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—— Abstract

All-Pairs Shortest Paths (APSP) is one of the most well studied problems in graph algorithms. This
paper studies several variants of APSP in unweighted graphs or graphs with small integer weights.
APSP with small integer weights in undirected graphs [Seidel’95, Galil and Margalit’97] has an
O(n“’) time algorithm, where w < 2.373 is the matrix multiplication exponent. APSP in directed
graphs with small weights however, has a much slower running time that would be Q(n?®) even if
w = 2 [Zwick’02]. To understand this n>® bottleneck, we build a web of reductions around directed
unweighted APSP. We show that it is fine-grained equivalent to computing a rectangular Min-Plus
product for matrices with integer entries; the dimensions and entry size of the matrices depend on
the value of w. As a consequence, we establish an equivalence between APSP in directed unweighted
graphs, APSP in directed graphs with small (O(1)) integer weights, All-Pairs Longest Paths in DAGs
with small weights, cRed-APSP in undirected graphs with small weights, for any ¢ > 2 (computing
all-pairs shortest path distances among paths that use at most c red edges), #<.APSP in directed
graphs with small weights (counting the number of shortest paths for each vertex pair, up to ¢), and
approximate APSP with additive error ¢ in directed graphs with small weights, for ¢ < O(l)

We also provide fine-grained reductions from directed unweighted APSP to All-Pairs Shortest
Lightest Paths (APSLP) in undirected graphs with {0,1} weights and #,0q APSP in directed
unweighted graphs (computing counts mod ¢), thus showing that unless the current algorithms for
APSP in directed unweighted graphs can be improved substantially, these problems need at least
Q(n*5?8) time.

We complement our hardness results with new algorithms. We improve the known algorithms for
APSLP in directed graphs with small integer weights (previously studied by Zwick [STOC’99]) and for
approximate APSP with sublinear additive error in directed unweighted graphs (previously studied
by Roditty and Shapira [ICALP’08]). Our algorithm for approximate APSP with sublinear additive
error is optimal, when viewed as a reduction to Min-Plus product. We also give new algorithms for
variants of #APSP (such as #<yAPSP and #,,q yAPSP for U < nO(l)) in unweighted graphs,
as well as a near-optimal O(n3)—time algorithm for the original #APSP problem in unweighted
graphs (when counts may be exponentially large). This also implies an O(n®)-time algorithm
for Betweenness Centrality, improving on the previous O(n4) running time for the problem. Our
techniques also lead to a simpler alternative to Shoshan and Zwick’s algorithm [FOCS’99] for the
original APSP problem in undirected graphs with small integer weights.
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1 Introduction

All-Pairs Shortest Paths (APSP) is one of the oldest and most studied problems in graph

algorithms. The fastest known algorithm for general n-node graphs runs in n?/ 90(v/logn) [31].
In unweighted graphs, or graphs with small integer weights, faster algorithms are known.

For APSP in undirected unweighted graphs (u-APSP), Seidel [21] and Galil and Mar-
galit [12, 13] gave O(n®) time algorithms where w < 2.373 is the exponent of matrix
multiplication [2, 27, 16]; the latter algorithm works for graphs with small integer weights® in
[+¢o] for ¢ = O(1). The hidden dependence on ¢y was improved by Shoshan and Zwick [22].

For directed unweighted graphs or graphs with weights in [t¢g], the fastest APSP algorithm
is by Zwick [34], running in O(n?5%?) time. This running time is achieved using the best
known bounds for rectangular matrix multiplication [17] and would be Q(n?%) even if w = 2.

There is a big discrepancy between the running times for undirected and directed APSP.
One might wonder, why is this? Are directed graphs inherently more difficult for APSP, or
is there some special graph structure we can uncover and then use it to develop an O(n“)
time algorithm for directed APSP as well? (Note that matrix multiplication seems necessary
for APSP since APSP is known to capture Boolean matrix multiplication.)

The first contribution in this paper is a fine-grained equivalence between directed un-
weighted APSP (u-APSP) and a certain rectangular version of the Min-Plus product problem.

The Min-Plus product of an n X m matrix A by an m X p matrix B is the matrix C' with
entries C[i, j] = min}" , (A[i, k] + B[k, j]). Let us denote by M*(n1,ng,n3 | M) the problem
of computing the Min-Plus product of an n; X ny matrix by an no X n3 matrix where both
matrices have integer entries in [M]. Let M*(nq,na,n3 | M) be the best running time for
M*(nl,ng,ng | M)

Zwick’s algorithm [34] for u-APSP can be viewed as making a logarithmic number
of calls to the Min-Plus product M*(n,n/L,n | L) for all 1 < L < n that are powers
of 3/2. The running time of Zwick’s algorithm is thus, within polylogarithmic factors,
maxy, M*(n,n/L,n | L).

Let M(a,b,c) denote the running time of the fastest algorithm to multiply an a x b
by a b x ¢ matrix over the integers. Let w(a,b, c) be the smallest real number r such that
M(n?, nb n¢) < O(n"*¢) for all € > 0.

The best known upper bound for the Min-Plus product running time M*(n,n/L,n | L)
is the minimum of O(n?/L) (the brute force algorithm) and O(L - M(n,n/L,n)) [3]. For
L=n""% M*(n,n/L,n| L) is thus at most O(min{n>*+¢ n'=¢+<LEDY) Over all £ € [0,1],
the runtime is maximized at O(n>*?) where p is such that w(1,p,1) = 14 2p.

Hence in particular, the running time of Zwick’s algorithm is O(n2*#). This running time
has remained unchanged (except for improvements on the bounds on p) for almost 20 years.
The current best known bound on p is p < 0.529, and if w = 2, then p = 1/2.

! In this paper, [+co] = {—co,...,co} and [co] = {0,...,c0}. The O notation hides polylogarithmic
factors (although conditions of the form ¢y = O(l) may be relaxed to co < n°M if we allow extra n°™®)
factors in the O time bounds).
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Our first result is that u-APSP is sub-n?*# fine-grained equivalent to M*(n,n”,n | n1=*):

» Theorem 1. If M*(n,n”,n | n'=") is in O(n®>TP=¢) time for ¢ > 0, then u-APSP can also
be solved in O(n2tP=<") time for some ¢’ > 0. If u-APSP can be solved in O(n®>t°=¢) time
for some € > 0, then M*(n,n?,n | n*=°) can also be solved in O(n**P~¢) time.

The Min-Plus product of two n X n matrices with arbitrary integer entries is known
to be equivalent to APSP with arbitrary integer entries [10], so that their running times
are the same, up to constant factors. All known algorithms for directed unweighted APSP
(including [34, 3] and others), make calls to Min-Plus product of rectangular matrices with
integer entries that can be as large as say n%%. It is completely unclear, however, why a
problem in unweighted graphs such as u-APSP should require the computation of Min-Plus

products of matrices with such large entries. Theorem 1 surprisingly shows that it does.

Moreover, it shows that unless we can improve upon the known approaches for Min-Plus

product computation, there will be no way to improve upon Zwick’s algorithm for u-APSP.

The latter is an algebraic problem in disguise.

The main proof of Theorem 1 is simple — what is remarkable are the numerous consequences
on equivalences and conditional hardness that follow from this idea. We first use Theorem 1
to build a class of problems that are all equivalent to u-APSP, via (n?T*, n?*)-fine-grained
reductions (see [29] for a survey of fine-grained complexity). In particular, if w = 2 (or more
generally when w(1, 3,1) = 2), these are all problems that are n?*-fine-grained equivalent.

Recall that in the All-Pairs Longest Paths (APLP) problem, we want to output for every
pair of vertices s,t the weight of the longest path from s to t. While APLP is NP-hard in
general, it is efficiently solvable in DAGs. In the cRed-APSP problem, for a given graph in
which some edges can be colored red, we want to output for every pair of vertices s,t the
weight of the shortest path from s to t that uses at most ¢ red edges. For convenience, we
call all non-red edges blue.

We use the following convention for problem names: the prefix “u-” is for unweighted
graphs; the prefix “[cg]-” is for graphs with weights in [¢g] (similarly for “[+cp]-” and for
other ranges). Input graphs are directed unless stated otherwise.

» Theorem 2. The following problems either all have O(n**P~¢) time algorithms for some
e >0, or none of them do, assuming that co = O(1):

M*(n,n”,n | nt=°),

u-APSP,

[£co]-APSP for directed graphs without negative cycles,

u-APLP for DAGS,

[£co]-APLP for DAGsS,

u-cRed-APSP for undirected graphs for any 2 < ¢ < O(1).

Interestingly, while u-2Red-APSP in undirected graphs above is equivalent to u-APSP and
hence improving upon its O(n2+p) runtime would be difficult, we show that u-1Red-APSP
in undirected graphs can be solved in O(nw) time via a modification of Seidel’s algorithm,
and hence there is a seeming jump in complexity in u-cRed-APSP from ¢ =1 to ¢ = 2.

Besides the above equivalences we provide some interesting reductions from u-APSP to
other well-studied matrix product and shortest paths problems.

Lincoln, Polak and Vassilevska W. [18] reduce u-APSP to some matrix product problems
such as All-Edges Monochromatic Triangle and the (min, max)-Product studied in [24, 26] and
[25, 9] respectively. Using the equivalence of u-APSP and M*(n,n/¢,n | £17P), we can reduce
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u-APSP to another matrix product called Min Witness Equality Product (MinWitnessEq),
where we are given n x n integer matrices A and B, and are required to compute min{k €
[n] : Ali, k] = Blk, j]} for every pair of (i,5). This can be viewed as a merge of the Min
Witness product [8] 2 and Equality Product problems [15, 28].

Another natural variant of APSP is the problem of approzimating shortest path distances.
Zwick [34] presented an O(n* log M) time algorithm for computing a (1 + ¢)-multiplicative
approximation for all pairwise distances in a directed graph with integer weights in [M],
for any constant e > 0.3 This is essentially optimal assuming no o(n*) time algorithm can
multiple n X n Boolean matrices since any such approximation algorithm can be used to
multiply Boolean matrices.

An arguably better notion of approximation is to provide an additive approximation, i.e.
outputting for every u,v an estimate D'[u,v] for the distance D[u,v] such that D[u,v] <
D'[u,v] < D[u,v] + E, where E is an error that can depend on u and v.

At ICALP’08, Roditty and Shapira [20] studied the following variant: given an un-
weighted directed graph and a constant p € [0, 1], compute for all u,v an estimate D’[u, v]
with Dfu,v] < D'[u,v] < D[u,v] + D[u,v]P. They gave an algorithm with running time
O(max, min{n?/¢, M*(n,n/¢'=P,n | £*7P)}). For example, for p = 0, this matches the
time complexity of Zwick’s exact algorithm for u-APSP; for p = 1, this matches Zwick’s
O(n*)-time algorithm with constant multiplicative approximation factor. For p = 0.5, with
the current rectangular matrix multiplication bounds [17], the running time is O(n%447).
We obtain an improved running time:

» Theorem 3. For any p € [0, 1], given a directed unweighted graph, one can obtain additive
Dl[u,v]P approximations to all distances D[u,v] in time O(max, M*(n,n/l,n | (17P)).

The improvement over Roditty and Shapira’s running time is substantial. For example,
for all p > 0.415, the time bound is O(n*373) (the current matrix multiplication running
time), whereas their algorithm only achieves O(n?373) for p = 1. Our result also answers one
of Roditty and Shapira’s open question (on whether O(n®) time is possible for any p < 1), if
w > 2.

The new algorithm is also optimal (ignoring logarithmic factors) in a strong sense, as
our reduction technique shows that for all ¢, M*(n,n/¢,n | £17P) can be tightly reduced to
the additive D[u,v]? approximation of APSP. In particular, u-APSP with constant additive
error is fine-grained equivalent to exact u-APSP.

The All-Pairs Lightest Shortest Paths (APLSP) problem studied in [6, 33] asks to compute
for every pair of vertices s, ¢ the distance from s to ¢ (with respect to the edge weights) and
the smallest number of edges over all shortest paths from s and ¢. Traditional shortest-path
algorithms can be easily modified to find the lightest shortest paths, but not the faster matrix-
multiplication-based algorithms. Our reduction for u-cRed-APSP can be easily modified to
reduce M*(n,n?,n | n'=*) to {0,1}-APLSP in undirected graphs, which can be viewed as a
conditional lower bound of n2+?=°() for the latter problem.

» Corollary 4. If {0,1}-APLSP in undirected graphs is in O(n?TP=¢) time for e > 0, then
s0 is M*(n,n”,n | n'1=r).

2 Recently, there has been renewed interest in studying the Min Witness product, due to a breakthrough [14]
on the All-Pairs LCA in DAGs problem, which was one of the original motivations for studying Min
Witness.

3 Bringmann et al. [5] considered the more unusual setting of very large M, where the log M factor is to
be avoided.
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The fastest known algorithm to date for {0, 1}-APLSP, or more generally, [¢o]-APLSP
for co = O(1), for directed or undirected graphs is by Zwick [33] from STOC’99 and runs
in O(n?7%) time with the current best bounds for rectangular matrix multiplication (the
running time would be O(n®/3) if w = 2). Chan [6] (STOC’07) improved this running time
to O(n(3+%)/2) < O(n?987) but only if the weights are positive, i.e., for ([co] — {0})-APLSP
(and so his result does not hold for {0,1}-APLSP).

Both Zwick’s and Chan’s algorithms solve a more general problem, Lexs-APSP, in which
one is given a directed graph where each edge e is given two weights w;(e), ws(e) and one
wants to find for every pair of vertices u, v the lexicographic minimum over all u-v paths 7
of (3 cerwi(e); D crwa(e)). Then APLSP is Lexy-APSP when all wo weights are 1, and
the related All-Pairs Shortest Lightest Paths (APSLP) problem is when all w; weights are 1.

To complement the conditional lower bound for APLSP, and hence Lexo-APSP, we present

new algorithms for [¢p]-Lexa-APSP for ¢g = O(1), both (slightly) improving Chan’s running
time and also allowing zero weights, something that Chan’s algorithm couldn’t support.

» Theorem 5. [co]-Leay-APSP can be solved in O(n?%) time for any co = O(1).

If w = 2, the above running time would be O(n??), improving Zwick’s previous O(n®/3)
bound [33] and matching our conditional lower bound n?+#~°(1). For undirected graphs with
positive weights in [co] — {0}, we further improve the running time to O(n*?®) under the
current matrix multiplication bounds.

We next consider the natural problem, #A PSP, of counting the number of shortest paths
for every pair of vertices in a graph. This problem needs to be solved, for example, when
computing the so-called Betweenness Centrality (BC) of a vertex. BC is a well-studied
measure of vertex importance in social networks. If we let C[s,t] be the number of shortest
paths between s and ¢, and C,[s, t] be the number of shortest paths between s and ¢ that go
through v, then BC(v) = 3_, ., Cyls,t]/C[s,t] and the BC problem is to compute BC(v)
for a given graph and a given node v.

Prior work [4] showed that #APSP and BC in m-edge n-node unweighted graphs can be
computed in O(mn) time via a modification of Breadth-First Search (BFS).* However, all
prior algorithms assumed a model of computation where adding two integers of arbitrary
size takes constant time. In the more realistic word-RAM model (with O(logn) bit words),
these algorithms would run in C:)(an) time, as there are explicit examples of graphs with m
edges (for any m, a function of n) for which the shortest paths counts have ©(n) bits.> In
particular, the best running time in terms of n so far has been O(n4).

We provide the first genuinely O(n3) time algorithm for #APSP, and thus Betweenness
Centrality, in directed unweighted graphs.

» Theorem 6. u-#APSP can be solved in O(n®) time by a combinatorial algorithm.

This runtime cannot be improved since there are graphs for which the output size is Q(n?).

Since the main difficulty of the #APSP problem comes from the counts being very large,
it is interesting to consider variants that mitigate this. Let U < nPM . Let H#moa uUAPSP be
the problem of computing all pairwise counts modulo U. Let #<yAPSP be the problem of

4 Brandes presented further practical improvements as well.

5 One example is an (n/3 + 2)-layered graph where the first n/3 layers have 2 vertices each and the last
2 layers have n/6 vertices each. The i-th layer and the (i + 1)-th layer are connected by a complete
bipartite graph for each 1 < ¢ < n/3, while the last two layers are connected by O(m) edges.
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computing for every pair of nodes u, v the minimum of their count and U (think of U as a
“cap”). Finally, let #approx-v APSP be the problem of computing a (1 4+ 1/U)-approximation
of all pairwise counts (think of keeping the log U most significant bits of each count).

We obtain the following result for u-#<yAPSP in directed graphs:

» Theorem 7. u-# <y APSP (in directed graphs) can be solved in n?>*Ppolylog U < n?*+rto(1)
time.

Furthermore, for any U > 2, if u-#<y APSP can be solved in O(n?TP=¢) time for some
e >0, then so can u-APSP (with randomization). For any 2 < U < O(1), the converse is
true as well.

Thus, we get a conditionally optimal algorithm for u-#<yAPSP. For 2 < U < o(1),
the theorem above gives a fine-grained equivalence between u-#<yAPSP and u-APSP; in
particular, for U = 2, the problem corresponds to testing uniqueness for the shortest path of
each pair. (For large U, however, it is not a fine-grained equivalence since the algorithm for
u-#<yAPSP does not go through Min-Plus product, but rather directly uses fast matrix
multiplication.)

Our algorithm from Theorem 7 is based on Zwick’s algorithm for u-APSP. We show that
one can also modify Seidel’s algorithm for u-APSP in undirected graphs to obtain O(n“’)
time algorithms for u-#<yAPSP and u-#m04 v APSP in undirected graphs.

» Theorem 8. u-#<yAPSP and u-#modu APSP in undirected graphs can be solved in

O(n¥logU) time.

Furthermore, we show that u-#approx-v APSP in undirected graphs can be solved in
O(n?%8polylog U) time, somewhat surprisingly, by a slight modification of our undirected
Lexo-APSP algorithm (despite the apparent dissimilarity between the two problems).

Paper Organization and Techniques. In Section 3, we show the web of reductions around
u-APSP, proving Theorem 1, Theorem 2, the hardness of additive D[u,v]P approximate
u-APSP and the hardness of u-#<yAPSP in Theorem 7.

In Section 4, we give our algorithms for approximating APSP with additive errors, proving
Theorem 3. In Section 5, we describe our algorithms for Lexo-APSP. Due to space limitation,
we defer our algorithms for various versions of #APSP to the full paper (including an
algorithm for u-#<yAPSP to complete the proof of Theorem 7, the proof of Theorem 8,
and the algorithm for u-#approx-v APSP). An exception is our near-cubic algorithm for exact
u-#APSP (proof of Theorem 6), which is simple and is described in Section 6.

For approximating APSP with additive error, we propose an interesting two-phase variant
of Zwick’s algorithm [34]. Zwick’s algorithm computes distance products of n x (n/f) with
(n/f) x n matrices for ¢ in a geometric progression. Our idea is to do less during the first
phase, computing products of (n/f) x (n/f) with (n/f) x n matrices instead. We complete
the work during a second phase. The observation is that for the APSP approximation
problem, we can afford to perform the distance computation in the first phase ezactly, but
use approximation to speed up the second phase. The resulting approximation algorithm is
even simpler than Roditty and Shapira’s previous (slower) algorithm [20].

Our Lexs-APSP algorithm for directed graphs also uses this two-phase approach, but
in a more sophisticated way to control the size of the numbers in the rectangular matrix
products. A number of interesting new ideas are needed.
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To further illustrate the power of this two-phase approach, we also show (in the full
version) how the idea can lead to an alternative O(con®) time algorithm for the standard
[co]-APSP problem for undirected graphs, rederiving Shoshan and Zwick’s result [22] in
an arguably simpler way. This may be of independent interest (as Shoshan and Zwick’s
algorithm has complicated details).

Our Lexy-APSP algorithm for undirected graphs uses small dominating sets for high-
degree vertices, an idea of Aingworth et al. [1]. Originally, this idea was for developing
combinatorial algorithms for approzimate shortest paths that avoid matrix multiplication.
Interestingly, we show that this idea can be combined with (rectangular) matrix multiplication
to compute exact Lexs shortest paths.

2 Preliminaries

The computation model of all algorithms and reductions in this paper is the word-RAM
model with O(logn) bit words.

We let M(n1,n2,n3) denote the best known running time for multiplying an n; X ns
by an ny X nz matrix over the integers. We use w(a, b, ¢) to denote the rectangular matrix
multiplication exponent, i.e. the smallest real number z such that M (n®, n®,n¢) < O(n**<)
for all € > 0. In particular, let w = w(1,1,1). It is known that w € [2,2.373) [2, 27, 16]. The
best known bounds for w(a, b, ¢) are in [17].

Let M*(n1,n2,n3 | £1,42) be the time to compute the Min-Plus product of an ny X ng
matrix A with an ng X ng matrix B, where all finite entries of A are from [¢1] and all finite
entries of B are from [f2]. Let us also denote M*(ny,ng,ng | £) := M*(ny,ng,ng | £,0).
It is known [3] that M*(ny,ng,n3 | £) < O£ - M(ny,n2,n3)). This algorithm in [3] first
replaces each entry e in both matrices A, B by (ns + 1)¢, then uses fast rectangular matrix
multiplication to compute the product of the new matrices A, B. Since each arithmetic
operation takes O(f) time, the running time follows.

More generally, let M*(ny,ng,ng | my, ma, mg | £1,£2) be the time to compute ms given
entries of the Min-Plus product of an ni X no matrix A with an ns x n3 matrix B, where A
has at most my finite entries, all from [¢;], and B has at most mq finite entries, all from [¢5].

3 Directed APSP and Rectangular Min-Plus with Bounded Weights

[£co]-APLP in DAG u-APLP in DAG u-APSP [+co]-APSP

Y/

Thm. 7
u-#< APSP N M*(n,n”,n | nt=r <:> %ndu u-cRed-APSP

A Th
O MThm 16 a8
Undir. {0, 1}-APLSP U-Fmod cAPSP MinWitnessEq

2+p7 n2+”)-ﬁne

Figure 1 The web of (a subset of) the reductions in this paper. All reductions are (n
grained reductions, where p is such that w(1,p,1) =1+ 2p. The problems in the bounding box are
sub n***-equivalent. Here, co = O(1), and 2 < ¢ < O(1). For the current best bounds on rectangular

matrix multiplication [17], p is roughly 0.529.
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Here we consider the All-Pairs Shortest Paths (APSP) problem in unweighted directed
graphs, or more generally in directed graphs with integer weights in [+co] with ¢g = O(1)
and no negative cycles. Zwick [34] showed that this problem in n-node graphs can be solved
in time O(n?*?) time where p is such that w(1,p,1) = 14 2p. For the current best bounds
on rectangular matrix multiplication [17], p is roughly 0.529.

Zwick’s algorithm can be viewed as a reduction to rectangular Min-Plus matrix multiplic-
ation. The algorithm proceeds in stages, for each ¢ from 0 to 10g3/2(n1*p).

In stage ¢, up to logarithmic factors, one needs to compute the Min-Plus product of
two matrices Ay and By where A, has dimensions n x n/(3/2)’ and By has dimensions
n/(3/2)¢ x n and both matrices have entries bounded by (3/2)¢. Intuitively, this computes
the pairwise distances that are roughly (3/2). After stage logs /2(n'P), the algorithm also
runs Dijkstra’s algorithm® to and from O(n”) nodes S sampled randomly and uses O(n?*+*)
extra time to complete the computation of the distances by considering for every u,v € V,
minges{D[u, s] + D[s,v]}. This can also be viewed as using the brute-force algorithm to
compute the Min-Plus products when (3/2)¢ > n'=7.

The total running time is within logarithmic factors of

1083/2(”17”

nE Y M (n,n/(3/2) | (3/2)),
£=0

where M*(ny,ng,ng | M) is the Min-Plus product running time for matrices with entries
in {0,..., M} and dimensions n; X ny by ng X nz. With the known bounds for Min-Plus
product, M*(n,n",n | M) < O(Mn“®71) and the running time of Zwick’s algorithm
becomes O(n?+? + nt=r+@ L) which is O(n?t*) when w(1,p,1) = 1 + 2p.

If w = 2, then p is 1/2 and the running time of Zwick’s algorithm becomes O(n?°). This
running time is a seeming barrier for the APSP problem in directed graphs.

In the full version we prove the following technical theorem which rephrases Zwick’s
algorithm [34] as a reduction.

» Theorem 9. Let p be the solution to w(1,p,1) = 1+ 2p. If the Min-Plus product of an
n X nP matriz by an n® x n matric where both matrices have integer entries bounded by n'~°
(denoted as M*(n,n”,n | n'=P)) can be computed in O(n**P=<) time for some € > 0, then
APSP in directed n node graphs with integer edge weights in [+co] for co = O(1) can be
solved in O(n*tP=<") time for € > 0.

If w = 2, the above theorem statement becomes: If the Min-Plus problem of an n x v/n
matrix by a \/n X n matrix where both matrices have integer entries bounded by +/n can
be computed in O(n?°~?) time for some § > 0, then APSP in directed n node graphs with
integer edge weights in [+c] for ¢g = O(1) can be solved in O(n?5~%") time for &’ > 0.

We will show a reduction in the reverse direction as well, showing that rectangular
Min-Plus product with suitably bounded entries can be reduced back to unweighted directed
APSP.

» Theorem 10. For any fized k € (0,1), M*(n,n* n | n'=*) can be reduced in O(n?) time
to APSP in a directed unweighted graph with O(n) vertices.

5 If there are negative weights, one also needs to run single source shortest paths (SSSP) from a node, as
in Johnson’s algorithm and then reweight the edges so that they are nonnegative. SSSP can be solved
in O((m +n'%)log?(co)) = O(n?) time [23].



T. M. Chan, V. Vassilevska Williams, and Y. Xu

A consequence of Theorem 9, and the fact that u-APSP is a special case of [+c¢o]-APSP
for directed graphs without negative cycles, is the following equivalence.

» Corollary 11. Let p be such that w(1,p,1) = 1+ 2p. Then u-APSP, [+co]-APSP for
directed graphs without negative cycles, and M*(n,n?,n | n'=?) are sub-n**? fine-grained
equivalent for co = O(1).

In particular, if w = 2, APSP in directed unweighted graphs is sub-n?® fine-grained
equivalent to the Min-Plus problem of an n X /n matrix by a y/n X n matrix where both
entries have integer entries bounded by /n.

Proof of Theorem 10. Let A be an n x n* matrix and let B be an n*

entries in {1,...,n!7F}.

We will create a directed graph as follows. Let I be a set of n nodes, which represent the
rows of A. Let J be a set of n nodes, which represent the columns of B.

For every p € [n*] corresponding to a column of A (or row of B), create a path of 2n' =% 41
nodes:

X n matrix, both with

X(p) = Tppi-k = Tp ik = oo = Tpo = Yp1 = Yp2 > oo = Yppl—k.

For every i € [n] and p € [n*¥], consider t = A[i,p] € [n'~*]. Add an edge from i € I to
T, 4. Similarly, for every j € [n] and p € [n*], consider t' = Blp, j] € [n'7*]. Add an edge
from yp 4 to j € J.

Aip By j

—_—
P S0 Yo So——— S0 ——eo
X
P,0

00— H0———H0———H>0———>0———>0

00— ———H>0————H>0————0——>0

1 J

Figure 2 Sketch of the construction in proof of Theorem 10. For each vertex i and path p, we
add an edge from ¢ to a vertex on the path p whose distance to the middle point x, 0 on the path is
A; p. For each path p and vertex j, we add an edge from a vertex on the path whose distance from
the middle point x, 0 on the path is B, ; to vertex j.

Now, consider some i € [n],p € [n*],j € [n] and A[i,p] + B[p, j]. If we consider the
path consisting of (i, 2y a[i,p)); (Up,B[p,j];J) and the subpath of X (p) between ,, 4}; ) and
Yp,B[p.j]» its length is exactly 2 + Ali, p] + Blp,j]. Also, any path from i to j is of this
form. Thus, the shortest path from ¢ € I to j € J in the created graph is exactly of length
2 + min, {A[i, p] + Blp, j]}, and thus computing APSP in the directed unweighted graph we
have created computes the Min-Plus product of A and B.

The number of vertices in the graph is O(n* - n!=%) = O(n). <

One consequence of Corollary 11 is that u-APSP and computing the predecessor matrix
in unweighted directed APSP are also sub-n?** fine-grained equivalent. It was known that
Zwick’s algorithm [34] can compute the predecessor matrix for unweighted directed APSP,
which can also be viewed as a sub-n?*” time reduction from computing the predecessor
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matrix to M*(n,n?,n | n1=P). Also, if we can compute the predecessor matrix for the graph
constructed in the above proof, we would know which path X (p) the shortest path from i to
j uses, which in turn solves M*(n, n”,n | n'=?). Thus, computing the predecessor matrix for
unweighted directed APSP is sub-n?*? fine-grained equivalent to M*(n,n?,n | n1=*), and
thus also equivalent to u-APSP.

Zwick’s algorithm is general enough to apply to some variants of APSP. One example
is the All-Pairs Longest Paths (APLP) problem in DAGs. To compute APLP in a DAG,
we first negate the weight of every edge, then the problem becomes APSP, on which we
can directly apply Zwick’s algorithm. Therefore, Zwick’s algorithm show reductions from
u-APLP and [£¢p]-APLP in DAGs to M*(n,n”,n | n1=*).

Perhaps more surprisingly, the other direction of the reduction also holds. Therefore,
APLP in DAG and APSP in graphs with weights bounded by O(1) are sub-O(n?*?) equivalent.

» Theorem 12. Let p be such that w(1,p,1) =14 2p. Then u-APLP in DAGs, [£co]-APLP
in DAGs and M*(n,n?,n | n*=) are sub-n®>* fine-grained equivalent.

The proof of Theorem 12 follows from the same approach and is deferred to the full
version.

All problems shown equivalent to u-APSP above are problems on directed graphs. One
natural question is that whether some problems on undirected graphs are also in this
equivalence class, or whether we can show some undirected graph problems require n2t»—°(1)
time if we assume problems in this equivalence class also require n2t#—°(1) time. To answer
these questions, we first consider the u-cRed-APSP problem.

» Theorem 13. Let p be such that w(1,p,1) =1+ 2p. u-cRed-APSP for 2 < c=0(1) and
M*(n,n?,n | n*=°) are sub-n**° fine-grained equivalent.

The proof of Theorem 13 uses a similar graph construction and is in the full version.

By slightly modifying the proof of Theorem 13, we can show conditional hardness for
APLSP on undirected graphs where the edge weights are in {0, 1}. The proof is in the full
version.

» Corollary 14. Let p be such that w(1,p,1) = 1+ 2p. Suppose M*(n,n?,n | n'=P) requires
n2tP=°() time. Then APLSP on undirected graphs where the edge weights can be {0,1} also
requires n2tP=°) time.

Using similar ideas we also show hardness for Vertex- Weighted APSP in undirected graphs,
where the vertex weights may be large. (The current best algorithms for Vertex-Weighted
APSP for directed graphs [6, 32] had running time about O(n?%%); the bound is O(n'/4) if
w = 2. No better algorithms were known in the undirected graphs — which our conditional
lower bound attempts to explain.) The proof is in the full version.

» Corollary 15. Let p be such that w(1,p,1) = 1+ 2p. Suppose M*(n,n”,n | n*=°) requires
n2tr=o() time. Then vertex-weighted APSP on undirected graphs where the vertex weights
are in [O(n'~*)] also requires n?>TP=°) time.

The conditional hardness for u-#meq vAPSP and u-#<yAPSP for any U > 2 can be
proved by combining our graph construction with randomized techniques for a unique variant
of Min-Plus product; see the proof in the full version.

» Theorem 16. Let p be such that w(1,p,1) =1+ 2p. Suppose M*(n,n?,n | nt=*) requires
n2tP=°() time (with randomization). Then u-#moqu APSP and u-#<u APSP for any U > 2
requires n2tP=°) time.
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In Section 4, we will give an algorithm for approximating APSP with sublinear additive
errors. Using the same technique as our reductions from Rectangular Min-Plus product to
APSP problems, we can show a conditional lower bound for this problem.

» Theorem 17. Given a directed unweighted graph G = (V,E) with n vertices and a
function f > 0 where sz is mondecreasing. Suppose we can approrimate the shortest-

path distance D[u,v] with additive error f(D[u,v]), for all u,v € V in T(n) time, then
maxi<g<, M* (n,n/@,n | %) < O(T(n)).

Proof. Fix any 1 < (¢ < n. First, note that M* (n,n/ﬁ,n\ﬁ) =

) (M* (n, n/l,n| %)) for any constant C. Here, we take C' = 12 to be a large enough
constant.

Suppose we are given an n X n/¢ matrix A and an n/¢ x n matrix B, whose entries are
positive integers bounded by %, and we want to compute their Min-Plus product A x B.
We use a similar reduction as the one in the proof of Theorem 10, but stretching the length
of the middle paths. Specifically, we create vertex set I of size n, vertex set J of size n, and

n/¢ paths of the form X (p) := z NS s T M Yp g v . From z,; to

=z, o
Zpi—1 and yp ; tO Yp j+1, We embegc{(gaths of length 6f(¢); from z, o to yp0, we embed a
path of length ¢ — 2. Similar to previous reductions, for every i € [n] = I and p € [n/{], we
add an edge from i to ;, 4[; p); for every j € [n] = J and p € [n/{], we add an edge from j to
Yp,B[p,j]- Lhen the distance from i € I to j € J in this graph equals £ + 6 f(£)(A * B)[i, j].

Since 0 < (A« B)[i, j] < #@, we must have ¢ < £+ 6f(¢)(Ax B)[i,j] < 2¢. Since fig is

nondecreasing, we must have f(t€) < ¢f(¢) for any ¢ > 1, and thus f(£+6f(£)(Ax B)[i,j]) <
2f(¢). Therefore, an f(€+6f(¢)(Ax B)[i, j])-additive approximation of APSP can determine
that the distance from i € I to j € J isin £+ 6f(¢)(A x B)[i, j] £ 2f(¢), from which we can

compute (A * B)[i, j] easily since (A * B)[i, j] must be an integer. <

~ Y4
Yp, 370

Finally, we give a reduction from u-APSP to Min Witness Equality, where we are given
n X n integer matrices A and B, and are required to compute min{k € [n] : A[i, k] = B[k, j|}
for every pair of (7, j). Reductions from u-APSP to matrix product problems are considered by
Lincoln et al. [18], where they show reductions from u-APSP to the All-Edges Monochromatic
Triangle problem and (min, max)-product problem, but their techniques do not seem to apply
to Min Witness Equality.

The proof of the following theorem is deferred to the full version.

» Theorem 18. Let p be such that w(1,p,1) =1+ 2p. Suppose M*(n,n?,n | n'=P) requires
n2tr=o() time. Then Min Witness Equality requires n>P=°() time.

4 Additive Approximation Algorithms for APSP

In this section, we give an algorithm for approximate APSP with additive errors in dir-
ected unweighted graphs, to match the lower bound that we have just proved in The-
orem 17 (ignoring logarithmic factors). Namely, our algorithm achieves running time
O(maxy M*(n,n/¢,n | £=P)), which improves Roditty and Shapira’s previous algorithm [20]
with running time O(max, min{n?/¢, M*(n,n/¢'=P,n | £1=P)}).

Let D[u,v] denote the shortest-path distance from u to v.
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Overview. The new algorithm is a variation of Zwick’s exact u-APSP algorithm [34], and
is actually simpler than Roditty and Shapira’s algorithm. The idea is to compute as many
as the shortest-path distances exactly as we can in O(nw) time in an initial phase. In the
second phase, we apply rectangular matrix multiplication to submatrices computed from the
first phase, where entries are approximated by rounding and rescaling.

Preliminaries. For every / that is a power of 3/2, let R, C V be a subset of O(n/f) vertices
that hits all shortest paths of length ¢/2 [34]. (For example, a random sample works with
high probability.) We may assume that R(3/9): 2 R(3/2y+1 (because otherwise, we can add
R3/2)i to R(3/2y: for all j >4 and the size bound would still hold). For subsets 51,52 C V,
let D(S1,S2) denote the submatrix of D containing the entries for (u,v) € S1 x S.

Phase 1. We first solve the following subproblem: compute D[u, v] (exactly) for all (u,v) €
R; x V with D[u,v] < ¢, and similarly for all (u,v) € V x Ry with D[u,v] < £.

Suppose we have already computed Du,v] for all (u,v) € Ryp/3 x V with D[u,v] < 2£/3,
and similarly for all (u,v) € V' x Ryy/3 with Dlu,v] < 2£/3.

We take the Min-Plus product D(Ry, Rap/3)* D(Ra4/3, V). For each (u,v) € Ry x V, if its
output entry is smaller than the current value of D[u,v], we reset D[u,v] to the smaller value.
Similarly, we take the Min-Plus product D(V, Ra¢/3)* D(Ra¢/3, Re). For each (u,v) € V x Ry,
if its output entry is smaller than the current value of D[u,v], we reset D[u,v] to the smaller
value. We reset all entries greater than £ to oco.

To justify correctness, observe that for any shortest path 7 of length between 2¢/3 and ¢,
the middle (2¢/3)/2 = £/3 vertices must contain a vertex of Ryy/3, which splits 7 into two
subpaths each of length at most £/2 4+ £/6 < 2(/3.

We do the above for all ¢’s that are powers of 3/2. The total cost is

o) (m?X./\/l*(n/E, n/tn | e)) <0 (m?xe M (), nt, n)) <0 (m?XKQ(n/Z)w> — O(n*).

Phase 2. Next we approximate all shortest-path distances D[u,v] where D[u,v] is between
2¢/3 and ¢, with additive error O(f(¢)) for a given function f, as follows:

We compute the Min-Plus product D(V, Rgp/3)*D(R2¢/3, V'), keeping only entries bounded
by O(¢). As we allow additive error O(f(¢)), we round entries to multiples of f(¢). This
takes O(M*(n,n/l,n | %)) time.

To justify correctness, observe as before that in any shortest path 7 of length between
2(/3 and ¢, some vertex in Ry 3 splits the path into two subpaths of length at most 2¢/3.

We repeat for all ¢’s that are powers of 3/2. The total cost is
0 (maxz M*(n,n/ln | %)) .

Standard techniques for generating witnesses for matrix products can be applied to
recover the shortest paths (e.g., see [11, 34]).

» Theorem 19. Given a directed unweighted graph G = (V, E) with n vertices and a function
f where % is nondecreasing, we can approximate the shortest-path distance D[u,v] with

additive error O(f(Du,v])) for all u,v € V, in O (maxe M*(n,n/l,n | %)) time.

» Remark. For f(¢) = ¢P, we can upper-bound the running time by

O (m?x/\/l*(n,n/ﬁ,n | Elp)) < O(L**-M(n,n/L,n)+n’/L)

< O (Llfp(n2+o(1) + nw/L(Wz)/(ka)) 4 n3/L>
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for any choice of L, where « is the rectangular matrix multiplication exponent (satisfying
w(1,1,a) = 2). For example, we can set L = n3~*, and for p > 1 — min %7 %}, get
optimal O(n*) running time. In fact, with the current rectangular matrix multiplication
bounds we get O(n?37) time for p > 0.415 > (w(1,0.373,1) — 2-0.373 — 1)/(1 — 0.373).
Roditty and Shapira [20] specifically asked whether there exists p < 1 for which O(n®) time

is possible; we have thus answered their question affirmatively if w > 2.

» Remark. For directed graphs with weights from [co], the running time is

O (CQ?’LW + m?XM*(nan/&n | Cof(zé))> '

5 Algorithms for All-Pairs Lightest Shortest Paths

In this section, we describe algorithms for the following problem, which includes both All-
Pairs Lightest Shortest Paths (APLSP) and Shortest Lightest Paths (APSLP) as special
cases:

» Problem 20. (Lexs-APSP) We are given a graph G = (V, E) with n vertices, where
each edge (u,v) € E has a “primary” weight wi(u,v) and a “secondary” weight wo(u,v).
For every pair of vertices u,v € V, we want to find a path © from u to v that minimizes
(D eerwi(€), > ccr wale)) lexicographically.

Let D[u,v] be the lexicographical minimum of (3 .. wi(e),> .o, wa(e)). Let Dyfu,v]
be the minimum of ) . w;(e) (the shortest-path distance) and let Da[u, v] be the second
coordinate of D[u,v]. APLSP corresponds to the case when all secondary edge weights are 1,
whereas APSLP corresponds to the case when all primary edge weights are 1.

The following lemma, which will be important in the analysis of our Lexs-APSP algorithm,
bounds the complexity of Min-Plus product of an n; X ns matrix A and an noe X n3 matrix
B in the case when the finite entries of A come from a small range [¢1] (but the finite entries
of B may come from a large range [¢5]). The bound can be made sensitive to the number
my of finite entries of B and the number mg3 of output entries we want. The lemma is
a variant of [6, Theorem 3.5] (the basic approach originates from Matousek’s dominance
algorithm [19], but this variant requires some extra ideas). It also generalizes and improves
(using rectangular matrix multiplication) Theorem 1.2 in [30].

» Lemma 21. M*(nq,ne,ns | l1,42) = 0) (mtin(/\/l*(nl,ng,ngng/t | ¢1) +tn1n3)) . More
generally, M*(ni,ne,ng | my,ma,mg | £1,403) = O (mtin(M*(nhn%mQ/t | ¢1) + tm3)> .

Proof. Divide each column of B into groups of ¢ entries by rank: the first group contains
the ¢ smallest elements, the second group contains the next ¢ smallest, etc. (ties in ranks can
be broken arbitrarily). Each column may have at most ¢ leftover entries. The total number
of groups is at most my / t.

For each i € [n1] and j' € [m2/t], let C[i, j’] be true iff there exists k € [ng] such that
Ali, k] < oo and group j’ contains an element with row index k. Computing C' reduces to
taking a Boolean matrix product and has cost O(M(ny, ne, ma/t)).

For each i € [n1] and j' € [m2/t], suppose that group j’ is part of column j and the
maximum element in group j’ is z; let é[i,j'] = Ming. gk, jlelz,at0,] (Ali, k] + B[k, j]). Since
entries in A are from the range [¢1] U {oo}, and we only keep a size ¢; + 1 range of values
for matrix B, computing C' reduces to taking a Min-Plus product with entries in [¢1] (after
shifting) and has cost O(M*(ny, ne, ma/t | £1)).
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To compute the output entry at each of the mg positions (i, ), we find the group j' in
column j with the smallest rank such that C[i, j'] is true. Let & be the maximum element in
group j'. The answer miny(A[¢, k] + B[k, j]) is at most « 4+ £;. Thus, the answer is defined
by an index k that (i) corresponds to an element in group j', or (ii) corresponds to a leftover
element in column j, or (iii) has B[k, j] € [z,z + ¢1]. Cases (i) and (ii) can be handled by
linear search in O(t) time; case (iii) is handled by looking up C[i,j']. The total time to
compute mg output entries is O(tms). <

5.1 [C0]—LEX2—APSP

Let ¢g = O(1). For directed graphs, Zwick [33] presented a variant of his u-APSP
algorithm that solves [cg]-Lexo-APSP (and thus [co]-APLSP and [¢o]-ALPSP) in time
O(max; M*(n,n/t,n | £?)) < O(ming(L*M(n,n/L,n) + n®/L)). This is O(n>7*) by
the current bounds on rectangular matrix multiplication [17] (and is O(n®/3) if w = 2).

Chan [6] gave a faster algorithm for ([co] — {0})-Lex2-APSP (and in fact a special case of
Vertex-Weighted APSP that includes ([cg] — {0})-Lexx-APSP for an arbitrary constant k)
in time O(n3+%)/2), which is O(n?%87) by the current matrix multiplication exponent (and
is O(n??) if w = 2). Zwick’s algorithm works even when zero primary weights are allowed,
but Chan’s algorithm does not (part of the difficulty is that the secondary distance of a
path may be much larger than the primary distance). A more general version of Chan’s
algorithm [6] can handle zero primary weights (and [co]-Lexi-APSP for constant k) but has
a worse time bound of O(n(9+‘*’)/ 4), which can be slightly reduced using rectangular matrix
mutiplication [32].

We describe an O(n?%8!)-time algorithm to solve [cy]-Lexa-APSP for directed graphs,
which can handle zero weights and is faster than Zwick’s O(n*724)-time algorithm; it is also
slightly faster than Chan’s algorithm. The algorithm uses rectangular matrix multiplication
(without which the running time would be O(n(“+3)/2)). Tt should be noted that Chan’s
previous algorithm can’t be easily sped up using rectangular matrix multiplication, besides
being inapplicable when there are zero primary weights.

Overview. The new algorithm can be viewed as an interesting variant of Zwick’s u-APSP
algorithm [34]. Zwick’s algorithm uses rectangular Min-Plus products of dimensions around
nxn/l and n/f X n, in geometrically increasing parameter ¢. Our algorithm proceeds in two
phases. In both phases, we use the rectangular products of dimensions around n/¢ x n/¢
and n/¢ x n. In the first phase, we consider ¢ in increasing order; in the second, we consider
¢ in decreasing order. In these Min-Plus products, entries of the first matrix in each product
come from a small range; this enables us to use Lemma 21.

Preliminaries. Let L be a parameter to be set later. Let A[u,v] denote the length of a
lexicographical shortest path between u and v. In this section, the length of a path refers to
the number of edges in the path.

For every £ that is a power of 3/2, as in Section 4, let R, C V be a subset of O(n/{) vertices
that hits all shortest paths of length £/2 [33, 34]. We may assume that R(3/2): 2 R(3/2)i+1
(as before). Set Ry = V.

For S1,S: C V, let D(S1,S2) denote the submatrix of D containing the entries for
(u,v) € 81 X Ss.
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Phase 1. We first solve the following subproblem for a given £ < L: compute D[u,v] for all
(u,v) € Ry x V with A[u,v] < ¢, and similarly for all (u,v) € V x Ry with Au,v] < £. (We
don’t know Afu, v] in advance. More precisely, if A[u,v] < ¢, the computed value should be
correct; otherwise, the computed value is only guaranteed to be an upper bound.)

Suppose we have already computed D[u,v] for all (u,v) € Ry/3 x V with A[u,v] < 2£/3,
and similarly for all (u,v) € V' x Ry/3 with A[u,v] < 2£/3.

We take the Min-Plus product D(Ry, Ryg/3) % D(R2¢/3, V) (Where elements are compared
lexicographically). For each (u,v) € Ry x V, if its output entry is smaller than the current
value of D[u, v], we reset D[u, v] to the smaller value. Similarly, we take the Min-Plus product
D(V, Ryg/3) * D(Ra¢/3, Ry). For each (u,v) € V x Ry, if its output entry is smaller than the
current value of D[u,v], we reset D[u,v] to the smaller value. We reset all entries greater
than ¢l to oo.

To justify correctness, observe that for any shortest path 7 of length between 2¢/3 and ¢,
the middle (2¢/3)/2 = £/3 vertices must contain a vertex of Rys/3, which splits 7 into two
subpaths each of length at most £/2 + £/6 < 2¢/3.

To take the product, we map each entry D[u,v] of D(Rys/3,V) to a number D [u,v] -
col + Dy[u,v] € [O(¢?)]. Tt is more efficient to break the product into £ separate products,
by putting entries of D(Ry, Rys/3) with a common D; value into one matrix. Then after
shifting, the finite entries of each such matrix are in [O(¢)]. (The entries of D(Ry./3, V) are
still in [O(£?)].) Hence, the computation takes time O(¢ - M*(n/¢,n/l,n | £,(?)).

We do the above for all £ < L that are powers of 3/2 (in increasing order).

Phase 2. Next we solve the following subproblem for a given ¢ < L: compute D[u,v] for
all (u,v) € Rygy3 x V with Au,v] < L.

Suppose we have already computed Du,v] for all (u,v) € Ry x V with A[u,v] < L.

We take the Min-Plus product D(Ry/3, Re) x D(R;, V'), keeping only entries bounded
by O(¢) in the first matrix and O(L) in the second matrix. For each (u,v) € V' x Ry, if
its output entry is smaller than the current value of D[u,v], we reset D[u,v] to the smaller
value.

To justify correctness, recall that for (u,v) € Ryp/3 x V, if Au, v] < 2¢/3, then D[u,v] is
already computed in Phase 1. On the other hand, in any shortest path 7 of length between
2¢/3 and L, the first £/2 vertices of the path must contain a vertex of Ry.

To take the product, we map each entry D[u,v] of D(Rg;/3, V') to a number D1 [u, v]-coL+
Dslu,v] € [O(¢L)]. As before, it is better to perform ¢ separate products, by putting entries
of D(Ry¢/3, R) with a common D; value into one matrix. Then after shifting, the finite
entries of each such matrix are in [O(¢)]. (The entries of D(Ry/3,V) are still in [O(£L)].)
Hence, the computation takes time O(¢ - M*(n/¢,n/l,n | ¢,LL)).

We do the above for all £ < L that are powers of 3/2 (in decreasing order).

Last step. By the end of Phase 2 (when £ reaches 1), we have computed Dlu, v] for all (u,v)
with A[u,v] < L. To finish, we compute D]u,v] for all (u,v) with A[u,v] > L, as follows:

We run Dijkstra’s algorithm O(|Rp|) times to compute D[u,v] for all (u,v) € Ry, x V
and for all (u,v) € V x Ry. This takes O(|Rz|n?) = O(n?/L) time. We then compute
D(V,Ry) » D(Ry,V) by brute force in O(|Rp|n?) = O(n®/L) time.

Correctness follows since every shortest path of length more than L must pass through a
vertex in Ry.

As before, standard techniques for generating witnesses for matrix products can be applied
to recover the shortest paths [11, 34].
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Total time. The cost of Phase 2 dominates the cost of Phase 1. By Lemma 21, the total
cost is

0 (I}lfl},{é “M*(n/ln/ln| L, LL) + nS/L)
< 0 (I}1<a£<€ - min (M*(n/t,n/e,n?/(0t) | £) + tn®/€) + nB/L) .
We set ¢ = n/L and obtain

O(I?Sai(£2 -M(njl,n/t, In/l) + n®/L).

Intuitively, the maximum occurs when ¢ = 1, and so we should choose L to minimize
O(M(n,n, Ln) +n3/L). With the current bounds on rectangular matrix multiplication [17],

0.342

we choose L = n and get running time O(n?%%8!). (Formally, we can verify this time

bound using the convexity of the function 2z + w(l — z,1 — 2,1.342 — z).)

» Theorem 22. [cg]-Lexz-APSP (and thus [co]-APLSP and [co]-APSLP) can be solved in
O(n?5%8Y) time for any co = O(1).

Remarks. Without rectangular matrix multiplication, the above still gives a time bound of
O(Ln® +n3/L), yielding O(n®3+)/2).

The same algorithm works even with negative weights (i.e., for [£cg]-Lex2-APSP), like
Zwick’s previous algorithm [33], assuming no negative cycles.

In the full version, we describe an alternative algorithm that has the same running time,
though it does not allow zero primary edge weights (or negative weights).

5.2 Undirected ([co] — {0})-Lex2-APSP

A natural question is whether APLSP or APSLP is easier for undirected graphs. We now
describe a faster O(n?%)-time algorithm for ([co] — {0})-Lexz-APSP for undirected graphs.
Zero primary weights are not allowed, but zero secondary weights are. (In particular, the
algorithm can solve [¢o]-APSLP, when all primary weights are 1.)

Overview. We follow an idea of Aingworth et al. [1], to divide into two cases: when the source
vertex has high degree or low degree. For high-degree vertices, there exists a small dominating
set, and so these vertices can be covered by a small number of “clusters”; sources in the same
cluster are close together, and so distances from one fixed source give us good approximation
to distances from other sources in the same cluster, by the triangle inequality (since the graph
is undirected). On the other hand, for low-degree vertices, the relevant subgraph is sparse,
which enables faster algorithms. Originally, Aingworth et al’s approach was intended for the
design of approximation algorithms (with O(1) additive error for unweighted graphs). We
will adapt it to find ezact shortest paths. (Chan [7] previously had also applied Aingworth
et al’s approach to exact APSP, but the goal there was in logarithmic-factor speedup, which
was quite different.) In order to handle the high-degree case for Lexo-APSP, we need further
ideas to use approximate primary shortest-path distances to compute exact lexicographical
shortest-path distances; in particular, we will need Min-Plus products on secondary distances
(as revealed in the proof of Lemma 23 below). The combination of Aingworth et al’s approach
with matrix multiplication appears new, and interesting in our opinion.
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Preliminaries. We first compute Dj[u,v] for all (u,v) by running a known [cy]-APSP
algorithm on the primary distances in O(n“) time [3, 21].

Assume that we have already computed Dlu, v] for all (u,v) with D;[u,v] < 2¢/3 for a
given ¢. We want to compute D[u,v] for all (u,v) with Dj[u,v] < L.

Define Dée) [u,v] = Dalu,v] if Di[u,v] = ¢, and Dy) [u,v] = oo otherwise. For subsets
51,82 CV, let Dé@(Sl, S3) denote the submatrix of Dg) containing the entries for (u,v) €
Sl X SQ.

» Lemma 23. Let G = (V, E) be an undirected graph with edge weights in [co] —{0}. Assume
that we have already computed D[u,v] for all (u,v) with D;lu,v] < 2¢/3. Given a set S of

vertices that are within primary distance ¢ = O(1) from each other, we can compute D[u,v]
for allu e S and v € V with Dy[u,v] < £ in O(M*(|S|,n/l,n | L)) total time.

Proof. Fix s € S. Let V; = {v € V : Dy[s,v] € i £ c}. Note that 3", |Vi| = O(n). Also note
that if w € S and Dq[u,v] =4, then we must have v € V; (by the triangle inequality, because
the graph is undirected).

Pick an index m € [0.44,0.6¢] with |V, _¢, U---UVy,| = O(n/¢).

For i < m, we have already computed Déi)(S, Vi).

Fori=m+1,...,¢, we will compute Déi) (S,V;) as follows: For each A € [¢g], we take the
Min-Plus product DS ") (S, Ve a)* DS ™) (V,,_ A, V;). Note that DS~ ™) (V,, A, Vi)
is already known, since i — m + A < 2£/3. We take the minimum over all A € [¢] for those
(u,v) € S x V; with Dj[u,v] = 1.

Instead of doing the product individually for each i, it is more efficient to combine all
the matrices Déi_m+A)(Vm_A, Vi) over all ¢ > m. This gives a single matrix (per A) with
[Vin_a| = O(n/f) rows and Yism Vil = O(n) columns. So, the entire product can be
computed in O(M*(|S|,n/¢,n | £)) time. <

Let L be a parameter to be set later. Let Vi be the set of all vertices of degree more
than n/L, and Viey be the set of all vertices of degree at most n/L.

Phase 1. We will first compute D[u,v] for all u € Vyign and v € V' with D;[u,v] < ¢, as
follows:

Let X C V be a dominating set for Vijgn of size O(L)7 such that every vertex in Viigh is
in the (closed) neighborhood of some vertex in X. Such a dominating set can be constructed
(for example, by the standard greedy algorithm) in O(n?) time [1].

Let X = {z1,22,..., 25} For each z; € X, we divide N(x;) \ (Uj<iN(xj)) — its
neighborhood excluding previous neighborhoods — into groups of size O(n/L). The total
number of groups is O(L), and the groups cover all vertices in Vyign. For each such group,
we apply Lemma 23 (with ¢ = 2¢). The total time is O(L - M*(n/L,n/{,n | £)).

Phase 2. Next, for each u € Vioy, we will compute D[u,v] for all v € V' with D;[u,v] < ¢,
as follows:

Define a graph G, containing all edges (z,y) with & € Vigw or y € Viow; for each z € Vijign,
we add an extra edge (u, z) with weight D[u, z], which has been computed in Phase 1. Then
the lexicographical shortest-path distance from u to v in G,, matches the lexicographical
shortest-path distance in G, because if (uq,...,ux) is a lexicographical shortest path in
G with u; = u, and ¢ is the largest index with u; € Viign (set ¢ = 1 if none exists), then
{(uy,us, ..., u) is a path in G,,. We run Dijkstra’s algorithm on G, from the source u. Since
G, has O(n?/L) edges, this takes O(n?/L) time per u. The total over all u is O(n®/L).
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As before, standard techniques for generating witnesses for matrix products can be applied
to recover the shortest paths [11, 34].

Total time. We do the above for all £’s that are powers of 3/2. The overall cost is
0 (m?XL - M*(n/L,njln | L) + n3/L>
< O <m?xL -min {n®/(LC), ¢- M(n/L,n/t,n)} + n?’/L)

= 0 (I&aziLf-M(n/L,n/é,n) + n3/L> = O(L* - M(n/L,n/L,n) + n®/L).
With the current bounds on rectangular matrix multiplication, we choose L = n0-4206
and get running time O(n?°794).

» Theorem 24. ([co] — {0})-Leaz-APSP (and thus -APLSP and -APSLP) for undirected
graphs can be solved in O(n*57%) time for any co = O(1).

» Remarks. Without rectangular matrix multiplication, the above still gives a time bound of
O(L3(n/L)* +n?/L), yielding O(n?>+/(4=«)),

One could adapt the algorithm to solve Undirected ([co] — {0})-Lex-APSP for a larger
constant k, but the running time appears worse than the bound O~(n(3+‘“)/2) by Chan [6]
(because of the need to compute a Min-Plus product between matrices with larger entries in
Lemma 23).

6 Exact u-#APSP

We defer most of our algorithms for #APSP to the full paper. An exception is our algorithm
for exact u-#APSP, which is simple and is described below. Interestingly, some of our
#APSP algorithms are obtained by modifying our Lexo-APSP algorithms, even though the
#APSP and Lexy-APSP problems appear very different.

For exact counts that could be exponentially large, we will describe a combinatorial
O(n?)-time algorithm to solve u-#APSP for directed unweighted graphs, in the standard
word RAM model (with (logn)-bit words). The idea behind the algorithm is actually related
to the Lexo-APSP algorithm in Section 5.2, but simplified with L = 1 and without matrix
multiplication and dominating sets.

Recall that the goal is to compute the number C[u, v] of shortest paths from u to v, for
all u,v € V for a given directed unweighted graph G = (V, E).

We first compute D[u,v] for all u,v € V in O(n?®) time by known APSP algorithms.
There are of course faster APSP algorithms for directed unweighted graphs, but we use the
slower O(n?) time algorithm to keep the whole algorithm combinatorial.

Assume we have already computed Clu,v] for all u,v with D[u,v] < 2¢/3 for a given £.
Fix a source vertex s € V. We will compute C[s,v] for all v with Dl[s,v] < ¢, as follows:

Let V; = {v € V : Di[s,v] = i}. Note that ) . |Vi| = n, so there exist an index
m € [0.4¢,0.6¢] with |V,,,| = O(n/?).

For i < m, we have already computed C[s,v] for all v € V.

Fori=m+1,...,¢, by setting C[s,v] = ZueVm:D[u,v]:Fm Cls,u] - Cu,v], we compute
C[s,v] for all v € V;. Note that C[s,u] and C[u,v] have been computed from the previous
iteration, since i —m < 2¢/3. The total number of arithmetic operations is O(>_, |Vi|-|Vin|) =
O(n?/¢). Since the counts are bounded by O(nf) and are O(¢)-bit numbers, the total cost is
O(n2/t-0) = O(n?).
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We do this for every source s € V. The overall cost is O(n?).
We do the above for all £’s that are powers of 3/2. The final time bound is O(n?).

» Theorem 25. u-#APSP can be solved in O(n®) time.

» Remarks. This is worst-case optimal up to polylogarithmic factors, as the total number of
bits in the answers could be Q(n?).

Recall the Betweenness Centrality of a vertex v is defined as BC(v) =
> s t0 Culs,t]/Cls, t] where Cy[s,t] is the number of shortest paths between s and ¢ that
go through v. As an immediate corollary, we can compute the Betweenness Centrality of a
given vertex exactly in a directed unweighted graph in O(n3) time.

» Corollary 26. The betweenness centrality of a vertex can be computed in O(n3) time in a
directed unweighted graph.
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