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—— Abstract

Fair clustering is a variant of constrained clustering where the goal is to partition a set of colored
points. The fraction of points of each color in every cluster should be more or less equal to the
fraction of points of this color in the dataset. This variant was recently introduced by Chierichetti et
al. [NeurIPS 2017] and became widely popular. This paper proposes a new construction of coresets
for fair k-means and k-median clustering for Euclidean and general metrics based on random
sampling. For the Euclidean space R?, we provide the first coresets whose size does not depend
exponentially on the dimension d. The question of whether such constructions exist was asked by
Schmidt, Schwiegelshohn, and Sohler [WAOA 2019] and Huang, Jiang, and Vishnoi [NeurIPS 2019].
For general metric, our construction provides the first coreset for fair k-means and k-median.

New coresets appear to be a handy tool for designing better approximation and streaming
algorithms for fair and other constrained clustering variants. In particular, we obtain

the first fixed-parameter tractable (FPT) PTAS for fair k-means and k-median clustering in
R?. The near-linear time of our PTAS improves over the previous scheme of Béhm, Fazzone,
Leonardi, and Schwiegelshohn [ArXiv 2020] with running time nP°®*/<);

FPT “true” constant-approximation for metric fair clustering. All previous algorithms for fair
k-means and k-median in general metric are bicriteria and violate the fairness constraints;

FPT 3-approximation for lower-bounded k-median improving the best-known 3.736 factor of
Bera, Chakrabarty, and Negahbani [ArXiv 2019];

the first FPT constant-approximations for metric chromatic clustering and ¢-Diversity clustering;

near linear-time (in n) PTAS for capacitated and lower-bounded clustering improving over PTAS
of Bhattacharya, Jaiswal, and Kumar [TOCS 2018] with super-quadratic running time;

a streaming (1 + €)-approximation for fair k-means and k-median of space complexity polynomial
in k, d, € and logn (the previous algorithms have exponential space complexity on either d or k).
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On Coresets for Fair Clustering and Their Applications

1 Introduction

Given a set of n data points in a metric space and an integer k, clustering is the task
of partitioning the points into k£ groups or clusters so that the points in each cluster are
similar. In this paper, we consider clustering problems with fairness constraints. While
there are many competing notions of fairness in the literature, here we consider clustering
with fairness constraints or fair clustering as introduced by Chierichetti et al. [16] in their
seminal work. The notion became widely popular within a short period triggering a large
body of new work [38, 7, 9, 28, 4, 11, 15, 1, 32]. The idea of fair clustering is to enforce
additional (fairness) constraints to remove the inherent bias or discrimination from vanilla
(unconstrained) clustering. For example, suppose we have a sensitive feature (e.g, race or
gender). We want to find a clustering where the fraction of points from a traditionally
underrepresented group in every cluster is more or less equal to the fraction of points from
this group in the dataset. Indeed, the work of Chierichetti et al. [16] shows that clustering
computed by classical vanilla algorithms can lead to widely varied ratios for a particular
group, especially when the number of clusters is large enough.

In this work, we consider the fair clustering model independently formulated by Bercea et
al. [9] and Bera et al. [7]. In this model, we are given ¢ groups P, ..., Py of points in a metric
space and balance parameters «;, 3; € [0, 1] for each group 1 <i < ¢. A clustering is fair if
the fraction of points from group 7 in every cluster is at least 8; and at most «;. Additionally,
in [7], the groups are allowed to overlap, i.e, a point can belong to multiple protected classes.
We refer to the fair clustering problem with overlapping groups as («, 5)-fair clustering. We
note that this is the most general version of fair clustering considered in the literature, and
this is the notion of fairness we adapt in this paper. Both [9] and [7] obtain polynomial time
O(1)-approximation for this problem that violates the fairness constraints by at most small
additive factors.

We denote by I' the maximum number of distinct collections of groups to which a point
belongs. If all the groups are disjoint, then I' = ¢. Note that if every point belongs to at
most A groups, then I is at most ¢*. As noted in [7, 28], while A can very well be more than
1, it is usually a constant in most of the applications. Thus, in this case, I' = £9(1) which is
expected to be much smaller compared to n, the total number of points in the union of the
groups.

Several works related to fair clustering were devoted to scalability [28, 38, 11, 4]. Along
this line, in a beautiful work, Schmidt et al. [38] defined coresets for fair clustering. Note
that a coreset for a center-based vanilla clustering problem is roughly a summary of the
data that for every set C of k centers approximately (within (1 4 €) factor) preserves the
optimal clustering cost. Over the years, researchers have paid increasing attention to the
design of coreset construction algorithms to optimize the coreset size. Indeed, finding smaller
coresets continues to be an active research area in the context of vanilla k-median and
k-means clustering. For general metric spaces, the best-known upper bound on coreset size
is O((klogn)/e?) [21] and the lower bound is known to be Q((klogn)/e) [5]. For Euclidean
spaces of dimension d, it is possible to construct coresets, based on random sampling, of size
(k/e)©™M) [22, 39, 29, 13], which in particular does not depend on n and d.

In the vanilla version of a clustering problem, given the cluster centers, clusters are
formed by assigning each point to its nearest center. In contrast, in a constrained version,
such an assignment might not lead to a clustering that satisfies the constraints. Hence, for
fair clustering, we need a stronger definition of coreset. Accordingly, Schmidt et al. [3§]
initiated the study of fair coresets. Schmidt et al. [38] and subsequently Huang et al. [2§]



S. Bandyapadhyay, F.V. Fomin, and K. Simonov

designed deterministic algorithms in R? that construct fair coresets whose sizes exponentially
depend on d. To remove this exponential dependency on d, Schmidt et al. [38] proposed an
interesting open question whether it is possible to use random sampling for construction of
fair coresets. Huang et al. [28] also suggested the same open question. Besides, Huang et al.
asked whether it is possible to achieve a similar size bound as in the vanilla setting.

1.1 Our Results and Contributions

We study fair clustering under the k-median and k-means objectives. Our first main result is
the following theorem.

» Theorem 1. There is an O(n(k+{)) time randomized algorithm that w.p. at least 1 —1/n,
computes a coreset of size O(T'(klogn)?/€®) for («, B)-fair k-median and O(T(klogn)”/e®)
for (a, B)-fair k-means, where I' is the number of distinct collections of groups to which a
point may belong. If the groups are disjoint, the algorithm runs in O(nk) time. Moreover,
in R%, the coreset sizes are O (X - k?logn(logn + dlog(1/€))) for (e, B)-fair k-median' and
O (% - k"(logn)5(logn + dlog(1/€))) for (v, B)-fair k-means.

Theorem 1 provides the first coreset construction for fair clustering problem in general
metric spaces. Note that if the number of groups is just 1, we obtain coresets of size
Oc(poly(klogn)), which is somewhat comparable to the best-known bound of O.(klogn)
[21] in the vanilla case. We also note that this is the first sampling based coreset construction
scheme for fair clustering, and in R?, the first coreset construction scheme where the size of
the coreset does not depend exponentially on the dimension d (see Table 1). In fact, the
dependency on d is only linear. Specifically, our result improves the bound (for k-median) in

[28] by a factor of © (%
size is much smaller compared to theirs. In fact, the dependency of the previous coreset size
on n can be super-polylogarithmic (or super-polynomial) when d is large, whereas ours is
only polylogarithmic in the worst case. In the light of the above discussion, our result solves

the open question proposed in [38] and partly solves the open question proposed in [28].

) (see Table 1). Thus, if d is sufficiently large, our coreset

Table 1 Previous and current coreset results in R?.

k-median k-means
size construction size construction time
time
[38] O(Tke= % 2logn) O(ke=%2nlogn)
[28] O(T'k*e™9) O(ke'n) | Ok 471 O(ke=*t1p)
This O(% - k*logn(logn+ | O(nd(k+¢)) | O(% - k" (logn)®(logn+ | O(nd(k + £))
dlog(1/e))) dlog(1/e€)))

Actually, our coreset construction scheme, similar to [38, 28], is much more general in the
following sense. The coreset can preserve not only the cost of optimal fair clustering, but
also the cost of any optimal clustering with group-cardinality constraints. In particular, for

! The Euclidean version is not a special case of the general metrics case, as here the set of potential
centers is infinite.
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any clustering problem with constraints that can be expressed in terms of the number of
elements that go from each group to each cluster (formally defined in Section 2), we obtain a
small size coreset. This gives rise to new coresets for a wide range of clustering problems
including lower-bounded clustering [40, 2, §].

We further exploit the new coreset construction to design clustering algorithms in various
settings. In general metrics, we obtain the first fixed-parameter tractable (FPT) constant-
factor approximation for (a, §)-fair clustering with parameters k and I". That is, the running
time of our algorithm is exponential only in the values k and I' while polynomial in the size
of the input. All previous constant-approximation algorithms were bicriteria and violated
the fairness constraints by some additive factors. Hence, the study of FPT approximation is
well-motivated. Our approximation factors are reasonably small and improve the best-known
approximation factors of the existing bicriteria algorithms (see Table 2). Moreover, our
coreset leads to improved constant FPT approximations for many other clustering problems.
For example, we obtain an improved = 3-approximation algorithm for lower-bounded k-
median [40, 2, 8] that is FPT parameterized by k. Previously, the best-known factor for FPT
approximation for this problem was 3.736 [8].

Based on our coreset, we also obtain the first FPT (1 + ¢)-approximation for («, 3)-
fair clustering in R? with parameters k& and I". For constant I', the running time of our
algorithm is near-linear and up to logn, matches the time of the algorithm of Kumar,
Sabharwal, and Sen for vanilla clustering [34]. A comparison with the running time of the
previous (1 + €)-approximation algorithms can be found in Table 3. We also obtain FPT
(1 + ¢)-approximations with parameter k for the Euclidean version of several other problems
including capacitated clustering [19, 17] and lower-bounded clustering. We note that these
are the first (1 + €)-approximations for these problems with near-linear dependency on n.
For Euclidean capacitated clustering, quadratic time FPT algorithms follow due to [20, 10]
(see Table 4). Also, the (1 4 €)-approximation for Euclidean capacitated clustering in [19]
and [17] have running time (ke=1)* “nOM) and at least n¢ " (see Table 4).

Table 2 Approximation results for (o, 8)-fair clustering in general metrics. “multi” denotes if
the algorithm can handle overlapping groups. In “approx.” columns, the first (resp. second) value in
a tuple is the approximation factor (resp. violation). [7] does not explicitly compute the O(1) factor,
but it is > 34 € (resp. > 9+ ¢) for k-median (resp. k-means), where € is a sufficiently large constant.

k-median k-means
multi
approx. time approx. time
[9] (4.675,1) poly(n) (62.856,1) poly(n)
[7] v (O(1),4A 4+ 3) | poly(n) (O(1),4A + 3) | poly(n)
This ~ 3 (k6)°*Dnlogn ~9 (k0)°*Onlogn
This v ~ 3 (kT)°* D plogn ~9 (k1)°* D logn

Our coreset also leads to small space (1 + €)-approximation in streaming setting for
(o, B)-fair clustering in R? when the groups are disjoint. We show how to maintain an
O(d?( - poly(klogn)/e?) size coreset in each step. One can apply our (1 + ¢)-approximation
algorithm on the coreset to compute a near-optimal clustering. In the previous streaming
algorithms [38], the space complexity depended exponentially on either d or k.
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Our coreset construction scheme is based on the algorithm for the vanilla case due to
Chen [14]. Chen showed that a small number of points can be chosen randomly from a
metric space (in a clever way) that form a coreset for vanilla clustering. Our construction
first divides the input points into a number of subsets, and for each subset, applies Chen’s
algorithm to compute a coreset for that subset. Our final coreset is the union of all these
computed coresets. Surprisingly, our algorithm for fair clustering is as simple as that. Our
main technical contribution is the analysis of this algorithm, which shows that the returned
weighted subset of the points is a coreset for fair clustering with high probability.

Table 3 Running time of the (1 + €)-approximations for fair clustering in R%.

running time version
[38] nO*/9) 2-color, (1, k)-fair clustering
[11] nPoly(k/e) {-color, (1, k)-fair clustering
This QO(k/EO(l))(kF)O(kr)nd logn (v, B)-fair clustering

Although our algorithm follows the framework of Chen’s, the proof that the algorithm
correctly computes a fair coreset is much more complicated. Our analysis is strongly inspired
by the analysis of Cohen-Addad and Li [19] of Chen’s algorithm in the context of capacitated
clustering. However, there are two major difficulties of applying the analysis technique of [19]
directly to our problem. Firstly, in our case input points belong to groups which can overlap,

and secondly, fairness constraints are much more general compared to capacity constraints.

The novelty of our work lies in overcoming the two above-mentioned hurdles. To overcome
the first hurdle, we divide the input points into equivalence classes based on their group
membership and using a probabilistic argument prove that it is possible to consider these
classes separately. To overcome the second hurdle, we prove that fairness constraints can
be treated as a collection of independent constraints each of which is similar to a capacity
constraint. All these ideas together help us generalize the approach of [19] to fair clustering.

Table 4 Running time of the (1 4 ¢)-approximations for capacitated clustering in RY.

running time

[20] 2pPoly(k/€) 2 (Jog n) k24
[10] 20 (k/e0h) -n%(logn)?d
[19] (kefl)ke_o(l)no(l)

[17] - @=2)

pllogn/)@( (d>3)

This 2O(k/€o(l)>ndo(l) +nk?e °Mlogn

Apart from the coreset construction, the novelty of our work lies in the design of an
algorithm for computing the minimum cost fair assignment to given centers, based on
mixed-integer linear programming. This is the heart of all our approximation algorithms.
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1.2 Related Work

Schmidt et al. [38] defined the concept of fair coresets and gave coreset of size O(¢ke~4~2logn)
for the disjoint group case of Euclidean («, 3)-fair k-means. They also gave an n°®*/
(1 4 €)-approximation for the two-color version of the problem. Using the framework in [25],

) time

Huang et al. [28] improved the coreset size bound of [38] by a factor of © (1?,%2" ) and gave

the first coreset for Euclidean («, 8)-fair k-median of size O(Tk%¢~4). Béhm et al. [11]
obtained near-linear time constant-approximation in a restricted setting. They also obtained
an nPoY(*/¢) time (1 + e)-approximation for the Euclidean version in the same setting.

Chierichetti et al. [16] gave a polynomial time ©(t)-approximation for a special version
of (o, fB)-fair k-median with two groups, where ¢ is a balance parameter. Bera et al. [7]
obtained polynomial time O(1)-approximation for (a,3)-fair clustering that violates the
fairness constraints by at most an additive factor of 4A + 3. For the disjoint group case,
their violation factor is only 3. Independently, Bercea et al. [9] obtained algorithms with the
same approximation guarantees as in [7] for the disjoint version, but with at most 1 additive
factor violation. For other related works on fair clustering, see [4, 16, 37, 9, 7, 1, 15, 32, 33].
For related works on coresets, see [27, 26, 23, 35, 21, 22, 39, 6, 12, 29].

2 Preliminaries

In all the clustering problems we study in this paper, we are given a set P of points in a
metric space (X,d(-,-)), that we have to cluster. We are also given a set F' of cluster centers
in the same metric space. We note that P and F are not-necessarily disjoint, and in fact, P
may be equal to F. We assume that the distance function d(,-) is provided by an oracle
that for any given z,y € X in constant time returns d(z,y). In the Euclidean version of
a clustering problem, P C R?, F = R? and d(-,) is the Euclidean metric.? In the metric
version, we assume that F' is finite. Thus, strictly speaking, the Euclidean version is not a
special case of the metric version. In the metric version, we denote |P U F'| by n and in the
Euclidean version, |P| by n. For any set S and a point p, d(p, S) := minges d(p, ¢). Also, for
any integer t > 1, we denote the set {1,2,...,t} by [t].

In the k-median problem, given an additional parameter k, the goal is to select a set
of at most k centers C C F such that the quantity Zpe pd(p,C) is minimized. k-means is
identical to k-median, except here we would like to minimize } . p(d(p, ))2.

Next, we define our notion of fair clustering following the definition in [7].

» Definition 2 (Definition 1, [7]). In the fair version of a clustering problem (k-median or
k-means), one is additionally given £ many (not necessarily disjoint) groups of P, namely
Py, Py, ..., P;. One is also given two fairness vectors a, 8 € [0,1]%, a = (ay,..., ),
B = (P1,-..,B¢). The objective is to select a set of at most k centers C C F and an
assignment ¢ : P — C such that o satisfies the following fairness constraints:

{o e Pig(@) =}l Sai-{z e Pigp(e) =cll, VeeCvield,
Hzx e Pi:px)=c} >B;-{x e P:p(x)=c}, VeeCViel],
and cost(yp) is minimized among all such assignments.

In the («, §)-Fair k-median problem, cost(y) := > _pd(z,¢(x)), and in the («, 3)-Fair
k-means problem, cost(¢) := Y. . pd(z, ¢(x))?. To refer to these two problems together, we
will use the term (a, §)-FAIR CLUSTERING. We call ¢ that satisfies the fairness constraints a

2 Due to the lack of better notations, we denote the dimension by d and distance function by d(-, ).
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fair assignment. We denote the minimum cost of a fair assignment of a set of points P to a
set of k centers C' by faircost(P, C'), and faircost(P) denotes the minimum of faircost(P, C")
over all possible sets of k centers C’.

Next, we state our notion of coresets. We follow the definitions in [38, 28]. For a clustering
problem with k& centers and ¢ groups P, ..., Py, a coloring constraint is a k x £ matrix M
having non-negative integer entries. The entry of M corresponding to row ¢ and column j is
denoted by M;;. Next, we have the following observation, which was also noted in [38, 28].

» Proposition 3. Given a set C of k centers, the assignment restriction required for («, 3)-
FAIR CLUSTERING can be expressed as a collection of coloring constraints.

In our definition, a coreset is required to preserve the optimal clustering cost w.r.t. all
coloring constraints, and hence it also preserves the optimal fair clustering cost. Next, we
formally define the cost of a clustering w.r.t. a set of centers and a coloring constraint.

First, consider the k-median objective. Suppose we are given a weight function w : P —
R>o (non-negative reals). Let W C P xR be the set of pairs {(p, w(p)) | p € P and w(p) > 0}.
For a set of centers C = {cy,...,¢c;} and a coloring constraint M, wcost(W, M, C) is the
minimum value Y p ..o ¥(p, ¢;) - d(p, ¢;) over all assignments ¢ : P x C' — Rxg such that
1. Foreachp e P, > . co¥(p,ci) = w(p).

2. For each ¢; € C and group 1 < j </, Zper Y(p, i) = M;j.

For k-means, wcost(W, M, C) is defined in the same way except it is the minimum value
ZpGP,ciGC ¥(p, ;) - d(p, ;)% If there is no such assignment v, weost(W, M, C) = co. When
w(p) = 1 for all p € P, we simply denote W by P and wcost(W, M, C) by cost(P, M, C).
Now we define a coreset. We call it universal coreset, as it is required to preserve optimal
clustering cost w.r.t. all coloring constraints.

» Definition 4 (Universal coreset). For a given unweighted point set P and a clustering
objective, a universal coreset is a set of weighted points W C P x R such that for every set
of centers C of size k and any coloring constraint M,

(1 —¢€)- cost(P,M,C) < weost(W, M,C) < (1+e€) - cost(P,M,C).

3  Our Techniques

Here, we describe the techniques and key ideas used to obtain the new results of the paper.
The detailed version of our results and formal proofs appear in the attached full version. For
simplicity, we limit our discussion to k-median clustering. We start with the coreset results.

3.1 Universal Coreset Construction

Our coreset construction algorithms are based on random sampling and we will prove that
our algorithms produce universal coresets with high probability (w.h.p.). At a first glance, it
is not easy to see how to sample points in the overlapping group case, as the decision has an
effect on multiple groups. For simplicity, first we discuss the disjoint group case.

The Disjoint Group Case

Our coreset construction algorithm is built upon the coreset construction algorithm for vanilla
clustering due to Chen [14]. In our case, we have points from ¢ disjoint color classes. So,
we apply Chen’s algorithm for each color class independently. Note that Chen’s algorithm

23:7

ICALP 2021



23:8

On Coresets for Fair Clustering and Their Applications

was used to show that for any given set of centers C, the constructed coreset approximately
preserves the optimal clustering cost. However, we would like to show that for any given
set of centers C, the constructed coreset approximately preserves the optimal clustering
cost corresponding to any given constraint M. At this stage, it is not clear why Chen’s
algorithm should work in such a generic setting. Our main technical contribution is to show
that sampling based approaches like Chen’s algorithm can be used even for such a stronger
notion of universal coreset. We will try to give some intuition after describing our algorithm.
Our algorithm is as follows.

Given the set of points P, first we apply the algorithm of Indyk [30] for computing a
vanilla k-median clustering of P. This is a bicriteria approximation algorithm that uses O(k)
centers and runs in O(nk) time. Let C* be the set of computed centers, v be the constant
approximation factor and II be the cost of the clustering. Also, let ;o = II/(vn) be a lower
bound on the average cost of the points in any optimal k-median clustering. Note that for
any point p, d(p,C*) <II=wvn-p.

For each center ¢ € C*, let P C P be the corresponding cluster of points assigned to
¢f. We consider the ball B; ; centered at ¢/ and having radius 27y for 0 < j < N, where
N = [log(vn)]. We note that any point at a distance 2V > vn - p from ¢} is in B, y,
and thus all the points in P} are also in B; x. Let B}, = Bio and B; ; = B; ; \ B; j_1 for
1<j5<N. WerefertoeachsuchBl’»J asaringfor 1 <i<k,0<j<N.Foreach0<j<N
and color 1 <t </, let P/, be the set of points in Bj ; of color ¢, and P; j = Uj_, P/ ; ,. Let
s = O(klogn/e3) for a sufficiently large constant hidden in ©(.).

For each center ¢ € C*, we perform the following steps.

Random Sampling. For each color 1 <t < ¢ and ring index 0 < j < N, do the following.
If [P/ ;] < s, add all the points of P ; , to W; ; and set the weight of each such point to 1.
Otherwise, select s points from P; ;, independently and randomly (without replacement)
and add them to W; ;. Set the weight of each such point to [P/ ,|/s.

The set W = U, ;W; ; is the desired universal coreset. As the number of rings is O(klogn),
the size of W is O(¢(klogn)?/e3). From [14], it follows that for each color, the coreset points
can be computed in time linear in the number of points of that color times O(k). Thus,
our coreset construction algorithm runs in O(nk) time. Next, we show that W is indeed a
universal coreset w.h.p.

Note that we need to show that for any set of centers C, the optimal clustering cost is
approximately preserved w.r.t. all possible combinations of cluster sizes as defined by the
constraint matrices. In Chen’s analysis, it was sufficient to argue that for any set of centers
C, the optimal clustering cost needs to be preserved. This seems much easier compared to
our case. (Obviously, the details are much more complicated even in the vanilla case.) For
example, in the vanilla case, let p € P be a point that is assigned to a center ¢ € C in an
optimal clustering. Note that ¢ must be a closest center to p. For simplicity, suppose p has
a unique closest center. Now, if p is chosen in the coreset, then the total weight of p must
also be assigned to ¢ in any optimal assignment w.r.t. C. Thus, the assignment function for
original and coreset points remains same in the vanilla case. This fact is in the heart of their
analysis. Note that this is not necessarily true in our case. We cannot just use the nearest
neighbor assignment scheme, as in our case cluster sizes are predefined through M. Indeed,
in our case we might very well need to assign the weight of a coreset point to multiple centers
to satisfy M. In general, this is the main hurdle one faces while analyzing a sampling based
approach for fair coreset construction.
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For analyzing our algorithm, we follow an approach similar to the one by Cohen-Addad
and Li in [19]. They considered the capacitated clustering problem, where for each center ¢ a
capacity value U, is given, and if the center c is chosen, at most U, points can be assigned to c.
They analyzed Chen’s algorithm and showed that for any center C', the coreset approximately
preserves the optimal capacitated clustering cost. One crucial idea they use in their proof
is representation of assignments through network flow. Suppose we are given a fixed set of
centers and weighted input points, and we would like to compute a minimum cost assignment
of the points to the centers such that the capacities are not violated. This problem can be
modeled as a minimum cost network flow problem.

The first hurdle to adapt the approach in [19] is that it is not possible to represent the
assignment problem for fair clustering as a simple flow computation problem. Thus it is not
clear how to directly use their approach for fair clustering. Nonetheless, we show that for a
fixed constraint M, the assignment problem can be modeled in the desired way. Thus, we
can get high probability bound w.r.t. a fixed constraint M. However, to obtain a coreset for
fair clustering we need to show this w.r.t. all such constraints (and this leads us towards
a universal coreset). The number of such constraints can be as large as n*(*9). Hence, to
obtain the h.p. bound over all M, we need to show that for a fixed M the error probability is
at most 1/n2(k9). However, it is not clear how to show such a strong bound (1/n*®*) bound
can be shown). Nevertheless, we show that it is not necessary to consider all those choices
of the constraints together — one can focus on a single color and the constraints w.r.t. that
color only. Indeed, this is the reason that we apply Chen’s algorithm to different color classes
independently. Unfortunately, we pay a heavy toll for this: the coreset size is proportional to
£, unlike the vanilla coreset size, and it is not clear how to avoid this dependency. Anyway,
this solves our problem, as now we have only n?(*) constraints. It follows that, for a fixed
color and a fixed constraint matrix, one can apply an approach similar to the one in [19]
(the details are slightly different). This allows us to adapt the ideas from [19] and [14] to
construct coresets for much more general clustering problems. Next, we describe the details.
We will prove the following lemma.

» Lemma 5. For any fized set C of k centers and for all k x ¢ matrices M, w.p. at least
1—1/n**2, |cost(P, M, C) — weost(W, M, O)| < 32, jy el Pij| - 27 pu.

Now, consider all the rings B; ; with j = 0. Then,
Z €|P; ;| - 2 <en-pu<e- OPT, <e-cost(P,M,C).
(i,4):3=0

Here, OPT, is the optimal cost of vanilla k-median clustering. The last inequality follows,
as the optimal cost of vanilla clustering is at most the cost of any constrained clustering. On

the other hand, for any ring B; ; with j > 1 and any point p in the ring, d(p,c;) > 271y,

Thus,

Z €lPijl-27u<e Z 2-d(p,c;)) < 2¢- OPT, < 2¢-cost(P, M, C),
(4,4):5=1 peP

where for a point p € P by i, we denote the index of a center such that p belongs to ngﬁj
for some j.
Taking union bound over all C' and scaling down € by 3 factor, we get the desired result.

» Lemma 6. For cvery set C of k centers and every k x £ matrices M, w.p. at least 1 —1/n,
|cost(P, M, C) — weost(W, M, C)| < e-cost(P, M, C).
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3.2 Proof of Lemma 5

Let P, be the points in P of color 7. Also, let W, be the chosen samples of color 7. For
1<t <l—1,let W= (UL W,) U (U5, 1 Pr). Also, let W* = UL_; W, be the coreset
points of all colors. Recall that for any ring B; ;, P/ ; ;
Also, P, j = UL P/ ..

Note that in the above, W contains the sampled points for color 1 to ¢ and original
points of color t + 1 to £. We will prove the following lemma that gives a bound when the

coreset contains sampled points of a fixed color ¢ and original points of the other colors.

is the points of color 7 in the ring.

» Lemma 7. Consider any color 1 <t < (. For any fized set C' of k centers and for all
k x £ matrices M, w.p. at least 1 — 1/n**4 |cost(P, M, C) — weost(W; U (P \ P;), M,C)| <
Z(i,j) €|Pi/,j,t| 2.

Note that for a particular color class, if we select all original points in the coreset, there is
no error corresponding to those coreset points. This is true, as one can use the corresponding
optimal assignment for these points. Assuming that the above lemma holds, now we prove
Lemma 5. Consider the coreset W!. From the above lemma, we readily obtain the following.

» Corollary 8. For any fized set C of k centers and for all k x £ matrices M, w.p. at least

1 —1/nk*4 ] |cost(P, M, C) — weost(W?, M, C)| < > €1 Pl 274

Now, in W' consider replacing the points of P» by the samples in W>. We obtain the
coreset W2. Note that the samples in W; and W, are chosen independent of each other.
Thus, by taking union bound over colors 1 and 2, from Lemma 7 we obtain, for all M, w.p.
> 1—2/nF, |cost(P, M, C) —weost(W?, M, O)| < 30, o (I[P 1+ [P} 2]) - 27 p. Similarly,

by taking union bound over all £ < n colors and noting that W* = W, Lemma 5 follows.

3.3 Proof of Lemma 7

Recall that P; is the set of points of color ¢, and W; is the coreset points of color ¢t. C' is
the given set of centers. For any matrix M, let M? be the t** column of M. We have the
following observation that implies that it is sufficient to consider the points only in P; to
give the error bound.

» Observation 9. Suppose w.p. at least 1 — 1/n*T*  for all column matrices M’,
|cost (P, M, C) — weost(Wy, M',C)| < 37, iy €l P ;4] 2. Then, with the same probability,
for all k x € matrices M, |cost(P, M, C) — weost(W, U (P\ ), M,C)| < 3, ;€| P] ;| 2.

Proof. Consider any k x ¢ matrix M. Then,

¢
cost(P,M,C) = z:cost(PT,MT,C')7 and
T=1
weost(W; U (P \ P;), M, C) = wecost(Wy, M*,C) + Z cost(P-, M™,C)
Te[eN\{t}
It follows that,

|cost(P, M, C) — weost(W; U (P \ P;), M, C)| = |cost(P;, M*,C) — wecost(W;, M*, C)|

Now, by our assumption, it follows that the probability of the event: for all M,
|cost (P, M*, C) — weost(Wy, M*, O)| exceeds 3, o €| P ;| - 27 is at most 1/n**. Hence,
the observation follows. <
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By the above observation, it is sufficient to prove that w.p. at least 1 — 1/n*+4, for all
column matrices M, [cost(F;, M, C) — weost(Wy, M, C)| < 32 - €l P} ;4] -2/ . The proof of
this claim is similar to the analysis in [19] and appears in Section 4 of the full version.

The Overlapping Group Case

We are given ¢ groups of points Py, ..., P, such that a point can potentially belong to multiple
groups. Note that the algorithm in the disjoint case does not work here. This is because
we sample points from each group separately and independently, and thus it is not clear
how to assign the weight of a point that belongs to multiple groups. One might think of the
following trivial modification of this algorithm. Assign each point to a single group to which
it belongs. Based on this assignment, now we have disjoint groups, and we can apply our
previous algorithm. But, the new algorithm can have a very large error bound. For example,
suppose a point p belongs to two groups 7 and j, and it is assigned to group 4. Also, suppose
p was not chosen in the sampling process. Note that the weight of p is represented by some
other chosen point p’, which was also assigned to group . However, now we have lost the
information that this weight of p was also contributing towards fairness of group j. Thus,
the constructed coreset might not preserve any optimal fair clustering with a small error. In
the overlapping case, it is not clear how to obtain a coreset whose size depends linearly in ¢ —
we design a new coreset construction algorithm where the size depends linearly on I'. Recall
that T is the maximum number of distinct collections of groups to which a point belongs.

The main idea of our algorithm is to divide the points into equivalence classes based on
their group membership and sample points from each equivalence class. Let P = UlePZ-. For
each point p € P, let J, C [£] be the set of indexes of the groups to which p belongs. Let I be
the distinct collection of these sets {J, | p € P} and |I| =T. In particular, let I1,..., I be
the distinct sets in I. Now, we partition the points in P based on these sets. For 1 <¢ < T,
let PP={pe P|I =J,}. Thus, {P"|1<i<T} defines equivalence classes for P such
that two points p,p’ € P belong to the same equivalence class if they are in exactly the same
set of groups. Now we apply our algorithm in the disjoint case on the disjoint sets of points
P',...,P". Let W be the constructed coreset.

Note that here we have I' disjoint classes, and thus the coreset size is O(T'(klogn)?/e?).
As our coreset size is at least I', we assume that I' < n. Note that the equivalence classes can
be computed in O(nf) time, and thus the algorithm runs in time O(nf) +O(nk) = O(n(k+Y¢)).
The proof that W is indeed a universal coreset w.h.p. follows the same line as of the disjoint-
group case. Again, the idea here is to reduce the analysis to the one class case. However, this
is not as straightforward as in the disjoint case. Note that although the classes P!, ..., Pl
are disjoint, two classes can contain points from the same group. Moreover, the constraints
are defined w.r.t. the groups, not w.r.t. the classes. Thus, two classes need to interact to
satisfy the constraints. Nevertheless, we use the independence of the samples from different
classes and exploit the structure of a special class of matrices to complete the proof, which
appears in Section 5 of the full version.

The algorithm in the Euclidean case is the same as for general metrics, except we set
s to O(klog(nb)/e), where b = ©(klog(n/e)/e?). Here the main challenge is that it is not
possible to take union bound over all possible sets of k centers. Nevertheless, we show that for
every set C' C R? of k centers and constraint M, the optimal cost is preserved approximately
w.h.p. Our main contribution in this part is to devise a discretization technique for obtaining
a finite set of centers, so that if instead we draw centers from this set, the cost of any
clustering is preserved approximately. The details appear in Section 6 of the full version.
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3.4 Approximation Algorithms Based on Universal Coresets

All the algorithms that we design follow one general strategy: first, compute a universal
coreset, then, enumerate a small family of sets of possible k centers, such that at least one of
them is guaranteed to provide a good approximation, and finally pick the best set of centers
by finding the optimal assignment from the coreset to each of the center sets. Throughout
this section, we limit our discussion to fair clustering. One major difficulty in the case of fair
clustering is solving the assignment problem, for which we devise a novel FPT algorithm.

Solving the Assignment Problem

The fair assignment problem is the following: given an instance of («, )-FAIR CLUSTERING
and a set of k centers C', compute a minimum-cost fair assignment to the centers of C'. For
fair clustering, the assignment problem is one of the features that makes it harder than other
constrained clustering problems. While often the optimal assignment can be found with
the help of network flow, e.g. for capacitated clustering, there was no previously known
algorithms to compute an optimal or approximate fair assignment without violating the
constraints. Moreover, it was observed by Bera et al. [7] that the fair assignment problem is
NP-hard, so there is no hope to have a polynomial time assignment algorithm.

We design a fair assignment algorithm with running time (kF)O(’“F)nO(l). The general
idea is to reduce to a linear programming instance. The unknown optimal assignment can be
naturally expressed in terms of linear inequalities by introducing a variable f;; for the i-th
point and the j-th center, denoting which fraction of the point is assigned to each center,
and constraints f;; > 0 for all 7, j, and 2521 fij = 1. Clearly this generalizes a discrete
assignment, which corresponds to exactly one of {f;; }?:1 being equal to 1, for each i € [n].
Moreover, the fairness of the assignment can also be expressed as linear constraints on { f;;}.

The main obstacle is that in general the optimal solution to this linear program is not
integral, and the integrality gap could be arbitrarily large. Thus, an optimal fractional
solution does not yield the desired assignment, and this is not surprising since the fair
assignment problem is NP-hard. One possible solution could be restricting the variables to
be integral, solving an integer linear program (ILP) instead. But the number of variables is
too large for an FPT algorithm. Instead, we introduce the integral variables {g;;} denoting
how many points from the ¢-th point equivalence class gets to the j-th center, while leaving
the {f;;} variables to be fractional. Thus, we obtain an instance of mixed-integer linear
programming (MILP) with kT integer variables and nk fractional variables. By using the
celebrated result of Lenstra [36] with subsequent improvements by Kannan [31], and Frank
and Tardos [24], we obtain an optimal solution to the MILP instance in time (kI')?*T)p01),

Now we explain that after constraining the {g;;} variables to be integral, we can assume
that all the other variables {f;;} are integral too, thus we actually obtain an optimal discrete
assignment of the same cost. Consider a particular point equivalence class P?, and the
integral values {gy; };?:1 from the optimal solution to the MILP. When these values are fixed,
the problem boils down to finding an assignment from P* to C such that exactly g;; points
are assigned to the j-th center. This problem can be solved by a minimum-cost maximum
flow in the network where each point has supply one, the j-th center has demand of g;;, and
the costs are the distances between the respective points. Moreover, the values {f;;} from
the MILP correspond exactly to the flow values on the respective edges. Since there is an
optimal integral flow in this network, this flow is also an optimal integral solution for {f;;}.

The downside of the above algorithm is that the time complexity is roughly n°, and we
cannot use it directly to obtain a near-linear time algorithm. So, we also show how to obtain
a (1 + e)-approximate fair assignment in near-linear time with the help of the coreset. For
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this, we compute a universal coreset, and then compute the optimal fair assignment from the
coreset to the centers C'. However, this does not yet give us a fair assignment of the original
points to the centers. To construct this assignment, we take the values {g;;} computed by
the assignment algorithm on the coreset, and then, for each point equivalence class P?, we
solve the simple assignment problem from P* to C that assigns exactly g;; points to the j-th
center. As mentioned above, this can be done by a network flow algorithm. Since the network
is bipartite and one of the parts is small (k), this problem can be solved in near-linear time by
the specialized flow algorithm in [3]. By the property of the universal coreset, the resulting
assignment achieves a (1 4 €)-approximation (see Section 8 of the full version).

(1 + €)-Approximation in R%. Besides our coreset construction and assignment algorithm,
the key ingredient to obtain a (1 + ¢)-approximation is the generic clustering algorithm of
Bhattacharya et al. [10]. Their algorithm outputs a list of 20(k/<°™) candidate sets of k
centers, such that for any clustering of the points there exists a set of centers C' in this list
that is slightly worse than the optimal set of centers for this clustering. Together with our
assignment algorithm this provides a (1 4 ¢)-approximation algorithm with the running time
of 200k/<°) (kYO pdlog n. We describe this algorithm in Section 9 of the full version.

(3 + €)-Approximation in General Metric. With the help of our universal coreset, the
strategy to obtain (3 + ¢)-approximation for («, 8)-FAIR k-median is essentially same as
that used in [18, 19]: from each of the clusters in an optimal solution on the coreset we
guess the closest point to the center, called a leader of that cluster. We also guess a suitably
discretized distance from each leader to the center of the corresponding cluster. Finally,
selecting any center that has roughly the guessed distance to the leader provides us with a
(3 + €)-approximation. In this way we obtain a list of |WW|*(logn/e)°*) candidate sets of k
centers. Afterwards, our algorithm proceeds similarly to the Euclidean case above, resulting
in the running time of (kT')?*1) /eO() . nlogn (see Section 10 of the full version).
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