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Abstract
Graph parameters such as the diameter, radius, and vertex eccentricities are not defined in a useful
way in Directed Acyclic Graphs (DAGs) using the standard measure of distance, since for any two
nodes, there is no path between them in one of the two directions. So it is natural to consider the
distance between two nodes as the length of the shortest path in the direction in which this path
exists, motivating the definition of the min-distance. The min-distance between two nodes u and v

is the minimum of the shortest path distances from u to v and from v to u.
As with the standard distance problems, the Strong Exponential Time Hypothesis [Impagliazzo-

Paturi-Zane 2001, Calabro-Impagliazzo-Paturi 2009] leaves little hope for computing min-distance
problems faster than computing All Pairs Shortest Paths, which can be solved in Õ(mn) time. So it
is natural to resort to approximation algorithms in Õ(mn1−ϵ) time for some positive ϵ. Abboud,
Vassilevska W., and Wang [SODA 2016] first studied min-distance problems achieving constant
factor approximation algorithms on DAGs, and Dalirrooyfard et al [ICALP 2019] gave the first
constant factor approximation algorithms on general graphs for min-diameter, min-radius and
min-eccentricities. Abboud et al obtained a 3-approximation algorithm for min-radius on DAGs
which works in Õ(m

√
n) time, and showed that any (2 − δ)-approximation requires n2−o(1) time

for any δ > 0, under the Hitting Set Conjecture. We close the gap, obtaining a 2-approximation
algorithm which runs in Õ(m

√
n) time. As the lower bound of Abboud et al only works for sparse

DAGs, we further show that our algorithm is conditionally tight for dense DAGs using a reduction
from Boolean matrix multiplication. Moreover, Abboud et al obtained a linear time 2-approximation
algorithm for min-diameter along with a lower bound stating that any (3/2 − δ)-approximation
algorithm for sparse DAGs requires n2−o(1) time under SETH. We close this gap for dense DAGs
by obtaining a 3/2-approximation algorithm which works in O(n2.350) time and showing that the
approximation factor is unlikely to be improved within O(nω−o(1)) time under the high dimensional
Orthogonal Vectors Conjecture, where ω is the matrix multiplication exponent.
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1 Introduction

Among the most fundamental graph parameters that have been extensively studied are the
diameter, radius and eccentricities [16, 24, 15, 21, 5, 17, 14, 20, 7, 8, 33, 34, 12, 22, 30, 28,
13, 2, 9] (and many others). The eccentricity of a vertex v is the largest distance between v

and any other vertex. The diameter is the maximum eccentricity of a vertex in the graph,
thus the distance between the two farthest nodes, and the radius is the minimum eccentricity,
measuring the maximum distance to the most central node.
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All of these parameters depend on the definition of the distance between two nodes. In
undirected graphs, the distance between two vertices is just the shortest path distance d(·, ·)
between them, which is symmetric. However, in directed graphs, this standard measure of
distance d is not necessarily symmetric, since for two nodes, d(u, v) may not equal d(v, u).

Several notions of a “symmetric” distance for directed graphs have been studied. Cowen
and Wagner [18] define the roundtrip distance, which for two vertices u and v is just
d(u, v) + d(v, u). Abboud, Vassilevska W., and Wang [3] define the max-distance, which is
max{d(u, v), d(v, u)}, and the min-distance, which is min{d(u, v), d(v, u)}.

Each of these notions of distance has a particular application [19]. In this paper, we
focus on the min-distance dmin(·, ·). The min-distance characterizes a quantity of real-world
relevance: for instance, a patient may visit a doctor or a doctor may visit a patient, and if
they are in a hurry the min-distance between them may matter. Min-distance is a particularly
natural notion of distance in directed acyclic graphs (DAGs), where the standard notion
of distance is infinite in at least one direction for any given pair of vertices in a DAG. For
example, in a topologically ordered DAG where the edges are directed from left to right, the
min-diameter is simply the largest distance d(u, v) where u is to the left of v.

More formally, for a vertex v ∈ V , the min-eccentricity ϵ(v) is maxw∈V dmin(v, w), or in
other words, the largest min-distance between v and any other vertex. The min-diameter
of a graph is maxv∈V ϵ(v). Note that the min-diameter is the only meaningful notion of
diameter for DAGs: all other notions are infinite. The min-radius of a graph is minv∈V ϵ(v).
A center is a vertex whose min-eccentricity is equal to the min-radius of the graph.

All-Pairs Shortest Paths (APSP) is the problem of computing the distance between u and
v for every pair of vertices u, v ∈ V . In a graph G with m edges, n vertices, and nonnegative
edge weights polynomial in n, APSP can easily be computed in Õ(mn) time1, by running
Dijkstra’s algorithm from every vertex2. Computing eccentricities, diameter, or radius with
any of the notions of distance is no harder than computing APSP.

For the standard notion of distance, under the Strong Exponential Time Hypothesis
(SETH) [25, 11], there is no truly subquadratic time algorithm for diameter (and thus nor for
eccentricities) in unweighted graphs: that is, no such algorithm runs in time O(m2−ϵ) for
ϵ > 0 [28]. This lower bound also holds for the other notions of diameter (and eccentricities)
[19]. For radius, the same lower bound holds but under the Hitting Set Conjecture [3].

Since quadratic time is expensive on large graphs, we resort to approximation al-
gorithms. Many constant factor approximation algorithms were known for all notions
of diameter, eccentricities and radius, except for the min-distance notion until recently. For
example, for the standard diameter and roundtrip diameter there is a folklore linear time
2-approximation algorithm, and for max-diameter and standard diameter, a conditionally
tight 3/2-approximation algorithm is known in Õ(m

√
n) time [28].

Only recently Dalirrooyfard et al [19] showed constant factor approximation algorithms
for min-distance problems in general graphs that run in O(mn1−ϵ) time for some fixed
ϵ > 0. More specifically, they obtained a 3-approximation algorithm for min-diameter in
Õ(m

√
n) time, a (3 + δ)-approximation algorithm for min-radius in Õ(m

√
n/δ) time, and a

(3 + δ)-approximation algorithm for min-eccentricities in Õ(m
√

n/δ2) time, for any δ > 0.
The reason it is hard to obtain approximation algorithms for min-diameter, min-radius,

and min-eccentricities is that min-distance does not obey the triangle inequality. Hence the
typical approaches to find algorithms that work for other notions of distance do not work for
min-distance, as they crucially rely on the triangle inequality.

1 The tilde hides polylogarithmic factors.
2 Faster algorithms are known by Pettie [26] and Pettie and Ramachandran [27] for sparse graphs.
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Table 1 Results on min-distance problems on DAGs. The (∗) marks lower bounds that are for
dense DAGs. Our (2 − δ) lower bound for min-radius is based on Triangle Detection and our ( 3

2 − δ)
lower bound for min-diameter is based on high dimensional OV. Our k and (k + δ)-approximation
algorithms are for any integer k ≥ 2. Conditionally tight bounds are in bold.

Problem Upper bound Lower bound Reference
min-diameter 2 in O(m) ( 3

2 − δ) needs m2−o(1) [3]
3
2 in O(n2.350) (dense, unweighted) ( 3

2 − δ) needs nω−o(1) (∗) this work
min-radius 3 in Õ(m

√
n) (2 − δ) needs m2−o(1) [3]

2 in Õ(min(m
√

n, m2/3n)) (2 − δ) needs nω−o(1) (∗) this work

k in Õ(min(mn1/k, m
2k−1
2k−1 n)) this work

min-eccentri. 3 + δ in Õ(m
√

n/δ2) [19]

k + δ in Õ(min(mn1/k/δ, m
2k−1
2k−1 n/δ)) this work

On the bright side, since DAGs have more structure, it is easier to find algorithms for
them. The best known subquadratic time algorithm for min-diameter in DAGs is a linear
time 2-approximation algorithm, and the best subquadratic time algorithm for min-radius is
a 3-approximation algorithm in Õ(m

√
n) time [3]. However, neither of these algorithms were

proven to be conditionally tight.
Previously, the only known conditional lower bounds for these problems were due to

Abboud, Vassilevska W., and Wang [3]. They showed that under the Orthogonal Vectors
Conjecture from fine-grained complexity (and consequently under SETH [31]), there is no
(3/2 − δ)-approximation algorithm for any δ > 0 for min-diameter which runs in truly
subquadratic time on sparse DAGs. Moreover, under the Hitting Set Conjecture, there is no
(2−δ)-approximation algorithm for any δ > 0 for min-radius which runs in truly subquadratic
time on sparse DAGs.

1.1 Our results
We obtain fast algorithms for min-diameter, min-eccentricities and min-radius with improved
approximation factors. Our results can be seen in Table 1.

Min-Eccentricities and Min-Radius
We obtain the first known subquadratic time (2 + δ)-approximation algorithm for min-
eccentricities in DAGs for any δ > 0, and the first known subquadratic time 2-approximation
algorithm for min-radius in DAGs. These algorithms run in time Õ(min(m

√
n/δ, m2/3n)/δ)

and Õ(min(m
√

n, m2/3n)) respectively. Note that our algorithms in this section are combin-
atorial: they do not exploit fast matrix multiplication and are potentially practical. Our
results are conditionally optimal in both sparse and dense graphs: For sparse graphs, if the
Hitting Set Conjecture is true, then our min-radius result is tight and our min-eccentricity
result is essentially tight, in the sense that no approximation factor smaller than 2 can
be achieved in subquadratic time for either of these problems [3]. For dense graphs, our
2-approximation algorithm works in Õ(n7/3) time, and we show that there is no (2 − δ)-
approximation algorithm for min-radius (and hence min-eccentricities) in O(nω−ϵ) for ϵ > 0,
if the best algorithm for Triangle Detection runs in time Ω(nω−o(1)). Here ω < 2.37286 [6] is
the exponent of matrix multiplication.

More generally, we obtain a series of algorithms trading off runtime and accuracy.

ICALP 2021
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▶ Theorem 1. For integer k ≥ 2 and every δ > 0, there is a (k + δ)-approximation algorithm
for min-eccentricities in DAGs which runs in Õ(min(mn1/k/δ, m2k−1/(2k−1)n/δ)) time.

For every integer k ≥ 2, there is a k-approximation algorithm for min-radius in DAGs
which runs in Õ(min(mn1/k, m2k−1/(2k−1)n)) time.

As mentioned earlier, the case k = 2 gives a 2-approximation algorithm for min-radius
running in time Õ(min(m

√
n, m2/3n)). For m = Õ(n1.5), this matches the runtime and

improves the approximation factor of the previous best known algorithm for this problem
(from [3]). For m = ω(n1.5+o(1)), it improves both the approximation factor and the runtime.

Our min-eccentricity (2 + δ)-approximation algorithm borrows a key idea from the 3-
approximation algorithm of [3] and combines it with a new binary search technique. The idea
is to partition the DAG into intervals and do local APSP searches to find local paths, then
combine these local paths with “outer” paths to guarantee a low enough min-distance to any
vertex in the graph. In [3], these outer paths were found by using a clever choice of intervals;
our algorithm instead applies binary search to find sets which can be used as jumping-off
points for the outer paths, allowing us to shorten the lengths of these paths and also allowing
us to approximate all min-eccentricities, not only min-radius. Our (k + δ)-approximation
algorithm is achieved by recursively running our approximation algorithm on the intervals
instead of running local APSP, which allows us to improve the runtime.

For sparse graphs, Abboud, Vassilevska W., and Wang [3] already showed that a (2 − δ)-
approximation for min-radius needs Ω(m2−o(1)) time under the Hitting Set Conjecture, so
our 2-approximation algorithm is conditionally tight for sparse graphs. We show that the
approximation factor of our algorithm is conditionally tight for the dense case as well by
reducing Triangle Detection to (2 − δ)-approximation of min-radius for any δ > 0. The best
running time for Triangle Detection in n-node graphs is conjectured to be Ω(nω−o(1)) by
many papers (see for example [1, 10]), where ω < 2.37286 [6] is the exponent of fast matrix
multiplication. Note that, since m = O(n2), our algorithm runs in Õ(n7/3) time, which
is faster than O(nω) for the current best bound on ω. Since the algorithm of Theorem 1
is combinatorial, if we restrict to combinatorial algorithms then there is no truly subcubic
(meaning O(n3−ϵ) for ϵ > 0) time (2 − δ)-approximation algorithm for min-radius provided
that there is no truly subcubic time combinatorial algorithm for Boolean matrix multiplication
(BMM). This is because BMM and Triangle Detection are subcubic equivalent [32]. Note
that our reduction graph in Theorem 2 is an unweighted DAG.

▶ Theorem 2. If there is a T (n, m)-time algorithm for (2−δ)-approximation of min-radius in
O(n)-node Õ(m)-edge DAGs for some δ > 0, then there is an Õ(T (n, m)+m)-time algorithm
for Triangle Detection on graphs with n nodes and m edges.

▶ Corollary 3. Assuming the best algorithm for Triangle Detection runs in time Ω(nω−o(1)),
there is no algorithm for (2 − δ)-approximation of min-radius in n-node dense DAGs that
runs in time O(nω−ϵ) for any δ, ϵ > 0.

Moreover, there is no O(n3−ϵ)-time combinatorial algorithm for (2 − δ)-approximation of
min-radius in n-node dense DAGs with ϵ, δ > 0 if there is no O(n3−ϵ′)-time combinatorial
algorithm for BMM with ϵ′ > 0.

Improving the running time using Fast Matrix Multiplication

In DAGs with small integer edge weights, we further improve the running times for all k in
Theorem 1 by applying a result of Zwick in [36] on the runtime of APSP in such graphs. We
describe our result in more detail in Section 2. In particular, in DAGs with constant integer
edge weights, including unweighted DAGs, our result in the case k = 2 is as follows:
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▶ Theorem 4. For every δ > 0, there is an Õ(min(m
√

n/δ, m0.605n/δ))-time (2 + δ)-
approximation algorithm for min-eccentricities in DAGs with constant integer edge weights.

There is an Õ(min(m
√

n, m0.605n))-time 2-approximation algorithm for min-radius in
DAGs with constant integer edge weights.

Min-Diameter
We obtain a 3/2-approximation algorithm for min-diameter in unweighted DAGs, where the
approximation factor is conditionally optimal in dense graphs. Specifically, our algorithm
improves on the standard APSP runtime for any graph with m = ω(n1+o(1)) edges. This
is the first known 3/2-approximation algorithm for min-diameter in dense DAGs that runs
faster than the best constant factor approximation algorithm for APSP, which runs in Õ(nω)
time in unweighted directed graphs [36].

▶ Theorem 5. There is an O(m0.414n1.522 + n2+o(1))-time 3/2-approximation algorithm for
min-diameter in unweighted DAGs.

This algorithm relies on the sparse matrix multiplication algorithm of Yuster and
Zwick [35]. In dense graphs with m = O(n2), its runtime is O(n2.350). In relatively sparse
graphs, with m = O(n1.154+o(1)), the second term dominates, so the runtime is O(n2+o(1)).

Our techniques, which mix known diameter techniques with sparse matrix multiplication,
are informally as follows: We first construct a covering set, which will intersect any sufficiently
large set. We run BFS from all vertices in the covering set, and check whether any min-
distances found were large. If not, then for each vertex u, we will define a set of vertices that
are relatively “close” to u on its right; if this set is large it will intersect the covering set,
allowing us to find paths from u to some vertices to its right, using a “close” vertex in the
covering set as a jumping-off point. The remaining vertices w, for which this method did
not construct a u → w path, must have the property that any u → w path must intersect a
relatively small subset of the set of vertices “close” to u (note that this set may have been
small to begin with, in which case we can skip the previous step). Symmetrically, for each
vertex w we can construct the corresponding relatively small subset of vertices “close” to w

on its left, and then to bound the min-distance between u and w we check whether these
two small subsets share a vertex in common. We use sparse matrix multiplication to detect
this set intersection.

The conditional lower bound of [3] says that if the Orthogonal Vectors Conjecture is true
then min-diameter cannot be (3/2 − δ)-approximated in truly subquadratic time in sparse
graphs. There is no known 3/2-approximation algorithm for min-diameter on DAGs that
works faster than APSP, neither for dense graphs nor for sparse graphs. So the question
is: Is 3/2 the right bound for inapproximability of min-diameter in DAGs? We answer this
question in the affirmative for dense DAGs. Theorem 5 gives the first 3/2-approximation
algorithm that works faster than APSP, and it is optimal conditioned on high dimensional
OV using the same reduction as [3]. High dimensional OV can be used for obtaining lower
bounds for dense graphs. In high dimensional OV, the dimension of the vectors can be as
big as O(n), and using a simple reduction to Boolean matrix multiplication, the best known
algorithm for it is in time O(nω).

High dimensional OV gives a conditional lower bound of Ω(nω−o(1)) time for (3/2 − δ)-
approximation of min-diameter for any δ > 0. Our algorithm gives an upper bound of
O(n2.350) for m = Θ(n2), which is faster than O(nω) for the current best bound on ω. We
note while we provide tight results for dense DAGs, the gap between the lower bound and
upper bound for computing min-diameter on sparse DAGs is still open.

ICALP 2021



60:6 Approximation Algorithms for Min-Distance Problems in DAGs

1.2 Preliminaries
All graphs in this paper are directed graphs. Given a graph G, n denotes the number of
vertices and m denotes the number of edges. We will assume m ≥ n − 1 since otherwise all
min-eccentricities are infinite, a case that is easily checked. All edge weights are assumed
to be nonnegative and polynomial in n; if wmax is the maximum edge weight and wmin

is the minimum edge weight, we let M = max{wmax, 1/wmin}. We write G[S] to denote
the subgraph of G induced by vertex set S. For a vertex v, we write N in

D (v) (respectively,
Nout

D (v)) to denote the set of vertices u such that d(u, v) ≤ D (respectively, d(v, u) ≤ D).
For v ∈ V and W ⊆ V , we define dmin(W, v) = dmin(v, W ) as minw∈W dmin(v, w), and

we define the min-eccentricity of W as ϵ(W ) = maxv∈V dmin(W, v).
Given two sets U, W ⊆ V , if every u ∈ U appears prior to (respectively, after) every

w ∈ W in a topological ordering of the vertices of G, we say that U is the left (respectively,
right) of W with respect to the topological ordering. When U or W consists of a single
vertex {x}, we omit the brackets. If W ⊆ U ⊆ V , we denote the subset of vertices in U

that lie to the left (right) of W by LU (W ) (respectively, RU (W )). If U = V , we omit the
subscript. A vertex set W is called topologically consecutive with respect to a topological
ordering if its vertices are consecutive; i.e., if W = V \ (L(W ) ∪ R(W )). In general, the
relevant topological ordering will be clear, and we will omit reference to it.

Let ω(1, r, 1) be the exponent of the runtime of multiplying n×nr by nr ×n matrices. Let
ω = ω(1, 1, 1) be the square matrix multiplication exponent. [6] showed that ω < 2.37286.

For specifying lower bounds, we use the following problems with their corresponding
running time conjectures.

Orthogonal Vectors (OV)

Given two lists A, B of n d-dimensional Boolean vectors, determine whether there are vectors
a ∈ A and b ∈ B such that a and b are orthogonal; i.e. there is no i ∈ [d] such that the ith
bits of both a and b are 1. When d = Ω(log n), the OV Conjecture [31] says that there is
no algorithm that can solve the OV problem in time O(n2−ϵ) for any fixed ϵ > 0. The OV
Conjecture is implied by the Strong Exponential Time Hypothesis (SETH) [31].

High Dimensional Orthogonal Vectors

In high dimensional OV, the dimension d can be as high as O(n). There is a simple reduction
from high dimensional OV to matrix multiplication: Given two lists A = {a1, . . . , an}, B =
{b1, . . . , bn} of d-dimensional Boolean vectors, let M and N be two n × d and d × n Boolean
matrices, where M [i, j] = 1 if ai is 1 in bit j, and N [j, k] = 1 if bk is 1 in bit j, for j = 1, . . . , d

and i, k = 1, . . . , n. If MN has a zero entry, the vector pair corresponding to that entry are
orthogonal. This gives a O(nω) algorithm for high dimensional OV, and there are no faster
algorithms known for it up to polylogarithmic factors. Moreover, OV is equivalent to the
problem of distinguishing diameter 2 vs 3 [28], and so high dimensional OV is equivalent
to distinguishing diameter 2 vs 3 in dense graphs. A well-known open problem is whether
diameter 2 vs 3 can be solved faster than matrix multiplication (see for example [5]). Hence,
it is conjectured that high dimensional OV cannot be solved in O(nω−ϵ) time for any ϵ > 0.

Hitting Set (HS)

Given two lists A, B ∈ {0, 1}d, determine whether there is a vector a ∈ A that is not
orthogonal to any vector b ∈ B. When d = Ω(log n), the Hitting Set Conjecture [3] says that
there is no algorithm that can solve the Hitting Set problem in time O(n2−δ) for any fixed
δ > 0.
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Boolean Matrix Multiplication (BMM)

We abbreviate multiplying two Boolean n × n matrices over the (AND, OR)-semiring by
BMM. It is conjectured that there is no combinatorial algorithm solving BMM in O(n3−ϵ)
time for any fixed ϵ > 0, and the best algebraic algorithm for it is in O(nω+o(1)) time for
ω < 2.37286 [6].

Triangle Detection [32]

Given a tripartite graph G(A, B, C, E) where A, B and C are the three parts of the vertex
set and E is the edge set, determine if there are a ∈ A, b ∈ B, and c ∈ C such that abc is
a triangle. Vassilevska W. and Williams [32] showed that considering only combinatorial
algorithms, Triangle Detection and BMM are subcubic equivalent, meaning that a truly
subcubic combinatorial algorithm in one results in a truly subcubic combinatorial algorithm
in the other. Moreover, the best (algebraic) algorithm for Triangle Detection is through
BMM. Thus the best running time for Triangle Detection is O(nω), and it is conjectured (see
for example [1, 10]) that there is no algorithm faster than O(nω) for detecting a triangle.

2 Min-Eccentricities and Min-Radius

We present two different versions of our min-eccentricity and min-radius approximation
algorithms, one which works in general weighted DAGs and is combinatorial and one with a
lower runtime upper bound which only works in DAGs with small integer edge weights. The
algorithms are identical except in how they compute APSP; the former computes APSP in
the standard combinatorial way, while the latter uses Zwick’s fast APSP algorithm for graphs
with small integer edge weights. Here, µ(t) is the value satisfying ω(1, µ(t), 1) = 1 + 2µ(t) − t.

▶ Theorem 6 ([36]). APSP can be computed in O(n2+µ(t)) time in directed graphs with
integer edge weights bounded by nt, where t < 3 − ω.

Both versions of our algorithms use a common technique to compute min-distances to
and from a vertex set. Given a graph G and a vertex set W ⊆ V , we construct a graph G′ by
adding a vertex y and adding weight-0 edges (w, y) for all w ∈ W . We then run Dijkstra into
y in G′. We refer to this procedure as running Dijkstra into W . The symmetric procedure, in
which the weight-0 edges point out of an added vertex y′ and we run Dijkstra out of y′, will be
referred to as running Dijkstra out of W . Then for x ∈ V , dmin(x, W ) = min(d(x, y), d(y′, x)),
a value which we can now compute. We added |W | edges and ran Dijkstra in G′, so in total
the procedure takes time O(|W | + m log n) = O(m log n).

Our min-eccentricity and min-radius approximation algorithms will be based on the
following proposition. Let ck(τ) = 2k−2(1+τ)

2k−1(1+τ)−τ
.

▶ Proposition 7. For any k ≥ 2, there is an O(min(mn1/k log2 n, m2k−1/(2k−1)n log2 n))-time
algorithm which takes as input a DAG G and a parameter r, and certifies for each vertex v

that ϵ(v) > r or that ϵ(v) ≤ kr.
In DAGs with integer edge weights bounded by nt, where t < 3 − ω, there is a version of

this algorithm which runs in O(min(mn1/k log2 n, mck(µ(t))n log2 n))-time.

In [23], Le Gall and Urrutia showed that µ = µ(0) < 0.529. Thus in DAGs with constant
integer edge weights (so that t = 0), the runtime of the algorithm of Proposition 7 is
Õ(min(mn1/k, mck(0.529)n)) time. When k = 2, ck(0.529) < 0.605, leading to the special case
stated in Theorem 4.

ICALP 2021
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The algorithms of Proposition 7 will be described and proven correct in Subsection 2.1,
and their runtimes will be analyzed in Lemma 13 in Subsection 2.2. Then by binary searching
over r ∈ [0, Mn], these algorithms can be used to obtain the min-eccentricity approximation
algorithms of Theorems 8 and 9 and the min-radius approximation algorithms of Theorems 10
and 11.

▶ Theorem 8. Let k ≥ 2 be an integer. For any δ > 0, there is an Õ(min(mn1/k/δ,

m2k−1/(2k−1)n/δ))-time algorithm which, given a DAG G, outputs for every vertex v ∈ V an
estimate ϵ′(v) such that ϵ(v) ≤ ϵ′(v) < (k + δ)ϵ(v).

▶ Theorem 9. Let k ≥ 2 be an integer. For any δ > 0, there is an Õ(min(mn1/k/δ,

mck(µ(t))n/δ)) time algorithm which, given a DAG G with integer edge weights bounded by
nt for t < 3 − ω, outputs for every vertex v ∈ V an estimate ϵ′(v) such that ϵ(v) ≤ ϵ′(v) <

(k + δ)ϵ(v).

Proof. First we have all the vertices as “unmarked.” We do binary search in [0, Mn] by
starting with r = 1 in Proposition 7 and incrementing r′ = (1 + δ/k)r at each step. At each
step, we run the algorithm given in Proposition 7, and for each unmarked v that is reported
as having ϵ(v) ≤ kr, we set ϵ′(v) = kr and mark v. At the end we set ϵ′(v) = ∞ for any
remaining unmarked vertices.

Suppose a vertex v was marked at the step corresponding to r. Then r/(1 + δ/k) <

ϵ(v) ≤ kr, so ϵ(v) ≤ ϵ′(v) = kr < (k + δ)ϵ(v). The binary search adds an O(log1+δ/k Mn) =
O((log Mn)/δ) factor to the runtime. Since log Mn is polylogarithmic in n, this gives the
time bounds stated. ◀

▶ Theorem 10. Let k ≥ 2 be an integer. There is an Õ(min(mn1/k, m2k−1/(2k−1)n))-time
algorithm which, given a DAG G, outputs an approximation R′ such that if R is the min-radius
of G, R ≤ R′ < kR.

▶ Theorem 11. Let k ≥ 2 be an integer. There is an Õ(min(mn1/k, mck(µ(t))n))-time
algorithm which, given a DAG G with integer edge weights bounded by nt for t < 3 − ω,
outputs an approximation R′ such that if R is the min-radius of G, R ≤ R′ < kR.

Proof. We do binary search in [0, Mn], running the algorithm given by Proposition 7 at each
step as follows: We keep two numbers Ai and Bi at step i which are the lower bound and
upper bound to the min-radius R. At step 1 we have A1 = 0 and B1 = Mn. At step i, we
have Ai, Bi such that Ai < R ≤ Bi. Let Ci = Bi − kAi. If Ci is smaller than the minimum
positive edge weight, then any path of length at most Bi must have length at most kAi, so
in this case we terminate the binary search and let R′ = kAi. We now have R ≤ R′ < kR as
desired.

If Ci is not smaller than the minimum positive edge weight, let r = Ai + Ci

k+1 , and run
the algorithm given by Proposition 7. If the algorithm reports that there is a vertex v with
ϵ(v) < kr, then let Ai+1 = Ai and Bi+1 = kr = kAi + k

k+1 Ci, as we have the min-radius is
between Ai+1 and Bi+1. Note that in this case Ci+1 = Bi+1 − kAi+1 = k

k+1 Ci. Otherwise,
if the algorithm reports that every vertex has ϵ(v) ≥ r, then the min-radius is at least
Ai+1 := r = Ai + Ci

k+1 and is less than Bi+1 := Bi. In this case Ci+1 = Bi − k(Ai + Ci

k+1 ) =
k

k+1 Ci. Thus, at each step, the size of Ci shrinks by a factor of k
k+1 . Hence, for constant k,

the algorithm will in O(log Mn) steps find bounds Ai, Bi such that Ci is smaller than the
minimum positive edge weight. ◀
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2.1 Algorithm Description and Correctness
We now describe and prove the correctness of the algorithm of Proposition 7 by induction
on k. For convenience, we use k = 1 as a base case; in this case we simply run an APSP
computation. Our algorithm for k > 1 is as follows.

First, topologically sort the vertices and partition them into p consecutive sets W1, . . . Wp

of size |Wi| = n/p. The runtime-minimizing value of p will be chosen later.
For each i, run Dijkstra to and from Wi. If ϵ(Wi) > r, then we can report ϵ(w) > r for

all w ∈ Wi. Otherwise, ϵ(Wi) ≤ r. In this case, we will apply Claim 12, below, twice. Recall
that for S ⊆ W ⊆ V , LW (S) is the set of vertices in W that are to the left of all vertices in
S in the topological ordering.

▷ Claim 12. Let W ⊆ V be a topologically consecutive subset of a topologically ordered
DAG G, and let r be a parameter such that ϵ(W ) ≤ r. In O(m log2 n) time, one can find a
nonempty topologically consecutive subset S ⊆ W such that:
(a) ϵ(S) ≤ r.
(b) If w ∈ LW (S), ϵ(w) > r.
(c) If |S| > 1, all vertices s ∈ S satisfy ϵ(s) > r.

Proof. We will use a binary search argument to find S. We will induct on an index j. Let
S0 = W . Assume that Sj ⊆ W is topologically consecutive, that ϵ(Sj) ≤ r, and that for
every w ∈ LW (Sj), ϵ(w) > r. These all hold for j = 0. If Sj = {s} consists of a single vertex,
let S = Sj ; then we are done.

Otherwise, let Sj
L be the subset of Sj containing its first |Sj |/2 vertices in the topological

ordering and let Sj
R = Sj \ Sj

L. So Sj
L and Sj

R are the left and right halves of Sj , respectively;
hence both Sj

L and Sj
R are topologically consecutive. See Figure 1.

Figure 1 Sj is partitioned into two halves, Sj
L and Sj

R.

Run Dijkstra from Sj
L and from Sj

R. If either of these sets has min-eccentricity at most r,
we will continue the induction: If ϵ(Sj

L) ≤ r, we let Sj+1 = Sj
L. Then LW (Sj+1) = LW (Sj),

so for every w ∈ LW (Sj+1), ϵ(w) > r. Alternatively, if ϵ(Sj
L) > r but ϵ(Sj

R) ≤ r, we let
Sj+1 = Sj

R. Then LW (Sj+1) = LW (Sj) ∪ Sj
L, so for every w ∈ LW (Sj+1), ϵ(w) > r.

Otherwise, ϵ(Sj
L) > r and ϵ(Sj

R) > r. In this case we halt the induction and let S = Sj .
Every w ∈ LW (Sj) ∪ Sj satisfies ϵ(w) > r, so S has the properties desired.

At each step, the size of the set Sj halves, so there are at most log |W | ≤ log n iterations.
In each iteration, we perform a constant number of Dijkstras, so the runtime is O(m log2 n).

◁

For each i such that ϵ(Wi) ≤ r, let Si be the subset constructed by applying Claim 12
to the set W = Wi. For each w ∈ LWi

(Si), we report that ϵ(w) > r; this holds by
Claim 12b. If Si consists of a single vertex {s}, we can determine that for any v ∈ L(Wi),
dmin(v, s) ≤ ϵ(s) ≤ r ≤ kr, by Claim 12a. Otherwise, |Si| > 1, so we report that ϵ(s) > r for
all s ∈ Si; this holds by Claim 12c.
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Figure 2 A representation of the v → w and w → v′ paths, via the sets Si and S′
i constructed

with Claim 12. The outer subpaths are of length ≤ r, and the inner subpaths are of length ≤ (k−1)r.

Using a recursive application of our algorithm to the graph Gi = G[Wi], we can certify, for
every vertex w ∈ Wi, that ϵGi

(w) > r or that ϵGi
(w) ≤ (k − 1)r. Consider any w ∈ RWi

(Si).
If we determined that ϵGi(w) > r, we report that ϵ(w) > r; this holds since ϵ(w) ≥ ϵGi(w).
Otherwise, consider any v ∈ L(Wi). Since ϵ(Si) ≤ r, there is some s ∈ Si such that
dmin(v, s) = d(v, s) ≤ r. Then since ϵGi

(w) ≤ (k − 1)r and since w is to the right of s in
the topological ordering, we have dmin(v, w) ≤ d(v, s) + d(s, w) ≤ r + (k − 1)r = kr. See
Figure 2.

Thus, our algorithm has certified for each w ∈ Wi that ϵ(w) > r or that dmin(v, w) ≤ kr

for all v ∈ L(Wi). By a symmetric argument, we can construct the set S′
i obtained by

applying Claim 12 to the graph G with the edges reversed; see Figure 2. Then as above we
can determine for each w ∈ Wi that ϵ(w) > r or that dmin(w, v′) ≤ kr for all v′ ∈ R(Wi).
Since Wi is a topologically consecutive set, V \ Wi = L(Wi) ∪ R(Wi). So for any w ∈ Wi, if
we determine that dmin(w, v) ≤ kr for all v ∈ L(Wi) and for all v ∈ R(Wi) we report that
ϵ(w) ≤ kr; otherwise we report ϵ(w) > r.

2.2 Runtime Analysis
In this section we analyze the runtime of the algorithm of Proposition 7, and we give full
descriptions of how to prove Theorems 8-11 from Proposition 7 using binary search.

Recall that ck(τ) = 2k−2(1+τ)
2k−1(1+τ)−τ

.

▶ Lemma 13. The algorithm of Proposition 7 runs in time O(min(mn1/k log2 n,

m2k−1/(2k−1)n log2 n)) assuming APSP computations are done in Õ(mn) time.
On graphs with integer edge weights bounded by nt for t < 3 − ω, the algorithm runs

in time O(min(mn1/k log2 n, mmck(µ(t))
n log2 n)), assuming APSP computations are done in

O(n2+µ(t)) time using Zwick’s fast APSP algorithm [36].

Proof. To simultaneously analyze both versions of the algorithm, our algorithm’s runtime
will be described in terms of a placeholder τ , such that APSP computations within the
algorithm are done in O(n2+τ log n) time. To obtain the runtime bound for general weighted
DAGs, we will let τ = 1, and note ck(1) = 2k−1

2k−1 . To obtain the runtime bound for DAGs
with integer edge weights bounded by nt for t < 3 − ω, we will let τ = µ(t).

Topologically sorting the graph takes O(m log n) time which is absorbed into the final
runtime.

In order to use k = 1 as a base case, our inductive hypothesis will assume a slightly
weaker claim about the runtime: in the inductive step for k, we will assume there is an
O(min(mn1/(k−1) log2 n, n2ck−1(τ)+1 log2 n))-time algorithm which certifies for each v ∈ V

that ϵ(v) > r or that ϵ(v) ≤ (k −1)r. Note that n2ck−1 ≥ mck−1 . Then in the base case where
k = 1, APSP takes time O(min(mn log n, n2+τ log n)), satisfying the inductive hypothesis.
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Consider k > 1. Running Dijkstra to and from Wi for each i takes O(mp log n). It takes
time O(mp log2 n) to apply Claim 12 twice for each i, to construct sets Si and symmetric
sets S′

i (constructed in the same way as the sets Si but with left and right swapped, pictured
in Figure 2).

We also do recursive calls of our algorithm on at most p subgraphs, induced by sets Wi.
Below, we analyze the runtime of the recursive calls in two different ways, giving us two
upper bounds on the algorithm’s runtime.

Analysis 1. Let mi = |E(G[Wi])|; then note
∑

i mi ≤ m. For each i, the recursive
call on Wi takes time O(mi(n/p)1/(k−1) log2 n), so in total the recursive calls take time
O(m(n/p)1/(k−1) log2 n). Let p = n1/k, so that mp = m(n/p)1/(k−1). Then the runtime is
O(mn1/k log2 n).

Analysis 2. Since |Wi| = n/p, a recursive call on G[Wi] takes time O((n/p)2ck−1(τ)+1 log2 n).
We do at most p such calls, so the total runtime of the recursive calls is
O((n/p)2ck−1(τ)n log2 n). Now, we choose p so that mp = (n/p)2ck−1(τ)n. Then
m = (n/p)2ck−1(τ)+1. Recall that ck(τ) = 2k−2(1+τ)

2k−1(1+τ)−τ
and note that 2ck−1(τ) + 1 =

2k−1(1+τ)−τ
2k−2(1+τ)−τ

= 2ck−1(τ)
ck(τ) . Thus, mck(τ) = (n/p)2ck−1(τ). So the runtime of the algorithm is

O((n/p)2ck−1(τ) · n log2 n) = O(mck(τ)n log2 n). Since m = O(n2), this satisfies the inductive
hypothesis. ◀

2.3 Lower Bounds
In this section, using an essentially linear time reduction, we reduce Triangle Detection to
(2 − δ)-approximation of min-radius.

▶ Reminder of Theorem 2 . If there is a T (n, m)-time algorithm for (2−δ)-approximation of
min-radius in O(n)-node Õ(m)-edge DAGs for some δ > 0, then there is an Õ(T (n, m) + m)-
time algorithm for Triangle Detection on graphs with n nodes and m edges.

Proof. We are going to use two gadgets from previous works:
DAG gadget [3]: Given a set X of n nodes v1, . . . , vn and a constant integer parameter
t ≥ 2, the gadget creates a DAG DGt(X) with at most O(n) nodes and O(n log n) edges
such that in the topological order of DGt(X), vi < vi+1, and for any two nodes of DGt(X)
x, y where x < y in the topological order, d(x, y) ≤ t + 1.
Connectivity gadget [4]: Let X = {v1, . . . , vn}, and let X ′ = {v′

1, . . . , v′
n} be a copy of X,

where both X and X ′ are independent sets. Then we can add a connectivity gadget U(X)
along with edges from X to U(X) and from U(X) to X ′, such that |U(X)| = O(log n),
for all i ̸= j we have d(vi, v′

j) = 2, and there is no path from vi to v′
i.

Now let G = (A, B, C, EG) be an instance of Triangle Detection, with n nodes and m

edges. We create a DAG G∗ such that if G has a triangle (YES case), the min-radius of G∗ is
t + 1, and if G doesn’t have a triangle (NO case), the min-radius of G∗ is 2t. We let t be an
integer such that 2 − δ/2 < 2t

t+1 , so that a fast (2 − δ)-approximation algorithm is also a fast
( 2t

t+1 − δ/2)-approximation algorithm, and hence it can distinguish min-diameter t + 1 vs 2t.
We define G∗ as follows: G∗ has A, B, and C as part of its vertex set. Let A′

1, A′
2, . . . , A′

t+1
be copies of A. Add EG(A, B) to G∗ with edges directed from A to B, and add EG(B, C)
with edges directed from B to C. For any c ∈ C and a ∈ A, add an edge from c to a′ ∈ A′

2 if
a and c are attached in G, where a′ is the copy of a in A′

2. For each i = 1, . . . , t, connect the
copy of a in A′

i to the copy of a in A′
i+1 for all a ∈ A.
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A

B

C

A′
1 A′

2 A′
3

A′
t+1

U1 U2 Ut = U(A)
x1

xt

DAG(A) y

Figure 3 Graph G∗ created from the Triangle Detection instance G. Blue edges are edges in G,
red edges are between two nodes that are copies of the same vertex. Purple edges are part of the
connectivity gadget. Dashed lines are subpaths.

Now we add the two gadgets. Add the connectivity gadget U(A) between A and A′
1. Add

two copies of DGt(A) sharing A, and denote the union of these copies by DAG(A). Also
add a node y, and add edges from all nodes in A to y; this guarantees that the center of G∗

must be in DAG(A).
To make all nodes in A at distance t + 1 to A′

1, make t − 1 copies of U(A), U1, . . . , Ut−1.
For each i = 1, . . . , t − 1, connect the copy of u in Ui to the copy of u in Ui+1, for any
u ∈ U(A), where Ut = U(A). Add edges from all nodes in A ∪ B ∪ C to all nodes in U1.

To make all nodes in A at distance t + 1 to B and C, let x1, . . . , xt be a path of length
t − 1. Connect all nodes of A to x1, and connect xt to all nodes of B ∪ C. See Figure 3
for the construction. Note that G∗ is a DAG, with the order of sets of vertices being
DAG(A), y, x1, . . . , xt, B, C, U1, . . . , Ut−1, U(A), A′

1, . . . , A′
t+1. Moreover, G∗[A∪B ∪C ∪A2]

has m edges corresponding to the original edges of G∗, and besides those we only added
O(n log n) edges to G∗. So G∗ has O(n) nodes and O(m + n log n) edges.

We will show that if the Triangle Detection instance is a YES instance, then there is a
node a ∈ A such that ϵ(a) = t + 1. If the Triangle Detection instance is a NO instance, then
we show that for all nodes in G∗, their min-eccentricity is at least 2t.

YES case. Let abc be a triangle in G. We show that ϵ(a) = t+1. Note that dmin(a, ā) ≤ t+1
for all ā ∈ DAG(A). We already know that d(a, s) ≤ t + 1 for any s ∈ B ∪ C ∪ {x1, . . . , xt, y}.
For any u ∈ Ui for i ≤ t + 1, d(a, u) ≤ t + 1 using the path going through U1, . . . Ui−1. Since
for any z′ ∈ A′

1, there is a u ∈ U(A) that has an edge to z′, we have d(a, z′) ≤ t + 1. Now for
all z′ ∈ A′

2 where z′ is a copy of z ∈ A and z ̸= a, we have d(a, z′) = 3 through U(A) and A′
1

(using the edges of the connectivity gadget). For z = a, using the triangle edges going from A

to B to C, we have that d(a, z′) = 3. So for all z′ ∈ A′
2 ∪ . . . ∪ A′

t+1, we have d(a, z′) ≤ t + 1.

NO case. Suppose that there is no triangle in G. First, note that the min-eccentricities
of the vertices outside DAG(A) are infinite, because there is no path between them and y.
Moreover, if z ∈ DAG(A) \ A, it has a copy z′ ∈ DAG(A) \ A (in the other copy of DGt(A)),
and there is no path between z and z′. This is because this path must go through A, and
since DAG(A) consists of two copies of DGt(A) sharing A, the set of nodes in A that z has
a path to (from) is exactly the same as the set of nodes in A that z′ has a path to (from).
So there is no a ∈ A such that that z has a path to a and z′ has a path from a.

Now it remains to compute the min-eccentricities of the vertices in A. Let a ∈ A, and
let a′

t+1 ∈ A′
t+1 be the copy of a. We show that d(a, a′

t+1) = 2t. Let P be a shortest path
from a to a′

t+1. First note that any path from a to a′
t+1 must go through a′

2 ∈ A′
2, where a′

2



M. Dalirrooyfard and J. Kaufmann 60:13

is a copy of a, and we have d(a′
2, a′

t+1) = t − 1. We also know that there is no path from
a to a′

2 using the edges from A to U(A), because this path would need to contain a path
between a and a′

1 ∈ A1 in G∗[A ∪ U(A) ∪ A′
1], and from the construction of the connectivity

gadget there is no such path. If P does not use any C × A′
2 edge, then the path must go

through Ui for all i, and hence it is of length 2t. So if the min-eccentricity of a is smaller
than 2t, the path P uses a C × A′

2 edge ca′
2 for some c ∈ C. If x1 is on the ac path, then

the path goes through xi for all i, and hence it is of length 2t. Then x1 is not on the path,
so the ac path must go through B. In particular, there is a b ∈ B such that ab, bc ∈ E(G∗).
Since ca′

2 ∈ E(G∗), this implies that abc is a triangle in G, which is a contradiction. So
ϵ(a) ≥ 2t. ◀

3 Min-diameter

Our min-diameter approximation algorithm relies on Yuster and Zwick’s fast sparse matrix
multiplication algorithm. Here, we define α = max{0 ≤ r ≤ 1 | ω(1, r, 1) = 2} and β = ω−2

1−α .

▶ Theorem 14 ([35]). If A and B are n by n matrices with at most l nonzero entries each,
then A and B can be multiplied in O(l

2β
β+1 n

2−αβ
β+1 + n2+o(1)) time.3

This sparse matrix multiplication algorithm will be used to prove the following proposition.

▶ Proposition 15. There is an O(m
2β

3β+1 n
4β+2−αβ

3β+1 +o(1) +n2+o(1))-time algorithm which, given
an unweighted DAG G and a parameter D′, reports that the min-diameter D of G satisfies
D ≤ 3D′

2 or that it satisfies D > D′.

The algorithm of Proposition 15 will be described and proven to work in subsection 3.1,
and its runtime will be analyzed in Lemma 18 in subsection 3.2. Then Proposition 15 allows
us to obtain the min-diameter approximation algorithm given in Theorem 16 below.

▶ Theorem 16. There is an O(m
2β

3β+1 n
4β+2−αβ

3β+1 +o(1)+n2+o(1))-time algorithm which, given an
unweighted DAG G, outputs an estimate D0 for its min-diameter D such that D ≤ D0 < 3D

2 .

Proof. To obtain our approximation D0, we binary search over D′ in [0, n] by applying the
algorithm of Proposition 15 logarithmically many times; note that polylogarithmic factors
are no(1) so they do not affect the runtime bound. Let C be the smallest value found in the
binary search such that the algorithm reports that D ≤ 3C

2 ; then D > C − 1. Let D0 = 3C
2 .

Then D ≤ D0 < 3D
2 , as desired. ◀

Note that since α > 0.31389 [23] and ω < 2.37286 [6], we can use β ≃ 0.5435. This gives
the runtime of O(m0.414n1.522 + n2+o(1)) stated in Theorem 5.

3.1 Algorithm Description and Correctness
Our algorithm takes as input an unweighted DAG G, an integer D′, and a parameter ϵ ∈ [0, 1],
and reports that D > D′ or that D ≤ 3D′

2 . (The runtime-minimizing value of ϵ will be
determined later.)

3 To be precise, given known bounds α ≥ a, ω ≤ c, one can define b = c−2
1−a , and then equivalents of

Theorem 14 hold for any such pair of values a, b, not just for the “true” values α, β. This is implicit
in [35].
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If at any point, a BFS finds a pair of vertices at min-distance more than D′, the algorithm
reports that D > D′; hence in what follows we will assume that this does not occur. We
initially have all pairs of vertices “unmarked,” and mark the pairs for which we know that
there is a path from one to the other of length at most 3D′

2 .
The algorithm first takes two preliminary steps: it topologically sorts the graph, and it

constructs for each vertex two topologically sorted lists, one of its in-neighbors and one of its
out-neighbors.

Our algorithm will then use the greedy set cover algorithm, described in the following
lemma. This lemma, and a related randomized version, are standard techniques used in
graph distance algorithms (see for example [5, 28, 13, 3]). A proof may be found in [29].

▶ Lemma 17. Let |V | = n, let p = O(n), and let X1, . . . Xp ⊆ V be sets of size |Xi| ≥ nϵ

for ϵ ∈ [0, 1]. Then there is an O(n1+ϵ)-time algorithm which constructs a set S ⊆ V of size
Õ(n1−ϵ) such that S ∩ Xi ̸= ∅ for all i.

For any u ∈ V , if |Nout
D′/2(u)| < nϵ let Xu = Nout

D′/2(u) and otherwise let Xu be the
left-most nϵ vertices in Nout

D′/2(u). So in particular, |Xu| ≤ nϵ. We can compute Xu as
follows: we maintain a list of the ≤ nϵ left-most vertices we have found so far that are at
distance < D′/2 from u. At each step, for each vertex in the list, we consider its left-most
out-neighbor that is not yet in our set; we add the left-most such out-neighbor to the set. We
halt when there are no more such out-neighbors not in our set, or after adding nϵ vertices to
our set. Likewise, for any w ∈ V , let Yw = N in

D′/2(w) if |N in
D′/2(w)| < nϵ, and otherwise let Yw

consist of the right-most nϵ vertices in N in
D′/2(w). We can compute the sets Yw in a manner

symmetric to how we computed the sets Xu. Then we can use Lemma 17 to construct a set
S of size Õ(n1−ϵ) such that for all u having |Nout

D′/2(u)| ≥ nϵ, S ∩ Xu is nonempty, and for
all w having |N in

D′/2(w)| ≥ nϵ, S ∩ Yw is nonempty.
Run BFS into and out of every s ∈ S. We may assume that dmin(s, x) ≤ D′ for all

s ∈ S, x ∈ V .
We will construct matrices A and B with rows and columns indexed by vertices in V ,

as follows: For each vertex t ∈ Xu, let A[u, t] = 1. For each vertex t ∈ Yw, let B[t, w] = 1.
Multiply A and B using the sparse matrix multiplication algorithm of Theorem 14.

Now, we will consider any pair of vertices (u, w) where u is to the left of w, u ∈
R(N in

D′/2(w) ∩ S), and w ∈ L(Nout
D′/2(u) ∩ S). We have that (A · B)[u, w] > 0 if and only

if d(u, w) ≤ D′. Indeed, if d(u, w) ≤ D′, then there is some intermediate vertex t such
that d(u, x) ≤ D′/2 and d(x, w) ≤ D′/2. Suppose that t ̸∈ Xu. Then since Xu is defined
as the left-most nϵ vertices in Nout

D′/2(u), this implies that |Nout
D′/2(u)| > nϵ and hence that

|Xu| = nϵ. Then there is some s ∈ S ∩ Xu. Since t ̸∈ Xu, t is to the right of all vertices
in Xu, and in particular t is to the right of s. This implies t ̸∈ L(Nout

D′/2(u) ∩ S). But
since w ∈ L(Nout

D′/2(u) ∩ S) and t lies between u and w, this is a contradiction. Thus, t

must be in Xu, and by symmetry, t is in Yw. So A[u, t] = 1 and B[t, w] = 1, meaning
(A · B)[u, w] > 0. Likewise, if (A · B)[u, w] > 0, then there exists t ∈ Xu ∩ Yw such that
d(u, t) ≤ D′/2 and d(t, w) ≤ D′/2, so d(u, w) ≤ D′. Therefore, we will mark all pairs (u, w)
such that (A · B)[u, w] > 0.

Now, consider any u ∈ V and any w ̸∈ L(Nout
D′/2(u)∩S) to the right of u. We mark the pair

(u, w). If such a w exists, then there is some s ∈ Nout
D′/2(u)∩S such that s is to the left of or is

equal to w. By assumption, d(s, w) ≤ D′, so d(u, w) ≤ d(u, s) + d(s, w) ≤ D′/2 + D′ = 3D′

2 .
By a symmetric argument, for any w ∈ V and any u ̸∈ R(N in

D′/2(w) ∩ S) to the left of w, we
have that d(u, w) ≤ 3D′

2 , so again we mark any such pair (u, w). Thus, since we have assumed
that ϵ(s) ≤ 3D′

2 for all s ∈ S, the algorithm will mark all pairs of vertices u, w ∈ V except
those for which we have simultaneously that u ∈ R(N in

D′/2(w) ∩ S) and w ∈ L(Nout
D′/2(u) ∩ S).
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Finally, check whether there exists an unmarked pair (u, w). If so, report that D > D′.
Otherwise, report that D ≤ 3D′

2 .

3.2 Runtime Analysis

Here we analyze the runtime of the algorithm of Proposition 15.

▶ Lemma 18. The algorithm of Proposition 15 runs in time Õ(m
2β

3β+1 n
4β+2−αβ

3β+1 +o(1)+n2+o(1)).

Proof. Topologically sorting the graph takes O(m log n) time which is absorbed into the
final runtime. Constructing for each vertex topologically ordered lists of its in-neighbors and
out-neighbors can be done in time Õ(n2).

Computing the covering set S takes time Õ(n1+ϵ) and running BFS from its vertices
takes time O(n1−ϵm log n). Checking for each pair (u, w) whether u ∈ L(Nout

D′/2(u) ∩ S) and
w ∈ L(Nout

D′/2(u) ∩ S) can be done in Õ(n2) time.
For a fixed u, to compute Xu, we maintain a list of the at most nϵ left-most vertices

we have found that are at distance < D′/2 from u. For each vertex, we store its left-most
out-neighbor that is not yet in our set. At each step, we find the left-most such out-neighbor
of any vertex in the list; this takes time O(nϵ), and updating the list to reflect that this
out-neighbor has been added to our set takes time O(nϵ). At each step we add a vertex to
our set Xu, so there are at most O(nϵ) steps. Hence, constructing Xu for a fixed u takes
O(n2ϵ) time. Then constructing all sets Xu, Yw takes O(n1+2ϵ) time altogether.

Finally, note that there are at most nϵ 1s in each row of A, since we only set A[u, t] = 1
if t ∈ Xu. Thus, A contains at most n1+ϵ 1s. By symmetry, the same holds for B. Then
multiplying A and B can be done in time O(n(1+ϵ) 2β

β+1 + 2−αβ
β+1 +o(1) + n2+o(1)), using Yuster

and Zwick’s fast sparse matrix multiplication (Theorem 14).
Then the total runtime is:

Õ(n1−ϵm + n1+2ϵ + n(1+ϵ) 2β
β+1 + 2−αβ

β+1 +o(1) + n2+o(1))

Let γ be the largest value such that nγ = O(m). Let ϵ = αβ+(β+1)(γ−1)
3β+1 ; this value is

chosen because it sets the first and third terms in the above runtime equal (up to no(1) factors),
hence asymptotically minimizing their sum. Substituting the value of ϵ and simplifying, the
runtime of the algorithm is:

Õ(n
2β

3β+1 γ+ 4β+2−αβ
3β+1 +o(1) + n

2β+2
3β+1 γ+ β−1+2αβ

3β+1 + n2+o(1))

We note that 3β − 3αβ > 3(ω − 2) ≥ 0 > −1, giving:

4β + 2 − αβ > 2 + (β − 1 + 2αβ) ≥ 2γ + (β − 1 + 2αβ)

Thus, the first term of the above runtime dominates the second. Substituting nγ = O(m),
and noting that the polylogarithmic factors in the runtime are of order no(1), the runtime is
O(m

2β
3β+1 n

4β+2−αβ
3β+1 +o(1) + n2+o(1)), as desired. ◀

ICALP 2021
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