
Parameterized Applications of Symbolic
Differentiation of (Totally) Multilinear Polynomials
Cornelius Brand #

Charles University, Prague, Czech Republic

Kevin Pratt #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We study the following problem and its applications: given a homogeneous degree-d polynomial g as an
arithmetic circuit C, and a d×d matrix X whose entries are homogeneous linear polynomials, compute
g(∂/∂x1, . . . , ∂/∂xn) det X. We show that this quantity can be computed using 2ωd|C| poly(n, d)
arithmetic operations, where ω is the exponent of matrix multiplication. In the case that C is
skew, we improve this to 4d|C| poly(n, d) operations, and if furthermore X is a Hankel matrix, to
φ2d|C| poly(n, d) operations, where φ = 1+

√
5

2 is the golden ratio.
Using these observations we give faster parameterized algorithms for the matroid k-parity and

k-matroid intersection problems for linear matroids, and faster deterministic algorithms for several
problems, including the first deterministic polynomial time algorithm for testing if a linear space
of matrices of logarithmic dimension contains an invertible matrix. We also match the runtime of
the fastest deterministic algorithm for detecting subgraphs of bounded pathwidth with a new and
simple approach. Our approach generalizes several previous methods in parameterized algorithms
and can be seen as a relaxation of Waring rank based methods [Pratt, FOCS19].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Parameterized Algorithms, Algebraic Algorithms, Longest Cycle, Matroid
Parity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.38

Category Track A: Algorithms, Complexity and Games

Funding Cornelius Brand: The research was supported by OP RDE project No. CZ.02.2.69/0.0/0.0/
18_053/0016976 International mobility of research, technical and administrative staff at Charles
University.

Acknowledgements We would like to thank Ryan O’Donnell and several anonymous reviewers for
their many helpful comments on earlier drafts of this paper. In particular we thank an anonymous
reviewer for suggesting the name “totally multilinear.”

1 Introduction

Let Sn
d := Q[x1, . . . , xn]d denote the vector space of homogeneous polynomials of degree d in

n variables with rational coefficients. We define the apolar inner product ⟨·, ·⟩ : Sn
d × Sn

d → Q
via

⟨f, g⟩ := f

(
∂

∂x1
, . . . ,

∂

∂xn

)
g. (1)

Explicitly, if f =
∑

i1,...,in
ai1,...,in

xi1
1 · · · xin

n and g =
∑

i1,...,in
bi1,...,in

xi1
1 · · · xin

n , then

⟨f, g⟩ =
∑

i1,...,in

i1! · · · in!ai1,...,inbi1,...,in .

EA
T
C
S

© Cornelius Brand and Kevin Pratt;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 38; pp. 38:1–38:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cbrand@iuuk.mff.cuni.cz
mailto:kpratt@andrew.cmu.edu
https://doi.org/10.4230/LIPIcs.ICALP.2021.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

This inner product originated in 19th century invariant theory [39] and has become a source of
interest in computer science due to algorithmic applications. In a typical application, one first
identifies some easy-to-evaluate generating polynomial g whose coefficients encode solutions
to a combinatorial problem. This information can then be recovered by computing ⟨f, g⟩ for a
suitable choice of f . While this quantity can be #P hard to compute exactly, in special cases
it can be efficiently approximated. This approach has led to new algorithms for problems
as disparate as approximating permanents and mixed discriminants [25], sampling from
determinantal point processes [3], Nash social welfare maximization [5], and approximately
counting subgraphs [37].

As a motivating example, given a directed graph G with n vertices, let AG be the n × n

matrix with entry (i, j) equal to the variable xi if there is an edge from vertex vi to vertex
vj , and zero otherwise. By the trace method,

tr(Ad
G) =

∑
(vi1 ,vi2 ,...,vid

)∈G,
vid

=vi1

xi1 · · · xid
∈ Sn

d .

Now let A ∈ Qd×n be a matrix any d columns of which are linearly independent. Let
X = A · diag(x1, . . . , xn) · AT. By the Cauchy-Binet formula,

det X =
∑

S∈([n]
d)

det(AS)2
∏
i∈S

xi.

(Here AS refers to the d × d submatrix of A with columns indexed by the set S.) Since any
d columns in A are linearly independent, det(AS)2 > 0 for all S ∈

([n]
d

)
. Then note that

⟨det(AS)2 ∏
i∈S xi, tr(Ad

G)⟩ is positive if there is a simple cycle on the vertices {vi : i ∈ S},
and zero otherwise. It follows by linearity that ⟨det X, tr(Ad

G)⟩ > 0 if and only if G contains
a simple cycle of length d.

Motivated by this and other applications, we consider in our Theorems 7, 13, and 25
the algorithmic task of computing the inner product (1) when f is the determinant of a
symbolic matrix (a matrix whose entries are homogeneous linear polynomials) and g is given
as an arithmetic circuit. As one consequence, starting from the observation of the above
example we give a deterministic φ2d poly(n) < 2.62d poly(n)-time algorithm for detecting
simple cycles of length d in an n vertex graph. Here φ := 1+

√
5

2 is the golden ratio. Our
algorithm generalizes to detecting subgraphs of bounded pathwidth, unexpectedly matching
the runtime of the fastest known algorithm for this problem of [20].

Our main conceptual contribution is the observation that the following algebraic question
is central to a handful of methods in parameterized algorithms. It is motivated by the
observation that in order to obtain a (possibly randomized) algorithm for detecting cycles,
it would suffice to compute ⟨f, tr(Ad

G)⟩ for any f ∈ Sn
d that is supported exactly on the

set of all degree-d square-free monomials; det X is just one such polynomial. We call such
polynomials totally multilinear, and denote the set of all such polynomials in Sn

d by Tn,d.

▶ Question 1. Let Tn,d be the set of all f ∈ Sn
d such that f =

∑
S∈([n]

d) cS

∏
i∈S xi, where

cS ̸= 0 for all S. What is B(d, n) := min(dim Diff(f) : f ∈ Tn,d)? Here Diff(f) denotes the
vector space spanned by the partial derivatives of all orders of f , including f itself. 1

Our algorithms, color coding [1], the group algebra approach [31], and the exterior algebra
methods of [12, 11] are all closely related to the existence of polynomials in Tn,d (or related
sets) with “unusually small” spaces of partial derivatives (see Section 5). In [37] it was shown

1 For example, Diff(x1x2) is the vector space spanned by x1x2, x1, x2, and 1.

C. Brand and K. Pratt 38:3

that a related quantity, namely the minimum Waring rank of any f ∈ Tn,d, gives upper bounds
on the complexity of certain parameterized problems. In general, the Waring rank of f ∈ Sn

d

is lower bounded by 1
d dim Diff(f), and this bound is almost never optimal [32, Section 3.2].

In this paper, we exploit that fact that, provided f can be “efficiently differentiated,” this
lower bound can be used to upper bound the complexity of these parameterized problems!
For instance, our φ2d poly(n)-time cycle detection algorithm relies on the fact that there
is a spanning set of size φ2d < 2.62d for the space of partial derivatives of the polynomial
det X above, when A is a Vandermonde matrix, that we can differentiate det X “efficiently”
with respect to. In contrast, the best best-known upper bound on the Waring rank of this
polynomial is 6.75d [37, Theorem 41].

We show in Proposition 10 that B(n, d) ≤ O(2.6d). Additionally, it is not difficult to
show that B(n, d) ≥ 2d. A proof of this fact is as follows. First, observe that dim Diff(f)
does not increase under setting variables to zero. Hence for any f ∈ Tn,d, dim Diff(f) ≥
dim Diff(c · x1x2 · · · xd) for some nonzero constant c. As Diff(c · x1x2 · · · xd) has as a basis
the collection of products of subsets of the variables x1, . . . , xd, the claim follows.

1.1 Previous approaches to computing the apolar inner product
One special case of (1) that has been the source of several recent breakthroughs is when f

and g are real stable polynomials with nonnegative coefficients; see e.g. [27, 4]. In this case
⟨f, g⟩ can be approximated (up to a factor of ed+ε) in polynomial time [2, Theorem 1.2]. For
the cases we consider, however, f and g will not both be real stable.

Another approach is based on Waring rank upper bounds [9, 26, 23, 37]. The Waring
rank of f ∈ Sn

d , denoted R(f), is defined as the minimum r such that f =
∑r

i=1 ciℓ
d
i for

linear forms ℓ1, . . . , ℓr ∈ Sn
1 and scalars c1, . . . , cr. For example, the identity

x1x2x3 = 1
24

[
(x1 + x2 + x3)3 − (x1 + x2 − x3)3 − (x1 − x2 + x3)3 − (−x1 + x2 + x3)3]

shows that R(x1x2x3) ≤ 4. Waring rank has been studied since the 1850’s [29, Introduction]
and has gained recent attention for its applications to algebraic complexity, see e.g. [13, 14].
Its relevance to the inner product (1) is due to the following fact, which can be verified by a
straightforward calculation: if f =

∑r
i=1 ci(ai,1x1 + · · · + ai,nxi)d, then for all g ∈ Sn

d ,

⟨f, g⟩ = d!
r∑

i=1
cig(ai,1, . . . , ai,n).

Hence upper bounds on R(f) yield black-box algorithms for computing ⟨f, g⟩. Furthermore,
it was shown in [37, Theorem 6] that with only evaluation access to g, R(f) queries are
required to compute this inner product. Unfortunately, R(f) is usually prohibitively large;
for instance, the Waring rank of almost all f ∈ Sn

d is at least ⌈
(

n+d−1
d

)
/n⌉ [32, Section 3.2].

It is also worth pointing out the very recent works of Arvind et al. [7, 6], in particular, [7,
Remark 4.3.], which set up a very similar framework based on non-commutative polynomials
and algebraic branching programs, on which they prove bounds that also follow from bounds
on spaces of partial derivatives.

1.2 Our approach
Given g as an arithmetic circuit C, we compute ⟨f, g⟩ symbolically. Our algorithms inductively
compute at each gate in C the result of differentiating f by the polynomial computed by
C at that gate2. At the output gate of C we will therefore have computed ⟨g, f⟩ = ⟨f, g⟩.

2 By “differentiating f by g,” we mean applying the differential operator g(∂/∂x1, . . . , ∂/∂xn) to f .

ICALP 2021

38:4 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

At intermediate gates we compute and store elements of Diff(f), the vector space of partial
derivatives of f , which we represent with respect to some spanning set for this space. This
kind of symbolic manipulation of partial derivatives is reminiscent of the Baur-Strassen
Theorem and its applications (see for example [17]).

We will be particularly interested in the case when f is the determinant of a symbolic
matrix X. The advantage of this case is that for a symbolic d × d matrix X, the vector
space spanned by the partial derivatives of det X of all orders has dimension at most 4d,
and in some algorithmically relevant cases this bound can be significantly improved. So
while one might naïvely represent an element in this space as a linear combination of

(
n+d

d

)
monomials, doing so generally includes a significant amount of unnecessary information.
Instead, we represent elements in this space as linear combinations of minors (determinants
of submatrices) of X, which are specified by pairs of increasing sequences.

We will start by giving in our Theorem 7 a simple algorithm for the special but important
case when g is computed by a skew circuit, meaning one of the two operands to each
multiplication gate is a variable or a scalar:

▶ Theorem 7. Let C be a skew arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d]

be a symbolic matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with 4d|C| poly(n, d)

arithmetic operations.

Our algorithm for Theorem 7 only uses linear algebra and basic properties of differentials.
Of particular interest will be the case of Theorem 7 when X is a Hankel matrix, meaning

that Xi,j = Xi+k,j−k for all k = 0, . . . , j − i. For example, the generic 3 × 3 Hankel matrix isx1 x2 x3
x2 x3 x4
x3 x4 x5

 .

This has applications to problems such as detecting cycles in graphs and more generally
detecting square-free monomials in arithmetic circuits (Corollary 19). We show the following
improvement in this case:

▶ Theorem 13. Let C be a skew arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d]

be a symbolic Hankel matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with

φ2d|C| poly(n, d) arithmetic operations. Here φ := 1+
√

5
2 is the golden ratio.

The improvement in Theorem 13 over Theorem 7 is facilitated by the fact that the space
of partial derivatives of the determinant has dimension about 4d, whereas the dimension of
the space of partial derivatives of the determinant of a Hankel matrix is upper bounded by
φ2d (Proposition 10).

Let us point out that Hankel matrices (in their guise as squares of the Vandermonde) made
appearances already in the exterior-algebraic framework [12, 11], so that their usefulness in
our applications might perhaps not come as a complete surprise. Before this work, however,
any connections between the exterior and the partial-differential approach remained unclear,
and their exact nature remains to be determined.

Still, we do gain one such connection here: For general (not necessarily skew) circuits, we
exploit a connection between the apolar algebra of the determinant and the exterior algebra
(Lemma 24) to show the following:

▶ Theorem 25. Let C be an arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d] be

a symbolic matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with 2ωd|C| poly(n, d)

arithmetic operations, where ω < 2.373 is the exponent of matrix multiplication.

C. Brand and K. Pratt 38:5

1.3 Applications

Theorem 7 yields faster algorithms for the k-matroid intersection and matroid k-parity
problems:

▶ Problem 1 (Matroid k-Parity). Suppose we are given a matrix B ∈ Qkm×kn representing a
matroid M with groundset [kn], and a partition π of [kn] into parts of size k. Decide if the
union of any m parts in π are independent in M .

▶ Problem 2 (k-Matroid Intersection). Suppose we are given matrices B1, . . . , Bk ∈ Qm×n

representing matroids M1, . . . , Mk with the common groundset [n]. Decide if M1, . . . , Mk

share a common base.

We show in Theorems 17 and 18 that these can be solved in time 4km poly(N), where
N denotes the size of the input. When k = 2 these are the classic matroid parity and
intersection problems and can be solved in polynomial time, but for k > 2 they are NP-hard.
The first algorithms for general k faster than naïve enumeration were given by Barvinok
in [8], and had runtimes (km)2k+14km poly(N) and (km)2k4k2m poly(N), respectively. A
parameterized algorithm for Problem 1 was also given by Marx in [36] where it was used to
give fixed-parameter tractable algorithms for several other problems, including Problem 2.
The fastest algorithms prior to our work were due to Fomin et al. [20] and had runtime
2kmω poly(N), where ω < 2.373 is the exponent of matrix multiplication [33].

By combining Theorem 7 with a known construction of the determinant as a skew
circuit [35], we obtain a faster deterministic algorithm for the following problem:

▶ Problem 3 (SING). Given matrices A1, . . . , An ∈ Qd×d, decide if their span contains an
invertible matrix. Equivalently, decide if det

∑n
i=1 xiAi ̸≡ 0.

We show that SING can be solved in 4d poly(N) time in our Corollary 16. In particular, this
establishes that SING ∈ P for subspaces of matrices of logarithmic dimension. The fastest
previous deterministic algorithm, due to an observation of Gurvits in [24], had runtime
2dd! poly(N) and made use of an upper bound of 2dd! on R(detd). This problem was originally
studied by Edmonds for its application to matching problems [18]. While it is known to
admit a simple randomized polynomial time algorithm as was first observed by Lovász [34],
a deterministic polynomial time algorithm would imply circuit lower bounds that seem far
beyond current reach [30]. As a result, variants of SING have attracted attention, leading to
a recent breakthrough in the non-commutative setting [22].

Using Theorem 13, we give in Corollary 19 a deterministic φ2d poly(|C|)-time algorithm
for detecting square-free monomials of degree-d in a polynomial with non-negative coefficients
computed by a skew arithmetic circuit. Combining this with observations in [11], we obtain
the following applications:

▶ Corollary 20. The following problems admit deterministic algorithms running in time
φ2d poly(n):
1. Deciding whether a given directed n-vertex graph has a directed spanning tree with at least

d non-leaf vertices,
2. Deciding whether a given edge-colored, directed n-vertex graph has a directed spanning

tree containing at least d colors,
3. Deciding whether a given planar, edge-colored, directed n-vertex graph has a perfect

matching containing at least d colors.

ICALP 2021

38:6 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

The previous fastest algorithms for these problems had runtimes 3.19d poly(n), 4d poly(n),
and 4d poly(n), respectively [11]. This built upon work of Gutin et al. [28] Problem (1) is the
best studied among these, with [28, Table 1] listing eleven articles on this problem in the last
fourteen years. It is worth noting that our improvements do not rely on any problem-specific
adaptations.

Theorem 13 also yields a φ2d poly(n)-time deterministic algorithm for detecting simple
cycles of length d in an n vertex directed graph (and paths, and more generally subgraphs
of bounded pathwidth). While it is known that simple cycles of length d can be detected
in randomized time 2d poly(n) [41] (1.66d poly(n) for undirected graphs [10]), it is a major
open problem to achieve the same runtime deterministically. Finding a better upper bound
on B(n, d) witnessed by a polynomial with nonnegative coefficients seems to us a promising
approach for obtaining faster deterministic algorithms for this problem.

Our cycle detection algorithm brushes up against the fastest known deterministic algorithm
for this problem which has runtime 2.55d poly(n) [40], and unexpectedly matches the runtime
of a previous algorithm [20] while using a different (shorter) approach. Our approach differs
from those of previous algorithms which have been based on paradigms such as color coding,
divide and color, and representative families [16, Chapter 5] [43]. Whereas these methods
make use of explicit constructions of pseudorandom objects such as perfect hash families,
universal sets, and representative sets, our algorithm makes use of algebraic-combinatorial
identities. This approach was foreshadowed in [12, Theorem 2]. It is important to note that
our algorithm only works for unweighted graphs (or weighted graphs with integer weights
bounded by poly(n)), while several previous algorithms work for weighted graphs. The
algorithm of [20] also extends more generally to detect subgraphs of bounded treewidth.

1.4 Algebraic considerations; the potential for improvement
In Section 4 we note that our algorithms for computing special cases of (1) yield algorithms
for performing arithmetic in a certain algebra Af associated to f , namely the apolar algebra
of f . We show in our Lemma 24 that the apolar algebra of the determinant is isomorphic
to the diagonal subalgebra of the tensor square of the exterior algebra. This algebra was
previously identified in [12] for its applications to detecting subgraphs of bounded pathwidth.
By combining this observation with known algorithms for arithmetic in the exterior algebra,
we derive our general algorithm for computing ⟨det X, g⟩.

To obtain faster deterministic algorithms for several problems such as detecting simple
cycles, we ask Question 1. Our Corollary 11 shows that B(d, n) is at most (

√
27/2)dd. This

upper bound is witnessed by the polynomial

∑
1≤i1<···<id≤n

∏
j<k

(ij − ik)2
d∏

j=1
xij

.

▶ Remark 4. The discrepancy between (
√

27/2)dd ≤ O(2.6d) and the base of the exponent
φ2d > 2.6d in our runtimes is due to the fact that we do not know how to differentiate in
nearly-linear time with respect to a basis for the above polynomial; see Further Questions
(6). Instead, we compute them with respect to a larger spanning set.

1.5 Paper outline
In the next section we prove Theorems 7 and 13. We will motivate them with the running
application of detecting simple cycles, giving in Corollary 14 our φ2d poly(n)-time algorithm.
The rest of our applications can be found in Section 3, and follow quickly from Theorems 7

C. Brand and K. Pratt 38:7

and 13, using little more than the Cauchy-Binet formula. In Section 4 we define the apolar
algebra of a polynomial. We relate the apolar algebra of the determinant to the tensor square
of the exterior algebra in Lemma 24, and use this to prove Theorem 25. We then explain the
connection to other methods in parameterized algorithms in Section 5.

2 Computing the apolar inner product for skew circuits

We start by giving an algorithm for computing (1) in the case that g is the determinant of a
symbolic matrix and f is computed by a skew arithmetic circuit C. This is a warmup for
the special case when g is the determinant of a symbolic Hankel matrix.

We fix the following notation for the rest of the paper. We denote by |C| the total number
of gates in the circuit C. Let I(d, k) ⊆ [d]k be the set of strictly increasing sequences of
length k with elements in [d]; when k = 0 we include the empty sequence in this set. Given
a d × d matrix X and tuples α, β ∈ I(d, k), we denote by X[α|β] the minor (determinant
of a submatrix) of X with rows indexed by α and columns indexed by β. We declare the
“empty minor” X[|] to equal one. We use the convention of writing α1, . . . , α̂i, . . . , αk to
denote the sequence α1, . . . , αi−1, αi+1, . . . , αk obtained from α by omitting αi. We call a
monomial xa1

1 · · · xan
n square-free if ai ∈ {0, 1} for all i.

For f ∈ Sn
d , Diff(f) denotes the vector space spanned by the partial derivatives of f of

all orders (this includes f itself). For example, Diff(x1x2) is the vector space spanned by
x1x2, x1, x2, and 1. The next observation is a simple bound on this quantity for determinants
of symbolic matrices, and has been essentially observed several times previously (e.g. [38,
Lemma 1.3]).

▶ Proposition 5. Let X = (ℓi,j)i,j∈[d] be a symbolic matrix with entries in Sn
1 . Then

Diff(det X) is contained in the space of minors of X. Hence

dim Diff(det X) ≤
d∑

i=0

(
d

i

)2
=

(
2d

d

)
< 4d.

Proof. Let Sd denote the symmetric group on d elements. By the Leibniz formula for the
determinant and the product rule, for any l ∈ [n],

∂ det X

∂xl
=

∑
σ∈Sd

sgn(σ)
d∑

i=1

∂ℓi,σ(i)

∂xl

∏
j ̸=i

ℓj,σ(j) =
∑

1≤i,j≤d

∂ℓi,j

∂xl

∑
σ∈Sd,σ(i)=j

sgn(σ)
∏
m ̸=i

ℓm,σ(m)

=
∑

1≤i,j≤d

(−1)i+j ∂ℓi,j

∂xl
X[1, . . . , î, . . . , d|1, . . . , ĵ, . . . , d].

Note that ∂ℓi,j

∂xl
is just a scalar. To see the last equality, consider the matrix X(ij) obtained

by setting the (i, j)th entry of X to 1, and all other entries in the ith row of X to 0. Then
det X(ij) =

∑
σ∈Sd,σ(i)=j sgn(σ)

∏
m ̸=i ℓm,σ(m), but at the same time by Laplace expansion

along the ith row of X(ij), det X(ij) = (−1)i+jX[1, . . . , î, . . . , d|1, . . . , ĵ, . . . , d].
This shows that the space of order-1 partial derivatives of det X is contained in the span

of the degree-(d − 1) minors of X. That Diff(det X) is contained in the space of minors of X

follows by repeated application of this fact. Furthermore, since square k ×k submatrices of X

can be identified by pairs of elements in I(d, k) (their row and column indices), the vector space
spanned by all minors of X has dimension at most

∑d
k=0 |I(d, k)|2 =

∑d
k=0

(
d
k

)2 =
(2d

d

)
. ◀

ICALP 2021

38:8 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

▶ Lemma 6. Given as input a symbolic matrix X = (ℓi,j)i,j∈[d] with entries in Sn
1 , a linear

combination P of minors of X, and l ∈ [n], we can compute a representation for ∂P
∂xl

as a
linear combination of minors of X with 4d poly(n, d) arithmetic operations.

Proof. Let P =
∑d

k=0
∑

α,β∈I(d,k) cα,βX[α|β] and let a
(l)
i,j be the coefficient of xl in ℓi,j (so

the input consists of l and the vectors (cα,β) ∈ Q(2d
d), (a(l)

i,j) ∈ Qd2n). Then by the same
considerations as in the proof of Proposition 5,

∂P

∂xl
=

d∑
k=1

∑
α,β∈I(d,k)

∑
1≤i,j≤k

cα,β(−1)i+ja
(l)
i,jX[α1, . . . , α̂i, . . . , αk|β1, . . . , β̂j , . . . , βk].

Note that for α, β ∈ I(d, k), the coefficient of X[α|β] in the above equals∑
1≤i,j≤k

∑
α′,β′∈I(d,k+1)

α=α′
1,...,α̂′

i,...,α′
k+1

β=β′
1,...,β̂′

j ,...,β′
k+1

(−1)i+ja
(l)
i,jcα′,β′ .

The numbers of pairs of sequences α′, β′ considered by the inner sum is naïvely bounded
by d4 (there are d positions in α where we could try to insert a number in [d] into to get
an increasing sequence, and similarly for β), and hence the coefficient of each minor can be
computed with O(d6) arithmetic operations. Since there are

(2d
d

)
minors, all coefficients can

be computed with the stated number of operations. ◀

▶ Theorem 7. Let C be a skew arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d]

be a symbolic matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with 4d|C| poly(n, d)

arithmetic operations.

Proof. Say that gate v in C computes the polynomial Cv. We will compute the inner
product (1) inductively: at gate v we will compute and store C∂

v , a representation for
Cv(∂

∂x1
, . . . , ∂

∂xn
) det X as a linear combination of minors of X. C∂

v will be stored as a vector
of length

(2d
d

)
indexed by pairs of row and column sets. At the end of the algorithm we

will have computed f(∂
∂x1

, . . . , ∂
∂xn

) det X (which by symmetry of the apolar inner product
equals ⟨det X, f⟩) at the output gate.

We start by computing and storing ∂
∂xl

det X at input gate xl, which by Lemma 6 can
be done in 4d poly(n, d) time. Now suppose that gate v takes input from gates v′ and v′′,
and that we have already computed C∂

v′ and C∂
v′′ . To compute C∂

v , there are two cases to
consider:
1. Cv = xi · Cv′ . Then C∂

v = ∂
∂xi

Cv′(∂
∂x1

, . . . , ∂
∂xn

) det X = ∂
∂xi

C∂
v′ . Using Lemma 6 this

can be computed with 4d poly(n, d) operations.
2. Cv = Cv′ + Cv′′ . Since differentiation is linear, C∂

v = C∂
v′ + C∂

v′′ . Since C∂
v′ and C∂

v′′ are
vectors of length

(2d
d

)
, it takes

(2d
d

)
operations to add them.

Hence at each gate we use at most 4d poly(n, d) arithmetic operations, for a total of
4d poly(n, d)|C|. ◀

We now show how Theorem 7 can be applied to obtain a deterministic algorithm for detecting
simple cycles in graphs. This motivates the following improvement.

▶ Proposition 8. Let G be a graph on n vertices. We can decide in 4d poly(n) time if G

contains a simple cycle of length d.

C. Brand and K. Pratt 38:9

Proof. Let V ∈ Qd×n be the Vandermonde matrix with Vi,j = ji. Let X = V ·
diag(x1, . . . , xn) · V T. By the Cauchy-Binet formula,

det X =
∑

α∈I(n,d)

V [1, . . . , d|α]2
∏
i∈α

xi.

Since any d columns in V are linearly independent, V [1, . . . , d|α]2 > 0 for all α ∈ I(n, d).
Furthermore, observe that tr(Ad

G) has nonnegative coefficients and contains a square-free
monomial if and only if G contains a simple cycle of length d. It follows that ⟨det X, tr(Ad

G)⟩ ≠
0 if and only if G contains such a cycle. In addition, tr(Ad

G) can be naïvely computed by a
skew circuit of size O(dn3). The theorem follows by applying Theorem 7, noting that we
only perform arithmetic with poly(n)-bit integers. ◀

Note that the (i, j)th entry in the matrix X in the proof of Proposition 8 equals
∑n

k=1 ki+jxk,
and therefore X is Hankel. We now show how this additional structure can be exploited.

Fix linear forms ℓ1, . . . , ℓ2d−1 ∈ Sn
1 , and let Cd be the symbolic matrix

ℓ1 ℓ2 ℓ3 · · · · · · · · · ℓ2d−2 ℓ2d−1

ℓ2 ℓ3
... 0

ℓ3
... 0

...
...

...

ℓ2d−2
...

...
ℓ2d−1 0 0 · · · · · · · · · · · · 0


. (2)

The minors of the form Cd[1, 2, . . . , k|b1, . . . , bk], where k ≤ d and bk ≤ 2d − k, are called
maximal. For brevity we will let [α|β] := Cd[α|β], and if [α|β] is maximal (so α = 1, . . . , k) we
further simplify this to [β]. Let Hd be the submatrix of Cd with row and column subscripts
1, . . . , d. It is readily seen that Hd is a Hankel matrix.

We will need the following fact of Conca [15, Lemma 2.1(a)]. For a subset I, we let e(I)
be its indicator vector.

▶ Lemma 9. Let α = α1, . . . , αt and β = β1, . . . , βt be sequences of positive integers. Then
for all k = 1, . . . , t,∑

I⊆[t],|I|=k

[α + e(I)|β] =
∑

J⊆[t],|J|=k

[α|β + e(J)].

Proof. We denote by αI the subsequence of α indexed by the set I, and by αÎ the subsequence
indexed by the complement of I in [t]. We let α + 1 = α1 + 1, . . . , αt + 1.

First, expanding [α + e(I)|β] with respect to the rows indexed by αI + 1:∑
I

[α + e(I)|β] =
∑

I

∑
J

(−1)|I|(−1)|J|[αI + 1|βJ][αÎ |βĴ].

Since Cd is Hankel, [αI + 1|βJ] = [αI |βJ + 1]. So∑
I

[α + e(I)|β] =
∑

J

∑
I

(−1)|I|(−1)|J|[αI |βJ + 1][αÎ |βĴ] =
∑

J

[α|β + e(J)]

where in the final equality we recognize that the middle equation equals [α|β +e(J)] expanded
with respect to the columns indexed by βJ + 1. ◀

ICALP 2021

38:10 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

▶ Corollary 10. Diff(det Hd) is contained in the space of maximal minors of Cd. Furthermore,
the number of maximal minors of Cd is at most φ2d.

Proof. By Proposition 5, the space of partial derivatives of det Hd is spanned by the minors
of Cd. We now show that the maximal minors of Cd span the space of minors of Hd. We
will follow the proof of Corollary 2.2 in [15].

Let [α1, . . . , αt|β1, . . . , βt] be a minor of Cd, where t ≤ d and α1 = 1. Note that any
minor of Hd can be expressed in this form by shifting the corresponding submatrix in Cd up
and to the right. We also assume α and β are strictly increasing sequences (if this is not
the case then [α|β] vanishes). We now give an inductive procedure that expresses [α|β] as a
linear combination of maximal minors.

If αt = t, then this minor is maximal and we are done. Otherwise, let h be the smallest
index where αh > h. We now apply Lemma 9 to the minor [α1, . . . , αh−1, αh −1, . . . , αt −1|β]
with k = t − h + 1. Doing so we obtain an expression for [α|β] as a linear combination of
minors of Cd, each of which in turn have a larger “h.” We conclude by induction.

Finally, note that the number of maximal minors of degree k is |I(2d − k, k)| =
(2d−k

k

)
.

Hence the total number of maximal minors equals
∑d

k=0
(2d−k

k

)
< φ2d. In the last step

we used the facts that the dth Fibonacci number satisfies Fd =
∑⌊ d−1

2 ⌋
k=0

(
d−k−1

k

)
, and that

Fd ≤ φd−1. ◀

The next observation was noted in [37, Theorem 43].

▶ Corollary 11.

dim Diff(det Hd) ≤
d∑

i=0
min

{(
d + i

d − i

)
,

(
2d − i

i

)}
≤ (

√
27/2)d · d.

Proof. By Corollary 10, for i ≤ d/2 the degree-i piece of Diff(Hd) has dimension at most(2d−i
i

)
. We conclude by the fact that Diff(Hd)i

∼= Diff(Hd)d−i, i.e., the sequence of dimensions
of space of partial derivatives is symmetric about d/2 [29, Definition 1.9]. The inequality on
the right follows from Stirling’s formula. ◀

▶ Lemma 12. Given as input a linear combination P of maximal minors of Cd and l ∈ [n],
we can compute a representation for ∂P

∂xl
as a linear combination of maximal minors of Cd

with φ2d poly(n, d) arithmetic operations.

Proof. For brevity we will write [α] for the minor Cd[1, . . . , |α||α]. Let P =∑d
k=0

∑
β∈I(2d−k,k) cβ [β], and say that the coefficient of xl in (Cd)i,j is a

(l)
i,j . As in Lemma 6,

∂P

∂xl
=

d∑
k=1

∑
β∈I(2d−k,k)

cβ

∑
1≤i,j≤k

(−1)i+βj a
(l)
i,βj

[1, . . . , î, . . . , k|β1, . . . , β̂j , . . . , βk].

Note that the only minors with nonzero coefficient in this expression are of the form
[1, . . . , î, . . . , k|γ] for k ∈ [d], i ∈ [k] and γ ∈ I(2d − k, k − 1). Call the coefficient of this minor
in the above b(i, γ). Then

b(i, γ) =
∑

1≤j≤k

∑
β∈I(2d−k,k)

γ=(β1,...,β̂j ,...,βk)

cβ(−1)i+βj a
(l)
i,βj

.

C. Brand and K. Pratt 38:11

The number of sequences β considered by the inner sum is at most O(d2), and hence b(i, γ)
can be computed with O(d3) additions and multiplications. We can thus compute

∂P

∂xl
=

d∑
k=1

k∑
i=1

∑
γ∈I(2d−k,k−1)

b(i, γ)[1, . . . , î, . . . , k|γ] (3)

with d4 ∑d
k=1 |I(2d−k, k−1)| ≤ φ2d poly(n, d) arithmetic operations. Note that this expresses

∂P
∂xl

as a linear combination of minors that are not necessarily maximal. We now fix this.
We first claim that for all i ∈ [k] and β ∈ I(2d − k, k − 1),

[1, . . . , î, . . . , k|β] =
∑

J⊆[k−1],|J|=k−i

[e(J) + (1, . . . , k − 1)|β]

where e(J) is the indicator vector of the set J . This holds since when J = {i, . . . , k − 1},
e(J) + (1, . . . , k − 1) = (1, . . . , î, . . . , k), and for all other J , e(J) + (1, . . . , k − 1) will have a
repeated value and hence [e(J) + (1, . . . , k − 1)|β] = 0.

Given this claim, it follows from Lemma 9 that

[1, . . . , î, . . . , k|β] =
∑

J⊆[k−1],|J|=k−i

[β + e(J)],

and so letting Qk be the degree-k part of Equation 3,

Qk =
k+1∑
i=1

∑
β∈I(2d−k−1,k)

b(i, β)
∑

J⊆[k],|J|=k+1−i

[β + e(J)].

We now show how to efficiently compute the coefficients of the maximal minors in this
expression from the already computed b(i, γ)’s.

Let 0 ≤ k ≤ d − 1 be fixed. For β ∈ I(2d − k − 1, k) and integers i, j where 0 ≤ i ≤ j ≤ k,
let D(β, i, j, k) ⊆ {0, 1}k be the set of binary vectors of length k containing exactly i ones,
whose last k−j entries are zero, and whose summation with β is strictly increasing everywhere
except possibly at positions j and j + 1 (that is, we may have wj + βj = wj+1 + βj+1). Define

Ak(i, j) :=
∑

β∈I(2d−k−1,k)

b(k + 1 − i, β)
∑

w∈D(β,i,j,k)

[β + w].

Note that
∑k

i=0 Ak(i, k) = Qk, so it suffices to show how to compute Ak(i, j) for all i, j. We
do this with a dynamic program. When we store Ak(i, j) we will store all coefficients of
maximal minors arising in the above definition, even though such a minor might contain a
repeated column and hence equal zero. The minors arising in this definition are specified by
sequences of length k with maximum value 2d − k that are strictly increasing everywhere
but possibly at one position. Hence the number of such sequences is at most k

(2d−k
k

)
.

For the base cases, we have

Ak(0, j) =
∑

β∈I(2d−k−1,k)

b(k + 1, β)[β],

Ak(i, i) =
∑

β∈I(2d−k−1,k)

b(k + 1 − i, β)[β + e({1, . . . , i})].

ICALP 2021

38:12 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

Now suppose we have computed Ak(i, j − 1) and Ak(i − 1, j − 1). Then

Ak(i, j) =
∑

β∈I(2d−k−1,k)

b(k + 1 − i, β)

 ∑
w∈B(β,i,j,k),

wj=0

[β + w] +
∑

w∈D(β,i,j,k),
wj=1

[β + w]


=

∑
β∈I(2d−k−1,k)

b(k + 1 − i, β)
∑

w∈D(β,i,j−1,k),
β+w is strictly increasing

[β + w]

+
∑

β∈I(2d−k−1,k)

b(k + 1 − i, β)
∑

w∈D(β,i−1,j−1,k)

[β + w + e({j})].

The first part of the sum can be computed from Ak(i, j − 1) by setting the coefficient
of any maximal minor with a repeated column equal zero, and the second sum can be
computed from Ak(i − 1, j − 1) by setting the coefficient of [β] to that of [β − e({j})]. Hence
Ak(i, j) can be computed with O(k

(2d−k
k

)
) arithmetic operations. It follows that we can

represent ∂P
∂xl

=
∑d−1

i=0 Qi in the space of maximal minors using φ2d poly(n, d) arithmetic
operations. ◀

With this we have the following analog of Theorem 7. We omit the proof as it is almost
exactly the same, we just work in the space of maximal minors rather than minors, using
Lemma 12 to differentiate instead of Lemma 6.

▶ Theorem 13. Let C be a skew arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d]

be a symbolic Hankel matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with

φ2d|C| poly(n, d) arithmetic operations. Here φ := 1+
√

5
2 is the golden ratio.

▶ Corollary 14. Let G be a graph on n vertices. We can decide in φ2d poly(n) time if G

contains a simple cycle of length d.

Proof. Let V ∈ Qd×n be the Vandermonde matrix with Vi,j = ji, and X = V ·
diag(x1, . . . , xn) · V T. By the same argument of Proposition 8, ⟨det X, tr(Ad

G)⟩ ≠ 0 if
and only if G contains a simple cycle of length d. Note that the (i, j)th entry in X equals∑n

k=1 ki+jxk, and therefore X is Hankel. We conclude by applying Theorem 13 to compute
⟨det X, tr(AG)d⟩, as tr(Ad

G) can be computed by a skew circuit of size poly(n). ◀

▶ Remark 15. This algorithm extends to detecting subgraphs of bounded pathwidth on
d vertices by using the construction of the subgraph generating polynomial given in [12,
Appendix B].

3 Applications

In this section we give our applications of Theorems 1 and 2.

▶ Corollary 16. Given matrices A1, . . . , An ∈ Qd×d, we can decide if their span contains an
invertible matrix in time 4d poly(N), where N denotes the size of the input.

Proof. Let X =
∑n

i=1 xiAi. First note that span(A1, . . . , An) contains an invertible matrix
if and only if det X ̸≡ 0. Writing det X =

∑
α∈[d]n cαxα for some coefficients cα (at least one

of which will be nonzero iff the answer is “yes”), observe that ⟨det X, det X⟩ =
∑

α c2
αα!. It

follows that span(A1, . . . , An) contains an invertible matrix if and only if this quantity is
nonzero.

C. Brand and K. Pratt 38:13

It is shown in [35] that detd can be expressed as a skew circuit of size O(d4), and the
construction of this circuit is linear in the output size. Hence we can construct a circuit for
det X by replacing the input variable xij in this circuit with the (i, j)th entry of X. The
theorem follows by applying Theorem 7 to the matrix X and this circuit, noting that all
numbers have bit-length poly(N) throughout the algorithm. ◀

▶ Corollary 17. Suppose we are given a matrix A ∈ Qkm×kn, where n ≥ m, representing a
matroid M with groundset [kn], and a partition π of [kn] into parts of size k. Then we can
decide if the union of any m parts in π are independent in M in time 4km poly(N), where
N is the size of the input. 3

Proof. Let g := (
∑

S∈π

∏
i∈S xi)m. It is easily seen that the square-free monomials appearing

in g correspond to unions of m elements in π, and that g can be computed by a skew circuit
of size poly(n). Next, let X = A · diag(x1, . . . , xn) · AT. By the Cauchy-Binet formula,

det X =
∑

S∈Bases(M)

det(BS)2
∏
i∈S

xi,

Note that the same monomial appears in the expansion of g and det X exactly when there is
such an independent set in M , and then since g and det X have non-negative coefficients,
⟨det X, g⟩ ̸= 0 if and only if an independent set in M is the union of m blocks in π. We
conclude by applying Theorem 7. ◀

Using the same trick as in [36] we can use Corollary 17 to solve the k-matroid intersection
problem.

▶ Corollary 18 (k-Matroid Intersection). Suppose we are given matrices B1, . . . , Bk ∈ Qm×n

representing matroids M1, . . . , Mk with the common groundset [n]. We can decide if
M1, . . . , Mk share a common base in time 4km poly(N), where N is the size of the input.

Proof. Let M =
⊕k

i=1 Bk be the direct sum of the input matrices. We first partition [kn]
into n parts of size k as follows: for i ∈ [n], let Si := {i, i + n, i + 2n, . . . , i + kn}. If a
union of m of the blocks S1, . . . , Sn are independent in the matroid represented by M , then
M1, . . . , Mk share a common base. Conversely, if these matroids share a common base, some
union of the Si’s are independent in the matroid represented by M . We conclude by applying
Corollary 17 to the matrix M ∈ Qkm×kn and the partition S1, . . . , Sn. ◀

Finally, we have our applications of Theorem 13. These follow immediately by a reduction
given in [11, Theorem 1] to the following “square-free monomial detection” algorithm.

▶ Corollary 19. Let g ∈ Q[x1, . . . , xn]d be a homogeneous degree-d polynomial with nonneg-
ative coefficients, computed by a skew arithmetic circuit C. Given as input C, we can decide
in deterministic φ2d|C| poly(n) time whether g contains a degree-d square-free monomial.

Proof. Let V ∈ Qd×n be the Vandermonde matrix with Vi,j = ji, and X = V ·
diag(x1, . . . , xn) · V T. By the Cauchy-Binet formula,

det X =
∑

S⊆([n]
d)

det(VS)2
∏
i∈S

xi.

3 Similar to the Theorem 1.1 of [36], this algorithm can be modified to work for finite fields of sufficiently
large size with the addition of randomness.

ICALP 2021

38:14 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

Since any d columns in V are linearly independent, det(VS)2 > 0 for all S. It follows that
since g has nonnegative coefficients, ⟨det X, g⟩ ̸= 0 if and only if g contains a square-free
monomial. Note that the (i, j)th entry in X equals

∑n
k=1 ki+jxk, and therefore X is Hankel.

The theorem follows by invoking Theorem 13. ◀

By [11, Theorem 1], we then have:

▶ Corollary 20. The following problems admit deterministic algorithms running in time
φ2d poly(n):
1. Deciding whether a given directed n-vertex graph has a directed spanning tree with at least

d non-leaf vertices,
2. Deciding whether a given edge-colored, directed n-vertex graph has a directed spanning

tree containing at least d colors,
3. Deciding whether a given planar, edge-colored, directed n-vertex graph has a perfect

matching containing at least d colors.

4 A general algorithm: the apolar algebra of the determinant

4.1 Algebraic preliminaries
Let Rn := Q[∂1, . . . , ∂n] be the ring of partial differential operators. Elements of this ring
are just multivariate polynomials in the variables ∂1, . . . , ∂n. For an n-tuple α ∈ Nn, we let
∂α be the monomial ∂α1

1 · · · ∂αn
n , and let |α| =

∑n
i=1 αi. For h ∈ R and f ∈ S, we denote by

h ◦ f the result of applying the differential operator h to f . For example,

(3 · ∂1∂2 + ∂2
1) ◦ x2

1x2 = 3 · ∂1∂2 ◦ x2
1x2 + ∂2

1 ◦ x2
1x2 = 6x1 + 2x2.

When h and f are homogeneous of the same degree, h◦f is a scalar. In this case f(∂1, . . . , ∂n)◦
g = ⟨f, g⟩, so computing h ◦ f is equivalent to computing the apolar inner product.

▶ Definition 21. For f ∈ Sn
d , we define Ann(f) as the ideal of elements in Rn annihilating

f under differentiation. We define the apolar algebra Af as the quotient Rn/ Ann(f).

In other words, Af is the ring of representatives of equivalence classes of differential operators
subject to the equivalence relation ∼, where h ∼ h′ if and only if h ◦ f = h′ ◦ f . It follows
that there is a vector space isomorphism J between Af and Diff(f), sending h ∈ Af to h ◦ f .
In particular, (Af)i

∼= Diff(f)d−i, where we denote by (Af)i the vector space of degree-i
elements in Af .

▶ Remark 22. Multiplication in Af corresponds to differentiating by f : for h1, h2 ∈ Af ,
J (h1 · h2) = h1 ◦ (h2 ◦ f). It follows that Lemmas 6 and 12 are algorithms for multiplication
by ∂l in Adet X , with respect to the spanning sets of Adet X given by the inverse images of
the minors (or maximal minors) of X.

▶ Definition 23. Λ(Qn) ⊗ Λ(Qn) is the algebra with the basis of formal variables {(I|J) :
I, J ⊆ [n]}, and where multiplication is given by extending bilinearly the rule

(I|J) · (I ′|J ′) =
{

0 if I ∩ I ′ ̸= ∅ or J ∩ J ′ ̸= ∅,

sgn(I, I ′) sgn(J, J ′)(I ∪ I ′|J ∪ J ′) else

where sgn(I, I ′) = (−1)|{i∈I,i′∈I′:i>i′}|.

C. Brand and K. Pratt 38:15

▶ Lemma 24. Adetn is isomorphic to the subalgebra of Λ(Qn) ⊗ Λ(Qn) generated by {v ⊗ v :
v ∈ Λ(Qn)}.

Proof. We first claim that the set of monomials of the form (I|J) := ∂I1,J1 · · · ∂Ik,Jk
, where

I, J ∈ I(n, k) and 0 ≤ k ≤ n, are a basis for Adetn . This follows from the fact that there are(2n
n

)
such monomials, dim Diff(detn) =

(2n
n

)
, and the polynomials of the form (I|J) ◦ detn

are linearly independent. The latter claim can be seen by noting that if (I|J) ̸= (I ′|J ′),
(I|J) ◦ detn and (I ′|J ′) ◦ detn have disjoint sets of monomials appearing in their expansion.

Next we claim that the product of two basis elements (I|J) and (I ′|J ′) is given by the
rule

(I|J) · (I ′|J ′) =
{

0 if I ∩ I ′ ̸= ∅ or J ∩ J ′ ̸= ∅,

sgn(I, I ′) sgn(J, J ′)(I ∪ I ′|J ∪ J ′) else

where sgn(I, I ′) denotes the sign of the permutation that brings the sequence I1, . . . , Ik′ into
increasing order, and I ∪ I ′ denotes the resulting sorted sequence. Indeed, if I ∩ I ′ ≠ ∅,
then (I|J)(I ′|J ′) is divisible by the product of two variables that have the same first (row)
index. But then (I|J)(I ′|J ′) ◦ detn = 0, since all monomials in the determinant have different
row indices. The second case follows from the fact that for I, J ∈ I(n, k) and τ ∈ Sk,
(I|J) ◦ detn = sgn τ−1 · (τ(I)|J) ◦ detn, which follows from the Leibniz formula for the
determinant.

It follows from these observations that Adetn
is the claimed subalgebra of Λ(Qn) ⊗

Λ(Qn). ◀

▶ Theorem 25. Let C be an arithmetic circuit computing g ∈ Sn
d , and let X = (ℓi,j)i,j∈[d] be

a symbolic matrix with entries in Sn
1 . Then we can compute ⟨det X, g⟩ with 2ωd|C| poly(n, d)

arithmetic operations, where ω < 2.373 is the exponent of matrix multiplication.

Proof. Assume that the entries of X are linearly independent. If this is not the case, add a
new variable xi,j to the (i, j)th entry of X. Note that since these variables do not appear in
g, this does not change the value of ⟨det X, g⟩.

Let A : Sn
1 → Q[y1,1, . . . , yd,d]1 be the linear transformation sending the linear form

Xi,j to the variable yi,j . By [19, Corollary 3.1], ⟨det X, g⟩ = ⟨det Y, g((A−1)T (x1, . . . , xn))⟩,
where Yi,j = yi,j . So we will first modify C by applying the linear transformation (A−1)T

to the input gates, obtaining a new circuit C ′. We then will evaluate C ′ over Adet Y ,
using the monomial basis of Lemma 24. Additions in Adet Y can be done in time linear
in the number of basis elements, which is bounded above by 4d. By identifying Adetd

with the subalgebra of diagonal elements in Λ(Qd) ⊗ Λ(Qd), and using the 2ωd poly(d)-
time algorithm of [42, Theorem 14] for multiplying elements in Λ(Qd) ⊗ Λ(Qd), we can
multiply elements in Adetd

with 2ωd poly(d) operations. Note that the highest degree
element in this basis is q := ∂1,1∂2,2 · · · ∂d,d. The output gate of of C ′ therefore equals
(A−1)T · g mod Ann(det Y) = ⟨det X,g⟩q

⟨det Y,q⟩ = ⟨det X, g⟩q. ◀

5 Totally Multilinear Polynomials and Previous Methods

We now explain how previous algorithms relate to answers to Question 1. Recall for
comparison that Proposition 10 implies that B(n, d) ≤ O(2.6d), and is witnessed by the
polynomial

f =
∑

1≤i1<···<id≤n

∏
j<k

(ij − ik)2
d∏

j=1
xij

.

ICALP 2021

38:16 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

Furthermore, we showed in Lemma 12 that given an element of Diff(f), the linear map
∂i : Diff(f) → Diff(f) could be computed in time φ2d poly(n) with respect to the spanning
set of maximal minors.

5.1 Color coding
Let F be an (n, d) perfect hash family, that is, a family of functions from [n] to [d] such that
for any subset of [n] of size d, some function in F is injective on [d]. It can be shown by a
straightforward random argument that there exists such an F with size at most ed poly(n) [1].

Now for π ∈ F and i ∈ [d], define the linear forms ℓπ,i =
∑

j∈π−1(i) xj . Let f =∑
π∈F

∏d
i=1 ℓπ,i. Then from the definition of a perfect hash family it follows that f ∈ Tn,d.

As the space of partial derivatives of a product of d linear forms has dimension at most 2d,
dim Diff(f) ≤ |F|2d ≤ (2e)d poly(n).

Explicitly, Diff(f) is spanned by
∏

i∈S ℓπ,i for all S ⊆ [d] and π ∈ F . In addition, the
operator ∂j can efficiently be computed with respect to this spanning set; this follows from
the fact that ∂j

∏
i∈S ℓπ,i =

∏
i∈S:j /∈π−1(i) ℓπ,i (i.e., the matrix representing ∂i is sparse).

Hence color coding can be interpreted in our framework as using the polynomial f .

5.2 Waring rank
In [37] an improvement to the color-coding construction was given. Let F be an (n, d, 1.55d)-
splitter, that is, a family of functions from [n] to [1.55d] such that for any subset S of [1.55d]
of size d, there exists some π ∈ F that is injective on S.

Let en,d denote the elementary symmetric polynomial of degree d in n variables. For
π ∈ F and i ∈ [1.55d], define the linear forms ℓπ,i =

∑
j∈π−1(i) xj . Let

f =
∑
π∈F

e1.55d,d(ℓπ,1, . . . , ℓπ,1.55d).

Since F is a splitter it follows that f ∈ Tn,d. By using bounds on |F| and the Waring rank
of en,d, it was shown in [37][Theorem 7] that the Waring rank of f is at most 4.075d poly(n).
Since in general dim Diff(f) ≤ R(f)/(d + 1), we conclude that B(n, d) ≤ dim Diff(f) ≤
4.075d poly(n).

5.3 Abelian 2 Groups
Let k be a field of characteristic 2 of size at least n, and let A be a d × n matrix, any d

columns of which are linearly independent. It was shown in Section 3.3 of [37] that the
polynomial f =

∑
S∈([n]

d) det(AS)2 ∏
i∈S xi has Waring rank at most 2d − 1, and hence

dim Diff(f) ≤ (d + 1)(2d − 1).

6 Further questions

1. We showed that 2d ≤ B(n, d) < (
√

27/2)dd. Can these bounds be improved?
2. Let X be a generic Hankel matrix. Can the bound dim Diff(det X) ≤ (

√
27/2)dd be

improved? We suspect that the base of the exponent is optimal.
3. Let X be a generic Hankel matrix. Can the linear map Ai : Diff(det X) → Diff(det X)

given by differentiation with respect to the any variable xi be computed in linear time
with respect to a spanning set of size (

√
27/2)dd (rather than φ2d)?

4. Do the methods of [21, 43, 40] have an interpretation in our framework?

C. Brand and K. Pratt 38:17

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),

42(4):844–856, 1995.
2 Nima Anari and Shayan Oveis Gharan. A generalization of permanent inequalities and

applications in counting and optimization. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 384–396. ACM, 2017.

3 Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte Carlo Markov chain algorithms
for sampling strongly Rayleigh distributions and determinantal point processes. In Conference
on Learning Theory, pages 103–115, 2016.

4 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,
and a deterministic approximation algorithm for counting bases of matroids. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 35–46. IEEE,
2018.

5 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash social welfare,
matrix permanent, and stable polynomials. In 8th Innovations in Theoretical Computer Science
Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

6 Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay. Fast exact
algorithms using Hadamard product of polynomials. In Arkadev Chattopadhyay and Paul
Gastin, editors, 39th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2019, December 11-13, 2019, Bombay, India,
volume 150 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.FSTTCS.2019.9.

7 Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay. On explicit
branching programs for the rectangular determinant and permanent polynomials. Chic. J.
Theor. Comput. Sci., 2020, 2020. URL: http://cjtcs.cs.uchicago.edu/articles/2020/2/
contents.html.

8 Alexander I Barvinok. New algorithms for lineark-matroid intersection and matroid k-parity
problems. Mathematical Programming, 69(1-3):449–470, 1995.

9 Alexander I Barvinok. Two algorithmic results for the traveling salesman problem. Mathematics
of Operations Research, 21(1):65–84, 1996.

10 Andreas Björklund. Determinant sums for undirected hamiltonicity. In 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA, pages 173–182, 2010. doi:10.1109/FOCS.2010.24.

11 Cornelius Brand. Patching colors with tensors. In 27th Annual European Symposium on
Algorithms, ESA 2019, September 09-11, 2019, Munich, Germany, 2019.

12 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 151–164, 2018. doi:10.1145/3188745.3188902.

13 Peter Bürgisser, Christian Ikenmeyer, and Greta Panova. No occurrence obstructions in
geometric complexity theory. Journal of the American Mathematical Society, 32(1):163–193,
2019.

14 Luca Chiantini, Jonathan D Hauenstein, Christian Ikenmeyer, Joseph M Landsberg, and
Giorgio Ottaviani. Polynomials and the exponent of matrix multiplication. Bulletin of the
London Mathematical Society, 50(3):369–389, 2018.

15 Aldo Conca. Straightening law and powers of determinantal ideals of Hankel matrices. Advances
in Mathematics, 138(2):263–292, 1998.

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

17 Marek Cygan, Harold N Gabow, and Piotr Sankowski. Algorithmic applications of baur-
strassen’s theorem: Shortest cycles, diameter, and matchings. Journal of the ACM (JACM),
62(4):1–30, 2015.

ICALP 2021

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.9
http://cjtcs.cs.uchicago.edu/articles/2020/2/contents.html
http://cjtcs.cs.uchicago.edu/articles/2020/2/contents.html
https://doi.org/10.1109/FOCS.2010.24
https://doi.org/10.1145/3188745.3188902
https://doi.org/10.1007/978-3-319-21275-3

38:18 Parameterized Applications of Symbolic Differentiation of Multilinear Polynomials

18 Jack Edmonds. Systems of distinct representatives and linear algebra. J. Res. Nat. Bur.
Standards Sect. B, 71(4):241–245, 1967.

19 Richard Ehrenborg and Gian-Carlo Rota. Apolarity and Canonical Forms for Homogeneous
Polynomials. European Journal of Combinatorics, 14(3):157–181, 1993. doi:10.1006/eujc.
1993.1022.

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

21 Fedor V Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of representative
sets with applications in parameterized and exact algorithms. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms, pages 142–151. SIAM, 2014.

22 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Operator scaling: theory
and applications. Foundations of Computational Mathematics, pages 1–68, 2019.

23 David G Glynn. Permanent formulae from the Veronesean. Designs, codes and cryptography,
68(1-3):39–47, 2013.

24 Leonid Gurvits. Classical deterministic complexity of Edmonds’ problem and quantum
entanglement. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’03, pages 10–19, New York, NY, USA, 2003. ACM. doi:10.1145/780542.
780545.

25 Leonid Gurvits. On the complexity of mixed discriminants and related problems. In Interna-
tional Symposium on Mathematical Foundations of Computer Science, pages 447–458. Springer,
2005.

26 Leonid Gurvits. Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like
conjectures: sharper bounds, simpler proofs and algorithmic applications. In Proceedings of
the thirty-eighth annual ACM symposium on Theory of computing, pages 417–426. ACM, 2006.

27 Leonid Gurvits. Van der waerden/schrijver-valiant like conjectures and stable (aka hyperbolic)
homogeneous polynomials: one theorem for all. The electronic journal of combinatorics,
15(1):66, 2008.

28 Gregory Z. Gutin, Felix Reidl, Magnus Wahlström, and Meirav Zehavi. Designing deterministic
polynomial-space algorithms by color-coding multivariate polynomials. J. Comput. Syst. Sci.,
95:69–85, 2018. doi:10.1016/j.jcss.2018.01.004.

29 Anthony Iarrobino and Vassil Kanev. Power sums, Gorenstein algebras, and determinantal
loci. Springer Science & Business Media, 1999.

30 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

31 Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for parameterized
problems. In Automata, Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pages 653–664, 2009. doi:
10.1007/978-3-642-02927-1_54.

32 Joseph M Landsberg. Tensors: geometry and applications. Representation theory, 381:402,
2012.

33 François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation, pages 296–303, 2014.

34 László Lovász. On determinants, matchings, and random algorithms. Fundamentals of
Computation Theory, pages 565–574, 1979.

35 Meena Mahajan and V Vinay. A combinatorial algorithm for the determinant. In In Proceedings
of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms. Citeseer, 1997.

36 Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput. Sci.,
410(44):4471–4479, 2009. doi:10.1016/j.tcs.2009.07.027.

37 Kevin Pratt. Waring rank, parameterized and exact algorithms. In 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, MD, USA, November
9-12, 2019, 2019.

https://doi.org/10.1006/eujc.1993.1022
https://doi.org/10.1006/eujc.1993.1022
https://doi.org/10.1145/2886094
https://doi.org/10.1145/780542.780545
https://doi.org/10.1145/780542.780545
https://doi.org/10.1016/j.jcss.2018.01.004
https://doi.org/10.1007/978-3-642-02927-1_54
https://doi.org/10.1007/978-3-642-02927-1_54
https://doi.org/10.1016/j.tcs.2009.07.027

C. Brand and K. Pratt 38:19

38 Masoumeh Sepideh Shafiei. Apolarity for determinants and permanents of generic matrices.
Journal of Commutative Algebra, 7(1):89–123, 2015.

39 J.J. Sylvester. On the principles of the calculus of forms. Cambridge and Dublin Mathematical
Journal, 7:52–97, 1852.

40 Dekel Tsur. Faster deterministic parameterized algorithm for k-Path. Theoretical Computer
Science, 790:96–104, 2019. doi:10.1016/j.tcs.2019.04.024.

41 Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–318,
2009. doi:10.1016/j.ipl.2008.11.004.

42 Michał Włodarczyk. Clifford algebras meet tree decompositions. Algorithmica, 81(2):497–518,
2019.

43 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms-ESA 2015, pages
1037–1049. Springer, 2015.

ICALP 2021

https://doi.org/10.1016/j.tcs.2019.04.024
https://doi.org/10.1016/j.ipl.2008.11.004

	1 Introduction
	1.1 Previous approaches to computing the apolar inner product
	1.2 Our approach
	1.3 Applications
	1.4 Algebraic considerations; the potential for improvement
	1.5 Paper outline

	2 Computing the apolar inner product for skew circuits
	3 Applications
	4 A general algorithm: the apolar algebra of the determinant
	4.1 Algebraic preliminaries

	5 Totally Multilinear Polynomials and Previous Methods
	5.1 Color coding
	5.2 Waring rank
	5.3 Abelian 2 Groups

	6 Further questions

