
An Output-Sensitive Algorithm for Computing the
Union of Cubes and Fat Boxes in 3D
Pankaj K. Agarwal #

Department of Computer Science, Duke University, Durham, NC, USA

Alex Steiger #

Department of Computer Science, Duke University, Durham, NC, USA

Abstract
Let C be a set of n axis-aligned cubes of arbitrary sizes in R3. Let U be their union, and let κ be the
number of vertices on ∂U; κ can vary between O(1) and O(n2). We show that U can be computed
in O(n log3 n + κ) time if C is in general position. The algorithm also computes the union of a set of
fat boxes (i.e., boxes with bounded aspect ratio) within the same time bound. If the cubes in C are
congruent or have bounded depth, the running time improves to O(n log2 n), and if both conditions
hold, the running time improves to O(n log n).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases union of cubes, fat boxes, plane-sweep

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.10

Category Track A: Algorithms, Complexity and Games

Funding Partially supported by NSF grants IIS-18-14493 and CCF-20-07556.

1 Introduction

Let C be a set of n axis-aligned cubes of arbitrary sizes in R3. Let U := U(C) be their union,
and let κ be the number of vertices on ∂U. It is known that κ = Θ(n2) in the worst case,
though it is linear or near-linear in many special cases. For example, κ = O(n) if the cubes
in C have roughly the same size [6] or if they have bounded depth (i.e., any point in R3 lies
in O(1) cubes) [14]. If their sizes are drawn independently from an arbitrary distribution,
the expected complexity of their union is O(n log2 n) [3]. A natural problem is to develop
an algorithm for computing ∂U, by which we mean compute its vertices, edges, and faces.
Although U can be computed in O(n2 log n) time by computing ∂U on each face of every
cube of C, an output-sensitive algorithm with O(n log n + κ) running time has remained
elusive. In this paper we present an algorithm that almost matches this running time.

Related work. Motivated by VLSI design and other applications, the problem of computing
the union of a set of axis-aligned rectangles in R2 and its variants have been studied since
the 1970’s; see [17]. An optimal O(n log n + κ)-time algorithm was presented by Güting [12].

A closely related problem, which also has been studied extensively, is the so-called Klee’s
measure problem, which asks to compute the volume of the union of axis-aligned boxes in Rd.
For d = 2, Bentley presented an O(n log n)-time algorithm for this problem, which extends
to higher dimensions and computes the volume in O(nd−1 log n) time. For d ≥ 3, Overmars
and Yap [16] gave an O(nd/2 log n)-time algorithm. The running time was improved to
O(nd/2) by Chan [8]. It was an open question whether a faster algorithm exists if the input
boxes are hypercubes or fat. Agarwal et al. [2] described an O(n4/3 log n)-time algorithm
for cubes in 3D, which was subsequently improved to O(n log4 n) in [1]. Bringmann [7]
presented an O(n(d+2)/3)-time algorithm for fat boxes in Rd, which was later improved to
O(n(d+1)/3 polylog(n)) in [8]; see also [19].

EA
T
C
S

© Pankaj K. Agarwal and Alex Steiger;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 10; pp. 10:1–10:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:asteiger@cs.duke.edu
https://doi.org/10.4230/LIPIcs.ICALP.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Computing the Union of Cubes and Fat Boxes in 3D

Despite extensive work on Klee’s measure problem, relatively less is known about com-
puting the union boundary. For example, no O(n log n)-time algorithm is known even for
computing the union of unit cubes in R3. For d = 3, the Overmars-Yap algorithm can be
adapted to compute the boundary of the union of boxes in O((n3/2 + κ) log n) time, where
κ is the output size. But it is not obvious whether the algorithm in [1] can be adapted to
compute the union of axis-aligned cubes in O((n + κ) polylog(n)) time. Agarwal et al. [4]
have presented a randomized algorithm that computes the union of congruent cubes in R3 in
O(n1+ε) expected time, for any constant ε > 0.

A related line of work is to partition the union (or its complement) into few axis-aligned
boxes. Chew et al. [9] describe an algorithm to compute a partition of the union of n

congruent cubes into O(n) axis-aligned boxes in O(n log n) time, assuming that the union has
already been computed1. For a special case of orthants in Rd, Kaplan et al. [15] describe an
algorithm to partition the union of n such orthants into O(κ) axis-aligned (semiunbounded)
boxes in O((n + κ) logd−1 n) time, for any d ≥ 1, where κ is the union complexity.

Our results. The main result of the paper is an output-sensitive algorithm to compute
U. That is, our algorithm computes the vertices, edges, and 2D faces of ∂U. For each 2D
face f , it computes the components of ∂f . We say that C is in general position if any plane
contains the boundary face of at most one cube in C. Our algorithm assumes C to be in
general position. Although it can be extended to degenerate configurations using symbolic
perturbation techniques (e.g., [10]), the running time depends on the union complexity of
the perturbed configuration.

▶ Theorem 1. Given a set C of n axis-aligned cubes in R3, U(C) can be computed in
O(n log3 n + κ) time if C is in general position. If C is not in general position, the running
time is O(n log3 n + k̂), where k̂ is the maximum complexity of U(C) under an infinitesmal
perturbation.

A 3D box is fat if its aspect ratio (i.e., the ratio of its longest side length and its shortest
side length) is bounded by a constant. A fat box can be decomposed into O(1) (possibly
intersecting) cubes. Replacing fat boxes in general position with O(1) such cubes then
perturbing them into general position increases the union complexity at most by a constant
factor. From Theorem 1, we have the following:

▶ Corollary 2. Given a set B of n axis-aligned fat boxes in R3, where the aspect ratio of
each box is bounded by a constant, U(B) can be computed in O(n log3 n + κ) time, assuming
B is in general position. If B is not in general position, the running time is O(n log3 n + k̂),
where k̂ is the maximum complexity of U(B) under an infinitesmal perturbation.

For some special cases, simpler algorithms compute the union slightly more efficiently:
when all cubes in C are congruent or when they have bounded depth (i.e., any point in R3 is
contained in at most c cubes of C, for a constant c > 0). In both cases, κ = O(n). Since the
output size is always linear after perturbing the cubes to be in general position, we do not
need the general-position assumption here.

▶ Theorem 3. Let C be a set of n axis-aligned cubes in R3. If all cubes in C are congruent
or they have bounded depth, then U(C) can be computed in O(n log2 n) time. If the cubes in
C are congruent and have bounded depth, then U(C) can be computed in O(n log n) time.

1 Theorem 1 in [9] suggests that the union U(C) of n unit axis-aligned cubes C in R3 can be computed
in O(n log n), but no such algorithm is presented in the paper. It shows that given U(C), it can be
decomposed into O(n) boxes in O(n log n) time [11].

P. K. Agarwal and A. Steiger 10:3

Analogous to Corollary 2, we obtain the following:

▶ Corollary 4. Given a set B of n axis-aligned fat boxes in R3. If the ratio of the largest to
the smallest size box is bounded by a constant or they have bounded depth, then U(B) can be
computed in O(n log2 n) time. If both conditions hold, then the running time is O(n log n).

At a high level, the general approach of our algorithm is similar to Agarwal’s [1] to
compute the volume of the union of 3D cubes, but ours is considerably simpler and more
efficient. We reduce the problem to maintaining the union of a set of squares in the plane
under insertions and deletions, which are the xy-projections of the faces of cubes in C. At the
core of the data structure in [1] is a hierarchical decomposition of the plane using a variant
of a kd-tree. In constrast, our data structure is a variant of a quadtree whose regions are
squares. Using this property – having square regions – we crucially circumvent much of the
intracacies in [1] and attain a simpler algorithm. We use a sweep-line algorithm to compute
the changes in the union-boundary of squares and rely on auxiliary data structures, which
are also somewhat simpler than in [1] to perform this sweep efficiently. Finally, we are also
able to simplify and improve the algorithm because we can charge time to the O(κ) vertices
reported.

Roadmap of the paper. As a warm-up, we first present in Section 2 an algorithm for a
special case where the spread of the xy-projections of the vertices of the cubes in C (regarded
as a 2D point set) is (polynomially) bounded, i.e., the ratio of the distance between the
farthest and closest pairs of such points in R2 is bounded by nc, for some constant c > 0. In
Section 3 we describe how to remove this assumption to obtain our main result (Theorem 1).
Finally, we describe the more efficient algorithms for congruent cubes and cubes with bounded
depth (Theorem 3) in Section 4.

2 Algorithm for the Bounded Spread Case

Let C := {C1, . . . , Cn} be a set of n axis-aligned cubes in R3 in general position. We assume
that the spread of the xy-projections of the vertices of C is polynomially bounded. For any
set A of objects (e.g. segments in R, squares in R2, or cubes in R3), let U(A) denote the
union of the objects in A, and let V (A) be the vertices of U(A). Set U := U(C). For any 3D
object a, let a↓ be the xy-projection of a.

In this section, we describe an algorithm to compute the boundary of U, denoted by ∂U,
namely its vertices, edges, and faces. Once the vertices of ∂U have been computed, the edges
and faces can be computed using standard techniques, so we first focus only on computing
the vertices and remark at the end of the section how to extend it to compute edges and
faces of ∂U.

2.1 Overview of the algorithm
We first introduce some notation. For a cube Ci ∈ C, let Si := C↓

i be the xy-projection of Ci,
which is an axis-aligned square in R2. Let z1 < . . . < z2n be the z-coordinates of the vertices
of cubes in C, sorted in decreasing order. For all i with 1 ≤ i ≤ 2n, let Ci ⊆ C be the set of
cubes whose z-spans cover the interval (zi, zi+1), and let Si = {Sj | Cj ∈ Ci}. Let Vi denote
the set of vertices of U(Si).

Note that every vertex of U is the intersection of three orthogonal faces of cubes in C – in
particular, every vertex lies on a xy-face of some cube, i.e., the z-coordinate of every vertex
is one of the zi’s, and is incident to a z-edge of U. Therefore, our high-level approach is to

ICALP 2021

10:4 Computing the Union of Cubes and Fat Boxes in 3D

Hzi

Hzi+1

C2

C1

z

x
�u

long

corners
floaters

Figure 1 (left) A 2D view of C. The bottom (resp. top) face of cube C1 (resp. C2) lies on the
xy-plane Hzi : z = zi (resp. Hzi+1 : z = zi+1). (right) Various long and short squares at node u.

sweep a horizontal plane H in the (+z)-direction, from z1 to z2n, and maintain H ∩ U in the
process. We stop the sweep at each zi and report the vertices of U that are incident on the
face of the cube of C lying in the plane Hzi

.
For any value a ∈ (zi, zi+1), let Ua := U ∩ Ha. Then we have

Ua = U
(
{Ha ∩ C | C ∈ Ci}

)
= U({Si × {a} | Si ∈ Si}) = U(Si) × {a}

so the combinatorial structure of U, and U(Si) = U↓
a, does not change in [zi, zi+1). See

Figure 1. Furthermore, each vertex (x0, y0, a) of Ua is the intersection point of a z-edge e of
U with Ha and (x0, y0) ∈ Vi. Let p− (resp. p+) be the lower (resp. upper) endpoint of e.
Let zi := z(p−) and zj := z(p+), where i < j. Then (p−)↓ ∈ Vi \ Vi−1, and (p+)↓ ∈ Vj−1 \ Vj .
Conversely, for any i with 1 ≤ i ≤ 2n, every vertex of ∆Vi := Vi ⊕ Vi−1 is the projection of
an endpoint of a z-edge of U and thus a vertex of U, where ⊕ is symmetric difference. (So
that ∆V1 is well-defined, set ∆V0 := ∅.) Thus, to compute the vertices of U, we report ∆Vi

when the plane H stops at zi, for all i, 1 ≤ i ≤ 2n.
We report the vertices of ∆Vi using a data structure T that stores Si and implicitly

maintains U(Si) as we sweep H. A square Sj is inserted into Si when H reaches the bottom
face of Cj , and it is deleted from Si when H reaches the top face of Cj . Let |A| denote the
length of the longest side length of A, where A is a box or rectangle. Since Cj ’s are cubes,
the sequence of updates satisfies the following property:

(P1): Let Cu, Cv ∈ C be two cubes such that |Cu| < |Cv| and Su is inserted before
Sv. Then Su is also deleted before Sv.

When the sweep stops at zi, the insertion or deletion of a square to Si−1 (to obtain Si)
into T is performed in O(log3 n) amortized time, and ∆Vi is reported in O(log3 n + |∆Vi|)
amortized time. Thus, the sweep takes O(

∑2n
i=1 log3 n +

∑
∆Vi) = O(n log3 n + κ) time.

With O(n log n) additional preprocessing to initialize T before the sweep, and O(n log n + κ)
postprocessing to compute the edges and faces of U using the vertices reported during
the sweep, the algorithm takes O(n log3 n + κ) overall time, proving Theorem 1 for the
bounded-spread case.

2.2 Reporting ∆Vi

Next, we describe our dynamic data structure T that stores a set S of squares in R2 and
implicitly maintains U(S). After each update – an insertion or deletion of a square – it
reports ∆V := V (Snew)⊕V (Sold), where Sold (resp. Snew) is S before (resp. after) the update
operation. Let X ⊂ R2 be the set of points corresponding to the xy-projections of vertices
of cubes in C. Recall that the spread of X is polynomially bounded. Let �0 be a square

P. K. Agarwal and A. Steiger 10:5

containing X. T is a quadtree built on X with �0 being the square associated with the root
node of T. Without loss of generality, we assume that no point of X lies on the boundary of
a square �u for any node u ∈ T.

Each node u ∈ T is associated with a square �u. For the root node r, �r = �0 ⊃ X.
If |X ∩ �u| ≤ 1, u is a leaf, otherwise �u is partitioned into four congruent squares, each
associated with a child of u. Set Xu := X ∩ �u. The height of T is O(log n). A square S

that intersects the region �u, for a node u ∈ T, is long at u if no vertex of S lies in �u, and
S is short at u otherwise. A short square S at node u is called a floater square if at least
two vertices of S lie in int(�u), and a corner square otherwise. A corner square S contains
exactly one vertex of �u. See Figure 1 (right). For each node u ∈ T, let Lu ⊆ S (resp.
Su ⊆ S) be the set of long (resp. short) squares at u, and let L∗

u := Lu \ Lp(u) = Lu ∩ Sp(u),
where p(u) is the parent node of u in T; Lroot := ∅. Let Fu ⊆ Su (resp. Ru ⊆ Su) denote
the set of floater (resp. corner) squares at u. Note that any square S ∈ S is short at no more
than four nodes in any level of T. Hence S is short at O(log n) nodes of T.

At each node u ∈ T, we maintain L∗
u and Su. A long square S ∈ L∗

u contains at least one
edge of �u; it may contain all four edges of �u if �u ⊆ S. We partition L∗

u into four sets:
for each edge e ∈ �u, let L∗

u,e ⊆ L∗
u be the set of squares that contain e. If �u ⊆ S, then S

is assigned only to the set associated with the top edge of �u. Suppose e is the top edge of
�u. Then the bottom edges of squares in L∗

u,e intersect �u or lie below �u. We store L∗
u,e in

a red-black tree, sorted in increasing order of the distances of their bottom edges from e (i.e.,
in decreasing order of their y-coordinates). We similarly store L∗

u,e for the other three edges
e of �u. Let Ex

u (resp. Ey
u) be the sequences of x-edges (resp. y-edges) of Fu in increasing

order of their y-coordinates (resp. x-coordinates). We maintain Ex
u,Ey

u using red-black trees.
For each edge e of �u, we store a value ℓe that maintains the position of a sweep-line Le

associated with the edge e. The roles of ℓe and Le will become clear in the insertion and
deletion procedures. The value of ℓe (and the sweep-line) changes dynamically. Initially, for
each x-edge (resp. y-edge) e of �u, ℓe is the y-coordinate (resp. x-coordinate) of e, and it
always lies in the y-span (resp. x-span) of �u. If e is an x-edge (resp. y-edge), then let Ie be
the set of x-projections (resp. y-projections) of the floater squares in Fu whose y-spans (resp.
x-spans) contain ℓe. Ie changes dynamically with ℓe.

We also maintain two secondary structures for each edge e of �u:

Wall data structure We(Ie): It supports the following two operations:
Insert/Delete(I): Insert or delete an interval I to Ie.
Report-Holes(ζ): For a query interval ζ, return the endpoints of ζ \ int(U(Ie)). If
an endpoint x of ζ does not lie in int(U(Ie)), x is also returned.

The Insert, Delete, and Membership operations take O(log n) time and
Report-Holes takes O(log n + κ) time, where κ is the number of points reported.

Corner data structure Ce(Ru, Ie): It supports the following four operations:
Insert/Delete(R): Insert or delete a corner square R to Ru.
Insert/Delete(I): Insert or delete an interval I to Ie.
Report-Hole(σ): Given a query axis-aligned segment σ ⊂ �u, return the (at most
one) interval of σ \ int(U(Ru)).
Report-Vertices(ρ): Given a query rectangle ρ ⊆ �u, return V (Ru ∪We)∩ρ, where
We := {I × R | I ∈ Ie} if e is an x-edge and We := {R × I | I ∈ Ie} if e is a y-edge.
Namely, the vertices of U(Ru) that do not lie in U(We) or the intersection points of
the edges of U(Ru) and U(We) that lie in ρ are reported.

An Insert/Delete takes O(log2 n) time, Report-Hole takes O(log n) time, and
Report-Vertices takes O(log n + κ) time, where κ is the number of vertices reported.

ICALP 2021

10:6 Computing the Union of Cubes and Fat Boxes in 3D

Le

e

�u

ζ

σ ρ

ee

�u �u

Figure 2 (left) An illustration of call Report-Hole(ζ) to We. The x-projections of floater squares
intersecting Le that compose Ie. The intervals of U(Ie) are dashed. The solid red intervals in ζ are
the answer to the query. (right) Illustrations of calls Report-Hole(σ) and Report-Vertices(ρ)
to Ce. The vertices of U(Ru) are shown as green circles, and the vertices of U(Ru ∪ We) that are
the intersection points of a “strip” in We (gray hatched) and an edge of U(Ru) are shown as blue
squares. The solid portion of σ is the answer to Report-Hole(σ), and the two blue vertices and
three green vertices (inside ρ) are the answer to Report-Vertices(ρ).

See Figure 2. We describe these data structures in Section 2.4. For now, we assume that, for
all four edges of �u and for all nodes u ∈ T, We, and Ce are at our disposal.

For each square S ∈ S, let Λ(S) := {u ∈ T | S ∈ L∗
u} and Σ(S) := {u ∈ T | S ∈ Su}. Any

square S ∈ S is short at no more than four nodes of any fixed level of T. The nodes in Σ(S)
lie along at most four root-to-leaf paths to the leaves whose squares contain the vertices of S,
and the nodes in Λ(S) are those children u of nodes in Σ(S) for which S ∩ �u ̸= ∅ and S is
not short at u. Since the height of T is O(log n), |Λ(S)|, |Σ(S)| = O(log n). Finally, let Ξ(S)
be Λ(S) and the four leaves of Σ(S), and set Π(S) := {S ∩ �u | �u ∈ Ξ(S)}. See Figure 3
(left). The following lemma is straightforward.

▶ Lemma 5. For any square S, Π(S) is a partition of S into O(log n) rectangles.

When we insert or delete a square S, every vertex of ∆V lies in S. Thus, to report ∆V ,
we report ∆Vu := ∆V ∩ �u for each node u ∈ Ξ(S). We now describe how to update T and
compute ∆Vu at each node u ∈ Ξ(S).

Insertion of S. There are four main steps:
(1) At each node u ∈ Λ(S) ∪ Σ(S), we compute ρu := cl(�u \ U(Lu)), as described below.
(2) At each node u ∈ Ξ(S), we report ∆Vu, which is also described below.
(3) For each node u ∈ Λ(S), we insert S to L∗

u. In particular, if S contains the edge e of
�u, S is inserted into L∗

u,e; recall that if �u ⊆ S, then S is associated with the top edge
of �u.

(4) For each u ∈ Σ(S), we update Su and its secondary structures, as follows. If S is a corner
square at u, we insert S into all four corner data structures Ce stored at u for each edge
of �u. If S is a floater, we first insert the x-edges (resp. y-edges) of S which intersect
�u into E∗

u (resp. Ey
u). Then, for each x-edge (resp. y-edge) e of �u such that ℓe lies in

the y-span (resp. x-span) of S, we insert the x-projection (resp. y-projection) of S to
We and Ce.

We now describe the first two steps in more detail. We compute ρu at each node
u ∈ Λ(S) ∪ Σ(S), as follows. Observe that ρu ⊆ �u is a (possibly empty) rectangle. Similarly,
cl(�u \ U(L∗

u)) is a rectangle ρ∗
u ⊆ �u. By definition, ρu = cl(�u \ (U(Lp(u)) ∪ U(L∗

u))) =

P. K. Agarwal and A. Steiger 10:7

S ρp(u)

ρ∗u

�p(u)

�u

ρu �u

S

S ∩ ρu

Figure 3 (left) The rectangles of Π(S). The shaded (resp. empty) rectangles lie in squares �u of
nodes u in Σ(S) (resp. Λ(S)). (middle) Computing ρu using ρ∗

u and ρp(u). The squares at the ends
of the sequences L∗

u,e for each edge e of �u are dashed and the squares of Lp(u) that contribute to
U(Lp(u)) are dotted. (right) An example of a square S being inserted at u ∈ Σ(S). The four vertices
of ∆Vu are shown, where the blue vertex is old and the rest are new.

ρp(u) ∩ ρ∗
u. See Figure 3 (middle). Furthermore, for each edge ei, 1 ≤ i ≤ 4, let Si be the last

square in the sequence L∗
u,ei

, and let hi be the halfplane bounded by the line supporting the
edge of Si that intersects �u and does not contain Si (if Si ⊇ �u, then choose the halfplane
bounded by the edge of �u opposite ei and not containing �u). Then ρ∗

u =
⋂4

i=1 hi ∩ �u.
Hence, ρ∗

u can be computed in O(1) time. Also, with ρp(u) at our disposal ρu = ρp(u) ∩ ρ∗
u

can be computed in O(1) time. Thus, using a top-down traversal of T, starting at the root
node r (with Lr = ∅) and ending at the nodes of Ξ(S), we compute ρu at each visited
node; O(log n) nodes are visited in this process, so the step takes O(log n) time overall. This
completes step (1).

Next, let u be a node of Ξ(S). We report ∆Vu as follows. If u ∈ Σ(S), then Su = ∅
(before the insertion of S) and hence ∆Vu can be reported in O(1) time; see Figure 3 (right).
We now focus on reporting ∆Vu when u ∈ Λ(S). For sake of concreteness, suppose S contains
the top edge of �u. Let Sexp

u be the rectangle S ∩ ρu = cl((S ∩�u) \U(Lu))), i.e., the portion
of S ∩ �u that is left “exposed” by the squares of Lu. All vertices of ∆Vu lie in Sexp

u . Note
that Sexp

u may be empty, e.g., if �u ⊆ U(Lu) or S ∩ρu = ∅, in which case ∆Vu = ∅ and there
is nothing to do; see Figure 4 (middle). If Sexp

u ̸= ∅, we sweep a line Le in the (−y)-direction
from the top edge of Sexp

u (defined by U(Lu) or �u) to its bottom edge (defined by S, �u, or
U(Lu)), and report all vertices of ∆Vu in the process by using the secondary data structures
as described in Section 2.3. Recall that ℓe keeps track of the position of Le.

Deletion of S. Intuitively, the deletion is “undoing” the insertion of S.
(1) At each node u ∈ Λ(S) ∪ Σ(S), we compute ρu := cl(�u \U(Lu \ {S})) as in the insertion

case.
(2) At each node u ∈ Ξ(S), we report ∆Vu, as described below.
(3) For each node u ∈ Λ(S), we delete S from L∗

u.
(4) For each node u ∈ Σ(S), we update Su and its secondary structures, as follows. If S is a

corner square at u, we delete S from all four corner data structures Ce stored at u for
each edge e of �u. If S is a floater, we first delete the x-edges (resp. y-edges) of S which
intersect �u from E∗

u (resp. Ey
u). Then, for each x-edge (resp. y-edge) e of �u, we delete

the x-projection (resp. y-projection) of S from We and Ce if ℓe lies in the y-span (resp.
x-span) of S.

Let Sexp
u be the rectangle S ∩ ρu = cl(S ∩ �u) \ U(Lu \ {S})) i.e., the portion of S ∩ �u

that is left “exposed” by the other squares of Lu. Again, all vertices of ∆Vu lie in Sexp
u . We

note that Sexp
u may be empty because ρu is empty or the bottom edge of S lies above the

ICALP 2021

10:8 Computing the Union of Cubes and Fat Boxes in 3D

�u �u

e

�u

Sexp
uSexp

u

ρu
ρu \ Sexp

u

e e

S SS

Figure 4 Various cases for Sexp
u when ρu ̸= ∅: (left) Sexp

u ⊂ ρu. (middle) Sexp
u = ∅. (right)

Sexp
u = ρu.

top edge of Sexp
u . If Sexp

u = ∅, ∆Vu = ∅ and there is nothing to do. So assume Sexp
u ̸= ∅.

We report ∆Vu by sweeping a line Le in the (+y)-direction from the bottom edge of Sexp
u

(defined by S, �u, or U(Lu)), to its top edge (which is the top edge of ρu).

Runtime analysis. We now analyze the amortized running time of inserting or deleting a
square. Let c be a sufficiently large constant. For each node u ∈ T, we assign 4c log2 n credits
to each of the four edges of every floater in Fu. These credits will be used to pay part of the
cost of reporting ∆Vu (see Lemma 8). Note that S is a floater at O(log n) nodes. Therefore
O(log3 n) credits are assigned to a square S. This cost is charged to the insertion of S.

Suppose a square S is being inserted. The total time spent in computing ρu at all
nodes u ∈ Λ(S) ∪ Σ(S) is O(log n). By Lemma 8, which is given in Section 2.3, the
amortized cost of reporting ∆Vu and updating the secondary structures at all nodes in Ξ(S)
is O(log2 n + |∆Vu|). Summing at all nodes of Ξ(S), the total amortized time spent in
reporting ∆V is O(log3 n + |∆V |). Finally, we spend O(log n) time at each node u ∈ Λ(S) to
insert S into L∗

u and O(log2 n) time to insert S into the secondary structures at each node
in Σ(S). Summing this cost over all nodes in Λ(S) ∪ Σ(S) and adding the cost of credits
assigned to S, the total amortized time spent in inserting S is O(log3 n + |∆V |) time. A
similar analysis shows that the amortized time spent in deleting a square is O(log3 n + |∆V |).
Hence, we obtain the following:

▶ Lemma 6. The amortized cost of inserting or deleting a square in T and reporting ∆V is
O(log3 n + |∆V |).

2.3 Reporting ∆Vu via Sweep-Line
We describe the sweep-line procedure for the insertion of a square S; the deletion case is
symmetric. Without loss of generality, assume that S contains the top edge of �u; the
procedures for the other cases are similar. Let ρu := cl(�u \ U(Lu)) and Sexp

u := S ∩ ρu as
defined above. If Sexp

u = ∅, there is nothing to do. So assume Sexp
u ̸= ∅. Suppose Sexp

u is of
the form γ × [a−, a+], where γ is the x-span of Sexp

u and a− < a+ are the y-coordinates of the
bottom and top edges of Sexp

u ; the bottom edge of Sexp
u is the bottom edge of S, ρu, or �u.

Let V new
u ⊆ ∆Vu be the set of vertices that are created by the insertion of S (which

appear on ∂S) and let V old
u ⊆ ∆Vu be the set of vertices that no longer appear on U after the

insertion of S (which lie in int(S)). The vertices of V new
u lie on Sexp

u ∩ ∂S, i.e., on the bottom
edge of Sexp

u if it is contained in the bottom edge of S, and V new
u = ∅ if the bottom edge of

�u is not contained in that of S. Next, a vertex v of V old
u can be classified into the following

categories depending on the types of the two (not necessarily distinct) squares S1, S2 whose
edges contain v: v is a long-long (LL) vertex if both S1 and S2 are long, in which case v

P. K. Agarwal and A. Steiger 10:9

e

S

Sexp
u

�u

�u

e

S

y2

a−

y1

a+
Sexp
u

y3

Figure 5 (left) A zoomed-in example of Sexp
u (slightly enlarged for visibility) and the vertices of

∆V where the bottom edge of Sexp
u lies on the bottom edge of the inserted square S. U(Lu) is blue,

U(Fu) \ U(Lu) is orange, U(Ru) \ U(Lu ∪ Fu) is green, and the edges of S are red. The edges of
U ∩ Sexp

u are thick, the old vertices covered by S are hollow, and the new vertices on ∂S are solid.
(right) Dashed lines supporting floater edges (orange) with y-coordinates in (a−, a+) partition Sexp

u

(blue) into rectangles.

is a vertex of Sexp
u not contained in U(Su), a long-short (LS) vertex if S1 is long and S2 is

short, in which case v is an intersection point of an edge of U(Su) with an edge of Sexp
u , and

a short-short (SS) vertex if both S1 and S2 are short, in which case v is a vertex of U(Su)
that lies in int(Sexp

u). SS vertices are further classified into three categories, CC, CF, or FF,
depending on whether S1 and S2 are corners (C) or floaters (F). See Figure 5 (left).

With this characterization of ∆Vu at hand, we report ∆Vu by sweeping downward ((−y)-
direction) with a horizontal line Le from y = a+ to y = a−. Let Y = ⟨y0 = a+, y1, y2, . . . , yt =
a−⟩ where y1, . . . , yt−1 are the y-coordinates of edges of floaters F ∈ Fu in the interval
(a−, a+), sorted in decreasing order. Y can be constructed from Ey

u. The lines y = yi,
0 < i < t, partition Sexp

u into rectangles. See Figure 5 (right).
The sweep line starts at y = y0 and stops at every yi, for 0 ≤ i ≤ t. At each yi, we

perform two steps:
(i) Report all vertices of ∆Vu that lie on the line Li : y = yi.
(ii) For i ≥ 1, we report the vertices of ∆Vu that lie in the semi-open rectangle σi :=

γ × (yi, yi−1), i.e., all vertices that lie in σi but not on its x-edges, using the secondary
structures.

We now describe the details of the sweep-line algorithm. As we sweep Le from a+ to a−,
we vary ℓe, the value associated with the top edge e, to the current position of the sweep-line,
so we update the set Ie (and the secondary structures We and Ce that store it) as ℓe changes.
We note that Ie does not change in the interval (yi, yi−1). However, when we initialize Le to
y0, we need to reset ℓe to y0 and update Ie, We, and Ce. We will describe this initialization
step later and for now assume that Ie,We, and Ce are consistent with ℓe = y0. At each yi,
we perform steps (i) and (ii) follows.

Performing step (i). For i = 0, t, we set δ := γ × {yi} to be the top (or bottom) edge of
Sexp

u . By definition δ ∩ int(U(Lu)) = ∅. Next, by calling Report-Hole(δ), we compute
δ0 := δ \ int(U(Ru)) = δ \ int(U(Lu ∪ Ru)). Finally, set δ↓

0 to be the x-projection of δ0.
By querying the wall data structure We for edge e with Report-Holes(δ↓

0), we compute
the intervals of δ↓

0 \ U(Ie). Let x0, . . . , xs be the endpoints of these intervals. Then, for
0 < j < s, (xj , yi) is a LS vertex. If (x0, yi),(xs, yi) are endpoints of δ then they are LL
vertices, otherwise they are LS vertices.

For 0 < i < t, Li contains an x-edge η of a floater F ∈ Fu. Let δ := η ∩ Sexp
u . As

above, by calling Report-Hole(δ) on the corner data structure Ce for edge e, we compute
δ0 := δ \ int(U(Lu ∪ Ru)). If η is the bottom edge of F then we first delete the interval η↓,

ICALP 2021

10:10 Computing the Union of Cubes and Fat Boxes in 3D

η

δ↓0

δ

F

Le

Li−1

Le = Li

β1
β′1 η

β2F

Figure 6 Zoomed-in illustrations of steps (i) and (ii) where the sweep-line Le reaches the bottom
edge η of floater F . Floaters are shown in orange, U(Lu) is shown in blue, and U(Ru) \ U(Lu) is
shown in green. (left) Step i: The endpoints of the solid intervals in δ↓

0 are the x-projections of the
vertices of ∆Vu ∩ Le. (right) Step ii: The SS vertices in σi are hollow, and the lone LS vertex is solid.
β2, the right edge of σi, is contained in U(Ru) so β′

2 = ∅ and it contains no LS vertices.

the x-projection of η, from We. Next, we query We with Report-Holes(δ↓
0) to report the

endpoints of the intervals of δ↓
0 \ int(U(Ie)). If x0, . . . , xs are these endpoints then (xj , yi),

for 0 ≤ j ≤ s, are vertices of ∆Vu lying on Li: If x0 or xs lies on ∂Sexp
u then it is an LS

vertex, and if it lies on an edge of a square in Ru, (i.e., an endpoint of δ0 lying inside Sexp
u),

it is a CF vertex. All other vertices are FF vertices. See Figure 6 (left).

Performing step (ii). Our goal is to report all vertices of Vu ∩
∫

(σi). A vertex of ∆Vu not
lying on Li−1 or Li lies on an x-edge of a corner square. Since no x-edge of any floater square
lies in the interval (yi, yi−1), the set Ie, and thus We, remains the same for all y-values in
this interval. Furthermore, V (Ru ∪ Fu) ∩ σi = V (Ru ∩ We) ∩ σi. We can thus report all
CF and CC vertices lying in σi by querying Re with Report-Vertices(σi). The O(1) LS
vertices in σi are defined by a long square, namely a long square that defines a y-edge of
σi, and a corner square. For each y-edge βj of σi, we call We with Report-Hole(β↓

j). If
β↓

j is returned, then βj is not contained in U(We) ∩ σi = U(Fu) ∩ σi and we call Ce with
Report-Hole(βj); let β′

j ⊆ βj be the returned (possibly empty) interval. The endpoints
of β∗

j that lie in int(βj), if any, are the LS vertices on βj . See Figure 6 (right). Finally, for
i < t, if η is the top edge of F , we insert η↓ into We and Ce, otherwise η is the bottom edge
of F and we delete η↓ from Ce. (In the latter case, η↓ was already deleted from We in the
previous step.) Note that if η is an edge of a floater F , then η↓ is accordingly inserted or
deleted to We and Ce by the end of these two steps, and hence they are made consistent
with ℓe.

When the sweep procedure ends, we set ℓe := a−. Note that now Ie consists of the
x-projections of floaters that intersect the line y = a−, as desired. Therefore the secondary
structures We and Ce are consistent with the new value of ℓe.

Initializing the sweep line. At the beginning of the procedure, the value of ℓe is the value
at which the sweep procedure stopped after inserting or deleting a long square at u that
contained the top edge of �u. To initialize the sweep line at y = a+, the top edge of Sexp

u , and
to initialize We and Ce correctly for y = a+, we again perform a line sweep from the current
value of ℓe to a+ by a horizontal line Le as above, except that no reporting of vertices occurs.
That is, as we sweep, we stop at each encountered x-edge η of a floater square, and insert or
delete the interval η↓ in We and Ce without (querying for and) reporting any vertices.

P. K. Agarwal and A. Steiger 10:11

Runtime analysis. Let κu be the number of vertices in ∆Vu, and let apr be the value of ℓe

before the sweep line is initialized. For the insertion of a square S, let φu be the number of
y-coordinates of floater edges in the intervals [a−, a+] and [ℓe, a+] (resp. [a+, apr]) if apr ≤ a+

(resp. apr > a+). For the deletion of a square S, let φu be the number of y-coordinates
of floater edges in the intervals [a−, a+] and [ℓe, a−] (resp. [a−, apr]) if apr ≤ a− (resp.
apr > a−). (Some y-coordinates may be counted twice by φu.) Thus, the total time spent
for the insertion or deletion of S at each node u ∈ Ξ(S) is (1 + φu) · O(log2 n) + O(κu).

We charge O(log2 n) units of time to each of the φu floater edges that are parallel to the
sweep line and that were crossed by the two sweep-line procedures – one in the initialization
step and one for reporting the vertices. This charging pays for the φu log2 n term in the
running time. The amortized cost of reporting ∆Vu at u is O(log2 n + κu), provided that
each floater at u had enough credits to pay for the costs charged to it. The following lemma
proves that the floater is not charged too many times.

▶ Lemma 7. Let f be an edge of a floater F at a node u ∈ T. Then f is charged by the
sweeps at �u at most six times during the entire algorithm.

Proof. Without loss of generality assume that f is an x-edge. Then f is charged by the top
and bottom sweeps, i.e., sweeps performed when a square S ∈ L∗

u containing the top or the
bottom edge of �u is inserted or deleted. We claim that f is charged at most three times by
the top sweep – a similar argument holds for the bottom sweep. Let e denote the top edge
of �u. Recall that f is charged whenever the horizontal sweep-line Le crosses f – either in
the initialization step or in the reporting step. Furthermore Le will cross f from opposite
directions, i.e., when Le is sweeping downward ((−y)-direction) or upward ((+y)-direction),
in any two consecutive crossings. We claim that Le crosses f in at most three top sweeps.

Recall that during the insertion or deletion of a square S, either Sexp
u = ∅ and no sweeps

occur, otherwise Sexp
u ̸= ∅ and two sweeps occur (one in the initialization step and one in the

reporting step). We classify downward (resp. upward) sweeps that occur during an insertion
of a square as DI (resp. UI) sweeps, and classify downward (resp. upward) sweeps that occur
during a deletion of a square as DD (resp. UD) sweeps. Consider the sequence of sweeps
that cross f while F ∈ Fu, i.e., after the insertion of F and before the deletion of F at node
u. We claim the sequence satisfies the following two constraints:

(i) No sweeps can occur after a DI sweep.
(ii) No sweeps can occur before a DD sweep.

Clearly the longest valid sequences of sweeps are of the form “DD, UD, DI” or “DD, UI, DI,”
and hence f is crossed by Le in at most three top sweeps. (It can be shown that the latter
sequence is not possible, but this fact is not needed in order to prove the lemma.) It remains
to prove the constraints above.

Proof of claim (i). Suppose Le crosses f in a DI sweep, and let S ∈ L∗
u,e be the square

being inserted. We argue that if the bottom edge of g of S lies above f then f could not
have been crossed in this sweep, either during the initialization step or during the reporting
step, as follows. Sexp

u ̸= ∅, so the bottom edge of Sexp
u = S ∩ ρu is either contained in g or

lies above it. A downward sweep in the initialization step sweeps to the top edge of Sexp
u ,

and a downward sweep in the reporting step sweeps from the top edge of Sexp
u to the bottom

edge of Sexp
u ; in either case, the sweeps stop above g and hence above f , so f is not crossed.

So we assume that g lies below f ; see Figure 7. Note that an upward sweep, either in the
initialization step of the insertion of a square or in the reporting step of the deletion of a
square, always stops at the top edge of ρu. After S has been inserted into L∗

u,e and until

ICALP 2021

10:12 Computing the Union of Cubes and Fat Boxes in 3D

e

�u

S
g

F

Le

f

Figure 7 An illustration of the proof of Lemma 7: Sweep-line Le is swept downward toward edge
f of floater F during the insertion or deletion of S at node u.

it is deleted from L∗
u,e, the top edge of ρu is contained in g or lies below it, which implies

that no upward sweep will cross g until after S is deleted. Let |B| denote the length of the
longest side of any rectangle B. Since F is a floater at u and S contains an edge of �u (as S

is long at u), |F | < |�u| < |S|. Then, since S is inserted after F , S will be deleted after F

has been deleted by property (P1), which implies that after Le crosses f during the insertion
of S, f will not be crossed by Le in any subsequent sweeps. This proves claim (i).

Proof of claim (ii). Suppose Le crosses f in a DD sweep, where S ∈ L∗
u,e is the square

being deleted. This sweep occurs in the initialization step of the deletion of S as Le moves
from some position above f to the bottom edge of Sexp

u , which must be below f . The latter
edge lies above the bottom edge g of S. See Figure 7 again. As noted above, in an upward
sweep, either in the initialization step of the insertion of a square or in the reporting step
of the deletion of a square, always stops at the top edge of ρu. While S is present, the top
edge of ρu is contained in g or lies below it, which implies that no upward sweep can cross
g until after S is deleted. Again, we have that |F | < |�u| < |S|, and hence property (P1)
implies S is inserted before F since f is present during the deletion of S. Since g is below f ,
no upward sweeps preceding the deletion of S can cross f , proving claim (ii). ◀

Lemma 7 implies that each floater edge in Fu has sufficient credits to pay for the cost
charged to it. Hence, we obtain the following:

▶ Lemma 8. The amortized cost of inserting/deleting a square S at a node u ∈ Ξ(S) is
O(log2 n + |∆Vu|) and at a node u ∈ Σ(S) \ Ξ(S) is O(log2 n).

▶ Remark 9. The sweep-line algorithm and secondary data structures can be extended so
that not only they compute ∆Vu, but also compute (the xy-projection of) ∂U within S ∩ �u

in the same time bound. Hence, we can compute ∂U within each rectangle of Π(S). By
merging these pieces together over all rectangles of Π(S), we can compute (the xy-projection
of) ∂U within S. We thus compute ∂U on each horizontal face of the cubes in C in time
O(n log3 n + κ). By performing the plane-sweep in the x-direction and y-direction, we can
compute ∂U on the other faces of cubes in C as well. These sweeps will be simpler because
we already have computed the vertices of U. We omit the details from this version.

2.4 Secondary structures
In this section, we describe the details of the wall and corner data structures at every node
u ∈ T and edge e of �u.

Wall data structure. For We, we use the data structure described by Wood [18], which is a
standard segment tree augmented with additional information stored at each of its nodes.
It supports our desired operations, Insert, Delete, Membership, and Report-Holes

P. K. Agarwal and A. Steiger 10:13

u

�a

a b c d v w

�b �c �d

�w

�v

u
�u�u �I

u

�O
u

S2

S1

Figure 8 (left) Two examples of internal nodes in T with identical regions �u. On the left, the
outer square of �u is partitioned into four congruent squares, and on the right, �u is partitioned by
a quadrant of its outer box. (right) Examples of long (blue), floater (orange), and corner (green)
squares at rectangles of ∇u. S1 (resp. S2) is a long (resp. corner) square for each rectangle of ∇u

that it intersects (even though S1 is not a long square for �O
u).

in the time mentioned earlier. Its size is O(|Xu|) and is constructed in O(|Xu|) time at the
preprocessing stage of the algorithm. Every point p ∈ X is contained in region �u of exactly
one node u in each level of T. T has O(log n) levels, so constructing all wall data structures
takes O(

∑
u|Xu|) = O(n log n) time.

Corner data structure. For each edge e of �u, we construct the data structure of Agarwal
[1, Lemma 5]. Although it was originally described to support area queries (report the area
of ρ ∩ U(Ru) \ U(We) for a given query rectangle ρ), it is straightforward to extend the data
structure to support our required operations, Report-Hole and Report-Vertices. In
particular, to answer the area queries, it maintains the x-edges (resp. y-edges) of U(Ru ∪We)
that lie on x-edges (resp. y-edges) of corner squares sorted by their y-coordinates (resp.
x-coordinates), which is sufficient to answer our desired operations by searching over these
lists of edges. Like We, it is constructed in O(|Xu|) time at the preprocessing stage of the
algorithm, so constructing all corner data structures takes O(

∑
u|Xu|) = O(n log n) time.

3 Algorithm for the Unbounded-Spread Case

In this section, we extend the algorithm of Section 2 to the case when the spread of X, the
xy-projections of the vertices of C, is arbitrary. The algorithm is largely the same. The main
challenge is that we cannot use a standard quadtree for our dynamic data structure T, as
it may have Ω(n) depth even if we use a compressed quadtree. Instead, T is a compressed
quadtree with fingers2 [13]. Its height is O(log n) regardless of the spread of X, its size is
O(n), and it can be constructed in O(n log n) time.

The properties of T are as follows. Every node u ∈ T is associated with a region �u that
is a square or the difference of two nested squares �O

u \ �I
u, where �O

u ⊃ �I
u. For nodes u

at which �u is a square, we say �O
u = �u and �I

u = ∅ so that �O
u , �I

u are well-defined for
all nodes of T. For the root node r, �r ⊃ X. If |X ∩ �u| ≤ 1, u is a leaf; otherwise u is an
internal node and �u is partitioned either into four regions with congruent outer squares, or
it is partitioned into �u \ �S

u and �S
u by a square �S

u such that �O
u ⊃ �S

u ⊃ �I
u. In either

2 The regions associated with the nodes of a compressed quadtree with fingers as described in [13]
may have multiple holes, whereas the BBD trees proposed in [5] have at most one hole per node but
rectangular regions (which may not be squares). By combining some of the ideas from the construction
of BBD trees in [5] to ensure each region has at most one hole, our tree T can be constructed with all
stated properties.

ICALP 2021

10:14 Computing the Union of Cubes and Fat Boxes in 3D

B

S

�O
u

e
�I

u

Figure 9 An illustration of the proof of Lemma 10: An edge e of a long square (green) intersecting
rectangle B ∈ ∇u.

case, the regions in the partition of �u are associated with a child of u, and hence u has
either two or four children. See Figure 8 (left). Recall that |ρ| denotes the length of the
longest side length of any rectangle ρ. Any nodes where �I

u ̸= ∅, T has the property that
�I

u is sticky; that is, the distance between the top (resp. right, bottom, left) edge of �O
u and

the top (resp. right, bottom, left) edge of �I
u is either 0, in which case the former contains

the latter, or at least |�I
u|. For example, if [o1, o2] (resp. [i1, i2]) is the x-projection of �O

u

(resp. �I
i), then for j = 1, 2 we have that |oj − ij | is 0 or at least |i1 − i2|.

For a node u, we define long and short squares and the sets Su, Lu, and L∗
u as earlier.

Note that a vertex of a square S ∈ Lu may lie in the inner square �I
u of �u (in fact, at most

one vertex of S); see Figure 8 (right). For a square S, let Λ(S), Σ(S), Ξ(S), and Π(S) be the
same as before. We report ∆Vu := ∆V ∩ �u for each node u ∈ Ξ(S). However, because �u

may have a hole, reporting ∆Vu at u is more involved than a single sweep through �u. We
describe what we store at each node u, then how we update T and ultimately report ∆Vu at
each node u ∈ Ξ(S) due to the insertion or deletion of a square S at u.

The information at node u. We avoid all issues involving the inner square �I
u by further

partitioning �u into rectangles, then using essentially the same algorithm. In particular,
the lines supporting the inner square �I

u (if it exists) induce a partition of �u into a set
∇u of m ≤ 8 non-empty rectangles {B1

u, . . . , Bm
u }; if �I

u = ∅, set ∇u := {�u}. See Figure 8
(right). For a rectangle B ∈ ∇u, let LB (resp. SB) be the set of long (resp. short) squares at
u that intersect B, and let L∗

B := LB ∩ L∗
u. Let FB be the subset of short squares with at

least two vertices in int(B), and let RB := SB \ FB be the set of short squares with at most
one vertex in int(B). The following lemma will be crucial for our runtime analysis.

▶ Lemma 10. For any node u of T, rectangle B ∈ ∇, and square S ∈ LB, |S| > |B| and
hence S contains an edge of B.

Proof. Let S be a square in LB. S intersects int(�u) but no vertex of S lies in int(�u),
so its vertices either lie in int(�I

u) or outside �O
u . There are two cases. First, suppose all

vertices of S lie outside �O
u . Then |S| > |�O

u | > |B|, as desired.
Next, suppose a vertex v1 of S lies in int(�I

u). If S ⊃ B, we are done, so suppose
otherwise. No vertices of S lie in int(B), so an edge e := v1v2 of S spans B where v2 is
a vertex of S that lies outside �O

u . (If all vertices of S lie inside int(�I
u) then S does not

intersect B.) See Figure 9. By construction of ∇u, the edges of B perpendicular to e have
length |�I

u| (in particular, one is an edge of �I
u and the other is a portion of an edge of

�O
u). By the sticky property of �I

u, the edges of B parallel to e has length at least |�I
u|, and

thus at least as long as the former ones. Since e is longer than the edges of B parallel to it,
|S| > |B|. ◀

P. K. Agarwal and A. Steiger 10:15

To be consistent with the previous algorithm, we refer to the squares in FB as floater
squares and the squares in RB as corner squares, even though a square S ∈ RB may not
have any vertices in int(B) and may even contain B. For such a corner square S ∈ RB , we
associate S with the top-left vertex v1 of B if v1 ∈ S, otherwise we associate S with the
bottom-right vertex v2 of B (in which case v2 ∈ S).

We maintain L∗
B and SB for each B ∈ ∇u in the same fashion as L∗

u, Su were stored at
nodes u of the quadtree in the previous algorithm. Note that by Lemma 10, we have the
property that any square S ∈ LB contains an edge of B as before. For each edge e of B,
we store the long squares that contain e, L∗

B,e, in red-black trees as before. We similarly
store the x-edges (resp. y-edges) of floater squares in FB sorted by their y-coordinates (resp.
x-coordinates), which we call Ex

B (resp. E
y
B).

For each edge e of a rectangle B ∈ ∇u, we maintain a value ℓe that is the position of the
sweep-line Le associated with edge e, a wall data structure We(Ie) and corner data structure
Ce(RB , Ie), where Ie are the x-projections (resp. y-projections) of squares in FB intersected
by Le if e is an x-edge (resp. y-edge). Recall their descriptions from Section 2.2.

Reporting ∆Vu. To report ∆Vu when we insert (or delete) a square S, we report ∆VB :=
B ∩ ∆Vu for each rectangle B ∈ ∇u intersected by S (there are no vertices of ∆VB if
S ∩ B = ∅). The insertion and deletion procedures are largely the same as before. In
particular, we employ the sweep-line approach from the previous algorithm and essentially
treat B as if it was �u to report ∆VB , as follows.

3.1 Reporting ∆V

We describe the procedure to report ∆V and update the data structures for the insertion of a
square S; the procedure for the deletion of S is a similar extension of the deletion procedure
described in Section 2.2 for bounded spread. There are four main steps:
(1) At each node u ∈ Λ(S) ∪ Σ(S), we compute ρB := cl(B \ U(LB)) for all rectangles

B ∈ ∇u using a top-down traversal of T and the sequences of L∗
B , as described below.

(2) At each node u ∈ Ξ(S), we report ∆VB for all rectangles B ∈ ∇u by sweeping a line
from an edge of rectangle Sexp

B := S ∩ ρB , i.e., the portion of S ∩ B that is left “exposed”
by the squares of LB .

(3) For each node u ∈ Λ(S), we insert S to L∗
B for each rectangle B ∈ ∇u that S intersects.

In particular, if S contains the edge e of B, S is inserted into L∗
B,e; recall that if B ⊆ S,

then S is associated with the top edge of B.
(4) For each rectangle B ∈ ∇u at node u ∈ Σ(S), we update SB and its secondary structures,

as follows. If S ∩ B = ∅, there is nothing to do, so suppose otherwise. If S is a corner
square for B, we insert S into all four corner data structures Ce stored at B for each of
its edges. Otherwise, S is a floater square, and we first insert the x-edges (resp. y-edges)
of S which intersect B into Ex

B (resp. E
y
B). Then, for each x-edge (resp. y-edge) e of

B such that ℓe lies in the y-span (resp. x-span) of S, we insert the x-projection (resp.
y-projection) of S to We and Ce.

We now describe the first two steps in more detail. Consider a node u ∈ Λ(S) ∪ Σ(S), and
assume that the rectangle ρD has been computed for all D ∈ ∇p(u). Let ρ∗

B := B \ U(L∗
B),

which can be computed in O(1) time using the sequences of L∗
B . Then ρB can be computed

in O(1) time using ρ∗
B and the rectangles ρD for each D ∈ ∇p(u), using the fact that

ICALP 2021

10:16 Computing the Union of Cubes and Fat Boxes in 3D

ρB = B \ U(LB) = B \ U(L∗
B ∪ Lp(u)) = (B \ U(L∗

B)) ∩ (B \ U(Lp(u))

= ρ∗
B ∩ (�p(u) \ U(Lp(u))) = ρ∗

B ∩
(⋃

D∈∇p(u)

BD \ U(LD)
)

= ρ∗
B ∩

(⋃
D∈∇p(u)

ρD

)
=

⋃
D∈∇p(u)

(
ρ∗

B ∩ ρD

)
.

That is, ρB is the union of at most eight interior-disjoint rectangles, each of which is of the
intersection of rectangles ρ∗

B and ρD for a rectangle D ∈ ∇p(u), which we assume have been
precomputed. Hence, ρB can be computed in O(1) time. This completes step (1).

Let B be a rectangle of ∇u for a node u ∈ Ξ(S). Note that Sexp
B and ρB are indeed

rectangles, since any square in Lu contains an edge of B by Lemma 10 and B is a rectangle.
The main idea is that even though the sweep-line procedure to report ∆Vu in Section 2.3 was
described for a square, the correctness is invariant of whether it is a square or a rectangle
as in this scenario. We report ∆VB in the same way as before: If u ∈ Σ(S), then ∆VB is
the set of O(1) vertices of S ∩ ρB that lie in int(S ∩ B) and hence can be computed in O(1)
time. Otherwise, u ∈ Λ(S). Suppose S contains the top edge e of B. If Sexp

B = ∅, ∆VB = ∅,
and there is nothing to. So assume Sexp

B ̸= ∅. We first initialize the sweep line Le to be at
the top edge of rectangle Sexp

B , then we sweep it to its bottom edge and report all vertices of
∆VB using We and Ce in the process. The details of the sweep-line procedure are the same
as in the bounded spread case; see Section 2.3.

Runtime analysis. Most of the runtime analysis of the previous algorithm easily extends
to this algorithm. Let S be a square being inserted or deleted. Since |∇u| ≤ 8 for each
node u ∈ T, inserting S to the secondary structures at each rectangle B ∈ ∇u of a node u

in Λ(S) (resp. Σ(S)) still takes O(log n) (resp. O(log2 n)) time. To extend the amortized
time to report ∆VB for a rectangle B ∈ ∇u of a node u ∈ Ξ(S), we again charge O(log2 n)
time to the edges of floaters encountered during the sweep-line procedure at B. Then, as in
Lemma 7, it can be shown that each such edge is charged at most six times by the sweeps at
B during the entire algorithm. However, there is a subtle issue when extending the proof
of the lemma to this setting: the proof used the inequalities |S| > |B| > |F | for any floater
F ∈ FB in order to conclude |S| > |F | and apply property (P1), but our justification for
those inequalities relied on B being a square in that setting. We instead use Lemma 10 to
conclude |S| > |F |, which crucially relies on the sticky property of T.

The remainder of the analysis follows as before: it follows that the amortized runtime
to perform the at most eight sweeps (at most one per rectangle of ∇u) at node u ∈ Ξ(S)
is O(log2 n + |∆Vu|), and hence inserting or deleting S to T and reporting ∆V takes
O(log3 n + |∆V |) time. Thus, the entire algorithm takes O(n log3 n + κ) time, where κ is the
number of vertices of U, proving Theorem 1.

4 Algorithms for Special Cases

In this section, we simplify the algorithm for two special cases in which C := {C1, . . . , Cn} is
a set of n axis-aligned cubes in R3 in general position that:
1. have bounded depth, i.e., the maximum number of cubes in C that contain any point

p ∈ R3 is bounded by a constant c > 0, or
2. are all congruent.

P. K. Agarwal and A. Steiger 10:17

4.1 Cubes with Bounded Depth
We assume that the depth of the cubes in C is bounded by a constant. For simplicity, we
also assume that the cubes in C have bounded spread; it is straightforward but slightly more
tedious to extend the following techniques to the unbounded spread case. In this case, we
employ the same algorithm as described in Section 2, except that we no longer need the
corner data structures and can perform their operations in O(1) time, as explained below.
As a result, the amortized runtime to report ∆V due to the insertion or deletion of a square
in S improves to O(log2 n + |∆V |), as follows.

Fix a rectangle B ∈ ∇u for a node u ∈ T, and let v := (xi, yi) be one of the four vertices of
B. For any a ∈ R, O(1) cubes of C contain (xi, yi, a), and hence O(1) squares in S contain v at
any point during the plane-sweep. In particular, O(1) squares contain any of the four vertices
of B. Any square in RB contains a vertex of B, and hence |RB | = O(1). Then U(RB), and
thus U(RB) ∩ �u, has constant complexity, so the latter can be maintained explicitly in O(1)
time per insertion or deletion to Ru (at worst, it takes O(1) time to recompute it from scratch
any time that it is needed). Furthermore, given any query segment σ ⊃ B, σ \ int(U(Ru))
can be computed in O(1) time, which replaces the need for the Report-Hole(σ) operation
of the corner data structures.

Lastly, we need to implement the Report-Vertices(ρ) operation of the corner data
structures for each edge e of B using U(Ru) ∩ �u and We, where ρ ⊂ �u is a query rectangle.
Suppose e is an x-edge of B. We first compute Uρ := U(Ru) ∩ ρ in O(1) time, and then, for
each edge σ of Uρ, we compute the endpoints of the intervals of σ↓ \ int(U(Ie)) in O(log n+κσ)
time, where σ↓ is the x-projection of σ and κσ is the number of endpoints reported. These
1D vertices correspond to the 2D vertices of U(S) on σ, and any vertex is reported at most
twice. Thus, the overall runtime for this operation is O(log n + κ), where κ is the total
number of vertices reported.

Plugging these improved bounds for the corresponding operations of the corner data
structures in the analysis of the sweep-line procedure, we have that the amortized time to
report ∆V for the insertion or deletion of a square S to S is O(log2 n + |∆V |). Given that κ,
the total number of vertices of U, is O(n) in this case, the overall runtime is O(n log2 n), as
claimed in Theorem 3.

4.2 Congruent Cubes
Without loss of generality, assume that all cubes in C are unit cubes. In this case, S is now a
set of unit squares in R2. Whenever the sweeping plane reaches the top or bottom face of a
cube in C, we neither need a tree data structure nor do we need a 2D sweep-line procedure
to report ∆V . Instead we only need a 2D grid and a simpler version of the corner data
structure, as described below.

The data structure. Let G be the 2-dimensional integer grid. Without loss of generality,
no point of X lies in on the grid lines of R2. For i, j ∈ Z, let �i,j denote the grid cell
[i, i + 1] × [j, j + 1]. For all i, j ∈ Z, let Xi,j := X ∩ �i,j , and let G∗ be the non-empty grid
cells of G, i.e., G∗ = {�i,j ∈ G | |Xi,j | > 0}.

For any square S ∈ S, any grid cell � ∈ G∗ intersected by S contains exactly one vertex of
S; that is, S is a corner square for �. For any grid cell � ∈ G∗, let S� be the set of squares
in S that intersect �. Since there are no long or floater squares at any grid cell � ∈ G∗, there
are no (projections of) floaters to maintain, nor any vertices of ∆V defined by such squares
to report, which accounts for much of the intricacies of the previous algorithms.

ICALP 2021

10:18 Computing the Union of Cubes and Fat Boxes in 3D

e1

e2
S

�

Figure 10 An illustration of a square S (red) being inserted at a grid cell � ∈ Σ(S) (black). The
solid portions of edges e1,e2 of S are the portions of the edges returned by the calls to Report-Hole.
The vertices of V new ∩ � are marked as hollow and lie on e1 and e2, and the vertices of V old ∩ � are
marked as crosses and lie in int(S) ∩ �.

For each � ∈ G∗, we build one corner data structure C�, that maintains S� and supports
the following operations:

Insert/Delete(S): Insert or delete a corner square S to R�.
Report-Hole(σ): Given a query axis-aligned segment σ ⊂ �, return the (at most one)
interval of σ \ int(U(S�)).
Report-Vertices(ρ): Let ρ ⊆ � be a corner rectangle, i.e., one of its vertices is a vertex
of �. Return V (S�) ∩ ρ.

As in Section 2.1, we implement C� using the data structure of Agarwal [1, Lemma 5],
which supports the operations above without modification. An Insert/Delete takes
O(log2 n) time, Report-Hole takes O(log n) time, and Report-Vertices takes O(log n +
κ) time, where κ is the number of vertices reported. Note that, in contrast with the corner
data structures used in the previous two algorithms, we build only one for each cell � instead
of one per edge of �, and this data structure does not maintain a set of intervals in addition
to the set of corner squares S�. Using the fact that there are no intervals and the query
rectangle is a corner rectangle, the corner data structure in [1] can be simplified, but we skip
the details here.

Reporting ∆V . We describe the procedure to report ∆V and update the data structures
for the insertion of a square S; the procedure for the deletion of S is a similar extension of
the deletion procedure described in Section 2.2 for bounded spread. Let Σ(S) be the four
grid cells that S intersects. The grid cells in Σ(S) partition S. We report ∆V� := ∆V ∩ �
for each grid cell � ∈ Σ(S).

Let V new ⊆ ∆V be the set of vertices that are created by the insertion of S (which appear
on ∂S), and let V old be the set of vertices that no longer appear on U after the insertion of
S (which lie in int(S)).

Fix a grid cell � ∈ Σ(S). Let e1, e2 be the edges incident to the vertex of S in int(�).
The vertices of V new ∩ � that lie on e1 (resp. e2) are the endpoints of e1 \ int(U(S�)) (resp.
e2 \ int(U(S�)) that lie in int(�). See Figure 10. There are at most two such vertices lying on
each edge ei, and they are computed by calling C� with Report-Hole(ei ∩ �)). Then we
report V old ∩�, i.e., the vertices of U(S�)∩�, by calling C� with Report-Vertices(S ∩�).
The vertices reported account for all vertices of ∆V . Finally, we insert S to S� by calling
C� with Insert(S). Repeating this step for all four cells in Σ(S), we report ∆V .

P. K. Agarwal and A. Steiger 10:19

The eight Report-Hole calls take O(log n) time overall, the four Report-Vertices
calls take O(log n + |∆V |) time, and the four Insert calls take O(log2 n) time. Hence, the
total time spent for the insertion of S is O(log2 n + |∆V |). Similarly, the deletion of a square
takes O(log2 n + |∆V |) time.

Runtime analysis. G∗ and Σ(S) for all squares S can be computed in O(n log n) time. At
the beginning of the algorithm, no cubes intersect the sweeping plane and hence S� = ∅, so
building C� for � ∈ G∗ takes O(n) time overall. Given that κ, the total number of vertices
of U, is O(n) in this case, the overall runtime is O(n log2 n), as claimed in Theorem 3.

Unit cubes with bounded depth. Suppose the cubes of C are unit cubes with bounded depth.
Let G be the 3D integer grid, which partitions R3 into unit cubes, and let G∗ ⊂ G be the grid
cells intersected by at least one cube in C; |G∗| ≤ 8n. Let CG ⊆ C := {C ∩ G ̸= ∅ | C ∈ C} for
each grid cell G ∈ G∗;

∑
G∈G∗ |CG| ≤ 8n. For any grid cell G ∈ G∗, any cube in CG contains

a vertex of G, which implies that |CG| is bounded by a constant since the cubes of C have
bounded depth. Therefore U(CG) ∩ G = U ∩ G can be computed in O(1) time. Then U can
be computed by merging the portions within each grid cell of G∗ in O(n + κ) = O(n) time,
where κ is the number of vertices on U, which is bounded by O(n) in this case. Computing
CG for all grid cells G ∈ G∗ takes O(n log n) time, so the running time of the entire algorithm
is O(n log n). Note that if the maximum distance between any two centers of cubes in C is
polynomially bounded (i.e., is at most nc for a constant c > 0) and ⌊x⌋ can be computed in
constant time for any x ∈ R, computing the CG’s can be done in O(n) time, which improves
the overall running time to O(n).

5 Conclusion

We have described algorithms to compute (the boundary of) the union of axis-aligned 3D
cubes (or fat boxes) in general position in an output-sensitive manner. In particular, if the
cubes have different sizes the union can be computed in O(n log3 n + κ) time, where κ is the
number of union vertices. If all cubes have the same size or they have bounded depth, then
the union can be computed in O(n log2 n) time, and if both conditions hold then the running
time improves to O(n log n). We conclude by mentioning two open problems:

(i) Can the running time be improved to O(n log n + κ)?
(ii) Can the union of a set of n cubes in Rd be computed in O(n⌊d/2⌋ + κ) time? In

particular, can the union of n hypercubes in R4 be computed in O(n polylog(n) + κ)
time? Kaplan et al. [15] have shown that for a special case of orthants in Rd, the union
of n such orthants can be computed in O(n + κ) logd−1 n) time, but their algorithm
does not extend to hypercubes.

References
1 Pankaj K. Agarwal. An improved algorithm for computing the volume of the union of cubes.

In Proc. 26th Annu. Sympos. Comp. Geom., pages 230–239. ACM, 2010.
2 Pankaj K. Agarwal, Haim Kaplan, and Micha Sharir. Computing the volume of the union of

cubes. In Proc. 23rd Annu. Sympos. Comp. Geom., pages 294–301. ACM, 2007.
3 Pankaj K. Agarwal, Haim Kaplan, and Micha Sharir. Union of hypercubes and 3d minkowski

sums with random sizes. Discret. Comput. Geom., 65(4):1136–1165, 2021.
4 Pankaj K. Agarwal, Micha Sharir, and Alex Steiger. Decomposing the complement of the

union of cubes in three dimensions. In Proc. 2021 ACM-SIAM Sympos. Disc. Alg., pages
1425–1444. SIAM, 2021.

ICALP 2021

10:20 Computing the Union of Cubes and Fat Boxes in 3D

5 Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM,
45(6):891–923, 1998.

6 Jean-Daniel Boissonnat, Micha Sharir, Boaz Tagansky, and Mariette Yvinec. Voronoi diagrams
in higher dimensions under certain polyhedral distance functions. Discret. Comput. Geom.,
19(4):485–519, 1998.

7 Karl Bringmann. An improved algorithm for Klee’s measure problem on fat boxes. Comput.
Geom., 45(5-6):225–233, 2012.

8 Timothy M. Chan. Klee’s measure problem made easy. In Proc. 54th Annu. IEEE Sympos.
Found. Comp. Sci., pages 410–419. IEEE Computer Society, 2013.

9 L. Paul Chew, Dorit Dor, Alon Efrat, and Klara Kedem. Geometric pattern matching in
d-dimensional space. Discret. Comput. Geom., 21(2):257–274, 1999.

10 Herbert Edelsbrunner and Ernst P. Mücke. Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM Trans. Graph., 9(1):66–104, 1990.

11 Alon Efrat. Private communication.
12 Ralf Hartmut Güting. An optimal contour algorithm for iso-oriented rectangles. J. Algorithms,

5(3):303–326, 1984.
13 Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Society,

2011.
14 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion and

low-density graphs. SIAM J. Comput., 46(6):1712–1744, 2017.
15 Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Efficient colored orthogonal

range counting. SIAM J. Comput., 38(3):982–1011, 2008.
16 Mark H. Overmars and Chee-Keng Yap. New upper bounds in Klee’s measure problem. SIAM

J. Comput., 20(6):1034–1045, 1991.
17 Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An Introduction.

Springer, 1985.
18 Derick Wood. The contour problem for rectilinear polygons. Inf. Process. Lett., 19(5):229–236,

1984.
19 Hakan Yildiz and Subhash Suri. Computing Klee’s measure of grounded boxes. Algorithmica,

71(2):307–329, 2015.

	1 Introduction
	2 Algorithm for the Bounded Spread Case
	2.1 Overview of the algorithm
	2.2 Reporting DeltaV_i
	2.3 Reporting DeltaV_u via Sweep-Line
	2.4 Secondary structures

	3 Algorithm for the Unbounded-Spread Case
	3.1 Reporting DeltaV

	4 Algorithms for Special Cases
	4.1 Cubes with Bounded Depth
	4.2 Congruent Cubes

	5 Conclusion

