
Universal Algorithms for Clustering Problems
Arun Ganesh #

Department of Computer Science, University of California at Berkeley, CA, USA

Bruce M. Maggs #

Department of Computer Science, Duke University, Durham, NC, USA
Emerald Innovations, Cambridge, MA, USA

Debmalya Panigrahi #

Department of Computer Science, Duke University, Durham, NC, USA

Abstract
This paper presents universal algorithms for clustering problems, including the widely studied
k-median, k-means, and k-center objectives. The input is a metric space containing all potential
client locations. The algorithm must select k cluster centers such that they are a good solution
for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the
maximum over all subsets of the difference between the cost of the algorithm’s solution and that of
an optimal solution. A universal algorithm’s solution sol for a clustering problem is said to be an
(α, β)-approximation if for all subsets of clients C′, it satisfies sol(C′) ≤ α · opt(C′) + β · mr, where
opt(C′) is the cost of the optimal solution for clients C′ and mr is the minimum regret achievable
by any solution.

Our main results are universal algorithms for the standard clustering objectives of k-median,
k-means, and k-center that achieve (O(1), O(1))-approximations. These results are obtained via a
novel framework for universal algorithms using linear programming (LP) relaxations. These results
generalize to other ℓp-objectives and the setting where some subset of the clients are fixed. We also
give hardness results showing that (α, β)-approximation is NP-hard if α or β is at most a certain
constant, even for the widely studied special case of Euclidean metric spaces. This shows that in
some sense, (O(1), O(1))-approximation is the strongest type of guarantee obtainable for universal
clustering.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases universal algorithms, clustering, k-median, k-means, k-center

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.70

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2105.02363

Funding Arun Ganesh: Supported in part by NSF Award CCF-1535989.
Bruce M. Maggs: Supported in part by NSF grant CCF-1535972.
Debmalya Panigrahi: Supported in part by NSF grants CCF-1535972, CCF-1955703, an NSF
Career Award CCF-1750140, and the Indo-US Virtual Networked Joint Center on Algorithms Under
Uncertainty.

1 Introduction

In universal1 approximation (e.g., [8, 9, 10, 16, 20, 22, 27, 39, 40]), the algorithm is presented
with a set of potential input points and must produce a solution. After seeing the solution,
an adversary selects some subset of the points as the actual realization of the input, and the

1 In the context of clustering, universal facility location sometimes refers to facility location where facility
costs scale with the number of clients assigned to them. This problem is unrelated to the notion of
universal algorithms studied in this paper.

EA
T
C
S

© Arun Ganesh, Bruce M. Maggs, and Debmalya Panigrahi;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 70; pp. 70:1–70:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arunganesh@berkeley.edu
mailto:bmm@cs.duke.edu
mailto:debmalya@cs.duke.edu
https://doi.org/10.4230/LIPIcs.ICALP.2021.70
https://arxiv.org/abs/2105.02363
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Universal Algorithms for Clustering Problems

cost of the solution is based on this realization. The goal of a universal algorithm is to obtain
a solution that is near-optimal for every possible input realization. For example, suppose
that a network-based-service provider can afford to deploy servers at k locations around the
world and hopes to minimize latency between clients and servers. The service provider does
not know in advance which clients will request service, but knows where clients are located.
A universal solution provides guarantees on the quality of the solution regardless of which
clients ultimately request service. As another example, suppose that a program committee
chair wishes to invite k people to serve on the committee. The chair knows the areas of
expertise of each person who is qualified to serve. Based on past iterations of the conference,
the chair also knows about many possible topics that might be addressed by submissions.
The chair could use a universal algorithm to select a committee that will cover the topics
well, regardless of the topics of the papers that are submitted. The situation also arises in
targeting advertising campaigns to client demographics. Suppose a campaign can spend for
k advertisements, each targeted to a specific client type. While the entire set of client types
that are potentially interested in a new product is known, the exact subset of clients that
will watch the ads, or eventually purchase the product, is unknown to the advertiser. How
does the advertiser target her k advertisements to address the interests of any realized subset
of clients?

Motivated by these sorts of applications, this paper presents the first universal algorithms
for clustering problems, including the classic k-median, k-means, and k-center problems. The
input to these algorithms is a metric space containing all locations of clients and cluster
centers. The algorithm must select k cluster centers such that this is a good solution for any
subset of clients that actually realize.

It is tempting to imagine that, in general, for some large enough value of α, one can find a
solution sol such that for all realizations (i.e., subsets of clients) C ′, sol(C ′) ≤ α · opt(C ′),
where sol(C ′) denotes sol’s cost in realization C ′ and opt(C ′) denotes the optimal cost
in realization C ′. But this turns out to be impossible for many problems, including the
clustering problems we study, and indeed this difficulty may have limited the study of
universal algorithms. For example, suppose that the input for the k-median problem is a
uniform metric on k + 1 points, each with a cluster center and client. In this case, for any
solution sol with k cluster centers, there is some realization C ′ consisting of a single client
that is not co-located with any of the k cluster centers in sol. Then, sol(C ′) > 0 but
opt(C ′) = 0. Since it is not possible to provide a strict approximation guarantee for every
realization, we instead seek to minimize the regret, defined as the maximum difference between
the cost of the algorithm’s solution and the optimal cost across all realizations. The solution
that minimizes regret is called the minimum regret solution, or mrs for short, and its regret is
termed minimum regret or mr. More formally, mr = minsol maxC′ [sol(C ′) − opt(C ′)]. We
now seek a solution sol that achieves, for all input realizations C ′, sol(C ′) − opt(C ′) ≤ mr,
i.e., sol(C ′) ≤ opt(C ′) + mr. But, obtaining such a solution turns out to be NP-hard for
many problems, and one has to settle for an approximation: sol(C ′) ≤ α · opt(C ′) + β · mr.
The algorithm is then called an (α, β)-approximate universal algorithm for the problem.
Note that in the aforementioned example with k + 1 points, any solution must pay mr (the
distance between any two points) in some realization where opt(C ′) = 0 and only one client
appears (in which case paying mr might sound avoidable or undesirable). This example
demonstrates that stricter notions of regret and approximation than (α, β)-approximation
are infeasible in general, suggesting that (α, β)-approximation is the least relaxed guarantee
possible for universal clustering.

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:3

1.1 Problem Definitions and Results
We are now ready to formally define our problems and state our results. In all the clustering
problems that we consider in this paper, the input is a metric space on all the potential
client locations C and cluster centers F . The special case where F = C has also been studied
in the clustering literature, e.g., in [23, 14], although the more common setting, as in our
work, is to not make this assumption. Of course, all results, including ours, without this
assumption also apply to the special case. If F = C, the constants in our bounds improve,
but the results are qualitatively the same. We note that some sources refer to the k-center
problem when F ̸= C as the k-supplier problem instead, and use k-center to refer exclusively
to the case where F = C.

Let cij denote the metric distance between points i and j. The solution produced
by the algorithm comprises k cluster centers in F ; let us denote this set by sol. Now,
suppose a subset of clients C ′ ⊆ C realizes in the actual input. Then, the cost of each
client j ∈ C ′ is given as the distance from the client to its closest cluster center, i.e.,
cost(j, sol) = mini∈sol cij . The clustering problems differ in how these costs are combined
into the overall minimization objective. The respective objectives are given below:

k-median (e.g., [14, 25, 5, 34, 11]): sol(C ′) =
∑

j∈C′ cost(j, sol).
k-center (e.g., [23, 15, 24, 30, 37]): sol(C ′) = maxj∈C′ cost(j, sol).
k-means (e.g., [35, 28, 33, 21, 1]): sol(C ′) =

√∑
j∈C′ cost(j, sol)2.

We also consider ℓp-clustering (e.g., [21]) which generalizes all these individual clustering
objectives. In ℓp-clustering, the objective is the ℓp-norm of the client costs for a given value

p ≥ 1, i.e., sol(C ′) =
(∑

j∈C′ cost(j, sol)p
)1/p

. Note that k-median and k-means are
special cases of ℓp-clustering for p = 1 and p = 2 respectively. k-center can also be defined
in the ℓp-clustering framework as the limit of the objective for p → ∞; moreover, it is
well-known that ℓp-norms only differ by constants for p > log n, thereby allowing the k-center
objective to be approximated within a constant by ℓp-clustering for p = log n.

Our main result is to obtain (O(1), O(1))-approximate universal algorithms for k-median,
k-center, and k-means. We also generalize these results to the ℓp-clustering problem.

▶ Theorem 1. There are (O(1), O(1))-approximate universal algorithms for the k-median, k-
means, and k-center problems. More generally, there are (O(p), O(p2))-approximate universal
algorithms for ℓp-clustering problems, for any p ≥ 1.

▶ Remark. The bound for k-means is by setting p = 2 in ℓp-clustering. For k-median and
k-center, we use separate algorithms to obtain improved bounds than those provided by the
ℓp-clustering result. This is particularly noteworthy for k-center where ℓp-clustering only
gives poly-logarithmic approximation.

Universal Clustering with Fixed Clients. We also consider a more general setting where
some of the clients are fixed, i.e., are there in any realization, but the remaining clients may
or may not realize as in the previous case. (Of course, if no client is fixed, we get back
the previous setting as a special case.) This more general model is inspired by settings
where a set of clients is already present but the remaining clients are mere predictions. This
surprisingly creates new technical challenges, that we overcome to get:

▶ Theorem 2. There are (O(1), O(1))-approximate universal algorithms for the k-median,
k-means, and k-center problems with fixed clients. More generally, there are (O(p2), O(p2))-
approximate universal algorithms for ℓp-clustering problems, for any p ≥ 1.

ICALP 2021

70:4 Universal Algorithms for Clustering Problems

Hardness Results. Next, we study the limits of approximation for universal clustering. In
particular, we show that the universal clustering problems for all the objectives considered in
this paper are NP-hard in a rather strong sense. Specifically, we show that both α and β are
separately bounded away from 1, irrespective of the value of the other parameter, showing
the necessity of both α and β in our approximation bounds. Similar lower bounds continue
to hold for universal clustering in Euclidean metrics, even when PTASes are known in the
offline (non-universal) setting [4, 31, 33, 37, 1].

▶ Theorem 3. In universal ℓp-clustering for any p ≥ 1, obtaining α < 3 or β < 2 is NP-hard.
Even for Euclidean metrics, obtaining α < 1.8 or β ≤ 1 is NP-hard. The lower bounds on α

(resp., β) are independent of the value of β (resp., α).

Interestingly, our lower bounds rely on realizations where sometimes as few as one client
appears. This suggests that e.g. redefining regret to be some function of the number of
clients that appear (rather than just their cost) cannot subvert these lower bounds.

1.2 Techniques
Before discussing our techniques, we discuss why standard approximations for clustering
problems are insufficient. It is known that the optimal solution for the realization that
includes all clients gives a (1, 2)-approximation for universal k-median (this is a corollary
of a more general result in [29]; we do not know if their analysis can be extended to e.g.
k-means), giving universal algorithms for “easy” cases of k-median such as tree metrics. But,
the clustering problems we consider in this paper are NP-hard in general; so, the best we
can hope for in polynomial time is to obtain optimal fractional solutions, or approximate
integer solutions. Unfortunately, the proof of [29] does not generalize to any regret guarantee
for the optimal fractional solution. Furthermore, for all problems considered in this paper,
even (1 + ϵ)-approximate (integer) solutions for the “all clients” instance are not guaranteed
to be (α, β)-approximations for any finite α, β. These observations fundamentally distinguish
universal approximations for NP-hard problems like the clustering problems in this paper
from those in P, and require us to develop new techniques for universal approximations.

In this paper, we develop a general framework for universal approximation based on linear
programming (lp) relaxations that forms the basis of our results on k-median, k-means,
and k-center (Theorem 1) as well as the extension to universal clustering with fixed clients
(Theorem 2).

The first step in our framework is to write an lp relaxation of the regret minimization
problem. In this formulation, we introduce a new regret variable that we seek to minimize
and is constrained to be at least the difference between the (fractional) solution obtained by
the lp and the optimal integer solution for every realizable instance. Abstractly, if the lp
relaxation of the optimization problem is given by min{c · x : x ∈ P}, then the new regret
minimization lp is given by

min{r : x ∈ P ; c(I)·x ≤ opt(I) + r, ∀I}.

(For problems like k-means with non-linear objectives, the constraint c(I)·x ≤ opt(I) + r
cannot be replaced with a constraint that is simultaneously linear in x, r. However, for a
fixed value of r, the corresponding non-linear constraints still give a convex feasible region,
and so the techniques we discuss in this section can still be used.)

Here, I ranges over all realizable instances of the problem. Hence, the lp is exponential in
size, and we need to invoke the ellipsoid method via a separation oracle to obtain an optimal
fractional solution. It suffices to design a separation oracle for the new set of constraints

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:5

c(I)·x ≤ opt(I) + r, ∀I. This amounts to determining the regret of a fixed solution given by
x, which unfortunately, is NP-hard for our clustering problems. So, we settle for designing
an approximate separation oracle, i.e., approximating the regret of a given solution. For
k-median, we reduce this to a submodular maximization problem subject to a cardinality
constraint, which can then be (approximately) solved via standard greedy algorithms. For
k-means, and more generally ℓp-clustering, as well as the setting with fixed clients, the
situation is more complex, but can still be reduced to submodular maximization.

The next step in our framework is to round these fractional solutions to integer solutions
for the regret minimization lp. Typically, in clustering problems such as k-median, lp
rounding algorithms give average guarantees, i.e., although the overall objective in the integer
solution is bounded against that of the fractional solution, individual connection costs of
clients are not (deterministically) preserved in the rounding. But, average guarantees are
too weak for our purpose: in a realized instance, an adversary may only select the clients
whose connection costs increase by a large factor in the rounding thereby causing a large
regret. Ideally, we would like to ensure that the connection cost of every individual client
is preserved up to a constant in the rounding. However, this may be impossible in general.
Consider a uniform metric over k + 1 points. One fractional solution is to make k

k+1 fraction
of each point a cluster center. In any integer solution, since there are only k cluster centers
but k + 1 points overall, there is one client that has connection cost of 1, which is k + 1 times
its fractional connection cost.

To overcome this difficulty, we allow for a uniform additive increase in the connection
cost of every client. We show that such a rounding also preserves the regret guarantee
of our fractional solution within constant factors. The clustering problem we now solve
has a modified objective: for every client, the distance to the closest cluster center is now
discounted by the additive allowance, with the caveat that the connection cost is 0 if this
difference is negative. This variant is a generalization of a problem appearing in [19], and
we call it clustering with discounts (e.g., for k-median, we call this problem k-median with
discounts.) Our main tool in the rounding then becomes an approximation algorithm for
ℓp

p-clustering with discounts. For k-median, we use a Lagrangian relaxation of this problem
to the classic facility location problem to design such an approximation. For k-means and
ℓp-clustering, extra work is needed to relate the ℓp and ℓp

p objectives. For k-center, we give a
purely combinatorial (greedy) algorithm.

1.3 Related Work
For all previous universal algorithms, the approximation factor corresponds to our parameter
α, i.e., these algorithms are (α, 0)-approximate. The notion of regret was not considered. As
we have explained, however, it is not possible to obtain such results for universal clustering.
Furthermore, it may be possible to trade-off some of the large values of α in these results,
e.g., Ω(

√
n) for set cover, by allowing β > 0.

Universal algorithms have been of large interest in part because of their applications as
online algorithms where all the computation is performed ahead of time. Much of the work
on universal algorithms has focused on TSP, starting with the seminal work of Jia et al. [26]
(later improved by [20]), with following work giving better approximations for Euclidean
metrics [39], minor-free metrics [22], and tree metrics [40]. The universal metric Steiner tree
problem was also considered by Jia et al. [26], with nearly matching lower bounds [2, 26, 9].
The problem has also been considered for general graphs and minor-free graphs [10]. Finally,
for universal (weighted) set cover, Jia et al. [26] (see also [17]) provide an algorithm and an
almost matching lower bound.

ICALP 2021

70:6 Universal Algorithms for Clustering Problems

The problem of minimizing regret has been studied in the context of robust optimization,
with a focus on tree metrics. The robust 1-median problem was introduced for tree metrics by
Kouvelis and Yu in [32] and several faster algorithms and for general metrics were developed
in the following years (e.g. see [7]). For robust k-center, Averbakh and Berman[7] gave a
reduction to ordinary k-center problems, which are tractable on tree metrics.

Roadmap. We present the constant approximation algorithms (Theorem 1) for universal
k-median, a sketch for k-means, and k-center in Sections 2, 4, and 5 respectively. The
k-means result is given in full detail as a more general ℓp-clustering result in the full paper.
In describing these algorithms, we defer the clustering with discounts algorithms used in
the rounding to the appendix. We also give the extension to universal clustering with fixed
clients for k-median in Section 3, with the extensions for k-means and k-center in the full
paper. Finally, the hardness results (Theorem 3) appear in Section 6.

2 Universal k-Median

In this section, we prove the following theorem:

▶ Theorem 4. There exists a (27, 49)-approximate universal algorithm for the k-median
problem.

The algorithm has two components. The first component is a separation oracle for the regret
minimization lp based on submodular maximization, which we define below.

Submodular Maximization with Cardinality Constraints. A (non-negative) function f :
2E → R+

0 is said to be submodular if for all S ⊆ T ⊆ E and x ∈ E, we have f(T ∪{x})−f(T) ≤
f(S ∪ {x}) − f(S). It is said to be monotone if for all S ⊆ T ⊆ E, we have f(T) ≥ f(S). The
following theorem for maximizing monotone submodular functions subject to a cardinality
constraint is well-known.

▶ Theorem 5 (Fisher et al. [38]). For the problem of finding S ⊆ E that maximizes a monotone
submodular function f : 2E → R+

0 , the natural greedy algorithm that starts with S = ∅ and
repeatedly adds x ∈ E that maximizes f(S∪{x}) until |S| = k, is a e

e−1 ≈ 1.58-approximation.

We give the reduction from the separation oracle to submodular maximization in Section 2.1,
and then employ the above theorem.

k-median with Discounts. The second component of our framework is a rounding algorithm
that employs the k-median with discounts problem, which we define next. In the k-median
with discounts problem, we are given a k-median instance, but where each client j has an
additional (non-negative) parameter rj called its discount. Just as in the k-median problem,
our goal is to place k cluster centers that minimize the total connection costs of all clients.
But, the connection cost for client j can now be discounted by up to rj , i.e., client j with
connection cost cj contributes (cj − rj)+ := max{0, cj − rj} to the objective of the solution.

Let opt be the cost of an optimal solution to the k-median with discounts problem.
We say an algorithm alg that outputs a solution with connection cost cj for client j is a
(γ, σ)-approximation if:∑

j∈C

(cj − γ · rj)+ ≤ σ · opt.

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:7

That is, a (γ, σ)-approximate algorithm outputs a solution whose objective function when
computed using discounts γ · rj for all j is at most σ times the optimal objective using
discounts rj . In the case where all rj are equal, [19] gave a (9, 6)-approximation algorithm
for this problem based on the classic primal-dual algorithm for k-median. The following
lemma generalizes their result to the setting where the rj may differ:

▶ Lemma 6. There exists a (deterministic) polynomial-time (9, 6)-approximation algorithm
for the k-median with discounts problem.

We give details of the algorithm and the proof of this lemma in the full paper. We note that
when all rj are equal, the constants in [19] can be improved (see e.g. [13]); we do not know
of any similar improvement when the rj may differ. In Section 2.2, we give the reduction
from rounding the fractional solution for universal k-median to the k-median with discounts
problem, and then employ the above lemma.

2.1 Universal k-median: Fractional Algorithm
The standard k-median polytope (see e.g., [25]) is given by:

P = {(x, y) :
∑

i

xi ≤ k; ∀i, j : yij ≤ xi; ∀j :
∑

i

yij ≥ 1; ∀i, j : xi, yij ∈ [0, 1]}.

Here, xi represents whether point i is chosen as a cluster center, and yij represents whether
client j connects to i as its cluster center. Now, consider the following lp formulation for
minimizing regret r:

min{r : (x, y) ∈ P ; ∀C ′ ⊆ C :
∑
j∈C′

∑
i

cijyij − opt(C ′) ≤ r}, (1)

where opt(C ′) is the cost of the (integral) optimal solution in realization C ′. Note that the
new constraints: ∀C ′ ⊆ C :

∑
j∈C′

∑
i cijyij − opt(C ′) ≤ r (we call it the regret constraint

set) require that the regret is at most r in all realizations.
In order to solve lp (1), we need a separation oracle for the regret constraint set. Note

that there are exponentially many constraints corresponding to realizations C ′; moreover,
even for a single realization C ′, computing opt(C ′) is NP-hard. So, we resort to designing an
approximate separation oracle. Fix some fractional solution (x, y, r). Overloading notation,
let S(C ′) denote the cost of the solution with cluster centers S in realization C ′. By definition,
opt(C ′) = minS⊆F,|S|=k S(C ′). Then designing a separation oracle for the regret constraint
set is equivalent to determining if the following inequality holds:

max
C′⊆C

max
S⊆F,|S|=k

 ∑
j∈C′

∑
i

cijyij − S(C ′)

 ≤ r.

We flip the order of the two maximizations, and define fy(S) as follows:

fy(S) = max
C′⊆C

 ∑
j∈C′

∑
i

cijyij − S(C ′)

 .

Then designing a separation oracle is equivalent to maximizing fy(S) for S ⊆ F subject
to |S| = k. The rest of the proof consists of showing that this function is monotone and
submodular, and efficiently computable.

ICALP 2021

70:8 Universal Algorithms for Clustering Problems

▶ Lemma 7. Fix y. Then, fy(S) is a monotone submodular function in S. Moreover, fy(S)
is efficiently computable for a fixed S.

Proof. Let d(j, S) := mini′∈S ci′j denote the distance from client j to the nearest cluster
center in S. If S = ∅, we say d(j, S) := ∞. The value of C ′ that defines fy(S) is the set of
all clients closer to S than to the fractional solution y, i.e.,

∑
i cijyij > mini′∈S ci′j . This

immediately establishes efficient computability of fy(S). Moreover, we can equivalently write
fy(S) as follows:

fy(S) =
∑
j∈C

(
∑

i

cijyij − d(j, S))+.

A sum of monotone submodular functions is a monotone submodular function, so it suffices
to show that for all clients j, the new function gy,j(S) := (

∑
i cijyij − d(j, S))+ is monotone

submodular.
gy,j is monotone: for S ⊆ T , d(j, T) ≤ d(j, S), and thus (

∑
i cijyij − d(j, S))+ ≤

(
∑

i cijyij − d(j, T))+.
gy,j is submodular if:

∀S ⊆ T ⊆ F, ∀x ∈ F : gy,j(S ∪ {x}) − gy,j(S) ≥ gy,j(T ∪ {x}) − gy,j(T)

Fix S, T , and x. Assume gy,j(T ∪ {x}) − gy,j(T) is positive (if it is zero, by monotonicity
the above inequality trivially holds). This implies that x is closer to client j than
any cluster center in T (and hence S too), i.e., d(j, x) ≤ d(j, T) ≤ d(j, S). Thus,
d(j, x) = d(j, S ∪ {x}) = d(j, T ∪ {x}) which implies that gy,j(S ∪ {x}) = gy,j(T ∪ {x}).
Then we just need to show that gy,j(S) ≤ gy,j(T), but this holds by monotonicity. ◀

By standard results (see e.g., GLS [18]), we get an (α, β)-approximate fractional solution
for universal k-median via the ellipsoid method if we have an approximate separation oracle
for lp (1) that given a fractional solution (x, y, r) does either of the following:

Declares (x, y, r) feasible, in which case (x, y) has cost at most α · opt(I) + β · r in all
realizations, or
Outputs an inequality violated by (x, y, r) in lp (1).

The approximate separation oracle does the following for the regret constraint set (all
other constraints can be checked exactly): Given a solution (x, y, r), find an e−1

e -approximate
maximizer S of fy via Lemma 7 and Theorem 5. Let C ′ be the set of clients closer to S

than the fractional solution y (i.e., the realization that maximizes fy(S)). If fy(S) > r,
the separation oracle returns the violated inequality

∑
j∈C′

∑
i cijyij − S(C ′) ≤ r; else, it

declares the solution feasible. Whenever the actual regret of (x, y) is at least e
e−1 · r, this

oracle will find S such that fy(S) > r and output a violated inequality. Hence, we get the
following lemma:

▶ Lemma 8. There exists a deterministic algorithm that in polynomial time computes a
fractional e

e−1 ≈ 1.58-approximate solution for lp (1) representing the universal k-median
problem.

2.2 Universal k-Median: Rounding Algorithm
Let frac denote the e

e−1 -approximate fractional solution to the universal k-median problem
provided by Lemma 8. We will use the following property of k-median, shown by Archer et
al. [3].

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:9

▶ Lemma 9 ([3]). The integrality gap of the natural lp relaxation of the k-median problem
is at most 3.

Lemmas 8 and 9 imply that that for any set of clients C ′,

1
3 · opt(C ′) ≤ frac(C ′) ≤ opt(C ′) + e

e − 1 · mr. (2)

Our overall goal is to obtain a solution sol that minimizes maxC′⊆C [sol(C ′) − opt(C ′)].
But, instead of optimizing over the exponentially many different opt(C ′) solutions, we use
the surrogate 3 · frac(C ′) which has the advantage of being defined by a fixed solution
frac, but still approximates opt(C ′) by Eq. 2. This suggests minimizing the following
objective instead: maxC′ [sol(C ′) − 3 · frac(C ′)]. Minimizing this objective is equivalent to
the k-median with discounts problem, where the discount for client j is 3fj . This allows us
to invoke Lemma 6 for the k-median with discounts problem.

Thus, our overall algorithm is as follows. First, use Lemma 8 to find a fractional solution
frac = (x, y, r). Let fj :=

∑
i cijyij be the connection cost of client j in frac. Then,

construct a k-median with discounts instance where client j has discount 3fj , and use
Lemma 6 on this instance to obtain the final solution to the universal k-median problem.
Theorem 4 follows using the above lemmas; we defer the proof to the full paper.

3 Universal k-Median with Fixed Clients

In this section, we extend the techniques from Section 2 to prove the following theorem:

▶ Theorem 10. If there exists a deterministic polynomial time γ-approximation algorithm
for the k-median problem, then for every ϵ > 0 there exists a (54γ + ϵ, 60)-approximate
universal algorithm for the universal k-median problem with fixed clients.

By using the derandomized version of the (2.732 + ϵ)-approximation algorithm of Li and
Svensson [34] for the k-median problem, and appropriate choice of both ϵ parameters, we
obtain the following corollary from Theorem 10.

▶ Corollary 11. For every ϵ > 0, there exists a (148 + ϵ, 60)-approximate universal algorithm
for the k-median problem with fixed clients.

Our high level strategy follows similarly to the previous section. In Section 3.2, we
show how to find a good fractional solution by approximately solving a linear program. In
Section 3.3, we describe how to round the fractional solution in a manner that preserves
its regret guarantee within constant factors. Similar techniques in conjunction with the
techniques in Sections 4 and 5 are used for the universal k-means and k-center problems
with fixed clients; due to space constraints, we only focus on universal k-median with fixed
clients here.

3.1 Preliminaries
In addition to the preliminaries of Section 2, we will use the following tools:

Submodular Maximization over Independence Systems. An independence system com-
prises a ground set E and a set of subsets (called independent sets) I ⊆ 2E with the property
that if A ⊆ B and B ∈ I then A ∈ I (the subset closed property). An independent set S in
I is maximal if there does not exist S′ ⊃ S such that S′ ∈ I. Note that one can define an

ICALP 2021

70:10 Universal Algorithms for Clustering Problems

independence system by specifying the set of maximal independent sets I ′ only, since the
subset closed property implies I is simply all subsets of sets in I ′. An independence system
is a 1-independence system (or 1-system in short) if all maximal independent sets are of the
same size. The following result on maximizing submodular functions over 1-independence
systems follows from a more general result given implicitly in [38] and more formally in [12].

▶ Theorem 12. There exists a polynomial time algorithm that given a 1-independence system
(E, I) and a non-negative monotone submodular function f : 2E → R+ defined over it, finds
a 1

2 -maximizer of f , i.e. finds S′ ∈ I such that f(S′) ≥ 1
2 maxS∈I f(S).

The algorithm in the above theorem is the natural greedy algorithm, which starts with S′ = ∅
and repeatedly adds to S′ the element u that maximizes f(S′ ∪ {u}) while maintaining that
S′ ∪ {u} is in I, until no such addition is possible.

Incremental ℓp-Clustering. We will also use the incremental ℓp-clustering problem which
is defined as follows: Given an ℓp-clustering instance and a subset of the cluster centers S

(the “existing” cluster centers), find the minimum cost solution to the ℓp-clustering instance
with the additional constraint that the solution must contain all cluster centers in S. When
S = ∅, this is just the standard ℓp-clustering problem, and this problem is equivalent to the
standard ℓp-clustering problem by the following lemma:

▶ Lemma 13. If there exists a γ-approximation algorithm for the ℓp-clustering problem,
there exists a γ-approximation for the incremental ℓp-clustering problem.

The lemma follows by an approximation-preserving reduction between the two problems,
which simply adds many clients to the locations of cluster centers in S, forcing any low-cost
solution to place cluster centers at these locations even in the standard ℓp-clustering problem.

3.2 Obtaining a Fractional Solution for Universal k-Median with Fixed
Clients

Let Cf ⊆ C denote the set of fixed clients and for any realization of clients C ′ satisfying
Cf ⊆ C ′ ⊆ C, let opt(C ′) denote the cost of the optimal solution for C ′. The same
LP we used for universal k-median applies here, except we remove constraints on regret
corresponding to realizations C ′ ̸⊆ Cf . Recall that to design an approximate separation
oracle, it suffices to find a realization approximately maximizing the regret of the fractional
solution.

Let S(C ′) denote the cost of the solution S ⊆ F in realization C ′ (that is, S(C ′) =∑
j∈C′ mini∈S cij). Since opt(C ′) = minS:S⊆F,|S|=k S(C ′), exactly deciding the feasibility

of the constraints on regret in the LP is equivalent to deciding if the following holds:

∀S : S ⊆ F, |S| = k : max
C′:Cf ⊆C′⊆C

 ∑
j∈C′

∑
i∈F

cijyij − S(C ′)

 ≤ r. (3)

By splitting the terms
∑

j∈C′
∑

i∈F cijyij and S(C ′) into terms for Cf and C ′ \ Cf , we can
rewrite Eq. (3) as follows:

∀S ⊆ F, |S| = k : max
C∗⊆C\Cf

 ∑
j∈C∗

∑
i∈F

cijyij − S(C∗)

 ≤ S(Cf) −
∑

j∈Cf

∑
i∈F

cijyij + r

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:11

For fractional solution y, let

fy(S) = max
C∗:C∗⊆C\Cf

 ∑
j∈C∗

∑
i∈F

cijyij − S(C∗)

 . (4)

Note that we can compute fy(S) for any S easily since the maximizing value of C∗ is the set
of clients j for which S has connection cost less than

∑
i∈F cijyij . We already know fy(S) is

submodular. But, the term S(Cf) is not fixed with respect to S, so maximizing fy(S) does
not suffice for separating the LP. To overcome this difficulty, for every possible cost M on
the fixed clients, we replace S(Cf) with M and only maximize over solutions S for which
S(Cf) ≤ M (for convenience, we will call any solution S for which S(Cf) ≤ M an M -cheap
solution):

∀M ∈
{

0, 1, . . . , |Cf | max
i,j

cij

}
: max

S:S⊆F,|S|=k,S(Cf)≤M
fy(S) ≤ M −

∑
j∈Cf

∑
i∈F

cijyij + r. (5)

Note that this set of inequalities is equivalent to Eq. (3), but it has the advantage that the
left-hand side is approximately maximizable and the right-hand side is fixed. Hence, these
inequalities can be approximately separated. However, there are exponentially many inequal-
ities; so, for any fixed ϵ > 0, letting Zϵ :=

{
0, 1, 1 + ϵ, . . . , (1 + ϵ)⌈log1+ϵ(|Cf | maxi,j cij)⌉+1}

we
relax to the following polynomially large set of inequalities:

∀M ∈ Zϵ : max
S:S⊆F,|S|=k,S(Cf)≤M

fy(S) ≤ M −
∑

j∈Cf

∑
i∈F

cijyij + r. (6)

Separating inequality Eq. (6) for a fixed M corresponds to submodular maximization of
fy(S), but now subject to the constraints |S| = k and S(Cf) ≤ M as opposed to just |S| = k.
Let SM be the set of all S ⊆ F such that |S| = k and S(Cf) ≤ M . Since fy(S) is monotone,
maximizing fy(S) over SM is equivalent to maximizing fy(S) over the independence system
(F, IM) with maximal independent sets SM .

Then all that is needed to approximately separate Eq. (6) corresponding to a fixed M is
an oracle for deciding membership in (F, IM). Recall that S ⊆ F is in (F, IM) if there exists
a set S′ ⊇ S such that |S′| = k and S′(Cf) ≤ M . But, even deciding membership of the
empty set in (F, IM) requires one to solve a k-median instance on the fixed clients, which is
in general NP-hard. More generally, we are required to solve an instance of the incremental
k-median problem (see Section 3.1) with existing cluster centers in S.

While exactly solving incremental k-median is NP-hard, we have a constant approximation
algorithm for it (call it A), by Lemma 13. So, we could define a new system (F, I ′

M) that
contains a set S ⊆ F if the output of A for the incremental k-median instance with existing
cluster centers S has cost at most M . But, due to the unpredictable behavior of A, (F, I ′

M)
may no longer be a 1-system, or even an independence system. To restore the subset closed
property, the membership oracle needs to ensure that: (a) if a subset S′ ⊆ S is determined
to not be in (F, I ′

M), then S is not either, and (b) if a superset S′ ⊇ S is determined to be
in (F, I ′

M), then so is S.
We now describe the modified greedy maximization algorithm GreedyMax that we

use to try to separate one of the inequalities in Eq. (6), which uses a built-in membership
oracle that ensures the above properties hold. Pseudocode is given in the full paper, and
we informally describe it here. GreedyMax initializes S0 = ∅, F0 = F , and starts with a
M -cheap k-median solution T0 (generated by running a γ-approximation on the k-median
instance involving only fixed clients Cf). In iteration l, GreedyMax starts with a partial

ICALP 2021

70:12 Universal Algorithms for Clustering Problems

solution Sl−1 with l − 1 cluster centers, and it is considering adding cluster centers in Fl−1 to
Sl−1. For each cluster center i in Fl−1, GreedyMax generates some k-median solution Tl,i

containing Sl−1 ∪ {i} to determine if Sl−1 ∪ {i} is in the independence system. If a previously
generated solution, T0 or Tl′,i′ for any l′, i′, contains Sl−1 ∪ {i} and is M -cheap, then Tl,i is
set to this solution. Otherwise, GreedyMax runs the incremental k-median approximation
algorithm on the instance with existing cluster centers in Sl−1 ∪ {i}, the only cluster centers
in the instance are Fl−1, and the client set is Cf . It sets Tl,i to the solution generated by the
approximation algorithm.

After generating the set of solutions {Tl,i}i∈Fl−1 , if one of these solutions contains Sl−1∪{i}
and is M -cheap, then GreedyMax concludes that Sl−1 ∪ {i} is in the independence system.
This, combined with the fact that these solutions may be copied from previous iterations
ensures property (b) holds (as the M -cheap solutions generated by GreedyMax are implicitly
considered to be in the independence system). Otherwise, since GreedyMax was unable to
find an M -cheap superset of Sl−1 ∪ {i}, it considers Sl−1 ∪ {i} to not be in the independence
system. In accordance with these beliefs, GreedyMax initializes Fl as a copy of Fl−1, and
then removes any i such that it did not find an M -cheap superset of Sl−1 ∪ {i} from Fl and
thus from future consideration, ensuring property (a) holds. It then greedily adds to Sl−1
the i in Fl that maximizes fy(Sl−1 ∪ {i}) as defined before to create a new partial solution
Sl. After the kth iteration, GreedyMax outputs the solution Sk.

Our approximate separation oracle, SepOracle, can then use GreedyMax as a sub-
routine. Pseudocode is given in the full paper, and we give an informal description of the
algorithm here. SepOracle checks all constraints not involving the regret, and then outputs
any violated constraints it finds. If none are found, it then runs a k-median approxim-
ation algorithm on the instance containing only the fixed clients to generate a solution
T0. For each M in Zϵ, if T0 is M -cheap, it then invokes GreedyMax for this value of
M (otherwise, GreedyMax will consider the corresponding independence system to be
empty, so there is no point in running it), passing T0 to GreedyMax. If then checks the
inequality

∑
j∈C′

∑
i cijyij − S(C ′) ≤ M −

∑
j∈Cf

∑
i cijyij + r for the solution S outputted

by GreedyMax, and outputs this inequality if it is violated.
Using the ellipsoid method where SepOracle is used as the separation oracle now gives

the following lemma. The proof is deferred to the full paper.

▶ Lemma 14. If there exists a deterministic polynomial-time γ-approximation algorithm
for the k-median problem, then for every ϵ > 0 there exists a deterministic algorithm that
outputs a (2γ(1 + ϵ), 2)-approximate fractional solution to the universal k-median problem in
polynomial time.

3.3 Rounding the Fractional Solution for Universal k-Median with Fixed
Clients

The rounding algorithm for universal k-median with fixed clients is almost identical to the
rounding algorithm for universal k-median without fixed clients. The only difference is that
in constructing a k-median with discounts problem, we give the fixed clients a discount of
0 rather than a discount of 3fj , as these clients will always appear and thus we want their
connection cost to always factor into the cost of the k-median with discounts instance. The
cost of a solution alg to the k-median with discounts instance and the regret of alg against
an adversary with costs 3fj now differs by

∑
j∈Cf

3fj (before, they were equal). However,
as before

∑
j∈Cf

3fj is at most some constant times opt(Cf) + mr, which lower bounds
opt(C ′) + mr for all realizations C ′ ⊇ Cf . So an analysis of the rounding similar to that in
Section 2 still allows us to prove Theorem 10, as the the offset

∑
j∈Cf

3fj (and multiples of
it appearing in the analysis) can be absorbed into the (α, β)-approximation guarantee.

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:13

4 Universal k-means

In this section, we sketch our universal algorithm for k-means with the following guarantee:

▶ Corollary 15. There exists a (108, 412)-approximate universal algorithm for the k-means
problem.

This follows as a special case of a more general ℓp-clustering result, given in the full paper;
due to space constraints, we focus on k-means here.

Before describing further details of the universal k-means algorithm, we note a rather
unusual feature of the universal clustering framework. Typically algorithms effectively
optimize the ℓ2

2 objective (i.e., sum of squared distances) instead of the k-means objective
because these are equivalent in the following sense: an α-approximation for the k-means
objective is equivalent to an α2-approximation for the ℓ2

2 objective. But, this equivalence
fails in the setting of universal algorithms for reasons that we discuss below. Indeed, we
first give a universal ℓp

p-clustering algorithm, which is a simple extension of the k-median
algorithm, and then outline our ℓp-clustering algorithm in the setting p = 2, which turns out
to be much more challenging.

Similar to k-median, we use the primitive of an algorithm for the ℓp
p-clustering with

discounts problem: In this problem, are given a ℓp
p-clustering instance, but where each client

j has an additional (non-negative) parameter rj called its discount. Our goal is to place k

cluster centers that minimize the total connection costs of all clients. But, the connection
cost for client j can now be discounted by up to rp

j , i.e., client j with connection cost cj

contributes (cp
j − rp

j)+ := max{0, cp
j − rp

j } to the objective of the solution. (Note that the
k-median with discounts problem that we described in the previous section is a special case
of this problem for p = 1.)

Let opt be the cost of an optimal solution to the ℓp
p-clustering with discounts problem.

We say an algorithm alg that outputs a solution with connection cost cj for client j is
a (γp, σ)-approximation2 if

∑
j∈C(cp

j − γp · rp
j)+ ≤ σ · opt. That is, a (γp, σ)-approximate

algorithm outputs a solution whose objective function computed using discounts γ · rj for all
j is at most σ times the optimal objective using discounts rj . We give the following result
about the ℓp

p-clustering with discounts problem (see full paper for details):

▶ Lemma 16. There exists a (deterministic) polynomial-time (9p, 2
3 · 9p)-approximation

algorithm for the ℓp
p-clustering with discounts problem.

The rest of this section is dedicated to sketching our algorithm for the universal k-means
problem. As for k-median, we have two stages, the fractional algorithm and the rounding
algorithm, that we sketch in the next two subsections.

2 We refer to this as a (γp, σ)-approximation instead of a (γ, σ)-approximation to emphasize the difference
between the scaling factor for discounts γ and the loss in approximation factor γp.

ICALP 2021

70:14 Universal Algorithms for Clustering Problems

4.1 Universal k-means: Fractional Algorithm

Let us start by describing the fractional relaxation of the universal k-means problem3 (again,
P is the k-median polytope defined as in Section 2.1):

min{r : (x, y) ∈ P ; ∀C ′ ⊆ C :

 ∑
j∈C′

∑
i

c2
ijyij

1/2

− opt(C ′) ≤ r}, (7)

As described earlier, when minimizing regret, the k-means and ℓ2
2 objectives are no longer

equivalent. For instance, recall that one of the key steps in Lemma 8 was to establish the
submodularity of the function fy(S) denoting the maximum regret caused by any realization
when comparing two given solutions: a fractional solution y and an integer solution S. Indeed,
the worst case realization had a simple structure: choose all clients that have a smaller
connection cost for S than for y. This observation continues to hold for the ℓ2

2 objective
because of the linearity of fy(S) as a function of the realized clients once y and S are fixed.
But, the k-means objective is not linear even after fixing the solutions, and as a consequence,
we lose both the simple structure of the maximizing realization as well as the submodularity
of the overall function fy(S). For instance, consider two clients: one at distances 1 and 0,
and another at distances 1 + ϵ and 1, from y and S respectively. Using the ℓp objective, the
regret with both clients is (2 + ϵ)1/2 − 1 < 1, whereas with just the first client the regret is 1.

The above observation results in two related difficulties: first, that fy(S) is not submodular
and hence standard submodular maximization techniques do not apply, but also that given y

and S, we cannot even compute the function fy(S) efficiently. To overcome this difficulty,
we further refine the function fy(S) to a collection of functions fy,Y (S) by also fixing the
cost of the fractional solution y to at most a given value Y . Let frac2, frac2

2 denote the
k-means and ℓ2

2-objectives of a given fractional solution, and S2, S2
2 the same for the solution

using the set of cluster centers S. We can show that:

max
C′⊆C

[frac2(C ′) − S2(C ′)] ≃2 max
Y

max
C′⊆C:frac2

2(C′)≤Y

[
frac2

2(C ′) − S2
2(C ′)

Y 1/2

]
,

where ≃2 denotes equality to within a factor of 2. In turn, by guessing the maximizing
value of Y we can (approximately) reduce maximizing the difference in k-means objectives
to maximizing the difference in ℓ2

2 objectives, subject to the constraint frac2
2(C ′) ≤ Y .

A separation oracle then just needs to (approximately) compute max{frac2
2(C ′)−S2

2(C ′) :
C ′ ⊆ C, frac2

2(C ′) ≤ Y } for each fixed (discretized) value of Y . To do so, we show that
allowing an adversary to choose fractional realizations of clients does not give them an
advantage.

▶ Lemma 17. For any two solutions y, S, there exists a global maximum of frac2(I) − S2(I)
over fractional realizations I ∈ [0, 1]C where all the clients are integral, i.e., I ∈ {0, 1}C .
Therefore,

max
I∈[0,1]C

[frac2(I) − S2(I)] = max
C′⊆C

[frac2(C ′) − S2(C ′)] .

3 The constraints are not simultaneously linear in y and r, although fixing r, we can write these constraints
as

∑
j∈C′

∑
i
cp

ijyij ≤ (opt(C′) + r)p, which is linear in y. In turn, to solve this program we bisection
search over r, using the ellipsoid method to determine if there is a feasible point for each fixed r.

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:15

We then show that fy,Y (S) := max{frac2
2(I) − S2

2(I) : I ∈ [0, 1]C , frac2
2(I) ≤ Y } is a

submodular function. Since we are allowed to use fractional clients, computing fy,Y (S)
for a given S is a fractional knapsack problem which can be solved in polynomial time
(whereas computing max{frac2

2(C ′) − S2
2(C ′) : C ′ ⊆ C, frac2

2(C ′) ≤ Y } requires solving an
integer knapsack problem), giving an efficient separation oracle using the greedy algorithm
for submodular maximization.

4.2 Universal k-Means: Rounding Algorithm
At a high level, we use the same strategy for rounding the fractional k-means solution as we
did with k-median. Namely, we use Lemma 16 to solve a discounted version of the problem
where the discount for each client is equal to the (scaled) cost of the client in the fractional
solution. However, if we apply this directly to the k-means objective, we run into several
problems. In particular, the linear discounts are incompatible with the non-linear objective
defined over the clients. A more promising idea is to use these discounts on the ℓ2

2 objective,
which in fact is defined as a linear combination over the individual client’s objectives. But,
for this to work, we will first need to relate the regret bound in the ℓ2

2 objective to that in
the k-means objective. We show that, roughly speaking, the realization that maximizes the
regret of an algorithm alg against a fixed solution sol in both objectives is the same under
a “farness” condition:
▶ Lemma 18. Suppose alg and sol are two solutions to a k-means instance, such that there
is a subset of clients C∗ with the following property: for every client in C∗, the connection
cost in alg is greater than 2 times the connection cost in sol, while for every client not
in C∗, the connection cost in sol is at least the connection cost in alg. Then, C∗ is a
1/2-maximizer of alg2(C ′) − sol2(C ′).

Given any solution sol, it is easy to define a virtual solution s̃ol whose individual
connection costs are bounded by 2 times that in sol, and s̃ol satisfies the farness condition.
This allows us to relate the regret of alg against s̃ol (and thus against 2 times sol) in the
ℓ2

2 objective to its regret in the k-means objective.

5 Universal k-Center

In this section, we prove the following guarantee for universal k-center:
▶ Theorem 19. There exists a (3, 3)-approximate algorithm for the universal k-center
problem.

First, note that for every client j, its distance to the closest cluster center in the minimum
regret solution mrs is at most mrj := mini∈F cij +mr; otherwise, in the realization with only
client j, mrs would have regret > mr. We first design an algorithm alg that 3-approximates
these distances mrj , i.e., for every client j, its distance to the closest cluster center in alg is
at most 3mrj . Since mini∈F cij lower bounds opt(C ′) for any C ′ containing j, this gives a
(3, 3)-approximation. This algorithm actually satisfies a more general property: given any
value r, it produces a set of cluster centers such that every client j is at a distance ≤ 3rj

from its closest cluster center, where rj := mini∈F cij + r. Moreover, if r ≥ mr, then the
number of cluster centers selected by alg is at most k (for smaller values of r, alg might
select more than k cluster centers).

Our algorithm alg is a natural greedy algorithm. We order clients j in increasing order
of rj , and if a client j does not have a cluster center within distance 3rj in the current
solution, then we add its closest cluster center in F to the solution.

ICALP 2021

70:16 Universal Algorithms for Clustering Problems

▶ Lemma 20. Given a value r, the greedy algorithm alg selects cluster centers that satisfy
the following properties:

every client j is within a distance of 3rj = 3(mini∈F cij + r) from their closest cluster
center.
If r ≥ mr, then alg does not select more than k cluster centers, i.e., the solution produced
by alg is feasible for the k-center problem.

Proof. The first property follows from the definition of alg. To show that alg does not
pick more than k cluster centers, we map the cluster center i added in alg by some client j

to its closest cluster center i′ in mrs. Now, we claim that no two cluster centers i1, i2 in alg
can be mapped to the same cluster center i′ in mrs. Clearly, this proves the lemma since
mrs has only k cluster centers.

Suppose i1, i2 are two cluster centers in alg mapped to the same cluster center i′ in
mrs. Assume without loss of generality that i1 was added to alg before i2. Let j1, j2 be
the clients that caused i1, i2 to be added; since i2 was added later, we have rj1 ≤ rj2 . The
distance from j2 to i1 is at most the length of the path (j2, i′, j1, i1) , which is at most
2rj2 + rj1 ≤ 3rj2 . But, in this case j2 would not have added a new cluster center i2, thus
arriving at a contradiction. ◀

Theorem 19 follows since there are only polynomially many possibilities for the k-center
objective across all realizations (namely, the set of all cluster center to client distances) and
thus polynomially many possible values for mr (the set of all differences between all possible
solution costs). So we can simply run the algorithm of Lemma 20 with r equal to each of
these values, and then choose the solution corresponding to the smallest r that results in the
algorithm using at most k cluster centers, which will be at most mr by Lemma 20.

We note that the greedy algorithm described above can be viewed as an extension of
the k-center algorithm in [24] to a (3, 3)-approximation for the “k-center with discounts”
problem, where the discounts are the minimum distances mini∈F cij .

6 Hardness of Universal Clustering for General Metrics

In this section we give some hardness results to help contextualize the algorithmic results.
Much like the hardness results for k-median, all our reductions are based on the NP-hardness
of approximating set cover (or equivalently, dominating set) due to the natural relation
between the two types of problems. We state our hardness results in terms of ℓp-clustering.
Setting p = 1 gives hardness results for k-median, and setting p = ∞ (and using the
convention 1/∞ = 0 in the proofs as needed) gives hardness results for k-center.

The results in this section can be extended to Euclidean metrics by building off the
reductions in [36], albeit with worse constants. Due to space constraints, we defer our results
for Euclidean metrics to the full paper.

6.1 Hardness of Approximating α

▶ Theorem 21. For all p ≥ 1, finding an (α, β)-approximate solution for universal ℓp-
clustering where α < 3 is NP-hard.

Proof. To prove the theorem, given an instance of set cover, we construct the following
instance of universal ℓp-clustering:

For each element, there is a corresponding client in the universal ℓp-clustering instance.
For each set S, there is a cluster center which is distance 1 from the clients corresponding
to elements in S and 3 from other all clients.

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:17

If there is a set cover of size k, the corresponding cluster centers are an optimal solution
for any realization of clients, i.e. mr = 0. Furthermore, in any single-client realization,
opt = 1. So an (α, β)-approximate universal ℓp-clustering algorithm must find a solution
within distance of α of every client to satisfy the regret guarantee in single-client realizations.
If α < 3, this implies it is distance 1 from every client, in which case its cluster centers also
correspond to a set cover. So this algorithm can be used to find set covers of size at most k

if they exist, which is an NP-hard task. ◀

Note that for e.g. k-median, we can classically get an approximation ratio of less than 3.
So this theorem shows that the universal version of the problem is harder, even if we are
willing to use arbitrary large β.

6.2 Hardness of Approximating β

We give the following result on the hardness of universal ℓp-clustering.

▶ Theorem 22. For all p ≥ 1, finding an (α, β)-approximate solution for universal ℓp-
clustering where β < 2 is NP-hard.

Proof. Given an instance of dominating set G = (V, E), we construct the following instance
of universal ℓp-clustering:

For each vertex v ∈ V , replace it with a k-clique.
For each (u, v) ∈ E, add an edge from every vertex in u’s clique to every vertex in v’s
clique.
To turn this modified graph into a clustering instance, place a client and cluster center
at each vertex, and impose the shortest path metric on the clients, where all edges are
length 1.

Suppose a dominating set of size k exists in the modified graph (and thus in the original
graph). Then the corresponding cluster centers are distance at most 1 from every client.
Since any solution is distance 0 from at most k clients and distance at least 1 from all other
clients, these cluster centers have regret at most k1/p. It now suffices to prove the claim that
any k cluster centers that aren’t a dominating set have regret at least 2k1/p in a realization
where opt has cost 0. The theorem follows since an (α, β)-approximate algorithm would
produce a solution with cost at most βk1/p in any such realization, i.e. can be used to
find dominating sets of size at most k if they exist when β < 2. The claim follows since if
the cluster centers aren’t a dominating set, there is a k-clique they are distance 2 or more
from. The realization containing exactly the clients in this k-clique satisfies the desired
properties. ◀

7 Future Directions

In this paper, we gave the first universal algorithms for clustering problems. While we
achieve constant approximation guarantees for these problems, the actual constants are
orders of magnitude larger than the best (non-universal) approximations known for these
problems. In part to ensure clarity of presentation, we did not attempt to optimize these
constants. But it is unlikely that our techniques will lead to small constants for the k-median
and k-means problems. On the other hand, we show that in general it is NP-hard to find
an (α, β)-approximation algorithm for a universal clustering problem where α matches the
approximation factor for the standard clustering problem. Therefore, it is not entirely clear
what one should expect: are there universal algorithms for clustering with approximation
factors of the same order as the classical (non-universal) bounds?

ICALP 2021

70:18 Universal Algorithms for Clustering Problems

Another open research direction pertains to Euclidean clustering. Here, we showed that in
Rd for d ≥ 2, α needs to be bounded away from 1, which is in stark contrast to non-universal
clustering problems that admit PTASes in constant-dimension Euclidean space. But for
universal clustering on a line, the picture is not as clear. On a line, the lower bounds on
α are no longer valid, which brings forth the possibility of (non-bicriteria) approximations
of regret. Indeed, there is 2-approximation for universal k-median on a line [29], and even
better, an optimal algorithm for universal k-center on a line [6]. This raises the natural
question: can we design a PTAS for the universal k-median problem on a line?

References
1 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees

for k-means and Euclidean k-median by primal-dual algorithms. In Proceedings of the 58th
Annual IEEE Symposium on Foundations of Computing, pages 61–72, October 2017. doi:
10.1109/FOCS.2017.15.

2 N. Alon and Y. Azar. On-line steiner trees in the Euclidean plane. In Proceedings of the 8th
Annual Symposium on Computational Geometry, pages 337–343, 1992.

3 Aaron Archer, Ranjithkumar Rajagopalan, and David B. Shmoys. Lagrangian relaxation for
the k-median problem: New insights and continuity properties. In Giuseppe Di Battista and
Uri Zwick, editors, Algorithms - ESA 2003: 11th Annual European Symposium, Budapest,
Hungary, September 16-19, 2003. Proceedings, pages 31–42. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003. doi:10.1007/978-3-540-39658-1_6.

4 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean
k-medians and related problems. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, pages 106–113, New York, NY, USA, 1998. ACM.
doi:10.1145/276698.276718.

5 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In
Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01,
pages 21–29, New York, NY, USA, 2001. ACM. doi:10.1145/380752.380755.

6 I. Averbakh and Oded Berman. Minimax regret p-center location on a network with demand
uncertainty. Location Science, 5(4):247–254, 1997. doi:10.1016/S0966-8349(98)00033-3.

7 Igor Averbakh and Oded Berman. Minmax regret median location on a network under
uncertainty. INFORMS Journal on Computing, 12(2):104–110, 2000. doi:10.1287/ijoc.12.
2.104.11897.

8 D. Bertsimas and M. Grigni. Worst-case examples for the spacefilling curve heuristic for the
Euclidean traveling salesman problem. Operations Research Letter, 8(5):241–244, October
1989.

9 Anand Bhalgat, Deeparnab Chakrabarty, and Sanjeev Khanna. Optimal lower bounds
for universal and differentially private Steiner trees and TSPs. In Leslie Ann Goldberg,
Klaus Jansen, R. Ravi, and José D. P. Rolim, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 75–86, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

10 Costas Busch, Chinmoy Dutta, Jaikumar Radhakrishnan, Rajmohan Rajaraman, and Srinivas-
agopalan Srivathsan. Split and join: Strong partitions and universal Steiner trees for graphs.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 81–90, 2012.

11 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approx-
imation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33, 2013.

12 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011. doi:10.1137/080733991.

https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1007/978-3-540-39658-1_6
https://doi.org/10.1145/276698.276718
https://doi.org/10.1145/380752.380755
https://doi.org/10.1016/S0966-8349(98)00033-3
https://doi.org/10.1287/ijoc.12.2.104.11897
https://doi.org/10.1287/ijoc.12.2.104.11897
https://doi.org/10.1137/080733991

A. Ganesh, B. M. Maggs, and D. Panigrahi 70:19

13 Deeparnab Chakrabarty and Chaitanya Swamy. Approximation algorithms for minimum
norm and ordered optimization problems. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, page 126–137, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3313276.3316322.

14 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem (extended abstract). In Proceedings of the
Thirty-first Annual ACM Symposium on Theory of Computing, STOC ’99, pages 1–10, New
York, NY, USA, 1999. ACM. doi:10.1145/301250.301257.

15 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985.

16 Igor Gorodezky, Robert D. Kleinberg, David B. Shmoys, and Gwen Spencer. Improved
lower bounds for the universal and a priori TSP. In Maria Serna, Ronen Shaltiel, Klaus
Jansen, and José Rolim, editors, Approximation, Randomization, and Combinatorial Optimiz-
ation. Algorithms and Techniques, pages 178–191, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

17 F. Grandoni, A. Gupta, S. Leonardi, P. Miettinen, P. Sankowski, and M. Singh. Set covering
with our eyes closed. In Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science, October 2008.

18 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

19 Sudipto Guha and Kamesh Munagala. Exceeding expectations and clustering uncertain
data. In Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’09, page 269–278, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1559795.1559836.

20 Anupam Gupta, Mohammad T. Hajiaghayi, and Harald Räcke. Oblivious network design.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm,
SODA ’06, pages 970–979, Philadelphia, PA, USA, 2006. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=1109557.1109665.

21 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location. ArXiv, abs/0809.2554, 2008. arXiv:0809.2554.

22 Mohammad T. Hajiaghayi, Robert Kleinberg, and Tom Leighton. Improved lower and upper
bounds for universal TSP in planar metrics. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 649–658, 2006.

23 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10(2):180–184, May 1985. doi:10.1287/moor.10.2.180.

24 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 33(3):533–550, May 1986. doi:10.1145/5925.5933.

25 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, 2001. doi:10.1145/375827.375845.

26 L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaram. Universal algorithms for TSP,
Steiner tree, and set cover. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, 2005.

27 Lujun Jia, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. GIST: Group-
independent spanning tree for data aggregation in dense sensor networks. In Phillip B.
Gibbons, Tarek Abdelzaher, James Aspnes, and Ramesh Rao, editors, Distributed Computing
in Sensor Systems, pages 282–304, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

28 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. In
Proceedings of the Eighteenth Annual Symposium on Computational Geometry, SCG ’02, pages
10–18, New York, NY, USA, 2002. ACM. doi:10.1145/513400.513402.

ICALP 2021

https://doi.org/10.1145/3313276.3316322
https://doi.org/10.1145/301250.301257
https://doi.org/10.1145/1559795.1559836
http://dl.acm.org/citation.cfm?id=1109557.1109665
http://arxiv.org/abs/0809.2554
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1145/5925.5933
https://doi.org/10.1145/375827.375845
https://doi.org/10.1145/513400.513402

70:20 Universal Algorithms for Clustering Problems

29 Adam Kasperski and Pawel Zielinski. On the existence of an FPTAS for minmax regret
combinatorial optimization problems with interval data. Oper. Res. Lett., 35:525–532, 2007.

30 Samir. Khuller and Yoram J. Sussmann. The capacitated k-center problem. SIAM Journal on
Discrete Mathematics, 13(3):403–418, 2000. doi:10.1137/S0895480197329776.

31 Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for
the Euclidean k-median problem. In Jaroslav Nešetřil, editor, Algorithms - ESA’ 99, pages
378–389, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

32 Panos Kouvelis and Gang Yu. Robust 1-Median Location Problems: Dynamic Aspects and Un-
certainty, pages 193–240. Springer US, Boston, MA, 1997. doi:10.1007/978-1-4757-2620-6_
6.

33 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1 + ϵ)-approximation
algorithm for k-means clustering in any dimensions. In Proceedings of the 45th IEEE Symposium
on Foundations of Computer Science, pages 454–462, 2004.

34 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceedings
of the Forty-fifth Annual ACM Symposium on Theory of Computing, pages 901–910, 2013.

35 Stuart P. Lloyd. Least squares quantization in pcm. IEEE Trans. Information Theory,
28:129–136, 1982.

36 Stuart G. Mentzer. Approximability of metric clustering problems. Unpublished manuscript,
March 2016.

37 Viswanath Nagarajan, Baruch Schieber, and Hadas Shachnai. The Euclidean k-supplier
problem. In Michel Goemans and José Correa, editors, Integer Programming and Combinatorial
Optimization, pages 290–301, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

38 G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical Programming, 14(1):265–294, 1978.
doi:10.1007/BF01588971.

39 Loren K. Platzman and John J. Bartholdi, III. Spacefilling curves and the planar travelling
salesman problem. J. ACM, 36(4):719–737, 1989. doi:10.1145/76359.76361.

40 Frans Schalekamp and David B. Shmoys. Algorithms for the universal and a priori TSP.
Operations Research Letters, 36(1):1–3, 2008. doi:10.1016/j.orl.2007.04.009.

https://doi.org/10.1137/S0895480197329776
https://doi.org/10.1007/978-1-4757-2620-6_6
https://doi.org/10.1007/978-1-4757-2620-6_6
https://doi.org/10.1007/BF01588971
https://doi.org/10.1145/76359.76361
https://doi.org/10.1016/j.orl.2007.04.009

	1 Introduction
	1.1 Problem Definitions and Results
	1.2 Techniques
	1.3 Related Work

	2 Universal k-Median
	2.1 Universal k-median: Fractional Algorithm
	2.2 Universal k-Median: Rounding Algorithm

	3 Universal k-Median with Fixed Clients
	3.1 Preliminaries
	3.2 Obtaining a Fractional Solution for Universal k-Median with Fixed Clients
	3.3 Rounding the Fractional Solution for Universal k-Median with Fixed Clients

	4 Universal k-means
	4.1 Universal k-means: Fractional Algorithm
	4.2 Universal k-Means: Rounding Algorithm

	5 Universal k-Center
	6 Hardness of Universal Clustering for General Metrics
	6.1 Hardness of Approximating alpha
	6.2 Hardness of Approximating beta

	7 Future Directions

