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Abstract
The fluted fragment is a fragment of first-order logic in which the order of quantification of variables
coincides with the order in which those variables appear as arguments of predicates. It is known
that the fluted fragment possesses the finite model property. In this paper, we extend the fluted
fragment by the addition of counting quantifiers. We show that the resulting logic retains the
finite model property, and that the satisfiability problem for its (m + 1)-variable sub-fragment
is in m-NExpTime for all positive m. We also consider the satisfiability and finite satisfiability
problems for the extension of any of these fragments in which the fluting requirement applies only
to sub-formulas having at least three free variables.
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1 Introduction

The fluted fragment, FL, is a fragment of first-order logic in which, very roughly, the order
of quantification of variables coincides with the order in which those variables appear as
arguments of predicates, for example:

No student admires every professor
∀x1(std(x1) → ¬∀x2(prof(x2) → admr(x1, x2))) (1)

No lecturer introduces any professor to every student
∀x1(lectr(x1) → ¬∃x2(prof(x2) ∧ ∀x3(std(x3) → intro(x1, x2, x3)))). (2)

More precisely, in fluted formulas, all atoms are of the form p(xℓ, . . . , xm), with a contiguous
sequence of variables as their arguments, Boolean combinations can only be formed from
formulas whose last free variable is the same, and only the last free variable in a formula
may be quantified. Equality is not present. It is known that FL has the finite model
property, and that its m-variable sub-fragment, FLm, is ⌊m/2⌋-NExpTime-hard for all
m ≥ 2 and in (m− 2)-NExpTime for all m ≥ 3 [17]. Hence, the satisfiability problem for
FL is Tower-complete in the system of trans-elementary complexity classes of [24]. (It was
incorrectly claimed in [20] that this problem is in NExpTime.)

Counting quantifiers are expressions of the form ∃[≤M ], ∃[≥M ] and ∃[=M ], where M is a
positive integer, with the interpretations “there exist at most/at least/exactly M . . . ”. We
investigate the addition of counting quantifiers and equality to the fluted fragment:

At most three lecturers introduce a professor to at least five students
∃[≤3]x1(lectr(x1) ∧ ∃x2(prof(x2) ∧ ∃[≥5]x3(std(x3) ∧ intro(x1, x2, x3)))) (3)

Every absent-minded professor introduces some student to himself
∀x1(abs-mnd(x1) ∧ prof(x1) → ∃x2∃x3(std(x3) ∧ x2 = x3 ∧ intro(x1, x2, x3))). (4)
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141:2 Fluted Logic with Counting

We denote this extension of FL by FLC, and its m-variable sub-fragment by FLCm. We
also consider the corresponding fragments SFC and SFCm, in which the fluting restriction is
waived for sub-formulas with at most two variables. (Formal definitions are given in Sec. 2.)

The definition of FL employed here is that given by Purdy [19], who traces its origins
to Quine [22]. (The term “fluted” is actually Quine’s.) While it is unclear whether the
quantification patterns specified by Purdy are really those that Quine had in mind, it is
Purdy’s definition which has established itself, and indeed which is – from the point of
view of recent work in computational logic – of greater interest. In particular, two-variable
fluted logic with counting, FLC2 includes (under a simple translation) the description logic
ALCHOQ, whose sub-fragments have been the focus of intensive investigation over recent
decades; and its semi-fluted extension, SFC2 coincides with C2, the two-variable fragment
of first-order logic with counting quantifiers, whose satisfiability and finite satisfiability
problems are known to be NExpTime-complete [6, 12, 15]. Of course, FL is not limited
in the number of variables formulas can contain, a property it shares with the guarded
fragment [1], which also has the finite model property, and whose satisfiability problem is in
2-ExpTime [5]. In fact, our logic SFC extends C2 with fluted formulas in much the same way
as the so-called triguarded fragment [23] extends the two-variable fragment of first-order logic
(without equality) with guarded formulas. The triguarded fragment has recently been shown
to have the finite model property [10]; its satisfiability problem is 2-NExpTime-complete,
but becomes undecidable in the presence of equality. We note that negation can be applied
freely in FLC and SFC. Thus, these fragments are not subject to any type of guardedness
restrictions: for example, (2) is not guarded or even negation-guarded [2].

In this extended abstract, we show that FLC has the finite model property, and that the
satisfiability problem for FLCm+1 is in m-NExpTime for all m ≥ 1. We also show that the
satisfiability and finite satisfiability problems for SFC remain decidable.

2 Preliminaries

In the context of fluted formulas, logical variables are taken from the sequence x̄ω = x1, x2, . . .,
and all signatures are purely relational, i.e., there are no individual constants or function
symbols; however, we allow 0-ary relations (proposition letters). We employ the syntax of
counting quantifiers ∃[≤M ], ∃[≥M ] and ∃[=M ], where M is a (numeral denoting a) positive
integer, under the expected semantics. A multiset over some carrier set X is a function f

from X to cardinal numbers, where, for each x ∈ X, f(x) is the multiplicity with which x

occurs in f . Informally, we identify multisets differing only by elements of multiplicity 0.
Almost all mulitplicities we encounter will be finite.

We begin with the syntax of the logics considered here. Define the sets of formulas
FLC[m], for all m ≥ 0, by simultaneous structural recursion as follows:

(i) any atom p(xℓ, . . . , xm), where xℓ, . . . , xm is a contiguous subsequence of x̄ω and p a
predicate of arity m− ℓ+ 1, is in FLC[m];

(ii) FLC[m] is closed under boolean combinations;
(iii) if φ is in FLC[m+1], then ∃xm+1.φ and ∀xm+1.φ are in FLC[m],
(iv) if φ is in FLC[m+1] and M a non-negative integer, then ∃[≤M ]xm+1.φ, ∃[≥M ]xm+1.φ

and ∃[=M ]xm+1.φ are in FLC[m].
It is intended that Clause (i) allows the case ℓ = m + 1 (empty sequence of arguments),
so that the atoms in question are proposition letters; and when m = ℓ + 1 (exactly two
arguments), we allow p to be the equality predicate. We define the sets of formulas FL[m]

similarly, except that we do not allow the equality predicate in Clause (i), and Clause (iv) is
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dropped altogether. The fluted fragment is the set of formulas FL =
⋃

m≥0 FL[m], and the
fluted fragment with counting and equality, the set of formulas FLC =

⋃
m≥0 FLC[m]. Finally,

we define FLm to be the fragment of FL in which at most the variables x1, . . . , xm appear
(free or bound); and similarly for FLCm. Thus, (1) is in FL2, and (2) in FL3, while (3)
and (4) are in FLC3. Do not confuse FLCm with FLC[m]: all of (1)–(4) are in FLC[0]. By
sentence, we mean a formula with no free variables.

Denote by C2 the two-variable fragment of first-order logic with counting, i.e. the set of
first-order formulas with (equality and) counting quantifiers over a purely relational signature,
and featuring only two logical variables. (We may without loss of useful expressive power
assume that all predicates have arity at most 2.) Formulas of C2 are not required to be
fluted. For example, ∀x1∃x2.r(x1, x2) ∧ ∀x2∃[≤1]x1.r(x1, x2) ∧ ∃x2∀x1¬r(x1, x2) is a formula
of C2, but not of FLC2. It is straightforward to see that this formula is satisfiable, but
only in infinite models. Thus, C2 lacks the finite model property. It is well-known that the
satisfiability and finite satisfiability problems for the three-variable fragment of first-order
logic (even without with counting) are undecidable.

In the context of FLC, the possibility arises of waiving the fluting restrictions on sub-
formulas featuring at most two free variables. Define the sets of formulas SFC[m] in the
same way as FLC[m], but with the additional clauses (for m ≥ 2):
(v) Any C2-formula ψ, whose set of free variables is equal to one of {xm−1, xm}, {xm} or

∅, is in SFC[m].
We then take the semi-fluted fragment with counting to be the set of formulas
SFC =

⋃
m≥0 SFC[m], denoting its m-variable sub-fragment by SFCm. If φ is a formula of

any of the above fragments, we take its size, ∥φ∥, to be the number of bits required to write
it, on the understanding that numerical subscripts are encoded as binary strings. Since SFC
contains C2, it lacks the finite model property. We can now state our main results.

▶ Theorem 1. The logic FLC has the finite model property. The satisfiability problem for
FLCm+1 is in m-NExpTime for all m ≥ 1.

▶ Theorem 2. The satisfiability and finite satisfiability problems for SFC are decidable.

Assuming, as we shall, that the arity of any predicate is fixed in advance, variables in
fluted logic convey no information at all, and therefore can be omitted. (This may have been
part of the motivation for Quine [21].) The same applies to fluted formulas with counting
quantifiers. For example, (3) and (4) can be written, respectively, as:

∃[≤3](lectr ∧ ∃(prof ∧ ∃[≥5](std ∧ intro))) (5)
∀(abs-mnd ∧ prof → ∃∃(std ∧ = ∧ intro)). (6)

It is straightforward to reconstruct (3) and (4) (up to a shift of variable indices) from (5)
and (6). Consequently, we employ variable-free notation for FLC in the sequel, as it is
more compact, though formulas such as “std ∧ = ∧ intro” admittedly take some getting
used to. It is important to realize that, with variable-free notation, any formula of FLC[m]

is, without lexical change, also a formula of FLC[m+1]. For example, the sub-formula
∃(prof ∧ ∃[≥5](std ∧ intro)) of (5) may be reconstructed as the FLC[1]-formula φ(x1) :=
∃x2(prof(x2) ∧ ∃[≥5]x3(std(x3) ∧ intro(x1, x2, x3))), or alternatively as the FLC[2]-formula
φ′(x1, x2) := ∃x3(prof(x3) ∧ ∃[≥5]x4(std(x4) ∧ intro(x2, x3, x4))), and so on.

Thus, using variable-free notation, the sets FLC[m] are the minimal family of sets of
formulas satisfying:

ICALP 2021



141:4 Fluted Logic with Counting

(i) any predicate p of arity less than or equal to m is in FLC[m];
(ii) FLC[m] is closed under boolean combinations;
(iii) if φ is in FLC[m+1], then ∃φ and ∀φ are in FLC[m],
(iv) if φ is in FLC[m+1] and M a non-negative integer, then ∃[≤M ]φ, ∃[≥M ]φ and ∃[=M ]φ

are in FLC[m].
We also use the term sentence in this context to mean a formula of FLC[0], and we continue
to use the notation FLCm to denote the same set of formulas as defined above, but written
without variables. We remark that there is no difference between a quantifier-free formula of
FLCm and a quantifier-free formula of FLC[m]; it is just a Boolean combination of predicates
(including equality) of arity at most m.

If φ ∈ FLC[m], and ā = a1, . . . , am is an m-tuple of elements from some structure A

interpreting the signature of φ, we write A |= φ[ā] as usual to indicate that ā satisfies φ
in A, under the assignments x1 7→ a1, . . . , xm 7→ am. Observe that this notation remains
meaningful even with variable-free notation. Indeed, if ā ∈ Am and a ∈ A, then A |= φ[ā] if
and only if A |= φ[aā]. (This trick is important, because it will be used at various points in
Sec. 4.) The notation ∀m stands for a block ∀ · · · ∀ of m universal quantifiers.

Of course, we cannot – without further ado – use variable-free notation for SFC.
The analysis of decidable fragments is often simplified by the use of normal forms in the

style of [25]. Here, we adapt the normal forms for FL from [17, Lemma 4.1].

▶ Lemma 3. Let φ be a formula of FLCm+1 (m ≥ 1). Then we may compute, in time
bounded by a polynomial function of ∥φ∥, an FLCm+1-sentence satisfiable over the same
domains as φ, and having the form∧

s∈S

∀m(µs → ∃[=Ms]ζs) ∧
∧
t∈T

∀m(νt → ∀ηt) ∧ ∀m+1θ, (7)

where S and T are index sets, the µs and νt are quantifier-free FLCm-formulas, the ζs, ηt

and θ are quantifier-free FLCm+1-formulas, and the Ms are positive integers.

Proof. By prepending existential quantifiers if necessary, we may assume that φ is a sentence.
Call a quantifier of the form ∃[=M ] an equality quantifier. Somewhat counter-intuitively,
we first remove all equality quantifiers from φ. Let φ0 := φ, and suppose φ0 possesses
a sub-formula θ = ∃[=M ]χ, such that χ contains no equality quantifiers. Let ℓ be the
smallest number such that θ ∈ FLC[ℓ]. Let p, q be fresh predicates or arity ℓ, and define
φ1 := φ0[θ/(p ∧ q)] and

ψ1 := ∀ℓ(p ↔ ∃[≥M ]χ) ∧ ∀ℓ(q ↔ ∃[≤M ]χ).

It is obvious that φ0 and φ1 ∧ ψ1 are satisfiable over the same domains Now process φ1
in the same way to obtain φ2, until we eventually obtain a sentence φn containing no
equality quantifiers. This process evidently terminates in polynomial time. Since φ and
φn ∧ ψn ∧ · · · ∧ ψ1 are satisfiable over the same domains, we may simply assume, henceforth,
that φ contains no equality quantifiers.

Since there are no equality quantifiers in φ we may move negations inward in the usual
way, so that they apply to atomic formulas. At this point, we may follow the proof of
the analogous theorem for FL presented in [17, pp. 174], obtaining, in polynomial time, a
sentence satisfiable over the same domains as φ, and having the form∧

s∈S

∀m(µs → ∃[▷◁sMs]ζs) ∧
∧
t∈T

∀m(νt → ∀ηt) ∧ ∀m+1θ,
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where each ▷◁s is one of the symbols ≤ or ≥. We now eliminate all occurrences of ≤ and ≥
with =. For any conjunct ∀m(µs → ∃[≤Ms]ζs), we let qs be a new predicate of arity m+ 1
and replace this conjunct with

∀m(µs → ∃[=Ms]qs) ∧ ∀m+1(ζs → qs).

The case ≥ is treated similarly. ◀

We refer to formulas of the forms (7) as normal-form formulas of FLCm+1.
The following notions are useful for analysing FLC-formulas. Let Σ be a finite relational

signature. A fluted literal over Σ is an expression p or ¬p, where p ∈ Σ ∪ {=}. (Remember
that, under variable-free notation, we think of p as an atom p(xℓ, . . . , xm) of FLC[m].) The
arity of the literal is the arity of the underlying predicate. A fluted m-type τ (over Σ) is a
maximal consistent set of fluted literals over Σ having arity at most m. We call τ reflexive if
it contains the literal =. We silently identify fluted m-types with their conjunctions, thus
regarding them as quantifier-free FLm-formulas. Obviously, if τ is a fluted m-type and ψ a
quantifier-free FLCm-formula over the same signature, then either |= τ → ψ or |= τ → ¬ψ.
Suppose A is a structure over domain A interpreting Σ, and ā an m-tuple of elements from
A (m ≥ 1). Then there is a unique fluted m-type τ such that A |= τ [ā]. We denote τ by
ftpA[ā], and call it the fluted m-type of ā.

A fluted star-type σ of dimension m over Σ is a multiset of fluted (m+ 1)-types over Σ at
most one of which (counting multiplicities) is reflexive. The term “star-type” comes from [15];
in the present paper,we concern ourselves either with fluted star-types or semi-fluted star-types
(defined below). Since we may list the fluted (m+ 1)-types over Σ as τ1, . . . , τJ in some fixed
order (J ≤ 2|Σ|+1), we can regard any fluted star-type σ over Σ as a vector (σ(τ1), . . . , σ(τJ ))
of cardinal numbers. We say that σ is M -bounded if |σ| = σ(τ1) + · · · + σ(τJ) ≤ M . If ζ is
a quantifier-free FLCm+1-formula over Σ, the retract of σ to ζ is the fluted star-type σ↾ζ
given by:

(σ↾ζ)(τ) =
{
σ(τ) if |= τ → ζ

0 otherwise.

Thus, when performing a retract to ζ, we remove from σ all occurrences of those fluted
(m+ 1)-types inconsistent with ζ (i.e. set their multiplicities to 0). We say that σ is a fluted
ζ-star-type if σ = σ↾ζ. Suppose A is a structure over domain A interpreting Σ, and ā an
m-tuple of elements from A (m ≥ 1). If ζ is any quantifier-free formula of FLCm+1 over Σ,
we may define a fluted ζ-star-type σ of dimension m by setting, for each fluted (m+ 1)-type
τ over Σ, σ(τ) = |{b ∈ A : A |= τ [āb] and A |= ζ[āb]}|. We denote σ by fstAζ [ā], and call
it the fluted ζ-star-type of ā in A. As an aide to intuition, think of ā as emitting various
“ζ-rays”, each absorbed by some element b ∈ A such that A |= ζ[āb]. Every ζ-ray has a
“colour” specified by some fluted (m+ 1)-type τ such that |= τ → ζ. The fluted star-type
fstAζ [ā] simply counts how many rays of each colour arise in this way. To grasp the utility
of these notions, let φ be a normal-form formula (7), and suppose A |= φ. Now let B be a
structure such that, for every m-tuple b̄ from B, there exists an m-tuple ā from A satisfying:
(i) ftpB[b̄] = ftpA[ā]; (ii) fstBζs

[b̄] = fstAζs
[ā] for every s such that B |= µs[b̄], and (iii) for every

b′ ∈ B, there exists a′ ∈ A such that ftpB[b̄b′] = ftpA[āa′]. Then B |= φ.
We mentioned earlier that the logic C2 lacks the finite model property, but that its

satisfiability and finite satisfiability problems are in NExpTime – these being relatively
non-trivial results. The following lemma illustrates the comparative weakness of its fluted
sub-fragment, FLC2 by establishing that this has the finite model property. In fact, we adapt
a well-known proof (see [8, pp. 77 ff.], [9]) of the corresponding statement for the monadic
fragment of first-order logic [11].

ICALP 2021



141:6 Fluted Logic with Counting

▶ Lemma 4. If φ is a satisfiable formula of FLC2, then φ has a model of size bounded by
an exponential function of ∥φ∥. The satisfiablity problem for FLC2 is in NExpTime.

Proof. By Lemma 3, we may assume that φ is of the form (7), over a signature Σ, where
m = 1. We may further assume that Σ features no predicates of arity 0, since their truth-
values can be guessed. Let M =

∑
s∈S Ms, and suppose A |= φ. For each fluted 1-type π

(over Σ) realized in A, let Bπ be a set of cardinality min(M + 1, |{a ∈ A | ftpA[a] = π}|) and
let B =

⋃
π Bπ. Thus, |B| ≤ (M + 1)2|Σ|+1. We define a structure B with domain B and

show that B |= φ. For each b ∈ Bπ, set ftpB[b] = π. These fluted 1-types involve only unary
predicates, and so may be assigned independently of each other. To complete the definition
of B we fix the extensions of binary predicates so as to determine ftpB[bb′] for any ordered
pair of elements ⟨b, b′⟩ ∈ B2.

Pick any b ∈ B, and let a ∈ A be such that ftpA[a] = ftpB[b] = π, say. Write
S′ = {s ∈ S : A |= µs[a]} and ζ ′ =

∨
s∈S′ ζs, and let A′ be the set of elements a′ ∈ A \ {a}

such that A |= ζ ′[aa′], say A′ = {a1, . . . , ak}, with k ≤ M . Thus we may choose a
subset B′ = {b1, . . . , bk} ⊆ B \ {b} such that, for all i (1 ≤ i ≤ k), ftpB[bi] = ftpA[ai].
However this is done, we are guaranteed that, for every b′ ∈ B \ (B′ ∪ {b}), we can find
some a′ ∈ A \ (A′ ∪ {a}) such that ftpA[a′] = ftpB[b′]. Now set ftpB[bb] = ftpA[aa] and
ftpB[bbi] = ftpA[aai] for all i (1 ≤ i ≤ k). Further, for all b′ ∈ B \ (B′ ∪ {b}), pick some
a′ ∈ A \ (A′ ∪ {a}) such that ftpA[a′] = ftpB[b′], and set ftpB[bb′] = ftpA[aa′]. Observe
that, in the latter case, A ̸|= ζ ′[aa′], and therefore B ̸|= ζ ′[bb′]. Hence, fstBζ′ [b] = fstAζ′ [a], so
that fstBζs

[b] =
(
fstBζ′ [b]

)
↾ζs =

(
fstAζ′ [a]

)
↾ζs = fstAζs

[a] for every s ∈ S′. By carrying out this
construction for every b ∈ B, we fully define B. Note that the fluted 2-types assigned in
this process never clash with the fluted 1-types already assigned, and never clash with each
other. Thus, for every element b ∈ B there exists a ∈ A such that: (i) ftpB[b] = ftpA[a]; (ii)
fstBζs

[b] = fstAζs
[a] for every s such that B |= µs[b], and (iii) for every element b′ ∈ B, there

exists a′ ∈ A such that ftpB[bb′] = ftpA[aa′]. Hence B |= φ. ◀

At various points in the ensuing argument, we need to vary the signatures interpreted
by structures. The following notation and terminology is standard. If A+ is any structure
interpreting a signature Σ+, and Σ ⊆ Σ+, we denote by A+↾Σ the structure obtained by
forgetting the predicates in Σ+ \ Σ. We call A = A+↾Σ the reduct of A+ to Σ, and say that
A+ is an expansion of A.

3 Existential Presburger quantifiers

In view of Lemma 4, a natural strategy for proving Theorem 1 suggests itself: reduce the
satisfiability problem for FLCm+1 to that for FLCm. This is nearly the strategy we follow.
To make it work, however, we must generalize the notion of counting quantifiers. Denote
the natural numbers {0, 1, 2, . . . } by N. A linear Diophantine inequality is an expression
a1v1 + · · · + anvn + b ≤ c1v1 + · · · + cnvn + d, with coeffecients in N. If E(v̄) is a system of
linear Diophantine inequalities in variables v̄, a solution of E is an assignment of natural
numbers ā to the variables v̄ which make all inequalities of E true. It was shown in [4] that
one can bound the values occurring in the solutions of such systems. (Various such bounds
are available: see, e.g. [13].) The following is adequate for our purposes:

▶ Theorem 5 (from [14], Corollary 1). Let E be a system of m linear Diophantine inequalities
in n variables, with maximum coefficient M . If E has a solution, then it has one in which all
values are bounded by (2 + (n+ 1)M)n+m.
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By Presburger arithmetic, we understand the set of first-order formulas (with equality)
over the signature {N,+,≤, ·} whose atomic sub-formulas are linear Diophantine inequalities.
We interpret these symbols over the domain N in the standard way (with the constants N
interpreted as themselves), and say that a tuple of natural numbers ā satisfies a formula
of Presburger arithmetic Θ(v̄) if N |= Θ[ā]. The size of Θ, denoted ∥Θ∥, is the number
of bits required to write it in the usual way, under the assumption that the individual
constants (i.e. coefficients of the linear Diophantine inequalities) are encoded as bit-strings.
By existential Presburger arithmetic, we mean the set of formulas of Presburger arithmetic
of the form Θ(v̄) = ∃ū.Ξ(v̄, ū), where Ξ is quantifier-free. Theorem 5 immediately yields (see
also, e.g. [7, Table 1]):

▶ Corollary 6. There is a non-deterministic procedure which, given a formula Θ(v̄) of
existential Presburger arithmetic and tuple ā of natural numbers bounded by M with the same
arity as v̄, has a successful run if and only if ā satisfies Θ(v̄). This procedure runs in time
bounded by a polynomial function of ∥Θ∥ + logM .

Now for our generalization of counting quantifiers.
Fix some m ≥ 1, and let Σ be a purely relational signature, M a positive integer and Θ a

formula of existential Presburger arithmetic in variables v̄ = v1, . . . , vJ corresponding to the
fluted (m+ 1)-types τ1, . . . , τJ over Σ. We call an expression Q⟨Σ,M,Θ⟩ a fluted existential
Presburger quantifier (or: fluted ep-quantifier). If ζ is a quantifier-free formula of FLm+1,
we allow formulas φ of the form Q⟨Σ,M,Θ⟩ζ, with semantics given by declaring, for any
structure A interpreting a signature Σ′ ⊇ Σ and any m-tuple ā of elements from A:

A |= φ[ā] if and only if fst(A↾Σ)
ζ [ā] is M -bounded and satisfies Θ(v̄). (8)

Recall in this connection that we regard a star-type over Σ as a vector with entries in N;
the star-type in question is M -bounded if the sum of those entries is at most M . By way of
maintaining some contact with familiar territory, the FLC-formula ∃[=M ]ζ can be written in
the new syntax as Q⟨Σ,M,Θ⟩ζ, where Θ is the single equation v1 + · · ·+vJ = M . (Of course:
this equation is just a conjunction of two linear inequalities, and so counts as a formula of
Presburger arithmetic). Note that there is no existential quantification in this case.

We define FLCm+1
ep to be the set of formulas φ given by∧

s∈S

∀m(µs → Q⟨Σ,Ms,Θs⟩ζs) ∧
∧
t∈T

∀m(νt → ∀ηt) ∧ ∀m+1θ, (9)

where Σ is a relational signature, the µs and νt are quantifier-free FLCm-formulas over Σ,
the ζs, ηt and θ are quantifier-free FLCm+1-formulas over Σ, the Ms are positive integers and
the Θs are formulas of existential Presburger arithmetic with free variables corresponding
to the fluted (m + 1)-types over Σ. We remark that we have defined FLCm+1

ep directly
interms of fomulas of the form (9), rather than establishing an analogue of Lemma 3 for a
language extending FLCm+1. This is intentional: formulas in which Q⟨Σ,Ms,Θs⟩ζ appears
with negative polarity might not be succinctly expressible in the form (9). We define the
effective size of φ, denoted #(φ), to be the quantity log(∥φ∥) + |S| + |T | + logM + |Σ|, where
M =

∑
s∈S Ms. Informally: when measuring the effective size of φ, we do not mind if ∥φ∥

becomes exponentially large, as long as Σ, S, T and the number of bits required to write the
various Ms do not.

We stress that fluted ep-quantifiers give us no additional expressive power beyond the
standard counting quantifiers. Indeed, if ζ is a quantifier-free formula of FLCm+1 over a
signature Σ, and supposing the fluted (m+ 1)-types over Σ to be enumerated as τ1, . . . , τJ ,
any formula Q⟨Σ,M,Θ⟩ζ is logically equivalent to the huge disjunction
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∨ 
J∧

j=1
∃[=σ(τj)]τj

∣∣∣∣∣∣ σ is an M -bounded fluted ζ-star-type over Σ satisfying Θ

 . (10)

However, fluted ep-quantifiers can be more compact, and we require the added strength of
the following routine extension of Lemma 4.

▶ Lemma 7. If φ is a satisfiable formula of FLC2
ep, then φ has a model of size bounded

by an exponential function of #(φ). The satisfiability problem for FLC2
ep is in NExpTime,

measured in terms of the effective size of the input.

Proof. For the first statement, let a formula φ of FLC2
ep be given. By definition, φ is in

the form (9) with m = 1. Now construct B as in the proof of Lemma 4. Still we have
B |= φ, since it does not matter whether the permitted star-types are specified by means
of standard counting quantifiers or fluted ep-quantifiers. Further, |B| ≤ (M + 1)2|Σ|+1 and
thus is bounded by an exponential function of #(φ). For the second statement, we may
simply guess a structure B subject to this size bound and check that it satisfies φ. It follows
from Lemma 5 that, for any b ∈ B and s ∈ S such that B |= µs[b], we may check, in
non-deterministic time bounded by an exponential function of #(φ), that fstBζs

[b], satisfies
Θs. Checking the remaining conditions of φ involves standard model-checking, and requires
only (deterministic) time bounded by an exponential function of #(φ). ◀

4 Proof of main result

In this section we prove Theorems 1 and 2, proceeding via the logics FLCm
ep. Fix some

FLCm+1
ep -formula φ as given in (9), with m ≥ 2. We show how to construct an FLCm

ep-formula
φ′, such that φ and φ′ are satisfiable over the same domains. The formula φ′ employs a
signature Σ′ formed by removing from Σ all (m + 1)-ary predicates, while adding a fresh
(m − 1)-ary predicate pS′,T ′ and a fresh m-ary predicate qS′,T ′ for each S′ ⊆ S and each
T ′ ⊆ T . It is obvious that |Σ′| ≤ |Σ| + 2|S|+|T |+1. The maximal arity of predicates in Σ is
m + 1, and in Σ′ is m. In addition to Σ and Σ′, we consider the signatures Σ+ = Σ ∪ Σ′

and Σ− = Σ ∩ Σ′. As explained in Sec. 2, we assume some fixed enumeration τ1, . . . , τJ of
the J = 2|Σ|+1 fluted (m + 1)-types over Σ. We write τ+

1 , . . . , τ
+
J+ for the corresponding

enumeration of fluted (m+ 1)-types over Σ+; likewise we enumerate the fluted m-types over
Σ′ as τ ′

1, . . . , τ
′
J′ , and over Σ− as τ−

1 , . . . , τ
−
J− .

Our essential problem is to get rid of the (m+ 1)-ary predicates appearing in φ without
affecting satisfiability. The following device will help. Let ψ be any quantifier-free FLCm+1-
formula over Σ. Clearly, there is, up to logical equivalence, a unique strongest quantifier-free
FLCm-formula over Σ− entailed by ψ, i.e. a quantifier-free FLCm-formula ψ◦ over Σ−

satisfying: (i) |= ψ → ψ◦; and (ii) for all quantifier-free FLCm-formulas χ over Σ− such that
|= ψ → χ, we have |= ψ◦ → χ. Indeed, since there are only finitely many such χ (ignoring
logical equivalents), we can take ψ◦ to be their conjunction. Strictly, of course, ψ◦ is only
defined up to logical equivalence, and in fact there are various ways to construct it. Thus, for
example, [16, 17] employ resolution theorem-proving; however, the procedure in the following
proof requires only basic propositional logic.

▶ Lemma 8. Let ψ be a quantifier-free FLCm+1-formula over Σ. Then we can compute ψ◦

in time bounded by an exponential function of ∥ψ∥ + |Σ|. Moreover, if τ− is a fluted m-type
over Σ− such that |= τ− → ψ◦, then there exists a fluted (m+ 1)-type τ over Σ extending
τ− such that |= τ → ψ.
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Proof. We begin by writing ψ, equivalently, in disjunctive normal form. Thus, ψ ≡
∨

{τ |
τ ∈ D}, where D is a set of fluted (m + 1)-types (over Σ). For each τ ∈ D, let τ◦ be the
fluted m-type over Σ− obtained by deleting from τ all conjuncts involving predicates not
in Σ−, and define ψ◦ to be

∨
{τ◦ | τ ∈ D}. Note that, since by assumption m ≥ 2, we will

never delete equality-literals. It is evident that this construction can be carried out in time
bounded by an exponential function of ∥ψ∥+ |Σ|. Since |= τ → τ◦ for any (m+1)-type τ , it is
immediate that |= ψ → ψ◦. On the other hand, suppose χ is a quantifier-free FLCm-formula
over Σ− entailed by ψ; without loss of generality, χ is in disjunctive normal form. We claim
that τ◦ is a disjunct of χ for all τ ∈ D. For if not, we have |= ψ → ¬τ◦, whence |= ψ → ¬τ ,
contradicting the supposition that ψ ≡

∨
{τ | τ ∈ D}. Hence, |= ψ◦ → χ. Given the above

construction of ψ◦, the second statement of the lemma is completely trivial. ◀

Also in this connection, we define a further operation on fluted star-types. Suppose that σ
is an m-dimensional fluted star-type over Σ. The reduct of σ to Σ−, denoted σ/Σ−, is the
(m− 1)-dimensional fluted star-type over Σ− given by

(σ/Σ−)(τ−) =
∑

{σ(τ) : τ a fluted (m+ 1)-type over Σ such that |= τ → τ−},

where τ− is any fluted m-type over Σ−. Thus, when forming a reduct to Σ−, we merge
together fluted (m+ 1)-types which look identical in the smaller signature.

To explain the intuition behind the construction of φ′, we first describe how a putative
model A |= φ can be expanded to a structure, A+, interpreting Σ+ = Σ ∪ Σ′. Taking A′ to
be the reduct of A+ to Σ′ (i.e. with all the (m + 1)-ary predicates removed), we observe
in (13), (14) and (15) that the formulas which will eventually form the conjuncts of φ′ are
all true in A′. We begin with the predicates pS′,T ′ for S′ ⊆ S and T ′ ⊆ T . Let ā ∈ Am−1 be
any (m− 1)-tuple of elements, and consider what φ tells us about the relationship of ā to
other elements in the structure. Since φ is fluted, and bearing in mind the form (9), what
really matters here are the different subsets S′ ⊆ S and T ′ ⊆ T for which there exists an
element a such that A |= µs[aā] for all s ∈ S′ and A |= νt[aā] for all t ∈ T ′. The (m− 1)-ary
predicates pS′,T ′ will simply record which pairs S′, T ′ are realized in this way. That is, we
set, for every S′ ⊆ S and T ′ ⊆ T ,

pA
+

S′,T ′ = pA
′

S′,T ′ = {ā ∈ Am−1 : for some a ∈ A, A |= µs[aā] for all
s ∈ S′ and A |= νt[aā] for all t ∈ T ′}. (11)

The predicates qS′,T ′ are only slightly more complicated. Fix S′ ⊆ S and T ′ ⊆ T for the
moment, and suppose that A+ |= pS′,T ′ [ā]. By construction, there exists a ∈ A such that
A |= µs[aā] for all s ∈ S′ and A |= νt[aā], for all t ∈ T ′. So pick any such a and denote it by
ȧ. The formula φ then guarantees that, for each s ∈ S′, the m-tuple ȧā satisfies the formula
Q⟨Σ,Ms,Θs⟩ζs. Defining Bā = {b ∈ A : A |= ζs[ȧāb] for some s ∈ S′}, we set

qA
+

S′,T ′ = qA
′

S′,T ′ = {āb ∈ Am : A+ |= pS′,T ′ [ā] and b ∈ Bā}. (12)

Thus, Bā serves to pick out the witnesses required by the various fluted ep-quantifiers
Q⟨Σ,Ms,Θs⟩ for the tuple ȧā, as s varies over S′. Letting ζS′ =

∨
s∈S′ ζs, we see that

Bā is the set of elements absorbing ζS′-rays emitted by ȧā. Observe, in particular, that
|Bā| ≤

∑
S′ Ms. The whole construction is illustrated in Fig. 1. Here we see, arranged in a

horizontal strip, the m-tuple ȧā, which satisfies µs for all s ∈ S′ and νt for all t ∈ T ′. The
elements b ∈ Bā absorbing the ζS′-rays emitted by ȧā, are taken to lie on the periphery of
the fan-shaped region. Each of these elements b absorbs a ζs-ray, for at least one (in general

ICALP 2021



141:10 Fluted Logic with Counting

µs

ȧ

ζS′

ā

b ∈ Bā

pS′,T ′

νt

s ∈ S′, t ∈ T ′

qS′,T ′
ζs

Figure 1 Intended interpretations of the predicates pS′,T ′ and qS′,T ′ in A+ (and A′).

several) values of s ∈ S′. Discarding the element ȧ, we take the new predicate pS′,T ′ to
apply to the (m− 1)-tuple ā and the new predicate qS′,T ′ to apply to the m-tuples āb, where
b ∈ Bā.

We now construct the promised formula φ′ in three steps, guided by the structure A′ just
described. The first step is to write formulas reflecting the intended interpretations of the
predicates pS′,T ′ . Indeed, we see immediately that, for all S′ ⊆ S and T ′ ⊆ T ,

A′ |= ∀m
( ∧

s∈S′

µs ∧
∧

t∈T ′

νt → pS′,T ′
)
. (13)

The second step is to write formulas reflecting the intended interpretations of the predicates
qS′,T ′ , and specifically, the fact that they identify all ζS′-witnesses for m-tuples of interest.
Concretely, select an (m− 1)-tuple ā from A and suppose A |= pS′,T [ā]. Now let ȧ and Bā

be as chosen in the definition of qA′

S′,T ′ . Then b ̸∈ Bā implies that ȧāb does not satisfy ζs for
any s ∈ S′. On the other hand, ȧāb satisfies ηt for every t ∈ T ′ as well as θ. Thus, writing,
say, ψ for (

∧
s∈S′ ¬ζs ∧

∧
t∈T ′ ηt ∧ θ), we see that A |= ψ[ȧāb]. Recalling that ψ◦ denotes the

strongest quantifier-free formula over Σ− entailed by ψ, we obviously have A− |= ψ◦[ȧāb],
where A− denotes the reduct A↾Σ− = A′↾Σ−. But ψ◦ involves no predicates of arity m+ 1,
whence A− |= ψ◦[āb]. (Observe how we are here exploiting variable-free notation: while
ψ◦ is indeed a formula of FLC[m+1], it involves only predicates in Σ− , and therefore is
simultaneously a formula of FLC[m], which cannot “see” the element ȧ in the tuple ȧāb.)
Thus, since ψ◦ is also a formula over the signature Σ′, we have shown that, for all S′ ⊆ S

and T ′ ⊆ T ,

A′ |= ∀m−1(
pS′,T ′ → ∀

(
¬qS′,T ′ →

( ∧
s∈S′

¬ζs ∧
∧

t∈T ′

ηt ∧ θ
)◦))

. (14)

The final step in the construction of φ′ requires us to define, for all subsets S′ ⊆ S, a fluted
ep-quantifier Q⟨Σ′,MS′ ,ΘS′⟩. To motivate the definition, let ā again be any (m− 1)-tuple
from A, let S′, T ′ be such that A+ |= pS′,T ′ [ā], and let ȧ be the element selected in the
definition of qA+

S′,T ′ , so that we have

Bā = {b ∈ A : A |= ζs[ȧāb] for some s ∈ S′} = {b ∈ A : A′ |= qS′,T ′ [āb]}.

Remembering that ζS′ =
∨

s∈S′ ζs, define the fluted star-types σ = fstAζS′ [ȧā] (m-dimensional,
over Σ) and σ′ = fstA

′

qS′,T ′ [ā] ((m− 1)-dimensional, over Σ′). Define in addition the (m− 1)-
dimensional fluted star-type over Σ− by setting, for any fluted m-type τ− over Σ−,

σ−(τ−) = |{b ∈ Bā : A− |= τ−[āb]}|.
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We see immediately by consideration of the set Bā that σ/Σ− = σ− = σ′/Σ−. Warning: it
will not in general be the case that σ− arises as fstA

−

ζ− [ā] for any quantifier-free formula ζ−

over the signature Σ−. Indeed, A− interprets neither the predicate qS′,T ′ nor the predicates
of ζS′ , and is therefore insensitive to the extension of Bā used to define σ−. Nevertheless, we
have established:

σ/Σ− = σ′/Σ−. (L1)

A little thought shows that σ satisfies various further properties. Fix some s ∈ S′. Since
|= ζs → ζS′ , we see that the retract σ↾ζs is equal to the fluted star-type fstAζs

[ȧā] and hence
(from the fact that A |= φ), is Ms-bounded and satisfies Θs. Thus, we have:

for all s ∈ S′, σ↾ζs is Ms-bounded and satisfies Θs. (L2)

Now fix some t ∈ T ′. Since A |= φ, it follows immediately that, for every b ∈ Bā, A |= ηt[ȧāb],
and indeed A |= θ[ȧāb], whence:

for all t ∈ T and all τ such that σ(τ) > 0, |= τ → ηt. (L3)
for all τ such that σ(τ) > 0, |= τ → θ. (L4)

Casting this discussion in terms of σ′ = fstA
′

qS′,T ′ [ā] and writing MS′ =
∑

s∈S′ Ms, we see
that σ′ is MS′ -bounded and satisfies the property that there exists a fluted star-type σ such
that (L1)–(L4) hold. Crucially, this property can be naturally formulated using a formula
of existential Presburger arithmetic. Letting v̄ be a tuple of variables corresponding to the
fluted (m+ 1)-types over Σ and v̄′ a tuple of variables corresponding to the fluted m-types
over Σ′, we see that (L1) is a system of equations Av̄ = A′v̄′, where A, A′ are matrices with
entries in {0, 1} depending only on the fixed ordering of the fluted (m+ 1)-types over Σ and
the fixed ordering of the fluted m-types over Σ′ and Σ−. And certainly, (L3) and (L4) can be
expressed as a single equation setting certain values in v̄ to zero. Let us write Λ(v̄, v̄′) for the
conjunction of all the equations expressing (L1), (L3) and (L4). Considering that any retract
σ↾ζs amounts to the zeroing of certain entries in σ, we may assume without loss of generality
that the corresponding variables do not occur in Θs. (If they do, we may replace them by 0.)
And in that case, (L2) is expressed by the conjunction

∧
s∈S′ Θs(v̄). Thus, we may formulate

the above conditions on σ′ as the requirement that (considered as a vector v̄′ of length J ′

over N) it satisfies the formula of Presburger arithmetic ∃v̄
(
Λ(v̄, v̄′) ∧

∧
s∈S′ Θs(v̄)

)
. Writing

Θs(v̄) as ∃ūs.Ξs(ūs, v̄) for each s ∈ S, we obtain, by renaming variables to avoid clashes, the
equivalent existential Presburger formula ΘS′(v̄′) ≡ ∃v̄ū

(
Λ(v̄, v̄′) ∧

∧
s∈S′ Ξs(ūs, v̄)

)
, where

ū is the concatenation of the (disjoint) tuples ūs for s ∈ S′. Thus, we have shown:

A′ |= ∀m−1(pS′,T ′ → Q⟨Σ′,MS′ ,ΘS′⟩qS′,T ′). (15)

Now we are ready to define φ′ as the conjunction of the following formulas:∧
S′⊆S

∧
T ′⊆T

∀m
( ∧

s∈S′

µs ∧
∧

t∈T ′

νt → pS′,T ′
)

(16)

∧
S′⊆S

∧
T ′⊆T

∀m−1(pS′,T ′ → Q⟨Σ′,MS′ ,ΘS′⟩qS′,T ′) (17)

∧
S′⊆S

∧
T ′⊆T

∀m−1(
pS′,T ′ → ∀

(
¬qS′,T ′ →

( ∧
s∈S′

¬ζs ∧
∧

t∈T ′

ηt ∧ θ
)◦))

. (18)

By re-ordering of conjuncts, we see that φ′ is an FLCm
ep-formula. Moreover, it follows

from (13), (14) and (15) that A′ |= φ′. Hence, we have proved:
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▶ Lemma 9. If φ is satisfiable over some domain A, then so is φ′.

We now prove a converse to Lemma 9. Suppose B′ |= φ′, where B′ has domain B. We
proceed to construct a model B |= φ over the same domain. Let B− = B′↾Σ−. Notice that
B− features no predicates of arity m+ 1, and none of the “new” predicates pS′,T ′ or qS′,T ′ .
We shall expand B− to a structure B and then show that B |= φ. It suffices to specify, for
every a, b ∈ B and ā ∈ Bm−1, whether the tuple aāb is in the extension of each (m+ 1)-ary
predicate of Σ. Equivalently, we must specify the fluted (m+ 1)-type of every tuple aāb in B.

Fix a ∈ B and ā ∈ Bm−1. Let S′ = {s ∈ S | B− |= µs[aā]}, T ′ = {t ∈ T | B− |= νt[aā]}
and ζS′ =

∨
s∈S′ ζs. Since all the µs and νt are Σ−-formulas, we could equivalently have

replaced B− by B′ in the definitions of S′ and T ′. Define σ′ = (v′
1, . . . , v

′
J′) = fstB

′

qS′,T ′ [ā]
and Baā = {b ∈ B | B′ |= qS′,T ′ [āb]}. Notice that, since the sets S′ and T ′ depend on
a as well as ā, then so does the set Baā. It follows from (16) that B′ |= pS′,T ′ [ā], and
from (17), that σ′ is MS′ -bounded and satisfies the existential Presburger formula ΘS′(v̄′) ≡
∃v̄ū

(
Λ(v̄, v̄′) ∧

∧
s∈S′ Ξs(ūs, v̄)

)
. But ΘS′(v̄′) asserts that v̄′ is the vector representation of

a fluted star-type σ′ (over Σ′) for which there exists an m-dimensional fluted star-type σ
(over Σ) satisfying conditions (L1)–(L4). Letting σ− = σ′/Σ−, it follows from (L1) that
σ− = σ/Σ−. We proceed to set the fluted (m+ 1)-type of all tuples aāb, as b ranges over B;
we shall do this in such a way that fstBζS′ [aā] = σ. The plan is first to find all the required
witnesses in the set Baā, and then to ensure that no unwanted witnesses appear outside
this set.

We begin with the elements b ∈ Baā. We first partition Baā into groups which are
indistinguishable from the point of view of the signature Σ−. Specifically, we write σ− =
(v−

1 , . . . , v
−
J−), and for each j− (1 ≤ j− ≤ J−), we let Bj− = {b ∈ Baā | B− |= τ−

j− [ā, b]}.
Writing J−

aā for the set of indices j− for which Bj− is non-empty, we see that |Bj− | = vj−

for all j− (1 ≤ j− ≤ J−), vj− = 0 for all j− ̸∈ J−
aā, and the family of sets {Bj− | j− ∈ J−

aā}
forms a partition of Baā.

Now consider just one cell of this partition, say Bj− . We have

Bj− = {b ∈ Baā | B− |= τ−
j− [ā, b]} = {b ∈ Baā | B′ |= τj′ [ā, b] for some j′ s.t. |= τ ′

j′ → τ−
j−}.

And since v−
j− = |Bj− |, we obtain

v−
j− =

∑
{vj′ | 1 ≤ j′ ≤ J ′ and |= τ ′

j′ → τ−
j−} =

∑
{vj | 1 ≤ j ≤ J and |= τj → τ−

j−},

the second equality arising from the fact that σ/Σ− = σ′/Σ−. Thus, we may choose, for
each j such that |= τj → τ−

j− , a fresh collection Bj−,j of vj elements of Bj− , and for each
of these elements, b, set ftpB[aāb] = τj . Because |= τj → τ−

j− , the only predicates being
defined afresh here have arity (m + 1), so that these assignments represent an expansion
of B−. Once these assignments are made, the set Bj− will contain vj elements b such that
ftpB[aāb] = τj for all j such that |= τj → τ−

j− . Repeating this procedure for every j− ∈ J−
aā,

and writing Jaā = {j | 1 ≤ j ≤ J and |= τj → τ−
j− for some j− ∈ J−

aā}, we see that the set
Baā will contain vj elements b such that ftpB[aāb] = τj for all j ∈ Jaā. On the other hand,
σ′ = (v′

1, . . . , v
′
J′) = fstB

′

qS′,T ′ [ā], so that j− ̸∈ J−
aā implies v−

j− = 0 and hence∑
{vj | 1 ≤ j ≤ J and |= τj → τ−

j−} = 0,

since σ↾Σ− = σ−. That is, vj = 0 for all j ̸∈ Jaā, and we have shown that Baā contains vj

elements b such that ftpB[aāb] = τj , for all j (1 ≤ j ≤ J).
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Next, we deal with the elements b ∈ B \ Baā. By definition, B′ ̸|= qS′,T ′ [āb], so
that, abbreviating

∧
s∈S′ ¬ζs ∧

∧
t∈T ′ ηt ∧ θ by ψ, (18) yields B′ |= ψ◦[āb]. Writing τ− =

ftpB−
[ā, b], and noting that ψ◦ is a Σ−-formula, we have |= τ− → ψ◦. By Lemma 8, let τ̃ be

a fluted (m+ 1)-type over Σ extending τ− such that |= τ̃ → ψ, and set ftpB[aāb] = τ̃ . In
particular, B ̸|= ζS′ [aāb]. Thus, we have set the fluted (m + 1)-type of all (m + 1)-tuples
aāb, as b ranges over B. Repeating this process for each m-tuple aā, which we may do
independently, the structure B will have been completely defined. In the course of this
construction, we have shown that, for every b ̸∈ Baā, B ̸|= ζS′ [aāb]. But we showed above
that the number of elements b ∈ Baā such that B |= τj [aāb] is vj , where σ = (v1, . . . , vJ ). It
follows that fstBζS′ [aā] = σ, as required.

In constructing B, we have secured the following property. Take any m-tuple aā with
a ∈ B and ā ∈ Bm−1, and define S′ = {s ∈ S | B− |= µs[aā]}, T ′ = {t ∈ T | B− |= νt[aā]},
ζS′ =

∨
s∈S′ ζs and σ′ = fstB

′

qS′,T ′ [ā]. Then fstBζS′ [aā] = σ, where σ is some fluted star-type
over Σ satisfying (L1)–(L4), whose existence is guaranteed by the fact that σ′ satisfies the
existential Presburger formula ΘS′ . We have used (L1) in the construction of B. We now
use (L2)–(L4) to ensure that B |= φ.

We first show that, for all s ∈ S, B |= ∀m(µs → Q⟨Σ,Ms,Ls⟩ζs). For consider any
m-tuple aā with a ∈ B and ā ∈ Bm−1 such that B |= µs[aā], and let S′, ζS′ , and σ be as
just defined. Since s ∈ S′, we have |= ζs → ζS′ , and hence fstBζs

[aā] = σ↾ζs, which, by (L2), is
Ms-bounded and satisfies ΘS′ . We next show that, for all t ∈ T , B |= ∀m(νt → ∀ηt). Again,
consider any m-tuple aā with a ∈ B and ā ∈ Bm−1 such that B |= νt[aā], and let S′, T ′

and σ be as just defined. Pick any b ∈ B. If b is in the set Baā used in the construction
of B, then σ(ftpB[aāb]) > 0, whence by (L3), we have B |= ηt[aāb]. On the other hand, if
b ̸∈ Baā, then ftpB[aāb] was set to some τ̃ entailing

∧
s∈S′ ¬ζs ∧

∧
t∈T ′ ηt ∧ θ, so that, again

B |= ηt[aāb]. Finally, to show that B |= ∀m+1θ, we proceed as in the previous case, but
using (L4) instead of (L3). Thus we have proved:

▶ Lemma 10. If φ′ is satisfiable over some domain B, then so is φ.

▶ Lemma 11. The formula φ′ can be computed in time bounded by an exponential function
of ∥φ∥. Moreover, #(φ′) is bounded by an exponential function of #(φ).

Proof. Recalling that φ has the form∧
s∈S

∀m(µs → Q⟨Σ,Ms,Θs⟩ζs) ∧
∧
t∈T

∀m(νt → ∀ηt) ∧ ∀m+1θ

over signature Σ′, let M =
∑

s∈S Ms. Writing φ′ given by (16)–(18) in the same form, over
signature Σ′, we notice first of all that the sizes of the index sets certainly only increase by
an exponential. Let M ′ be the sum of all the numbers occurring in the fluted ep-quantifiers
of φ′, i.e.

∑
{2|T | · MS′ | S′ ⊆ S}, whence logM ′ ≤ |S| + |T | + logM ≤ #(φ). We noted

above that |Σ′| ≤ |Σ| + 2|S|+|T |+1 ≤ #(φ) + 2#(φ)+1. To show that log∥φ′∥ is also bounded
by an exponential function of #(φ), we need only show that log∥ΘS′∥ is bounded by an
exponential function of #(φ), for each S′ ⊆ S. Fix some S′ ⊆ S, then, and recall that

ΘS′(v̄′) ≡ ∃v̄{ūs}s∈S′
(
Λ(v̄, v̄′) ∧

∧
s∈S′

Ξs(ūs, v̄)
)
.

Let e be the maximum number of existentially quantified variables in any Θs as s ranges
over S; certainly, e ≤ ∥φ∥. The number of free variables in ΘS′ is simply the number of
fluted m-types over Σ′ and hence at most 2|Σ′|+1. The number of existentially quantified
variables in in ΘS′ is bounded by |S′|.e+ 2|Σ|+1. Moreover, Λ consists of 2|Σ−|+1 equations
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featuring at most 2|Σ|+1 + 2|Σ′|+1 terms. Finally we evidently have ∥
∧

s∈S′ Θs∥ ≤ |S′| · ∥φ∥.
Adding all of these together, we see that log∥ΘS′∥ is bounded by an exponential function of
#(φ), as required. ◀

▶ Lemma 12. Let m ≥ 1. Any satisfiable formula of FLCm+1
ep has a finite model. Moreover,

the satisfiability problem for FLCm+1
ep is in m-NExpTime, measured in terms of the effective

size of the input.

Proof. The case m = 1 is Lemma 4. The inductive step is from Lemmas 9, 10 and 11. ◀

We may now prove Theorem 1. Let a formula φ of FLCm+1 be given. By Lemma 3, we
may suppose without loss of generality that φ is in normal form (7). Further, we may replace
any sub-formula ∃[=Ms]ζs in φ by the equivalent sub-formula Q⟨Σ,Ms,Θs⟩ζs, where Θs is
simply the equation v1 + · · · + vJ = Ms, thus obtaining, in time bounded by an exponential
function of ∥φ∥, an FLCm+1

ep -formula φ0 equivalent to φ. Note that #(φ0) is bounded by a
polynomial function of ∥φ∥. The result then follows from Lemma 12.

5 The semi-fluted fragment

Finally, we consider the semi-fluted fragment with counting, SFC. The analysis proceeds
largely as for FLC. We remind the reader that variable-free notation is no longer available
in this case. Of course, we could employ predicate-functor-style syntax here; however, for
the little material remaining, this seems excessive.

Let Σ be a purely relational signature and m a positive integer. A semi-fluted m-atom
over Σ is a formula of the form p(x̄) or its negation where either: (i) p ∈ Σ and x̄ is a
contiguous sequence of variables xℓ, . . . , xm, or (ii) p ∈ Σ∪{=} and x̄ is a sequence of at most
two variables chosen (repeats allowed) from the set {xm−1, xm}. A semi-fluted m-literal is
either a semi-fluted m atom or its negation. Thus, we have the same restriction on argument
patterns as in fluted logic generally, except that semi-fluted m-literals of arity at most 2 may
feature the variables xm−1 and xm in any order we like. A semi-fluted m-type (over Σ) is a
maximal consistent set of semi-fluted m-literals (over Σ). For these purposes, consistency
takes account of the special meaning of the equality predicate: thus, {p(x1),¬p(x2), x1 = x2}
is not consistent. As before, where convenient, we identify a semi-fluted m-type τ with the
conjunction of its members and call τ reflexive if it contains xm−1 = xm. We remark that
semi-fluted 1- and 2-types are simply maximal consistent sets of literals (atomic formulas
or their negations) in the variables x1 and x2, and are usually referred to in the literature
simply as 1- and 2-types. If τ is a semi-fluted literal of arity m ≥ 2, define tp1(τ) to be the
set of literals in τ featuring only the variable xm−1. (Note that replacing the variable xm−1
in tp1(τ) by x1 would yield a 1-type.) A semi-fluted star-type of dimension m over Σ is a
multiset of semi-fluted (m+ 1)-types over Σ at most one of which is reflexive, subject to the
additional condition that the value tp1(τ) is the same for all τ occurring (i.e. having non-zero
multiplicity) in σ. A semi-fluted star-type is M -bounded if the sum of its multiplicities is M .
By enumerating the semi-fluted (m+ 1)-types over Σ in some fixed order, we may regard
any semi-fluted star-type as a vector of cardinal numbers.

If A is a structure interpreting Σ, and ā is an m-tuple of elements from A (repeats
allowed), there is a unique semi-fluted m-type satisfied by ā; we denote this by sftpA[ā].
If, in addition, ζ is a quantifier-free formula of SFCm+1, then we may define a semi-
fluted star-type σ of dimension m by setting, for each semi-fluted (m + 1)-type τ over Σ,
σ(τ) = |{b ∈ A : A |= τ [āb] and A |= ζ[āb}]|. Notice incidentally that for all τ occurring in
σ, we have A |= tp1(τ)[a], where a is the last element of ā, whence these 1-types are indeed
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all the same. We call σ the semi-fluted ζ-star-type of ā in A, and denote it by sfstAζ [ā]. As
with fluted ζ-star-types, so with their semi-fluted cousins, we can think of the tuple ā as
“emitting” various “ζ-rays”, which are “absorbed” by various elements of A. The principal
difference is that the (non-empty) semi-fluted ζ-star-type of ā gives us the 1-type satisfied by
the final element a of ā, and indeed of the full 2-types (not just the fluted 2-types) of the
pairs ab, for b an element absorbing one of the ζ-rays emitted by ā.

Normal forms analogous to those of Lemma 3 are easily obtainable:

▶ Lemma 13. Let φ be a formula of SFCm+1 (m ≥ 1). Then we may compute, in time
bounded by a polynomial function of ∥φ∥, an SFCm+1-sentence satisfiable over the same
domains as φ, and having the form∧

s∈S

∀x1 . . . ∀xm(µs → ∃[=Ms]xm+1.ζs) ∧
∧
t∈T

∀x1 . . . ∀xm(νt → ∀ηt) ∧ ∀xm+1.θ, (19)

where S and T are index sets, the µs and νt are quantifier-free SFCm-formulas, the ζs, ηt

and θ are quantifier-free SFCm+1-formulas, and the Ms are positive integers.

The proof proceeds as for Lemma 3, almost verbatim.
Extending the notion of ep-quantifiers to the semi-fluted case is again routine. If ζ is

a quantifier-free formula of SFCm+1, we allow formulas φ of the form Q⟨Σ,M,Θ⟩ζ. For
any structure A interpreting a signature Σ′ ⊇ Σ and any m-tuple ā of elements from A, we
declare:

A |= φ[ā] if and only if sfst(A↾Σ)
ζ [ā] is M -bounded and satisfies Θ(v̄), (20)

just as with (8). We then define SFCm+1
ep to be the set of formulas φ given by∧

s∈S

∀x1 . . . ∀xm(µs → Q⟨Σ,Ms,Θs⟩xm+1.ζs)∧∧
t∈T

∀x1 . . . ∀xm(νt → ∀xm+1.ηt) ∧ ∀x1 . . . ∀xm+1.θ, (21)

where Σ is a relational signature, the µs and νt are quantifier-free SFCm-formulas over Σ,
the ζs, ηt and θ are quantifier-free SFCm+1-formulas over Σ, the Ms are positive integers and
the Θs are formulas of existential Presburger arithmetic with free variables corresponding to
the semi-fluted (m+1)-types over Σ. Of course, this parallels the definition of FLCm+1

ep given
in (9). Again, semi-fluted ep-quantifiers give us no expressive power beyond the ordinary
counting quantifiers, since the translation (10) (with the counting quantifier taken to bind
the variable xm+1) holds also when ζ is only semi-fluted. We may define the effective size,
#(φ) of an SFCm

ep-formula φ exactly as with FLCm
ep-formulas.

At this point, we are in a position to sketch the proof of Theorem 2. Let an SFCm+1-
formula φ be given (m ≥ 1). By Lemma 13, we may assume without loss of generality that
φ is in the form (19). Clearly, this may be converted, in time bounded by an exponential
function of ∥φ∥, and with at most a polynomial increase in #(φ), into an SFCm+1

ep -formula
of the form (21). The reduction described in Sec. 4 can then be repeated almost verbatim,
since the transformation of φ into φ′ never affects the two final variables. Lemmas 9, 10
and 11 then continue to hold. This allows us to transform any formula of SFCm+1 (m ≥ 2)
eventually into a formula of SFC2

ep satisfiable over the same domains. But we have already
argued that any SFC2

ep-formula can be translated into equivalent formula of C2. Since
the satisfiability and finite satisfiability problems for C2 are in NExpTime, we thus obtain
Theorem 2, as promised.
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The complexity bound we may extract from the above argument is rather weak. The
translation given above from a SFC2

ep-formula φ to an equivalent C2-formula ψ′ runs in time
bounded by a doubly exponential function of ∥φ∥, and hence a triply exponential function of
#(φ). Since the satisfiability and finite satisfiability problems for C2 are in NExpTime, this
means that the corresponding problems for SFC2

ep are in non-deterministic time bounded by
quadruply exponential time as a function of #(φ). This results in an upper complexity bound
of (m + 3)-NExpTime for the satisfiability and finite satisfiability problems for SFCm+1

ep
(m ≥ 1). We claim that the satisfiability and finite satisfiability problems for SFCm+1 in
fact remain in m-NExpTime. However, the proof appears to require a modified version
of existing proofs of the complexity bounds for C2, in order to accommodate semi-fluted
ep-quantifiers. Such a reconstruction is beyond the scope of the current paper.

6 Discussion

For m ≥ 2, the upper complexity bound of m-NExpTime for FLCm+1 in Theorem 1 is laxer
than the corresponding upper complexity bound of (m− 1)-NExpTime for FLm+1 from [17].
The best known lower complexity bound on satisfiability for both logics is ⌊(m + 1)/2⌋-
NExpTime-hard, from the same source. It is currently not known how to close this gap. It
is plausible that, for m ≥ 2, the upper bound given in this extended abstract for FLCm+1

could be reduced by one exponential, by adapting the procedure of in [17] for FL3. The
probable difficulty of doing so coupled with the fact that a complexity gap would remain for
FLC5 and above acts, however, as a deterrent to trying.

It is shown in [18] that the satisfiability and finite satisfiability problems for the fluted
fragment, FL remain decidable even in the presence of a distinguished binary predicate
required to be interpreted as a transitive relation (equality is also permitted); with just two
transitive relations (or three transitive relations without equality), however, decidability is
lost. The question arises as to whether a single transitive relation can be added to FLC
without losing decidability of satisfiability. The argumentation of Sec. 4 will reduce this
problem (with blow-up given by the same towers of exponentials) to the corresponding
problem for FLC2 with a single transitive relation. However, this latter problem appears to
be open.

We noted above that the fluted ep-quantifiers introduced here do not extend the expressive
power of ordinary counting quantifiers. In this regard, they do less work than the “existential
Presburger formulas” of [3], which strictly extend the expressive power of C2, permitting,
saliently, counting modulo k for k ≥ 2. The objects referred to as “behaviours” in that paper
play a role very similar to the fluted star-types considered here, except that the values they
assign are not integers, but semi-linear sets of integers. Unifying these approaches seems
therefore to be a natural line of future enquiry.
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