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Abstract
We show that it is decidable whether two regular languages of infinite trees are separable by
a deterministic language, resp., a game language. We consider two variants of separability, depending
on whether the set of priorities of the separator is fixed, or not. In each case, we show that separability
can be decided in EXPTIME, and that separating automata of exponential size suffice. We obtain
our results by reducing to infinite duration games with ω-regular winning conditions and applying
the finite-memory determinacy theorem of Büchi and Landweber.

2012 ACM Subject Classification Theory of computation Ñ Automata over infinite objects; Theory
of computation Ñ Tree languages

Keywords and phrases separation, infinite trees, regular languages, deterministic automata, game
automata

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.126

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2105.01137 [15]

Funding Lorenzo Clemente: Partially supported by the Polish NCN grant 2017/26/D/ST6/00201.
Michał Skrzypczak: Partially supported by the Polish NCN grant 2017/26/D/ST6/00201.

1 Introduction

One of the most intriguing and motivating problems in the field of automata theory is the
membership problem. For two fixed classes of languages C (input class) and D (output class),
the pC, Dq-membership problem asks, given a representation of a language in C, whether
this language belongs to D. Among the first results of this type is the famous theorem by
Schutzenberger [40] and McNaughton-Papert [30], characterising, among all regular languages
of finite words, the subclass of languages that can be defined in first-order logic.

In this paper we consider the class C of regular languages of infinite trees. While there
are many semantically equivalent automata models for this class – e.g., Muller, Rabin,
and Street automata [27] – parity automata are without doubt the most established such
model [25]. The most important descriptional complexity measure of a parity automaton
is the set of priorities C Ď N it is allowed to use, which is called its index. Not only a
larger index allows the automaton to recognise more languages [32], but the computational
complexity of known procedures for the emptiness problem crucially depends on the index
(the current best bound is quasi-polynomial [8]). The most famous open problem in the
area of regular languages of infinite trees is the nondeterministic index membership problem,
which is the pC, Dq-membership problem for D the class of languages recognised by some
nondeterministic parity automaton of a fixed index C (cf. [18]). In many cases, the solution of
the membership problem relies either on algebraic representations or determinisation, however
algebraic structures for regular languages of infinite trees are of limited availability (cf. [2])
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and deterministic automata do not capture all regular languages. While on infinite words
this problem was essentially solved by Wagner already at the end of the ’70s [43], its solution
for infinite trees seems still far away.

Known decidability results abound if we restrict either the input class C or the output
class D. Results of the first kind are known for C being the class of deterministic [35] and,
more generally, game automata [26, Theorem 1.2]. Results of the second kind (i.e., when
the input class C is the full class of regular languages) exist for the output class D being
the lower levels of the index hierarchy [29, 44] and of the Borel hierarchy [4], the class of
deterministic languages [33], and Boolean combinations of open sets [6]. Other variants
of the index membership problem are known to be decidable, including the early result of
Urbański showing that it is decidable whether a given deterministic parity tree automaton is
equivalent to some nondeterministic Büchi one [42], the weak alternating index problems for
the class of deterministic automata [31] and Büchi automata [17, 41], and deciding whether
a given parity automaton is equivalent to some nondeterministic co-Büchi automaton [17].

Another problem closely related to membership is separability. The pC, Dq-separability
problem asks, given a pair of languages L, M in C, whether there exists a language S in D
(called a separator) s.t. L Ď S and1 S K M . Intuitively, a separator S provides a certificate
of disjointness, yielding information on the structure of L, M up to some chosen granularity.
The separability problem is a generalisation of the membership problem if the class C is closed
under complement, since we can always take M to be the complement of L, in which case
the only candidate for the separator is L itself. There are many elegant results in computer
science, formal logic, and mathematics showing that separators always exist. Instances include
Lusin’s separation theorem in topology (two disjoint analytic sets are always separable by
a Borel set; cf. [28, Theorem 14.7]), a folklore result in computability theory (two disjoint
co-recursively enumerable sets are separable by a recursive set), Craig’s theorems in logic
(jointly contradictory first-order formulas can be separated by a formula containing only
symbols in the shared vocabulary [19]) and model theory (two disjoint projective classes
are separable by an elementary class [19]); in formal language theory, a generalisation of a
theorem suggested by Tarski and proved by Rabin [38, Theorem 29] states that two disjoint
Büchi languages of infinite trees are separable by a weak language (cf. [39]).

In this work we study the pC, Dq-separability problems where C is the full class of regular
languages of infinite trees, and D is one of four kinds of sub-classes thereof, depending on
whether the automaton is deterministic or game, and depending on whether we fix a finite
index C Ď N or we leave it unrestricted C “ N. Our main result is that all four kinds of the
separability problems above are decidable and in EXPTIME. Moreover, we show that if a
separator exists, then there is one of exponential size.

▶ Theorem 1. The deterministic and game separability problems can be solved in EXPTIME,
both for a fixed finite index C Ď N, and an unrestricted one C “ N. Moreover, separators
with exponentially many states and polynomially many priorities suffice.

Our work is permeated by the observation that the separability problem for two languages
L, M can be phrased in terms of a game of infinite duration with an ω-regular winning
condition. In such a separability game there are two players, Separator trying to prove that
L, M are separable, and Input with the opposite objective. In the simple case of pC, Dq-
separability where C is the class of regular languages of ω-words and D the subclass induced
by deterministic parity automata of finite index C, the i-th round of the game is as follows:

1 We write S K M for S X M “ H.
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Separator plays a priority ci P C.

Input plays a letter ai from the finite alphabet Σ.

The resulting infinite play pc0, a0qpc1, a1q ¨ ¨ ¨ is won by Separator if 1) a0a1 ¨ ¨ ¨ P L implies
c0c1 ¨ ¨ ¨ is accepting and 2) a0a1 ¨ ¨ ¨ R L implies c0c1 ¨ ¨ ¨ is rejecting. Since the winning
condition is ω-regular, by the result of Büchi and Landweber [7] we can decide who wins the
game and moreover finite-memory strategies for Separator suffice. Thanks to a correspondence
between such strategies and deterministic separators, Separator wins such a game iff there
exists a deterministic automaton with priorities in C separating L, M . This provides both
decidability of the separability problem and an upper-bound on the size of separators. We
design analogous games with ω-regular winning conditions for the more involved case of
infinite trees for the separability problems mentioned above and apply [7].

The separability problems we consider have been open so far and generalise the corres-
ponding membership problems. A solution for deterministic separability can easily be derived
from [34], however our techniques based on games are novel and provide a unified view on
all problems. When instantiated to the specific case of membership, our decidability results
generalise the deterministic case (for both fixed and unconstrained index) [34, 33] and the
game membership case for unconstrained index [26, Theorem 7.12]. We believe the game
approach is much more direct than the combinatorial and pattern-based techniques used in
the previous solutions, cf. [26, Section 7, pp. 29–37]. The game membership problem for
a fixed index C has been open so far.

We are not aware of computation complexity results for separability problems over
regular languages of infinite trees, neither of an analysis of the size of separators. Regarding
deterministic membership, EXPTIME-completeness is known [34, Corollary 11], as well as
EXPTIME upper [33, end of page 12] and lower bounds [44, Theorem 4.1] (cf., also [29]) for
computing the optimal deterministic index. Devising non-trivial complexity lower bounds for
the separability problem is left for future work, as well as extending our approach to other
classes of separators.

Related works. Over finite words, variants of the pC, Dq-separability problem have been
studied for classes C both more general than the regular languages, such as the context
free languages [23, 45] and higher-order languages [14] (later extended to safe schemes over
finite trees [1]), and for classes D more restrictive than the regular languages, such as
in [36, 37]. The separability and membership problems have also been studied for several
classes of infinite-state systems, such as vector addition systems [11, 10, 24], well-structured
transition systems [22], one-counter automata [21], and timed automata [13, 12]. Recent
developments on efficient algorithms solving parity games are based on the ability to find
a simple separator, yielding both upper bounds on the problem, and lower bounds for a
wide family of algorithms [5, 20, Chapter 3]. Finally, it is worth mentioning that games
have already been successfully used to provide several characterisation results, such as
in [18, 17, 16, 3, 41, 9].

Outline. In Section 2 we introduce automata and other mathematical preliminaries. In
Sections 3–6 we present the game-theoretic characterisations of the separability problems we
consider. We believe this is the most interesting aspect of this work. A technical report is
available [15] where a detailed complexity analysis is performed and full proofs are provided.

ICALP 2021
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2 Preliminaries

A nonempty finite set Σ of letters a P Σ is called an alphabet. A (Σ-labelled) tree is a function
t : tL, Ru˚ Ñ Σ assigning to each node u P tL, Ru˚ a label tpaq P Σ. The root of a tree is
denoted ϵ. The set of all Σ-labelled trees is denoted TrΣ. The symbols L, R are called directions
and a branch is an infinite sequence thereof d0d1 ¨ ¨ ¨ P tL, Ruω. A tree t is uniquely defined by
the set of its paths Pathptq “ tpa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL, Ruqω | @i. ai “ tpd0d1 ¨ ¨ ¨ di´1qu,
which is extended to languages pointwise as PathpLq “ tPathptq | t P Lu.

Automata. Fix a nonempty finite set of priorities C Ď N. A (top-down, nondeterministic,
parity, tree) automaton is a tuple A “ pΣ, Q, q0, Ω, ∆q, where Σ is a finite alphabet, Q is
a finite set of states, amongst which q0 P Q is the initial state, Ω: Q Ñ C assigns a priority
to every state, and ∆ Ď Q ˆ Σ ˆ Q ˆ Q is a set of transitions. The priority function Ω is
extended to a transition δ “ pq, _, _, _q as Ωpδq :“ Ωpqq, pointwise to an infinite sequence of
states Ωpq0q1 ¨ ¨ ¨ q :“ Ωpq0qΩpq1q ¨ ¨ ¨ P Cω and transitions Ωpδ0δ1 ¨ ¨ ¨ q “ Ωpδ0qΩpδ1q ¨ ¨ ¨ P Cω.
An infinite sequence of priorities c0c1 ¨ ¨ ¨ P Cω is accepting if the maximal priority occurring
infinitely often is even. Similarly, an infinite sequence of states ρ “ q0q1 ¨ ¨ ¨ P Qω or of
transitions ρ “ δ0δ1 ¨ ¨ ¨ P ∆ω is accepting whenever Ωpρq is accepting. We write ∆pq, aq “

tpq, a, qL, qRq P ∆u for the set of transitions from a state q P Q over a letter a P Σ, and
∆paq “

Ť

t∆pq, aq | q P Qu for all transitions over a. We extend the notation above to
an infinite path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL, Ruqω by writing ∆pbq for the set of infinite
sequences of transitions δ⃗ “ δ0δ1 ¨ ¨ ¨ P ∆ω of the form δi “ pqi, ai, qL,i, qR,iq for every i, which
are conform to b in the sense that q0 is the initial state of the automaton and qi`1 “ qdi,i.

A run of an automaton A as above over a tree t P TrΣ is a Q-labelled tree ρ P TrQ

s.t. ρpϵq “ q0 is the initial state and for every node in the tree u P tL, Ru˚ the quadruple
`

ρpuq, tpuq, ρpuLq, ρpuRq
˘

belongs to ∆. Such a run is accepting if for every branch d0d1 ¨ ¨ ¨ P

tL, Ruω the sequence of states
`

ρpd0 ¨ ¨ ¨ di´1q
˘

iPω
is accepting. The set of all trees t P TrΣ

s.t. A has an accepting run over t is denoted LpAq and is called the language recognised
by A. The corresponding path language is LpathpAq :“ PathpLpAqq Ď pΣ ˆ tL, Ruqω. If
q P Q is a state of an automaton A then by Aq we denote the same automaton as A but
with the initial state q0 changed to q. Thus, LpAqq is the set of trees over which A has
an accepting run ρ starting at ρpϵq “ q. In the rest of the paper we assume that all states q

in an automaton are productive in the sense that LpAqq ‰ H.

Deterministic and game automata. We say that A is a game automaton if, for every
q P Q and a P Σ, either we have a conjunctive transition ∆pq, aq “ tpq, a, qL, qRqu or two
disjunctive transitions ∆pq, aq “ tpq, a, qL, Jq, pq, a, J, qRqu (cf. [26, Definition 3.2]), where
J ‰ q0 represents a distinguished state in Q accepting every tree (i.e., LpAJq “ TrΣ) and
qL, qR ‰ J. An automaton A is deterministic if it is a game automaton with only conjunctive
transitions and in this case for every tree t P TrΣ there exists a unique run ρ of A over t. A
tree language L is deterministic, resp., game, if it can be recognised by some deterministic,
resp., game automaton. Game automata can be complemented with very low complexity by
just increasing every priority by one and by swapping conjunctive and disjunctive transitions.

▶ Lemma 2. If A is a game parity tree automaton, then TrΣzLpAq can be recognised by
a game parity tree automaton with the same number of states and priorities.
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Acceptance games. We present a game-theoretic view on accepting runs. This will serve
both as an example of the kind of games that we consider throughout paper, and as a
technical tool in the proofs from Sections 5 and 6. Let t P TrΣ be a tree. The acceptance
game GaccpA, tq is played in rounds by two players, Automaton and Pathfinder. The goal of
Automaton is to show that t P LpAq; Pathfinder has the complementary objective t R LpAq.

Acceptance game GaccpA, tq

At the i-th round starting at a position vi “ pui, qiq P V :“ tL, Ru˚ ˆ Q:
[A : δ] Automaton plays a transition δi “ pqi, tpuiq, qL,i, qR,iq P ∆pqi, tpuiqq.
[P : d] Pathfinder plays a direction di P tL, Ru.

The next position is vi`1 :“ puidi, qdi,iq.

The initial position is v0 :“ pϵ, q0q. Automaton wins the resulting infinite play π “

pδ0, d0qpδ1, d1q ¨ ¨ ¨ if the sequence of transitions δ0δ1 ¨ ¨ ¨ is accepting. Automaton’s moves in
the acceptance game GaccpA, tq are performed according to a strategy for Automaton. This is
a tuple M “ pM, ℓ0, δ, τq, where M is a set of memory states, of which ℓ0 P M is the initial
memory state, δ : V ˆ M Ñ ∆ is an output function which in a position pu, qq and a memory
state ℓ selects a transition δ

`

pu, qq, ℓ
˘

P ∆pq, tpuqq of A, and τ : V ˆ M ˆ tL, Ru Ñ M is a
memory update function which, in a given position v, memory state ℓ, and direction d selects
the next memory state τpv, ℓ, dq P M . An infinite play π as above is conform to a strategy
M if during the play π Automaton keeps track of the current position vi and memory state
ℓi, updating them after each round (i.e., ℓi`1 :“ τpvi, ℓi, diq) and her consecutive choices of
transitions δi are done according to δpvi, ℓiq. A strategy M is winning if every play conform
to it is winning for Automaton. Automaton wins the acceptance game if she has a winning
strategy. The following proposition is folklore.

▶ Proposition 3. Let t P TrΣ and A be an automaton over the alphabet Σ. Automaton wins
the acceptance game GaccpA, tq if, and only if, t P LpAq.

Disjointness games. Let A and B be two nondeterministic automata. We recall a standard
game used to characterise whether LpAq K LpBq. This will be crucial in the correctness
proofs throughout Sections 3–6. The disjointness game GdispA, Bq is played by two players,
Automaton and Pathfinder. Automaton’s aim is to incrementally build a tree accepted by
both A and B, witnessing LpAq X LpBq ‰ H, while Pathfinder has the opposite objective.2
The set of positions of the game is QA ˆ QB, and the initial position is pqA

0 , qB
0 q.

Disjointness game GdispA, Bq

At the i-th round starting at a position pqA
i , qB

i q:
[A : a] Automaton plays a letter ai P Σ.

[A : δA] Automaton plays a transition δA
i “ pqA

i , ai, qA
L,i, qA

R,iq P ∆ApqA
i , aiq.

[A : δB] Automaton plays a transition δB
i “ pqB

i , ai, qB
L,i, qB

R,iq P ∆BpqB
i , aiq.

[P : d] Pathfinder plays a direction di P tL, Ru.
The next position is pqA

di,i, qB
di,iq.

2 The disjointness game could equivalently be phrased as a nonemptiness game for the product automaton
A ˆ B recognising LpAq X LpBq. However, in our technical development it will be more direct to use the
disjointness game.

ICALP 2021
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Let the resulting infinite play be π “ pa0, δA
0 , δB

0 , d0qpa1, δA
1 , δB

1 , d1q ¨ ¨ ¨ . Such a play
induces an infinite path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ and two sequences of transitions δ⃗A :“
δA

0 δA
1 ¨ ¨ ¨ and δ⃗B :“ δB

0 δB
1 ¨ ¨ ¨ . The rules of the game guarantee that δ⃗A P ∆Apbq and

δ⃗B P ∆Bpbq. Automaton wins the play π if both sequences δ⃗A and δ⃗B are accepting.
In the rest of the paper it will be more useful to consider Pathfinder’s point of view. Since

her winning condition can be presented as Rabin condition, whenever she wins, she has a
memoryless (i.e., M “ tℓ0u) winning strategy. Such a memoryless strategy for Pathfinder in
the disjointness game can be represented by a function P :

`
Ť

aPΣ ∆Apaq ˆ ∆Bpaq
˘

Ñ tL, Ru,
which we call a pathfinder.

▶ Lemma 4. If LpAq K LpBq then there is a pathfinder P which is winning for Pathfinder in
the disjointness game GdispA, Bq.

▶ Corollary 5. Assume that LpAq K LpBq and let P be a pathfinder as above. Let b “

pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL, Ruqω be a path and δ⃗A “ δA
0 δA

1 ¨ ¨ ¨ P ∆Apbq, δ⃗B “ δB
0 δB

1 ¨ ¨ ¨ P

∆Bpbq be two sequences of transitions of these automata that are conform to b. If for every
i P ω we have PpδA

i , δB
i q “ di then at least one of the sequences δ⃗A and δ⃗B is rejecting.

The construction above has a specific property if one of the involved automata (e.g., A)
is a game automaton. Since we assume that every state is productive, positions of the form
pJ, qBq are losing for Pathfinder in GdispA, Bq. Therefore, without loss of generality we can
assume that the pathfinder P satisfies the following observation.
▶ Remark 6. Consider a transition δA “ pqA, a, qA

L , Jq (resp., δA “ pqA, a, J, qA
R q) in a game

automaton A. Then, PpδA, _q is constantly equal to L (resp., R).

3 Separability by deterministic automata with priorities in C

In this section we present a game-theoretic characterisation of separability by deterministic
automata over a fixed finite set of priorities C Ď N. Let A, B be two nondeterministic
automata over infinite trees. We extend the game from the introduction over ω-words with
two additional actions, a selector for Separator and a direction for Input.

C-deterministic-separability game Gsep
detpA, B, Cq

At the i-th round:
[S : c] Separator plays a priority ci P C.
[I : a] Input plays a letter ai P Σ.

[S : f ] Separator plays a selector fi P tL, Ru∆B
paiq.

[I : d] Input plays a direction di P tL, Ru.

Intuitively, a selector encodes a direction for each (relevant) transition of B and this
is used for the correctness of the separator. Assume that the resulting infinite play is
π “ pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ , with the induced infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ .
Separator wins the play π if the following two conditions are satisfied:
1. π P WA: If there exists an accepting sequence of transitions δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq,

then c0c1 ¨ ¨ ¨ is accepting.
2. π P WB: If there exists an accepting sequence of transitions δ⃗B “ δB

0 δB
1 ¨ ¨ ¨ P ∆Bpbq s.t. for

every i P ω we have fipδ
B
i q “ di, then c0c1 ¨ ¨ ¨ is rejecting.

The following lemma states that the separability game correctly characterises the determ-
inistic separability problem.
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▶ Lemma 7. Separator wins Gsep
detpA, B, Cq if, and only if, LpAq, LpBq can be separated by

a deterministic parity tree automaton with priorities in C.

We present a full proof in order to show the rôle of Separator’s selectors.

Soundness. Assume that Separator wins the separability game G :“ Gsep
detpA, B, Cq by a finite-

memory winning strategy M “ pM, ℓ0, pc, fq, τq. Strategy M has two decision functions:
c assigns to each ℓ P M a priority cpℓq P C, and f assigns to each ℓ P M and a P Σ
a selector fpℓ, aq P tL, Ru∆B

paq. Moreover, the type of the memory update function is τ : M ˆ

Σ ˆ tL, Ru Ñ M . Consider a deterministic parity tree automaton S :“ pΣ, M, ℓ0, ΩS , ∆Sq

which has the same set of states M and initial state ℓ0 as M, priorities are induced by
the decision function c of M as ΩSpℓq :“ cpℓq, and transitions are of the form ∆S “

tpℓ, a, τpℓ, a, Lq, τpℓ, a, Rqq | ℓ P M, a P Σu.
We show that S separates LpAq, LpBq. We first show LpAq Ď LpSq. Let t P LpAq be

a tree that is accepted by the automaton A, as witnessed by an accepting run ρA. Let ρS

be the unique run of S over t. Consider any branch d0d1 ¨ ¨ ¨ P tL, Ruω. We need to show
that the sequence of priorities

`

ΩSpρSpd0 ¨ ¨ ¨ di´1qq
˘

iPω
is accepting. Consider a play π of G

where at the i-th round Separator plays according to the strategy M with current memory
state ℓi P M and Input plays according to the letters from t and directions d0d1 ¨ ¨ ¨ fixed
above:

[S : c] Separator plays the priority ci :“ cpℓiq P C.
[I : a] Input plays the letter ai :“ tpuiq P Σ, where ui :“ d0 ¨ ¨ ¨ di´1.

[S : f ] Separator plays the selector fi :“ fpℓi, aiq P tL, Ru∆B
paiq (the selector is irrelevant

in this part of the proof).
[I : d] Input plays the direction di P tL, Ru as fixed above.

The next memory state is ℓi`1 :“ τpℓi, ai, diq. Let the resulting infinite play be π “

pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ . By the construction of S we know that ℓi “ ρSpuiq and
therefore ci “ ΩSpρSpuiqq. Since t P LpAq, there exists an accepting sequence of transitions
δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq along the path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ . Since Separator is winning,

π P WA and thus the sequence c0c1 ¨ ¨ ¨ is accepting, as required.
We now argue that LpSq and LpBq are disjoint. Towards reaching a contradiction, assume

that t P LpSq X LpBq belongs to their intersection. Let ρS be the unique run of S over t, and
let ρB be an accepting run of B over t. Consider a play π “ pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ of
G where the i-th round is played as above except that Input plays the direction di :“ fipδ

B
i q,

obtained by applying the selector fi to the transition δB
i :“

`

ρBpuiq, tpuiq, ρBpuiLq, ρBpuiRq
˘

determined according to the run ρB. By the choice of directions di’s, the sequence of
transitions δ⃗B “ δB

0 δB
1 ¨ ¨ ¨ P p∆Bqω satisfies fipδ

B
i q “ di for every i P ω. Since the run ρB is

accepting, δ⃗B is accepting. Since Separator is winning, π P WB and thus the sequence of
priorities c0c1 ¨ ¨ ¨ is rejecting. However, this is a contradiction, because for each i P ω we
have ℓi “ ρSpuiq and ci “ ΩSpℓiq and we assumed that the run ρS is accepting. ◀

Completeness. Assume that S “ pΣ, QS , qS
0 , ∆S , ΩSq is a deterministic automaton with

priorities in C separating LpAq, LpBq, and we show that Separator wins the separability
game G. Since S is a separator, we have that LpSqKLpBq, and by Lemma 4 there exists
a pathfinder P . Consider the following strategy of Separator, with memory structure QS and
initial memory state qS

0 . At the i-th round of G, starting with a memory state qS
i ,

[S : c] Separator plays the priority ci :“ ΩSpqS
i q P C.

[I : a] Input plays an arbitrary letter ai P Σ.
[S : f ] Separator plays the selector fi :“ PpδS

i , _q P tL, Ru∆B
paiq, where ∆SpqS

i , aiq “ tδS
i u.

[I : d] Input plays an arbitrary direction di P tL, Ru.

ICALP 2021
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The next memory state is qS
i`1 :“ qS

di,i, where δS
i “ pqS

i , ai, qS
L,i, qS

R,iq. This concludes the
description of the i-th round of G. Let the resulting infinite play be π “ pc0, a0, f0, d0q

pc1, a1, f1, d1q ¨ ¨ ¨ , with induced infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ . Let δ⃗S :“ δS
0 δS

1 ¨ ¨ ¨ be
the sequence of transitions used to define the selectors fi. Clearly δ⃗S P ∆Spbq.

First, we argue that π P WA holds. Let δ⃗A “ δA
0 δA

1 ¨ ¨ ¨ P ∆Apbq be an accepting sequence
of transitions of the automaton A. Since each state of A is productive, one can construct
a tree t P LpAq s.t. b P Pathptq. Since LpAq Ď LpSq by the assumption, t P LpSq as well,
and since S is deterministic, the unique run of S over t is accepting. By the definition of
Separator’s strategy, the sequence of priorities along the branch d0d1 ¨ ¨ ¨ of this accepting
run is precisely c0c1 ¨ ¨ ¨ , which thus must be accepting, as required.

Regarding WB, let δ⃗B :“ δB
0 δB

1 ¨ ¨ ¨ P ∆Bpbq be an accepting sequence of transitions over
the path b conform to the selectors fi, i.e., for every i P ω we have fipδ

B
i q “ di. By the

definition of fi, for every i P ω we have di “ PpδS
i , δB

i q. Thus, the assumptions of Corollary 5
are satisfied and at least one of the sequences δ⃗S , δ⃗B must be rejecting. Since we assumed
that δ⃗B is accepting, it means that δ⃗S is rejecting, and so is c0c1 ¨ ¨ ¨ since ci “ ΩSpδS

i q. ◀

4 Separability by deterministic automata

In this section we present a game-theoretic characterisation of the deterministic separability
problem. Notice that here we do not fix in advance a finite set of priorities C. The
deterministic-separability game Gsep

detpA, Bq below is a variant of the game with fixed priorities
C from Section 3.

Deterministic-separability game Gsep
detpA, Bq

At the i-th round:
[I : a] Input plays a letter ai P Σ.

[S : f ] Separator plays a selector fi P tL, Ru∆B
paiq.

[I : d] Input plays a direction di P tL, Ru.

Separator wins the resulting infinite play π “ pa0, f0, d0qpa1, f1, d1q ¨ ¨ ¨ , with induced infinite
path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ , if at least one of the two conditions below fails:
1. π P WA: There exists an accepting sequence of transitions δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq.

2. π P WB: There exists an accepting sequence of transitions δ⃗B “ δB
0 δB

1 ¨ ¨ ¨ P ∆Bpbq s.t. for
every i P ω we have fipδ

B
i q “ di.

Before we prove the equivalence between the game and the existence of a separator, we
define a separator candidate, namely the path-closure of LpAq. This is important since it
will turn out that if a separator exists, then the path-closure is itself a separator. Given
a language of trees L, its path-closure, denoted @PathpLq, is the set of all trees t s.t. for
every path b P Pathptq there exists some tree t1 P L s.t. b P Pathpt1q as well. The path-closure
operator is directly connected with deterministic automata.

▶ Lemma 8 (cf. [34, Proposition 1]). Given a nondeterministic automaton A one can construct
a deterministic automaton Apath recognising the path closure of LpAq, i.e., LpApathq “

@PathpLpAqq. Moreover, LpApathq is the smallest deterministic language containing LpAq.

The following lemma binds together the game Gsep
detpA, Bq, separability, and path-closures.

▶ Lemma 9. The following three conditions are equivalent:
1. Separator wins the deterministic-separability game Gsep

detpA, Bq.
2. The automaton Apath is a deterministic separator for LpAq, LpBq.
3. There exists a deterministic separator for LpAq, LpBq.
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Proof sketch. Consider the implication “1 ñ 2”. Firstly, LpAq Ď LpApathq because the
operator @Pathp_q is non-decreasing. Moreover, the fact that LpApathq K LpBq is witnessed
by the choices of selectors fi by a winning strategy of Separator in Gsep

detpA, Bq. The implication
“2 ñ 3” is trivial. The proof of the implication “3 ñ 1” is similar to the proof of completeness
in Lemma 7 – a separating automaton S can be used to construct a pathfinder P , witnessing
that LpSq and LpBq are disjoint. Now, one can construct a strategy of Separator in Gsep

detpA, Bq

by simulating S and using P to choose the selectors fi. ◀

5 Separability by game automata

In this section we provide a game-theoretic characterisation for the game automata separability
problem. Fix two automata A and B and consider the following separability game Gsep

gamepA, Bq.
The new ingredient is that Separator can choose a mode – a symbol from the set t_, ^u. It
has two uses. First, in the construction of the separating game automaton, the mode dictates
whether there will be a conjunctive or a disjunctive transition. Second, depending on the
chosen mode, Separator will have to play a selector for the automaton A or B, which will
guarantee that the constructed automaton is a separator.

Game-separability game Gsep
gamepA, Bq

At the i-th round:
[I : a] Input plays a letter ai P Σ.

[S : m] Separator plays a mode mi P t_, ^u.
[S : f ] Separator plays either

a. a selector fi P tL, Ru∆A
paiq for A if mi “ _ or

b. a selector fi P tL, Ru∆B
paiq for B if mi “ ^.

[I : d] Input plays a direction di P tL, Ru.

Separator wins an infinite play π “ pa0, m0, f0, d0qpa1, m1, f1, d1q ¨ ¨ ¨ inducing a path b “

pa0, d0qpa1, d1q ¨ ¨ ¨ whenever at least one of the two conditions below fail:
1. π P WA: There exists an accepting sequence of transitions δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq s.t. for

all i P N we have pmi “ _q ñ fipδ
A
i q “ di.

2. π P WB: There exists an accepting sequence of transitions δ⃗B “ δB
0 δB

1 ¨ ¨ ¨ P ∆Bpbq s.t. for
all i P N we have pmi “ ^q ñ fipδ

B
i q “ di.

▶ Lemma 10. Separator wins the separability game Gsep
gamepA, Bq if, and only if, there exists

a game automaton S separating LpAq, LpBq.

In the proof of this lemma we will build separating automata with a more general
acceptance condition than the parity condition, which will simplify the technical details.
A generalised game automaton A “ pΣ, Q, q0, ∆, Dq is just like a game automaton except
that the priority mapping Ω is replaced by a deterministic ω-word parity automaton D over
alphabet Σ ˆ tL, Ru. A run ρ P TrQ of such an automaton over a tree t P TrΣ is accepting
if for every path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P Pathptq either ρpd0 ¨ ¨ ¨ di´1q “ J for some i P ω, or
b P LpDq. The acceptance game GaccpA, tq can easily be adapted to the case of a generalised
game automaton A by only modifying the winning condition.

▶ Lemma 11. A generalised game automaton A with a generalised acceptance condition
recognised by a deterministic parity automaton D can be transformed into an equivalent
(ordinary) game automaton B of size polynomial in A and D.
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We now prove Lemma 10. Its proof is given in full details because, unlike in Sections 3
and 4, it is not obvious how to construct a separator from a winning strategy for Separator.

Soundness. Assume that Separator wins the game-separability game G :“ Gsep
gamepA, Bq

and we show that there exists a game automaton S separating LpAq from LpBq. Let
M “ pM, ℓ0, pm, fq, τq be a finite-memory winning strategy of Separator in G.

Before we move to the construction of the separating automaton, we first define its
generalised acceptance condition. Let LA (resp., LB) be the set of those paths b “

pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL, Ruqω s.t. the unique play π of G in which Input plays con-
secutive letters and directions from b and Separator uses her winning strategy M satisfies the
condition WA (resp., WB). Since the strategy M is winning for Separator, the languages LA
and LB are disjoint. Moreover, since the strategy M is finite memory and both WA, WB
are ω-regular, so are the languages LA and LB. Let D be any deterministic automaton over
ω-words that separates LA from LB (the simplest case is to take D recognising the language
LA). We build a separating automaton as a generalised game automaton

S :“ αpM, Dq :“ pΣ, M Y tJu, ℓ0, ∆S , Dq, where

∆S`

ℓ, a
˘

:“
#

tpℓ, a, ℓL, Jq, pℓ, a, J, ℓRqu if mpℓ, aq “ _,
tpℓ, a, ℓL, ℓRqu if mpℓ, aq “ ^,

for every ℓ P M and a P Σ, where for d P tL, Ru we have ℓd :“ τpℓ, a, dq. We now show that
S separates LpAq from LpBq. In order to show LpAq Ď LpSq, let t P LpAq as witnessed by
an accepting run ρA. We show that Automaton wins the acceptance game GS :“ GaccpS, tq.
To show this we play in parallel the separability game G and the acceptance game GS ,
maintaining the following invariant: At the i-th round, the current finite path of the input
tree t is pa0, d0q ¨ ¨ ¨ pai´1, di´1q, Separator’s winning strategy M in the separability game G

is in memory state ℓi, the current state of the separating automaton S in the acceptance
game GS is also ℓi, and ρApd0 ¨ ¨ ¨ di´1q “ qA

i . The i-th round is then played as follows:
G.rI : as Input plays the letter ai :“ tpuiq for ui :“ d0 ¨ ¨ ¨ di´1.

G.rS : ms Separator plays the mode mi :“ mpℓi, aiq P t_, ^u.
G.rS : f s Separator plays either

a. a selector fi :“ fpℓi, aiq P tL, Ru∆A
paiq for A if mi “ _ or

b. a selector fi :“ fpℓi, aiq P tL, Ru∆B
paiq for B if mi “ ^.

GS .rA : δs Automaton plays the transition δS
i P ∆Spℓi, aiq, defined as follows. Let δA

i :“
`

ρApuiq, tpuiq, ρApuiLq, ρApuiRq
˘

be the A-transition used in ui by the run ρA. We
distinguish two cases.
a. In the first case, assume that Separator played mi “ _ and fi P tL, Ru∆A

paiq.
It means that ∆S`

pℓi, qiq, ai

˘

contains two disjunctive transitions, δS
L,i :“

pℓi, ai, ℓL,i, Jq and δS
R,i :“ pℓi, ai, J, ℓR,iq. Let us put δS

i :“ δS
fipδA

i
q,i

, i.e., the
transition that sends a non-J state in the direction given by fipδ

A
i q.

b. In the second case, Separator played mi “ ^ and fi P tL, Ru∆B
paiq. It means

that ∆S`

ℓi, ai

˘

contains one conjunctive transition δS
i :“ pℓi, ai, ℓL,i, ℓR,iq.

GS .rI : ds Input plays an arbitrary direction di P tL, Ru.
G.rI : ds Input plays the direction di P tL, Ru.

If mi “ _ and di ‰ fipδ
A
i q then the next position of the acceptance game GS is puidi, Jq,

which is a winning position for Automaton. Therefore, w.l.o.g. we assume that:

@i P ω. pmi “ _q ñ fipδ
A
i q “ di. (1)
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Moreover, the new state of S in GS is ℓi`1 :“ τpℓi, ai, diq. Similarly, the new mem-
ory state of M in G is ℓi`1. This concludes the description of the i-th round of both
games. Clearly the invariant is preserved. We argue that Automaton wins the resulting
infinite play pδS

0 , d0qpδS
1 , d1q ¨ ¨ ¨ of the acceptance game GS . Consider the infinite play

π “ pa0, m0, f0, d0qpa1, m1, f1, d1q ¨ ¨ ¨ of the separability game G. Since the run ρA is ac-
cepting, the infinite sequence of A-transitions δA

0 δA
1 ¨ ¨ ¨ is accepting. Thus, (1) implies that

π P WA. Therefore, the infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ belongs to LA Ď LpDq and thus
the corresponding infinite play pδS

0 , d0qpδS
1 , d1q ¨ ¨ ¨ of the acceptance game GS is winning for

Automaton, as required. This concludes the argument establishing LpAq Ď LpSq.
It remains to show that LpSq K LpBq, which is the same as LpBq Ď LpScq for the comple-

ment game automaton. This follows directly from the construction above via the duality of
the game G. ◀

Completeness. Assume that there exists a game automaton S that separates LpAq from
LpBq. We need to show that Separator wins the separability game G :“ Gsep

gamepA, Bq.
Let R :“ Sc be the syntactic dual of the game automaton S as in Lemma 2. Thus,
the automata S and R share the same set of states. Also, their transitions are related:
the conjunctive transitions of S correspond to disjunctive transitions of R and vice versa.
By slightly rephrasing the separation condition, we have LpAq K LpRq and LpBq K LpSq.
This means that Pathfinder wins both disjointness games GdispR, Aq and GdispS, Bq. Thus,
we can apply Lemma 4 to obtain pathfinders PA :

`
Ť

aPΣ ∆Rpaq ˆ ∆Apaq
˘

Ñ tL, Ru and
PB :

`
Ť

aPΣ ∆Spaq ˆ ∆Bpaq
˘

Ñ tL, Ru.
We will now provide a strategy of Separator in G. The constructed strategy uses as its

memory states the set of states of S that are distinct than J. Let the initial memory state
be q0. Assume that the current memory state is qi and consider the i-th round of the game.

[I : a] Input plays an arbitrary letter ai P Σ.
[S : m] Separator plays the mode mi P t_, ^u defined as follows. We consider the following

two cases for the mode of the transitions ∆Spqi, aiq.

a. If ∆Spqi, aiq “ tδS
i u is a single conjunctive transition δS

i “ pqi, ai, qL,i, qR,iq then
we put mi :“ ^ and fi :“ PBpδS

i , _q is a selector for B.
b. Otherwise, ∆Spqi, aiq is a pair of disjunctive transitions which means that

∆Rpqi, aiq is a single conjunctive transition δR
i “ pqi, ai, qL,i, qR,iq. In this case

we put mi :“ _ and fi :“ PApδR
i , _q is a selector for A.

[S : f ] Separator plays the selector fi defined above (notice that fi is either a selector for
A or for B, according to mi).

[I : d] Input plays an arbitrary direction di P tL, Ru.

The next memory state of our strategy is the state qdi,i taken from one of the transitions
δS

i or δR
i , see above. We now argue that Separator wins the corresponding infinite play

π “ pa0, m0, f0, d0qpa1, m1, f1, d1q ¨ ¨ ¨ . Let b “ pa0, d0qpa1, d1q ¨ ¨ ¨ be the corresponding path.
Consider a number i P ω. By the construction of the strategy above, we have two cases:
1. If mi “ ^, then a conjunctive transition δS

i “ pqi, ai, qL,i, qR,iq of S was used to determine
fi. In this case, define δR

i as the following disjunctive transition of R: if di “ L then
δR

i :“ pqi, ai, qL,i, Jq, otherwise di “ R and δR
i :“ pqi, ai, J, qR,iq.

2. If mi “ _, then a conjunctive transition δR
i “ pqi, ai, qL,i, qR,iq of R was used to determine

fi. In this case, define δS
i as the following disjunctive transition of S: if di “ L then

δS
i :“ pqi, ai, qL,i, Jq, otherwise di “ R and δS

i :“ pqi, ai, J, qR,iq.
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The definitions above provide two sequences of transitions δ⃗S :“ δS
0 δS

1 ¨ ¨ ¨ P ∆Spbq, δ⃗R :“
δR

0 δR
1 ¨ ¨ ¨ P ∆Rpbq. Since for every i P ω the transitions δS

i and δR
i are from the same state

qi ‰ J, δ⃗S is accepting in S if, and only if, δ⃗R is rejecting in R. Assume that δ⃗S is accepting
(the other case is analogous). We will show that WB is violated (if δ⃗R is accepting then
WA is violated). Assume for the sake of contradiction that WB holds, as witnessed by
a sequence of B-transitions δ⃗B “ δB

0 δB
1 ¨ ¨ ¨ P ∆Bpbq. By Remark 6 we obtain that whenever

mi “ _ and δS
i is a disjunctive transition of S then PBpδS

i , _q is constantly equal to di. By
the assumption on δ⃗B from WB we know that whenever mi “ ^ then fipδ

B
i q “ di. However,

if mi “ ^ then fipδ
B
i q “ PBpδS

i , δB
i q. Therefore, in both cases we know that PBpδS

i , δB
i q “ di.

This means that the assumptions of Corollary 5 are met and at least one of the sequences δ⃗S ,
δ⃗B is rejecting – a contradiction, since we assumed both these sequences to be accepting. ◀

6 Separability by game automata with priorities in C

In this section we present our last game-theoretic characterisation, namely game auto-
mata separability for a fixed finite set C Ď N of priorities. Fix two automata A “

pΣ, QA, qA
0 , ΩA, ∆Aq and B “ pΣ, QB, qB

0 , ΩB, ∆Bq over the same alphabet Σ. The game is a
variation of Gsep

gamepA, Bq from Section 5 where Separator additionally plays priorities from C.

C-game-automata separability game Gsep
gamepA, B, Cq

At the i-th round:
[S : c] Separator plays a priority ci P C.
[I : a] Input plays a letter ai P Σ.

[S : m] Separator plays a mode mi P t_, ^u.
[S : f ] Separator plays either

a. a selector fi P tL, Ru∆A
paiq for A if mi “ _, or

b. a selector fi P tL, Ru∆B
paiq for B if mi “ ^.

[I : d] Input plays a direction di P tL, Ru.

Separator wins an infinite play π “ pc0, a0, m0, f0, d0qpc1, a1, m1, f1, d1q ¨ ¨ ¨ inducing a path
b “ pa0, d0qpa1, d1q ¨ ¨ ¨ whenever both conditions below hold:
1. π P WA: If there exists an accepting sequence of transitions δ⃗A “ δA

0 δA
1 ¨ ¨ ¨ P ∆Apbq

s.t. for all i P ω we have pmi “ _q ñ fipδ
A
i q “ di, then c0c1 ¨ ¨ ¨ is accepting.

2. π P WB: If there exists an accepting sequence of transitions δ⃗B “ δB
0 δB

1 ¨ ¨ ¨ P ∆Bpbq s.t. for
all i P ω we have pmi “ ^q ñ fipδ

B
i q “ di, then c0c1 ¨ ¨ ¨ is rejecting.

▶ Lemma 12. Separator wins Gsep
gamepA, B, Cq if, and only if, there exists a game automaton

S with priorities in C separating LpAq, LpBq.

This lemma can be proved similarly as Lemma 10 except for the acceptance condition of the
separator which is given by the priorities ci’s as in the proof of Lemma 7.
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