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Abstract
Li and Panigrahi [37], in recent work, obtained the first deterministic algorithm for the global
minimum cut of a weighted undirected graph that runs in time o(mn). They introduced an elegant
and powerful technique to find isolating cuts for a terminal set in a graph via a small number of s-t
minimum cut computations.

In this paper we generalize their isolating cut approach to the abstract setting of symmetric
bisubmodular functions (which also capture symmetric submodular functions). Our generalization
to bisubmodularity is motivated by applications to element connectivity and vertex connectivity.
Utilizing the general framework and other ideas we obtain significantly faster randomized algorithms
for computing global (and subset) connectivity in a number of settings including hypergraphs,
element connectivity and vertex connectivity in graphs, and for symmetric submodular functions.
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1 Introduction

We investigate fast algorithms for several fundamental connectivity problems in (weighted)
undirected graphs as well as their generalizations to the abstract setting of submodular and
bisubmodular functions. The motivation for this work arose from the recent paper of [37] that
described a new algorithmic approach for finding the global minimum cut in an undirected
graph. For a graph G = (V, E) with edge weights w : E → R>0, the global minimum
cut problem is to find the minimum weight subset of edges whose removal disconnects
the graph; alternatively it is to find a set S, where ∅ ⊊ S ⊊ V , that minimizes w(δ(S))1.
When G is unweighted, this is called the edge connectivity of the graph. There has been
extensive work on algorithms for this problem, and its study has led to many important
theoretical developments. Karger developed a near-linear time randomized algorithm [30]
that runs in O(m log3 n) time with some recent improvements in the log factors via better
data structures [21, 42]. Here m is the number of edges and n is number of nodes in the

1 For A ⊂ V , δ(A) denote the set of edges in G with exactly one end point in A. w(δ(A)) is notation for∑
e∈δ(A) w(e).
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graph. However, the best deterministic algorithm until recently was Õ(mn) via two very
different approaches [24, 49]. Li and Panigrahi developed a new approach that improved this
bound. Their algorithm runs in time O(m1+o(1)) plus the time to compute O(polylog(n))
(s, t)-minimum cut computations in a graph with m edges and n nodes. Their approach uses
the (s, t)-minimum cut algorithm as a black box.

Isolating cuts. A key technique in [37] is an algorithm to find isolating cuts. To describe
this notion, let R ⊆ V be subset of nodes that we call terminals. Given r ∈ R, a set
S ⊆ V is an isolating cut for r (with respect to R) if S ∩ R = {r}. Consider the problem
of finding, for each r ∈ R, a minimum weight isolating cut, that is; a cut Sr ⊆ V where
Sr = arg minS⊆V,S∩R={v} w(δ(S)). Note that if R = V this is trivial since Sr = {r} for
each r. However, the problem is non-trivial when R ⊂ V is a proper subset of V . A naive
approach would require |R| (s, t)-minimum cut computations. [37] described a simple and
elegant procedure that computes all the isolating cuts for any given R in time proportional to
O(log |R|) (s, t)-minimum cut computations. This, combined with simple random sampling,
can be used to easily derive a randomized algorithm for global minimum cut that relies
on O(polylog(n)) (s, t)-minimum cut computations. Note that even though the total time
corresponds to O(polylog(n)) (s, t)-minimum cuts, the second phase of their algorithm
requires computing |R| (s, t)-minimum cuts, but in smaller graphs whose total size is O(m)
and thus can be folded into a single (s, t)-minimum cut on roughly the same input size as
the original graph. Their algorithm gives a new randomized approach to global minimum
cut; however, it does not lead to a faster algorithm than the existing near-linear time
algorithm. Instead [37] focuses on deterministic running times and avoids random sampling
by relying on several technical tools including deterministic expander decompositions to
obtain a deterministic algorithm. We note, however, that the algorithm in [37] applies to the
more general problem of finding the Steiner minimum cut: given X ⊆ V , the goal is to find
a minimum cut separating a pair of nodes in X. See [25, 29] for applications.

Vertex and element connectivity. Our focus here is not on deterministic algorithms per se
but rather on the applicability of the isolating cut approach to derive faster (randomized)
algorithms in settings beyond edge connectivity. There has been tremendous recent and
ongoing progress in fast algorithms for (s, t)-flow and cut problems and leveraging these
algorithms for global connectivity is opened up by the new approach. In particular, an
important motivating problem is to compute the global (weighted) vertex connectivity of a
graph which has received substantial recent attention [17, 45]. In this setting we are given
a graph G = (V, E) with vertex weights w : V → R+ and the goal is to find a minimum
weight subset S ⊂ V such that G − S has at least two non-trivial connected components.
However, as is well-known, vertex cuts/separators are not as easy to work with as edge cuts.
Despite recent exciting progress via an approach based on local cuts and connectivity, the
weighted case had not been addressed and the best known algorithms are from the work of
Henzinger, Rao and Gabow [27]. Our starting point is the observation that the isolating cut
approach of [37] relies only on the submodularity and symmetry of the edge-cut function
of undirected graphs. Recall that a real-valued set function f : 2V → R is submodular iff
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A, B ⊆ V . A set function is symmetric if
f(A) = f(V \ A) for all A ⊆ V . The applicability of the isolation cut approach to symmetric
submodular set functions already yields faster algorithms for hypergraph connectivity and
several other problems that we describe subsequently. However, as we already remarked,
vertex cuts do not lend themselves to this approach as vertex cuts, unlike undirected edge
cuts, are simply not a symmetric submodular function.
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When considering isolating cuts in the context of vertex connectivity one naturally
encounters the notion of element connectivity, which has been found to have several important
connections between edge and vertex connectivity. Element connectivity plays a key role in
network design, and in fact, it was introduced by [28] to overcome the difficulty of working
with vertex connectivity. We refer the reader to surveys and related papers on network
design [16, 14, 15, 23, 33] for extensive literature on this topic. It also plays an important
role in packing vertex disjoint Steiner trees and forests among others [13, 5, 1, 8]; [7] surveys
this area. We now formally define element connectivity. The input is a graph G = (V, E)
and a partition of V into terminals T and non-terminals N = V \ T . The elements of
G are the edges and non-terminals; that is, E ∪ N . For two terminals s, t we define the
element connectivity between s and t as the minimum number of elements whose removal
disconnects s from t. We emphasize that element connectivity is defined only between the
terminals. We can generalize this to the weighted setting where edges and non-terminals have
non-negative weights. The global element connectivity of G = (T ∪ N, E) is the minimum
element connectivity between any two terminals. [11] considered algorithms for computing
(global) element connectivity. For global element connectivity they obtained an algorithm
with running time O(|T |) times the time for (s, t)-minimum cut computation.

Set-pairs and Bisubmodularity. Cuts for element and vertex connectivity do not fall into
the setting of symmetric submodular set functions. A vertex separator S induces a partition
of V \ S into disjoint sets A, B that do not share an edge, and obviously B ̸= V \ A (for
nonempty S). Nevertheless, one of the reasons for the tractability of element connectivity is
that it does admit submodularity properties. The natural way to view its submodularity
properties is via the more general notion of bisubmodular set functions. Given a ground set V

a set-pair is (A, B) where A, B ⊆ V . Informally speaking a bisubmodular function f assigns
a real-value to each set-pair (A, B) in a collection of set-pairs as to satisfy the inequality

f(X1, Y1) + f(X2, Y2) ≥ f(X1 ∪ X2, Y1 ∩ Y2) + f(X1 ∩ X2, Y1 ∪ Y2)

for all set-pairs (X1, Y1) and (X2, Y2) on which it is defined. For this to make sense the
collection of set-pairs needs to be closed under the above criss-crossed intersection and union
operations for set-pairs. These binary operations can be understood more clearly as the
meet and join of an appropriately defined lattice; we defer the formal definitions to Section 2.
One can generalize the notion of cuts to set-pairs. Let (S, T ) be a set-pair corresponding
to a partition of a terminal set R. A set-pair (A, B) cuts (S, T ) if S ⊆ A and T ⊆ B. One
can then define the f -minimum cut problem for (S, T ): find the set-pair of minimum f

value among all set-pairs that cut (S, T ). With this definition in place the notions of global
minimum cut for a terminal set R ⊆ V , and isolating cuts for R, naturally generalize. In this
paper we show that the isolating cut approach of [37] generalizes to the class of symmetric
bisubmodular set functions defined over appropriate collections of set-pairs.

1.1 Contributions and Results
We make two contributions at the high-level. The first is conceptual in generalizing the
isolating cut approach to the (bi)submodular setting. The second is to apply this abstract
framework with additional ideas to derive faster randomized algorithms for several funda-
mental problems. Together they yield a plethora of new running times for a diverse collection
of connectivity problems, both abstract (optimizing over set functions in an oracle model)
and concretely in graphs. The multiplicity of results is for the following combination of
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reasons. First, by implementing the isolating cut approach at a higher level of abstraction,
and abstaining from concrete specificities, we not only expose the isolating cut approach to
new problems, but allow for the substitution of different domain specific black box subrou-
tines that, within a domain, can have interesting tradeoffs. Second, and unlike the case of
graph edge connectivity, the second phase of the isolating cut approach can often benefit
from additional problem specific ideas, especially if one wants to take advantage of certain
domain-specific algorithms that can be very powerful if applied carefully.

An important aspect of the isolating cut approach is that it inherently gives an algorithm
for the subset connectivity version. In the following we will use m, n to refer to the number
of edges and vertices in a given graph and use EC(m, n) to refer to the running time for
computing a minimum (s, t)-cut in an edge-weighted directed graph, and VC(m, n) for the
running time for computing a minimum (s, t)-cut in a vertex-weighted directed graph. We
instantiate concrete running times for special cases when needed.

Connectivity of Bisubmodular functions. The precise statement that captures the gen-
eral isolation cut property in bisubmodular set functions requires stating several technical
definitions. Our main results for this are captured by Lemma 11, Lemma 12 and Theorem
13 which are better understood after the technical definitions. Here we state an informal
theorem that captures these results.

▶ Theorem 1 (Informal). Let f : V → R be a symmetric bisubmodular function defined over a
collection of set-pairs V over V . Let R ⊆ V . Suppose one has an oracle that given a partition
(S, T ) of R finds the f-minimum set-pair (A, B) ∈ V that cuts (S, T ). In O(log |R|) calls
to this oracle one can find for each r ∈ R a set-pair (Xr, X ′

r) ∈ V such that the following
properties hold: (i) for each r ∈ R, (Xr, X ′

r) is a (r, R − r) separating set-pair, (ii) there is
an f-minimum set-pair (Yr, Y ′

r ) separating (r, R − r) such that Yr ⊆ Xr, X ′
r ⊆ Y ′

r and (iii)
Xr ∩ Xq = ∅ for r ̸= q. The total run time for finding the f -minimum isolating cut (Yr, Y ′

r )
for each r ∈ R can thus be bounded by the O(log |R|) cut computations and the total time to
find the cuts inside each (Xr, X ′

r).

Symmetric submodular functions. We derive the following theorem as a corollary.

▶ Theorem 2. Let f : 2V → R be a symmetric submodular function and R ⊆ V and let
n = |V |. Suppose there is an algorithm for submodular function minimization in the value
oracle model in time SFM(n) = g1(n)EO + g2(n) where EO is the time for the evaluation
oracle. Assuming that g1(n) = Ω(n) and g2(n) = Ω(n), a minimum f-cut that separates
some two terminals in R can be found in O

(
SFM(n) log2(n)

)
time.

▶ Corollary 3. Let f be an integer valued symmetric submodular function with |f(S)| ≤ M .
Using the submodular function minimization algorithms of [35] one can find the global
minimum cut of f with high probability in time Õ(n2 log(nM)EO + n3 logO(1)(nM)).

The preceding corollary should be compared to Queyranne’s well-known combinatorial
algorithm that uses O(n3EO) time [47]. The algorithm from [35] is not strongly polynomial
but uses a factor Ω̃(n) fewer evaluation calls. Further, our randomized algorithm can handle
minimum f -cut for a subset of terminals while Queyranne’s algorithm does not generalize.
In addition, the black box reduction can take advantage of future improvements to SFM(n)
as well as for special cases as we will see next.
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Hypergraph connectivity. A hypergraph H = (V, E) consists of vertices V and hyperedges
E where each hyperedge e ∈ E is a subset of nodes; that is, e ⊆ V . We let p =

∑
e∈E |e|

denote the total size of H and let m, n denote number of hyperedges and vertices. The rank r

of a hypergraph is the maximum edge size; graphs are rank 2 hypergraphs. The cut function
of a hypergraph is symmetric and submodular and the global minimum cut question for edge
connectivity naturally generalizes to hypergraphs. The best deterministic algorithm for this
problem runs in O(pn + n2 log n) time [32, 47, 41]. The best randomized algorithm runs in
time Õ(nr) time with high probability in rank r hypergraphs [18] and this is better than
Õ(pn) only for very dense hypergraphs. Via sparsification one can also get an algorithm in
unweighted hypergraphs that runs in time O(p + λn2) where λ is the minimum cut value [12].
We obtain the following theorem that gives significantly better bounds in most settings of
interest, and new tradeoffs, while also generalizing to subset minimum cut.

▶ Theorem 4. Let H = (V, E) be a weighted hypergraph with m edges, n nodes and total
size p =

∑
e∈E |e|. Let R ⊆ V . The global minimum cut for R in H can be found with high

probability in time Õ(EC(p, m + n)) or in time Õ(
√

pn(m + n)1.5).

Now we state our algorithmic results for element connectivity and vertex connectivity
that follow via the bisubmodularity framework and problem specific optimizations.

Element connectivity. The fastest known algorithm so far for global element connectivity is
from [11] and runs in time O(|T | EC(m, n)) for terminal set T , which can be Ω(n EC(m, n)).
We obtain the following.

▶ Theorem 5. Let G = (T ∪ N, E) be an instance of weighted element connectivity with
|T | = k terminals. The global element connectivity can be computed in

Õ

(
EC(m, n) + max

m1,...,mk

{
k∑

i=1
EC(mi, n) : m1 + · · · + mk ≤ 2m

})

time with high probability. The algorithm generalizes to subset element connectivity.

In particular, for EC(m, n) of the form EC(m, n) = Õ(m poly(m, n)), the running time above
is Õ(EC(m, n)). For instance, via [34], one obtains an Õ(m

√
n) time algorithm. However,

recent breakthrough work of [51] showed that EC(m, n) = Õ(m + n1.5). This running time
bound cannot be directly used in the preceding theorem. Using further ideas we obtain an
improved running times that are encapsualted in the following theorem.

▶ Theorem 6. Let G = (T ∪ N, E) be an instance of element connectivity with n nodes and
m edges. Let w : V ∪ E → [1..U ] assign integer (or infinite) weights to each vertex and edge.
The global element connectivity can be computed in randomized Õ

(
m1+o(1)n3/8U1/4 + n1.5)

time or in Õ
(
m1/2n5/4) time where Õ(· · ·) hides poly(log(n), log(U))-factors.

Vertex connectivity. We now consider global vertex connectivity of both weighted and
unweighted graphs. For simplicity we consider the interesting setting where there is a vertex
separator of size less than 0.99W where W is the total vertex weight. We obtain new and
faster randomized (1 + ϵ)-approximation algorithms that improves upon the randomized
Õ(mn) exact algorithm of Henzinger, Rao and Gabow [27]. The algorithms are based on
reducing, via sampling, to computing isolating element cuts. The running times we obtain
are captured by the following theorem.
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▶ Theorem 7. Let G = (V, E) be a weighted instance of vertex connectivity. There is a
randomized algorithm that gives a (1+ϵ)-approximation with high-probability in Õ(EC(m, n)/ϵ)
time; in particular there is a randomized algorithm that runs in time Õ(m

√
n/ϵ). For dense

graphs there is a randomized algorithm that runs in Õ(m1/2n5/4/ϵ) time.

There has been exciting recent work on faster algorithms for vertex connectivity via
a local connectivity approach [45, 17]. The algorithms are limited to unweighted graphs
while our theorem above gives the first constant factor approximation for weighted vertex
connectivity in o(mn) time. For unweighted graphs and graphs with small integer capacities
we can obtain exact algorithms by setting ϵ = 1/κ where κ is the vertex connectivity. We
obtain several different tradeoffs depending on m, n, κ. These can be found in Section 4.

Recent related work. There have been several recent papers on the use of isolating cuts
and other approaches for connectivity problems in undirected as well as directed graphs. We
refer the reader to some of these papers [36, 9, 46, 6]. Others have also observed that the
isolating cut approach generalizes to symmetric submodular functions; see [43] for instance.

Organization. Section 2 describes the bisubmodularity framework and the abstract results
at a high level; a more detailed description with several examples and formal proofs of the
lemmas and theorems stated in Section 2 can be found in the full version [10]. Section 3
describes the algorithms for element-connectivity and Section 4 describes our algorithms
for vertex connectivity. Section 5 describes the results for hypergraph connectivity. The
proofs for Section 5 have been omitted due to space constraints and can be found in the full
version [10].

2 Isolating Cuts, Symmetric Bisubmodular Functions, and Lattices

Our goal in this section to define the relevant machinery to explore and make explicit the
generality of the isolating cut idea. As discussed in the introduction, this framework is
motivated by the necessity of going beyond symmetric submodular set functions to capture
concrete applications of interest such as element and vertex connectivity. Given the abstract
nature of this discussion, in constrast to the concrete algorithmic applications, we have
elected to give a brief and minimal discussion of the bisubmodular framework here. A more
comprehensive description, including many more examples as well as the proofs of all lemmas
and theorems stated here, can be found in the full version [10].

Let V be a finite set of elements. An ordered pair (A, B) ∈ 2V × 2V is a set-pair over V .
For a family of set-pairs V ⊆ 2V × 2V over V , we say that V is a crossing lattice2 over V if it
is closed under the following two operators.

(X1, Y1) ∨ (X2, Y2) = (X1 ∪ X2, Y1 ∩ Y2).
(X1, Y1) ∧ (X2, Y2) = (X1 ∩ X2, Y1 ∪ Y2).

If V is closed under these operations, then V is a lattice under the partial order

(X1, Y1) ⪯ (X2, Y2) ⇐⇒ X1 ⊆ X2, Y2 ⊆ Y1.

2 This notion is analogous to the definition of a crossing family of sets.
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The binary operator ∨ returns the unique least upper bound of its arguments (a.k.a. the
meet) and the binary operator ∧ returns the unique greatest lower bound of its arguments
(a.k.a. the join).

For a pair of sets (X, Y ) ∈ 2V × 2V , the transpose of (X, Y ), denoted (X, Y )T , is the
reversed pair of sets (X, Y )T def= (Y, X). A crossing lattice V ⊆ 2V × 2V is symmetric if is
closed under taking the transpose. We have the following identities relating the transpose
with the lattice operations ∨ and ∧. Observe that for X , Y ∈ V, we have

(
X T
)T = X ,

(X ∨ Y)T = X T ∧ YT , and (X ∧ Y)T = X T ∨ YT . Lastly, A crossing lattice V ⊆ 2V × 2V is
pairwise disjoint if X ∩ Y = ∅ for all (X, Y ) ∈ V.

We now define an abstract, lattice-based notion of cuts that unifies the various different
families of cuts of interest in graphs. Let V be a set. For two set-pairs S = (S, T ) ∈ 2V × 2V

and X = (X, Y ) ∈ 2V × 2V , we denote

S ⊆ X def⇐⇒ S ⊆ X, T ⊆ Y.

If S ⊆ X , then we say that X cuts S or that X is an S-cut. If V is a crossing lattice over V ,
R ⊂ V is a subset, and R is a crossing lattice over R, then we say that V separates R if for
every S ∈ R, there is an S-cut X ∈ V. The following lemma observes that cuts are closed
under the two lattice operations.

▶ Lemma 8. Let V be a set and let R ⊆ V . Let V ⊆ 2V ×2V be a crossing lattice over V and
let R ⊆ 2R × 2R be a crossing lattice over R. Suppose that V separates R. Let S1, S2 ∈ R,
let X1 ∈ V be an S1-cut, and let X2 ∈ V be an S2-cut. Then X1 ∨ X2 is an S1 ∨ S2-cut and
X1 ∧ X2 is an S1 ∧ S2-cut.

Now, let V be a lattice. A real-valued function f : V → R is submodular if for all X , Y ∈ V ,

f(X ) + f(Y) ≥ f(X ∨ Y) + f(X ∧ Y).

Bisubmodular functions can be interpreted as submodular functions over particular crossing
lattices. There are at least two definitions of bisubmodular function in the literature. These
definitions are similar and we discuss both.

In one definition (e.g., in [48]), a function f : 2V × 2V → R is called bisubmodular if for
all X1, Y1, X2, Y2 ⊆ V , we have

f(X1, Y1) + f(X2, Y2) ≥ f(X1 ∪ X2, Y1 ∩ Y2) + f(X1 ∩ X2, Y1 ∪ Y2). (1)

A bisubmodular function f : 2V × 2V → R is submodular over the crossing lattice of all
set-pairs, V = 2V × 2V .

Another definition (e.g., [4, 3, 2, 19]) of a bisubmodular function f is that f(X1, Y1) is
only defined for disjoint sets X1 and Y1, and otherwise satisfies inequality (1) for these inputs.
In this version, f is bisubmodular iff it is a submodular function over the lattice of disjoint
sets, V = {(X, Y ) : X, Y ⊆ V, X ∩ Y = ∅}.

Now, let V ⊆ 2V × 2V be a symmetric crossing lattice. A function f : V → R is symmetric
if for all X ∈ V , f(X ) = f

(
X T
)
. This is a different definition than for symmetric submodular

set functions and generalizes the (more standard) set-based definition. Both undirected
edge cuts and vertex cuts are examples of symmetric submodular functions over appropriate
symmetric crossing lattices.

There is an important relationship between the sets of terminals being separated and
minimal minimum cuts that separate them, highlighted in the following lemma.

ICALP 2021



50:8 Isolating Cuts, (Bi-)Submodularity, and Faster Algorithms for Connectivity

▶ Lemma 9. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric crossing lattice
over V and let R ⊆ 2R × 2R be a symmetric crossing lattice over R, such that V separates
R. Let f : V → R be a symmetric bisubmodular function. Consider the function h : R → V
where h(S) is defined as ⪯-minimum, f -minimum S-cut. Then h is well-defined and carries
the partial orders on R to V; that is, S1 ⪯ S2 =⇒ h(S1) ⪯ h(S2).

The following is a particularly convenient form of Lemma 9, and the one applied directly
in the sequel.

▶ Lemma 10. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric crossing lattice
over V and let R ⊆ 2R × 2R be a symmetric crossing lattice over R, such that V separates R.
Let f : V → R be a symmetric bisubmodular function. Let S1, . . . , Sk ∈ R and X1, . . . , Xk ∈ V
such that for all i ∈ [k], Xi is an f -minimum Si-cut. Then for any S ∈ R such that S ⪯ Si

for all i, there is an f -minimum X -cut with X ⪯ X1 ∧ · · · ∧ Xk.

We now come to the issue of computing isolating cuts. We formalize this as follows. Let
V be a set and R ⊂ V . Let V ⊆ 2V ×2V be a symmetric and pairwise disjoint crossing lattice
over V and let R ⊆ 2R × 2R be the symmetric and pairwise disjoint crossing lattice over R

consisting of all partitions of R; i.e., R = {(S, T ) : S ∪ T = R, S ∩ T = ∅}. Let f : V → R be
a symmetric bisubmodular function. For each r ∈ R we wish to find an f -minimum cut Yr

for the set-pair ({r}, R − {r}) (which we abbreviate as (r, R − r) for notational simplicity).
The main property that leads to efficiency is captured by the next lemma.

▶ Lemma 11. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric and pairwise dis-
joint crossing lattice over V and let R ⊆ 2R ×2R be the symmetric and pairwise disjoint cross-
ing lattice over R consisting of all partitions of R; i.e., R = {(S, T ) : S ∪ T = R, S ∩ T = ∅}.

Let f : V → R be a symmetric bisubmodular function. Suppose we had access to an oracle
that, given S ∈ R, returns a minimum S-cut W ∈ V. Let k = ⌈log|R|⌉. Then with k calls to
the oracle, one can compute k cuts W1, . . . , Wk ∈ V such that the following holds.

For each r ∈ R, let Xr =
(∧

i:(r,V −r)⪯Wi
Wi

)
∧
(∧

i:(r,V −r)⪯WT
i

WT
i

)
be the intersection

of cuts transposed to always include r in the first component. Then we have the following. (1)
For all r ∈ R, Xr is an (r, R − r)-cut. (2) For all r ∈ R, there is a minimum (r, R − r)-cut
Yr such that Yr ⪯ Xr. (3) For any two distinct elements r, q ∈ R, Xr ∧ Xq ⪯ (∅, R). (That
is, the first components of the set pairs Xr are pairwise disjoint.)

Using the preceding lemma the problem of computing the f -minimum r-isolating cuts is
reduced to finding such a cut in Xr. The advantage, in terms of running time, is captured
by the disjointness property: for distinct r, q ∈ R we have Xr ∧ Xq ⪯ (∅, R). For each r let
Xr = (Ar, Br). Thus we have

∑
r |Ar| ≤ |V |. Given r and Xr, the problem of computing

the f -minimum cut Yr ⪯ Xr can in several settings be reduced to solving a problem that
depends only on |Ar| and |V |. We capture this in the following lemma.

▶ Lemma 12. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric and pairwise dis-
joint crossing lattice over V and let R ⊆ 2R ×2R be the symmetric and pairwise disjoint cross-
ing lattice over R consisting of all partitions of R; i.e., R = {(S, T ) : S ∪ T = R, S ∩ T = ∅}.

Let f : V → R be a symmetric bisubmodular function. Suppose we had access to an oracle that,
given S ∈ R, returns a minimum S-cut W ∈ V and let SM(n) denote its running time where
n = |V |. Moreover, suppose we have an oracle that given any u ∈ R and (Au, Bu) ∈ V with
u ∈ Au outputs an f-minimum cut Yu ⪯ (Au, Bu) in time SMI(|Au|, n). Let k = ⌈log|R|⌉.
Then, one can compute for each r ∈ R an f-minimium r-isolating cut in in total time
O(k SM(n) + max0≤n1,n2,...,n|R|:

∑
i

ni=n

∑|R|
i=1 SMI(ni, n)).
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A simple random sampling approach combined with isolating cuts, as shown in [37] for
edge cuts in graphs, yields the following theorem in a much more abstract setting.

▶ Theorem 13. Let V be a set and R ⊂ V . Let V ⊆ 2V × 2V be a symmetric and
pairwise disjoint crossing lattice over V and let R ⊆ 2R × 2R be the symmetric and
pairwise disjoint crossing lattice over R consisting of all disjoint subsets of R; i.e., R =
{(S, T ) : S, T ⊆ R, S ∩ T = ∅}. Let f : V → R be a symmetric bisubmodular function. Sup-
pose we had access to an oracle that, given S ∈ R, returns a minimum S-cut W ∈ V and let
SM(n) denote its running time where n = |V |. Moreover, suppose we have an oracle that
given any u ∈ R and (Au, Bu) ∈ V with u ∈ Au outputs an f-minimum cut Yu ⪯ (Au, Bu)
in time SMI(|Au|, n). Then one can compute the minimum (nontrivial) R-cut with con-
stant probability in O

(
SM(n) log2 |R| + max0≤n1,n2,...,n|R|:

∑
i

ni=n log(|R|)
∑|R|

i=1 SMI(ni, n)
)

time.

We derive the following corollary for symmetric submodular set functions.

▶ Corollary 14. Let f : 2V → R be a symmetric submodular function and R ⊆ V and let
n = |V |. Suppose there is an algorithm for submodular function minimization in the value
oracle model in time SFM(n) = g1(n)EO + g2(n) where EO is the time for the evaluation
oracle. Assuming that g1(n) = Ω(n) and g2(n) = Ω(n), a minimum f-cut that separates
some two terminals in R can be found in O

(
SFM(n) log2(n)

)
time.

3 Element connectivity

Let G = (V, E) be an undirected graph with m edges and n vertices. Let T ⊆ V be a set of
terminals and let N = V \ T be the non-terminal set. For any two distinct terminals u, v ∈ T ,
the element connectivity between u and v is defined as the maximum number of paths from u

to v that are edge-disjoint and vertex-disjoint in the non-terminal vertices V \T . That is, only
terminal vertices may be reused across paths. This notion can be easily generalized to the
weighted setting where edges and non-terminals have non-negative weights/capacities. For
any two terminals s, t ∈ T , we denote by κ′(s, t) the element connectivity between them. One
can compute κ′(s, t) via a simple reduction to s-t maximum flow in a directed graph which
takes EC(m, n) time. In this section we are concerned with the problem of computing the
global element connectivity which is defined as κ′ = mins,t∈T,s ̸=t κ′(s, t). In fact we are also
interested in computing the more general problem of computing κ′(R) = mins,t∈R,s ̸=t κ′(s, t)
where R ⊆ T ; note that κ′ = κ′(T ). Here we apply our general framework that obtains a
randomized algorithm with running time O(EC(m, n) log2 |R|). In addition to the global
minimum cut for R, as we will see in the next section, finding all the isolating cuts can be
used with other ideas for vertex connectivity.

Let G = (T ⊎ N, E) be an instance of a weighted element connectivity problem. Let
w : N ∪ E → R≥0 assign weights to the elements. Let R ⊆ T be a subset of terminals with
|R| ≥ 2. We reduce the problem of computing κ′(R) to Theorem 13 as follows.

For ease of notation, let V = V ∪ E denote the elements. Consider the family of pairs of
sets V ⊆ 2V × 2V defined as the set of pairs (X, Y ) ∈ V × V with the following properties:
(i) X and Y are disjoint, (ii) no edge in X is adjacent to a vertex in Y , and no edge in Y

is adjacent to a vertex in X, and (iii) T ⊆ X ∪ Y . V describes the disjoint sets that are
element-wise disconnected and cover T . Clearly V is symmetric and pairwise disjoint. It is
also straightforward to verify that V is a crossing lattice.
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We define a function f : V → R by f(X, Y ) =
∑

x∈V −(X∪Y ) w(x). f(X ) gives the total
weight of elements that are not a member of either of the two sets in X . This function f is
submodular and in fact it is modular. One can easily verify that f(X1, Y1) + f(X2, Y2) =
f(X1 ∪ X2, Y1 ∩ Y2) + f(X1 ∩ X2, Y1 ∪ Y2). Thus V is a symmetric and pairwise disjoint
crossing lattice, and f : V → R is a symmetric submodular function over V.

Isolating (weighted) element cuts and global connectivity Let R ⊆ T and let R be the
crossing lattice consisting of all pairwise disjoint subsets of R. Given a partition of R into
two sets (A, B), an f -minimum (A, B)-cut, which corresponds to the minimum element cut
separating A from B, can be computed via directed (s, t)-maxflow, in EC(m, n)-time. By
Lemma 11, we can compute disjoint sets of elements

{
Ur ⊂ V : r ∈ R

}
where for each r ∈ R,

Ur contains the r-side component of a minimum (r, R − r)-element cut. Moreover, because
the Ur’s are obtained as intersections of sides of element cuts, for any distinct r, q ∈ R, there
is no edge from Ur incident to a vertex from Uq and (symmetrically) vice-versa.

For each r, let U
′
r ⊂ V be the set of vertices outside Ur and incident to an edge in Ur, and

the edges outside Ur incident to vertices in Ur. Informally speaking, U
′
r is the “boundary”

of Ur in an element connectivity sense. Let nr =
∣∣∣V ∩

(
Ur ∪ U

′
r

)∣∣∣ be the number of vertices

in Ur ∪ U
′
r and let mr =

∣∣∣E ∩
(

Ur ∪ U
′
r

)∣∣∣ be the number of edges in Ur ∪ U
′
r. Note that∑

r mr ≤ 2m since each edge can either appear in Ur for a unique choice of r or in U
′
r for

two choices of r.
To find an isolating cut for r we need to find the cheapest element cut contained in Ur.

We can do this via a flow computation as described below. For each r, consider the graph Gr

where we first take the graph Ur ∪ U
′
r and introduce an auxiliary vertex t̄. We connect t̄ to

all vertices in U
′
r with infinite capacity. For every edge e ∈ U

′
r with exactly one endpoint in

Ur, we replace the opposite endpoint with t̄. Observe that the minimum (r, t̄)-element cut in
Gr coincides with the minimum (r, R − r)-element cut in G. Gr has O(mr) edges and O(nr)
vertices, and the element (r, t̄)-cut problem can be solved in EC(mr, nr) time. Summing over
all r ∈ R gives the following theorem.

▶ Theorem 15. Let G = (T ∪N, E) be an instance of element connectivity with n nodes and m

edges and let R ⊆ T . Let w : V ∪E → (−∞, ∞] assign positive weight to each vertex and edge.
Let k = |T |. Then one can compute, for all r ∈ R, the minimum weight element (r, R − r)-
cut in O

(
EC(m, n) log k + maxm1,...,mk

{∑k
i=1 EC(mi, n) : m1 + · · · + mk ≤ 2m

})
, where

EC(m, n) is the running time for element (S, T )-cut with m edges and n vertices.

With Theorem 15 in place we can reduce the global mincut problem for R to the isolating
cut computation via sampling [37], and captured in the abstract setting Theorem 13, to
obtain the following theorem to compute κ′(R).

▶ Theorem 16. Let G = (T ∪ N, E) be an instance of element connectivity with n nodes
and m edges and let R ⊆ T . Let w : V ∪ E → (−∞, ∞] assign positive weight to each
vertex and edge. Let k = |R|. Then one can compute κ′(R) with constant probability in time
O((EC(m, n) log(k) + maxm1,...,mn

{
∑n

i=1 EC(mi, n) : m1 + · · · + mn ≤ 2m}) log n).

3.1 Refined running times for element connectivity
Until recently, the leading running times for EC(m, n) (e.g., EC(m, n) = Õ(m

√
n) [34]) plug

directly into Theorem 16 to give running times of the form Õ(EC(m, n)) to compute the
global element connectivity. A recent breakthrough work by [50] has obtained a running
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Figure 1 Applying the uncrossing framework to vertex connectivity reduces vertex isolating cuts
to edge disjoint cut problems. Note that the separating vertices may appear in multiple subproblems,
which is an obstruction towards a direct Õ(EC(m, n)) overall running time for isolating vertex cuts.

time of EC(m, n) = Õ
(
m + n1.5) for polynomially bounded and integral capacities. However,

Theorem 16 does not directly benefit from this running time because the vertices are not
partitioned across subproblems. See Figure 1 for an illustration in the concrete setting
of vertex cuts. Consequently, plugging EC(m, n) = Õ

(
m + n1.5) directly into Theorem 16

generates a running time of Õ
(
m + n1.5k

)
, where k = |T |. The additional factor of k (to a

certain extent) defeats the purpose of the isolating cuts framework.
In this section, we develop more advanced algorithms that take the isolating cut framework

as a starting point, and incorporates additional ideas to take advantage of EC(m, n) =
Õ
(
m + n1.5). In addition to obtaining faster algorithms, these results point to a general

algorithm design space where additional ideas can be introduced to obtain even better running
times. The first algorithm we present leverages the fact that the edges are partitioned across
subproblems, even if the vertices are not.

▶ Theorem 17. Let G = (T ∪ N, E) be an instance of element connectivity with n nodes
and m edges and let R ⊆ T . Let w : V ∪ E → [1..U ] assign integer (or infinite) weights to
each vertex and edge. For R ⊆ T , the minimum R-isolating vertex cut can be computed in

Õ
(

m1+o(1)n3/8U1/4 + n1.5
)

time.

Proof. Let k = |R|. We apply Theorem 15 and give concrete upper bounds using known
upper bounds for EC(m, n). Let m1, . . . , mk ∈ N with m1 + · · · + mk ≤ m. Recall that
EC(m, n) = Õ

(
m4/3+o(1)U1/3) by [31] and EC(m, n) = Õ

(
m + n3/2) by [50]. Let α > 0 be

a parameter to be determined. We apply the first running time when mi < mα/k and the
second running time then mi ≥ mα/k. At most k/α indices i have mi ≥ mα/k. Thus,

k∑
i=1

EC(mi, n) =
∑

i:mi≥mα/k

EC(mi, n) +
∑

i:mi<mα/k

EC(mi, n)

≤ Õ

m + k

α
n1.5 +

∑
i:mi<mα/k

m
4/3+o(1)
i U1/3


(a)
≤ Õ

(
m + k

α

(
n1.5 +

(αm

k

)4/3+o(1)
U1/3

))
.
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Here (a) is by convexity: the quantity
∑

i:mi<mα/k m
4/3+o(1)
i subject to the condition that∑

i mi ≤ m is at most (k/α)(αm/k)4/3+o(1). Balancing terms at α = kn9/8/m, this gives an
upper bound of Õ

(
m1+o(1)n3/8U1/4), hence the claimed running time. ◀

We point out that other running time tradeoffs between m and U can be obtained by
instead applying the flow alogrithms from [39, 40].

The next theorem, which is particularly good for dense graphs, leverages the fact that
while the vertices are not necessarily partitioned across subproblems, at least the “inner”
vertex sets Ur ∩ V are disjoint and all of the repeating “boundary” vertices are guaranteed
to be outside the r-component of each (r, R − r)-minimum cut. The following algorithm
balances a tradeoff between the recent algorithm with [51] with blocking flows [22]. In the
application of blocking flows, we argue that with an appropriate construction of the auxiliary
graph in the components given by the decomposition by isolating cuts, the maximum length
of any augmenting paths is proportional to the number of inner vertices (rather than the
total number of vertices) for that component.

▶ Theorem 18. Let G = (T ∪ N, E) be an instance of element connectivity with n nodes
and m edges and let R ⊆ T . Let w : V ∪ E → [0, U ] assign positive (or infinite) weights to
each vertex and edge. For R ⊆ T , the minimum R-isolating cut can be computed in

Õ
(

m1/2n5/4
)

randomized time, where Õ(· · ·) hides poly(log(n), log(U))-factors.

Proof. We recall the construction from Theorem 15, adopting the same notation. In addition,
for each r, let ñr be the number of vertices in Ur. Note that as the Ūr’s are disjoint, we have∑

r∈R ñr ≤ n.
For each r, we employ two different approaches to computing the minimum (r, t̄)-element

cut. On one hand we can apply any max flow algorithm in EC(mr, nr) time. As remarked
above we have EC(mr, nr) ≤ Õ

(
mr + n1.5

r

)
by [50]. The second approach is to apply blocking

flows with the following additional observations. Element connectivity can be modeled as
maximum flow in undirected graphs with edge and vertex capacities, which in turn can be
reduced to maximum flow in edge capacitated directed graphs. Recall the directed graph
representation of vertex capacities, sometimes called the “split graph”. We remind the reader
that in the split graph, each non-terminal vertex v ∈ Vr \

{
r, t̄
}

is split into two vertices – an
“in-vertex” v− and an “out-vertex” v+ – and there is an edge (v−, v+) with capacity equal
to w(v). Each edge (u, v) ∈ Er is replaced with an edge (u+, v−) with the same capacity.
From this split graph, we contract the edges (v+, t̄) for all v ∈ V ∩ U

′
r, which is safe because

t̄ is the sink and each edge (v+, t̄) has infinite capacity. Now, in this directed auxiliary
graph, we have O(mr) edges and O(nr) vertices. We now observe that the auxiliary vertices
corresponding to U

′
r ∩ V ,

{
v− : v ∈ U

′
r ∩ V

}
, do not have any edges between them. Then

any (s, t̄) path in this graph or in any residual graph that may arise cannot have consecutive
auxiliary vertices from U

′
r. Therefore, every augmenting path has length at most 2ñr. In

turn, O(ñr) iterations of blocking flows suffice to find the minimum (r, t̄) cut in Gr, which
takes O(mr log(mr/nr)) time per iteration [22] and O(mrñr log(mr/nr)) time overall.
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Let α > 0 be a parameter to be determined. We have ñr ≥ αn/k for at most k/α vertices
r ∈ R. We have

O

(∑
r

min{EC(mr, nr), mrñr log(m)}

)
≤ Õ

 ∑
r:ñr≤αn/k

mrñr +
∑

r:ñr≥αn/k

(
mr + n1.5

r

)
≤ Õ

(
m +

(
α

k

)
mn +

(
k

α

)
n1.5
)

(a)
≤ Õ

(
m + m1/2n5/4) = Õ

(
m1/2n5/4),

as desired. Here, in step (a), we substituted α = kn1/4/m1/2. ◀

4 Vertex connectivity

In this section we consider the problem of computing the vertex connectivity in weighted
and unweighted graphs. Let G = (V, E) be an undirected graph with m edges and n vertices.
Let w : V → [1, U ] be positive vertex weights. Given distinct nodes s, t ∈ V such that
st ̸∈ E, the minimum weight vertex separator between s and t can be computed via flow
techniques. Recently there has been significant improvement in the running time of vertex
capacitated flow to Õ(m+n1.5) [51]. We use VC(m, n) to denote the complexity of computing
such a separator. We let κ(s, t) denote the weight of the separator between s, t with the
understanding that κ(s, t) = ∞ if {s, t} ∈ E. Here we are interested in the minimum vertex
weight separator of G which can be defined as mins,t∈V,s̸=t κ(s, t).

Let R ⊂ V such that R is an independent set in G; that is, no two vertices in R share
an edge. One can then define κ(R) to be mins,t∈R,s ̸=t κ(s, t). We observe that κ(R) is the
same as the element connectivity of R in the graph where R is the set of terminals and
V \ R are the non-terminals and edge weights are set to ∞; i.e., only vertices are allowed to
be removed. We have already seen algorithms for element connectivity, which immediately
convert to isolating cut algorithms for vertex connectivity. For instance, one can compute
the minimum isolating cut in Õ

(
m1+o(1)n3/8U1/4 + n1.5) time with integral vertex weights

between 1 and U , or in Õ
(√

mn5/4) time for polynomially bounded weights.
These running times for isolating cuts do not, however, immediately convert to running

times for vertex cuts. To obtain the minimum vertex cut as an isolating cut, we must initialize
the algorithm with a set of vertices R for which the minimum vertex cut is also an isolating
cut. Let (S, T ) be opposite sides of a minimum vertex cut N(S) = N(T ). Without loss of
generality suppose S has weight less than or equal to T . We would like a set R that samples
exactly one point from S, at least one point from T , and avoids N(S) altogether. Even in
the unweighted setting, uniform sampling is thwarted by the fact that N(S) may be much
larger than S, and it is difficult to hit S without hitting N(S) too. In the following lemma,
we observe that if we relax our problem to an (1 + ϵ)-approximately minimum vertex cut,
then we can sample a useful set R with reasonably good probability.

▶ Lemma 19. Let ϵ > 0 be fixed. Let G = (V, E) be an undirected graph with m edges and
n vertices. Let w : V → [1, U ] be positive vertex weights and let W =

∑
v∈V w(v) be the

total weight. Let κ be the weight of the minimum weight vertex cut. Suppose the minimum
weighted degree is greater than (1 + ϵ)κ. Then one can compute a randomized independent
set R ⊂ V such that the minimum vertex cut is an R-isolating set with probability at least
Ω((ϵ/ log(nU)) max{ϵ, (1 − κ/W )}).
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Proof. For ease of notation, let

ϵ0 = max
{

ϵ,
1
2

(
1 − κ

W

)}
Let (S, T ) be opposite sides of the minimum vertex cut N(S) = N(T ). Without loss of
generality suppose w(S) ≤ w(T ) where we use the notation w(A) to denote the total weight
of vertices in A, that is, w(A) =

∑
v∈A w(v). Since N(S) is the minimum weight vertex

separator we have w(N(S)) = κ. We would like a independent set R ⊂ V that has exactly
one point from S, at least one point from T , and avoids N(S) altogether. Then (S, T ) would
isolate the lone vertex in R ∩ S from R − r ⊆ T , as desired. We can achieve this via a
sampling procedure that we described below.

First we claim that w(S) ≥ ϵκ. Fix an arbitrary vertex v ∈ S. By assumption,
w(N(v)) ≥ (1 + ϵ)κ. Since N(v) ⊆ S ∪ N(S) and S ∩ N(S) = ∅, we have w(S) ≥ ϵκ.

Let µ be any value in the range [2 max{w(S), κ}, 4 max{w(S), κ}]. Since
max

{∑
v∈S w(v), κ

}
lies in the range [1, poly(n, U)], we can sample a value µ that lies

in the above range with probability Ω(1/ log(nU)) by randomly picking a power of 2 in
the range [1, poly(n, U)]. Once we fix µ, let R be a random subset of vertices obtained by
independently sampling each vertex v with probability w(v)/µ. Then, as long as R has an
adjacent pair of vertices, we remove one of them from R. We claim that the intial sample for
R has one point from S, no points from N(S), and at least one point from T with probability
≥ Ω(ϵϵ0). If so, then since S and T are independent from one another, dropping vertices in
the second phase will not remove any vertices from S, and retain at least one vertex in T , as
desired. Observe that the three events are independent.

The probability that R avoids N(S) is
∏

v∈N(S)(1 − w(v)/µ). Since w(N(S)) = κ and
µ ≥ 2κ, for any v ∈ N(S), w(v)/µ ≤ 1/2. For x ∈ (0, 1/2] the inequality (1 − x) ≥ e−2x

holds. Hence,
∏

v∈N(S)(1 − w(v)/µ) ≥
∏

v∈N(S) e−2w(v)/µ ≥ e−2κ/µ ≥ 1/e.
Recall that w(S) ≥ ϵκ and hence the probability that R samples exactly one vertex from

S is∑
v∈S

w(v)
µ

∏
u∈S−{v}

(1 − w(u)
µ

) ≥
∑
v∈S

w(v)
µ

e−2(w(S)−w(v))/µ ≥ 1
e

∑
v∈S

w(v)
µ

≥ ϵ

4e
.

In the preceding set of inequalities we used the fact that 1 − x ≥ e−2x for x ∈ [0, 1/2] since
w(S)/µ ≤ 1/2. In the final inequality we used the fact that w(S) ≥ ϵκ which implies that
w(S) ≥ ϵµ/4.

We claim that w(T ) ≥ ϵ0µ/4. Assuming the claim, the probability that R samples at
least one vertex from T is ≥ 1 − e−w(T )/µ ≥ 1 − eϵ0/4 = Ω(ϵ0). To see the claim, recall
that w(T ) ≥ w(S) ≥ ϵκ. We also have w(S) + w(T ) + w(N(S)) = W which implies that
w(T ) ≥ 1

2 (W − κ) ≥ 1
2 (1 − κ

W )W ≥ 1
2 (1 − κ

W )w(S). Since µ ≤ 4 max{w(S), κ}, we have
w(T ) ≥ ϵ0µ/4.

Thus, given µ lies in the range [2 max{w(S), κ}, 4 max{w(S), κ}] which happens with
probability Ω(1/ log(nU)) we have the desired sample R with probability Ω(ϵ · ϵ0). ◀

4.1 Approximate vertex connectivity
By combining the isolating cut algorithms with the sampling lemma above (for the case
where no singleton already induces a good enough vertex cut), we obtain the following
approximation algorithm for vertex connectivity. We point out that in the running time
below, the trailing factor (min{1/ϵ, W/(W − κ)}) is simply a constant except in the relatively
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uninteresting setting where the minimum weight vertex cut is almost all of the weight of the
graph. In the regime of interest, the following is a Õ(1/ϵ) factor greater than the running
time to compute an isolating vertex cut.

▶ Theorem 20. Let ϵ > 0 be fixed. Let G = (V, E) be an undirected graph with m edges
and n vertices. Let w : V → R>0 be positive vertex weights and let W =

∑
v∈V w(v) be the

total weight. Let κ be the weight of the minimum weight vertex cut. Then a minimum vertex
cut can be computed with high probability in Õ((1/ϵ) IsoVC(m, n) min{(1/ϵ), W/(W − κ)})
randomized time, where IsoVC(m, n) is the running time to compute the minimum isolating
vertex cut in a weighted graph of m edges and n vertices.

Proof. Let

ℓ = Õ

(
1
ϵ

min
{

1
ϵ

,
W

W − κ

})
The algorithm first repeats the following subroutine O(ℓ) times. This subroutine first
generates an set R ⊂ V by Lemma 19, and then it computes a minimum R-isolating cut. It
compares the ℓ isolating cuts generated above with the singleton cuts in the graph, returning
the minimum overall.

We argue that the algorithm returns a (1 + ϵ)-approximate minimum weight cut with
high probability by the following simple analysis. In one case, some singleton cut is an
approximate minimum cut, in which case the algorithm always succeeds. In the second case,
the minimum weighted degree is at least an (1 + ϵ)-multiplicative factor greater than the
vertex connectivity. In that case, the minimum weight vertex cut is a minimum R-isolating
cut for at least one of the random sets R with high probability, in which case we return the
minimum weight vertex cut. ◀

We briefly compare our bound above to previous work. As mentioned previously Henzinger,
Rao and Gabow [27] obtain a randomized algorithm that gives the exact vertex connectivity
in Õ(mn) time for weighted graphs. We obtain a (1 + ϵ)-approximation in Õ(m

√
n/ϵ) time

or in Õ
(
m1/2n5/4/ϵ

)
time; other bounds are outlined in previous subsection. We are thus

able to obtain substantially faster algorithm if we settle for a small approximation. There
have been past works on approximation for vertex connectivity but as far as we know
they have been limited to unweighted graphs. Henzinger [26] obtained a 2-approximation
in O(n2 min(

√
n, κ)). Forster et al. obtained a (1 + ϵ)-approximation in randomized time

Õ
(
m + nκ2/ϵ

)
which is near-linear for small connectivity, and combining various other results

they improve upon Henzinger’s result. We refer the reader to [17] for detailed bounds. Our
running times are useful for the larger connectivity regime and we can obtain improved
bounds in various other regimes of interest. We leave a more detailed comparison to a future
version of the paper.

4.2 Exact vertex connectivity

Now, for integral weights, the approximation algorithm above gives the following exact
algorithm for vertex connectivity by suitable choice of ϵ. Again we highlight that in the
running time below, the trailing factor (min

{
κ, W

W −κ

}
) is simply a constant except in the

relatively uninteresting setting where κ is almost
∑

v∈V w(v), in which case the remaining
factors of O(κ IsoVC(m, n)) are not as compelling anyway.
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Table 1 A table of running times for finding the minimum vertex cut in an unweighted and
undirected graph. VC(m, n) denotes the running time of computing (s, t)-vertex connectivity.
EC(m, n) denotes the running time computing (s, t)-edge connectivity. See also [48, Section 15.2a].

O
(
n2 VC(κn, n)

)
Combines trivial algorithm with sparsification [44].

O(n VC(κn, n)) Combines randomized trivial algorithm with sparsification [44].
κ ≤ .99n

O(nω + nκω). [38].

Õ
(
κn2) [27]. Randomized.

O
(
min
{

n3/4, κ3/2}κ2n + κn2) [20].

Õ
(
m + κ7/3n4/3) [45]. Randomized.

Õ
(
m + nκ3) [17]. Randomized.

Õ
(
m + κ7/3n4/3) Corollary 22. Randomized. κ ≤ .99n

Õ
(
m + κ2n11/8+o(1) + κn3/2) Corollary 22. Randomized. κ ≤ .99n

Õ
(
m + κ1.5n7/4) Corollary 22. Randomized. κ ≤ .99n.

▶ Theorem 21. Let G = (V, E) be an undirected graph with m edges and n vertices. Let
w : V → N be integer vertex weights and let W =

∑
v∈V w(v) be the total weight. Let

κ be the weight of the minimum weight vertex cut. Then the minimum vertex cut can be
computed with high probability in Õ(κ IsoVC(m, n) min{κ, W/(W − κ)}) randomized time,
where IsoVC(m, n) is the running time to compute the minimum isolating vertex cut in a
weighted graph of m edges and n vertices.

Proof. For integral capacities, a (1 + 1/(κ + 1))-approximation is an exact solution. Thus
the result follows from Theorem 20. ◀

For the unweighted case, combining the above with sparsification [44] gives the following.

▶ Corollary 22. Let G = (V, E) be a simple unweighted graph. Then the minimum vertex cut
can be computed with high probability in Õ(m + κ IsoVC(nκ, n) min{κ, n/(n − κ)}) random-
ized time, where IsoVC(m, n) is the running time to compute the minimum isolating vertex
cut in a graph of m edges and n vertices.

Proof. For unweighted graphs we can assume we know κ (via exponential search which
adds an additional O(log κ) overhead). We apply the well-known linear-time sparsification
algorithm of Nagamochi and Ibaraki [44] to reduce the number of edges to O(nκ) and then
run the algorithm in the preceding theorem on the sparsified graph which gives the claimed
bound. ◀

The reduction from exact vertex connectivity to isolating vertex cut above, mixed with
the algorithms for isolating vertex cuts, and optionally including the sparsification step from
Corollary 22, produces a number of new running times that are optimal for different ranges
of κ. In general, the running times obtained here have a lower dependence on κ then other
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algorithms for vertex connectivity with a poly(κ) dependence (which is common for the
unweighted setting), so the running times here are particularly good for moderate to large
κ. For a more detailed comparison between the literature and new running times for the
unweighted setting (where we restrict to unweighted for simplicity), see Table 1.

5 Hypergraph Connectivity

Let H = (V, E) be a weighted hypergraph and let R ⊆ V . The cut function of a hypergraphs
is symmetric and submodular. Given disjoint sets S, T ⊂ V the minimum S-T cut in H

can be computed in EC(p, m + n) time via standard reductions3. We can use Lemma 11
and Corollary 14 to understand the running time to compute R-connectivity in H. Up to
logarithmic factors it suffices to estimate the time to find R-isolating cuts. Recall that the
running time consists of two parts. The first part is O(log |R|) calls to S-T cut problem in
H. After this we have the following situation. For each r ∈ R we obtain a set Ur ⊂ V such
that r ∈ R and Ur ∩ (R − r) = ∅. Furthermore the sets Ur over r ∈ R are pairwise disjoint.
For each r the goal is to find a set Yr ⊆ Ur with minimum w(δ(Yr)) where δ(Yr) is set of
hyperedges crossing Yr. Let nr = |Ur|. We can compute Yr by solving a cut problem in an
auxiliary hypergraph Gr on nr + 1 vertices obtained by shrinking V \ Ur into a single vertex.
Let pr be the total size of the hyperedges in Gr. It is not hard to see that

∑
r∈R pr = O(p).

Thus each cut problem in Gr can be computed in either EC(pr, m + nr + 1). This implies
the following.

▶ Theorem 23. The minimum isolating cuts over a set of vertices R of size k = |R| in a
hypergraph with m edges, n vertices, and total size p can be computed

Õ

(
EC(p, m + n) + max

n1,...,nk,p1,...,pk

{
k∑

i=1

EC(pi, m + ni) : n1 + · · · + nk ≤ n, p1 + · · · + pk ≤ 2p

})
time with high probability.

In particular EC(p, m + n) is Õ(p
√

m + n log U) [34] and for unweighted case we have
EC(p, m + n) = Õ(p4/3) [39]. We can obtain two other run times for hypergraphs that
provide different tradeoffs. These are obtained by more carefully solving the second part of
the isolating cut framework, and transfer ideas from vertex connectivity to hypergraphs.

1.
√

pn(m + n)1.5.
2. Õ

(
p(m + n)

3α
2(1+α) β

1
1+α

)
for any α, β where EC(m, n) ≤ m1+αβ (e.g., [31] gives

EC(m, n) ≤ Õ
(
m4/3U1/3), which we interpret as α = 1/3 and β = U1/3).

We sketch the proofs of theorems that obtain the preceding bounds.

▶ Theorem 24. The minimum isolating cut in a hypergraph can be computed in

Õ
(√

pn(m + n)1.5
)

randomized time.

The proof is omitted due to space constraints, and can be found in [10]. We mention that
the approach is similar to the the algorithm for element isolating cuts that had a running
time of Õ

(√
mn5/4).

3 One can also reduce to computing s-t cut in a vertex capacitated undirected graph with p edges and
m + n nodes, although there does not seem to be any particular advantage with current running time
bounds for EC(p, m + n).
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▶ Theorem 25. Suppose EC(m, n) ≤ Õ
(
m1+αβ

)
for fixed α, β > 0. Then minimum isolating

cuts can be computed in Õ
(

p(m + n)
3α

2(1+α) β
1

1+α + p + (m + n)1.5
)

.

The proof is omitted due to space constraints, and can be found in [10]. We mention that
the approach is similar to the algorithm for element isolating cuts that obtained a running
time of Õ

(
m1+o(1)n3/8U1/4 + n1.5).
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