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Abstract
Consider a set P of points in the unit square U = [1, 0), one of them being the origin. For each point
p ∈ P you may draw an axis-aligned rectangle in U with its lower-left corner being p. What is the
maximum area such rectangles can cover without overlapping each other?

Freedman [18] posed this problem in 1969, asking whether one can always cover at least 50% of
U . Over 40 years later, Dumitrescu and Tóth [12] achieved the first constant coverage of 9.1%; since
then, no significant progress was made. While 9.1% might seem low, the authors could not find any
instance where their algorithm covers less than 50%, nourishing the hope to eventually prove a 50%
bound. While we indeed significantly raise the algorithm’s coverage to 39%, we extinguish the hope
of reaching 50% by giving points for which its coverage stays below 43.3%.

Our analysis studies the algorithm’s average and worst-case density of so-called tiles, which
represent the staircase polygons in which a point can freely choose its maximum-area rectangle. Our
approach is comparatively general and may potentially help in analyzing related algorithms.
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1 Introduction

The Lower-Left Anchored Rectangle Packing (LLARP) problem considers a finite
set P ⊆ U := [0, 1)2 of input points with (0, 0) ∈ P . The goal is to find a set of non-empty,
axis-aligned interior-disjoint rectangles (rp)p∈P with p being the lower-left corner of rp ⊆ U
and such that their total area

∑
p∈P |rp| is maximized.

This problem was first introduced by Freedman [18, Unsolved Problem 11, page 345]
in 1969. He asked the question whether, for any point set P , the rectangles can always be
chosen such that they cover at least 50% of U . It is easy to see that this is the best one can
hope for, since putting n equally spaced points along the ascending diagonal of U yields a
maximum coverable area of 1/2 + o(1) for n → ∞.

Over the years, the LLARP problem reoccurred in the form of geometric challenges [14]
and in miscellaneous books and journals about mathematical puzzles [19, 20, 21]. Still, it
took more than 40 years until the first constant lower bound was established: Dumitrescu
and Tóth [12] considered a natural greedy algorithm, called GreedyPacking, and proved
that it achieves a coverage of 9.1%.
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This caused a surge of interest in this old problem, resulting in numerous findings for
variants or special cases of the problem (see Section 1.1). Since then, no further significant
progress was made towards the original question1, and even the question whether a maximum
area covering can be found in polynomial time remains elusive.

While [12] themselves observed that “a sizable gap to the conjectured 50% remains”, they
were unable to find instances where their algorithm does not reach 50%. This led them and
others to conjecture a much better quality of their algorithm, making it a natural candidate to
answer Freedman’s question positively, albeit [12] also mentioned that “obtaining substantial
improvements probably requires new ideas”.

Our results indeed attest the greedy algorithm a much better coverage of 39%. However,
at the same time, we show that there are instances where the coverage stays below 43.3%.

1.1 Related Work
LLARP falls into the class of geometric packing problems, where a typical question is how
much of a container can be covered using a set of geometric shapes in two or more dimensions.
We concentrate on two-dimensional packing problems with rectangular containers and shapes.

Complexity of LLARP. The GreedyPacking algorithm by Dumitrescu and Tóth [12]
considers the input points step by step from top-right to bottom-left, always choosing the
maximum-area rectangle. They showed that this achieves the same worst-case coverage as an
algorithm called TilePacking. The latter partitions the unit square into staircase-shaped
tiles, one per input point, and chooses a maximal rectangle within each tile (see Section 2 for
the formal algorithm description).

While the complexity of LLARP remains unknown, [12] also showed that there is an
order of the input points for which the greedy algorithm achieves an optimal packing (albeit
of unknown value); how to find that ordering remains unclear. [7] studied the combinatorial
structure of optimal solutions, proving that the worst-case number of maximal rectangle
packings is exponential in the number of input points.

LLARP Variants. After [12], a series of papers studied special cases and variants of LLARP.
[6] allowed rectangles to be anchored in any of the four corners and showed that here the
worst-case coverage lies in [7/12, 2/3] and in [5/32, 7/27] if the rectangles are restricted to
squares. [4] showed that the union of all (possibly overlapping) squares covers at least 1/2 and
proved that finding a maximum corner-anchored square packing is NP-hard. Interestingly,
there is only one other LLARP-variant known to be NP-hard, namely if the rectangle’s
anchors lie in their center [5]. Other results consider specific classes of input points, like
points with certain ascending/descending structures [8] or points that lie on the unit square’s
boundary (for corner-anchored rectangles) [9].

Further Related Problems and Applications. Further related problems include the maxi-
mum weight independent set of rectangles problem [2, 10, 1] (which was used, e.g., in [5] to
derive a PTAS for center-anchored rectangle packings) or geometric knapsack [3, 17] and
strip packing problems [15]. In contrast to LLARP and its variants, the size of the objects
to be packed is typically part of the input and object placement is less constrained.

1 A very recent, still unpublished result slightly raised the greedy algorithm’s coverage to 10.39% [13].
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Note that LLARP-like problems are not of pure theoretical interest, but have applications
in, e.g., map labeling. Here, rectangular text labels must be placed under certain constraints
(e.g., labels might be scalable but require a fixed ratio and must be placed at a specific
anchor) within a given container. We refer to the relatively recent survey [16] for details.

1.2 Our Contribution and Techniques
We analyze the greedy algorithm TilePacking from [12] (formally described in Section 2).
From a high-level view, TilePacking partitions the unit square into staircase-shaped tiles,
each anchored at an input point, and chooses an area-maximal rectangle in each tile. A
natural way to analyze such an algorithm is to consider the tiles’ densities (the ratio between
their area-maximal rectangles and their own area) and prove a lower bound on the average
tile density (which immediately yields the covering guarantee).

Dumitrescu and Tóth [12] follow this approach by defining suitable charging areas Ct

for each tile t (trapezoids below/beneath the tile). We also use such a charging scheme,
but rely on a much more complex charging area which we refer to as a tile’s crown. But
instead of directly analyzing a tile’s charging area, we first extract the critical properties
that determine the charging scheme’s quality. This general approach (described in Section 3)
requires a bound ξ on the tile’s charging ratio |Ct|/|t| together with some simple properties
(basically a form of local convexity characterizing the average tile density).

We derive such a charging ratio bound ξs and describe simple, symmetric tiles for which
it is tight (Figures 8 and 9). We then take an arbitrary tile and show how to gradually
transform it into one of these tiles without increasing its charging ratio. This establishes
that ξs is indeed a charging ratio bound and allows us to conclude the following theorem.

▶ Theorem 1. Given any set of input points, TilePacking covers at least 39% of U .

While the aforementioned transformations to worst-case tiles require some care, we
showcase the versatility of our approach by first proving a slightly weaker bound of only 25%
(Section 4.2). Its analysis is not only much simpler but, in fact, takes us halfway to Theorem 1,
as the used charging ratio bound ξw (Proposition 11) is tight for high-density tiles and all
that remains is to refine our charging ratio bound for low-density tiles (Proposition 15).

Our second major result constructs an input instance (depicted in Figure 14) for which
TilePacking covers significantly less than 50% of the unit square.

▶ Theorem 2. There is a set P of input points for which TilePacking covers at most
43.3% of the unit square.

By the aforementioned worst-case equivalence of TilePacking and GreedyPacking,
both Theorems 1 and 2 also hold for the latter.

2 Preliminaries and Algorithm Description

Let U := [0, 1)2 denote the unit square. For a point p ∈ R2 define x(p) and y(p) as the x-
and y-coordinates of p, respectively. For two points p, p′ ∈ R2 we use the notation p ⪯ p′ to
indicate that x(p) ≤ x(p′) and y(p) ≤ y(p′). Similarly, p ≺ p′ means that x(p) < x(p′) and
y(p) < y(p′). The relations “⪰” and “≻” are defined analogously. For a set S we denote its
closure by S. If S is measurable, we use |S| to denote its area.

To simplify some geometric arguments, we use the following line-notation: We define the
line ℓ −

q ⊆ R2 as the line through q ∈ R2 of slope +1. Similarly, we define the lines ℓ−
q , ℓ

−
q ,

and ℓ −

q through q with slope 0, −1, and ∞, respectively. For lines of type R ∈ { −, − }, we

ICALP 2021
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(a) Staircase points pi, qj and rect-
angle At.

(b) A tile packing produced by
TilePacking.

t

Ct

qi

p

qi+1

T p
(q i
, q

i+
1
)

(c) A tile t, its crown Ct, and a
tower Tp(qi, qi+1).

Figure 1 Tiles, packings, crowns, and towers. In our figures, tiles are shaded light blue. Upper
and lower stair case points are shown in red and black, respectively. A dark blue rectangle represents
a (maximal) rectangle of a tile. Crowns are shown in yellow and towers are possibly labeled.

write ℓR
q < ℓR

q′ if ℓR
q′ = ℓR

q + (x, 0) (using element-wise addition) with x > 0 and say ℓR
q is

left of ℓR
q′ . Similarly, for lines of type R ∈ {− , − } we write ℓR

q < ℓR
q′ if ℓR

q′ = ℓR
q + (0, y) with

y > 0 and say ℓR
q is below ℓR

q′ . Analogous definitions apply for “>”, “≤”, and “≥”.

Input Sets in General Position. Remember the problem description from Section 1. We
say that the input set P is in general position if there are no two (different) points p, p′ ∈ P

with x(p) = x(p′), y(p) = y(p′), or x(p) + y(p) = x(p′) + y(p′). That is, no two points may
share an x- or y-coordinate and may not lie on the same diagonal of slope −1. W.l.o.g., we
restrict P to be in general position (see the full version [11] for why this is ok).

Tiles and Tile Packings. A tile t is a staircase polygon in U (see Figure 1a). More
formally, t is defined using its anchor p ∈ U and a set of k upper staircase points Γt :=
{ q1, q2, . . . , qk } ⊆ U ordered by increasing x-coordinate and such that qi ≻ p for all qi as
well as qi ̸⪯ qj for all qi ̸= qj . With this we define t = { q ∈ U | q ⪰ p ∧ ∃q′ ∈ Γt : q ≺ q′ }.
A point pi =

(
x(qi−1), y(qi)

)
is called a lower staircase point. We define At ⊆ t as an

(arbitrary) area-maximal rectangle in t and ρt := |At|/|t| as the tile’s density. For indexed
upper staircase points qi we often use the shorthands xi := x(qi) and yi := y(qi).

If p and Γt do not adhere to qi ≻ p and qi ̸⪯ qj , but only to the weaker requirements
qi ⪰ p, qi ̸⪯ qj for all qi ̸= qj), then we say that t is degenerate. We show in Lemma 13 that
we can transform such tiles into non-degenerate ones without affecting our arguments.

The hyperbola of t is ht := { (x + x(p), y + y(p)) ∈ R2
>0 | y = |At|/x }. Note that all upper

staircase points lie between p and ht. Moreover, the points from Γt ∩ht span all area-maximal
rectangles in t. If, p = (0, 0) and |At| = 1, then t is called normalized.

A tile packing of the unit square is a partition of U into tiles. In particular,
∑

t∈T |t| =
|U| = 1. We use A(T ) :=

∑
t∈T |At| to denote the area covered by choosing an area-maximal

rectangle At for each tile t (the area covered by T ).

A Greedy Tile Packing Algorithm. Let us revisit the algorithm TilePacking by Du-
mitrescu and Tóth [12]. TilePacking processes the points P from top-right to bottom-left.
More formally, it orders P = { p1, p2, . . . , pn } such that ℓ

−
pi

≥ ℓ
−
pi+1

. It then defines for each
pi ∈ P the tile ti := { q ∈ U | q ⪰ pi } \

⋃i−1
j=1 tj , yielding a tile packing T = { t1, t2, . . . , tn }.
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To build its solution to LLARP, TilePacking picks for each p ∈ P the rectangle rp as an
(arbitrary) area-maximal rectangle At ⊆ t in the tile t containing p. Thus, the total area
covered by TilePacking is A(T ). Figure 1b illustrates the resulting tile packing.

Note that, by this construction, the lower staircase points of each tile t are input points.
Moreover, as already mentioned in [12], for each tile we can define a certain exclusive area
that does not contain an input point.
▶ Observation 3. Consider the tile packing T produced by TilePacking for a set P of input
points. Fix a tile t ∈ T and let p ∈ P denote its anchor point. Then the tile’s exclusive area
Et := { q ∈ R2 | ℓ

−
q > ℓ

−
p ∧ ∃q′ ∈ Γt : q ≺ q′ } does not contain any point from P .

This observation follows by noting that any such input point p′ ∈ Et would be processed
before p by TilePacking and “shield” at least one upper staircase point q′ ∈ Γt from p,
preventing it from becoming an upper staircase point of tile t.

3 A General Approach for Lower Bounds

Here we present a general approach to derive lower bounds for the area covered by a given
tile packing T . Our approach relies on a suitable charging scheme (ct)t∈T that charges the
area of each tile t ∈ T to a charging area ct > 0.

▶ Definition 4. For a given charging scheme, we define c∗ :=
∑

t∈T ct as the total charged
area and ct/|t| as the charging ratio of tile t. We call a function ξ : (0, 1] → R≥0 a charging
ratio bound with critical density ρ∗ ∈ (0, 1] if
1. ξ is point-convex at ρ∗ with ξ′(ρ∗) < 0,
2. ξ(ρ∗) ≥ c∗ and
3. for any t ∈ T : ξ(ρt) ≤ ct/|t|.
Note that a function f : I → R,I ⊆ R is said to be point-convex at x ∈ I if f is differentiable
at x and the tangent t of f at x satisfies t(x) ≤ f(x) for all x ∈ I.

The following lemma uses a charging ratio bound to show that ρ∗ is a lower bound on A(T ).

▶ Lemma 5. Consider a tile packing T with a charging scheme (ct)t∈T together with a
charging ratio bound ξ with critical density ρ∗. Then A(T ) ≥ ρ∗.

Proof. Since ξ is point-convex in ρ∗, the tangent τ(ρ) := ξ(ρ∗) + ξ′(ρ∗) · (ρ − ρ∗) of ξ in ρ∗

satisfies τ(ρ) ≤ ξ(ρ) for all ρ ∈ (0, 1]. Using A(T ) =
∑

t∈T |At| =
∑

t∈T |t| · ρt we calculate

τ
(
A(T )

)
= τ

(∑
t∈T

|t| · ρt

)
≤
∑
t∈T

|t| · τ(ρt) ≤
∑
t∈T

|t| · ξ(ρt) ≤
∑
t∈T

|t| · ct

|t|
= c∗ ≤ ξ(ρ∗), (1)

where the second inequality follows from applying Jensen’s Inequality to the convex function
τ . Combining τ

(
A(T )

)
= ξ(ρ∗)+ ξ′(ρ∗) ·

(
A(T )−ρ∗) with Inequality 1 and rearranging gives

ξ′(ρ∗) · A(T ) ≤ ξ(ρ∗) · ρ∗, which yields the desired result after dividing by ξ(ρ∗) < 0. ◀

4 Charging Scheme and Weak Covering Guarantee

This section introduces the charging scheme we will use to derive our lower bounds for
TilePacking’s coverage (via the approach presented in Section 3). Then we derive a weak
charging ratio bound ξw, as described in Section 3. While comparatively simple, this already
yields that TilePacking covers at least a quarter of the unit square, almost tripling the
original guarantee from [12]. Section 5 will refine ξw to derive our main result (Theorem 1).

ICALP 2021
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Figure 2 |Tp(q1, q2)| is computed via
the catheti of the blue triangles.

q′1
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q2

q′2
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′
1
, q
′
2
)

Tp(q1, q2)

p′

p

Et p∗

p′∗

Figure 3 Example for Lemma 8. The shown tower
overlap has p′

∗ ∈ Et, violating t’s exclusive area.

4.1 Charging Scheme
Given a tile packing T constructed by TilePacking, our charging scheme defines an area Ct

for each tile t ∈ T and charges t’s area to ct := |Ct|. We first explain how Ct is constructed
from t. Afterward, we prove useful properties about these areas and their relation to T .

Construction of Ct. Consider three points p, q1 = (x1, y1), q2 = (x2, y2) ∈ R2 with q1, q2 ⪰
p, x1 ≤ x2, and y1 ≥ y2. The tower Tp(q1, q2) with base point p and peak p∗ = (x1, y2) is
the interior of the rectangle enclosed by the lines ℓ

−
p (the tower’s base), ℓ −

q1
(the tower’s left

side), ℓ −
q2

(the tower’s right side), and ℓ
−
p∗

(the tower’s top). If the subscript p is omitted, the
base point is assumed to be the origin (0, 0).

For a tile t with anchor p and Γt = { q1, q2, . . . , qk } being ordered by increasing
x-coordinate, we define the charging area as the disjoint union of towers, i.e., Ct :=⋃k−1

i=1 Tp(qi, qi+1). We refer to Ct as the crown of tile t. (See Figure 1c.)

The width and height of a tower Tp(q1, q2) correspond to the side lengths of isosceles
triangles (see Figure 2), which yields a formula for |Tp(q1, q2)|. By taking derivatives, we get
formulas for the change of the tower’s area when moving q1 or q2 horizontally or vertically.
▶ Observation 6. Consider Tp(q1, q2) with qj − p = (xj , yj), j ∈ { 1, 2 }. Let w2 := x2 − x1,
and h1 := y1 − y2. Then |Tp(q1, q2)| = (x1 + y2) · (w2 + h1)/2.
▶ Observation 7. Consider Tp(q1, q2) with qj − p = (xj , yj), j ∈ { 1, 2 }. Let w2 := x2 − x1,
and h1 := y1 − y2. Fix α ∈ R and consider the change of |Tp(q1, q2)| if either q1 or q2 are
moved horizontally or vertically as a linear function of ε:
(a) If either q1(ε) := q1+(0, α·ε) or q2(ε) := q2+(α·ε, 0), then ∂|Tp(q1, q2)|/∂ε = α·(x1+y2)/2

and ∂2|Tp(q1, q2)|/∂ε2 = 0.
(b) If either q1(ε) := q1 + (α · ε, 0) or q2(ε) := q2 + (0, α · ε), then ∂|Tp(q1, q2)|/∂ε =

α ·
(
w2 + h1 − (x1 + y2)

)
/2 and ∂2|Tp(q1, q2)|/∂ε2 = −α2.

Properties of the Charging Scheme. The following results capture basic properties of our
charging scheme. First, we show that the defined crowns are pairwise disjoint.

▶ Lemma 8. Consider the tile packing T produced by algorithm TilePacking for a set P

of input points. For any two different tiles t, t′ ∈ T , we have Ct ∩ Ct′ = ∅.
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Proof. Fix t, t′ ∈ T and let p, p′ ∈ P denote their respective anchors. W.l.o.g., assume
ℓ
−
p > ℓ

−
p′ , such that TilePacking processes p before p′. As crowns consist of towers, it is

sufficient to show Tp(q1, q2) ∩ Tp′(q′
1, q′

2) = ∅ for consecutive q1, q2 ∈ Γt and q′
1, q′

2 ∈ Γt′ . Let
p∗, p′

∗ ∈ P be the respective peaks of these towers. W.l.o.g., we assume ℓ −
p∗

< ℓ −
p′

∗
(p∗ lies left

of ℓ −
p′

∗
); the other case follows symmetrically.

If ℓ
−
p′

∗
< ℓ

−
p , the towers are separated (the top of Tp′(q′

1, q′
2) lies below the base of Tp(q1, q2))

and cannot intersect. So assume ℓ
−
p′

∗
> ℓ

−
p . Then we cannot have p′

∗ ≺ q2, since this would
imply that p′

∗ lies in the exclusive area of t, violating Observation 3 (see Figure 3).
Let ∆y := q′

1 − p′
∗ and note that x(∆y) = 0. Define q̃1 := p∗ − ∆y and note that p′

∗ ̸≻ q̃1,
since otherwise q′

1 = p′
∗ + ∆y ≻ q̃1 + ∆y = p∗, which (together with ℓ

−
p∗

> ℓ
−
p > ℓ

−
p′) would

mean that p∗ lies in the exclusive area of t′ (again violating Observation 3).
So ℓ −

p′
∗

> ℓ −
p∗

, p′
∗ ̸≺ q2, and p′

∗ ̸≻ q̃1. Together, these imply x(p′
∗) > x(q2) and y(p′

∗) < y(q̃1),
which in turn imply ℓ −

p′
∗

> ℓ −
q2−∆y

. But then, the towers are separated, since ℓ −
q′

1
= ℓ −

p′
∗+∆y

>

ℓ −
q2−∆y+∆y

= ℓ −
q2

(Tp(q1, q2)’s right side lies left of Tp′(q′
1, q′

2)’s left side). ◀

The next lemma’s proof shows that all crowns lie inside a pentagon formed by U and two
isosceles triangles left and below of U (see Figure 4). With Lemma 8 this implies that the
total charging area is bounded by the pentagon’s area.

▶ Lemma 9. Consider the tile packing T produced by algorithm TilePacking for a set P

of input points. The total charging area of T is c∗ ≤ 3/2. Moreover, this bound is tight, since
for arbitrarily small ε > 0 there are input points Pε with c∗ ≥ 3/2 − ε.

Proof. Define the points SW := (0, 0), NW := (0, 1), and SE := (1, 0). Let D denote the
pentagon enclosed by the lines ℓ

−
SW, ℓ −

NW, ℓ −
SE, ℓ−

NW, and ℓ −

SE (see Figure 4). Since |D| = 3/2
and using Lemma 8, it is sufficient to show that Ct ⊆ D for any t ∈ T . For this, in turn, it is
sufficient to show that any tower Tp(q1, q2) of Ct lies in D.

Fix such a tower Tp(q1, q2). Since p ⪰ SW, we have ℓ
−
p ≥ ℓ

−
SW (the base of Tp(q1, q2) lies

above ℓ
−
SW). Similarly, since q1, q2 ∈ U ⊆ D, we have ℓ −

q1
≥ ℓ −

NW (the left side of Tp(q1, q2)
lies right of the left side of D) and ℓ −

q2
≤ ℓ −

SE (the right side of Tp(q1, q2) lies left of the right
side of D). Finally, the topmost point q1 ∈ U of Tp(q1, q2) lies below ℓ−

NW and the rightmost
point q2 ∈ U of Tp(q1, q2) lies to the left of ℓ −

SE . Together, we get Tp(q1, q2) ⊆ D.
For the tightness of the bound, choose δ > 0, 1/δ ∈ N and define P δ = { SW } ∪

{ (k · δ, 1 − k · δ2), (1 − k · δ2, k · δ) | k ∈ { 1, 2, . . . , 1/δ − 1 } }. As illustrated in Figure 4, the
crown Ct of tile t with anchor SW converges towards D as δ → 0. Therefore, for each ε > 0,
we can choose δ such that, for point set Pε := P δ, we have c∗ ≥ |Ct| ≥ 3/2 − ε. ◀

4.2 Weak Covering Guarantee for Greedy Tile Packings
This section proves the following, slightly weaker version of Theorem 1:

▶ Theorem 10. For any set of input points, TilePacking covers at least 25% of U .

Proving this not only serves as a warm-up to illustrate our approach before proving our main
result, but – as we will see in Section 5 – brings us halfway towards proving Theorem 1.

So consider a tile packing T produced by algorithm TilePacking for some set P of
input points. To prove Theorem 10, we follow the approach outlined in Section 3, using the
charging scheme from Section 4.1. That is, the area of t ∈ T is charged to ct = |Ct|, where
Ct represents the crown of t. To this end, define ρ∗ := 1/4 and the weak charging ratio bound

ξw : (0, 1] → R≥0, ξw(ρ) := 2 · (1 − ρ).

ICALP 2021
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Figure 4 Pentagon D and
point set Pε from Lemma 9.
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Figure 5 Removing superfluous points from Γt reduces |Ct|
by the rectangle between ℓ −

qi
, ℓ −

qi+1 , ℓ
−
qi

, and ℓ
−
pi−1 .

As a linear function, ξw is trivially point-convex in ρ∗. Moreover, ξw(ρ∗) = 3/2 and
thus, by Lemma 9, ξw(ρ∗) ≥ c∗. In the remainder of this section we prove the following
Proposition 11, stating that ξw represents a lower bound on the charging ratio of any t ∈ T .
Once this is proven, Theorem 10 follows immediately by applying Lemma 5.

▶ Proposition 11. For any tile t we have ct/|t| ≥ ξw(ρt).

A Lower Bound on the Charging Ratio. To prove that ξw bounds from below the charging
ratio ct/|t| of any tile t ∈ T , we gradually transform t into a “simpler” tile t̃. Our transfor-
mations ensure ρt̃ = ρt and ct̃/|t̃| ≤ ct/|t|. Eventually, t̃ will be simple enough to directly
prove ct̃/|t̃| ≥ ξw(ρt̃). The following notation expresses progress via such a transformation:

t̃ ⪯ t :⇔ ρt̃ = ρt and ct̃/|t̃| ≤ ct/|t|.

As a simple example, note that both a tile’s density and charging-ratio are invariant
under translation and concentric scaling w.r.t. its anchor. This gives rise to the following
transformation, which allows us to restrict our analysis to normalized tiles.
▶ Observation 12. Translate a tile t such that it is anchored in the origin, then scale it by
1/|At| around the origin. We call the resulting tile t̃ normalized. Then t̃ ⪯ t.

Consider a tile t with anchor p. A transformation may move one of t’s upper staircase
points to the same x- or y-coordinate as another point from Γt ∪{ p }, resulting in a degenerate
tile with superfluous points in Γt (see Section 2). The next lemma states that removing such
superfluous points maintains an equal tile with a smaller crown.

▶ Lemma 13. Consider a degenerate tile t. The tile t̃ with same anchor p but Γt̃ :=
{ q ∈ Γt | q ≻ p and ∄q′ ∈ Γt : q ⪯ q′ } covers the same points, is non-degenerate, and t̃ ⪯ t.

Proof. Order Γt = { q1, q2, . . . , qk } by non-decreasing x-coordinate and let q0 = qk+1 = p.
W.l.o.g. assume there is some i ∈ { 1, . . . , k } with y(qi) = y(qi+1); the case of identical
x-coordinates follows analogously. Let t̃ denote the (possibly still degenerate) tile with anchor
p and Γt̃ = Γt \ { qi }. Note that { q ∈ U | q ⪰ p ∧ q ≺ qi } ⊆ { q ∈ U | q ⪰ p ∧ q ≺ qi+1 },
which implies t̃ = t and, thus, ρt = ρt̃. Removing qi affects the towers Tp(qi, qi+1) with peak
qi (only if i < k) and Tp(qi−1, qi) with peak pi−1. Figure 5 illustrates the situation.

We now show that ct̃ ≤ ct, such that t̃ ⪯ t; the lemma’s statement then follows by
iteration. If i = k, then ct̃ = ct − |T (qi−1, qi)| ≤ ct. So assume i < k. Then ct̃ = ct − |□| ≤ ct,
where □ is the rectangle enclosed by the lines ℓ −

qi
, ℓ −

qi+1
, ℓ

−
qi

, and ℓ
−
pi−1

(see Figure 5). ◀
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Figure 6 Moving inner points in Lemma 14.
Note that αj > 0 and αi < 0 in this case.
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Figure 7 Notation for Proposition 11 with
l = 3 and m = 5.

Note that ht ∩ Γt consists of the upper staircase points that form maximum rectangles in
the tile. We now prove that we can transform t such that at most one q ∈ Γt lies not on ht.

▶ Lemma 14. A normalized tile t can be transformed into a tile t̃ ⪯ t with |Γt̃ \ ht̃| ≤ 1.

Proof. Assume |Γt \ ht| > 1 and order Γt = { q1, q2, . . . , qk } by increasing x-coordinate. To
simplify border cases, define q0 = q1 and qk+1 = qk. Choose qi, qj ∈ Γt \ ht with i < j.
Consider the transformation qi(ε) := qi +(0, αi ·ε) and qj(ε) := qj +(αj ·ε, 0) with αi, αj ∈ R.
Then the tile and crown areas become functions t(ε) and ct(ε) of ε. We show that there are
non-zero αi, αj such that t(ε) and, thus, ρt(ε) remain constant and ct(ε) does not increase.
Eventually, this results in a tile t̃ ⪯ t that has an additional point on ht or that has a
degenerate staircase point which we can remove by Lemma 13. In both cases |Γt \ ht| is
decreased and the lemma follows by iteration. Figure 6 illustrates the transformation.

The transformation changes only the towers T (qi−1, qi), T (qi, qi+1), T (qj−1, qj), and
T (qj , qj+1). (i < j ensures that these changes do not interfere with each other.) For
l ∈ { 0, 1, . . . , k + 1 } let ql = (xl, yl) and define wl := xl − xl−1 for l ̸= 0 and hl := yl − yl+1
for l ̸= k + 1. Then the transformation changes the area of the tile according to ∂t(ε)/∂ε =
αi · wi + αj · hj . To keep |t| constant, we make this zero by setting αj = −αi · wi/hj .

It remains to find a non-zero αi such that ct(ε) is non-increasing in ε. For this let Ti(ε) :=
|T (qi−1, qi)| + |T (qi, qi+1)| and define Tj(ε) analogously. By Observation 7, ∂2Tl(ε)/∂ε2 =
−α2

l for l ∈ { i, j }. This yields ∂2ct(ε)/∂ε2 = −α2
i − α2

j < −α2
i , which is a negative constant.

This allows us to choose αi ∈ { −1, +1 } such that ct(ε) is non-increasing. ◀

With these results, we are ready to prove our first covering guarantee for TilePacking.

Proof of Proposition 11. Let t be a tile. By Observation 12 and Lemma 14, we can assume
that t is normalized and |Γt \ ht| ≤ 1. If |Γt \ ht| = 1, let q0 ∈ Γt \ ht, otherwise let q0 ∈ Γt

arbitrary. Relabel the points Γt = { q−l, . . . , qm } in increasing order of their x-coordinates.
To simplify border cases, let q−l−1 = q−l and qm+1 = qm. Let further wi := xi − xi−1
for i ̸= l − 1 and hi := yi − yi+1 for i ̸= m + 1 (using qi = (xi, yi)). For i = −l, . . . , m

inductively define the rectangles Ri := { q ∈ t | q ≺ qi } \
⋃

|j|<|i| Rj . Finally, for i = 1, . . . , m,
let Ti := T (qi−1, qi); for i = −l, . . . , −1 let Ti := T (qi, qi+1). See Figure 7 for an illustration.
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Note that ct =
∑−1

i=−l|Ti| +
∑m

i=1|Ti| and |t| =
∑m

j=−l|Rj |. We will first show that
for i ∈ { −l, . . . , m } \ { −1, 0, 1 } we have |Ti| ≥ 2|Ri|. Afterward, we show |T−1| + |T1| ≥
2(|R−1| + |R0| + |R1| − 1). With these inequalities and since ρt = |At|/|t| = 1/|t| due to the
normalization, the desired statement follows via

ct =
−1∑

i=−l

|Ti| +
m∑

i=1
|Ti| ≥

m∑
i=−l

2|Ri| − 2 = 2|t| − 2 = 2|t| · (1 − ρt) = |t| · ξw(ρt).

We now show the above bounds, starting with |Ti| ≥ 2|Ri| for |i| ≥ 2. W.l.o.g. we assume
i ≥ 2; the case i ≤ −2 follows by symmetry. Note that i ≥ 2 implies qi, qi−1 ∈ ht and thus
(since t is normalized) yj = 1/xj for j ∈ { i − 1, i }. This yields xi−1/yi = xi−1 · xi as well
as wi/hi−1 = (xi − xi−1)/(yi−1 − yi) = xi−1 · xi. We use these identities together with
|Ri| = wi · yi to bound the formula for |Ti| from Observation 6:

|Ti| = 1/2 · (xi−1 + yi)(wi + hi−1) = wi · yi · 1/2 · (1 + xi−1/yi)(1 + hi−1/wi)

= |Ri| · 1
2 · (1 + xi−1 · xi) ·

(
1 + 1

xi−1 · xi

)
= |Ri| · 1

2 · (1 + xi−1 · xi)2

xi−1 · xi
≥ 2|Ri|,

using that the function x 7→ (1 + x)2
/x over [0, ∞) has a minimum value of 4 at x = 1.

It remains to show that |T−1| + |T1| ≥ 2(|R−1| + |R−1| + |R0| − 1). Note that, if m = 0,
we have qm+1 = qm by definition and |R1| = 0 and |T1| = 0 hold. Similarly, if l = 0 then
|R−1| = 0 and |T−1| = 0. We assume that l > 0 or m > 0, as otherwise ξw(ρt) = ξw(1) = 0
and the proposition becomes trivial. W.l.o.g. let m > 0; the other case follows symmetrically.

For α ∈ { −1, +1 } (which we fix later) and ε ≥ 0 define the transformation y0(ε) :=
y0 + α · ε, where ε is chosen such that y0(ε) ∈ [y1, 1/x0] 2, which moves q0 either up- or
downward, depending on α. Thus, with f(ε) := |T−1| + |T1| − 2(|R−1| + |R1| + |R0| − 1),
where the Ti and Ri depend on y0 and thus ε, our goal becomes to prove f(0) ≥ 0. To
this end, consider how f(ε) changes with ε. The rectangles |Rj | (j ∈ { −1, 0, 1 }) change
linearly or remain constant. By Observation 7, ∂2|T1|/∂ε2 = 0. Similarly, if l > 0 we have
∂2|T−1|/∂ε2 = −α2 = −1 by Observation 7, and if l = 0 we have ∂2|T−1|/∂ε2 = 0 (because
|T−1| remains zero). Thus, in all cases ∂2f(ε)/∂ε2 ≤ 0, meaning its minimum fmin lies at
one of the borders, where either y0 = y1 or y0 = 1/x0. We consider both possibilities and
show that each time fmin ≥ 0 (which finishes the proof, since f(0) ≥ fmin ≥ 0).

If at fmin we have y0 = 1/x0, let thigh denote the corresponding tile. Note that q0 lies
on the hyperbola ht. But then |R0| = 1 and, thus, fmin = |T−1| + |T1| − 2(|R−1| + |R1|).
Moreover, with q0 ∈ ht we can apply the calculations for |i| > 1 to get |T−1| ≥ 2|R−1| and
|T1| ≥ 2|R1|, such that fmin ≥ 0.

So assume that at fmin we have y0 = y1 and let tlow denote the corresponding tile.
Note that R0 and R1 form a rectangle from the origin to the point q1 on ht, such that
|R0| + |R1| = 1. Thus, fmin = |T−1| + |T1| − 2|R−1|. Define the (degenerate) tile t′ with
Γt′ = { q−1, q0, q1 } and anchor p, such that its crown area is ct′ = |T1| + |T2|. By Lemma 13,
for the (non-degenerate) tile t̃′ with Γt̃′ = Γt′ \ { q0 } we have ct̃′ ≤ ct′ . The crown ct̃′ consists
of the single tower T (q−1, q1). Since q−1, q1 ∈ ht, we can apply the calculations for |i| > 1 to
get ct̃′ = |T (q−1, q1)| ≥ 2|R−1|. Putting everything together we get

fmin = |T−1| + |T1| − 2|R−1| = ct′ − 2|R−1| ≥ ct̃′ − 2|R−1| ≥ 0. ◀

2 These boundaries ensure that the tile remains valid and normalized. Note that if l = 0, moving q0
upward also causes the dummy point q−1 to move upward, such that |R−1| and |T−1| remain zero.
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5 Strong Covering Guarantee for Greedy Tile Packings

This section proves our strong covering guarantee for TilePacking, namely Theorem 1. We
use the same approach as for our weak covering guarantee from Section 4.2 but derive a
stronger charging ratio bound. More exactly, instead of ξw we use

ξs : (0, 1] → R≥0, ξs(ρ) :=
{

1 − ρ ·
(
1 + sinh(1 − 1/ρ)

)
if ρ ≤ 1/2

ξw(ρ) = 2 · (1 − ρ) if ρ > 1/2.
(2)

Most properties required for our approach from Definition 4 are easily verified for ξs

(whose function graph can be seen in Figure 12). Indeed, for ρ∗ := ξ−1
s (3/2) ≈ 0.3901, we

have ∂ξs(ρ)/∂ρ|ρ=ρ∗ ≈ −5.1 < 0. Moreover, ξs is point-convex at ρ∗, since it is convex on
(0, 1/2] and on (1/2, 1] its tangent tξ at ρ∗ lies below ξs (tξ is steeper and tξ(1/2) ≈ 0.94 <

1 = ξw(1/2)). Also, by choice of ρ∗ and by Lemma 9, we have ξs(ρ∗) = 3/2 ≥ c∗ for the total
charged area c∗ of a tile packing T produced by algorithm TilePacking.

The following proposition states the remaining required property of Definition 4.

▶ Proposition 15. For any tile t we have ct/|t| ≥ ξs(ρt) and this bound is tight.

With this, Theorem 1 follows by applying Lemma 5. The remainder of this section outlines
the analysis of this proposition.

Transformation to Worst-case Tiles. For tiles t of density ρt larger than 1/2, Proposition 15
follows from Proposition 11, since in this regime ξs(ρt) = ξw(ρt). The tightness for such
high densities follows since for any ρt ∈ (1/2, 1] there is a (symmetric) step tile t = tl(ρt) of
density ρt (depicted in Figure 9) with ct/|t| = ξs(ρt). Thus, we restrict our further study to
tiles of density at most 1/2. We will show how to gradually transform any such tile t into
a (symmetric) hyperbola tile th(ρt) ⪯ t (depicted in Figure 8). Again, the tightness follows
from the existence of a tile t = th(ρt) with ct/|t| = ξs(ρt).

Before we outline the transformation process into such worst-case low-density tiles, we
need to cope with the fact that th(ρt) is not a staircase polygon and, thus, not captured by
our tile definition. However, one can see th(ρt) as the result of defining Γt as k equally spaced
points from the hyperbola { (x, y) ∈ [0, s) | y = 1/x } and taking the limit k → ∞. The next
paragraph formalizes this intuition by introducing generalized tiles and some related notions.

Generalized Tiles and Crown Contribution. A generalized tile t is defined equivalently to
"normal" tiles, with the only difference that Γt may be infinite. All other tile definitions (e.g.,
point set definition of t, maximum-area rectangle At, or density ρt) stay intact.

From now on the term tile always refers to a normalized and non-degenerate generalized
tile. (Note that the points which cause a generalized tile to be degenerate, cannot reside in a
slide. As such Observation 12 and Lemma 13 easily transfer to generalized tiles.) We require
that the x-coordinates of Γt can be partitioned into k inclusion-wise maximal, closed intervals
I1, I2, . . . , Ik, ordered by increasing x-coordinates. For i ∈ { 1, 2, . . . , k } let q−

i , q+
i ∈ Γt

denote the points realizing the left- and rightmost x-coordinate of Ii, respectively. Note that
Ii may be a point interval, such that q−

i = q+
i . A section of Γt is a tuple as follows:

a step (q+
i , q−

i+1), if q+
i , q−

i+1 ∈ ht;
a slide (q−

i , q+
i ), if q−

i ̸= q+
i and { q ∈ Γt | x(q) ∈ Ii } ⊆ ht;

a double step (q+
i−1, q−

i , q−
i+1), if q+

i−1, q−
i+1 ∈ ht and q−

i = q+
i /∈ ht; or

the corners (q1, q2), if q1 /∈ ht and q2 ∈ ht as well as (qk−1, qk) if qk /∈ ht and qk−1 ∈ ht.
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w

h h(x) = 1
x

|t| = 1
ρt

Figure 8 Symmetric (w = h)
low-density tile t = th(ρt) for
which ξs is tight.
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Figure 9 Symmetric (w = h)
high-density tile t = tl(ρt) for
which ξs is tight.
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Figure 10 Crown contribu-
tion of a slide.

We further define t(xL, xR) = { (x, y) ∈ t | xL ≤ x ≤ xR }. After applying Lemma 14, all
tiles resulting from our transformations can be described as a sequence of such sections.
Figure 13 illustrates generalized tiles and the different sections.

Note that a slide can be understood as the limit case of k → ∞ equally spaced upper
staircase points. As the slide is the only part of a generalized tile which differs from normal
tiles, our charging scheme from Section 4.1 naturally extends to generalized tiles. This yields
the following tower complement for slides:

▶ Definition 16. For a tile t with a slide (q1, q2), rotate the hyperbola by π/4 around the
anchor of t, to obtain the rotated hyperbola hr(x) =

√
x2 + 2. The area under hr between

q1 and q2 will be denoted as H(q1, q2).

▶ Observation 17. For a tile t with slide (q1, q2) we get |H(q1, q2)| :=
[ 1

4 · (z2 − z−2) + ln z
]x2

x1
.

Proof. |H(q1, q2)| can be calculated via integration: The indefinite integral under hr(x) =√
x2 + 2 is Hr(x) :=

∫
hr(x) dx = x/2 ·

√
2 + x2 + arsinh (x/

√
2), and for x = (z − 1/z)/

√
2,

we get Hr((z −1/z)/
√

2) = 1/4 ·(z2 −z−2)+ln z, where z = x1 or z = x2 (see Figure 10). ◀

Overview of the Transformation Process.3 Figure 11 gives an overview of how we gradually
transform an arbitrary tile t with density ρt ≤ 1/2 into a worst-case hyperbola tile th(ρt).
Starting with an arbitrary tile t (I), Lemma 18 either enforces Γt ⊆ ht or Γt \ ht = { q }.

▶ Lemma 18. Let t be a tile. Then either there exists a tile t̃ ⪯ t with Γt̃ ⊂ ht̃, or t contains
a double step (q1, q2) with x1 ≤ 1 ≤ x2 or a corner (q1, q2) with x1 < 1 (if q2 /∈ ht, x2 > 1 if
q1 /∈ ht).

This lemma yields two different cases: In the first case (II), t contains a double-step
(q1, q, q2) and we can enforce x(q1) ≤ 1 ≤ x(q2). In the second case (III), q is part of a corner
where x(q′) ≥ 1 or x(q′) ≤ 1 can be enforced for corners (q, q′) or (q′, q), respectively. (The
case where Γt̃ ⊂ ht̃ will be dealt with later, in case (VIII).)

The next step from cases (II)/(III) to cases (IV)/(V) is based on smaller transforma-
tion/property statements about adjacent sections:

3 Due to space limitations, the proofs for the following Lemmas 18–29 can only be found in the arXiv
version of this paper (see [11]).
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▶ Lemma 19. Let t be a tile, q1, q2, q3 ∈ Γt the leftmost three points (in order) such that
q1 = q2 or (q1, q2) is a step; and q2 = q3 or (q2, q3) is a slide. Then these sections can be
replaced by up to one step s = (q1, q2) and up to one slide h = (q2, q3) such that
1. If s exists, then x1x2 ≥ 1/

√
2

2. If h exists, then x1x2 ≤ 1/
√

2
giving us a tile t̃ ⪯ t.

Intuitively Lemma 19 states that the leftmost sections will only be a step and hyperbola
when they satisfy precise properties and otherwise the tile can be transformed such that one
of the sections vanished.

▶ Lemma 20. Let t be a tile with a step (q1, q2) and a slide (q2, q3). If x1 ≥ 1/x3, then the
two sections can be replaced by a slide (q1, q4) and a step (q4, q2), resulting in a tile t̃ ⪯ t.

Lemma 20 describes when “swapping” steps with an adjacent slide lowers ct.

▶ Lemma 21. Let t be a tile and (q1, q2),(q2, q3) be steps with x3 ≤ 1. Then the two steps
can be replaced with a step (q1, q4) and a slide (q4, q3), resulting in a tile t̃ ⪯ t.

(I)

(II)

(III)

(IV)

(V)

(IX)(VI) (VIII)

(X)

(VII)

Lemma 22

Lemma 22

Lemma 18

Lemma 24

Lemma 23

L
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m
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L
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m
a
27

L
em

m
a
30

L
em

m
a
29

Lemma 25

Figure 11 Transforming low-density tiles t with ρt ≤ 1/2 to a corresponding worst-case hyperbola
tile th(s) ⪯ t. For the normalized tiles in Cases (II) and later, the blue dot marks the point (1, 1).
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Lemma 21 describes when “merging” two adjacent steps into a step and adjacent slide
lowers ct. Note that each of these lemmas hold up to reflection on the x=y axis, due to
symmetry. Using the transformations/properties in these lemmas we can show the following
Lemma 22, which allows us to only consider tiles containing a single step.

▶ Lemma 22. Consider a tile t with ρt ≤ 1/2. Then there exists a tile t̃ ⪯ t, containing at
most one step. Furthermore, if Γt ⊆ ht then Γt̃ ⊆ ht̃.

Now down to only one step, the following two lemmas (Lemmas 23 and 24) show that we
can transform the tiles from (IV) and (V), respectively, such that either Γt ⊆ ht or t contains
no slides:

▶ Lemma 23. Let t be a tile with a double step (q1, q2, q3) and a slide (q3, q4). We can
replace both sections by a double step (q1, q4) or a sequence of steps and slides between q1
and q4, obtaining a tile t′ ⪯ t.

▶ Lemma 24. Let t be a tile with a slide (q1, q2) and a corner (q2, q3). We can replace both
sections by a corner (q1, q′

2) or a sequence of steps and slides between q1 and q′
2, obtaining a

tile t′ ⪯ t.

These lemmas, together with the following Lemma 25, can then be used to reduce the
remaining cases to those illustrated in (VI) to (IX):

▶ Lemma 25. Let t be a tile with ρt ≤ 1/2, then there exists a tile t̃ ⪯ t with Γt̃ ⊆ ht̃ or t̃

consists of a step and a corner or a double step and possibly a step.

The following Lemma 26 allows us to restrict ourselves to tiles t with ρt = 1/2 or where
all points in Γt are on t’s hyperbola, and is essential to proving the subsequent lemmas.

▶ Lemma 26. Let t be a tile with ρt ≤ 1/2. Then there exists a tile t̃ with Γt̃ ⊆ ht̃ or
ρt̃ = 1/2 such that, if |Ct̃|/|t̃| ≥ ξs(ρt̃) then also |Ct|/|t| ≥ ξs(ρt).

For each of the four cases we then separately show th(ρ) ⪯ t (Lemmas 27–30).

ξs

ρ0.5ρ∗

τξ

1.5

0.0

Figure 12 The charging ratio bound ξs from
Section 5 and its tangent τξ at ρ∗ = ξ−1

s (3/2).
This illustrates that ξs is point-convex at ρ∗.

I1 I2 I3 I4 I5

Figure 13 A generalized tile with four sec-
tions formed by the five intervals I1 to I5 (of
which only I4 is a proper interval). They form a
step (between I1 and I2), a double-step (between
I2 and I4), a slide (I4), and a corner (I4, I5).
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▶ Lemma 27. Let t be a tile with ρt ≤ 1/2 consisting only of a double-step (q1, q2, q3). Then
|Ct|/|t| ≥ ξs(ρt).

▶ Lemma 28. Let t be a tile with ρt ≤ 1/2 consisting only of a double step (q1, q2, q3) and a
step (q3, q4). Then |Ct|/|t| ≥ ξs(ρt)

▶ Lemma 29. Let t be a tile with ρt ≤ 1/2 consisting only of a step (q1, q2) where x1x2 ≥ 1/
√

2
and a corner (q2, q3). Then there exists a tile t′ ⪯ t only consisting of two steps.

▶ Lemma 30. Let t be a tile with ρt ≤ 1/2 with Γt ⊆ ht. Then |Ct|/|t| ≥ ξs(ρt).

Proof. By Lemma 22 we can assume that t contains at most one step. Since Γt ⊆ ht, t can
only consist of steps and slides. Then t must contain at least one slide, as otherwise t consists
of exactly one step, contradicting ρt ≤ 1/2. Using Lemma 20, we can then ensure that t has at
most one slide: Assuming this is not the case, t has a slide (q1, q2), a step (q2, q3) and another
slide (q3, q4). Using the constraints of Lemma 20 we get x1 > 1/x3 > 1/x4 > x2 > x1, a
contradiction, so t has exactly one slide and possibly one step.

It is enough to show ∆ := |t|ξs(ρt) − |Ct| < 0, since the statement follows by rearranging.
First assume that t’s only section is a slide (q1, q2). Then |t| = |t(0, x1)| + |t(x1, x2)| =
1 + ln(x2/x1), and we get:

∆ = |t|ξs(ρt) − |H(q1, q2)| = |t| − 1 + sinh(|t| − 1) −
[
1/4 · (z2 − z−2) + ln z

]x2

x1

=
(
x−2

2 − x2
2 + x2

1 − x−2
1
)
/4 + sinh(|t| − 1) + |t| − (1 + ln(x2/x1))

=
(
x−2

2 − x2
2 + x2

1 − x−2
1
)
/4 + sinh(ln(x2/x1))

= 2 sinh((ln(x1) + ln(x2))/2)2 sinh(ln(x1/x2)) < 0

where the last inequality directly follows from x1 < x2.
Now assume that t consists of a step (q1, q2) and a slide (q2, q3) (w.l.o.g. ordered in this

way). In such a case we have |t| = |t(x0, x1)| + |t(x1, x2)| + |t(x2, x3)| = 1 + (x2 − x1)/x2 +
ln(x3/x2), or rearranged, x3 = x2ex1/x2+|t|−2. Again we calculate

∆ = |t|ξs(ρt) − (|T (q1, q2)| + |H(q2, q3)|)

= |t| − 1 + sinh(|t| − 1) − 1
2

(
1
x1

− 1
x2

+ x2 − x1

)(
x1 + 1

x2

)
−
[

z2 − z−2

4 + ln z

]x3

x2
.

Taking the derivative of ∆ w.r.t. |t| (after inserting x3 = x2ex1/x2+|t|−2), we obtain ∂∆/∂|t| =
−2 cosh(x1/x2 + |t| − 2 + ln x2)2

< 0. This indicates that ∆ is maximized for smallest |t|.
So assume |t| = 2 now, or equivalently, x3 = x2ex1/x2 . By Lemma 19 we can further assume
that x2 = 1/(

√
2x1). Using the substitution x1 = 2−3/4√

u we get

∆ = 1
2
√

2

(
−3 −

√
2

e
+

√
2e + 1 − eu

u
+ u + u

2eu

)
with the derivative

∂∆
∂u

= (1 − u)(u2 + 2e2u − 2eu(1 + u))
4
√

2u2eu
.

The derivative above has only one zero, namely u = 1: From 0 < x2
1 ≤ x1x2 = 1/

√
2, we can

deduce u ∈ (0, 2] by the substitution. For the right factor of the derivative’s numerator we
then get u2 + 2e2u − 2eu(1 + u) > 2eu(eu − (1 + u)) > 0 from the Taylor series of eu. Hence
checking ∆ at u’s boundaries and u = 1 is sufficient, where we get limu→0 ∆ ≈ −0.24 < 0
(apply L’Hospital’s rule on (1 − eu)/u), ∆|u→1 ≈ −0.07 < 0 and ∆|u→2 ≈ −0.26 < 0. ◀
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A

(0, 0)

qk−1
fk−1

fk

f1
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)
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...
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...

...
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ε
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u x
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w

h
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X

Figure 14 Left: Our construction. Right: A tile anchored at p ∈ Pε,k\{ (0, 0) }. For demonstration
purposes, the areas are not shown to scale; in truth X, Zw, Zh are significantly smaller than Yw, Yh.

With all previous lemmas combined, we are now ready to give the proof for Proposition 15.

Proof of Proposition 15. By Proposition 11 we already get the result for ρt > 1/2. It
remains to show the result for tiles with ρt ≤ 1/2. Lemma 25 allows us to limit ourselves to
certain tiles t: Tiles with Γt ⊆ ht (Lemma 30 yields the result), tiles with only a double step
(use Lemma 27), tiles with a step and a double step (use Lemma 28) and tiles that consist of
a step and a corner (use Lemma 29). As such the bound follows.

It remains to show the tightness. First note that for ρt = 1, the tightness is trivial (choose
an arbitrary tile t with |Γt| = 1). For ρ < 1, we show that ξs exactly corresponds to the tiles
tl(ρ) and th(ρ) shown in Figures 8 and 9.

Let t = tl(ρ) with Γt = { q1, q2 } ⊂ ht, x1 = y2. We have |t| = |t(0, x1)| + |t(x1, x2)| =
1 + (1 − x2

1), or rearranged x1 =
√

2 − 1/ρ and we get

|Ct|/|t| = |T (q1, q2)|/|t| = 1/2 · (1/x1 − x1 + 1/x1 − x1)(x1 + x1)/
(
2 − x2

1
)

= 2 − 2ρ.

Now let t = th(ρ). t consists of a slide (q1, q2) = ((x1, 1/x1), (1/x1, x1)), hence |t| =
|t(0, x1)| + |t(x1, x2)| = 1 + ln((1/x1)/x1) = 1 − 2 ln x1, or rearranged, x1 = e(1−1/ρ)/2. So

|Ct|/|t| = |H(q1, q2)|ρ = ρ

[
1
4
(
z2 − z−2)+ ln z

]e(1/ρ−1)/2

e(1−1/ρ)/2
= 1 − ρ(1 + sinh(1 − 1

ρ
)).

Note that t is only valid in the sense of generalized tiles. However, t can be arbitrarily well
approximated by a non-generalized tile with area and crown size arbitrarily close to |t| and
|Ct|, respectively, by densely placing an increasing number of points on the hyperbola. ◀

6 Upper Bound

To show Theorem 2, we construct a point set where TilePacking covers at most roughly
(1 − e−2)/2. Our goal is to construct a tile t̂ at the origin where each maximal rectangle
has the same size A. We therefore place 2k + 1 points qi into U densely on a hyperbola hA

centered at the origin. The remaining tiles will have a density close to 1/2.
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Such tiles can be realized when they have two nearly equal-sized maximal rectangles with
minimum overlap. Hence, we add for each point qi on hA a set of (almost) evenly spaced
points pi,j with distance roughly ε between each other. To get two maximal rectangles
of roughly same area for each such tile, the exact coordinates of the points pi,j must be
chosen carefully, as the placement of such points influences the size of maximal rectangles for
surrounding points. That is why we place the points on arcs of functions fi described by
differential equations, where each fi depends on the two neighboring curves fi−1 and fi+1.

We may only use finitely many points qi ∈ hA and pi,j ∈ fi. Both discretizations introduce
an error term. Exploiting our choice of the functions fi and how they relate to each other,
we can show that both error terms vanish as k goes to infinity and ε goes to zero.

To aid the analysis, we rotate U by π/4 around the origin, obtaining a rotated unit square
Ur (see Figure 14). Here, TilePacking processes the points from right to left.

We start by formally defining the point set Pε,k and the functions fi. Let hA =
{ (x, y) ∈ Ur | x2 − y2 = 2A } be the right branch of a hyperbola centered at the origin
that lives in Ur. First we define the upper part of the construction with non-negative y

coordinates. For i = 0, . . . , k − 1, densely choose k points qi ∈ hA such that y(qi) ≥ 0 and√
2A = x(q0) < x(q1) < · · · < x(qk−1). Define further f0(x) = 0 and fk(x) =

√
2 − x. For

0 < i < k, define fi : [0,
√

2) → R using

fi(x(qi)) = y(qi) and (3)

f ′
i(x) =

−1 for x ≤ x(qi)

1 − 2 fi(x) − fi−1(x)
fi+1(x) − fi−1(x) for x > x(qi).

(4)

This means, each fi with 0 < i < k has slope −1 in [0, x(qi)), then it intersects hA at qi

according to Equation (3), and then it has a slope depending on the current values of fi−1, fi

and fi+1 according to Equation (4). For the symmetric part with negative y coordinates we
define q−i = (x(qi), −y(qi)) and f−i(x) = −fi(x) for 0 < i ≤ k. Observe that, for 0 ≤ i < k,
we get q−i ∈ hA and the f−i adhere to Equation (4). We are now ready to define the point
set Pε,k for ε > 0 and k ∈ N as

Pε,k = { (0, 0) } ∪
⋃

i,j∈Z

{ (
jδ, fi(jδ)

) ∣∣∣ −k < i < k, x(qi) ≤ jδ <
√

2
}

.

We require that qi ∈ Pε,k for all −k < i < k, so we choose ε such that it divides all x(qi).
In order to be able to choose Pε,k as shown above, we need that the fi are well-behaved:

They must be defined in [0,
√

2), and should only intersect hA at qi. Intuitively, this is true,
since the differential equation drives each function fi to the midpoint of the functions fi−1
and fi+1. The proof is given in the following lemma.

▶ Lemma 31. Each function fi intersects hA exactly once, namely at qi. Furthermore, fi(x)
is differentiable for all i = −k, . . . , k, and f−k(x) < · · · < fk(x) holds for all x ∈ [0,

√
2).4

We are now able to show Lemma 32: All tiles t ̸= t̂ have a density of close to 1/2, unless
they are too close to the right corner of Ur, in which case their area is negligible. Afterwards,
it only remains to optimize the parameter A, which is done in Theorem 33.

▶ Lemma 32. Let u, k > 0 and Û = (
⋃

p∈Pε,k,x(p)≤
√

2−u tp) \ t̂. Then TilePacking covers
|Û |/2 + ck(ε) area in Û for Pε,k where limε→0 ck(ε) = 0.

4 Due to space limitations, the proof can only be found in the arXiv version of this paper (see [11]).
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Proof. Consider a point p ̸= (0, 0), x(p) ≤
√

2 − u that lies on some curve fi and creates the
tile t. Assuming ε < u, there exists another point p′ = (x(p) + ε, fj(x(p) + ε)) ∈ Pε,k. By
Lemma 31, we can assume that fi+1(x) − fi(x) > ε for all i = −k, . . . , k − 1, x ≤

√
2 − u.

It follows from |f ′
i | ≤ 1 that p′ is a lower staircase point of t. (For the same reason there

cannot be points further to the right that are lower staircase points.) The tile t is therefore
only restricted by the tiles from points with x-coordinate x(p′). Therefore, t has exactly two
maximal rectangles which TilePacking can choose from (see Figure 14).

TilePacking will choose the larger one of the two maximal rectangles (call them R1
and R2). Since there are multiple points with the same x-coordinate as p, any of them can
be processed first by TilePacking. This gives rise to areas Zw,Zh that may be covered
by the tile t or by tiles directly above or below it (see Figure 14). W.l.o.g. we assume that
TilePacking covers both Zw and Zh when choosing the maximal rectangle for t (since
assuming this for all such tiles may only increase the covered area).

Since all fi are differentiable in [0,
√

2), Taylor’s Theorem provides a function g(x) with
limx→0 g(x) = 0 such that fi(x+ε) = fi(x)+f ′

i(x) ·ε+g(ε) ·ε. Denote by w, h the dimensions
of the rectangle X = R1 ∩ R2. Then w = (ε + fi(x(p) + ε) − fi(x(p)))/

√
2 = (ε + f ′

i(x(p))ε +
g(ε)ε)/

√
2 = (1 + f ′

i(x(p)) + g(ε))ε/
√

2 and similarly h = (1 − f ′
i(x(p)) − g(ε))ε/

√
2.

From |f ′
i | ≤ 1 for all fi, one can easily see that the rectangles X, Zw and Zh have widths

and heights in O(ε), giving them a total area of W := X + Zw + Zh = O
(
ε2).

The tile t also contains two additional rectangles with an area of Yw = w((fi(x(p)) −
fi−1(x(p)))/

√
2 − h) and Yh = h((fi+1(x(p)) − fi(x(p)))/

√
2 − w). Note that this also holds

if x(qi±1) > x(p), as we extended fi∓1 with lines of slope ±1. In this case the two rectangles
are restricted by qi∓1’s tile, respectively. Hence, when evaluating the functions at x(p):

|Yw − Yh| = |w(fi − fi−1)/
√

2 − h(fi+1 − fi)/
√

2|
= |(1 + f ′

i + g(ε))(ε(fi − fi−1))/2 − (1 − f ′
i − g(ε))(ε(fi+1 − fi))/2|

= |(fi+1(g(ε) + f ′
i − 1) − fi−1(g(ε) + f ′

i + 1)) + 2fi| · ε/2
= |(g(ε)(fi+1 − fi−1) + f ′

i(fi+1 − fi−1) − fi−1 − fi+1 + 2fi)| · ε/2

= |g(ε)||fi+1 − fi−1| · ε/2 ≤ |g(ε)| · ε
√

2,

where the last inequality holds by Lemma 31, which gives us fi+1(x) − fi−1(x) ≤ fk(x) −
f−k(x) ≤ 2

√
2 for x ∈ [0,

√
2).

W.l.o.g. assume Yw > Yh. Then for the tile t with area |t| = W + Yw + Yh, TilePacking
covers at most W +Yw ≤ W +Yw/2+(Yh + |g(ε)| ·ε

√
2)/2 = |t|/2+O(ε(|g(ε)| + ε)). As Û is

the union of such tiles and |Pε,k| = O(k/ε), we have a total coverage of |Û |/2+O(k(|g(ε)| + ε)).
This immediately gives us the function ck(ε) = O(k(|g(ε)| + ε)) with limε→0 ck(ε) = 0. ◀

▶ Theorem 33. TilePacking has no better lower bound than (1 − e−2)/2.

Proof. We analyze the area ρ covered by TilePacking on Pε,k for some fixed k and u as ε

approaches 0. The bound then follows from letting k go to ∞ and u go to 0.
By Lemma 32, TilePacking covers half of Û = (

⋃
p∈Pε,k,x(p)≤

√
2−u tp) \ t̂ (plus ck(ε)

that approaches 0 for ε → 0) for each u > 0. Additionally, at most u2 area is covered from all
tiles at points p with x(p) >

√
2 − u. TilePacking covers A + Q area in t̂, where an error

term Q is introduced because the qi points only provide an approximation of hA. Q can
easily be bounded by, e.g., Q ≤ maxi(x(qi) − x(qi−1)) + maxi(y(qi) − y(qi−1)) (the biggest
rectangular strip that fits between two consecutive qi points, in U). (Note that all qi lie in
Pε,k, so no additional error is introduced.) In total, using E = Q + ck(ε) + u2,
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ρ ≤ A + |Û |/2 + E ≤ A + (1 − |t̂|)/2 + E ≤ A + (1 − (A +
∫ 1

A

A

x
dx))/2 + E

≤ (1 + A + A ln A)/2 + E.

Minimizing the last term leads to ρ ≤ (1 − e−2)/2 + E at A = e−2. Q approaches 0 when
k → ∞ since the qi lie densely on hA. Hence E approaches 0 for large k and small u, ε. ◀

7 Conclusion

We have shown that TilePacking’s worst-case coverage lies between 39% and 43.3%. Our
lower bound substantially improves over the previous best lower bound of roughly 9.1% [12],
while our upper bound is the first non-trivial upper bound for TilePacking. Note that
both bounds easily transfer to the (arguably more natural) GreedyPacking algorithm [12].

Our analysis crucially relies on a novel charging scheme and on a new analysis framework.
The latter reduces the task of proving good coverage to finding good lower bounds on the
tiles’ charging ratios (see Section 3). The versatility of this approach shows in the fact that
already a comparatively simple and short analysis yields a lower bound of 25%. Moreover,
our approach provides structural insights: e.g., it allows us to characterize the exact shape
of worst-case tiles as a function of their density (see Figures 8 and 9). We believe that our
framework might help to analyze similar algorithms for (variants of) LLARP.

Concerning the remaining gap of size roughly 4 percentage points between our bounds,
we believe that both bounds can be improved. For the lower bound, one shortcoming of our
analysis is that tiles are analyzed individually, ignoring their local relationships in the unit
square. Our lower bound basically predicts that the worst-case instance of TilePacking
should consist solely of tiles whose shapes resemble Figure 8, which seems impossible.

Regarding the upper bound, there is still a noticeable gap between the maximal area that
is coverable by the crowns (see Figure 4) and the area into which the crowns fall in our upper
bound construction (see Figure 14). In particular, our construction uses only one tile (in
the origin) with a large charging ratio, while all other tiles can be shown to have a charging
ratio of roughly 1. Also note that our upper bound construction might be of interest with
respect to the approximation variant of LLARP: an optimal solution should be able to fill
most of the unit square, such that our results would imply a corresponding bound on the
approximation ratio of TilePacking.

We leave as a major open question to find new algorithms for LLARP that might tackle
the 50% conjecture. Note that our upper bound is tailored towards a specific greedy algorithm,
so there is reasonable hope that other (possibly also greedy) algorithms might still achieve a
coverage of 50%.
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