ci and any
point on the edge is of distance less than η to any endpoint, hence it is in C̃i. Thus, since C̃i

contains no connector, Ai contains no discrete connector.
We can now apply Theorem 3 to deduce that there exists a simplex t = {v0, . . . , vd} ∈ T

such that ∀i : vi ∈ Ai. But since vi ∈ Ci for all i, this implies f(v0, . . . , vd) < η < ϵ, a
contradiction to the definition of ϵ. This completes the proof. ◀

2 To be precise, this relies on the slightly stronger assumption that each connected component of Ci is
at least δ-far from one of the facets of ∆. While this extra assumption can be avoided in the proof, it
clearly holds in our setting so we make it for simplicity.

ICALP 2021



4:8 Error Resilient Space Partitioning

To prove Theorem 3, we use the classical Sperner’s lemma [24]. To present it, a few more
definitions are due.

A (d+1)-labelling of a triangulation T is of the simplex ∆ = conv(e0, . . . , ed) is a function
ℓ : V (T ) → {0, 1, . . . , d}, that is, an assignment of one of d + 1 colors to each vertex of the
triangulation. A (d + 1)-labelling ℓ is called proper if ℓ(ei) = i, and for each v ∈ T that
belongs to a lower-dimensional face conv(ei1 , . . . , eir

), we have ℓ(v) ∈ {i1, . . . , ir}.

▶ Theorem 4 (Sperner’s lemma). For any triangulation T of ∆, any proper labelling of T

contains a simplex all whose vertices have different labels.

Proof of Theorem 3. We define, using the sets A0, . . . , Ad, a proper labelling ℓ of T. For
any j and any v ∈ Aj , ℓ(v) is defined as the minimal i ∈ {0, . . . , d} such that the connected
component of v in Aj does not intersect the i’th face of ∆. Note that ℓ is well-defined, since
each v belongs to a single Aj and no Aj contains a connector. Clearly, ℓ(v) ̸= i, whenever v

belongs to the i’th face of ∆. Furthermore, this implies that if v ∈ conv(ei1 , . . . , eir
), then

ℓ(v) ∈ {i1, . . . , ir} (as all other colors are forbidden). Hence, ℓ is proper.
By Sperner’s lemma, applied to the labelling ℓ, there exists a simplex {v0, . . . , vd} ∈ T

all whose vertices have different labels. Assume w.l.o.g. that ℓ(vi) = i. We want to show
that each vi belongs to a different Aj , which will complete the proof. Assume towards
contradiction vi, vk ∈ Aj for i ̸= k. On the one hand, ℓ(vi) = i ̸= k = ℓ(vk). On the other
hand, vi, vk belong to the same connected component in Aj , hence, by the definition of ℓ

they must map to the same value. A contradiction, and Theorem 3 follows. ◀

3.1.2 Proof of Proposition 1
We are now ready to prove Proposition 1.

Let T1, T2, . . . be a tiling of Rd that satisfies the assumptions of the proposition. Consider
the restriction of the tiling to a large simplex ∆ (say, of side length 100m).

For i = 0, . . . , d, denote by Ci ⊂ ∆ the union of all tiles colored i, restricted to ∆. Clearly,
Ci is a closed set and the distance between any two connected components of Ci is at least 2δ.
(Indeed, each tile is connected, and as the error resilience of the tiling is δ, the distance
betwen two same-colored tiles is at least 2δ).

We claim that no Ci contains a connector. Indeed, a connector cannot include points from
different tiles. A single tile is included in a box with side length m, and thus, cannot touch
all facets of a simplex with side length 100m. Hence, there is no single-colored connector.

Therefore, we can apply Theorem 2 to deduce that
⋂d

i=0 Ci ≠ ∅, which is exactly the
assertion of Proposition 1.

3.2 Lower bound for contractible tiles, using Čech cohomology
Recall that a set in Rd is called contractible if it can be continuously shrunk to a point within
the set. (The formal definition is that the identity is homotopic to a constant map.)

Informally, in this section we prove that if the tiles and their non-empty intersections are
finite unions of contractible sets (that do not have to be uniformly bounded), then at least
d + 1 colors are required for error resilience. We note that the proof uses a somewhat heavier
algebraic-topologic machinery, and so, a reader might prefer to skip it in first reading.
Due to the possibility of pathologies, the formal statement is a bit more cumbersome:

▶ Proposition 5. Let T1, T2, . . . be a colored tiling of Rd with positive error resilience, in
which the tiles and all their non-empty intersections are disjoint unions of finitely many
closed contractible sets. Assume that the tiling is locally finite (meaning that the number
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of tiles that intersect any bounded ball B(0, r) is finite) and that all Ti’s are bounded (not
necessarily uniformly). In addition, assume that each Ti has an open neighborhood Ui such
that for any I,⋂

i∈I

Ui ̸= ∅ ⇔
⋂
i∈I

Ti ̸= ∅,

and the Ui’s and their non-empty intersections are disjoint unions of finitely many contract-
ibles. Then the number of colors is at least d + 1.

A similar method proves an analogous statement for colored tilings of the sphere Sd (i.e.,
the unit sphere in Rd+1):

▶ Proposition 6. Let T1, T2, . . . , TN be a colored tiling of Sd with positive error resilience,
in which the tiles and all their non-empty intersections are disjoint unions of finitely many
closed contractible sets. Assume that each Ti has an open neighborhood Ui such that for any
set of indices I,⋂

i∈I

Ui ̸= ∅ ⇔
⋂
i∈I

Ti ̸= ∅,

and the Ui’s and their non-empty intersections are disjoint unions of finitely many contract-
ibles. Then the number of colors is at least d + 1.

▶ Remark 7. We stress that for most natural tilings the additional assumption on the
existence of the neighborhoods Ui follows from the existence of Ti’s with the corresponding
properties. However, there are topological pathologies in which this is not the case.
The proof of Propositions 5 and 6 uses the notion of Čech cohomology and classical results
regarding its properties. For the ease of reading, we begin with an intuitive explanation of
the proof ideas, and then present the formal proof.

Intuitive proof. The d’th (singular) cohomology group is a topological invariant of a manifold
which roughly counts “non trivial holes” of dimension d. A classical result asserts that the
d’th cohomology group of a d-dimensional compact oriented manifold like Sd is R. (This
corresponds to the intuitive understanding that Sd has one d-dimensional hole.) The de-Rham
cohomology and the Čech cohomology are analytic and algebro-geometric/combinatorial
invariants, that in many cases agree with their topological cousin. In particular, the d’th
de-Rham and Čech cohomologies of Sd are equal to R as well.

The d’th Čech cohomology with respect to an open cover of the manifold depends on
properties of intersections of d + 1 sets in that cover. In general, it depends on the sets which
form the cover, however, it is known that if these sets and their non-empty intersections
are finite disjoint unions of contractibles, then the cohomology groups remain the same,
independently of the cover. In particular, if the d’th Čech cohomology with respect to such a
cover is non trivial, then there must be d + 1 sets with a non-empty intersection.

Hence, for our cover U1, U2, . . ., we know that its d’th Čech cohomology is R. This readily
completes the proof of the proposition for Sd, as this implies that there must be a point that
belongs to at least d + 1 of the Ui’s. The proof in Rd works in essentially the same way, with
cohomology groups replaced by cohomology groups with compact support.

Formal proof. For the proof we recall the notion of Čech cohomology with values in the
constant sheaf R, and describe the slightly less standard concept of Čech cohomology with
compact support.
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Definitions. Let S be either Rd or a compact manifold such as Sd. Let U = {U1, U2, . . .}
be an open cover of S. If S is compact, we assume the collection to be finite. If S is Rd, we
assume it to be locally finite and assume in addition that each Ui is bounded.

A q−simplex σ = (Ui0 , . . . , Uiq ) of U is an ordered collection of q + 1 different sets chosen
from U , such that

q⋂
k=0

Uik
̸= ∅.

For a q−simplex σ = (Uik
)k∈{0,...,q}, the j’th partial boundary is the (q − 1)-simplex

∂jσ := (Uik
)k∈{0,...,q}\{j},

obtained by removing the j’th set from σ.
A q−cochain of U is a function which associates to any q−simplex a real number. The
q−cochains form a vector space denoted by Cq(U ,R), with operations

(λf +µg)(σ) = λf(σ)+µg(σ), where λ, µ ∈ R, f, g ∈ Cq(U ,R), σ is a q−simplex.

Similarly, we define Cq
c (U ,R), as the vector space of q−cochains with compact support,

meaning those cochains which assign 0 to all q−simplices, except for finitely many.
There is a differential map δq : Cq(U ,R) → Cq+1(U ,R) whose application to f ∈ Cq(U ,R)
is the (q + 1)−cochain δq(f) whose value at a (q + 1)−simplex σ is

(δqf)(σ) =
q+1∑
j=0

(−1)jf(∂jσ).

The restriction of δq to Cq
c (U ,R) maps it to Cq+1

c (U ,R).
It can be easily seen that δq+1 ◦ δq = 0.
The q’th Čech cohomology group (with compact support) of S with respect to the cover U
and values in R is

Ȟq(U ,R) := Ker(δq)/Image(δq−1),

Ȟq
c (U ,R) := Ker(δq|Cq

c (U,R))/Image(δq−1|Cq−1
c (U,R)).

A cover (by open sets) is good if all its sets as well as their multiple intersections are
either empty or contractible. It is almost good if all non empty intersections are unions of
finitely many disjoint contractible components.

Classical results we use. The first result we use is the following:

▶ Theorem 8. If S is a compact smooth orientable manifold (such as Sd), and U is a good
or an almost good finite cover, then

Ȟi(U ,R) ≃ Hi
dR(S),

where the right hand side is the standard de-Rham cohomology group.
Similarly, if S = Rd and U is a locally finite good or almost good cover whose sets are bounded,
then

Ȟi
c(U ,R) ≃ Hi

dR,c(S),

where the right hand side is the i’th de-Rham cohomology group with compact support.
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For further reading about de-Rham cohomology, with or without compact support, we
refer the reader to [4, Sec. 1]. For further reading about the Čech cohomology, we refer to [4,
Sec. 8]. In particular, Theorem 8, for the compact case and good covers is Theorem 8.9 there.
The passage to almost good covers is straightforward: In the paragraph which precedes the
proof, it is explained that the obstructions to the isomorphism between Čech and de-Rham
cohomologies are given by products of the i’th de-Rham cohomology groups, for i ≥ 1, of the
different intersections

⋂q
k=0 Uik

. Since those intersections are disjoint unions of contractibles,
their higher cohomology groups vanish, hence there is no obstruction to the isomorphism.

Regarding the case S = Rd, the proof in [4, Sec. 8] requires a few small changes: In
the statement of Proposition 8.5 there, one needs to replace the de-Rham complex of the
manifold with the de-Rham complex with compact support, and the direct product with
direct sum. The maps r, δ which appear there will still be well defined by our local finiteness
assumption on the cover, and the assumption that Ui’s are bounded. The proof requires
no change. Then, the double complex in the definition of Proposition 8.8 should also be
defined using direct sum rather than direct product, but again there is no change in the
proof. Given these changes in definitions, the proof of Theorem 8.9 (also for the almost good
case) is unchanged.

The second standard result, which is a consequence of Poincaré duality, is the following:

▶ Theorem 9. For a compact smooth oriented manifold S of dimension d (such as Sd),

Hd
dR(S) ≃ R.

Similarly, for S = Rd, we have Hd
dR,c(Rd) ≃ R.

See, for example, [4, Sec. 7] for the compact case, and [4, Sec. 4] for Rd.

Theorems 8 and 9 yield:

▶ Corollary 10. If S is a compact smooth orientable manifold (such as Sd), and U is a good
or an almost good finite cover, then

Ȟd(U ,R) = R.

Similarly, if S = Rd and U is a locally finite good or almost good cover whose sets are bounded,
then Ȟd

c (U ,R) = R.

Proof of Propositions 5 and 6. We show that there must exist d + 1 Ti’s whose intersection
is non-empty. This clearly implies that for achieving any positive error resilience, at least
d + 1 colors are needed.

Assume on the contrary that any (d + 1)-intersection of the Ti’s is empty. Let Ui be as
in the statement of the Propositions. Then by definition, they form an almost good cover.
All intersections of at least d + 1 Ui’s are empty by our assumptions. Therefore, there are
no d−simplices, and so Cd(U ,R) = 0. Thus, in the compact case, Ȟd(U ,R) = 0. But on the
other hand, by Corollary 10,

Ȟd(U ,R) ≃ R,

a contradiction. For Rd the same argument works, with Ȟd
c (U ,R) in place of Ȟd(U ,R).
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4 Upper Bounds on the Error Resilience

In this section we consider tilings of Rd by tiles T1, T2, . . . of volume at most 1. Each point
in Rd is colored in one of k ≥ d + 1 colors, and our goal is to maximize the minimal distance
t between two points of the same color that belong to different tiles. (The maximum is taken
over all possible tilings that satisfy the mild regularity conditions stated in Section 2 and
over all possible colorings.) Clearly, the error resilience of a rounding scheme based on such
a colored tiling is t/2.

We present two upper bounds on t, using the Brunn-Minkowski inequality and results on
sphere packing. Another bound, using the Minkowski-Steiner formula, is presented in the
full version of the paper (see [13]).

The basic idea behind our upper bound proofs is as follows. Assume we have a colored
tiling of Rd, with minimal distance t. Pick a single color – say, black – and consider all black
tiles inside a large cube S. We obtain a new collection of tiles T ′

1, T ′
2, . . . , T ′

m that covers
part of S. The assumption that the minimal distance between two same-colored points in
different tiles is t implies that if we inflate each black tile T ′

i into its open parallel outer body
of radius t/2,

T ′′
i = {x : ∃y ∈ T ′

i , |x − y| < t/2}, (1)

then the inflations T ′′
i are pairwise disjoint. Hence, the sum of their volumes essentially

cannot exceed the volume of the large cube, and this allows bounding t from above.

4.1 An upper bound using the Brunn-Minkowski inequality
The inflations T ′′

i can be represented in terms of the Minkowski sum of sets in Rd.

▶ Definition 11. For A, B ⊂ Rd, the Minkowski sum of A, B is A+B = {a+b : a ∈ A, b ∈ B}.

In terms of this definition, we have

T ′′
i = T ′

i + B(0, t/2), (2)

where B(0, t/2) is an open ball of radius t/2 around the origin. This allows us to lower bound
the volume of each T ′′

i , using the classical Brunn-Minkowski (BM) inequality (see, e.g., [5]).
Recall the inequality asserts the following.

▶ Theorem 12 (Brunn-Minkowski). Let A, B be compact sets in Rd. Then

λ(A + B)1/d ≥ λ(A)1/d + λ(B)1/d,

where λ(X) is the volume of X (formally, the d-dimensional Lebesgue measure of X).

▶ Proposition 13. Let T1, T2, . . . be a k-colored tiling of Rd, with tiles of volume ≤ 1 and
minimal distance t. Then

t ≤
(

2Γ(d/2 + 1)1/d

√
π

)
· (k1/d − 1),

where Γ(·) is the Gamma function.
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Proof. Consider a cube S such that λ(S) = nd (for some “large” n). By the pigeonhole
principle, there exists a color (say, black) that covers at least nd/k of the volume of S. Look
at the black tiles whose intersection with S is non-empty, and denote their intersections
with S by T ′

1, T ′
2, . . . , T ′

m. Hence, we have m “black” subsets of S, each of volume at most 1,
whose total volume is at least nd/k.

For each T ′
i , define T ′′

i = T ′
i + B(0, t/2). By assumption, the regions T ′′

i are disjoint.
Furthermore, they are included in S + B(0, t/2) whose volume is less than (n + t)d. Hence,∑

i

λ(T ′′
i ) ≤ (n + t)d. (3)

By the Brunn-Minkowski inequality, we have

∀i : λ(T ′′
i )1/d ≥ λ(T ′

i )1/d + (bt/2)1/d,

where bt/2 is the volume of the d-dimensional ball B(0, t/2). Thus,

∀i : λ(T ′′
i ) ≥

d∑
j=0

(
d

j

)
λ(T ′

i )j/d(bt/2)1−j/d.

Summing over i and using (3), we get

(n + t)d ≥
m∑

i=1

d∑
j=0

(
d

j

)
λ(T ′

i )j/d(bt/2)1−j/d. (4)

As 0 ≤ λ(T ′
i ) ≤ 1, for any 0 ≤ j ≤ d we have

∑
i λ(T ′

i )j/d ≥
∑

i λ(T ′
i ) ≥ nd/k, and hence we

obtain

(n + t)d ≥ nd

k
·
(

1 + b
1/d
t/2

)d

.

This implies

(1 + t

n
)k1/d − 1 ≥ b

1/d
t/2 = π1/2

Γ(d/2 + 1)1/d
· t

2 .

Letting n → ∞ and rearranging, we obtain

t ≤
(

2Γ(d/2 + 1)1/d

√
π

)
· (k1/d − 1),

as asserted. ◀

Asymptotic upper bound. For a large number k ≫ d of colors, Proposition 13 gives the
upper bound

t ≤ (
√

2
πe

+ od(1))
√

dk1/d,

as follows from (5). This bound is not far from being tight. Indeed, its dependence on k is
correct, as it can be easily matched by a periodic cubic tiling, in which each tile is a cube
with side length 1 and the basic unit is a large cube with side length k1/d that contains each
color in exactly one tile (in the same order). Moreover, even regarding the “coefficient” of
k1/d, the optimal asymptotic upper bounds for d = 3, 8, 24 which we obtain below via the
sphere packing problem, improve over this bound by only a small factor.
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Upper bound for k = d + 1 colors. To estimate the upper bound we obtain in this case,
note that

(d + 1)1/d − 1 = (1 + od(1)) ln(d)
d

, and Γ(d/2 + 1)1/d =
(

1√
2e

+ od(1)
)√

d. (5)

Therefore, the bound we obtain in this case is

t ≤

(√
2

πe
+ od(1)

)
ln d√

d
,

which implies that the error resilience decreases to zero as d tends to infinity. For comparison,
the lower bound we obtain in Section 5.3 is t ≥ Ω(1/d).

Upper bounds for small values of d, k. For d = 3, k = 4, the bound is

t ≤ 2Γ(2.5)1/3
√

π
· (41/3 − 1) ≈ 0.729.

For d = 2 and k = 3, 4, the upper bounds we obtain are t ≤ 0.826 and t ≤ 1.128, respectively.
For comparison, the best constructions we have in these settings satisfy t = 0.5, t = 1/

√
2,

and t = 1, respectively.

Discussion. The upper bound given by Proposition 13 is loose in two ways. One source of
loss is the application of the Brunn-Minkowski inequality. Here, the inequality is tight if the
tiles are balls, and the farther they are from balls, the larger is the loss. Another source of
loss is the space left between the inflations, that is not taken into account in the proof.

Interestingly, there is a dichotomy between these two sources of loss. As follows from
the sphere packing problem, when the tiles are balls (and so, there is no loss in the BM
inequality), the space between the inflations (and so, the loss of the second type) is relatively
large. The space between the inflations can be made smaller if the tiles are taken to be
polytopes with a few vertices. However, this comes at the expense of increased loss in the
BM inequality, as is demonstrated in the full version of the paper.

Optimality of our 1-dimensional rounding scheme. The argument described above gives
an easy proof of the optimality of the 1-dimensional rounding scheme presented in the
introduction. Indeed, consider a 2-colored tiling of the line and look at the segment I = [−n, n]
for some large n. By the pigeonhole principle, we may assume that black tiles cover at least
half of I. By the 1-dimensional Brunn-Minkowski inequality, for each black tile T ′

i ⊂ I

and the corresponding inflation T ′′
i = T ′

i + (−t/2, t/2), we have λ(T ′′
i ) ≥ λ(T ′

i ) + t. As
∀i : λ(T ′

i ) ≤ 1, there are at least n tiles. Since the T ′′
i ’s are pairwise disjoint and included in

[−n − 1, n + 1], we obtain

2n + 2 ≥
∑

i

λ(T ′′
i ) ≥

∑
i

λ(T ′
i ) +

∑
i

t ≥ n + nt,

and thus, t ≤ (n + 2)/n. By letting n tend to infinity, we obtain t ≤ 1, implying that the
error resilience of any two-colored tiling of the line is at most 1/2.
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4.2 An upper bound using the Sphere Packing problem
Our second upper bound uses reduction to the classical sphere packing problem, which asks
for the maximal possible density of a set of non-intersecting congruent spheres in Rd.

▶ Definition 14. The density of a sphere packing (i.e., collection of pairwise disjoint congruent
spheres) P = ∪Pi in Rd is

lim sup
r→∞

λ (B(0, r) ∩
⋃

P )
λ(B(0, r)) .

Intuitively, this measures the fraction of the volume of a large ball covered by the packing.

▶ Notation 15. Denote the maximal density of a sphere packing in Rd by δd, and the volume
of the unit ball B(0, 1) ⊂ Rd by vd = πd/2/Γ(d/2 + 1).

▶ Proposition 16. Let T1, T2, . . . be a tiling of Rd in k colors, with tiles of volume ≤ 1 and
minimal distance t. Then

t ≤
(

2(δd/vd)1/d
)

· k1/d =
(

2Γ(d/2 + 1)1/d · δ
1/d
d√

π

)
· k1/d.

Note that the asymptotic upper bound of Proposition 16 is stronger than the asymptotic
upper bound that follows from Proposition 13 by the constant factor (δd)1/d. For small
values of k, the upper bound given by Proposition 13 is stronger.

Proof. Let T be a k-colored tiling of Rd that satisfies the assumptions of the proposition,
and consider the sequence of balls {B(0, n)}n=1,2,3,.... By the pigeonhole principle, there
exists a color (say, black) such that for each nℓ in an infinite subsequence {nℓ}ℓ=1,2,..., the
intersection of the black tiles with the ball B(0, nℓ) has volume of at least

λ(B(0, nℓ))/k = nd
ℓ · vd

k
.

As the volume of each tile is at most 1, we know that for each nℓ, the number of black tiles
that intersect B(0, nℓ) is at least nd

ℓ vd/k.
Pick some value nℓ, denote the intersections of black tiles with B(0, nℓ) by T ′

1, T ′
2, . . ., and

take one point xi from each tile T ′
i . As the minimal distance between two black points in

different tiles is t, balls of radius t/2 around the points xi are pairwise disjoint. Hence, their
total volume is at least

nd
ℓ · vd

k
· (t/2)d · vd.

On the other hand, each such ball is contained in the ball B(0, (nℓ + t)) (since its radius is
t/2, and it contains a point in B(0, nℓ)). This implies that for any ϵ > 0 and for a sufficiently
large ℓ = ℓ(ϵ), the total volume of these balls must be smaller than (1 + ϵ)δd · λ(B(0, nℓ + t)),
as otherwise, the infinite collection of the balls B(xi, t/2) (where for each ball B(0, nℓ) we
select xi’s in the way described above, respecting the xi’s selected for smaller values of nℓ)
would be a sphere packing of Rd whose density is larger than δd. Therefore, for a sufficiently
large nℓ, we have

nd
ℓ · vd

k
· (t/2)d · vd ≤ (1 + ϵ)(1 + t

nℓ
)dδd · nd

ℓ vd,

and letting ϵ → 0 and nℓ → ∞, we obtain t ≤ 2(δd/vd)1/d · k1/d, as asserted. ◀
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Discussion. In the two last decades, there has been a tremendous progress in the research
of the sphere packing problem. In 2005, Hales ([18], see also [17]) solved the problem for
d = 3, proving a 17’th century conjecture of Kepler. Three years ago, in a beautiful short
paper, Viazovska [25] solved the problem for d = 8, and shortly after, Cohn, Kumar, Miller,
Radchenko, and Viazovska [6] used Viazovska’s method along with other tools to solve the
problem for d = 24. For other dimensions, the problem is still open. We can use the results
of [6, 18, 25], along with the value of δ2 that was obtained already by Lagrange, to obtain
tight upper bounds on t in dimensions 2, 3, 8, and 24.

For d = 2, Lagrange (1773) showed that δ2 = π
2

√
3 ≈ 0.907. Hence, we obtain the bound

t ≤ 21/2

31/4 · k1/2 ≈ 1.074k1/2.
For d = 3, Hales [18, 17] showed that δ3 = π

3
√

2 ≈ 0.740. Hence, we obtain the bound
t ≤ 21/6 · k1/3 ≈ 1.122k1/3.
For d = 8, Viazovska [25] showed that δ8 = π4

244! ≈ 0.254. Hence, we obtain the bound
t ≤

√
2k1/8 ≈ 1.414k1/8.

For d = 24, Cohn et al. [6] showed that δ24 = π12

12! ≈ 0.0019. Hence, we obtain the bound
t ≤ 2k1/24.

As we show in Section 5, all these bounds are asymptotically tight.
Using the same method, we can leverage any upper bound for the sphere packing problem

(namely, upper bound on δd) into an upper bound on the error resilience of a rounding
scheme in the corresponding dimension. The best currently known bound on δd for a large
d is by Cohn and Zhao [7], who obtained a constant-factor improvement over the classical
Kabatiansky-Levenshtein [21] bound δd ≤ 2−(0.5990+o(1))d. A list of conjectured bounds for
d ≤ 10 can be found in [8].

5 Lower Bounds on the Error Resilience

In this section (like in Section 4), we consider tilings of Rd by tiles T1, T2, . . . of volume at
most 1. Each point in Rd is colored in one of k ≥ d + 1 colors, and our goal is to maximize
the minimal distance t between two points of the same color that belong to different tiles.

We obtain lower bounds on t for various values of d, k, by constructing explicit tilings.
First, we present brick-wall tilings, which provide lower bounds for small values of d, k. Then
we present tilings based on close sphere packing, which show the tightness of our asymptotic
bounds for d = 2, 3, 8, 24. Finally, we inductively construct a dimension-reducing tiling which
shows that for any dimension d, positive error resilience can be obtained with d + 1 colors.

5.1 Brick-wall tilings
We begin with a tiling of the plane, and then use it to construct a tiling of R3.

5.1.1 2-dimensional brick wall
In the 2-dimensional brick wall tiling with k colors, demonstrated in Figure 2, each tile is a
rectangle with side lengths

√
(k − 2)/2 and

√
2/(k − 2) (and so, the area of each tile is 1).

The tiling is periodic, where the basic unit is two rows of adjacent rectangles, colored in a
round robin fashion. For an even k, the second row is placed exactly below the first row, and
the sequence of colors is shifted by k/2. For an odd k, the second row is indented by half a
brick (making the tiling look like a brick wall), and the sequence is shifted by (k + 1)/2.
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1 2 3 1

3 1 2 3

1 2 3 1

3 1 2 3

k = 3

1 2 3 4

3 4 1 2

1 2 3 4

3 4 1 2

k = 4

1 2 3 4 5 1

4 5 1 2 3

1 2 3 4 5 1

k = 5

Figure 2 The 2-dimensional brick wall tiling for k = 3, 4, 5 colors. The ratio between the width
and the height of each tile is 2 : k − 2.
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Figure 3 The 3-dimensional brick wall tiling.

It is easy to see that the minimal distance between two same-colored points in different
tiles is

√
(k − 2)/2. (This distance is attained both in the vertical and in the horizontal

directions. Having the same minimal distance in both directions is the optimization that
dictates the side lengths of the bricks.) In particular, we obtain the lower bounds t ≥ 1/

√
2

for 3 colors, t ≥ 1 for 4 colors, and t ≥
√

3/2 for 5 colors.

5.1.2 3-dimensional brick wall
The 3-dimensional brick wall (3BW) tiling, demonstrated in Figure 3, is a periodic tiling of
R3, colored in 4 colors. In order to present the tiling, we need an auxiliary notation.

Notation. Consider the slab D = R × R × [z1, z2] ⊂ R3. We say that a tiling T1, T2, . . .

of D is a fattened plane tiling if there exists a tiling T ′
1, T ′

2, . . . of the plane such that
∀i : Ti = T ′

i × [z1, z2].

The structure of 3BW. The 3BW tiling is periodic, where the basic unit consists of two
brick wall layers, placed one on top of the other in the way presented in Figure 3. Each brick
wall layer is a fattening of a brick wall tiling of the plane. The underlying plane tiling is a
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1 2 3 4 1 2 3 4

15 16 13 14 15 16 13 14

11 12 9 10 11 12 9 10

7 8 5 6 7 8 5 6

3 4 1 2 3 4 1 2

13 14 15 16 13 14 15 16

9 10 11 12 9 10 11 12

5 6 7 8 5 6 7 8

1 2 3 4 1 2 3 4

15 16 13 14 15 16 13 14

Figure 4 The honeycomb of rectangles tiling for d = 2 and k = 16 colors. The boundaries of
the basic “large rectangles” are depicted in bold. The placement of the tiles in each single color
corresponds to the honeycomb lattice.

periodic tiling, in which the basic unit consists of four columns of adjacent rectangles, where
the even columns are indented by half a brick, making the tiling look like a brick wall. In
the lower layer, in odd columns, the colors 1,2 are used alternately, and in even columns, the
colors 3,4 are used alternately. Furthermore, the colors in the third and fourth columns are
shifted by one, see Figure 3. In the upper layer columns are replaced by rows. Note that
once the layers are placed, the coloring of one layer fully determines the coloring of the other.

Analysis given in the full version of the paper shows that by taking a = 1 and fixing the
height of each layer to be 1/2, we obtain t = 1/2, and thus, error resilience of 0.25.

5.2 Tilings based on close sphere packing
We present the tiling in the case of R2, where it is easier to describe and analyze, and then
we generalize it to higher dimensions.

5.2.1 Honeycomb of rectangles
In the honeycomb of rectangles tiling of the plane with k = m2 colors, each tile is a rectangle
with side lengths a and 1/a, where

a =
(

m2 − 2m + 1
3
4 m2 − m

)1/4

≥
(

4
3 − 8

3m

)1/4
. (6)

The tiling is periodic, where the basic unit is composed as follows. First, we construct a
basic “large rectangle”, which is an m-by-m square block of tiles, using all the k = m2 colors
(in arbitrary order). Then, the basic unit of the tiling is two “fat rows” of adjacent large
rectangles, where the second row is indented by half a large rectangle. The coloring of each
large rectangle is the same. The tiling, for k = 16, is demonstrated in Figure 4. Note that
the tiles colored in some single color form the shape of a honeycomb lattice (including the
centers of the hexagons). This is why we call the tiling “honeycomb of rectangles”.
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It is easy to see that the minimal horizontal and diagonal distances between two same-
colored tiles are

(m − 1)a and

√(
m − 1

a

)2
+
((m

2 − 1
)

a
)2

,

respectively. By choosing a such that the two distances are equal, we obtain (6), and the
asymptotic lower bound

t ≥
(

4
3 − 8

3m

)1/4
· (m − 1) ≥ (4/3)1/4 ·

√
k − O(1) ≈ 1.074

√
k − O(1),

that matches the upper bound obtained above up to an additive O(1) term.

5.2.2 Close packing of boxes
Motivation. This construction, a k-colored tiling of R3 where k ≫ 3, is a natural gen-
eralization to R3 of the “honeycomb of rectangles” tiling presented in Section 5.2.1. The
idea behind the construction is to choose an optimal sphere packing in R3, and construct a
fattened plane tiling in which the tiles in each color are placed at the centers of the spheres
of the packing. (Recall that as the number of colors is large, the size of each tile is negligible
with respect to the size of its inflation, and hence, we can treat the tiles as single points.)

We use the classical HCP lattice (one of the most common closed packings, see [9]), which
corresponds to a periodic sphere packing in which the basic unit is two hexagonal layers of
spheres, where in the top layer, each sphere is placed on top in the hollow between three
spheres in the bottom layer. The coordinates of the centers of these spheres are:

(r, r, r), (3r, r, r), (5r, r, r), . . . , (2r, r +
√

3r, r), (4r, r +
√

3r, r), (6r, r +
√

3r, r), . . .

for the bottom layer, and

(2r, r+
√

3
3 r, r+ 2

√
6

3 r), (4r, r+
√

3
3 r, r+ 2

√
6

3 r), . . . , (r, r+ 4
√

3
3 r, r+ 2

√
6

3 r), (3r, r+ 4
√

3
3 r, r+ 2

√
6

3 r), . . .

for the top layer.

The structure of the tiling. Assume that the number of colors is k = m3. Each tile is a
box with side lengths (a, b, c) to be determined below, and the basic unit is a “large box”,
which is an m × m × m cubic block of tiles, using all the k = m3 colors (in arbitrary order).
Then, the basic unit of the tiling is a two-layer fattened plane tiling, in which each layer
is a fattened copy of the “honeycomb of rectangles” tiling. The upper layer is shifted by
m
2 a in the x-coordinate and by

√
3m
6 a in the y-coordinate, so that the corners of the large

boxes lie in the coordinates of the sphere centers described above (for r = m
2 a). A quick

calculation shows that in order to make this possible, the proportion (a : b : c) should be
approximately (2 :

√
3 : 2

√
6/3) (where we neglect the size of each tile with respect to the

size of the inflation, which can be absorbed in an 1 − o(1) multiplicative factor in the final
value of t). The volume of each tile is clearly abc. In order to make the volumes of all tiles
equal to 1, we need

a ·
√

3
2 a ·

√
6

3 a = 1,

and thus, a = (6/
√

18)1/3 = 21/6 ≈ 1.122. Hence, the side lengths of each tile are

(21/6, 31/2/25/6, 22/3/31/2) ≈ (1.122, 0.972, 0.916),

ICALP 2021
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and the minimal distance between two same-colored points in different tiles is

(m − 1)a = (21/6 − o(1))k1/d,

which matches the upper bound proved in Section 4.1.

Generalization to higher dimensions. A similar tiling can be constructed to match any
lattice sphere packing, assuming the number of colors k is sufficiently large with respect to
d. Hence, any dense lattice sphere packing can be translated into a lower bound on the
asymptotic error resilience of rounding schemes in the corresponding dimension. In particular,
as the E8 lattice and the Leech lattice which attain the maximal possible density of sphere
packings in dimension 8 and 24 (respectively) are lattice packings, they can be translated to
box tilings showing that the asymptotic upper bounds on the error resilience in R8 and R24

proved in Section 4.1 are tight.

5.3 The dimension reducing tiling

We exemplify the tiling in R3, but it will be apparent how to generalize it to higher dimensions.

Informal description of the tiling. Informally, the tiling is constructed as follows.
Step 1: We begin with dividing R3 into basic cubes with side length a (to be determined

below), depicted in Figure 5(a). Then, we make the “interior” of each basic cube into a
tile and give all these tiles the color 1. In order to keep a minimal distance of t between
two points colored 1 in different tiles, we must leave a neighborhood of width t/2 in each
side of each facet of the basic cube. Hence, we are left with “fattened” walls of total
width t. The part of such a wall included in a basic cube is shown in Figure 5(b).

Step 2: We make the “interior” of each wall (i.e., fattened facet) into a tile and give all
these tiles the color 2, as is demonstrated in Figure 5(b). (Note that each tile contains
points from two adjacent basic cubes.) In order to keep a minimal distance of t between
two points colored 2 in different tiles, we must leave a neighborhood of t/

√
2 near each

edge (i.e., intersection of facets), as is shown in Figure 5(c). Hence, we are left with a
“fattened skeleton”.

Step 3: We make the “interior” of each edge of the skeleton into a tile and give all these
tiles the color 3, as is shown in Figure 5(d). (Note that each tile contains points from
four adjacent basic cubes.) In order to keep a minimal distance of t between two points
colored 3 in different tiles, we must leave an additional neighborhood of t/

√
2 near each

vertex (i.e., intersection of edges), as is demonstrated in Figure 5(d). Hence, we are left
with neighborhoods of the corners (a.k.a. vertices).

Step 4: We make the neighborhoods of the corners into tiles and give them the color 4.
(Note that each tile contains points from 8 adjacent basic cubes.) We have to make
sure that the distance between each two such “fattened corners” is at least t, and this
requirement dictates the choice of t.

The analysis of the tiling (including its formal definition and explanation of the choice of
parameters) is presented in the full version of the paper. It is clear that the resulting 4-colored
tiling can be generalized into a (d + 1)-colored tiling of Rd.
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(a)

t/2

t/2

(b)

t/2

t√
2

t√
2

t

90◦

(c)

t/2

t√
2

t√
2

t

90◦

(d)

Figure 5 The dimension reducing tiling. Part (a) shows the basic cubes we start with. Part (b)
shows a fattened wall of width t/2, and its interior that gets the color 2. Part (c) shows where
the minimal distance between two tiles colored 2 is attained. Part (d) presents (in full lines) the
interiors of the fattened edges that get the color 3 and shows where the minimal distance between
two such tiles is attained.
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