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1 Introduction

Local consistency checking is an algorithmic technique that is central in computer science.
Intuitively speaking, it consists in propagating local information through a structure so as
to infer global information (consider, e.g., computing the transitive closure of a relation as
deriving global information from local one). Local consistency checking has a prominent role
in the area of constraint satisfaction, where one is given a set of variables V and constraints
and one has to find a satisfying assignment h : V → D for the constraints. In this setting,
the local consistency algorithm can be used to decrease the size of the search space efficiently
or even to correctly solve some constraint satisfaction problems in polynomial time (for
example, 2-SAT or Horn-SAT). However, the use of local consistency methods is not limited
to constraint satisfaction. Indeed, local consistency checking is also used for such problems
as the graph isomorphism problem, where it is is known as the Weisfeiler-Leman algorithm.
Again, the technique can be used to derive implied constraints that an isomorphism between
two graphs has to satisfy so as to narrow down the search space, but local consistency
is in fact powerful enough to solve the graph isomorphism problem over any non-trivial
minor-closed class of graphs [36]. Notably, the best algorithm for graph isomorphism to date
also uses local consistency as a subroutine [3]. Finally, local consistency can be used to solve
games involved in formal verification such as parity games and mean-payoff games [16].

One of the reasons for the ubiquity of local consistency is that its underlying principles
can be described in many different languages, such as the language of category theory [1], in
the language of finite model theory (by Spoiler-Duplicator games [38] or by homomorphism
duality [2]), and logical definability (in Datalog, or infinitary logics with bounded number
of variables). For constraint satisfaction problems over a finite template, the power of local
consistency checking can additionally be characterised algebraically. More precisely, there
are conditions on the set of polymorphisms of a template A such that local consistency
correctly solves its constraint satisfaction problem CSP(A) if, and only if, the polymorphisms
of A satisfy these conditions. Moreover, whenever local consistency correctly solves CSP(A),
where A is finite, then in fact only a very restricted form of local consistency checking is
needed [4]. This fact is known as the collapse of the bounded width hierarchy, and it has
strong consequences both for complexity and logic. On the one hand, the collapse gives
efficient algorithms that are able to solve all the CSPs that are solvable by local consistency
methods, and in fact this gives a polynomial-time algorithm solving instances of the uniform
CSP. On the other hand, this collapse induces collapses in all the areas mentioned at the
beginning of this paragraph.

Many natural problems from computer science can only be phrased as CSPs where the
template is infinite. This is the case for linear programming, some reasoning problems in
artificial intelligence such as ontology-mediated data access, or even problems as simple
to formulate as the digraph acyclicity problem. In order to understand the power of local
consistency in more generality it is thus necessary to consider its use for infinite-domain CSPs.
Infinite-domain CSPs with an ω-categorical template form a very general class of problems
for which the algebraic approach from the finite case can be extended, and numerous results
in the recent years have shown the power of this approach. An algebraic characterisation
of local consistency checking for infinite-domain CSPs is, however, missing. In fact, the
negative results of [19], refined in [35], show that no purely algebraic description of local
consistency is possible for CSPs with ω-categorical templates; this is even the case for
temporal CSPs [20]. These negative results are to be compared with the recent result by
Mottet and Pinsker [45] that did provide an algebraic description of local consistency for
several subclasses of ω-categorical templates.
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In the finite, the algebraic characterisation of local consistency relies on a set of algebraic
tools whose development eventually led to the solutions of the Feder-Vardi dichotomy
conjecture. Bulatov’s proof of the Feder-Vardi conjecture [30] builds on his theory of edge-
colored algebras, that were also used in his characterisation of bounded width [29]; Zhuk’s
proof [50, 51] relies on the concept of absorption, which was developed by Barto and Kozik
in their effort to prove the bounded width conjecture [5, 7]. Comparable algebraic tools, or a
general theory, are at the moment missing in the theory of infinite-domain CSPs, even with
an ω-categorical template. The most general results obtained so far use canonical operations,
which behave like operations on finite sets, and for which it is sometimes possible to mimic
the universal-algebraic approach to finite-domain CSPs. Canonical operations alone do not
seem to be sufficient in full generality and a characterisation of their applicability is also
missing, but on the positive side their applicability covers a vast majority of the results that
were proved in the area. The application of canonical operations to approach the question of
local consistency for infinite-domain CSPs has only been started recently [18, 45, 49].

1.1 Results

In the present paper, we focus on applying the theory of canonical functions to study the
power of local consistency checking for constraint satisfaction problems over ω-categorical
templates. Our objective is two-fold: on the one hand, we wish to obtain generic sufficient
conditions that imply that local consistency solves a given CSP, and on the other hand we
wish to understand the amount of locality needed for local consistency to solve the CSP, as
measured by the so-called relational width. The definitions of all concepts mentioned in this
section can be found in the preliminaries.

In order to solve the first objective, we build on recent work by Mottet and Pinsker [45]
and expand the use of their smooth approximations to fully suit equational (non-)affineness,
which is roughly the algebraic situation imposed by local consistency solvability. The main
technical contribution is a new loop lemma that exploits deep algebraic tools from the
finite [6] and, assuming the use of canonical functions is unfruitful, allows to obtain the
existence of polymorphisms of every arity n ≥ 2 and satisfying certain strong symmetry
conditions. Using this loop lemma, we are able to obtain a characterisation of bounded
width for particular classes of templates, namely for first-order reducts of unary structures
and for certain structures related to the logic MMSNP. In particular, we obtain a decidable
necessary and sufficient condition for an MMSNP sentence to be equivalent to a Datalog
program, solving an open problem from [11, 34].

▶ Theorem 1. The Datalog-rewritability problem for MMSNP is decidable, and is 2NExpTime-
complete.

In order to solve the second objective, we prove that sufficiently locally consistent instances
of a given CSP can be turned into locally consistent instances of a finite-domain CSP. If
the finite-domain CSP has bounded width then it has relational width (2, 3) by [4], which
allows us to obtain a collapse of bounded width for structures whose clone of canonical
polymorphisms satisfy suitable identities, thus obtaining a similar collapse as in the finite
case. In particular, it turns out that the relational width of a structure then only depends
on certain simple parameters of the structure whose automorphism group is considered in
the notion of canonicity.

ICALP 2021
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▶ Theorem 2. Let k, ℓ ≥ 1, and let A be a first-order reduct of a k-homogeneous ℓ-bounded
ω-categorical structure B.

If the clone of Aut(B)-canonical polymorphisms of A contains pseudo-WNUs modulo
Aut(B) of all arities n ≥ 3, then A has relational width (2k,max(3k, ℓ)).
If the clone of Aut(B)-canonical polymorphisms of A contains pseudo-totally symmetric
operations modulo Aut(B) of all arities, then A has relational width (k,max(k + 1, ℓ)).

Note that every finite structure A with domain {a1, . . . , an} is a first-order reduct of
the structure ({a1, . . . , an}; {a1}, . . . , {an}), which is easily seen to be 1-homogeneous and
2-bounded. Thus the width obtained in Theorem 2 coincides with the width given by Barto’s
collapse result from [4].

As a corollary of Theorem 2, we obtain a collapse of the bounded width hierarchy for
first-order reducts of the unary structures mentioned above, as well as of numerous other
structures studied in the literature [22, 18, 17, 39].

▶ Corollary 3. Let A be a structure that has bounded width. If A is a first-order reduct of:
the universal homogeneous graph G or tournament T, or of a unary structure, then A
has relational width at most (4, 6);
the universal homogeneous Kn-free graph Hn, where n ≥ 3, then at most (2, n);
(N; =), the countably infinite equivalence relation with infinitely many equivalence classes
Cω

ω, or the universal homogeneous partial order P, then at most (2, 3).

Proof. A first-order reduct of G or T has bounded width if and only if the algebraic condition
in the first item of Theorem 2 is satisfied [45]. Since both G and T are 2-homogeneous and
3-bounded our claim follows. First-order reducts of Hn, (N; =) or Cω

ω have bounded width if
and only if the condition in the second item of Theorem 2 is satisfied, by [17], [14] and [26],
respectively. Since Hn is 2-homogeneous and n-bounded, and since both (N; =) and Cω

ω are
2-homogeneous and 3-bounded, the claimed bound follows.

By appeal to Theorems 2 and 23 in the present paper our claim holds for first-order
reducts of unary structures.

Finally, a first-order reduct of P with bounded width is either homomorphically equivalent
to a first-order reduct of (Q;<) or it satisfies the algebraic condition in the second item of
Theorem 2 [39]. In the latter case we are done by Theorem 2, in the former we appeal to
the syntactical characterization of first-order reducts of (Q;<). Indeed, such a structure has
bounded width iff it is definable by a conjunction of so-called Ord-Horn clauses [20]. It then
follows by [28] that a first-order reduct of (Q;<) with bounded width has relational width
(2, 3). The result for P follows. ◀

The following example shows that for some of the structures under consideration, the
bounds on relational width provided by Corollary 3 are tight.

▶ Example 4. To show the tightness of the first bound in the case of the universal homo-
geneous graph, we exhibit a first-order reduct A such that for all i ≤ j with 1 ≤ j < 4
or 1 ≤ i < 6 there exists a non-trivial, (i, j)-minimal instance of CSP(A) that has no
solution. Let B := (A;E) be the universal homogeneous graph with edge relation E, and
let N := (A2 \ E) ∩ ≠. Consider the first-order reduct A := (A;R=, R̸=) of B, where
R= := {(a, b, c, d) ∈ A4 | E(a, b) ∧E(c, d) or N(a, b) ∧N(c, d)} and R̸= := {(a, b, c, d) ∈ A4 |
E(a, b) ∧N(c, d) or N(a, b) ∧ E(c, d)}.

It can be seen that A has bounded width, so that Theorem 2 implies that A has relational
width (4, 6). It is easy to see that the instance

Φ = R=(v1, v2, v3, v4) ∧R ̸=(v1, v2, v3, v4)
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is non-trivial, (i, j)-minimal for all i ≤ j with 1 ≤ i ≤ 3, and has no solution. Moreover, the
(4, 5)-minimal instance equivalent to the instance

Ψ = R=(v1, v2, v3, v4) ∧R ̸=(v3, v4, v5, v6) ∧R ̸=(v1, v2, v5, v6)

is non-trivial and has no solution. It follows that the exact relational width of A is (4, 6).

The bounds on relational width provided by the second and third item of Corollary 3
are easily seen to be tight as well. Indeed, let n ≥ 3, let B := (A;E) be the universal
homogeneous Kn-free graph, let N := (A2\E)∩ ̸= and let A := (A;E,N). A is preserved by
canonical pseudo-totally symmetric operations modulo Aut(B) of all arities and has therefore
relational width (2, n) by Theorem 2. But the non-trivial, (2, n− 1)-minimal instance

Φ =
∧

1≤i ̸=j≤n

E(vi, vj)

has no solution; moreover, the instance Ψ = E(v1, v2)∧N(v1, v2) is non-trivial, (1, j)-minimal
for every j ≥ 1 and has no solution either.

For the other structures from Corollary 3, the tightness of the bound can be shown
similarly.

1.2 Related results
Local consistency for ω-categorical structures was studied for the first time in [13] where
basic notions were introduced and some basic results provided. First-order reducts of certain
k-homogeneous ℓ-bounded structures with bounded width were characterized in [45, 20].

A structure A has bounded strict width [33] if not only CSP(A) is solvable by local
consistency, but moreover every partial solution of a locally consistent instance can be
extended to a total solution. The articles [49] and [48] give the upper bound (2, ℓ) on the
relational width for some classes of 2-homogeneous, ℓ-bounded structures under the stronger
assumption of bounded strict width; it also follows from [49] that first-order reducts of Hn

with bounded width have relational width at most (2, n).

1.3 Organisation of the present article
In Section 2 we provide the basic notions and definitions. The reduction to the finite using
canonical functions which leads to the collapse of the bounded width hierarchy is given in
Section 3. We then extend the algebraic theory of smooth approximations in Section 4 before
applying it to first-order reducts of unary structures and MMSNP in Section 5. For lack of
space, some proofs are omitted and can be found in the full version of the paper.

2 Preliminaries

2.1 Structures and model-theoretic notions
For sets B, I, the orbit of a tuple b ∈ BI under the action of a permutation group G on
B is the set {α(b) | α ∈ G}. A countable structure B is ω-categorical if its automorphism
group Aut(B) is oligomorphic, i.e., for all n ≥ 1, the number of orbits of the action of
Aut(B) on n-tuples is finite. For ℓ ≥ 1, we say that B is ℓ-bounded if for every finite X, if all
substructures Y of X of size at most ℓ embed in B, then X embeds in B. For k ≥ 1, we say
that B is k-homogeneous if for all tuples a, b of arbitrary finite length, if all k-subtuples of a

ICALP 2021
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and b are in the same orbit under Aut(B), then a and b are in the same orbit under Aut(B).
We say that B is unary if all relations in its signature are unary. A first-order reduct of a
structure B is a structure on the same domain whose relations have a first-order definition
in B.

2.2 Polymorphisms, clones and identities
A polymorphism of a relational structure A is a homomorphism from some finite power of A
to A. The set of all polymorphisms of a structure A is denoted by Pol(A); it is a function
clone, i.e., a set of finitary operations on a fixed set which contains all projections and which
is closed under arbitrary compositions.

If C is a function clone, then we denote the domain of its functions by C; we say that
C acts on C. The clone C also naturally acts (componentwise) on Cl for any l ≥ 1, on any
invariant subset S of C (by restriction), and on the classes of any invariant equivalence
relation ∼ on an invariant subset S of C (by its action on representatives of the classes).
We write C ↷ Cl, C ↷ S and C ↷ S/∼ for these actions. Any action C ↷ S/∼ is called a
subfactor of C, and we also call the pair (S,∼) a subfactor. A subfactor (S,∼) is minimal
if ∼ has at least two classes and no proper subset of S intersecting at least two ∼-classes
is invariant under C. For a clone C acting on a set X and Y ⊆ X we write ⟨Y ⟩C for the
smallest C-invariant subset of X containing Y .

For n ≥ 1, a k-ary operation f defined on the domain C of a permutation group G is
n-canonical with respect to G if for all a1, . . . , ak ∈ Cn and all α1, . . . , αk ∈ G there exists
β ∈ G such that f(a1, . . . , ak) = β ◦ f(α1(a1), . . . , αk(ak)). In particular, f induces an
operation on the set Cn/G of G-orbits of n-tuples. If all functions of a function clone C are
n-canonical with respect to G, then C acts on Cn/G and we write Cn /G for this action; if G
is oligomorphic then Cn /G is a function clone on a finite set. A function is canonical with
respect to a permutation group G if it is n-canonical with respect to G for all n ≥ 1. We say
that it is diagonally canonical if it satisfies the definition of canonicity in case α1 = · · · = αk.

We write GC to denote the largest permutation group contained in a function clone C,
and say that C is oligomorphic if GC is oligomorphic. For n ≥ 1, the n-canonical (canonical)
part of C is the clone of those functions of C which are n-canonical (canonical) with respect
to GC. We write Ccan

n and Ccan for these sets which form themselves function clones.
For a set of functions F over the same fixed set C we write F for the set of those

functions g such that for all finite subsets F of C, there exists a function in F which
agrees with g on F . We say that f locally interpolates g modulo G, where f, g are k-
ary functions and G is a permutation group all of which act on the same domain, if g ∈
{β ◦ f(α1, . . . , αk) | β, α1, . . . , αk ∈ G}. Similarly, we say that f diagonally interpolates g
modulo G if f locally interpolates g with α1 = · · · = αk. If G is the automorphism group of a
Ramsey structure in the sense of [12], then every function on its domain locally (diagonally)
interpolates a canonical (diagonally canonical) function modulo G [25, 21]. We say that a
clone D locally interpolates a clone C modulo a permutation group G if for every g ∈ D there
exists f ∈ C such that g locally interpolates f modulo G. A clone C is a model-complete core
if its unary functions are equal to GC. A structure A is called a model- complete core if its
polymorphism clone is.

A function f is idempotent if f(x, . . . , x) = x for all values x of its domain; a function
clone is idempotent if all of its functions are. A k-ary operation w is called a weak near-
unanimity (WNU) operation if it satisfies the set of identities containing an equation for
each pair of terms in {w(x, . . . , x, y), w(x, y, . . . , x), . . . , w(y, x, . . . , x)}. It is called totally
symmetric if w(x1, . . . , xk) = w(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk} (where
1 ≤ |{x1, . . . , xk}| ≤ k). Each set of identities also has a pseudo-variant obtained by composing
each term appearing in the identities with a distinct unary function symbol. For example,
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a ternary pseudo-WNU operation f satisfies the identities: e1 ◦ f(y, x, x) = e2 ◦ f(x, y, x),
e3 ◦ f(y, x, x) = e4 ◦ f(x, x, y) and e5 ◦ f(x, y, x) = e6 ◦ f(x, x, y). If C is a function clone and
U ⊆ C is a set of unary functions, then C satisfies a set of pseudo-identities modulo U if it
satisfies the identities in such a way that the unary function symbols are assigned values
in U.

An arity-preserving map ξ : C → D between function clones is called a clone homomorph-
ism if it preserves projections, i.e., maps every projection in C to the corresponding projection
in D, and compositions, i.e., it satisfies ξ(f ◦ (g1, . . . , gn)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gn)) for
all n,m ≥ 1 and all n-ary f ∈ C and m-ary g1, . . . , gn ∈ C. An arity-preserving map ξ is
a minion homomorphism if it preserves compositions with projections, i.e., compositions
where g1, . . . , gn are projections. We say that a function clone C is equationally trivial if it
has a clone homomorphism to the clone P of projections over the two-element domain, and
equationally non-trivial otherwise. We also say that C is equationally affine if it has a clone
homomorphism to an affine clone, i.e., a clone of affine maps over a finite module. It is known
that a finite idempotent clone is either equationally affine or it contains WNU operations of
all arities n ≥ 3 ([43], this stronger version is attributed to E. Kiss in [40, Theorem 2.8]).
Similarly, if A is an ω-categorical model-complete core, then Pol(A)can is either equationally
affine, or it contains pseudo-WNU operations modulo Aut(A) of all arities n ≥ 3 (see [24, 45]
for the lift of the corresponding result from the finite).

If C, D are function clones and D has a finite domain, then a clone (or minion) homo-
morphism ξ : C → D is uniformly continuous if for all n ≥ 1 there exists a finite subset F of
Cn such that ξ(f) = ξ(g) for all n-ary f, g ∈ C which agree on F .

A first-order formula is called a primitive-positive (pp-)formula if it is built exclusively
from atomic formulae, existential quantifiers, and conjunction. A relation is pp-definable in
a structure B if it is first-order definable by a pp-formula; in that case, it is invariant under
Pol(B). Any ω-categorical model-complete core pp-defines all orbits of n-tuples with respect
to its own automorphism group, for all n ≥ 1.

2.3 CSP, Relational Width, Minimality
A CSP instance over a set A is a pair I = (V, C), where V is a finite set of variables, and C is
a set of constraints; each constraint C ∈ C is a subset of AU for some non-empty U ⊆ V (U
is the scope of C). We say that I is an instance of CSP(A) if for every C ∈ C with scope U ,
there exists an enumeration u1, . . . , uk of the elements of U and a k-ary relation R of A such
that for all f : U → A we have f ∈ C ⇔ (f(u1), . . . , f(uk)) ∈ R. Given a constraint C ⊆ AU

and K ⊆ U , the projection of C onto K is defined by C|K := {f |K : f ∈ C}.

▶ Definition 5. Let 1 ≤ k ≤ ℓ. We say that an instance I over V of CSP(A) is (k, ℓ)-minimal
if both of the following hold:

every non-empty subset of at most ℓ variables in V is the scope of some constraint in I;
for every at most k-element subset of variables K ⊆ V and any two constraints C1, C2 ∈ I
whose scopes contain K, the projections of C1 and C2 onto K coincide.

We say that an instance I of the CSP is non-trivial if it does not contain any empty
constraint. Otherwise, I is trivial.

Let 1 ≤ k ≤ ℓ. Clearly not every instance I over variables V of CSP(A) is (k, ℓ)-minimal.
However, every instance I is equivalent to a (k, ℓ)-minimal instance I ′ in the sense that I
and I ′ have the same set of solutions. In particular we have that if I ′ is trivial, then I has
no solutions. Moreover, if A is ω-categorical, then I ′ can be computed in time polynomial in
the size of I. Indeed, it is enough to introduce a new constraint AL for every set L ⊆ V with
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at most ℓ elements to satisfy the first condition. Then the algorithm removes tuples (in fact,
orbits of tuples with respect to Aut(A)) from the constraints in the instance as long as the
second condition is not satisfied. Since A is ω-categorical and thus every relation in I is a
union of a finite number of orbits of tuples with respect to Aut(A), the algorithm terminates.

▶ Definition 6. Let 1 ≤ k ≤ ℓ. A relational structure A has relational width (k, ℓ) if
every non-trivial (k, ℓ)-minimal instance of A has a solution. A has bounded width if it has
relational width (k, ℓ) for some natural numbers k ≤ ℓ.

▶ Theorem 7 ([7]). Let I be a non-trivial (2, 3)-minimal CSP instance over a finite set.
Suppose that the constraints of I are preserved by WNUs of all arities m ≥ 3. Then I has a
solution.

▶ Theorem 8 ([32, 33]). Let I be a non-trivial (1, 1)-minimal CSP instance over a finite set.
Suppose that the constraints of I are preserved by totally symmetric polymorphisms of all
arities. Then I has a solution.

2.4 Smooth Approximations
We are going to apply the fundamental theorem of smooth approximations [45] to lift an
action of a function clone to a larger clone.

▶ Definition 9. (Smooth approximations) Let A be a set, n ≥ 1, and let ∼ be an equivalence
relation on a subset S of An. We say that an equivalence relation η on some set S′ with
S ⊆ S′ approximates ∼ if the restriction of η to S is a (possibly non-proper) refinement of
∼. We call η an approximation of ∼.

For a permutation group G acting on A and leaving η as well as the ∼-classes invariant,
we say that the approximation η is smooth if each equivalence class C of ∼ intersects some
equivalence class C ′ of η such that C ∩ C ′ contains a G-orbit.

▶ Theorem 10 (The fundamental theorem of smooth approximations [45]). Let C ⊆ D be
function clones on a set A, and let G be a permutation group on A such that D locally
interpolates C modulo G. Let ∼ be a C-invariant equivalence relation on S ⊆ A with G-
invariant classes and finite index, and η be a D-invariant smooth approximation of ∼ with
respect to G. Then there exists a uniformly continuous minion homomorphism from D to
C ↷ S/∼.

3 Collapses in the Relational Width Hierarchy

▶ Definition 11. Let I = (V, C) be a CSP instance over A. Let G be a permutation group on
A, let k ≥ 1, and let O be the set of orbits of k-tuples under G. Let IG,k be the following
instance over O:

The variable set of IG,k is the set
(V

k

)
of k-element subsets of V. Thus, every variable K

of IG,k is meant to take a value in O, and we consider that the values for K are K-orbits,
i.e., orbits of maps f : K → A under the natural action of G.
For every constraint C ⊆ AU in I, IG,k contains the constraint CG,k ⊆ O(U

k) defined by

CG,k =
{
g :
(
U

k

)
→ O | ∃f ∈ C ∀K ∈

(
U

k

)
(f |K ∈ g(K))

}
.

Note that the notation f |K ∈ g(K) makes sense precisely because g(K) is a K-orbit.
Observe that if I is non-trivial, then so is IG,k.
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▶ Lemma 12. Let 1 ≤ a ≤ b. If I is (ak, bk)-minimal, then IG,k is (a, b)-minimal.

Note that for every solution h of I, the map χh :
(V

k

)
→ O defined by K 7→ {αh|K | α ∈ G}

defines a solution to IG,k. The next lemma proves that every solution to IG,k is of the form
χh for some solution h of I, provided that I is (k, ℓ)-minimal and that G = Aut(B) for some
ℓ-bounded k-homogeneous structure B.

▶ Lemma 13. Let 1 ≤ k < ℓ. Let B be ℓ-bounded and k-homogeneous, let A be a first-order
reduct of B, and let I be a (k, ℓ)-minimal instance of CSP(A). Then every solution to
IAut(B),k lifts to a solution of I.

Proof. Let h :
(V

k

)
→ O be a solution to IAut(B),k. Recall that for any K ∈

(V
k

)
, we view

h(K) as a K-orbit, and one can therefore restrict h(K) to any L ⊆ K by setting h(K)|L :=
{f |L | f ∈ h(K)}. Note that since I is (k, k)-minimal, we have h(K)|K∩K′ = h(K ′)|K∩K′

for all K,K ′ ∈
(V

k

)
.

We now define an equivalence relation ∼ on V. Suppose first that k = 1. Then every
orbit of B must be a singleton (for any orbit with two elements a, b, the pairs (a, a) and (a, b)
are not in the same orbit but their entries are, so that B is not 1-homogeneous). In that case,
we identify O with the domain B itself, and set x ∼ y if and only if h({x}) = h({y}); that is,
∼ is essentially the kernel of h.

Suppose next that k ≥ 2, and set x ∼ y iff there is K ∈
(V

k

)
containing x, y such that

h(K)|{x,y} consists of constant maps. It can be seen that one could equivalently ask that
this holds for all K containing x, y by 2-minimality, and that this is indeed an equivalence
relation by (2, 3)-minimality of I. Moreover, h descends to

(V /∼
k

)
: if K ′ = {[v1]∼, . . . , [vk]∼}

is a k-element set, define h̃(K ′) := h({v1, . . . , vk}). The definition of h̃ does not depend on
the choice of representatives, by the very definition of ∼.

Define a finite structure C with domain V /∼ in the signature of B as follows. Let
K = {[v1]∼, . . . , [vk]∼}. The orbit h̃(K) describes an atomic type on the elements of K;
one defines C such that its substructure induced by K has the same atomic type. This is a
well-defined construction by the previous paragraphs.

Finally, note that all substructures of C of size at most ℓ embed into B. Indeed, let
L be an ℓ-element substructure of C, and let L′ ⊆ V be an ℓ-element set containing one
representative for each element of L. By (k, ℓ)-minimality of I, there exists C ⊆ AL′ in
I, and a corresponding CAut(B),k ⊆ IAut(B),k. Thus, h|(L′

k ) ∈ CAut(B),k, so that there exists

g ∈ C such that for all K ∈
(

L′

k

)
, g|K ∈ h(K). Thus g corresponds to an embedding of every

k-element substructure of L into B, and since B is k-homogeneous, g is an embedding of L
into B. Finally, since B is ℓ-bounded, it follows that there exists an embedding e of C into B.

It remains to check that the composition of e with the canonical projection V → V /∼ is
a solution to I, which is trivial since the relations of A are definable in B. ◀

Every operation f that is canonical with respect to a group G induces an operation on
the set orbits of k-tuples under G, by definition. We denote this operation by fG,k.

▶ Lemma 14. Let f be a polymorphism of A that is canonical with respect to G. Every
constraint CG,k in IG,k is preserved under fG,k.

Finally, this allows us to prove Theorem 2 from the introduction.

Proof of Theorem 2. Suppose that the assumption of the first item of Theorem 2 is satisfied.
Let I be a non-trivial (2k,max(3k, ℓ))-minimal instance of CSP(A), and let IAut(B),k be the
associated instance of Definition 11. By Lemma 12, IAut(B),k is a (2, 3)-minimal instance,
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and it is non-trivial by definition. The constraints of IAut(B),k are preserved by WNUs of
all arities m ≥ 3 (Lemma 14). By Theorem 7, IAut(B),k admits a solution and since I is
(k,max(3k, ℓ))-minimal, this solution lifts to a solution of I by Lemma 13. Thus, A has
width (2k,max(3k, ℓ)).

Suppose now that the assumption in the second item is satisfied. By the same reasoning
but using Theorem 8 instead of Theorem 7, given a (k,max(k + 1, ℓ))-minimal instance I,
the associated instance IAut(B),k is (1, 1)-minimal and therefore has a solution. Since I is
(k,max(k + 1, ℓ))-minimal, this solution lifts to a solution of I. ◀

4 A New Loop Lemma for Smooth Approximations

We refine the algebraic theory of smooth approximations from [45]. Building on deep algebraic
results from [6] on finite idempotent algebras that are equationally non-trivial, we lift some
of the theory from binary symmetric relations to cyclic relations of arbitrary arity.

4.1 The loop lemma
▶ Definition 15. The linkedness congruence of a binary relation R ⊆ A×B is the equivalence
relation λR on proj(2) (R) defined by (b, b′) ∈ λR iff there are k ≥ 0 and a0, . . . , ak−1 ∈ A

and b = b0, . . . , bk = b′ ∈ B such that (ai, bi) ∈ R and (ai, bi+1) ∈ R for all i ∈ {0, . . . , k− 1}.
We say that R is linked if it is non-empty and λR relates any two elements of proj(2) (R).

If A is a set and m ≥ 2, then we call a relation R ⊆ Am cyclic if it is invariant under
cyclic permutations of the components of its tuples. The support of R is its projection on
any argument. We apply the same terminology as above to any cyclic R, viewing R as a
binary relation between proj(1,...,m−1) (R) and proj(m) (R).

If R is invariant under an oligomorphic group action on A×B, then there is an upper
bound on the length k to witness (b, b′) ∈ λR, and therefore λR is pp-definable from R; in
particular, it is invariant under any function clone acting on A×B and preserving R.

▶ Definition 16. Let G be a permutation group on a set A. A pseudo-loop with respect to G

is a tuple of elements of A all of whose components belong to the same G-orbit [46, 9, 10]. If
G contains only the identity function, then a pseudo-loop is called a loop.

▶ Theorem 17 (Consequence of the proof of Theorem 4.2 in [6]). Let C be an idempotent
function clone on a finite domain that is equationally non-trivial. Then any C-invariant
cyclic linked relation on its domain contains a loop.

The following is a generalization of [45, Theorem 10] from binary symmetric relations to
arbitrary cyclic relations.

▶ Proposition 18. Let n ≥ 1, and let D be an oligomorphic function clone on a set A which
is a model-complete core. Let C ⊆ Dcan

n be such that Cn/GD is equationally non-trivial. Let
(S,∼) be a minimal subfactor of the action Cn with GD-invariant ∼-classes. Then for every
D-invariant cyclic relation R with support ⟨S⟩D one of the following holds:
1. The linkedness congruence of R is a D-invariant approximation of ∼.
2. R contains a pseudo-loop with respect to GD.

Proof. Let R be given, and denote its arity by m. Assuming that (1) does not hold, we
prove (2).
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Denote by O the set of orbits of n-tuples under the action of GD thereon. Let R′ be the
relation obtained by considering R as a relation on O, i.e.,

R′ := {(O1, . . . , Om) ∈ Om | R ∩ (O1 × · · · ×Om) ̸= ∅}.

Thus, R′ is an m-ary cyclic relation with support S′ ⊆ O, and R′ contains a loop if and only
if R satisfies (2).

By assumption, the action Cn/GD is equationally non-trivial; moreover, it is idempotent
since D is a model-complete core. Note also that R′, and in particular S′, are preserved by
this action. It is therefore sufficient to show that R′ is linked and apply Theorem 17.

Recall that we consider R also as a binary relation between projm−1 (R) and ⟨S⟩D; similary,
we consider R′ as a binary relation between projm−1 (R′) and S′. By the oligomorphicity of
D, the linkedness congruence λR of R is invariant under D.

By our assumption that (1) does not hold, there exist c, d ∈ S which are not ∼-equivalent
and such that λR(c, d) holds; otherwise, λR would be an approximation of ∼. This implies
that the orbits Oc, Od of c, d are related via λR′ . By the minimality of (S,∼), we have
that ⟨S⟩D = ⟨{c, d}⟩D. Since D is a model-complete core, it preserves the GD-orbits, and it
follows that any tuple in ⟨S⟩D = ⟨{c, d}⟩D is λR-related to a tuple in the orbit of c. Hence,
λR′ = (S′)2, and thus R′ is linked. Theorem 17 therefore implies that R′ contains a loop,
and hence R contains a pseudo-loop with respect to GD, which is what we had to show. ◀

The following is a generalization of Lemma 12 in [45] from binary relations and functions
to relations and functions of higher arity.

▶ Lemma 19. Let n ≥ 1, and let D be an oligomorphic polymorphism clone on a set A that
is a model-complete core. Let ∼ be an equivalence relation on a set S ⊆ An with GD-invariant
classes. Let m ≥ 1, and let P be an m-ary relation on ⟨S⟩D. Suppose that every m-ary
D-invariant cyclic relation R on ⟨S⟩D which contains a tuple in P with components in at
least two ∼-classes contains a pseudo-loop with respect to GD.

Then there exists an m-ary f ∈ D such that for all a1, . . . , am ∈ An we have that if the
tuple (f(a1, . . . , am), f(a2, . . . , am, a1), . . . , f(am, a1, . . . , am−1)) is in P , then it intersects at
most one ∼-class.

5 Applications: Collapses of the bounded width hierachies for some
classes of infinite structures

We now apply the algebraic results of Section 4 and the theory of smooth approximations to
obtain a characterisation of bounded width for CSPs of first-order reducts of unary structures
(k = 2, ℓ = 2) and for CSPs in MMSNP (where k and ℓ are arbitrarily large). Moreover, the
results of Section 3 then imply a collapse of the bounded width hierarchy for such CSPs.

5.1 Unary Structures
▶ Lemma 20 (Proposition 6.5 in [18]). Let A be a first-order expansion of a stabilized partition
(N;V1, . . . , Vr). For every f ∈ Pol(A) there exists g ∈ Pol(A)can which is locally interpolated
by f modulo Aut(A).

▶ Proposition 21 (Proposition 6.6 in [18]). Let A be a first-order expansion of a stabilized
partition (N;V1, . . . , Vr), and assume it is a model-complete core. Suppose that Pol(A)
contains a binary operation whose restriction to Vi is injective for all 1 ≤ i ≤ r. Then the
following are equivalent:

Pol(A)can is equationally affine;
Pol(A)can ↷ N/Aut(A) is equationally affine.
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▶ Lemma 22 (Subset of the proof of Proposition 6.6 [18]). Let A be a first-order expansion
of a stabilized partition (N;V1, . . . , Vr), and assume it is a model-complete core. If Pol(A)
has no continuous clone homomorphism to P, then it contains operations of all arities whose
restrictions to Vi are injective for all 1 ≤ i ≤ r.

▶ Theorem 23. Let A be a first-order reduct of a unary structure, and assume that A is a
model-complete core. Then one of the following holds:

Pol(A)can is not equationally affine, or equivalently, it contains pseudo-WNUs modulo
Aut(A) of all arities n ≥ 3;
Pol(A) has a uniformly continuous minion homomorphism to an affine clone.

In the first case, A has relational width (4, 6) by Theorem 2, and in the second case it does
not have bounded width by results from [23, 41]. Theorem 23 gives a characterization of
bounded width for all first-order reducts of unary structures, since this class is closed under
taking model-complete cores by Lemma 6.7 in [18].

The two items of Theorem 23 are invariant under expansions of A by a finite number of
constants. Thus, by Proposition 6.8 in [18], one can assume that A is a first-order expansion
of (N;V1, . . . , Vr) where V1, . . . , Vr form a partition of N in which every set is either a singleton
or infinite. Such partitions were called stabilized partitions in [18], and we shall also call the
structure (N;V1, . . . , Vr) a stabilized partition.

Proof of Theorem 23. Let A as in Theorem 23 be given; by the remark preceding this proof,
we may without loss of generality assume that A is a first-order expansion of a stabilized
partition (N;V1, . . . , Vr). Assume henceforth that Pol(A)can is equationally affine; we show
that Pol(A) has a uniformly continuous minion homomorphism to an affine clone.

If Pol(A) has a continuous clone homomorphism to P, then we are done. Assume therefore
the contrary; then by Lemma 22, Pol(A) contains for all k ≥ 2 a k-ary operation whose
restriction to Vi is injective for all 1 ≤ i ≤ r. In particular, Proposition 21 applies, and
thus Pol(A)can ↷ N/Aut(A) is equationally affine. Let (S,∼) be a minimal subfactor of
Pol(A)can such that Pol(A)can acts on the ∼-classes as an affine clone; the fact that this
exists is well-known (see, e.g., Proposition 3.1 in [47]).

Let R be any Pol(A)-invariant cyclic relation with support ⟨S⟩Pol(A), containing a tuple
with components in pairwise distinct Aut(A)-orbits and which intersects at least two ∼-classes.
By Proposition 18, R either gives rise to a Pol(A)-invariant approximation of ∼, or it contains
a pseudo-loop with respect to Aut(A). In the first case, the presence of the tuple required
above implies smoothness of the approximation: if t ∈ R is such a tuple, c ∈ S appears in t,
and d ∈ S belongs to the same Aut(A)-orbit as c, then there exists an element of Aut(A)
which sends c to d and fixes all other elements of t. Hence, c and d are linked in R, and the
entire Aut(A)-orbit of c is contained in a class of the linkedness relation of R. Thus, Pol(A)
admits a uniformly continuous minion homomorphism to an affine clone by Theorem 10.

Hence we may assume that for any R as above the second case holds. We are now going
to show that this leads to a contradiction, finishing the proof of Theorem 23. By Lemma 19
applied with any m ≥ 2 and P the set of m-tuples with entries in pairwise distinct Aut(A)-
orbits within ⟨S⟩Pol(A), we obtain an m-ary function f ∈ Pol(A) with the property that the
tuple (f(a0, . . . , am−1), . . . , f(a1, . . . , am−1, a0)) intersects at most one ∼-class whenever it
has entries in pairwise distinct Aut(A)-orbits, for all a0, . . . , am−1 ∈ S. Let (A, <) be the
expansion of A by a linear order that is convex with respect to the partition V1, . . . , Vr and
dense and without endpoints on every infinite set of the partition. The structure (A, <) can
be seen to be a Ramsey structure, since Aut(A, <) is isomorphic as a permutation group to
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the action of the product
∏r

i=1 Aut(Vi;<), and each of the groups of the product is either
trivial or the automorphism group of a Ramsey structure [37]. By diagonal interpolation
we may assume that f is diagonally canonical with respect to Aut(A, <). Let a, a′ ∈ Am

be so that ai, a
′
i belong to the same orbit with respect to Aut(A) for all 1 ≤ i ≤ m. Then

there exists α ∈ Aut(A, <) such that α(a) = α(a′), and hence f(a) and f(a′) lie in the same
Aut(A)-orbit by diagonal canonicity; hence f is 1-canonical with respect to Aut(A). Applying
Lemma 20, we obtain a canonical function g ∈ Pol(A)can which acts like f on N/Aut(A).
The property of f stated above then implies for g that g(a0, . . . , am−1) ∼ g(a1, . . . , am−1, a0)
for all a0, . . . , am−1 ∈ S such that the values g(a0, . . . , am−1), . . . , g(am−1, a0, . . . , am−2) lie
in pairwise distinct Aut(A)-orbits.

By the choice of (S,∼) we have that Pol(A)can acts on S/∼ by affine functions over a finite
module. We use the symbols +, · for the addition and multiplication in the corresponding
ring, and also + for the addition in the module and · for multiplication of elements of
the module with elements of the ring. We denote by 1 the multiplicative identity of the
ring, by −1 its additive inverse, and identify their powers in the additive group with
the non-zero integers. The domain of the module is S/∼, and we denote the identity
element of its additive group by [a0]∼. Pick an arbitrary element [a1]∼ ̸= [a0]∼ from
S/∼, and let m ≥ 2 be its order in the additive group of the module, i.e., the minimal
positive number such that m · [a1]∼ = [a0]∼. Let g ∈ Pol(A)can be the m-ary operation
obtained in the preceding paragraph. If the values g(a0, . . . , am−1), . . . , g(am−1, a0, . . . , am−2)
lie in pairwise distinct Aut(A)-orbits, then computing indices modulo m we have that
g([a0]∼, . . . , [am−1]∼), . . . , g([am−1]∼, . . . , [am+m−1]∼) are all equal. If on the other hand they
do not, then g([ak]∼, . . . , [ak+m−1]∼) = g([ak+j ]∼, . . . , [ak+j+m−1]∼) for some 0 ≤ k < m and
1 ≤ j < m. Hence, in either case we may assume the latter equation holds. By assumption,
g acts on S/∼ as an affine map, i.e., as a map of the form (x0, . . . , xm−1) 7→

∑m−1
i=0 ci · xi,

where c0, . . . , cm−1 are elements of the ring which sum up to 1. We compute (with indices to
be read modulo m)

[a0]∼ = g([ak+j ]∼, . . . , [ak+j+m−1]∼) + (−1) · g([ak]∼, . . . , [ak+m−1]∼)

=
m−1∑
i=0

ci · [ak+j+i]∼ + (−1) ·
m−1∑
i=0

ci · [ak+i]∼

=
m−1∑
i=0

ci · (k + i+ j) · [a1]∼ + (−1) ·
m−1∑
i=0

ci · (k + i) · [a1]∼

=
(

m−1∑
i=0

ci

)
· j · [a1]∼ = j · [a1]∼.

But j · [a1]∼ ̸= [a0]∼ since the order of [a1]∼ equals m > j, a contradiction. ◀

5.2 MMSNP
MMSNP is a fragment of existential second order logic that was discovered by Feder and
Vardi in their seminal paper [33]. We prefer not to define the syntax of MMSNP, and rather
define it using a correspondence between MMSNP sentences and certain coloring problems.
We refer to [15] for a precise definition of all the terms employed here.

Let τ be a relational signature, let σ be a unary signature whose relations are called the
colors, and let F be a finite set of finite connected (τ ∪ σ)-structures whose vertices have
exactly one color. We call F a colored obstruction set in the following. The problem FPP(F)
takes as input a τ -structure G and asks whether there exists a (τ∪σ)-expansion G∗ of G whose
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vertices are all colored with exactly one color and such that for every F ∈ F , there exists no
homomorphism from F to G∗. The connection between MMSNP and FPP is shown in [42,
Corollary 3.7]: every MMSNP sentence Φ is equivalent to a union FPP(F1) ∪ · · · ∪ FPP(Fp),
in the sense that a τ -structure G satisfies Φ iff it is a yes-instance for one of the problems
FPP(Fi). We say Φ is connected if it is equivalent to a single FPP(F).

Every set F as above has a strong normal form G such that FPP(F) = FPP(G). We say
F is precolored if for every symbol M ∈ σ, there is an associated unary symbol PM ∈ τ , and
moreover if F contains for every M ̸= M ′ a 1-element structure whose vertex belongs to PM

and M ′. Every F has a standard precoloration, obtained by enlarging τ with the necessary
symbols and enlarging F with the associated obstructions.

It was shown in [15, Definition 4.3] that for every set F in strong normal form, there exists
an ω-categorical τ -structure AF such that for any finite τ -structure B, B is a yes-instance of
FPP(F) iff there exists an injective homomorphism from B to AF , and such that:

If F is precolored, then the orbits of the elements of AF under Aut(AF ) correspond to
the colors of F and to the corresponding predicates in τ . In particular, the action of
Pol(AF )can

1 on Aut(AF )-orbits of elements is idempotent [15, Proposition 7.1].
Every f ∈ Pol(AF ) locally interpolates an operation g ∈ Pol(AF )can

1 , and there exists a
linear order < on AF such that every f diagonally interpolates an operation f ′ that is
diagonally canonical with respect to Aut(AF , <).

We finally solve the Datalog-rewritability problem for MMSNP and prove that a connected
sentence Φ is equivalent to a Datalog-program iff the action of Pol(AF )can

1 on Aut(AF )-orbits
of elements is not equationally affine, where F is any strong normal form for Φ.

The following proposition is proved in [15] in the case where m = 2. Only small alterations
to the proof are needed to prove the more general version, so we omit it.

▶ Proposition 24. Let F be a precolored obstruction set and in normal form. Let B have
a homomorphism to AF and let m ≥ 1. There exists an embedding e of {1, . . . ,m} ×
B, the disjoint union of m copies of B, into AF such that (e(i1, a1), . . . , e(im, am)) and
(e(j1, b1), . . . , e(jm, bm)) are in the same orbit under Aut(AF , <) provided that:

ak and bk are in the same color for all k ∈ {1, . . . ,m}
ak and aℓ are in distinct colors for all k ̸= ℓ,
{i1, . . . , im} = {j1, . . . , jm} = {1, . . . ,m}.

The following proposition shows that for the question of Datalog-rewritability, one can
reduce to the precolored case without loss of generality. The same proposition was shown
in [15] for the P/NP-complete dichotomy, with P replacing affine clones in the statement.

▶ Proposition 25. Let F be a colored obstruction set in strong normal form and let G be its
standard precoloration. There is a uniformly continuous minion homomorphism from Pol(AG)
to an affine clone if and only if there is a uniformly continuous minion homomorphism from
Pol(AF ) to an affine clone.

Proof. It is shown in [15] that Pol(AG) has a uniformly continuous minion homomorphism to
Pol(AF ) and that Pol(AF , ̸=) has a uniformly continuous minion homomorphism to Pol(AG).
Thus, it suffices to show that if Pol(AF , ≠) has a uniformly continuous minion homomorphism
to an affine clone, then so does Pol(AF ).

Let p ≥ 2 be prime and let R0 and R1 be the relations defined by {(x, y, z) ∈ Zp |
x+ y + z = i mod p} for i ∈ {0, 1}. For an arbitrary ω-categorical structure B, it is known
that the existence of a uniformly continuous minion homomorphism Pol(B) to an affine clone
is equivalent to the existence of a p such that the relational structure (Zp;R0, R1) has a
pp-construction in B.
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Suppose that (Zp;R0, R1) has a pp-construction in (AF , ̸=). Thus, there is n ≥ 1
and pp-formulas ϕ0(x,y, z), ϕ1(x,y, z) defining relations S0, S1 such that (An;S0, S1) and
(Zp;R0, R1) are homomorphically equivalent; we take n to be minimal with the property
that such pp-formulas exist. Since R0 and R1 are totally symmetric relations (i.e., the order
of the entries in a tuple does not affect its membership into any of R0 or R1), we can assume
that S0 and S1 are, too, and that the formulas pp-defining them are syntactically invariant
under permutation of the block of variables x, y, and z.

We first claim that ϕi does not contain any equality atom or any inequality atom xj ̸= yj

for j ∈ {1, . . . , n} (so that by symmetry, also yj ̸= zj and xj ≠ zj do not appear). Let
h : (Zp;R0, R1) → (An;S0, S1) be a homomorphism. Since (0, 0, 0) ∈ R0, we have that
(h(0), h(0), h(0)) satisfies ϕ0, and therefore the listed inequality atoms cannot appear. The
same holds for ϕ1, by considering (h(0), h(0), h(1)) and its permutations.

In order to rule out equalities, we proceed as in [15]. Suppose that ϕ0 contains xi = xj

for i ̸= j. Then the entries i and j of h(q) are equal, for any q ∈ {0, . . . , p − 1}, since
every q belongs to the support of R0. Thus, one can also add xi = xj to ϕ1, since the
structure defined by the modified formula still admits a homomorphism from (Zp;R0, R1).
By existentially quantifying xj , yj , zj in ϕ0 and ϕ1, one obtains a pp-construction of some
(An−1;S′

0, S
′
1) that is still homomorphically equivalent to (Zp;R0, R1), a contradiction to the

minimality of n. If ϕ0 contains xi = yj for j ̸= i, then it also contains yj = zi and zi = xj

since we enforced that ϕ0 is syntactically symmetric. By transitivity, we obtain that xi = xj

is implied by ϕ0 and we are back in the first case. Suppose now that ϕ0 contains xi = yi.
Then the ith entry of h(0) and h(q) are equal, for all q ∈ {0, . . . , p− 1}, since for all q there
exists r such that (0, q, r) ∈ R0. Thus we can again reduce n by fixing the ith coordinate.

Let ψi be the formula obtained from ϕi by removing the possible inequality literals, and let
Ti be defined by ψi in AF . We claim that (An;T0, T1) and (An;S0, S1) are homomorphically
equivalent, which concludes the proof. Since ϕi implies ψi, we have that (An;S0, S1) is
a (non-induced) substructure of (An;T0, T1), and therefore it homomorphically maps to
(An;T0, T1) by the identity map. For the other direction, we prove the result by compactness
and show that every finite substructure B of (An;T0, T1) has a homomorphism to (An;S0, S1).
Let b1, . . . ,bm be the elements of B. Let C be the τ -structure over precisely n ·m elements
{ci

j | i, j} corresponding to the entries of bi
j , whose relations are pulled back from AF under

the map π : ci
j 7→ bi

j . Note that no structure from F has a homomorphism to C (otherwise, we
would obtain a homomorphism to AF by composition with π), and thus C admits an injective
homomorphism g to AF . We claim that if (bi,bj ,bk) ∈ T0 then (g(ci), g(cj), g(ck)) ∈ S0.
Indeed, suppose that (bi,bj ,bk) satisfies ψ0. Then by construction (g(ci), g(cj), g(ck))
satisfies ψ0. Moreover, by injectivity of g, we have g(ci

r) ̸= g(cj
s) as long as i ≠ j or r ̸= s.

Consider any inequality atom in ϕ0. By our first claim, it is not of the form xr ̸= yr, and
therefore it is satisfied by (g(ci), g(cj), g(ck)). Thus, (g(ci), g(cj), g(ck)) satisfies ϕ0. The
same reasoning for ϕ1 shows that g induces a homomorphism B → (An;S0, S1) by mapping
bi to g(ci). ◀

▶ Lemma 26. Let (S,∼) be a subfactor of Pol(AF )can
1 with Aut(AF )-invariant ∼-classes.

Let m ≥ 2, and let f ∈ Pol(AF ) be as in Lemma 19: for all a1, . . . , am ∈ AF we have that if
the entries of the tuple (f(a1, . . . , am), f(a2, . . . , am, a1), . . . , f(am, a1, . . . , am−1)) all belong
to different colors, then it intersects at most one ∼-class. Let O0, . . . , Om−1 ∈ S be pairwise
distinct orbits under Aut(AF ). There exists g ∈ Pol(AF )can

1 that is locally interpolated by f
and that satisfies

g(Ok, . . . , Ok+m−1) ∼ g(Oj+k, . . . , Oj+k+m−1) (⋆)

for some 0 ≤ k < m and 1 ≤ j < m.
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Proof. Recall that the expansion of AF by a generic linear order is a Ramsey structure [15].
Thus, f diagonally interpolates a function g ∈ Pol(AF ) with the same properties and which
is diagonally canonical with respect to Aut(AF , <), and without loss of generality we can
therefore assume that f is itself diagonally canonical.

Let B := {0, . . . ,m − 1} × AF be the disjoint union of m copies of AF and let e

be an embedding of {0, . . . ,m − 1} × B into AΦ with the properties stated in Proposi-
tion 24. Let ei(x) := e(i, x), which is a self-embedding of AF . Consider f ′(x0, . . . , xm−1) :=
f(e0x0, . . . , em−1xm−1), and note that f ′ is 1-canonical when restricted to m-tuples where
all entries are in pairwise distinct orbits. Let g be obtained by canonising f ′ with respect to
Aut(AF , <). In particular g ∈ Pol(AF )can

1 and g(Ok, . . . , Ok+m−1) and f ′(Ok, . . . , Ok+m−1)
are in S and ∼-equivalent for all k.

As in the proof of Theorem 23, there are suitable 0 ≤ k < m and 1 ≤ j < m such that

f(ekOk, . . . , ek+m−1Ok+m−1) ∼ f(ek+jOk+j , . . . , ek+j+m−1Oj+k+m−1)

holds, where indices are computed modulo m. Then

g(Ok, . . . , Ok+m−1) ∼ f(e0Ok, . . . , em−1Ok+m−1)
∼ f(ekOk, . . . , ek+m−1Ok+m−1) (⋆)
∼ f(ek+jOk+j , . . . , ek+j+m−1Ok+j+m−1)
∼ f(e0Ok+j , . . . , em−1Ok+j+m−1) (⋆)
∼ g(Ok+j , . . . , Ok+j+m−1),

where the equivalences marked (⋆) hold by the fact that f is diagonally canonical with respect
to Aut(AF , <) and by Proposition 24. ◀

The following theorem gives a characterization of Datalog-rewritability in terms of
precolored normal forms. The proof is similar to that of Theorem 23.

▶ Theorem 27. Let Φ be a connected MMSNP τ -sentence, let F be an equivalent colored
obstruction set and suppose that F is precolored and in strong normal form. The following
are equivalent:
1. ¬Φ is equivalent to a Datalog program;
2. Pol(AF ) does not have a uniformly continuous minion homomorphism to an affine clone;
3. The action of Pol(AF )can

1 on Aut(AF )-orbits of elements is not equationally affine;
4. AF has relational width (k,max(k + 1, ℓ)), where k and ℓ are such that AF is k-

homogeneous ℓ-bounded.

Proof. (1) implies (2) by general principles [41, 8].
(2) implies (3). We do the proof by contraposition. The proof is essentially the same

as in the case of reducts of unary structures (Theorem 23). Suppose that Pol(AF )can
1 ↷

AF/Aut(AF ) is equationally affine and let (S,∼) be a minimal module for this action.
Let m ≥ 2 and let R be an m-ary cyclic relation invariant under Pol(AF ) and containing

a tuple (a1, . . . , am) whose entries are pairwise distinct. By Proposition 18, either the
linkedness congruence of R defines an approximation of ∼, or R contains a pseudoloop
modulo Aut(AF ). In the first case, the approximation is smooth and we obtain a uniformly
continuous minion homomorphism from Pol(AF ) to a clone of affine maps. Any such clone
admits a uniformly continuous minion homomorphism to Zp for some p, and by composition
this gives us a uniformly continuous minion homomorphism Pol(AF ) → Zp.
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So let us assume that for all m ≥ 2, every such relation R contains a pseudoloop.
By applying Lemma 19, we obtain a polymorphism f such that for all a1, . . . , am, if
f(a1, . . . , am), . . . , f(am, a0, . . . , am−1) are pairwise distinct, then they intersect at most
one ∼-class. As in the proof of Theorem 23, pick an arbitrary a1 ∈ S such that [a1]∼ is not
the zero element of the module S/∼. Let m ≥ 2 be its order, and let Oi be the orbit of
i · [a1]∼, for i ∈ {0, 1, . . . ,m− 1}. By Lemma 26, we obtain g ∈ Pol(AF )can

1 such that

g(Ok, . . . , Ok+m−1) ∼ g(Oj+k, . . . , Oj+k+m−1)

for some k ∈ {0, . . . ,m−1} and j ∈ {1, . . . ,m−1}. The same computation as in Theorem 23
then gives a contradiction and concludes the proof.

(3) implies (4). First, note that AF is infinite, and therefore k ≥ 2. Let I be a non-trivial
(k,max(k + 1, ℓ))-minimal instance of AF . Let G be Aut(AF ). Consider the instance IG,1 as
in Definition 11. Thus, the variables of IG,1 are the same as the variables of I (up to the
natural bijection between V and

(V
1
)
) and the values for the variables are taken from the set

of colors of F . By Lemma 12, IG,1 is (2, 3)-minimal, and from (3) and Lemma 14 we obtain
that it has a solution h. Note that we cannot use Lemma 13 to obtain a solution to I, since
we only considered IG,1. Let B be the τ -structure described by I (i.e., B is the canonical
database of I). Let B∗ be the (τ ∪ σ)-expansion of B obtained by coloring the vertices of
B according to h. Since I is (k, ℓ)-minimal, it can be seen that B∗ does not contain any
homomorphic copy of F ∈ F , so that B admits a homomorphism to AF , i.e., I has a solution
in AF .

(4) implies (1). Trivial. ◀

Combining Proposition 25, Theorem 27, and known facts about MMSNP and normal
forms [15], this allows us to obtain Theorem 1 from the introduction.

▶ Theorem 1. The Datalog-rewritability problem for MMSNP is decidable, and is 2NExpTime-
complete.

Proof. Let Φ be an MMSNP sentence, which is equivalent to a disjunction Φ1 ∨ · · · ∨ Φp

of connected MMSNP sentences [15, Proposition 3.2]. Moreover, if p is minimal then ¬Φ is
equivalent to a Datalog program iff every ¬Φi is equivalent to a Datalog program (see, e.g.,
Proposition 3.3 in [15], for a proof of a similar fact).

By Theorem 4.3 in [15], one can compute for every Φi a coloured obstruction set Fi

that is in strong normal form. Let Gi be the standard precoloration of Fi. By Proposi-
tion 25, one has a uniformly continuous minion homomorphism from Pol(AGi

) to an affine
clone iff one has one from Pol(AFi) to an affine clone. Then, by Theorem 27, we get
that deciding Datalog-rewritability for Gi is equivalent to deciding whether Pol(AGi

)can
1 ↷

AGi/Aut(AGi) is equationally non-affine, which is known to be decidable in polynomial time
since Pol(AGi

)can
1 ↷ AGi

/Aut(AGi
) is idempotent.

The computation of a strong normal form is costly and can be performed in 2-ExpSpace.
In order to obtain a 2NExpTime-algorithm, we rather compute a normal form Fi for Φi

(by Lemma 3.1 in [15]), which can be done in doubly exponential-time. The consequence
of not working with a strong normal form is that the clone Pol(AFi

)can
1 ↷ AFi

/Aut(AFi
) is

not a core; its core is the action considered for the strong normal form. Deciding whether
such a clone admits a minion homomorphism to an affine clone is in NP [31, Corollary 6.8].
We obtain overall a 2NExpTime algorithm. The complexity lower bound is Theorem 18
in [27]. ◀
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