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Abstract

We study quantum algorithms that learn properties of a matrix using queries that return its action
on an input vector. We show that for various problems, including computing the trace, determinant,
or rank of a matrix or solving a linear system that it specifies, quantum computers do not provide
an asymptotic speedup over classical computation. On the other hand, we show that for some
problems, such as computing the parities of rows or columns or deciding if there are two identical
rows or columns, quantum computers provide exponential speedup. We demonstrate this by showing
equivalence between models that provide matrix-vector products, vector-matrix products, and
vector-matrix-vector products, whereas the power of these models can vary significantly for classical
computation.
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1 Introduction

Algorithms for linear algebra problems – for example, solving linear systems and determining
basic properties of matrices such as rank, trace, determinant, eigenvalues, and eigenvectors –
constitute a fundamental research area in applied mathematics and theoretical computer
science. Such tasks have widespread applications in scientific computation, statistics, oper-
ations research, and many other related areas. Algorithmic linear algebra also provides a
fundamental toolbox that can inspire the design of algorithms in general.

There are several possible models of access to a matrix, and linear-algebraic algorithms
can depend significantly on how the input is represented (as discussed further below). One
natural model is the matrix-vector product (Mv) oracle. For a matrix M ∈ Fn×m in a given
field F, the Mv oracle takes x ∈ Fm as input and outputs Mx ∈ Fn. Matrix-vector products
arise, for example, as the elementary step of the power method (and the related Lanczos
method) for computing the largest eigenvector of a matrix. Matrix-vector products also
commonly appear in streaming algorithms, especially in the technique of sketching (see the
survey [22] for more information).

Recent work has studied the classical complexity of various basic problems in the Mv
model. Specifically, Sun, Woodruff, Yang, and Zhang [21] studied the complexities of
various linear algebra, statistics, and graph problems using matrix-vector products, and
Braverman, Hazan, Simchowitz, and Woodworth [8] proved tight bounds on maximum
eigenvalue computation and linear regression in this model. Rashtchian, Woodruff, and
Zhu [19] considered a generalization to the vector-matrix-vector product (vMv) oracle, which
returns x⊤My for given input vectors x ∈ Fn, y ∈ Fm, and studied the complexity of various
linear algebra, statistics, and graph problems in this setting. Table 1 includes a partial
summary of these results.

Quantum computers can solve certain problems much faster than classical computers, so it
is natural to study quantum query complexity with matrix-vector products. Lee, Santha, and
Zhang recently studied the quantum query complexity of graph problems with cut queries [17],
which are closely related to matrix-vector queries. For a weighted graph G = (V,w) where
|V | = n and w assigns a nonnegative integer weight to each edge, the input of a cut query
is a subset S ⊆ V and the output is |w(S, V \ S)|, the total weight of the edges between
S and V \ S. This can be viewed as a version of the vMv model over Z, with the extra
assumptions that x ∈ {0, 1}n, y ∈ {0, 1}m are both boolean and M is a symmetric matrix
with nonnegative integer entries. Reference [17] gives quantum algorithms for determining
all connected components of G with O(log6 n) quantum cut queries, and for outputting a
spanning forest of G with O(log8 n) quantum cut queries. Both problems require Ω(n/ logn)
classical cut queries, so the quantum algorithms provide exponential speedups.

In other recent work on structured queries for graph problems, Montanaro and Shao
studied the problem of learning an unknown graph with “parity queries” [18]: for an unknown
graph with adjacency matrix A, the parity oracle takes as input a string x that encodes a
subset of the vertices, and returns x⊤Ax mod 2. This query model is the vMv model over F2
with the extra restriction that the left and right vectors are identical.

Van Apeldoorn and Gribling studied Simon’s problem for linear functions over a prime
field Fp [4]. In this problem, the oracle encodes a linear function f : Fp → Fp, and the task is
to determine if the function is one-to-one, or if there is a one-dimensional subspace H ⊂ Fp

such that for every x, x′ ∈ Fn
p , f(x) = f(x′) if and only if x− x′ ∈ H. Such a function can

be represented by a square matrix over Fp, and the problem is equivalent to determining
whether that matrix is full rank or has nullity 1 using matrix-vector product queries.
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Other past work has developed linear algebraic quantum algorithms using different
input models. Quantum algorithms for high-dimensional linear algebra have been studied
extensively since Harrow, Hassidim, and Lloyd introduced a method for generating a quantum
state proportional to the solution of a large, sparse system of linear equations [14]. This
algorithm assumes a quantum oracle that determines the locations and values of the nonzero
entries of a matrix in any given row or column, and the ability to generate a quantum state
that encodes the right-hand side of the linear system. Subsequent work has led to improved
and generalized algorithms under similar assumptions. However, it is challenging to find
practical applications that achieve speedup over classical computation [2,11]. Recent work by
Apers and de Wolf [5] gives polynomial quantum speedup for producing an explicit classical
description of the solution of a Laplacian linear system, assuming adjacency-list access
to the underlying graph of the Laplacian. Note also that for various problems including
determinant estimation, rank testing, linear regression, etc., there is a large separation
between the classical query complexities under Mv and entrywise queries (Θ̃(n) [21] and
Θ(n2), respectively). These results show how the model of access to a matrix can significantly
impact the complexity of solving linear-algebraic problems. A better understanding of the
quantum matrix-vector oracle could therefore provide a useful tool for the design of future
quantum algorithms.

Contributions. We conduct a systematic study of quantum query complexity with a matrix-
vector oracle for a matrix M ∈ Fm×n

q , where Fq is a given finite field. Using this model, we
provide results on the quantum query complexities of linear algebra and statistics problems.

First, we prove that various linear algebra problems, including
computing the trace tr(M) of M ∈ Fn×n

q ;
computing the determinant det(M) of M ∈ Fn×n

q ;
solving the linear system Ax = b for A ∈ Fn×n

q ; and
testing whether rank(M) = n or rank(M) ≤ n/2 for a matrix M ∈ Fm×n

q ;
require Ω(n) quantum queries to the Mv oracle. Since O(n) queries suffice to determine the
entire matrix, even classically, these results show that no quantum speedup is possible. (As
a side effect, we improve the Ω(n/ logn) classical lower bound for trace computation [21] to
Ω(n).)

Our quantum lower bound for trace computation applies results of Copeland and Pom-
mersheim [12] by viewing the problem as a special case of coset identification. Our lower
bounds for other linear algebra problems are all proved by the polynomial method [1, 6].
We show how to symmetrize the success probability to a univariate polynomial, and then
give a lower bound on the polynomial degree using an observation of Koiran, Nesme, and
Portier [16].

On the other hand, we determine the matrix-vector quantum query complexity of several
statistics problems, including

computing the row and column parities of M ∈ Fm×n
2 ;

deciding if there exist two identical columns in M ∈ Fm×n
2 ; and

deciding if there exist two identical rows in M ∈ Fm×n
2 .

Specifically, we prove that their quantum query complexities with an Mv oracle are O(1),
O(logn), and O(logm), respectively. Compared to the classical bounds using either the Mv
oracle [21] or the vMv oracle [19], our quantum algorithms achieve exponential quantum
speedups.

Technically, these results build upon our observation that the quantum query complexities
in the Mv model under left or right multiplication are identical (Theorem 5). In particular,
one right Mv query can be simulated using one left Mv query, and vice versa. In contrast,
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classically there is a significant difference between matrix-vector (Mv) and vector-matrix
(vM) queries – for example, computing the parity of rows over F2 only takes O(1) Mv queries,
but computing the parity of columns over F2 requires Θ(n) Mv queries. In contrast, for both
problems a quantum computer can achieve the smaller query complexity by switching to the
easier side.

Table 1 Comparison of classical and quantum query complexities with matrix-vector (Mv) and
vector-matrix-vector (vMv) product oracles for an m × n matrix. For trace and linear regression,
m = n. Known query complexities over R and Fq are included for completeness; results over different
fields are incomparable in general.

Problem Classical Mv Classical vMv Quantum (this paper)

Trace

O(n), Ω(n/ log n) for
matrix with entries in
{0, 1, . . . , n3} & queries
with entries in
{0, 1, . . . , nC},
C ∈ N [21];
Θ(n) over Fq

(Theorem 16)

O(n), Ω(n/ log n) for
matrix with entries in
{0, 1, . . . , n3} & queries
with entries in
{0, 1, . . . , nC},
C ∈ N [19];
Θ(n) over Fq

(Theorem 16)

Θ(n) over Fq

(Theorem 16)

Linear regression
Θ(n) over R [8];
Θ(n) over Fq

(Theorem 24)

Θ(n2) over Fq

(Corollary 25)
Θ(n) over Fq

(Theorem 24)

Rank testing

k + 1 to distinguish
rank ≤ k from k′ > k
over R [21];
Θ(n) over Fq

(Theorem 27)

Ω(k2) to distinguish
rank k from k + 1 over
Fq [19];
Ω(n2−O(ϵ)) for
non-adaptive
(1 ± ϵ)-approximation
over R [19]

Θ(min{m, n}) to
distinguish rank
min{m, n} from
≤ 1

2 min{m, n} over Fq

(Theorem 27)

Two identical columns
O(n/m),
m = Ω(log(n/ϵ))
over F2 [21]

O(n log n), Ω(n) over
F2 [19]

O(log n) over F2

(Corollary 8)

Two identical rows O(log m) over F2 [21] O(n log n), Ω(n) over
F2 [19]

O(log m) over F2

(Corollary 8)

Majority of columns Ω(n/ log n) for binary
matrices over R [21] Θ(n2) over F2 [19]

O(1) for binary
matrices over R
(Corollary 10)

Majority of rows
O(1) for binary
matrices
over R [21]

Θ(n2) over F2 [19]
O(1) for binary
matrices over R
(Corollary 10)

Parity of columns Θ(n) over F2 [21] Θ(n) over F2
(Lemma 7)

O(1) over F2

(Corollary 6)

Parity of rows O(1) over F2 [21] Θ(m) over F2
(Lemma 7)

O(1) over F2

(Corollary 6)

Our results are summarized in Table 1, including some implications of our results for
classical query complexity and a few additional results over R. Note that there can be large
gaps between the classical query complexities with Mv and vMv queries, but they are the
same in the quantum setting due to an equivalence between quantum Mv and vMv queries
(Theorem 11), which follows along similar lines to the equivalence between Mv and vM queries.
The Mv–vMv equivalence is closely related to a similar equivalence shown in the work of Lee,
Santha, and Zhang [17], as we discuss further in Section 3.2.
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Open questions. Our paper leaves several natural open questions for future investigation:
For linear algebra problems such as those we studied, can we also prove quantum query
lower bounds for matrices over the real field R? Our proofs rely on the polynomial
method, and it is unclear how to adapt them to a setting with continuous input.
Can we prove a quantum lower bound for the task of minimizing a quadratic form
f(x) = 1

2x
⊤Ax + b⊤x, where A ∈ Rn×n and b ∈ Rn? Note that f is minimized at

x = −A−1b, and we can determine the vector b and implement Mv queries to the matrix
A using fast quantum gradient computation [15], so this is closely related to the previous
open question. Quadratic form minimization is a special case of optimizing a convex
function f : Rn → R by quantum evaluation queries, where previous works [3, 10, 13] left
a quadratic gap between the best known quantum upper and lower bounds of Õ(n) and
Ω(

√
n), respectively.

For the finite field case, can we identify other problems with quantum speedup over the
classical matrix-vector oracle, or find advantage compared to other quantum oracles such
as entrywise queries?

Organization. We review necessary background in Section 2. We prove the equivalence of
quantum matrix-vector and vector-matrix-vector product oracles in Section 3. In Section 4,
we prove tight quantum query complexity lower bounds on various linear algebra problems,
including trace, determinant, linear systems, and rank.

2 Preliminaries

2.1 The quantum query model
Given a set X and an abelian group G, let f : X → G be a function. Access to f is provided
by a black-box unitary operation Uf : |x, y⟩ 7→ |x, y+ f(x)⟩ for all x ∈ X and y ∈ G. We call
an application of Uf a (standard) query.

For a finite abelian group G, the Fourier transform over G is

FG := 1
|G|1/2

∑
x∈G

∑
y∈Ĝ

χy(x)|y⟩⟨x|, (1)

where Ĝ is a complete set of characters of G, and χy : G → C denotes the yth character
of G. Since Ĝ ∼= G, we label elements of Ĝ using elements of G. Note that χy is a
group homomorphism, i.e., χy(x+ z) = χy(x)χy(z). In addition, the characters satisfy the
orthogonality condition

1
|G|

∑
z∈G

χy(z)∗χw(z) = δyw. (2)

A phase query is defined as a standard query conjugated by the Fourier transform acting
on the output register. In other words, for x ∈ X and y ∈ G, a phase query acts as

|x, y⟩
1⊗F †

G7−−−−→ 1
|G|1/2

∑
z∈G

χy(z)∗|x, z⟩

Uf7−−→ 1
|G|1/2

∑
z∈G

χy(z)∗|x, z + f(x)⟩

1⊗FG7−−−−→ 1
|G|

∑
z∈G

χy(z)∗χw(z + f(x))|x,w⟩ = χy(f(x))|x, y⟩. (3)

ICALP 2021
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The equality in (3) follows from the orthogonality condition in (2). Since one can simulate
a phase query using a single standard query and vice versa, the query complexities of any
problem are equal with these two models.

Over a finite field Fq for prime power q = pr, the Fourier transform over Fq is the unitary
transformation |x⟩ 7→ q−1/2∑

y∈Fq
e(xy)|y⟩, where the exponential function e : Fq → C is

defined as e(z) := e2πiTrFq/Fp (z)/p and the trace function TrFq/Fp
: Fq → Fp is defined as

TrFq/Fp
(z) := z + zp + zp2 + · · · + zpr−1 .

Over the field of real numbers, the quantum Fourier transform is

FR :=
∫
R

dy
∫
R

dx e2πiyx|y⟩⟨x|. (4)

The basis states {|x⟩ : x ∈ R} are normalized to the Dirac delta function, i.e., for x, x′ ∈ R,
⟨x′|x⟩ = δ(x− x′). Here the Dirac delta function δ satisfies

∫
R dx′ δ(x− x′)f(x′) = f(x) for

any function f . Furthermore, we have
∫
R dy e2πiy(x−x′) = δ(x− x′). By direct calculation

using these facts, F †
RFR =

∫
R dx |x⟩⟨x| = 1.

While we can formally consider a model of query complexity over R with arbitrary precision,
its practical instantiation requires discrete approximation. We can achieve precision ϵ by
approximating real numbers with s = O(log(1/ϵ)) bits, and can then replace the continuous
Fourier transform with the discrete Fourier transform over Z2s . It is straightforward to
show that a discretized phase query over Z2s can be implemented by Fourier transforming a
standard query that maps discretized inputs to discretized function values.

2.2 The coset identification problem
Copeland and Pommersheim studied a kind of quantum query problem that they call the
coset identification problem [12]. They define this problem in a generalized query model
where the black box does not necessarily perform a standard or phase query, although their
definition includes those cases. In the coset identification problem, we fix a finite group G

and a subgroup H ≤ G. The algorithm is given access to a unitary transformation π(g),
where π is a representation of G on vector space V . When π is given, the vector space V
is called the representation space (or simply, the representation) of G [20, Chapter 1]. The
goal is to determine which coset of H the unknown element g ∈ G belongs to.

▶ Definition 1 (Coset identification problem [12]). A coset identification problem for a finite
group G and subgroup H ≤ G is a 3-tuple (π, V, F ) such that

π is a unitary representation of G in the complex vector space V , and
F is a function constant on left cosets of H ≤ G and distinct on distinct cosets, i.e.,
F (g) = F (g′) if and only if g′ = gh for some h ∈ H.

Given a black box that performs the unitary transformation π(g), the goal is to compute F (g).

Copeland and Pommersheim show that the optimal success probability of a t-query
algorithm for a coset identification problem can be calculated by taking, over all irreps Y
of H, the maximum of the fraction of the induced representation Y ↑ of G shared with V ⊗t.
Furthermore, the optimal algorithm can be non-adaptive. For a representation V , let I(V )
denote the set of irreducible characters of G appearing in V .

▶ Theorem 2 (Optimal success probability of coset identification [12, Corollary 5.7]). The
optimal success probability of any t-query quantum algorithm A for the coset identification
problem (π, V, F ) for finite group G and subgroup H ≤ G, under uniformly random inputs
in G, is

Pr[Aπ(g) = F (g)] = max
Y

dimY ↑
V ⊗t

dimY ↑ , (5)
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where the probability is maximized over all irreducible representations Y of H, Y ↑ is the
induced representation of G, and AB is the maximal subrepresentation of A such that
I(AB) ⊆ I(B) for representations A,B.

The oracle discrimination problem is the special case of the coset identification problem
where H is the trivial group, i.e., the function F is injective. In this case, Y ↑ = span{|g⟩ :
g ∈ G}.

▶ Corollary 3 (Optimal success probability of oracle discrimination [12, Theorem 4.2]). The
optimal success probability of the oracle discrimination problem is

1
|G|

∑
i∈I(V ⊗t)

d2
i , (6)

where I(V ⊗t) is the irrep content of (π⊗t, V ⊗t) and di is the dimension of irrep i ∈ I(V ⊗t).

We consider the complexity of standard queries in the matrix-vector model. In this model,
oracle access to a matrix M ∈ Fm×n for field F and positive integers m,n is the unitary
operation U(M) : |x, y⟩ 7→ |x, y +Mx⟩. The map U is a representation of the additive group
of matrices since it is a group homomorphism satisfying U(M)U(N) = U(M + N) for all
matrices M,N of the same dimensions. A phase query is also a unitary representation since
it is a standard query conjugated by a fixed unitary matrix (the quantum Fourier transform).

2.3 The polynomial method
We will use the polynomial method to obtain quantum lower bounds. Here we state a version
for non-boolean functions as used in [1].

▶ Lemma 4. Let A be a t-query quantum algorithm given access to the input x ∈ [m]n for
m,n ∈ Z through oracle Ux : |i, j⟩ 7→ |i, j + xi⟩ for i ∈ [n] and j ∈ [m]. The acceptance
probability of A on input x is a degree-(2t) polynomial in x1, . . . , xn.

3 Equivalence of matrix-vector and vector-matrix-vector products

In this section, we show that the matrix-vector and vector-matrix-vector models are equivalent,
i.e., for any problem, the quantum query complexities in these models differ by at most a
constant factor. Furthermore, we show that in the matrix-vector model, left matrix-vector
products and right matrix-vector products are equivalent. This is in stark contrast to the
classical case where these query complexities can differ significantly, as mentioned in Section 1
and discussed further below.

3.1 Left and right matrix-vector queries
We first show that left matrix-vector products and right matrix-vector products are equivalent.

▶ Theorem 5. Quantum query complexities in the left and right matrix-vector models over a
finite field are identical. In particular, one right Mv query can be simulated using one left
Mv query, and vice versa.

Proof. For input matrix M ∈ Fn×m
q , a matrix-vector (Mv) query applies the unitary trans-

formation

UMv(M) : |x, y⟩ 7→ |x, y +Mx⟩ (7)
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for every x ∈ Fm
q and y ∈ Fn

q . Conjugating by a quantum Fourier transform on the output
register yields a phase query

|x, y⟩
1⊗F †

Fn
q7−−−−→ q−1/2

∑
z

e(−y⊤z)|x, z⟩

UMv(M)7−−−−−→ q−1/2
∑

z

e(−y⊤z)|x, z +Mx⟩

1⊗FFn
q7−−−−→ q−1

∑
z,w

e(−y⊤z + w⊤(z +Mx))|x,w⟩

=
∑

w

δ[y = w]e(−y⊤z + w⊤(z +Mx))|x,w⟩

= e(y⊤Mx)|x, y⟩. (8)

We denote this unitary transformation by U M̃v(M).
Conjugating a phase query by a swap gate, we have

|x, y⟩ SWAP7−−−→ |y, x⟩

U M̃v(M)7−−−−−→ e(x⊤My)|y, x⟩
SWAP7−−−→ e(x⊤My)|x, y⟩
= e(y⊤M⊤x)|x, y⟩. (9)

This yields U M̃v(M⊤), which in turn gives UMv(M⊤) upon conjugation by an inverse quantum
Fourier transform on the output register. Thus one can simulate the oracle UMv(M⊤) using
one query to UMv(M), showing equivalence of the two models. ◀

In contrast to Theorem 5, Sun, Woodruff, Yang, and Zhang show that for the task of
computing the row parities of an m×n matrix M over F2, the left query complexity is Ω(m),
whereas the right query complexity is 1 [21]. Thus we have shown that computing column
parities over F2 in the Mv model has quantum query complexity 1, significantly less than the
classical query complexity of Ω(n).

▶ Corollary 6. The query complexity of computing the row parities and the column parities
of an m× n matrix over F2 is 1.

Note that it is easy to understand the randomized query complexities of these problems
in the vMv model.

▶ Lemma 7. The randomized query complexities of computing the row parities and the
column parities of an m× n matrix over F2 are Θ(m) and Θ(n), respectively.

Proof. Each query reveals one bit of information, while the row parities convey m bits,
giving a lower bound of Ω(m). An algorithm querying (e1, 1n), . . . , (em, 1n) learns the row
parities with probability 1, giving an upper bound of m. The query complexity of column
parities follows immediately from the symmetry of the vMv oracle. ◀

The randomized query complexities of determining if there exist identical columns or
identical rows are Θ(n/m) and Θ(logm), respectively [21]. Theorem 5 implies that for
identical columns, there is an exponential quantum speedup.
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▶ Corollary 8. The query complexities of deciding if there exist two identical columns and
rows in a m× n matrix over F2 are O(logn) and O(logm), respectively.

Proof. By Theorem 5, it suffices to give an algorithm for determining if there are two
identical rows. To make the proof self-contained, we describe the algorithm of Sun, Woodruff,
Yang, and Zhang [21, Section 4.2]. The algorithm makes q random queries v1, . . . , vq, the
entries of which are sampled uniformly. The algorithm outputs 1 if and only if there exist
two entries i, j such that (Mvk)i = (Mvk)j for k ∈ [q].

To analyze the performance, for any two identical rows m⊤
i ,m

⊤
j , Prv[m⊤

i v = m⊤
j v] = 1.

For mi ̸= mj , Prv[m⊤
i v = m⊤

j v] ≤ 1/2. Therefore for a matrix that has two identical rows,
the algorithm outputs 1 with probability 1. On the other hand, for a matrix that has no
identical rows, the algorithm outputs 1 with probability

Pr
v1,...,vq

[∃i, j ∈ [m], ∀ℓ ∈ [q],m⊤
i vℓ = m⊤

j vℓ] ≤
∑

i,j∈[m],i̸=j

Pr
v1,...,vq

[∀ℓ ∈ [q],m⊤
i vℓ = m⊤

j vℓ]

≤
(
m

2

)
2−q. (10)

Taking q = 2 logm, the probability is no more than 1
2 − 1

2m . ◀

The equivalence of left and right queries also holds over the reals.

▶ Theorem 9. Quantum query complexities in the left and the right matrix-vector models
over R are identical. In particular, one right Mv query can be simulated using one left Mv
query, and vice versa.

Proof. The same idea as in the proof of Theorem 5 applies. First, a phase query can
be simulated by conjugating a standard query by the quantum Fourier transform. This
yields U M̃v(M). Conjugating a phase query by a swap gate gives U M̃v(M⊤) with the same
calculation as in (9). This in turn yields UMv(M⊤) upon conjugating U M̃v(M⊤) by an inverse
quantum Fourier transform. ◀

Note that with finite precision, a phase query can be simulated using the quantum Fourier
transform over an integer modulus (see Section 2.1 for details).

As an example, we determine the query complexity of the majority of rows or columns:
given a binary matrix M ∈ {0, 1}m×n, compute the majority of each row or column over R,
i.e., for each row or column, determine if there are more 1s than 0s.

▶ Corollary 10. In the matrix-vector model, the query complexities of computing the majorities
of rows and columns of an m× n matrix over R are 1.

Proof. By Theorem 9, it suffices to show the query complexity of the majority of rows is 1.
With a single query (1, 1, . . . , 1)⊤, the majority of each row is determined. ◀

This result is not significantly affected by considering computation with finite precision.
The number of 1s in each row and each column is an integer in [0, k] for k = max{m,n}.
Thus a truncation with O(log k) bits suffices to perform the computation with no error.

3.2 The vector-matrix-vector model
We now relate the power of the matrix-vector and vector-matrix-vector query models. In
the vector-matrix-vector model, the algorithm is given access to M via U vMv : |x, y, a⟩ 7→
|x, y, a+ y⊤Mx⟩. We can simulate one vMv query using two Mv queries and an ancilla space
storing a matrix-vector product:
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|x, y, a⟩ UMv(M)7−−−−−→ |x, y, a⟩|Mx⟩
7−→ |x, y, a+ y⊤Mx⟩|Mx⟩
UMv(M)†

7−−−−−−→ |x, y, a+ y⊤Mx⟩|0⟩. (11)

On the other hand, an Mv phase query (defined previously in (8)) can be simulated using
a vMv phase query by setting a = 1:

|x, y, 1⟩ 7−→ e(y⊤Mx)|x, y, 1⟩. (12)

Such a vMv phase query can be constructed using one application of U vMv:

|x, y, a⟩
1⊗1⊗F †

Fq7−−−−−−→
∑

b

e(−ab)|x, y, b⟩

U vMv(M)7−−−−−→
∑

b

e(−ab)|x, y, b+ y⊤Mx⟩

1⊗1⊗FFq7−−−−−−→
∑
bc

e(−ab+ c(b+ y⊤Mx))|x, y, c⟩

= e(ay⊤Mx)|x, y, a⟩. (13)

Thus we have shown the following.

▶ Theorem 11. Quantum query complexities in the matrix-vector and vector-matrix-vector
models differ by at most a constant factor. In particular, one vMv query can be simulated
using two Mv queries, and one Mv query can be simulated using one vMv query.

This is again in stark contrast to the classical case, where the Mv model can be much
more powerful than the vMv model. For example, for distinguishing a full-rank matrix from
a rank-(n − 1) matrix, the randomized query complexity in the vMv model is Ω(n2) [19],
while the randomized query complexity in the Mv model is O(n) [21].

Note that Lee, Santha, and Zhang [17] previously studied the equivalence between quantum
Mv and vMv oracles. They focus on the special case where the matrix M is the adjacency
matrix of a graph with nonnegative integer weights and the inputs x ∈ {0, 1}n, y ∈ {0, 1}m

are boolean. In that setting, they prove equivalence between the vMv oracle and the additive
oracle a : 2[n] → Z that returns a(S) =

∑
(u,v)∈S(2) w(u, v) for S ⊆ [n], where S(2) denotes the

set of cardinality-2 subsets of S. They also study relationships with other oracles that encode
specific information about graphs (cuts, disjoint cuts, etc.; see Section 4 of [17]). In contrast,
our Theorem 5, Theorem 9, and Theorem 11 work for inputs and matrices in fields, and do
not apply to other graph oracles. While these results are, strictly speaking, incomparable,
they are closely related, both following from a generalization of the Bernstein-Vazirani
algorithm [7].

4 Linear algebra over finite fields

We now consider the quantum query complexity of particular linear algebra problems in
the matrix-vector query model. Specifically, we consider learning the trace (Section 4.1),
computing the null space and determinant (Section 4.2), solving linear systems (Section 4.3),
and estimating the rank (Section 4.4).
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4.1 Trace
In this section, we show that the quantum query complexity of computing the trace of an
n× n matrix over Fq is Θ(n). Since there is a trivial algorithm that computes the trace by
learning the entire matrix using n queries, we focus on the lower bound.

Learning the trace can be regarded as a coset identification problem (defined in Section 2.2)
in the group G = Fn×n

q with subgroup H = {M ∈ Fn×n
q : trM = 0} ∼= Fn2−1

q . The irreducible
characters χZ of H are indexed by Z ∈ Zn×n

m with Znn = 0, and satisfy χZ(M) = e(⟨Z,M⟩)
where ⟨Z,M⟩ :=

∑n
i,j=1 ZijMij .

4.1.1 Learning the trace over F2

First we consider the case q = 2. Then the irreducible characters χZ of H for Z ∈ Zn×n
m

(with Znn = 0) satisfy

χZ(M) = (−1)⟨Z,M⟩. (14)

For irredicible character Z, the induced representation can be decomposed into two irreducible
characters of G:

χZ,0(M) = (−1)⟨Z,M⟩; χZ,1(M) = (−1)⟨Z,M⟩+trM . (15)

It is easy to check that for M ∈ G, χZ,0(M + E(nn)) = χZ,0(M) and χZ,1(M + E(nn)) =
−χZ,1(M), where E(ij) is an n× n matrix whose entries are zero except that (E(ij))ij = 1.
We emphasize that in (15), M ∈ G (rather than in H since we are now looking at the
representations of the entire group), and Znn = 0.

On the other hand, recall that the phase query oracle is U(M) : |x, y⟩ 7→ (−1)y⊤Mx|x, y⟩,
which is a unitary representation of M with character ξ(M) := tr(U(M)) =∑

x,y∈Fn
2
(−1)y⊤Mx. To determine the optimal success probability, we calculate the irrep

content of U⊗t. The character of U⊗t is ξt, satisfying

tr(U⊗t(M)) = tr(U(M))t = (ξ(M))t

=

 ∑
x,y∈Fn

2

(−1)y⊤Mx

t

=
∑

x1,...,xt,y1,...,yt∈Fn
2

(−1)
∑

i
yiMxi . (16)

Thus it has non-zero Fourier coefficient at W if and only if W ∈ Rt, where Rt is the set of
matrices of rank no more than t.

We now check containment of the irreps (15) in U⊗t. We find

m
(t)
Z,0 = ⟨ξt, χZ,0⟩ > 0 ⇐⇒ Z ∈ Rt, m

(t)
Z,1 = ⟨ξt, χZ,0⟩ > 0 ⇐⇒ Z + 1n ∈ Rt. (17)

By Theorem 2, to succeed with probability better than 1/2, we must choose a Z such that
both m

(t)
Z,0 > 0 and m

(t)
Z,1 > 0. However, now we show this is impossible with t < n/2.

▶ Lemma 12. The set {Z : m(t)
Z,0 > 0 ∧m

(t)
Z,1 > 0} is empty for t < n/2.

Proof. We show that the set is non-empty only if t ≥ n/2. Suppose there exists Z such
that mZ,0 > 0 and mZ,1 > 0. By (17), Z ∈ Rt and Z + 1n ∈ Rt. Since the ranks of Z and
Z + 1n are no more than t, we conclude that the rank of 1n = Z + Z + 1n is no more than
2t. Therefore t ≥ n/2. ◀

This implies an n/2 lower bound, formally stated as follows.
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▶ Lemma 13. For t < n/2, any t-query quantum algorithm computing the trace of an n× n

matrix over F2 succeeds with probability at most 1/2.

Proof. By Theorem 2 and Lemma 12, the optimal success probability for a uniformly random
matrix in Fn×n

2 is

1
2 max

Z

1∑
b=0

δ[mZ,b > 0] ≤ 1
2 (18)

for t < n/2. ◀

On the upper bound side, we present an ⌈n/2⌉-query quantum algorithm, showing that
the above lower bound is achievable.

▶ Lemma 14. In the matrix-vector query model, there exists an ⌈n/2⌉-query quantum
algorithm that computes the trace of an n× n matrix over F2 with probability 1.

Proof. First we pad the matrix with one extra zero row and one extra zero column if n is
odd, and denote the padded matrix by M ′. Let ℓ = ⌈n/2⌉. It is clear that one query to
M ′ ∈ F2ℓ×2ℓ

2 can be simulated using one query to M . By Theorem 2, it suffices to find an
irreducible character such that both mZ,0 > 0 and mZ,1 > 0. Now consider

Z =
[
1ℓ 0
0 0

]
=

ℓ∑
i=1

eie
⊤
i , Z + 12ℓ =

[
0 0
0 1ℓ

]
=

2ℓ∑
i=ℓ+1

eie
⊤
i . (19)

The algorithm first prepares the state

|ψ0⟩ = 1√
2

|e1, . . . , eℓ⟩|e1, . . . , eℓ⟩ + 1√
2

|eℓ+1, . . . , e2ℓ⟩|eℓ+1, . . . , e2ℓ⟩. (20)

Making ℓ phase queries in parallel, we have

|ψM ⟩ = U M̃v(M ′)|ψ0⟩

= 1√
2

(−1)
∑ℓ

i=1
M ′

ii |e1, . . . , eℓ⟩|e1, . . . , eℓ⟩

+ 1√
2

(−1)
∑2ℓ

i=ℓ+1
M ′

ii |eℓ+1, . . . , e2ℓ⟩|eℓ+1, . . . , e2ℓ⟩. (21)

Measuring in the basis {|ψ0⟩⟨ψ0|, |ψ1⟩⟨ψ1|}, where

|ψ1⟩ = 1√
2

|e1, . . . , eℓ⟩|e1, . . . , eℓ⟩ − 1√
2

|eℓ+1, . . . , e2ℓ⟩|eℓ+1, . . . , e2ℓ⟩, (22)

the algorithm outputs the trace with probability 1. ◀

The results of this section are summarized in the following theorem.

▶ Theorem 15. In the matrix-vector query model, no quantum algorithm can compute the
trace of an n×n matrix over F2 with probability better than 1/2 using fewer than n/2 queries,
and there exists a quantum algorithm that succeeds with probability 1 using ⌈n/2⌉ queries.
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4.1.2 Learning the trace over Fq

Now we prove a linear lower bound for the task of learning the trace over Fq. The proof idea
is the same as in the case q = 2, generalized to any finite field.

▶ Theorem 16. In the matrix-vector query model over Fq, computing the trace of an n× n

matrix with probability more than 1/q requires at least n/2 queries.

Proof. The induced representation of Z (defined in the second paragraph of Section 4.1) can
be decomposed into q 1-dimensional irreps whose characters are

χZ,s(M) = e(⟨Z,M⟩ + s · trM) = e(⟨Z + s1n,M⟩) (23)

for s ∈ Fq. Again, recall that a phase query oracle U(M) : |x, y⟩ 7→ e(y⊤Mx)|x, y⟩ is a unitary
representation of M . The character of U is the trace ξ(M) := tr(U(M)) =

∑
x,y∈Fn

q
e(y⊤Mx).

The optimal success probability is determined by the irrep content of U⊗t, and the character
of U⊗t is ξt, satisfying

tr(U⊗t(M)) = ξt(M) =
∑

x1,...,xt,y1,...,yt∈Fn
q

e

(
t∑

i=1
y⊤

i Mxi

)
. (24)

Thus for every s ∈ Zm,

m
(t)
Z,s = ⟨ξt, χZ,s⟩ > 0 ⇐⇒ Z + s · 1n ∈ Rt, (25)

where Rt is the set of matrices of rank no more than t. Since 1n /∈ Rn−1, we conclude for
t < n/2 the success probability is at most 1/q, as claimed. ◀

4.2 Null space
In this section, we show a linear lower bound on the matrix-vector quantum query complexity
of computing the rank of a matrix M ∈ Fm×n

q for m ≥ n. This is without loss of generality
since for m < n, by Theorem 5, we can simulate oracle access to M⊤ using one query to M .

The rank problem is an instance of the hidden subgroup problem (HSP) over Fm
q since two

vectors map to the same value if and only if their difference is in the null space. However, the
lower bound for the abelian HSP [16] does not directly apply to this problem since the instance
is more structured – specifically, the subgroup hiding function is a linear transformation.

We recall some standard facts from linear algebra over finite fields. For ℓ ≥ m, let(
ℓ
m

)
q

:=
∏m−1

i=0
(qℓ−qi)∏m−1

i=0
(qm−qi)

denote a Gaussian binomial coefficient.

▶ Lemma 17. The number of m-dimensional subspaces of an ℓ-dimensional space over Fq is(
ℓ
m

)
q
.

▶ Lemma 18. For integers k ≤ m ≤ ℓ and any k-dimensional space V over Fq, the number
of m-dimensional subspaces of an ℓ-dimensional space containing V is

(
ℓ−k
m−k

)
q
.

For proofs of these facts, see for example [9, Lemma 9.3.2].

Computing the rank. Now we consider the problem of computing the rank of a matrix
M ∈ Fm×n

q for m ≥ n. A matrix M has rank r if and only if its null space is (n − r)-
dimensional.
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By Lemma 4, the success probability of a t-query algorithm is a degree-2t polynomial in
δxy. This polynomial P can be written as

P (δ) =
∑

S⊆Fn
q ×Fm

q

cS

∏
(x,y)∈S

δxy, (26)

with cS = 0 for |S| > deg(P ). For an input M , the assignments to these variables are
δxy = δ[Mx = y]; we will sometimes write δxy = δxy(M) to emphasize that δ is a function
of M .

Now symmetrize by averaging over all matrices with nullity d, giving

Q(d) := E
M∼Yd

[P (δ(M))]

=
∑

S⊆Fn
q ×Fm

q

cS E
M∼Yd

[ ∏
(x,y)∈S

δxy(M)
]

=
∑

S⊆Fn
q ×Fm

q

cS Pr
M∼Yd

[Mx = y ∀(x, y) ∈ S], (27)

where Yd is the set of matrices of nullity d. Here M is drawn uniformly from Yd. Since
0 ≤ P (δ(M)) ≤ 1, we have 0 ≤ Q(d) ≤ 1. The following lemma states that we can
approximate Q(d) with a low-degree polynomial. Van Apeldoorn and Gribling previously
showed the same statement in their proof of a lower bound for Simon’s problem for linear
functions [4, Lemma 3]. That problem can be viewed as a special case of our problem with
m = n. We observe that essentially the same proof establishes this lemma for m ≥ n.

▶ Lemma 19. There exists a polynomial R of degree at most 2t such that for each d ∈ [n],
R(qd) = Q(d).

We emphasize that we do not bound the degree of Q(d) because we do not know how to
represent it as a polynomial in d. Instead, the lower bound is established by showing (i) a
lower bound on the degree of the polynomial R and (ii) that the degree of R is no more than
2t.

Next, recall a lemma by Koiran, Nesme, and Portier [16, Lemma 5].

▶ Lemma 20. Let c > 0 and ξ > 1 be constants and let f be a real polynomial with the
following properties:
1. for any integer 0 ≤ i ≤ n, |f(ξi)| ≤ 1;
2. for some real number 1 ≤ x0 ≤ ξ, |f ′(x0)| ≥ c.

Then deg f = Ω(n).

Lemma 19 and Lemma 20 imply an Ω(min{m,n}) lower bound for distinguishing a matrix
is full-rank or has nullity 1. The case m = n was previously shown by van Apeldoorn and
Gribling [4, Theorem 1]. We briefly explain the main ideas for completeness. By Lemma 19,
for d ∈ {0, 1, . . . , n − 1}, R(qd) = Q(d) and deg(R) ≤ 2t. For distinguishing a full-rank
matrix (i.e., d = 0) from a rank n− 1 matrix (i.e, d = 1), we set R(1) ≥ 1 − ϵ and R(q) ≤ ϵ.
There exists x0 ∈ [1, q] such that R′(x0) ≥ |R(q)−R(1)|

q−1 ≥ 1−2ϵ
q−1 . By Lemma 20, t = Ω(n) for

m ≥ n. For m < n, an Ω(m) lower bound follows from Theorem 5. Overall, this gives the
following.

▶ Theorem 21. The bounded-error matrix-vector quantum query complexity of deciding if
an m× n matrix over Fq is full-rank is Ω(min{m,n}). In particular, Ω(min{m,n}) queries
are needed to decide whether the matrix is full-rank or has nullity 1.
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There is a trivial algorithm that learns an entire m× n matrix using min{m,n} queries.
Thus the query complexity of computing the rank is Θ(min{m,n}).

▶ Corollary 22. The bounded-error query matrix-vector quantum complexity of computing
the rank of an m× n matrix over Fq is Θ(min{m,n}).

With the same argument, the quantum query complexity of computing the determinant of
an n×n matrix over Fq is Θ(n). Moreover, the classical query complexity is Θ(n2), implied by
the Ω(n2) lower bound for rank testing by Rashtchian, Woodruff, and Zhu [19, Theorem 3.3].

▶ Corollary 23 (Determinant). The bounded-error classical and quantum query complexities
of computing the determinant of an n× n matrix over Fq through matrix-vector products are
Θ(n2) and Θ(n), respectively.

4.3 Solving linear systems
In this section, we consider the quantum query complexity of solving the linear system
Ax = b for A ∈ Fn×n

q is Θ(n). Since there is an n-query algorithm learning the entire matrix
using n matrix-vector queries, we focus on the lower bound.

Our proof is based on a randomized reduction from deciding whether a submatrix is full
rank. For a square matrix A, let Aij be the submatrix obtained by deleting the ith row and
the jth column, and let Aij denote the (i, j) element of A. The elements of A−1 can be
computed as

(A−1)ij = detAij

detA . (28)

Given an invertible A, one can use a linear system solver to decide whether (A−1)11 is
non-zero, and thus decide if the minor A11 is full-rank.

In our reduction, to decide whether M ∈ Fn×n
q is full-rank given access to matrix-vector

products, we pad M with one extra random row and one extra random column, giving a
matrix A ∈ F(n+1)×(n+1)

q . We show that with sufficiently high probability, the padded matrix
is full-rank. Thus, invoking a linear system solver with b = e1, we learn whether detM = 0.
Thus the linear regression lower bound follows from Theorem 21.

▶ Theorem 24. The bounded-error matrix-vector quantum query complexity of solving an
n× n linear system is Ω(n).

Proof. Assume toward contradiction that A is a t-query quantum algorithm for determining
whether (A−1)11 is non-zero for any invertible A ∈ F(n+1)×(n+1)

q , succeeding with probability
p ≥ 1/3 with t = o(n). We present a t-query algorithm for determining whether an n× n

matrix is full-rank with probability p(1 − 1/q)2 ≥ 1/12.
Given access to M ∈ Fn×n

q , the algorithm first samples two random vectors u, v ∈ Fn
q and

a random element a ∈ Fq to give the padded matrix

A =
[
a u⊤

v M

]
. (29)

The matrix-vector product A(x0, x
⊤)⊤ for x0 ∈ Fq, x ∈ Fn

q can be computed using one Mv
query to Mx since

A

[
x0
x

]
=
[

a0 + u⊤x

x0v +Mx

]
. (30)
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We show that with probability at least (1−1/q)2, the matrix A is invertible (i.e., detA ̸= 0)
given that rank(M) ≥ n− 1. If M is invertible, the submatrix B = (v,M) is full-rank. If
rank(M) = n− 1, then without loss of generality, we consider the case that the first n− 1
rows of M are linearly independent, and the last row is a linear combination of the first n− 1
rows, since other cases can be handled accordingly by rearranging the rows. We let

M =
[
M ′

w⊤

]
. (31)

for an (n− 1) × n matrix M ′ and an n× 1 vector w. Since w⊤ is a linear combination of the
first n− 1 rows, we write w⊤ = c⊤M ′ for an (n− 1) × 1 vector c. Since M ′ is full-rank, the
vector c satisfying w⊤ = c⊤M ′ is unique. Now write the vector

v =
[
z

b

]
(32)

for an (n − 1) × 1 matrix z and b ∈ Fq. The matrix B is not full rank if and only if the
last row is a linear combination of the first n − 1 rows, i.e., c⊤z = b, since the first n − 1
rows of B are linearly independent. Since v is a random vector with each element chosen
independently, we have

Pr[B is not full-rank] = Pr
z,b

[c⊤z = b] = 1/q. (33)

Thus with probability at least 1 − 1/q the matrix B is full-rank.
Conditioned on B being full-rank, the matrix A is not full-rank if and only if the vector

(a, u⊤) is in the vector space spanned by the rows of B. The number of vectors in the vector
space is q(n−1). Thus

Pr
a,u,v

[A is not full-rank | B is full-rank] = 1/q. (34)

Therefore with probability at least 1 − 1/q, A is invertible. Conditioned on successfully
simulating Mv queries of an invertible A, the algorithm A determines whether (A−1)11 is
nonzero with probability p. Thus the algorithm succeeds with probability at least p(1−1/q)2 ≥
1/12 using t = o(n) queries to M . By Theorem 21 we have a contradiction. ◀

The same proof idea shows that a lower bound for rank testing implies a lower bound
for linear regression in the vMv model. Rashtchian, Woodruff, and Zhu show that the
query complexity of distinguishing rank-n matrices from rank-(n − 1) matrices over Fq is
Ω(n2) [19, Theorem 3.3].

▶ Corollary 25. The bounded-error classical vMv query complexity of solving an n× n linear
system over Fq is Ω(n2).

Proof. By the same idea as in the proof of Theorem 24, it suffices to show that one vMv
query to the (n + 1) × (n + 1) matrix A in (29) can be simulated with one vMv query
to the n × n matrix M . For any query x, y, we let x = (x0, x

⊤
1 )⊤ and y = (y0, y

⊤
1 )⊤ for

n× 1 matrices x1, y1. The product y⊤Ax can be computed using one vMv query to M since
y⊤Ax = ay0x0 + y0u

⊤x1 + y⊤
1 vx0 + y⊤

1Mx1. Since no o(n2)-query classical algorithm can
distinguish rank-n matrices from rank-(n− 1) matrices [19, Theorem 3.3], the bounded-error
query complexity of solving linear systems is Ω(n2). ◀
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4.4 Rank testing
In this section, we show a linear lower bound on distinguishing whether an m× n matrix
M has rank(M) = n or rank(M) ≤ n/2, where m ≥ n. First we show the following lemma
using ideas from [16].

▶ Lemma 26. Let ξ ≥ 2 and let n be an even integer. Then any polynomial f satisfying
1. 0 ≤ f(ξi) ≤ 1 for i ∈ {0, 1, . . . , n− 1} and
2. f(1) ≤ 1/3 and f(ξi) ≥ 2/3 for i ∈ {n/2, n/2 + 1, . . . , n− 1}
has deg(f) = Ω(n).

Proof. Let d = deg(f). Toward contradiction, we assume d = o(n). For intervals Si :=
[ξi, ξi+1), since deg(f ′),deg(f ′′) = o(n), there exists an index a ∈ {9n/10, . . . , n− 3, n− 2}
such that none of the roots of f ′ and f ′′ has its real part in Sa. This implies that f ′ is
monotonically increasing or decreasing in Sa, i.e., f is concave or convex. In each case,
f( ξa+ξa+1

2 ) ∈ [0, 1]. If f is convex in Sa,∣∣∣∣f ′
(ξa + ξa+1

2

)∣∣∣∣ ≤ 1
ξa+1 − ξa+1+ξa

2
= 2
ξa+1 − ξa

≤ 2
ξa

≤ 2ξ−9n/10. (35)

If f is concave in Sa, reflecting about the x-axis gives the same bound.
By the second constraint, there exists x0 ∈ [1, ξn/2] such that

|f ′(x0)| ≥ |f(ξn/2) − f(1)|
ξn/2 − 1

≥ ξ−n/2/3. (36)

Therefore∣∣∣∣∣f ′( ξa+ξa+1

2 )
f ′(x0)

∣∣∣∣∣ ≤ 6ξ−2n/5 ≤ ξ3−2n/5. (37)

On the other hand, since deg(f ′) = d− 1, denoting the roots a1, . . . , ad−1 ∈ C, we write

f ′(x) = λ

d−1∏
i=1

(x− ai). (38)

Thus∣∣∣∣∣f ′( ξa+ξa+1

2 )
f ′(x0)

∣∣∣∣∣ =
d−1∏
i=1

∣∣∣∣∣ ξa+ξa+1

2 − ai

x0 − ai

∣∣∣∣∣ =
d−1∏
i=1

|g(ai)|, (39)

where

g(x) =
x− ξa+ξa+1

2
x− x0

. (40)

Our goal is to show that for each i, |g(ai)| ≥ 1
2ξ . Recall that for each i, ℜ(ai) /∈ Sa. Also

for real x /∈ Sa, x ≥ x0, we have |g(x)| ≥ ξ−1
2ξ ≥ 1

2ξ . For real roots, |g(ai)| ≥ 1
2ξ . Now we

consider the case where ai = α+ βi for β ̸= 0, giving

|g(α+ βi)|2 =
(α− ξa+ξa+1

2 )2 + β2

(α− x0)2 + β2 . (41)
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If (α− ξa+ξa+1

2 )2 ≥ (α− x0)2, then |g(α+ βi)| ≥ 1. Otherwise,

|g(α+ βi)| ≥

∣∣∣∣∣α− ξa+ξa+1

2
α− x0

∣∣∣∣∣ ≥ 1
2ξ . (42)

We have shown that |g(ai)| ≥ 1
2ξ for every root ai. Now we have∣∣∣∣∣f ′( ξa+ξa+1

2 )
f ′(x0)

∣∣∣∣∣ =
d−1∏
i=1

|g(ai)| ≥ (2ξ)−d+1 ≥ ξ2−2d. (43)

Thus by (37), we have ξ3−2n/5 ≥ ξ2−2d and conclude d ≥ n/5 − 1/2 = Ω(n) – a contradiction.
◀

Lemma 19 and Lemma 26 imply the following theorem.

▶ Theorem 27. The bounded-error matrix-vector quantum query complexity of determining
whether a matrix M ∈ Fm×n

q has rank(M) = n or rank(M) ≤ n/2 is Ω(n).
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