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Abstract
We present a variant of the quantum relational Hoare logic from (Unruh, POPL 2019) that allows us
to use “expectations” in pre- and postconditions. That is, when reasoning about pairs of programs,
our logic allows us to quantitatively reason about how much certain pre-/postconditions are satisfied
that refer to the relationship between the programs inputs/outputs.
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1 Introduction

Relational Hoare logics (RHL) are logics that allow us to reason about the relationship
between two programs. Roughly speaking, they can express facts like “if the variable x
in program ccc is equal to x in program ddd, then after executing ccc and ddd, respectively, the
content of variable y in program ccc is greater than that of y in ddd.” RHL was introduced in
the deterministic case by [6], and generalized to probabilistic programs by [4] (pRHL) and
to quantum programs by [17] (qRHL). RHLs have proven especially useful in the context
of verification of cryptographic schemes. For example, the CertiCrypt tool [4, 3] and its
successor EasyCrypt [2, 1] use pRHL to create formally verified cryptographic proofs. And
[16] implements a tool for verifying quantum cryptographic proofs based on qRHL.

On the other hand, “normal” (i.e., not relational) quantum Hoare logics have been
developed in the quantum setting, starting with the predicate transformers from [10], see
[11, 18, 7, 12]. Out of these, [10, 11, 18] use “expectations” instead of “predicates” for the
pre- and postconditions of the Hoare judgments. To understand the difference, consider the
case of classical probabilistic programs. Here, a predicate is (logically equivalent to) a set of
program states (and a program state is a function from variables to values). In contrast, an
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136:2 QRHL with Expectations

expectation is a function from program states to real numbers, basically assigning a value
to each program state. Probabilistic Hoare logic with expectations, implicit in [13], uses
expectations as the pre- and postconditions of a Hoare judgment. Then, roughly speaking,
the preexpectation tells us what the expected value of the postexpectation is after running
the program. This can be used to express much more fine-grained properties of probabilistic
programs, giving quantitative guarantees about their probabilistic behavior, instead of just
qualitative (a certain final state can or cannot occur). As [10] showed, the same approach can
be used for quantum programs. Here, an expectation is modeled by a self-adjoint operator A
on the space of all program states. The “value” of a given program state ρ is then computed
as the trace tr Aρ. While at the first glance not as obvious as the meaning of classical
expectations, this formalism has nice mathematical properties and is also equivalent to taking
the expectation value of the outcome of a real-valued measurement. By using this approach,
[10, 11, 18] can express more fine-grained judgments about quantum programs, by not just
expressing which final states are possible, but also with what probabilities.

Yet, qRHL [17] did not follow this approach (only mentioning it as possible future work).
As a consequence, qRHL does not enable as fine-grained reasoning about probabilities as the
non-relational quantum Hoare logics. On the other hand, the non-relational quantum Hoare
logics do not allow us to reason about the relationship between programs.

In this work, we combine the best of two worlds. We present a variant of qRHL,
expectation-qRHL, that reasons about pairs of programs, and at the same time supports
expectations as the pre- and postconditions, thus being as expressive as the calculi from
[10, 11, 18] when it comes to the probabilistic behavior of the programs.

Related work. The relevant prior work has already been discussed above. Concurrently
and independently, [5] presented a different formalization of expectation-qRHL. (The first
versions on arXiv appeared within two months of each other.) The biggest difference is the
definition of couplings which in our setting are separable quantum states, and in their setting
nonseparable quantum states. Therefore, the soundness proofs are totally different in [5] and
in the present paper, even for the same rules. As a consequence, we can avoid having to
reason about judgments with side-conditions, making compositional reasoning about more
complex programs much easier.

Organization. In Section 2 we introduce notation and preliminaries, including the concept
of expectations. In Section 3 we give syntax and semantics of the imperative quantum
programming language that we study. In Section 4 we give the definition of expectation-
qRHL. In Section 5, we present sound rules for reasoning about expectation-qRHL judgments.
And in Section 6, we analyze the quantum Zeno effect as an example of using our logic.

In the full version, we give a detailed comparison of our logic with [5] and full proofs of
our results.

2 Preliminaries: Variables, Memories, and Predicates

In this section, we introduce some fundamental concepts and notations needed for this paper,
and recap some of the needed quantum background as we go along. When introducing
some notation X, the place of definition is marked like this: X . For further mathematical
background we recommend [8, 9], and for an introduction to quantum mechanics [15].
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Variables. Before we introduce the syntax and semantics of programs, we first need to
introduce some basic concepts. A variable is described by a variable name x,y, z that
identifies the variable, and a nonempty type T . The type of x is simply the nonempty set of
all (classical) values the variable can take. E.g., a variable might have type {0, 1}, or N.1 Lists
or sets of variables will be denoted X,Y,Z . Given a list X = x1 . . .xn of variables, we say
its type is T1 × · · · × Tn if Ti is the type of xi. We write XY for the concatenation/disjoint
union of lists/sets of variables X,Y.

Memories and quantum states. An assignment assigns to each variable a classical value.
Formally, for a set X, the assignments over X are all functions m with domain X such that:
for all x ∈ X with type Tx, m(x) ∈ Tx. That is, assignments can represent the content of
classical memories.

To model quantum memories, we simply consider superpositions of assignments: A (pure)
quantum memory is a superposition of assignments. Formally, ℓ2[X] , the set of all quantum
memories over X, is the Hilbert space with basis2 {|m⟩}m where m ranges over all assignments
over X. Here |m⟩ simply denotes the basis vector labeled m. We often write |m⟩X to stress
which space we are talking about. We call a quantum memory ψ normalized iff ∥ψ∥ = 1.
Intuitively, a normalized quantum memory over X represents a state a quantum computer
with variables X could be in. We also consider quantum states over arbitrary sets X (as
opposed to sets of assignments). Namely, ℓ2(X) denotes the Hilbert space with orthonormal
basis {|x⟩}x∈X . (In that notation, ℓ2[X] is simply ℓ2(A) where A is the set of all assignments
on X.) Normalized elements of ℓ2[X] represent quantum states.

We often treat elements of ℓ2(T ) and ℓ2[X] interchangeably if T is the type of X since
there is a natural isomorphism between those spaces.

In many situations, we additionally need an additional symbol ⊥ that denotes that a
memory is not available because the program did not terminate. A quantum ⊥-memory over
X is an element of ℓ2[X]⊥ := ℓ2(A ∪ {⊥}) where A is the set of all assignments on X. That
is, a quantum ⊥-memory is a superposition between a quantum memory and |⊥⟩.

The tensor product ⊗ combines two quantum states ψ ∈ ℓ2(X), ϕ ∈ ℓ2(Y ) into a joint
system ψ ⊗ ϕ ∈ ℓ2(X × Y ). In the case of quantum memories ψ, ϕ over X,Y, respectively,
ψ⊗ϕ ∈ ℓ2[XY]. (And in this case, ψ⊗ϕ = ϕ⊗ψ since we are composing “named” systems.)

We will need to consider entangled pairs of memories. Specifically, a quantum bimemory
over X1,X2 is an element of ℓ2[X1]⊗ ℓ2[X2] = ℓ2[X1X2]. Similarly, a quantum ⊥-bimemory
is an element of ℓ2[X1]⊥⊗ℓ2[X2]⊥, i.e., a tensor product of two quantum ⊥-memories. (Note:
“one-sided-⊥” states such as |m⟩ ⊗ |⊥⟩ are included in this.) For clarity, we often write
|⊥1⟩, |⊥2⟩ instead of ⊥ to emphasize whether we are talking about elements of ℓ2[X1]⊥ or
ℓ2[X2]⊥.

For a vector (or operator) a, we write a∗ for its adjoint. (In the finite dimensional
case, the adjoint is simply the conjugate transpose of a vector/matrix. The literature also
knows the notation a†.) The adjoint of a vector |x⟩ is also written as ⟨x|. We abbreviate
proj(ψ) := ψψ∗. This is the projector onto ψ when ∥ψ∥ = 1.

1 We stress that we do not assume that the type is a finite or even a countable set. Consequently, the
Hilbert spaces considered in this paper are not necessarily finite dimensional or even separable. However,
all results can be informally understood by thinking of all sets as finite and hence of all Hilbert spaces
as CN for suitable N ∈ N.

2 When we say “basis”, we always mean an orthonormal Hilbert-space basis.
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Mixed quantum memories. In many situations, we need to model probabilistic quantum
states (e.g., a quantum state that is |0⟩ with probability 1

2 and |1⟩ with probability 1
2 ). This

is modeled using mixed states (a.k.a. density operators). Having normalized state ψi with
probability pi is represented by the operator ρ :=

∑
i piproj(ψi).3 In particular, proj(ψ) is the

density operator of a pure quantum state ψ. Then ρ encodes all observable information about
the distribution of the quantum state (that is, two distributions of quantum states have
the same ρ iff they cannot be distinguished by any physical process). And tr ρ is the total
probability

∑
i pi. Note that we do not formally impose the condition tr ρ = 1 or tr ρ ≤ 1

unless explicitly specified. We call a mixed state normalized iff tr ρ = 1. We will often need
to consider mixed states of quantum memories (i.e., mixed states with underlying Hilbert
space ℓ2[X]). We call them mixed (quantum) memories over X. Analogously, we define
mixed bimemories and mixed ⊥-bimemories as mixed states of quantum (⊥-)bimemories.

Let P⊥ := proj(|⊥⟩) and P̸⊥ := id − P⊥. We can easily access the terminating and
non-terminating part of a mixed ⊥-memory: ↓⊥(ρ) := P⊥ρP⊥ and ↓ ̸⊥(ρ) := P ̸⊥ρP ̸⊥ are the
memory ρ after measuring that we have termination or do not have termination, respectively.

For a mixed (⊥-)bimemory ρ over X1X2 the partial trace tri ρ (i = 1, 2) is the result of
throwing away the left/right memory (i.e., it is a mixed memory over Xi). Formally, tri is
defined as the continuous linear function satisfying tr1(σ⊗ τ) := τ · trσ, tr2(σ⊗ τ) := σ · tr τ .

A mixed memory ρ is (X,Y)-separable (i.e., not entangled between X and Y) iff it can
be written as ρ =

∑
i ρi ⊗ ρ′

i for mixed memories ρi, ρ
′
i over X,Y, respectively. (Potentially

infinite sum.) When X,Y are clear from the context, we simply say separable.
In this paper, when we write infinite sums of operators, convergence is always with respect

to the trace norm: ∥A∥tr := tr
√
AA†. (In the finite-dimensional case, the choice of norm is

irrelevant since all norms are equivalent then.)

Operations on quantum states. An operation in a closed quantum system is modeled by
an isometry U on ℓ2(X).4 If we apply such an operation on a mixed state ρ, the result is
UρU∗. In particular, denote by id the identity operation, i.e. idψ = ψ for all pure states ψ
in this space.

An operator A on ℓ2[X] can be interpreted as an operator on ℓ2[X]⊥ by setting A|⊥⟩ := 0.
To avoid confusion, we often write A⊕ 0⊥ for the operator on ℓ2[X]⊥. Similarly, an operator
A on ℓ2[X1]⊗ ℓ2[X2] can be seen as an operator on ℓ2[X1]⊥ ⊗ ℓ2[X2]⊥, we write A⊕ 0⊥⊥
for the operator on ℓ2[X1]⊥ ⊗ ℓ2[X2]⊥.

Most often, isometries will occur in the context of operations that are performed on a
single variable or list of variables, i.e., an isometry U on ℓ2[X]. Then U can also be applied
to ℓ2[Y] with Y ⊇ X: we identify U with U ⊗ idY\X. Furthermore, if X has type T , then an
isometry U on ℓ2(T ) can be seen as an isometry on ℓ2[X] since we identify ℓ2(T ) and ℓ2[X].
If we want to make X explicit, we write U on X for the isometry U on ℓ2[Y]. For example,
if U is a 2× 2-matrix and x has type bit, then U on x can be applied to quantum memories
over xy, acting on x only. This notation is not limited to isometries, of course, but applies to
other operators, too. (By operator we always mean a bounded linear operator in this paper.)

3 Mathematically, density operators are positive Hermitian trace-class operators on ℓ2(X). The re-
quirement “trace-class” ensures that the trace exists and can be ignored in the finite-dimensional
case.

4 That is, a norm-preserving linear operation. Often, one models quantum operations as unitaries instead
because in the finite-dimensional case an isometry is automatically unitary. However, in the infinite-
dimensional case, unitaries are unnecessarily restrictive. Consider, e.g., the isometry |i⟩ 7→ |i+ 1⟩ with
i ∈ N which is a perfectly valid quantum operation but not a unitary.



Y. Li and D. Unruh 136:5

In slight overloading of notation, we also write U on X for U acting on ⊥-memories, where
(U on X)|⊥⟩ = 0. (That is, U on X is short for the more precise (U on X)⊕0⊥.) We also write
U on X1 for U acting on ⊥-bimemories. In this case, we simply have U on X1 := (U on X1)⊗
id. In particular, (U on X1)(|m⟩ ⊗ |⊥⟩) = (U on X1)|m⟩ ⊗ |⊥⟩ but (U on X1)(|⊥⟩ ⊗ |m⟩) = 0.
Analogously for U on X2.

We will use only binary measurements in this paper. A binary measurement M on ℓ2[X]
has outcomes true, false and is described by two bounded operators Mtrue , Mfalse on ℓ2[X]
that satisfy M∗

trueMtrue +M∗
falseMfalse = id, its Krauss operators. Given a mixed memory ρ,

the probability of measurement outcome t is pt := trMtρM
∗
t , and the post-measurement

state is MtρM
∗
t /pt.

Expectations. In this work, we will use expectations as pre- and postconditions in Hoare
judgments. The idea of using expectations originated in [13] for reasoning about (classical)
probabilistic programs. Intuitively, an expectation is a quantitative predicate, that is for
any memory (or bimemory, in our case), it does not tell us whether the memory satisfies
the predicate but how much it satisfies the predicate. Thus, classically, an expectation is
simply a function from assignments to reals. By analogy, in the quantum setting, one might
want to define expectations, e.g., as functions f from quantum bimemories to reals (i.e., an
expectation would be a function ℓ2[X]→ R≥0). However, such expectations might behave
badly, for example, it is not clear how to compute the expected value f(ψ) for a random
ψ if the distribution of ψ is given in terms of a density operator. A better approach was
introduced by [10]. Following their approach, we define an expectation as a positive operator
A on quantum bimemories.5 (We use letters A,B,C, . . . for expectations in this paper.)
This expectation then assigns the value ψ∗Aψ to the quantum memory ψ (equivalently,
tr A proj(ψ)). To understand this, it is best to first look at the special case where A is a
projector. Then ψ∗Aψ = 1 iff ψ is in the image of A, and ψ∗Aψ = 0 iff ψ is orthogonal to
the image of A. Such an A is basically a predicate (by outputting 1 for states that satisfy
the predicate). Of course, states that neither satisfy the predicate nor are orthogonal to it
will output a value between 0 and 1. Any expectation A can be written as

∑
i piAi with

projectors Ai. Thus, A would give pi “points” for satisfying the predicate Ai. In this respect,
expectations in the quantum setting are similar to classical ones: classical expectations give
a certain amount of “points” for each possible classical input.

The nice thing about this formalism is that, given a density operator ρ =
∑
piproj(ψi),

we can easily compute the expected value of the expectation A. More precisely, the expected
value of ψ∗Aψ = tr Aproj(ψ) with ψ := ψi with probability pi. That expected value is∑
pi tr Aproj(ψi) = tr A(

∑
piproj(ψi)) = tr Aρ. This shows that we can evaluate how much a

density operator satisfies the expectation A by just computing tr Aρ. This formula will be
the basis for our definitions!

Analogously, we define ⊥-expectations on quantum ⊥-bimemories. However, we add one
restriction: The value of a ⊥-expectation should not change if we measure whether the
⊥-bimemory is in |⊥⟩ or not. Formally, a ⊥-expectation is a positive operator on quantum
⊥-bimemories that is invariant under E⊥ ⊗ E⊥ where E⊥ (ρ) := P⊥ρP⊥ + P̸⊥ρP ̸⊥. (E⊥
corresponds to measuring and forgetting whether a given mixed ⊥-memory is |⊥⟩ or not.)
Note that for an expectation A, the operator A⊕ 0⊥⊥ is a ⊥-expectation. We can thus see
expectations as special cases of ⊥-expectations.

5 Recall from page 4 that operators are always bounded in our context. This means that A is bounded,
too. This means that the values that an expectation A can assign to states are between 0 and B for
some finite B.

ICALP 2021
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A very simple example of an expectation would be the matrix A :=
(

1
1
2

)
that assigns

1 to |0⟩, and 1
2 to |1⟩. And given the density operator ρ = 1

2 id (representing a uniform qubit),
tr Aρ = 3

4 are intuitively expected.

Quantum equality. In [17], a specific predicate X1 ≡q X2 was introduced to describe
the fact that two quantum variables (or list of quantum variables) have the same state.
Formally, X1 ≡q X2 is the subspace consisting of all quantum memories in ℓ2[X1X2] that are
invariant under SWAPX1X2 , the unitary that swaps variables X1 and X2.6 Or equivalently,
X1 ≡q X2 denotes the subspace spanned by all quantum memories of the form ϕ⊗ ϕ with
ϕ ∈ ℓ2[X1] = ℓ2[X2]. We write EQUAL on X1X2 for the projector onto X1 ≡q X2.

3 Quantum programs

Syntax. We will now define a small imperative quantum language.7 The set of all programs
is described by the following syntax:

ccc,ddd ::= apply U to X | X← ψ | if M [X] then ccc else ddd | while M [X] do ccc | ccc;ddd | skip | abort

Here X is a list of variables and U an isometry on ℓ2[X], ψ ∈ ℓ2[X] a normalized state,
and M is a binary measurement on ℓ2[X]. (There are no fixed sets of allowed U and ψ, any
isometry/state that we can describe can be used here).8

Intuitively, apply U to X means that the operation U is applied to the quantum
variables X. E.g., apply H to x would apply the Hadamard gate to the variable x (we
assume that H denote the Hadamard matrix). It is important that we can apply U to
several variables X simultaneously, otherwise no entanglement between variables can ever be
produced.

The program X← ψ initializes the variables X with the quantum state ψ. The program
if M [X] then ccc else ddd will measure the variables X with the measurement M , and, if the
outcome is true, execute ccc, otherwise execute ddd.

The program while M [X] do ccc measures X, and if the outcome is true, it executes ccc.
This is repeated until the outcome is false.

Finally, ccc;ddd executes ccc and then ddd. And skip does nothing. We will always implicitly
treat “;” as associative and skip as its neutral element. abort never terminates.

Semantics. The denotational semantics of our programs ccc are represented as completely
positive trace-reducing maps JcccK on the mixed memories over Xall, defined by recursion
on the structure of the programs. Here Xall is a fixed set of program variables, and we
will assume that all variables under consideration are contained in this set. The obvious
cases are JskipK := id and Jccc;dddK := JdddK ◦ JcccK and JabortK(ρ) := 0. And application of
an isometry U is also fairly straightforward given the syntactic sugar introduced above:
Japply U to XK(ρ) := (U on X)ρ(U on X)∗. (The notation U on X was introduced on
page 4.)

6 That is, SWAPX1X2 (ψ ⊗ ϕ) = ϕ⊗ ψ for ψ ∈ ℓ2[X1], ϕ ∈ ℓ2[X2].
7 Very similar to [18], except that we replace their case-statement by an if-statement and allow initialization

with arbitrary states instead of just |0⟩.
8 We will assume throughout the paper that all programs satisfy those well-typedness constraints. In

particular, rules may implicitly impose type constraints on the variables and constants occurring in
them by this assumption.
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Initialization of quantum variables is slightly more complicated: X← ψ initializes the
variables X with ψ, which is the same as removing X, and then creating a new variable
X with content ψ. Removing X is done by the operation trX (partial trace, see page 4).
And creating new variables X in state ψ is done by the operation ⊗proj(ψ). Thus we define
JX← ψK(ρ) := trX ρ⊗ proj(ψ).

The if-command first performs a measurement and then branches depending on the
outcome. We then have that the state after measurement (without renormalization) is
(Mt on X)ρ(Mt on X)∗ for outcome t = true, false. Then ccc or ddd is applied to that state and
the resulting states are added together to get the final mixed state. Altogether:

q
if M [X] then ccc else ddd

y
(ρ) := JcccK

(
↓true(ρ)

)
+ JdddK

(
↓false(ρ)

)
where ↓t(ρ) := (Mt on X)ρ(Mt on X)∗

While-commands are modeled similarly: In an execution of a while statement, we have n ≥ 0
iterations of “measure with outcome true and run ccc” (which applies JcccK ◦ ↓true to the state),
followed by “measure with outcome false” (which applies ↓false to the state). Adding all those
branches up, we get the definition:

q
while M [X] do ccc

y
(ρ) :=

∞∑
n=0
↓false

(
(JcccK ◦ ↓true)n(ρ)

)
We call a program ccc terminating iff trJcccK(ρ) = tr ρ for all ρ.

Semantics with explicit non-termination. JcccK is not trace-preserving if ccc is not terminating.
For technical reasons, we will need a variant of this function that is trace-preserving. This
can be achieved by outputting a mixed state that has an explicit state proj(|⊥⟩) to denote
non-termination. This semantic function JcccK⊥ takes mixed ⊥-memories to mixed ⊥-memories
and can be easily derived from JcccK:

JcccK⊥ (ρ) := JcccK(↓ ̸⊥(ρ)) +
(
tr ρ− trJcccK(↓̸⊥(ρ))

)
proj(|⊥⟩).

(P⊥, P̸⊥ are defined on page 4.) Operationally, JcccK⊥ first measures if the state is ⊥. If so,
nothing happens. Otherwise, ccc is applied. If ccc does not terminate, the final output memory
is set to be ⊥. JcccK⊥ is easily seen to be trace-preserving. Moreover, we have the composition
property Jccc;dddK⊥ = JdddK⊥ ◦ JcccK⊥, since

JdddK⊥(JcccK⊥(ρ)) = JdddK⊥ [JcccK(ρ ̸⊥) + (tr ρ− trJcccK(ρ ̸⊥))proj(|⊥⟩)]
= JdddK(JcccK(ρ ̸⊥)) +

[
trJcccK⊥(ρ)− trJdddK(JcccK(ρ ̸⊥))

]
proj(|⊥⟩)

= Jccc;dddK(ρ ̸⊥) + (tr ρ− trJccc;dddK(ρ ̸⊥))proj(|⊥⟩) = Jccc;dddK⊥(ρ).

4 qRHL with expectations

Defining the logic. We now present our definition of expectation-qRHL. We follow the
approach from [17] to use separable couplings to describe the relationship between programs.
A coupling between two mixed states ρ1 and ρ2 is a mixed state ρ that has ρ1 and ρ2 as
marginals. (That is, trX2 ρ = ρ1 and trX1 ρ = ρ2 if ρ1, ρ2 are over X1,X2, respectively.) This
is analogous to probabilistic couplings: a coupling of distributions µ1, µ2 is a distribution µ

with marginals µ1, µ2. Note that couplings trivially always exist if ρ1 and ρ2 have the same
trace (namely, ρ := ρ1 ⊗ ρ2/ tr ρ1). Couplings become interesting when we put additional

ICALP 2021
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constraints on the state ρ. For example, if we require the support of ρ to be in the subspace
C := span{|00⟩, |11⟩}, then ρ1 = proj(|0⟩) and ρ2 = proj(|0⟩) have a coupling (namely,
ρ = proj(|00⟩)), as do ρ1 = proj(|1⟩) and ρ2 = proj(|1⟩) (namely, ρ = proj(|11⟩)), but not
ρ1 = proj(|0⟩) and ρ2 = proj(|1⟩). Things become particularly interesting when ρ1, ρ2 are not
pure states. E.g., ρ1 = 1

2 proj(|0⟩) + 1
2 proj(|1⟩) and ρ2 = 1

2 proj(|0⟩) + 1
2 proj(|1⟩) have such a

coupling as well (namely, ρ = 1
2 proj(|00⟩) + 1

2 proj(|11⟩) but ρ := ρ1 ⊗ ρ2 is not a coupling
with support in C).

Thus, a subspace such as C can be seen as a predicate describing the relationship of
ρ1, ρ2. The states ρ1, ρ2 satisfy C iff there is a coupling with support in C. This idea leads
to the following tentative definition of qRHL:

▶ Definition 1 (qRHL, tentative, without expectations). For subspaces A, B (i.e., spaces
of quantum memories over Xall

1 Xall
2 ), {A} ccc ∼ ddd {B} holds iff for any ρ1, ρ2 that have a

coupling with support in A, the final states JcccK(ρ1), JdddK(ρ2) have a coupling with support in B.

However, it was noticed in [17] that the definition becomes easier to handle if we impose
another condition on the couplings. Namely, the coupling should be separable, i.e., there
should be no entanglement between the two systems corresponding to ρ1, ρ2. That is, the
definition of qRHL used in [17] is Definition 1 with “coupling” replaced by “separable coupling”.
We will also adopt the separability condition in our definition of expectation-qRHL.9

So far, we have basically recapped the definition from [17]. However, that definition only
allows us to express Hoare judgments that do not involve expectations since A and B in
Definition 1 are subspaces (predicates), not expectations. To define expectation-qRHL, we
follow the same idea, but instead of quantifying over only the initial states satisfying the
precondition, we quantify over all initial states, and merely require that (the coupling of)
the final states satisfies the postexpectation at least as much as (the coupling of the) initial
states satisfy the preexpectation. That is:

▶ Definition 2 (Expectation-qRHL (eqRHL), first attempt). For expectations A,B,
{A} ccc ∼ ddd {B} holds iff for any ρ1, ρ2 with separable coupling ρ, the final states JcccK(ρ1), JdddK(ρ2)
have a separable coupling ρ′ such that tr Aρ ≤ tr Bρ′. (Recall that tr Aρ indicates how much
ρ satisfies A, and analogously tr Bρ′, cf. Section 2.)

For terminating programs ccc,ddd, this definition already works well. Unfortunately, if ccc,ddd
do not terminate with probability 1, we have some undesired effects: For example, assume
that ccc = skip, and ddd is a program that with probability 1− ε does nothing (skip), and but
with probability ε does not terminate (abort). Then {A} ccc ∼ ddd {B} does not hold for any
A,B. Why? The final states JcccK(ρ1), JdddK(ρ2) have trace 1 and 1− ε, respectively. Therefore
there exists no coupling ρ′ of JcccK(ρ1), JdddK(ρ2). (It follows from the definition of couplings
that the coupling must have the same trace as its marginals.) Hence {A} ccc ∼ ddd {B} does
not hold. Similarly, {A} ccc ∼ ddd {B} does not hold whenever there are two input states ρ1, ρ2
such that ccc,ddd terminate with different probabilities. (Even if this nontermination only occurs
for input states for which A evaluates to 0!) This makes it near impossible to reason about
non-terminating programs.10

9 [17] was not able to prove the Frame rule without adding this separability condition. Our reasons for
adopting the separability condition are slightly different: we do not have a Frame rule anyway, but
for other elementary rules such as the rule Equal in [17] with quantum expectations and quantum
variables, it is unclear how to prove them without the separability condition.

10 Even if we are interested in a Hoare logic with total correctness, this behavior is undesired. Instead,
we want that a nontermination with small probability simply introduces some small penalty in the
expectations. For example, in the case of non-relational Hoare with total correctness, {(1− ε)id}A {id}
means that A is nonterminating with probability ≤ ε.
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There are a number of approaches how one can circumvent this problem. E.g., one could
allow ρ′ to be a “subcoupling” instead of a coupling (i.e., its marginals do not have to equal
JcccK(ρ1), JdddK(ρ2) but only lower bound them);11 the subcoupling always exists, even if the
traces are not equal. However, we find that adding such “hacks” to the definition makes
it more difficult to understand what the definition exactly does in case of non-terminating
programs.

Instead, we choose an approach that makes non-termination explicit. That is, when
a program does not terminate, we assign a specific state |⊥⟩ to its output, and we allow
expectation to explicitly refer to it (e.g., an expectation could assign value 1 to nontermination,
and value 0 to termination). The denotation JcccK⊥ defined on page 7 does exactly that. And
expectations that live on a space that has an explicit nontermination-state |⊥⟩ were introduced
as ⊥-expectations on page 5. This leads to the following definition:

▶ Definition 3 (Expectation-qRHL, informal). For ⊥-expectations A,B, {A} ccc ∼ ddd {B} holds
iff for any ρ1, ρ2 with separable coupling ρ, the final states JcccK⊥(ρ1), JdddK⊥(ρ2) have a separable
coupling ρ′ such that tr Aρ ≤ tr Bρ′.

Note that a coupling of JcccK⊥(ρ1), JdddK⊥(ρ2) always exists since J·K⊥ is trace-preserving. (Below,
we will derive certain specific variants of eqRHL such as eqRHL with total correctness as
specific cases of this definition. Also, we will see that subcouling-based definitions can be
recovered as special cases in Lemma 9.) By plugging in the definition of couplings into
Definition 3, we get the following precise definition:

▶ Definition 4 (Expectation-qRHL, generic). Let A, B be ⊥-expectations and ccc, ddd programs.
Then {A} ccc gen∼ ddd {B} holds iff for any separable mixed ⊥-bimemory ρ over Xall

1 ,Xall
2 , there

is a separable mixed ⊥-bimemory ρ′ over Xall
1 ,Xall

2 such that
tr2 ρ

′ = JcccK⊥(tr2 ρ).
tr1 ρ

′ = JdddK⊥(tr1 ρ).
tr Aρ ≤ tr Bρ′.

In this definition, Xall
1 ,Xall

2 are isomorphic copies of the set Xall of variables. That is,
while strictly speaking, JcccK⊥ maps mixed ⊥-memories over Xall to mixed ⊥-memories over
Xall, we can also see it as mapping mixed ⊥-memories over Xall

1 to mixed ⊥-memories over
Xall

1 . Analogously for ddd and Xall
2 . We make use of this in the preceding definition when we

apply JcccK⊥, JdddK⊥ to ρ1, ρ2, respectively. In the rest of the paper, we simply call a mixed state
(ρ1, ρ2)-coupling if it is separable and has marginals ρ1 and ρ2.

Note that we defined ⊥-expectations to be invariant under E⊥⊗E⊥ (page 5), i.e., that they
implicitly measure first whether the quantum memories are |⊥⟩. Otherwise, we would not
even have {A} skip gen∼ skip {A} (rule Skip below), for example if A := proj( 1√

2 |0⟩+ 1√
2 |⊥⟩).

This is because even the program skip measures whether the memory is |⊥⟩ (by definition
of J·K⊥), so it may change the state if the memory is in a superposition between |⊥⟩ and
something else.

Partial/total correctness. The generic definition of eqRHL (Definition 4) allows us to
explicitly express in our pre-/postexpectations how nontermination should be treated. While
this allows for maximal generality, in practice it might be cumbersome to always have to
specify explicitly how the expectations behave on |⊥⟩. Instead, we define below three special
cases of eqRHL that hardcode the treatment of |⊥⟩.

11 This is explored further in Section 4 for special cases of our definition.
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The simplest case is eqRHL with total correctness: Here, nontermination is “forbidden”,
i.e., we assign value 0 to it. Recall from page 4 that for an expectation A, A⊕ 0⊥⊥ is the
corresponding ⊥-expectation. It assigns 0 to a state that has |⊥⟩ in the left or right memory.
Hence, eqRHL with total correctness simply means that all pre/postconditions are of the
form A⊕ 0⊥⊥. The following definition specifies convenient syntax for this special case:

▶ Definition 5 (Expectation-qRHL, total). Let A, B be expectations and ccc, ddd programs. Then
{A} ccc tot∼ ddd {B} iff {A⊕ 0⊥⊥} ccc

gen∼ ddd {B⊕ 0⊥⊥}.

A second common variant of Hoare logic is “partial correctness”. Here we allow non-
termination, i.e., if a program does not terminate, we assign the value 1. That is, we use
pre/postexpectations of the form (A⊕ 0⊥⊥) + T where T assigns value 1 when the left or
right memory is in state |⊥⟩:

▶ Definition 6 (Expectation-qRHL, partial). Let A, B be expectations and ccc, ddd pro-
grams. Then {A} ccc par∼ ddd {B} iff {(A⊕ 0⊥⊥) + T} ccc gen∼ ddd {(B⊕ 0⊥⊥) + T} where T :=(
proj(|⊥1⟩)⊗ P̸⊥

)
+

(
P̸⊥ ⊗ proj(|⊥2⟩)

)
+ proj(|⊥1⟩ ⊗ |⊥2⟩).

Unfortunately, this definition does not necessarily behave as we would like. E.g., if both ccc

and ddd terminate with probability ≤ 1
2 on all inputs, then {A} ccc par∼ ddd {B} holds for any A ≤ id,

B. That is, any property holds with probability 1
2 for those programs which is not what we

would expect! Why does this happen? Since JcccK⊥(ρ1), JdddK⊥(ρ2) are 50% nontermination, we
can “match up” the nonterminating part of JcccK⊥(ρ1) with the terminating part of JdddK⊥(ρ2) and
vice versa in the coupling ρ′ of the output states. Then trTρ′ = 1 and thus {A} ccc par∼ ddd {B}
holds. The problem here is that we treat nontermination as a “wildcard” that is allowed to
match any behavior of the other program. While there may be valid use cases for such a
notation, we believe that in most cases this is not what we want.

Instead, we define a notion we call “semipartial”. In this eqRHL-variant, we allow
nontermination, but only when it occurs in the two programs “in sync”. I.e., we consider
pre/postexpectations that assign 1 to |⊥⟩ ⊗ |⊥⟩, but 0 to a state where one program has
nonterminated and the other has terminated. Formally:

▶ Definition 7 (Expectation-qRHL, semipartial). Let A, B be expectations and ccc, ddd programs.
Then {A} ccc semi∼ ddd {B} iff

{(A⊕ 0⊥⊥) + proj(|⊥1⟩ ⊗ |⊥2⟩)} ccc
gen∼ ddd {(B⊕ 0⊥⊥) + proj(|⊥1⟩ ⊗ |⊥2⟩)}.

Pure initial states. In many cases, it is much easier to work with the definition of eqRHL
correctness if one can assume that the initial states of ccc,ddd are pure states, and that the initial
coupling is the tensor product of those states. (No nontrivial correlations.) The following
lemma shows that we can do so without loss of generality:

▶ Lemma 8. Let A, B be ⊥-expectations and ccc, ddd programs. Then {A} ccc gen∼ ddd {B} holds iff
for all unit quantum memories ψ1, ψ2 over X1, X2, respectively, there is a separable
⊥-mixed bimemory ρ′ over X1,X2 such that

tr2 ρ
′ = JcccK⊥(proj(ψ1)).

tr1 ρ
′ = JdddK⊥(proj(ψ2)).

tr A proj(ψ1 ⊗ ψ2) ≤ tr Bρ′.12

12 Or equivalently, ∥
√

A(ψ1 ⊗ ψ2)∥ ≤ tr Bρ′. Or (ψ1 ⊗ ψ2)∗A(ψ1 ⊗ ψ2) ≤ tr Bρ′.
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for all unit quantum memories ψ1 over X1, we have tr A proj(ψ1 ⊗ |⊥2⟩) ≤
tr B

(
JcccK⊥(proj(ψ1))⊗ proj(|⊥2⟩)

)
.

for all unit quantum memories ψ2 over X2, we have tr A proj(|⊥1⟩ ⊗ ψ2) ≤
tr B

(
proj(|⊥1⟩)⊗ JdddK⊥(proj(ψ2))

)
.

tr A proj(|⊥1⟩ ⊗ |⊥2⟩) ≤ tr B proj(|⊥1⟩ ⊗ |⊥2⟩).

Equivalent reformulations. As discussed after Definition 2, an alternative means of trying
to circumvent the problem that Definition 2 does handle nonterminating programs well is to
use subcouplings instead of couplings.

Here, we show that the notions of eqRHL with partial and total correctness can be
equivalently restated in terms of subcouplings (instead of the extended semantics J·K⊥ over
⊥-memories). However, we do not know such an equivalent reformulation for semipartial
correctness.

▶ Lemma 9. Let A, B be expectations and ccc, ddd programs. Then {A} ccc tot∼ ddd {B} iff for any
separable mixed bimemory ρ over Xall

1 ,Xall
2 , there is a separable mixed bimemory ρ′ over

Xall
1 ,Xall

2 such that
tr2 ρ

′ ≤ JcccK(tr2 ρ).
tr1 ρ

′ ≤ JdddK(tr1 ρ).
tr Aρ ≤ tr Bρ′.

▶ Lemma 10. Let A, B be expectations and ccc, ddd programs. Then {A} ccc par∼ ddd {B} holds iff
for any separable mixed bimemory ρ over Xall

1 ,Xall
2 , there is a separable mixed bimemory ρ′

over Xall
1 ,Xall

2 such that
tr2 ρ

′ ≤ JcccK(tr2 ρ).
tr1 ρ

′ ≤ JdddK(tr1 ρ).
tr ρ′ ≥ trJcccK(tr2 ρ) + trJdddK(tr1 ρ)− tr ρ.
tr Aρ ≤ tr Bρ′ + tr ρ− tr ρ′.

In this definition, tr ρ− tr ρ′ ≥ 0 is describe the nonterminating probability. Lemma 9
and Lemma 10 mean that total and partial correctness can be alternatively defined using
the concept of subcouplings, without considering the ⊥-extension of the expectations and
programs.

▶ Lemma 11. Let A, B be expectations and ccc, ddd programs. Then {A} ccc tot∼ ddd {B} (resp.
{A} ccc par∼ ddd {B}) holds iff for all unit quantum memories ψ1, ψ2 over Xall

1 , Xall
2 , respectively,

there is a separable mixed bimemory ρ over X1X2 such that
tr2 ρ ≤ JcccK(proj(ψ1)).
tr1 ρ ≤ JdddK(proj(ψ2)).
tr Aproj(ψ1 ⊗ ψ2) ≤ tr Bρ.13

(resp. tr Aproj(ψ1 ⊗ ψ2) ≤ tr Bρ+1− tr ρ and 1+tr ρ ≥ trJcccK(proj(ψ1))+trJdddK(proj(ψ2)).)

5 Description of the rules

We describe the rules of our logic one by one here. Recall that we essentially have four
different logics: partial, semipartial, total, and the general case from which the former three
are derived. To keep things readable, we only describe the rules for the partial, semipartial,
and total case here. (Listed in Figure 1.) In the full version, we state and prove the rules

13 Or equivalently, ∥
√

A(ψ1 ⊗ ψ2)∥ ≤ tr Bρ. Or (ψ1 ⊗ ψ2)∗A(ψ1 ⊗ ψ2) ≤ tr Bρ.
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Skip
{A} skip any∼ skip {A}

Apply1{
(U on X1)∗A(U on X1)

}
apply U to X any∼ skip

{
A

}
ExFalso
{0} ccc any∼ ddd {B}

Init1{
idX1 ⊗ (ψ∗ ⊗ id¬X1)A(ψ ⊗ id¬X1)

}
X← ψ

any∼ skip
{

A
}

Seq
{A} ccc1

any∼ ddd1 {B} {B} ccc2
any∼ ddd2 {C}

{A} ccc1; ccc2
any∼ ddd1;ddd2 {C}

Conseq
A′ ≤ A {A} ccc any∼ ddd {B} B ≤ B′

{A′} ccc any∼ ddd {B′}

Sym
{A} ccc any∼ ddd {B}

{SWAP∗ · A · SWAP}ddd any∼ ccc {SWAP∗ · B · SWAP}

Scale
{A} ccc any∼ ddd {B} λ ∈ [0, 1]

{λA} ccc any∼ ddd {λB}

If1
{AT } cccT

any∼ ddd {B} {AF } cccF
any∼ ddd {B}

{↓∗
true(AT ) + ↓∗

false(AF )} if M [X] then cccT else cccF
any∼ ddd {B}

JointIf9
{At,u} ccct

any∼ dddu {B} for t, u ∈ {true, false}{∑
t,u∈{true,false} ↓∗

t,u(At,u)
}

if M [X] then ccctrue else cccfalse
any∼ if N [Y] then dddtrue else dddfalse

{
B
}

JointIf
{Atrue} ccctrue

any∼ dddtrue {B} {Afalse} cccfalse
any∼ dddfalse {B}{

↓∗
true,true(Atrue)+↓∗

false,false(Afalse)
}

if M [X] then ccctrue else cccfalse
any∼ if N [Y] then dddtrue else dddfalse

{
B
}

While1{
A

}
ccc

any∼ skip
{
↓∗

true(A) + ↓∗
false(B)

}
while M [X] do ccc is terminating{

↓∗
true(A) + ↓∗

false(B)
}

while M [X] do ccc
any∼ skip

{
B

}
JointWhile

{A} ccc any∼ ddd {↓∗
true,true(A) + ↓∗

false,false(B)}
while M [X] do ccc or while N [Y] do ddd is terminating

{↓∗
true,true(A) + ↓∗

false,false(B)}while M [X] do ccc
any∼ while N [Y] do ddd {B}

Figure 1 Rules for total/semipartial/partial eqRHL. In these rules, “any” can be any of “tot”,
”semi”, ”par”. For any = par, the termination condition in While1 can be replaced by A ≤ id, and
for any = par, semi the termination condition in JointWhile can be replaced by A ≤ id. We refer
to the symmetric rules of Apply1, Init1, If1, and While1 (obtained by applying Sym) as Apply2,
Init2, If2, and While2.
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in the general case. The rules in Figure 1 are then simple consequences of the rules in the
general case. The sole exception are rules related to while-loops: here not all of the partial,
semipartial, total case follow directly from the general while rule. Those cases that do not
follow are proved separately.

5.1 Structural rules
First, we mention the “structural” rules, i.e., rules that do not related to a specific language
construct. There is Sym for exchanging the two programs. (In this rule, SWAP : ℓ2[Xall

2 ]⊗
ℓ2[Xall

1 ] 7→ ℓ2[Xall
1 ]⊗ ℓ2[Xall

2 ] is the unitary operator SWAP⊥ : (ψ ⊗ ϕ) = ϕ⊗ ψ.) ExFalso
allows us to show anything from an impossible preexpectation. Seq allows us to analyze
the sequential composition of programs. Conseq allows us to weaken a judgment. (The
preexpectation can be replaced by a smaller preexpectation, and the postexpectation can be
replaced by a larger preexpectation. ≤ is the Loewner order). And finally, Scale allows us
to scale pre- and postexpectations by a scalar factor.

5.2 One-sided rules
Conceptually simplest are the one-sided rules, i.e., rules that have skip on the right (or left)
hand side. By combining them with Seq, we can prove facts about pairs of programs one
statement at the time. Here, we only describe the rules with skip on the right side, the other
case is analogous.

Apply: First, consider the Apply1 rule. It is stated (like all our rules), in a backward
reasoning style, i.e., for any postexpectation A, the tells us the corresponding preexpectation,
here (U on X1)∗A(U on X1). (Recall that U on X1 denotes U applied to X1.) This is quite
intuitive: the left program applies U on X1, so the preexpectation corresponding to the
postexpectation A is what we get if we apply U on X1 and then compute the preexpectation,
i.e., (U on X1)∗A(U on X1). (And it is (U on X1)∗A(U on X1) and not A(U on X1) because
the latter is not Hermitian and thus not a valid expectation.)

A toy example how to apply this rule: we want to what x has to be so that it
will be |0⟩ after applying a Hadamard H. Thus our postexpectation is proj(|0⟩) on x1.
Applying rule Apply1, we get that {B}apply H to x any∼ skip {proj(|0⟩) on x1} for B :=
(H on x1)∗(proj(|0⟩) on x1)(H on x1). (Here any∼ can be any of tot∼, semi∼ , par∼.) A simple calculation
reveals: B =

(
H∗proj(|0⟩)H

)
on x1 = proj(|+⟩) on x1. Thus we learned (unsurprisingly) that

to get |0⟩, we need to start out with |+⟩.

Init: The rule Init1 rule stated in a similar backwards reasoning way as Apply1, but the
preexpectation is somewhat less intuitive. We will illustrate it with a toy example. Assume
we want to know what the probability is to measure |0⟩ after initializing a variable x with
|+⟩. That is, our postexpectation is A := proj(|0⟩) on x1 and our left program is x ← |+⟩.
We ask for a suitable preexpectation B in {B}x← |+⟩ any∼ skip {A}. The Init1 rule gives
us B = idx1 ⊗

(
⟨+| ⊗ id¬x1

)
A

(
|+⟩ ⊗ id¬x1

)
. (Here, ¬X1 := Xall

1 Xall
2 \X1.) By definition

of A, we have that
(
⟨+| ⊗ id¬x1

)
A

(
|+⟩ ⊗ id¬x1

)
= ⟨+|proj(|0⟩)|+⟩ ⊗ id¬x1 = 1

2 id¬x1 . Note
that this is not an expectation in our sense because it is an operator on all variable but x1.
But by tensoring with idx1 , we get the expectation B = 1

2 id. Thus the preexpectation is 1
2 id

which intuitively means that, no matter what the initial state, the probability of measuring
|0⟩ will be 1

2 , as we would expect.

If: The rule rule If1 allows us to prove a judgment about an if-statement from judgments
about the then- and the else-branch. If the preexpectations from the then- and else-branch
are AT and AF , then the preexpectations for the if-statement is ↓∗

true(AT ) + ↓∗
false(AF ). (Here
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↓∗
t (A) := (Mt on X1)∗A(Mt on X1).) This is natural since ↓∗

true(AT ) is AT restricted to
the case where the conditional holds, and ↓∗

false(AF ) is AF restricted to the case where the
conditional does not hold.

A toy example: We want to show
{

id
}

if M [x] then apply X to x else skip any∼ skip
{

B
}

with B := proj(|0⟩) on x1. Here M is a computational basis measurement (Mtrue = proj(|1⟩),
Mfalse = proj(|0⟩)), and X is the pauli-X matrix (quantum bit flip). That is, with probability
1 (preexpectation is id), if we measure x in the computational basis, and, in case of outcome 1
flip it, we get |0⟩ (postexpectation B). We derive easily (using rules Apply1 and Skip) that{

proj(|1⟩) on x1
}

apply X to x any∼ skip
{

B
}

and
{

proj(|0⟩) on x1
}

skip any∼ skip
{

B
}

. From
the If1 rule, we then get

{
A

}
if M [x] then apply X to x else skip any∼ skip

{
B

}
with A =

↓∗
true(proj(|1⟩) on x1) + ↓∗

false(proj(|0⟩) on x1). Thus A = proj(|1⟩) on x1 + proj(|0⟩) on x1 = id,
as desired.

While: The While1 rule is similar to the If1 rule. (The preexpectation in the conclusion
has the same form.) The main difference is that we need to guess the invariant A because
the postexpectation in the premise contains A. The rule also requires us to prove first that
the loop is terminating (except in the case of partial correctness). Since this is a statement
about a single program (non-relational), it can be shown using existing approaches (e.g., [14])
and is outside the scope of this paper.

5.3 Two-sided rules

The one-sided rules discussed in the previous section allow us to analyze two programs one
statement at a time. However, they are not sufficient if want to analyze the relationship of
two programs that go in lockstop. (E.g., two while loops that always take the same decision
whether to terminate.) For handling if- and while-statements that are in sync, our logic
provides the two-sided rules JointIf9, JointIf, and JointWhile. Notice that there are
not two-sided analogues to Apply1 and Init1. This is because the resulting rule would be
no different from using the one-sided rule twice. However, when random choices happen,
two-sided rules are useful. In our case, this happens in if- and while-statements because the
measurement of the loop-condition introduces randomness.

If: The JointIf9 rule allows us to compute the preexpectation of two
if-statements. It is analogous to the If1 rule, except that the result-
ing preexpectation is of the form

∑
t,u∈{true,false} ↓∗

t,u(At,u). (Here ↓∗
t,u(A) :=(

(Mt on X1)⊗ (Nt on Y2)
)∗A

(
(Mt on X1)⊗ (Nt on Y2)

)
.) That is, the preexpectations are

restricted to all four combinations of true/false for the two if-conditions. And, consequently,
we have a premise for each of those four cases. (The rule is called JointIf9 because, in the
general case, there are nine cases, due to explicit treatment of non-terminating cases.) For
convenience, we additionally state rule JointIf which considers only the cases where the
two if-statements are in sync (true/true or false/false).

While: Similar to JointIf, the JointWhile rule allows us to reason about while loops
that are in sync. Like with While1, in contrast to JointIf, we need to guess the invariant
A. For an example, see Section 6. One difference with the While1 rule is that While1
requires us to prove termination in the semipartial and total case (not in the partical case),
while JointWhile requires us to prove termination only in the total case. (Intuitively, this
is because in the semipartial case, termination is not required, it is only required that both
programs terminate with the same probability.)
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6 Example: Quantum Zeno effect

Motivation. In this section, we study (one specific incarnation of) the quantum Zeno effect
as an example of application of our logic. The Zeno effect implies that the following processes
have the same effect:

Start with a qubit in state |0⟩. Apply a continuous rotation (with angular velocity ω) to
it. (Thus, after time t, the state will have rotated by angle ωt.)
Start with a qubit in state |0⟩. Continuously observe the state. Namely, at time t,
measure whether the qubit has rotated by angle ωt.

The quantum Zeno effect implies that in both processes, the state evolves in the same way
(and that the measurement in the second situation always gives answer “yes”). Notice that
this means that the measurements can be used to rotate the state.

In our formalization, we will consider the discrete version of this phenomenon: The
rotation is split into n rotations by a small angle, and the continuous measurement consists
of n measurements. In the limit n → ∞, both processes yield the same state, but if we
consider the situation for a concrete value of n, the result of the processes will be slightly
different. (And the difference can be quantified in terms of n.) This makes this example a
prime candidate for our logic: We want to compare two processes (hence we need relational
Hoare logic), but the processes are not exactly equivalent (hence we cannot use qRHL
from [17]) but only close to equivalent (and the “amount of equivalence” can be expressed
using expectations).

Formalizing the processes. We now formalize the two processes as programs in our language.
Let n ≥ 1 be an integer.

In the first process, we have a continuous rotation, broken down into n small rotations.
For simplicity, we will rotate by the angle π/2 within n steps, thus each small rotation

rotates by angle π
2n . This is described by the rotation matrix R :=

(
cos π

2n − sin π
2n

sin π
2n cos π

2n

)
.

Let y be a variable of type {0, 1} (i.e., the qubit that is rotated). In order to apply the
rotation n times, we will need a counter x for the while loop. Let x be a variable of type Z.
We will have a loop that continues while (informally speaking) x < n. This is formalized
by the projector P<n onto states |i⟩ with i < n. I.e., P<n :=

∑
−∞<i<n proj(|i⟩). In slight

abuse of notation, we also write P<n for the binary measurement with Kraus operators
{P<n, id− P<n}. Furthermore, we need to increase the counter. For this let INCR be the
unitary on ℓ2(Z) with INCR|i⟩ 7→ |i+ 1⟩ Then the program that initializes y with |0⟩ and
then applies the rotation R n times can be written as:

ccc := x← |0⟩; y← |0⟩; while P<n[x] do (apply INCR to x; apply R to y) (1)

In the second process, instead of applying R, we measure the state in each iteration of
the loop. In the first iteration, we expect the original state ϕ0 := |0⟩, and after the i-th
iteration, we expect the state ϕi := Rϕi−1 for i ≥ 1. This can be done using the program
if proj(ϕi)[y] then skip else skip where we again write in slight abuse of notation proj(ϕi)
for the corresponding binary measurement. Since the if-statement first measures y and then
executes one of the skip-branches, this is effectively just a measurement. We abbreviate this
as if proj(ϕi)[y].

However, we cannot simply write if proj(ϕi)[y] in our loop body, because i should be
the value of x. So we need to define the projector that projects onto ϕi when x = |i⟩. This
is done by the following projector on ℓ2[xy]: Pϕ :=

∑
i proj(|i⟩ ⊗ ϕi). Then if Pϕ[y] will

measure whether y contains ϕi whenever x contains |i⟩.
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Armed with that notation, we can now formulate the second process as a program:

ddd := x← |0⟩; y← |0⟩; while P<n[x] do (apply INCR to x; if Pϕ[xy]) (2)

Equivalence of the programs. We claim that the two processes, i.e., the programs ccc,ddd have
approximately the same final state in y. Having the same state can be expressed using the
“quantum equality” described in Section 2. Specifically, the postexpectation EQUAL on y1y2
corresponds to y1 and y2 having the same state. For example, {id} ccc tot∼ ddd {EQUAL on y1y2}
implies that the final state of ccc and ddd is the same (if we trace out all variables except y1,y2).14

The fact that the final states are approximately equal can be expressed by multiplying the
preexpectation with a real number close to 1. Specifically, in our case we claim that

{εn · id} ccc tot∼ ddd {EQUAL on y1y2} (3)

Here ε := (cos π
2n )2. This indeed means that the final states of ccc and ddd are the same

asymptotically since εn = (cos π
2n )2n n→∞−−−−→ 1.

Warm up. Before we prove (3), we investigate a simpler case as a warm up. We investigate
the special where n = 3, and instead of a while-loop, we simply repeat the loop body three
times.

ccc′ := y← |0⟩;apply R to y;apply R to y;apply R to y
ddd′ := y← |0⟩;if proj(ϕ1)[y]; if proj(ϕ2)[y]; if proj(ϕ3)[y]

(4)

We claim:

{ε3 · id} ccc′ tot∼ ddd′ {EQUAL on y1y2} (5)

First, we strengthen the postcondition. Let A3 := (proj(ϕ3 ⊗ ϕ3) on y1y2). (This post-
condition is intuitively what we expect to (approximately) hold at the end of the execution.
It means that y1 and y2 are both in state ϕ3, the result by rotating three times using R.
Since ϕ3⊗ϕ3 is in the image of the projector EQUAL, it follows that A3 ≤ (EQUAL on y1y2).
By rule Conseq it is thus sufficient to show {ε3 · id} ccc′ tot∼ ddd′ {A3}. And by rule Seq, we can
show that by the following sequence of Hoare judgments for some A0,A1,A2:{
ε3 · id

} y← |0⟩
tot∼ y← |0⟩

{
A0

} apply R to y
tot∼ if proj(ϕ1)[y]

{
A1

} apply R to y
tot∼ if proj(ϕ2)[y]

{
A2

} apply R to y
tot∼ if proj(ϕ3)[y]

{
A3

}
(6)

(These are four judgments, we just use a more compact notation to put them in one line.) We
will derive suitable values A0,A1,A2 by applying our rules backwards from the postcondition.

By applying rule Apply1, we get
{

A′
3
}

apply R to y tot∼ skip
{

A3
}

where A′
3 :=

(R† on y1)◦A3 and where we use A◦B as an abbreviation for ABA†. And by rule If2 (using
rule Skip for its premises), we get{

(proj(ϕ3) on y2) ◦ A′
3 + (1− proj(ϕ3) on y2) ◦ A′

3

}
skip tot∼ if proj(ϕ3)[y]

{
A′

3

}
.

14 This is seen as follows: The judgment implies that the finals states are marginals of a state that is
invariant under the projector EQUAL on y1y2, i.e., a state with support in the space Y1 ≡q Y2. That
means that this state is invariant under swapping Y1,Y2, and thus the marginals corresponding to Y1
and Y2 are equal.
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The precondition is lower bounded by A2 := (proj(ϕ3) on y2) ◦ A′
3. (The second term corre-

sponds to the measurement failing to measure ϕ3, in this case all is lost anyway, so we remove
that term.) Hence (with rules Seq and Conseq),

{
A2

}
apply R to y tot∼ if proj(ϕ3)[y]

{
A3

}
as desired in (6).

Analogously, we can instantiate

A1 := (proj(ϕ2) on y2) ◦ (R∗ on y1) ◦ A2 and A0 := (proj(ϕ1) on y2) ◦ (R∗ on y1) ◦ A1

in (6). We can simplify the expressions for A0,A1,A2 some more. We have

A2 = (proj
(
ϕ3

)
on y2) ◦ (R∗ on y1) ◦

(
proj(ϕ3 ⊗ ϕ3) on y1y2

)
= proj

(
R∗ϕ3 ⊗ proj(ϕ3)ϕ3

)
on y1y2 = proj(ϕ2 ⊗ ϕ3) on y1y2

And

A1 = (proj
(
ϕ2

)
on y2) ◦ (R∗ on y1) ◦

(
proj(ϕ2 ⊗ ϕ3) on y1y2

)
= proj

(
R∗ϕ2 ⊗ proj(ϕ2)ϕ3

)
on y1y2 = ε proj(ϕ1 ⊗ ϕ2) on y1y2.

(Note the slight difference: instead of proj(ϕ3)ϕ3 have proj(ϕ2)ϕ3 here, which simplifies to
ϕ2 · ϕ∗

2ϕ3 = ϕ2 ·
√
ε.) Analogously

A0 = ε2 proj(ϕ0 ⊗ ϕ1) on y1y2.

It is left to show the first judgment in (6), namely {ε3 · id}y← |0⟩ tot∼ y← |0⟩ {A0}. By
rules Init1 and Init2 (starting from the right), we have{

ε3 · id
}

(∗∗)=
{

idy2 ⊗
(
⟨0|y2 ⊗ id¬y2

)
◦ ε2(proj(ϕ1) on y2)

}
skip tot∼ y← |0⟩{

ε2(proj(ϕ1) on y2)
}

(∗)=
{

idy1 ⊗
(
⟨0|y1 ⊗ id¬y1

)
◦ A0

}
y← |0⟩ tot∼ skip

{
A0

}
. (7)

Here (∗) uses that ϕ0 = |0⟩ and thus ⟨0|proj(ϕ0)|0⟩ = 1, and (∗∗) uses that ϕ∗
1ϕ0 =

√
ε and

thus ⟨0|proj(ϕ1)|0⟩ = ε.
The first judgment in (6) then follows by rule Seq.
This completes the analysis, we have shown (5).

Analysis of the while-programs. Given the experiences from the analysis of the special
case (the programs from (4)), we now can solve the original problem, namely analyzing the
programs ccc,ddd from (1),(2).

As before, we can replace the postcondition in (3) by the stronger postcondition
B := (proj(|n⟩ ⊗ |n⟩ ⊗ ϕn ⊗ ϕn) on x1x2y1y2). By rule Conseq, it is sufficient to show
{εn · id} ccc tot∼ ddd {B}. By rule Seq, this follows if we can show{

εn · id
} x← |0⟩

tot∼ x← |0⟩

{
D

} y← |0⟩
tot∼ y← |0⟩

{
C

} whileccc
tot∼ whileddd

{
B

}
(8)

with

whileccc := while P<n[x] do (apply INCR to x; apply R to y)
whileddd := while P<n[x] do (apply INCR to x; if Pϕ[xy])

for suitably chosen expectations C, D.
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To prove the last judgment {C}whileccc
tot∼ whileddd {B} in (8), we use rule JointWhile.

This rule requires us to come up with a loop invariant A. To understand what the right loop
invariant is, we draw from our experiences in the special case. There, we had defined the
expectations A0, . . . ,A3, where Ai described the state of the programs right after the i-th
application of apply R to y and if proj(ϕi)[y]. We had

Ai = ε2−i proj(ϕi ⊗ ϕi+1) on y1y2 for i = 0, 1, 2 and A3 = proj(ϕ3 ⊗ ϕ3) on y1y2

One sees easily that this would generalize as

Ai = εn−i−1 proj(ϕi ⊗ ϕi+1) on y1y2 for i < n

and An = proj(ϕn ⊗ ϕn) on y1y2

for values n ̸= 3. Thus we expect that these expectations Ai also hold in the programs whileccc,
whileddd after the i-th iteration (or before the (i + 1)-st iteration). Additionally, we keep
track of the counter x, which should be |i⟩ after the i-th iteration (or before the (i+ 1)-st
iteration). This would be expressed by the expectation proj(|i⟩ ⊗ |i⟩) on x1x2. Thus, for the
i-th iteration, we use the “conjunction”

Ax
i := Ai · (proj(|i⟩ ⊗ |i⟩) on x1x2)

=
{
εn−i−1 proj(|i⟩ ⊗ |i⟩ ⊗ ϕi ⊗ ϕi+1) on x1x2y1y2 (i < n)

proj(|n⟩ ⊗ |n⟩ ⊗ ϕn ⊗ ϕn) on x1x2y1y2 (i = n)

(Note that · is not generally a sensible operation on expectations. But in this case, fv(Ai) =
y1y2 and fv(proj(|i⟩ ⊗ |i⟩) on x1x2) = x1x2, so the expectations commute and their product
is again an expectation.)

The final loop invariant A is then the “disjunction” of the Ax
i for i = 0, . . . , n−1, meaning

that in every iteration, one of the Ai should hold. (We do not include Ax
i with i = n here

because when applying the JointWhile rule, we only need the invariant to hold when
the loop guard was passed.) We define A :=

∑n
i=0 Ax

i . (In general, summation is not a
sensible operation representation of “disjunction”, but in the present case, all summands are
orthogonal.)

We have now derived a suitable candidate for the invariant A to use in rule JointWhile.
We stress that the above argumentation (involving words like “disjunction” and “conjunction”
of expectations, and claims that an expectation “holds” at a certain point) was not a formally
well-defined argument, merely an explanation how we arrived at our specific choice for A.
From the formal point of view, all we will need in the following are the definitions of A,Ax

i .
The rest of the argument above was semi-formal motivation.

We will now show the rightmost judgment in (8), namely {C}whileccc
tot∼ whileddd {B} (for

some suitable C). If we apply rule JointWhile (with A as defined above) to this, we get
the premise15

{
A

} =:bodyccc︷ ︸︸ ︷
apply INCR to x; apply R to y

tot∼ apply INCR to x; if Pϕ[xy]︸ ︷︷ ︸
=:bodyddd

{
P both

<n ◦ A + (P none
<n ) ◦ B︸ ︷︷ ︸

=:C′

}
(9)

15 We also additionally get the premise that whileccc is terminating. This can be shown with techniques
from prior work (e.g., [14]) and is quite obvious in the present case. Alternatively, we could have stated
this example with respect to partial correctness instead of total correctness. In that case, we do not
need to prove termination.
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with P both
<n := P<n ⊗ P<n on x1x2 and P none

<n := (id − P<n) ⊗ (id − P<n) on x1x2. (Here
we write A ◦ B as an abbreviation for ABA†.) By applying rules If2, Apply2, and twice
Apply1 (with Seq in between), we get{

(INCR on x1) ◦ (R on y1) ◦ (INCR on x2) ◦ B2
}

bodyccc
tot∼ bodyddd

{
C′}

where B2 := (Pϕ on x2y2) ◦C′ + (id− Pϕ on x2y2) ◦C′. Since B2 ≥ (Pϕ on x1y1) ◦C′, by rule
Conseq we can weaken this to{

A′} bodyccc
tot∼ bodyddd

{
C′}

with A′ := (INCR on x1) ◦ (R on y1) ◦ (INCR on x2) ◦ (Pϕ on x2y2)︸ ︷︷ ︸
=:L

◦ C′

If we can show that A ≤ A′ then we have proven (9). By definition of Ax
i , L, R, Pϕ, INCR,

P both
<n , we have

L ◦ P both
<n ◦ Ax

i = εn−i−1 proj(INCR∗|i⟩ ⊗ INCR∗|i⟩ ⊗R∗ϕi ⊗ proj(ϕi)ϕi+1) on x1x2y1y2

= εn−i proj(|i− 1⟩ ⊗ |i− 1⟩ ⊗ ϕi−1 ⊗ ϕi) on x1x2y1y2 = Ax
i−1.

And L ◦ P both
<n ◦ Ax

n = 0 since P both
<n ◦ Ax

n = 0. Thus L ◦ P both
<n ◦ A =

∑n−1
i=0 A

x
i−1 ≥

∑n−2
i=0 A

x
i .

And by definition of B, L, R, Pϕ, INCR, P none
<n , we have

L ◦ P none
<n ◦ B = proj

(
INCR∗|n⟩ ⊗ INCR∗|n⟩ ⊗R∗ϕn ⊗ proj(ϕn)ϕn+1

)
on x1x2y1y2

= proj
(
|n− 1⟩ ⊗ |n− 1⟩ ⊗ ϕn−1 ⊗ ϕn

)
on x1x2y1y2 = Ax

n−1.

Thus A′ = L ◦ C′ ≥
∑n−2

i=0 A
x
i +Ax

n−1 = A. Thus we have proven (9). By rule JointWhile,
this implies {C′}whileccc

tot∼ whileddd {B} with C′ as defined in (9). With C := Ax
0 ≤ C′,

{C}whileccc
tot∼ whileddd {B} follows by rule Conseq. This is the rightmost judgment in (8).

Using rules Init1, Init2, and Seq, we get {D}y← |0⟩ tot∼ y← |0⟩ {C} with D := εn ·
(proj(|0⟩ ⊗ |0⟩) on x1x2). (This is done very similarly to (7).) This shows the middle judgment
in (8).

Also using rules Init1, Init2, and Seq, we get {εn · id}x← |0⟩ tot∼ x← |0⟩ {D}. This
shows the leftmost judgment in (8).

Thus we have shown the three judgments in (8). By rule Seq, it follows that
{εn · id} ccc tot∼ ddd {B}. Since B ≤ (EQUAL on y1y2), by rule Conseq, we get (3).
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