
Direct Sum and Partitionability Testing over
General Groups
Andrej Bogdanov #Ñ

Department of Computer Science and Engineering and Institute of Theoretical Computer Science
and Communications, Chinese University of Hong Kong, China

Gautam Prakriya #

Institute of Theoretical Computer Science and Communications,
Chinese University of Hong Kong, China

Abstract
A function f(x1, . . . , xn) from a product domain D1 × · · · × Dn to an abelian group G is a direct sum
if it is of the form f1(x1) + · · · + fn(xn). We present a new 4-query direct sum test with optimal
(up to constant factors) soundness error. This generalizes a result of Dinur and Golubev (RANDOM
2019) which is tailored to the target group G = Z2. As a special case, we obtain an optimal affinity
test for G-valued functions on domain {0, 1}n under product measure. Our analysis relies on the
hypercontractivity of the binary erasure channel.

We also study the testability of function partitionability over product domains into disjoint
components. A G-valued f(x1, . . . , xn) is k-direct sum partitionable if it can be written as a sum
of functions over k nonempty disjoint sets of inputs. A function f(x1, . . . , xn) with unstructured
product range Rk is direct product partitionable if its outputs depend on disjoint sets of inputs.

We show that direct sum partitionability and direct product partitionability are one-sided error
testable with O((n − k)(log n + 1/ϵ) + 1/ϵ) adaptive queries and O((n/ϵ) log2(n/ϵ)) nonadaptive
queries, respectively. Both bounds are tight up to the logarithmic factors for constant ϵ even with
respect to adaptive, two-sided error testers. We also give a non-adaptive one-sided error tester for
direct sum partitionability with query complexity O(kn2(log n)2/ϵ).

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Randomness, geometry and discrete structures

Keywords and phrases Direct Sum Test, Function Partitionability, Hypercontractive Inequality,
Property Testing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.33

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/164/ [5]

Funding Andrej Bogdanov: Work funded by Hong Kong RGC GRF grants CUHK14207618 and
CUHK14209920.

Acknowledgements We thank Chandra Nair and Yan Nan Wang for valuable discussions on the
hypercontractivity of the binary erasure channel and an anonymous reviewer for bringing to our
attention the works [2] and [14].

1 Introduction

In their seminal result, Blum, Luby and Rubinfeld [4] gave a four query test to determine
whether a function f : Fn

2 → F2 is affine. We consider a natural generalization of the notion
of affinity to functions f(x1, · · · , xn) from {0, 1}n to an arbitrary abelian group G: Is f of
the form x1 · g1 + · · ·+ xn · gn + g0 for some group elements g0, . . . , gn ∈ G? The analysis of
Blum, Luby and Rubinfeld does not apply unless there is a group homomorphism from the
domain to the range.

EA
T
C
S

© Andrej Bogdanov and Gautam Prakriya;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrejb@cse.cuhk.edu.hk
https://www.cse.cuhk.edu.hk/~andrejb
https://orcid.org/0000-0002-0338-6151
mailto:gautamprakriya@gmail.com
https://orcid.org/0000-0001-5181-1100
https://doi.org/10.4230/LIPIcs.ICALP.2021.33
https://eccc.weizmann.ac.il/report/2020/164/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Direct Sum and Partitionability Testing over General Groups

In this work we give an optimal four query affinity test for functions from {0, 1}n to an
arbitrary abelian group G.

More generally, our test can be used to determine if a function f(x1, . . . , xn) from a finite
product domain D1 × · · · ×Dn to an abelian group G is a direct sum, i.e., whether f is of the
form

∑
fi(xi). This resolves a conjecture of Dinur and Golubev [9].

In contrast to the work of Blum, Luby, and Rubinfeld, which was primarily motivated by
applications to probabilistically checkable proofs, direct sum testing over general groups arises
in the context of testing function partionability: Can a multivariate function be decomposed
into independent or loosely related components? Bogdanov and Wang [6] discuss the relevance
of this question for real-valued functions to the problem of identifying decompositions of
control variables in high-dimensional reinforcement learning. In that setting a direct sum
decomposition of the advantage function f describes a system that can be partitioned into
independent components, which are lower-dimensional and therefore typically easier to learn.
An efficient testing algorithm can be used to probe the existence of such a decomposition
before any effort is expended into learning it.

In this work we consider the following two natural partitioning problems for discrete
functions over product domains D1 × · · · × Dn (endowed with a product distribution):

A direct sum partition (⊕-partition) of f into k components is a representation of the
form f(x1, . . . , xn) = f1(xS1) + · · · + fk(xSk

), where S1, . . . , Sk are disjoint nonempty
sets of variables. Here, the range of f is an abelian group (G,+).
A direct product partition (⊗-partition) of f is a representation of the form f(x1, . . . , xn) =
(f1(xS1), . . . , fk(xSk

)), where S1, . . . , Sk are disjoint nonempty sets of variables. Here,
the range of f is a k-product set Rk.

We are interested in the query complexity of testing partitionability: Given oracle access
to f and parameters k, ϵ, how many queries does it take to tell whether f is partitionable or
ϵ-far from partitionable?

The related tasks of direct product testing and direct sum testing ask for the existence of
such representations under a known (fixed) partition of inputs. Motivated by applications
to probabilistically checkable proofs, Dinur and Steurer [10] and Dickstein and Dinur [8]
analyze a 2-query direct product test of essentially optimal soundness.

The query complexity of direct sum testing for Z2-valued functions, that is of testing
whether a function f : D1×· · ·×Dn → Z2 is of the form f(x1, . . . , xn) = f1(x1)+ · · ·+fn(xn),
was recently resolved by Dinur and Golubev [9]. They proposed and analysed a 4-query test
of optimal (up to constant factors) soundness error. Their tester does not naturally extend
to functions valued in arbitrary abelian groups.

Bogdanov and Wang [6] proposed an agnostic learning algorithm for unknown direct
sum partitions. As a consequence of their analysis they concluded that ⊕-partitionability is
testable with O(kn3/ϵ) non-adaptive queries. They also showed that Ω(n− k + 1) queries
are necessary for constant ϵ. To the best of our knowledge ⊗-partitionability has not been
studied before.

Our Results
We analyze a new 4-query direct sum test for functions valued over arbitrary abelian groups.
The test is based on the following dual characterization: f : D1 × · · · × Dn → G is a direct
sum f1(x1) + · · · + fn(xn) if and only if Df (S, S;x, y) = 0 for all pairs of inputs x, y and
partitions (S, S) of [n], where

Df (S, S;x, y) = f(x)− f(ySx)− f(ySx) + f(y).

A. Bogdanov and G. Prakriya 33:3

Here and in the rest of the manuscript, ySx is the string in D1×· · ·×Dn that matches y in
the S-coordinates and x in the other coordinates. We assume that the domain D1× · · · ×Dn

is furnished with a product distribution: For x chosen at random from D1 × · · · ,×Dn, the
coordinates x1, . . . , xn are independent.

The tester accepts if Df (S, S;x, y) = 0 for random independent inputs x, y ∈ D1×· · ·×Dn

and a uniformly random partition (S, S) of [n]. Our main result is an optimal (up to constant
factor) bound on the soundness error ρ(f) = Pr[Df (S, S;x, y) ̸= 0] of this test in terms of
the distance δ(f) = ming{Prx[f(x) ̸= g(x)] : g is a direct sum}.

▶ Theorem 1. There is an absolute constant c > 0 such that for every collection of finite
sets D1, . . . ,Dn, every abelian group G, and every f : D1 × · · · × Dn → G, ρ(f) ≥ c · δ(f).

An important special case of the theorem concerns the Boolean domain D1 = · · · = Dn =
{0, 1} under the uniform distribution (Proposition 5). The class of direct sums from {0, 1}n

to G is then precisely the class of affine functions f(x) = x1g1 + · · ·+ xngn + g0 for some
group elements g0, g1, . . . , gn ∈ G.

Using Theorem 1, we obtain the following upper bound on the query complexity of
⊕-partitionability.

▶ Theorem 2. Direct sum partitionability over any abelian group is one-sided testable with
O((n− k)(logn+ 1/ϵ) + 1/ϵ)-queries.

We also prove an upper bound on the query complexity of ⊗-partitionability:

▶ Theorem 3. Direct product partitionability is one-sided testable with O((n/ϵ) log2(n/ϵ))
non-adaptive queries.

The testers in Theorem 2 and 3 are time-efficient.
By the lower bound of Bogdanov and Wang [6], the ⊕-partitionability tester is tight up

to the logn factor for constant ϵ. In the special case when k = n, direct sum partitionability
reduces to direct sum testing and the query complexity is the same as that of Theorem 1.

Our tester for ⊕-partitionability is adaptive. We also give a one-sided non-adaptive
tester of query complexity O(kn2(logn)2/ϵ). A non-adaptive lower bound of Ω((n − k +
1) (log(n− k + 1)/ϵc) log(log(n− k + 1)/ϵc)) for any c > 1 follows from the work of Servedio
et al. [13] on junta testing. As in the case of juntas, it follows that adaptivity helps in testing
⊕-partitionability for some settings of parameters.

The ⊗-partitionability tester is also nearly tight: We show that direct product partition-
ability requires Ω(n) queries for ϵ = 1/2 for adaptive testers, and Ω(n

ϵ log(1/ϵ)) queries for
non-adaptive testers, for every k ≥ 2.

The non-adaptive test for ⊕-partitionability, and the lower bounds for ⊕-partitionability
and ⊗-partitionability are deferred to the full version of this paper [5].

Ideas and Techniques
Direct sum testing over general groups

The main ingredient of Dinur and Golubev’s direct sum tester for Z2-valued functions is an
implicit reduction from general product domains to the Boolean domain {0, 1}n under the
uniform distribution. We abstract and generalize their reduction. In interest of space we
defer the details of this reduction to full version of this paper [5]. To complete their proof,
Dinur and Golubev instantiate the reduction with the Z2-affinity test of Blum, Luby, and
Rubinfeld [4].

ICALP 2021

33:4 Direct Sum and Partitionability Testing over General Groups

Table 1 Summary of algorithmic results. All tests have one-sided error.

Property Our Results Prior Work
Direct Sum:
f : D1 × · · · × Dn → G s.t.
f(x) = f(x1) + · · · + f(xn)

4-query test for arbitrary abelian group
G (Theorem 1)

4-query test for G =
Z2 [9]

k-⊕-partitionability:
f : D1 × · · · × Dn → G s.t.
∃S1, . . . , Sk ⊆ [n],
f(x) = f(xS1) + · · · + f(xSk)

O((n − k)(log n + 1/ϵ) + 1/ϵ)-query
adaptive test (Theorem 2)
O(kn2(log n)2/ϵ)-query
non-adaptive test (See full version [5])

O(kn3/ϵ)-query
non-adaptive test [6]

k-⊗-partitionability:
f : D1 × · · · × Dn → Rk s.t.
∃S1, . . . , Sk ⊆ [n],
f(x) = (f(xS1), . . . , f(xSk))

O((n/ϵ) log2(n/ϵ))-query
non-adaptive test (Theorem 3)

Our main technical contribution is a tight analysis of the affinity test Df applied to
functions f : {0, 1}n → G valued in an arbitrary abelian group G. To give a sense why the
test is sound, let us argue that ρ(f) = Ω(δ(f)) under the additional assumption that f is
close to a direct sum, say if δ = δ(f) ≤ 1/27.

Let B be the set of measure at most 1/27 on which f differs from its closest direct sum.
We claim that conditioned on x ∈ B, the probability that any of the other test queries y, ySx,
ySx land in B is at most δ+ 2δ1/3. By independence, the probability that y ∈ B conditioned
on x ∈ B is exactly δ. In contrast, ySx and ySx are not independent of x, but can be sampled
by processing x through a binary symmetric channel with crossover probability 1/4. The
bound Pr[ySx ∈ B|x ∈ B] ≤ δ1/3 follows from the small-set expansion of this channel [1],
which is equivalent to the hypercontractivity of the corresponding Markov operator [7]. Since
the event “x ∈ B and ySx ̸∈ B and ySx ̸∈ B and y ̸∈ B” results in rejection, it follows that
ρ(f) ≥ δ · (1− δ − 2δ1/3), which is at least 8

27δ by the closeness assumption on f .
For larger values of δ(f), our proof strategy is to argue that f can be decoded to a direct

sum function by making at most O(ρ(f)) “changes” to the truth-table of f . The decoding
algorithm we analyze in Lemma 6 is iterative plurality (i.e., iterative maximum likelihood).
We show that the function

ϕ(x) = pluralityS,y f(ySx) + f(ySx)− f(y) (1)

is, on the one hand, 2δ(f)-close to f , and on the other hand, has substantially smaller
rejection probability of ρ(ϕ) ≤ ρ(f)/2. By iterating the decoding, i.e. applying the plurality
to ϕ again, we arrive at a function that is 4δ(f) close to f and passes the test with probability
one, thus must equal a direct product.

This argument is inspired by the linearity test analysis of Blum, Ruby, and Rubinfeld
(BLR), who also decode f to a function that is, on the one hand, close to f and, on the other
hand, passes their test with probability 1. However, unlike the BLR decoder which yields
a linear function after a single round of self-correction, ours inherently requires multiple
iterations. For example, if f is a direct sum corrupted on all inputs with relative hamming
weight around 1/4, then ϕ(0) is unlikely to be correctly decoded (as yS0 and yS0 will typically
be corrupted) and so will typically be inconsistent with a direct sum.

Nevertheless, the high-level structure of our argument closely parallels the BLR analysis.
First, in Claim 10 we show that for all but an o(ρ)-fraction of inputs x, the plurality in
(1) is a strong majority consistent with 99% of the choices of (S, S) and y. Second, we
use the algebraic structure of our test (Claim 9) to show that if Dϕ(S, S;x, y) ̸= 0 then

A. Bogdanov and G. Prakriya 33:5

Df (U, V ;w, z) ̸= 0 for a substantially larger fraction of query sequences (w, zUw, zUw, z) that
can be sampled by applying suitable “noise” to (S, S;x, y). If we represent the partition (S, S)
by a binary string σ ∈ {0, 1}n (with 1 and 0 indicating memberships in S and S, respectively),
we show that the relevant noise can be modeled by independent fixed-probability erasures
applied to the symbols of σ, x, and y. Using hypercontractivity bounds for the binary erasure
channel [11], we conclude that ϕ fails the test on a significantly smaller fraction of queries
than f does.

In the special case when the target group is Z2, the soundness error of Df can be
directly shown to be within a constant factor of the soundness error of the Dinur-Golubev
tester (even though the two tests are different). The main motivating applications for
function partitionability, however, concern real-valued functions [6]. The analysis of our
⊕-partionability testers for such functions relies on Theorem 1.

The idea of soundness analysis by iterative plurality decoding was introduced by Ben-
Sasson et al. [2] and used by Shpilka and Wigderson [14] in the context of randomness-efficient
linearity testing.

Testing partitionability

The main ingredient in our ⊕-partitionability algorithms is the direct 2-sum test Df . The
structure of this test allows us to efficiently detect a pair of variables xs, xt that must fall in
the same component of the partition in any far from ⊕-partitionable function, effectively
reducing the instance size by one variable.

Our ⊗-partitionability test looks for an input variable that is influential in at least two of
the output coordinates of f . The analysis of this test is based on Lemma 24, which states
that such a variable must exist in any far from partitionable function.

Organization

Section 2 outlines the proof of Theorem 1 in the case when the domain is the Boolean
hypercube. The analysis is based on the convergence of the iterative decoder (Lemma 6),
which is proved in Section 3. To prove Theorem 1 we use a reduction from testing functions
over arbitrary product domains to testing functions on the hypercube (See the full version [5]
for details of this reduction). Sections 4 and 5 describe and analyze the partitionability
testers for direct sum and direct product, respectively.

Definitions and Notation

Let D .= D1 × . . .×Dn be a finite set. For strings x, y ∈ D and a set of indices S ⊆ [n], let
xS to refer to the projection of x onto the coordinates in S. For strings x(1), . . . x(k) ∈ D,
and a partition S1, . . . , Sk of [n], let x(1)

S1
. . . x

(k)
Sk

be the string in D that is identical to x(i)

on indices in Si. For a bipartition (S, S), we often write xSy instead of xSyS̄ .
In sections 2 and 3 we identify a bipartition (S, S) of [n] with its indicator vector

σ ∈ {0, 1}n, and write Df (σ;x, y) instead of Df (S, S;x, y), and xσ instead of xS .
We extend the definition of Df to pairs of disjoint sets (S, T) that do not necessarily

partition [n] as

Df (S, T ;x, y) .= f(x)− f(ySx)− f(yTx) + f(yS∪Tx).

ICALP 2021

33:6 Direct Sum and Partitionability Testing over General Groups

2 Direct Sum Test for Functions on the Boolean Hypercube

The following dual characterization of direct sums motivates our test.

▶ Fact 4. A function f : {0, 1}n → G is a direct sum if and only if Df (π;x, y) = 0 for every
choice of x, y, π ∈ {0, 1}n.

Proof of Fact 4. The “only if” direction is immediate from the definition of a direct sum. We
prove the “if” direction. Let f be such that Df (π;x, y) = 0 for every choice of x, y, π ∈ {0, 1}n.
Fix y ∈ {0, 1}n. For every x ∈ {0, 1}n we can write f(x) as

f(x) = f(x{1}y) + f(y{1}x)− f(y)
= f(x{1}y) + f(x{2}y) + f(y{1,2}x)− 2f(y)

...
= f(x{1}y) + f(x{2}y) + . . .+ f(x{n}y)− (n− 1)f(y).

Therefore, f is a direct sum. ◀

Algorithm 1 Direct sum test for functions over {0, 1}n.

Oracle : f : {0, 1}n → G
1 Sample x, y, π ∈ {0, 1}n independently and uniformly at random.
2 If f(x) + f(y)− f(xπy)− f(yπx) = 0, accept.
3 Else, reject.

By Fact 4, the test accepts every direct sum with probability 1. The following proposition
establishes soundness of the test. Let ρ(f) denote the probability that Algorithm 1 rejects
the function f . That is, ρ(f) .= Prx,y,π[Df (π;x, y) ̸= 0].

▶ Proposition 5 (Soundness). There exist a universal constant η ∈ [0, 1] such that for every
function f : {0, 1}n → G,

ρ(f) ≥ min(δ/4, η),

where δ is the distance between f and the set of direct sums.

▶ Lemma 6 (Iterative decoding). There exists a universal constant η ∈ [0, 1] such that for
every function f : {0, 1}n → G with ρ(f) < η, there exists a function ϕ : {0, 1}n → G such
that:

(i) the function ϕ is 2ρ(f)-close to f , and
(ii) ρ(ϕ) ≤ ρ(f)/2.

Proof of Proposition 5. Iteratively applying Lemma 6 results in a sequence of functions
f = f0, f1, . . ., such that for all t ≥ 1, (i) the distance between ft and ft−1 is at most
2ρ(ft−1), and (ii) ρ(ft) ≤ ρ(ft−1)/2. The probability that the test rejects a function is a
discrete quantity. So, by (ii), there must exist an integer t such that ρ(ft) = 0. That is,
Dft

(π;x, y) = 0 for every choice of x, y, π ∈ {0, 1}n. By Fact 4 this means ft is a direct sum.
The distance between f and the direct sum ft at most

t−1∑
i=0

2ρ(fi) ≤ 2
t−1∑
i=0

ρ(f)/2i ≤ 4ρ(f). ◀

A. Bogdanov and G. Prakriya 33:7

3 Analysis of Iterative Decoding

We begin with a sketch of the proof of Lemma 6. As mentioned in the introduction, the
proof follows in the footsteps of the analysis of the BLR linearity test. We define ϕ(x) to
be pluralityy,π f(xπy) + f(yπx)− f(y). Markov’s inequality allows us to bound the distance
between ϕ and f by 2ρ(f).

To show that Test 1 rejects ϕ with probability at most ρ(f)/2, we first show that for all
but a o(ρ(f))-fraction of choices of x, ϕ(x) is defined by a strict majority that makes up
at least 6/7-th of the plurality vote (See Claim 10). The fraction of x’s that contribute to
the plurality is at least the probability of a collision, i.e., Pry,z,σ,π[f(xπy) + f(yπx)− f(y) =
f(xσz) + f(zσx) − f(z)]. Using the algebraic identity in Claim 8, we can express this
probability as

Pr
y,z,π,σ

[Df (π;xπzπ, y)−Df (π; yπxπ, z) +Df (π ⊕ σ;xσzσ, zσxσ) = 0].

The analysis of the BLR test also uses an analogous algebraic identity to bound the collision
probability. The difference is that the resulting expression in the BLR analysis is made
up of evaluations of the BLR test at points independent of x. This allows one to argue
that the plurality vote is made up of a strict majority at all points x. In our setting, the
arguments of Df in the expression above are correlated with x. However, we can view these
arguments as the result of passing x through a noisy binary erasure channel. This allows for
the application of the hypercontractive inequality to bound the fraction of x for which the
collision probability is less than 6/7.

We then show that for all but o(ρ(f)) choices of x, y, π ∈ {0, 1}n there exist z, w, σ ∈
{0, 1}n such that, (A) the value of Dϕ(π;x, y) = ϕ(x) − ϕ(xπy) − ϕ(yπx) + ϕ(y) does not
change after the following substitutions, and (B) the resulting expression post substitution
evaluates to zero.

ϕ(x)← f(xσz) + f(zσx)− f(z)
ϕ(xπy)← f((xπy)σ(zπw)) + f((zπw)σ(xπy))− f(zπw)
ϕ(yπx)← f((yπx)σ(wπz)) + f((wπz)σ(yπx))− f(wπz)
ϕ(y)← f(yσw) + f(wσy)− f(y).

(2)

It follows that the probability that ϕ is rejected by the test is o(ρ(f)).
By Claim 10, for all but o(ρ(f)) choices of x, y, π the substitutions do not change the

value of Dϕ(π;x, y) with probability at least 4/7. For (B), we use the algebraic identity in
Claim 9 to rewrite the expression after substitution as

Df (π ⊕ σ;xσz, yσw)−Df (π ⊕ σ;xσz, yσw) +Df (π; z, w).

Again we show that the arguments of the Df terms can be viewed as the result of passing x, y
and π through independent binary erasure channels. Using the hypercontractive inequality,
we conclude that for all but o(ρ(f)) choices of x, y and π the expression after substitution
evaluates to zero for most choices of z, w and σ. By a union bound we can ensure that (A)
and (B) hold simultaneously for the same z, w and σ.

The following technical lemma establishes the bounds we prove using the hypercontractiv-
ity of the binary erasure channel. The proof is presented in Section 3.1.

Let queries(π;x, y) denote the vector in ({0, 1}n)4 whose entries are the four queries
that Algorithm 1 makes when π, x, y is sampled. That is, queries(π;x, y) = (x, xπy, yπx, y).

ICALP 2021

33:8 Direct Sum and Partitionability Testing over General Groups

▶ Lemma 7. Let Bad ⊂ ({0, 1}n)4 be a set such that the probability that queries(π, x, y)
lands in Bad, when π, x, y are chosen independently and uniformly at random, is ρ.

(i) µx(A1) ≤ 212ρ4/3, where

A1 = {x | Pr
π,y,z

[queries(π;xπzπ, y) ∈ Bad] ≥ 1/21}.

(ii) µx(A2) ≤ 212ρ4/3, where

A2 = {x | Pr
π,σ,z

[queries(π ⊕ σ;xσzσ, zσxσ) ∈ Bad] ≥ 1/21}.

(iii) µπ,x,y(A3) ≤ 72ρ2/(1+
√

2/3) ≤ 72ρ1.1, where

A3 = {(π, x, y) | Pr
σ,z,w

[queries(π ⊕ σ;xσz, yσw) ∈ Bad] ≥ 1/7}.

(iv) µπ(A4) ≤ 72ρ4/3, where

A4 = {π | Pr
z,w

[queries(π; z, w) ∈ Bad] ≥ 1/7}.

We will also need the following algebraic identities.

▷ Claim 8. The following identity holds:

Df (π;x, y)−Df (σ;x, z) = Df (π;xπzπ, y)−Df (π; yπxπ, z) +Df (π ⊕ σ;xσzσ, zσxσ).

Proof of Claim 8. The claim follows by adding the following two identities:

Df (π;x, y)−Df (π;x, z) = −f(xπyπ)− f(yπxπ) + f(y) + f(xπzπ) + f(zπxπ)− f(z)
= f(xπzπ) + f(y)− f(xπyπ)− f(yπzπ)
− f(yπxπ)− f(z) + f(yπzπ) + f(zπxπ)

= Df (π;xπzπ, y)−Df (π; yπxπ, z)

Df (π;x, z)−Df (σ;x, z) = −f(xπσxπσzπσzπσ)− f(zπσzπσxπσxπσ) + f(x) + f(z)
+ f(xπσzπσxπσzπσ) + f(zπσxπσzπσxπσ)− f(x)− f(z)

= Df (π ⊕ σ;xσzσ, zσxσ) ◀

To analyze the substitutions (2) we set Dϕ,f (π;x, y) = ϕ(x)− f(xπy)− f(yπx) + f(x).
In particular, Df,f = Df .

▷ Claim 9 (16-point identity). The following identity holds:

Dϕ,f (σ;x, z)−Dϕ,f (σ;xπy, wπz)−Dϕ,f (σ; yπx, zπw) +Dϕ,f (σ; y, w)
= Dϕ(π;x, y)−Df (π ⊕ σ;xσz, yσw)−Df (π ⊕ σ;xσz, yσw) +Df (π; z, w).

Proof of Claim 9. We write xyzw to denote the string xπσyπσzπσwπσ. With this notation,

+Dϕ,f (σ; x, z) = +ϕ(xxxx) −f(xzxz) −f(zxzx) +f(zzzz)
−Dϕ,f (σ; xπy, wπz) = −ϕ(xxyy) +f(xwyz) +f(wxzy) −f(wwzz)
−Dϕ,f (σ; yπx, zπw) = −ϕ(yyxx) +f(yzxw) +f(zywx) −f(zzww)
+Dϕ,f (σ; y, w) = +ϕ(yyyy) −f(ywyw) −f(wywy) +f(wwww)

= = = =

+Dϕ(π; x, y) −Df (π ⊕ σ; xσz, yσw) −Df (π ⊕ σ; xσz, yσw) +Df (π; z, w)

The identity states that the column sums and the row sums add up. ◁

Proof of Lemma 6. Let ϕ be a function defined as ϕ(x) = pluralityy,π f(xπy)+f(yπx)−f(y).
That is, ϕ(x) is the most frequent value of f(xπy) + f(yπx) − f(y), where y, π ∈ {0, 1}n.
Ties are broken arbitrarily. We show that ϕ satisfies the hypothesis of the lemma.

A. Bogdanov and G. Prakriya 33:9

(i) ϕ is 2ρ(f)-close to f : For x ∈ {0, 1}n, let ρx
.= Pry,π[f(x) ̸= f(xπy) + f(yπx)− f(y)].

Note that Ex[ρx] = ρ(f), and that if ρx < 1/2 then f(x) = ϕ(x). Thus, by Markov’s
inequality,

Pr
x

[f(x) ̸= ϕ(x)] ≤ Pr
x

[ρx ≥ 1/2] ≤ 2ρ(f).

(ii) ρ(ϕ) ≤ ρ(f)/2: We begin by showing that with probability ρ(f)/12 over the choice
of x, the plurality that defines ϕ(x) is a majority made up of 6/7-th of the votes. Then
Prπ,y[Dϕ,f (π;x, y) = 0] is the fraction of votes that constitute the plurality defining ϕ(x).
Let

Weak-Maj =
{
x

∣∣ Pry,π[Dϕ,f (π;x, y) ̸= 0] ≥ 1/7
}
.

▷ Claim 10 (Strong Majority). µx(Weak-Maj) ≤ ρ(f)/12.

Proof. The fraction of votes that contribute to the plurality Pry,π[Dϕ,f (π;x, y) = 0] is an
upper bound on the collision probability Pry,π,z,σ∈{0,1}n [Dϕ,f (π;x, y) = Dϕ,f (σ;x, z)]. This
is because

Pr
y,π,z,σ

[Dϕ,f (π;x, y) = Dϕ,f (σ;x, z)] =
∑
γ∈G

Pr
y,π

[Dϕ,f (π;x, y) = γ]2

≤ max
γ∈G

Pr
y,π

[Dϕ,f (π;x, y) = γ]

= Pr
y,π

[Dϕ,f (π;x, y) = 0].

The final equality holds because ϕ(x) = arg maxβ∈G Pry,π[β − f(xπy)− f(yπx) + f(y) = 0].
We showed that

µx(Weak-Maj) ≤ µx{x | Pry,π,z,σ[Dϕ,f (π;x, y) ̸= Dϕ,f (σ;x, z)] ≥ 1/7}.

We now use Lemma 7 to bound the right hand side. Let Badf ⊂ ({0, 1}n)4 be the set of
queries on which Df fails, namely

Badf = {queries(π;x, y) | Df (π;x, y) ̸= 0}.

This is a set of measure µπ,x,y(Bad) = ρ(f). SinceDϕ,f (π;x, y)−Dϕ,f (σ;x, z) = Df (π;x, y)−
Df (σ;x, z), by the algebraic identity in Claim 8 and a union bound, we have

µx(Weak-Maj) ≤ µx{x | Prπ,σ,y,z[Dϕ,f (π;x, y)−Dϕ,f (σ;x, z) ̸= 0] ≥ 1/7}
≤ µx{x | Prπ,y,z[Df (π;xπzπ, y) ̸= 0] ≥ 1/21}

+ µx{x | Prπ,y,z[Df (π; yπxπ, z) ̸= 0] ≥ 1/21}
+ µx{x | Prπ,σ,z[Df (π ⊕ σ;xσzσ, zσxσ) ̸= 0] ≥ 1/21}

= µx(A1) + µx(A1) + µx(A2),

where A1 and A2 are the sets

A1 = {x | Pr
π,y,z

[queries(π;xπzπ, y) ∈ Badf] ≥ 1/21},

A2 = {x | Pr
π,σ,z

[queries(π ⊕ σ;xσzσ, zσxσ) ∈ Badf] ≥ 1/21}.

By Lemma 7 we get that µx(Weak-Maj) ≤ ρ(f)/12, for small enough η. ◁

ICALP 2021

33:10 Direct Sum and Partitionability Testing over General Groups

We are now ready to prove that ρ(ϕ) = Prπ,x,y[Dϕ(π;x, y) ̸= 0] ≤ ρ(f)/2. In order
to do so we define a set Badϕ of triples (π, x, y) such that µπ,x,y(Badϕ) ≤ ρ(f)/2, and if
(π, x, y) ̸∈ Badϕ then Dϕ(π, x, y) = 0.

Let A3 and A4 denote the sets

A3 = {(π, x, y) | Pr
σ,z,w

[queries(π ⊕ σ;xσz, yσw) ∈ Badf] ≥ 1/7},

A4 = {π | Pr
z,w

[queries(π; z, w) ∈ Badf] ≥ 1/7}.

Let Badϕ be the set

{(π, x, y) | (One of x, y, xπy, yπx lies in Weak-Maj) or ((π, x, y) ∈ A3) or (π ∈ A4)} .

By Lemma 7, µπ,x,y(A3) ≤ ρ(f)/12, and µπ(A4) ≤ ρ(f)/12, for small enough η. As
x, y, xπy, yπx are all random, by a union bound we have

µπ,x,y(Badϕ) ≤ 4µx(Weak-Maj) + µπ,x,y(A3) + µπ(A4) ≤ ρ(f)/2.

All that remains to show is that if (π, x, y) ̸∈ Badϕ, Dϕ(π;x, y) = 0. On rearranging the
terms in the algebraic identity of Claim 9, we get

Dϕ(π;x, y) = Dϕ,f (σ;x, z)−Dϕ,f (σ;xπy, wπz)−Dϕ,f (σ; yπx; zπw) +Dϕ,f (σ; y, w)
+Df (π ⊕ σ;xσz, yσw) +Df (π ⊕ σ;xσz, yσw)−Df (π; z, w). (3)

Fix a triple (π, x, y) ̸∈ Badϕ. We show that Dϕ(π, x, y) = 0, by showing that there exists
a choice of σ, z and w for which the right hand side of Equation (3) evaluates to zero. By
Equation (3) and a union bound,

Pr
σ,z,w

[Dϕ(π;x, y) ̸= 0] = Pr
σ,z,w



Dϕ,f (σ;x, z) ̸= 0
or Dϕ,f (σ;xπy, wπz) ̸= 0
or Dϕ,f (σ; yπx; zπw) ̸= 0
or Dϕ,f (σ; y, w) ̸= 0
or Df (π ⊕ σ;xσz, yσw) ̸= 0
or Df (π ⊕ σ;xσz, yσw) ̸= 0
or Df (π; z, w) ̸= 0



< 4/7 + Pr
σ,z,w

 queries(π ⊕ σ;xσz, yσw) ∈ Badf

or queries(π ⊕ σ;xσz, yσw) ∈ Badf

or queries(π; z, w) ∈ Badf


< 4/7 + 3/7 = 1.

The first inequality holds because x, xπy, yπx, y ̸∈ Weak-Maj, and the second inequality
holds because (π, x, y) ̸∈ A3 and π ̸∈ A4. Since the probability Prσ,z,w[Dϕ(π;x, y) ̸= 0] is
either 0 or 1, it must be that Dϕ(π;x, y) = 0. Therefore,

ρ(ϕ) = Pr
π,x,y

[Dϕ(π;x, y) ̸= 0] ≤ µπ,x,y(Badϕ) ≤ ρ(f)/2. ◀

3.1 Proof of Lemma 7
We begin with some preliminaries on discrete channels and hypercontractivity. For a
motivating discussion on hypercontractivity and a proof of Fact 14 below see Chapter 9
of [12].

A. Bogdanov and G. Prakriya 33:11

▶ Definition 11 (Discrete channels). A discrete channel is a triple (U , P,V), where U and V are
finite sets representing the input alphabet and output alphabet, and P is a U ×V probability
transition matrix that describes the distribution of the output conditioned on the input. The
composition of two channels (U , P1,V) and (V, P2,W) is the channel (U , P1 · P2,W), where
· is matrix multiplication.

The binary erasure channel will play an important role in the proof of Lemma 7.

▶ Definition 12 (Binary Erasure Channel). The binary erasure channel BEC(e) with erasure
probability e has input alphabet {0, 1} and output alphabet {0, 1,⊥}, and probability transition
matrix P (x|x) = 1− e, P (⊥|x) = e.

x

x

⊥

1− e

e

Figure 1 The binary erasure channel BEC(e).

For a real valued random variable U and p ≥ 1, we denote the p-norm of U by ∥U∥p
.=

EU [|U |p]1/p.

▶ Definition 13 (Hypercontractivity). For 1 ≤ q ≤ p, A pair of random variables (U, V) is
(p, q)-hypercontractive if for every pair of real valued functions f, g,

E[f(U)g(V)] ≤ ∥f(U)∥p′∥∥g(V)∥q,

where p′ = p/(p− 1) is the Hölder conjugate of p.

▶ Fact 14 (Tensorisation [7]). If (U1, V1) and (U2, V2) are independent random variables that
are (p, q)-hypercontractive, then ((U1, U2), (V1, V2)) is (p, q) hypercontractive.

▶ Theorem 15 (Hypercontractivity of BEC(e) [11]). Let U be distributed uniformly over
{0, 1} and let V ∈ {0, 1,⊥} denote the output of BEC(e) on input U . Then (U, V) is
(p, q)-hypercontractive for all 1 ≤ q ≤ p such that

q − 1
p− 1 ≥ 1− e.

▶ Fact 16 (Composition). Let (U , P1,V) and (V, P2,W) be two channels. Let U be a random
variable over U . Let V be the random variable that represents the output of the first channel
on input U , and W the random variable that represents the output of the second channel on
input V . If (U, V) is (p, q)-hypercontractive then so is (U,W).

Proof of Fact 16. Let f : U → R and g :W → R be arbitrary functions. Since U → V →W

is a markov chain, we have

EU,W [f(U)g(W)] = EU,V [f(U)EW [g(W) | V]] ≤ ∥f(U)∥p′∥EW [g(W) | V]∥q,

where the inequality holds because (U, V) is (p, q) hypercontractive.

ICALP 2021

33:12 Direct Sum and Partitionability Testing over General Groups

Now, by Jensen’s inequality,

EV [EW [g(W) | V]q]1/q ≤ EV [EW [g(W)q | V]]1/q = EW [g(W)q]1/q = ∥g(W)∥q

Therefore, (U,W) is (p, q) hypercontractive. ◀

The following claim captures the small-set expansion interpretation of hypercontractiv-
ity [1] in the form used in the proof of Lemma 7.

▷ Claim 17. Let U, V be random variables that take values in U and V respectively. LetB ⊂ V
be a set such that Pr[V ∈ B] = ρ. Let A ⊂ U denote the set {u | Pr[V ∈ B | U = u] ≥ θ}. If
(U, V) is (p, q) hypercontractive, then Pr[U ∈ A] ≤ ρp/q/θp.

Proof. Let 1A and 1B denote the indicator functions of the sets A and B. Since (U, V) are
(p, q) hypercontractive,

θ · Pr[U ∈ A] ≤ Pr[V ∈ B | U ∈ A] Pr[U ∈ A] = E[1A(U)1B(V)] ≤ ∥1A(U)∥p′∥1B(V)∥q,

where p′ = p/(p− 1). Note that ∥1B(V)∥ = ρ1/q, and ∥1A(U)∥p′ = Pr[U ∈ A]1/p′ . Therefore,
Pr[U ∈ A]1/p ≤ ρ1/q/θ, that is, Pr[U ∈ A] ≤ ρp/q/θp. ◁

Proof of Lemma 7. We need to bound the probabilities of four sets of the form

{u ∈ Σn|Pr[queries(ψ(u)) ∈ bad|U = u]} ≥ θ,

where ψ is some (randomized) function. All bounds of the form θ−2ρ2/q will follow from
Claim 17 by showing that the channel U → queries(ψ(u)) is (2, q)-hypercontractive for a
suitable choice of q (q = 3/2 for parts (i), (ii), (iv) and q = 1 +

√
2/3 for part (iii)).

The channel (Σn, Pn, {0, 1}n×4) that maps u ∈ Σn to queries(ψ(u)) ∈ {0, 1}n×4 acts
independently on the symbols u1, . . . , un. In all cases, the i-th bits of the four queries
(q1, q2, q3, q4) are obtained by applying the one-dimensional channel P1 to ui. Therefore,
Pn tensorizes as Pn = P⊗n

1 . By Fact 14, it is sufficient to show that the channel P1 is
hypercontractive. We may and will therefore assume, without loss of generality, that n = 1.

We now demonstrate how each of the four channels of interest can be decomposed into a
binary erasure channel with constant erasure probability (e = 1/2 in parts (i), (ii), (iv) and
e = 1 −

√
2/3 in part (iii)) and some other fixed channel. The Lemma then follows from

Fact 16 and Theorem 15 with q = 2− e.

BEC(1/2)

x

x

⊥

1/2

1/2

[x
x
y
y

]
[z

y
z
y

]
BEC(1/2)

x

x

⊥

1/2

1/2

[
x
x
x
x

]
[

z
z
z
z

]
[

z
z
z
z

]
1/2

1/2

BEC(1/2)

0

1

0

⊥

1

1/2

1/2

1/2

1/2

[
z
z
z
z

]
[

z
z
z
z

]
[

z
z
z
z

]
Figure 2 Channels (i) x → queries(π, xπzπ, y); (ii) x → queries(π ⊕ σ, xσzσ, zσxσ); (iv)

π → queries(π, z, w). y and z are random bits.

A. Bogdanov and G. Prakriya 33:13

(i) The channel x→ queries(π;xπzπ, y) = (xπzπ, xπyπ, yπzπ, y) from Σ = {0, 1} to {0, 1}4

can be decomposed in the following way: On input x the channel samples a random bit π
and outputs xxyy if π = 1, and zyzy if π = 0 for random y and z. This channel can be
alternatively described as BEC(1/2) composed with a second channel that outputs xxyy if
there is no erasure and the independent symbol zyzy otherwise. See Figure 2 (i).

(ii) The channel from Σ = {0, 1} to {0, 1}4 is of the form

x→ queries(π ⊕ σ, xσzσ, zσxσ) =


xπσzπσxπσzπσ

zπσzπσxπσxπσ

xπσxπσzπσzπσ

zπσxπσzπσxπσ

 =


xzxz, if πσ = 1,
zzxx, if πσ = 1,
xxzz, if πσ = 1,
zxzx, if πσ = 1,

where π, σ, z are random bits. We can alternatively describe it like this: If z = x, then output
xxxx. If z ̸= x and π ⊕ σ = 1, then output zzzz. If z ̸= x and π ⊕ σ = 0, then output zzzz.

This channel can be factored through BEC(1/2) as in Figure 2 (ii). If there is no erasure,
the second channel outputs xxxx. If there is an erasure, then the second channel outputs
zzzz with probability 1/2 and zzzz with probability 1/2.

(iii) The channel from Σ = {0, 1}3 to {0, 1}4 is of the form

πx
y

→ queries(π ⊕ σ;xσz, yσw) =


xπσzπσxπσzπσ

yπσzπσxπσwπσ

xπσwπσyπσzπσ

yπσwπσyπσwπσ

 =


xyxy, if πσ = 1,
zzww, if πσ = 1,
xxyy, if πσ = 1,
zwzw, if πσ = 1.

Consider the composition of the following two channels. The first channel views the symbol
πxy as three bits and independently applies BEC(1/4) to π and BEC(1−

√
2/3) to x and

y. The second channel is described in Figure 3.

If π is erased, the second channel outputs zzzz, for a uniform bit z. This corresponds to
the event z = w and σ = 0.
If π is not erased but one of x, y is erased, the second channel samples a uniform bit
z ∈ {0, 1} and outputs zzzz if π = 0 and zzzz if π = 1. This corresponds to the event
z ̸= w and σ = 0.
If there are no erasures, then the second channel outputs xyxy if π = 1, and xxyy if
π = 0. This corresponds to the event σ = 1.

The first channel is BEC(1
4)⊗BEC(1−

√
2/3)⊗BEC(1−

√
2/3). Since 1−

√
2/3 ≤ 1/4,

by Fact 14 it inherits the hypercontractivity parameters of BEC(1−
√

2/3).

(iv) The channel π → queries(π, z, w) from Σ = {0, 1} to {0, 1}4 outputs zzww if π = 1
and zwzw if π = 0 for random bits z and w. Alternatively, the channel can be described as
a uniform choice between zzzz and zzzz when π = 1 and a uniform choice between zzzz

and zzzz when π = 0. This can be modeled as the composition of BEC(1/2) and a second
channel that outputs zzzz if there is an erasure, and either zzzz or zzzz depending on the
value of πi otherwise. See Figure 2 (iv). ◀

ICALP 2021

33:14 Direct Sum and Partitionability Testing over General Groups

BEC(1
4) ⊗ BEC(1 −

√
2/3) ⊗ BEC(1 −

√
2/3)

[0
x
y

]

[1
x
y

]

[0
x
y

]

[1
x
y

]

[
⊥
⋆
⋆

]
[0

⊥
⋆

]
or

[0
⋆
⊥

]

[1
⊥
⋆

]
or

[1
⋆
⊥

]

1/2

1/2

1/4

1/4

1/4

1/4

[x
x
y
y

]
[

z
z
z
z

]
[

z
z
z
z

]
[

z
z
z
z

]
[x

y
x
y

]
Figure 3 (iii) Channel (π, x, y) → queries(π ⊕ σ, xσz, yσw). A ⋆ represents any of {0, 1, ⊥} and

z is a random bit.

4 Testing ⊕-Partitionability

Recall that a function f : D = D1 × · · · × Dn → G is k-⊕-partitionable if there exists a
k-partition S1, . . . , Sk of [n], and functions f1, . . . , fk such that f(x) = f1(xS1)+ . . .+fk(xSk

),
for all x ∈ D.

Recall that for disjoint sets S, T ⊆ [n],

Df (S, T ;x, y) .= f(x)− f(ySx)− f(yTx) + f(yS∪Tx)

The following claim is an immediate consequence of Theorem 1, and allows us to determine
whether a function f is ⊕-partitionable with respect to a fixed partition S1, . . . , Sk.

▷ Claim 18. Let (S, S) be a random coarsening of a k-partition (S1, . . . , Sk) obtained by
adding each Si to S with probability 1/2. If f is ϵ-far from ⊕-partitionable with respect to
S1, . . . , Sk, then Df (S, S;x, y) is nonzero with probability Ω(ϵ).

To determine whether a function is k-⊕-partitionable, our testers use the 4-query test
Df to group together variables that cannot occur in different partition components. If the
tester finds fewer than k groups, it rejects, otherwise it accepts.

4.1 Adaptive Test for ⊕-Partitionability
Our test for k-⊕-partitionability (Algorithm 3) seeks to identify a pair of contractable variables
s, t that must fall in the same component of a partition. Variables s and t are then contracted
and the test is repeated until either fewer than k variables are left (giving a certificate of
non-partionability) or no contractable candidates can be found.

A sufficient condition for contractability is that Df ({s}, {t};x, y) is nonzero for some
assignment x, y. We start by splitting the variables into k components S1, . . . , Sk arbitrarily
and zero-testing Df (S, S̄;x, y) for a random coarsening of the components into S, S̄. By
Claim 18, the zero-test fails with probability at least Ω(ϵ), where ϵ is the distance between f
and the set of functions that are ⊕-partitionable with respect to S1, . . . , Sk.

A. Bogdanov and G. Prakriya 33:15

Once such a bipartition S, S̄ is identified, s and t can be identified via binary search using
Algorithm 2 below. The same idea was used by Blais [3] to identify an influential variable in
his junta test. Our t is in fact the influential variable in the function g(x[n]\S) = f(x)−f(ySx),
for fixed xS , yS , returned by Blais’ test.

Algorithm 2 Violating pair adaptive search.

Oracle : f : D1 × · · · × Dn → G
Input : (S, T ;x, y) such that Df (S, T ;x, y) ̸= 0.
Output : ({s}, {t}) such that Df ({s}, {t};x′, y′) ̸= 0 for some x′, y′.

1 If |S| = |T | = 1, output S, T .
2 If |T | = 1, swap S and T .
3 do
4 Split T into two subsets T ′ and T ′′ of (almost) equal size.
5 If Df (S, T ′;x, y) ̸= 0, recursively run on input (S, T ′;x, y).
6 Otherwise, recursively run on input (S, T ′′; y, x).

The correctness of Algorithm 2 is based on the following identity.

▷ Claim 19. Df (S, T ∪ T ′;x, y) = Df (S, T ;x, y) +Df (S, T ′; y, x) for disjoint sets S, T, T ′.

Proof. Without loss of generality take S = {1}, T = {2}, T ′ = {3} and assume there are no
other inputs (they are all fixed). By the definition of Df ,

Df ({1}, {2};x, y) = f(x1x2x3) + f(y1y2x3)− f(x1y2x3)− f(y1x2x3)
Df ({1}, {3}; y, x) = f(y1y2y3) + f(x1y2x3)− f(y1y2x3)− f(x1y2y3)

−Df ({1}, {2, 3};x, y) = −f(x1x2x3)− f(y1y2y3) + f(x1y2y3) + f(y1x2x3).

The terms on the right hand side cancel out. ◁

▶ Lemma 20. Algorithm 2 is correct and has query complexity at most 4(⌈log |S|⌉+⌈log |T |⌉).

Proof. The correctness follows from Claim 19 and from the symmetry of Df in the S, T
inputs. As for the query complexity, the algorithm makes four queries (in fact at most two
additional queries) in each iteration, and each iteration shrinks one of the original inputs S,
T by half. ◀

In the following algorithm we let P(S1, . . . , Sk) be the distribution on disjoint pairs of
sets (S, S̄) from Claim 18.

Algorithm 3 Adaptive tester for k-⊕-paritionability.

Oracle : f : D1 × . . .×Dn → G
Input : Size k of partition

1 If f has fewer than k variables, output “not partitionable”.
2 Otherwise, partition variables arbitrarily into k sets S1, . . . , Sk.
3 repeat
4 Choose sets (S, S̄) at random from P(S1, . . . , Sk).
5 Choose random inputs x, y.
6 until Df (S, T ;x, y) ̸= 0;
7 Run violating pair adaptive search on input (S, S̄;x, y) to obtain outputs {s}, {t}.
8 Contract variables s and t in the oracle and repeat.

ICALP 2021

33:16 Direct Sum and Partitionability Testing over General Groups

Proof of Theorem 2. We analyze Algorithm 3. First assume f is k-⊕-partitionable. By
Lemma 20, f only contracts variables s, t that are not split by the partition (otherwise
Df ({s}, {t};x′, y′) always vanishes). Therefore f cannot be contracted down to k − 1 inputs
and the tester accepts with probability one.

Now assume f is ϵ-far from partitionable. We will argue that Algorithm 3 outputs “not
partitionable” after O((n − k + 1)(logn + 1/ϵ)) queries in expectation by induction on n.
Assume n ≥ k. By Claim 18, Loop 6 takes O(1/ϵ) iterations to complete in expectation,
and each iteration costs four queries to f . By Lemma 20, line 7 takes another O(logn)
queries. After merging s and t the resulting function on n − 1 inputs can only be farther
from partitionable, so by inductive assumption the expected query complexity Q(n) is at
most Q(n − 1) + O(logn + 1/ϵ). This gives the desired bound. By Markov’s inequality,
Algorithm 3 makes at most twice this number of queries with probability at least half.

The query complexity can be improved slightly to the stated bound O((n− k)(logn+
1/ϵ) + 1/ϵ) by observing that the violating pair search in line 7 can be bypassed when n = k

since a proof of non-partitionability has already been discovered in line 6. ◀

5 Testing ⊗-Partitionability

Recall that a function f : D = D1 × · · · × Dn → Rk is k-⊗-partitionable if there exists a
k-partition S1, . . . , Sk of [n], and functions f1, . . . , fk such that f(x) = (f1(xS1), . . . , fk(xSk

))
for all x ∈ D.

In this section we present a O((n/ϵ) log2(n/ϵ))-query non-adaptive one-sided error test
for ⊗-partitionability (see Theorem 3). We begin with an overview of the construction.

First, some notation. For a function f : D → Rk and a subset T ⊆ [k] we write fT to
refer to the function obtained by projecting the output of f onto the coordinates in T . We
often write xi instead of x{i} and fj instead of f{j}.

For simplicity, suppose that k = 2. Then f is 2-⊗-partitionable if and only if every
variable has non-zero influence on at most one of the two coordinates of f . So our task boils
down to determining whether there is a variable that is influential in both coordinates of
the output of f . The key observation that allows us to find such a coordinate with a small
number of queries is that if f is ϵ-far from ⊗-partitionable, then∑

i∈[n]

min(Inf(i; f1), Inf(i; f2)) ≥ ϵ. (4)

Therefore, if f is ϵ-far from ⊗-partitionable, there must be a coordinate that has influence at
least ϵ/n in both coordinates. This immediately suggests an O(n2/ϵ) query test: for each
variable use O(n/ϵ) queries to determine whether it is influential in both coordinates.

We obtain an improvement in the query complexity by exploiting a trade-off between the
number of samples, i ∈ [n], required to find a variable that is influential in both coordinates,
and the number of samples required to certify that a variable is indeed influential in both
coordinates.

Given subsets S1, . . . , Sk of [n], let ∆f (S1, . . . , Sk) be the distance from f = (f1, . . . , fk)
to the closest function g = (g1, . . . , gk) in which gj does not depend on the inputs in Sj , and
define the influence of (S1, . . . , Sk) on f as

Inf(S1, . . . , Sk; f) = Pr[fj(x) ̸= fj(ySj
x) for some j],

where x, y is an independent pair of inputs.

A. Bogdanov and G. Prakriya 33:17

▶ Proposition 21. Inf(S1, . . . , Sk; f) ≤
∑n

i=1 Inf(i; fJ(i)), where J(i) is the set of output
coordinates j ∈ [k] for which Sj contains i.

Proof. Let E be the event “fj(x) ̸= fj(ySj
x) for some j”. Let hi be the hybrid input in which

hi
t = yt for t ≤ i and xt for t > i. Then h0 = x and hn = y. If the event “fj(x) ̸= fj(ySjx)”

occurs, then one of the events “fj(hi−1
Sj

x) ̸= fj(hi
Sj
x)” must occur for some i between 1 and

n. By the union bound, Pr(E) ≤
∑n

i=1 Pr(Ei), where Ei is the event “fj(hi−1
Sj

x) ̸= fj(hi
Sj
x)

for some j.” The inputs hi−1
Sj

x and hi
Sj
x are identical unless i ∈ Sj , in which case they differ

only in the i-th coordinate where they are independent. Therefore

Pr(Ei) = Pr[fj(x) ̸= fj(xi) for some j ∈ J(i)],

where xi is x with its i-th input resampled independently. The right hand side is precisely
the influence of i in fJ(i). ◀

▷ Claim 22. ∆f (S1, . . . , Sk) ≤ Inf(S1, . . . , Sk; f).

Proof. By averaging, there must exist an assignment a to y such that

Inf(S1, . . . , Sk; f) ≥ Pr[fj(x) ̸= fj(aSjx) for some j].

Define gj(x) = fj(aSjx) (on all inputs). Then gj does not depend on the inputs in Sj , so

∆f (S1, . . . , Sk) ≤ Pr[fj(x) ̸= gj(x) for some j] = Pr[fj(x) ̸= fj(aSj
x) for some j] ≤ Pr(E).

◁

▷ Claim 23. Let k ≥ 2 and f(xi) = (f1(xi), . . . , fk(xi)) be a possibly randomized univariate
function. Let d an the output coordinate that maximizes Inf(i; fd). There exists a parti-
tion (P, P) of the output coordinates such that Inf(i; fP) and Inf(i; fP) are both at least
Inf(i; f[n]\{d})/3.

Proof. Let Ij be the event fj(x) ̸= fj(y) for random independent x and y. Then Inf(i; fT) =
Pr(∪j∈T Ij). Let δi = Pr(∪j ̸=dIj). If Pr(Id) ≥ δi/3 then the partition ({d}, [n] \ {d})
satisfies the conclusion. Otherwise, Pr(Ij) ≤ δi/3 for all j. Then some partition of type
(I1 ∪ · · · ∪ Ij , Ij+1 ∪ · · · ∪ Ik) works: If j is the first set for which Pr(I1 ∪ · · · ∪ Ij) exceeds
δi/3, then

Pr(I1 ∪ · · · ∪ Ij) ≤ Pr(I1 ∪ · · · ∪ Ij−1) + Pr(Ij) ≤ 2δi/3.

Since

Pr(I1 ∪ · · · ∪ Ij) + Pr(Ij+1 ∪ · · · ∪ Ik) ≥ Pr(∪jIj) ≥ δi,

the event Ij+1 ∪ · · · ∪ Ik also has probability at least δi/3. ◁

▶ Lemma 24. If f is δ-far from ⊗-partitionable then there exist partitions (P (1), P (1)), . . . ,
(P (n), P (n)) of [k] such that

n∑
i=1

min
{

Inf(i; fP (i)), Inf(i; f
P (i))

}
≥ δ

3 .

ICALP 2021

33:18 Direct Sum and Partitionability Testing over General Groups

Proof. Let j∗(i) be the maximizer of Inf(i; fj) (breaking ties arbitrarily), and Sj be the
set of all i such that j∗(i) ̸= j. Then J(i) = {j : i ∈ Sj} = [n] \ {j∗(i)}. By Proposi-
tion 21 and Claim 22, δ ≤ ∆f (S1, . . . , Sk) ≤

∑
Inf(i; f[n]\{j∗(i)}). By Claim 23 applied

to f as a function of xi only (randomized over the other inputs), Inf(i; f[n]\{j∗(i)})/3 ≤
min

{
Inf(i; fP (i)), Inf(i; f

P (i))
}

. ◀

Algorithm 4 Non-adaptive tester for ⊗-partitionability.

Oracle : f : D = D1 × · · · × Dn → Rk

Input : Proximity parameter ϵ
1 foreach r ∈ {0, . . . , ⌈log(3n/ϵ)⌉} do
2 Let S ⊆ [n] be a set of 3 · ⌈ 6n log(3n/ϵ)

2rϵ ⌉ indices sampled uniformly at random from
[n].

3 foreach i ∈ S do
4 Sample 3 · 2r+1 independent pairs of inputs from D.
5 if ∃ samples (x, y), (x′, y′), and j ̸= j′ ∈ [k] such that

fj(x) ̸= fj(y{i}x) and fj′(x′) ̸= fj′(y′
{i}x

′) then
6 Reject.

7 Accept.

Proof of Theorem 3. We show that Algorithm 4 satisfies the statement of the theorem. In
each iteration of the outer loop, O(n/ϵ log(n/ϵ)) queries are made to f . Thus, in total the
algorithm makes O((n/ϵ) log2(n/ϵ)) queries.

The test has perfect completeness because the condition on Line 5 is never triggered if f
is a direct product.

We now argue soundness. If f is ϵ-far from being a direct product, then by Lemma 24,
for every i ∈ [n] there exist partitions (P (i), P (i)) such that∑

i∈[n]

Mi ≥ ϵ/3, (5)

where Mi = min
{

Inf(i; fP (i)), Inf(i; f
P (i))

}
.

For r ∈ {0, . . . , ⌈log(3n/ϵ)⌉}, let Ar denote the set {i |Mi ∈ [1/2r, 1/2r+1)}. By (5) and
an averaging argument, we know that there exists an ℓ such that |Aℓ| ≥ ⌈ 2ℓϵ

6 log(3n/ϵ)⌉. For
such an ℓ, we show that the probability that the algorithm rejects in the ℓ-th iteration is at
least 2/3.

Consider the ℓ-th iteration of the outer loop. The probability that no index in Aℓ is
picked at Line 2 is at most (1− |Aℓ|

n)3· n
|Aℓ| ≤ 1/e3.

In an iteration of the inner loop corresponding to an index i ∈ Aℓ, the probability that
either fP (i)(x) = fP (i)(y) for all sampled pairs (x, y), or f

P (i)(x) = f
P (i)(y) for all sampled

pairs (x, y) is at most 2 · (1− 1/2ℓ+1)3·2ℓ+1 ≤ 2/e3. This tells us that the probability that
the algorithm rejects in the ℓ-th iteration of the outer loop conditioned on Aℓ ∩ S ̸= ∅ is at
least (1− 2/e3). Since Aℓ ∩ S is empty with probability at most 1/e3, the probability that
the algorithm rejects in the ℓ-th iteration is at least (1− 3/e3) ≥ 2/3. ◀

A. Bogdanov and G. Prakriya 33:19

References
1 Rudolf Ahlswede and Peter Gacs. Spreading of sets in product spaces and hypercontraction

of the markov operator. Ann. Probab., 4(6):925–939, December 1976. doi:10.1214/aop/
1176995937.

2 Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In Proceedings of the Thirty-Fifth Annual
ACM Symposium on Theory of Computing, STOC ’03, pages 612–621, New York, NY, USA,
2003. Association for Computing Machinery. doi:10.1145/780542.780631.

3 Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
151–158, 2009. doi:10.1145/1536414.1536437.

4 M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pages 73–83, New York, NY, USA, 1990. Association for Computing Machinery.
doi:10.1145/100216.100225.

5 Andrej Bogdanov and Gautam Prakriya. Direct sum and partitionability testing over general
groups. Electronic Colloquium on Computational Complexity, 2020. URL: https://eccc.
weizmann.ac.il/report/2020/164.

6 Andrej Bogdanov and Baoxiang Wang. Learning and testing variable partitions. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,
January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 37:1–37:22.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.37.

7 Aline Bonami. Étude des coefficients de Fourier des fonctions de lp(g). Annales de l’Institut
Fourier, 20(2):335–402, 1970. doi:10.5802/aif.357.

8 Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set systems. In David
Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1495–1524. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00088.

9 Irit Dinur and Konstantin Golubev. Direct sum testing: The general case. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA,
USA, pages 40:1–40:11, 2019. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.40.

10 Irit Dinur and David Steurer. Direct product testing. In IEEE 29th Conference on Compu-
tational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 188–196.
IEEE Computer Society, 2014. doi:10.1109/CCC.2014.27.

11 Chandra Nair and Yan Nan Wang. Evaluating hypercontractivity parameters using information
measures. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 570–
574, 2016.

12 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, USA, 2014.
13 Rocco A. Servedio, Li-Yang Tan, and John Wright. Adaptivity Helps for Testing Jun-

tas. In David Zuckerman, editor, 30th Conference on Computational Complexity (CCC
2015), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages
264–279, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CCC.2015.264.

14 Amir Shpilka and Avi Wigderson. Derandomizing homomorphism testing in general groups.
SIAM J. Comput., 36(4):1215–1230, 2006. doi:10.1137/S009753970444658X.

ICALP 2021

https://doi.org/10.1214/aop/1176995937
https://doi.org/10.1214/aop/1176995937
https://doi.org/10.1145/780542.780631
https://doi.org/10.1145/1536414.1536437
https://doi.org/10.1145/100216.100225
https://eccc.weizmann.ac.il/report/2020/164
https://eccc.weizmann.ac.il/report/2020/164
https://doi.org/10.4230/LIPIcs.ITCS.2020.37
https://doi.org/10.5802/aif.357
https://doi.org/10.1109/FOCS.2019.00088
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.40
https://doi.org/10.1109/CCC.2014.27
https://doi.org/10.4230/LIPIcs.CCC.2015.264
https://doi.org/10.1137/S009753970444658X

	1 Introduction
	2 Direct Sum Test for Functions on the Boolean Hypercube
	3 Analysis of Iterative Decoding
	3.1 Proof of Lemma 7

	4 Testing oplus-Partitionability
	4.1 Adaptive Test for oplus-Partitionability

	5 Testing otimes-Partitionability

