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Abstract
Let G be a bipartite graph where every node has a strict ranking of its neighbors. For any node, its
preferences over neighbors extend naturally to preferences over matchings. A maximum matching
M in G is a popular max-matching if for any maximum matching N in G, the number of nodes that
prefer M is at least the number that prefer N . Popular max-matchings always exist in G and they
are relevant in applications where the size of the matching is of higher priority than node preferences.
Here we assume there is also a cost function on the edge set. So what we seek is a min-cost popular
max-matching. Our main result is that such a matching can be computed in polynomial time.

We show a compact extended formulation for the popular max-matching polytope and the
algorithmic result follows from this. In contrast, it is known that the popular matching polytope
has near-exponential extension complexity and finding a min-cost popular matching is NP-hard.
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1 Introduction

We consider a matching problem in a bipartite graph G = (A ∪ B,E) on n nodes and m

edges where every node has a strict ranking of its neighbors. The bipartite graph G need not
be complete. This is a very well-studied model in two-sided matching markets. This model
has been used to match students to schools and colleges [1, 4] and doctors to residencies in
hospitals [6, 28].

The goal is to find an optimal matching in G. The classical notion of optimality in such
an instance is stability. A matching M is stable if there is no edge that blocks M ; an edge
(a, b) blocks M if a and b prefer each other to their respective assignments in M . Stable
matchings always exist in G and one such matching can be computed in linear time by the
Gale-Shapley algorithm [17].

In several applications, along with node preferences, the definition of optimality may
involve attributes such as size, e.g., consider the problem of assigning doctors to hospitals
during a pandemic. For instance, during the Covid-19 pandemic in Mumbai, public hospitals
were overwhelmed with a rising number of patients and were severely short-staffed; so doctors
associated with private clinics were asked to also work in public hospitals1 [3, 22]. We
want the maximum number of doctors to get assigned to hospitals, i.e., we do not wish to

1 In the doctors-hospitals setting, one typically seeks a many-to-one matching since a hospital may need
several doctors. Here we focus on one-to-one matchings.
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compromise at all on the size of our matching. Thus the size of the matching is of higher
priority here than node preferences. We refer to [5] for more such applications: these include
school placement [1] and the assignment of sailors to billets [29, 34]. So the set of admissible
solutions in all these applications is the set of maximum matchings and among all maximum
matchings, we wish to find a best matching as per node preferences.

Note that a stable matching need not have maximum size. It is known that all stable
matchings match the same set of nodes [18]. When stable matchings are not admissible, a
natural alternative would be to seek a maximum matching with the least number of blocking
edges. However this is an NP-hard problem [5] and as shown there, this is NP-hard to
approximate within n1−ε, for any ε > 0.

Observe that stability empowers every edge with the “veto power” to block a matching.
Thus stability is a very strong notion and the notion of popularity is a meaningful relaxation of
stability that captures collective welfare. We say node u prefers matching M to matching N
if u prefers its assignment in M to its assignment in N ; being unmatched is the worst choice
for any node. We can compare any pair of matchings M and N by holding an election
between them where nodes are voters.

Let ϕ(M,N) be the number of nodes that prefer M to N and similarly, let ϕ(N,M)
be the number of nodes that prefer N to M . We say N is more popular than M if
ϕ(N,M) > ϕ(M,N).

▶ Definition 1. A matching M is popular if ∆(M,N) ≥ 0 for all matchings N in G, where
∆(M,N) = ϕ(M,N) − ϕ(N,M).

Thus a matching M is popular if there is no matching that is more popular than M .
Every stable matching is popular2 [19]. One of the main merits of popularity is that it
allows larger matchings compared to stable matchings. Since a stable matching is a maximal
matching, its size is at least |Mmax|/2 (where Mmax is a maximum matching in G) and there
are easy examples where this bound is tight. It is known that there is always a popular
matching of size at least 2|Mmax|/3 and there are simple instances with no larger popular
matching [23].

Since a popular matching need not be maximum, a natural alternative is to ask for
a maximum matching M that is popular within the set of maximum matchings, i.e., no
maximum matching is more popular than M . Since it is only maximum matchings that
are admissible and we are not willing to replace a maximum matching with a smaller one,
elections that involve non-maximum or inadmissible matchings are not relevant here. Hence
a natural candidate for a best maximum matching is a popular max-matching defined below.

▶ Definition 2. Call a maximum matching M in G = (A ∪B,E) a popular max-matching
if ∆(M,N) ≥ 0 for all maximum matchings N in G.

Thus what we seek is a weak Condorcet winner [7, 27] in the voting instance where
maximum matchings are candidates and nodes are voters. The relation “more popular than”
is not transitive and weak Condorcet winners need not exist in every voting instance. The
question of whether every instance admits a popular max-matching was considered in [23]
where it was shown that popular max-matchings always exist in G = (A ∪ B,E) and one
such matching can be computed in O(mn) time.

2 In an election between a stable matching S and any matching M , if node u prefers M to S then the node
M(u) has to prefer S to M , otherwise (u,M(u)) blocks S, which is forbidden. Hence ϕ(M,S) ≤ ϕ(S,M).
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In several applications there is a cost function c : E → R and for any matching M , its
cost c(M) =

∑
e∈M c(e). So among all popular max-matchings in G, what we seek is a

min-cost popular max-matching. There are no previous algorithmic/hardness results known
for this problem. We know that it is NP-hard to find a min-cost popular matching [13].

Finding a min-cost popular max-matching is a natural and interesting problem in discrete
optimization. Solving this problem efficiently implies efficient algorithms for a whole host of
popular max-matching problems such as finding one with forced/forbidden edges or one with
max-utility or one with min-regret. In general, a cost function allows us to “access” the entire
set of popular max-matchings; note that G may have more than 2n such matchings [32].

Let MG denote the popular max-matching polytope of G, i.e., this polytope is the convex
hull of the edge incidence vectors of popular max-matchings in G. A compact description of
MG (or some extension3 of it) implies a polynomial time algorithm to compute a min-cost
popular max-matching. Our main result is that the polytope MG has a compact extended
formulation. So unlike the min-cost popular matching problem, interestingly and quite
surprisingly, the min-cost popular max-matching problem is tractable.

▶ Theorem 3. Given G = (A ∪B,E) where nodes have strict preferences and c : E → R, a
min-cost popular max-matching can be computed in polynomial time.

So Theorem 3 shows that a natural variant of the min-cost popular matching problem
(which is NP-hard) admits a polynomial time algorithm. We also consider Pareto-optimality –
this is a far more relaxed notion than popularity that any reasonable matching in this domain
should satisfy. If M is a matching that is not Pareto-optimal then there is a matching N
such that no node is worse-off in N than in M and at least one node is better-off.

The unpopularity factor of M is defined as follows [26]: u(M) = maxN ̸=M
ϕ(N,M)
ϕ(M,N) .

Observe that a popular matching M satisfies u(M) ≤ 1. A matching M is Pareto-optimal
if u(M) < ∞. A maximum matching M that satisfies u(M) < ∞ is a Pareto-optimal
max-matching. We show the following hardness result here.

▶ Theorem 4. Given G = (A ∪B,E) with strict preferences and edge costs in {0, 1}, it is
NP-hard to compute a min-cost Pareto-optimal matching/max-matching in G. Moreover, it
is NP-hard to approximate this within any multiplicative factor.

1.1 Background
The notion of popularity was introduced by Gärdenfors [19] in 1975 where he observed that
every stable matching is popular. Many algorithmic questions in popular matchings have
been investigated in the last 10-15 years and we refer to [8] for a survey. In the domain of
popular matchings with two-sided preferences (every node has a preference order ranking
its neighbors), other than a handful of positive results [10, 20, 23, 25], most optimization
problems have turned out to be NP-hard [13].

Computing a min-cost quasi-popular matching M , i.e., u(M) ≤ 2, is also NP-hard [12].
Compact extended formulations for the dominant matching4 polytope [10, 12] and the
popular fractional matching polytope [24] are known but the popular matching polytope has
near-exponential extension complexity [12].

3 A polytope Q that linearly projects to a polytope P is an extension of P and a linear description of Q is
an extended formulation for P . The minimum size of an extension of P is the extension complexity of P .

4 These are popular matchings that are more popular than all larger matchings.

ICALP 2021
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Though an O(mn) time algorithm to find a popular max-matching in G is known [23],
there are no previous results on its optimization variant, i.e., to find a min-cost or max-utility
popular max-matching. It is common in this domain to have an efficient algorithm to find
a max-size matching in some class – say, popular matchings [20, 23] or Pareto-optimal
matchings for one-sided preferences (only nodes in A have preferences) studied in [2], however
finding a min-cost matching in these classes is NP-hard [2, 13]; Theorem 4 also shows such
a hardness result. Thus an efficient algorithm to find some popular max-matching was no
guarantee on the tractability of the min-cost popular max-matching problem.

There are several polynomial time algorithms to compute a min-cost stable matching and
some variants of this problem [11, 14, 15, 16, 21, 30, 31, 33]. Moreover, the stable matching
polytope of G has a linear-size description in Rm [30]. Thus in contrast to stable matchings,
the landscape of popular matchings has only a few positive results.

1.2 Our Techniques
An algorithm called the “|A|-level Gale-Shapley algorithm” was given in [23] to find a popular
max-matching in G = (A ∪B,E). As we show in Section 2, this algorithm is equivalent to
running the Gale-Shapley algorithm in an auxiliary instance G∗ with |A| copies of each node
in A. The proof in [23] can be easily adapted to show that there is a map from the set of
stable matchings in G∗ to the set of popular max-matchings in G (see Theorem 6). Our novel
contribution here is to show that this map is surjective, i.e., every popular max-matching in
G is the image of a stable matching in G∗.

Loosely speaking, the instance G∗ is made up of |A| copies of G and is inspired by an
instance from [10] that is made up of two copies of G. So our instance G∗ is much larger
than the instance used in [10]. In order to realize a popular max-matching in G as the image
of a stable matching in G∗, rather than be guided by blocking edges (as done in [10]), we
need a “global handle” over the given popular max-matching, i.e., we seek a function from
A ∪B to {0, . . . , |A| − 1} that guides us in how to “place” this matching in the instance G∗.

LP-duality gives us such a handle in terms of dual certificates. Dual certificates for
popular matchings are well-understood: these are in {0,±1}n [24]. To show a compact
extended formulation for MG (unlike the popular matching polytope), finding the right dual
certificates is crucial. Our proof consists of two parts: when G admits a perfect matching, it
is the easy case. We use total unimodularity, complementary slackness, and the fact that G
has a perfect matching to show that the given popular max-matching M has a dual certificate
α⃗ where αa ∈ {0,−2,−4, . . .} for a ∈ A and αb ∈ {0, 2, 4, . . .} for b ∈ B. Such an α⃗ can be
neatly used to realize M as the image of a stable matching in G∗ (see Theorem 8).

The general case. When G does not admit a perfect matching, things are more complicated.
The primal LP will not be as simple as (LP1) whose constraints describe the perfect matching
polytope. So we reduce the general case to the case when M is a perfect matching, i.e., we
use the dual solution α⃗ ∈ {0,±2,±4, . . .}2n0 that certifies M ’s optimality in the subgraph
G′ = G \ {nodes not matched in M} on 2n0 = 2|M | nodes.

We need to update α⃗ so that it certifies M ’s optimality in the entire graph G. Our main
technical novelty is in how we update α⃗ using certain rules (see Theorem 9). Let A′ ∪B′ be
the node set of G′ and let U be the set of nodes not matched in M .

We use the fact that M is a maximum matching to prove that our update procedure
terminates with a dual certificate α⃗ for M in G′ where αa ∈ {0,−2,−4, . . . ,−2(n0 − 1)} for
a ∈ A′ and αb ∈ {0, 2, 4, . . . , 2(n0 − 1)} for b ∈ B′ such that the neighbors of nodes in U take
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the highest possible α-values, i.e., (i) αa = 0 for a ∈ A′ ∩ Nbr(U) and (ii) αb = 2(n0 − 1) for
b ∈ B′ ∩ Nbr(U). Roughly speaking, such an α⃗ will take care of the edges of G missing in G′

and will allow us to realize M as the image of a stable matching in G∗ (see Theorem 10).

2 Popular Max-Matchings

In this section we first show a simple characterization of popular max-matchings. Then we
show a method to construct matchings that satisfy this characterization. Let M be any
matching in G = (A ∪ B,E). The following edge weight function wtM will be useful here.
For any (a, b) ∈ E:

let wtM (a, b) =


2 if (a, b) blocks M ;
−2 if a and b prefer their assignments in M to each other;
0 otherwise.

So wtM (e) = 0 for every e ∈ M . For any edge e, wtM (e) is the sum of votes (each vote is
in {0,±1}) of the endpoints of e for each other versus their respective assignments in M .

For any cycle/path ρ in G, let wtM (ρ) =
∑
e∈ρ wtM (e). Theorem 5 uses this edge weight

function to characterize popular max-matchings. Recall that an alternating path (resp.,
cycle) with respect to matching M is a path (resp., cycle) whose alternate edges are in M .

▶ Theorem 5. For any maximum matching M in G, M is a popular max-matching if and
only if (1) there is no alternating cycle C wrt M such that wtM (C) > 0 and (2) there is no
alternating path p with an unmatched node as an endpoint such that wtM (p) > 0.

Proof. Let M be a popular max-matching. We need to show that conditions (1) and (2)
given in the theorem statement hold. Suppose not. Then there exists either an alternating
path with an unmatched node as an endpoint or an alternating cycle wrt M (call this
path/cycle ρ) such that wtM (ρ) > 0. Since wtM (e) ∈ {0,±2}, wtM (ρ) ≥ 2.

Consider N = M ⊕ ρ. This is a maximum matching in G and observe that ∆(N,M) ≥
wtM (ρ) − 1. We are subtracting 1 here to count for that endpoint of ρ (when ρ is a path)
that is matched in M but will become unmatched in N . Since wtM (ρ) ≥ 2, ∆(N,M) ≥ 1.
So N is more popular than M ; this is a contradiction to M ’s popularity within the set of
maximum matchings. Thus conditions (1) and (2) have to hold.

To show the converse, suppose M is a maximum matching that obeys conditions (1)
and (2). Consider the symmetric difference M ⊕N , where N is any maximum matching in G
and let C be any alternating cycle here. We know from (1) that wtM (C) ≤ 0. Let p be any
alternating path in M ⊕N . Since M and N are maximum matchings, p is an alternating
path with exactly one node not matched in M as an endpoint. We know from (2) that
wtM (p) ≤ 0. So we have ∆(N,M) ≤

∑
ρ∈M⊕N wtM (ρ) ≤ 0. Thus no maximum matching is

more popular than M . ◀

A new instance. We will now construct a new instance G∗ = (A∗ ∪B∗, E∗) such that every
stable matching in G∗ maps to a maximum matching in G that satisfies properties (1) and (2)
given in Theorem 5. As mentioned earlier, the structure of the instance G∗ is inspired by an
instance from [10] whose stable matchings map to dominant matchings in G.

We first describe the node sets A∗ and B∗. Let n0 = |A|. For every a ∈ A, the set A∗

has n0 copies of a: call them a0, . . . , an0−1. So A∗ = ∪a∈A{a0, . . . , an0−1}.

ICALP 2021
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Let B∗ = ∪a∈A{d1(a), . . . , dn0−1(a)}∪{b̃ : b ∈ B}, where B̃ = {b̃ : b ∈ B} is a copy of the
set B. So along with nodes in B̃, the set B∗ also contains n0 − 1 nodes d1(a), . . . , dn0−1(a)
for each a ∈ A. These will be called dummy nodes. The purpose of d1(a), . . . , dn0−1(a) is to
ensure that in any stable matching in G∗, at most one node among a0, . . . , an0−1 is matched
to a neighbor in B̃.

The edge set. For each (a, b) ∈ E, the edge set E∗ contains n0 edges (ai, b̃) for 0 ≤ i ≤ n0−1.
For each a ∈ A and i ∈ {1, . . . , n0 − 1}, E∗ also has (ai−1, di(a)) and (ai, di(a)).

Preference orders. Let a’s preference order in G be b1 ≻ · · · ≻ bk. Then a0’s preference
order in G∗ is b̃1 ≻ · · · ≻ b̃k ≻ d1(a), i.e., it is analogous to a’s preference order in G with
d1(a) added as a0’s last choice.

For i ∈ {1, . . . , n0 − 2}, the preference order of ai in G∗ is as follows: di(a) ≻ b̃1 ≻ · · · ≻
b̃k ≻ di+1(a). So ai’s top choice is di(a) and last choice is di+1(a).
The preference order of an0−1 is dn0−1(a) ≻ b̃1 ≻ · · · ≻ b̃k.

For each i ∈ {1, . . . , n0 − 1}, the preference order of di(a) is ai−1 ≻ ai. Since each of
a0, . . . , an0−2 and d1(a), . . . , dn0−1(a) is a top choice neighbor for some node, every stable
matching in G∗ has to match all these nodes. So the only node among a0, . . . , an0−1, d1(a), . . . ,
dn0−1(a) that can possibly be left unmatched in a stable matching in G∗ is an0−1.

Consider any b ∈ B and let its preference order in G be a ≻ · · · ≻ z. Then the preference
order of b̃ in G∗ is

an0−1 ≻ · · · ≻ zn0−1︸ ︷︷ ︸
all subscript n0 − 1 neighbors

≻ an0−2 ≻ · · · ≻ zn0−2︸ ︷︷ ︸
all subscript n0 − 2 neighbors

≻ · · · ≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
all subscript 0 neighbors

That is, b̃’s preference order in G∗ is all its subscript n0 − 1 neighbors, followed by all
its subscript n0 − 2 neighbors, so on, and finally, all its subscript 0 neighbors. For each
i ∈ {0, . . . , n0 − 1}: within all subscript i neighbors, the order of preference for b̃ in G∗ is the
same as b’s order of preference in G.

The set S′. For any stable matching S in G∗, define S′ ⊆ E to be the set of edges obtained
by deleting edges in S that are incident to dummy nodes and replacing any edge (ai, b̃) ∈ S

with the original edge (a, b) ∈ E. Since S matches at most one node among a0, . . . , an0−1 to
a neighbor in B̃, the set S′ is a matching in G.

The proof of Theorem 6 is based on the proof of correctness of the |A|-level Gale-Shapley
algorithm (from [23]) in the original instance G.

▶ Theorem 6. Let S be a stable matching in G∗. Then S′ is a popular max-matching in G.

Proof. Partition the set A into A0 ∪ · · · ∪ An0−1 where for 0 ≤ i ≤ n0 − 2: Ai = {a ∈ A :
(ai, b̃) ∈ S for some b̃ ∈ B̃}, i.e., ai is matched in S to a neighbor in B̃. The left-out nodes in
A, i.e., those in A \ (A0 ∪ · · · ∪An0−2), form the set An0−1 (see Fig. 1).

Similarly, partition B into B0 ∪ · · · ∪Bn0−1 where for 1 ≤ i ≤ n0 − 1: Bi = {b : (ai, b̃) ∈ S

for some a ∈ Ai}, i.e., b̃’s partner in S is a subscript i node. Let B0 = B \ (B1 ∪ · · · ∪Bn0−1)
be the set of left-out nodes in B.

The following properties hold: (these are proved below)
1. S′ ⊆ ∪n0−1

i=0 (Ai ×Bi). Moreover, S′ restricted to each set Ai ∪Bi is stable.
2. For any i and edge (a, b) where a ∈ Ai+1, b ∈ Bi: we have wtS′(a, b) = −2.
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An0−1 Bn0−1

An0−2

A2

A1

A0

Bn0−2

B2

B1

B0

Figure 1 A = A0 ∪ · · · ∪An0−1 and B = B0 ∪ · · · ∪Bn0−1. The matching S′ ⊆ ∪n0−1
i=0 (Ai ×Bi).

All nodes unmatched in S′ are in An0−1 ∪B0. The dashed edges are blocking edges to S′.

3. G has no edge in Ai ×Bj where i ≥ j + 2.
4. Any blocking edge to S′ has to be in Ai ×Bj where i ≤ j − 1.
5. All nodes that are unmatched in S′ are in An0−1 ∪B0.
6. S′ is a maximum matching in G.

Properties 1–4 imply that for any alternating cycle C wrt S′, wtS′(C) ≤ 0. Similarly,
properties 1–5 imply that for any alternating path p with one unmatched node as an endpoint,
wtS′(p) ≤ 0. We refer to [23, Theorem 2] for more details. Property 6 states that S′ is a
maximum matching in G. Hence S′ is a popular max-matching in G (by Theorem 5). ◀

Properties 1-6. These six properties are proved below.
1. The inclusion S′ ⊆ ∪n0−1

i=0 (Ai ×Bi) follows from the definition of the sets B0, . . . , Bn0−1.
Recall that for 1 ≤ i ≤ n0 − 1, Bi is the set of nodes b such that (ai, b̃) ∈ S for some
a ∈ Ai. Also, B0 contains all nodes b such that (a0, b̃) ∈ S for some a ∈ A0. Thus
S′ ⊆ ∪n0−1

i=0 (Ai ×Bi).
The stability of S′ restricted to each set Ai ∪Bi is by b̃’s preference order in G∗. Recall
that within subscript i neighbors, the order of preference for b̃ in G∗ is b’s order of
preference in G. Thus the stability of S in G∗ implies the stability of S′ restricted to
Ai ∪Bi for each i.

2. Let a ∈ Ai+1. Then (ai+1, di+1(a)) /∈ S. So it has to be the case that (ai, di+1(a)) ∈ S.
Recall that di+1(a) is ai’s least preferred neighbor in G∗. So ai prefers b̃ to its partner in
S. Hence it follows from the stability of S in G∗ that b̃ prefers its partner in S (this is a
subscript i node zi) to ai, i.e., b prefers z to a.
Since b̃ prefers subscript i+ 1 nodes to subscript i nodes, b̃ prefers ai+1 to its partner zi
in S. It follows from the stability of S in G∗ that ai+1 has to prefer its partner w̃ in S to
b̃, otherwise (ai+1, b̃) would block S. Hence a prefers w to b. Thus wtS′(a, b) = −2.

3. Suppose a ∈ Ai where i ≥ j + 2 and b ∈ Bj . So the edge (aj+1, dj+2(a)) ∈ S. Since
dj+2(a) is aj+1’s least preferred neighbor in G∗, the stability of S implies that b̃ prefers
its partner in S to aj+1. However b ∈ Bj and so b̃’s partner in S is a subscript j node
zj . This contradicts b̃’s preference order that it prefers any subscript j + 1 neighbor to a
subscript j neighbor. Thus there is no edge (a, b) in G with a ∈ Ai and b ∈ Bj where
i ≥ j + 2.

ICALP 2021
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4. Property 4 follows from properties 1, 2, and 3 given above. Properties 2 and 3 tell us
that there is no blocking edge in Ai ×Bj where i ≥ j + 1. Property 1 tells us that there
is no blocking edge in Ai ×Bi for any i. So any blocking edge to S′ has to be in Ai ×Bj
where i ≤ j − 1.

5. Property 5 follows from the definitions of the sets A0, . . . , An0−2 and B1, . . . , Bn0−1. For
each a ∈ Ai where 0 ≤ i ≤ n0 − 2: we have (ai, b̃) ∈ S for some b̃ ∈ B̃ and thus (a, b) ∈ S′.
Similarly, for each b ∈ Bj where 1 ≤ j ≤ n0 − 1: we have (aj , b̃) ∈ S for some a ∈ Aj and
thus (a, b) ∈ S′. Hence all nodes unmatched in S′ are in An0−1 ∪B0.

6. Suppose S′ is not a maximum matching in G. Then there is an augmenting path ρ with
respect to S′. Let us refer to an edge e that satisfies wtS′(e) = −2 as a negative edge.
The endpoints of a negative edge prefer their respective partners in S′ to each other.
We know from property 5 above that all the nodes in A that are unmatched in S′ are
in An0−1 and all the nodes in B that are unmatched in S′ are in B0. We also know
that S′ ⊆ ∪i(Ai × Bi) (by property 1 above). Moreover, all the edges e in Aj+1 × Bj
are negative edges (by property 2) and there is no edge in Ai ×Bj where i ≥ j + 2 (by
property 3).
Thus the path ρ starts in An0−1 at an unmatched node a and since there cannot be any
negative edge incident to an unmatched node, all of a’s neighbors have to be in Bn0−1:
this is because every edge e in An0−1 ×Bn0−2 is a negative edge. The matched partners
of a’s neighbors are in An0−1. Then the next node can be in Bn0−2 (this is by property 3)
and its partner is in An0−2 and so on. Finally, there is no edge from A1 to an unmatched
node in B0: this is because there is no negative edge incident to an unmatched node and
we know all edges in A1 ×B0 are negative edges (by property 2).
So the shortest alternating path ρ from an unmatched a ∈ An0−1 to an unmatched b ∈ B0
moves across sets as follows: An0−1 −Bn0−1 −An0−1 −Bn0−2 −An0−2 −Bn0−3 − · · · −
A1 −B0 −A0 −B0. This implies there are at least n0 + 1 nodes in A. However |A| = n0.
So there is no such alternating path, i.e., there is no augmenting path with respect to
S′. In other words, S′ is a maximum matching in G. This finishes our proof of these six
properties.

Theorem 6 shows that every stable matching in G∗ maps to a popular max-matching
in G. In fact, as we show next, every popular max-matching in G has to be realized in this
manner. This is the tough part of the proof and as mentioned earlier, we will use LP-duality
here. We will see that appropriate dual certificates capture a very useful feature of popular
max-matchings.

3 Proving Surjectivity in a Special Case

In this section we consider the case when G admits a perfect matching. Let M be a popular
perfect matching in G. So no perfect matching in G is more popular than M .

Consider the following linear program (LP1) that computes a max-weight (wrt wtM )
perfect matching in G. For any node u, let δ(u) be the set of edges incident to u.

maximize
∑
e∈E

wtM (e) · xe (LP1)

subject to∑
e∈δ(u)

xe = 1 ∀u ∈ A ∪B and xe ≥ 0 ∀ e ∈ E.
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It follows from the definition of the function wtM that the optimal value of (LP1) is
maxN ∆(N,M) where N is a perfect matching in G. So if M is a popular perfect matching
then the optimal value of (LP1) is 0, which is ∆(M,M), i.e., the edge incidence vector of M
is an optimal solution to (LP1). The linear program (LP2) is the dual of (LP1). Hence if M
is a popular perfect matching then there exists a dual feasible α⃗ such that

∑
u∈A∪B αu = 0.

minimize
∑

u∈A∪B
yu (LP2)

subject to

ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E.

Let α⃗ be an optimal solution to (LP2). Observe that there exists an integral optimal
solution to (LP2) since the constraint matrix is totally unimodular. Thus we can assume
that α⃗ ∈ Z2n0 , where n0 = |A| = |B|.

▶ Lemma 7. If M is a popular perfect matching in G then there exists an optimal solution α⃗ to
(LP2) such that αa ∈ {0,−2,−4, . . . ,−2(n0−1)} for all a ∈ A and αb ∈ {0, 2, 4, . . . , 2(n0−1)}
for all b ∈ B.

Proof. The dual feasibility constraints are αa + αb ≥ wtM (a, b) for all (a, b) ∈ E. For each
edge (a, b) ∈ M : αa + αb = wtM (a, b) = 0 by complementary slackness. Since αb = −αa for
(a, b) ∈ M and because wtM (e) ∈ {0,±2} for each edge e, we can assume that in the sorted
order of distinct α-values taken by nodes in A, for any two consecutive values αa′ , αa′′ , where
αa′ > αa′′ , we have αa′ − αa′′ = 2.

Thus we can assume that αa ∈ {k, k − 2, k − 4, . . . , k − 2(n0 − 1)} for all a ∈ A and
αb ∈ {−k,−k+ 2,−k+ 4, . . . ,−k+ 2(n0 − 1)} for all b ∈ B, for some k ∈ Z. Observe that k
has no impact on the objective function

∑
u∈A∪B αu. This is because |A| = |B| and so k’s

and −k’s cancel each other out.
Let us update α⃗ as follows: αa = αa − k for every a ∈ A and αb = αb + k for every

b ∈ B. The updated vector α⃗ continues to be dual feasible since αa + αb, for any edge
(a, b), is unchanged by this update. Thus there is an optimal solution α⃗ to (LP2) such that
αa ∈ {0,−2, . . . ,−2(n0 − 1)} for all a ∈ A and αb ∈ {0, 2, . . . , 2(n0 − 1)} for all b ∈ B. ◀

Let M be a popular perfect matching in G. In order to define a stable matching S in G∗

such that M = S′ (the set S′ is defined above Theorem 6), we will use the vector α⃗ described
in Lemma 7. Since M is perfect, we know that for any a ∈ A, there is an edge (a, b) ∈ M for
some neighbor b of a. Recall that αa + αb = wtM (a, b) = 0 by complementary slackness. We
will include the edge (ai, b̃) in S where αa = −2i and αb = 2i. Thus we define S as follows:

S = ∪n0−1
i=0 {(ai, b̃) : (a, b) ∈ M and αa = −2i, αb = 2i} ∪ {necessary edges incident to

dummy nodes in G∗}.
In more detail, the edges incident to dummy nodes that are present in S are as follows: for

each a ∈ A, these edges are (aj , dj+1(a)) for 0 ≤ j ≤ i−1 and (aj , dj(a)) for i+1 ≤ j ≤ n0 −1,
where αa = −2i.

Since (ai, b̃) ∈ S, all the n0 nodes a0, . . . , an0−1 and the dummy nodes d1(a), . . . , dn0−1(a)
corresponding to a in G∗ are matched in S. This holds for every a ∈ A. Also every b̃ ∈ B̃ is
matched in S since M is a perfect matching in G. Thus S is a perfect matching in G∗. It is
easy to check that S′ = M . What we need to prove is the stability of S in G∗.
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▶ Theorem 8. The matching S is stable in G∗.

Proof. We need to show there is no edge in G∗ that blocks S. There is no blocking edge
incident to a dummy node: this is because a dummy node di(a) has only two neighbors and
when di(a) is matched in S to its second choice neighbor ai, its top choice neighbor ai−1
prefers its partner in S to di(a).

Let us now show that no node in a0, . . . , an0−1 has a blocking edge incident to it, for
any a ∈ A. Let (ai, b̃) ∈ S where (a, b) ∈ M . All of ai+1, . . . , an0−1 are matched to their
respective top choice neighbors di+1(a), . . . , dn0−1(a). So there is no blocking edge incident
to any of ai+1, . . . , an0−1.

All of a0, . . . , ai−1 are matched to their last choice neighbors – these are the dummy
nodes d1(a), . . . , di(a), respectively. Consider any neighbor w ∈ B of a. We need to
show that w̃ ∈ B̃ is matched in S to a neighbor preferred to all of a0, . . . , ai−1. We have
αa + αw ≥ wtM (a,w). Since αa = −2i and wtM (e) ≥ −2 for every edge e, it follows that
αw ≥ 2i− 2.

So (z, w) ∈ M for some neighbor z of w such that αz = −αw ≤ −(2i− 2). Equivalently,
(zj , w̃) ∈ S where j ≥ i−1. Thus there is no blocking edge between w̃ and any of a0, . . . , ai−2
by w̃’s preference order in G∗. We will now show that (ai−1, w̃) cannot be a blocking edge.

If j ≥ i then by w̃’s preference order in G∗, w̃ prefers zj to ai−1 and so (ai−1, w̃) does
not block S.
If j = i − 1 then wtM (a,w) ≤ αa + αw = −2i + 2i − 2 = −2. So both a and w prefer
their respective partners in M to each other. Thus w̃ prefers zi−1 to ai−1. So (ai−1, w̃)
does not block S.

Finally, we need to show there is no blocking edge incident to ai. By the above arguments,
we only need to consider edges (ai, w̃) where (zi, w̃) ∈ S. So wtM (a,w) ≤ αa + αw =
−2i+ 2i = 0. Hence either (a,w) ∈ M or at least one of a,w prefers its partner in M to the
other. So either (ai, w̃) ∈ S or at least one of ai, w̃ prefers its partner in S to the other; thus
the edge (ai, w̃) does not block S. Hence S is a stable matching in G∗. ◀

4 The General Case

We showed that when G has a perfect matching, our mapping from the set of stable matchings
in G∗ to the set of popular max-matchings in G is surjective. Now we look at the general
case, i.e., G need not have a perfect matching. Let M be a popular max-matching in G.

Let U ⊆ A ∪B be the set of nodes left unmatched in M . Consider (LP3) that computes
a max-weight perfect matching (with respect to wtM ) in the subgraph G′ induced on
V = (A ∪B) \ U . Let E′ be the edge set of G′. For any v ∈ V , let δ′(v) = δ(v) ∩ E′.

maximize
∑
e∈E′

wtM (e) · xe (LP3)

subject to∑
e∈δ′(v)

xe = 1 ∀ v ∈ V and xe ≥ 0 ∀ e ∈ E′.

The optimal value of (LP3) is maxN ∆(N,M) where N is a perfect matching in G′. Any
perfect matching in G′ is a maximum matching in G and since M is a popular max-matching
in G, ∆(N,M) ≤ 0 for any perfect matching N in G′. Since ∆(M,M) = 0, the edge incidence
vector of M is an optimal solution to (LP3). The linear program (LP4) is the dual of (LP3).
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minimize
∑
u∈V

yu (LP4)

subject to

ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E′.

Since M is a popular max-matching, the optimal value of (LP3) is 0. So there exists an
optimal solution α⃗ to (LP4) such that

∑
u∈V αu = 0. Moreover, we can assume the following

(see Lemma 7) where A′ = A \ U and B′ = B \ U . Here |A′| = |B′| = n0.

1. αa ∈ {0,−2,−4, . . . ,−2(n0 − 1)} for all a ∈ A′

2. αb ∈ {0, 2, 4, . . . , 2(n0 − 1)} for all b ∈ B′.

For any T ⊆ A ∪B, let Nbr(T ) be the set of neighbors in G of nodes in T . Theorem 9 is
our main technical result here. Let UA = U ∩A and UB = U ∩B.

▶ Theorem 9. Let M be a popular max-matching in G and let U be the set of nodes left
unmatched in M . There exists an optimal solution α⃗ to (LP4) such that

αa ∈ {0,−2, . . . , −2(n0 − 1)} for a ∈ A′ and αb ∈ {0, 2, . . . , 2(n0 − 1)} for b ∈ B′

(i) αa = 0 for a ∈ Nbr(UB) and (ii) αb = 2(n0 − 1) for b ∈ Nbr(UA).

Let us first finish our proof of surjectivity by assuming Theorem 9. Then we will prove
Theorem 9. Let M be any popular max-matching in G. Corresponding to M , there is a vector
α⃗ as given in Theorem 9. We will use this vector α⃗ to construct S = ∪n0−1

i=0 {(ai, b̃) : (a, b) ∈ M

and αa = −2i, αb = 2i} ∪ {necessary edges incident to dummy nodes in G∗}.
The edges in S incident to dummy nodes are: (aj , dj+1(a)) for 0 ≤ j ≤ n0 − 2 for a ∈ UA.

For a ∈ A\UA, these are (aj , dj+1(a)) for 0 ≤ j ≤ i− 1 and (aj , dj(a)) for i+ 1 ≤ j ≤ n0 − 1,
where αa = −2i. It is easy to see that S is a matching in G∗ and S′ = M .

▶ Theorem 10. The matching S is stable in G∗.

Proof. Let E′ be the edge set of G′, where G′ is the subgraph of G induced on (A ∪B) \ U .
Consider any edge (aj , w̃) in G∗ where (a,w) ∈ E′ and 0 ≤ j ≤ n0 − 1. The proof of
Theorem 8 shows that (aj , w̃) does not block S.

Consider any edge (a,w) in E \ E′. Such an edge has a node in U as an endpoint. A
useful observation is that every node in Nbr(U) has to be matched in M to some neighbor
that it prefers to all its neighbors in U . Otherwise M would not be a popular max-matching.

Suppose a ∈ UA. So w ∈ Nbr(UA) and αw = 2(n0 − 1) by property (ii) in Theorem 9. So
(zn0−1, w̃) ∈ S for some neighbor z that w prefers to a. Thus (an0−1, w̃) does not block S.
For i ∈ {0, . . . , n0 − 2}, none of the edges (ai, w̃) can block S (by w̃’s preference order).
Suppose w ∈ UB. So a ∈ Nbr(UB) and αa = 0 by property (i) in Theorem 9. Thus
(a0, b̃) ∈ S for some neighbor b that a prefers to w. Hence (a0, w̃) does not block S.
Moreover, none of the edges (ai, w̃) for i ∈ {1, . . . , n0 − 1} can block S since a1, . . . , an0−1
are matched to their respective top choice neighbors d1(a), . . . , dn0−1(a).

Finally, no edge incident to a dummy node blocks S (by the same argument as given in the
proof of Theorem 8). Hence S is a stable matching in G∗. ◀

Thus Theorem 9 allows us to show that for any popular max-matching M in G, there is
a stable matching S in G∗ such that M = S′. We will now prove Theorem 9.
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Proof of Theorem 9. We know there is an optimal solution α⃗ to (LP4) where αa ∈ {0,−2,
. . . ,−2(n0 − 1)} for a ∈ A′ and αb ∈ {0, 2, . . . , 2(n0 − 1)} for b ∈ B′. We now update α⃗
so that it remains an optimal solution to (LP4) in the above format and it also satisfies
properties (i) and (ii) given in the theorem statement.

Property (ii). Suppose the vector α⃗ ∈ {0,±2, . . . ,±2(n0 − 1)}2n0 does not satisfy prop-
erty (ii). So we have to update α⃗ so that property (ii) is satisfied. First, we increase the
α-values of the nodes in Nbr(UA) to 2(n0 − 1) and decrease the α-values of their partners
in M to −2(n0 − 1). Now α⃗ may no longer be a feasible solution to (LP4).

We use the following three update rules for all a ∈ A′ to make α⃗ feasible again. Let αa =
−2i where i ∈ {0, . . . , n0 − 1}. Suppose there is some (a, b) ∈ E′ with αa + αb < wtM (a, b).
Let M(b) be b’s partner in M .

Rule 1. If wtM (a, b) = 0 then update αb = 2i and αM(b) = −2i.
Rule 2. If wtM (a, b) = −2 then update αb = 2(i− 1) and αM(b) = −2(i− 1).
Rule 3. If wtM (a, b) = 2 then update αb = 2(i+ 1) and αM(b) = −2(i+ 1).

At the onset, α⃗ was a feasible solution to (LP4), so αa + αb ≥ wtM (a, b) for (a, b) ∈ E′.
Then we moved the nodes in Nbr(UA) and their partners in M to sets Bn0−1 and An0−1,
respectively, where Ai = {a ∈ A′ : αa = −2i} and Bi = {b ∈ B′ : αb = 2i} for all i. The
subscript i will be called the level of nodes in Ai ∪Bi.

The nodes that moved to An0−1 have a lower α-value than earlier and it is these nodes
that “pull” their neighbors upwards to higher levels as given by rules 1-3. Let a be a new
node in level i and let b be a neighbor of a such that αa + αb < wtM (a, b). Then b and M(b)
move to: (1) level i if wtM (a, b) = 0, (2) level i− 1 if wtM (a, b) = −2, else (3) level i+ 1, i.e.,
if wtM (a, b) = 2.

In turn, the nodes in A′ that have moved to these higher levels by rules 1-3 pull their
neighbors and the partners of these neighbors upwards to higher levels by these rules. Thus
we may get further new nodes in Bn0−1, An0−1 and so on. While any of rules 1-3 is applicable,
we apply that rule. So a rule may be applied many times to the same edge in E′.

Claim 11 (proved in Section 4.1) shows a useful property. We show in its proof that such
a blocking edge creates a forbidden alternating cycle/path wrt M , as given in Theorem 5.

▷ Claim 11. By applying the above rules, suppose a node v0 ∈ A′ moves to An0−1. Then
there is no blocking edge (e such that wtM (e) = 2) incident to v0.

Applying rules 1-3 increases the α-values of some nodes in B′ and it never decreases the
α-value of any node in B′. The nodes in B′ with increased α-values and their partners have
moved to higher levels (see Fig. 1). This upwards movement of nodes has to terminate at
level n0 − 1. For the α-value of any b ∈ B′ to be increased beyond 2(n0 − 1), we need a
blocking edge (a, b) where a ∈ An0−1 – this would cause rule 3 to be applied which would
increase αb to 2n0. However there is no such blocking edge (by Claim 11).

Since there are n0 levels and because |B′| = n0, there can be at most n2
0 applications

of these rules. When no rule is applicable, α⃗ is a feasible solution to (LP4). Moreover,∑
u∈V αu is invariant under this update of α-values, since we maintain αa + αb = 0 for every

(a, b) ∈ M . Hence α⃗ is an optimal solution to (LP4). Thus for every popular max-matching
M , there is an optimal solution α⃗ to (LP4) in the desired format that satisfies property (ii).
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Property (i). We now have an optimal solution α⃗ ∈ {0,±2, . . . , ±2(n0 − 1)}2n0 to (LP4),
where αa ≤ 0 for all a ∈ A′ and αb ≥ 0 for all b ∈ B′, such that αb = 2(n0 − 1) for all
b ∈ Nbr(UA). Suppose property (i) is not satisfied.

Then we increase α-values of certain nodes in A′ – this moves these nodes downwards
with respect to their level (see Fig. 1) and ensures that property (i) holds. First, we increase
the α-values of the nodes in Nbr(UB) to 0 and their partners also have α-values updated to 0.
Now α⃗ may no longer be a feasible solution to (LP4).

So we will use the following three update rules for all b ∈ B′. Let αb = 2i where
i ∈ {0, . . . , n0 − 1}. Suppose there is an edge (a, b) ∈ E′ such that αa + αb < wtM (a, b). Let
M(a) be a’s partner in M .

Rule 4. If wtM (a, b) = 0 then update αa = −2i and αM(a) = 2i.
Rule 5. If wtM (a, b) = −2 then update αa = −2(i+ 1) and αM(a) = 2(i+ 1).
Rule 6. If wtM (a, b) = 2 then update αa = −2(i− 1) and αM(a) = 2(i− 1).

Applying rules 4-6 increases the α-values of some nodes in A′ and it never decreases the
α-value of any node in A′. The nodes in A′ with increased α-values and their partners have
moved to lower levels. Moreover, the movement of nodes downwards has to stop at level 0
since no blocking edge can be incident to any node that moves to B0 (analogous to Claim 11).
While any of the above three rules is applicable, we apply that rule.

When no rule is applicable, α⃗ is a feasible solution to (LP4). Since
∑
u∈V αu = 0, α⃗ is an

optimal solution to (LP4). So there is an optimal solution α⃗ to (LP4) in the desired format
that satisfies property (i).

Properties (i) and (ii). Note that we cannot claim straightaway that the above α⃗ satisfies
both property (i) and property (ii). This is because applying rules 4-6 may have caused
αb < 2(n0 − 1) for some b ∈ Nbr(UA). Claim 12 shows this is not possible.

▷ Claim 12. The above α⃗ satisfies property (ii), i.e., αb = 2(n0 − 1) for b ∈ Nbr(UA).

Claim 12 is proved in Section 4.1. So we have an optimal solution α⃗ to (LP4) in the desired
format that satisfies both property (i) and property (ii). ◀

4.1 Proofs of Claim 11 and Claim 12
The proofs of Claim 11 and Claim 12 use the fact that certain alternating cycles/paths are
forbidden for popular max-matchings. These include the ones given in Theorem 5 and also
augmenting paths (since M is a maximum matching).

Proof of Claim 11. Let v0 be the first node that moves to An0−1 with a blocking edge incident
to it. Recall our update procedure – we initially added nodes in Nbr(UA) and their partners
in M to Bn0−1 and An0−1, respectively. Then we applied rules 1-3 in some order and this
resulted in the node v0 moving to An0−1. Corresponding to these rules, we will construct an
alternating path p = v0 −M(v0) − v1 −M(v1) − v2 − · · · − vk −M(vk) − u between v0 and
some node u ∈ UA.

The path p can be partitioned into k+ 1 pairs of edges for some k ≥ 0. For 0 ≤ i ≤ k− 1:
the i-th pair consists of the matching edge (vi,M(vi)) of weight 0 and the non-matching
edge ei = (M(vi), vi+1) where vi+1 is the node that pulled M(vi) and vi to their current
level due to the application of one of the above three rules. Rule 1 implies wtM (ei) = 0 while
rule 2 implies wtM (ei) = −2 and rule 3 implies wtM (ei) = 2.
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Observe that rule 1 places M(vi) in the same level as vi+1 while rule 2 places M(vi)
one level lower than vi+1 and rule 3 places M(vi) one level higher than vi+1. The last pair
of edges in p are (vk,M(vk)) ∈ An0−1 × Bn0−1 and (M(vk), u), where the latter edge has
weight 0. The node v0 is in level n0 − 1 and the node M(vk) is also in level n0 − 1. So v0
and vk are at the same level, hence the number of edges in p of weight −2 is exactly the
same as the number of edges of weight 2, thus wtM (p) = 0.

Suppose there is a blocking edge (v0, w). If w belongs to p, then it is easy to see that the
alternating cycle C obtained by joining the endpoints of the v0-w subpath in p with the edge
(v0, w) satisfies wtM (C) ≥ 2. This contradicts Theorem 5 since M is a popular max-matching.
Hence w does not belong to path p. So let us add the 2-edge path M(w)−w−v0 as a prefix to
the v0-u path p and call this alternating path q: we have wtM (q) = wtM (p) + wtM (v0, w) = 2.
Since wtM (q) > 0 and the unmatched node u is an endpoint of q, this again contradicts
Theorem 5. Hence there is no blocking edge incident to v0. ◁

Proof of Claim 12. Suppose there is a node w1 ∈ Nbr(UA) such that αw1 < 2(n0 − 1). So
there is some u ∈ UA such that (u,w1) ∈ E and though αw1 = 2(n0 − 1) just before we
started applying rules 4-6, the application of these rules caused αw1 to become less than
2(n0 − 1).

Initially we added nodes in Nbr(UB) and their partners in M to A0 and B0, respectively.
Then we repeatedly applied rules 4-6 and this resulted in w1 moving to a level lower than n0−1.
Corresponding to what caused w1 to be “pulled” downwards, we will construct an alternating
path p = w1 −M(w1)−w2 −M(w2)−· · ·−wr−M(wr)−u′ between w1 and a node u′ ∈ UB .

The path p will consist of r pairs of edges for some r ≥ 1. For 1 ≤ i ≤ r − 1: the i-th
pair of edges is (wi,M(wi)) and (M(wi), wi+1) where wi+1 is the node that pulled M(wi)
and wi to their current level due to the application of one of rules 4-6. The last pair of edges
in p is (wr,M(wr)) and (M(wr), u′), where wr ∈ B0,M(wr) ∈ A0, and u′ ∈ UB. Thus we
have an alternating path p between w1 and u′ ∈ UB .

By adding the edge (u,w1) as a prefix to the path p, we get an augmenting path
u − w1 − · · · − M(wr) − u′ with respect to M . However there cannot be any augmenting
path wrt M since M is a maximum matching in G. Thus α⃗ satisfies property (ii). ◁

This finishes the proof of Theorem 9. So the stable matching polytope of G∗ yields a
compact extended formulation for the popular max-matching polytope of G (by Theorem 6
and Theorem 10). This formulation is described in Section 4.2.

Linear programming on this formulation with min
∑
e∈E c(e) ·xe as the objective function

computes a min-cost popular max-matching in G in polynomial time. Equivalently, we can
compute a min-cost stable matching S in G∗ and return the corresponding matching S′ in G.
It follows from Theorem 6 and Theorem 10 that S′ is a min-cost popular max-matching in G.
This proves Theorem 3 stated in Section 1.

4.2 An Extended Formulation for the Popular Max-Matching Polytope

For any node u in G∗, let {v′ ≻u v} be the set of all neighbors of u in G∗ that it prefers to v.
Let δ∗(u) denote the set of edges incident to u in G∗.

Let T = ∪a∈A({a0, . . . , an0−2} ∪ {d1(a), . . . , dn0−1(a)}). Every node in T is a top choice
neighbor for some node, so every node in T has to be matched in all stable matchings in G∗.
The constraints given below describe the stable matching polytope of G∗, as shown in [30].
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∑
w≻ai

b̃

x(ai,w) +
∑
z≻b̃ai

x(z,b̃) + x(ai,b̃) ≥ 1 ∀(ai, b̃) ∈ E∗

∑
e∈δ∗(u)

xe = 1 ∀ u ∈ T

∑
e∈δ∗(u)

xe ≤ 1 ∀u ∈ A∗ ∪B∗ and xe ≥ 0 ∀e ∈ E∗.

1. The topmost constraint captures the stability constraint for edge (ai, b̃) ∈ E∗ where
(a, b) ∈ E and 0 ≤ i ≤ n0 − 1.

2. The constraint in the second line for u = ai−1 captures the stability constraint for the edge
(ai−1, di(a)) and for u = di(a) captures the stability constraint for the edge (ai, di(a)).

3. The constraints in the third line capture that x⃗ belongs to the matching polytope of G∗.

Consider the equations x(a,b) =
∑n0−1
i=0 x(ai,b̃) for all (a, b) ∈ E. It follows from Theorem 6

and Theorem 10 that these m equations along with the constraints of the stable matching
polytope of G∗ given above describe an extended formulation for the popular max-matching
polytope MG. So the extension complexity of the polytope MG is O(mn).

5 A Hardness Result

In this section we show that it is NP-hard to compute a min-cost Pareto-optimal matching
and a min-cost Pareto-optimal max-matching in an instance G = (A ∪B,E) with edge costs
in {0, 1}.

Given a 3SAT formula ψ, we will build an instance Gψ with edge costs in {0, 1} such
that Gψ admits a Pareto-optimal matching of cost 0 if and only if ψ is satisfiable. Any
Pareto-optimal matching of cost 0 would have to be a perfect matching in Gψ. Hence this
will prove the NP-hardness of both the min-cost Pareto-optimal matching problem and the
min-cost Pareto-optimal max-matching problem.

Our reduction resembles a hardness reduction from [9] that showed the NP-hardness of
deciding if an instance G has a stable matching M that is also dominant. As done in this
reduction, we will first transform ψ so that every clause contains either only positive literals
or only negative literals; moreover, there will be a single occurrence of each negative literal
in the transformed ψ. This is easy to achieve:

let X1, . . . , Xn be the starting variables. For i ∈ [n]: replace all occurrences of ¬Xi with
the same variable Xn+i (a new one) and add the two clauses (Xi∨Xn+i)∧ (¬Xi∨¬Xn+i)
to capture ¬Xi ≡ Xn+i. Thus there are 2n variables in the transformed ψ.

We build the graph Gψ as follows. There are two types of gadgets: those that correspond
to positive clauses and those that correspond to negative clauses. Fig. 2 (resp., Fig. 3) shows
how a positive (resp., negative) clause gadget looks like.

We now describe the preference lists of nodes in a positive clause Cℓ = x ∨ y ∨ z (see
Fig. 2). The nodes ax, a′

x, bx, b
′
x occur in x’s gadget and ay, a

′
y, by, b

′
y occur in y’s gadget

and az, a
′
z, bz, b

′
z occur in z’s gadget: these gadgets are in the ℓ-th clause gadget Cℓ. Every

occurrence of a literal has a separate gadget.
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bx ay by az

a′
x a′

y a′
zb′

x b′
z

b′
y

ax bz

Figure 2 The clause gadget for a positive clause Cℓ = x∨ y∨ z. Every occurrence of a literal in ψ
has a separate gadget. So we ought to use labels such as ax,ℓ, bx,ℓ, . . . here; for the sake of simplicity,
we used the labels ax, bx, . . . here.

ax a′
x ay a′

y az a′
z

bz bx bx by by bz

bx b′
x by b′

y bz b′
z

d′
x – d′

y – d′
z –

b′
x – b′

y – b′
z –

Here ax’s top choice is bz, second choice bx, third choice d′
x, fourth choice b′

x, and similarly
for other nodes. For every occurrence of a positive literal x: there will be a pair of consistency
edges – the pair (ax, d′

x) and (b′
x, cx) in Fig. 4 – between this gadget of x and the unique

gadget of ¬x. In our preferences, the neighbors on consistency edges are marked in red.

bx b′
x by b′

y bz b′
z

ay a′
x az a′

y ax a′
z

ax cx ay cy az cz

a′
x ax a′

y ay a′
z az

The preference lists of nodes that occur in a clause gadget with 2 positive literals will be
totally analogous to the preference lists of nodes in a clause gadget with 3 positive literals.

c′
xd′

x c′
yd′

y

dx

dycx

cy

Figure 3 A clause gadget corresponding to a negative clause Dk = ¬x ∨ ¬y; due to our
transformation of ψ, every negative clause has only 2 literals.

We will now describe the preference lists of nodes in a negative clause k – the overall
picture here is given in Fig. 3.

cx c′
x cy c′

y

dy dx dx dy

dx d′
x dy d′

y

b′
x,i – b′

y,i′ –
· · · – · · · –
b′

x,j – b′
y,j′ –

d′
x – d′

y –

dx d′
x dy d′

y

cy c′
x cx c′

y

cx ax,i cy ay,i′

c′
x · · · c′

y · · ·
– ax,j – ay,j′

– cx – cy

The nodes cx, c′
x, dx, d

′
x and cy, c′

y, dy, d
′
y occur in the gadgets of ¬x and ¬y, respectively.

The nodes b′
x,i, . . . , b

′
x,j (resp., b′

y,i′ , . . . , b
′
y,j′) in the preference lists above are the b′-nodes in

the x-gadgets (resp., y-gadgets) in the various clauses that x (resp., y) occurs in. Similarly,
ax,i, . . . , ax,j (resp., ay,i′ , . . . , ay,j′) are the a-nodes in the x-gadgets (resp., y-gadgets) in the
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various clauses that x (resp., y) occurs in. The preference order among the b′-nodes and
among the a-nodes in these lists is not important. The consistency edges between a gadget
of x and the gadget of ¬x are shown in Fig. 4.

bz ax bx ay

a′
xb′

x d′
x c′

x

cydxcxdy

Figure 4 For the sake of simplicity, we use ax, bx, a
′
x, b

′
x to denote the 4 nodes in the gadget of x

in the ℓ-th clause; cx, dx, c
′
x, d

′
x are the 4 nodes in the unique gadget of ¬x. The consistency edges

are the red dashed edges.

Edge costs. For each edge e in Gψ, we will set cost(e) ∈ {0, 1} as follows.
For each variable r ∈ {X1, . . . , X2n}: set cost(e) = 0 where e is any of the 4 edges in any
literal gadget ⟨ar, br, a′

r, b
′
r⟩ of r or any of the 4 edges in the gadget ⟨cr, dr, c′

r, d
′
r⟩ of ¬r.

For all other edges e, set cost(e) = 1.

In particular, for any edge e in the consistency pair for any variable, we have cost(e) = 1.
In our figures, all dashed edges have cost 1 and all solid edges have cost 0.

Let M be a Pareto-optimal matching in Gψ with cost(M) = 0. So M has to use only
cost 0 edges. Thus M is forbidden to use any edge other than the 4 edges in the gadget
of any literal. Moreover, since M is Pareto-optimal, M cannot leave two adjacent nodes
unmatched. Thus for r ∈ {X1, . . . , X2n}:
1. From a gadget of r (say, on nodes ar, br, a′

r, b
′
r), either (i) (ar, br), (a′

r, b
′
r) are in M or

(ii) (ar, b′
r), (a′

r, br) are in M .
2. From the gadget of ¬r (the nodes are cr, dr, c′

r, d
′
r), either (i) (cr, dr), (c′

r, d
′
r) are in M or

(ii) (cr, d′
r), (c′

r, dr) are in M .

Thus any Pareto-optimal matching in Gψ of cost 0 is a perfect matching. Lemma 13 will
be useful to us.

▶ Lemma 13. Let M be a Pareto-optimal matching in Gψ. For any r ∈ {X1, . . . , X2n}, both
(ar, b′

r) and (cr, d′
r) cannot simultaneously be in M .

Proof. The preferences of the nodes are set such that if both (ar, b′
r) and (cr, d′

r) are in
M then both the non-matching edges (ar, d′

r) and (b′
r, cr) in the alternating cycle ρ =

ar − (d′
r, cr) − (b′

r, ar) − d′
r are blocking edges to M . Consider M ⊕ ρ versus M . All the 4

nodes ar, b′
r, cr, d

′
r prefer M ⊕ ρ to M while the other nodes are indifferent between M ⊕ ρ

and M . Thus ϕ(M ⊕ ρ,M) = 4 and ϕ(M,M ⊕ ρ) = 0, so u(M) = ∞. This means M is
not Pareto-optimal, a contradiction. Thus for any r ∈ {X1, . . . , X2n}, we cannot have both
(ar, b′

r) and (cr, d′
r) in M . ◀

Theorem 14 is our main result here.

▶ Theorem 14. Gψ has a Pareto-optimal matching M with cost(M) = 0 if and only if ψ is
satisfiable.

Proof. Suppose Gψ has a Pareto-optimal matching M with cost(M) = 0. For any variable
r ∈ {X1, . . . , X2n}, consider the edges in ¬r’s gadget that are in M . If (cr, d′

r), (c′
r, dr) are

in M then set r = false else set r = true.
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Lemma 13 tells us that when we set r to false, the edges (ar,i, br,i), (a′
r,i, b

′
r,i) from r’s

gadget in the i-th clause have to be in M (where ar,i, br,i, a′
r,i, b

′
r,i are the 4 nodes from r’s

gadget in the i-th clause).

▷ Claim 15. The above assignment satisfies ψ.

Claim 15 uses the Pareto-optimality of M to show that every clause has at least one
literal set to true. Its proof is given after the proof of Theorem 14. Hence if Gψ admits a
Pareto-optimal matching M with cost(M) = 0, then ψ is satisfiable.

The converse. We will now show that if ψ is satisfiable then there is a Pareto-optimal
matching M in Gψ such that cost(M) = 0. There is a natural way of constructing the
matching M – we will use the satisfying assignment for ψ to choose edges from each literal
gadget. For any variable r, include the following edges in the matching M :

if r = true then take the edges (cr, dr), (c′
r, d

′
r) from ¬r’s gadget and the edges (ar,i, b′

r,i),
(a′
r,i, br,i) from r’s gadget in clause i (for every clause i that r belongs to).

if r = false then take the edges (cr, d′
r), (c′

r, dr) from ¬r’s gadget and the edges (ar,i, br,i),
(a′
r,i, b

′
r,i) from r’s gadget in clause i (for every clause i that r belongs to).

It is easy to see that cost(M) = 0. Since M is a perfect matching, there is no alternating
path ρ wrt M such that ϕ(M,M ⊕ ρ) = 0. This is because for every alternating path ρ wrt
M , we have |M ⊕ ρ| < |M | and the nodes matched in M and unmatched in M ⊕ ρ prefer
M to M ⊕ ρ, so ϕ(M,M ⊕ ρ) > 0. Hence in order to prove M ’s Pareto-optimality, what we
need to show is Claim 16.

▷ Claim 16. There is no alternating cycle ρ with respect to M such that ϕ(M ⊕ ρ,M) > 0
and ϕ(M,M ⊕ ρ) = 0.

The proof of Claim 16 is given below. This finishes the proof of Theorem 14. ◀

Proof of Claim 15. Suppose this assignment does not satisfy ψ. We have 3 cases here.
1. Let Ci = x ∨ y ∨ z. Suppose all the three variables x, y, z are in false state. Consider the

following alternating cycle ρ wrt M :

bz,i − (ax,i, bx,i) − (ay,i, by,i) − (az,i, bz,i) − ax,i.

All non-matching edges in this alternating cycle, i.e., the edges (bz,i, ax,i), (bx,i, ay,i),
(by,i, az,i), are blocking edges with respect to M . In the M⊕ρ versus M comparison, these
6 nodes ax,i, bx,i, ay,i, by,i, az,i, bz,i prefer M ⊕ ρ to M while all other nodes in Gψ are
indifferent between M ⊕ ρ and M . Thus we have ϕ(M ⊕ ρ,M) = 6 and ϕ(M,M ⊕ ρ) = 0.
Hence u(M) = ∞, contradicting the Pareto-optimality of M .

2. Let Cj = x ∨ y, i.e., this is a positive clause with 2 literals. Suppose both x and y are in
false state. Consider the following alternating cycle ρ wrt M :

by,j − (ax,j , bx,j) − (ay,j , by,j) − ax,j .

In the M⊕ρ versus M comparison, the 4 nodes ax,j , bx,j , ay,j , by,j prefer M⊕ρ to M while
all the other nodes in Gψ are indifferent between M ⊕ ρ and M . Thus ϕ(M ⊕ ρ,M) = 4
and ϕ(M,M ⊕ ρ) = 0. Hence u(M) = ∞, contradicting the Pareto-optimality of M .

3. Let Dk = ¬x ∨ ¬y. Suppose both ¬x and ¬y are in false state. Consider the following
alternating cycle ρ wrt M :

dy − (cx, dx) − (cy, dy) − cx.
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In the M ⊕ ρ versus M comparison, the 4 nodes cx, dx, cy, dy prefer M ⊕ ρ to M while
all the other nodes in Gψ are indifferent between M ⊕ ρ and M . So ϕ(M ⊕ ρ,M) = 4
and ϕ(M,M ⊕ ρ) = 0. Hence u(M) = ∞, contradicting the Pareto-optimality of M .

Thus every clause in ψ has at least one literal in true state. ◁

Proof of Claim 16. We need to show there is no alternating cycle ρ with respect to M such
that ϕ(M⊕ρ,M) > 0 and ϕ(M,M⊕ρ) = 0. Every non-matching edge in such an alternating
cycle ρ has to be a blocking edge wrt M .

First, we argue that every consistency edge is a non-blocking edge to M ; say, this is a
consistency edge corresponding to variable r in clause i. It follows from our construction of
M that M contains either:
1. (ar,i, b′

r,i), (a′
r,i, br,i) and (cr, dr), (c′

r, d
′
r) or

2. (ar,i, br,i), (a′
r,i, b

′
r,i) and (cr, d′

r), (c′
r, dr).

case 1: the node d′
r prefers M(d′

r) = c′
r to ar,i and the node cr prefers M(cr) = dr to b′

r,i.
case 2: the node ar,i prefers M(ar,i) = br,i to d′

r and the node b′
r,i prefers M(b′

r,i) = a′
r,i

to cr.
Thus in both cases, the consistency edges (ar,i, d′

r) and (b′
r,i, cr) are non-blocking edges to

M . Let H be the subgraph of Gψ obtained by preserving only the edges that are in M and
also blocking edges wrt M . Thus no non-blocking edge (other than edges in M) is included
in H – so no consistency edge belongs to H.

Since there are no consistency edges in H, any alternating cycle in H has to be contained
within a single clause. We will now show there is no such cycle in H by using the fact that
we constructed M using a satisfying assignment for ψ: thus every clause has at least one
literal set to true.

Let C = x∨y∨z and suppose y = true in ψ. Then (ay, b′
y) and (a′

y, by) are in M , however
the edge (a′

y, b
′
y) is non-blocking wrt M and hence it is missing in H. Thus there is no

alternating cycle in H that is contained within the clause C. Now consider a negative clause
D = ¬x ∨ ¬y and suppose x = false in ψ. Then (cx, d′

x) and (c′
x, dx) are in M , however the

edge (c′
x, d

′
x) is non-blocking wrt M and it is missing in H. Thus there is no alternating

cycle in H that is contained within the clause D.
Consider the 4 edges of any literal gadget (say, r) in Gψ: if (ar, br) ∈ M then (ar, b′

r) is
a non-blocking edge wrt M and if (a′

r, br) ∈ M then (a′
r, b

′
r) is a non-blocking edge wrt M .

Similarly, in the gadget of ¬r: if (cr, dr) ∈ M then (cr, d′
r) is a non-blocking edge wrt M

and if (c′
r, dr) ∈ M then (c′

r, d
′
r) is a non-blocking edge wrt M . Thus there is no alternating

cycle wrt M in H. So there is no alternating cycle ρ in Gψ such that ϕ(M ⊕ ρ,M) > 0 and
ϕ(M,M ⊕ ρ) = 0. ◁

Since any Pareto-optimal matching in Gψ of cost 0 is a perfect matching, Theorem 14
shows that the min-cost Pareto-optimal matching problem and the min-cost Pareto-optimal
max-matching problem are NP-hard. Moreover, these problems are NP-hard to approximate
to any multiplicative factor. Thus we have shown Theorem 4 stated in Section 1.
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