
Efficient Splitting of Necklaces
Noga Alon #Ñ

Department of Mathematics, Princeton University, NJ, USA
Schools of Mathematics and Computer Science, Tel Aviv University, Israel

Andrei Graur #

Department of Management Science and Engineering, Stanford University, CA, USA

Abstract
We provide efficient approximation algorithms for the Necklace Splitting problem. The input consists
of a sequence of beads of n types and an integer k. The objective is to split the necklace, with a
small number of cuts made between consecutive beads, and distribute the resulting intervals into k

collections so that the discrepancy between the shares of any two collections, according to each type,
is at most 1. We also consider an approximate version where each collection should contain at least
a (1 − ε)/k and at most a (1 + ε)/k fraction of the beads of each type. It is known that there is
always a solution making at most n(k − 1) cuts, and this number of cuts is optimal in general. The
proof is topological and provides no efficient procedure for finding these cuts. It is also known that
for k = 2, and some fixed positive ε, finding a solution with n cuts is PPAD-hard.

We describe an efficient algorithm that produces an ε-approximate solution for k = 2 making
n(2+log(1/ε)) cuts. This is an exponential improvement of a (1/ε)O(n) bound of Bhatt and Leighton
from the 80s. We also present an online algorithm for the problem (in its natural online model), in
which the number of cuts made to produce discrepancy at most 1 on each type is Õ(m2/3n), where
m is the maximum number of beads of any type. Lastly, we establish a lower bound showing that
for the online setup this is tight up to logarithmic factors. Similar results are obtained for k > 2.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases necklace splitting, necklace halving, approximation algorithms, online al-
gorithms, discrepancy

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.14

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2006.16613

Funding Noga Alon: Research supported in part by NSF grant DMS-1855464, BSF grant 2018267
and the Simons Foundation.

1 Introduction

1.1 The problems
The Necklace Splitting problem deals with a fair partition of a necklace with beads of n
colors among k agents. The objective is to cut the necklace into intervals and distribute
them to the agents in an equitable way. Before adding more on the background, we give the
formal definition of the problem.

▶ Definition 1 (Necklace Splitting). An instance of Necklace Splitting for n colors and k

agents consists of a set of beads ordered along a line, where each bead is colored by a color
i ∈ [n] = {1, 2, . . . , n}. The goal is to split the necklace, via at most n(k − 1) cuts made
between consecutive beads, into intervals and distribute them to the k agents so that for each
color i, every agent gets either ⌈mi

k ⌉ or ⌊mi

k ⌋ beads of color i, where mi is the number of
beads of color i.

EA
T
C
S

© Noga Alon and Andrei Graur;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nalon@math.princeton.edu
http://www.myhomepage.edu
mailto:agraur@stanford.edu
https://doi.org/10.4230/LIPIcs.ICALP.2021.14
https://arxiv.org/abs/2006.16613
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Efficient Splitting of Necklaces

Note that this definition is slightly broader than the one given in [1], where it is assumed
that mi is divisible by k for all i ∈ [n]. However, as shown in [4], these two forms of the
Necklace Splitting problem are equivalent. We call the special case k = 2 of two agents the
Necklace Halving problem. A related problem is the ε-Consensus Splitting problem. Its
formal definition is the following:

▶ Definition 2 (ε-Consensus Splitting). An instance In,k of ε-Consensus Splitting with n

measures and k agents consists of n non-atomic probability measures on the interval [0, 1],
which we denote by µi, for i ∈ [n] = {1, 2, , . . . , n}. The goal is to split the interval, via at
most n(k − 1) cuts, into subintervals and distribute them to the k agents so that for every
two agents a, b ∈ [k] and every measure i ∈ [n], we have |µi(Ua) −µi(Ub)| ≤ 2ε

k , where Ua, Ub
are the unions of all intervals a, b receive, respectively.

The ε-Consensus Splitting problem can be viewed as a continuous variant of the Necklace
Splitting problem. Furthermore, as will be shown in the proofs of our results, every instance
of Necklace Splitting can be converted into an instance of ε-Consensus Splitting. We also
consider the ε-approximate version of Necklace Splitting, where the goal is to split the
necklace so that the difference between the shares of any two agents, according to each type
i, is at most 2εmi/k.

The existence of a solution for the Necklace Splitting problem using at most n(k − 1)
cuts, a bound which is tight in general, was proved, using topological arguments, first for
k = 2 agents in [19] (see also [5] for a short proof and [20] for an earlier continuous version),
and then for the general case of k agents in [1]. A more recent proof of this existence result
appears in [21]. However, the proofs are non-constructive. The Necklace Halving problem
is first discussed in [10]. The problem of finding an efficient algorithmic proof of Necklace
Splitting is mentioned in [2].

Recently, there have been several results regarding the hardness of the Necklace Halving
problem. These are discussed in the next subsection. These suggest pursuing the challenge
of finding efficient approximation algorithms, as well as that of proving non-conditional
hardness in restricted models.

1.2 Hardness and Approximation
PPA and PPAD are two complexity classes introduced in the seminal paper of Papadi-
mitriou, [22]. Both of these are contained in the class TFNP, which is the complexity class
of total search problems, consisting of all problems in NP where a solution exists for every
instance. A problem is PPA-complete if and only if it is polynomially equivalent to the
canonical problem LEAF, described in [22]. Similarly, a problem is PPAD-complete if and
only if it is polynomially equivalent to the problem END-OF-THE-LINE. A problem is PPA-
hard or PPAD-hard if the respective canonical problem is polynomially reducible to it. A
number of important problems, such as several versions of Nash Equilibrium [14] and Market
Equilibrium [13], have been proved to be PPAD-complete. It is known that PPAD ⊆ PPA.
Hence, PPA-hardness implies PPAD-hardness. Filos-Ratsikas and Goldberg showed that the
Necklace Halving problem, as well as the ε-Consensus Halving problem, is PPA-hard [16],
see also [17], [15]. Additionally, in [18] it is shown that for a fixed constant δ > 0, and ε

inversely polynomial in n, obtaining a solution to the ε-Consensus Halving with fewer than
n+ n1−δ is PPA-hard. Our main objective here is to find efficient approximation algorithms
for the problems. Although not directly related to our results, it is worth mentioning that
in [11] it is proved that for k = 2 agents it is NP-hard to minimize the number of cuts for
instances where the optimal number is less than n, even with 2 beads of each type.

N. Alon and A. Graur 14:3

1.3 Our contribution
We consider approximation algorithms for two versions of the problem, namely the online
and the offline versions. We allow the algorithms to make more than n cuts, and expect
either a proper solution or an ε-approximate one. A proper solution is a finite set of cuts and
a distribution of the resulting intervals to the k agents so that the absolute discrepancy is
at most 1. The absolute discrepancy here and in what follows is the maximum discrepancy,
over all types, between the shares of beads of this type allocated to any two agents. An
ε-approximate solution is a relaxation in which the discrepancy in any type is at most a
fraction 2ε/k of the number of beads of this type. The objective is to minimize the number
of cuts the algorithm makes. This problem for the ε-approximate version has been considered
earlier in [9] and [12].

In addition to approximation, we also consider hardness in the online model, discussed in
the next subsection. In the online model, the hardness is measured by the minimum number
of cuts needed to produce a proper solution. Lower bounds on the number of cuts needed in
this model provide a barrier for what online algorithms can achieve.

Some of our ideas for finding deterministic approximation algorithms are inspired by
papers in Discrepancy Minimization, such as [3], [7], [6] and [8]. In [3], the terminology
refers to the Balancer as the entity with the designated task of minimizing the absolute
discrepancy between agents. We adopt the same terminology here. Thus, the Balancer has
the role of an algorithm that makes cuts and assigns the resulting intervals to agents in order
to achieve a proper solution for Necklace Splitting.

Our main algorithmic results are summarized in the theorems below. The upper and
lower bounds for the number of cuts obtained for the online model appear in the table at the
end of this subsection. Throughout the paper, for Necklace Halving, we use the notation
m = maxi∈[n] mi where mi is the number of beads of color i, and n is the number of types
(=colors).

▶ Theorem 1. There exists an efficient, deterministic, offline algorithm that provides a
proper solution to the Necklace Halving problem, making at most n(logm+O(1)) cuts.

Here and in what follows an efficient algorithm means an algorithm whose running time
is polynomial in the length of the input necklace.

In [9] and [12] the authors describe offline algorithms for the ε-approximate version of
Necklace Halving, making O((1

ε)Θ(n)) cuts. Our techniques here provide an algorithm that
requires only n(log(1/ε) +O(1)) cuts for the problem, yielding an exponential improvement
for the number of cuts.

▶ Theorem 2. There exists an efficient, deterministic, online algorithm that provides a
proper solution to the Necklace Halving problem, making at most O(m2/3 · n(logn)1/3) cuts.

The algorithmic results in the online model, and the nearly matching lower bounds we
establish appear in the table below. Note that the algorithms are optimal up to constant
factors for any fixed constant n ≥ 3. In the lower bounds for Online Necklace Halving, we
always assume that mi = m for all i ∈ [n].

Problem n = 2 colors n ≥ 3, n = O(1)
colors n colors (general case)

Upper bound O(m2/3) O(m2/3) O(m2/3 · n(log n)1/3)
Lower bound Ω(

√
m) Ω(m2/3) Ω(n · m2/3)

ICALP 2021

14:4 Efficient Splitting of Necklaces

1.4 Computational model and online version

The offline computational model considered here is natural. The input for Necklace Splitting,
for an instance with k agents and n colors, consists of a series of indices, each one taking a
value in [n], which represents the color of the respective bead. The runtime is, as usual, the
number of basic operations the algorithm makes to provide a solution.

Next, we describe the online model. The parameters k, n and mi for i ∈ [n] are given in
advance. We refer to time t, 0 ≤ t ≤

∑
i∈[n] mi − 1 as the state after the first t beads were

revealed and decisions about cutting before any of these have already been made. The beads
are revealed one by one in the following way: for integral t, 0 ≤ t ≤

∑
i∈[n] mi − 1, at time t

the Balancer receives the color of bead number t+ 1 and is given the opportunity to make a
cut between beads t and t+ 1, where this decision is irreversible. If a cut is made, and J is
the newly created interval, the Balancer also has to choose immediately the agent that gets
J , before advancing to time t+ 1.

1.5 Techniques

The proofs in the paper combine combinatorial and probabilistic ideas with linear algebra and
geometric tools. Theorem 1 is proved by converting the instance of Necklace Halving into a
continuous instance, which can be considered an instance of ε-Consensus Halving, where the
[0, 1] interval is colored by n colors. We reason about finding a solution to this ε-Consensus
Halving instance, for a suitable ε, and then adapt the algorithm to obtain a valid solution
for the discrete Necklace Halving instance. The algorithm for the continuous instance is
based on Carathéodory’s Theorem for cones, and involves linear algebra manipulations. To
obtain a solution for the discrete instance from the solution to the continuous instance, we
describe how to shift cuts at the end to ensure they are not made in the interior of (intervals
corresponding to) beads.

The online algorithm discussed in Theorem 2 is inspired by known techniques used in
online algorithms for discrepancy minimization. The idea here is to cut the necklace into
pieces, each having a sufficiently small number of beads of each color. The problem then
becomes an online discrepancy problem, where one can use a derandomization of a natural
randomized algorithm that proceeds by using an appropriate potential function motivated by
the method of conditional expectations. Obtaining discrepancy ≤ 1 at the end of the necklace
traversal requires a modification to the potential function technique, that handles beads of
certain colors in a more careful manner once the remaining beads of these colors become
scarce. The lower bound showing that the online algorithm is optimal up to logarithmic
factors is proved in two steps. The first one is an argument showing that if anytime during
the process the discrepancy between the shares allocated so far to the two agents according
to one of the colors is relatively large, while according to another color both shares are 0,
then a large number of cuts is required to ensure an appropriate solution at the end. In
the second step, it is proved that in order to keep the discrepancy according to each color
sufficiently small during the process, a large number of cuts is needed. This is shown by
introducing and analyzing appropriate potential functions, where the challenge here is to
define functions that enable the adversary to ensure they will keep growing for any choice of
a place to cut, and any allocation of the resulting interval, provided that the interval created
is not too short. One of the lemmas in the proof here is based on the fact that a certain
matrix is totally unimodular. The full details appear in the following sections.

N. Alon and A. Graur 14:5

1.6 Structure
The structure of the rest of the paper is as follows: in Section 2 we present the approximation
algorithm for the offline version of the problem. Section 3 contains the algorithm for the
online version. Section 4 contains the lower bounds for the online model. The final Section 5
contains several extensions and open problems. To simplify the presentation we omit all floor
and ceiling signs throughout the paper whenever these are not crucial. All logarithms are in
base 2, unless otherwise specified.

2 An offline algorithm

Proof of Theorem 1

Proof. Given a necklace with mi beads of color i for 1 ≤ i ≤ n, where m = maxmi, construct
an instance of ε-Consensus Halving as follows. Replace each bead of color i by an interval of
i-measure 1/mi and j-measure 0 for all j ̸= i. These intervals are placed next to each other
according to the order in the necklace, and their lengths are chosen so that altogether they
cover [0, 1]. We first give a marking procedure that splits the continuous necklace so that the
absolute discrepancy is at most ε, with ε = 1

2m . Then, we show how to modify the solution
from the continuous instance to the discrete necklace so that the cuts are made between
consecutive beads and we obtain a proper solution.

Given n non-atomic measures µi on the interval [0, 1] we describe an efficient algorithm
that cuts the interval in at most n(2 + ⌈log2

1
ε⌉) places and splits the resulting intervals

into two collections C0, C1 so that µi(Cj) ∈ [1
2 − ε

2 ,
1
2 + ε

2] for all i ∈ [n], 0 ≤ j ≤ 1. Note,
first, that if the collection C1 has the right amount according to each of the measures µi, so
does the collection C0. For each interval I ⊂ [0, 1] denote µ(I) = µ1(I) + . . .+ µn(I). Thus
µ([0, 1]) = n. Using 2n− 1 cuts split [0, 1] into 2n intervals I1, I2, . . . , I2n so that µ(Ir) = 1/2
for all r. Note that it is easy to find these cuts efficiently, since each measure µi is uniform
on its support.

For each interval Ir let vr denote the n-dimensional vector (µ1(Ir), µ2(Ir), . . . , µn(Ir)).
By a simple linear algebra argument, which is a standard fact about the properties of

basic solutions for Linear Programming problems, one can write the vector (1/2, 1/2, . . . , 1/2)
as a linear combination of the vectors vr with coefficients in [0, 1], where at most n of them
are not in {0, 1}. This follows from Carathédory’s Theorem for cones. For completeness, we
include the proof, which also shows that one can find coefficients as above efficiently. Start
with all coefficients being 1/2. Call a coefficient which is not in {0, 1} floating and one in
{0, 1} fixed. Thus at the beginning all 2n coefficients are floating. As long as there are more
than n floating coefficients, find a nontrivial linear dependence among the corresponding
vectors and subtract a scalar multiple of it which keeps all floating coefficients in the closed
interval [0, 1] shifting at least one of them to the boundary {0, 1}, thus fixing it.

This process clearly ends with at most n floating coefficients. The intervals with fixed
coefficients with value 1 are now assigned to the collection C1 and those with coefficient
0 to C0. The rest of the intervals remain. Split each of the remaining intervals into two
intervals, each with µ-value 1/4. We get a collection J1, J2, . . . , Jm of m ≤ 2n intervals, each
of them has the coefficient it inherits from its original interval. Each such interval defines
an n-vector as before, and the sum of these vectors with the corresponding coefficients (in
(0, 1)) is exactly what the collection C1 should still get to have its total vector of measures
being (1/2, . . . , 1/2).

ICALP 2021

14:6 Efficient Splitting of Necklaces

As before, we can shift the coefficients until at most n of them are floating, assign the
intervals with {0, 1} coefficients to the collections C0, C1 and keep at most n intervals with
floating coefficients. Split each of those into two intervals of µ-value 1/8 each and proceed as
before, until we get at most n intervals with floating coefficients, where the µ-value of each
of them is at most ε/2. This happens after at most ⌈log2(1/ε)⌉ rounds. In the first one, we
have made 2n− 1 cuts and in each additional round at most n cuts. Thus the total number
of cuts is at most n(2 + ⌈log2(1/ε)⌉) − 1.

From now on we add no additional cuts, and show how to allocate the remaining intervals
to C0, C1. Let I denote the collection of intervals with floating coefficients. Then |I| ≤ n

and µ(I) ≤ ε/2 for each I ∈ I. This means that

n∑
i=1

∑
I∈I

µi(I) ≤ nε/2

It follows that there is at least one measure µi so that∑
I∈I

µi(I) ≤ ε/2.

We can think of the remaining floating coefficients as the fraction of each corresponding
interval that agent 1 owns. Observe that for any assignment of the intervals I ∈ I to the two
collections C0, C1, the total µi measure of C1 (and hence also of C0) lies in [1/2−ε/2, 1/2+ε/2],
as this measure with the floating coefficients is exactly 1/2 and any allocation of the intervals
with the floating coefficients changes this value by at most ε/2. We can thus ignore this
measure, for ease of notation assume it is measure number n, and replace each measure
vector of the members in I by a vector of length n − 1 corresponding to the other n − 1
measures. If |I| > n − 1 (that is, if |I| = n), then it is now possible to shift the floating
coefficients as before until at least one of them reaches the boundary, fix it assigning its
interval to C1 or C0 as needed, and omit the corresponding interval from I ensuring its size
is at most n− 1. This means that for the modified I the sum

n−1∑
i=1

∑
I∈I

µi(I) ≤ (n− 1)ε/2.

Hence there is again a measure i, 1 ≤ i ≤ n− 1 so that∑
I∈I

µi(I) ≤ ε/2.

Again, we may assume that i = n− 1, observe that measure n− 1 will stay in its desired
range for any future allocation of the remaining intervals, and replace the measure vectors
by ones of length n− 2. This process ends with an allocation of all intervals to C1 and C0,
ensuring that at the end µi(Cj) ∈ [1/2 − ε/2, 1/2 + ε/2] for all 1 ≤ i ≤ n, 0 ≤ j ≤ 1. These
are the desired collections. It is clear that the procedure for generating them is efficient,
requiring only basic linear algebra operations.

The intervals separated by the marks are partitioned by the algorithm into two collections
forming a solution of the continuous problem. Note that the continuous solution would give
discrepancy at most maxi∈[n] mi · ε ≤ 1/2 in terms of beads if we were allowed to cut at the
marked points. The only subtle point is that some of the marks may be in the interior of
small intervals corresponding to beads, and we wish to cut only between beads.

N. Alon and A. Graur 14:7

Call a mark between two consecutive beads fixed and call the other marks floating. We
first show how to shift each of the floating marks so that the absolute discrepancy does not
increase beyond 1/2 and all but at most one mark for each color are made between two
consecutive beads. To do so, if there exists a floating mark between two intervals assigned to
the same agent eliminate it and merge the two intervals. If there is no such mark and there
are at least two floating marks in the interior of intervals corresponding to color i, we shift
both of them by the same amount in the appropriate way until at least one of them becomes
fixed. If during this simultaneous shift one of the two marks arrives in a spot occupied by
a different mark, we stop the shift and discard one of the duplicate marks. Note that the
quantities the two agents receive do not change.

This procedure reduces the number of floating marks until there is at most one floating
mark for each color. If there is such a floating mark, round it to the closest boundary between
beads noting that this can increase the absolute discrepancy by at most 1. Therefore, once all
marks are fixed, the absolute discrepancy is ≤ 3/2. Since all the cuts are between consecutive
beads, this discrepancy has to be an integer, and thus it is at most 1, as desired. The number
of cuts made is ≤ n(2 + ⌈log2

1
ε⌉) = n(3 + ⌈log2 m⌉) = n(logm+O(1)). ◀

▶ Remarks.

The argument can be extended to splitting into k nearly fair collections of intervals. See
section 5 for more details.
The ε-approximate Necklace Halving problem can be solved with n(log(1

ε) +O(1)) cuts
by using the above algorithm for the continuous instance with the required value of ε.
The proof can be adapted to obtain a solution with n(log(1

ε) + O(1)) cuts to the ε-
Consensus Halving problem, with the appropriate natural assumptions about the way
the measures are presented.
In [18] the authors give an efficient algorithm for solving a special case of the ε-Consensus
Halving problem that works for probability measures each of which is uniform on a single
interval. The algorithm provides a solution making at most n cuts for this special case.

3 An online algorithm

Proof of Theorem 2

Proof. We describe an efficient online algorithm that achieves absolute discrepancy at most 1.
The algorithm makes O(m2/3n(logn)1/3) cuts. It is worth mentioning that the main part of
the algorithm is a derandomization of a simple randomized algorithm which cuts the necklace
into pieces each of which has a sufficiently small number of beads of each color and then
assigns them randomly and uniformly to the two agents.

Note first that if, say, logn > m/1000, the result is trivial, as less than nm cuts suffice
to split the necklace into single beads, hence we may and will assume that m ≥ 1000 logn.
Throughout the algorithm we call the beads that have not yet been revealed the remaining
beads. This definition makes sense as in the online model the beads of the necklace are
revealed one by one. We provide a cutting rule and a distribution rule. During the algorithm,
we call a color i critical if the number of remaining beads of this color is smaller than
20 mi

m1/3 (logn)1/3, otherwise it is normal. When encountering a bead of a critical color i while
traversing the necklace, the algorithm makes a cut before and after it, allocating that bead
to the agent with a smaller number of beads of this type, where ties are broken arbitrarily.
We call such cuts that are made right before or after beads of a critical color forced.

ICALP 2021

14:8 Efficient Splitting of Necklaces

In addition to the rule about forced cuts, we provide a rule determining when to stop
traversing the necklace and make a cut when no beads of a critical color are seen. Define
g = 100

8m2/3(logn)1/3 , and for every i ∈ [n], gi = mig = 100mi

8m2/3(logn)1/3 . Whenever after the
last cut made after bead number x we reach a bead number y so that [x, y] (the interval
containing beads x + 1, x + 2, ..., y) contains at most gi beads of color i for every i that
is normal at that time and exactly gj beads of some normal color j, we make a cut. As
explained above, the exception to this rule is when we encounter a bead of a color i that is
critical before the portion following the last cut has enough beads of some normal color. If
gi ≤ 1 for some color i, then we cut before and after each bead of color i, essentially treating
color i as critical from the beginning.

To decide about the allocation of the intervals created we define, for each color i ∈ [n], a
potential function ϕi(t), and a function ψi(t) that is an upper bound of ϕi and is computable
efficiently. The variable t here will denote, throughout the algorithm, the index of the last
cut made.

The functions ϕi, ψi are defined by considering an appropriate probabilistic process. For
each i ∈ [n], let Xi be the random variable whose value is the difference between the number
of beads of color i belonging to agent 1 and that belonging to agent 2 if after each cut the
interval created is assigned to a uniform random agent. Let εk be 1 if the k’th interval is
assigned to agent 1 and −1 otherwise. Therefore Xi =

∑p
j=1 εjaj , where p− 1 is the total

number of cuts made and aj the number of beads of color i on interval Ij , the j’th created
interval. The distribution defining Xi is the one where each εj is 1 or −1 randomly, uniformly
and independently. The function ϕi(t) is defined as follows

ϕi(t) = E

[
eλXi/mi + e−λXi/mi

2 |ε1, ε2, ..., εt

]

This is a conditional expectation, where the conditioning is on the allocation of the first
t intervals represented by ε1, . . . , εt, and where λ = 4m1/3(logn)2/3

10 . (This choice of λ will
become clear later). The purpose of the division by mi is to normalize the exponent of
the potential functions to ensure maintaining a relatively small discrepancy for all colors i
simultaneously. Since Xi =

∑
j εjaj , where aj is the number of beads on the j’th interval of

color i, we have that

ϕi(t) = E

eλ∑
j
εjaj/mi + e

−λ
∑

j
εjaj/mi

2 |ε1, ε2, ..., εt


The function ψi(t) is defined in a way ensuring it upper bounds the function ϕi(t). It is

convenient to split each ϕi(t) into

1
2E

[
e
λ

∑
j
εjaj/mi |ε1, .., εt

]
+ 1

2E

[
e

−λ
∑

j
εjaj/mi |ε1, .., εt

]
.

For simplicity, denote the first term ϕ′
i and the second term ϕ′′

i . Therefore

ϕ′
i(t) = 1

2E

[
e
λ

∑
j
εjaj/mi |ε1, .., εt

]
= 1

2e
λ

∑t

j=1
εjaj/mi ·

∏
j≥t+1

(e
λaj/mi + e−λaj/mi

2)

= 1
2e

λ
∑t

j=1
εjaj/mi ·

∏
j≥t+1

cosh(λaj/mi)

N. Alon and A. Graur 14:9

A similar expression exists for ϕ′′
i . Define st =

∑t
j=1 aj/mi and ut =

∑t
j=1 εjaj/mi. By

the discussion above

ϕi(t) = eλut + e−λut

2
∏
j≥t+1

cosh(λaj/mi).

Using the well-known inequality that cosh(x) ≤ ex
2/2, it follows that

ϕi(t) ≤ eλut + e−λut

2 e
λ2

∑
j≥t+1

(aj/mi)2/2
.

By the way the cuts are produced aj ≤ gi for all j, and hence∑
j=t+1

(aj/mi)2 ≤ max
j≥t+1

(|aj/mi|) · (
∑
j≥t+1

aj/mi) ≤ g · (
∑
j≥t+1

aj/mi) = g(1 − st).

Therefore

ϕi(t) ≤ eλut + e−λut

2 eλ
2g(1−st)/2.

Define ψi(t) to be the above upper bound for ϕi(t), that is

ψi(t) = eλut + e−λut

2 eλ
2g(1−st)/2.

Note that ψi(t) can be easily computed efficiently at time t, since st and ut (as well as g
and λ) are known at this point.

Having defined the potential functions ϕi and their upper bounds ψi, we are now ready to
describe the allocation rule following cuts that create intervals with no beads of any critical
color. (The rule for allocating intervals consisting of a single bead of a critical color has already
been described). Initialize ϕ(0) =

∑
i∈[n] ϕi(0), ψ(0) =

∑
i∈[n] ψi(0), where by convention

ψi(0) = egλ
2/2. After each cut t during the process, we define ϕ(t) =

∑
i normal ϕi(t) and

ψ(t) =
∑
i normal ψi(t). In other words, once a color i becomes critical, the terms ϕi and ψi

are dropped from the respective expressions.
Having allocated the first t intervals, at cut t+ 1, we choose εt+1, which corresponds to

a choice of the agent who gets the interval, in order to minimize ψ(t + 1). To show that
this algorithm produces a proper solution, where the absolute discrepancy at the end is at
most 1, we prove the following two claims:

▷ Claim 1. The upper bound ψ(t) is (weakly) decreasing in the variable t.

▷ Claim 2. For each i, after each cut made before the color becomes critical, the discrepancy
in color i is at most 10 mi

m1/3 (logn)1/3 (in absolute value).

Claim 2 implies that after the first cut that causes color i to become critical, the
discrepancy on i is at most 10 mi

m1/3 (logn)1/3 + gi < 20 mi

m1/3 (logn)1/3 − gi. Hence, it follows
from the way the algorithm deals with subsequent beads of color i, that the process will end
with a balanced partition of the beads of each color i between the agents, allocating to each
of them either ⌊mi/2⌋ or ⌈mi/2⌉ of these beads. As this argument works for every color, the
algorithm produces a proper solution. Next, we prove the claims.

Proof of Claim 1. Note that whenever some color i becomes critical, the term ψi that we drop
from ψ is positive. Hence, it is enough to prove that ψ(t) ≥ ψ(t+1|εt+1=1)+ψ(t+1|εt+1=−1)

2 ,
where ψ(t+ 1|εt+1 = χ) denotes the value of ψ(t+ 1) if we choose εt+1 = χ ∈ {−1, 1}. It
suffices to show that for every i, ψi(t) ≥ 1

2 [ψi(t+ 1|εt+1 = 1] + 1
2 [ψi(t+ 1|εt+1 = −1].

ICALP 2021

14:10 Efficient Splitting of Necklaces

We proceed with the proof of this inequality. To do so, note that

ψi(t+ 1|εt+1 = 1) = eλ(ut+at+1/mi) + e−λ(ut+at+1/mi)

2 eλ
2g(1−st−at+1/mi)/2,

and

ψi(t+ 1|εt+1 = −1) = eλ(ut−at+1/mi) + e−λ(ut−at+1/mi)

2 eλ
2g(1−st−at+1/mi)/2.

Therefore

ψi(t+ 1|εt+1 = 1) + ψi(t+ 1|εt+1 = −1)
2 =

eλut + e−λut

2 · e
λat+1/mi + e−λat+1/mi

2 eλ
2g(1−st−at+1/mi)/2

≤ eλut + e−λut

2 · eλ
2g(at+1/mi)/2eλ

2g(1−st−at+1/mi)/2 = eλut + e−λut

2 · eλ
2g(1−st)/2 = ψi(t),

as needed. ◁

Proof of Claim 2. Let t be a cut made while color i is normal. To prove that the dis-
crepancy on color i in absolute value is at most 10 mi

m1/3 (logn)1/3, it suffices to prove
ψi(t) ≤ 1

2e
λ·10(log n

m)1/3
eλ

2g(1−st) = 1
2e

2 logneλ
2g(1−st). By Claim 1, ψ(t) ≤ ψ(0) = negλ

2/2.
Hence, it is enough to prove that negλ

2/2 ≤ 1
2e

2 logneλ
2g(1−st). This is equivalent to

λ2gst/2 + log 2 ≤ 4 logn. Since st ≤ 1, we get λ2gst/2 + log 2 ≤ logn + log 2 ≤ 2 logn, as
needed. ◁

Lastly, we prove that the total number of cuts is O(n(logn)1/3 ·m2/3). The number of
forced cuts cannot exceed 2n · 20 mi

m1/3 (logn)1/3 = O(m2/3n(logn)1/3). To bound the number
of non-forced cuts, note that whenever we make such a cut, there is a color j such that the
number of beads of this color on the interval created is exactly gj . We call the cut j-tight for
that respective color. It is easy to see that for every color i there are most O(m2/3(logn)1/3)
i-tight cuts. Hence, the total number of non-forced cuts is at most O(m2/3n(logn)1/3). This
completes the proof. ◀

4 Lower bounds

In this section we present the lower bounds for Necklace Halving in the online model.

4.1 A preliminary bound
We provide a Ω(

√
m) lower bound for the number of cuts required in any online algorithm

when the number of colors is n = 2 and there are m beads of each color. We need the following
simple lemma, which is a special case of a more general elegant result of Tijdeman [23]. Since
this special case is much simpler, we include its proof, for completeness.

▶ Lemma 1. For every real γ ∈ [0, 1] there is an infinite binary sequence a1, a2, a3, . . . so
that in every prefix of it a1, a2, . . . , aj the number of elements ai which are 1 deviates from
γj by less than 1.

N. Alon and A. Graur 14:11

Proof. By compactness it suffices to prove the existence of such a sequence of any finite
length r. Consider the following system of linear inequalities in the variables x1, x2, . . . , xr:
0 ≤ xi ≤ 1 for all 1 ≤ i ≤ r, and for every j ≤ r, ⌊γj⌋ ≤

∑j
i=1 xi ≤ ⌈γj⌉. This system has

a real solution xi = γ for every i and the matrix of coefficients of the constraints is totally
unimodular. Hence there is an integral solution xi = ai ∈ {0, 1} providing the required
sequence. ◀

We use the following notation. During the algorithm let t denote the number of beads
revealed so far. If a cut is made at this point, let xt be the difference between the number of
beads of color 1 allocated to agent 1 and the number of beads of color 1 allocated to agent 2.
Define yt similarly for beads of color 2. Let αt, βt denote the number of remaining beads of
colors 1 and 2, respectively.

▶ Lemma 2. Let ∆ be a positive integer. Suppose that a cut is made at point t and |xt| = ∆
and assume that no bead of color 2 appeared so far. Then there exists an adversarial input
that forces the Balancer to make at least ∆/4 = Ω(∆) cuts.

Proof. Without loss of generality assume that xt = ∆ > 0. Note that by assumption βt = m

and αt < m. Put γ = m
αt+m and note that γ > 1/2. By Lemma 1 it is possible to choose an

ordering of the remaining αt +m beads of the necklace so that in every prefix of it of any
length j, the number of beads of color 2 deviates from γj by less than 1. Since our online
model allows the Balancer to see the next bead before the decision to make a cut preceding
it we may have to change the first bead in this ordering, this still ensures that in any interval
of length ℓ in the remainder of the necklace, the number of beads of color 2 deviates from γℓ

by at most 2.
Suppose the Balancer cuts the remainder of the necklace and allocates the resulting

intervals R1, ..., Ru to agent 1 and T1, ..., Tv to agent 2 to obtain a balanced allocation. For
each one of these intervals I let ℓ(I) denote its length. By assumption at time t agent 1 has
exactly ∆ more beads than agent 2. Since at the end each agent has half of the beads (for
simplicity we assume that m is even),

∑v
i=1 ℓ(Ti) −

∑u
j=1 ℓ(Rj) = ∆.

By construction, the total number of beads of color 2 in all intervals Ti deviates from
γ

∑v
i=1 ℓ(Ti) by at most 2v. Similarly, the total number of beads of color 2 in all intervals Rj

deviates from γ
∑u
j=1 ℓ(Rj) by at most 2u. As these two numbers should be equal it follows

that

γ∆ = γ(
v∑
i=1

ℓ(Ti) −
u∑
j=1

ℓ(Rj)) ≤ 2u+ 2v

This implies that 2(u+ v) ≥ γ∆ > ∆/2 and as the number of cuts is at least u+ v the
desired result follows. ◀

The last lemma easily implies the following.

▶ Theorem 3. There exists an adversarial input that forces any deterministic algorithm for
Online Necklace Halving with n = 2 colors to make Ω(

√
m) cuts in order to obtain a proper

solution.

Proof. Put ∆ =
√
m and proceed by revealing only beads of color 1. By Lemma 2, if after

a cut at some t, |xt| >
√
m, the desired result follows. Otherwise it is clear the number of

beads between any two consecutive cuts is less than 2
√
m, implying that the total number of

cuts made by the Balancer is Ω(
√
m). ◀

ICALP 2021

14:12 Efficient Splitting of Necklaces

4.2 A nearly tight bound
▶ Theorem 4. An adversary can force any deterministic algorithm for Online Necklace
Halving with n = 3 colors and m beads of each color to make Ω(m2/3) cuts.

Proof. As in the previous subsection, let xt denote the discrepancy between the number of
beads of color 1 allocated to agent 1 and that allocated to agent 2 after cut t, and let yt
denote the corresponding discrepancy for color 2, where color 3 will be kept as a potential
threat. We proceed by revealing only beads of the first two colors. By Lemma 2 with
∆ = m2/3 the Balancer needs to maintain |xt|, |yt| ≤ m2/3, since otherwise the adversary can
force Ω(m2/3) cuts, using beads of the third color. Hence, we assume that during the process
of revealing the initial m+ 4m2/3 beads of the necklace xt, yt stay in the above range after
each cut.

Define a potential function

M(x, y) = x2 + y2 + 5m2/3(x− y)

After a cut with vt = (xt, yt) = (x, y) define γ = 10m2/3−4y
20m2/3+4(x−y) . Note that 0 < γ < 1, as

|x|, |y| ≤ m2/3. By Lemma 1 it is possible to order the remaining part of the first m+ 4m2/3

beads of the necklace so that in each prefix of any length j of this remaining part the number
of beads of color 1 deviates from γj by less than 1 and the number of beads of color 2 deviates
by less than 1 from (1 − γ)j. As the first bead of this remaining part has been observed
already by the Balancer we may need to change one bead in this ordering, getting a deviation
of less than 2 in each prefix. This means that if the next cut will be made after some j
additional beads, the vector p = (p1, p2) of additional beads of colors 1 and 2, respectively,
can be written as a sum of the vector p′ = (γj, (1 − γ)j) and an error vector δ = (δ1, δ2) of
ℓ∞-norm smaller than 2. We get that

M(vt + p′) −M(v) = p′2
1 + p′2

2 + 2xp′
1 + 2yp′

2 + 5m2/3p′
1 − 5m2/3p′

2 =

= p′2
1 + p′2

2 + 1
2[p′

1 · (10m2/3 + 4x) − p′
2 · (10m2/3 − 4y)] = p′2

1 + p′2
2 ≥ 1

2j
2

and similarly,

M(v−p′)−M(v) = p′2
1 +p′2

2 + 1
2[−p′

1 · (10m2/3 +4x)+p′
2 · (10m2/3 −4y)] = p′2

1 +p′2
2 ≥ 1

2j
2

A simple computation using the fact that |x|, |y| ≤ m2/3 and that a similar bound holds
after adding or subtracting the vector p′ shows that adding or subtracting the vector δ can
decrease the value of M by less than 15m2/3. Therefore, we get

M(vt ± p) −M(vt) ≥ j2/2 − 15m2/3

which implies M(vt+1) −M(vt) ≥ j2/2 − 15m2/3, with a cut of j beads.
Suppose that we have r cuts among the first m+ 4m2/3 beads of the necklace, and the

lengths of the resulting intervals are j1, j2, . . . , jr. Since throughout the process |xt|, |yt| ≤
m2/3, it follows that M(xt, yt) ≤ 12m2/3. On the other hand by the above discussion the
value of M at the end is at least

∑r
i=1

j2
i

2 − 15m2/3r. Since
∑r
i=1 ji ≥ m (as we cannot have

4m2/3 consecutive beads with no cut among them), it follows, by Cauchy-Schwartz, that∑
j2
i ≥ m2

r . This implies that

1
2
m2

r
− 15rm2/3 ≤ 12m4/3

showing that r = Ω(m2/3), as needed. ◀

N. Alon and A. Graur 14:13

▶ Remark. For n > 3 colors with m beads of each color one can consider a necklace consisting
of ⌊n/3⌋ segments with at least 3 colors in each of them. The above argument shows that it
is possible to force Ω(m2/3) cuts in each segment, implying an Ω(nm2/3) lower bound. Thus,
for n colors, the gap between our lower and upper bounds for the number of cuts required is
only a factor of Θ((logn)1/3).

5 Extensions and open problems

We conclude with some generalizations of the algorithms presented and the lower bounds
obtained, and with comments on some of the questions that remain open.

5.1 Generalizations
In this section, we present our online and offline results for the general case of k agents.

▶ Theorem 5. There exists an efficient, deterministic, offline algorithm that provides a
proper solution to the Necklace Splitting problem, making at most n(k − 1)⌈4 + log2(3km)⌉
cuts.

Proof. As in the proof of Theorem 1, we first convert the Necklace Splitting instance into a
continuous instance J , and obtain a solution with absolute discrepancy at most ε

2k = 1
2km ,

possibly making some floating cuts. Then, to obtain a proper solution for the discrete
instance, we shift the floating cuts by solving a network flow problem.

To obtain the solution to the continuous instance J , we recursively apply a modified
version of the algorithm that makes cuts on the continuous necklace from Theorem 1. Define
ε′ = ε/3k = 1

3km , and divide the k players into two disjoint groups A,B, with ⌊k/2⌋
agents and ⌈k/2⌉ agents respectively. Think of A,B as two agents and split the continuous
necklace among them. By following the algorithm in the proof of Theorem 1, one can make
≤ n(2+⌈log2

1
ε′ ⌉) cuts and split the interval so that A gets ⌊k/2⌋

k ±ε′/2 of each measure i. We
can do so by starting with all floating coefficients equal to ⌊k/2⌋

k instead of 1
2 and by following

the proof of Theorem 1. Repeat the same procedure for the groups A and B recursively,
splitting the share of A among its |A| members and doing the same for B. In the end, the
error can be bounded by ε′ + 2

3ε
′ + 2

3 · 4
7ε

′ + ... < 3ε′. If we denote by T (k) the number of
cuts made to obtain absolute discrepancy ≤ ε′ for a continuous instance with n types and k
agents, then T (2) = n[log2

1
ε′ + 2], and T (k) = T (⌊k/2⌋) + T (⌈k/2⌉) + n[log2

1
ε′ + 2] , which

gives that the number of cuts made for this split is T (k) = n(k − 1)⌈2 + log2(3km)⌉).
Hence, we have obtained a proper solution for the continuous instance J , making n(k −

1)⌈2 + log2(3km)⌉) cuts, yet we have to handle floating cuts. We categorize each floating
cut by the color of the interval in whose interior it lies. For each color i, we handle the
corresponding floating cuts. First, note that if k > mi, we can shift each floating cut on
color i to one of the ends of the i-interval in such a way that no agent gets more than one
bead of color i and this will provide discrepancy at most 1 on color i without creating any
additional cuts. Hence, we may assume mi ≥ k.

We use a network flow algorithm to decide, for each bead of color i that does not fully
belong to one agent, to whom it should be allocated. Define a directed graph Gi, with
vertices s, the source, t, the sink, Vi, representing the set of beads of color i, and H, the set
of vertices representing the agents. Let E be the set of edges with

E = {(s, v), v ∈ Vi} ∪ {(h, t), h ∈ H} ∪ {(v, h), agent h owns a share of bead v}

ICALP 2021

14:14 Efficient Splitting of Necklaces

All edges {(s, v), v ∈ Vi} have capacity 1 and lower bound 1. Each edge (v, h) has capacity
1 and lower bound 0. Finally, for each edge (h, t), set the capacity to be ⌈xh⌉ and the lower
bound to be ⌊xh⌋, where xh is the quantity of type i allocated to agent h in the solution to
the continuous instance. Now, if we assign each edge (v, h) a value equal to the share of bead
v allocated to agent h in the continuous solution and each edge (h, t) the value xh, this is a
legal flow. Hence, there exists an integral legal flow in the network, and it is well known that
one can find such a flow efficiently. Note that an integral flow corresponds to a distribution
of the beads of color i where no additional cut is made and the absolute discrepancy is at
most 1 if k ∤ ai and at most 2 if k|ai. Thus, the integral flow determines which agent gets
each of the contested beads of color i, corresponding to a shift of each floating cut to one of
the ends of the bead it crosses.

If k|ai, the continuous solution could give some agent a a share of xa = ai/k − ε1 and
some agent b a share xb = ai/k+ ε2, for small positive values ε1, ε2. In this case, the integral
network flow solution could give agent a ai/k − 1 beads and agent b ai/k + 1 beads of color
i. As ai/k is an integer, the number of agents receiving ai/k + 1 beads is the same as the
number of agents receiving ai/k − 1. Hence, we can make at most 2k cuts after the shift is
done to obtain discrepancy 0. We perform the shifting procedure for every color i, and obtain
a proper solution with at most nk + n(k − 1)⌈2 + log2(3km)⌉ < n(k − 1)⌈4 + log2(3km)⌉,
as needed. This completes the proof. The network flow argument follows the approach
in [4]. ◀

▶ Theorem 6. There exists an efficient, deterministic, online algorithm that provides a
proper solution for the Necklace Splitting problem, making at most Õ(nk1/3 ·m2/3) cuts.

Proof. Note that the result is trivial for k > m. For k ≤ m, we again use the idea of defining
a potential function ϕ and a function ψ that is an upper bound for ϕ and is computable
efficiently. Instead of having one pair of functions ϕi, ψi for each color i, we now have(
k
2
)

such functions, one for each pair of agents. For each color i and agents p ̸= q, define
ϕp,qi = E

[
eλXp,q,i/mi +e−λXp,q,i/mi

2

]
, where Xp,q,i is the random variable of the difference

between the number of beads of color i given to agent p and that of agent q. The relevant
random distribution here assigns every newly created interval to one of the k agents with equal
probability which is 1/k. The quantity g = g(n, k,m) is defined here as g = 1

m2/3k(log(nk))1/3 ,
and each gi, the maximum number of beads of color i allowed between two consecutive cuts
as gi = mig. We say color i is critical when the number of remaining beads of this color is
at most 20k1/3m2/3.

The function ψp,qi is defined by

ψp,qi (t) = eλx
p,q
t,i + e−λxp,q

t,i

2 · e2λ2g(1−st)/k

where st is, as before, the proportion of beads of color i allocated already, and xp,qt,i is the
discrepancy between p and q on color i after cut t divided by mi.

The main difference required here is the replacement of the inequality cosh(λa) ≤ eλ
2a2/2

by the following inequality which holds whenever, say, λa ≤ 1:

k − 2
k

eλ·0 + 1
k
eλa + 1

k
e−λa = 1 + 2

k
(cosh(λa) − 1)

≤ 1 + 2
k

(eλ
2a2/2 − 1) ≤ 1 + 2

k

2λ2a2

2 = 1 + 2λ2a2

k
≤ e2λ2a2/k.

N. Alon and A. Graur 14:15

Each ϕp,qi is bounded using the fact that each of the intervals created has at most gi = mig

beads of color i for every i. By the inequality applied with a ≤ g and λ = (k/m)1/3

4g (ensuring

that indeed λa ≤ (k/m)1/3

4 < 1/2), it follows that if every interval generated is allocated to an
agent in order to minimize ψ =

∑
p,q∈[k], p ̸=q, i∈[n] ψ

p,q
i , then the function ψ never increases

during the algorithm. As

ψ(0) < nk2e2λ2g/k = nk2eε
2/8gk <

eλε/k

2

the computation shows that at the end the absolute discrepancy is ≤ ε/k. We omit the
details. ◀

Next, we present two simple special cases where we obtain proper solutions efficiently
with the optimal number of cuts, n(k − 1). In the first case, the number of beads of each
color is equal to k, the number of agents. In the second case, we set the number of colors to
be n = 2.

▶ Proposition 1. There exists an efficient algorithm that solves any instance of Necklace
Splitting for n colors and k agents where there are exactly k beads of each color, making at
most n(k − 1) cuts.

Proof. Traverse the necklace once bead by bead and cut between any pair of consecutive
beads unless the second one is the first appearance of a bead of color i for some i ∈ [n]. After
each cut made, if S is the set of colors present in the newly created interval J , we allocate J
to an agent that has not received up to that point any beads of any color in S. To show
that after each cut such an agent exists, first note that by the description above, no agent
receives two beads of the same color. If J contains only one bead and its color is i, there
must exist an agent who has not received any bead of color i up to that point, as there are
as many agents as beads of color i. If J has p ≥ 2 beads, of colors c1, ..., cp ∈ [n] appearing
in this order, we can still give it to an agent that has not received any bead of color c1, since
each of the other beads in J has a color that has not appeared before.

It thus follows that with this allocation rule each agent gets exactly 1 bead of each color.
To prove the upper bound on the number of cuts, note that for each i ∈ [n], we never cut
right before the first bead of color i that appears on the necklace. Hence, there are exactly
n− 1 beads (besides the very first one) with no cut right before them. Since there are kn− 1
points between consecutive beads the algorithm makes exactly kn− 1 − (n− 1) = n(k − 1)
cuts. ◀

▶ Proposition 2. There exists an efficient algorithm that solves any instance of Necklace
Splitting for n = 2 colors and k agents, making at most 2(k − 1) cuts.

Proof. We first consider the case when k divides both m1,m2, where mi is the number of
beads of color i. Given a necklace with m1 beads of color 1 and m2 beads of color 2 consider
it as a circular necklace. By the discrete intermediate value theorem there is a circular arc
of (m1 + m2)/k beads containing exactly m1/k beads of color 1 (and hence also exactly
m2/k beads of color 2). Cut in the ends of this circular arc, assign it to the first agent, and
continue inductively. Clearly, every agent gets the same number of beads of each color.

To extend the proof for general m1,m2, write m1 = kp+ r and m2 = kq+ s. We look for
a circular arc of ⌈m1

k ⌉ + ⌈m2
k ⌉ beads containing exactly ⌈m1

k ⌉ beads of color 1 (and hence
also exactly ⌈m2

k ⌉ beads of color 2). If r ̸= 0, the agent to whom we distribute the arc gets
p+ 1 beads of color 1. Similarly, if s ̸= 0, the agent gets q + 1 beads of color 2. Hence, by

ICALP 2021

14:16 Efficient Splitting of Necklaces

inductively finding a suitable arc and cutting it from the necklace, at the end of the process,
the first r agents will get p+ 1 beads of color 1 and the rest p. Similarly, the first s agents
will get q + 1 beads of color 2 and the rest q. ◀

5.2 Connections to ε-Consensus Splitting
Our results easily extend to the ε-Consensus Splitting problem with non-atomic probability
measures whose density functions are piecewise linear. This is stated in the next two theorems
whose detailed proofs are provided in the full version.

▶ Theorem 7. There exists an efficient, deterministic, offline algorithm that provides a
solution to the ε-Consensus Splitting problem, making at most n(k − 1)⌈4 + log2(3km)⌉ cuts,
provided that the density functions of the probability measures are piecewise linear.

▶ Theorem 8. There exists an efficient, deterministic, online algorithm that provides a
solution for the ε-Consensus Splitting problem, making at most O(kn log(nk)

ε2) cuts, provided
that the density functions of the probability measures are piecewise linear.

Note that for k = 2 agents, the number of cuts resulting from the algorithm corresponding
to Theorem 8 is O(n logn

ε2). The proof of Theorem 2 relies on using this algorithm for k = 2
agents with ε = Θ((logn

m)1/3).

5.3 Open questions
Theorem 1 provides a proper solution to the offline version for k = 2 agents by making a
number of cuts that depends logarithmically on m, the maximum number of beads of a color.
It would be interesting to see if this dependency can be improved asymptotically.

Another open question arises in the context of the Online Necklace Halving problem for
n = 2 colors, where the lower bound for the number of cuts is only Ω(

√
m), whereas the

upper bound for the number of cuts produced by our algorithm is O(m2/3). Lastly, for the
general case of n colors for the online version of Necklace Halving there is a Θ((logn)1/3)
gap between the lower bound and the algorithm we provided. It will be interesting to close
these gaps.

References
1 Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.
2 Noga Alon. Non-constructive proofs in Combinatorics. Proceedings of the International

Congress of Mathematicians (ICM), 63:1421–1429, 1990.
3 Noga Alon, Michael Krivelevich, Joel H. Spencer, and Tibor Szabó. Discrepancy Games. The

Electronic Journal of Combinatorics, 12(1):R51, 2005.
4 Noga Alon, Dana Moshkovitz, and Muli Safra. Algorithmic construction of sets for k-restrictions.

ACM Transactions on Algorithms, 2(2):153–177, 2006.
5 Noga Alon and Douglas B West. The Borsuk-Ulam Theorem and Bisection of Necklaces.

Proceedings of the American Mathematical Society, 98(4):623–628, 1986.
6 Nikhil Bansal. Constructive Algorithms for Discrepancy Minimization. Proc. 51st Symposium

on Foundations of Computer Science (IEEE), pages 3–10, 2010.
7 Nikhil Bansal and Joel H. Spencer. Deterministic Discrepancy Minimization. Algorithmica,

67(4):451–471, 2013.
8 Nikhil Bansal and Joel H. Spencer. On-line Balancing of Random Inputs. Random Structures

and Algorithms, 57(4):879–891, 2020.

N. Alon and A. Graur 14:17

9 Sandeep N. Bhatt and Frank T. Leighton. A Framework For Solving VLSI Graph Layout
Problems. Journal of Computer and System Sciences, 28(2):300–343, 1984.

10 Sandeep N. Bhatt and Charles E. Leiserson. How to assemble tree machines. Proceedings of
the 14th Symposium on the Theory of Computing, San Francisco, pages 99–104, 1981.

11 Paul Simon Bonsma, Thomas Epping, and Winfried Hochstättler. Complexity results on
restricted instances of a paint shop problem for words. Discrete Appl. Math, 154(9):1335–1343,
2006.

12 Steven J. Brams and Alan D. Taylor. Fair division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

13 Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. The complexity of
equilibria: Hardness results for economies via a correspondence with games. Theoretical
Computer Science, 408(2-3):188–198, 2008.

14 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The Complexity
of Computing a Nash Equilibrium. Theoretical Computer Science, 39(1):195–259, 2009.

15 Aris Filos-Ratsikas, Soren Kristoffer Stiil Frederiksen, Paul W. Goldberg, and Jie Zhang.
Hardness Results for Consensus Halving. 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 24:1–24:16, 2018.

16 Aris Filos-Ratsikas and Paul W. Goldberg. Consensus Halving is PPA-Complete. Proceedings
of the 50th Annual ACM Symposium on Theory of Computing (STOC), pages 51–64, 2018.

17 Aris Filos-Ratsikas and Paul W. Goldberg. The Complexity of Splitting Necklaces and
Bisecting Ham Sandwiches. Proceedings of the 51st Annual ACM Symposium on Theory of
Computing (STOC), pages 638–649, 2019.

18 Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis. Con-
sensus Halving: Does it Ever Get Easier? Proceedings of the 21st ACM Conference on
Economics and Computation, pages 381–399, 2020.

19 Charles H. Goldberg and Douglas B. West. Bisection of circle colorings. SIAM J. Algebraic
Discrete Methods, 6(1):93–106, 1985.

20 Charles R. Hobby and John R. Rice. A moment problem in L1 approximation. Proceedings of
the American Mathematical Society, 16(4):665–670, 1965.

21 Frédéric Meunier. Simplotopal maps and necklace splitting. Discrete Mathematics, 323:14–26,
2014.

22 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

23 Robert Tijdeman. On a distribution problem in finite and countable sets. Journal of
Combinatorial Theory, Series A, 15(2):129–137, 1973.

ICALP 2021

	1 Introduction
	1.1 The problems
	1.2 Hardness and Approximation
	1.3 Our contribution
	1.4 Computational model and online version
	1.5 Techniques
	1.6 Structure

	2 An offline algorithm
	3 An online algorithm
	4 Lower bounds
	4.1 A preliminary bound
	4.2 A nearly tight bound

	5 Extensions and open problems
	5.1 Generalizations
	5.2 Connections to {epsilon}-Consensus Splitting
	5.3 Open questions

