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Abstract
We define a search problem on trees that closely captures the backtracking behavior of all current
practical graph isomorphism algorithms. Given two trees with colored leaves, the goal is to find
two leaves of matching color, one in each of the trees. The trees are subject to an invariance
property which promises that for every pair of leaves of equal color there must be a symmetry (or
an isomorphism) that maps one leaf to the other.

We describe a randomized algorithm with errors for which the number of visited nodes is
quasilinear in the square root of the size of the smaller of the two trees. For inputs of bounded
degree, we develop a Las Vegas algorithm with a similar running time.

We prove that these results are optimal up to logarithmic factors. For this, we show a lower
bound for randomized algorithms on inputs of bounded degree that is the square root of the tree
sizes. For inputs of unbounded degree, we show a linear lower bound for Las Vegas algorithms. For
deterministic algorithms we can prove a linear bound even for inputs of bounded degree. This shows
why randomized algorithms outperform deterministic ones.

Our results explain why the randomized “breadth-first with intermixed experimental path” search
strategy of the isomorphism tool Traces (Piperno 2008) is often superior to the depth-first search
strategy of other tools such as nauty (McKay 1977) or bliss (Junttila, Kaski 2007). However, our
algorithm also provides a new traversal strategy, which is theoretically near optimal and which has
better worst case behavior than traversal strategies that have previously been used.
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1 Introduction

We define a new search problem involving trees with symmetries. In this problem, two
unknown trees are given as input and they can be gradually explored. The leaves of the
trees are colored and the task is to find a pair of leaves, one in each tree, with matching
colors or determine that such a pair does not exist. The crucial element that distinguishes
our model from standard exploration tasks is that the color of the leaves allows us to draw
conclusions about the local surroundings of the leaf. More precisely, there is an invariance
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16:2 Search Problems in Trees with Symmetries

axiom guaranteed to always hold. It says that if two leaves are of the same color then there
is a symmetry (an automorphism or an isomorphism depending on the leaves being in the
same tree or not) that maps one leaf to the other.

The invariance property guarantees that the local neighborhood around the leaf is
structurally the same as the neighborhood around other leaves of the same color. This allows
us to discard unexplored parts of the search tree thereby opening the possibility of having
algorithms that explore only a sublinear number of the nodes of the trees.

Our motivation behind the model lies in the desire for a theoretical analysis of practical
solvers for the graph isomorphism problem, automorphism group computations, and graph
canonization. While the best theoretical algorithms, such as Babai’s quasipolynomial time
algorithm [2], are based on algorithmic group theory, practical solvers [4, 6, 7, 11, 15]
exclusively follow the individualization-refinement (IR) paradigm. First introduced into the
realm of practical isomorphism testing and canonization by McKay in 1977 [10], the basic
principle has remained unchanged to date. Indeed, all algorithms in this paradigm perform
some form of backtracking, implicitly creating a recursion tree for each input graph. The
tools solve the graph isomorphism problem by finding two leaves in this recursion tree that
correspond to each other. The number of nodes in the recursion tree that are actually called
during the execution is closely linked to the running time of the overall algorithm. Despite
being simple, our search problem and the exploration model capture precisely the task needed
to be solved and assess correctly the running times of solutions.

Traditionally, IR tools have followed a depth-first search approach to traverse the search
tree. However, in 2008, Piperno [15] introduced his tool Traces, which broke away from this
principle, performing a form of breadth-first search that is intermixed with random traversal
of the tree (so-called experimental paths). The traversal strategy is at the very heart of
the underlying algorithm. Significantly outperforming all the other tools on most practical
inputs [12], Traces revealed that the traversal strategy is arguably the most important
design choice in IR algorithms. This immediately raises the question whether there are
theoretical, structural reasons why this traversal strategy is favorable. Going one step further,
we can ask for optimal traversal strategies.

However, so far there has been no rigorous justification as to why one traversal strategy
should be superior and in particular there is no research into optimal traversal strategies.

Contribution. The introduction of our particular search problem in trees with symmetry
allows us to strip away all the other design choices that have to be made in the creation
of an IR algorithm and isolates the core issue of the traversal strategy in the search tree.
The ultimate goal is twofold. Firstly, to provide a more rigorous, theoretical foundation for
the design of practical graph isomorphism tools. Secondly, to design novel, near optimal
strategies to be adopted in future generations of practical solvers.

An input consists of two trees without vertices that only have one child. Let n denote
the size of the smaller one of the two trees and N the size of the larger one. The cost of our
algorithms is measured in the number of nodes that are explored. For our algorithms, the
terms “running time” or “complexity” refer to this cost measure.

Regarding upper bounds, we provide a simple randomized Monte Carlo algorithm with an
upper bound of O(

√
n log n) explored nodes. For trees of bounded degree we design a more

complicated algorithm achieving an upper bound of O(
√

n log N) for Las Vegas algorithms
(i.e., randomized algorithms without errors).
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Table 1 This table summarizes lower and upper bounds for the isomorphism problem implied by
the results of this paper. Here n = min{n1, n2} and N = max{n1, n2}, where the sizes of the trees
are n1, n2 and d gives the maximum degree of the two input trees. We state separate lower bounds
for trees with bounded (d-adic) and unbounded degree.

Setting Lower Bound Lower Bound (d-adic) Upper Bound
Monte Carlo Ω(

√
n) Ω(

√
n) O(log(n)

√
n)

Las Vegas Ω(n) Ω(
√

n) O(d log(N)
√

n)
Deterministic Ω(n) Ω(n) O(n)

These algorithms are accompanied by nearly matching lower bounds, showing that Ω(
√

n)
nodes need to be explored for randomized Monte Carlo algorithms even on bounded degree
trees and that for unbounded degree inputs, Las Vegas algorithms need to visit Ω(n) nodes
in expectation. For deterministic algorithms we get a lower bound of Ω(n) even for inputs of
bounded degree. Table 1 gives an overview of the lower and upper bounds we prove.

Overall this shows that the new traversal strategies are optimal up to logarithmic factors.
However, it also shows that randomized traversal strategies, even those without error,
asymptotically outperform deterministic ones.

The algorithms for proving the upper bounds immediately imply IR algorithms with
the same runtimes (up to almost linear factors in the graph order for non-recursive work).
We should emphasize that our new upper bounds asymptotically outperform the traversal
strategies that are currently being used in practice in the worst case. In fact, we implemented
the Monte Carlo algorithm in a new graph isomorphism solver dejavu which runs significantly
faster than existing tools on most graphs [1].

2 A Model for Tree Exploration with Symmetries

This section presents the exploration model that is used throughout this paper. The model
enables us to perform a focused analysis of the traversal strategies used in the search trees of
IR algorithms. We state the model independent of any discussion regarding IR.

2.1 Black Box Search Trees
In our search problems the input consists of one or two hidden trees of which certain
information is to be discovered. We first explain how the trees can be explored.

Exploration Model. We consider rooted trees in which there is a priori no bound on the
degree of the vertices. However, we require that no vertex has exactly one child. Furthermore,
the leaves of the tree are colored.

Our exploration model for the trees restricts access of algorithms to the trees themselves
and how they can be explored. We think of new information as being provided by an oracle
to the exploration algorithm. During execution, a node of the tree is either explored or
unexplored. Whenever a new node is explored, the algorithm learns the number of children of
the node. In particular the algorithm knows whether the node is a leaf or not. Furthermore,
in case the node is a leaf, it learns its color. At the beginning of an execution, everything
except the root is deemed unexplored. The algorithm can only ever access previously explored
nodes. The degree (i.e., the number of children) of an explored node v, which we denote
by deg(v), is always known. To explore further nodes, the algorithm can explore a child
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16:4 Search Problems in Trees with Symmetries

Figure 1 Example exploration in the black box search tree model. Starting from the root, the
algorithm only ever knows explored nodes and their degrees. Through the use of an oracle, random
children of explored nodes may then be queried.

of a previously explored node. Specifically, the algorithm can request the i-th child of v

with i ∈ {1, . . . , d(v)}, which thereby becomes explored. For this, the input has an arbitrary
but fixed ordering for the children of each vertex.

The cost of the exploration is measured in the number of oracle accesses, i.e., the number
of nodes that are ever visited by the algorithm. (In particular there is no cost for traversing
previously explored parts of the tree.)

Figure 1 illustrates such an exploration of a tree. Note that while the algorithm always
knows the degree of explored nodes, it is essentially unable to chose a new specific child to
explore since in another input the ordering of the children may be different.

More formally, a black box search tree T = (V, E, col) consists of a rooted tree with
colored leaves and for each node an ordering of the children. We omit the orderings from
the notation. Of course all choices of orderings lead to proper search trees. The function
col : L(T )→ N maps the leaves of the tree L(T ) to natural numbers, referred to as colors.

In our algorithms, we use the procedure NewChild : V → V ∪ {⊥} to explore the tree,
which agrees with the previous description as follows. For an explored vertex v the algorithm
chooses the smallest index of a previously unexplored child of v and queries the oracle for
that child. If no unexplored child exists, the function returns ⊥.

In the description of randomized algorithms, we also use the function RandomChild : V →
V ∪ {⊥}, which returns a child chosen uniformly at random among all children of v, which
means that it can in particular return previously explored children.

Isomorphism Invariance. So far we are lacking the crucial part of the model, namely
symmetries. The core property of our trees is that the presence of leaves with equal colors
implies the existence of symmetries of the trees. More specifically, they imply color-preserving
isomorphisms, defined as follows. An isomorphism φ between two trees T1 and T2 is a bijection
on vertices φ : V (T1) → V (T2), such that v is a child of v′ if and only if φ(v) is a child of
φ(v′). A color-preserving isomorphism furthermore requires that col(l) = col(φ(l)) holds for
all leaves l ∈ L(V1). This implies that leaves of a color can only be mapped to leaves of that
same color. If T1 = T2 we also call φ an automorphism or a symmetry.

The crucial property that we require for all black box search trees is that whenever two
leaves have the same color, we can derive an isomorphism:

▶ Axiom (Complete Isomorphism Invariance). If l1 ∈ T1, l2 ∈ T2 and col(l1) = col(l2), then
there exists a color-preserving isomorphism φ : V (T1)→ V (T2) such that φ(l1) = l2.

We should highlight that the axiom in particular has to hold for the case T1 = T2, yielding
automorphisms (possibly the identity if l1 = l2).

The crucial consequence of the axiom is that it allows us to draw conclusions about
the structure of unexplored parts of the search tree. For example, applying this knowledge
enables us to conclude that the last remaining node of Figure 1 is blue.

Throughout the paper, we assume that all inputs, may they consist of one or two trees,
adhere to this axiom. Also, all exploration algorithms operate in our exploration model.
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Algorithm 1 Random Walk of the Search Tree.

1 function RandomWalk(v)
Input : vertex v of a black box search tree
Output : a random leaf of the search tree rooted at v

2 while deg(v) ̸= 0 do v := RandomChild(v) ;
3 return v;

Isomorphism Exploration Problem. We are now ready to state our problem of interest for
black box search trees: the isomorphism exploration problem.

▶ Problem (Isomorphism Exploration). Given two search trees T1 and T2, compute leaves
l1 ∈ T1 and l2 ∈ T2 with col(l1) = col(l2), if they exist and return ⊥ otherwise.

For simplicity we will always assume that the trees are disjoint, that is V (T1) ∩ V (T2) = ∅.
This way we do not need to specify for oracle queries what tree they relate to.

There are other interesting problems, such as finding two leaves of the same color within
one tree, that can be defined within the model. These and their relationship are discussed in
Section 5.

While the tree model and the exploration problem can be defined it their own right, we
have a concrete motivation behind the definitions. Indeed, the motivation behind the specifics
of our model lies in so-called individualization-refinement algorithms, the prevailing method
to solve the graph isomorphism problem in practice. In fact, the isomorphism exploration
problem captures very closely the runtime of these algorithms. A more detailed explanation
of this is deferred to the end of the paper in Section 5.

However, let us briefly remark that in our context the requirement that inner nodes may
not have exactly one child is not only natural for our intended application but also crucial. If
we drop this requirement the nature of the problem changes dramatically and ray searching
as well as doubling techniques become relevant (see [3] for further pointers).

3 Upper Bounds

We provide upper bounds for the isomorphism exploration problem by developing appropriate
algorithms. Of course by querying the oracle for the input trees alternatingly, there is a
simple deterministic algorithm with a complexity of O(min{|T1|, |T2|}). For randomized
algorithms, we start with a Monte Carlo algorithm. Subsequently we argue that there is also
a Las Vegas algorithm, (i.e., an algorithm that always answers correctly) which still has a
good expected runtime if there is a modest bound on the maximum degree of the tree.

3.1 Probabilistic Bidirectional Search
The central idea of the probabilistic isomorphism test discussed in this section is to perform
random root to leaf walks in the black box search trees. The recursive procedure for such
walks is described in Algorithm 1 and simply works as follows: a random walk is performed
by starting in the root node and repeatedly choosing uniformly at random a child of the
current node, until a leaf is reached.

Repeatedly executing random walks, the probabilistic isomorphism test exploits the
following observation: assume we have two isomorphic trees T1, T2. Further assume we fix
some leaf l ∈ T1. We call all leaves l′ with col(l) = col(l′) occurrences of l. The algorithm
tries to find occurrences of l through random walks of the trees. Towards finding l, we
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T1 T2

auto iso

Figure 2 The probabilistic bidirectional search algorithm simultaneously samples leaves in both
trees using random walks. It then tests for automorphisms within a tree and isomorphisms across
trees to perform the probabilistic test.

always perform two random walks, one in T1 and one in T2. Since we assumed the trees are
isomorphic, we are equally likely to find an occurrence of l in T1 or in T2. But if the trees are
not isomorphic, we can find occurrences of l only in T1 (otherwise, due to the isomorphism
invariance axiom, T1 and T2 would be isomorphic).

Algorithm 2 describes a procedure based on this observation. Instead of using just a
single leaf l however, it uses two sets of leaves L1 and L2 for comparison. Whenever an
entirely new leaf is found (that is not an occurrence of a previously found leaf), it is added
to the respective set of leaves and used for subsequent testing.

If a leaf is an occurrence of a previously discovered leaf, it either reveals an isomorphism
between the trees or an automorphism (possibly the identity) of one of the trees. This is again
a consequence of the isomorphism invariance axiom. If an isomorphism1 is discovered, the
algorithm has found two equally colored leaves in both trees and terminates. Otherwise, after
a certain number of automorphisms have been found (the number depends on the desired
error bound), the algorithm concludes that the trees are probably non-isomorphic within the
given error bound. If the trees are isomorphic, we find automorphisms and isomorphisms
with equal probability. Hence, we are highly unlikely to discover many automorphisms
without also discovering an isomorphism. Figure 2 illustrates this key concept underlying
the algorithm. The following lemma provides a correctness and running time analysis.

▶ Lemma 1. Given black box search trees T1, T2 of heights h1, h2 and a desired error probabil-
ity ϵ, Algorithm 2 solves the isomorphism exploration problem with probability at least 1−ϵ with
an expected worst-case runtime bounded by O

(
⌈log2( 1

ϵ )⌉ ·max(h1, h2) ·min{
√
|T1|,

√
|T2|}

)
.

Proof. (Correctness.) First, observe that whenever a pair of leaves is returned their color is
checked for equality. This ensures that if the algorithm returns a pair of leaves, the answer is
always correct. The algorithm can therefore only fail to produce the correct output by not
finding a suitable pair of equally colored leaves despite the fact that they exist. In particular,
this implies that if the trees are non-isomorphic, the algorithm cannot err.

To bound the error probability, we view the computation as a sequence of tests. A test
repeatedly performs random walks of the search trees until one automorphism (possibly the
identity) or one isomorphism is found. Hence, each test can be described as a sequence
of j iterations. In each iteration j′ < j, neither l1 nor l2 produced an isomorphism or
automorphism. During a test, the algorithm neither terminates, nor is c incremented. In

1 Slightly abusing terminology we often use the term isomorphism to mean an isomorphism between the
two trees rather than an isomorphism that is an automorphism of one tree.
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Algorithm 2 Probabilistic Bidirectional Search.

1 function Isomorphism(T1, T2, ϵ)
Input : black box search trees T1, T2 and probability ϵ

Output : two leaves l1 ∈ T1, l2 ∈ T2 such that col(l1) = col(l2) with probability
at least 1− ϵ if such leaves exist, ⊥ otherwise

2 c := 0;
3 L1 := L2 := ∅;
4 while c ≤ ⌈− log2(ϵ)⌉ do
5 f(aut,1) := f(aut,2) := false; // f(aut,i) signals automorphism found in

Ti

6 l1 := RandomWalk(root of T1) ;
7 l2 := RandomWalk(root of T2) ;
8 if col(l1) = col(l2) then return (l1, l2);
9 for i ∈ {1, 2} do

10 for l′ ∈ L(3−i) do
11 if col(li) = col(l′) then return (li, l′) ;
12 if col(l3−i) = col(l′) then f(aut,(3−i)) := true ;
13 if ¬f(aut,1) then L1 := L1 ∪ {l1};
14 if ¬f(aut,2) then L2 := L2 ∪ {l2};
15 if f(aut,1) ∨ f(aut,2) then c := c + 1;
16 return ⊥;

iteration j of the test, an automorphism or isomorphism is found. Now, note that when
T1 and T2 are isomorphic, leaves contained in Li can equally likely be found in T1 or T2.
Hence, finding an automorphism or isomorphism in a test is equally likely. In particular, the
probability is 1

2 for finding an isomorphism for each i ∈ {1, 2} rather than an automorphism.
Anytime we find an automorphism but no isomorphism, we increment c by 1. We terminate
when c reaches e := ⌈− log2(ϵ)⌉. Assuming the trees are isomorphic, the probability of this
outcome is therefore bounded by ( 1

2 )e.
(Runtime.) We will calculate the expected number of leaves explored before termination.

We may consider the number of leaves instead of nodes by adding the multiplicative factor
max(h1, h2) for the maximum length of a root to leaf walk in the search trees to our runtime.
(We explain subsequently how to improve this factor.)

We may assume that the input trees are non-isomorphic and thus that the algorithm
terminates because the condition c > e = ⌈− log2(ϵ)⌉ was met. This suffices to give an upper
bound since earlier termination due to the discovery of isomorphisms clearly only leads to a
smaller expected running time.

Consider running 2
√
|Ti| iterations of the algorithm. We may assume that in the j-

th iteration L1 and L2 each contain at least j leaves: otherwise, some previous iteration
already discovered an automorphism or an isomorphism. Furthermore, we may assume that
the probability to find a leaf is uniform across all leaves: if probabilities are non-uniform,
the chance for finding some leaves repeatedly only increases (see [13]). The probability of
finding an automorphism in Li (with i ∈ {1, 2}) within j iterations is therefore at least j

|Ti| .
After

√
|Ti| iterations, the probability for finding an automorphism in Ti is then at least√

|Ti|
|Ti| = 1√

|Ti|
. Hence, the probability of finding no automorphism after 2

√
|Ti| many steps

is at most

ICALP 2021
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(√
|Ti| − 1√
|Ti|

)√|Ti|

≤ 1
e <

1
2 , where e is the Euler constant.

We view the computation as a series of batches consisting of 2
√
|Ti| iterations each. For each

of them, the probability for finding an automorphism is at least 1/2. For termination, we
need to find e many automorphisms. The expected number of batches is thus in O(e), which
shows that the overall number of iterations is in O(e · 2

√
|Ti|). ◀

We can improve the bound on the running time replacing the factor max{h1, h2} with the
factor log2(min{

√
|T1|,

√
|T2|}). To do so we alter the algorithm to take into account that

the trees may be of very different sizes and also the trees may be quite unbalanced. To
compensate for this we employ a doubling technique. However, we first need a bound for the
expected length of the random root to leaf walks used in our algorithm.

▶ Lemma 2. In an n-node black box search tree the expected length of a random root to leaf
walk (i.e., the running time of Algorithm 1) is in O(log n).

Proof. Let g(T ) be the expected length of a random root to leaf walk in tree T . Note that
the number of leaves t of a black box search tree is in Θ(n) for an n-node tree. We will argue
that among the trees T with t leaves the value g(T ) is maximal if T is a binary tree in which
all leaves are located on two consecutive levels. Since in such a tree even the maximum root
to leaf distance is O(log n), this proves the theorem.

First let T be a tree which has a vertex v with more than two children u1, . . . , uj . Let Ti

be the subtree of T rooted at ui and assume without loss of generality that g(Ti) < g(Tj)
for i < j. Alter the tree T into a new tree T ′ by inserting a new node w as a child of v and
then relocating the trees T1 and T2 so that their roots are now children of w instead of v.
Then, conditional on the event that the random walk reaches v, the expected length of the
walk has increased. Thus g(T ′) > g(T ). Since there are only finitely many trees with t leaves,
by induction it suffices now to consider binary trees.

Let T be a binary tree and suppose there are leaves ℓ1 and ℓ2 whose height differs by
more than 1. Say ℓ1 is on the level furthest from the root. There must be another leaf ℓ3
whose parent p is also the parent of ℓ1. Alter the tree to obtain a new tree T ′ by assigning ℓ2
as the new parent of ℓ3 and ℓ2. Note that p is further away from the root than ℓ2. Thus,
the tree being binary, the probability of a random walk reaching ℓ2 is larger than that of
reaching p. Therefore g(T ′) > g(T ). By induction this proves the theorem. ◀

▶ Theorem 3. There is an algorithm that solves the isomorphism exploration problem with
probability at least 1− ϵ and expected worst-case runtime bounded by
O
(
⌈log2( 1

ϵ )⌉ · log2(min{
√
|T1|,

√
|T2|}) ·min{

√
|T1|,

√
|T2|}

)
.

Proof. Set n = min{|T1|, |T2|}. For an integer s, we run the algorithm with a budget 2s

that limits the number of walks that can be performed in each tree to s. Furthermore, we
limit the length of the random walks by h = c log2(s) for some suitable constant determined
later. Whenever a random walk exceeds the length h, we abort the walk and ignore it. If
the algorithm does not terminate within the alloted budget then we double s and restart.
This guarantees that the number of queries does not exceed O(s log s) when we run it with
integer s.

At least in the smaller of the two trees, automorphisms are found with high probability
whenever s exceeds

√
n. Indeed, by Lemma 2 the average length of a random walk in the

smaller tree is in O(log n) = O(log
√

n). Thus, by Markov’s bound with probability 1/2, the
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random walks end in a leaf of height at most O(log n). Thus, by the Chernoff bound, for
sufficiently large s, with probability 1/2 at least 1/4 of the random walks end in a leaf of
height at most O(log n). We choose c so that this height is at most c log2(n).

In case the graphs are isomorphic, automorphisms and isomorphisms are still found with
equal probability. Thus our arguments for the probabilities remain in place since we essentially
perform the same algorithm in pruned subtrees. Regarding the running time, note that the
probability that the algorithm does not terminate with budget s decreases exponentially
with s. That is, the probability is in O(as/ min{

√
|T1|,
√

|T2|}) for some constant a < 1
once s > 2 min{

√
|T1|,

√
|T2|}. ◀

We should remark that the collision problem was previously exploited in the context of
the group isomorphism problem [16], but in that context structural information on the
corresponding trees is known. Also the idea of sampling with random walks was used for the
isomorphism algorithm in [17], but that algorithm only uses a single leaf in the search tree
and thus cannot achieve sublinear running time guarantees.

3.2 Las Vegas Bidirectional Search
The major drawback of the probabilistic bidirectional search algorithm is that it makes errors.
Considering trees of height 1 it is not difficult to see that a non-erring algorithm, even a
randomized one, needs to query a linear fraction of the leaves to distinguish non-isomorphic
trees. However, if the degree of the input graphs is restricted, we can beat this bound.

To do this, we basically strive to choose a specific set of nodes in both trees that ensures
a “collision” of leaves. This guarantees that we find equally colored leaves, if they exist.

We refer to the maximum degree among the considered trees as d. Our main new idea is
to split search trees in a balanced manner, followed by techniques to exploit isomorphism
invariance. We want to note that the techniques for exploiting isomorphism invariance are
inspired by techniques described in [12, 18], which essentially also perform splits. However,
rather than heuristically applying them, here we perform them in a balanced and systematic
way. Towards this goal we need the notion of a split (v, h), which is a node v ∈ Ti at level h

in one of the input trees. We define the cost of a split as a pair of numbers (s1, s2) as follows:
s1 is the size of the tree T3−i truncated at level h (i.e., the ball of radius h around the root).
If the tree Ti truncated at level h is non-isomorphic to the tree T3−i truncated at level h

then s2 := s1, otherwise s2 is the size of the subtree rooted in v ∈ Ti at level h.
The intuition for our exploration strategy is that s1 bounds the size of the subtree to

be explored in T3−i, while s2 bounds the size of the subtree to be explored in Ti (up to
logarithmic factors). While the special treatment of the case when the trees disagree on the
first h levels may seem cumbersome at first, the idea is that if trees already differ in the first
h levels, we can decide non-isomorphism by exploring all nodes in the subtree of Ti consisting
of the first h levels and then at most as many vertices within the first h levels of T3−i.

We call a split (v, h) a balanced split whenever its cost (s1, s2) satisfies max{s1, s2} ≤
4d ·min{

√
|T1|,

√
|T2|}. Note that slightly abusing terminology in a balanced split the subtree

with root v can be unproportionally large, as long as the two trees truncated at level h are
non-isomorphic and s1 is sufficiently small.

At this point it might neither be clear how to find a balanced split nor that a balanced
split always exists. However, assume for now that we are given a balanced split. In that
case we can efficiently solve isomorphism (even deterministically) as follows. We perform
breadth-first search up to level h in both trees T1 and T2, visiting all nodes N1 ⊆ V (T1) and
N2 ⊆ V (T2) up to and including level h. We can conclude non-isomorphism immediately
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T1 T2

iso

iso

Figure 3 State of the search trees after termination of Algorithm 4. If trees are isomorphic, a
node v1 in T1 at some level h must be mapped to some node v2 in T2 at level h by an isomorphism.
But if that is the case, then a leaf below v2 is isomorphic to some leaf below v1.

whenever the breadth-first search has finished level h and the two trees truncated at level h

are non-isomorphic. We can thus assume now that these trees are isomorphic. By exploring
all nodes up to level h (which is the level containing v), we surely explore the node v in one
of the trees. Without loss of generality assume in the following that v ∈ V (T1).

In T1, we explore all leaves Lv of the subtree rooted at one fixed node, namely v from
the balanced split. Let N ′

2 ⊆ N2 denote the set of nodes at level h in T2. Then, we explore
for each node v′ in N ′

2 one arbitrary leaf lv′ in the subtree rooted at v′. If the trees are
isomorphic, there must exist some v′ ∈ N ′

2 that can be mapped to v with an isomorphism.
Since we explored all leaves of v, the leaf lv′ with ancestor v′ must be isomorphic (equally
colored) to one of the leaves in Lv. Figure 3 illustrates how the collision of leaves is enforced
through the exploration strategy.

The procedure for exploring, within our model, the first h levels of the subtree rooted at
a particular node v is described in Algorithm 3. Starting from a given node v, it performs
breadth-first traversal until only leaves are left, or h levels have been explored. The algorithm
is also given a cost limit s and the algorithm aborts if this limit is reached.

Using Algorithm 3 as a subroutine, Algorithm 4 gives an implementation in the exploration
model of the entire algorithm just described.

Let us argue an upper bound for the runtime of Algorithm 4 (still assuming that we are
given a balanced split). From the definition of a balanced split, we can conclude that |Lv|
and |N2| are bounded by O(d ·min{

√
|T1|,

√
|T2|}). Since exploration up to level h in T1

(Line 3) may only explore as many nodes as the exploration in T2, we ensure that |N1| ≤ |N2|
holds. Now, the last phase probes at most O(d ·min{

√
|T1|,

√
|T2|}) many paths, giving an

overall upper bound of O
(

d · h(T2) ·min{
√
|T1|,

√
|T2|}

)
.

However, note that the factor h(T2) can be excessively large because the paths from
level h to the leaves can be of length Θ(|T2|). To prevent this, we alter the algorithm as
follows. In T2 we allocate a total budget of c′

√
|T2| log(|T2|) for some constant c′ for all the

level-h-to-leaves paths. By Lemma 2 the expected length of one such path is in O(log |T2|).
Thus, by linearity of expectation, the expected total cost for the paths is O(

√
|T2| log |T2|).

By Markov’s inequality for a suitable choice of c′, with probability 1/2 the total cost is
in O(

√
|T2| log |T2|). If the total cost exceeds this bound we simply restart the process.

Overall we can replace the factor h(T2) by O(log(|T2|)), giving O(d · log2(max{|T1|, |T2|}) ·
min{

√
|T1|,

√
|T2|}). More generally, it is easy to see that given a split of cost (s1, s2), the

modification of Algorithm 4 runs in O(log2(max{|T1|, |T2|}) · max{s1, s2}). There is an
interesting analogy to the runtime of the probabilistic bidirectional search algorithm. A main
difference is that the runtime directly depends on the maximum degree of the trees.
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Algorithm 3 Breadth-first Search: Computing a Subtree of the Search Tree.

1 function Subtree(v, h, s)
Input : start node v, height limit h, cost limit s

Output : (L, s′) where L is the set of leaves of the subtree under v up to level h

and s′ is the number of explored nodes, or (⊥,⊥) if cost limit did not
suffice

2 if h = 0 then return {v};
3 N := {(v, 0)};
4 L := {};
5 s′ := 0;
6 while N ̸= ∅ do
7 (v, h′) := Some(N) ; // pick arbitrary element of N

8 N := N ∖ {(v, h′)};
9 h′ := h′ + 1;

10 c := NewChild(v);
11 while c ̸= ⊥ do
12 s′ := s′ + 1;
13 if s′ > s then return (⊥,⊥) ;
14 if h′ = h ∨ deg(c) = 0 then L := L ∪ {c} ;
15 else N := N ∪ {(c, h′)} ;
16 c := NewChild(v);
17 return (L, s′);

The crucial question remains whether balanced splits always exist and whether they can
be found efficiently. We first address the question of existence of balanced splits.

▶ Lemma 4. Let T1, T2 be black box search trees with maximum degree d. Then there exists
a balanced split for search trees T1 and T2.

Moreover, if h′ is the maximal level for which the tree T1 truncated at level h′ is smaller
than 4d ·min{

√
|T1|,

√
|T2|}, the two subtrees up to level h′ are isomorphic, and there are

no leaves up to level h′, then at least 3
4 of the nodes at level h′ in the smaller tree constitute

balanced splits with cost s2 ≤ 2 min{
√
|T1|,

√
|T2|}.

Proof. We can assume w.l.o.g. that |T1| ≤ |T2|. Let h′ be the maximal level of T2 where the
size of the subtree up to level h′ is smaller than or equal to 4d ·min{

√
|T1|,

√
|T2|}.

If the subtrees up to level h′ in T1 and T2 differ, we have found a balanced split.
Furthermore, if there are leaves in the trees up to level h′, we have found a balanced split as
well. Hence, we assume that subtrees are isomorphic and no leaves are present.

We now argue that at least 3
4 of the nodes at level h′ in T1 constitute balanced splits.

Consider level h′ of T1 and T2. Let sh′ ≤ 4d ·min{
√
|T1|,

√
|T2|} be the size of the subtree

up to and including level h′ in T1. By assumption, the respective subtree of T2 is of equal
size. Furthermore, by assumption there are no leaves up to level h′, implying that the tree
contains at least nh′ ≥ 1

2 · sh′ nodes at level h′.
Towards a contradiction, we assume that sh′ ≤ 4 · min{

√
|T1|,

√
|T2|}. But then

we can increment h′: since sh′ ≤ 4 · min{
√
|T1|,

√
|T2|}, it holds that sh′+1 ≤ 4d ·

min{
√
|T1|,

√
|T2|}. This is a contradiction to the assumption that h′ is maximal. Hence,

we know 4 ·min{
√
|T1|,

√
|T2|} < sh′ ≤ 4d ·min{

√
|T1|,

√
|T2|}.
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Algorithm 4 Bidirectional Search.

1 function Isomorphism(T1, T2, v, h)
Input : black box search trees T1, T2 and a split v, h with v ∈ V (T1)
Output : two leaves l1 ∈ T1, l2 ∈ T2 such that col(l1) = col(l2) if they exist, ⊥

otherwise
2 (N2, s) := Subtree(root of T2, h,∞) ;
3 (N1, _) := Subtree(root of T1, h, s) ; // explores v

4 if N1 = ⊥ or T1 and T2 up to level h non-isomorphic then
5 return ⊥;
6 (Lv, _) := Subtree(v,∞,∞);
7 for n ∈ N2 do
8 l := RandomWalk(n); // can be an arbitrary, even determinsitic
9 for l′ ∈ Lv do

10 if col(l) = col(l′) then return (l, l′) ;
11 return ⊥;

We can immediately conclude nh′ ≥ 2 · min{
√
|T1|,

√
|T2|}. Naturally, there can be

at most 1
2 · min{

√
|T1|,

√
|T2|} corresponding subtrees which have a size greater than 2 ·

min{
√
|T1|,

√
|T2|} with roots at level h′ in T1 (since |T1| ≤ |T2|). Consequently, there must

be at least nh′ − 1
2 ·min{

√
|T1|,

√
|T2|} ≥ 3

4 nh′ subtrees rooted at level h′ with a size smaller
than 2 ·min{

√
|T1|,

√
|T2|}. This concludes the proof for both claims of the lemma. ◀

Thus, for all search trees there exist balanced splits. We now explain how to find balanced
splits efficiently. As shown by the lower bound in the next section, it is impossible to do this
deterministically in an adequate running time. We thus need a randomized procedure for
finding balanced splits. We will show that the following method is suitable. Rather than
pseudocode we give a high level description in Algorithm 5.

It turns out that when the cost limit is sufficiently high the algorithm finds balanced splits
with good probability. The intuition behind this is based on Lemma 4: once the algorithm
reaches a sufficiently high level of the tree with breadth-first search, the majority of nodes
constitute balanced splits.

From the description of the algorithm, the following corollary follows readily:

▶ Corollary 5. If Algorithm 5 chooses in some iteration an element v at some level h in Step 3
so that (v, h) constitutes a split with cost (s1, s2) and at this point s ≥ s2, then the algorithm
terminates after this iteration and returns a split with cost (s′

1, s′
2) where s′

1 = s1, s′
2 ≤ s2.

Proof. By assumption, (v, h) constitutes a split with cost (s1, s2). This implies that the entire
subtree below v is smaller than s2. Consequently, since s is large enough, Algorithm 5 explores
the entire subtree below v in Step 4, unless probing the other way in parallel terminates first:
this only contradicts our claim if it results in a more expensive split. However, since a more
costly split necessitates more steps to explore its respective subtree, running the search in
parallel ensures that the cheaper split is found first. Note that s1 = s′

1 holds for all nodes at
level h, concluding the proof. ◀

Using this, we can prove that Algorithm 5 terminates with a balanced split with good
probability, giving what we need for our isomorphism test:

▶ Lemma 6. Lemma If Algorithm 5 terminates with a split, it constitutes a balanced split
with a probability of at least 3

4 .
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Algorithm 5 Las Vegas Balanced Splits.

0 function SplitOrNotIsomorphic(T1, T2)
Input : Black box search trees T1 and T2.
Output : Split (v, h) or conclude T1 and T2 are non-isomorphic

1 Step 1. Set cost limit s← 1.
2 Step 2. Perform breadth-first search in T1 and T2, limiting the size of the

traversed subtree to s nodes (each). If after any level the breadth-first search
trees for T1 and T2 are non-isomorphic, terminate concluding non-isomorphism.
Let h denote the level reached so far. If breadth-first search discovers a leaf v at
or below level h, the algorithm terminates with the split (v, h).

3 Step 3. For each i ∈ {1, 2}, uniformly and independently at random choose a
node vi at level h in both trees. Compute breadth-first search starting from the
node vi in Ti, until one of the following conditions is met: (1) Breadth-first
search finishes exploring the entire subtree of vi, constituting the split (vi, h). (2)
Breadth-first search explored s nodes. This step is performed in parallel for both
i ∈ {1, 2} (i.e., each step alternates between the two), until one method succeeds
in finding a split or both finish unsuccessfully. If at any point a split is found,
the algorithm terminates immediately returning the split.

4 Step 4. Set s← 2s and jump to Step 2.

Proof. We can assume w.l.o.g. that |T1| ≤ |T2|. Let h′ be the maximal level of T2 where the
size of the subtree up to level h′ is smaller than or equal to 4d ·min{

√
|T1|,

√
|T2|}.

First, we observe that we may always assume that the breadth-first trees explored in T1
and T2 up to level h′ are isomorphic, since otherwise Algorithm 5 terminates immediately
with no split (Step 2). Furthermore, since Algorithm 5 terminates when discovering leaves
within the first h′ levels in the breadth-first exploration (Step 2) and this result in balanced
splits, we may assume that Algorithm 5 explores no leaves in the breadth-first search. We
note that if Algorithm 5 finds no leaves, each doubling of s can only increase the level h

reached by breadth-first search by at most 1.
Consider now Step 3 in the algorithm once level h′ is reached. The algorithm picks a node

of level h′ uniformly at random. We now argue that with probability at least 3
4 a node that is

the root of a small subtree is chosen, i.e., a subtree that is smaller than 2 ·min{
√
|T1|,

√
|T2|}.

This however follows readily from Lemma 4: since all subtrees at level h′ are chosen for
exploration with uniform probability, we can conclude that choosing a node that is the root
of such a small subtree in T1 has a probability of at least 3

4 . From the maximality of h′ we
can conclude that s ≥ 4 ·min{

√
|T1|,

√
|T2|} (see proof of Lemma 4). Hence, Corollary 5

ensures that the algorithm terminates with a balanced split when choosing a node that is
the root of a small subtree.

Furthermore, note that before level h′ is reached, it is not possible for Algorithm 5 to
return a split that is not a balanced split since the cost of probing is smaller than the bound
for balanced splits. ◀

At level h′ Algorithm 5 terminates with probability 3
4 . Careful inspection of the proof of

Lemma 4 and Lemma 6 reveals that Algorithm 5 also terminates with probability at least 3
4

after every consecutive doubling of s. While the cost (and therefore runtime) doubles, the
probability of not terminating quarters, which defines a geometric series: this results in an
expected runtime of Algorithm 5 bounded by O(d ·min{

√
|T1|,

√
|T2|}).
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Figure 4 A search tree from the class M3.

We now run Algorithm 5 and Algorithm 4 in series, which results in the desired algorithm:
if Algorithm 5 terminates with non-isomorphism we are done and otherwise Algorithm 4 tests
isomorphism with the provided split. We observe that whenever Algorithm 5 terminates with
a split, the costs of the split are also bounded by s: the execution time cannot be larger than
the cost of the returned split. Running the previously described modification of Algorithm 4
with a split of cost s incurs expected cost bounded by O(log2(max{

√
|T1|,

√
|T2|}) ·s). Using

this, the following theorem follows.

▶ Theorem 7. Let T1, T2 be black box search trees with maximum degree d. There exists
an algorithm for the isomorphism exploration problem with no error that has an expected
worst-case runtime bounded by O(d · log2(max{

√
|T1|,

√
|T2|}) ·min{

√
|T1|,

√
|T2|}).

4 Lower Bounds

We prove lower bounds within the confines of the model. Easy lower bounds can be obtained
by considering input trees of height 1, however, we are interested in bounds that also apply to
trees of bounded degree. We utilize the search tree familyMh for this purpose (see Figure 4).
A tree is in Mh, if it is a complete binary tree of height h such that leaves have pair-wise
distinct colors, i.e., for all (l1, l2) ∈ L(V (Mh))2 with l1 ̸= l2 it holds that col(l1) ̸= col(l2).

We remark that shrunken multipedes (see [14]) are graphs that produce search trees very
similar to those in Mh when used as input for IR algorithms.

Generally, due to their uniformity, trees from Mh can only be distinguished or proven
isomorphic by considering leaves. A traversal strategy must either conclude – with good
probability ( 1

2 )– that the set of leaves of the trees are entirely disjoint or equal. In the case
when trees are isomorphic, the traversal strategy must provide two leaves with equal colors.

4.1 Randomized Lower Bound
We prove lower bounds for the isomorphism problem for randomized algorithms that err.

We will use a particular type of exploration algorithm for our purposes. We call an
algorithm unadaptive on a class of inputs, if on each input from the class, the number of
queries is always the same (in particular independent of randomness involved in the algorithm)
and the queries performed by the algorithms on inputs from the class are independent of the
answers given by the oracle. (The queries may still depend on the randomness involved in
the algorithm.) This means in particular that even when matching leaves have been found,
the algorithm will simply continue to run, possibly making further queries, and at some later
point make a decision about the output.

▶ Lemma 8. If some (possibly randomized) algorithm A solves the isomorphism exploration
problem with expected run-time f(n) and error-probability ϵ then for each h ∈ Z there is
a randomized algorithm B that is unadaptive on the class of inputs Mh with a run-time
in O(f(n)) and error-probability ϵ.
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Proof. If an algorithm A solving the problem with expected run-time f(n) and error
probability ϵ is given, then by repeating the algorithm and using Markov’s inequality
we can design an algorithm A′ with a run-time bounded by O(f(n)) (not just in expectation)
that still has an error probability of ϵ. For this note that even if the trees have been partially
explored, it is possible to simulate the algorithm from scratch by pretending that explored
nodes of the tree are unexplored.

To obtain the algorithm B we alter algorithm A′ by simply pretending all discovered
leaves have a randomly chosen previously unused color. More precisely, when a leaf is
discovered, we pretend it has a color in {1, . . . , 2h} drawn independently and uniformly at
random from the colors that have not been used yet. We continue the simulation until A′

halts. We then claim the input to be a yes instance if we found matching leaves and a no
instance otherwise. This can only decrease the error probability in comparison to A′. ◀

For our lower bound we define a combinatorial problem of trees. Let Mh be the complete
binary tree of height h, so that trees in Mh are colored versions of Mh. For two rooted
trees U, S let Inj(U, S) be the set of root respecting injective homomorphisms from U to S.
That is, the set contains the injective maps from V (U) to V (S) that map the root of U to
the root of S and that map an edge of U to an edge of S.

From now on fix a height h and consider the tree Mh. Let Uh be the set of trees U

for which Inj(U, Mh) is non-empty. This set contains exactly the trees isomorphic to a
subtree of Mh. For two trees U1, U2 ∈ Uh we let P (h, U1, U2) be the probability that for
uniformly chosen α1 ∈ Inj(U1, Mh) and independently, uniformly chosen α2 ∈ Inj(U2, Mh)
the set L(Mh) ∩ α1(V (U1)) ∩ α2(V (U2)) is non-empty. For integers a, b define

P (h, a, b) = max {P (U1, U2) | |L(U1)| = a ∧ |L(U2)| = b} .

Let P (h, m) = max{P (h, a, b) | a + b ≤ m}. We will argue that P (h, m) constitutes an upper
bound on the probability of success for a randomized algorithm for isomorphism exploration
that queries at most m nodes.

▶ Lemma 9. Let B be an algorithm that is unadaptive on the class of inputs from Mh.
Suppose on inputs from Mh algorithm B makes m queries and has error probability ϵ.
Then 1− ϵ ≤ P (h, m).

Proof. Consider the behavior of algorithm B on inputs fromMh with the colors {1, . . . , 2h}
being randomly assigned bijectively to the leaves. The algorithm B explores subtrees T ′

1
and T ′

2, one in each of the input trees. Since the algorithm makes m queries, together these
trees can have at most m leaves. Our argument groups the possibilities in which B can query
the oracle according to the topology of the two subtrees.

For two trees U1 and U2 consider the event EU1,U2 that T ′
1 is isomorphic to U1 and T ′

2
is isomorphic to U2. The event can of course only occur if |U1| + |U2| ≤ m. Recall that
algorithm B, being unadaptive, does not use the information on colors of the leaves provided
by the oracle until the very end. Thus, the probability that B finds matching leaves on
isomorphic inputs conditional to event EU1,U2 is P (h, U1, U2).

We conclude that the probability that B finds matching leaves2 is at most P (h, m). ◀

We show that the trees need to have sufficiently many leaves for P (h, T1, T2) to be large.

2 In our problem definition the algorithm has to find two leaves of the same color. If the task only asked
to decide whether the graphs are isomorphic, the algorithm could still guess, which would incur another
factor of 1/2.

ICALP 2021



16:16 Search Problems in Trees with Symmetries

▶ Lemma 10. P (h, a, b) ≤ ab
2h .

Proof. For two trees T1 and T2 let E(T1, T2) be the expected number of elements contained
in the set L(Mh) ∩ α1(V (T1)) ∩ α2(V (T2)), where α1 and α2 are taken independently and
uniformly from Inj(T1,Mh) and Inj(T2,Mh), respectively. We define E(h, a, b) in analogy
to P (h, a, b) as the maximum E(T1, T2) over all choices of T1 and T2 with |L(T1)| = a

and |L(T2)| = b. By the Markov inequality it suffices to show that E(h, a, b) ≤ ab
2h .

Only vertices that are of distance h from the root in Ti can be mapped to a vertex
in L(Mh). The automorphism group of Mh can map each leaf to every other leaf (i.e.,
acts transitively on the leaves). The graph Mh has 2h leaves. Thus, for vertices v1 ∈ T1
and v2 ∈ T2 both of distance h from the root, the probability that α(v1) = α(v2) is at
most 1

2h .
By linearity of expectation the expected number of pairs (v1, v2) for which α(v1) =

α(v2) ∈ L(Mh) is at most 1
2h · a · b. ◀

▶ Theorem 11 (randomized lower bound). In the black box search tree model, a (possibly
randomized making errors) traversal strategy runs in Ω(min{

√
|T1|,

√
|T2|}) worst-case cost

for the isomorphism exploration problem, even on binary trees.

Proof. By Lemma 8, it suffices to show the statement for an unadaptive algorithm B on
Mh. By Lemma 10, if B queries less than 1

2
√
|Mh| nodes then both trees T1 and T2

uncovered by B have at most 1
2
√
|Mh| leaves. But by the previous lemma we know that

P (h, 1
2
√
|Mh|, 1

2
√
|Mh|) ≤ 1

4 , which shows that the probability that B finds matching
leaves in the two trees is at most 1

4 . This shows that B cannot find matching leaves with
probability 1

2 . ◀

4.2 Deterministic Lower Bound

We exploit the randomized lower bound to obtain a strengthened deterministic one.

▶ Theorem 12 (deterministic lower bound). In the black box search tree model, a deterministic
traversal strategy runs in Ω(min{|T1|, |T2|}) worst-case cost for the isomorphism exploration
problem, even on binary trees.

Proof. Consider a deterministic algorithm on inputs from M2h, where h = log(n) and n is
a power of 2. By Theorem 11 there are instances consisting of pairs of trees T1, T2 on which
the algorithm makes Θ(

√
22 log(n)) = Θ(n) queries in total. We know from the proof that the

trees Ti can be chosen from M2h. For each i ∈ {1, 2}, remove from Ti all non-root vertices
whose parents have not been explored (and thus who have not been explored either). Let T ′

i

be the resulting tree, respectively for each i. On the input pair (T ′
1, T ′

2) the algorithm behaves
exactly the same as on (T1, T2) and thus also makes Θ(n) queries in total, however T ′

i has
at most O(n) vertices. This shows that on (T ′

1, T ′
2) the algorithm makes Ω(min{|T ′

1|, |T ′
2|})

queries. ◀

Note that balanced splits for the trees of Mh can be found almost trivially: after finding out
the height h through a single walk, an arbitrary node at level h

2 will induce a balanced split.
This shows that while Mh constitutes worst-case examples for probabilistic algorithms, this
is not true for deterministic algorithms. And indeed, our deterministic lower bound applies
to subtrees of trees in Mh which have leaves on different levels.
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5 Motivation Behind the Model

The motivation behind the specifics of our model lies in so-called individualization-refinement
(IR) algorithms, the prevailing method to solve the graph isomorphism problem in practice.
We explain that and why the isomorphism exploration problem captures the runtime of these
algorithms, but refer to [11, 12] for a formal definition of IR algorithms.

Currently all practical state-of-the-art tools are based on the IR paradigm. Invariably,
these algorithms perform a type of backtracking procedure to explore the structure of input
graphs. Naturally, this leads to a search tree. While work is performed by the algorithms in
each node of the search tree, the dominating factor for the running time is the size of the
tree itself. Specifically, the running time per node is almost linear. However, the size of the
search tree is exponential in the worst case [14].

When solving for isomorphisms of two graphs we get two search trees, one for each of the
graphs. The leaves of the search trees correspond to complete invariants (described in more
detail below), i.e., colors in our terminology. The task of finding isomorphisms in the graphs
translates to finding pairs of leaves of equal color in the trees.

As mentioned earlier, nowadays there are various software packages implementing the
paradigm in different flavors. These packages differ in many details (see below), of which the
most crucial aspect is the traversal strategy through the tree.

The Search Tree. While the problem definition, algorithms, and lower bounds in this
paper do not require further knowledge on how IR algorithms operate, we want to give
some intuition about the composition of the search tree and in particular where the axiom
regarding complete isomorphism invariance comes from.

The IR search tree is the recursion tree of a backtracking procedure whose goal it is
to analyze the structure of an input graph (two input graphs in case of the isomorphism
problem). Initially, forming the root of the tree, the algorithm distinguishes the vertices
of the input graph using readily computed invariants. For example the vertices are easily
distinguished by their degree, but other information is also used. The algorithm typically used
for this is the color refinement algorithm (also known as vertex classification or 1-dimensional
Weisfeiler-Leman algorithm). In case all vertices are distinguished from another, isomorphism
can easily be checked, and no recursion is needed. Otherwise the algorithm starts to pick a
class of indistinguishable vertices and for each vertex in this class, one at a time, artificially
alters the vertex to make it distinguishable. This process is called individualization (hence
the name individualization-refinement algorithm). Each individualization causes a recursive
call, which corresponds to a child of the current node in the search tree. In the recursion, the
refinement algorithm is called again to check if new information propagates through the graph
and can be used to distinguish vertices further. As the entire procedure proceeds recursively
it allows us to distinguish more and more vertices from each other. Recursion continues until
all vertices have been distinguished from one another, i.e., the partition of the vertices into
different types is discrete. The leaves of the IR search tree therefore correspond to discrete
partitions. To the leaves, because all vertices have been distinguished, we can associate an
invariant that completely describes the structure. We call this a complete invariant. This
invariant corresponds to the color of the leaf in our exploration model.

The defining property of these algorithms is that all computations are made in an
isomorphism-invariant fashion. This is precisely what leads to our invariance axiom. Indeed,
checking isomorphism between two leaves l1, l2 in the backtracking tree then becomes trivial
since in each leaf all vertices have been distinguished from one another. In particular there
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can be only one possible isomorphism, which would have to map vertices of the same type to
each other. If an isomorphism exists this implies that the individualization choices made to
get to l1 can be mapped to the choices made to get to l2. The isomorphism-invariance of the
entire procedure guarantees that for matching leaves there is an automorphism (isomorphism
when considering trees from different graphs) mapping one leaf to the other.

While, depending on the input, the backtracking trees can come in many shapes and sizes,
we want to record several properties. For starters internal vertices cannot have only one child
since there is no reason to individualize vertices in singleton classes. Furthermore the number
of children a node in the search tree can have is certainly bounded by the number of vertices
of the input graph. However, in practice most nodes have significantly fewer children.

The size of the search tree is the dominating factor of the running time. In fact, for
most implementations the non-recursive work can be polynomially bounded. Thus, up to a
polynomial factor, the running time agrees with the number of vertices of the search tree
that are traversed (see for example [17, Theorem 9] and [15]).

Practical Heuristics. A closer look at the practical tools reveals that for most graphs they
do not traverse the entire tree. Two main heuristics are commonly applied to prune the
search tree, called invariant pruning and automorphism pruning. The reader familiar with IR
tools may worry that our model omits these two crucial aspects. However, in the following,
we explain why both of these pruning techniques are captured by the model.

First of all, by using invariant pruning, IR algorithms are sometimes able to cut off parts
of the search tree at inner nodes. This is done using invariants which yield different values
at different parts of the tree. In principle this process could be emulated in the model by
adding colors to the inner nodes. When doing so, it is crucial that the invariance axiom does
not apply to the inner nodes, since only for leaves the associated invariants are complete.
We could extend all results from this paper to the adapted model. In any case, it turns out
that to some extent this kind of mechanism is already captured in our model since it allows
inner vertices to have different degrees. Degrees of vertices can serve to distinguish inner
nodes exactly in the same fashion as invariants do.

Second of all, by using discovered automorphisms of the graph, automorphism pruning is
a method to skip branches that we already know are symmetric. Another way of seeing this
is that automorphisms allow us to form quotients of the search tree. In our setting, we can
simply define the trees to be the quotients of the original search trees. This simulates perfect
automorphism pruning. It does not explain how to find one or all automorphisms in one of
the trees, but these kinds of problems are closely linked to finding isomorphisms and can
also be expressed in our search tree model (see below).

In summary, both types of heuristics are captured by our model.

Traversal Strategies in Practical Tools. There are only two main traversal strategies used
by competitive practical tools. In fact, with the exception discussed below, all competitive
tools essentially traverse the search tree using depth-first search [5, 6, 8, 12].

However, the practical solver Traces introduced a radically different strategy, which turns
out to be much more effective in most practical cases: breadth-first traversal is combined with
random walks of the search trees [12, 15]. The idea is that breadth-first traversal maximizes
applicability of pruning rules, while random walks are used to discover automorphisms for
pruning. While crucially exploiting randomization, the tool does not make errors.
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Related Problems. Practical algorithms mostly do not decide the graph isomorphism
problem, but rather solve one of two strongly related types of problems. In the following, we
discuss these related problems and how they can be modeled using black box search trees.

The automorphism group problem requires computation of the entire automorphism group
of a graph. This problem is closely related to the graph isomorphism problem and there are
polynomial-time Turing reductions from each problem to the other [9]. Regarding IR search
trees, in our model the problem corresponds to finding all leaves of an arbitrary color.

Alternatively, we can solve the asymmetry problem or equivalently the problem of searching
for a non-trivial graph automorphism. In our model this translates to finding two distinct
leaves of the same color if they exist. In IR algorithms, it suffices to solve the asymmetry
problem. When non-trivial automorphisms are discovered, a wrapper algorithm may then
remove the symmetry from the search tree and repeat the task on a quotient of the search
tree. Such a wrapper algorithm has to repeat the problem at most a number of times that
is quasi-linear in the order of the graph (repetitions are directly tied to the length of the
longest subgroup series). Overall, our results on traversal strategies immediately carry over
to the various tasks regarding automorphism group computations.

Another important problem in practice is canonization. The goal here is essentially
to find a normal form for graphs by finding a canonical ordering of the vertices. This
way isomorphism testing reduces to equality testing of the normal forms. Hence, graph
isomorphism reduces to canonization in polynomial-time, but we currently do not know
whether graph isomorphism and canonization are polynomial-time equivalent.

In IR algorithms, this problem can be modeled as follows. The solvers are now executed
on a single graph, yielding a single search tree. The goal is to return a particular leaf in the
given input trees. The requirement is that the output has to be consistent across different
but isomorphic inputs. It is not clear to us whether any of the techniques for sublinear
exploration developed in this paper can be transferred to the canonization problem.

6 Conclusion and Future Work

We designed an abstract model that captures the backtracking behavior of IR algorithms
and proved bounds for various scenarios. We want to stress the fact that the class of trees
Mh used throughout the paper for lower bound constructions models actual recursion trees
of the IR algorithms. In fact the trees closely resemble those arising form so-called shrunken
multipede graphs of [14], which form worst case inputs for all IR algorithms. These recursion
trees are in particular of degree at most 4 and have exponential size. In other words, our
worst case lower bounds apply to instances stemming from true inputs to IR algorithms.

Using our new insights we can explain why some of the strategies used by the currently
fastest practical solver Traces turn out to be highly efficient. As discussed previously,
Traces uses breadth-first search intertwined with random walks of the search tree. In
particular, this is often done in a cost balancing manner, such that the number of random
walks is proportional to the cost of breadth-first search. This in turn often leads to the
automorphism group being found in time proportional to the square root of the search
tree size. For sophisticated pieces of software such as Traces, the traversal strategy is
of course not the only deciding factor when it comes to running time. However, generally,
the experimental paths often enable Traces to discover automorphisms much earlier than
solvers solely utilizing depth-first traversal. Hence automorphisms are available more quickly
for pruning. Overall, in some sense, Traces emulates some of the techniques described in
our Monte Carlo algorithm.
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Interestingly, Traces also sometimes uses some techniques of the Las Vegas algorithm we
describe. Specifically it performs splits in its “special traversal” strategy for automorphism
groups (see [12]). When Traces detects a leaf on level h with parent v, in our terminology
it executes the split (v, h− 1). Since many graphs in the benchmark suite of [12] have search
trees of height 2 or 3, Traces in practice turns out to frequently perform splits that are
fairly balanced. This results in significant speedups over other solvers (e.g., see runtime on
combinatorial graphs with switched edges in [12]).

In subsequent work, we were able to show that an implementation of the Monte Carlo
approach indeed outperforms state-of-the-art solutions for isomorphism testing in practice.
Interestingly, besides superior worst-case guarantees, the approach has further practical
advantages that simplify its implementation over state-of-the-art tools [1].

Regarding future work, a theoretical question that remains is whether sublinear traversal
strategies for the graph canonization problem are possible. Furthermore, the challenge
remains to close the gap of logarithmic factors between our upper and lower bounds. Also
one might want to address the fact that the size of the larger tree rather than the size of the
smaller tree appears in the upper bound of the Las Vegas algorithm.
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