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—— Abstract

Random walks on graphs are an essential primitive for many randomised algorithms and stochastic

processes. It is natural to ask how much can be gained by running k£ multiple random walks
independently and in parallel. Although the cover time of multiple walks has been investigated for
many natural networks, the problem of finding a general characterisation of multiple cover times for
worst-case start vertices (posed by Alon, Avin, Koucky, Kozma, Lotker, and Tuttle in 2008) remains
an open problem.

First, we improve and tighten various bounds on the stationary cover time when k random walks
start from vertices sampled from the stationary distribution. For example, we prove an unconditional
lower bound of Q((n/k)logn) on the stationary cover time, holding for any n-vertex graph G and
any 1 < k = o(nlogn). Secondly, we establish the stationary cover times of multiple walks on
several fundamental networks up to constant factors. Thirdly, we present a framework characterising
worst-case cover times in terms of stationary cover times and a novel, relaxed notion of mixing time
for multiple walks called the partial mizing time. Roughly speaking, the partial mixing time only
requires a specific portion of all random walks to be mixed. Using these new concepts, we can
establish (or recover) the worst-case cover times for many networks including expanders, preferential
attachment graphs, grids, binary trees and hypercubes.
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1 Introduction

A random walk on a graph is a stochastic process that at each time step chooses a neighbour
of the current vertex as its next state. The fact that a random walk visits every vertex of
a connected, undirected graph in polynomial time was first used to solve the undirected
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s — t connectivity problem in logarithmic space [4]. Since then random walks have become a
fundamental primitive in the design of randomised algorithms which feature in approxima-
tion algorithms and sampling [32, 40], load balancing [23, 42], searching [19, 33], resource
location [24], property testing [12, 26, 27], graph parameter estimation [7, 11] and biological
applications [8, 20].

The fact that random walks are local and memoryless (Markov property) ensures they
require very little space and relatively unaffected by changes in the environment, e.g.,
dynamically evolving graphs or graphs with edge failures. These properties make random
walks a natural candidate for parallelisation, where running parallel walks has the potential
of lower time overheads. One early instance of this idea are space-time trade-offs for
the undirected s — ¢ connectivity problem [9, 18]. Other applications involving multiple
random walks are sublinear algorithms [13], local clustering [6, 43] or epidemic processes on
networks [29, 38].

Given the potential applications of multiple random walks in algorithms, it is important to
understand fundamental properties of multiple random walks. The speed up, first introduced
in [5], is the ratio of the worst-case cover time by a single random walk to the cover time of k
parallel walks. Following [5] and subsequent works [15, 16, 22, 25, 41] our understanding of
when and why a speed up is present has improved. In particular, various results in [5, 15, 16]
establish that as long as the lengths of the walks are not smaller than the mixing, the
speed-up is linear in k. However, there are still many challenging open problems, for example,
understanding the effect of different start vertices or characterising the magnitude of speed-up
in terms of graph properties, a problem already stated in [5]: “...which leads us to wonder
whether there is some other property of a graph that characterises the speed-up achieved by
multiple random walks more crisply than hitting and mizing times.” Addressing the previous
questions, we introduce new quantities and couplings for multiple random walks, that allow us
to improve the state-of-the-art by refining, strengthening or extending results from previous
works.

While there is an extensive body of research on the foundations of (single) random walks
(and Markov chains), it seems surprisingly hard to transfer these results and develop a
systematic theory of multiple random walks. One of the reasons is that processes involving
multiple random walks often lead to questions about short random walks, e.g., shorter than
the mixing time. Such short walks may arise in applications including generating random
walk samples in massively parallel systems [28, 40], or in applications where random walk
steps are expensive or subject to delays (e.g., when crawling social networks like Twitter [11]).
The challenge of analysing short random walks (shorter than mixing or hitting time) has
been mentioned not only in the area of multiple cover times (e.g., [15, Sec. 6]), but also in the
contexts of concentration inequalities for random walks [31, p. 863] and property testing [13].

1.1 Our Contribution

Our first set of results provide several tight bounds on tgf\),(w) in general (connected) graphs,

where tgf\), (m) is the expected time for each vertex to be visited by at least one of k independent
walks each started from a vertex independently sampled from the stationary distribution 7.
The main findings of Section 3 include:

Proving general bounds of O((%)Q log®n), O(%E”[T”] logn) and O(Iﬁ%)
(k

on tco\),(w), where dpn is the minimum degree, E [T, ] is the single-walk hitting time
of v € V from a stationary start vertex and Ay is the second largest eigenvalue of the
transition matrix of the walk. All three bounds are tight for certain graphs. The first
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bound improves over [9], the second result is a Matthew’s type bound for multiple random
walks, and the third yields tight bounds for non-regular expanders such as preferential
attachment graphs.

We prove that for any graph G and 1 < k = o(nlogn), t£’§3(7r) = Q((n/k)logn). Weaker
versions of this bound were obtained in [16], holding only for certain values of k or
under additional assumptions on the mixing time. Our result matches the fundamental
Q(nlogn) lower bound for single random walks (k = 1) [17], and generalises it in the
sense that the total amount of work by all k stationary walks together for covering is
always Q(nlogn). We establish the Q((n/k)logn) bound by reducing the multiple walk
process to a single, reversible Markov chain, and applying a general lower bound on
stationary cover times [3].

A technical tool that provides a bound on the lower tail of the cover time by k walks from
stationary for graphs with a large and (relatively) symmetric set of hard to hit vertices
(Lemma 9). When applied to 2d tori and binary trees this yields a tight lower bound.

In Section 4 we introduce a novel quantity for multiple walks we call partial mizing.
Intuitively, instead of mixing all (or at least half) of the k& walks, we only need to mix a
specified number k of them. We put this idea on a more formal footing and prove min-max

theorems which relate worst case cover times t£’§3 to partial mixing times tl(:i;k) and stationary
cover times:

For any graph G and any 1 < k < n, we prove that:

t*) <16 - min max (tr(]ﬁ;k),tgﬁ\),(ﬂ)) .
1<k<k

For now, we omit details such as the definition of the partial mixing time tffi;(k)
some max-min characterisations that serve as lower bounds (these can be found in Section 4).
Intuitively these characterisations suggest that for any number of walks k, there is an “optimal”
choice of k so that one first waits until & out of the k walks are mixed, and then considers
only these k stationary walks when covering the remainder of the graph.

This argument involving mixing only some walks extends and generalises previous results
that involve mixing all (or at least a constant portion) of the k walks [5, 15, 16]. Previous
approaches only imply a linear speed-up as long as the lengths of the walks are not shorter
than the mixing time of a single random walk. In contrast, our characterisation may still
yield tight bounds on the cover time for random walks that are much shorter than the mixing

as well as

time.

To demonstrate how our insights can be used, we derive worst case cover times for several
well-known graph classes. Due to space limitations we could not include this in the main
body of this work, however we have summarised our results in Table 1. The corresponding
results with full proofs can be found in corresponding section of the full paper [39]. As a
first step to calculating t§’§3, we determine the stationary cover time; this is based on our
bounds from Section 3. Secondly, we derive lower and upper bounds on the partial mixing
times. Finally, with the stationary cover times and partial mixing times at hand, we can
apply the characterisations from Section 4 to infer lower and upper bounds on the worst case
stationary times. For some of those graphs the worst case cover times were already known
before, while for, e.g., binary trees and preferential attachment graphs, our bounds are new.

For the graph families of binary trees, cycles, d-dim. tori (d = 2 and d > 3), hypercube,
clique, and (possibly non-regular) expanders we determine the cover time up to constants,
for both worst-case and stationary start vertices (see Table 1 for the quantitative results).
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We believe that this new methodology constitutes some progress towards the open question
of Alon et al. [5] about a characterisation of worst-case cover times.

1.2 Novelty of Our Techniques

While a lot of the proof techniques in previous work [5, 15, 16, 41] are based on direct
arguments such as mixing time (or relaxation time), our work introduces a number of new
methods which, to the best of our knowledge, have not been used in the analysis of cover
time of multiple walks before. In particular, one important novel concept is the introduction
of the partial mizing time. The idea is that instead of waiting for all (or a constant portion
of) k walks to mix, we can just mix some k < k walks to reap the benefits of coupling these
k walks to stationary walks. This then presents a delicate balancing act where one must find
an optimal & minimising the overall bound on the cover time, for example in expanders the
optimal % is linear in k whereas in binary trees it is approximately vk, and for the cycle it is
roughly log k. This turning point reveals something about the structure of the graph and our
results relating partial mixing to hitting time of sets helps one find this. Another tool we
frequently use is a reduction to random walks with geometric resets, similar to a PageRank
process, which allows us to relate multiple walks from stationary to a single reversible Markov
chain.

2 Notation & Preliminaries

Throughout G = (V, E) will be a finite undirected, connected graph with n := |V| vertices
and m := |E| edges. For any k > 1, let X; = (Xt(l),...,Xt(k)) be multiple random walk

)

process, where each Xt(i is an independent random walk on G. Let

]Eulp-wuk [} ::E[' | Xo = (ulw'-;uk)]

denote the conditional expectation where, for each 1 < ¢ < k, Xéi) = u; € V is the start vertex
of the i*" walk. Unless mentioned otherwise, walks will be lazy, i.e., at each step the walk
stays at its current location with probability 1/2, and otherwise moves to a neighbour chosen
uniformly at random. We let the random variable Tc(f\,)(G) = inf{t: UEZO{XZ-(U, e ,Xi(k)} =
V'} be the first time every vertex of the graph has been visited by some walk Xt(i). For
Ug, ..., up €V let

(s ), G) = By 8@ ] UG = max_ 8 (ur, . w), )

UL, up €V

denote the cover time of k walks from (ug,...,u;) and the cover time of k walks from worst
case start positions respectively. For simplicity, we drop G from the notation if the underlying
graph is clear from the context. We shall use 7 to denote the stationary distribution of a

single random walk on on a graph G, for v € V this is given by 7(v) = &;’L) which is the

2
degree over twice the number of edges. We use 7%, which is a distribution on V* given by the
product measure of m with itself, to denote the stationary distribution of a multiple random
walk. For a probability distribution p on V' let IE,« [-] denote expectation with respect to k

walks where each start vertex is sampled independently from p and

1) (1, G) = B, [T(k)(G)} .

cov cov

In particular t£f§3(w, G) denotes the expected cover time from independent stationary start
vertices. For a set S C V we define

Ték) = inf{¢ : there exists 1 <i < k such that Xt(i) e S}
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Table 1 All results above are O(-), that is bounded above and below by a multiplicative constant,
apart from the mixing time of expanders which is only bounded from above. PA above is the
preferential attachment process where each vertex has m initial links, the results hold w.h.p., see
[10, 34]. Cells shaded in | Yellow are new results proved in this paper with the exception that for
k = O(logn) upper bounds on the stationary cover time for binary trees, expanders and preferential
attachment graphs can be deduced from general bounds for the worst case cover time in [5]. Cells
shaded Gray in the second to last column are known results we re-prove in this paper using our
partial mixing time results, for the 2-dim grid we only re-prove upper bounds. References for the
second to last column are given in the corresponding section in the full version, except for the
Barbell, see [15, Page 2]. The Barbell consists of two cliques on n/2 vertices connected by single
edge; we include this in the table as an interesting example where the speed up by stationary walks

is exponential in k. All other results for single walks can be found in [2], for example.

Graph Cover | Hitting Mixing k-Cover Time, where 2 <k <n
family teov thit temix Worst case téﬁ\,) From 7%, £§3 ()
(n/k)log®n
Binary 9 if k < log® n. nlogn nlogn
nlog®n | nlogn n A 10g< A )
tree (n/Vk)logn
if k> log® n.
2 2
Cycle n? n? n? 1:g A (%) log2 k
(n/k)log®n
2-Dim. if k <log?n.
nlog®n | nlogn n nlognlog (nlogn)
log(k/log” n)
if k> logZn.
d-Dim. (n/k)logn
Tori 2/d if k <n'~??logn. "
nlogn n n n2/d % logn
d>3
- log(k/(n'~?/?logn))
if k> n'"?/?logn.
(n/k)logn
if k < n/loglogn. n
Hypercube | nlogn n lognloglogn A logn
lognloglogn
if k > n/loglogn.
n n
Expanders | nlogn n O(logn) % logn % logn
PA,m>2 | nlogn n O(logn) % logn
27 Fp? 1
Barbell n? n? n? n?/k kn + n (l)cgn
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as the first time the set S is visited by any of the k independent random walks, if S = {v} is
a singleton set we use 7, dropping brackets. Let

B(6) =, max | ma Bu o, [0
be the worst case vertex to vertex hitting time. When talking about a single random walk
we drop the (1) index, i.e. tg\),(G) = teov(G); we also drop G from the notation when the
graph is clear. If we wish the graph G to be clear we shall also use the notation P, ¢[-] and
E, ¢ [-]. For a single random walk X, with stationary distribution 7 and = € V, let d(¢) and
sz (t) be the total variation and separation distances for X; given by

Pt
d(t) = max [P, —nllry  and  s.(t) = prina [1 a waﬂ’

where Paﬁ,_ is the t-step probability distribution of a random walk starting from z and, for
probability measures p, v, ||u — v||rv = 3 3, oy |u(z) — v(2)] is the total variation distance.
Let s(t) = maxgzev $z(t), then for 0 < e < 1 the mixing and separation times [30, (4.32)] are

tmix(e) = inf{t : d(t) < &} and teep(e) = inf{t : s(t) < e}, (1)

and tmix = tmix(1/4) and teep = teep(1/€). A strong stationary time (SST) o, see [30, Ch. 6]
or [1], is a randomised stopping time for a Markov chain Y; on V' with stationary distribution
m if

P.[Y, =v]| o=k =m(v) for any w,v € V and k > 0. (2)

Let te = ﬁ be the relaxation time of G, where A5 is the second largest eigenvalue of the
transition matrix of the (lazy) random walk on G.

For random variables Y, Z we say that Y dominates Z (Y = Z)if P[Y > x| > P[Z > ]
for all x.

3  Multiple Stationary Cover Times

We shall state our general upper and lower bound results for multiple walks from stationary
in Sections 3.1 & 3.2 respectively. All proofs can be found in the full version [39].

3.1 Upper Bounds

Broder, Karlin, Raghavan, and Upfal [9] showed that for any graph G and k > 1,

£ (1) = 0<(T;)210g3 n) .

We prove a general bound which improves this bound by a multiplicative factor of d2; logn
which may be Q(n?logn) for some graphs.

» Theorem 1. For any graph G and any k > 1,

2
") (1) = M) o2
tCOV (ﬂ-) O ( (kdmin ) Og n) N
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This bound is tight for the cycle if k = n®(1) see Table 1. Theorem 1 is proved by relating
the probability a vertex v is not hit up to a certain time ¢ to the expected number of returns
to v by a walk of length ¢ from v and applying a bound by Oliveira and Peres [35].

The next bound is analogous to Matthew’s bound [2, Theorem 2.26] for the cover time of
single random walks from worst case, however it is proved by a different method.

» Theorem 2. For any graph G and any k > 1, we have

()

cov

() = O(max1,6V IE]: [Tv]logn> .

This bound is tight for many graphs, see Table 1. Since the acceptance of this paper, the
stronger bound tgg\),(w) = O(tcov/k) has been proved by Hermon & Sousi [21]. This bound
implies Theorem 2 by a simple application of the aforementioned Matthew’s Bound for single
random walks. A version of Theorem 2 for tgf\), was established by Alon et al. [5] provided
k = O(logn), the restriction on k is necessary (for worst case) as witnessed by the cycle.
Theorem 2 also gives the following explicit bound.

» Corollary 3. For any graph G and any k > 1, we have

()

B =o(;

m
d Vel log n) .

Proof. Use max,cy E; [7y] < 20my/tre + 1/dmin from [35, Theorem 1] in Theorem 2. <«

Notice that, for all values k > 1, this bound is tight for any expander with dy,i, = Q(m/n),
such as preferential attachment graphs (see Table 1 and the full version for more details).

We also establish the following two bounds for classes of graphs with “not too large”
return probabilities.

» Lemma 4. Let G be any graph satisfying mmin = Q(1/n), trer = o(n) and ZE:O P =
O(1 +tm(v)) for any t < tu. Then for any 1 <k <n,

th(r)=0 (% log n) .

The bound above applied to a broad class of graphs with expander like properties but large
relaxation time, this includes the hypercube and high dimensional grids. The following bound
holds for graphs with sub-harmonic return times, this includes binary trees and 2d-grid/tori.

» Lemma 5. Let G be any graph with 3;_, P, = O(t/n+logt) for any t < n(logn)? for
allv eV and tpix = O(n). Then for any 1 < k < (nlogn)/3,

R

3.2 Lower Bounds

Generally speaking, lower bounds for random walks are more challenging to derive than
upper bounds. In particular, the problem of obtaining a lower bound for the cover time of a
simple random walk on an undirected graph was open for many years [2]. This was finally
resolved by Feige [17] who proved teov > (1 — o(1))nlogn. We prove a generalisation of this

bound, up to constants, that holds for & random walks which start from stationarity (thus
also for worst case).
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» Theorem 6. There exists a constant ¢ > 0 such that for any graph G and1 < k < c-nlogn,
(k)

cov

(m) zc-%-logn.

We remark that in this section all results hold (and are proven) for non-lazy random walks,
which by stochastic domination implies that the same result also holds for lazy random
walks. Theorem 6 is tight, uniformly for all 1 < k < n, for the hypercube, expanders and
high-dimensional tori, see Table 1. We note that [16] proved this bound for any start vertices
under the additional assumption that k > n¢, for some constant € > 0. One can track the
constants in the proof of Theorem 6 and show that ¢ > 2-10~!!, we have not optimised this
but note that ¢ < 1 must hold in either condition of Theorem 6 due to the complete graph.
To prove this result we introduce the geometric reset graph, which allows us to couple the
multiple random walk to a single walk to which we can apply a lower bound by Aldous [3]. The
random reset graph is a small modification to a graph G which gives an edge-weighted graph
G(z) such that the simple random walk on G(z) emulates a random walk on G with Geo(z)
resets to stationarity, where Geo(z) is a geometric random variable with expectation 1/z.

» Definition 7 (The Geometric Reset Graph @(x)) For any graph G the undirected, edge-
weighted graph (A?(ac), where 0 < x < 1, consists of all vertices V(G) and one extra vertex
z. All edges from G are included with edge-weight 1. Further, z is connected to each vertex
u € G by an edge with edge-weight x - d(u)/(1 — ), where d(u) is the degree of vertex u in G.

Given a graph with edge weights {w,}.cr the probability a non-lazy random walk moves
from w to v is given by wyy/ ) ,cy Wuw. Thus the walk on G(z) behaves as a random
walk in G, apart from that in any step, it may move to the extra vertex z with probability
% = xz. Once the walk is at z it moves back to a vertex v € V\{z} with
pArobability proportional to d(u). Hence the stationary distribution 7 of the random walk on

G(z) is proportional to 7 on G, and for the extra vertex z we have

) - Tuey 2w/ =) o/(1 =)

C Yeevdw) + X ey adw)/(1-2)  1+a/(1-2)
Using the next lemma we can then obtain bounds on the multiple stationary cover time
by simply bounding the cover time in the augmented graph G(z) for some x.

» Lemma 8. Let G be any graph G, k > 1 and x = Ck/T where C > 30 and T > 5Ck.
Then

T Ck
]P‘n'k‘,G |:Tc(§v) > ]_()CVC:| > IP;r\,é\(z) [Tcov > T] — exp (—50> .

The coupling above will also be used later in the paper to prove a lower bound for the
stationary cover time of the binary tree and 2-dimensional grid when £ is small.

The next result we present utilises the second moment method to obtain a lower bound
which works very well for k = n®(1) walks on symmetric (e.g., transitive) graphs. In particular,
we apply this to get tight lower bounds for cycles, 2-dim. tori and binary trees (see the
corresponding section of the full version).

» Lemma 9. Let G be any graph. Let o € (0,1) be a fized real constant and define
pu(t) = Prr, < t] fort > 1. Suppose there exists a subset S C V', and real numbers p > 0
and 0 < e <1 such that for all v € S we have p(1 —¢) < p,(t) < p, with p < alogn)/k, and
that min,eg w(v) = Q(1/]S]). If in addition p*k = o(1), then

1 2 a(l+e)
P 15 < o] = o LB,
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4 Mixing Few Walks to Cover Many Vertices

In this section we present several bounds on t£’§3, the multiple cover time from worst case start

vertices, based on t£’§3 (7), the multiple cover time from stationarity, and a new notion that
we call partial mixing time. The intuition behind this is that on many graphs such as cycles
or binary trees, only a certain number, say k out of k walks will be able to reach vertices that
are “far away” from the initial distribution. That means covering the whole graph hinges on
how quickly these k “mixed” walks cover the graph G, however, we also need to take into
account the number of steps needed to “mix” those. Theorem 16 (see Subsection 4.2) makes
this intuition more precise and suggests that the best strategy for covering a graph might
be when % is chosen so that the time to mix & out of k walks and the stationary cover time
of k walks are approximately equal. The first subsection (Subsection 4.1) contains details
of our new notions of mixing for multiple random walks, the second contains the bounds
on worst-case cover times we derive from these and the third contains some bounds on the
multiple mixing times.

4.1 Two Notions of Mixing for Multiple Random Walks
Recall the definition of strong stationary time (SST) given by (2) in Section 2. Then, for

any graph G, and any 1 < k < k, we define the partial mizing time:

tr(fi;’(k)(G) = inf {t > 1: there exists an SST 7 such that Hél‘l/l P,r <t > l;:/k}

(3)
=inf{t>1:s(t)<1-k/k}.

Note that the two definitions above are equivalent by the following result.

» Proposition 10 ([1, Proposition 3.2]). If o is an SST then P [o > t] > s(t) for any t > 0.

Furthermore there exists an SST for which equality holds.

This notion of mixing, based on the idea of separation distance and strong stationary
times for single walks, will be useful for establishing an upper bound on the worst case cover
time. For lower bounds on the cover time we will now introduce another notion of mixing for
multiple random walks based on a different property of mixing times of single walks.

For single random walks, there is a fundamental connection between mixing times and
hitting times of sets. In particular if we let

— ]E = 14
)=y X g Balrsond = 1/

then the following theorem shows this large-set hitting time is equivalent to the mixing time.

» Theorem 11 ([36] and independently [37]). Let o < 1/2. Then there exist positive constants
c(a) and C(«) so that for every reversible chain

c(@) - th(a) < tmix(a) < C(a) - th(a).

In order to prove a lower bounds on the cover time we seek to replace the partial mixing
time by an analogue of hitting times of large sets, adapted to multiple walks:

) R . . k
targe—nit(G) 1= min {t >1: uGV,SQ\I}l:lgrl(S)Zl/él Pulrs <t] > kz} . (4)
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Note that both of our mixing times, (4) and (3), are only defined for k& < k. However, by
the union bound, there exists a C' < oo such that if we run k& walks for Ct,ix log k steps then
all k walks will be close to uniform in total variation norm.

In the following four results, we present some simple relations between t"R) and ¢8R

mix large—hit>
and tpmix, Where tmix is the total variation mixing time for a single random walk given by (1).

First we show a simple upper bound in terms of the single walk mixing time.

» Lemma 12. There exists a constant C < co such that for any graph and 1 < k < k we
have

o (kK 4k >
i)t < 2-tmix-lo =,
( ) mix — g <k‘ k

(k) k
(”) tl(arge—hit SO tmix log (k /%) .

The partial mixing time can be bounded from below quite simply by mixing time.

» Lemma 13. For any graph and 1 < k < k we have

; k
tr(fl;(k) Z tmix (1 - k‘) .

We would prefer a bound in terms of tmix := tmix(1/4) instead of tmix(1 — l%/k:) as the
former is easier to compute for most graphs. The following Lemma establishes such a lower
bound for both notions of mixing time at the cost of a k/k factor.

» Lemma 14. There exists some constant ¢ > 0 such that for any graph and 1 < k< k we
have

(i) 1o > ¢ 7t
.. k.k k
(") tl(arge)fhit Z c- E ’ tmix-

End IS

We leave as an open problem whether our two notions of mixing for multiple random walks
are equivalent up to constants, but the next result gives partial progress in one direction.

» Lemma 15. For any graph and 1 < k < k/4 we have

(4k,k)

mix

JRE) (R

large—hit — "mix

+1<2¢

4.2 Upper and Lower Bounds by Partial Mixing

Armed with our new notions of mixing time for multiple random walks from Section 4.1, we
can now use them to prove upper and lower bounds on the worst case cover time in terms of
stationary cover times and partial mixing times. We begin with the upper bound.

» Theorem 16. For any graph G and any 1 < k <mn,

t*) <16 min max (t(k’k) t(f“)(w)) .

cov mix  “cov
1<k<k

Proof. Fix any 1 < k < k. It suffices to prove that with k walks starting from arbitrary
positions running for

b= tFR) 4 op ()

mix cov

(1) < 4 - max (t@k) £ (ﬂ))

mix ’ “cov
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steps, we cover G with probability at least 1 /4. Consider a single walk X (¢) on G. From
(3), we have that at time T' = ¢(:)

ngw = (1 = s,(]))7(w) + 84, (T)vp(w).

Therefore, we can generate X, (T) as follows: with probability 1 — s,(T) > k/k we sample
from 7, otherwise we sample from v,. If we now consider k independent walks, the number
of walks that are sampled at time T from 7 has a binomial distribution Bln(k: k/k) with k
trials and probability k/ k, whose expectation is k. Since the expectatlon k is an integer it is
equal to the median, thus with probability at least 1/2, at least k walks are sampled from

there exists a probability measure v, on V such that,

the stationary distribution. Now, consider only the k independent walks starting from .

After 2teoy (m, l;:) steps, these walks will cover G with probability at least 1/2, due to Markov’s
inequality.

We conclude that in ¢ time steps, from any starting configuration of the k& walks, the
probability we cover the graph is at least 1/4. Hence in expectation, after (at most) 4 periods
of length ¢ we cover the graph. |

This theorem improves on various results in [5] and [15] which bound the worst case
cover time by mixing all k walks, and it also generalises a previous result in [16, Lemma 3.1],
where most walks were mixed, i.e., k = k /2.

We also prove a lower bound for cover times, however this involves the related definition
of partial mixing time based on the hitting times of large sets.

» Theorem 17. For any graph G with Tmax = max, m(u) and any 1 < k <mn,

2 1
t*) > — . max min t(k’k) el I
cov = ]-6 1<k<k large —hit k'ﬂ—max

Further, for any regular graph G any § > 0 fized, there is a constant C' = C(0) > 0 such that

%) . (k) nlogn
t((:ov >C- ngrgl%)ikmln <t|arge hit? ]’% :

As we will see later, both Theorem 16 and Theorem 17 yield asymptotically tight (or
tight up to logarithmic factors) lower and upper bounds for many concrete networks. To
explaln why this is often the case, note that both bounds include one non-increasing function
in k& and one non-decreasing in function in k. That means both bounds are optimised when
the two functions are as close as possible. Then balancing the two functions in the upper

bound asks for k such that t(k M~ tgo)( ). Similarly, balancing the two functions in the first

mix

lower bound demands tlarge)_hit ~ n/k (assuming mmax = O(1/n)). Hence for any graph G

where tt) & ¢ &
This turns out to be the case for many networks (see the corresponding section in the full
version).

One exception where Theorem 17 is far from tight is the cycle, we shall also prove a
min-max theorem but with a different notion of partial cover time which is tight for the
cycle.

For aset S CV we let Tc(f\,) (S) be the first time that every vertex in S has been visited
by at least one of the k walks, thus T(;(c]f\,) V)= c(fv) Then we define the set cover time

foecov = g i max | 70)(S) |
where the first minimum is over all sets S C V satisfying w(S) > 1/4 and the second is over
all probability distributions g on the set 95 = {x € S : exists y € S¢, zy € E}.

and also tie(m) ~ n/k, the upper and lower bounds will be close.
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» Theorem 18. For any graph G and any 1 < k < n,

1 ~
k Rk (k)
tém)/ > Z : I?f?i(k min (tlarge—hit7 tlarge—cov) :

4.3 Geometric Lower Bounds on the Large-Hit and Large-Cover Times

We will now derive two useful lower bounds on tl(ziét)—hiv
graph, and a second one based on the distance to a large set the random walk needs to hit.

For two sets A,B C V the ergodic flow Q(A,B) is defined by Q(A,B) =
> acapen T(a)Pap, where Py, denotes the transition matrix of a (lazy) single random

walk. We define the conductance ®(S) of a set S C V with 7(S) € (0,1/2] to be

one based on the conductance of the

and let ®(G) = min o(S
SCV,0<n(S)<1/2

» Lemma 19. For any graph G with conductance ®(G), any 1 < k <k,

Br) o k2
large—hit — k (I)(G)

t

We remark that a similar bound was used implicitly in [41, Proof of Theorem 1.1], where

1) > \/ (g Was shown.

The following lemmas will be useful to lower bound worst case cover times on cycles/tori.

» Lemma 20. Let G be a d-dimensional torus with constant d > 2 (or cycle, d=1), u €V
and S be a set with |S| > n/2. Then for any k < k/2,
B0 ((dist(u, 5))? / log(k/F)) .

large—hit

» Lemma 21. Let S CV be a subset of vertices with w(S) > 1/4, t > 2 be an integer and
k > 100 such that for every u € S,

t
> P, =32-t-m(u)-k.
s=0

Then for any starting distribution p of k/8 walks,

E,. [7553(5)} > 1/5.

5 Conclusion & Open Problems

In this work, we derived several new bounds on multiple stationary and worst-case cover
times. We also introduced a new quantity called partial mizing time, which extends the
definition of mixing time from single random walks to multiple random walks. By means of
a min-max characterisation, we proved that the partial mixing time connects the stationary
and worst-case cover times, leading to tight lower and upper bounds for many graph classes.

In terms of worst-case bounds, Theorem 1 implies that for any regular graph G and any
k>1, t£’§3(7r) = (’)((%)2 log? n) . This bound is tight for the cycle when k is polynomial in
n but not for smaller k. We suspect that for any k& > 1 the cycle is (asymptotically) the

worst case for tgcf\),(w) amongst regular graphs, which suggests t&’g\),(w) = O((%)z log? k) .
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Some of our results have been only proven for the independent stationary case, but it
seems plausible they extend to the case where the k& random walks start from the same
vertex. For example, extending the bound tgf\),(w) = Q((n/k)logn) to this case would be
very interesting.

In Theorem 2 we prove tory (7) = O((maxyev Ex [ 7, ]logn)/k), can we prove the stronger
bound tgg\),(w) = O(1/k - teov(m, G)) without assuming anything on the mixing time of G?

Although our min-max characterisations involving partial mixing time yields tight bounds
for many natural graph classes, it would be interesting to establish a general approximation
guarantee (or find graph classes that serve as counter-examples). For the former, we believe
techniques such as Gaussian Processes and Majorising Measures used in the seminal work of
Ding, Lee and Peres [14] could be very useful.
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