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Abstract
We give an overview of dimensionality reduction methods, or sketching, for a number of problems
in optimization, first surveying work using these methods for classical problems, which gives near
optimal algorithms for regression, low rank approximation, and natural variants. We then survey
recent work applying sketching to column subset selection, kernel methods, sublinear algorithms for
structured matrices, tensors, trace estimation, and so on. The focus is on fast algorithms. This is a
short survey accompanying an invited talk at ICALP, 2021.
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1 Introduction

Sketching, or data dimensionality reduction, is a popular tool for speeding up algorithms in
machine learning, optimization, and randomized numerical linear algebra.

In the overconstrained least squares regression problem one is given an n × d matrix A,
n > d, together with an n × 1 vector b, and one is tasked with finding an x ∈ Rd for which
∥Ax − b∥2

2 =
∑n

i=1(⟨Ai, x⟩ − bi)2 is as small as possible, where Ai is the i-th row of A, bi is
the i-th entry of b, and ⟨Ai, x⟩ denotes the inner product between Ai and x. Geometrically,
in Rn one can view this as finding the vector Ax which is closest to b in the column span of
A (which is a d-dimensional subspace) in terms of Euclidean distance, that is, Ax is just the
projection of b onto the column span of A. Alternatively, in Rd+1 one can think of having n

points, the i-th of which is (Ai, bi), and one is trying to find a hyperplane defined by x so as
to minimize the sum of squares of distances between the points (Ai, ⟨Ai, x⟩) and the points
(Ai, bi). There is a closed-form solution to this problem of the form x = A−b, where A− is
the Moore-Penrose pseudoinverse of A, and the optimal x can be computed in O(nd2) time
by computing the singular value decomposition (SVD) 1 of A. While this is an exact solution,
the O(nd2) running time is prohibitive for large values of n and moderate values of d.

The sketch-and-solve paradigm instead solves this problem by first choosing a random
matrix S ∈ Rk×n, where k ≪ n. One then computes S · A, which is a small k × n matrix,
as well as S · b, which is a small k × 1 vector. One then solves the much smaller regression
problem minx ∥SAx − Sb∥2 by computing its minimizer x′ = (SA)−Sb, and the hope is that
∥Ax′ − b∥2

2 ≤ (1 + ϵ)∥Ax∗ − b∥2, where x∗ = A−b is the minimizer of ∥Ax − b∥2
2.

1 This can be sped up using theoretical algorithms for fast matrix multiplication, giving O(n · dω−1) time,
where ω ≈ 2.376 is the exponent of fast matrix multiplication.
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A natural question is how to choose the sketching matrix S. One could choose S to
be a k × n matrix of independent and identically distributed N(0, 1/k) random variables
(normal with mean 0 and variance 1/k), where k = O(d/ϵ2), which turns out to work (see,
e.g., discussion in [39]), but then computing S · A would take at least nd2 time naïvely, which
although it can be sped up with fast matrix multiplication, is slower than just computing the
exact solution x∗ = A−b. Sárlos [32] pioneered the sketch-and-solve paradigm and observed
that one could instead choose S to be a so-called Subsampled Randomized Hadamard
Transform, that is, S = P · H · D, where D is an n × n diagonal matrix with independent
diagonal entries each chosen uniformly in {−1, 1}, H is the n×n Hadamard matrix (assuming
n is a power of 2), and P uniformly samples d poly(log d)/ϵ2 entries of whichever vector it is
applied to (see [20] for optimizations to the logarithmic factors). Then S · A and S · b can
now be computed in O(nd log n) time; indeed, this follows since D and P can be applied
to a vector in O(n) time, and using the recursive structure defining H the matrix H can
be applied to a vector in O(n log n) time. Consequently, SA = PHDA can be computed in
O(nd log n) time. One can then solve minx ∥SAx − Sb∥2 in d3 poly(log d)/ϵ2 time, and the
solution x′ can be shown to, with large probability, satisfy ∥SAx′ − Sb∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2.
This gives a runtime of Õ(nd log n + d3/ϵ2), where the notation Õ(f) denotes f · poly(log f).
The additive d3/ϵ2 term can be further improved using fast matrix multiplication algorithms.

This was later improved by Clarkson and Woodruff [14] who showed that one could instead
choose the so-called CountSketch matrix S [12] as one’s sketching matrix; the analysis was
later simplified and improved in [24, 27, 8, 17]. Here S is k × n, where k = O(d2/ϵ2) is again
independent of the large dimension n. The key property is that S has a single randomly chosen
non-zero entry per column, which is chosen at a uniformly random position and is uniform in
{−1, 1}, and chosen independently across the columns. The key property is that now SA and
Sb can be computed in nnz(A) time, where nnz(A) denotes the number of non-zero entries of
A, and that the solution x′ to minx ∥SAx − Sb∥2 is such that ∥Ax′ − b∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2.
The proof in [14] departed from previous proofs which first argued that any fixed vector y

has its norm preserved up to a (1 ± ϵ)-multiplicative factor with probability 1 − 2−O(d); after
this, a standard net argument could then be used. In fact CountSketch does not have this
property and [14] instead observed that the 2O(d) vectors one is interested in preserving the
norms of, all live in a low-dimensional subspace, and consequently, the number of “heavy
coordinates” as one ranges over all vectors in the subspace is a small subset of all possible n

coordinates. This then enables CountSketch to work in the sketch-and-solve paradigm, and
gives an overall algorithm for solving regression in nnz(A) + poly(d/ϵ) time.

While we have the property that ∥Ax′ − b∥2
2 ≤ (1 + ϵ)∥Ax∗ − b∥2

2, this guarantee is often
not sufficient in machine learning and optimization tasks, and one would instead like to
bound ∥x∗ − x′∥2

2. Indeed, one could hope x′ is close to a “ground truth” hyperplane and
therefore give good generalization error. To do so, note that

∥x∗ − x′∥2
2 ≤ ∥Ax∗ − Ax′∥2

2
σ2

min(A)

≤ ∥Ax′ − b∥2
2 − ∥Ax∗ − b∥2

2
σ2

min(A)

≤ ((1 + ϵ)2 − 1)∥Ax∗ − b∥2
2

σ2
min(A)

≤ O(ϵ)∥Ax∗ − b∥2
2

σ2
min(A) ,
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where the first inequality follows from the definition of the minimum singular value, the
second inequality follows since Ax∗ −b and Ax∗ −Ax′ are orthogonal, and the third inequality
follows from the objective function guarantee discussed above. We note that this simple
guarantee was significantly improved in [30], where the authors bounded ∥x∗ − x∥2

∞, i.e.,
the difference on every single coordinate; this improved analysis holds for the Subsampled
Randomized Hadamard Transform as well as Gaussian sketches, but not CountSketch.

Another unsatisfactory aspect of the above is that the dependence on the approximation
factor ϵ is polynomial, rather than polylogarithmic. To achieve the latter, one can combine
sketching and optimization techniques in a somewhat different way. One can first run the
sketch-and-solve paradigm with CountSketch with a constant ϵ0 = 1/2 to find an x′ with
∥Ax′ − b∥2

2 ≤ 3/2 · ∥Ax∗ − b∥2
2. This step takes poly(d) time independent of the value of

ϵ. Let x0 = x′. In parallel, one could compute S · A for a CountSketch matrix S with
ϵ0 = 1/2. Then write SA = QR, where Q is a matrix with orthonormal columns; one could
find QR by letting SA = UΣV T be its SVD and setting Q = U . This step takes poly(d)
time independent of the value of ϵ. Let

κ(AR−1) = σ2
max(AR−1)

σ2
min(AR−1) .

It is not hard to see that κ(AR−1) ≤ 3. Indeed, by the so-called subspace embedding property
of S, we have for all x:

1
2∥Ax∥2

2 ≤ ∥SAx∥2
2 ≤ 3

2∥Ax∥2
2.

This means for all unit vectors x, ∥AR−1x∥2
2 ≤ (3/2)∥SAR−1x∥2

2 = 3/2, and similarly for all
unit vectors x, ∥AR−1x∥2

2 ≥ (1/2)∥SAR−1x∥2
2 = 1/2. Here the equalities follow from the

fact that SAR−1 = Q, which has orthonormal columns, so ∥Qx∥2
2 = 1 for all unit vectors x.

Using that σmax(B) = supunit x ∥Bx∥2 and σmin(B) = infunit x ∥Bx∥2 for a matrix B with
more rows than columns, we have:

σ2
max(AR−1) ≤ 3

2 · σ2
max(SAR−1) = 3

2 · 1 = 3
2 .

Here the equality follows from the fact that SAR−1 = Q, and Q has orthonormal columns,
and thus σmax(Q) = σmin(Q) = 1. Similarly,

σ2
min(AR−1) ≥ 1

2 · σ2
min(SAR−1) = 1

2 .

Consequently, κ(AR−1) ≤ 3. At this point, one can simply run gradient descent on the
function f(x) = 1

2 ∥AR−1x − b∥2
2 with initial solution Rx0. By standard arguments, the

number of iterations required to get ϵ error is O(κ log(1/ϵ)) = O(log(1/ϵ)). Moreover, one
never needs to explicitly compute A · R−1. Indeed, given an iterate xt in some iteration t,
one can compute R−1xt and then AR−1xt, in O(d2 + nnz(A)) time per iteration, and thus
O((nnz(A) + d2) log(1/ϵ)) time overall. This, together with the additive O(nnz(A) + poly(d))
time needed to find R−1 and x0, gives an overall running time of O((nnz(A) + d2) log(1/ϵ) +
poly(d)). We refer the reader to [14] for further details.

2 Extensions

There are many related problems to regression (and other problems!) for which sketching
can be applied, and we outline only a few here.
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2.1 Ridge Regression
There are regularized variants of regression, such as ridge regression, where one instead seeks
to minimize ∥Ax − b∥2

2 + λ∥x∥2
2, for a parameter λ > 0. Here the λ∥x∥2

2 term is known as the
ridge or regularization, and encourages low-norm solutions. This formulation is useful both
when n > d as well as when n < d; in the latter case A is underconstrained, i.e., has more
columns than rows, and without the regularization there are multiple solutions possible and
one is often interested in a low-norm solution. We remark that low-norm solutions often have
better properties for applications, e.g., may not overfit the data as much, and by setting λ to
be large one encourages low norm solutions. For ridge regression, one can sketch A with a
dimension that depends on the so-called statistical dimension sdλ(A) =

∑
i

σ2
i

λ+σ2
i
, which is

always bounded by the rank of A though can be much smaller if a few values σi are very
large and λ is set appropriately. Sketching is thus immediately useful in the overconstrained
case when n > d, since sdλ(A) may be much less than d, and so the sketching dimension is
much smaller. In the underconstrained case, one often instead sketches on the right, setting
up the problem miny∥ARy − b∥2

2 + λ∥Ry∥2
2, for a sketching matrix R. In this case sketching

ultimately allows for solving the problem in nnz(A) + poly(sdλσ1(A)/(ϵλ)) time, which
although depends on σ1(A), can still be useful. We note that one can combine sketching on
both the left and the right for ridge regression; we refer the reader to [2, 3] and the references
therein for further details and the history of sketching as applied to this problem.

2.2 Kernel Regression
Another application is kernel regression. In the kernel setting one is given n points x1, . . . , xn ∈
Rd and one would like to apply an often non-linear mapping ϕ to “lift” them to a feature
space. A notable example is the polynomial kernel of degree q, where ϕ : Rd → Rdq where
ϕ(x)i1,i2,...,iq

= xi1 · xi2 · · · xiq
. One reason the polynomial kernel is so important is that one

can often Taylor-expand other kernels, such as the Gaussian kernel, and approximate them
by a polynomial kernel of large enough degree. Define the dq × n matrix A with i-th column
equal to ϕ(xi). One would never want to compute this matrix, as the number dq of rows is
prohibitively large. Nevertheless, one would like to be able to solve optimization problems
with respect to this matrix.

In particular, in the kernel ridge regression problem one seeks to find a vector y ∈ Rd so
as to minimize ∥AT Ay − b∥2

2 + λ∥y∥2
2. Initial work [28] showed how, given vectors x1, . . . , xq,

each in Rd, to compute a sketch S(x1 ⊗ x2 ⊗ · · · ⊗ xq) without first having to compute
the tensor product x1 ⊗ x2 ⊗ · · · ⊗ xq, which would require an unreasonable dq amount of
time. The rough idea is to apply separate sketches S1, . . . , Sq to each of the q “modes”,
obtaining S1x1, S2x2, . . . , Sqxq, where each Si is a CountSketch matrix. If Si has k rows,
then the coordinates of each Sixi are associated with the coefficients of a degree-(k − 1)
polynomial in a formal variable z. One then multiplies these polynomial modulo zk − 1
using the Fast Fourier Transform to improve efficiency. Interestingly, one can show this
corresponds to applying another CountSketch S (which is a function of S1, . . . , Sq) to the
vector x1 ⊗ x2 ⊗ · · · ⊗ xq, with certain structural properties (so S is not a truly random
CountSketch matrix, but nevertheless is good enough). Applying this to each column of
A separately, which has the form (xi)⊗q, one can then solve the sketched kernel regression
problem:

min
y

∥AT ST SAy − b∥2
2 + λ∥Ay∥2

2,

where now one has SA without ever having to materialize the matrix A.
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While the initial work was well-suited for low degree polynomial kernels (small q), their
dependence on the sketching dimension is exponential in q, making them less suitable for
tasks such as approximating the Gaussian kernel, where q is chosen to be at least logarithmic
in n. In recent work [1], a binary tree scheme was used, together with additional sketching
at each internal node, to design a linear and oblivious (not dependent on the input) sketch
which reduces the dependence on the degree q to polynomial. This was then successfully
applied to sketching the Gaussian kernel.

2.3 Structured Matrix Regression
In a number of real-world instances of regression, the design matrix A is structured, e.g.,
it might be a Hankel, Toeplitz, Vandermonde, or more generally a low-displacement rank
matrix. Such matrices A come with fast matrix multiplication algorithms, meaning one
can compute A · x in O(n log n) or n · polylog(n) time, which is often significantly faster
than the nd time needed to multiply an arbitrary n × d matrix A with a vector x. Notice
that the running time is sublinear in the time to write down the matrix A and this leads to
the quest for obtaining sublinear time algorithms for a number of optimization problems.
Using dimensionality reduction-based methods [19, 33], if T (A) is the time to multiply a
given matrix A by an arbitrary vector x, it is possible to (1 + ϵ)-approximate least squares
regression in T (A) log n + poly(d log n/ϵ) time, yielding sublinear time (in nd) for a number
of structured regression problem.

3 Wrapping Up

While our focus in this short survey was on variants of regression, there is also a large body
of work on applying sketching to other optimization problems. A very small set of examples
includes the following:

low rank approximation [14], where one seeks to approximate an n × d matrix A by a
product of an n × k matrix L and a k × d matrix R, where k ≪ min(n, d), and thus one
can store A with only (n + d)k parameters as opposed to nd parameters
CUR decomposition [9], which is a special kind of low rank approximation where one
seeks to approximate A by CUR, where C is an n × c matrix and consists of an actual
subset of columns of A, R is an r × d matrix and consists of an actual subset of rows of
A, and U is a small c × r arbitrary matrix. Here the hope is that r, c are small and that
this provides a more “interpretable” low rank approximation
clustering, for which low-rank approximation can quickly provide an initial dimensionality
reduction, which can then be used to create a coreset for problems such as k-means [18],
or k-median [35, 21]
distributed, sliding window, and streaming computation (see, e.g., [13, 10, 11], and
references therein): since sketches provide a form of compression and can be easily
updated due to their linearity, they are naturally useful for providing communication-
efficient distributed algorithms as well as space-efficient algorithms in the sliding window
and streaming models
optimization, where sketching can be used for example to compress gradients in first
order optimization [23], as well as inside of each iteration in second order methods [29],
which often involve solving a least squares regression problem
finding a latent simplex is an important problem in topic models and community detection,
for which one is given n data points that are formed by randomly perturbing some points
that come from a latent simplex. Sketching was recently used to obtain truly input
sparsity time algorithms in [4]

ICALP 2021
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trace estimation, where one is given an n × n positive semidefinite matrix A and would
like to estimate

∑n
i=1 Ai,i up to a multiplicative factor of 1 + ϵ. Recently, fast sketching

algorithms for low rank approximation were used in part to do this with constant probab-
ility using O(1/ϵ) matrix-vector products [25], improving the long-standing Hutchinson’s
algorithm which uses Ω(1/ϵ2) matrix-vector products.
tensor low rank approximation [37] and weighted low rank approximation [31, 7], where
one is given a tensor and would like to find a low rank approximation in some norm;
such problems are often NP-hard and bicriteria algorithms, as well as fixed parameter
tractable algorithms, have been proposed to obtain provable guarantees.
robust variants of regression and low rank approximation, where the standard sum of
squares error measure is replaced with more robust loss functions such as sum of absolute
values [34, 15, 16, 36, 38]
sublinear time low rank approximation, where one uses the structure of the input matrix
to devise algorithms that achieve relative error low rank approximation in sublinear time,
e.g., for positive semidefinite matrices [26, 5] or distance matrices [6, 22].

Sketching and dimensionality reduction are rapidly expanding areas. Some of these topics
are covered in my older monograph [39]. See also the course notes for the “Algorithms for
Big Data” class I teach at CMU, which contains much of this material2. I would like to thank
the ICALP program committee for giving me the opportunity to write this, and my apologies
for only covering a small part of the vast body of work on sketching and for focusing on work
that I am most familiar with, and even unfortunately omitting many of those references as
well. Hopefully though, if the reader has not seen sketching before, this document can serve
as a short and simple introduction to the area.
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