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Abstract
In 1964 Erdős proved, by randomized construction, that the minimum number of edges in a k-graph
that is not two colorable is O(k2 2k). To this day, it is not known whether there exist such k-graphs
with smaller number of edges. Known deterministic constructions use much larger number of edges.
The most recent one by Gebauer requires 2k+Θ(k2/3) edges. Applying a derandomization technique
we reduce that number to 2k+Θ̃(k1/2).
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1 Introduction

In 1964 Erdős proved in [3] that (1 + o(1)) e ln(2)
4 k22k edges are sufficient to build a k-graph1

which is not two colorable. To this day that result provides the best known upper bound for
the minimum number of edges in such hypergraph. The Erdős’ bound results from the fact
that random k-graph with that number of edges, built on a set of k2/2 vertices can not be
colored properly with two colors with high probability. In some sense this value is not far
from being optimal since a straightforward probabilistic argument shows that any k-graph
with at most 2k−1 edges is two colorable. Using random recoloring method, introduced by
Beck in [1], Radhakrishnan and Srinivasan in [8] extended this result to k-graphs with at
most Θ(

√
k/ log(k)2k) edges (see also [2] for a simplified proof).

The best known deterministic construction of a k-graph that is not two colorable has
been obtained by Gebauer [5]. It requires 2k+Θ(k2/3) edges. It is also the first construction
in which the number of edges is 2k+o(k). The main result of the current paper is an upgrade
of this construction that allows to cut down the number of edges to 2k+Θ((k log(k))1/2).

Within the whole paper, log(.) stands for binary logarithm. We are only concerned with
vertex two coloring of hypergraphs. However, just like in the construction from [5], the
presented method naturaly generalizes to any fixed number of colors and gives analogous
improvement. Vertex coloring is proper if no edge is monochromatic. Following common
convention we use colors red and blue.

1 i.e. k-uniform hypergraph
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89:2 Improving Gebauer’s Construction of 3-Chromatic Hypergraphs with Few Edges

2 Gebauer’s construction

We start with recalling the construction of [5], as we are going to modify it. The whole
procedure is parameterized by t = t(k) that takes value roughly kα for some optimized
positive α < 1. It it convenient to organize the vertices of the constructed hypergraph into
a rectangular matrix M of 2t − 1 rows and s columns. In particular, the vertex set of the
hypergraphs has (2t − 1) · s elements. The value of s will be a subject of optimization and in
the final construction we are going to chose s = ⌈e (k/t) 2t⌉. Slightly abusing the notation,
we use M for both the matrix and the set of vertices. We use the same convention for
submatrices of M.

2.1 Preliminary choice of rows
As the vertices of constructed hypergraph are identified with the entries of M, vertex coloring
can be seen as assigning colors to the entries of the matrix. A color is dominating in a row if
at least half of its entries are colored with it (there can be two dominating colors). A matrix
for which one of the colors is dominating in all rows will be called consistently dominated. The
main part of the construction is designed to work with a consistently dominated submatrix
of M with t rows. Wlog we always assume that red is the dominating color in such a matrix.

Let M denote the set of submatrices of M built of every t rows. For every M ∈ M we apply
the main construction described in the next section. The construction outputs hypergraph
HM . The union of the edge sets of these hypergraphs forms the edge set of the resulting
hypergraph. For every coloring of M at least one submatrix M ∈ M is consistently dominated.
The main construction guarantees that in such a case, HM contains a monochromatic edge.

2.2 Main construction
Let M ∈ M, recall that M has t rows. Our goal is to build a hypergraph HM on the vertex
set M such that for every consistently dominated coloring of M , there exists a monochromatic
edge in HM . For (σ1, . . . , σt) ∈ [s]t, we denote by M(σ1, . . . , σt) matrix M in which for every
i ∈ [t], the i-th row has been cyclically shifted by σi. The construction proceeds as follows.

For every
1. sequence of shifts σ ∈ [s]t,
2. and set of indices I ⊂ [s] of size k/t,
add to HM an edge built from all elements of the columns of M(σ) with
indices in I.

Note that the edges of HM are of size k as required.
Let us fix a consistently dominated coloring of M . We assume wlog that red is the

dominating color of the rows. When the sequence of shifts is chosen randomly, the probability
that some fixed column is red is at least 2−t. As a consequence, for s ⩾ (k/t) 2t the expected
number of red columns is at least k/t. In particular, for some sequence of shifts, there exists
a set of k/t red columns. Hence the edge built for these shifts and columns is monochromatic.

2.3 Counting
We have(

2t − 1
t

)
< 22t
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choices for the subset of rows in the preliminary step. Then, in the main construction, every
sequence of t elements of [s] and a subset of k/t elements of [s] is used to build an edge. The
number of choices is

st ·
(

s

k/t

)
⩽ st ·

(
es

k/t

)k/t

.

For s = (k/t) 2t (we assume for simplicity that it is an integer) we obtain

(k/t)t 2t2
· ek/t 2k = 2t log(k/t)+t2+k/t log(e)+k.

The total number of edges is smaller than

22t+t log(k/t)+t2+k/t log(e)+k.

Finally we choose t so that the above exponent is minimized. That happens for t = Θ(k1/3).
In the end we obtain that the total number of edges is 2k+Θ(k2/3).

3 Improved construction

We modify only the main construction. Recall that we work with matrix M with t rows. For
a fixed consistently dominating coloring of M , sequence of shifts σ ∈ [s]t is called good if
M(σ) contains at least s 2−t red columns. The set of good sequences for a coloring C of M

is denoted by G(C).
If we fix a consistently dominating coloring of M and choose the sequence of shifts σ ∈ [s]t

uniformly at random, the expected number of red columns in M(σ) is s 2−t. That observation
was used to justify that there exists a good sequence. However, it also suggests that a large
number of shift sequences might be good. For the constructed hypergraph not to be two
colorable, it is sufficient that for every consistently dominated coloring of M , at least one
such sequence is used in the main construction.

We apply derandomization techniques to construct relatively small set of sequences of shifts
that can be used in the main construction instead of [s]t. For a family of sets F , a set that in-
tersects every element of that family is called a hitting set for F . In these terms we are looking
for a small hitting set for family GM = {G(C) : C is a consistently dominating coloring of M}.

3.1 Sequential choice of shifts

We start with estimating the size of the set of good shift sequences. While it is not directly
used in our construction, it provides a good opportunity to introduce some tools. It will also
allow us to derive a probabilistic argument that small hitting sets actually exist.

The property of being good is generalized to prefixes in the straightforward way – sequence
of shifts (σ1, . . . , σi) is good if the matrix trimmed to the first i rows and shifted according
to the sequence, has at least s 2−i red columns.

Suppose that (σ1, . . . , σi) is good. We want to estimate the number of possible choices
of σi+1 for which (σ1, . . . , σi, σi+1) is good as well. If the coloring of the (i + 1)-th row was
“random”, then about half of the choices would be right, and almost all of the choices would
be almost right. That property does not hold in the worst case scenario and hence we are
going to work with relaxed definitions.

ICALP 2021



89:4 Improving Gebauer’s Construction of 3-Chromatic Hypergraphs with Few Edges

For ε > 0, a sequence of shifts (σ1, . . . , σi) is ε-good if the number of red columns in the
shifted matrix trimmed to the first i rows is at least s

( 1−ε
2

)i. Then, every ε-good sequence
of shifts of length t gives a shifted matrix with at least

s
(1 − ε)t−1

2t

red columns. For s ⩾ e (k/t) 2t and ε = 1/t, the number of red columns is at least k/t as
needed. In the modified construction we set s to ⌈e (k/t) 2t⌉.

We also define Gε(C) as the set of ε-good sequences for a coloring C of M and Gε
M as

{Gε(C) : C is a consistently dominating coloring of M}.
The following proposition is used to derive a lower bound for the number of ε-good

sequences. It is formulated in more general terms that needed here, but we are going to use
it again later. For a set A ⊂ [s] and a number x, set A + x is defined as the set A shifted
cyclically within [s] by x, formally A + x = {(a − 1 + x)( mod s) + 1 : a ∈ A}.

▶ Proposition 1. For any positive ε < 1 and sets A, B ⊂ [s], let α = |B|/s, there exist at
least

ε

1 − (1 − ε)α αs

elements x ∈ [s] for which |(A + x) ∩ B| ⩾ (1 − ε)α|A|.

Proof. Let random variable X denote the size of (A+x)∩B, when x ∈ [s] is chosen uniformly
at random. By the fact that |B| = αs and linearity of expectation we obtain

E(X) = α|A|.

From the definition of X, we get also

X ⩽ |A|.

We can observe now that a distribution that minimizes Pr[X > (1 − ε)α|A|] and satisfies the
above conditions, is supported only by values (1 − ε)α|A| and |A|. There is only one such
distribution that satisfies E(X) = α|A|. Straightforward calculations give

Pr[X > (1 − ε)α|A|] ⩾ εα

1 − (1 − ε)α. ◀

For |B| ⩾ s/2 we get that there exist at least

2ε

1 + ε
s/2

elements x ∈ [s] for which |(A + x) ∩ B| ⩾ (1 − ε)|A|/2.
Applying the proposition iteratively, we obtain that the number of ε-good sequences of

length j is at least(
ε

1 + ε
s

)j

.

(For a fixed j, and some ε-good sequence σ of length j − 1, let A be the set of indices of the
red columns in the matrix trimmed to the first j − 1 rows and shifted according to σ, and B

be the set of indices of red entries of the j-th row.)



J. Kozik 89:5

For j = t we get a lower bound for the number of ε-good sequences. Once we have that
bound, a typical application of the probabilistic method (along the lines of the proof from [3])
allows to proof that there exists a hitting set for Gε

M of size 2O(t log(t)). That argument is
briefly described below.

Recall that, for a fixed consistently dominated coloring of matrix M with t rows, the
volume of ε-good sequences is at least

p =
(

ε

1 + ε

)t

.

The volume is exactly the probability that uniformly random sequence is ε-good. Let S be a
set built from m uniformly and independently sampled random sequences from [s]t. (Since,
the sequences are sampled with repetitions, it may happen that |S| < m.) The following
formula upperbounds the expected number of consistently dominated colorings of M , for
which the set of ε-good sequences is not hit by S

2st · (1 − p)m < exp(st ln(2) − mp).

Therefore, whenever st ln(2) − mp ⩽ 0, some set of m sequences hits all the sets of ε-good
sequences for consistently dominating colorings. For s = ⌈e (k/t) 2t⌉ and ε = 1/t it is sufficient
to take m of the order 2O(t log(t)) to satisfy the inequality. As a consequence there exists a
hitting set for Gε

M of size 2O(t log(t)).

3.2 Expanders for hitting sets
Linial, Luby, Saks and Zuckerman [6] worked on deterministic constructions of small hitting
sets for combinatorial rectangles. We summarize in this section, their results that are relevant
for our developments. We follow closely their definitions.

Graph G = (V, E) is an (m, ∆, α)-expander if it has m vertices, maximum degree ∆ and
for any A ⊂ V , the fraction of vertices in V − A that have a neighbor in A is at least α|A|/m.
For a fixed graph G let Wr denote the set of walks in G of length r. Let Wr,d be the set
of subsequences of elements of Wr of length d (not necessarily subsequences of consecutive
elements). Set R ⊂ [m]d is a combinatorial rectangle if it is of a form R1 × . . . × Rd for some
R1, . . . , Rd ⊂ [m]. The volume of rectangle R, denoted as vol(R), is defined as |R|/md.

▶ Lemma 2 ([6]). Let m, d be positive integers and R be a rectangle in [m]d. Suppose G

is an (m, ∆, α)-expander with 1/2 > α > 0. If r = 1 + (4/α)(d + log(1/vol(R))), then Wr,d

contains a point from R.

The above lemma implies that a specific set of sequences Wr,d hits every combinatorial
rectangle in [m]d of sufficiently large volume.

The following rough estimations for the size of Wr,t will be sufficient for our needs. We
have

|Wr| ⩽ m(∆ + 1)r

and

|Wr,d| < 2r|Wr| ⩽ m (2(∆ + 1))r.

Lemma 2 leaves some space for the choice of expander graph. Authors of [6] used the
construction of Margulis [7] (see also [4]) which allows to build an expander with ∆ = 8
and α = (2 −

√
3)/4. A minor inconvenience is that the construction requires the number
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89:6 Improving Gebauer’s Construction of 3-Chromatic Hypergraphs with Few Edges

of vertices to be a perfect square. However, as observed already in [6], we can consider
the rectangles of our interest as subsets of a larger space [m′]d, and apply the lemma in
that space. For every m we can choose number m′ that is a perfect square and satisfies
m ⩽ m′ ⩽ 2m. While that change affects the volumes of rectangles, they get smaller at most
by a factor of 2−d. For our purposes this cost is negligible.

When we are interested in rectangles of volume at least V, Lemma 2 instructs to take

r = r(d, V) = 1 + (4/α)(d + log(2d/V)).

For some specific constant Ĉ and for all positive d and V we have

r(d, V) ⩽ Ĉ(d + log(1/V)).

▶ Corollary 3. There exists a constant C > 0 such that, for every integers m, d, and V > 0
there exists an efficiently constructible subset of [m]d of size at most

m · 2C(d+log(1/V)),

that intersects every combinatorial rectangle in [m]d of volume at least V.

We apply that result, to construct a small hitting set for Gε
M . That set is then used in

the modified main construction instead of the set of all shift sequences.

3.3 Under false assumption
Unfortunately, for a fixed consistently dominating coloring of M , the set of good or ε-good
shift sequences does not need to form a combinatorial rectangle. It is instructive to pretend
for a moment that it does. We assume (falsely) in this subsection that Gε

M contains only
combinatorial rectangles.

By the discussion that follows Proposition 1, for every consistently dominating coloring
of M , the set of ε-good shift sequences has volume at least

ν =
(

ε

2(1 + ε)

)t

.

By Corollary 3 there exists a hitting set HS for all rectangles of volume ν of size s·2C(t+log(1/ν)).
For ε = 1/t and s = ⌈e (k/t) 2t⌉, the size of HS is at most 22Ct log(t) (assuming that t is
sufficiently large). Note that in the original construction all possible shift sequences were
used. Using set HS instead of [s]t and choosing t = (k log(k))1/2, the total number of edges
becomes

2k+O((k log(k))1/2).

3.4 Decomposing good shift sequences
We showed in Section 3.1 that, for every consistently dominating coloring of M , the set of
ε-good shift sequences is large. While, in general, it does not have a structure of combinatorial
rectangle, in some sense it can be decomposed into a small number of such. We start by
altering the way that the sequences of shifts are represented. For the clarity of the exposition
we assume that t is a power of 2.
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Let T be a rooted plane complete binary tree with t leaves2. A subtree rooted at some
internal node of T consists of that node and all its descendants. A node of T is at level j if
its distance to the set of leaves is j. Let Sj be the set of inner nodes at level j. Note that
|Sj | = t 2−j , we denote that value by dj . For h = log(t), the tree has h + 1 levels with all
the leaves on level 0.

We associate leaves of T with rows of M in such a way that the i-th leaf from the left,
corresponds to the i-th row. Inner nodes of the tree are going to be labeled by elements of
[s]. These labels represent the relative shifts between neighboring rows of M . For an inner
node v, if l is the rightmost leaf of the left subtree of v and r is the leftmost leaf of the right
subtree of v, then the label of v describes how row r is shifted wrt l.

Labeling of a subtree rooted at node v is ε-good, if for r being the number of descendant
leaves of v, the submatrix of the rows that correspond to these leaves, shifted according to
the labels of the inner nodes of the subtree, has at least s ((1 − ε)/2)r red columns. Note
that ε-good labellings of the whole tree correspond to ε-good sequences (up to a cyclic shift
of the whole matrix, which is clearly redundant in the original construction).

We order the nodes of Sj from left to right and represent labellings of the nodes of Sj as
elements of [s]dj . We are going to work bottom up and label inner nodes in groups consisting
of the nodes of the same level. A labeling of T is ε-good up to level j if all the subtrees
rooted at level at most j are ε-good. In all the places where we use this definition, it can be
assumed that the labeling is undefined for the nodes of higher levels. Suppose that τ is a
labeling of T that is ε-good up to level j − 1. Then, a sequence of labels σ ∈ [s]dj is called
an ε-good level j extension (of τ) if the labeling τ in which the labels of the nodes of level j

has been set to σ is ε-good up to level j.

▶ Proposition 4. Suppose, that a labelling of T is ε-good up to level j − 1. Then, the set of
its ε-good level j extensions forms a combinatorial rectangle of volume at least

νj =
(

ε ((1 − ε)/2)−2j−1
)dj

.

Proof. Fix j and suppose that labeling τ is ε-good up to level j −1. We want to assign labels
to the nodes of Sj in such a way that all the subtrees rooted at depth j are ε-good shift trees
as well. Note that for any pair of distinct nodes of level j, the property of the corresponding
subtrees of being ε-good shift trees is determined by disjoint sets of rows of the underlying
matrix. That justify that the set of ε-good level j extensions forms a combinatorial rectangle.

Let v be a node of Sj and let A and B be the sets of indices of red columns respectively in
the shifted submatrices corresponding to the left and right subtrees of v. By the assumptions
we know that both these sets have cardinality at least

s ((1 − ε)/2)−2j−1
.

We need to estimate the number of x ∈ [s] for which the set A ∩ (B + x) has cardinality at
least

s ((1 − ε)/2)−2j

.

Proposition 1 gives that there exist at least

ε ((1 − ε)/2)−2j−1
s

2 i.e. all the internal nodes of T have two children (left and right) and all the leaves are of the same
distance from the root
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such values. We obtain that the volume of combinatorial rectangle of ε-good level j extensions
is at least(

ε ((1 − ε)/2)−2j−1
)dj

◀

By Corollary 3, there exists a set HSj of cardinality

s · 2C(dj+log(1/νj)),

that is a hitting set for the family of ε-good level j extensions for labellings that are ε-good
up to level j − 1. That implies the following proposition.

▶ Proposition 5. Set HS = HS1 × . . . × HSh is a hitting set for the family of sets of ε-good
labellings of T .

It remains to estimate the size of HS . We have

|HS | ⩽
∏

j=1...h

s · 2C(dj+log(1/νj))

= slog(t) · 2C
∑

j=1...h
(dj+log(1/νj))

< slog(t) · 2Ct · 2C
∑

j=1...h
log(1/νj)

,

and ∑
j=1...h

log(1/νj) =
∑

j=1...h

dj(log(1/ε) + 2j−1 log(2/(1 − ε)))

< t log(1/ε) + t
∑

j=1...h

log(4) (for ε < 1/2)

= t · log(1/ε) + 2t · log(t)

Therefore, for our parametrization (i.e. s = ⌈e (k/t) 2t⌉ and ε = 1/t), and for all sufficiently
large t we get

|HS | ⩽ 24t log(t).

3.5 Modified main construction
Let HS be the set from Proposition 5. As we already observed labellings of T correspond to
shift sequences up to a cyclic shift of the whole matrix. For a labeling τ let σ(τ) be a shift
sequence that is compatible with τ . Observe, that if τ is an ε-good labeling, then σ(τ) is
ε-good shift sequence. Recall that we chose s = e (k/t) 2t so that if σ is an ε-good sequence
for some consistently dominated coloring of M , then M(σ) has at least k/t red columns.
The modified main construction proceeds as follows.

For every
1. labeling of the tree τ ∈ HS,
2. and set of indices I ⊂ [s] of size k/t,
add to HM an edge build from all elements of the columns of M(σ(τ)) with
indices in I.

By Proposition 5 for every consistently dominated coloring of M , at least one ε-good
labeling τ is used in the construction. Then, for every such coloring, matrix M shifted
according to σ(τ) has at least k/t red columns. As a consequence at least one of the edges of
HM is monochromatic.
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Counting
Just like in the original construction, we have less than 22t choices for the subset of rows in
the preliminary step. Then, in the modified main construction, we use every sequence of HS
with every subset of k/t elements of [s] to build an edge. The number of choices is smaller
than

24t log(t) ·
(

s

k/t

)
< 24t log(t) ·

(
es

k/t

)k/t

.

Substituting the value of s we obtain a value that is smaller than

2 · 24t log(t) · e2k/t2k = 21+4t log(t)+(2k/t) log(e)+k.

The bound is multiplied by 2 to compensate for the ceiling in the definition of s. Taking into
account preliminary choices of rows, the total number of edges is smaller than

22t+1+4t log(t)+(2k/t) log(e)+k.

For t = (k/ log(k))1/2, the total number of edges becomes 2k+Θ((k log(k))1/2).
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