Testing Triangle Freeness in the General Model in
Graphs with Arboricity O(+/n)

Reut Levi =2
Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya, Israel

—— Abstract

We study the problem of testing triangle freeness in the general graph model. This problem was first
studied in the general graph model by Alon et al. (SIAM J. Discret. Math. 2008) who provided
both lower bounds and upper bounds that depend on the number of vertices and the average degree
of the graph. Their bounds are tight only when dmax = O(d) and d < \/n or when d = ©(1), where
dmax denotes the maximum degree and d denotes the average degree of the graph. In this paper
we provide bounds that depend on the arboricity of the graph and the average degree. As in Alon
et al., the parameters of our tester is the number of vertices, n, the number of edges, m, and the
proximity parameter e (the arboricity of the graph is not a parameter of the algorithm). The query
complexity of our tester is O(I'/d +I') - poly(1/€) on expectation, where I' denotes the arboricity
of the input graph (we use O(-) to suppress O(loglogn) factors). We show that for graphs with
arboricity O(y/n) this upper bound is tight in the following sense. For any I' € [s] where s = ©(y/n)
there exists a family of graphs with arboricity I' and average degree d such that Q(I'/d + I') queries
are required for testing triangle freeness on this family of graphs. Moreover, this lower bound holds
for any such I' and for a large range of feasible average degrees *

2012 ACM Subject Classification Theory of computation — Streaming, sublinear and near linear
time algorithms

Keywords and phrases Property Testing, Triangle-Freeness
Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.93
Category Track A: Algorithms, Complexity and Games

Funding Reut Levi: This research was supported by the Israel Science Foundation grant No. 1867/20.

1 Introduction

Testing triangle-freeness is one of the most basic decision problems on graphs. The existence
of triangles in a graph is often a crucial property for various applications. In the realm of
property testing, decision problems are relaxed so that a tester for a property P is only
required to distinguish between graphs that have the property P from graphs which are “far”
according to some predetermined distance measure, from having the property P, which in
our case are graphs which are far from being triangle free.

Testing triangle freeness is known to be possible with query complexity which only
depends on the proximity parameter, €, in graphs which are either dense or sparse. More
specifically, Alon, Fischer, Krivelevich and Szegedy [2] showed that in the dense-graphs
model [8] it is possible to test triangle-freeness with query complexity which is independent

1 For a graph, G, whose arboricity is I', the number of edges is at most n - I' and at least I'2. Thus, the
average degree of G is at least T2 /n and at most T.

© Reut Levi;
37 licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 93; pp.93:1-93:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:reut.levi1@idc.ac.il
https://orcid.org/0000-0003-3167-1766
https://doi.org/10.4230/LIPIcs.ICALP.2021.93
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

93:2

Testing Triangle Freeness in the General Model in Graphs with Arboricity O(4/n)

of the size of the graph but has a tower-type dependence in 1/e. In the other extreme,
Goldreich and Ron [9] observed that in the bounded-degree model [9] it is possible to test
triangle-freeness with query complexity O(1/¢€) given that the maximum degree of the input
graph is constant.

Alon, Kaufman, Krivelevich, Ron [3] were the first to study this problem in the general-
graphs model [12, 11]. This model is more stringent in the sense that we do not assume
anything on the density of the graph and the distance is measured with respect to the actual
number of edges in the graph (instead of the maximum possible number of edges). They
provided several upper bounds which apply for almost the entire range of average degrees.
They also provided lower bounds that show that their upper bounds are at most quadratic
in the optimal bounds. Shortly after, Rast [13] and Gugelmann [10] improved their upper
bounds and lower bounds, respectively, for some ranges of the parameters.

Although there is a fairly significant gap between the known upper bounds and lower
bounds for the vast range of parameters, there has been no progress on this question since
then. In this paper we provide an upper bound and several lower bounds which are tight for
a large range of parameters. Surprisingly, our bounds depend on the arboricity of the graph
although it is not a parameter of our algorithm.

1.1 Results

We provide an upper bound whose running time complexity is O(I'/d + T') - poly(1/¢) on
expectation. Therefore, for m < n our upper bound is O(I'/d) and when m > n our upper

bound is O(T") (ignoring polynomial dependencies in 1/¢).

We provide three lower bounds, each suitable for a different range of parameters.

1. For any I' and any feasible m > 1, we provide a lower bound of Q((I'n)/m) = Q(T'/d)
queries. Therefore our upper bound is tight when m < n (up to polynomial dependencies
in 1/e and O(loglogn) factors).

2. For any I' and any feasible m > I'* we provide a lower bound of Q(T") queries. Therefore,
our upper bound is also essentially tight as long as m > I'® (notice that since m < n - T,
it is implied that this lower bound applies only for graphs in which T' = O(n'/3)). Since
we may assume that m > n (otherwise we already have essentially tight lower bound),
one implication of this lower bound is that our upper bound is tight in the strong sense
for graphs with arboricity O(n'/?) (namely it is tight for any feasible m) as it is always
the case that m > T for I' = O(n'/3).

3. For any I' < (n/2)'/? and any feasible n < m < T'® we provide a lower bound of Q(m!/3)
queries. Since it is always the case that m > I'2, a lower bound of Q(F2/ 3) queries is also
implied.

To summarize, for graphs of arboricity I' = O(n'/?) we obtain that our upper bound is
tight for a large range of average degrees. Additionally, for the range of average degrees in
which we do not provide tight bounds, our upper bound is essentially O(T") while our lower
bound is Q(I'?/3) in the worst case.

R. Levi

1.2 Related Work
1.2.1 Property testing of triangle freeness

As mentioned above, testing triangle freeness, in the context of property testing, was first
studied by Alon et al. [2] in the dense graphs model. They showed that triangle freeness
can be tested in time which is independent of the size of the graph. However, their upper
bound has tower-type dependence in 1/e. Alon [1] showed that the query complexity of this
problem in the dense-graphs model is indeed super-polynomial in 1/e.

In the bounded degree model Goldreich and Ron [9] observed that it is possible to test
triangle freeness with query complexity O(1/¢) in graphs of maximum degree bounded by
some constant.

The problem of testing triangle freeness in the general graph model was first stud-
ied by Alon, Kaufman, Krivelevich, Ron [3]. The query complexity of their algorithms
dependent on n and d, the number of vertices in the graph and the average de-
gree, respectively. They provided sublinear upper bounds for almost the entire range
of parameters. Moreover, their upper bounds are at most quadratic in their lower
bounds. Specifically, their upper bound, which is combined from several upper bounds
is O(min{(nd)'/? /%2, (n*3/d?/?)/e*}). Their lower bound, which is also combined from
several lower bounds, is Q(max{(n/d)"/?, min{d, n/d}, min{d"/? n?/3/d"/3} . n=0(M}),

Rast [13] improved the upper bound of [3] for graphs with average degree in the
range [clnl_/f’,chl/Q} where ¢; and ¢y are some constants. The upper bound in [13] is
O(max{(nd)*°,n?/3 /d'/3}).

Gugelmann [10] provided a lower bound which improves the lower bound in [3] for graphs
with average degree in the range [can/ 5,702714/ 5] where ¢; and ¢y are some constants. The
lower bound in [10] is Q(min{(nd)/3 n/d}).

1.2.2 Sublinear algorithms that receive the arboricity of the graph as a
parameter

Eden, Ron and Rosenbaum [5] designed an algorithm that given n, the number of edges of
the input graph and an upper bound on the arboricity of the input graph, I', the algorithm
makes O(T"/ d+log®n /€) queries on expectation and samples an edge of the graph almost
uniformly. More specifically, each edge in the graph is sampled with probability in the range
[(1—¢€)m,(1+e)m].

Eden, Ron and Seshadhri [6] estimate the degree distribution moments of an undirected
graph. In particular, for estimating the average degree of a graph, their algorithm has
query complexity of @(F/ J). As they show in their paper, if ' is not given as an input to
the algorithm then estimating the average degree is not possible in general with this query
complexity.

In another paper, Eden, Ron and Seshadhri [7] give a (1 & €)-approximation for the
number of k-cliques in a graph given a bound on the arboricity of the graph I'. In particular
for triangles they provide an upper bound with expected running time, in terms of n, I' and
the number of triangles in the graph, n3, of min{nI'?/ng, n/né/?’ +(mI')/n3}-poly(logn, 1/¢).

93:3

ICALP 2021

93:4

Testing Triangle Freeness in the General Model in Graphs with Arboricity O(4/n)

1.2.3 Testing graphs for bounded arboricity

Eden, Levi and Ron [4] provided an algorithm for testing whether a graph has bounded
arboricity. Specifically, they provide a tolerant tester that distinguished graphs that are
e-close to having arboricity I'" from which are ¢ - e-far from having arboricity 3I', where c is
an absolute constant. The query complexity and the running time of their algorithm is in
terms of n, m and T is O(n/y/m 4+ nI'/m) and is quasi-polynomial in 1/e.

1.3 Comparison between our upper bound and upper bounds in previous
work

As mentioned before, Alon et al. [3] provide tight bounds only in two cases. The first case
is when dpax = O(J) and d < \/n, where dy,.x denotes the maximum degree and d denotes
the average degree of the graph. In this case, it follows that T' = O(dpay) = ©(d) an so
our upper bounds essentially match. Additionally we note that a bound on the arboricty
of the graph does not imply a bound on the maximum degree of the graph. In fact, the
maximum degree could be ©(n) while the arboricity is ©(1) (as it is the case in the star
graph). Consequently, the tightness of our upper bound is not restricted for graphs which
have bounded maximum degree.

The second case is when d = O(1), for these graphs the running time complexity of their
algorithm is (:)(nl/ 2). For this case, the running time complexity of our upper bound is
O(I"). We note that in graphs in which d = ©(1), T' could range between O(1) and ©(n'/?).
Therefore when d = O(1) the complexity of our upper bound is not worse than the complexity
of the upper bound in [3] but could be much better, depending on T'.

For average degree in the range between Q(1) and O(n?/%) and in the range between
Q(n'/?) and O(n?/3) the upper bound of O(m'/?) queries of Alon et al. achieves the best
running time, in terms of n and m. For these ranges, the running time of our algorithm
is O(T). Since m'/? > T, we obtain that for this ranges as well the performances of our
algorithm are at least as good (up to O(loglogn) and poly(1/e) factors) but could be
significantly better.

For average degree in the range between Q(n?/°) and O(n'/?) the upper bound of
O(max{(nd)*°,n?/3/d'/3}) queries of Rast [13] achieves the best running time. In this
range our upper bound is always better than the upper bound of [13] for graphs of arboricity
O(n12/21)

1.4 High-level of Our Algorithm

It is well known that a graph which is e-far from being triangle free has Q(em) edge-disjoint
triangles (see Claim 1). Therefore if we were able to sample edges uniformly from the graph
then after sampling O(1/¢) edges we would sample an edge {u, v} which belongs to a triangle.
Thus, if we revealed the entire neighborhood of u and the entire neighborhood of v then we
would find a triangle in the graph. Our algorithm is based on this simple approach. There
are only two problems that need to be addressed. The first problem is that sampling edges
uniformly in a graph in which the degrees have high variability is too costly. The second
problem, which also stems from the variability of the degrees in the graph, is that revealing
the entire neighborhood of a vertex can be too costly, depending on its degree.

This is where the arboricity of the graph comes into play. For a graph of arboricity T,
as was shown in [4], the fraction of edges in the subgraph induced on heavy vertices, that
is, vertices with degree greater than cI'/e where ¢ is some absolute constant, is at most €/2.

R. Levi

Therefore, if I' was given to us as a parameter then we could, in some sense, ignore the
subgraph induced on vertices of degree greater than ©(T'/e) since a graph which is e-far from
being triangle free still have Q(em) violating edges (and Q(em) edge-disjoint triangles) even
after we remove this subgraph entirely. Ignoring this subgraph allows us on one hand to
sample edges almost uniformly from the resulting graph while making only Q(T'/d) queries,
and also guarantees that there are Q(em) violating edges for which both endpoints are not

heavy. This solves the two problems we had with taking the simple approach.

However a bound on the arboricty of the graph is not given to the algorithm as a
parameter. Since approximating the arboricity of a graph up to a constant factor is not
possible in sublinear time (to see this consider a graph with a hidden clique), we estimate

a different parameter which we informally refer to as the effective arboricity of the graph.

We show that this parameter suffices for our needs. In fact, this parameter could be much

smaller than T, in which case the complexity of our algorithm is better than O(T'/d + T).

We reduce the problem of approximating the effective arboricity of the graph to the problem
of estimating the number of edges in the graph in which we remove the subgraph induced on
heavy vertices, where heavy vertices are defined with respect to increasing thresholds. We

stop increasing our threshold once the estimation of the number of edges is sufficiently large.

As we prove, with high constant probability, our approximation to the effective arboricity is
bounded by O(T") which leads to a tester with running time O(I'/d 4 T), as claimed.

1.5 Lower Bounds

Our first lower bound of Q(I'/d) for graphs in which d < 1 is based on a simple hitting
argument. Specifically, construct a graph which is 1/3-far from being triangle free in which
Q('/d +T) = Q(I'/d) queries are required in order to sample a vertex which is not isolated
with probability that is at least 1/3.

Our other two lower bounds are simple adaptations of the lower bound of Q(min{d,n/d})
queries presented in Alon et al. [3].

2 Preliminaries

Let G = (V,E) be an undirected graph and let d = 2m/n denote the average degree of
G where n = |V| and m = |E|. For each vertex v € V, let deg(v) denote the number of
neighbors of v. For a subset of vertices S C V' we denote by G([S]) the subgraph induced on
S. For a directed graph D we denote by cfout(D) the average out-degree of D.

A graph G is triangle free if for every three vertices, u,v,w in G at least one pair in
{{u, v}, {v,w},{w,u}} is not an edge of G. A graph G is e-far from being triangle free if
more than em edges need to be removed in order to make G triangle free.

In the general graph model the tester accesses the graph via the following oracle queries.

1. Degree queries: on query v the oracle returns deg(v).

2. Neighbor queries: on query (v,4) where i € [deg(v)], the oracle returns the i-th neighbor
of v.

3. Vertex-pair queries: on query {v, u} the oracle returns whether there is an edge between
uw and v.

An algorithm is a tester for the property of triangle freeness if given a proximity parameter
e and access to an input graph G, it accepts G with probability at least 2/3 if G is triangle
free and rejects G with probability at least 2/3 if G is e-far from being triangle free. If the
tester always accepts graphs which are triangle free we say it has one-side error. Otherwise
we say it has two-sided error.

93:5

ICALP 2021

93:6

Testing Triangle Freeness in the General Model in Graphs with Arboricity O(4/n)

> Claim 1. A graph G = (V| F) which is e-far from being triangle free has at least em/3
edge-disjoint triangles.

Proof. Consider a procedure that given a graph G, as long as there is triangle, ¢t in G it
deletes all the edges of ¢t and proceeds in this manner until there are no triangles in the graph.
The number of edges which are deleted by this process is at least em. Therefore the number
of edge disjoint triangles that are deleted is at least em/3. The claim follows. <

The arboricity of an undirected graph G, denoted by I'(G), is the minimum number of
forests into which its edges can be partitioned. Equivalently it is the minimum number of
spanning forests needed to cover all the edges of the graph.

3 The Algorithm

3.1 First Step: computing the threshold for defining heavy vertices

As described above, for an input graph G, the number of edges in the subgraph induced
on the heavy vertices w.r.t. the threshold 4I'(G)/e is at most (¢/2)|E(G)| (see Claim 4).
Therefore, when testing triangle freeness, we may, roughly speaking, ignore this subgraph
with the hope of obtaining better complexity. Since I'(G) is not given to the algorithm as
a parameter, we compute, in Algorithm 1, a different parameter of the graph, denoted by
I'*, which is, roughly speaking, an approximation of the effective arboricity of the graph. In
order to specify the guarantees on I'* we shall need a couple of definitions.

» Definition 2. For a graph G = (V, E) and a threshold t we define the set of heavy vertices
with respect to ¢t as Hy(G) = {v € V : d(v) >t} and the set of light vertices with respect to

When G is clear from the context we may simply use H; and L;. Using the definition of
H:(G), we next define the graph H (G, t) which is defined w.r.t. G and a threshold t.

» Definition 3 (The undirected graph H(G,t)). For a graph G = (V, E) and a threshold t,
the graph H(G,t) is an undirected graph defined as follows. The set of vertices of H(G,1t) is
V and the set of edges of H(G,t) is E(G) \ {{u,v} : v € H(G) and v € H(G)}. Namely,
H(G,t) is the graph G after removing the edges for which both endpoints are heavy with
respect to t.

> Claim 4. For a graph G, I'" > I'(G) and n € (0,1] it holds that |[E(H(G,T"/n))| >
(1=2n)[E(G)].

Proof. We shall prove the claim about IV = I". The general claim will follow from the fact
that |E(H (G,)| is monotonically non-decreasing in x. Let G([H;]) denote the sub-graph
induced on H¢(G) where t = I'/n and let k denote the number of edges of this graph. Our
goal is to show that k < 2nm where m = |E(G)|. The sum of the degrees of vertices in
H(G) is greater than t - |[H(G)|, therefore m > t - |Hy(G)|/2. On the other hand, since
the arboricity of G([H]) is also bounded by T it follows that k& < |H;(G)| - T'. Therefore
k< 2m/t-T = 2nm, as desired. <

The guarantees on I'*, which is the return value of Algorithm 1 (that will be described
next), are as described in the following claim.

R. Levi

> Claim 5. With probability at least 5/6, I'* returned by Algorithm 1 is such that:
1. |[E(H(G,t))| > (1 — (¢/6))m where t = T'*/(48¢),
2. T* <2T'(G).

Algorithm 1 proceeds in iterations where in each iteration it multiplies I'* by a factor of 2,
where initially T'* is set to 1. It stops when the estimated number of edges in E(H(G,t)), for
t which is ©(I'* /¢), is at least |[E(G)|(1 — O(e)). In order to estimate the number of edges in
E(H(G,t)), Algorithm 1 calls Algorithm 2.

In turn, Algorithm 2 uses the directed graph D(G, t), which we defined momentarily, that
is constructed from G and can be accessed by making a constant number of queries to G.

» Definition 6 (The directed graph D(G,t)). The graph D(G,t) is a directed version of the
graph H(G,t) in which we orient the edges as follows. For every edge {u,v} of H(G,t), we
orient the edge from u to v if: (a) w € Ly and v € Hy or (b) both u € Ly and v € L, and
id(u) < id(v). Otherwise, we orient it from v to u.

Algorithm 1 Compute T'".

Input: Access to a graph G and parameters n, m and € € (0, 1]
Output: I'* as described in Lemma 5

1 Set 'y =1

2 for i =1 to logn do

3 Run Algorithm 2 on G with parameters n, m, €/24, t; and 6 = ©(loglogn) where

t; T';/(24¢) . Let Z; denote the returned value.

4 If Z; < (1 —€/12)m then set T'; ;1 = 2T;, otherwise, return T';

Algorithm 2 Estimate the number of edges of H(G,).

Input: Access to an undirected graph G and parameters parameters n, m, €, t and 9,
where n = |V(G)| and m = |E(G)|
Output: Estimation to the number of edges of H(G,t)
1 Sample r = @(5_16_2t/(2), where d = m/n, vertices vy, ..., v,, uniformly at random
from V(G).
2 For each i € [r]:
1. Sample a random neighbor of v;, u. If the edge between u and v; is oriented from
v; to w in D then set Y; = 1, otherwise set Y; =0
2. Set X; = (dout(v)'i'tdin(v))'}/i

Return X = “V@L . s~ X,

T i€[r]

The following claim specifies the guarantees of Algorithm 2.

> Claim 7. Given a query access to a graph G and parameters n, m, €, t and § where
n = |V(G)| and m = |E(G)|, Algorithm 2 outputs X such that w.p. at least 1 — 2/%
I-—em <X < Q+em if m > (1—-2)m, and X < (1 — €)m, otherwise, where
m' = |E(H(G,1))|.

Proof. First observe that Y; is an indicator variable to the event that the edge selected in the
i-th iteration of Algorithm 2, {v;,u} is an out-edge of v; in D(G,t). Since V(G) = V(D(G, 1))
we obtain the following.

93:7

ICALP 2021

93:8

Testing Triangle Freeness in the General Model in Graphs with Arboricity O(4/n)

NS S _ ow(v)
B0 = D@) e PED o) + duo) .
Similarly,
_ 1 dout (U) + din (U) dout (’U)
B = vy e T Jon(0) + i)
1y dowe(v) _ dou(D(G,1))
VD@ o) ey Lo

Observe that if v; € Hy(G) then doyi(v) = 0 and so Y; = X; = 0. On the other hand, if
v; € Li(G) then doyt(v) + din(v) < t. Therefore, in both cases X; € [0,1]. Thus, for » which
is ©(1/(0e*E(X4))) it follows by Multiplicative Chernoff’s bound that with probability at
least 1 — 21/9,

1-OEX) <Y Xi/r < (1+eE(Xy).

i€[r]
And so
V(G- 1=eE(Xy) <X <t-[V(G)|-(1+€e)E(Xy) .
Since ¢ - |V(G)| - B(X1) = |E(H (G, t))| we obtain that
(1—o)-|B(H(G.))| < X < (1+¢) - [EHG, 1) -

Hence, if |E(H(G,t))| > (1 — 2€)m then dou(D(G,t)) = ©(d(G)) and so E(X;) =
0(d(G)/t), implying that » = ©(1/(0e?E(X1))), as desired. On the other hand, if
|E(H(G,t))| < (1—2€)m, then it is not hard to see that the claim follows by a straightforward
coupling argument. More specifically, first assume that |[E(H(G,t))| = (1 — 2¢)m and so by

the above, with probability at least 1 — 21/9,
X <(1+4+¢)|EHG,)=14+€e)(l—-2¢)m < (1 —¢€)m.

Therefore, it follows by a coupling argument that with probability at least 1 — 21/ X <
(1 — €)m also in the case that |EF(H(G,t))| < (1 —2¢)m. <

> Claim 8. For an input graph G and parameters n, m, €, t and §, where n = |V(G)| and

m = |E(G)|, the time complexity and query complexity of Algorithm 2 is O(§~te=2t/d(G)).

Proof. The claim follows from the fact that in order to implement Steps 2.1 and 2.2 of
Algorithm 2 the algorithm makes a constant number of queries to G. Specifically, for each v;
the algorithm either performs a single degree query (in case v; € H¢(G) then Y; = X; = 0)
or a single adjacency-list query and 2 degree queries in case v; € L:(G) (the orientation of
the edge {v;,u} can be determined by the degrees and ids of v; and). The implementation
of Step 2.2 does not require additional queries as dout(v;) + din(v;) = dg (v;). <

We are now ready to prove Claim 5.

Proof of Claim 5. For the sake of analysis assume that Algorithm 1 performs all log n iterations
of the for-loop. Let E; denote the event that Z; is as claimed in Claim 7. By Claim 7, for a
fixed ¢, the probability that E; occurs is at least 1/(6logn) for an appropriate setting of ¢.
Therefore, by the union bound the probability that F; occurs for all ¢ € [logn] is at least
5/6. From this point on we condition on the event that indeed E; occurs for all i € [logn].

R. Levi

Let m; = |E(H(G,t;))| for every i € [logn]. Let j denote the iteration in which
Algorithm 1 returns a value. By Step 4 of Algorithm 1, Z; > (1 — €/12)m. By Claim 7, it
follows that m; > (1 — €/6)m, as desired (to see this note that if m; < (1 —€/6)m then By
Claim 7, Z; < (1 — €/12)m).

To prove the claim about I'* we consider the minimum j/ > 1, for which 2/'~1 > T.
If j < j/ then clearly T'* < T, as desired. Otherwise, we claim that j = j’ (namely, that
I'* = 27'~1) which implies that I'* < 2T, as desired. To see this, first note that by Claim 4,
for any I' > T" and n € (0, 1], |[E(H(G,I"/n))| = (1 — 2n)m. Therefore m} > (1 — €/24)m.
Therefore, by Claim 7, Z; > (1 — ¢/24)m); > (1 — ¢/24)*>m > (1 — ¢/12)m, which implies
that the algorithms stops at the j/-th iteration. <

3.2 Second Step: sampling edges almost uniformly given a threshold for
heavy vertices

Given a threshold ¢, Algorithm 3 samples an edge from H(G,t) almost uniformly as described
in the next claim.

> Claim 9. Algorithm 3 samples an edge from H(G,t) such that for each edge, e, of

H(G,t), the probability to sample e is in [%, %}, where c¢; and ¢y are absolute constants
and m' % |E(H(G,t))]. If t is such that m’ > |E(G)|/2 then the expected running time of

the algorithm is O(t/d(Q)).

Proof. Consider a single iteration of the while loop of Algorithm 3. For an edge e in H(G,t)
let p(e) denote the probability that e is returned in this iteration of Algorithm 3. If e is an
edge such that both endpoints are in L;(G), then p(e) = 2 - 1 . If e is an edge such that one
endpoint in Li(G) and the other endpoint is in Hy(G), then p(e) = L - 1 . Therefore for any
two edges e; and ep in H(G,t) the probability that ey is picked by the algorithm is at most
twice the probability that es is picked by the algorithm. Since Algorithm 3 only returns
edges in H(G,t), the claim about the probability to sample an edge follows.

For a fixed iteration of the while loop, the probability that tpe algorithm returns one
of the edges of E(H(G,t)) is at least m’- L - 1 which is at least d(G)/(2t) in the case that

m’ > |E(G)|/2. Therefore in this case the expected number of iterations of the while loop is
at most (2t/d(G)). Hence the claim about the expected running time follows. <

Algorithm 3 Sample an edge from H(G,t) almost uniformly.

Input: Access to a graph G and a parameter t.
1 while do
Pick u.a.r. a vertex v from V(G)
Pick v.a.r. j € [t]
If v € Li(G) and v has a j-th neighbor, u, then return {v, u}.

W N

» Remark 10. We remark that Algorithm 3 is stated as a Las Vegas algorithm. Moreover,
if m < |E(G)|/2 then we can not obtain from Claim 9 any bound on the expected running
time of the algorithm. However, we note that since ¢ and d(G) are known then we can set
a timeout for the algorithm (specifically ¢t/d(G) for some constant ¢) and incorporate the

event that we were forced to stop the algorithm in the failure probability of the tester.

93:9

ICALP 2021

93:10

Testing Triangle Freeness in the General Model in Graphs with Arboricity O(1/n)

3.3 Putting things together - the algorithm for testing triangle freeness

Using Algorithms 2 and 3 we are now ready to describe our tester (Algorithm 4).

Algorithm 4 Testing Triangle-Freeness.

Input: Access to a graph G and parameters n, m, and e.
1 Execute Algorithm 2 with parameters n, m and e and let I'* denote the returned

value
2 Let t =T"/e
3fori=1tos=0(c"!) do

'y

Execute Algorithm 3 on G with parameter ¢ and let {u, v} denote the edge
returned by the algorithm.
5 If both u € Li(G) and v € L¢(G) then return REJECT if N(u) N N(v) # 0

6 Return ACCEPT

Since the tester has one-sided error (it rejects only if it finds a witness for violation, i.e.,
a triangle) its correctness follows from the following claim.

> Claim 11. If G is e-far from being triangle free then Test Triangle Freeness finds
a triarigle with probability at least 2/3. The expected running time of the algorithm is
O (T'/d(G) +T) - poly(e™1).

Proof. Let G = (V, E) be an input graph which is e-far from being triangle free. There are
at least em/3 edge-disjoint triangles in G (see Claim 1). Let E; denote the event that for I'*
that is return by Algorithm 1 it holds that |E(H(G,t))| > (1 — (¢/6))m where t = I'*/e. By
Claim 5 E occurs with probability at least 5/6. Given that E7 occurred, it follows that there
are at least (¢/3)m — (¢/6)m = (¢/6)m edge-disjoint triangles in H(G,t). Let {t1,...,tx}
be an arbitrary subset of these edge-disjoint triangles where k def (e/6)m. By the definition
of H(G,t) it holds that for every edge {u,v} € E(H(G,t)) either u € L,(G) or v € L,(G).
Thus, for every i € [k] the triangle ¢; includes an edge {x;,y;} such that both z; and y; are
in L{(G). Therefore, there are at least k edges in H(G,t) such that if Algorithm 3 returns
one of these edges in Step 4 of Algorithm 4 then Algorithm 4 rejects. For every i € [s], let
E5 ; denote the event that Algorithm 3 returns one of these edges in the i-th iteration of
Algorithm 4.

By Claim 9, given that E; occurred, the probability that Es; occurs (given that the
algorithm did not return REJECT before the i-th iteration) is at least ce for some absolute
constant c¢. Therefore the probability that both Ey and Es ; occur for some ¢ € [s] is at least
2/3 for an appropriate setting of s. Thus the algorithm rejects with probability at least 2/3
as desired. <

4 Lower Bounds

4.1 Lower bound of 2((I'n)/m) for any I and any feasible m > 1

» Theorem 12. For any I' <n — 1 and any m > 1 which is feasible w.r.t. T, any algorithm
for testing triangle-freeness must perform Q((I'n)/m) queries where n, m and T’ denote the
number of vertices, the number of edges and the arboricity of the input graph, receptively.
This lower bound holds even if the algorithm is allowed two-sided error.

R. Levi

Proof. We consider the following graph G over n vertices, m edges and of arboricity I'. V3
and V, are subsets of 2m/(3T") vertices each and V3 is a subset of T'/2 vertices. V;, V2 and
V3 are pairwise disjoint. The edges of the graph are as follows. The sub-graph induced on V;
and V3 is a complete bipartite graph with V7 on one side and V3 on the other side. Similarly
the subgraph induced on V5 and Vj is also a complete bipartite graph. Between V; and Vs we
take T'/2 edge disjoint prefect matchings. Consequently the degree of every node in V; and
V4, as well as the arboricity of the graph, is exactly I'. The number of edge disjoint triangles
in the graph is at least m/3. To see this consider the following correspondence between an
edge {u, v} such that u € V] and v € V5 and a triangle in the graph. Let i € [I'/2] denote the
matching for which {u, v} belongs to, then triangle that corresponds to {u, v} is {u,v,w;}.

Therefore the graph is (1/3)-far from being triangle free (if ¢1,...,,,/3 are edge disjoint
triangles of G then we need to delete at least one edge per triangle in order to make G

triangle free). The number of queries we need to make to hit either V3 or V4 is Q((I'n)/m).

The number of queries we need to make to hit Vs is Q(n/T). Since m = Q(I'?), we obtain
a lower bound of Q((I'n)/m) queries in order to hit a vertex from V; U V5 U V5. Therefore
unless the tester makes Q((I'n)/m) queries, it can not distinguish between G and the empty
graph. The theorem follows. |

4.2 Lower bound of Q(T") for any T" and any feasible m > I'®
We adapt the following lower bound of Alon et al. [3].

» Theorem 13. Any algorithm for testing triangle-freeness must perform Q(min{d,n/d})
queries. This lower bound holds even if the algorithm is allowed two-sided error and even for

dmax = O(d).
Using Theorem 13, we shall prove the following claims.

> Claim 14. For any I' and any feasible m w.r.t. I' such that m > I'*, any algorithm for
testing triangle-freeness must perform Q(I") queries, where m and I' denote the number of
edges and the arboricity of the input graph, respectively. This lower bound holds even if the
algorithm is allowed two-sided error.

Proof. Assume towards contradiction that there exists an algorithm A for testing triangle-
freeness that is allowed two-sided error and performs o(I') queries even for input graphs
for which m > I'3, where m and I" denote the number of edges and the arboricity of the
input graph of A, respectively. We will show that there exists an algorithm B for testing
triangle-freeness (with two-sided error) for graphs in which M/N =T, N = m/T’ and the
maximum degree is I', whose query complexity is o(I'), where M and N denote the number
of edges and the number of vertices of the input graph of B, respectively. This will contradict
the lower bound in Theorem 13 as min{M /N, N?/M} = min{I',m/T'?} =T, where the last
inequality follows from the fact that m > I'2.

Let m, n and I" be such that m is feasible w.r.t. I and m > I'3. Therefore I'® < m < I'n.
Let G be a graph over N vertices and M edges for which M/N =T, N = m/T" and the
maximum degree is I'. Given such an input graph G, the algorithm B simulates A on another
graph, G’, that will be described momentarily, and returns the output of A on G’. The graph
G’ is constructed from G and has the following properties:

1. G’ has arboricity T.

2. Any query on G’ can be answered by performing at most a single query to G

3. If G is triangle free then G’ is triangle free as well.

4. If G is e-far from being triangle free then G’ is e-far from being triangle free as well.

93:11

ICALP 2021

93:12

Testing Triangle Freeness in the General Model in Graphs with Arboricity O(1/n)

G’ is simply the graph G with n — N isolated vertices (observe that n > N since m < I'n).
Since M = m, Item 4 follows. Items 1 and 3 follow from construction and the bound on the
maximum degree of G. Item 2 follows from the fact that any query to the graph G’ is can
be answered either by performing a single query the graph G’ or to without performing any
query to G (in case the algorithm queries the subgraph induced on the additional n — N
isolated vertices of G').

The completeness and soundness of algorithm B follows from the correctness of algorithm A
and Items 3 and 4, respectively. The claim about the query complexity of algorithm B follows
from Item 2 and the assumption on the query complexity of algorithm A. This completes
the proof of the claim. <

4.3 Lower bound of Q(m?'/3) for any T' < (n/2)/? and any feasible
n<m<TI3

> Claim 15. For any I' < (n/2)"/? and any feasible m w.r.t. T such that n < m < I'3,
any algorithm for testing triangle-freeness must perform Q(m'/3) queries, where m, n and
I" denote the number of edges, number of vertices and the arboricity of the input graph,
respectively. This lower bound holds even if the algorithm is allowed two-sided error.

Proof. The proof of this claim follows the same lines as the proof of Claim 14. Assume
towards contradiction that there exists an algorithm A for testing triangle-freeness that
is allowed two-sided error and performs o(m!/?) queries even for input graphs for which
n < m < I'®, where m, n and I' denote the number of edges, number of vertices and the
arboricity of the input graph, respectively. We will show that there exists an algorithm B for
testing triangle-freeness (with two-sided error) for graphs in which M = N3/2 = ©(m) and
the maximum degree is M /N, whose query complexity is o(M/N), where M and N denote
the number of edges and the number of vertices of the input graph of B, respectively. This
will contradict the lower bound in Theorem 13 as min{M/N, N?/M} = M/N, where the
last inequality follows from the fact that M = N3/2,

Let m, n and T be such that m is feasible w.r.t. I and n < m <T3. Let G be a graph
over N vertices and M edges for which M = N3/2 = m/2 and for which the maximum degree
is M/N. Given such an input graph G, the algorithm B simulates A on another graph, G’,
that will be described momentarily, and returns the output of A on G’. The graph G’ is
constructed from G and has the following properties:

1. G’ has arboricity T.

2. Any query on G’ can be answered by performing at most a single query to G

3. If G is triangle free then G’ is triangle free as well.

4. If G is e-far from being triangle free then G’ is at least ¢/2-far from being triangle free as
well.

G’ is composed of the graph G, a complete bipartite graph A over 2I" vertices and a
graph I of n — N — 2T isolated vertices. Observe that n — N > 2I" since < n/2 and
N = M?/3 <T?/22/3 < n/2. The graph A has T" vertices on each side, A; and Ay and I'?
edges. Item 4 follows from the fact that M = m — T2 > m — n/2 > m/2. Observe that
maximum degree of G is at most I" since M/N < mi/3 <T. Therefore, Items 1 and 3 follow
from the fact that the arboricity of A is I' and the bound on the maximum degree of G.
Item 2 follows from the fact that any query to the graph G’ is can be answered either by
performing a single query the graph G’ or to without performing any query to G (in case
the algorithm queries the subgraphs A or I).

R. Levi

The completeness and soundness of algorithm B follows from the correctness of algorithm A

and Items 3 and 4, respectively. The claim about the query complexity of algorithm B follows
from Item 2 and the assumption on the query complexity of algorithm A. This completes
the proof of the claim. 5

—— References

1

10

11

12

13

Noga Alon. Testing subgraphs in large graphs. Random Struct. Algorithms, 21(3-4):359-370,
2002. doi:10.1002/rsa.10056.

Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large
graphs. Combinatorica, 20(4):451-476, 2000. doi:10.1007/s004930070001.

Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron. Testing triangle-freeness in
general graphs. SIAM J. Discret. Math., 22(2):786-819, 2008. doi:10.1137/07067917X.
Talya Eden, Reut Levi, and Dana Ron. Testing bounded arboricity. ACM Trans. Algorithms,
16(2):18:1-18:22, 2020. doi:10.1145/3381418.

Talya Eden, Dana Ron, and Will Rosenbaum. The arboricity captures the complexity of
sampling edges. In Christel Baier, loannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloguium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 52:1-52:14. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.52.
Talya Eden, Dana Ron, and C. Seshadhri. Sublinear time estimation of degree distribution
moments: The arboricity connection. SIAM J. Discret. Math., 33(4):2267-2285, 2019. doi:
10.1137/17M1159014.

Talya Eden, Dana Ron, and C. Seshadhri. Faster sublinear approximation of the number of
k-cliques in low-arboricity graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 1467-1478. SIAM, 2020. doi:10.1137/1.9781611975994.89.

Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653-750, 1998.

Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302-343, 2002. doi:10.1007/s00453-001-0078-7.

L. Gugelmann. Testing triangle-freeness in general graphs: Lower bounds. Bachelor thesis,
Dept. of Mathematics, ETH, Zurich, 2006.

Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness
in general graphs. SIAM Journal on Computing, 33(6):1441-1483, 2004. doi:10.1137/
S0097539703436424.

Michal Parnas and Dana Ron. Testing the diameter of graphs. Random Struct. Algorithms,
20(2):165-183, 2002. doi:10.1002/rsa.10013.

T. Rast. Testing triangle-freeness in general graphs: Upper bounds. Bachelor thesis, Dept. of
Mathematics, ETH, Zurich, 2006.

93:13

ICALP 2021

https://doi.org/10.1002/rsa.10056
https://doi.org/10.1007/s004930070001
https://doi.org/10.1137/07067917X
https://doi.org/10.1145/3381418
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://doi.org/10.1137/17M1159014
https://doi.org/10.1137/17M1159014
https://doi.org/10.1137/1.9781611975994.89
https://doi.org/10.1007/s00453-001-0078-7
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1002/rsa.10013

	1 Introduction
	1.1 Results
	1.2 Related Work
	1.2.1 Property testing of triangle freeness
	1.2.2 Sublinear algorithms that receive the arboricity of the graph as a parameter
	1.2.3 Testing graphs for bounded arboricity

	1.3 Comparison between our upper bound and upper bounds in previous work
	1.4 High-level of Our Algorithm
	1.5 Lower Bounds

	2 Preliminaries
	3 The Algorithm
	3.1 First Step: computing the threshold for defining heavy vertices
	3.2 Second Step: sampling edges almost uniformly given a threshold for heavy vertices
	3.3 Putting things together - the algorithm for testing triangle freeness

	4 Lower Bounds
	4.1 Lower bound of Omega((Gamma n)/m) for any Gamma and any feasible m > = 1
	4.2 Lower bound of Omega(Gamma) for any Gamma and any feasible m > = Gamma^3
	4.3 Lower bound of Omega(m^{1/3}) for any Gamma < = (n/2)^{1/2} and any feasible n < = m < = Gamma^3

