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Abstract
In the consensus halving problem we are given n agents with valuations over the interval [0, 1]. The
goal is to divide the interval into at most n + 1 pieces (by placing at most n cuts), which may be
combined to give a partition of [0, 1] into two sets valued equally by all agents. The existence of a
solution may be established by the Borsuk-Ulam theorem. We consider the task of computing an
approximation of an exact solution of the consensus halving problem, where the valuations are given
by distribution functions computed by algebraic circuits. Here approximation refers to computing a
point that is ε-close to an exact solution, also called strong approximation. We show that this task is
polynomial time equivalent to computing an approximation to an exact solution of the Borsuk-Ulam
search problem defined by a continuous function that is computed by an algebraic circuit.

The Borsuk-Ulam search problem is the defining problem of the complexity class BU. We
introduce a new complexity class BBU to also capture an alternative formulation of the Borsuk-Ulam
theorem from a computational point of view. We investigate their relationship and prove several
structural results for these classes as well as for the complexity class FIXP.
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1 Introduction

Many computational problems, e.g. linear and semidefinite programming, are most naturally
expressed using real numbers. When the model of computation is discrete, these problems
must be recast as discrete problems. In the case of linear programming this causes no
problems. Namely, when the input is given as rational numbers and an optimal solution
exists, a rational valued optimal solution exists and may be computed in polynomial time.
For semidefinite programming however, it may be the case that all optimal solutions are
irrational. For dealing with such cases we may instead consider the weak optimization problem
as defined by Grötschel, Lovász and Schrijver [18]: Given ε > 0, the task is to compute a
rational-valued vector x that is ε-close to the set of feasible solutions and has objective value
ε-close to optimal. Assuming we are also given, as an additional input, a strictly feasible
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24:2 Strong Approximate Consensus Halving and the Borsuk-Ulam Theorem

solution and a bound on the magnitude of the coordinates of an optimal solution, the weak
optimization problem may be solved in polynomial time using the ellipsoid algorithm [18].
Let us note however that without additional assumptions, even the complexity of the basic
existence problem of semidefinite feasibility is unknown. In fact, the problem is likely to be
computationally very hard [23]. More precisely, it is hard for the problem PosSLP, which is
the fundamental problem of deciding whether an integer given by a division free arithmetic
circuit is positive [2].

In this paper we consider real valued search problems, where existence of a solution
is guaranteed by topological existence theorems such as the Brouwer fixed point theorem
and the Borsuk-Ulam theorem. This means that the search problems are total, thereby
fundamentally differentiating them from general search problems where, as described above,
even the existence problem may be computationally hard. We are mainly interested in the
approximation problem: given ε > 0, the task is to compute a rational-valued vector x that
is ε-close to the set of solutions.

Recall that the Brouwer fixed point theorem states that every continuous function
f : Bn → Bn, where Bn is the unit n-ball, has a fixed point, i.e. there is x ∈ Bn such that
f(x) = x [6]. The Borsuk-Ulam theorem states that every continuous function f : Sn → Rn,
where Sn is the unit n-sphere in Rn+1, maps a pair of antipodal points of Sn to the same
point in Rn, i.e. there is x ∈ Sn such that f(x) = f(−x) [5]. The Brouwer fixed point
theorem is of course not restricted to apply to the domain Bn, but applies to any domain
that is homeomorphic to Bn. Similarly the Borsuk-Ulam theorem applies to any domain
homeomorphic to Sn by an antipode-preserving homeomorphism. It is well-known that the
Borsuk-Ulam theorem generalizes the Brouwer fixed point theorem, in the sense that the
Brouwer fixed point theorem is easy to prove using the Borsuk-Ulam theorem [22, 24].

The Brouwer fixed point theorem and the Borsuk-Ulam theorem naturally define corres-
ponding real valued search problems, and thereby also corresponding approximation problems.
In addition, the statements of the theorems naturally lead to another notion of approximation.
For the case of the Brouwer fixed point theorem we may look for an almost fixed point, i.e.
x ∈ Bn such that f(x) is ε-close to x, and for the case of the Borsuk-Ulam theorem we look
for a pair of antipodal points that almost map to the same point, i.e. x ∈ Sn such that f(x)
and f(−x) are ε-close. Following [12], we shall refer to this notion of approximation as weak
approximation and to make the distinction clear we refer to the former (and general) notion
of approximation as strong approximation. In the setting of weak approximation in relation
to the Borsuk-Ulam theorem we assume that f has domain Bn.

In their seminal work, Etessami and Yannakakis [12] introduced the complexity class
FIXP to capture the computational complexity of the real-valued search problems associated
with the Brouwer fixed point theorem, and proved that the problem of finding a Nash
equilibrium in a given 3-player game in strategic form is FIXP-complete. In order to have a
notion of completeness, the class FIXP is defined to be closed under reductions. The type of
reductions chosen by Etessami and Yannakakis, SL-reductions, consists of mapping between
sets of solutions by a composition of a projection reduction followed by individual affine
transformations applied to each coordinate.

Etessami and Yannakakis considered different ways to cast real valued search problems
as discrete search problems. In addition to the approximation problem, these are the partial
computation problem where the task is to compute a solution to a given number of bits of
precision and decision problems, where the task is to evaluate a sign condition of the set of
solutions given the promise that either all solutions satisfy the condition or none of them
do. Of these we shall only consider the approximation problem. The class FIXPa denotes
the class of discrete search problems corresponding to strong approximation of Brouwer
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fixed points and is defined to be closed under polynomial time reductions. Etessami and
Yannakakis also prove that the problem PosSLP reduces to the problem of approximating
a Nash equilibrium, thereby showing that FIXPa likely contains search problems that are
computationally very hard.

While the notion of SL-reductions is very restricted, it is sufficient for proving completeness
of the problem of finding a Nash equilibrium. Likewise, SL-reductions are sufficient for
showing that FIXP is robust with respect to the choice of domain for the Brouwer function.

Another important reason for using SL-reductions is that they immediately imply polyno-
mial time reductions between the corresponding decision and approximation problems (the
partial computation problem is more fragile and requires additional assumptions, cf. [12]). As
we are mainly interested in the approximation problem more expressive notions of reducibility
can be considered, while maintaining the property that reducibility implies polynomial
time reducibility between the corresponding approximation problems. A sufficient condition
for this is that the mapping of solutions is polynomially continuous and polynomial time
computable.

1.1 The Borsuk-Ulam Theorem
Deligkas, Fearnley, Melissourgos, and Spirakis [11] recently introduced the complexity class
BU to capture, in an analogy to FIXP, the computational complexity of the real-valued
search problems associated with the Borsuk-Ulam theorem.

The Borsuk-Ulam theorem has a number of equivalent statements that are also easy to
derive from each other. A function f defined on the unit sphere Sn is odd if f(x) = −f(−x)
for all x ∈ Sn. Note that the boundary ∂Bn of the unit n-ball Bn is identical to Sn−1. We
thus say that a function f defined on Bn is odd on ∂Bn if f is odd when restricted to Sn−1.
We present the simple proof of the known fact that the different formulations can be derived
from each other, for the purpose of discussing equivalence from a computational point of view.

▶ Theorem 1 (Borsuk-Ulam). The following statements hold:
(1) If f : Sn → Rn is continuous there exists x ∈ Sn such that f(x) = f(−x).
(2) If g : Sn → Rn is continuous and odd there exists x ∈ Sn such that g(x) = 0.
(3) If h : Bn → Rn is continuous and odd on ∂Bn there exists x ∈ Bn such that h(x) = 0.

Proof of equivalence. Given f we may define g(x) = f(x) − f(−x). Clearly g is odd
and we have g(x) = 0 if and only if f(x) = f(−x), which shows that (2) implies (1).
Conversely, given g we simply let f = g. If f(x) = f(−x), then since g is odd we have
f(x) = g(x) = −g(−x) = −f(−x) = −f(x) and hence g(x) = f(x) = 0, which therefore
shows that (1) implies (2).

We may view Sn as two hemispheres, each homeomorphic to Bn, which are glued
together along their equators. Let π : Sn → Bn be the orthogonal projection defined by
π(x1, . . . , xn+1) = (x1, . . . , xn). Then given h we may define g(x) = h(π(x)) for xn+1 ≥ 0
and g(x) = −h(−π(x)) for xn+1 ≤ 0. The assumption that h is odd on ∂Bn makes g a
well-defined continuous odd function. We have g(x) = 0 if and only if h(x) = 0, which shows

that (2) implies (3). Conversely, given g we define h by h(x) = g

(
x, (1 −∥x∥2

2)
1
2

)
. Then h

is continuous and odd on ∂Bn, since x ∈ ∂Bn if and only if ∥x∥2
2 = 1. Clearly if h(x) = 0

we may let y = (x, (1 −∥x∥2
2)

1
2 ) and have g(y) = 0. On the other hand, when g(y) = 0 we

may define x = (y1, . . . , yn) if yn+1 ≥ 0 and x = (−y1, . . . , −yn) if yn+1 < 0, and we have
h(x) = 0. Together this shows that (3) implies (2). ◀
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The class BU defined in [11] corresponds to the first formulation of the above theorem. We
may clearly consider the second formulation equivalent to the first also from a computational
point of view. In particular, when translating between formulations, the set of solutions is
unchanged. Note that this set of solutions has the property that all solutions come in pairs:
when x is a solution then −x is a solution as well. For the third formulation of the theorem
this property only holds for solutions on the boundary ∂Bn.

In contrast, while the mapping of solutions of the third formulation to the second (and
first) formulation given above is continuous this is not the case in the other direction. More
precisely, consider y ∈ Sn such that g(y) = 0. For a solution strictly contained in the upper
hemisphere, the orthogonal projection to the first n coordinates produces x ∈ Bn such that
h(x) = 0. For a solution y strictly contained in the lower hemisphere, the projection is
instead applied to the antipodal solution −y.

To clarify this issue from a computational point of view we introduce a new class BBU of
real valued search problems corresponding to the third formulation of Theorem 1, and it will
follow from definitions that BU ⊆ BBU. In the context of strong approximation however, the
corresponding classes of discrete search problems BUa and BBUa will be shown to coincide.
The idea is that given an approximation to y ∈ Sn, where g(y) = 0, that is sufficiently close
to the equator of Sn, there is no harm in incorrectly deciding to which hemisphere y belongs,
since solutions x ∈ ∂Bn for which h(x) = 0 also come in pairs.

For the class BU, the notion of SL-reductions is clearly too restrictive to allow a reasonable
comparison to FIXP. Closing the class BU by SL-reductions, the solutions would still come
in pairs, thereby imposing strong conditions on the set of solutions. On the other hand the
reductions should also not be too strong. In particular it would be desirable that FIXP would
still be closed under the chosen notion of reductions. This issue is not discussed in [11]. We
shall therefore propose a suitable notion of reductions for both BU and BBU.

1.2 Consensus Halving
The Consensus halving problem is a classical problem of fair division [21]. We are given
a set of n bounded and continuous measures µ1, . . . , µn defined on the interval A = [0, 1].
The goal is to partition the interval A into at most n + 1 intervals, i.e. by placing at most n

cuts, such that unions of these intervals form another partition A = A+ ∪ A− of A satisfying
µi(A+) = µi(A−) for every i. We may think of the intervals being assigned a label from the
set {+, −}, and A+ is precisely the union of the intervals labeled by +. Such a partition is also
known as a consensus halving. Using the Borsuk-Ulam theorem, Simmons and Su [21] proved
that a consensus halving using at most n cuts always exists. Simmons and Su represent a
division of A as a point x on the unit n-sphere Sn

1 with respect to the ℓ1-norm. The point x

is viewed as representing a division into precisely n + 1 intervals, where some intervals are
possibly empty. More precisely, the i-th interval has length |xi|, and intervals of length 0 may
simply be discarded. The intervals of positive length are then labeled according to sgn(xi).
Note that for any x, the antipode −x represents the division where the sets A+ and A−

are exchanged. This naturally leads to a formulation using the Borsuk-Ulam theorem [21].
Namely we may consider the function F : Sn

1 → Rn given by F (x)i = µi(A+), and note that
any x ∈ Sn

1 for which F (x) = F (−x) represent a consensus halving.
We are interesting in the simple setting of additive measures, where we have corresponding

density functions f1, . . . , fn such that µi(B) =
∫

B
fi(x) dx. To cast the consensus halving

problem as a real valued search problem we follow [11] and assume that the measures
µ1, . . . , µn are given by the distribution functions F1, . . . , Fn defined by Fi(x) =

∫ x

0 fi(t) dt.
An instance of the consensus halving problem is then given as a list of algebraic circuits
computing these distribution functions.
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1.3 Strong versus Weak Approximation
The difference between weak and strong approximation was studied in detail in the general
context of the Brouwer fixed point theorem by Etessami and Yannakakis. A central example
is the problem of finding a Nash equilibrium (NE). An important notion of approximation
of a NE is the notion of an ε-NE. Computing an ε-NE of a given strategic form game
Γ is polynomial time equivalent to computing a weak ε′-approximation to a fixed point
the Nash’s Brouwer function FΓ associated to Γ [12, Proposition 2.3]. In turn, computing
a weak ε′-approximation to a fixed point of FΓ polynomial time reduces to computing a
strong ε′′-approximation to a fixed point of FΓ [12, Proposition 2.2], since the function FΓ
is polynomially continuous and polynomial time computable. In general however an ε-NE
might be far from any actual NE, unless ε is inverse doubly exponentially small as a function
of the size of the game [12, Corollary 3.8].

For the problem of consensus halving we can illustrate the difference between weak and
strong approximation by a simple example. We shall refer to a weak ε-approximation of a
consensus halving as simply an ε-consensus halving. Consider a single agent whose measure
µ on the interval [0, 1] is given by the following density

f(x) =


(1 + ε)/ε if 0 ≤ x < ε/2
0 if ε/2 ≤ x < 1 − ε/2
(1 − ε)/ε if 1 − ε/2 ≤ x ≤ 1

We have µ([0, 1]) = 1 and since µ is a step function, the corresponding distribution function
F is piecewise linear. The unique consensus halving is obtained by placing a cut at the
point ε/2 − ε2/(2 + 2ε). Placing a cut at any point t ∈ [ε/2 − ε2/(1 + ε), 1 − ε/2] results
in an ε-consensus halving, i.e. such that

∣∣µ([0, t]) − µ([t, 1])
∣∣ ≤ ε. Thus an ε-consensus

halving might be very far from an actual consensus halving. Note also that placing a cut
at any point t ∈ [0, 3ε/2 − ε2/(2 + 2ε)] is a strong ε-approximation, which illustrates that a
strong approximation is not necessarily a weak approximation. On the other hand, a strong
(ε2/2)-approximation is also an ε-consensus halving.

The Brouwer fixed point theorem and the Borsuk-Ulam theorem can both be proved
starting from combinatorial analogues of the two theorems, namely from Sperner’s lemma
and Tucker’s lemma, respectively. The proofs of these two lemmas are constructive, but
using them to derive the Brouwer fixed point theorem and the Borsuk-Ulam theorem involve
a nonconstructive limit argument. Let us note in passing that while Sperner’s lemma, like
the Borsuk-Ulam theorem, has several different formulations, it is usually formulated as the
combinatorial analogue of the third formulation of Theorem 1.

Sperner’s and Tucker’s lemma give rise to total NP search problems. These turn out
to be complete for the complexity classes PPAD and PPA introduced in the seminal work
by Papadimitriou [19]. Papadimitriou proved PPAD-completeness of the problem given by
Sperner’s lemma as well as membership in PPA of the problem given by Tucker’s lemma,
while PPA-completeness of the latter problem was proved recently by Aisenberg, Bonet, and
Buss [1]. These results also imply that the classes PPAD and PPA correspond to the problems
of computing weak approximations to Brouwer fixed points and to Borsuk-Ulam points.

The computational complexity of the problems of computing an ε-NE and of computing
an ε-consensus halving was settled in breakthroughs of two lines of research. Computing an
ε-NE was shown to be PPAD-complete by Daskalakis, Goldberg and Papadimitriou [9] and
Cheng and Deng [8]. Computing an ε-consensus halving was shown to be PPA-complete by
Filos-Ratsikas and Goldberg [14, 15].

ICALP 2021
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1.4 Our Results

Our main result is that the problem of strong approximation of consensus halving is equivalent
to strong approximation of the Borsuk-Ulam theorem.

▶ Theorem 2. The strong approximation problem for CH is BUa-complete.

As described, we view the consensus halving problem as the real valued search problem with
its domain being either the unit sphere or the unit ball with respect to the ℓ1-norm. The
theorem is proved by reduction from the real valued search problem associated with the
Borsuk-Ulam theorem on the domain being the unit ball with respect to the ℓ∞-norm, i.e.
from a defining problem of the class BBU.

It is of general interest to study the relationship between search problems given by
the Borsuk-Ulam theorem on different domains from a computational point of view. The
reduction establishing the proof of Theorem 2 gives additional motivation for this. The
domains we consider are unit spheres Sn

p and unit balls Bn
p with respect to the ℓp-norm

for p ≥ 1 or p = ∞. It is of course straightforward to construct homeomorphisms between
unit spheres or unit balls with respect to different norms, and these could be used to define
reductions between the different problems. We would however like that the mapping of
solutions is simple, and in particular we would like to avoid divisions and root operations.
We prove that one may in fact reduce between domains using SL-reductions.

Deligkas et al. gave a reduction from the FIXP-complete problem of finding a Nash
equilibrium to CH. Combined with membership of CH in BU, this gives the inclusion
FIXP ⊆ BU. We observe that a proof due to Volovikov [24] of the Brouwer fixed point
theorem from the Borsuk-Ulam theorem may be adapted to give a simple proof of the
inclusion FIXP ⊆ BU.

For the class FIXP we prove two interesting structural properties that do not appear
to have been observed earlier. While FIXP is defined using SL-reductions, we show that
FIXP is closed under polynomial time reductions where the mapping of solutions is expressed
by general algebraic circuits. This in particular supports that one may reasonably define
the classes BU and BBU using less restrictive notions of reductions than SL-reductions.
We propose to have the mapping of solutions be computed by algebraic circuits involving
the operations of addition, multiplication by scalars, as well as maximization. This means
that the mapping of solutions is a piecewise linear function, and we refer to these as PL-
reductions. The second structural result for FIXP is a characterization of the class by very
simple Brouwer functions. These are defined on the unit-hypercube domain [0, 1]n and each
coordinate function is simply one of the operations {+, −, ∗, max, min}, modified to have the
output truncated to the interval [0, 1].

For the classes BU and BBU we prove that they are also closed under reductions where
the mapping of solutions is computed by general algebraic circuits, but with the additional
requirement that this function must be odd.

For the class FIXP, an interesting consequence of the proof that finding a Nash equilibrium
is complete, is that the class may be characterized by Brouwer functions computed by
algebraic circuits without the division operation. The proof also shows that the class FIXP
is unchanged even when allowing root operations as basic operations. We prove by a simple
transformation that the classes BU and BBU may be characterized using algebraic circuits
without the division operation. Furthermore, as a consequence of Theorem 2 the class
of strong approximation problems BUa = BBUa is unchanged even when allowing root
operations as basic operations.
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1.5 Comparison to previous work
As a precursor to the proof of PPA-completeness of computing an ε-consensus halving,
Filos-Ratsikas, Frederiksen, Goldberg and Zhang [13] proved the problem to be PPAD-hard.
Deligkas et al. [11] uses ideas from this proof together with additional new ideas to obtain
their proof of FIXP-hardness for computing an exact consensus halving.

While PPAD ⊆ PPA, the PPAD-hardness result of [13] is not implied by the recent
proofs of PPA-completeness. In particular, the work [13] proves PPAD-hardness even for
constant ε, while the work of [15] only proves PPA-hardness for ε being inverse polynomially
small. In the same way, while FIXP ⊆ BU, FIXP-hardness of computing an exact consensus
halving is not implied by our reduction, since Theorem 2 establishes BUa-hardness rather
than BU-hardness. Recently a considerably simpler proof of PPA-hardness for computing an
ε-consensus halving was given by Filos-Ratsikas, Hollender, Sotiraki and Zampetakis [16],
and our reduction is inspired by this work.

All reductions described above are similar in the sense that one or more evaluations of a
circuit are expressed in the consensus halving instance. The full interval A is partitioned
into subintervals, cuts within these subintervals encode values in various ways, and agents
implement the gates of the circuit by placing cuts. A main difference between the reductions
establishing PPAD-hardness and FIXP-hardness to those establishing PPA-hardness is that
in the former reductions, all cuts are constrained to be placed in distinct subintervals. The
reason this is possible is that the objective is to find a fixed point of the circuit, which means
that inputs and outputs may be identified.

In the setting of PPA and BBU the objective is to find a “zero” of the circuit. More
precisely, for the setting of PPA the objective is to find two adjacent points of a given Tucker
labeling that receive complementary labels, i.e. labels of different sign but same absolute
value. For the setting of BBU the objective is to find an actual zero point of the circuit. All
of the reductions establishing PPA-hardness of computing an ε-consensus halving have the
property that cuts encoding the input of the circuit are free cuts, meaning that they can
in principle be placed anywhere, and as a result also interfere with the evaluations of the
circuit. This is also the case for our reduction, and this invariably limits its applicability to
the approximation problem.

In the reduction of [16], the interval A is structured into different regions, a coordinate-
encoding region, a constant-creation region, several circuit-simulation regions, and finally
a feedback region. Our reduction also has a coordinate-encoding region and several circuit
simulation regions, but the functions performed by the constant-creation region and feedback
regions in [16] are in our reduction integrated into the individual circuit simulation regions
and done differently.

A novelty of the reduction of [16] compared to previous reductions is in how values are
encoded by cuts in subintervals. In previous reductions, values are encoded by what we
will call position encoding. In that encoding it is required that there is exactly one cut
in the subinterval, and the value encoded is determined by the distance between the cut
position and the left endpoint of the interval. In [16] values are encoded by what we will
call label encoding. Here there is no requirement on the number of cuts in the subinterval,
and the value encoded is simply the difference between the Lebesgue measures of the subsets
of the interval receiving label + and label −. We shall employ a hybrid approach where
the coordinate-encoding region uses label encoding while the circuit-simulation regions uses
position encoding. The first step performed in a circuit-simulation region is thus to copy
the input from the coordinate-encoding region. Switching to position encoding allows us in
particular to implement a multiplication gate, similarly to [11]. Here the multiplication xy is

ICALP 2021
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computed via the identity xy = ((x + y)2 − x2 − y2)/2. In [11] where values range over [0, 1],
the squaring operation may be implemented directly by agents. In our case values range
over the interval [−1, 1], and the squaring operation is decomposed further, having agents
compute it separately over the intervals [−1, 0] and [0, 1].

In analogy to [16] we have feedback agents that ensures that the circuit evaluates to 0
on the encoded input. The criteria that the agents check is however different, and for our
purposes it is crucial that we have the same sign pattern in the position encoding of the
output of the circuit as the copy of the input made by the circuit-simulation region. The
actual detection of an output of 0 is performed by using approximations of the Dirac delta
function. For computing the distribution functions of the feedback agents, we make use of
the fact that these are computed by algebraic circuits, which enable us to make a strong
approximation of the Dirac delta function via repeated squaring.

1.6 Organization of Paper
We introduce required terminology in Section 2. We refer to the full version of this paper for
our structural results for the classes FIXP, BU, and BBU as well as the simple proof of the
inclusion FIXP ⊆ BU. The proof of our main result, Theorem 2, is given in Section 3.

2 Preliminaries

2.1 Algebraic Circuits
Central to our work are algebraic circuits computing real valued functions. Let B be a finite
set of real valued functions, for example B = {+, −, ∗, ÷, max, min}. An algebraic circuit
C with n inputs and m outputs over the basis B is given by an acyclic graph G = (V, A)
as follows. The size of C is equal to the number of nodes of G, which are also referred to
as gates. The depth of C is equal to the length of the longest path of G. Every node of
indegree 0 is either an input gate labeled by a variable from the set {x1, . . . , xn} or a constant
gate labeled by a real valued constant. Every other node is labeled by an element of B called
the gate function. If a node v is labeled by a gate function g : A → R with A ⊂ Rk we require
that g has exactly k ingoing arcs with a linear order specifying the order of arguments to g.
The output of C is specified by an ordered list of m (not necessarily distinct) nodes of G.
The computation of C on a given input x ∈ Rn is defined in the natural way. Computation
may fail in case a gate of C labeled by a function g : A → R receives an input outside A, and
in this case the output of C is undefined. Otherwise we say that the output is well defined
and denote its value by C(x). If D ⊆ Rn we say that C computes a function f : D → Rm if
C(x) is well defined for all x ∈ D.

We shall in this paper just consider algebraic circuits where the basis consists only
of continuous functions. This means in particular that any algebraic circuits computes a
continous function as well. We shall also only consider consider constant gates labeled with
rational numbers. In this case we are also interested in the bitsize of the encoding of the
constants, which is the maximum bitsize of the numerator or denominator.

By using multiplication with the constant −1, the functions − and min may be simulated
using + and max, respectively. In this way we may convert a circuit over the full basis
{+, −, ∗, ÷, max, min} into an equivalent {+, ∗, ÷, max}-circuit. We shall also consider
circuits where use of the multiplication operator ∗ is restricted to having one of the arguments
being a constant gate. We denote this by the symbol ∗ζ and use it in particular for defining
{+, ∗ζ, max}-circuits.
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2.2 Search problems
A general search problem Π is defined by specifying to each input instance I a search space
(or domain) DI and a set Sol(I) ⊆ DI of solutions. We distinguish between discrete and
real-valued search problems. For discrete search problems we assume that DI ⊆ {0, 1}dI for
an integer dI depending on I. Analogously, for real-valued search problems we assume that
DI ⊆ RdI for an integer dI depending on I. One could likewise distinguish between search
problems with discrete input and real-valued input. We are however mostly interested in
problems where the input is discrete. That is, we assume that instances I are encoded as
strings over a given finite alphabet Σ (e.g. Σ = {0, 1}).

Many natural search problems are however defined with a continous search space. Not
all of these may adequately be recast as discrete search problems, but are more naturally
viewed as real-valued search problems. One approach for studying such problems would be
to switch to the Blum-Shub-Smale model of computation [4]. A BSS machine resembles a
Turing machine, but operates with real numbers instead of symbols from a finite alphabet. In
particular is the input real-valued, and input instances are therefore encoded as real-valued
vectors. All basic arithmetic operations and comparisons are unit-cost operations. One may
then define real-valued analogues of Turing machine based classes. In particular, Blum, Shub
and Smale defined and studied the real-valued analogues PR and NPR of P and NP. A BSS
machine may in general make use of real-valued machine constants. If a BSS machine only
uses rational valued machine constants we shall call it constant-free.

For the classes PR and NPR, if we simply restrict the input to be discrete and consider
only constant-free BSS machines this results in complexity classes, denoted by BP(P0

R) and
BP(NP0

R), that may directly be compared to Turing machine based complexity classes. Indeed,
it was proved by Allender, Bürgisser, Kjeldgaard-Pedersen and Miltersen [2, Proposition 1.1]
that BP(P0

R) = PPosSLP, where PosSLP is the problem of deciding whether an integer given
by a division free arithmetic circuit (i.e. a {+, −, ∗}-circuit using just the constant 1) is
positive. While the precise complexity of PosSLP is not known, Allender et al. proved that
it is contained in the counting hierarchy CH (not to be confused with the consensus halving
problem whose abbreviation coincides). The class BP(NP0

R) is equal to the class ∃R that
was defined by Schaefer and Štefankovič [20] to capture the complexity of the existential
theory of the reals ETR. It is known that NP ⊆ ∃R ⊆ PSPACE, where the latter inclusion
follows from the decision procedure for ETR due to Canny [7].

We define the class of ∃R search problems as the following subclass of all real valued
search problems. Instaces I are encoded as string over a given finite alphabet Σ and we
assume there is a polynomial time algorithm that given I computes dI , where DI ⊆ RdI . We
next assume that there are polynomial time constant free BSS machines that given I and
x ∈ RdI checks whether x ∈ DI , and given I and x ∈ DI checks whether x ∈ Sol(I). The
corresponding language in ∃R is then L = {I | Sol(I) ̸= ∅}.

2.3 Solving real-valued search problems
Let Π be a ∃R search problem. In analogy with the case of NP search problems, one could
consider the task of solving Π to be that of giving as output some member y of Sol(I) in
case Sol(I) ̸= ∅. In general each member of Sol(I) may be irrational valued which precludes
a Turing machine to compute a solution explicitly. This is in general also the case for a BSS
machine, even when allowing machine constants. Regardless, we shall restrict our attention
to Turing machines below.
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On the other hand, when Sol(I) ̸= ∅ a solution is guaranteed to exist with coordinates
being algebraic numbers, since a member of Sol(I) may be defined by an existential first-order
formula over the reals with only rational-valued coefficients. This means that one could
instead compute an indirect description of the coordinates of a solution, for instance by
describing isolated roots of univariate polynomials. If such a description could be computed
in polynomial time in |I| we could consider that to be a polynomial time solution of Π.

Etessami and Yannakakis [12] suggest several other computational problems one may
alternatively consider in place of solving a search problems Π explicitly or exactly. Our
main interest is in the problem of approximation. We shall assume for simplicity that DI ⊆
[−1, 1]dI . Together with an instance I of Π we are now given as an auxiliary input a rational
number ε > 0, and the task is to compute x ∈ QdI such that there exist x∗ ∈ Sol(I) with
∥x∗ − x∥∞ ≤ ε. We shall turn this into a discrete search problem by encoding the coordinates
of x as binary strings. More precisely, to Π we shall associate a discrete search problem
Πa where instances are of the form (I, k), where I is an instance of Π and k is a positive
integer. We define ε = 2−k and let the domain of (I, k) be DI,k = {0, 1}dI (k+3), thereby
allowing the specification of a point x ∈ DI with coordinates of the form xi = ai2−k+1, where
ai ∈ {−2k+1, . . . , 2k+1}. The solution set Sol(I, k) is defined from Sol(I) by approximating
each coordinate. That is, we define Sol(I, k) = {x ∈ DI,k | ∃x∗ ∈ Sol(I) : ∥x∗ − x∥∞ ≤ ε}.
Note that if we had defined Sol(I, k) by instead truncating the coordinates of solutions
x∗ ∈ Sol(I) to k bits of precision, we would have obtained the possibly harder problem of
partial computation which was also considered by Etessami and Yannakakis [12].

We say that Π can be approximated in polynomial time if the approximation problem Πa

can be solved in time polynomial in |I| and k.

2.4 Reductions between search problems
Let Π and Γ be search problems. A many-one reduction from Π to Γ consists of a pair
of functions (f, g). The function f is called the instance mapping and the function g the
solution mapping. The instance mapping f maps any instance I of Π to an instance f(I)
of Γ and for any solution y ∈ Sol(f(I)) of Γ the solution mapping g maps the pair (I, y) to
a solution x = g(I, y) ∈ Sol(I) of Π. It is required that Sol(f(I)) ̸= ∅ whenever Sol(I) ̸= ∅.
We will only consider many-one reductions, and will refer to these simply as reductions.

If Π1 and Π2 are discrete search problems a reduction (f, g) between Π1 and Π2 is a
polynomial time reduction if both functions f and g are computable in polynomial time. If
Π1 and Π2 are real-valued search problems it is less obvious which notion of reduction is
most appropriate and we shall consider several different types of reductions. For all these we
assume that f is computable in polynomial time. The reduction (f, g) is a real polynomial
time reduction if g is computable in polynomial time by a constant free BSS machine. We
shall generally consider this notion of reduction too powerful. In particular the definition
does not guarantee that the function g is a continuous function in its second argument y.
For this reason we instead consider reductions defined by algebraic circuits over a given basis
B of real-valued basis functions.

We say that the reduction (f, g) is a polynomial time B-circuit reduction if there is a
function computable in polynomial time thats maps an instance I to a B-circuit CI in such a
way that CI computes a function CI : Df(I) → DI where g(I, y) = CI(y) for all y ∈ Sol(f(I)).
Note in particular that the size of CI and the bitsize of all constant gates are bounded by a
polynomial in |I|. If in addition there exists a constant h such that the depth of CI is bounded
by h for all I we say that the reduction (f, g) is a polynomial time constant depth B-circuit
reduction. Etessami and Yannakakis [12] defined the even weaker notion where the function
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f is a separable linear transformation. The reduction (f, g) is an SL-reduction if there is
a function π : {1, . . . , dI} → {1, . . . , df(I)} and rational constants ai, bi, for i = 1, . . . , dI ,
all computable in polynomial time from I, such that for all y ∈ Sol(f(I)) it holds that
xi = aiyπ(i) + bi, where x = g(I, y). Thus an SL-reduction is simply a projection reduction
together with an individual affine transformation of each coordinate of the solution.

Functions computed by algebraic circuits over the basis {+, ∗ζ, max} are piecewise linear.
We shall thus call polynomial time {+, ∗ζ, max}-circuit reductions for polynomial time
piecewise linear reductions, or simply PL-reductions.

It is easy to see that all notions of reductions defined above are transitive, i.e. if Π reduces
to Γ and Γ reduces to Λ, then Π reduces to Λ as well.

A desirable property of PL-reductions is that the solution mapping g is polynomially
continuous. By this we mean that for all rational ε > 0 there is a rational δ > 0 such that for
all points x and y of the domain, ∥x − y∥∞ ≤ δ implies

∥∥g(x) − g(y)
∥∥

∞ ≤ ε, and the bitsize
of δ is bounded by a polynomial in the bitsize of ε and of |I|.

2.5 Total real-valued search problems
Like in the case of TFNP where interesting classes of total NP search problems may be
defined in terms of existence theorems for finite structures [19, 17], we may define classes
of total real valued ∃R search problems based on existence theorems concerning domains
DI ⊆ Rn. Typical examples of such domains DI are spheres and balls. Suppose p is either a
real number p ≥ 1 or p = ∞. By Sn

p and Bn
p we denote the unit n-sphere and unit n-ball with

respect to the ℓp-norm defined as Sn
p = {x ∈ Rn+1 |∥x∥p = 1} and Bn

p = {x ∈ Rn |∥x∥p ≤ 1},
respectively. If p is not specified, we simply assume p = 2.

2.5.1 The Brouwer fixed point theorem and FIXP
We recall here the definition of the class FIXP by Etessami and Yannakis [12]. The class
FIXP is defined by starting with ∃R search problems given by the Brouwer fixed point
theorem, and afterwards closing the class with respect to SL-reductions. We shall refer to
these defining problems as basic FIXP problems.

▶ Definition 3. An ∃R search problem Π is a basic FIXP problem if every instance I

describes a nonempty compact convex domain DI and a continuous function FI : DI → DI ,
computed by an algebraic circuit CI , and these descriptions must be computable in polynomial
time. The solution set is Sol(I) = {x ∈ DI | FI(x) = x}.

The Brouwer fixed point theorem guarantees that every basic FIXP problem is a total ∃R
search problem. To define the class FIXP, Etessami and Yannakis restrict attention to a
concrete class of basic FIXP problems.

▶ Definition 4. The class FIXP consists of all total ∃R search problems that are SL-
reducible to a basic FIXP problem for which each domain DI is a convex polytope described
by a set of linear inequalities with rational coefficients and the function FI is defined by a
{+, −, ∗, ÷, max, min}-circuit CI .

The class FIXPa is the class of strong approximation problems corresponding to FIXP. More
precisely, FIXPa consist of all discrete search problems polynomial time reducible to the
problem Πa for Π ∈ FIXP.

The definition of FIXP is quite robust with respect to the choice of domain and set of
basis functions allowed by circuits in the basic FIXP problems. Etessami and Yannakis
proved that basic FIXP problems defined by {+, −, ∗, ÷, max, min, k

√ }-circuits are still in
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the class FIXP. Likewise, basic FIXP-problems where DI is a ball with rational-valued
center and diameter, or more generally an ellipsoid given by a rational center-point and a
positive-definite matrix with rational entries, are still in the class FIXP [12, Lemma 4.1].
The same argument allows for using as domain the ball Bd

p with respect to the ℓp norm for
any rational p ≥ 1 or p = ∞, with the coordinates possibly transformed by individual affine
functions.

2.5.2 The Borsuk-Ulam theorem, BU, and BBU
A new class BU of total ∃R search problems based on the Borsuk Ulam theorem was recently
introduced by Deligkas et al. [11]. The definition of BU is meant to capture the Borsuk-
Ulam theorem as stated in formulation (1) of Theorem 1. Following the definition of FIXP
by Etessami and Yannakakis, Deligkas et al. first consider a set of basic search problems
and then close the class under reductions. For defining BU, Deligkas et al. restrict their
attention to spheres with respect to the ℓ1-norm as domains and functions computed by
{+, −, ∗, max, min}-circuits. Compared to the definition of FIXP, division gates are thus
excluded. Having thus fixed the set of basic BU search problems what remains in order to
define BU is to settle on a notion of reductions. In their journal paper, Deligkas et al. [11]
suggest using reductions computable by general algebraic circuits including non-continuous
comparison gates, whereas in the preceeding conference paper [10] they did not precisely
define a choice of reductions.

We propose definining BU using a different notion of reduction below. We additionally
define a class BBU based on the Borsuk-Ulam theorem corresponding to formulation (3)
of Theorem 1. We start by defining basic BU and basic BBU problems. We shall restrict
our attention to domains being the unit n-sphere and unit n-ball, but with regards to any
ℓp-norm for p ≥ 1 or p = ∞.

▶ Definition 5.
1. An ∃R search problem Π is a basic ℓp-BU problem if for every instance I we have

DI = SdI
p and I describes a continuous function FI : DI → RdI −1, computed by an

algebraic circuit CI whose description is computable in polynomial time. The solution set
is Sol(I) = {x ∈ DI | FI(x) = FI(−x)}.

2. An ∃R search problem Π is a basic ℓp-BBU problem if for every instance I we have DI =
BdI

p and I describes a continuous function FI : DI → RdI , which is odd on the boundary
∂BdI

p . The function FI must be computed by an algebraic circuit CI whose description is
computable in polynomial time. The solution set is Sol(I) = {x ∈ DI | FI(x) = 0}.

The condition that the function FI is odd on ∂BdI
p for basic ℓp-BBU problems is a

semantic condition. However, typically the function FI would be defined from a basic ℓp-BU
problem by a transformation done in a similar way as in the proof of Theorem 1, and thereby
FI would satisfy the condition automatically.

To define the classes BU and BBU, we restrict our attention to domains with respect to
the ℓ∞-norm.

▶ Definition 6. The class BU (respectively, BBU) consists of all total ∃R search problems
that are PL-reducible to a basic ℓ∞-BU problem (respectively, basic ℓ∞-BBU problem) for
which the function FI is defined by a {+, −, ∗, ÷, max, min}-circuit CI .

While the definition of BU in [11] was using as domain the unit sphere with respect to
the ℓ1-norm and not allowing for division gates, we show in the full version of this paper that
these changes do not change the class. We propose choosing PL-reductions for closing the
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class under reductions. PL-reductions are sufficient for obtaining all of our results and they
are polynomially continuous. Another reason for this choice is that if we restrict the circuits
defining the classes FIXP and BU to also be piecewise linear, i.e. be {+, ∗ζ, max}-circuits,
we obtain the classes LinearFIXP and LinearBU, that when closed under polynomial-time
reductions are equal to PPAD and PPA, respectively [12, 11].

2.6 Consensus Halving
We give here a formal definition of consensus halving with additive measures as real valued
search problems.

▶ Definition 7. The problem CH is defined as follows. An instance I consists of a list
of {+, −, ∗, ÷, max, min}-circuits C1, . . . , Cn computing distribution functions F1, . . . , Fn

defined on the interval A = [0, 1]. The domain is DI = Sn
1 and Sol(I) constists of all x for

which∑
j:xj>0

Fi(tj) − Fi(tj−1) =
∑

j:xj<0
Fi(tj) − F (tj−1) , (1)

where t0 = 0 and tj =
∑

k≤j |xk|, for j = 1, . . . , n + 1.

Given {+, −, ∗, ÷, max, min}-circuits computing the distribution functions Fi, the func-
tion F computing the left-hand-side of equation (1) may now clearly be computed by
{+, −, ∗, ÷, max, min}-circuits as well. The result of Deligkas et al. that CH is contained in
BU follows.

The existence proof of a consensus halving by Simmons and Su as well the formulation
as an ∃R search problem by Deligkas et al. match the Borsuk-Ulam theorem as stated in
formulation (1) of Theorem 1.

3 Consensus Halving

In this section we present the proof of our main result Theorem 2. This result enables an
additional structural result about the class of strong approximation problems BUa = BBUa,
showing that the class is unchanged even when allowing root operations as basic operations.
We refer to the full version of this paper for details of this.

Suppose we are given a basic ℓ∞ − BBUa problem Πa with circuits over the basis
{+, −, ∗, max, min}. Let (I, k) denote an instance of Πa and put ε = 2−k. We may in
polynomial time compute a circuit C defining a function F : Bn

∞ → Rn that is odd on the
boundary Sn−1

∞ such that Sol(I) = {x ∈ Bn
∞ | F (x) = 0}. We now provide a reduction

from Πa to a CHa-problem. In the reduction we will make use of the “almost implies near”
paradigm as expressed in the following lemma. The simple proof is given in the full version
of this paper.

▶ Lemma 8. Let F : Bn
∞ → Rn be a continuous map. For any ε > 0 there is a δ > 0 such

that if
∥∥F (x)

∥∥
∞ ≤ δ then there is an x∗ ∈ Bn

∞ such that ∥x − x∗∥∞ ≤ ε and F (x∗) = 0.

The lemma says that for any ε > 0, if
∥∥F (x)

∥∥
∞ is sufficiently close to being zero, then x

is ε-close to a real zero of F . When F is computed by an algebraic circuit of polynomial
size, it follows by using tools from real algebraic complexity [3] that there exists some
fixed polynomial q with integer coefficients such that the above lemma holds true for some
δ ≥ ε2q(|I|) . We refer to the full version of this paper for details. The lemma then holds
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true for δ = ε2q(|I|) , and we may construct this number using a circuit of polynomial size
by repeatedly squaring the number ε exactly q(|I|) times. This number will be used by the
feedback agents in our CHa instance in order to ensure that any solution gives a solution to
the ℓ∞ − BBUa instance.

3.1 Overview of the Reduction

Overview. As in previous works, we describe a consensus halving instance on an interval
A = [0, M ], where M is bounded by a polynomial in |I|, rather than the interval [0, 1].
This instance may then be translated to an instance on the interval [0, 1] by simple scaling.
Like [16], in the leftmost end of the instance we place the Coordinate-Encoding region
consisting of n intervals. In a solution these intervals will encode a value x ∈ [−1, 1]n. A
circuit simulator C will simulate the circuit of F on this value x. The circuit simulators
will consist of a number of agents each implementing one gate of the circuit. However, such
a circuit simulator may fail in simulating F properly, so we will use a polynomial number
of circuit simulators C1, . . . , Cp(n). Each of these circuit simulators will output n values
[Cj(x)]1, . . . , [Cj(x)]n into intervals I1j , . . . , Inj immediately after the simulation. Finally,
we introduce the so-called feedback agents f1, . . . , fn. The agent fi will have some very thin
Dirac blocks centered in each of the intervals Iij where j ∈ [p(n)]. These agents will ensure
that if z is an exact solution to the CH instance, then the encoded value x satisfies that∥∥F (x)

∥∥
∞ is sufficiently small that we may conclude that x is ε-close to a zero x∗ of F .

Label Encoding. For a unit interval I we let I± denote the subsets of I assigned the
corresponding label. We define the label encoding of I to be a value in [−1, 1] given by the
formula vl(I) := µ(I+) − µ(I−). This makes sense as I± is measurable, because it is the
union of a finite number of intervals.

Coordinate-Encoding Region. The interval [0, n] is called the Coordinate-Encoding region.
For every i ∈ [n], the subinterval [i − 1, i] of the Coordinate-Encoding region encodes a value
xi := vl([i − 1, i]) via the label encoding.

Position Encoding. For an an interval I which contains only a single cut, thus dividing I

into two subintervals I = Ia ∪ Ib, where Ia is the subinterval at the left of the cut and Ib

the subinterval at the right of the cut, we define the position encoding of I to be the value
vp(I) := µ(Ia) − µ(Ib). We note that vp(I) = vl(I) if the labeling sequence is +/−, and
vp(I) = −vl(I) in the case the labeling sequence is −/+.

From Label to Position. Before a circuit simulator there is a sign detection interval Is

which detects the labeling sequence. Unless it contains a stray cut, this interval will encode
a sign s = ±1 (to be precise 1 if the label is + and −1 is the label is −). By placing agents
that flip the label as indicated in the figure below, we may now obtain position encodings
of the values sx1, . . . , sxn. These values will be read-in as inputs to the subsequent circuit
simulator.

· · ·x1 x2 xn

· · ·
s

· · ·
sx1 sx2
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Circuit Simulators. As mentioned above, each circuit simulator Cj will read-in the values
sjx1, . . . , sjxn and simulate the circuit computing F on this input. They then output their
values into n intervals immediately after the simulation.

Feedback Agents. By the discussion after the statement of Lemma 8 we may by repeated
squaring construct a circuit of polynomial size in |I| computing a tiny number δ > 0 such
that if

∥∥F (x)
∥∥

∞ ≤ δ then x is (ε/2)-close to a zero of F . Now fix i ∈ [n] and let cij denote
the centre of the feedback interval Iij that outputs the value [Cj(sj · x)]i. We then define
the ith feedback agent to have constant density 1/δ in the intervals [cij − δ/2, cij + δ/2].

The reason for having the feedback agents have these very narrow Dirac blocks is that if
Fi(x) > δ for some i, then in any of the “uncorrupted” circuits (i.e. circuits outputting the
correct values) all the density of the ith agent will contribute to the same label. Moreover,
we will show using the boundary condition of F that the contribution is to the same label in
all the uncorrupted circuit simulators. This will contradict that the feedback agents should
value I+ and I− equally. That is, the feedback agents ensure that

∥∥F (x)
∥∥

∞ ≤ δ if x is the
value encoded by an exact solution to the consensus halving instance we construct.

Stray Cuts. Any of the agents implementing one of the gates in a circuit simulator will
force a cut to be placed in an interval in that same circuit simulator. The only agents whose
cuts we have no control over are the n feedback agents. The expectation is that these agents
should make cuts in the Coordinate-Encoding region that flip the label. If they do not do
this we will call it a stray cut. If a circuit simulator contains a stray cut, we will say nothing
about its value.

▶ Observation 9. If it is not the case that every unit interval encoding a coordinate xi in
the Coordinate-Encoding region contains a cut that flips the label, then the encoded point
x ∈ Bn

∞ will lie on the boundary Sn
∞. With this in mind we may ensure that x ∈ Sn

∞ or
s1 = s2 = · · · = sp(n) = ±1 where the sign is the same as the label of the first interval. This
can be done by, if necessary, placing one single-block agent after the Coordinate-Encoding
region and each of the circuit simulators (if placing such an agent is necessary depends on,
respectively, the number of variables n and the size of the circuits).

3.2 Construction of Gates
In this section we describe how to construct Consensus-Halving agents implementing the
required gates {+, −, ∗, max, min} for building the circuit simulators. By placing single-block
agents between intervals, we may assume that the labeling sequence is the same in all the
intervals of a circuit simulator. First, we show that we may transform the given circuit such
that all gates only take values in the interval [−1, 1] on input from Bn

∞.

Transforming the Circuit. By propagating every gate to the top of the circuit we may
assume that the circuit is layered. Let C ′ denote the resulting circuit. By repeated squaring
we may maintain a gate with value 1/22d in the dth layer. Suppose g = α(g1, g2) is a gate
with inputs g1, g2 in layer d. We modify the gates as follows: if α ∈ {+, −, max, min} then
we multiply gi by 1/22d before applying α; if α = ∗, then we multiply the input by 1 before
applying α. Finally, we transform C ′ into the circuit C ′′ as follows: on input x, the circuit
C ′′ multiplies the input by 1/2 and then evaluates C ′ on input x/2. Inductively, one may
show that if g is a gate in layer d in the circuit C ′, then the corresponding gate in in the
circuit C ′′ has value g/22d . As all the gates are among {+, −, ∗, max, min}, this ensures that
all the gates in C ′′ take values in [−1, 1].
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Addition Gate [G+]. We may construct an addition gate using two agents. The first agent
has two unit input intervals that we assume contain one cut each. This then forces a cut in
the long output interval that has length 3. The second agent then truncates this value (a cut
is forced by the adjacent narrow rectangles).

Constant Gate [Gζ]. Let ζ ∈ [−1, 1] ∩ Q be a rational constant. The agent will have a
block of unit height in the sign interval and a block of width ζ/2 and height 2/ζ centered in
another interval.

Before proceeding with the remaining gates, we construct a general function gate, an
agent that implements any decreasing function.

Function Gate [Gh]. Let −1 ≤ a < b ≤ 1 and −1 ≤ c < d ≤ 1 be rational numbers and
consider a continuously differentiable map h : [a, b] → [c, d] satisfying h(a) = d and h(c) = c.
Let h denote the extension of h that is constant on [−1, a] and [b, 1]. We now construct an
agent with input interval I and output interval O computing this map, that is the agent
should force a cut in the output interval such that h(vp(I)) = vp(O).

The agent that we construct has a block of height 2/(d − c) in the sub-interval [(c +
1)/2, (d + 1)/2] of the output interval and density f(z) := −2h′(2z − 1)/(d − c) in the
sub-interval ((a + 1)/2, (b + 1)/2) of the input interval. We note that f is positive in this
interval as h is assumed to be a decreasing map, so it makes sense for the agent to have
density f. One may verify that the agent values the input interval and output interval equally.
We further add two narrow rectangles adjacent to the output interval. These will ensure that
if the cut in the input interval is placed at z ≤ (a + 1)/2 such that vp(I) ≤ a, then the cut in
the output interval must be placed at z∗ = (d + 1)/2, meaning that vp(O) = d. Similarly, if
vp(I) ≥ b then vp(O) = c.

0 1a+1
2

b+1
2

0 1c+1
2

d+1
2

z z∗

+ − + −

· · ·

Suppose cuts are placed in z in the input interval and in z∗ in the output interval. As the
agent must value the parts with positive and negative label equally, we get the equality

1 =
∫ z

(a+1)/2

−2h′(2t−1)
d−c dt +

(
z∗ − c+1

2
) 2

d−c
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From this we obtain that

d − c = −
∫ 2z−1

a

h′(u) du + 2z∗ − c − 1 = −h(2z − 1) + d + 2z∗ − c − 1

where we use that h(a) = d by assumption. We conclude that h(2z − 1) = 2z∗ − 1, that is
we obtain the equality h(vp(I)) = vp(O).

Using this general function gate, we may now build up the remaining gates required by
the circuit.

Multiplication By -1 Gate [G−(·)]. In order to realise this gate, we consider the function
h : [−1, 1] → [−1, 1] given by x 7→ −x. The agent’s density function in the input interval is
then given by f(z) = 1.

0 1 0 1
z z∗

+ −
· · ·

+ −

Subtraction Gate [G−]. We may build this using the gates G−(·) and G+.

Multiplication by ζ ∈ [−1, 1] [G·ζ]. If ζ < 0 we mahy construct G·ζ as a function gate
using the function h : [−1, 1] → [ζ, −ζ]. If ζ > 0 we construct using −ζ and a minus gate, i.e.
G·ζ = −G·(−ζ).

Maximum Gate [Gmax]. First we show how to construct a gate computing the absolute
value of the input. We may construct gates G1, G2 such that G1(x) = − max(x, 0) and
G2(x) = max(−x, 0) as function gates by using the functions h1 : [0, 1] → [−1, 0] given
by x 7→ −x and h2 : [−1, 0] → [0, 1] given by x 7→ −x. Now, we may constrcuct the
absolute value gate as G|·| = −G1 + G2. We may now construct Gmax by using the formula
max(x, y) = (x + y + |x − y|)/2.

Minimum Gate [Gmin]. We may build this using min(x, y) = x + y − max(x, y).

Multiplication Gate [G∗]. We start off by constructing a gate squaring the input. First we
construct G1 and G2 as function gates with respect to h1 : [−1, 0] → [0, 1] given by x 7→ x2

and h2 : [0, 1] → [−1, 0] given by x 7→ −x2. Then we may construct the squaring gate as
G(·)2 = G1 − G2. Now we may use the previously constructed gates to make a multiplication
gate via the identity xy = ((x + y)2 − x2 − y2)/2.

3.3 Describing valuation functions as circuits
In the description above, we described the valuations of the agents by providing formulas for
their densities. However, an instance of CH actually consists of a list of algebraic circuits
computing the distribution functions of the agents. In order to construct gates, it is sufficient
for agents to have densities that are piece-wise polynomial. Therefore, consider an agent
with polynomial densities fi in the intervals [ai, bi) for i = 1, . . . , s, and let Fi denote the
indefinite integral of fi. We note that Fi is a polynomial so it may be computed by an
algebraic circuit. Now we claim that the distribution function of this agent may be computed
by an algebraic circuit via the formula F (x) =

∑s
i=1[Fi(max(ai, min(x, bi))) − Fi(ai)].
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This is the case, because the summands will be equal to Fi(ai) − Fi(ai) = 0 if x < ai, to
Fi(x) − Fi(a) if ai ≤ x ≤ bi and to Fi(b) − Fi(a) if x > bi, meaning that this formula does
indeed calculate the valuation of the agent in the interval [0, x].

3.4 Reduction and Correctness

Recall that we are given an instance (F, ε) of the BBUa problem and that we have to construct
an instance of the CHa problem. The reduction now outputs an instance of the CHa problem
where the consensus halving instance is constructed as above with p(n) = 2n + 1 circuit
simulators and the approximation parameter is given by ε′ = ε/(4n). Let z denote a solution
to this CHa instance. By definition, there exists an exact solution z∗ to the consensus-halving
problem such that ∥z − z∗∥∞ ≤ ε′.

Let x and x∗ denote the values encoded by respectively z and z∗ in the Coordinate-
Encoding region. Suppose, generally, we are given an interval I with a number of cut points
t1, . . . , ts. Moving a cut point by a distance ≤ ε′ we create a new interval I ′. This changes
the label encoding by at most 2ε′, that is |vl(I) − vl(I ′)| ≤ 2ε′. Succesively, if we move all
the cuts by a distance ≤ ε′, then we get an interval I∗ such that |vl(I) − vl(I∗)| ≤ 2sε′. As
∥z − z∗∥∞ ≤ ε′ and any of the subintervals in the Coordinate-encoding region can contain
at most n cuts, we conclude that ∥x − x∗∥∞ ≤ 2nε′ = 2n(ε/(4n)) = ε/2. In order to show
that x is ε-close to a zero of F , it now suffices by the triangle inequality to show that x∗ is
(ε/2)-close to a zero of F . This will follow from the two following lemmas.

▶ Lemma 10. If there are no stray cuts in the exact solution z∗, then the associated value
x∗ encoded in the Coordinate-encoding region satisfies F (x∗) = 0.

Proof. We recall that if the solution z∗ contain no stray cuts, then the signs of all the
circuit simulators are equal s1 = · · · = s2n+1 = s where s = ±1. Furthermore, all the circuit
simulators will output the same values F1(sx∗), . . . , Fn(sx∗) into the feedback intervals. Thus,
there can be no cancellation, so in order for the feedback agents to value the positive and
negative part equally it must be the case that F (sx∗) = 0. ◀

▶ Lemma 11. If there is a stray cut in the exact solution z∗, then the associated value x∗

encoded in the Encoding-region satisfies the inequality
∥∥F (x∗)

∥∥
∞ ≤ δ.

Proof. Suppose toward contradiction that |F (x∗)i| > δ for some i. Without loss of generality
we assume that F (x∗)i > δ. As there is a stray cut, the Coordinate-Encoding region can
contain at most n − 1 cuts. Thus, at least one of the coordinates x∗

i must be ±1 showing
that x∗ ∈ Sn−1. From this and the boundary condition we conclude that F (x∗) = −F (−x∗).
Furthermore, there is at most n stray cuts, so at most n circuit simulators can become
corrupted. This means that n + 1 circuit simulators work correctly. Now suppose that the
circuit simulator Cj is uncorrupted. If the label is sj = +1, then Cj will output F (x∗) into
the feedback region and the labeling sequence will be +/−; if the label is sj = −1 then Cj

will output F (−x∗) = −F (x∗) into the feedback region and the labeling sequence will be
−/+. This is indicated below:

+ −
− +

F (x)i > δ

+ −

F (−x)i = −F (x)i < −δ
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From this we conclude that the n + 1 uncorrupted circuit simulators altogether contribute
(n + 1)δ to the part with negative label. However, the n corrupted circuit simulators can
contribute at most nδ to the part with positive label. This implies that fi cannot value
the negative and positive part equally. This contradicts the assumption that z∗ is an exact
consensus-halving. We conclude that

∥∥F (x∗)
∥∥

∞ ≤ δ. ◀

By the two lemmas above, it follows that the value x∗ encoded by the exact consensus-
halving z∗ satisfies the inequality

∥∥F (x∗)
∥∥

∞ ≤ δ. By choice of δ, this implies that there
exists some x∗∗ such that ∥x∗ − x∗∗∥∞ ≤ ε/2 and F (x∗∗) = 0. From the discussion before
the two lemmas, it follows that x is ε-close to a zero of F and is thus a solution to the BBUa

instance (F, ε).

Mapping back a Solution. What remains is to show that we may recover a solution x

to the BBUa instance from the solution z to the CHa instance. Recall that in a solution
z = (z1, . . . , zN ) to the consensus-halving problem |zi| and sgn(zi) represents the length and
label of the ith interval. For i ≤ n and j ≤ n + 1 we let tj =

∑j−1
k=1 |zk| and define

x+
ij = max(0, min(tj−1 + zj , i) − max(tj−1, i − 1)) and

x−
ij = max(0, min(tj−1 − zj , i) − max(tj−1, i − 1))

These numbers may be computed efficiently by a circuit over the basis {+, −, max, min}. We
notice that if zj > 0 then x−

ij = 0 (and if zj < 0 then x+
ij = 0). Furthermore, by checking a

couple of cases, one finds that if zj > 0 (respectively zj < 0) then x+
ij (respectively x−

ij) is the
length of the jth interval that is contained in [i − 1, i]. As the coordinate-encoding region
can contain at most n cuts (corresponding to at most n + 1 intervals), we deduce from the
above that the values encoded can be computed as xi =

∑n+1
j=1 x+

ij − x−
ij , for every i ≤ n. If

there is a stray cut then both x and −x are valid solutions by the boundary condition of F .
If there is no stray cut, then s1 = s2 = · · · = sp(n) = s = sgn(z1) by Observation 9 and in
this case we may recover a solution as sx.
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