Almost-Linear-Time Weighted ¢,-Norm Solvers in
Slightly Dense Graphs via Sparsification
Deeksha Adil &

University of Toronto, Canada

Brian Bullins &
Toyota Technological Institute at Chicago, IL, USA

Rasmus Kyng &
ETH Zurich, Switzerland

Sushant Sachdeva =

University of Toronto, Canada

—— Abstract

We give almost-linear-time algorithms for constructing sparsifiers with n poly(logn) edges that
approximately preserve weighted (£3 + £7) flow or voltage objectives on graphs. For flow objectives,
this is the first sparsifier construction for such mixed objectives beyond unit ¢, weights, and is
based on expander decompositions. For voltage objectives, we give the first sparsifier construction
for these objectives, which we build using graph spanners and leverage score sampling. Together
with the iterative refinement framework of [Adil et al, SODA 2019], and a new multiplicative-
weights based constant-approximation algorithm for mixed-objective flows or voltages, we show
how to find (1 + 27p°1y“°g")) approximations for weighted ¢,-norm minimizing flows or voltages in
p(m* e 4 pa/3+eM)) time for p = w(1), which is almost-linear for graphs that are slightly dense
(m > n4/3+o(1>)_

2012 ACM Subject Classification Theory of computation — Sparsification and spanners; Theory of
computation — Network flows

Keywords and phrases Weighted ¢,-norm, Sparsification, Spanners, Iterative Refinement
Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.9

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2102.06977

Funding Deeksha Adil: Supported by a Post Graduate Doctoral Scholarship awarded by NSERC
(Natural Sciences and Engineering Research Council of Canada) and SS’s Discovery Grant.
Sushant Sachdeva: Supported by a Discovery Grant awarded by NSERC (Natural Sciences and
Engineering Research Council of Canada).

1 Introduction

Network flow problems are some of the most extensively studied problems in optimization
(e.g. see [4, 37, 20]). A general network flow problem on a graph G(V, E) with n vertices
and m edges can be formulated as

min cost
Juin_cost(f),

where f € RF is a flow vector on edges satisfying net vertex demands d € RV, B € RFXV

is the signed edge-vertex incidence matrix of the graph, and cost(f) is a cost measure
on flows. The weighted {o.-minimizing flow problem, i.e., cost(f) = ||S™ " f|ls, captures

© Deeksha Adil, Brian Bullins, Rasmus Kyng, and Sushant Sachdeva;
37 licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).

Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 9; pp.9:1-9:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:deeksha@cs.toronto.edu
mailto:bbullins@ttic.edu
mailto:kyng@inf.ethz.ch
mailto:sachdeva@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.ICALP.2021.9
https://arxiv.org/abs/2102.06977
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Almost-Linear-Time £,,-Norm Solvers via Sparsification

the celebrated maximum-flow problem with capacities S; the weighted ¢;-minimizing flow

problem, cost(f) = || Sf]||; captures the transshipment problem generalizing shortest paths

with lengths S; and cost(f) = f' Rf = ||R%f||% captures the electrical flow problem [42].
Dual to flow problems are voltage problems, which can be formulated as

min cost’(Bw),

dTv=1
Analogous to the flow problems, picking cost’(Bv) = ||SBuv||; captures the capacitated
min-cut problem, cost’(Bv) = ||S™! Bv||s captures vertex-labeling [26], and cost’(Bv) =
(Bv)TR™'Bv = HR_%BvH% captures the electrical voltages problem.

The seminal work of Spielman and Teng [42] gave the first nearly-linear-time algorithm
for computing (1 + 1/ poly(n))-approximate solutions to electrical (weighted ¢o-minimizing)
flow /voltage problems. This work spurred the “Laplacian Paradigm” for designing faster al-
gorithms for several classic graph optimization problems including maximum flow [11, 38, 22],
multi-commodity flow [22], bipartite matching [29], transshipment [39], and graph partition-
ing [32]; culminating in almost-linear-time or nearly-linear-time low-accuracy algorithms (i.e.
1 + ¢ approximations with poly(%) running time dependence) for many of these problems.

Progress on high-accuracy algorithms (i.e. algorithms that return (1 + 1/ poly(n))-
approximate solutions with only a poly(logn) factor overhead in time) for solving these
problems has been harder to come by, and for many flow problems has been based on
interior point methods [18]. E.g. the best running time for maximum flow stands at
5(min(m n,n® +n2t1/6)) [27, 15] and 5(m4/3) for unit-capacity graphs [29, 28, 21]. Other
results making progress in this direction include works on shortest paths with small range
negative weights [16], and matrix-scaling [13, 5]. Recently, there has been progress on the
dense case. In [44], the authors developed an algorithm for weighted bipartite matching
and transshipment running in 6(m + n3/2) time. This is a nearly-linear-time algorithm in
moderately dense graphs.

Bubeck et al. [9] restarted the study of faster high-accuracy algorithms for the weighted
{p-norm objective, cost(f) = [|Sf||,, a natural intermediate objective between £> and (o.
This result improved the running time significantly over classical interior point methods
[31] for p close to 2. Adil et al. [1] gave a high-accuracy algorithm for computing £,-norm
minimizing flows in time min{m3+°®) p«} for p € (2,/logn]. Building on their work,
Kyng et al. [25] gave an almost-linear-time high-accuracy algorithm for unit-weight £,-norm
minimizing flows cost(f) = ||f|\£ for large p € (w(1),+/logn|. More generally, they give
an almost-linear time-high-accuracy algorithm for mized (3 + {5 objectives as long as the
fP-norm is unit-weight, i.e.,

cost(f) = ||R%fH§ + ||f||5

Their algorithm for (¢35 + £5)-minimizing flows was subsequently used as a key ingredient
in recent results improving the running time for high-accuracy/exact maximum flow on
unit-capacity graphs to m*/3+te(t) [28, 21].

In this paper, we obtain a nearly-linear running time for weighted ¢3 + b flow /voltage
problems on graphs. Our algorithm requires p(m!+°() 4+ n#/3+o(M)) time for p = w(1) which
is almost-linear-time for p < m°®) in slightly dense graphs, (m > n4/3+0(1)).

Our running time m!*+°(1) 4 p4/3+0(1) is even better than the O(m + n3/2) time obtained
for bipartite matching in [44]. Our result beats the Q(n?/?) barrier that arises in [44]
from the use of interior point methods that maintain a vertex dual solution using dense
updates across /n iterations. The progress on bipartite matching relies on highly technical

D. Adil, B. Bullins, R. Kyng, and S. Sachdeva

graph-based inverse maintenance techniques that are tightly interwoven with interior point
method analysis. In constrast, our sparsification methods provide a clean interface to iterative
refinement, which makes our analysis much more simple and compact.

Graph Sparsification. Various notions of graph sparsification — replacing a dense graph
with a sparse one, while approximately preserving some key properties of the dense graph —
have been key ingredients in faster low-accuracy algorithms. Benczir and Karger [8] defined
cut-sparsifiers that approximately preserve all cuts, and used them to give faster low-accuracy
approximation algorithms for maximum-flow. Since then, several notions of sparsification
have been studied extensively and utilized for designing faster algorithms [33, 41, 35, 40, 30,
38, 22, 36, 17, 24, 19, 12].

Sparsification has had a smaller direct impact on the design of faster high-accuracy
algorithms for graph problems, limited mostly to the design of linear system solvers [42,
23, 34, 24]. Kyng et al. [25] constructed sparsifiers for weighted £3 4 unweighted £5-norm
objectives for flows. In this paper, we develop almost-linear time algorithms for building
sparsifiers for weighted ¢3 + b norm objectives for flows and voltages,

cost(f) = ||R%f||§ +[|Sf|P, and cost’(Bv) = || W%BvH% + | U Bw|}},

and utilize them as key ingredients in our faster high-accuracy algorithms for optimizing
such objectives on graphs. Our construction of sparsifiers for flow objectives builds on the
machinery from [25], and our construction of sparsifiers for voltage objectives builds on graph
spanners [6, 33, 7].

2 Our Results

Our main results concern flow and voltage problems for mixed (¢£2 + Eg)—objectives for p > 2.
Since our algorithms work best for large p, we restrict our attention to p = w(1) in this
overview. Section 3 provides detailed running times for all p > 2. We emphasize that by
setting the quadratic term to zero in our mixed (3 + €§)—objectives, we get new state of the
art algorithms for ¢,-norm miniziming flows and voltages.

Mixed £2-£,-norm minimizing flow. Consider a graph G = (V, E) along with non-negative
diagonal matrices R, § € REXF and a gradient vector g € R¥, as well as demands d € RV .
We refer to the diagonal entries of R and S as {>-weights and £,-weights respectively. Let B
denote the signed edge-vertex incidence of G (see Appendix in full version). We wish to solve
the following minimization problem with the objective £(f) = g f + | R*f||2 + I SFI7

pin € (f) (1)
We require g L {ker(R) Nker(S)Nker(B)} so that the problem has bounded minimum
value, and d L 1 so a feasible solution exists. These conditions can be checked in linear
time and have a simple combinatorial interpretation. Note that the choice of graph edge
directions in B matters for the value of g'f,. The flow on an edge is allowed to be both
positive or negative.

Mixed £3-£,-norm minimizing voltages. Consider a graph G = (V, E) along with non-
negative diagonal matrices W € RFXF and U € RF*F and demands d € RY. We refer
to the diagonal entries of W and U as f3-conductances and ¢,-conductances respectively.

9:3

ICALP 2021

9:4

Almost-Linear-Time £,,-Norm Solvers via Sparsification

In this case, we want to minimize the objective £(v) = d' v + | W2 Bv|2 + | Uv|, in
minimization problem

min &(v) (2)

v

In the voltage setting, we only require d L 1 so the problem has bounded minimum value.

Obtaining good solutions. For both these problems, we study high accuracy approxim-
ation algorithms that provide feasible solutions x (a flow or a voltage respectively), that
approximately minimize the objective function from some starting point (%), i.e., for some
small € > 0, we have

E(x) — E(a") < e(E(2”) - E(a"))

wher z* denotes an optimal feasible solution. Our algorithms apply to problems with
quasipolynomially bounded parameters, including quasipolynomial bounds on non-zero
singular values of matrices we work with. Below we state our main algorithmic results.

» Theorem 1 (Flow Algorithmic Result). Consider a graph G with n vertices and m edges,
equipped with non-negative {2 and {y-weights, as well as a gradient and demands, all with
quasi-polynomially bounded entries. For p = w(1), in p(m* o) 4 n4/3+e))log? 1/- time we
can compute an e-approzimately optimal flow solution to Problem (1) with high probability.

This improves upon [1, 2, 3] which culminated in a pm?*/3+°(1) log? 1/ time algorithm.

» Theorem 2 (Voltage Algorithmic Result). Consider a graph G with n vertices and m
edges, equipped with non-negative lo and {,-conductances, as well as demands, all with
quasi-polynomially bounded entries. For p = w(1), in p(m! () 4 nd/3+e))1og? 1/- time we
can compute an e-approximately optimal voltage solution to Problem (2) with high probability.

Background: Iterative Refinement for Mixed £2-£,-norm Flow Objectives. Adil et al. [1]
developed a notion of iterative refinement for mixed (¢3 + ¢8)-objectives which in the flow
setting, i.e. Problem (1), corresponds to approximating £'(8) = £(f +) using another
(63 + b)-objective which roughly speaking corresponds to the 2nd degree Taylor series
approximation of £'(d) combined with an ¢,-norm term ||Sé ||§, while ensuring feasibility
of f + d through a constraint Bé = 0. We call the resulting problem a residual problem.
Adil et al. [1] showed that obtaining a constant-factor approximate solution to the residual
problem in ¢ is sufficient to ensure that E(f +) is closer to the optimal solution by a
multiplicative factor depending only on p. In [2], this result was sharpened to show that
such an approximate solution for the residual problem can be used to make (1 — Q(1/p))
multiplicative progress to the optimum, so that O(plog(m/e)) iterations suffice to produce
an e-accurate solution.

In order to solve the residual problem to a constant approximation, Adil et al. [1] developed
an accelerated multiplicative weights method for (¢£2 + Eg)—ﬂow objectives, or more generally,
for mixed (¢3 + £b)-regression in an underconstrained setting.

Sparsification results. Our central technical results in this paper concern sparsification
of residual flow and voltage problems, in the sense outlined in the previous paragraph.
Concretely, in nearly-linear time, we can take a residual problem on a dense graph and
produce a residual problem on a sparse graph with 5(71) edges, with the property that constant
factor solutions to the sparse residual problem still make (1 — Q(mip%lp)) multiplicative

D. Adil, B. Bullins, R. Kyng, and S. Sachdeva

progress on the original problem. This leads to an iterative refinement that converges in
2

O(pm7>=T log(m/e)) steps. However, the accelerated multiplicative weights algorithm that we

use for each residual problem now only requires O(n4/ 3) time to compute a crude solution.

Flow residual problem sparsification. In the flow setting, we show the following:

» Theorem 3 (Informal Flow Sparsification Result). Consider a graph G with n vertices and
m edges, equipped with non-negative {5 and {yp-weights, as well as a gradient. In 6(m) time,
we can compute a graph H with n vertices and 6(71) edges, equipped with non-negative £y
and {,-weights, as well as a gradient, such that a constant factor approzimation to the flow
residual problem on H, when scaled by m=1 results in an 6(m%) approzimate solution to
the flow residual problem on G. The algorithm works for all p > 2 and succeeds with high
probability.

Our sparsification techniques build on [25], require a new bucketing scheme to deal with
non-uniform ¢,-weights, as well as a prepreprocessing step to handle cycles with zero fo-weight
and /p-weight. This preprocessing scheme in turn necessitates a more careful analysis of
additive errors introduced by gradient rounding, and we provide a more powerful framework
for this than [25].

Voltage residual problem sparsification. In the voltage setting, we show the following.

» Theorem 4 (Voltage Sparsification Result (Informal)). Consider a graph G with n vertices
and m edges, equipped with non-negative o and {,-conductances. In 6(m) time, we can
compute a graph H with n vertices and 6(71) edges, equipped with non-negative {5 and
£,-conductances, such that constant factor approzimation to the voltage residual problem on
H, when scaled by ma=T results in an 6(mﬁ) approzimate solution to the voltage residual
problem on G. The algorithm works for all p > 2 and succeeds with high probability.

Note that our voltage sparsification is slightly stronger than our flow sparsification, as
the former loses only a factor 6(mplﬁ) in the approximation while the latter loses a
factor 6(mp%1) Our voltage sparsification uses a few key observations: In voltage space,
surprisingly, we can treat treat the ¢» and ¢, costs separately. This behavior is very different

than the flow case, and arises becase in voltage space, every edge provides an “obstacle”, i.e.

adding an edge increases cost, whereas in flow space, every edge provides an “opportunity”,
i.e. adding an edge decreases cost. This means that in voltage space, we can separately
account for the energy costs created by our ¢9 and £, terms, whereas in flow space, the ¢» and
¢, weights must be highly correlated in a sparsifier. Armed with this decoupling observation,
we preserve {5 cost using standard tools for spectral graph sparsification, and we preserve £,
cost approximately by a reduction to graph distance preservation, which we in turn achieve
using weighted undirected graph spanners.

Voltage space accelerated multiplicative weights solver. The algorithm from [1] for
constant approximate solutions to the residual problem works in the flow setting. Using
iterative refinement, the algorithm could be used to compute high-accuracy solutions. Because
we can use high-accuracy flow solutions to extract high-accuracy solutions to the dual voltage
problem, [1] were also able to produce solutions to ¢,-norm minimizing voltage problems
(where ¢, for ¢ = p/(p — 1) is the dual norm to ¢,). Hence, by solving ¢,-flow problems for
all p € (2,00), [1] were able to solve {,-norm minimizing voltage problems for all ¢ € (1, 2).

9:5

ICALP 2021

9:6

Almost-Linear-Time £,,-Norm Solvers via Sparsification

Our sparsification of flow and voltage problems works only for p > 2. Thus, in order to
solve for ¢g-norm minimizing voltages for ¢ > 2, we require a solver that works directly in
voltage space for mixed (£3 4 5)-voltage objectives.

We develop an accelerated multiplicative weights algorithm along the lines of [11, 10, 1]
that works directly in voltage space for mixed (¢35 + £5)-objectives, or more generally for
overconstrained mixed (/3 + fb)-objective regression. Concretely, this directly gives an
algorithm for computing crude solutions to the residual problems that arise from applying [1]
iterative refinement to Problem (2). Our solver produces an improved O(1)-approximation
to the residual problem rather than a p°®)-approximation from [1]. This gives an 5(m4/ 3)
high-accuracy algorithm for mixed (¢3 + Eg)—objective voltage problems for p > 2, unlike
[1], which could only solve pure p > 2 voltage problems. We then speed this up to a
p(m o) 4 p4/3+0() time algorithm for p = w(1) by developing a sparsification procedure
that applies directly to mixed (/3 + £b)-voltage problems for p > 2.

Mixed £»-£,-norm regression. Our framework can also be applied outside of a graph
setting, where our new accelerated multiplicative weights algorithm for overconstrained
mixed (/3 + b)-regression gives new state-of-the-art results in some regimes when combined
with new sparsification results. In this setting we develop sparsification techniques based on
the Lewis weights sampling from the work of Cohen and Peng [17]. We focus on the case
2 < p < 4, where [17] provided fast algorithms for Lewis weight sampling.

» Theorem 5 (General Matrices Sparsification Result). Let p € [2,4), let M € R™*" N €
R™2X" be matrices, m1,me > n, and let LSS(B) denote the time to solve a linear system in
B'B. Then, we may compute M N € ROM?1og(m)xn gych that with probability at least
1- nml) , for all A € R™,

IMA[3 + [NA[P ~oq) [MA|3 + [NAJS,

in time O(nnz(M) +nnz(N) + LSS(M\) + LSS(J/V\)), for some M and N each containing
O(nlog(n)) rescaled rows of M and N, respectively.

» Theorem 6 (General Matrices Algorithmic Result). For p € [2,4), with high probability we
can find an e-approximate solution to (3) in time

o((nnz(M) +nnz(N) + (LSS(M) + LSS(N))n =t) log (1/5))

for some M and N each containing O(nP/?log(n)) rescaled rows of M and N, respectively,
where LSS(A) is the time required to solve a linear equation in AT A to quasipolynomial
accuracy.

Note that for all p € (2,4), we have that the exponent Z (p 2) <04.

» Remark 7. By [14], a linear equation in A" A, where A € R™*™ can be solved to
quasipolynomial accuracy in time O(nnz(A) + n®).

Using the above result for solving the required linear systems, we get a running time of
O(nnz(M) + nnz(N) + (n?/? + n“)n%), matching an earlier input sparsity result by
Bubeck et al. [9] that achieves O((nnz(M) + nnz(N))(1 + n%m*%) +m? N2 4 n*), where
M e R™>" N € R™2*™ and m = max{m1, mso}.

D. Adil, B. Bullins, R. Kyng, and S. Sachdeva

3 Main Algorithm

In this section, we prove Theorems 1, 2, and 6. We first design an algorithm to solve the
following general problem:

» Definition 8. For matrices M € R™*" N € R™*" gnd A € R¥™", mq,me > n,d < n,
and vectors b L {ker(M)Nker(N)Nker(A)} and ¢ € im(A), we want to solve

mzin b x4+ ||Mz|? + | Naz|b (3)
s.t. Ax = c.

In order to solve the above problem, we use the iterative refinement framework from [2] to
obtain a residual problem which is defined as follows.

» Definition 9. For any p > 2, we define the residual problem res(A), for (3) at a feasible
z as,

max res(A) def g'A—ATRA - |NAJE, where,
AA=0

1, 2 2
g=-b+-M"Mz+|Nz|' Nz and R=M'M +2N'Diag(|Nz[>"*)N.
p p p

This residual problem can further be reduced by moving the term linear in @ to the constraints
via a binary search. This leaves us with a problem of the form,

min ATRA+|[NA|?
A
st. g'A=a,AA =0,

for some constant a.

In order to solve the above problem with ¢3 + 5 objective, we reduce the instance
size via a sparsification routine, and then solve the smaller problem by a multiplicative
weights algorithm. We adapt the multiplicative-weights algorithm from [1] to work in the
voltage space while improving the p dependence of the runtime from p®® to p, and the
approximation quality from p®® to O(1). The precise sparsification routines are described
in later sections.

For large p, i.e., p > logm, in order to get a linear dependence on the running time on p,
we need to reduce the residual problem in ¢,-norm to a residual problem in log m-norm by
using the framework from [3].

The entire meta-algorithm is described formally in Algorithm 1, and its guarantees are
described by the next theorem. Most proof details are deferred to the full version.

» Theorem 10. For an instance of Problem (3), suppose we are given a starting solution
20 that satisfies A9 = ¢ and is a k approzimate solution to the optimum. Consider an
iteration of the while loop, line 8 of Algorithm 1 for the ,-norm residual problem at z® . We
can define py1 and k1 such that z'fA is a 8 approximate solution to a corresponding p’-norm
residual problem, then mA 18 a K1-approrimate solution to the p-residual problem. Further,
suppose we have the following procedures,

1. SPARSIFY: Runs in time K, takes as input any matrices R, N and vector g and returns
R,/N/,E having sizes at most 1 X n for the matrices , such that zf& is a B approximate
solution to,

max §TA - [RAJZ - [NAJY,
for any p’ > 2, then /1,25, for a computable po is a kefB-approximate solution for,
def

max res(A) =

TA — |RY2A|2 — INAJ|.
max g IRVZA| - [INAJY

9:7

ICALP 2021

9:8

Almost-Linear-Time £,,-Norm Solvers via Sparsification

2. SOLVER: Approzimately solves (4) to return A such that || RA|2 < ksv and ||NA||§ < Kqv
in time K (n) for instances of size at most n.
Algorithm 1 finds an e-approximate solution for Problem (3) in time

@)

_ - KD\ 2
(pni/(p 1)/<;3/<;2/<;1(K+K(ﬁ))log< p) >

€

Algorithm 1 Meta-Algorithm for ¢, Flows and Voltages.

1: procedure SPARSIFIED-P-PROBLEMS(A, M, N, ¢, b,p)
2 z — (9 such that f(m(o)) < kOPT
3 T < O(pr1kzkslog(£))
4 fort=0to T do
5: At z® define g, R, N and res(A), the residual problem (Definition 9)
6 a+ 1be 1+ 1k 1
7 V4 f(a:(o))
()
8 while v > sf(:p) do
9: if p > logm then > Convert £,-norm residual to log m-norm residual
10: p' < logm
1 1
1 vy P
11: N 55 (%) N
12: R O(1)me™
13: 1 — 72}:0(1), k1 — me®) > Lose k1 in approx. when scaled by
14: (g, R, N) + SPARSIFY(g, R, N') > Lose kg in approx. when scaled by
15: else .
16: (g, R, N) < SPARSIFY(g, R, N) > Lose k3 in approx. when scaled by ps
17: pp
18: Use SOLVER to compute k3, k4 approximate solution to
AW i IRCAIZ 4 INAIY
A" «argmin ||[R Al + [[NA[
A (4)
st. g A=av, AA=0.
19: AW Wuzmﬁ(”)
20: v v/2
21: A argminz ., f(a: — %)
22: R
P
23: return x
3.1 Algorithms for £,-norm Problems

The problems discussed in Section 2 are special cases of Problem (3), which means we can
use Algorithm 1. To prove our results, we will utilize Theorem 10, with the respective
sparsification procedures and the following multiplicative-weights based algorithm for solving
problems of the form,

min ATM"MA + |NA|]

st. AA=c.

()

We describe our solver formally and prove the following theorem about its guarantees in the
full version.

D. Adil, B. Bullins, R. Kyng, and S. Sachdeva

» Theorem 11. Let p > 2. Consider an instance of Problem (5) described by matrices
A e R N e RM*" M € R™X" d < n < my,mg, and vector ¢ € R, If the optimum
of this problem is at most v, Procedure RESIDUAL-SOLVER returns an « such that Ax = c,

p—2

and ' M" Mz < O(1)v and |Nz||b < O(3P)v. The algorithm makes O(pml(“’”) calls

to a linear system solver.

We utilize Procedure RESIDUAL-SOLVER as the Procedure SOLVER in Algorithm
SPARSIFIED-P-PROBLEMS. The algorithm uses the procedure only for solving problems

instances with p < logm. Thus, its running time is K(7) = O(prpii22 ~LSS(fL)) <
5(&1/3 -LSS(n)), where LSS(#i) denotes the time required to solve a linear system in
matrices of size n. We also have, k3 = O(1), ﬁi/(p_l) =0(1).

We next estimate the values of k1 and pq. If p < logm, we have 1 = 1 and k1 = 1.
Otherwise, 1 = O(1) and r; = O(m°®) (Refer to the full version).

In order to obtain an initial solution, we usually solve an £s-norm problem. This gives
an mP/? approximate initial solution which results in a factor of p? in the running time.
To avoid this, we can do a homotopy on p similar to [3], i.e., start with an ¢5 solution and
solve the f92 problem to a constant approximation, followed by fss,..¢,. We note that a
constant approximate solution to the £, ,-norm problem gives an O(m) approximation to
the £, problem and thus, we can solve log p problems where we can assume £ = O(m).

We now complete the proof of our various algorithmic results by utilizing sparsification
procedures specific to each problem.

£, Flows

We will prove Theorem 1 (Flow Algorithmic Result), with explicit p dependencies.

Proof. From Theorem 3, we obtain a sparse graph in K = O(mn) time with 7 = O(n) edges.

A constant factor approximation to the flow residual problem on this sparse graph when scaled

by ps = m” T gives a Ko = O(m%»approximate solution to the flow residual problem

on the original graph. We can solve linear systems on the sparse graph in O(f1) = O(n)
time using fast Laplacian solvers. Using all these values in Theorem 10, we get the final
runtime to be pm 1M (m + nH??Tj) log(22) as claimed. We prove Theorem 3 in the
full version. |

£, Voltages

We will prove Theorem 2 (Voltage Algorithmic Result), with explicit p dependencies.

Proof. From Theorem 4, we obtain a sparse graph in K = O(m) time with # = O(n)
edges. A constant factor approximation to the voltage residual problem on this sparse graph

when scaled by pe = m” T gives a Ko = é(mﬁ)—approximate solution to the voltage
residual problem on the original graph. We can solve linear systems on the sparse graph in
O(n) = O(n) time using fast Laplacian solvers. Using these values in Theorem 10, we get

—2
the final runtime to be pmﬁﬂ’(l) (m + nHBij) 10g2(%) as claimed. We prove Theorem

4 in Section 4. <

9:9

ICALP 2021

9:10

Almost-Linear-Time £,,-Norm Solvers via Sparsification

General Matrices

We will now prove Theorem 6.

Proof. We assume Theorem 5, which we prove in Appendix (refer to full version) ./From
the theorem, we have k3 = O(1) and s = O(1). Note that K = LSS(M) + LSS(N) for

o~~~ —~T ~

some M, N € RO loe(m)xn which is the time required to solve linear systems in M M
T N e

and N N, respectively. Since, by Theorem 5, the size of M and N is i = O(n?/?log(n)),

the cost from the solver in Theorem 11 is O, ((LSS(MV) + LSS(N))npégj)) <

4 Construction of Sparsifiers for £2 4 Eg Voltages
In this section, we prove a formal version of the voltage sparsification result (Theorem 4):

» Theorem 12. Consider a graph G = (V, E) with non-negative 2-weights w € RE and
non-negative p-weights s € RE with m and n vertices. We can produce a graph H = (V, F)
with edges F C E, {y-weights u € RY, and lp-weights t € R¥, such that with probability at
least 1 — ¢ the graph H has O(nlog(n/e)) edges and

1
15lWBcz|, < [|UBgrz|, < 1.5]| W Bgz|, (6)

and for any p € [1, 0]

1

WHSBGGJHP <||TBuzl, < [|SBcz|, (7)

where W = DIAG(w), U = DI1AG(u), S = DIAG(s), T = DiaG(t). We denote the routine
computing H and u, t by SPANNERSPARSIFY, so that (H, u,t) = SPANNERSPARSIFY(G, w, s).
This algorithm runs in O(mlog(1/0)) time.

We will first define some terms required for our result. Given a undirected graph
G = (V, E), with edge lengths I € R” and u,v € V, we let dg(u,v) denote the shortest path
distance in G w.r.t [, so that if P is the shortest path w.r.t I then

daa(u,v) = I(e)

ecP

» Definition 13. Given a undirected graph G = (V, E) with edge lengths | € RF | a K-spanner
is a subgraph H of G with the same edge lengths s.t. dg(u,v) < Kdg(u,v).

Baswana and Sen showed the following result on spanners [7].

» Theorem 14. Given an undirected graph G = (V, E, 1) with m edges and n vertices, and an
integer k > 1, we can compute a (2k — 1)-spanner H of G with O(n**t1/k) edges in expected
time O(km).

» Lemma 15. Given an undirected graph G = (V, E) with positive edge lengths I € RZ, and
a K-spanner H = (V,F) of G, for all x € RV we have

1
ma;
(u,v)éF l(u, U)

_ < — <
lo(u) = (v)] < (wyer U(u,) lo(w) ~a2()] < K(gf&)x?F (u,v)

|2(u) — (v)]

D. Adil, B. Bullins, R. Kyng, and S. Sachdeva

Proof. The inequality max(, ,)ep ﬁh’(“) —x(v)| < max(, ep mkv(u) — z(v)| is im-

mediate from F' C E.
To prove the second inequality, we note that if (u,v) € F has shortest path P in H then

|2(2) — 2(y)|.

1 K
ST T(z) — T < max
B Z(Z,y)EP l(z,y) (zyZ)EP () (y) "~ (z,y)EP l(Z,y)

<

» Definition 16. Given a undirected graph G = (V, E) with m edges and n vertices with
positive edge la-weights w € R¥ | a spectral e-approvimation of G is a graph H = (V, F) with
F C E with positive edge lo-weights u € RY s.t.

1
T WBazll, < [[UBuz], < (1 +)| WBcz|,

where W = DIAG(w) and U = DIAG(u).

The following result on spectral sparsifiers was shown by Spielman and Srivastava [40]
(see also [43]).

» Theorem 17. Given a graph G = (V, E) with positive £5-weights w € RE with m edges and
n vertices, for any e € (0,1/2], we can produce a graph H = (V, F) with edges F C E and
ly-weights uw € RY such that H has O(ne~2log(n/6)) edges and with probability at least 1 —§
we have that (H, u) is a spectral e-approzimation of (G, w). We denote the routine computing
H and u by SPECTRALSPARSIFY, so that (H,u) = SPECTRALSPARSIFY(G, s,¢,0). This
algorithm runs in 6(m) time. Furthermore, if the weights w are quasipolynomially bounded,
then so are the weights of u.

We can now prove our main result.

Proof of Theorem 12. We consider a graph G = (V, E) with m edges and n vertices, and
with non-negative £,-weights r € RF, non-negative f>-weights s € RE. We define ECEFEto
be the edges s.t. s(e) > 0, and then let I € RZ by I(e) = 1/s(e), and G = (V, E)). We then
apply Theorem 14 to G with 1 as edge lengths, and with &k = log(n). We turn the algorithm
of Theorem 14 into running time 5(m log(1/0)), instead of expected time 5(m), by applying
the standard Las Vegas to Monte-Carlo reduction. With probability 1 — §/2, this gives us a
log n-spanner H; of G, and we define ¢ by restricting s to the edges of H;. By Lemma 15,
we then have

ITBu, x|, <[|SBoz|,, <log(n)||TBu, |

Because T'By, x is a restriction of SBgx to a subset of the coordinates, we always have for
any p > 1 that | TBy, ||, < |SBgzl|,.
At the same time, we also have

|SBae|, <m'/?||SBoal. <m"/?log(n)| TBu, | <m'/?log(n)| TBy,a|,

We define E C E to be the edges s.t. 7(e) > 0, and the let G = (V, E). Now, appealing
to Theorem 17, we let (Ha, u) = SPECTRALSPARSIFY (G, 7,1/2,£/2).

Finally, we form H by taking the union of the edge sets of H; and Hs and extending
u and t to the new edge set by adding zero entries as needed. By a union bound, the
approximation guarantees of Equations (6) and (7) simultaneously hold with probability at
least 1 — 4.

The edge set remains bounded in size by O(nlogn). <

9:11

ICALP 2021

9:12

Almost-Linear-Time £,,-Norm Solvers via Sparsification

To see Theorem 4, note that from Theorem 12, we get,
m_ﬁicnﬂfﬂﬂVBGm@—km_wSBGME)gnfﬁi(HUBHwﬁ—kWTBHm%)

The other direction is easy to see.

5 Extensions of Our Results and Open Problems

Solving dual problems: g-norm minimizing flows and voltages for ¢ < 2

When the mixed (£3 + ¢5)-objective flow problem (Problem (1)) is restricted to the case
g =0 and R =0, it becomes a pure £,-norm minimizing flow problem, and its dual problem
can be slightly rearranged to give

mgn d v+ HS_IBUHZ (8)

where ¢ = p/(p — 1) = 1+ 1/(p — 1). We refer to the diagonal entries of ™' as ;-
conductances. Because we can solve Problem (1) to high-accuracy in near-linear time for
p = w(1), this allows us to solve Problem (8), the dual voltage ¢,-norm minimization, in time
p(m!Ho) 4 pd/3+0())1og? 1/c (see [1, Section 7] for the reduction). We summarize this in
the theorem below.

» Theorem 18 (Voltage Algorithmic Result, ¢ < 2 (Informal)). Consider a graph G with n
vertices and m edges, equipped with positive {,-conductances, as well as a demand vector.

For1 < q<2, when q=1+0(1), in poly(q%l) (miTo) 4 pa/3+0()) 10g? 1/: time, we can

compute an e-approximately optimal voltage solution to Problem (8) with high probability.

Similarly, we can solve f,-norm minimizing flows for ¢ < 2 as dual to the £,-voltage
problem, a special case of the mixed (E%—I—Kg)—voltage problem. Picking W = 0 in Problem (2),
we obtain a pure £,-norm minimizing voltage problem, and its dual problem can be slightly
rearranged to give

min ||[U'f]? 9

BTf:dH £l (9)
where ¢ = p/(p —1) = 1+ 1/(p — 1). We refer to the diagonal entries of U™' as ¢-
weights. Again, because we can solve Problem (2) to high-accuracy in near-linear time for

p = w(1), this allows us to solve Problem (9), the dual flow {;-norm minimization, in time
p(m1+o(1) + n4/3+o(1)) 10g2 1/5.

» Theorem 19 (Flow Algorithmic Result, ¢ < 2 (Informal)). Consider a graph G with n
vertices and m edges, equipped with positive q-weights, as well as a demand vector. For
1 < q < 2, when gq=1+0(1), in poly(q_%)(mpro(l) + n*/3+teM) log® 1/e time, we can
compute an e-approximately optimal flow solution to Problem (9) with high probability.

Open Questions

Mixed £, £, problems for small g < 2. In this work, we provided new state-of-the-art
algorithms for weighted mixed /3, £,-norm minimizing flow and voltage problems for p >> 2,
and for pure /,-norm minimizing flow and voltage problems for ¢ near 1.

A reasonable definition of mixed {2, f,-norm problems for ¢ < 2 is based on gamma-
functions as introduced in [9] and used in [1]. We believe that with minor adjustments to our
multiplicative weights solver, these objectives could be handled too, by solving their dual
{9, £,-gamma function problem for p > 2.

D. Adil, B. Bullins, R. Kyng, and S. Sachdeva

Directly sparsifying mixed £, £, problems for ¢ < 2. A second approach to developing a
fast £q, £,-gamma function solver for ¢ < 2 would be to directly develop sparsification in this
setting. We believe this might be possible, and in the general matrix setting might provide
better algorithms than alternative approaches.

O(1) . R .
Removing the m»=1 loss in sparsification. Our current approaches to graph mixed ¢, ¢,-
o) o
sparsification lose a factor m»-1 in their quality of approximation, which leads to a m»-%

factor slowdown in running time, and makes our algorithms less useful for small p. We
believe a more sophisticated graph sparsification routine could remove this loss and result in
significantly faster algorithms for p close to 2.

Using mixed £, £,-objectives as oracles for £, regression. The current state-of-the-art
algorithm for computing maximum flow in unit capacity graphs runs in 6(m4/ 3) time [21],
and uses the almost-linear-time algorithm from [25] for solving unweighted £3 + 5 instances
as a key ingredient.

—— References

1 Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement
for £,-norm regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1405-1424. STAM, 2019.

2 Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent irls algorithm
for p-norm linear regression. In Advances in Neural Information Processing Systems, pages
14189-14200, 2019.

3 Deeksha Adil and Sushant Sachdeva. Faster p-norm minimizing flows, via smoothed g-norm
problems. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 892-910. STAM, 2020.

4 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

5 Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Much faster algorithms for
matrix scaling. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 890-901. IEEE, 2017.

6 Ingo Althofer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81-100, 1993. doi:
10.1007/BF02189308.

7 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Struct. Algorithms, 30(4):532-563,
2007.

8 Andras A. Benczir and David R. Karger. Approximating s-t minimum cuts in O(ng) time. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, STOC 96,
pages 47-55, New York, NY, USA, 1996. ACM. doi:10.1145/237814.237827.

9 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method
for Ip regression provably beyond self-concordance and in input-sparsity time. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages
1130-1137, New York, NY, USA, 2018. ACM. doi:10.1145/3188745.3188776.

10 Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guarantees
for regression problems. In Proceedings of the 4™ conference on Innovations in Theoretical
Computer Science, ITCS 13, pages 269-282, New York, NY, USA, 2013. ACM.

11 Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua
Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in
undirected graphs. In Proceedings of the 43rd annual ACM symposium on Theory of computing,
STOC 11, pages 273282, New York, NY, USA, 2011. ACM. doi:10.1145/1993636.1993674.

9:13

ICALP 2021

https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/3188745.3188776
https://doi.org/10.1145/1993636.1993674

9:14

Almost-Linear-Time £,,-Norm Solvers via Sparsification

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

T. Chu, Y. Gao, R. Peng, S. Sachdeva, S. Sawlani, and J. Wang. Graph sparsification, spectral
sketches, and faster resistance computation, via short cycle decompositions. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 361-372, October
2018. doi:10.1109/F0CS.2018.00042.

M. B. Cohen, A. Madry, D. Tsipras, and A. Vladu. Matrix scaling and balancing via
box constrained newton’s method and interior point methods. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 902-913, October 2017.
doi:10.1109/F0CS.2017.88.

Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and
Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, ITCS 15, page 181-190, New
York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2688073.2688113.
Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, page 938-942, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3313276.3316303.

Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in O(m'%” logw) time (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 752-771, 2017.
Michael B. Cohen and Richard Peng. ¢, row sampling by lewis weights. In Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC 15, page 183-192, New
York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2746539.2746567.
Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow via
interior point algorithms. In Proceedings of the 40th annual ACM symposium on Theory
of computing, STOC ’08, pages 451-460, New York, NY, USA, 2008. ACM. Available at
arXiv:0803.0988. doi:10.1145/1374376.1374441.

David Durfee, John Peebles, Richard Peng, and Anup B. Rao. Determinant-preserving
sparsification of SDDM matrices with applications to counting and sampling spanning trees.
In FOCS, pages 926-937. IEEE Computer Society, 2017.

Andrew V. Goldberg and Robert Endre Tarjan. Efficient maximum flow algorithms. Commun.
ACM, 57(8):82-89, 2014.

Tarun Kathuria, Yang P. Liu, and Aaron Sidford. Unit capacity maxflow in almost m™/* time.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
119-130, 2020. doi:10.1109/F0CS46700.2020.00020.

Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-

4/3

time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 217-226, 2014.
Joannis Koutis, Gary L. Miller, and Richard Peng. A nearly-mlogn time solver for SDD
linear systems. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 11, pages 590-598, Washington, DC, USA, 2011. IEEE Computer
Society. doi:10.1109/F0CS.2011.85.

Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, pages 842-850. ACM, 2016.
Rasmus Kyng, Richard Peng, Sushant Sachdeva, and Di Wang. Flows in almost linear time
via adaptive preconditioning. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, pages 902-913, New York, NY, USA, 2019. ACM.
doi:10.1145/3313276.3316410.

Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A. Spielman. Algorithms for lipschitz
learning on graphs. In Peter Grinwald, Elad Hazan, and Satyen Kale, editors, Proceedings
of The 28th Conference on Learning Theory, volume 40 of Proceedings of Machine Learning
Research, pages 1190-1223, Paris, France, July 2015. PMLR.

https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1109/FOCS.2017.88
https://doi.org/10.1145/2688073.2688113
https://doi.org/10.1145/3313276.3316303
https://doi.org/10.1145/2746539.2746567
https://arxiv.org/abs/0803.0988
https://doi.org/10.1145/1374376.1374441
https://doi.org/10.1109/FOCS46700.2020.00020
https://doi.org/10.1109/FOCS.2011.85
https://doi.org/10.1145/3313276.3316410

D. Adil, B. Bullins, R. Kyng, and S. Sachdeva

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Y. T. Lee and A. Sidford. Path finding methods for linear programming: Solving linear
programs in O(vrank) iterations and faster algorithms for maximum flow. In FOCS, 2014.
Yang P. Liu and Aaron Sidford. Faster energy maximization for faster maximum flow. In
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 803-814. ACM, 2020. doi:10.1145/3357713.
3384247.

A. Madry. Navigating central path with electrical flows: From flows to matchings, and back.
In FOCS, 2013.

Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected graphs.
In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages
245-254. IEEE, 2010.

Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming.
Society for Industrial and Applied Mathematics, 1994. doi:10.1137/1.9781611970791.
Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating the exponential,
the lanczos method and an O(m)-time spectral algorithm for balanced separator. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC 12, pages 1141—
1160, New York, NY, USA, 2012. ACM. doi:10.1145/2213977.2214080.

David Peleg and Alejandro A. Schéffer. Graph spanners. Journal of Graph Theory, 13(1):99-
116, 1989. doi:10.1002/jgt.3190130114.

Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear systems. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC ’14, pages
333-342, New York, NY, USA, 2014. ACM.

Harald Racke. Optimal hierarchical decompositions for congestion minimization in networks.
In Proceedings of the 40th annual ACM symposium on Theory of computing, STOC ’08, pages
255-264, New York, NY, USA, 2008. ACM.

Harald Racke, Chintan Shah, and Hanjo Taubig. Computing cut-based hierarchical decompos-
itions in almost linear time. In Proceedings of the 25™ Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ‘14, pages 227238, 2014.

Alexander Schrijver. On the history of the transportation and maximum flow problems. Math.
Program., 91(3):437-445, 2002.

Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2018, Berkeley, CA, USA,
pages 263269, 2013.

Jonah Sherman. Generalized preconditioning and undirected minimum-cost flow. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17,
pages 772-780, 2017.

D. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913-1926, 2011. doi:10.1137/080734029.

D. Spielman and S. Teng. Spectral sparsification of graphs. SIAM Journal on Computing,
40(4):981-1025, 2011. doi:10.1137/08074489X.

D.A. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In STOC, 2004.

Daniel A. Spielman. Spectral graph theory lectures: Sparsification by effective resistance
sampling, 2015.

Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 919-930. IEEE, 2020.

9:15

ICALP 2021

https://doi.org/10.1145/3357713.3384247
https://doi.org/10.1145/3357713.3384247
https://doi.org/10.1137/1.9781611970791
https://doi.org/10.1145/2213977.2214080
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1137/080734029
https://doi.org/10.1137/08074489X

	1 Introduction
	2 Our Results
	3 Main Algorithm
	3.1 Algorithms for l_p-norm Problems

	4 Construction of Sparsifiers for l_2^{2} + l_{p}^{p} Voltages
	5 Extensions of Our Results and Open Problems

