
Constant-Factor Approximation to Deadline TSP
and Related Problems in (Almost) Quasi-Polytime
Zachary Friggstad #

Department of Computer Science, University of Alberta, Edmonton, Canada

Chaitanya Swamy #

Department of Combinatorics and Optimization, University of Waterloo, Canada

Abstract

We investigate a genre of vehicle-routing problems (VRPs), that we call max-reward VRPs, wherein
nodes located in a metric space have associated rewards that depend on their visiting times, and
we seek a path that earns maximum reward. A prominent problem in this genre is deadline TSP,
where nodes have deadlines and we seek a path that visits all nodes by their deadlines and earns
maximum reward. Our main result is a constant-factor approximation for deadline TSP running in
time O

(
nO(log(n∆))) in metric spaces with integer distances at most ∆. This is the first improvement

over the approximation factor of O(log n) due to Bansal et al. [2] in over 15 years (but is achieved in
super-polynomial time). Our result provides the first concrete indication that log n is unlikely to be
a real inapproximability barrier for deadline TSP, and raises the exciting possibility that deadline
TSP might admit a polytime constant-factor approximation.

At a high level, we obtain our result by carefully guessing an appropriate sequence of O(log(n∆))
nodes appearing on the optimal path, and finding suitable paths between any two consecutive guessed
nodes. We argue that the problem of finding a path between two consecutive guessed nodes can be
relaxed to an instance of a special case of deadline TSP called point-to-point (P2P) orienteering.
Any approximation algorithm for P2P orienteering can then be utilized in conjunction with either a
greedy approach, or an LP-rounding approach, to find a good set of paths overall between every pair
of guessed nodes. While concatenating these paths does not immediately yield a feasible solution, we
argue that it can be covered by a constant number of feasible solutions. Overall our result therefore
provides a novel reduction showing that any α-approximation for P2P orienteering can be leveraged
to obtain an O(α)-approximation for deadline TSP in O

(
nO(log n∆)) time.

Our results extend to yield the same guarantees (in approximation ratio and running time) for a
substantial generalization of deadline TSP, where the reward obtained by a client is given by an
arbitrary non-increasing function (specified by a value oracle) of its visiting time. Finally, we discuss
applications of our results to variants of deadline TSP, including settings where both end-nodes are
specified, nodes have release dates, and orienteering with time windows.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Mathematics of computing → Discrete optimization

Keywords and phrases Approximation algorithms, Vehicle routing problems, Deadline TSP, Orien-
teering

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.67

Category Track A: Algorithms, Complexity and Games

Funding Zachary Friggstad: Supported by the Canada Research Chairs program and an NSERC
Discovery grant.
Chaitanya Swamy: Supported in part by NSERC grant 327620-09 and an NSERC Discovery
Accelerator Supplement Award.

EA
T
C
S

© Zachary Friggstad and Chaitanya Swamy;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 67; pp. 67:1–67:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zacharyf@ualberta.ca
mailto:cswamy@uwaterloo.ca
https://orcid.org/0000-0003-1108-7941
https://doi.org/10.4230/LIPIcs.ICALP.2021.67
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

1 Introduction

Vehicle-routing problems (VRPs) constitute a rich class of optimization problems that find
a variety of applications and have been extensively studied in the Operations Research
and Computer Science literature (see, e.g., [27]) Broadly speaking, vehicle-routing problems
can be divided into two categories: one, where we have a fixed set of nodes or clients that
need to be visited, and we seek the most effective route(s) for visiting these clients (e.g.,
TSP-style problems [9, 25, 29, 26], minimum-latency problems [5, 23], VRPs with distance
bounds [19, 22] and regret bounds [13]); and the other, where, due to resource constraints,
we need to select which set of clients to visit and plan suitable routes for these clients. We
investigate a prominent class of VRPs that fall into the second category, wherein nodes
have associated rewards that depend on their visiting times, and we seek a path that earns
maximum reward. We call this genre of problems max-reward VRPs, and they constitute a
well-studied class of VRPs (see, e.g., [15, 3, 2, 8, 6, 14]).

We consider a fundamental problem in this genre, called the deadline TSP problem. In
deadline TSP, we are given a (symmetric) metric space ({r}∪V, c) with r being a distinguished
starting root node, and each node v ∈ V has a certain deadline Dv ≥ 0 and reward πv ≥ 0.
We seek a path starting at r that maximizes the total reward of the nodes on the path
that are visited by their deadlines. Since we are in a metric space, by shortcutting, we may
assume that all nodes on the path are visited by their deadlines. So equivalently, we seek a
maximum-reward r-rooted path that visits all nodes by their deadlines. A simpler problem in
the max-reward VRP genre is the point-to-point (P2P) orienteering problem, wherein we are
also given an end-node t, and we seek an r-t path of at most a given length B that collects
maximum reward. This is a special case of deadline TSP, which can be seen by setting the
deadline of each node v to B − cvt.

Max-reward VRPs tend to be more complicated problems than the first category of “fixed-
node-set” VRPs mentioned above because of the added combinatorial aspect of selecting
which nodes to visit, which is interlinked with the routing decisions, and we have much less
of an understanding of max-reward VRPs compared to fixed-node-set VRPs. A constant-
factor approximation is known only for P2P orienteering in undirected graphs, which is one
of the most rudimentary max-reward VRPs. For other, more-sophisticated, max-reward
VRPs – deadline TSP, submodular orienteering, directed orienteering – only logarithmic
or polylogarithmic (or worse) approximation factors are known. Furthermore, even for
undirected orienteering, the current-best approximation ratio has remained stagnant at
(2 + ϵ) [6] (and fresh LP-based insights were obtained only recently [14]), whereas for s-t
path TSP (the corresponding fixed-node-set problem), a steady stream of work [1, 24, 28, 29]
has exploited LP-based insights (and other ideas) to improve the approximation ratio to
1.5 [29]. The contrast is even more evident in asymmetric metrics: while O(1)-approximation
algorithms are now known for asymmetric TSP (ATSP) [26] and s-t path ATSP [17], the
best-known guarantee for directed orienteering is an O(α log |V |)-approximation using an
LP-relative α-approximation for ATSP [21], which explicitly shows the degradation when
moving to the max-reward-VRP version.

Our results. Our main contribution is to provide the first constant-factor approximation
guarantee for deadline TSP (Theorem 3.1); notably, we obtain a relatively small approximation
ratio of (7.63 + ϵ). We may assume by scaling that all distances in our metric space are
integers. Our algorithm runs in time O

(
nO(log n∆)), where n is the number of points, and ∆

is the diameter of the (scaled) metric space. In particular, for graphical metrics, we obtain a

Z. Friggstad and C. Swamy 67:3

quasi-polytime (i.e., O
(
nO(log n))-time) constant-factor approximation. Our guarantee yields

the first improvement over the (polytime) O(log n) approximation factor obtained by Bansal
et al. [2] in over 15 years, even for graphical metrics, but is achieved in super-polynomial time.
Prior to our work, it was unclear whether log n is a real inapproximability barrier for deadline
TSP. Our result provides the first concrete indication that this is not the case,1 and raises
the enticing possibility that deadline TSP might admit a polynomial-time constant-factor
approximation.

As noted above, constant-factor approximation algorithms are known for P2P orienteer-
ing [2, 6, 14], which is a special case of deadline TSP. Our chief technical contribution lies in
providing a novel reduction showing that an α-approximation algorithm for P2P orienteering
can be utilized to obtain an O(α)-approximation algorithm for deadline TSP in O

(
nO(log n∆))

time (see Theorem 3.1).
We obtain the same approximation guarantees for a substantial generalization of deadline

TSP, wherein each node v has a non-increasing reward function πv : R+ 7→ R+, with πv(x)
giving the reward of node v if v is visited at time x, and, as before, the goal is to find a path
that collects maximum reward. We call this problem monotone-reward TSP (Section 4.1).
Notice that this problem also captures discounted-reward TSP, considered by Blum et al. [3],
which is the special case where πv(x) = πv · γ−x, where γ > 1 is a discount factor. Our
results here only require value-oracle access to πv – an oracle that on input x returns πv(x) –
and follow from two distinct approaches (see Theorem 4.1): (a) we show that we can reduce
monotone-reward TSP in polytime to deadline TSP with a (1− ϵ)-factor loss; and (b) our
algorithm and analysis for deadline TSP readily extend to yield the same guarantees for
monotone-reward TSP.

Interestingly, our reduction from orienteering to {deadline, monotone-reward} TSP
also applies to asymmetric metrics (see Remark 3.8). The recent result of Svensson et
al. [26] establishing an O(1)-integrality gap for the ATSP LP-relaxation implies (due to the
work of [21]) an O(log n)-approximation for directed orienteering; thus our reduction yields
an O(log n)-approximation for {deadline, monotone-reward} TSP in asymmetric metrics
in O

(
nO(log n∆)) time. While this does not improve upon the quasi-polytime O(log n)-

approximation for asymmetric deadline TSP that follows from the work of Chekuri and
Pál [8], our reduction does show that improved (e.g., constant-factor) approximations to
directed orienteering will directly translate to analogous improvements for directed deadline
TSP in O

(
nO(log n∆)) time.

In Section 4.2, we show that our results yield O(1)-approximation for some other variants
of {deadline, monotone-reward} TSP, namely, settings where: (a) the path must start and end
at some given nodes; and (b) nodes have release dates but no deadlines, or more generally have
a non-decreasing reward function, and we seek a length-bounded path gathering maximum
reward (and we are allowed to wait at nodes while traversing a path). We also consider
orienteering with time windows, wherein we have a time window for each node and we collect
its reward if it is visited within its time window. By combining our result for deadline TSP with
certain results of Chekuri et al. [6], we obtain an O

(
log Lmax

Lmin

)
-approximation for orienteering

with time windows in O
(
nlog n∆)

time, where Lmax and Lmin are the lengths of the longest
and shortest time windows with non-zero length. This improves upon the approximation
guarantee of [6] when the optimum value is large; in particular, if Lmax = O(Lmin), we obtain
an O(1)-approximation, whereas [6] obtain an O(log (optimal value))-approximation, but in
polynomial time.

1 More precisely, if NP ̸⊆DTIME [O
(
nO(log n)

)
], then obtaining an O(1)-approximation in graphical

metrics cannot be NP-hard. Also, any reduction showing NP-hardness of an O(1)-approximation in
general metrics must involve exponentially large distances.

ICALP 2021

67:4 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

Our techniques. We briefly discuss the techniques that we utilize to obtain our result for
deadline TSP (see also “Overview and intuition” in Section 3). We begin by guessing a
suitable set of O(log n∆) nodes, which are a subsequence of the nodes encountered along
an optimal path P ∗. This guessing step requires some care, in light of the fact that we
are dealing with hard deadlines – i.e., we need to satisfy deadlines exactly (and not just
approximately) – which rules out certain standard approaches. For instance, a natural
attempt would be to view nodes of P ∗ as being grouped into geometric buckets based on their
visiting times and/or deadlines and guess the boundary nodes of the buckets; since nodes
in a bucket involve roughly the same visiting time and/or deadline, it is tempting to solve
a P2P orienteering instance with the boundary nodes as end-points. But this is too coarse
an idea that is incompatible with hard deadlines. Indeed, since one cannot merge similar
deadlines/visiting times, any such approach faces the issue that there could be Ω(n) distinct
visiting times and deadlines to consider. Not surprisingly, [7], who take such an approach
make the strong assumption that there are only O(1) distinct deadlines. Alternatively, other
works on deadline TSP [2, 6] are based on extracting a subset of P ∗ with a simpler deadline
and visiting-time structure, but at the expense of an O(log n)-factor loss in objective.

We seek to avoid both the above bottlenecks, but, as alluded to above, honing in on the
correct choice of guessed nodes requires some insight and a more refined approach. At a
high level, the sequence of nodes we guess v0 := r, v1, . . . , vlog n∆ has the property that the
length of the vi-vi+1 portion of P ∗, which we denote by P ∗

vivi+1
, is about cvivi+1 + γi, where

γ is some constant (we use γ = 1.5); equivalently, we say that the vi-relative regret-length
of P ∗

vivi+1
is about γi. We still obtain P2P-orienteering solutions (with the above distance

bound) between consecutive vi, such that they cumulatively collect enough reward (but they
may not have disjoint node-sets). Concatenating these yields a path P that may violate
some deadlines. A key insight is that if we were to shortcut past the vi−2-vi portion of P ,
then each client visited between vi and vi+1 after shortcutting, now has its deadline satisfied:
we “save” roughly γi−2 + γi−1 ≥ γi distance in this shortcutting process, which is enough
to guarantee that clients visited between vi and vi+1 in our algorithm have their deadlines
satisfied exactly. Thus, we can cover P using a constant number of deadline-TSP solutions.
Our eventual algorithm is slightly more involved as we have to account for large leaps in
distances as well (thereby requiring us to guess an additional log n∆ nodes).

Finally, we consider two approaches for obtaining the P2P-orienteering solutions. The first
approach is based on viewing the problem as an instance of the maximum coverage problem
with group budgets [7], for which a simple greedy algorithm yields a good approximation.
The second is a more-sophisticated LP-based approach that yields a somewhat better
approximation guarantee. We write an LP to find paths between guessed nodes, and extract
from the LP solution a distribution over P2P-orienteering solutions between consecutive
guesses. Randomly picking one such path for each vi will ensure each client is covered
with probability proportional to the extent that the LP covers it. While recent LP-based
insights [14] for orienteering allow us to obtain a compact LP to obtain such distributions, one
can also work with a configuration-style LP that directly encodes the distribution requirement.
Any P2P-orienteering approximation algorithm can then be used to approximately separate
the dual of this LP, and hence yield the desired distributions.

Our O
(
nlog n∆)

running time stems from the need for enumerating O(log n∆) nodes.
There is however some hope that this enumeration step and its resulting run-time blowup can
be circumvented. At a high level, the search space of our algorithm can be represented by a
directed layered graph, whose vertices in layer i encode the various choices for the vi-vi+1
portion of P ∗, and arcs encode compatible choices. While we use brute-force enumeration

Z. Friggstad and C. Swamy 67:5

to find a suitable path in this digraph, one can envisage other means for finding this path,
e.g., dynamic programming or linear programming. An important and useful fact to note is
that we only have O(log n∆) layers, so that, for poly(n, ∆) running time (hence, polytime
for graphical metrics), one can afford to take time exponential in the number of layers. (We
note that such savings were achieved in the context of another VRP, namely the directed
latency problem: Nagarajan and Ravi [20] gave an O

(
nlog n

)
-time, O(log n)-approximation

based on guessing O(log n) nodes, and subsequently Friggstad et al. [12] obtained the same
approximation in polytime by showing, in essence (roughly speaking), that this guesswork
can be eliminated by formulating a suitable LP to provide the guessed nodes.)

Related work. We limit ourselves to a discussion of the work that is most relevant to the
max-reward VRP problems we consider; we refer the reader to [27] for more information on
vehicle routing problems in general. As mentioned earlier, the current-best approximation
factor for deadline TSP is O(log n) due to Bansal et al. [2]. They also give a bicriteria
O(log 1/ϵ)-approximation that violates deadlines by at most a (1 + ϵ)-factor; with integer
deadlines this yields an O(log Dmax)-approximation (where Dmax := maxv Dv). Since
we obtain O

(
nO(log n∆)) running time, it is also relevant to compare our result with the

recursive greedy approach of Chekuri and Pál [8]. This is a versatile approach that yields
logarithmic approximation guarantees for various problems (including deadline TSP) in
quasi-polytime. However, this approach seems hard-pressed to yield anything better than
logarithmic guarantees (even for deadline TSP); in particular, the Ω(log n)-inapproximability
result for submodular orienteering2 suggests that one cannot improve their approach to
obtain o(log n) approximation guarantees.

The special case of deadline TSP with uniform node-deadlines is called rooted orienteering.
Blum et al. [3] obtained the first O(1)-approximation algorithm for this problem. Their ideas
were refined by [2, 6] to obtain the current-best (2 + ϵ)-approximation, which also applies to
P2P orienteering [6]. Recently, Friggstad and Swamy [14] developed a different LP-based
approach for orienteering, which also yields (slightly inferior) O(1)-approximations for these
problems. We utilize some of their insights in our work.

Various (other) generalizations of orienteering and deadline TSP have also been studied.
Bansal et al. [2] give an O(log2 n)-approximation for orienteering with time windows, and
an O(log Dmax) approximation with integer release dates and deadlines. They make the
informal remark that a deadline-TSP approximation that relies on an α-approximation for
P2P orienteering will translate to an α2-approximation for orienteering with time windows.
However, this comment seems to be in the specific context of their approach, and it is unclear
if it can be applied with our framework to obtain an O(1)-approximation for the time-
windows problem in O

(
nO(log n∆)); such a result would be quite interesting. Chekuri et al. [6]

show that an α-approximation for P2P orienteering yields an O
(
α max{log opt, log Lmax

Lmin
}
)
-

approximation for orienteering with time windows, where opt is the optimal value, and Lmax
and Lmin are the lengths of the longest and shortest time windows with non-zero length.

Blum et al. [3] considered the special case of monotone-reward TSP called discounted-
reward TSP (wherein the reward of node v at time t is πvγ−t), and devised a 6.753-
approximation algorithm. This factor was slightly improved to 5.195 by [10]. Chekuri

2 Submodular orienteering captures “group orienteering”, wherein we are given (disjoint) groups of vertices,
and the reward of a path is the number of groups it hits. Using set-cover ideas, one can show that
an α-approximation for group orienteering yields an O(α log n)-approximation for the group Steiner
tree problem. The Ω(log2 n)-inapproximability result for group Steiner tree [16] thus translates to an
Ω(log n)-inapproximability result for submodular orienteering.

ICALP 2021

67:6 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

and Pál [8] show that their recursive-greedy approach yields a quasi-polytime O(log n)-
approximation for a generalization of monotone-reward TSP where the node reward is an
arbitrary function of time. They obtain the same guarantee for a further generalization of
orienteering (even in asymmetric metrics) that they introduce, called submodular orienteering
with time windows, where the reward of a path is given by a monotone submodular function
of the set of nodes visited within their time windows.

In asymmetric metrics, Chekuri et al. [6] give an O(log2 opt)-approximation for P2P
orienteering; this also yields guarantees for the time-windows problem via their aforementioned
reduction (which also applies to asymmetric metrics). The current-best approximation for
directed orienteering is O(log n), which follows by combining the O(1)-integrality gap for the
ATSP LP [26] with a result of [21] showing that an LP-relative α-approximation for ATSP
yields an O(α log n)-approximation for directed orienteering.

Finally, there is a wealth of literature on fixed-node-set VRPs; we refer the reader to some
of the most recent work on these problems [25, 29, 26] for further pointers.

2 Preliminaries and notation

All the problems we consider involve an underlying complete graph G = ({r} ∪ V, E), where
r is a distinguished root node, and metric edge costs {cuv}. By scaling, we may assume that
cuv is an integer for all u, v ∈ V ∪ {r}. Let ∆ := maxu,v∈V ∪{r} cuv be the diameter of the
scaled metric space. For a set S of edges, we often use c(S) to denote

∑
e∈S ce. We often

use V ′ to denote {r} ∪ V . Let n = |V ′| = |V |+ 1. We call a path P in G rooted if it begins
at r. We always think of the nodes on a rooted path P as being ordered in increasing order
of their distance along P from r. For any path P and nodes u, v ∈ P , let Puv denote the u-v
subpath of P . For a rooted path P and node v ∈ P , the visiting time of v is the distance
from r to v along P , which we denote by cP (v) := c(Prv). To avoid excessive notation, we
will view a path P sometimes as its edge-set, and sometimes as its node-set; the meaning
will be clear from the context.

In deadline TSP, each node v ∈ V has a deadline Dv ≥ 0 and reward πv ≥ 0. For
notational convenience, set Dr = πr = 0. The goal is to find a simple rooted path P such
that cP (v) ≤ Dv for all v ∈ P that maximizes

∑
v∈P πv. We may assume that Dv ≥ crv for

all v ∈ V , as otherwise v can never be visited by a feasible solution and we can simply delete
v from our metric space.

Monotone-reward TSP is a substantial generalization of deadline TSP, wherein each node
v has a non-increasing reward function πv : R+ 7→ R+. For notational convenience, set
πr(x) = 0 for all x. The goal is to find a simple rooted path P that maximizes

∑
v∈P πv(cP (v)).

We assume that each πv(.) is specified via a value oracle, that on input x returns πv(x).

Regret distances. For any u ∈ V ∪ {r}, and any ordered pair v, w ∈ V ∪ {r}, define the
regret distance of (v, w) with respect to u to be creg

u (v, w) := cuv + cvw − cuw. The regret
distances {creg

u (v, w)}v,w∈V ∪{r} form an asymmetric metric. The regret-length of a path P

with respect to its start node is called the excess of P in [3, 2, 6]. A simple but key insight
that we will repeatedly use is that if P is a rooted path, and u, v are nodes on P where u

comes before v (recall that nodes on P are ordered by increasing cP (·)), then replacing Puv

by the edge uv reduces the length of the path by exactly creg
u (Puv) = c(Puv)− cuv.

Point-to-point (P2P) orienteering. In P2P orienteering, we have a start node s, end node
t, and a length bound B, and we seek an s-t path P with c(P) ≤ B that maximizes

∑
v∈P πv.

We will often need to restrict the path to only visit nodes from a certain subset N ⊆ V ′

Z. Friggstad and C. Swamy 67:7

(where {s, t} ⊆ N); we refer to this as P2P orienteering with node set N . It will often be
convenient to cast the length-bound B, as a regret-bound of B − cst on the regret of P with
respect to s, i.e., creg

s (P).
Observe that P2P orienteering can be cast as a special case of deadline TSP (with root

node s) by setting Dv = max{0, B − cvt} for all v ∈ V : if w is the end-node of a feasible
solution to this deadline-TSP instance, then we can always append the edge wt to this path
and stay within the length bound of B = Dt.

Recently, Friggstad and Swamy [14] devised an LP-based 6-approximation algorithm for
P2P orienteering by formulating a polynomial-size LP for the problem and devising an LP-
rounding algorithm (see Section 5). Their algorithm yields a distribution of P2P-orienteering
solutions that visits each node with probability proportional to the extent it is visited in the
LP solution. Our LP-rounding based algorithm (see subroutine LP-Round) for deadline TSP
makes use of the latter type of distributional guarantee. In fact, any approximation algorithm
for P2P orienteering can be used to obtain such a distribution – this follows from [4, 18] –
and this leads to our (7.63 + ϵ)-approximation algorithm for deadline TSP.

3 Constant-factor approximation for deadline TSP

We now describe our constant-factor approximation algorithm for deadline TSP that runs in
time O

(
nO(log n∆)). Let P ∗ be an optimal path, and opt = π(P ∗) be the optimal value. We

prove the following result.

▶ Theorem 3.1. Algorithm 1 runs in O
(
nO(log n∆)) time. Let A be an α-approximation

algorithm for P2P orienteering (where α ≥ 1).

(a) Using subroutine Greedy in step D1.2 (with algorithm A), Algorithm 1 returns a deadline-
TSP solution whose reward is at least 1

3(α+1) · opt.
(b) Using subroutine LP-Round in step D1.2 (with algorithm A), Algorithm 1 returns a

deadline-TSP solution with a slightly better expected reward of at least 1
3/(1−e−1/α) · opt ≥

1
3(α+1) · opt. This guarantee can be derandomized.

Taking α = (2 + ϵ) above [6], we obtain a (9 + ϵ)-approximation using Greedy, and an
improved (7.63 + ϵ)-approximation using the LP-approach in LP-Round.

Overview and intuition. We first give an overview of the algorithm and convey the under-
lying intuition; the detailed description appears below as Algorithm 1. Let γ = 1.5. Note
that γ2 ≤ γ + 1.

Let R∗ = creg
r (P ∗) be the regret of P ∗ with respect to the root r. Set u0 := r. Suppose we

“guess” (i.e., enumerate all possible choices for) a sequence of nodes w0, u1, w1, . . . occurring
on P ∗ (in this order), which are defined as follows. Given ui for i ≥ 0, we define wi, ui+1 as
follows. Let ui+1 be the first node on P ∗ after ui such that the regret of P ∗

uiui+1
with respect

to ui is at least γi. So we have creg
ui

(Puiui+1) ≥ γi and creg
ui

(P ∗
uiv) < γi for all nodes v prior

to ui+1 on P ∗
uiui+1

; since all distances are integers, this implies that creg
ui

(P ∗
uiv) ≤

⌈
γi

⌉
− 1

for all nodes v prior to ui+1 on P ∗
uiui+1

. Define wi to be the predecessor of ui+1. If there
is no such node ui+1, then ui+1 is undefined, and define wi to be the end-node of P ∗. Let
k be the largest index such that uk is well defined. Observe that k = O(log R∗) since for
every i = 0, . . . , k − 1, we have that γi ≤ creg

ui
(P ∗

uiui+1
) ≤ creg

r (P ∗
uiui+1

), and creg
r (P ∗) = R∗.

This leads to the O
(
nO(log n∆)) running time, since we need to consider nO(log R∗) guesses

for w0, . . . , uk, wk, and R∗ ≤ c(P ∗) ≤ n∆.

ICALP 2021

67:8 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

We first observe that we can obtain the following lower bound on the deadlines of nodes
in P ∗

uiwi
. The proof of the following lemma is deferred to the analysis.

▶ Lemma 3.2. Consider any index i = 0, . . . , k. The visiting time of a node v ∈ P ∗
uiwi

, and
hence its deadline Dv, is at least lbi,v :=

∑i−1
j=0 max{cujwj

+ cwjuj+1 , cujuj+1 + γj}+ cuiv.

Lemma 3.2 implies that the P2P-orienteering instance with node-set N i := {v ∈ V ′ :
Dv ≥ lbi,v}, start node ui, end node wi, and regret-bound

⌈
γi

⌉
− 1 (with respect to ui), has

optimal value at least π(P ∗
uiwi

). (Note that N0 = V ′.) Suppose that we are able to find
paths Q0, Q1, . . . , Qk, such that:

(i) for every i = 0, . . . , k, we have that Qi is a ui-wi path, visits only nodes of N i, and
creg

ui
(Qi) ≤

⌈
γi

⌉
− 1; and

(ii) π
(
Q0 ∪ . . . ∪Qk

)
≥ ρ · π(P ∗), where 0 < ρ ≤ 1 is some constant.

We show that we can use these paths to obtain a deadline-TSP solution of value ρ · π(P ∗)/3;
this yields an O(1)-approximation for deadline TSP.

Let Z be the path obtained by concatenating all (the nodes of) Q0, . . . , Qk. How “far”
is Z from being a feasible solution? Assume that the Qis are node-disjoint (which we can
always ensure by shortcutting past all occurrences of a node other than its first occurrence).
Consider a node v ∈ Qi. We can upper bound the visiting time of v by{∑i−1

j=0(cujwj +
⌈
γj

⌉
− 1 + cwjuj+1) if v = ui;∑i−1

j=0(cujwj
+

⌈
γj

⌉
− 1 + cwjuj+1) + cuiv +

⌈
γi

⌉
− 1 otherwise,

where in the latter case, cuiv +
⌈
γi

⌉
− 1 upper bounds the time taken to go from ui to v

along Z (as
⌈
γi

⌉
− 1 ≥ creg

ui
(Qi) ≥ creg

ui
(Qi

uiv)). For v ∈ Q0, this shows that its visiting time
is at most cu0v = lb0,v, which is at most Dv. Nodes in Q1 ∪ . . . ∪Qk may however be visited
after their deadlines.

The chief insight is that if we replace the uj-uj+1 portion of Z, which currently consists
of the node-sequence Qj , by the direct edge ujuj+1, then we incur a γj-savings in the (above
upper bound for) visiting times of nodes on Qi for i > j: the term cujwj

+
⌈
γj

⌉
− 1 + cwjuj+1

in the above upper bound gets replaced by cujuj+1 , and creg
uj

(P ∗
ujwj

) ≤
⌈
γj

⌉
− 1 implies that

cuj wj +
⌈
γj

⌉
−1+cwj uj+1 ≥ c(P ∗

uj wj
)+cwj uj+1 = c(P ∗

uj uj+1) = creg
uj

(P ∗
uj uj+1)+cuj uj+1 ≥ γj+cuj uj+1 .

Moreover, since γ2 ≤ γ + 1, this implies that if we “sync up” with P ∗ at wj−1 by visiting
wj−1 by time lbj−1,wj−1 , then deleting the uj-uj+2 portion – i.e., going directly to uj+2 from
wj−1 – ensures that: (a) every v ∈ Qj+2 is visited by its deadline (and, in fact, by lbj+2,v),
and (b) we remain in sync with P ∗ at wj+2. Note also that Z is in sync with P ∗ at nodes
u0, w0. Finally, for nodes in Q1, it suffices to replace the u0-u1 portion of Z by the direct
edge u0u1 in order to visit these nodes by their deadlines, and have w1 sync up with P ∗.

The upshot of these insights is that: (1) for any ℓ ∈ {0, 1, 2}, the path Z(ℓ) given by
the node-sequence r, {Qj}0≤j≤k:j=ℓ mod 3 (where r is possibly a duplicated node) is feasible
(Lemma 3.3); and (2) together these paths cover all the nodes of Z. Hence, the best of these
3 paths collects reward at least π

(
Q0 ∪ . . . ∪Qk

)
/3 ≥ ρ

3 · π(P ∗).

Finally, we discuss two approaches for finding the Q0, . . . , Qk paths. The first approach
is based on observing that the problem of finding these paths to maximize π

(
Q0 ∪ . . . ∪Qk

)
is an instance of the maximum coverage problem with group budgets considered by [7]. Thus,
a simple greedy approach (subroutine Greedy) works, where we repeatedly find Q0, Q1, . . .

in that order, and to find Qi, we use a P2P-orienteering α-approximation algorithm with
the subset of N i that has not been covered by Qj for j < i (or equivalently, we zero out

Z. Friggstad and C. Swamy 67:9

the rewards of nodes in Q0 ∪ . . . ∪ Qi−1). Chekuri and Kumar [7] show that this yields a
collection of paths that together obtain reward at least opt/(α + 1); we include the analysis
for completeness (Lemma 3.4).

The second approach is a more sophisticated LP-based approach (subroutine LP-Round)
that yields a better guarantee. We write a configuration LP (Ap-P) to find the Qi paths.
We use variables xi

v to denote the extent to which v lies in P ∗
uiwi

, for i ≥ 0. Let Pi :=
Pi(ui, wi, N i,

⌈
γi

⌉
−1) be the collection of simple ui-wi paths of length at most cuiwi +

⌈
γi

⌉
−1

that visit only nodes of N i. (Note that if ui or wi is not in N i, then Pi = ∅. Also, if ui = wi

and lies in N i, then Pi consists of only the trivial singleton path {ui}.) We also have
variables {zi

P }P ∈Pi , where zi
P denotes that we choose path P ∈ Pi. While we cannot solve

this LP optimally, we show (see Lemma 3.6) that an α-approximation algorithm for P2P
orienteering can be used to obtain a solution (x, z) of objective value at least OPTAp-P,
where each node v is covered by the paths from Pi to an extent of at least xi

v/α. We choose
Qi ∈ Pi by sampling from the {zi

P }∈Pi distribution. It is not hard to argue then that
E

[
π

(⋃k
i=2 Qi

)]
≥

(
1− e−1/α

)
OPTAp-P (Lemma 3.7), which yields the guarantee stated in

Theorem 3.1 (b). We now describe the algorithm in detail and proceed to analyze it.

Algorithm 1 Deadline TSP

Let γ = 1.5.
Input: metric ({r} ∪ V, c), deadlines {Dv}v∈V , rewards {πv}v∈V ; an α-approximation
algorithm A for P2P orienteering.
Output: An r-rooted path P such that every v ∈ P is visited by time Dv.
D1 Initialize Q ← ∅. Let u0 := r. For k = 0, 1, . . . , log n∆

log γ , and every choice of nodes
w0, u1, w1, . . . , uk, wk, perform the following steps.
D1.1 For i = 0, . . . , k, and v ∈ V ′, define lbi,v :=

∑i−1
j=0 max{cujwj

+cwjuj+1 , cujuj+1 +
γj}+ cuiv. Define N i := {v ∈ V ′ : Dv ≥ lbi,v}. If ui /∈ N i or wi /∈ N i for some
i ∈ {0, . . . , k}, then reject this guess – i.e., omit steps 12–14 – and move on to
the next choice of ui, wi nodes.

D1.2 Use subroutine Greedy, or subroutine LP-Round below to obtain paths
Q0, Q1, . . . , Qk, where each Qi is a ui-wi path with creg

ui
(Qi) ≤

⌈
γi

⌉
− 1 visiting

only nodes of N i.
D1.3 For ℓ ∈ {0, 1, 2}, let Z(ℓ) be the path given by the node-sequence

r, {Qj}0≤j≤k:j=ℓ mod 3.
D1.4 Add the path Zmax ∈ {Z(0), Z(1), Z(2)} that gathers maximum reward to Q.

D2 Return the best solution found in Q, shortcutting the path to retain only the first
occurrence of each node.

Subroutine Greedy.

G1 For i = 0, . . . , k, use algorithm A to (approximately) solve the P2P-orienteering
instance with start node ui, end node wi, node-set N i \

(⋃i−1
j=0 P j

)
, and length bound

cuiwi
+

⌈
γi

⌉
− 1 (and node rewards {πv}v∈V ′), to obtain a simple path P i (so if

ui = wi, then P i = {ui} or P i = ∅).
Return paths P 0, . . . , P k.

ICALP 2021

67:10 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

Subroutine LP-Round.
L1 Let Pi := Pi(ui, wi, N i,

⌈
γi

⌉
− 1) denote the collection of simple ui-wi paths with

creg
ui

-length at most
⌈
γi

⌉
− 1 (so the c-length is at most cuiwi +

⌈
γi

⌉
− 1) and visiting

only nodes from N i. Note that if ui = wi and ui ∈ N i, then Pi consists of only the
trivial singleton path {ui}. Consider the following LP.

max
k∑

i=0

∑
v∈V

πvxi
v (Ap-P)

s.t.
∑

P ∈Pi

zi
P ≤ 1 ∀i = 0, . . . , k (1)

xi
v ≤

∑
P ∈Pi:v∈P

zi
P ∀v ∈ V, ∀i = 0, . . . , k (2)

k∑
i=0

xi
v ≤ 1 ∀v ∈ V (3)

xi
ui

= xi
wi

= 1 ∀i = 0, . . . , k (4)
x, z ≥ 0.

L2 Use Lemma 3.6 to obtain in polytime a solu-
tion (x, z) (with polynomial-size support) such that:
(i)

∑k
i=0

∑
v∈V πvxi

v ≥ OPTAp-P, (ii)
∑

P ∈Pi:v∈P zi
P ≥ xi

v/α for all v ∈ V

and i = 0, . . . , k, and (iii) (x, z) satisfies the remaining constraints of (Ap-P).
L3 For each i = 0, . . . , k, sample a random path P i ∈ Pi from the {zi

P }P ∈Pi distribution.
Return paths P 0, . . . , P k.

Analysis. The running time stated in Theorem 3.1 follows since k = O(log n∆), and for
each k, we enumerate over all sequences of 2k nodes.

Recall that P ∗ is an optimal solution. Let opt = π(P ∗) be the optimal value. We will
assume in the sequel that we have the right choice of k and the ui, wi nodes. Recall that
u0 = r. That is, w0 is the last node on P ∗ such that creg

u0
(Pu0w0) = 0. Given ui, for i ≥ 0,

we have that ui+1 is the first node v on P ∗ after ui such that creg
ui

(Puiv) ≥ γi, and wi is the
predecessor of ui+1. If there is no such node ui+1, then ui+1 is undefined and wi is the the
end-node of P ∗. Also, k is the largest index such that uk is well defined. Note that k ≥ 0.

We begin by proving Lemma 3.2.

Proof of Lemma 3.2. For any j ∈ {0, . . . , i − 1}, we have that c(P ∗
ujuj+1

) ≥ c(P ∗
ujwj

) +
cwjuj+1 ≥ cujwj + cwjuj+1 and also c(P ∗

ujuj+1
) = creg

uj
(P ∗

ujuj+1
) + cujuj+1 ≥ γj + cujuj+1 ,

where the inequality follows from the definition of uj+1. The visiting time of v ∈ P ∗
uiwi

is
cru0 +

∑i−1
j=0 c(P ∗

ujuj+1
) + cuiv, which, using the above bounds, is at least lbi,v. ◀

Next, Lemma 3.3 shows that the paths Z(ℓ) obtained in step D1.3 are feasible. Since
these paths together cover

⋃k
i=0 Qi, the path Zmax returned in step D1.4 gathers reward at

least π
(⋃k

i=0 Qi
)
/3.

▶ Lemma 3.3. Consider ℓ ∈ {0, 1, 2}, and the path Z(ℓ) computed in step D1.3. For every
Qj that is part of Z(ℓ), and every v ∈ Qj, the visiting time of this occurrence of v in Z(ℓ) is
at most lbj,v ≤ Dv.

Z. Friggstad and C. Swamy 67:11

Proof. Consider any Qj that is part of Z(ℓ). So 0 ≤ j ≤ k and j = ℓ mod 3. We argue by
induction on j that the visiting time (in Z(ℓ)) of every node v ∈ Qj is at most lbj,v.

For the base case, when j = ℓ, the visiting time of any v ∈ Qℓ is at most cu0uℓ
+ cuℓv +⌈

γℓ
⌉
− 1 since creg

uℓ
(Qℓ

uℓv) ≤ creg
uℓ

(Qℓ) ≤
⌈
γℓ

⌉
− 1. We can check by inspection that this bound

is always at most lbℓ,v:
for ℓ = 0, the bound is cu0v = lb0,v;
for ℓ = 1, the bound is cu0u1 + cu1v + 1 ≤ lb1,v;
for ℓ = 2, the bound is at most cu0u2 +cu2v +γ2 ≤ (cu0u1 +1)+(cu1u2 +γ)+cu2v ≤ lb2,v.

Now suppose j > ℓ. The visiting time of any v ∈ Qj is at most (visiting time of wj−3) +
cwj−3uj + cujv + γj since the creg

uj
-length of Qj

ujv is at most
⌈
γj

⌉
− 1 ≤ γj . By our induction

hypothesis, the visiting time of wj−3 is at most lbj−3,wj−3 . Since γj ≤ γj−2 + γj−1, we can
upper bound the visiting time of v by(

lbj−3,wj−3 +cwj−3uj−2

)
+

(
cuj−2uj−1 +γj−2)

+
(
cuj−1uj +γj−1)

+cujv ≤ lbj,uj +cujv ≤ lbj,v.

The first inequality is because for any index i ≥ 1, we have lbi,ui
≥ lbi−1,wi−1 + cwi−1ui

and lbi,ui ≥ lbi−1,ui−1 + cui−1ui + γi−1. This completes the induction step and proves the
lemma. ◀

Finally, we prove guarantees for the paths returned by subroutine Greedy and subroutine
LP-Round.

▶ Lemma 3.4 (Follows from [7]). The paths Q0, . . . , Qk returned if we use subroutine Greedy
in step D1.2 satisfy π

(
Q0 ∪ . . . ∪Qk

)
≥ opt/(α + 1).

Proof. Clearly, for each i = 0, . . . , k, we have that P ∗
uiwi
\

(⋃i−1
j=0 Qj

)
is a feasible solution

to the P2P-orienteering instance that is fed as input to algorithm A in iteration i. So for
each i = 0, . . . , k, we have

π
(

Qi \
(i−1⋃

j=0
Qj

))
≥ 1

α
· π

(
P ∗

uiwi
\

(i−1⋃
j=0

Qj
))

. (5)

Adding the above for i = 0, . . . , k yields an inequality whose LHS is π
(
Q0 ∪ . . . ∪Qk

)
, and

whose RHS is at least 1
α ·π

(
P ∗ \ (Q0 ∪ . . .∪Qk)

)
≥ 1

α ·
[
π(P ∗)−π

(
Q0 ∪ . . .∪Qk

)]
. It follows

that π
(
Q0 ∪ . . . ∪Qk

)
≥ π(P ∗)/(α + 1). ◀

Combining Lemma 3.4 with Lemma 3.3 leads to the proof of Theorem 3.1 (a).

Part (b) of Theorem 3.1
We now analyze the paths returned by subroutine LP-Round and prove Theorem 3.1 (b).

We first observe in Claim 3.5 that OPTAp-P ≥ π(P ∗) = opt. Lemma 3.6 shows that
using our P2P-orienteering approximation algorithm, we can obtain in polytime a solution
(x, z) satisfying the properties stated in step L2. Given this, Lemma 3.7 proves that
the random paths Q0, . . . , Qk returned by subroutine LP-Round satisfy E

[
π

(⋃k
i=0 Qi

)]
≥(

1− e−1/α
)
OPTAp-P. This yields the randomized guarantee stated in Theorem 3.1 (b). We

then show how to derandomize the algorithm without affecting its guarantee or running time.
The following claim simply observes that, for each i = 0, . . . , k, setting zi

P ∗
uiwi

= 1 and xi

to be the indicator vector of the node-set of P ∗
uiwi

yields a feasible solution to (Ap-P).

▷ Claim 3.5. We have OPTAp-P ≥ π(P ∗).

ICALP 2021

67:12 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

Lemma 3.6 proves the main result regarding the polytime solvability of (Ap-P). Its proof
is a bit technical, and is deferred to the end of this section.

▶ Lemma 3.6. Using algorithm A, we can obtain in polynomial time a solution (x, z)
such that: (i)

∑k
i=0

∑
v∈V πvxi

v ≥ OPTAp-P, (ii)
∑

P ∈Pi:v∈P zi
P ≥ xi

v/α for all v ∈ V and
i = 0, . . . , k, and (iii) (x, z) satisfies the remaining constraints of (Ap-P).

▶ Lemma 3.7. The paths Q0, . . . , Qk returned if we use subroutine LP-Round in step D1.2
satisfy E

[
π

(⋃k
i=0 Qi

)]
≥

(
1− e−1/α

)
OPTAp-P.

Proof. Defining ρv := Pr[v ∈ (Q0 ∪ . . . ∪ Qk)] for v ∈ V , we have E
[
π

(⋃k
i=0 Qi

)]
=∑

v∈V πvρv. The paths Q0, . . . , Qk are chosen independently, and Pr[v ∈ Qi] ≥ xi
v/α for

each v ∈ V (by Lemma 3.6 (ii)). So for every v ∈ V , we have

ρv ≥ 1−
k∏

i=0

(
1− xi

v

α

)
≥ 1−

(
1−

∑k

i=0
xi

v/α

k

)k

≥
[
1−

(
1− 1

αk

)k
]
·

k∑
i=0

xi
v ≥

(
1−e−1/α

) k∑
i=0

xi
v

which proves the lemma. The second inequality above follows from the AM-GM inequality,
and the third uses the fact that the function f(x) = 1 −

(
1 − x

k

)k is concave, and so
f(x) ≥ x · f(1/α)−f(0)

1/α for all x ≤ 1/α. ◀

Finishing up the proof of Theorem 3.1 (b). We first prove the randomized guarantee.
The expected value of the solution returned is E

[
maxP ∈Q π(P)

]
, which is at least

maxP ∈Q E
[
π(P)

]
. We lower bound the latter quantity by focusing on the path in Q

returned for the right choice of k and the ui-wi nodes.
Fixing this choice, Claim 3.5 and Lemma 3.7 show that E

[
π

(⋃k
i=0 Qi

)]
≥

(
1 −

e−1/α
)
π(P ∗). Since the Z(ℓ) paths for ℓ = 0, 1, 2 are feasible (Lemma 3.3) and together cover⋃k

i=0 Qi, the path Zmax returned in step D1.4 satisfies E
[
π(Zmax)

]
≥ 1−e−1/α

3 · π(P ∗).

Derandomization. The above guarantee can be easily derandomized. We use randomization
only in sampling, for each i = 0, . . . , k independently, a random path Qi from a polynomial-
size distribution of ui-wi paths. Let Ci denote the support of this distribution, and for P ∈ Ci,
let λi

P denote the probability of choosing path P . The quantity of interest that determines
the performance guarantee is Φ0 = Φ(λ0, . . . , λk) := E

[
π

(⋃k
i=0 Qi

)]
. For P ∈ Ci, let 1P be

the distribution that chooses P deterministically with probability 1. We show how to deter-
ministically choose the Qis so that Φ(1Q0 , . . . ,1Qk) ≥ Φ0. We have Φ =

∑
v∈V πvρv, where

ρv = ρ0,v + (1− ρ0,v)ρ1,v + . . . + (1− ρ0,v)(1− ρ1,v) · · · (1− ρk−1, v)ρk,v,

and ρi,v = ρi,v(λ0, . . . , λk) =
∑

P ∈Ci

λi
P ∀i = 0, . . . , k.

It is evident that each ρv is linear in λi, and therefore Φ is linear in λi. Therefore, to
derandomize: (1) we choose Q0 ∈ C0 so that Φ(1Q0 , λ1, . . . , λk) ≥ Φ0; (2) given that
we have chosen Q0, . . . , Qi−1, we choose Qi ∈ Ci so that Φ(1Q0 , . . . ,1Qi , λi+1, . . . , λk) ≥
Φ(1Q0 , . . . ,1Qi−1 , λi, . . . , λk). ◀

Proof of Lemma 3.6. Since (Ap-P) has an exponential number of variables, we consider the
dual (Ap-D). The dual has polynomially many constraints corresponding to the polynomially
many xi

v primal variables, and an exponential number of constraints corresponding to the zi
P

primal variables. Using standard ideas (see, e.g., [13]), we show that we can use algorithm A
to approximately separate over these exponentially many constraints, and hence leverage

Z. Friggstad and C. Swamy 67:13

the ellipsoid method to obtain the desired primal solution. Let θi ≥ 0 and µi
v ≥ 0 denote

respectively the dual variables corresponding to constraints (1), (2). The dual constraints
corresponding to the zi

P variables are:∑
v∈P

µi
v ≤ θi ∀i = 0, . . . , k, ∀P ∈ Pi (P2P)

For b ≥ 0, we let (P2Pb) denote (P2P) with the RHS changed to θi/b. The effect of this
on the primal is that it changes the RHS of (1) to b; let (Ap-Pb) denote (Ap-P) with this
modified version of (1).

We focus on constraints (P2P) and do not explicitly write down the remaining (polyno-
mially many) dual constraints (including nonnegativity constraints); we collectively denote
these constraints by (Ap-D-*). Letting β denote the remaining dual variables, the objective
function of (Ap-D) is of the form

∑k
i=0 θi + hT β, where h is a fixed vector.

Define K(ν; b) :=
{

(β, µ, θ) : µ, θ ≥ 0, (Ap-D-*), (P2Pb),
∑k

i=0 θi + hT β ≤ ν
}

. Note
that the optimal value of the dual, and hence (Ap-P), is the smallest ν such that K(ν; 1) ̸= ∅.
Given ν, (β, µ, θ), we can use A to either show that (β, µ, θ) ∈ K(ν; 1), or find a hyperplane
separating (β, µ, θ) from K(ν; α). We first check if µ, θ ≥ 0, (Ap-D-*) and

∑k
i=0 θi +hT β ≤ ν

hold, and if not use the violated inequality as the separating hyperplane. Next, for each
i = 0, . . . , k, we run A on the P2P-orienteering instance with start and end nodes ui, wi

respectively, length bound cuiwi
+

⌈
γi

⌉
− 1, and node-rewards {µi

v}v∈V ′ . If for some i, we
obtain a path P ∈ Pi with reward greater than θi/α, then we return

∑
v∈P µi

v ≤ θi/α as
the separating hyperplane. Otherwise, for all i = 0, . . . , k and all P ∈ Pi, we know that∑

v∈P µi
v ≤ θi, and so (β, µ, θ) ∈ K(ν; 1). Thus, for a fixed ν, in polynomial time, the

ellipsoid method either certifies that K(ν; α) = ∅, or returns a point (β, µ, θ) ∈ K(ν; 1).
It is easy to find an upper bound UB such that K(UB; 1) ̸= ∅. For a given ϵ > 0, we

use binary search in the range [0, UB] to find ν∗ such that the ellipsoid method when run
for ν∗ (with the above separation oracle) returns (β∗, µ∗, θ∗) ∈ K(ν∗; 1), and when run for
ν∗ − ϵ certifies that K(ν∗ − ϵ; α) = ∅. Since K(ν∗; 1) ̸= ∅, we have that OPTAp-P ≤ ν∗, and
K(ν∗ − ϵ; α) = ∅ implies that the optimal value of (Ap-Pα) is at least ν∗ − ϵ. For ν∗ − ϵ, the
inequalities returned by the separation oracle during the execution of the ellipsoid method
together with the inequality

∑k
i=0 θi + hT β ≤ ν∗ − ϵ yield a polynomial-size certificate for

the emptiness of K(ν∗ − ϵ; α). By duality (or Farkas’ lemma), this implies that if we restrict
(Ap-Pα) to only use the (polynomially many) zi

P variables corresponding to the violated
inequalities of type (P2Pα) returned during the execution of the ellipsoid method, we obtain
a polynomial-size feasible solution (x, ẑ) to (Ap-Pα) of value at least ν∗− ϵ. If we take ϵ to be
inverse exponential in the input size, this also implies (x, ẑ) has value at least ν∗ ≥ OPTAp-P.
Finally, setting z = ẑ/α, we obtain that (x, z) has the desired properties. ◀

▶ Remark 3.8. It is worthwhile to note that none of our arguments above rely on the symmetry
of the underlying metric, and so the reduction in Theorem 3.1 also holds in asymmetric
metrics. Given an asymmetric metric {cu,v}u,v∈V ∪{r}, we define regret distances in the same
way – creg

u (v, w) := cu,v + cv,w − cu,w – and they continue to form an asymmetric metric.

▶ Remark 3.9. In step D1, we only need to let k go up to logγ Dmax (where Dmax :=
maxv Dv ≤ n∆), and so the running time is O

(
nlog Dmax

)
. Also, for any integer c ≥ 1, we

can obtain an O(c)-approximation in O
(
c · n

log Dmax
c

)
time, as follows. We divide the indices

0, 1, . . . , k (where k ≤ logγ Dmax) groups of (roughly) k
c consecutive indices, essentially run

our algorithm for each group separately, and return the best solution found. To elaborate, for
a group {a, a + 1, . . . , b}, we guess the corresponding nodes ua, wa, . . . , ub, wb, and obtain a

ICALP 2021

67:14 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

ui-wi path Qi for each i ∈ {a, . . . , b} such that creg
ui

(Qi) ≤
⌈
γi

⌉
−1, and (Qa∪ . . .∪Qb) obtains

reward Ω
(
π(P ∗

uawb
)
)
. Since we are considering each group in isolation and do not know

the uj , wj nodes for j < a, we need to define lbi,v differently now (which then specifies the
node-set N i that Qi is allowed to visit); we now define lbi,v :=

∑a−1
j=0 γj +

∑i−1
j=a max{cujwj +

cwjuj+1 , cujuj+1 +γj}+cuiv. Similar to before, for ℓ ∈ {0, 1, 2}, we define Z(ℓ) as the path with
node-sequence r, {Qj}a≤j≤b:j−a=ℓ mod 3, and it is not hard to mimic the earlier arguments
to infer that each Z(ℓ) is a feasible deadline-TSP solution.

Note that taking c = logγ Dmax, this shows that the best of the r, Qi-paths, for i =
0, . . . , logγ Dmax yields a (very simple) O(log Dmax)-approximation in polynomial time.

▶ Remark 3.10. There are a couple of ways of improving the efficiency of algorithm LP-Round,
while incurring some associated loss of approximation factor. First, as noted earlier, Friggstad
and Swamy [14] gave a polynomial-size LP-relaxation for P2P orienteering, and an LP-
rounding 6-approximation algorithm for P2P orienteering. Their algorithm explicitly yields
the distributional guarantee proved in Lemma 3.6, namely, it returns a (polynomial-support)
distribution of P2P-orienteering solutions that visits each node with probability at least
xi

v/6, where xi
v has the same meaning as above (see Section 5). One could replace the

exponential-size LP (Ap-P) in algorithm LP-Round with their compact LP, and sample
paths from the distribution output by their algorithm. This yields a much more efficient
guarantee relative to an LP upper bound, but the approximation guarantee degrades to

3
1−e−1/6 ≈ 19.542. (While this is worse than the guarantee obtained using Greedy and the
(2 + ϵ)-approximation for orienteering [6], the benefit is that this guarantee is with respect to
an LP upper bound; also, the orienteering algorithm in [14] is simpler than the one in [6].)

Second, one can replace the use of the ellipsoid method to approximately solve (Ap-P)
by the multiplicative-weights method, incurring a small loss in approximation.

4 Extensions

Our techniques can be applied to handle various extensions, including monotone-reward TSP,
which we discuss here, and some other extensions that we discuss in Section 4.2.

4.1 Monotone-reward TSP
Recall that in monotone-reward TSP, each node v has a non-increasing reward function
πv : R+ 7→ R+, where we set πr(x) = 0 for all x for notational ease. We overload notation,
and for a rooted path P , we now define π(P) :=

∑
v∈P πv(cP (v)), and call this the reward

of P . The goal is to find a simple rooted path that obtains maximum reward. Each πv(.)
function is specified via a value oracle, and we treat each call to this oracle as an elementary
operation. Recall that we assume that cuv is an integer for all u, v ∈ V ∪ {r}.

We show that monotone-reward TSP can be reduced to deadline TSP. This reduction
incurs a slight loss and increases the size of the instance. We also show that the algorithms
and analysis from Section 3 carry over easily to monotone-reward TSP.

▶ Theorem 4.1.
(1) For any ϵ > 0, given a monotone-reward TSP instance I with n clients, we can ob-

tain in polytime a deadline-TSP instance I ′ with O
(

n
ϵ · log n

ϵ

)
clients such that an

α-approximation for I ′ yields an α/(1− 2ϵ)-approximation to I.
(2) The algorithms for deadline TSP described in Section 3 can be easily adapted to monotone-

reward TSP and yield the same guarantees as those stated in Theorem 3.1.

Z. Friggstad and C. Swamy 67:15

Proof of part (1) of Theorem 4.1. Recall that ∆ is the diameter of the metric. In any
simple rooted path, each client is visited by time n ·∆; so we define πv(t) = 0 for all t > n∆
for notational ease. In the deadline-TSP instance, we use the same metric, but for each node
v ∈ V and every time t ∈ {0, 1, . . . , n∆}, we create a co-located client (v, t) with deadline
t and reward πv(t)− πv(t + 1) (which is nonnegative since πv(.) is non-increasing). Thus,
if v is visited at time t in the original graph, then we collect reward πv(t) in total from its
co-located clients (v, t), (v, t + 1), This is a lossless, but pseudo-polytime, reduction.

To make this efficient, we apply a geometric bucketing idea on the rewards. Consider a
fixed ϵ > 0. Observe that LB := maxv∈V πv(crv) is the maximum reward that any solution
can collect from node v. Also, we can obtain a path with reward at least LB by considering
the path r, v for the node v that attains the maximum. We we have LB ≤ optI ≤ n · LB,
where optI is the optimal value for the monotone-reward TSP instance I. Now for each
v ∈ V , instead of creating n · ∆ co-located clients, we consider each integer i ≥ 0 such
that (1 − ϵ)i ≥ ϵ

n ; note that there are at most O
(1

ϵ · log n
ϵ

)
such values. For each such

i, we use binary search (using the value oracle) to find the largest integer tv,i such that
πv(tv,i) ≥ (1− ϵ)i · LB. In the deadline TSP instance I ′, we create a client located at v with
deadline tv,i and reward (1− ϵ)i · LB− (1− ϵ)i+1 · LB. So, if a path reaches location v by
time tv,i it will collect reward at least (1− ϵ)i · LB− ϵ

n · LB.
Let P ∗ be an optimum monotone-reward TSP solution. Consider the value of P ∗ as a

solution to the new deadline-TSP instance. Consider each v on P ∗, and say v was visited
at time t along P ∗. We know that πv(t) ≤ LB. Let i be the smallest integer such that
(1 − ϵ)i · LB ≤ πv(t); so we also have (1 − ϵ)i · LB ≥ (1 − ϵ)πv(t). By the construction of
I ′, we know that tv,i ≥ t, and so we collect total reward at least (1 − ϵ)i · LB − ϵ

n · LB ≥
(1− ϵ)πv(t)− ϵ

n · LB from the clients co-located at v. So the total reward of P ∗ when viewing
it as a deadline-TSP solution is at least (1− ϵ) · optI − ϵ · LB ≥ (1− 2ϵ) · optI .

Conversely, any deadline-TSP solution P ′ when viewed as a monotone-reward TSP
solution produces at least as much reward, since for any time t and any client v, πv(t) is at
least the total reward that will be collected in instance I ′ by visiting the clients located at v at
time t. Therefore, a solution to instance I ′ of value at least optI′/α yields a monotone-reward
TSP solution with value at least 1−2ϵ

α · optI . ◀

Proof of part (2) of Theorem 4.1
We briefly sketch the changes to the algorithms and analyses from Section 3. The only
changes to Algorithm 1 involve changes to the constituent subroutines Greedy and LP-Round,
and entail figuring out what fixed node rewards to use when we consider a P2P-orienteering
instance in step G1, or in LP (Ap-P). (As before, P ∗ denotes an optimal solution, and the
right choice of ui, wi nodes continues to be as defined in Section 3; consequently Lemma 3.2
continues to hold. Also, steps D1.4 and D2 hold as is, given our modified definition of the
reward of a path.)

Two observations guide the choice of rewards we use in step G1 and in (Ap-P). First, we
know that the visiting time of a node v ∈ P ∗

uiwi
is at least lbi,v. Second, suppose for each i,

we obtain a ui-wi path Qi with creg
ui

(Qi) ≤
⌈
γi

⌉
− 1 and construct the paths {Z(0), Z(1), Z(2)}

as in step D1.3; then, by Lemma 3.3, for every Z(ℓ), every Qj ⊆ Z(ℓ), and every v ∈ Qj ,
we know that the visiting time of this occurrence of v is at most lbi,v. Consequently, in
subroutine Greedy and subroutine LP-Round, we use the node rewards {πv(lbi,v)}v∈V ′ for
the i-th orienteering instance; also, the node-set N i is now simply V . Let (MRAp-P) denote
the resulting analogue of (Ap-P), where the coefficient multiplying xi

v in the objective is now
πv(lbi,v).

ICALP 2021

67:16 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

Essentially, all the statements proved for deadline TSP hold here as well, with minor
notational tweaks, and for mostly the same reasons. (Recall that for a rooted path P , we
now define π(P) :=

∑
v∈P πv(cP (v)), and call this the reward of P .)

Algorithm Greedy is unchanged, and the guarantee of Lemma 3.4 still holds, but it needs
to be stated more precisely, and its proof needs to be tweaked. The modified statement is
that we have

∑k
i=0

∑
v∈Qi\(Q0∪...∪Qi−1) πv(lbi,v) ≥ opt/(α + 1). In the proof, in place of (5),

for all i = 0, . . . , k, we now have

∑
v∈Qi\(

⋃i−1
j=0

Qj)

πv(lbi,v) ≥ 1
α
·

∑
v∈P ∗

uiwi

v /∈
⋃i−1

j=0
Qj

πv(lbi,v) ≥ 1
α
·
[∑

v∈P ∗
uiwi

πv

(
cP ∗(v)

)
−

∑
v∈P ∗

uiwi

v∈
⋃i−1

j=0
Qj

πv(lbi,v)
]

(6)

Consider adding, for all i = 0, . . . , k, the inequality in (6) involving the LHS of (6) and the final
RHS of (6). The LHS of the resulting inequality is

∑k
i=0

∑
v∈Qi\(Q0∪...∪Qi−1) πv(lbi,v). For a

node v, consider its total contribution (across all i) to the negative terms on the final RHS of
(6). Node v gets counted at most once among all these negative terms, and if i is the smallest
index such that v ∈ Qi, then the negative term where v is counted is due to some index j > i,
and so is at least −πv(lbi,v). Therefore, the total contribution of the negative terms on the
RHS is at least − 1

α ·
∑k

i=0
∑

v∈Qi\(Q0∪...∪Qi−1) πv(lbi,v). Thus, adding (6) for all i = 0, . . . , k

and simplifying yields the inequality
∑k

i=0
∑

v∈Qi\(Q0∪...∪Qi−1) πv(lbi,v) ≥ opt/(α + 1).
Subroutine LP-Round is also unchanged, except for the change in (Ap-P) due to the above-

mentioned node rewards and since N i = V . The new LP (MRAp-P) can be approximately
solved as in Lemma 3.6. Let x denote the values of the xv

i variables in the solution so
obtained. Then we have z such that the objective value of (x, z) is at least OPT (MRAp-P),∑

P ∈Pi:v∈P zi
P ≥ xi

v/α for all v ∈ V and i = 2, . . . , k, and (x, z) satisfies the remaining
constraints of (MRAp-P).

Claim 3.5 gets replaced by

k∑
i=0

∑
v∈V

πv(lbi,v)xi
v ≥

k∑
i=0

∑
v∈P ∗

uiwi

πv(lbi,v) ≥
∑

v∈P ∗

πv(cP ∗(v)) = opt (7)

The guarantee of Lemma 3.7 still holds, but it needs to be stated more precisely and requires
a different proof, which we defer to the end of this section.

▶ Lemma 4.2. For each i = 0, . . . , k, let Qi be a random path obtained such that Pr[v ∈
Qi] ≥ xi

v/α for all v ∈ V , for some α ≥ 1. Then

E
[k∑

i=0

∑
v∈Qi\(Q2∪...∪Qi−1)

πv(lbi,v)
]
≥

(
1− e−1/α

)
·
(k∑

i=0

∑
v∈V

πv(lbi,v)xi
v

)
.

To finish up the analysis, as before we lower bound maxℓ=0,1,2 E
[
π(Z(ℓ))

]
. Since

Lemma 3.3 continues to hold, for every node v, we know that if i is the smallest in-
dex such that v ∈ Qi, then v is visited by some path Z(ℓ) by time lbi,v. Therefore,
maxℓ=0,1,2 E

[
π(Z(ℓ))

]
≥ 1

3 · E
[∑k

i=0
∑

v∈Qi\(Q2∪...∪Qi−1) πv(lbi,v)
]
. Combining this with

Lemma 4.2 and (7), we obtain the same approximation guarantee as in part (b) of Theo-
rem 3.1.

Finally, the derandomization also proceeds as before. Let Ci denote the polynomial-size
support of the distribution from which the ui-wi path Qi is sampled, and let λi

P denote
the probability of choosing a path P ∈ Ci. We are now interested in the quantity Φ0 =

Z. Friggstad and C. Swamy 67:17

Φ(λ0, . . . , λk) := E
[∑k

i=0
∑

v∈Qi\(Q2∪...∪Qi−1) πv(lbi,v)
]
. We now have Φ =

∑
v∈V rewdv,

where

rewdv = ρ0,vπv(lb0,v) + (1− ρ0,v)ρ1,vπv(lb1,v) + . . . +
(k∏

i=0
(1− ρi,v)

)
ρk,vπv(lbk,v), and

ρi,v = ρi,v(λ0, . . . , λk) =
∑

P ∈Ci

λi
P ∀i = 0, . . . , k.

Since each rewdv is linear in λi for all i, as before, we can deterministically choose Qis for all
i so that Φ(1Q0 , . . . ,1Qk) ≥ Φ0.

Proof of Lemma 4.2. The following claim will be useful.

▷ Claim 4.3. Let a1 ≥ a2 ≥ . . . ≥ aq ≥ aq+1 := 0. Let y ∈ [0, 1]q, and t ≥
∑q

i=1 yi. Define
F (y1, . . . , yq) := y1a1 + (1 − y1)y2a2 + . . . + (1 − y1)(1 − y2) · · · (1 − yq−1)yqaq. We have:

(i) F (y) ≥ (1− e−t) ·
∑q

i=1
aiyi

t ; and (ii) F (z) ≤ F (y) for any z such that 0 ≤ z ≤ y.

Proof. The proof of part (i) follows from elementary arguments (see, e.g., [11]). For any
i = 1, . . . , q, we have

y1 + (1 − y1)y2 + . . . + (1 − y1)(1 − y2) · · · (1 − yi−1)yi =
(

1 − (1 − y1)(1 − y2) · · · (1 − yi)
)

≥ 1 −
(

1 −
∑i

j=1
yj

i

)i

≥
[

1 −
(

1 − t
i

)i
]

·
∑i

j=1 yj

t
≥

(
1 − e−t

)
·

∑i

j=1 yj

t

The first inequality is the AM-GM inequality, the second uses the fact that the function
f(x) = 1−

(
1− x

i

)i is concave, and so f(x) ≥ x · f(t)−f(0)
t for x ≤ t. That is, we have

y1 + (1− y1)y2 + . . . + (1− y1)(1− y2) · · · (1− yi−1)yi ≥
(
1− e−t

)
·

∑i
j=1 yj

t
(8)

Multiplying (8) by ai − ai+1 and adding the resulting inequalities for i = 1, . . . , q yields the
stated bound.

Part (ii) follows from the fact that

∂F

∂yi
= (1−y1) · · · (1−yi−1)

[
ai−

(
ai+1yi+1+(1−yi+1)yi+2ai+2+. . .+(1−yi+1) · · · (1−yq−1)yqaq

)]
which is nonnegative since ai ≥ ai+1, . . . , aq. ◁

We now have everything to prove Lemma 4.2. Let ρi
v := Pr[v ∈ Qi] for v ∈ V , and

i = 0, . . . , k. Let Φ denote the quantity on the LHS of the inequality in the lemma. Since
Q0, . . . , Qk are chosen independently, we have Φ =

∑
v∈V rewdv, where

rewdv = ρ0,vπv(lb0,v) + (1− ρ0,v)ρ1,vπv(lb1,v) + . . . +
(k∏

i=0
(1− ρi,v)

)
ρk,vπv(lbk,v)

≥ x0
v

α · πv(lb0,v) +
(

1− x0
v

α

)
x1

v

α · πv(lb1,v) + . . . +
(k∏

i=0

(
1− xi

v

α

))
xk

v

α · πv(lbk,v).

The inequality follows from part (ii) of Claim 4.3 since ρi
v ≥ xi

v/α for all i = 0, . . . , k.
Applying Claim 4.3 with ai = πv(lbi,v) and yi = xi

v

α for all i = 0, . . . , k, and t = 1
α , we

therefore obtain that rewdv ≥
(
1− e−1/α

) ∑k
i=0 πv(lbi,v)xi

v. It follows that Φ ≥
(
1− e−1/α

)
·(∑k

i=0
∑

v∈V πv(lbi,v)xi
v

)
. ◀

ICALP 2021

67:18 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

4.2 Further extensions of Deadline TSP

Point-to-point {deadline, monotone-reward} TSP. In the point-to-point (P2P) version
of {deadline, monotone-reward} TSP, in addition to the root node r, we are also given an
end-node t and a length-bound B. The goal is to find an r-t path of length at most B that
collects maximum reward.

The P2P-version easily reduces to the standard version of the problem. For deadline TSP,
we can incorporate the above requirements by modifying the deadline of each node v ∈ V ′ to
Dnew

v := min{Dv, B − cvt}. If P is a rooted path ending at a node s such that all v ∈ P are
visited by time Dnew

v , then P ′ = P, st is an r-t path such that all v ∈ P ′ are visited by time
Dv, and c(P ′) ≤ Dnew

s + cst ≤ B.
Similarly, for monotone-reward TSP, we modify the reward function of each v ∈ V ′ to

πnew
v (x) = πv(x) if x ≤ B − cvt, and 0 if x > B − cvt. As before if P is an r-s path earning a

certain modified reward, then P ′ = P, st is an r-t path of length at most B earning the same
reward.

TSP with release dates, and TSP with increasing rewards. In TSP with release dates,
each node v has a release date relv instead of a deadline, and we have a length bound B. A
feasible solution is a rooted path P , and a traversal of P starting from the root node where
we are allowed to also wait at nodes, so that the visiting time of each node v ∈ P is at least
relv and at most B; we seek a feasible solution that gathers maximum reward. Set relr = 0
for notational convenience.

As noted in [2], this can be reduced to deadline TSP as follows. If P is a feasible solution
ending at node t, then we must have relt ≤ B and c(Pvt) ≤ B− relv for all v ∈ P . Conversely
any r-t path P with c(Pvt) ≤ B − relv for all v ∈ P yields a feasible solution, where we
wait at r for B − c(P) time and then traverse P without any subsequent waiting. We thus
infer that we seek a feasible solution to P2P-deadline TSP (and hence deadline TSP) with
start node t, end-node r, length bound B, and deadlines {B − relv}v∈V ′ . Trying all possible
choices of t completes the reduction.

Analogous to how monotone-reward TSP generalizes deadline TSP, we can consider a
generalization of TSP with release dates wherein each node v has a non-decreasing reward
function πv : R+ 7→ R+, and we seek a rooted path P with c(P) ≤ B, and a traversal of P

that yields maximum reward. As above, if we know the end-node t of an optimal solution,
then this reduces to solving an instance of P2P monotone-reward TSP, where we seek a path
starting at t and ending at r path of length at most B, and the reward of node v is given by
the non-increasing function π′

v(x) = πv(B − x).

Orienteering with time windows. Chekuri et al. [6] obtain (among other results) an
O

(
max{log opt, log Lmax

Lmin
}
)
-approximation for orienteering with time windows, where opt is

the optimal value, and Lmax and Lmin are the lengths of the longest and shortest time
windows with non-zero length. The log opt term in their guarantee is because they use
the logarithmic approximation of [2] for deadline TSP.3 Replacing this algorithm with our
deadline-TSP algorithm therefore yields an O

(
log Lmax

Lmin

)
-approximation for orienteering with

time windows in O
(
nlog n∆)

time.

3 Chekuri et al. [6] work with {0, 1}-rewards, and in this setting, the approximation factor obtained in [2]
for deadline TSP can be seen to be O(log opt).

Z. Friggstad and C. Swamy 67:19

5 LP-rounding algorithm for P2P-orienteering in [14]

We briefly discuss the LP-rounding algorithm for P2P-orienteering by Friggstad and
Swamy [14] that directly yields the distributional guarantee utilized in subroutine LP-Round.
Recall that (V ′ = {r} ∪ V, c) is the underlying metric, and our P2P-orienteering instance I
is specified by node-set N ⊆ V ′, start and end-nodes s, t ∈ N respectively, length-bound B,
and node-rewards {πv}v∈N .

Let D = (N, A) denote the complete (bidirected) graph on N , where the cost of an arc
(u, v) ∈ A is set to cuv; thus c induces a metric on D. Let P ∗ be an optimal solution to I.
The idea underlying the LP relaxation is to “guess” the node v ∈ P ∗ that maximizes csv + cvt.
The LP then searches for an s ⇝ v path and a v ⇝ t path – encoded by requiring an s-v
flow and v-t flow of value 1 – that visit only nodes u ∈ N such that csu + cut ≤ csv + cvt,
have total length at most B, and together earn the maximum reward. Also, we replace
the “guessing” step by having indicator variables zv

v to denote if v is the node on P ∗ with
maximum csv + cvt value.

This leads to the following LP. For every v ∈ N , we have the following set of variables
(in addition to zv

v). We use xv ∈ [0, 1] to denote the extent to which v is visited. We let
ysv denote an s-v flow of value zv

v , and yvt denotes a v-t flow of value xv
v. We impose

that ysv
(
δin(u)

)
= yvt

(
δin(u)

)
= 0 whenever csu + cut > csv + cvt. We use zsv

u and zvt
u to

denote respectively the s⇝ u connectivity under xsv and the v ⇝ u connectivity under xvt.
So in an integral solution, zsv

u and zvt
u indicate respectively if u lies on the s-v portion or

the v-t portion of the optimum path. We connect the x and z variables by imposing that
xu =

∑
v∈N (zsv

u + zvt
u) for every u ∈ N . For nodes v, p, q ∈ N , and κ ≥ 0, define

Fv(p, q, κ) :=
{

y ∈ RA
+ : y

(
δout(p)

)
= κ = y

(
δin(q)

)
, y

(
δin(p)

)
= 0 = y

(
δout(q)

)
y
(
δin(w)

)
− y

(
δout(w)

)
= 0 ∀w ∈ V ′ \ {p, q}

y
(
δin(w)

)
= 0 ∀w ∈ V ′ : csw + cwt > csv + cvt

}
Note that if κ > 0, then F(u, u, κ) = ∅ for every u.

max
∑

u,v∈N

πuxu (P2P-O)

s.t. ysv∈Fv(s, v, zv
v), yvt∈Fv(v, t, zv

v) ∀v ∈ N

ysv
(
δin(S)

)
≥ zsv

u ∀v ∈ N, S ⊆ N \ {s}, u ∈ S (9)
yvt

(
δin(S)

)
≥ zvt

u ∀v ∈ N, S ⊆ N \ {v}, u ∈ S (10)∑
a∈A

ca(ysv
a + yvt

a) ≤ Bzv
v ∀v ∈ N (11)∑

v∈N

(zsv
u + zvt

u) = xu ∀u ∈ N (12)∑
v∈N

zv
v = 1, y, z ≥ 0, x ∈ [0, 1]N .

As noted in [14], we can rephrase the cut constraints (9), (10) using additional flow variables
and constraints to obtain a polynomial-size formulation.

Friggstad and Swamy [14] devise the following algorithm for rounding an LP solution
(x, y, z). They show that for each v ∈ N , we can utilize ysv to obtain a polynomial collection
of s-rooted paths, and weights for these paths such that:

ICALP 2021

67:20 Constant-Factor Approximation to Deadline TSP in (Almost) Quasi-Polytime

(i) if a path P in the collection ends at a node u, then P ′ = P, ut is an s-t path with
c(P ′) ≤ B;

(ii) the total weight of paths in the collection is at most 3zv
v ; and

(iii) the total weight of paths containing a node u is at least zsv
u , for all u ∈ N .

Similarly, we can utilize yvt to obtain a suitable weighted collection of paths, each of which
yields an s-t path of length at most B. Taking these collections for all v ∈ N , we obtain
that the total weight of paths is at most 6, and for each u ∈ N , the total weight of paths
containing u is at least

∑
v(zsv

u + zvt
u) = xu. The distribution obtained by scaling the weights

by 6 yields the desired distribution.

References
1 H. C. An, R. Kleinberg, and D. B. Shmoys. Improving Christofides’ algorithm for the s-t path

TSP. Journal of the ACM, 62(5):34, 2015.
2 N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for deadline-TSP

and vehicle routing with time windows. In Proceedings of 36th STOC, pages 166–174, 2004.
3 A. Blum, S. Chawla, D. R. Karger, T. Lane, and A. Meyerson. Approximation algorithms for

orienteering and discount-reward TSP. SIAM J. Comput., 37(2):653–670, 2007.
4 R. Carr and S. Vempala. Randomized metarounding. Random Structures and Algorithms,

20(3):343–352, 2002.
5 K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours.

In Proceedings of 44th FOCS, pages 36–45, 2003.
6 C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and related problems.

ACM Transactions on Algorithms, 8(3), 2012.
7 C. Chekuri and A. Kumar. Maximum coverage problem with group budget constraints and

applications. In Proceedings of 7th APPROX, pages 72–83, 2004.
8 C. Chekuri and M. Pál. A recursive greedy algorithm for walks in directed graphs. In

Proceedings of 46th FOCS, pages 245–253, 2005.
9 N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem.

Technical Report 388, Graduate School of Industrial Administration, CMU, 1976.
10 B. Farbstein and A. Levin. Discount reward TSP. Algorithmica, 80(2):472–495, 2018.
11 L. Fleischer, M. Goemans, V. Mirrokni, and M. Sviridenko. Tight approximation algorithms

for maximum general assignment problems. In Proceedings of 17th SODA, pages 611–620,
2006.

12 Z. Friggstad, M. R. Salavatipour, and Z. Svitkina. Asymmetric traveling salesman path and
directed latency problems. SIAM J. Comput, 42(4):1596–1619, 2013.

13 Z. Friggstad and C. Swamy. Approximation algorithms for regret-bounded vehicle routing
and applications to distance-constrained vehicle routing. In Proceedings of 46th STOC, pages
744–753, 2014. Detailed version posted on CS arXiv, Nov 2013.

14 Z. Friggstad and C. Swamy. Compact, provably-good LPs for orienteering and regret-bounded
vehicle routing. In Proceedings of 19th IPCO, pages 199–211, 2017.

15 B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logistics,
34:307–318, 1987.

16 E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In Proceedings of 35th
STOC, pages 585–594, 2003.

17 A. Köhne, V. Traub, , and J. Vygen. The asymmetric traveling salesman path LP has constant
integrality ratio. In Proceedings of 20th IPCO, pages 288–298, 2019.

18 R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming.
Journal of the ACM, 58(6), 2011.

19 C.-L. Li, D. Simchi-Levi, and M. Desrochers. On the distance constrained vehicle routing
problem. Operations research, 40:790–799, 1992.

Z. Friggstad and C. Swamy 67:21

20 V. Nagarajan and R. Ravi. The directed minimum latency problem. In Proceedings of 11th
APPROX, pages 193–206, 2008.

21 V. Nagarajan and R. Ravi. The directed orienteering problem. Algorithmica, 60(4):1017–1030,
2011.

22 V. Nagarajan and R. Ravi. Approximation algorithms for distance constrained vehicle routing
problems. Networks, 59(2):209–214, 2012.

23 I. Post and C. Swamy. Linear-programming based techniques for multi-vehicle minimum
latency problems. In Proceedings of 26th SODA, pages 512–531, 2015.

24 A. Sebo and A. van Zuylen. The salesman’s improved paths: A 3/2 + 1/34 approximation. In
Proceedings of 57th FOCS, pages 118–127, 2016.

25 A. Sebo and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2
for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica, 34(5):597–629,
2014.

26 O. Svensson, J. Tarnawski, and L. Vegh. A constant-factor approximation algorithm for the
asymmetric traveling salesman problem. In Proceedings of 50th STOC, pages 204–213, 2018.

27 P. Toth and eds D. Vigo. The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia, 2002.

28 V. Traub and J. Vygen. Approaching 3
2 for the s-t path TSP. In Proceedings of 29th SODA,

pages 1854–1864, 2018.
29 R. Zenklusen. A 1.5-approximation for path TSP. In Proceedings of 30th SODA, pages

1539–1549, 2019.

ICALP 2021

	1 Introduction
	2 Preliminaries and notation
	3 Constant-factor approximation for deadline TSP
	4 Extensions
	4.1 Monotone-reward TSP
	4.2 Further extensions of Deadline TSP

	5 LP-rounding algorithm for P2P-orienteering in [Friggstad and Swamy, 2017]

