
Deterministic Maximum Flows in Simple Graphs
Tianyi Zhang #

Tsinghua University, Beijing, China

Abstract
In this paper we are interested in deterministically computing maximum flows in undirected simple
graphs where edges have unit capacities. When the input graph has n vertices and m edges, and
the maximum flow is known to be upper bounded by τ as prior knowledge, our algorithm has
running time 1Õ(m + n5/3τ1/2); in the extreme case where τ = Θ(n), our algorithm has running
time Õ(n2.17). This always improves upon the previous best deterministic upper bound Õ(n9/4τ1/8)
by [Duan, 2013]. Furthermore, when τ ≥ n0.67 our algorithm is faster than a classical upper bound
of O(m + nτ3/2) by [Karger and Levin, 1998].

2012 ACM Subject Classification Theory of computation → Network flows

Keywords and phrases graph algorithms, maximum flows, dynamic data structures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.114

Category Track A: Algorithms, Complexity and Games

Acknowledgements I want to thank helpful discussions with my advisor Ran Duan as well as my
colleague Shucheng Chi.

1 Introduction

Let G = (V, E) be an undirected simple graph on n vertices and m edges, where each edge
has unit capacity. Fix two special vertices s, t ∈ V and we are interested in deterministic
algorithms that compute an exact maximum flow from s to t in graph G. There has been
a long line of literature on the study of maximum flows since the 60’s. As one of the
pioneering works, Ford and Fulkerson [5] introduced the idea of augmenting paths and
proposed an algorithm that runs in time O(mτ); here τ is an upper bound on the maximum
flow value. Subsequent improvements came along in [3, 7], which are known as the blocking
flow algorithm and the push-relabel algorithm. For several decades, the best running time was
Õ(m min{m1/2, n2/3} log U) (U being the largest integer capacity) by [6]. Recently, a new
line of developments [17, 14, 18, 16, 15, 13, 19] based on the interior point method surpassed
the blocking flow barrier; for large capacities, the best running time is Õ((m + n1/2) log U)
[19], while for small capacities, the best running time so far is O(m4/3+o(1)U1/3) [15, 13].

Another branch of literature focuses on a special case when the maximum flow is known
to be small as a prior knowledge. Let τ be a known upper bound on the maximum flow
value. Karger proposed the first such kind of upper bound in [10], which is a randomized
algorithm running in time Õ(m2/3n1/3τ) for simple graphs. This was improved later in [11]
to randomized upper bounds of Õ(m + nτ5/4) and Õ(m + n11/9τ) and deterministic upper
bound O(m + nτ3/2). This line of works culminated in [12] as a randomized upper bound
Õ(m + nτ). In a very recent work [1], the authors obtained a deterministic upper bound of
Õ(mτ2/3) time which is even faster when τ is small.

A gap between randomized and deterministic algorithms has remained so far. For many
years, the best deterministic algorithm has running time Õ(m + nτ3/2) [11], so in simple
graphs this upper bound could be as large as Ω(n2.5). The basic idea of this algorithm is

1 Õ hides poly-logarithmic factors.
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114:2 Deterministic Maximum Flows in Simple Graphs

to sparsify the residual graph so that it always has O(nτ1/2) directed edges, and it uses
connectivity structures to handle undirected edges, and in this way each flow augmentation
takes time only proportional to the number of directed edges, yielding a total running time
of O(m + nτ3/2). It was explicitly asked by the authors in [11] whether one could achieve a
full sparsification of O(nτ1/2) edges so that running the blocking flow algorithm of [6] on the
sparsified graph would take time Õ(m + n5/3τ1/2).

To break through the 2.5 exponent even in simple graphs when τ = Θ(n), the author
of [4] managed to combine the original approach of [11] with the blocking flow technique and
achieved a better running time Õ(n9/4τ1/8) in simple graphs; this upper bound is always at
most Õ(n2.375) so it beats the 2.5 exponent in the worst case when τ = Θ(n).

1.1 Our result

In this chapter, we answer the question from [11] in the affirmative for simple graphs.

▶ Theorem 1. Assume τ ≥ n2/3 is an upper bound on the value of the maximum s-t flow,
then there is a deterministic algorithm that computes s-t maximum flows in undirected simple
graphs in Õ(n5/3τ1/2) running time.

Our algorithm is always faster than [4] for any choice of 1 ≤ τ < n in simple graphs; in
the extreme case where τ = Ω(n), we have a running time of O(n2.17). For a moderately
large τ ≥ n0.67, our result is also better than the classical algorithm from [11] which has
O(m + nτ3/2) running time.

1.2 Technical overview

Generalizing the blocking flows. Our algorithm will be based on [4], so let us first try to
summarize the benchmark. Throughout iterations, it maintains a set of disjoint connected
components V in the residual graph, and define a binary edge weight function µ : E → {0, 1},
where inter-component edges have weight 1, and intra-component edges have weight 0. In
each iteration, the algorithm searches for a blocking flow whose augmentation would increase
the s-t distance in the residual graph under edge weight µ. To search for a blocking flow in the
current residual graph, the algorithm performs a depth-first search only on inter-component
edges, and use a connectivity data structure to route flows within components. Therefore, in
general their algorithm needs to keep the total number of inter-component edges small.

The first obstacle of this approach is that the total number of directed edges would grow
during augmentations. As all directed edges are inter-component ones, this immediately
affects the time of finding blocking flows. To work around this issue, the algorithm of [4]
was to perform a decycle operation between every pair of consecutive levels in terms of
distances from s. Although this could keep the number of directed edges small, it merely
translates directed edges to inter-component undirected edges, so the total number of inter-
component edges remains large. To handle this large number of inter-component edges, their
algorithm builds a decremental clustering structure between each pair of consecutive levels
that comprises a collection of disjoint clusters and a sparse graph. More specifically, their
data structure accepts an integer parameter h and decrementally maintains a set of disjoint
star subgraphs, each of size > h, such that the number of edges incident tn unclustered
vertices is bounded by O(nh). The key motivation of using star subgraphs is that it ensures
each flow augmentation uses at most O(n/h) inter-component edges, so that the number of
inter-component edges grows slowly.
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A better clustering approach. One downside of [4]’s decremental clustering algorithm is
that each edge deletion could add O(n) more edges incident on unclustered vertices. This
substantially limits the usage of the decremental data structure since it needs frequently
rebuilding as the number of edges incident on unclustered vertices increases fast. Our new
data structure does not need any rebuilding, and furthermore, this advantage allows us
to apply it to maintain the set of disjoint components V directly, instead of maintaining
inter-component edges between consecutive levels. In this way, we can directly upper bound
the length of each flow, and so we do not need any decycling step, which simplifies the
blocking flow approach of [4] as well.

Comparison with layered core decompositions. Our new decremental clustering data
structure is actually inspired by the layered core decompositions devised in a recent paper [2],
but ours is much simpler and weaker in some sense. The total update time of our algorithm
is at least quadratic, and it also depends on the pattern of updates, while the layered
core decomposition has almost linear total update time in the worst case. Furthermore,
in our clustering scheme, each cluster is simply a star subgraph, where in the layered core
decomposition each cluster is an expander.

One reason we do not directly apply the layered core decomposition in the maximum flow
computations is that it is a heavy tool and may probably make an overkill. When computing
maximum flows, edge updates to the clustering scheme always have some benign properties,
and so even though star graphs are far less robust than expanders, the clustering scheme
does not have to work against strong adversaries. Furthermore, a more technical reason
is that paths within the same core may have sub-polynomial lengths, while each star only
has diameter 2, which contributes to the length of augmenting paths. Therefore, using the
layered core decompositions might induce an extra sub-polynomial factor in the running time
of max-flows.

2 Preliminaries

Let G = (V, E) be an undirected simple graph with unit-capacities, and let s, t ∈ V be a
source and a sink. For the rest, G will be the input graph where we compute max-flows.

For any graph H = (X, F ) and vertex subset S ⊆ H, let H[S] be the induced subgraph
of H on S. An edge orientation on the edge set is represented as O : V × V → {−1, 0, 1},
such that for each edge (u, v) ∈ E, O(u, v) is equal to 1 if the edge (u, v) is oriented from u

to v, and −1 if it is from v to u, and 0 if it is not oriented. For each u ∈ V , define degH(u)
to be the number of neighbors of u in H. If an orientation O : F → {−1, 0,−1} of edges is
imposed on F , then let deg+

H,O(u), deg−
H,O(u) be the out/in-degree of u in G. Usually, when

H and O are known from context, we would ignore the subscripts.
For any s-t flow f in G, let |f | denote the value of the flow, and Ef the set of edges

carrying the flow. The residual graph of G with respect to f is denoted by Gf , which is
defined as following.

▶ Definition 2 (residual graph). Given a flow f in G, a residual graph Gf is defined as
following: for each edge (u, v) ∈ E such that f(u, v) = 1, there is a directed edge from v to u

with capacity 2.

Here we emphasize that the orientation of edges have nothing to do with the direction of
edges in the residual graph.

Next, we state some lemmas regarding flows from previous works.

ICALP 2021
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▶ Lemma 3 ([11]). An acyclic flow f in a graph with integer capacities and no parallel edges
uses at most 2n

√
|f | edges.

▶ Lemma 4 ([11]). In a simple undirected graph, it is possible to take a flow f and find an
acyclic flow f ′ of the same value in time Õ(|Ef |).

▶ Lemma 5 ([11]). Given an acyclic flow f , finding k augmenting paths takes Õ(m + kn(k +
|f |)1/2) deterministic time.

We will also be using a dynamic maximum spanning forest algorithm with fast amortized
update time.

▶ Lemma 6 ([8, 9]). Given an undirected weighted graph on n vertices undergoing edge in-
sertions and deletions, there is a deterministic dynamic algorithm that maintains a maximum
spanning forest with O(log4 n) amortized update time.

3 Decremental layered clustering

In this section, let H = (V, F ) be an arbitrary undirected simple graph on n vertices that
undergoes a sequence of edge deletions.

▶ Definition 7. For any undirected simple graph H = (X, F ), a subset A ⊆ X is called
d-pruned with respect to graph H, if all edges incident on A could be oriented under an
orientation O of F such that
(1) All edges between A and X \A are directed outward from A.
(2) Out-degree of every vertex in A is less than d.

▶ Lemma 8. For any simple graph H = (X, F ), there exists a d-pruned set A, such that for
any u ∈ X \A, degH[X\A](u) ≥ d; plus such A can be computed in linear time.

Proof. The set A is constructed in the greedy manner: starting with A ← ∅, repeatedly
check if there is a vertex u ∈ X \A such that degH[X\A] < d; if so, orient all edges incident
on u in H[X \ A] away from u, and move u to A. So, in this way, the out-degree is small
deg+

H(u) < d. Clearly, the algorithm can be implemented in linear time. By the stopping
condition, all vertices in the induced subgraph H[X \A] have degree at least d. ◀

Now, let us define a layering scheme of H.

▶ Definition 9 (layering). Let h > 0 be an integer parameter. A partition
(A0, A1, · · · , A⌈log(n/h)⌉) of V , together with an orientation O of all edges in E, is called a
layering scheme of H, if the following requirements are satisfied.
(1) (u, v) ∈ E such that u ∈ Ai, v ∈ Aj , i < j, this edge is oriented from u to v, namely
O(u, v) = 1.

(2) For each index b ≥ 0, u ∈ Ab, we have deg+
H,O(u) < 2b+1h.

To initialize a layering of H, consider the following procedure: initialize X = V , and for
i = 0, 1, 2, · · · , ⌈log(n/h)⌉ − 1, apply Lemma 8 on H[X] with parameter d = 2ih to compute
a set Ai, and then update X ← X \ Ai. After all iterations, define A⌈log(n/h)⌉ = X and
orient edges in E ∩ (A⌈log(n/h)⌉ ×A⌈log(n/h)⌉) arbitrarily. By construction, for each u ∈ Ab,
all its out-neighbors are in

⋃
i≥b Ai, and deg+

H,O(u) ≤ 2bh < 2b+1h.
On top of the layering scheme, we need to define a clustering scheme of vertices.
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▶ Definition 10 (clustering). Given a layering (A0, A1, · · · , A⌈log(n/h)⌉) of H, a set of tuples
{(Cb, Yb, Zb)}b≥1 is called a cluster structure on layer (A0, A1, · · · ), where each layer Ab, b ≥ 1
can be divided into two parts Ab = Yb ∪ Zb, if the following properties hold.
(1) Yb is partitioned into a collection of clusters Cb = {C1, C2, · · · } of subsets, where each

Ci has size ≥ 2b−1h + 1 and is spanned by a star subgraph of H. For each Ci, its center
is defined to be the center of a star subgraph that spans Ci.

(2) Each vertex z ∈ Zb is adjacent to some vertices in Yb ∪
⋃

i>b Ai.
Besides, define edge weight function ω associated with this cluster structure as follows.
(a) All edges of star graphs in Cb have weight 2b.
(b) All non-star edges incident on Yb in H[Ab], and edges between Ab and

⋃
i>b Ai have

weight 2b− 1.
(c) All edges in H[Zb] have weight 2b− 2.

▶ Lemma 11. Given any layering (A0, A1, · · · , A⌈log(n/h)⌉) of H, a cluster structure
{(Cb, Yb, Zb)}b≥1 can be computed in Õ(n2) time.

Proof. For each b ≥ 1, construct Yb in the greedy manner: starting with an empty set Yb = ∅,
whenever there exists a vertex c ∈ Ab \ Yb with degH[Ab\Yb](u) ≥ 2bh, take an arbitrary set
of 2bh neighbors u1, u2, · · · , u2bh ∈ Ab \ Yb and add this cluster {c, u1, u2, · · · , u2bh} to Yb,
with c being its center. In the end when the above procedure stops, define Zb = Ab \ Yb.
Clearly this procedure takes O(|F |) = O(n2) time.

To verify property (2), by construction of the layering scheme, for each z ∈ Zb,
degH[∪i≥bAi](z) ≥ 2bh. So if z was not added to Yb as a star center, then z must be
adjacent to some vertices from Yb ∪

⋃
i>b Ai. ◀

Next, we try to maintain the layering (A0, A1, · · · ) together with a clustering structure
when edges are being deleted from G. During the execution of our decremental algorithm,
we need to ensure a basic requirement.

▶ Invariant 12. During the decremental algorithm, vertices could only move from layers
Ab+1 to Ab, ∀b ≥ 0; in other words, vertices only move from upper layers to lower layers.

The rest of the section would be devoted to the following statement.

▶ Lemma 13. Suppose H undergoes a sequence of edge deletions. Then a clustering structure
{(Cb, Yb, Zb)}b≥1 together with an induced edge weight ω in Definition 10 can be explicitly
maintained using total update time Õ(

∑⌈log(n/h)⌉
b=1 2bDbh+n2), plus that the dynamic algorithm

meets Invariant 12; here Db is an upper bound on the number of edges which are incident on
layer Ab right when they get deleted.

3.1 Maintaining clusters under edge deletions

In this subsection we describe the algorithm behind Lemma 13. Let us first focus on a fixed
layer Ab. Assume the updates to H[Ab] are either edge deletions or vertex transfers from
Ab+1 to Ab; if b = ⌈log(n/h)⌉ then Ab+1 is always empty. Initialize an arbitrary clustering
(Cb, Yb, Zb) as in Lemma 11. We will be maintaining all adjacency lists in the induced
subgraph H[

⋃
i≥b Ai], and more importantly, the following auxiliary data structure based on

edge orientation O.

ICALP 2021
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Auxiliary data structures based on edge orientation O
(i) For each u ∈ Ab, a list of all out-neighbors in H. By Invariant 12, these out-

neighbors are all in
⋃

i≥b Ai.
(ii) For each u ∈ Ab, a list of neighbors Z−(u) = {z | (u, z) ∈ E,O(u, z) = −1, z ∈ Zb}.
(iii) For each u ∈ Zb, a list of neighbors Z+(u) = {z | (u, z) ∈ E,O(u, z) = 1, z ∈ Zb}.
(iv) A priority queue on all vertices in Zb, which are ordered by degrees degH[Zb](u) =

|Z−(u)|+ |Z+(u)|,∀u ∈ Zb in the induced subgraph H[Zb].

In other words, for each vertex in Zb, it knows both its out-neighbors and in-neighbors in
H[Zb], while for each vertex in Yb, it only knows its in-neighbors in Zb. Plus, all vertices in
Zb are ordered by their degrees in the induced subgraph H[Zb].

Vertex insertions. Assume a new vertex u has moved to Ab from upper layer Ab+1. First,
for each edge (u, v) where v ∈

⋃
i>b Ai, we need to adjust the orientation of O(u, v) = 1,

reassign edge weights for all edges ω(u, v) = 2b− 1.
By definition of layering, before u came downward from Ab+1, all its edges incident on

Ab were directed inward. So when it joins Ab, Z+(u) should be empty. After insertion of
u, we add u to Zb, and initialize Z−(u) by scanning u’s adjacency list in H, and initialize
Z+(u) = ∅. Then, for each v ∈ Ab adjacent to u, add u to the list Z+(v). Next, update
the keys of u and its neighbors in Zb in the priority queue. Finally, if v ∈ Yb, stay with
ω(u, v) = 2b− 1, and otherwise reassign ω(u, v) = 2b− 2.

After that, repeat the following greedy procedure (1)(2)(3) to form star subgraphs out of
H[Zb]. For a more concise description of this procedure, check pseudo-code GreedyCluster.
(1) If there exists c ∈ Zb such that degH[Zb](c) = |Z−(c)|+ |Z+(c)| ≥ 2bh, pick an arbitrary

such vertex c; if there is none, then halt.
(2) Find all of c’s neighbors u1, u2, · · · , uk ∈ Zb by scanning Z−(c) ∪ Z+(c). Then move

all vertices c, u1, u2, · · · , uk from Zb to Yb, and add the star subgraph around all ui’s
centered at c as a cluster to Cb.

(3) Lastly, we need to maintain all lists Z+(·), Z−(·) and edge weights. To maintain lists
and edge weights, for every vertex x ∈ {c, u1, u2, · · · , uk}, do the following steps.
(a) For each z ∈ Z−(x), remove x from Z+(z); for each z ∈ Z+(x), remove x from

Z−(z). Then, for each such edge (x, z), reassign ω(x, z) = 2b − 1, and for all star
edges (c, ui), 1 ≤ i ≤ k, assign ω(c, ui) = 2b.

(b) Scan the out-neighborhood of x, then for each (x, y) such that O(x, y) = 1 and
y ∈ Yb, remove x from Z−(y).

Non-star edge deletions. Now assume an edge deletion (u, v) occurs in subgraph H[
⋃

i≥b Ai],
and u ∈ Ab. Let us first study the simpler case where (u, v) is not a star edge in any cluster
of Cb.

A preliminary step is updating these four lists Z+(u), Z−(u), Z+(v), Z−(v) due to (u, v)’s
deletion. After this, some vertex z ∈ Zb might have a small degree in subgraph H[

⋃
i≥b Ai],

and in this case we would have to move it to Ab−1 to ensure each z ∈ Zb is adjacent to some
vertices in Yb ∪

⋃
i>b Ai. More specifically, while some vertices in z ∈ Zb have degree less

than 2bh in subgraph H[
⋃

i≥b Ai], move z from Zb to Ab−1, do the following steps to restore
our data structures.
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Algorithm 1 GreedyCluster.

1 while ∃c ∈ Zb such that degH[Zb](c) ≥ 2bh do
2 list all neighbors of c in H[Zb] as u1, u2, · · · , uk;
3 form a star subgraph around u1, u2, · · · , uk centering at c, and add this as a

cluster to Cb;
4 for each x ∈ {c, u1, u2, · · · , uk}, scan Z−(x), Z+(x) to maintain all other affected

lists Z−(z), Z+(z), z ∈ Zb, and update the induced edge weights ω;
5 for each x ∈ {c, u1, u2, · · · , uk}, scan its out-neighbors in H[Ab] to update all

Z−(y),∀y ∈ Yb;

(1) Scan z’s adjacency list, and for each of its neighbor y ∈ Ab, remove z from Z+(y), Z−(y),
and update the orientation O(z, y) = 1 if necessary. Finally, remove z from the priority
queue on Zb.

(2) Besides, for each of z’s neighbor x in H[
⋃

i≥b Ai], reassign ω(z, x) = 2b− 3.

The pseudo-code of the above procedure is presented below as GreedyPrune.

Algorithm 2 GreedyPrune.

1 while ∃z ∈ Zb such that degH[
⋃

i≥b
Ai](z) < 2bh do

2 move z from Zb to Ab−1, and scan its adjacency list to update all affected lists
Z+(·), Z−(·), and update ω and O properly;

Star edge deletions. Now consider the harder case where the deleted edge is a star edge of
a cluster in Cb. In this case, let (c, u) be the deleted edge and c be the cluster center. After
the edge deletion, one or more vertices in the cluster centered at c might have to leave Yb.
The two possibilities are the following.

Excluding u, if the star subgraph now has at most 2b−1h vertices, the whole cluster
should be destroyed and removed from Yb back to Zb.
Otherwise, only u needs to join Zb.

Let vertex subset S be the set of all vertices in this cluster that might join Zb shortly, so S

is either a singleton {u} or the whole star cluster. For each vertex v ∈ S \ {c}, a preliminary
step is reweighing ω(c, v) = 2b− 1 as (c, v) is no longer a star edge.

Go over all vertices v ∈ S in an arbitrary order and do the following. Scan the list of all
out-neighbors of v to find the set Sv of its out-neighbors in Zb; remember that currently we
do not maintain Z+(v) as v /∈ Zb, so instead of directly retrieving Sv = Z+(v), we have to
scan all of v’s out-neighbors. Now, as we have already maintained Z−(v), we can now decide
whether v has at least 2bh (undirected) neighbors in Zb by checking if |Sv|+ |Z−(v)| ≥ 2bh.
We need to study both possibilities.
|Sv|+ |Z−(v)| < 2bh. In this case, set Z+(v) = Sv. Move v from Yb to Zb. To restore
orientation-based data structures, first, for each z ∈ Z−(v) add v to Z+(z), and for every
z ∈ Sv add v to Z−(z); second, scan the out-neighbors of v, and for every (v, y) such
that y ∈ Yb, add v to Z−(y).
Finally, to restore edge weights, for each of z ∈ Sv ∪Z−(v), change the edge weight ω(v, z)
from 2b− 1 to 2b− 2.

ICALP 2021
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|Sv|+ |Z−(v)| ≥ 2bh. In this case, we would directly collect a star cluster around v using
Sv ∪ Z−(v). Namely, move all vertices in Sv ∪ Z−(v) from Zb to Yb, and add the star
subgraph centered at v as a cluster to Cb. To restore the auxiliary data structures and
edge weights, go over all vertices x ∈ Sv ∪ Z−(v) and follow the same steps (3)(a) and
(3)(b) when handling vertex insertions.

After we have iterated over all vertices from S, each v ∈ S either has entered Zb or formed
a new cluster in Cb. Subgraph H[Zb] could still contain vertices whose degree is at least 2bh,
so we perform another round of GreedyCluster to exhaustively collect new clusters out of
Zb. Finally, to ensure property (2) in Definition 10, we invoke GreedyPrune on Zb to remove
vertices with small degrees.

Stacking all layers. In order to maintain the entire clustering structures {(Cb, Yb, Zb)}b≥1
across all layers (A0, A1, · · · ) against edge deletions to H, we simply apply the above algorithm
for each layer Ab, b ≥ 1. When vertices move from upper layers to lower layers, it is equivalent
to vertex insertions to lower layers, which can be handled by the algorithm.

3.2 Proof of correctness
The proof of correctness of our algorithm is divided into several lemmas.

▶ Lemma 14. Invariant 12 is preserved by the algorithm, and (A0, A1, · · · ) is always a
layering satisfying the requirements in Definition 9.

Proof. During the algorithm, vertices never move from lower levels Ab to higher levels Ab+1,
so Invariant 12 is satisfied.

Now let us turn to verify properties of Definition 9. For property (1), when vertices move
across different layers, our algorithm always adjusts O to ensure this requirement, so this
property holds. As for property (2), by the algorithm description, whenever a vertex z ∈ Zb

moves from Ab to Ab−1, it must be the case that degH[
⋃

i≥b
Ai](z) < 2bh. In the near future,

as long as z stays in Ab−1, its out-neighbors under orientation O should always be a subset
of its current neighbors in

⋃
i≥b Ai, and so the number of its out-neighbors is always bounded

by 2bh, and thus property (2) holds. ◀

▶ Lemma 15. During edge deletions, the algorithm correctly maintains the auxiliary data
structures based on the edge orientation O.

Proof. Maintaining part (i)(iv) is straightforward, so we only focus on part (ii)(iii).
Vertex insertions. Zb could only change during GreedyCluster. Consider any new cluster
c, u1, · · · , uk centered at c. To move them from Zb to Yb, for each x ∈ {c, u1, · · · , uk}, on
the one hand, we need to go over all of its neighbors in H[Zb] to fix lists Z−(z), Z+(z) for
all z ∈ Zb; on the other hand, we only need to scan x’s out-neighbors to fix lists Z−(y)
for all y ∈ Yb, since we do not require Z+(·) for vertices in Yb, which is a key point behind
the design of the auxiliary data structures.
Non-star edge deletions. In this case, some vertices might move from Zb downward to
Ab−1. As the maintenance of the auxiliary data structures is done in the straightforward
manner, so correctness should follow easily.
Star edge deletions. This case involves two rounds of vertex transfers between Yb and Zb.
The first round is when it enumerates all vertices v ∈ S and check if |Sv|+ |Z−(v)| < 2bh.
In this case, we have discussed two possibilities.
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If |Sv|+ |Z−(v)| < 2bh, then the algorithm moves v from Yb to Zb. To restore part
(ii)(iii), it suffices to scan Z−(v) and all out-neighbors of v, which is what the algorithm
does.
Otherwise if |Sv|+ |Z−(v)| ≥ 2bh, the algorithm would collect a star cluster around
v with Sv ∪ Z−(v). To move Sv ∪ Z−(v) to Yb, we would use a similar procedure as
steps (3)(a)(b) of vertex insertions, and so the auxiliary data structures should be
maintained correctly as well.

The second round is when it invokes GreedyCluster to further remove vertices z ∈ Zb such
that degH[Zb](z) ≥ 2bh. After that, the algorithm calls GreedyPrune to remove vertices
z ∈ Zb such that degH[

⋃
i≥b

Ai](z) < 2bh. Using the same analysis as before, we know the
algorithm always correctly maintains the auxiliary data structures. ◀

▶ Lemma 16. A cluster structure {(Cb, Yb, Zb)}b≥1 from Definition 10 is correctly maintained
by our algorithm.

Proof. It is straightforward to verify that our algorithm correctly maintains the edge weight
ω. So let us only focus on properties (1)(2).

Property (1) is automatically guaranteed by the algorithm, since the algorithm only
collects star clusters of size ≥ 2bh, and whenever a star cluster becomes smaller than 2b−1h

after losing too many of its leaves due to edge deletions, the algorithm would try to move it
back to Zb. Now, let us turn to property (2).

▷ Claim 17. After every update, it holds that for each vertex z ∈ Zb, degH[
⋃

i≥b
Ai](z) ≥ 2bh,

degH[Zb](z) < 2bh.

Proof of claim. When the cluster structure has just been initialized, this claim holds by
construction of the layers (A0, A1, · · · ). Next, consider vertex insertions and edge deletions
separately.

Vertex insertions. After a vertex insertion from upper layers, the degrees of vertices
in Zb in subgraph H[

⋃
i≥b Ai] remains unchanged. By the GreedyCluster procedure, all

vertices in Zb should have degree less than 2bh in H[Zb] afterwards.
Edge deletions. After an edge deletion, by the end of the algorithm, it performs one
round of GreedyCluster and then GreedyPrune, which first moves vertices in Zb whose
degree in H[Zb] is at least 2bh to Yb, and then moves vertices whose degree in H[

⋃
i≥b Ai]

is less than 2bh downward to Ab−1. So the claim should hold when it finishes. ◀

By this claim, for any vertex z ∈ Zb, on the one hand we know degH[
⋃

i≥b
Ai](z) ≥ 2bh,

and on the other hand degH[Zb](z) < 2bh, so there exists y ∈
⋃

i≥b Ai \ Zb = Yb

⋃
i>b Ai

adjacent to z, which is property (2). ◀

3.3 Running time analysis
▶ Lemma 18. The total time of the algorithm for handling layer Ab is bounded by O(2bDbh+
n2).

Proof. Let us first analyze the total time of GreedyPrune throughout edge deletions. During
this subroutine, the algorithm repeatedly picks z ∈ Zb such that degH[

⋃
i≥b

Ai](z) < 2bh and
move it to Ab−1. This requires scanning the adjacency list of z. Since each z can transfer
from Ab to Ab−1 for at most once, the total time is bounded by O(|F |) = O(n2).
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For each cluster C ∈ Cb, define del(C) to be the current number of star edges that have
been deleted since C joined Cb. Define a potential function, where K is a large constant:

Φ = |F ∩ (Zb × Zb)|+ 2bh|Zb|+ K · 2bh
∑

C∈Cb

del(C) = O(K · 2bDbh + n2)

▷ Claim 19. The total time of GreedyCluster across all updates is bounded by O(2bhDb +n2).

Proof of claim. In the while-loop, locating a c ∈ Zb such that degH[Zb](c) = |Z−(c)| +
|Z+(c)| ≥ 2bh takes O(log n) time using the priority queue. By the algorithm, forming a
cluster around c requires scanning all neighbors in H[Zb] for each x ∈ {c, u1, u2, · · · , uk},
plus x’s out-neighbors in H[

⋃
i≥b Ai]. Suppose the total number of edges in H[Zb] incident on

{c, u1, u2, · · · , uk} is m0. Then, on the one hand, the time cost would be O(m0 + 2bh(k + 1)),
as each x has out-neighbors at most 2b+1h by Definition 9; on the other hand, the potential
decrease of Φ is exactly m0 + 2bh(k + 1) as well, which cancels out the time cost. Hence, the
total time of GreedyCluster across all updates is bounded by O(2bhDb + n2). ◁

A dominant part of the overall running time is handling star edge deletions, where we
need to iterate over the set S. Let C be the star cluster centered at c. For any v ∈ S,
computing the number of v’s neighbors in Zb takes time at most 2b+1h as out-degree is
bounded deg+

H,O(v) ≤ 2b+1h and Z−(v) is accessible as a list. Now consider two possibilities.
|Sv∪Z−(v)| < 2bh. In this case, the algorithm moves v back to Zb by scanning Sv∪Z−(v)
plus all out-neighbors, and the running time is bounded by O(2bh). As for potential
change, moving v to Zb increases Φ by |Sv ∪Z−(v)|+ 2bh ≤ 2b+1h, so the amortized cost
is bounded by O(2bh).
|Sv ∪ Z−(v)| ≥ 2bh. In this case, we would collect a new cluster around v. Similar to the
analysis of GreedyCluster, the amortized cost of this part is zero.

If S = {v}, then this part of the amortized cost incurred by a star edge deletion is
bounded by O(2bh). Plus that del(C) increases by 1, the amortized cost would be K2bh.

Otherwise, if S is the entire cluster centered at c, then on the one hand, summing up the
above two cases, the amortized cost of iterating over S is O(2bh|S|); on the other hand, since
the star C centered at c is canceled from Cb, the potential decrease would be K · 2bh · del(C).
So the amortized cost of handling S would be O(2bh|S|)−K · 2bh · del(C).

A key point is that, by the algorithm, when C joined Cb it had at least 2bh leaves by then,
but now when C leaves it has 2b−1h leaves. Therefore, del(C) ≥ |S|. Hence, if we choose K

to be a sufficiently large constant, the amortized cost O(2bh|S|)−K · 2bh · del(C) would be
negative.

To summarize, we have proved that each star edge deletion has amortized cost at most
K2bh, plus that other costs are bounded by O(2bhDb + n2). So the total update time is
O(2bhDb + n2). ◀

4 The main algorithm

Initialization. Let f be an empty flow, and we will keep augmenting f throughout O(n2/3)
iterations. Apply Lemma 13 on G to initialize a layering (A0, A1, · · · ) as well as a clustering
{(Cb, Yb, Zb)}b≥1 together with edge weights ω, where h = ⌈τ1/2⌉; we can enforce s, t ∈ A0 at
the beginning since this would only increase O(n) edges incident on A0. We maintain two
disjoint edge sets F0 and F1, where initially F0 includes all edges in G[V \A0], and let F1 be
the rest. So initially F1 contains at most O(nh) edges.
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Throughout the iterations, (V, F0 ∪ F1) will be the residual graph Gf , and F0 will be
the set of all undirected edges used by the clustering structure, and F1 could contain both
undirected and directed edges in the residual graph Gf .

Iterations. In each iteration, we try to find a blocking flow with respect to f with increasing
path (unweighted) length. Denote by Gf the residual graph with respect to f .

For each edge (u, v) ∈ F0 ∪F1, associate it with a binary weight µ such that µ(u, v) = 0 if
(u, v) ∈ F0, and µ(u, v) = 1 otherwise. To keep track of all connected components of (V, F0),
maintain a fully dynamic maximum weight spanning forest MSF on (V, F0) according to
weights ω using standard approach [8], and for each u ∈ V , let mst(u) denote the maximum
weight spanning tree in MSF containing u (if u ∈ A0, then mst(u) refers to u itself).

The following invariant regarding the s-t distance in Gf under edge weight µ will be
guaranteed by our algorithm.

▶ Invariant 20. At the beginning of the l-th iteration, the s-t distance in Gf is at least l.

At the beginning of each iteration, perform Dijkstra’s algorithm on Gf = (V, F0 ∪ F1, µ)
from s, and so each vertex u ∈ V has a distance label level(u) which is set to the distance
from s to u under edge weight µ. Since all edges in F0 are undirected and have zero µ-weight,
for shortest paths computations we could contract all edges in F0, and so Dijkstra’s algorithm
takes time O(|F1|+ n log n); plus, vertices in any tree component in MSF can share the same
label.

Later on when we search for augmenting paths, more edge weights µ(·) would turn from
0 to 1 as edges are deleted from F0. However, during this iteration, we will keep the labels
level(·) unchanged and ensure the following property.

▶ Invariant 21. For any vertex u ∈ V , the distance from s to u in the residual graph Gf

under edge weight µ is always at least level(u).

Depth first search. Next, let focus on a single iteration. Each vertex in V has two phases:
active or inactive. At the beginning of the search, activate all vertices whose label is < l

as well as terminal t. Starting with source vertex u = s. Assume inductively that we have
found a sequence of vertices s = u0, u1, · · · , uk. As long as k < l and s is active, repeat the
following steps.
(1) Enumerate all vertices in v ∈ mst(uk). For each v, try to find an edge (v, w) in Gf such

that:
(a) w is active, and level(w) = level(v) + 1.
(b) Either the edge (v, w) is undirected or it is from v to w.
If such an edge (v, w) is found, then assign uk+1 ← w, k ← k + 1.

(2) If no such edge (v, w) can be found, then deactivate all vertices in mst(uk) and k ← k−1.

Now, suppose at some point k = l. Since uk is active, we know uk = t. Then we try
to send flows from s to t in Gf on an augmenting path of length l under edge weights µ.
Recalling the way we found all of u0, u1, · · · , ul, each mst(ui) and mst(ui+1) are connected
by an edge (vi−1, ui) with positive capacity in Gf , and each pair of ui, vi are in the same
tree component of (V, F0), so we can route one unit of flow from s to t going through
u0, u1, · · · , ul.

Let the augmenting path be s = p0, p1, · · · , pe = t, and augment f by sending one unit
of flow along this path. After that, we need to update the residual graph Gf , the subgraph
H on which the layered clustering is maintained, the maximum spanning forest MSF. Go
over all 0 ≤ i < e, and consider the following two cases.
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If (pi, pi+1) is an undirected edge in F0, then delete it from F0, and add a directed edge
(pi+1, pi) to F1 with residual capacity 2.
If (pi, pi+1) is an undirected edge in F1, then it is connecting two vertices with consecutive
labels. In this case, add a directed edge (pi+1, pi) to F1 with residual capacity 2, and
delete the old edge from F1.
If (pi, pi+1) is a directed edge in F1, then remove it from F1 and add an undirected edge
(pi, pi+1) with unit capacity to F1.

After Gf is updated, we should reset k ← 0, and update the layered clustering structure, the
maximum spanning forest accordingly.

The whole blocking flow computation is summarized as pseudo-code BlockingFlow.

Algorithm 3 BlockingFlow(f, l).

1 maintain layered clustering {(Cb, Yb, Zb)}b≥1, maximum spanning forest MSF;
2 compute distance labels level(·);
3 activate all vertices whose label is < l as well as terminal t;
4 u0 ← s, k ← 0;
5 while s is active do
6 if k < l then
7 if exists (v, w) such that w is active, v ∈ mst(uk), level(w) = level(v) + 1 then
8 uk+1 ← w and k ← k + 1;
9 else

10 deactivate the entire mst(uk) and backtrack k ← k − 1;

11 else
12 send one unit of s-t flow;
13 reset k ← 0, update residual graph, layered clustering, maximum spanning

forest;

Now we can summarize our main algorithm as a piece of pseudo-code MaxFlow below.

Algorithm 4 MaxFlow(G, τ).

1 initialize empty flow f ;
2 initialize a layered clustering structure on G parameterized by h = ⌈τ1/2⌉;
3 for l = 1, 2, · · · , ⌈2n2/3⌉ do
4 call BlockingFlow(f, l);
5 decycle f using Lemma 4;
6 apply Lemma 5 on f exhaustively;
7 return f ;

4.1 Proof of correctness
▶ Lemma 22. Invariant 21 is preserved after Gf is updated.

Proof. When a connected component in MSF is split due to edge deletions in F0, the current
distances in Gf cannot increase. If vertices move from V \ A0 to A0 due to degree losses,
some inter-component edges would be inserted to Gf . However, such kind of edge insertions
can never decrease distances, as they were connecting vertices with the same label value
level(·). ◀
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After the depth-first search is completed, we need to prove that the distance from s to t

in the contracted graph Gf is at least l + 1, namely preserving Invariant 20 for the next
iteration.

▶ Lemma 23. After the depth-first search which augments f , the distance from s to t in the
residual graph Gf under edge weights µ is at least l + 1.

Proof. Suppose after all the augmentations by a blocking flow, there still exists an s-t flow
with length at most l under edge weights µ. So there exists a path s = p0, p1, · · · , pe = t in
Gf such that e ≤ l. Consider two possibilities.

level(pi) = i, ∀0 ≤ i ≤ e. Then it must be e = l. For any edge (pi, pi+1), the capacity
from pi to pi+1 should always be positive throughout the depth-first search, since the
algorithm never pushes flows from level i + 1 to i. Hence, the depth-first search could not
have terminated, which is a contradiction.
There exists 0 ≤ i < e such that level(pi+1) > level(pi) + 1. By the algorithm, the
depth-first search never adds flows directly across nonconsecutive levels, so the capacity
from pi to pi+1 should be positive at the beginning as well. Then, by the shortest paths
computation, level(pi+1) should be at most level(pi) + 1, which makes a contradiction as
well. ◀

By the above lemma together with Lemma 4.6 from [4], we have the following corollary.

▶ Corollary 24 ([4]). After 2n2/3 iterations, the residual flow of f (namely, maximum flow
in Gf ) becomes at most n2/3.

Proof. By the pigeon-hole principle, there exists a pair of consecutive levels in the residual
graph Gf whose union contains at most n1/3 vertices. Therefore, the capacity of the cut
between these two levels is at most 2 · ( n1/3

2 )2 < n2/3. ◀

4.2 Running time analysis
Finally, let us analyze the running time of our max flow algorithm. To analyze the total time
of maintaining the layered clusters, first we need some properties regarding the maximum
spanning forest MSF.

▶ Lemma 25. For each index b, all star edges in Cb are tree edges in the maximum spanning
forest. Plus, for each vertex z ∈ Zb, there exists y ∈ Yb ∪

⋃
i>b Ai such that (y, z) is also a

tree edge.

Proof. Consider any star edge (c, u) with c being the center. If (c, u) is not a tree edge,
then the tree path between u, c connects u to another vertex v ̸= c. By definition of ω,
ω(u, v) ≤ 2b− 1, so switching (c, u) for (u, v) in the spanning forest gives a strictly larger
total weight, which makes a contradiction.

Now consider the second half of the statement. By property (2) of the clustering structure,
there exists y ∈ Yb∪

⋃
i>b Ai adjacent to z, and so ω(y, z) = 2b−1. If (y, z) is not a tree edge,

then there exists a tree path that connects z to y. Consider the first edge (z, w) on this path.
As the spanning forest has maximum total weight, it must be ω(z, w) ≥ ω(z, y) = 2b− 1. As
z /∈ Yb, it can only be the case that ω(z, w) = 2b− 1, and so w cannot be in Zb or

⋃
i<b Ai.

Hence, w ∈ Yb

⋃
i>b Ai, which completes the proof. ◀

▶ Corollary 26. For each u ∈ Ab, there exists a tree path of at most log n edges connecting u

to a star center in
⋃

i≥b Yi.
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▶ Lemma 27. For each index b, and for each spanning tree T ∈ MSF, suppose it contains k

centers in
⋃

i≥b Yi, then any tree path of T contains at most O(k log n) vertices in Ab.

Proof. Suppose otherwise a tree path contains 20k log n vertices in Ab, then there exists a
sub-sequence of this tree path u1, u2, · · · , u2k vertices in Ab, such that for each 1 ≤ j < 2k,
the tree path from uj to uj+1 has at least 9 log n tree edges. By Corollary 26, there exists a
center vj ∈

⋃
i≥b Yi such that uj , vj are connected by a tree path of length at most log n in

MSF. By the pigeon-hole principle, there exists distinct indices j1 < j2 such that vj1 = vj2 ,
which means uj1 , uj2 are connected by a tree path of at most 2 log n edges, contradiction. ◀

▶ Lemma 28. The overall running time throughout all iterations of maintaining the layered
clusters

{(Cb, Yb, Zb)}b≥1

together with its induced edge weight ω is bounded by Õ(n2 + nτ). Also, the total update time
of maintaining the maximum spanning forest MSF is also bounded by Õ(n2 + nτ).

Proof. Consider any unit flow that we send from s to t during this round. Focus on the part
within the same component of MSF. By the routing scheme, the flow always uses the tree
edges of the maximum spanning tree. By Lemma 27, the length of the tree path is at most
proportional to the number of centers. Therefore, for the b-th layer, the number of vertices
in Ab on the unit flow is bounded by O( n

2bh
log n). Since the augmenting path is a simple

path, the number of edge deletions incident on Ab is at most O( n
2bh

log n) as well. Summing
over at most τ augmentations, the total edge deletions incident on Ab is at most Õ( nτ

2bh
). By

Lemma 13, the total update time of maintaining the layered clustering is Õ(n2 + nτ).
As for the dynamic maximum spanning forest MSF, the number of changes to Gf and ω

is always upper bounded by the time to maintain the layered clustering, so the total time of
maintaining MSF is bounded similarly. ◀

Next we bound the total number of new inter-component edges added to F1 throughout
all 2n2/3 iterations for a single round.

▶ Lemma 29. During the for-loop of MaxFlow, the total number of edges in F1 is bounded
by O(nτ1/2 log n).

Proof. Similar to the previous lemma, we can prove that each augmentation turns at
most O(n/h log n) undirected edges from F0 to be directed edges in F1. Since F1 contains
at most O(nh) initially before the first iteration, the overall edges to F1 is bounded by
O(nh + nτ log n

h ) = O(nτ1/2 log n). ◀

The above lemma helps us bounding the total time of computing blocking flows through
all iterations.

▶ Lemma 30. The running time of a single iteration takes time Õ(nτ1/2).

Proof. First, invoking Dijkstra’s algorithm takes time O(|F1|+ n log n) = Õ(nτ1/2). Next,
we need to argue that in each iteration, the blocking flow procedure takes time Õ(|F1|+ n) as
well. In fact, we claim that each edge (v, w) ∈ F1 can be visited by at most twice during the
depth-first search. If level(w) ̸= level(v) + 1, then the algorithm does to need to consider it
when searching for augmenting paths, as level(·) does not change within this iteration. Now
let us assume level(w) = level(v)+1. If (v, w) is a directed edge, then after two augmentations
it would be a directed edge from w to v, and so it would never be visited again; if (v, w) is an
undirected edge, then after one augmentation it would be a directed one from w to v as well.
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Finally, we efficiently enumerate edges incident on any tree in MSF under edge deletions,
we could arrange all vertices in this tree according to the Euler-tour which supports fast link
and cut operations on trees. ◀

By the above lemmas, the total time of for-loop is bounded by Õ(n2 + nτ + n5/3τ1/2) =
Õ(n5/3τ1/2). After the while-loop, the total residual flow is bounded by O(n2/3), so by
Lemma 5 the rest takes time Õ(n5/3τ1/2) as well.
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