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Abstract
Recently several conjectures were made regarding the Fourier spectrum of low-degree polynomials.
We show that these conjectures imply new correlation bounds for functions related to Majority.
Then we prove several new results on correlation bounds which aim to, but don’t, resolve the
conjectures. In particular, we prove several new results on Majority which are of independent interest
and complement Smolensky’s classic result.
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1 Introduction and our results

The recent “polarizing random walks” paradigm [6, 8, 7, 5] constructs new pseudorandom
generators against classes of functions with “bounded Fourier tails.” For a function f :
{0, 1}n → {−1, 1} define

Lk(f) :=
∑

S⊆{1,2,...,n}:|S|=k

∣∣∣f̂(S)
∣∣∣ ,

Mk(f) :=
∑

S⊆{1,2,...,n}:|S|=k

f̂(S),

where f̂(S) := Exf(x)χS(x) for χS(x) := (−1)
∑

i∈S
xi is the Fourier transform of f [16].

These papers construct pseudorandom generators for functions with small Lk or Mk for
several settings of parameters.
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In an effort to use this framework to improve the state of pseudorandom generators
against low-degree polynomials over F2 = {0, 1} [3, 14, 26, 10], several conjectures have been
put forth about polynomials. Let p be a degree-d polynomial over F2 in n variables. For
f := (−1)p it has been conjectured (see [6, 8, 5]):

Lk(f) ≤ 2O(dk) ∀k. (1)
L2(f) ≤ O(d2), (2)

Mk(f) ≤ 2o(dk)+O(k log log n) ∀k ≤ O(log n). (3)

Conjecture (1) would not imply new pseudorandom generators, but would come close
to matching the state-of-the-art using this framework – something which was eventually
achieved in [5]. But conjectures (2) and (3) would imply new generators, improving on
long-standing open problems. One interesting feature of this approach is that, unlike the
influential approach by Nisan [15], it is not based on correlation bounds. In particular,
Conjecture (2) is not known to imply such bounds. Still, correlation bounds where shown to
be sufficient for this approach in [7].

We show that in fact correlation bounds are also necessary. That is, we show that this
approach requires proving new correlation bounds for polynomials. This is new information
about Conjecture (2). Conjecture (3) was shown in [5] to imply new pseudorandom generators
with good dependence on the error, and the latter are known to imply new correlation bounds
for a function in NP [26]. We give a direct proof of this implication which yields a function
in P (and other parameter improvements). In fact, we show that even weaker versions of
the conjectures, such as M2 ≤ o(

√
n) for polynomials of degree log2 n, already imply new

correlation bounds.

Correlation bounds

We say that a function f : {0, 1}n → {−1, 1} has δ-advantage (or (1−δ)-error) (probabilistic)
degree d if there is a distribution P on polynomials p : {0, 1}n → {0, 1} over F2 of degree d such
that for every input x we have P[(−1)P (x) = f(x)] ≥ δ. By Yao’s min-max argument [30], a
function f has δ-advantage degree d iff for every distribution D on {0, 1}n it has δ-advantage
degree d under D, meaning there exists a polynomial p over F2 of degree d such that
P[(−1)p(D) = f(D)] ≥ δ. If f has range {0, 1} instead of {−1, 1} we use the same notation
except (−1)P (x) is replaced simply by P (x).

For two functions f and g from {0, 1}n to {−1, 1} we define their correlation under a
distribution D by E[f(D)g(D)], which we note equals 2(P[f(D) = g(D)] − 1/2) and so it is
(twice) the distance of 1/2 from the advantage.

Since the classical works by Razborov and Smolensky [17, 19] the best-available explicit
probabilistic-degree lower bound for degree d ≥ log2 n gives error at best

1/2 − Ω(d/
√

n) (4)

which holds for the Majority function on n bits. In particular, it is consistent with our
knowledge that every explicit function has (1/2 + 1/

√
n)-advantage degree log2 n (while non-

constructively there exist functions which do not even have advantage exponentially close to
1/2 for polynomial degree). For recent progress on functions computable in exponential-time
classes see [29].

Proving correlation bounds is a fundamental open problem whose solution stands in the
way of progress on a striking variety of fronts, including: circuit lower bounds, multiparty
communication complexity, and matrix rigidity. For more on this long-standing challenge
and a discussion of the just-mentioned implications, we refer the reader to [25, 27, 29].
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The conjectures imply new correlation bounds

We show that bounds on Mk imply new probabilistic-degree lower bounds for an explicit
function hk. We now define hk and state our results.

Let gk : {0, 1}n → Z and hk : {0, 1}n → {−1, 1} be defined as

gk(x) :=
∑

S:|S|=k

χS(x),

hk(x) := Sign(gk(x)),

where Sign(i) = 1 if i > 0 and −1 otherwise (the value on i = 0 is arbitrary).

▶ Theorem 1. Let F be a distribution on functions from {0, 1}n to {−1, 1} such that
P[F (x) = hk(x)] ≥ 1/2 + ϵ for every x. Then there is an outcome f of F such that
Mk(f) ≥ 2ϵ · e−k

√(
n
k

)
.

To illustrate the theorem, consider first k = 2, in which case the conclusion becomes
M2(f) ≥ Ω(ϵn). This means that showing even just M2(p) ≤ o(

√
n) for every degree-d

polynomial requires showing that h2 does not have (1/2 + Ω(1/
√

n))-advantage degree d.
This would improve the tradeoff (4) mentioned above when d ≥ log2 n. Conjecture (2)
implies the stronger bound M2(p) ≤ O(d2) for every degree-d polynomial p. This would mean
that h2 does not even have (1/2 + cd2/n)-advantage degree d for a constant c, a quadratic
improvement on the tradeoff (4). Consider now the case of larger k. Assuming that hk has
(1/2+ ϵ)-advantage degree d, and assuming Conjecture (3) and using the bound

(
n
k

)
≥ (n/k)k

we obtain

2ϵ · e−k
(n

k

)k/2
≤ 2ϵ · e−k

√(
n

k

)
≤ 2o(dk)+O(k log log n).

This implies ϵ ≤ 2k(o(d)+O(log log n)−0.5 log2(n/k)). For k = log2 n this yields new correlation
bounds. Indeed, let d := log2 n. Then because o(d), log log n, and log(k) are all o(log n) we
obtain

ϵ ≤ 2−Ω(k log n) = 2−Ω(log2 n)

which improves on the tradeoff (4).

Proof. Note that for any function f , by linearity of expectation, we have

Mk(f) = Exf(x)gk(x).

Fix any x and let P[F (x) = hk(x)] be equal to 1/2 + ϵx ≥ 1/2 + ϵ. We can write

EF [F (x)gk(x)] = (1/2 + ϵx) · Sign(gk(x)) · gk(x) + (1/2 − ϵx) · (−Sign(gk(x))) · gk(x),

holding even if gk(x) = 0. Note that Sign(gk(x)) · gk(x) = |gk(x)|. Hence

EF [F (x)gk(x)] = (1/2 + ϵx)|gk(x)| + (1/2 − ϵx)(−|gk(x)|) = 2ϵx|gk(x)| ≥ 2ϵ|gk(x)|.

This gives Ex,F F (x)gk(x) ≥ Ex2ϵ|gk(x)|. In particular, there exists an outcome f such
that

Exf(x)gk(x) ≥ 2ϵEx|gk(x)|.

ICALP 2021
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There remains to bound Ex|gk(x)|. We make use of hypercontractivity from the analysis
of Boolean functions. Because gk is a polynomial of degree k, by Theorem 9.22 in [16] we
have

Ex|gk(x)| ≥ e−k
√
Ex|gk(x)|2.

Now observe that

Ex|gk(x)|2 = Ex

∑
S,T :|S|=|T |=k

χS(x)χT (x) = Ex

∑
S,T :|S|=|T |=k

χS⊕T (x) =
(

n

k

)
,

where ⊕ is symmetric difference. The last equality holds because the terms where S ≠ T

have expectation zero, and the others have expectation one. The result follows. ◀

A natural question is whether Theorem 1 holds even for functions that correlate with hk

under the uniform distribution. We show that it does not.

▶ Theorem 2. Let n be a power of 2. For any integer s between 0 and
√

n/2 there is a function
f : {0, 1}n → {−1, 1} such that P[f(x) = h2(x)] ≥1/2 + Ω(s/

√
n) but M2(f) ≤ O(s2).

To get a sense of the parameters let P[f(x) = h2(x)] = 1/2 + ϵ. Then M2(f) is only
O(ϵ2n) as opposed to Ω(ϵn) in Theorem 1. In particular, if s = O(1) and ϵ = Θ(1/

√
n) we

get M2(f) = O(1) as opposed to Ω(
√

n) in Theorem 1.

We have shown that understanding the probabilistic degree of the functions hk is also
important for the feasibility of recent approaches to pseudorandom generators against
polynomials. We obtain new bounds on the probabilistic degree of the functions hk which
however fall short of resolving whether the correlation bounds in the conclusion of Theorem
1 hold or not. We begin with studying h1 which is essentially the majority function Maj.
The results are of independent interest, and a natural step to tackle hk for larger k. Indeed,
below we use techniques developed for Maj to give new results on h2.

We point out that the probabilistic degree tradeoff of Majority is not known. Given the
tremendous interest in this function, this may come as a surprise. One might be tempted to
think that Smolensky’s tradeoff (4) is tight. We can show that it is indeed tight under the
uniform distribution.

▶ Theorem 3. Majority has (1/2 + Ω(d/
√

n))-advantage degree d under the uniform distri-
bution.

Recall this means that there are degree-d polynomials p over F2 such that Px[p(x) =
Maj(x)] ≥ 1/2 + Ω(d/

√
n), where x is uniform in {0, 1}n. Such a result was only known for

d = O(1) or d = Ω(
√

n), see [25].
However, there are harder distributions. We beat Smolensky’s bound for degree one.

While such polynomials are simple, in light of Theorem 3 this result already requires a
non-uniform distribution.

▶ Theorem 4. Majority does not have (1/2 + c/n)-advantage degree one, for some constant
c. This bound is tight up to the value of c.

We now turn to constructions of probabilistic polynomials for majority. This problem is
related to the so-called coin problem, defined next.
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▶ Definition 5. For δ ∈ [0, 1] we denote by N t
δ the distribution over {0, 1}t where the bits

are i.i.d. and each comes up 1 with probability δ. We say that a distribution F on boolean
functions on t bits (1/2 + α)-solves the δ-coin problem with advantage α if the following is
true:
(1) P[F (N t

δ) = 1] ≥ 1/2 + α; and
(2) P[F (N t

1−δ) = 0] ≥ 1/2 + α.

The study of the coin problem for low-degree polynomials goes back to [18] (see also the
thesis [24]) and has been the subject of several recent works including [13, 11, 21]. This
problem has also been studied in a variety of other models; the terminology “coin problem”
was coined in [4].

However, these works consider large advantage α = Ω(1). By contrast, we are interested
in the setting where α is close to 0. We give tight bounds in this setting, showing that with
degree d the best we can do is to boost the bias by d.

▶ Theorem 6. There is a distribution on polynomials of degree O(d) that (1/2 + dϵ)-solves
the (1/2 + ϵ)-coin problem, whenever dϵ < c for an absolute constant c. Moreover, this is
tight up to the constant in the O(.).

Computing Majority on n bits for odd n can be randomly reduced to solving the
(1/2 + 1/n)-coin problem, simply by selecting uniform bits from the input. Hence, Theorem 6
shows that Majority has (1/2 + d/n)-advantage degree ≤ O(d). We improve the advantage
to Ω(d2/n), and conjecture that this is tight.

▶ Theorem 7. Majority on n bits, for odd n, has (1/2 + d2/n)-advantage degree ≤ O(d).

▶ Conjecture 8. Theorem 7 is tight. A “hard” distribution can be uniform on the inputs of
Hamming weights n/2 + 2ℓ−1 and n/2 − 2ℓ−1 where d < 2ℓ.

To understand the choice of the hard distribution, recall that symmetric polynomials
of degree d < 2ℓ only depend on the weight of the input modulo 2ℓ (see Lemma 11). For
example, for ℓ = 1 symmetric polynomials of degree 1 < 2 only depend on the input weight
modulo 2. The two Hamming weights in the conjecture are congruent modulo 2ℓ; hence any
symmetric polynomial of degree < 2ℓ has correlation zero.

Finally, we turn to h2. One can reduce h2 to a majority on
(

n
2
)

bits, and then apply
Theorem 7 to obtain advantage 1/2 + Ω(d2/n2). We improve this to 1/2 + Ω(d2/n3/2), under
a condition on n.

▶ Theorem 9. Let ℓ be the smallest integer such that d ≤ 2ℓ. Suppose that the remainder of√
n divided by 2ℓ+100 is not in [0, 2d] ∪ [2ℓ+100 − 2d, 2ℓ+100].

Then h2 has (1/2 + d2/n3/2)-advantage degree O(d).

This result is not strong enough to disprove Conjecture (2). For that we require advantage
1/2 + ω(d2/n).

The rest of the paper is organized as follows. After some preliminaries in Section 2 we
prove the statements in the same order in which we discussed them, except that the proof of
Theorem 2 is in Section 8.

2 Preliminaries

In this section we collect several results which are used in later proofs.
The following lemma shows that the majority of several i.i.d. Bernoulli random variables

increases their bias, even in the regime where the bias is very small to start with.

ICALP 2021
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▶ Lemma 10. P[Maj(N t
1/2+α) = 1] ≥ 1/2 + Ω(α

√
t), whenever

√
tα < c for an absolute

constant c.

We are not aware of a source from which this result can be easily extracted, so we provide
a proof. But Jarosław Błasiok let us know that this lemma appears as Lemma 8 in [23].

Proof. We prove P[Maj(N t
1/2+α) = 1] − P[Maj(N t

1/2+α) = 0] ≥ Ω(α
√

t). The former
difference can be written as

t/2∑
i=1/2

(
t

t/2 + i

)(
(1/2 + α)t/2+i(1/2 − α)t/2−i − (1/2 − α)t/2+i(1/2 + α)t/2−i

)
,

where the sum is for i = 1/2, 1 + 1/2, 2 + 1/2, . . . , t/2.
Collecting a 2t factor and writing z for 2α this equals

2−t

t/2∑
i=1/2

(
t

t/2 + i

)(
(1 + z)t/2+i(1 − z)t/2−i − (1 − z)t/2+i(1 + z)t/2−i

)
.

Further collecting (1 − z)t/2(1 + z)t/2 = (1 − z2)t/2 we rewrite it as

2−t(1 − z2)t/2
t/2∑

i=1/2

(
t

t/2 + i

)((
1 + z

1 − z

)i

−
(

1 − z

1 + z

)i
)

.

Note that
(

1+z
1−z

)
> 1 and so

(
1+z
1−z

)i

−
(

1−z
1+z

)i

is positive and increasing with i. Hence
for any s we can bound below the expression by

2−t(1 − z2)t/2
t/2∑
i=s

(
t

t/2 + i

)((
1 + z

1 − z

)s

−
(

1 − z

1 + z

)s)
.

Moreover, let us write

(
1 + z

1 − z

)s

−
(

1 − z

1 + z

)s

= (1 + x)s − (1 − y)s

where x = 2z/(1 − z) and y = 2z/(1 + z). We bound below the right-hand side by

1 + xs − e−ys ≥ 1 + xs − (1 − ys + (ys)2) = s(x + y) − y2s2.

We pick s =
√

t/100+1/2. The above expression is Ω(
√

tα) as long as
√

tα = Θ(st) is
sufficiently small. Moreover, we have

2−t(1 − z2)t/2
t/2∑
i=s

(
t

t/2 + i

)
≥ Ω(1).

This holds because (1 − z2)t/2 ≥ Ω(1) and the sum of binomial coefficients is also Ω(2−t)
using Stirling’s approximation to the binomial coefficient. ◀

We use the following characterization of symmetric polynomials which is Theorem 2.4 in [2]
and follows from Lucas’ theorem.
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▶ Lemma 11. Let f : {0, 1}n → {0, 1} be a symmetric function that only depends on the
input Hamming weight modulo 2ℓ. Then f is computable by a symmetric F2 polynomial of
degree < 2ℓ. Conversely, any function f : {0, 1}n → {0, 1} computable by a symmetric F2
polynomial of degree < 2ℓ only depends on the input Hamming weight modulo 2ℓ.

Then we need constructions of probabilistic polynomials for symmetric functions, obtained
in [1]. The bounds in the earlier paper [20] would also suffice for the main points in this
paper. See also [22] for a recent characterization.

▶ Lemma 12 ([1]). Let f : {0, 1}n → {0, 1} be symmetric. Then f has (1 − ϵ)-advantage
degree O(

√
n log(1/ϵ)), for any ϵ.

3 Proof of Theorem 3

The main proof is for odd n. If n is even we can use the polynomial p′(x0, x1, . . . , xn−1) :=
p(x0, x1, . . . , xn−2)(1 − xn−1) where p is the polynomial with the highest correlation γ with
majority on input length n − 1. The correlation of p′ with majority is > γ/2.

We now proceed with the main proof. We can assume without loss of generality that d is
a power of 2 and ≤ 0.1

√
n. The polynomial witnessing the correlation will be symmetric. For

a symmetric function f : {0, 1}n → {0, 1} write fw : {0, 1, . . . , n} → {0, 1} for f(x) = fw(|x|)
where |x| is the Hamming weight of x. The correlation between a symmetric polynomial p

and (−1)Maj can be written as

2−n
n∑

i=0

(
n

i

)
(−1)pw(i)(−1)Majw(i).

To construct p we use Lemma 11 for ℓ = log2(2d). That shows that for any fw :
{0, 1, . . . , n} → {0, 1} that depends only on the input modulo 2ℓ there is a symmetric
polynomial p : {0, 1}n → {0, 1} of degree 2ℓ such that pw = fw.

The definition of fw and hence p is as follows. Define Block i to be the 2d integers
2di + 0, 2di + 1, . . . , 2di + 2d − 1. Let i∗ be the smallest i such that Block i contains an
integer larger than n/2. Let t be the number of integers less than n/2 in Block i∗. (If n + 1
is a power of 2 we have t = 0, and below there is no residual chunk.) Define fw to be 1 on
the smallest t inputs, 0 on the next t, 0 on the next d − t, and finally 1 on the next d − t.
Here’s an example for n = 17, d = 2, t = 1, i∗ = 2; the last row shows the division in blocks:

weight 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
- - - - - - - - - + + + + + + + + +

(−1)pw - + + - - + + - - + + - - + + - - +

Note that pw is by construction anti-symmetric in the sense, different from above, that:
pw(i) = 1 − pw(n − i). The same is true for Majw. Therefore g(i) := (−1)pw(i)(−1)Majw(i)

is symmetric, that is g(i) = g(n − i). Hence we only need to consider the bigger half of the
Hamming weights. Majority is always 1, and so we can rewrite the correlation as

2−n · 2 ·
(n−1)/2∑

i=0

(
n

(n + 1)/2 + i

)
(−1)pw((n+1)/2+i).

Enumerate the above binomial coefficients starting from the biggest one for i = 0. The term
(−1)pw((n+1)/2+i) will be +1 on the first t + (d − t) = d, then −1 on the next d, then again
+1 on the next d, and so on. We group the coefficients in chunks of length 2d; in each chunk

ICALP 2021
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the term is +1 for the first half and −1 for the second half. The number of coefficients is
(n + 1)/2. Hence we have ⌊(n + 1)/4d⌋ chunks, plus a residual truncated chunk of length
ℓ < 2d.

Hence we can write the correlation as follows.

2−n · 2 ·
⌊(n+1)/4d⌋−1∑

i=0

d−1∑
j=0

((
n

(n + 1)/2 + 2di + j

)
−
(

n

(n + 1)/2 + 2di + j + d

))

+ 2−n · 2 ·
ℓ−1∑
i=0

(
n

n − i

)
(−1)pw((n+1)/2+i).

By, say, a Chernoff bound the absolute value of the latter summand +2−n · · · is at most
2−Ω(n), using that ℓ < 2d = O(

√
n). Now consider the first summand. Because the binomials

are decreasing in size, each difference is positive. Hence we obtain a lower bound if we reduce
the range of i. We reduce it to ⌊

√
n/d⌋. So the correlation is at least

2−n · 2 ·
⌊
√

n/d⌋∑
i=0

d−1∑
j=0

((
n

(n + 1)/2 + 2di + j

)
−
(

n

(n + 1)/2 + 2di + j + d

))
− 2−Ω(n).

The next lemma bounds below the difference of two such binomial coefficients.

▶ Lemma 13. For s ≤ 4
√

n and d ≤ 0.1
√

n we have: 2−n
((

n
n/2+s

)
−
(

n
n/2+s+d

))
≥

Ω(sd/n3/2).

We apply the lemma with s = 1/2 + 2di + j which note is ≤ 1/2 + 2
√

n + 0.1
√

n ≤ 3
√

n.
The correlation is at least

⌊
√

n/d⌋∑
i=0

d−1∑
j=0

Ω((1/2 + 2di + j)d/n3/2) − 2−Ω(n) ≥
Ω(

√
n)∑

k=0
Ω(kd/n3/2) − 2−Ω(n) ≥ Ω(d/

√
n).

To justify the first inequality we use 1/2 + 2di + j ≥ di + j and then do the change of
variable k = di + j. For the second we use that the sum of all k up to Ω(

√
n) is Ω(n). This

concludes the proof except for the lemma.

Proof of lemma

We have(
n

n/2 + s

)
−
(

n

n/2 + s + d

)
= n!

(n/2 + s)!(n/2 − s)! − n!
(n/2 + s + d)!(n/2 − s − d)!

= n!
(n/2 + s)!(n/2 − s)!

[
1 − (n/2 − s)(n/2 − s − 1) · · · (n/2 − s − d + 1)

(n/2 + s + d)(n/2 + s + d − 1) · · · (n/2 + s + 1)

]
.

The ratio inside the square bracket is at most

(n/2 − s)d

(n/2)d
= (1 − 2s/n)d ≤ e−2sd/n ≤ 1 − sd/n,

where the last inequality holds because 2sd/n ≤ 1.
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The binomial coefficient outside of the square bracket is(
n

n/2 + s

)
≥ 2nh(1/2+s/n)√

8n(1/2 + s/n)(1/2 − sn)
≥ Ω

(
2n(1−O(s2/n2))

√
n

)
≥ Ω

(
2n

√
n

)
.

Here h is the binary entropy function, and the first inequality can be found as Lemma 17.5.1
in [9]. The second and third inequalities follow from the approximation h(1/2 + x) ≥ 1 − 4x2,
valid for every x, and s = O(

√
n).

The lemma follows by combining the two bounds.

4 Proof of Theorem 4

First let us discuss tightness. To show tightness for odd n we simply output a uniformly
selected bit. For even n this works for all inputs except those of Hamming weight = n/2.
To fix this, we modify the distribution on polynomials to equal 1 with probability 1/n.
On input of weight = n/2 we get the right value with probability 1/n + (1 − 1/n)(1/2) ≥
1/2+Ω(1/n). On inputs of Hamming weight ̸= n/2 we also get the right value with probability
(1 − 1/n)(1/2 + 1/n) ≥ 1/2 + Ω(1/n).

We now move to negative results. First we note that we can reduce the case of even n to
that of odd n: simply append a bit whose value is that of majority on balanced inputs. This
does not change the value of majority, and has negligible effect on the advantage. Hence it
suffices to prove a negative result for even n, and we do so in the rest of this section.

We select as the hard distribution the distribution D which is uniform on inputs of
Hamming weight n/2 + 1 and n/2 − 1. Our goal is to show that for every fixed degree-one
polynomial f we have P[f(D) = Maj(D)] ≤ 1/2 + O(1/n). Using generating functions we
obtain a proof which is nearly calculation-free, requiring only elementary bounds on binomials.
Let m = n/2 and f = x1 + x2 + · · · + xk for a parameter k. Let

b(n, m, k) =
k∑

i=0
(−1)i

(
m

i

)(
n − m

k − i

)
.

Note that b(n, m, k)/
(

n
k

)
is the probability that a uniform set of size k has odd intersection

with a fixed set of size m, minus the probability that it has even intersection. By the definition
of D and f one obtains that |P[f(D) = Maj(D)] − 1/2| is at most big-Oh of

α(n, n/2 − 1, k) :=

∣∣∣∣∣ 1(
n
k

) (b(n, n/2 − 1, k) − b(n, n/2 + 1, k))

∣∣∣∣∣ .
Note that we can assume that f has no constant term because we are taking absolute

values in the expression |P[f(D) = Maj(D)] − 1/2|.
First we use generating functions to obtain a closed form for b(n, m, k). Recall the

generating functions (see e.g. [12] for background on this technique)

(1 + z)n =
∑
i≥0

(
n

i

)
zi,

(1 − z)n =
∑
i≥0

(
n

i

)
(−1)izi.

We have

(1 − z)m(1 + z)n−m =
∑

i≥0,j≥0

(
m

i

)(
n − m

j

)
(−1)izi+j =

∑
k≥0

b(n, m, k)zk.
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If m = n/2 − t the left-hand side can be written as

(1 − z)n/2−t(1 + z)n/2−t(1 + z)2t

=(1 − z2)n/2−t(1 + z)2t

=
∑
i≥0

(−1)i

(
n/2 − t

i

)
z2i(1 + z)2t.

Similarly, if m = n/2 + t then it can be written as

(1 − z)n/2−t(1 + z)n/2−t(1 − z)2t

=
∑
i≥0

(−1)i

(
n/2 − t

i

)
z2i(1 − z)2t.

Specializing to t = 1 we obtain∑
k≥0

(b(n, n/2 − 1, k) − b(n, n/2 + 1, k))zk

=
∑
i≥0

(−1)i

(
n/2 − 1

i

)
z2i
(
(1 + z)2 − (1 − z)2)

=
∑
i≥0

(−1)i

(
n/2 − 1

i

)
z2i · 4z

=4
∑
i≥0

(−1)i

(
n/2 − 1

i

)
z2i+1.

Equating coefficients of zk yields

b(n, n/2 − 1, k) − b(n, n/2 + 1, k) = 4(−1)(k−1)/2
(

n/2 − 1
(k − 1)/2

)
if k is odd, otherwise the left-hand side is zero.

Hence we get

α = 4
(

n/2 − 1
(k − 1)/2

)
/

(
n

k

)
if k is odd, and α = 0 if k is even.
There remains to bound the right-hand side. First, we can assume that k ≤ n/2 because

replacing k with n−k does not change the value of α. If k = 0, 1 we readily have α = O(1/n),
using that n is even. Otherwise we can use the bounds

(n/k)k ≤
(

n

k

)
≤ (en/k)k

to again show α = O(1/n). We have

α ≤ 4
(

n

(k − 1)

)(k−1)/2(
k

n

)k

= 4
√

k

n

(√
1

k − 1 · k√
n

)k

.

We can conclude by noticing that if k ≤ 100 log2 n then this is at most poly log n/n1.5 ≤
O(1/n), using k ≥ 2; while if k ≥ 100 log2 n using that k ≤ n/2 and k − 1 ≥ 0.99k we have

α ≤ O(1) ·

( √
k√

0.99n

)k

≤ O(1)(
√

0.5/0.99)k ≤ O(1)(3/4)k ≤ 1/n.
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5 Proof of Theorem 6

The theorem follows immediately from the following more general lemma, which we will also
use later.

▶ Lemma 14. There is a distribution P on polynomials on s = O(d2) bits of degree O(d)
such that for every ϵ ∈ [−1/2, 1/2], ϵ ≤ 1/d, we have P[P (Ns

1/2+ϵ) = Sign(ϵ)] ≥ 1/2 + Ω(dϵ).

Proof. Let P ′′ : {0, 1}s → {0, 1} be the probabilistic polynomial of degree O(d) from
Theorem 12 which computes Maj on every input with probability 0.99, with input length
s = O(d2) which is assumed to be odd without loss of generality.

We modify P ′′ so that the probability that it makes a mistake on input x only depends on
||x| − n/2|. That is, it is the same on every two inputs of weights n/2 + i and n/2 − i. First,
let P ′ pick a random permutation of the input bits, and then apply P ′′. The probability
that P ′ makes a mistake only depends on |x|. Second, define P that on input x tosses a
coin, and if it is heads it outputs P ′(x), and if it is tails it complements x to obtain ¬x, runs
P ′(¬x), and flips the answer. Because Maj(x) = 1 − Maj(¬x) on inputs of odd length, the
probability that it makes a mistake on input x only depends on ||x| − n/2|

For an input y of Hamming weight i, denote

mi := P[P (y) ̸= Maj(y)].

We conclude the proof assuming ϵ ≥ 0. This will cover the case ϵ < 0 as well, since
P[P (Ns

1/2−ϵ) = 0] = P[P (Ns
1/2+ϵ) = 1].

Let pi := P[|Ns
1/2+ϵ| = i]. We can write

P[P (Ns
1/2+ϵ) = 1] =

∑
i>s/2

pi · (1 − mi) +
∑

i<s/2

pi · mi

=
∑

i>s/2

(pi · (1 − mi) + ps−i · ms−i)

=
∑

i>s/2

(pi − mi(pi − ps−i)) .

Where the last equality holds because by construction mi = mn−i for every i.
Because ϵ ≥ 0 and i > s/2, the factor (pi − ps−i) is positive. Hence we bound the sum

below if we replace mi with its maximum value 0.01, obtaining∑
i>s/2

(pi − 0.01(pi − ps−i)) = P[Maj(Ns
1/2+ϵ) = 1](1 − 0.01) + 0.01 · P[Maj(Ns

1/2+ϵ) = 0].

Writing P[Maj(Ns
1/2+ϵ) = 0] = 1 − P[Maj(Ns

1/2+ϵ) = 1] this becomes

P[Maj(Ns
1/2+ϵ) = 1](1 − 2 · 0.01) + 0.01.

By Lemma 10, P[Maj(Ns
1/2+ϵ) = 1] ≥ 1/2 + Ω(dϵ). Hence we conclude

P[P (Ns
1/2+ϵ) = 1] ≥ (1/2 + Ω(dϵ))(1 − 2 · 0.01) + 0.01 = 1/2 + Ω(dϵ). ◀

At first sight, it may seem suspicious that we can tolerate constant error in the polynomials
for majority. Some intuition why this might be OK follows. If P[P (Ns

1/2+ϵ) = 1] is close
to 1, constant error won’t bother us, since we are only aiming for advantage close to 1/2.
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On the other hand, if that probability is close to 1/2, the loss will recouped thanks to
the symmetrization. That is, mistakes will be made on Ns

1/2−ϵ with the same probability,
boosting the correctness.

To prove that this result is tight, suppose there is a distribution on degree-d polynomials
that solves the (1/2 + ϵ)-coin problem with advantage 1/2 + α. If we sample O(1/α)2 times
independently these polynomials, and compute the majority, a Chernoff bound shows that we
obtain advantage 0.99. By Lemma 12 the majority computation can be done with error 1/100
by a probabilistic polynomial of degree O(1/α). Composing this with the degree-d polynomial
we obtain a probabilistic polynomial of degree O(d/α) which solves the (1/2+ϵ)-coin problem
with advantage 0.98. By averaging we can fix the polynomial and still maintain advantage
0.96. Now we can appeal to a result proved in [13] which shows that any such polynomial
has degree Ω(1/ϵ). Hence, d/α ≥ Ω(1/ϵ). In other words, α ≤ O(dϵ), as desired.

6 Proof of Theorem 7

By Yao’s argument mentioned in the introduction, it suffices to show that for every distribution
Z on {0, 1}n there exists a polynomial which computes Maj correctly with probability
1/2 + Ω(d2/n) over Z. By averaging, it suffices to give, for any Z, a distribution P = P (Z)
on polynomials that computes Maj correctly with the same probability over both the input
drawn from Z and P . Our polynomials will depend only on the Hamming weight |Z| of Z.

Case: P[||Z| − n/2| ≥ d] ≥ 0.01

Let M : {0, 1}O(d2) → {0, 1} be the probabilistic polynomial of degree O(d) from Lemma 14.
Define P (x) to compute M on an odd number s := O(d2) bits y selected uniformly at random
from x. We first analyze the performance of this polynomial on any fixed input x of Hamming
weight w = n(1/2 + ϵ). Note that y has the distribution Ns

1/2+ϵ

We have

P[P (x) = Maj(x)] = P[M(Ns
1/2+ϵ) = Sign(ϵ)] ≥ 1/2 + Ω(dϵ),

By Lemma 14.
Now we use the assumption on Z. With probability Ω(1), we have |ϵ| ≥ d/n, in which

case the probability is ≥ 1/2 + Ω(d2/n). In every other case, the probability is at least 1/2.
Overall, P[P (Z) = Maj(Z)] ≥ 1/2 + Ω(d2/n), concluding this case.

Case: P[||Z| − n/2| ≤ d] ≥ 0.99

Let P be the polynomial of degree O(d) from Lemma 11 that computes Maj on every input
whose Hamming weight w has distance ≤ d from n/2. In this case, we have P[P (Z) =
Maj(Z)] ≥ P[||Z| − n/2| ≤ d] ≥ 0.99.

7 Proof of Theorem 9

As in the proof of Theorem 7, it suffices to show that for every distribution Z on {0, 1}n

there exists a distribution on polynomials which computes h2 well over Z. Our polynomials
will again depend only on the Hamming weight |Z| of Z.
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From the definition of g2 we have that on inputs x with n/2 + t zeroes and n/2 − t ones
we have

g2(x) = 2t2 − n/2.

As a function of t, this is a parabola which roots at t = ±
√

n/4 = ±n·r where r := 1/
√

4n.

Let L := [−nr − d, −nr + d]
⋂
Z and R := [nr − d, nr + d]

⋂
Z be the integers at distance

≤ d from either root.

Case: P[|Z| − n/2 ∈ L
⋃

R|] ≥ 0.99

In this case we use polynomials of degree O(d) from Lemma 11 to compute h2 correctly on
L
⋃

R. This definition is possible if the elements in L and R are not congruent modulo 2ℓ+100.
That is, we require that for every x, y of absolute value at most d the values −nr + x and
nr + y are not congruent modulo 2ℓ+100. For this it suffices that the remainder of 2nr =

√
n

divided by 2ℓ+100 is not in [0, 2d] ∪ [2ℓ+100 − 2d, 2ℓ+100], given by assumption.

Case: P[|Z| − n/2 ∈ L
⋃

R|] < 0.01

Consider the following process. With probability 1/(1 + 4r2) pick two uniform elements from
the input and output their XOR; otherwise output zero. On any input with weight 1/2 + α

the probability the process outputs 1 is

1/2 + ϵ := 1/2 + 2α2

1 + 4r2 = 1/2 + 2(r + α − r)2

1 + 4r2 = 1/2 +
2
(
α2 − r2)

1 + 4r2 .

Note ϵ = 0 exactly when α = ±r, and ϵ < 0 exactly when α is between these two roots.
Now repeat the process s times to generate Ns

1/2+ϵ, and run the polynomial from Lemma 14
on them.

On any input, we compute correctly with probability ≥ 1/2.
Assume now the input weight is not in L

⋃
R. Let c := 2/(1 + 4r2).

If |α| ≥ r + d/n then ϵ ≥ c(d2/n2 + 2rd/n) = Ω(rd/n).
If |α| ≤ r − d/n then ϵ ≤ c(d2/n2 − 2rd/n) = −Ω(rd/n).
In either case, by Lemma 14 we compute h2 correctly with probability 1/2+d ·Ω(rd/n) =

1/2 + Ω(d2/n3/2).

8 Proof of Theorem 2

We essentially define f to have correlation zero with h2 on every Hamming weight, except
for s Hamming weights where the value of g2 is as small as possible. Let M := {n/2 +√

n/2, n/2 +
√

n/2 − 1, . . . , n/2 +
√

n/2 − s + 1} and let Zi be the inputs with i zeroes. For
x ∈ Zi and i ∈ M let f(x) = h2(x) = −1. For x ∈ Z0 let, say, f(x) = 1 and for x ∈ Zn let
f(x) = −1. For any other Zi, divide the inputs in Zi in two equals parts, which is possible
by Lucas’ theorem because n is a power of 2. Let f be 1 on one part and −1 on the other.

Consider Ex[f(x)h2(x)]. We have Ex[f(x)h2(x)|x ∈ Z0 ∪ Zn] = 0, and Ex[f(x)h2(x)|x ∈
Zi] = 0 if i ̸∈ M and i ̸= 0 and i ≠ n, by definition. Otherwise the expectation is 1.
Hence Ex[f(x)h(x)] is the probability that x ∈ Zi for some i ∈ M . Assuming s ≤

√
n/2

this probability is ≥ Ω(s) · P[x ∈ Zn/2+
√

n/2]. The latter probability is Ω(1/
√

n) using the
standard bound

(
n

n/2+
√

n/2
)

= Θ(2n/
√

n) which can be verified using Stirling’s approximation.
Hence Ex[f(x)h2(x)] ≥ Ω(s/

√
n), and so P[f(x) = h2(x)] ≥ 1/2 + Ω(s/

√
n).

ICALP 2021



111:14 Fourier Conjectures, Correlation Bounds, and Majority

Now consider Ex[f(x)g2(x)]. Again, this is zero unless the number of zeroes of x lies in M .
Note that g2(x) = 2t2 − n/2 on inputs in Zn/2+t. The maximum value of |g2(x)| for inputs
with weights in M is for t =

√
n/2 − s + 1 which yields value |2(

√
n/2 − s + 1)2 − n/2| =

|2(−s + 1)2 + (−s + 1)
√

n| ≤ O(s2 + s
√

n). For s ≤
√

n/2 the latter is O(s
√

n). The
chance that the number of zeroes of x lies in M is Θ(s/

√
n) as noted before. Hence we get

M2(f) ≤ O(s
√

n · s/
√

n) ≤ O(s2).
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