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Abstract
Given an undirected n-vertex graph and k pairs of terminal vertices (s1, t1), . . . , (sk, tk), the k-
Disjoint Shortest Paths (k-DSP) problem asks whether there are k pairwise vertex-disjoint
paths P1, . . . , Pk such that Pi is a shortest si-ti-path for each i ∈ [k]. Recently, Lochet [SODA ’21]

provided an algorithm that solves k-DSP in n
O

(
k5k

)
time, answering a 20-year old question about

the computational complexity of k-DSP for constant k. On the one hand, we present an improved
O(kn16k·k!+k+1)-time algorithm based on a novel geometric view on this problem. For the special
case k = 2, we show that the running time can be further reduced to O(nm) by small modifications
of the algorithm and a further refined analysis. On the other hand, we show that k-DSP is W[1]-hard
with respect to k, showing that the dependency of the degree of the polynomial running time on the
parameter k is presumably unavoidable.
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1 Introduction

The k-Disjoint Paths problem is a fundamental and well-studied combinatorial problem.
Given an undirected graph G and k terminal pairs (si, ti)i∈[k], the question is whether
there are pairwise disjoint 1 si-ti-paths Pi for each i ∈ [k]. The problem was shown to
be NP-hard by Karp [9] when k is part of the input. On the positive side, Robertson
and Seymour [13] provided an algorithm running in O(n3) time for any constant k. Later,
Kawarabayashi et al. [10] improved the running time to O(n2), again for fixed k. On directed
graphs, in contrast, the problem is NP-hard even for k = 2 [7]. However, on directed acyclic
graphs, the problem becomes again polynomial-time solvable for constant k [7] and linear-time
solvable for k = 2 [14].

1 We only consider the vertex-disjoint setting to which the edge-disjoint version can be reduced.
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26:2 Using a Geometric Lens to Find k Disjoint Shortest Paths

Focusing on the undirected case, we study the problem variant where all paths in the
solution have to be shortest paths. This variant was introduced by Eilam-Tzoreff [5].

k Disjoint Shortest Paths (k-DSP)
Input: A graph G = (V, E) and k ∈ N pairs (si, ti)i∈[k] of vertices.
Task: Find k disjoint paths Pi such that Pi is a shortest si-ti-path for each i ∈ [k].

Throughout the whole paper, we assume that the input graph is connected. Eilam-
Tzoreff [5] showed the NP-hardness of k-DSP when k is part of the input. Moreover,
Eilam-Tzoreff provided a dynamic-programming based O(n8)-time algorithm for 2-DSP. This
algorithm for 2-DSP works also for positive edge lengths. Recently, Gottschau et al. [8] and
Kobayashi and Sako [11] independently extended this result by providing polynomial-time
algorithms for the case that the edge lengths are non-negative. As for directed graphs, Berczi
and Kobayashi [2] provided a polynomial-time algorithm for strictly positive edge length. Very
recently, Akhmedov [1] presented an algorithm solving 2-DSP in O(n6) time for unweighted
graphs and in O(n7) for strictly positive edge lengths. Note that allowing zero-length edges
generalizes 2-Disjoint Path on directed graphs, which is NP-hard [7]. Extending the
problem to finding two disjoint si-ti-paths of minimal total length (in undirected graphs),
Björklund and Husfeldt [4] provided a randomized algorithm with running time O(n11).

The existing algorithms for 2-DSP are based on dynamic programming with tedious case
distinctions. We provide a new algorithm using a simple and elegant geometric perspective:

▶ Theorem 1. 2-DSP can be solved in O(nm) time.

Whether or not k-DSP for constant k ≥ 3 is polynomial-time solvable was posed as a
research challenge [6, open problem 4.6]. Recently, Lochet [12] settled this long standing
open question by showing that k-DSP can be solved in nO(k5k

) time. Using our geometric
approach, we provide an improved O(k · n16k·k!+k+1)-time algorithm.

▶ Theorem 2. k-DSP can be solved in O(k · n16k·k!+k+1) time.

We describe the basic idea of our algorithms and the new geometric tools in Section 2.
In Section 3, we formalize these geometric tools for two paths and prove Theorem 1. In
Section 4, we lift these arguments to k > 2 paths. In Section 5, we present our algorithm for
Theorem 2 and prove its correctness.

Finally, we show that k-DSP is W[1]-hard with respect to k. Hence, under standard as-
sumptions from parameterized complexity, there is no algorithm with running time f(k)nO(1)

for any function f . Thus, polynomial-time algorithms where k does not appear in the
exponent (as the O(n2)-time algorithm for k-Disjoint Path for any constant k [13, 10]) are
unlikely to exist for k-DSP. Furthermore, under the Exponential-Time Hypothesis (ETH), we
show that there is no algorithm with running time f(k) ·no(k) for any computable function f .

▶ Proposition 3 (⋆2). k-DSP is W[1]-hard with respect to k. Moreover, assuming ETH,
there is no f(k) · no(k)-time algorithm for k-DSP.

Preliminaries. We set N := {0, 1, 2, . . . , } and [n] := {1, 2, . . . , n}. We always denote
by G = (V, E) a graph (undirected and connected unless said otherwise) and by n and m

the number of vertices and edges in G, respectively. A path of length ℓ ≥ 0 in a graph G is a

2 Some proofs (marked with a ⋆) are deferred to a full version.
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Figure 1 Left side: A graph with distinguished vertices s1, s2, t1, t2; vertex coordinates written
next to the vertices. Two shortest paths are highlighted. Right side: The 2D-arrangement of the
vertices. The two gray rectangles spanned by s1 and t1 and by s2 and t2 contain the two shortest
paths s1-t1 (solid red path) and s2-t2 (dashed blue path).

sequence of distinct vertices v0v1 . . . vℓ such that each pair vi−1, vi is connected by an edge
in G. The first and last vertex v0 and vℓ are called the end vertices or ends of P and are
denoted by sP and tP . We also say that P is a path from v0 to vℓ, a path between v0 and vℓ,
or a v0-vℓ-path. When no ambiguity arises, we do not distinguish between a path and its
set of vertices. For v, w ∈ P , we denote by P [v, w] the subpath of P with end vertices v

and w. For two vertices v, w, we denote the length of a shortest v-w-path in G by distG(v, w)
or dist(v, w) if the graph G is clear from the context. If for all i ∈ [k] there is a path Pi

that is a shortest si-ti-path and disjoint with Pj for all j ∈ [k] \ {i}, then we say that the
paths (Pi)i∈[k] are a solution for an instance (G, (si, ti)i∈[k]) of k-DSP.

2 The Key Concepts behind our Polynomial-Time Algorithm

In this section, we describe our approach to solve k-DSP in polynomial-time for any fixed k.
As a warm-up, we start with sketching an algorithm for 2-DSP based on the same approach.

Solving 2-DSP in the plane. Before describing the algorithm, we show the central geometric
idea behind it. Recall that we want to find two shortest paths P1 and P2 from s1 to t1 and
from s2 to t2, respectively. We now arrange the vertices on a 2-dimensional grid where the
first coordinate of each vertex is the distance to s1 and the second coordinate the distance
to s2; see left side of Figure 1 for an example graph with the corresponding coordinates
and the right side for an arrangement of the vertices in a grid with a continuous drawing of
the paths (drawing straight lines between points occurring in the paths). Clearly, with two
breadth-first searches from s1 and s2 we can compute the coordinates of all vertices in linear
time. Note that there might be multiple vertices with the same coordinates. However, at
most one vertex per coordinate can be part of a shortest s1-t1- or s2-t2-path.

This arrangement of the vertices allows the following simple geometric observation: The
drawing of each shortest s1-t1-path has to be within a rectangle with angles of 45◦ to the
coordinate axes and with corner points s1 and t1 (see gray rectangles in right side of Figure 1).
As a consequence, shortest paths that have to stay within two disjoint such rectangles cannot
intersect. We use this argument extensively in the subsequently sketched algorithm.

We assume that the drawings of P1 and P2 cross as displayed in the right side of Figure 1
(the non-crossing case is easier to deal with). Our algorithm solving 2-DSP in this case is
as follows: We distinguish whether the intersection of the drawings of P1 and P2 contain a
point with integer coordinates (that is, our algorithm tries both possibilities).

ICALP 2021
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Figure 2 An illustration of the directed acyclic graph used for Theorem 1. The first point p

in the intersection of the drawing of P1 and P2 is marked by a red square. Left side: Straigh-line
drawings of P1 and P2 intersect, but not in points with integer coordinates. Right side: Both P1

and P2 use vertices with same coordinates.

If the intersection does not have a point with integer coordinates, then it is easy to see
that the intersection of the drawing of P1 and P2 has to be a single point p (with non-integer
coordinates). We guess3 the four coordinate pairs (x, y), (x, y +1), (x+1, y), and (x+1, y +1),
x, y ∈ N, surrounding the intersection point of the drawings of P1 and P2. Note that this
can be done in O(n) time by guessing the vertex on the coordinate pair (x, y). The goal
is now to turn the input graph G into a directed acyclic graph D such that each shortest
si-ti-path in G corresponds to an si-ti-path in D. To this end, we partition the grid into
four areas A1, B1, A2, B2 (each area is defined by one of the guessed points and the closer
endpoint of the path going through the point) and orient each edge according to the area
it lies in (see left side of Figure 2 for an illustration). An edge {v, w} in the area Ai or Bi,
i ∈ [2], is oriented towards the vertex w with the larger i coordinate. Edges between Ai and
Bi are oriented towards the vertex in Bi. All remaining (unoriented) edges are removed.
Note that this results in a directed acyclic graph. Furthermore, a shortest si-ti-path in G

induces an si-ti-path in D and each si-ti-path in D is a shortest path in G because it is
strictly monotone increasing in the i-coordinate and all strictly monotone increasing paths
have the same length as each path contains one vertex for each integer i-coordinate between
the i-coordinates of si and ti. Observe that in this case the two paths cannot intersect as P1
can only reach vertices with coordinates in A1 and B1 and P2 can only use vertices with
coordinates in A2 and B2. Hence, one can find P1 and P2 in linear time. Altogether, this
gives a running time of O(nm) in this case.

Assume now that there is a point with integer coordinates in this intersection; this case
requires more work. We assume that if there are two points (x1, y1) and (x2, y2) in the
intersection of the drawings of P1 and P2, then we have x1 < x2 ⇔ y1 < y2. If this is not the
case, then repeat the algorithm below with swapped s2 and t2. We guess the first point p in
the intersection (note that it has integer coordinates). This can be done in O(n) time by
guessing a vertex on p. Now we arrange the areas slightly different. The areas are defined
by p and one coordinate of s1, t1, s2, t2; see the right side of Figure 2 for an illustration. Edges
in the area Ai \Bj or Bi \Aj are oriented towards the vertex with the larger i-coordinate.
Note that edges on the line in Ai ∩ Bj , i ̸= j, could either be used by P1 or P2 (but not
both), meaning that we have to direct the edges towards the vertex with either the larger
1- or 2-coordinate. Since there are only two possibilities for orienting the edges in A1 ∩B2,
there are only four different possibilities to orient the edges on A1 ∩B2 and A2 ∩B1. We try

3 Whenever we pretend to guess something, the algorithm actually exhaustively tests all possible choices.
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Figure 3 The four cases for the projection of two paths P1 and P2 in the two-dimensional grid.
From left to right: (1) The projection of the paths cross in one point with non-integer coordinates.
(2) The projection of the paths cross in at least one point with integer coordinates. (3) The rectangles
defined by the endpoints of P1 and P2 intersect, but the projections of P1 and P2 do not intersect.
(4) The rectangles defined by the endpoints of P1 and P2 do not intersect. For each of the two paths
our algorithm guesses the vertices on the positions marked by squares.

all four possible orientations and if at least one of them yields a solution, then we know that
there is a solution. All other (unorientated) edge are removed – a shortest si-ti-path cannot
use it. Note that this results for each of the four described cases in a directed acyclic graph.
Furthermore, again a shortest si-ti-path in G induces a si-ti-path in D and each si-ti-path
in D is an shortest path in G.

Finally, we use a O(n + m)-time algorithm of Tholey [14] for 2-Disjoint Paths on a
DAG to find P1 and P2. Since there are O(n) possibilities for the point p and 4 possibilities
for directing the edges between Ai and Bj , i ̸= j, we call O(n) instances of the algorithm of
Tholey [14]. Thus, we obtain Theorem 1 which is formally proven in Section 3.

Generalizing to k-DSP. We now discuss how to generalize the ideas from above to k-DSP,
where k > 2. One central idea for k = 2 is that the subpaths within the areas A1, A2, B1, B2
(see Figure 2) can hardly overlap. The only overlap is possible along the borders. In our
approach for k > 2, we simplify this even further by guessing the vertices on each path
before and after the intersection (thus incurring a higher running time). This results in
four cases; see Figure 3 for an overview of the cases and the guessed vertices (marked by
black squares). It is easy to see in Figure 3 that in each case no subpath within one gray
area can possibly intersect with a subpath within another gray area. As can be seen in
Figure 3, there is only one case where subpaths of P1 and P2 have to be computed carefully
due to possible intersections: Both paths use the dashed line in the second case from the
left. However, this is the part where both paths are strictly monotone in both coordinates.
This is what allowed us for k = 2 to transform the graph into a DAG while preserving the
solutions (both paths being strictly monotone in at least one coordinate is actually sufficient
for this transformation).

Considering k paths, we associate with each vertex v ∈ V a position in the k-dimensional
Euclidean vector space. For brevity, we say that a path has color i if it is strictly monotone
in its i-coordinate. Thus, each path Pj has color j. The problem k-Disjoint Paths on a
DAG is solvable in polynomial time for constant k [7]. Thus, if we want to find k subpaths
from ui to vi, i ∈ [k], that all have the same color (i. e. for each i ∈ [k] we have that the
difference of the i-th coordinate of ui and vi is dist(ui, vi)), then we can use the algorithm of
Fortune et al. [7]. For completeness, we provide a dynamic program with a precise running
time analysis as Fortune et al. [7] only state “polynomial time”. The general approach
to solve the given k-DSP instance is thus as follows: Split the paths P1, . . . , Pk into f(k)
subpaths (i. e. guess the endpoints of the subpaths) and find a partition of the subpaths such
that

ICALP 2021



26:6 Using a Geometric Lens to Find k Disjoint Shortest Paths

(i) subpaths in the same part of the partition share a common color and hence can be
computed by the algorithm of Fortune et al. [7] or our dynamic program, and

(ii) subpaths in different parts of the partition cannot intersect.

We remark that this is essentially the same general approach used by Lochet [12]. However,
he does not use the geometric view of the paths (as we do). As a result, even for k = 2 he
only bounds the number of created subpaths by 991 (cf. Lochet [12, Lemma 4.2]). While this
constant is certainly not optimized, one can easily see in Figure 3 that our approach splits
the two paths in at most five parts (in the second case). Moreover, our geometric view allows
us to use a more efficient way of splitting the paths for general k, which we describe below.

Recall that for k = 2 the two paths P1 and P2 have at most one intersection (point or
straight line); see Figure 3. However, in three dimensions k > 2 this is no longer true as
neither P1 nor P2 needs to be monotone in a third dimension. Thus, to exploit the properties
shown in Figure 3 for two paths Pi and Pj , we need to project into two dimensions using
the i and j coordinate. Hence, we need to be careful with using proper projections to 2D; see
Section 3 for details on the geometric arguments. However, whenever two paths Pi and Pj

intersect, then we know that the two subpaths in the intersection have both colors i and j.
Thus, we can use for these subpaths the two-dimensional observations behind Figure 3 with
new projections. We store for each subpath P ′ of Pi the set Φ of all indices of paths P ′

intersects, that is, Φ is a subset of all colors that P ′ has. Now, if P ′ and Pj intersect, then
there is a subpath of Pj that has colors Φ ∪ {i}. Hence this set Φ of colors can be seen as
a “tower of colors” that is transferred to other paths. Our algorithm transfers these towers
from one path to another as long as possible. These towers will be defined over permutations
of subsets of [k] that encode how these color-towers are produced; see Section 4. As there
are at most k · k! such permutations, this explains the exponent of our algorithm. In the end,
we arrive at Theorem 2, see Section 5 for details.

3 The Geometry of Two Shortest Paths

In this section, we formalize and generalize the idea behind the geometric view (visualized
in Figures 1–3). We start by introducing our notation for projections. For any ∅ ⊂ I ⊆ [k]
and any vector x ∈ Rk we denote with xI ∈ R|I| the orthogonal projection of x to the
coordinates in I. That is, xI is the |I|-dimensional vector obtained by deleting all dimensions
in x that are not in I. We usually drop the brackets in the exponent, thus writing e.g.,
(5, 6, 7, 8, 9)1,3,4 = (5, 7, 8) or (5, 6, 7)2 = 6. Similarly, for R ⊆ Rk we define RI := {xI | x ∈
R} ⊆ R|I|.

We associate with each vertex v ∈ V a position in the k-dimensional Euclidean vector space.
Formally, #»v := ( #»v i)i∈[k] := (dist(si, v))i∈[k] ∈ Nk and for U ⊆ V we use #»

U := { #»u | u ∈ U}.
For the k-DSP-instance at hand, one can compute the positions of each vertex in O(km)
using simple breadth-first-search from each vertex si.

In the following, we will use the following notations for any index set ∅ ⊂ I ⊆ [k]:
v ◦I w ⇔ ∀a ∈ I : #»v a ◦ #»wa, for any ◦ ∈ {<,≤, =,≥, >} and vertices v, w.
V ◦I W ⇔ { #»v I | v ∈ V } ◦ { #»wI | w ∈W}, for any ◦ ∈ {⊂,⊆, =,⊇,⊃} and vertex sets V, W .
We further write x ∈I X if there is a vertex x′ ∈ X with x′ =I x and x /∈I

X otherwise.

▶ Lemma 4. For any pair of vertices v, w ∈ V , we have ∥ #»v − #»w∥∞ ≤ dist(v, w).

Proof. Let P be a shortest v-w-path with edge set EP . Each edge {p, q} of P has ∥ #»p− #»q ∥∞ =
1 and thus by the triangle inequality ∥ #»v − #»w∥∞ ≤

∑
e∈EP

1 = dist(v, w). ◀
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Figure 4 Picture of the a, b-projection of an a-colored path P and a b-colored path Q. The
labels are abbreviated as ∂Q = ∂a,b

Q (P ), ∆ = ∆a,b(P, Q), etc. Left side: The case that the two paths
a, b-cross but do not share vertices with common a, b-coordinates (thus αP (Q) = ωP (Q) = ⊥, see
Definition 8). Middle: Illustration of Lemma 10. The dashed black edge is the a, b-crossing of P and
Q. The rectangle areas # »sP ⋄ #  »

∂P , #   »ϖP ⋄ # »
tP , # »sQ ⋄ #  »

∂Q, and #    »ϖQ ⋄ # »
tQ are highlighted in gray. These areas

are pairwise disjoint. Right side: Illustration of Lemma 14. If P and Q are a, b-noncrossing and
δQ ̸= ⊥, then the two shaded areas are disjoint from # »sP ⋄ # »

tP .

For two vertices u, w ∈ V , define u ⋄ w := {v ∈ V | dist(u, v) + dist(v, w) = dist(u, w)}
to be the set of all vertices that lie on a shortest u-w-path. Similarly, for any x, y ∈ Nk

define x ⋄ y := {z ∈ Rk | ∥x− z∥∞ + ∥z− y∥∞ = ∥x− y∥∞} which is a rectangle whose sides
form an angle of 45◦ with the coordinate axes (see right side of Figure 1).

▶ Definition 5. Let s, t ∈ V with dist(s, t) = ∥ #»s − #»
t ∥∞ and P be any shortest s-t-path. We

then call the pair (s, t) and the path P colored. Furthermore, we define C(P ) := C(s, t) :=
{a ∈ [k] | | #»s a − #»

t
a| = ∥ #»s − #»

t ∥∞} and call (s, t) and P a-colored if a ∈ C(s, t).

Note that, if P is an a-colored path, then P is strictly monotone in its a-coordinate. Note
that for arbitrary u, w ∈ V we do not always have #        »u ⋄ w ⊆ #»u ⋄ #»w, that is the coordinates
of all vertices on shortest u-w-paths are not necessarily contained in the set of coordinates
“spanned” by #»u and #»w. However, this inclusion holds for colored vertex pairs as shown next:

▶ Lemma 6 (⋆). Let v, w ∈ V be an a-colored pair for any color a. Then, #        »v ⋄ w ⊆ #»v ⋄ #»w.

We will usually be concerned with the projection of #»v ⋄ #»w to some set of coordinates I ⊆ [k].
Note in this context that ( #»v ⋄ #»w)I = #»v I ⋄ #»wI .

For some a ̸= b, consider the projections of an a-colored path Pa and a b-colored path Pb

to the {a, b}-plane, that is, the coordinates of the vertices of the paths are projected to their
a- and b-coordinate and edges are drawn as straight lines between the projected vertices.
To this end, for any path P we define ζ(P ) ⊂ Rk as the piecewise linear curve connecting
the points of #»

P in the order given by P . It is not hard to see (e.g. in Figure 1 (right) and
Figure 3 case (2)), that the intersection of Pa and Pb in the a, b-projection is also a straight
line segment with an angle of 45◦ to the coordinate axes.

▶ Lemma 7 (⋆). Let P be an a-colored path and Q be a b-colored path. Then ζ(P )a,b ∩ ζ(Q)a,b

is a (possibly empty) straight line segment.

Note that even if ζ(P )a,b ∩ ζ(Q)a,b is non-empty, it needs not contain points from N2 as
can be seen in the left side of Figure 4. In the following, we define the first and last vertices
of P and Q on their crossing as well as the coordinates of the vertices before and after their
crossing.

ICALP 2021



26:8 Using a Geometric Lens to Find k Disjoint Shortest Paths

▶ Definition 8. Let P be an a-colored path and Q be a b-colored path. We say P and Q

are a, b-crossing if the intersection X := ζ(P )a,b ∩ ζ(Q)a,b is non-empty. If X = ∅, they are
called a, b-noncrossing.

If #»

P
a,b
∩X ̸= ∅, then we define αa,b

P (Q) (resp. ωa,b
P (Q)) as the first (resp. last) vertex v

of P with va,b ∈ X. In all other cases set αa,b
P (Q) := ωa,b

P (Q) := ⊥.
If P and Q are a, b-crossing, we further define ∂a,b

P (Q) (resp. ϖa,b
P (Q)) as the last

(resp. first) vertex of P before (resp. after) that intersection. If no such vertex exists, we
set ∂a,b

P (Q) := ⊥ (resp. ϖa,b
P (Q) := ⊥). In all these notations we will omit a, b, and Q if it

is clear from context.

▶ Observation 9. If P, Q are two paths with αa,b
P (Q) ̸= ⊥, then P [αa,b

P (Q), ωa,b
P (Q)] =a,b

Q[αa,b
Q (P ), ωa,b

Q (P )]. In particular, both of these subpaths are a, b-colored.

If P and Q are a, b-crossing, then Observation 9 characterizes the behavior of the “crossing
subpaths”. Let us now consider the remaining path segments before and after the crossing.
By Lemma 6 these segments have to lie in the rectangle areas # »sP ⋄

#              »

∂a,b
P (Q),

#               »

ϖa,b
P (Q) ⋄ # »

tP ,
# »sQ ⋄

#              »

∂a,b
Q (P ), and

#               »

ϖa,b
Q (P ) ⋄ # »

tQ which are displayed in Figure 4 (left and middle). We can
show that these areas are indeed pairwise disjoint.

▶ Lemma 10 (⋆). Let P and Q be two a, b-crossing paths. Then the sets
(

# »sP ⋄
#              »

∂a,b
P (Q)

)a,b

,( #               »

ϖa,b
P (Q) ⋄ # »

tP

)a,b

,
(

# »sQ ⋄
#              »

∂a,b
Q (P )

)a,b

, and
( #               »

ϖa,b
Q (P ) ⋄ # »

tQ

)a,b

are pairwise disjoint (or unde-
fined).

Unfortunately, when P and Q are a, b-noncrossing, then sP ⋄ tP and sQ ⋄ tQ are not
disjoint in general, see for example Figure 4 (right). To deal with this case, we show that
when splitting one path into two subpaths at the vertex δQ (see Figure 4 (right)), then we
get the desired properties that the respective rectangles do not intersect.

▶ Definition 11. Let P, Q be two colored paths and a, b ∈ [k]. The common a, b-area of P

and Q is ∆a,b(P, Q) := ( # »sP ⋄
# »
tP )a,b ∩ ( # »sQ ⋄

# »
tQ)a,b.

▶ Definition 12. Let P be an a-colored path and Q a b-colored path where (without loss of
generality) sP <a tP . Define B := {v ∈ V | v =b sP ∧v <a sP }∪{v ∈ V | v =b tP ∧v >a tP }.
Define δb,a

Q (P ) as the unique vertex in Q ∩B or as ⊥ if that intersection is empty.

▶ Lemma 13 (⋆). If P, Q are a, b-noncrossing paths with ∆a,b(P, Q) ̸= ∅, then δa,b
P (Q) ̸= ⊥

or δa,b
Q (P ) ̸= ⊥.

The next lemma shows that if P and Q are not crossing but have a common area ∆a,b,
then the path whose end vertex lies not in the common area ∆a,b does not enter ∆a,b at all.

▶ Lemma 14 (⋆). If P is an a-colored path and Q a b-colored path with δa,b
P (Q) ̸= ⊥, then(

# »sQ ⋄
# »
tQ

)a,b is disjoint from
(

# »sP ⋄
#             »

δa,b
P (Q)

)a,b

∪
( #             »

δa,b
P (Q) ⋄ # »

tP

)a,b

.

▶ Definition 15. Let P be an a-colored sP -tP -path and Q a b-colored sQ-tQ-path. We then
define Ca,b

P (Q) := {sP , tP , µa,b
P (Q) | µ ∈ {α, ω, ∂, ϖ, δ}} \ {⊥} .

The next proposition shows the sets Ca,b
P (Q) and Ca,b

Q (P ) “characterize” the crossing of P

and Q in the sense that any two shortest paths using these vertices have exactly the same
vertex coordinates in the crossing.
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▶ Proposition 16 (⋆). Let P and P ′ be a-colored sP -tP -paths, and let Q and Q′ be b-colored
sQ-tQ-paths. If Ca,b

P (Q) ⊆ P ′ and Ca,b
Q (P ) ⊆ Q′, then {v ∈ P ′ | v ∈a,b Q′} =a,b {v ∈ P |

v ∈a,b Q}.

We now have all ingredients for the proof of Theorem 1.

Proof of Theorem 1. Let I := (G = (V, E), k, ((s1, t1), (s2, t2)) be an instance of 2-DSP.
Compute #»v for all v ∈ V via two breadth-first searches in O(n + m) time. We assume
without loss of generality that G is connected. To ensure that we report I being a yes-instance
only if I is indeed a yes-instance, we perform a sanity-check in the very end to verify that
our guesses were correct. Hence, we only need to show that we find in O(nm) time a solution
to I if there is one. To this end, assume there are disjoint shortest si-ti-paths Pi for i ∈ [2].
By Lemma 7 we have three cases.

(Case 1): ζ(P1) ∩ ζ(P2) is empty. If ∆1,2(P1, P2) = ∅, then, by Lemma 6, a solution
can easily be found by two independent breadth-first-searches. Otherwise, we guess in O(n)
time the vertex δ1,2

P1
(P2) on P1 or δ2,1

P2
(P1) on P2 from Definition 12. By Lemma 13, at least

one of them exists (assume without loss of generality that δ1,2
P1

(P2) exists). By Lemma 14,
δ1,2

P1
(P2) ̸= ⊥ and any shortest s1-δ1,2

P1
(P2)-path (δ1,2

P1
(P2)-t1-path) is vertex disjoint from any

shortest s2-t2-path. Hence, we now can check in O(m) time whether I is a yes-instance.
(Case 2): ζ(P1) ∩ ζ(P2) has no point with integer coordinates. Then, we guess the four

points surrounding ζ(P1)∩ζ(P2) in O(n) time. This can be done in O(n) time by guessing the
vertex ∂1,2

P1
(P2) and branch into two cases. Let psi

and pti
be the guessed points used by Pi

such that pi
si

+ 1 = pi
ti

, for i ∈ [2]. Now we construct a directed graph D on the vertices V

such that there is an arc (v, w) if {v, w} ∈ E, #»v i + 1 = #»wi, and
#           »

{v, w} ⊆ #»si ⋄ psi
∪ pti

⋄ #»
ti for

some i ∈ [2]. Note that D is acyclic and that each si-ti-path in D corresponds (same set of
vertices) to a shortest si-ti-path in G, and has an arc (v, w) such that #»v = psi

and #»w = pti
.

Hence, by Lemma 10 we can simply use two breadth-first-searches from s1 and s2 to find a
solution.

(Case 3): ζ(P1) ∩ ζ(P2) has at least one point with integer coordinates. Without loss
of generality, we assume that

#                »

α1,2
P1

(P2) =
#                »

α1,2
P2

(P1), otherwise we swap the terminal pairs in
the input instance. We guess in O(n) time the discrete point p ∈ ζ(P1)1,2 ∩ ζ(P2)1,2 such
that #»p 1 is minimized. Let Ai := #»si ⋄ #»p and Bi := #»p ⋄ #»

ti , for all i ∈ [2]. Now we construct a
directed acyclic graph D on the vertices V such that there is an arc (v, w) if for some i ∈ [2]
we have (1) {v, w} ∈ E, (2) #»v i + 1 = #»wi, and (3) (a) #»v ∈ Ai \Bi and #»w ∈ Ai or (b) #»v ∈ Bi

and #»w ∈ Bi \Ai.
To add the edges with coordinates in A1 ∩ B2, A2 ∩ B1 to D, we observe that our

assumption implies that ζ(P1) ∩ ζ(P2) ⊆ B1 ∩B2. Hence, all edges where the vertices have
coordinates in Ai ∩ Bj can only be used by either P1 or P2, for each {i, j} = [2]. Thus,
we branch in four cases and add the edges accordingly. Note that D is acyclic and that
each si-ti-path in D corresponds to a shortest si-ti-path in G going through point p. Hence,
by Lemma 10 I is yes-instance if and only if there are disjoint si-ti-path in D, for all i ∈ [2].
Thus, we apply an O(n + m)-time algorithm of Tholey [14] for 2-Disjoint Paths on a DAG.
This yields a total running time of O(nm). ◀

4 The Geometry of Many Shortest Paths

In the previous section, we looked at two shortest paths P and Q from sP to tP and sQ and tQ

respectively. We showed that selecting at most six vertices from P and Q (three per path;
see Definition 15) is sufficient to ensure that each pair of shortest sP -tP - and sQ-tQ-paths

ICALP 2021



26:10 Using a Geometric Lens to Find k Disjoint Shortest Paths

that also contain the vertices Ca,b
P (Q) and Ca,b

Q (P ), respectively, “behave” like P and Q in
the sense of using the same coordinates or not (see Proposition 16). In this section, we define
a set C, |C| ∈ O(k · k!), that basically ensures the same properties for k paths. To formalize
our goal in this section, we introduce the concept of avoiding paths.

▶ Definition 17 (I-avoiding). Let ∅ ⊂ I ⊆ [k]. We say that two paths P and Q are I-avoiding
if p /∈I

Q holds for every internal vertex p of P and q /∈I
P for every internal vertex q of Q.

We further call two vertex pairs (sp, tp) and (sq, tq) I-avoiding, if ( #»sp
I ⋄ #»

tp
I)∩ ( #»sq

I ⋄ #»
tq

I) ⊆
{ #»sp

I ,
#»
tp

I} ∩ { #»sq
I ,

#»
tq

I}.

Note that being I-avoiding implies being I ′-avoiding for all I ′ ⊇ I. We use avoiding as a
shorthand for [k]-avoiding. The reason for defining avoiding in such a way that the endpoints
of the paths play a special role is as follows: When partitioning a colored path P = v1 . . . vℓ

into two subpaths P ′ = v1 . . . vj and P ′′ = vjvj+1 . . . vn, then these two subpaths obviously
share exactly one vertex, namely vj . However, we still want to call the pairs ( #»v1, #»vj) and ( #»vj , #»vℓ)
avoiding since these two subpaths cannot have any other intersection besides #»vj .

Two paths P1 and P2 are internally disjoint if neither of them contains an internal vertex
of the other path. Avoiding paths are clearly internally disjoint.

▶ Observation 18. Let P, Q be two avoiding paths. Then P is internally disjoint from Q.

Moreover, avoiding vertex pairs (s, t) and (u, w) ensure that the corresponding shortest
s-t- and u-v-paths are internally disjoint.

▶ Lemma 19 (⋆). Let (s, t) and (u, w) be two colored pairs of vertices. If (s, t) and (u, w)
are avoiding, then each shortest s-t-path is internally disjoint from each shortest u-w-path.

With the notation of avoiding pairs, we can formulate our goal for this section. To
this end, fix a solution P = (Pi)i∈[k] for the k-DSP instance (G, (si, ti)i∈[k]), that is, Pi is
the si-ti-path in this solution. Essentially, we want to partition the paths in P into subpaths
and assign labels (subsets of [k]) to each subpath such that the following holds:
(1.) Let P be a subpath with labels Φ ⊆ [k]. For each a ∈ Φ, P is a-colored.
(2.) Let P and Q be subpaths from sP to tP and sQ and tQ with labels ΦP , ΦQ ⊆ [k]

respectively. If ΦP ̸= ΦQ, then (sP , tP ) and (sQ, tQ) are avoiding.
Note that (2.) will be the central argument in our algorithm for k-DSP. The algorithm
guesses the endpoints of these subpaths and based on (2.), the algorithm can compute the
interior points of subpaths with different label sets independently of each other.

Note that for k = 2 the partition of P1 and P2 along the sets C1,2
P1

(P2) and C1,2
P2

(P1),
respectively, satisfies the above two points: Each subpath of Pi, i ∈ [2], has label i. Moreover,
the subpaths between the α and ω-vertices have both labels 1 and 2. Hence, (1.) above is
satisfied. Furthermore, (2.) essentially follows from Proposition 16.

We now give some intuition on how to lift this to arbitrary fixed k leading to Definition 20,
a generalization of Definition 15. Initially, each path Pi has label i. Whenever two paths Pi

and Pj in the solution intersect in the (i, j)-projection (that is, we have α and ω vertices),
then the subpaths in the intersection gets both labels i and j. If a third path P ′ also
intersects with the subpath of Pj that intersects with Pi, then we try to use the intersections
to move the label i via path Pj to some subpath of P ′. Generalizing this, we consider for
each sequence σ = (ℓ1, . . . , ℓh) whether label ℓ1 could be “transported” from Pℓ1 to Pℓ2 ,
from Pℓ2 to Pℓ3 , . . ., and from Pℓh−1 to Pℓh

. The reason for doing it this way is that we will
have for each such sequence σ = (ℓ1, . . . , ℓh) at most one consecutive subpath on Pℓh

that
has label ℓ1 transported via σ. While the idea of transporting labels would also work with
triplets (transport label a via path Pb to path Pc), we do not have any bound on the number
of resulting subpaths (as for each triplets there might be many such subpaths).
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In order to formalize this idea and define the crossing set C of these paths (Definition 20),
we need some notation. Let σ = (ℓ1, . . . , ℓh) be a sequence. We define set(σ) := {ℓ1, . . . , ℓh}
to be the set with all entries of σ. For a path P = v0 . . . vh and 1 ≤ i < j ≤ h let P [vi, vj ] :=
vi . . . vj be the subpath of P with endpoints vi and vj . The set C for each permutation σ of
each Φ ⊆ [k] is recursively defined as follows. Therein, T describes the first and last vertex
on the respective subpath having exactly the set of labels in Φ.

▶ Definition 20. For each Φ ⊆ [k] and each permutation σ = (ℓ1, . . . , ℓh) of Φ set:
If h = 1 with σ = (i), then set Cσ := T (σ) := {si, ti}.
If h = 2 with σ = (i, j), then set T (σ) := {αi,j

Pj
(Pi), ωi,j

Pj
(Pi)}, and Cσ := Ci,j

Pj
(Pi) .

If h ≥ 3, then let σstart := (ℓ1, . . . , ℓh−1), σend := (ℓ2, . . . , ℓh). If T (σstart) = {⊥}
or T (σend) = {⊥} or Q := Pℓh−1 [T (σstart)] ∩ Pℓh−1 [T ((ℓh, ℓh−1))] = ∅, then set T (σ) :=
Cσ := {⊥}. Otherwise, let P := Pℓh

[T (σend)]. Then set T (σ) := {αℓ1,ℓh

P (Q), ωℓ1,ℓh

P (Q)}.
Moreover, set Cσ := Cℓ1,ℓh

P (Q) ∪ Cℓ1,ℓh

Q (P ).
The set C :=

⋃
σ Cσ is the crossing set of P.

As subsequently shown, when transporting the labels via a sequence σ = (ℓ1, . . . , ℓh),
the intersecting subpath in the target path Pℓh

agrees in all coordinates in set(σ) with the
subpath of Pℓh−1 where the label is transported from.

▶ Lemma 21 (⋆). Let σ := (ℓ1, . . . , ℓh) be any permutation of any Φ ⊆ [k] with |Φ| = h ≥ 2.
If T (σ) ̸= {⊥}, then Pℓh

[T (σ)] =Φ Q′ for some subpath Q′ of Q := Pℓh−1 [T (σstart)] ∩
Pℓh−1 [T ((ℓh, ℓh−1))] where σstart := (ℓ1, . . . , ℓh−1).

We next formalize the notions used in the context of the intersection of C with the
paths P.

▶ Definition 22. An i-marble path T is a set of vertices such that {si, ti} ⊆ T and for
each u, v ∈ T the pair (u, v) is i-colored. A segment S of a i-marble path T is a subset
of T containing two vertices denoted start(S) and end(S) and all vertices v ∈ T with
start(S) <i v <i end(S). A segment is minimal if it contains exactly two vertices.

We say a segment is i-colored, if (start(S), end(S)) is i-colored. We say two segments S

and S′ are avoiding if the minimal subsegments of S and S′ are pairwise avoiding.
We say a path P follows S if it is i-colored, has end vertices start(S) and end(S),

and S ⊆ V (P ).

To prove the central statement of this section, we need to formalize the labels of a segment.
To this end, let Si be a segment of Pi. Then set

labels[Si] := {a | ∃σ = (a = ℓ1, . . . , ℓh = i), h ≥ 1: Si ⊆ Pi[T (σ)]}.

▶ Proposition 23 (⋆). For i, j ∈ [k] let Si ⊆ V (Pi) ∩ C and Sj ⊆ V (Pj) ∩ C be two minimal
segments. If labels[Si] ̸= labels[Sj ], then Si and Sj are avoiding.

5 The Algorithm: Utilizing the Geometry

In this section, we finally present the algorithm behind Theorem 2. Pseudo-code for this
algorithm is listed in Algorithm 1. In a nutshell, we first guess all marble paths Ti and
the map T corresponding to the crossing set C of some solution (if one exists). Then, we
find all minimal segments of each marble path Ti and partition them such that (1) all
minimal segments in the same part of the partition are strictly monotone in the same set of
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Algorithm 1 Our algorithm for k-DSP.

1 function solve(G, (si, ti)i∈[k])
2 foreach guess (Ti)i∈[k], Ends of the crossing set do

/* We assume now that the guess is correct, that is, for a
solution P = (Pi)i∈[k] we have Ti = C ∩ Pi, i ∈ [k], & Ends = T */

3 Pi = ∅, for all i ∈ [k]
4 foreach minimal segment S of some Ti, i ∈ [k] do
5 marks[S]← ∅
6 foreach sequence σ = (ℓ1, ℓ2, . . . , i) with S ⊆ Ends(σ) do
7 marks[S]← marks[S] ∪ set(σ)
8 j ← min marks[S]
9 x← arg min{ #»v j | v ∈ {start(S), end(S)}}

10 y ← arg max{ #»v j | v ∈ {start(S), end(S)}}
11 Pj = Pj ∪ {(x, y)}
12 foreach j ∈ [k] do Order Pj = ((x1, y1), (x2, y2), . . .) so that # »x1

j ≤ # »x2
j ≤ . . .

13 if all instances (D(G, i),Pi), i ∈ [k] of |Pi|-Disjoint Paths on i-layered
DAGs are yes-instances and the combined solutions form a solution of
k-DSP then return yes

14 return no

coordinates, and (2) two minimal segments in distinct parts of the partition are avoiding.
The crucial improvement over the algorithm of Lochet [12] is that our partition is much
smaller. Afterwards, we find shortest disjoint paths for each part of our partition separately
via dynamic programming.

To this end, we introduce c-layered DAGs and the p-Disjoint Paths on DAGs prob-
lem. For a graph G with coordinates #»v (as defined in Section 3) for all v ∈ V , the
c-layered DAG D(G, c) of G is the directed graph (V (G), A), where (x, y) ∈ A if and only
if {x, y} ∈ E(G) and #»y c − #»x c = 1. Crucial here is the following simple observation.

▶ Observation 24. A path P in G is c-colored if and only if (V (P ), {(u, v) | {u, v} ∈
E(P ), #»v c − #»u c = 1}) is a path in the c-layered DAG of G.

In p-Disjoint Paths on DAGs we are given a directed acyclic graph D and a list (si, ti)i∈[p]
of (possibly intersecting) terminal pairs, and ask whether there are pairwise internally
disjoint si-ti-path in D, for each i ∈ [p]. Fortune et al. [7] showed a nO(p)-time algorithm for
p-Disjoint Path on DAGs. A straight-forward dynamic program yields a more specific
running time of O(np+1).

▶ Lemma 25 (⋆). An instance of p-Disjoint Paths on DAGs on a graph with n vertices
can be solved in O(np+1) time.

▶ Lemma 26 (⋆). Algorithm 1 runs in O(k · n16k·k!+k+1) time.

For the correctness of Algorithm 1, we need to show that each part of the partition of
minimal segments can be solved independently. This follows from Proposition 23 together
with the fact that Algorithm 1 exhaustively tries all possibilities for the crossing set C.
Together with Lemma 26, this implies Theorem 2.
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6 Conclusion

We provided an improved polynomial-time for k-DSP. However, while the running time of
our algorithm can certainly be slightly improved by some case distinctions and a more careful
analysis, the algorithm is still far from being practical. Reducing the factor in the exponent to
a polynomial in k is a clear challenge for future work. Considering the fine-grained complexity
of 2-DSP, it would be interesting to know whether there are running time barriers based on
e. g. the Strong Exponential Time Hypothesis.

Concerning generalizations of k-DSP, we believe that we can modify our algorithm in a
straight-forward way to work with positive edge-lengths. However, the case of non-negative
edge-lengths seems much more difficult. Our basic geometric observations made in Section 3
crucially depend on the fact that we are looking for shortest paths. Thus, if there are
no k disjoint shortest paths, then computing k disjoint paths minimizing their total length
in polynomial time is still an open problem for k ≥ 3 (for k = 2 Björklund and Husfeldt [4]
provided a randomized O(n11) time algorithm and moreover proved that this problem is
contained in NC if the graph is planar and cubic [3]).
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