
Improved Lower Bounds for Reachability in Vector
Addition Systems
Wojciech Czerwiński #

University of Warsaw, Poland

Sławomir Lasota #

University of Warsaw, Poland

Łukasz Orlikowski #

University of Warsaw, Poland

Abstract
We investigate computational complexity of the reachability problem for vector addition systems
(or, equivalently, Petri nets), the central algorithmic problem in verification of concurrent systems.
Concerning its complexity, after 40 years of stagnation, a non-elementary lower bound has been
shown recently: the problem needs a tower of exponentials of time or space, where the height of
tower is linear in the input size. We improve on this lower bound, by increasing the height of tower
from linear to exponential. As a side-effect, we obtain better lower bounds for vector addition
systems of fixed dimension.

2012 ACM Subject Classification Theory of computation → Parallel computing models

Keywords and phrases Petri nets, vector addition systems, reachability problem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.128

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding Wojciech Czerwiński: Supported by the ERC grant LIPA, agreement no. 683080.
Sławomir Lasota: Supported by the NCN grant 2017/27/B/ST6/02093.

1 Introduction

Petri nets [38] are a long established model of concurrency, with extensive applications in
modelling and analysis of hardware [6, 25], software [16, 5, 20] and database [3, 4] systems,
as well as chemical [1], biological [37, 2] and business [43, 31] processes (the references
on applications are illustrative). The model admits various alternative but essentially
equivalent presentations, most notably vector addition systems (vas) [22], and vector addition
systems with states (vass) [17, Sec.5], [19]. The central algorithmic problem for this model
is reachability: whether from the given initial configuration there exists a sequence of
valid execution steps that reaches the given final configuration. Each of the alternative
presentations admits its own formulation of the reachability problem, all of them being
equivalent due to straightforward polynomial-time translations that preserve reachability; for
further details, see e.g. Schmitz’s survey [42, Section 2.1]. For instance, in terms of vas, the
problem is stated as follows: given a finite set T of integer vectors in d-dimensional space
and two d-dimensional vectors v and w of nonnegative integers, does there exist a walk from
v to w such that it stays within the nonnegative orthant, and its every step modifies the
current position by adding some vector from T? Emphasizing vass, a natural extension of
vas with finite control, in the sequel we use the name ’vass reachability problem’.

Importance of the problem is widespread, as a plethora of problems from formal languages
[8], logic [21, 11, 10, 7], concurrent systems [15, 13], process calculi [35], linear algebra [18]
and other areas (the references are again illustrative) are known to admit reductions from the
vass reachability problem; for more such problems and a wider discussion, we refer to [42].

EA
T
C
S

© Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 128; pp. 128:1–128:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wczerwin@mimuw.edu.pl
https://orcid.org/0000-0002-6169-868X
mailto:sl@mimuw.edu.pl
https://orcid.org/0000-0001-8674-4470
mailto:lo418363@students.mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ICALP.2021.128
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


128:2 Improved Lower Bounds for Reachability in VAS

State of the art. The complexity of the vass reachability problem was remaining unsettled
over the past half century. The late 1970s and the early 1980s saw the initial burst of activity.
After an incomplete proof by Sacerdote and Tenney [40], decidability of the problem was
established by Mayr [33, 34], whose proof was then simplified by Kosaraju [23]. Building
on the further refinements made by Lambert in the 1990s [24], there has been substantial
progress over the past ten years [26, 27, 28], culminating in the first upper bound on the
complexity [29], recently improved to Ackermannian [30].

In contrast to the progress on refining the proof of decidability and obtaining upper
bounds on the complexity, Lipton’s landmark result that the vass reachability problem
requires exponential space [32] has remained the state of the art on lower bounds for over 40
years. Moreover, in conjunction with an apparent tightness of Lipton’s construction, this
has led to the conjecture that the problem is ExpSpace-complete becoming common in
the community. The conjecture has been falsified by a recent breakthrough construction
of [9] that shows the vass reachability problem is hard for the class Tower of all decision
problems that are solvable in time or space bounded by a tower of exponentials whose height
is an elementary (bounded by a tower of exponentials of fixed height) function of the input
size.

Contribution. This paper provides a further improvement on the lower bound. The
construction of [9] proves hardness of the vass reachability problem for the class Tower,
with respect to elementary reductions. However, in terms of the more fine-grained hierarchy
defined with respect to polynomial-time reductions only, the result states that the problem
needs a tower of exponentials of time or space, where the height of tower is linear in input
size. As our primary result we increase the height of the tower from linear to exponential,
namely we prove that the problem actually needs a tower of exponentials of time or space,
where the height of the tower is itself exponential in input size:

222...n
}

height O(n) ⇝ 222...n
}

height 2O(n).

In addition, as a side effect of our improved construction we obtain better lower bounds
for vass of fixed dimension. It has been known, as shown in [9], that the reachability
problem for vass in dimension d is O(d)-ExpSpace-hard (specifically: d-ExpSpace-hardness
for dimension d + 13). We show that the reachability problem for vass in dimension d is
2O(d)-ExpSpace-hard (specifically: 2d-ExpSpace-hardness for dimension 2d + 13).

Clearly, these new lower bounds do not formally exclude the vass reachability problem
from still being in Tower (and hence being Tower-complete with respect to elementary
reductions). However, we believe that the result makes this less likely. Intuitively speaking,
we rule out a natural algorithmic scheme of solving the reachability problem, where each
additional control state or dimension leads to an additional exponential blowup of time or
space. Presently, the most optimistic scheme must suffer, for each additional control state or
dimension, from at least doubling of the number of exponentials.

Organisation of the paper. We start by defining the model, in Section 2, and then the
reachability problem, in Section 3. In the latter section we also recall the lower bounds of [9]
and formally formulate our improved ones. The following two sections are devoted to proofs.
First, in Section 4 we show 2d-ExpSpace-hardness of the reachability problem for vass of
dimension 2d + 13, as a preparation before Section 5, in which we prove our primary result:
without restriction on dimension, the problem needs a tower of exponentials of time or space,
of height exponential in input size.



W. Czerwiński, S. Lasota, and Ł. Orlikowski 128:3

2 Counter programs

As mentioned in the introduction, Petri nets [38], vas [22], and vass [17, 19] are alternative
presentations of the same model of concurrent processes, in the sense that between each
pair there exist straightforward polynomial-time translations that preserve reachability [42,
Sec. 2.1]. Following [12] and [9], instead of working directly with vass, as our primary
language we choose imperative nondeterministic programs operating on variables called
counters, that range over nonnegative integers. These programs may be seen as user-friendly
presentations of vass.

Counter programs. A counter program is a sequence of commands, each of which is of one
of the following three types:

x += 1 (increment counter x)
x −= 1 (decrement counter x)
goto L or L′ (jump to either line L or line L′)

except that the last command is of the form:

halt if x1, . . . , xl = 0 (terminate provided all the listed counters are zero).

Counters are only allowed to have nonnegative values, they may be incremented or decremen-
ted but, notably, counters may not be zero-tested. As an illustration, consider the following
program:

1: goto 7 or 2
2: x += 1
3: x′ −= 1
4: y += 1
5: y += 1
6: goto 1
7: halt if x′ = 0.

It repeats the block of three commands in lines 2–5 some number of times chosen non-
deterministically (possibly zero, although not infinite because x′ is decreasing and hence its
initial value bounds the number of iterations) and then halts provided counter x′ is zero.

We emphasise that counters are not permitted to have negative values. In the example
above, that is why the decrement in line 3 works also as a non-zero test.

We assume that initially all counters are set to 0. A run of a counter program is a sequence
of commands, as expected. We say that such a run is halting if, and only if it has successfully
executed its halt command (which is necessarily the program’s last); otherwise, the run is
either partial or infinite. Observe that, due to a decrement that would cause a counter to
become negative, or due to an unsuccessful terminal check for zero, a partial run may fail to
continue because it is blocked from further execution. Moreover, due to nondeterministic
jumps, the same program may have various runs in each of the three categories: halting runs,
maximal partial runs, and infinite runs.

By the size of a program we mean the number of commands in it, and by its dimension
we mean the number of counters. We sometimes speak also of program fragments, which are
not ended with a halt command.

ICALP 2021



128:4 Improved Lower Bounds for Reachability in VAS

3 The reachability problem

Counter programs can be seen as presentations of vass, where the latter are required to start
with all vector components zero and to finish with vector components zero as specified by
the halt command, and hence the vass reachability problem can be stated as:

vass reachability problem
Input: A counter program.
Question: Does it have a halting run?

We remark that restricting further to programs where no counter is required to be zero
finally (i.e., where the last command is just halt) turns this problem into the vass coverability
problem, which is concerned with reachability of just a control location, with no requirement
on the final values of counters. Lipton’s ExpSpace lower bound [32] holds already for the
coverability problem, which is in fact ExpSpace-complete [39].

For stating our results we recall the standard complexity classes bases on exponential
hierarchy of fast-growing functions. We write T (n) for a tower of exponentials:

T2(k, n) = 222...n
}

height k T (n) = T2(n, n) = 222...n
}

height n.

Formally, let T2(0, n) = n and T2(k + 1, n) = 2T2(k,n). For a fixed positive integer k, the
class k-ExpSpace contains all decision problems solvable in space T2(k, poly(n)). The class
Tower contains all decision problems solvable in time or space bounded by a tower of
exponentials whose height is an elementary function of the input size, namely

Tower =
⋃

f elementary
Space(T (f(n)))

with f(_) ranging over all elementary functions, i.e., functions bounded by T2(k, _) for some
k. Tower is thus closed under elementary reductions.

For the results of this paper we need a fine-grained hierarchy inside Tower, with respect
to dependency of the height of exponentials on the input size. For a fixed elementary function
f , let f(n)-Tower denote the class of all decision problems solvable in (time or) space
T (f(poly(n))), i.e., in (time or) space bounded by a tower of exponentials of height f(nk),
for some k, where n is the input size:

f(n)-Tower =
⋃
k∈N

Space(T (f(nk))).

Each class f(n)-Tower is a strict subclass of Tower as it is closed under polynomial-time
reductions but, contrarily to Tower, not under arbitrary elementary reductions.

We recall the results of [9]. First, once one fixes the dimension of vass, the reachability
problem requires a tower of exponentials of space, where the height of the tower is linear in
the dimension:

▶ Theorem 1 ([9], Cor. 5). For any positive integer d, the vass reachability problem in
dimension d + 13 is d-ExpSpace-hard, with respect to polynomial-time1 reductions.

1 All results mentioned in this section are actually shown using linear-time reductions.



W. Czerwiński, S. Lasota, and Ł. Orlikowski 128:5

The main result of [9] is a non-elementary lower bound of the vass reachability problem:
Tower-hardness with respect to elementary reductions. The construction of [9] shows that
the problem requires a tower of exponentials of space, where the height of tower is linear in
the input size, and hence the result can be stated in terms of the fine-grained hierarchy as
follows:

▶ Theorem 2 ([9], Thm. 4). The vass reachability problem is hard for n-Tower, with
respect to polynomial-time reductions.

As our first main result, we improve the lower bound of Theorem 1, namely we prove that
solving the vass reachability problem in dimension 2d + 13 requires at least T2(2d, n) space:

▶ Theorem 3. For any positive integer d, the vass reachability problem in dimension 2d + 13
is 2d-ExpSpace-hard.

Clearly, without restriction of dimension, Theorem 3 does not exclude membership of the
problem in Tower, neither it excludes its membership in n-Tower. Our primary result
excludes the latter possibility: it states that the vass reachability problem requires a tower
of exponentials of space, where the height of tower is exponential in the input size, thus
improving the bound of Theorem 2:

▶ Theorem 4. The vass reachability problem is hard for 2n-Tower, with respect to
polynomial-time reductions.

Again, Theorem 4 does not formally exclude membership of the vass reachability problem in
Tower, it makes it however less imaginable as mentioned in the introduction.

Theorems 3–4 are proved in the following two sections. The proofs are a refinement and
an optimisation of the construction of [9], involving certain amount of programming effort in
the setting of counter programs.

4 Proof of Theorem 3

In this and in the next section we proceed by reductions from space-bounded variants of the
halting problem for the standard model of (deterministic) Minsky machines [36]. The reader
is referred to [14, Theorem 3.1] for translations between space-bounded 3-counter Minsky
machines and Turing machines.

Following [9], for technical reasons we prefer to work with factorials instead of exponentials.
We write F(k, _) for the tower of factorials of height k: F(0, n) = n and F(k+1, n) = F(k, n)!.
We note that all the complexity classes from the previous section are robust with respect to
the choice of the fast-growing function hierarchy: exponential function can be equivalently
replaced by factorial [41, Section 4.1].

Our proof is a refinement of the reduction of [9], from the following bounded version of the
halting problem for Minsky machines with 3 counters, which is (k − 1)-ExpSpace-complete
for any fixed positive integer k:

k-exp-bounded halting problem
Input: A 3-counter Minsky machine M of size n.
Question: Does it have a halting run where all counters are bounded by F(k, n)?

ICALP 2021



128:6 Improved Lower Bounds for Reachability in VAS

Let h be a fixed positive integer. Given a 3-counter Minsky machine M of size n, the
reduction of [9, Lem. 6] transforms M, in time O(n + h), into a counter program P with
h + 13 counters, including h + 2 counters x−1, x0, x1, . . . , xh which are required to be zero by
the final halt command, plus 11 other counters, of the form2

H−1︸︷︷︸
size O(n)

H0 H1 · · · Hh︸ ︷︷ ︸
constant size each

Hh+1︸ ︷︷ ︸
size O(n)

halt if x−1, x0, . . . , xh = 0,

for some program fragments H−1, H0, . . . , Hh+1 (for technical convenience, the indexing starts
at −1). We refer to the program fragments H−1, H0, . . . , Hh+1 as segments. Furthermore,
the first segment H−1 and the last one Hh+1 are of size O(n), the remaining ones are of
constant size, and the reduction is correct due to:

▷ Claim 5 (Correctness). M has a halting run with all counters bounded by F(h + 1, n) if,
and only if, P has a halting run.3

Moreover, the counter program P has the following two crucial properties:
(i) Each counter xj appearing in the final halt command appears in segments Hj and

Hj+1 only, for j = −1, 0, . . . , h:

︸ ︷︷ ︸
x−1 only here

H−1

x0 only here︷ ︸︸ ︷
H0 ︸ ︷︷ ︸

x1 only here

H1

x2 only here︷ ︸︸ ︷
H2 H3 . . . ︸ ︷︷ ︸

xh−1 only here

Hh−1

xh only here︷ ︸︸ ︷
Hh Hh+1.

We say, to some extent informally, that P is a relay-race with respect to counters
x−1, x0, . . . , xh, by which we mean the last appearance of every counter xj , for j < h, is
in the same segment as the first appearance of the next counter xj+1, and counters xj

and xj+2, for j < h − 1, never appear in the same segment.

(ii) Each segment Hj , for j = 0, 1, . . . , h, is obtained from the same4 program fragment
H, not using counters x−1, x0, . . . , xh, by replacing a counter x appearing in H by xj−1,
and another counter x′ appearing in H by xj . We denote the replacement as:

Hj = H[x 7→ xj−1, x′ 7→ xj ]. (1)

Let h = 2d for some positive integer d. We prove Theorem 3 by transforming P into an
equivalent counter program P̃ of (slightly larger) size O(n + d · 2d), but of exponentially
smaller dimension 2d + 13. We will rely on the relay-race property with respect to h counters
x0, x1, . . . , xh−1 (call these counters relay-race counters), and thus the transformation will
not affect counters x−1 and xh. The intuitive idea is to re-cycle counters x0, x1, . . . , xh−1
appearing in segments H0, H1, . . . , Hh. Our transformation proceeds in (d − 1) steps, in each
step reducing by half the number of relay-race counters and adding two additional fresh
counters.

2 Whenever convenient we compose counter program fragments horizontally, for the ease of presentation.
3 Roughly speaking, H−1 simply computes n, then the sequence of segments H0, H1, . . . , Hh is responsible

for computation of (h + 1)th iterate of factorial of n, which is then used in Hh+1 for simulating M.
4 For the ease of presentation we slightly simplify the structure of P; in fact, in order to rigorously express

the construction of [9] one needs to use two different program fragments instead of just one H, one of
them for even j and the other one for odd j. As will be clear later, this simplification is inessential.



W. Czerwiński, S. Lasota, and Ł. Orlikowski 128:7

The first step. We split the first step of the transformation into two sub-steps. As the first
sub-step, consider the following transformation of P. Let h′ = 1

2 h = 2d−1. We introduce
h′ additional fresh counters y0, . . . , yh′−1, initially set to 0, with the idea that counter yk

invariantly equals to the sum of counters x2k +x2k+1. This is achieved by adding, immediately
after each command anywhere in fragments H0, H1, . . . , Hh−1 that operates on counter xj ,
for j = 0, . . . , h − 1, an additional command operating in the same way on yj div 2:

xj ∗= 1 7→ xj ∗= 1 yj div 2 ∗= 1,

where j div 2 is the largest nonnegative integer k such that 2k ≤ j, and ∗ ∈ {+, −}. This
addition yields a counter program P ′ (recall that both h and h′ are even):

y0 = x0+x1︷ ︸︸ ︷ y2 = x4+x5︷ ︸︸ ︷ . . .

︸ ︷︷ ︸
x−1

H−1

x0︷ ︸︸ ︷
H0 ︸ ︷︷ ︸

x1

H1

x2︷ ︸︸ ︷
H2 ︸ ︷︷ ︸

x3

H3

x4︷ ︸︸ ︷
H4 . . .

xh−2︷ ︸︸ ︷
Hh−2 ︸ ︷︷ ︸

xh−1

Hh−1

xh︷ ︸︸ ︷
Hh Hh+1

︸ ︷︷ ︸
y1 = x2+x3

︸ ︷︷ ︸
yh′−1 = xh−1+xh−1

(2)

Furthermore, we remove counters x0, x1, . . . , xh−1 from the halt command, and put counters
y0, y1, . . . , yh′−1 instead:

halt if x−1, x0, . . . , xh = 0 7→ halt if x−1, xh, y0, y1, . . . , yh′−1 = 0.

▷ Claim 6. P ′ satisfies invariantly yk = x2k + x2k+1, for k = 0, 1, . . . , h′ − 1.

We use that claim for entailing:

▷ Claim 7 (Correctness). P has a halting run if, and only if, P ′ has one.

Proof. We show that halting runs of P are in one-to-one correspondence with halting runs of
P ′, using Claim 6 in both directions. In one direction, every halting run of P, ending with
all counters x−1, x0, . . . , xh equal 0, has a corresponding halting run of P ′ ending with x−1, xh

and all added counters y0, y1, . . . , yh′−1 equal 0 as well. For the opposite direction consider
any halting run of P ′. As every counter yk is 0 at the end of the run, the sum of every two
consecutive counters x2k + x2k+1 is 0 at the end, and hence also each individual counter xj

is forced to be 0 as well (without even checking that it is so, in the final halt command).
Therefore, dropping operations on the added counters yields a halting run of P. ◁

As the second sub-step, we introduce two fresh counters a0, a1, and replace each operation
on every counter xj , for j = 0, 1, . . . , h − 1, anywhere in segments H0, H1, . . . , Hh−1, by the
analogous operation on aj mod 2.

xj ∗= 1 7→ aj mod 2 ∗= 1. (3)

The replacement removes h counters x0, x1, . . . , xh−1 definitely from P ′, yielding a counter
program P ′′:

y0 only here︷ ︸︸ ︷ y2 only here︷ ︸︸ ︷ . . .

︸ ︷︷ ︸
x−1

H−1

x0 7→ a0︷ ︸︸ ︷
H0 ︸ ︷︷ ︸

x1 7→ a1

H1

x2 7→ a0︷ ︸︸ ︷
H2 ︸ ︷︷ ︸

x3 7→ a1

H3

x4 7→ a0︷ ︸︸ ︷
H4 . . .

xh−2 7→ a0︷ ︸︸ ︷
Hh−2 ︸ ︷︷ ︸

xh−1 7→ a1

Hh−1

xh︷ ︸︸ ︷
Hh Hh+1

︸ ︷︷ ︸
y1 only here

︸ ︷︷ ︸
yh′−1 only here

(4)

ICALP 2021



128:8 Improved Lower Bounds for Reachability in VAS

with the same halt command as P ′. Note that the size of P ′′ is larger by O(2d) than the
size of P, but its dimension decreased from 2d + 13 to 2d−1 + 15, as h = 2d counters have
been removed and another h′ + 2 = 2d−1 + 2 counters have been introduced instead.

We have thus completed the description of a transformation P 7→ P ′′. Formally, by
composing the two sub-steps, we see that P ′′ has the form:

H−1︸︷︷︸
size O(n)

H′′
0 H′′

1 · · · H′′
h︸ ︷︷ ︸

constant size each

Hh+1︸ ︷︷ ︸
size O(n)

halt if x−1, xh, y0, y1, . . . , yh′−1 = 0,

where each segment H′′
i is obtained from Hi by the simultaneous substitution, for all

j = 0, 1, . . . , h − 1:

xj ∗= 1 7→ aj mod 2 ∗= 1 yj div 2 ∗= 1. (5)

The following fact is crucial for correctness, i.e., for proving that the second sub-step,
and hence also the whole step, preserves reachability:

▷ Claim 8. In every halting run of P ′′, aj mod 2 = 0 at the end of H′′
j+1 for every j ∈

{0, . . . , h − 1}.

Proof. Consider any halting run of P ′′. By induction on j we prove that for every even
j ∈ {0, 1, . . . , h − 1}, a0 = 0 at the end of H′′

j+1, and a1 = 0 at the end of H′′
j+2.

Let j ≥ 0 and asssume the claim holds for smaller values of j. Let v0 ∈ N (resp. v1 ∈ N)
denote the value of counter a0 (resp. counter a1), at the beginning of fragment H′′

j (resp. H′′
j+1).

By induction assumption (or due to initial 0 values of counters) we have v0 = v1 = 0.
According to the substitution (5), every operation on a0 in H′′

j and H′′
j+1 (recall that these

are the only fragments where xj appears) is also performed on yj div 2. Likewise, every
operation on a1 in H′′

j+1 and H′′
j+2 (these are the only fragments where xj+1 appears) is

also performed on yj div 2. Also according to (5), these are the only operations on yj div 2
performed along the run. Therefore, denoting by v′

0 (resp. v′
1) the value of counter a0

(resp. counter a1), at the end of fragment H′′
j+1 (resp. H′′

j+2), we know that the value of
counter yj div 2 at the end of the run is (v′

0 − v0) + (v′
1 − v1) = v′

0 + v′
1. As the counter yj div 2

is checked to be 0 by the final halt command, we deduce v′
0 + v′

1 = 0. Finally, since both
values are necessarily nonnegative, we deduce v′

0 = v′
1 = 0, as required. ◁

▷ Claim 9 (Correctness). P ′ has a halting run if, and only if, P ′′ has one.

Proof. We show that halting runs of P ′ are in one-to-one correspondence with halting runs
of P ′′. As P ′′ is obtained from P ′ by merging all counters xj , for even j, to one counter a0,
and all counters xj , for odd j, to one counter a1, every halting run of P ′ has a corresponding
halting run of P ′′ such that a0 is the sum of values of all counters xj for even j and a1 is the
sum of values of all counters xj for odd j. For the opposite direction we rely on Claim 8.
According to the claim, replacing in a halting run of P ′′ each operation on aj mod 2 in H′′

j

and H′′
j+1 by the same operation on xj is safe, namely it is guaranteed that counters xj stay

nonnegative. Therefore we get a halting run of P ′′. ◁

Iterating steps. A crucial but simple observation, cf. (4), is that the so described step of
the transformation preserves the relay-race property, and hence can be iterated:

▷ Claim 10 (Relay-race preservation). The counter program P ′′ is a relay-race with respect
to counters y0, y1, . . . , yh′−1.



W. Czerwiński, S. Lasota, and Ł. Orlikowski 128:9

Proof. According to the substitution (5), each counter yk only appears in three consecutive
segments H′′

2k, H′′
2k+1 and H′′

2k+2. Therefore the relay-race condition is satisfied: the last
appearance of every counter yk, for k + 1 < h′, is in the same segment H′′

2k+2 as the first
appearance of the next counter yk+1, and counters yk and yk+2, for k + 2 < h′, never appear
in the same segment. ◁

We apply the transformation step d − 1 times. Initially, P has 2d relay-race counters, and
13 other counters including x−1 and xh. Each ith iteration, for i = 0, 1, . . . , d − 2, decreases
the number of relay-race counters twice, from 2d−i to 2d−i−1, and adds two additional
counters ai

0 and ai
1. Therefore, after d − 1 iterations5 we arrive at a counter program P̃

with just two relay-race counters, say z0, z1, plus 2(d − 1) added counters, say ai
0, ai

1 for
i = 0, 1, . . . , d − 2, and 13 remaining counters, of the form:

H−1︸︷︷︸
size O(n)

H̃0 H̃1 · · · H̃h︸ ︷︷ ︸
size O(d) each

Hh+1︸ ︷︷ ︸
size O(n)

halt if x−1, xh, z0, z1 = 0. (6)

By iterating the substitution (5), one sees that H̃i is actually obtained from Hi by the
following simultaneous substitution, for ∗ ∈ {+, −} and j = 0, 1, . . . , h − 1

xj ∗= 1 7→ a0
j0

∗= 1 a1
j1

∗= 1 . . . ad−2
jd−2

∗= 1 zjd−1 ∗= 1, (7)

where jd−1 . . . j1j0 = bin(j) is the binary representation of j using d bits, in the order of
decreasing significance of bits. Indeed, observe that j0 = j mod 2, j1 = (j div 2) mod 2,
j2 = ((j div 2) div 2) mod 2, and so on. Therefore, by iterating the substitution (5), we
first replace xj by a0

j0
and a relay-race counter yj div 2, then replace yj div 2 by a1

j1
and some

further relay-race counter z(j div 2) div 2, and so on. In the sequel we uniformly write ad−1
b

instead of zb appearing in (6) and (7), for b = 0, 1. Let b = 1 − b denote bit negation.

▷ Claim 11. In every halting run of P̃ , ai
b = 0 at the end of H̃j for every j ∈ {1, . . . , h} such

that ji = b and ji−1 = . . . = j0 = 0.

Proof. Follows by iterating the substitution (5) and Claim 8. ◁

▶ Example 12. As an illustration consider d = 3, and hence h = 8. The construction yields
a counter program P̃ with 6 added counters a0

0, a0
1, a1

0, a1
1, a2

0, a2
1, and hence of dimension

19. Halting runs of P and P̃ are in one-to-one correspondence, and the values of counters
x0, x1, . . . , x7 in a halting run of P are related, via the equalities depicted below, to the values
of counters a0

0, a0
1, a1

0, a1
1, a2

0, a2
1 in the corresponding halting run of P̃.

a2
0 = x0+x1+x2+x3︷ ︸︸ ︷

a1
0 = x0+x1︷ ︸︸ ︷ a1

0 = x4+x5︷ ︸︸ ︷
︸ ︷︷ ︸

x−1

H̃−1

a0
0 = x0︷ ︸︸ ︷

H̃0 ︸ ︷︷ ︸
a0

1 = x1

H̃1

a0
0 = x2︷ ︸︸ ︷

H̃2 ︸ ︷︷ ︸
a0

1 = x3

H̃3

a0
0 = x4︷ ︸︸ ︷

H̃4 ︸ ︷︷ ︸
a0

1 = x5

H̃5

a0
0 = x6︷ ︸︸ ︷

H̃6 ︸ ︷︷ ︸
a0

1 = x7

H̃7

xh︷ ︸︸ ︷
H̃8 H̃9

︸ ︷︷ ︸
a1

1 = x2+x3

︸ ︷︷ ︸
a1

1 = x6+x7︸ ︷︷ ︸
a2

1 = x4+x5+x6+x7

5 One additional dth iteration could be also performed, which would however result in replacing 2 counters
by 3 other ones, and hence the dimension would increase.

ICALP 2021



128:10 Improved Lower Bounds for Reachability in VAS

Indeed, iterating the proof of Claims 7 and 9 three times, we learn that ai
b is the sum of values

of all counters xj where ji = b, for instance a1
0 = x0 + x1 + x4 + x5. However, according to

Claim 11, we have a1
0 = 0 at the end of H̃2, and hence a1

0 = x4 + x5 in H̃4 . . . H̃6.
In particular, we obtain (cf. Claim 14 below) 8-ExpSpace-hardness for vass in dimension

19 which, according to Theorem 1, has been known before to be 6-ExpSpace-hard. ⌟

▷ Claim 13 (Correctness). P has a halting run if, and only if, P̃ has one.

Proof. Iterating Claims 7 and 9 we deduce that halting runs of P are in one-to-one corres-
pondence with halting runs of P̃ . In one direction, every halting run of P has a corresponding
halting run of P̃ where each counter ai

b, for i = 0, 1, . . . , d − 2 and b = 0, 1, invariantly equals
to the sum of all counters xj with ji = b: ai

b =
∑

j : ji=b xj . For the opposite direction we
deduce, using Claim 11, that dropping operations on the added counters in every halting run
of P̃ , and replacing each operation on aj mod 2 in H̃j and H̃j+1 by the same operation on xj ,
yields a halting run of P. ◁

The dimension of P̃ is 2d + 13. The size of every segment H̃j , for j = 0, 1, . . . , h, is O(d)
times the constant size of Hj , therefore the size of P̃ is O(n + d · 2d).

Due to Claims 5 and 13, the reduction M 7→ P of [9], composed with the transformation
P 7→ P̃ just described, yield the required reduction M 7→ P̃:

▷ Claim 14. Let d be a positive integer. Given a 3-counter Minsky machine M of size n,
one can compute in time O(n + d · 2d) a counter program P̃ of dimension 2d + 13 such that
M has a halting run with counters bounded by F(2d + 1, n) if, and only if, P̃ has a halting
run.

For every fixed d the reduction is computable in linear time with respect to the input size n,
and hence the vass reachability problem in dimension 2d + 13 is 2d-ExpSpace-hard.

5 Proof of Theorem 4

In order to prove Theorem 4 we refine further our reduction from Section 4. The refinement
involves certain amount of low-level programming with counter programs.

Formally, we will set up a linear-time reduction from the following problem:

exp-tower halting problem
Input: A 3-counter Minsky machine M of size n.
Question: Does it have a halting run where all counters are bounded by F(2n, n)?

We argue, similarly as before, that the problem is complete for the class 2n-Tower, with
respect to polynomial-time reductions, cf. [14, Theorem 3.1] and [41, Section 4.1].

In this section we strongly rely on condition (ii) from Section 4: each segment Hj in (6),
for j = 0, 1, . . . , h, is obtained by the substitution (1) applied to the same program fragment
H of constant size. Combining this substitution with the substitution (7) we deduce that
each H̃j , for j = 0, 1, . . . , h, is obtained from H by applying the following two substitutions:

x ∗= 1 7→ C∗
j−1

x′ ∗= 1 7→ C∗
j

(8)

where program fragments C∗
j are defined, for ∗ ∈ {+, −} and j = 0, 1, . . . , h − 1, as the

sequence of commands:

C∗
j = a0

j0
∗= 1 a1

j1
∗= 1 . . . ad−2

jd−2
∗= 1 ad−1

jd−1
∗= 1.



W. Czerwiński, S. Lasota, and Ł. Orlikowski 128:11

We apply here the proviso that the former substitution, referring to x, is not applied when
j = 0, and the latter one, referring to x′, is not applied when j = h. Indeed, recalling (1)
and (4), x in H0 refers actually to x0, and likewise x′ in Hj refers actually to xh+1.

Relying on the substitutions (8) we are going to optimise the counter program P̃, as
defined in (6), by replacing all segments H̃1, . . . , H̃h−1 by a single program fragment G of
size O(d), and thus obtaining the final counter program P (see (11) below).

We start by defining a single program fragment C∗ of size O(d) that achieves the effect
of any C∗

j in a way parametric with respect to j. The program fragment C∗ uses a bit-wise
representation of the value of j, ranging over 0, . . . , h − 1. To this aim we introduce d new
counters b0, b1, . . . , bd−1 to represent the binary representation bin(j) = jd−1 . . . j0 of current
value j; thus these counters will only take values 0 or 1. In addition, we introduce another
d counters b0, b1, . . . , bd−1 to represent negations of bits b0, b1, . . . , bd−1. We are going to
enforce the following equalities to hold invariantly:

bi + bi = 1 (for i = 0, . . . , d − 1). (9)

In particular, as expected, counters bi are initialised to 0, while counters bi are incremented
to 1 at the start of P. Having (9), one easily implements a conditional construct

if bi = 1 then G else G′ (10)

that executes one of program fragments G, G′ depending on the value of the ith bit bi:

1: goto 2 or 5
2: bi −= 1 bi += 1
3: G
4: goto 7
5: bi −= 1 bi += 1
6: G′

7: . . .

Note that exactly one of the two branches fails (because of bi = 0 or bi = 0) and the other
one succeeds. Line 2 is a non-zero test on bi, while line 5 is, due to the equality (9), a
zero-test on bi. The original values of counters bi, bi are retrieved by increments in lines 2
and 5. The conditional construct allows us to write the code for C∗:

1: if b0 = 1 then a0
1 ∗= 1 else a0

0 ∗= 1
2: if b1 = 1 then a1

1 ∗= 1 else a1
0 ∗= 1

. . .

if bd−1 = 1 then ad−1
1 ∗= 1 else ad−1

0 ∗= 1

Also, using the above conditional construct (10) as a building block, one writes down
two further program fragments Inc and Dec, both of size O(d). Fragment Inc (resp. Dec)
increments (resp. decrements) the current value j represented by counters b0, . . . , bd−1,
assuming that this value is below h − 1 (resp. above 0), by means of bit operations. In
order to keep the invariant (9), every increment bi += 1 of ith bit is accompanied by the
corresponding decrement bi −= 1, and symmetrically every decrement bi −= 1 of ith bit is
accompanied by the increment bi += 1.

Let H denote the result of applying the following substitutions to H, for ∗ ∈ {+, −}:

x ∗= 1 7→ Dec C∗ Inc

x′ ∗= 1 7→ C∗

ICALP 2021



128:12 Improved Lower Bounds for Reachability in VAS

This exactly implements substitutions (8): assuming the current value of j is represented in
counters bi and bi, as described above, execution of the program fragment C∗ has the same
effect as execution of C∗

j ; and execution of Dec C∗ Inc has the same effect as decrementing j,
executing C∗

j , and incrementing j to retrieve its actual current value, which is equivalent to
execution of C∗

j−1.
The size of H is O(d). It remains to wrap up this program fragment inside a loop that

increments the value j, represented by counters b0, . . . , bd−1, from 0 to h − 1. Using an
aggregated conditional construct if b0 = b1 = . . . = bd−1 = 1 then goto L of size O(d),
defined as expected, we write down the following program fragment G, again of size O(d):6

1: Inc

2: if b0 = b1 = . . . = bd−1 = 1 then goto 6
3: H
4: Inc

5: goto 2
6: . . .

Assuming the initial values bi = 0 and bi = 1 for all j = 0, . . . , d − 1, G sets values bi = 1
and bi = 0 for all j = 0, . . . , d − 1, once line 6 is reached. We use G as a part of the final
counter program P . As the substitutions (8) apply fully only when j = 1, . . . , h − 1, we keep
the first and the last segments H̃0 and H̃h as defined in (6)–(7), and replace all others by G.
The counter program P has the following form:

H−1︸︷︷︸
size O(n)

H̃0︸︷︷︸
size O(d)

G︸︷︷︸
size O(d)

H̃h︸︷︷︸
size O(d)

Hh+1︸ ︷︷ ︸
size O(n)

halt if x−1, xh, ad−1
0 , ad−1

1 = 0. (11)

Its size is O(n + d) and its dimension is larger by 2d than the dimension of P̃.

▷ Claim 15 (Correctness). P̃ has a halting run if, and only if, P has one.

Proof. Again, halting runs of P̃ are in one-to-one correspondence with halting runs of P.
Indeed, a halting run of P̃ is faithfully simulated in P by iterating through j = 0, 1, . . . , h − 1
in G. Conversely, by the very construction of P, its every halting run simulates in this way
some halting run of P̃. Note that P has also other runs which are necessarily partial (i.e.,
they fail to reach the halt command), because of choosing a failing branch in some of the
conditional constructs (10). ◁

The optimisation P 7→ P̃ described above yields a reduction M 7→ P, whose correctness
follows by Claims 5, 13 and 15:

▷ Claim 16. Given a 3-counter Minsky machine M of size n and a positive integer d, one
can compute in time O(n + d) a counter program P of dimension 4d + 13 such that M has a
halting run with counters bounded by F(2d + 1, n) if, and only if, P has a halting run.

Putting d = n, we obtain a linear-time reduction from the exp-tower halting problem.
In consequence, the vass reachability problem is 2n-Tower-hard, with respect to polynomial-
time reductions.

6 As remarked in the footnote 4 in Section 4, G adapts straightforwardly if, instead of just one H, two
different program fragments are used, say H0 and H1, one of them for even j and the other one for odd
j. It is enough to replace line 3 by if b0 = 1 then H1 else H0



W. Czerwiński, S. Lasota, and Ł. Orlikowski 128:13

References
1 David Angeli, Patrick De Leenheer, and Eduardo D. Sontag. Persistence results for chemical

reaction networks with time-dependent kinetics and no global conservation laws. SIAM Journal
of Applied Mathematics, 71(1):128–146, 2011. doi:10.1137/090779401.

2 Paolo Baldan, Nicoletta Cocco, Andrea Marin, and Marta Simeoni. Petri nets for mod-
elling metabolic pathways: a survey. Natural Computing, 9(4):955–989, 2010. doi:
10.1007/s11047-010-9180-6.

3 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011. doi:
10.1145/1970398.1970403.

4 Mikołaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic
on data trees and XML reasoning. J. ACM, 56(3):13:1–13:48, 2009. doi:10.1145/1516512.
1516515.

5 Ahmed Bouajjani and Michael Emmi. Analysis of recursively parallel programs. ACM Trans.
Program. Lang. Syst., 35(3):10:1–10:49, 2013. doi:10.1145/2518188.

6 Frank P. Burns, Albert Koelmans, and Alexandre Yakovlev. WCET analysis of superscalar
processors using simulation with coloured Petri nets. Real-Time Systems, 18(2/3):275–288,
2000. doi:10.1023/A:1008101416758.

7 Thomas Colcombet and Amaldev Manuel. Generalized data automata and fixpoint logic. In
FSTTCS, volume 29 of LIPIcs, pages 267–278. Schloss Dagstuhl, 2014. doi:10.4230/LIPIcs.
FSTTCS.2014.267.

8 Stefano Crespi-Reghizzi and Dino Mandrioli. Petri nets and Szilard languages. Information
and Control, 33(2):177–192, 1977. doi:10.1016/S0019-9958(77)90558-7.

9 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for Petri nets is not elementary. In Moses Charikar and Edith Cohen,
editors, Proc. STOC 2019, pages 24–33. ACM, 2019.

10 Normann Decker, Peter Habermehl, Martin Leucker, and Daniel Thoma. Ordered navigation
on multi-attributed data words. In CONCUR, volume 8704 of LNCS, pages 497–511. Springer,
2014. doi:10.1007/978-3-662-44584-6_34.

11 Stéphane Demri, Diego Figueira, and M. Praveen. Reasoning about data repetitions with
counter systems. Logical Methods in Computer Science, 12(3), 2016. doi:10.2168/LMCS-12(3:
1)2016.

12 Javier Esparza. Decidability and complexity of Petri net problems — an introduction.
In Lectures on Petri Nets I, volume 1491 of LNCS, pages 374–428. Springer, 1998. doi:
10.1007/3-540-65306-6_20.

13 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population
protocols. Acta Inf., 54(2):191–215, 2017. doi:10.1007/s00236-016-0272-3.

14 Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and counter
languages. Mathematical Systems Theory, 2(3):265–283, 1968. doi:10.1007/BF01694011.

15 Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. ACM
Trans. Program. Lang. Syst., 34(1):6:1–6:48, 2012. doi:10.1145/2160910.2160915.

16 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992. doi:10.1145/146637.146681.

17 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.
Theor. Comput. Sci., 7:311–324, 1978. doi:10.1016/0304-3975(78)90020-8.

18 Piotr Hofman and Sławomir Lasota. Linear equations with ordered data. In CONCUR, volume
118 of LIPIcs, pages 24:1–24:17. Schloss Dagstuhl, 2018. doi:10.4230/LIPIcs.CONCUR.2018.
24.

19 John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theor. Comput. Sci., 8:135–159, 1979. doi:10.1016/0304-3975(79)
90041-0.

ICALP 2021

https://doi.org/10.1137/090779401
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/2518188
https://doi.org/10.1023/A:1008101416758
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.267
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.267
https://doi.org/10.1016/S0019-9958(77)90558-7
https://doi.org/10.1007/978-3-662-44584-6_34
https://doi.org/10.2168/LMCS-12(3:1)2016
https://doi.org/10.2168/LMCS-12(3:1)2016
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/BF01694011
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/146637.146681
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.4230/LIPIcs.CONCUR.2018.24
https://doi.org/10.4230/LIPIcs.CONCUR.2018.24
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0


128:14 Improved Lower Bounds for Reachability in VAS

20 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to multithreaded
program verification. ACM Trans. Program. Lang. Syst., 36(4):14:1–14:29, 2014. doi:10.
1145/2629608.

21 Max I. Kanovich. Petri nets, Horn programs, linear logic and vector games. Ann. Pure Appl.
Logic, 75(1–2):107–135, 1995. doi:10.1016/0168-0072(94)00060-G.

22 Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput. Syst. Sci.,
3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

23 S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary version).
In STOC, pages 267–281. ACM, 1982. doi:10.1145/800070.802201.

24 Jean-Luc Lambert. A structure to decide reachability in Petri nets. Theor. Comput. Sci.,
99(1):79–104, 1992. doi:10.1016/0304-3975(92)90173-D.

25 Hélène Leroux, David Andreu, and Karen Godary-Dejean. Handling exceptions in Petri
net-based digital architecture: From formalism to implementation on FPGAs. IEEE Trans.
Industrial Informatics, 11(4):897–906, 2015. doi:10.1109/TII.2015.2435696.

26 Jérôme Leroux. The general vector addition system reachability problem by Presburger
inductive invariants. Logical Methods in Computer Science, 6(3), 2010. doi:10.2168/LMCS-6(3:
22)2010.

27 Jérôme Leroux. Vector addition system reachability problem: a short self-contained proof. In
POPL, pages 307–316. ACM, 2011. doi:10.1145/1926385.1926421.

28 Jérôme Leroux. Vector addition systems reachability problem (A simpler solution). In
Turing-100, volume 10 of EPiC Series in Computing, pages 214–228. EasyChair, 2012. URL:
http://www.easychair.org/publications/paper/106497.

29 Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In
LICS, pages 56–67. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.16.

30 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In Proc. LICS 2019, pages 1–13. IEEE, 2019.

31 Yuliang Li, Alin Deutsch, and Victor Vianu. VERIFAS: A practical verifier for artifact systems.
PVLDB, 11(3):283–296, 2017. URL: http://www.vldb.org/pvldb/vol11/p283-li.pdf, doi:
10.14778/3157794.3157798.

32 Richard J. Lipton. The reachability problem requires exponential space. Technical Report 62,
Yale University, 1976. URL: http://cpsc.yale.edu/sites/default/files/files/tr63.pdf.

33 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In STOC, pages
238–246. ACM, 1981. doi:10.1145/800076.802477.

34 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput.,
13(3):441–460, 1984. doi:10.1137/0213029.

35 Roland Meyer. A theory of structural stationarity in the pi-calculus. Acta Inf., 46(2):87–137,
2009. doi:10.1007/s00236-009-0091-x.

36 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967. URL:
https://dl.acm.org/citation.cfm?id=1095587.

37 Mor Peleg, Daniel L. Rubin, and Russ B. Altman. Research paper: Using Petri net tools
to study properties and dynamics of biological systems. JAMIA, 12(2):181–199, 2005. doi:
10.1197/jamia.M1637.

38 Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität Hamburg, 1962.
URL: http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/.

39 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor.
Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

40 George S. Sacerdote and Richard L. Tenney. The decidability of the reachability problem
for vector addition systems (preliminary version). In STOC, pages 61–76. ACM, 1977.
doi:10.1145/800105.803396.

41 Sylvain Schmitz. Complexity hierarchies beyond elementary. TOCT, 8(1):3:1–3:36, 2016.
doi:10.1145/2858784.

https://doi.org/10.1145/2629608
https://doi.org/10.1145/2629608
https://doi.org/10.1016/0168-0072(94)00060-G
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.1109/TII.2015.2435696
https://doi.org/10.2168/LMCS-6(3:22)2010
https://doi.org/10.2168/LMCS-6(3:22)2010
https://doi.org/10.1145/1926385.1926421
http://www.easychair.org/publications/paper/106497
https://doi.org/10.1109/LICS.2015.16
http://www.vldb.org/pvldb/vol11/p283-li.pdf
https://doi.org/10.14778/3157794.3157798
https://doi.org/10.14778/3157794.3157798
http://cpsc.yale.edu/sites/default/files/files/tr63.pdf
https://doi.org/10.1145/800076.802477
https://doi.org/10.1137/0213029
https://doi.org/10.1007/s00236-009-0091-x
https://dl.acm.org/citation.cfm?id=1095587
https://doi.org/10.1197/jamia.M1637
https://doi.org/10.1197/jamia.M1637
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1145/800105.803396
https://doi.org/10.1145/2858784


W. Czerwiński, S. Lasota, and Ł. Orlikowski 128:15

42 Sylvain Schmitz. The complexity of reachability in vector addition systems. SIGLOG News,
3(1):4–21, 2016. doi:10.1145/2893582.2893585.

43 Wil M. P. van der Aalst. Business process management as the “killer app” for Petri nets.
Software and System Modeling, 14(2):685–691, 2015. doi:10.1007/s10270-014-0424-2.

ICALP 2021

https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1007/s10270-014-0424-2

	1 Introduction
	2 Counter programs
	3 The reachability problem
	4 Proof of Theorem 3
	5 Proof of Theorem 4

