
Automorphisms and Isomorphisms of Maps in
Linear Time
Ken-ichi Kawarabayashi #

National Institute of Informatics, Tokyo, Japan

Bojan Mohar #

Department of Mathematics, Simon Fraser University, Burnaby, Canada
IMFM, Department of Mathematics, University of Ljubljana, Slovenia

Roman Nedela #

Univeristy of West Bohemia, Pilsen, Czech Republic

Peter Zeman #

Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Abstract
A map is a 2-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that
every face is homeomorphic to an open disc. An automorphism of a map can be thought of as a
permutation of the vertices which preserves the vertex-edge-face incidences in the embedding. When
the underlying surface is orientable, every automorphism of a map determines an angle-preserving
homeomorphism of the surface. While it is conjectured that there is no “truly subquadratic”
algorithm for testing map isomorphism for unconstrained genus, we present a linear-time algorithm
for computing the generators of the automorphism group of a map, parametrized by the genus of
the underlying surface. The algorithm applies a sequence of local reductions and produces a uniform
map, while preserving the automorphism group. The automorphism group of the original map can
be reconstructed from the automorphism group of the uniform map in linear time. We also extend
the algorithm to non-orientable surfaces by making use of the antipodal double-cover.
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1 Introduction

The graph isomorphism problem asks whether or not two given graphs are isomorphic. It is
one of the most fundamental problems in the theory of algorithms. It is probably the most
notorious problem whose computational complexity is still a huge open question, even after
Babai’s recent quasipolynomial-time breakthrough [2]. While some complexity theoretic
results indicate that this problem is unlikely NP-complete (if it was, the polynomial hierarchy
would collapse to its second level, see [28]), no polynomial-time algorithm is known, even
with extended resources like randomization or quantum computing.
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On the other hand, there is a number of important classes of graphs on which the graph
isomorphism problem is known to be solvable in polynomial time. These include graphs with
bounded degree [23, 9], bounded eigenvalue multiplicity [3], bounded tree-width [22, 10],
excluded small minors [11], etc.

In this paper, we are interested in planar graphs and, more generally, graphs of bounded
genus. In 1966, Weinberg [30] gave a very simple quadratic algorithm for the graph iso-
morphism of planar graphs. This was improved by Hopcroft and Tarjan [16] to O(n logn).
Building, on this earlier work, Hopcroft and Wong [17] published in 1974 a paper, where
they described a linear-time algorithm for isomorphism testing of planar graphs.

For graphs on surfaces of higher genus, the graph isomorphism problem seems much
harder. This can be perhaps explained in the following way. We can rather easily reduce the
problem to 3-connected graphs. For planar graphs, the famous result of Whitney [31] says
that embeddings of 3-connected planar graphs in the plane are (combinatorially) unique.
But for every simply connected surface, there exist 3-connected graphs with exponentially
many embeddings. This makes an essential difference between planar graphs and graphs of
higher genus.

For quite a long time it has been known that the isomorphism of bounded genus graphs can
be solved in time nO(g), where g is the genus of the underlying surface; see for example [27].
However, an interesting question is whether the result of Hopcroft and Wong [17] can be
generalized also for the bounded genus graphs, i.e., whether the isomorphism problem for
graphs of bounded genus can be solved in time f(g) · n, for some computable function f .
This motivates the study of the isomorphism problem for embedded graphs first.

By a topological map we mean a 2-cell decomposition of a closed compact surface, i.e., an
embedding of a graph into a surface such that every face is homeomorphic to an open disc.
An isomorphism of two maps is an isomorphism of the underlying graphs, which preserves
the vertex-edge-face incidences. In particular, a map isomorphism induces a homeomorphism
of the underlying surfaces. Our main result reads as follows.

▶ Theorem 1. Let M1 and M2 be maps on a surface of genus g. The set of all isomorphisms
Iso(M1,M2) from M1 to M2 can be determined in time f(g) · (∥M1∥ + ∥M2∥), where f is
some computable function and ∥M∥ denotes the size of the map M .

In [21], two of the authors deal with a much weaker version of this problem, where
only testing isomorphism is considered instead of constructing the whole set Iso(M1,M2).
Recently, a linear-time algorithm was announced [19] for testing isomorphism of bounded
genus graphs and the proposed approach heavily relies on our result. It should be also
mentioned, that an algorithm with running time nO((log g)c) for bounded genus graphs follows
from [26], however, this result is based on completely different techniques.

Determining the set of all isomorphisms between two maps is closely related to finding
the generators of the automorphism group Aut(M) of a map M , where an automorphism of
M is just an isomorphism M → M . More precisely, the set of all isomorphisms M1 → M2
can be expressed as a composition ψ · Aut(M1) where ψ : M1 → M2 is any isomorphism.
Thus, our first result goes hand-in-hand with the following.

▶ Theorem 2. Let M be a map on a surface of genus g. The generators of the automorphism
group Aut(M) of M can be computed in time f(g)·∥M∥, where f is some computable function
and ∥M∥ denotes the size of the map M .

Colbourn and Booth [7] proposed a way to modify the Hopcroft-Wong algorithm [17] to
compute the generators of the automorphism group of a spherical map. However, they state
the following: “We ... base our automorphism algorithms on the Hopcroft-Wong algorithm.
Necessarily, we will only be able to sketch our procedure. A more complete description and a
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proof of correctness would require a more thorough analysis of the Hopcroft-Wong algorithm
than has yet appeared in the literature.“ Sadly, the situation has not changed since, and the
only available description of the Hopcroft-Wong algorithm is the extended abstract [17],
which contains no proof of correctness and running time.1 Our contribution also fills in this
gap and we obtain much better insight into the Hopcroft-Wong algorithm by solving the
problem in a much greater generality; see [20] as well.

Roughly speaking, the key idea of the Hopcroft-Wong algorithm is to try to apply
contractions of edges to obtain two smaller isomorphic maps. In order to do this, edges must
be chosen canonically, which is not always possible. Since Hopcroft and Wong consider only
the spherical case, this situation occurs only in one special case. However, on the surfaces
of higher genus, this situation is quite common and requires a completely different, more
systematic, approach. As a consquence of considering the problem on the higher genus, our
approach turnes out to be much simpler even for planar graphs than the approach originally
proposed by Colbourn and Booth [7].

The Hopcroft-Wong algorithm reduces spherical maps to maps having the same degrees
of vertices and also the same degrees of faces (e.g. Platonic solids). These maps are then
treated separately. We, however, relax this condition and instead reduce our map to a map
having the same cyclic vector of face sizes at each vertex (e.g. on sphere these also include
Archimedean solids). The number of such maps is bounded for surfaces of genus g > 1, and
for surfaces of genus g ≤ 1 we give some special algorithms. This, surprisingly, allows a
much more unified method of reducing the map, while preserving its automorphisms and
isomorphisms.

Simultaneous conjugation problem. The problems of testing isomorphism of maps and
computing the generators of the automorphism group of a map are related to the problem of
simultaneous conjugation. In the latter problem, the input consists of two sets of permutations
α1, . . . , αd and β1, . . . , βd on the set {1, . . . , n}, each of which generates a transitive subgroup
of the symmetric group. The goal is to find a permutation γ such that γαiγ

−1 = βi, for
i = 1, . . . , d. Let us observe that this problem is a generalization of the map isomorphism
problem. If α1 and β1 are involutions, d = 2, and the set {1, . . . , n} is identified with the set
of darts of a map on a surface (see Section 2 for definitions), then this problem is exactly the
map isomorphism problem. If further α1 = β1 and α2 = β2, we get the map automorphism
problem.

Since mid 1970s it has been known that the simultaneous conjugation problem can be
solved in time O(dn2) [8, 15]. A faster algorithm, with running time O(n2 log d/ logn +
dn logn), was found only recently [6]. This implies an O(n2/ logn) algorithm for the
isomorphism and automorphism problems for maps of unrestricted genus. In complexity
theory, this is not considered to be a “truly subquadratic” algorithm. This motivates the
following conjecture.

▶ Conjecture 3. There is no ε > 0 for which there is an algorithm for testing isomorphism
of maps of unrestricted genus in time O(n2−ε).

An interesting open subproblem is to prove a conditional “truly superlinear” lower bound
for any of the mentioned problems. There has been some progress in the direction of
providing a lower bound. In particular it is known that the communication complexity of the
simultaneous conjugation problem is Ω(dn log(n)), for d > 1, and that under the decision
tree model the search version of the simultaneous conjugation problem has lower bound of
Ω(n logn) [5].

1 The PhD thesis of Wong also does not bring any new information compared to [17].

ICALP 2021



86:4 Automorphisms and Isomorphisms of Maps in Linear Time

2 Preliminaries

A map M is an embedding ι : X → S of a connected graph X to a closed connected compact
surface S such that every connected component of S \ ι(X) is homeomorphic to an open disc.
The connected components are called faces. By V (M), E(M), and F (M) we denote the sets
of vertices, edges, and faces of M , respectively. We put v(M) := |V (M)|, e(M) := |E(M)|,
and f(M) := |F (M)|.

Recall that closed connected compact surfaces are characterized by two invariants: ori-
entability and the Euler characteristic χ. For the orientable surfaces, the latter can be
replaced by the (orientable) genus g ≥ 0, which is the number of tori in the connected sum
decomposition of the surface, and for the non-orientable surfaces by the non-orientable genus
γ ≥ 1, which is the number of real projective planes in the connected sum decomposition of
the surface. The following is well-known.

▶ Theorem 4 (Euler-Poincaré formula). Let M be a map on a surface S. Then v(M) −
e(M) + f(M) = χ(S) = 2 − 2g if S has genus g and χ(S) = 2 − γ if S has non-orientable
genus γ.

We give an algebraic description of a map, where a map is defined by means of three
fixed-point-free involutions acting on flags. A flag is a triple representing a vertex-edge-face
incidence. The involutions are simply instructions on how to join the flags together to form
a map. There are several advantages: (i) in such a form, maps can be easily passed to an
algorithm as an input, (ii) verifying whether a mapping is an automorphism reduces to
checking three commuting rules, and (iii) group theory techniques can be applied to obtain
results about maps. For more details see for example [18] and [13, Section 7.6].

Oriented maps. Even though our main concern is in general maps, a large part of our
algorithm deals with maps on orientable surfaces, where the algebraic description is simpler.
An oriented map is a map on an orientable surface with a fixed global orientation. Every
oriented map can be combinatorially described as a triple (D,R,L). Here, D is the set of
darts. By a dart we mean an edge endowed with one of two possible orientations. Hence, each
edge gives rise to two darts. The permutation R ∈ Sym(D), called rotation, is the product
R = Πv∈V Rv, where each Rv cyclically permutes the darts originating at v ∈ V , following
the chosen orientation around v. The dart-reversing involution L ∈ Sym(D) is an involution
of D that, for each edge, swaps the two oppositely oriented darts arising from the edge.

Formally, a combinatorial oriented map is any triple M = (D,R,L), where D is a finite
non-empty set of darts, R is any permutation of darts, L is a fixed-point-free involution of
D, and the group ⟨R,L⟩ ≤ Sym(D) is transitive on D. By the size ∥M∥ of the map, we
mean the number of darts |D|. We require transitivity because the maps are connected by
definition.

The group ⟨R,L⟩ is called the monodromy group of M . The vertices, edges, and faces
of M are in one-to-one correspondence with the cycles of the permutations R, L, R−1L,
respectively. By the phrase “a dart x is incident to a vertex v” we mean that x ∈ Rv.
Similarly, “x is incident to a face f” means that x belongs to the boundary walk of f defined
by the respective cycle of R−1L. By the degree of a face we mean the length of its boundary
walk. A face of degree d will be called a d-face. Note that each dart is incident to exactly
one face. For convenience, we frequently use a shorthand notation x−1 = Lx, for x ∈ D.
The dual of an oriented map M = (D,R,L) is the oriented map M∗ = (D,R−1L,L).
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Apart from standard map theory references, we need to introduce labeled maps. A planted
tree is a rooted tree embedded in the sphere, i.e., a planted tree is a spherical map having
exactly one face. We say that a planted tree is integer-valued if an integer is assigned to each
vertex. A dart-labeling of an oriented map M = (D,R,L) is a mapping ℓ : D → T , where T
is the set of integer-valued planted trees. A labeled oriented map M is a 4-tuple (D,R,L, ℓ).
The dual map is the map M∗ defined as M∗ = (D,R−1L,L, ℓ).

Two labeled oriented maps M1 = (D1, R1, L1, ℓ1) and M2 = (D2, R2, L2, ℓ2) are iso-
morphic, in symbols M1 ∼= M2, if there exists a bijection ψ : D1 → D2, called an orientation-
preserving isomorphism from M1 to M2, such that

ψR1 = R2ψ, ψL1 = L2ψ, and ℓ1 = ℓ2ψ. (1)

The set of orientation-preserving isomorphisms from M1 to M2 is denoted by Iso+(M1,M2).
The orientation-preserving automorphism group of M is the set Aut+(M) := Iso+(M,M).
The following statement, which can be easily seen for unlabeled maps, extends also to labeled
maps.

▶ Theorem 5. Let M1 and M2 be labeled oriented maps with sets of darts D1 and D2,
respectively. For every x ∈ D1 and every y ∈ D2, there exists at most one isomorphism
M1 → M2 mapping x to y. In particular, Aut+(M1) is fixed-point-free on D1.

▶ Corollary 6. Let M1 and M2 be labeled oriented maps with sets of darts D1 and D2,
respectively. If x ∈ D1 and y ∈ D2, then it can be checked in time O(|D1| + |D2|) whether
there is an isomorphism mapping x to y.

Chirality. The mirror image of an oriented map M = (D,R,L) is the oriented map
M−1 = (D,R−1, L). Similarly, the mirror image of labeled oriented map M = (D,R,L, ℓ) is
the map M−1 = (D,R−1, L, ℓ−1), where ℓ−1(x) is the mirror image of ℓ(x) for each x ∈ D.

An oriented map M is called reflexible if M ∼= M−1. Otherwise the maps M and
M−1 form a chiral pair. For example, all the Platonic solids are reflexible. The set of all
isomorphisms from M1 to M2 is defined as Iso(M1,M2) := Iso+(M1,M2) ∪ Iso+(M1,M

−1
2 ).

Similarly, we put Aut(M) := Iso(M,M).

Maps on all surfaces. Let M be a map on any, possibly non-orientable, surface. In general,
a combinatorial non-oriented map is a quadruple (F, λ, ρ, τ), where F is a finite non-empty
set of flags, and λ, ρ, τ ∈ Sym(F ) are fixed-point-free2 involutions such that λτ = τλ and the
group ⟨λ, ρ, τ⟩ acts transitively on F . By the size ∥M∥ of the map M we mean the number
of flags |F |.

Each flag corresponds uniquely to a vertex-edge-face incidence triple (v, e, f). Geomet-
rically, it can be viewed as the triangle defined by v, the center of e, and the center of f .
The group ⟨λ, ρ, τ⟩ is called the non-oriented monodromy group of M . The vertices, edges,
and faces of M correspond uniquely to the orbits of ⟨ρ, τ⟩, ⟨λ, τ⟩, and ⟨ρ, λ⟩, respectively.
Similarly, an isomorphism of two non-oriented maps M1 and M2 is a bijection ψ : F1 → F2
which commutes with λ, ρ, τ . The even-word subgroup ⟨ρτ, τλ⟩ has index at most two in
the monodromy group of M . If it is exactly two, the map M is called orientable. For
every oriented map (D,R,L) it is possible to construct the corresponding non-oriented map

2 It is possible to extend the theory to maps on surfaces with boundaries by allowing fixed points of
λ, ρ, τ .

ICALP 2021
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(F, λ, ρ, τ). Conversely, from an orientable non-oriented map (F, λ, ρ, τ) it is possible to
construct two oriented maps (D+, R, L) and (D−, R−1, L), where D+ and D− are the two
orbits of the even word subgroup, and L = τλ, R = ρτ .

Test of orientability. For a non-oriented map M = (F, λ, ρ, τ), it is possible to test in linear
time if M is orientable [12, 24]. The barycentric subdivision B of M is constructed by placing
a new vertex in the center of every edge and face, and then joining the centers of faces with
the incident vertices and with the center of the incident edges. The dual of B is a 3-valent
map, i.e., every vertex is of degree 3.

▶ Theorem 7. A map M = (F, λ, ρ, τ) is orientable if and only if the underlying 3-valent
graph of the dual of the barycentric subdivision of M is bipartite.

Light vertices. A map is called face-normal, if all its faces are of degree at least three. It is
well-known that every face-normal map on the sphere or on the projective plane has a vertex
of degree at most 5. The next theorem generalizes this for other surfaces.

▶ Theorem 8. Let S be a closed compact surface with Euler characteristic χ(S) ≤ 0 and let
M be a face-normal map on S. Then there is a vertex of valence at most 6(1 − χ(S)).

Proof. A bound for maximum degree is achieved by a triangulation, thus we may assume
that M is a triangulation. We have f = 2e/3. By plugging this in the Euler-Poincaré formula
and using the Handshaking lemma, we obtain 3v − dv/2 = 3χ(S), where d is the average
degree. By manipulating the equality, we get d− 6 = −6χ(S)/v. Since χ(S) ≤ 0, the right
hand side is maximized for v = 1. We conclude that d ≤ 6(1 − χ(S)). ◀

A vertex is called light if it is of minimum degree, otherwise it is called heavy.

Uniform and homogeneous maps. Given a map on an orientable surface, the cyclic vector
of degrees of faces incident with a vertex v, induced by the chosen global orientation, is called
the local type of v. A map is uniform3 if the local types of all vertices are the same. A map
is homogeneous of type {k, ℓ} if every vertex is of degree k and every face is of degree ℓ.

A dipole is a 2-vertex spherical map dual to a spherical cycle. A bouquet is a one-vertex
map that is a dual of a planted star (a tree with at most one vertex of degree > 1).

▶ Example 9. The face-normal uniform spherical maps are: the 5 Platonic solids, the 13
Archimedean solids, pseudo-rhombicuboctahedron, prisms, antiprisms, and cycles of length
at least 3. It easily follows from Euler’s formula that the spherical homogeneous maps are
the 5 Platonic solids, cycles, and dipoles.

3 Overview of the algorithm

We provide a high-level overview of the whole algorithm determining the automorphism group
of a map. The input consists of a non-oriented map given by the quadruple N = (F, λ, ρ, τ).

First, using Theorem 7, we test whether N is orientable or not. If the map is orientable,
then we know that the underlying surface is orientable and we fix a global orientation
of the surface. We construct two oriented maps M = (D,R,L) and M−1 = (D,R−1, L)
representing N .

3 In [1] Babai uses the term semiregular instead of uniform.
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We start by determining Aut+(M). On the map M , we perform a sequence of elementary
local reductions (Section 4). There are two types of reductions: normalization and elimination
of vertices of minimum degree. The normalization is of the highest priority and its purpose
is to ensure that the resulting map is face-normal. In a face-normal map, it is guaranteed by
Theorem 8 that there is a vertex of small degree. The second elementary reduction replaces
a vertex of minimum degree by a polygon connecting its higher-degree neighbours and
reconnecting the other incident edges (see Figure 3). These two reductions are applied until
we are left with a map which has all vertices of degree k. Now, we observe that our reductions
do not really depend on the degrees of vertices, but rather on some vertex-labelling (not
related to dart labelling) which is linearly ordered. At this stage we can no longer distinguish
vertices based on their degreee. We refine the procedure by using the local types instead
of degrees. Note that the local types can be linearly ordered. It follows from Theorem 8
that the number of local types sufficient to consider is bounded. Thus, our reduction can be
applied in the same way, but instead of degrees we use local types. The result is a labeled
face-normal uniform oriented map M ′ = (D′, R′, L′, ℓ′) with Aut+(M) ∼= Aut+(M ′) and
D′ ⊆ D; for more details see Section 4.

The number of face-normal uniform oriented map M ′ on a surface of genus g > 1 is
bounded by a fucntion of g (Proposition 13), which means that a brute-force approach is
sufficient to determine Aut+(M ′). For the case of sphere and torus, the problem is non-trivial
since there are infinite families of face-normal uniform maps and a special treatment is
necessary; for more details see Section 5. Now, since Aut+(M) acts fixed-point-freely on D

and D′ ⊆ D, there is a unique way to extend Aut+(M ′) to Aut+(M). Finally, to construct
Aut(M), we run the whole algorithm again to determine Iso(M,M−1).

If the map is N is non-orientable, we construct its oriented antipodal double-cover
M̃ = (D,R,L) = (F, ρτ, τλ). We show that Aut(N) ≤ Aut+(M̃), and therefore, we can
again apply our algorithm to determine Aut+(M̃). Here, the most difficult part is to
determine Aut(N) within Aut+(M̃). For the case of projective plane and Klein bottle the
problem is highly non-trivial and a special treatment is again needed, while for the other
cases, again, a brute force approach is sufficient; for more details see Section 6.

4 From oriented maps to uniform oriented maps

In this section, we describe a set of elementary reductions defined on labeled oriented maps,
given by a quadruple (D,R,L, ℓ), in detail. The output of each elementary reduction is
always a quadruple (D′, R′, L′, ℓ′), satisfying D′ ⊆ D, v(M ′) + e(M ′) < v(M) + e(M), and
Aut+(M ′) ∼= Aut+(M). If none of the reductions apply, the map is a uniform oriented map.
The procedure defines a function which assigns to a given oriented map M a unique labeled
oriented map U with Aut+(M) ∼= Aut+(U). Since the darts of U form a subset of the darts
of M , by semiregularity, every generator of Aut+(U) can be extended to a generator of
Aut+(M) in linear time. We deal with the uniform oriented maps in Section 5.

After every elementary reduction, to ensure that Aut+(M ′) = Aut+(M), we need to
define a new labeling ℓ′. To this end, in the whole section, we assume that we have an
injective function Label : N×

⋃∞
k=1 T k → T , where T is the set of all integer-valued planted

trees. Moreover, we assume that the root of Label(t, T1, . . . , Tk) contains the integer t,
corresponding to the current step of the reduction procedure. After every elementary
reduction, this integer is increased by one; see the full version for more details.

Even though we defined our reductions only based on the minimum degree, it can be
easily seen that we are only using the fact that natural numbers are linearly ordered. Thus,
our reduction really works with any vertex lables, which are linearly ordered. In particular,

ICALP 2021
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if we replace degrees with local types together with a natural lexicographic linear ordering,
our reductions are well-defined. The consequence is thet every irreducible map with respect
to these reductions is a face-normal uniform map.

Normalization. By Theorem 8, there is always a light vertex in a face-normal map. The
purpose of the following reduction is to remove faces of degree one and two. This reduction is
of the highest priority and it is applied until the map is one of the following: (i) face-normal,
(ii) bouquet, (iii) dipole. In the cases (ii) and (iii), the whole reduction procedure stops with
a uniform map. In the case (i), the reduction procedure continues with further reductions.
We describe the reduction formally.

For technical reasons we split the reduction into two parts: deletion of loops, denoted by
Loops(M), and replacement of a dipole by an edge, denoted by Dipoles(M).

Reduction Loops. If M = (D,R,L, ℓ) with v(M) > 1 contains loops, we remove them. Let
L be the list of all maximal sequences of darts of the form s = {x1, x

−1
1 , . . . , xk, x

−1
k }, where

Rxi = x−1
i , for i = 1, . . . , k, Rx−1

i = xi+1 for i = 1, . . . , k− 1, and Rx−1
k ≠ x1. By definition,

R−1Lxi = xi, hence xi bounds a 1-face, for i = 1, . . . , k− 1; see Figure 1. Moreover, for each
such sequence s, all the darts xi are incident to the same vertex v ∈ V (M). We say that the
unique vertex v with Rv = (x0, x1, x

−1
1 , . . . , xk, x

−1
k , xk+1, . . . ) is incident to s. We call the

darts x0 and xk+1 the bounding darts of the sequence s.
The new map M ′ = (D′;R′, L′, ℓ′) =: Loops(M) is defined as follows. First, we put

D′ := D \
⋃

s∈L s, and L′ := L↾D′ . Let s = {x1, x
−1
1 , . . . , xk, x

−1
k } ∈ L with bounding darts

x0 and xk+1. If v is incident to s, then we put R′
v := (x0, xk+1, . . . ), else we put R′

v := Rv.
Moreover, we put ℓ′(x0) := Label(t, a0, . . . , ak) and ℓ′(xk+1) := Label(t, ak+1, bk, . . . , b1),
where t is the current step, ai = ℓ(xi), for i = 0, . . . , k + 1, and bi = ℓ(x−1

i ), for i = 1, . . . , k.
For every x ∈ D′ which is not a bounding dart in M , we put ℓ′(x) := ℓ(x). We obtain a
well-defined map M ′ with no faces of valence one; see Figure 1.

▶ Lemma 10. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩D2 = ∅, be labeled oriented maps.
Let M ′

1 := Loops(M1) and M ′
2 := Loops(M2). Then Iso+(M1,M2)↾D′

1
= Iso+(M ′

1,M
′
2). In

particular, Aut+(M1)↾D′
1

= Aut+(M ′
1).

Reduction Dipoles. IfM = (D,R,L, ℓ) with v(M) > 2 contains dipoles. Let L be the list of
all maximal sequences s = (x1, . . . , xk) of darts, k > 1, satisfying Rxi = xi+1, (R−1L)2xi =
xi, and either Rxk ̸= x1 or Rx−1

1 ̸= x−1
k ; see Figure 2. Let s−1 := (x−1

k , . . . , x−1
1 ) ∈ L

be the inverse sequence. There are vertices u and v such that Ru = (y1, s, y2, . . . ) and

...

v

x0

x1

x
−1

1

x2 x
−1

2

x3

x
−1

3x4
...

v

x0 x4

Figure 1 A sequence of darts x1, x−1
1 , x2, x−1

2 , x3, x−1
3 with bounding darts x0 and x4.
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x1 x2 x3 x4 x5

...

...

x1

x
−

5

...

...

Figure 2 A sequence of darts x1, . . . , x5 forming a dipole.

Rv = (z1, s
−1, z2, . . . ), for some y1, y2, z1, z2 ∈ D. At least one of the sets {y1, y2}, {z1, z2}

is non-empty since otherwise v(M) = 2 and M is a dipole. We say that u, v are incident to
s, s−1, respectively; see Figure 2

The new map M ′ = (D′, R′, L′, ℓ′) =: Dipoles(M) is defined as follows. First, we put

D′ := D \
⋃

(x1,...,xk)∈L

{x2, . . . , xk} ∪ {x−1
1 , . . . , x−1

k−1}.

Let s = (x1, . . . , xk) ∈ L. If u and v are incident to s and s−1, respectively, then we put R′
u :=

(y1, x1, y2 . . . ) and R′
v := (z1, x

−1
k , z2, . . . ), else we put R′

u := Ru. Next, we put L′x1 := x−1
k ,

L′x−1
k := x1, and L′x := Lx if x /∈ s ∈ L. Finally, we put ℓ′(x1) := Label(t, a1, . . . , ak) and

ℓ′(x−1
k ) := Label(t, bk, . . . , b1), where t is the current step, ai = ℓ(xi) and bi = ℓ(x−1

i ), for
i = 1, . . . , k. We put ℓ′(x) := ℓ(x) for x /∈ s ∈ L. We obtain a well-defined map M ′ with no
2-faces; see Figure. 2.

▶ Lemma 11. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩D2 = ∅, be labeled oriented maps.
Let M ′

1 := Dipoles(M1) and M ′
2 := Dipoles(M2). Then Iso+(M1,M2)↾D′

1
= Iso+(M ′

1,M
′
2).

In particular, Aut+(M1)↾D′
1

= Aut+(M ′
1).

Face-normal maps. The input is a labeled face-normal oriented map M = (D,R,L, ℓ) and
a list L of all light vertices of degree d which have at least one heavy neighbour. For every
vertex v ∈ L, we denote by u0, . . . , uk−1, for some 1 ≤ k ≤ d, the cyclic sequence of all heavy
neighbours of v, following the prescribed orientation of the underlying surface. Denote by
x0, x1, . . . , xk−1 the darts based at u0, u1, . . . , uk−1, joining uj to v for j = 0, . . . , k − 1. Let
Rui

= (yi, xi, zi, . . . ), for i = 0, . . . , k − 1, and let

Rv = (x−1
0 , A0, x

−1
1 , A1, . . . , x

−1
k−1, Ak−1),

where each Ai is a (possibly empty) sequence of darts.
The new map M ′ = (D′, R′, L′, ℓ′) =: Delete(M) is defined as follows. We set D′ := D

and L′ := L. For a heavy vertex w with no light neighbour, we have R′
w := Rw. If

v ∈ L, with the above notation, we set R′
ui

:= (yi, Ai, xi, x
−1
i−1, zi, . . . ). Moreover, we set

ℓ′(xi) := Label(t, ℓ(xi)) and ℓ′(x−1
i ) := Label(t, ℓ(x−1

i )), where t is the current step number;
see Figure 3.

▶ Lemma 12. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩D2 = ∅, be labeled oriented maps.
Let M ′

1 := Delete(M1) and M ′
2 := Delete(M2). Then Iso+(M1,M2) = Iso+(M ′

1,M
′
2). In

particular, Aut+(M1) = Aut+(M ′
1).
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...

...

..
.

..
.

...
...

...

...

...

...

v

u0

u1

u2

u3

u4

x0

x1

x2

x3

x4 a0

a1
a2

a3

a4

y0

y1

y2

y3

y4

z0

z1

z2

z3

z4

A0

A1

A2

A3

A4

...

..
.

..
.

...

...
...

...

...
...

... u0

u1

u2u3

u4

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

z0

z1

z2

z3

z4

a0

a1

a2

a3

a4

A0

A1

A2

A3

A4

(a) (b)

Figure 3 An example of the reduction deleting a vertex.

Proof. Let ψ : M1 → M2 be an isomorphism. We prove that ψ is also an isomorphism of
M ′

1 and M ′
2. We check the commuting rules (1) for ψ. We have L′

i = Li, for i = 1, 2, so
L′

1ψ = ψL′
2. For R′

1 and R′
2, we need to check the commuting rules only at xi, x

−1
i , yi, ai ∈ D′

1,
for i = 0, . . . , k − 1, where ai is the last dart in the sequence Ai. We have

ψR′
1xi = ψR−1

1 L1xi = R−1
2 L2ψxi = R′

2ψxi,

ψR′
1x

−1
i = ψR1L1x

−1
i = R2L2ψx

−1
i = R′

2ψx
−1
i .

It remains to check the commuting rules at each yi and ai. Note that if Ai is empty there is
nothing to check. We have

ψR′
1yi = ψR1L1R1yi = R2L2R2ψyi = R′

2ψyi.

Further, using the relations R′
1ai = xi = L1R

q
1ai, for some q > 0, we get

ψR′
1ai = ψxi = ψL1R

q
1ai = L2R

q
2ψai = R′

2ψai.

Putting it together, we proved that ψR′
1 = R′

2ψ. Clearly, ℓ′
1(xi) = ℓ′

2(ψxi) if and only if
ℓ1(xi) = ℓ2(ψxi). Similarly for x−1

i .
For the converse, we assume that ψR′

1 = R′
2ψ and ψL′

1 = L′
2ψ and we prove ψR1 = R2ψ

and ψL1 = L2ψ. Similarly as above, we need to check the commuting rules for xi, x
−1
i , yi, ai ∈

D1.
By the definition of M ′

1 and M ′
2, we have R1xi = zi = (R′

1)2xi. Since Label is injective,
we have R2ψxi = ψzi = (R′

2)2ψxi. Using these relations, we get

ψR1xi = ψ(R′
1)2xi = (R′

2)2ψxi = R2ψxi.

By the definition of M ′
1 and M ′

2, we have R1x
−1
i = R

′m
1 L′

1x
−1
i , for some m. Since Label

is injective, we have R2ψx
−1
i = R

′m
2 L′

2ψx
−1
i . Using these relations, we get

ψR1x
−1
i = ψR

′m
1 L1x

−1
i = R

′m
1 L′

2ψx
−1
i = R2ψx

−1
i .

By the definition of M ′
1 and M ′

2, we have R1yi = xi = R
′m
1 yi, for some m. Since Label

is injective, R2ψyi = ψxi = R
′m
2 ψyi. Using these relations, we get

ψR1yi = ψR
′m
1 yi = R

′m
2 ψyi = R2ψyi.
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By the definition of M ′
1 and M ′

2, we have R1ai = L′
1R

′−1
1 L′

1R
′
1ai. Since Label is injective,

R2ψai = L′
2R

′−1
2 L′

2R
′
2ψai. Using these relations, we get

ψR1ai = ψL′
1R

′−1
1 L′

1R
′
1ai = L′

2R
′−1
2 L′

2R
′
2ψai = R2ψai.

Putting it togehter, we proved that ψR1 = R2ψ, which implies that ψ is an isomorphism
M1 → M2. This completes the proof. ◀

5 Irreducible maps on orientable surfaces

In this section, we provide an algorithm computing the automorphism group of irreducible
oriented maps, with fixed Euler characteristic, in linear time. The proof splits into three
parts: maps of negative Euler characteristic, maps on the sphere, and maps on torus.

Surfaces of negative Euler characteristic. If the Euler characteristic χ is negative, the
irreducible maps are exactly all the uniform face-normal maps. We prove that the number
of uniform face-normal maps is bounded by a function of χ. Therefore, generators of the
automorphism group can be computed by a brute force approach. Note that the following
lemma does not require the underlying surface to be orientable, it only requires χ to be
negative.

▶ Proposition 13. The number of edges of a uniform face-normal map on a closed compact
surface S with Euler characteristic χ(S) < 0 is bounded by a function of χ(S).

Proof. Babai noted in [1, Theorem 3.3] that the Hurwitz Theorem (see, e.g. [4] or [12])
implies that the number of vertices of a uniform map M on S is at most 84|χ(S)|. By
Theorem 8, the degree of a vertex of M is bounded by a function of χ(S) as well. Therefore,
the number of edges is also bounded by a function of χ(S) and the theorem follows. ◀

▶ Corollary 14. Let M = (D,R,L) be a uniform face-normal map M = (D,R,L) on an
orientable surface S with χ(S) < 0. Then Aut(M) can be computed in time f(χ(S))|D|, for
some computable function f .

Sphere. By the definition of the reductions in Section 4, the irreducible spherical maps
are the five Platonic maps, 13 Archimedean maps, pseudo-rhombicuboctahedron, prisms,
antiprisms, cycles, dipoles, and bouquets.

In the first three cases, the automorphism group can be computed by a brute force
approach. We show that for (labeled) prisms, antiprisms, dipoles and bouquets, the problem
can be reduced to computing the automorphism group of a vertex-labeled cycle.

▶ Theorem 15 ([17]). If M = (D,R,L) is an irreducible spherical map, then the generators
of Aut(M) can be computed in time O(|D|).

Torus. The toroidal irreducible maps are uniform face-normal maps. The universal covers of
uniform toroidal maps are uniform tilings (infinite maps with finite vertex and face degrees)
of the Euclidean plane. There are 12 of such tilings; see [14, page 63]. The corresponding
local types are (3, 3, 3, 3, 3, 3), (4, 4, 4, 4), (6, 6, 6), 2 × (3, 3, 3, 3, 6), (3, 3, 3, 4, 4), (3, 3, 4, 3, 4),
(3, 4, 6, 4), (3, 6, 3, 6), (3, 12, 12), (4, 6, 12), and (4, 8, 8). One type occurs in two forms, one
of the respective tilings is the mirror image of the other. Each of these tilings T gives rise
to an infinite family of toroidal uniform maps as follows. It is well-known that Aut+(T ) is
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isomorphic either to the triangle group ∆(4, 4, 2) or to ∆(6, 3, 2). Each of these contains an
infinite subgroup H of translations generated by two shifts. Every finite uniform toroidal
map of the prescribed local type can be constructed as the quotient T/K, where K is a
subgroup of H of finite index.

First, our algorithm reduces a uniform map to one of the two homogeneous types {4, 4}
and {6, 3}, while preserving the automorphism group. Then, the algorithm computes the
generators of the automorphism groups of a labeled homogeneous toroidal map M of type
{4, 4} or {3, 6}. For technical reasons, we transform the dart-labelling to a vertex-labelling
of M . These transformations can be done easily by, for a given vertex, encoding the lables of
the outgoing darts into the vertex. The following lemma describes some important properties
of Aut+(M).

▶ Lemma 16 ([29]). Let M be a toroidal map of type {4, 4} or {6, 3}. The orientation-
preserving automorphism group of a labeled map M is a semidirect product T ⋊H, where T
is a direct product of two cyclic groups, and |H| ≤ 6. Moreover, the action of T is regular on
the vertices of M .

Since the order of H is bounded by a constant, it takes linear time to check whether
every element of H is a label-preserving automorphism. The main difficulty is to find T .
The subgroup T is generated by α and β, where α is the horizontal, and β is the vertical
shift by the unit distance. Now the meaning of the parameters r, s, t is the following: |α| = r,
αt = βs, and s is the least power of β such that βs ∈ ⟨α⟩. The following lemma shows that
T can always be written as a direct product of two cyclic groups.

▶ Lemma 17. There exists δ and γ such that T = ⟨δ⟩ × ⟨γ⟩. Moreover, δ and γ can be
computed in time O(rs).

Lemma 17 can be viewed as a transformation of the shifted grid G to the orthogonal grid
G⊥. Note that the underlying graph may change, but both G and G⊥ are Cayley graphs
based on the group T , therefore, the vertex-labeling naturally transfers. Thus, we may
assume that t = 0 and T = ⟨α⟩ × ⟨β⟩ ∼= Zr × Zs. We need to compute generators of the
label-preserving subgroup of T .

From now on, we assume that we are given a cyclic orthogonal grid G of size rs, which is
graph with vertices identified with (i, j) ∈ G, where G = Zr ×Zs. For every (i, j), there is an
edge between (i, j) and (i+ 1 mod r, j), and between (i, j) and (i, j + 1 mod s). Moreover,
we are given an integer-labeling ℓ of the vertices of G. Clearly, G determines the ℓ-preserving
subgroup H of G, namely

H = {(x, y) : ∀(i, j) ∈ G, ℓ(i, j) = ℓ(i+ x, j + y)}.

The goal is to find the generators of H in time O(rs).
We give a description of any subgroup of the direct product of G that is suitable for our

algorithm. First, we define four important mappings. The two projections π1 : G → Zr and
π2 : G → Zs are defined by π1(x, y) = x and π2(x, y) = y, respectively. The two inclusions
ι1 : Zr → G and ι2 : Zs → G are defined by ι1(x) = (x, 0) and ι2(y) = (0, y), respectively.

▶ Lemma 18. Let G = Zr × Zs for r, s ≥ 1, and let H be a subgroup of G. Then there are
a, c ∈ Zr and b ∈ Zs such that

H = {(ia+ jc, jb) : i, j ∈ Z} = ⟨(a, 0), (c, b)⟩,

where ⟨a⟩ = ι−1
1 (H), ⟨b⟩ = π2(H), and c < a is the minimum integer such that (c, b) ∈ H.
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This description suggests an algorithm to find the generators of the given subgroup H

of Zr × Zs. In our setting, the subgroup H is given on the input by a labeling function ℓ,
defined on the vertices of the r × s orthogonal grid. The subgroup H is the ℓ-preserving
subgroup of Zr × Zs.

To compute the generators of H, it suffices, by Lemma 18, to determine a, c ∈ Zr and
b ∈ Zs such that ⟨a⟩ = ι−1

1 (H), ⟨b⟩ = π2(H), and c is the smallest integer such that (c, b) ∈ H.
Then H = ⟨(a, 0), (c, b)⟩.

▶ Lemma 19. There is an O(rs)-time algorithm which computes the integers a, b, c such
that ι−1

1 (H) = ⟨a⟩, π2(H) = ⟨b⟩ and c < a is the smallest integer such that (c, b) ∈ H.

The results of this subsection are summarized by the following.

▶ Theorem 20. If M = (D,R,L, ℓ) is a uniform face-normal labeled toroidal map, then the
generators of Aut(M) can be computed in time O(|D|).

6 Non-orientable surfaces

For a map M on a non-orientable surface S, we reduce the problem of computing the
generators of Aut(M) to the problem of computing the generators of Aut+(M̃), for some
orientable map M̃ . In particular, the map M̃ is the antipodal double cover of M .

Given a map M = (F, λ, ρ, τ) on a non-orientable surface of genus γ, we define the
antipodal double cover M̃ = (D,R,L) by setting D := F , R := ρτ , and L := τλ. Since M is
non-orientable, we have ⟨R,L⟩ = ⟨λ, ρ, τ⟩, so ⟨R,L⟩ is transitive and M̃ is well-defined. For
more details on this construction see [25]. We note that χ̃ = 2χ, where χ̃ and χ is the Euler
characteristic of the underlying surface of M̃ and M , respectively.

▶ Lemma 21. We have Aut(M) ≤ Aut+(M̃).

Proof. Let φ ∈ Aut(M). Then we have Rφ = (ρτ)φ = ρφτφ = ρτ = R and Lφ = (τλ)φ =
τφλφ = τλ = L. ◀

▶ Lemma 22. We have Aut(M) = {φ ∈ Aut+(M̃) : φτ = τφ}.

Proof. Let φ ∈ Aut+(M̃). We have φRφ−1 = R and φLφ−1 = L. By plugging in R = ρτ

and L = τλ, we obtain

φ(ρτ)φ−1 = ρτ and φ(τλ)φ−1 = λτ.

From there, by rearranging the left-hand sides of the equations, we get

(φρφ−1)(φτφ−1) = φ(ρτ)φ−1 = ρτ and (φτφ−1)(φλφ−1) = φ(τλ)φ−1 = τλ.

Finally, we obtain

φρφ−1 = ρτ(φτφ−1) and φλφ−1 = (φτφ−1)τλ.

If φ ∈ Aut(M), then, in particular, it commutes with τ . On the other hand, if φ commutes
with τ , then the last two equations imply that it also must commute with ρ and λ, i.e.,
φ ∈ Aut(M). ◀

The previous lemmas are key and suggest an approach for computing the generators of
the automorphism group of M . In particular, it is necessary to check which automorphisms
of M̃ commute with τ . The cases when the underlying surface is the projective plane, or the
Klein bottle, must be treated separately.

▶ Theorem 23. Let M = (F, λ, ρ, τ) be a map on a non-orientable a non-orietable surface
of genus γ. Then it is possible to compute the generators of Aut(M) in time f(γ)|F |.
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