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Abstract
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures
equivalent to a Datalog program, in terms of an existential pebble game. We also show that for
every class C of finite structures that can be expressed in MSO and is closed under homomorphisms,
and for all ℓ, k ∈ N, there exists a canonical Datalog program Π of width (ℓ, k), that is, a Datalog
program of width (ℓ, k) which is sound for C (i.e., Π only derives the goal predicate on a finite
structure A if A ∈ C) and with the property that Π derives the goal predicate whenever some Datalog
program of width (ℓ, k) which is sound for C derives the goal predicate. The same characterisations
also hold for Guarded Second-order Logic (GSO), which properly extends MSO. To prove our results,
we show that every class C in GSO whose complement is closed under homomorphisms is a finite
union of constraint satisfaction problems (CSPs) of ω-categorical structures.
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1 Introduction

Monadic Second-order Logic (MSO) is an important logic in theoretical computer science.
By Büchi’s theorem, a formal language can be defined in MSO if and only if it is regular (see,
e.g., [24]). MSO sentences can be evaluated in polynomial time on classes of structures whose
treewidth is bounded by a constant; this is known as Courcelle’s theorem [16]. The latter
result even holds for the more expressive logic of Guarded Second-order Logic (GSO) [21, 18],
which extends First-order Logic by second-order quantifiers over guarded relations. Guarded
Second-order Logic contains Guarded First-order Logic (which itself captures many description
logics [20]).
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120:2 Datalog for Guarded Second-Order Logic

Another fundamental formalism in theoretical computer science, which is heavily studied
in database theory, is Datalog (see, e.g., [24]). Every Datalog program can be evaluated on
finite structures in polynomial time. Like MSO, Datalog strikes a good balance between
expressivity and good mathematical and computational properties. Two important parameters
of a Datalog program Π are the maximal arity ℓ of its auxiliary predicates (IDBs), and the
maximal number k of variables per rule in Π. We then say that Π has width (ℓ, k), following
the terminology of Feder and Vardi [19]. These parameters are important both in theory
and in practice: ℓ closely corresponds to the exponent of the size of the memory space and k
to the exponent of the number of computation steps needed when evaluating Π on a given
structure (see, e.g., [4]).

In some scenarios we are interested in having the good computational properties of
expressibility in Datalog and having the good computational properties of expressibility in
MSO. A wide variety of popular query formalisms (among them (unions of) conjunctive queries,
(2-way conjunctive) regular path queries, monadic Datalog, guarded Datalog, monadically
defined queries, or nested monadically defined queries) are known to be both in Datalog
and GSO [25]. Also, all these formalisms have favourable properties when it comes to static
analysis, most notably decidable query containment [25]. Note that on the contrary, query
containment in unrestricted Datalog is undecidable, as is query containment in unrestricted
MSO / GSO. So it is really the interplay of the restrictions imposed by both formalisms that
is required to ensure decidability of a central task in databases and that makes this fragment
interesting and worthwhile investigating.

In this paper we investigate two questions that (perhaps surprisingly) turn out to be
closely related:
1. Which classes of finite structures are simultaneously expressible in MSO and in Datalog?
2. Which constraint satisfaction problems (CSPs) can be expressed in MSO, or, more

generally, in GSO?
For a structure B with a finite relational signature τ , the constraint satisfaction problem
for B is the class of all finite τ -structures that homomorphically map to B. Every finite-
domain constraint satisfaction problem can already be expressed in monotone monadic SNP
(MMSNP; [19]), which is a small fragment of MSO. On the other hand, the constraint
satisfaction problem for (Q;<), which is the class of all finite acyclic digraphs (V ;E), cannot
be expressed in MMSNP [6], but can be expressed in MSO by the sentence

∀X ̸= ∅ ∃x ∈ X ∀y ∈ X : ¬E(x, y).

The class of CSPs of arbitrary infinite structures B is quite large; it is easy to see that a
class D of finite structures with a finite relational signature τ is a CSP of a countably infinite
structure if and only if

it is closed under disjoint unions, and
A ∈ D for any A that maps homomorphically to some A′ ∈ D.

The second item can equivalently be rephrased as the complement of D (meant within the
class of all finite τ -structures; this comment applies throughout and will be omitted in the
following) being closed under homomorphisms: a class C is closed under homomorphisms if
for any structure A ∈ C that maps homomorphically to some C we have C ∈ C. Examples
of classes of structures that are closed under homomorphisms naturally arise from Datalog.
We say that a class C of finite τ -structures is definable in Datalog1 if there exists a Datalog

1 Warning: Feder and Vardi [19] say that a CSP is in Datalog if its complement in the class of all finite
τ -structures is in Datalog.
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program Π with a distinguished predicate nullary goal such that Π derives goal on a finite
τ -structure if and only if the structure is in C; in this case, we write JΠK for C. Every class of
τ -structures in Datalog is closed under homomorphisms. However, not every class of finite
structures in Datalog describes the complement of a CSP: consider for example, for unary
predicates R and B, the class CR,B of finite {R,B}-structures A such that RA is empty or
BA is empty. Clearly, CR,B is not closed under disjoint unions. However, a finite structure is
in CR,B if and only if the Datalog program that consists of just one rule

goal :− R(x), B(y)

does not derive goal on that structure.
An important class of CSPs is the class of CSPs for structures B that are countably

infinite and ω-categorical. A structure B is ω-categorical if all countable models of the
first-order theory of B are isomorphic. A well-known example of an ω-categorical structure is
(Q;<), which is a result due to Cantor [15]. Constraint satisfaction problems of ω-categorical
structures can be evaluated in polynomial time on classes of treewidth bounded by some
constant k ∈ N, by a result of Bodirsky and Dalmau [7]. The polynomial-time algorithm
presented by Bodirsky and Dalmau is in fact a Datalog program of width (k − 1, k). A
Datalog program Π is called sound for a class of τ -structures C if JΠK ⊆ C. Bodirsky and
Dalmau showed that if C is the complement of the CSP of an ω-categorical τ -structure B

then there exists for all ℓ, k ∈ N a canonical Datalog program of width (ℓ, k) for C, i.e., a
Datalog program Π of width (ℓ, k) such that

Π is sound for C, and
JΠ′K ⊆ JΠK for every Datalog program Π′ of width (ℓ, k) which is sound for C.

Moreover, whether the canonical Datalog program of width (ℓ, k) for C derives goal on a
given τ -structure A can be characterised in terms of the existential pebble game from finite
model theory, played on (A,B) [7]. The existential ℓ, k pebble game is played by two players,
called Spoiler and Duplicator (see, e.g., [17, 19, 23]). Spoiler starts by placing k pebbles on
elements a1, . . . , ak of A, and Duplicator responds by placing k pebbles b1, . . . , bk on B. If
the map that sends a1, . . . , ak to b1, . . . , bk is not a partial homomorphism from A to B, then
the game is over and Spoiler wins. Otherwise, Spoiler removes all but at most ℓ pebbles from
A, and Duplicator has to respond by removing the corresponding pebbles from B. Then
Spoiler can again place all his pebbles on A, and Duplicator must again respond by placing
her pebbles on B. If the game continues forever, then Duplicator wins. If B is a finite, or
more generally a countable ω-categorical structure then Spoiler has a winning strategy for
the existential ℓ, k pebble game on (A,B) if and only if the canonical Datalog program for
CSP(B) derives goal on A (Theorem 19). This connection played an essential role in proving
Datalog inexpressibility results, for example for the class of finite-domain CSPs [2] (leading
to a complete classification of those finite structures B such that the complement of CSP(B)
can be expressed in Datalog [3]).

Results and Consequences
We present a characterisation of those GSO sentences Φ that are over finite structures
equivalent to a Datalog program. Our characterisation involves a variant of the existential
pebble game from finite model theory, which we call the (ℓ, k)-game. This game is defined
for a homomorphism-closed class C of finite τ -structures, and it is played by the two players
Spoiler and Duplicator on a finite τ -structure A as follows.

Duplicator picks a countable τ -structure B such that CSP(B) ∩ C = ∅.
The game then continues as the existential (ℓ, k) pebble game played by Spoiler and
Duplicator on (A,B).

ICALP 2021
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In Section 4 we show that a GSO sentence Φ is over finite structures equivalent to a Datalog
program of width (ℓ, k) if and only if

JΦK is closed under homomorphisms, and
Spoiler wins the existential (ℓ, k)-game for JΦK on A if and only if A |= Φ.

We also show that for every GSO sentence Φ whose class of finite models C is closed under
homomorphisms and for all ℓ, k ∈ N there exists a canonical Datalog program Π of width
(ℓ, k) for C (Theorem 22). To prove these results, we first show that every class of finite
structures in GSO whose complement is closed under homomorphisms is a finite union of
CSPs that can also be expressed in GSO (Lemma 16; an analogous statement holds for MSO).
Moreover, every CSP in GSO is the CSP of a countable ω-categorical structure (Corollary 10);
this allows us to use results from [7] to make the link to existential pebble games. We also
present an example of such a CSP which is even expressible in MSO and coNP-complete, and
hence not the CSP of a reduct of a finitely bounded homogeneous structure, unless NP=coNP
(Proposition 23). Note that our results imply that every class of finite structures that can be
expressed both in in GSO and in Datalog is a finite intersection of the complements of CSPs
for ω-categorical structures. In general, it is not true that a Datalog program describes a
finite intersection of complements of CSPs (we present a counterexample in Example 18).

2 Preliminaries

In the entire text, τ denotes a finite signature containing relation symbols and sometimes
also constant symbols. If R ∈ τ is a relation symbol, we write ar(R) for its arity. If A is a
τ -structure we use the corresponding capital roman A letter to denote the domain of A; the
domains of structures are assumed to be non-empty. If R ∈ τ , then RA ⊆ Aar(R) denotes
the corresponding relation of A.

A primitive positive τ -formula (in database theory also conjunctive query) is a first-
order τ -formula without disjunction, negation, and universal quantification. Every primitive
positive formula is equivalent to a formula of the form

∃x1, . . . , xn(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic τ -formulas, i.e., formulas built from relation symbols in τ or
equality. An existential positive τ -formula is a first-order τ -formula without negation and
universal quantification. We write ψ(x1 . . . , xn) if the free variables of ψ are from x1, . . . , xn.
If A is a τ -structure and ψ(x1, . . . , xn) is a τ -formula, then the relation

R := {(a1, . . . , an) | A |= ψ(a1, . . . , an)}

is called the relation defined by ψ over A; if ψ can be chosen to be primitive positive (or
existential positive) then R is called primitively positively definable (or existentially positively
definable, respectively).

For all logics over the signature τ considered in this text, we say that two formulas
Φ(x1, . . . , xn) and Ψ(x1, . . . , xn) are equivalent (over finite structures) if for all (finite) τ -
structures A and all a1, . . . , an ∈ A we have

A |= Φ(a1, . . . , an) ⇔ A |= Ψ(a1, . . . , an).

It is easy to see that every existential positive τ -formula is a disjunction of primitive positive
τ -formulas (and hence referred to as a union of conjunctive queries in database theory).
Formulas without free variables are called sentences; in database theory, formulas are often
called queries and sentences are often called Boolean queries. If Φ is a sentence, we write
JΦK for the class of all finite models of Φ.
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A reduct of a relational structure A is a structure A′ obtained from A by dropping some
of the relations, and A is called an expansion of A′.

2.1 Datalog
In this section we refer to the finite set of relation and constant symbols τ as EDBs (for
extensional database predicates). Let ρ be a finite set of new relation symbols, called the
IDBs (for intensional database predicates). A Datalog program is a set of rules of the form

ψ0 :− ψ1, . . . , ψn

where ψ0 is an atomic ρ-formula and ψ1, . . . , ψn are atomic (ρ ∪ τ)-formulas; we also assume
that every variable that appears in the head also appears in the body. If A is a τ -structure,
and Π is a Datalog program with EDBs τ and IDBs ρ, then a (τ ∪ ρ)-expansion A′ of A is
called a fixed point of Π on A if A′ satisfies the sentence

∀x̄(ψ0 ∨ ¬ψ1 ∨ · · · ∨ ¬ψn)

for each rule ψ0 :− ψ1, . . . , ψn. If A1 and A2 are two (ρ∪ τ)-structures with the same domain
A, then A1 ∩A2 denotes the (ρ∪ τ)-structure with domain A such that RA1∩A2 := RA1 ∩RA2 .
Note that if A1 and A2 are two fixed points of Π on A, then A1 ∩ A2 is a fixed point of Π on
A, too. Hence, there exists a unique smallest (with respect to inclusion) fixed point of Π on
A, which we denote by Π(A). It is well-known that if A is a finite structure then Π(A) can
be computed in polynomial time in the size of A [24]. If R ∈ ρ, we also say that Π defines
RΠ(A) on A. A Datalog program together with a distinguished predicate R ∈ ρ may also be
viewed as a formula, which we also call a Datalog query, and which over a given τ -structure
A denotes the relation RΠ(A). If the distinguished predicate has arity 0, we often call it
the goal predicate; we say that Π derives goal on A if goalΠ(A) = {()}. The class C of finite
τ -structures A such that Π derives goal on A is called the class of finite τ -structures defined
by Π, and denoted by JΠK. Note that this class C is definable in universal second-order logic
(we have to express that in every expansion of the input by relations for the IDBs that
satisfies all the rules of the Datalog program the goal predicate is non-empty).

2.2 Second-Order Logic
Second-order logic is the extension of first-order logic which additionally allows existential
and universal quantification over relations; that is, if R is a relation symbol and ϕ is a
second-order τ ∪ {R}-formula, then ∃R : ϕ and ∀R : ϕ are second-order τ -formulas. If A is a
τ -structure and Φ is a second-order τ -sentence, we write A |= Φ (and say that A is a model of
Φ) if A satisfies Φ, which is defined in the usual Tarskian style. We write JΦK for the class of
all finite models of Φ. A second-order formula is called monadic if all second-order variables
are unary. We use syntactic sugar and also write ∀x ∈ X : ψ instead of ∀x(X(x) ⇒ ψ) and
∃x ∈ X : ψ instead of ∃x(X(x) ∧ ψ).

2.3 Guarded Second-Order Logic
Guarded Second-order Logic (GSO), introduced by Grädel, Hirsch, and Otto [21], is the
extension of guarded first-order logic by second-order quantifiers. Guarded (first-order)
τ -formulas are defined inductively by the following rules [1]:

ICALP 2021
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1. all atomic τ -formulas are guarded τ -formulas;
2. if ϕ and ψ are guarded τ -formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.
3. if ψ(x̄, ȳ) is a guarded τ -formula and α(x̄, ȳ) is an atomic τ -formula such that all free

variables of ψ occur in α then ∃ȳ
(
α(x̄, ȳ)∧ψ(x̄, ȳ)

)
and ∀ȳ

(
α(x̄, ȳ) ⇒ ψ(x̄, ȳ)

)
are guarded

τ -formulas.
Guarded second-order formulas are defined similarly, but we additionally allow (unrestricted)
second-order quantification; GSO generalises Courcelle’s logic MSO2 from graphs to general
relational structures.

▶ Definition 1. A second-order τ -formula is called guarded if it is defined inductively by the
rules (1)–(3) for guarded first-order logic and additionally by second-order quantification.

There are many semantically equivalent ways of introducing GSO [21]. Let B be a
τ -structure. Then (t1, . . . , tn) ∈ Bn is called guarded in B if there exists an atomic τ -formula
ϕ and b1, . . . , bk such that B |= ϕ(b1, . . . , bk) and {t1, . . . , tn} ⊆ {b1, . . . , bk}. Note that (for
n = 1) every element of B is guarded (because of the atomic formula x = x). A relation
R ⊆ Bn is called guarded if all tuples in R are guarded. Note that all unary relations
are guarded. If Ψ is an arbitrary second-order sentence, we say that a finite structure A

satisfies Ψ with guarded semantics, in symbols A |=g Φ, if all second-order quantifiers in Ψ
are evaluated over guarded relations only. Note that for MSO sentences, the usual semantics
and the guarded semantics coincide.

▶ Proposition 2 (see [21]). Guarded Second-order Logic and full Second-order Logic with
guarded semantics are equally expressive.

It follows that GSO is at least as expressive as MSO. There are Datalog programs that
are equivalent to a GSO sentence, but not to an MSO sentence. The proof is based on a
variant of an example of a Datalog query in GSO given in [13] (Example 2).

▶ Proposition 3. There is a Datalog query that can be expressed in GSO but not in MSO.

Proof. Let τ be the signature consisting of the binary relation symbols S, T,R,N , and let C
be the class of finite τ -structures such that the following Datalog program with one binary
IDB U derives goal.

U(x, y) :−S(x, y)
U(x′, y′) :−U(x, y), N(x, x′), N(y, y′), R(x′, y′)

goal :−U(x, y), T (x, y) ◀

On the left of Figure 1 one can find an example of a {S, T,R,N}-structure B where the
given Datalog program derives goal. To show that C is not MSO definable, suppose for
contradiction that there exists an MSO sentence Φ such that JΦK = C. We use Φ to construct
an MSO sentence Ψ which holds on a finite word w ∈ {a, b}∗ (represented as a structure with
signature Pa, Pb, < in the usual way [24]) if and only if w ∈ {anbn | n ≥ 1}; this contradicts
the theorem of Büchi-Elgot-Trakhtenbrot (see, e.g., [24]). Let Φ′ be the MSO sentence
obtained from Φ by replacing all subformulas of Φ of the form

S(x, y) by a formula ϕS(x, y) that states that x is the smallest element with respect to
<, that Pb(y), and that there is no z < y in Pb;
T (x, y) by a formula ϕT (x, y) that states that Pa(x), that there is no z > x in Pa, and
that y is the largest element with respect to <;
R(x, y) by the formula ϕR(x, y) given by x < y;
N(x, y) by a formula ϕN (x, y) stating that y is the next element after x with respect
to <.
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v1 v2 v3 v4

w1 w2 w3 w4

S TR R

N N N

N N N

(a) Structure B

v1 v2 v3 v4

w1 w2 w3 w4

< < <

< < <

>

Pb Pb PbPb

Pa Pa Pa Pa

(b) Structure A

aaaabbbb

(c) Word wA

Figure 1 An example of an {S, T, R, N}-structure B in the class C of Proposition 3.

The resulting MSO sentence Ψ1 has the signature {Pa, Pb, <}; let Ψ be the conjunction of
Ψ1 with the sentence Ψ2 which states that for all x, y ∈ A, if x < y and Pa(y) then Pa(x).
We first show that if A is a {<,Pa, Pb}-structure that represents a word wA ∈ {a, b}∗, then
A |= Ψ if and only if wA is of the form anbn for some n ≥ 1. Let B be the {S, T,R,N}-
structure such that for X ∈ {S, T,R,N} we have XB := {(x, y) | A |= ϕX(x, y)}. See
Figure 1 for an example of a structure A such that wA = a4b4 and the corresponding
{S, T,R,N}-structure B.

If wA is of the form anbn for some n ≥ 1, then A clearly satisfies Ψ2. To show that
it also satisfies Ψ1, let v1, . . . , vn, w1, . . . , wn ∈ A be such that {v1, . . . , vn} = PA

a and
{w1, . . . , wn} = PA

b such that for all i, j ∈ {1, . . . , n}, if i < j then vi <
A vj and wi <

A wj .
Then

(v1, w1) ∈ SB, (vn, wn) ∈ TB,

(vi, wi) ∈ RB for all i ∈ {2, . . . , n− 1}, (1)
(vi, vi+1), (wi, wi+1) ∈ NB for all i ∈ {1, . . . , n− 1}.

It follows that B satisfies Φ and therefore A |= Ψ.
For the converse direction, suppose that A |= Ψ. Clearly, wA ∈ a∗b∗ because A |= Ψ2.

Moreover, since A |= Ψ1 we have that B |= Φ, and hence there exist n ∈ N and elements
v1, . . . , vn, w1, . . . , wn ∈ A such that B satisfies (1). We first prove that PA

a = {v1, . . . , vn}
and |PA

a | = n. Since (vn, wn) ∈ TB we have ϕT (vn, wn) and hence vn ∈ PA
a . Since

B |= N(v1, v2), . . . , N(vn−1, vn) we have that v1 < v2 < · · · < vn−1 < vn holds in A

and it also follows that |PA
a | = n. Then for every i ∈ n we have that vi ∈ PA

a because
vi ≤ vn, vn ∈ PA

a , and wA ∈ a∗b∗. Now suppose for contradiction that there exists
x ∈ PA

a \ {v1, . . . , vn}; choose x largest with respect to <A. Since (vn, wn) ∈ TB and x ∈ PA
a

we must have x ≤ vn, and hence x < vn since x /∈ {v1, . . . , vn}. Then there exists y ∈ A such
that ϕN (x, y) holds in A. Since y ≤ vn, vn ∈ PA

a , and wA ∈ a∗b∗, we must have PA
a . By the

maximal choice of x we get that y = vi for some i ∈ {1, . . . , n}. But then ϕN (x, vi) implies
that x ∈ {v1, . . . , vn−1}, a contradiction. Similarly, one can prove that PA

b = {w1, . . . , wn}
and that |PA

b | = n. This implies that wA = anbn.
We finally have to prove that C is in GSO. Let Φ be the GSO {S, T,R,N} sentence with

existentially quantified unary relations V,W , and existentially quntified binary relations
R′ ⊆ R and N ′ ⊆ N , which states that

there are elements v1, vn ∈ V and w1, wn ∈ W such that S(v1, w1) and T (vn, wn) hold;
for every x ∈ V \ {v1} there exists a unique element y ∈ V \ {vn} such that N ′(y, x)
holds;
for every x ∈ V \ {vn} there exists a unique element y ∈ V \ {v1} such that N ′(x, y)
holds;

ICALP 2021
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for every x ∈ W \ {w1} there exists a unique element y ∈ W \ {wn} such that N ′(y, x)
holds;
for every x ∈ W \ {wn} there exists a unique element y ∈ W \ {w1} such that N ′(x, y)
holds;
for all v ∈ V and w ∈ W we have that N ′(v1, v) ∧N ′(w1, w) implies R′(v, w).
for all v, v′ ∈ V \ {v1, vn} and w,w′ ∈ W \ {w1, wn} we have that R′(v, w) ∧N ′(v, v′) ∧
N ′(w,w′) implies R′(v, w).
For all v ∈ V and w ∈ W we have that N ′(v, vn) ∧N ′(w,wn) implies R′(v, w).

Then Φ holds on a finite {S, T,R,N}-structure B if and only if B has elements
v1, . . . , vn, w1, . . . , wn satisfying (1), which is the case if and only if B ∈ C.

Sometimes, we will also use the term GSO (MSO, Datalog) to denote all problems (i.e.,
all classes of structures) that can be expressed in the formalism. In particular, this justifies
to say that a certain CSP is in GSO (MSO, Datalog).

3 Homomorphism-Closed GSO

We prove that the class of finite models of a GSO sentence is a finite union of CSPs of
ω-categorical structures whenever its complement is closed under homomorphisms. In
particular, every CSP in GSO (and therefore every CSP in MSO) is the CSP of an ω-
categorical structure. CSPs that can be formulated as the CSP of an ω-categorical structure
have been characterised [10]; this characterisation will be recalled in the next section.

3.1 CSPs for Countably Categorical Structures
By the theorem of Ryll-Nardzewski, a countable structure B is ω-categorical if and only if for
every n ∈ N there are finitely many orbits of the componentwise action of the automorphism
group of B on Bn (see, e.g., [22]). We now present a condition that characterises classes of
structures that are CSPs of ω-categorical structures. Let C be a class of finite τ -structures. Let
Λn be the class of primitive positive τ -formulas with free variables x1, . . . , xn whose canonical
database is in C. We define ∼C

n to be the equivalence relation on Λn such that ϕ1 ∼C
n ϕ2 holds if

for all primitive positive τ -formulas ψ(x1, . . . , xn) we have that ϕ1(x1, . . . , xn)∧ψ(x1, . . . , xn)
is satisfiable in a structure from C if and only if ϕ2(x1, . . . , xn) ∧ ψ(x1, . . . , xn) is satisfiable
in a structure from C. The index of an equivalence relation is the number of its equivalence
classes.

▶ Theorem 4 (Bodirsky, Hils, Martin [10], Theorem 4.27). Let C be a constraint satisfaction
problem. Then there is an ω-categorical structure B such that C = CSP(B) iff ∼C

n has finite
index for all n. Moreover, the structure B can be chosen so that for all n ∈ N the orbits of
the componentwise action of the automorphism group of B on Bn are primitively positively
definable in B.

▶ Example 5. The structure B1 := (Z;<) is not ω-categorical. However, ∼CSP(B1)
n has finite

index for all n, and indeed CSP(Z;<) = CSP(Q;<) and (Q;<) is ω-categorical. On the
other hand, for B2 := (Z; Succ) we have that the index ∼CSP(B2)

2 is infinite, and it follows
that there is no ω-categorical structure B such that CSP(B2) = CSP(B); see [6].

A rich source of examples of ω-categorical structures are structures with finite relational
signature that are homogeneous, i.e., every isomorphism between finite substructures can
be extended to an automorphism. There are uncountably many countable homogeneous
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digraphs with pairwise distinct CSP, and it follows that there are homogeneous digraphs
with undecidable CSPs. A structure B is called finitely bounded if there exists a finite set F
of finite structures such that a finite structure A embeds into B if and only if no structure in
F embeds into A.

It is well-known that if a structure is ω-categorical, then all of its reducts are ω-categorical
as well [22]. Moreover, it is easy to see that the CSP of reducts of finitely bounded structures
is in NP. It has been conjectured that the CSP of reducts of finitely bounded homogeneous
structures is in P or NP-complete [12]; this conjecture generalises the finite-domain complexity
dichotomy that was conjectured by Feder and Vardi [19] and proved by Bulatov [14] and by
Zhuk [26].

3.2 Quantifier Rank
In order to construct ω-categorial structures for a given CSP in GSO, we need to verify the
condition given in Theorem 4; in this context, it will be convenient to work with signatures
that also contain constant symbols. The quantifier rank of a second-order τ -formula Φ is the
maximal number of nested (first-order or second-order) quantifiers in Φ; for this definition,
we view Φ as a second-order sentence with guarded semantics, just as in [5]. If A and B are
τ -structures and q ∈ N we write A ≡GSO

q B if A and B satisfy the same GSO τ -sentences of
quantifier rank at most q.

▶ Lemma 6 (Proposition 3.3 in [5]). Let q ∈ N and τ be a finite signature with relation and
constant symbols. Then ≡GSO

q is an equivalence relation with finite index on the class of all
finite τ -structures. Moreover, every class of ≡GSO

q can be defined by a single GSO sentence
with quantifier rank q. The analogous statements hold for MSO as well.

If A is a τ -structure and ā is a k-tuple of elements of A, then we write (A, ā) for a
τ ∪ {c1, . . . , ck}-structure expanding A where c1, . . . , ck denote fresh constant symbols being
mapped to the corresponding entries of ā. If A and B are τ -structures and ā ∈ Ak, b̄ ∈ Bk,
and when writing (A, ā) ≡GSO

q (B, b̄) we implicitly assume that we have chosen the same
constant symbols for ā and for b̄.

▶ Lemma 7 (Proposition 3.4 in [5]). Let q ∈ N and let A and B be τ -structures. Then
A ≡GSO

q+1 B if and only if the following properties hold:
(first-order forth) For every a ∈ A, there exists b ∈ B such that (A, a) ≡GSO

q (B, b).
(first-order back) For every b ∈ B, there exists a ∈ A such that (A, a) ≡GSO

q (B, b).
(second-order forth) For every expansion A′ of A by a guarded relation, there exists an
expansion B′ of B by a guarded relation such that A′ ≡GSO

q B′.
(second-order back) For every expansion B′ of B by a guarded relation, there exists an
expansion A′ of A by a guarded relation such that A′ ≡GSO

q B′.

In the following, τ denotes a finite relational signature.

▶ Definition 8. Let ρ := {c1, . . . , cn} be a finite set of constant symbols. Then Dn is defined
to be the set of all pairs (A,B) of finite (τ ∪ ρ)-structures such that

cA = cB for all constant symbols c ∈ ρ;
{cA1 , . . . , cAn} = A ∩B = {cB1 , . . . , cBn }.

We write A ⊎ B for the structure with domain A ∪B such that RA⊎B := RA ∪RB for each
relation symbol R ∈ τ and cA⊎B = cA = cB for each constant symbol c ∈ ρ.

The following theorem in the special case of n = 0 is Proposition 4.1 in [5].
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▶ Theorem 9. Let q, n, r, s ∈ N, let (A1,B1), (A2,B2) ∈ Dn, and let ā1 ∈ (A1)r, ā2 ∈ (A2)r,
b̄1 ∈ (B1)s, b̄2 ∈ (B2)s be such that (A1, ā1) ≡GSO

q (A2, ā2) and (B1, b̄1) ≡GSO
q (B2, b̄2).

Then

(A1 ⊎ B1, ā1, b̄1) ≡GSO
q (A2 ⊎ B2, ā2, b̄2).

Proof. Our proof is by induction on q. Every quantifier-free formula is a Boolean combination
of atomic formulas, so for q = 0 it suffices to consider atomic formulas ϕ. By symmetry, it
suffices to show that if (A1 ⊎B1, ā1, b̄1) |= ϕ then (A2 ⊎B2, ā2, b̄2) |= ϕ. Then ϕ is built using
a relation symbol R ∈ τ , and the tuple that witnesses the truth of ϕ in A1 ⊎B1 must be from
RA1 or from RB1 , by the definition of A1 ⊎ B1. We first consider the former case; the latter
case can be treated similarly. If a constant that appears in ϕ is from A1 ∩B1, then by the
definition of Dn this element is denoted by a constant symbol c ∈ ρ, and therefore we may
assume without loss of generality that ϕ is a formula over the signature of (A1, ā1). Hence,
(A1, ā1) |= ϕ and by assumption (A2, ā2) |= ϕ. This in turn implies that (A2 ⊎B2, ā2, b̄2) |= ϕ.

For the inductive step, suppose that the claim holds for q, and that (A1, ā1) ≡GSO
q+1 (A2, ā2)

and (B1, b̄1) ≡GSO
q+1 (B2, b̄2). By symmetry and Lemma 7 it suffices to verify the properties

(first-order forth) and (second-order forth). Let c1 ∈ A1 ∪B1. We may assume that c1 ∈ A1;
the case that c1 ∈ B1 can be shown similarly. By Lemma 7, there exists c2 ∈ A2 such that
(A1, ā1, c1) ≡GSO

q (A2, ā2, c2). By the inductive assumption, this implies that

(A1 ⊎ B1, ā1, c1, b̄1) ≡GSO
q (A2 ⊎ B2, ā2, c2, b̄2)

and concludes the proof of (first-order forth).
Now let R be a guarded relation of A1 ⊎ B1 of arity k. Let A′

1 be the expansion of A1
by the guarded relation R ∩ Ak1 , and B′

1 be the expansion of B1 by the guarded relation
R ∩ Bk1 . By Lemma 7 there are expansions A′

2 of A and B′
2 of B2 by guarded relations

such that (A′
1, ā1) ≡GSO

q (A′
2, ā2) and (B′

1, b̄1) ≡GSO
q (B′

2, b̄2). By the inductive assumption,
this implies that (A′

1 ⊎ B′
1, ā1, b̄1) ≡GSO

q (A′
2 ⊎ B′

2, ā2, b̄2), which completes the proof of
(second-order forth). ◀

▶ Corollary 10. Let C be a CSP that can be expressed in GSO. Then there exists a countable
ω-categorical structure B such that C = CSP(B).

Proof. Let τ be the signature of C, and let Φ be a GSO τ -formula with quantifierrank q such
that C = JΦK. By Theorem 4 it suffices to show that the equivalence relation ∼C

n has finite
index for every n ∈ N. Let ρ := {c1, . . . , cn} be a set of new constant symbols. By Lemma 6,
there exists an m ∈ N such that ≡GSO

q has m equivalence classes on (τ ∪ ρ)-structures. If
ϕ(x1, . . . , xn) is a primitive positive τ -formula, then define Sϕ to be the (τ ∪ ρ)-structure
whose elements are the equivalence classes of the smallest equivalence relation on the variables
of ϕ that contains all pairs x, y such that ϕ contains the conjunct x = y, and such that
(C1, . . . , Cn) ∈ RS for R ∈ τ if and only if there are y1 ∈ C1, . . . , yn ∈ C2 such that
R(y1, . . . , yn) is a conjunct of ϕ; finally, we set cSϕ

i := [xi] for all i ∈ {1, . . . , n}.
We claim that if Sϕ ≡GSO

q Sψ, then ϕ ∼C
n ψ. Let θ(x1, . . . , xn) be a primitive positive

τ -formula; we may assume that the existentially quantified variables of θ are disjoint from
the existentially quantified variables of ϕ and of ψ, so that (Sϕ,Sθ), (Sψ,Sθ) ∈ Dn. Since
Sϕ ≡GSO

q Sψ and Sθ ≡GSO
q Sθ, we have Sϕ ⊎ Sθ ≡GSO

q Sψ ⊎ Sθ by Theorem 9. Now
suppose that ϕ ∧ θ is satisfiable in a model of Φ. This is the case if and only if Sϕ ⊎ Sθ

satisfies Φ, which in turn implies that Sψ ⊎ Sθ satisfies Φ since Φ has quantifierrank q. This
in turn is the case if and only if ψ ∧ θ is satisfiable in a model of Φ, which proves the claim.

The claim implies that ∼C
n has at most m equivalence classes, concluding the proof. ◀
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▶ Example 11. Let Φ be the following MSO sentence.

∀X
(
∃x : X(x) ⇒ ∃x, y ∈ X ∀z ∈ X(¬E(x, z) ∨ ¬E(y, z))

)
It is easy to see that JΦK is closed under disjoint unions and that its complement is closed
under homomorphisms. Corollary 10 implies that there exists a countable ω-categorical
structure with CSP(B) = JΦK.

3.3 Finite Unions of CSPs
In this section we prove that every class in GSO whose complement is closed under homo-
morphisms is a finite union of CSPs (Lemma 16); the statement announced at the beginning
of Section 3 then follows (Corollary 17). Throughout this section, let C be a non-empty class
of finite τ -structures whose complement is closed under homomorphisms. In particular, C
contains the structure I with only one element where all relations are empty.

Let ∼ be the equivalence relation defined on C by letting A ∼ B if for every C ∈ C we
have A⊎C ∈ C if and only if B⊎C ∈ C; here ⊎ denotes the usual disjoint union of structures,
which is a special case of Definition 8 for n = 0. Note that the equivalence classes of ∼ are
in one-to-one correspondence to the equivalence classes of ∼C

0 . Also note that C is closed
under disjoint unions if and only if ∼ has only one equivalence class.

If A ∈ C, then we write [A] for the equivalence class of A with respect to ∼. The following
observations are immediate consequences from the definitions:
1. each ∼-equivalence class is closed under homomorphic equivalence.
2. each ∼-equivalence class is closed under disjoint unions.
3. A ∈ [I] if and only if A ⊎ B ∈ C for all B ∈ C.

▶ Lemma 12. Let A ∈ C and let D be the smallest subclass of C that contains [A] and whose
complement is closed under homomorphisms. Then
1. D is a union of equivalence classes of ∼, and
2. if ∼ has more than one equivalence class, then C \ D is non-empty.

Proof. Let C ∈ [A], let B be a finite structure with a homomorphism to C, and let B′ ∈ [B].
Since B ⊎ C and C are homomorphically equivalent, we have that B ⊎ C ∼ C. We claim that
B′ ⊎ C ∼ C. To see this, let D ∈ C. Then

C ⊎ D ∈ C ⇔ (B ⊎ C) ⊎ D ∈ C (since B ⊎ C ∼ C)
⇔ B ⊎ (C ⊎ D) ∈ C
⇔ B′ ⊎ (C ⊎ D) ∈ C (since B ∼ B′)
⇔ (B′ ⊎ C) ⊎ D ∈ C

which shows the claim. So B′ ⊎ C ∈ [C] = [A]. Since B′ has a homomorphism to B′ ⊎ C we
obtain that B′ ∈ D; this proves the first statement.

To prove the second statement, first observe that the statement is clear if A ∈ [I], since
the complement of [I] is closed under homomorphisms. The statement therefore follows from
the assumption that ∼ has more than one equivalence class. Otherwise, if A /∈ [I], then there
exists a structure B ∈ C such that A ⊎ B /∈ C. Then B ∈ C \ D can be shown indirectly as
follows: otherwise B would have a homomorphism to a structure A′ ∈ [A]. Since B ⊎ A′ is
homomorphically equivalent to A′, we have B ⊎ A′ ∼ A′ ∼ A and in particular B ⊎ A′ ∈ C.
But B ⊎ A′ ∈ C if and only if B ⊎ A ∈ C since A ∼ A′. This is in contradiction to our
assumption on B. ◀

ICALP 2021



120:12 Datalog for Guarded Second-Order Logic

▶ Example 13. We consider a signature τ := {R1, R2, R3} of unary relation symbols. Define
for every i ∈ {1, 2, 3} the τ -structure Si to be a one-element structure where Ri is non-empty
and Rj , for j ̸= i, is empty. Let

C := CSP(S1 ⊎ S2) ∪ CSP(S2 ⊎ S3) ∪ CSP(S3 ⊎ S1).

Clearly, the complement of C is closed under homomorphisms. The equivalence classes of ∼
can be described as follows. For distinct i, j ∈ {1, 2, 3},

[Si ⊎ Sj ] = CSP(Si ⊎ Sj) \ (CSP(Si) ∪ CSP(Sj))
[Si] = CSP(Si) \ [I]

[I] = CSP(I).

For the remainder of the section we fix a GSO τ -sentence Φ of quantifier rank q. Recall
that Lemma 6 asserts that the equivalence relation ≡GSO

q on the class of finite τ -structures has
finitely many equivalence classes C1, . . . , Cm, and that each of the equivalence classes Ci can be
defined by a single GSO τ -sentence Ψi with quantifier rank q; we write T τq := {Ψ1, . . . ,Ψm}
for this set of GSO sentences. Let J ⊆ {1, . . . ,m} be such that {Ψj ∈ T τq | j ∈ J} is exactly
the set of all sentences in T τq that imply Φ. Then |J | is called the degree of Φ. It is easy
to see that the degree of Φ is exactly the index of ≡GSO

q restricted to JΦK. Let ∼ be the
equivalence relation defined in the beginning of this section for the class C := JΦK.

▶ Lemma 14. For every ∼-class D there exists I ⊆ {1, . . . ,m} such that D =
⋃
i∈IJΨiK.

Proof. As in the proof of Corollary 10 one can use Theorem 9 to show for all finite τ -structures
A,B that if A ≡GSO

q B, then A ∼ B. This means that D is a union of ≡GSO
q -classes and

therefore there exists I ⊆ J ⊆ {1, . . . ,m} such that D =
⋃
i∈IJΨiK. ◀

▶ Corollary 15. The index of ∼ is smaller than or equal to the degree of Φ.

▶ Lemma 16. If the complement of JΦK is closed under homomorphisms, then there are
GSO τ -sentences Φ1, . . . ,Φt each of which describes a CSP such that Φ is equivalent to
Φ1 ∨· · ·∨Φt. If Φ is an MSO sentence, then Φ1, . . . ,Φt can be be chosen to be MSO sentences
as well.

Proof. We prove the statement by induction on the degree n of Φ. By Lemma 15 the
equivalence relation ∼ has at most n equivalence classes on τ -structures. Hence, if n = 1,
then JΦK is closed under disjoint unions, and we are done.

Let A1, . . . ,As be τ -structures such that {[A1], . . . , [As]} is the set of all equivalence
classes of ∼ that are distinct from [I]. Let Di be the smallest subclass of JΦK that contains
[Ai] and whose complement is closed under homomorphisms. Note that JΦK =

⋃
i≤s Di since

[I] is contained in Di for all i ≤ s. By Lemma 12 (1), each Di is a union of ∼-classes which are
themselves a union of ≡GSO

q -classes by Lemma 14. It follows that there exists Ii ⊆ {1, . . . ,m}
such that Di =

⋃
j∈Ii

JΨjK. We define Φi :=
∨
j∈Ii

Ψj . Note that the GSO sentence Φi is of
quantifier rank q such that Di = JΦiK. Hence, Φ is equivalent to

∨
i≤s Φi. Lemma 12 (2)

asserts that JΦK \ Di is non-empty, and hence the degree of Φi must be strictly smaller than
n for all i ∈ {1, . . . , s}. The statement now follows from the inductive assumption. The same
argument applies to MSO as well. ◀

Lemma 16 together with Corollary 10 implies the following.
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▶ Corollary 17. Every GSO sentence which is closed under homomorphisms is equivalent to
a finite conjunction of GSO sentences each of which describes the complement of a CSP of a
countable ω-categorical structure. The analogous statement holds for MSO.

Not every homomorphism-closed class of structures that can be expressed in Second-order
Logic is a finite intersection of complements of CSPs. We even have an example of a class of
finite τ -structures that can be expressed in Datalog but cannot be written in this form.

▶ Example 18. Let S and T be unary, and let R be a binary relation symbol. Let C be the
class of all finite {S, T,R}-structures A such that the following Datalog program Π with the
binary IDB E derives goal on A.

E(x, y) :− S(x), S(y)
E(x, y) :− E(x′, y′), R(x′, x), R(y′, y)

goal :− T (x), E(x, x′), R(x′, y)

For n ∈ N, let Pn be the {S, T,R}-structure on the domain {1, . . . , n} with

SPn := {1} TPn := {n} RPn :=
{

(i, i+ 1) | i ∈ {1, . . . , n− 1}
}
.

It is easy to see that each of the structures in {Pn | n ≥ 1} is not contained in C, and that
the disjoint union of Pi and Pj , for i ̸= j, is contained in C. It follows that C is not a finite
intersection of complements of CSPs (and, by Corollary 17, cannot be expressed in GSO).

4 Canonical Datalog Programs

A remarkable fact about the expressive power of Datalog for constraint satisfaction problems
over finite domains is the existence of canonical Datalog programs [19]; this has been
generalised to CSPs for ω-categorical structures.

▶ Theorem 19 (Bodirsky and Dalmau [7]). Let B be a countable ω-categorical τ -structure.
Then for all ℓ, k ∈ N there exists a canonical Datalog program Π of width (ℓ, k) for the
complement of CSP(B). Moreover, for every finite τ -structure A the following are equivalent:

Π derives goal on A;
Spoiler has a winning strategy for the existential (ℓ, k)-pebble game on (A,B).

We later need the following well-known fact.

▶ Lemma 20. If C1 and C2 are in Datalog, then so are C1 ∪ C2 and C1 ∩ C2. If Π1 and Π2
are Datalog programs of width (ℓ, k), then there is a Datalog program Π of width (ℓ, k) for
JΠ1K ∪ JΠ2K and for JΠ1K ∩ JΠ2K.

Proof. For union, let Π be obtained by taking the union of the rules of Π1 and of Π2, possibly
after renaming IDB predicate names to make them disjoint except for goal. For intersection,
we proceed similarly, but we first rename the symbol goal in Π1 to goal1 and the symbol goal
in Π2 to goal2. Finally we add the new rule goal :− goal1, goal2 to the union of Π1 and Π2.
It is clear that these constructions preserve the width. ◀

▶ Theorem 21. Let Φ be a GSO sentence such that JΦK is closed under homomorphisms.
Let ℓ, k ∈ N. Then there exists a canonical Datalog program Π of width (ℓ, k) for JΦK.

ICALP 2021



120:14 Datalog for Guarded Second-Order Logic

Proof. By Corollary 17 there are GSO sentences Φ1, . . . ,Φm and ω-categorical structures
B1, . . . ,Bm such that Φ is equivalent to Φ1 ∧ · · · ∧ Φm and J¬ΦiK = CSP(Bi). Let Πi be
the canonical Datalog program for CSP(Bi) which exists by Theorem 19. Then Lemma 20
implies that there exists a Datalog program Π such that JΠK = JΠ1K ∩ · · · ∩ JΠmK. It is clear
that Π is sound for JΦK. To see that Π is a canonical Datalog program for JΦK, suppose
that A is such that some Datalog program Π′ of width (ℓ, k) which is sound for JΦK derives
goal on A. Since, for every i ∈ {1, . . . ,m}, the program Π′ is also sound for JΦiK, and
Πi is a canonical Datalog program for JΦiK, the program Πi derives goal on A. Hence,
A ∈ JΠK = JΠ1K ∩ · · · ∩ JΠmK. ◀

▶ Theorem 22. Let Φ be a GSO sentence. Then JΦK can be defined in Datalog if and only if
1. JΦK is closed under homomorphisms, and
2. there exist ℓ, k ∈ N such that for all finite structures A, Spoiler wins the (ℓ, k)-game for

JΦK on A if and only if A |= Φ.

Proof. First suppose that JΦK is in Datalog. That is, there exists ℓ, k ∈ N and a Datalog
program Π of width (ℓ, k) such that JΦK = JΠK. Then clearly JΦK is closed under homomor-
phisms, and by Lemma 16, there are GSO sentences Φ1, . . . ,Φm such that Φ is equivalent
to Φ1 ∧ · · · ∧ Φm and JΦiK is the complement of a CSP, for each i ∈ {1, . . . ,m}. Corol-
lary 10 implies that there exists an ω-categorical structure Bi such that CSP(Bi) = J¬ΦiK.
Now suppose that A is a finite τ -structure such that A |= Φ. Then Spoiler wins the
(ℓ, k)-game as follows. Suppose that Duplicator plays the countable structure B such that
CSP(B) ∩ JΦK = ∅. Then CSP(B) ∩ JΦiK = ∅ for some i ∈ {1, . . . ,m}; otherwise, if there
is a structure Ai ∈ CSP(B) ∩ JΦiK for every i ∈ {1, . . . ,m}, then the disjoint union of
A1, . . . ,Am satisfies Φi since Φi is closed under homomorphisms, and is in CSP(B) since
CSP(B) is closed under disjoint unions; but this is in contradiction to our assumption that
CSP(B) ∩ JΦK = ∅. Hence, CSP(B) ⊆ CSP(Bi) and hence there is a homomorphism h from
B to Bi (see [7]). Note that Π is sound for CSP(Bi), and Π derives goal on A, and hence
Theorem 19 implies that Spoiler wins the existential (ℓ, k)-pebble game on (A,Bi). But since
B homomorphically maps to Bi, this implies that Spoiler wins the existential (ℓ, k)-pebble
game on (A,Bi). Now suppose that A |= ¬Φ. Hence, there exists i ∈ {1, . . . ,m} such that
A |= ¬Φi. Then Duplicator wins the (ℓ, k)-game as follows. She starts by playing Bi. Then
A homomorphically maps to Bi, and Duplicator can win the existential (ℓ, k) pebble game
on (A,Bi) by always playing along the homomorphism.

For the converse implication, suppose that 1. and 2. hold. Since JΦK is closed under
homomorphisms, Corollary 17 implies that there are GSO sentences Φ1, . . . ,Φm and ω-
categorical structures B1, . . . ,Bm such that Φ is equivalent to Φ1 ∧ · · · ∧ Φm and J¬ΦiK =
CSP(Bi). By Theorem 19, for every i ∈ {1, . . . ,m} there exists a canonical Datalog program
Πi of width (ℓ, k) for JΦiK. Then Lemma 20 implies that there exists a Datalog program
Π such that JΠK = JΠ1K ∩ · · · ∩ JΠmK. Since each Πi is sound for JΦiK, it follows that Π is
sound for JΦK. Hence, it suffices to show that if A is a finite τ -structure such that A |= Φ,
then Π derives goal on A. Since A |= Φi for all i ∈ {1, . . . ,m}, the assumption implies that
Spoiler wins the existential (ℓ, k) pebble game on (A,Bi). By Theorem 19, it follows that Πi

derives goal on A. Hence, Π derives goal on A. ◀

5 A coNP-complete CSP in MSO

In this section we show that the class of CSPs in MSO is (under complexity-theoretic
assumptions) larger than the class of CSPs for reducts of finitely bounded structures (see
Section 3.1). Let T = {T2,T3, . . . } be the set of Henson tournaments: the tournament Tn,
for n ≥ 2, has vertices 0, 1, . . . , n+ 1 and the following edges:
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(i, i+ 1) for i ∈ {0, . . . , n};
(0, n+ 1);
(j, i) for i+ 1 < j and (i, j) ̸= (0, n+ 1).

The class C of all finite loopless digraphs that do not embed any of the digraphs from T is
an amalgamation class, and hence there exists a homogenous structure H with age C. It has
been shown in [9] that CSP(H) is coNP-complete.

▶ Proposition 23. CSP(H) can be expressed in MSO.

Proof. We have to find an MSO sentence that holds on a given digraph (V ;E) if and only if
(V ;E) does not embed any of the tournaments from T . We specify an MSO {X,E}-sentence
Φ, for a unary relation symbol X, that is true on a finite {X,E}-structure S if and only if
(XS;ES) is isomorphic to Tn, for some n ≥ 2. In ϕ we existentially quantify over

two vertices s, t ∈ X (that stand for the vertex 0 and the vertex n+ 1 in Tn).
a partition of X \ {s} into two sets A and B (they stand for the set of even and the set
of odd numbers in {1, . . . , n+ 1}).

The formula Φ has the following conjuncts:
1. a first-order formula that states that E defines a tournament on X;
2. a first-order formula that expresses that E is a linear order on A with maximal element a;
3. a first-order formula that expresses that E is a linear order on B with maximal element b;
4. E(s, t), E(s, a), E(a, b), and E(x, s) for all x ∈ X \ {a, t};
5. a first-order formula that states that if there is an edge from an element x ∈ A to an

element y ∈ B then there is precisely one element z ∈ A such that (y, z), (z, x) ∈ E,
unless y = t;

6. a first-order formula that states that if there is an edge from an element x ∈ B to an
element y ∈ A then there is precisely one element z ∈ B such that (y, z), (z, x) ∈ E,
unless y = t.

We claim that the MSO sentence ∀x : ¬E(x, x)∧∀X : ¬Φ holds on a finite digraph if and only
if the digraph is loopless and does not embed Tn, for all n ≥ 3. The forwards implication
easily follows from the observation that if (X;T ) is isomorphic to Tn, for some n ≥ 2, then
ϕ holds; this is straightforward from the construction of Φ (and the explanations above
given in brackets). Conversely, suppose that Φ holds. Then (X;T ) is a tournament. We
construct an isomorphism f from (X;T ) to T|X|−1 as follows. Define f(s) := 0, f(a) := 1,
and f(b) = 2. Since E(a, b), by item 5 there exists exactly one a′ ∈ A such that E(b, a′)
and E(a′, a). Define f(a′) := 3. If a′ = t then we have found an isomorphism with T2.
Otherwise, the partial map f defined so far is an embedding into Tn for some n ≥ 3. Item 6
and E(b, a′) imply that there exists exactly one b′ ∈ B such that E(a′, b′) and E(b′, b), and
we define f(b′) := 4. Continuing in this manner, we eventually define f on all of X and find
an isomorphism with T|X|−1. ◀

This shows that CSP(H) cannot be expressed, unless NP = coNP, as CSP(B) for some
reduct of a finitely bounded structure and such CSPs are in NP. We do not know how to show
this statement without complexity-theoretic assumptions, even if we just want to rule out
that CSP(H) can be expressed as CSP(B) for some reduct of a finitely bounded homogeneous
structure.

6 Conclusion and Open Problems

We provided a game-theoretic characterisation of those problems in Guarded Second-order
Logic that are equivalent to a Datalog program. We also proved the existence of canonical
Datalog programs for GSO sentences whose models are closed under homomorphisms. To
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prove these results, we showed that every class of finite τ -structures in GSO whose complement
is closed under homomorphisms is a finite union of CSPs. We also showed that every CSP in
GSO can be formulated as a CSP of an ω-categorical structure. These results also imply that
the so-called universal-algebraic approach, which has eventually led to the classification of
finite-domain CSPs in Datalog [3], can be applied to study problems that are simultaneously
in Datalog and in GSO (also see [11]). Our results might also pave the way towards a
syntactic characterisation of Datalog ∩ GSO. We close with two open problems.
1. Nested monadically defined queries (Nemodeq) have been introduced by Rudolph and

Krötzsch [25]; they prove that Nemodeq is contained both in MSO and in Datalog. We
ask wether conversely, every problem in MSO ∩ Datalog is expressible as a Nemodeq.

2. Is every CSP of a reduct of a finitely bounded homogeneous structure in GSO?
We are also confident that our results will advance the understanding of CSPs (the com-
plements of) which are obtained as the homomorphism-closure of the set of some theory’s
finite models. For example, the homomorphism-closures of the model sets of guarded- and
guarded-negation-theories have recently been found to be GSO-expressible [8] so, by virtue
of our results, we immediately know they must be (complements of) ω-categorical CSPs.
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