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Abstract
The submodular Santa Claus problem was introduced in a seminal work by Goemans, Harvey, Iwata,
and Mirrokni (SODA’09) as an application of their structural result. In the mentioned problem n

unsplittable resources have to be assigned to m players, each with a monotone submodular utility
function fi. The goal is to maximize mini fi(Si) where S1, . . . , Sm is a partition of the resources.
The result by Goemans et al. implies a polynomial time O(n1/2+ε)-approximation algorithm.

Since then progress on this problem was limited to the linear case, that is, all fi are linear
functions. In particular, a line of research has shown that there is a polynomial time constant
approximation algorithm for linear valuation functions in the restricted assignment case. This is the
special case where each player is given a set of desired resources Γi and the individual valuation
functions are defined as fi(S) = f(S ∩ Γi) for a global linear function f . This can also be interpreted
as maximizing mini f(Si) with additional assignment restrictions, i.e., resources can only be assigned
to certain players.

In this paper we make comparable progress for the submodular variant: If f is a monotone
submodular function, we can in polynomial time compute an O(log log(n))-approximate solution.
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1 Introduction

In the Santa Claus problem (sometimes referred to as Max-Min Fair Allocation) we are given
a set of n players P and a set of m indivisible resources R. In its full generality, each player
i ∈ P has a utility function fi : 2R 7→ R≥0, where fi(S) measures the happiness of player
i if he is assigned the resource set S. The goal is to find a partition of the resources that
maximizes the happiness of the least happy player. Formally, we want to find a partition
{Si}i∈P of the resources that maximizes mini∈P fi(Si).

With such an objective function one seeks to find the fairest solution as opposed to
for example the best average happiness. Most of the recent literature on this problem
focuses on cases where fi is a linear function for all players i. If we assume all valuation
functions are linear, the best approximation algorithm known for this problem, designed by
Chakrabarty, Chuzhoy, and Khanna [4], has an approximation rate of nϵ and runs in time
nO(1/ϵ) for ϵ ∈ Ω(log log(n)/ log(n)). On the negative side, it is only known that computing
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22:2 The Submodular Santa Claus Problem in the Restricted Assignment Case

a (2 − δ)-approximation is NP-hard [13]. Apart from this there has been significant attention
on the so-called restricted assignment case. Here the utility functions are defined by one
linear function f and a set of resources Γi for each player i. Intuitively, player i is interested
in the resources Γi, whereas the other resources are worthless for him. The individual utility
functions are then implicitly defined by fi(S) = f(S ∩ Γi). In a seminal work, Bansal and
Srividenko [3] provide a O(log log(m)/ log log log(m))-approximation algorithm for this case.
This was improved by Feige [8] to an O(1)-approximation. Further progress on the constant
or the running time was made since then, see e.g. [1, 7, 6, 5, 10, 2, 15].

Let us now move to the non-linear case. Indeed, the problem becomes hopelessly difficult
without any restrictions on the utility functions. Consider the following reduction from set
packing. There are sets of resources {S1, . . . , Sk} and all utility functions are equal and
defined by fi(S) = 1 if Sj ⊆ S for some j and fi(S) = 0 otherwise. Deciding whether there
are m disjoint sets in S1, . . . , Sk (a classical NP-hard problem) is equivalent to deciding
whether the optimum of the Santa Claus problem is non-zero. In particular, obtaining any
bounded approximation ratio for Santa Claus in this case is NP-hard.

Two naturally arising properties of utility functions are monotonicity and submodularity,
see for example the related submodular welfare problem [12, 16] where the goal is to maximize∑

i fi(Si). A function f is monotone, if f(S) ≤ f(T ) for all S ⊆ T . It is submodular, if
f(S ∪ {a}) − f(S) ≥ f(T ∪ {a}) − f(T ) for all S ⊆ T and a /∈ T . The latter is also known
as the diminishing returns property in economics. A standard assumption on monotone
submodular functions (used throughout this work) is that the value on the empty set is zero,
i.e., f(∅) = 0. Goemans, Harvey, Iwata, and Mirrokni [9] first considered the Santa Claus
problem with monotone submodular utility functions as an application of their fundamental
result on submodular functions. Together with the algorithm of [4] it implies an O(n1/2+ϵ)-
approximation in time nO(1/ϵ). In the case that the valuation functions are all equal, that
is, fi(S) = f(S) for a monotone submodular function f , Krause, Rajagopal, Gupta, and
Guestrin gave a constant approximation [11]. We also refer to their work for an application
of this problem in sensor placement.

In this paper we investigate the restricted assignment case with a monotone submodular
utility function. That is, all utility functions are defined by fi(S) = f(S ∩ Γi), where f is
a monotone submodular function and Γi is a subset of resources for each players i. Before
our work, the state-of-the-art for this problem was the O(n1/2+ϵ)-approximation algorithm
mentioned above, since none of the previous results for the restricted assignment case with a
linear utility function apply when the utility function becomes monotone submodular.

1.1 Overview of results and techniques
Our main result is an approximation algorithm for the submodular Santa Claus problem in
the restricted assignment case.

▶ Theorem 1. There is a randomized polynomial time O(log log(n))-approximation algorithm
for the restricted assignment case with a monotone submodular utility function.

Our way to this result is organised as follows. In Section 2, we first reduce our problem to a
hypergraph matching problem (see next paragraph for a formal definition). We then solve
this problem using Lovasz Local Lemma (LLL) in Section 3. In [3] the authors also reduce
to a hypergraph matching problem which they then solve using LLL, although both parts
are substantially simpler. The higher generality of our utility functions is reflected in the
more general hypergraph matching problem. Namely, our problem is precisely the weighted
variant of the (unweighted) problem in [3]. We will elaborate later in this section why the
previous techniques do not easily extend to the weighted variant.



E. Bamas, P. Garg, and L. Rohwedder 22:3

The hypergraph matching problem. After the reduction in Section 2 we arrive at the
following problem. There is a hypergraph H = (P ∪ R, C) with hyperedges C over the vertices
P and R. We write m = |P | and n = |R|. We will refer to hyperedges as configurations, the
vertices in P as players and R as resources1. Moreover, a hypergraph is said to be regular if
all vertices in P and R have the same degree, that is, they are contained in the same number
of configurations. The hypergraph may contain multiple copies of the same configuration.
Each configuration C ∈ C contains exactly one vertex in P , that is, |C ∩ P | = 1. Additionally,
for each configuration C ∈ C the resources j ∈ C have weights wj,C ≥ 0. We emphasize that
the same resource j can be given different weights in two different configurations, that is, we
may have wj,C ̸= wj,C′ for two different configurations C, C ′.

We require to select for each player i ∈ P one configuration C that contains i. For each
configuration C that was selected we require to assign a subset of the resources in C which
has a total weight of at least (1/α) ·

∑
j∈C wj,C to the player in C. A resource can only be

assigned to one player. We call such a solution an α-relaxed perfect matching. One seeks to
minimize α.

We show that every regular hypergraph has an α-relaxed perfect matching for some
α = O(log log(n)) assuming that wj,C ≤ (1/α) ·

∑
j′∈C wj′,C for all j, C, that is, all weights

are small compared to the total weight of the configuration. Moreover, we can find such a
matching in randomized polynomial time. In the reduction we use this result to round a
certain LP relaxation and α essentially translates to the approximation rate. This result
generalizes that of Bansal and Srividenko on hypergraph matching in the following way.
They proved the same result for unit weights and uniform hyperedges, that is, wj,C = 1 for
all j, C and all hyperedges have the same number of resources2. In the next paragraph we
briefly go over the techniques to prove our result for the hypergraph matching problem.

Our techniques. Already the extension from uniform to non-uniform hypergraphs (assuming
unit weights) is highly non-trivial and captures the core difficulty of our result. Indeed, we
show with a (perhaps surprising) reduction, that we can reduce our weighted hypergraph
matching problem to the unweighted (but non-uniform) version by introducing some bounded
dependencies between the choices of the different players. For sake of brevity we therefore
focus in this section on the unweighted non-uniform variant, that is, we need to assign to
each player a configuration C and at least |C|/α resources in C. We show that for any
regular hypergraph there exists such a matching for α = O(log log(n)) assuming that all
configurations contain at least α resources and we can find it in randomized polynomial time.
Without the assumption of uniformity the problem becomes significantly more challenging.
To see this, we lay out the techniques of Bansal and Srividenko that allowed them to solve
the problem in the uniform case. We note that for α = O(log(n)) the statement is easy to
prove: We select for each player i one of the configurations containing i uniformly at random.
Then by standard concentration bounds each resource is contained in at most O(log(n))
of the selected configurations with high probability. This implies that there is a fractional
assignment of resources to configurations such that each of the selected configurations C

receives ⌊|C|/O(log(n))⌋ of the resources in C. By integrality of the bipartite matching
polytope, there is also an integral assignment with this property.

To improve to α = O(log log(n)) in the uniform case, Bansal and Srividenko proceed as
follows. Let k be the size of each configuration. First they reduce the degree of each player
and resource to O(log(n)) using the argument above, but taking O(log(n)) configurations for

1 We note that these do not have to be the same players and resources as in the Santa Claus problem we
reduced from, but n and m do not increase.

2 In fact they get a slightly better ratio of α = O(log log(m)/ log log log(m)).
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22:4 The Submodular Santa Claus Problem in the Restricted Assignment Case

each player. Then they sample uniformly at random O(n log(n)/k) resources and drop all
others. This is sensible, because they manage to prove the (perhaps surprising) fact that an
α-relaxed perfect matching with respect to the smaller set of resources is still an O(α)-relaxed
perfect matching with respect to all resources with high probability (when assigning the
dropped resources to the selected configurations appropriately). Indeed, the smaller instance
is easier to solve: With high probability all configurations have size O(log(n)) and this greatly
reduces the dependencies between the bad events of the random experiment above (the event
that a resource is contained in too many selected configurations). This allows them to apply
Lovász Local Lemma (LLL) in order to show that with positive probability the experiment
succeeds for α = O(log log(n)).

It is not obvious how to extend this approach to non-uniform hypergraphs: Sampling a
fixed fraction of the resources will either make the small configurations empty – which makes
it impossible to retain guarantees for the original instance – or it leaves the big configurations
big – which fails to reduce the dependencies enough to apply LLL. Hence it requires new
sophisticated ideas for non-uniform hypergraphs, which we describe next.

Suppose we are able to find a set K ⊆ C of configurations (one for each player) such that
for each K ∈ K the sum of intersections |K ∩ K ′| with smaller configurations K ′ ∈ K is
very small, say at most |K|/2. Then it is easy to derive a 2-relaxed perfect matching: We
iterate over all K ∈ K from large to small and reassign all resources to K (possibly stealing
them from the configuration that previously had them). In this process every configuration
gets stolen at most |K|/2 of its resources, in particular, it keeps the other half. However,
it is non-trivial to obtain a property like the one mentioned above. If we take a random
configuration for each player, the dependencies of the intersections are too complex. To
avoid this we invoke an advanced variant of the sampling approach where we construct not
only one set of resources, but a hierarchy of resource sets R0 ⊇ · · · ⊇ Rd by repeatedly
dropping a fraction of resources from the previous set. We then formulate bad events based
on the intersections of a configuration C with smaller configurations C ′, but we write it only
considering a resource set Rk of convenient granularity (chosen based on the size of C ′).
In this way we formulate a number of bad events using various sets Rk. This succeeds in
reducing the dependencies enough to apply LLL. Unfortunately, even with this new way of
defining bad events, the guarantee that for each K ∈ K the sum of intersections |K ∩ K ′|
with smaller configurations K ′ ∈ K is at most |K|/2 is still too much to ask. We can only
prove some weaker property which makes it more difficult to reconstruct a good solution from
it. The reconstruction still starts from the biggest configurations and iterates to finish by
including the smallest configurations but it requires a delicate induction where at each step,
both the resource set expands and some new small configurations that were not considered
before come into play.

Additional implications of non-uniform hypergraph matchings to the Santa Claus problem.
We believe this hypergraph matching problem is interesting in its own right. Our last
contribution is to show that finding good matchings in unweighted hypergraphs with fewer
assumptions than ours would have important applications for the Santa Claus problem with
linear utility functions. We recall that here, each player i has its own utility function fi

that can be any linear function. In this case, the best approximation algorithm is due to
Chakrabarty, Chuzhoy, and Khanna [4] who gave a O(nϵ)-approximation running in time
O(n1/ϵ). In particular, no sub-polynomial approximation running in polynomial time is
known. Consider as before H = (P ∪ R, C) a non-uniform hypergraph with unit weights
(wj,C = 1 for all j, C such that j ∈ C). Finding the smallest α (or an approximation of
it) such that there exists an α-relaxed perfect matching in H is already a very non-trivial
question to solve in polynomial time.
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We show, via a reduction, that a c-approximation for this problem would yield a
O((c log∗(n))2)-approximation for the Santa Claus problem with arbitrary linear utility
functions. In particular, any sub-polynomial approximation for this problem would signific-
antly improve the state-of-the-art3. Details of this last result can be found in the full version
of the paper.

A remark on local search techniques. We focus here on an extension of the LLL technique
of Bansal and Srividenko. However, another technique proved itself very successful for the
Santa Claus problem in the restricted assignment case with a linear utility function. This
is a local search technique discovered by Asadpour, Feige, and Saberi [2] who used it to
give a non-constructive proof that the integrality gap of the configuration LP of Bansal and
Srividenko is at most 4. One may wonder if this technique could also be extended to the
submodular case as we did with LLL. Unfortunately, this seems problematic as the local
search arguments heavily rely on amortizing different volumes of configurations (i.e., the sum
of their resources’ weights or the number of resources in the unweighted case). Amortizing
the volumes of configurations works well, if each configuration has the same volume, which is
the case for the problem derived from linear valuation functions, but not the one derived
from submodular functions. If the volumes differ then the amortization arguments break
and the authors of this paper believe this is a fundamental problem for this approach.

2 Reduction to hypergraph matching problem

In this section we give a reduction of the restricted submodular Santa Claus problem to the
hypergraph matching problem. As a starting point we solve the configuration LP, a linear
programming relaxation of our problem. The LP is constructed using a parameter T which
denotes the value of its solution. The goal is to find the maximal T such that the LP is
feasible. In the LP we have a variable xi,C for every player i ∈ P and every configuration
C ∈ C(i, T ). The configurations C(i, T ) are defined as the sets of resources C ⊆ Γi such
that f(C) ≥ T . We require every player i ∈ P to have at least one configuration and every
resource j ∈ R to be contained in at most one configuration.∑

C∈C(i,T )

xi,C ≥ 1 for all i ∈ P

∑
i∈P

∑
C∈C(i,T ):j∈C

xi,C ≤ 1 for all j ∈ R

xi,C ≥ 0 for all i ∈ P, C ∈ C(i, T )

Since this linear program has exponentially many variables, we cannot directly solve it in
polynomial time. We will give a polynomial time constant approximation for it via its dual.
This is similar to the linear variant in [3], but requires some more work. In their case they
can reduce the problem to one where the separation problem of the dual can be solved
in polynomial time. In our case even the separation problem can only be approximated.
Nevertheless, this is sufficient to approximate the linear program in polynomial time.

▶ Theorem 2. The configuration LP of the restricted submodular Santa Claus problem can
be approximated within a factor of (1 − 1/e)/2 in polynomial time.

3 We mention that our result on relaxed matchings in Section 3 does not imply an O(log log(n))-
approximation for this problem since we make additional assumptions on the regularity of the hypergraph
or the size of hyperedges.

ICALP 2021



22:6 The Submodular Santa Claus Problem in the Restricted Assignment Case

We defer the proof of this theorem to the full version of the paper. Given a solution x∗

of the configuration LP we want to arrive at the hypergraph matching problem from the
introduction such that an α-relaxed perfect matching of that problem corresponds to an
O(α)-approximate solution of the restricted submodular Santa Claus problem. Let T ∗ denote
the value of the solution x∗. We will define a resource j ∈ R as fat if f({j}) ≥ T ∗/(100α).

Resources that are not fat are called thin. We call a configuration C ∈ C(i, T ) thin, if it
contains only thin resources and denote by Ct(i, T ) ⊆ C(i, T ) the set of thin configurations.
Intuitively in order to obtain an O(α)-approximate solution, it suffices to give each player i

either one fat resource j ∈ Γi or a thin configuration C ∈ Ct(i, T ∗/O(α)). For our next step
towards the hypergraph problem we use a technique borrowed from Bansal and Srividenko [3].
This technique allows us to simplify the structure of the problem significantly using the
solution of the configuration LP. Namely, one can find a partition of the players into clusters
such that we only need to cover one player from each cluster with thin resources. All other
players can then be covered by fat resources. Informally speaking, the following lemma
is proved by sampling configurations randomly according to a distribution derived in a
non-trivial way from the configuration LP.

▶ Lemma 3. Let ℓ ≥ 12 log(n). Given a solution of value T ∗ for the configuration LP in
randomized polynomial time we can find a partition of the players into clusters K1 ∪ · · · ∪
Kk ∪ Q = P and multisets of configurations Ch ⊆

⋃
i∈Kh

Ct(i, T ∗/5), h = 1, . . . , k, such that
1. |Ch| = ℓ for all h = 1, . . . , k and
2. Each small resource appears in at most ℓ configurations of

⋃
h Ch.

3. given any i1 ∈ K1, i2 ∈ K2, . . . , ik ∈ Kk there is a matching of fat resources to players
P \ {i1, . . . , ik} such that each of these players i gets a unique fat resource j ∈ Γi.

The role of the players Q in the lemma above is that each one of them gets a fat resource
for certain. The proof follows closely that in [3]. For completeness we include it in the full
version of the paper. We are now ready to define the hypergraph matching instance. The
vertices of our hypergraph are the clusters K1, . . . , Kk and the thin resources. Let C1, . . . , Ck

be the multisets of configurations as in Lemma 3. For each Kh and C ∈ Ch there is a
hyperedge containing Kh and all resources in C. Let {j1, . . . , jm} = C ordered arbitrarily,
but consistently. Then we define the weights as normalized marginal gains of resources if
they are taken in this order, that is,

wji,C = 5
T ∗ f({ji} | {j1, . . . , ji−1}) = 5

T ∗ (f({j1, . . . , ji−1, ji}) − f({j1, . . . , ji−1})).

This implies that
∑

j∈C wj,C ≥ 5f(C)/T ∗ ≥ 1 for each C ∈ Ch, h = 1, . . . , k.

▶ Lemma 4. Given an α-relaxed perfect matching to the instance as described by the
reduction, one can find in polynomial time an O(α)-approximation to the instance of restricted
submodular Santa Claus.

Proof. The α-relaxed perfect matching implies that each cluster Kh gets some small resources
C ′ where C ′ ⊆ C for some C ∈ Ch and

∑
j∈C′ wj,C ≥ 1/α. By submodularity we have that

f(C ′) ≥ T ∗/(5α). Therefore we can satisfy one player in each cluster using thin resources
and by Lemma 3 all others using fat resources. ◀

The proof above is the most critical place in the paper where we make use of the submodularity
of the valuation function f . We note that since all resources considered are thin resources
we have, by submodularity of f , the assumption that

wj,C ≤ 5
T ∗ f({j}) ≤ 5

T ∗
T ∗

100α
≤ 5

100α

∑
j∈C

wj,C
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for all j, C such that j ∈ C. This means that the weights are all small enough, as promised in
introduction. From now on, we will assume that

∑
j∈C wj,C = 1 for all configurations C. This

is without loss of generality, since we can just rescale the weights inside each configuration.
This does not hurt the property that all weights are small enough.

2.1 Reduction to unweighted hypergraph matching

Before proceeding to the solution of this hypergraph matching problem, we first give a
reduction to an unweighted variant of the problem. We will then solve this unweighted
variant in the next section. First, we note that we can assume that all the weights wj,C

are powers of 2 by standard rounding arguments. This only loses a constant factor in the
approximation rate. Second, we can assume that inside each configuration C, each resource
has a weight that is at least a 1/(2n). Formally, we can assume that minj∈C wj,C ≥ 1/(2n)
for all C ∈ C. If this is not the case for some C ∈ C, simply delete from C all the resources
that have a weight less than 1/(2n). By doing this, the total weight of C is only decreased
by a factor 1/2 since it looses in total at most a weight of n · (1/2n) = 1/2. (Recall that we
rescaled the weights so that

∑
j∈C wj,C = 1).

Hence after these two operations, an α-relaxed perfect matching in the new hypergraph
is still an O(α)-relaxed perfect matching in the original hypergraph. From there we reduce
to an unweighted variant of the matching problem. Note that each configuration contains
resources of at most log(n) different possible weights (powers of 2 from 1/(2n) to 1/α). We
create the following new unweighted hypergraph H′ = (P ′ ∪ R, C′). The resource set R

remains unchanged. For each player i ∈ P , we create log(n) players, which later correspond
each to a distinct weight. We will say that the players obtained from duplicating the original
player form a group. For every configuration C containing player i in the hypergraph H, we
add a set SC = {C1, . . . , Cs, . . . , Clog(n)} of configurations in H′. Cs contains player is and
all resources that are given a weight 2−(s+1) in C. In this new hypergraph, the resources are
not weighted. Note that if the hypergraph H is regular then H′ is regular as well.

Additionally, for a group of player and a set of log(n) configurations (one for each player
in the group), we say that this set of configurations is consistent if all the configurations
selected are obtained from the same configuration in the original hypergraph H (i.e. the
selected configurations all belong to SC for some C in H).

Formally, we focus of the following problem. Given the regular hypergraph H′, we want to
select, for each group of log(n) players, a consistent set of configurations C1, . . . , Cs, . . . , Clog(n)
and assign to each player is a subset of the resources in the corresponding configuration Cs

so that is is assigned at least ⌊|Cs|/α⌋ resources. No resource can be assigned to more than
one player. We refer to this assignment as a consistent α-relaxed perfect matching. Note
that in the case where |Cs| is small (e.g. of constant size) we are not required to assign any
resource to player is.

▶ Lemma 5. A consistent α-relaxed matching in H′ induces a O(α)-relaxed matching in H.

Due to space constraint, the proof of this lemma is moved to the full version of the paper.

3 Matchings in regular hypergraphs

In this section we solve the hypergraph matching problem we arrived to in the previous
section. For convenience, we give a self contained definition of the problem before formulating
and proving our result.

ICALP 2021



22:8 The Submodular Santa Claus Problem in the Restricted Assignment Case

Input. We are given H = (P ∪ R, C) a hypergraph with hyperedges C over the vertices P

(players) and R (resources) with m = |P | and n = |R|. As in previous sections, we will refer
to hyperedges as configurations. Each configuration C ∈ C contains exactly one vertex in P ,
that is, |C ∩ P | = 1. The set of players is partitioned into groups of size at most log(n), we
will use A to denote a group. These groups are disjoint and contain all players. Finally there
exists an integer ℓ such that for each group A there are ℓ consistent sets of configurations.
A consistent set of configurations for a group A is a set of |A| configurations such that all
players in the group appear in exactly one of these configurations. We will denote by SA

such a set and for a player i ∈ A, we will denote by S(i)
A the unique configuration in SA

containing i. Finally, no resource appears in more than ℓ configurations. We say that the
hypergraph is regular (although some resources may appear in less than ℓ configurations).

Output. We wish to select a matching that covers all players in P . More precisely, for each
group A we want to select a consistent set of configurations (denoted by {S(i)

A }i∈A). Then
for each player i ∈ A, we wish to assign a subset of the resources in S(i)

A to the player i such
that:
1. No resource is assigned to more than one player in total.
2. For any group A and any player i ∈ A, player i is assigned at least ⌊|S(i)

A |/α⌋ resources
from S(i)

A .
We call this a consistent α-relaxed perfect matching. Our goal in this section will be to prove
the following theorem.

▶ Theorem 6. Let H = (P ∪ R, C) be a regular (non-uniform) hypergraph where the set
of players is partitioned into groups of size at most log(n). Then we can, in randomized
polynomial time, compute a consistent α-relaxed perfect matching for α = O(log log(n)).

We note that Theorem 6 together with the reduction from the previous section will prove
our main result (Theorem 1) stated in introduction.

3.1 Overview and notations
To prove Theorem 6, we introduce the following notations. Let ℓ ∈ N be the regularity
parameter as described in the problem input (i.e. each group has ℓ consistent sets and each
resource appears in no more than ℓ configurations). As we proved in Lemma 3 we can assume
with standard sampling arguments that ℓ = 300.000 log3(n) at a constant loss. If this is not
the case because we might want to solve the hypergraph matching problem by itself (i.e. not
obtained by the reduction in Section 2), the proof of Lemma 3 can be repeated in a very
similar way here.

For a configuration C, its size will be defined as |C ∩ R| (i.e. its cardinality over the
resource set). For each player i, we denote by Ci the set of configurations that contain i. We
now group the configurations in Ci by size: We denote by C(0)

i the configurations of size in
[0, ℓ4) and for k ≥ 1 we write C(k)

i for the configurations of size in [ℓk+3, ℓk+4). Moreover,
define C(k) =

⋃
i C(k)

i and C(≥k) =
⋃

h≥k C(h). Let d be the smallest number such that C(≥d)

is empty. Note that d ≤ log(n)/ log(ℓ). Now consider the following random process.

▶ Random Experiment 7. We construct a nested sequence of resource sets R = R0 ⊇ R1 ⊇
. . . ⊇ Rd as follows. Each Rk is obtained from Rk−1 by deleting every resource in Rk−1
independently with probability (ℓ − 1)/ℓ.

In expectation only a 1/ℓ fraction of resources in Rk−1 survives in Rk. Also notice that for
C ∈ C(k) we have that E[|Rk ∩ C|] = poly(ℓ).
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The proof of Theorem 6 is organized as follows. In Section 3.2, we give some properties of
the resource sets constructed by Random Experiment 7 that hold with high probability. Then
in Section 3.3, we show that we can find a single consistent set of configurations for each group
of players such that for each configuration selected, its intersection with smaller selected
configurations is bounded if we restrict the resource set to an appropriate Rk. Restricting
the resource set is important to bound the dependencies of bad events in order to apply
Lovasz Local Lemma. Finally in Section 3.4, we demonstrate how these configurations allow
us to reconstruct a consistent α-relaxed perfect matching for an appropriate assignment of
resources to configurations.

3.2 Properties of resource sets
In this subsection, we give a precise statement of the key properties that we need from
Random Experiment 7. The first two lemmas have a straight-forward proof. The last one is
a generalization of an argument used by Bansal and Srividenko [3]. Since the proof is more
technical and tedious, we also defer it to the full version of the paper along with the proof of
the first two statements.

We start with the first property which bounds the size of the configurations when restricted
to some Rk. This property is useful to reduce the dependencies while applying LLL later.

▶ Lemma 8. Consider Random Experiment 7 with ℓ ≥ 300.000 log3(n). For any k ≥ 0 and
any C ∈ C(≥k) we have

1
2ℓ−k|C| ≤ |Rk ∩ C| ≤ 3

2ℓ−k|C|

with probability at least 1 − 1/n10.

The next property expresses that for any configuration the sum of intersections with config-
urations of a particular size does not deviate much from its expectation. In particular, for
any configuration C, the sum of it’s intersections with other configurations is at most |C|ℓ as
each resource is in at most ℓ configurations. By the lemma stated below, we recover this
up to a multiplicative constant factor when we consider the appropriately weighted sum of
the intersection of C with other configurations C ′ of smaller sizes where each configuration
C ′ ∈ C(k) is restricted to the resource set Rk.

▶ Lemma 9. Consider Random Experiment 7 with ℓ ≥ 300.000 log3(n). For any k ≥ 0 and
any C ∈ C(≥k) we have

∑
C′∈C(k)

|C ′ ∩ C ∩ Rk| ≤ 10
ℓk

|C| +
∑

C′∈C(k)

|C ′ ∩ C|


with probability at least 1 − 1/n10.

We now define the notion of good solutions which is helpful in stating our last property. Let
F be a set of configurations, α : F → N, γ ∈ N, and R′ ⊆ R. We say that an assignment
of R′ to F is (α, γ)-good if every configuration C ∈ F receives at least α(C) resources of
C ∩ R′ and if no resource in R′ is assigned more than γ times in total.

Below we obtain that given a (α, γ)-good solution with respect to resource set Rk+1,
one can construct an almost (ℓ · α, γ)-good solution with respect to the bigger resource set
Rk. Informally, starting from a good solution with respect to the final resource set and
iteratively applying this lemma would give us a good solution with respect to our complete
set of resources.
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▶ Lemma 10. Consider Random Experiment 7 with ℓ ≥ 300.000 log3(n). Fix k ≥ 0.
Conditioned on the event that the bounds in Lemma 8 hold for k, then with probability at
least 1 − 1/n10 the following holds for all F ⊆ C(≥k+1), α : F → N, and γ ∈ N such that
ℓ3/1000 ≤ α(C) ≤ n for all C ∈ F and γ ∈ {1, . . . , ℓ}: If there is a (α, γ)-good assignment
of Rk+1 to F , then there is a (α′, γ)-good assignment of Rk to F where

α′(C) ≥ ℓ

(
1 − 1

log(n)

)
α(C)

for all C ∈ F . Moreover, this assignment can be found in polynomial time.

Given the lemmata above, by a simple union bound one gets that all the properties of
resource sets hold.

3.3 Selection of configurations
In this subsection, we give a random process that selects one consistent set of configurations
for each group of players such that the intersection of the selected configurations with smaller
configurations is bounded when considered on appropriate sets Rk. We will denote SA the
selected consistent set for group A and for ease of notation we will denote Ki = S(i)

A the
selected configuration for player i ∈ A. For any integer k, we write K(k)

i = {Ki} if Ki ∈ C(k)
i

and K(k)
i = ∅ otherwise. As for the configuration set, we will also denote K(k) =

⋃
i K(k)

i

and K =
⋃

k K(k). The following lemma describes what are the properties we want to have
while selecting the configurations. For better clarity we also recall what the properties of the
sets R0, . . . , Rd that we need are. These hold with high probability by the lemmata of the
previous section.

▶ Lemma 11. Let R = R0 ⊇ . . . ⊇ Rd be sets of fewer and fewer resources. Assume that for
each k and C ∈ C(k)

i we have

1/2 · ℓk−h ≤ |C ∩ Rh| ≤ 3/2 · ℓ−h|C| < 3/2 · ℓk−h+4

for all h = 0, . . . , k. Then there exists a selection of one consistent set SA for each group A

such for all k = 0, . . . , d, C ∈ C(k) and j = 0, . . . , k then we have∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤ 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩ Rh| + 1000d + ℓ

ℓ
log(ℓ)|C|.

Moreover, this selection of consistent sets can be found in polynomial time.

Before we prove this lemma, we give an intuition of the statement. Consider the sets
R1, . . . , Rd constructed as in Random Experiment 7. Then for C ′ ∈ C(h) we have E[ℓh|C ′ ∩
C ∩ Rh|] = |C ′ ∩ C|. Hence∑

h≤k

∑
K∈K(h)

|K ∩ C| = E[
∑
h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh|].

Similarly for the right-hand side we have

E[ 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩ Rh| + O(d + ℓ

ℓ
log(ℓ)|C|)]

= 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

|C ′ ∩ C|︸ ︷︷ ︸
≤ℓ|C|

+O

(
d + ℓ

ℓ
log(ℓ)|C|

)
= O

(
d + ℓ

ℓ
log(ℓ)|C|

)
.



E. Bamas, P. Garg, and L. Rohwedder 22:11

Hence, the lemma says that each resource in C is roughly covered O((d + ℓ)/ℓ · log(ℓ)) times
by smaller configurations.

We now proceed to the proof of Lemma 11.

Proof. We perform the following random experiment and show with LLL that there is a
positive probability of success.

▶ Random Experiment 12. For each group A, select one consistent set SA uniformly at
random. Then for each player i ∈ A set Ki = S(i)

A .

Given this experiment we can define the following random variables. For all h = 0, . . . , d and
i ∈ P we define

X
(h)
i,C =

∑
K∈K(h)

i

|K ∩ C ∩ Rh| ≤ min{3/2 · ℓ4, |C ∩ Rh|}.

Let X
(h)
C =

∑m
i=1 X

(h)
i,C . Then

E[X(h)
C ] ≤ 1

ℓ

∑
C′∈C(h)

|C ′ ∩ C ∩ Rh| ≤ |C ∩ Rh|.

We are now ready to define the bad events on which we will apply the Lovasz Local Lemma.
As we will show later, if none of them occur, Lemma 11 will hold. For each k, C ∈ C(k), and
h ≤ k let B

(h)
C be the event that

X
(h)
C ≥

{
E[X(h)

C ] + 63|C ∩ Rh| log(ℓ) if k − 5 ≤ h ≤ k,

E[X(h)
C ] + 135|C ∩ Rh| log(ℓ) · ℓ−1 if h ≤ k − 6.

The intuitive reason as to why we define these two different bad events can be summarized
as follows. In the case h ≤ k − 6, we are counting how many times C is intersected by
configurations that are much smaller than C. Hence the size of this intersection can be
written as a sum of independent random variables of value at most O(ℓ4) which is much
smaller than the total size of the configuration |C ∩ Rh|. Since the random variables are in
a much smaller range, Chernoff bounds give much better concentration guarantees and we
can afford a very small deviation from the expectation. In the other case, we do not have
this property hence we need a bigger deviation to maintain a sufficiently low probability of
failure. However, this does not hurt the statement of Lemma 11 since we sum this bigger
deviation only a constant number of times. One key idea to be able to apply Lovasz Local
Lemma here is also to consider intersection of C with smaller configurations but restricted to
a set Rh of convenient granularity. One can notice that |C ′ ∩ Rh| = poly(ℓ) if C ′ ∈ C(h) (by
the assumption made in Lemma 11). This allows to reduce significantly the dependencies
between bad events which is crucial to make any use of LLL here.

With this in mind, we claim that the probability of each bad event happening is small.

▷ Claim 13. For each k, C ∈ C(k), and h ≤ k we have

P[B(h)
C ] ≤ exp

(
−2 |C ∩ Rh|

ℓ9 − 18 log(ℓ)
)

.

Proof. Consider first the case that h ≥ k − 5. By a Chernoff bound (see full version for the
precise formulation) with

δ = 63 |C ∩ Rh| log(ℓ)
E[X(h)

C ]
≥ 1

ICALP 2021
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we get

P[B(h)
C ] ≤ exp

(
−

δE[X(h)
C ]

3|C ∩ Rh|

)
≤ exp(−21 log(ℓ))) ≤ exp

(
− 2 |C ∩ Rh|

ℓ9︸ ︷︷ ︸
≤3/2

−18 log(ℓ)
)

.

Now consider h ≤ k − 6. We apply again a Chernoff bound with

δ = 135 |C ∩ Rh| log(ℓ)
ℓE[X(h)

C ]
≥ 1

ℓ
.

This implies

P[B(h)
C ] ≤ exp

(
−

min{δ, δ2}E[X(h)
C ]

3 · 3/2 · ℓ4

)
≤ exp

(
−30 |C ∩ Rh| log(ℓ)

ℓ6

)
≤ exp

(
−2 |C ∩ Rh|

ℓ9 − 18 log(ℓ)
)

. ◁

We can now state Lovasz Local Lemma and use it in our setting.

▶ Proposition 14 (Lovasz Local Lemma (LLL)). Let B1, . . . , Bt be bad events, and let
G = ({B1, . . . , Bt}, E) be a dependency graph for them, in which for every i, event Bi is
mutually independent of all events Bj for which (Bi, Bj) /∈ E. Let xi for 1 ≤ i ≤ t be such
that 0 < x(Bi) < 1 and P[Bi] ≤ x(Bi)

∏
(Bi,Bj)∈E(1 − x(Bj)). Then with positive probability

no event Bi holds.

Let k ∈ {0, . . . , d}, C ∈ C(k) and h ≤ k. For event B
(h)
C we set

x(B(h)
C ) = exp(−|C ∩ Rh|/ℓ9 − 18 log(ℓ)).

We now analyze the dependencies of B
(h)
C . The event depends only on random variables

SA for groups A that contain at least one player i that has a configuration in C(h)
i which

overlaps with C ∩ Rh. The number of such configurations (in particular, of such groups) is
at most ℓ|C ∩ Rh| since the hypergraph is regular.

In each of these groups, we count at most log(n) players, each having ℓ configurations
hence in total at most ℓ · log(n) configurations.

Each configuration C ′ ∈ C(h′) can only influence those events B
(h′)
C′′ where C ′∩C ′′∩Rh′ ̸= ∅.

Since |C ′ ∩ Rh′ | ≤ 3/2 · ℓ4 and since each resource appears in at most ℓ configurations, we
see that each configuration can influence at most 3/2 · ℓ5 events.

Putting everything together, we see that the bad event B
(h)
C is independent of all but at

most

(ℓ|C ∩ Rh|) · (ℓ · log(n)) · (3/2 · ℓ5) = 3/2 · ℓ7 · log(n)|C ∩ Rh| ≤ |C ∩ Rh|ℓ8

other bad events.
We can now verify the condition for Proposition 14 by calculating

x(B(h)
C )

∏
(B

(h)
C

,B
(h′)
C′ )∈E

(1 − x(B(h′)
C′ ))

≥ exp(−|C ∩ Rh|/ℓ9 − 18 log(ℓ)) · (1 − ℓ−18)|C∩Rh|ℓ8

≥ exp(−|C ∩ Rh|/ℓ9 − 18 log(ℓ)) · exp(−|C ∩ Rh|/ℓ9)

≥ exp(−2|C ∩ Rh|/ℓ9 − 18 log(ℓ)) ≥ P[B(h)
C ].
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By LLL we have that with positive probability none of the bad events happen. Let k ∈
{0, . . . , d} and C ∈ C(k). Then for k − 5 ≤ h ≤ k we have

ℓhX
(h)
C ≤ ℓhE[X(h)

C ] + 63ℓh|C ∩ Rh| log(ℓ) ≤ ℓhE[X(h)
C ] + 95|C| log(ℓ).

Moreover, for h ≤ k − 6 it holds that

ℓhX
(h)
C ≤ ℓhE[X(h)

C ] + 135ℓh−1|C ∩ Rh| log(ℓ) ≤ ℓhE[X(h)
C ] + 203|C| log(ℓ) · ℓ−1.

We conclude that, for any 0 ≤ j ≤ k,∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤
∑

j≤h≤k

ℓhE[X(h)
C ] + 1000(k − j + 1) + ℓ

ℓ
|C| log(ℓ)

≤ 1
ℓ

∑
j≤h≤k

ℓh
∑

C′∈C(h)

|C ′ ∩ C ∩ Rh| + 1000d + ℓ

ℓ
|C| log(ℓ).

This proves Lemma 11. ◀

▶ Remark 15. Since there are at most poly(n, m, ℓ) bad events and each bad event B

has x(B)
1−x(B) ≤ 1/2 (because x(B) ≤ ℓ−18), the constructive variant of LLL by Moser and

Tardos [14] can be applied to find a selection of configurations such that no bad events occur
in randomized polynomial time.

3.4 Assignment of resources to configurations
In this subsection, we show how all the previously established properties allow us to find, in
polynomial time, a good assignment of resources to the configurations K chosen as in the
previous subsection. We will denote as in the previous subsection K(k)

i = {Ki} if Ki ∈ C(k)
i

and K(k)
i = ∅ otherwise. We also define K(k) =

⋃
i K(k)

i and K(≥k) =
⋃

h≥k K(k). Finally we
define the parameter

γ = 100.000d + ℓ

ℓ
log(ℓ),

which will define how many times each resource can be assigned to configurations in an
intermediate solution. Note that d ≤ log(n)/ log(ℓ). By our choice of ℓ = 300.000 log3(n), we
have that γ ≤ 310.000 log log(n). Lemma 11 implies the following bound.

▷ Claim 16. For any k ≥ 0, any 0 ≤ j ≤ k, and any C ∈ K(k)

∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤ 2000d + ℓ

ℓ
log(ℓ)|C|

Proof. By Lemma 11 we have that∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤ 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩ Rh| + 1000d + ℓ

ℓ
log(ℓ)|C|.

Furthermore, by Lemma 9, we get

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩ Rh| ≤ ℓh 10
ℓh

|C| +
∑

C′∈C(h)

|C ′ ∩ C|

 .
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Finally note that each resource appears in at most ℓ configurations, hence∑
j≤h≤k

∑
C′∈C(h)

|C ′ ∩ C| ≤ ℓ|C|.

Putting everything together we conclude∑
j≤h≤k

∑
K∈K(h)

ℓh|K ∩ C ∩ Rh| ≤ 1
ℓ

∑
j≤h≤k

∑
C′∈C(h)

ℓh|C′ ∩ C ∩ Rh| + 1000d + ℓ

ℓ
log(ℓ)|C|

≤ 1
ℓ

∑
j≤h≤k

10

|C| +
∑

C′∈C(h)

|C′ ∩ C|

+ 1000d + ℓ

ℓ
log(ℓ)|C|

≤ k − j

ℓ
10|C| + 10|C| + 1000d + ℓ

ℓ
log(ℓ)|C|

≤ 20|C| + 1000d + ℓ

ℓ
log(ℓ)|C|

≤ 2000d + ℓ

ℓ
log(ℓ)|C|. ◁

We can now proceed to the main technical part of this section which is the following
lemma proved by induction.

▶ Lemma 17. For any j ≥ 0, there exists an assignment of resources of Rj to configurations
in K(≥j) such that no resource is taken more than γ times and each configuration C ∈ K(k)

(k ≥ j) receives at least(
1 − 1

log(n)

)2(k−j)
ℓk−j |C ∩ Rk| − 3

γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

resources from Rk.

Before going through the proof, we give here the intuition of why this is what we want to
prove. Note that the term ℓk−j |C ∩ Rk| is roughly equal to ℓ−j |C| by the properties of the
resource sets (precisely Lemma 8). The second term∑

j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

can be shown to be

O

(
ℓ−j d + ℓ

ℓ
log(ℓ)|C|

)
= O(ℓ−j log log(n)|C|)

by Claim 16. Hence by choosing γ to be Θ(log log(n)) we get that the bound in Lemma 17
will be Θ(ℓ−j |C|). At the end of the induction, we have j = 0 which indeed implies that we
have an assignment in which configurations receive

Θ(ℓ−0|C|) = Θ(|C|)

resources and such that each resource is assigned to at most O(log log(n)) configurations.
With this in mind, we give the formal proof of Lemma 17.

Proof. We start from the biggest configurations and then iteratively reconstruct a good
solution for smaller and smaller configurations. Recall d is the smallest integer such that
K(≥d) is empty. Our base case for these configurations in K(≥d) is vacuously satisfied.
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Now assume that we have a solution at level j, i.e. an assignment of resources to
configurations in K(≥j) such that no resource is taken more than γ times and each configuration
C ∈ K(k) such that k ≥ j receives at least(

1 − 1
log(n)

)2(k−j)
ℓk−j |C ∩ Rk| − 3

γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

resources from Rj . We show that this implies a solution at level j − 1 in the following way.
First by Lemma 10, this implies an assignment of resources of Rj−1 to configurations in
K(≥j) such that each C ∈ K(k) receives at least(

1 − 1
log(n)

)
ℓ

(
ℓk−j

(
1 − 1

log(n)

)2(k−j)

|C ∩ Rk| − 3
γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

)

=
(

1 − 1
log(n)

)2(k−(j−1))−1

ℓk−(j−1)|C ∩ Rk| − 3
γ

(
1 − 1

log(n)

)∑
j≤h≤k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩ Rh|

≥
(

1 − 1
log(n)

)2(k−(j−1))−1

ℓk−(j−1)|C ∩ Rk| − 3
γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩ Rh|

resources and no resource of Rj−1 is taken more than γ times. Note that we can apply
Lemma 10 since we have by Claim 16 and Lemma 8(

1 − 1
log(n)

)2(k−j)
ℓk−j |C ∩ Rk| − 3

γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−j |K ∩ C ∩ Rh|

≥ ℓk−j

e2 |C ∩ Rk| − 3
γ

2000ℓ−j d + ℓ

ℓ
log(ℓ)|C|

≥ ℓ−j |C|
(

1
2e2 − 6000

γ

d + ℓ

ℓ
log(ℓ)

)
≥ ℓ−j |C|

3e2 >
ℓ3

1000
Now consider configurations in K(j−1) and proceed for them as follows. Give to each
C ∈ K(j−1) all the resources in C ∩ Rj−1 except all the resources that appear in more than γ

configurations in K(j−1). Since each deleted resource is counted at least γ times in the sum∑
K∈K(j−1) |K ∩ C ∩ Rj−1|, we have that each configuration C in K(j−1) receives at least

|C ∩ Rj−1| − 1
γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1|

resources and no resource is taken more than γ times by configurations in K(j−1). Notice
that now every resource is taken no more than γ times by configurations in K(≥j) and no
more than γ times by configurations in K(j−1) which in total can sum up to 2γ times.

Therefore to finish the proof consider an resource i ∈ Rj−1. This resource is taken bi

times by configurations in K(≥j) and ai times by configurations in K(j−1). If ai + bi ≤ γ,
nothing needs to be done. Otherwise, denote by O the set of problematic resources (i.e.
resources i such that ai + bi > γ). For every i ∈ O, select uniformly at random ai + bi − γ

configurations in K(≥j) that currently contain resource i and delete the resource from these
configurations. When this happens, each configuration in C ∈ K(≥j) that contains i has
a probability of (ai + bi − γ)/bi to be selected to loose this resource. Hence the expected
number of resources that C looses with such a process is

µ =
∑

i∈O∩C

ai + bi − γ

bi
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It is not difficult to prove the following claim.

▷ Claim 18. For any C ∈ K(≥j),

1
γ2

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O| ≤ µ ≤ 2
γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|

Proof. Note that we can write

µ =
∑

i∈O∩C

ai + bi − γ

bi
≤ max

i∈O∩C

{
ai + bi − γ

aibi

} ∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|.

The reason for this is that each resource i accounts for an expected loss of (ai + bi − γ)/bi

while it is counted ai times in the sum∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|.

Similarly,

µ =
∑

i∈O∩C

ai + bi − γ

bi
≥ min

i∈O∩C

{
ai + bi − γ

aibi

} ∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|.

Note that by assumption we have that ai + bi > γ. This implies that either ai or bi is greater
than γ/2. Assume w.l.o.g. that ai ≥ γ/2. Since by assumption ai ≤ γ we have that

ai + bi − γ

aibi
≤ bi

aibi
= 1

ai
≤ 2

γ
.

In the same manner, since ai + bi > γ and that ai, bi ≤ γ, we can write

ai + bi − γ

aibi
≥ 1

aibi
≥ 1

γ2 .

We therefore get the following bounds

1
γ2

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O| ≤ µ ≤ 2
γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O|,

which is what we wanted to prove. ◁

Assume then that µ ≤ |C∩Rk|
1012 log3(n) . Note that C cannot loose more than

∑
K∈K(j−1) |K ∩ C ∩

Rj−1 ∩ O| resources in any case. Therefore, by assumption on µ, and since

µ ≥ 1
γ2

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O| ,

we have that∑
K∈K(j−1)

|K ∩C ∩Rj−1 ∩O| ≤ γ2

1012 log3(n)
|C ∩Rk| ≤ 1011 log2 log(n)

1012 log3(n)
|C ∩Rk| ≤ 1

log(n) |C ∩Rk| .

Therefore C looses at most |C ∩ Rk|/ log(n) resources. Otherwise we have that

µ >
|C ∩ Rk|

1012 log2(n)
≥ ℓ3

1012 log3(n)
≥ 200 log(n)
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by Lemma 8. Hence noting X the number of deleted resources in C we have that

P
(

X ≥ 3
2µ

)
≤ exp

(
− µ

12

)
≤ 1

n10 .

With high probability no configuration looses more than

3
2µ ≤ 3

γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1 ∩ O| ≤ 3
γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1|

resources. Hence each configuration C ∈ K(≥j) ends with at least(
1 − 1

log(n)

)2(k−(j−1))−1
ℓk−(j−1)|C ∩ Rk| − 3

γ

∑
j≤h≤k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩ Rh|

− 1
log(n)

(
1 − 1

log(n)

)2(k−(j−1))−1
ℓk−(j−1)|C ∩ Rk| − 3

γ

∑
K∈K(j−1)

|K ∩ C ∩ Rj−1|

≥
(

1 − 1
log(n)

)2(k−(j−1))
ℓk−(j−1)|C ∩ Rk| − 3

γ

∑
j−1≤h≤k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩ Rh|

resources which concludes the proof of Lemma 17. ◀

Given Lemma 17 and the intuition below it, it is straightforward to prove the following
corollary which will complete the proof of Theorem 6.

▶ Corollary 19. There exists an assignment of resources R to K such that each configuration
C ∈ K receives at least ⌊|C|/(100γ)⌋ resources. Moreover, this assignment can be found in
polynomial time.

Proof. Lemma 17 with k = 0 and Claim 16 together imply that we can assign at least

|C|
2e2 − 6000

100.000 |C| ≥ |C|
100

resources to every C ∈ K such that no resource in R is assigned more than γ times. In
particular, we can fractionally assign at least |C|/(100γ) resources to each C ∈ K such that
no resource is assigned more than once. By integrality of the bipartite matching polytope,
the corollary follows. ◀
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