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—— Abstract

The problem of solving linear systems is one of the most fundamental problems in computer science,
where given a satisfiable linear system (A4,b), for A € R"*™ and b € R", we wish to find a vector
x € R™ such that Az = b. The current best algorithms for solving dense linear systems reduce
the problem to matrix multiplication, and run in time O(n®). We consider the problem of finding
e-approximate solutions to linear systems with respect to the Lz-norm, that is, given a satisfiable
linear system (A € R"*™ b € R"), find an = € R™ such that ||Az — b||2 < £||b||2. Our main result is
a fine-grained reduction from computing the rank of a matrix to finding e-approximate solutions to
linear systems. In particular, if the best known O(nw) time algorithm for computing the rank of
n x O(n) matrices is optimal (which we conjecture is true), then finding an e-approximate solution to
a dense linear system also requires Q(n®) time, even for € as large as (1 — 1/poly(n)). We also prove
(under some modified conjectures for the rank-finding problem) optimal hardness of approximation
for sparse linear systems, linear systems over positive semidefinite matrices and well-conditioned
linear systems. At the heart of our results is a novel reduction from the rank problem to a decision
version of the approximate linear systems problem. This reduction preserves properties such as
matrix sparsity and bit complexity.
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1 Introduction

Algorithms for solving linear equations are one of the most fundamental primitives in
computer science. Formally this is the problem where, given a linear system (A4, b), where
A € R™*" ig a real matrix and b € R™ is a vector in the column space of A, we need to
find a vector x € R™ such that Az = b. Gaussian elimination running in time! O(n?3) was
one of the first algorithms for this problem. Hopcraft and Bunch [9] reduced solving linear
equations to fast matrix multiplication of two n x n matrices [35, 14, 34, 37, 17, 3] which
can be done in m(n) = n“, where w is the matrix multiplication constant. The current best
known upper bound on w is approximately 2.372.. [3]. The best known algorithms for solving
linear systems reduce the problem to matrix multiplication, but there is no known reduction
in the other direction. We study the complexity of finding approximate solutions to linear
systems (defined more precisely later) under the following conjecture:

L Here we are discussing algorithms and hardness over the Real RAM, unless stated otherwise. We discuss
the Word RAM in more detail in Section 1.3.
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» Conjecture 1.1 (Rank-Finding Conjecture over RealRAM). Finding the rank of a matriz
A € R™*™ with m = O(n) in RealRAM is Q(n“)-hard.

The problem of finding the rank of a matrix is a central problem in linear algebra. It is
known that this problem can be reduced to fast matrix multiplication [9, 20], hence there
exist algorithms for the rank-finding algorithm that run in time O(n®). There are known
faster algorithms for restricted classes of matrices. For sparse matrices we know of O(n?)
algorithms [36] and for low-rank matrices the O(n? +rank(A4)%)-time algorithms of [21, 15, 11]
=n'~2M), No improvement over the O(n®)-runtime is
known for general matrices though. We conjecture that this run time is in fact optimal for
general matrices. The rank-finding problem is equivalent to checking whether the determinant
of a matrix is 0. We get some evidence towards the truth of our conjecture by considering
the computational model of arithmetic circuits?: In a seminal work Baur and Strassen [7]

run in time n*~(1) when rank(A)

linearly reduced the the problem of matrix multiplication to the problem of computing the
determinant, thus showing that the latter problem requires arithmetic circuits of size as
large as those required for matrix multiplication. Furthermore, this is a central conjecture
because falsifying it (getting faster algorithms for the rank-finding problem) would yield
better algorithms for important problems like finding the size of a maximum matching in a
graph [26, 27]. 3 For some direct evidence: there has been a line of work by Musco et al [28]
that gives algorithms to approximate the Schatten p-norms in time better that O(n*) when
p > 0. But at p = 0, the problem of finding the Schatten p-norm is the same as finding the
rank of the matrix, and their algorithms run in time Q(n“). Hence they are not able to beat
the runtime of O(n*) to approximate the rank of a matrix, let alone determine it exactly.

Conjecture 1.1 allows us to study the hardness of linear system solving and related linear
algebraic problems in the style of fine-grained complexity [38]. We show that the conjecture
directly implies fl(n“’)—hardness of finding exact solutions to linear systems. One could hope
to get faster algorithms though when allowed to find an approximate solution to the linear
system. In this paper, we consider the problem of finding approximate solutions to linear
systems. Specifically, we consider the following notion of approximation:

» Definition 1.2 (¢(n)-Approximate Linear Search). For a function € : N — [0, 1], the e-

Approzimate Linear Search problem is defined as, given a satisfiable* linear system (A €
ROM>n b find an x € R™ such that || Az — bl|y < e(n)||b]|2.

Note that the all 0’s vector x = 0™ is a l-approximate solution to any linear system
as ||[A0™ — b|| = ||b]|2. Our main result shows that doing barely better than the trivial
approximation is hard: (1 — 1/n'%%)-Approximate Linear Search i.e. finding an x such that
|Az — b|| < (1 — 1/n1%9)||b]]5. is Q(n*) hard under Conjecture 1.1.

Spielman and Teng [32] gave nearly linear-time algorithms (O(n?1log(1/e(n)))-time) for
finding (n)-approximate solutions to Laplacian linear-systems and this result was built upon
by many works [23, 12] to give such algorithms for other restricted classes of linear systems.
Our result shows that under the hardness of the rank-finding problem, these algorithms
cannot be extended to general linear systems. As mentioned above, we conditionally rule out
O(n?)-time algorithms for finding &(n)-approximate solutions to general linear systems even
for e(n) =1 — 1/nt0.

2 Such a reduction is unknown in the RealRAM model.

3 This is because maximum matching algorithms has a randomized reduction to the rank-finding problem.

4 Keeping with the convention of promise problems, we will assume that when given an unsatisfiable
instance the algorithm is allowed to output an arbitrary vector.
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We also extend our results to give optimal conditional hardness of approximation (under

analogous conjectures for the rank-finding problem) for restricted classes of linear systems:

sparse linear systems, linear systems over positive-semidefinite matrices, and well-conditioned
linear systems.

Recently there has been a lot of progress in relating the exact time-complexities of various
problems that have polynomial running times. Although there has been success in a variety
of graph-theoretic, geometric and string problems [31, 2, 6], there are very few fine grained
reductions from the assumptions therein to linear algebraic problems, an example being, the

work of Musco et al [28] that showed conditional lower bounds for spectrum approximation.

The theory of probabilistically checkable proofs [5, 18] was instrumental in proving a
host of NP-hardness of approximation results. Though this theory was very successful in
settling the time-complexity for approximation problems in NP, there are inherent limitations
to extend these techniques to problems in P. Towards this, there has been recent progress
for establishing hardness of approximation results for problems in P [1, 10, 22]. Our paper
makes further progress in this direction.

1.1 Our results

The table below gives a summary of our hardness results over the RealRAM.

Table 1 -ALS refers to e-Approximate Linear Search Problem. Our hardness results are under
different conjectures, see statements for more details. All hardness results are fore =1 —1/ nt00,
while all algorithms are for the much (apriori) harder exact search problem. For small values of
condition number better algorithms are known [19] but for our regime of either unbounded or poly(n)
condition number the above algorithms are the best known.

Problem Hardness Algorithm

joll

e-ALS (n®) (Corollary 4.2) Oo(n*) ([9])

o}

Sparse e-ALS (n?) (Corollary 4.4) O(n?)([19])

Well-conditioned e-ALS (Definition 4.13) | Q(n*) (Corollary 4.17)

- O(n*) ([9))
e-ALS with PSD matrix Q(n*) (Corollary 4.10)

We consider the question: Can one get fast approximate linear system solvers for general
linear systems that run in time 6(n*)? We answer this question in the negative, under
Conjecture 1.1. In this section we discuss the hardness result for solving general linear
systems approximately (first row of Table 1). We discuss the other results of the table in
Section 1.2.

We refer to the decision version of the e-approximate linear search problem as Approximate
Linear Decision problem (formally defined in Definition 1.4). We prove all our hardness
results by showing a reduction from the rank-finding problem to the Approximate Linear
Decision problem. We now state the lemma that proves our main reduction:

» Theorem 1.3 (Main reduction: Informal). There exists a randomized Turing reduction
from the rank-finding problem on A € R™*™ to the (1 — 1/n!%)-Approzimate linear decision
problem® on square matrices with sparsity O(nnz(A)) and dimension O(max(m,n)). The
reduction runs in time O(nnz(A)) and works with high probability.

5 The constant 100 here is arbitrary and in fact our reduction works for all constants.
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Our reduction

At the heart of our results lies an “exact to approximate” reduction for deciding the satis-
fiability of linear systems. For showing hardness of finding approximate solutions, we are
able to use this philosophy of “increasing the gap” between the YES and NO instances. We
consider the following natural decision analogue of the e-approximate search problem:

» Definition 1.4 (¢(n)-Approximate Linear Decision problem [25]). For a functione : N — [0, 1],
given a linear system (A € R™*™ b € R™), with m = O(n) and the promise that it falls into
one of the following two sets of instances:

1. YES instance: There exists an x € R™ such that Ax = b.

2. NO instances: For all x € R™, ||Az — b||2 > £(n)||b]|2,

decide whether (A,b) is a YES instance or a NO instance. We will refer to e(n) as the “gap’
of the instance.

4

We show that the rank-finding problem reduces to the (1 — 1/n!%)-approximate linear
decision problem described above. We also show that the rank-finding problem is equivalent
to the ezact linear decision problem i.e. the problem of deciding satisfiability of linear systems.
Hence our reduction can be interpreted as increasing the gap between the YES/NO cases
from almost 0 (can be arbitrarily small as we are working over the RealRAM) to 1 — 1/n!%.
We increase this gap in two stages, first to e(n) = 1/n°() and then to 1 — 1/n'%°. This gives
conditional Q(n®)-hardness of the (1 — 1/n!%)-approximate linear decision problem.

Even though the main reduction discussed here is from the rank-finding problem, we are
also able to give a search to search reduction from the 1 /no(l)—approximate linear search
problem to the (1 — 1/n1%%)-approximate linear search (see Corollary 1.6).

We will now discuss the corollaries of the main reduction outlined above. Given The-
orem 1.3, we perform a standard decision to search reduction (Lemma 4.1) to get optimal hard-
ness of approximation for the (1 —1/n!%)-approximate search problem, under Conjecture 1.1.
Thus under the rank finding conjecture, this reduction rules out all (1—1/n'%)-approximation
algorithms that run in time 6(n*).

» Corollary 1.5 (Informal). Under Conjecture 1.1, for all constants ¢ > 0, the (1 — 1/n'09)-
approximate linear search problem is Q(nw)—hard in the RealRAM model of computation.

The second step of our reduction can also be used to increase the gap of the 1/n°M)-

Approximate Linear Search problem from 1/ nPM to1 -1 /n190. This gives us the following
corollary:

» Corollary 1.6 (Search to Search reduction: Informal). If for any constant a there exists an
O(n%)-time algorithm for (1 — 1/n1%)-approximate linear search problem then there exists
an O(n®)-time algorithm for the 1/n'°°-approzvimate linear search problem.

Our hardness result is tight because there exist algorithms which solve the (1 — 1/n¢)-
Approximate Linear Search problem in O(n®) over the RealRAM. In fact, one can solve the
more general problem of linear regression, i.e. given a (possibly unsatisfiable) linear system
(A,b), find an 2 that minimizes ||Az — b||2, in time O(n®).

1.2 Extensions

We prove several extensions of our main theorem using the reduction discussed above. We
can modify our main reduction so that it preserves the sparsity and condition number of the
original instance to get the results for sparse and well-conditioned linear systems. To get
hardness for PSD linear systems we need additional ideas beyond this reduction. We get the
following results:
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Sparse Linear Systems

Linear equation solving has also been studied in the case of sparse linear systems. We know
of O(nnz(A)n) time algorithms for solving a linear system (A € RO *" p) where nnz(A)
denotes the number of non-zero entries of A, that use Conjugate Gradient Descent [19], so
that when the sparsity of A is O(n), these algorithms run in time O(n?). Our reduction
(discussed above), preserves the sparsity of the original matrix A and thus reduces the exact
problem over sparse linear systems to the approximate problem over sparse ones. We start
with an analogous conjecture to Conjecture 1.1 for finding the rank of a sparse matrix:

» Conjecture 1.7 (Rank-finding Conjecture for Sparse matrices over RealRAM). Finding the
rank of a matriz A € R™™ with m = O(n) and nnzA) = O(n) in RealRAM is Q(n?)-hard.

Under the above conjecture we show (see Corollary 4.4) that solving (1 — 1/n!%)-
Approximate Linear Search problems on sparse linear systems is (n?)-hard, which is optimal
up to poly-logarithmic factors.

Positive Semi-Definite Linear systems

100)_approximate linear search problem when the

We give optimal hardness for the (1 —1/n
matrix A is restricted to be positive semidefinite (see Corollary 4.10). Recently there has
been a lot of work for getting nearly linear-time approximation algorithms for restricted
classes of matrices. For a slightly more restricted class of linear systems than PSD ones,
called Strongly Diagonally Dominant (SDD) systems, Spielman and Teng gave near-linear
time approximate solvers [32], leaving near-linear time approximation algorithms for PSD
linear systems as the next open problem. In fact, resolving the time-complexity for PSD
linear systems was in mentioned as an open problem in [4], where they gave unconditional
hardness for PSD linear systems for sublinear-time algorithms. Interestingly, we show that
under Conjecture 4.6, such solvers are not possible for PSD linear systems, thus giving a
conditional separation of the time complexity required for approximately solving SDD linear
systems versus PSD ones.

Well-conditioned linear systems

We now turn our attention to the problem of solving well-conditioned (polynomially bounded
condition number) linear systems approximately. In Section 4.4, we give optimal conditional
hardness of approximation for linear systems over matrices with polynomially bounded
condition number under the Q(n®)-hardness of the well-conditioned rank-finding problem.

We also prove the following analogue of Corollary 1.6 which amplifies the gap for the
search problem on well-conditioned matrices:

» Corollary 1.8. If there exists as O(n®) time algorithm for Well-conditioned (1 — 1/n)-
Approximate Linear Search then there exists a O(n®)-time algorithm for Well-conditioned
(1/n)-Approzimate Linear Search problem.

1.3 Reductions over the WordRAM

Our main reduction can be modified to preserve the bit-complexity of the original matrix.
In Section 5, we show analogous results for all the problems considered above over the
WordRAM. We show that under analogous conjectures for the rank-finding problem over
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the WordRAM, the problem of finding (1 — 1/n!%)-approximate solutions to linear systems
with bit-complexity O(logn) is 2(n“)-hard over the WordRAM. Our hardness result is tight
up to polylogarithmic factors because there exist O(n*)-time algorithms for exactly solving

linear systems on the WordRAM [33, 29, 8].

1.4 Further applications and related work

Recently, there has been a lot of progress on the algorithmic front for finding approximate
solutions to restricted classes of linear systems (A,b). In a breakthrough work, Spielman
and Teng [32] obtained O(nnz(A)log(1/e(n)))-time algorithms for finding &(n)-approximate
solution to Laplacian systems and Strongly Diagonally Dominant (SDD) systems. This
result was followed up by algorithms for more general classes of linear systems such as
Connection Laplacians [23] and Directed Laplacian systems [13]. This raised the hope that
such approximation algorithms could be obtained for more general classes of matrices such as
truss stiffness matrices and total variation matrices. Kyng and Zhang [25] showed that such
algorithms for these slightly more general classes would imply approximation algorithms for
general linear systems. Therefore, by composing our reduction with theirs, one immediate
corollary we get is that solving approximately for these classes of restricted linear systems is
as hard as the rank-finding problem.

In [24] the authors prove conditional hardness for the problems of Packing/Covering
Linear Programs based on the hardness of approximately solving general linear equations.
Prior to our work there was no evidence of hardness for approximately solving linear equations.
Our results therefore imply hardness for these problems under the rank-finding problem,
which is a more well-studied problem in our opinion.

Organization

In section 2 we introduce notation and basic definitions that will be used throughout the
paper. In Section 3 we give a proof of our main reduction (Theorem 3.1). In Section 4, we
show conditional hardness for finding approximate solutions to linear systems over the Real
RAM. We then extend these conditional hardness results to restricted classes of linear systems:
Section 4.2 considers sparse linear systems, Section 4.3 considers positive semidefinite linear
systems, and finally Sec 4.4 considers well-conditioned linear systems. In Section 5 we show
the analogues of these results over the WordRAM model of computation.
All the proofs are deferred to the full version of the paper.

2 Preliminaries

Below is some notation that will be used throughout:

Notation

We will use nnz(A) for to denote the sparsity of a matrix A and we will assume that nnz(A) >
max(n,m) for A € R™*". We will call a matrix A € R™*" sparse if nnz(A) = O(max(m, n)).
We will use x(A) to denote the condition number of a matrix A. By bit complexity of A
or B(A) we will refer to maximum bit complexity of any entry in the matrix/vector A. We
will use <7 to denote Turing reductions. Most of our Turing reductions run in quasi-time
linear in the input size. We say (a,b) to denote the inner product of a and bi.e. ), a;b;.
We denote W+ to denote the subspace orthogonal to the subspace W. By Py (b) we denote

the projection of b on the vector space W. For a matrix M we denote its column space by
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colspace(M). By A we mean the pseudoinverse of a matrix A. For a matrix A € R™*"
by 4 = A(AAT)TAT we mean the linear operator such that for all z € R™, T4 (z) is the
projection of & on colspace(A). By g = O(f) we mean g = O(f - polylog(f)). By g = Q(f)
we mean g = Q(f/polylog(f)). Whenever not specified by algorithms we mean randomized
algorithms. We use w.h.p. to denote a probability of 1 — 1 /nlog " where n is the input size
under consideration.

We refer to the exact version of the £(n)-Approximate Linear Search problem as the
Linear Search Problem. Similarly we refer to the exact version of the e(n)-Approximate

Linear Decision problem as the Linear Decision problem.

3 Proof of Main Reduction (Theorem 1.3)

In this section we will prove the reduction from the rank-finding problem to the approximate
version of the linear decision problem. For simplicity, throughout this section we work on
the RealRAM model of computation and wherever we do not state it we assume that this is
the case, so we do not discuss the bit complexity of the reductions. Our reduction can be
modified to work on the WordRAM which we do in Section 5.

» Theorem 3.1 (Restatement of Theorem 1.3). For all constants ¢ > 0, there exists a
randomized Turing reduction in the RealRAM model of computation, from the rank-finding
problem on A € R™*™ to the (1 — 1/n)-Approzimate linear decision problem on (A’ €
R > 17") with dimension n' = O(max(m,n)) and sparsity O(nnz(A)), where in the YES
case we have the additional property that the matrices produced have full rank. The reduction
runs in time O(nnz(A)), produces polylog(mn) instances of the approzimate linear decision
problem and works with high probability.

We will prove this reduction in three steps:

1. Lemma 3.3: Rank-Finding Problem <p Full Rank problem (see Definition 3.2)

2. Lemma 3.4: Full Rank problem <7 (1/n°M)-Approximate linear decision problem

3. Lemma 3.5: 1/n°(M-Approximate linear decision problem < (1 — 1/n¢)-Approximate
linear decision problem

Given the lemmas, it will be straightforward to combine these reductions to get that the
linear decision problem reduces to the (1 — 1/n¢)-Approximate linear decision problem. Let
us now show each of the steps stated above. We will prove the first reduction from the rank-
finding problem to the full-rank problem. This is similar to a reduction by Wiedemann [36]
for finite fields. Let us formally introduce the Full rank problem.

» Definition 3.2 (Full Rank Problem.). Given a matriz A € R™*™, is rank(A) =n?

The intuition behind the following reduction from the rank-finding problem to the full-
rank problem is the following: For a matrix A € R™*" with m > n and rank(A) = k < n,
adding ¢t “random” columns will give a full column rank matrix if and only if t > n — k.
Hence we can binary search for the first value of ¢ which gives us a full column rank matrix,
yielding k.

» Lemma 3.3. There exists a randomized Turing reduction which works w.h.p. from the
Rank-Finding problem on A € R™*™ to the Full rank problem, that runs in time O(nnz(A))
and produces O(logm) instances of the Full rank problem, such that all instances of the
matrices produced have dimension O(max(m,n)) x O(max(m,n)) and sparsity O(nnz(A)).

20:7
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We will now prove that the full rank problem reduces to the (1/ no(l))—Approximate linear
decision problem. The idea behind the proof is that for a full-rank square matrix A € R™*™
every vector b € R™ belongs in the column space of A and hence the linear system (A4, b) is
satisfiable. On the other hand if rank(A) < n we expect a random vector b to be outside
the column space of A and hence we expect the linear system (A, b) to be unsatisfiable. We
show a strengthened version of the previous statement by proving that w.h.p. for a random
Gaussian vector b, it holds that for all x, || Az — b|| > &(n)||b]| for some e(n) = 1/n°M). We
also show that we can rescale the rows of the linear system (A, b) to get the system (A4’,1")
while maintaining the property that ||A’z —1"|| > &(n)||1™||. We perform the rescaling to
obtain b = 1™ as that will simplify our later reductions.

» Lemma 3.4. Consider a matrix M € R™*™. There exists a randomized Turing reduction
from the problem of checking whether M has full rank to the Linear Decision (1/n°™)-
Approzimation problem. The reduction runs in time O(nnz(M )), produces polylog(n) instances
of the form (M’ € R"™™ 1™) where in the YES case M' is a full rank matriz, and works
w.h.p.

We will now show that one can amplify the error in the NO case from 1/n°™) to 1 —1/n¢
for all constants c.

The following lemma works for all e(n),d(n), but we only state it for e(n) =
1/n°M §(n) = 1/n° to maintain consistency with the later sections in which we will
work over WordRAM.

» Lemma 3.5. For all constants ¢ and £(n) = 1/n°M §(n) = 1/n, there exists a determ-
inistic many-one reduction from the e(n)-Approximate linear search problem on the linear
system (A € R™*™ 1™) to the (1 — §(n))-Approzimate linear search problem on the linear
system (A’ € R™ ™ 1™), with nnz(A') = O(nnz(A)). The reduction runs in time O(nnz(A)).
Additionally if A is full rank then the matriz A’ produced is also full rank.

As this is a deterministic many-one reduction we also get a gap-amplifying reduction for
the e(n)-Approzimate linear decision problem with the same parameters.

We can now combine all the lemmas above to get the proof of Theorem 3.1.

Proof of Theorem 3.1. We have proved the following sequence of reductions which preserve

sparsity:

1. Lemma 3.3: Linear decision problem <7 Full rank problem

2. Lemma 3.4: Full rank problem <7 1/ nPW_Approximate linear decision problem

3. Lemma 3.5: 1/n°M-Approximate decision problem <7 (1 — 1/n¢)-Approximate linear
decision problem.

Note that in the YES case of Full-Rank problem we have a square full rank matrix, and
this is propagated through Lemma 3.4 and Lemma 3.5 hence the final instance we produce
has a full rank matrix in the YES case. Since each of these reductions work whp, one can
compose them to get the theorem statement. |

4 Hardness of finding L,-Approximate solutions on Real RAM

In this section, we elaborate on the implications of our main reduction from the previous
section (Theorem 3.1). Below is the map of reductions we showed in the previous sections.
We will introduce conjectures for the Rank-finding problem in this section and given the
reductions, the conjectures will imply conditional hardness of the approximate linear search
problem.
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All the results in this section are for the RealRAM but can be obtained over the WordRAM
too. In Section 5, we prove the conditional hardness of the approximate linear search problem
over general matrices in the WordRAM model.

Lemma 3.343.4 1/n°M-Approximate (1 — 1/n2*M)-Approximate

. . L .
Rank-Finding ———— Lemma 3.5
Linear Decision Linear Decision
Decision to Search (Lemma 4.1) Decision to Search

1/n°M-Approximate (1 —1/n®®")-Approximate

. .. L 3.
Linear Decision Lemma 3.5

Linear Search Linear Search

Figure 1 Reductions on RealRAM preserving sparsity (up to polylog(n) factors) and dimension
(up to constant factors).

Note that all the lemmas pointed out here (except for the decision to search reduction)
were shown in the previous section. The decision to search reduction is straightforward to
carry out in the RealRAM and we formally prove it in Lemma 4.1.

In the sections below we discuss the hardness of the approximate linear search problem
over general matrices, and then the case of restricted classes of linear systems - sparse linear
systems and linear systems given by positive-semidefinite matrices. Our results give tight
conditional hardness for all the problems considered.

4.1 General linear systems

We base the hardness result for the approximate linear search problem under the following
conjecture for the rank-finding problem:
We now prove the search to decision reduction.

» Reminder of Conjecture 1.1 Finding the rank of a matriz A € R™*™ with m = O(n) in
the RealRAM model of computation is Q(n*)-hard.

» Lemma 4.1. If there exists a O(t(n)) time algorithm to solve e-Approzimate linear search
problem for a linear system with sparsity s then there exists a O(t(n) + sn) time algorithm
to solve e-Approzimate linear decision problem for linear system with sparsity s.

Proof. We will follow the standard decision to search reductions which proceed by solving
and then confirming. Suppose we are given a linear system (A, b) with nnz(A) = s for which
we want to solve e-Approximate linear decision problem.

Suppose it is a YES instance i.e. there exists an exact solution, then by the assumed
algorithm for e-Approximate linear search problem we can find an 2’ such that ||Az’ —bl|s <
e||b||2. This can be done in O(t(n)) time.

Suppose instead we were in the NO case i.e. for all 2/, ||Az’ — b||2 > £][b||2 i.e. there
exists no z’ such that ||Az" — b||2 < €|]b]]2.

Hence checking whether |[Az’ — bl|]z < ¢][b]]2 is true of not for the 2’ returned by
the assumed algorithm for e-Approximate linear search problem will let us solve the e-
Approximate linear decision problem. We can check if ||Az" — b||2 < €]|b]|2 in time O(sn).
Hence the total running time is O(t(n) + sn). <
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Combining the main reduction (Theorem 3.1) with a decision to search reduction
(Lemma 4.1) we get optimal conditional hardness for the (1 —1/n®)-approximate linear search
problem under Conjecture 1.1:

» Corollary 4.2 (Corollary 1.5 restated). Under Conjecture 1.1, for all constants ¢ > 0,
the (1 — 1/n°)-approzimate linear search problem is Q(n) hard in the RealRAM model of
computation. Moreover, this remains true even when the matriz A in the given linear system
(A,b) is square and has full rank.

This conditional hardness result is tight as the best algorithms for (exactly) solving
general linear systems run in time O(n®) [9].

The next corollary is a search to search reduction between the approximate linear search
problem with small gap to one with a larger gap. This is a direct consequence of Lemma 3.5.
Recall that in the proof of Lemma 3.1 we used Lemma 3.5 to amplify the gap of the
approximate linear decision problem. Lemma 3.5 is in fact more general and can amplify the
gap of the approximate linear search problem too (as noted in the lemma statement):

» Corollary 4.3 (Corollary 1.6 restated). If for any constant ¢ > 0 and a there exists an

O(n®)-time algorithm for (1—1/n)-Approzimate Linear Search problem then for all constants
d there exists a O(n®)-time algorithms for 1/n?-Approzimate Linear Search problem.

Even though this is stated as a reduction, one could potentially use the above corollary
to get better algorithms for the 1/n°M-approximate linear search problem.

4.2 Sparse linear systems

In this section, we give analogous results for sparse linear systems. Here we use the fact that
our main reduction (Theorem 3.1) preserves the sparsity of the original matrix. Hence if we
assume the hardness of the rank-finding problem over sparse matrices, we get conditional
hardness for approximately solving sparse linear systems.

» Reminder of Conjecture 1.7 Finding the rank of a matriz A € R™*™ where m = O(n)
and nnz(A) = O(n), in the RealRAM model of computation, is Q(n?)-hard.

Combining the main reduction (Theorem 3.1) with a decision to search reduction we get
optimal conditional hardness for the (1 — 1/n®)-approximate linear search problem on sparse
matrices, under Conjecture 1.7:

» Corollary 4.4. Under Conjecture 1.7, for all constants ¢ > 0, the (1 — 1/n®)-approzimate
linear search problem (A,b) with nnzA) = O(n) is Q(n?) hard, in the RealRAM model of
computation. Moreover, this remains true even when the matrix A is square and has full
rank.

Note that here we crucially used the fact that the main reduction preserves the sparsity
of the original matrix. This conditional hardness result is tight as the best algorithms for
(exactly) solving linear equations run in time O(nnz(A) - n) [19] which is equal to O(n?) for
sparse matrices.

Now we state the search to search reduction for the approximate linear search problem
over sparse matrices which follows from Lemma 3.5. This reduction amplifies a small gap to
a large gap.

» Corollary 4.5. If for any constant ¢ > 0 and a there exists an O(n®)-time algorithm for
the (1 — 1/n°)-Approzimate Linear Search problem over (A,b) then for all constants d there
exists an O(n®)-time algorithm for the 1/n®-Approzimate Linear Search problem over (A’,b)
where nnz(A') = nnz(A).
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4.3 Positive semidefinite linear systems

In this section, we show hardness for dense linear systems over PSD matrices. To do so,
we need some additional ideas beyond our main reduction and also a conjecture for solving
linear systems on matrices with intermediate sparsities. This conjecture also allows us to
show optimal conditional hardness of approximately solving linear systems (A, b) for any
sparsity.

» Conjecture 4.6 (Rank-finding conjecture for all sparsities). Finding the rank of a matriz
A e R™*™  where m = O(n), is min(Q(nnz(A) - n), Q2(n*)) hard in the RealRAM model of
computation.

The current best known algorithms for the Rank-Finding problem (A € RO(™*O() rung
in time min(nnz(A)n, n). The above conjecture assumes that this is optimal. We can prove
the following theorem directly by combining Conjecture 4.6 and Lemma 5.5.

» Corollary 4.7. Under Conjecture 4.6, for all constants ¢ > 0, (1 — 1/n®)-approzimate
linear search problem (A,b), is min(Q(nnz(A) - n),Q(n*)) hard in the RealRAM model of
computation. Moreover, this remains true even when the matriz A in the given linear system

(A,b) has full rank.

The next lemma reduces the approximate linear search problem for intermediate sparsities
to approximate linear search problem on dense PSD matrices. It’s proof exploits the fact
that the algorithm of Yuster and Zwick [39] does matrix multiplication of two matrices A, A’
in O(min(n*, z2"n'2 + n?)) time where z > nnz(A4) and z > nnz(A’). This is faster than
the best algorithm for solving linear systems (A4, b) which runs in O(min(n®, zn)) where
z = nnz(A) for certain sparsities. Specifically we will use the following result from Yuster
and Zwick [39]:

» Theorem 4.8 (Yuster and Zwick [39], See Theorem 3.1 and discussion). Assuming w > 2
there exists constants .1 > ~,~v' > 0 such that for two matrices A, B € ROM*OM) yhich
satisfy nnz(A), nnz(B) < n“=" =7 can be multiplied in time O(n=").

This allows to do the following reduction:

» Lemma 4.9. Assuming w > 2, there exists constants .1 > ~v,v" > 0 and a reduction
running in time O(max(n®="",n®=7)) from (1 — 8(n))-approzimate linear search problem
(V e R™™ b) with nnz(V') < n“= =7 to (1 —0(n))-approxzimate linear search problem (V',b)
such that the matriz V' is PSD.

We now compose the above reduction with Conjecture 4.6 to get the following tight
conditional hardness.

» Corollary 4.10. Under Conjecture 4.6, for all constants ¢ > 0 (1 — 1/n®)-approzimate
linear search problem (A,b) where A is restricted to be a PSD matriz, is Q(n®) hard in the
RealRAM model of computation. Moreover, this remains true even when the matrix A in the
given linear system (A, b) has full rank.

4.4 Well-Conditioned Linear Systems

In this section, we show conditional hardness of approximately solving well-conditioned linear
systems. The condition number of a full-rank square matrix is the ratio of its maximum and
minimum singular values. If the entries of a matrix are all O(logn)-bits then the condition
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number of this matrix is at most exponential in n (this is true even for rectangular full
column-rank matrices). Therefore linear systems over matrices with polynomially-bounded
condition number could be significantly easier to solve than general linear systems.

For the case of certain restricted classes of matrices such as directed Laplacians, the
algorithm of Cohen et al [12] for the £(n)-approximate linear search problem runs in time
O(nnz(A)log(k(A)/e(n))) which is a near-linear time algorithm for x(A) = poly(n). This is
a significant improvement over algorithms for directed Laplacian systems with no bound on
the condition number (which run in time O(n®)).

But for general systems no such improvement is known! Conjugate gradient [19] runs in
time O(nnz(A)), when x(A) = polylogn, whereas when x(A) = poly(n) this algorithm gives
no improvement over the algorithm for general matrices.

We show that if we assume that the rank-finding problem is hard over well-conditioned
matrices (k(A) = poly(n)), then the approximate linear search problem is hard to solve over
well-conditioned linear systems. The proof goes along the same lines as that for general
matrices: we show in Lemmas 4.15 and 4.16 that our main reduction (Theorem 3.1) in fact
preserves the condition number of our original matrix. Then as a corollary we obtain the
conditional hardness for approximately solving well-conditioned linear systems. Note that
we show all the results here over the RealRAM but they can be easily modified to work on
the WordRAM too.

Well-conditioned Well-conditioned
Well-conditioned [ = .. Lemma 4.16
emma 4.1 1/n°M-Approximate 27 (1 = 1/n®M)-Approximate
Rank-Finding

Linear Decision Linear Decision
Decision to Search Decision to Search
Well-conditioned Well-conditioned

L 4.16
1/n°M-Approximate cmma 2.} (1 —1/n®®)-Approximate

Linear Search Linear Search

Figure 2 Reductions on the RealRAM preserving sparsity (up to polylog(n) factors), dimension
(up to constant factors) and condition-number (upto poly(n) factors). One difference from the
results from the previous sections is that we no longer have the equivalence for the Rank-Finding
Problem and the Linear Decision problem for Well-conditioned matrices.

Before diving into the reduction, we will formally define all the problems used in the
reduction-map above. As discussed in the definition of the condition-number, the condition-
number is bounded only when the matrix has full column-rank, therefore in all the definitions
below the matrices considered have dimension m x n with n < m.

» Definition 4.11 (Well-conditioned Rank-Finding Problem). Given a matrizx A € R™*™ where
n <m < O(n), with the promise that it falls into one of the following two sets of instances:
1. YES instances: rank(A) =n and k(A) < poly(n).

2. NO instances: rank(A) <n

decide whether A is a YES instance or a NO instance.
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» Definition 4.12 (Well-conditioned Full Column-Rank Problem). Given a square matriz
A € R™*™ where n < m, with the promise that it falls into one of the following two sets of
instances:

1. YES instances: col-rank(A) =n and k(A) < poly(n).

2. NO instances: col-rank(A) < n

decide whether A is a YES instance or a NO instance.

Note that the Well-conditioned Rank-finding problem easily reduces to the Well-
conditioned Full Column-rank problem. This is because the YES instances of the former
always have full column-rank by definition. In fact, we can also reduce the well-conditioned
rank-finding problem to the well-conditioned full-rank problem on square matrices, by adding
random columns, since this operation preserves the condition-number [16]. For simplicity of
presentation we do not perform this operation and continue to work with full column-rank
and (possibly) rectangular matrices throughout.

Next we formally introduce the search and decision problems on well-conditioned linear
systems:

» Definition 4.13 (Well-conditioned (n)-Approximate Linear Search Problem). For a function
e : N = [0,1], given a satisfiable linear system (A,b) with A € Z™*™ for n < m and
k(A) = poly(n) find an assignment x such that ||Ax — b|| < e(n)]||b]]

» Definition 4.14 (Well-Conditioned £(n)-Approximate Linear Decision problem). For a function
e: N —[0,1], given a linear system (A € Z™*" b € Z™) for n < m, with the promise that it
falls into one of the following two sets of instances:

1. YES instance: There exists an x € Q™ such that Ax = b and A is well-conditioned.

2. NO instances: For all x € R™, ||Az — b||2 > £(n)||b]|2,

decide whether (A,b) is a YES instance or a NO instance.

We will now show our main reduction from the Well-conditioned Rank-finding problem
to the Well-conditioned (1 — 1/n¢)-approximate linear decision problem. As noted above the
Well-conditioned Rank-finding problem reduces to the Well-conditioned Full Column-Rank
problem, so we will show a reduction from the latter to the approximate linear decision
problem. To do so, we will show that the proofs in Section 3 preserve the condition-number
of the original matrix.

Let us start with showing that “well-conditioned” property is preserved in the reduction
in Lemma 3.4.

» Lemma 4.15. There exists a randomized Turing reduction from the Well-conditioned Full
Column-Rank Problem on M € Z™*™ to the Well-conditioned (1/n°™M))-Approzimate Linear
Decision problem. The reduction produces polylog(n) instances of the form (M',1™) where
M' € Z™*" and k(M') = poly(n), runs in time O(nnz(M)), and works w.h.p.

Next let us show that the “well-conditioned” property is preserved in the reduction in
Lemma 3.5.

» Lemma 4.16. For all constants c,d > 0, there exists a deterministic many-one reduction
from the Well-conditioned 1/n?-Approzimate linear search problem on the linear system
(A € Zm*™ 1™) to the Well-conditioned (1 — 1/n)-Approzimate linear search problem on the
linear system (A’ € Z™*™ 1™), with nnz(A’) = O(nnz(A)) and k(A") = poly(n).

As this is a deterministic many-one reduction we also get a gap-amplifying reduction for
the e(n)-Approximate linear decision problem with the same parameters.
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Combining the two lemmas above we get the well-conditioned analogue of the main
reduction from the Rank-finding problem to the (1 — 1/n¢)-approximate linear decision
problem. We can now apply a decision to search reduction to get conditional hardness for
approximately solving linear systems over well-conditioned matrices:

» Corollary 4.17. For all constants ¢, assuming Q(n“’) hardness of the well-conditioned
rank-finding problem we get that the well-conditioned (1 — 1/n¢)-approximate linear search
problem is Q(n®)-hard.

We also state the following search to search reduction which follows directly from
Lemma 4.16:

» Corollary 4.18. For all constants a,c,d > 0, if there exists an O(n“) time algorithm
for well-conditioned (1 — 1/n)-approximate linear search then there exists an O(n®)-time
algorithm for the well-conditioned (1/n?)-approzimate linear search problem.

5 Hardness of finding L,-Approximate solutions on Word RAM

o(1 . Q1 .
.. Lemma 5.645.7 1/n (W_Approximate Lemma 5.8 (1 —1/n (). Approximate
Rank-Finding —————— Lemma 5.8
Linear Decision Linear Decision
Decision to Search Decision to Search
Lemma 5.9 Lemma 5.9

1/n°M_Approximate (1 —1/n%®")-Approximate

. . Lemma 5.8
Linear Decision —omma 0.%

Linear Search Linear Search

Figure 3 Reductions on WordRAM preserving sparsity (up to polylog(n) factors), dimension (up
to constant factors) and bit complexity of entries (up to constant factors).

In Section 4 we gave conditional hardness for solving linear equations in RealRAM. In this

section we will give hardness for WordRAM through some modifications of the reduction for

RealRAM. We will assume that for a matrix/vector of dimension m x n in this section that

all input entries are from Z and have O(logmn) bits in.

The reduction in RealRAM does not directly work for WordRAM as:

1. As we are in WordRAM we need to argue that the final problem instance has bounded
bit complexity if the starting problem has bounded bit complexity. To verify this we
show that this is true for all the steps of the reduction.

2. We sampled a random gaussian vector in the reduction (Lemma 3.4), this is not possible
in the WordRAM. We will get around this issue (in Lemma 5.7) by sampling a random
vector whose each entry is a random integer from a predefined range.

3. The decision to search reduction for RealRAM (Lemma 4.1) was nearly trivial. This
is not the case for WordRAM as the solution can have large bit complexity and hence
given a solution directly substituting to check if it is a good solution or not may require
too much time. We give an alternative decision to search reduction in WordRAM in
Lemma 5.9.

We start by defining the Linear Decision Problem over Word-RAM:
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» Definition 5.1 (Linear Decision Problem over Word-RAM). Given a linear system (A,b) with
A € Qm*™ with B(A) = O(logmn), distinguish between the following two sets of instances:
YES instances: There exists an x such that Az =b.
NO instances: For all x, Ax # b.

We will consider the following conjecture (analogous to Conjecture 1.1) for the Word
RAM:

» Conjecture 5.2 (Rank-Finding Conjecture on WordRAM). There exists no &(n®)-time
randomized algorithm for finding the rank of a matriv A € Z™*™ with m = O(n) and
B(A) = O(logn), in the WordRAM model of computation.

The conjecture is tight as using an easy randomized reduction [33] Rank over integers
with O(logn) bit complexity can be reduced to rank over finite fields GF(poly(n)) which
gives a O(n*) time randomized algorithm on WordRAM.

We will prove the following main theorem:

» Corollary 5.3 (Hardness of solving linear equation on WordRAM). For all constant ¢ > 0,
under Conjecture 1.1, there does not exist a o(n*) time randomized algorithm for the
(1 — 1/n%)-approximate linear search problem (A,b) with B(A) = O((c + 1)logn) in the
WordRAM model of computation. Moreover, this remains true even when the matriz A in
the given linear system (A,b) has full rank.

The conditional hardness in the above theorem is tight as there exists O(n“) time
algorithms for exactly solving linear equations over Z in WordRAM [33, 29, 8].

We are also able to establish the following corollary of one of the intermediate steps in
our reduction (Lemma 5.8) which reduces approximately solving linear systems with low
error to approximately solving linear systems with barely non-trivial error.

» Corollary 5.4. For all constant c¢,d > 0, if over WordRAM there exists as O(n®) time
algorithm for (1—1/n°)-Approximate Linear Search then there exists a O(n®)-time algorithms
for (1/n4)-Approzimate Linear Search problem.

Analogous to Theorem 3.1 we will prove a reduction from the rank finding problem to
approximate linear decision problem from which Corollary 5.3 will follow by a decision to
search reduction (Lemma 5.9). Formally,

» Lemma 5.5 (Reduction from exact to approximate). For all constant c, there exists a
randomized Turing reduction from the rank-finding problem on A € Z™*™ to the (1 — 1/n°)-
Approzimate linear decision problem on n' x n’-square matrices with bit complexity B(A) =
O((c+ 1) log(n)), with n’ = O(max(m,n)), where in the YES case we have the additional
property that the matrices produced have full rank. The reduction runs in time O(c - nnz(A)),
produces polylog(mn) instances of the approzimate linear decision problem and works w.h.p..

To prove the above Lemma, we will go through each of the steps in the proof of Theorem 1.3
and see that all of them work for WordRAM with small modifications. We start with the
reduction the Rank-Finding Problem to the Full rank problem for WordRAM (analogous to
Lemma 3.3 for RealRAM).

» Lemma 5.6. There exists a randomized Turing reduction which works w.h.p. from the Rank-
Finding problem on A € Z™*™ with m = O(n) and B(A) = O(logn), to the Full rank problem,
that runs in time O(nnz(A)) and produces O(logm) instances of the Full rank problem, such
that all instances of the matrices produced have dimension O(max(m,n)) x O(max(m,n)),
sparsity O(nnz(A)) and bit complezity O(logn).
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Analogous to Lemma 3.4, we now reduce the Full-Rank Problem to the (1/n°™M)-Linear
Decision Approximation problem on WordRAM.

» Lemma 5.7. Consider a matric M € Z™*™. There exists a randomized Turing reduction
from the problem of checking whether M has full rank to the (1/n'2?)-Linear Decision
Approzimation problem. The reduction runs in time O(nnz(M)), produces polylog(n) instances
of the form (M',1™) where M’ € Z"*" B(M') = O(B(M) + (logn)), in the YES case M’ is

a full rank matriz, and works w.h.p..

Finally we reduce the (1/n°(M)-Linear Decision Approximation problem to the (1—1/n°)-
Linear Decision Approximation problem over WordRAM. This is straightforward to work
out from the analogous Lemma 3.5 in Section 4.

» Lemma 5.8. For all constants ¢ and £(n) = 1/n°M) §(n) = 1/n°, there exists a determ-
inistic many-one reduction from the (n)-Approximate linear search problem on the linear
system (A € R™*™ 1™) to the (1 — §(n))-Approzimate linear search problem on the linear
system (A’ € R™ ™ 1™), with nnz(A’) = O(nnz(A)). The reduction runs in time O(nnz(A)).
Additionally if A is full rank then the matriz A" produced is also full rank.

As this is a deterministic many-one reduction we also get a gap-amplifying reduction for
the e(n)-Approximate linear decision problem with the same parameters.

Now we are ready to prove Lemma 5.5.

Proof of Lemma 5.5. Similar to the proof of Theorem 1.3, The proof follows by composing
Lemma 5.6, Lemma 5.7 and Lemma 5.8 (for e(n) = 1/n°®" and §(n) = 1/n¢). The bit
complexity of the final matrix is O(logn) + O(log(n/(e(n)d(n)))) = O((c + 1)(logn)) and
the running time is O(c - nnz(A)) <

To prove Corollary 5.3 we need the following decision to search reduction:

» Lemma 5.9. Let c(n) = 1/n°M) | given an A € Z™*™, x,b where m = O(n), B(A), B(b) =
polylog(n), B(z) = O(n) we can distinguish between:

L. [|Az —b|| < e(n)|[b]]/2.

2. [|Az = b|[ = e(n)|[b]].

(
w.h.p. in time O(nnz(A)n).

Combining Lemma 5.5 and Lemma 5.9 give us Corollary 5.3:

Proof of Corollary 5.3. For all constants ¢, Composing Conjecture 5.2 and Lemma 5.5 gives
us Q(n®) hardness of (1 — 1/n¢)-Approximate linear decision problem (A € Z"*", b) with bit
complexity O((c+ 1)log(n)) where in the YES case we have the additional property that A
has full rank. The hardness of (1 — 1/n°)-Approximate linear search problem with the same

properties follows from the decision to search reduction from Lemma 5.9. <
We now prove Corollary 5.4:

Proof of Corollary 5.4. Note that the input size is O(n?) and hence a > 2. The corollary
directly follows from noting that Lemma 5.8 applied for e(n) = 1/n¢ and §(n) = 1/n¢
reduces (1/n?)-Approximate Linear Search problem to (1 —1/n?)-Approximate Linear Search
problem in time O(n?) = O(n%). <
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5.1 Sparse Matrices

Starting from the WordRAM version of Conjecture 1.7 and using Lemma 5.5 we can establish
that there does not exist a 6(n?) algorithm for (1 — 1/poly(n))-Approximate linear decision
problem on sparse matrices in the WordRAM model. By the decision to search reduction
in Lemma 5.9 we get that there does not exist a 6(n?) algorithm for (1 — 1/poly(n))-
Approximate linear decision search on sparse matrices in the WordRAM model. Note though
that this hardness is trivial to obtain since there exist sparse linear systems such that every
(1 — 1/poly(n))-approximate solution to the system requires ©(n?) bits to represent.

On the algorithmic side no improvement over the dense case algorithmic runtime of O(n*)
was known until the recent result of Peng and Vempala [30] who gave an asymptotically
faster algorithm for the 1/poly(n)-approximate linear search problem.
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