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Abstract
We consider the problem of preprocessing two strings S and T , of lengths m and n, respectively, in
order to be able to efficiently answer the following queries: Given positions i, j in S and positions a, b

in T , return the optimal alignment score of S[i . . j] and T [a . . b]. Let N = mn. We present an oracle
with preprocessing time N1+o(1) and space N1+o(1) that answers queries in log2+o(1) N time. In
other words, we show that we can efficiently query for the alignment score of every pair of substrings
after preprocessing the input for almost the same time it takes to compute just the alignment of S

and T . Our oracle uses ideas from our distance oracle for planar graphs [STOC 2019] and exploits
the special structure of the alignment graph. Conditioned on popular hardness conjectures, this
result is optimal up to subpolynomial factors. Our results apply to both edit distance and longest
common subsequence (LCS).

The best previously known oracle with construction time and size O(N) has slow Ω(
√

N) query
time [Sakai, TCS 2019], and the one with size N1+o(1) and query time log2+o(1) N (using a planar
graph distance oracle) has slow Ω(N3/2) construction time [Long & Pettie, SODA 2021]. We improve
both approaches by roughly a

√
N factor.
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1 Introduction

String alignment is arguably the most popular problem in combinatorial pattern matching.
Given two strings S and T of length m and n, the problem asks to compute the similarity
between the strings according to some similarity measure. The two most popular similarity
measures are edit distance and longest common subsequence (LCS). In both cases, the
classical solution is essentially the same: Compute the shortest path from vertex (0, 0) to
vertex (m, n) in the so called alignment graph of the two strings. As taught in almost every
elementary course on algorithms, computing this shortest path (and hence the optimal
alignment of the two strings) can easily be done in O(N) time where N = mn, via dynamic
programming. Interestingly, this time complexity cannot be significantly improved assuming
popular conjectures such as the strong exponential time hypothesis (SETH) [1, 6, 8]. In fact,
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48:2 An Almost Optimal Edit Distance Oracle

by now we seem to have a rather good understanding of the complexity of this problem for
different similarity measures and taking other parameters than the length of the strings into
account, see [8].

Substring queries. A natural direction after having determined the complexity of a par-
ticular problem on strings is to consider the more general version in which we need to
answer queries on substrings of the input string. This has been done for alignment [34,36],
pattern matching [24,28], approximate pattern matching [17], dictionary matching [14,15],
compression [24], periodicity [27,28], counting palindromes [33], longest common substring [3],
computing minimal and maximal suffixes [5, 26], and computing the lexicographically k-th
suffix [4].

Alignment oracles. Consider the shortest path from vertex (i, a) to vertex (j, b) in the
alignment graph. It corresponds to the optimal alignment of two substrings: the substring of
S between indices i and j and the substring of T between indices a and b. An alignment
oracle is a data structure that, after preprocessing, can report the optimal alignment score
of any two substrings of S and T . That is, given positions i, j in S and positions a, b in T ,
the oracle returns the optimal alignment score of S[i . . j] and T [a . . b] (or equivalently, the
(i− 1, a− 1)-to-(j, b) distance in the alignment graph).

Tiskin [36, 37] considered a restricted variant of the problem, in which the queries are
either the entire string S vs. a substring of T or a prefix of S vs. a suffix of T . For such
queries, Tiskin gave an Õ(n + m)-size oracle, that can be constructed in Õ(N) time, and
answers queries in O(log N/ log log N) time [36]. For the general problem, Sakai [34] (building
on Tiskin’s work [36]) showed how to construct in O(N) time an alignment oracle with
O(n + m) query time. In this work we show that, perhaps surprisingly, obtaining such an
oracle can be done essentially for free! That is, at almost the same time it takes to compute
just the alignment of S and T . More formally, our main result is:

▶ Theorem 1. For two strings of lengths m and n, with N = mn, we can construct in
N1+o(1) time an alignment oracle achieving either of the following tradeoffs:

N1+o(1) space and log2+o(1) N query time,
N log2+o(1) N space and No(1) query time.

Planar distance oracles and Voronoi diagrams. The starting point of our work is the
recent developments in distance oracles for planar graphs. A distance oracle is a compact
representation of a graph that allows to efficiently query the distance between any pair of
vertices. Indeed, since the alignment graph is a planar graph, the state-of-the-art distance
oracle for planar graphs of Long and Pettie [30] (which builds upon [13,19,21]) is an alignment
oracle with space N1+o(1) and query time O(log2+o(1) N). However, the construction time
of this oracle is Ω(N3/2). Our main contribution is an improved N1+o(1) construction time
when the underlying graph is not just a planar graph but an alignment graph.

Our oracle has the same recursive structure as the planar graph oracles in [13, 21, 30] (in
fact, the alignment graph, being a grid, greatly simplifies several technical, but standard,
difficulties of the recursive structure). These oracles (inspired by Cabello’s use of Voronoi
diagrams for the diameter problem in planar graphs [10]) use the recursive structure in
order to apply (at different levels of granularity) an efficient mechanism for point location on
Voronoi diagrams. At a high level, a Voronoi diagram with respect to a subset S of vertices
(called sites) is a partition of the vertices into |S| parts (called Voronoi cells), where the cell
of site s ∈ S contains all vertices that are closer to s than to any other site in S. A point
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location query, given a vertex v, returns the site s such that v belongs to the Voronoi cell of s.
Our main technical contribution is a polynomially faster construction of the point location
mechanism when the underlying graph is an alignment graph. We show that, in this case,
the special structure of the Voronoi cells facilitates point location via a non-trivial divide and
conquer. Unlike the planar oracles, which use planar duality to represent Voronoi diagrams,
the representation and point location mechanisms we develop in this paper are novel and
achieve the same query time, while being arguably simpler than those of Long and Pettie.1

It is common that techniques are originally developed for pattern matching problems
(and in particular alignment problems) and later extended to planar graphs. A concrete
example is the use of Monge matrices and unit-Monge matrices. However, it is much less
common that techniques are first developed for planar graphs (in our case, the use of Voronoi
diagrams) and only then translated to pattern matching problems.

Conditional lower bounds. Any lower bound on the time required to compute an optimal
alignment of two strings directly implies an analogous lower bound for the sum of the
preprocessing time and the query time of an alignment oracle. In particular, the existence of
an oracle for which this sum is O(N1−ϵ), for a constant ϵ > 0, would refute SETH [6,8].

In the Set Disjointness problem, we are given a collection of m sets A1, A2, . . . , Am of
total size M for preprocessing. We then need to report, given any query pair Ai, Aj , whether
Ai ∩ Aj = ∅. The Set Disjointness conjecture [18, 22, 32] states that any data structure
with constant query time must use M2−o(1) space. Goldstein et al. [22] stated the following
stronger conjecture.

▶ Conjecture 2 (Strong Set Disjointness Conjecture [22]). Any data structure for the Set
Disjointness problem that answers queries in time t must use space M2/(t2 · logO(1) M).

The following theorem implies that, conditioned on the above conjecture, our alignment
oracle is optimal up to subpolynomial factors; its proof is identical to that of [3, Theorem 1]
as explained in [12].

▶ Theorem 3 ([3, 12]). An alignment oracle for two strings of length at most n with query
time t must use n2/(t2 · logO(1) n) space, assuming the Strong Set Disjointness Conjecture.

Even though the main point of interest is in oracles that achieve fast (i.e. constant,
polylogarithmic, or subpolynomial) query-time, the above lower bound suggests to study
other tradeoffs of space vs. query-time. In Section 5 we show oracles with space sublinear
in N . More formally, we prove the following theorem.

▶ Theorem 4. Given two strings of lengths m and n with N = mn, integer alignment
weights upper-bounded by w, and a parameter r ∈ [

√
N, N ] we can construct in Õ(N) time

an Õ(Nw/
√

r + m + n)-space alignment oracle that answers queries in time Õ(
√

N + r).

For example, if the alignment weights are constant integers, by setting r =
√

N we obtain
an O(N3/4 + m + n)-space oracle that answers queries in time Õ(

√
N).

1 We believe that our efficient construction can also be made to work, for alignment graphs, with the
dual representation of Voronoi diagrams used in [13, 21, 30], but we think the new representation makes
the presentation more approachable as it exploits the structure of the alignment graph more directly.
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Other related works. When the edit distance is known to be bounded by some threshold k,
an efficient edit distance oracle can be obtained via the Landau-Vishkin algorithm [29].
Namely, after O(n + m) time preprocessing of the input strings (oblivious to the threshold k),
given a substring of S, a substring of T , and a threshold k, in O(k2) time one can decide
whether the edit distance of these substrings is at most k, and if so, return it.

Further, after an O(n + m)-time preprocessing, given a substring X of S and a substring
Y of T , the starting positions of substrings of Y that are at edit distance at most k from X

can be returned in O(k4 · |Y |/|X|) time [17].
In a recent work [16] on dynamic string alignment, it was shown that, in the case where

the alignment weights are small integers, two strings of total length at most n can be
maintained under edit operations in Õ(n) time per operation so that an alignment of any
pair of substrings can be queried in Õ(n) time.

2 Preliminaries

The alignment oracle presented in this paper applies to both edit distance and longest
common subsequence (LCS). To simplify the presentation we focus on LCS but the extension
to edit distance is immediate.

The LCS of two strings S and T is a longest string that is a subsequence of both S and T .
We denote the length of an LCS of S and T by LCS(S, T ).

▶ Example 5. An LCS of S = acbcddaaea and T = abbbccdec is abcde; LCS(S, T ) = 5.

For strings S and T , of lengths m and n respectively (we will assume that n ≥ m), the
alignment graph G of S and T is a directed acyclic graph of size N = O(mn). For every
0 ≤ x ≤ m and 0 ≤ y ≤ n, the alignment graph G has a vertex (x, y) and the following
unit-length edges (defined only if both endpoints exist):

((x, y), (x + 1, y)) and ((x, y), (x, y + 1)),
((x, y), (x + 1, y + 1)), present if and only if S[x] = T [y].

Intuitively, G is an (m + 1)× (n + 1) grid graph augmented with diagonal edges corres-
ponding to matching letters of S and T . See Figure 1. We think of the vertex (0, 0) as the
top-left vertex of the grid and the vertex (m, n) as the bottom-right vertex of the grid. We
shall refer to the rows and columns of G in a natural way. It is easy to see that LCS(S, T )
equals n + m minus the length of the shortest path from (0, 0) to (m, n) in G.

Multiple-source shortest paths. Given a planar graph with N vertices and a distinguished
face h, the multiple-source shortest paths (MSSP) data structure represents all shortest
path trees rooted at the vertices of h. It can be constructed in O(N log N) time, requires
O(N log N) space, and can report the distance between any vertex u of h and any other
vertex v in the graph in O(log N) time. These bounds were first obtained for alignment
graphs [35] and then extended to arbitrary planar graphs [11,25].

The MSSP data structure can be augmented at no asymptotic overhead (cf. [23, Section
5]), to allow for the following. First, to report a shortest u-to-v path ρ in time O(|ρ| log log ∆),
where ∆ is the maximum degree of a vertex in G. Second, to support the following queries
in O(log N) time [21]: Given two vertices u, v ∈ G and a vertex x of h report whether u is
an ancestor of v in the shortest path tree rooted at x, and whether u occurs before v in a
preorder traversal of this tree. (We consider shortest path trees as ordered trees with the
order inherited from the planar embedding.)
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(0, 0) (0, 5)

(4, 5)(4, 0)

a b c a b

c

a

b

a

Figure 1 The alignment graph for S = abac and T = abcab. We represent the horizontal and
vertical edges by dashed black arrows, and the diagonal edges by blue arrows. A lowest scoring
(0, 0)-to-(4, 5) path is highlighted in green, it has weight 6 and corresponds to the LCS aba of length
3 = 9 − 6 = |T | + |S| − 6.

Recursive decomposition. We assume without loss of generality that the length of each
of the two strings is a power of 2, and hence the alignment graph is a (2a + 1) × (2b + 1)
grid. We consider a recursive decomposition A of G such that in each level all pieces are of
the same rectangular shape. At each level, each piece will be of size (2c + 1)× (2d + 1) for
non-negative integers c and d. Consider a piece P of size (2c + 1)× (2d + 1), with c + d ̸= 0.
Assuming without loss of generality that c ≥ d, in the next level we will partition P to two
pieces, each of size (2c−1 + 1)× (2d + 1), that share the middle row of P . See Figure 2. We
view A as a binary tree and identify a piece P with the node corresponding to it in A.

Figure 2 Illustration of pieces in a recursive decomposition of the alignment graph. Diagonal
edges are not show to avoid clutter. All rectangular pieces that contain the gray square form a single
root-to-leaf path in the tree A.

Consider a piece P ∈ A. The set ∂P of boundary vertices of a piece P consists of those
vertices who have neighbours that are not in P . We call the vertices in P \ ∂P the internal
vertices of P . We denote by ⌟(P ) the set of boundary vertices of P that are either rightmost
or bottommost in P , and by ⌜(P ) the set of boundary vertices of P that are either leftmost
or topmost in P . We consider each of ⌟(P ) and ⌜(P ) to be ordered, such that adjacent
vertices are consecutive and the earliest vertex is the bottom-left one. Therefore, whenever
convenient, we refer to subsets of ⌟(P ) and ⌜(P ) as sequences. We define the outside of P ,
denoted by P out, to be the set of vertices of G \ (P \∂P ) that are reachable from some vertex
in P , i.e. the vertices of G that are not internal in P and are to the right or below some
vertex of P . Note that any path from a vertex u ∈ P to a vertex v ∈ P out must contain
at least one vertex from ⌟(P ), and any path from a vertex u ̸∈ P to a vertex u ∈ P must
contain at least one vertex from ⌜(P ).

ICALP 2021
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For any r ∈ [1, nm], an r-division of G is a decomposition of G to pieces of size O(r), each
with O(

√
r) boundary vertices. Clearly, such a decomposition can be retrieved from A, with

all nodes being of the same depth. In particular, we will use recursive (rt, . . . , r1)-divisions,
where for every i < t, each piece of the ri-division must be contained in some piece of the
ri+1-division. By convention, we will have rt being a single piece consisting of the entire
graph G. Such a recursive division can be materialized as follows: First, we select the
appropriate depth of A for each ri-division and mark all nodes of this depth. Then, we
contract every edge of A of the form (parent(u), u) such that u is unmarked. Such a recursive
(rt, . . . , r1)-division can thus also be represented by a tree, which we will denote by T .

Q

Figure 3 A piece Q (shaded gray). ⌜(Q) is indicated by a red line, and ⌟(Q) by an orange line.
Qout is shaded pink. The Voronoi diagram for Qout with sites ⌟(Q) (boxes) is also illustrated. Each
site has a distinct color. Vertices in each Voronoi cell are indicated by a matching color.

Voronoi diagrams. Let H be a directed planar graph with real edge-lengths, and no
negative-length cycles. Let h be a face of H, and let S be the set of vertices (called sites)
of h. Each site s ∈ S has a weight ω(s) ≥ 0 associated with it. The additively weighted
distance dω(s, v) between a site s ∈ S and a vertex v ∈ H is defined as ω(s) plus the length
of the shortest s-to-v path in H.

The additively weighted Voronoi diagram VD(S, ω) of H is a partition of the vertices of
H into pairwise disjoint sets, one set Vor(s) for each site s ∈ S. The set Vor(s), called the
Voronoi cell of s, contains all vertices of H that are closer (w.r.t. dω(., .)) to s than to any
other site in S. If v ∈ Vor(s) then we call s the site of v, and say that v belongs to the site s.
Throughout the paper, we will only consider additively weighted Voronoi diagrams for the
outside P out of a piece P ∈ A with sites S ⊆ ⌟(P ). We next discuss the structure of such
Voronoi diagrams.

We resolve ties between sites in favor of the site s = (x, y) for which (ω(s), x, y) is
lexicographically largest. Since the alignment graph is planar, this guarantees that the
vertices in Vor(s) are spanned by a subtree of a shortest paths tree rooted at s: for every
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vertex v ∈ Vor(s), for any vertex u on a shortest s-to-v path, we must have u ∈ Vor(s).
Hence, each Voronoi cell is a simply connected region of the plane. The structure of the
alignment graph dictates that any shortest path is monotone in the sense that it only goes
right and/or down. This property immediately implies the following lemma.

▶ Lemma 6. For any a ≤ c and d ≤ f , if u = (a, f) and v = (c, d) both belong to Vor(s)
then every vertex w = (b, e) with a ≤ b ≤ c and d ≤ e ≤ f also belongs to Vor(s).

Proof. Suppose w = (b, e) belongs to Vor(s′) for some s′ ̸= s. Since shortest paths only go
right and down, the shortest s′-to-w path must cross either the s-to-u path or the s-to-v
path, which is a contradiction. ◀

Lemma 6 together with the fact that Vor(s) is connected implies the following character-
ization of the structure of Vor(s), which roughly says that Vor(s) has the form of a double
staircase, as illustrated in Figure 3.

▶ Corollary 7. For any row a and any site s, the vertices of row a that belong to Vor(s) form
a contiguous interval of columns [ia, ja]. Furthermore, the sequences ia and ja are monotone
non-decreasing, ia ≤ ia+1 ≤ ja + 1, and ja ≤ ja+1.

▶ Corollary 8. There is a rightmost vertex s↘ in Vor(s) that is also a bottommost one.

▶ Corollary 9. For every v ∈ Vor(s), Vor(s) contains a path from v to s↘.

Our representation of a Voronoi diagram for P out with sites ⌟(P ) consists of the following.
For each s ∈ ⌟(P ), we store:
1. the rightmost bottommost vertex s↘ of Vor(s), defined in Corollary 8,
2. a vertex last(s, s↘) on a shortest s-to-s↘ path, whose definition will be given later.

3 The Alignment Oracle

In this section, we describe our oracle and prove that its space and query time are as in
Theorem 1. In the next section we will show how to construct the oracle in N1+o(1) time.

Consider a recursive (rt, . . . , r1)-division of G for some N = rt > · · · > r1 = O(1) to be
specified later. Recall that our convention is that the rt-division consists of G itself. Further,
we set the r1-division to consist of pieces of size 2× 2. We also consider an r0-division, in
which each vertex v of G is a singleton piece. Let us denote the set of pieces of the ri-division
by Ri. Let T denote the tree representing this recursive (rt, . . . , r0)-division, where each
singleton piece {v} at level 0 is attached as a child of a piece P at level 1 such that v ∈ ⌟(P )
– this is well-defined for all singletons apart from {(0, 0)} and {(m, n)}, each of which is
attached to the single level-1 piece containing it.

The oracle consists of the following. For each 0 ≤ i ≤ t− 1, for each piece P ∈ Ri whose
parent in T is Q ∈ Ri+1:
1. If i > 0, we store an MSSP with sources ⌟(P ) for the graph obtained from P by flipping

the orientation of all edges; we call this the reverse MSSP of P .
2. If i > 0, we store an MSSP with sources ⌟(P ) for Q \ (P \ ∂P ).
3. If i < t− 1, for each vertex u ∈ ⌟(P ) we store VD(u, Q): the Voronoi diagram for Qout

with sites ⌟(Q) and additive weights the distances in G from u to these sites.

To complete the description of the oracle it remains to specify the definition of last(s, s↘).
Before doing so, let us distinguish, for a (source) vertex u and a (target) vertex v, two
levels of the recursive division that are of interest. Let R0 be the singleton piece {u}. Let

ICALP 2021



48:8 An Almost Optimal Edit Distance Oracle

u
R1

R2

R3

v

w

z

Figure 4 A vertex u and all the pieces of a recursive (r4, r3, r2, r1, r0)-division that contain u.
The piece R0 consists of just u, and the piece R4 is the entire alignment graph. Note that u ∈ ⌟(R1).
In this example, lev(u) = 1, anc(u, w) = 3, and anc(u, v) = 4 (because v ∈ ∂R3). A u-to-w shortest
path ρ is shown in dashed red. last(u, w) is the last vertex of ρ that belongs to ⌟(R2), which is the
vertex z. The distance from u to w is dist(u, z) + dist(z, w). dist(u, z) is stored in the reverse MSSP
of R2. dist(z, w) is stored in the MSSP of R3 \ (R2 \ ∂R2). Similarly, a u-to-v shortest path ρ is
shown in dashed blue. Because v ∈ ∂R3, last(u, v) is v itself.

R1, R2, . . . , Rt be the ancestors of R0 in T . Note that u ∈ ⌟(Ri) for a non-empty prefix of
the sequence of ancestors R0, R1, . . . , Rt. Let lev(u) = argmaxi{u ∈ ⌟(Ri)}. Further, let
anc(u, v) = argmini{v ∈ Ri \ ∂Ri}. Note that anc(u, v) is well defined since v ∈ Rt = G and
∂G = ∅. Also note that if v is reachable from u then lev(u) < anc(u, v). This is because all
vertices in Rlev(u) \ ∂Rlev(u) are unreachable from u.

Denote H = Ranc(u,v)−1. We define last(u, v) as any boundary vertex of ⌟(H) that lies
on a shortest u-to-v path ρ. The idea behind this definition is that last(u, v) partitions this
u-to-v path into a prefix and a suffix, each of which is represented in one of the MSSP data
structures stored for H; The prefix of ρ ending at last(u, v) is represented in the shortest
path tree rooted at last(u, v) in the reverse MSSP of H. The suffix of ρ starting at last(u, v)
is represented in the shortest path tree rooted at last(u, v) in the MSSP for H ′ \ (H \ ∂H)
with sources ⌟(H), where H ′ = Ranc(u,v) is the parent of H in T . This allows us to efficiently
compute dist(u, v) (the u-to-v distance) given last(u, v). See Figure 4. This concludes the
description of the oracle.

▶ Lemma 10. The oracle occupies space O
(

N log2 N + N log N ·
∑t−1

i=0 ri+1/ri

)
.

Proof. The reverse MSSPs over all pieces of A require O(N log2 N) space, since
∑

P ∈A |P | =
O(N log N) and since the reverse MSSP of a piece P requires space O(|P | log |P |).

For each i ∈ (0, t− 1], for each of the O(N/ri) pieces in Ri, we store an MSSP of size
O(ri+1 log ri+1). For each i ∈ [0, t−1), for each of the O(N/ri) pieces in Ri, we store O(√ri)
Voronoi diagrams each of size O(√ri+1). The stated bound follows. ◀
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Query. We now describe how to answer a distance query dist(u, v). First, note that if u

and v are in the same piece P in R1 we can report dist(u, v) in O(1) time using brute force.
Let R0 be the singleton piece {u}. As before, let R1, R2, . . . , Rt be the ancestors of R0

in T . Since the distance query originates from an LCS query, v must be reachable from u.
Let ℓ = lev(u) and h = anc(u, v). We then have u ∈ ⌟(Rℓ) and v ∈ Rout

ℓ . We will answer
dist(u, v) by identifying last(u, v), which lies on ⌟(Rh−1). As explained above, we can then
obtain dist(u, v) from the MSSP data structures stored for Rh−1. See Algorithm 1.

Algorithm 1 Dist(u, v).

1: if u and v belong to the same piece in R1 then
2: return the answer by brute force
3: w ← GetLast(u, v)
4: return dist(u, w) + dist(w, v)

We now show how to implement the procedure GetLast for finding last(u, v); see Al-
gorithm 2 for a pseudocode. First, note that if h = ℓ + 1 we can simply return u as last(u, v).
Hence, in what follows, we assume that h > ℓ + 1. The procedure GetLast proceeds in
iterations for i = ℓ+1, . . . , h−1. At the beginning of the iteration with value i, the procedure
has a subset Wi−1 of ⌟(Ri−1) such that some w ∈ Wi−1 belongs to a shortest u-to-v path.
We initially set Wℓ := {u}, which trivially satisfies the requirement for i = ℓ + 1. For each
w ∈ Wi−1 the iteration uses a procedure GetNextCandidates that adds at most two
vertices of ⌟(Ri) to Wi. The guarantee is that, if w is a vertex of ⌟(Ri−1) that belongs to a
shortest u-to-v path, then at least one of the two added vertices also belongs to a shortest
u-to-v path. Since |Wi| ≤ 2|Wi−1|, at the end of the last iteration (the one for h− 1), we
have a subset Wh−1 of at most 2t vertices of ⌟(Rh−1), one of which can be returned as
last(u, v). To figure out which one, for each such vertex w, we use the MSSP data structures
to compute dist(u, w) + dist(w, v), and return a vertex for which the minimum is attained.

Algorithm 2 GetLast(u, v).

1: ℓ← lev(u)
2: h← anc(u, v)
3: Wℓ ← {u}
4: for i = ℓ + 1 to h− 1 do
5: Wi ← ∅
6: for each w ∈Wi−1 do
7: Wi ←Wi ∪ GetNextCandidates(w, i, v)
8: return argminw∈Wh−1

dist(u, w) + dist(w, v)

It remains to describe the procedure GetNextCandidates. Consider any w ∈Wi−1.
To reduce clutter, let us denote Ri by Q. Since w ∈ ⌟(Ri−1), the Voronoi diagram VD(w, Q)
for Qout is stored by the oracle. The procedure GetNextCandidates finds two sites of
VD(w, Q), one of which is the site of v. Indeed, if w is a vertex on a u-to-v shortest path
then the site of v in VD(w, Q) is a vertex of ⌟(Q) on a shortest u-to-v path.

Let (x⌟, y⌟) be the bottom-right vertex of Q. Every vertex v = (xv, yv) of Qout \ ∂Q

either has xv > x⌟ or yv > y⌟. We describe the case when xv > x⌟; the case when yv > y⌟
is analogous. Let Γ denote the set of s→ s↘ paths ρs stored in VD(w, Q) according to the
order of the sites s along ⌟(Q). For every row x > x⌟, let Γx denote the subset of paths in Γ
that intersect row x, ordered according to the order of the intersection vertices along row x.
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▶ Lemma 11. For every x, x′ with x > x′, Γx is a subsequence of Γx′ .

Proof. This is a direct consequence of the fact that each path ρs goes monotonically down
and right, and from the fact that ρs and ρs′ are disjoint for s ̸= s′. ◀

We define the set of critical rows to be all rows x such that (x, y) = s↘ for some y ∈ [0, n]
and s ∈ ⌟(Q). Lemma 11 implies that if we consider the evolution of the sequences Γx as
x increases from x⌟ to m as a dynamic process, changes occur only at critical rows. More
precisely, if the row of s↘ is x for some site s, then ρs ∈ Γx but ρs /∈ Γx+1. We can therefore
maintain the sequences Γx in a persistent binary search tree. (A binary search tree can be
made partially persistent at no extra asymptotic cost in the update and search times using a
general technique for pointer-machine data structures of bounded degree [9].) Initially, the
BST stores the sequence Γx⌟+1. Then, we go over the critical rows in increasing order, and
remove the path ρs from the BST when we reach the row of s↘.

For any x⌟ < x ≤ m, we can access the BST representation of Γx by finding the
predecessor x′ of x among the critical rows, and accessing the persistent BST at time x′.

Let v = (x, y). We say that v is right (left) of a path ρs ∈ Γx if y is greater (smaller)
than any vertex of ρs at row x. We will either find a path ρs ∈ Γx to which v belongs, or
identify the last path ρs ∈ Γx such that v is right of ρs. In the former case the site of v is s,
and in the latter case the site of v is either s or the successor of s in Γx.

Recall that (1) the MSSP data structure, given a root vertex r and two vertices w, z, can
determine in O(log N) time whether w is left/right/ancestor/descendant of z in the shortest
path tree rooted at r, (2) for each shortest path ρs represented in VD(w, Q), the representation
contains last(s, s↘), and (3) the prefix of ρs ending at last(s, s↘) is represented in the shortest
path tree rooted at last(s, s↘) in the reverse MSSP of H (recall that H = Ranc(u,v)−1), while
the suffix of ρs starting at last(s, s↘) is represented in the shortest path tree rooted at
last(s, s↘) in the MSSP for H ′ \ (H \ ∂H), where H ′ is the parent of H.

We perform binary search on Γx to identify the path ρs such that either v ∈ ρs or ρs is
the last path of Γx that is left of v. Focus on a step of the binary search that considers a
path ρs. Denote last(s, s↘) = (xb, yb). If y < yb, we query the MSSP structure that contains
the prefix of ρs, and otherwise we query the MSSP data structure that contains the suffix
of ρs. In either case, the query either returns that v is on ρs or tells us whether v is left
or right of ρs. In the former case we conclude that the site of v is s. In the latter case we
continue the binary search accordingly. Each step of the binary search takes O(log n) time.
Note that log n = O(log N). Thus, the binary search takes O(log2 N) time, and when it
terminates we have a site s that is either the site of v or the site such that ρs is the last path
of Γx that is left of v. This implies that the site of v is either s or the successor of s in Γx,
and concludes the description of GetNextCandidates.

▶ Lemma 12. The oracle answers distance queries in time O(2t log2 N).

Proof. First, lev(u) and anc(u, v) can be (naively) computed in O(log N) time by going over
the ancestors of {u} in T : for each (rectangular) ancestor piece R of {u}, in O(1) time,
we can retrieve the coordinates of R’s corners and check whether v ∈ R \ ∂R using v’s
coordinates. Overall, for a dist(u, v) query, we make O(2t) calls to GetNextCandidates,
each requiring O(log2 N) time, for a total of O(2t log2 N) time. Finally, we make O(2t)
queries to the MSSP data structures, requiring O(2t log N) time in total. ◀

▶ Remark 13. Since our query procedure computes last(u, v), and we have MSSP data
structures that capture the u-to-last(u, v) and the last(u, v)-to-v shortest paths, an optimal
alignment can be returned in time proportional to the total length of the two substrings.
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By setting the ri’s appropriately, we obtain the following tradeoffs, which are identical to
those of Pettie and Long for arbitrary planar graphs [30].

▶ Proposition 14. For two strings of lengths m and n, with N = mn, there is an alignment
oracle achieving either of the following tradeoffs:

N log2+o(1) N space and No(1) query time,
N1+o(1) space and log2+o(1) N query time.

Proof. The space of the oracle is O
(

N log2 N + N log N ·
∑t−1

i=0 ri+1/ri

)
by Lemma 10. We

will choose ri’s for i ≥ 1 to be a geometric progression with common ratio p to be specified
below. In that case, t = O(logp N) and the space becomes O(N log2 N + N log N · p logp N).
First, let us set p = N1/g(N) for some g(N) which is ω(log N/ log log N) and o(log N).
Then, p = 2log N/g(N) = 2o(log log N) = logo(1) N . We get O(N log N · 2log N/g(N) log N) =
N log2+o(1) N space and No(1) query time. Second, let us set p = N1/f(N), for some f(N)
which is ω(1) and o(log log N). We get N1+o(1) space and log2+o(1) N query time. ◀

The following observation will prove useful in the efficient construction algorithm of the
oracle that will be presented in the next section.

▶ Observation 15. The query algorithm for dist(u, v) takes O(2t−lev(u) log2 N) time and uses
only Voronoi diagrams VD(u, Q) for Q ∈ Ri with i > lev(u).

4 An Efficient Construction Algorithm

In this section, we present an algorithm for constructing the alignment oracle in N1+o(1) time
(thus completing the proof of Theorem 1). The computation of the recursive decomposition,
the recursive (rt, . . . , r0)-division and all of the MSSP structures stored for all pieces in A
can be done in O(N log2 N) time. It therefore only remains to analyze the time it takes to
construct all the representations of Voronoi diagrams stored by the oracle.

Consider some additively weighted Voronoi diagram for Qout with sites a subsequence
U of ⌟(Q) – we will only build Voronoi diagrams with U = ⌟(Q), but during the analysis,
we will also consider Voronoi diagrams with sites U ⊆ ⌟(Q). In what follows, when we talk
about a piece H ≠ Q, we will really mean its intersection with Qout, assuming that it is
non-empty. Similarly, when we talk about ∂H, ⌜(H), and ⌟(H) we will really mean the
intersection of ∂H, ⌜(H), and ⌟(H) with Qout, respectively. See Figure 5 for an illustration.

▶ Lemma 16. Let X ∈ {⌜(H), ⌟(H)}. Let u, v ∈ X belong to distinct Voronoi cells. If u

precedes v (in X) then the site su ∈ U of u precedes (in U) the site sv ∈ U of v.

Proof. For any vertex a ∈ X, that belongs to the cell of a site sa, all vertices in the shortest
sa-to-a path belong to Vor(sa). Towards a contradiction, suppose that su succeeds sv in U .
By the planarity of the graph and the fact that paths can go only down and right it follows
that the shortest su-to-u path must cross the shortest sv-to-v path in some vertex b. Then
b ∈ Vor(su) ∩ Vor(sv), which is a contradiction as Voronoi cells are disjoint. ◀

The above lemma means that the vertices of each of ⌜(H) and ⌟(H) can be partitioned
into maximal contiguous intervals of vertices belonging to the Voronoi cell of the same site
in U . When we say that we compute the partition of ⌜(H) or ⌟(H) with respect to U , we
mean that we compute these intervals, specified by their endpoints, and, for each interval,
the site from U to which the vertices of the interval belong.
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Q

Figure 5 Covering Qout (shaded pink) with siblings of ancestors of Q in A (blue boxes). When
we refer to a piece H (e.g. a blue box), we only refer to the portion of H that belongs to Qout.

The following simple observation allows us to compute partitions using binary search. It
says that a piece H contains s↘ if and only if s is the site of some vertex in ⌜(H), and s is
not the site of any vertex in ⌟(H).

▶ Lemma 17. For any s ∈ S and any level ℓ, there is a unique level-ℓ piece H ∈ A for which
Vor(s)

⋂
⌜(H) ̸= ∅ and Vor(s)

⋂
⌟(H) = ∅, and this piece contains s↘.

Proof. By Corollary 9, for all v ∈ Vor(s), there exists a v-to-s↘ path all of whose vertices
are in Vor(s). Hence, for every level-ℓ piece H for which Vor(s)

⋂
⌜(H) ̸= ∅ and s↘ ̸∈ H, we

must also have that Vor(s)
⋂
⌟(H) ̸= ∅. We can thus focus on the at most four level-ℓ pieces

that contain s↘. It is readily verified that the bottom-right of those pieces is the only one
for which Vor(s)

⋂
⌟(H) = ∅. ◀

▶ Remark 18. The condition in the statement of Lemma 17 is equivalent to: s↘ ∈ H \ ⌟(H).
Lemma 17 provides a criterion on the partitions of ⌜(H) and ⌟(H) for determining

whether a piece H contains any vertex s↘. The following lemma describes a binary search
procedure, Partition, which gets as input a sequence U of candidate sites, and returns the
partition of ⌜(H) or ⌟(H); i.e., the subsequence of sites in U whose Voronoi cells contain
the vertices of ⌜(H) or ⌟(H). The procedure Partition will be a key element in the overall
construction algorithm. The following lemma describes an implementation of Partition
using distance queries dist(u, v) with u ∈ ⌟(Q) and v ∈ ∂H. We will ensure that such queries
can be answered efficiently whenever Partition is called by the main algorithm.

▶ Lemma 19. Given a sequence U ⊆ ⌟(Q) of sites and their additive weights, we can perform
the procedure Partition (that computes a partition of ⌜(H) or ⌟(H) w.r.t. U) in the time
required by O(|U | · log n) distance queries dist(u, v) with u ∈ ⌟(Q) and v ∈ ∂H.

Proof. We will only prove the statement for ⌜(H) as the case of ⌟(H) is analogous. We start
with a single interval, which is all of ⌜(H). We will call an interval active if we have not
concluded that all of its vertices belong to the same Voronoi cell. For each active interval L,
we have a set CL of candidate sites. Thus, initially, the single interval ⌜(H) is active, and U

is the set of its candidate sites.
The algorithm proceeds by divide and conquer. As long as we have an active interval L,

we perform the following: we compute the site u ∈ CL with the minimum additively weighted
distance to the midpoint of L. This is done in the time required by CL distance queries of
the form specified in the statement of the lemma. Then, we split L at this midpoint: for the
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left part of L the set of candidate sites is now {v ∈ CL : v ≤ u}, while for the right part of
L the set of candidate sites is now {v ∈ CL : v ≥ u}. If either of these two sets is of size 1,
the corresponding interval becomes inactivate. That is, we recurse on at most two active
intervals of roughly half the length. In the end, in a left-to-right pass, we merge consecutive
intervals all of whose vertices belong to the same Voronoi cell.

Let us now analyze the time complexity of the above algorithm. First, observe that the
sequences of candidates of any two intervals at the same level of the recursion are internally
disjoint. Thus, each site is a candidate for at most two active intervals at the same recursive
level. Second, at level j of the recursion, the length of every active interval is O(|⌜(H)|/2j).
Hence, the total time required to process all intervals is proportional to the time required by
O(|U | · log n) distance queries dist(u, v), with u ∈ ⌟(Q) and v ∈ ∂H. ◀

We now present the algorithm for computing the representations of the Voronoi diagrams
stored by the oracle. The algorithm performs the computation in order of decreasing levels
of the recursive (rt, . . . , r0)-division.

Consider some level i, and assume that we have already computed all Voronoi diagrams
VD(u, R) for pieces R ∈

⋃
j>iRj . Consider any piece P ∈ Ri−1. Let Q ∈ Ri be the parent

of P in T . Our goal is to compute, for every u ∈ ⌟(P ), the representation of VD(u, Q),
the Voronoi diagram of Qout with sites ⌟(Q) and additive weights dist(u, ⌟(Q)). Recall that
this representation consists of the vertices s↘ and last(s, s↘) for every site s ∈ ⌟(Q). We
would like to compute this representation in time roughly proportional to its size |⌟(Q)|.
By Observation 15, using the already computed parts of the oracle for levels j > i, we can
already answer any distance query dist(s, v) for any s ∈ ⌟(Q) and any v ∈ Qout in O(2t log2 n)
time. These are precisely the distance queries required for computing partitions of pieces H

in Qout w.r.t. sites in ⌟(Q) (Lemma 19).
The computation is done separately for each u ∈ ⌟(P ). First, we compute the additive

weights dist(u, ⌟(Q)) in O(|⌟(Q)| · log n) time using the MSSP data structure stored for
Q \ (P \ ∂P ) with sites ⌟(P ). Next, we cover Qout using O(log N) pieces from A that are
internally disjoint from Q (i.e. they may only share boundary vertices). These pieces are the
O(log N) siblings of the (weak) ancestors of Q in A that have a non-empty intersection with
Qout (see Figure 5). Notice that these pieces are in A but not necessarily in T .

We shall find the vertices s↘ of VD(u, Q) in each such piece H separately. We invoke
Partition on ⌜(H) and on ⌟(H), and use Lemma 17 to determine whether H contains any
vertices s↘. If so, we zoom in on each of the two child pieces of H in A until, after O(log N)
steps, we get to a constant-size piece, in which we can find s↘ by brute force. Note, however,
that we are aiming for a running time that is roughly proportional to |⌟(Q)|, but that the
running time of Partition depends on the number of sites U w.r.t. which we partition. This
is problematic since, e.g., when H contains s↘ just for a single site s, we can only afford
to invest Õ(1) time in locating s↘ in H. In this case, computing the partition w.r.t. |⌟(Q)|
is too expensive. Even computing the partition just w.r.t. the sites whose Voronoi cell has
non-empty intersection with H, which is bounded by |⌜(H)|, is too expensive. To overcome
this problem we will show that it suffices to compute the partition w.r.t. a smaller sequence of
sites, whose size is proportional to the number of sites s with s↘ in H (actually in H \ ⌟(H)),
rather than to the size of H or of ⌜(H). We call such a sequence a safe sequence of sites
for H, which we now define formally. Recall that the Voronoi diagram VD(u, Q) of Qout

has sites ⌟(Q). Let U be a subsequence of ⌟(Q). Consider the Voronoi diagram VD′ of Qout

whose sites are the elements of U (with the same additive distances as in VD(u, Q)). We
say that U is safe for H if and only if the sets {(s, s↘) : s is a site and s↘ ∈ H \ ⌟(H)} are
identical for VD′ and VD(u, Q).

▶ Observation 20. A sequence that is safe for H is also safe for any child H ′ of H in A.
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We will discuss the details of safe sequences after first providing the pseudocode of the
procedure Zoom for finding the vertices s↘ in a piece H.

Algorithm 3 Zoom(U, ω, H).
Input: The additive weight ω(s) for each s ∈ ⌟(Q), a piece H in A that is internally disjoint
from Q and has a non-empty intersection with Qout, and a sequence U ⊆ ⌟(Q) that is safe
for H.
Output: All vertices s↘ for s ∈ ⌟(Q) that belong to H.

1: if |H| = 4 then
2: Find all vertices s↘ in H for all s ∈ U by computing ω(s) + dist(s, v) for all s ∈ U

and all v adjacent to some vertex of H.
3: for each child H ′ of H in A do
4: Z ← Partition(U, ω, ⌜(H ′))
5: Z ′ ← Partition(U, ω, ⌟(H ′))
6: L← Z \ Z ′

7: if L ̸= ∅ then
8: V ← Z \{z ∈ Z \L : both the predecessor and successor of z in Z are not in L}
9: Zoom(V, ω, H ′)

The procedure Zoom takes as input a piece H and a sequence U ⊆ ⌟(Q) that is safe
for H. In order to compute VD(u, Q), we call the procedure Zoom(⌟(Q), ω, H) for each of
the O(log N) pieces H that we use to cover Qout. Clearly, in each of those initial O(log N)
calls ⌟(Q) is a safe sequence of the respective piece. For each child H ′ of H in A, we check
whether the condition of Lemma 17 is satisfied in lines 4-7. Note that since U is a safe
sequence for H, U is also a safe sequence for H ′ and hence our computation of the set
L = {s ∈ ⌟(Q) : s↘ ∈ H ′ \ ⌟(H ′)} is correct. If L is non-empty, we recurse on H ′ (cf. line 7).
In line 8, we construct a safe sequence V for H ′, of size proportional to |L| and then, in line 9,
we call Zoom(V, ω, H ′). In order to prove the correctness of procedure Zoom, it remains to
show that V is indeed safe. The following two lemmas show this (see also Figure 6).

▶ Lemma 21. Let U be safe for a piece H, such that Partition(U, ω, ⌜(H)) = U . Suppose
that there are three elements u1, u2, u3 of U that appear consecutively (in this order) in both
Partition(U, ω, ⌜(H)) and Partition(U, ω, ⌟(H)). Then, U \ {u2} is also safe for H.

Proof. To avoid confusion we denote the Voronoi diagram of Qout with sites U by VD and
the one with sites U \ {u2} by VD′. We denote the Voronoi cells of VD by Vor(·), and those
of VD′ by Vor′(·). Note that for every u ∈ U \ {u2}, Vor(u) ⊆ Vor′(u). By Lemma 17, in VD,
u1↘, u2↘, u3↘ /∈ H \ ⌟(H). Hence, in VD′, u1↘, u3↘ /∈ H \ ⌟(H).

▷ Claim. Every vertex y of Vor(u2) ∩H belongs either to Vor′(u1) or to Vor′(u3).

Proof. Consider the last vertex z1 of ⌟(H) that is in Vor(u1), and the first vertex z3 of
⌟(H) that is in Vor(u3). Let ρ1 be a shortest u1-to-z1 path, and ρ3 be a shortest u3-to-z3
path. Note that all vertices of ρ1 belong to Vor(u1) and all vertices of ρ3 belong to Vor(u3).
Consider any vertex y of Vor(u2) ∩H. The vertex y lies to the right of ρ1 and to the left
of ρ3. In VD′, the vertices of ρ1 belong to Vor′(u1) and the vertices of ρ3 belong to Vor′(u3).
Hence, by Lemma 16, in VD′, y can only belong to a site s ̸= u2 that is weakly between u1
and u3. Since u1, u2, u3 appear consecutively in Partition(U, ω, ⌜(H)) = U , the only such
sites are u1 and u3, and the claim follows. ◁

By the above claim, the sets {(s, s↘) : s is a site and s↘ ∈ H \ ⌟(H)} are identical for
VD and VD′. Since U is safe for H, so is U \ {u2}. ◀
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Figure 6 Illustration for Lemma 21. Part of Qout (pink) for some piece Q (gray) is shown. A
piece H is indicated by a black rectangle. The sites of ⌟(Q) are numbered 1 through 7. The partition
of ⌜(H) w.r.t. ⌟(Q) is U = (1, 2, 4, 5, 6, 7). Hence, U is safe for H. The partition of ⌟(H) w.r.t. ⌟(Q)
is (1, 2, 4, 6, 7). Since sites 1, 2, 4 are consecutive in both partitions, (1, 4, 5, 6, 7) is also safe for H.
Further, ⌟(Q) is also clearly safe for H. However, (1, 3, 4, 5, 6, 7) may not be safe for H, as 3↘ could
be in H \ ∂H in the Voronoi diagram with sites 1, 3, 4, 5, 6, 7 and the same additive weights.

▶ Lemma 22. Suppose that U is safe for H. Then, in each recursive call Zoom(V, ω, H ′)
made by procedure Zoom(U, ω, H) for a child H ′ of H in A, V is a safe sequence for H ′.

Proof. Since U is a safe sequence for H, U is also a safe sequence for H ′ (cf. Observation 20).
Hence, L is the set of sites s such that s↘ ∈ H ′ \ ⌟(H ′).

Z is the set of sites in U whose Voronoi cells have non-empty intersection with H ′. In
line 8, we remove from Z all vertices of Z \ L that are not preceded or succeeded by a
vertex in L. Therefore, by considering the removal of these sites one at a time, and directly
applying Lemma 21 to each such removal, the resulting sequence V is safe for H ′. ◀

This establishes the correctness of our construction algorithm. Let us now analyze its
time complexity. Initially, we make O(log N) calls to Zoom(U, ω, H), each with U = ⌟(Q).
In each recursive call, for a child H ′ of a piece H, the set U of sites is of size proportional to
the size of the set {s ∈ ⌟(Q) : s↘ ∈ H ′ \ ⌟(H ′)}. Note that in each level of the tree A each
s ∈ ⌟(Q) is an element of exactly one such set. Hence, each s ∈ ⌟(Q) contributes to O(log N)
calls to Zoom: the O(log N) initial ones and at most one more per level of A (which is of
depth O(log N)).

Thus, by Lemma 19, computing s↘ for all s ∈ ⌟(Q) reduces to O(|⌟(Q)| · log2 N) distance
queries dist(u, v), with u ∈ ⌟(Q) and v ∈ Qout. We can answer each such query with the
portion of the oracle that has already been computed in O(2t log2 N) time. Now, recall that
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a dist(s, s↘) query also computes last(s, s↘), and hence these values can also be retrieved
in O(2t log2 N) time. Thus, VD(u, Q), which is of size O(|⌟(Q)|) can be computed in time
O(|⌟(Q)| · 2t log4 N), which is |⌟(Q)| ·No(1) for both choices of t in Proposition 14. Therefore,
the time to compute VD(u, Q) for all pieces is No(1) ·

∑
Q |⌟(Q)| = No(1) ·

∑t−1
i=0

N
ri

√
ri, which

is N1+o(1) for both choices of t. This concludes the proof of Theorem 1.

5 Tradeoffs with o(N) space

In this section we prove Theorem 4. Recall that for this result we consider integer alignment
weights upper-bounded by w: A weight wmatch for aligning a pair of matching letters, wmis

for aligning a pair of mismatching letters, and wdel for letters that are not aligned. One may
assume without loss of generality that 2wmatch > 2wmis ≥ wdel [36]. Given wmatch, wmis

and wdel, we define w′
match = 0, w′

mis = wmatch − wmis and w′
del = 1

2 wmatch − wdel. These
weights are also upper-bounded by w. Then, a shortest path (of length W ) in the alignment
grid with respect to the new weights, corresponds to a highest scoring path with respect to
the original weights (of score 1

2 (m + n)wmatch −W ).

FR-Dijkstra. We define the dense distance graph (DDG) of a piece P as a directed bipartite
graph with vertices ∂P and an edge from every vertex u ∈ ⌜(P ) to every vertex v ∈ ⌟(P ) with
weight equal to the length of the shortest u-to-v path in P . We denote this graph as DDGP .2
DDGP can be computed in time O((|∂P |2 + |P |) log |P |) = O(|P | log |P |) using the MSSP
data structure. In their seminal paper, Fakcharoenphol and Rao [20] designed an efficient
implementation of Dijkstra’s algorithm on any union of DDGs – this algorithm is nicknamed
FR-Dijkstra. FR-Dijkstra exploits the fact that, due to planarity, the adjacency matrix of
each DDG can be decomposed into Monge matrices (defined formally in equation (1) below).
In our case, since each DDG is a bipartite graph, the entire adjacency matrix is itself Monge
(this will be shown below). Let us now give an interface for FR-Dijkstra that is convenient
for our purposes.

▶ Theorem 23 ([20,23,31]). Dijkstra’s algorithm can be run on the union of a set of DDGs
with O(M) vertices in total (with multiplicities) and an arbitrary set of O(M) extra edges in
the time required by O(M log2 M) accesses to edges of this union.

▶ Remark 24. In our case, the runtime of the algorithm encapsulated in the above theorem
can be improved to O(M log log(nw)). One of the two O(log M) factors stems from the
decomposition of the adjacency matrix into Monge submatrices, which is not necessary in
our case. The second O(log M) comes from the use of binary heaps. In our case, these heaps
store integers in O(nw) and can be thus implemented with O(log log(nw)) update and query
times using an efficient predecessor structure [38,39].

A warmup. Let us first show how to construct in Õ(N) time an Õ(N)-size oracle that
answers queries in Õ(

√
N) time using well-known ideas [20]. We will then improve the size

of the data structure by efficiently storing the computed DDGs.
Let us consider an r-division of G, for an r to be specified later. Further, consider the

tree A′, obtained from the recursive decomposition tree A by deleting all descendants of
pieces in the r-division. For each piece P ∈ A′, we compute and store DDGP . In each of

2 For general planar graphs, the DDG of a piece is usually defined as a complete directed graph on ∂P .
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the O(log N) levels of A, for some value y, we have O(N/y) pieces, each with O(y) vertices
and O(√y) boundary vertices. Hence, both the construction time and the space occupied by
these DDGs are Õ(N).

We next show how to compute the weight of an optimal alignment of S[i . . j] and T [a . . b],
i.e. compute the shortest path ρ from u = (i− 1, a− 1) to v = (j, b), where i < j and a < b.
If u and v belong to P \ ∂P for a piece P of the r-division, then both S[i . . j] and T [a . . b]
are of length O(

√
r), and we can hence run the textbook dynamic programming algorithm

which requires O(r) time. Henceforth, we consider the complementary case.
Let Pu and Pv be the distinct r-division pieces that contain u and v, respectively. Further,

let Q be the lowest common ancestor of Pu and Pv in A′. For z ∈ {u, v}, let Qz be the child
of Q that contains z. The set of vertices Qu ∩ Qv are denoted by sep(Q) – which stands
for separator. Observe that ρ must contain at least one vertex from sep(Q). Consider the
set that consists of Pz and the siblings of weak ancestors of Pz in A′ that are descendants
of Q, and call it the cone of Pz. The cone of Pz covers Qz and its elements are pairwise
internally disjoint. See Figure 7 for an illustration. Now, observe, that any shortest path ρ

between a vertex of ∂Pz and a vertex of sep(Q) can be partitioned into subpaths ρ1, . . . , ρk

such that each ρi lies entirely within some piece Ri in the cone of Pz and both ρi’s endpoints
are boundary vertices of Ri. Using these two observations, we can compute a shortest u-to-v
path by running FR-Dijkstra on the cones of Pu and Pv, and, possibly, the following extra
edges. In the case where the source u (resp. target v) is not a boundary vertex, we include
O(
√

r) additional edges: for each boundary vertex x of Pu (resp., Pv), an edge from u to x

(resp., from x to v) with length equal to that of the shortest path from u to x (resp. from x

to v). The weights of such edges can be computed in O(r) time using dynamic programming.
Thus, a query can be answered in time Õ(

√
N + r). By setting r =

√
N we get the promised

complexities.

u

v

Figure 7 The piece Q is shown. sep(Q) is denoted by red, while a shortest u-to-v path is shown
in blue. The pieces in the cone of Pu are shaded by brown, while the pieces in the cone of Pz are
shaded by pink.

The tradeoff. We can now describe the entire tradeoff of Theorem 4. We assume that
r > w2, since otherwise Nw/

√
r = Ω(N) and Theorem 4 is satisfied by the warmup solution.

For a piece P , we will show how to store DDGP in O(|∂P | ·w) = O(w
√
|P |) instead of O(|P |)

space. Our representation will allow retrieving the length of any edge of DDGP in Õ(1) time.
Our approach closely follows ideas from [2].

For the remainder, we deviate from our ordering convention of ⌜(P ); the first vertex is
now the top-right vertex of P , and the last is the bottom-left one. ⌟(P ) is ordered as before
where the first vertex is the bottom-left one and the last is the top-right one. We denote

ICALP 2021
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the i-th vertex of ⌜(P ) by vi and the j-th vertex of ⌟(P ) by uj . Note that we can infer
whether any vertex uj is reachable from a vertex vi in O(1) time. For ease of presentation
we would like the weights of all edges of DDGP to be finite. To achieve this, for each edge
between two vertices of ⌜(P ), we introduce (in P ) an artificial edge with weight w in the
opposite direction. It is readily verified that all vi-to-uj distances that were finite before the
introduction of such edges remain unchanged. This is because the shortest path between
two vertices of this modified graph that lie on the same column (resp. row) consists solely of
vertical (resp. horizontal) edges.

Let M be the adjacency matrix of DDGP with entry M [i, j] storing the distance from vi

to uj , and let k = |⌜(P )| = |⌟(P )|. Matrix M satisfies the Monge property, namely:

M [i + 1, j]−M [i, j] ≤M [i + 1, j + 1]−M [i, j + 1] (1)

for any i ∈ [1, k− 1] and j ∈ [1, k− 1]. This is because the shortest vi-to-uj and vi+1-to-uj+1
paths must necessarily cross.

In addition, for any fixed j ∈ [1, k], for all i ∈ [1, k − 1], we have

|M [i + 1, j]−M [i, j]| ≤ w. (2)

This is because edges vivi+1 and vi+1vi both have weight at most w. This implies that
M [i, j] ≤M [i + 1, j] + w, as a shortest vi-to-uj path cannot be longer than the concatenation
of the edge vivi+1 with a shortest vi+1-to-uj path. Similarly, we have M [i+1, j] ≤M [i, j]+w.

Our representation of M is as follows, and fairly standard [2, 16, 36]. We define a
(k − 1)× (k − 1) matrix P , satisfying

P [i, j] = M [i, j] + M [i + 1, j + 1]−M [i, j + 1]−M [i + 1, j].

Equations (1) and (2) imply that, for any i ∈ [1, k − 1], the sequence M [i + 1, j]−M [i, j] is
nondecreasing and contains only values in [−w, w]. Hence, P has O(kw) non-zero entries.
Now, observe that

∑
r≥i,c≥j

P [r, c] = M [i, j] + M [k, k]−M [i, k]−M [k, j]. (3)

We store the last row and column of M . By (3), this means that retrieving M [i, j] boils
down to computing

∑
r≥i,c≥j P [r, c]. We view the non-zero entries of P as points in the

plane and build in Õ(kw) time an Õ(kw)-size 2D-range tree over them [7], which can return∑
r≥i,c≥j P [r, c] for any i, j in Õ(1) time. The overall space required by our representation

of DDGP is thus Õ(kw) = Õ(|∂P | · w), and any entry of M can be retrieved in Õ(1) time.

In total, over all O(N/r) pieces of the r-division, the space required is Õ((N/r) ·
√

r ·w) =
Õ(Nw/

√
r). This level dominates the other levels of the decomposition, as the sizes of pieces,

as well as their boundaries, decrease geometrically in each root-to-leaf path. Note that, for
the dynamic programming part of the query algorithm, we can simply store the strings,
which take O(m + n) space. This concludes the proof of Theorem 4.
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