Traveling Repairperson, Unrelated Machines, and
Other Stories About Average Completion Times

Marcin Bienkowski &
Institute of Computer Science, University of Wroctaw, Poland

Artur Kraska &
Institute of Computer Science, University of Wroctaw, Poland

Hsiang-Hsuan Liu &
Utrecht University, The Netherlands

—— Abstract

We present a unified framework for minimizing average completion time for many seemingly disparate
online scheduling problems, such as the traveling repairperson problems (TRP), dial-a-ride problems
(DARP), and scheduling on unrelated machines.

We construct a simple algorithm that handles all these scheduling problems, by computing and
later executing auxiliary schedules, each optimizing a certain function on already seen prefix of
the input. The optimized function resembles a prize-collecting variant of the original scheduling
problem. By a careful analysis of the interplay between these auxiliary schedules, and later employing
the resulting inequalities in a factor-revealing linear program, we obtain improved bounds on the
competitive ratio for all these scheduling problems.

In particular, our techniques yield a 4-competitive deterministic algorithm for all previously
studied variants of online TRP and DARP, and a 3-competitive one for the scheduling on unrelated
machines (also with precedence constraints). This improves over currently best ratios for these
problems that are 5.14 and 4, respectively. We also show how to use randomization to further
reduce the competitive ratios to 1 4+ 2/In3 < 2.821 and 1+ 1/In2 < 2.443, respectively. The
randomized bounds also substantially improve the current state of the art. Our upper bound for
DARP contradicts the lower bound of 3 given by Fink et al. (Inf. Process. Lett. 2009); we pinpoint
a flaw in their proof.

2012 ACM Subject Classification Theory of computation — Online algorithms; Theory of computa-
tion — Scheduling algorithms

Keywords and phrases traveling repairperson problem, dial-a-ride, machine scheduling, unrelated
machines, minimizing completion time, competitive analysis, factor-revealing LP

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.28
Category Track A: Algorithms, Complexity and Games

Funding Supported by Polish National Science Centre grant 2016/22/E/ST6/00499.

1 Introduction

In the traveling repairperson problem (TRP) [37], requests arrive in time at points of a metric
space and they need to be eventually serviced. In the same metric, there is a mobile server,
that can move at a constant speed. The server starts at a distinguished point called the
origin. A request is considered serviced once the server reaches its location; we call such
time its completion time. The goal is to minimize the sum (or equivalently the average) of
all completion times. We focus on a weighted variant, where all requests have non-negative
weights and the goal is to minimize the weighted sum of completion times.

A natural and well-studied extension of the TRP problem is a so-called dial-a-ride problem
(DARP) [20], where each request has a source and a destination and the goal is to transport
an object between these two points. There, the server may have a fixed capacity limiting

© Marcin Bienkowski, Artur Kraska, and Hsiang-Hsuan Liu;

licensed under Creative Commons License CC-BY 4.0
48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 28; pp. 28:1-28:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-2453-7772
mailto:artur.kraska@cs.uni.wroc.pl
https://orcid.org/0000-0003-0973-787X
mailto:h.h.liu@uu.nl
https://orcid.org/0000-0002-0194-9360
https://doi.org/10.4230/LIPIcs.ICALP.2021.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2

TRP, Unrelated Machines, and Other Stories About Average Completion Times

the number of objects it may carry simultaneously; this capacity may be also infinite. For
the finite-capacity case, one can also distinguish between preemptive variant, where objects
can be unloaded at some points of the metric space (different than their destination) and
non-preemptive variant, where such unloading is not allowed.

A seemingly disparate problem is scheduling on m unrelated machines [23]. There,
weighted jobs arrive in time, each with a vector of size m describing execution times of the
job when assigned to a given machine. A single machine can execute at most one job at
a time. The goal is to assign each job (at or after its arrival) to one of the machines to
minimize the weighted sum of completion times. This problem comes in two flavors: in
the preemptive one, job execution may be interrupted and picked up later, while in the
non-preemptive one, such interruption is not possible. As an extension, each job may have
precedence constraints, i.e., can be executed only once some other jobs are completed.

Online Algorithms. Our focus is on natural online scenarios of TRP, DARP [21], and
machine scheduling [24]. There, an online algorithm ALG, at time ¢, knows only requests/jobs
that arrived before or at time ¢. The number of requests/jobs is also not known by an algorithm
a priori. We say that an online algorithm ALG is c-competitive if for any request/job
sequence Z it holds that cOSTa¢(Z) < ¢- COSTopr(Z), where OPT is a cost-optimal offline
solution for Z. For a randomized algorithm ALG, we replace its cost by its expectation. The
competitive ratio of ALG is the infimum over all values ¢ such that ALG is c-competitive [15].
In this paper, we present a unified framework for handling such online scheduling problems
where the cost is the weighted sum of completion times. We present an algorithm MiMIC
that yields substantially improved competitive ratios for all the problems described above.

1.1 Previous Work

The currently best algorithms for the TRP, the DARP, and machine scheduling on unrelated
machines share a common framework. Namely, each of these algorithms works in phases
of geometrically increasing lengths. In each phase, it computes and executes an auxiliary
schedule for the requests presented so far. (In the case of the TRP and DARP, the server
additionally returns to the origin afterward.) The auxiliary schedule optimizes a certain
function, such as maximizing the weight of served requests [8,16,24,28,32,33| or minimizing the
sum of completion times with an additional penalty for non-served requests [27].! Moreover,
known randomized algorithms are also based on a common idea: they delay the execution
of the deterministic algorithm by a random offset [16,27,32,33]. We call these approaches
phase based. The currently best results are gathered in Table 1.

Traveling Repairperson and Dial-a-Ride Problems. The online variant of the TRP has been
first investigated by Feuerstein and Stougie [21]. By adapting an algorithm for the cow-path
problem problem [7], they gave a 9-competitive solution for line metrics. The result has been
improved by Krumke et al. [32], who gave a phase-based deterministic algorithm INTERVAL
attaining competitive ratio of 3 + 2v/2 < 5.829 for an arbitrary metric space. A slightly
different algorithm with the same competitive ratio was given by Jaillet and Wagner [28].
Bienkowski and Liu [8] applied postprocessing to auxiliary schedules, serving heavier requests

L Computing such auxiliary schedule usually involves optimally solving an NP-hard task. This is typical
for the area of online algorithms, where the focus is on information-theoretic aspects and not on
computational complexity. Algorithms presented in this paper also aim at minimizing the achievable
competitive ratio rather than minimizing the running time.

M. Bienkowski, A. Kraska, and H.-H. Liu

earlier, and improved the ratio to 5.429 on line metrics. Finally, Hwang and Jaillet proposed
a phase-based algorithm PLAN-AND-COMMIT [27]. They give a computer-based upper bound
of 5.14 for the competitive ratio and an analytical upper bound of 5.572.

Randomized counterparts of algorithms INTERVAL and PLAN-AND-COMMIT achieve ratios
of 3.874 [32,33] and 3.641 [27], respectively. Interestingly, the latter bound is not a direct
randomization of the deterministic algorithm, but uses a different parameterization, putting
more emphasis on penalizing requests not served by auxiliary schedules.

The phase-based algorithm INTERVAL extends in a straightforward fashion to the DARP
problem with an arbitrary assumption on the server capacity, both for the preemptive
and non-preemptive variants: all the details of the solved problem are encapsulated in the
computations of auxiliary schedules [32]. In the same manner, INTERVAL can be enhanced to
handle k-TRP and k-DARP variants, where an algorithm has k servers at its disposal (also
for any k, any server capacities, and any preemptiveness assumptions) [14]. Although this
was not explicitly stated in [27], the algorithm PLAN-AND-COMMIT can be extended in the
same way.

From the impossibility side, Feuerstein and Stougie [21] gave a lower bound for the TRP
(that also holds already for a line) of 1+ /2 > 2.414, while the bound of 7/3 for randomized
algorithms was presented by Krumke et al. [32]. For the variant of the TRP with multiple
servers, the deterministic lower bound is only 2 [14] (it holds for any number of servers).
Clearly, all these lower bounds hold also for any variant of DARP. For the DARP with
a single server of capacity 1, the deterministic lower bound can be improved to 3 [21] and
the randomized one to 2.410 [32].

The authors of [22] claimed a lower bound of 3 for randomized k-DARP (for any k). This
contradicts the upper bound we present in this paper. In Section 7, we pinpoint a flaw in
their argument.

TRP and DARP: Related Results. Both online TRP and DARP problems were considered
under different objectives, such as minimizing the total makespan (when the TRP becomes
online TSP) [3-6,9-11,13, 18,29, 30, 35] or maximum flow time [25, 31, 34].

The offline variants of TRP and DARP have been extensively studied both from the
computational hardness (see, e.g., [20,37]) and approximation algorithms perspectives. In
particular, the TRP, also known as the minimum latency problem problem, is NP-hard already
on weighted trees [40] (where the closely related traveling salesperson problem [12] becomes
trivial) and the best known approximation factor in general graphs is 3.59 [17]. For some
metrics (Euclidean plane, planar graphs or weighted trees) the TRP admits a PTAS [2,42].

Machine Scheduling on Unrelated Machines. The first online algorithm for the scheduling
on unrelated machines (R|r;| > w;C; in the Graham et al. notation [23]) was given by
Hall et al. [24]. They gave 8-competitive polynomial-time algorithm, which would be 4-
competitive if the polynomial-time requirement was lifted. Chakrabarti et al. showed how to
randomize this algorithm, achieving the ratio of 2/1n2 < 2.886 [16]. They also observe that
both algorithms can handle precedence constraints. The currently best deterministic lower
of 1.309 is due to Vestjens [45], and the best randomized one of 1.157 is due to Seiden [39].

Machine Scheduling: Related Results. While for unrelated machines, the results have not
been beaten for the last 25 years, the competitive ratios for simpler models were improved
substantially. For example, for parallel identical machines, a sequence of papers lowered the
ratio to 1.791 [19,36,38,41].

28:3

ICALP 2021

28:4

TRP, Unrelated Machines, and Other Stories About Average Completion Times

Table 1 Previous and current bounds on the competitive ratios for the TRP and the DARP
problems. Asterisked results were not given in the referenced papers, but they are immediate
consequences of the arguments therein. All upper bounds for the TRP/DARP variants hold for any
number k of servers, any server capacities, both in the preemptive and the non-preemptive case.
Upper bounds for scheduling hold also in the presence of precedence constraints. Bounds proven in
the current paper are given in boldface.

deterministic randomized
lower upper lower upper
TRP | 2.414 [21] | 5.14 [27] | 2.333 [32] | 3.641 [27]
DARP | 3 [21] 5.14* [27] | 2.410 [32] | 3.641% [27]
k-TRP | 2 [14] 5.14% 27] | 2 [14] 3.641% [27]
k-DARP | 2 [14] 5.14% [27] | 2 [14] 3.641% [27]
k-TRP, k-DARP (all variants) 4 2.821
scheduling on unrelated machines | 1.309 [45] :: 124 1.157 [39] iiiii[m}

The problem has also been studied intensively in the offline regime. Both weighted
preemptive and non-preemptive variants were shown to be APX-hard [26,43]. On the
positive side, a 1.698-approximation for the preemptive case was given by Sitters [43], and
a 1.5-approximation for the non-preemptive case by Skutella [44]. A PTAS for a constant
number of machines is due to Afrati et al. [1].

1.2 Resettable Scheduling

The phase-based algorithms for DARP variants and machine scheduling on unrelated machines
both execute auxiliary schedules, but the ones for the DARP variants need to bring the
server back to the origin between schedules. We call the latter action resetting. To provide
a single algorithm for all these scheduling variants, we define a class of resettable scheduling
problems.

We assume that jobs are handled by an ezecutor, which has a set of possible states.
And at time 0, it is in a distinguished initial state. An input to the problem consists of
a sequence of jobs 7 released over time. Each job r is characterized by its arrival time
a(r), its weight w(r), and possibly other parameters that determine its execution time. The
executor cannot start executing job r before its arrival time a(r). We will slightly abuse
the notation and use Z to also denote the set of all jobs from the input sequence. There is
a problem-specific way of executing jobs and we use sa.q(r) to denote the completion time
of a job by an algorithm ALG. The cost of an algorithm is defined as the weighted sum of
job completion times, COSTALc(Z) = >, ez w(r) - SaLa(T).

For any time 7, let Z; be the set of jobs that appear till 7. An auziliary 7-schedule is
a problem-specific way of feasibly executing a subset of jobs from Z,.. Such schedule starts
at time 0, terminates at time 7, and leaves no job partially executed. We require that the
following properties hold for any resettable scheduling problem.

Delayed execution. At any time t, if the executor is in the initial state, it can execute
an arbitrary auxiliary 7-schedule (for 7 < t). Such action takes place in time interval
[t,t+ 7). Any job r that would be completed at time z € [0, 7) by the T-schedule started
at time 0 is now completed exactly at time ¢ + z (unless it has been already executed
before).

M. Bienkowski, A. Kraska, and H.-H. Liu

Resetting executor. Assume that at time ¢, the executor was in the initial state, and then
executed a 7-schedule, ending at time ¢ + 7. Then, it is possible to reset the executor
using extra v - 7 time, where « is a parameter characteristic to the problem. That is, at
time t + (1 +) - 7, the executor is again in its initial state.

Learning minimum. We define min(Z) to be the earliest time at which OPT may complete
some job. We require that the value of min(Z) is learned by an online algorithm at or
before time min(Z) and that min(Z) > 0.

We call scheduling problems that obey these restrictions ~-resettable.

Example 1: Machine Scheduling is 0-Resettable. For the machine scheduling problem,
the executor is always in the initial state, and no resetting is necessary. As we may assume
that processing of any job takes positive time, min(Z) > 0 holds for any input Z.

Example 2: DARP Problems are 1-Resettable. For the DARP variants, the executor
state is the position of the algorithm server, with the origin used as the initial state.? Jobs
are requests for transporting objects and an auxiliary 7-schedule is a fixed path of length 7
starting at the origin, augmented with actions of picking up and dropping particular objects.?
It is feasible to execute a T-schedule starting at any time ¢ when the server is at the origin. In
such case, jobs are completed with an extra delay of ¢t. Furthermore, right after serving the
T-schedule, the distance between the server and the origin is at most 7. Thus, it is possible
to reset the executor to the initial state within extra time 1 - 7.

Finally, as we may assume that there are no requests that arrive at time 0 with both
start and destination at the origin, min(Z) > 0 for any input Z.

1.3 Our Contribution

In this paper, we provide a deterministic routine MIMIC and its randomized version that
solves any v-resettable scheduling problem. It achieves a deterministic ratio of 3 + v and
a randomized one of 1 + (1 +)/ In(2 + 7).

That is, for 1-resettable scheduling problems (the DARP variants with arbitrary server
capacity, an arbitrary number of servers, and both in the preemptive and non-preemptive
setting, or the TRP problem with an arbitrary number of servers), this gives solutions whose
ratios are at most 4 and 1+2/1n3 < 2.821, respectively. For O-resettable scheduling problems
(that include scheduling on unrelated machines with or without precedence constraints), the
ratios of our solutions are 3 and 1+ 1/1n2 < 2.443.

In both cases, our results constitute a substantial improvement over currently best ratios
as illustrated in Table 1. Our result for the scheduling on unrelated machines is the first
improvement in the last 25 years for this problem.

Challenges and Techniques. MiMIC works in phases of geometrically increasing lengths.

At the beginning of each phase, at time 7, it computes an auxiliary 7-schedule that optimizes
the total completion time of jobs seen so far with an additional penalty for non-completed
jobs: they are penalized as if they were completed at time 7. Then, within the phase it
executes this schedule and afterward it resets the executor. We obtain a randomized variant

by delaying the start of MiMIC by an offset randomly chosen from a continuous distribution.

2 In the variants with k servers, the executor state is a k-tuple describing the positions of all servers.
3 In the preemptive variants, preemption is allowed inside an auxiliary schedule, provided that after
a 7-schedule terminates, each job is either completed or untouched.

28:5

ICALP 2021

28:6

TRP, Unrelated Machines, and Other Stories About Average Completion Times

Admittedly, this idea is not new, and in fact, when we apply MIMIC to the TRP problem,
it becomes a slightly modified variant of PLAN-AND-COMMIT [27]. Hence, the main technical
contribution of our paper is a careful and exact analysis of such an approach. The crux here
is to observe several structural properties and relations among schedules produced by MimMmic
in consecutive phases, carefully tracking the overlaps of the job sets completed by them. On
this basis, and for a fixed number @) of phases, we construct a maximization linear program
(LP), whose optimal value upper-bounds the competitive ratio of MiMIiC. Roughly speaking,
the LP encodes, in a sparse manner, an adversarially created input. To upper bound its
value, we explicitly construct a solution to its dual (minimization) program and show that
its value is at most 4 for any number of phases Q.

Bounding the competitive ratio for the randomized version of MIMIC is substantially
more complicated as we need to combine the discrete world of an LP with uncountably
many random choices of the algorithm. To tackle this issue, we consider an intermediate
solution D1sc which approximates the random choice of MIMIC to a given precision, choosing
an offset randomly from a discrete set of M values. This way, we upper-bound the ratio of
MiMic by 1+ (1/M) - ZjM:l(Q +~)?/M_ This bound holds for an arbitrary value of M, and
thus by taking the limit, we obtain the desired bound on the competitive ratio. Interestingly,
we use the same LP for analyzing both the deterministic and the randomized solution.

2 Deterministic and Randomized Algorithms: Routine MIMIC

To describe our approach for v-resettable scheduling, we start with defining auxiliary schedules
used by our routine MiMIC. The parameter v will be used to define partitioning of time
into phases. Both our deterministic and randomized solutions will run MimMmIc, however, the
randomized one will execute it for a random choice of parameters.

Auxiliary Schedules. As introduced already in Subsection 1.2, an (auxiliary) 7-schedule A
describes a sequence of job executions, has the total duration 7, and may be executed
whenever the executor is in the initial state. For the preemptive variants, we assume that
once such a schedule terminates, each job is processed either completely or not at all.

For a fixed input Z, and a 7-schedule A, we use R(A) to denote the set of jobs that would
be served by A if it was executed from time 0, i.e., in the interval [0, 7). For any set of jobs
R C R(A), let

w(R) = ZTERU}(T) and cosT4(R) = ZreRw(T) -sa(r). (1)

Note that if a schedule A serves all jobs from the input (R(A) = Z), then coST4(R(A))
coincides with the cost of an algorithm that executes schedule A at time 0.

Recall that Z, C 7 denotes the set of jobs that arrive till time 7. For any 7-schedule A,
we define its value as

VAL, (A) = cosTa(R(A)) + 7w (Z: \ R(4)). (2)

The value corresponds to the actual cost of completing jobs from Z, by schedule A in
interval [0, 7), but we charge A for unprocessed jobs as if they were completed at time 7.

» Definition 1. For any 7 > 0, let S, be the T-schedule minimizing function VAL,. Ties are
broken arbitrarily, but in a deterministic fashion.

M. Bienkowski, A. Kraska, and H.-H. Liu

S
ST<2)|'~, |
N '_/_ _____ _ VZ
01 « o? o? time

Figure 1 An example execution of algorithm Mimic(1,0) applied for the TRP problem (i.e.,
we use @ = 3). We assume that min(Z) = 1. Within time interval [7(k) = aF,2 - a®) of phase
k + 1, MIMIC executes a 7(k)-schedule S,y that optimizes function VAL, (). Afterwards within
time interval [2- o, 7(k 4 1) = 3 - o), MIMIC resets its state to the initial one (the server of TRP
returns to the origin).

Routine MIMIC. For solving the 7-resettable scheduling problem, we define routine
Mimic(7y,w), where w € (—1,0] is an additional parameter that controls the initial delay.
Our deterministic algorithm is simply Mimic(+y,0).
Our randomized algorithm first chooses a value w uniformly at random from the
range (—1,0]. Then, it executes MIMIC(, w).

Internally, MIMIC(,w) uses a parameter & = 2 + 7. It splits time into phases in the
following way. For any k, let 7, = 7(k) = min(Z) - o***. The k-th phase (for k > 1) starts
at time 7,_; = min(Z) - @*~1** and ends at time 7, = min(Z) - o**“. The time interval
[0,70) = [0, - min(Z)) does not belong to any phase. As a* - min(Z) < min(Z), no jobs
can be completed within this interval, by the definition of min(Z) (see Subsection 1.2).

MimiC does nothing till the end of phase 1 (till time 7 = o**% - min(Z)). Since w > —1,
we have 71 > min(Z). As MIMIC learns the value of min(Z) latest at time min(Z), it can
thus correctly identify the value of 7 before or at time 7.

For a phase k + 1, where k > 1, MiMIC behaves in the following way. We ensure that at
time 7k, at the beginning of phase k + 1, MIMIC is in its initial state. At this time, M1MIC
computes the 7j-schedule S;(;) (see Definition 1), executes it within time interval [ry,2 - 73)
and afterwards, it resets its state to the initial one. The execution of 5. () will not be
interrupted or modified when new jobs arrive within phase k + 1. Furthermore, MIMIC serves
only those requests from S () it has not yet served earlier. The resetting part takes time
v - Tk, and is thus finished at time (2 4+ v) - 7, = « - 7%, = Tr4+1 when the next phase starts.
An illustration is given in Figure 1.

3 Intermediate Algorithm DISC

As mentioned in the introduction, we introduce an additional intermediate algorithm Disc,
whose analysis will allow us to bound the competitive ratios of both our deterministic and
randomized solution. For an integer ¢, we use [¢] to denote the set {0,...,¢ — 1}.

Disc(y, M, B) solves the y-resettable scheduling problem, and is additionally parameter-
ized by a positive integer M, and a real number § € (0,1/M]. Disc(y, M, j3) first chooses
a random integer m € [M]. Then, it executes MIMIC(y,w = —1 + m/M +). The main
result of this paper is the following bound, whose proof is will be given in the next two
sections.

28:7

ICALP 2021

28:8

TRP, Unrelated Machines, and Other Stories About Average Completion Times

» Theorem 2. For any v, any positive integer M, and any § € (0,1/M], the competitive
ratio of DISc(vy, M, 3) for the y-resettable scheduling is at most 1+ (1/M) - ijvil@ +y)i/M,

» Corollary 3. For any vy, the competitive ratio of our MIMIC-based deterministic solution is
at most 3+ and the ratio of randomized one at most 1 + (1 ++)/In(2+ 7).

Proof. Let &y =1+ (1/M) - Z]M=1 /M | First, we note that Disc(y, M = 1,8 = 1) chooses
deterministically m = 0 and executes MIMIC(y,w = —1 + 0 + 1 = 0), i.e., is equivalent to

our deterministic algorithm. Hence, by Theorem 2, the corresponding competitive ratio is at
most &1 =3+ 7.

For analyzing our randomized algorithm, we observe that instead of choosing a random w €
(—1,0], we may choose a random integer m € [M] and a random real 3 € (0,1/M] and set
w=—14+m/M + . Thus, for any fixed integer M, our randomized algorithm is equivalent
to choosing random 3 € (0,1/M] and running Disc(vy, M, 3).

Fix any input Z. By Theorem 2, E,,[COSTpso(y,1,8)(Z)] < &ar - COSTopr(Z) holds for any
B € (0,1/M], where the expected value is taken over random choice of m. Clearly, this relation
holds also when £ is chosen randomly, i.e., E,[COST\yic(v,0)] = By Em [COSTDs0(y,0m,8)(Z)] <
&rr-COSTopr(Z). As the bound is valid for any M, and the competitive ratio of our randomized
algorithm is at most infpren{&p} = limproo épr =1+ (1 +7)/In(2 + 7). <

4 Structural Properties of DISC

In this section, we build relations useful for analyzing the performance of Disc(y, M,) on
any instance Z of the v-resettable scheduling problem.

We start by presenting structural properties of schedules S.. We note that even if there
exists a 7-schedule A that completes all jobs from Z, S; may leave some jobs untouched.
However, a sufficiently long schedule S, completes all jobs.

» Lemma 4. Fiz any input Z. There exists a value Tz, such that for any ™ > Tz, S;
completes all jobs of T and is an optimal (cost-minimal) solution for T.

Proof. Let OPT be a cost-optimal schedule for 7 and let ¢ be its length. Let w be the weight
of the lightest job from Z. We fix Tr = max{t, (VAL;(OPT) + 1)/w}. Now, we pick any
T > T7, and investigate properties of S .

As 7 > T7 > t, the schedule of OPT can be trivially extended to a 7-schedule A that
does nothing in its suffix of length 7 — . Both A and OPT complete all jobs, and thus
VAL, (A) = VAL;(OPT). Moreover, as S, minimizes function VAL, VAL, (S;) < VAL, (4) =
VAL (OPT) < Tz -w < 7w, and thus S; completes all jobs (as otherwise VAL, would include
a penalty of at least 7-w). As S, and OPT complete all jobs, COSTs_(Z) = VAL, (S;) <
VAL (OPT) = COSTopr(Z), i-e., Sr is an optimal solution for Z. <

Sub-phases. Recall that the algorithm Disc(vy, M, 8) chooses a random integer m € [M],
and executes MIMIC(y,w = —1 +m/M +). To compare DISC executions for different
random choices, we introduce sub-phases. Recall that o = 2 + v; let § = o'/M.

Recall that the k-th phase of MIMIC starts at time 7,_1 and ends at time 73, where
7 = min(Z) - oF1H/MEB — min(T) - P 1. §mHEM | For any g, we define

ng =n(q) = min(Z) - o~ - 59, 3)

In these terms, 7, = Nppr.ar- We define the ¢g-th sub-phase (for ¢ > 0) as the time interval
starting at time 7,_; and ending at time 7,. Then, phase k of Disc(vy, M, 3) consists of
exactly M sub-phases, numbered from (k —1)- M +m + 1 to k- M +m. An example of

M. Bienkowski, A. Kraska, and H.-H. Liu

min(Z)
1
n-1 0 mn N2 113 N4 S UG n7 8 9 o M1 M2 ms M4
—_—
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
70 1 T2 T3 T4
m=0 I t t } |
1 2 3 4
7o 1 T2 T3 T4
m=1 | } } } {
1 2 3 4
To T1 T2 T3 T4
m=2 I t t } |
1 2 3 4

Figure 2 Example of phases (green) and sub-phases (black) of algorithm Disc(y, M = 3, 3) for
all possible choices of m. The time interval lengths are in logarithmic scale. The starts and ends of
sub-phases are deterministic functions of v, M, and (3, but the start of a phase depends additionally
on the integer m € [M] chosen randomly by Disc. Sub-phase 0 is not contained in any phase, but
will be used in our analysis.

phases and sub-phases is given in Figure 2. We emphasize that the start and the end of
a sub-phase is a deterministic function of the parameters of Disc, while the start and end of
a phase depend additionally on the value m € [M] that Disc chooses randomly.

Recall that our deterministic algorithm is equivalent to Mimic(y,0) = Disc(y,1,1). In
this case m = 0, and thus 7, = 7, for any ¢, i.e., each phase consists of one sub-phase, and
their indexes coincide.

Sub-phases vs Auxiliary Schedules. We now identify the times when auxiliary schedules
are computed by Disc(v, M, 5). Recall that at the beginning of any phase k + 1 (where
k >1),i.e., at time 7x = N4 x.0, DISC computes and executes schedule Sy 4.ar). Let T
be the threshold guaranteed by Lemma 4 and we define K7 as the smallest integer satisfying
n(Kz - M) > Tz. Note that K7 is a deterministic function of input Z.

For any choice of m € [M], the schedule S, ;4 k,.ar) completes all jobs. This schedule

is executed by Disc in phase K7 + 1, and thus DiSC terminates latest in phase K7 + 1.

Summing up, Disc(y, M,) executes schedules Sy (1), Sym420)s - - - > Sy(mtkz-ar)- At
the beginning of the first phase, DisC does nothing, but for notational ease, we assume
that in the first phase, it also computes and executes a dummy schedule S, (,,), which does
not complete any job. For succinctness, we use Ay = S,(4)- In these terms, Disc(y, M,)
executes schedules A,,4x.pr for k € [K7 + 1].

Let Q@ = Kz - M + (M — 1): possible schedule indexes used by Disc range from 0

to Q. For any schedule A,, we define the set of indexes of preceding schedules P(q) =
{¢,¢+M,...,q— M}, where ¢ = ¢ mod M.

Fresh and Stale Requests. We assume that no jobs are completed by the online algorithm
while it is resetting the executor, and we assume that the execution of schedule A4, may
complete only jobs from set R(A,). It is however important to note that R(A,) and R(Aq—)
may overlap significantly, in which case the execution of schedule A, serves only these jobs
from R(A,) that have not been served already. To further quantify this effect, for ¢ € [Q +1],
we define the set of fresh jobs of schedule A, as

RF(4,) = R(A) \ Uyep(y R(A0). (4)

28:9

ICALP 2021

28:10

TRP, Unrelated Machines, and Other Stories About Average Completion Times

The remaining jobs from R(A,) are called stale and are denoted RS5(4,) = R(A,) \ R¥(4,).
For succinctness, we define the following shorthand notations for their weights:

wy = w(R"(Aq)), wy = w(R(4,)), wy = w(R(Aq)) =wg +wy. (5)

» Lemma 5. For any q € [Q + 1], it holds that w} < 2 rep(q) wf. This relation becomes
equality for q > Kz - M.

Proof. By a simple induction, it can be shown that W,cp(, RF(Ay) = Urep(q) 12(Ar) for
any ¢ € [@ + 1]. Then, using the definition of stale jobs, RS(A,) C Usep B(Ae) =
L"jeeP(q) RY(Ay). Applying weight to both sides yields wg < dep(q) wy .

Next, we show that this relation can be reversed for ¢ > Kz - M (i.e., for the sched-
ule executed in the last phase of Disc). For such ¢, A, completes all jobs, and thus
Urep(q) 12(Ar) € R(Aq) = RF(A,)w R5(A,). By the definition of fresh jobs, R¥(4,) does
not contain any job from (e p(,) R(Ar), and thus e p(,) R(Ar) C RS(A,). This implies
that e p(y) RY(Ay) = Urep(q) B(Ae) C RS(A,). After applying weights to both sides, we
obtain ws > Zfep(q) wg as desired. <

Jobs Completed in Sub-phases. For further analysis, we refine our notions when a job is
completed. For a ng-schedule Ay, let R;(A,) be the set of jobs completed in sub-phase j < g,
i.e., within interval [n;_1,7;). As n—1 < Np—1 < min(Z) (cf. (3)), no job can be completed
within the interval [0,7—1) (before sub-phase 0). Hence, R(4,) = ¥j_, R;(Ay)-

We partition sets RF(A,) and RS(A,) analogously, defining sets RY(A,) and RJS- (Aq) (for
0 <j < q), such that R¥(A,) = Wi_, R} (4,) and RS(A,) = WI_, Rj(A,). For succinctness,
for 0 < j < ¢, we introduce the following shorthand notations:

ng = w(R?(Aq)), ws'j = w(RJS-(Aq))7 and wg; = w(R;(44)) = w(};j + wsj;

ge; = COST, (RY (Ay)), g5 = cosTa, (R$(A,)), and gg; = COST, (R;(Ag)) = gt + 95;-

» Lemma 6. For any0 < q < £ < Q, it holds that 31_(gq;j —9ej) + 0 Mg (wej —we;) < 0.

Proof. For any 74-schedule B, it holds that

VALy(g)(B) = COSTR(R(B)) +nq - w (L \ R(B))
= >25-0 COSTE(R;(B)) + ng - w(Zy(g)) = 1g + 22 j—o w(R;(B)).

Fix any ¢ < @ and let A] be the ng-schedule consisting of the first ¢ sub-phases of -
schedule Ay. Since A, is a minimizer of VAL,), it holds that VAL,) (A,) < VAL, (g (A7).

Thus, Z}’:o 9ai — Mg * Z?:o wyj < Z?:o 9ej — g Z?:o Weg- <

Costs of DISC and OPT. Finally, we can express costs of DIsc and OPT using the newly
introduced notions.

» Lemma 7. For any input Z, parameters M and § € (0,1/M], it holds that E[COSTpsc(Z)]
= (1/M) - 2250 5 (ng - wg; + g3)-

Proof. Recall that DISC chooses random m € [M] and then at time 7, it executes schedule A,
forall g € {m,m+ M,...,m+ Kz - M}. When DISC executes A,, it completes jobs from
RF(A,). By the delayed execution property of the resettable scheduling (cf. Subsection 1.2),
each job r € R¥(A,) is completed at time 7, + 54, (r). Thus, the cost of executing A4, by
Disc is equal to

M. Bienkowski, A. Kraska, and H.-H. Liu

S rerr(a, W) - (g +s4,(r)) = ng - w(RY(A)) + cosTa, (R (A,))
=g Wy + 270 9q; = 2j—o (M Wg; + 9g5) -

For any ¢ € [@ + 1], the probability that DISC executes 4, is equal to 1/M, and thus the
lemma follows. |

» Lemma 8. For any input Z and any g € {Q — M +1,Q — M +2,...,Q}, it holds that
cosTopr(Z) = 35— 9aj-

Proof. Recall that for such choice of ¢, schedules A, serve all jobs of T achieving optimal
cost. Therefore, COSTopr(Z) = COSTA, (R(Ag)) = D7, COSTa, (Rj(Ag)) = > 0_0 945 <

5 Factor-Revealing Linear Program

Now we show that the DisC-to-OPT cost ratio on an arbitrary input Z can be upper-bounded
by a value of a linear (maximization) program.

Assume we fixed v and any input Z to the 7-resettable scheduling problem. We also
fix parameters of DIsc: an integer M and 5 € (0,1/M]. These choices imply the values
of @ and 7, for any ¢. This allows us to define the linear program P, 7z ar,g whose goal is to
maximize

ZqQ:O Zg‘zo g - W + Ggj (6)

subject to the following constraints:

Zj.:ogqjgl forallQ—-M+1<q¢g<Q (7)

o wh; — > eep () Eﬁ:o w}fj <0 forall0<qg<Q—M (8)
ZeeP(q)Zﬁzong_ I _owy; <0 forallQ—-M+1<¢<Q (9)
Z?:O(gqj —9¢) + Zg:o Mg - (Wej — we;) <0 forall0 <¢<f<Q (10)
Mj—1 Wy — Gg; <0 forall0<j<q<Q (11)

ggj—nj-ngSO forall0<j<q¢g<Q@Q (12)

Mj-1 Wej — Ggj <0 forall0<j<¢<Q (13)

and non-negativity of all variables. In (10), we treat w,; and g4; not as variables, but as
shorthand notations for ng + w% and ggj + g§j7 respectively.

The intuition behind this LP formulation is that instead of creating the whole input Z,
the adversary only chooses the values of variables w§j7 w§j7 ggj and ggj that satisfy some
subset of inequalities (inequalities that have to be satisfied if these variables were created on

the basis of actual input Z). This intuition is formalized below.

» Lemma 9. Fiz any v, any input I for y-resettable scheduling, and parameters of DISC:
integer M and 8 € (0,1/M]. Then, E[COSTpisc(Z)]/cOSTopr(Z) < P37 5/M, where

P31 v p is the value of the optimal solution to Py, z,0,s-

Proof. By scaling all variables by the same value, Py 7,a,5 is equivalent to the (non-linear)
optimization program P! 7,/ 5, whose objective is to maximize (ZqQ:o Z?‘:o Mg ng +
ggj)/ MaXQ— M+1<q<Q Z?:o gqj, subject to constraints (8)—(13). In particular, the optimal

* /%
values of these programs, Plrmp and P1 v p are equal.

28:11

ICALP 2021

28:12

TRP, Unrelated Machines, and Other Stories About Average Completion Times

Next, we set the values of variables w? F. and gsj on the basis of input Z, and

s

aj> Waj» 9qj
parameters M and . (Note that the variables depend on these parameters, but not on the
random choices of D1sc.) We now show that they satisfy the constraints of P)*;), 5 and we
relate E[COSTpsc(Z)]/COSTopr(Z) to P,y .M.

By Lemma 5 and the relations w Zq,o wqj and w Z‘;:O wqj, the variables satisfy
(8) and (9). Next, Lemma 6 1mphes (10). Inequalities (11), (12) and (13) follow directly
by the definition of costs and weights. Finally, by Lemma 7 and Lemma 8, for any q €
{Q—M+1,...,Q}, it holds that E[cOSTpsc(Z)]/COSTopr(Z) = (1/M)- (E a Zj —oNq w it
ng)/(z:?:o 9qj), and thus E[COSTpso(T)]/cOSTopr(Z) < Pz pp 5/ M = P'V,I,M,ﬁ/M 4

5.1 Dual Program and Competitive Ratio

By Lemma 9, the optimal value of P, z a5 is an upper bound on the competitive ratio of
Disc. By weak duality, an upper-bound is given by any feasible solution to the dual program
D, 1,1m,5 that we present below.

D, 1,m,p uses variables &, By, Cy, Dyg, Fyj, G4, and Hg;, corresponding to inequalities
(7)—(13) from P, 7., 3, respectively. In the formulas below, we use L, = M - K+ (¢ mod M)
and S(¢) ={¢+M,q+2-M,...,L,— M}. For succinctness of the description, we introduce
two auxiliary variables for any 0 < j < ¢ < Q@:

—1 -1
Ugyj = Z(?:qﬂ Dyg — Zg:j Dge and Vg = ZZ:]‘ Ne - Dge — Z?:q+1 Mg Deg. (14)

The goal of D., 7,y 5 is to minimize

Y-+ (15)

subject to the following constraints (in all of them, we omitted the statement that they hold
for all j € {0,...,q}):
Ugj +Ggj —Hyj > 1 forall0<g¢<Q-M (
Uyj —Fg; >0 foral0<g¢<Q-M (
Ugyj+Gyj—Hyj +6>1 forallQ-M+1<¢<Q (
Uy —Fpy+&>0 forallQ-M+1<q<Q (19
Vaj +mi—1 - Hey —nj - Goj + CL, — Y pes(q) Be 2 g forall0 <¢<Q—-M (
Vgj +mj—1-Fyj + B¢ >0 foral0<g¢<@Q-M (
Vi =M - Ggj +mj—1-Hgj >ng forallQ-—M+1<¢<Q (
Vgj +mj—1-Fgg—=Cy >0 forallQ-M+1<¢<Q (

and non-negativity of all variables.

» Lemma 10. For any v, any input T for y-resettable scheduling, any positive integer M,
and any B € (0,1/M], there exists a feasible solution to Dz ap of value at most M +
Z;‘il(2 + 'Y)j/M-

We defer the proof to the next subsection, first arguing how it implies the main theorem
of the paper (the competitive ratio of DI1sc).

Proof of Theorem 2. Fix any 7, and consider algorithm Disc(y, M, 8) for any positive
integer M, and any 8 € (0,1/M]. Fix any input Z to the ~-resettable scheduling problem.
Let P:,I, M, e the value of an optimal solution to Py z ar,5. By weak duality and Lemma 10,

Pyzag < M+ Y00, (2+7)7/M. Hence, by Lemma 9, E[COSTpisc(Z)]/008Tom (Z) <

* M ; :
Pl rap/M <14+ 1/M)- 35572+ y)I/M | as desired. <

M. Bienkowski, A. Kraska, and H.-H. Liu

0 Fyj 0 Gyj

M 1 j l M AquJerl - Aq—j

0
Q-M Q- M
Q-M+1 Q-M+1
0 1 . By M
q

Q Q
j—= 0 1 Q-M Q j—= 0 1 Q- M Q

Figure 3 Visual presentation of values assigned to dual variables Fi; (left) and Gg; (right) for
M =3 and Q = 8.

5.2 Proof of Lemma 10
Let

Ap=X0 00= (51 —1) /(5 -1).
In particular A_; = 0. We choose the following values of the dual variables:

§ =146 forQ-M+1<q<Q,

&, forQ-M+1<j<q<0Q,
oo 0-Ap—q for0<j<@Q—Mand q=j,
“ 1 for0<j<Q-Mandqe{j