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—— Abstract

The Subgraph Isomorphism problem is of considerable importance in computer science. We

examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of
applications. This problem has a well-known algorithm via color-coding that runs in time O(ntW(H)H)
[Alon, Yuster, Zwick’95], where n is the number of vertices of the host graph G. While there are
pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time
of O(n™ ) +1=2) or even faster (e.g. for k-cliques), it is not known whether such improvements are
possible for all patterns. The only known lower bound rules out time n°(tW()/los(tw(H))) fq any
class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx’07].
In this paper, we demonstrate the existence of maximally hard pattern graphs H that require
time n®™(H)T1=o() " Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard
assumption from fine-grained complexity theory, we prove the following asymptotic statement for

large treewidth ¢:

For any € > 0 there exists ¢ > 3 and a pattern graph H of treewidth ¢ such that
Subgraph Isomorphism on pattern H has no algorithm running in time O(n**'~¢).

Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for
each specific treewidth ¢ > 3:

For any t > 3 there exists a pattern graph H of treewidth ¢ such that for any ¢ > 0

Subgraph Isomorphism on pattern H has no algorithm running in time O(n**'7%).

In addition to these main results, we explore (1) colored and uncolored problem variants (and
why they are equivalent for most cases), (2) Subgraph Isomorphism for tw < 3, (3) Subgraph
Isomorphism parameterized by pathwidth instead of treewidth, and (4) a weighted variant that we
call Exact Weight Subgraph Isomorphism, for which we examine pseudo-polynomial time algorithms.
For many of these settings we obtain similarly tight upper and lower bounds.
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1 Introduction

The SUBGRAPH [SOMORPHISM problem is commonly defined as follows: Given a graph H on
k vertices, and a graph G on n vertices, is there a (not necessarily induced) subgraph of G
which is isomorphic to H?
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Detecting Subgraphs of Bounded Treewidth

SUBGRAPH [SOMORPHISM generalizes many problems of independent interest, such as the
k-PATH and k-CLIQUE problems. The problem is also of considerable interest when H is less
structured, with applications to discovering patterns in graphs that, for example, arise from
biological processes such as gene transcription or food networks, from social interaction, from
electronic circuits, from neural networks [42], from chemical compounds [47] or from control
flow in programs [19]. In some fields, the problem is sometimes referred to as the search for
“network motifs”, i.e. subgraphs that appear more often than would normally be expected.

In its general form, the problem is NP-hard. We are interested in solving the problem
when the pattern graph H is “tree-like” or “path-like”, i.e. when the treewidth tw(H) or the
pathwidth pw(H) of H is bounded. Such pattern graphs of low treewidth or pathwidth often
arise in practice when considering the structure of chemical compounds, the control flow
of programs, syntactic relations in natural language, or many other graphs from practical
applications (see e.g. [14, 16]). On the theoretical side, many restricted classes of graphs have
bounded treewidth, see also [15]. Restricting NP-hard problems to graphs of bounded tree-
and pathwidth often yields polynomial-time algorithms, and SUBGRAPH ISOMORPHISM is no
exception. Most notably, the classic Color-Coding algorithm by Alon, Yuster and Zwick [9]
solves the problem by a Las Vegas algorithm in expected time O(n*"(H)+1g(k)), or by a
deterministic algorithm in time O(n™ ) +1g(k)), where g is a computable function (and O(-)
is used to suppress factors that are polylogarithmic in the input size). In other words, if the
pattern graph H has treewidth bounded by some constant, the problem is fixed-parameter
tractable when parameterized by k. The Color-Coding algorithm is also relevant for practical
purposes: Recently, it has received an efficient implementation, which tested well against
state-of-the-art programs for SUBGRAPH ISOMORPHISM [39)].

Many researchers wondered whether the Color-Coding algorithm can be improved. This
question has been studied in many different directions, including the following:

Marx [40] showed that no algorithm solves the SUBGRAPH ISOMORPHISM problem in time

O (notw(H)/log(tw(H))) g(k)) unless the Exponential Time Hypothesis (ETH) fails, and this

even holds when restricted to any class of pattern graphs of unbounded treewidth.

A series of work has improved the computable function g, see e.g. [10, 29, 44].

For many special pattern graphs faster algorithms have been found; the most famous

example is the k-Clique problem, which can be solved in time O(n*~/3¢g(k)) [43]'.

In this paper, we use a different angle to approach the question whether Color-Coding
can be improved. We ask whether there exist “hard” pattern graphs:

Do there exist pattern graphs H for which SUBGRAPH ISOMORPHISM

cannot be solved in time O(n™ ) +1=¢) for any constant ¢ > 072

To the best of our knowledge, this question has not been previously studied. As our main
result, we (conditionally) give a positive answer to this question. More precisely, we show
that for every ¢t > 3 there exists a pattern graph H with tw(H) = ¢ for which SUBGRAPH
ISOMORPHISM cannot be solved in time O(n™)+1=¢) for any constant ¢ > 0, assuming
the 3-uniform k-Hyperclique hypothesis; see Section 1.3 for details on this hypothesis. We
also show a slightly weaker statement under the Strong Exponential Time Hypothesis. This
conditionally shows that the Color-Coding algorithm by Alon, Yuster and Zwick cannot be
significantly improved while still working for all pattern graphs.

1 This bound assumes that k is divisible by 3; there are similar results for general k [27].
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For the case of tw(H) = 2, an algorithm of Curticapean, Dell and Marx [24] can be
adapted such that it solves SUBGRAPH ISOMORPHISM in time O(n“g(k)). We unify this
with the algorithm of Alon, Yuster and Zwick by showing that both time bounds can be
achieved within a simple framework. In particular, we use so-called k-wise matrix products,
an operation which was introduced in its general form in [31] and studied further in [38].

We also study the SUBGRAPH ISOMORPHISM problem when the pathwidth of H is bounded,
and specialize our framework to show slight improvements in running time compared to the
case of bounded treewidth. Here, we use rectangular matrix products, for which faster-than-
naive algorithms are known [30].

In further results, our focus is on the weighted variant EXACT WEIGHT SUBGRAPH
IsoMORPHISM, where the subgraph must also have total weight equal to zero. In this work,
we consider both the node-weighted and the edge-weighted variant of this problem, for both
bounded treewidth and bounded pathwidth, allowing the maximum absolute weight W to
appear in the running time (i.e. the pseudopolynomial-time setting). We show that our
algorithms for the unweighted case can be adapted to the weighted case. We also speed up the
weighted algorithms by using the fact that fast convolution (or rather, sumset computation),
a folklore technique that lies at the core of many fast algorithms for problems with weights
(e.g. [20, 18, 35, 34, 17, 12] and [23, exercise 30.1.7]), can easily be adapted to work with
rectangular matrices and tensors. We furthermore show tight conditional lower bounds in
many cases. Last but not least, we show that our algorithms can be slightly improved for
the case of node-weighted instances for which either the pathwidth of H is bounded, or H is
a tree. These algorithms also rely on fast rectangular matrix products.

1.1 Related Work

Additional to the conditional lower bound of O(n°(tw(H)/log(tw(H))) g (k) by Marx [40], there
is an unconditional lower bound of O(n*)) for the size of any AC’-circuit, for some graph
parameter k(H) = Q(tw(H)/log(tw(H))), which holds even when considering the average
case [37]. Interestingly, the factor of 1/log(tw(H)) does not seem to be an artefact of the
proof: There is an AC"-circuit of size O(n°(H) g(k)) that solves the problem on certain
unbounded-treewidth classes in the average case [45].

In a different direction, Dalirrooyfard et al. [25] design various reductions from k-Clique
to SUBGRAPH [SOMORPHISM, among other results. They also present results on the detection
of induced subgraphs (we focus on non-induced subgraphs).

For the weighted variant of SUBGRAPH ISOMORPHISM, lower bounds under the k-Sum
hypothesis for stars, paths, cycles and some other pattern graphs are presented in [5]. Edge-
weighted triangle detection has a by-now classic O(n3~¢) lower bound under both the 3Sum
hypothesis and the APSP hypothesis [7]. On the other hand, in [6], it is proven that finding
node-weighted k-cliques can be done almost as quickly as finding unweighted k-cliques. We
are not aware of any results on the EXACT WEIGHT SUBGRAPH ISOMORPHISM problem
when W may appear in the running time (i.e. a pseudopolynomial-time algorithm), which is
what we focus on here.

In our work, we pose no restrictions on the host graph G. For an extensive classification
of SUBGRAPH ISOMORPHISM with respect to various parameters of both G and H, see [41].

1.2 Hardness Assumptions

The most standard hypothesis from fine-grained complexity theory is the Strong Exponential
Time Hypothesis (SETH) [32], which postulates that for any € > 0 there exists k > 3 such
that k-SAT on n variables cannot be solved in time O*(2(1=2)").
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Detecting Subgraphs of Bounded Treewidth

More recent is the Hyperclique hypothesis. In the h-uniform k-HYPERCLIQUE problem, for
a given h-uniform hypergraph we want to decide whether there exist a set of k vertices such
that every size-h subset of these vertices forms a hyperedge. For any k > 3, the 3-uniform
k-Hyperclique hypothesis postulates that this problem cannot be solved in time O(n*~¢)
for any € > 0. This hypothesis has also been formulated when replacing 3 with any h < k,
getting progressively more believable with larger A. For a more in-depth discussion of the
believability of this hypothesis we refer to [38, Section 7].

Note that we will also use the h-uniform Hyperclique hypothesis for various h, which is
simply the conjecture that the h-uniform k-Hyperclique hypothesis is true for all k£ > h.

Related to this is the k-Clique conjecture, which postulates that the k-Clique problem
(which is the 2-uniform k-Hyperclique problem) cannot be solved in time O(n®*/3=¢) for any
constant € > 0, where w < 2.373 [36] is the exponent of matrix multiplication.

1.3 Our Results

Unweighted Subgraph Isomorphism with Bounded Treewidth. First, consider the case of
the unweighted SUBGRAPH ISOMORPHISM problem for bounded-treewidth pattern graphs
H. As was said, and as we will re-prove with a unified algorithm later, this problem has
an algorithm running in time O(n™)+1) for tw(H) > 3. We show tight conditional lower
bounds by proving the following obstacles to faster algorithms, which use the k-clique
hypothesis and the h-uniform k-hyperclique hypothesis. Note that when we say, for some =z,
that an algorithm has running time O(n*~¢), what we mean is that the algorithm runs in
time O(n*~¢) for some constant € > 0.

» Theorem 1. The following statements are true.

1. For each t > 3 and each 3 < h < t, there exists a connected, bipartite pattern graph H; p
of treewidth t such that there cannot be an algorithm solving the SUBGRAPH ISOMORPHISM
problem on pattern graph Hy p, in time O(n*™17¢) unless the h-uniform h(t+1)-hyperclique
hypothesis fails.

2. For each t > 2 and each h > 3, there exists a connected, bipartite pattern graph Hsp of
treewidth t such that there cannot be an algorithm solving the SUBGRAPH ISOMORPHISM
problem on pattern graph My in time O(n'~¢) unless the h-uniform ht-hyperclique
hypothesis fails.

3. For eacht > 2, there exists a connected, bipartite pattern graph H: of treewidth t such that
there cannot be an algorithm solving the SUBGRAPH ISOMORPHISM problem on pattern
graph Hy in time O(n(+D«/3=2) unless the (t + 1)-CLIQUE hypothesis fails.

Indeed, with the very same reduction, we also get an obstacle from SETH. However, the
lower bound it provides is not as tight as the above, and in the case of the second part does
not work for each target treewidth t.

» Theorem 2. Assuming SETH, the following two statements are true.

1. Foranyt > 3 and any € > 0 there exists a pattern graph Hi e of treewidth t such that there
cannot be an algorithm solving all instances of SUBGRAPH ISOMORPHISM with pattern
graph Hy . in time O(n'~¢).

2. For any € > 0 there exists a t > 3 and a pattern graph H. of treewidth t such that there
cannot be an algorithm solving all instances of SUBGRAPH ISOMORPHISM with pattern
graph H. in time O(n!t17¢).

On the algorithmic side, we present an algorithm that achieves matching running times
(as listed in Theorem 3 below). As was said, the results in the following theorem are not
new. Part 1 was shown via Color-Coding in [9] and part 2 follows from techniques in [24].
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We unify these two results by providing a single, relatively simple algorithmic technique
achieving both, based on k-wise matrix products. These techniques are later expanded to
also work for the weighted version, where they then achieve new results. In the following,
w < 2.373 [36] is the exponent of matrix multiplication.

» Theorem 3. There are algorithms which, given an arbitrary instance ¢ = (H,G) of
SUBGRAPH ISOMORPHISM where H has treewidth tw(H), solve ¢ in

1. time O(n™H ) +1g(k)) when tw(H) > 3,

2. time O(n®g(k)) when tw(H) = 2, and

3. time O(n2g(k)) when tw(H) = 1,

where k = |V (H)|,n := |V(G)| and g is a computable function.

Semi-Equivalence of Hyperclique and Subgraph Isomorphism. In the full version of the
paper, we also discuss how our results not only show a reduction from HYPERCLIQUE to
SUBGRAPH ISOMORPHISM with bounded treewidth, but also in the other direction. For this,
we show that calculating the boolean k-wise matrix products, which is the bottleneck in
our algorithm for bounded-treewidth SUBGRAPH ISOMORPHISM, is actually equivalent to
the k-uniform (k + 1)-HYPERGRAPH problem. Hence we have a reduction in the second
direction. This gives an interesting intuition for why the Hyperclique hypothesis is the
“correct” conjecture to prove conditional hardness of SUBGRAPH ISOMORPHISM for bounded
treewidth.

We remark that this does not lead to a full equivalence of these problems because the
uniformity (i.e. the size of hyperedges) of the HYPERCLIQUE problem we reduce from in the
first reduction is much smaller than the size of the hypercliques we search for. Hence we only
have a reduction from a HYPERCLIQUE instance with small edge uniformity to SUBGRAPH
IsoMORPHISM, and a reduction from SUBGRAPH ISOMORPHISM to HYPERCLIQUE instances
with large edge uniformity.

Weighted Subgraph Isomorphism with Bounded Treewidth. Now consider the weighted
version of SUBGRAPH ISOMORPHISM for bounded-treewidth graphs H. Recall that the
weighted version can be either node- or edge-weighted and is defined such that the weights in
the solution subgraph must have total weight zero. A trivial dynamic programming algorithm
on the tree decomposition achieves a running time of O(n™H+1 . W log W) for tw(H) > 3.

Note that these results show conditional lower bounds even when the maximum weight is
restricted to W = ©(n"), for any constant v > 0.

» Theorem 4. For both the node- and edge weighted variant of the problems, the following

statements are true.

1. For each t > 3, each v € RY and each 3 < h < t, there exists a connected, bipartite graph
Hin~y of treewidth t such that there cannot be an algorithm solving the EXACT WEIGHT
SUBGRAPH ISOMORPHISM problem on pattern graph H; .~ for instances with mazimum
weight W = O(n") in time O(n'T W), unless the h-uniform Hyperclique hypothesis
fails.

2. For each t > 1, each v € RT and each h > 3, there exists a connected, bipartite graph
Hen, of treewidth t such that there cannot be an algorithm solving the ExacT WEIGHT
SUBGRAPH ISOMORPHISM problem on pattern graph H; - for instances with mazimum
weight W = ©(n") in time O(nt=°W), unless the h-uniform Hyperclique hypothesis fails.

3. For each t > 1 and each v € R, there exists a connected, bipartite graph H . of
treewidth t such that there cannot be an algorithm solving the EXACT WEIGHT SUBGRAPH
IsoMORPHISM problem on pattern graph H; .~ for instances with mazimum weight W =
O(n") in time O(nt+Dw/3=eWw/3) unless the CLIQUE hypothesis fails.

40:5
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Similar lower bounds also hold when trying to reduce the exponent of W instead of n.
Meaning there is also no algorithm of running time O(n**1W1=¢) in part 1, etc.

On the algorithmic side, we present an algorithm that achieves matching running times
for tw(H) > 3, and almost matching running times for tw(H) = 1,2. Note that in terms
of exponents, the first algorithm below is not better than the naive one with running time
O(n*™ 1 W log W). However, it avoids a factor of log W in the largest term, and instead
appends it to a smaller term, so in a way it presents an improvement of log W in the running
time. Specifically, we show

» Theorem 5. There are algorithms which, given an arbitrary instance ¢ = (H,G,w) of the
Exact WEIGHT SUBGRAPH ISOMORPHISM problem where H has treewidth tw(H), solve ¢ in
1. time O((n™ W 4 n™~EW log W)g(k)) when tw(H) > 3,

2. time O((n“W + n2W log W)g(k)) when tw(H) = 2, or

3. time O((n2W + nW logW)g(k)) when tw(H) = 1,

where n = |V(G)|, k := |V (H)|, g is a computable function, and W is the mazimum absolute
weight in the image of w.

Comparing these upper bounds with the lower bounds from Theorem 5, we have a tight
lower bound for the weighted case with tw(H) > 3. For weighted tw(H) = 2, we have a
lower bound which is tight except for the exponent of w/3 to W; it is unclear whether this
can be strengthened. The lower bound for weighted graphs with tw(H) = 1 is obviously not
tight: We have an upper bound of 6(n2W + nWlog W), but our lower bounds only states
that it requires time O(n'=°M W) and O(n?*/3-cMWw«/3=0(1)) Tighter lower bounds
for this case remain an important open problem.

Unweighted Subgraph Isomorphism with Bounded Pathwidth. So far we have only looked
at the case of bounded treewidth. However, similar results hold for the case of bounded
pathwidth. Let us start with the unweighted SUBGRAPH ISOMORPHISM problem.

Note that we do not get any lower bounds for the current setting. This is because we
prove all our lower bounds by showing an equivalence of the standard Subgraph Isomorphism
problem to a colored variant (see also Section 1.4), and then proving a lower bound for the
colored version. We do not know how to prove such an equivalence for the current setting,
therefore we do not get lower bounds in this case; we leave this as an open problem.

Since a path decomposition is always also a tree decomposition, we trivially get upper
bounds as in Theorem 3 (when replacing treewidth by pathwidth). However, we can do
better by using rectangular matrix multiplication to speed up the computation. For z € RT,
let w(z) be the smallest real number such that multiplying a n x n matrix with a n x n*
matrix can be done in time O(nw(z))2. We prove the following upper bounds.

» Theorem 6. There are algorithms which, given an arbitrary instance ¢ = (H,G) of
SUBGRAPH ISOMORPHISM where H has pathwidth p, solve ¢ in

1. time O(n*®=Vg(k)) when p > 2, and

2. time O(n2g(k)) when p =1

where k := |V (H)| and n := |V(G)|.

2 Le Gall [30] has shown that there are fast algorithms for rectangular matrix multiplication based on the
Coppersmith-Winograd method [22, 36] used for square matrix multiplication. Among other values,
he shows w(0.31) = 2, w(2) < 3.26, w(3) < 4.2, w(4) < 5.18 and w(5) < 6.16. See [30] for an extensive
table of such values.
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We certainly have p < w(p—1) < p+1, so these results represent only a minor improvement,
which is nonetheless important because it “beats” the lower bound for treewidth. Hence the
lower bound for pathwidth cannot be the same as for treewidth.

Weighted Subgraph Isomorphism with Bounded Pathwidth. We also analyze the bounded-
pathwidth pattern graph version of WEIGHTED SUBGRAPH ISOMORPHISM. Specifically, we
get the following lower bound.

» Theorem 7 (Theorem 4 for pathwidth). Parts 2 and 8 of Theorem 4 also hold when
replacing the treewidth t by the pathwidth p. Part 1 does not hold.

And on the algorithmic side, we can again use rectangular matrix multiplication to improve
on the algorithms from the case of bounded treewidth. Specifically, we get:

» Theorem 8. There are algorithms which, given an arbitrary instance ¢ = (H,G,w) of the
Exact WEIGHT SUBGRAPH ISOMORPHISM problem, solve ¢ in

1. time O((n®YE) =W 4 e W log W)g(k)) when pw(H) > 2,
2. time O((n®W +nW log W)g(k)) when pw(H) =1
where n := |V (G)|,k := |V (H)|, and W is the mazimum absolute weight in the image of w.

For pw(H) > 3, the lower bounds are therefore obviously not tight (at least for current
algorithms), unless significant advances in matrix multiplication techniques are made. For
pw(H) = 1,2, the situation is the same as with treewidth, see the discussion of Theorem 5.

Improvements to Special Cases of Weighted Subgraph Isomorphism. It is natural to
think that the exponents % to W in the lower bounds of Theorems 4 and 7 are only artefacts
of the reduction, and that with more advanced methods, this exponent can be improved
to 1. However, the following two theorems show that this notion is false for tw(H) = 1 and
pw(H) = 1,2, at least when considering the node-weighted case. Indeed, for tw(H) =1 (or
pw(H) = 1) and W = n, these bounds are tight, so further general improvements on the
exponent are impossible.

Specifically, Theorems 9 and 10 show the following improvements of the algorithms from
Theorems 5 and 8 for small tree- or pathwidth. Let MM(n,n, z) be the time in which a n x n
matrix can be multiplied with with a n X x matrix.

» Theorem 9. There is an algorithm which, given an arbitrary instance ¢ = (H, G, w) of
the node—weighte(iEXACT WEIGHT SUBGRAPH ISOMORPHISM problem where H is a tree,
solves ¢ in time O((MM(n,n, W) +nW logW)g(k)).

» Theorem 10. There is an algorithms which, given an arbitrary instance ¢ = (H, G, w)
o:vf the node-weighted EXACT WEIGHT SUBGRAPH ISOMORPHISM problem, solves ¢ in time
O(MM(n, n, nPY =1 g(k)).

For W = O(n?), the running time of Theorem 9 is O(n“() poly(k)). This implies several
interesting facts. One such fact is that due to the known convergence lim,_, o w(y)—y = 1 [21],
we have that for node-weighted trees, there cannot be a lower bound of O(n(*+s=°(WW¥) for
any € > 0 that holds for any constant v > 0. A similar result holds for bounded-pathwidth
graphs. Other implications are discussed in the full version.
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1.4 Equivalence of the Colored and Uncolored Problems

All mentioned algorithms and conditional lower bounds are shown for the restricted problem
of COLORED SUBGRAPH ISOMORPHISM, where the nodes of G and H are colored with |V (H)|
colors and the isomorphism must preserve colors, as also studied in [40]. In the full version of
the paper, we prove that the standard and the colored variant of SUBGRAPH ISOMORPHISM
can be solved in essentially the same running time in almost all cases. Specifically, we show
the following lemma.

» Lemma 11. Let p be any graph parameter.

1. If there is a T'(n, k, p(H)) time algorithm for COLORED SUBGRAPH ISOMORPHISM, then
there is a O(T(kn, k, p(H))g(k)) time algorithm for SUBGRAPH ISOMORPHISM, where g
s some computable function.

2. If there is a T'(n, k, p(H), W) time algorithm for ExacT WEIGHT COLORED SUBGRAPH
ISOMORPHISM, then there is a O(T(kn,k, p(H),W)g(k)) time algorithm for EXACT
WEIGHT SUBGRAPH ISOMORPHISM, where g is some computable function.

3. Let tw(H) > 2. If there is a T(n, k,tw(H)) time algorithm for SUBGRAPH ISOMORPHISM,
then there is a O(T (poly(k)n, poly(k),tw(H)) + poly(k)n?) time algorithm for COLORED
SUBGRAPH ISOMORPHISM.

4. If there is a T'(n, k, p(H), W) time algorithm for ExacT WEIGHT SUBGRAPH ISOMORPH-
1sM, then there is a O(T(2n,2k, p(H),2*W) + poly(k)n?) time algorithm for EXACT
WEIGHT COLORED SUBGRAPH ISOMORPHISM.

This lemma enables us to prove results for (EXACT WEIGHT) SUBGRAPH ISOMORPHISM
while only talking about the more structured colored variants of the problem.

2 Technical Overview of Our Main Results

We now give proof sketches of our main lower bound results. We do not give proofs for the
upper bound results due to their technicality. The full version of this paper contains all
proofs with full detail.

2.1 Lower Bound for Subgraph Isomorphism

Our main result is the existence of the hard pattern graphs for bounded-treewidth SUBGRAPH
IsoMoORrRPHISM. We now prove their existence for treewidth at least 3 under the Hyperclique
hypothesis, i.e. part 1 of Theorem 1.

The exact statement we prove is that for each ¢ > 3 and each 3 < h < t, there exists a
pattern graph of treewidth ¢ such that SUBGRAPH ISOMORPHISM cannot be solved in time
O(n'*17¢) on that pattern graph unless the h-uniform h(t + 1)-hyperclique hypothesis fails.
Note that the proof actually shows this for the colored variant of SUBGRAPH ISOMORPHISM,
after which we can use Lemma 11 to transfer the lower bound to the uncolored problem.

Proof sketch. See Figure 1 for a sketch of the reduction. Let ¢ > 3 and 3 < h <t be given

and assume that SUBGRAPH ISOMORPHISM can be solved in time O(n'*17¢) on pattern

graphs of treewidth ¢t. We show that the h-uniform h(¢ + 1)-hyperclique hypothesis fails.

Construction of H. We construct a pattern graph H as a bipartite graph with vertex set
AU B as follows. Writing [c] := {1,...,c}, we set A := [t + 1] and B := (Axh[h]). We
connect a vertex b = ((a1,j1), .-, (an, jn)) in B to a vertex a in A if a = ay for some £. Set
k:=|A|+|B].
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Corresponds to h vertex
partitions of the hyper-
clique instance

. Corresponds to a choice
host graph G of one vertex from each
of the h partitions

The edge exists if and

only if the endpoints

are compatible, i.e. if

for each hyperedge par-
~~tition that involves both

endpoints, the vertex

choice on one end agrees

with the vertex of the hy-

peredge on the other

Correspohds to a hy-
peredge

.. Corresponds to the set of
hyperedges between its
h defining vertex parti-
tions

Figure 1 A sketch of the reduction we use to prove part 1 of Theorem 1 where h = 3 and ¢t = 4.

Note that this is only a partial sketch of the pattern graph. We use multiedges to signify that for the
endpoints a € A and b = ((a1,J1),--., (an,jn)) € B there exists more than one ¢ such that a = a.

We show that this pattern has a treewidth of ¢, via a well-known characterization of
treewidth as a graph-theoretic game: A graph F has treewidth < ¢ if and only if t + 1
cops can catch® a robber on F [46]. To show the bound on the treewidth of H, initially
place a cop on each vertex of A. No matter on which vertex of B the robber starts, they
are surrounded by cops. Since every vertex in B has h <t <t + 1 neighbors in A, there
must exist some cop which is not adjacent to the robber, so this cop can catch the robber
in a single step. This concludes the proof that the pattern graph H has treewidth t.
Construction of G. Now given a h(t + 1)-partite hypergraph H', i.e. an instance of the
h-uniform k’-HYPERCLIQUE problem for &' := h(t 4 1), we write the vertex set of H' as
UnU...UUpU...UU11 U .. UUsqq,p. Let Ny be the number of vertices vertices
in each partition and ny = O(Ng) the number of vertices overall.
We construct a k-partite graph G as follows. For a in A we set V, := Uy 1 X ... X Uy p.
For b = ((a1,j1), -, (an, jn)) in B, we set V;, := E(H') N (Uy, j, X ... X Uy, j,). This
describes the k parts of the k-partite vertex set V(G). Note that each part has size at
most Ng := NP. Now we construct the edges. For any a in A and b = ((a1, j1), --, (an, jn))
in B with (a,b) in E(H), consider an arbitrary u = (u1,..,u) in V, and v’ = (uf, ..., u},)
in V3. We say that u and u’ are “compatible” if for every ¢ with a;, = a we have uj, = u;,;
in this case we connect u and u’ by an edge. This finishes the construction of G.

3 The game works as follows: The k + 1 cops select their starting vertices in the graph. Then the
robber may choose their starting vertex. The cops can always see the robber and adapt their strategy
accordingly. Similarly, the robber can see the cops. The game now proceeds in steps, where in each
step, one of the cops chooses an arbitrary destination vertex and takes off via helicopter in the direction
of that vertex. While the cop is travelling, the robber sees where they will land and may now move
arbitrarily along edges of the graph, as long as they do not pass through stationary cops. When the
robber has finished moving, the cop lands. The cops win if and only if they are guaranteed to catch the
robber after a finite number of moves, and lose otherwise.
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Correctness. Note that any colored subgraph isomorphism of H in G chooses vertices v,
in V, for all a in A. This corresponds to choosing vertices u; ; in U; ; for all 4 in [t + 1],
Moreover, the edges of a h(t + 1)-hyperclique are in one-to-one correspondence with the
set B. Since for each b in B the colored subgraph isomorphism of H in G needs to choose
a vertex v, in Vj, which corresponds to an edge between certain vertices u; j, we indeed
check that the chosen vertices u; ; form an h-uniform h(t 4+ 1)-hyperclique.

Running Time. Trivially, the construction time and output size are O(N#") (actually, it is
slightly better, but this is not important in this proof sketch), and G has n = O(Ng) =
O(NI) vertices. Now if we can solve SUBGRAPH ISOMORPHISM in time O(nf*17¢), we
solve the h-uniform h(t + 1)-HYPERCLIQUE instance in time O(NZ 4+ (Nk)i+1=¢) =
O(le;(t—&-l)—ha) _ O(Nz(t“)—a/) _ O(n}}zl(t-f—l)—a'). <

This shows part 1 of Theorem 1. Part 2 can be shown by the almost the exact same
proof, except that now we choose the size of A to be t instead of ¢t + 1, and we start with
an ht-hyperclique instead of an h(t 4+ 1)-hyperclique. It can be seen that in this case, the
pattern graph still has treewidth ¢. The third part of the theorem can be seen by simply
taking an instance of (¢ + 1)-CLIQUE and subdividing the edges in the obvious way to make
the graph bipartite.

Let us also quickly mention how the proof of the slightly weaker bounds under SETH,
i.e. Theorem 2, works. The split-and-list technique from [48] allows one to reduce the
Satisfiability problem to HYPERCLIQUE. Using this technique, the following result was shown
in [38, Lemma 9.1].

» Lemma 12 ([38]). Assuming SETH, for any € > 0 there exists h > 3 such that for all
k > h, the h-uniform k-HYPERCLIQUE problem is not in time O(n*~¢).

The SETH result now follows by using essentially the same reduction as above, but we prefix
it by the reduction from SAT to HYPERCLIQUE.

2.2 Lower Bound for Exact Weight Subgraph Isomorphism

We also give lower bounds for the exact weight variant of the SUBGRAPH ISOMORPHISM
problem. In particular, we prove the existence of hard pattern graphs for the bounded-
treewidth EXACT WEIGHT SUBGRAPH ISOMORPHISM problem for any polynomial weight
bound. We give this result for any treewidth which is at least 3, and under the Hyperclique
hypothesis. This is part 1 of Theorem 4.

The exact statement we prove is that for each ¢ > 3, v € Rt and 3 < h < ¢, there exists
a pattern graph of treewidth ¢ such that EXACT WEIGHT SUBGRAPH ISOMORPHISM with
maximum weight W = ©(n?) cannot be solved in time O(n!T'=¢W) unless the h-uniform
Hyperclique hypothesis fails. Again, we show this statement for the colored problem and
transfer the lower bound via Lemma 11.

To do this, we will encode part of a hyperclique instance in the edges of the EXACT
WEIGHT SUBGRAPH ISOMORPHISM problem, and the rest of the instance in the weights. To
do the latter, we need to encode certain equality constraints only via weights. This can be
done using so-called k-average free sets?, which we define below.

4 These k-average-free sets are a tool which are very useful for weighted problems, especially when they
have additive elements. Such problems include k-suM, SUBSET SUM, BIN PACKING, various scheduling
problems, TREE PARTITIONING, MAX-CuT, MAXIMUM/MINIMUM BISECTION, a DOMINATING SET
variant with capacities, and similar [3, 4, 6, 11, 28, 33, 26]. Other uses of k-average-free sets in computer
science include constructions in extremal graph theory, see e.g. [1, 2, 8].
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» Definition 13 (k-average free sets). A set S C Z is called k-average-free if, for any
S1y.+y 81 € S with k' < k, we have s1+...+ s = k' -spry1 if and only if s1 = ... = Spry1.
In other words, the average of s1,...,sp € S is in S if and only if all s; are equal.

We use the following construction for k-average free sets, originally proven in [13], modified
into a more useful version in [6] and formulated in this form in [3].

» Lemma 14. There exists a universal constant ¢ > 0 such that, for all constants € € (0, 1)
and k > 2, a k-average-free set S of size n with S C [0, k%/*n'*¢] can be constructed in time

poly(n).

Let us now prove the statement about EXACT WEIGHT SUBGRAPH ISOMORPHISM. We
will construct an instance that is node-weighted, however this can easily be converted into
an edge-weighted version by moving the weight of each vertex to all of its incident edges.

Proof sketch. Let t > 3,3 < h <t and v € R be given and assume that EXACT WEIGHT
SUBGRAPH ISOMORPHISM can be solved in time O(n'*1=¢W) on instances where the pattern
graph has treewidth ¢ and all weights are bounded by W = ©(n?). We show that the
h-uniform k-hyperclique hypothesis fails for some large enough k.

Construction of H. We construct a pattern graph H as a graph with vertex set (A; UA2)UB
as follows. We set A := [t+1], Ay := [r] (for some r large enough) and B := ((Alu’?f)x[h}).
We connect a vertex b = ((a1,41),.--,(an,Jn)) in B to a vertex a in A; (not in Ag) if
a = ay for some ¢. Set k := |A;| + |A2| + |B|. By almost the same proof as in the
unweighted version, it can be shown that this pattern H has treewidth t.

Grouping partitions. Now let an instance of the h-uniform k’-HYPERCLIQUE problem be
given, and write the vertex set of H' as Uy U...UUj. Let Ny be the number of vertices
vertices in each partition and ny = O(Ng) the number of vertices overall.

We construct the k-partite graph G with at most some number Ng of vertices in each
partition as follows. We will encode a S-fraction of the HYPERCLIQUE instance in the
weights of the final EXACT WEIGHT SUBGRAPH ISOMORPHISM instance, and a (1 — ()-
fraction in the edges, for some (8 chosen appropriately. To do this, we will choose S8 such
that 22 A=K N and then group the sets Uy, ...,Ugy into hr groups and the sets

hr ) Th(t41)
Ugk/41, ..., Uy into h(t +1) groups. Specifically, for each (z,y) € [r] x [h], we create the
1 _
set Uy, = U(Weril)%/H X ... X% U(IHy)%, and for each (z,y) € [t + 1] x [h], we create
2 = ! !
the set Uzﬁy = Uﬁk’+(z(t+1)+y—1) (iaﬁ)lk) 1 X ... X Uﬁk’+(m(t+1)+y) (}];(_ti)lk; .

Vertices of G. Now for each a in A; we set Vo := U, X ... X Ug,h and for each a in Ay we
set V, := 3,1 X ... X Uih. Finally, for each b = ((a1,41),. .-, (an,jn)) in B, where for
each ¢ we have ay € A;,, we set V;, := E(H') N (Uélhj1 X .o X U;Z,jh)' This describes the
k parts of the k-partite vertex set V(G). We choose r large enough so that the maximum
size of each part is Ng := Ng_ﬁ)k//(tﬂ).

Edges of G Now we construct the edges and weights of the graph. Let us start with the
edges. The construction here is basically the same as the construction of the edges in the
unweighted proof in the last section. For each a in Az and b = ((a1,41),- .., (an,jn)) in
B with (a,b) in E(H), consider an arbitrary u = (uq,...,us) in V, and v’ = (uf,...,u})
in V3. We say that u and u’ are “compatible” if for every ¢ with a;, = a we have uj, = u;,;
in this case we connect v and u’ by an edge. This finishes the construction of the edges
of G.
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Weights of G. Now we construct the weights. We want to encode the same edge constraints
as we just encoded for As, but now for A;, and we have to use weights instead of edges.
To do this, we use |B|-average free sets via the construction of Lemma 14. We simplify
the usage in this shortened proof to avoid dealing with too many variables. We use the
lemma to obtain in polynomial time (which we will treat as negligible here) a | B|-average
free set S of size Nf[kl/(hr) such that S C [0, C], where C' = O(Ngk//(hr)) (up to a factor
of (14 ¢) in the exponent, but we will ignore this here for simplicity). From this, we can
construct an arbitrary bijection gg : [Nflk,/(hr)] — 5.

To simplify our construction, we specify a target weight T (instead of the default target
zero). We can easily get rid of this again later by subtracting T from the weights of
all vertices of some set of the partition. The binary representation of T consists of hr
blocks of [2|B|C] bits, indexed by pairs (i,5) € [r] x [h], each containing the binary
representation of |B|C. The block (i, j) represents the group Uil’j. The size of the blocks
is large enough to prevent overflow between the blocks. Note that the maximum weight
W now satisfies log, (W) = ©(hrlog,(2|B|C)) and hence W =~ O(Ngk/).

Let us now actually specify the weights of the vertices, beginning with the vertices
in V, for a € A;. For each (i,j) € [r] x [h], we relabel the elements of each U}; as

{1,.. .,Ngk//(hr)}. Now we define the weight of the vertex V, > u = (uq,...,us) to
have, for each i € [h], the value |B|C — |N(a)| - 0s(u;) in the block (a,i) of its binary
representation. Now we move on to the vertices in V;, for b = ((a1,41),-.., (an,jn)). We
define the weight of the vertex V3, 3 v’ = (uj,...,u}),) to have, for each i € [h] such that

a; € Ay, the value og(u}

K3
All blocks and vertices which have not been assigned a weight yet are assigned a value of

zero. This concludes the construction of G.

) in the block (ay, j;) of its binary representation.

Correctness. Note that any colored subgraph isomorphism of H in G chooses vertices v,
in V, for all @ in A; U A;. This corresponds to choosing vertices u; in U; for each
i € [K']. Moreover, the edges of a k’-hyperclique are in one-to-one correspondence with
the set B. We simply need to show that the choice of hyperclique vertices induced by
the choice of vertices in A; U Ay agrees with the choice of hyperclique edges induced by
the choice of vertices in B. For the vertices in Ao, this is easily seen to be ensured by
the edges. For the vertices in Ay, we need to prove that the weights encode the same
constraint. This, however, is simply the definition of a |B|-average free set: Consider
the block (,7) (where (4, ) € [r] x [h]) in the binary representation of the total weight
of the subgraph. Suppose that for i € A; the vertex V; 3 u = (uq,...,u,) was selected,
and that for each B 3 b = ((a1,41),-.--, (an,jn)) with 3¢ : (as,je) = (i,7) the vertex
Vo 2/ = (u),...,u;) was selected. Then by construction, the total value in the block
(2,7) is the value |B|C — |N(i)|os(u;) (where N (i) is the neighbourhood of ¢ € A;), plus
the value pg(ujp) for all b as above. Note that the latter term has exactly |N(¢)| summands,
hence in order for the value in the block to be equal to |B|C as specified by the target
weight, we must have that the value of pg(u;) is equal to the value of each of the og(uj)
by the definition of | B|-average free sets. Since pg is a bijection, this ensures that the
choice of hyperclique vertices in the sets appearing in the Cartesian product defining Ui{ j

—i.e. U(z‘r+j—1)”“-’,§—‘;’€'+1’ ceey U(ir+j)5—’“’ — agree with the choice of hyperclique edges. This

is true for all ¢, j and hence for each U, for ¢ € [k'].

hr

The other direction is easy to see via a similar, simpler argument. This concludes the
correctness proof.

Running Time. It can be seen that the running time of this reduction is O(N#), up to
the running time of the algorithm for the construction of the | B|-average free set, which
we will ignore here for sake of simplicity. Now suppose we can solve EXACT WEIGHT
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SUBGRAPH ISOMORPHISM in time O(n'*1=¢W). We use the reduction above to convert
a HYPERCLIQUE instance with ng = O(Ng) nodes to an EXACT WEIGHT SUBGRAPH
IsoMORPHISM instance where W ~ @(Ngk,) and n = O(Ng_ﬁ)k//(tﬂ)). Choosing /8
carefully, we get W = ©(NN};); note that we are ignoring some intricacies in the choice of
B that arise when you consider the running time of the algorithm that constructs the
| B|-average free set — the details are available in the full version of this paper. Now via the
algorithm for EXACT WEIGHT SUBGRAPH ISOMORPHISM, we can solve this instance and
hence the original HYPERCLIQUE problem in time O(N?{h+Nglfﬁ)k,/(t+l))(t+176) -Ngk/)
O(NE="y = o(nk=#"). <
It is easy to see that the same proof also rules out algorithms running in time O(n!™1W1=¢).
Similar as with the proof for the unweighted problem, basically the same techniques can be
used to prove the other parts of Theorem 4.

3 Open Problems

In this paper we discussed many different variants of the Subgraph Isomorphism problem.

For some of these variants we leave gaps, which gives rise to several open problems:

1. Can the algorithms for weighted trees be improved? We have shown that some improve-
ments can be made for node-weighted trees (see Theorem 9), but are these optimal?
What about edge-weighted trees?

2. Are there fast algorithms for unweighted Subgraph Isomorphism on graphs of bounded
pathwidth that do not use rectangular matrix multiplication? Can the gap between
exponent w(p — 1) and exponent p be closed? Similar questions apply to the weighted
case; see Theorems 6 and 8.

3. Relatedly, are there good lower bounds for unweighted Subgraph Isomorphism on graphs
of bounded pathwidth? Recall that Lemma 11 does not allow us to transfer our lower
bounds for the colored case to the uncolored case.

We conclude with some more general open problems:

1. Do our algorithms and lower bounds also work for other types of graph homomorphisms,
and for counting the number of solutions? Techniques from [24] seem applicable.

2. In this work we demonstrated the existence of maximally hard patterns for which Subgraph
Isomorphism requires time n*™¥(#)+1=o(1)  Can we classify which (classes of) patterns are
maximally hard?

3. Changing our focus from hard patterns to easy patterns, we can ask: do classes of patterns
of unbounded treewidth exist for which Subgraph Isomorphism can be solved in time
no(tw(H))? Recall that a conditional lower bound rules out n°(tW(H)/legtw(H)) [40)].
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