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Abstract
A stable or locally-optimal cut of a graph is a cut whose weight cannot be increased by changing the
side of a single vertex. Equivalently, a cut is stable if all vertices have the (weighted) majority of
their neighbors on the other side. Finding a stable cut is a prototypical PLS-complete problem that
has been studied in the context of local search and of algorithmic game theory.

In this paper we study Min Stable Cut, the problem of finding a stable cut of minimum weight,
which is closely related to the Price of Anarchy of the Max Cut game. Since this problem is NP-hard,
we study its complexity on graphs of low treewidth, low degree, or both. We begin by showing
that the problem remains weakly NP-hard on severely restricted trees, so bounding treewidth alone
cannot make it tractable. We match this hardness with a pseudo-polynomial DP algorithm solving
the problem in time (∆ · W )O(tw)nO(1), where tw is the treewidth, ∆ the maximum degree, and W

the maximum weight. On the other hand, bounding ∆ is also not enough, as the problem is NP-hard
for unweighted graphs of bounded degree. We therefore parameterize Min Stable Cut by both tw
and ∆ and obtain an FPT algorithm running in time 2O(∆tw)(n + log W )O(1). Our main result for
the weighted problem is to provide a reduction showing that both aforementioned algorithms are
essentially optimal, even if we replace treewidth by pathwidth: if there exists an algorithm running
in (nW )o(pw) or 2o(∆pw)(n + log W )O(1), then the ETH is false. Complementing this, we show that
we can, however, obtain an FPT approximation scheme parameterized by treewidth, if we consider
almost-stable solutions, that is, solutions where no single vertex can unilaterally increase the weight
of its incident cut edges by more than a factor of (1 + ε).

Motivated by these mostly negative results, we consider Unweighted Min Stable Cut. Here
our results already imply a much faster exact algorithm running in time ∆O(tw)nO(1). We show that
this is also probably essentially optimal: an algorithm running in no(pw) would contradict the ETH.
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1 Introduction

In this paper we study problems related to stable cuts in graphs. A stable cut of an edge-
weighted graph G = (V, E) is a partition of V into two sets V0, V1 that satisfies the following
property: for each i ∈ {0, 1} and v ∈ Vi, the total weight of edges incident on v whose other
endpoint is in V1−i is at least half the total weight of all edges incident on v. In other words,
a cut is stable if all vertices have the (weighted) majority of their incident edges cut.

The notion of stable cuts has been very widely studied from two different points of view.
First, in the context of local search, a stable cut is a locally optimal cut: switching the side
of any single vertex cannot increase the total weight of the cut. Hence, stable cuts have
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been studied with the aim to further our understanding of the basic local search heuristic for
Max Cut. Second, in the context of algorithmic game theory a Max Cut game has often
been considered, where each vertex is an agent whose utility is the total weight of edges
connecting it to the other side. In this game, a stable cut corresponds exactly to the notion
of a Nash equilibrium, that is, a state where no agent has an incentive to change her choice.
The complexity of producing a Nash stable or locally optimal cut of a given edge-weighted
graph has been heavily studied under the name Local Max Cut. The problem is known
to be PLS-complete, under various restrictions (we give detailed references below).

In this paper we focus on a different but closely related optimization problem: given an
edge-weighted graph we would like to produce a stable cut of minumum total weight. We call
this problem Min Stable Cut. In addition to being a fairly natural problem on its own, we
believe that Min Stable Cut is interesting from the perspective of both local search and
algorithmic game theory. In the context of local search, Min Stable Cut is the problem of
bounding the performance of the local search heuristic on a particular instance. It is folklore
(and easy to see) that in general there exist graphs where the smallest stable cut has size
half the maximum cut (e.g. consider a C4) and this is tight since any stable cut must cut at
least half the total edge weight. However, for most graphs this bound is far from tight. Min
Stable Cut therefore essentially asks to estimate the ratio between the largest and smallest
stable cut for a given specific instance. Similarly, in the context of algorithmic game theory,
solving Min Stable Cut is essentially equivalent to calculating the Price of Anarchy of the
Max Cut game on the given instance, that is, the ratio between the smallest stable cut and
the maximum cut. Since we will mostly focus on cases where Max Cut is tractable, Min
Stable Cut can, therefore, be seen as the problem of computing either the approximation
ratio of local search or the Price of Anarchy of the Max Cut game on a given graph.

Our results. It appears that little is currently known about the complexity of Min Stable
Cut. However, since finding a (not necessarily minimum) stable cut is PLS-complete, finding
the minimum such cut would be expected to be hard. Our focus is therefore to study the
parameterized complexity of Min Stable Cut using structural parameters such as treewidth
and the maximum degree of the input graph1. Our results are the following.

First, we show that bounding only one of the two mentioned parameters is not sufficient
to render the problem tractable. This is not suprising for the maximum degree ∆, where
a reduction from Max Cut allows us to show the problem is NP-hard for ∆ ≤ 6 even
in the unweighted case (Theorem 4). It is, however, somewhat more disappointing that
bounded treewidth also does not help, as the problem remains weakly NP-hard on trees
of diameter 4 (Theorem 1) and bipartite graphs of vertex cover 2 (Theorem 3).
These hardness results point to two directions for obtaining algorithms for Min Stable
Cut: first, since the problem is “only” weakly NP-hard for bounded treewidth one could
hope to obtain a pseudo-polynomial time algorithm in this case. We show that this is
indeed possible and the problem is solvable in time (∆ · W )O(tw)nO(1), where W is the
maximum edge weight (Theorem 5). Second, one may hope to obtain an FPT algorithm
when both tw and ∆ are parameters. We show that this is also possible and obtain an
algorithm with complexity 2O(∆tw)(n + log W )O(1) (Theorem 6).
These two algorithms lead to two further questions. First, can the (∆ · W )O(tw)nO(1) algo-
rithm be improved to an FPT dependence on tw, that is, to running time f(tw)(nW )O(1)?
And second, can the 2∆tw parameter dependence of the FPT algorithm be improved,

1 We assume familiarity with the basics of parameterized complexity as given in standard textbooks [21].
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for example to 2O(∆+tw) or even ∆O(tw)? We show that the answer to both questions
is negative, even if we replace treewidth with pathwidth: under the ETH there is no
algorithm running in (nW )o(pw) or 2o(∆tw)(n + log W )O(1) (Theorem 8).
Complementing the above, we show that the problem does become FPT by treewidth
alone if we allow the notion of approximation to be used in the concept of stability: there
exists an algorithm which, for any ε > 0, runs in time (tw/ε)O(tw)(n + log W )O(1) and
produces a cut with the following properties: all vertices are (1 + ϵ)-stable, that is, no
vertex can unilaterally increase its incident cut weight by more than a factor of (1 + ε);
the cut has weight at most equal to that of the minimum stable cut.
Finally, motivated by the above mostly negative results, we also consider Unweighted
Min Stable Cut, the restriction of the problem where all edge weights are uniform.
Our previous results give a much faster algorithm with parameter dependence ∆O(tw),
rather than 2∆tw (Corollary 12). However, this poses the natural question if in this case
the problem finally becomes FPT by treewidth alone. Our main result in this part is to
answer this question in the negative and show that, under the ETH, Unweighted Min
Stable Cut cannot be solved in time no(pw) (Theorem 13).

Taken together, our results paint a detailed picture of the complexity of Min Stable
Cut parameterized by tw and ∆. All our exact algorithms (Theorems 5, 6) are obtained
using standard dynamic programming on tree decompositions, the only minor complication
being that for Theorem 6 we edit the decomposition to make sure that for each vertex
some bag contains all of its neighborhood (this helps us verify that a cut is stable). The
main technical challenge is in proving our complexity lower bounds. It is therefore perhaps
somewhat surprising that the lower bounds turn out to be essentially tight, as this indicates
that for Min Stable Cut and Unweighted Min Stable Cut, the straightforward DP
algorithms are essentially optimal, if one wants to solve the problem exactly.

For the approximation algorithm, we rely on two rounding techniques: one is a rounding
step similar to the one that gives an FPTAS for Knapsack by truncating weights so that the
maximum weight is polynomially bounded. However, Min Stable Cut is more complicated
than Knapsack, as an edge which is light for one of its endpoints may be heavy for the
other. We therefore define a more general version of the problem, allowing us to decouple
the contribution each edge makes to the stability of each endpoint. This helps us bound
the largest stability-weight by a polynomial, but is still not sufficient to obtain an FPT
algorithm, as the lower bound of Theorem 8 applies to polynomially bounded weights. We
then go on to apply a technique introduced in [46] (see also [2, 10, 43, 44]) which allows us
to obtain FPT approximation algorithms for problems which are W-hard by treewidth by
applying a different notion of rounding to the dynamic program. This allows us to produce
a solution that is simultaneously of optimal weight (compared to the best stable solution)
and almost-stable, using essentially the same algorithm as in Theorem 5. However, it is
worth noting that in general there is no obvious way to transform almost-stable solutions to
stable solutions [11, 17], so our algorithm is not immediately sufficient to obtain an FPT
approximation for Min Stable Cut if we insist on obtaining a cut which is exactly stable.

Related work. From the point of view of local search algorithms, there is an extensive
literature on the Local Max Cut problem, which asks us to find a stable cut (of any size).
The problem has long been known to be PLS-complete [42, 52]. It remains PLS-complete
for graphs of maximum degree 5 [27], but becomes polynomial-time solvable for graphs of
maximum degree 3 [48, 51]. The problem remains PLS-complete if weights are assigned to
vertices, instead of edges, and the weight of an edge is defined simply as the product of the
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weights of its endpoints [31]. Even though the problem is PLS-complete, it has long been
observed that local search quickly finds a stable solution in most practical instances. One
theoretical explanation for this phenomenon was given in a recent line of work which showed
that Local Max Cut has quasi-polynomial time smoothed complexity [3, 12, 18, 29].
Local Max Cut is of course polynomial time solvable if all weights are polynomially
bounded in n, as local improvements always increase the size of the cut.

In algorithmic game theory much work has been done on the complexity of computing
Nash equilibria for the cut game and the closely related party affiliation game, in which
players, represented by vertices, have to pick one of two parties and edge weights indicate how
much two players gain if they are in the same party [6, 7, 19, 30, 35]. Note that for general
graphical games finding an equilibrium is PPAD-hard on trees of constant pathwidth [25].
Because computing a stable solution is generally intractable, approximate equilibria have
also been considered [11, 17]. Note that the notion of approximate equilibrium corresponds
exactly to the approximation guarantee given by Theorem 11, but unlike the cited works,
Theorem 11 produces a solution that is both approximately stable and as good as the optimal.

The problem we consider in this paper is more closely related to the problem of computing
the worst (or best) Nash equilibrium, which in turn is closely linked to the notion of Price
of Anarchy. For most problems in algorithmic game theory this type of question is usually
NP-hard [13, 20, 26, 32, 34, 37, 53] and hard to approximate [5, 16, 22, 39, 49]. Even though
these results show that finding a Nash equilibrium that maximizes an objective function is
NP-hard under various restrictions (e.g. graphical games of bounded degree), to the best of
our knowledge the complexity of finding the worst equilibrium of the Max Cut game (which
corresponds to the Min Stable Cut problem of this paper) has not been considered.

Finally, another topic that has recently attracted attention in the literature is that
of MinMax and MaxMin versions of standard optimization problems, where we search
the worst solution which cannot be improved using a simple local search heuristic. The
motivation behind this line of research is to provide bounds and a refined analysis of such basic
heuristics. Problems that have been considered under this lens are Max Min Dominating
Set [8, 24], Max Min Vertex Cover [15, 54],Max Min Separator [38], Max Min
Cut [28], Min Max Knapsack [4, 33, 36], Max Min Edge Cover [45], Max Min
Feedback Vertex Set [23]. Some problems in this area also arise naturally in other forms
and have been extensively studied, such as Min Max Matching (also known as Edge
Dominating Set [41]) and Grundy Coloring, which can be seen as a Max Min version
of Coloring [1, 9].

2 Definitions – Preliminaries

We generally use standard graph-theoretic notation and consider edge-weighted graphs, that
is, graphs G = (V, E) supplied with a weight function w : E → N. For a vertex v ∈ V , The
weighted degree of a vertex v ∈ V is dw(v) =

∑
uv∈E w(uv). A cut of a graph is a partition

of V into V0, V1. A cut is stable for vertex v ∈ Vi if
∑

vu∈E∧u∈V1−i
w(vu) ≥ dw(v)

2 , that is, if
the total weight of edges incident on v crossing the cut is at least half the weighted degree of
v. In the Min Stable Cut problem we are given an edge-weighted graph and are looking
for a cut that is stable for all vertices that minimizes the sum of weights of cut edges (that
is, edges with endpoints on both sides of the cut). In Unweighted Min Stable Cut we
restrict the problem so that the w function returns 1 for all edges. When describing stable
cuts we will sometimes say that we “assign” value 0 (or 1) to a vertex; by this we mean that
we place this vertex in V0 (or V1 respectively).
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For the definitions of treewidth, pathwidth, and the related (nice) decompositions we
refer to [21]. We will use as a complexity assumption the Exponential Time Hypothesis
(ETH) [40] which states that there exists a constant c > 1 such that 3-SAT with n variables
and m clauses cannot be solved in time cn+m. In fact, we will use the slightly weaker and
simpler form of the ETH which states that 3-SAT cannot be solved in time 2o(n+m).

3 Weighted Min Stable Cut

In this section we present our results on exact algorithms for (weighted) Min Stable Cut.
We begin with some basic NP-hardness reductions in Section 3.1, which establish that the
problem remains (weakly) NP-hard when either the treewidth or the maximum degree are
bounded. These set the stage for two algorithms, given in Section 3.2, solving the problem in
pseudo-polynomial time for constant treewidth; and in FPT time parameterized by tw + ∆.
In Section 3.3 we present a more fine-grained hardness argument, based on the ETH, which
shows that the dependence on tw and ∆ of our two algorithms is essentially optimal.

3.1 Basic Hardness Proofs
▶ Theorem 1. Min Stable Cut is weakly NP-hard on trees of diameter 4.

Proof. We describe a reduction from Partition. Recall that in this problem we are given
n positive integers x1, . . . , xn such that

∑n
i=1 xi = 2B and are asked if there exists S ⊆ [n]

such that
∑

i∈S xi = B. We construct a star with n leaves and subdivide every edge once.
For each i ∈ [n] we select a distinct leaf of the tree and set the weight of both edges in the
path from the center to this leaf to xi. We claim that the graph has a stable cut of weight
3B if and only if there is a partition of x1, . . . , xn into two sets with the same sum.

For the first direction, suppose S ⊆ [n] is such that
∑

i∈S xi = B. For each i ∈ S we
select a degree two vertex of the tree whose incident edges have weight xi and assign it value
1. We assign all other degree two vertices value 0 and assign to all leaves the opposite of the
value of their neighbor. We give the center value 0. This partition is stable as the center has
edge weight exactly B towards each side, and all degree two vertices have a leaf attached that
is placed on the other side and contributes half their total incident weight. The total weight
cut is 2B from edges incident on leaves, plus B from half the weight incident on the center.

For the converse direction, observe that in any stable solution all edges incident on leaves
are cut, contributing a weight of 2B. As a result, in a stable cut of size 3B, the weight of cut
edges incident on the center is at most B. However, this weight is also at least B, since the
edge weight incident on the center is 2B. We conclude that the neighborhood of the center
must be perfectly balanced. From this we can infer a solution to the Partition instance. ◀

▶ Remark 2. Theorem 1 is tight, because Min Stable Cut is trivial on trees of diameter at
most 3.

▶ Theorem 3. Min Stable Cut is weakly NP-hard on bipartite graphs with vertex cover 2.

▶ Theorem 4. Unweighted Min Stable Cut is strongly NP-hard and APX-hard on
bipartite graphs of maximum degree 6.

3.2 Algorithms
▶ Theorem 5. There is an algorithm which, given an instance of Min Stable Cut with n

vertices, maximum weight W , and a tree decomposition of width tw, finds an optimal solution
in time (∆ · W )O(tw)nO(1).

ICALP 2021
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▶ Theorem 6. There is an algorithm which, given an instance of Min Stable Cut with
n vertices, maximum weight W , maximum degree ∆ and a tree decomposition of width tw,
finds an optimal solution in time 2O(∆tw)(n + log W )O(1).

Proof. We describe an algorithm which works in a way similar to the standard algorithm
for Max Cut parameterized by treewidth, except that we work in a tree decomposition that
is essentially a decomposition of the square of G. More precisely, before we begin, we do
the following: for each v ∈ V we add to every bag of the decomposition that contains v all
the vertices of N(v). It is not hard to see that we now have a decomposition of width at
most (∆ + 1)(tw + 1) and also that the new decomposition is still a valid tree decomposition.
Crucially, we now also have the following property: for each v ∈ V there exists at least one
bag of the decomposition that contains all of N [v].

The algorithm now performs dynamic programming by storing for each bag the value of
the best solution for each partition of Bt. As a result, the size of the DP table is 2O(∆tw).
The only difference with the standard Max Cut algorithm (beyond the fact that we are
looking for a cut of minimum weight) is that when we consider a bag that contains all of N [v],
for some v ∈ V , we discard all partitions which are unstable for v. Since the bag contains all
of N [v], this can be checked in time polynomial in n and log W (assuming weights are given
in binary). ◀

3.3 Tight ETH-based Hardness
We first give a reduction from 3-Set Splitting to Min Stable Cut whose main properties
are laid out in Lemma 7. This reduction gives the lower bound of Theorem 8.

▶ Lemma 7. There is a polynomial-time algorithm which, given a 3-Set Splitting instance
H = (V, E) with n elements, produces a Min Stable Cut instance G with the following
properties: (i) G is a Yes instance if and only if H is a Yes instance; (ii) if ∆ is the
maximum degree of G and pw its pathwidth, then ∆ = O(log n) and pw = O(n/ log n); (iii)
the maximum weight of G is W = O(2∆).

...

}log n

{
n/ log n

...

...

...

1
2
4
8

2log n

Figure 1 Sketch of the construction of Lemma 7. On the left, the general architecture: m columns,
each with n vertices, partitioned into groups of size log n. On each column we add a checker vertex
(on top). Between the same groups of consecutive columns we add propagator vertices. On the right,
more details about the exponentially increasing weights of edges incident on propagators.



M. Lampis 92:7

Proof. Let H = (V, E) be the given 3-Set Splitting instance, V = {v0, . . . , vn−1} and
suppose that E contains e2 sets of size 2 and e3 sets of size 3, where |E| = e2 + e3 will be
denoted by m. Assume without loss of generality that n is a power of 2 (otherwise add some
dummy elements to V ). Let δ = log n. We construct a graph by first making m copies of V ,
call them Vj , j ∈ [m] and label their vertices as Vj = {v(i,j) | i ∈ {0, . . . , n − 1}}. Intuitively,
the vertices {v(i,j) | j ∈ [m]} are all meant to represent the element vi of H. We now add to
the graph the following:

1. Checkers: Suppose that the j-th set of E contains elements vi1 , vi2 , vi3 . Then we construct
a vertex cj and connect it to v(i1,j), v(i2,j), v(i3,j) with edges of weight 1. If the j-th set
has size two, we do the same (ignoring vi3).

2. Propagators: For each j ∈ [m − 1] we construct ρ = ⌈n/δ⌉ vertices labeled p(i,j), i ∈
{0, . . . , ρ − 1}. Each p(i,j) is connected to (at most) δ vertices of Vj and δ vertices of
Vj+1 with edges of exponentially increasing weight. Specifically, for i ∈ {0, . . . , ρ − 1}, ℓ ∈
{0, . . . , δ − 1}, we connect p(i,j) to v(iδ+ℓ,j) and to v(iδ+ℓ,j+1) (if they exist) with an edge
of weight 2ℓ.

3. Stabilizers: For each j ∈ [m], i ∈ {0, . . . , n − 1} we attach to v(i,j) a leaf. The edge
connecting this leaf to v(i,j) has weight 3 · 2(i mod δ).

This completes the construction of the graph. Let Lw be the total weight of edges incident
on leaves and P be the total weight of edges incident on Propagator vertices p(i,j). We set
B = Lw + P

2 + e2 + 2e3 and claim that the new instance has a stable cut of weight B if and
only if H can be split.

For the forward direction, suppose that H can be split by the partition of V into
L, R = V \ L. We assign the following values for our new instance: for each j ∈ [m] odd,
we set v(i,j) to value 0 if and only if vi ∈ L; for each j ∈ [m] even, we set v(i,j) to value 0 if
and only if vi ∈ R. In other words, we use the same partition for all copies of V , but flip
the roles of 0, 1 between consecutive copies. We place leaves on the opposite side from their
neighbors and greedily assign values to all other vertices of the graph to obtain a stable
partition. Observe that all vertices v(i,j) are stable with the values we assigned, since the
edge connecting each such vertex to a leaf has weight at least half its total incident weight.

In the partition we have, we observe that (i) all edges incident on leaves are cut (total
weight Lw) (ii) all Propagator vertices have balanced neighborhoods, so exactly half of their
incident weight is cut (total weight P/2) (iii) since L, R splits all sets of E, each checker
vertex will have exactly one neighbor on the same side (total weight e2 + 2e3). So, the total
weight of the cut is B.

For the converse direction, suppose we have a stable cut of size B in the constructed
instance. Because of the stability condition, this solution must cut all edges incident on
leaves (total weight Lw); at least half of the total weight of edges incident on Propagators
(total weight P/2); and for each checker vertex all its incident edges except at most one
(total weight at least e2 + 2e3). We conclude that, in order to achieve weight B, the cut
must properly balance the neighborhood of all Propagators and make sure that each Checker
vertex has one neighbor on its own side.

We now argue that because the neighborhood of each Propagator is balanced we have for
all i ∈ {0, . . . , n − 1}, j ∈ [m − 1] that v(i,j), v(i,j+1) are on different sides of the partition. To
see this, suppose for contradiction that for two such vertices this is not the case and to ease
notation consider the vertices v(iδ+ℓ,j), v(iδ+ℓ,j+1), where 0 ≤ ℓ ≤ δ − 1. Among all such pairs
select one that maximizes ℓ. Both vertices are connected to the Propagator p(i,j) with edges
of weight 2ℓ. But now p(i,j) has strictly larger edge weight connecting it to the side of the
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partition that contains v(iδ+ℓ,j) and v(iδ+ℓ,j+1) than to the other side because (i) for neighbors
of p(i,j) connected to it with edges of higher weight, the neighborhood of p(i,j) is balanced by
the maximality of ℓ (ii) the total weight of all other edges is 2 · (2ℓ−1 + 2ℓ−2 + . . . + 1) < 2 · 2ℓ.

We thus have that for all i, j, v(i,j), v(i,j+1) must be on different sides, and therefore all
Vj are partitioned in the same way (except some have the roles of 0 and 1 reversed). From
this, we obtain a partition of V . To conclude this direction, we argue that this partition of
V must split all sets. Indeed, if not, there will be a checker vertex such that all its neighbors
are on the same side, which, as we argued, means that the cut must have weight strictly
more than B.

Finally, let us show that the constructed instance has the claimed properties. The
maximum degree is ∆ = 2δ = O(log n) in the Propagators vertices (all other vertices
have degree at most 4); the maximum weight is O(2δ) = O(2∆). Let us also consider the
pathwidth of the constructed graph. Let Gj be the subgraph induced by Vj and its attached
leaves, the Checker cj , and all Propagators adjacent to Vj . We claim that we can build
a path decomposition of Gj that contains all Propagators adjacent to Vj in all bags and
has width O(n/ log n). Indeed, if we place all the (at most ⌈2n/δ⌉) Propagators and cj

in all bags, we can delete them from Gj , and all that is left is a union of isolated edges,
which has pathwidth 1. Now, since the union of all Gj covers all vertices and edges, we can
construct a path decomposition of the whole graph of width O(n/ log n) by gluing together
the decompositions of each Gj , that is, by connecting the last bag of the decomposition of
Gj to the first bag of the decomposition of Gj+1. ◀

▶ Theorem 8. If the ETH is true then (i) there is no algorithm solving Min Stable Cut
in time (nW )o(pw) (ii) there is no algorithm solving Min Stable Cut in time 2o(∆pw)(n +
log W )O(1). These statements apply even if we restrict the input to instances where weights
are written in unary and the maximum degree is O(log n).

4 Approximately Stable Cuts

In this section we present an algorithm which runs in FPT time parameterized by treewidth
and produces a solution that is (1 + ε)-stable and has weight upper bounded by the weight
of the optimal stable cut. Before we proceed, we will need to define a more general version
of our problem. In Extended Min Stable Cut we are given as input: a graph G = (V, E);
a cut-weight function w : E → N; and a stability-weight function s : E × V → N. For v ∈ V

we denote ds(v) =
∑

vu∈E s(vu, v), which we call the stability degree of v. If we are also
given an error parameter ρ > 1, we will then be looking for a partition of V into V0, V1 which
satisfies the following: (i) each vertex is ρ-stable, that is, for each i ∈ {0, 1} and v ∈ Vi

we have
∑

vu∈E∧u∈V1−i
s(vu, v) ≥ ds(v)

2ρ (ii) the total cut weight
∑

u∈V0,v∈V1,uv∈E w(uv) is
minimum. Observe that this extended version of the problem contains Min Stable Cut as
a special case if ρ = 1 and for all uv ∈ E we have s(uv, v) = s(uv, u) = w(uv).

The generalization of Min Stable Cut is motivated by three considerations. First, the
algorithm of Theorem 5 is inefficient because it has to store exact weight values to satisfy
the stability constraints; however, it can efficiently store the total weight of the cut. We
therefore decouple the contribution of an edge to the size of the cut (given by w) from a
contribution of an edge to the stability of its endpoints (given by s). Second, our strategy
will be to truncate the values of s so that the DP of the algorithm of Theorem 5 can be run
more efficiently. To do this we will first simply divide all stability-weights by an appropriate
value. However, a problem we run into if we do this is that the edge uv could simultaneously
be one of the heavier edges incident on u and one of the lighter edges incident on v, so it
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is not clear how we can adjust its weight in a way that minimizes the distortion for both
endpoints. As a result it is simpler if we allow edges to contribute different amounts to the
stability of their endpoints. In this sense, s(uv, u) is the amount that the edge uv contributes
to the stability of u if the edge is cut. Observe that with the new definition, if we set a new
stability-weight function for a specific vertex u as s′(uv, v) = c · s(uv, v) for all v ∈ N(u),
that is, if we multiply the stability-weight of all edges incident on u by a constant c and
leave all other values unchanged, we obtain an equivalent instance, and this does not affect
the stability of other vertices. Finally, the parameter ρ allows us to consider solutions where
a vertex is stable if its cut incident edges are at least a ( 1

2ρ )-fraction of its stability degree.
Armed with this intuition we can now explain our approach to obtaining our FPT

approximation algorithm. Given an instance of the extended problem, we first adjust the s

function so that its maximum value is bounded by a polynomial in n. We achieve this by
dividing s(uv, u) by a value that depends only on ds(u) and n. This allows us to guarantee
that near-stable solutions are preserved. Then, given an instance where the maximum value
of s is polynomially bounded, we apply the technique of [46], using the algorithm of Theorem
5 as a base, to obtain our approximation. We give these separate steps in the Lemmas below.

▶ Lemma 9. There is an algorithm which, given a graph G = (V, E) on n vertices and a
stability-weight function s : E × V → N with maximum value S, runs in time polynomial in
n+log S and produces a stability-weight function s′ : E ×V → N with the following properties:
(i) the maximum value of s′ is O(n2) (ii) for all partitions V into V0, V1, i ∈ {0, 1}, v ∈ Vi

we have

(
∑

vu∈E,u∈V1−i
s(vu, v)

ds(v) )/(
∑

vu∈E,u∈V1−i
s′(vu, v)

ds′(v) ) ∈ [1 − 1/n, 1 + 1/n]

Using Lemma 9 we can assume that all stability-weights are bounded by O(n2). The most
important part is that Lemma 9 guarantees us that almost-optimal solutions are preserved
in both directions, as for any cut and for each vertex the ratio of stability weight going to
the other side over the total stability-degree of the vertex does not change by more than a
factor (1 + 1

n ). Let us now see the second ingredient of our algorithm.

▶ Lemma 10. There is an algorithm which takes as input a graph G = (V, E), a cut-weight
function w : E → N with maximum W , a stability-weight function s : E × V → N with
maximum S, a tree decomposition of G of width tw, and an error parameter ε > 0 and returns
a (1+2ε)-stable solution that has cut-weight at most equal to that of the minimum (1+ϵ)-stable
solution. If S = O(n2), then the algorithm runs in time (tw/ε)O(tw)(n + log W )O(1).

Proof. We use the methodology of [46]. Before we proceed, let us explain that we are actually
aiming for an algorithm with running time roughly (log n/ε)O(tw). This type of running time
implies the time stated in the lemma using a standard Win/Win argument: if tw ≤

√
log n

then (log n)O(tw) is no(1), so the (log n)O(tw) factor is absorbed in the nO(1) factor; while if
log n ≤ tw2, then an algorithm running in (log n)tw actually runs in time (tw)O(tw).

To be more precise, if the given tree decomposition has height H, then we will formulate
an algorithm with running time (H log S/ε)O(tw)(n + log W )O(1). This running time achieves
parameter dependence (log n/ε)O(tw) if we use the fact that S = O(n2) and a theorem due
to [14] which proves that any tree decomposition can be edited (in polynomial time) so that
its height becomes O(log n), without increasing its width by more than a constant factor.

The basis of our algorithm will be the algorithm of Theorem 5, appropriately adjusted to
the extended version of the problem. Let us first sketch the modifications to the algorithm
of Theorem 5 that we would need to do to solve this more general problem, since the details
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are straightforward. First, we observe that in solution signatures we would now take into
account stability-weights, and signatures would have values going up to S. Second, in Forget
nodes, since we are happy with a (1 + ε)-stable solution, we would only discard solutions
which violate this constraint. With these modifications, we can run this exact algorithm to
return the minimum (1 + ε)-stable solution in time (2S)O(tw)(n + log W + log(1/ε))O(1).

The idea is to modify this algorithm so that the DP tables go from size (2S)tw to roughly
(H log S)tw. To do this, we define a parameter δ = ε

5H . We intend to replace every value x

that would be stored in the signature of a solution in the DP table, with the next larger integer
power of (1 + δ), that is, to construct a DP table where x is replaced by (1 + δ)⌈log(1+δ) x⌉.

More precisely, the invariant we maintain is the following. Consider a node t of the
decomposition at height h, where h = 0 corresponds to leaves. We maintain a collection
of solution signatures such that: (i) each signature contains a partition of Bt and for each
v ∈ Bt an integer that is upper-bounded by ⌈log(1+δ) ds(v)⌉; (ii) Soundness: for each stored
signature there exists a partition of B↓

t which approximately corresponds to it. Specifically,
the partition and the signature agree exactly on the assignment of Bt and the total cut-weight;
the partition is (1 + 2ε)-stable for all vertices of B↓

t \ Bt; and for each v ∈ Bt, if the signature
stores the value x(v) for v, that is, it states that v has approximate stability-weight (1+δ)x(v)

towards its own side in B↓
t \ Bt, then in the actual partition the stability-weight of v to

its own side of B↓
t \ Bt is at most (1 + δ)h(1 + δ)x(v). (iii) Completeness: conversely, for

each partition of B↓
t that is (1 + ε)-stable for all vertices of B↓

t \ Bt there exists a signature
that approximately corresponds to it. Specifically, the partition and signature agree on the
assignment of Bt and the total cut-weight; and for each v ∈ Bt, if the stability-weight of v

towards its side of the partition of B↓
t \ Bt is y(v), and the signature stores the value x(v),

then (1 + δ)x(v) ≤ (1 + δ)hy(v).
In more simple terms, the signatures in our DP table store values x(v) so that we estimate

that in the corresponding solution v has approximately (1 + δ)x(v) weight towards its own
side in B↓

t , that is, we estimate that the DP of the exact algorithm would store approximately
the value (1 + δ)x(v) for this solution. Of course, it is hard to maintain this relation exactly,
so we are happy if for a node at height h the “true” value which we are approximating is at
most a factor of (1 + δ)h off from our approximation.

Now, the crucial observation is that the approximate DP tables can be maintained
because our invariant allows the error to increase with the height. For example, suppose
that t is a Forget node at height h and let u ∈ Bt be a neighbor of the vertex v we forget.
The exact algorithm would construct the signature of a solution in t by looking at the
signature of a solution in its child node, and then adding to the value stored for u the weight
s(vu, u) (if u, v are on the same side). Our algorithm will take an approximate signature
from the child node, which may have a value at most (1 + δ)h−1 the correct value, add to
it s(vu, u) and then, perhaps, round-up the value to an integer power of (1 + δ). The new
approximation will be at most (1 + δ)h larger than the value that the exact algorithm would
have calculated. Similar argumentation holds for Join nodes. Furthermore, in Forget nodes
we will only discard a solution if according to our approximation it is not (1 + 2ε)-stable.
We may be over-estimating the stability-weight a vertex has to its own side of the cut by
a factor of at most (1 + δ)h ≤ (1 + ε

5H )H ≤ 1 + ε
2 so if for a signature our approximation

says that the solution is not (1 + 2ε)-stable, the solution cannot be (1 + ε)-stable, because
(1 + ε)(1 + ε

2 ) < 1 + 2ε (for sufficiently small ε).
Finally, to estimate the running time, the maximum value we have to store for each vertex

in a bag is log(1+δ) S = log S
log(1+δ) ≤ O( log n

δ ) = O(H log n
ε ). Using the fact that H = O(log n)

we get that the size of the DP table is (log n/ε)O(tw). ◀
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Figure 2 Checker gadget for Theorem 13. On the right two Selector gadgets. This Checker
verifies that we have not taken an edge which has endpoints (2, 3), hence t1, t3 are connected to the
first 2 and 3 vertices of the Selectors.

▶ Theorem 11. There is an algorithm which, given an instance of Min Stable Cut
G = (V, E) with n vertices, maximum weight W , a tree decomposition of width tw, and a
desired error ε > 0, runs in time (tw/ε)O(tw)(n + log W )O(1) and returns a cut with the
following properties: (i) for all v ∈ V , the total weight of edges incident on v crossing the
cut is at least (1 − ε)dw(v)

2 (ii) the cut has total weight at most equal to the weight of the
minimum stable cut.

5 Unweighted Min Stable Cut

In this section we consider Unweighted Min Stable Cut. We first observe that applying
Theorem 5 gives a parameter dependence of ∆O(tw), since W = 1. We then show that this
algorithm is essentially optimal, as the problem cannot be solved in no(pw) under the ETH.

▶ Corollary 12. There is an algorithm which, given an instance of Unweighted Min
Stable Cut with n vertices, maximum degree ∆, and a tree decomposition of width tw,
returns an optimal solution in time ∆O(tw)nO(1).

We now first state our hardness result, then describe the construction of our reduction,
and finally go through a series of lemmas that establish its correctness.

▶ Theorem 13. If the ETH is true then no algorithm can solve Unweighted Min Stable
Cut on graphs with n vertices in time no(pw). Furthermore, Unweighted Min Stable
Cut is W[1]-hard parameterized by pathwidth.

To prove Theorem 13 we will describe a reduction from k-Multi-Colored Independent
Set, a well-known W[1]-hard problem that cannot be solved in no(k) time under the ETH [21].
In this problem we are given a graph G = (V, E) with V partitioned into k color classes
V1, . . . , Vk, each of size n, and we are asked to find an independent set of size k which selects
one vertex from each Vi. In the remainder we use m to denote the number of edges of E and
assume that vertices of V are labeled v(i,j), i ∈ [k], j ∈ [n], where Vi = {v(i,j) | j ∈ [n]}.

Before we proceed, let us give some intuition. Our reduction will rely on a k × m grid-like
construction, where each row represents the selection of a vertex in the corresponding color
class of G and each column represents an edge of G. The main ingredients will be a Selector
gadget, which will represent a choice of an index in [n]; a Propagator gadget which will make
sure that the choice we make in each row stays consistent throughout; and a Checker gadget
which will verify that we did not select the two endpoints of any edge. Each Selector gadget
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will contain a path on (roughly) n vertices such that any reasonable stable cut will have to
cut exactly one edge of the path. The choice of where to cut this path will represent an
index in [n] encoding a vertex of G.

In our construction we will also make use of a simple but important gadget which we will
call a “heavy” edge. Let A = n5. When we say that we connect u, v with a heavy edge we
will mean that we construct A new vertices and connect them to both u and v. The intuitive
idea behind this gadget is that the large number of degree two vertices will force u and v to
be on different sides of the partition (otherwise too many edges will be cut). We will also
sometimes attach leaves on some vertices with the intention of making it easier for this vertex
to achieve stability (as its attached leaves will always be on the other side of the partition).

Let us now describe our construction step-by-step.

1. Construct two “palette” vertices p0, p1 and a heavy edge connecting them. Note that all
heavy edges we will add will be incident on at least one palette vertex.

2. For each i ∈ [k], j ∈ [m] construct the following Selector gadget:
a. Construct a path on n + 1 vertices P(i,j) and label its vertices P 1

(i,j), . . . , P n+1
(i,j) .

b. If j is odd, then add a heavy edge from P 1
(i,j) to p1 and a heavy edge from P n+1

(i,j) to p0.
If j is even, then add a heavy edge from P 1

(i,j) to p0 and a heavy edge from P n+1
(i,j) to p1.

c. Attach 5 leaves to each P ℓ
(i,j) for ℓ ∈ {2, . . . , n}. Attach A + 5 leaves to P 1

(i,j) and
P n+1

(i,j) .
3. For each i ∈ [k], j ∈ [m − 1] construct a new vertex connected to all vertices of the paths

P(i,j) and P(i,j+1). This vertex is the Propagator gadget.
4. For each j ∈ [m] consider the j-th edge of the original instance and suppose it connects

v(i1,j1) to v(i2,j2). We construct the following Checker gadget (see Figure 2)
a. We construct four vertices t1

j , t2
j , t3

j , t4
j . These are connected to existing vertices as

follows: t1
j is connected to {P 1

(i1,j), . . . , P j1
(i1,j)} (that is, the first j1 vertices of the path

P(i1,j)); t2
j is connected to {P j1+1

(i1,j), . . . , P n+1
(i1,j)} (that is, the remaining n+1−j1 vertices

of Pi1,j); similarly, t3
j is connected to {P 1

(i2,j), . . . , P j2
(i2,j)}; and finally t4

j is connected
to {P j2+1

(i2,j), . . . , P n+1
(i2,j)}.

b. We construct four independent sets T 1
j , T 2

j , T 3
j , T 4

j with respective sizes j1, n + 1 −
j1, j2, n + 1 − j2. We connect t1

j to all vertices of T 1
j , t2

j to T 2
j , t3

j to T 3
j , and t4

j to T 4
j .

We attach two leaves to each vertex of T 1
j ∪ T 2

j ∪ T 3
j ∪ T 4

j .
c. We construct three vertices aj , bj , cj . We connect cj to both aj and bj . We connect

aj to an arbitrary vertex of T 1
j and an arbitrary vertex of T 3

j . We connect bj to an
arbitrary vertex of T 2

j and an arbitrary vertex of T 4
j .

Let L1 be the number of leaves of the construction we described above and L2 be the
number of degree two vertices which are part of heavy edges. We set B = L1 + L2 + km +
k(m − 1)(n + 1) + m(2n + 6).

▶ Lemma 14. If G has a multi-colored independent set of size k, then the constructed
instance has a stable cut of size at most B.

▶ Lemma 15. If the constructed instance has a stable cut of size at most B, then G has a
multi-colored independent set of size k.

▶ Lemma 16. The constructed graph has pathwidth O(k).
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6 Conclusions

Our results paint a clear picture of the complexity of Min Stable Cut with respect to tw
and ∆. As directions for further work one could consider stronger notions of stability such
as demanding that switching sets of k vertices cannot increase the cut, for constant k. We
conjecture that, since the structure of this problem has the form ∃∀k, its complexity with
respect to treewidth will turn out to be double-exponential in k [47]. Another direction is to
consider hedonic games where vertices self-partition into an unbounded number of groups.
The complexity of finding a stable solution in such games parameterized by tw + ∆ has
already been considered by Peters [50], whose algorithm runs in time exponential in ∆5tw.
Can we bridge the gap between this complexity and the 2O(∆tw) complexity of Min Stable
Cut?
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