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—— Abstract

Lifting arguments show that the complexity of a function in one model is essentially that of a related
function (often the composition of the original function with a small function called a gadget) in
a more powerful model. Lifting has been used to prove strong lower bounds in communication
complexity, proof complexity, circuit complexity and many other areas.

We present a lifting construction for constant depth unbounded fan-in circuits. Given a function
f, we construct a function g, so that the depth d+ 1 circuit complexity of g, with a certain restriction
on bottom fan-in, is controlled by the depth d circuit complexity of f, with the same restriction.
The function g is defined as f composed with a parity function. With some quantitative losses,
average-case and general depth-d circuit complexity can be reduced to circuit complexity with this
bottom fan-in restriction. As a consequence, an algorithm to approximate the depth d (for any d > 3)
circuit complexity of given (truth tables of) Boolean functions yields an algorithm for approximating
the depth 3 circuit complexity of functions, i.e., there are quasi-polynomial time mapping reductions
between various gap-versions of AC’-MCSP. Our lifting results rely on a blockwise switching lemma
that may be of independent interest.

We also show some barriers on improving the efficiency of our reductions: such improvements
would yield either surprisingly efficient algorithms for MCSP or stronger than known AC® circuit
lower bounds.
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Lifting for Constant-Depth Circuits and Applications to MCSP

1 Introduction

Determining the circuit complexity of a given Boolean function (presented by its truth table)
is a fundamental algorithmic problem with a long history. One can view the whole area of
circuit synthesis as consisting of variants of this problem. Historically, this is an apparently
intractable search problem that motivated early thought on the P vs. NP problem; both
Karp [21] and Levin [30] were thinking about this problem. It is also a fundamental problem
from the point of view of computational complexity, where its complexity in different models
has been related to cryptography, learning theory, derandomization, and circuit lower bounds.

Its decision version, known as the Minimum Circuit Size Problem (MCSP), asks to decide
for a given truth table of a function f and a parameter s whether there is a circuit with at
most s gates computing the function f. The high-level overview is that while any algorithmic
improvement for MCSP would have dramatic consequences, thus making MCSP very likely
to be extremely difficult, there are also many barriers to showing that MCSP is NP-complete
20, 24, 17, 5, 16, 4, 15, 29].

Intuitively, both algorithms for MCSP and completeness results for MCSP would require
a better understanding of circuits, and in particular, would seem to be connected to proving
lower bounds for circuit complexity. We could then hope to understand variants of MCSP
where we restrict the class of circuits considered. However, MCSP remains mysterious even
for the best understood circuit classes, such as constant depth unbounded fan-in circuits,
where strong lower bounds are known. One aspect that adds to the mystery is that there
is no known general relation between the minimum circuit size problems for various circuit
classes, even when one class is stronger than the other, or even when they are almost identical
in computational power.

Recently, Ilango [18] made break-through progress by showing NP-completeness for the
constant-depth formula size version of MCSP under randomized quasi-polynomial time
Turing reductions. He used a lifting argument to reduce the depth d formula complexity of a
function f to the depth d + 1 formula complexity of a related function f’. Lifting arguments
show that the complexity of a function in one model is essentially that of a related function
(often the composition of the original function with a small function called a gadget) in a
more powerful model. Lifting has been used to prove strong lower bounds in communication
complexity, proof complexity, circuit complexity and many other areas [26, 12, 25, 10]. As
in the work of Ilango, lifting results can also be viewed as a reduction from the problem of
computing the complexity of functions in the first model to that in the second model.

This intriguing result also raises a number of questions. In particular, what is the strength
of lifting arguments as reductions between MCSP variants? Are the restrictions in Ilango’s
argument (formulas rather than circuits, randomization, quasi-polynomial time, and Turing
rather than mapping) essential, or can at least some of these be eliminated? How general is
the lifting technique, i.e., could there be natural reductions between these problems that do
not use lifting? Our work is a first step towards answering some of these questions.

1.1 Our Results

To answer these questions, we present a lifting construction for constant depth unbounded
fan-in circuits that given a function f, constructs a function g, so that the depth d + 1
complexity of g is controlled by the depth d complexity of f. Our construction is very simple:
g is f composed with a suitable sized parity function. Given that there are strong constant
depth lower bounds using the properties of the parity function, the form of our construction
is quite natural (and can be traced back to the classical Andreev function construction [6]).
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However, converting this intuition into a formal lifting theorem is delicate. First, tight lifting
for this construction seems to require that we look at circuits with restricted bottom gate
fan-in, rather than general circuits. Even with this restriction, we need to get both lower
bounds and upper bounds on the complexity of the constructed function g, that are very
close together. So we need to take extra care for both parts of the argument. In particular,
for the upper bound, it is not sufficient to compose the circuit for f with an optimal depth 2
circuit for the parity; instead, we show that the bottom level of the circuit for f applied to
parities has a relatively small depth 2 circuit. For the lower bound, we need a variant of the
classical Switching Lemma [13], because we cannot afford to have even a small probability
that an input to f is removed by the restriction. Our Switching Lemma variant (Lemma 10)
is actually both as easy or easier to prove than the standard one, and implies the standard
switching lemma, so could have independent pedagogical value.

Our main lifting theorem (Theorem 18) shows that if a Boolean function f: {0,1}" —
{0, 1} is computable by a size s depth d + 1 circuit with bottom gate fan-in at most log s
(we term such circuits to be of depth d + 1/2), then the new “lifted” function g = f o @, (f
composed with parity on ¢ < n inputs) will have its depth ((d 4+ 1) 4 1/2) circuit complexity

1/2 and s8.

sandwiched between s

We apply this lifting theorem to give reductions between approximately computing the
constant-depth circuit complexity of a given function at depth d and any higher constant
depth d’. Because our lifting theorems control the circuit complexity only approximately,
we phrase these reductions as reductions between gap-versions of MCSP; these are promise
problems to distinguish between functions of circuit complexity at most sy.s and of circuit
complexity greater than s,,, for some parameters syes < Spo-

We first observe that the restriction on circuits we have in our lifting theorem does not
change their average-case complexity substantially. This gives a reduction from small depth
“tolerant” gap-MCSP to tolerant gap-MCSP for larger depths.

Also, by giving a non-trivial size/bottom fan-in trade-off for constant depth circuits,
loosely based on the size-width trade-offs in proof complexity [8], we show that hardness
for approximation of MCSP for weakly exponential sizes at one depth can be translated to
similar hardness for higher depths.

Since the input to MCSP is the entire truth table of the function, the operation we give
yields a quasi-polynomial, rather than polynomial time reduction, between MCSP for smaller
depths and larger. Under a suitable assumption about the difficulty of MCSP, we show that
any natural (in the sense of [20]) polynomial time reduction would either implicitly contain a
stronger lifting theorem or yield a subexponential-time algorithm for small-depth MCSP.

Finally, we note that our lifting results are a step towards proving the NP-completeness
of ACS—MCSP for any constant depth d > 3: one just needs to prove that depth 3 circuit

complexity is NP-hard to approximate to within the factors needed by our lifting theorems.

1.2 Related Work

The most closely related to our work is the recent result by Ilango [18] that there is a
quasi-polytime randomized Turing reduction from the ACS minimum formula size problem
to the ACY 11 minimum formula size problem. The main theorem used for this reduction is
a kind of lifting theorem, where for any f and a sufficiently hard to compute g relative to
f, the ACg 1 formula complexity of f A g is close to the ACg formula complexity of f plus
the ACg 41 formula complexity of g. With this, they were able to show that AC® minimum
formula size problem is NP-hard under such reductions. Their proof crucially relied on the
model being formulas, whereas our work gives similar depth-increasing reductions for circuits,
along with some barriers to improving these reductions.

44:3
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Khot and Saket [22] proved essentially optimal hardness of approximation for DNF-
GapMCSP, under the assumption that NP ¢ QuasiP, via a connection shown by Feldman [11]
between the gap problem and a hypercube covering problem. Under this same assumption,
Hirahara, Oliveira, and Santhanam [15] showed that DNF o MOD,,,-GapMCSP was hard for
O(logn) gaps. Both of these gap problems are known to be easy for O(n) gaps [9, 15]. These
results rely on the existing geometric characterization of the classes in question, the former
being a union of subcubes, the latter a union of affine subspaces. For general fixed-depth
circuits, we no longer have these characterizations; the bottom levels, being CNFs or DNFs,
can represent any subset of the hypercube.

Allender and Hirahara [4] show that under modest cryptographic assumptions (the
existence of a one-way function), GapMCSP for general circuits and N'~°(1) gaps is NP-
intermediate. Their arguments depend heavily on being able to compose functions to large
depths. See a recent survey by Allender [1] for more on MCSP-related results.

Remainder of the paper. We give basic definitions and prove our blockwise switching
lemma in Section 2. We prove our lifting theorem for the worst-case AC? circuit complexity
in Section 3, and for the average-case AC® circuit complexity in Section 4. We discuss the
barriers to improving our lifting reductions in Section 5, and state some open questions in
Section 6.

2 Preliminaries

2.1 General

» Definition 1 (Boolean function composition). The composition of boolean functions f :
{0,1}"™ = {0,1} and g : {0,1}"™ — {0, 1} s the function fog:{0,1}" — {0,1} obtained
by dividing the input z into n consecutive blocks z1, ..., z, of length m, applying g to each
block, and then computing f(g(z1),9(22),...,9(zn)).

» Definition 2 (Time ¢(n) many-one reductions). We say that A <!, B if there is a time
t = t(n)-computable function g: {0,1}"* — {0,1}" such that v € A < f(x) € B. We
denote the polynomial t(n) = n°® by poly, and quasipolynomial t(n) = p(log ) by qpoly.

2.2 Complexity Measures

We denote the set of n-input Boolean functions by JF,,, and the set of all Boolean functions by
F. A complexity measure is a function A : F — N that maps Boolean functions to the natural
numbers, quantifying some aspect of their complexity relative to a concrete computational
model. The most basic such quantity is number of gates in a circuit C, denoted by |C|. We
assume every circuit has at least one gate for each input bit.

» Definition 3 (Constant-Depth Alternating Circuits: ACY}). The depth-d alternating circuit
complexity of f, denoted ACg(f), is the minimum number of gates in any unbounded-fanin
circuit computing f where gates are from the set {A\,V,—}, layers alternate, and the depth is
at most d.

» Definition 4 (Bounded Bottom-Fanin Alternating Circuits: AC3+1/2). The bounded bottom
fan-in depth-d alternating circuit complexity of f, denoted ACS i /2( f), is the minimum
number s of gates in any depth-d + 1 circuit computing f with bottom fan-in at most logs.
Equivalently, it is the minimum over all depth-d+1 circuits C' computing f of max{|C|,2¥¢},
where we denotes the bottom fan-in of C.
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We measure average-case complexity by expanding what counts as “computing” f.

» Definition 5 (Tolerance Operator: /A\) Let A be a complexity measure. Denote by dist(f, )
the Hamming ball of radius € - 2™ around the truth-table of f. The e-relaxation of A is

A[E] = minfzedist(fje) A(f/)

2.3 Meta-Complexity Problems

Every meta-complexity problem is defined relative to a complexity measure.
» Definition 6 (MCSP). For a complexity measure A, A-MCSP = {(f,s) | A(f) < s}.

» Definition 7 (GapMCSP). For a complexity measure A, A-GapMCSP, [Sycs, Sno| @s the
following promise problem, where f, denotes an n-variate Boolean function:

Y= {fn | A(fn) < Syes} and N = {fn | A(fn) > Sno}

» Definition 8 (Tolerant GapMCSP). For a complexity measure A, /A\[el, €2]-GapMCSP,, [Syes, Sno)
1s the following promise problem:

Y ={ful Alea))(fa) < syest  and N = {fa | (Ale2])(fu) > 500}

2.4 Blockwise Switching Lemma

We will need a strengthening of Hastad’s Switching Lemma [13] for the case of structured
random restrictions that leave exactly one variable unset in every block of variables.

» Definition 9 (Blockwise Restrictions, B%). A binary string of length n - { can naturally be
divided into n consecutive “blocks” of £ bits each. Variables {y; ; : i € [n], j € [{]} index
into these strings. Denote by BY the set of all restrictions p that place exactly one x in
each block of an n-block, £-block-size string. Formally, we have p: [n] x [k] = {0,1,%} and
Vi € [n] 3y € [k] such that p(i,j) = *.

» Lemma 10 (Blockwise Switching Lemma). Let ¢ be a k-CNF on n - £ variables. For any
$2>0, Prpope [p I, cannot be expressed as an 2°-term s-DNF] < (STk)s.

» Remark 11. While the proof of Lemma 10 is actually slightly simpler than that of the
standard Switching Lemma [27, 7], this Blockwise Switching Lemma implies the standard
Switching Lemma (as stated in [7]). A uniformly random subset of pn out of n variables
can be chosen as follows: Randomly uniformly permute the n variables, then partition them
into pn consecutive disjoint blocks of size 1/p each, and, finally, randomly uniformly choose
exactly one variable from each of the pn blocks. For each fixed permutation of n variables,
Lemma 10 applies with £ = 1/p. We get that the probability that a given k-CNF fails to
simplify to an s-DNF when hit with a random restriction that leaves exactly pn variables
unset is upper-bounded by (8pk)*.

» Remark 12. Our blockwise restrictions are different from Hastad’s blockwise random
restrictions used in the context of the AC” depth hierarchy theorem [13] (later improved
to the average-case depth hierarchy theorem in [14]). Hastad’s blockwise restrictions were
designed to preserve the structure of Sipser’s function; ours will allow us to recover a circuit
for f from a higher-depth circuit for the composition f o @, of f with parities over disjoint
blocks of ¢ variables, for any Boolean function f. Because of this, the two random restriction
distributions are very different, and the Switching Lemmas that result are quantitatively
quite different.

We prove the Switching Lemma (Lemma 10) below, via a modification of the
“compression”-based proof of the Switching Lemma due to Razborov [27, 7].

44:5
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Canonical Decision Trees & Notation

We write assignments to a set of variables {z;|i € [n]} as functions « : [n] — {0,1}. A k-CNF
o(x1,...,2y,) is a conjunction of m clauses, where each clause is a disjunction over at most
k literals. A Decision Tree is a binary tree where nodes are labeled by variables x1, ..., x,,
and leaves and edges are labeled by constants {0, 1}.

To evaluate a Decision Tree on an assignment «, begin at the root, labeled by some
x;. Move down the edge labeled by «(i). Repeat until you arrive at a leaf and report the
constant labeling that leaf as the value of the tree.

Given a k-CNF ¢(z1,...,x,) = C1 A--- A C,, we can create a Canonical Decision
Tree. Fix a lexical ordering on variables and use it to sort and de-duplicate clauses; let
i € [m] index the clauses of ¢ in this sorted order. We define CDT(¢) recursively:

Transform Cy € ¢ to a depth < k tree T' querying all variables of C in lexical order.
For each branch b of T, follow b to induce a partial assignment ay; set oy <— Simplify
o/ap. If @y is empty, terminate b with leaf labeled 1; if ¢y is falsified, terminate b
with leaf labeled 0; otherwise, if ¢; is undetermined, extend b with CDT(¢y).

A restriction is a partial assignment: a map p : [n] = {0,1,%}. The result of applying a
restriction to a Boolean function f is written f [, where we substitute each occurrence of x;
by p(i) for every p(i) # x. We will need to define restrictions that extend other restrictions.
Let Ep(p) denote the set of restrictions that are identical to p, except for replacing D star
locations with constants. Let £(p) denote the set of restrictions that replace all x-locations
of p with constants. We will be concerned with the blockwise restrictions of Definition 9.

Coding and Decoding Large-Depth Restrictions

Suppose all we know about p is that it produces a large-depth canonical decision tree when
applied to . We can witness this with some “long” path o through the tree. Our code
will consist of a restriction p. that extends p and a short bitstring “hint” that allows us to
implicitly navigate “down” a long path of the CDT and guess p by un-setting variables of p..

Algorithm 1 ENC.

Let o be a long path (> depth D) through T
foreach clause along o, C7 do

foreach variable n;; appearing in C7 do
record the following hint: begin
7;; as an index into CY (log k bits);
Assignment to n;; along o (single bit);
Is this the last variable queried in C¢? (single bit);

Record 7; as an assignment to 7; that falsifies C7;
pC:poTlo...oTD
return p. < p. completed to a full assignment uniformly at random, all hints

> Claim 13 (Decoding from ENC output). Suppose p € B, fails to simplify a particular k-CNF
.50 hat CDT(z 1) D. Then, Pr, i DE0(7) =51 = ()

Proof of Claim 13. Fix p € BY and suppose T = CDT(¢p [,) has depth > D. Let o be a
witnessing path of length at least D through 7. We'll require some notation; denote by C7
the ith clause traversed along the path o, in the sense that the recursive CDT construction
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Algorithm 2 DEC.

Initialize: p; < pc =pomo---o7p and i+ 1
fori=1to D do

Simplify @i [p, ;
Find first falsified clause of ¢; = C7;

77
Read hint to find 7; and o; (stop-bit tells you when to stop).;
pi+1 < pi with 7; replaced by o; (so p;41 =po00o100;,-100,0Tit1...7TD)
return pp with o1 o...0p unset, and x’s guessed uniformly at random for all other

blocks

worked on clause C' to produce that section of the decision tree. Note, this may well be
smaller than m, due to simplifications applied during construction of the CDT. Further, let
o; be the section of o that traverses CY and let n; be the variables queried along o;. We can
think of o; as a sequence of assignments to these variables.

Now, consider the operation of DEC on j. ~ ENC(p). First observe that no clauses of ¢
were falsified by p alone, by our assumption that CDT(¢ [,) > D — a falsified clause would
give a depth-1 decision tree with a single 0 leaf. Therefore, any falsified clause is due to
variables set by some 7; or a randomly set variable.

Because the CDT is constructed in lexical-clause-order and ENC follows this order, the
first falsified clause of ¢ [, must be C7. We wish to recover which variables 71 set; the trick

is that now we know they must reside in a uniquely identified clause of at most k variables.

So, we spend log k bits of the hint per variable to name which variables of C{ were along o
and thus set in 7.

Iterating this argument, we see that lexical ordering of the canonical decision tree ensures
recovery of D * locations of p. So, after running the main loop of DEC on p. we have a
candidate that matches p exactly in D blocks. For each remaining block, DEC will simply
guess at random which variable in the block was a * in p. Each block has ¢ bits, so we have
a (1/¢) chance of guessing correctly — that is, in agreement with the original location of the
% in p. The number of blocks that must be guessed (instead of recovered using deterministic
decoding, DEC) is (n — D). Every guess must be correct to successfully decode p. This gives
the claimed probability of decoding. <

Given instead a random completion p, of blockwise restriction p and a random hint h,, can
any algorithm decode p? We can upper bound this probability.

> Claim 14 (Decoding from random information). For any algorithm A, for every blockwise
restriction p, Pr, wg(p[A(pr, hr) = p] < (3)".

Proof of Claim 14. The hint h, is clearly useless, because it is a random string. Furthermore,
the random variables p, and p are conditionally independent, given that p, is a randomly
sampled completion of p. This means that observing p, provides no information regarding
the x-locations of p. Therefore, no algorithm can do better than to randomly guess which
location, in each block, was a star, for every block of the received p,. There are n blocks of ¢
bits each and every guess must be correct, for the overall probability (1/¢)™. N

Completing the proof

We are now ready to prove Lemma 10, re-stated below in a more general form.

44:7
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» Lemma 15 (Blockwise Switching Lemma). Let ¢ be a k-CNF. Pick p from B, uniformly
at random. Then Pr[CDT(¢ [,) > D] < (%’“)D.

Proof. We can lower-bound the probability of decoding from random completion p,.: if we
are lucky enough that the randomly sampled completion agrees with p. in the “special”
blocks set by ENC, then we can significantly narrow down the number of blocks whose %
must be guessed at random! That is, the non-trivial probability of recovery for DEC can be
exploited. Formally,

1 n
(() > Pr[DEC(p;, hr) = p] (by Claim 14)
> Pr[CDT(¢ [,) > D] x Pr[h, = h] x Pr[p, extends p.| x Pr[DEC decodes % ’s]

Taking each event in turn:

1. || = D(log(k) +2) so there are (4k)P possible strings. Flipping h,. uniformly at random,
Pr[h, = h] = (4k)~P.

2. To extend p,, the randomly chosen p, must agree in D locations. One of these settings is
correct, so Pr[p, extends p.] = 27P7.

3. Given a correct hint and randomly completed p., the probability of DEC recovering p is
(1) by Claim 13.

Plugging in, we get

1 " 1 (n—D)
(g) > Pr[CDT(p [,) > D] x (4k)™P x 277 x (f) :
The proof of the lemma follows. |

3 Constant-Depth GapMCSP Reductions

The focus of this section is “hardness lifting” for circuits of depth (d 4 1) to circuits of depth
(d + 2), and its applications to GapMCSP for the respective classes. Theorem 18 shows how
to lift hardness for bounded-fan-in ACY circuits from depth d to depth d + 1 (also bounded
fan-in). Here, a function of a not much larger size yet higher depth is constructed by replacing
input variables of the original function by disjoint relatively small parities. This theorem is
then applied to reduce GapMCSP for ACS circuits to GapMCSP for ACgH circuits.

The reduction proceeds in three steps, with the middle step potentially repeated multiple
times for a larger depth increase. The first step converts unbounded bottom fan-in circuits
of depth (d + 1) to bounded (by log of the circuit size) fan-in circuits of the same depth, at
the cost of increasing the size from s to 20(V 71087 1085). g6 Corollary 17. This rebalancing
only needs to be done once.

The second step, which relies on the hardness lifting theorem, is the quasi-polynomial time
reduction from GapMCSP for bounded bottom fan-in circuits of depth (d+ 1), to GapMCSP
for bounded bottom fan-in circuits of depth (d 4+ 2). The quasi-polynomial running time
of this reduction comes from the blow-up in the size of the output truth table of the new
function. Then, we show that for this setting GapMCSP for depth d + 1 circuits reduces to
GapMCSP for depth d + 2 circuits (both bounded bottom fan-in), with a small loss in the
gap size. See Theorem 19 for the exact statement.

The last step is a polytime reduction from GapMCSP for bounded bottom fan-in circuits
of depth (d + 2), to GapMCSP for unbounded bottom fan-in circuits of the same depth; see
Theorem 21.
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3.1 Depthd—+1tod+1/2

» Lemma 16 (Fanin vs Size Tradeoff). For any d > 3, let C be any depth-d size-s circuit
over n inputs. Then, for any w > 1, there is an equivalent depth-d circuit C' with bottom
fan-in at most w, and the size at most s(4nlogn)/w

Proof. Assume WLOG that all the bottom gates of C' are disjunctions. We will recursively
define a decision tree T such that each leaf ¢ is associated with a restriction py resulting in
C I ,, having bottom fan-in at most w.

Initially, T consists of a single leaf node corresponding to the empty restriction. While
there is a leaf v in 1" corresponding to a restriction p such that C' [, has some nonempty set
S of bottom gates of fan-in greater than w, do the following. Let ¢t = |S| < s. Let z be the
literal that occurs in the most gates of S. Since there are more than tw literal occurrences
among the gates in S and there are 2n literals, z must appear in more than (tw)/(2n) bottom
gates. Branch on z, with the left child v; of v corresponding to z = 1, and the right child vy
to z = 0. Note that the restriction corresponding to v; satisfies all bottom gates containing
z, and the restriction corresponding to vy reduces their fan-in by 1.

Every left branching we take in the decision tree results in ¢ shrinking by more than
a factor (1 — 2%) So after k left branchings, there are fewer than ¢ (1 — %)k large fan-in
gates left. Setting k = (2n/w)ln s, we have that after k left branchings there are no large
fan-in gates left. If k > n/2 (i.e., w < 41Ins), then we can use the trivial upper bound 2" on
the size of T'; note that, in this case, 2" < 247 (In5)/w a5 required.

Otherwise, for k& < n/2, we can upper-bound the size of T" as follows. Since each branch
of T is of length at most n, and it may contain at most k left branchings, we get that the
size of T is at most

k
n n ne\k we \k 3nlogn
<. <k (™) <. ( ) < 9(L5)klog(w/Ins) L guiesn
Z(r) (k) (k) - 2Ins/ — =7

r=0

where for the last inequality we used the definition of k¥ and the bound (w/Ins) < w < n.

Suppose without loss of generality that the top gate of C is a disjunction, i.e., C' =
Vi\jgij- We can rewrite C(z) as Vguyes ser (8(2,p0) AC [, (2)), where, for a fixed
restriction py, the formula ¢(x, py) indicates whether x is consistent with p, (i.e., whether x
ends up at leaf ¢ of our decision tree T'). It is easy to see that ¢(x, ps) can be written as a
conjunction of at most n literals.

As written, the circuit above is a depth-(d + 2) size at most (1 + |T| 4+ |T| - s) circuit
with fan-in at most w. By distributivity, we can rewrite each ¢(z,p) A C [,, (z) as
V., ((b(x,pg) AN (Gig Toe (gc))) . Plugging this into (3.1), we obtain a depth-d circuit C’
with fan-in at most w, computing the same function as C, and the size of C’ is at most
IT| - s < s4nlogn)/w ag required. <

» Corollary 17 (Depth (d+ 1) — (d + 1/2)). For any d > 2, n, and Syes, Sno Such that

log? (8n0/4)

o We have

log syes <
ACy, | -GapMCSP, [sycs, Sno) <P2Y AC(, . ),-GapMCSP, [24Vrlosm(oasues) g ]

with the identity functions as a reduction.

Proof. The “NO—NO” case is immediate: if f: {0,1}" — {0,1} doesn’t have size-$,,
circuits with no restriction on the bottom fan-in, then f doesn’t have size-s,, circuits with
restricted bottom fan-in.
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For the “YES—YES” case, we apply Lemma 16 to a depth-(d + 1) size-s,s circuit for f,
with w = y/n(logn)(log syes). This results in a circuit for f of size at most 2V n(logn)(log syes)
with bottom fan-in at most /n(log n)(log syes)- <

3.2 Depthd+1/2to (d+ 1)+ 1/

» Theorem 18 (Hardness lifting). Let f have AC2+1/2 circuit complezity s. Fiz s > 0. Then
there is a function f' onn’ =mn-16log sq inputs with AC(()d+1)+1/2 circuit complezity s’ where

s’ < 2s2V16logslosso, TGToasTogsg. Moreover, if so < \/s/3, then sy < .

Proof. The construction is as follows: given the truth table of f: {0,1}" — {0,1}, output
the truth table of f/ = f o @, for £ = 16log so. This takes time 27¢ = N16logso < NO(logN)
quasi-polynomial in N since sg < N. We argue the correctness next.

Bounding s’ from below. Note that the parameter £ must be sufficiently larger than log s
so that we can apply the Blockwise Switching Lemma to a depth-(d 4 2) size-sq circuit with
bottom fan-in log so that presumably computes f o @, to obtain a depth-(d+ 1) size-s circuit
with bottom fan-in log s that computes f. We prove that if f’ has a AC(()d+1)+1/2 of size s,
then f has a AC2+1/2 circuit of size s < 3(sg)2.

Suppose f o @y has a depth-(d + 2) circuit C’ of size sg and bottom fan-in at most log so.
We shall hit ¢’ with a blockwise random restriction p, where the blocks are the inputs to
each @,. Since exactly one bit is left unset in each block, C’ |, computes f with some of the
input bits potentially negated. For C’ [, to simplify to a depth-(d + 1) circuit with bottom
fan-in at most k < log(3s3) < log s, we need to argue that there exists a blockwise restriction
p which makes every depth-2 bottom circuit of C’ into a decision tree of depth at most k.

k
By the Blockwise Switching Lemma (Lemma 10), this is implied if s (81(’%) < 1, which

is equivalent to 2!°¢%0=% < 1 for our choice of £ = 16logsg. Thus, setting k = logsg + 1
satisfies this inequality. Moreover, each bottom CNF or DNF of C’ is turned into a DNF or
CNF with 2% clauses. So the size of C’ |, is at most sg + so - 2% < 3(s0)? < s, as required.

Bounding s’ from above. Next we need to show that if f has a small depth-(d+ !/2) circuit,
then f o @y has a small depth-(d + 1 + 1/2) circuit. Note that computing the ¢-bit parities by
naive depth-2 circuits of size 2¢ is prohibitively expensive, as this would make the size of the
new circuit for f o @, at least (s0)!¢ > s/, for our choice of £ = 16log s (which was dictated
by the “NO—NO” case analysis above). Instead we will compute each @, by a depth-3
circuit, as a parity of parities, adapting the standard construction of optimal size—(€2‘/z)
depth-3 circuits. To get a final circuit for f o @, to be of depth d + 1 + 1/2, we will need to
carefully balance the parameters of our partition of ¢ bits into ¢; blocks of size {5 each, for
{1 and {9 such that ¢ = /¢1 - /5.

Suppose f has a depth-(d + 1) circuit C of size s and bottom fan-in at most log s, with
all negations at the leaves; this at most doubles the size. Without loss of generality, assume
that the bottom layer of gates consists of disjunctions with fan-in log s. To obtain a circuit
for f o @y, we will compose @, with each of the bottom CNFs of C'. Consider a particular
CNF h; = /\5:1 gi; at the bottom of C, where k < s and each g; ; is a disjunction of at most
log s literals.

For ¢; to be chosen later, let ¢5 = £/¢;. Using the trivial 2% -size CNF for computing @y, ,
we can compute each g; ; o @y, by an OR-AND-OR circuit, where the top OR gate has fan-in
log s and the AND gates each have fan-in 2“1, By distributivity, we can rewrite g; ; o @, as
a CNF with 2¢11°8% clauses, each of width at most ¢; log s.
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Since C' is a layered circuit, we can merge this CNF into h; to obtain a depth-2 circuit
computing h; o @, . Finally, composing this with the DNF for ®,,, we get a depth-3 circuit
with bottom fan-in /5 computing h; o ®y. Replacing each h; in C' with circuits constructed in
this way, we obtain a depth-(d + 2) circuit for f o @, with bottom fan-in ¢». The subcircuit

for computing each g; ; oy is of size at most 0 = 14 2flogs 4 9l .y, Jog s. So the total size
of the circuit for fo@®y is at most s+s-0 = s(o+1). If we set /5 = y/flogs and ¢; = 4 /ﬁ,
then the total size is at most

s <2+2V“°g5+2\/“°gs : \/Elogs> < (2s)-2VHees . Jilogs < s

Since the bottom fan-in is at most v/¢log s < log s, this concludes the proof. |

» Theorem 19 (Depth (d +1/2) — ((d + 1) + 1/2) GapMCSP). For any d > 1, n, Syes, S

!/ ! / / 2
nos and Spo such that syes < Snos Syes < Spo» Sno = 3(83,,)" and

o> 2(syes)2V/ 16008 sz/e.s)(logS§zo)\/16(10g syes)(log s,.),

yes

/
yes’
S

we have ACq,1),-GapMCSP,, [Sycs, Sno] <P AC(yy1)11/,-GapMCSP,, [s),.., Sh,), where n' =
16nlog s, < O(n?).

Proof. We use the construction in Theorem 18 as the reduction function, with so = s/,,. For
the YES — YES side, if A02+1/2(f) < Syes, then

ACY s 11n () < 2syea)2V 1005010085000, [165(log 5,00 o 5,)

as desired. For the NO — NO side, if ACg+1/2(f) > Sno, then AC2+1+1/2(f/) > 50 =50, =

» Remark 20. If we apply this to succinct MCSP, we actually get a polytime reduction instead;
constructing the naive f o @y circuit given a circuit for f takes polytime, it just makes the
truth table too large.

3.3 Depthd+1l2tod+1

» Theorem 21 (Depth (d + 1/2) — (d+1)). For any d > 1, n, Syes, Snos S

/ / /7 \5 ! 3
Syes < Snos Syes < Sno» Sno = (81,0)° and sy > 2(syes)”?, we have

/ /
yess Sno» Such that

ACg 4 1/,-GapMCSP, [syes, Sno] <PY ACqy,-GapMCSP,, [}, 51,0]

yes’ °no

Proof. The reduction is as follows: given the truth table of f: {0,1}™ — {0, 1}, output the
truth table of g = f o @o. The size of the input for g is 2n. The runtime of the reduction is
poly(N). Next we argue the correctness of this reduction.

NO — NO. Suppose fo @sy: {0,1}?" — {0,1} is computable by a size-s,, circuit C’ of
depth d + 1. Without loss of generality, we may assume that the bottom gates of C’ are
ANDs. We will hit C’ with a random blockwise restriction p. Consider a particular bottom
AND-gate of fan-in ¢, for some 1 < t < n. Since each block in a blockwise restriction is of
size two, there must be at least t/2 variables from distinct blocks that feed into this AND
gate. Each one of these variables will be chosen as a non-star variable by p with probability
1/2, and then independently set to 0 with probability 1/2. This would simplify the AND
gate to the constant 0, with probability 1/4. This happens independently for each of these
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t/2 variables. Thus the probability that the AND gate of fan-in at least ¢ survives a random
restriction is at most (3/4)/2. By the union bound, the probability that any such AND gate
survives is at most s/, - (3/4)"/2, which is less than 1 for ¢ = 5(log s’,,). Thus there exists a
blockwise restriction p which simplifies C’ to a depth-(d + 1) circuit computing f, with size
at most s, < s,, and bottom fan-in at most 5(log s!,,) < log sye.

YES — YES. Suppose f: {0,1}" — {0,1} is computable by a size-sy., circuit C' of depth
d+ 1, with bottom fan-in at most log sye;. WLOG, assume the bottom gates of C' are ANDs.
Note that we can express the XOR and the negated XOR of two variables as the following
2-CNFs:

y®z=@YVvz)A(yVz) and “(y®z2)=(@yVz)AyVz2).

Replacing the input literals of C' by these circuits for (possibly negated) @2, and merging
the bottom AND gate of C' with the top AND gate of these parity circuits, we get a depth-
(d+ 2) circuit C’ for f o @y, with 2-CNFs on ¢ = (2log sy.s) clauses as the bottom depth-2
sub-circuits. By distributivity, we can rewrite each 2-CNF on t clauses as a t-DNF on
2¢ terms. Then merge the OR gates of these DNFs with the OR gates at the preceding
level in C’, obtaining an equivalent depth-(d + 1) circuit C” for f o @9, of size at most

Syes T Syes  (Syes)® < 2(8yes)® < 80 (and bottom fan-in at most (2log syes) < logs), ). <

3.4 Combining the steps: Depth d + 1 to d + ¢ for any constant ¢ > 1

The reduction in Theorem 19 can be repeated multiple times, resulting in the overall reduction
lifting hardness to constantly many levels. The following theorem shows how the parameters
evolve over all steps of the reduction.

» Theorem 22 (Depth (d+ 1) — (d+¢)). For anyd > 2, ¢ > 1, n > ng(a,d,¢), and
0<a<d<1 wherel+ a <2, we have

ACY, ,-GaphCSP, [2"",2""] <o ACD,.  -GapMCSP,, [20) 20",

I — o (c—1)5+1 ~ _1 ~_ L 1 (1 lta
wheren’ =n R B~ =1~ (e=1)2o1 (1 ).

Proof. As outlined at the beginning of the section, we will create this reduction via composing
Lot EREnts

the reductions in Corollary 17 and Theorems 19 and 21. Let a = 5

Step 1. ACY,-GapMCSP, [27",2""] <PV ACY,,,-GapMCSP,[2"",2""]

This follows immediately from Corollary 17 with syes = 27" and S, = on’,

Step 2.
a ond at@lo1)s
ACg1/,-GapMCSP, [2°, 2] <9PoY AC(;, . 1)1 1/,-GapMCSP, (1541 /5 [exDy (5n 21 >

8 c—1
expy (5 — gt log 3)]
We will show each of n, sy.s, and s, map to the corresponding values after ¢ — 1 applications
of the reduction in Theorem 19. Define n(®, sl(fe)s, and 5553 to be each value after applying 4

iterations of the reduction, with n(%), sy(,%)s, and 55100) set to the initial values.

; nd 201
We will first show that s&) = 257~ 27 °23, this is true for 4 = 0, and for larger i we have

: (4) nd 201 _ log3 nd 2t
S»E:(;H) = Sgo = 932iF1  gitl log3—=5= _ 9 32i+1 2+ 1 10g3.



M. Carmosino, K. Hoover, R. Impagliazzo, V. Kabanets, and A. Kolokolova

Next, we show that n() = 16'n H;Zl[”—j - 2].2;1 log 3]; via padding, we can increase the

number of variables to n(¢~19%1/2 at the end. Again, this is true for i = 0. For larger 4,

(i+1) (1) (i+1) i+1 e’ 2-1
) = 160 log siHY = 161+1n H1 [QJ — 5 log 3} :
j:

Finally, for 5525, we show that after ¢ iterations of the Theorem 19 reduction, syes = o
at(28—1)8 . .
Sno = 27° would be mapped to at most s;.; = expy(5n~ 27 ). For i > 0, assuming

. a+(2l}1)5 1) .
sl(fe)s <expy(bn~ 2= ), we have sg(fjs ) is at most

a+(2t—1)8 80 a+(i-1)s at (201 —1)s

CXP2 (1 +on e+ Q”T(”é —0(2%)) + O(log n)) < exp, (5n2+1) :

a+(29—1)5
fixing ng sufficiently large. For i = 0, note that n* < 5n~ =20

Step 3.

a+(2¢~1_1)s 5 e—1_
Ac?d+cf1)+1/2'G3PMCSPn<c—1>5+1/2[GXPQ <5n 2ol >anP2(2?1 — 2 —Fllog3)] <P
AC2+C—GapMCSPn(C,1)5+1 [2“5 s 2”7]
This follows immediately from Theorem 21, setting

)

a+(2°~1-1)5 n 20_1 -1
Syes = €XPy | BN 2o T and s,, = expy 2o T g1 log3 ] . <

4 Constant-Depth Tolerant GapMCSP Reductions

We will show an analogous “hardness lifting” reduction from the GapMCSP problem for
average-case circuits of depth d to depth d + 1.

In this average case setting, instead of applying the machinery of Lemma 16, we can
instead make use of the observation that bottom gates of large fan-in are almost always equal
to their bias; see Theorem 23. Thus we get smaller gaps on the output side of the reduction,
at a small cost to the tolerance parameter.

4.1 Tolerant depth d + 1 to d + 1/2 and reverse

» Theorem 23 (Tolerant depth (d + 1) — (d 4 1/2)). For any 0 <e1,e2<1/2,d>1,n>1,
and Syes < Sno, we have

—0 —0
AC ;. 1[€1,€2]-GapMCSP,, [syes, Snol <poly ACyyipler +1/n, €2]-GapMCSP,, [(Syes)?, Snol
with the identity functions as a reduction.

Proof. The “NO”—“NQO” case is obvious. For the “YES”"—“YES” case, suppose C is a

depth d + 1 circuit of size sy.s that disagrees with f on at-most an €;-fraction of inputs.

For each bottom gate of C' with fan-in larger than 2log|C|, replace the gate with a 1 if it
is an OR, or a 0 if it is an AND. Call this new circuit with the replaced gates C’. For a
uniformly-random sampled input, any of the replaced gates would disagree with this bit with
probability at most |C|~2, and so the probability C” disagrees with C' on a uniformly-random
input is at most 1/|C|, via a union bound. Since |C| > n, this is at most 1/n, and so C’
disagrees with f on at most an (e; + 1/n)-fraction of inputs. Note that |C'| < |C] < (syes)?
and the bottom fan-in of C” is at most 21og syes < log(syes)?, as required. <

44:13

ICALP 2021



44:14

Lifting for Constant-Depth Circuits and Applications to MCSP

» Theorem 24 (Tolerant depth (d 4 1/2) — (d+1)). For any 0 <e1,e2 <1/2,d>1,n>1,
Syess Snos s;jes, sl such that Syes < Sno, we have, via the the identity functions as a reduction,

0 —.0
ACyyipler, €2 + 1/n]-GapMCSP, [Syes, Sno <poly ACy 1 [€1,€2]-GapMCSP,, [Syes, v/Sno)-

Proof. The “YES”—“YES” case is obvious. For the “NO”—“NQ” case, let C’ be depth-(d+1)
circuit of size at most s;,, = /5y, that e;-approximates f. As in the proof of Theorem 23
above, we replace by constants all bottom gates of C’ that have fan-in larger than 2log |C’|,
getting a new circuit C that computes f on all but at most e; + (1/n) fraction of inputs.
The size of C' is at most s}, < $p,, and the bottom fan-in is at most 21og sy = 10g S0, as

required. |

4.2 Tolerant depth d + 1/2 to (d + 1) + 1/2
» Theorem 25 (Tolerant depth (d 4+ 1/2) — ((d + 1) +1/2)). For anyd > 1, n > 1,0 <

/

/ !/ / !/ 2
€1,62 < 1/2, Syes, Syess Sno» A Spo such that syes < Snos Syes < Spo» Sno > 3(8p,) (€2n +1)

> 2(5ye5)2V 16008 svea) (08 570) | /16(log 5,c5) (log 51,,), we have

/
and Sy,

/

—~0 —0
ACy 1 pl€r, €2 + 1/n]-GapMCSP, [syes, Sno] <WY AC (44111 [€1, €2]-GapMCSP,,,[s].., 1,,];
where n’ = 16nlog s, < O(n?).

Proof. We shall use the same reduction as in Theorem 19, outputting f o @, on input f,
where ¢ = 16log s/, .

NO — NO. Let C’ be a depth-(d+ 2) circuit of size s/,, and bottom fan-in at most log s},
that es-approximates f o @,. We shall hit C” with a blockwise random restriction, as before.
Here, we simultaneously require that C’ | p simplifies to a depth-(d+ 1) circuit with bounded
bottom fan-in, and that its truth table is (€3 + 1/n)-close to (some fixed shift of) f.

For any = € {0,1}" and a blockwise restriction p, we denote by (x, p) the (n - £)-tuple of
bits obtained by placing x in the star positions of p. Clearly, picking « and p uniformly at
random results in (z, p) being the uniform distribution on {0,1}™*. By our assumption on
C’, we have Exp,, ,[C"((z,p)) # (f o ©¢)((x, p))] < €2. By Markov’s Inequality,

€2

Pr |Exp, [C"((x, p)) # (f © ®2)((x, p))] >€2+% S et @/n)

Hence, with probability at least (ez - n + 1)~1, for a randomly chosen blockwise restriction p

Exp. [C" (2. ) # ( © @) (@ )] = Exp. [C" 1, (@) # (f 0 @0) I, (@)
= Exp. "1, (@0) £ S @) <+

for b = by ...b, € {0,1}" such that b; is the parity of assigned values in the ith block of p.
So, if C" 1, fails to simplify with probability less than (ez-n+ 1)~!, then we are guaranteed
there is some p such that C’ [, (x) agrees with f(x @ b”), a shift of f, on all but at most
(e2 + (1/n))-fraction of inputs x € {0,1}", and is a depth-(d 4+ 1) circuit with bounded
bottom fan-in.
By the Blockwise Switching Lemma (Lemma 10), the probability that C’ | p fails to

N
simplify to depth (d + 1) circuit with bottom fan-in at most k is at most s/, (%) =

2log 10—k which is less than (e - n+ 1)~ if we choose k = log(2s/,,(1 + €2n)).
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Thus, there must exist a blockwise restriction p such that C’ [, is simplified and agrees
with f(z @ b”) on all but at most (e + (1/n)) fraction of inputs. We have that C’ |, is of
size at most s/, (1+2%) < s/, (1425, (1+e€n)) < 3(s%,,)%(1 + €an) < 5p0. Also, the bottom
fan-in is at most k < log sy, for our choice of k. Then the circuit C(z) = C’ [, (z ® V")
agrees with f(z) on all but at most (ez + (1/n)) fraction of inputs, and C has depth (d + 1),
size at most s,,, and bottom fan-in at most log s,,, as required.

YES — YES. Suppose f is e;-approximated by a depth-(d + 1) circuit C' with size syes
and bottom fan-in log sye,. Let g be the Boolean function computed by C. Using the same
techniques as in the “YES—YES” case analysis in the proof of Theorem 19, we construct a
depth-(d + 1) circuit C" computing g o @, with size at most s}, and bottom fan-in at most

log s,

yes*

S

We will argue that C’ computes f o @, on all but at most €; fraction of inputs. Indeed,
since the parity of a uniformly random string of bits is a uniformly random bit, we get that

P = = P = ,
LB l(Fean) = oo = _Pr [f(w) = g(a)]
which is at most €; by our assumption. This concludes the proof. |

4.3 Combining the steps: Tolerant depth d + 1 to d + 2

Using the above reductions, we can obtain a reduction from tolerant depth d + 1 gap-MCSP
to tolerant depth d + 2 gap-MCSP. Extending this to depth d + ¢ can be done via repeatedly
composing this reduction with itself.

» Corollary 26. For anyd > 1,0 < 1,62 < 1/2, Syes, Snos Syess Sno Where spo > (2en+1)s,,*
and s),; > 2(5yes)” - 2\/161°g(sy“2)1°g(84~02)\/16log(sy652) log(s!,,?), we have

—0 2 —0 1
ACy 1 [e1, €2+ ﬁ]-GapMCSPn [Syess Sno] <IN ACy oler+ — €2]-GapMCSP3y,, 1 o [Syess Snol-

yes’ °no

Proof. We obtain the desired reduction by composing the reductions from Theorems 23, 25,

—0
and 24. Using (€1, €2, Syes, Snoya,n @s & shorthand for AC;[e1, €2]-GapMCSP,, [Syes, Sno|, the
reductions operate as follows:

2 1 2
| 2

fereat 2 senstnobasnn < (64 Scot 2 (g Sudaan Theorem 23

<qpoly 1 Ly 72 Th 25

<Y (€1 + €2 + o Syes (8n0) ) dt+1+1/2,32n 108 1, eorem

1
I ’ ’
Sfrc;y <€1 + n’ €2, Syess Sno>d+2,32n log s7,, Theorem 24 <

5 Barriers to More Efficient Natural Reductions

Our reductions are deterministic, many-one, and “simple” in the original size parameter.
However, they require quasi-polynomial time. Here, we give evidence that improving such
“nice” reductions to run in polynomial time for the ezact MCSP is difficult: such reductions
would immediately give breakthrough circuit lower bounds or non-trivial MCSP algorithms,
and either outcome seems like dramatic progress.? To begin, observe that every reduction
we present is qpoly-Natural in the following sense.

2 Similar arguments apply to the gap-versions of the problem that we study above, but we argue about
the exact version here to facilitate exposition.
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» Definition 27 (Natural Reductions between Parametric Problems). Let A and B be parametric
problems, that is, inputs are of the form: {(z,s) : x € {0,1}", s € N}. We call a parametric
reduction R = (R, Rp) where Ry outputs instances and Rp outputs parameters, t(-)-natural
if it is:
Parametric Many-one: (z,s) € A < (Ri(x,s), Rp(z,s)) € B
Parameter-Value Uniform: Rp(z,s) depends only on the size of the input and value
of the parameter; we will treat Rp as a function from N x N in this case.
t(-)-Efficient: The combined runtime of Ry and Rp is bounded by t(/z/, s).

A natural reduction R from A-MCSP to I'-MCSP is many-one, so a A-MCSP algorithm follows
by brute-force search through I'-circuits, and A-to-I" lifting follows by mapping a A-hard
function & through R. This gives the next two lemmas. Kabanets and Cai used the same
reasoning to prove that NP-hardness of MCSP under poly-time natural reductions would imply
breakthrough circuit lower bounds (Theorem 15 of [20]). Removing NP-hardness from the
picture, we instead obtain the following:

» Lemma 28 (Black-Box MCSP Algorithms from Natural MCSP-Redux). If there is a poly-Natural
Reduction from A-MCSP to I-MCSP, then there is a fixed constant k € N such that A-MCSP,,
€ TIME[poly(nk) x T'-count(Rp (2", s))]

Proof. Fix a reasonable encoding of I'-circuits that admits efficient evaluation. Then write
I'-count(s) for the total number of circuits so encoded that witness I'-measure at most s. On
input (f,s) to A-MCSP,, we first run (f, s) through the natural reduction R to obtain (f’,s).
Just as above, because R is poly-time, there is a fixed k such that ¢(n) = 2¥". This means
|f'] < 2%", so we obtain an instance of [-MCSP with new size parameter s’ = Rp(2",s) on at
most kn input variables.

Then, because R is parametric many-one, a (yes, no)-instance of A-MCSP,, becomes a
(ves, no)-instance of I'-MCSPy,, (respectively). So, we can solve the resulting instance of
I-MCSP by brute-force search over the set of all s’-measure-witnessing I'-circuits, and answer
accordingly. We must evaluate a s'-size I'-circuit on < kn bits at most I'-count(s’) times.
This takes poly(nk) - I'-count(s’) time in total. <

Lifting begins with pre-existing lower bounds for A, which we formalize below. Many
concrete circuit lower bounds are far more explicit, but this weak notion will suffice for lifting
via natural and efficient inter-MCSP reductions.

» Definition 29 (Explicit Complexity Lower Bounds). Let H = {h,}nen be a sequence of
Boolean functions in E, and let sp : N — N be a function in FP. We call the pair (H,sp) an
explicit A-complexity lower bound if ¥n A(h,) > sa(n).

» Lemma 30 (Black-Box Lifting from Natural MCSP-Redux). Let (H,s) be a A-complexity
lower bound. If there is a poly-Natural Reduction R from A-MCSP to I'-MCSP, then there exists
a constant k and sequence of m-input Boolean functions H' such that (H', Rp(2"/*, s(m/k)))
is an explicit I'-complexity lower bound.

Proof. Fix an explicit A-complexity lower bound (H,s) and poly-natural reduction R =
(Ry, Rp) from A-MCSP to I'-MCSP. Now run the reduction: let H' be the sequence h!, =
Ri(hn,s(n)) and let s'(n) = Rp(hn,s(n)). We know (hy,,s(n)) ¢ A-MCSP by the hardness
assumption about H. Then, because R is parametric many-one, (h,,s’(n)) ¢ I'-MCSP and
thus T'(h]) > s'(n). To make this explicit, we bound the runtime of answering queries
according to 1/ on inputs z of m bits. This amounts to re-indexing the sequence H' to ensure
that a I'-hard function is defined everywhere and computable in E.
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First, because R is poly-time, there is a fixed k such that t(n) = 2*". This means
|n!| < 2" so we send each input length n through the reduction to a new input length
of at most kn. We evaluate h at m/k input bits and pad to fill in the gaps. Propagating
this padded sequence of functions through the parameter-map Rp, we obtained the claimed
T'-complexity lower bound. |

5.1 Efficient Natural Reductions Between ACS-, ACZ_H-MCSP:
Win/Win

Notice how both applications of poly-Natural reductions depend quantitatively on Rp, the
size parameter of the reduction. For lifting, we want Rp(-) large enough to improve the
best known I'-complexity lower bound by starting with a stronger lower bound for A. For
solving A-MCSP by brute-force on I'-MCSP, we want Rp(-) small enough such that searching
all relevant I'-circuits is faster than trivial brute-force over all relevant A-circuits. This
observation suggests a case analysis of the function Rp, to obtain either a non-trivial MCSP
algorithm or improved circuit lower bounds. For poly-Natural reductions from ACZ—MCSP to
ACY +1-MCSP, such a win/win argument succeeds. Informally, we have the following:

» Theorem 31 (poly-Natural MCSP Reduction Win/Win). Suppose there is a poly-Natural
reduction from ACg—MCSP to ACY,-MCSP, for d' > d. Then, either:

There is a surprisingly fast algorithm for ACS-MCSP, or

There are breakthrough explicit circuit lower bounds against ACY, [29(”1/d)] ford<d !

We spend the remainder of this section formalizing and proving variations on the above.

5.2 Quantitative Consequences of a Hardness Hypothesis for MCSP

We first formulate an appropriate hypothesis about the hardness of MCSP.

» Definition 32 (Weak Exponential Time Hypothesis (WETH) for A-MCSP). There exists an
€ > 0 such that for all “nice” size functions s(n), A-MCSP,[s(n)] & TIME[25(")].

For the general MCSP (when A is the class of unrestricted Boolean circuits), it can be shown
that the WETH for MCSP is implied by the cryptographic conjecture that exponentially-strong
one-way functions exist (using the ideas of [28, 20, 2]). One can also show that if WETH
for general MCSP is false, then NEXP ¢ P/poly (using the ideas of [19]). For every d > 2,
the WETH for ACS—MCSP is also reasonable to assume, although we don’t seem to have any
strong evidence to support it yet (see [3] for some cryptographic hardness of ACg—MCSP for
large d).

Under this hypothesis, we establish barriers to giving poly-Natural reductions from
ACY-MCSP to AC3+C—MCSP. We begin by recalling the best-known ACY circuit lower bounds.

» Theorem 33 (Hastad [13]). Any depth (d+ 1) alternating circuit computing @, requires
2Q(n]/‘i)

gates. Furthermore, this bound is clearly explicit as in Definition 29.
» Theorem 34. Suppose there is a poly-Natural reduction from ACS—MCSP to ACY,-MCSP, for
d > d. Then, either:

The WETH for ACS-MCSP is false, or

There is an explicit circuit lower bound with s(n) = 20(n/ 71 against ACY,.

Proof. Assume such a poly-Natural reduction R = (R;, Rp) exists, with run-time 2*". We
reason by cases on bounds for Rp.
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Suppose Rp is small. That is, Ve.Rp(2", s(n)) < s(n)¢. Substituting into the black-box
MCSP algorithm above, we have that Ve. AC)-MCSP,, € TIME[poly(nk) x ACY- count(s(n)€)] €
TIME[2S(")25]7 where the first inclusion is by Lemma 28, and second by counting ACY, circuits.
This contradicts the MCSP-WETH for ACY.

Suppose Rp is large. That is, Je.Rp(2", s(n)) > s(n)¢. Lifting @ through R we have that
there is an explicit sequence of Boolean functions H on m-bit inputs such that we have the
following explicit AC},-complexity bounds: Rp(2"7*, s(m/k)) > s(m/k)¢ > 22(m!/ 17D
the lower bound is by Lemma 30, the first inequality by size assumption about Rp, and the
last by application of Hastad’s bound. |

Here,

When d’ > d, the lower-bound case above would be a breakthrough in circuit complexity.

» Corollary 35 (Breakthrough Circuit Lower Bounds for Alternating Constant-Depth). Suppose
the WETH for ACS—MCSP holds, for every d > 2. Then, if VYd > dy we have a poly-Natural
reduction Ry from ACg—MCSP to AC?dH)—MCSP, then there is a fized constant o such that, for
each depth d > dy, there is a Boolean function f¢ € E such that any depth-d alternating
circuit computing fg requires 2%4(") gates.

Proof. Fix any constant d > dy. We first compose Ry with itself sufficiently many times
to obtain a many-one reduction R/, all the way from ACgO—MCSP to ACY-MCSP. Observe that
R/, remains poly-Natural, because all the polynomial resource bounds are closed under a
constant number of compositions — though the leading constant exponent of runtime for R/,
certainly increases proportional to the gap between d and dy; this is precisely what is hidden
by Qg in the bound. To conclude, we apply black box lifting (Lemma 30) to the composed
poly-Natural reduction R/, with Héastad’s lower bound for & at depth dy, getting o = 1/dy
in the theorem. |

Combining with a simulation of shallow formulas by constant-depth circuits, we get

» Lemma 36 (Folklore). Any sequence f, of Boolean functions on n inputs computable by
formulas of depth clog(n) is computable by depth-d alternating circuits of size 2% x o'/

» Theorem 37 (Breakthrough Circuit Lower Bounds for Formulas). Suppose the WETH for
ACS—MCSP holds, for every d > 2. Then, if ¥Yd > dy we have a poly-Natural reduction Ry from
ACS—MCSP to AC((JdH)—MCSP, for every fized k there exists f* a sequence of Boolean functions
in E, such that f* does not have size-n* formulas.

Proof. Fix constant k, and let ¢ € N be the leading constant that results from re-balancing
an arbitrary nF-size formula to log-depth. Any function computed by such a formula will
have — for every d — ACS circuits of size ~ 27 by Lemma 36. Therefore, if we choose d
such that 1/d, > ¢/a, the size bound that results from lifting @ through iterated composition
of Ry exceeds the constant-depth simulation-size of any nF-size formula. The rest of this
argument is identical to the proof of Corollary 35 above. <

6 Open Questions

One obvious question is whether one can show the NP-completeness of AC)-MCSP for any
constant depth d > 3 by proving that depth 3 circuit complexity is NP-hard to approximate
to within the factors needed by our lifting theorems? Note that while we have hardness of
approximation result for DNFs [23, 3], the (almost tight) approximation gap there is not
strong enough for our lifting theorems to apply. For depth-3 circuits, on the other hand,
there are no known hardness of approximation results.
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Another natural question is to tighten the gap (the approximation factor) of our lifting

theorems. Finally, can one provide more evidence supporting the Weak Exponential Time
Hypothesis for ACS—MCSP?
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