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Abstract
We propose FC, a new logic on words that combines finite model theory with the theory of
concatenation – a first-order logic that is based on word equations. Like the theory of concatenation,
FC is built around word equations; in contrast to it, its semantics are defined to only allow finite
models, by limiting the universe to a word and all its factors. As a consequence of this, FC has many
of the desirable properties of FO on finite models, while being far more expressive than FO[<]. Most
noteworthy among these desirable properties are sufficient criteria for efficient model checking, and
capturing various complexity classes by adding operators for transitive closures or fixed points.

Not only does FC allow us to obtain new insights and techniques for expressive power and efficient
evaluation of document spanners, but it also provides a general framework for logic on words that
also has potential applications in other areas.
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1 Introduction

This paper proposes a finite model version of the theory of concatenation: FC, a new logic
that is designed to describe properties of words and to query them. While the idea of using
logic on words is by no means new, the advantage of FC is its combination of expressive
power and tractable model checking and evaluation.

Logic on words. A common way of using logic on words is monadic second-order logic
(MSO) over a linear order (e. g. [53]). That is, a word w is seen as a sequence of positions,
and predicates Pa(x) express “letter a at position x of w”. This approach comes with
two disadvantages for querying. The first is that factors (continuous subwords) cannot be
expressed directly. Consider the query “return all factors of w”. As variables refer to positions,
the query would not return a factor u directly, but represent it as a set (or tuple) of positions
that describe a specific occurrence of u in w. If u occurs more than once, the query result
would contain each occurrence – unless the logic is powerful enough to prevent this.
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130:2 The Theory of Concatenation over Finite Models

This leads us to the second disadvantage, namely that MSO cannot compare factors of
unbounded length. That is, while MSO can express queries like “return the positions of
factors of length k that occur twice in w” for a fixed length k, it is impossible to express
“return the positions of factors that occur twice in w”; or non-regular languages, like that
of all words ww with w ∈ {a, b}∗. As a result, many natural relations on factors of w are
inexpressible in MSO, in particular the concatenation x = yz.

Another approach to logic on words is the theory of concatenation (short: C). First
defined by Quine [48], this logic is built on word equations, that is, equations of the form
xx =̇ yyy, where variables like x and y stand for words over a finite alphabet Σ. While
less prominent than FO or MSO, the theory of concatenation has been studied extensively
since the 1970s, with particular emphasis on word equations. A fairly recent survey on the
satisfiability of word equations is [14]. More current research on word equations and the
theory of concatenation can be found in e. g. [7, 10, 11, 12, 44, 50].

In contrast to MSO, the logic C allows us to treat words as words (instead of intervals
of positions) and a position in w can be expressed as the corresponding prefix of w. More
importantly, C can express properties like “u is a factor of v” or concatenation like x = yz.
This expressive power comes at a price – even limited use of negation leads to an undecidable
theory (i. e., satisfiability is undecidable, see [17, 48]). Contrast this to first-order logic (FO)
over finite models: By Trakhtenbrot’s theorem, satisfiability is undecidable; but the model
checking problem is not just decidable, but can even be made tractable (see e. g. [18, 36]).

Another situation where using queries for words together with an open universe causes
problems occurs in string databases, see [4, 5, 27, 28]. These query languages treat words
as entries of the database instead of operating on a single word. Furthermore, they offer
transformation operations that assume an infinite universe. As a result, these query language
usually express Turing-complete functions from words to words.

Introducing FC. The new logic FC aims to bring the advantages of FO on finite models to
the theory of concatenation. The universe for C is usually assumed to be Σ∗, which means
that there is no meaningful distinction between satisfiability and model checking. The key
idea of FC is changing universe from Σ∗ to the set of all factors of a word w; comparable to
how the universe for MSO consists of all positions of a word w.

As FC-formulas are based on word equations, concatenation is straightforward to use.
For example, “return all factors that occur twice in w” can be expressed as

φ1(x) := ∃p1, p2, s1, s2 :
(
u =̇ p1 x s1 ∧ u =̇ p2 x s2 ∧ ¬p1 =̇ p2

)
,

where u represents w. In detail, φ1 expresses that there are two different ways of decomposing
w into w = p x s. If we also wanted to know the positions of these occurrences, we could
return p1 and p2 (by removing their quantifiers), as these encode the start of each occurrence
in w. This formula does not rely on the requirement that variables can only be mapped to
factors of w, as the u on the left side of the equations ensures this already. Instead, consider

φ2(x) := ∃y, z : y =̇ x z x,

which returns all factors x that have two non-overlapping occurrences in w. As we not need
to know where in w the factor xzx occurs, u is not needed in the formula.

The restriction to a finite universe allows us to translate various classical results from FO
to FC. Most importantly, model checking becomes not only decidable, but upper bounds
can be lowered in the same way as for FO (Section 4.1). In fact, FC can be extended with
iteration operators to characterize complexity classes from L to PSPACE, analogously to FO
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on ordered structures; which allows us to define a version of Datalog on words that includes
concatenation (Section 4.3). Furthermore, Section 5 also describes how FC can be extended
with constraints (aka predicates), while still keeping model checking tractable.

Spanners. An immediate application of FC is as a logic for document spanners (or just
spanners). Spanners are a rule-based framework for information extraction that was proposed
by Fagin, Kimelfeld, Reiss, and Vansummeren [19] to study the formal properties of the
query language AQL of IBM’s SystemT for information extraction. They can be understood
as a combination of regular expressions and relational algebra.

In the last years, spanners have received considerable attention in the database theory
community. The two main areas of interest are expressive power [19, 22, 23, 41, 43, 45, 47, 52]
and efficient evaluation [3, 21, 24, 41, 42, 45, 46, 52]; further topics include updates [3, 25, 37],
cleaning [20], distributed query planning [15], and a weighted variant [16].

But most of these articles do not focus on the full class of spanners that was introduced
by Fagin et al. (called core spanners, as they describe the core of AQL), but a much smaller
subclass, the regular spanners. The difference between these is that regular spanners cannot
express equality of factors. Hence, techniques for finite automata and MSO often work on
regular spanners; but they rarely work for core spanners. Furthermore, although spanners are
conceptually similar to relational algebra, many canonical approaches for relational databases
and the underlying FO are not viable in the spanner setting. In particular, while acyclic
conjuctive queries are well-known to be tractable for FO (see e. g. [1]), this does not hold for
the corresponding class of spanners (see [24]).

Although “pure” FC is not powerful enough to express core spanners, extending it with
constraints that decide regular languages results in a logic that captures core spanners
(Section 5.2). In addition to providing us with a rich and natural class of tractable spanners,
this connection also allows us to develop a new inexpressibility method (Section 5.3).

2 Preliminaries

Let ε denote the empty word. We use |x| for the length of a word, a formula, or a regular
expression x, or the number of elements of a finite set x. A word v is a factor of a word w,
written v⊑w, if there exists (possibly empty) words p, s with w = pvs. For words x and y,
let x⊑p y (x is a prefix of y) if y = xs for some s, and x⊏p y if x⊑p y and x ̸= y.

For alphabets A,B, a morphism is a function h : A∗ → B∗ with h(u · v) = h(u) · h(v) for
all u, v ∈ A∗. To define h, it suffices to define h(a) for all a ∈ A. Let Σ be a finite terminal
alphabet, and let Ξ be an infinite variable alphabet with Σ ∩ Ξ = ∅. We assume Σ is fixed
and |Σ| ≥ 2, unless stated otherwise. As a convention, we use typewriter letters (like a and b)
for terminals.

Patterns and the theory of concatenation. A pattern is a word from (Σ ∪ Ξ)∗. For every
pattern η ∈ (Σ ∪ Ξ)∗, let Var(η) denote the set of variables that occur in η. A pattern
substitution (or just substitution) is a partial morphism σ : (Σ ∪ Ξ)∗ → Σ∗ with σ(a) = a for
all a ∈ Σ. When applying a substitution σ to a pattern η, we assume σ is defined on Var(η),
that is, Dom(σ) ⊇ Var(η). A word equation is a pair of patterns, that is, a pair (ηL, ηR) with
ηL, ηR ∈ (Σ∪ Ξ)∗. We also write ηL =̇ ηR, and call ηL and ηR the left side and the right side
of the equation. A solution of ηL =̇ ηR is a substitution σ with σ(ηL) = σ(ηR).

ICALP 2021



130:4 The Theory of Concatenation over Finite Models

The theory of concatenation combines word equations with first-order logic. First the
syntax: The set C of formulas of the theory of concatenation uses word equations (ηL =̇ ηR)
with ηL, ηR ∈ (Σ ∪ Ξ)∗ as atoms. The connectives are conjunction, disjunction, negation,
and quantifiers with variables from Ξ. For every φ ∈ C, we define its set of free variables
free(φ) by free(ηL =̇ ηR) := Var(ηL) ∪ Var(ηR); extending this canonically.

The semantics build on solutions of word equations: For all φ ∈ C and all pattern
substitutions σ with Dom(σ) ⊇ free(φ), we define σ |= φ as follows: Let σ |= (ηL =̇ ηR) if
σ(ηL) = σ(ηR). For the quantifiers, we say σ |= ∃x : φ (or σ |= ∀x : φ) if σx 7→w |= φ holds
for an (or all) w ∈ Σ∗, where σx 7→w is defined by σx 7→w(x) := w and σx7→w(y) := σ(y) for all
y ∈ (Σ ∪ Ξ)− {x}. The connectives’ semantics are defined canonically.

▶ Example 2.1. Let φ := xabcy =̇ ybcax ∧ ¬(x =̇ ε ∨ y =̇ ε). Then σ |= φ if and only if
σ(xabcy) = σ(ybcax), σ(x) ̸= ε, and σ(y) ̸= ε. For example, if σ(x) = abca and σ(y) = a.

We freely add and omit parentheses as long as the meaning stays clear. E-C, the existential
fragment of C, consists of those formulas that do not use universal quantifiers and that
apply negation only to word equations. The existential-positive fragment EP-C allows neither
universal quantifiers, nor negation. We also use this notation for other logics that we define.

3 Finite models in the theory of concatenation

The new logic finite model version of the theory of concatenation, namely FC, is built around
word equations; similarly to the theory of concatenation C. The latter can be understood as
first-order logic over the universe Σ∗ with concatenation – see for example [29], which refers
to C as FO(A∗, ·). In other words, for C, we can consider the universe to be fixed (for a given
terminal alphabet Σ). The key idea of FC is to replace the universe Σ∗ with a single word
and all its factors. In the formulas, this word is represented by a distinguished variable:

▶ Definition 3.1. We distinguish a variable u ∈ Ξ and call it the universe variable.

As the universe variable represents the universe (hence its name), it has a special role in
both syntax and semantics of FC. The syntax of FC restricts the syntax of C in two ways:

▶ Definition 3.2. The set FC of FC-formulas is defined recursively: The atoms are word
equations (ηL =̇ ηR) with ηL ∈ Ξ and ηR ∈ (Σ∪Ξ)∗. These can be combined using disjunction
(φ∨ψ), conjunction (φ∧ψ), negation ¬φ, and quantifiers ∃x : φ and ∀x : φ with x ∈ Ξ−{u}.

In other words, firstly, every word equation has a single variable on its left side. Secondly, the
universe variable u may not be bound by quantifiers. The reason for the first restriction is a
bit subtle; we shall discuss it after defining the semantics. But the other follows immediately
from the intuition that u shall represent the universe – hence, binding it would make no
sense. For the same reason, we also exclude u from the free variables of FC-formulas:

▶ Definition 3.3. The set free(φ) of free variables of an FC-formula φ is defined as for
C-formulas, with the exception that u is not considered a free variable.

The semantics of FC combine those of C with the additional condition that the universe
consists only of factors of the content of the universe variable u:

▶ Definition 3.4. For φ ∈ FC and a pattern substitution σ with Dom(σ) ⊇ free(φ) ∪ {u}, we
define σ |= φ as for C, but with the additional condition that σ(x)⊑σ(u) for all x ∈ Dom(σ).
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To highlight the special role of u, we also write (w, σ) |= φ if σ |= φ and w = σ(u). We may
shorten this to w |= φ if φ is a sentence – that is, if free(φ) = ∅. We write φ(x⃗) to denote
that x⃗ is a tuple of free variables of φ.

▶ Example 3.5. Define φ1(y) := ∃x : x =̇ papaya y banana and φ2 := ∃x : (x =̇ papaya ∨
x =̇ banana). Then (w, σ) |= φ1 if and only if σ(y) occurs in w between papaya and
banana, and w |= φ2 if and only if w contains papaya or banana as factor. Finally, let
φ3(x) := ∃p, s :

(
u =̇ p x s∧¬∃p̂, ŝ : (u =̇ p̂ x ŝ∧¬p̂ =̇ p)

)
. Then (w, σ) |= φ3 if and only if σ(x)

occurs exactly once in w.

When applying σ to an FC-formula, σ(u) always needs to be defined – otherwise, we would
have no universe to work with. But FC-formulas do not need to contain u. As a rule of
thumb, u is only required when referring to some “global” property of w. If we describe
properties that are more “local” (as in the next example), we usually do not need to use u.

▶ Example 3.6. Let φ⊑p(x, y) := ∃z : y =̇ xz. Then σ |= φ if and only if σ(x) and σ(y) are
factors of σ(u) with σ(x)⊑p σ(y). In other words, φ⊑p expresses x⊑p y. Consequently, we
can express x⊏p y through φ⊏p(x, y) := φ⊑p(x, y) ∧ ¬x =̇ y.

In fact, ⊏p and inequality can be expressed without negation (or universal quantifiers).
First, define φ(x)̸=ε := ∃y :

∨
a∈Σ x =̇ a y to express x ̸= ε – that is, σ |= φ̸=ε if and only if

σ(x)⊑σ(u) and σ(x) ̸= ε. We use this in ψ⊏p(x, y) := ∃z : (y =̇ x z ∧ φ̸=ε(z)). Like φ⊏p , this
expresses x⊏p y; but without negation.

Finally, let φ̸=(x, y) := ψ⊏p(x, y)∨ψ⊏p(y, x)∨
∨

a,b∈Σ,a̸=b ∃x1, y1, z : (x=̇z ax1∧y=̇z b y1).
This states that x⊏p y, y⊏p x, or x and y differ after a common prefix z – that is, x ̸= y.

We say φ,ψ ∈ FC are equivalent, written φ ≡ ψ, if for all σ with Dom(σ) ⊇ free(φ)∪ free(ψ)∪
{u}, we have that σ |= φ holds if and only if σ |= ψ. Thus, in Example 3.6, we have
φ⊏p ≡ ψ⊏p . If φ ∈ FC is a sentence, we define its language as L(φ) := {w | w |= φ}.

▶ Example 3.7. A language is called star-free if it is defined by a regular expression α

that is constructed from the empty set ∅, terminals a ∈ Σ, concatenation ·, union ∪, and
complement α. Given such an α, we define φα := ∃x : (u =̇x∧ψα(x)), where ψα(x) is defined
recursively by ψ∅(x) := ¬(x =̇ x), ψa(x) := (x =̇ a), ψ(α1·α2)(x) := ∃x1, x2 :

(
x =̇ x1 x2 ∧

ψα1(x1)∧ψα2(x2)
)
, ψ(α1∪α2)(x) := ψα1(x)∨ψα1(x), and ψα(x) := ¬ψα(x). Then σ |= ψα if

and only if σ(x) ∈ L(α) and σ(x)⊑σ(u). Thus, L(φα) = L(α).

We are now ready to discuss why Definition 3.2 restricts the left sides of word equations
to single variables. Assume we allowed, for instance, the word equation xy =̇ yx in an
FC-formula, and consider the case of σ(u) = a3 and σ(x) = σ(y) = a2. Then σ(x)⊑σ(u),
σ(y)⊑σ(u), and σ(xy) = σ(yx) hold, but σ(xy) = a4 is not a factor of σ(u), which means
that it is not in the universe.

There are two straightforward ways of allowing arbitrary word equations ηL =̇ ηR in FC
without changing the underlying universe. The first is adding the additional requirements
σ(ηL)⊑σ(u) and σ(ηR)⊑σ(u) to the definition of σ |= (ηL=̇ηR). This can also be understood
as declaring the concatenation as undefined if its result is not a factor of σ(u). The second is
interpreting ηL =̇ ηR as syntactic sugar for ∃x : (x =̇ ηL ∧ x =̇ ηR), where x is a new variable.

On the other hand, this re-interpretation of the solutions of word equations can be
considered non-intuitive, which makes formulas that rely on these easy to misunderstand.
To avoid these issues, this paper restricts every left side to a single variables, even though
this is not strictly necessary.

ICALP 2021



130:6 The Theory of Concatenation over Finite Models

4 Properties of FC

In this section we analyze FC dynamically by discussing its evaluation problem – given a
formula φ ∈ FC and a pattern substitution σ, decide whether σ |= φ. We call the special
case where φ is a sentence the model checking problem. We also consider the satisfiability
problem – given φ ∈ FC, decide whether there is a pattern substitution σ with σ |= φ. After
that, we also consider aspects of optimization of formulas.

4.1 Model checking vs satisfiability
For C, the model checking problem is undecidable. This is due to two reasons. Firstly, the
satisfiability problem for C is undecidable by Quine [48]. Secondly, for C, satisfiability reduces
to model checking – from a given φ ∈ C, we can construct a C-sentence φ′ by binding all
free variables of φ existentially. Then φ is satisfiable if and only if σ |= φ′, no matter which
substitution σ we choose. In contrast to this, the finite universe of FC drastically reduces the
complexity of model checking.

▶ Theorem 4.1. Evaluation is PSPACE-complete for FC and NP-complete for EP-FC.

In fact, the proof shows that the lower bounds hold even in the special case of model
checking a |= φ. Both the drop in complexity and the fact a very simple structure suffice are
comparable to FO on finite relations (see e. g. [36]), and the proofs are equally straightforward.
For both logics, the hardness of the problem comes from parameters of the formula and not
of the word or the relational structure. FO provides us with another parameter to lower the
complexity of model checking. We define the width wd(φ) of a formula φ as the maximum
number of free variables in any of its subformulas.

▶ Theorem 4.2. Model checking for FC can be solved in time O(k|φ|n2k), for k := wd(φ)
and n := |σ(u)|.

The proof also shows that this is only a rough upper bound; taking properties of variables
into account lowers the exponent. In principle, we can apply various structure parameters for
first-order formulas (see e. g. Adler and Weyer [2]) to FC. This assumes that we treat word
equations as atomic formulas, which is certainly possible – but we can do better than that.

Decomposing patterns. Using a word equation x =̇ α as an atom results in a formula
that has a width of at least |Var(α)|. Our goal is to lower that bound, by decomposing the
pattern into a formula. Technically, a pattern α = α1 · · ·αn with αi ∈ (Ξ ∪ Σ) is a term
f(α1, . . . , αn), where the function f is the n-ary concatenation. But there is a syntactic
criterion that allows us to decompose α into a conjunction of binary concatenations. This
builds on a result from combinatorics on words and formal languages, where a pattern α is
also treated as generators of the pattern languages L(α); the set of images of α under pattern
substitutions. In this context, Reidenbach and Schmid [49] started a series of articles on
classes of pattern languages with a polynomial time membership problem (surveyed in [40]),
most of which rely on the following definition (see [8] for the definition of treewidth).

▶ Definition 4.3. The standard graph of a pattern α = α1 · · ·αn with n ≥ 1 and αi ∈ (Σ∪Ξ)
is Gα := (Vα, Eα) with Vα := {1, . . . , n} and Eα := E<

α ∪ E=
α , where E<

α is the set of all
{i, i+ 1} with 1 ≤ i < n, and E=

α is the set of all {i, j} such that αi is some x ∈ Ξ, and αj

is the next occurrence of x in α. Then tw(α), the treewidth of α, is the treewidth of Gα.
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As artificial (but simple) example, consider the sequence of patterns αn := x1x1x2x2 · · ·xnxn.
Then |Var(αn)| = n, affecting the width of formulas that use αn accordingly, but tw(αn) = 1.
Using tree decompositions, we can rewrite patterns of bounded treewidth into formulas of
bounded width (similar to the proof of Kolaitis and Vardi [34] for variable bounded FO).

▶ Theorem 4.4. Let φ := ∃x1, . . . , xm : y =̇α. Then there exists ψ ∈ EP-FC with ψ ≡ φ and
wd(ψ) ≤ 2tw(α) + v, where v = 2 + |free(y =̇ α)− {x1, . . . , xm}|.

For every fixed k, given φ with tw(α) ≤ k, we can compute ψ in polynomial time.

Combining Theorems 4.2 and 4.4 yields a (slightly) different proof of the polynomial time
decidability of the membership problem for classes of patterns with bounded treewidth
from [49]. As pointed out in [9], bounded treewidth does not cover all pattern languages
with a polynomial time membership problem, like e. g. patterns αk where tw(α) is bounded.
But these languages can be expressed by ∃x : (u =̇xk ∧φα(x)), where φα(x) is a formula that
expresses x ∈ L(α), thus increasing the width by one. We leave a systematic examination
whether all criteria for patterns with a tractable membership problem map to FC-formulas
of bounded width for future work.

Satisfiability. Another parallel to FO is that satisfiability is undecidable for FC, even if we
use only few variables. Let FCk denote the set of formulas with width at most k.

▶ Proposition 4.5. Satisfiability for FC3 is undecidable if |Σ| ≥ 2.

The problem is trivial for FC0 (see the proof of Theorem 4.8) and open for FC1 and FC2.

4.2 Static optimization
Apart from the width, Theorem 4.2 highlights the length of a formula as another parameter
that influences the complexity of model checking. While the length of the patterns in the
word equations might not seem to be factor that is overly important, there are patterns
where straightforward optimizations can lead to an exponential advantage.

▶ Example 4.6. For k ≥ 1, let φk(y) := ∃x : y =̇ x2k . Then φk ≡ ψk := ∃x1, . . . , xk :
(
y =̇

x1x1 ∧
∧k−1

i=1 xi =̇ xi+1xi+1
)
, and |φk| is exponential in k, while |ψk| is linear in k. We can

also rewrite ψk into a formula of width 3 by pulling quantifiers inwards and reusing variables.
More specifically, we first rewrite each ψk into the equivalent formula

∃x1 : (y =̇ x1x1 ∧ (∃x2 : x1 =̇ x2x2 ∧ · · · (∃xk−1 : xk =̇ xk−1xk−1) · · · )).

Then we replace every variable xi with x1 if i is odd or x2 if i is even. The resulting formula
has width 3 (due to y), is equivalent to φk, and has the same length.

This raises the questions whether we can computably minimize formulas and whether some
fragments are more succinct than others. We address these questions in order.

▶ Theorem 4.7. There is no algorithm that, given φ ∈ FC, computes an equivalent ψ such
that |ψ| is minimal. This holds even if we restrict this to minimization within EP-FC4.

This leaves open the decidability of, given φ ∈ FC (or φ ∈ EP-FC) and k > 0, is there an
equivalent ψ ∈ FCk. But without suitable inexpressibility methods (see Section 5.3), we cannot
even show that a language is inexpressible in FCk for some k > 0, which complicates tackling
this problem. The proof of Theorem 4.7 is actually more general and also demonstrates the
undecidability of other common problems, like containment and equivalence.

ICALP 2021



130:8 The Theory of Concatenation over Finite Models

Via Hartmanis’ [30] meta theorem, certain undecidability results provide insights into the
relative succinctness of models (see [35] or e. g. [23] for details). For two logics F1 and F2,
the tradeoff from F1 to F2 is non-recursive if, for every computable f : N→ N, there exists
some φ ∈ F1 that is expressible in F2, but |ψ| ≥ f(|φ|) holds for every ψ ∈ F2 with ψ ≡ φ.

▶ Theorem 4.8. There are non-recursive tradeoffs from EP-FC4 to regular expressions
and FC0; and from FC4 to EP-FC, patterns, and singleton sets {w}.

Note in particular that patterns can be parts of word equations. Hence, where Example 4.6
showed an exponential advantage in the rewriting, Theorem 4.8 shows FC4 can obtain far
larger advantages on certain classes of patterns.

4.3 Iteration and recursion
Iteration and recursion have been extensively studied in finite model theory and database
theory. In particular, FO[<] that is extended with operators for transitive closure or fixed
points captures various complexity classes (see e. g. [18, 36]). This is also closely connected to
the recursive query language Datalog (see e. g. [1]). In this section, we shall define FC-Datalog,
an FC-analog of Datalog. On the way, we shall also see that using transitive closures or fixed
points on FC instead of FO[<] characterizes the same complexity classes.

Iteration. The definitions of these operators and the resulting extensions of FC are straight-
forward adaptions of their FO[<]-versions (see e. g. [36] or [18]). But as they are also rather
lengthy, we only give the intuitions behind them (detailed definitions can be found in the
full version of this paper).

For k ≥ 1, an FC-formula with 2k free variables can be viewed as generator of a relation
over R ⊆ Sk×Sk, where S is the universe (the set of factors of u). The operator tc computes
the transitive closure tc(R) of R. If we view R as edge set of a directed graph over Sk, then
tc computes the reachability relation in this graph. The deterministic transitive closure dtc
is defined analogously, with the additional restriction that dtc stops at nodes with more than
one outgoing edge. FCtc and FCdtc extend FC with tc and dtc, respectively.

For fixed points, we introduce special relation symbols as part of inductive definitions.
Inside a fixed point operator, a formula φ may use a symbol Ṙ and at the same time also
define the relation R inductively. We start with R0 := ∅ and let R1 be the relation that is
defined by φ if Ṙ represents R0. This is repeated, each Ri giving rise to Ri+1, until a fixed
point is reached. For least fixed points, we ensure Ri ⊆ Ri+1 for all i. For partial fixed points,
this is not required. We use FClfp and FCpfp for the respective extensions of FC.

Complexity classes are commonly defined as classes of languages; and as we can treat FC
and its extensions as language generators, connecting these two worlds is straightforward.
We say that a logic F captures a complexity class C if C is the class of languages that are
F-definable – that is, C = {L(φ) | φ ∈ F}.

The following result mirrors that for the respective extensions of FO[<]:

▶ Theorem 4.9. FCdtc, FCtc, FClfp, FCpfp capture L, NL, P, PSPACE, respectively.

The result holds even if the formulas are required to be existential-positive. Thus, FC and
even EP-FC behave under fixed-points and transitive closures like FO[<].

Recursion. This connection immediately suggests another: Recall that FO with least-fixed
point operators can be used to define Datalog (see e. g. Part D of [1]). Analogously, we define
FC-Datalog, a version of Datalog that is based on word equations.
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An FC-Datalog-program is a tuple P := (R,Φ,Ans), where R is a set of relation symbols
that contains a special output symbol Ans, each R ∈ R has an arity ar(R), and Φ is a finite
set of rules R(x⃗)← φ1(y⃗1), . . . , φm(y⃗m) with R ∈ R, m ≥ 1, each φi is an FC-word equation,
and each x of x⃗ appears in some y⃗i.

We define JP K(w) incrementally, initializing the relations of all R ∈ R to ∅. For each rule
R(x⃗)← φ1(y⃗1), . . . , φm(y⃗m), we enumerate all σ with σ(u) = w and check if σ |= ∃y⃗ :

∧m
i=1 φi,

where y⃗ := (
⋃m

i=1 y⃗i)− x⃗. If this holds, we add σ(x⃗) to R. This is repeated until all relations
have stabilized. Then JP K(w) is the content of the relation Ans.

▶ Example 4.10. Define an FC-Datalog-program ({Ans, E},Φ), where ar(Ans) = 0, ar(E) = 3,
and Φ consists of the rules Ans()← u=̇xyz,E(x, y, z), and E(x, y, z)← x=̇ε, y =̇ε, z =̇ε, and
E(x, y, z)← x =̇ x̂a, y =̇ ŷb, z =̇ ẑc, E(x̂, ŷ, ẑ). This defines the language {anbncn | n ≥ 0}.

▶ Theorem 4.11. FC-Datalog captures P.

This is unsurprising, considering Datalog on ordered structures captures P, see e. g. [36], and
the analogous result for spanners with recursion [47]. But it allows us to use word equations
as a basis for Datalog on words. This provides potential applications for future insights into
acyclicity for patterns, which could be combined with existing techniques for Datalog.

FC-Datalog can also be seen as a generalization of range concatenation grammars (RCGs),
see [6, 31], to use outputs and relations. There has been some work on parsing of RCGs
(see [32] and its references). In the future, these might help identify tractable fragments of
FC-Datalog. Vice versa, insights into the latter might lead to new approaches to RCG-parsing.

5 FC as a logic for document spanners

Fagin et al. [19] introduced document spanners (or just spanners) as a formal model of
information extraction that is based on relational algebra (see e. g. [1]). This section connects
spanners to FC. After stating the necessary definitions (Section 5.1), we extend FC into a
logic for spanners (Section 5.2) and then use this for an inexpressibility proof (Section 5.3).

5.1 Spans and document spanners
A span of w := a1 · · · an with n ≥ 1 is an interval [i, j⟩ with 1 ≤ i ≤ j ≤ n+ 1. It describes
the factor w[i,j⟩ = ai · · · aj−1. For finite V ⊂ Ξ and w ∈ Σ∗, a (V,w)-tuple is a function µ

that maps each variable in V to a span of w. A spanner with variables V is a function P

that maps every w ∈ Σ∗ to a set P (w) of (V,w)-tuples. We use Var(P ) for the variables of a
spanner P . Accordingly, a spanner P is a function that takes an input word w and computes
a relation P (w) of (Var(P ), w)-tuples.

Like [19], we base spanners on regex formulas; regular expressions with variable bind-
ings x{α}. This matches the same words as the expression α and assigns the corresponding
span of w to the variable x. For the purpose of this article, this informal definition shall
suffice. Detailed definitions of the syntax and semantics of regex formulas can be found
in [19] (the original definition that uses parse trees) and [22] (a more lightweight definition
that uses the ref-words from Schmid [51]).

A regex formula is functional if on every word, every match has exactly one assignment
for each variable. The set of functional regex formulas is RGX. For α ∈ RGX, we define the
spanner JαK as follows. Every match on w ∈ Σ∗ defines a (Var(α), w)-tuple µ, where each
µ(x) is the span assigned to x; and JαK(w) is the set of all these µ.
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▶ Example 5.1. We consider the regex formula α := Σ∗(
x{banana} ∪ x{papaya}

)
Σ∗, which

matches every word w that contains an occurrence of banana or papaya. The corresponding
spanner JαK(w) contains all spans [i, j⟩ with w[i,j⟩ ∈ {banana, papaya}. Next, we define
β := Σ∗x{Σ∗}Σ∗y{Σ∗}Σ∗. For every w ∈ Σ∗, we have that JβK(w) contains those µ where
µ(x) refers to a span to the left of µ(y).

We use the spanner operations union ∪, natural join ▷◁, projection π, set difference −,
and equality selection ζ=. For spanners P1 and P2 with Var(P1) = Var(P2), union and set
difference are defined by (P1 ∪ P2)(w) := P1(w) ∪ P2(w) and (P1 − P2)(w) := P1(w)− P2(w)
on all w ∈ Σ∗. Furthermore, the projection πV P for a spanner P and a set of variables
V ⊂ Var(P ) is obtained for every w ∈ Σ∗ by restricting the domain of every µ ∈ P (w) to V .

The natural join P1 ▷◁ P2 combines spanner results by merging tuples that agree on the
common variables. That is, (P1 ▷◁ P2)(w) contains those (Var(P1) ∪ Var(P2), w)-tuples µ
for which there exist µ1 ∈ P1(w) and µ2 ∈ P2(w) such that µ1(x) = µ2(x) for all x ∈
Var(P1) ∩ Var(P2). An important consequence of this definition is that join is defined using
spans (and thereby positions in the input word), not using the factors that occur in the
spans. To compare factors, we use the equality selection ζ=

x,yP with x, y ∈ Var(P ). This is
defined by ζ=

x,yP (w) := {µ ∈ P (w) | wµ(x) = wµ(y)} for w ∈ Σ∗.
By combining regex formulas with symbols for spanner operations, we obtain spanner

representations; and their semantics are defined by applying the operations. The class of
generalized core spanner representations RGXgcore consists of combinations of RGX and any of
the five operators; the core spanner representations RGXcore exclude set difference. According
to Fagin et al. [19], “core spanners” capture the core functionality of IBM’s SystemT.

▶ Example 5.2. Let α and β be the regex formulas from Example 5.1. We define the spanner
representation ϱ1 := α(x) ▷◁ α(y) ▷◁ β(x, y). Then Var(ϱ1) = {x, y}, and Jϱ1K(w) contains
those µ where µ(x) occurs before µ(y) in w and each of wµ(x) and wµ(y) is banana or papaya.
Now let ϱ2 := ζ=

x,yϱ1. Then Jϱ2K(w) is the subset of Jϱ1K(w) that also has wµ(x) = wµ(y).

We identify spanners and their representations; e. g. by referring to a representation ϱ as a
spanner (technically, JϱK is the spanner) or by calling the elements of RGXcore core spanners.

5.2 Adding expressive power to FC
As core spanners are based on regular expressions, they can define all regular languages.
This makes them more powerful than EP-FC. To prove this, we first connect FC to C.

▶ Lemma 5.3. Given φ ∈ FC, we can construct in polynomial time ψ ∈ C such that σ |= φ

if and only if σ |= ψ. This also preserves the properties existential and existential-positive.

Hence, EP-FC is not more expressive than EP-C, which cannot express all regular languages –
not even comparatively “harmless” languages like e. g. {a, b}∗c (see Karhumäki, Mignosi,
Plandowski [33]). While we could define this specific language using negation, we shall
address the issue in a way that generalizes far beyond regular languages and that does
not require us to leave the existential-positive fragment (and its friendlier upper bounds).
Complexity is also a reason why we do not use MSO or define a second-order version of FC.

Instead, take inspiration from C (see Diekert [13]). The theory of concatenation with
regular constraints, C[REG], extends C by allowing regular constraints x ∈̇ α as atoms, where
x ∈ Ξ, α is a regular expression, and σ |= x ∈̇ α if σ(x) ∈ L(α). We define FC[REG]
analogously, where σ |= x ∈̇ α has the additional condition that σ(x)⊑σ(u) must hold.
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▶ Theorem 5.4. Theorem 4.1 and Theorem 4.2 also hold if we replace FC with FC[REG] and
EP-FC with EP-FC[REG].

In other words, evaluation is PSPACE-complete for FC[REG] and NP-complete for EP-FC[REG],
and formula width can be used as parameter to bound model checking for FC[REG]. This
generalizes to all constraints that can be decided in polynomial time, which allows us to
adapt FC to other settings as well.

For example, string solvers often use length constraints. There are predicates that compare
words by applying arithmetic to their lengths, like |x| + |y| = |z|. While the applications
of EP-C in a string solver context usually rely on deciding satisfiability, cases where model
checking suffices could benefit from using FC with appropriate constraints.

Regarding prior work, the C[REG]-fragments SpLog and SpLog¬ were introduced in [22]
as alternatives to RGXcore and RGXgcore, respectively. As these ensure the finite universe
purely through syntax, they are more cumbersome than FC and do not generalize as nicely.

Before we connect FC[REG] to spanners, we take a brief look at restricted regular expres-
sions that can be expressed in FC. We call a regular expression simple if the operator ∗ is
only applied to terminal words or to Σ (a shorthand for

⋃
a∈Σ a). That is, if Σ = {a, b, c},

then (abc)∗Σ∗ is simple, but (a ∪ b)∗ and (a(b)∗)∗ are not.

▶ Lemma 5.5. For every simple regular expression α, there is φα(x) ∈ EP-FC such that
(w, σ) |= φα if and only if σ(x) ∈ L(α) and σ(x)⊑w.

The proof uses the characterization of commuting words (see e. g. Lothaire [38]). We shall
use this Lemma in the proof of Theorem 5.14, to replace regular constraints.

FC[REG] and Spanners. As we want to use FC[REG] for spanners, we still need to close a
formal gap, namely that spanners reason over positions in a word, while FC[REG] reasons
over words. We bridge this gap through the notion of one realizing the other, which [22]
introduced for the logic SpLog. We begin with formulas that realize spanners.

▶ Definition 5.6. A substitution σ expresses a (V,w)-tuple µ if Dom(σ) ⊇ {xP , xC | x ∈ V }
and, for all x ∈ V , we have σ(xP ) = w[1,i⟩ and σ(xC) = w[i,j⟩ for [i, j⟩ = µ(x).

A formula φ ∈ FC[REG] realizes a spanner P if free(φ) = {xP , xC | x ∈ Var(P )} and, for
all w ∈ Σ∗, we have (w, σ) |= φ if and only if σ expresses some µ ∈ P (w).

In other words, xC is wµ(x) (the content of x), and xP is the prefix of w before wµ(x).

▶ Example 5.7. In Example 5.1, we defined α := Σ∗(
x{banana}∪x{papaya}

)
Σ∗. Its spanner

JαK is realized by φ(xP , xC) := ∃y : u =̇ xPxCy ∧
(
xC =̇ banana ∨ xC =̇ papaya

)
.

Then (w, σ) |= φ if σ expresses some µ ∈ JαK(w). That is, σ(xC) contains wµ(x) (i. e.,
banana or papaya), and σ(xP ) contains the prefix in w before it.

To show that FC[REG] cannot express more than the classes of spanners that we consider,
we also define the notion of spanners that realize formulas.

▶ Definition 5.8. A spanner P realizes φ ∈ FC[REG] if Var(P ) = free(φ) and, for all w ∈ Σ∗,
we have µ ∈ P (w) if and only if (w, σ) |= φ for the σ with σ(x) := wµ(x) for all x ∈ Var(P ).

There are polynomial-time conversions from a class of formulas (or spanners) A to a class of
spanners (or formulas) B if, given x ∈ A, we can compute in polynomial time y ∈ B that
realizes x. We write A ≡poly B if there are polynomial-time conversions from A to B and
from B to A.

▶ Theorem 5.9. FC[REG]≡poly RGXgcore and EP-FC[REG]≡poly RGXcore.
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5.3 Inexpressibility for FC, FC[REG], and spanners
There are currently only few inexpressibility methods for FC and FC[REG], as there are only
few such methods for related models like spanners or the theory of concatenation. A detailed
discussion from the point of view of RGXcore and SpLog can be found in Section 6 of [22].
These techniques do not account for negation, which makes them inapplicable for FC or
FC[REG]. A standard tool for FO-inexpressibility are Ehrenfeucht–Fraïssé games (e. g. [36]).
But as concatenation acts as a generalized addition, using these for FC or FO[EQ] is far from
straightforward. Another standard tool is the Feferman-Vaught theorem (see [39]). While
this can be used for FC, the factor universe of FC makes decomposing the structure into
disjoint sets inconvenient. Instead of following down this road, we introduce FO[EQ], an
extension of FO[<] that has the same expressive power as FC.

Connecting FC to FO[<]. In this section, we establish connections between FC and
“classical” relational first-order logic. It is probably safe to say that in finite model theory,
the most common way of applying first-order logic to words is the logic FO[<] (and the more
general MSO). This uses the equality =̇ and a vocabulary that consists of a binary relation
symbol < and unary relation symbols Pa for each a ∈ Σ. Every word w = a1 · · · an ∈ Σ+

with n ≥ 1 is represented by a structure Aw with universe {1, . . . , n}. For every a ∈ Σ,
the relation Pa consists of those i that have ai = a. To simplify dealing with ε, we slightly
deviate from this standard structure. For every w ∈ Σ∗, we extend Aw to A′

w by adding
an additional “letter-less” node |w| + 1 that occurs in no Pa. Then we have a one-to-one
correspondence between pairs (i, j) with i ≤ j from the universe of A′

w and the spans [i, j⟩
of w (see Section 5.1), and w = ε does not require a special case.

▶ Definition 5.10. FO[EQ] extends FO[<] with constants min and max, the binary relation
symbol succ, and the 4-ary relation symbol Eq. For every w ∈ Σ∗ and the corresponding
structure A′

w, these symbols express min = 1, max = |w|+ 1, succ = {(i, i+ 1) | 1 ≤ i ≤ |w|},
and Eq contains those (i1, j1, i2, j2) with i1 ≤ j1 and i2 ≤ j2 such that w[i1,j1⟩ = w[i2,j2⟩. We
write (w,α) |= φ to denote that α is a satisfying assignment for φ on A′

w.

▶ Example 5.11. The FO[EQ]-formula ∃x : Eq(min, x, x,max) defines {ww | w ∈ Σ∗}.

Technically, we do not need the symbols min, max, or succ, as these can be directly expressed
in FO[<]. But these constants allows us to better preserve the structural similarities when
converting between various fragments of FC and FO[EQ].

When comparing FC to FO[EQ], we need to address that one operates on words and the
other on positions. We can handle this in a way that is similar to the situation between
FC and spanners; and this can be used to show that there are polynomial time conversions
between FC and FO[EQ] that preserve the properties existential and existential-positive, and
only marginally increase the width of the formulas.

In fact, these transformations show that one could choose FO[EQ] over FC as a logic for
words (or for spanners, if one extends FO[EQ] with regular constraints or generalizes it to
MSO with Eq). This is a valid choice, if one prefers writing ∃x1, . . . , x6 :

(
Pp(x1) ∧ Pa(x2) ∧

Pp(x3)∧Pa(x4)∧Py(x5)∧Pa(x6)∧
∧5

i=1 succ(xi, xi+1)
)

over ∃x : x =̇ papaya or if one wants
to express x =̇ yz as ∃xm :

(
Eq(xo, xm, yo, yc) ∧ Eq(xm, xc, zo, zc)

)
instead.

Details on these conversions (and the required definitions) can be found in the full version
of this paper. For the sake of finding an inexpressibility result, we only require the following.

▶ Lemma 5.12. A language is definable in FC if and only if it is definable in FO[EQ].
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Proving inexpressibility. Lemma 5.12 allows us to use Feferman-Vaught theorem, at least
when considering languages that are restricted enough.

▶ Lemma 5.13. There is no FC-formula that defines {anbn | n ≥ 1}.

Moreover, we can show that regular constraints offer no help for defining this language.

▶ Theorem 5.14. FC[REG] cannot express the equal length relation |x| = |y|.

As FC[REG] has the same expressive power as RGXgcore, this is the first inexpressible result for
RGXgcore on non-unary alphabets. The proof has two parts, which both rely on the limited
structure of the language anbn. One part is using Lemma 5.13, wich applies the Feferman-
Vaught theorem. The other is using Lemma 5.5 to eliminate the regular constraints, which is
based on combinatorics on words. The authors expect that a more general inexpressibility
method for FC (or even FC[REG]) would need to combine more advanced techniques from
combinatorics on words (like those in [33]) with methods from logic.

6 Conclusions and future work

On words, concatenation is one of the most natural operations. But as seen for C, using
concatenation with first-order logic quickly becomes undecidable. Restricting the universe to
a word and all its factors changes the situation drastically. In contrast to C, the resulting
logic FC has a meaningful distinction between satisfiability and model checking; and the
latter is not only decidable, but we can use the structure of the formula to derive upper
bounds in the same way as for FO over finite structures. In addition to this, FC can also
replace FO[<] as “base” logic for characterizing complexity classes. Hence, while one might
certainly make a case against the claim that FC is the finite model version of the theory of
concatenation, the results leave little doubt that it is at least a valid approach.

FC also provides an extendable framework for querying and model checking words, in
particular for scenarios that rely on expressing that factors appear multiple times. If more
expressive power is needed, FC is easily extended with constraints, without affecting the
lower bounds on evaluation and model checking. In particular, we can translate core and
generalized core spanners to FC[REG] and then analyze or optimize these formulas with
respect to parameters like width. To a degree, this was also possible the spanner logic SpLog,
but FC is more elegant, easier to use, and behaves much more like FO on relational databases.

Future work
Many fundamental questions remain open, in particular for model checking and related
problems, like evaluation and enumeration.

Compilation into tractable fragments. One promising direction is the compiling of formulas
into equivalent formulas of a fragment where these problems can be solved more efficiently.
For example, Theorem 4.2 shows that bounding the width of the formulas leads to tractable
model checking. Theorem 4.4 then provides us with a sufficient criterion for formulas that can
be rewritten into formulas with a lower width, by decomposing the pattern of word equations.
It is likely that this approach can be further refined by not just rewriting single patterns,
but taking the larger formula into account. This approach can also be used with other
structure parameter for formulas (like acyclicity and bounded tree width), by developing a
corresponding variant of Theorem 4.4. One example of this is [26], which adapts the concept
of acyclic conjunctive queries to FC.
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A more fundamental question is whether all tractable fragments of FC can be explained
through the criterion of bounded width (or are subset of a larger tractable fragment that
is explained through it). A good starting point for this line of investigation is the question
whether all classes of pattern languages with a polynomial time membership problem can be
explained through bounded width.

Model checking as parsing. Another approach – that is not investigated in the present
paper – is the connection to parsing algorithms. This is a natural question, as model-checking
EP-FC-formulas can be understood as a parsing problem (where variables are mapped to
factors of the input word). Promising starting points for this are parsing algorithms for
RCGs (recall Section 4.3) and related grammars, and the extraction grammars from [45].

Data structures. Model checking algorithms will likely benefit from specialized data struc-
tures. For example, a naive representation of all factors of a word of length n would contain
about O(n2) elements, and if these are just represented directly as words, this would take
O(n3) memory. But using data structures like suffix trees and suffix arrays, one can create
in time O(n) a data structure that allows us to enumerate all factors with constant delay
(see [26], which also examines small word equations).

While these optimizations do not matter if one considers polynomial time efficient enough,
it would be very useful to know which fragments can be model-checked in time O(nk) for
small k, or even in sub-quadratic time.

Inexpressibility and satisfiability. Our results on inexpressibility also leave many questions
open. Lemma 5.13 heavily relies on the limited structure of the language. This is the same
situation as in Section 6.1 of [22], which describes an inexpressibility technique for EP-FC[REG].
Although these two approaches provide us with some means of proving inexpressibility, they
only cover special cases, and much remains to be done. It seems likely that a more general
method will need to combine approaches from finite model theory (like the Feferman-Vaught
theorem that we used for Lemma 5.13) with techniques from combinatorics on words (like
those in [33] that [22] uses). A related problem that is still open is whether EP-FC has the
same expressive power as EP-C.

Of particular interest is finding a method to prove inexpressibility in FCk for some k > 0.
This problem relates to the open questions whether there are algorithms that minimize the
width of a formula, and for which k the fragment FCk+1 is more expressive than FCk. The
authors conjecture that this holds for all k ≥ 0, which would contrast with FO[<], where
the fragment of formulas with width three has the same expressive power as the full logic.
Finally, it remains open whether satisfiability is decidable for FC1 or FC2.

Beyond FC. Using FC as a logic for spanners (and other models, potentially) raises further
questions. For example, while every tractable fragment of FC[REG] maps to a tractable
fragment of core spanners (namely, those that are obtained by converting the formulas), there
is no guarantee that the obtained fragment is natural. Hence, a more detailed investigation
into conversions between FC[REG] and RGXcore is justified.

There are many other possible directions. For example, one could easily define a second-
order version of FC and adapt various results from SO. Moreover, FC could be examined
from an algebra point of view, or related to rational and regular relations.
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