
Testing Dynamic Environments: Back to Basics
Yonatan Nakar #

Tel Aviv University, Israel

Dana Ron #

Tel Aviv University, Israel

Abstract
We continue the line of work initiated by Goldreich and Ron (Journal of the ACM, 2017) on testing
dynamic environments and propose to pursue a systematic study of the complexity of testing basic
dynamic environments and local rules. As a first step, in this work we focus on dynamic environments
that correspond to elementary cellular automata that evolve according to threshold rules.

Our main result is the identification of a set of conditions on local rules, and a meta-algorithm
that tests evolution according to local rules that satisfy the conditions. The meta-algorithm has
query complexity poly(1/ϵ), is non-adaptive and has one-sided error. We show that all the threshold
rules satisfy the set of conditions, and therefore are poly(1/ϵ)-testable. We believe that this is a rich
area of research and suggest a variety of open problems and natural research directions that may
extend and expand our results.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Property Testing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.98

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2105.00759

1 Introduction

Property testing [12, 5] is the study of algorithms that distinguish between objects that have
a given property and those that are far from having the property, by performing a small
number of queries to the object. Goldreich and Ron [6] initiated the study of testing dynamic
environments, which introduces a temporal aspect to property testing. In this context, the
entity being tested changes with time, and is referred to as an environment.

Starting from some initial configuration (say, a vector or a matrix), the environment
is supposed to evolve according to a prespecified local rule. The rule is local in the sense
that the value associated with each location in the environment at time t is determined by
the values of nearby locations at time t − 1. The goal of the testing algorithm is then to
distinguish between the case that the environment indeed evolves according to the rule, and
the case in which the evolution significantly strays from obeying the rule. To this end, the
algorithm can query the value of any location of the environment at any of the available
time steps, as long as it does not “go back in time”. Namely, the algorithm cannot choose to
query a location at time t after it has queried some location at time t′ > t. We refer to this
as the time-conforming requirement. The aim is to design time-conforming algorithms with
low query complexity.

Goldreich and Ron [6] investigate the complexity landscape of testing dynamic environ-
ments from multiple angles. From a hardness perspective, they show that there are dynamic
environments whose testing requires high query complexity and running time, and that
adaptivity and time-conformity are relevant constraints which can significantly impact the
query complexity. However, as we discuss in Section 1.4, relatively little is known regarding
positive results for testing specific rules.

EA
T
C
S

© Yonatan Nakar and Dana Ron;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 98; pp. 98:1–98:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yonatannakar@mail.tau.ac.il
mailto:danaron@tau.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2021.98
https://arxiv.org/abs/2105.00759
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

98:2 Testing Dynamic Environments: Back to Basics

In our quest for understanding which natural families of dynamic environments can
be tested efficiently, we propose to first “go back to the basics” and study testing in the
simplest of dynamic environments. Namely, in this work we consider environments defined
by one-dimensional configurations, which evolve according to local rules that are functions
of the current location and its two immediate neighbors. These dynamic environments,
originally introduced by von Neumann [13], have been extensively studied under the name of
Elementary Cellular Automata [14] (see definition in Section 1.1). While these environments
can be described in simple terms, they are nevertheless able to capture complex behavior.1
Cellular automata have played a role in various research fields and applications. Examples
include modeling physical [2] and chemical [7] systems, VLSI design [3], music generation [1],
analyzing plant population dynamics [15], forest fire spread [17], city traffic [11], urban
sprawl [8], and more.

As we discuss in Section 1.4, there are several hardness results (both regarding the
query complexity and the running time) for testing dynamic environments that correspond
to one-dimensional cellular automata (over non-binary alphabets) [6]. Hence, in order to
obtain efficient algorithms, it is necessary to restrict the rules considered. In the current
work, our main focus is on perhaps the most basic and natural rules, defined by threshold
functions. Such functions have received much attention within the study of propagation of
information/influence in networks (see, e.g., the review paper of Peleg [10], and the recent
Ph.D. thesis of Zehmakan [16] and references within).

Our testers are based on a general meta-algorithm which works for rules that satisfy a
set of conditions that we define. In essence, the conditions capture a certain type of behavior
leading to ultimate convergence. This behavior induces a global structure on the environment
which we exploit in our meta-algorithm.

We hope this work can serve as a basis for further extensions and generalizations, some
of which we discuss shortly in Section 1.5.

1.1 Testing basic evolution rules

We now formally define the problems we study. We use [m] to denote the set {0, ..., m − 1}.
For two integers n and m, let ENV : [m] × Zn → {0, 1} denote the evolving environment,
and for any t ∈ [m] let ENVt : Zn → {0, 1} (the environment at time t) be defined by
ENVt(i) = ENV(t, i). In general, we refer to a function σ : Zn → {0, 1} as a configuration.
When convenient, we may view σ as a (cyclic) binary string of length n.

For a function (evolution rule) ρ : {0, 1}3 → {0, 1}, we say that ENV evolves according to
ρ, if for every i ∈ Zn and t > 0, we have that ENVt(i) = ρ(ENVt−1(i − 1), ENVt−1(i), ENVt−1(i +
1)), where all operations are modulo n. We use Eρ

m,n to denote the set of environments
ENV : [m] × Zn → {0, 1} that evolve according to ρ. As in [6], we employ the standard notion
of distance used in property testing and say that ENV : [m] × Zn → {0, 1} is ϵ-far from
evolving according to ρ (ϵ-far from Eρ

m,n) if |{(t, i) : ENV(t, i) ̸= ENV′(t, i)}| > ϵmn for every
ENV′ ∈ Eρ

m,n.2

1 Some rules are even Turing complete [4].
2 In the context of dynamic environments, this notion of distance can be interpreted as capturing

“measurement errors” due to some noise process. Namely, it can be viewed as allowing the testing
algorithm to accept not only “perfect” environments, but also environments that correspond to a
correct evolution with a bounded fraction of corruptions. Also note that being ϵ-far from evolving
according to ρ does not simply translate to there being an ϵ-fraction of pairs (t, i) for which ENVt(i) ̸=
ρ(ENVt−1(i − 1), ENVt−1(i), ENVt−1(i + 1)) (which would be trivial to test).

Y. Nakar and D. Ron 98:3

Given n, m, and a distance parameter ϵ ∈ (0, 1), a testing algorithm for evolution
according to a rule ρ should distinguish with constant success probability between the case
that an environment ENV belongs to Eρ

m,n and the case that it is ϵ-far from Eρ
m,n. To this end,

the algorithm is given query access to ENV, where a query on a pair (t, i) cannot follow any
query on (t′, i′) for t′ > t. We are interested in bounding both the total number of queries
performed by the algorithm (as a function of ϵ, and possibly m and n) and the maximum
number of queries it performs at any time step (which we refer to as its temporal query
complexity).

1.2 Our results

We identify several conditions on local rules (which are formally stated in Section 3), such
that if a rule ρ satisfies these conditions, then evolution according to ρ can be tested with
query complexity poly(1/ϵ) with one-sided error. Our testers have the advantage that they
are non-adaptive, and therefore, in particular, time-conforming.

▶ Theorem 1. Let Ψ be the set of conditions specified in Section 3. For every rule ρ that
satisfies the conditions in Ψ, it is possible to test evolution according to ρ by performing
O(1/ϵ4) queries. Furthermore, the testing algorithm is non-adaptive and has one-sided error.

To establish Theorem 1, we present a meta-algorithm for testing evolution and prove
its correctness for rules that satisfy the aforementioned conditions (the set Ψ). It is a
meta-algorithm in the sense that it is based on certain subroutines that are rule-specific
(but have a common functionality of detecting violations of evolution according to the tested
rule). We provide a high-level discussion of the conditions and the algorithm in Section 1.3.

Our main application of the meta-algorithm is to the natural family of threshold rules.

▶ Definition 1. We say that a rule ρ : {0, 1}3 → {0, 1} is a threshold rule if there exist a
threshold integer 0 ≤ b ≤ 3 and a bit α ∈ {0, 1} such that ρ(β1, β2, β3) = α if and only if
β1 + β2 + β3 ≥ b.

We prove:

▶ Theorem 2. For each threshold rule ρ, evolution according to ρ can be tested with query
complexity O(1/ϵ4). Furthermore, the testing algorithm is non-adaptive and has one-sided
error.

We also show that the conditions hold for two additional (non-threshold) rules, so the
applicability of our meta-algorithm is more general (for details, see full version of this
paper [9]). We believe that appropriate (perhaps more complex) variants of our algorithm
can be used to test an even larger variety of basic local rules (see Section 1.5), where we
conjecture that this is true for all rules that ultimately converge. Interestingly, while the
two additional rules are not threshold rules as per Definition 1, they can be represented as
weighted threshold rules (which are a subclass of ultimately converging rules).

1.3 The high-level ideas behind our results

In this high-level discussion, we assume for simplicity that m ≥ n (the case m < n can be
essentially reduced to this case).

ICALP 2021

98:4 Testing Dynamic Environments: Back to Basics

1.3.1 Convergence, final/non-final locations and prediction functions
To give an intuition on the convergence behavior that our conditions capture, it is useful
to first discuss the notion of ultimate convergence. A rule ρ ultimately converges if, for any
initial configuration ENV0, an environment evolving according to ρ converges after a bounded
number of steps to either a single final configuration or to a constant number of configurations
between which it alternates. For example, consider the majority rule (threshold 2). Unless the
initial configuration is (01)n/2, the environment ultimately converges to some configuration
that consists of blocks of 0s and 1s of size at least 2 each (and if it is (01)n/2, then it alternates
between (01)n/2 and (10)n/2).

Once an environment converges, testing is straightforward since we can easily predict the
values of locations in future time steps and then verify that indeed they hold the predicted
values (or else we reject). The issue, however, is that convergence is not ensured to be
reached after a small number of time steps.3 In other words, knowing that a rule ultimately
converges cannot be exploited directly. Hence, the challenge is to identify and formalize
conditions that allow for “pre-convergence prediction”. Namely, conditions that imply the
ability to predict future values of locations based on the current values of these and other
locations (before convergence is reached).

In this context, our conditions try to formalize the idea that rules exhibit a certain
local convergence, which “expands” with time. The first ingredient of our approach is
the observation that, in the case of the majority rule, if at any time step t, ENVt(i) ∈
{ENVt(i − 1), ENVt(i + 1)} , then ENVt′(i) = ENVt(i) for any t′ > t (operations are modulo n).
We say in such a case that location i is final at time t (in ENV). Otherwise it is non-final.
Crucially for us, whether a location i is final or not at a certain time step depends solely on
its local neighborhood at that time (and can hence be verified with a constant number of
queries).

An important property of a location being final at time t (in addition to converging to
their final value, up to alternations), is the aforementioned expansion (or “transmission of
finality”). Namely, a location i that is non-final at time t becomes final at time t + 1 if either
i − 1 or i + 1 is final at time t (possibly both). Furthermore, it cannot become final if both
its neighbors are non-final. Another related property of final locations is that (under certain
circumstances), they can be used to predict the values of locations that become final in the
future, based on a (rule-specific) prediction function. A similar statement holds for non-final
locations (though the circumstances are different).

1.3.2 The meta-algorithm: the grid and violating pairs
Based on these properties (which are formalized in the conditions we introduce), our (meta)
algorithm works in two stages. In the first stage, it queries the environment at time t1 = Θ(ϵm)
on O(1/ϵ2) equally spaced locations, which we refer to as the grid locations, and their local
neighborhoods. This allows the algorithm to determine which of the grid locations are
final at time t1 and which are non-final. If the answers it gets are not consistent with any
environment that evolves according to ρ (in which case we say that the grid is not feasible),
then it rejects.

In its second stage, the algorithm uniformly samples O(1/ϵ) random time-location pairs
(t, i) and queries ENVt on i and its local neighborhood. It then checks whether the answers
are consistent with the answers to queries in the first stage (on the grid locations and their
neighborhoods) or constitute a violation. The definition of consistency/violation is based on
the aforementioned prediction functions of the tested rule.

3 In fact, there are initial configurations that require Ω(n) steps before they ultimately converge.

Y. Nakar and D. Ron 98:5

One may have hoped that such a consistency check is sufficient, in the sense that all (or
almost all) pairs (t, i) can be predicted based on the answers to the queried grid locations.
Unfortunately, this is not the case. There are (possibly many) pairs (t, i) whose 0/1 values
are not determined given the first-stage answers. However, we show that such pairs are
constrained in a different way (in environments that evolve according to ρ): their location
must have become final by time t2 = t1 + ∆, where ∆ is the distance between grid location.
Hence, for each selected pair (t, i), the algorithm also queries ENVt2 on location i (and its
neighborhood) and checks consistency with the queried locations at time t2.

1.3.3 On the analysis of the algorithm and “backward prediction”
To show that the algorithm always accepts environments that evolve according to the tested
rule ρ, we prove that our definition of violation is such that there are no violations in such
environments (assuming ρ satisfies the aforementioned conditions). The more involved part
of the analysis is proving that if the environment ENV is ϵ-far from evolving according to ρ,
then the algorithm will detect this with probability at least 2/3. To this end, we prove the
contrapositive statement. Namely, we show that if the algorithm accepts with probability at
least 2/3, then there exists an environment that evolves according to ρ and is ϵ-close to ENV.
This is done by showing that we can construct an initial configuration ENV′0, such that if
we let it evolve according to ρ, resulting in an environment ENV′ ∈ Eρ

m,n, then we can upper
bound the number of pairs (t, i) such that ENVt(i) ̸= ENV′t(i) by ϵmn.

Here we build on a useful property of the prediction functions, by which they allow us a
certain “prediction back in time”. Namely (for t1 and t2 as mentioned above), we use the
queried grid locations at time t1 as well as some locations at time t2 (which have not been
queried) to determine values of locations at the earlier time 0 in ENV′. We prove that this
can be done in a way that ensures that ENV′ agrees with ENV on all pairs (t, i) that are not
violating.

1.4 A short overview of the results in [6]
As stated earlier, the study of testing dynamic environments was initiated by Goldreich and
Ron [6], who present several general results as well as analyze two natural specific rules. We
first provide a short overview of their main general results.

They prove that the query complexity of testing (one-dimensional) rules may have high
query complexity. Specifically, they show that there exists a constant c > 0 and an evolution
rule ρ : Σ3 → Σ such that any tester of evolution according to ρ requires Ω(nc) queries.4
They also prove that testing dynamic environments may be NP-Hard, provided that the
temporal query complexity is “significantly sublinear” (where f(x) is significantly sublinear
if f(x) < x1−Ω(1)). More precisely, they show that for every constant c > 0 there exists
an evolution rule ρ : Σ3 → Σ such that no (time-conforming) polynomial-time testing
algorithm with temporal query complexity n1−c can test whether n-sized environments
evolve according to ρ (assuming N P ̸⊆ BPP). Their general results also include a theorem
concerning the usefulness of adaptivity in testing dynamic environments, a study of the
relation between testing and learning dynamic environments, and a result on the power of
being non time-conforming.

4 Observe that it is possible to test the evolution according to any rule ρ over configurations of size n
by performing O(n + 1/ϵ) queries (n queries to the initial configuration and O(1/ϵ) uniformly selected
queries elsewhere). To get sublinear temporal query complexity, a total of O(n/ϵ) uniformly selected
queries suffice (by applying a simple union bound over all possible initial configurations).

ICALP 2021

98:6 Testing Dynamic Environments: Back to Basics

Goldreich and Ron [6] also provide testers for evolution according to two specific (classes
of) rules. The first is the class of linear rules, which in the binary 1-dimensional case
corresponds to the XOR rule in elementary cellular automata. They show that for any d ≥ 1
and any field Σ of prime order, there exists a constant γ < d such that the following holds.
For any linear rule ρ : Σ3d → Σ there exists a time-conforming oracle machine of (total) time
complexity poly(1/ϵ) · nγ that tests the consistency of an evolving environment with respect
to ρ. Furthermore, the tester is non-adaptive and has one-sided error.

Their second specific positive result, loosely stated, captures fixed-speed movement of
objects in one-dimension such that colliding objects stop forever. They present a (time-
conforming) algorithm of (total) time complexity poly(1/ϵ) that tests the consistency of
evolving environments with respect to that rule.

1.5 Future directions
Basic dynamic environments. A natural question that arises is whether a more nuanced
version of the set of conditions formalized in this paper and the meta-algorithm can be
defined and proved to work for other rules in the realm of basic dynamic environments.
Indeed, preliminary results suggest that several other rules that ultimately converge exhibit
behaviors that “resemble” the ones captured by our conditions. This leads us to the following
conjecture.

▶ Conjecture. If a rule ρ ultimately converges, then it is poly(1
ϵ)-testable.

While our meta-algorithm does not apply to rules that do not ultimately converge, there
are natural rules that fall under this category (the XOR rule for instance). This raises the
question of whether poly(1/ϵ) testers exist for such rules. The answer is that there are
poly(1/ϵ)-testable rules that do not ultimately converge, but as we’ll see, the question should
be slightly rephrased.5 To give one example, for the rule ρ defined as ρ(x, y, z) = x, each
configuration is simply a copy of the previous configuration, shifted one location to the right.
That is, while an environment evolving according to this rule does not, technically, ultimately
converge, this rule is trivially poly(1/ϵ)-testable. However, this particular rule and other
rules that are capable of producing such “shifting behaviors” also have the property of not
being symmetric (i.e., it does not hold that ρ(x, y, z) = ρ(z, y, x) for every x, y, z). Hence,
one way to rephrase the question is restricting it to symmetric rules.

▶ Open Problem 1. Are there any symmetric rules that do not ultimately converge and are
poly(1/ϵ)-testable?

Another way to rephrase this question is to define a more general notion of ultimate
convergence. Specifically, we say that a rule ρ ultimately converges up to a shift if, for any
initial configuration ENV0, an environment evolving according to ρ converges after a bounded
number of steps to a constant number of configuration equivalence classes between which it
alternates, where two configurations are equivalent if they are equal up to a shift.

▶ Open Problem 2. Are there any non-symmetric rules that do not ultimately converge up
to a shift and are poly(1/ϵ)-testable?

As mentioned in Section 1.4, it has been shown in [6] that the XOR rule is sublinearly
testable. However, the query complexity of the tester depends on the size of the environment
and is only mildly sublinear (the complexity is O(n0.8) for an environment of size n). This

5 We thank one of the anonymous reviewers of this paper for pointing this out.

Y. Nakar and D. Ron 98:7

raises the question of whether there exists a tester for the XOR rule with significantly lower
query complexity (maybe even polylogarithmic). Another question that can be raised is
whether there are other symmetric rules, ones that do not ultimately converge, that can be
tested with a sublinear query complexity that depends on the size of the environment.

▶ Open Problem 3. Which symmetric rules that do not ultimately converge can be tested
with query complexity that is sublinear in (but strictly grows with) the size of the environment?

More general dynamic environments. Building on the ideas for testing basic dynamic
environments, it may be possible to venture into more general environments. One such
generalization is to consider rules that depend on more than just the three locations consti-
tuting the immediate neighborhood. Other generalizations are to environments and rules
over non-binary values, higher dimensions, and environments that evolve on more general
graphs.

Non-deterministic rules. We also suggest considering local rules that are non-deterministic
in the sense that given some configuration, the rule allows several configurations to follow.
An example of one such rule, which can be thought of as a relaxation of the OR rule, is the
rule in which each value is restricted to be monotonically non-decreasing with respect to the
previous values at the location’s neighborhood.

Missing details
Due to space constraints, not all details appear in this extended abstract, and can be found
in the full version of this paper [9].

2 Preliminaries

In addition to the basic definitions provided in Section 1.1 regarding testing dynamic
environments, here we introduce several more definitions and notations.

In all that follows, when performing operations on locations i ∈ Zn, these operations are
modulo n. For a pair of locations i, j ∈ Zn we use [i, j] to denote the sequence i, i + 1, . . . , j

(so that it is possible that j < i).

▶ Definition 2. For a location i ∈ Zn and an integer r, the r-neighborhood of i, denoted
Γr(i), is the sequence [i − r, i + r]. For a set of locations I ⊆ Zn, we let Γr(I) denote the set
of locations in the union of sequences [i − r, i + r] taken over all i ∈ I.

▶ Definition 3. For an integer n and a local rule ρ, let Mρ(n) denote the (deterministic)
state machine that is defined as following. Each state of Mρ(n) corresponds to a different
configuration σ : Zn → {0, 1}. If a state corresponds to a configuration σ, then it has a single
transition going to the state corresponding to the configuration that results from applying ρ

to σ.
The period of Mρ(n), denoted pρ(n), is the longest size of a (directed) cycle in Mρ(n).

If there exists a constant p such that pρ(n) = p (pρ(n) ≤ p) for every sufficiently large n,
then we say that ρ has period (at most) p, and that ρ ultimately converges.

Observe that for every Mρ(n), each strongly connected component in Mρ(n) is either a
single state with no edges in the component or a cycle (where in particular, the cycle may
be a self-loop). For example, if ρ is the OR function, then it has period 1 (as it contains

ICALP 2021

98:8 Testing Dynamic Environments: Back to Basics

only two cycles: one is a self-loop for the state corresponding to the configuration 1n and the
other is a self loop for the state corresponding to the configuration 0n). On the other hand,
there are rules, such as XOR, for which pρ(n) = Ω(n).

▶ Definition 4. For two locations i, i′ ∈ Zn, we let −−→dist(i, i′) = i′ − i denote the directed
distance from i to i, and let dist(i, i′) = min{

−−→dist(i, i′), −−→dist(i′, i)} denote the (undirected)
distance.

Note that since operations on locations are modulo n, we have that −−→dist(i, i′) ≤ n − 1, while
dist(i, i′) ≤ n/2 for all i, i′ ∈ Zn.

▶ Definition 5. For t ∈ [m] and i ∈ Zn, we refer to (t, i) as a time-location pair (or simply
pair).

Given two locations, i, i′ ∈ Zn and two time steps t, t′ ∈ [m] where t > t′, we say that the
pair (t, i) descends from the pair (t′, i′) if dist(i, i′) ≤ t − t′. We say that (t, i) is a descendant
of (t′, i′) and that (t′, i′) is an ancestor of (t, i).

▶ Definition 6. For an integer r, an r-pattern is a string in {0, 1}r.

3 The Conditions

Let ρ : {0, 1}3 → {0, 1} be a local rule. We present several conditions, such that if they
all hold, then the rule ρ can be tested with poly(1/ϵ) queries. These conditions capture
properties of local rules that can be exploited by our (meta) algorithm.

The conditions are defined with respect to a constant (integer) k (which depends on ρ,
but for the sake of simplicity we suppress the dependence on ρ and use k rather than kρ),
and a partition of all (2k + 1)-patterns.6 The partition is denoted by (Fρ, Fρ), where F
stands for final and F for non-final.

We shall say that a pair (t, i) is final (respectively, non-final) with respect to ENV and ρ if
ENVt(Γk(i)) ∈ Fρ (respectively, Fρ). Roughly speaking, if (t, i) is final (with respect to ENV
and ρ), then location i does not change from time t and onward (or, more generally, ENVt′(i)
for t′ > t can be predicted based on ENVt(i)). Furthermore, if (t, i) is non-final, then (t + 1, i)
is final if and only if (t, i − 1) or (t − 1, i + 1) is final (so that finality is “infectious”).

In our statements of the conditions, we make use of the parity function, which we denote
by parity : N → {0, 1} (so that parity(x) = 1 if x is odd and parity(x) = 0 if x is even).

Before each of the conditions is stated formally, we give a short, informal description. It will
also be useful to have a running example of a specific rule ρ, which is the majority rule. Namely,
MAJ(β1, β2, β3) = 1 for any three bits β1, β2, β3, if and only if β1 + β2 + β3 ≥ 2. For the
majority rule, k = 1, and FMAJ = {111, 110, 011, 000, 001, 100} (so that FMAJ = {101, 010}).

The first condition says that if a location is final, then it remains final.

▶ Condition 1. Let ENV ∈ Eρ
m,n be an environment that evolves according to ρ. For any time

step t ∈ [m − 1] and location i ∈ Zn, if ENVt(Γk(i)) ∈ Fρ, then ENVt+1(Γk(i)) ∈ Fρ.

Indeed, for the majority rule, if ENVt(Γ1(i)) = 111, then ENVt+1(Γ1(i)) = 111 ∈ FMAJ, if
ENVt(Γ1(i)) = 110, then ENVt+1(Γ1(i)) ∈ {110, 111} ⊂ FMAJ, and if ENVt(Γ1(i)) = 110,
then ENVt+1(Γ1(i)) ∈ {110, 111} ⊂ FMAJ (analogous statements hold for ENVt(Γ1(i)) ∈
{000, 001, 100}).

6 For the local rules we apply our conditions to, k is either 0 or 1, but using a variable parameter k will
hopefully allow to extend our results more easily.

Y. Nakar and D. Ron 98:9

The second condition says that if a location is non-final, then it can become final in one
time step if and only if it has a final neighbor.

▶ Condition 2. Let ENV ∈ Eρ
m,n be an environment that evolves according to ρ. For any time

step t ∈ [m − 1] and location i ∈ Zn, if ENVt(Γk(i)) ∈ Fρ, then ENVt+1(Γk(i)) ∈ Fρ if and
only if ENVt(Γk(i − 1)) ∈ Fρ or ENVt(Γk(i + 1)) ∈ Fρ (or both).

For the majority rule, consider the case that ENVt(Γ1(i)) = 101 (so that it belongs to FMAJ).
In this case, ENVt(Γ1(i−1)) ∈ {110, 010} and ENVt(Γ1(i+1)) ∈ {011, 010}. If ENVt(Γ1(i−1)) =
110 (which belongs to FMAJ), then ENVt+1(Γ1(i)) ∈ {110, 111} ⊂ FMAJ, and the case that
ENVt(Γ1(i + 1)) = 011 is analogous. On the other hand, if both ENVt(Γ1(i − 1)) = 010
and ENVt(Γ1(i + 1)) = 010 (so that they both belong to FMAJ), then ENVt+1(Γ1(i)) = 010
(and it belongs to FMAJ as well). Note that, if for every location i ∈ Zn, it holds that
ENV0(Γ1(i)) ∈ {010, 101} (that is, every location in the initial configuration is non-final),
then no location would ever become final throughout the evolution of the rule. In particular,
in this case the environment alternates between (01)n/2 and (10)n/2, where all the locations
are non-final.

The first two conditions intuitively imply that one can determine whether certain locations
are final or non-final using particular “past” locations that are known to be final or non-final.
The next two conditions capture the idea that the actual values at certain locations (and not
only whether or not they are final) can also be determined based on past locations.

In particular, the third condition captures how values at locations that are final at a
certain time step can be predicted using a function that depends on “past” final locations
from which they descend (and to which they are closest).

▶ Condition 3. Let ENV ∈ Eρ
m,n be an environment that evolves according to ρ. There exists

a function fρ : {0, 1}3 → {0, 1} for which the following holds. First, fρ is the XOR of its
first argument and a subset of the other two arguments. Second, let (t, i) and (t′, i′) be any
two pairs such that (t, i) descends from (t′, i′), ENVt(Γk(i)), ENVt′(Γk(i′)) ∈ Fρ, and for every
i′′ ̸= i′ satisfying dist(i, i′′) ≤ dist(i, i′) it holds that ENVt′(Γk(i′′)) ∈ Fρ. Then

ENVt(i) = fρ(ENVt′(i′), parity(t − t′), parity(dist(i, i′)) .

For the majority rule, fMAJ is simply the identity function on its first argument, namely,
fMAJ(β, ·, ·) = β.

The fourth condition captures how locations that are non-final at a certain time step can
be predicted using a function that depends on “past” non-final locations from which they
descend (conditioned on there not being any final location among its ancestors in that past
time step).

▶ Condition 4. Let ENV ∈ Eρ
m,n be an environment that evolves according to ρ. There exists

a function hρ : Fρ × {0, 1} × Zn → Fρ for which the following holds. First, hρ is reversible
in the sense that for each fixed τ ∈ Fρ, β ∈ {0, 1} and ℓ ∈ Zn, there exists a unique τ ′ such
that hρ(τ ′, β, ℓ) = τ . Second, let (t, i) and (t′, i′) be any two pairs such that (t, i) descends
from (t′, i′), ENVt(Γk(i)), ENVt′(Γk(i′)) ∈ Fρ, and ENVt′(Γk(i′′)) ∈ Fρ for every i′′ such that
(t, i) descends from (t′, i′′). Then

ENVt(Γk(i)) = hρ(ENVt′(Γk(i′)), parity(t − t′), −−→dist(i′, i)) .

For the majority rule, hMAJ(010, β, x) = 010 if β ⊕ parity(x) = 0 and hMAJ(010, β, x) = 101 if
β ⊕ parity(x) = 0. Similarly, hMAJ(101, β, x) = 101 if β ⊕ parity(x) = 0 and hMAJ(101, β, x) =
010 if β ⊕ parity(x) = 1.

ICALP 2021

98:10 Testing Dynamic Environments: Back to Basics

The additional two conditions presented below are a bit more involved than Conditions 1–
4, and perhaps initially less intuitive. They do not play a role in the definition of the meta
algorithm, but are applied in the proof of Lemma 2 (and we recommend that the reader
return to them in that context). In a nutshell, they allow us to show that if our testing
algorithm accepts the environment ENV with high constant probability, then there exists an
environment ENV′ that evolves according to ρ and is relatively close to ENV. In particular,
they aid us in defining the initial configuration ENV′0 based on ENVt for some appropriate
time step t.

▶ Condition 5. Let σ : Zn → {0, 1} be a configuration and let [x, y] be an interval of locations
such that σ(Γk(x)) ∈ Fρ and σ(Γk(y)) ∈ Fρ. There exists a configuration σ̃ ∈ Zn, which
differs from σ only on locations inside [x, y], for which the following holds: For every i ∈ [x, y]
we have that σ̃(Γk(i)) ∈ Fρ, and if σ(Γk(i)) ∈ Fρ, then σ̃(i) = σ(i).

This condition also covers the special case in which y = x and we interpret [x, y] as
x, x + 1, . . . , x + n (with a slight abuse of notation).

▶ Condition 6. Let σ : Zn → {0, 1} be a configuration and z ∈ Zn such that σ(Γk(z)) ∈ Fρ.
Let ν ∈ {τk+1 : τ ∈ Fρ} and γ, γ′ ∈ {0, 1}. There exists a configuration σ̃ : Zn → {0, 1} for
which the following hold. There is a location z′ ∈ [z + 1, z + 2k + 1] where σ̃(Γk(z′)) ∈ Fρ,
and fρ(σ̃(z′), γ, parity(z′− z) ⊕ γ′) = ν. Furthermore, for every i ∈ [z + 1, z′− 1] it holds that
σ̃(Γk(i)) ∈ Fρ, and for every i /∈ [z + k, z′ + k], σ̃(i) = σ(i).

A (symmetric) variant of the above should also hold if we replace z′ ∈ [z + 1, z + 2k + 1]
by z′ ∈ [z − 2k − 1, z − 1], i ∈ [z + 1, z′ − 1] by i ∈ [z′ + 1, z − 1], and i /∈ [z + k, z′ + k] by
i /∈ [z′ − k, z − k].

4 The Meta-Algorithm

In this section, we present a meta-algorithm for testing evolution of local rules that satisfy
the sufficient conditions (specified in Section 3). Here we give an algorithm whose complexity
is ⌈n/m⌉ · poly(1/ϵ) and, in the full version of this paper [9], we explain how to remove the
dependence on n/m.

In order to precisely describe our meta-algorithm, we need to first define a particular
set of locations that we designate as the 1-dimensional grid and the notion of violating
time-location pairs with respect to the 1-dimensional grid. The 1-dimensional grid is defined
in Section 4.1 and the notion of violating pairs is defined in Section 4.2. Then, in Section 4.3,
we describe our meta-algorithm.

In the full version of this paper [9], we show that these conditions hold for all (non-trivial)
threshold rules, as well as a couple of additional rules.

4.1 The grid
In this subsection we introduce the notion of a one-dimensional “grid”, which will be a central
building block of the meta algorithm (and its analysis). Recall that a configuration is a
function σ : Zn → {0, 1}. A partial configuration is a function σ′ : Zn → {0, 1} ∪ ⊥, which
will serve us to denote restrictions of configurations to a subset of the locations.

Let ∆ = ϵ2

b0
· min{n, m} where b0 is a sufficiently large constant. We assume for simplicity

that ∆ and n/∆ are both integers. Let G ⊆ Zn (the grid) be the set of locations {j ·
(n/∆)}n/∆−1

j=0 .
As we shall see in Section 4.3, our algorithm queries the tested environment on all grid

locations and their k-neighborhoods at a specific time step t1 (which will be set subsequently).

Y. Nakar and D. Ron 98:11

Let ENVt[G] be the partial configuration that agrees with ENVt on all locations in {Γk(g) :
g ∈ G} and is ⊥ elsewhere.

▶ Definition 7. Given a time step t > 0, we say that the partial configuration ENVt[G] induced
by the k-neighborhoods of the grid locations at time t is feasible with respect to a rule ρ, if
there exists an environment ENV′ that evolves according to ρ and such that ENV′t(i) = ENVt(i)
for every i ∈ Γk(G). We say in such a case that ENV′ is a feasible completion of ENVt[G] with
respect to ρ.

▶ Definition 8. Given a pair of grid locations g1, g2 ∈ G, a time step t and a subset
S ⊂ {0, 1}2k+1, if for every grid location g ∈ G ∩ [g1, g2] it holds that ENVt(Γk(g)) ∈ S, then
we say that the interval [g1, g2] is an S grid interval with respect to ENVt. We say that [g1, g2]
is a maximal S grid interval with respect to ENVt, if both ENVt(g1 − ∆) and ENVt(g2 + ∆) do
not belong to S.

In particular, we shall be interested in the case that S is Fρ or Fρ. Note that a grid interval
[g1, g2] contains all the locations between g1 and g2, and not just the grid locations. Also
note that if ENVt(Γk(g)) ∈ S for every g ∈ G, then by Definition 8, there is no maximal S
grid interval with respect to ENVt (we shall deal with such cases separately).

4.2 Violating Pairs
Let ρ be a fixed local rule that satisfies all the conditions stated in Section 3. Let t1 = b1∆

ϵ ,
where b1 is a sufficiently large constant and ∆ is as defined in Section 4.1. Let t2 = t1 +∆. We
now define the concept of a violating pair (t, i) ∈ [m] × Zn with respect to ENVt1 . Generally
speaking, these are pairs in the environment ENV whose values are inconsistent with evolving
according to the rule ρ given the values at the grid locations at time t1. The definition of
a violating pair serves us later by allowing our algorithm to reject when it encounters one,
which, as we prove, happens with high constant probability if ENV is ϵ-far from evolving
according to the rule ρ.

Figure 4.1 An illustration for the sets A, B, C, and U . Here [g1, g2] is a maximal Fρ grid interval,
g3 = g2 + ∆, where [g3, g4] is a maximal Fρ grid interval, and g5 = g4 + ∆ is an endpoint of a
maximal Fρ grid-interval. The area marked by A corresponds to pairs (t, i) such that t > t2 and
i ∈ [g1 + t1, g2 − t1]. These pairs are supposed to be final. The area marked by B corresponds to
pairs (t, i) such that t > t2, i ∈ [g2 − t1 + ∆, g2 + (t − t1)], and dist(g2, i) < dist(g5, i) − ∆. These
pairs are supposed to be final too. The area marked by C corresponds to pairs (t, i) such that
t > t2, i ∈ [g3, g4], and (t, i) neither descends from (t1, g3 + 1) nor from (t1, g4 − 1). These pairs are
supposed to be non-final. Finally, the areas marked by U correspond to pairs (t, i) such that t > t2

and one of the following holds: (1) i ∈ [g2 − t1 + 1, g2(i) − t1 + ∆]; (2) i ∈ [g3, g4] and either (a)
(t, i) descend from (t1, g3 − ∆) or (t1, g4 + ∆) and |dist(g3, i) − dist(g4, i)| ≤ ∆, or (b) (t, i) does not
descend from either (t1, g3 − ∆) or (t1, g4 + ∆) but it descends from either (t1, g3) or (t1, g4).

ICALP 2021

98:12 Testing Dynamic Environments: Back to Basics

We next define three disjoint sets of time-location pairs, denoted A, B and C, and for each
of these three sets we state conditions under which the pair is considered to be a violating
pair with respect to ENVt1 [G]. The proof that the three sets are pairwise disjoint appears in
Section 5, and for an illustration, see Figure 4.1.

If ENVt1(Γk(g)) ∈ Fρ for every g ∈ G, then A = {(t, i) : t2 < t < m, i ∈ Zn}. Otherwise,
A is the set of pairs (t, i) where t2 < t < m and i ∈ Zn such that there exists a maximal Fρ

grid interval [g1(i), g2(i)] with respect to ENVt1 for which i ∈ [g1(i) + t1, g2(i) − t1].

▶ Definition 9. A pair (t, i) ∈ A is said to be a violating pair with respect to ENVt1 [G],
if at least one of the following requirements does not hold. (1) ENVt2(Γk(i)) ∈ Fρ. (2)
ENVt(Γk(i)) ∈ Fρ. (3) ENVt(i) = fρ(ENVt2(i), parity(t−t2), 0) where fρ is the function referred
to in Condition 3.

Let B be the set of pairs (t, i), where t2 < t < m and i ∈ Zn for which the following
holds. First, there exists a maximal Fρ grid interval [g1(i), g2(i)] with respect to ENVt1

such that either i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1] or i ∈ [g2(i) − t1 + ∆ + 1, g2(i) +
(t − t1)]. Second, for every other maximal Fρ grid interval [g′1, g′2] (with respect to ENVt1),
if i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1], then dist(g1(i), i) < dist(g′2, i) − ∆, and if
i ∈ [g2(i) − t1 + ∆ + 1, g2(i) + (t − t1)], then dist(g2(i), i) < dist(g′1, i) − ∆.

▶ Definition 10. A pair (t, i) ∈ B is said to be a violating pair with respect to ENVt1 [G],
if at least one of the following requirements does not hold. (1) ENVt(Γk(i)) ∈ Fρ. (2)
Let [g1(i), g2(i)] be the maximal Fρ grid interval ensured by the definition of B given (t, i).
Let g(i) be the grid location in G ∩ ([g1(i), g1(i) + t1 − ∆] ∪ [g2(i), g2(i) − t1 + ∆]) that is
closest to i (if there are two such grid locations, then select the one closer to g1(i)). Then
ENVt(i) = fρ(ENVt1(g(i)), parity(t − t1), parity(dist(i, g(i)))), where fρ is the function referred
to in Condition 3.

If ENVt1(Γk(g)) ∈ Fρ for every g ∈ G, then C = {(t, i) : t2 < t < m, i ∈ Zn}. Otherwise,
C is the set of pairs (t, i) where t2 < t < m and i ∈ Zn for which the following holds.
First, there exists a maximal Fρ grid interval [g1(i), g2(i)] with respect to ENVt1 such that
i ∈ [g1(i), g2(i)]. Second, the pair (t, i) neither descends from the pair (t1, g1(i) + 1) nor from
the pair (t1, g2(i) − 1).

▶ Definition 11. A pair (t, i) ∈ C is said to be a violating pair with respect to ENVt1 , if at least
one of the following requirements does not hold. (1) ENVt(Γk(i)) ∈ Fρ. (2) Let g(i) ∈ G be
a grid location satisfying dist(g(i), i) < ∆ (if there are two such grid locations, then select
the one closer to g1(i)). Then ENVt(Γk(i)) = hρ(ENVt1(Γk(g(i))), parity(t − t1), −−→dist(g(i), i)).

Finally, we define the set U of uncertain pairs (t, i), for which we cannot determine, given
ENVt1 [G] and the corresponding pairs (t2, i), whether they are violating or not.

▶ Definition 12. The set U consists of all pairs (t, i) ∈ Zn × [m] such that t > t2 and
(t, i) /∈ A ∪ B ∪ C.

In Section 5 show that the number of pairs (t, i) belonging to the set U is relatively small,
provided that ENVt1 [G] is feasible.

4.3 The testing algorithm
Recall that Let ∆ = ϵ2

b0
·min{n, m}, t1 = b1∆

ϵ , and t2 = t1 +∆ (where b0 and b1 are constants
that will be set in the analysis).

Y. Nakar and D. Ron 98:13

Algorithm 1 The testing algorithm.

Tester for evolution according to a rule ρ

1. Query ENVt1 on all locations in Γk(G). If ENVt1 [G] is infeasible with respect to ρ, reject.
2. Select uniformly at random Θ(1

ϵ) pairs (t, i) where i ∈ Zn and t2 < t < m.
For each selected pair (t, i), query ENVt(Γk(i)) and ENVt2(Γk(i)).

3. If some pair selected in Step 2 is a violating pair with respect to ρ, then reject.
Otherwise, accept.

▶ Theorem 3. Let ρ be any local rule that satisfies Conditions 1–6. Algorithm 1 is a one-sided
error non-adaptive testing algorithm for evolution according to ρ whose query complexity is
O(⌈n/m⌉/ϵ2).

The bound on the query complexity of the algorithm follows from the fact that the number of
queries performed in Step 1 is O(n/∆) = O(⌈n/m⌉/ϵ2) (recall that k is a constant), and the
number of queries performed in Step 3 is O(1/ϵ). The correctness of the algorithm follows
from the next two lemmas. We prove Lemma 1 in Section 6 and Lemma 2 in Section 7.

▶ Lemma 1 (Completeness of the meta-algorithm). Let ρ be any local rule that satisfies
Conditions 1–6. If the environment ENV evolves according to ρ, then the algorithm accepts
with probability 1.

▶ Lemma 2 (Soundness of the meta-algorithm). Let ρ be any local rule that satisfies Condi-
tions 1–6. If the environment ENV is ϵ-far from evolving according to ρ, then the algorithm
rejects with probability at least 2/3.

5 Observations and simple claims

In this subsection we present several observations and simple claims that will be used in our
proofs of Lemma 1 and Lemma 2.

The first two observations are directly implied by Conditions 1 and 2.

▶ Observation 1. Let ρ be a local rule that satisfies Conditions 1 and 2, ENV ∈ Eρ
m,n an

environment that evolves according to ρ and (t, i) ∈ [m] × Zn. If (t, i) has an ancestor (t′, i′)
such that ENVt′(Γk(i′)) ∈ Fρ, then ENVt(Γk(i)) ∈ Fρ.

Note that Observation 1 implies that if ENVt(Γk(i)) ∈ Fρ, then ENVt′(Γk(i′)) ∈ Fρ for every
ancestor (t′, i′) of (t, i).

▶ Observation 2. Let ρ be a local rule that satisfies Conditions 1 and 2, ENV ∈ Eρ
m,n an

environment that evolves according to ρ and (t, i) ∈ [m] × Zn, t ≤ n/2. If ENVt(Γk(i)) ∈ Fρ,
then the location i belongs to an interval whose size is at least 2t such that ENV′t(Γk(j)) ∈ Fρ

for every location j in this interval.

The observation below directly follows from Observation 2 (as well as the definition of
the grid G and Definitions 7 and 8).

▶ Observation 3. Let ρ be a local rule that satisfies Conditions 1 and 2. Suppose that ENVt[G]
for t ≤ n/2 is feasible with respect to ρ. Then for every [g1, g2] that is a maximal Fρ grid
interval with respect to ENVt, the number of locations in [g1, g2] is at least 2t − ∆.

ICALP 2021

98:14 Testing Dynamic Environments: Back to Basics

The next observation follows directly from Observation 1 (as well as the definition of G

and Definitions 7 and 8).

▶ Observation 4. Let ρ be a local rule that satisfies Conditions 1 and 2. Suppose that ENVt[G]
for t ≤ n/2 is feasible with respect to ρ and let g ∈ G be such that ENVt(Γk(g)) ∈ Fρ. If
ENV′ is a feasible completion of ENVt[G] (with respect to ρ), then ENV′t′(Γk(i)) ∈ Fρ for every
t′ ≥ t + ∆ and i ∈ [g − ∆, g + ∆].

Claim 5, stated next, also deals with feasible completions.

▷ Claim 5. Let ρ be a local rule that satisfies Conditions 1 and 2. Suppose that ENVt[G] is
feasible with respect to ρ for t ≥ ∆ and let g ∈ G be such that both ENVt(Γk(g)) ∈ Fρ and
ENVt(Γk(g + ∆)) ∈ Fρ. If ENV′ is a feasible completion of ENVt[G] (with respect to ρ), then
ENV′t(Γk(i)) ∈ Fρ for every i ∈ [g, g + ∆].

Recall the definitions of the sets A, B and C from Section 4.2.

▷ Claim 6. The sets A, B, and C are pairwise disjoint.

In the last claim of this subsection, we bound the size of the set U of uncertain pairs (as
defined in Definition 12).

▷ Claim 7. If ENVt1 [G] is feasible (with respect to ρ), then |U | ≤ 5ϵ
b1

mn (where b1 is the
constant in the setting of t1 = b1∆

ϵ).

We note that Claim 7 does not depend on the setting of ∆, but only on the definition of t1
as a function of ∆ (as well as the definition of the grid G, which, too is defined based on ∆,
and in turn is used to determine U).

6 Proof of Lemma 1: Completeness of the meta-algorithm

Let ρ be any local rule that satisfies Conditions 1–6 (where in this proof we do not make use
of Conditions 5 and 6, which are provided in the next subsection), and let ENV ∈ Eρ

m,n be a
dynamic environment that evolves according to ρ. The only steps in which our algorithm
may reject are Step 1 and Step 3. The grid is feasible by definition, and hence the algorithm
does not reject in Step 1. To show that it also does not reject in Step 3, we show that there
are no violating pairs with respect to ENVt1 [G]. Recall that each violating pair belongs to
one of the three sets A, B, or C (as defined in Section 4.2). Specifically, we next show that
in each of the three cases ((t, i) ∈ A, (t, i) ∈ B, and (t, i) ∈ C), the requirements (specified
in Section 4.2) for (t, i) being a non-violating pair hold. In what follows, if we say that a
pair (t, i) is final (similarly, non-final), then we mean with respect to ENV, and when we refer
to maximal grid intervals, it is always with respect to ENVt1 , and violations are always with
respect to ENVt1 [G].

Pairs (t, i) ∈ A. By the definition of A, t > t2 and there exists a grid location g(i) ∈ G

such that dist(i, g(i)) ≤ ∆ and ENVt1(Γk(g(i))) ∈ Fρ (this holds both in the case that
ENVt1(Γk(g)) ∈ Fρ for every g ∈ G and in the case that there exists a maximal Fρ grid interval
[g1(i), g2(i)] such that i ∈ [g1(i) + t1, g2(i) − t1].) By Observation 4, both ENVt2(Γk(i)) ∈ Fρ

and ENVt(Γk(i)) ∈ Fρ. Turning to the third requirement, by Condition 3, applied with
t′ = t2 and i′ = i, we get that ENVt(i) = fρ(ENVt2(i), parity(t − t2), 0). Therefore, all three
requirements on pairs in A hold, and hence (t, i) is not a violating pair.

Y. Nakar and D. Ron 98:15

Pairs (t, i) ∈ B. By the definition of B, t > t2 and there exists a maximal Fρ grid interval
[g1(i), g2(i)] with respect to ENVt1 such that either i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1] or
i ∈ [g2(i) − t1 + ∆ + 1, g2(i) + (t − t1)]. Furthermore, for every other maximal Fρ grid interval
[g′1, g′2] (with respect to ENVt1), if i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1], then dist(g1(i), i) <

dist(g′2, i)−∆, and if i ∈ [g2(i)−t1 +∆+1, g2(i)+(t−t1)], then dist(g2(i), i) < dist(g′1, i)−∆.
Let g(i) be the grid location closest to i in G∩([g1(i), g1(i) + t1 − ∆] ∪ [g2(i) − t1 + ∆, g2(i)])
(as defined in the second requirement concerning (non-)violating pairs (t, i) ∈ B).

We claim that (t, i) descends from (0, g(i)). To see why, first consider the case in which
i ∈ [g1(i) − (t − t1), g1(i)] ∪ [g2(i), g2(i) + (t − t1)]. In this case, either g(i) = g1(i) or
g(i) = g2(i), which means that dist(i, g(i)) ≤ t − t1 ≤ t. Second, consider the case in which
i ∈ [g1(i), g1(i) + t1 − ∆ − 1] ∪ [g2(i) − t1 + ∆ + 1, g2(i)]. In this case, the grid location closest
to i in G ∩ ([g1(i), g1(i) + t1 − ∆] ∪ [g2(i) − t1 + ∆, g2(i)]) is within a distance of at most ∆
from the location i. Hence, dist(i, g(i)) ≤ ∆ ≤ t. Therefore, in any case, dist(i, g(i)) ≤ t,
and thus the pair (t, i) descends from the pair (0, g(i)).

Assume (without loss of generality) that g(i) ∈ [g2(i)−t1+∆, g2(i)]. Since ENVt1(Γk(g2(i)+
∆)) ∈ Fρ (as [g1(i), g2(i)] is a maximal final grid interval), we know (by Observation 1)
that ENV0(Γk(j)) ∈ Fρ for every j ∈ [g2(i) + ∆ − t1, g2(i) + ∆ + t1]. However, since
ENVt1(Γk(g2(i)) ∈ Fρ, there must be some location ℓ ∈ [g2(i) − t1, g2(i) + ∆ − t1 − 1] such
that ENV0(Γk(ℓ)) ∈ Fρ. Among the locations ℓ that satisfy these conditions, let ℓ∗ be the
one that minimizes dist(ℓ, g2(i) + ∆ − t1), so that for every ℓ′ ∈ [ℓ∗ + 1, g2(i) + ∆ − t1]
we have that ENV0(Γk(ℓ′)) ∈ Fρ. Hence, for every i′′ ≠ g(i) satisfying dist(g(i), i′′) ≤
dist(g(i), ℓ∗) it holds that ENV0(i′′) ∈ Fρ. Additionally, since g(i) ∈ [g2(i) − t1 + ∆, g2(i)]
and ℓ∗ ∈ [g2(i) − t1, g2(i) + ∆ − t1 − 1], it must hold that dist(g(i), ℓ∗) ≤ t1, which means
that the pair (t1, g(i)) descends from the pair (0, ℓ∗). Also, both ENVt1(g(i)) ∈ Fρ and
ENV0(ℓ∗) ∈ Fρ. Thus, we can apply Condition 3 for the two pairs (0, ℓ∗) and (t1, g(i)) to get
that ENVt1(g(i)) = fρ(ENV0(ℓ∗), parity(t1), parity(dist(ℓ∗, g(i)))).

Since the pair (t, i) descends from the pair (t1, g(i)), and the pair (t1, g(i)) descends
from the pair (0, ℓ∗), it holds that the pair (t, i) must also descend from the pair (0, ℓ∗).
Additionally, both both ENVt(i) ∈ Fρ and ENV0(ℓ∗) ∈ Fρ. Also, by the second requirement
on (t, i), involving other maximal Fρ grid intervals [g′1, g′2], for every i′′ ̸= i satisfying
dist(i, i′′) ≤ dist(i, ℓ∗) it holds that ENV0(i′′) ∈ Fρ. Thus, we can apply Condition 3 for the
two pairs (0, ℓ∗) and (t, i) to get that ENVt(i) = fρ(ENV0(ℓ∗), parity(t), parity(dist(ℓ∗, i))). But
then, since fρ is the XOR of its first argument and a subset of the other two, and parity(t−t1) =
parity(t1) ⊕ parity(t) as well as parity(dist(g(i), i))) = parity(dist(ℓ∗, g(i))) ⊕ parity(dist(ℓ∗, i)),
we get that ENVt(i) = fρ(ENVt1(g(i)), parity(t − t1), parity(dist(g(i), i))).

Pairs (t, i) ∈ C. There are two cases (where in both t > t2). The first is that ENVt1(Γk(g)) ∈
Fρ for every g ∈ G (so that i may be any location in Zn). In the second case there exists a
maximal Fρ grid interval [g1(i), g2(i)] such that i ∈ [g1(i), g2(i)], and (t, i) does not descend
from either (t1, g1(i)−1) or (t1, g2(i)+1), which implies that for every j ∈ Zn, if the pair (t, i)
descends from (t1, j), then j ∈ [g1(i), g2(i)]. In both cases, by Claim 5, all ancestors (t1, j)
of (t, i) satisfy ENVt1(Γk(j)) ∈ Fρ. By Observation 1 this implies that ENVt(Γk(i)) ∈ Fρ, so
that the first requirement is met. As for the second requirement, since the grid location
g(i) defined in the second requirement is such that (t1, g(i)) is an ancestor of (t, i) (and
ENVt1(Γk(g(i))) ∈ Fρ), we can apply Condition 4 (with t′ = t1 and i′ = g) to get that
ENVt(Γk(i)) = hρ(ENVt1(Γk(g(i))), parity(t − t1), −−→dist(g(i), i), as required.

We’ve shown that under the premise of the lemma, there is no pair (t, i) ∈ A ∪ B ∪ C

that is a violating pair. Thus, our algorithm cannot reject at Step 3.

ICALP 2021

98:16 Testing Dynamic Environments: Back to Basics

7 Proof of Lemma 2: Soundness of the meta-algorithm

Let ENV be any environment that is ϵ-far from evolving according to ρ, where ρ is a local rule
that satisfies Conditions 1–6. If ENVt1 [G] is infeasible with respect to ρ, then the algorithm
rejects (in Step 1). Hence, we assume from now on that ENVt1 [G] is feasible.

We claim that the number of violating pairs with respect to ENVt1 [G] is at least ϵ
b2

mn,
where b2 > 1 is a constant. Lemma 2 follows, since the algorithm selects s = Θ(1/ϵ) pairs
(in Step 2), and rejects if any of them is found to be a violating pair (in Step 3). Hence, the
probability that the algorithm rejects is at least 1 − (1 − ϵ/b2)s, which is at least 2/3 for
s ≥ 2b2/ϵ.

Suppose by way of contradiction that there are less than ϵ
b2

mn violating pairs. We show
how, based on ENV (to be precise, ENVt1 [G] and ENVt2) we can define an environment ENV′ for
which the following holds. First, ENV′ evolves according to ρ. Second, ENV′ differs from ENV
on at most ϵmn pairs (t, i) ∈ Zn × [m]. But this contradicts the premise that ENV is ϵ-far
from evolving according to ρ. Details follow in the next subsections.

We first provide all details (in Section 7.1 and Section 7.2) under the assumption that
there exist grid locations g ∈ G for which ENVt1(Γk(g)) ∈ Fρ as well as grid locations g′ ∈ G

for which ENVt1(Γk(g′)) ∈ Fρ. We discuss (in the full version of this paper [9]) the two
special cases for which either ENVt1(Γk(g)) ∈ Fρ for every g ∈ G or ENVt1(Γk(g)) ∈ Fρ for
every g ∈ G, which we refer to as the homogeneous cases.

7.1 The definition of ENV′

To construct the dynamic environment ENV′, we define its initial configuration ENV′0, and then
apply the local rule ρ for m − 1 steps. Hence, ENV′ evolves according to ρ by construction.
The initial configuration ENV′0 is defined with respect to a configuration σ on which we
perform several transformations to obtain ENV′0. We define the configuration σ by specifying
the value of σ(i) for each location i ∈ Zn as explained next. In what follows, whenever we
refer to maximal Fρ grid intervals (similarly, maximal Fρ grid intervals), it is with respect
to ENVt1 .

We shall make use of a function h←ρ : Fρ × {0, 1} × Zn (based on hρ – see Condition 4).
Recall that by Condition 4, for each fixed τ ∈ Fρ, β ∈ {0, 1} and ℓ ∈ Zn, there exists a
unique τ ′ such that hρ(τ ′, β, ℓ) = τ .

▶ Definition 8. For any τ ∈ Fρ, β ∈ {0, 1} and ℓ ∈ Zn, h←ρ (τ, β, ℓ) equals the (unique)
pattern τ ′ for which hρ(τ ′, β, ℓ) = τ .

We also make the following observation, based on Condition 3, by which fρ is the XOR
of its first argument and a subset of the other two.

▶ Observation 9. For any β1, β2, β3 ∈ {0, 1}, if fρ(β1, β2, β3) = β′1, then fρ(β′1, β2, β3) = β1.
Furthermore, for any β′2, β′3 ∈ {0, 1}, fρ(fρ(β1, β2, β3), β′2, β′3) = fρ(β1, β2 ⊕ β′2, β3 ⊕ β′3), and
in particular, fρ(fρ(β1, β2, β3), β2, β3) = β1.

For each maximal Fρ grid interval [g1, g2], let J(g1, g2) = [g1 − t1 − k, g2 + t1 + k] and let
J be the union over all such sets. We also define J1(g1, g2) = [g1 − t1, g2 + t1] (for each Fρ

grid interval [g1, g2]), and let J1 ⊂ J be the union over all such sets.
We first establish two simple claims.

▷ Claim 10. Let ρ be any local rule that satisfies Conditions 1–4. For every two maximal
Fρ grid interval [g1, g2] and [g′1, g′2], we have that J(g1, g2) ∩ J(g′1, g′2) = ∅.

Y. Nakar and D. Ron 98:17

▷ Claim 11. Let ρ be any local rule that satisfies Conditions 1–4. Let ENV′′ be any
environment that is a feasible extension of ENVt1 [G] with respect to ρ, and let [g1, g2] be
a maximal Fρ grid interval (with respect to ENVt1 [G]). Then ENV′′0(Γk(i)) ∈ Fρ for every
i ∈ J1(g1, g2). Furthermore, ENV′′0(Γk(i)) = h←ρ (ENVt1(Γk(g)), parity(t1), −−→dist(i, g)) for any
g ∈ G ∩ [g1, g2] and every ancestor (0, i) of (t1, g).

Observe that Claim 11 implies that ENV′′0 is uniquely determined by ENVt1 [G] on all
location in J for every ENV′′ that is a feasible extension of ENVt1 [G] (with respect to ρ). Based
on this observation, we start by setting the locations of σ that belong to J as in such ENV′′0 .
In particular we have that σ(Γk(i)) ∈ Fρ for every i ∈ J1, and furthermore,

∀i ∈ J1, g ∈ G s.t. (t1, g) descends from (0, i) and,

σ(Γk(i)) = h←ρ (ENVt1(Γk(g)), parity(t1), −−→dist(i, g)) . (7.1)

Turning to the locations not yet set in σ, for each location i ∈ Zn \ J , σ(i) =
fρ(ENVt2(i), parity(t2), 0). Note that by Observation 9, fρ(σ(i), parity(t2), 0) = ENVt2(i).

We next explain how we modify σ so as to obtain ENV′0 using Condition 5 and Condition 6.
The modifications are performed (strictly) within the following set of intervals S.

S =
{[

a = g1 − ∆ + t1, b = g2 + ∆ − t1
]

: [g1, g2] is a maximal Fρ grid interval
}

. (7.2)

The intervals in S are clearly disjoint (as each is a sub-interval of a different maximal
Fρ grid interval), and by Observation 3, each is non-empty. Note that for each maximal
Fρ grid interval [g1, g2], we have that g1 − ∆ and g2 + ∆ are endpoints of maximal Fρ grid
interval. Therefore, a, b ∈ J1 for each interval [a, b] ∈ S, and by the setting of σ and Claim 11,
σ(Γk(a)), σ(Γk(b)) ∈ Fρ.

For each [a, b] ∈ S and the corresponding [g1, g2], let α(a, b) = ENVt1(g1), β(a, b) =
ENVt1(g2), γ(a, b) = parity(t1), γ′(a, b) = parity(t1 − ∆). We shall apply Condition 5 and
Condition 6 to modify σ on all [a, b] ∈ S “in parallel” as described next, and set ENV′0 to be
the resulting configuration.

For each [a, b] ∈ S we first apply Condition 6 with z = a, ν = α(a, b), γ = γ(a, b) and
γ′ = γ′(a, b). We let a′ = z′ (recall that z′ ∈ [z + 1, z + 2k + 1] and σ̃(Γk(z′)) ∈ Fρ). Next we
apply Condition 6 in its second (symmetric) variant with z = b, ν = β(a, b), γ = γ(a, b) and
γ′ = γ′(a, b). We let b′ = z′ (recall that in this variant, z′ ∈ [z − 2k − 2, z − 1], and here too
σ̃(Γk(z′)) ∈ Fρ). Finally we apply Condition 5 on the modified configuration with x = a′

and y = b′.

7.2 The distance between ENV and ENV′

In this subsection we show that based on the counter-assumption regarding the number of
violating pairs, the number of pairs (t, i) ∈ Zn × [m] on which ENV and ENV′ differ is at most
ϵmn. To this end we show that each (t, i) such that ENVt(i) ̸= ENV′t(i) belongs to one of the
following sets:
1. The set of pairs (t, i) for which 0 ≤ t ≤ t2.
2. The uncertainty set U .
3. The set of (t, i) pairs where (t, i) is a violation with respect to ENVt1 [G].
By the setting of t2 (t1) and ∆, the number of pairs in the first set is at most (b1+1)ϵ

b0
mn. By

Claim 7, |U | ≤ 5ϵ
b1

mn. By our counter-assumption, the number of violating pairs is at most
ϵ

b2
mn . Setting b1 = 15, b0 = 48 and b2 = 3, we get a total of at most ϵmn pairs, as claimed.

ICALP 2021

98:18 Testing Dynamic Environments: Back to Basics

Figure 7.1 An illustration for the setting of ENV0. As in Figure 4.1, [g1, g2] is a maximal Fρ grid
interval, g3 = g2 + ∆, where [g3, g4] is a maximal Fρ grid interval, and g5 = g4 + ∆ is an endpoint
of a maximal Fρ grid-interval. The maximal Fρ grid interval [g3, g4] is used to set the locations
between g3 − t1 = g2 − t1 + ∆ and g4 + t1 (more precisely, between g3 − t1 − k and g4 + t1 + k based
on Claim 11. The location b = g2 − t1 + ∆ is an endpoint of an interval in S, and the location b′ is
determined by the application of Condition 6. The values in the k-neighborhood of b′ are set so that
the evolution of ρ will result in the ENVt1 (g2) at time t1. The pair (t, i) belongs to the set B.

To establish the claim that each (t, i) for which ENVt(i) ̸= ENV′t(i) belongs to one of the
above three sets, we prove the contrapositive. Suppose the pair (t, i) is not in the uncertainty
set U and that t > t2. It follows that (t, i) ∈ A ∪ B ∪ C. We show that for each of the three
types of pairs ((t, i) ∈ A, (t, i) ∈ B, and (t, i) ∈ C), if the pair (t, i) is not a violating pair
with respect to ENVt1 [G], it must hold that ENVt(i) = ENV′t(i).

Pairs (t, i) ∈ A. By the definition of A, there exists a maximal Fρ grid interval [g1(i), g2(i)]
(with respect to ENVt1) for which i ∈ [g1(i) + t1, g2(i) − t1]. Since (t, i) is not a violating pair
with respect to ENVt1 [G], it must hold that ENVt2(Γk(i)), ENVt(Γk(i)) ∈ Fρ and that ENVt(i) =
fρ(ENVt2(i), parity(t − t2), 0). Since i ∈ [g1(i) + t1, g2(i) − t1], we know that i /∈ J . Hence, by
the definition of the configuration σ, we have that σ(i) = fρ(ENVt2(i), parity(t2), 0) and that
σ(Γk(i)) ∈ Fρ. Let [a(i), b(i)] = [g1(i) − ∆ + t1, g2(i) + ∆ − t1], so that i ∈ I(a(i), b(i)). By
the definition of E′0, based on Condition 5 we have that ENV′0(i) = σ(i) and ENV′0(Γk(i)) ∈ Fρ.
Since ENV′ evolves according to ρ, by Condition 3,

ENV′
t2 (i) = fρ(ENV′

0(i), parity(t2), 0) = fρ(fρ(ENVt2 (i), parity(t2), 0), parity(t2), 0) = ENVt2 (i)

where the last equality follows from (the second part of) Observation 9. Additionally, by
Condition 1, ENV′t2

(i) ∈ Fρ. Therefore, by Condition 3,

ENV′t(i) = fρ(ENV′t2
(i), parity(t − t2), 0) = fρ(ENVt2(i), parity(t − t2), 0) = ENVt(i) .

Pairs (t, i) ∈ B. By the definition of B, there exists a maximal Fρ grid interval [g1(i), g2(i)]
with respect to ENVt1 such that either i ∈ [g1(i) − (t − t1), g1(i) + t1 − ∆ − 1] or i ∈
[g2(i) − t1 + ∆ + 1, g2(i) + (t − t1)]. Assume (without loss of generality) that the latter
holds. By the definition of B we also know that for every other maximal Fρ grid interval
[g′1, g′2] it holds that dist(i, g2(i)) < dist(i, g′1), dist(i, g′2) − ∆. Let g(i) be the grid location
closest to i in [g2(i) − t1 + ∆, g2(i)]. Since i ∈ [g2(i) − t1 + ∆ + 1, g2(i) + (t − t1)], necessarily,
g(i) ∈ [g2(i) − t1, g2(i)]. For the sake of conciseness, in what follows we shall use g1, g2, and
g as a shorthand for g1(i), g2(i) and g(i), respectively.

Y. Nakar and D. Ron 98:19

Since [g1, g2] is a maximal Fρ grid interval, [a = g1 − ∆ + t1, b = g2 + ∆ − t1] ∈ S.
Hence, to obtain ENV′0 from the configuration σ, we invoked Condition 6 (the symmetric
version) with z = b, ν = ENVt1(g2), γ = parity(t1), and γ′ = parity(t1 −∆) = parity(dist(g2, b)).
By Condition 6, letting b′ = z′, ENVt1(g2) = fρ(ENV′0(b′), parity(t1), parity(dist(g2, b′))). By
Observation 9,

ENV′0(b′) = f←ρ (ENVt1(g2), parity(t1), parity(dist(g2, b′))) . (7.3)

As b′ ∈ [b − 2k − 1, b − 1], which by the setting of b implies that b′ ∈ [g2 + ∆ − t1 − 2k −
1, g2 + ∆ − t1 − 1], we have that (0, b′) is an ancestor of (t1, j) for every j ∈ [g2 − t1, g2]. In
particular this holds for the grid location g (that is closest to i in G ∩ [g2 − t1, g2]). Since
(t, i) descends from (t1, g), we get that (t, i) also descends from (0, b′).

We claim that for every b′′ ̸= b′ with dist(i, b′′) < dist(i, b′) it holds that ENV′0(b′′) ∈ Fρ. To
verify this, let [g3, g4] be the maximal Fρ grid interval where g3 = g2 +∆, and let g5 = g4 +∆,
so that g5 is the endpoint of a maximal Fρ grid interval. By the definition of ENV′0 (based on
σ and Condition 6) we have that ENV′0(Γk(j)) ∈ Fρ for every j ∈ [b′ + 1, b − 1] ∪ J1(g3, g4) =
[b′ + 1, g4 + t1]. Since (by the second requirements on pairs in B), dist(i, g2) < dist(i, g5) − ∆
and b′ ∈ [g2 − t1 + ∆ − 2k − 1, g2 − t1 + ∆ − 1], we have that ENV′0(b′′) ∈ Fρ for every b′′ ̸= b′

with dist(i, b′′) < dist(i, b′). Therefore, we can apply Condition 3 to obtain that

ENV′t(i) = fρ(ENV0(b′), parity(t), parity(dist(i, b′)))
= fρ(fρ(ENVt1(g2), parity(t1), parity(dist(g2, b′))), parity(t), parity(dist(i, b′))) (7.4)
= fρ(ENVt1(g2), parity(t − t1), parity(dist(i, g2))) (7.5)

where the last equality follows from Observation 9.
Consider first the case that g = g2. Since the pair (t, i) is not a violating pair,

ENVt(i) = fρ(ENVt1(g2), parity(t − t1), parity(dist(i, g2))) , (7.6)

and hence in this case, ENVt(i) = ENV′t(i), as desired. We next turn to the case that g ≠ g2.
We claim that since ENVt1 [G] is feasible,

ENVt1(g) = fρ(ENV′0(b′), parity(t1), parity(dist(g, b′))) . (7.7)

Conditioned on Equality 7.7 holding, the argument is the same as for the case that g = g2
(replacing g2 with g in Equations (7.4)–(7.6)).

To verify Equation (7.7), we introduce the notion of a source for a final pair. Let ENV′′ be
an environment that evolves according to ρ, and (t′, i′) a final pair with respect to ENV′′ and
ρ. We say that (0, b′′) is the source of (t′, i′) (at time 0) in ENV′′ if (0, b′′) is an ancestor of
(t′, i′), is final, and dist(b′′, i′) < dist(j, i′) for every other final (0, j). Consider any feasible
extension E′′ of ENVt1 [G]. By Claim 11 and the discussion above, the source (0, b′′) of
(t1, g2) (at time 0 in ENV′′) must satisfy b′′ ∈ [g2 − t1, g2 − t1 + ∆ − 1]. Furthermore, (0, b′′)
must also be the source of (t1, g′) for every grid location g′ ∈ [g2 − t1, g2]. Therefore, for
each such grid location, ENVt1(g′) = ENV′′t1

(g′) = fρ(ENV′′0(b′′), parity(t1), parity(dist(g′, b′′))),
where ENV′′0(b′′) = f←ρ (ENVt1(g2), parity(t1), parity(dist(g2, b′′))). If fρ and f←ρ do no depend
on their third argument, then, by Equation (7.3), ENV′0(b′) = ENV′′0(b′′) and if they do, then
ENV′0(b′) = ENV′′0(b′′) ⊕ parity(dist(b′, b′′)) . In either case, Equation (7.7) follows.

Pairs (t, i) ∈ C. By the definition of C, there exists a maximal Fρ grid interval [g1(i), g2(i)]
such that g1(i) ≤ i ≤ g2(i). Additionally, the pair (t, i) does not descend from either the
pair (t1, g1(i) − 1) or from the pair (t1, g2(i) + 1). Let g(i) be the grid location defined in
Definition 11 (of violating pairs in C), so that g(i) ∈ G ∩ [g1(i), g2(i)] and dist(i, g(i)) < ∆.

ICALP 2021

98:20 Testing Dynamic Environments: Back to Basics

By the definition of ENV′0 (based on σ – recall Equation (7.1)), we have that
ENV′0(Γk(i)) = h←ρ (ENVt1(Γk(g(i))), parity(t1), −−→dist(i, g(i))). By the definition of h←ρ (Defin-
ition 8), this implies that ENVt1(Γk(g(i))) = hρ(ENV′0(Γk(i)), parity(t1), −−→dist(i, g(i))). Since
ENV′0(Γk(j)) ∈ Fρ for every location j ∈ J(g1(i)), g2(i)), and the environment ENV′

evolves according to ρ where ρ satisfies Condition 4, we know that ENV′t1
(Γk(g(i))) =

hρ(ENV′0(Γk(i)), parity(t1), −−→dist(i, g(i))). Hence, ENV′t1
(Γk(g(i))) = ENVt1(Γk(g(i))). Further-

more, using in addition the fact that (t, i) does not descend from either (t1, g1(i) − 1)
or (t1, g2(i) + 1), we get all ancestors of (t1, j) of (t, i) satisfy ENV′t1

(Γk(j)) ∈ Fρ, so
that ENV′t(Γk(i)) = hρ(ENV′t1

(Γk(g(i))), parity(t − t1), −−→dist(g(i), i))). Since (t, i) is not a
violating pair, ENVt(Γk(i)) = hρ(ENVt1(Γk(g(i))), parity(t − t1), −−→dist(g(i), i)), and using
ENV′t1

(Γk(g(i))) = ENVt1(Γk(g(i))) we get that ENV′t(i) = ENVt(i).

References
1 D. Burraston and E. Edmonds. Cellular automata in generative electronic music and sonic

art: a historical and technical review. Digital Creativity, 16(3):165–185, 2005.
2 Bastien C. and Michel D. Cellular Automata Modelling of Physical Systems. Cambridge

University Press, 1998.
3 P. P. Chaudhuri, D. R. Chowdhury, S. Nandi, and S. Chattopadhyay. Additive Cellular

Automata Theory and Applications. Vol. 1. IEEE Press, 1997. IEEE Press advances in circuits
and systems series.

4 M. Cook. Universality in elementary cellular automata. Complex systems, 15(1):1–40, 2004.
5 O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and

approximation. Journal of the ACM, 45(4):653–750, 1998.
6 O. Goldreich and D. Ron. On learning and testing dynamic environments. Journal of the

ACM, 64(3):1–90, 2017.
7 L. Kier, C. Cheng, and P. Seybold. Cellular automata models of chemical systems. SAR and

QSAR in Environmental Research, 11(2):79–102, 2000.
8 A. Mustafa, A. Heppenstall, H. Omrani, I. Saadi, M. Cools, and J. Teller. Modelling built-up

expansion and densification with multinomial logistic regression, cellular automata and genetic
algorithm. Computers, Environment and Urban Systems, 67:147–156, 2018.

9 Y. Nakar and D. Ron. Testing dynamic environments: Back to basics. arXiv preprint, 2021.
arXiv:2105.00759.

10 D. Peleg. Local majorities, coalitions and monopolies in graphs: a review. Theoretical Computer
Science, 282(2):231–257, 2002.

11 D. A Rosenblueth and C. Gershenson. A model of city traffic based on elementary cellular
automata. Complex Systems, 19(4):305, 2011.

12 R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

13 J. von Neumann. The general and logical theory of automata. Cerebral Mechanisms of
Behavior: The Hixon Symposium, pages 1–41, 1951.

14 S. Wolfram. A new kind of science, volume 5. Wolfram media Champaign, IL, 2002.
15 J. Xu, B. Gu, Y. Guo, J. Chang, Y. Ge, Y. Min, and X. Jin. A cellular automata model for

population dynamics simulation of two plant species with different life strategies. In 2010
IEEE International Conference on Intelligent Systems and Knowledge Engineering, 2010.

16 A. N. Zehmakan. On the spread of information through graphs. PhD thesis, ETH Zurich, 2019.
17 Z. Zheng, W. Huang, S. Li, and Y. Zeng. Forest fire spread simulating model using cellular

automaton with extreme learning machine. Ecological Modelling, 348:33–43, 2017.

http://arxiv.org/abs/2105.00759

	1 Introduction
	1.1 Testing basic evolution rules
	1.2 Our results
	1.3 The high-level ideas behind our results
	1.3.1 Convergence, final/non-final locations and prediction functions
	1.3.2 The meta-algorithm: the grid and violating pairs
	1.3.3 On the analysis of the algorithm and ``backward prediction''

	1.4 A short overview of the results in [Goldreich and Ron, 2017]
	1.5 Future directions

	2 Preliminaries
	3 The Conditions
	4 The Meta-Algorithm
	4.1 The grid
	4.2 Violating Pairs
	4.3 The testing algorithm

	5 Observations and simple claims
	6 Proof of Lemma 1: Completeness of the meta-algorithm
	7 Proof of Lemma 2: Soundness of the meta-algorithm
	7.1 The definition of ENV'
	7.2 The distance between ENV and ENV'

