Quantum Algorithms for Matrix Scaling and Matrix
Balancing

Joran van Apeldoorn &
Institute for Information Law and QuSoft, University of Amsterdam, The Netherlands

Sander Gribling =
IRIF, Université de Paris, CNRS, Paris, France

Yinan Li &
Graduate School of Mathematics, Nagoya University, Japan

Harold Nieuwboer &
Korteweg—de Vries Institute for Mathematics and QuSoft,
University of Amsterdam, The Netherlands

Michael Walter =
KdVI, ITFA, ILLC, and QuSoft, University of Amsterdam, The Netherlands

Ronald de Wolf &
QuSoft, CWI, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

—— Abstract

Matrix scaling and matrix balancing are two basic linear-algebraic problems with a wide variety of
applications, such as approximating the permanent, and pre-conditioning linear systems to make
them more numerically stable. We study the power and limitations of quantum algorithms for
these problems. We provide quantum implementations of two classical (in both senses of the word)
methods: Sinkhorn’s algorithm for matrix scaling and Osborne’s algorithm for matrix balancing.
Using amplitude estimation as our main tool, our quantum implementations both run in time
6(%/) for scaling or balancing an n x n matrix (given by an oracle) with m non-zero entries to
within ¢;-error €. Their classical analogs use time 19) (m/€?), and every classical algorithm for scaling
or balancing with small constant e requires 2(m) queries to the entries of the input matrix. We
thus achieve a polynomial speed-up in terms of n, at the expense of a worse polynomial dependence
on the obtained ¢;-error . Even for constant € these problems are already non-trivial (and relevant
in applications). Along the way, we extend the classical analysis of Sinkhorn’s and Osborne’s
algorithm to allow for errors in the computation of marginals. We also adapt an improved analysis of
Sinkhorn’s algorithm for entrywise-positive matrices to the ¢;-setting, obtaining an 5(711'5 /€®)-time
quantum algorithm for e-¢1-scaling. We also prove a lower bound, showing our quantum algorithm
for matrix scaling is essentially optimal for constant e: every quantum algorithm for matrix scaling
that achieves a constant ¢1-error w.r.t. uniform marginals needs Q(y/mn) queries.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms;
Theory of computation — Quantum computation theory

Keywords and phrases Matrix scaling, matrix balancing, quantum algorithms
Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.110

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2011.12823v1 [9]

Funding Joran van Apeldoorn: Dutch Research Council (NWO/OCW), as part of QSC (024.003.037).
Sander Gribling: Partially supported by SIRTEQ-grant QulPP.
Yinan Li: MEXT Quantum Leap Flagship Program grant no. JPMXS0120319794.
Harold Nieuwboer: NWO grant no. OCENW.KLEIN.267.
Michael Walter: NWO Veni grant no. 680-47-459 and grant no. OCENW.KLEIN.267.
Ronald de Wolf: NWO/OCW through QSC (024.003.037) and QuantAlgo (QuantERA 680-91-034).
© Joran van Apeldoorn, Sander Gribling, Yinan Li, Harold Nieuwboer, Michael Walter,
5v and Ronald de Wolf;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 110; pp. 110:1-110:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:work@bitofbytes.com
mailto:gribling@irif.fr
mailto:Yinan.Li@math.nagoya-u.ac.jp
https://orcid.org/0000-0002-5456-1319
mailto:h.a.nieuwboer@uva.nl
https://orcid.org/0000-0003-3627-3636
mailto:m.walter@uva.nl
mailto:rdewolf@cwi.nl
https://doi.org/10.4230/LIPIcs.ICALP.2021.110
https://arxiv.org/abs/2011.12823v1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

110:2

Quantum Algorithms for Matrix Scaling and Matrix Balancing

Acknowledgements We thank the ICALP referees for some very helpful feedback.

1 Introduction

1.1 Matrix scaling and matrix balancing

Matrix scaling is a basic linear-algebraic problem with many applications. A scaling of
an n X n matrix A with non-negative entries is a matrix B = XAY where X and Y are
positive diagonal matrices (everything straightforwardly extends to non-square A). In other
words, we multiply the i-th row with X;; and the j-th column with Y;;. We say A is ezactly
scalable to marginals r € R’} and ¢ € R} if there exist X and Y such that the vector
r(B) = (Z;;l Bij)ien) of row sums of the scaled matrix B equals r, and its vector c(B) of
column sums equals c. One typical example would be if r and ¢ are the all-1 vectors, which
means we want B to be doubly stochastic: the rows and columns of B would be probability
distributions. In many cases it suffices to find approximate scalings. Different applications
use different notions of approximation. We could for instance require r(B) to be e-close to r
in ¢1- or o-norm, or in relative entropy (Kullback-Leibler divergence), for some parameter ¢
of our choice, and similarly require c(B) to be e-close to c.

A related problem is matriz balancing. Here we do not prescribe desired marginals, but
the goal is to find a diagonal X such that the row and column marginals of B = XAX™?!
are close to each other. Again, different notions of closeness r(B) ~ c¢(B) are possible.

An important application, used in theory as well as in practical linear-algebra software
(e.g. LAPACK [6] and MATLAB [40]), is in improving the numerical stability of linear-system
solving. Suppose we are given matrix A and vector b, and we want to find a solution to the
linear system Av = b. Note that v is a solution iff Bv/ = b’ for v/ = Xv and b’ = Xb. An
appropriately balanced matrix B will typically be more numerically stable than the original
A, so solving the linear system Bv’ = b’ and then computing v = X v/, is often a better
way to solve the linear system Av = b than directly computing A~ 'b.

Matrix scaling and balancing have surprisingly many and wide-ranging applications.
Matrix scaling was introduced by Kruithof for Dutch telephone traffic computation [37], and
has also been used in other areas of economics [50]. In theoretical computer science it has been
used for instance to approximate the permanent of a given matrix [38], as a tool to get lower
bounds on unbounded-error communication complexity [25], and for approximating optimal
transport distances [2]. In mathematics, it has been used as a common tool in practical linear
algebra computations [39, 12, 46, 42], but also in statistics [49], optimization [47], and for
strengthening the Sylvester-Gallai theorem [11]. Matrix balancing has a similarly wide variety
of applications, including pre-conditioning to make practical matrix computations more
stable (as mentioned above), and approximating the min-mean-cycle in a weighted graph [3].
Many more applications of matrix scaling and balancing are mentioned in [38, 31, 28].
Related scaling problems have applications to algorithmic non-commutative algebra [27, 17],
functional analysis [26], and quantum information [29, 18, 16].

1.2 Known (classical) algorithms

Given the importance of good matrix scalings and balancings, how efficiently can we actually
find them? For concreteness, let us first focus on scaling. Note that left-multiplying A
with a diagonal matrix X corresponds to multiplying the i-th row of A with X;;. Hence
it is very easy to get the desired row sums: just compute all row sums r;(A) of A and
define X by X;; = r;/r;(A), then XA has exactly the right row sums. Subsequently, it
is easy to get the desired column sums: just right-multiply the current matrix XA with
diagonal matrix Y where Yj; = ¢;/¢;(XA), then XAY will have the right column sums.

J. van Apeldoorn, S. Gribling, Y. Li, H. Nieuwboer, M. Walter, and R. de Wolf

The problem with this approach, of course, is that the second step is likely to undo the good
work of the first step, changing the row sums away from the desired values; it is not at all
obvious how to simultaneously get the row sums and column sums right. Nevertheless, the
approach of alternating row-normalizations with column-normalizations turns out to work.
This alternating algorithm is known as Sinkhorn’s algorithm [49], and has actually been
(re)discovered independently in several different contexts.

For matrix balancing there is a similar method called Osborne’s algorithm [43, 45]. In
each iteration this chooses a row index 7 and defines X;; such that the i-th row sum and the
i-th column sum become equal. Again, because each iteration can undo the good work of
earlier iterations, convergence to a balancing of A is not at all obvious. Remarkably, even
though Osborne’s algorithm was proposed more than six decades ago and is widely used in
linear algebra software, an explicit convergence-rate bound was only proved recently [48, 44]!

At the same time there have been other, more sophisticated algorithmic approaches
for scaling and balancing. Just to mention one: we can parametrize X = diag(e*) and
Y = diag(e¥) by vectors x,y € R™ and consider the following convex potential function:

n n n
f(X, y) = Z Aijewierj — ZTZZ‘y — Zijj.
i,j=1 i=1 j=1
Note that the partial derivative of this f w.r.t. the variable z; is Z;”:l Ayjemiti —p; =
ri{(XAY) — r;, and the partial derivative w.r.t. y; is ¢;(XAY) — ¢;. A minimizer x,y of f
will have the property that all these 2n partial derivatives are equal to 0, which means
XAY is exactly scaled! Accordingly, (approximate) scalings can be obtained by finding
(approximate) minimizers using methods from convex optimization. In fact, Sinkhorn’s
original algorithm can be interpreted as block coordinate descent on this f, and Osborne’s
algorithm can similarly be derived by slightly modifying f. More advanced methods from
convex optimization have also been applied, such as ellipsoid methods [36, 33, 41], box-
constrained Newton methods [1, 21] and interior-point methods [21, 19].

Historically, research on matrix scaling and matrix balancing (and generalizations such
as operator scaling) has focused on finding e-¢5-scalings. More recently also algorithms
for finding e-¢;-scalings have been extensively studied, due to their close connection with
permanents and finding perfect matchings in bipartite graphs [38, 20], and because the
£1-distance is an important error measure for statistical problems such as computing the
optimal transport distance between distributions [22, 2], even already for constant e. By
the Cauchy-Schwarz inequality, an (e/4/n)-f3-scaling for A is also an e-¢1-scaling, but often
more direct methods work better for finding an e-¢;-scaling.

Below in Table 1 we tabulate the best known algorithms for finding e-scalings in £1-
norm for entrywise-positive matrices and general non-negative matrices. We make the
standard assumptions that every entry of the target marginals r, ¢ is non-zero, and that A is
asymptotically scalable: for every € > 0, there exist X and Y such that

[r(B) —r[y <eand [[¢(B) -l <e,

where B = XAY (this implies that the matrix has at least one non-zero entry in every row
and column). A sufficient condition for this is that the matrix is entrywise-positive. To state
the complexity results, let m be the number of non-zero entries in A (note that m > n),
assume szzl A;; = 1, that its non-zero entries lie in [, 1], and ||r||s = ||c|l1 =1 (so uniform
marginal is 1/n). We will assume ¢ € (0,1). The input numbers to the algorithm are all
assumed to be rational, with bit size bounded by polylog(n), unless specified otherwise.!

1 The complexity of our algorithms depends polylogarithmically on the magnitude of the entries; the
assumption on the bit size of the entries is made to simplify the presentation.

110:3

ICALP 2021

110:4

Quantum Algorithms for Matrix Scaling and Matrix Balancing

Note that the table contains both first-order and second-order methods; the former just
use the gradient of the potential (or a related potential), whereas the latter also use its Hessian.
The second-order methods typically have a polylogarithmic dependence on the inverse of
the desired precision €, whereas the first-order methods have inverse polynomial dependence
on €. For entrywise-positive matrices, second-order methods theoretically outperform the
classical first-order methods in any parameter regime. However, they depend on non-trivial
results for graph sparsification and Laplacian system solving which are relatively complicated
to implement, in contrast to the eminently practical (first-order) Sinkhorn and Osborne.

For matrix balancing, Osborne’s algorithm has very recently been shown to produce an
e-f1-balancing in time O(m/e2) when in each iteration the update is chosen randomly [4].
Algorithms based on box-constrained Newton methods and interior-point methods can find
e-balancings in time O(mlog x) and O(m!-5), respectively, where r denotes the ratio between
the largest and the smallest entries of the optimal balancing.

Table 1 State-of-the-art time complexity of first- and second-order methods for finding an
e-f1-scaling, both to uniform marginals and to arbitrary marginals. The boldface lines are from this
paper, and the only quantum algorithms for scaling we are aware of. h is the smallest integer such
that hr, hc are integer vectors; m upper bounds the number of non-zero entries of A; k is the ratio
between largest and smallest entries of the optimal scalings X and Y, which can be exponential in
n. Many references use a different error model (e.g., £2 or Kullback-Leibler), which we convert to
guarantees in £1-norm for comparison. O-notation hides polylogarithmic factors in n, 1/e, 1/pu.

(1/n,1/n) (r,c) References and remarks
O(m/<?) O(m/e?) Sinkhorn, via KL [20]?
General O(mn2/3/a2/3) g(mn/(hl/?’aws)) first-order, via £2 [1]
. O(mlog k) O(mlogk) box-constrained method, via £2 [21]
non-negative ~
O(m1 %) O(m*?) interior-point method, via ¢z [21]
O(v/mn/s* O(v/mn/e*) Sinkhorn, quantum, Corollary 5
O(n?/e) O(n?/e) Sinkhorn, via £ [35, 34], he < /2n
Entrywise O(n2/52) 5(77,2/62) Sinkhorn, via KL [2, 20]
positive O(nz) 5(n2) box-constrained, via ¢2 [1, 21]
O(n5 /%) O(n'3 /&%) Sinkhorn, quantum, Corollary 7

1.3 First contribution: quantum algorithms for £;-scaling and balancing

Because a classical scaling algorithm has to look at each non-zero matrix entry (at least
with large probability), it is clear that £2(m) is a classical lower bound. This is Q(n?) in the
case of a dense or even entrywise-positive matrix A. As can be seen from Table 1, the best
classical algorithms also achieve this m lower bound up to logarithmic factors, with various
dependencies on . The same is true for balancing: Q(m) queries are necessary, and this is
achievable in different ways, with different dependencies on ¢ and other parameters.

Our first contribution is to give (in Section 3) quantum algorithms for scaling and balancing
that beat the best-possible classical algorithms, at least for relatively large € € (0,1):

2 Their proofs work only for input matrices that are exactly scalable. However, with our potential gap
bound we can generalize their analysis to work for arbitrary asymptotically-scalable matrices.

J. van Apeldoorn, S. Gribling, Y. Li, H. Nieuwboer, M. Walter, and R. de Wolf

Scaling: We give a quantum algorithm that (with probability > 2/3) finds an e-¢1-
scaling for an asymptotically-scalable n x n matrix A with m non-zero entries (given
by an oracle) to desired positive marginals r and ¢ in time O(y/mn/e*). When A is
entrywise positive (so m = n?), the upper bound can be improved to 6(711‘5/53).

Balancing: We give a quantum algorithm that (with probability > 2/3) finds an
e-f1-balancing for an asymptotically-balanceable n x n matrix A with m non-zero
entries (given by an oracle) in time O(y/mn/e*).

Our scaling algorithms in fact achieve closeness measured in terms of the relative entropy,
and then use Pinsker’s inequality (||p —ql|? = O(D(p||q))) to convert this to an upper bound
on the ¢1-error. Our algorithms achieve a sublinear dependence on the input size m.

Note that compared to the classical algorithms we have polynomially better dependence
on n and m, at the expense of a worse dependence on €. There have recently been a number
of new quantum algorithms with a similar tradeoff: they are better than classical in terms
of the main size parameter but worse in terms of the precision parameter. Examples are
the quantum algorithms for solving linear and semidefinite programs [14, 8, 13, 7] and for
boosting of weak learning algorithms [10, 30, 32].

Conceptually our algorithms are quite simple: we implement the Sinkhorn and Osborne
algorithms but replace the exact computation of each row and column sum by quantum
amplitude estimation; this allows us to approximate the sum of n numbers up to some small
multiplicative error ¢ (with high probability) at the expense of roughly /n/d queries to those
numbers, and a similar number of other operations.

Our analysis is based on a potential argument (for Sinkhorn we use the above-mentioned
potential f). The error § causes us to make less progress in each iteration compared to
an “exact” version of Sinkhorn or Osborne. If § is too large we may even make backwards
progress, while if § is very small there is no quantum speed-up! We show there is a choice
of § for which the negative contribution due to the approximation errors is of the same order
as the progress in the “exact” version, and that choice results in a speed-up. We should
caution, however, that it is quite complicated to actually implement this idea precisely and
to keep track of and control the various approximation errors and error probabilities induced
by the quantum estimation algorithms, as well as by the fact that we cannot represent the
numbers involved with infinite precision (this issue of precision is sometimes swept under the
rug in classical research on scaling algorithms). Finally, we note that due to the error § our
potential need not decrease monotonically. The standard analysis of Sinkhorn still applies

if we can test whether the current scaling is an e-scaling after each full Sinkhorn iteration.

We show how to do so efficiently in the quantum setting. However, in Osborne’s algorithm
one updates only a single (random) row/column per iteration, and the quantum cost of our
testing procedure is higher than the cost of updating (classically, this problem is overcome
by simply keeping track of the row and column marginals). To circumvent the need for
testing every iteration, we give a novel analysis of Osborne’s algorithm (and of a randomized
version of Sinkhorn) showing uniformly random iterates provide an e-balancing with high
probability.

1.4 Second contribution: quantum lower bound for scaling

A natural question would be whether our upper bounds for the time complexity of matrix
scaling and balancing can be improved further. Since the output has length roughly n, there
is an obvious lower bound of n even for quantum algorithms. An O(n) quantum algorithm
would, however, still be an improvement over our algorithms, and it would be a quadratic

110:5

ICALP 2021

110:6

Quantum Algorithms for Matrix Scaling and Matrix Balancing

speed-up over the best classical algorithm. In Section 4 we dash this hope for matrix scaling
by showing that our algorithm is essentially optimal for constant &, even for the special case
of A that is exactly scalable to uniform marginals:

There exists a constant € > 0 such that every quantum algorithm that (with probability
> 2/3) finds an e-f1-scaling for a given n x n matrix A that is exactly scalable to
uniform and has m potentially non-zero entries, has to make Q(y/mn) queries to A.

Our proof constructs instances A that hide permutations, shows how approximate scalings
of A give us information about the hidden permutation, and then uses the adversary
method [5] to lower bound the number of quantum queries to the matrix needed to find that
information. In particular, we show that for a permutation o € S, it takes Q(n\/n) queries
to the entries of the associated permutation matrix to learn o (i) mod 2 for each i € [n].

2 Preliminaries

2.1 Matrix scaling and balancing

Throughout we use r,c € R™ as the desired row and column marginals. Unambiguously,
we also use r: R"*" — R™ (resp. c: R"*" — R™) as the function that sends an n x n-
matrix to its row (resp. column) marginal: r(A) (resp. c(A)) is the vector whose i-th entry
equals ri(A) = S0, Ay (resp. ci(A) = S0 Ajp). We nse A(x,y) = (Aye™), jeq,
to denote the rescaled matrix A with scalings given by e* and e¥. We say a non-negative
matrix A € R*" is ezactly scalable to (r,c) € R} x R, if there exist x,y € R™ such that
r(A(x,y)) =rand c(A(x,y)) = c. Forane > 0, we say A € R}*" is e-f1-scalable to (r,c) €
R} x R, if there exist x,y € R™ such that ||r(A(x,y)) —r|[; < e and [c(A(x,y))—c|: <e.
We say A € R*™ is asymptotically scalable to (r,c) € R x R if it is e-¢;-scalable to (r, c)
for every € > 0. In the matrix-balancing setting we require y = —x, and the marginals are
compared to each other. We abbreviate A(x) = A(x,—x). We say a non-negative matrix
A € R is exactly balanceable, if there exists a vector x € R™ such that r(A(x)) = c(A(x)).
For an ¢ > 0, we say A € R}™" is e-{1-balanceable, if there exists an x € R™ such that
”r(A(’ﬁRz:)(lﬁ(x))Hl <e. Wesay A € R™™ is asymptotically balanceable if it is e-¢1-balanceable
for every € > 0. The associated optimization problems are as follows.

» Problem 1 (e-/;-scaling problem). Given A € R*"™ and desired marginals r,c € R with
[rlly = llelly =1, find x,y € R" s.t. |[r(A(x,y)) —rlly <€ and |[c(A(x,y)) —c[1 <e.

» Problem 2 (e-{;-balancing problem). Given A € R}*", find x € R" s.t. |r(A(x)) —
(AL /A <e.

For matrix scaling, our algorithm is most naturally analyzed with the error measured by
the relative entropy, which can be converted to give an upper bound on ¢;-distance using (a
generalized version of) Pinsker’s inequality. We therefore also consider the following problem:

» Problem 3 (e-relative-entropy-scaling problem). Given A € R} " and desired marginals
r,c € R} with |||y = |lc[1 = 1, find x,y € R™ such that D(r|r(A(x,y))) < € and
Dielle(A(x,y)) <.

J. van Apeldoorn, S. Gribling, Y. Li, H. Nieuwboer, M. Walter, and R. de Wolf

2.2 Computational model

We assume sparse black-box access to the elements of A via lists of the potentially non-zero
entries for each row and each column. A quantum algorithm can make such queries also
in superposition. We also assume (classical) black-box access to the target marginals r, c.
Our computational model is of a classical computer (say, a Random Access Machine for
concreteness) that can invoke a quantum computer as a subroutine. The classical computer
can write to a classical-write quantum-read memory (“QCRAM”)3, and send a description
of a quantum circuit that consists of one- and two-qubit gates from some fixed discrete
universal gate set (say, the H and T gates, Controlled-NOT, and 2-qubit controlled rotations
over angles 27 /2° for positive integers s; these controlled rotations are used in the circuit for
the quantum Fourier transform (QFT), which we invoke later), queries to the input oracles,
and queries to the QCRAM to the quantum computer. The quantum computer runs the
circuit, measures the full final state in the computational basis, and returns the measurement
outcome to the classical computer. See [9, Sec. 2] for details.

3 A Sinkhorn algorithm with approximate updates

We state and analyze Algorithm 1, a variant of the well-known Sinkhorn algorithm. Here we
give an overview of its analysis, we refer to [9, Sec. 3] for the proofs. The algorithm’s objective
is to find scaling vectors x,y € R" such that the matrix A(x,y) = (Aije” ¥); jc[n) has row
and column marginals r and c, respectively. Sinkhorn-type algorithms do so in the following
iterative way. Starting from the rational matrix A € [0,1]"*", find a vector x such that
the row marginals of (A;;e™); jc[n are r, and then find a y such that the column marginals
of A(x,y) are c. The second step may have changed the row marginals, so we repeat the
procedure. We can view this as updating the coordinates of x and y one at a time, starting
from the all-0 vectors. To update the row scaling vectors, we wish to find X = x + A such
that r(A(%,y)) = r. Expanding this equation yields ¢ - r,(A(x,y)) = r, for £ € [n]. Every
row and column contains at least one non-zero entry, so this has a unique solution:

a Ty Ty
=z +DNp=xp+In| ——— | =ln|=—7—1. 3.1
=t dcmmn (o) (zj_l Aejew> ey

Similar formulas can be derived for the column-updates. We use the term “one Sinkhorn
iteration” to refer to the process of updating all n row scaling vectors, or updating all
n column scaling vectors. We state the Sinkhorn algorithm in terms of two subroutines,
ApproxScalingFactor and TestScaling. For both subroutines we provide both classical
and quantum implementations in [9, Sec. 4]. A key ingredient of both subroutines is a
procedure that computes the logarithm of a sum of exponentials, see Section 3.2 for a high-
level explanation of the quantum subroutine. For the analysis of Algorithm 1, we only use
the guarantees of the subroutines as stated, and do not refer to their actual implementation.

We study a version of Sinkhorn’s algorithm where, instead of computing row and column
marginals in each iteration exactly, we use a multiplicative approximation of the marginals
to compute d-additive approximations of Equation (3.1) and similar for column-updates.
In the classical literature, 6 can be chosen to be very small, since the cost per iteration
scales as polylog(1/d), and hence that error is essentially a minor technical detail. In the
quantum setting, we obtain better dependence in terms of n at the cost of allowing a
poly(1/§)-dependence, so the required precision ¢ merits detailed attention in the analysis.

3 Note that we do not require a full QRAM that can hold qubits as well. We believe QCRAM is a natural
assumption since it simply amounts to classical RAM that can be read in superposition.

110:7

ICALP 2021

110:8 Quantum Algorithms for Matrix Scaling and Matrix Balancing

Algorithm 1 Full Sinkhorn with finite precision and failure probability.

Input: Oracle access to A € [0,1]"*" with ||A|; < 1 and non-zero entries at least
w > 0, target marginals r, ¢ € (0,1]™ with ||r||; = ||c|]s = 1, iteration
count T" € N, bit counts by, by € N, estimation precision 0 < § < 1, test
precision 0 < §’ < 1 and subroutine failure probability 7 € [0, 1]
Output: Vectors x,y € R with entries encoded in (b, bs) fixed-point format
Guarantee: For ¢ € (0, 1], with parameters chosen as in Proposition 13, (x,y) form
an e-relative-entropy-scaling of A to (r,c) with probability > 2/3
1 x@ y© 0 // entries in (by,by) fixed-point format

2 fort<« 1,2,...,7 do

3 if t is odd then

4 for / + 1,2,...,n do

5 xy) + ApproxScalingFactor(Ay,, s,y =1, 68,b1, b2, 1, 1);
6 end for

. v ey,

8 else if t is even then

9 for ¢+ 1,2,...,ndo

10 y,gt) < ApproxScalingFactor(A,s, co, x*=1 8, b1, b2, 1, 1);
11 end for

12 x(®) ¢ x(t=1).
13 end if
14 if TestScaling(A,r,c,x® y®) & b by, n, 1) then

15 | return (x®,y®);
16 end if

17 end for
18 return (x(7),y(T));

The Sinkhorn algorithm thus has a number of tunable parameters (precision, error
parameters, iteration count). We show how to choose them in such a way that the resulting
quantum algorithm obtains an e-relative-entropy-scaling in time O(y/mn/?).

» Theorem 4. Let A € [0,1]™*"™ be a matriz with |Ally <1 and m non-zero entries, each
rational and at least p > 0, let r,c € (0,1]™ with ||r]]s = |c|l1 = 1, and let € € (0,1].
Assume A is asymptotically scalable to (r,c). Then there exists a quantum algorithm that,
given sparse oracle access to A, with probability > 2/3, computes (x,y) € R™ x R™ such that
A(x,y) is e-relative-entropy-scaled to (r,c), for a total time complexity of 5(%/&2)

A generalization of Pinsker’s inequality (cf. [9, Lem. 2.1]) implies the following corollary.

» Corollary 5. Let A r,c and ¢ be as in Theorem 4. Then there exists a quantum algorithm
that with probability > 2/3 computesN(X, y) € R™ x R™ such that A(x,y) is e-£1-scaled to
(r,c), for a total time complexity of O(y/mn/e*).

In [9, Thm. C.6], we show that if the matrix A is entrywise-positive, then the number
of iterations to obtain an e-relative-entropy-scaling can be reduced to roughly 1/4/¢ rather
than roughly 1/¢, leading to the following theorem.

J. van Apeldoorn, S. Gribling, Y. Li, H. Nieuwboer, M. Walter, and R. de Wolf

Procedure ApproxScalingFactor(a,r,y,d, b1, b2, n, 1).

Input: Oracle access to rational a € [0, 1], rational r € (0, 1], oracle access
to y € R™ encoded in (b1, be) fixed-point format, desired precision ¢ € (0, 1],
desired failure prob. n € [0, 1], lower bound p > 0 on non-zero entries of a
Output: A number x encoded in (b1, bs) fixed-point format
Guarantee: If by > [log,([In(r/ > 7_, aje?)|)] and by > [logy(1/0)], then with
prob. > 1 —n, x is a d-additive approximation of In(r/ Z;Zl a;evi)

Procedure TestScaling(A,r,c,x,y,d,b1,b2,n, 1).

Input: Oracle access to rational A € [0, 1]™*™ with ||A|]; < 1, rational r,c € (0, 1]™,
oracle access to x,y € R™ encoded in (b1, b2) fixed-point format, test
precision § € (0,1), desired failure probability n € [0, 1], lower bound p > 0
on non-zero entries of A

Output: A bit indicating whether x,y forms a d-relative-entropy-scaling of A to

target marginals r, c.

Guarantee: If b1 > log,(|In(re/ 377, Agje??)|) for all £ € [n], and similarly for the
columns, and furthermore by > [log,(1/d)], then with probability at
least 1 — n: outputs False if D(r|r(A(x,y))) > 26 or
D(c|lc(A(x,y))) > 24, outputs True if both are at most §

» Theorem 6. Let A € [p, 1]"*" be a matriz with ||All;1 < 1, each entry rational and at
least > 0, let r,c € (0,1]" with |r|j1 = ||c|]l1 = 1, and let € € (0,1). Then there exists a
quantum algorithm that, given sparse oracle access to A, with probability > 2/3, computes
(x,¥) € R" x R™ such that A(x,y) is e-relative-entropy-scaled to (r,c), at a total time
complezity of O(n' /e15).

The next corollary also follows from the generalization of Pinsker’s inequality.

» Corollary 7. Let A,r,c and € be as in Theorem 6. Then there exists a quantum algorithm
that with probability > 2/3 computes (x,y) € R™ x R™ such that A(x,y) is e-l1-scaled to
(r,c), for a total time complezity of O(y/mn/e?).

3.1 Potential argument

The analysis uses the convex potential function

n n n
Fy) =Y Aye" i = "rai =Y ey
i,j=1 i=1 j=1
This function (already mentioned in the introduction) is often used in the context of matrix
scaling, as its gradient is the difference between the current and desired marginals. Many of
the more sophisticated algorithms for matrix scaling minimize this function directly. For our
purposes, we first bound the potential gap f(0,0) — infx yern f(x,y) (see [9, App. A]).

» Lemma 8 (Potential gap). Assume A € [0,1]"*" with ||A|1 <1 and non-zero entries at
least ;1 > 0. If A is asymptotically (r, c)-scalable, then f(0,0) —infx yern f(x,y) <In(1/p).

For matrices A that are ezactly (r,c)-scalable, this bound is well-known (see e.g. [34, 20]),
but to the best of our knowledge, it has not yet appeared in the literature when A is only
assumed to be asymptotically scalable to (r,c).

110:9

ICALP 2021

110:10 Quantum Algorithms for Matrix Scaling and Matrix Balancing

One can show that, for a Sinkhorn iteration in which we update the rows exactly, i.e.,
Z¢=1In(re/ Y25, Agje¥i) for £ € [n], the potential decreases by exactly the relative entropy:

fxy) = f&y) = D(r|r(Ax,y))), (3.2)

and similarly for exact column updates. The next lemma generalizes this to allow for error
in the update; it shows that we can lower bound the decrease of the potential function in
every iteration in terms of the relative entropy between the target marginal and the current
marginal, assuming every call to the subroutine ApproxScalingFactor succeeds.

» Lemma 9. Let A € R, let x,y € R", let § € [0,1], and let & € R™ be a vector such
that for every £ € [n], we have |&¢ —1In(re/ 375, Agje¥?)| < 6. Then

f(x,y) = f(%,y) = D(r|[r(A(x,y))) — 2.

A similar statement holds for an update of y (using c instead of r in the relative entropy).

When 6 = 0, the inequality becomes an equality which is well-known, see e.g. [2] or [20].
The lemma shows that updating the scaling vectors with additive precision § suffices to make
progress in minimizing the potential function f, as long as we are still (d) away from the
desired marginals (in relative entropy distance).

We thus wish to store the entries of x and y with additive precision § > 0. We want
to do so using a (b, bs) fixed-point format, so we need by > [logy(1/6)]. The guaran-
tees of ApproxScalingFactor and TestScaling assert that this choice of by is also suf-
ficient. Lemma 10 shows how large we need to take b; to ensure the requirements of
ApproxScalingFactor and TestScaling are satisfied in every iteration. The algorithm
returns as soon as TestScaling returns True, or after T iterations. However, to simplify
the analysis, we always assume that x(*) and y*) are defined for t =0,...,7T.

» Lemma 10 (Bounding the scalings). Let A € [0,1]"*™ with ||A|1 < 1 and non-zero
entries at least 4 > 0. Let T > 1 and ¢ € [0,1]. Denote 0 = max(|In ryinl, |In cmin|). Let
by = [logy(1/6)] and choose by = [logs(T') + logQ(ln(i) +1+40)]. If for allt € [T] the
subroutine ApprozScalingFactor succeeds, then for allt € [T] and £ € [n] we have

ce
In <n @))
Zi:l Aifezi

and [|(x®,y)| <t (ln (i) +6+a) <t (ln (i) +1 —|—0>.

To formally analyze the expected progress it is convenient to define the following events.

Te

In <2™, <oh

()
Zj:l A[je Y

» Definition 11 (Important events). Fort =1,...,T, we define the following events:
Let Sy be the event that all n calls to ApprozScalingFactor succeed in the t-th iteration.
Define S to be the intersection of the events S, i.e., S = ﬂthlSt.

To give some intuition, we note below that the event S is the “good” event where a
row-update makes the relative entropy between r and the updated row-marginals at most ¢
(and similarly for the columns). We only use Lemma 12 in [9, App. C].

» Lemma 12. If S holds and 6 < 1, then the following holds for all t € [T]:
If t is odd, then D(r|r(A(x®,y®))) <.
Ift is even, then D(c|lc(A(x®,y®)))) <.

J. van Apeldoorn, S. Gribling, Y. Li, H. Nieuwboer, M. Walter, and R. de Wolf

We can combine Lemmas 8 and 9 to show Algorithm 1 returns, with high probability, an
e-relative-entropy-scaling to (r,c) by choosing 6 = O(e).

» Proposition 13. Let A € [0,1]™*" with ||A|lx < 1 and non-zero entries at least yu > 0
and rational, and let r,c € (0,1]" with ||r|l; = ||c|s = 1. Assume A is asymptotically
scalable to (r,c). Fore € (0,1], choose T = E In (%)-‘ +1,6=5,0=51n= m’
by = [logy(%)], and by = [logy(T) + log, (In(
Then, Algorithm 1 returns (x,y) s.t. D(r|r
probability > 2/3.

)+ o0+ 1)], where o = max(|In rmin|, |10 Cmin|)-
A(x,y))) < e and D(c|lc(A(x,y))) < & with

==

—~

3.2 Quantum approximate summing

ApproxScalingFactor and TestScaling both rely on the computation of additive approx-
imations to numbers of the form In(}>"" ; a;e¥"). Here we sketch our approach and mention
some complications; see [9, Sec. 4] for details. If we assume the numbers b; = a;e¥i can be
queried at unit cost, then we can efficiently compute In(}";"; b;) up to additive error ¢ using
amplitude estimation, as follows. After pre-processing (using quantum mazimum finding [24])
one may assume that b; € [0,1] and max; b; > 1/2. With 2 queries to the b;s and a small
number of other gates we prepare % S 18 (Vi]0) + /1= b;|1)). The squared norm of
the part ending in [0) equals p = L 37" | b; € [1/2n,1]. Let 6 € (0,1/2] be an error parameter
that we instantiate later. Using amplitude amplification we estimate p up to multiplicative

error 1+ § using O(31/1/p) = O(3/n) queries to the b;s, and 6(%\/71) gates, with error
probability < 1/3 [15, Theorem 12]. We can reduce the error probability to a small n > 0, by
running this O(log(1/n)) times and outputting the median outcome. Naturally, multiplicative
approximation of)", b; yields additive approximation of In(}_; ; b;) = In(}_;" ;| a;e¥").

One obstacle to efficiently implementing the above is that one cannot simply compute all
numbers to sufficient precision. For ApproxScalingFactor for instance, we aim to compute
a number In(r/ 377 a;je%) where the y; can (and typically do) grow linearly with n, so
we cannot compute e¥ with sufficiently high precision in time sublinear in n. Instead we
compute additive approximations of relative quantities such as e¥:~% <1 for ¢, € [n] with
Y; > ¥i, and use properties of the log to relate this to the original desired quantity. This
approach is widely used in practice, e.g., [4]. Note that these issues concern both the classical
and quantum setting, but are particularly important for the latter, since we aim for a better
dependence on m and n for the time complexity. We implement everything such that the
fixed-point format (b1, b2) for both the input and output of the oracles is the same, avoiding
the need to change the encoding format in every Sinkhorn or Osborne iteration.

3.3 Time complexity

Combining the above, we prove one of our main results (already stated earlier), bounding
the time complexity of computing an e-relative-entropy-scaling of A to marginals (r, c).

» Theorem 4. Let A € [0,1]"*™ be a matriz with ||A|l; <1 and m non-zero entries, each
rational and at least p > 0, let r,c € (0,1]" with ||r]y = |c|1 = 1, and let € € (0,1].
Assume A is asymptotically scalable to (r,c). Then there exists a quantum algorithm that,
given sparse oracle access to A, with probability > 2/3, computes (x,y) € R™ x R™ such that
A(x,y) is e-relative-entropy-scaled to (r,c), for a total time complexity of O(\/mn/e?).

110:11

ICALP 2021

110:12 Quantum Algorithms for Matrix Scaling and Matrix Balancing

Proof. We show that Algorithm 1 with the parameters chosen as in Proposition 13 has the
stated time complexity. Note that the cost of computing these parameters from the input
will be dominated by the runtime of the algorithm. Proposition 13 shows that Algorithm 1
runs for at most O(In(1/u)/e) iterations. Next we show the time complexity per iteration is
O(y/mn/e), which implies the claimed total time complexity of O(y/mn/e?).

Theorem 4.5 in [9] formalizes the discussion of Section 3.2: using ApproxScalingFactor
with precision § = ©O(g) on a row containing s potentially non-zero entries incurs a cost
6(\/§ /€), where we suppress a polylogarithmic dependence on n. One iteration of Algorithm 1
applies ApproxScalingFactor once to each row or once to each column, so by Cauchy—
Schwarz the total cost of the calls to ApproxScalingFactor in one iteration is

dﬁh@k+i¢wag@wmm,

where we recall that si and s are the numbers of potentially non-zero entries in the i-th row
and j-th column of A, respectively, and m is the total number of potentially non-zero entries
in A (e, Y0l sf =m =37, s5). Similarly, [9, Thm. 4.7] shows invoking TestScaling
with precision &' = ©(g) incurs a cost of order O(y/mn/e). Finally we observe that compiling
the quantum circuits (and preparing their inputs) for the calls to ApproxScalingFactor and
TestScaling can be done with at most a polylogarithmic overhead. |

Note that the dependency on In(1/4) is suppressed by the O, since we assume the
numerator and denominators of the rational inputs are bounded by a polynomial in n.

3.4 Complications in Osborne’s algorithm

For the matrix balancing problem one can use a similar approach as for the matrix scaling
problem. The idea is to fix the requirement of being e-¢1-balanced for individual coordinates,
one at a time. More precisely, given an index ¢ € [n], the update is given by x’ = x + Asey,
where Ay is chosen such that r(A(x)) = ¢/(A(x’)). Expanding this and using Ay, = 0
yields e®¢ - rg(A(x)) = e - ¢o(A(x)). Since we assume every row and column contains at
least one non-zero entry, the above equation has a unique solution, given by

A= (Ve AR) /re(AR))) - (3.3)

Note that the updates of multiple coordinates cannot be done simultaneously, since each

coordinate can potentially affect all row and column marginals. This is in contrast with the
Sinkhorn algorithm for matrix scaling, where all rows or all columns can be updated at the
same time. This provides a significant challenge in the analysis of the algorithm since we can
no longer test whether we have found an e-balancing in between each iteration. We give a
novel analysis of Osborne’s algorithm [9, Sec. 6] and of a randomized version of Sinkhorn’s
algorithm [9, Sec. 5] that shows a uniformly random iterate provides an e-balancing/scaling
with high probability. For matrix balancing this yields the following.

» Theorem 14. Let A € [0,1]"*™ be a matriz whose non-zero entries are rational, at least
© > 0, with zeroes on the diagonal, each row and column having at least one non-zero element,
and let € € (0,1]. Assume A is asymptotically balanceable. Then there exists a quantum
algorithm that, given sparse oracle access to A, returns with probability > 2/3 a wvector
x € R" such that A(x) is e-01-balanced, with expected time complexity O(y/mmn/e%).

J. van Apeldoorn, S. Gribling, Y. Li, H. Nieuwboer, M. Walter, and R. de Wolf

4 Matching lower bound for matrix scaling with constant ¢

We show that our algorithm for matrix scaling is in fact optimal with respect to the dependence
on n and m, for constant € > 0. We prove an Q(y/mn) lower bound on the query complexity
of quantum algorithms for ©(1)-¢;-scaling to the uniform marginals (1/n,1/n). Here we
sketch the case m = n?; Section 7 in [9] gives the full proof also for the sparse case.

We consider the problem of learning a permutation “modulo two” in the following sense.*

» Definition 15 (Single-bit descriptor). Let o € S, be a permutation. The single-bit descriptor
of o is the bit string z € {0,1}™ with entries z; = o(i) mod 2.

We first use the adversary method [5] to prove an Q(n\/n) bound for recovering the
single-bit descriptor, given (dense) oracle access to the permutation matrix. This is tight,
since one can use Grover on each column to fully recover the permutation matrix. We follow
a similar proof structure as in the Q(y/n)-query lower bound given in [5] for finding o=1(1),
and the Q(n+/n)-query lower bound for graph connectivity [23].

» Lemma 16. Let n be a positive multiple of 4. Given an n X n permutation matriz P
corresponding to a permutation o (i.e., Pij = 0; »(;y fori,j € [n]), recovering the single-bit
descriptor z of o, with success probability at least 2/3, requires Q(n+/n) quantum queries to
a dense matriz oracle for P.

One can then boost this lower bound to show that even learning a (certain) constant
fraction of the entries of the single-bit descriptor of a permutation requires Q(ny/n) quantum
queries. (The precise constant depends on those in Lemma 16 and in Grover search.) We
then reduce the problem of learning the single-bit descriptor to the scaling problem, by
replacing each 1-entry of the permutation matrix by one of two 2 x 2 gadget matrices (and
each O-entry by the 2 x 2 all-0 matrix). These gadgets are such that we can determine
(most of) the single-bit descriptor from the column-scaling vectors y of an ©(1)-¢1-scaling to
uniform marginals. Explicitly, the gadget matrices are as follows:

4 2
| meft)
9 9

Note that the two matrices have the same columns, but in reverse order. We show in the

|

OI=OIN
I RTINS

next lemma that from an approximate scaling of B; to uniform marginals, one can recover
the bit 4.

» Lemma 17. The matrices Bg,B;1 € {%, %, %}2” are entrywise positive, with entries
summing to one, and they are exactly scalable to uniform marginals. For i € {0,1}, let (x,y)
be %-El -scaling vectors for B; to uniform marginals. If i = 0 then y; — y2 > 0.18, while
if i =1 then yy — yo < —0.18. Moreover, (x,(y2,y1)) are -(1-scaling vectors for By_; to
uniform marginals.

In other words, the matrices can be distinguished just by learning the column-scaling
vectors, but they have the same set of possible row-scaling vectors.

4 Alternatively, one could consider the problem of learning an entire permutation, which would simplify
the notation and proofs slightly. However, for the reduction to matrix scaling, this seems to require
gadget matrices of size roughly log, n x log, n, leading to a slightly weaker lower bound.

110:13

ICALP 2021

110:14 Quantum Algorithms for Matrix Scaling and Matrix Balancing

Proof. Since one matrix is obtained by swapping the columns of the other, the last claim is
immediately clear, and it suffices to prove the remaining claims for By.

First, we note that Bg is exactly scalable, since

3 2 4 3 1
ool i =l
0 3]ls 5JL0 3 i

it L

|

has uniform marginals. Now suppose that (x,y) is an é—él—scaling of By to uniform marginals.
By the requirement on the column marginals, we have

gem1 +

L)ool 1
L
9 =2

9 8

4 2 1
and (9611 + 9612) e’? <~ +

By dividing the first inequality by the second one we get

et 3
- >
ev2 — 5’
and so y1 — Yo Zlng > 0.18. |

Together with Lemma 16 this leads to the following lower bound.

» Theorem 18. There exists a constant € € (0,1) such that any quantum algorithm which,
given a sparse oracle for an n X n-matrix that is exactly scalable to uniform marginals and
has m potentially non-zero entries which sum to 1, returns an -f1-scaling with probability
> 2/3, requires Q(y/mn) quantum queries to the oracle.

—— References

1

Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Much faster algorithms for
matrix scaling. In Proceedings of IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS’17), pages 890-901, 2017.

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation
algorithms for optimal transport via Sinkhorn iteration. In Advances in Neural Information
Processing Systems, volume 30, pages 1964-1974, 2017.

Jason M. Altschuler and Pablo A. Parrilo. Approximating Min-Mean-Cycle for low-diameter
graphs in near-optimal time and memory, 2020. arXiv:2004.03114.

Jason M. Altschuler and Pablo A. Parrilo. Random Osborne: A simple, practical algorithm
for matrix balancing in near-linear time, 2020. arXiv:2004.02837.

Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences, 64(4):750-767, 2002. Earlier version in STOC’00. quant-ph/0002066.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
STAM, 1999. doi:10.1137/1.9780898719604.
Joran van Apeldoorn and Andrds Gilyén. Improvements in quantum SDP-solving with
applications. In Proceedings of 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 99:1-99:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.99.

Joran van Apeldoorn, Andras Gilyén, Sander Gribling, and Ronald de Wolf. Quantum SDP-
solvers: Better upper and lower bounds. Quantum, 4(230), 2020. Earlier version in FOCS’17.
arXiv:1705.01843.

Joran van Apeldoorn, Sander Gribling, Yinan Li, Harold Nieuwboer, Michael Walter, and
Ronald de Wolf. Quantum algorithms for matrix scaling and matrix balancing, 2020. arXiv:
2011.12823v1.

http://arxiv.org/abs/2004.03114
http://arxiv.org/abs/2004.02837
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.4230/LIPIcs.ICALP.2019.99
http://arxiv.org/abs/1705.01843
http://arxiv.org/abs/2011.12823v1
http://arxiv.org/abs/2011.12823v1

J. van Apeldoorn, S. Gribling, Y. Li, H. Nieuwboer, M. Walter, and R. de Wolf

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Srinivasan Arunachalam and Reevu Maity. Quantum boosting. In Proceedings of 37th
International Conference on Machine Learning (ICML’20), 2020. arXiv:2002.05056.

Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design matrices
with applications to combinatorial geometry and locally correctable codes. In Proceedings of
48rd Symposium on Theory of Computing (STOC’11), pages 519-528. ACM, 2011.

Andrew Michael Bradley. Algorithms for the equilibration of matrices and their application to
limited-memory Quasi-Newton methods. PhD thesis, Stanford University, 2010.

Fernando G. S. L. Branddo, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and
Xiaodi Wu. Quantum SDP solvers: Large speed-ups, optimality, and applications to quantum
learning. In Proceedings of 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 27:1-27:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.27.

Fernando G. S. L. Brandédo and Krysta M. Svore. Quantum speed-ups for solving semidefinite
programs. In Proceedings of IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS’17), pages 415-426, 2017. doi:10.1109/F0CS.2017.45.

Gilles Brassard, Peter Hgyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-
tion and estimation. In Quantum Computation and Quantum Information: A Millennium
Volume, volume 305 of Contemporary Mathematics, pages 53—74. American Mathematical
Society, 2002. arXiv:quant-ph/0005055.

Peter Biirgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson.
Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In
Proceedings of 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS’18),
pages 883-897, 2018. doi:10.1109/F0CS.2018.00088.

Peter Biirgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson.
Towards a theory of non-commutative optimization: geodesic 1st and 2nd order methods for

moment maps and polytopes. In Proceedings of 60th IEEE Annual Symposium on Foundations
of Computer Science (FOCS’19), pages 845-861. IEEE, 2019.

Peter Biirgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Altern-
ating minimization, scaling algorithms, and the null-cone problem from invariant theory. In
Proceedings of 9th Innovations in Theoretical Computer Science Conference (ITCS 2018),
volume 94 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1-24:20,
2018. doi:10.4230/LIPIcs.ITCS.2018.24.

Peter Biirgisser, Yinan Li, Harold Nieuwboer, and Michael Walter. Interior-point methods for
unconstrained geometric programming and scaling problems, 2020. arXiv:2008.12110.

Deeparnab Chakrabarty and Sanjeev Khanna. Better and simpler error analysis of the
Sinkhorn—Knopp algorithm for matrix scaling. Mathematical Programming, pages 1-13, 2020.

Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling and
balancing via box constrained Newton’s method and interior point methods. In Proceedings
of IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS’17), pages
902-913, 2017. doi:10.1109/F0CS.2017.88.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in Neural Information Processing Systems, volume 26, pages 2292-2300, 2013.

Christoph Diirr, Mark Heiligman, Peter Hgyer, and Mehdi Mhalla. Quantum query complexity
of some graph problems. SIAM Journal on Computing, 35(6):1310-1328, 2006. doi:10.1137/
050644719.

Christoph Diirr and Peter Hgyer. A quantum algorithm for finding the minimum, 1996.
arXiv:quant-ph/9607014.
Jirgen Forster. A linear lower bound on the unbounded error probabilistic communication

complexity. In Proceedings of 16th Annual IEEE Conference on Computational Complexity,
pages 100-106, 2001. doi:10.1109/CCC.2001.933877.

110:15

ICALP 2021

http://arxiv.org/abs/2002.05056
https://doi.org/10.4230/LIPIcs.ICALP.2019.27
https://doi.org/10.1109/FOCS.2017.45
http://arxiv.org/abs/quant-ph/0005055
https://doi.org/10.1109/FOCS.2018.00088
https://doi.org/10.4230/LIPIcs.ITCS.2018.24
http://arxiv.org/abs/2008.12110
https://doi.org/10.1109/FOCS.2017.88
https://doi.org/10.1137/050644719
https://doi.org/10.1137/050644719
http://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1109/CCC.2001.933877

110:16 Quantum Algorithms for Matrix Scaling and Matrix Balancing

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Algorithmic and optimization
aspects of Brascamp-Lieb inequalities, via operator scaling. Geometric and Functional Analysis,
28(1):100-145, 2018. Earlier version in STOC’17.

Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Operator scaling: theory and
applications. Foundations of Computational Mathematics, pages 1-68, 2019. Earlier version in
FOCS’16.

Ankit Garg and Rafael Oliveira. Recent progress on scaling algorithms and applications.
Bulletin of the EATCS, Computational Complexity Column, 125, 2018. arXiv:1808.09669.
Leonid Gurvits. Classical complexity and quantum entanglement. Journal of Computer and
System Sciences, 69(3):448-484, 2004. doi:10.1016/j.jcss.2004.06.003.

Yassine Hamoudi, Maharshi Ray, Patrick Rebentrost, Miklos Santha, Xin Wang, and Siyi
Yang. Quantum algorithms for hedging and the Sparsitron, 2020. arXiv:2002.06003.
Martin Idel. A review of matrix scaling and Sinkhorn’s normal form for matrices and positive
maps, 2016. arXiv:1609.06349.

Adam Izdebski and Ronald de Wolf. Improved quantum boosting, 2020. arXiv:2009.08360.
B. Kalantari, L. Khachiyan, and A. Shokoufandeh. On the complexity of matrix balancing.
SIAM Journal on Matriz Analysis and Applications, 18(2):450-463, 1997. doi:10.1137/
S0895479895289765.

B. Kalantari, I. Lari, F. Ricca, and B. Simeone. On the complexity of general matrix scaling
and entropy minimization via the RAS algorithm. Mathematical Programming, 112:371-401,
2008.

Bahman Kalantari and Leonid Khachiyan. On the rate of convergence of deterministic and
randomized RAS matrix scaling algorithms. Operations Research Letters, 14(5):237-244, 1993.
d0i:10.1016/0167-6377(93)90087-W.

Bahman Kalantari and Leonid Khachiyan. On the complexity of nonnegative-matrix scaling.
Linear Algebra and its Applications, 240:87-103, 1996. doi:10.1016/0024-3795(94)00188-X.
J. Kruithof. Telefoonverkeersrekening. De Ingenieur, 52:E15-E25, 1937.

Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents. Combinatorica, 20(4):545-568,
2000. URL: https://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/LSW98/1sw00.pdf.
Oren E. Livne and Gene H. Golub. Scaling by binormalization. Numerical Algorithms,
35(1):97-120, 2004.

Mathworks. balance: diagonal scaling to improve eigenvalue accuracy. URL: https://www.
mathworks.com/help/matlab/ref/balance.html.

Arkadi Nemirovski and Uriel Rothblum. On complexity of matrix scaling. Linear Algebra and
its Applications, 302-303:435-460, 1999. doi:10.1016/580024-3795(99)00212-8.

Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. A primal-dual operator
splitting method for conic optimization. Journal of Optimization Theory and Applications,
169(3):1042-1068, 2016. arXiv:1312.3039.

E. E. Osborne. On pre-conditioning of matrices. Journal of ACM, 7(4), 1960. doi:10.1145/
321043.321048.

Rafail Ostrovsky, Yuval Rabani, and Arman Yousefi. Matrix balancing in L, norms: Bounding
the convergence rate of Osborne’s iteration. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages 154-169, 2017. doi:
10.1137/1.9781611974782.11.

B. N. Parlett and C. Reinsch. Balancing a matrix for calculation of eigenvalues and eigenvectors.
Numerische Mathematik, 13:293-304, 1969.

Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order primal-dual
algorithms in convex optimization. In Proceedings of IEEE International Conference on
Computer Vision (ICCV), pages 1762-1769, 2011.

Uriel G. Rothblum and Hans Schneider. Scalings of matrices which have prespecified row sums
and column sums via optimization. Linear Algebra and its Applications, 114:737-764, 1989.

http://arxiv.org/abs/1808.09669
https://doi.org/10.1016/j.jcss.2004.06.003
http://arxiv.org/abs/2002.06003
http://arxiv.org/abs/1609.06349
http://arxiv.org/abs/2009.08360
https://doi.org/10.1137/S0895479895289765
https://doi.org/10.1137/S0895479895289765
https://doi.org/10.1016/0167-6377(93)90087-W
https://doi.org/10.1016/0024-3795(94)00188-X
https://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/LSW98/lsw00.pdf
https://www.mathworks.com/help/matlab/ref/balance.html
https://www.mathworks.com/help/matlab/ref/balance.html
https://doi.org/10.1016/S0024-3795(99)00212-8
http://arxiv.org/abs/1312.3039
https://doi.org/10.1145/321043.321048
https://doi.org/10.1145/321043.321048
https://doi.org/10.1137/1.9781611974782.11
https://doi.org/10.1137/1.9781611974782.11

J. van Apeldoorn, S. Gribling, Y. Li, H. Nieuwboer, M. Walter, and R. de Wolf

48

49

50

Leonard J. Schulman and Alistair Sinclair. Analysis of a classical matrix preconditioning
algorithm. In Proceedings of 47th Annual ACM Symposium on Theory of Computing (STOC’15),
pages 831-840, 2015.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic
matrices. The Annals of Mathematical Statistics, 35(2):876-879, 1964.

Richard Stone. Multiple classifications in social accounting. University of Cambridge, Depart-
ment of Applied Economics, 1964.

110:17

ICALP 2021

	1 Introduction
	1.1 Matrix scaling and matrix balancing
	1.2 Known (classical) algorithms
	1.3 First contribution: quantum algorithms for l_1-scaling and balancing
	1.4 Second contribution: quantum lower bound for scaling

	2 Preliminaries
	2.1 Matrix scaling and balancing
	2.2 Computational model

	3 A Sinkhorn algorithm with approximate updates
	3.1 Potential argument
	3.2 Quantum approximate summing
	3.3 Time complexity
	3.4 Complications in Osborne's algorithm

	4 Matching lower bound for matrix scaling with constant eps

