
The Structure of Minimum Vertex Cuts
Seth Pettie #

University of Michigan, Ann Arbor, MI, USA

Longhui Yin #

Tsinghua University, Beijing, China

Abstract
In this paper we continue a long line of work on representing the cut structure of graphs. We classify
the types of minimum vertex cuts, and the possible relationships between multiple minimum vertex
cuts.

As a consequence of these investigations, we exhibit a simple O(κn)-space data structure that
can quickly answer pairwise (κ + 1)-connectivity queries in a κ-connected graph. We also show how
to compute the “closest” κ-cut to every vertex in near linear Õ(m + poly(κ)n) time.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems;
Theory of computation → Data structures design and analysis

Keywords and phrases Graph theory, vertex connectivity, data structures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.105

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2102.06805

Funding Seth Pettie: This work was supported by NSF grants CCF-1637546 and CCF-1815316.
Longhui Yin: Supported by a grant from Tsinghua University.

1 Introduction

One of the strong themes running through graph theory is to understand the cut structure
of graphs and to apply these structural theorems to solve algorithmic and data structural
problems. Consider the following exemplars of this line of work:
Gomory-Hu Tree. Gomory and Hu (1961) [31] proved that any weighted, undirected graph

G = (V, E) can be replaced by a weighted, undirected tree T = (V, ET) such that for
every s, t ∈ V , the minimum s-t cut partition in T (removing a single edge, partitioning
V into two sets) corresponds to a minimum s-t cut partition in G. These are sometimes
called cut-equivalent trees [1].

Cactus Representations. Dinitz, Karzanov, and Lomonosov (1976) [13] proved that all
the global minimum edge-cuts of any weighted, undirected graph G = (V, E) could be
succinctly encoded as an (unweighted) cactus graph. A cactus is a connected multigraph
in which every edge participates in exactly one cycle. It was proved that there exists a
cactus C = (VC , EC) and an embedding ϕ : V → VC such that the minimum edge-cuts in
C (2 edges in a common cycle) are in 1-1 correspondence with the minimum edge-cuts of
G. A corollary of this theorem is that there are at most

(
n
2
)

minimum edge-cuts.
Picard-Queyrenne Representation. In a directed s-t flow network there can be exponentially

many min s-t cuts. Picard and Queyrenne (1980) [56] proved that the family S = {S |
(S, S) is a min s-t} corresponds 1-1 with the downward-closed sets of a partial order, and
is therefore closed under union and intersection.

Block Trees, SPQR Trees, and Beyond. Whitney (1932) [61, 62] proved that the cut ver-
tices (articulation points) of an undirected graph G = (V, E) partition E into single edges
and 2-edge connected components (blocks). This yields the block tree representation. Di

EA
T

C
S

© Seth Pettie and Longhui Yin;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 105; pp. 105:1–105:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pettie@umich.edu
mailto:ylh17@mails.tsinghua.edu.cn
https://doi.org/10.4230/LIPIcs.ICALP.2021.105
https://arxiv.org/abs/2102.06805
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

105:2 The Structure of Minimum Vertex Cuts

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1 (a) A weighted undirected graph; (b) Its Gomory-Hu (cut-equivalent) tree [31]. (c) A
weighted undirected graph (unmarked edges have unit weight); (d) the Cactus representation [13]
of its minimum edge cuts. (e) A directed s-t flow network; (f) A dag whose downward-closed sets
(that include s but not t) correspond to min s-t cuts (Picard-Queyrenne [56]). (g) An abstract
representation of a 2-connected graph; (h) The representation of its 3-connected components as an
SPQR tree (Di Battista-Tamassia [4]).

Battista and Tamassia (1989) [5, 4] formally defined the SPQR tree, which succinctly
encodes all 2-vertex cuts in a biconnected graph, and Kanevsky, Tamassia, Di Battista,
and Chen [42] extended this structure to represent 3-vertex cuts in a triconnected graph.1

It is natural to ask how, and to what extent, these structures can be extended and
generalized. Gusfield and Naor [34] combined the Gomory-Hu tree and the Picard-Queyrenne
representation for edge-connetivity. They [33] also described an analogue of Gomory-Hu
trees (cut-equivalent trees) for vertex connectivity, i.e., a tree that compactly represents a
minimum s-t vertex cut for every s, t ∈ V . It used a result of Schnorr [57] on an analogue of
Gomory-Hu trees for “roundtrip” flow-values in directed networks. These claims were refuted
by Benczur [6], who illustrated that Schnorr’s and Gusfield and Naor’s proofs were incorrect
and could not be rectified. In particular, there are no cut-equivalent trees for s-t vertex
connectivity and directed s-t cuts. Benczur [6, p. 505-506] suggested a way to construct a
flow-equivalent tree for vertex connectivity (vertex capacitated s-t flows) using a result of

1 Many of the structural insights behind [4, 42] were latent in prior work. See, for example. Mac Lane [48],
Tutte [59, 60] (1961-6), Hopcroft and Tarjan [36], and Cunningham and Edmonds [12].

S. Pettie and L. Yin 105:3

Cheng and Hu [9]. This, too, turned out to be incorrect. Hassin and Levin [35] proved that
a graph can have Ω(n2) s-t vertex-capacitated cut values, which cannot be captured by a
flow-equivalent tree. We take these episodes as a reminder that having published proofs
(even incorrect ones) is essential for facilitating self-correction in science.

The inspiration for this paper is an extended abstract of Cohen, Di Battista, Kanevsky,
and Tamassia [11] from STOC 1993. Their goal was to find a cactus-analogue for global
minimum vertex cuts, or from a different perspective, to extend SPQR trees [4] and [42]
from κ ∈ {2, 3} vertex cuts to arbitrarily large κ. As an application of their ideas, they
described a data structure for κ-connected graphs occupying space O(κ3n) that, given u, v,
decided whether u, v are separated by a κ-cut or (κ + 1)-connected. There are no suspect
claims in [11]. On the other hand, the paper is 7 pages and leaves many of its central
claims unproven.2 We believe that understanding the structure of minimum vertex cuts is a
fundamental problem in graph theory, and deserving of a complete, formal treatment.

In this paper we investigate the structure of the set of all minimum vertex cuts and classify
the relationships between different minimum vertex cuts. Our work reveals some structural
features of minimum κ-cuts not evident in Cohen, Di Battista, Kanevsky, and Tamassia [11],
and ultimately allows us to develop a simpler data structure to answer pairwise κ-cut queries
in a κ-connected graph. It occupies (optimal) O(κn) space and can be constructed in
randomized Õ(m + poly(κ)n) time, in contrast to [11], which occupies O(κ3n) space and is
constructed in exp(κ)n5 time.3

1.1 Related Work

Dinitz and Vainshtein [17, 18] combined elements of the cactus [13] and Picard-Queyrenne [56]
representations, which they called the connectivity carcass. Given an undirected, unweighted
G = (V, E) and S ⊆ V of terminals, λS is the size of the minimum edge-cut that separates S.
The carcass represents all size-λS separating cuts in O(min{m, λSn}) space and answers
various cut queries in O(1) time.4

Benczur and Goemans [7] generalized the cactus representation [13] in a different direction,
by giving a compact representation of all cuts that are within a factor 6/5 of the global
minimum edge-cut.

Dinitz and Nutov [14] generalized the cactus representation [13] in another direction,
by giving an O(n)-space representation of all λ and λ + 1 edge cuts, where λ is the edge-
connectivity of the undirected, unweighted graph. Another feature of representations in [17,
18, 14] worth to mention is that they answer connectivity queries with supporting edge
insertions in the graph. Unpublished manuscripts [15, 16] give detailed treatments of the λ

odd and λ even cases separately.
Georgiadis et al. [30, 22, 28, 29] investigated various notions of 1- and 2-edge and vertex

connectivity in directed graphs, and the compact representation of edge/vertex cuts.
Gabow [25] provided a O(m log n2/m) data structure for all mincuts of a directed graph

by drawing a correspondence between cuts and intersecting set families.

2 The full version of this paper was never written (personal communication with R. Tamassia, 2011, and
R. Di Battista, 2016).

3 The algorithm enumerates all minimum κ-cuts, which can be as large as Ω(2κ(n/κ)2); modern vertex
connectivity algorithms [23, 27, 26] may reduce the exponent of n in the running time.

4 The carcass was introduced in extended abstracts [17, 18] and the (simpler) case of odd λS was analyzed
in detail in a journal article [19]. We are not aware of a full treatment of the case when λS is even.

ICALP 2021

105:4 The Structure of Minimum Vertex Cuts

Granot and Hassin [32] generalized the Gomory-Hu tree into node- and arc-capacitated
case and gave an algorithm for finding a cut-tree over a set of terminals K by solving |K| − 1
minimum-cut problems.

Sparsification

One general way to compactly represent connectivity information is to produce a sparse graph
with the same cut structure. Nagamochi and Ibaraki [50] proved that every unweighted,
undirected graph G = (V, E) contains a subgraph H = (V, EH) with |EH | < (k + 1)n
(arboricity k + 1) such that H is computable in O(m) time and contains exactly the same
k′-vertex cuts and k′-edge cuts as G, for all k′ ∈ {1, . . . , k}. Benczur and Karger [8] proved
that for any capacitated, undirected graph G = (V, E), there is another capacitated graph
H = (V, EH) with |EH | = O(ϵ−2n log n) such that the capacity of every cut in G is preserved
in H up to a (1± ϵ)-factor. This bound was later improved to O(ϵ−2n) by Batson, Spielman,
and Srivastava [3], which is optimal.

In directed graphs, Baswana, Choudhary, and Roditty [2] considered the problem of
finding a sparse subgraph that preserves reachability from a single source, even if d vertices
are deleted. They proved that Θ(2dn) edges are necessary and sufficient for d ∈ [1, log n].

d-Failure Connectivity

An undirected graph can be compactly represented such that connectivity queries can be
answered after the deletion of any d vertices/edges (where d could be much larger than the
underlying connectivity of the graph). Improving on [54, 43, 20], Duan and Pettie [21] proved
that d vertex failures could be processed in Õ(d2) time such that connectivity queries are
answered in O(d) time, and d edge failures could be processed in O(d log d log log n) time such
that connectivity queries are answered in O(log log n) time. The size of the [21] structure
is Õ(m) for vertex failures and Õ(n) for edge failures. Choudhary [10] gave an optimal
O(n)-space data structure that could answer directed reachability queries after d ∈ {1, 2}
vertex or edge failures.

Labeling Schemes

Benczur’s refutation [6] of [57, 33] shows that all pairwise vertex connectivities cannot be
captured in a tree structure, but it does not preclude other representations of this information.
Hsu and Lu [37] designed a O(k log n)-bit labeling scheme to determine whether κ(u, v) ≥ k,
given just the labels of u and v. This improved [45] and matched an Ω(k log n)-bit lower
bound of Katz, Katz, Korman, and Peleg [44]. By applying it to all k ∈ {1, . . . , κ}, the
Hsu-Lu labeling has size O(κ2 log n) and reports min{κ(u, v), κ}. Using a different approach,
Izsak and Nutov [38] gave a O(κ log3 n)-bit labeling scheme for computing min{κ(u, v), κ}.
The schemes [37, 45, 44, 38] have large polynomial construction times, and cannot report a
u-v cut of size κ(u, v)

Vertex Connectivity Algorithms

In optimal linear time we can decide whether the connectivity of a graph is κ = 1, κ = 2, or
κ ≥ 3 [58, 36]. For larger κ, the state-of-the-art in vertex connectivity has been improved
substantially in the last few years. Forster, Nanongkai, Yang, Saranurak, and Yingchare-
onthawornchai [23] gave a Monte Carlo algorithm for computing the vertex connectivity
κ of an undirected graph in Õ(m + nκ3) time, w.h.p.5 A new result of Li, Nanongkai,

5 The algorithm does not produce a witness, and hence may err with small probability.

S. Pettie and L. Yin 105:5

Panigrahi, Saranurak, and Yingchareonthawornchai [46] gave a randomized algorithm run-
ning in O(m4/3+o(1)) time. The best deterministic algorithm, due to Gao, Li, Nanongkai,
Peng, Saranurak, and Yingchareonthawornchai [27], computes the connectivity κ < n1/8

in O((m + n7/4κO(κ))no(1)) time or O((m + n19/20κ5/2)no(1)) time. For κ > n1/8, Gabow’s
algorithm [26] runs in O(κn2 + κ2n ·min{n3/4, κ3/2}) time.

The connectivity augmentation problem is to improve the global vertex connectivity or
specific pairwise connectivities by adding few edges. See, for example, Frank and Jordán [24],
Jordán [40], Jackson and Jordán [39], and Nutov [52] for positive results, and Nutov [51] for
a hardness of approximation result.

1.2 Organization
In Section 2 we review basic definitions and lemmas regarding vertex cuts. Section 3 gives the
basic classification theorem for minimum vertex cuts, and lists some useful corollaries. In short,
every pair of cuts have laminar, wheel, crossing matching, or small relation. Sections 3.1–3.4
analyze these four categories in more detail. Section 4 exhibits a new O(κn)-space6 data
structure that, given two vertices, answers (κ + 1)-connectivity queries in O(1) time, and
produces a separating κ-cut (if one exists) in O(κ) time. We conclude with some remarks and
open problems in Section 5. All missing proofs appear in the full version of the paper [55].

2 Preliminaries

The input is a simple, connected, undirected graph G = (V, E) with n = |V | and m = |E|.
Let the subgraph of G induced by A be denoted G|A. We call U ⊂ V a cut if the graph

G|V \U is disconnected. A side of the cut U is a connected component of G|V \U . If P is
a side of U and A ⊆ P , we say A is within a side of U , and let SideU (A) = P denote the
side containing A. A region of a cut U is a side, or the union of several sides of U . Denote
RegionU (A) as the region containing the sides of U that intersects with A. 7 We say a
cut disconnects or separates A and B if they are in distinct sides of U . In particular, if
B = V \(A ∪ U), we say U disconnects or separates B from the rest of the graph.

A path π = v1v2 · · · vl is from A to B, if v1 ∈ A and vl ∈ B. Two paths π, π′ from v1 to
vl are internally vertex disjoint if they have no common vertices, except for v1, vl. We say U

blocks π if U ∩ {v2, . . . , vl−1} ≠ ∅.
A k-cut is a cut of size k. Define κ(u, v) to be the minimum k such that there exists

a k-cut separating u and v, where {u, v} ≠ E(G). Define κ = κ(G) to be the minimum of
κ(u, v) over all pairs {u, v} ∈

(
V (G)

2
)
\E(G). We say G is k-connected if κ(G) ≥ k.

In this paper we assume that κ < n/4 and consider the set of all (minimum) κ-cuts.
▶ Remark 1. There is some flexibility in defining the corner cases. Some authors leave κ(u, v)
undefined when {u, v} ∈ E(G) or define it to be n− 1. Other authors define connectivity
as the maximal number of vertex-disjoint paths. In [11] a k-cut is defined to be a mixed
set of edges and vertices whose removal disconnects the graph. Under this definition, when
{u, v} ∈ E(G), κ(u, v) = k if removing k − 1 vertices and {u, v} disconnects u and v. The
last two definitions are equivalent and are compatible with Menger’s theorem.

▶ Theorem 2 (Menger [49]). Let G = (V, E) be an undirected graph and {u, v} a pair not in
E. Let U ⊂ V be a minimum size cut disconnecting u and v and Π be a maximum size set
of internally vertex disjoint paths from u to v. Then κ(u, v) = |U | = |Π|.

6 Formally speaking, this is O(κn) words of space, where a word store the index of a vertex, and takes up
O(log n) bits of space.

7 Note when A is a singleton set {u}, RegionU (A) = SideU (A).

ICALP 2021

105:6 The Structure of Minimum Vertex Cuts

The following categories make sense when applied to non-minimal vertex cuts, but we
are only interested in applying them to minimum vertex cuts. Henceforth cut usually means
minimum cut.

Laminar Cuts

Let U be a cut and P be a side of U . If W is a cut and W ⊂ U ∪ P , we say W is a laminar
cut of U in side P .8

Figure 2 A 7-cut U with two sides, and two 7-cuts W1, W2 that are laminar w.r.t. U .

Small Cuts

Informally, when a side of a cut is tiny we call the cut small. We define three levels of small
cuts. Let U be a cut with sides A1, A2, . . . , Aa. We say that
1◦ U is (I, t)-small if there exists an index i♯ such that

∑
i ̸=i♯ |Ai| ≤ t. Ai♯ is called the

large side of U and the others the small sides of U .
2◦ U is (II, t)-small if there exists i♯ such that for every i ̸= i♯, |Ai| ≤ t.
3◦ U is (III, t)-small, if there exists i♯ such that |Ai♯ | ≤ t. In this case Ai♯ is the small side

of U .

Note that for any t, I-small cuts are II-small, and II-small cuts are III-small. We typically
apply this definition with t = κ, t = Θ(κ), or t =

⌈
n−κ

2
⌉
.

Wheel Cuts

Suppose V can be partitioned into a series of disjoint sets T , {Ci}, {Si} (1 ≤ i ≤ w, w ≥ 4,
subscripts are taken module w), such that the {Ci} and {Si} are nonempty (T may be
empty), and Ci ∪ T ∪ Ci+2 disconnects Si ∪ Ci ∪ Si+1 from the rest of the graph. We say
(T ; C1, C2, . . . , Cw) forms a w-wheel with sectors S1, S2, . . . , Sw. We call T the center of the
wheel, {Ci} the spokes of the wheel, and C(i, j) = Ci ∪ T ∪ Cj the cuts of the wheel. Define
D(i, j) = Si ∪ Ci+1 ∪ · · · ∪ Cj−1 ∪ Sj−1.

Recall that we are only interested in wheels whose cuts are minimum κ-cuts. The
cut of the wheels discussed in this paper are all κ-cuts. It is proved in Lemma 10 that, if
(T ; C1, C2, . . . , Cw) forms a wheel, then for every i, j such that j−i /∈ {1, w−1}, C(i, j) is a κ-
cut with exactly two sides, namely D(i, j) and D(j, i). Note that a w-wheel (T ; C1, C2, . . . , Cw)
contains x-wheels, x ∈ [4, w − 1]. Specifically, for any subset {i1, i2, . . . , ix} ⊆ {1, 2, . . . , w}
with x ≥ 4, (T ; Ci1 , Ci2 , . . . , Cix

) forms an x-wheel called a subwheel of the original. If a
wheel is not a subwheel of any other wheel, it is a maximal wheel. If there exists an index i♯

such that,
∑

i ̸=i♯ |Si| ≤ κ, then we say this is a small wheel.9

8 These are sometimes called parellel cuts.
9 For a small wheel, all its cuts C(i, j) are (II, O(κ2))-small.

S. Pettie and L. Yin 105:7

Figure 3 A 6-wheel of 8-cuts with a center of size |T | = 2.

Note that wheel cuts resemble the “cycle cuts” of a cactus, or the set of 2−cuts of a cycle.

Matching Cuts and Crossing Matching Cuts

Let U be a cut, A be a side of U , and P ⊆ U be a subset of the cut. We call a cut W a
matching cut of U in side A w.r.t. P if (i) U\P ⊆ W ⊆ U ∪ A, (ii) A\W ̸= ∅, and (iii) W

disconnects P ∪ (V \(U ∪A)) from A\W . The set MatchU ;A(P) def= W\U is the neighborhood
of P restricted to A. Note that a matching cut is a type of laminar cut.

Now suppose U is a cut with exactly two sides A and B, and let P ⊆ U be a non-empty
subset of U . We call W a crossing matching cut of U in side A w.r.t. P if (i) W ∩B ̸= ∅,
(ii) (U\P) ∪ (W ∩A) is a matching cut of U in side A w.r.t. P ,

Figure 4 A cut U (drawn vertically) with two sides A and B. Dotted lines indicate two crossing
matching cuts w.r.t. P1 (bottom 3 vertices of U) and P2 (top 2 vertices of P1).

One could view U and a crossing matching cut W as a degenerate 4-wheel, in which
one sector S1 = ∅ is empty. Such cuts should not be regarded as wheels, as they do not
possess key properties of wheels, e.g., that when U and W are (minimum) κ-cuts, that
|C1| = · · · = |C4| = κ−|T |

2 , because C1 ∪ T ∪ C2 is not a cut.

Lemmas 3 and 4 are used throughout the paper. Recall here κ = κ(G) is the vertex
connectivity of G.

▶ Lemma 3. Suppose U is a κ-cut and P a side of U . For every p ∈ P and u ∈ U , there
exists a path from p to u that is not blocked by V \P .

▶ Lemma 4. Suppose U and W are two cuts, P is disconnected by U from the rest of the
graph G and Q is disconnected by W from the rest of the graph G. Then we have the following
two rules:

(Intersection Rule) If P ∩Q ̸= ∅, then P ∩Q is disconnected by (U∩Q)∪(U∩W)∪(W ∩P)
from the rest of the graph G;
(Union Rule) If V \(U ∪ P ∪W ∪Q) ̸= ∅, then P ∪Q is disconnected by (U\Q) ∪ (W\P)
from the rest of the graph G.

ICALP 2021

105:8 The Structure of Minimum Vertex Cuts

(a) (b)

Figure 5 (a) Intersection rule; (b) Union rule.

3 The Classification of Minimum Vertex Cuts

The main binary structural theorem for vertex connectivity is, informally, that every two
minimum vertex cuts have a relationship that is Laminar, Wheel, Crossing Matching, or
Small; cf. [11]. Moreover, any strict subset of this list would be inadequate to capture all
possible relationships between two vertex cuts.10

▶ Theorem 5. Fix a minimum κ-cut U with sides A1, A2, . . . , Aa, a ≥ 2, and let W be
any other κ-cut with sides B1, B2, . . . , Bb, b ≥ 2. Denote T = U ∩W , Wi = W ∩ Ai and
Uj = U ∩Bj. Then W may be classified w.r.t. U as follows:
Laminar type. W is a laminar cut of U , and in particular, there exists indices i∗ and j∗

such that Bj∗\Ai∗ = (U\W) ∪ (∪i ̸=i∗Ai) and Ai∗\Bj∗ = (W\U) ∪ (∪j ̸=j∗Bj).
Wheel type. a = b = 2, and (T ; U1, W1, U2, W2) forms a 4-wheel with sectors A1 ∩ B1,

A1 ∩B2, A2 ∩B2 and A2 ∩B1.
Crossing Matching type. a = b = 2, and w.l.o.g., A1∩B1 ≠ ∅, A2∩B2 ≠ ∅, but A1∩B2 = ∅.

We have |W2| = |U1| > 0, |W1| = |U2| > 0, and W is a crossing matching cut of U in
side A1 w.r.t. U2. Furthermore, if A2 ∩B1 ̸= ∅, then |U1| ≥ |U2|.

Small type. U is (I, κ − 1)-small, and the small sides of U are within W , or W is (I,
κ− 1)-small, and the small sides of W are within U .

▶ Remark 6. Minimum cuts with at least three sides (i.e., a ≥ 3 or b ≥ 3) are sometimes called
shredders. It it known that there are O(n) shredders [41, 47] and that, in the terminology of
Theorem 5, two shredders have a laminar or small relationship.

Proof of Theorem 5. Suppose there is a single index i∗ such that Wi∗ ̸= ∅ and Wi = ∅ for
all i ̸= i∗. It follows that W ⊆ Ai∗ ∪U is a laminar cut of U in side Ai∗ . It remains to prove
the other properties of the laminar type. By Lemma 3 there exists paths from any vertex in
Ai, i ̸= i∗, to U\W that are not blocked by W , so they all lie within one side of W ; let us
denote this side by Bj∗ . Then (U\W) ∪ (∪i̸=i∗Ai) ⊆ Bj∗ , and because V = U ∪ (∪a

i=1Ai),
we obtain Bj∗\Ai∗ = (U\W) ∪ (∪i ̸=i∗Ai). Now that U ⊆ W ∪ Bj∗ is laminar w.r.t. W , so
based on the same reasoning we have Ai∗\Bj∗ = (W\U) ∪ (∪j ̸=j∗Bj).

We proceed under the assumption that such indices i∗, j∗ do not exist, and without loss
of generality assume that W1, W2, U1, U2 ̸= ∅. We now wish to prove that all Ui, Wi are
non-empty. Suppose Wi

def= W ∩Ai = ∅ were empty, then Ai would be contained within a
side of W , say Ai ⊆ Bj . By Lemma 4 (intersection rule), whenever Ai ∩ Bj ̸= ∅, the set
Wi ∪ T ∪ Uj disconnects Ai ∩Bj from the rest of the graph. It follows that

10 The existence of Small cuts as a category – an a priori unnatural class – indicates that there may be
other ways to capture all minimum vertex cuts through an entirely different classification system.

S. Pettie and L. Yin 105:9

|Wi|+ |T |+ |Uj | = |T |+ |Uj | ≥ κ = |T |+
b∑

l=1
|Ul| ,

which implies that Uj is the only non-empty U∗-set, contradicting U1, U2 ̸= ∅. Therefore,
Wi ̸= ∅ for all i and similarly, Uj ̸= ∅ for all j.

Define Ω = {(i, j) | Ai ∩Bj ̸= ∅} to be the side-pairs whose intersections are non-empty.
We consider the following possibilities, which are exhaustive.
1◦ There exist (i, j), (i′, j′) ∈ Ω such that i ≠ i′, j ̸= j′. Then by Lemma 4 (intersection

rule)

|Wi|+ |T |+ |Uj | ≥ κ

and |Wi′ |+ |T |+ |Uj′ | ≥ κ.

On the other hand,

|Uj |+ |Uj′ |+ |T | ≤ |U | = κ

and |Wi|+ |Wi′ |+ |T | ≤ |W | = κ.

Thus all these inequalities must be equalities, and, adding the fact that all Wi, Uj ̸= ∅, we
conclude that a = b = 2, |Wi| = |Uj′ |, |Wi′ | = |Uj |. W.l.o.g. we fix i = j = 1, i′ = j′ = 2.
See Figure 6.

Figure 6 A depiction of cuts U, W in case 1◦.

1.1◦ Suppose A1 ∩ B2 ≠ ∅ and A2 ∩ B1 ≠ ∅. Then |Wı̂| + |Uȷ̂| ≥ κ − |T | for every
ı̂, ȷ̂ ∈ {1, 2}, so we conclude that

|U1| = |U2| = |W1| = |W2| =
κ− |T |

2 .

Now that Wı̂ ∪T ∪Uȷ̂ disconnects Aı̂ ∩Bȷ̂ from the rest of the graph, U1 ∪T ∪U2 = U

disconnects (A1 ∩B1) ∪W1 ∪ (A1 ∩B2) = A1 from (A2 ∩B1) ∪W2 ∪ (A2 ∩B2) = A2,
W1 ∪T ∪W2 = W disconnects (A1 ∩B1)∪U1 ∪ (A2 ∩B1) = B1 from (A1 ∩B2)∪U2 ∪
(A2 ∩B2) = B2, we conclude that (T ; U1, W1, U2, W2) forms a 4-wheel.

1.2◦ Suppose A1 ∩B2 = ∅ (or symmetrically, that A2 ∩B1 = ∅). Then A1 = A1 ∩ (B1 ∪
W) = (A1∩B1)∪W1. By Lemma 4, W1∪T ∪U1 separates A1∩B1 from the rest of the
graph. Since U2 ⊆ V \((A1∩B1)∪(U1∪T ∪W1)), it follows that W1∪T ∪U1 disconnects
U2 from A1∩B1 = A1\(W1∪T ∪U1), i.e., it is a matching cut of U in side A1 w.r.t. U2.
See Figure 7. Because W2 = W ∩A2 ̸= ∅ and (W ∩A1) ∪ (U\U2) = W1 ∪ T ∪ U1, W

is a crossing matching cut of U in side A1 w.r.t. U2.

ICALP 2021

105:10 The Structure of Minimum Vertex Cuts

Figure 7 A depiction of the cuts U, W in case 1.2◦.

If A2∩B1 ̸= ∅, by Lemma 4 (intersection rule) |U1|+ |W2|+ |T | ≥ κ = |W1|+ |T |+ |W2|,
so |U1| ≥ |U2|.

2◦ Suppose there exists a j♯ such that ∀i.∀j ̸= j♯.(i, j) ̸∈ Ω, i.e., Ai ∩Bj = ∅. This implies
that ∪j ̸=j♯Bj ⊆ U , and because Uj♯ ̸= ∅,

∣∣∪j ̸=j♯Bj

∣∣ is strictly smaller than κ. Therefore
W is a (I, κ− 1)-small cut, and all the small sides of W are within U .

3◦ There exists i♯ such that ∀i ≠ i♯.∀j.(i, j) ̸∈ Ω. Symmetric to case 2◦; U is (I, κ− 1)-small,
and all the small sides of U are within W .

4◦ Ω = ∅. Then ∪a
i=1Ai ⊆ W , so |V | = |U ∪ (∪a

i=1Ai)| ≤ |U ∪W | ≤ 2κ. This is possible,
but not one we consider as it contradicts our initial assumption that n > 4κ. ◀

▶ Corollary 7 (cf. [41, 47, 53]). If U is a κ-cut that is not (I, κ− 1)-small and has at least
3 sides, then all other κ-cuts have a laminar type relation with U , or are themselves (I,
κ− 1)-small cuts.

▶ Corollary 8. Suppose U is a κ-cut that is not (I, κ− 1)-small, with exactly two sides A

and B. Suppose W is a κ-cut with sides K, L (and possibly others), such that W ∩A ̸= ∅,
W ∩B ≠ ∅, A ⊆ K ∪W , and L ∩ U ̸= ∅. Then W only has two sides, and W is a crossing
matching cut of U in side A w.r.t. L ∩ U .

▶ Corollary 9. Define CutsC;D to be the set of all κ-cuts that disconnect disjoint, non-empty
vertex sets C and D. If CutsC;D ̸= ∅, it contains a unique minimal element MinCutC;D,
such that for any cut U ∈ CutsC;D, RegionMinCutC;D

(C) ⊆ RegionU (C).

Theorem 5 classifies the pairwise relationship between two minimum κ-cuts. In Sec-
tions 3.1–3.4 we further explore the properties of wheel cuts, (crossing) matching cuts, laminar
cuts, and small cuts.

3.1 Wheels and Wheel Cuts
Recall that a w-wheel (T ; C1, . . . , Cw) satisfied, by definition, the property that Ci∪T ∪Ci+2
formed a κ-cut, but did not say anything explicitly about C(i, j) = Ci ∪ T ∪ Cj . Lemma 10
proves that these are also cuts, and bounds their number of sides.

▶ Lemma 10. Suppose (T ; C1, C2, . . . , Cw) forms a w-wheel with sectors S1, S2, . . . , Sw.
(Subscripts are modulo w.) For any i ̸= j, C(i, j) is a κ-cut that disconnects D(i, j) from
the rest of the graph. Moreover, when j − i ̸∈ {1, w − 1}, C(i, j) has exactly two sides, which
are D(i, j) and D(j, i). Furthermore, |Ci| = κ−|T |

2 .

S. Pettie and L. Yin 105:11

▶ Theorem 11. Suppose (T ; C1, C2, . . . , Cw) forms a w-wheel with sectors S1, S2, . . . , Sw.
(Subscripts are given by modulo w.) Let X be any minimum κ-cut. Then one of the following
is true:
1◦ X = C(i, j) for some i ̸= j.
2◦ X ⊆ C(i, i + 1) ∪ Si for some i, i.e., X is a laminar cut of C(i, i + 1).
3◦ X has crossing matching type relation with some C(i, i + 1) or some C(i, i + 2).
4◦ X is a (I, κ− 1)-small cut.
5◦ (T ; C1, C2, . . . , Cw) is a small wheel.
6◦ There exists i < j, such that X ⊆ Si∪T ∪Sj , and (T ; C1, . . . , Ci, X∩Si, Ci+1, . . . , Cj , X∩

Sj , Cj+1, . . . , Cw) forms a (w + 2)-wheel; or there exists i ̸= j, X ⊆ Si ∪ T ∪ Cj, and
(T ; C1, . . . , Ci, X ∩ Si, Ci+1, . . . , Cw) forms a (w + 1)-wheel. In other words, the wheel
(T ; C1, C2, . . . , Cw) is a subwheel of some other wheel.

3.2 Matching Cuts and Crossing Matching Cuts

Define N(P) to be the neighborhood of P ⊂ V and NA(P) def= N(P) ∩A.

▶ Theorem 12. Let U be an arbitrary κ-cut and A a side of U .
1◦ If there exists a matching κ-cut of U in side A w.r.t. P , then it is W = (U\P) ∪NA(P),

and |P | = |NA(P)| < |A|. In particular, MatchU ;A(P) = NA(P).
2◦ When there is such a matching cut W , G contains a matching between P and its

neighborhood NA(P) = MatchU ;A(P) in side A.
3◦ Suppose MatchU ;A(P) and MatchU ;A(Q) exist. If P ∩ Q ̸= ∅, then MatchU ;A(P ∩ Q)

exists, and

MatchU ;A(P ∩Q) = MatchU ;A(P) ∩MatchU ;A(Q).

If |A| > |P ∪Q|, then MatchU ;A(P ∪Q) exists, and

MatchU ;A(P ∪Q) = MatchU ;A(P) ∪MatchU ;A(Q).

Fix a κ-cut U and a side A of U . Define Θ = {P | MatchU ;A(P) exists}. According to Part
3◦ of Theorem 12, Θ is closed under union and intersection, and is therefore characterized by
its minimal elements. Define Θ∗ = {∩u∈P,P ∈ΘP | u ∈ U}. It can be seen from the definition
that ∩u∈P,P ∈ΘP corresponds to the minimum matching cut for vertex u.

In the most extreme case Θ may have 2κ − 1 elements (e.g., if the graph induced by
U ∪ NA(U) is a matching), which may be prohibitive to store explicitly. From definition
we know that |Θ∗| ≤ κ, so it works as a good compression for Θ. Lemmas 13 and 14 also
highlights some ways in which Θ∗ is a sufficient substitute for Θ.

▶ Lemma 13. Let U be a κ-cut and let Θ be defined w.r.t. the matching cuts of U in a side
A. Suppose that P ∈ Θ∗ and P ⊆ Q ∈ Θ, and that W is a crossing matching cut of U in side
A w.r.t. Q. Then (W\MatchU ;A(Q)) ∪ (Q\P) ∪MatchU ;A(P) is also a crossing matching
cut of U in A w.r.t. P . Moreover, if Q = P1∪P2∪· · ·∪Pℓ where each Pi ∈ Θ∗, then any pair
disconnected by W is also disconnected by some (W\MatchU ;A(Q))∪ (Q\Pi)∪MatchU ;A(Pi).

▶ Lemma 14. Let U be a κ-cut with two sides A and B, and let Θ be defined w.r.t. its
matching cuts in side A. For P ∈ Θ∗, define U∗(P) to be the cut separating P from
A\MatchU ;A(P) minimizing

∣∣SideU∗(P)(P)
∣∣.

1◦ U∗(P) is either a crossing matching cut of U in side A w.r.t. P , or else there is no such
crossing matching cut and U∗(P) = (U\P) ∪MatchU ;A(P) is a matching cut.

2◦ Suppose X is a crossing matching cut of U in side A w.r.t. P . If u, v are separated by
X, then they are also separated by either U∗(P) or (X\MatchU ;A(P)) ∪ P , which is a
laminar cut of U .

ICALP 2021

105:12 The Structure of Minimum Vertex Cuts

3.3 Laminar Cuts
In this section we analyze the structure of laminar cuts. Throughout this section, U refers to
a cut that is not (I, κ− 1)-small, not a wheel cut C(i, j) in some wheel, and has a side A

with |A| > 2κ.
Consider the set of all cuts W that are laminar w.r.t. U , contained in U ∪A and not (I,

κ− 1)-small. It follows that W has a side, call it S(W), that contains U\W and all other
sides of U .11 Define R(W) to be the region containing all other sides of W beside S(W). We
call W a maximal laminar cut of U if there does not exist another laminar cut W ′ such that
R(W) ⊆ R(W ′).

▶ Theorem 15. Let U be the reference cut.
1. If there exist matching cuts of U in side A, define Θ∗ w.r.t. U, A, define Q = ∪P ∈Θ∗P ,

and let X = (U\Q) ∪MatchU ;A(Q) be the matching cut in side A having the smallest
intersection with U . Then every laminar cut W of U in side A is

(i) a laminar cut of X in region A\MatchU ;A(Q), or
(ii) a matching cut of U , or
(iii) a crossing matching cut of X.

2. If there are no matching cuts of U in side A, every laminar cut of U in side A is a
maximal laminar cut, or a laminar cut of some maximal laminar cut Wi in a side of R(Wi).
Moreover, whenever Wi, Wj are distinct maximal laminar cuts, R(Wi) ∩R(Wj) = ∅.

3.4 Small Cuts
Fix a vertex u and a threshold t ≤

⌈
n−κ

2
⌉
. Define Smt(u) to be a cut U minimizing |SideU (u)|

with |SideU (u)| ≤ t. We show that Smt(u), if it exists, is unique. Also, note this is not
immediately derived using intersection-union(submodularity) property of cuts, or lemma 4.

▶ Theorem 16. If there exists a (III, t)-small cut that is small w.r.t. u, then there exists
a unique such cut, denoted Smt(u), such that for any other cut U , u ̸∈ U , SideSmt(u) ⊆
SideU (u).

4 A Data Structure for (κ + 1)-Connectivity Queries

In this section we design an efficient data structure that, given u, v, answers (κ+1)-connectivity
queries, i.e., reports that κ(u, v) = κ and produces a minimum κ-cut separating u, v, or
reports that κ(u, v) ≥ κ + 1.

We work with the mixed-cut definition of κ(u, v) (see Remark 1), which is the minimum
size set of vertices and edges that need to be removed to disconnect u and v, or equivalently,
the maximum size set of internally vertex-disjoint paths joining u and v.12

▶ Theorem 17. Given a κ-connected graph G, we can construct in Õ(m + poly(κ)n) time a
data structure occupying O(κn) space that answers the following queries. Given u, v ∈ V (G),
report whether κ(u, v) = κ or ≥ κ + 1 in O(1) time. If κ(u, v) = κ, report a κ-cut separating
u, v in O(κ) time.

11 S(W) is exactly Bj∗ of Theorem 5, if using its notation on U and W .
12 If {u, v} ̸∈ E(G) and κ(u, v) = κ, then there exists U ⊂ V , |U | = κ, such that removing U disconnects

u, v. If {u, v} ∈ E(G) then there exists U ⊂ V , |U | = κ−1, such that removing U and {u, v} disconnects
u, v. In this case the single-edge path {u, v} would count for one of the κ internally vertex disjoint
paths, the other κ − 1 passing through distinct vertices of U .

S. Pettie and L. Yin 105:13

In O(m) time, the Nagamochi-Ibaraki [50] algorithm produces a subgraph G′ that has
arboricity κ + 113 and hence at most (κ + 1)n edges, such that κG′(u, v) = κG(u, v) whenever
κG(u, v) ≤ κ+1, and κG′(u, v) ≥ κ+1 whenever κG(u, v) ≥ κ+1. Without loss of generality
we may assume G is the output of the Nagamochi-Ibaraki algorithm.

Data Structure

Throughout this section we fix the threshold t =
⌈

n−κ
2

⌉
. Define Sm(u) = Smt(u) to be

the unique minimum κ-cut with SideSm(u)(u) ≤ t, if any such cut exists, and Sm(u) =⊥
otherwise. The data structure stores, for each u ∈ V (G), Sm(u), |SideSm(u)(u)|, a O(log n)-
bit identifier for SideSm(u)(u), and for each vertex v ∈ N(u) ∩ Sm(u), a bit bu,v indicating
whether {{u, v}} ∪ Sm(u)\{v} is a mixed cut disconnecting u and v. Furthermore, when
|SideSm(u)(u)| ≤ κ − 1, we store SideSm(u)(u) explicitly. When Sm(u) =⊥ we will say
SideSm(u)(u) = G and hence

∣∣SideSm(u)
∣∣ = n. The total space is O(κn).

Connectivity Queries

The query algorithm proceeds to the first applicable case. Note in the following, Sm(u) may
be ⊥, and for all vertices v, we define v /∈⊥.
Case I: Sm(u) = Sm(v) and SideSm(u)(u) = SideSm(v)(v). Then κ(u, v) ≥ κ + 1.
Case II: u ̸∈ Sm(v) and v ̸∈ Sm(u). Then κ(u, v) = κ. Without loss of generality sup-

pose that
∣∣SideSm(u)(u)

∣∣ ≤ ∣∣SideSm(v)(v)
∣∣. Then Sm(u) is a κ-cut separating u and

v.
Case III: v ∈ Sm(u) ∩ N(u), or the reverse. The bit bu,v indicates whether κ(u, v) ≥

κ + 1 or κ(u, v) = κ, in which case {{u, v}} ∪ Sm(u)\{v} is the κ-cut.
Case IV: v ∈ Sm(u), u ∈ Sm(v). Then κ(u, v) ≥ κ + 1.
Case V: v ∈ Sm(u), u ̸∈ Sm(v), or the reverse. If

∣∣SideSm(v)(v)
∣∣ ≤ κ− 1, directly check

whether u ∈ SideSm(v)(v). If so then κ(u, v) ≥ κ + 1; if not then Sm(v) disconnects
them. Thus

∣∣SideSm(v)(v)
∣∣ ≥ κ. If

∣∣SideSm(v)(v)
∣∣ ≤ ∣∣SideSm(u)(u)

∣∣ then Sm(v) is a κ-cut
separating u and v, and otherwise κ(u, v) ≥ κ + 1.

Lemmas 18, 19, and Theorem 20 establish the correctness of the query algorithm. Its
construction algorithm is described and analyzed in Section 4.1.

▶ Lemma 18. If v ∈ SideSm(u)(u), then either Sm(v) = Sm(u) or Sm(v) is a laminar cut
of Sm(u) with SideSm(v)(v) ⊂ SideSm(u)(u).

▶ Lemma 19. Suppose u and v are not (κ + 1)−connected, i.e., κ(u, v) = κ. If {u, v} ̸∈
E(G), then they are disconnected by Sm(u) or Sm(v), and if {u, v} ∈ E(G), then they are
disconnected by {(u, v)} ∪ Sm(u)\{v} or {(u, v)} ∪ Sm(v)\{u}.

Proof. First suppose {u, v} /∈ E(G) and let X be any cut separating u and v. When
t =

⌈
n−κ

2
⌉

either |SideX(u)| ≤ t or |SideX(v)| ≤ t. W.l.o.g. suppose it is the former, then
Sm(u) exists and by Theorem 16, SideSm(u)(u) ⊆ SideX(u), so Sm(u) also separates u and v.

If {u, v} ∈ E(G), suppose (κ− 1) vertices W = {w1, w2, . . . , wκ−1} and {u, v} disconnect
u and v. After removing W from the graph, G\W is still connected. By deleting the
edge {u, v}, the graph breaks into exactly two connected components, say A and B with
u ∈ A and v ∈ B. Then W ∪ {u} forms a κ-cut with SideW ∪{u}(v) = B, and W ∪ {v}

13 Namely, G′ is a union of k forests, as mentioned before.

ICALP 2021

105:14 The Structure of Minimum Vertex Cuts

also forms a κ-cut with SideW ∪{v}(u) = A. Clearly we have n = |W | + |A| + |B| =
κ − 1 + |A| + |B|. W.l.o.g. suppose |A| ≤ |B|, then |A| ≤

⌊
n−κ+1

2
⌋

=
⌈

n−κ
2

⌉
= t. Thus

Sm(u) exists, SideSm(u)(u) ⊆ SideW ∪{v}(u), and Sm(u) is either W ∪ {v} or a laminar cut
of W ∪ {v} in side A. Since {u, v} ∈ E(G), we have v ∈ Sm(u). If we remove {u, v} from
G, then any path from u to v goes through a vertex in W , but any path from u to a vertex
in W goes through a vertex in Sm(u)\{v}. Therefore, {{u, v}} ∪ Sm(u)\{v} is a mixed cut
separating u, v as it blocks all u-v paths. ◀

▶ Theorem 20. The query algorithm correctly answers (κ + 1)-connectivity queries.

Proof. Suppose the algorithm terminates in Case I. It follows that u ̸∈ Sm(v), v ̸∈ Sm(u),
and neither Sm(u) nor Sm(v) disconnect u and v. Lemma 19 implies that κ(u, v) ≥ κ + 1.

In Case II, if Sm(u) ̸=⊥ but Sm(v) =⊥ then Sm(u) is the cut separating u, v and
since

∣∣SideSm(u)(u)
∣∣ <

∣∣SideSm(v)(v)
∣∣ = n, then the query is answered correctly. If both

Sm(u), Sm(v) ̸=⊥, then by Lemma 18, v /∈ SideSm(u)(u) and once again the query is answered
correctly.

In Case III, by Lemma 19, if u and v are separated by a κ-cut, they are separated
by {{u, v}} ∪ Sm(u)\{v} (if Sm(u) ̸=⊥) or {{u, v}} ∪ Sm(v)\{u} (if Sm(v) ̸=⊥), and this
information is stored in the bit bu,v, bv,u.

If we get to Case IV then {u, v} ̸∈ E(G) and neither Sm(u) nor Sm(v) separate u, v,
hence by Lemma 19, κ(u, v) ≥ κ + 1 and the query is answered correctly.

Case V is the most subtle. Because v ∈ Sm(u) and {u, v} ̸∈ E(G), Lemma 19 implies
that if κ(u, v) = κ, then u, v must be separated by Sm(v). If Sm(v) =⊥ then κ(u, v) ≥ κ + 1
and the query is answered correctly. If |SideSm(v)(v)| ≤ κ − 1 then the query explicitly
answers the query correctly by direct lookup. Thus, we proceed under the assumption that
Sm(v) ̸=⊥ exists and is not small.

If u ∈ SideSm(v)(v) then Sm(v) does not disconnect u and v, and by Lemma 18,∣∣SideSm(v)(v)
∣∣ >

∣∣SideSm(u)(u)
∣∣, so the query is handled correctly in this case.

If u /∈ SideSm(v)(v) then Sm(v) separates u and v, so we must argue that
∣∣SideSm(v)(v)

∣∣ ≤∣∣SideSm(u)(u)
∣∣ for the query algorithm to work correctly. It cannot be that Sm(v) and Sm(u)

have a laminar relation, so by Theorem 5 they must have a crossing matching, wheel, or
small type relation. If they have the small-type relation then the small sides of Sm(u) are
contained in Sm(v) (contradicting u ̸∈ Sm(v)) or the small sides of Sm(v) are contained in
Sm(u), but we have already ruled out this case. Thus, the remaining cases to consider are
wheel and crossing matching type.

Suppose Sm(u), Sm(v) form a 4-wheel (T ; C1, C2, C3, C4). Then u ̸∈ Sm(v) appears in a
sector of the wheel, say S1. Then C(1, 2) is a cut violating the minimality of Sm(u) = C(1, 3).

Suppose Sm(u), Sm(v) have a crossing matching type relation. Let A1 = SideSm(u)(u)
and A2 be the other side of Sm(u), and B1 = SideSm(v)(v) and B2 be the other side of Sm(v).
Then u ∈ A1∩B2, and it must be that the diagonal quadrant A2∩B1 = ∅. Suppose otherwise,
i.e., A2 ∩ B1 ̸= ∅, and let X = (Sm(u) ∩ B2) ∪ (Sm(v) ∩ A1) ∪ (Sm(u) ∩ Sm(v)). Then by
Corollary 9 X is a κ-cut with SideX(u) = A1 ∩B2, contradicting the minimality of Sm(u).
Thus, Sm(v) is a crossing matching cut of Sm(u) in side A2 w.r.t. some Q ⊆ Sm(u) ∩B1
with v ∈ Q. By Theorem 5 and u ∈ A1 ∩B2 ̸= ∅, we have

|A1 ∩ Sm(v)| = |B2 ∩ Sm(u)| ≥ |A2 ∩ Sm(v)| = |B1 ∩ Sm(u)| = |Q|.

Thus,

|SideSm(u)(u)| = |A1| > |(A1 ∩B1) ∪Q| = |SideSm(v)(v)|,

establishing the correctness in the crossing matching case. (The strictness of the inequality
is because A1 ∩B2 ̸= ∅.) ◀

S. Pettie and L. Yin 105:15

Refer to the full version for a Õ(m + poly(κ)n)-time algorithm to construct this data
structure, in particular, to find all minimal cuts {Sm(u)}u∈V .

4.1 Construction of the Data Structure
We assume Nagamochi-Ibaraki sparsification [50] has already been applied, so G has arboricity
κ + 1 and O(κn) edges. We use the recent Forster et al. [23] algorithm for computing the
connectivity κ = κ(G) in Õ(poly(κ)n) time and searching for κ-cuts.

▶ Corollary 21 (Consequence of Forster, Nanongkai, Yang, Saranurak, and Yingchareonthaworn-
chai [23]). Given x ∈ V (G) and an integer s ≤

⌈
n−κ

2
⌉
, we can, with high probabil-

ity 1− 1/ poly(n), compute Sms(x) in Õ(|SideSms(x)(x)| ·κ3) time, or determine that Sms(x)
does not exist in Õ(sκ3) time.

We call the procedure of Corollary 21 FindSmall(x, s).

▶ Definition 22. Let U be a cut, A a side of U . We use the notation A = G\(U ∪ A)
to be the region of all other sides of U . Define G(U, A) to be the graph induced by U ∪ A,
supplemented with a κ-clique on U . If W is a cut in G(U, A), define SideG(U,A)

W (x) to be
SideW (x) in the graph G(U, A).

Lemma 23 is useful for constructing the algorithm in lemma 24.

▶ Lemma 23. Let U be a κ-cut, A be a side of U , and W be a set of κ vertices in G(U, A).
Then W is a κ-cut in G(U, A) if and only if W is a laminar cut of U in one of the sides of
A. Moreover, when W is such a cut, for any vertex u ∈ U\W ,

SideW (u) = SideG(U,A)
W (u) ∪A.

Lemma 24 shows how, beginning with a cut X where SideX(u) is small, can find another
cut Y (if one exists) where SideY (u) is about M , in Õ(Mκ4) time. The difficulty is that
there could be an unbounded number of cuts “between” X and Y that would prevent the
FindSmall algorithm from finding Y directly.

▶ Lemma 24. For any integer M ≤ t/2, vertex u, and cut X with A = SideX(u), |A| ≤ 2M ,
the algorithm Expand(u, A, M) runs in time Õ(Mκ4) and, w.h.p., returns a cut Y satisfying
the following properties.

SideX(u) ⊆ SideY (u).
|SideY (u)| ≤ 2M .
If there exists a cut Z that is (III, M)-small w.r.t. u, then |SideY (u)| ≥ |SideZ(u)|.

The content of Expand(u, A, M) is given below.

Initially Y ← X. While |SideY (u)| < M ,
a. For each vertex v ∈ Y , in parallel,

i. In the graph G(Y, SideY (u)), run FindSmall(v, M).
b. The moment any call to FindSmall halts in step (i) with a cut W , stop all such calls

and set Y ←W . If all |Y | calls to FindSmall run to completion without finding a cut,
halt and return Y .

We use Corollary 25 to find Smt(u) for potentially many vertices u in bulk.

▶ Corollary 25 (Consequence of Picard and Queyrenne [56]). Fix two disjoint, non-empty
vertex sets C and D. In O(κ2(n − |C| − |D|)) time, we can output a cut S(v) for every
v ∈ V \(C ∪D), such that if Sm(v) exists and C ⊆ SideSm(v)(v), then S(v) = Sm(v).

ICALP 2021

105:16 The Structure of Minimum Vertex Cuts

We are now ready to present the entire construction algorithm.

Preamble. The algorithm maintains some κ-cut T (u) for each u, which is initially ⊥, and
stores |SideT (u)(u)|. If the algorithm makes no errors, T (u) = Smt(u) = Sm(u) at the end
of the computation. The procedure Update(u, U) updates T (u)← U if U is a better cut,
i.e., |SideU (u)| ≤ min{|SideT (u)(u)| − 1, t}, and does nothing otherwise. Update(A, U) is
short for Update(u, U) for all u ∈ A.

Step1: very small cuts. For each u ∈ V , let U ← FindSmall(u, 100κ) and then Update(u, U).
This takes Õ(nκ4) time.

Step2: unbalanced cuts. For each index i such that 100κ < 2i ≤ t, let α = 2i, and pick
a uniform sample Vi ⊂ V of size (n log n)/α.14 For each u ∈ Vi, compute Smα(u) ←
FindSmall(u, α). If Smα(u) = Sm(u) ̸=⊥, we first do an Update(SideSm(u)(u), Sm(u)),
then compute Y ← Expand(u, Sm(u), α). For each v ∈ Y , compute Wv ← FindSmall(w, α)
and then Update(v, Wv). We then run the algorithm of Corollary 25 with C = SideSm(u)(u)
and D = V \(Y ∪ SideY (u)), which returns a set of cuts {S(v)}v∈V \(C∪D). For each such
v ∈ SideY (u)\ SideSm(u)(u), do an Update(v, S(v)). For each index i, the running time is
Õ(|Vi| · ακ4) = Õ(nκ4), which is Õ(nκ4) overall.

Step3: balanced cuts. Sample O(log n) pairs (x, y) ∈ V 2. For each such pair, compute
U ← FindSmall(x, t). If U ̸=⊥, apply the algorithm of Corollary 25 to C = SideSm(x)(x)
and D = {y}, which returns a set {S(v)}. Then do an Update(v, S(v)) for every v ∈
V \(C ∪D). By Corollary 21 this takes Õ(κ3n) time.

Step4: adjacent vertices At this point it should be the case that T (u) = Sm(u) for all
u. For each v ∈ T (u) ∩ N(u) compute and set the bit bu,v. (This information can be
extracted from the calls to FindSmall and the algorithm of Corollary 25 in the same time
bounds.)

▶ Lemma 26. Suppose Sm(u) and Sm(v) exists, u ∈ SideSm(v)(v), and suppose there is a
cut W such that κ ≤

∣∣SideSm(v)(v)
∣∣ < |SideW (u)| ≤ t. Then v ∈W ∪ SideW (u).

Lemma 26 is critical to proving the correctness of the algorithm’s search strategy.

▶ Theorem 27. The construction algorithm correctly computes {Sm(v)}v∈V and runs in
time Õ(nκ4).

Proof. If |SideSm(v)(v)| ≤ 100κ, then T (v) = Sm(v) after Step 1, with high probability.
Suppose that |SideSm(v)(v)| ∈ [2j , 2j+1] and 2j+1 ≤ t. Then with high probability, at least

one vertex x ∈ Vj is sampled in Step 2 such that x ∈ SideSm(v)(v). Step 2 (Expand) computes
a cut Y such that |SideY (x)| ≥ |SideSm(v)(v)|, so by Lemma 26, either v ∈ SideY (x) or
v ∈ Y . In the former case Sm(v) is computed using the Corollary 25 algorithm. In the latter
case Sm(v) is computed directly using FindSmall.

Finally, if Sm(v) is balanced, say |SideSm(v)(v)| ≥ t/4, then w.h.p. we would pick a pair
(x, y) in Step 3 such that x ∈ SideSm(v)(v) and y ∈ V \(Sm(v) ∪ SideSm(v)(v)). If this holds
the algorithm of Corollary 25 correctly computes Sm(v). ◀

14 The Forster et al. [23] algorithm samples vertices proportional to their degree. Note that after the
Nagamochi-Ibaraki [50] sparsification, the minimum degree is at least κ and the density of every induced
subgraph is at most κ + 1, so it is equally effective to do vertex sampling.

S. Pettie and L. Yin 105:17

5 Conclusion

This paper was directly inspired by the extended abstract of Cohen, Di Battista, Kanevsky,
and Tamassia [11]. Our goal was to substantiate the main claims of this paper, and to
simplify and improve the data structure that answers (κ + 1)-connectivity queries.

We believe that our structural theorems can, ultimately, be used to develop even more
versatile vertex-cut data structures. For one example, is it possible to succinctly represent
all minimum vertex cuts so that the following queries can be answered efficiently?
Is-it-a-cut?(u1, . . . , uκ): Return true iff {u1, . . . , uκ} forms a κ-cut.
List-cuts(u): Return all the κ-cuts containing u.
Note that if all minimum cuts have a wheel or laminar relationship, then they can be
represented as a tree, as in [4, 11]. Whether there is a clean representation that also captures
all small and crossing matching cuts is an open problem.

We assumed throughout the paper that κ was not too large, specifically κ < n/4.
When n < 2κ, all cuts are (I,κ)-small by our classification, and the classification theorem
(Theorem 5) says very little about the structure of such cuts. Understanding the structure of
minimum vertex cuts when κ is large, relative to n, is an interesting open problem.

References
1 Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Cut-equivalent trees are optimal

for min-cut queries. In Proceedings of the 61st IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 105–118, 2020. doi:10.1109/FOCS46700.2020.00019.

2 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant subgraph for single source
reachability: generic and optimal. In Proceedings of the 48th Annual ACM Symposium
on Theory of Computing (STOC), pages 509–518, 2016. doi:10.1145/2897518.2897648.

3 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers.
SIAM J. Comput., 41(6):1704–1721, 2012. doi:10.1137/090772873.

4 G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with
SPQR-trees. Algorithmica, 15:302–318, 1996.

5 Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing (extended abstract).
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS),
pages 436–441, 1989. doi:10.1109/SFCS.1989.63515.

6 A. A. Benczúr. Counterexamples for directed and node capacitated cut-trees. SIAM J. Comput.,
24(3):505–510, 1995.

7 A. A. Benczúr and M. X. Goemans. Deformable polygon representation and near-mincuts.
In M. Grötschel and G. O. H. Katona, editors, Building Bridges: Between Mathematics and
Computer Science, volume 19 of Bolyai Society Mathematical Studies, pages 103–135. Springer,
2008.

8 András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015. doi:10.1137/070705970.

9 Chung-Kuan Cheng and T. C. Hu. Ancestor tree for arbitrary multi-terminal cut functions.
Ann. Oper. Res., 33(3):199–213, 1991. doi:10.1007/BF02115755.

10 K. Choudhary. An optimal dual fault tolerant reachability oracle. In Proceedings 43rd Int’l
Colloq. on Automata, Languages, and Programming (ICALP), 2016.

11 Robert F Cohen, Giuseppe Di Battista, Arkady Kanevsky, and Roberto Tamassia. Reinvent-
ing the wheel: an optimal data structure for connectivity queries (extended abstract). In
Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC), pages
194–200, 1993.

12 William H. Cunningham and Jack Edmonds. A combinatorial decomposition theory. Canadian
J. Math., 32(3):734–765, 1980. doi:10.4153/CJM-1980-057-7.

ICALP 2021

https://doi.org/10.1109/FOCS46700.2020.00019
https://doi.org/10.1145/2897518.2897648
https://doi.org/10.1137/090772873
https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1137/070705970
https://doi.org/10.1007/BF02115755
https://doi.org/10.4153/CJM-1980-057-7

105:18 The Structure of Minimum Vertex Cuts

13 E. A. Dinic, A. V. Karzanov, and M. V. Lomonosov. On the structure of the system of
minimum edge cuts in a graph. Studies in Discrete Optimization, pages 290–306, 1976. (in
Russian).

14 Y. Dinitz and Z. Nutov. A 2-level cactus model for the system of minimum and minimum+1
edge-cuts in a graph and its incremental maintenance. In Proceedings 27th ACM Symposium
on Theory of Computing (STOC), pages 509–518, 1995.

15 Y. Dinitz and Z. Nutov. A 2-level cactus tree model for the system of minimum and minimum+1
edge cuts of a graph and its incremental maintenance. Part I: the odd case. Unpublished
manuscript, 1999.

16 Y. Dinitz and Z. Nutov. A 2-level cactus tree model for the system of minimum and minimum+1
edge cuts of a graph and its incremental maintenance. Part II: the even case. Unpublished
manuscript, 1999.

17 Yefim Dinitz and Alek Vainshtein. The connectivity carcass of a vertex subset in a graph and
its incremental maintenance. In Proceedings of the 26th Annual ACM Symposium on Theory
of Computing (STOC), pages 716–725, 1994. doi:10.1145/195058.195442.

18 Yefim Dinitz and Alek Vainshtein. Locally orientable graphs, cell structures, and a new
algorithm for the incremental maintenance of connectivity carcasses. In Proceedings of the 6th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 302–311, 1995. URL:
http://dl.acm.org/citation.cfm?id=313651.313711.

19 Yefim Dinitz and Alek Vainshtein. The general structure of edge-connectivity of a vertex
subset in a graph and its incremental maintenance. odd case. SIAM J. Comput., 30(3):753–808,
2000. doi:10.1137/S0097539797330045.

20 R. Duan and S. Pettie. Connectivity oracles for failure prone graphs. In Proceedings 42nd
ACM Symposium on Theory of Computing, pages 465–474, 2010.

21 R. Duan and S. Pettie. Connectivity oracles in graphs subject to vertex failures. SIAM J.
Comput., 49(6):1363–1396, 2020.

22 Donatella Firmani, Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Federico
Santaroni. Strong articulation points and strong bridges in large scale graphs. Algorithmica,
74(3):1123–1147, 2016. doi:10.1007/s00453-015-9991-z.

23 Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. In Proceedings of the 31st ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2046–2065. SIAM, 2020. doi:10.1137/1.9781611975994.
126.

24 András Frank and Tibor Jordán. Minimal edge-coverings of pairs of sets. J. Comb. Theory,
Ser. B, 65(1):73–110, 1995. doi:10.1006/jctb.1995.1044.

25 Harold N Gabow. A representation for crossing set families with applications to submodular
flow problems. In Proceedings of the fourth annual ACM-SIAM Symposium on Discrete
algorithms, pages 202–211, 1993.

26 Harold N. Gabow. Using expander graphs to find vertex connectivity. J. ACM, 53(5):800–844,
2006. doi:10.1145/1183907.1183912.

27 Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Deterministic graph cuts in subquadratic time: Sparse, balanced,
and k-vertex. CoRR, abs/1910.07950, 2019. arXiv:1910.07950.

28 Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2-edge connectivity
in directed graphs. ACM Trans. Algorithms, 13(1):9:1–9:24, 2016. doi:10.1145/2968448.

29 Loukas Georgiadis, Giuseppe F. Italiano, Luigi Laura, and Nikos Parotsidis. 2-vertex connectiv-
ity in directed graphs. Inf. Comput., 261:248–264, 2018. doi:10.1016/j.ic.2018.02.007.

30 Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis. Strong connectivity in
directed graphs under failures, with applications. SIAM J. Comput., 49(5):865–926, 2020.
doi:10.1137/19M1258530.

https://doi.org/10.1145/195058.195442
http://dl.acm.org/citation.cfm?id=313651.313711
https://doi.org/10.1137/S0097539797330045
https://doi.org/10.1007/s00453-015-9991-z
https://doi.org/10.1137/1.9781611975994.126
https://doi.org/10.1137/1.9781611975994.126
https://doi.org/10.1006/jctb.1995.1044
https://doi.org/10.1145/1183907.1183912
http://arxiv.org/abs/1910.07950
https://doi.org/10.1145/2968448
https://doi.org/10.1016/j.ic.2018.02.007
https://doi.org/10.1137/19M1258530

S. Pettie and L. Yin 105:19

31 R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9, 1961.

32 Frieda Granot and Refael Hassin. Multi-terminal maximum flows in node-capacitated networks.
Discrete applied mathematics, 13(2-3):157–163, 1986.

33 D. Gusfield and D. Naor. Efficient algorithms for generalized cut trees. In Proceedings First
ACM-SIAM Symposium on Discrete Algorithms, pages 422–433, 1990.

34 Dan Gusfield and Dalit Naor. Extracting maximal information about sets of minimum cuts.
Algorithmica, 10(1):64–89, 1993.

35 Refael Hassin and Asaf Levin. Flow trees for vertex-capacitated networks. Discrete applied
mathematics, 155(4):572–578, 2007.

36 J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
J. Comput., 2(3):135–158, 1973.

37 Tai-Hsin Hsu and Hsueh-I Lu. An optimal labeling for node connectivity. In Proceedings of
the 20th International Symposium on Algorithms and Computation (ISAAC), pages 303–310.
Springer, 2009.

38 Rani Izsak and Zeev Nutov. A note on labeling schemes for graph connectivity. Information
processing letters, 112(1-2):39–43, 2012.

39 Bill Jackson and Tibor Jordán. Independence free graphs and vertex connectivity augmentation.
Journal of Combinatorial Theory, Series B, 94(1):31–77, 2005.

40 Tibor Jordán. On the optimal vertex-connectivity augmentation. Journal of Combinatorial
Theory, Series B, 63(1):8–20, 1995.

41 Tibor Jordán. On the number of shredders. Journal of Graph Theory, 31(3):195–200, 1999.
42 A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line maintenance of the four-

connected components of a graph. In Proceedings 32nd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 793–801, 1991.

43 B. M. Kapron, V. King, and B. Mountjoy. Dynamic graph connectivity in polylogarithmic
worst case time. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1131–1142, 2013.

44 Michal Katz, Nir A Katz, Amos Korman, and David Peleg. Labeling schemes for flow and
connectivity. SIAM J. Comput., 34(1):23–40, 2004.

45 A. Korman. Labeling schemes for vertex connectivity. ACM Trans. on Algorithms, 6(2), 2010.
46 Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai

Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In Proceedings
of the 53rd ACM Symposium on Theory of Computing (STOC), 2021.

47 Gilad Liberman and Zeev Nutov. On shredders and vertex connectivity augmentation. Journal
of Discrete Algorithms, 5(1):91–101, 2007.

48 Saunders Mac Lane. A structural characterization of planar combinatorial graphs. Duke Math.
J., 3(3):460–472, 1937. doi:10.1215/S0012-7094-37-00336-3.

49 Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:96–115, 1927.
50 H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected

spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.
51 Zeev Nutov. Approximating connectivity augmentation problems. ACM Trans. Algorithms,

6(1):5:1–5:19, 2009. doi:10.1145/1644015.1644020.
52 Zeev Nutov. Improved approximation algorithms for minimum cost node-connectivity

augmentation problems. Theory Comput. Syst., 62(3):510–532, 2018. doi:10.1007/
s00224-017-9786-5.

53 Zeev Nutov and Masao Tsugaki. On (t, k)-shredders in k-connected graphs. Ars Comb., 83,
2007.

54 M. Pǎtraşcu and M. Thorup. Planning for fast connectivity updates. In Proceedings 48th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 263–271, 2007.

55 Seth Pettie and Longhui Yin. The structure of minimum vertex cuts. CoRR, abs/2102.06805,
2021. arXiv:2102.06805.

ICALP 2021

https://doi.org/10.1215/S0012-7094-37-00336-3
https://doi.org/10.1145/1644015.1644020
https://doi.org/10.1007/s00224-017-9786-5
https://doi.org/10.1007/s00224-017-9786-5
http://arxiv.org/abs/2102.06805

105:20 The Structure of Minimum Vertex Cuts

56 J.-C. Picard and M. Queyranne. On the structure of all minimum cuts in a network and
applications. In Combinatorial Optimization II, volume 13 of Mathematical Programming
Studies, pages 8–16. Springer, 1980.

57 C.-P. Schnorr. Bottlenecks and edge connectivity in unsymmetrical networks. SIAM J. Comput.,
8(2):265–274, 1979.

58 R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,
1972.

59 W. T. Tutte. A theory of 3-connected graphs. Nederl. Akad. Wetensch. Proc. Ser. A 64 =
Indag. Math., 23:441–455, 1961.

60 W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.
61 H. Whitney. Congruent graphs and the connectivity of graphs. American J. Mathematics,

54(1):150–168, 1932. doi:10.2307/2371086.
62 Hassler Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34(2):339–362,

1932. doi:10.2307/1989545.

https://doi.org/10.2307/2371086
https://doi.org/10.2307/1989545

	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	3 The Classification of Minimum Vertex Cuts
	3.1 Wheels and Wheel Cuts
	3.2 Matching Cuts and Crossing Matching Cuts
	3.3 Laminar Cuts
	3.4 Small Cuts

	4 A Data Structure for (kappa+1)-Connectivity Queries
	4.1 Construction of the Data Structure

	5 Conclusion

