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Abstract
We develop a general framework that characterizes strong average-case lower bounds against circuit
classes C contained in NC1, such as AC0[⊕] and ACC0. We apply this framework to show:

Generic seed reduction: Pseudorandom generators (PRGs) against C of seed length ≤ n − 1 and
error ε(n) = n−ω(1) can be converted into PRGs of sub-polynomial seed length.
Hardness under natural distributions: If E (deterministic exponential time) is average-case hard
against C under some distribution, then E is average-case hard against C under the uniform
distribution.
Equivalence between worst-case and average-case hardness: Worst-case lower bounds against
MAJ ◦ C for problems in E are equivalent to strong average-case lower bounds against C. This
can be seen as a certain converse to the Discriminator Lemma [Hajnal et al., JCSS’93].

These results were not known to hold for circuit classes that do not compute majority. Additionally,
we prove that classical and recent approaches to worst-case lower bounds against ACC0 via commu-
nication lower bounds for NOF multi-party protocols [Håstad and Goldmann, CC’91; Razborov and
Wigderson, IPL’93] and Torus polynomials degree lower bounds [Bhrushundi et al., ITCS’19] also
imply strong average-case hardness against ACC0 under the uniform distribution.

Crucial to these results is the use of non-black-box hardness amplification techniques and the
interplay between Majority (MAJ) and Approximate Linear Sum (S̃UM) gates. Roughly speaking,
while a MAJ gate outputs 1 when the sum of the m input bits is at least m/2, a S̃UM gate computes
a real-valued bounded weighted sum of the input bits and outputs 1 (resp. 0) if the sum is close to 1
(resp. close to 0), with the promise that one of the two cases always holds. As part of our framework,
we explore ideas introduced in [Chen and Ren, STOC’20] to show that, for the purpose of proving
lower bounds, a top layer MAJ gate is equivalent to a (weaker) S̃UM gate. Motivated by this result,
we extend the algorithmic method and establish stronger lower bounds against bounded-depth
circuits with layers of MAJ and S̃UM gates. Among them, we prove that:

Lower bound: NQP does not admit fixed quasi-polynomial size MAJ ◦ S̃UM ◦ ACC0 ◦ THR circuits.

This is the first explicit lower bound against circuits with distinct layers of MAJ, S̃UM, and THR
gates. Consequently, if the aforementioned equivalence between MAJ and S̃UM as a top gate can
be extended to intermediate layers, long sought-after lower bounds against the class THR ◦ THR of
depth-2 polynomial-size threshold circuits would follow.
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1 Introduction

1.1 Overview
Establishing the intractability of computations and understanding the power of randomness
in algorithms are among the most basic open problems in theoretical computer science.
The theory of computational pseudorandomness provides a firm link between these two
research directions. One of the most celebrated developments in this area is a proof that if
E (deterministic exponential time 2O(n)) requires Boolean circuits of exponential size then
P = BPP [30, 43]. This result and its underlying techniques provide a robust mathematical
theory that connects worst-case lower bounds, average-case hardness, and the construction of
pseudorandom generators.

Unfortunately, a large part of this beautiful and far-reaching theory is not known to
survive in restricted computational settings. For instance, while we know since the eighties
that E cannot be (1/2 + n−1/2+Ω(1))-approximated by AC0[⊕] [40], it is an important open
problem to obtain strong average-case hardness results of the form 1/2 + n−k for all k

and pseudorandom generators against this circuit class. The fact that existing connections
between hardness and pseudorandomness do not apply in restricted settings is significant,
given that known unconditional results and existing lower bound frontiers lie within weak
sub-classes of NC1, such as ACC0.

Several works (e.g. [45, 23, 42, 36, 5, 22, 47, 29]) have investigated the difficulty of
extending the hardness vs. randomness theory and its consequences to restricted circuit
classes. Roughly speaking, these results show that standard “black-box” techniques to amplify
computational hardness and construct pseudorandom generators require the underlying circuit
class C to be closed under majority. However, obtaining lower bounds against circuit classes
that are closed under majority is a notorious open problem. This leaves us in this unsatisfying
situation where many benefits of the theory mentioned above only apply to settings where
current circuit-analysis techniques do not hold. In other words, we have the following “lose-
lose” scenario: above TC0 we have no lower bounds, while below it we have lower bounds
but no hardness amplification.

In this work, we explore non-black-box techniques to overcome this difficulty, obtaining
a general connection between worst-case lower bounds, strong average-case hardness, and
pseudorandomness for weak circuit classes. Our results build on recent ideas of Chen and
Ren [14] employed in the context of the algorithmic method. Using our techniques, we are
able to establish fundamental equivalences that were previously only known for circuit classes
containing TC0. As a consequence, the new results are widely applicable and can affect
current frontiers in circuit complexity theory.

A crucial ingredient in our proofs is the interplay between Majority (MAJ) and Approxim-
ate Linear Sum (S̃UM) gates. Roughly speaking, while a MAJ gate outputs 1 when the sum
of the m input bits is at least m/2, a S̃UM gate computes a real-valued bounded weighted
sum of the input bits and outputs 1 (resp. 0) if the sum is close to 1 (resp. close to 0), with
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the promise that one of the two cases always holds. S̃UM gates are significantly simpler than
MAJ gates (e.g. MAJ has approximate degree [38] of order Ω(m)), but still powerful enough
to implement useful computations, such as hardness amplification for specific problems (a
non-black-box element).

Complementing our results about the average-case complexity of restricted circuit classes,
we obtain the first unconditional lower bounds against bounded-depth circuits with distinct
layers of MAJ, S̃UM, and THR gates. These results suggest that further investigating the
relation between MAJ and S̃UM might be a path to lower bounds against depth-2 threshold
circuits, a long-standing open problem in complexity theory (cf. [18, 9]).

1.2 Results and techniques
To begin with, we recall some definitions for linear sums of functions. Our notation is taken
from previous work [50, 15, 14, 13] on lower bounds via the algorithmic method. Let C be a
class of functions from {0, 1}n → {0, 1}.

SUM ◦ C-circuits. A SUM ◦ C-circuit C : {0, 1}n → R is a circuit that can be written as
C(x) =

∑ℓ
i=1 αi · Ci(x), where each αi is a real, and each Ci ∈ C. Here ℓ is called the sparsity

of C, and is denoted as sparsity(C). We also use complexity(C) to denote max(ℓ,
∑ℓ

i=1 |αi|).
Furthermore, if a SUM ◦ C-circuit C always outputs values in the interval [0, 1], we say it is a
[0, 1]-SUM ◦ C-circuit.

S̃UMδ ◦ C-circuits. Let δ ∈ [0, 0.5). A S̃UMδ ◦ C-circuit C : {0, 1}n → {0, 1} is defined by a
SUM ◦ C-circuit L : {0, 1}n → R satisfying the following promise: for every x ∈ {0, 1}n, either
|L(x) − 1| ≤ δ or |L(x)| ≤ δ. (We stress that this promise is only required over inputs x to
the SUM ◦ C-circuit L, and not over all possible input values to the top SUM gate.) We say
C(x) = 1 if |L(x) − 1| ≤ δ and C(x) = 0 otherwise. The sparsity and the complexity of C is
defined as the sparsity and the complexity of L, respectively.

For a circuit class C, we use SUM ◦ C, [0, 1]-SUM ◦ C, and S̃UMδ ◦ C to denote the
collection of such circuit families with at most poly(n) complexity. When C has a clear
notion of complexity, such as circuit size, this also means that the involved C-subcircuits
are of polynomial size. In some statements we might refer to classes such as S̃UMδ ◦ C[s] to
emphasize a specific upper bound s on the complexities of C-subcircuits and of the top gate.

Notation for standard concepts. A MAJ : {0, 1}m → {0, 1} gate MAJ(y1, . . . , ym) outputs
1 if and only if

∑
i yi ≥ m/2. A THR : {0, 1}m → {0, 1} gate is described by weights

w1, . . . , wm, θ ∈ R and outputs 1 if and only if
∑

i wiyi ≥ θ.
For a probability distribution D over {0, 1}n and Boolean functions f, g : {0, 1}n → {0, 1},

we say that f is γ-approximated by g over D if Prx∼D[f(x) = g(x)] ≥ γ. For convenience,
circuit lower bounds involving approximations of the form 1/2 + 1/nω(1) might be informally
referred to as strong average-case lower bounds or simply strong correlation bounds.

Our results refer to non-uniform circuit classes, and we use C1 ◦ C2 to refer to circuit
families consisting of a top circuit from C1 composed with bottom circuits from C2.1

We use Un to denote the uniform distribution over {0, 1}n. A distribution D ε-fools a
function f : {0, 1}n → {0, 1} if | Pr[f(D) = 1] − Pr[f(Un) = 1]| ≤ ε. We say that a sequence
Gn : {0, 1}ℓ(n) → {0, 1}n is an infinitely often PRG against a circuit class C with error ε

1 As usual, in the case of C2 = ACC0, where ACC0 =
⋃

m∈N
AC0[m] with m here representing the modulo,

we require that each C2-subcircuit of a circuit D from C1 ◦ C2 uses the same fixed m.
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(i.o. ε-PRG) and seed length ℓ if Gn is computable in time 2O(ℓ(n)) and for infinitely many
values of n, the induced distribution Gn(Uℓ(n)) ε(n)-fools each function f : {0, 1}n → {0, 1}
in C.

1.2.1 Equivalences for worst-case and strong average-case hardness
Our first contribution is a general result that tightly connects worst-case lower bounds, strong
average-case hardness, and pseudorandomness in restricted computational models.

▶ Theorem 1 (Non-black-box equivalences for worst-case and strong average-case hardness).
Let C be a circuit class contained in NC1 that is closed under negations and under a bottom
layer of juntas over O(1) input bits. The following statements are equivalent:
1. There is L ∈ E such that L /∈ S̃UM1/3 ◦ C.
2. There is L ∈ E and δ ≥ 1/poly(n) such that L /∈ S̃UMδ ◦ C.
3. There is L ∈ E such that L /∈ MAJ ◦ C.
4. There is L ∈ E such that, for every k ≥ 1, L cannot be computed by probabilistic C-circuits

with error 1/2 − 1/nk.2
5. There is L ∈ E and a distribution ensemble D such that for every k ≥ 1, L cannot be

(1/2 + n−k)-approximated by C under D.
6. There is L ∈ E such that for every k ≥ 1, L cannot be (1/2 + n−k)-approximated by C

under the uniform distribution.
7. There is L ∈ E that cannot be approximated by [0, 1]-SUM ◦ C within ℓ1 distance 1/3.3
8. There is L ∈ E and δ ≥ 1/ poly(n) such that L cannot be approximated by [0, 1]-SUM ◦ C

within ℓ1 distance δ.
9. There is an i.o. ε-PRG G against C with seed length n − 1 and error ε(n) ≤ n−ω(1).4

10. For each γ > 0, there is an i.o. ε-PRG against C with seed length nγ and ε(n) ≤ n−ω(1).

This result can be applied to a variety of natural circuit classes, such as AC0[⊕], ACC0,
and constant-degree polynomial threshold functions (PTFs). We stress that while Theorem 1
requires the circuit class C to be contained in NC1, in circuit complexity this is the most
interesting case for the result. More precisely, for circuit classes that are above NC1, it is
well known that worst-case hardness for a problem in E can be converted into average-case
hardness and PRGs. (Furthermore, NC1 is closed under a top MAJ or S̃UM gate.) We
remark that Theorem 1, with appropriate modifications, can be adapted to other uniform
complexity classes, such as BPE = BPTIME[2O(n)] and PSPACE. For simplicity, we restrict
our discussion to E.

We observe that a connection between worst-case hardness and weak average-case hardness
for functions in E has been established in [20], under the assumption that the circuit class C
contains AC0 and is closed under composition. In contrast to their work, we have a much
weaker assumption on C, and our setting of parameters allows us to obtain equivalences to
PRGs and to derive consequences that do not follow from their results.

We now highlight three fundamental consequences of Theorem 1. Note that, while our
proof employs S̃UM gates in important ways, none of these results refer to such gates.

2 Following standard terminology, a probabilistic C-circuit F is simply a distribution of C-circuits. We say
that F computes a Boolean function g with error ε if for every input x we have PrF [F (x) ̸= g(x)] ≤ ε.

3 In other words, there is no family of circuits Fn ∈ [0, 1]-SUM◦C such that Ex∼{0,1}n [|L(x)−Fn(x)|] ≤ 1/3
for all large n. This notion plays a crucial role in [13] and other related works.

4 More precisely, for each choice of k, there is an infinite set Sk ⊆ N such that G fools circuits from C[nk]
on inputs of length n ∈ Sk with error ε(n) ≤ n−k.
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1. Seed reduction for PRGs. Perhaps surprisingly, the equivalence between Items 9 and 10
of Theorem 1 shows the existence of a generic seed reduction phenomenon for weak circuit
classes. Thus to construct i.o. PRGs of sub-polynomial seed length for a class C satisfying the
conditions of this result it is enough to construct a non-trivial i.o. PRG (i.e. of seed length
≤ n − 1) with small error. In particular, improving the error parameter of the PRG against
AC0[⊕] described in [16] to inverse-super-polynomial would lead to major consequences for
AC0[⊕]-circuits.

2. Hardness under some distribution implies hardness under the uniform distribution.
Theorem 1 also has important implications to our understanding of the average-case hardness
of problems in E with respect to weak circuit classes. This is an immediate consequence
of Items 5 and 6, which establish the result for strong average-case hardness of the form
1/2 + 1/nω(1). In the full version of this paper [11], we observe that our techniques can also
translate constant-error average-case hardness under an arbitrary distribution to constant-
error average-case hardness under the uniform distribution. An interesting application of
these results is that the existence of a PRG against C, which was only known to imply
hardness under some distribution (see e.g. Section 3 of [46]), also implies hardness with
respect to the uniform distribution (which in turn is sufficient to construct PRGs).

3. Equivalence between worst-case and average-case hardness. The well-known Discrim-
inator Lemma from Hajnal et al. [24] has found numerous applications in circuit complexity
lower bounds. It shows that if a Boolean function f cannot be (1/2+1/ poly(n))-approximated
by a class C then f is not in MAJ◦C. In other words, one can lift an average-case lower bound
against C to a worst-case lower bound against the stronger class MAJ ◦ C. Interestingly, the
equivalence between Items 3 and 6 in Theorem 1 shows that, for the purpose of proving lower
bounds for a problem in E, a worst-case lower bound against MAJ ◦ C is actually equivalent to
a strong average-case lower bound against C. To our knowledge, this was previously unknown
for weak computational models.5

A consequence of Theorem 1 relevant to the study of S̃UM gates is that if E ⊈ S̃UMδ ◦ C
for some δ(n) = 1/nc then E ⊈ S̃UM1/3 ◦ C.6 Another interesting implication is that the
average-case lower bounds against [0, 1]-SUM ◦ C under ℓ1 distance investigated in [13] are
necessary and sufficient for strong average-case hardness against C.

Next, we discuss some of the techniques behind Theorem 1.

Theorem 1: Techniques. As alluded to above, the proof of Theorem 1 relies on non-black-
box hardness amplification techniques explored by Chen and Ren [14] and on a careful
balance between the strength and weakness of S̃UM gates. To give some intuition, we discuss
the main ingredients behind a more direct proof of the following equivalence, which also
explains the assumptions on the circuit class C:

Worst-case hardness against S̃UM ◦ C ⇐⇒ i.o. PRGs against C with error ε = n−ω(1).

5 We also remark that it was known [19, 28, 33] before that for general circuit class C, weak average-case
hardness against MAJ ◦ C implies strong average-case hardness against C.

6 We note that a simple error amplification technique for S̃UM (see [11]) blows up the complexity of the
involved S̃UM ◦ C-circuits to quasi-polynomial when amplifying from constant-error approximation to
inverse polynomial. For this reason, it does not establish this implication.
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While it is possible to show that a S̃UM gate can be efficiently simulated by a MAJ gate,7
the opposite simulation does not hold (e.g. consider approximate degree). In this sense, S̃UM
gates are indeed weak. Still, it is possible to show essentially that, for a certain specific
NC1-hard problem L contained in P, a S̃UM gate of polynomial complexity can implement
a hardness amplification proof: roughly speaking, a weak approximator circuit for L can
be transformed into a correct circuit for L by incurring only a top S̃UM gate overhead.
This allows us to employ the following win-win analysis. Either the NC1-hard problem L is
1/2 + n−k-hard against C on infinitely many input lengths for every choice of k, in which
case an i.o. PRG against C can be constructed from L using standard techniques under
the assumption that C is closed under bottom layer O(1)-juntas, or there is a choice of k

such that L can be 1/2 + n−k approximated by C-circuits on large enough input lengths.
The latter implies via the hardness amplification reconstruction routine that L ∈ S̃UM ◦ C,
which in turns yields NC1 ⊆ S̃UM ◦ C using the NC1-hardness of L (which in fact admits
ultra efficient reductions). Now under our assumption that C ⊆ NC1, it is easy to see that
NC1 = S̃UM ◦ C. As a consequence, a worst-case lower bound against S̃UM ◦ C provides a
worst-case lower bound against NC1, and again, PRGs can be constructed from such an
assumption via standard methods (since NC1 admits black-box worst-case to average-case
amplification).

For the other direction, we start with an i.o. PRG G against C that might have a large
seed length but guarantees low error ε(n) = n−ω(1). Here the important insight is that a
low error PRG that fools C also fools linear combinations of functions in C with bounded
coefficients. This implies that G fools S̃UM ◦ C. Another standard argument shows that
from such a PRG one can define a function in E that is worst-case hard against S̃UM ◦ C.

We stress that two crucial ingredients of our equivalence theorem are the existence of the
hard problem L mentioned above and the use of S̃UM gates. The hard language L is actually
a pair of problems CMD and DCMD with very useful structural properties (see Section 2.2).
They have been explored in a few other works (e.g. [31, 4, 20, 1]), and are tightly connected
to decomposable randomized encodings, which are well-studied in cryptography (see [3]). The
fruitful interaction between these problems and S̃UM gates was first noticed by [14] in the
context of the algorithmic method and is a crucial ingredient in their proof that NQP is
strongly average-case hard against ACC0.

While the proof of Theorem 1 avoids the black-box “barrier” and applies to circuit
classes that are not assumed to be closed under majority, our techniques come with certain
limitations. As a consequence of our indirect analysis via a win-win argument, Theorem 1
does not provide almost-everywhere equivalences for some items and does not scale to large
circuit size bounds above quasi-polynomial. These are important directions for future work.

Applications to ACC0-circuits lower bound approaches. As a concrete application of
Theorem 1 to current frontiers in circuit complexity, we explore its consequences to the
average-case complexity of ACC0. We use our framework to show that existing “combinatorial”
approaches to worst-case lower bounds would also provide strong average-case hardness against
ACC0. Before stating this result, we briefly recall some concepts.

7 It is possible to approximate all coefficients of the bounded linear sum using sums of powers of 2i with
i ∈ Z, then multiply the linear sum by an appropriate power of 2 to obtain integer coefficients, and
finally simulate the resulting sum by an appropriate THR gate with polynomial weights, which can be
translated to a MAJ gate using duplicated input wires and by negating input variables if necessary.
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Let T = R/Z be the one-dimensional torus. A torus polynomial [7] (see also [34]) is
a real polynomial p(x1, . . . , xn) restricted to the domain {0, 1}n and evaluated modulo
one.8 For the purpose of representing the output of a Boolean function f : {0, 1}n → {0, 1}
as a value in T, we map the output bit f(x) to f(x)/2. For δ < 1/4, we say that f

is δ-approximated by a degree-d torus polynomial if there is a degree-d real polynomial
p(x1, . . . , xn) such that if f(x) = 1 then p(x) − ⌊p(x)⌋ ∈ [1/2 − δ, 1/2 + δ] and if f(x) = 0
then p(x) − ⌊p(x)⌋ ∈ [0, δ] ∪ [1 − δ, 1). A recent approach proposed by [7] shows that ACC0

lower bounds follow from torus polynomial degree lower bounds for approximating a Boolean
function.

The number-on-forehead (NOF) multi-party communication model was introduced by [8],
and work of [26, 41] show that explicit communication lower bounds in this model (even in
the single-round model where all players simultaneously communicate to a referee) imply
lower bounds against SYM+-circuits, which are known to simulate ACC0 [6].

▶ Theorem 2 (Lifting worst-case ACC0 lower bound approaches to strong correlation bounds).
Consider the following statements:
1. Torus Polynomials: There is a language L ∈ E and a function δ(n) ≥ 1/ poly(n) such

that L does not have δ-approximation torus polynomials of degree polylog(n).
2. NOF Protocols: There is a language in E that does not admit (single-round) NOF

multi-party protocols with polylog(n) parties of communication cost polylog(n).
In each case, if the corresponding statement holds then there is a language in E that cannot
be (1/2 + 1/ poly(n))-approximated under the uniform distribution by ACC0.

As a consequence, lower bounds against these models provide i.o. PRGs of sub-polynomial
seed length against ACC0.

Theorem 2: Techniques. It is not hard to adapt classical techniques to show that if a
Boolean function can be approximated by torus polynomials of bounded degree, then it
can also be computed by NOF protocols of low complexity. For this reason, in order to
prove Theorem 2 it is sufficient to obtain average-case hardness against ACC0 from degree
lower bounds for torus polynomials approximating Boolean functions.9 To achieve this, we
refine the argument of [7] and invoke our framework. In more detail, we show the stronger
result that even functions families in S̃UM ◦ ACC0 can be approximated by low-degree torus
polynomials. This yields the result using the equivalence between Items 6 and 2 in Theorem 1.

To establish this claim, we make use of low degree “middle-bit polynomials” [21], a
sub-class of SYM+-circuits that is strong enough to simulate ACC0. By a careful adaptation
of the argument of [7], we are able to show that a linear sum (with bounded coefficients) of
middle-bit polynomials with a special structure can be converted into a torus polynomial.
The argument is somewhat subtle, and involves the manipulation of universal circuits for
depth-d ACC0[s] in order to enforce similar parameters for all middle-bit polynomials feeding
the top S̃UM gate. The details appear in the full version of this paper [11].

8 By a value y (mod 1) we mean its fractional part given by y − ⌊y⌋, where the floor function ⌊y⌋ denotes
the largest integer less than or equal to y. For instance, 1.37 (mod 1) is 0.37 and −2.21 (mod 1) is 0.79.

9 Alternatively, earlier work on ACC0 already showed that MAJ ◦ ACC0-circuits can be simulated by NOF
protocols of low communication. Therefore, the NOF protocols part of Theorem 2 follows directly from
our Theorem 1.
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1.2.2 Lower bounds against circuits with layers of S̃UM and MAJ gates
Observe that Theorem 1 (via Items 1, 2, and 3) establishes the following equivalence: for
the purpose of proving circuit lower bounds for a function in E, a top layer MAJ gate is
equivalent to a top layer S̃UM gate. Given that S̃UM is simpler than MAJ, and lower bounds
against S̃UM ◦ C offer a path to correlation bounds and PRGs against C, obtaining a better
understanding of S̃UM gates in Boolean circuits might have significant benefits.

In this section, we explore unconditional lower bounds against circuits with layers of MAJ
and S̃UM gates. Our results are connected to the long-standing problem of showing explicit
lower bounds against THR ◦ THR, the class of polynomial-size depth-2 threshold circuits
(where size is measured by number of gates). For convenience of the reader, we review below
some results related to this frontier.

Threshold circuits. Recall that a threshold gate THR over m input bits is described by
weights w1, . . . , wm, θ ∈ R. It outputs 1 on an input y ∈ {0, 1}m if and only if

∑
i wiyi ≥ θ.

It is known that every such gate can be implemented with integer weights of magnitude
2O(m log m) (see [25]). In the context of polynomial size circuits, by duplicating input wires
a MAJ gate can be equivalently defined as the restriction of a THR gate to polynomially
bounded integer weights. It was shown that MAJ ◦ THR = MAJ ◦ MAJ and THR ◦ THR is
contained in MAJ◦MAJ◦MAJ [18]. Exponential lower bounds are known against THR◦MAJ-
circuits [17], and THR ◦ MAJ is strictly contained in THR ◦ THR [9]. Recently, [32] described
a function in P that requires THR ◦ THR-circuits of size (measured by the number of gates)
nearly n3/2. This is the strongest known lower bound against this class (see their work for
extensions to other circuit size measures) for a function in P. It is also known that ENP does
not have n2−ε-size THR ◦ THR-circuits for every constant ε > 0 [2, 44].

LTFs ◦C-circuits: An intermediary class between MAJ◦C and THR◦C. In order to make
progress toward showing super-polynomial lower bounds against THR ◦ THR-circuits, we
study a newly defined gate LTFs whose power lies between MAJ and THR.10 Let SUM∞ ◦ C
be the relaxation of SUM ◦ C to an unrestricted top SUM gate (i.e. the top gate can use
arbitrary real coefficients that might not be polynomially bounded). For a given function s

and a circuit class C, we say that a function f admits a LTFs ◦ C-circuit of size S if there is a
circuit D ∈ SUM∞ ◦ C such that the following hold: (1) f(x) = 1 if and only if D(x) ≥ 0; (2)
|D(x)| ∈ (1/s, s) for every x ∈ {0, 1}n; (3) the total size of the C-subcircuits of D is at most
S. Note that unrestricted weights are allowed in the top gate, but we are promised that on
each input x the value D(x) is neither too close to 0 nor too large in magnitude.11

We are able to extend the algorithmic method [49] to show that #SAT algorithms for a
circuit class C imply worst-case lower bounds against LTFs ◦ C and average-case lower bounds
against S̃UM ◦ C. Let NQP = NTIME[2polylog(n)] be the class of languages computable in
non-deterministic quasi-polynomial time. We say that a circuit class C is nice if C is closed
under negation, (bottom) projections, and a top AND gate of unbounded fan-in, and in
addition C-circuits of size s admit general circuits of depth O(log s). Examples of nice circuit
classes include AC0, ACC0, and AC0[⊕] ◦ THR.

10 LTF denotes linear threshold function, another standard name for THR. We employ both names in this
paper to make a clear distinction between the new gates and THR.

11 Note that we only impose this constraint for each input x of the combined SUM∞ ◦ C-circuit, and not
over all possible input strings for the top gate.
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▶ Theorem 3 (Stronger lower bounds from #SAT algorithms). Let C be a nice circuit class.
Suppose there is a constant ε > 0 such that, given a C-circuit of size 2nε over n input
variables, its number of satisfying assignments can be deterministically computed in time
2n−nε . Then the following statements hold:
1. For every constant k > 0, NQP does not have LTF2logk n

◦ C-circuits of size 2logk n.
2. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be (1/2 + 2− logk n)-

approximated by S̃UMδ ◦ C-circuits where both the sparsity of the top SUM-gate and the
size of the bottom layer C-circuits are at most 2logk n.12

To our knowledge, these two circuit lower bound consequences are incomparable. By
combining Theorem 3 with existing #SAT algorithms for C = ACC0 ◦ THR-circuits [51], we
obtain the following unconditional lower bounds.

▶ Corollary 4 (Lower bounds against circuits with S̃UM, THR, and MAJ gates). The following
results hold:
1. For every constant k > 0, NQP does not admit LTF2logk n

◦ ACC0 ◦ THR-circuits of size
2logk n.

2. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be (1/2 + 2− logk n)-
approximated by S̃UMδ ◦ ACC0 ◦ THR-circuits where the top sum has sparsity 2logk n and
all ACC0 ◦ THR-subcircuits have size 2logk n.

3. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be computed by
MAJ ◦ S̃UMδ ◦ ACC0 ◦ THR-circuits where the top MAJ gate has fan-in 2logk n and all
S̃UMδ ◦ ACC0 ◦ THR-subcircuits have size and sparsity 2logk n.

To contrast these results with previous work, we note that [15, Theorem 15] gave a worst-
case lower bound against S̃UMδ ◦ ACC0 ◦ THR-circuits with any constant error δ less than 1/2.
Also, [14, Section 5.2] showed a strong average-case lower bound against S̃UMδ ◦ ACC0 ◦ THR-
circuits, where the top sum gate has zero error (i.e., δ = 0). Consequently, Corollary 4 Item
2 simultaneously strengthens both results. On the other hand, Corollary 4 Item 3 shows the
first lower bound against circuits combining layers of S̃UM1/3, MAJ, and THR gates.

Before discussing our techniques in more detail, we mention an open problem and its
connection to THR◦THR lower bounds. Recall that this class is contained in MAJ◦MAJ◦MAJ.
In light of the super-polynomial lower bound against MAJ◦S̃UMδ◦ACC0◦THR from Corollary 4
Item 3, it would be very interesting to understand the relation between MAJ gates and S̃UM
gates appearing in internal layers of Boolean circuits. In particular, we note that if MAJ can
be simulated by S̃UM1/3 ◦ ACC0-circuits of quasi-polynomial size (or THR can be simulated
by MAJ ◦ S̃UMδ ◦ ACC0-circuits of quasi-polynomial size), then NQP ⊈ THR ◦ THR. On the
other hand, if this is not the case, strong average-case lower bounds against ACC0 follow
from Theorem 1.

Theorem 3 and Corollary 4: Techniques. The proofs of the first two items of Corollary 4
are immediate from the corresponding items of Theorem 3 via the #SAT algorithm for
C = ACC0 ◦THR given by [51]. On the other hand, Item 3 of Corollary 4 can be established in
different ways. The first proof is just a standard application of the Discriminator Lemma [24]
together with the lower bound from Item 2. A second proof follows from Item 1, via a

12 For the interested reader, we notice that the coefficients of the top S̃UM gate can be unbounded in this
lower bound.
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simulation of a MAJ◦ S̃UMδ ◦C-circuit of quasi-polynomial complexity by a LTF2logk n

◦ACC0 ◦
THR-circuit of size size 2logk n, for some constant k. This can be done by first reducing the
error δ of each S̃UMδ ◦ C-subcircuit (see [11]), then rewriting the corresponding MAJ ◦ S̃UMε

top layers as an LTFs gate via an appropriate collapse. We omit the details.
The proofs of Items 1 and 2 of Theorem 3 are essentially independent. We discuss each

of them next, starting with Item 1.
An extension of the algorithmic method [49] obtained by [37] shows that SAT algorithms

for a circuit class C of sub-exponential size circuits (satisfying minor closure conditions) that
run in time 2n−nε imply that NQP ⊈ C. In a more recent work that builds on [50], [15]
established (in particular) that #SAT algorithms of similar running time provide the stronger
lower bound NQP ⊈ S̃UM ◦ C. Our proof of Item 1 of Theorem 3 relies on the latter result
and on a win-win argument inspired by [14]. In more detail, and oversimplifying a bit, we
argue that if a special NC1-hard problem L (contained in NQP) is not in LTF2logk n

◦ C, then
we are done. Otherwise, we explore LTFs gates and the special form of the NC1-hardness of
L to show that NC1 can be simulated by S̃UM ◦ C-circuits of quasi-polynomial complexity.
Given this lemma and the corresponding simulation, we can reduce the derivation of the
desired lower bound to previous work, i.e., we invoke the aforementioned connection between
#SAT algorithms and lower bounds against S̃UM ◦ C. This provides a language in NQP that
is not in S̃UM ◦ C of complexity 2logℓ n, where ℓ = ℓ(k) is large enough. Now by simulating
LTF2logk n

◦ C-circuits using quasi-polynomial size Boolean formulas, and using the collapse
of NC1 to quasi-polynomial size S̃UM ◦ C, it is possible to argue that L is also hard against
LTF2logk n

◦ C.
The proof of Item 2 of Theorem 3 shares some similarities with the argument above, but

the technical details are different. From a high-level perspective, we also employ a win-win
argument, though this time it is based on the average-case complexity of the language
L mentioned above. Moreover, we cannot rely on previous connections between #SAT
algorithms and lower bounds in a black-box way. Given that explaining the relevant details
would be fairly technical, we refer the interested reader to the full version of this paper [11].
We mention that a conceptual contribution is that while our proof of Theorem 3 Part 2
follows the strategy of previous works, such as [10, 15, 14], on obtaining lower bounds from
meta-algorithms, it does not use PCPs of proximity (PCPP), which was a key ingredient in
the proofs of those works. For this, we rely in part on a PCP stated in [48], combined with
other ideas.

Organization. In Section 2 we introduce the necessary technical preliminaries for proving
our results. In Section 3 we prove our main equivalence result (Theorem 1). Due to space
constraints, the remaining proofs are deferred to the full version of this paper [11].

2 Preliminaries

2.1 Notation
We use N to denote the set of all non-negative integers and N≥1 to denote N \ {0}. For every
n ∈ N≥1, we let Un denote the uniform distribution over {0, 1}n. For convenience, in some
settings a Boolean function f : {0, 1}n → {0, 1} will be viewed as a function with output in
{−1, 1}, where −1 and 1 are interpreted as True and False, respectively.

For a predicate P (x), we use 1P (x) to denote its corresponding Boolean value on x.
That is, 1P (x) = 1 if P (x) is true, and 0 otherwise. For a real v, we define sign(v) :=
(−1) · 1v<0 + 1 · 1v≥0.

For two strings α, β ∈ {0, 1}∗, we write α ◦ β to denote the concatenation of α and β.
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A projection of a function f(x1, . . . , xn) is a function g(y1, . . . , ym) with a projection
mapping P : {0, 1}m → {0, 1}n such that g(y1, . . . , ym) = f(P (y1, . . . , ym)). By “projection”
we mean that each output bit of P (y1, . . . , ym) is either an input bit yi, its negation, or a
constant.

Let a be a positive integer. For an arbitrary ℓ ≥ 1 and a function h : {0, 1}ℓ → {0, 1}, we
say that h ∈ JUNTAa if the output of h depends on at most a input coordinates.

For a circuit class C and s ≥ 1, we use S̃UM ◦ C[s] to denote the class of S̃UM ◦ C-circuits
where the top SUM gate has complexity at most s and the bottom layer C-circuits have size
at most s.

For a function f : {0, 1}n → {0, 1}, we let f± : {0, 1}n → {−1, 1} be the {−1, 1}-version
of f where we map the output of f from 0 to 1 and 1 to −1. Also, for a circuit class C where
the circuits in C output values in {0, 1}, we denote by C± the {−1, 1}-version of C where the
circuits in C± output values in {−1, 1}.

2.2 A ⊕L-complete problem with good properties
The existence of ⊕L-complete problems with good reducibility properties will be important
for us. (Recall that ⊕L is the class of problems solvable by a nondeterministic logspace
Turing machine that accepts the input if the number of accepting paths is odd.) We define
the following two problems, called Connected Matrix Determinant (CMD) and Decomposed
Connected Matrix Determinant (DCMD):

▶ Definition 5. An instance of CMD is an n×n matrix over F2 where the main diagonal and
above may contain either 0 or 1, the second diagonal (i.e. the one below the main diagonal)
contains 1, and other entries are 0. In other words, the matrix is of the following form (where
∗ represents any element in F2):

∗ ∗ ∗ · · · ∗ ∗
1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · 1 ∗


.

The instance is an (n(n + 1)/2)-bit string specifying elements on and above the main diagonal.
We define x ∈ CMD if and only if the determinant (over F2) of the matrix corresponding to
x is 1.

An instance of DCMD is a string of length n3(n + 1)/2. For an input x, DCMD(x) is
computed as follows: we partition x into blocks of length n2, let yi (1 ≤ i ≤ n(n + 1)/2) be
the parity of the i-th block, and define DCMD(x) := CMD(y1 ◦ y2 ◦ · · · ◦ yn(n+1)/2).

The precise definitions of CMD and DCMD are not important here, as we only need the
following two important results about them.

▶ Theorem 6 ([4, 20]). There is a function P : {0, 1}n(n+1)/2 ×{0, 1}O(n4) → {0, 1}n3(n+1)/2

such that the following hold.
For any input x ∈ {0, 1}n(n+1)/2, the random variable P (x, UO(n4)) is uniformly distributed
in {0, 1}n3(n+1)/2.
For any x ∈ {0, 1}n(n+1)/2 and r ∈ {0, 1}O(n4), let P (x, r) = y, then CMD(x) =
DCMD(y) ⊕ r0, where r0 is the first bit of r.
For each fixed randomness r, P (x, r) is a projection over x, computable in polynomial
time given r.
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▶ Theorem 7 ([31]). CMD is ⊕L-complete under projections.

Observe that if CMD is in a circuit class C closed under projections then all problems
in (non-uniform) NC1 are also in C, given that the problem of evaluating an input Boolean
formula is solvable with logarithmic space.

We refer the reader to the full version of [14] for a self-contained exposition of these
problems and their relevant properties, including pointers to related work.

2.3 Pseudorandomness
We need the following Hardness vs. Randomness framework for constructing PRGs.

▶ Lemma 8 (Hardness vs. Randomness [39], see also [14, Appendix E.3] for the proof). There is
a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that the following holds. Let n, ℓ, a be integers
such that a ≤ ℓ, and t = O

(
ℓ2 · n1/a/a

)
. Let C be a circuit class closed under negation.

For any function Y : {0, 1}ℓ → {0, 1} represented as a length-2ℓ truth table, if Y cannot be
(1/2 + ε/n)-approximated by C ◦ JUNTAa-circuits where the top circuit has size S, then for
every circuit C ∈ C of size S,∣∣∣∣ Pr

z∼{0,1}t
[C(G(Y, z)) = 1] − Pr

x∼{0,1}n
[C(x) = 1]

∣∣∣∣ ≤ ε.

Moreover, the function G is computable in poly(n, 2t) time.

The following simple fact says PRGs imply worst-case hardness.

▶ Proposition 9 (Worst-case hardness from PRGs). Let F be a class of functions. If there is
an i.o. ε-PRG G : {0, 1}r → {0, 1}n with seed length r(n) against Fn, where ε < 1 − 2r(n)−n,
then there is a language L ∈ E such that L cannot be computed by F .

Proof. Please see the full version [11] for details. ◀

2.4 Hardness amplification
The following result allows us to amplify hardness against NC1.

▶ Lemma 10 (Hardness amplification against NC1, see e.g. [43, 20]). Suppose there is a
language L ∈ E such that L /∈ NC1. Then there is a language L′ ∈ E such that for every
constant k ≥ 1, L′ cannot be (1/2 + 1/nk)-approximated by formulas of size nk.

The following notion of ℓ1-approximation by SUM-circuits plays a crucial role in some
recent results on average-case lower bounds via the algorithmic method (e.g. [13, 12, 27]).

▶ Definition 11 (ℓ1-approximation by SUM-circuits). Let δ ∈ (0, 1) and let C be a circuit class.
We say that a function f : {0, 1}n → {0, 1} is approximated by a [0, 1]-SUM ◦ C-circuit C

within ℓ1 distance δ if

E
x∼Un

[ |f(x) − C(x)| ] ≤ δ.

For functions f, g : {0, 1}n → R, we let ⟨f, g⟩ := Ex∈{0,1}n [f(x) · g(x)].

▶ Proposition 12. Let δ ∈ (0, 1), f : {0, 1}n → {0, 1}, and C be a circuit class.
1. If f can be approximated by [0, 1]-SUM ◦ C-circuits of complexity s within ℓ1 distance

δ, then there is a SUM ◦ C±-circuit C of complexity O(s) such that ∥C∥∞ ≤ 1 and
⟨f±, C⟩ ≥ 1 − 2δ.
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2. If there is a SUM ◦ C±-circuit C of complexity s such that ∥C∥∞ ≤ 1 and ⟨f±, C⟩ ≥
1 − 2δ, then f can be approximated by [0, 1]-SUM ◦ C-circuits of complexity O(s) within ℓ1
distance δ.

Proof. Please see the full version [11] for details. ◀

Given a set X and a Boolean function f : X → {−1, 1}, for and integer t ≥ 1 and
Xt = X × . . . × X (t times) we let f⊕t : Xt → {−1, 1} be the Boolean function defined as
f⊕t(x1, . . . , xt) :=

∏
i∈[t] f(xi). We will need the following XOR lemma from [13].

▶ Theorem 13 ([35] and [13, Lemma 3.8], see also [12, Lemma 1.7]). Let F be a class of
Boolean functions that is closed under negation and restriction. For every δ, ε ∈ (0, 1) and
every function f : {0, 1}n → {−1, 1}, if

⟨f, C⟩ ≤ 1 − δ

for every SUM ◦ F-circuit C where the top SUM has complexity 10 · n/ε2 and ∥C∥∞ ≤ 1,
then

⟨f⊕t, D⟩ ≤ (1 − δ)t + ε/δ

for any Boolean function D : {0, 1}tn → {−1, 1} in F .

3 Equivalences for worst-case and strong average-case lower bounds

In this section, we prove our equivalence results for worst-case hardness, strong average-case
hardness and pseudorandomness.
▶ Reminder of Theorem 1. Let C be a circuit class that satisfies the following:

C is closed under negation and projection.
C is closed under a bottom layer of juntas over O(1) input bits. That is⋃

k≥1
C[nk] ◦ JUNTAk ⊆

⋃
k≥1

C[nk].

⋃
k≥1 C[nk] ⊆ NC1.

Then the following statements are equivalent:
1. There is L ∈ E such that for every k ≥ 1, L /∈ S̃UM1/3 ◦ C[nk].
2. There is L ∈ E and δ ≥ 1/poly(n) such that for every k ≥ 1, L /∈ S̃UMδ ◦ C[nk].
3. There is L ∈ E such that for every k ≥ 1, L /∈ MAJ ◦ C[nk].
4. There is L ∈ E such that, for every k ≥ 1, L cannot be computed by a probabilistic

C[nk]-circuit with error 1/2 − 1/nk.
5. There is L ∈ E and a distribution D such that for every k ≥ 1, L cannot be (1/2 + n−k)-

approximated by C[nk] under D.
6. There is L ∈ E such that for every k ≥ 1, L cannot be (1/2 + n−k)-approximated by C[nk]

under the uniform distribution.
7. There is L ∈ E such that for every k ≥ 1, L cannot be approximated by [0, 1]-SUM ◦ C[nk]

within ℓ1 distance 1/3.
8. There is L ∈ E and δ ≥ 1/ poly(n) such that for every k ≥ 1, L cannot be approximated

by [0, 1]-SUM ◦ C[nk] within ℓ1 distance δ.
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9. There is an i.o. ε-PRG G against C with seed length n − 1 and error ε(n) ≤ n−ω(1).
In other words, for each choice of k, there is an infinite set Sk ⊆ N such that G fools
circuits from C[nk] on inputs of length n ∈ Sk with error ε(n) ≤ n−k.

10. For every γ > 0, there is an i.o. ε-PRG against C with seed length nγ and ε(n) ≤ n−ω(1).

Proof. We will first show Item 2 ⇒ Item 6 ⇒ Item 10 ⇒ Item 1 ⇒ Item 2, establishing the
equivalence of Items 1, 2, 6, and 10. We then show Item 6 ⇒ Item 5 ⇒ Item 4 ⇒ Item 1,
which adds Items 4 and 5 to the list of equivalent items. Next, we show Item 6 ⇒ Item 3 ⇒
Item 4, which adds Item 3, and Item 10 ⇒ Item 9 ⇒ Item 2, which adds Item 9. Finally, we
show Item 6 ⇒ Item 7 ⇒ Item 8 ⇒ Item 6, adding Items 7 and 8 to the list and completing
the proof.

Item 2 ⇒ Item 6. We consider two cases. If DCMD cannot be
(
1/2 + 1/nk

)
-approximated

by C[nk] for every k ≥ 1 under the uniform distribution, then we are done.
Now consider the case that there is some k ≥ 1 such that DCMD can be

(
1/2 + 1/nk

)
-

approximated by C[nk]. By the random self-reducibility of DCMD/CMD (see Theorem 6 and
also [14, Section 3]), for any δ = 1/ poly(n), CMD can be computed by a S̃UMδ ◦ C-circuit
where the top SUM-gate has polynomial complexity and the bottom-layer C-circuits have
polynomial size. By Theorem 7, for every polynomial-size parity branching program B, there
is a projection p : {0, 1}n → {0, 1}nO(1)

such that for every x ∈ {0, 1}n, B(x) = CMD(p(x)).
Since C is closed under projection, this means that every polynomial-size parity branching
program has a S̃UMδ ◦ C-circuit of polynomial complexity and size, which then implies that
every function in NC1 also has such a S̃UMδ ◦ C-circuit. On the other hand, by Item 2, there
is a function L ∈ E that has no S̃UMδ ◦ C-circuit of polynomial complexity and size, so L is
not in NC1. Using hardness amplification against NC1 (Lemma 10), it follows that there is a
function in E that is strongly average-case hard against NC1, which by assumption contains
polynomial-size C-circuits.

Item 6 ⇒ Item 10. We construct the PRG using the hardness vs. randomness framework.
Consider Lemma 8 with the following setting of parameters: a := 2/γ and ℓ := nγ/4. Let
GLℓ

: {0, 1}t → {0, 1}n be the PRG defined as GLℓ
(z) := G(Lℓ, z), where L ∈ E is the

language from Item 6. Note that the seed length t is at most O
(
ℓ2 · n1/a/a

)
≤ nγ and GLℓ

can be computed in time poly(n, 2t) = 2O(nγ ). Let k ≥ 1 be any constant and consider any
ℓ-variate C ◦ JUNTAa-circuit C where the top circuit has size nk = ℓ4k/γ . Since C is closed
under a bottom layer of juntas, we have that C ∈ C

[
ℓk′

]
for some large enough k′ > 4k/γ.

Also, let ε = 1/nk, which implies ε/n = 1/nk+1 = 1/ℓ4(k+1)/γ ≥ 1/ℓk′ . From Item 6, we
have that Lℓ cannot be

(
1/2 + 1/ℓk′

)
-approximated by any circuit from C[ℓk′ ], for infinitely

many values of ℓ. Then by Lemma 8, we conclude that GLℓ

(
1/nk

)
-fools any circuit from

C[nk], for infinitely many values of n.

Item 10 ⇒ Item 1. Let G : {0, 1}r → {0, 1}n be an i.o. PRG as in Item 10, where
r ≤ n − 2. That is, for each choice of k′, G fools circuits from C[nk′ ] on input length n with
error ε(n) ≤ n−k′ , for infinitely many values of n.

Let k ≥ 1 and let C ∈ S̃UM1/3 ◦ C[nk]. By Proposition 9, it suffices to show that G is an
i.o.

(
< 3

4
)
-PRG against C. Let C̃ be the corresponding linear sum for C. That is,

C̃(x) :=
∑

i

αi · Ci(x),
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where Ci ∈ C[nk] ⊆ C[nk′:=k+1] and
∑

i |αi| ≤ nk. Since C̃ (1/3)-approximates C in a
pointwise manner, we have∣∣E[C(U)] − E[C̃(U)]

∣∣ ≤ 1/3 and
∣∣E[C(G)] − E[C̃(G)]

∣∣ ≤ 1/3.

Therefore, if we can show that∣∣E[C̃(U)] − E[C̃(G)]
∣∣ ≤ δ,

for some δ < 1/12 (infinitely often), then G δ′-fools C (infinitely often), where δ′ = 2/3 + δ <

3/4. We have

∣∣E[C̃(U)] − E[C̃(G)]
∣∣ =

∣∣∣∣∣E
[∑

i

αi · Ci(U)
]

− E
[∑

i

αi · Ci(G)
]∣∣∣∣∣

=

∣∣∣∣∣∑
i

αi · E[Ci(U)] − E[Ci(G)]

∣∣∣∣∣
≤ max

i
|E[Ci(U)] − E[Ci(G)]| ·

∑
i

|αi|

≤ n−k′
· nk ≤ 1/n,

as desired.

Item 1 ⇒ Item 2. This implication is straightforward.

Item 6 ⇒ Item 5 ⇒ Item 4. The first implication is obvious. The contrapositive of the
second implication follows from an averaging argument.

Item 4 ⇒ Item 1. It suffices to show that for every k ≥ 1, every function in S̃UM1/3 ◦ C[nk]
has a probabilistic C[nk]-circuit with error 1/2 − 1/nO(k).

For the simplicity of presentation, we will consider Boolean functions that take inputs
from {0, 1}n and output values in {−1, 1}. Let f± : {0, 1}n → {−1, 1} ∈ S̃UM1/3 ◦ C±[nk].
Then there is a linear sum of C±[nk]-circuits

f1(x) :=
∑

i

αi ·
(

1 − Ci(x)
2

)
,

where Ci : {0, 1}n → {−1, 1} ∈ C±[nk] and
∑

i |αi| ≤ nk, such that
if f±(x) = 1, then f1(x) ≤ 1/3, and
if f±(x) = −1, then f1(x) ≥ 2/3.

Next, let

f2(x) := 1/2 − f1(x).

It is easy to see that
if f±(x) = 1, then f2(x) ≥ 1/6, and
if f±(x) = −1, then f2(x) ≤ −1/6.

Now note that since C± is closed under negation, f2 can be written as

f2(x) :=
∑

j

βj · Dj(x),
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where for each j, Dj : {0, 1}n → {−1, 1} ∈ C±[nk], βj ≥ 0, and T :=
∑

j βj ≤ nO(k). Finally,
let

f3(x) := f2(x)
T

.

Let D be the probabilistic C±[nk]-circuit where Dj is sampled with probability βj/T . Then
for every x we have ED[D(x)] = f3(x). Moreover, if f±(x) = 1, then

1
6T

≤ E
D

[D(x)]

= Pr
D

[D(x) = 1] − Pr
D

[D(x) = −1]

= Pr
D

[D(x) = 1] − (1 − Pr
D

[D(x) = 1])

= 2 · Pr
D

[D(x) = 1] − 1,

which implies

Pr
D

[D(x) = 1] ≥ 1
2 + 1

12T
.

Similarly, we can show that if f±(x) = −1, then

Pr
D

[D(x) = −1] ≥ 1
2 + 1

12T
.

Therefore, D is a probabilistic C±[nk]-circuit for f± with error 1/2 − 1/nO(k).

Item 6 ⇒ Item 3. This follows from the standard Discriminator Lemma [24].

Item 3 ⇒ Item 4. We will show that for every k ≥ 1, every function that has a probabilistic
C[nk]-circuit with error 1/2 − 1/nk is contained in MAJnO(k) ◦ C[nO(k)].

Let f : {0, 1}n → {0, 1} and D be the probabilistic C[nk]-circuit for f with error 1/2−1/nk.
That is, for every x,

Pr
D

[D(x) = f(x)] ≥ 1/2 + 1/nk.

By the Chernoff bound, if we sample t := O(n2k · n) circuits C1, . . . , Ct from D, then

Pr
C1,...,Ct∼D

[
Pr
i∈[t]

[Ci(x) = f(x)] ≥ 1/2 + 1/(2nk)
]

≥ 1 − 2−2n.

By a union bound over x ∈ {0, 1}n, there exist t circuits C1, . . . , Ct such that for every x,

Pr
i∈[t]

[Ci(x) = f(x)] ≥ 1/2 + 1/(2nk).

Therefore, by taking the majority of these t circuits, we obtain a MAJnO(k) ◦ C[nO(k)]-circuit
that computes f .

Item 10 ⇒ Item 9 ⇒ Item 2. This first implication is obvious. The proof of the second
implication is essentially the same as that of “Item 10 ⇒ Item 1”. From Item 9, we get an
i.o. PRG with seed length n − 1 that

(
< 1

2
)
-fools S̃UMδ ◦ C-circuits for some δ = 1/ poly(n),

which by Proposition 9 implies Item 2. We omit the details here.
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Item 6 ⇒ Item 7. Let L : {0, 1}∗ → {0, 1} be the language from Item 6. For the sake of
contradiction, suppose there is a k ≥ 1 such that L can be approximated by [0, 1]-SUM◦C[nk]-
circuits within ℓ1 distance 1/3. Then by Item 1 of Proposition 12, we have that for every n,
there is a SUM ◦ C±[O

(
nk

)
]-circuit C such that ∥C∥∞ ≤ 1 and

⟨(L±)n, C⟩ ≥ 1/3.

Suppose

C(x) :=
∑

i

|αi| · Ci(x),

where Ci ∈ C±[O
(
nk

)
] and

∑
i |αi| ≤ O

(
nk

)
. Then

1/3 ≤

〈
(L±)n,

∑
i

αi · Ci

〉
=

∑
i

αi · ⟨(L±)n, Ci⟩

≤
∑

i

|αi| · ⟨(L±)n, Ci⟩

≤ max
i

⟨(L±)n, Ci⟩ ·
∑

i

|αi|

≤ max
i

⟨(L±)n, Ci⟩ · O
(
nk

)
,

which implies that there exists some i such that

⟨(L±)n, Ci⟩ ≥ 1
O(nk) .

This contradicts Item 6.

Item 7 ⇒ Item 8. This implication is obvious.

Item 8 ⇒ Item 6. By Item 2 of Proposition 12, we have that Item 8 implies that there
is a language L : {0, 1}∗ → {−1, 1} in E and δ = 1/ℓb, where b ≥ 1 is a constant, such that
for every k′ ≥ 1, on infinitely many input lengths there is no SUM ◦ C±[ℓk′ ]-circuit C with
∥C∥∞ ≤ 1 such that

⟨Lℓ, C⟩ ≤ 1 − 2δ. (1)

Now consider the following language L′ : {0, 1}∗ → {−1, 1}: on input x of length n, let ℓ

be the largest integer such that ℓ · ℓb log2(ℓ) ≤ n and view the input as x = (x1, . . . , xt, y),
where t := ℓb log2(ℓ) and xi ∈ {0, 1}ℓ for i ∈ [t]. Then let

L′(x) :=
∏
i∈[t]

L(xi).

Note that for large enough n we have

n < 2ℓ · t < ℓb+2.
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We claim that L′ is strongly average-case hard against C±-circuits. For the sake of contra-
diction, suppose there is k ≥ 1 and an n-variate circuit C ′ ∈ C±[nk] such that, for all large
enough n,

⟨L′
n, C ′⟩ >

1
nk

.

By an averaging argument, where we fix the y-part of the input to some value, there exists
some (ℓ · t)-variate C±-circuit C ′ of size nk ≤ ℓk(b+2) such that〈

L⊕t
ℓ , C ′′〉 >

1
nk

.

Note that for δ = 1/ℓb and our choice of t = ℓb log2(ℓ), we have

1
nk

> (1 − 2δ)t + 1
2δ · ℓk(b+2) · ℓb

.

By Theorem 13, there is a SUM ◦ C± C where ∥C∥∞ ≤ 1, the top SUM has complexity
10 · ℓ ·

(
ℓk(b+2) · ℓb

)2 ≤ ℓO(kb) and the bottom layer C±-circuits have size ℓk(b+2) such that

⟨Lℓ, C⟩ > 1 − 2δ,

for all large enough ℓ. This contradicts Equation (1). ◀
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