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Abstract
Genome assembly asks to reconstruct an unknown string from many shorter substrings of it. Even
though it is one of the key problems in Bioinformatics, it is generally lacking major theoretical
advances. Its hardness stems both from practical issues (size and errors of real data), and from the
fact that problem formulations inherently admit multiple solutions. Given these, at their core, most
state-of-the-art assemblers are based on finding non-branching paths (unitigs) in an assembly graph.
While such paths constitute only partial assemblies, they are likely to be correct. More precisely,
if one defines a genome assembly solution as a closed arc-covering walk of the graph, then unitigs
appear in all solutions, being thus safe partial solutions. Until recently, it was open what are all
the safe walks of an assembly graph. Tomescu and Medvedev (RECOMB 2016) characterized all
such safe walks (omnitigs), thus giving the first safe and complete genome assembly algorithm. Even
though omnitig finding was later improved to quadratic time, it remained open whether the crucial
linear-time feature of finding unitigs can be attained with omnitigs.

We answer this question affirmatively, by describing a surprising O(m)-time algorithm to identify
all maximal omnitigs of a graph with n nodes and m arcs, notwithstanding the existence of families
of graphs with Θ(mn) total maximal omnitig size. This is based on the discovery of a family of walks
(macrotigs) with the property that all the non-trivial omnitigs are univocal extensions of subwalks
of a macrotig. This has two consequences: (1) A linear-time output-sensitive algorithm enumerating
all maximal omnitigs. (2) A compact O(m) representation of all maximal omnitigs, which allows,
e.g., for O(m)-time computation of various statistics on them. Our results close a long-standing
theoretical question inspired by practical genome assemblers, originating with the use of unitigs in
1995. We envision our results to be at the core of a reverse transfer from theory to practical and
complete genome assembly programs, as has been the case for other key Bioinformatics problems.
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1 Introduction

Theoretical and practical background of genome assembly. Genome assembly is one of
the flagship problems in Bioinformatics, along with other problems originating in – or highly
motivated by – this field, such as edit distance computation, reconstructing and comparing
phylogenetic trees, text indexing and compression. In genome assembly, we are given a
collection of strings (or reads) and we need to reconstruct the unknown string (the genome)
from which they originate. This is motivated by sequencing technologies that are able to read
either “short” strings (100-250 length, Illumina technology), or “long” strings (10.000-50.000
length, Pacific Biosciences or Oxford Nanopore technologies) in huge amounts from the
genomic sequence(s) in a sample. For example, the SARS-CoV-2 genome was obtained in [58]
from short reads using the MEGAHIT assembler [39].

Other leading Bioinformatics problems have seen significant theoretical progress in major
Computer Science venues, culminating (just to name a few) with both positive results,
see e.g. [17, 57] for phylogeny problems, [22, 6, 34] for text indexing, [23, 7, 35] for text
compression, and negative results, see e.g. [4, 1, 5, 21] for string matching problems. However,
the genome assembly problem is generally lacking major theoretical advances.

One reason for this stems from practice: the huge amount of data (e.g. the 3.1 Billion
characters long human genome is read 50 times over) which impedes slower than linear-
time algorithms, errors of the sequencing technologies (up to 15% for long reads), and
various biases when reading certain genomic regions [47]. Another reason stems from theory:
historically, finding an optimal genome assembly solution is considered NP-hard under several
formulations [49, 33, 32, 43, 46, 29, 48], but, more fundamentally, even if one outputs a 3.1
Billion characters long string, this is likely incorrect, since problem formulations inherently
admit a large number of solutions of such length [36].

Given all these setbacks, most state-of-the-art assemblers, including e.g. MEGAHIT [39]
(for short reads), or wtdbg2 [52] (for long reads), generally employ a very simple and linear-
time strategy, dating back to 1995 [32]. They start by building an assembly graph encoding
the overlaps of the reads, such as a de Bruijn graph [50] or an overlap graph [45] (graphs
are directed in this paper). After some simplifications to this graph to remove practical
artifacts such as errors, at their core they find strings labeling paths whose internal nodes
have in-degree and out-degree equal to 1 (called unitigs), approach dating back to 1995 [32].
That is, they do not output entire genome assemblies, but only shorter strings that are likely
to be present in the sequenced genome, since unitigs do not branch at internal nodes.

Safe and complete algorithms: A theoretical framing of practical genome assembly.
With the aim of enhancing the widely-used practical approach of assembling just unitigs
– as those walks considered to be present in any possible assembly solution – a result in a
major Bioinformatics venue [55] asked what is the “limit” of the correctly reconstructible
information from an assembly graph. Moreover, is all such reconstructible information still
obtainable in linear time, as in the case of the popular unitigs? Variants of this question also
appeared in [27, 8, 46, 53, 37, 9], while other works already considered simple linear-time
generalizations of unitigs [51, 44, 30, 36], without knowing if the “assembly limit” is reached.
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To make this question precise, [55] introduced the following safe and complete framework.
Given a notion of solution to a problem (e.g. a type of walk in a graph), a partial solution
(e.g. some shorter walk in the graph) is called safe if it appears (e.g. is a subwalk) in all
solutions. An algorithm reporting only safe partial solutions is called a safe algorithm.
A safe algorithm reporting all safe partial solutions is called safe and complete. A safe
and complete algorithm outputs all and only what is likely part of the unknown object to
be reconstructed, synthesizing all solutions from the point of view of correctness. Safety
generalizes the existing notion of persistency: a single node or edge was called persistent if
it appears in all solutions [28, 16, 13], for example persistent edges for maximum bipartite
matchings [16]. It also has roots in other Bioinformatics works [56, 14, 24, 59] considering
the aligned symbols appearing in all optimal (and sub-optimal) alignments of two strings.

There are many theoretical formulations of genome assembly as an optimization problem,
e.g. a shortest common superstring of all the reads [49, 33, 32], or some type of shortest
walk covering all nodes or arcs of the assembly graph [51, 43, 44, 31, 29, 48, 46]. However, it
is widely acknowledged [46, 48, 42, 47, 41, 36] that, apart from some being NP-hard, these
formulations are lacking in several aspects, for example they collapse repeated regions of a
genome. At present, given the complexity of the problem, there is no definitive notion of a
“good” genome assembly solution. Therefore, [55] considered as genome assembly solution
any closed arc-covering walk of a graph, where arc-covering means that it passes through
each arc at least once. The main benefit of considering any arc-covering walk is that safe
walks for them are safe also for any possible restriction of such covering walks (e.g. by some
additional optimality criterion1). Put otherwise, safe walks for all arc-covering walks are
more likely to be correct than safe walks for some peculiar type of arc-covering walks.

Prior results on safety in closed arc-covering walks. It is immediate to see that unitigs
are safe walks for closed arc-covering walks. A first safe generalization of unitigs consisted of
those paths whose internal nodes have only out-degree equal to 1 (with no restriction on
their in-degree) [51]. Further, these safe paths have been generalized in [44, 30, 36] to those
partitionable into a prefix whose nodes have in-degree equal to 1, and a suffix whose nodes
have out-degree equal to 1. All safe walks for closed arc-covering walks were characterized
by [55, 54] as being exactly those that are omnitigs, see Definition 1, Figure 1, and Theorem 8.
This leads to the first safe and complete genome assembly algorithm (obtained thus 20 years
after unitigs were first considered), outputting all maximal omnitigs in polynomial time
(maximal omnitigs are those which are not sub-walks of other omnitigs).

▶ Definition 1 (Omnitig). Let W = e0 . . . eℓ be a walk. We say that a non-empty path P is a
j-i forbidden path for W , for some 1 ≤ i ≤ j ≤ ℓ, if the first arc of P has the same tail as
ej and is different from ej, and the last arc of P has the same head as ei−1 and is different
from ei−1. We say that W is an omnitig if for no 1 ≤ i ≤ j ≤ ℓ there exists a j-i forbidden
path for W .

Furthermore, through experiments on “perfect” human read datasets, [55] also showed
that strings labeling omnitigs are about 60% longer on average than unitigs, and contain about
60% more biological content on average. Thus, once other issues of real data (e.g. errors)

1 For example, closed arc-covering walks are a common relaxation of the fundamental notions of closed
Eulerian walk (we now pass through each arc at least once), and of closed Chinese postman walk (i.e. a
closed arc-covering walk of minimum length) [26], which were mentioned in [46] as unsatisfactory models
of genome assembly.
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Figure 1 Walk e0 . . . eℓ is not an omnitig because there is a forbidden path P .

are added to the problem formulation, omnitigs (and the safe walks for such extended
models) have the potential to significantly improve the quality of genome assembly results.
Nevertheless, for this to be possible, one first needs the best possible results for omnitigs
(given e.g. the sheer size of the read datasets), and a full comprehension of them, otherwise,
such extensions are hard to solve efficiently.

Cairo et al. [11] recently proved that the length of all maximal omnitigs of any graph
with n nodes and m arcs is O(nm), and proposed an O(nm)-time algorithm enumerating all
maximal omnitigs. This was also proven to be optimal, in the sense that they constructed
families of graphs where the total length of all maximal omnitigs is Θ(nm). However, it was
left open if it is necessary to pay O(nm) even when the total length of the output is smaller.
Moreover, that algorithm cannot break this barrier, because e.g. O(m)-time traversals have
to be done for O(n) cases.

Our results. Our main result is an O(m)-size representation of all maximal omnitigs2, based
on a careful structural decomposition of the omnitigs of a graph. This is surprising, given
that there are families of graphs with Θ(nm) total length of maximal omnitigs [11].

▶ Theorem 2. Given a strongly connected graph G with n nodes and m arcs, there exists a
O(m)-size representation of all maximal omnitigs, consisting of a set M of walks (maximal
macrotigs) of total length O(n) and a set F of arcs, such that every maximal omnitig is the
univocal extension3 of either a subwalk of a walk in M, or of an arc in F .

Moreover,M, F , and the endpoints of macrotig subwalks univocally extending to maximal
omnitigs can be computed in time O(m).

Since the univocal extension U(W ) of a walk W can be trivially computed in time linear
in the length of U(W ), we immediately get the linear-time output sensitive algorithm:

▶ Corollary 3. Given a strongly connected graph G, it is possible to enumerate all maximal
omnitigs of G in time linear in their total length.

We obtain Theorem 2 using two interesting ingredients. The first is a novel graph structure
(macronodes), obtained after a compression operation of “easy” nodes and arcs (Section 4).
The second is a connection to a recent result by Georgiadis et al. [25] showing that it is
possible to answer in O(1)-time strong connectivity queries under a single arc removal, after
linear-time preprocessing (notice that a forbidden path is defined w.r.t. two arcs to avoid).

Theorem 2 has additional practical implications. First, omnitigs are also representable
in the same (linear) size as the commonly used unitigs. Second, maximal macrotigs enable
various O(m)-time operations on maximal omnitigs (without listing them explicitly), by
pre-computing the univocal extensions from any node, needed in Theorem 2. For example,
given that the number of maximal omnitigs is O(m) [11], this implies the following result:

2 Note that the total length of the maximal omnitigs is at least m, since every arc is an omnitig.
3 The univocal extension U(W ) of a walk W is obtained by appending to W the longest path whose

nodes (except for the last one) have out-degree 1, and prepending to W the longest path whose nodes
(except for the first one) have in-degree 1; see Section 2 for the formal definition.
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▶ Corollary 4. Given a strongly connected graph G with m arcs, it is possible to compute the
lengths of all maximal omnitig in total time O(m).

Corollary 4 leads to a linear-time computation of various statistics about maximal
omnitigs, such as minimum, maximum, and average length (useful e.g. in [15]). One can also
use this to filter out subfamilies of them (e.g. those of length smaller and/or larger than a
given value) before enumerating them explicitly.

Significance of our results. This paper shows that all the strings that can be correctly
assembled from a graph can be obtained in output-sensitive linear time, a time feasible for
being implemented in practical genome assemblers. It closes the issue of finding safe walks
for a fundamental model of genome assembly (any closed arc-covering walk), a long-standing
theoretical question and originating with the use of unitigs in 1995 [32].

This theoretical question is crucial also from the practical point of view: assembly graphs
have the number of nodes and arcs in the order of millions, and yet the total length of the
maximal omnitigs is almost linear in the size of the graph. For example, the compressed (see
Section 4) de Bruijn graph of human chromosome 10 (length 135 million) has 467 thousand
arcs [11, Table 1], and the length of all maximal omnitigs (i.e. their total number of arcs, not
their total string length) is 893 thousand. Moreover, even though this chromosome is only
about 4% of the full human genome, the running time of the quadratic algorithm of [11] on
its compressed de Bruijn graph is about 30 minutes.

We envision a reverse transfer from theory to practical and complete genome assembly
programs, as in other Bioinformatics problems. For example, trivially, safe walks for all closed
arc-covering walks are also safe for more specific types of arc-covering walks. Moreover, while
a genome solution defined as a single closed arc-covering walk does not incorporate several
practical issues of real data, in a follow-up work [10] we show that omnitigs are the basis of
more advanced models handling many practical aspects. For example, to allow more types
of genomes to be assembled, one can define an assembly solution as a set of closed walks
that together cover all arcs [2], which is the case in metagenomic sequencing of bacteria. For
linear chromosomes (as in eukaryotes such as human), or when modeling missing sequencing
coverage, one can analogously consider one, or many, such open walks [54, 55]. Safe walks
for all these models are subsets of omnitigs [2, 10]. Moreover, when modeling sequencing
errors, or mutations present e.g. only in the mother copy of a chromosome (and not in the
father’s copy), one can require some arcs not to be covered by a solution walk, or even to be
“invisible” from the point of view safety. Finding safe walks for such models is also based on
first finding omnitigs-like walks [10].

Notice that such separation between theoretical formulations and their practical embodi-
ments is common for many classical problems in Bioinformatics. For example, computing
edit distance is often replaced with computing edit distance under affine gap costs [18], or
enhanced with various heuristics as in the well-known BLAST aligner [3]. Also text indexes
such as the FM-index [22] are extended in popular read mapping tools (e.g. [40, 38]) with
many heuristics handling errors and mutations in the reads.

Finally, our results show that safe partial solutions enjoy interesting combinatorial
properties, further promoting the persistency and safety frameworks. For real-world problems
admitting multiple solutions, safe and complete algorithms are more pragmatic than the
classical approach of outputting an arbitrary optimal solution. They are also more efficient
than enumerating all, or only the first k-best, solutions [19, 20], because they already
synthesize all that can be correctly reconstructed from the input data.

ICALP 2021



43:6 Genome Assembly, from Practice to Theory

vf1
g1

b1

b2
g3

f3

b3

b4

g′�3
f2 g2

u

ℳu
v

ℳv

ℳv

(a)

vf1 g1

g3

f3

b3

b4

g′�3f2
g2

u

ℳu
v

ℳv

ℳv

(b)

Figure 2 Figure 2a: Given a bivalent node v, the macronode Mv is the subgraph of G induced by
the nodes reaching v with a split-free path (in red), and the nodes reachable from v with a join-free
path (in blue). These two types of nodes induce the two trees of the macronode. By definition,
every arc with endpoints in different macronodes is bivalent (in green, denoted cross-bivalent arcs).
The remaining bivalent arcs have endpoints in the same macronode (in purple, denoted self-bivalent
arcs). Figure 2b: The only omnitig traversing the bivalent node v is f1g2; e.g., by the X-intersection
Property neither f2g2 is an omnitig (b3f3f1 is a forbidden path) nor f1g1 is an omnitig (g2g3b4 is a
forbidden path). Extending the micro-omnitig f1g2 to the right we notice that f1g2g3 is an omnitig
and by the Y-intersection Property f1g2g′

3 is not an omnitig (g3b4 is a forbidden path). Hence, the
only maximal right-micro omnitig is f1g2g3b4, and the only maximal left-micro omnitig is b3f3f1g2.
Merging the two on f1g2, we obtain the maximal microtig b3f3f1g2g3b4.

2 Overview of the proofs

We highlight here our key structural and algorithmic contributions, and give more formal
details in Sections 4 and 5. We start with the minimum terminology needed to understand
this section, and defer the rest of the notation to Section 3.

Terminology. Functions t(·) and h(·) denote the tail node and the head node, respectively,
of an arc or walk. We classify the nodes and arcs of a strongly connected graph as follows
(see Figure 2a): (i) A node v is a join node if its in-degree d−(v) satisfies d−(v) > 1, and a
join-free node otherwise. An arc f is called a join arc if h(f) is a join node, and a join-free
arc otherwise. (ii) A node v is a split node if its out-degree d+(v) satisfies d+(v) > 1, and a
split-free node otherwise. An arc g is called a split arc if t(g) is a split node, and a split-free
arc otherwise. (iii) A node or arc is called bivalent if it is both join and split, and it is called
biunivocal if it is both split-free and join-free. A walk W is split-free (resp., join-free) if
all its arcs are split-free (resp., join-free). Given a walk W , its univocal extension U(W ) is
defined as W −WW +, where W − is the longest join-free path to t(W ) and W + is the longest
split-free path from h(W ) (observe that they are uniquely defined).

Structure. The main structural insight of this paper is that omnitigs enjoy surprisingly
limited freedom, in the sense that any omnitig can be seen as a concatenation of walks in
a very specific set. In order to give the simplest exposition, we first simplify the graph
by contracting biunivocal nodes and arcs. The nodes of the resulting graph can now be
partitioned into macronodes (see Figure 2a and Definition 12), where each macronode Mv is
uniquely identified by a bivalent node v (its center). We can now split the problem by first
finding omnitigs inside each macronode, and then characterizing the ways in which omnitigs
from different macronodes can combine.

We discover a key combinatorial property of how omnitigs can be extended: there are at
most two ways that any omnitig can traverse a macronode center (see also Figure 2b):
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▶ Theorem 5 (X-intersection Property). Let v be a bivalent node. Let f1 ≠ f2 be join arcs
with h(f1) = h(f2) = v; let g1 ̸= g2 be split arcs with t(g1) = t(g2) = v.

(i) If f1g1 and f2g2 are omnitigs, then d+(v) = d−(v) = 2.
(ii) If f1g1 is an omnitig, then there are no omnitigs f1g′ with g′ ̸= g1, nor f ′g1 with

f ′ ̸= f1.

In order to prove the X-intersection Property, we prove an even more fundamental
property: once an omnitig traverses a macronode center, for any node it meets after the
center node, there is at most one way of continuing from that node (Y-intersection Property),
see Figure 2b. The basic intuition is that if there is more than one possibilities, then strong
connectivity creates forbidden paths.

Given an omnitig fg traversing the bivalent node v, we define the maximal right-micro
omnitig as the longest extension fgW in the macronodeMv (see Figure 2b and Definition 14).
The maximal left-micro omnitig is the symmetrical omnitig Wfg. By Theorem 5, there
are at most two maximal right-micro omnitigs and two maximal left-micro omnitigs. The
merging of a maximal left- and right-micro omnitig on fg is called a maximal microtig (see
Figure 2b and Definition 14; notice that a microtig is not necessarily an omnitig). These at
most two maximal microtigs represent “forced tracks” to be followed by omnitigs crossing v.

We now describe how omnitigs can advance from one macronode to another. We prove
that any arc having endpoints in different macronodes is a bivalent arc, and moreover, for
every maximal microtig ending with a bivalent arc b, there is at most one maximal microtig
starting with b. As such, when an omnitig track exits a macronode, there is at most one way
of connecting it with an omnitig track from another macronode. It is natural to merge all
omnitig tracks (i.e. maximal microtigs) on all bivalent arcs between different macronodes, and
thus obtain maximal macrotigs (Definition 17 and Figure 5). The total size of all maximal
macrotigs is O(n) (Theorem 20), and they are a representation of all maximal omnitigs,
except for those that are univocal extensions of the arcs of F , see below and Theorem 21.

Algorithms. Our algorithms first build the set M of maximal macrotigs, and then identify
maximal omnitigs inside them. The set F of arcs univocally extending to the remaining
maximal omnitigs will be the set of bivalent arcs not appearing in M (Theorem 21).

Crucial to the algorithms is an extension primitive deciding what new arc (if any) to
choose when extending an omnitig (recall that the X- and Y-intersection Properties limits the
number of such arcs to one). Suppose we have an omnitig fW , with f a join arc, and we need
to decide if it can be extended with an arc g out-going from h(W ). Naturally, this extension
can be found by checking that there is no forbidden path from t(g) = h(W ). However, this
forbidden path can potentially end in any node of W . Up to this point, [54, 55, 11] need to
do an entire O(m) graph traversal to check if any node of W is reachable by a forbidden
path. We prove here a new key property:

▶ Theorem 6 (Extension Property). Let fW be an omnitig in G, where f is a join arc. Then
fWg is an omnitig if and only if g is the only arc with t(g) = h(W ) such that there exists a
path from h(g) to h(f) in G ∖ f .

Thus, for each arc g with t(g) = h(W ), we can do a single reachability query under one
arc removal: “does h(g) reach h(f) in G ∖ f?” Since the target of the reachability query is
also the head of the arc excluded f , then we can apply an immediate consequence of [25]:

▶ Theorem 7 ([25]). Let G be a strongly connected graph with n nodes and m arcs. After
O(m)-time preprocessing, one can build an O(n)-space data structure that, given a node w

and an arc f , tests in O(1) worst-case time if there is a path from w to h(f) in G ∖ f .

ICALP 2021
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Figure 3 Any maximal omnitig is identified (in solid blue) either by a macrotig interval (from a
join arc f to a split arc g; left), or by a bivalent arc b not appearing in any macrotig (right). The full
maximal omnitig is obtained by univocal extension (dotted blue), extension which may go outside of
the maximal macrotig.

Using the Extension Property and Theorem 7, we can thus pay O(1) time to check each
out-outgoing arc g, before discovering the one (if any) with which to extend fW . In the full
version of this paper we describe how to transform the graph to have constant degree, so
that we pay O(1) per node. This transformation also requires slight changes to the maximal
omnitig enumeration algorithm to maintain the linear-time output sensitive complexity. We
use the Extension Property when building the left- and right-maximal micro omnitigs, and
when identifying maximal omnitigs inside macrotigs, as follows.

Once we have the set M of maximal macrotigs, we scan each macrotig with two pointers,
a left one always on a join arc f , and a right one always on a split arc g (see Figure 3
and Algorithm 2). Both pointers move from left to right in such a way that the subwalk
between them is always an omnitig. The subwalk is grown to the right by moving the right
pointer as long as it remains an omnitig (checked with the Extension Property). When
growing to the right is no longer possible, the omnitig is shrunk from the left by moving the
left pointer. This technique runs in time linear to the total length of the maximal macrotigs,
namely O(n). In Figure 4 we work out all these notions on a concrete example.

Comparison with previous techniques. The algorithm of [55] exhaustively extends an
omnitig with every edge outgoing from its head, as long as the resulting walk remained
an omnitig, and did not use any insights on the structure of omnitigs. The O(nm)-time
algorithm of [11] was obtained using two structural results: there can be only one left-maximal
omnitig ending with a split arc (which we do not use here, since we prove deeper insights
on the structure of omnitigs, e.g. the X- and Y-intersection Properties) and the existence
of an acyclic order between split arcs connected by “simple” omnitigs. In [11], these allow
computation to be memoized when recursively computing the left-maximal omnitig ending
with a given split arc. The two-pointer technique was used also in [2] for a related problem, to
test the safety of intervals of an entire solution. Our surprising discovery of macrotigs allow
for a “small search space” of total size to O(n), and eliminate the need of recursion, while
the Extension Property enables the use of [25], thus the pay of O(1) per omnitig extension,
instead of O(m) as in [54, 55, 11].

3 Basics

In this paper, a graph is a tuple G = (V, E), where V is a finite set of nodes, E is a finite
multi-set of ordered pairs of nodes called arcs. Parallel arcs and self-loops are allowed. For
an arc e ∈ E(G), we denote G∖ e = (V, E ∖ {e}). The reverse graph GR of G is obtained by
reversing the direction of every arc. In the rest of this paper, we assume a fixed strongly
connected graph G = (V, E), with |V | = n and |E| = m ≥ n.

A walk in G is a sequence W = (v0, e1, v1, e2, . . . , vℓ−1, eℓ, vℓ), ℓ ≥ 0, where v0, v1, . . . , vℓ ∈
V , and each ei is an arc from vi−1 to vi. Sometimes we drop the nodes v0, . . . , vℓ of W , and
write W more compactly as e1 . . . eℓ. If an arc e appears in W , we write e ∈ W . We say
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All nodes have in- and out-degree at most 2

(a) Nodes and arcs color-coded as in Figure 2a.

All nodes have in- and out-degree at most 2

(b) Maximal microtigs.

All nodes have in- and out-degree at most 2

(c) Maximal macrotigs.

All nodes have in- and out-degree at most 2

(d) The maximal omnitigs obtained from maximal
macrotigs (univocal extensions are dotted). All
other maximal omnitigs are univocal extensions of
the bivalent arcs not appearing in macrotigs.

Figure 4 A concrete example of the main notions of this paper. In Figures 4b–4d walks have
different colors for visual distinguishability.

that W goes from t(W ) = v0 to h(W ) = vℓ, has length ℓ, contains v1, . . . , vℓ−1 as internal
nodes, starts with e1, ends with eℓ, and contains e2, . . . , eℓ−1 as internal arcs. A walk W is
called empty if it has length zero, and non-empty otherwise. There exists exactly one empty
walk ϵv = (v) for every node v ∈ V , and t(ϵv) = h(ϵv) = v. A walk W is called closed if it
is non-empty and t(W ) = h(W ), otherwise it is open. The concatenation of walks W and
W ′ (with h(W ) = t(W ′)) is denoted WW ′. A walk W = (v0, e1, v1, . . . , eℓ, vℓ) is called a
path when the nodes v0, v1, . . . , vℓ are all distinct, with the exception that vℓ = v0 is allowed
(in which case we have either a closed or an empty path). To simplify notation, we may
denote a walk W = (v0, e1, v1, . . . , eℓ, vℓ) as a sequence of arcs, i.e. W = e1 . . . eℓ. Subwalks
of open walks are defined in the standard manner. For a closed walk W = e0 . . . eℓ−1, we say
that W ′ = e′

0 . . . e′
j is a subwalk of W if there exists i ∈ {0, . . . , ℓ − 1} such that for every

k ∈ {0, . . . , j} it holds that e′
k = e(i+k) mod ℓ.

A closed arc-covering walk (i.e. passing through every arc at least once) exists if and only
if the graph is strongly connected. We are interested in the (safe) walks that are subwalks of
all closed arc-covering walks:

▶ Theorem 8 ([55]). Let G be a strongly connected graph different from a closed path. Then
a walk W is a subwalk of all closed arc-covering walks of G if and only if W is an omnitig.

Observe that W is an omnitig in G if and only if W R is an omnitig in GR. Moreover,
any subwalk of an omnitig is an omnitig. For every arc e, its univocal extension U(e) is an
omnitig. A walk W satisfying a property P is right-maximal (resp., left-maximal) if there
is no walk We (resp., eW ) satisfying P. A walk satisfying P is maximal if it is left- and
right-maximal w.r.t. P . Notice that if G is a closed path, then every walk of G is an omnitig.
As such, it is relevant to find the maximal omnitigs of G only when G is different from a
closed path. Thus, in the rest of this paper our strongly connected graph G is considered to
be different from a closed path, even when we do not mention it explicitly.
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4 Macronodes and macrotigs

We summarize here the key results about macronodes and macrotigs, and refer the reader to
the full version of this paper for the full details and proofs. Unless otherwise stated, we assume
that the input graph is compressed, in the sense that it has no biunivocal nodes and arcs. In
some algorithms we will also require that the graph has constant in- and out-degree. In the
full version of this paper we show how these properties can be guaranteed, by transforming
any strongly connected graph G with m arcs, in time O(m), into a compressed graph of
constant degree and with O(m) nodes and arcs. Observe that in a compressed graph all arcs
are split, join or bivalent. Moreover, the following properties hold.

▶ Observation 9. Let G be a compressed graph. Let f and g be a join and a split arc,
respectively, in G. The following holds:

(i) if fWg is a walk, then W has a node which is a bivalent node;
(ii) if gWf is a walk, then gWf contains a bivalent arc.

▶ Lemma 10. Every maximal omnitig of a compressed graph contains both a join arc and a
split arc. Moreover, it has a bivalent arc or an internal bivalent node.

▶ Lemma 11. Let u be a bivalent node. No omnitig contains u twice as an internal node.

Macronodes. We introduce a natural partition of the nodes of a compressed graph; each
class of such a partition (i.e. a macronode) contains precisely one bivalent node. We identify
each class with the unique bivalent node they contain. All other nodes belonging to the same
class are those that either reach the bivalent node with a join-free path or those that are
reached by the bivalent node with a split-free path (recall Figure 2a).

▶ Definition 12 (Macronode). Let v be a bivalent node of G. Consider the following sets:
R+(v) := {u ∈ V (G) : ∃ a join-free path from v to u};
R−(v) := {u ∈ V (G) : ∃ a split-free path from u to v}.

The subgraph Mv induced by R+(v) ∪R−(v) is called the macronode centered in v.

▶ Lemma 13. In a compressed graph G, the following properties hold:
i) The set {V (Mv) : v is a bivalent node of G} is a partition of V (G).
ii) In a macronodeMv, R+(v) and R−(v) induce two trees with common root v, but oriented

in opposite directions. Except for the common root, the two trees are node-disjoint, all
nodes in R−(v) being join nodes and all nodes in R+(v) being split nodes.

iii) The only arcs with endpoints in two different macronodes are bivalent arcs.

To analyze how omnitigs can traverse a macronode and the degrees of freedom they have
in choosing their directions within the macronode, we introduce the following definitions.
Central-micro omnitigs are the smallest omnitigs that cross the center of a macronode. Left-
and right-micro omnitigs start from a central-micro omnitig and proceed to the periphery of
a macronode. Finally, we combine left- and right-micro omnitigs into microtigs (which are
not necessarily omnitigs themselves); recall Figure 2b.

▶ Definition 14 (Micro omnitigs, microtigs). Let f be a join arc and g be a split arc, such
that fg is an omnitig.

The omnitig fg is called a central-micro omnitig.
An omnitig fgW (Wfg, resp.) that does not contain a bivalent arc as an internal arc is
called a right-micro omnitig (respectively, left-micro omnitig).
A walk W = W1fgW2, where W1fg and fgW2 are, respectively, a left-micro omnitig,
and a right-micro omnitig, is called a microtig.
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Figure 5 Three macronodes Mu, Mv, Mw (as gray areas) with arcs color-coded as in Figure 2a.
Black walks mark their five maximal microtigs: b1g1 . . . b2, bi . . . figi . . . bi+1 (i ∈ {2, 3, 4}), b5 . . . f5g5

(g5 = b1). The maximal macrotig M is obtained by overlapping them on the cross-bivalent arcs
b2, b3, b4, b5, i.e. M = b1 . . . b2 . . . b3 . . . b4 . . . b5 . . . b1. Notice that no arc is contained twice in M ,
with the exception of the self-bivalent arc b1, appearing as the first and last arc of M .

▶ Theorem 15 (Maximal microtigs). The maximal microtigs of any strongly connected graph
G with n nodes, m arcs, and arbitrary degree have total length O(n), and can be computed in
time O(m).

Macrotigs. Macronodes are connected with each other by bivalent arcs (Lemma 13),
but merging microtigs on all possible bivalent arcs may create too complicated structures.
However, this can be avoided by a simple classification of bivalent arcs: those that connect
a macronode with itself (self-bivalent) and those that connect two different macronodes
(cross-bivalent), recall Figure 2a.

▶ Definition 16 (Self-bivalent and cross-bivalent arcs). A bivalent arc b is called a self-bivalent
arc if U(b) goes from a bivalent node to itself. Otherwise it is called a cross-bivalent arc.

A macrotig is now obtained by merging those microtigs from different macronodes which
overlap only on a cross-bivalent arc, see also Figure 5.

▶ Definition 17 (Macrotig). Let W be any walk. W is called a macrotig if
1. W is an microtig, or
2. By writing W = W0b1W1b2 . . . bk−1Wk−1bkWk, where b1, . . . , bk are all the internal

bivalent arcs of W , the following conditions hold:
a. the arcs b1, . . . , bk are all cross-bivalent arcs, and
b. W0b1, b1W1b2, . . . , bk−1Wk−1bk, bkWk are all microtigs.

Our structural results (including Lemmas 18 and 19 below) show that we can construct
all maximal macrotigs by repeatedly joining microtigs overlapping on cross-bivalent arcs, as
long as possible, and obtain Theorem 20.

▶ Lemma 18. For any macrotig W there exists a unique maximal macrotig containing W .

▶ Lemma 19. Let W be a macrotig and let e be an arc of W . If e is self-bivalent, then e

appears at most twice in W (as first or as last arc of W ). Otherwise, e appears only once.

▶ Theorem 20 (Maximal macrotigs). The maximal macrotigs of any strongly connected graph
G with n nodes, m arcs, and arbitrary degree have total length O(n), and can be computed in
time O(m).
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5 Maximal omnitig representation and enumeration

In the algorithms of this section we assume that the graph has constant degree. In the full
version of this paper we explain how to handle the non-constant degree case.

We begin by proving the first part of Theorem 2. Theorem 20 guarantees that the total
length of maximal macrotigs is O(n). Thus, it remains to prove the following lemma, since
since any macrotig is a subwalk of a maximal macrotig (Lemma 18).

▶ Theorem 21 (Maximal omnitig representation). Let W be a maximal omnitig.
i) If W contains an internal bivalent node, then W is of the form U(fW ′g), where f is

the first join arc of W and g ̸= f is the last split arc of W , and W ′ is a possibly empty
walk. Moreover, fW ′g is a macrotig.

ii) Otherwise, W is of the form U(b), where b is a bivalent arc, and b does not belong to
any macrotig.

Proof. To prove i), let u be an internal bivalent node of W , and let fu and gu be, respectively,
the join arc and the split arc of W with h(fu) = u = t(gu); both such fu and gu exist,
since u is an internal node of W . Therefore, since W contains at least fu and gu, let f

and g be, respectively the first join arc and the last split arc of W . Observe that f is
either fu or it appears before fu in W ; likewise, g is either gu or it appears after gu in W .
Thus, f comes before g, and we can write W = W −fW ′gW +, where W ′ is the subwalk
of W , possibly empty, from h(f) to t(g). Therefore, by the maximality of W , we have
W = W −fW ′gW + = U(fW ′g).

To prove that the subwalk fW ′g of W is a macrotig, we prove by induction that any walk
of the form fW ′g, where f is a join arc and g is a split arc, is a macrotig. The induction is
on the length of W ′.

Case 1: W ′ contains no internal bivalent arcs. Since fW ′g contains a bivalent node (Ob-
servation 9), it is of the form fW ′g = W ′

1f ′g′W ′
2, with h(f ′) = t(g′) = u bivalent node.

Notice that W ′
1f ′g′W ′

2 is an microtig and thus it is a macrotig, by definition.
Case 2: fW ′g contains an internal bivalent arc b, i.e. fW ′g = W ′

1bW ′
2, with W ′

1, W ′
2 non

empty. By induction, W ′
1b and bW ′

2 are macrotigs and both contain a bivalent node as
internal node. Suppose b is a self-bivalent arc, then both W ′

1b and bW ′
2 would contain the

same bivalent node u as internal node, contradicting Lemma 11. Thus, b is a cross-bivalent
arc and W ′

1bW ′
2 is also a macrotig, by definition.

For ii), notice that if W contains no internal bivalent node then it contains a unique
bivalent arc b, by Lemma 10 and Observation 9. Thus, by the maximality of W , it holds
that W = U(b). It remains to prove that there is no macrotig containing b.

Suppose for a contradiction that there is a maximal left-micro omnitig M containing b.
By definition, M is of the form bWM fM gM . Notice that WgM is an omnitig, because M is
an omnitig and the arcs of W before b are join-free, so WgM can have no forbidden path.
This contradicts the fact that W is maximal.

Symmetrically, we have that there is no maximal right-micro omnitig containing b. Thus,
by definition, b appears in no microtig, and thus in no macrotig. ◀

▶ Remark 22. The number of maximal omnitigs containing an internal bivalent node is
O(n). This follows by Theorem 21(i), by maximality, and by the fact that the total length
of maximal macrotigs is O(n) (Theorem 20).
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Algorithm 1 Function IsOmnitigRightExtension.

1 Function IsOmnitigRightExtension(G, f, g)
Input : The compressed graph G. A join arc f and a split arc g such that

there exists a walk fWg where fW is an omnitig.
Output : Whether fWg is also an omnitig.

2 S ← {g′ ∈ E(G) | t(g′) = t(g) and there is a path from h(g′) to h(f) in G ∖ f}

Return : True
3 if S = {g} and False otherwise

Next, we are going to prove the second, algorithmic, part of Theorem 2. By Theorem 20
we can compute the maximal macrotigs of G in time O(m). We can trivially obtain in O(m)
time the set F of arcs not appearing in the maximal macrotigs. It remains to show how to
obtain the subwalks of the maximal macrotigs univocally extending to maximal omnitigs.

We first prove an auxiliary lemma needed for the proof of the Extension Property
(Theorem 6).

▶ Lemma 23. Let fW be an omnitig, where f is a join arc. Let P be a path from t(P ) = h(W )
to a node in W , such that the last arc of P is not an arc of fW . Then no internal node of
P is a node of W .

Proof. Consider PW the longest suffix of P , such that no internal node of PW is a node
of W . If PW = P , the lemma trivially holds. Let now W = (u0, e1, u1, e2, . . . , ek, uk). Let
ui = t(PW ) and uj = h(PW ). If i ≥ j, then PW is a forbidden path for fW ,a contradiction.
Hence, assume i < j < k. Let f ′WQ be a closed path. Consider the walk Z = PW ej+1 . . . ekQ.
Notice that ei+1 /∈ Z and f /∈ Z. Thus Z can transformed in a forbidden path for fW , from
ui to h(f). ◀

▶ Theorem 6 (Extension Property). Let fW be an omnitig in G, where f is a join arc. Then
fWg is an omnitig if and only if g is the only arc with t(g) = h(W ) such that there exists a
path from h(g) to h(f) in G ∖ f .

Proof. To prove the existence of an arc g, which satisfies the condition, consider any closed
path Pf ′ in G, where f ′ is an arbitrary sibling join arc of f . Notice that W is a prefix of
Pf ′, since fW is an omnitig, since otherwise one can easily find a forbidden path for the
omnitig fW as a subpath of Pf ′, from the head of the very first arc of Pf ′ that is not in W

to h(f ′). Therefore, let g be the the first arc of Pf ′ after the prefix W , in such a way that
the suffix of Pf ′ starting from h(g) is a path to h(f) in G ∖ f . Moreover, assume g is a split
arc, otherwise the statement trivially holds.

First, assume that there is a g′ sibling split arc of g and a path P from h(g′) to h(f) in
G ∖ f . We prove that there exists a forbidden path for fWg. Let PW be the prefix of P

ending in the first occurrence of a node in W (i.e., no node of PW belongs to W , except for
h(PW )). Notice that g′PW is a forbidden path for the omnitig fWg (it is possible, but not
necessary, that h(PW ) = h(f)).

Second, take any forbidden path P for the omnitig fWg. We prove that there exists a g′

sibling split arc of g and a path from h(g) to h(f) in G∖ f . Notice that t(P ) = h(W ) = t(g),
otherwise P would be a forbidden path for fW . As such, P starts with a split arc g′ ̸= g

and, by Lemma 23, P does not contain f . Thus, the suffix of P from h(g′) is a path in G∖ f

from h(g′) to h(f). ◀
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Algorithm 2 Computing all maximal omnitigs.

Input : The compressed strongly connected graph G of constant degree.
Output : All maximal omnitigs of G.

▷Assume that AllMaximalMacrotigs(G) returns all the maximal macrotigs in G.
▷Recall that U(W ) is the univocal extension of the walk W .

1 B ← {b | b bivalent arc that does not occur in any W ∈ AllMaximalMacrotigs(G)}
2 foreach b ∈ B do output U(b)

3 foreach f∗Xg∗ ∈ AllMaximalMacrotigs(G) do
▷With the notation X[f..g], we refer to the subwalk of f∗Xg∗ starting with the
occurrence of f in f∗X (unique by Lemma 19) and ending with the occurrence
of g in Xg∗ (unique by Lemma 19).

4 f ← f∗, g ← nil, g′ ← first split arc in Xg∗

5 while g′ ̸= nil do
6 while g′ ̸= nil and IsOmnitigRightExtension(f, g′) do

▷Grow X[f..g] to the right as long as possible
7 g ← g′

8 g′ ← next split arc in Xg∗ after g

▷X[f..g] cannot be grown to the right anymore
9 output U(X[f..g])

10 while g′ ̸= nil and not IsOmnitigRightExtension(f, g′) do
▷Shrink X[f..g] from the left until it can be grown to the right again

11 f ← next join arc in f∗X after f

To describe the algorithm that identifies all maximal omnitigs (Algorithm 2), we first intro-
duce an auxiliary procedure (Algorithm 1), which uses the Extension Property (Theorem 7)
and Theorem 6 to find the unique possible extension of an omnitig.

▶ Corollary 24. Algorithm 1 is correct. Assuming that the graph has constant degree, we can
preprocess it in time O(m + n) time, so that Algorithm 1 runs in constant time.

Maximal omnitigs are identified with a two-pointer scan of maximal macrotigs (Algo-
rithm 2): a left pointer always on a join arc f and a right pointer always on a split arc g,
recall Figure 3. For completeness, Algorithm 2 also outputs the maximal omnitigs.

▶ Theorem 25 (Maximal omnitig enumeration). Algorithm 2 is correct and, if the compressed
graph has constant degree, it runs in time linear in the size of the graph and of its output.

Proof. By Theorem 21, any maximal omnitig W is either of the form U(fW ′g) (where fW ′g

is a macrotig, and thus also a subwalk of a maximal macrotig, by Lemma 18), or of the form
W = U(b), where b is a bivalent arc not appearing in any macrotig. In the latter case, such
omnitigs are outputted in Line 2. In the former case, it remains to prove that the external
while cycle outputs all the maximal omnitigs of the form U(fW ′g) where fW ′g is contained
in a maximal macrotig f∗Xg∗. At the beginning of the first iteration, W = U(X[f..g′]) is
left-maximal since f = f∗. The first internal while cycle ensures that W = U(X[f..g]) is also
right-maximal, at which point it is printed in output. Then, the second internal while cycle
ensures that W = U(X[f..g′]) is a left-maximal omnitig, and the external cycle repeats.
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For the running time analysis, note that AllMaximalMacrotigs(G) runs in O(m) time,
by Theorem 20. Each iteration of the foreach cycle takes time linear in the total size of
the maximal macrotig X and of its output (by Corollary 24), and that the total size of all
maximal macrotigs is linear, by Theorem 20. ◀
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