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Abstract
A probabilistic representation of a string x ∈ {0, 1}n is given by the code of a randomized

algorithm that outputs x with high probability (Oliveira, ICALP 2019, [30]). We employ probabilistic
representations to establish the first unconditional Coding Theorem in time-bounded Kolmogorov
complexity. More precisely, we show that if a distribution ensemble Dm can be uniformly sampled
in time T (m) and generates a string x ∈ {0, 1}∗ with probability at least δ, then x admits a
time-bounded probabilistic representation of complexity O(log(1/δ) + log(T ) + log(m)). Under mild
assumptions, a representation of this form can be computed from x and the code of the sampler in
time polynomial in n = |x|.

We derive consequences of this result relevant to the study of data compression, pseudode-
terministic algorithms, time hierarchies for sampling distributions, and complexity lower bounds.
In particular, we describe an instance-based search-to-decision reduction for Levin’s Kt complexity
(Levin, Information and Control 1984, [23]) and its probabilistic analogue rKt [30]. As a consequence,
if a string x admits a succinct time-bounded representation, then a near-optimal representation
can be generated from x with high probability in polynomial time. This partially addresses in a
time-bounded setting a question from [23] on the efficiency of computing an optimal encoding of a
string.
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1 Introduction

Shannon’s information theory provides a foundation for the study of data transmission and
data compression. However, it inherently considers probability distributions and random
variables, and for this reason it does not apply to an individual object. The theory of
Kolmogorov complexity on the other hand captures the information or computational content
of an individual string or message. Despite significant conceptual differences between the
two theories, results obtained in one setting sometimes admit an analogue in the other (see
e.g. the textbooks [12, 24, 34]).
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94:2 Efficient Coding Theorem via Probabilistic Representations

A fundamental result connecting the distributional framework of Shannon and the
information of an individual object x is the Coding Theorem in Kolmogorov complexity [22].1
This theorem states that if a randomized machine A generates a string x with probability δ,
then its Kolmogorov complexity K(x) is at most log(1/δ) + OA(1). The result is part of a
deep and beautiful theory that we will not be able to survey here. For a complexity-theoretic
perspective that is closer to our work, we refer to [21], where the coding theorem is referred
to as one of the four pillars of Kolmogorov complexity.

An issue with this result and with Kolmogorov complexity more broadly is that many
aspects of the theory are nonconstructive. For instance, computing or even estimating K(x)
of an input string x is known to be undecidable. This limits the applicability of Kolmogorov
complexity and of the aforementioned coding theorem in algorithms and complexity theory.

In order to import methods of Kolmogorov complexity from computability to complexity
theory, a number of works have introduced time-bounded variants of Kolmogorov complexity
(cf. [1, 2, 13, 3] for a survey of results). In other words, one considers the minimum description
length of a string x with respect to machines that operate under a time constraint. Among
many applications, this idea has led Sipser [35] to a proof that BPP is contained in the
polynomial hierarchy, and Levin [23, Section 1.3] to further develop universal search and
optimal search algorithms.

Naturally, many authors have investigated time-bounded variants of the main results in
Kolmogorov complexity.2 Unfortunately, under standard hardness assumptions some of its
most powerful theorems do not survive in time-bounded settings. Two notable examples
are the language compression theorem (see [8] and references therein) and the principle of
symmetry of information (see [26, 27]).

Our focus in this work is on the coding theorem and its applications. Interestingly, there
is no barrier to proving certain versions of the coding theorem in a time-bounded setting.
For instance, Fortnow and Antunes [5] have implicitly established a form of this result, under
a strong computational assumption. While their results are conditional and currently beyond
reach without an assumption, they indicate that a useful time-bounded version of the coding
theorem might be true.

Before proceeding with our discussion, we recall Levin’s time-bounded Kolmogorov
complexity. Let M be a deterministic machine and |M | be its description length. For a
string x ∈ {0, 1}∗,

Kt(x) def= min
TM M, t≥1

{|M | + log t | M(ε) outputs x in t steps},

where M(ε) denotes the computation of M over the empty string.3 An important advantage of
this definition over Kolmogorov complexity K(x) is that an encoding of minimal Kt complexity
can be computed in exponential time via exhaustive search. Moreover, given an encoding w

of x of Kt complexity at most k, we can recover x from w in time at most 2k. Beyond its
established applications in topics such as optimal search algorithms and pseudorandomness,
Levin’s Kt complexity plays an important role in a few other areas. Recent examples
include hardness magnification (e.g. [31, 10]) and the investigation of non-disjoint promise
problems [18].

1 Some authors also refer to it as the Source Compression Theorem or Source Coding Theorem.
2 Troy Lee’s PhD thesis [21] contains a particularly nice exposition of the contrast between Kolmogorov

complexity and its time-bounded variants, including pointers to relevant references.
3 To obtain precise results about the encoding lengths, it is necessary to fix a universal machine and to

consider short inputs for this machine that produce x, as done by Levin. Since our techniques are not
sensitive to encoding choices and our results incur a constant factor overhead in the encoding length,
this is not relevant for our discussion.
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A probabilistic version of Levin’s Kt complexity has been recently investigated in [30]. In
this definition, we minimize over randomized machines that output x with probability at
least 2/3 after computing for at most t steps. In other words,

rKt(x) def= min
RTM M, t≥1

{|M | + log t | M(ε) outputs x in t steps with probability ≥ 2/3}.

Consequently, an rKt description w of a string x provides a probabilistic representation of x,
in the sense that x can be recovered with high probability from w. (Note that the description
itself is a deterministic object.)

Under a mild derandomization assumption, Kt(x) = Θ(rKt(x)) for every string x [30,
Theorem 5]. If so, this would show that any object that can be succinctly described in a
probabilistic way can also be succinctly described in a deterministic way, and that results
about rKt can be transferred to Kt. However, we appear to be far from establishing this
relation, and it is consistent with our knowledge that there is an infinite sequence {xn}n≥1
where each xn is an n-bit string satisfying rKt(x) = O(log n) and Kt(x) = Ω(n).

We do know without assumptions that various natural objects such as certain n-bit prime
numbers can have rKt complexity no(1) [30, 32], while establishing even an upper bound of
o(n) on the Kt complexity of a sequence of n-bit primes would lead to a breakthrough in the
deterministic generation of primes [37]. It seems therefore that probabilistic representations
are useful to represent data, given our current knowledge of algorithms and complexity.

Another interesting aspect of rKt is that, despite its conjectured equivalence to Kt, we
are able to settle basic questions about rKt that remain longstanding conjectures in the
case of Kt. For instance, a natural computational problem is to approximate, given a
string x, the value rKt(x). In other words, we would like to decide if a string has a short
probabilistic representation. [30] proved unconditionally that this problem cannot be solved
in probabilistic polynomial time. In contrast, showing that computing Kt cannot be done
in deterministic polynomial time (i.e., proving MKtP /∈ P) is an important problem in
time-bounded Kolmogorov complexity (cf. [4]).

We are motivated by these intriguing recent results and by the possibility of studying
algorithmic information theory from the vantage point of probabilistic descriptions. The
following questions are particularly relevant in this context.

1. Is it possible to employ rKt to establish new results in time-bounded Kolmogorov com-
plexity? Specifically, can we establish an unconditional version of the coding theorem
discussed above?

2. We have natural examples where probabilistic representations might be helpful, but no
positive algorithmic results about finding such descriptions. Is it possible to compute a
probabilistic representation of a string in some non-trivial way?

3. Can we further develop the theory of probabilistic representations and show stronger
results for natural objects, such as prime numbers?

1.1 Contributions
We make progress in the context of these questions, obtaining results that suggest new
research directions connected to data compression, time-bounded Kolmogorov complexity,
search-to-decision reductions, and related areas. In particular, our results highlight the
usefulness of probabilistic representations in algorithms and complexity. We describe these
contributions in detail next.

ICALP 2021
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1.1.1 Main results
For an algorithm or machine A, recall that we use |A| to denote its description length under
a fixed encoding scheme. One of our main contributions in this work is to show that an
important result in Kolmogorov complexity survives in the time-bounded setting.

▶ Theorem 1 (Efficient Coding Theorem for rKt). Suppose there is a randomized algorithm A

for sampling strings such that A(1m) runs in time T (m) and outputs a string x ∈ {0, 1}∗ of
length n ≤ T (m) with probability at least δ > 0. Then

rKt(x) = O
(

log(1/δ) + log(T (m)) + log(m)
)
,

where the constant behind the O(·) depends on |A| and is independent of the remain-
ing parameters. Moreover, given x, m, the code of A, and δ, it is possible to com-
pute with probability ≥ 0.99 some rKt encoding of x of at most this complexity in time
poly(|A|, log(m), |x|, log(1/δ)).

A few comments are in order. It is not hard to prove an effective coding theorem for a
distribution whose cumulative probability function is computable in polynomial time (cf. [24]).
Other works have established incomparable results under the assumption that deciding if a
string is in the support of the distribution is easy (see e.g. [39]). Crucially, the theorem above
only assumes that the distribution is samplable, which makes it more broadly applicable. To
our knowledge, Theorem 1 is the first result that provides a general approach to constructing
a probabilistic encoding of a string.

It follows from Shannon’s Coding Theorem that the expected encoding length in Theorem 1
is essentially optimal up to a constant factor. An interesting feature of the result is that
the algorithm computing the rKt encoding runs in polynomial time regardless of the time
complexity of the sampler A(1m). Furthermore, producing the encoding of a string x only
requires knowledge of a lower bound on its probability weight, in contrast to encoding
algorithms such as Huffman coding where knowledge of the probabilities of all elements in
the support of the distribution is necessary.

Using an argument of Levin (see [16] and [21, Section 5.3] or [28, Section A.3]), under the
existence of one-way functions there is a polynomial-time samplable source Dn supported over
{0, 1}n such that every x ∈ Support(Dn) has probability weight Dn(x) ≥ 2−nε , but Dn does
not admit a pair (Encn, Decn) of efficient (probabilistic) encoding and decoding algorithms
such that each x ∈ Support(Dn) is assigned a description of length ≤ n − 3. In contrast,
Theorem 1 is able to sidestep this limitation by using an efficient encoding algorithm whose
associated decoding procedure (provided by the rKt representation itself) is not necessarily
efficient. There are applications where this trade-off might be acceptable, i.e., where it is
crucial to achieve high compression rates and fast (or low energy) encoding, but for which
decoding is allowed to take more resources.4

Similarly to the coding theorem in Kolmogorov complexity, it is possible to derive a
variety of consequences from Theorem 1. We cover in more detail one of its most unexpected
implications, deferring the discussion of a couple of other results to Section 1.1.2 below.

A search-to-decision reduction is an efficient procedure that allows one to find solutions
to a problem from the mere ability to decide when a solution exists. These reductions
are particularly important in algorithms and complexity. On the one hand, theories of
computational complexity are often easier to develop in the context of decision problems.

4 As a speculative scenario, one can imagine data transmission for deep space exploration.
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On the other hand, in practice solving a search problem tends to be the relevant task. A
search-to-decision reduction for a given problem shows that the complexities of its search
and decision versions are similar.

It is well known that any NP-complete problem admits a search-to-decision reduction.
However, there are problems of interest for which such reductions are still unknown. A
notable example in the realm of time-bounded Kolmogorov complexity is whether MCSP,
the Minimum Circuit Size Problem, admits a search-to-decision reduction (cf. [19] for a
discussion and a recent result).

We establish the existence of the following search-to-decision reductions for rKt and Kt
complexities.

▶ Theorem 2 (Instance-based search-to-decision reductions). The following results hold:
(i) There is a randomized polynomial-time algorithm that, when given an input string

x ∈ {0, 1}n and a value k ≥ rKt(x), outputs with probability ≥ 0.99 a valid rKt
representation of x of complexity O(k).

(ii) Similarly, there is a randomized polynomial-time algorithm that, when given an input
string x ∈ {0, 1}n and a value k ≥ Kt(x), outputs with probability ≥ 0.99 a valid Kt
representation of x of complexity O(k).

We note that [4] established that any language in deterministic exponential time E can be
non-uniformly reduced via polynomial-size circuits to the problem of deciding Kt complexity
(or even of just approximating Kt on a large fraction of inputs). Since the problem of finding
a minimal Kt representation of an input string can be encoded as a language in E, it follows
from their work that there is a polynomial-size search-to-decision reduction for Kt. Observe
that the reduction given by [4] finds a description of minimum length, while Theorem 2 only
provides a description that is within a constant factor of the optimal description length.

There are now a number of search-to-decision reductions in the context of time-bounded
Kolmogorov complexity with respect to a variety of string complexity measures (e.g. [9, 17, 19,
20, 25]). We are not aware, however, of a previous instance-based search-to-decision reduction
in the sense of Theorem 2. In other words, Theorem 2 shows that it is possible to produce a
near-optimal Kt representation of x from a decision oracle for Kt that is only queried on x.5
In contrast, the aforementioned reductions require an oracle to the decision problem that
is correct on all or at least on a large fraction of inputs. More broadly, search-to-decision
reductions for problems in other domains such as circuit satisfiability and graph theory tend
to query inputs that modify the original input x.

As a result of the property described above, we are able to derive consequences from
Theorem 2 that do not follow from other reductions. Unsurprisingly, our approach employs
significantly different techniques compared to the papers cited above. In particular, it departs
from the PRG-based approach of [4] and of a few other subsequent works.

We elaborate next on some aspects of Theorem 2 that make it particularly interesting,
at least to the authors. Note that Kt (similarly for rKt and probabilistic algorithms) is a
universal complexity measure for data compression, in the following precise sense. If a string
x can be encoded/decoded by some uniform compression scheme in time ≤ T and using a
description of length ≤ log T , then its Kt complexity is at most O(log T ). As a consequence,
compressing a string x to O(Kt(x)) bits is not far from optimal in a strong sense.

5 A binary search is sufficient to compute rKt(x) ∈ N from a decision oracle that checks if rKt(x) ≤ γ for
a given threshold γ.

ICALP 2021
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Now suppose we have a string x of length n, and we estimate its Kt complexity to be at
most, say, O(

√
n). Then finding a valid Kt representation of this complexity via exhaustive

search would take time 2O(
√

n). Assuming the widely believed hardness of estimating the Kt
complexity of a string (which is provably true for rKt by [30]), one is tempted to conjecture
that nothing better can be done. Still, Theorem 2 tells us that there is an algorithm that
can produce a valid Kt representation of x of complexity O(

√
n) in time just poly(n).6 This

result addresses to some extent in the time-bounded setting a question from [23, Page 5] on
the efficiency of generating programs of length close to the optimal description length.

It is unclear to us whether there are deterministic search-to-decision reductions for Items
(i) and (ii) of Theorem 2. Although this requires more investigation, it is possible that these
reductions provide natural examples of randomized algorithms that cannot be replaced by
deterministic ones with only a polynomial overhead.7

1.1.2 Further applications and open problems
Efficient construction of time-bounded programs and complexity lower bounds for estim-
ating rKt. By executing the efficient search-to-decision reduction from Theorem 2 with all
values of k = O(n) that are powers of 2, the following corollary is immediate.

▶ Corollary 3 (Effective short lists with short programs in short time). Given an arbitrary
string x of length n, it is possible to compute with high probability and in polynomial time
a collection of at most d = log(n) + O(1) strings w1, . . . , wd such that at least one of these
strings is a valid rKt encoding of x of complexity O(rKt(x)).

The same result can be obtained for Kt complexity. Corollary 26 should be contrasted
with the results from [7, 6] in the context of (time-unbounded) Kolmogorov complexity. They
achieve optimal compression rates, by mapping a string of Kolmogorov complexity k to a
collection of strings that contains a valid representation of length k + O(1). While we are
not able to achieve this level of compression, our setting is more stringent, since we need
to construct a short representation that can be decompressed under a time constraint. It
would be interesting to explore connections between our techniques and those employed in
Kolmogorov complexity to see if our parameters can be further improved.

In light of Corollary 3 and the complexity lower bound for estimating the rKt complexity
of a string ([30]; see Theorem 14), it follows that the intractability of estimating rKt does not
lie in the exhaustive search required to find a succinct representation. Instead, the hardness
is a consequence of the intractability of checking if a given rKt representation is valid for a
string x.

It is unlikely that circuit minimization of a given truth-table (MCSP) admits a search-to-
decision reduction of the form given by Theorem 2. This would allow one to construct in time
polynomial in the size of the input truth-table a collection of circuits that contains a circuit
of near-optimal size for the truth-table. As opposed to rKt, checking if a circuit correctly
encodes a string can be done in polynomial time, which implies that such a search-to-decision
reduction provides a natural property in the sense of [33]. Consequently, under cryptographic
assumptions, minimizing circuit size and minimizing Kt/rKt behave differently with respect
to instance-based search-to-decision reductions.

6 This does not contradict the intractability result from [30]. Indeed, it implies that checking if a given
representation generates a particular string is the problem that requires super-polynomial time.

7 Note that this is not inconsistent with P = BPP because these are not decision problems.



Z. Lu and I. C. Oliveira 94:7

Hardness of approximately sampling distributions. It is not hard to show that if Promise-
BPP ⊆ Promise-P then BPTIME[·] admits a time hierarchy theorem. This easily follows from
the deterministic time hierarchy theorem for decision problems. As a consequence of our
results, we observe that a similar derandomization hypothesis for decision problems implies a
strong time hierarchy theorem for sampling distributions.

To our knowledge, a uniform time hierarchy theorem for sampling distributions was
first established in [41]. While the results of his work are unconditional, [41] left open the
problems of proving an almost-everywhere lower bound and of achieving a larger statistical
gap [41, Section 5]. Our next result provides a conditional solution to these questions.

▶ Theorem 4 (A strong time hierarchy theorem for sampling distributions). Under the assump-
tion that Promise-BPE ⊆ Promise-E, there is a constant ζ > 0 for which the following holds.
Let n1/ζ ≤ T (n) ≤ 2n be any constructive time bound. There is an ensemble {Dn}n≥1 of
distributions Dn such that:

(i) Each distribution Dn is supported over a single string zn ∈ {0, 1}n.
(ii) There is a deterministic algorithm A(1n) that samples Dn and runs in time O(T (n)).
(iii) For each randomized algorithm B(1n) that runs in time O(T (n)ζ) and for every large

enough n, the statistical distance of Dn and B(1n) is at least 1 − 1/T (n)ζ .

We are not aware of a previous time hierarchy theorem for sampling distributions able
to produce hard distributions of support size one, even under computational assumptions.
(Interestingly, the unconditional results of [41] hold for support size k ≥ 2.) Note that
Theorem 4 exploits uniformity in a crucial way: each distribution Dn can be sampled by a
(non-uniform) linear-size circuit Cn that ignores its random input and outputs the unique
string zn in the support of Dn.

Computational patterns in prime numbers. We now step back and revisit one of the most
basic questions associated with the power of probabilistic representations. The problem
stated below is concerned with the computational (in)compressibility of n-bit prime numbers.

▶ Problem 5 (Primes with short descriptions). Is there an infinite sequence {pn}n≥1 of prime
numbers pn ∈ [2n−1, 2n − 1] such that rKt(pn) = o(n)?

This would show that there are primes of every large length that admit effective short
encodings, i.e., such primes possess computational patterns that translate into effective
representations (e.g. Mersenne primes). A partial result appears in [32], where this is proved
for infinitely many n. Consequently, some primes can have short descriptions. Is this a rare
phenomenon, or does it happen for primes of all lengths? This is the question captured by
Problem 5.

We note that obtaining a solution to Problem 5 is necessary before showing the existence
of a deterministic algorithm that generates n-bit primes in time 2o(n). We refer to [37] for
more background on this problem.

Theorem 1 offers a path to solving this problem. In other words, it shows that it is enough
to sample n-bit numbers in time 2o(n) in a way that assigns enough weight to some (possibly
unknown) prime. Given that many advances to our understanding of prime numbers employ
probabilistic ideas (see e.g. [38, 29] and references therein), this perspective could be fruitful.

Our last result shows that the existence of a sampler of this form is in fact equivalent to
a positive solution to Problem 5.

ICALP 2021
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▶ Theorem 6 (Equivalence between faster samplability and improved time-bounded descriptions).
The following statements are equivalent:

(i) Sampling Algorithm. For every ε > 0, there is a randomized algorithm A(1n) sampling
strings in {0, 1}∗ that runs in time T (n) = O(2εn) and for which the following holds.
For every large n, there is an n-bit prime qn such that Pr[A(1n) outputs qn] ≥ 2−εn.

(ii) Short Descriptions. Let δ > 0 be an arbitrary constant. For every large n, there is an
n-bit prime pn such that rKt(pn) ≤ δn.

We stress that the equivalence in Theorem 6 is not particular to prime numbers and to
exponential time bounds. It can be seen as the analogue for rKt of Levin’s fundamental
insight that a sequence of objects (such as n-bit primes or solutions to search problems) can
be deterministically generated in time T (n) if and only if they have Kt complexity of order
log(T (n)).

Finally, complementing the applications and open problems mentioned above, it would
be interesting to understand when a mathematical method employed to show the existence
of certain combinatorial objects also implies the existence of objects of bounded rKt com-
plexity. This is particularly interesting in settings where the desired objects are “rare” and
the probability of producing them is small (e.g. Lovász local lemma and techniques from
discrepancy theory). Extracting rKt upper bounds from existential proofs offers an alternate
way of designing non-trivial algorithms for generating the corresponding objects, since it is
sufficient to exhaustively search for objects of bounded description length.8

1.2 Techniques
In this section, we describe the main conceptual ideas behind Theorems 1 and 2. Since
our goal is to establish a coding theorem in a time-bounded setting and our applications
require an algorithm that produces a valid encoding in polynomial time, it is not clear if
arguments employed in the context of (unbounded) Kolmogorov complexity can be adapted
to our setting. For instance, it is not hard to construct an encoding given all strings in the
support of the distribution and their corresponding probabilities, but we cannot assume in
the time-bounded setting that this is available. Similarly, under additional assumptions on
the distribution, such as the ability to compute its cumulative probability function, producing
an encoding is easier. However, we are aiming for a result that applies to the larger class of
samplable distributions.

Sketch of the proof of Theorem 1. We are given a randomized algorithm A(1m) that runs
in time T and samples from a distribution Dm. Fix a string x ∈ Support(Dm), and assume that
its probability weight Dm(x) ≥ δ. Our goal is to (efficiently) produce a succinct probabilistic
representation of x in the sense of rKt complexity. The first thing to notice is that there are at
most 1/δ strings y ∈ Support(Dm) such that Dm(y) ≥ δ. Let Sδ

def= {y ∈ {0, 1}∗ | Dm(y) ≥ δ}
be the set of such strings, which includes our target string x. We assume for simplicity of
the exposition that Sδ ⊆ {0, 1}n, where n = |x| is the length of x.

Let’s pretend for now that we know the set Sδ. Note that this is not really a realistic
assumption, since we are aiming to output a valid rKt description of x in a number of
steps that might not even allow us to sample a single string from Dm. We will revisit this
assumption later on, and argue that explicit knowledge of Sδ is not needed to produce a
probabilistic representation of x.

8 In some applications, one might need to consider conditional rKt complexity. The techniques employed
in this work also extend in this direction.
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Our current goal is to be able to identify x among the elements of Sδ, ideally with an
advice string of length close to O(log |Sδ|) = O(log(1/δ)). A natural way to try to achieve
this goal is by producing a “fingerprint” or “hash value” from x that uniquely specifies
this string. In other words, we would like to have a function h : Sδ → {0, 1}∗ such that
h(x) ̸= h(y) for every y ∈ Sδ\{x}. Then we can identify x in Sδ using h and the value
z = h(x). Assuming that we know Sδ, the total description length of x would be upper
bounded by roughly |h| + |z|, where |h| is the description length of h and |z| is the length
of z.

This is a basic algorithmic problem, and one way to achieve this goal with a reasonable
upper bound on the description length is as follows. Given an explicit polynomial-time
computable error-correcting code E : {0, 1}n → {0, 1}O(n), let Tδ

def= E(Sδ), i.e., each string
y′ ∈ Tδ is obtained by applying E to a string y ∈ Sδ. Consequently, for every distinct pair
y′, y′′ ∈ Tδ, their relative hamming distance d(y′, y′′) = Ω(1). For this reason, it follows by a
simple probabilistic analysis that if we randomly project about O(log(1/δ)) coordinates of
the strings in Tδ, we are likely to produce a “fingerprint” that uniquely specifies each string.
Thus to specify x in Sδ it is enough to compute E(x) and to store O(log(1/δ)) random
pairs (i, bi), where i ∼ [O(n)] and bi

def= E(x)i, the i-th bit of the string E(x). Following our
notation from above, one can think of h as being given by the sequence of coordinates, and z

by the bits obtained from the projection of E(x).9
There are two potential issues with this approach:

(a) In order to store x’s fingerprint information (h and z), we still need O(|h| + |z|) =
O(log(1/δ) · log(n) + log(1/δ)) bits, instead of just O(log(1/δ)).

(b) We have assumed explicit knowledge of Sδ to recover x from h and z.

The first issue is of a quantitative nature, and it can be handled via standard techniques.
By projecting coordinates of E(x) according to a random walk on an explicit constant-
degree expander graph on O(n) vertices, the total description length can be reduced to
O(log(n) + log(1/δ)).

Regarding the more challenging issue (b), first notice that the argument we have described
so far uses randomness only to produce h. In particular, it gives a randomized algorithm
that with high probability produces a deterministic representation of x from h, z = h(x),
and Sδ. Therefore, we have not yet exploited the power of probabilistic representations.

A simple but crucial idea is that we can use the code of the sampler A and m to efficiently
compute a valid rKt representation of x, without ever running A(1m). More precisely, the rKt
instructions to output x include running A(1m) about O((1/δ) · log(1/δ)) times to collect
(with high probability) a superset Wδ ⊇ Sδ. Let’s assume for simplicity that Wδ = Sδ (it
is possible to take care of extra elements by a more delicate argument). Given the set Wδ,
n = |x|, and an independently generated h obtained before we compute the rKt representation,
h and the hash value z = h(x) are likely to isolate x among the elements in Wδ. A careful
implementation of these ideas allows us in randomized polynomial-time to generate an rKt
representation of x whose description length is O(log(m) + log(1/δ) + log(n)) and whose
logarithm of the running time is O(log(T (m)) + log(1/δ)). Since generating an n-bit string x

takes time T ≥ n, the overall rKt complexity (description length + log of the running time)
is O(log(1/δ) + log(T (m)) + log(m)). ◀

9 Notice that an explicit error-correcting code together with a bounded number of random coordinates of
the string E(x) were used to minimize the description length of x’s fingerprint. We can also generate a
fingerprint by collecting the value of random XORs χS applied to x, but storing the relevant sets S
would have been expensive.
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Sketch of the proof of Theorem 2. First, we discuss a reduction for rKt. Given a string x

and a parameter k ≥ rKt(x), we need to output a valid rKt representation of x of complexity
O(k). This is not a lot of information, but we have a general tool at our disposal: the Coding
Theorem for rKt (Theorem 1). In particular, if we could sample x in time 2O(k) and with
probability 2−Ω(k) using an explicit algorithm A, we would be done by the moreover part of
this result. The only challenge is to uniformly construct an explicit sampler of this form.

Fortunately, there is a universal sampler U that works for all strings of rKt complexity at
most k. In more detail, the sampler randomly selects the code of a randomized machine M of
length at most k, simulates M with its internal randomness for at most 2k steps, and outputs
whatever is left on the output tape of M after this simulation. Using that rKt(x) ≤ k, which
implies that some randomized machine of length at most k outputs x within 2k steps with
probability at least 2/3, it is easy to see that x has probability weight at least 2−Ω(k) under
U . Given that the code of U is explicit and we know x and k, the desired representation of
x can be generated with high probability in polynomial time via Theorem 1.

We now consider a search-to-decision reduction for Kt. Recall that, under a derandomiza-
tion assumption, Kt(x) = Θ(rKt(x)) [30, Theorem 5]. Moreover, it is not hard to adapt the
proof to give an efficient deterministic algorithm that converts a probabilistic representation
in the sense of rKt into a deterministic one in the sense of Kt. For this reason, it is pos-
sible to show, under a plausible computational assumption, that there is an instance-based
search-to-decision reduction for Kt.

The most interesting aspect of Item (ii) of Theorem 2 is that it is possible to uncondi-
tionally establish the result. This is obtained by a more careful investigation of the elements
employed in the proofs of Theorem 1 and Theorem 2 Item (i), which reveals that the
derandomization assumption is not really needed. We refer the reader to the main body of
the paper for the details. ◀

Organization. The proof of Theorem 1 appears in Section 3, while the remaining results
are established in Section 4. Due to lack of space, the proof of the strong time hierarchy
theorem for sampling distributions (Theorem 4) appears in the full version of the paper [28].

2 Preliminaries

2.1 Basic notions
We use |x| to denote the length of a binary string x ∈ {0, 1}∗. We abuse notation and use |M |
denote the length of the binary encoding of a machine M with respect to a fixed universal
machine. Although this will not be essential, we assume a prefix-free encoding of machines,
and remark that our statements are robust with respect to encoding choices.

Probabilistic machines have an extra tape with random bits. We use M≤t to denote a
random variable that represents the content of the output tape of M when it computes for t

steps over the empty string ε (or its final content if the machine halts before that).

▶ Definition 7 (rKtδ Complexity). For δ ∈ [0, 1] and a string x ∈ {0, 1}∗, we let

rKtδ(x) = min
M,t

{
|M | + ⌈log t⌉ | Pr[M≤t = x] ≥ δ

}
.

The randomized time-bounded Kolmogorov complexity of x is given by rKt(x) def= rKt2/3(x).

Levin’s complexity Kt(x) can be defined similarly, either by taking δ = 1 in the definition
above or by restricting the minimization over M and t to deterministic machines. For more
information about rKt, see [30].
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We will assume from our encoding that for every string x of length n, rKt(x) ≤ γ · n,
where γ ∈ N is a universal constant. This is achieved by a trivial machine that simply stores
x and prints it when given an empty string. Since printing a string x takes time at least
|x|, we have Kt(x) ≥ rKt(x) ≥ log |x|. We might implicitly use this fact to omit certain log n

additive factors in our upper bounds.
These definitions and conventions are sufficient for the formalization of our results,

given that the proof of Theorem 1 incurs a constant factor overhead in the resulting rKt
upper bound. For the interested reader, we present a careful discussion of the parameters
of Theorem 1 in the full version [28, Section A]. For more background in time-bounded
Kolmogorov complexity, see [24].

For a discrete probability distribution D, we use Support(D) to denote its support. For x ∈
Support(D), we let D(x) denote its probability weight under D. We extend this definition to a
set T in the natural way, i.e., D(T ) =

∑
x∈T D(x). If D and D′ are distributions with support

contained in a set S, their statistical distance |D − D′| is defined as maxT ⊆[S] |D(T ) − D′(T )|.

▶ Definition 8 (Entropy). The entropy H(D) of a discrete probability distribution D is defined
as

H(D) =
∑

x∈Support(D)

D(x) · log 1
D(x) ,

where log is the binary logarithm function.

We will also require a standard application of expander graphs in order to minimize the
amount of randomness in one of our constructions.

▶ Definition 9 (Expander Graph). An m-vertex undirected graph G is an (m, d, λ)-expander
if G is d-regular and λ(G) ≤ λ, where λ(G) denotes the second largest eigenvalue (in absolute
value) of the normalized adjacency matrix of G (i.e., the adjacency matrix of G divided by d).

2.2 Technical tools
The version of the concentration bound appearing below can be found for instance in [40].

▶ Theorem 10 (Chernoff Bound). Let X =
∑n

i=1 Xi, where each Xi is an independent
0/1-valued random variable. The following inequalities hold.

(i) For every γ > 0, if µ ≥ E[X] then Pr[X ≥ (1 + γ)µ] ≤
(

eγ

(1+γ)(1+γ)

)µ

.

(ii) For every 0 < γ ≤ 1, if µ ≤ E[X] then Pr[X ≤ (1 − γ)µ] ≤
(

e−γ

(1−γ)(1−γ)

)µ

.

▶ Theorem 11 (Explicit ECCs; see e.g. [36]). There is a constant C ∈ N and a polynomial-time
computable function En : {0, 1}n → {0, 1}Cn such that for each n ≥ 1 and for any distinct
strings a, b ∈ {0, 1}n, the relative hamming distance between En(a) and En(b) is at least
1/10.

We will rely on the following explicit construction of expander graphs.

▶ Theorem 12 ((Strongly) Explicit Expander Graphs [14]). There are constants d ∈ N and
0 < λ < 1 for which the following holds. There is an (m, d, λ)-expander family {Gm} of
m-vertex graphs and a deterministic algorithm A that on inputs m ∈ N, v ∈ [m], and i ∈ [d]
outputs the i-th neighbor of v in Gm in time polynomial in log(m).

We will also need the following well-known property of a random walk on an expander
graph.
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▶ Theorem 13 (Expander Chernoff Bound [15]). Let Gm = (V, E) be an (m, d, λ)-expander,
f : V → {0, 1} be an arbitrary function, and µ

def= Ev∼V [f(v)]. Let v1 ∼ V be a uniformly
chosen vertex and v1, . . . , vt be a random walk on G of length t. Then, for any α > 0,

Pr
v1,...,vt

[
1
t

t∑
i=1

f(vi) < µ − α

]
≤ e−(1−λ)α2t/4.

It is known that estimating the rKt complexity of an input string is intractable.

▶ Theorem 14 (Hardness of estimating rKt [30]). Let ε ∈ (0, 1) and C ∈ N. There is no
randomized algorithm A running in time T (n) = O(n(log n)C ) such that for every large enough
n:

For every x ∈ {0, 1}n such that rKt(x) ≤ nε, PrA[A(x) = 1] ≥ 2/3.
For every x ∈ {0, 1}n such that rKt(x) ≥ n − 10, PrA[A(x) = 0] ≥ 2/3.

3 A Coding Theorem via Probabilistic Representations

3.1 An efficient String Isolation Lemma
The next lemma allows us to efficiently isolate a string x from a collection W of strings using
a short advice string v whose length depends on the logarithm of the size of W . We follow a
construction described in the proof of [11, Lemma 6.1].

▶ Lemma 15 (String Isolation Lemma). There is a deterministic algorithm M for which the
following holds. For any set W ⊆ {0, 1}n of size ℓ, there exists a string u ∈ {0, 1}O(log(n·ℓ))

such that M(1n, u) runs in poly(n) time and outputs a Boolean circuit that computes a
function H : {0, 1}n → {0, 1}O(log ℓ) with the following property:

H(w) ̸= H(w′) for every distinct pair w, w′ ∈ W.

Moreover, the same guarantee is achieved by a random string u of the same length with
probability at least 0.99.

Proof. Let En : {0, 1}n → {0, 1}Cn be the error-correcting code from Theorem 11. Moreover,
let t = c1 log ℓ, where c1 is a large enough universal constant. Finally, let GCn be the
expander graph from Theorem 12, where m = Cn.

Given a walk γ = (v1, . . . , vt) in GCn, we define the function Hγ : {0, 1}n → {0, 1}t as
follows. On a string z, let z′ = En(z), and set Hγ(z)i = z′

vi
, where vi ∈ [Cn] is given by γ

and z′
j denotes the j-th bit of z′.

For distinct strings z1, z2 ∈ {0, 1}n, En(z1) and En(z2) have relative distance at least
1/10. As a consequence, if γ is a length-t random walk on GCn, it follows from the Expander
Chernoff Bound (Theorem 13) that

Pr
γ

[
Hγ(z1) = Hγ(z2)

]
≤ Pr

γ

[
1
t

·
t∑

i=1
1[Hγ (z1)i ̸=Hγ (z2)i] <

1
20

]
≤ e−Ω(t) <

1
100ℓ2 ,

where we have used that c1 is a large enough constant in the definition of t. By a union
bound over all distinct pairs of strings in W , there is some length-t random walk such that
the corresponding function H satisfies the condition of the lemma.

Note that any length-t walk γ = (v1, . . . , vt) can be described by a string of length
log(Cn) + O(t) = O(log(n · ℓ)), given that GCn is an m-vertex d-regular graph with d = O(1)
and m = Cn.
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Finally, given 1n and a description u of a length-t walk γ, it is possible to produce a
circuit that computes as the function Hγ in time polynomial in n. This is because En, GCn

and the walk encoded by u can be computed in time poly(n, t) = poly(n, log ℓ) = poly(n),
where the last step uses that ℓ ≤ 2n. This completes the proof of the lemma. ◀

The power of Lemma 15 comes from the fact that we don’t need to know the set W ,
i.e., an upper bound on its size is sufficient. We remark that it is possible to achieve better
parameters in Lemma 15 if we do not consider the efficiency of M . However, we need an
efficient M for our applications in time-bounded Kolmogorov complexity. We also note that
in our proofs we will only need that for a particular string x ∈ W fixed in advance the value
H(x) is not contained in the image of H on W\{x}.

3.2 An efficient Coding Theorem for rKt
We prove Theorem 1 in this section, restated below for convenience of the reader.

▶ Theorem 16 (Efficient Coding Theorem for rKt). Suppose there is a randomized algorithm
A for sampling strings such that A(1m) runs in time T (m) and outputs a string x ∈ {0, 1}∗

of length n ≤ T (m) with probability at least δ > 0. Then

rKt(x) = O(log(1/δ) + log(T (m)) + log(m)),

where the constant behind the O(·) depends on |A| and is independent of the remaining
parameters. Moreover, given x, m, the code of A, and δ, it is possible to compute with
probability ≥ 0.99 some rKt encoding of x of at most this complexity in randomized time
poly(|A|, log(m), |x|, log(1/δ)).

Proof. Let x be a string generated with probability at least δ by a sampler A(1m). Since we
only need a lower bound on the probability and our rKt upper bound is stated asymptotically,
for representation purposes we assume without loss of generality that δ is of the form 2−ℓ for
some ℓ ∈ N. We now show how to obtain an rKt description of x.

With the binary descriptions of m and 1/δ, we first run the sampler A(1m) for t =
64 · (1/δ) · log(1/δ) times to obtain a multi-set of strings S0 of size t. Let V be the set

V
def= {y | A(1m) outputs y with probability at least δ}.

Note that x ∈ V and that |V | ≤ 1/δ. Also, without loss of generality, we assume δ < 2/3;
otherwise the sampler A(1m) yields a desired rKt description of x.

▷ Claim 17. With probability at least 5/6 (over S0), every y ∈ V appears in S0 at least
α = 32 · log(1/δ) times.

Proof of Claim 17. Fix a y ∈ V . Note that the expected number of times that y appears in
S0 is at least

µ
def= t · δ = 64 · log(1/δ).

By the Chernoff bound (Item (ii) of Theorem 10), we have

Pr
S0

[y appears in S0 less than α times] ≤
(

e−1/2

(1/2)(1/2)

)64·log(1/δ)

< δ6.

By a union bound over the strings in V , where |V | ≤ 1/δ, we have that the probability that
there exists a y ∈ V such that y appears in S0 less than α times is less than δ5 < 1/6. ◁
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▷ Claim 18. With probability at most 1/6 (over S0), there exists a string z in S0 such that
z appears at least α = 32 · log(1/δ) times in S0 and that A(1m) outputs z with probability
less than δ/32.

Proof of Claim 18. Let’s view S0 as an ordered multi-set (z1, z2, . . . , zt). For zi ∈ S0, we say
“zi is bad” if that A(1m) outputs zi with probability less than δ/32 and that it appears in S0
at least α times. Let E be the event that there exists some zi ∈ S0 such that zi is bad. Then
we have

Pr[E ] ≤
t∑

i=1
Pr[zi is bad]. (1)

Fix an i ∈ [t], we have

Pr
z1,z2,...,zt∼A

[zi is bad] =
∑

z : A outputs z
w.p. less than δ/32

Pr[zi = z AND zi appears in S0 at least α times]

≤
∑

z as above

Pr[zi appears in S0 at least α times | zi = z] · Pr[zi = z]

≤ max
z as above

Pr[zi appears in S0 at least α times | zi = z]

≤ max
z as above

Pr[z appears S0\{zi} at least α − 1 times]. (2)

Note that if for a string z, A outputs z with probability less than δ/32, then the expected
number of times that z appears in the multi-set S0\{zi} is less than

µ
def= (t − 1) · δ/32 = 2 · log(1/δ) − δ/32,

and hence α − 1 > 11 · µ. Then by the Chernoff bound (Item (i) of Theorem 10), we have

Equation (2) ≤
(

e9

1010

)log(1/δ)

< δ18.

Therefore, we have

Equation (1) ≤ t · δ18 < 64 · (1/δ)2 · δ18 < 1/6,

as desired. ◁

Next, from S0, we build a set S by removing every string in S0 that appears less than
α = 32 · log(1/δ) times in S0, and keeping only one copy for each of the remaining strings.
Let W be the set

W
def= {w | A(1m) outputs w with probability at least δ/32}.

Note that |W | ≤ 32/δ. From Claim 17 and Claim 18, we get that with probability at least
2/3 over the choices of S0, we obtain a “good” set S in the sense that V ⊆ S (hence x ∈ S)
and S ⊆ W .

Consider the algorithm in the String Isolation Lemma (Lemma 15), and let n = |x| ≤ T (m).
Let u be a string of length O(log(n · |W |)) = O(log(T (m))+log(1/δ)) such that the algorithm
in Lemma 15 running on u produces a good hash function H : {0, 1}n → {0, 1}τ for all
length-n strings in W , where τ = O(log(|W |)) = O(log(1/δ)). That is, for every distinct
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w, w′ ∈ W ∩ {0, 1}n, we have H(w) ̸= H(w′). Then for every “good” set S, H maps the
strings in S of length n into different buckets. Therefore, given u, n, and the hash value for
x, H(x), we can recover x from a good set S.

The whole algorithm runs in randomized time poly(m, T (m), 1/δ) and requires an advice
of length O(log(1/δ) + log(m) + log(n)), which gives the desired upper bound for rKt(x).

For the moreover part of the theorem, first observe that to output a description of x it
is not necessary to run the sampling algorithm A(1m) nor to know an upper bound on its
running time. We need instead the following information: the code of A, the input parameter
m, the probability lower bound δ, the length n = |x|, the advice string u given by Lemma 15,
and the hash value H(x). Crucially, the proof of Lemma 15 shows that a random string
u (encoding a random walk) satisfies the conditions of the lemma with probability ≥ 0.99.
Furthermore, the same proof shows that, given u and x, we can compute H(x) in time
poly(n) = poly(|x|). Therefore, by sampling a random string u of an appropriate length that
depends on n and δ, it is possible to compute a correct description of x with probability at
least 0.99. The necessary information can be computed from x, the code of A, n, and δ in
time poly(|A|, log(m), |x|, log(1/δ)). ◀

4 Applications

4.1 Equivalence between samplability and succinct probabilistic
descriptions

It will be useful in the proof of some results to introduce the following sampler.

Definition of U(1m).
1. Given 1m, U samples an integer ℓ ∼ [m] uniformly at random. It then samples a uniformly

random string z of length ℓ, and an independent uniformly random string r of length 2m.
2. U interprets z as the code of a randomized machine Mz, simulates Mz on the empty

input string with randomness r for 2m steps, and outputs the string y that is left on the
output tape of Mz after this simulation.

This sampler satisfies the following properties.

▷ Claim 19. On every input 1m and for every choice of its randomness, U(1m) runs in time
at most 2O(m).

Proof. This is immediate from the definition. ◁

▷ Claim 20. Suppose x ∈ {0, 1}∗ is a string such that rKt(x) ≤ k. Then the probability of x

under U(1k) is at least (1/k) · 2−k · (2/3).

Proof. Since rKt(x) ≤ k, there is a randomized machine M running in time at most t such
that

Pr[M≤t = x] ≥ 2/3 and |M | + log t ≤ k.

Let ℓ = |M | ≤ k, and note that t ≤ 2k. It is clear that x is output by U(1k) with probability
at least (1/ℓ) · 2−ℓ · (2/3) ≥ (1/k) · 2−k · (2/3). ◁

We state next an immediate consequence of the coding theorem for rKt and the existence
of universal time-bounded samplers. For concreteness, we focus on the generation of prime
numbers in the context of Problem 5.
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▶ Theorem 21 (Equivalence between fast samplability and short time-bounded descriptions).
The following statements are equivalent:

(i) Sampling Algorithm. For every ε > 0, there is a randomized algorithm A(1n) sampling
strings in {0, 1}∗ that runs in time T (n) = O(2εn) and for which the following holds.
For every large n, there is an n-bit prime qn such that Pr[A(1n) outputs qn] ≥ 2−εn.

(ii) Short Descriptions. Let δ > 0 be an arbitrary constant. For every large n, there is an
n-bit prime pn such that rKt(pn) ≤ δn.

Proof. That samplability as in the first item leads to short descriptions follows immediately
from Theorem 16 by taking ε > 0 small enough as a function of the given δ > 0. For the
other direction, for a given ε > 0, we consider the sampler A(1n) def= U(1m) with m = ε′n,
where ε′ = ε/C for a large constant C. By Claim 19, A(1n) runs in time O(2εn). Under the
assumption that (ii) holds, Claim 20 guarantees that for large n there is an n-bit prime qn

that is output by A(1n) with probability at least 2−εn. ◀

This should be contrasted with the equivalence between the existence of primes of bounded
Kt complexity and fast deterministic generation of primes. As mentioned in Section 1.1.2,
the equivalence in Theorem 21 also holds in a broader sense.

4.2 Instance-based search-to-decision reduction for rKt and its
consequences

In this section, we show that there is a uniform polynomial-time “approximate” search-to-
decision reduction for rKt. More precisely, we show that given a linear approximation of the
rKt complexity of the input string, it is possible to output a valid rKt representation that is
optimal up to a constant factor.

We will need the following definition.

▶ Definition 22. Let γ : N → R. We say that a function O : {0, 1}∗ → N γ-approximates rKt
complexity if for every string x ∈ {0, 1}∗,

rKt(x)
γ(|x|) ≤ O(x) ≤ γ(|x|) · rKt(x).

If this holds for a constant γ ∈ N, we say that O linearly approximates rKt.

▶ Theorem 23 (An instance-based search-to-decision reduction for rKt). Let O be a function
that linearly approximates rKt complexity. There is a randomized polynomial-time algorithm
with access to O that, when given an input string x, outputs with probability ≥ 0.99 a valid
rKt representation of x of complexity O(rKt(x)). Furthermore, this algorithm makes a single
query q to O, where q = x.

Proof. Given an input x ∈ {0, 1}∗, let k̃
def= O(x) be the estimate provided by the oracle, and

recall that rKt(x)/C ≤ k̃ ≤ C · rKt(x) for a universal constant C. By Claim 20, we get that
the universal sampler U(1C ·̃k) outputs x with probability at least δ

def= (1/(C ·k̃))·2−C ·̃k ·(2/3).
In addition, by Claim 19, the running time of this sampler is bounded by 2O(C ·̃k). It then
follows from the “moreover” part of Theorem 16 that it is possible to efficiently compute
with probability at least 0.99 a valid rKt representation of x of complexity O(C · k̃) =
O(C2 · rKt(x)) = O(rKt(x)). ◀
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As explained in Section 1, an interesting aspect of this reduction is that it works on an
input by input basis. In other words, if we are able to linearly approximate the rKt complexity
of the input string, then we can compute a near-optimal representation for the same string.

We note that a reduction that works on an input by input basis is easy to come up with in
the setting of (time-unbounded) Kolmogorov complexity: from an upper bound on K(x), it is
possible to compute a string that represents x of complexity at most K(x) simply by running
in parallel all machines of at most this description length. Theorem 23 can be interpreted as
an analogue result in the more challenging setting of time-bounded Kolmogorov complexity.

Using ideas from the proof of the coding theorem for rKt, we can also show an unconditional
instance-based search-to-decision reduction for Kt.

▶ Theorem 24 (An instance-based search-to-decision reduction for Kt). Let O be a function
that linearly approximates Kt complexity. There is a randomized polynomial-time algorithm
with access to O that, when given an input string x, outputs with probability ≥ 0.99 a valid
Kt representation of x of complexity O(Kt(x)). Furthermore, this algorithm makes a single
query q to O, where q = x.

Proof. We are given an input x ∈ {0, 1}∗ where |x| = n, and Kt(x)/C ≤ k̃ ≤ C · Kt(x) for
a universal constant C, where k̃ is obtained via a single query to O on x. Our encoding
algorithm is as follows:
1. Pick u ∈ {0, 1}d uniformly at random, where d = O

(
log

(
n · 2 · 2C ·̃k

))
= O(k̃ + log(n)).

2. Invoke the deterministic algorithm M(1n, u) from Lemma 15 to obtain a hash function
H : {0, 1}n → {0, 1}O(̃k), and compute z = H(x).

3. Output (n, k̃, u, z).

It is easy to verify that the output of the above procedure has length

O(log(k̃) + log(n)) = O(Kt(x) + log(n)) = O(Kt(x)).

Next, we claim that with probability at least 0.99 over the choice of u, the tuple generated in
Step 3 can be easily converted into a valid Kt representation of x. (Note that the randomness
is only over the encoding algorithm that generates the Kt representation, which provides a
deterministic description.) To decode x from this information, we first run M(1n, u) from
Lemma 15 to recover the hash function H. We then enumerate each deterministic machine
of description length at most C · k̃ and simulate it for at most 2C ·̃k steps. For each output
y of these machines that is in {0, 1}n, we compute H(y) and output the first y such that
H(y) = z. Note that there are at most ℓ = 2 · 2C ·̃k distinct machines of length at most C · k̃,
and each machine produces at most one output string. By the fact that Kt(x) ≤ C · k̃, at
least one of them will output x. Also, by Lemma 15, for at least a fraction of .99 of the
u’s, the hash function H obtained from u isolates every n-bit string in the set of outputs
of these ℓ machines, and x is the only string such that H(x) = z. Therefore, for any such
“good” u, the string x can be decoded correctly from n, k̃, u, and z. It is easy to see that
the running time of the decoding algorithm is poly(n) · 2O(̃k), so the Kt complexity of the
resulting representation for x is O(Kt(x)). ◀

Note that Theorem 23 (search-to-decision reduction for rKt) and Theorem 24 (search-to-
decision reduction for Kt) complete the proof of Theorem 2 from Section 1.

The next result should be contrasted with the unconditional lower bound of [30] for
estimating the rKt complexity of an input string x.
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▶ Theorem 25 (Efficient generation of rKt descriptions). There is a randomized polynomial-
time algorithm E such that on any input string x ∈ {0, 1}n, given as advice a string α = α(x)
of length ≤ log log n + O(1), E(x, α) outputs with probability ≥ 0.99 an rKt description of x

of complexity O(rKt(x)).

Proof. Algorithm E computes on x ∈ {0, 1}n as follows. It expects α ∈ {0, 1}log log n+O(1)

to encode a tight approximation k̃ to the value k
def= rKt(x) ∈ [γ · n], where γ ∈ N is a

universal constant, and γ · n is an upper bound on max{rKt(x) | x ∈ {0, 1}n}. Since we are
only aiming for a constant factor approximation of rKt(x), we use α to encode the smallest
integer β such that 2β ≥ rKt(x). Since β ≤ log n + Oγ(1), α can be encoded with just
log log n + O(1) bits, and a value k̃ such that k ≤ k̃ ≤ 2k can be obtained from α. E(x, α)
considers the universal sampler U(1k̃) as the algorithm A(1k̃) in Theorem 16. Furthermore, it
sets δ

def= (1/k̃) · 2−k̃ · (2/3). By Claims 19 and 20, A(1k̃) ≡ U(1k̃) outputs x with probability
at least δ and in time at most T = 2O(k̃). As a consequence, from the “moreover” part of
Theorem 16 it follows that E(x, α) can compute with probability at least 0.99 a valid rKt
representation of x of complexity O(log(k̃) + log(T ) + log(1/δ)) = O(k̃) = O(rKt(x)) in time
poly(|U |, log(k̃), n, log(1/δ)) = poly(n). ◀

The next corollary is immediate from Theorem 23.

▶ Corollary 26 (Time-bounded short lists with short programs in short time). Given an arbitrary
string x of length n, it is possible to compute with high probability and in polynomial time
a collection of at most d = log(n) + O(1) strings w1, . . . , wd such that at least one of these
strings is a valid rKt encoding of x of complexity O(rKt(x)).

Proof. We can enumerate all values of k ∈ [O(n)] that are a power of 2, and run the instance-
based search-to-decision reduction from Theorem 23 on x using k as the query answer. One
of such k will be a linear approximation of rKt(x), and the output of the search-to-decision
reduction for this k will be a rKt description of x with complexity O(rKt(x)). ◀
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